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Abstract

Predicting serviceability and reliability of structures is one of the primary goals in

engineering science. In the last few decades Continuum Damage Mechanics (CDM) has

risen to prominence providing invaluable insights into the mechanics of deterioration prior

to failure. Presently CDM is challenged by poor flexibility and lack of automation in mesh

generation, unavailability of Computer Aided Design data, poor solution convergence etc.

This thesis presents the development of an Automatic Image-Based Adaptive Damage

Analysis (AIBADA) procedure capable of overcoming these difficulties.

Firstly non-linear damage analysis with the Scaled Boundary Finite Element Method

(SBFEM) is explored. The SBFE equations are derived incorporating an isotropic ther-

modynamically congruent elastic damage model. The new simplified damage formulation

requires state variable calculations at only one location within a cell. Polygonal (2D) and

polyhedral (3D) element formulations are developed for damage analysis. The arbitrary

number of edges/faces in these elements assist in meshing complex interfaces. Regular-

isation is established by exchanging information between model parameters. A line search

oriented modified Newton Raphson method with the arc-length technique is adopted to

overcome convergence difficulties. The method improves its efficiency by pre-calculating

subdomain stiffness matrices, strain modes and weight functions. An adaptive analysis

process improves the efficiency and the accuracy of the solution field.

Quadtree and octree image-based mesh generation schemes are utilised to model geo-

metries based on image colour intensities. Mesh balancing limits the number of unique
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cell patterns reducing the computational burden. Mesh smoothing is carried out by a

level set based algorithm. The SBFEM works seamlessly with the pre-processor owing

to its inherent compatibility to handle hanging nodes without additional effort. Using

these hierarchical meshing algorithms and the SBFE polygonal and polyhedral element

formulations mesh automation is achieved.

The computational efficacy, accuracy and the robustness of the proposed fully-automatic

framework expands the practical applications of CDM. AIBADA is likely to appeal to en-

gineers and researchers alike in both academia and the industry. Accurate application of

the method will enable users to analyse and predict failure with the precursory knowledge

on performance deterioration prior to the appearance of macro-cracks.
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Chapter 1

Introduction

Preventing failure and predicting the useful service life of mechanical components

and structures has always been a challenge that has spurred the curiosity of most engin-

eers and researchers. Conventional design standards relied heavily on safety factors and

conservative material characteristics to achieve safe and reliable design outcomes. Mod-

ern engineering however focuses on a minimalistic approach whereby reducing cost and

time are paramount whilst still focused on strength, safety, and reliability. These con-

straints have pushed modern design boundaries to better understand and use materials

with efficient and accurate analysis frameworks. Continuum Damage Mechanics (CDM)

fits perfectly into this space as a accurate, efficient and reliable predictor of material and

structural performance subject to the influence of strength deterioration. There are six

sections in this chapter. Overall, the chapter highlights the present state of CDM and its

challenges which then flows on to the key contributions of this research to overcome these

challenges.

Section 1.1 begins with a brief introduction to computational methods in solving en-

gineering problems. This section includes an outline on mathematical modelling, numer-

ical methods, contemporary computational mechanics and damage analysis. Section 1.2

presents an investigation into the current challenges in damage analysis in tandem with
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the issues faced in computational modelling. These modern day research difficulties in-

spire the the development of the technique presented in this work. An overview of the

approach anticipated to overcome these challenges is documented in section 1.3. Section

1.4 highlights the numerous original contributions in this research. The objectives and

scope of this research are presented in section 1.5. Finally, section 1.6 provides an outline

of this documented volume.

1.1 Computational mechanics in civil engineering

The age of computers has revolutionized the world enabling computational methods to

be in the forefront of many science and engineering fields. These methods enable us

to investigate and solve problems of extreme complexities which may never have been

viable without the invention of computers.

Applications in civil engineering involve complex geometries, loadings, and material

properties. Therefore, it is generally not always possible to obtain an analytical solu-

tion. However, engineering systems can be represented by systems of ordinary or partial

differential equations which can be solved with the help of numerical techniques.

Numerical methods that were developed prior to the invention of the first commer-

cial computer (Univac, IBM 701 in the early 1950) were not readily adaptable to solving

complicated problems. However, with the advent of matrix methods, computers enabled

solving large number of algebraic equations. With the developments that followed, these

capabilities have come to widespread availability with the invention of the personal com-

puter. Today, numerous special and general purpose programs have become popular ap-

plications to handle various complicated civil engineering problems.

1.1.1 Mathematical models of engineering systems

Mathematical models in engineering can be broadly classified into discrete and continu-

ous engineering systems. A discrete system is obtained though amalgamation of a finite

2



number of well-defined components. A continuous model is created through indefinite

subdivisions of the problem domain and the model behaviour defined using the math-

ematical fiction of an infinitesimal. Continuous systems create differential equations or

equivalent statements which implicitly describe the behaviour of an infinite number of ele-

ments. The discussions that follow focus on mathematical modelling in civil engineering

structural systems.

Discrete systems are a simplification of a continuous system with appropriate approx-

imations that approach the limit of a true continuum solution as the number of discrete

variables increase. Discrete systems in engineering are created by forming analogies

between real discrete elements and finite portions of a continuum domain. Such analogies

can be developed for the behaviour of structural engineering elements such as bars, beams

and rods. As an example consider the analysis of an electrical pylon. The discrete ana-

lysis of such a system can be done through direct stiffness method. The method involves

identification of individual elements to develop member stiffness equations. An element

stiffness matrix is then formed considering the forces and displacements depending on the

geometry and properties of each element. Once the individual element stiffness relations

have been developed they are assembled into a global matrix equation consisting of the

stiffness matrix, displacement vector, and force vector. The unknown displacements and

forces are then obtained by solving this global equation.

Modelling continuous engineering systems involves development of partial differen-

tial equations (PDEs) that represent the problem’s underlying mechanical principles for an

arbitrary infinitesimal element. Building mathematical models that represent an engineer-

ing system starts with defining the domain to be analysed and identifying the mechanisms

that govern the processes in the system analysed. Then governing physical laws are con-

sidered to form PDEs with suitable assumptions on the pertinent variables and properties

of the system. In this step it is essential not to overcomplicate the modelling paramet-

ers. Therefore, consideration is given to essential problem features that would enable to

achieve practical results. Afterwards, restricting initial conditions and boundary condi-
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tions are identified and applied to solve the PDEs. An analytical solution may be then

achieved by obtaining a fundamental solution containing arbitrary constants, or by separ-

ation of variables or by method of characteristics. However in most cases an analytical

solution may not be practically achieved due to complexities in the problem geometry or

boundary conditions. Therefore, numerous numerical methods have been developed to

approximate the solution space formed by PDEs.

1.1.2 Numerical models in engineering systems

Numerical models are adopted in the context of simplifying complex problems in con-

tinua through discretisation. Discretisation in numerical modelling refers to the process

of transferring continuous geometries, functions and equations into the discrete forms.

Thereafter an approximate solution is obtained by employing a numerical method. Nu-

merical models therefore constitute of two important steps: spatial discretisation and nu-

merical analysis.

1.1.2.1 Spatial discretisation techniques

Spatial discretisation of the problem domain can be achieved either through conventional

computer-aided-design-based (CAD-based) meshing algorithms or the modern image-

based meshing algorithms. In CAD-based meshing the problem geometry is described by

Non-Uniform Rational B-Splines (NURBS), whereas in image-based meshing techniques

pixels (2D) or voxels (3D) represent the geometrical information and the material distri-

bution of the problem domain. Both CAD-based and image-based meshing algorithms

can produce meshes either conforming or non-conforming to the boundary. The former is

usually adopted by users to exploit commercial software to produce a required mesh. The

latter is often adopted to reduce the amount of human intervention required for creating

boundary conforming meshes. In these methods the description of the boundary and local

features can be defined implicitly.

Spatial discretisation can be achieved by many different algorithms. These include
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automatic and semi-automatic techniques. Semi-automatic techniques include techniques

such as non-parametric mapping method and the transfinite mapping method. Automatic

methods consist of techniques such as Delaunay triangulation method, the advancing front

method, and tree methods such as the finite quadtree method in two dimensions (2D) and

the finite octree method in three dimensions (3D). Out of which automatic processes are

preferred in the current numerical modelling sphere. This is due to the shortcomings of the

semi-automatic meshing algorithms in handling three-dimensional complex geometries

such as varying size distributions within meshes as the element sizes are controlled by the

subdivision of the simple subregions.

The meshes produced can consist of various different types of elements such as line

elements (1D), triangular or quadrilateral elements (2D), and tetrahedral or hexahedral

elements (3D). These may be regular or higher order elements depending on the interpol-

ation shape functions involved. Therefore, a clear distinction should be made on the ap-

propriateness of each element type by understanding the physical behaviour taking place

in a problem. This involves understanding the boundary conditions, loads that must be

applied to a body and their magnitudes and locations, computational resources available,

and the expected accuracy of the modelling.

Complications in the mesh generation may arise due to complex boundaries that create

distorted elements. The meshes that contribute to a bad result may contain elements with

large aspect ratios, very large or very small corner angles, elements that are approaching a

triangular shape, or elements that are triangular quadrilaterals. Such errors are commonly

referred to as discretisation errors.

1.1.2.2 Numerical analysis techniques

Numerical analysis techniques first appeared in applied mathematics in the form of fi-

nite difference approximations [1–3], weighted residual procedures [4–6], trial functions

to estimate the solutions based on the minimisation of potential energy [7], and approx-

imate techniques for determining the stationarity of properly defined ‘functionals’ [8].
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These techniques were directly applicable to the governing equations of a certain sys-

tem. However, in engineering a relatively different approach was taken by creating an

analogy between real discrete elements and finite portions of a continuum domain. This

early concept has at present developed to general discretization procedures of continuum

problems posed by mathematically defined statements.

Almost all complex engineering analysis follow a standard pattern. The continuum

is first divided into a finite number of parts (elements). This step is termed geometrical

discretisation or meshing. The outcome of this step is to divide the problem domain into

numerous simpler elements. The behaviour of each such element is specified by a finite

number of parameters. The behaviour of these parameters is described by piecewise in-

terpolation (shape) functions over the elements. The elements are individually processed

and a solution of the complete system is formed after assembly of its elements. Such

a treatment on an engineering system was done originally by Turner et al. [9] in 1956.

In this work stiffness matrices for truss elements, beam elements, and two dimensional

triangular and rectangular elements in plane stress were formulated. The work outlined

the commonly known direct stiffness method. With the development of the high-speed

digital computer the method developed applications to complex geometries. In 1960,

Clough [10] proved with the principal of minimisation of potential energy that refining

meshes tend the solution space to converge towards the true continuum solution. The now

popular phrase “Finite Element Method” (FEM) was introduced by Clough [10] in 1960

where both triangular and rectangular elements were used for plane stress analysis.

Since the introduction of the FEM, many other numerical methods such as the Bound-

ary Element Method (BEM) [11,12], the eXtended Finite Element Method (XFEM) [13],

and the Scaled Boundary Finite Element Method (SBFEM) [14] have emerged. Although

different to one another and consist of both advantages and disadvantages in certain ap-

plications these methods are based on the original principal of geometry discretisation.

The advancements of these numerical methods have provided the tools for obtaining

solutions of mathematical models for various engineering problems concerning elastoplas-
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ticity [15], fracture mechanics [16, 17], vibration analysis, fluid dynamics [18, 19], and

electromagnetic analysis [20, 21], to name a few.

The FEM included, all the numerical methods mentioned earlier require an accurate

geometry representation and an appropriate discretisation of the problem domain. The

importance of this step in the process of obtaining agreeable solutions was outlined in

section 1.1.2.1.

1.1.3 Digital age computational mechanics

The advent of the computer in the 1950’s revolutionised the field of computational mech-

anics. Since then, computers have come a long way. Gradually computers became more

and more powerful moving from the earliest vacuum-tube technology to the transistor-

based technology in the 1960s and then to integrated circuit-based technology in the

1970s. With higher processing powers, portability etc. computers have now become a

mass-market item. Concepts of mechanics are now integrated into numerous computer

programs written to handle various structural and non structural problems. These com-

puter programs have adopted numerical methods for attaining solutions. The large num-

ber of equations produced by numerical methods are solved using matrix based computer

programs. The humble matrix that was originally developed for simplifying formulations

involving large amounts of equations is now used as an efficient technique in computer

programming. The use of computers to study phenomena governed by mechanical prin-

ciples with the help of numerical methods was the beginning of the evolution of compu-

tational mechanics.

Over the years computational modelling software have been developed to contain

graphical user interfaces that provide accurate representations of various analysis. A few

of the modern computational modelling software that enable such functionality are Algor

[22], Abaqus [23], ANSYS [24], COSMOS/M [25], GT-STRUDL [26]. LS-DYNA [27],

MARC [28], MSC/NASTRAN [29], NISA [30], Pro/MECHANICA [31], SAP2000 [32],

and STARDYNE [33]. The popularity of most of these software is due to their efficiency
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in using minimum hardware enabling users to solve problems in computational mechan-

ics even on a single-processor machine. Their capabilities are such that, with the use of

a cluster of computer nodes or modern computers, computational modelling software can

solve problems with millions of unknowns.

Computational modelling software allows users to model and analyse mechanical

problems. Defining the model geometry via a CAD tool is the first step in the process

of creating a computational model. Thereafter, a spatial discretisation method is followed

to obtain a mesh. This step may sometimes involve specifying the type of elements to be

used in the meshing process, or sometimes the meshing algorithm may run automatically.

Then, the material properties of the elements, applied loads, boundary conditions and the

kind of analysis to be performed need to be defined as inputs. The software uses this input

information to carry out the analysis automatically. Therefore, modern software allows

users to solve complex problems with minimum intervention in the solution process.

With time however, the need for more efficient computational methods have heightened

as modern research seek to emulate mechanical and structural behaviour of engineering

systems to the finest detail. The early 2D computational modelling has now almost fully

moved on to the 3D space. The modelling of physical problems in 3D involves a large

number of unknowns or Degrees Of Freedom (DOFs) that has pushed the limits of com-

puters and computational techniques. Improvements to existing computational methods

and developing new and advanced techniques have thus come to the forefront of engin-

eering research.

One major drawback in the current 3D computational modelling techniques is the

lack of fully automated and efficient meshing algorithms. Although automatic techniques

are well established in 2D, the lack of mathematical rigour in most spatial discretisation

techniques have proven their downfall in 3D space.

The use of an appropriate numerical technique is also a vital component in increasing

the efficiency and accuracy of the solution space. To improve the efficiency of the process

any numerical technique need to be paired with the most apt mesh generation algorithm
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that is most compatible with its formulation. This is because every numerical technique

has its inherent advantages and disadvantages in application to various problems. The

accuracy of the solutions largely weighs on the numerical technique adopted.

This thesis intends to propose and develop a robust technique that is both an efficient

and an accurate framework for assessing material damage.

1.1.4 Damage analysis

Damage and deterioration is a common phenomenon experienced by everything around

us. It is an irreversible process which causes degradation or reduction in performance.

In the field of structural engineering, detection and assessment of damage has come to

much prominence in light of evaluating the service life of existing damaged or undamaged

structures. Thus, investigations into material damage have been in scientific debate for

several decades. The ability to make accurate judgments of whether to run, repair or

replace a structure lies in the ability to accurately measure the damage in a structure.

Damage analysis is a field which has applications to many engineering disciplines

such as mechanical engineering, aerospace engineering, civil engineering, and structural

engineering. A general definition of damage applicable for all these fields is the degrada-

tion of a material’s physical property due to the presence or the growth of defects. Figure

1.1 is a depiction of the various forms of material damage.

 (a)                                   (b)                                  (c)

Figure 1.1. Material level damage (a) fracture (b) delamination (c) microcracking

Material damage can be measured in various different ways such as: damage measures
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using the remaining life concept, damage measures from the microstructure, and damage

measures through physical parameters and the effective stress concept. The assessment

of material damage through the remaining life concept adopts the damage parameter life

ratio, N/NF . Where, N is the present number of cycles already applied and NF is the

total number of cycles to the limit point of crack initiation for a given loading condition.

The second technique measures and quantifies irreversible defects such as inter-granular

cavities, surface microcracks, and dimensions of cavities. However, these measurements

are destructive and at most times the defects are difficult to observe during the first phase

of the damaging processes. The third and final approach to damage measurement is most

desired due to the practicality in obtaining measurements. The method involves evalu-

ating the influence of damage on physical quantities such as density, resistivity, acoustic

emission, fatigue limit, and mechanical behaviour.

Kachanov [34] was the first to apply damage concepts to model fracture in creep.

Fracture, fatigue and creep rupture are all instances of substantial material damage typ-

ically associated with exposure to more extreme loading conditions. Damage models are

used to describe the evolution of degradation phenomena on the micro-scale from initial

(undamaged or pre-damaged) state up to creation of a crack on the meso-scale (material

element).

0

σ

ε0

Figure 1.2. Stress-strain response of a concrete specimen in tension.
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Figure 1.2 is a typical uniaxial tension stress-strain curve of a concrete specimen if the

load is removed at regular intervals [35]. As can be seen, the unloading-reloading curves

are not straight-line segments but loops of changing size and the gradient decreases in

each loop. If we assume that the average slope is the slope of a straight line connecting

the turning points of one cycle and that the material behaviour upon unloading and reload-

ing is linearly elastic (dotted line in figure 1.2), then the elastic modulus degrades with

increasing strain. This stiffness degradation behaviour is related to some kind of damage.

In order to analyse this stiffness degradation local and the non-local damage analysis

can be considered. Local damage models are models where the evolution of material

damage is a function of the stress and strain fields of the same point. Whereas, in non-

local damage models the stress and strain fields at a point within the problem domain is

dependent on the stress and strain fields of points within a finite neighbourhood. This

spatial dependence in the continuum model is achieved by the non-local length parameter

l. This parameter contributes to the non-local equivalent strain and must therefore be

related to the scale of the microstructure.

1.2 Current challenges

In this section current challenges in the broad fields of modelling material degradation and

computational modelling are discussed. The discussions in the computational modelling

aspects are based around the FEM. These challenges build the motivation for this research.

1.2.1 Current challenges in modelling material degradation

The fracture mechanics approach to material degradation has proven to be a very powerful

theory. In fracture mechanics propagation of cracks are analysed by evaluating the driving

forces on a crack by means of analytical solid mechanics and the resistance to fracture by

experimental solid mechanics. However, within the theory there is no consideration given

to the complexities of the material microstructure and interactions between the various
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local micro-defects that surround the assumed cracks. To get a better understanding of the

phenomenon leading up to the formation of a crack, one can adopt a framework similar to

fracture mechanics at a material micromodeling level. The downside to such an approach

would be the immense computational cost.

As a solution Continuum Damage Mechanics (CDM) [36] considers material degrad-

ation within a Representative Volume Element (RVE) as micro-cavities and microcracks

instead of a physically apparent crack. This avoids the requirement to manipulate the

structural boundary as required by the fracture mechanics approach to model cracks. The

method enables retention of the framework of continuum mechanics by homogenisation

of the microscopic defects and describes their growth macroscopically.

If judged by the computational efficiency, CDM is therefore an improvement to the

fracture mechanics framework. However, as the reaches of science expand, complex ma-

terial micro-structures and intricate architecture has inconvenienced the analysis of ma-

terials and structures even under the simplified CDM. Although such difficulties have

come to light, the extent of damage cannot be disregarded or phased out as damage is a

phenomenon which directly affects the response of structures.

Therefore it is important to note, modern CDM frameworks are required to address

these complexities in obtaining and modelling material and structural geometries. Such

techniques will have the ability to answer questions arising from structural typologies,

material properties, boundary conditions, and damage patterns in a robust and efficient

framework.

As damage increases within the material it leads to a local softening behaviour as the

tangential stiffness becomes negative. Therefore, a local approach to softening phenom-

ena may lead to a physically unacceptable localisation of the deformation [37, 38]. The

results obtained through such methods exhibit mesh sensitivity in the finite element con-

text [39, 40]. Consider the tension beam under uniaxial loading conditions is shown in

figure 1.3.
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Figure 1.3. Non-local damage regularisation of a uniaxial tension beam for 3 different
mesh types with total number of elements increasing from N1 to N3. The central element
is assumed to be damaged. (a) localised softening curves (b) regularised softening curve.

As the number of elements (Ni) increases from N1 to N3 damage localisation takes

place as seen in figure 1.3a. This allows more elements to unload contributing to a loss of

strain energy. This effect is shown in the reducing area under the curves in figure 1.3a with

increasing number of elements. The problem therefore appears to have many solutions

dependent on the mesh configuration. If the model is further allowed to localise, the

standard strain-softening continuum formulation will lead to an infinitely small softening

region and the load-displacement curve may exhibit severe snap-backs.

However, through a regularised model these ill-effects are eradicated and the results

become mesh independent (see figure 1.3b). Some of the popular regularisation tech-

niques include non-local modelling of the constitutive behaviour, gradient dependent ma-

terial description, and local manipulation of material properties depending on the element

size. Due to their characteristic mesh independent behaviour these techniques are con-

sidered much more reliable than local damage models. Further detail of the formulation

can be found in chapter 3, section 3.2.

Regularisation techniques however require transfer of internal variable information

between iterations and load steps. This is an additional computational burden that needs
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to be considered in an efficient modelling technique. Most regularisation techniques may

also require considerable alterations to the standard finite element framework. However,

it is worthwhile to adopt techniques that require the least amount of such changes to

provide an opportunity for these softening models to be used with the standard finite

element programs. The methods adopted in this thesis anticipate to avoid this difficulty.

Numerical solvers are a crucial component in accurate modelling of softening beha-

viour of materials. Most modern damage analysis schemes tend to either fail at limiting

and bifurcation points of the softening curve or at certain times become inefficient in

the iterative processes. Therefore, this research investigates various mathematical solvers

with the intention of adopting a combination of techniques which is most apt for obtaining

an accurate equilibrium path efficiently.

Spatial discretisation inefficiencies are another challenge in the current landscape of

damage analysis. The inefficiency arises from intermediate steps required to define prob-

lem boundaries and through the generation of low accuracy finite elements. If the meshes

are further refined to obtain a high quality mesh, large amounts of finite elements are

produced as a negative consequence. Due to the iterative nature of the analysis current

damage modelling techniques struggle when the number of DOFs increases in the model.

To minimise the DOFs produced by increased number of elements an adaptive damage

modelling framework can be adopted. A description of the adaptive technique proposed

for this research is in section 1.3.3.

1.2.2 Meshing challenges

In modelling geometries CAD tools have become increasingly popular over the last few

decades. Even with this popularity there are two main concerns with CAD based tech-

niques. Firstly, there are instances where inabilities occur in obtaining geometrical data

of materials, objects, structures, etc. This is due to reasons such as natural formation,

defects and so on. Secondly, they fail to exploit the use of inherent surface boundaries

of a surface or a volume of interest. However, even if the aforementioned challenges
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are addressed there are further difficulties in obtaining a high quality mesh. To date, the

processes of obtaining high quality meshes have always been a time consuming process

and if done manually can be prone to errors. In this section the general difficulties in

mesh generation are discussed with the progression to the challenges in automatic mesh

generation discussed in section 1.2.3. The FEM forms the baseline for majority of the

discussion presented in this section.

Pre-processing (meshing included) is a process that usually consumes almost 50% of

the total time required to complete an analysis [41]. This is especially true in the practical

applications in engineering computations. Many such practical applications require mod-

elling of problems in 3D. Within the 3D space the difficulty of mesh generation is largely

increased when meshes have to be generated for geometries of various different levels of

complexity.

Conventional mesh generation processes used in the FEM have difficulties in dealing

with curved/irregular boundaries. The elements in the vicinity of such boundaries tend to

be ill-shaped. The rectification adopted in these cases is to refine the meshes in regions

where the quality of a mesh is compromised. The preprocessing burden in this situation

increases resulting in inefficiencies in the succeeding processes in the computational ana-

lysis.

Meshing moving boundaries such as in crack propagation problems, large deforma-

tion analysis, and adaptive analysis require robust meshing techniques. It is common in

most finite element meshing algorithms to use only one type of element for a particular

problem. In the case of crack propagation, as elements are cut when the boundary changes

to comply with a propagating crack, the resulting elements may not be conforming to the

element category of the original mesh. To avoid mesh incompatibilities arising from this

scenario complex preprocessing algorithms are employed [42, 43].

h-adaptive mesh refinement techniques with terminating grids struggles from the draw-

back mainly produced by hanging nodes generated in the process of refinement [44]. As

elements are divided into smaller elements, intersections of the refined smaller element
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and the unrefined larger elements produce nodes between adjacent elements causing mesh

incompatibilities. These nodes are typically referred to as hanging nodes. The elements

containing hanging nodes are dubbed transitional elements. Various remedies such as

using new shape functions or local re-meshing can be adopted to overcome this issue of

hanging nodes. However, this additional effort increases the computation burden in the

analysis.

Analysis types such as crack propagation, large deformation and damage analysis

tend to contribute adversely on the topology of the mesh and therefore more likely to

degrade the quality of the mesh by producing ill-shaped elements. Ill-shaped elements

cause errors in the element mapping process, which in turn causes numerical instabilities

in the analysis [45]. A treatment for this issue involves local removal and replacement

of distorted elements. Thereafter, a re-meshing algorithm is employed to produce a mesh

with well-shaped elements for the extracted region.

1.2.3 Difficulty in automatic mesh generation

The history of automatic mesh generation dates back to the early 1970s. The initial docu-

mented work by Zienkiewicz and Phillips [46] focused on generating a valid finite element

spatial discretisation over arbitrary domains by only requiring information of the domain

geometric boundaries and the distribution of the element sizes. Automatic meshing al-

gorithms have come a long way since then as most CAD and Computer Aided Engin-

eering (CAE) packages offer automatic meshing capabilities. However, there are still in-

stances in advanced numerical simulations that require the user to craft meshes manually

to achieve a high solution accuracy. In these instances where artificial manipulation of the

meshing process take place, the user relies on their experience and knowledge on the tar-

get physical phenomena to create an ideal mesh. However, such knowledge is not always

a luxury. In addition manual alterations are an arduous exercise even if the user is willing

to sacrifice the time and effort required. Therefore it is important to make processes in

mesh generation fully automatic, and improve upon processes that are inefficient.
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In mesh-based numerical methods a geometrical model can be defined by either a

CAD drawing or a digital image. In CAD models NURBS are used for boundary defini-

tion whereas in image-based models digital images are used for geometrical description.

In CAD-based mesh generation, numerous methods are available for generating auto-

matic meshes with triangular or tetrahedral elements. These techniques include Delaunay

triangulation [47] and the advancing front method [48]. However, to model high stress

gradients triangular and tetrahedral meshes require higher order formulations which re-

duces the efficiency of the analysis process. Quadrilateral and hexahedral meshes provide

an agreeable solution, as these elements are capable of performing better in modelling

high stress gradients. Blacker’s [49] attempts to automate hexahedral mesh generation

resulted in a semi-automatic process requiring manual adjustments at complicated geo-

metric boundaries.

The lack of control in element anisotropy and directionality are two further constraints

obstructing full automation. An anisotropic mesh enables the user to stretch elements in a

specified direction with a specified aspect ratio. For example the mesh generated in figure

1.4 for a smooth torus-like piece depicts two possible mesh configurations, an isotropic

mesh in figure 1.4a, and an anisotropic mesh in figure 1.4b. The mesh anisotropy reduces

the number of elements with minimum compromise in the approximation error and thus

yields a superior outcome to that achieved by the isotropic mesh.
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(a) Isotropic triangular mesh (b) Anisotropic triangular mesh

Figure 1.4. (a) An isotropic triangular mesh and (b) an anisotropic triangular mesh that
approximate a torus-like piece of smooth surface [50, 51].

Furthermore, applications of anisotropy is not limited to mesh geometrical improve-

ments but also applicable to solution values. For example, anisotropy can be adopted to

improve analysis of material damage by increasing the element density in locations of

high material damage and decreasing the element density regions of low material dam-

age. Mesh directionality is another factor that contributes to the solution accuracy as

element deformation such as angle change and folding dissipate different amounts of en-

ergy. Therefore, in highly non-linear analysis types, such as automotive crash simulation

and flow simulation, the issues creates solution instabilities.

Automatic mesh generation for moving boundaries is also a tedious operation. The

development of changed boundary condition throughout the process of the analysis brings

about mesh incompatibility issues in fields that involve analysis of crack propagation,

large deformation and adaptive refinement strategies.

In the current CAD and CAE fields the user base is ever expanding from specialized

analysis engineers to general design engineers. These users regardless of their expertise

are neither interested nor capable of manually adjusting a mesh to obtain acceptable and

accurate simulation outputs. Therefore, overcoming these issues can alleviate burden on

the user and streamline the process from pre-processing to analysis.
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Images produced by non-invasive mesh generation technologies such as X-ray Com-

puted Tomography (X-ray CT) scans, Magnetic Resonance Imaging (MRI), Positron

Emission Tomography (PET) and ultrasound provide the geometrical information and

the material distribution of the problem domain based on the colour intensity. The tradi-

tional approaches used in mesh generation of CAD models are not directly applicable to

handle digital images and STL models. Voxelation of images is one of the earliest and the

simplest techniques adopted in image-based mesh generation. One of the shortcomings of

the technique is the large number of elements produced in the image decomposition stage

which then results in large memory requirements and larger processing times. These voxel

models also have an unrealistic, stepped, “Lego brick” appearance on the surfaces of mesh

domains, which in structural mechanics create stress jumps between surface interfaces of

different material. These drawbacks therefore hinder the analysis procedures that has to

follow the geometrical modelling stage. An alternative method is the marching cubes al-

gorithm. However, this technique requires adoption of CAD-based meshing techniques

as an intermediate process. Inadvertently this step imposes the challenges experienced in

CAD-based meshing that were discussed earlier in this section. Quadtree and octree tech-

niques form another alternative to image decomposition. This technique adopts a scheme

whereby the mesh is generated through recursively dividing each element. The domain

decomposition takes into account geometrical and material boundaries within the prob-

lem domain. Although the technique is quite efficient the downside to the process is the

generation of hanging nodes as shown in figure 1.5 for a 2D and a 3D domain.
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Figure 1.5. SBFEM representation of a (a) quadtree mesh containing a quadrant of a
circular domain. Dashed lines indicate subdivisions. (b) octree representation of a cube
containing hanging nodes. SBFEM local coordinates in an octree cell shown in bottom
left cube. Solid circles represent hanging nodes in both figures (a) and (b).

Essentially, these heirachical structures provide an efficient way to model features

at different scales. However, the downside experienced by many numerical methods

other than the SBFEM is the creation of hanging nodes on the interface of two neigh-

bouring cells with different sizes (see figure 1.5). Hanging nodes in the standard FEM

introduce displacement incompatibilities. The issue is usually handled by triangula-

tion/tetrahedralisation. This solution is not optimal due to the generation of new elements

and also the drawbacks associated with triangular and tetrahedral elements.

This work intends to incorporate techniques such as the image-based modelling pro-

cess that deviate from the classical CAD-based mesh generation technique, and have the

capability to overcome the issues outlined earlier in this section and in section 1.2.2.

The method adopted should thereafter strive to incorporate a robust and efficient meshing

technique that yields a high-accuracy solution with minimum computational expense.

1.2.4 Current challenges in 2D and 3D numerical modelling

Overall there has been a vast advancement in preprocessing techniques apart from the

few challenges highlighted in sections 1.2.2 and 1.2.3. However, despite the efficien-
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cies in pre-processing (especially automatic mesh generation) most numerical modelling

techniques fail to benefit from these advantages [52, 53].

Automatic mesh generators are an indispensable feature in modern computational

modelling software due to their inherent capability, of both reducing the computational

burden and also improving the accuracy of the solution field. One of the great introduc-

tions to the automatic mesh generation process is the quadtree and the octree algorithms.

These methods recursively subdivide square/cubic cells into 4 identical subdivisions by

halving the size of the original cell. These algorithms are widely used in applications such

as image processing, cartographic data processing, computer animation, and computer-

aided architecture due to their simplicity and efficiency. Direct application of these heir-

achical methods with the FEM is challenging due to two reasons. Firstly, the existence of

hanging nodes between elements of different sizes and secondly, the difficulty in repres-

enting curved boundaries by square and cubic elements.

Therefore, it is paramount to adopt suitable numerical methods to fully make use of the

convenience generated through the advancements in heirachical techniques. The pairing

of automatic and adaptive quadtree/octree mesh generation technique with the SBFEM

is one such method that complements each other in the pre-processing and the analysis

stages of a computational analysis. Further description of this technique can be found in

section 1.3.1.

Non-linear mathematical solvers form an integral part in numerical modelling along-

side powerful numerical techniques. It is a common practice to adopt displacement con-

trol techniques to overcome limit points that are common in softening problems. How-

ever, there are many limitation to displacement control techniques when dealing with

many DOFs and highly materially non-linear finite elements [54]. The initial equilibrium

solution that becomes the basis of further iterations, may sometimes be well away from

the final equilibrium state. The following iterations can therefore lead to numerical diffi-

culties and/or divergence of solution process. The numerical solver dealing with softening

materials should therefore characteristically avoid such behaviour.
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1.3 Proposed approach

This research aims at solving current difficulties faced in the field of damage analysis

through an Automatic Image-Based Adaptive Damage Analysis (AIBADA) formulation

with the adoption of non-local CDM. A powerful m-NR method with automatic damp-

ing and acceleration schemes are implemented with the arc-length technique for accurate

representation of the equilibrium path.

1.3.1 Image-based SBFEM implementation

Image-based modelling has revealed exciting new possibilities in material science, struc-

tural mechanics, biomechanical and biomedical investigations. As shown in figure 1.6,

image-based analysis is abundantly used in modelling objects (see figure 1.6a), materials

(see figure 1.6b), analysis of X-ray images in the field of medicine (see figure 1.6c), and in

civil engineering (see figure 1.6d). Specifically in civil and structural engineering, images

can be used to predict the behaviour of structures under different loading conditions [52].

Many of these fields had problems previously intractable owing to the difficulty in obtain-

ing suitably realistic models.

(a)

(b) (c) (d)

Figure 1.6. Various applications of image-based modelling (a) objects, (b) material, (c)
complex living organisms, and (d) structures.

The main principle behind image-based analysis is to use an image and discretise it

into a compatible mesh for solving with the use of any numerical method [52]. How-
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ever, most approaches to convert 3D images into meshes for use in finite element analysis

necessitate significant user interaction and often still involve some appreciable simplific-

ation of the model geometry [55,56]. A major reason for the lack of automation is the use

of traditional approaches to meshing. These meshing techniques involved an intermediary

step of surface reconstruction, which is then followed by the use of these traditional CAD-

based meshing algorithms [57–59], a process which is time consuming, not very robust,

and can be virtually intractable for the complex topologies and geometries typical of im-

age data. Hence a need for a more accurate, robust, and a direct approach that combines

the geometric detection and mesh creation stages in one process is in high demand.

At present one of the most useful tools in pre-processing in 2D and 3D image-based

analysis is the use of a quadtree and octree mesh structures. Octree structures are an

extension of the quadtree in 2D images to 3D images. Here the difference is that the

bounding box domain is now in the form of a cube. Unlike the quadtree structure which

has four children for each node; octree mesh generation consists of having eight children

at each node because a cube is recursively subdivided into eight octants. There are sev-

eral key advantages in using these heirachical structures because of their inherent ability

to generate meshes faster than other available processes and their ability to store grid in-

formation efficiently in a hierarchical tree structure [60]. These meshing algorithms also

avoid over-refinement of the mesh by only refining the square/cube near the boundaries.

Quadtree-based and octree-based SBFEM is a novel technique to solve problems with

complex geometries where standard FEM seems to be inefficient. The SBFEM have

several advantages in image-based analysis over the standard FEM. The SBFEM only

requires discretization along the boundary of the object and in comparison FEM requires

the discretization of the entire domain into finite elements. The SBFEM lines perfectly

with the quadtree and octree meshing technique. The combination of the two ensures

vital capability between accurate geometric representation and numerical analysis. The

use of SBFEM formulation capable of handling hanging nodes without modification to

the mesh avoids the triangulation/tetrahedralisation of the quadtree/octree mesh required
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in the FEM. This reduces the computation costs significantly. This follows up with the

ability to use quadtree/octree balancing techniques which reduces the number of elements

produced; giving rise to an extremely convenient formulation of the stiffness matrices.

Owing to these capabilities the method can be easily extended to an adaptive analysis

framework.

Data images are to be obtained first for image-based modelling in two and three di-

mensional space. For this purpose one of the many geometric data acquisition techniques

such as CT, MRI or PET can be used. Figure 1.7 depicts a model of a concrete cube

created with the use of images obtained by a CT scan.

(a) CT scan images of a concrete cube (b) Octree model from figure 1.7a

Figure 1.7. An image-based concrete cube model generation through CT scanned images.

This research intends to develop and improve computer programmes written in MAT-

LAB codes for both quadtree and octree mesh generation. Overall, the procedure adopted

for image decomposition starts with importing a data image into MATLAB then recurs-

ive decomposition of the image relative to colour intensities. This process is followed by

enforcing 2:1 rule on size distribution and material assignment. Finally, geometry inform-

ation is stored before proceeding to the analysis stage. Further detailed explanations on

the process can be found in chapter 5. It is briefly introduced below with an example.

Figure 1.8a is an example of a simple 3D object whose octree block decomposition
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is given in figure 1.8b and whose tree representation is given in figure 1.8c. The process

to obtain the decomposition shown figure 1.8b is by recursively subdividing the original

cube in figure 1.8a into eight congruent disjoint cubes (called octants) until blocks of a

uniform colour are obtained, or a predetermined level of decomposition is reached.

(a)                                                                (b)                                                                       (c)

Figure 1.8. (a) 3D object, (b) its octree block decomposition, and (c) tree representation.

The subdivision of an element is called its “children” whereas the subdivided element

is called a “parent” element. A cell that is not subdivided is called a “leaf”, otherwise

it is called an “internal cell”. The level of an element corresponds to the number of

subdivisions required to obtain this cell from the bounding box. Note that the level of the

root cell is zero (no subdivision was needed to obtain it). Two cells are called “neighbour”

or “adjacent” if they share a common edge. If two adjacent cells do not share the same

level, then so-called hanging nodes appear. In order to manage mesh gradation, the level

difference between adjacent cells may not exceed 1. This is also called the 2:1 rule (any

element has at most two neighbours along its edges).

The SBFEM is considered in this research to overcome the challenges experienced

by other numerical methods when adopted with the quadtree and octree mesh generation

techniques. The SBFEM was developed by Song and Wolf [14]. It is a semi-analytical

method that reduces partial differential equations to a set of ordinary linear differential

equations. The method incorporates advantages of both the BEM and the FEM whereby

generating its own salient features. Similar to the BEM numerical discretisation is only

performed on the boundary. However, unlike the BEM no fundamental solution is re-
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quired. Matrix power functions are used to express the internal displacement and stress

solutions. The method has proved to be very efficient in solving various types of prob-

lems, and outperforms the conventional FEM when solving unbounded domain problems

[61–63], and problems involving stress singularities [64, 65] and discontinuities. The

applications of the SBFEM range from elastostatics [66], elastodynamics [14], electro-

magnetics [67], diffusion [68], acoustics [69], fracture [70, 71], crack propagation ana-

lysis [72], elasto-plastic analysis [73], piezoelectric materials/plates [74–76], and wave

propagation [77, 78].

Automation in meshing for the SBFEM is achieved for 2D and 3D problems through

quadtree and octree meshes, respectively. The scaled boundary polygonal and polyhedral

formulations on both 2D and 3D analysis provide vital flexibility in formulation process

compared to the limited element shapes (triangular and quadrilateral for elements in 2D,

and tetrahedral and hexahedral elements in 3D) available in standard FEM. The standard

quadtree and the octree elements (squares and cubes) are also included in the vast element

library that can be accommodated in this formulation. The SBFEM coordinate systems in

both 2D and 3D are as shown in figure 1.9.

ξ η

O

(a) Polygonal element based on the SBFEM.

-Scaling centre
-Corner node

(b) Polyhedron element based on the SBFEM.

Figure 1.9. Scaled boundary coordinate system for (a) arbitrary polygonal and (b) arbit-
rary polyhedral elements.

26



Figure 1.9a represents the 2D coordinate system adopted with a scaling centre at

O(x̂0, ŷ0) and figure 1.9b represents the coordinate system for 3D problems with an ad-

ditional circumferential coordinate ζ with a scaling centre at O(x̂0, ŷ0, ẑ0). The scaling

centre is selected in such a way that a point within an element where the boundaries of the

domain must be visible. The boundary of the element is then scaled relative to the scaling

centre. The normalized radial coordinate ξ runs from O towards the boundary, which has

values of zero at the scaling centre and unity along the boundary. The circumferential co-

ordinates η ,ζ discretise the boundary of domain into arbitrary numbers of elements, and

discretisation may take any shape along the boundary with a valid scaling centre, which

can be implemented by sub-structuring when it is necessary.

With the generalised polygonal and polyhedral formulation for both 2D and 3D; trian-

gular and quadrilateral (2D), and tetrahedral and hexahedral (3D) elements are automat-

ically included in the element library. The arbitrary polygon and polyhedral elements ex-

pand the meshing capabilities to construct boundary conforming meshes around complex

boundaries without the requirement of mesh refinement. Any distorted element can easily

be combined with the neighbouring elements or divided into more polygons/polyhedrons.

1.3.2 Non-local damage analysis

Assessing material and structural damage forms an important aspect in structural reliab-

ility and integrity. Through the advancements in CDM, engineers can now predict the

lifetime of structures more accurately. This work focuses on understanding the material

and structural behaviour of structural engineering systems by accurately modelling the

behaviour of such systems by allowing for material degradation.

A mesh independent integral-type isotropic damage model is considered in this dam-

age formulation. The non-local model is formulated by replacing a local thermodynamics

variable by its non-local counterpart obtained by weighted averaging over a spatial neigh-

bourhood of each point under consideration. The non-local weight function is a new

parameter for the model. This parameter can be chosen as the Gauss distribution function
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or the polynomial bell-shaped function. The evolution of damage is assumed to be gov-

erned by the equivalent strain with respect to either a linear softening or an exponential

softening model.

To perform variable delocalisation the numerical implementation of the constitutive

equations require modifications to the classical finite element computer codes. The reg-

ularisation technique requires the value of the thermodynamics variables at many Gauss

points located at a user specified finite distance outside the considered element. In the SB-

FEM based damage formulation the non-local integration subroutine efficiently handles

this requirement through pre-computing gauss point weights prior to the NR iterations.

Quadtree (2D) and octree (3D) heirachical meshes enable an automatic and efficient

process to conduct analyses using the SBFEM. The SBFEM requires only the discretisa-

tion of the boundary which simplifies the meshing process. The classical mesh incom-

patibility issues caused by hanging nodes are overcome by no additional effort in the 2D

scheme and by triangulation in the 3D scheme which produces only six surface patterns.

The use of the 2 : 1 balanced mesh significantly reduces the number of unique cell patterns

(master cells) present in the mesh which reduces the computational burden enormously.

The damage formulation process with SBFEM can be simplified by assuming the dam-

age degree constant within a subdomain and thus calculating state variables only at one

location within a subdomain.

1.3.3 Adaptive analysis

Adaptive analysis improves the accuracy of numerical solution at a lower computational

cost. The adoption of the quadtree/octree meshing technique paves the way to the imple-

mentation of a highly efficient adaptive scheme. However, the advantages of theses adapt-

ive heirachical structures do not appeal to every numerical modelling technique due to the

presence of hanging nodes. The SBFEM posses an inherent capability to handle hanging

nodes. Therefore, a simple yet effective damage variable based adaptive h-refinement

technique is explored in this work.
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Figure 1.10. The h-refinement process for quadtree mesh illustrating the simplicity of
mesh generation assuring the displacement compatibility between adjacent elements.

In the overall process the quadtree mesh is expected to enable rapid local refinement.

As an example, assume the lower right corner of element Q in figure 1.10a is damage

defected. The adaptive process then recursively subdivides the element Q to obtain the

element decomposition shown in figure 1.10b. The damage defected element is now isol-

ated from the rest of the elements to element Q44. To maintain an acceptable aspect ratio

and also to limit the number of different types of elements produced in the decomposition,

the 2:1 rule is applied. This requires further fragmentation of element R to four separate

elements R1-R4. The hanging nodes created in the process are automatically handled by

the SBFEM. For example the hanging node created on the left edge of R4 is incorporated

in the SBFE formulation by subdividing the edge at the hanging node into two 2-node

line elements. This ensures the compatibility with the adjacent smaller quadtree elements

Q42 and Q44. In general the SBFEM polygon element formulation allows to incorporate

any number of hanging nodes through this process.

1.3.4 Non-linear mathematical solver

When dealing with problems involving softening material, one of the challenges that

arises is in tracing the non-linear equilibrium path. This difficulty is solved by continu-

ation methods. The method should be an appropriate non-linear mathematical solver to

trace load-deflection path which contain limit points. This work implements an accel-

erated/dampened m-NR method with line search technique coupled with the arc-length

formulation.
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In the development of the arc-length formulation Riks [79], Crisfield [80–82], De

Borst [83] and Hellweg [84] have made substantial contributions. The crucial advantage

of the arc-length method is its ability to trace snap-back behaviour in load-deformation

space. The effect is often seen in problems that experience localized failure. This trait is

very beneficial for this research as the applicability of the framework is increased substan-

tially. The research therefore intends to look at both localised damage failure mechanisms

and also its regularised form.

To overcome the issue of slow convergence typically experienced by the classical NR

method, a line search oriented accelerating and damping technique is formulated in this

study. The line searches are adopted to calculate an optimum scalar step-length which

scales the normal iterative vector. However for efficiency the scheme is only adopted in

‘difficult iterations’ i.e iterations that do not converge to an acceptable tolerance limit.

The method is expected to improve the efficiency of the m-NR method with significant

convergence improvements, compared to the standard arc-length method.

Further detail on the arc-length coupled accelerated/dampened m-NR method with

line search technique can be found in chapters 3 and 4.

1.4 Research contribution

This research is focused on developing an efficient and robust Automatic Image-Based

Adaptive Damage Analysis (AIBADA) framework to simulate structural and material de-

terioration.

The advances in imaging techniques such as the X-ray CT, MRI and PET have made

it possible to obtain high quality images for engineering applications. However image-

based structural analysis frameworks adopting the advantages of such rapidly improving

technologies are at their early inception. Thus, this contemporary research opens the

door to a fascinating field of image-based damage analysis. Furthermore, widely used

damage analysis packages in commercial finite element software are not entirely efficient
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and straightforward in their implementation. Therefore an accurate and effective damage

modelling technique built on an input image is expected to spark an interest within both

the research community and the industry.

The SBFEM coupled with quadtree/octree mesh generation will most certainly pro-

duce a modelling technique which would have the capacity to be highly automated and

computationally less costly. Thus, this research has the ability to overcome difficulties

faced by many researchers working in the field of damage analysis restrained by the inef-

ficiencies of an analysis framework.

To date, the SBFEM had yet to be expanded to damage analysis. In this thesis the

formulation of the SBFEM based damage analysis in both 2D and 3D is explored, with

ultimately a successful outcome. Through this extension, the capabilities of the SBFEM

will further expand. The ability to model damage influenced material non-linearity will be

an enormous advantage to the already burgeoning numerical technique. The investigations

into material damage initiation and propagation will allow for better understanding of the

two ubiquitous civil engineering materials, steel and concrete. However the formulation

will be self contained for future application and expansion to other engineering materi-

als such as rocks, ceramics, granular material, clays, and sands. In structural analysis,

modelling damage influenced structures and structural components will lead to important

investigations of stability of structures. Since response of a structure is also dependent on

its defects, damage analysis will give engineers a better understanding on the structural

responses.

The reader can expect to come across the following milestones in this thesis present-

ation.

• Development and verification of a novel 2D scaling centre based damage formula-

tion by the SBFEM (see chapter 3).

• Development and verification of a novel 3D scaling centre based damage formula-

tion by the SBFEM (see chapter 4).
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• Implementation of a robust and efficient automatic image-based damage analysis

technique by the SBFEM (see chapter 5).

• Introduction of a novel purely damage variable based Automatic Image-Based Ad-

aptive Damage Analysis (AIBADA) scheme by the SBFEM (see chapter 6).

These milestones capture the intermediate developments along the way to achieving the

ultimate goal of an efficient image-based damage modelling framework. These milestones

form the originality of the work. Further detail on each of the milestones can be found in

the referenced chapters. A high level representation of the developed framework is shown

in figure 1.11.
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Figure 1.11. High level representation of the automatic image-based damage analysis
framework with the SBFEM.

The research outcomes in this thesis contribute to the implementation of an image-

based damage analysis scheme, that can be utilised for numerous engineering applica-

tions.
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1.5 Objectives and scope

This research focuses on developing a novel image oriented adaptive damage analysis

technique with the SBFEM. Octree and quadtree heirachical mesh generation structures

are employed due to their efficient data storage and rapid computations ability. The SB-

FEM works in conjunction with the spatial decomposition technique. The method auto-

matically satisfies the compatibility requirement between adjacent quadtree/octree cells

irrespective of the presence of hanging nodes. The arc-length incorporated line search

oriented accelerated/dampened m-NR method enables accurate and efficient tracking of

the equilibrium path.

The first task to investigate in this research is the development of SBFEM framework

for 2D damage analysis. Through a thorough validation process the damage formulation

is expected to be simplified to a scaling centre formulation. This is expected to largely

reduce the computational time. To implement the regularised damage analysis frame-

work the standard SBFEM is to be modified to allow exchange of information between

integration points. This part of the work also intends to investigate the effects of damage

localisation and where necessary comparisons will be made to the non-local formulations.

To accurately trace the softening behaviour of the materials the arc-length technique will

be implemented in this initial stage. The scope of this part of work is however limited to

only 2D structures and materials.

A natural extension to the 2D framework into 3D damage analysis will then take

place. The work will involve the formulation of the damage incorporated SBFE equations

in 3D. The method will then be verified thoroughly with the help of published literature.

It is expected that in the 3D space the analysis process will be more computationally de-

manding due to the increased number of DOFs. Various strategies such as pre-computing

strain modes and weight functions are considered to improve the efficiency of the pro-

gramme. To further improve the convergence rate of the analysis and in return to improve

the efficiency of the scheme the arc-length technique developed earlier may require im-

provements such as line search orientated acceleration and damping.
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Next the robust and efficient image-based damage analysis framework will be formu-

lated for both two and three dimensional space. Within the image-based formulation auto-

matic meshes are expected to be generated with the quadtree and the octree technique. An

assessment of the requirement of mesh smoothing in non-local damage analysis is to be

investigated through comparison of results obtained for the smoothened and unsmoothed

results. The mesh smoothing for the cells around the boundary will be carried out by

the level set method. The process thus is expected to produce arbitrary polygons. These

arbitrary polygons will be modelled by the scale boundary polygon formulation. Mesh

automation can be effectively achieved through the incorporation of the heirachical mesh

generation structures and the SBFEM polygon formulation. The overall technique is ex-

pected to enable automatic damage analysis of problems involving curved and complex

boundaries. The quadtree and octree balancing techniques will produce a limited number

of cell patterns which would effectively reduce the pre-processing and analysis times.

Finally, this research aims to develop a damage variable based adaptive damage ana-

lysis formulation to simultaneously improve the solution accuracy and reduce the com-

putational burden. When implemented, the adaptive domain decomposition will auto-

matically refine the Damage Process Zone (DPZ) leaving rest of the problem domain

unrefined/unaltered from its original state.

It can be justly ascertained that the scope of this work allows for better understanding

of material and structural behaviour in computationally robust and efficient framework.

It is an imperative requirement in structural and material analysis to evaluate and trace

the evolution of damage within material interfaces and structural systems to fully com-

prehend the behaviour of these systems. This is because material and structural responses

initiated by external agitations are directly related to the inevitable degradation of the ma-

terial caused by microstructural defects inherent in the material build-up. This research

therefore is capable of building the necessary techniques that enable rigorous investiga-

tions into material non-linearity. The work therefore has outreaching applications within

academia and industrial communities in disciplines such as civil and structural engin-
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eering, mechanical engineering, biomedical engineering, material science and aerospace

engineering.

1.6 Organisation of the thesis

The thesis consists of seven chapters. Chapter 2 presents a literature review of the past and

present developments in CAE preprocessing techniques, numerical modelling techniques,

damage analysis techniques, adaptive analysis techniques and mathematical solvers. Each

method and technique is investigated within the bounds of this research. Chapter 3 fo-

cuses on the formulation and verification of the two dimensional damage analysis using

the SBFEM. From two dimensional analysis the research then moves on to three dimen-

sional damage analysis with the SBFEM. The details of which are included chapter 4.

In chapter 5 the milestone of formulating the image based damage modelling technique

is achieved. The work presented in this chapter builds on the framework established in

the previous chapters 3 and 4 by incorporating an automatic image decomposition tech-

nique for two and three dimensional damage analysis. The work presented in chapter

5 benefits from the advances in image-based techniques that have gained immense pop-

ularity in recent times due to their ability to effectively map complex geometries. The

automatic image-based meshing technique adopted to model complex geometries neg-

ates the requirement for human intervention in the mesh generation process. The overall

formulation benefits from the SBFEM compatibility with the mesh generation technique.

An improvement to this overall framework is achieved through the work documented in

chapter 6, where the 2D Automatic Image-Based Adaptive Damage Analysis (AIBADA)

procedure is introduced. From chapter 3 through to chapter 6 the reader may appreciate a

computationally efficient and robust damage modelling framework that can handle diverse

problems involving different materials and geometries. The localisation of the damage

process zones are prevented through implementing a non-local damage scheme. To cap-

ture the softening behaviours of the damaged materials an efficient accelerated/dampened
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m-NR method is used in conjunction with the arc-length method. At the end of chapters

3-6 numerical examples are presented for verification of the current proposed technique.

Where applicable, the examples compare results obtained through this research to that of

the results published in the literature. The final conclusions and recommendations of this

research are collated in chapter 7.
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Chapter 2

Literature Review

This chapter focusses on the most recent contributions of various research studies relevant

to this work. Section 2.1 investigates the progressions in Computer Aided Design (CAD)

and image-based preprocessing techniques. The focus then moves on to the historical

progression in numerical techniques in section 2.2. This review looks at the advantages

and shortcomings of the Finite Element Method (FEM), the Boundary Element Method

(BEM), the eXtended Finite Element Method (XFEM) and the Scaled Boundary Finite

Element Method (SBFEM). Then in section 2.3 various combinations of preprocessing

and numerical methods found in the current literature are discussed. In section 2.4 a gen-

eral overview of damage analysis is presented. At the end of the section regularised and

non-regularised damage analysis techniques are discussed. The discussion also includes a

section on accurate determination on material parameters in non-local models. To analyse

problems involving softening behaviour an efficient process coupled with a robust solver

is paramount. Therefore, adaptive analysis techniques and mathematical solvers form the

last two components of this chapter. These topics can be found in section 2.5 and section

2.6, respectively. Finally remarks and conclusions are presented in section 2.7.
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2.1 Preprocessing techniques

This section presents a review on CAD-based and image-based meshing techniques. It

is important to develop an efficient and accurate meshing procedure for the numerical

methods explored in section 2.2 to be fully effective. This helps in reducing the spatial

discretisation errors within the analysis. Automatic processes are generally preferred in

generating high quality meshes as it reduces the human effort in mesh generation. These

automated techniques are also useful for applications that require continuous re-meshing

such as in topology optimization, adaptive analysis, and problems that involve moving

boundaries e.g. crack propagation and phase transition in matter. In general, triangu-

lar/tetrahedral meshes are easier to generate automatically compared to the FEM favoured

quadrilateral/hexahedral meshes. Therefore, within the finite element process robust and

efficient meshing is a challenge.

2.1.1 CAD-based meshing

Automatic mesh generation from CAD models has been an active research field for many

years. Therefore, various meshing techniques have been developed in the recent past

[48, 85–87].

CAD-based meshing is the conventional method adopted in numerical analysis. To

date, there are many different algorithms developed to automate the meshing process

based on a CAD geometry input. The geometry of a design is commonly described by

Non-Uniform Rational B-Splines (NURBS). Meshes produced through CAD geometry

inputs can either be conforming or non-conforming to the boundary.

The traditional approach is to create meshes which conform to the boundary and such

meshes are often paired with the FEM. However, for practical problems generating a

high-quality finite element mesh conforming to the boundary often requires considerable

human interventions. In tetrahedral mesh generation the surface boundaries are first dis-

cretised into triangles. Advancing Front (AF) [48] and Delaunay meshing [47] are two
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popular techniques used in this process. In general both these methods are automatic and

simple to implement. The downside to these methods is its high dependence on the ini-

tial triangulation of the surface boundary and the poor performance in problems involving

stress concentrations. An alternative is to use hexahedral (brick) elements. Blacker in [49]

introduced a few methods to construct hexahedral meshes. Compared to the tetrahedral

mesh these hexahedral mesh generations are not robust and are semi-automatic i.e they

require manual interventions [88]. The process can be cumbersome and time-consuming

whereby restricting applications to complicated geometries.

On the other hand, hierarchical mesh generation algorithms such as quadtree (2D) or

octree (3D) can be employed to create a mesh structure [89]. The algorithms operate by

systematically dividing a square (2D) or a cube (3D). The domain is refined maintaining

a hierarchical structure depending on the geometrical discontinuities, complicated bound-

aries, and material interfaces apparent within the domain. An added advantage of the

technique is its ability to model features at different scales. It is a common practice to

enable a restriction on the length ratio between neighbouring elements. This is usually

maintained at 2:1. In figure 2.1, sub-figure 2.1a depicts a balanced quadtree mesh for a

random shape and sub-figure 2.1b illustrates a balanced octree mesh for a cube with a

spherical inclusion. In order to obtain boundary conforming meshes, a modified-quadtree

or octree technique can be utilised to trim the cells that are cut by the boundary [86, 90].
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(a) A balanced quadtree mesh generated

for random geometry [72]

(b) A balanced octree decomposition

for one-eighth of a spherical inclu-

sion in a cubic domain [91]

Figure 2.1. Balanced (a) quadtree mesh generated for random geometry and (b) octree
decomposition for one-eighth of a spherical inclusion in a cubic domain.

In quadtree or octree implementation in FEM and XFEM hanging nodes between ad-

jacent cells of different size elements create displacement incompatibilities. The most

straightforward treatment adopted in the 2D FEM to overcome this incompatibility is to

divide each cell into combinations of triangles and quadrilaterals. In the process, FEM

uses 5 types of discretisation for a balanced quadtree mesh. However, in 3D a similar

treatment becomes less enticing as the types of cells with hanging nodes is very large [89].

Therefore, for octree meshes a Delaunay triangulation-based algorithm for the FEM was

proposed by Schroeder et al. [92]. Triangulation (2D) or tetrahedralisation (3D) is how-

ever not an ideal solution given the drawbacks associated with these types of elements

in the FEM framework. In another recent advancement Lo et al. [93] developed spe-

cial shape functions for cells with hanging nodes, e.g. transitional quadrilateral (2D) and

hexahedral (3D) elements. Further developments recommend adaptive refinement of the

FEM basis function [94] and for the XFEM a method to constrain hanging nodes by adja-

cent nodes on an element edge [89]. Another popular alternative solution is the polygonal

element formulation [95] constructed with Wachspress shape functions. Here a mapping

procedure is used on each simplex to perform the numerical integration.

As mentioned earlier, the second type of mesh generation is creating meshes non-
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confirming to the boundary. Although a mesh non-confirming to the boundary will be

simpler to obtain compared to a mesh that is confirming, the numerical integration and

the calculation of element matrices during the numerical analysis are generally more com-

plicated and time-consuming. However, these boundary non-conforming meshes can be

used in the XFEM and the Finite Cell Method (FCM). Similarly, quadtree and octree mesh

structures have also been directly used without boundary trimming [89]. The boundary

description and local features can be defined implicitly through level sets [96–98].

2.1.2 Image-based meshing

Digital images obtained through non-invasive digital imaging technologies such as X-ray

computed tomography (X-ray CT) scans, Magnetic Resonance Imaging (MRI), Single-

Photon Emission Computed Tomography (SPECT) and ultrasound have conveniently

made their way to engineering and science. This method of processing and segment-

ing data stored in digital images is popularly known as “image-based processing”. The

method enables the acquisition of images of the interior structure of objects. These di-

gital images are composed of pixels in 2D and voxels in 3D. The colour intensities of the

pixels and voxels represent the geometrical information and the material distribution of

the object. Depending on the colour intensities an image is divided into regions, in each

of these regions the material characteristics are assumed to be homogeneous. The various

image segmentation procedures can be found in [97,99–102]. The processed information

then can be translated into an appropriate mesh for various computer analyses such as ma-

terial characterization [97, 98, 103, 104], biomedical applications [105–108], and fracture

analysis [97, 98, 103, 109].

There are two main categories of image-based mesh development techniques, some

techniques involve procedures that require boundary detection prior to meshing and others

create meshes directly off a digital image.

In most scenarios boundary detection is opted to make use of the readily available

commercial software to produce a required mesh. At present, the most popular method
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for isosurface extraction and rendering is the marching squares (2D) and marching cubes

(3D) algorithms proposed by Lorensen and Cline [110]. Wang et al. [106] later proposed

a modified version to treat ambiguity and mesh incompatibility for certain special cases.

However, improvements to the algorithm such as, the general study of ambiguity, methods

for disambiguation, and how noisy edges/corners can be eliminated is ongoing. A detailed

survey on the development of the marching cubes algorithm is presented by Newman and

Hong [111]. After detection of the boundary CAD-based meshing techniques outlined in

section 2.1.1 can be used to obtain the appropriate mesh. For example, two of the popular

techniques involve level sets based on XFEM [97, 98, 112] and level sets based FCM

where a fictitious non-conforming voxel-based mesh is used with the boundary defined

implicitly using level sets [96].

The second type of image-based meshing technique is a more efficient, simple and a

robust approach where mesh elements are generated directly from the image digital data.

Keyak in 1990 [107] developed a voxel-based approach where each voxel is assigned to

various types of material available in the object (method referred as masking) and then the

voxels are simply modelled as a hexahedral finite element. Compared to the techniques

discussed earlier Keyak’s approach avoids the intermediate step of boundary detection and

combines both geometric detection and mesh creation in one process. The method how-

ever produces a large number of elements with interface boundary elements containing

jagged boundaries for curved geometry. The excessive number of elements then leads to

an excessive computational burden. The method is also found to produce inaccurate res-

ults when the discretised mesh does not conform to the geometry with smooth represent-

ations of surfaces within the meshed domain [113]. The local stress oscillations produced

by jagged boundaries [114] are however localised at small elements along each material

boundary [98, 108, 115], while the average stresses remain close to the stresses obtained

using geometry-based meshes. Volumetric Marching Cubes (VoMaC) method [116] and

the Extended Volumetric Marching Cubes (EVoMaC) method [88] superseded Keyak’s

work and attempted in combining the favourable features of the voxel method and the
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marching cubes algorithm. EVoMaC is an improvement to VoMaC enabling the tech-

nique to consider up to 8 sub-regions meeting at a cube vertex. As shown in figure 2.2

the CT scan of a dry cadaveric bone in figure 2.2a is decomposed into voxel mesh before

application of the marching cubes algorithm to produce a smoother surface (refer figure

2.2b). The surface undulation can be further improved by adoption of a partial volume-

based interpolation (see figure 2.2c). The process thus has gradually trimmed the jagged

edges on the boundary surface and produced a smooth surface.

(a) (b) (c)

Figure 2.2. Reconstructions from CT scan of a dry cadaveric bone: (a) segmented volume
of interest-voxel mesh, (b) surface mesh generated from marching cubes algorithm, (c)
rendered view of surface mesh generated from marching cubes algorithm with partial
volume-based interpolation [88].

2.2 Numerical modelling techniques

After obtaining a spatial representation of the problem domain Partial Differential Equa-

tions (PDEs) governing the problem behaviour are formed to construct a mathematical

model. Numerical techniques are employed to obtain practical solutions for these PDEs

thereby accurately simulating the behaviour of the model. Due to the vast range of numer-

ical techniques available in the literature only a selected few are discussed here. These

include the FEM, the BEM, the XFEM, and the SBFEM. The focus of this review is

to highlight the inherent advantages and disadvantages of these techniques based on the

concept of discretisation.
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2.2.1 Inception of the FEM

In the early days of solid mechanics complex problems were typically solved by model-

ling the structure as discrete engineering systems of simple well-defined components. For

each of these structural parts, a solution is obtained through first principles. These discrete

engineering systems can be formulated to give sufficient accuracy for practical applica-

tions. For example the direct stiffness method widely used in civil engineering is one such

method where well defined conditions for the forces and displacements at joints are used

to determine the compatibility between the structural members. Similar displacement

based analysis were proposed by Louis Navier in 1826 [117] and documented by Alfred

Clebsch in 1862 [118]. Argyris in 1955 [119] developed a matrix based stiffness method

which enabled convenient representation of a large number of linear equations. Prior to

the advent of modern computer techniques such as the relaxation method developed by

Southwell [120] assisted in obtaining solutions for large matrices.

Moving from discrete systems, came the need to approximate the behaviour of a con-

tinuum by discrete or “finite elements’. A good example of which is the solution of

stress and strain distributions in elastic continua. Although there is no clear transition to

modelling the continua, inspirations were drawn from the solution process of discrete en-

gineering systems. Initial approaches discretised a continuum into an assembly of bars in

a two or three dimensional space. Such principles were considered in the work published

by Hrenikoff [121] which demonstrates modelling of a frame through an assemblage of

beams. Later on, the work published by McHenry [122] on a lattice analogy for the solu-

tion of stress problems used pin-jointed bars to approximate the solution of an elastic

plane. Turner et al. in the early 1950s [9] made a major breakthrough in their publica-

tion on stiffness and deflection calculation of complex structures. Turner and his fellow

researchers introduced a method subdividing the geometry into numerous elements with

triangular or quadrilateral shapes. This is widely regarded as the first application of the

finite element approximation.

In continuum mechanics PDEs define the behaviour of a system. Mathematical ap-
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proximations are often employed to solve these PDEs. One of the earliest such methods

was the Finite Difference Method (FDM) [2, 123]. The method is based on Taylor for-

mula expansions on regular grids. The classical finite difference methods commonly re-

strict applications to irregular unstructured grids or moving boundaries. This limits their

application to general engineering problems which have curved (irregular) boundaries

and/or multiple material interfaces. However, there have been advances in the FDM from

regular grids to general arbitrary and irregular grids or sets. These advancements have

revived the method in a different light and has received considerable attention [124–126].

In 1909, Ritz [7] devised a method based on calculus of variations which employs trial

functions with unknown variables to represent the solution of the PDE. In this method, to

achieve the most optimal approximation to determine the unknown variable, a minimisa-

tion of potential energy is performed. In 1915 Galerkin [6] proposed another variational

method named the weighted residual method. Essentially, the weighted residual method

is a more general technique as different weighting and approximation functions could be

used. Later on Courant [127] discretised a 2D domain into triangular elements and the

trial functions were defined piecewise over some elements in a problem domain. It was

shown that the minimum total potential could be achieved by ensuring the continuity of

the function along the boundary.

The phrase “Finite Element Method” was first introduced in 1960 by Clough [10].

Since then FEM has emerged as an intuitive and practical method for solving different

types of PDEs in relatively complex geometries which were not accessible previously.

Clough’s work provided the mathematical backing to the principle behind the success of

discretising a continuum into various elements performed by Turner et al. [9]. In this work

he further explained how the solutions can converge when a finer mesh is considered due

to the minimisation of potential energy.

In the FEM, ‘shape functions’ or ‘basis functions’ interpolate the primary mechanical

field (e.g. displacement in a stress analysis). These shape functions need to satisfy two

requirements to obtain convergence [128]. Firstly, the displacements which are defined
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by the element’s shape functions should not lead to any infinite strains (discontinuities).

Secondly, when polynomial shape functions are utilised, the terms producing the constant

strain values in each element should be able to take up any arbitrary value.

Subsequently, it was realised that other variational methods can also be used to de-

rive the FEM. Szmelter [129] used an energy based method to formulate FEM. The use

of variational principles has allowed FEM to be extended to many different branches of

study. These include, problems governed by quasi-harmonic Poisson’s equation in fluid

mechanics and problems in electromagnetics [130]. In addition to the variational meth-

ods, equilibrium equation transformation to a weighted residual form is another way of

obtaining FEM solution [131]. Alternatively, Zienkiewicz and Cheung [132,133] derived

FEM based on the principle of virtual work. In the virtual work derivations virtual dis-

placements employed in the formulation can be different to the element shape functions.

The virtual work derivation enables FEM formulations for non-symmetric forms of the

elasticity matrix [134, 135].

2.2.2 The Finite Element Method (FEM)

The historical development contributing to the inception of the FEM was covered in sec-

tion 2.2.1. Over the years, since the introduction of the FEM by Turner, Clough, Martin

and Topp in 1956, the FEM has grown in leaps and bounds and has become a widely used

numerical method to obtain approximate solutions for boundary value problems. FEM has

a wide range of applications in fields of fluid flow and fluid dynamics [18, 19, 136], heat

transfer [137], soil mechanics [138], acoustics [139], vibration analysis [140, 141], elec-

tromagnetic analysis [20, 21, 142, 143], fracture mechanics [16, 17], elastoplasticity [15],

etc. It is useful in solving complicated geometries, loading and material properties where

analytical solutions cannot be obtained. The method can be accessed through numer-

ous commercial software and has thus become a well known method in Computer Aided

Engineering (CAE).

The finite element process starts form generating a mesh by geometrically discretising
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a problem domain (a continuum). This discretised continuum now consist of ‘finite ele-

ments’ and nodes. Figure 2.3 gives a typical illustration of one, two and three dimensional

problem space with forces, supports, elements and nodes labelled for each type.

Supports

Force

Nodes

Elements

P1

P2

P2

P1

P

Forces

Forces

Nodes

Nodes

Support

Supports

Elements

Elements

(a)

(b)

(c)

Figure 2.3. Finite elements in (a) 1D problems (b) 2D problems (c) 3D problems with
labelled forces, supports, elements and nodes in each type.

The elements are assumed to be interconnected by a discrete number of nodal points

situated on their boundaries and sometimes in their interior. The displacements of these

nodal points will be the basic unknown parameters of the problem. These meshed ele-

ments can be of various different shapes and sizes. As shown in figure 2.3, in structural

engineering: linear, planar and solid elements are commonly found in one, two and three

dimensional analysis, respectively, These elements are capable of having different mater-
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ial properties. The governing equations vary in accordance with different cases such as

truss, beam, torsion, and plates. There are also other types of solid elements developed to

cope with particular problems [144], such as pyramid elements, brick elements and shell

elements.

x

y

(i)                                                (ii)
1 2 1 2 3

x

y

(a) (i) simple two-noded line element (typically used to represent a bar or beam

element) and (ii) the higher-order line element.

x

y

(i) (ii)       (iii) (iv)

1

23 1 2

3
4

(b) (i, ii and iii) simple two-dimensional elements with corner nodes (typically used to represent

plane stress/strain) and (iv) higher-order two-dimensional elements with intermediate nodes

along the sides.

x

y

z

1

2 3

4

1 2

34
5 6

78

(i) (ii) (iii)      (iv) (v)

(c) (i, iii and v) simple three-dimensional elements (typically used to represent three-dimensional stress

state) and (ii and iv) higher-order three-dimensional elements with intermediate nodes along edges.

Figure 2.4. Various types of simple lowest-order finite elements with corner nodes only
and higher-order elements with intermediate nodes [145].

In general, the accuracy of a finite element analysis increases for models that have

more elements, elements that have more nodes, nodes that have used higher degree poly-

nomials for shape functions.

After discretising the continuum polynomial shape functions are defined within each

element to approximate the state of displacement within each ‘finite element’ and on its
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boundaries in terms of its nodal displacements. Thereafter, the state of strain within an

element can be defined by using these displacement functions in terms of the nodal dis-

placements. These strains, together with any initial strains and the constitutive properties

of the material, define the state of stress within the element and on it’s boundaries. A stiff-

ness relationship is formed thereafter considering the “equivalent forces” concentrated at

the nodes and equilibrating the boundary stresses and any distributed loads. Finally, an

overall solution is sought by bringing together the individual element solutions [146].

Early applications of FEM, elements were required to have straight edges. Therefore

curved or complicated boundaries required considerably fine meshes. This generated un-

necessarily high number of Degrees Of Freedom (DOF) or unknowns to be solved. As

a solution, the geometry transformation technique which is known as the mapping tech-

nique was introduced. Through mapping a regular reference element having localised co-

ordinates and straight edges can be mapped onto a physical element containing the global

coordinate which have either regular, irregular, or curved edges. This then enables the

use of higher order polynomial shape functions to improve the solution accuracy without

reducing the element size [147, 148].

However, in the element mapping process, FEM is sensitive to mesh distortion. Meshes

are distorted when the element consist of very small acute angles or very large obtuse

angles. These unfavourable angles make the determinant of the Jacobian used in the

mapping process tend to zero or even negative (non-convex element) which causes in-

accuracies in the solution [149]. This issue is observed in simulations where the mesh

topology evolves as the analysis progresses such as in crack propagation, large deforma-

tion analysis, and adaptive analysis. As a workaround, local re-meshing algorithms which

remove and replace the distorted element with new compatible meshes consisting of well-

shaped elements are commonly employed.

A possible solution to overcome the issue of mesh distortion is the use of polygonal

elements. The introduction of the polygonal element has increased the flexibility of the

finite element compatibility with various mesh configurations. The two main challenges
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in the development of such elements are in obtaining suitable shape functions and finding

an efficient integration technique. Various shape functions such as Laplace shape func-

tions, Wachspress shape functions and mean value coordinates have been introduced over

the past. These shape functions however, are rational. Therefore no exact integration

rule is available. As a workaround, tetrahedralising the polyhedron and integrating each

tetrahedral sub-volumes using standard integration rule for a tetrahedron can be adopted.

Here the standard integration rules assume that the shape functions to be polynomials

which involves a high number of integration points to obtain accurate results. Further-

more, linear shape functions are commonly used in the polyhedral formulations making

them not favourable for transient analysis. In section 2.2.5 the SBFEM polygonal ele-

ment (2D) and polyhedral element (3D) formulation is introduced, which is a simple and

efficient method to overcome these concerns.

2.2.3 The Boundary Element Method (BEM)

In the BEM also known as the Boundary Integral Equation Method (BIEM) governing

PDEs are formulated as boundary integral equations. Lachat and Watson [150] first

realised that the concept of FEM can be applied to solve the boundary integral equa-

tions. Later, Brebbia and Dominguez [11] used the method of weighted residuals to ob-

tain the boundary integral equations. These two contributions lead to the publications in

1977 [11, 12] which carried the term “boundary element method”.

As the name suggests, in the BEM, the elements are formed on the boundary of the

problem domain. This makes the meshing process simpler when compared to the do-

main discretisation performed in the FEM. Since only the boundary is discretised fewer

DOFs are typically produced compared to FEM. Transforming the integral equations with

the use of divergence theorem (transforming a volume integral into a boundary integral),

Stoke’s theorem (transforming a surface integral into a contour integral) or the Green’s

identities [151] the BEM can reduce the spatial dimensions by one degree, transforming

2D problems to 1D and 3D problems to 2D. However, the method requires the solution of
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non-symmetrical matrices which results in higher computational cost than the symmetric

and banded matrices encountered in FEM.

Contrary to the FEM, the solution process in the BEM starts from outside in. Based

on the boundary conditions, boundary values are fitted into the integral equations. These

boundary equations are solved simultaneously and the values in the internal domain can

be obtained from the results on the boundary through integration. Therefore, in the BEM

the accuracy of the internal solution is equal to the solution at the boundary. This is

different to the FEM where the optimal solutions inside the element are only located at the

quadrature points (superconvergent points). Over the years BEM has become particularly

useful in problems involving infinite domains [152] and fracture [153–155].

There are two popular variants of the BEM, the direct BEM and indirect BEM [156].

In the direct BEM, the actual field variables of the problems (displacements, stresses, etc.)

are used in the fundamental theorems deriving the boundary integral equations [157–159].

Whereas in the indirect method a fictitious body force distribution over the boundary is

considered to compute the boundary integral equations [160, 161]. Out of the two, the

indirect approach is preferred as the direct approach is generally harder to formulate and

challenging to obtain the internal solutions.

One of the biggest drawbacks of the method is that it requires a fundamental solution

or Green’s functions to satisfy the governing PDEs which must be obtained a priori. Such

a fundamental solution includes the Kelvin’s solution for elastostatics problems [162] and

the solution for unit point loads acting in an infinite domain [163]. Certain fundamental

solutions are much more complicated especially for problems involving anisotropic ma-

terials. The application of this method is restricted since non-linearity, non-homogeneity

and anisotropy are difficult to handle.

2.2.4 The eXtended Finite Element Method (XFEM)

The XFEM introduced in 1999 by Belytschko and Black [13] and Moes et al. [164] is

a numerical technique that enables a local enrichment in addition to the standard finite
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element method. The method is most widely used and developed to provide an accurate

approximation for problems with non smooth domains, discontinuities or domains with

different material phases.

The method is highly effective in image-based analysis techniques as traditional meth-

ods in mesh generation and numerical analysis produce kinks in the displacement field and

jumps in the strain field at the material interfaces. In image-based analysis the straightfor-

ward choice in explicit meshing of all heterogeneities requires sophisticated 3D mesh

software, and large computational times related to the meshing operation [165, 166].

Therefore, an alternative is to project the phase properties on a mesh, without explicitly

representing the interfaces [167, 168]. XFEM usually employs level set and signed dis-

tance function for implicit interface representation discontinuities. Then intrinsic and

extrinsic enrichment of the finite element scheme is adopted to accurately model the dif-

ferent jumps at the interfaces. In the former, basis vectors are enriched whereas in the

latter extrinsic enrichment of the approximation space takes place. Recent developments

to the technique have enabled the method to model and compute overall properties of

complex microstructures [169].

Another field of applications in the XFEM is in problems involving cracks. Similar

to the above XFEM enriches the approximation space in the FEM using discontinuous

enrichment functions [13]. Dolbow et al. [170] developed XFEM further by incorporat-

ing an enrichment which uses the asymptotic near-tip field for the nodes in the element

containing the crack tip. The advantage of the method is that there is no requirement for

excessive refinement around the crack tip. As the enrichment function can accurately rep-

resent the singular stress field crack growth can be modelled with very little re-meshing. A

comprehensive review on this method can be found in [171,172]. Developments by Daux

et al. [173] involved the incorporation of crack branching through an additional discon-

tinuous function. A generalised crack model was subsequently developed by Belytschko

et al. [174] to include different types of discontinuities. The implementation of XFEM

using level set method for elasto-static fatigue cracks can be found in [175]. Later on, im-
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plicit functions were developed by, Belytschko et al. [176] which represent the boundary

of the domain along with any inner features such as an interface between two materi-

als, sliding surfaces, and discontinuities. XFEM has also been applied to solve problems

concerning crack propagation [177], dynamic fracture analysis [178], and elastoplasti-

city [179, 180]. The method has also been extended to model planar cracks [181] and

non-planar cracks [182] for 3D fracture analysis.

2.2.5 The Scaled Boundary Finite Element Method (SBFEM)

The SBFEM is a semi-analytical method developed by Song and Wolf [14]. Through

its development the SBFEM acquires characteristic unique properties of its own. The

SBFEM is a semi-analytical method which is based on an analytical solution in the radial

direction and a numerical solution in the circumferential direction. Similar to the FEM,

the problem domain is divided into various subdomains. Symmetric stiffness and mass

matrices for each subdomain are then computed independently. The global system of

equations are assembled using these individual stiffness and mass matrices. Similar to

BEM, the problem dimension is reduced by one as the numerical discretisation is only

performed on the boundary of each subdomain. The solution within each subdomain is

expressed as function with respect to a so-called scaling centre. The only requirement for

the location of the scaling centre is that from the scaling centre the subdomain’s boundary

needs to be directly visible. The accuracy of the solution is partly dependent on this

condition whereby improving the visibility of the boundary from the scaling centre can

improve the accuracy of the solution. Analogous to the effect of small internal angles

within elements in the FEM, the angle between the boundary and the line of sight from

the scaling centre in SBFEM should not be too small.

Figure 2.5 illustrates the scaled boundary coordinate system, in which the a scaling

centre is chosen within the domain with a visible boundary.
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Figure 2.5. A 2D scaled boundary coordinate system with scaling centre O, radial co-
ordinate ξ and circumferential coordinate η [183].

The boundary of the domain can have any number of line elements and the radial

coordinate is defined to be infinity in the far field, 1 on the boundary and 0 at the scal-

ing centre [184]. Along the radial direction ξ as shown in figure 2.5 the results are ob-

tained analytically. Unlike in the BEM there is no requirement for fundamental solution

to satisfy the governing PDEs. The SBFEM is especially efficient in modelling stress

singularities and unbounded medium.

The SBFEM was originally presented as the consistent infinitesimal finite-element

cell method in the early 1990s. The method was mechanically derived by making use of

a similarity concept to that of the FEM assemblage process. The early applications of the

method mainly focused on problems in unbounded media such as scalar wave [185,186],

vector wave [186–189], static [190] and diffusion [188] problems. The applicability of

the method was later demonstrated for bounded domains to solve problems in elastostatics

and elastodynamics in both 2D and 3D [14].

Song and Wolf [14] in 1997 first coined the phrase “Scaled Boundary Finite Element

Method”. Their work introduced a novel scaled boundary transformation-based deriv-

ation. Similar to the FEM, this formulation transformed the governing partial differen-

tial equations to local scaled boundary coordinates. The SBFEM employs the weighted-
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residual technique (similar to the FEM) to obtain the matrix equations of the original

SBFEM. This method found application in problems involving diffusion [68] and body

loads [191]. In order to provide a detailed explanation, two primer papers were also pub-

lished consisting of the SBFE derivations [192] and solution procedure [193] based on a

simple example.

In 2004, Song [194] proposed the matrix power function based Schur decomposition

technique as an alternative to the conventional eigenvalue decomposition solution method.

This numerically robust approach had two main advantages: it enabled the solution to be

expressed in terms of a reduced set of orthogonal base functions; and the Schur decompos-

ition prevented solution inaccuracies in problems with multiple eigenvalues with parallel

eigenvectors.

A new SBFEM virtual work formulation for elastostatics was published by Deeks

and Wolf [66] in 2002. The work followed the traditional virtual work derivation of

the standard finite element method. Apart from making the method more accessible the

virtual work derivation also provided insights to new techniques to treat side face loads

(loading on radial lines from the scaling centre to the points on the boundary), body loads,

and axisymmetry.

Adaptive analysis with the SBFEM was first published by Deeks and Wolf [64, 65] in

2002. These two related papers expounded on the stress recovery technique and an error

estimator derivation. The SBFEM based h-hierarchical mesh refinement was detailed in

a subsequent journal paper by Deeks and Wolf [65]. Later on, with the help of high-order

shape functions an adaptive p-refinement technique was introduced by Vu and Deeks

[195, 196].

In 2008, the continued-fraction solution [197] was formulated for the unbounded do-

main and also for the bounded domain [198]. This helped improve the SBFEM solu-

tion accuracy for dynamic problems. The original work first formulated by Song and

Wolf [199] was only accurate for low frequencies, as the inertial effects related to higher

frequencies were neglected in the derivation of the dynamic stiffness. These contribu-
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tions enabled the construction of symmetric high-order stiffness and mass matrices. The

continued-fraction solution allows the response at high frequency to be captured without

the need to introduce an internal mesh. Chen et al. [200] later improved the formula-

tions for bounded domain for better stability. In addition the work also demonstrated

the possibility for coupling of the continued-fraction solutions for the bounded and the

unbounded domains.

For accurate spatial representation of the problem domain the SBFEM was combined

with isogeometric analysis using NURBS for 2D problems which allows exact representa-

tion of the problem domain [201]. Deeks and Charles [202] has contributed in a meshless

method by replacing the conventional shape function on the boundary with a function

obtained with the local Petrov-Galerkin approach.

Table 2.1 compares the SBFEM with the FEM, the BEM and the XFEM discussed in

this section. It is apparent how the SBFEM benefits from the advantages of both the FEM

and the BEM and overall surpass the other three methods in light of the aspects outlined

in the table.
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Characteristic FE
M

B
E

M

X
FE

M

SB
FE

M

Reduction of the spatial dimension by one as only the

boundary is discretised with surface finite elements,

reducing the data preparation and computational efforts

x x

Analytical solution achieved inside domain x x

Fundamental solution not required x x x

Radiation condition at infinity satisfied exactly when

modelling unbounded (infinite or semi-infinite) media
x x

No discretisation of free and fixed boundaries and

interfaces between different materials
x x

Approximation required only of the surface finite elements

on the boundary
x x

Symmetric static-stiffness and mass matrices for bounded

media
x x x

Body loads processed without additional domain

discretisation and thus additional approximation
x x x

Straightforward calculation of stress concentrations and

intensity factors based on their definition
x x

Table 2.1. Comparison of the FEM, the BEM, the XFEM and the SBFEM.

A major contribution in the field of mesh generation is the introduction of the scaled

boundary polygonal (2D) element [203–205] and the polyhedral elements (3D) [91]. This

introduction allowed automatic meshing algorithms [72] to be developed with ease and

offers greater meshing flexibility. These polygonal elements have thus far been used

for crack propagation analysis [72, 205–209], for determination of fracture parameters

[70, 71], and image-based analysis [91].

To date, further research continues on unbounded domain [61–63], plates includ-
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ing piezoelectric plates [74–76], fluid-structure interaction [210], electro-magnetics [67],

acoustics [69], elasto-plastic material [73], wave propagation [77, 78] and damage ana-

lysis [211, 212]. In many of these applications the SBFEM could achieve comparable

accuracy to that of the FEM with much lower number of DOF and for some problems

involving stress singularities and unbounded domains SBFEM performs better than the

FEM [64, 65].

2.3 Combinations of image preprocessing and numerical

modelling techniques

The main issues related to image-based analysis occur in the discretisation stage. There-

fore, to obtain optimal results researchers have leaned towards combining image-based

preprocessing techniques with appropriate numerical modelling techniques that are com-

patible with one another. Three such popular combinations are voxel-based FEM, image-

based XFEM-level set method and the image-based SBFEM-quadtree/octree method.

2.3.1 Image-based analysis using voxel-based FEM

Voxel-based FEM is a popular technique in image-based analysis largely owing to its ease

of implementation. The method allows elements to be directly exported from the image.

In voxel-based FEM a voxel-based mesh is first generated. Material assignment is

then carried out depending on material phase found at the centroid of a particular element.

However, as shown in figure 2.6b the process creates intrinsic jagged surfaces when the

material interface does not coincide with element faces.
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(a) Mesh containing exact material

boundaries.

(b) Voxel discretization for analysis.

Figure 2.6. Standard voxel discretization for FEM and XFEM [213].

The elements containing the material interface are represented in dark red. These

jagged boundaries result in high local stress oscillations [114]. This is a major disad-

vantage in the voxel-based finite element especially evident in problems with multiple

material phases. The FEM on the other hand is found to produce best results when the un-

derlying mesh conforms to the geometry with smooth representations of physical surfaces

within the discretised volume [113]. Therefore, this method show signs of incompatibility

between the mesh generation technique and the numerical modelling technique. Since the

method is built on the advantage of the efficiency achieved through voxelation, additional

treatments to the mesh or the finite element formulation is not usually adopted. Therefore

it is not favourable for many applications, as the errors in the stress field close to the inter-

faces and the inaccuracy of the stress jump across the material interface are not preferred

in the solution field in most practical applications.

As a solution, refined meshes can alleviate these issues to a certain degree through

better representation of the interface boundaries. However, it is not an ideal solution as it

then compromises the efficiency of the method by creating more elements. This drawback

gives rise to the development of various smoothing techniques, reconstruction treatments,

and implicit boundary definition techniques. One such method is the XFEM-level set

method discussed next.

61



2.3.2 Image-based analysis using XFEM and level set method

The explicit approach of modelling a domain containing interfaces conforming with all

internal surfaces is an operation which tends to become highly challenging for complex

three dimensional geometries. Typical such situations occur in crack propagation, phase

evolution and microstructure modelling. XFEM aims to avoid this issue by enriching the

finite element approximation with additional functions to model interfaces or singularities

independently of the background mesh. The method adopts the Partition of Unity frame-

work [214] by multiplying the enrichment functions that possess desirable approximation

by the nodal shape functions. XFEM coupled with level set functions can effectively

handle these issues that create kinks in the unknown displacements and jumps in the de-

rivatives of the unknowns within the interior of finite elements. The method enables to

exploit advantages of a regular mesh as the need for an interface aligned mesh is void.

The level set method introduced by Osher and Sethian [215] in 1988 is a numerical

technique for tracking moving interfaces. Here a level set curve is represented by a high-

dimensional function. In essence, these functions treat interfaces as iso-zero of a ‘distance

function’, therefore, the two sides of a boundary, crack path or crack tip will have function

values in different signs. In image-based analysis the level set is let to evolve using the

image features such as grey scale intensity, gradient magnitude or image edges until it

reaches a stop. A successful implementation of such an approach can be found in [216].

As shown in figure 2.6a the XFEM-level set method utilizes the regular voxel mesh

considered in voxel-based FEM. The elements marked in dark red represent interface

elements which require extra enrichment within the XFEM framework. A comparison of

the voxel-based FEM and the XFEM-level set formulation can be found in the following

references [113, 213]. In this comparison the latter was found capable of reproducing the

jump in the strain component at the material interface. This is a vital attribute to have

when modelling complex material behaviour such as interface failure and de-bonding.

Comparing voxel-based FEM to XFEM-level set method, the former is widely used

mainly due to the ease of implementation. However, due to its ability to properly define
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boundaries XFEM-level set approach exhibits higher accuracy than the voxel method.

The drawback of the method is the considerable computational cost involved in the mesh-

ing process to obtain a good boundary representation with the level set method and the

additional enrichments required within XFEM [97].

2.3.3 Image-based analysis using SBFEM and quadtree/octree mesh

Hierarchical data structures such as quadtree (resp. 2D) and octree (resp. 3D) are based

on the principle of recursive decomposition. The recursive decomposition of a complex

problem into simpler sub problems, known in the literature as the divide-and-conquer

paradigm [217, 218].

2.3.3.1 Quadtree technique

The quadtree structure is a hierarchical representation of 2D data. These structures are ex-

tensively used in applications like image processing, cartographic data processing. Very-

Large-Scale Integration (VLSI) embedding, graphics, computer animation, and computer-

aided architecture [217].

Klinger and Dyer [219] and Tanimoto and Pavlidis [220] were the first to successfully

implement a hierarchical representation structure for 2D image representation. Their

technique recursively decomposed the original image area of a square shape into four

identical squares at each step. The resulting data structure represents a 4-array tree, more

commonly called a quadtree, (see figure 2.7).

       2nd 3rd 1st

Quadtree
       2nd 3rd 1st

Quadtree
       2nd 3rd 1st

Quadtree
       2nd 3rd 1st

Quadtree

Figure 2.7. First three levels of an image decomposition with its quadtree presentation
[221].
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In figure 2.7 the initial black and grey image is split into 4 identical squares. Each

block can contain either black or grey. Hence, each of the black region that contain either

black or grey are split recursively till each leaf represents a uniform area (colour) of the

image.

The many advantages of hierarchical image decomposition are discussed in [219,222].

These include rapid and efficient access to any geographical part of the image, retention

of image data structure as a hierarchical description of picture patterns, elements and their

relationships, and allows recursive analysis of sub-pictures. However, identified limita-

tions of the method consist of the need for large memory for storage and the dependence

on location, orientation, and relative size for representation of an object [223]. In recent

times the algorithms used for quadtree decomposition have largely improved and these

issues are no longer a hindrance to the implementation of the method [224–228].

2.3.3.2 Octree technique

The octree was developed independently by various researchers. In 1978 Hunter [229]

mentioned it as a natural extension of the quadtree. Around the same time Reddy and Ru-

bin [230] proposed the equal subdivision of an object in a computer model for generation

and representation of solid objects. Srihari [231, 232], Moravec [233], Meagher [234],

Jackins and Tanimoto [235], and perhaps others also published octree-based formulations

in the early 1980’s.

Octree is a 3D generalization of a quadtree by the use of 8-array trees. Similar to the

quadtree method octree is a spatial decomposition method that recursively subdivides the

bounding-cube of the domain of interest [236]. This cube is first subdivided into four

equally sized cubes, each of which may then go through recursive partitioning into cubes

that are completely full or empty [237]. Each node in an octree has eight children. Figure

2.8 shows a three level tree representing a three cube object at level 2.
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Figure 2.8. Simple object represented in octree encoding format. Three-level tree repres-
entation of an object [238]. Grey elements marked ‘F’, white elements marked ‘E’, and
elements that require further subdivision marked ‘P’.

There are many advantages to this data structure. Firstly, the method uses a single

primitive shape, the cube. Any arbitrary object can thus be represented to the precision

of the smallest cube size available in the modelling process. The method uses a single

set of manipulation and analysis algorithms for all objects. Unlike other methods, new

techniques are not needed to handle complex or sophisticated shapes. The data structure

enables efficient storage of 3D data. Octree methods achieve data compression by storing

voxel information in a hierarchical tree structure, which is built in a top-down fashion by

recursively subdividing inhomogeneous regions of the volume into eight sub-regions until

each terminal node of the tree corresponds to a region of the volume in which all voxels

share the same value.

Through continuous developments, current quadtree and octree meshing algorithms

are able to produce a relatively smooth interface boundary as well as saving the storage
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for computational speed; but the issue of hanging nodes need to be addressed. Hence,

for computational mechanics the two techniques are not a perfect solution on their own.

However, they are powerful tools compared to other modelling tools and the aforemen-

tioned drawback can be eliminated by using an appropriate numerical modelling tool such

as the SBFEM

2.3.3.3 SBFEM and quadtree/octree mesh

Hierarchical mesh generation structures become an attractive option for mesh generation

as they have the ability to transition between different cell sizes efficiently [88, 97]. In-

corporation of quadtree and the octree mesh generation techniques with FEM and XFEM

requires various different treatment techniques to handle hanging nodes that are present

between adjacent cells of different sizes. These hanging nodes if left untreated cause

displacement incompatibilities at the element interfaces. The FEM treatments to the spa-

tial discretisation or the numerical formulation include Delaunay triangulation [92], 2D

polygonal elements [95], use of special shape functions [93], adaptive refinement of finite

element basis functions [94], and applying constraints on hanging nodes [89].

On the contrary, treating these problematic hanging nodes within the SBFEM frame-

work is relatively simple. The only requirement for a scaled boundary polygon is that

its entire boundary is visible from the scaling centre [14] and only the edges of the poly-

gon are discretised into line elements. The number of line (2D) or surface elements (3D)

on an edge can be as many as required. The domain of the scaled boundary polygon is

constructed by scaling from its scaling centre to its boundary, and the solution within the

polygon is expressed semi-analytically [205, 239].

Quadtree and octree meshing method is based on decomposing the interested area

recursively without changing the whole domain. The need for SBFEM in the context

of hierarchical meshing is to solve the problem arising from hanging nodes as well as

fitting complex boundaries in mesh generation. The technique has been validated to be a

powerful approach due to its high accuracy, effectiveness and ease of using.
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Hanging nodes in each quadtree/octree cell can be perfectly resolved by considering

each of the relevant quadtree/octree cells as a scaled boundary system. As illustrated

in figure 2.9 the cells containing hanging nodes are considered in the coordinate system

of scaled boundary polygon. Since, the nature of scaled boundary discretisation allows

as many numbers of line (2D) and surface (3D) elements as required, the displacement

compatibility can be ensured by introducing an appropriate number of elements. As a

result of this, the hanging nodes can be treated in the same manner as other nodes. The

need for smoothing, reconstruction, etc. is not required. Thus, SBFEM incorporated with

the quadtree/octree mesh technique is a viable solution to the difficulties associated with

the technique discussed previously.

In order to demonstrate the SBFEM method adopted to handle hanging nodes, con-

sider the octree cell shown in figure 2.9b. The hanging node present on the top right edge

is added into the SBFE geometry description by method of triangulation of the polygonal

faces adjoining the hanging node. A node is introduced in the face of these adjoining

faces to facilitate this process. It is noteworthy, by adopting this method other surfaces in

the cell with hanging nodes are not affected as only the cell boundary is discretised.
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Figure 2.9. Scaled boundary representation of elements in hierarchical meshing struc-
tures. Figure 2.9a quadtree cells and figure 2.9b octree cells.

The limitations such as the jaggy interfaces in the voxel method and the high com-

putational costs associated with XFEM-level set method due to frequent requirements of

additional treatments are also avoided through this method.

All in all, it can be easily seen that each of the aforementioned approaches has its own

advantages over the others. Nevertheless, they all suffer from various limitations in certain

areas in the modelling process, and more and more efficient approaches are formulated

constantly. However, it is worthwhile to mention an additional treatment process is always

needed in all the approaches discussed thus far [183]. The additional treatments required

in the image-based SBFEM framework are minimal compared to others. This gives rise

to the attention and development of SBFEM in the context of image-based analysis.

Recent applications of SBFEM within quadtree decomposition can be found in crack

propagation modelling conducted by Ooi et al. [72] and linear elastic stress analysis

covered by Saputra et al. [91] using an octree image-based decomposition algorithm.
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2.4 Damage analysis - history and techniques

Material damage is defined as the degradation of its physical properties due to the pres-

ence or the growth of defects. There are two basic approaches to measure damage: the

conventional method is to quantitatively measure from microscopic observation (Scan-

ning Electron Microscope (SEM), microtomography, etc.), and the indirect approach is to

characterise damage from degrading material physical properties induced by the damage

phenomenon. When a certain material is under relatively small loads the defects may be

too small to be detected by any quantitative measurements. Continuum Damage Mech-

anics (CDM) provides a platform to indirectly measure damage in materials. Palmgreen

(1924), Miner (1945), and Robinson (1952) were the first to introduce the concept of a

variable related to the progressive deterioration prior to failure [36]. However, Kachanov’s

1958 publication [34] and Rabotnov’s work in the year 1969 [240] based on the continu-

ity variable ψ to model metal fracture in creep is regarded as the inception of the modern

CDM. After its initial introduction in Russia, CDM moved to Europe where Leckie and

Hayhurst [241] applied the damage principles to creep rupture of structures. In France the

basic concepts of CDM were described theoretically in particular, through a general ther-

modynamic formalism [242, 243]. Since then there has been considerable developments

in investigating the response of material weakened by micro-defects. This review invest-

igates the various different types of damage analysis techniques and attempts to justify

the use of these damage models in a structural level.

Failure of material arises at a diffuse face of damage such as fragmentation, mul-

tiple cracking, and micro-voidage. Many models that address these mechanisms are

in the framework of deterministic continuum mechanics. In the imitation phase CDM

provides a viable tool to account for dilute distribution of voids (e.g. Gurson model [244],

cracks [245]). In more recent advancements damage is now formulated by scalars, second

and forth-order tensors resulting from systematic studies of the decomposition of the stiff-

ness or compliance tensors [245–248]. These techniques allow for the study of material

behaviour to the ultimate state of the damage process which corresponds to the macro-
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scopic crack initiation.

In CDM there are two types of models, phenomenological models and micro-mechanical

models. Phenomenological models consider the change of macroscopically observable

properties by means of the internal variable(s). Thus, the concept of “effective stress”

is used in the formulation. Micro-mechanical models use the mechanical behaviour of

a Representative Volume Element (RVE) with defect(s). The constitutive equations are

formulated on a meso-scale by homogenization of local stresses and strains in the RVE.

Recently, phenomenological models have come to popularity. These models are able

to account for the effects of the interactions between defects. Thus, damage models are

used to evaluate the degradation process on the micro-scale from an initial undamaged

state up to creation of a crack(s) on the meso-scale. The interaction between such de-

fect formation was first handled through dilute situations [246, 249] to choose the form

of the stiffness or compliance tensor. More recently, the kinetic laws have received more

attention and the nature of damage interactions is becoming a key element in the choice

between a local [36] or a non-local approach [250]. The understanding of these interac-

tions is certainly important for the description of localised objects where spatial gradi-

ents are high (e.g. macro-crack initiation, spallation). They also provide rules to decide

whether a continuum and local approach is possible.

In CDM elastic damage models or elasto-plastic constitutive laws are the usual ap-

proaches taken to describe concrete behaviour. To cite a few, the following papers [251–

257] provide evidence of elastic damage models where the mechanical effect of progress-

ive micro cracks and strain softening are represented by a set of internal state variables

which intervene with the elastic behaviour at the macroscopic level. Plasticity based

models are used in the following papers [258–261], among others. In these formulations

softening is directly included in the expression of a plastic yield surface by means of

a hardening-softening function. Between the two approaches discussed above plasticity

based approaches fail to capture the degradation of the elastic stiffness [258].

Research related to concrete damage then leaned towards including plasticity and
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damage equations in a single constitutive relation. The paper on ductile failure approaches

for metal alloys by Lemaitre [262] first introduced a formulation of damage coupled with

plasticity. The formulation is based on the assumption that void nucleation is triggered

by plastic strains. Following this many other authors [263–267] produced similar formu-

lations applicable to concrete. The plasticity coupled damage formulation was derived

mainly through two approaches; plastic strain based and effective stress based.

One of the challenges in formulating a plastic strain based damage function is the diffi-

culty in realization of plastic strains. The strains vary according to the loading conditions

and the development of plastic strains prior to micro cracking is difficult to understand.

For example in uniaxial tension there is a lot of damage occurring with less plasticity

and comparatively in uniaxial compression the reverse occurs with major plastic strains

and less damage. As a remedy two methods can be adopted. One is to assume irrevers-

ible strains are due to micro-crack sliding and internal friction. This requires the prior

formation of internal surfaces.

A rather more popular approach is an effective stress approach. The plastic yield func-

tion is written in the effective configuration pertaining to the stresses in the undamaged

material. Many authors [251–253,268–280] applied this approach to isotropic and aniso-

tropic damage coupled to elastoplasticity. It has then been extended to other sources of

damage such as thermal damage [281,282]. The advantage of the effective stress approach

is that it provides a simple way to separate the damage and plastic processes. The plastic

effects, driven by the effective stresses, can be described independently from damage ones

and vice versa. Implicit/explicit numerical implementations can be easily accommodated

such that the plastic part is implicit and the damage part is explicit, same as in classical

continuum damage computations. As a consequence, existing robust algorithms for in-

tegrating the constitutive relations can be implemented. In calibration of the material

parameters, it is much easier to handle as a consequence of the separation of damage and

plasticity processes. The damage process is (elastic) strain controlled. A similar isotropic

damage model was proposed by Tao [255] to describe the damage behaviour of concrete.
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However, with the advancement of numerous and sometimes complicated damage

models, the elasticity coupled damage model still remains a popular method owing to

its simplicity in application and capability to accurately model material deterioration in

many engineering applications [283]. In particular for modelling quasi-brittle material

such as concrete, rock, ceramics and some fibre reinforced composites, elasticity coupled

with damage remains the first choice of consideration [283].

Quasi-brittle damage processes involve deterioration processes which do no undergo

large-scale plastic flow. These process however require significantly more energy than

needed for the creation of the crack surface. This is due to the process of nucleation,

growth and coalescence of microscopic defects in a volume which is much larger than

that occupied by the final, macroscopic crack. As a result, a gradual decrease of the de-

formation resistance is usually observed instead of the sudden loss of strength as observed

in perfectly brittle damage.

The applications of the method to quantify and evaluate concrete material damage

through calculating stiffness reduction are explored in [284–286]. The Mazar’s model

[285, 286] is one of the widely accepted isotropic elasticity based scalar damage models.

In this formulation damage is only considered to evolve under the presence of tensile

strains. Therefore, material damage takes place only if the principal strain tensor contains

at least one tensile strain component. It is assumed that local rupture appears according

to the fracture mode I or through a combination of fracture modes I and II.

2.4.1 Local damage mechanics

The local approach to isotropic damage formulation for elastic material is described by a

damage parameter D. The variable D is a monotonously increasing scalar quantity which

expresses the level of material degradation [252,253,287–289]. The effect of the damage

parameter is treated in CDM through the principle of effective stress [252, 253, 287].

With the development of damage, local softening behaviour is commonly experienced.

Consequentially this results in the negative tangential stiffness. Local approaches, if ad-

72



opted, lead to physically unacceptable localization of the deformation [37, 38]. In a finite

element context this results in serious mesh sensitivity [40, 290, 291].

2.4.2 Regularised damage mechanics

There are numerous regularisation approaches to overcome the deficiencies of the clas-

sical local damage modelling. These include non-local modelling of the constitutive

behaviour [37, 292, 293], gradient dependent material description [37, 294], micropolar

(Cosserat) continuum theory [37, 294], viscous regularization [295, 296], and local ma-

nipulation of material properties depending on the element size [295]. The key objective

of all regularisation techniques is to maintain the well-posedness of the boundary value

problems during the softening process. This contributes to remedy the pathological prob-

lems encountered in modelling softening materials using conventional continuum mech-

anics [297].

The gradient dependent models as well as micropolar continuum theory require signi-

ficant modifications of the typical finite element formulation for elastic analysis. The use

of viscous regularisation is inappropriate for solids typically found in solid mechanics.

Local alterations to material properties is a debatable concept from a physical point of

view although such methods enable global responses to be reasonably predicted. Local

strain and damage distributions in such techniques have also been found unrealistic.

The essential idea behind the non-local approach is the substitution of the generally

accepted principle of local action, stating that, in the absence of temperature effects, the

stress in a material point is fully determined by the deformation and the deformation

history at that point by its non-local counterpart. Where in the non-local counterpart, the

stress in a material point is now assumed to be dependent on the strain and the strain

history in a limited finite area enclosing the particular material point where the stress has

to be evaluated.

There are several types of non-local averaging methods [291,298]. However, strategies

in line with the microstructural material behaviour are quite prominent. The general
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idea contributing to a microstructural level formulation is that many materials possess

a characteristic volume where the damage distribution is almost uniform [299]. The grid

method [299] and the continuous average strain method are two averaging techniques

based on a microstructural level formulation. The former, employs a regular cell grid

overlay over an element mesh. The size of a grid cell is equal to the characteristic dimen-

sion. It is assumed at each cell of the grid the non-local equivalent strain and consequently

the non-local damage is considered a constant. In the latter the non-local equivalent strain

is calculated through a weighted average of equivalent strains in all material points within

a certain radius [292, 293, 300]. In principal this method leads to a continuous damage

field.

2.4.3 Selection of non-local model parameters

Concrete, made out of a slurry mix of aggregate, cement and water is one of the most

used building materials in civil engineering. For computation purposes, concrete can

be assumed to comprise of 3 distinct material phases: aggregate; mortar (made up of

sand and cement); and an inter-facial transition zone (ITZ) between the aggregates and

the motor. In computation modelling of a quasi-brittle material such as concrete it is

important to carefully identify and determine model parameters for the development of

constitutive models. This aspect is particularly important for non-local damage models

in which model parameters control the local behaviour of the model and also the spatial

interaction of material points.

A significant characteristic in concrete micro-structure is that it contains a large num-

ber of micro-cracks even prior to application of loads. This is due to various reasons such

as shrinkage, segregation, and thermal expansion within the cementitious constituents.

Under application of loads the link between the aggregate and cement paste will further

undergo micro-cracking. These micro and macro-cracks affect the stress-strain behaviour

of the material. In a phenomenological continuum approach these effects are smeared

out (i.e averaged) throughout the body where the material is considered as a mechan-
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ical continuum with degraded/damaged properties. This concept is adopted in damage

regularisation techniques discussed in section 2.4.2.

Damage regularization is an effective technique to overcome softening-related prob-

lems in the constitutive modelling and numerical analysis [250,296,301,302]. The meth-

ods however deviate from the conventional continuum mechanics by introducing a spatial

term in the constitutive relations. This spatial parameter is commonly known as the length

parameter related to the characteristic length (or the length scale) of the material. To avoid

any confusion between terminologies, the length parameter will be addressed as the char-

acteristic length in this work.

The characteristic length of the non-local continuum is related to the imaginary width

wt of the fracture process zone (see figure 2.10). However, wt is different from the actual

width zt , of the micro-cracked zone in continuum models.

1

Damage indicator

zt

wt

Figure 2.10. Damage profile in a uniaxial test using non-local model, and definition of
wt , and zt [303].

To obtain model parameters in the presence of a spatial parameter requires the solution

of boundary value problems [304]. This is a deviation from the local approach, where a

model can be calibrated directly from experimental data. As a result determining non-

local model parameters is a challenge that had warranted extensive research [303–308].

To date there are two main techniques adopted for obtaining model parameters: nu-

merical inverse analysis of experimental results; and methods exploiting the correlations

between the cohesive crack model and crack band model. In the inverse methods, calibra-
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tion of model parameters is based on numerical inverse analysis. The common techniques

adopted include optimization algorithms [304,306,307], and experimental data from real

structural tests and size effect laws [304, 306]. In inverse methods, the characteristic

length and the local constitutive model are treated equally as general parameters of the

non-local constitutive equations in a boundary value problem. Model parameters obtained

through drawing similarities between the cohesive crack model and crack band model

[309, 310] are commonly found in gradient based damage formulations [308, 311–315].

2.5 Methods in adaptive analysis

In numerical modelling techniques the accuracy of the solutions is determined by the

shape of the elements and the spacing of the nodal locations. The traditional method to

determine the accuracy of the finite element solution is to analyse the problem at least

twice with two or more different uniform or nearly uniform meshes. Determining the

accuracy by comparing solutions is not optimal use of computing resources as analysis

conducted with uniform meshes are computationally costly. Therefore, attempts to estim-

ate the error without excessively increasing the numerical effort has received considerable

attention in the research community [316–342]. The development of the error estimator

produced an insight to the accuracy of the solution and information on the distribution

of the error in the existing mesh. This gave rise to adaptive mesh refinement as the error

distribution can be utilized as an indicator to refine the mesh.

Adaptive mesh refinement techniques were first developed in the FEM framework in

the early 1980s [41, 319, 320, 325, 326, 331, 337, 341–419]. The method was termed “ad-

aptive” as it is an iterative process through which a specific error is adaptively estimated in

each iteration. Currently, many commercial software packages such as Abaqus FEA [23],

ANSYS [24], and LS-DYNA [27] contain adaptive analysis abilities.

To conduct an adaptive process there are four distinct varieties of refinement tech-

niques that are typically employed. These techniques include r-refinement: where posi-
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tion of nodes are modified [363,364,370,374,397,401–404,409,420,421], h-refinement:

where size of the elements are reduced [353,361,422–427], p-refinement: where the order

of interpolation functions are increased [317, 347, 384, 385, 391–394, 405–408, 428], and

hp-refinement: which is a combination of both h-refinement and p-refinement [338, 339,

341,342,346,359,360,362,366–368,373,375,377–383,389,411,413–415,418,419,429–

431].

The r-refinement/relocation is also termed “grid optimization method”. In this method

the nodes are redistributed while keeping the number of elements and the polynomial

order of the interpolation functions unchanged. Therefore, for a given number of elements

and the fixed interpolation functions the discretization error is reduced by moving the

nodal positions to optimal locations. The method leads to an optimal mesh but since

the number of nodes are limited the error cannot be reduced too much. Therefore, r-

refinements is usually considered with either p-refinement or h-refinement.

The h-refinement is arguably the most widely used adaptive method due to its sim-

plicity. The desired refinement outcome can be achieved by either uniform refinement or

adaptive refinement. To improve the efficiency of the method h-refinement can be coupled

with r-refinement [338, 339, 341, 342, 362, 377–383, 389, 413, 415, 418, 419, 429–431].

The p-refinement on the other hand focuses on increasing the order of interpolation

functions while keeping the mesh unchanged. With the use of higher order elements a bet-

ter geometrical description of the domain is obtained. The use of higher order elements are

preferred in regions where lower order elements can produce poor aspect ratios. Higher

order elements are usually more accurate than their lower order elements but increasing

the polynomial order indiscriminately will not always provide point-wise convergence to

the exact solution [432]. One disadvantage of the process is that the refinement conver-

gence is highly dependent on the initially selected element mesh. However, by adopting

a hp-refinement method this drawback can be resolved.
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2.6 Non-linear mathematical solvers

Non-linear solutions, specifically problems that require tracing the complete load deflec-

tion response requires tracing of the equilibrium path and proper treatment of limit and

bifurcation points. In computational mechanics the Newton-Raphson (NR), the modified

Newton-Raphson (m-NR), the quasi-Newton procedure [433–437] and the secant-Newton

methods [435, 438–440] are a few of the numerous solvers commonly employed for the

task. However, the modified Newton-Raphson (m-NR) is one of the most commonly

used non-linear solvers in structural analysis due to the inherent simplicity of the solution

method [338].

It is however prudent to first investigate the shortcomings of the NR method and the m-

NR method and assess the reasons to which the m-NR method still remains in contention

with the alternative methods such as the secant-Newton methods and the quasi-Newton

procedure. The first reason supporting its popularity is its improved convergence rate over

the NR method. Secondly the technique is adoptable with numerous special techniques

that are used to trace the descending branch of the load-displacement path. The incorpor-

ation of techniques such as the arc-length method is rather simple and straightforward.

Furthermore, these adopted special treatments bring about superior qualities than to those

found in ordinary techniques to overcome limit points in the equilibrium path. There-

fore, the m-NR method triumphs over other methods due to its aforementioned simplicity

compared to other complex methods such as the quasi-Newton procedure and also due to

uncompromised accuracy achieved in tracing the equilibrium path.

As mentioned earlier, it is common practice to pair the m-NR and NR methods with

acceleration and damping algorithms to improve convergence efficiency. Furthermore,

the arc-length method is adopted to trace the softening branch of the load-displacement

path. Line search based damping methods are common in mathematical programming

[435, 441–445]. These enable for a simple and an effective method for increasing the

robustness of the iterative technique [440, 446]. In mechanics damping of the iterative

process is initiated when there is an insufficient decrease [446] in the potential energy or

78



the norm of the out-of-balance force vector.

Non-linear solutions, specifically problems that require tracing the complete load de-

flection response requires tracing of the equilibrium path and proper treatment of limit

and bifurcation points. Ordinary techniques may lead to instability near a limit point

and also have problems in case of snap through and snap-back behaviour. However, the

arc-length technique is able to track the complete load-displacement response even over-

coming snap-back and snap-through behaviour.

Load controlled NR method was the earliest method to achieve the solution pattern on

the equilibrium but the method failed near the limit point. This gave rise to displacement

control techniques [54]. However theses techniques still fail to capture snap-through or

snap-back behaviour and thus lead to errors. Various methods can be found in the liter-

ature to overcome these issues. Examples of such methods include: switching between

load and displacement controls [447]; using the artificial springs [448]; and abandoning

the equilibrium iterations in the close vicinity of limit point [449, 450]. However a gen-

eralised technique was first developed by Riks [79, 451] and Wempner [452] which was

termed the arc-length method for structural analysis.

In the arc-length method, the load-factor at each iteration is modified to allow the

solution to converge through some specified path. In contrast, the load or the displacement

control method keep the load step or the displacement step constant during increments,

respectively. There are two main approaches followed in this technique, fixed and varying

arc-length methods. In any increment, the arc-length is kept fixed in the former and

whereas the latter evaluates a new arc-length at the beginning of each load step.

Although the initial arc-length formulation gained much acceptance in the field of fi-

nite element analysis one of the major drawbacks the method had was that it destroyed

the banded nature of the stiffness matrix [80]. Crisfield in 1981 proposed the cylindrical

arc-length method [80] where the increment length during load increments was fixed.

However, this method was found to be inconsistent in converging to a solution in prob-

lems having material non-linearity. Therefore, in 1983 the Crisfield [82] recommend
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arc-length technique in displacement control with simple line searches to solve problems

with material non-linearity with significant strain softening.

Applications of arc-length method in combination with Newton-Raphson method has

been successfully applied by researchers [82,453,454] for the analysis of reinforced con-

crete structures. Developments and modifications to the method continues to date. Some

of these changes include: non-dimensionalised vectors that define the arc-length con-

straint equation by introducing scaling matrices [455]; use of the updated hyper-plane

technique to evaluate the arc-length [456]; modification to the method of selection of

proper root of the non-linear constraint equation by selection of root that is closest to

constraint linear solution [457]; Fan’s [458] proposal to use three different ways to com-

pute the arc-length (i.e. zero incremental displacement norm, zero residual force norm

and zero incremental work norm); a method to compute the initial load increment based

on the technique of sign of determinant of current stiffness matrix [459]; inclusion of

the displacement of nodes associated with failure zone into the constraint equation; and

the modification to the existing arc-length-based on the concept of accumulated arc-

length [460].

2.7 Conclusions

The chapter began with a detailed review on preprocessing techniques in section 2.1.

Here two main categories of preprocessing namely, CAD-based and image-based meth-

ods were discussed. Next the chapter progressed to numerical modelling techniques in

section 2.2, where salient features of the FEM, the BEM, the XFEM and the SBFEM

were discussed at length. With this knowledge on both preprocessing and numerical

modelling techniques the reader was then introduced to commonly used combinations

of these techniques, in section 2.3. In line with this work the review focused on image

based techniques. Special attention was given to the SBFEM quadtree/octree method due

to its unique compatibility. Next numerous damage analysis techniques were reviewed
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in section 2.4. With the intent on improving the efficiency and the accuracy of the solu-

tion field, adaptive analysis procedures were elaborated in section 2.5. Finally, non-linear

mathematical solvers were evaluated on their merit in section 2.6.

Mesh automation through classical triangular (2D) or tetrahedral (3D) elements is gen-

erally easier compared to quadrilateral (2D) or hexahedral (3D) elements due to their abil-

ity to mesh complex boundaries usually encountered in many practical engineering applic-

ations. However, standard finite element analysis prefers quadrilateral (2D) or hexahedral

(3D) elements as these elements interpolate displacements to a higher degree. Therefore,

the discussion on pre-processing techniques focused on methods in both CAD-based and

image-based techniques that can be utilised in efficient meshing algorithms without any

compromise on the accuracy of the result.

In both CAD-based and image-based mesh generation techniques, meshes non-confirming

to the boundary is an appealing option as this then eliminates an additional step for de-

tecting geometrical boundaries. The method also enables to preserve the original mesh

structure. Boundary definition for the problem domain can then be incorporated into the

solution process through techniques such as XFEM, FCM or defined implicitly through

a level set method.

In the presence of numerous meshing algorithms, quadrilateral and hexahedral mesh

construction to date is not an efficient process and struggles in achieving full automa-

tion. The main issues substantiating this find is the requirement of intermediate steps for

achieving final desired mesh, generation of distorted elements causing inaccuracies dur-

ing the element mapping process, and the requirement of local re-meshing to correct and

eradicate distorted elements. Hierarchical mesh generation techniques i.e the quadtree

and the octree technique are a suitable alternative to achieve both mesh automation and

boundary conformance.

It is a vital to follow the mesh generation process with a compatible numerical mod-

elling technique. Out of the numerous techniques, a selected few were discussed in this

chapter. These included the BEM, the FEM, the X-FEM and the SBFEM. The FEM
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is the most well known method in CAE. Since the introduction of the FEM the numer-

ical method has become a widely used technique to obtain approximate solutions for

boundary value problems. This method is useful in yielding an approximate solution for

problems with complicated geometries, loading and material properties. The major limit-

ation associated with FEM pertaining to this work is its inability to handle hanging nodes

without additional treatments. This drawback creates difficulty to obtain smooth trans-

itions between different meshes. The BEM is a rigorous tool for modelling unbounded

media. The method adopts spatial discretisation of the boundary. The disadvantages of

the method are: the requirement of a fundamental solution which is usually complicated;

exhibits singularities; the resulting equations are fully populated and non-symmetric; and

the unsuitability for inhomogeneous and anisotropic material. The XFEM incorporates

displacement based finite element approximation with enrichment functions using the

framework of partition of unity. The striking two advantages of the method are: the fi-

nite element framework (sparsity and symmetry of the stiffness matrix) is retained; and

a single-field variational principle is used. The method is specially developed to provide

an accurate approximation with non smooth, discontinuities or domains with different

material phases. The SBFEM is a method applicable for both bounded and unbounded

media which combines advantages of both FEM and BEM. The meshing procedure is

simplified as only the boundary is discretised. The method enables the reduction of the

spatial dimensions by discretising the boundary alone, which in turn reduces the data pre-

paration and computational effort. The non requirement of a fundamental solution and

the ability to exactly satisfy radiation conditions at infinity when modelling unbounded

media expands the scope of the applications of the method. The method also does not

require discretisation of free and fixed boundaries and interfaces between different mater-

ials. Last but not least, it is also possible to obtain straightforward calculations of stress

concentrations and intensity factors.

As seen in sections 2.1 and 2.2 preprocessing techniques and numerical modelling

techniques have their own inherent advantages and disadvantages. Therefore, to neg-
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ate the limitations in one method the most compatible combination of preprocessing and

numerical modelling techniques need to be united. Three such combinations were ex-

amined in this chapter, namely, the voxel-based FEM, the XFEM-level set method and

the SBFEM-quadtree/octree mesh technique. The voxel-based FEM suffered from the is-

sues created in the discretisation stage. These issues involve unaligned interfaces, intrinsic

jagged surfaces which give rise to considerable local stress oscillations. The shortcomings

in voxel-FEM approach of stepped interface boundaries were eliminated in the XFEM-

level set method. The local enrichment done through XFEM helps provide an accurate

approximation when unsmoothed domains, discontinuities or domains with different ma-

terial phases arise in a model. Unfortunately, this method often leads to a considerable

computational cost. The SBFEM-quadtree/octree technique in essence is a perfect amal-

gamation of the preprocessing technique and numerical modelling technique.

As noted earlier, hierarchical mesh generation structures are regarded as efficient tools

in mesh generation. The classical FEM however is not compatible with both quadtree and

octree meshes without an additional treatment to hanging nodes. Such treatments involve:

incorporation of transition elements with special shape functions; triangulation (2D) and

tetrahedralisation (3D) of the mesh; and the introduction of polyhedral elements. In the

finite element framework the introduction of polyhedral elements has created a much

needed flexibility in the meshing process as these elements can be cut, merged or split

and still result in a polygonal (2D)/polyhedral (3D) shape. Polygonal/polyhedral ele-

ments reduce the requirement for re-meshing if the mesh consists of a shape which can be

modelled with an element available in the element library. Furthermore, based on Voro-

noi diagram polyhedral elements can be merged with the neighbouring elements or cut

into smaller polyhedrons to resolve the issue of mesh distortion. However, the polygonal

and polyhedral formulation in FEM still warrant high number of integration points for an

accurate results and the applicability to transient problems is not recommended.

SBFEM has the capabilities to perform efficiently with the incorporation of a hierarch-

ical mesh generation structure to produce accurate solutions with minimum effort. The
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issue of hanging nodes in quadtree and octree cells is overcome in SBFEM as each cell

can be modelled as a polygonal or polyhedral element. This introduction enables auto-

matic meshing algorithm to be developed with ease and offers greater meshing flexibility

as the element shapes are not limited to triangles, quadrilaterals, tetrahedrons or tetrahed-

rals commonly employed in the FEM. Levels sets can be easily incorporated to trim the

boundaries to produce boundary conforming meshes. The resulting meshes still conform

to the original polygonal/polyhedral formulation and therefore no further re-meshing is

warranted. The polygonal formulation in 2D can be adopted as long as any point on

the polygon boundary is directly visible from the scaling centre. This requirement is

satisfied by any convex polygon and some concave polygons. The polygon elements gen-

erated from a Delaunay triangulation automatically satisfy this requirement. In 3D, any

arbitrary volume can be modelled based only on surface shape functions on the bound-

ary. In this formulation there is no limitation on the number of surfaces on a polyhedron

boundary nor the requirement of a convex polyhedral. Similar to the 2D formulation the

only requirement is that all the boundary surfaces are visible from a scaling centre within

the polyhedron. This element formulation can therefore be seamlessly integrated with a

quadtree or an octree mesh.

To date, CDM has produced theories that lead to powerful methods for the numerical

analysis of the behaviour of softening materials. However, precautions need to be taken to

limit the localization of the deformation and the consequent damage within material. This

issue of localisation and mesh objectivity of finite element solutions is directly related to

the correct representation of size effects. The issue of damage localisation can be resolved

with the application of non-local approaches. It is also important to adopt techniques that

do not require extensive alterations to the finite element framework for convenient integ-

ration to existing analysis software. The grid method and the weighted average strain

method are two such techniques that can easily be implemented into a classical finite ele-

ment computer code. The non-local averaging can also alleviate the computational burden

by reducing the requirement for mesh refinement in jagged boundaries. Similar observa-
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tion and conclusion to that of [98,108,115] on stress smoothing on jagged boundaries can

be extended to strain smoothing in the CDM approach.

In the finite element framework for a linear elastic computation preprocessing takes

up approximately 45% of the total time required to complete a conventional analysis, the

solution takes 20%, and post-processing 35% [41]. In an adaptive framework the ability

to ascertain the distribution of the error in the problem domain enables the user to refine

the mesh at locations that require improvements and coarsen the mesh where accuracy

of the solution is above expectation. Adaptivity can therefore contribute in reducing pre-

processing, processing and post-processing times through reducing the number of DOFs

required to obtain solutions with similar or better accuracy compared to a solution ob-

tained through a uniform grid consisting of an equal number of DOFs. Therefore, the

benefits of adopting an adaptive analysis framework is twofold, it can contribute heavily

to improve the accuracy of the solution and also improve the efficiency of the simulation.

Mathematical solvers especially in the context of softening material must be able to

completely follow the equilibrium path. This involves identification and computation

of singular points such as limit or bifurcation points, whose secondary branches in the

equilibrium path must be examined and followed. Several such techniques to achieve the

solution on the equilibrium path were discussed in this chapter. The m-NR is still one of

the most commonly used non-linear solvers due to the inherent simplicity of the solution

method. The few shortcomings of the m-NR is overcome by dampened and accelerated

techniques coupled with the arc-length formulation.

The applications of the SBFEM are numerous. However, damage analysis to date has

not been explored through this numerical technique. The SBFEM has performed with

comparable accuracy to FEM, but with much lower number of DOFs, and has out per-

formed the conventional FEM when solving unbounded domain problems and problems

involving stress singularities and discontinuities. Combination of the SBFEM with the

quadtree or the octree mesh generation techniques can overcome the limitations such as

the jaggy interfaces in voxel method and the computational costs inheriting XFEM-level
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set method due to the frequent requirements of additional treatments. The method also

has the additional advantage of less storage requirements, high computational speed, abil-

ity to be automated, and simplicity in application. Furthermore, through partnering with

the SBFEM the issue of hanging nodes is addressed.

This literature review substantially confirms the need for a robust and efficient damage

modelling technique. The review also sheds light on the aspired benefits of the use of

the SBFEM-quadtree/octree technique for non-local damage analysis. The affect of the

softening nature of damage degraded materials can be traced effectively through an arc-

length-based accelerated/dampened m-NR method with line search. Adaptive techniques

can further improve the solution space.
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Chapter 3

Two Dimensional Damage Analysis by

the Scaled Boundary Finite Element

Method

3.1 Introduction

In this Chapter, the use of the Scaled Boundary Finite Element Method (SBFEM) for

analysing progressive damage in structures is introduced. The mathematical derivations

of the SBFEM in damage analysis is presented in two dimensional (2D) space with the

introduction to the simplified scaling centre damage calculation technique. The integral-

type non-local model combined with the isotropic damage model is extended to eliminate

the mesh sensitivity caused by the strain localization. Comparative studies of the local

and non-local formulations are presented. SBFEM polygonal formulation is implemen-

ted owing to its flexibility to mesh arbitrary geometries without any additional effort.

Furthermore, the computational effort involved in storing and accessing the strain and

stress fields, and damage variables can be considerably reduced in the framework of the

SBFEM. Several numerical benchmarks are simulated to demonstrate the effectiveness

and robustness of the proposed approach. These examples compare the introduced Scal-
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ing Centre (SC) formulation with the Full Gauss Point (FGP) SBFEM formulation and

also with an in house finite element formulation. These numerical examples also compare

the outputs of the SC formulation with experimental test results and published numerical

test results. The numerical examples further investigate the behaviour between local and

non-local approaches in damage analysis.

Concrete is one of the most widely used building materials in civil engineering due to

its high strength and durability relative to its cost. From a micro-level viewpoint, concrete

contains a large number of micro-cracks and micro-voids even prior to application of

loads. During the loading process, coalescence of these micro-cracks and micro-voids

leads to a degradation of material stiffness observed on the macro scale, and thus the stress

strain behaviour of concrete possesses a characteristic of softening [461–464]. In order

to describe such a non-linear phenomenon, non-linear fracture mechanics (NFM) and

continuum damage mechanics (CDM) were developed. Based on NFM and CDM, studies

[465–468] have been carried out to evolve variants of these two methods respectively and

a mixed version has also been proposed [469].

Traditional fracture approaches are capable of modelling problems with existing cracks

or notches, and the initialization and propagation of cracks are determined by energy or

stress-based criterion [465]. In order to accurately describe the cracking behaviour of con-

crete, the fracture process zone (FPZ) must be properly modelled to consider the gradual

energy dissipation during cracking by using smeared crack model [470], or discrete crack

model [465,471]. Owing to the strong stress singularity around the crack tip, the finite ele-

ment size in FPZ should be sufficiently small to obtain relatively accurate stress intensity

factors (SIFs). Besides, a re-meshing procedure is required to capture the tortuous crack

path along with crack propagation [472]. These two factors may lead to a time-consuming

and complicated numerical implementation. As a remedy, higher order and singular fi-

nite elements [473] are utilised for the estimation of SIFs. Alternatively, extended finite

element method (XFEM) was developed by Belytschko and Moës [13, 164] to improve

the finite element method (FEM) concerning problems with strong discontinuities such as
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cracks and material interfaces, so that re-meshing is avoided.

CDM was introduced by Kachanov [34] in the context of creep rupture, which is a

constitutive theory that describes the progressive degradation of material integrity due to

the propagation and coalescence of micro-defects. Damage models use internal variables

to characterize the density and orientation of micro-defects. For instance the isotropic

damage model takes account of the damaged stiffness tensor as a scalar multiple of the

initial elastic stiffness tensor. Theoretically there are two scalar parameters to represent

two independent elastic constants of standard isotropic elasticity; i.e. the Young’s mod-

ulus and Poisson’s ratio. Assuming that Poisson’s ratio is a constant during the damage

process, a simple version of the isotropic damage model with only one parameter can

be obtained. More sophisticated versions of damage model can be found in [474–476],

which represent damage by high-order tensors resulting from systematic studies of the

decomposition of the compliance tensors or based on the relationship between damage

tensors and crack density distributions.

It is found that excessive damage leads to a local softening behaviour as the tangential

stiffness becomes negative. Based on the assumption that stress at a certain point only

depends on the state variables at that point, a local damage model may lead to a non-

objective strain localization, and thus pathological sensitivity to mesh [477, 478] arises

from an ill-posed boundary problem. To overcome the deficiencies of the local damage

model, a great variety of non-local models, including integral-type non-local models [250,

477,479] and gradient-type non-local models [480–482] have been well developed during

the last decades. Integral-type non-local models are based on the assumption that the

constitutive law at a point of continuum involves weighted averages of a state variable in

a certain range of the point by introducing an additional material parameter named the

Characteristic Length [483]. While gradient-type non-local models take the field in the

immediate vicinity of the point into account, by enriching the local constitutive relations

with the first or higher gradients of some state variables. Detailed discussions on these

two approaches can be found in [484, 485]. Since non-local damage models impose a
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non-zero limit on the minimal width of the DPZ and prevent the strain localization into a

band of zero width, it is shown to be mesh-independent and thus much more reliable and

robust than local damage models. Taking the strain rate into account, non-local damage

models have been successfully applied to simulate dynamic damage process [467] and

dynamic crack branching [486].

Although a continuous distribution of strain can be achieved by non-local damage

models, it is still necessary to use sufficiently fine mesh in the DPZ [467, 477, 479]. Con-

sidering that fine mesh is only required in narrow bands and relatively coarse mesh can

be used in the rest, finite element meshes are adopted in this chapter with refined meshes

around the vicinity of the assumed DPZ. However, as the damage patterns are usually

unknown and a uniform fine mesh is an impractical solution imparting excessive compu-

tational burden, adaptive procedures becomes an attractive technique to reduce the num-

ber of DOFs during the damage evolution. A general algorithm of non-linear adaptive

approach includes error estimation, re-meshing and mesh-mapping. A similar approach

to [487] has been followed in chapter 6 to produce the Automatic Image-Based Adaptive

Damage Analysis (AIBADA) framework.

The scaled boundary finite element method (SBFEM) is a semi-analytical method

developed by Wolf and Song in 1990s [199] for the solution of wave propagation prob-

lems in unbounded domain. The SBFEM combines some of the advantages of both the

FEM and the boundary element method (BEM). The method enables the reduction of

the spatial dimensions by discretising only the boundary, which in turn reduces the data

preparation and computational effort. Compared to the BEM, there is no requirement

for a fundamental solution. The ability to exactly satisfy radiation conditions at infin-

ity makes the method particularly suitable for modelling unbounded media [63]. The

method also does not require discretization of free and fixed boundaries and interfaces

between different materials [488]. Owing to its capability of obtaining stress concentra-

tions and intensity factors straightforwardly, the SBFEM is also an attractive method to

model crack propagation [205, 208, 489, 490]. Furthermore, this method has also been
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extended to dealing with fluid-structure interaction (FSI) [491], soil-structure interaction

(SSI) [492, 493], electro-statics [491] and heat transfer problems [494]. However, neither

local nor non-local damage modelling by using SBFEM has been explored prior to this

work.

This work aims at developing a SBFEM-based approach to model the non-local dam-

age process. The integral-type non-local model combined with the isotropic damage

model is employed and extended to the scaled boundary formulation. There are several

advantages of modelling non-local damage in the framework of the SBFEM owing to its

salient characteristics:

1. In the SBFEM, a domain is discretised by a set of subdomains (like super-elements

in the FEM) with various sizes and different number of edges. For simplicity, the

damage degree can be assumed to be uniformly distributed in one subdomain. Cor-

respondingly, only the strain at the scaling centre of the subdomain is used to cal-

culate the equivalent strain and subsequently the damage variable.

2. Since the strain modes for each subdomain is only depended on the geometry of

the subdomain, it can be calculated beforehand and utilized at each load step to

compute the strain at an arbitrary point in the domain.

3. The weight function can also be calculated beforehand using the distances between

subdomains and subdomain areas.

These advantages above make the SBFEM an attractive approach to model the non-local

damage process.

The layout of this chapter is as follows. In section 3.2, the isotropic damage model

and evolution laws of damage are introduced. The integral-type non-local damage model

is also described in the same section. In section 3.3 the governing equations of linear

elasticity are described. The concept and equations of the 2D SBFEM are explained

in section 3.4. The implicit damage formulation is documented in section 3.5. Section

3.6 introduces the m-NR method incorporated with the arc-length technique. In section
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3.7, several benchmarks are modelled to verify the effectiveness and robustness of the

proposed approach. Conclusions and remarks are stated in section 3.8.

3.2 Damage model for concrete

3.2.1 Isotropic damage model

Isotropic damage models assume that the stiffness degradation is isotropic, i.e., stiffness

modulus corresponding to different directions decrease proportionally. Generally the iso-

tropic damage model should deal with two damage variables, including the Young’s mod-

ulus and Poisson’s ratio. A further simplification can be achieved with the assumption that

the Poisson’s ratio remains constant during the damage process [34], which is adopted in

this study.

3.2.2 Constitutive law

The isotropic damage model with a single scalar variable can be described by the stress-

strain law

σ = (1−ω)Dε, (3.1)

in which σ is the stress tensor, ε is the strain tensor, D is the elasticity matrix, and ω is

the damage variable which ranges from 0 to 1 at complete damage and is a function of the

damage internal variable κ such that

ω = g(κ). (3.2)

As shown in figure 3.1 when the deformation is increased after the material undergoes

unloading, damage develops approximately at the point where the unloading initiated for

that particular cycle. In relation to the damage model in equation (3.1) this suggests that

with increasing damage the elastic domain in strain space must grow such that the strain
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state remains on the loading surface.

0

σ

ε0

Figure 3.1. The formulation of Kuhn-Tucker relation based on behaviour of stress-strain
material response of a concrete specimen in tension.

Mathematically, the loading-unloading condition can be formulated by the set of

Kuhn-Tucker relations [495]

f (ε̃,κ) ≤ 0

κ̇ ≥ 0

f (ε̃,κ)κ̇ = 0

, (3.3)

in which f (ε̃,κ) = ε̃(ε)−κ is the damage loading function, ε̃ is the equivalent strain, and

κ is an internal variable that corresponds to the maximum level of equivalent strain ever

reached in the previous history of the material. κ can be locally attained during the loading

history. To define the initial elastic domain of the material κ should be supplemented by

an initial value κ = κ0 .

3.2.3 Evolution of damage

Damage evolution can be written as

ω̇ =


g(ω, ε̃) ˙̃ε if f = 0 and ḟ = 0 and ω < 1,

0 else,
(3.4)
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where ω < 1 restricts damage growth beyond the critical value ω = 1. The one to one

relationship ω = g(κ) between ω and κ given in equation (3.2) is possible since ω̇ > 0 if

and only if f = 0 and ˙̃ε > 0, and thus κ̇ > 0, and since both ω and κ are semi-monotonic.

This relationship can also be obtained by integrating equation (3.4) and through use of

the consistency relation ḟ = 0. However, in quasi-brittle damage models it is specified

directly. In this case the corresponding evolution function g(ω, ε̃) can be obtained by

differentiation with respect to κ .

In this study it is assumed that the damage is governed by the equivalent strain. There

are two main variants of the damage function based on the equivalent strain, i.e. linear

softening model and exponential softening model [478]. The damage evolution law of the

linear softening model is often adopted for theoretical developments where the evolution

of damage (refer figure 3.2a) is defined as

ω =


0 if κ < ε0,

ε f
κ

(
κ−ε0
ε f−ε0

)
if κ < ε f ,

1 if κ ≥ ε f ,

(3.5)

in which ε0 = ft/E is the limit elastic strain under uniaxial tension, ft is the tensile

strength, E is the Young’s modulus, and ε f is a parameter affecting the ductility of the

response and related to the fracture energy. When ε = ε f complete loss of stiffness is

experienced, see figure 3.2b.
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ε0 εf

1

(a) Damage growth with respect to κ

0
0

ε
ε0 εf

Eε0

σ

-Linear softening model
-Exponential softening model

(b) Stress vs strain behaviour in uniaxial ten-

sion. Linear (refer equation (3.5)) softening

behaviour compared against exponential (refer

equation (3.6)) softening law.

Figure 3.2. (a) Damage growth and (b) the corresponding uniaxial stress-strain response
for linear (refer equation (3.5)) softening behaviour.

The area under the uniaxial stress-strain curve, g f = ft(ε f − ε0/2), has the meaning

of energy dissipated per unit volume of totally damaged material under uniaxial tension.

Softening in real materials is mostly non-linear. The non-linear behaviour is exem-

plified by a relatively steep initial stress drop followed by a more moderate decrease.

Therefore, in most practical situations softening behaviour is represented by exponential

softening laws.

The exponential softening model in figure 3.3 is defined as

ω =


0 if κ ≤ ε0,

1− ε0
κ

exp
(
−(κ−ε0)

ε f−ε0

)
if κ > ε0.

(3.6)

It can be found that the tangent of the softening branch at the peak stress of the exponential

model is coincident with the softening part of the linear model (see figure 3.2b).
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(a) Damage growth with respect to κ .

0
0

ε
εfε0

Eε0

σ

(b) Stress vs strain behaviour in uniaxial ten-

sion.

Figure 3.3. (a) Damage growth and (b) the corresponding uniaxial stress-strain response
for exponential softening behaviour given in equation (3.6).

There are several variants of exponential softening models, for instance, the following

damage law proposed in [481] is defined as

ω =


0 if κ ≤ ε0,

1− ε0
κ
(1−α +α× exp(β (ε0−κ))) if κ > ε0,

(3.7)

in which α and β are two parameters to control the slope of the softening branch of the

curve. The parameter β determines the rate at which the damage grows. A higher value

of β results in a more brittle failure as it induces faster growth of damage. The parameter,

α on the other hand controls the residual stress. When α = 1 there is no residual stress

and when α = 0 the residual stress is equal to the tensile strength. This expression and

the corresponding stress-strain relation have also been plotted in figure 3.4.
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(a) Damage growth with respect to κ .

εε

Eε

(1-α)Eε0
0

(b) Stress vs strain behaviour in uniaxial tension.

Figure 3.4. (a) Damage growth and the corresponding (b) uniaxial stress-strain response
for linear softening behaviour given in equation (3.7).

In equation (3.7), when ε → ∞ the uniaxial stress σ approaches (1−α)Eε0 (figure

3.4b). This asymptote represents the effect of crack bridging [496]. Which is an effect

apparent in experimentally obtained load-displacement diagrams in the form of a long

tail.

In both damage models given in equations (3.6) and (3.7) the damage variable ap-

proaches ω = 1 asymptotically (see figures 3.3a and 3.4a). This characteristic avoids

complete fracture. The models also show the characteristic sharp drop in stress initially

and thereon a gradual decrease in stiffness, similar to most practically found materials.

To define the complete quasi-brittle damage model next the equivalent strain ε̃ defin-

ition applicable for both biaxial and triaxial cases is introduced. The equivalent strain

parameter maps the strain components onto a scalar variable. The different effects of the

strain components on damage growth are accounted within the equivalent strain defini-

tion by weighting these components appropriately. The definition of the equivalent strain

directly affects the shape of the elastic domain in the strain space.

Damage evolution is usually related to the energy release rate associated to the dam-

age variable since the constitutive relations are derived within the framework of thermo-

dynamics of irreversible processes. Therefore, the equivalent strain could be defined in

an energy norm as

ε̃ =

√
1
E

ε : D : ε . (3.8)
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Equation (3.8) produces a dimensionless equivalent strain parameter. The value of ε̃

equals to the axial strain for the uniaxial tensile stress case. Figure 3.5 is a graphical

representation of ε̃ in the principal strain space. The plot is produced assuming plane-

stress conditions with a Poisson’s ratio of ν = 0.2.

-20 -10 0
-20

-10

0

1

2

- ε=1
- Uniaxial stress path

Figure 3.5. Normalised energy release rate definition for equivalent strain, equation (3.8).
Principal strain space shown. Plane-stress conditions assumed. Solid line represent ε̃ = 1
and dashed lines represent uniaxial stress paths. Unit: 10µε .

The solid line represents the constant curve ε̃ = 1 produced by the normalised energy

release rate equation (3.8) and the dashed lines in the diagram represent uniaxial stress

paths. The downside to this definition as seen in figure 3.5 is the inability to differentiate

between tension and compression. The model thus implies equal weight to tensile and

compressive strain components. Therefore it is unsuitable to describe the mechanical

behaviour of engineering materials, where compressive strength is often higher than the

tensile strength.

As a remedy, Mazars and Pijaudier-Cabot [461] proposed a definition for concrete

which is more sensitive to positive strains than to negative strains.

ε̃ =

√√√√ 3

∑
i=1

(< εi >)2, (3.9)

with εi representing the principal strains and the MacAulay brackets <> defined such

that < εi >= εi if εi > 0 and εi = 0 otherwise. Figure 3.6 shows the contour for ε̃ = 1

associated with equation (3.9). It is evident from the behaviour of the equivalent strain

that the sensitivity is solely to tensile strains than to compressive strains.
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Figure 3.6. Mazars equivalent strain definition (equation (3.9)) in principal strain space.
Plane-stress conditions assumed with Poisson’s ratio of ν = 0.2. Solid line represent ε̃ = 1
and dashed lines represent uniaxial stress paths. Unit: 10µε .

Another widely used definition of equivalent strain for concrete is proposed by De

Vree et al. [497] and termed as the Modified von Mises Definition. The origins of the

formulation stems from plasticity models for polymers. The original stress based formu-

lation for modified von Mises definition can be rewritten in terms of strains using Hooke’s

law, to produce

ε̃ =
k−1

2k(1−ν)
Iε
1 +

1
2k

√
(k−1)2

(1−2ν)2 (I
ε
1 )

2 +
12k

(1+ν)2 Jε
2 , (3.10)

in which, Iε
1 is the first invariant of the strain vector defined below

Iε
1 = εxx + εyy + εzz, (3.11)

ν is the Poisson’s ratio, and Jε
2 second invariant of the deviatoric strain vector and defined

as

Jε
2 =

1
3
[ε2

xx + ε
2
yy + ε

2
zz− εxxεyy + εyyεzz + εzzεxx +3(ε2

xy + ε
2
yz + ε

2
zx). (3.12)

k is set equal to the ratio of the compressive uniaxial strength and the tensile uniaxial

strength. This parameter therefore governs the sensitivity in compression relative to that

in tension. Experimental results range the compressive strength of concrete to be ten to

twenty times the tensile strength. The graphical representation in figure 3.8 considers

k = 10.
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Figure 3.7. Modified von Mises equivalent strain definition (equation (3.10)) in principal
strain space. Plane-stress conditions assumed with Poisson’s ratio of ν = 0.2. Solid line
represent ε̃ = 1 and dashed lines represent uniaxial stress paths. Unit: 10µε .

Another common form of ε̃ is the conventional von Mises equivalent strain definition

as follows

ε̃ =
1

1+ν

√
−3Jε

2 . (3.13)

Here, the factor 1/(1+ν) scales the equivalent strain such that it equals the axial strain

in the uniaxial stress case. Equation (3.13) is produced when k = 1 in the modified von

Mises definition given in equation (3.10). A graphical representation of equation (3.13)

is given in figure 3.8.
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Figure 3.8. Von Mises equivalent strain definition (equation (3.13)) in principal strain
space. Plane-stress conditions assumed with Poisson’s ratio of ν = 0.2. Solid line repres-
ent ε̃ = 1 and dashed lines represent uniaxial stress paths. Unit: 10µε .

3.2.4 Integral-type non-local damage model

The non-local damage model is formulated by replacing a state variable by its non-local

counterpart obtained by weighted averaging over a spatial neighbourhood of each point
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under consideration. Assume in a domain V , f (x) is a specified local field. Then the

corresponding non-local field is defined as

f (x) =
ˆ

v
α(x,ς) f (ς)dς . (3.14)

α(x,ς) is a given non-local weight function defined as

α(x,ς) =
α0(||x− ς ||)r

v α0(||x− ς ||)dς
, (3.15)

where α0(r) is a monotonically decreasing non-negative function of the distance r =

||x− ς ||.

The Gauss distribution function is usually taken as the weight function given by [250].

α0(r) = exp
[
−0.5×

(r
l

)2
]
, (3.16)

or

α0(r) = exp
[
−4×

( r
R

)2
]
, (3.17)

in which l is the internal length of the non-local continuum, and R is the interaction radius

related to the internal length and denotes the largest distance of point ς that affects the

non-local average at point x.

Another alternative form of weight function is the truncated quartic polynomial func-

tion in bell-shape [477] given by

α0(r) =
(

1− r2

R2

)2

. (3.18)
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3.3 Governing equations of linear elasticity

From the Newton’s second law of motion the governing differential equation for equilib-

rium is

LT
σ (x,y)+b(x,y) = ρü(x,y) , (3.19)

where b(x,y) are the body loads, ρü(x,y) are the inertial forces with ρ denoting the mass

density, ü(x,y) is the acceleration field, and LT is the linear differential operator for in-

plane motion. Equation (3.19) should hold for any point (x,y) within the domain to satisfy

equilibrium in the strong sense.

The linear differential operator L for the 2D case is written as

L =


∂

∂x

∂

∂y

∂

∂y
∂

∂x

 . (3.20)

L relates the strains ε (x,y) and displacements u(x,y) as

ε (x,y) = Lu(x,y) , (3.21)

and stresses, σ (x,y) are related to the strains ε (x,y) by

σ (x,y) = Dε (x,y) , (3.22)

where D is the elastic constitutive matrix. For an isotropic material in plane stress, the

constitutive matrix is defined as

D =
E

1−ν2


1 ν 0

ν 1 0

0 0 1−ν

2

 . (3.23)
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For an isotropic material in plane strain D is is defined as

D =
E

(1+ν)(1−2ν)


1−ν ν 0

ν 1−ν 0

0 0 1−2ν

2

 . (3.24)

In equations (3.23) and (3.24) E is Young’s modulus and ν is Poisson’s ratio.

A typical problem domain consist of boundary conditions. These include the pre-

scribed displacements

u = ū on Γu , (3.25)

and the prescribed tractions

t = t̄ on ΓN . (3.26)

In equation (3.25) ū are the displacements prescribed on the Dirichlet part of the bound-

ary Γu and t̄ in equation (3.26) are the tractions prescribed on the Neumann part of the

boundary ΓN. The total boundary is therefore specified as Γ = Γu
⋃

ΓN.

The governing equation of equilibrium in elastostatics with reference to equation

(3.19) is

LT
σ (x,y)+b(x,y) = 0, (3.27)

since there is no effect of the inertial force term, ρü(x,y) = 0.

3.4 The scaled boundary finite element method

In this section, the the standard governing equations in SBFEM for 2D elasticity in

Cartesian coordinates are presented.
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3.4.1 Geometry of scaled boundary finite elements

3.4.1.1 Overview

To illustrate the modelling in SBFEM, a problem domain divided into three arbitrary

polygonal subdomains is considered, as shown in figure 3.9a. Figure 3.9b shows the

details of the subdomain 1 in figure 3.9a. The subdomain is represented by scaling a

defining curve or boundary S relative to a scaling centre. The only requirement is that

the entire subdomain boundary has to be visible from the scaling centre. In other words

this ensures that every point on the subdomain boundary can be connected to the scaling

centre by an unobstructed radial line. When difficulties arise in complex geometries and

this requirement is not met, the domain is partitioned into a multiple subdomains.

-Node
-Scaling centre
-Vertice

P

x

y

1

2

3

-Radial line
-Internal Boundary

1

Similar curve to S
(ξ=0.5)

η

ξ

Defining curve S
(ξ=1)

2-noded elements

Scaling centre
(ξ=0)

Radial lines

Side faces

Scaling centre
(ξ=0)

S(ξ=1)

1(x1,y1),η=-1

2(x2,y2),η=1 ξ

(a)       (b)

(x0,y0)

xg

yg

(x( , ),y( , ))

ϴ

r

η

dr/dη

dr/d
�

dΩ

(c)

Figure 3.9. Concept of the scaled boundary finite element method, (a) SBFEM problem
domain, (b) a scaled boundary subdomain, and (c) a line element on the boundary of a
wedge formed by scaling elements on the boundary towards the scaling centre.

A point in a subdomain is described by the scaled boundary coordinates ξ and η .
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The normalized radial coordinate ξ varies from zero at the scaling centre to unity on S.

A circumferential coordinate η is defined around the defining curve S which pertains to

the discretisation of the boundary. A curve similar to S defined by ξ = 0.5 is shown

in figure 3.9b as well. The boundary can be discretised using any number and/or order

of elements, which are connected piece-wise about the scaling centre following the right

hand rule. Figure 3.9c depicts the defining curve discretised using one-dimensional SBFE

with local coordinate η that ranges from -1 to +1. In this study, two-noded linear elements

as shown in figure 3.9c are used. The interpolation along each line element is carried out

using standard Gaussian/Gauss-Lobatto shape functions.

3.4.1.2 Scaled boundary finite element transformation of geometry

This thesis adopts the SBFEM formulation for an arbitrary polygonal element. The for-

mulation is applicable to any polygon which satisfy the star convexity or scaling require-

ment for the SBFEM.

To start with, assume that the local Cartesian coordinate system (x,y) shown in figure

3.9c share the origin with the scaling centre. Then, the global Cartesian coordinate (xg,yg)

system are related to the local scaled boundary system by

xg = x0 + x, (3.28a)

yg = y0 + y, (3.28b)

where, (x0,y0) are the global Cartesian coordinates at the scaling centre.

Any point on the boundary (xb(η),yb(η)) can be interpolated by using Gauss-Lobatto-

Legendre shape functions [195] as

xb(η) = N(η)xb, (3.29a)

yb(η) = N(η)yb, (3.29b)
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where xb =

[
x1 x2 ... xM

]T

, yb =

[
y1 y2 ... yM

]T

are the respective local nodal

coordinate vectors for a single M-noded element, and N(η) shape function vector of the

M-noded line element. The coordinates xb and yb correspond to the nodes of each line-

element used to discretise boundary. The one-dimensional shape function can be expan-

ded as follows

N(η) =

[
N1(η), N2(η), ... NM(η)

]
, (3.30)

where Ni(η), i = 1,2, ...,M are the nodal shape functions.

A point in the domain (x(ξ ,η),y(ξ ,η)):

x(ξ ,η) = ξ N(η)xb, (3.31a)

y(ξ ,η) = ξ N(η)yb, (3.31b)

is described by scaling the boundary along the dimensionless radial coordinate, ξ . The

radial coordinate attains the values 0 at the scaling centre and 1 at the boundary.

A Jacobian matrix J(ξ ,η) is used (similar to standard isoparametric finite elements)

for the coordinate transformation between the Cartesian coordinates, (x,y) and the scaled

boundary coordinates (ξ ,η). The relationship between the Jacobian matrix and the deriv-

atives in the scaled boundary coordinates and the derivatives of the Cartesian coordinates

is in the form of 
∂

∂ξ

∂

∂η

= J(ξ ,η)


∂

∂x

∂

∂y

 , (3.32)

where,

J(ξ ,η) =

 x(ξ ,η),ξ y(ξ ,η),ξ

x(ξ ,η),η y(ξ ,η),η

 . (3.33)

To separate the dependency of the Jacobian matrix on the geometry of the boundary
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coordinate η , equation (3.32) is rearranged to results in


∂

∂ξ

1
ξ

∂

∂η

= J(η)


∂

∂x

∂

∂y

 , (3.34)

where J(η) is the Jacobian matrix of the boundary as below.

J(ξ ,η) =

 xb (η) yb (η)

xb (η),η yb (η),η

 (3.35)

Making the derivatives of the Cartesian coordinates the subject of the equation (3.34)

gives 
∂

∂x

∂

∂y

= J−1 (η)


∂

∂ξ

1
ξ

∂

∂η

 , (3.36)

where J−1 (η) is

J−1 (η) =
1

|J(η)|

 yb (η),η −yb (η)

−xb (η),η xb (η)

 (3.37)

According to equation (3.35) the determinant of the matrix J(η) , |J(η)| is

|J(η)|= xb (η)yb (η),η − xb (η),η yb (η) (3.38)

Expanding equation (3.36) yields

∂

∂x
=

1
|J(η)|

(
yb (η),η

∂

∂ξ
− 1

ξ
yb (η)

∂

∂η

)
, (3.39a)

∂

∂y
=

1
|J(η)|

(
−xb (η),η

∂

∂ξ
+

1
ξ

xb (η)
∂

∂ξ

)
. (3.39b)

As shown in figure 3.9c the position vector r is defined with the help of the infin-

itesimal area dΩ in scaled boundary coordinates. The position vector r can be written as
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r = x(ξ ,η) i+ y(ξ ,η) j. (3.40)

An infinitesimal area dΩ shown in figure 3.9c is formed by the two vectors

r,ξ = x(ξ ,η),ξ i+ y(ξ ,η),ξ j, (3.41a)

r,η = x(ξ ,η),η i+ y(ξ ,η),η j. (3.41b)

Therefore dΩ can be obtained by the vector cross product

dΩ =
∣∣dr,ξ ×dr,η

∣∣ (3.42a)

dΩ =

∣∣∣∣∣∣∣∣∣∣


i j k

x(ξ ,η),ξ y(ξ ,η),ξ 0

x(ξ ,η),η y(ξ ,η),η 0


∣∣∣∣∣∣∣∣∣∣
dξ dη (3.42b)

dΩ =

∣∣∣∣∣∣∣
x(ξ ,η),ξ y(ξ ,η),ξ

x(ξ ,η),η y(ξ ,η),η

∣∣∣∣∣∣∣dξ dη . (3.42c)

By substituting from equation (3.35), dΩ can be written as

dΩ = ξ |J(η)|dξ dη (3.43)

An infinitesimal change in length dΓ in the circumferential direction can be obtained

by ∆Γ which stands for the magnitude of r,η in equation (3.41b). Therefore

dΓ = ∆Γdη , (3.44)

where,

∆Γ =

√(
x(ξ ,η),η

)2
+
(

y(ξ ,η),η

)2
. (3.45)
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Equation (3.44) can now be expanded as

dΓ =
√

xb (η)2
,η + yb (η)2

,ηdη . (3.46)

3.4.2 Governing equations of linear elasticity in scaled boundary co-

ordinates

In this section, the governing equations of linear elasticity stated in section 3.3 are trans-

formed into scaled boundary coordinates, and the SBFEM approximation of the displace-

ment field is introduced.

The displacement field u(ξ ,η) is represented semi-analytically in the SBFEM formu-

lation. The displacement functions u(ξ ) provides an analytical description of the variation

in displacement along a radial line that extends from the scaling centre through to a node

on the boundary. Across these radial lines, the shape functions N(η) interpolate the dis-

placement functions piece-wisely in the η-direction using any displacement based shape

functions, such as the Gauss-Lobatto-Legendre shape functions. The scaled boundary

approximation of the displacement field is given by

u(ξ ,η) = Nu(η)u(ξ ), (3.47)

where

Nu(η) =

 N1(η) 0 N2(η) 0 ... 0 NM(η) 0

0 N1(η) 0 N2(η) 0 ... 0 NM(η)

 . (3.48)

Ni(η) are the nodal shape functions defined in equation (3.30). These same shape func-

tions apply when interpolating over any lines with a constant radial coordinate ξ .

The linear differential operator given in equation (3.20) as a function of ξ and η can

be produced by substituting expressions for ∂

∂x and ∂

∂y from equations (3.39a) and (3.39b),
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respectively.

L =
1

|J(η)|


yb (η),η

∂

∂ξ
− 1

ξ
yb (η) ∂

∂η

−xb (η),η
∂

∂ξ
+ 1

ξ
xb (η) ∂

∂ξ

−xb (η),η
∂

∂ξ
+ 1

ξ
xb (η) ∂

∂ξ
yb (η),η

∂

∂ξ
− 1

ξ
yb (η) ∂

∂η

 . (3.49)

Equation (3.49) can be written concisely as

L = b1 (η)
∂

∂ξ
+

1
ξ

b2 (η)
∂

∂η
, (3.50)

where, b1 and b2 are

b1 (η) =
1

|J(η)|


yb (η),η 0

0 −xb (η),η

−xb (η),η yb (η),η

 , (3.51a)

b2 (η) =
1

|J(η)|


−yb (η) 0

0 xb (η)

xb (η) −yb (η)

 . (3.51b)

The matrices b1 and b2 depend only on the geometry of the boundary and are related by

the identity

(|J(η)|b2 (η)),η =−|J(η)|b1 (η) . (3.52)

The differential operator L enables transformation of the the governing equation in elasto-

statics given in equation (3.27) and also the strain-displacement relationship in equation

(3.21). Analogous to the expression in equation (3.21), the strain field in scaled boundary

coordinates is defined as

ε(ξ ,η) = Lu(ξ ,η), (3.53)

where L is the linear differential operator in equation (3.49) and u(ξ ,η) is the displace-
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ment field given in equation (3.47). Therefore ε(ξ ,η) can be expanded as

ε(ξ ,η) = b1 (η)
∂

∂ξ
u(ξ ,η)+

1
ξ

b2 (η)
∂

∂η
u(ξ ,η), (3.54a)

ε(ξ ,η) = B1 (η)u(ξ ),ξ +
1
ξ

B2 (η)u(ξ ), (3.54b)

where B1 (η) and B2 (η) are the strain-displacement matrices

B1 (η)= b1(η)Nu (η) , (3.55a)

B2 (η)= b2(η)Nu (η),η . (3.55b)

Similarly with reference to equation (3.22), and using the strain-displacement matrices

above the stress field can be written as

σ(ξ ,η) = Dε(ξ ,η), (3.56a)

σ(ξ ,η) = D
(

B1(η)u(ξ ),ξ +
1
ξ

B2(η)u(ξ )
)
. (3.56b)

Therefore stresses and strains are related by the constitutive matrix D in equation (3.22)

and equation (3.56a), and are independent of the coordinate transformation of the geo-

metry.

3.4.3 2D derivation of the scaled boundary finite element equation

based on the principle of virtual work

The D’Alembert’s form of the principle of virtual work (also known as the principle of

virtual displacements) is used in applying the virtual work method to derive the SBFEM

equations in 2D. The method in elastostatics is applied to each subdomain in the following

form

Πε −Πt−Πb = 0, (3.57)
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where Πε represent the internal virtual energy, Πt external work done by the boundary

tractions, and Πb is the external virtual work done by the body loads. These terms can be

expanded as

Πε =

ˆ
Ω

δε
T
σdΩ, (3.58a)

Πb =

ˆ
Ω

δuTbdΩ, (3.58b)

Πt =

ˆ
Γ

δuTtdΓ, (3.58c)

where δε is the virtual strain field, δu is the virtual displacement field, σ is the stress

field, and t and b are surface tractions and body loads respectively. Consistent with the

previous section, dΓ is an infinitesimal line on the boundary and dΩ is an infinitesimal

area in the domain. After incorporation of the expanded forms in equations (3.58a-3.58c),

(3.57) transforms to

ˆ
Ω

δε
T
σdΩ−

ˆ
Ω

δuTbdΩ−
ˆ

Γ

δuTtdΓ = 0. (3.59)

With reference to equation (3.47) the virtual displacement field δu(ξ ,η) is introduced

as

δu(ξ ,η) = Nu(η)δu(ξ ), (3.60)

where δu(ξ ) is the vector of virtual radial displacement functions. By substituting the vir-

tual displacement field in equation (3.60) into the strain-displacement relationship equa-

tion (3.54b) the corresponding virtual strain field is obtained as

δε(ξ ,η) = B1(η)δu(ξ ),ξ +
1
ξ

B2(η)δu(ξ ). (3.61)

3.4.3.1 Strain energy (Πε)

Equation (3.58a) can be expanded by appropriately substituting for δε , σ , and dΩ from

equations (3.61), (3.56b), and (3.43), respectively. The expanded full form of Πε is there-
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fore

Πε =

ˆ 1

0
δuT(ξ ),ξ

ˆ 1

−1
BT

1 (η)DB1(η)u(ξ ),ξ |J(η)|ξ dηdξ︸ ︷︷ ︸
O1

+

ˆ 1

0
δuT(ξ ),ξ

ˆ 1

−1
BT

1 (η)DB2(η)u(ξ ) |J(η)|dηdξ︸ ︷︷ ︸
O2

+

ˆ 1

0
δuT(ξ )

ˆ 1

−1
BT

2 (η)DB1(η)u(ξ ),ξ |J(η)|dηdξ︸ ︷︷ ︸
O3

+

ˆ 1

0
δuT(ξ )

ˆ 1

−1
BT

2 (η)DB2(η)u(ξ ) |J(η)| 1
ξ

dηdξ︸ ︷︷ ︸
O4

(3.62)

Since the integral with respect to ξ can be performed independently to the integral in η ,

the coefficient matrices E0,E1 and E2 for each line element is formed as

E0 =

ˆ 1

−1
BT

1 (η)DB1(η) |J|dη , (3.63a)

E1 =

ˆ 1

−1
BT

2 (η)DB1(η) |J|dη , (3.63b)

E2 =

ˆ 1

−1
BT

2 (η)DB2(η) |J|dη , (3.63c)

by grouping the integration with respect to η results. O1 and O2 containing δu(ξ ),ξ in

equation (3.62) are integrated by parts with respect to ξ as follows

O1 =

ˆ 1

0
δuT(ξ ),ξ E0ξ u(ξ ),ξ dξ

O1 =δuT(ξ )E0ξ u(ξ ),ξ |ξ=1 −
ˆ 1

0
δuT(ξ )E0

(
u(ξ ),ξ +ξ u(ξ ),ξ ξ

)
dξ

O1 =δuT
b E0u(ξ ),ξ |ξ=1 −

ˆ 1

0
δuT(ξ )E0

(
u(ξ ),ξ +ξ u(ξ ),ξ ξ

)
dξ , (3.64a)
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O2 =

ˆ 1

0
δuT(ξ ),ξ ET

1 u(ξ )dξ

O2 =δuT(ξ )ET
1 u(ξ ) |ξ=1 −

ˆ 1

0
δuT(ξ )ET

1 u(ξ ),ξ dξ

O2 =δuT
b ET

1 ub−
ˆ 1

0
δuT(ξ )ET

1 u(ξ ),ξ dξ . (3.64b)

O3 and O4 remain unchanged as they do not contain the term δu(ξ ),ξ . Therefore substi-

tuting E1 and E2 respectively to parts O3 and O4 in equation (3.62), yields

O3 =

ˆ 1

0
δuT(ξ )E1u(ξ ),ξ dξ , (3.65a)

O4 =

ˆ 1

0
δuT(ξ )E2

1
ξ

u(ξ )dξ . (3.65b)

Substituting the results for O1-O4 in equation (3.62) for the total strain energy, provides

Πε = δuT
b
(
E0u(ξ ),ξ |ξ=1 +ET

1 ub
)

...−
ˆ 1

0
δuT(ξ )

(
E0ξ u(ξ ),ξ ξ +(E0 +ET

1 −E1)u(ξ ),ξ −E2
1
ξ

u(ξ )
)

dξ (3.66)

3.4.3.2 Work done by applied forces (Πb and Πt)

Work done by applied forces are given in equations (3.58b) and (3.58c).

Equations (3.58b) represent the virtual work done by the applied tractions on the

boundary, where ξ = 1, which transforms virtual displacement field in equation (3.60)

to N(η)δub. Therefore

Πt =δuT
b

ˆ 1

−1
NT

u (η)t(η)dη , (3.67a)

Πt =δuT
b Ft, (3.67b)

where Ft =
´ 1
−1 NT

u (η) t(η)dη is the equivalent nodal forces from tractions.
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Equation (3.58c) is a function of (ξ ,η) and represents the virtual work from body

loads as

Πb =

ˆ 1

0
δuT (ξ )

ˆ 1

−1
NT

u (η)b(ξ ,η) |J(η)|ξ dηdξ , (3.68a)

Πb =

ˆ 1

0
δuT (ξ )ξ Fb (ξ )dξ , (3.68b)

where Fb =
´ 1
−1 NT

u (η)b(ξ ,η) |J(η)|dη are the equivalent nodal loads for the body

loads.

Substituting equations (3.66), (3.67b) and (3.68b) in the initial virtual work expression

in equation (3.57) reveals

δuT
b
(
E0u(ξ ),ξ |ξ=1 +ET

1 ub−Ft
)
−
ˆ 1

0
δuT(ξ )(E0ξ u(ξ ),ξ ξ

...+(E0 +ET
1 −E1)u(ξ ),ξ +

1
ξ

E2u(ξ )−ξ Fb(ξ ))dξ = 0. (3.69)

For the virtual work statement given in equation (3.69) to hold true the following two

conditions must be met

δuT
b
(
E0u(ξ ),ξ |ξ=1 +ET

1 ub−Ft
)
= 0, (3.70)

and

ˆ 1

0
δuT(ξ )(E0ξ u(ξ ),ξ ξ +(E0 +ET

1 −E1)u(ξ ),ξ

...+E2
1
ξ

u(ξ )−ξ Fb(ξ ))dξ = 0. (3.71)

Equation (3.70) above provides the nodal force-displacement relationship. Regroup-

ing the two conditions in equations (3.70) and (3.71) produces the following separate

conditions that has to be met.
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Condition 1:

ˆ 1

0
δuT(ξ )

(
E0ξ u(ξ ),ξ ξ +(E0 +ET

1 −E1)u(ξ ),ξ −E2
1
ξ

u(ξ )
)

dξ = 0 (3.72)

Condition 2:

δuT
b
(
E0u(ξ ),ξ |ξ=1 +ET

1 ub−Ft
)
−
ˆ 1

0
δuT(ξ )(ξ Fb(ξ ))dξ = 0 (3.73)

Considering the arbitrariness of the virtual displacement δu(ξ ) equation (3.73) trans-

forms to the produce a homogeneous second order partial differential equation.

E0ξ
2u(ξ ),ξ ξ +(E0 +ET

1 −E1)ξ u(ξ ),ξ −E2u(ξ )= 0 (3.74)

The is termed the scaled boundary finite element equation in displacement in statics.

To satisfy the conditions set in equations (3.72) and (3.73), the scaled boundary finite

element equation in displacement (equation (3.74)) is first solved for the displacement

functions u(ξ ).

3.4.4 Solution of the scaled boundary finite element equation in dis-

placement

The second order homogeneous differential equation in u(ξ ) obtained in equation (3.74)

is first solved by transforming the equation to a first order linear differential equations by

treating u(ξ ),ξ as an independent variable.

To accomplish this task, first, the internal force vector q(ξ ) is introduced as

q(ξ ) = E0ξ u(ξ ),ξ +ET
1 u(ξ ) . (3.75)

q(ξ ) represents the force-displacement relationship along the radial lines connecting the

scaling centre and the nodes on the boundary. Taking the first derivative of equation (3.75)
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gives

q(ξ ),ξ = E0
(
ξ u(ξ ),ξ ξ +u(ξ ),ξ

)
+ET

1 u(ξ ),ξ , (3.76a)

q(ξ ),ξ = ξ E0u(ξ ),ξ ξ +
(
ET

1 +E0
)

u(ξ ),ξ . (3.76b)

Rearranging equation (3.76b) produces

E0ξ u(ξ ),ξ ξ = q(ξ ),ξ −
(
ET

1 +E0
)

u(ξ ),ξ . (3.77)

Similarly, equation (3.75) can be rearranged as

ξ u(ξ ),ξ =−E−1
0 ET

1 u(ξ )+E−1
0 q(ξ ). (3.78)

Substituting equation (3.77) into equation (3.74), yields

ξ q(ξ ),ξ = E1ξ u(ξ ),ξ +E2u(ξ ). (3.79)

Substituting equation (3.78) into equation (3.79) results in

ξ q(ξ ),ξ =
(
−E1E−1

0 ET
1 +E2

)
u(ξ )+E1E−1

0 q(ξ ). (3.80)

Now by using equations (3.78), (3.80) and (3.74) is transformed into the first-order

ordinary differential equation of the form of

ξ

 u(ξ )

q(ξ )


,ξ

=

 −E−1
0 ET

1 E−1
0

−E1E−1
0 ET

1 +E2 E1E
−1

0


 u(ξ )

q(ξ )

 . (3.81)

Equation (3.81) can be converted to a first order ordinary differential equation as

ξ X(ξ ),ξ =−ZX(ξ ) , (3.82)
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which can be solved by either eigenvalue or Schur decomposition technique. The Hamilto-

nian matrix Z in the equation takes the form of

Z =

 −E−1
0 ET

1 E−1
0

−E1E−1
0 ET

1 +E2 E1E
−1

0

 . (3.83)

Z contains eigenvalues pairs of (−λ ,λ ) . Also the introduced vector X(ξ ) is in the form

of

X(ξ ) =

 u(ξ )

q(ξ )

 . (3.84)

In the thesis, equation (3.82) is solved by the Schur decomposition technique as the

eigenvalue method may sometimes produce eigenvectors dependent of each other.

3.4.4.1 Schur decomposition

The Schur decomposition is an intermediate step within the QR algorithm for computing

eigenvalues and eigenvectors. The method does not suffer from the numerical pitfalls

inherent in computing eigenvectors associated with multiple or near-multiple eigenvalues.

In the Schur decomposition process matrix Z is transformed into a real Schur matrix,

S as

VTZV = S. (3.85)

V is a real orthogonal transformation matrix such that VTV = I. S is a quasi-upper trian-

gular matrix consisting of 2× 2 blocks on the diagonal, corresponding to complex con-

jugate eigenvalues, or 1×1 blocks corresponding to real eigenvalues.

3.4.4.2 Block diagonalisation of S

To introduce boundary conditions, the Schur decomposition, equation (3.85), is first re-

ordered. Along the diagonal of the Schur matrix S, Sii which correspond to the eigenval-

118



ues λ of Z, are sorted in ascending order of their real parts as

VTZV = S =

 Sn ♦

Sp

 . (3.86)

Sn and Sp are two sub-matrices of equal size partitioned in S. The eigenvalues occur in

pairs of (−λ ,λ ), therefore the diagonal entries in Sn are negative and are positive in Sp;

♦ stands for a real matrix.

Similarly, the orthogonal matrix V is partitioned into equal sized sub-matrices as

V =

 V11 V12

V21 V22

 . (3.87)

An upper-triangular matrix

Y =

 I Y12

0 I

 , (3.88)

is introduced for to block diagonalise equation (3.86), where I are identity matrices. Y is

applied to the matrix V in the manner such that

Ψ = VY =

 V11 V11Y12 +V12

V21 V21Y12 +V22

=

 Ψ
(n)
u Ψ

(p)
u

Ψ
(n)
q Ψ

(p)
q

, (3.89)

where Ψ is an accumulated transformation matrix. Now using VY from equation (3.89)

in equation (3.86) yields

(VY)−1Z(VY) = Y−1SY =

 Sn ♦

Sp

 . (3.90)

Equation (3.90) becomes

ZΨ = ΨS. (3.91)
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Expanding equation (3.91), by substituting from equations (3.83) and (3.89) yields

 E−1
0 E

T

1 E−1
0

−E2 +E1E−1
0 E

T

1 −E1E
−1

0


 Ψ

(n)
u Ψ

(p)
u

Ψ
(n)
q Ψ

(p)
q


...=

 Ψ
(n)
u Ψ

(p)
u

Ψ
(n)
q Ψ

(p)
q


 Sn 0

0 Sp

 . (3.92)

It is noted that the block diagonalisation of S does not modify the diagonal blocks Sn

and Sp. Introducing the function X(ξ ) defined as

X(ξ ) = ΨW(ξ ) , (3.93)

for which the first derivative is

X(ξ ),ξ = ΨW(ξ ),ξ . (3.94)

Substituting equations (3.93) and (3.94) into equation (3.82), produces

ξ ΨW(ξ ),ξ =−ZΨW(ξ ) . (3.95)

Rearranging equation (3.95) gives

ξ W(ξ ),ξ =−Ψ
−1ZΨW(ξ ) . (3.96)

By comparing this with equation (3.91)

ξ W(ξ ),ξ =−SW(ξ ) , (3.97)
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where, S = Ψ−1ZΨ. Equation (3.97) has a solution of the form

W(ξ ) = ξ
−Sc. (3.98)

where c are the integration constants.

3.4.4.3 Solution for the displacement functions

The general solution of X(ξ ) in equation (3.82) in terms of the block diagonalised Schur

matrix obtained can be formed by substituting equation (3.98) into equation (3.93).

X(ξ )= Ψξ
−Sc. (3.99a)

Substituting equations 3.89 and 3.86 in equation 3.99a, gives

X(ξ ) =

 Ψ
(n)
u Ψ

(p)
u

Ψ
(n)
q Ψ

(p)
q

ξ

−

 Sn 0

0 Sp

 cn

cp

 . (3.99b)

Therefore the general solution for displacements and nodal forces is obtained from equa-

tion (3.99b) as

u(ξ ) = Ψ
(n)
u ξ

−Sncn +Ψ
(p)
u ξ

−Spcp (3.100a)

q(ξ ) = Ψ
(n)
q ξ

−Sncn +Ψ
(p)
q ξ

−Spcp (3.100b)

Eigenvalues with positive real parts are excluded to satisfy the finiteness of the solution

at ξ = 0. Therefore solution of equation (3.82) for the bounded domain is

u(ξ ) = Ψuξ
−Sncn, (3.101a)

q(ξ ) = Ψqξ
−Sncn, (3.101b)
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where, for convenience Schur vectors Ψ
(n)
u and Ψ

(n)
q are referred to as Ψu and Ψq, respect-

ively. On the boundary, u(ξ = 0) becomes the nodal displacements

ub = Ψucn. (3.102)

These nodal displacements on the boundary can then be used to evaluate the integration

constants cn as

cn = Ψ
−1
u ub. (3.103)

Substituting equation (3.103) into equation (3.101a) the relationship between the radial

displacement function u(ξ ) and the nodal displacements ub can be obtained as

u(ξ ) = Ψuξ
−SnΨ

−1
u ub. (3.104)

Substituting equation (3.101a) into equation (3.101b) produces the force-displacement

relationship along the radial lines

q(ξ ) = Ψqξ
−SnΨ

−1
u ub. (3.105)

On the boundary where ξ = 0, qb = q(ξ = 1) and ub =u(ξ = 1) represent the nodal

forces on the boundary and nodal displacements, respectively. Equation (3.105) is ex-

pressed as

qb = Ksub, (3.106)

where ΨqΨ−1
u are substituted by the static stiffness matrix Ks of the subdomain. There-

fore

Ks = ΨqΨ
−1
u . (3.107)
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3.4.4.4 Solution in elastostatics

Considering the second term of equation (3.73) and substituting u(ξ ) from equation

(3.104) produces

ˆ 1

0
δuT(ξ )(ξ Fb(ξ ))dξ =

ˆ 1

0

(
Ψuξ

−SnΨ
−1
u δub

)T
ξ Fb(ξ )dξ , (3.108a)

ˆ 1

0
δuT(ξ )(ξ Fb(ξ ))dξ = δuT

b

ˆ 1

0
Ψ
−T
u ξ

−ST
n+I

Ψ
T
u Fb(ξ )dξ . (3.108b)

Substituting equation (3.108b) into equation (3.73) and invoking the arbitrariness of δub

yields

E0u(ξ ),ξ |ξ=1 +ET
1 ub−Ft−

ˆ 1

0
Ψ
−T
u ξ

−ST
n+I

Ψ
T
u Fb(ξ )dξ = 0. (3.109)

Evaluating equation (3.75) at the boundary for the internal nodal force qb = q(ξ = 1)

gives

qb = E0u(ξ ),ξ |ξ=1 +ET
1 ub. (3.110)

Substituting equation (3.110) in equation (3.109) generates

qb = Ft +

ˆ 1

0
Ψ
−T
u ξ

−ST
n+I

Ψ
T
u Fb(ξ )dξ . (3.111)

This implies equilibrium is sought between internal nodal forces evaluated on the bound-

ary and the applied tractions and body loads calculated at the nodes.

Introducing Fbn as the equivalent nodal forces from body loads, then Fbn can be writ-

ten as

Fbn =

ˆ 1

0
Ψ
−T
u ξ

−ST
n+I

Ψ
T
u Fb(ξ )dξ . (3.112)
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Therefore equation (3.111) can condensed to

qb = Ft +Fbn. (3.113)

Substituting for qb from equation (3.106) gives

Ksub = FA. (3.114)

Assembling equation (3.114) for all subdomains leads to the global equation system

KGU = P, (3.115)

where KG is the global stiffness matrix, U is the nodal displacement vector and P is the

global load vector, respectively.

3.4.4.5 SBFEM Scaling Centre (SC) formulation

Equation (3.102) can also rewritten to calculate the strain at the scaling centre as

εsc(ξ ,η) =
m

∑
i=1

Ψεicn, (3.116)

where, m is the number of strain modes that yield to finite strains, and Ψεi are the strain

modes. Ψεi depend only on the geometry of the subdomain and can be written in its

expanded form as

Ψεi (ξ ,η) = (λiB1 (η)+B2 (η))ξ
λi−1

ϕ i. (3.117)

Equation (3.117) shows that, at the scaling centre, i.e. ξ = 1, all the strain modes with

λi 6= 1 vanish and only four strain modes with λi 6= 1 lead to a finite strain. Therefore to
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calculate the strain at the scaling centre for one subdomain

εsc =
4

∑
j=1

(λiB1 (η)+B2 (η))ϕ ici , (λi = 1), (3.118)

where ci and ϕ i are respectively the integration constants and modal displacements corres-

ponding to λi. It is worth noting that equation (3.118) can be considered for any element

belonging to one subdomain.

Consequently, the stresses at the scaling centre become

σ sc = Dεsc. (3.119)

3.5 Implicit damage formulation in SBFEM

If sufficient refinement is carried out in the DPZ, as an approximation the damage de-

gree can be assumed to be uniform in one subdomain. Substituting equation (3.1) into

equations (3.63a - 3.63c), we obtain

ED
0 = (1−ω)

ˆ 1

−1
BT

1 (η)DB1(η) |J|dη = (1−ω)E0 (3.120a)

ED
1 = (1−ω)

ˆ 1

−1
BT

2 (η)DB1(η) |J|dη = (1−ω)E1 (3.120b)

ED
2 = (1−ω)

ˆ 1

−1
BT

2 (η)DB2(η) |J|dη = (1−ω)E2 (3.120c)

where ED
0 ,E

D
1 and ED

2 are counterparts of the coefficient matrix with the damage variable

ω of one subdomain.

Substituting equations (3.120a-3.120c) into equation (3.74) and (3.75), a similar mat-
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rix as equation (3.83) can be obtained

ZD =

 −E−1
0 ET

1 (1−ω)−1 E−1
0

(1−ω)
(
−E1E−1

0 ET
1
)
+E2 E1E−1

0

 . (3.121)

Using the properties of matrix, it can be proven that

SD =

 Sn 0

0 Sp

 (3.122a)

VD =

 V11 (1−ω)−1V12

(1−ω)V21 V22

 (3.122b)

Substituting equation (3.122a-3.122b) into equation (3.107), the stiffness matrix with

damage is given as

KD = (1−ω)Ks (3.123)

It should be noted that equation (3.123) implies that, in each load step, the stiffness matrix

of each subdomain can be calculated from the original stiffness matrix of the subdomain

directly and the computational time for this function is negligible. Unchanged eigenvalues

[λ ] and modal displacements ϕ i also mean that the strain modes, i.e. equation (3.116),

keep the same during damage. In each load step, only the integration constant c should be

updated according to the displacement field by using equation (3.102) and subsequently

the stress and strain field by using equations (3.118) and (3.119) respectively.

Assembling the stiffness matrix of all subdomains leads to the non-linear global equa-

tion system

KU = P (3.124)

in which K is the global stiffness matrix with damage.

Equation (3.124) can be solved by means of implicit schemes, such as Newton-Raphson

(NR) method and arc-length method [498], or explicit schemes [486, 499]. However, an
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implicit scheme can provide more control to obtain better convergence compared to a

explicit scheme thus an implicit arc-length based scheme is adopted in this work.

3.6 Numerical solver

3.6.1 Modified Newton Raphson (m-NR) method

To maintain computational efficiency the m-NR method described in this work considers

the secant stiffness only at the beginning of a load step. Compared to the conventional full

NR method, this modified procedure reduces the computational burden on the requirement

for decomposing the stiffness matrix in every iteration. A graphical representation of the

method is as shown in figure 3.10.

Displacement

E
xt

er
na

l f
or

ce

fext
0

fext
i

fext
i+1

True equilibrium path
Numerical solution

Figure 3.10. Graphical representation of the initial secant stiffness based m-NR iteration
scheme.

In this discussion an “iteration” refers to a loop within the m-NR scheme and a “step”

refers to an overall increment in the applied force field.

The m-NR procedure adopted in this work is a total-incremental method. Therefore

in every iteration the total displacement increment within the step is calculated. This total

displacement is then used to increment the total strain and then the total stress increment

is calculated. Finally, the new stresses are computed by summing up the stresses at the

start of the load step and the total stress increment.
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To obtain a solution to equation (3.124) through an incremental iterative m-NR frame-

work, first a set of linearised N equations are formed as shown in equation (3.125).

Ki
∆an = Pi+1

ext −Pint,n (3.125)

where Ki is the damaged stiffness matrix corresponding to the ith load step, ∆a is the

nodal displacement increment corresponding to the nth incremental NR iteration, Pi+1
ext is

the external force vector at load step (i+1), and Pint,n is the internal force vector for the

nth incremental NR iteration. The vector ∆an is calculated by

∆an =
(
Ki)−1rn, (3.126)

where rn is the residual vector for the

rn = Pi+1
ext −Pint,n. (3.127)

From the incremental displacement vector ∆an the strain increment ∆εn is calculated.

Thereafter, using the stress-strain law, the stress increment ∆σn is calculated. The stresses

formed after the the nth incremental iteration can be therefore written as

σn = σ0 +∆σn, (3.128)

where σ0 relates to the stresses calculated at the beginning of the load step from last the

converged load step. The internal force vector Pint,n can be now calculated as

Pint,n =

ˆ

Ω

BT (ξ ,η)σn (ξ ,η)dΩ, (3.129)

where B is the scaled boundary strain-displacement matrix given by

B(ξ ,η) = Ψε (η)ξ
−Sn−I

Ψ
−1
u , (3.130)
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and strain mode Ψε is

Ψε =B1Ψ
−1
u [−Sn]+B2 (η)Ψu. (3.131)

The stresses σn is generally not in equilibrium with the external loads Pi+1
ext . The internal

and external force is checked by evaluating the norm of the residual load vector rn. If

rn does not meet a user defined tolerance limit (FTOL) a correction to the displacement

increment is implemented by dan+1 as

dan+1 =
(
Ki)−1rn, (3.132)

where ri
n is calculated as given in equation (3.127). The iterative procedure then proceeds

to the next iterative displacement increment by updating ∆an to ∆an+1

∆an+1 = ∆an +dan+1 (3.133)

This iterative process can be summarised as follows

rn = Pi+1
ext −Pint,n (3.134a)

dan+1 =
(
Ki)−1rn (3.134b)

∆an+1 = ∆an +dan+1 (3.134c)

∆εn+1 = ∆ε (∆an+1) (3.134d)

∆σn+1 = ∆σ (∆εn+1) (3.134e)

σn+1 = σ0 +∆σn+1 (3.134f)

Afterwords, Pi
int,n+1 is calculated. The process repeats until convergence is obtained for

the load step i.
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3.6.2 Arc-length method

The NR method discussed earlier has a limited radius of convergence. To enlarge the

radius of convergence, path-following techniques are used. Arc-length method is one of

the advanced solution techniques that belong to this category of techniques. The load

and the displacement control methods respectively keep the load and the displacement

constant during increments. However in the arc-length method, the load-factor at each

iteration is modified. This allows for the solution to follow a specified path until conver-

gence is achieved. To attain this flexibility in solution convergence, the arc-length method

treats the load increment λ as an additional unknown. The displacement solution space

now contains n+ 1 unknowns when augmented with this new introduction. Since there

are now n+ 1 unknowns and only n equations the system becomes indeterminate. The

additional equation is supplied by path-following constraint [451]

g(a0,λ0,∆a,∆λ ,∆l) = 0, (3.135)

where a0 is the nodal displacement at the beginning of a generic load increment, λ0 is the

value of load parameter, ∆a is the increment of nodal displacement, ∆λ is the increment

of load parameter, and ∆l is the path length increment that determines the size of the load

increment.

The new equilibrium state of the n+1 equations can be determined by simultaneously

solving  −r

g

=

 0

0

 , (3.136)

where r is the residual load vector. The standard NR procedure is adopted to solve equa-

tion (3.136). Therefore, to facilitate the NR process this non-linear system in equation
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(3.136) is first linearised to give

 Pint,n +
∂Pint

∂a dan+1-λnPi+1
ext −dλn+1Pi+1

ext

gn +
(

∂g
∂a

)T
dan+1 +

(
∂g
∂λ

)
dλn+1

=

 0

0

 . (3.137)

The solution thus yields for (a,λ ) at n+1 iteration

 K −Pi+1
ext,

hT s


 dan+1

dλn+1

=

 −rn

−gn

 . (3.138)

where, K is the damage incorporated secant stiffness matrix, and array h and the scalar s

defined as

h =
∂g
∂a

(3.139)

s =
∂g
∂λ

(3.140)

Equation (3.138) destroys the symmetry and the banded nature of the secant stiffness

matrix K. Therefore, Crisfield and Ramm [80,500] proposed a partitioned procedure that

leads to a two-stage solution procedure.

To complement this partitioned procedure the following two arrays are computed first.

daI
n+1 =

(
Ki)−1Pi+1

ext , (3.141)

daII
n+1 =

(
Ki)−1rn . (3.142)

Considering the first equation of equation (3.137), the new estimate for the displacement

increment can be written as

dan+1 = dλn+1daI
n+1 + daII

n+1 . (3.143)
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Also considering the second equation of equation (3.137), the new estimate for the load

increment is given by

dλn+1 =−
gn +hTdaII

n+1

s+hTdaI
n+1

. (3.144)

A widely used constraint function is the spherical arc-length constraint [80]

g = ∆aT
n+1∆an+1 +β

2
∆λ

2
n+1
(
Pi+1

ext
)T Pi+1

ext −∆l2, (3.145)

where β is a user-specified value. This parameter is related to the contributions that stem

from the displacement degrees of freedom and the load increment.

If after the first iteration the direction of the tangent normal is kept constant to the

hyperplane used to intersect the equilibrium path, equation (3.138) can be written as

∆aT
1 ∆an+1 +β

2
∆λ1∆λn+1

(
Pi+1

ext
)T Pi+1

ext −∆l2 = 0. (3.146)

Similarly, the preceding iteration can be written as

∆aT
1 ∆an +β

2
∆λ1∆λn

(
Pi+1

ext
)T Pi+1

ext −∆l2 = 0. (3.147)

By substituting equation (3.146) from equation (3.147), ∆l can be eliminated to get

∆aT
1 dan+1 +β

2
∆λ1dλn+1

(
Pi+1

ext
)T Pi+1

ext = 0. (3.148)

Substituting equation (3.148) in equation (3.144)

dλn+1 =−
∆aT

1 daII
n+1

∆aT
1 daI

n+1 +β 2∆λ1
(
Pi+1

ext
)T Pi+1

ext

. (3.149)

The arc-length incorporated m-NR is setup in such a way when convergence is found

to be difficult for a particular load step the arc-length is automatically halved and the

respective load step is repeated. To avoid excessive number of iterations, the maximum
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number of iterations is fixed. Numerical experience has shown it is optimal to maintain

this limit between 30-40 iterations.

The overall framework setup within the SBFE programme is a follows:

1. Pre-process and loop over all subdomains and store the information below in the

system memory:

(a) Compute the original stiffness matrix Ks for each subdomain using equation

(3.114);

(b) Initialize the equivalent strain ε̃ , internal variable κ and damage variable ω

at the scaling centre for each subdomain;

(c) Compute the weight matrix by using equations (3.14) and (3.15). It should

be noted that, considering the damage is assumed to be uniform, the area of

each subdomain and the distance between any two scaling centres are used to

compute the weight function; and

(d) Compute the strain modes of each subdomain by using equation (3.116).

2. For (i+1)th displacement step and nth NR iteration, loop over all subdomains:

(a) Assemble the damaged stiffness matrices (equation (3.123)) based on the dam-

age variables of previous step and the external load vector to obtain the global

equation system and solve it (equation (3.124));

(b) Compute the integration constants ci+1 according to the boundary conditions

of the present step by using equation (3.102) ;

(c) Compute the equivalent strain ε̃ by using equations (3.8), (3.9), (3.10) or

(3.13) considering the strain at the scaling centre of the present step;

(d) Modify ε̃ by non-local weight matrix;

(e) Update κ according to loading-unloading conditions, i.e. equation (3.3);

(f) Compute the damage variables ω according to the damage evolution law (equa-

tion (3.5), (3.6) or (3.7)) and save it for the next step;
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(g) Calculate σ i+1
sc,n using equation (3.119); and

(h) Compute internal force vector (Pint,n)

3. Check convergence,
∥∥Pi+1

ext −Pint,n
∥∥ ≤ FTOL, where Pi+1

ext and FTOL are the ex-

ternal force vector and a user defined force tolerance parameter, respectively.

(a) If converged; increment the load step and go to step 2(a).

(b) If not converged; move to arc-length m-NR iterations step 4 .

4. Arc-length incorporated m-NR.

(a) initialise the data for the loading step ∆a0 = 0.

(b) Solve the linear systems daI
n+1 =

(
Ki)−1Pi+1

ext and daII
n+1 =

(
Ki)−1rn .

(c) Compute dλn+1 via a constraint equation. Refer to equation (3.149).

(d) Compute ∆an+1 = ∆an +dλn+1daI
n+1 + daII

n+1 .

(e) Compute ∆εn+1 for each integration point ∆an+1→ ∆εn+1.

(f) Compute ∆σn+1 for each integration point ∆εn+1→ ∆σn+1.

(g) Add ∆σn+1 to σ0 for each integration point σn+1 = ∆σ0 +∆σn+1.

(h) Compute internal force vector (Pint,n+1).

5. Check convergence,
∥∥Pi+1

ext −Pint,n+1
∥∥≤ FTOL.

(a) If converged; increment the load step and go to step 2(a).

(b) If not converged and n < NMAX; repeat arc-length incorporated m-NR from

step 4(a), where NMAX is a user defined maximum number of arc-length

incorporated m-NR iterations.

(c) If not converged and n = NMAX; discard analysis step, halve the load step

length, and restart analysis from step 2(a).
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3.7 Numerical simulations

The first two numerical examples uniaxial tension test problem (section 3.7.1), and the

three point bending beam problem (section 3.7.2) compare outputs of the SC formulation

against the FGP formulation in SBFEM, with the FEM and against respective references

in literature. These two examples also investigate the behaviours of local and non-local

damage analysis formulations.

The focus then moves primarily towards the non-local damage analysis framework.

Therefore the L-shaped specimen (section 3.7.3) and 2D damage characterization in shear

band (section 3.7.4) do not investigate the damage localisation trends. However, the res-

ults compare the SC formulation to the FGP formulation in SBFEM, to the FEM solution,

and to published literature as before.

The in house finite element analysis is conducted with elements modelled as a stand-

ard bilinear quadrilateral element with 2×2 integration points. Whereas, for the SBFEM

analysis the polygon formulation is employed over each polygon. The polygon boundary

is discretised using 1D shape functions along the boundary to approximate the displace-

ment field.

3.7.1 Uniaxial tension test

This example is extracted from the MSc Thesis by Maravalalu [499] where non-local

damage models are considered for analysing the effects of impact loads on concrete. The

objective of this example is to demonstrate the localization effects of a local damage

model in uniaxial loading conditions and then in the latter part of the example the non-

local formulation is presented to exemplify its affect in regularization. The example also

compares the effectiveness of the SC formulation to the FGP formulation in SBFEM.

The dimensions of the specimen shown in figure 3.11 are selected as considered in the

reference [499]. The length of the member is 100 mm with depth equal to 10 mm in di-

mension . The cross sectional area of the specimen is assumed to be 10mm2. The shaded
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central element in figure 3.11 represent the imperfection introduced in the specimen.

100

10

Figure 3.11. Specimen dimensions (mm) used in the 2D local and non-local damage
analysis of a uniaxial tension test specimen. Shaded area represent the imperfection.

To implement the loading conditions the left side of the member is encastred and

pulled by a force P from the unrestrained edge as shown in figure 3.12.

P

A

Figure 3.12. Boundary conditions considered in the 2D local and non-local damage ana-
lysis of a uniaxial tension test specimen.

The modulus of elasticity for this problem is taken as 30 GPa and Poisson’s ratio is

considered to be 0.0, where plain strain conditions are assumed. The damage evaluation

law is considered as in equation (3.7) with α = 0.95 and β = 100. With reference to

equation (3.7) the member is modelled such that the central element has a weaker damage

initiation threshold (ε0) of 145×10−6 and the rest of the elements with ε0 = 150×10−6.

The 1D stress-strain variation for the weaker material with respect to the adopted material

and damage parameters is shown in figure 3.13.
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Figure 3.13. 1D element stress (GPa) vs strain profile considered in the 2D uniaxial
tension test specimen with respect to the softening law given in equation (3.7) for the
weak material with ε0 = 145×10−6.

The equivalent strain ε̃ is calculated according to the Mazar’s definition given in equa-

tion (3.9).

As mentioned earlier the primary objective of this problem is to demonstrate the mesh

sensitivity of local damage models and investigate the accuracy of the SC formulation

against the finite element formulation and the SBFE FGP formulation.

Each analysis is run using a force controlled m-NR method coupled with the arc length

algorithm. The initial load step is set to 0.001 kN.

3.7.1.1 Local formulation

Firstly, the local damage formulation is modelled considering three different meshes as

shown in figure 3.14. Mesh 1, 2 and 3 consist of 21, 51 and 81 elements, respectively.

The elements are equally distributed along the length of the model.
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(a) Mesh 1-21 Elements

(b) Mesh 2-51 Elements

(c) Mesh 3-81 Elements

Figure 3.14. Finite element meshes used in the local analysis of the 2D uniaxial tension
specimen.

The load-displacement results obtained for the finite element formulation is given in

figure 3.15.

-Reference coarse mesh
-21 elements
-Reference medium mesh 
-51 elements
-Reference fine mesh
-81 elements

0.025

0.02

0.015

0.01

0.005

00  0.07 0.08

P

U
0.01 0.02 0.03 0.04     0.060.05

Figure 3.15. Force (kN) vs displacement (mm) curve at node ‘A’ for the FEM-based local
damage analysis of the 2D uniaxial tension test specimen.

The results are compared against the reference solution modelled, with identical ma-

terial and damage parameters. The FEM force-displacement output obtained in figure

3.15 shows good agreement to that of the reference FEM solution.

With use of the same damage parameters and material properties the analysis is next

run using the SBFEM FGP formulation and the results are as produced in figure 3.16.

138



0.09     0.1

-Reference coarse mesh
-21 elements
-Reference medium mesh 
-51 elements
-Reference fine mesh
-81 elements

0.025

0.02

0.015

0.01

0.005

00  0.07     0.08

P

U
0.01     0.02     0.03     0.04     0.06     0.05     

Figure 3.16. Force (kN) vs displacement (mm) curve at node ‘A’ for the SBFEM-based
local damage analysis of the 2D uniaxial tension test specimen.

It is apparent the results obtained through the FGP formulation conforms well with

the reference output similar to the observations made for the finite element outputs.

The weak element in the three meshes in figure 3.14 is located the midpoint of the bar.

The localised strain in the weaker element increases as the meshes are refined since for

smaller elements the deformation is localized to a smaller width. Therefore figures 3.15

and 3.16 display varying force-displacement plots as the larger value of localized strains

leads to quicker damage evolution. Overall, the fracture energy dissipation reduces with

decrease in the mesh size. The strain at which damage initiates in the central element is

145×10−6. Therefore the force observed in the model at point ‘A’ can be calculated by

(E× ε×A)/2 and is equal to 0.02175 kN . The same value is attained in the analysis as

the maximum load capacity of the specimen, validating the formulation.

As a final comparison, the results of the computationally efficient SC formulations

are individually compared to the respective finite element and the FGP formulation. In

figure 3.17 the force vs displacement outputs for the SC formulation of the three meshes

are plotted against the outputs from the FEM and the FGP SBFEM formulation.
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(a) Mesh 1-21 elements
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(b) Mesh 1-51 elements
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(c) Mesh 3-81 elements

Figure 3.17. Force (kN) vs displacement (mm) output at node ‘A’ for the 2D uniaxial
tension test specimen in axial tension. The SC formulation is compared to the FEM and
the FGP formulation.

All three formulations produce comparatively similar outputs almost identical to each

other, thus validating the accuracy of the three approaches.

In numerical modelling the descending branches of the load-displacement curve makes

the underlying PDEs ill-posed. This in turn causes the loss of ellipticity of the governing

differential equations. Ill-posed boundary value problems problems can produce solu-

tions dependent on the given data. This effect can be seen in figures 3.15 and 3.16 where

decreasing mesh sizes produce steeper displacement profiles in the descending branch of
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the force-displacement plots in the post peak regime. Thus, when moving from a lower

number of elements to a higher number of elements (21 to 81) the reduction in the dis-

sipated fracture energy is shown in local damage evaluation schemes. The uniqueness

of the solutions are determined by the localised strains which limits the damage to the

initially damaged elements. These localisation effects bring about numerical convergence

issues with the steeper descending gradients. The worst concern however is the incorrect

description of the Damage Process Zone (DPZ) width, as it is dependent on the chosen

mesh size.

A simple and affective way to overcome mesh sensitivity and related ill-effects is to

adopt a non-local formulation.

3.7.1.2 Non-local formulation

In the non-local formulation the tension specimen shown in figure 3.12 is modelled using

4 different meshes as shown in figure 3.18. Mesh 2, 3, 4 and 5 consist of 51, 81,101 and

201 elements, respectively. Similar to the earlier local damage formulation the meshes

are obtained by equally distributing the elements along the length of the specimen.
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(a) Mesh 2 - 51 Elements

(b) Mesh 3 - 81 Elements

(c) Mesh 4 - 101 Elements

(d) Mesh 5 - 201 Elements

Figure 3.18. Finite element meshes used in the non-local analysis of the 2D uniaxial
tension specimen.

To obtain the regularized results independent of the mesh configuration the Gaussian

non-local averaging function given in equation (3.17) is used with the interaction radius

R set to 6 mm. It is necessary to adopt the interaction radius larger than the largest mesh

size. The material properties and the damage evolution are maintained from the local

formulation in section 3.7.1.1.

The results obtained through FEM and the SBFEM FGP formulation are given in

figures 3.19 and 3.20, respectively. The load-displacement outputs are recorded on the

unrestrained end as shown in figure 3.12.

142



0.025

0.02

0.015

0.01

0.005

00  0.07 0.08

P

U
0.01 0.02 0.03 0.04     0.060.05

-Reference converged re
-51 elements
-81 elements
-101 elements
-201 elements

Figure 3.19. Force (kN) vs displacement (mm) curve at node ‘A’ for the FEM-based
non-local damage analysis of the 2D uniaxial tension test specimen.

The regularisation of strains delivers mesh independent force-displacement outputs as

seen in figures 3.19 and 3.20. In order to obtain almost identical outputs irrespective of

the mesh size the strains and deformation in the continuum must also show converging

results irrespective of mesh size.

Figure 3.20. Force (kN) vs displacement (mm) curve at node ‘A’ for the SBFEM-based
non-local damage analysis of the 2D uniaxial tension test specimen.

A comparison of the non-local SC formulation alongside the FGP formulation and

finite element solution (see figure 3.21) shows that all three formulations yield comparat-

ively similar results.
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Figure 3.21. Force (kN) vs displacement (mm) output at node ‘A’ for the 2D non-local
damage response obtained for a test specimen in axial tension. The SC formulation is
compared to the FEM and the SBFE FGP formulation. The mesh considered consist of
201 elements.

As expected the force-displacement plots in figures 3.19 and 3.20 have nearly identical

post peak behaviour for all four mesh configurations. They converge as the element size

decreases, as the gradient of the strains are better captured with higher number of ele-

ments. Hence we can state that this model is mesh independent and has many advantages

in comparison with the mesh dependent local models. The mesh independent behaviour

is caused by the use of non-local equivalent strains in lieu of their local counterparts. The

weighted average formulation of local strains delays the strain concentration in critical

elements. This leads to a delay in strain accumulation when using the non-local models.

Theoretically, this delay is longer with larger non-local length scales as the influence of

the undamaged elements that exhibit unloading is greater.

The contour plots obtained in the simulation for horizontal displacement, x-directional

strain, x-directional stress, and for the damage progression are shown in figures 3.22-3.25.

These contours are captured at the peak load (0.02249 kN) when the unrestrained edge

displacement is 0.01538 mm and just after peak load (0.0191 kN) when displacement is

0.05139 mm, refer figure 3.20.

The horizontal displacement (ux) contour shown in figure 3.22a depict the linear in-

crease in the displacement field till the peak load is attained before any damage initiates

in the centrally located weak element. Thereon as seen in figure 3.22b the non-linear
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distribution in the displacement field is characteristic of the effects of post peak damage.

(a) Horizontal displacement (ux) con-

tour for mesh 5. The unrestrained edge

displacement is 0.01538 mm.

(b) Horizontal displacement (ux) con-

tour for mesh 5. The unrestrained edge

displacement is 0.05139 mm.

0.00000 0.01285 0.02569 0.03854 0.05139

Figure 3.22. Horizontal displacement (ux) contours obtained for the non-local damage
analysis of the 2D uniaxial tension test specimen. Units:mm. Results obtained for mesh
5 consisting of 201 elements.

The strain (εxx) contours shown in figure 3.23 follow a similar pattern to the displace-

ment field where uniform strain is observed in elements prior to the damage initiation

(figure 3.23a). After the initiation of damage, the central portion of the specimen shows

the higher strains observed in the weaker element, see figure 3.23b. In order to obtain

almost identical force-displacement outputs irrespective of the different mesh sizes the

strain localization width shown in figure 3.23b is constant for all 4 mesh configurations.

(a) Strain (εxx) contour for mesh 5.

The unrestrained edge displacement is

0.01538 mm.

(b) Strain (εxx) contour for mesh 5.

The unrestrained edge displacement is

0.05139 mm.

0.00015 0.00085 0.00155 0.00225 0.00295

Figure 3.23. Strain (εxx) contours obtained for the non-local damage analysis of the 2D
uniaxial tension test specimen. Results obtained for mesh 5 consisting of 201 elements.

The stress (σxx) contour shown in figure 3.24 depicts the softening behaviour ob-

served in the specimen. Moving from figure 3.24a to 3.24b damage growth occurs which

consequently reduce the stresses due to the stiffness degradation.
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(a) Stress (σxx) contour for mesh 5.

The unrestrained edge displacement is

0.01538 mm.

(b) Stress (σxx) contour for mesh 5.

The unrestrained edge displacement is

0.05139 mm.

0.00380 0.00398 0.00415 0.00432 0.00450

Figure 3.24. Stress (σxx) contours obtained for the non-local damage analysis of the 2D
uniaxial tension test specimen. Units:MPa. Results obtained for mesh 5 consisting of 201
elements.

Damage develops in the specimen when the the strain in the predefined weak element

exceeds the tensile strain at peak load. The damage contours shown in figure 3.25 de-

pict the damage developed at an instance after the peak load where the effects of damage

is regularised over the central portion of the specimen. This damage profile is consist-

ent between all 4 meshes in order to produce the mesh independent force-displacement

output. This guarantees the fracture energy to be same irrespective of the mesh size.

(a) Damage (ω) contour for mesh 5.

The unrestrained edge displacement is

0.01538 mm.

(b) Damage (ω) contour for mesh 5.

The unrestrained edge displacement is

0.05139 mm.

0.0000 0.2500 0.5000 0.7500 1.0000

Figure 3.25. Damage (ω) contours obtained for the non-local damage analysis of the 2D
uniaxial tension test specimen. Results obtained for mesh 5 consisting of 201 elements.

3.7.2 Three point bending beam

The biaxial bending beam analysis presented in this section is extracted from [501] and

[495]. With reference to these publications the model dimensions are considered as

given in figure 3.27. These dimensions also correspond to the experiments performed
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by Kormeling and Reinhardt [502] and the numerical simulations conducted by Grassl et

al. [503] with a plastic damage model. .

450

100
5

50

Figure 3.26. Specimen dimensions (mm) for the 2D biaxial bending test.

The specimen dimensions are selected as given in figure 3.26. The length of the beam

is 450 mm with a depth and breadth of 100 mm. A central notch of 5 mm is modelled

at the centre of the beam. The depth of the notch extends to half way up the beam with

50 mm in dimension. The loading setup replicates a three point bending mechanism as

shown in figure 3.27. The bottom left corner of the beam is pinned and thus is restrained

in movement in x and y directions. The bottom right corner of the beam is provided with a

roller support and thereby is restrained in movement in y direction. A central concentrated

load P is applied at the centre of the beam to analyse the structural response.

P
A

Figure 3.27. Loading and boundary conditions for the 2D biaxial bending test.

The mesh geometry is in accordance to the references mentioned, with a finer mesh

around the notch and a coarse mesh away from the notch, refer figure 3.28. In this case

three meshes are used with relative small size subdomains, located in a narrow band

around the vertical axis of symmetry, where the strains are expected to localise (refer to

figure 3.28a-3.28c). The smallest subdomains in mesh 1, mesh 2 and mesh 3 are 5 mm,
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1.667 mm and 0.556 mm, respectively.

(a) (b) (c)

Figure 3.28. Mesh configurations for the 2D biaxial bending test. Zooming the section of
the mesh marked in grey show the variation between three meshes. (a) Mesh 1-smallest
element size 5 mm, (b) mesh 2-smallest element size 1.667 mm, and (c) mesh 3-smallest
element size 0.5556 mm.

Similar to the uniaxial tension problem discussed in section 3.7.1 the analysis is run

using a force controlled m-NR method coupled with the arc length method. Each analysis

is run using a force controlled algorithm. The initial load step is set to 0.01 kN.

Here too the objective of the analysis is to demonstrate the mesh sensitivity of local

damage models and also to explore the accuracy of the SC formulation to that of the finite

element formulation and the SBFE FGP formulation.

3.7.2.1 Local formulation

The material properties; modulus of elasticity and Poisson’s ratio are taken as 20 GPa and

0.2, respectively. An exponential damage model given in equation (3.6) is considered for

the softening law with ε0 set to 120×10−6 and strain at which material is fully damaged

ε f set to 7.0×10−3. The modified von Mises definition given in equation (3.10) is adopted

to calculate the equivalent strain parameter with k set to 10 to emulate concrete material

properties.
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Figure 3.29. 1D element stress (GPa) vs strain profile considered in the 2D local damage
simulation of the three point bending beam test with respect to the softening law given in
equation (3.6).

With the use of mesh 1 provided in figure 3.28, results are obtained for force-displacement

variation at point A in figure 3.26 for both FEM and SBFEM SC formulation (refer figure

3.30). The simulation attains its peak carrying capacity at a displacement value of 0.097

mm.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.70

-Reference coarse mesh
-FEM mesh 1
-SBFEM mesh 1
-Experiment upper bound
-Experiment lower bound

1.0

1.5

0.5

U

P

2.0

Figure 3.30. Force (kN) vs displacement (mm) curve for the local damage simulation of
the three point bending beam test. Mesh 1 considered.

With reference to figure 3.30 there is good agreement in the analysis run through FEM

and SBFEM with the given reference result. It is also evident that the simulated peak load

is within the experimental bounds and the load-displacement curve favourably agrees with

experimental data.

Next an attempt is made to show the variation of the result with respect to varying

mesh configuration. Therefore as shown in figure 3.28 three meshes are considered with

maximum mesh size of 5 mm and a minimum mesh size of 0.5556 mm. The load-
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displacement variation at point A in figure 3.26 for both FEM and SBFEM FGP for-

mulation are given in figures 3.31 and 3.32, respectively).
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Figure 3.31. Force (kN) vs displacement (mm) curve for the FEM-based local damage
simulation of the three point bending beam test compared with the reference [501].

Results for both FEM and SBFEM are verified by comparing with the outputs presen-

ted in [501], the results are of satisfactory agreement.
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-Reference mesh 2
-Reference mesh 3
-SBFEM full GP formulation mesh 1
-SBFEM full GP formulation mesh 2
-SBFEM full GP formulation mesh 3

Figure 3.32. Force (kN) vs displacement (mm) curve for the SBFEM-based local damage
simulation of the three point bending beam test compared with the reference [501].

In figure 3.33 the load-displacement outputs for the SC formulation of the three meshes

are plotted against the outputs from the FEM and the FGP SBFEM formulation. It can be

observed that all three formulations produce very similar plots.
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(a) Mesh 1.
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(b) Mesh 2.
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(c) Mesh 3.

Figure 3.33. Force (kN) vs displacement (mm) output for the 2D local response of the
three point bending beam. The SC formulation is compared to the FEM and the SBFE
FGP formulation.

With reference to figures 3.31 and 3.32, although the material and damage parameters

E, ν , ε0, ε f and k are kept constant between the three different analysis, as the mesh

is refined, the results show considerable variations. The finer element sizes in the DPZ

around the axis of symmetry localise damage to the refined elements creating a disparity

between the load-displacement diagrams between the respective meshes. The dependence

of the total dissipated energy on mesh refinement is unacceptable. Therefore the following

section explores the effect of regularisation to negate the ill effects of damage localization.
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3.7.2.2 Non-local formulation

The three different meshes shown in figure 3.28 are rerun in the non-local analysis scheme

with an equivalent strain based integral-type isotropic damage model. Here, the local

strain variables are substituted by their non-local counterpart obtained by a weighted av-

erage technique.

With respect to the exponential damage model given in equation (3.6), ε0 is set to

90× 10−6 and strain at which material is fully damaged ε f is set to 7.0× 10−3. The

1D element stress-strain behaviour with respect to these parameters is as shown in figure

3.34.
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Figure 3.34. 1D element stress (GPa) vs strain profile considered in the 2D non-local
damage simulation of the three point bending beam test with respect to the softening law
given in equation (3.6).

To calculate the equivalent strain parameter the modified von Mises definition in equa-

tion (3.10) is used with k = 10 . Similar to what is followed in the reference [477] the

non-local averaging function given in equation (3.18) is considered with the interaction

radius R taken as 4 mm. It is noted that these model parameters aforementioned should be

considered as material properties and can be calibrated by experiment [504]. Considering

that this section aims at verifying the mesh independence of the proposed method, these

parameters are chosen same as those adopted in the reference [477] for finite element

modelling.

The load-displacement output for the FEM-based non-local damage analysis is given

in figure 3.35 and the SBFEM-based non-local damage analysis results are shown in figure
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3.36. With reference to figure 3.26 the force and the displacement are recorded at point

‘A’.
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Figure 3.35. Force (kN) vs displacement (mm) curve for the FEM-based non-local dam-
age analysis of the three point bending beam compared with the reference [501].

As the meshes are refined, the finest two meshes produce load-displacement curves

with very close agreement to one another thus indicating the solution is converging upon

mesh refinement (refer figures 3.35 and 3.36). This convergence eradicates the patholo-

gical sensitivity to mesh size observed in the local simulation in section 3.7.2.1.
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Figure 3.36. Force (kN) vs displacement (mm) curve for the SBFEM-based FGP formu-
lation for the non-local damage analysis of the three point bending beam compared with
the reference [501].

When observing the post peak behaviour of the three meshes it is also quite noticeable

that the coarse mesh is above the converged result. This is expected due to the fact that

the element size of 5 mm in the coarse mesh is larger than the interaction radius of 4

mm and resulting to a localized process zone that cannot be de-regularised with sufficient

accuracy.

Overall figures 3.35 and 3.36 show good agreement with the reference solution. The
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results obtained from the SBFEM SC formulation are then compared alongside the FGP

formulation and the finite element formulation. As shown in figure 3.37 , all three formu-

lations yield comparatively similar results.
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Figure 3.37. Force (kN) vs displacement (mm) output for the 2D non-local damage re-
sponse obtained for the three point bending beam. The SBFE SC formulation is compared
to the FEM and the FGP formulation. Mesh 3 considered for the analysis.

The contour plots given in figure 3.38 correspond to the vertical displacement ob-

served at peak load (1.3 kN) when the recorded vertical displacement reads 0.1187 mm

and just after peak load (0.91 kN) when displacement is 0.214 mm.

(a) Vertical displacement contour for

mesh 3 at mid span displacement of

0.1187 mm.

(b) Vertical displacement contour for

mesh 3 at mid span displacement of 0.214

mm.

-0.24000 -0.18000 -0.12000 -0.06000 0.00000

Figure 3.38. Vertical displacement contours for the 2D non-local damage analysis of the
three point bending beam. Units:mm. Results obtained for mesh 3.

The stress contours parallel to the beam axis (σx) are shown in figure 3.39 for peak

load of P = 1.3 kN and just after peak load when P = 0.91 kN. In the two instances it is

apparent the highly stressed front propagates from the notch to the top edge of the beam,

leaving behind elements that unload elastically as their stiffness has degraded to the limit
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of maximum damage.

(a) Stress (σx) contour for mesh 3 at mid

span displacement of 0.1187 mm.

(b) Stress (σx) for mesh 3 at mid span

displacement of 0.214 mm.

-0.01400 -0.00995 -0.00590 -0.00185 0.00220

Figure 3.39. Stress (σx) contours for 2D non-local damage analysis of the three point
bending beam. Units:MPa. Results obtained for mesh 3.

The damage contours are produced at peak load and at the end of the simulation

when vertical displacement is 0.563 mm. Since damage is documented at the end of

the simulation the damage profile can be clearly observed (refer figure 3.40).

(a) Damage contour for mesh 3 at mid

span displacement of 0.1187 mm.

(b) Damage contour for mesh 3 at mid

span displacement of 0.563 mm.

0.0000 0.2500 0.5000 0.7500 1.0000

Figure 3.40. Damage (ω) contours for 2D non-local damage analysis of the three point
bending beam. Results obtained for mesh 3.

The dark blue regions in figure 3.40 indicate regions with no damage. The evolution

of the DPZ simulated on the fine mesh is shown in figure 3.40. It can be observed that

at the beginning of loading, damage appears around the tip of notch owing to the high

strain singularity. With the applied displacement increasing, the DPZ extends towards

the top face of the beam. The damage band keeps a certain thickness while the band of

increasing strains becomes progressively thinner so that a macroscopic stress-free crack

can be observed as the beam completely fails. Compared to the local formulation the DPZ

does not show any mesh-induced directional bias.
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As exemplified through the two numerical examples 3.7.1 and 3.7.2, a non-local for-

mulation overcomes the pathological strain localisation issues and thus the non-local reg-

ularization method is the preferred choice over local analysis.

3.7.3 L-shaped specimen

As the third example an L-shaped specimen shown in figure 3.41 is analysed with use of

a non-local damage model. The objective of this example is to compare and validate the

SBFEM FGP and the SC formulation. For this purpose the SBFEM integral-type non-

local damage formulation is compared to the outputs of the in house FEM formulation

and the reference outputs.

The dimensions of the model are as shown in figure 3.41a. The overall height and

the width of the plate is 500 mm. A 250 mm square section of the plate is removed from

the lower left quadrant to obtain the L-shaped geometry considered in the analysis. The

thickness of the model is set to 200 mm as previously simulated by [482, 505, 506].

250 250

250

250

P,U

P,U

(a) (b)

A

Figure 3.41. (a) Geometry and boundary conditions, and (b) the finite element mesh
used in the 2D non-local damage analysis of a L-shaped specimen adopted similar to the
reference [505].

Two rigid end plates are modelled in the left and the bottom edges to assist in the

application of loads and avoid any undesirable damage around the loading points. These
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plates are considered to have 1000 times larger modulus of elasticity than the rest of

the elements. The free rigid body rotation of the plate is negated by using displacement

boundary conditions. The diagonal failure zone resulting from the setup requires mesh

refinements in that direction, thus the mesh shown in figure 3.41b has a maximum element

size of 1 mm around this process zone.

In the undamaged state a linear isotropic material is considered with the modulus of

elasticity E = 10 GPa and Poisson’s ratio of 0.2. Plane stress conditions are assumed.

The modified von Mises local equivalent strain proposed in equation (3.10) is used with

k = 10. The damage model considered for the analysis is as given in equation (3.7)

with ε0 = 4× 10−4, α = 0.98 and β = 80 . With respect to these material and damage

parameters the 1D stress-strain profile is produced as shown in figure 3.42.
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Figure 3.42. 1D element stress (GPa) vs strain profile considered for the 2D L-shaped
specimen with respect to the softening law given in equation (3.7).

The adopted non-local averaging function for the simulation is as given in equation

(3.16) with the non-local length scale of l = 7.07 mm.

Figure 3.43 shows the load-displacement curves of the proposed approach with the

mesh configuration in figure 3.41. The force and the displacement are recorded at point

‘A’ in figure 3.41a. The FEM and SBFEM outputs are obtained through a displacement

controlled m-NR method coupled with the arc length method. The initial displacement

step is set to 0.01 mm.
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Figure 3.43. Force (kN) vs displacement (mm) output for the 2D L-shaped specimen.
SBFEM SC and the FGP formulation compared to the FEM and the reference solution
[505].

For comparison, the output of the reference finite element formulation presented in

[505] is plotted alongside the findings of this work. The FEM and SBFEM formulations

agrees well with the reference solution. More importantly, as seen in figure 3.43, the res-

ults obtained through the proposed SC damage formulation yields no noticeable deviation

to the SBFEM FGP formulation results.

The contour plots given below are for the displacement magnitude, von Mises stress,

and the damage evolution of the plate. Each instance is picked with reference to load-

displacement profile in figure 3.43.

The contours for displacement magnitude shown in figure 3.44 correspond to a vertical

displacement of 0.5372 mm at node ‘A’ reflecting a peak load of 18.6 kN and just after

the peak load at displacement value of 0.987 mm corresponding to a load of 15.4 kN.

The displacement magnitude contours show evidence of the symmetry of the boundary

conditions.
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(a) Displacement magnitude

contour when node ‘A’ dis-

placement is 0.5372 mm.

(b) Displacement magnitude

contour when node ‘A’ dis-

placement is 0.987 mm.

0.17521 0.43141 0.68760 0.94380 1.20000

Figure 3.44. Displacement magnitude contours for non-local damage analysis of the 2D
L-shaped specimen. Units:mm. Results obtained for the mesh in figure 3.41b.

The contours for von Mises stress are provided corresponding to a the same instances

as considered in the displacement magnitude contours in figure 3.44. As the damage pro-

cess zone propagates diagonally the area of high stress shrinks with elements elastically

unloading due to stiffness degradation.

(a) Von Mises stress contour

when node ‘A’ displacement is

0.5372 mm.

(b) Von Mises stress contour

when node ‘A’ displacement is

0.987 mm.

0.00000 0.00200 0.00400 0.00600 0.00800

Figure 3.45. Von Mises stress contours for non-local damage analysis of the 2D L-shaped
specimen. Units:MPa. Results obtained for the mesh in figure 3.41b.
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The edge plates show the amplified stresses expected in the edge plates due to their

high modulus of elasticity. The scale shown in the figure 3.44 disregard the amplified

stresses for better scaling of the stress variation within the plate.

The damage contours are captured at a vertical displacement of 0.5372 mm at node ‘A’

corresponding to a peak load of 18.6 kN and at the end of the simulation corresponding

to displacement of 2.504 mm and force 5.5 kN.

(a) Damage contour for when

node ‘A’ displacement is

0.5372 mm.

(b) Damage contour when

node ‘A’ displacement is

2.504 mm.

0.0000 0.2500 0.5000 0.7500 1.0000

Figure 3.46. Damage (ω) contours for non-local damage analysis of the 2D L-shaped
specimen. Results obtained for the mesh in figure 3.41b.

The damage evolution shown in figure 3.46 shows that the damage occurs at the con-

cave corner of the specimen at first, owing to the larger stress singularity in this location.

As the damage develops, the area of high stress moves along the diagonal symmetrically

until the peak load is reached. During the softening stage, the DPZ keeps advancing as

seen in figure 3.46.

3.7.4 Two dimensional damage characterization in shear band

As the final example in this chapter, a commonly investigated problem of a shear band

formation is considered, for the verification of the presented formulation. The problem

is extracted from the paper by Simone [507] on explicit and implicit gradient-enhanced
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damage models.

This problem is modelled assuming plane strain conditions as considered in the refer-

ence. The 2D plate considered in the analysis is as shown in figure 3.47a. The specimen is

of 60×60 mm. To initiate the formation of the shear band an imperfection is introduced

at the bottom left corner with dimensions 6×3 mm.

P, u

(a) h×h specimen in biaxial compression,

where h = 60 mm. The shaded part indicates

the imperfection of size h/10 × h/20 mm.

(b) Uniform mesh with element size 1

mm.

Figure 3.47. (a) Geometry and boundary conditions, and (b) the finite element mesh for
the 2D non-local damage characterization in shear band.

Figure 3.47a depicts the geometry and boundary conditions, whereas, 3.47b shows the

finite element mesh used in the analysis. With reference to figure 3.47a, the bottom edge

is restrained from vertical movement, and additionally the bottom left corner of the plate

is restrained in horizontal movement. The mesh considered for the analysis consists of a

uniform 1 mm element size across the plate. The plate thus consists of 3600 elements as

shown in 3.47b. This resolution of the mesh is found to be adequate with the proposed

formulation and the non-local length scale considered in this simulation.

Material properties for the plate elements are as follows: Young’s modulus E = 20 GPa

and Poisson’s ration ν = 0.2. The exponential softening law given in 3.7 is adopted with

ε0 = 1×10−4, α = 0.99 and β = 300. The equivalent strain criteria considered is the von
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Mises equivalent strain given in equation (3.13). For the imperfection, a reduced damage

initiation threshold is considered with ε0 = 5×10−5 leaving all other material properties

same as the plate elements. The 1D stress-strain behaviour for the weaker material after

consideration of its material and damage parameters are shown in figure 3.48. The non-

local length scale l = 2 mm is used with the gauss weighting function given in equation

(3.16).

0 0.005 0.01 0.015 0.02 0.025 0.030

0.2

0.4

0.6

0.8

1

σx10-3

ε

Figure 3.48. 1D element stress (GPa) vs strain profile considered in the 2D damage char-
acterization of a shear band with respect to the softening law given in equation (3.7), for
the weaker material with ε0 = 5×10−5.

A displacement control analysis is carried out for 762 load steps with an initial dis-

placement step of 1× 10−3mm. The output load-displacement curve is shown in figure

3.49. The total force on the top edge of the plate is plotted against and the absolute ver-

tical displacement recorded at the centre of the top edge of the plate. Figure 3.49 also

compares the proposed SC damage formulation to the FGP formulation, the results of a

finite elements simulation, and the reference solution.
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-Reference
-FEM
-SBFEM full GP formulation
-SBFEM SC formulation

0
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0.01 0.02 0.03 0.04     0.060.05

Figure 3.49. Force (kN) vs displacement (mm) output for the 2D damage characterization
of a shear band. SBFEM SC and the FGP formulation compared to the FEM and the
reference solution.

All results agree well with the reference and there is no noticeable deviation between

the SC formulation and the conventional FGP formulation. The peak load of 0.127 kN is

attained at a displacement of 0.0066 mm. Gradual softening behaviour is then exemplified

till the end of the simulation.

The contour plots are presented for the displacement steps at peak load when the top

edge displacement is 0.0066 mm, after peak load when the top edge displacement is 0.03

mm, and at end of simulation when the top edge displacement is 0.08 mm.

The von Mises non-local equivalent strain plots shown in figure 3.50 illustrate the

initial strain localisation of the plate and the gradual formation of the high strain concen-

trated shear band.
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(a) At peak load when top

edge displacement is 0.0066

mm.

0.00007 0.00014 0.00021 0.00028 0.00035

(c) After peak load when

top edge displacement at 0.03

mm.

(d) At end of simulation

when top edge displacement

is 0.0782 mm.

0.00000 0.00607 0.01215 0.01822 0.02430

Figure 3.50. Von Mises equivalent strain contours obtained in simulation of the 2D non-
local damage characterization in shear band. Results obtained for the mesh shown in
figure 3.47b.

As expected [508] these figures also depict further localisation within the shear band

after initiation of the shear band . The damage formation shown in figure 3.51 follows

the precedent set by the strain localisation. The shear band migrates from the introduced

weaker elements to the right hand edge of the plate along the horizontal boundary at first,

before veering off diagonally to meet the unrestrained edge.
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(a) At peak load when top

edge displacement is 0.0066

mm.

(b) After peak load when

top edge displacement is 0.03

mm.

(c) At end of simulation

when top edge displacement

is 0.0782 mm.

0.0000 0.2500 0.5000 0.7500 1.0000

Figure 3.51. Damage (ω) evolution contours obtained in simulation of the 2D non-local
damage characterization in shear band. Results obtained for the mesh shown in figure
3.47b.

Most collapse mechanisms in engineering problems are governed by the formation of

shear bands. Results similar to the above findings are documents by Engelen et al. [509]

and Pamin et al. [510]. However it should be noted that the width of the shear band is

dictated by the non-local length parameter. Increasing this parameter will produce a wider

shear band. Changes to the non-local length parameter can result in a shift of the shear

band [511]. In some instances the failure mode can also be altered through incorrect

consideration of the length scale. In this simulation the choice of the non-local length

parameter is in accordance with the reference. The results therefore obtained are similar
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to that published in [507]. Figure 3.52 compares the damage contour obtained with the

SBFEM formulation with the reference damage contour output.

(a) Reference [507] damage

contour at the end of the sim-

ulation.

(b) SBFEM damage contour

at the end of the simulation.

0.0000 0.2500 0.5000 0.7500 1.0000

Figure 3.52. Comparison of the (a) reference [507] and the (b) SBFEM formulation dam-
age contours in the 2D non-local damage characterization in shear band. Results obtained
for the mesh shown in figure 3.47b.

3.8 Conclusions

The 2D SBFE equations are derived for damage analysis through incorporating the effects

of damage degradation thereby extending the applications of the SBFEM to 2D damage

analysis. The damage degree is assumed to be uniform in one subdomain, which sim-

plifies the implementation of regularization to overcome strain localization. The work

establishes the framework for non-locality within SBFEM, for exchange of information

between integration points, a feature not included in standard finite element codes.

The successful implementation of the SBFE scaling centre damage formulation is

presented in this chapter. A logical verification process is undertaken for the validation of

SBFEM SC damage formulation by comparing results obtained through FEM, SBFEM

FGP formulation and also published literature. The SC formulation yields results com-

paratively similar to that of the FGP formulation. This affirms that the SC formulation is
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able to capture the deterioration of the simulations considered. Owing to the conformance

shown between the SBFEM SC and the SBFEM FGP formulations, the extension of the

proposed approach to the 3D SBFEM-based damage analysis will be carried out through

the SC formulation.

This chapter also compared the behaviour of local and non-local formulations. The

local approach exemplifies severe mesh objectivity, whereas the non-local solutions con-

verge after mesh refinement. Mesh dependency is an undesirable phenomenon, as local

simulations allows for models to undergo damage by dissipating different fracture ener-

gies and different DPZs under the same loading conditions. Therefore as a solution to this

issue the non-local damage modelling is considered in 2D by introducing a length para-

meter, which distributes the effect of damage and serves as the localization limiter. Only

the DPZ is refined with small-sized subdomains to reduce the computational effort. Ow-

ing to the salient characteristic of the SBFEM, strain modes, subdomain stiffness matrices

and weight functions can be calculated ahead of the damage simulation and thereby the

computational efficiency can be considerably improved.

Numerical simulations provide good conformance, and demonstrate that the proposed

approach is effective and robust in capturing the 2D damage evolution in structures.
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Chapter 4

Three Dimensional Damage Analysis by

the Scaled Boundary Finite Element

Method

4.1 Introduction

In this chapter a novel and an effective approach within the framework of Scaled Bound-

ary Finite Element Method (SBFEM) is proposed for structural damage analysis in three

dimensions. The two dimensional (2D) integral-type non-local damage model introduced

in chapter 3 is extended to the three dimensional (3D) SBFEM.

Continuum Damage Mechanics (CDM), initiated by Kachanov [34] in the context of

creep rupture, is widely used to simulate the diffuse fracture process at both macroscopic

level [250,477,481,483] and meso-scopic level [478,512,513]. CDM models use internal

variables to describe the gradual loss of material integrity due to the propagation and co-

alescence of micro-defects. In CDM the damage stiffness tensor can be represented by

a scalar [255], a vector [514] or a tensor [515, 516] combined with the elastic stiffness

tensor. Compared with discrete crack models, CDM has become a competitive approach

to simulate the progressive failure of structures with no extra effort to re-meshing arising
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from the strong discontinuity of crack. Based on the assumption that the stress at a spe-

cified point only depends on the state variables at that point, a local damage model ex-

hibits an extreme sensitivity to the fineness and orientation of the spatial discretization

in a mesh-based formulation [477, 481]. Such a pathological phenomenon is caused by

the fact that the mathematical description becomes ill-posed at a certain level of accu-

mulated damage. To overcome the deficiencies of the local damage model, several types

of non-local approaches have been proposed during the last decades, among which the

integral-type non-local model [477,517] and the gradient-type non-local model [480,518]

are mostly used. The integral-type non-local model involves a spatial smoothing function

to average the state variable of a point in a certain range of internal length (also called

characteristic length), whereas the gradient-type non-local model takes the field in the

immediate vicinity of the point into account by enriching the local constitutive relations

with gradients of some state variables. Among the gradient-type formulations, the impli-

cit gradient enhancement [301] is found to be more effective and suitable for numerical

implementation than the explicit version. A large number of works involving non-local

damage simulations have been reported, but only a few of them [479, 519] cover 3D

cases, mainly because of the excessive computational cost, especially on the solution of

large non-linear equilibrium equations [479].

The SBFEM is a semi-analytical method initiated by Wolf and Song in 1990s [199]

for the solution of wave propagation problems in unbounded domain. The SBFEM com-

bines some of the advantages of both the finite element method (FEM) and the boundary

element method (BEM). In SBFEM, only the boundary is required to be discretised and

the dimensions of the problem can be reduced by one, which in turn reduces the data

preparation and computational effort. Compared to the BEM, the SBFEM does not re-

quire a fundamental solution. The ability to exactly satisfy radiation conditions at infinity

makes this method particularly suitable for modelling unbounded media [63]. Owing to

its capability of obtaining semi-analytical stress intensity factors, the SBFEM is also an at-

tractive method for crack initialisation [520] and crack propagation modelling [521,522].
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The SBFEM is an extremely versatile approach in terms of meshing. There is no lim-

itation on the number of edges and vertices used for one subdomain, therefore a series

of polygonal subdomains with arbitrary shapes and sizes constructed by topological al-

gorithms, e.g. Delaunay triangulation can be used to discretise a domain with complex

geometry profiles [205,523]. The SBFEM can also been combined with the isogeometric

analysis to further increase the accuracy of the solution with exact geometric representa-

tion [524].

In this contribution a three-dimensional non-local approach for the damage analysis

of structures within the framework of SBFEM is proposed. The computationally efficient

SBFEM scaling centre formulation introduced in chapter 3 is extended to the 3D space.

The integral-type non-local model combined with the isotropic damage constitutive law

is employed and extended to the scaled boundary formulation in 3D. Some inherent ad-

vantages of SBFEM are exploited for non-local damage modelling, including:

1. The scaling centre damage formulation-

For damage simulation, the size of subdomains used in DPZ is especially small

(typically around one-fourth to one-third of the characteristic length) and the nu-

merical accuracy is mostly dependent on the damage estimation in DPZ. From the

numerical point of view, as the mesh is refined the results of simulation would con-

verge to the accurate solution. It is reasonable to assume that the severity of damage

is uniform in one subdomain, and only the strain at the scaling centre of the subdo-

main is used to compute the internal variable. Consequently computational efforts

can be considerably saved;

2. Pre-computation of strain modes-

The strain modes for each subdomain are only dependent on the geometry of the

subdomain. Therefore it can be computed beforehand and utilized at each load step

to obtain the strain at an arbitrary point within the domain combined with updated

integral constants (see section 4.4);
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3. Pre-computation of weight function-

For small deformation situations, the location of each subdomain is assumed to be

unchanged during damage process, thus the weight function can also be calculated

beforehand and utilized to smooth the internal variable in each load step.

This chapter is organized as follows: A brief description of the constitutive relationship,

damage evolution law and the integral-type non-local model are included in section 4.2.

In section 4.3 the 3D SBFEM derivation for elastostatics is presented. Section 4.4 de-

tails the 3D damage formulation with the SBFEM. The implicit accelerated/dampened

m-NR method with arc-length algorithm is explained in section 4.5. Several benchmark

simulations are presented in section 4.6 to verify the effectiveness and robustness of the

proposed approach. The concluding remarks of this chapter are captured in section 4.7.

4.2 Damage model for concrete

This section presents a brief outline of the damage model for concrete. For a detailed

explanation the reader is directed to chapter 3, section 3.2.

4.2.1 Evolution of damage

The damage model described in section 3.2.2 contains two relationships which are specific

for a material, i.e. the evolution law of damage ω and the equivalent strain definition.

Two types of evolution law are widely used for damage model. The first type of

damage models is the linear softening model described as

ω =


0 if κ ≤ ε0,

ε f
ε f−ε0

(
1− ε0

κ

)
if ε0 < κ < ε f ,

1 if κ ≥ ε f ,

(4.1)

where ε0 is the threshold of damage, and ε f is a parameter affecting the ductility of the
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response and related to the fracture energy. The second type of softening relationships are

exponential softening models. One such commonly used exponential softening model is

a variant of equation (4.1), which is defined as

ω =


0 if κ ≤ ε0,

1− ε0
κ

exp
(
−(κ−ε0)

ε f−ε0

)
if κ > ε0.

(4.2)

However, in this work a modified definition of exponential softening model proposed by

Geers et al. [481] is selected

ω =


0 if κ ≤ ε0,

1− ε0
κ
(1−α +α× exp(−β (κ− ε0))) if κ > ε0,

(4.3)

in which α and β are two parameters to control the slope of the softening branch of the

curve.

The definition of the equivalent strain directly affects the shape of the elastic domain

in the strain space. The equivalent strain could be defined in an energy norm as

ε̃ =

√
1
E

εT Dε. (4.4)

It should be noted that such a definition implies equal weights to tensile and compressive

strain components and it is unsuitable to describe the mechanical behaviour of quasi-

brittle materials, e.g. concrete. Mazars and Pijaudier-Cabot [461] have therefore proposed

a definition for concrete as

ε̃ =

√√√√ 3

∑
i=1

(< εi >)2 (4.5)

with εi the principal strains, and <> are the MacAulay brackets defined such that < εi >=

max(0,εi).
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An alternative form of equation (4.4) with the use of the Mazars definition is

ε̃ =
1
E

√
〈ε〉T P〈ε〉, (4.6)

where P is the diagonal scaling matrix defined as

P =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0.5 0 0

0 0 0 0 0.5 0

0 0 0 0 0 0.5


. (4.7)

Incorporating the Rankine criterion of maximum principal stress, equation (4.6) can be

written in terms of stress as follows.

ε̃ =
1
E

√
〈σ〉T P−1 〈σ〉. (4.8)

Using the relationship σ = Dε equation (4.8) is transformed into the strain space as

ε̃ =
1
E

√
〈Dε〉T P−1 〈Dε〉. (4.9)

Equation (4.9) can be re-written in terms of the principal strains εi as

ε̃ =
1
E

√
〈Dnnεi〉T P−1 〈Dnnεi〉, (4.10)

where Dnn is the left upper block of the elastic stiffness matrix (refer equation (4.7) ),

related to the normal components of stress and strain.

As pointed out by Peerlings et al. in reference [480], the Mazars definition (equation

(4.5)) predicts the propagation of crack in a wrong direction in some cases. Therefore in
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this study the more reliable conventional von Mises equivalent strain definition

ε̃ =
1

1+ν

√
−3Jε

2 , (4.11)

and the modified von Mises definition

ε̃ =
k−1

2k(1−ν)
Iε
1 +

1
2k

√
(k−1)2

(1−2ν)2 (I
ε
1 )

2 +
12k

(1+ν)2 Jε
2 , (4.12)

are considered. The modified von Mises definition was first proposed in a strain-based

form by de Vree et al. [497]. The parameter k controls the different sensitivity to com-

pressive and tensile strains and usually set equal to the ratio of the compressive and tensile

strength, i.e k = σ f c/σ f t , ν is the Poisson’s ratio, Iε
1 , Jε

2 are the strain tensor invariants

and defined as

Iε
1 = tr(ε) = εxx + εyy + εzz, (4.13)

Jε
2 = 3tr(ε · ε) = 1

3
[ε2

xx + ε
2
yy + ε

2
zz− εxxεyy + εyyεzz + εzzεxx +3(ε2

xy + ε
2
yz + ε

2
zx). (4.14)

4.2.2 Integral-type non-local damage model

As explained in section 3.2.4, the integral-type non-local damage formulation consists

of replacing a state variable by its non-local counterpart obtained by weighted averaging

over a spatial neighbourhood of each point within the range of the internal length.

This chapter adopts the two Gauss distribution function as the weighting function

defined as [250]

α0(r) = exp
[
− d2

2l2

]
, (4.15)

or as

α0(r) = exp
[
−4×

( r
R

)2
]
, (4.16)

in which R is the interaction radius related to the internal length and denotes the largest

distance of point θ that affects the non-local average at point x , and l is the internal length
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of the non-local continuum.

Another alternative form of weight function is a truncated quartic polynomial function

in bell-shape [477]

α0(r) =
〈

1− r2

R2

〉2

. (4.17)

4.3 The scaled boundary finite element method

This section explains the SBFEM formulation in 3D elastostatics as introduced and ex-

plained in [199] and [194].

4.3.1 Governing equations for elastostatics

The displacements u = u(x,y,z) for a point in the three-dimensional Cartesian domain

(x,y,z) can be denoted as

u = [ux,uy,uz]
T . (4.18)

The strains ε = ε(x,y,z) can be expressed in terms of the displacements as

ε = [εx,εy,εz,γyz,γxz,γxy]
T = Lu, (4.19)

where the linear differential operator L is written as

L =



∂

∂x

∂

∂y

∂

∂ z

∂

∂ z
∂

∂y

∂

∂ z
∂

∂x

∂

∂y
∂

∂x


. (4.20)
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For the linear elastic material, the stresses σ = σ(x,y,z) can be denoted as

σ = [σx,σy,σz,σyz,σxz,σxy]
T = Dε, (4.21)

where D is the 6×6 elasticity matrix in 3D which can be isotropic or anisotropic in nature.

The elasticity matrix for an isotropic material is given as

D =
2G

1−2ν



1−ν ν ν

ν 1−ν ν

ν ν 1−ν

1−2ν

2

1−2ν

2

1−2ν

2


, (4.22)

where G and ν are the material’s shear modulus and Poisson’s ratio, respectively.

The differential equations to represent equilibrium without body loads and side-face

tractions are formulated as

LT
σ = 0. (4.23)

The prescribed boundary conditions, displacements ū and tractions t̄ are applied re-

spectively as

u = ū on Su , (4.24a)

t = t̄ on St , (4.24b)

where u and t are the boundary displacements and tractions, respectively. The variable

Su and St are the discretised boundary related to the prescribed boundary displacements ū

and tractions t̄, respectively. At a point on the boundary, either ū or t̄ must be prescribed

i.e. Su
⋃

St = S. In which S is the whole boundary of the problem domain.
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4.3.2 Three-dimensional geometry transformation in the SBFEM

4.3.2.1 Modelling an arbitrary polyhedral element

-Scaling centre
-Corner node

V

ηζ

ξ

O

e1

e2

xg

yg

zg

(x0,y0,z0)

Figure 4.1. Three-dimensional coordinates for a scaled boundary finite element. Bi-
material interface (e1, e2) shown in green and blue.

A typical problem domain V in 3D, as shown in figure 4.1, is used to illustrate the SBFEM

modelling process. In the SBFEM formulation for polyhedral elements, any polyhedron

that satisfies the star convexity criterion can be modelled by the scaled boundary finite

element method. The star convexity criterion requires direct visibility of any point on the

polyhedron boundary from a point inside the polyhedron. The scaling centre O is selected

such that this requirement is fully satisfied. If this requirement cannot be satisfied, the

domain should be further divided into a series of subdomains. This process is called sub-

structuring. Therefore any irregular or concave polyhedron can be easily modelled as long

as the star convexity criterion is satisfied.

The location of the O of the scaling centre is assumed to be at the local coordinate

(x0,y0,z0) and global Cartesian coordinates (xg,yg,zg). The local Cartesian coordinates

(x,y,z) with its origin coinciding with the scaling centre O are established as follows

x = xg− x0, (4.25a)

y = yg− y0, (4.25b)

z = zg− z0. (4.25c)
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Only the boundary of the domain needs to be discretised with 2D surface elements as

depicted in figure 4.1. Each surface element e can be described using 2D interpolation

shape functions N(η ,ζ ) in which η and ζ represent the two local coordinates on the

boundary. The 2D interpolation shape (mapping) functions on the surface element are

written as

N(η ,ζ ) =

[
N1 (η ,ζ ) , N2 (η ,ζ ) , ... NQ (η ,ζ )

]
, (4.26)

where Ni is the shape function of node i and the subscript Q is the total number of nodes

on the surface element.

A point on the boundary ( x(η ,ζ ) , y(η ,ζ ) , z(η ,ζ ) ) is interpolated using the

shape function of the surface element N(η ,ζ ) as

x(η ,ζ ) = N(η ,ζ )x, (4.27a)

y(η ,ζ ) = N(η ,ζ )y, (4.27b)

z(η ,ζ ) = N(η ,ζ )z, (4.27c)

where x =

[
x1 x2 ... xQ

]T

, y =

[
y1 y2 ... yQ

]T

and z =
[

z1 z2 ... zQ

]T

are the vectors containing the nodal coordinates of the nodes on each surface element in

the local Cartesian coordinates.

A point in the internal domain (x(ξ ,η ,ζ ) ,y(ξ ,η ,ζ ) ,z(ξ ,η ,ζ )) of the polyhedral

element can be described by scaling the boundary (x(η ,ζ ) ,y(η ,ζ ) ,z(η ,ζ )) along the

dimensionless radial coordinate ξ . The value of the coordinate ξ ranges from 0 at the

scaling centre to 1 at the boundary. A specified point (x,y,z) within the domain can be

expressed in terms of the scaled boundary local coordinates (ξ ,η ,ζ ) as

x(ξ ,η ,ζ ) = ξ x(η ,ζ ) = ξ N(η ,ζ )x, (4.28a)

y(ξ ,η ,ζ ) = ξ y(η ,ζ ) = ξ N(η ,ζ )y, (4.28b)

z(ξ ,η ,ζ ) = ξ z(η ,ζ ) = ξ N(η ,ζ )z. (4.28c)
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From here onwards, coordinates (ξ ,η ,ζ ) will be referred to as scaled boundary coordin-

ates in the 3D domain.

If a polyhedral elements contain more than one material as shown in figure 4.1, the

scaling is placed at the bi-material interface plane. This avoids the requirement for mesh-

ing at the bi-material interface plane. The interface is thereby automatically represented

by scaling the edges of the two surface elements e1 and e2.

4.3.3 Geometry transformation in terms of scaled boundary coordin-

ates

The local scaled boundary coordinates (ξ ,η ,ζ ) are transformed to the local Cartesian co-

ordinates (x,y,z) by the standard isoparametric mapping technique. Therefore the partial

derivatives with respect to Cartesian coordinates can be transformed to partial derivatives

with respect to scaled boundary coordinates based on the following equation


∂

∂ξ

∂

∂η

∂

∂ζ

= J(ξ ,η ,ζ )


∂

∂x

∂

∂y

∂

∂ z

 , (4.29)

where the Jacobian matrix J(ξ ,η ,ζ ) is obtained as

J =


x(ξ ,η ,ζ ),ξ y(ξ ,η ,ζ ),ξ z(ξ ,η ,ζ ),ξ

x(ξ ,η ,ζ ),η y(ξ ,η ,ζ ),η z(ξ ,η ,ζ ),η

x(ξ ,η ,ζ ),ζ y(ξ ,η ,ζ ),ζ z(ξ ,η ,ζ ),ζ

 . (4.30)

Therefore 4.29 can be abbreviated to


∂

∂ξ

∂

∂η

∂

∂ζ

=


1

ξ

ξ

J(ξ ,η ,ζ )


∂

∂x

∂

∂y

∂

∂ z

 . (4.31)
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The Jacobian matrix at the boundary (ξ = 1) is given as

J =


x(η ,ζ ) y(η ,ζ ) z(η ,ζ )

x(η ,ζ ),η y(η ,ζ ),η z(η ,ζ ),η

x(η ,ζ ),ζ y(η ,ζ ),ζ z(η ,ζ ),ζ

 . (4.32)

The determinant of the Jacobian matrix |J| with the arguments (η ,ζ ) omitted equal to

|J|= x(y,ηz,ζ − z,ηy,ζ )+ y(z,ηx,ζ − x,ηz,ζ )+ z(x,ηy,ζ − y,ηx,ζ ). (4.33)

Therefore the inverse of Jacobian matrix at the boundary is

J−1 (η ,ζ ) =
1
|J|


y,ηz,ζ − z,ηy,ζ zy,ζ − yz,ζ yz,ζ − zy,ζ

z,ηx,ζ − x,ηz,ζ xz,ζ − zx,ζ zx,ζ − xz,ζ

x,ηy,ζ − y,ηx,ζ yx,ζ − xy,ζ xy,ζ − yx,ζ

 . (4.34)

Substituting equation (4.34) in the inverse relationship of 4.31, yields


∂

∂x

∂

∂y

∂

∂ z

=
1
|J|


y,ηz,ζ − z,ηy,ζ

z,ηx,ζ − x,ηz,ζ

x,ηy,ζ − y,ηx,ζ

 ∂

∂ξ

...+
1
ξ

 1
|J|


zy,ζ − yz,ζ

xz,ζ − zx,ζ

yx,ζ − xy,ζ

 ∂

∂η
+

1
|J|


yz,ζ − zy,ζ

zx,ζ − xz,ζ

xy,ζ − yx,ζ

 ∂

∂ζ

 . (4.35)

The linear differential operator L in equation (4.20) can be expressed in the local scaled

boundary coordinates as

L = b1 (η ,ζ )
∂

∂ξ
+

1
ξ

(
b2 (η ,ζ )

∂

∂η
+b3 (η ,ζ )

∂

∂ζ

)
, (4.36)
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where b1 (η ,ζ ), b2 (η ,ζ ) and b3 (η ,ζ ) with the arguments (η ,ζ ) of the entries omitted

are defined as

b1 (η ,ζ ) =
1
|J|



y,ηz,ζ − z,ηy,ζ 0 0

0 z,ηx,ζ − x,ηz,ζ 0

0 0 x,ηy,ζ − y,ηx,ζ

0 x,ηy,ζ − y,ηx,ζ z,ηx,ζ − x,ηz,ζ

x,ηy,ζ − y,ηx,ζ 0 y,ηz,ζ − z,ηy,ζ

z,ηx,ζ − x,ηz,ζ y,ηz,ζ − z,ηy,ζ 0


(4.37a)

b2 (η ,ζ ) =
1
|J|



zy,ζ − yz,ζ 0 0

0 xz,ζ − zx,ζ 0

0 0 yx,ζ − xy,ζ

0 yx,ζ − xy,ζ xz,ζ − zx,ζ

yx,ζ − xy,ζ 0 zy,ζ − yz,ζ

xz,ζ − zx,ζ zy,ζ − yz,ζ 0


(4.37b)

b3 (η ,ζ ) =
1
|J|



yz,η − zy,η 0 0

0 zx,η − xz,η 0

0 0 xy,η − yx,η

0 xy,η − yx,η zx,η − xz,η

xy,η − yx,η 0 yz,η − zy,η

zx,η − xz,η yz,η − zy,η 0


(4.37c)

The position vector r of a point on the boundary of a polyhedral element can now be

expressed based on the coordinate transformation as

r = x(η ,ζ ) i+ y(η ,ζ ) j+ z(η ,ζ )k (4.38)

The derivatives of r with respect to η and ζ representing two of the tangential vectors can
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be written as

r,η = x(η ,ζ ),η i+ y(η ,ζ ),η j+ z(η ,ζ ),η k, (4.39a)

r,ζ = x(η ,ζ ),ζ i+ y(η ,ζ ),ζ j+ z(η ,ζ ),ζ k. (4.39b)

Alternatively, equation (4.33) can be derived as

|J|= r ·
(
r,η × r,ζ

)
(4.40)

The position vector of a point in the polyhedral element r̂ can be written as

r̂ = ξ r = x(ξ ,η ,ζ ) i+ y(ξ ,η ,ζ ) j+ z(ξ ,η ,ζ )k (4.41)

An infinitesimal volume dV for an arbitrary ξ can be calculated as

dV = r̂,ξ ·
(
r̂,η × r̂,ζ

)
dξ dηdζ (4.42)

where

r̂,ξ = r = x(η ,ζ ) i+ y(η ,ζ ) j+ z(η ,ζ )k, (4.43a)

r̂,η = ξ

[
x(η ,ζ ) ,η i+ y(η ,ζ ) ,η j+ z(η ,ζ ),η k

]
, (4.43b)

r̂,ζ = ξ

[
x(η ,ζ ),ζ i+ y(η ,ζ ),ζ j+ z(η ,ζ ),ζ k

]
. (4.43c)

The outward normal vectors gξ , gη and gζ to the surfaces (η ,ζ ), (ζ ,ξ ) and (ξ ,η), re-

spectively, with arguments (η ,ζ ) omitted can be written as

gξ = r,η × r,ζ =
(
y,ηz,ζ − z,ηy,ζ

)
i+
(
z,ηx,ζ − x,ηz,ζ

)
j+
(
x,ηy,ζ − y,ηx,ζ

)
k, (4.44a)

gη = r,ζ × r =
(
zy,ζ − yz,ζ

)
i+
(
xz,ζ − zx,ζ

)
j+
(
yx,ζ − xy

)
k, (4.44b)

gζ = r× r,η =
(
yz,ζ − zy,ζ

)
i+
(
zx,ζ − xz,ζ

)
j+
(
xy,ζ − yx,ζ

)
k. (4.44c)
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Therefore, the dV in equation (4.42) can be expressed as

dV = (xi+ yj+ zk) ·

∣∣∣∣∣∣∣∣∣∣
i j k

ξ x,η ξ y,η ξ z,η

ξ x,ζ ξ y,ζ ξ z,ζ

∣∣∣∣∣∣∣∣∣∣
dξ dηdζ ,

dV = ξ
2 [x(y,ηz,ζ − z,ηy,ζ

)
+ y
(
z,ηx,ζ − x,ηz,ζ

)
+ z
(
x,ηy,ζ − y,ηx,ζ

)]
dξ dηdζ ,

dV = ξ
2 |J|dξ dηdζ . (4.45)

The infinitesimal surface area dSξ , dSη , and dSξ between the coordinates η and ζ , ζ and

ξ , and ξ and η , respectively, for an arbitrary ξ is expressed as

dSξ =
∣∣r̂,η × r̂,ζ

∣∣dηdζ =
∣∣ξ r,η ×ξ r,ζ

∣∣dηdζ = ξ
2gξ dηdζ , (4.46a)

dSη =
∣∣r̂,ζ × r̂,ξ

∣∣dζ dξ =
∣∣ξ r,ζ × r

∣∣dζ dξ = ξ gηdζ dξ , (4.46b)

dSζ =
∣∣r̂,ξ × r̂,η

∣∣dξ dη =
∣∣r×ξ r,η

∣∣dξ dη = ξ gζ dξ dη , (4.46c)

where gξ =
∣∣r,η × r,ζ

∣∣, gη =
∣∣r,ζ × r

∣∣, and gζ =
∣∣r× r,η

∣∣.
The unit outward normal vectors for the vectors produced in equations (4.44a-4.44c)

can be written as

nξ =
gξ

gξ

= nξ
x i+nξ

y j+nξ
z k, (4.47a)

nη =
gη

gη

= nη
x i+nη

y j+nη
z k, (4.47b)

nζ =
gζ

gζ

= nζ
x i+nζ

y j+nζ
z k. (4.47c)

The amplitudes of the surface tractions t on any boundary with an outward unit normal
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vector n = nxi+nyj+nzk are

t =


tx

ty

tz

=


nx 0 0 0 nz ny

0 ny 0 nz 0 nx

0 0 nz ny nx 0

σ . (4.48)

Based on equation (4.48) and equations (4.47a-4.47c), the surface tractions on the surfaces

(η ,ζ ), (ζ ,ξ ) and (ξ ,η) can be written as

tξ =


nξ

x 0 0 0 nξ
z nξ

y

0 nξ
y 0 nξ

z 0 nξ
x

0 0 nξ
z nξ

y nξ
x 0

σ , (4.49a)

tη =


nη

x 0 0 0 nη
z nη

y

0 nη
y 0 nη

z 0 nη
x

0 0 nη
z nη

y nη
x 0

σ , (4.49b)

tζ =


nζ

x 0 0 0 nζ
z nζ

y

0 nζ
y 0 nζ

z 0 nζ
x

0 0 nζ
z nζ

y nζ
x 0

σ . (4.49c)

Using equations (4.37a-4.37c) and (4.44a-4.44c), equations (4.49a-4.49c) can now be

written as

tξ =
|J|
gξ

bT
1 (η ,ζ )σ , (4.50a)

tη =
|J|
gη

bT
2 (η ,ζ )σ , (4.50b)

tζ =
|J|
gζ

bT
3 (η ,ζ )σ . (4.50c)
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4.3.4 Displacements and stresses in terms of the scaled boundary co-

ordinates

The displacement solutions within each polyhedral subdomain u(ξ ,η ,ζ ) = [ux (ξ ,η ,ζ ) ,

uy (ξ ,η ,ζ ) ,uz (ξ ,η ,ζ )]T at a point (ξ ,η ,ζ ) is obtained by interpolation with shape func-

tion

u(ξ ,η ,ζ ) = Nu(η ,ζ )u(ξ ), (4.51)

where u(ξ ) denotes the displacement solution in the radial direction. The interpolation

shape function Nu(η ,ζ ) are defined as

Nu(η ,ζ ) = [N1(η ,ζ )I,N2(η ,ζ )I, ...,NQ(η ,ζ )I, ] (4.52)

where I is a 3 × 3 identity matrix and Q is the total number of nodes on the surface

element.

The strains ε in each subdomain expressed in equation (4.19) can be rewritten using

equation (4.36) and (4.51) as

ε(ξ ,η ,ζ ) = B1(η ,ζ )u(ξ ),ξ +
1
ξ

B2(η ,ζ )u(ξ ) (4.53)

where

B1(η ,ζ ) = b1(η ,ζ )Nu(η ,ζ ), (4.54a)

B2 (η ,ζ )= b2(η ,ζ )Nu (η ,ζ ),η +b3(η ,ζ )Nu (η ,ζ ),ζ . (4.54b)

Substituting equation (4.53) into equation (4.21), the stress field is obtained as

σ(ξ ,η ,ζ ) = D
(

B1(η ,ζ )u(ξ ),ξ +
1
ξ

B2(η ,ζ )u(ξ )
)

(4.55)
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4.3.5 3D derivation of the scaled boundary finite element equation

based on the principle of virtual work

This section presents the SBFE equations based on the principle of virtual displacements.

The derivation considers the discretisation of the problem domain to polyhedral elements.

The virtual work statement is therefore applied to each individual polyhedral element.

The derivation is based on the virtual displacement field δu written based on equation

(4.51) as

δu(ξ ,η ,ζ ) = Nu(η ,ζ )δu(ξ ). (4.56)

The virtual strains based on equation (4.53) are written as

δε(ξ ,η ,ζ ) = B1(η ,ζ )δu(ξ ),ξ +
1
ξ

B2(η ,ζ )δu(ξ ). (4.57)

The virtual work statement for elastostatics can be written in the following form

ˆ
v
δε

T
σdV −

ˆ
v
δuTpdV −

ˆ
v
δuTtdSξ = 0, (4.58)

where, the first term corresponds to work done by the internal forces. The second and

third terms relate to the work done by the body loads, and surface tractions, respectively.

The terms dSξ and dV represent the infinitesimal surface area on the boundary and the

infinitesimal volume in the domain, respectively.

4.3.5.1 Internal work (Strain energy)

Applying equations (4.57), (4.55) and (4.45) to the first term of equation (4.58) produces
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ˆ
v

(
B1(η ,ζ )δu(ξ ),ξ +

1
ξ

B2(η ,ζ )δu(ξ )
)

TD

...

(
B1(η ,ζ )u(ξ ),ξ +

1
ξ

B2(η ,ζ )u(ξ )
)

ξ
2 |J|dξ dηdζ =

+

ˆ 1

0
δuT(ξ ),ξ

ˆ
s
BT

1 (η ,ζ )DB1(η ,ζ ) |J|dηdζ ξ
2u(ξ ),ξ dξ︸ ︷︷ ︸

P1

+

ˆ 1

0
δuT(ξ ),ξ

ˆ
s
BT

1 (η ,ζ )DB2(η ,ζ ) |J|dηdζ ξ u(ξ )dξ︸ ︷︷ ︸
P2

+

ˆ 1

0
δuT(ξ )

ˆ
s
BT

2 (η ,ζ )DB1(η ,ζ ) |J|dηdζ ξ u(ξ ),ξ dξ︸ ︷︷ ︸
P3

+

ˆ 1

0
δuT(ξ )

ˆ
s
BT

2 (η ,ζ )DB2(η ,ζ ) |J|dηdζ u(ξ )dξ︸ ︷︷ ︸
P4

. (4.59)

By introducing the coefficient matrices

E0 =

ˆ
s
BT

1 (η ,ζ )DB1(η ,ζ )|J|dηdζ , (4.60a)

E1 =

ˆ
s
BT

2 (η ,ζ )DB1(η ,ζ )|J|dηdζ , (4.60b)

E2 =

ˆ
s
BT

2 (η ,ζ )DB2(η ,ζ )|J|dηdζ . (4.60c)

The coefficient matrices are constructed for individual surface elements and assembled

to obtain the coefficient matrices for each polyhedral element. The assembly process

is similar to the construction of the global stiffness matrix from the element stiffness

matrices in the finite element method. The integration is performed using standard Gauss-

Lobatto quadrature rules [91].

Each part (P1−P4) in equation (4.59) can be simplified as below after integration by
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parts in the local coordinate ξ .

P1 =

ˆ 1

0
δuT(ξ ),ξ E0ξ

2u(ξ ),ξ dξ

=δuT(ξ )E0ξ
2u(ξ ),ξ |ξ=1 −

ˆ 1

0
δuT(ξ )E0

(
2ξ u(ξ ),ξ +ξ

2u(ξ ),ξ ξ

)
dξ

=δuT
b E0u(ξ ),ξ |ξ=1 −

ˆ 1

0
δuT(ξ )E0

(
2ξ u(ξ ),ξ +ξ

2u(ξ ),ξ ξ

)
dξ (4.61a)

P2 =

ˆ 1

0
δuT(ξ ),ξ ET

1 ξ u(ξ )dξ

=δuT(ξ )ET
1 ξ u(ξ ) |ξ=1 −

ˆ 1

0
δuT(ξ )ET

1
(
u(ξ )+ξ u(ξ ),ξ

)
dξ

=δuT
b ET

1 ub−
ˆ 1

0
δuT(ξ )ET

1
(
u(ξ )+ξ u(ξ ),ξ

)
dξ , (4.61b)

P3 =

ˆ 1

0
δuT(ξ )E1ξ u(ξ ),ξ dξ , (4.61c)

P4 =

ˆ 1

0
δuT(ξ )E2u(ξ )dξ . (4.61d)

In equation (4.61a) and equation (4.61b) ub = u(ξ = 1). Now equation (4.59) can now
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be written as

ˆ
v
δε

T
σdV = δuT

b
(
E0u(ξ ),ξ |ξ=1 +ET

1 ub
)

...−
ˆ 1

0
δuT(ξ )(E0(2ξ u(ξ ),ξ +ξ

2u(ξ ),ξ ξ )

...+ET
1 (u(ξ )+ξ u(ξ ),ξ )−E1ξ u(ξ ),ξ −E2u(ξ ))dξ

= δuT
b
(
E0u(ξ ),ξ |ξ=1 +ET

1 ub
)

...−
ˆ 1

0
δuT(ξ )(E0ξ

2u(ξ ),ξ ξ

...+(2E0 +ET
1 −E1)ξ u(ξ ),ξ +(ET

1 −E2)u(ξ ))dξ (4.62)

4.3.5.2 Work done by applied body loads

Substituting equation (4.56) and (4.45) to the second term of equation (4.58) produces

ˆ
v
(Nu(η ,ζ )δu(ξ ))T p(ξ ,η ,ζ )ξ

2 |J|dξ dηdζ =

ˆ 1

0
δuT(ξ )−

ˆ
Sξ

NT
u (η ,ζ )p(ξ ,η ,ζ ) |J|dηdζ ξ

2dξ , (4.63)

where the applied body loads p can be a function of any of the scaled boundary coordin-

ates (ξ ,η ,ζ ). The equivalent nodal loads Fb for the applied body loads can be expressed

as

Fb =

ˆ
Sξ

NT
u (η ,ζ )p(ξ ,η ,ζ ) |J|dηdζ . (4.64)

Substituting equation (4.64) in equation (4.63) reveals the second term of equation (4.58)

as ˆ
v
δuTpdV =

ˆ 1

0
δuT(ξ )Fbξ

2dξ . (4.65)

4.3.5.3 Work done by applied tractions

The applied tractions t on the boundary ξ = 1 can be a function of the scaled boundary

coordinates (η ,ζ ). Substituting equation (4.56) into the third term of equation (4.58) and
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using dSξ of equation (4.46a) with ξ = 1 produces

ˆ
S
(Nu(η ,ζ )δu(ξ = 1))T t(η ,ζ )dSξ =δuT

b

ˆ
S

NT
u (η ,ζ )t(η ,ζ )gξ dηdζ . (4.66)

Considering Ft =
´

S NT
u (η ,ζ )t(η ,ζ )gξ dηdζ as the equivalent nodal forces for the ap-

plied tractions, equation (4.66) can now be written as

ˆ
s
δuTtdS = δuT

b Ft. (4.67)

4.3.5.4 Scaled boundary finite element equation in displacement

Considering equations (4.62), (4.65), and (4.67) for the strain energy, for the applied body

loads, and for the applied tractions a unified expression for equation (4.58) is obtained in

terms of the scaled boundary local coordinates as below.

δuT
b
(
E0u(ξ ),ξ |ξ=1 +ET

1 ub
)

...−
ˆ 1

0
δuT(ξ )(E0ξ

2u(ξ ),ξ ξ +(2E0 +ET
1 −E1)ξ u(ξ ),ξ

...+(ET
1 −E2)u(ξ ))dξ −

ˆ 1

0
δuT(ξ )Fbξ

2dξ −δuT
b Ft = 0. (4.68)

Equation (4.68) can be transformed into

δuT
b
(
E0u(ξ ),ξ |ξ=1 +ET

1 ub−Ft
)

...−
ˆ 1

0
δuT(ξ )(E0ξ

2u(ξ ),ξ ξ +(2E0 +ET
1 −E1)ξ u(ξ ),ξ

...+(ET
1 −E2)u(ξ ))dξ −

ˆ 1

0
δuT(ξ )Fbξ

2dξ = 0. (4.69)

by rearranging terms containing δu and δuT(ξ ). To satisfy equation (4.69) for all δu(ξ )

with 0 ≤ ξ ≤ 1 in all radial and circumferential directions, the following two conditions
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must be satisfied

δuT
b
(
E0u(ξ ),ξ |ξ=1 +ET

1 ub−Ft
)
= 0, (4.70)

and

ˆ 1

0
δuT(ξ )(E0ξ

2u(ξ ),ξ ξ +(2E0 +ET
1 −E1)ξ u(ξ ),ξ

...+(ET
1 −E2)u(ξ ))dξ −

ˆ 1

0
δuT(ξ )Fbξ

2dξ = 0. (4.71)

Equation (4.70) represents the nodal force-displacement relationship. Rearranging equa-

tions (4.70) and (4.71), the following conditions can be obtained

δuT
b
(
E0u(ξ ),ξ |ξ=1 +ET

1 ub−Ft
)
−
ˆ 1

0
δuT(ξ )Fbξ

2dξ = 0, (4.72)

and

ˆ 1

0
δuT(ξ )(E0ξ

2u(ξ ),ξ ξ +(2E0 +ET
1 −E1)ξ u(ξ ),ξ +(ET

1 −E2)u(ξ ))dξ = 0 (4.73)

Considering the arbitrariness of δu(ξ ), equation (4.73) can be rewritten to obtain the

scaled boundary finite element equation in displacement as follows

E0ξ
2u(ξ ),ξ ξ +(2E0 +ET

1 −E1)ξ u(ξ ),ξ +(ET
1 −E2)u(ξ ) = 0. (4.74)

4.3.6 Internal nodal forces on an arbitrary ξ

Equating the internal nodal forces q(ξ ) to the resultant of the surface tractions tξ on a

surface with a constant ξ produces the following relationship

δuT(ξ )q(ξ ) =
ˆ

S
δuT(ξ ,η ,ζ )tξ (η ,ζ )dSξ . (4.75)
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Substituting equations (4.56) and (4.46a) into equation (4.75) yields

δuT(ξ )q(ξ ) = δuT (ξ )

ˆ
S

NT
u (η ,ζ )tξ (η ,ζ )ξ 2gξ dηdζ . (4.76)

Substituting equation (4.50a) into equation (4.76) and using equation (4.55) and the arbit-

rariness of δu produces

q(ξ ) =
ˆ

S
NT

u (η ,ζ )bT
1 (η ,ζ )

(
D
(

B1(η ,ζ )u(ξ ),ξ +
1
ξ

B2(η ,ζ )u(ξ )
))

ξ
2|J|dηdζ

q(ξ ) =
ˆ

S
BT

1 (η ,ζ )D
(

B1(η ,ζ )u(ξ ),ξ +
1
ξ

B2(η ,ζ )u(ξ )
)

ξ
2|J|dηdζ . (4.77)

Using equations (4.60a) and (4.60b) in equation (4.77) gives

q(ξ ) = E0ξ
2u(ξ ),ξ +ET

1 ξ u(ξ ) . (4.78)

Based on equation (4.78), the following relationship for the internal nodal forces on the

boundary where qb = q(ξ = 1) is obtained.

qb= E0u(ξ ),ξ |ξ=1 +ET
1 ub (4.79)

4.3.7 Solutions of scaled boundary finite element equation for elasto-

statics

The virtual work derivation for the scaled boundary finite element equation in displace-

ment given in equation (4.74) is a second order homogeneous differential equation in

u(ξ ). To solve the scaled boundary finite element equation, equations (4.74) and (4.78)

are transformed into a system of first order ordinary differential equations by doubling the
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number of variables as follows

ξ

 ξ 0.5 u(ξ )

ξ−0.5 q(ξ )


,ξ

=−Z

 ξ 0.5 u(ξ )

ξ−0.5 q(ξ )

 , (4.80)

with the Hamiltonian coefficient matrix Z defined as

Z =

 E−1
0 ET

1 −0.5I E−1
0

−E2 +E1E−1
0 ET

1 −(E1E
−1

0 −0.5I)

 . (4.81)

The eigenvalues of Z are in pairs. For example (λ ,−λ ). A vector X is introduced as

follows

X(ξ ) =

 ξ 0.5 u(ξ )

ξ−0.5 q(ξ )

 (4.82)

Therefore equation (4.80) can be rewritten as

ξ X(ξ ),ξ =−ZX(ξ ) . (4.83)

Equation (4.83) can solved by eigenvalue decomposition or through Schur decomposition.

In this chapter, the procedure based on the Schur decomposition is explained.

4.3.7.1 Schur decomposition procedure

The details of the Schur decomposition procedure for the solution for the scaled boundary

finite element equation in statics can be found in [194]. First matrix Z is transformed into

a real Schur matrix S as follows

VTZV = S, (4.84)

where V is the real orthogonal transformation matrix. Considering matrix orthogonality,

VT = V. Therefore, the following is also true

ZV = VS (4.85)
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The matrices S produced is a quasi-upper triangular matrix in the following form

S =

 S11 S12

S22

 . (4.86)

The diagonal blocks in S are sorted in ascending order based on the real parts of their

eigenvalues. For the bounded domain, the real parts of all the eigenvalues of the Schur

matrix S11 are negative, i.e. Re(λ (S)) < 0. The Schur decomposition of the Hamilto-

nian matrix also possesses the property λ (S11) = −λ (S22), i.e. Re(λ (S22)) > 0. The

transformation V is also partitioned conformably similar to matrix S as

V =

 V11 V12

V21 V22

 . (4.87)

A vector Xm (ξ ) is introduced such that

X(ξ ) = VXm (ξ ) . (4.88)

Substituting equation (4.88) into equation (4.83) produces

ξ Xm (ξ ),ξ =−ZVXm (ξ ) . (4.89)

Pre-multiplying both sides with VT produces

ξ Xm (ξ ),ξ =−VTZVXm (ξ ) . (4.90)

Using equation (4.84), equation (4.90) can be written as

ξ Xm (ξ ),ξ =−SXm (ξ ) . (4.91)
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The general solution of equation (4.91) is in the form of

Xm (ξ ) = ξ
−Sc, (4.92)

where c are the integration constants.

4.3.7.2 Block-diagonalization of the Schur matrix

The procedure explained in [525] is followed to block-diagonalise the quasi-upper trian-

gular matrix S in equation (4.86). The procedure first involves pre-multiplying equation

(4.85) with Y−1 and post-multiplied with Y

Y−1SY = Y−1V−1ZVY,

Y−1SY = (YV)−1 ZVY, (4.93)

where Y is an upper triangular transformation matrix in the form of

Y =

 I Y12

I

 . (4.94)

Next, by multiplication of V and Y as follows an accumulated transformation matrix Ψ is

obtained as below.

Ψ = VY =

 V11 V11Y12 +V12

V21 V21Y12 +V22

 ,
Ψ =

 Ψ11 Ψ12

Ψ21 Ψ22

 . (4.95)

Equation (4.93) transforms to

Y−1SY = Ψ
−1ZΨ, (4.96)
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when VY is substituted by equation (4.95). Then to determine the sub-matrix Y12 in

equation (4.94) the following expression is required to be satisfied

Y−1SY =

 S11 0

0 S22

 . (4.97)

The right hand side of equation (4.97) is referred to as the block diagonalised version

of the S matrix (Sblock). This is because Sblock resembles S in equation (4.86) with sub-

matrices S11 and S22 with only one difference in S12 sub-matrix being 0. Therefore

Sblock =

 S11 0

0 S22

 . (4.98)

To determine the sub-matrix Y12 in equation (4.94), the expression in equation (4.97) is

rearranged as

SY = Y

 S11 0

0 S22

 . (4.99)

Substituting equations (4.86) and (4.94), into equation (4.99), then multiplying the matrices

on each side produces

 S11 S11Y12 +S12

0 S22

=

 S11 Y12S22

0 S22

 . (4.100)

The sub-matrix Y12 must be chosen in order for equation (4.100) to hold. Therefore, the

following equation must be satisfied

S11Y12 +S12 = Y12S22, (4.101)
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which can be rearranged as

S11Y12−Y12S22 =−S12. (4.102)

This last equation is in the form of Sylvester matrix equation. Therefore the solution for

Y12 can be obtained by a simple back substitution as the Schur sub-matrices S11 and S22

are quasi-upper triangular matrices.

Subsequently, the expression in equation (4.96) can be written using equation (4.97)

as

Ψ
−1ZΨ = Sblock. (4.103)

From here on the block diagonalised S matrix, Sblock will be referred to as just S in order

to simplify the notation. The equation (4.103) can be rearranged into

ZΨ = ΨS. (4.104)

The expanded form of equation (4.104) can be written as

 E−1
0 E

T

1−0.5I E−1
0

−E2 +E1E−1
0 E

T

1 −
(

E1E
−1

0 −0.5I
)

 Ψ11 Ψ12

Ψ21 Ψ22


=

 Ψ11 Ψ12

Ψ21 Ψ22


 S11 0

0 S22

 . (4.105)

Now a vector U(ξ ) is introduced where

X(ξ ) = ΨU(ξ ) . (4.106)
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Substituting equation (4.106) into equation (4.83) reveals

ξ ΨU(ξ ),ξ =−ZΨU(ξ ) . (4.107)

Pre-multiplying both sides with Ψ−1 produces

ξ U(ξ ),ξ =−Ψ
−1ZΨU(ξ ) . (4.108)

With the help of equation (4.103), equation (4.108) can be written as

ξ U(ξ ),ξ =−SU(ξ ) . (4.109)

The general solution of equation (4.109) must be in the form of

U(ξ ) =−ξ
−Sc, (4.110)

where c are the integration constants partitioned conformably as

c =

 c1

c2

 . (4.111)

4.3.7.3 Solution for the displacement functions on the radial lines

The solution for X(ξ ) in equation (4.106) can be written using the solution in equation

(4.110) as

X(ξ ) = Ψξ
−Sc. (4.112)
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Incorporating equations (4.82), (4.95), (4.98), and (4.111), equation (4.112) can be written

as

 ξ 0.5 u(ξ )

ξ−0.5 q(ξ )

=

 Ψ11 Ψ12

Ψ21 Ψ22

ξ

−

 S11 0

0 S22

 c1

c2

 . (4.113)

Expanding equation (4.113) reveals the general solutions for the displacements (u(ξ ))

and internal nodal forces (q(ξ )) as

u(ξ ) = Ψ11ξ
−S11−0.5Ic1 +Ψ12ξ

−S22−0.5Ic2 (4.114a)

q(ξ ) = Ψ21ξ
−S11+0.5Ic1 +Ψ22ξ

−S22+0.5Ic2 (4.114b)

The displacement solution must remain finite at the scaling centre i.e. u(ξ = 0) for a

bounded domain. This can only be achieved if c2 = 0. Therefore, for the bounded domain,

the solutions in equations (4.114a) and (4.114b) simplifies to

u(ξ ) = Ψ11ξ
−S11−0.5Ic1, (4.115a)

q(ξ ) = Ψ21ξ
−S11+0.5Ic1. (4.115b)

At the boundary where ξ = 1, equations (4.115a) and (4.115b) can be expressed as

ub = Ψ11c1, (4.116a)

qb = Ψ21c1. (4.116b)

The static stiffness matrix Ks of each subdomain can be formulated in terms of ub and

qb as

qb = Ksub (4.117)

by substituting equations (4.116a) and (4.116b) into equation (4.117), Ks can be written
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as

Ks = Ψ21Ψ
−1
11 . (4.118)

The integration constants c1 can be evaluated as

c1 = Ψ
−1
11 ub. (4.119)

Using equation (4.119), equations (4.115a) and (4.115b) can be written as

u(ξ ) = Ψ11ξ
−S11−0.5I

Ψ
−1
11 ub, (4.120a)

q(ξ ) = Ψ21ξ
−S11+0.5I

Ψ
−1
11 ub. (4.120b)

4.3.7.4 Solution for the strain and stress fields

The strain field is obtained by substituting equation (4.115a) into equation (4.53) as

ε(ξ ,η ,ζ ) = Ψε(η ,ζ )ξ−(S11+1.5I)c1, (4.121)

where the strain modes Ψε (η ,ζ ) are denoted as

Ψε (η ,ζ ) =−B1(η ,ζ )Ψ11(S11 +0.5I)+B2 (η ,ζ )Ψ11. (4.122)

The stress filed can be obtained using equations (4.55) and (4.115a)

σ(ξ ,η ,ζ ) = Ψσ (η ,ζ )ξ
−(S11+1.5I)c1, (4.123)

where the stress modes Ψσ (η ,ζ ) are given as

Ψσ (η ,ζ ) = D(−B1 (η ,ζ )Ψ11 (S11 +0.5I)+B2 (η ,ζ )Ψ11) . (4.124)
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4.3.7.5 Nodal forces on the boundary and the global matrices assembly

The virtual displacement field in the radial direction, δu(ξ ) can be written using equation

(4.120a) as

δu(ξ ) = Ψ11ξ
−S11−0.5I

Ψ
−1
11 δub. (4.125)

Substituting equation (4.125) into equation (4.72) yields

δuT
b
(
E0u(ξ ),ξ |ξ=1 +ET

1 ub−Ft
)

...−
ˆ 1

0

(
Ψ11ξ

−S11−0.5I
Ψ
−1
11 δub

)T
Fbξ

2dξ = 0,

δuT
b

(
E0u(ξ ),ξ |ξ=1 +ET

1 ub−Ft−
ˆ 1

0
Ψ
−T
11 ξ

−ST
11+1.5I

Ψ
T
11Fbdξ

)
= 0. (4.126)

By considering the arbitrariness of δub, equation (4.126) transforms into

E0u(ξ ),ξ |ξ=1 +ET
1 ub−Ft−

ˆ 1

0
Ψ
−T
11 ξ

−ST
11+1.5I

Ψ
T
11Fbdξ = 0. (4.127)

The fourth term on the left hand side of equation (4.127) is relevant to the equivalent

nodal forces from the body loads Fb. This term is denoted as Fbn as follows

Fbn =

ˆ 1

0
Ψ
−T
11 ξ

−ST
11+1.5I

Ψ
T
11Fbdξ . (4.128)

Considering equations (4.79) and (4.128), equation (4.127) can be expressed after re-

arrangement as

qb = FA, (4.129)

where

FA = Ft +Fbn. (4.130)
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Substituting equation (4.117) into equation (4.129) and rearranging produces

Ksub = FA. (4.131)

Judging by the equation (4.131) the contribution of the body loads only affect the nodal

force vectors. Therefore the solution of each polyhedral element can be evaluated in the

same way as in elastostatic problems with vanishing body loads (Fbn = 0).

The global stiffness matrix can be obtained by assembling the stiffness contributions

from the polyhedral elements in the same way as in FEM. A global equation can be

expressed as

KGU = P, (4.132)

where KG is the global stiffness matrix obtained from the assembly of all the polyhedral

elements’ stiffness matrices Ks, P is the global nodal force vector obtained from the as-

sembly of all the polyhedral elements’ nodal force vectors FA, and U are the global nodal

displacements of the whole problem domain. After introducing the boundary conditions,

a system of linear equations can be solved by direct solver or preconditioned conjugate

gradient (PCG) iterative solver [526] to obtain the displacements U.

It should be emphasized that the strain modes depend only on the geometry of the

subdomain. At the scaling centre of one subdomain, i.e. ξ = 0, all the strain modes

with the real parts of the eigenvalues Re(λ (S11)) 6=−1.5 vanish and only the modes with

Re(λ (S11)) = −1.5 lead to a non-zero strain. Consequently, the strains at the scaling

centre can be calculated by substituting equation (4.119) in equation (4.121)

εsc(ξ ,η ,ζ ) =
m

∑
j=1

Ψεj (η ,ζ )cj. (4.133)

where cj and Ψεj are the integration constants and strain modes corresponding to Re(λ (S11))=

−1.5 and m is the number of modes with Re(λ (S11)) =−1.5.
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4.4 Damage formulation in SBFEM

From a physical point of view, the material property of each point in the domain is in-

homogeneous even before the damage appearing, especially for concrete and geotechnical

materials. In the macroscopic level, for the sake of simplicity, the domain is always con-

sidered as homogeneous and uniform material properties are assumed. However, owing

to the non-integrity of structures and locally applied loading, damage inevitably emerges

from local parts of the domain, leading to a non-uniform degradation of material stiffness,

i.e. various severity of damage within a finite domain. From a numerical point of view, if

sufficiently small subdomains (elements) are used in the DPZ, as an approximation, the

damage degree can be assumed to be uniform in one subdomain. Consequently, the coef-

ficient matrix after damage can be obtained by substituting equation (3.1) into equation

(4.60a-4.60c) as

ED
0 = (1−ω)

ˆ
s
BT

1 (η ,ζ )DB1(η ,ζ )|J|dηdζ , (4.134a)

ED
1 = (1−ω)

ˆ
s
BT

2 (η ,ζ )DB1(η ,ζ )|J|dηdζ , (4.134b)

ED
2 = (1−ω)

ˆ
s
BT

2 (η ,ζ )DB2(η ,ζ )|J|dηdζ , (4.134c)

where ED
0 , ED

1 and ED
2 are counterparts of the coefficient matrix with the damage variable

ω of one subdomain.

Substituting equation (4.134a-4.134c) into equations (4.74) and (4.78), a similar mat-

rix as equation (4.81) can be obtained

ZD =

 E−1
0 ET

1 −0.5I (1−ω)−1E−1
0

(1−ω)
(
−E2 +E1E−1

0 ET
1
)
−
(
E1E−1

0 −0.5I
)
 . (4.135)

204



Using the properties of matrix, it can be proven that

SD =

 S11 0

0 S22

 , (4.136)

and

VD =

 V11 (1−ω)−1V12

(1−ω)V21 V22

 . (4.137)

Substituting equations (4.136) and (4.137) into equation (4.118), the stiffness matrix for

one subdomain with damage is given as

KD = (1−ω)Ks. (4.138)

Equation (4.136) and (4.137) also implies that the strain modes, i.e. equation (4.122), do

not change during the damage process. In each load step, only the integration constants

c should be updated according to the nodal displacement by using equation (4.119) and

subsequently the strain and stress field by using equations (4.121) and (4.123), respect-

ively.

The non-linear global equation system is obtained by assembling the stiffness matrix

of all subdomains as

KU = P, (4.139)

where K is the global stiffness matrix with damage. Equation (4.139) can be solved by

either implicit [479] or explicit [499] iterations. These two schemes are compared in order

to evaluate the accuracy and efficiency in section 4.6.
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4.5 Implicit scheme for damage simulation in the SBFEM

The implicit scheme presented in this section builds on the arc-length incorporated m-NR

method presented in chapter 3, section 3.6. The flowchart shown in figure 4.2 depicts

the steps involved when acceleration or damping is included in the m-NR method with

arc-length [527].
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Figure 4.2. Flowchart of the implicit scheme for damage simulation in the SBFEM. Im-
plementation of the acceleration and damping (line searches) m-NR method with arc-
length.

After attaining the spatial decomposition of the problem domain, an initial loop over
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all the subdomains is carried out to calculate the global elastic stiffness matrix (Ks) cor-

responding to the 0th load step for each subdomain. Along with this process the equivalent

strain ε̃ , internal variable κ , and the damage variable ω are all initialised for the scaling

centre formulation. The Gauss point weights are also calculated and stored according to

equations (3.14) and (3.15). Simultaneously, the damage variable is initiated to take up a

constant value within a subdomain and all the strain modes are computed and stored for

each subdomain in accordance with equation (4.122).

Apart from the first load step (i = 0), for a general (i+1)th load step the global elastic

stiffness matrix
(
Ki

G
)

is substituted by the damaged stiffness matrix, Ki from the previ-

ous converged load step i in accordance with equation (4.138). Next the external load

vector Pi+1
ext is formed and then the global system of equations are formulated by equation

(4.139). Thereafter a solution is sought with the help of the iterative m-NR formulation

explained in chapter 3, section 3.6. Here the general load step is taken as (i+1) and the

NR iteration step is considered as n.

At the end of each NR iteration the residual force norm ‖rn‖ is checked against the

user defined tolerance limit FTOL. Here priority is given to the arc-length incorporated

m-NR method to obtain a converged solution. At the event a converged solution is not

obtained within the permissible maximum number of NR iteration NMAX, the process

defaults to the accelerated/dampened line search technique. A logical check is conducted

to allow the process to migrate to this loop with the help of a switch on/switch off variable

LC-ON. When LC-ON=1, the process moves to the accelerated/dampened line search

technique.

The accelerated/dampened line search technique begins with evaluating the correction

to the displacement increment dan as

dan =
(
Ki)−1rn. (4.140)
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Afterwords, the accelerator parameter Xn is evaluated by

Xn =
−t0

t1− t0
, (4.141)

where, Xn is initialized as 1 (no acceleration) for n = 0 and for the iterations that fol-

low t0 = daT
n rn and t1 = daT

n rn+1. At the same time the step length (SLn) and the line

search counter (LSC) are both initialised to 1. With the parameters calculated thus far, the

displacement is then updated as

Un+1 = Un +Xn (SLn)dan. (4.142)

With this updated displacement Un+1 the residual force norm ‖rn+1‖ is checked against

the user defined tolerance limit FTOL. If converged the analysis proceeds to the next load

step by switching off LC-ON. If convergence is not attained, the step-length amplification

factor, φn is formed as φn =
t1
t0

. Here, φn needs to be less than the line search tolerance

LSTOL calculated by

|LSTOL|=
∣∣∣∣daT

n rn+1

daT
n rn

∣∣∣∣ . (4.143)

If LSTOL is not exceeded and the maximum user defined number of the line search count

(LSCmax) is not exceeded the step length SL is modified by φn as, SLn=φn (SLn). Then,

φn is updated to the previously calculated acceleration parameter Xn and a new damp-

ing/line search loop executed. In this work the maximum step-length amplification, at

each cycle, is set to ten. The process is repeated till a convergence is obtained within the

accelerated/dampened line search scheme.

4.6 Numerical examples

In this section, the 3D uniaxial tension beam problem (section 4.6.1) and the 3D damage

characterization in shear band problem (section 4.6.2) are two plain strain numerical ex-

amples selected from chapter 3 section 3.7 to validate the SBFEM formulation in 3D. The
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results compare the 3D load vs displacement output to the outputs obtained through the 2D

SBFE formulation in chapter 3 and also to that of previously published literature. The 3D

uniaxial tension beam problem also investigates the 3D behaviour of local and non-local

damage analysis formulations. In the next numerical example a three point bending prob-

lem is simulated and presented to further validate the 3D SBFEM in damage analysis by

comparing the outputs with a published simulation output of a three point bending beam

(see section 4.6.3). The three examples that follow: the double-notched tension beam,

the four-point bending beam with a central notch and the L-shaped specimen in sections

4.6.4, 4.6.5 and 4.6.6 respectively compare converged non-local results of the presented

formulation to that of experimental data available in published literature. These examples

also compare the results obtained through an explicit formulation (courtesy Zihua Zhang)

to that of an implicit formulation in SBFEM. The implicit and the explicit simulations are

both implemented in MATLAB and performed using an Intel Core i7 @3.4 GHz desktop

computer with 8 GB RAM.

4.6.1 Three dimensional uniaxial tension test

The example is extracted from the MSc Thesis [499] and was first introduced in section

3.7.1 of chapter 3 for the validation of the 2D damage formulation in SBFEM. The pur-

pose of this example is to demonstrate under plain strain conditions the validity of the 3D

damage formulation in SBFEM by comparing the results obtained through this formula-

tion to that of the plain strain 2D formulation. Similar to what was investigated in section

3.7.1 results of both local and non-local formulations are compared for this purpose. Fur-

thermore, the localization effects of local damage models in 3D space is also investigated

in this example.

The length of the model is set to 100 mm and the height considered to be 10 mm. The

dimensions are selected similar to the reference with an additional dimension of width

introduced for modelling a 3D simulation. To obtain a good aspect ratio in the meshed

elements the width of the specimen is set at 10 mm (refer figure 4.3). Therefore, the cross
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sectional area considered in the 3D analysis is 100mm2 compared to that of the assumed

10mm2 in the 2D formulation.

P

100

10

10

A

B

Figure 4.3. Specimen dimensions (mm) and boundary conditions used in the 3D uniaxial
tension test. Shaded area represent the imperfection.

To simulate uniaxial loading conditions the bar is clamped at one end with the opposite

end subjected to a prescribed displacement, incrementally applied as shown in figure 4.3.

Plain strain conditions are modelled by restricting movement on the faces transverse to

the direction of loading.

The 5 meshes used in this example are shown in figure 4.4. The meshes 1-5 consist

of 21, 51, 81, 101 and 201 elements equally distributed along the length of the member,

respectively.
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(a) Mesh 1 - 21 Elements

(b) Mesh 2 - 51 Elements

(c) Mesh 3 - 81 Elements

(d) Mesh 4 - 101 Elements

(e) Mesh 5 - 201 Elements

Figure 4.4. SBFE polyhedron meshes used in the local and non-local analysis of the 3D
uniaxial tension test.

The modulus of elasticity and the Poisson’s ratio are taken 30 GPa and 0.0 respect-

ively. The central element of the member is modelled to carry an imperfection by introdu-
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cing a weaker martial characteristic. Therefore the damage initiation threshold (ε0) for the

weaker material is set to 145×10−6 whereas for the rest of the elements ε0 is considered

as 150× 10−6. Figure 4.5 depicts the stress-strain variation for the weaker material by

considering the damage variables α - 0.95 and β - 100 in equation (4.3).

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.080

0.5
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4.5

σx10-3

ε

Figure 4.5. 1D element stress (GPa) vs strain profile considered in the 3D damage simu-
lation of the uniaxial tension test with respect to the softening law given in equation (4.3).

The stronger material is considered to have the damage parameters α and β similar

to the weaker material. The equivalent strain ε̃ is calculated according to the Mazar’s

definition given in equation (4.5).

This example is simulated using the displacement controlled accelerated/dampened

arc-length incorporated m-NR technique. The initial displacement step is set to 0.001

mm.

4.6.1.1 Local formulation

First to illustrate the mesh sensitivity of local damage models the simulation is run using

meshes 1, 2 and 3 in figure 4.4. The load-displacement output for the three separate

meshes is given in figure 4.6. The load is recorded on edge ‘AB’ whereas the displacement

is recorded at node ‘A’.

213



0.25

0.2

0.15

0.1

0.05

00  0.07 0.08

P

U
0.01 0.02 0.03 0.04     0.060.05

Figure 4.6. Load (kN)-deformation (mm) curves for meshes 1-3 in the 3D uniaxial tension
test. Comparison of the SBFEM with the reference output [499]. Local damage analysis
with assumed plain strain conditions simulated.

In order to compare the 3D results to that of the 2D results in chapter 3, the 2D

results are multiplied by 10 to account for the enlarged cross section adopted in the 3D

simulation.

When the mesh is gradually made finer from 21 elements to 81 elements in total, the

concentration of strains become larger at the weaker element as the individual element

width decreases. As the damage is dependent on the strains experienced by each member,

the locations with higher strains experience a higher damage. This creates a sharp vari-

ation in the three responses as the coarsest mesh develops damage slower compared to the

fine mesh. Therefore the results exhibit a trend of vanishing energy dissipation for smaller

mesh sizes. This pathological localization of damage is similar to what was predicted in

the local formulation in 2D.

Further to illustrate this phenomenon, contour plots for horizontal displacement, strain

and stress parallel to the axis of loading, and damage are shown figures 4.7, 4.8, 4.9 and

4.10, respectively. These contours are captured at a peak load (0.2176 kN) when the right

edge displacement is 0.0145 mm and just after peak load (0.06745 kN) when displacement

is 0.02066 mm for mesh 3 shown in figure 4.4.

The horizontal displacement contour shown in figure 4.7 depict the variation in dis-

placement distribution between pre (refer figure 4.7a) and post (refer figure 4.7b) damage

states. Till the simulation goes beyond the peak load the specimen behaves elastically and

214



therefore a linear distribution of displacement is seen from left hand constrained face to

the right hand face. However, immediately after the damage initiates in the central ele-

ment a non-linear distribution of displacement can be observed where the damaged central

element accounts for a large portion of the displacement experienced by the model.

(a) x-directional displacement (ux) con-

tour for mesh 3 when the right hand face

displacement is 0.0145 mm.

(b) x-directional displacement (ux) con-

tour for mesh 3 when the right hand face

displacement is 0.02066 mm.

0.0000e+00 5.1750e-03 1.0350e-02 1.5525e-02 2.0700e-02

Figure 4.7. x-directional displacement (ux) contours obtained for the local damage ana-
lysis of the 3D uniaxial tension test. Units:mm. Results obtained for mesh 3 consisting of
81 elements.

With the initiation of damage the strains in the central element increase as the central

element gradually loses its strength. This effect can be seen in the contour shown in figure

4.8b where the higher strains are localised within the weaker element. As the central

damaged element undergo larger deformations the rest of the elements tend to elastically

unload to their original undeformed state as the material softens.

(a) x-directional strain (εxx) contour for

mesh 3 when the right hand face dis-

placement is 0.0145 mm.

(b) x-directional strain (εxx) contour for

mesh 3 when the right hand face dis-

placement is 0.02066 mm.

1.45000e-04 1.75875e-03 3.37250e-03 4.98625e-03 6.60000e-03

Figure 4.8. x-directional strain (εxx) contours obtained for the local damage analysis of
the 3D uniaxial tension test. Results obtained for mesh 3 consisting of 81 elements.

The overall stress distribution from peak load (figure 4.9a) to the post-peak load in-
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stance (figure 4.9b) show the expected trend in unloading.

(a) x-directional stress (σxx) contour for

mesh 3 when the right hand face dis-

placement is 0.0145 mm.

(b) x-directional stress (σxx) contour for

mesh 3 when the right hand face dis-

placement is 0.02066 mm.

1.3460e-03 2.0973e-03 2.8485e-03 3.5997e-03 4.3510e-03

Figure 4.9. x-directional stress (σxx) contours obtained for the local damage analysis of
the 3D uniaxial tension test. Units:GPa. Results obtained for mesh 3 consisting of 81
elements.

Finally the damage distribution shown in figure 4.10a and 4.10b, provides justification

to the elastic behaviour observed in the previous contours in the undamaged state and the

non-linear softening behaviour seen after the peak load when damage has occurred in the

specimen. The characteristic of the localised damage band in the central element can be

clearly seen in contour 4.10b.

(a) Damage (ω) contour for mesh 3

when the right hand face displacement

is 0.0145mm

(b) Damage (ω) contour for mesh 3

when the right hand face displacement

is 0.02066mm)

0.0000 0.2500 0.5000 0.7500 1.0000

Figure 4.10. Damage (ω) contours obtained for the local damage analysis of the 3D
uniaxial tension test. Results obtained for mesh 3 consisting of 81 elements.

4.6.1.2 Non-local formulation

As explained in chapter 3, to obtain a mesh independent behaviour in the model a non-

local regularisation scheme is enforced. Material and damage parameters considered for
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the local analysis of the model remain unchanged.

Similar to the 2D formulation the Gaussian non-local averaging function given in

equation (4.16) is used with the non-local interaction radius R taken as 6 mm. The results

obtained through the 3D SBFEM formulation are given in figure 4.11. The numerical

analysis is carried out using meshes 2, 3, 4 and 5 shown in figure 4.4.
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Figure 4.11. Load (kN)-deformation (mm) curves for meshes 2-5 in the 3D uniaxial
tension test. Comparison of the SBFEM with the reference output [499]. Non-local
damage analysis with assumed plain strain conditions simulated.

The force-displacement plots in figure 4.11 have nearly identical post peak softening

behaviour for all 4 mesh sizes. With the regularisation, the effective strain field in dam-

age calculation remains the same irrespective of the mesh configuration. The Gaussian

weighting function distributes the localised strains proportional to the distance to each

Gauss point. When the strain gradients are well captured through increasing the number

of elements the results tend converge to a common result for all meshes. Hence we can

fairly conclude the model is mesh independent. This stability in the model behaviour is

much advantageous compared to the use of local models.

The contour plots given in figures 4.12, 4.13, 4.14 and 4.15 are respectively for the

horizontal displacement (ux), x-directional strain (εxx) , x-directional stress (σxx), and

damage (ω) evolution. These contours are captured at a peak load (0.22479 kN) when

the right hand face displacement is 0.01538 mm and just after peak load (0.2194 kN) when

the free end displacement is 0.042 mm. Refer to the load-displacement output figure 4.12

to appreciate the significance of these instances.
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As expected the displacement variation (see figures 4.12a and 4.12b) shows a linear

behaviour up until damage initiates in the model. Thereon it is apparent the bar exhibits a

non-linear behaviour.

(a) x-directional displacement (ux) con-

tour for mesh 5 when the right hand face

displacement is 0.01538 mm.

(b) x-directional displacement (ux) con-

tour for mesh 5 when the right hand face

displacement is 0.042 mm.

0.0000e+00 1.0250e-02 2.0500e-02 3.0750e-02 4.1000e-02

Figure 4.12. x-directional displacement (ux) contours obtained for the non-local damage
analysis of the 3D uniaxial tension test. Units:mm. Results obtained for mesh 5 consisting
of 201 elements.

Figures 4.13a and 4.13b show the evolution of axial strain. It can be observed that

strains localize in a band which is dictated by the interaction radius. The significance of

the interaction radius is such that, the larger the radius selected the wider the influence of

damage is spread across the specimen.

(a) x-directional strain (εxx) contour for

mesh 5 when the right hand face dis-

placement is 0.01538 mm.

(b) x-directional strain (εxx) contour for

mesh 5 when the right hand face dis-

placement is 0.042 mm.

1.49800e-04 5.41850e-04 9.33900e-04 1.32595e-03 1.71800e-03

Figure 4.13. x-directional strain (εxx) contours obtained for the non-local damage analysis
of the 3D uniaxial tension test. Results obtained for mesh 5 consisting of 201 elements.

The (σxx) stress contours in figures 4.14a and 4.14b show evidence of the post peak

softening behaviour observed in the analysis. The stress in the elements drops from 4.5
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GPa to 4.1 GPa between the two displacement instances (U= 0.01538 mm and U= 0.042

mm) as the material exhibits strain softening induced by damage degradation.

(a) x-directional stress (σxx) contour for

mesh 5 when the right hand face dis-

placement is 0.01538 mm.

(b) x-directional stress (σxx) contour for

mesh 5 when the right hand face dis-

placement is 0.042 mm.

4.1050e-03 4.2038e-03 4.3025e-03 4.4012e-03 4.5000e-03

Figure 4.14. x-directional stress (σxx) contours obtained for the non-local damage ana-
lysis of the 3D uniaxial tension test. Units:GPa. Results obtained for mesh 5 consisting
of 201 elements.

Figure 4.15 shows the undamaged state of the specimen at peak load and the regu-

larised damage distributed over the region governed by the non-local Gaussian averaging

technique used. Compared to localised damage evolution depicted in figure 4.10 the dam-

age distribution in the non-local model helps to eliminate the mesh sensitivity in the loc-

alised formulation.

(a) Damage (ω) contour for mesh 5 when

right hand face displacement is 0.01538 mm.

(b) Damage (ω) contour for mesh 5 when the

right hand face displacement is 0.042 mm.

0.0000 0.2500 0.5000 0.7500 1.0000

Figure 4.15. Damage (ω) contours obtained for the non-local damage analysis of the 3D
uniaxial tension test. Results obtained for mesh 5 consisting of 201 elements.

Similar to what was observed in the 2D formulation the specimen analysed through the

non-local model show negligible mesh sensitivity. Therefore moving forward the integral-

type non-local modelling is the preferred choice as it overcomes the many pitfalls of the
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mesh dependent local models.

4.6.2 Three dimensional damage characterization in shear band

The second plain strain example considered in this chapter models the formation of a

classical collapse mechanism of a shear band found in many geomaterials. This example

was first simulated in 2D in chapter 3, section 3.7.4. The main objective of this example

is to compare the accuracy of the 3D formulation by comparing the results to that of the

2D results previously obtained in chapter 3. The simulation is run with reference to the

publication by Simone [507] on explicit and implicit gradient-enhanced damage models.

Furthermore, certain challenges faced in the description of shear bands are avoided by

referring to an earlier publication [511] by the same author which highlights issues related

to the use of gradient type continuum damage models for predicting the propagation of

shear bands.

The dimensions and boundary conditions used in the model are depicted in figure

4.16a. The height and width of the model is kept at 60 mm with the thickness of the plate

considered to be 1 mm. The quasi-static shear band formation simulated in this numerical

analysis is triggered by an imperfection placed in the left bottom corner of the plate. This

imperfection is modelled with an introduced weaker section as shown (refer figure 4.16a)

in the shaded part of the plate with dimensions height, width and thickness set to 3×6×1

mm, respectively.
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h/20

(a) Specimen in biaxial compres-

sion, where h = 60. The shaded

part indicates the imperfection.

Units:mm.

(b) SBFE mesh with uniform

1 mm cubic polyhedral ele-

ments.

Figure 4.16. Geometry and boundary conditions, and SBFE mesh for the 3D shear band
problem. Figure 4.16a, dimensions h×h×1, where h = 60 mm. The shaded part indic-
ates the imperfection; imperfection size is h/10 × h/20. Figure 4.16b depicts the SBFE
polyhedral mesh.

The boundary conditions are set such that the bottom face of the plate is restrained in

vertical movement. In addition the left corner nodes resist the movement in the horizontal

direction. The vertical downward force is applied on the top face inducing a compressive

force. To model plain strain conditions faces transverse to the direction of loading are

also restricted in movement. The SBFE polyhedral mesh shown in the sub-figure 4.16b

consists of 3600 elements of 1×1×1 mm to ensure a sufficient resolution of the non-local

field.

The material properties considered for the analysis are as shown in table 4.1.
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E (GPa) ν ε0 α β l(mm)

Plate 20 0.2 1×10−4 0.99 300 2

Imperfection 20 0.2 5×10−5 0.99 300 2

Table 4.1. Material properties considered in the modelling of the 3D non-local damage
characterization of a shear band.

For both the plate and the imperfection, the material properties of the Young’s mod-

ulus and Poisson’s ratio are considered to be identical. The exponential evolution law

given in equation (4.3) is adopted with identical α and β values used for both types of

material. However, for the weaker imperfection a reduced damage initiation threshold ε0

is considered. Figure 4.17 depicts the 1D element stress-strain relationship considered as

per the softening law given in equation (4.3) for the material parameters used to model

the imperfection.
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Figure 4.17. 1D element stress (GPa) vs strain profile considered in the 3D damage char-
acterization in shear band with respect to the softening law given in equation (4.3), for the
weaker material with ε0 = 5×10−5.

The equivalent strain criteria considered for the analysis is the von Mises equivalent

strain criteria given in equation (4.11). The Gauss weighting function given in equation

(4.3) is used to calculate the non-local weights. The non-local length scale is kept con-

sistent at 2 mm for both the materials.

A displacement control analysis is carried out with an initial displacement step of

1×10−3 mm. The automatic acceleration and damping incorporated m-NR method with
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arc-length technique is run for 426 load steps to produce the output load-displacement

curve shown in figure 4.17. The total force on the top edge of the plate is plotted against

the absolute vertical downward displacement recorded at the centre of the top edge of the

plate.
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Figure 4.18. Load (kN)-deformation (mm) curves for the 3D simulation of the shear band.
Comparison of the SBFEM with the reference output.

Figure 4.18 compares the proposed 3D formulation to the results of the reference finite

element simulation given in [507]. The results obtained agree well with the reference

solution confirming the accuracy of the formulation.

The contour plots in figures 4.19 and 4.20 are respectively for von Mises stress and

the damage formation. These plots are presented for the instance at peak load when the

top edge displacement is 0.00656 mm, after peak load when the top edge displacement is

0.03 mm, and at end of simulation when the top edge displacement is 0.0812 mm.

The von Mises non-local equivalent strain plots in figure 4.19 show the initial strain

localisation of the plate and the gradual formation of the high strain concentrated shear

band. As expected in relation to the reference [508] these figures also depict further

localisation within the shear band after initiation of the shear band.
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(a) At peak load when top

edge displacement is 0.00656

mm.

0.00007 0.00014 0.00021 0.00028 0.00035

(c) After peak load when

top edge displacement is 0.03

mm.

(d) At end of simulation

when top edge displacement

is 0.0812 mm.

0.00000 0.00607 0.01215 0.01822 0.02430

Figure 4.19. Von Mises equivalent strain contours obtained in simulation of the 3D non-
local damage characterization in shear band. Results obtained for the mesh shown in
figure 4.16b.

The damage formation shown in figure 4.20, follow a similar pattern to the von Mises

strain contours shown in figure 4.19. The shear band migrates from the weak spot, where

it is initiated and then progress through the elements in the left hand bottom corner till it

then gradually moves diagonally towards the mid right hand edge.
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(a) At peak load when

top edge displacement is

0.00656mm.

(b) After peak load when

top edge displacement is

0.03mm.

(c) At end of simulation

when top edge displacement

is 0.0812mm.

0.0000 0.2500 0.5000 0.7500 1.0000

Figure 4.20. Damage (ω) evolution contours obtained in simulation of the 3D non-local
damage characterization in shear band. Results obtained for the mesh shown in figure
4.16b.

The simulation represents accurately the shear band propagation in a 3D model of

a plate under compressive loading. The results obtained are agreeing to both the 2D

simulation in chapter 3 section 3.7.4 and the reference solution [507].

4.6.3 Three dimensional three point bending problem

The third example is extracted from [479] where strain localisation problems are investig-

ated using integral-type non-local continuum damage models. The example explores the

behaviour of a simply supported concrete beam loaded by a central concentrated force.
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The objective of this example is to validate the SBFEM-based 3D non-local damage for-

mulation and also to exemplify the ability of the arc-length incorporated acceleration and

damping m-NR technique to overcome limit points in the post peak softening limb.

The example simulated in this section consist of geometry and boundary conditions as

shown in figure 4.21. The beam is 600 mm long 62.5 mm wide and 200 mm in depth. A 4

mm central notch is located midspan up to a depth of 50 mm to induce a weaker section of

the beam where damage can initiate in the analysis. The left bottom edge is restrained in

horizontal (x) and vertical (y) directional movement and the bottom right edge is retrained

in vertical movement.

50

298

298

4

62.5
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P

200

Figure 4.21. Dimensions (mm) and boundary conditions for the 3D non-local damage
analysis of the three point bending problem.

In order to develop a similar model to that of the reference the mesh shown in fig-

ure 4.22 consists of 40,397 nodes with 121,191 DOFs. Each subdomain is modelled as

SBFEM polyhedral element. To ensure compatibility between polyhedral elements of

different sizes, only the surfaces between polyhedral elements are discretised with a com-

bination of triangular and quadrilateral elements.
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Figure 4.22. SBFE polyhedral mesh for the 3D non-local damage analysis of the three
point bending problem. Minimum mesh size 1 mm.

The constitutive properties are set to; Young’s modulus E = 30 GPa and Poisson’s ratio

as ν = 0.18. The damage model given in equation (4.2) with tensile strength ( ft) as 2 MPa,

local dissipation density g f as 28.9 kJ/m3, where; ft = ε0×E and g f = ft
(
ε f − ε0/2

)
.

With respect to these parameters the 1D stress-strain relationship is as shown in figure

4.23.
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Figure 4.23. 1D element stress (GPa) vs strain profile considered in the 3D non-local
damage analysis of the three point bending problem with respect to the softening law
given in equation (4.2).

The equivalent strain is calculated using the equation (4.10). The non-local interac-

tion radius R is set to 6 mm for the bell shaped truncated quartic polynomial function in

equation (4.17).

The simulation was run using the automatic accelerating and damping m-NR with

arc-length technique for 1324 load steps with an initial load step of 0.001 kN. The load-

displacement curve in figure 4.24 plots the centrally applied force against the vertical

downward displacement of the beam. Figure 4.24 further illustrates the SBFEM 3D dam-
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age formulations conformity with the results presented in reference [479]. The curve at-

tains a peak load of 7.116 kN at a central top edge displacement of 0.127 mm and softens

gradually there on.
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Figure 4.24. Load (kN)-deformation (mm) curves for 3D non-local damage simulation
for the three point bending problem. Comparison of the SBFEM with the reference FEM
output.

It is evident the force-displacement output obtained in this present formulation is cap-

able of closely tracing the complete softening behaviour overcoming the limit points en-

countered at instances beyond the simulation end point of the reference solution.

The contour plots in figures 4.25, 4.26 and 4.27 depict the variation in y-directional

displacement, x-directional stress and damage evolution respectively. Each sub-figure

captures a snapshot in the simulation at point ‘A’ (refer figure 4.21) displacements of

0.127 mm, 0.332 mm and at 1.34 mm.

The y-directional displacement contour plots in figures 4.25 represent the symmetrical

loading conditions applied to the model. As the load is applied central to the mid top face

of the beam directly above the notch, the central portion of the beam experiences the

maximum amount of deformation as anticipated.
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(a) At peak load when vertical dis-

placement at node ‘A’ is 0.127 mm.

(b) After peak load when vertical dis-

placement at nodes ‘A’ is 0.332 mm.

(c) At end of simulation when vertical

displacement at node ‘A’ is1.34 mm.

-0.03780 0.30665 0.65110 0.99555 1.34000

Figure 4.25. y-directional displacement contours for the 3D non-local damage analysis of
a beam under three point loading. Units:mm. Results obtained for mesh in figure 4.22.

The stress contours parallel to the axis of the beam shown in figure 4.26 depicts the

initial high stress concentration in the immediate vicinity of the notch (see figure 4.26a)

and the gradual softening (see figures 4.26b-4.26c).
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(a) At peak load when vertical displace-

ment at node ‘A’ is 0.127 mm.

(b) After peak load when vertical displace-

ment at node ‘A’ is 0.332 mm.

(c) At end of simulation when vertical dis-

placement at node ‘A’ is 1.34 mm.

-0.01094 -0.00775 -0.00455 -0.00136 0.00184

Figure 4.26. x-directional stress (σx) contours for the 3D non-local damage analysis of a
beam under three point loading. Units:GPa. Results obtained for mesh in figure 4.22.

The final damage evolution contour plots shown in figure 4.27 shows the formation of

a narrow damage band.

(a) At peak load when vertical dis-

placement at node ‘A’ is 0.127 mm.

(b) After peak load when vertical dis-

placement at node ‘A’ is 0.332 mm.

(c) At end of simulation when vertical

displacement at node ‘A’ is 1.34 mm.

0.0000 0.2500 0.5000 0.7500 1.0000

Figure 4.27. Damage (ω) contours for the 3D non-local damage analysis of a beam under
three point loading. Results obtained for mesh in figure 4.22.
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The degradation initiates from the notched area and gradually migrates towards the

top loading edge of the beam. This is the most likely crack path as seen in experiments

performed by Kormeling and Reinhardt [502] and by Grassl et al. [503]. Due to symmetry

of the process zone the failure mechanism corresponds to pure mode-I fracture.

The final deformed shape is as shown in figure 4.28.

Figure 4.28. Final deformed shape obtained in the 3D non-local damage analysis of a the
three point bending beam.

4.6.4 Double-notched tension beam

The mesh-independence of the proposed approach is verified by the simulation of a plain

concrete beam with two notches under direct tension. The experiments of Hordijk [528]

on lightweight concrete have been taken as a reference. This problem is widely investig-

ated to test the mesh-independence of numerical methods [480, 529–531].

The dimensions and boundary conditions are shown in figure 4.29. The beam is 125

mm in height, 60 mm in depth and 50 mm in width.
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Figure 4.29. Dimensions (mm) and boundary conditions for the 3D non-local damage
analysis of a double-notched tension beam.

In order to initialize failure of the specimen, the beam is weakened by two notches

with cross-sections 5.0 × 5.0 mm. As demonstrated in reference [531], the numerical

results of this example are strongly dependent on the applied boundary conditions. For the

sake of simplicity, we only consider the situation in symmetry. Consequently, the bottom

surface of the beam is fixed in the vertical direction and the displacement is applied to the

top surface.

In order to investigate the mesh-independence of the proposed approach, two different

SBFE meshes are employed, as shown in figure 4.30.
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(a)                                                                (b)

Figure 4.30. SBFE mesh configurations for the 3D non-local damage analysis of a double-
notched tension beam. (a) Mesh-1 and (b) mesh-2.

The details of these two meshes are listed in table 4.2. It can be noted, mesh 2 gener-

ates almost 75% more unknowns in the simulation compared to mesh 1.

The model parameters, taken from [528], are as follows: Young’s modulus E =

18 GPa, Poisson’s ratio ν = 0.2, exponential damage evolution law (equation (4.3)) with

α = 0.96 and β = 350, ε0 = 2.1×10−4. With regard to these parameters the 1D stress-

strain behaviour of the model is shown in figure 4.31.
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Figure 4.31. 1D element stress (GPa) vs strain profile considered in the 3D non-local
damage analysis of a double-notched tension beam with respect to the softening law given
in equation (4.3).

The modified von Mises definition of the local equivalent strain (refer equation (4.12))

with k = 10 is used in the analysis. Note that the gradient parameter c was set to 1 mm2 in

[517], the internal length for Gauss weight function is approximated as 2.2 mm according

to the relationship between gradient damage model and non-local damage model [301].

The analysis was conducted by the implicit arc-length incorporated damage ana-

lysis scheme with automatic accelerating and damping capabilities. The experiments by

Hordijk [528] were performed under servo-control, with the average deformation over the

fracture zone, δ as the control parameter. δ was measured by four pairs of extensometers

with gauge length 35 mm, as indicated in figure 4.29. This parameter is also computed

during the simulation and compared with experimental results. As seen in figure 4.32 in

this simulation the analysis was run till the recorded average displacement δ is 0.06 mm.

The number of load steps required for the analysis was 105 with maximum number of

iterations per load step being 8.
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Figure 4.32. Stress (MPa) vs average deformation (mm) curves for 3D non-local dam-
age simulation of the double-notched tension beam. Comparison of the SBFEM implicit
formulation with the reference FEM output and the SBFEM explicit formulation.

The computational statistics for the analysis is listed in table 4.2. The implicit and the

explicit schemes produce strikingly similar results. Both methods demonstrated capability

to map the complete softening behaviour. On average between the two meshes the explicit

analysis scheme performed almost 20% faster than the implicit scheme.

Mesh No. of

subdo-

mains

No. of

DOFs

Smin

(mm)

Smax

(mm)

Computational time

(sec.) for the

implicit formulation

Computational time

(sec.) for the

explicit formulation

1 6,200 24,504 2.5 10 4,556 3,797

2 26,080 97,875 1.25 10 36,051 29,550

Table 4.2. Computational statistics for the 3D non-local damage analysis of a double-
notched tension beam.

Figure 4.32 shows the stress vs average deformation obtained by the proposed ap-

proach and experiment results from [528]. The deformation is represented by the average

elongation of the 35 mm measuring-section, δ , and the stress is the engineering stress

with respect to the smallest cross-section of the beam, i.e. between the notches. It can

be observed that the results of the proposed approach remarkably agree with those of

experiments, not only at the linear stage but also in the softening regime. Owing to the

heterogeneity of concrete, the experimental curve inevitably becomes tortuous, as ob-
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served in experimental and numerical studies [480]. It can also be observed in figure 4.32

that the results of mesh 1 and mesh 2 agree well with each other, which indicates the

results converge to a solution with finite energy dissipation. It can be concluded that the

proposed approach is mesh-independent as sufficient subdomains (two layers or more) are

involved in the range of internal length. The explicit and the implicit analysis schemes

show conformity to one another. Both the analysis techniques attain a peak stress of 3.27

MPa when δ = 0.0063 mm.

Figure 4.33 contains contours for y directional displacement of mesh 2 at peak load

when average displacement is at 0.0063 mm, after peak load when average displacement

is at 0.0134 mm and finally at end of simulation when average displacement is at 0.06

mm. With the increase in damage in the notched region of the beam the deformation of

the top section of the beam increases as expected.
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(a) At peak load when

average displacement

(δ ) is 0.0063 mm.

(b) After peak load

when average displace-

ment (δ ) is 0.0134

mm.

(c) At end of simulation

when average displace-

ment (δ ) is 0.06 mm.

-0.00040 0.02220 0.04480 0.06740 0.09000

Figure 4.33. y-directional displacement contours for the 3D non-local damage analysis of
a double-notched tension beam. Units:mm. Results obtained for mesh 2 in figure 4.30b.

Figure 4.34 shows the von Mises stress contours under three different deformation

states. In order to observe the variation of the distribution of stress across the section,

only half of the beam is shown. It can be seen that during the loading regime, the high

stress regions emerge around the notches and extend to the central portion of the section.

After the peak-load, the beam begins to undergo the unloading regime and the high stress
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regions shrink.

(a) At peak load when

average displacement

(δ ) is 0.0063 mm.

(b) After peak load

when average dis-

placement (δ ) is

0.0134 mm.

(c) At end of simulation

when average displace-

ment (δ ) is 0.06 mm.

0.00000 0.00150 0.00300 0.00450 0.00600

Figure 4.34. Von Mises stress contours for the 3D non-local damage analysis of a double-
notched tension beam. Units:GPa. Results obtained for mesh 2 in figure 4.30b.

Figure 4.35 shows the damage evolution corresponding to the same load steps as in

figure 4.33. It can be observed that the damage originates at the border of the weakened

section and then propagates to the centre of the beam. At the peak-load, about half of

the section is damaged in different degrees. When δ reaches 0.06 mm, almost the whole

section is damaged.
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(a) At peak load when

average displacement

(δ ) is 0.0063 mm.

(b) After peak load

when average displace-

ment (δ ) is 0.0134 mm.

(c) At end of simulation

when average displace-

ment (δ ) is 0.06 mm.

0.0000 0.2500 0.5000 0.7500 1.0000

Figure 4.35. Damage (ω) evolution contours for the 3D non-local damage analysis of a
double-notched tension beam. Results obtained for mesh 2 in figure 4.30b.

The final deformation of the beam 200 times magnified is given in figure 4.36. It can

be seen that the vertical deformation of the beam is mostly contributed by the weaken

portion and a necking phenomenon exists in this portion due to the formation of a the

damage zone.
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Figure 4.36. Final deformed shape obtained in the 3D non-local damage analysis of
a double-notched tension beam. Results obtained for mesh 2 in figure 4.30b. Scaling
factor:200.

4.6.5 Four-point bending beam with a central notch

As the fifth example, the behaviour of a four-point bending beam is simulated as shown in

figure 4.37. Compared with the three-point bending beam, the four-point bending beam

has no support in the damage zone so that no compressive stresses would be introduced

parallel to the damage zone. This example is experimentally investigated by Hordijk

[528] and numerically simulated by Pamin and de Borst [532] and Simone et al. [533],

respectively.

The overall dimensions length, depth and width of the beam are set to 500, 100 and

50 mm, respectively. A 5 mm notch is centrally located to induce damage initiation at

the centre of the beam. The depth of the notch L = 10 mm as used in the experimental

program.
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Figure 4.37. Dimensions (mm) and boundary conditions of the 3D non-local damage
analysis of a four-point bending beam.

The beam has support conditions modelled 25 mm from the bottom edges of the beam.

The left hand support is a pinned support which restrains vertical and horizontal move-

ment, whereas the right hand support is a roller support that restrains only the vertical

movement. The vertical loads are applied 150 mm from the centreline of each support.

Figure 4.38. SBFE mesh configuration for the 3D non-local damage analysis of a four-
point bending beam.

The SBFE mesh used in the analysis is as shown in figure 4.38. The mesh consists of

11,190 subdomains with 51,567 DOFs. It should be noted that the central portion of the

beam are refined with small-sized subdomains owing to the expected damage evolution

in this region. Plates are used in the top and bottom face of the beam to apply the loading

and the displacement restraining boundary conditions.

The following model parameters, ‘fitted’ for the continuous problem, are adopted for

the simulation [532]: Young’s modulus E = 40 GPa; Poisson’s ratio ν = 0.2; modified

exponential damage evolution law (equation (4.3)) with ε0 = 7.5×10−5 , α = 0.92 and β
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= 300. In relation to these parameters the 1D element stress-strain behaviour considered

in the simulation is as shown in figure 4.39.
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Figure 4.39. 1D element stress (GPa) vs strain profile considered in the 3D non-local
damage analysis of a four-point bending beam with respect to the softening law given in
equation (4.3).

The plates are modelled by assuming stiffer material properties, Young’s modulus E

= 1000 GPa; Poisson’s ratio ν = 0.2. The modified von Mises definition of the local

equivalent strain (equation (4.12)) with k = 10 is considered to emulate realistic concrete

material properties. To implement the non-local scheme the truncated weight function in

equation (4.17) is adopted with the internal radius R = 10 mm.

The load-displacement diagrams obtained in the analysis are plotted in figure 4.40. As

an indicator of the deflection, the vertical displacement of point ‘A’ (see in figure 4.37)

located at the bottom of the beam and with a distance of 7.5 mm from the centreline of

the beam is measured.
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Figure 4.40. Load (kN)-deformation (mm) curves for 3D non-local damage simulation of
the four-point bending beam. Comparison of the SBFEM implicit formulation with the
experimental results and the SBFEM explicit formulation.
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Here the experimental results are from reference [528]. It can be observed that the

results of the proposed approach agree well with experimental results. The simulations

attains a peak load of 3.79 kN at a displacement of 0.067 mm. As expected there is a

strong agreement between the outputs obtained by the explicit and the implicit schemes.

Table 4.3 compares the efficiency of the two analysis techniques.

Mesh No. of

subdo-

mains

No. of

DOFs

Smin

(mm)

Smax

(mm)

Computational time

(sec.) for the

implicit formulation

Computational time

(sec.) for the

explicit formulation

1 11,190 51,567 2.5 10 8,764 7,967

Table 4.3. Computational statistics for the 3D non-local damage analysis of a four-point
bending beam.

In this instance it is found the explicit scheme completes the analysis almost 10%

faster than the implicit scheme. Both techniques seem to be able to trace the full softening

curve without any difficulty.

The vertical y directional displacement, x directional stress and damage evolutions are

shown in figure 4.41, figure 4.42 and figure 4.43, respectively.

The symmetrically distributed displacement contours in figure 4.41 indicate the sym-

metric boundary and loading conditions applied in the model.
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(a) At peak load when vertical displacement

at ‘A’ is 0.065 mm.

(b) After peak load when vertical displace-

ment at ‘A’ is 0.202 mm.

(c) At end of simulation when vertical dis-

placement at ‘A’ is 0.445mm.

-0.05100 0.07750 0.20600 0.33450 0.46300

Figure 4.41. y-directional displacement contours for the 3D non-local damage analysis of
the four-point bending beam. Units:mm. Results obtained for mesh shown in figure 4.38.

It can be seen from figure 4.42 that the high stress regions emerge around the corners

of notch. The high stress regions gradually propagate towards the loading face along with

the damage front shown in figure 4.43.

(a) At peak load when vertical displace-

ment at ‘A’ is 0.065 mm.

(b) After peak load when vertical dis-

placement at ‘A’ is 0.202 mm.

(c) At end of simulation when vertical

displacement at ‘A’ is 0.445 mm.

-0.01540 -0.01078 -0.00615 -0.00153 0.00310

Figure 4.42. x-directional stress (σx) contours for the 3D non-local damage analysis of
the four-point bending beam. Units:GPa. Results obtained for mesh shown in figure 4.38.

The high strain localisation around the notch results in the damage zone build up
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around the notch and then propagates along the centreline of the beam.

(a) At peak load when vertical displace-

ment at ‘A’ is 0.065 mm.

(b) After peak load when vertical dis-

placement at ‘A’ is 0.202 mm.

(c) At end of simulation when vertical

displacement at ‘A’ is 0.445 mm.

0.0000 0.2500 0.5000 0.7500 1.0000

Figure 4.43. Damage (ω) contours for the 3D non-local damage analysis of the four-point
bending beam. Results obtained for mesh shown in figure 4.38.

Figure 4.44 shows the final deformed shape of the beam magnified by 100.

Figure 4.44. Final deformed shape obtained in the 3D non-local damage analysis of
the four-point bending beam. Results obtained for mesh shown in figure 4.38. Scaling
factor:100.

It can be observed that the central portion has completely failed when the DPZ reaches

the top surface of the beam, whereas the deformation of the rest of the beam is negligible.

4.6.6 Three dimensional analysis of an L-shaped specimen

The classical benchmark of the L-shaped concrete specimen (see figure 4.45) is simu-

lated to further demonstrate the performance of the present method. This geometry was

experimentally tested and simulated using smeared crack model by Winkler et al. [534].

Dumstorff and Meschke [535], Huang and Yang [490] simulated this benchmark in 2D

245



by using XFEM and cohesive element, respectively. Jäger et al. [536] and Radulovic

et al. [537] attempted to model this problem in 3D through a purely deformation-based

strategy and embedded strong discontinuity approach, respectively.

The specimen is created off a thick 100 mm plate. The original dimensions of the plate

are 500×500 mm. To create the distinct L shape of the model the lower right quarter of

the plate is removed. The left bottom face of the specimen is fully restrained in x,y and z

movement while the agitation inducing the structural response is introduced as a line load

30 mm from the bottom right free end.
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250 250

250

100
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P

A

Figure 4.45. Dimensions (mm) and boundary conditions of the 3D non-local damage
analysis of a L-shaped specimen.

The SBFE mesh, as shown in figure 4.46, consists of 24,080 subdomains and 89,142

DOFs. The size of the smallest subdomain used for this example is 5 mm and the largest

one is 20 mm. Considering that the damage would evolve almost horizontally from the

concave corner of the specimen, the mesh is refined in this region correspondingly.
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Figure 4.46. SBFE mesh configurations for the 3D non-local damage analysis of a L-
shaped specimen.

The model parameters are as follows: Young’s modulus E = 25.85GPa; Poisson’s ratio

ν = 0.18. The exponential damage evolution law presented in equation (4.3) is considered

with ε0 = 1.05×10−4 , α = 0.96 and β = 250. In relation to these parameters the 1D

element stress-strain behaviour is as shown in figure 4.47.
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Figure 4.47. 1D element stress (GPa) vs strain profile considered in the 3D non-local dam-
age analysis of an L-shaped specimen with respect to the softening law given in equation
(4.3).

The equivalent strain is calculated using the modified von Mises definition given in

equation (4.12) with k= 10. The truncated weight function (equation (4.17) ) with internal

radius R = 10 mm is used. The plate introduced to apply the load without generating

an abnormal stress concentration is assumed to have Young’s modulus E = 1000 GPa;

Poisson’s ratio ν = 0.18.
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Figure 4.48 records the load-displacement curves from the present explicit and im-

plicit formulation and experiments with three specimens. The load P resembles the total

vertical load applied to induce the agitation and the vertical displacement is captured at

point ‘A’ with reference to figure 4.45. The total vertically upward displacement applied

is 1.6 mm.

0 0.5 1 1.5 20

2

4

6

8

U

P

-Experiment test 1
-Experiment test 2
-Experiment test 3
-SBFEM explicit
-SBFEM implicit

Figure 4.48. Load (kN)-deformation (mm) curves for 3D non-local damage simulation
of the L-shaped specimen. Comparison of the SBFEM implicit formulation with the
experimental results and the SBFEM explicit formulation.

A satisfactorily consistent result can be observed between the trends of the proposed

approach and experiments. The explicit and the implicit formulation produce almost

identical results. The simulation reaches its maximum load of 7.067 kN prior to softening

at a displacement of 0.198 mm. It should be noted that in this case, the crack initiating

load and crack path is strongly dependent on the meso-structure of the concrete, espe-

cially the locations and shapes of the aggregates in the failure region [490]. Based on the

homogeneous model, the simulated results of numerical model are inevitably different

from the experimental observation although the same material properties are assumed.

Mesh No. of

subdo-

mains

No. of

DOFs

Smin

(mm)

Smax

(mm)

Computational time

(sec.) for the

implicit formulation

Computational time

(sec.) for the

explicit formulation

1 24,080 89,142 5 20 29,861 28,439

Table 4.4. Computational statistics used in the 3D non-local damage analysis of a L-
shaped specimen.
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The implicit scheme requires 29,861 seconds to reach to the 0.64 mm displacement

reading (see table 4.4). Compared to the explicit formulation the time recorded is 4.7%

slower. However, it is clear in this instance the implicit formulation is capable of tra-

cing the complete softening behaviour unlike the explicit scheme which fails to progress

beyond the the displacement value of 0.64 mm.

Figure 4.49 shows displacement magnitude at peak load when vertical displacement

at ‘A’ is 0.198 mm and after peak load when vertical displacement at ‘A’ is 0.3 mm and at

end of simulation when vertical displacement at ‘A’ is 1.6 mm.

(a) At peak load when ver-

tical displacement at ‘A’ is

0.198 mm.

(b) After peak load when

vertical displacement at ‘A’

is 0.3 mm.

(c) At end of simulation

when vertical displacement

at ‘A’ is 1.6 mm.

0.00000 0.44500 0.89000 1.33500 1.78000

Figure 4.49. Displacement magnitude contours for the 3D non-local damage analysis of
an L-shaped specimen. Units:mm. Results obtained for mesh shown in figure 4.46.
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The von Mises stress contours in the three different stages are shown in figure 4.50.

(a) At peak load when ver-

tical displacement at ‘A’ is

0.198 mm.

(b) After peak load when

vertical displacement at ‘A’

is 0.3 mm.

(c) At end of simulation

when vertical displacement

at ‘A’ is 1.6 mm.

0.00000 0.00180 0.00360 0.00540 0.00720

Figure 4.50. Von Mises stress contours for the 3D non-local damage analysis of an L-
shaped specimen. Units:GPa. Results obtained for mesh shown in figure 4.46.

Owing to the stress singularity, the highest stress appears around the concave corner

of the specimen at the beginning. Thereafter the high stress region extends diagonally to

the upper part of the specimen. After the peak-load, it can be observed that the high stress

region moves horizontally to the left boundary of the specimen.

Correspondingly, the damage evolutions are depicted in figure 4.51. It can be seen

that the DPZ propagates upwards from the concave corner to the left-top of the specimen

during the loading stage and then horizontally until the end of the simulation.
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(a) At peak load when ver-

tical displacement at ‘A’ is

0.198 mm.

(b) After peak load when ver-

tical displacement at ‘A’ is 0.3

mm.

(c) At end of simulation

when vertical displacement

at ‘A’ is 1.6 mm.

0.0000 0.2500 0.5000 0.7500 1.0000

Figure 4.51. Damage (ω) contours for the 3D non-local damage analysis of an L-shaped
specimen. Results obtained for mesh shown in figure 4.46.

Figure 4.52 compares the simulated DPZ using present method to the experimental

and numerical crack path in the literature. It is apparent in figure 4.52a the location of

DPZ predicted by the present method agrees well with the crack path obtained by Winkler

et al. [534] (in 2D). The slight difference from the experimental observation seen in figure

4.52b might be caused by the heterogeneous property of real concrete as mentioned above.
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Experimental crack path

(a) Experimental crack path compared

to the damage evolution at the end of

simulation when vertical displacement

at ‘A’ is 1.6 mm.

Winkler's simulation

(b) Numerical results from Winkler et

al. [534] compared to the damage evol-

ution at the end of simulation when ver-

tical displacement at ‘A’ is 1.6 mm.

Figure 4.52. Comparison of the simulated crack path obtained in the 3D non-local dam-
age analysis of an L-shaped specimen with the (a) experimental crack path and the (b)
numerical results from Winkler et al. [534].

0.0000 0.2500 0.5000 0.7500 1.0000

Figure 4.53 shows the final deformed shape of the specimen. Here it is apparent that

the failure of the specimen actually initiates from the top of the left leg and then extends

layer by layer. Finally, the macro crack propagates horizontally to the left boundary.
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Figure 4.53. Final deformed shape when vertical displacement at node ‘A’ is 1.6 mm
obtained in the 3D non-local damage analysis of an L-shaped specimen. Results obtained
for mesh shown in figure 4.46. Scaling factor:100.

4.7 Conclusions

This chapter has undertaken the detailed presentation of the extension of the scaled bound-

ary finite element formulation in damage analysis of problems in the three dimensional

space. This extension incorporates a non-local damage analysis framework where the ill

effects of local damage formulations are avoided. The non-local formulation adopts an

enriched continuum description to avoid strain localization to a single element. This en-

richment was achieved by introducing a length parameter to regularize the localization

process by introducing damage dispersion.

Some advantages of SBFEM are the ability to compute the strain modes and the

weight functions prior to the iterative damage analysis process, and the scaling centre

estimation of damage variable based on the assumption of uniform damage distribution

in one subdomain are exploited to facilitate the damage simulation. A logical verification

process was undertaken in the numerical simulation presented in this section. Comparis-

ons were first made with plain strain problems for validation of the proposed 3D damage

modelling technique. The technique was then compared with examples and laboratory
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experiments found in published literature. These numerical simulations show that the pro-

posed non-local approach possesses the characteristic mesh-independent behaviour when

sufficient subdomains are included in the internal averaging radius. Concluding from the

examples presented in this chapter at least two layers or more are recommended in the

non-local averaging scheme to achieve mesh-independent congruent results. The bench-

marks are simulated to verify the effectiveness and robustness of the proposed approach,

and good agreement with the experimental observations and numerical simulations are

obtained.

The accelerated and dampened m-NR technique with arc-length formulation is robust

to handle various types of problems. The load vs deflection curves obtained through the

method follows the accurate damage process very close to failure. In some numerical

simulations the efficiency of implicit accelerated/dampened NR method was compared

to the explicit analysis technique. The former revealed accurate results by following the

equilibrium path closely whereas the explicit technique in some examples failed at limit

points. The overall efficiency of the explicit technique was superior to that of the implicit

method. However, the efficiency between the two methods become almost similar in

complex problems as the explicit scheme required smaller load steps to overcome limit

points.

The result of this study reveals that the SBFEM is a competitive tool to simulate the

damage process of structures in the three dimensional space.
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Chapter 5

Two and Three Dimensional Automatic

Image-Based Damage Analysis with the

Scaled Boundary Finite Element

Method

5.1 Introduction

In the modern age there are many non-invasive imaging techniques such as X-ray, Com-

puted Tomography (CT) scans, Magnetic Resonance Imaging (MRI), and ultrasound, that

aid in obtaining non-intrusive high resolution images of objects. Image-based analysis

provides an attractive approach for various numerical analysis by using an image ob-

tained mesh by assessing the colour intensities produced by the geometrical information

and the material distribution of the object. This technique is more commonly known as

image-based analysis. In this study reference is made to publications in material char-

acterization [97, 103, 104, 113] where techniques such as the level set coupled eXten-

ded Finite Elements Method (XFEM) are applied to solve microstructures with complex

geometries and homogenization analysis of composite materials, fracture analysis [109]
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where an image-based process is implemented to simulate quasi-static crack propagation

with the XFEM, and biomedical applications [106–108, 115], where image-based finite

element analysis is adopted to analyse the trabecular bone structure, the human femur and

the lumbar spine.

The aim of this chapter is to present a robust, automatic, and efficient approach for

damage analysis using the SBFEM based damage analysis formulation developed in

chapters 3 and 4. This chapter investigates and presents the image-based analysis tech-

nique by combining the SBFEM with a quadtree or octree mesh generation algorithm for

two dimensional (2D) or three dimensional (3D) images respectively.

The technique developed here attempts to reduce the Degrees Of Freedom (DOFs)

through automatically created meshes which saves tremendous human effort typically re-

quired for solving complex problems in material and structural damage analysis. The

automatic mesh generation algorithm significantly reduces the time and effort typically

required to produce an acceptable mesh, especially within the vicinity of the Damage

Process Zone (DPZ). Geometrical features of different scales are conveniently captured

and modelled through the quadtree and octree structures. These two structures are mod-

elled by scaled boundary polygonal elements and polyhedral elements in quadtree and

octree mesh development respectively. The requirement of a visible boundary from the

scaling centre is always satisfied. The issue of hanging nodes encountered in the FEM

is eliminated in the SBFEM process since one edge or face can be divided into multiple

line or surface elements. As only the boundary of the cells require discretisation, the

process is simple. Quadtree and octree structures are employed to discretise the domain

with multi-level sizes of subdomains without any extra effort to deal with hanging nodes

existing between adjacent subdomains of different sizes [72,489]. The refinement of local

regions are controlled by certain parameters, and the transition between large and small

size subdomains is fast and straightforward. In SBFEM, a problem domain can be dis-

cretised by a set of subdomains with various sizes and different number of edges. The

use of 1D and 2D shape functions to model respectively 2D and 3D problems reduces
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the spatial dimensions by one degree. It should be noted heirachical mesh generation

structures are adopted in FEM to the algorithms salient advantage to transition between

different cell sizes efficiently [88]. However, displacement incompatibility is inevitably

introduced by the hanging nodes presented between adjacent cells with different sizes. In

order to deal with such a problem, complex shape functions are required for cells with

hanging nodes [538] or further discretise the cell with tetrahedralised cells [539].

This chapter starts off with section 5.2 which describes the quadtree and octree de-

composition of an image. Then in section 5.3 the process of identifying the cell type and

discretisation of each cell on the boundary is described. The next section, section 5.4 ex-

plains the numerous damage models. This section also includes a discussion on the effects

of non-local averaging over multi-material interfaces. Moving on, section 5.5 presents a

summary of SBFEM to analyse quadtree and octree meshes and in section 5.6 solution

procedures for geometrically similar cells are detailed for both two and three dimensional

space. Section 5.7 illustrates the SBFE formulation in damage analysis. Penultimately,

in section 5.8 two and three dimensional numerical examples are presented. Finally, the

concluding remarks are given in section 5.9.

5.2 Quadtree and octree decomposition of an image

In image-based analysis images are automatically decomposed on their colour intensity.

This section outlines this procedure carried out by evaluating the colour intensity of pixels

(2D) or voxels (3D) of an image. Quadtree (in 2D) and octree (in 3D) are hierarchical

mesh generations structures adopted to segment the image to square and cubic cells, re-

spectively. The explanations that follow assume that an image has been segmented and

stored in a digital file format.
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5.2.1 Quadtree decomposition

Quadtree is a spatial decomposition method, which was first developed by Finkel and

Bentley [540]. The process of quadtree decomposition starts from a square containing

the problem domain. The square is the first cell of the quadtree structure, which is also

called the root. Based on specified stopping conditions, the root is recursively subdivided

into four new cells. In each subdivision, newly generated cells are called the children of

the subdivided cell whereas the subdivided cell is called the parent. A cell without any

children is called a leaf. Leaves of a quadtree structure discretise the problem domain into

a number of subdomains which are later used as a mesh for analysis.

A typical quadtree structure with three levels is shown in figure 5.1.

Level 1

Level 2

Level 3

Figure 5.1. A typical three level quadtree structure. Colours blue, green and orange
represent 3 different types of material.

In the first root level of the quadtree, three distinctive types of colours (blue, green

and orange) can be seen. The children of this root cell are obtained in the second level

of quadtree fragmentation. This level yields three leaves containing only the blue colour

and one cell containing the colours green and orange. The latter cell therefore requires

further quadtree decomposition due to the presence of dissimilar materials. This produces

the level three decomposition which yields four leafs constituting three children in green

colour and one child in orange colour. Further decomposition is not required beyond this

point as each child contains only one type of material.

The image decomposition process starts with storing the colours of each pixel in an

image colour matrix Iori. Here a pixel is represented as a square domain of size h×
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h where h is the image sampling interval. If the matrix Iori is not a square matrix of

dimensions 2n, where n is a positive integer such that n≥ 0, then a bounding background

is introduced to create a 2n× 2n matrix Ibound . To differentiate the background from the

image the background colour is chosen different to the colour intensities appearing in Iori.

Thereafter the quadtree decomposition process is carried out on Ibound .

Figure 5.2 illustrates the image decomposition process according to the colour intens-

ities appearing in the image. For this example an image of size 6×7 pixels is considered.

The colour intensities extracted from the image are assembled in the matrix Iori shown in

figure 5.2b. These colour intensities are assumed to fall within a scale of 0 to 20, where 0

represents the darkest colour and 20 represents the lightest colour in the image. The mat-

rix Iori is overlapped on a background matrix of size 23× 23 creating Ibound . The value

100 of the newly introduced matrix elements is chosen outside of the colour intensity

scale assumed for the image.
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(a) A sample 2D image with a size

of 6 × 7 pixels.
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(b) Iori of size 6× 7 represent-

ing colour intensities of the im-

age.
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(c) Ibound of size 8×8 with an introduced back-

ground.

Figure 5.2. Image decomposition of (a) a sample 2D image to produce (b) Iori of size
6× 7 and (c) Ibound of size of 8× 8. In Ibound the rows 6-8 and column 8 are filled with
the background colour intensity of 100.

The quadtree mesh generation starting from the matrix Ibound is executed by first di-

viding Ibound into cells of a maximum cell edge length of Smax. Here Smax is a user defined

parameter. After this initial subdivision each cell is tested for homogeneity. A user defined

parameter Crelative is considered for this process. Crelative is input to the process as a value

ranging from 0 to 1. This value is first multiplied by the range of the actual colour in-

tensity scale of the image and rounded to the nearest integer to produce a value Cactual .

Therefore Cactual is reflective of the colour intensities present in an image. The cells are

recursively divided into four equal-sized cells if the difference between the maximum and
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minimum colour intensities in a cell is larger than Cactual . The process terminates when

the homogeneity criterion is satisfied or when the cells reach the minimum user defined

cell edge length of Smin.

As per the example considered in figure 5.2, the actual colour intensity range is 21

since the intensity scale ranges from 0 to 20. Assuming Crelative = 0.1 yields Cactual = 2.

Taking Smax and Smin respectively as 4 and 1 produces the quadtree mesh shown in figure

.
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4 4 4 4 10 8 8 100

20 20 20 16 16 12 12 100

20 20 20 16 16 12 12 100

100 100 100 100 100 100 100 100
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Figure 5.3. Recursive quadtree decomposition of Ibound shown in figure 5.2c. Cactual = 2,
Smax = 4 and Smin = 1.

As seen in figure 5.3, depending on the value set for the parameter Cactual there can

be instances where pixels of different colours are present in the same cell. If this is an

unsuitable outcome as per the expected accuracy for the analysis, Cactual can be set to

zero to refine the mesh generation to represent exactly the colour intensities available in

the image.

Next, specifically for the purpose of limiting the number cell patterns produced in the

quadtree decomposition process a limiting 2 : 1 rule is enforced. This ensures the max-

imum edge length ratio between two neighbouring cells is not greater than 2. This process

reduces the number of cell patterns available in the analysis enabling pre-computation of

the subdomain stiffness matrices of a handful of cell types reducing the computational
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burden. The balanced quadtree decomposition of figure 5.3 is shown in figure 5.4.

4 4 4 4 10 10 16 100

4 4 4 4 10 10 16 100

4 4 4 4 9 10 8 100

4 4 4 4 10 8 8 100

20 20 20 16 16 12 12 100

20 20 20 16 16 12 12 100

100 100 100 100 100 100 100 100

100 100 100 100 100 100 100 100

Figure 5.4. The balanced quadtree decomposition of the mesh shown in figure 5.3 after
enforcing the 2 : 1 rule. Cactual = 2, Smax = 4 and Smin = 1.

5.2.2 Octree decomposition

An image-based octree decomposition approach is used to generate the 3D meshes re-

quired for damage simulation. The process of octree decomposition starts from a cube

containing the problem domain. The first cubic cell of the octree structure is also called

the root. Based on specified stopping conditions, the root is recursively subdivided into

eight new cells. Similar to the quadtree decomposition, newly generated cells are called

“children” of the subdivided “parent” cell. A cell without any children is called a leaf.

Leaves of an octree structure discretise the problem domain into a number of subdomains

which are later used as a mesh for analysis.

A typical octree structure with three levels is shown in figure 5.5. The colours blue,

green and orange represent 3 different types of material present in the domain.
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Level 1

Level 2

Level 3

6

6

Figure 5.5. A typical three level octree decomposition. Colours blue, green and orange
represent 3 different types of material.

The initial root cell is divided into eight cubic cells in the second level of decom-

position. One cubic cell in this initial fragmentation is composed of different material.

Therefore in the level three decomposition the green and orange cells are separated from

one another.

The octree decomposition is developed on similar principles to that of the quadtree

decomposition. The 2D image slices are stacked to build the 3D image. A voxel similar

to a pixel in 2D represents a cubic domain of size h×h×h, where h is the image sampling

interval. The matrices Iori and Ibound are constructed similar to the 2D process where

Iori is fitted into a cubic bounding image matrix of size 2n× 2n× 2n to create Ibound .

Then the process of octree decomposition recursively divides Ibound into eight equal sized

cubic cells. Any cell that does not fall within the the criterion for homogeneity is further

subdivided until homogeneity is achieved or the minimum user defined cell edge length

of Smin is reached. Similar to the quadtree decomposition the octree decomposition also

considers the balancing process by enforcing the 2 : 1 rule.

A simple octree decomposition of a bar element is demonstrated in figure 5.6. The

slender domain is 20 mm in length and 4 mm in breadth and height. A central prismatic

portion highlighted in red 2 mm in length and height and 4 mm width is assumed to

contain a different material. The octree structure is controlled by two user-defined para-
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meters, maximum cell edge size Smax = 4 and the minimum cell edge size Smin = 1. To

start the mesh generation, the domain is equally divided into five cells with size Smax = 4

as shown in figure 5.6b. Then the cells within the red region are subdivided until the cell

sizes are equal to Smin = 1, which is shown in figures 5.6c-5.6d. This process is carried

out to isolate the red pigmented portion of the bar into separate cells. Finally, the 2 : 1

balancing constraint is enforced on the octree structure in order to make the transition

of mesh relatively smooth. The final mesh based on the proposed algorithm is shown in

figure 5.6e.

4
2

2

4

(a) (b)

(c) (d)

(e)

20

Figure 5.6. Octree decomposition of a bar element. Central prismatic portion marked in
red indicate a different type of material.

5.2.3 Material assignment for each quadtree or octree cell

The material assignment procedure follows the balanced quadtree decomposition shown

in figure 5.4. The colour intensities in each cell in figure 5.4 is first averaged and rounded

up to the nearest positive integer to obtain the representative colour intensity of a cell. This

step is as shown in figure 5.7a. Thereafter, material assignment takes place according to

a user defined colour intensity range for each material.
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4 4 4 4 10 10 16 100

4 4 4 4 10 10 16 100

4 4 4 4 9 9 8 100

4 4 4 4 9 9 8 100

20 20 20 16 16 12 12 100

20 20 20 16 16 12 12 100

100 100 100 100 100 100 100 100

100 100 100 100 100 100 100 100

(a) The average colour intensity for each cell in figure 5.4.

A A A A A A B C

A A A A A A B C

A A A A A A A C

A A A A A A A C

B B B B B B B C

B B B B B B B C

C C C C C C C C

C C C C C C C C

(b) The material classification for each cell in figure

5.7a.

Figure 5.7. Quadtree and octree material assignment process. (a) Calculation of the
average colour intensity for each cell and (b) material assignment for each cell.

As shown in figure 5.7b material A is classed for all colour intensities ranging from

0−10, material B belongs to colour intensities ranging from 10−20. Any colour intensity

greater than 20 is classed as the background and designated as material C.

To obtain the final quadtree or octree decomposition the background (material type C)

is removed as a final step. The final decomposition for the image in figure 5.2a is shown

in figure 5.8.
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A A A A A A B

A A A A A A B

A A A A A A A

A A A A A A A

B B B B B B B

B B B B B B B

Figure 5.8. The final quadtree decomposition for the image in figure 5.2a. The letters A
and B indicating the different material types.

5.3 Quadtree and octree cell patterns

The previous sections, section 5.2.1 and section 5.2.2 describe the process of quadtree

and octree mesh generation starting from a simple image. The application of the 2 : 1 rule

limits the number of different patterns of node arrangements among the elements pro-

duced although the cells can be of different size. This section describes the identification

procedure of these unique cell patterns for the SBFE analysis framework later highlighted

in this chapter.

In 2D analysis mid-side nodes may exist on the edges of cells. In the 3D space in

addition to the mid-side nodes mid-face nodes in the centre of a cell face can also occur.

These nodes are commonly referred to as hanging nodes in conventional literature. A

typical 2D balanced quadtree decomposition with hanging nodes is shown in figure 5.9a.

On the other hand, figure 5.9b depicts a balanced octree decomposition with hanging

nodes. Hanging nodes create mesh incompatibilities in the conventional square (2D) or

hexahedral (3D) element mapping processes in standard FEM.
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(a) (b)
-Hanging Node
-Corner Node

Figure 5.9. Hanging nodes occurring in (a) a segmented balanced quadtree image and (b)
a segmented balanced octree image.

5.3.1 Patterns of quadtree cells

Owing to the SBFEM salient capability to handle hanging nodes a mesh typically con-

sisting of hanging nodes as shown in figure 5.9a can be directly used in a analysis without

further modification. This ability stems from SBFEM capability to model cells as poly-

hedral elements. The maximum number nodal configurations for a balanced quadtree

mesh structure is 16. The size of these cell patterns can vary. However they are propor-

tional to each other. This feature allows the user to pre-compute stiffness for different

types of cell structures.

A four digit binary storage format is used to conveniently store the edge information.

An edge consisting a hanging node is given binary 1 else binary 0.

-Hanging Node
-Corner Node

L1

L4

L2

L3

Figure 5.10. Edge numbering and binary coding of cell pattern for storing hanging node
information in a quadtree mesh generation.

Figure 5.10 shows a typical cell generated in the meshing process with four edges L1

- L4. The numbering convention is always set such that the first two numbers L1 and

L2 represent bottom and top edges respectively, and the preceding numbers L3 and L4
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represents left and right edges respectively. Thus, for this example the stored binary cell

information will be 0101. This additional step to identify the types of cells is advantage-

ous moving forward when dealing with large problems that have large number of cells by

reducing the storage requirements.

When rotational symmetry is considered, the number of cell patterns reduce from 16 to

6 unique types shown in figure 5.11. The identification of these unique cell patterns makes

the meshing process extremely simple and quick as most procedures can be performed

simultaneously for cells of the same unique node arrangement.

-Hanging Node
-Corner Node

Type 1 Type 2 Type 3

Type 4 Type 5 Type 6

Figure 5.11. 6 types of unique node arrangements of a balanced quadtree decomposition
by considering rotational symmetry.

5.3.2 Patterns of octree cells

Polyhedral elements are employed by the SBFEM to model the balanced octree decom-

position explained in section 5.2.2. To carry out the method it only requires the 6 squares

faces of the boundary to be discretised with surface elements. The work presented here

employs standard triangular and quadrilateral 2D finite elements for this purpose.

As shown in figure 5.12 there are 6 types of surface discretisation patterns for different

hanging nodes configurations on the face of an octree. In types 1, 2 and 5 a central node is

introduced to accommodate the hanging node configuration. This additional node avoids
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any changes to the other faces of the cell as the discretization of the edges is not modified.

The procedure produces only isosceles triangular and rectangular elements on the octree

cell faces. A 2D Gauss-Lobatto quadrature integration scheme can produce exact results

for all such elements and thus considered in this work.

-Hanging Node
-Corner Node
-Added Node

Type 1 Type 2 Type 3

Type 4 Type 5 Type 6

Figure 5.12. 6 types of surface discretization in a balanced octree decomposition on a
face of an octree cell.

To identify different cell patterns it is only required to check the hanging node con-

figurations in each of the 12 edges. Midpoint nodes can occur in any of the 12 edges of

an octant. Therefore in total 4096 (212) unique cell nodal configurations are plausible.

Despite this large number of cell patterns geometrically similar cells produce identical

or proportional matrices to each other. Noting also, types 5 and 6 in figure 5.12 have

identical surface discretisation even though the hanging node configurations are different.
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L1

-Hanging Node
-Corner Node

L2

L3

L4

L5
L6

L7 L8

L9
L10

L12
L11

Figure 5.13. Edge numbering and binary coding of cell pattern for storing hanging node
information in octree mesh generation.

Similar to the information storage pattern in quadtree mesh generation a twelve digit

binary number is used to save the octree hanging node information. The binary 0 and 1

values represents a side without and with a mid-side node, respectively. The eight edges

are labelled as L1-L12. The numbering pattern is as shown in figure 5.13. Therefore for

the illustration shown in figure 5.13 the binary number 101000010100 represents the cell

pattern.

5.4 Damage model for concrete

This section presents a condensed outline of the damage model for concrete. For a detailed

explanation the reader can refer to chapter 3 section 3.2.

5.4.1 Evolution of damage

This chapter considers two damage evolution laws for the single scalar isotropic damage

model described in section 3.2.2. The first is the linear softening model which is described

as

ω =


0 if κ ≤ ε0

ε f
ε f−ε0

(
1− ε0

κ

)
if ε0 < κ < ε f

1 if κ ≥ ε f

(5.1)

where, ε0 is the threshold of damage, and ε f is a parameter affecting the ductility of the

response which is related to the fracture energy.
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The second type of relationships are exponential softening models. Two types of

exponential softening models are considered in this chapter. The first model is defined as

ω =


0 if κ ≤ ε0

1− ε0
κ

exp
(
−(κ−ε0)

ε f−ε0

)
if κ > ε0.

(5.2)

The second model is a modified definition of the exponential softening model proposed

by Geers et al. [481] defined as

ω =


0 if κ ≤ ε0

1− ε0
κ
(1−α +α× exp(−β (κ− ε0))) if κ > ε0.

(5.3)

The definition of the equivalent strain directly affects the shape of the elastic domain

in the strain space. The equivalent strain could be defined in an energy norm as

ε̃ =

√
1
E

ε : D : ε . (5.4)

However, such a definition is not sensitive to the sign of the principal strains, and the

model exhibits a symmetric behaviour in tension and in compression. As a remedy, Maz-

ars and Pijaudier-Cabot [461] have proposed a definition for concrete as

ε̃ =

√√√√ 3

∑
i=1

(< εi >)2, (5.5)

with εi representing the principal strains and the MacAulay brackets (<>) defined such

that < εi >= εi if εi > 0 and εi = 0 otherwise. This allows the model to consider only the

tension producing principal strains in the analysis.

Also, the more conventional von Mises equivalent strain definition is as follows

ε̃ =
1

1+ν

√
3Jε

2 , (5.6)
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where, ν is the Poisson’s ratio, Jε
2 is the second invariant of the deviatoric strain vector

defined as

Jε
2 =

1
3
[ε2

xx + ε
2
yy + ε

2
zz− εxxεyy + εyyεzz + εzzεxx +3(ε2

xy + ε
2
yz + ε

2
zx). (5.7)

Another widely used definition of equivalent strain for concrete is proposed by De Vree

et al. [497] and termed as modified von Mises definition, which is given by

ε̃ =
k−1

2k(1−ν)
Iε
1 +

1
2k

√
(k−1)2

(1−2ν)2 (I
ε
1 )

2 +
12k

(1+ν)2 Jε
2 (5.8)

in which k is normally set equal to the ratio between the compressive uniaxial strength

and the tensile uniaxial strength, ν is the Poisson’s ratio, Iε
1 the first invariant of the strain

vector defined below and Jε
2 the second invariant of the deviatoric strain vector and defined

in equation (5.7)

Iε
1 = εxx + εyy + εzz. (5.9)

5.4.2 Integral-type non-local damage models

With reference to section 3.2.4, the non-local damage model implemented in this chapter

uses the Gauss distribution weight function defined by [250]

α0(r) = exp
[
− d2

2l2

]
, (5.10)

in which l is the internal length of the non-local continuum.

Another alternative form of weight function is a truncated quartic polynomial function

in bell-shape given in [477]

α0(r) =
〈

1− d2

R2

〉2

. (5.11)

In equation (5.11), R is the interaction radius related to the internal length and denotes

the largest distance of point θ that affects the non-local average at point x. The Gauss
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distribution function can also be written in terms of the interaction radius as

α0(r) = exp
[
−4d2

R2

]
(5.12)

5.4.3 Discussion on non-local averaging over different material inter-

faces

In this section the effect of non-local averaging over different types of material is invest-

igated in detail. This discussion is quite vital especially in instances where multi-material

interfaces can influence the damage process zone. A typical example for which is con-

crete. Concrete in most instances modelled by considering the presence of aggregate,

mortar and also the presence of inter-facial transition zone (ITZ).

To begin the discussion a two element model is considered with each element having

a Young’s modulus considerably different to the other.

As shown in figure 5.14 a simple model of a plate with dimensions 2× 1 mm is

considered for this analysis. Therefore each element is of dimension 1× 1 mm. These

dimensions are selected purely for the convenience of numerical verification.

Material

02

Material

01
1

1 1

P

A

Figure 5.14. Plate dimensions (mm) and loading conditions considered for the 2D local
and non-local behaviour analysis of a bi-material interface under uniaxial tension. Mater-
ial 1 shaded in grey assumed to be 100 times stronger than the material 2 shaded in blue.

The Young’s modulus of material 1 is considered to be 100 GPa and material 2 is

set to 1 GPa. Thus one material of the two material interface has a Young’s modulus

which deviates 100 times from the other. The stiffer material (material 1) undergoes

material damage whereas the weaker material (material 2) remains elastic throughout the
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simulation. For simplicity the Poisons ratio for both materials is set to 0.

The linear damage evolution is in accordance to the linear damage model given in

equation (5.1) with ε0 set to 1.2×10−4 and strain at which material is fully damaged ε f

set to 7.0× 10−3. The 1D stress-strain behaviour for the stronger material with respect

to these material and damage parameters is shown in figure 5.15. The equivalent strain

parameter ε̃ is calculated as per equation (5.6).

0 1 2 3 4 5 6 70

2

4

6

8

10

12

σx10-3

εx10-3

Figure 5.15. 1D element stress (GPa) vs strain profile considered in the discussion on
non-local averaging over bi-material interface. The stress-strain profile shown here is
related to material 1. Damage evolution considered is with respect to the softening law in
equation (5.1).

At first the analysis is run as a local analysis without the consideration of averaging

equivalent strains. Next a non-local analysis is performed with the consideration of av-

eraging equivalent strain over both materials. For the non-local analysis a internal length

scale of 100 mm is considered such that averaging over the adjacent element is achieved

and the averaging weight functions yield close to unity. The non-local weighting con-

sidered is according to equation (5.10).

The model is meshed with just two elements, one element for each material type. The

single Gauss point SC model is used in each element leading to a 1 mm distance between

the gauss points of the two elements (see figure 5.16).
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1
GP - 1 GP - 2

Figure 5.16. SBFEM mesh used in the discussion on non-local averaging over bi-material
interface. The analysis considers one element for each material type.

As shown in figure 5.14 the plate is subjected to uniaxial tension by providing hori-

zontal restraints at one end and applying a uniform agitation from the opposite end. A

displacement controlled analysis is considered for this simulation. The modified Newton

Raphson solver with arc-length control introduced in chapter 3 is used for this analysis.

700 iterations with an initial displacement step of 1×10−5 mm is adopted with automatic

displacement control analysis. The load-displacement curve produced in the analysis is

shown in figure 5.17. Here the computational outputs are compared to the hand calculated

quantities of the local and non-local averaging scheme.

0 0.01 0.02 0.03 0.04 0.05 0.060

0.002

0.004

0.006

0.008

0.01

0.012

-Numerical analysis (non-local)
-Numerical analysis (local)
-Hand calculations (non-local)
-Hand calculations (local)

U

P

Figure 5.17. Force (kN) vs displacement (mm) output for the discussion on non-local av-
eraging over bi-material interface. Numerical analysis compared to the hand calculations
for both local and non-local damage analysis schemes.

The computational results show exact agreement with hand calculated quantities, jus-

tifying the accuracy of the computational framework.

The following displacement (figure 5.18), strain (figure 5.19), stress (figure 5.20),
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and damage (figure 5.19) evolution contour plots correspond to the local analysis. With

reference to figure 5.17 these contour plots are recorded at displacement of 0.006 mm at

node ‘A’ corresponding to a load of 0.005941 kN on the right edge, at peak load for a

displacement value of 0.01212 mm corresponding to a load of 0.012 kN, after peak load

for a displacement value of 0.03 mm corresponding to a load of 0.01128 kN and at the

end of the simulation for a displacement value of 0.056 mm corresponding to a load of 0

kN.

(a) Horizontal displace-

ment (ux) contour. The

displacement at node A is

0.006 mm.

(b) Horizontal displace-

ment (ux) contour. The

displacement at node ‘A’

is 0.01212 mm.

(c) Horizontal displace-

ment (ux) contour. The

displacement at node ‘A’

is 0.03 mm.

(d) Horizontal displace-

ment (ux) contour. The

displacement at node ‘A’

is 0.056 mm.
0.00000 0.01500 0.03000 0.04500 0.06000

Figure 5.18. Horizontal displacement (ux) contours obtained for the local damage analysis
in the discussion on averaging over bi-material interface. Units:mm. Results are obtained
for the mesh shown in figure 5.16.

As evident in figures 5.19a and 5.19b the strain profiles for the two materials show

a distinct uniform variation in the magnitude of 100 in the elastic stage (up to the dis-

placement value of 0.01212 mm). This is due to the variation in Young’s modulus in the

magnitude of 100 between material 1 and material 2. To exhibit non-linear behaviour

material 1 has to reach a strain value equal to 0.00012 (value of ε0). When material 1 at-
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tains this value the total displacement corresponds to 0.01212 mm (see figure 5.19b). This

value agrees with the hand calculations as material 2 should depict a strain of 0.012 when

material 1 reaches a strain of 0.00012. Beyond the elastic limit the two materials depict a

characteristic damage induced non-linear behaviour till the termination of the simulation.

(a) Strain (εxx) contour.

The horizontal displace-

ment at node ‘A’ is 0.006

mm.

(b) Strain (εxx) con-

tour. The horizontal

displacement at node ‘A’

is 0.01212 mm.

(c) Strain (εxx) contour.

The horizontal displace-

ment at node ‘A’ is 0.03

mm.

(d) Strain (εxx) contour.

The horizontal displace-

ment at node ‘A’ is 0.056

mm.
5.950e-05 1.254e-02 2.503e-02 3.751e-02 5.000e-02

Figure 5.19. Strain (εxx) contours obtained for the local damage analysis in the discussion
on averaging over bi-material interface. Results are obtained for the mesh shown in figure
5.16.

The stresses in the two materials are identical in the linear elastic stage up to node ‘A’

displacement reaches 0.01212 mm. This is depicted in figures 5.20a and 5.20b. Thereafter

due to the degradation material 1 the stress within this material begins to drop. When the

simulation reaches a node ‘A’ displacement of 0.056 mm the total load carrying capacity

of the model is lost as the stress within material 1 corresponds to 1.4×10−5 GPa.
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(a) Stress (σxx) contour.

The horizontal displace-

ment at node ‘A’ is 0.006

mm.

(b) Stress (σxx) con-

tour. The horizontal

displacement at node ‘A’

is 0.01212 mm.

(c) Stress (σxx) contour.

The horizontal displace-

ment at node ‘A’ is 0.03

mm.

(d) Stress (σxx) contour.

The horizontal displace-

ment at node ‘A’ is 0.056

mm.
1.400e-05 1.251e-02 2.501e-02 3.750e-02 5.000e-02

Figure 5.20. Stress (σxx) contours obtained for the local damage analysis in the discussion
on averaging over bi-material interface. Units:GPa. Results are obtained for the mesh
shown in figure 5.16.

The damage profiles below show evidence of the gradual degradation experienced by

material 1. The model show no signs of damage degradation up to the displacement value

of 0.01212 mm corresponding to the peak load 0.012 kN (see figures 5.21a and 5.21b).

However from this point onwards (figures 5.21c and 5.21d) the accumulation of strain

greater than the damage initiation threshold ε0 develops damage within material 1.
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(a) Damage (ω) contour.

The horizontal displace-

ment at node ‘A’ is 0.006

mm.

(b) Damage (ω) con-

tour. The horizontal dis-

placement at node ‘A’ is

0.01212 mm.

(c) Damage (ω) contour.

The horizontal displace-

ment at node ‘A’ is of

0.03 mm.

(d) Damage (ω) contour.

The horizontal displace-

ment at node ‘A’ is 0.056

mm.
0.0000 0.2500 0.5000 0.7500 1.0000

Figure 5.21. Damage (ω) contours obtained for the local damage analysis in the discus-
sion on averaging over bi-material interface. Results are obtained for the mesh shown in
figure 5.16.

Next the displacement (figure 5.22), strain (figure 5.23), stress (figure 5.24) and dam-

age (figure 5.25) evolution contour plots, are documented for the non-local simulation.

The instances captured in this simulation are of similar significance to that considered in

the local analysis. In reference to figure 5.17 these contour plots are recorded at displace-

ment of 2.424× 10−4 mm at node ‘A’ corresponding to a load of 2.4× 10−4 kN on the

right edge, at peak load for a displacement value of 0.00761 mm corresponding to a load

of 2.062×10−3 kN, after peak load for a displacement value of 0.01 mm corresponding

to a load of 1.806×10−3 kN, and at the end of the simulation for a displacement value of

0.01386 mm when the load reaches 0 kN.
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(a) Horizontal displace-

ment (ux) contour. The

displacement at node ‘A’

is 0.0002424 mm.

(b) Horizontal displace-

ment (ux) contour. The

displacement at node ‘A’

is 0.00761 mm.

(c) Horizontal displace-

ment (ux) contour. The

displacement at node ‘A’

is 0.01 mm.

(d) Horizontal displace-

ment (ux) contour. The

displacement at node ‘A’

is 0.01386 mm.
0.00000 0.00350 0.00700 0.01050 0.01400

Figure 5.22. Horizontal displacement (ux) contours obtained for the non-local damage
analysis in the discussion on averaging over bi-material interface. Units:mm. Results are
obtained for the mesh shown in figure 5.16.

The simulation depicts non-linear behaviour when the non-local strain within material

1 reaches the damage initiation threshold ε0. Since the non-local averaging internal length

parameter is set to 100 mm the non-local weights produced by equation (5.10) are close

to unity. Therefore when equivalent strain within material 2 reaches 2.4×10−4 the non-

local equivalent strain within material 1 reaches ε0 (2.4× 10−4/2 = 0.00012). At this

instance the equivalent strain within material 1 reads be 2.4×10−6 due to the variation in

Young’s modulus between material 2 and material 1. Considering these two strain values

the node ‘A’ displacement of the model immediately prior to the beginning of non-linear

behaviour is 2.424× 10−4 mm ((2.4+0.0024)10−4 = 2.424× 10−4). These values are

evident in the displacement contour in figure 5.22a. As material 1 degrades through the

formation of damage the strains produced by the material became comparatively similar

to those of material 2 (see figures 5.23b-5.23d).
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(a) Strain (εxx) contour.

The horizontal displace-

ment at node ‘A’ is

0.0002424 mm.

(b) Strain (εxx) contour.

The horizontal displace-

ment at node ‘A’ is

0.00761 mm.

(c) Strain (εxx) contour.

The horizontal displace-

ment at node ‘A’ is 0.01

mm.

(d) Strain (εxx) con-

tour. The horizontal

displacement at node ‘A’

is 0.01386 mm.
2.376e-06 2.127e-03 4.251e-03 6.376e-03 8.500e-03

Figure 5.23. Strain (εxx) contours obtained for the non-local damage analysis in the dis-
cussion on averaging over bi-material interface. Results are obtained for the mesh shown
in figure 5.16.

In the elastic region (see figure 5.24a) the model depicts a uniform stress distribu-

tion. However thereafter the stress within material 1 drops as it degrades with increasing

damage until the element can no longer resist any applied loading (see figure 5.24d).
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(a) Stress (σxx) contour.

The horizontal displace-

ment at node ‘A’ is

0.0002424 mm.

(b) Stress (σxx) con-

tour. The horizontal

displacement at node ‘A’

is 0.00761 mm.

(c) Stress (σxx) contour.

The horizontal displace-

ment at node ‘A’ is 0.01

mm.

(d) Stress (σxx) con-

tour. The horizontal

displacement at node ‘A’

is 0.01386 mm.
9.820e-05 1.929e-03 3.759e-03 5.590e-03 7.420e-03

Figure 5.24. Stress (σxx) contours obtained for the non-local damage analysis in the
discussion on averaging over bi-material interface. Units:GPa. Results are obtained for
the mesh shown in figure 5.16.

The hardening limb observed in the non-local simulation in figure 5.17 can be at-

tributed to the residual stiffness within material 1. Even though damage initiates soon

after node ‘A’, reaching a displacement of 0.0002424 mm (see figure 5.25a), the residual,

damage effected stiffness enables the material to carry further load (see figure 5.24b).

However after reaching maximum capacity when node ‘A’ displacement reaches 0.00761

mm, the model starts to soften gradually (see figures 5.24c-5.24d).
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(a) Damage (ω) con-

tour. The horizontal dis-

placement at node ‘A’ is

0.0002424 mm.

(b) Damage (ω) con-

tour. The horizontal dis-

placement at node ‘A’ is

0.00761 mm.

(c) Damage (ω) contour.

The horizontal displace-

ment at node ‘A’ is 0.01

mm.

(d) Damage (ω) con-

tour. The horizontal dis-

placement at node ‘A’ is

0.01386 mm.
0.0000 0.2500 0.5000 0.7500 1.0000

Figure 5.25. Damage (ω) contours obtained for the non-local damage analysis in the
discussion on averaging over bi-material interface. Results are obtained for the mesh
shown in figure 5.16.

As observed within both the local and non-local analysis, prior to damage inception,

strain in both materials increase linearly (see figures 5.19a, 5.19b and 5.23a). When

damage initiates in material 1 and subsequent development of damage within the material,

the strain in material 1 increases disproportionally to material 2. Due to the degradation

of material 1 the strain thus observed by material 1 compromises of a larger proportion

of the total strain observed by the composite element as material 2 unloads to maintain

external and internal force equilibrium.

In a non-local analysis where averaging is considered within the same material the

behaviour of the neighbouring materials does not contribute to the damage development

of the material under consideration. However when averaging over different material, the

strain observed by the neighbouring materials creeps into the material in consideration.

This then transcends to the force-displacement behaviour of the model.
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In this simulation material parameters are carefully considered to exemplify the ef-

fects of such non-local averaging over different material. Here the variation in the Young’s

modulus between the two materials contribute to a contrasting change in the load-displacement

output seen in figure 5.17. Therefore, it is prudent to carefully consider the affects of non-

local averaging between bi-material interfaces as it may have a considerable effect on the

results obtained. Furthermore this example also considers the non-local length parameter

such that it has less or no affect in the simulation. It is best practice to consider the non-

local length scale as a material parameter representative of the material characteristics.

This, in turn will lead to disparities in the results as different material types will inherent

different characteristic length scales

5.5 Fundamentals of the scaled boundary finite element

method

5.5.1 Scaled boundary geometry representation

The 2D SBFEM is based on a coordinate system of two coordinates (ξ ,η), where ξ rep-

resents the radial coordinates and η represents the circumferential coordinate. Whereas

the 3D SBFEM introduces an additional third circumferential coordinate ζ . Arbitrary n-

sided polytope elements can be modelled using the SBFEM. The only requirement being

every point on the boundary can be connected to the scaling centre by an unobstructed

radial line. In situations when this condition is unable to be attained further subdivi-

sion is carried out. In this section the discussions are based on elements produced in

the quadtree and octree mesh generation. A detailed description of the derivation can be

found in chapters 3 and 4, and the original publication by Song and Wolf [199].
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5.5.1.1 2D formulation

Quadtree elements are modelled as scaled boundary polygonal elements. The boundary

of the element is divided into line elements as shown in figure 5.26. The condition of

the visible boundary is satisfied from the scaling centre (O) thus no further subdivision is

required.

L1

L2

L3

L4

L5 O

Figure 5.26. Scaled boundary finite element coordinate system for a quadtree element.

Since only the boundaries are required to be discretised the hanging nodes do not

require any special treatment. The edge containing the hanging node is modelled with

two line elements L2 and L3 (refer fig 5.26). This chapter uses linear line elements to

model the examples presented later in section 5.8. Thus the derivations that follow are

explicit equations for a linear line element.

The variable ξ varies form 0 to 1. At O ξ = 0 and at the boundary ξ = 1. Assuming

the Cartesian coordinates origin is the same location as the scaling centre, a point (x̂, ŷ)

can be described with respect to the SBFE local coordinates (ξ ,η) as

x̂(ξ ,η) = ξ x(η) = ξ N(η)x, (5.13a)

ŷ(ξ ,η) = ξ y(η) = ξ N(η)y, (5.13b)

where, N(η) is the 1D linear interpolation shape function given by N(η)=

[
1−η

2
1+η

2

]
and x,y are vectors of the nodal coordinates for each line element. Thus the coordinates
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of a point in the element boundary (x(η) ,y(η)) can be written as

x(η) =

[
1−η

2
1+η

2

] x1

x2

= x̄+η
δx
2
, (5.14a)

y(η) =

[
1−η

2
1+η

2

] y1

y2

= ȳ+η
δy
2
, (5.14b)

where,

x̄ =
x2 + x1

2
(5.15a)

ȳ =
y2 + y1

2
(5.15b)

δx = x2− x1 (5.15c)

δy = y2− y1 (5.15d)

The transformation of the problem domain from (x̂, ŷ) Cartesian coordinates to the

local scaled boundary coordinates (ξ ,η) is through the Jacobian matrix J

J =

 x y

x,η y,η

 , (5.16)

where x,η = δx
2 and y,η = δy

2 . Then the determinant of the 2×2 Jacobian matrix |J| is

|J|= 1
2
(x1y2− x2y1) . (5.17)

The linear differential operator L

L = b1
∂

∂ξ
+

1
ξ

b2
∂

∂η
, (5.18)

286



where b1 and b2 are defined as follows

b1 =
1
|J|


y,η 0

0 −x,η

−x,η y,η

=
1
|J|

C1, (5.19a)

b2 =
1
|J|


−y 0

0 x

x −y

=
1
|J|

[ηC1 +C2] . (5.19b)

Therefore C1 and C2 in the equations above stand for

C1 =
1
2


δy 0

0 −δx

−δx δy

 , (5.20a)

C2 =


ȳ 0

0 −x̄

−x̄ ȳ

 . (5.20b)

The displacement solutions within each polygonal element

u(ξ ,η) = [ux (ξ ,η) ,uy (ξ ,η)]T , (5.21)

are interpolated as

u(ξ ,η) = Nu(η)u(ξ ), (5.22)

where u(ξ ) is the displacement solution in the radial direction. The shape function Nu(η)

is

Nu(η) =

[
1−η

2 I , 1+η

2 I
]
, (5.23)

where I is 2×2 identity matrix.
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The strain-displacement matrices B1, B2 can be written using equation (5.18) as

B1 = b1Nu(η) =
1
|J|

[
1−η

2 C1 , 1+η

2 C1

]
, (5.24a)

B2 = b2Nu(η),η =− 1
|J|

[
−η

2 C1− 1
2C2 , η

2 C1 +
1
2C2

]
. (5.24b)

The strains ε can be formed using equation (5.18) and equation (5.22) as

ε = Lu(ξ ,η) = B1u(ξ ),ξ +
1
ξ

B2u(ξ ). (5.25)

5.5.1.2 3D formulation

In the 3D formulation each cubic subdomain is modelled as a scaled boundary polyhedral

element as shown in figure 5.27. The element consists of surface elements on the bound-

ary and the scaling centre O is placed at the centroid of each octree element. The surface

elements are modelled similar to the 2D elements with local boundary coordinates (η ,ζ ).

The two main types of surface elements created in the mesh generation are triangular and

quadrilateral elements. The local boundary representations of these two common types of

source elements are also included in figure 5.27.

In this chapter classical finite element triangular and quadrilateral elements with linear

shape functions are utilised on the boundaries. Presented below is a summary of the SBFE

formulation for a linear triangular surface element.
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-Corner Node
-Hanging Node
-Added Node

η

ξ

ζ

z

x

y

Figure 5.27. The SBFE local coordinates in an octree cell.

A radial coordinate ξ is used to describe the cell’s internal domain by scaling the

surface elements. At the scaling centre ξ = 0 and at a point on the boundary ξ = 1 .

For this instance if the the origin of the Cartesian coordinates coincides with the scaling

centre, a point (x̂, ŷ, ẑ) in the cell can be written in terms of the local coordinates (ξ ,η ,ζ )

as

x̂(ξ ,η ,ζ ) = ξ x(η ,ζ ) = ξ N(η ,ζ )x, (5.26a)

ŷ(ξ ,η ,ζ ) = ξ y(η ,ζ ) = ξ N(η ,ζ )y, (5.26b)

ẑ(ξ ,η ,ζ ) = ξ z(η ,ζ ) = ξ N(η ,ζ )z, (5.26c)

where N(η ,ζ ) is the 2D interpolation shape functions and x,y,z are nodal coordinate

vectors for each surface element. Since the coordinates of a point on the surface element’s

boundary can be written using the linear shape function for a triangular element N(η) =[
(1−η−ζ ) η ζ

]
equations (5.26a-5.26c) transforms to

x(η ,ζ ) = N(η ,ζ )x = x1 +δx1 +δx2, (5.27a)

y(η ,ζ ) = N(η ,ζ )y = y1 +δy1 +δy2, (5.27b)

z(η ,ζ ) = N(η ,ζ )z = z1 +δ z1 +δ z2, (5.27c)
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where,

δx1 = x2− x1, (5.28a)

δy1 = y2− y1, (5.28b)

δ z1 = z2− z1, (5.28c)

δx2 = x3− x1, (5.28d)

δy2 = y3− y1, (5.28e)

δ z2 = z3− z1, (5.28f)

(xi,yi,zi) are the Cartesian coordinates of a local node i on the surface an element.

With the help of the Jacobian matrix J =


x y z

x,η y,η z,η

x,ζ y,ζ z,ζ

 at the boundary (x = 1)

with omitted arguments (η ,ζ ), the problem domain is transformed from the Cartesian

coordinates (x̂, ŷ, ẑ) to the local scaled boundary coordinates (ξ ,η ,ζ ) using standard pro-

cedures for each surface element.

The derivatives of the coordinates on the surface element are written as

x,η = δx1, (5.29a)

y,η = δy1, (5.29b)

z,η = δ z1, (5.29c)

x,ζ = δx2, (5.29d)

y,ζ = δy2, (5.29e)

z,ζ = δ z2, (5.29f)

The determinant of the Jacobian matrix |J| is

|J|= x1 (y2z3− z2y3)+ y1 (z2x3− x2z3)+ z1 (x2y3− y2x3) (5.30)
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The linear differential operator L in the local scaled boundary coordinates can then be

written as

L = b1
∂

∂ξ
+

1
ξ

(
b2

∂

∂η
+b3

∂

∂ζ

)
(5.31)

where b1, b2 and b3 are defined as

b1 (η ,ζ ) =
1
|J|

G1, (5.32a)

b2 (η ,ζ ) =
1
|J|

[ηG1 +G2] , (5.32b)

b3 (η ,ζ ) =
1
|J|

[ηG1 +G2] , (5.32c)
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and G1, G2 and G3 are defined as

G1 =



δy1δ z2−δ z1δy2 0 0

0 δ z1δx2−δx1δ z2 0

0 0 δx1δy2−δy1δx2

0 δx1δy2−δy1δx2 δ z1δx2−δx1δ z2

δx1δy2−δy1δx2 0 δy1δ z2−δ z1δy2

δ z1δx2−δx1δ z2 δy1δ z2−δ z1δy2 0


, (5.33a)

G2 =



z3y1− y3z1 0 0

0 x3z1− z3x1 0

0 0 y3x1− x3y1

0 y3x1− x3y1 x3z1− z3x1

y3x1− x3y1 0 z3y1− y3z1

x3z1− z3x1 z3y1− y3z1 0


, (5.33b)

G3 =



y2z1− z2y1 0 0

0 z2x1− x2z1 0

0 0 x2y1− y2x1

0 x2y1− y2x1 z2x1− x2z1

x2y1− y2x1 0 y2z1− z2y1

z2x1− x2z1 y2z1− z2y1 0


. (5.33c)

The displacement solutions within each polyhedral element u(ξ ,η ,ζ ) is is defined as

u(ξ ,η ,ζ ) = [ ux(ξ ,η ,ζ ), uy(ξ ,η ,ζ ), uz(ξ ,η ,ζ ) ]T, (5.34)

and interpolated as

u(ξ ,η ,ζ ) = Nu(η ,ζ )u(ξ ), (5.35)

where u(ξ ) denote the displacement solution in the radial direction. The interpolation

292



shape function Nu(η ,ζ ) are defined as

Nu(η ,ζ ) = [ (1−η−ζ )I, ηI, ζ I ], (5.36)

where I is a 3 × 3 identity matrix.

The strain-displacement matrices B1 and B2 are expressed using equations (5.32a-

5.32c) and equation (5.36) as

B1 = b1Nu(η ,ζ )

B1 =
1
|J|

[(1−η−ζ )G1,ηG1,ζ G1] , (5.37a)

B2 = b2Nu(η ,ζ )+b3Nu(η ,ζ )

B2 =
1
|J|

[−(ζ +η)G1−G2−G3,ηG1 +G2,ζ G1 +G3] . (5.37b)

Therefore, the strains ε in each cell is expressed using in equations (5.31,5.35 and 5.37a-

5.37b) as

ε = Lu(ξ ,η ,ζ ) = B1u(ξ ),ξ +
1
ξ

B2u(ξ ). (5.38)

5.5.2 Scaled boundary finite element equation in displacement

The scaled boundary finite element equations for displacement both in 2D (d = 2) and 3D

(d = 3) can be written in terms of E0, E1and E2 as (disregarding the effects of body loads

and side-face tractions)

E0ξ
2u(ξ ),ξ ξ +

(
(d−1)E0−E1 +ET

1
)

ξ u(ξ ),ξ +
(
(d−2)ET

1−E2
)

u(ξ ) = 0. (5.39)

For 2D problems, the coefficient matrices for a line element are written using equations

(5.17,5.23 and 5.24a-5.24b).

E0 =

ˆ +1

−1
BT

1 DB1|J|dη , (5.40a)

293



E1 =

ˆ +1

−1
BT

2 DB1|J|dη , (5.40b)

E2 =

ˆ +1

−1
BT

2 DB2|J|dη , (5.40c)

where D is the elasticity matrix. The coefficient matrices in equations (5.40a-5.40c) can

be evaluated analytically for a linear line element yielding

E0 =
1

3 |J|

 2X0 X0

X0 2X0

 , (5.41a)

E1 =
1

2 |J|

 −1
3X0 +X1

1
3X0 +X1

1
3X0 +X1 −1

3X0 +X1

 , (5.41b)

E2 =
1

2 |J|

 1
3X0 +X2 −1

3X0−X2

−1
3X0−X2

1
3X0 +X2

 , (5.41c)

where entries X0,X1 and X2 are

X0 = CT
1 DC1, (5.42a)

X1 = CT
2 DC1, (5.42b)

X2 = CT
2 DC2. (5.42c)

For 3D problems the coefficient matrices for a surface element S are expressed using

equations (5.30,5.36 and 5.37a-5.37b) as

E0 =

ˆ
s
BT

1 DB1|J|dηdζ , (5.43a)

E1 =

ˆ
s
BT

2 DB1|J|dηdζ , (5.43b)
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E2 =

ˆ
s
BT

2 DB2|J|dηdζ , (5.43c)

The integration in equations (5.43a-5.43c) can be performed either numerically or ana-

lytically. Gauss-Lobatto quadrature rules with the same order as the shape function are

typically considered when the integration for the coefficient matrices is performed numer-

ically. For a linear triangular element, the integration can be performed analytically. This

leads to the following coefficient matrices

E0 =
4

3 |J|


5Y0 −Y0 −Y0

−Y0 Y0 0

−Y0 0 Y0

 , (5.44a)

E1 =
4
|J|


−2

3Y0 +Y1 +Y2
1
3Y0

1
3Y0

1
3Y0−Y1 −1

3Y0 0

1
3Y0−Y2 0 −1

3Y0

 , (5.44b)

E2 =
4
|J|


2
3Y0 +Y3 +Y4 +Y5 +Y6 −1

3Y0−Y3−Y5 −1
3Y0−Y4−Y6

−1
3Y0−Y3−Y4

1
3Y0 +Y3 Y4

−1
3Y0−Y5−Y6 Y5 −1

3Y0 +Y6

 ,
(5.44c)
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where

Y0 = GT
1 DG1, (5.45a)

Y1 = GT
2 DG1, (5.45b)

Y2 = GT
3 DG1, (5.45c)

Y3 = GT
2 DG2, (5.45d)

Y4 = GT
3 DG2, (5.45e)

Y5 = GT
2 DG3, (5.45f)

Y6 = GT
3 DG3. (5.45g)

The coefficient matrices for 2D or 3D are obtained by assembling the contribution of all

line elements or the surface elements respectively. Then equation (5.39) is constructed by

assembling the contribution of all elements.

The internal nodal forces on a surface q(ξ ) with a constant ξ can be expressed as

q(ξ ) = ξ
d−2 (E0ξ u(ξ ),ξ +ET

1 u(ξ )
)

(5.46)

5.5.3 Solution of the scaled boundary finite element equation in elasto-

statics

5.5.3.1 Stiffness matrix for each cell

In order to solve equations (5.39 and 5.46) these equations are transformed into a sys-

tem of first-order ordinary differential equations by the introduction of variable X(ξ ) as

proposed by Song [541].

X(ξ ) = ξ

 ξ 0.5(d−2) u(ξ )

ξ−0.5(d−2) q(ξ )

 . (5.47)
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This produces

ξ X(ξ ),ξ =−ZX(ξ ) , (5.48)

with the Hamiltonian coefficient matrix Z defined as

Z=

 E−1
0 E

T

1 −0.5(d−2)I −E−1
0

−E2 +E1E−1
0 E

T

1 −(E1E
−1

0 −0.5(d−2)I)

 . (5.49)

Eigenvalue decomposition of the above matrix Z leads to

Z

 Ψ11 Ψ12

Ψ21 Ψ22

=

 Ψ11 Ψ12

Ψ21 Ψ22


 S11 0

0 S22

 . (5.50)

S11 in the equation (5.50) indicates the eigenvalue sub-matrix with the solution for bounded

domains where Re(λ (S))< 0 and the S22 eigenvalue sub-matrix indicates the solution for

unbounded domains where Re(λ (S22)) > 0. These eigenvalues are sorted in ascending

order based on their real parts. Accordingly the eigenvectors are separated in a similar

manner where the sub-matrices Ψ11 and Ψ21 are related to the solution in the bounded

domain. Thus the bounded domain solutions for each cell is therefore expressed as

u(ξ ) = Ψ11ξ
−(S11+0.5(d−2)I)c1, (5.51a)

q(ξ ) = Ψ21ξ
−(S11−0.5(d−2)I)c1, (5.51b)

where c1 are the integration constants. The solutions for equations (5.51a-5.51b) at the

boundary, ξ = 1 i.e ub = u(ξ = 1) and qb = q(ξ = 1) can be expressed as

ub = Ψ11c1, (5.52a)

qb = Ψ21c1. (5.52b)
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The static stiffness matrix Ks of each cell can be formulated in terms of ub and qb as

qb = Ksub (5.53)

Considering equations (5.52a) and (5.52b), Ks can be written as

Ks = Ψ21Ψ
−1
11 . (5.54)

The solutions in each individual cell can be programmed as a parallel algorithm for a faster

computation. Then finally the global stiffness matrix KG can be obtained by assembling

the stiffness matrices of all subdomains in a similar procedure to that of the FEM, and the

global equation can be expressed as

KGU = P. (5.55)

Here P is the global nodal force vector and U is the global nodal displacement vector of

the whole domain. After enforcing the boundary conditions, a system of linear equations

is solved to obtain the displacements U.

The nodal displacements ub on the boundary of each cell is then extracted from the

global displacements U according to the connectivity of the cell. Afterwards, the integra-

tion constants c1 for each cell in equations (5.52a) and (5.52b) can be obtained as

c1 = Ψ
−1
11 ub. (5.56)

5.5.3.2 Stress solution in each cell

Using the strain-displacement matrices stresses in each cell can be calculated considering

equation (5.25) for 2D problems and equation (5.38) for 3D problems as

σ = Dε = D
(

B1u(ξ ),ξ +
1
ξ

B2u(ξ )
)
. (5.57)
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The stress fields can be now expressed by substituting equation (5.51a) into equation

(5.57) as

σ = Ψσ ξ
−(S11+(1+0.5(d−2))I)c1, (5.58)

where the stress modes Ψσ are given by

Ψσ = D(−B1Ψ11(S11 +0.5(d−2)I)+B2Ψ11). (5.59)

5.6 Solutions for geometrically similar cells

In damage analysis, complex geometries are often encountered which result in the gener-

ation of large number of cells. Thus, it is advantageous to take use of the inherent quality

of producing a very few different types of cells in quadtree or octree mesh generation

structures. Many of the matrices formed in the solution will either be identical or scalar

multiples of two cells with the same nodal configuration. Therefore, the cell matrices

of unique cells are precomputed and stored prior to the Newton Raphson analysis taking

place. These unique cells will be referred to as master cells in the context of this chapter.

In a balanced quadtree mesh there is a maximum of 16 master cells for a single type of

material. In the octree mesh the maximum number of master cells are 4096.

In the discussions that follow, a master cell is designated the letter M and other cells

derived from a M are designated by the letter P. Therefore superscript M or superscript P

indicates the cell for which the variable belongs to. The ratio R is defined as sP

sM where s

indicates the edge length of a cell.
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5.6.1 2D relationships between a master cell M and a cell P

With reference to equations (5.13a) and (5.13b) the xP(η) and yP(η) for cell P require to

satisfy

xP(η) =N(η)
(
RxM)= RxM(η), (5.60a)

yP(η) =N(η)
(
RyM)= RyM(η). (5.60b)

Similar to equation (5.17) the determinant of the 2×2 Jacobian matrix
∣∣JP
∣∣ for a cell can

be written as ∣∣JP∣∣= RxMRyM
,η −RyMRxM

,η = R2 ∣∣JM∣∣ . (5.61)

The bP
1 and bP

2 matrices from equations (5.19a-5.19b) are therefore equal to

bP
1 =

(
1

R2 ×R
)

bM
1 =

1
R

bM
1 , (5.62a)

bP
2 =

(
1

R2 ×R
)

bM
2 =

1
R

bM
2 . (5.62b)

The strain-displacement matrices BP
1 and BP

2 from equations (5.24a) and (5.24b) can be

written as

BP
1 =

(
1
R

bM
1

)
Nu(η) =

1
R

BM
1 , (5.63a)

BP
2 =

(
1
R

bM
2

)
Nu(η),η =

1
R

BM
2 . (5.63b)

Therefore, the coefficient matrices, EP
0 , EP

1 and EP
2 from equations (5.40a-5.40c) satisfy

EP
0 =

ˆ +1

−1

(
1
R

(
BM

1
)T
)

D
(

1
R

BM
1

)(
R2 ∣∣JM∣∣)dη = EM

0 , (5.64a)

EP
1 =

ˆ +1

−1

(
1
R

(
BM

2
)T
)

D
(

1
R

BM
1

)(
R2 ∣∣JM∣∣)dη = EM

1 , (5.64b)

EP
2 =

ˆ +1

−1

(
1
R

(
BM

2
)T
)

D
(

1
R

BM
2

)(
R2 ∣∣JM∣∣)dη = EM

2 . (5.64c)
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Based on equations (5.64a-5.64c) and (5.49) the Hamiltonian coefficient matrix for

cell P, ZP can be written as

ZP =

 (
EP

0
)−1 (EP

1
)T −

(
EP

0
)−1

−EP
2 +EP

1
(
EP

0
)−1 (EP

1
)T −EP

1
(
EP

0
)−1


ZP =

 (
EM

0
)−1 (EM

1
)T −

(
EM

0
)−1

−EM
2 +EM

1
(
EM

0
)−1 (EM

1
)T −EM

1
(
EM

0
)−1

= ZM (5.65)

This relationship between ZPand ZMindicates the eigenvalue decomposition yields

identical results for both cells P and M. The following relationships are therefore valid

SP
11 = SM

11, (5.66a)

Ψ
P
11 = Ψ

M
11, (5.66b)

Ψ
P
21 = Ψ

M
21. (5.66c)

The static stiffness matrix of each cell P
(
KP) can be written in terms of Ψ

M
11 and Ψ

M
21 as

KP = Ψ
M
21
(
Ψ

M
11
)−1

= KM. (5.67)

Finally, the stress modes Ψ
P
σ are given by

Ψ
P
σ = D

(
−
(

1
R

BM
1

)
Ψ

M
11SM

11 +

(
1
R

BM
2

)
Ψ

M
11

)
=

1
R

Ψ
M
σ . (5.68)
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5.6.2 3D relationships between a master cell M and a cell P

In relation to equations (5.26a-5.26c) a point xP(η ,ζ ), yP(η ,ζ ) and zP(η ,ζ ) for cell P

require to satisfy

xP(η ,ζ ) =N(η ,ζ )
(
RxM)= RxM(η ,ζ ), (5.69a)

yP(η ,ζ ) =N(η ,ζ )
(
RyM)= RyM(η ,ζ ), (5.69b)

zP(η ,ζ ) =N(η ,ζ )
(
RzM)= RzM(η ,ζ ). (5.69c)

The Jacobian matrix
∣∣JP
∣∣ for a cell can be written as

∣∣JP∣∣= RxM
(

R2
(

yM
,ηzM

,ζ − zM
,ηyM

,ζ

))
+RyM

(
R2
(

zM
,ηxM

,ζ − xM
,ηzM

,ζ

))
...

+RzM
(

R2
(

xM
,ηyM

,ζ − yM
,ηxM

,ζ

))
= R3 ∣∣JM∣∣ . (5.70)

The bP
1 , bP

2 and bP
3 matrices from equations (5.32a-5.32c) are as follows

bP
1 =

(
1

R3 ×R2
)

bM
1 =

1
R

bM
1 , (5.71a)

bP
2 =

(
1

R3 ×R2
)

bM
2 =

1
R

bM
2 , (5.71b)

bP
3 =

(
1

R3 ×R2
)

bM
3 =

1
R

bM
3 . (5.71c)

The strain-displacement matrices BP
1 and BP

2 from equations (5.37a) and (5.37b) are

modified as

BP
1 =

(
1
R

bM
1

)
Nu(η ,ζ ) =

1
R

BM
1 , (5.72a)

BP
2 =

(
1
R

bM
2

)
Nu(η ,ζ ),η +

(
1
R

bM
3

)
Nu(η ,ζ ),ζ =

1
R

BM
2 . (5.72b)
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The coefficient matrices EP
0 , EP

1 and EP
2 from equations (5.43a-5.43c) thus need to satisfy

EP
0 =

ˆ
s

(
1
R

(
BM

1
)T
)

D
(

1
R

BM
1

)(
R3 ∣∣JM∣∣)dηdζ = REM

0 , (5.73a)

EP
1 =

ˆ
s

(
1
R

(
BM

2
)T
)

D
(

1
R

BM
1

)(
R3 ∣∣JM∣∣)dηdζ = REM

1 , (5.73b)

EP
2 =

ˆ
s

(
1
R

(
BM

2
)T
)

D
(

1
R

BM
2

)(
R3 ∣∣JM∣∣)dηdζ = REM

2 . (5.73c)

The Hamiltonian coefficient matrix for cell P, ZP can now be written as

ZP =

 (
EP

0
)−1 (EP

1
)T−0.5I −

(
EP

0
)−1

−EP
2 +EP

1
(
EP

0
)−1 (EP

1
)T −

(
EP

1
(
EP

0
)−1−0.5I

)


ZP =

 (
EM

0
)−1 (EM

1
)T−0.5I −R−1 (EM

0
)−1

R
(
−EM

2 +EM
1
(
EM

0
)−1 (EM

1
)T
)
−
(

EM
1
(
EM

0
)−1−0.5I

)
= ZM. (5.74)

Next eigenvalue decomposition equation (5.65) can be written in the form of equation

(5.50) as

 (
EM

0
)−1 (EM

1
)T−0.5I −R−1 (EM

0
)−1

R
(
−EM

2 +EM
1
(
EM

0
)−1 (EM

1
)T
)
−
(

EM
1
(
EM

0
)−1−0.5I

)
 ...

 Ψ
P
11 Ψ

P
12

Ψ
P
21 Ψ

P
22

=

 Ψ
P
11 Ψ

P
12

Ψ
P
21 Ψ

P
22


 SP

11 0

0 SP
22

 . (5.75)

Dividing the second row of the matrices in equation (5.75) by R yields

 (
EM

0
)−1 (EM

1
)T−0.5I −R−1 (EM

0
)−1(

−EM
2 +EM

1
(
EM

0
)−1 (EM

1
)T
)
−R−1

(
EM

1
(
EM

0
)−1−0.5I

)
 ...

 Ψ
P
11 Ψ

P
12

Ψ
P
21 Ψ

P
22

=

 Ψ
P
11 Ψ

P
12

R−1Ψ
P
21 R−1Ψ

P
22


 SP

11 0

0 SP
22

 . (5.76)
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Rearranging equation (5.76 ) gives

 (
EM

0
)−1 (EM

1
)T−0.5I −

(
EM

0
)−1(

−EM
2 +EM

1
(
EM

0
)−1 (EM

1
)T
)
−
(

EM
1
(
EM

0
)−1−0.5I

)
 ...

 Ψ
P
11 Ψ

P
12

R−1Ψ
P
21R−1 Ψ

P
22

=

 Ψ
P
11 Ψ

P
12

R−1Ψ
P
21 R−1Ψ

P
22


 SP

11 0

0 SP
22

 . (5.77)

Therefore

ZM

 Ψ
P
11 Ψ

P
12

R−1Ψ
P
21R−1 Ψ

P
22

=

 Ψ
P
11 Ψ

P
12

R−1Ψ
P
21 R−1Ψ

P
22


 SP

11 0

0 SP
22

 . (5.78)

On the other hand the eigenvalue decomposition of master cell M can be written from

equation (5.50) as follows

ZM

 Ψ
M
11 Ψ

M
12

Ψ
M
21 Ψ

M
22

=

 Ψ
M
11 Ψ

M
12

Ψ
M
21 Ψ

M
22


 SM

11 0

0 SM
22

 (5.79)

By comparing equations (5.78) and (5.79) the following relationships can be drawn

SP
11 = SM

11, (5.80a)

Ψ
P
11 = Ψ

M
11, (5.80b)

Ψ
P
21 = RΨ

M
21. (5.80c)

Then the static stiffness matrix of each cell P
(
KP) becomes

KP = RΨ
M
21
(
Ψ

M
11
)−1

= RKM. (5.81)
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Finally, the stress modes Ψ
P
σ can be written with reference to equation (5.59) as

Ψ
P
σ = D

(
−
(

1
R

BM
1

)
Ψ

M
11
(
SM

11 +0.5I
)
+

(
1
R

BM
2

)
Ψ

M
11

)
=

1
R

Ψ
M
σ . (5.82)

5.7 Damage formulation in SBFEM

By introducing the damage variable ω in equation (3.1) into the 2D coefficient matrices

for a line element are transformed in equations (5.40a-5.40c) as

ED
0 = (1−ω)

ˆ +1

−1
BT

1 DB1|J|dη (5.83a)

ED
1 = (1−ω)

ˆ +1

−1
BT

2 DB1|J|dη (5.83b)

ED
2 = (1−ω)

ˆ +1

−1
BT

2 DB2|J|dη (5.83c)

In the 3D formulation the coefficient matrices for a surface element S are also trans-

formed in a similar manner with the variable ω . Thus, the equations (5.43a-5.43c) as

ED
0 = (1−ω)

ˆ
s
BT

1 DB1|J|dηdζ (5.84a)

ED
1 = (1−ω)

ˆ
s
BT

2 DB1|J|dηdζ (5.84b)

ED
2 = (1−ω)

ˆ
s
BT

2 DB2|J|dηdζ (5.84c)

where ED
0 ,E

D
1 and ED

2 and are counterparts of the coefficient matrix with the damage
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variable ω of one subdomain. Now the Hamiltonian coefficient matrix Z defined as

ZD =

 E−1
0 E

T

1 −0.5(d−2)I −(1−ω)−1E−1
0

−(1−ω)
(

E2 +E1E−1
0 E

T

1

)
−(E1E

−1

0 −0.5(d−2)I)

 (5.85)

The eigenvalue decomposition of the above matrix ZD leads to

ZD

 Ψ11 (1−ω)−1Ψ12

(1−ω)Ψ21 Ψ22

=

 Ψ11 (1−ω)−1Ψ12

(1−ω)Ψ21 Ψ22


 S11 0

0 S22


(5.86)

Finally considering equation (5.54) with respect to the transformed equation (5.86)

the stiffness matrix with damage is given as

KD = (1−ω)Ks (5.87)

The non-linear global equation system is obtained by assembling the stiffness matrix of

all subdomains as

KU = P (5.88)

where K is the global stiffness matrix after considering the effects of damage.

5.8 Numerical simulations

Six numerical examples are presented in this section. The complexity of the examples

increases from the first example to the last. The first 3 examples are modelled using the

2D image-based formulation whereas the last three examples are modelled using the 3D

image-based formulation.

The first example (refer section 5.8.1) assesses the requirement for mesh smoothing

in the automatic mesh generation technique. The second example (refer section 5.8.2)

models the behaviour of an actual 2D concrete microstructure imaged by a CT scan. The
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last 2D example (refer section 5.8.3) analyses an artificially generated concrete micro-

structure and then compares the result to a published result to validate the formulation

presented in this chapter.

The 3D examples start off by analysing the behaviour of a thick plate (refer section

5.8.4) consisting of cylindrical inclusions. The next example (refer section 5.8.5) models

a cube with spherical inclusions. The final 3D example (refer section 5.8.6) aims to exem-

plify the effectiveness of the formulation to handle computationally expensive complex

problems by modelling the behaviour of a cubical concrete microstructure procured by

means of a CT scan.

5.8.1 2D plate with multiple inclusions of different diameters

This example simulates the behaviour of a thin plate with imperfections. As seen in figure

5.28 the plate has dimensions length and height of 256× 256 mm. The thickness of the

plate is assumed to be 1 mm. To emulate the imperfections the plate consists of 3 holes

of varying diameters.

30

40

20

256

25
6

P

B

A
C

Figure 5.28. Specimen dimensions (mm) and boundary conditions considered in the 2D
image-based analysis of a plate with multiple inclusions of different diameters.

The holes in figure 5.28 have dimensions and location coordinates as given in table
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5.1. The coordinate system is considered as (0,0) at the bottom left hand corner.

Inclusion notation Centre coordinates (mm) Diameter (mm)

A (128, 108) 40

B (64, 143) 30

C (192, 138) 20

Table 5.1. Location and the diameter of circular cavities considered in the 2D image-based
analysis of a plate with multiple inclusions of different diameters.

The plate is restrained in the bottom against vertical movement in addition to the

restraint in the bottom left corner against horizontal movement. To produce a response in

the model an agitation is exerted on the top edge of the plate.

The modulus of elasticity and Poison’s ratio of the plate are 20 GPa and 0.2, respect-

ively. Plane stress conditions are assumed for the problem with regard to the dimensions

of the model. The damage evolution is with respect to the exponential damage model

given in equation (5.2). The variable ε0 is set to 90×10−6 and the variable representing

the strain at which material is fully damaged ε f is set to 7.0×10−3. The behaviour of the

damage evolution function with these variables is shown in figure 5.29.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.040
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σx10-3

ε

Figure 5.29. 1D element stress (GPa) vs strain profile considered in the 2D image-based
analysis of a plate with multiple inclusions of different diameters. Damage evolution
considered is with respect to the softening law in equation (5.2).

The equivalent strain parameter is calculated with reference to equation (5.8). The
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parameter k in the equation is set to 10. This is to emulate more realistic material con-

stants related to concrete. The non-local length scale is considered as 5 mm assuming the

maximum particle size in mortar as 1.85 mm [303]. The non-local weighting considered

is in accordance to equation (5.10). Table 5.2 below captures all the material properties

used in the analysis.

E (GPa) ν ε0 ε f l (mm)

20 0.2 90×10−6 7.0×10−3 5

Table 5.2. Material properties and damage parameters adopted in the 2D image-based
analysis of a plate with multiple inclusions of different diameters.

The meshes considered for the analysis consist of elements with maximum element

size of 4 mm and a minimum element size of 1 mm (see figure 5.30). The finite element

mesh shown in figure 5.30a is produced through Abaqus FEA software suite. To control

the number of elements produced in the model the top quarter of the plate is manually

restricted to only produce 4× 4 mm quadrilateral elements. However, the automatically

generated central region of the mesh show considerable mesh refinement around the three

inclusions.

The automatically generated image-based quadtree meshes are shown in figure 5.30b.

For the purpose of comparing the effect of mesh smoothing two types of quadtree meshes

have been considered in this analysis; smoothened (figure 5.30b(i)) and unsmoothed (fig-

ure 5.30b(ii)). The geometry is meshed such that one pixel represents 1 mm of the prob-

lem domain. The quadtree decomposition is automatically set to occur with a maximum

size of a cell maintained at 4 pixels and the minimum size of cell fixed at 1 pixel.
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(a) Finite element mesh consisting of 7291 elements produced by Abaqus FEA

software suite.

(i) (ii)

(b) SBFEM (i) smoothened mesh consisting of 4451 elements and (ii) unsmoothed mesh consisting of 4305

elements.

Figure 5.30. (a) The finite element and (b) the automatically generated image-based SB-
FEM meshes used in the 2D image-based analysis of a plate with multiple inclusions of
different diameters. Maximum and minimum element sizes are 4 mm and 1 mm, respect-
ively.

Comparing the finite element mesh to the SBFE meshes, it is evident by using the

quadtree mesh generation structure quicker transition between element sizes is achieved.

In this example this feature achieved almost a 40% reduction in elements in the quadtree

structure compared to the finite element quadrilateral mesh.

The analysis is run using the modified Newton Raphson method. The initial dis-

placement step is kept to 0.002 mm with automatic displacement control the analysis is
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completed in 180 iterations. The load-displacement curve produced in the analysis is as

depicted in figure 5.31.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.70
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0.3

0.4 -FEM
-SBFEM (unsmoothed)
-SBFEM (smoothened)

U

P

Figure 5.31. Force (kN) vs displacement (mm) output for the 2D image-based non-local
damage analysis of a plate with multiple inclusions of different diameters. SBFEM un-
smoothed mesh output compared to the smoothened mesh and the FEM-based outputs.

The finite element analysis is performed using first order quadrilateral elements. With

reference to figure 5.31 there is good synergy between the finite element results and the

SBFEM results. The simulations attains a peak load of 0.3163 kN. At this instance the

damage profile shown in figure 5.34a indicates regions where the average damage value

is around 0.7 spanning within an approximate 15 mm and 10 mm lengths on either side

of inclusions B and C, respectively. As the section passing through holes B and C con-

stitutes the weakest section in the plate the effective reduction in cross section therefore

is close to 32%. Assuming an elastic plate in uniaxial tension with the reduction in cross

section of 32% and a top edge displacement of 0.02313 mm yields a top edge force of

0.315 kN. This value serves to validate the results obtained in this analysis. What is

highly note worthy is that the SBFEM smoothened and unsmoothed meshes produce sim-

ilar results, thus avoiding the need for mesh smoothing which can be a time consuming

exercise in more complex problems. This finding is in line with the observations made

by [98, 108, 115] on the effect of stress averaging in the presence of jagged boundaries.

Similarly localised strains observed in small elements adjoining the jagged boundaries

are in a sense smoothened by the non-local averaging which produces strains close to the

strains obtained using geometry-based meshes.
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The contour plots are extracted at three critical points in the hardening and softening

limbs in the load-displacement curve shown in figure 5.31. The contours for displace-

ment (figure 5.32) and maximum principle stress (figure 5.33) are recorded at a node ‘A’

displacement of 0.02313 mm corresponding to a peak load of 0.3163 kN on the top edge

and just after the peak load for displacement value of 0.0543 mm corresponding to a load

of 0.2938 kN. In addition the damage contours in figure 5.34 captures an instance corres-

ponding to the end of the simulation when node ‘A’ displacement reads at 0.5727 mm for

a corresponding load of 0.0021 kN (figure 5.34c).

The displacement contour in figure 5.32a shows the initial increase in the displacement

of the top section of the plate directly above the three imperfections. Thereafter as damage

further develops (see figure 5.34b) between the circular inclusions the upper section of the

plate displays an amplified state of deformation in figure 5.32b.

(a) Vertical displacement (uy)

contour when node ‘A’ dis-

placement is 0.02313 mm.

(b) Vertical displacement (uy)

contour when node ‘A’ dis-

placement is 0.0543 mm.

0.00000 0.01500 0.03000 0.04500 0.06000

Figure 5.32. Vertical displacement (uy) contours obtained for the 2D image-based
non-local damage analysis of a plate with multiple inclusions of different diameters.
Units:mm. Results are recorded for the mesh shown in figure 5.30b-(ii).

The stress contour plots in figure 5.33a-5.33b exhibit the expected stress concentra-

tions at the edges of the horizontal diameter. These concentrated stresses dissipate as the

distance increases from the edge of the inclusions.
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(a) Maximum principle stress

contour when node ‘A’ dis-

placement is 0.02313 mm.

(b) Maximum principle stress

contour when node ‘A’ dis-

placement is 0.0543 mm.

-0.00020 0.00073 0.00165 0.00258 0.00350

Figure 5.33. Maximum principle stress contours obtained for the 2D image-based
non-local damage analysis of a plate with multiple inclusions of different diameters.
Units:GPa. Results are recorded for the mesh in figure 5.30b-(ii).

The concentration of strains near to the edges of the horizontal diameter initiates dam-

age in the region as seen in figure 5.34a. This initial damage then fully propagates (see

figures 5.34b-5.34c) between the three inclusions following the weakest section of the

plate.

(a) Damage contour when

node ‘A’ displacement is

0.02313 mm.

(b) Damage contour when

node ‘A’ displacement is

0.0543 mm.

(c) Damage contour when

node ‘A’ displacement is

0.5727 mm.

0.0000 0.2500 0.5000 0.7500 1.0000

Figure 5.34. Damage (ω) contours obtained for the 2D image-based non-local damage
analysis of a plate with multiple inclusions of different diameters. Results are recorded
for the mesh in figure 5.30b-(ii).

313



5.8.2 X-ray CT image generated 2D concrete specimen

This example makes use of an actual image of a concrete specimen published by Ren et.

al. [542]. The image shown in figure 5.35 consists of a two phase geometry, made up

of the concrete matrix and aggregates represented by grey and black pixels, respectively.

The two white specs in the image represent voids generally found in concrete specimens.

Figure 5.35 also depicts the dimensions and boundary conditions adopted in the simula-

tion. The specimen is 100× 100 mm in length and height with an assumed thickness of

1 mm. The bottom edge of the specimen is restrained in vertical movement while the

left bottom corner of the specimen is restrained in horizontal movement. A displacement

control agitation is introduced on the top edge of the specimen to generate a response to

analyse the structural behaviour of the model.

U

100

100

A

Figure 5.35. Specimen dimensions (mm) and boundary conditions used in the X-ray CT
image-based non-local analysis of 2D concrete specimen.

The specimen is considered to have material properties collated in table 5.3. Mortar

is considered to be the weaker of the two material interface and thus subject to damage.

The aggregate on the other hand is assumed not to undergo damage degradation. The
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damage evolution is according to the exponential damage model given in equation (5.3).

The equivalent strain criteria for non-local averaging is considered through adopting the

Mazars formulation given in equation (5.5). Plane stress conditions are considered for the

analysis.

Aggregate Matrix

Young’s modulus (GPa) 35 30

Poisson’s ratio 0.2 0.2

Non-local equivalent strain N/A Mazars, refer equation (5.5)

Damage initiation threshold N/A 0.124×10−4

Non-local length (mm) N/A 2.4

Damage evolution law N/A Exponential, refer equation (5.3)

Residual stress parameter N/A 0.999

Softening rate parameter N/A 500

Table 5.3. Material properties and damage parameters adopted in the X-ray CT image-
based non-local analysis of 2D concrete specimen.

Considering the above damage parameters the behaviour of the damage evolution

function is shown in figure 5.36.
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Figure 5.36. 1D element stress (GPa) vs strain profile considered in the X-ray CT image-
based non-local analysis of 2D concrete specimen. Damage evolution considered is with
respect to the exponential softening law in equation (5.3).
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The non-local length parameter is considered as 2.4 mm with non-local weighting

considered according to equation (5.10). The non-local length parameter is based on the

findings of [303]. With an assumed 0.8 mm maximum particle size of mortar the non-

local length parameter is set at 2.4 mm which equates to 3×d0, where d0 is the maximum

particle size of mortar.

The automatic decomposition of the image to a quadtree mesh is bound by the max-

imum cell size of 8 pixels and the minimum cell’s size is 1 pixel, which resulted in 14,951

cells. The specimen is modelled as a standard 100×100 mm specimen which is achieved

by adopting a scaling factor of 0.39. Therefore, minimum and maximum mesh size is

0.39 mm and 1.56 mm. There is a total of 100,031 DOFs in the mesh shown in figure

5.37. All the matrices specified in section 5.6 are pre-computed for all the 32 possible

master cells (16 possible master cells in each material), which is less than 0.08% of the

total number of cells in the mesh. Pursuant to the observations made in section 5.8.1, this

simulation does not consider a smoothened mesh.

Figure 5.37. SBFEM mesh used in the analysis of an X-ray CT image-based non-local
analysis of 2D concrete specimen.

The load-displacement curve produced in the analysis is given in figure 5.38. The

316



analysis is run using the arc-length incorporated modified Newton Raphson method. The

initial displacement step is kept to 1×10−4 mm with automatic displacement control the

analysis is completed in 420 iterations.

0 0.02 0.04 0.06 0.080

0.01

0.02
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-SBFEM (unsmoothed)
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P

Figure 5.38. Force (kN) vs displacement (mm) output for the X-ray CT image-based non-
local analysis of 2D concrete specimen. SBFEM unsmoothed mesh shown in figure 5.30b
considered in the analysis.

The contour plots produced below are for displacement (figure 5.39), maximum prin-

ciple stress in aggregates (figure 5.40) and mortar (figure 5.41), and damage evolution

(figure 5.42). The contours for displacement, maximum principle stress and damage are

captured when node ‘A’ reads a displacement of 0.0018 mm corresponding to a peak load

of 0.03697 kN on the top edge and just after the peak load for a displacement value of

0.01 mm corresponding to a load of 0.02368 kN (refer figure 5.38). In addition to this

these load-displacement instances the damage evolution contains an extra contour corres-

ponding to the end of the simulation at a displacement reading of 0.08 mm and a total

force reading of 1.4×10−5 kN.

The displacement contours in figure 5.39 depict a clear weak zone formation first in

an S shaped form as seen in figure 5.39a and thereon in figure 5.39b the bottom portion

of the specimen appears to be separated by the yellow shaded contour indicating larger

deformations. This region is therefore most likely to be affected by macro cracks.
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(a) Vertical displacement (uy)

contour when node ‘A’ dis-

placement is 0.0018 mm.

(b) Vertical displacement (uy)

contour when node ‘A’ dis-

placement is 0.01 mm.

0.00000 0.00330 0.00660 0.00990 0.01320

Figure 5.39. Vertical displacement (uy) contours obtained for the X-ray CT image-based
non-local analysis of 2D concrete specimen. Units:mm. Results are obtained for the mesh
shown in figure 5.30b.

The aggregate stress contours shown in figure 5.40 capture the distribution of stresses

within the aggregate matrix. The sharp edges apparent in the aggregates build stress and

strain concentrations in the vicinity of these sharp corners.

(a) Maximum principle stress

contour for the aggregates

when node ‘A’ displacement

is 0.0018 mm.

(b) Maximum principle stress

contour for the aggregates

when node ‘A’ displacement is

0.01 mm.

0.00000 0.00046 0.00092 0.00138 0.00184

Figure 5.40. Maximum principle stress contours obtained for the aggregate structure in
the X-ray CT image-based non-local analysis of 2D concrete specimen. Units:GPa. Res-
ults are obtained for the mesh shown in figure 5.30b.
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As expected the voids in the mortar tends to concentrate strains and stresses in the

edges perpendicular to the direction of loading. This can be seen in figure 5.41a. This

initial strain concentration drives the damage formulation around the voids in the matrix

(see figure 5.42a). With softening however the stresses in the mortar matrix are expected

to reduce. This softening phenomenon within the mortar is apparent in figure 5.41b.

(a) Maximum principle stress

contour for the matrix when

node ‘A’ displacement is

0.0018 mm.

(b) Maximum principle stress

contour for the matrix when

node ‘A’ displacement is 0.01

mm.

0.00000 0.00020 0.00040 0.00060 0.00080

Figure 5.41. Maximum principle stress contours obtained for the matrix structure in the
X-ray CT image-based non-local analysis of 2D concrete specimen. Units:GPa. Results
are obtained for the mesh shown in figure 5.30b.

After the initial damage formation in the vicinity of the voids further damage accu-

mulation closer to the left edge. This is due to the presence of sharp aggregates (see

figure 5.42b) attracting higher strains in the vicinity of sharp corners. The damage then

propagates through the mortar meandering around the aggregates following the weakest

path within the specimen.
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(a) Damage contour when

node ‘A’ displacement is

0.0018 mm.

(b) Damage contour when

node ‘A’ displacement is 0.01

mm.

(c) Damage contour when

node ‘A’ displacement is 0.08

mm.

0.0000 0.2500 0.5000 0.7500 1.0000

Figure 5.42. Damage (ω) contours obtained for the X-ray CT image-based non-local
analysis of 2D concrete specimen. Results are obtained for the mesh shown in figure
5.30b.

5.8.3 Artificially generated 2D concrete specimen

As the final 2D example an automatically generated aggregate distribution is considered

with a refined description of the constituents consisting of an inter-facial transition zone

(ITZ). The problem description is extracted from the work published by Lloberas et.

al. [512], where domain decomposition techniques are studied for efficient modelling

of brittle heterogeneous materials.

With reference to figure 5.43 the model consists of a three-phase material description

with aggregates (black pixels), matrix (white pixels) and the ITZ (grey pixels) between the

aggregates and the matrix. The length and the depth of the specimen is set to 66.67×30

mm. The concrete sample is subjected to a tensile loading by restraining the horizontal

movement of the specimen on the left edge while the opposite edge of the specimen is

subjected to the application of tensile force. To avoid rigid body movement the lower

bottom corner of the model is retrained in vertical movement.
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66.67

30

A

U

Figure 5.43. Specimen dimensions (mm) and boundary conditions used in the non-local
analysis of an artificially generated 2D concrete specimen.

Material properties of the model is as given in table 5.4. The ITZ is assumed as a weak

porous region of the material were damage nucleates and propagates through the matrix

until complete failure of the specimen. The exponential damage model given in equation

(5.3) is used in this formulation. The equivalent strain criteria for non-local averaging is

considered as per Mazars formulation given in equation (5.5). The non-local strains are

then averaged with the non-local weightings calculated in accordance to equation (5.10).
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Aggregate Matrix ITZ

Young’s modulus (GPa) 35 30 20

Poisson’s ratio 0.2 0.2 0.2

Non-local equivalent strain N/A Mazars, refer

equation (5.5)

Mazars, refer

equation (5.5)

Damage initiation threshold N/A 0.124×10−4 0.1×10−4

Non-local length (mm) N/A 0.8 0.8

Damage evolution law N/A Exponential, refer

equation (5.3)

Exponential, refer

equation (5.3)

Residual stress parameter N/A 0.999 0.999

Softening rate parameter N/A 500 500

Table 5.4. Material properties and damage parameters adopted in the non-local analysis
of an artificially generated 2D concrete specimen.

The stress-strain behaviour of the damage models upon consideration of the paramet-

ers in table 5.4 are as shown in figure 5.44. Since both the matrix and the ITZ undergo

material damage, figure 5.44 depict the damage induced stress-strain variation between

the two material types.
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Figure 5.44. 1D element stress (GPa) vs strain profile considered in the 2D image-based
analysis of a artificially generated geometry of a concrete specimen. Two different dam-
age evolutions are considered using the exponential softening law in equation (5.3) for
the matrix and the ITZ.

The thickness of the ITZ is assumed to be 0.5 mm and therefore the element size

distribution within the mesh is considered so that a minimum of at least 2 elements are

captured within the ITZ. The final mesh distribution reflect this requirement by setting the

maximum and minimum mesh size respectively to 0.78 mm and 0.1 mm, and consist of

28,695 elements (see figure 5.45). As the results for both smooth and unsmoothed mesh

configuration was proven to produce similar results in section 5.8.1, this example only

considers an unsmoothed mesh.

Figure 5.45. SBFEM mesh used in the non-local analysis of an artificially generated
2D concrete specimen. Maximum and minimum mesh sizes are 0.78 mm and 0.1 mm,
respectively.

The simulation is run with the arc-length incorporated modified Newton Raphson

scheme under assumed plane stress conditions. The load-displacement curve thus pro-

duced in the implicit analysis is depicted in figure 5.46.
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Figure 5.46. Force (kN) vs displacement (mm) output for the 2D image-based non-local
damage analysis of a artificially generated geometry of a concrete specimen. SBFEM
unsmoothed mesh output compared to the FEM-based output published by [512].

The peak load attained in the simulation is 0.01144 kN. The SBFEM results show a

close agreement with the reference solution.

The contour plots for displacement shown in figure 5.47 are captured at instances re-

sembling the peak load and at a point on the softening limb when node ‘A’ displacement

reads 0.005321 mm corresponding to a load of 0.00837 kN. This second displacement

contour in figure 5.47b shows a clear definition of the centralised damage process zone

distinguished by the yellow shaded contours. As the applied external load increases the

deformations to the left of this zone become insignificant due to the phenomenon of un-

loading.

(a) Horizontal displacement contour when

node ‘A’ displacement is 0.001872 mm.

(b) Horizontal displacement contour when

node ‘A’ displacement is 0.005321 mm.

-0.00002 0.00134 0.00270 0.00406 0.00542

Figure 5.47. Horizontal displacement (ux) contours obtained for the non-local analysis of
an artificially generated 2D concrete specimen. Units:mm. Results are obtained for the
mesh shown in figure 5.45.
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The maximum principle stress contours shown in figures 5.48, 5.49 and 5.50 respect-

ively belong to the matrix, the ITZ and the aggregate found in the concrete specimen.

The instances captured in these figures are similar to those captured in the displacement

contours in figure 5.47.

(a) Maximum principle stress contour when

node ‘A’ displacement is 0.001872 mm.

(b) Maximum principle stress contour when

node ‘A’ displacement is 0.005321 mm.

0.00000 0.00041 0.00081 0.00122 0.00162

Figure 5.48. Maximum principle stress contours obtained for the matrix structure in the
non-local analysis of an artificially generated 2D concrete specimen. Units:GPa. Results
are obtained for the mesh shown in figure 5.45.

(a) Maximum principle stress contour when

node ‘A’ displacement is 0.001872 mm.

(b) Maximum principle stress contour when

node ‘A’ displacement is 0.005321 mm.

0.00000 0.00014 0.00028 0.00042 0.00056

Figure 5.49. Maximum principle stress contours for the ITZ structure in the non-local
analysis of an artificially generated 2D concrete specimen. Units:GPa. Results are ob-
tained for the mesh shown in figure 5.45.

As the specimen is subjected to tensile loading the corners of the material constituents

perpendicular to the direction of loading garner high stresses due to the accumulation of

high strains (see figures 5.49 and 5.50).
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(a) Maximum principle stress stress contour

when node ‘A’ displacement is 0.001872 mm.

(b) Maximum principle stress contour when

node ‘A’ displacement is 0.005321 mm.

0.00000 0.00020 0.00039 0.00059 0.00078

Figure 5.50. Maximum principle stress contours for aggregates structure in the non-local
analysis of an artificially generated 2D concrete specimen. Units:GPa. Results are ob-
tained for the mesh shown in figure 5.45.

When the load is increased damage starts at the weak ITZ between aggregates and

matrix. These contributes to numerous locations of accumulated strains which results

in localised spots of damage. This process cumulatively produces the damage process

zone. The damage contours shown in figure 5.51 below depict the formation of this

damage process zone at instances similar to that recorded in the displacement contours.

In addition a load-displacement instance shown in figure 5.51c correspond to the end of

the simulation at a displacement of 0.0287 mm and load of 6.43×10−5 kN. This record

helps to capture the full extent of the deterioration of the specimen. As the aggregates

are assumed to be exempt from damage this assumption is also reflected in the figures

5.51a-5.51c.
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(a) Damage contour when node ‘A’ displace-

ment is 0.001872 mm.

(b) Damage contour when node ‘A’ displace-

ment is 0.005321mm.

(c) Damage contour when node ‘A’ displace-

ment is 0.0287mm.

0.0000 0.2500 0.5000 0.7500 1.0000

Figure 5.51. Damage (ω) contours obtained for the non-local analysis of an artificially
generated 2D concrete specimen. Results are obtained for the mesh shown in figure 5.45.

The central portion of the specimen is made up of small aggregates that are bound

by the ITZ. This has contributed to a higher representation of mortar and a lack of rep-

resentation of the strongest constituent of the model, aggregates. Therefore this section

theoretically should contribute to the weakest part of the model as the ITZ and the mortar

are the two weakest material constituents in the model. The damage pattern observed in

figure 5.51 agrees with this theoretical expectation.

5.8.4 Thick plate with multiple cylindrical cavities of different dia-

meters

The first example in 3D considers a perforated thick plate in uniaxial tension. These

perforations intend to act as imperfections that encourage the formation and the evolution

of the deterioration of the specimen. This example is similar to the example demonstrated

327



in section 5.8.1.

With reference to figure 5.52 the dimensions of the plate are 128×128×8 mm. The

plate contains 3 cylindrical inclusions (P, Q and R) of varying diameters.

U

A

U

128

8

Q
RP

128

Figure 5.52. Specimen dimensions (mm) and boundary conditions considered in the 3D
image-based non-local analysis of a thick plate with 3 cylindrical cavities of different
diameters.

The inclusions in figure 5.52 have dimensions and location coordinates as given in

table 5.5. The coordinates are given relative to the coordinate (0,0,0) considered at the

left hand bottom corner.

Inclusion notation Centre coordinates (mm) Diameter (mm)

P 22,72 26

Q 64,53 41

R 105,66 16

Table 5.5. Location and the diameter of cylindrical inclusions considered in the 3D image-
based non-local analysis of a thick plate with 3 cylindrical cavities of different diameters.

To emulate the uniaxial loading condition the plate is pulled from both the top and the
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bottom faces. The horizontal restraint in the bottom right corner restricts any rigid body

movements.

The Young’s modulus of the plate is considered to be 20 GPa and the Poisson’s ratio

is set at 0.2. The damage evolution model is according to the exponential damage model

given in equation (5.2) with ε0 = 90×10−6 and strain at which material is fully damaged

ε f = 7.0×10−3. The behaviour of the softening model with respect to these parameters

are shown in figure 5.53.
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Figure 5.53. 1D element stress (GPa) vs strain profile considered in the 3D image-based
analysis of a thick plate with 3 cylindrical cavities of different diameters. The damage
evolutions is with respect to the softening law in equation (5.2).

The ratio between the compressive and tensile strength (parameter k) in equation (5.8)

is set to 10 to obtain an realistic material description while calculating the equivalent

strain. The non-local length is taken as 5 mm assuming the maximum particle size of

mortar as 1.85 mm. The non-local weighting is implemented using equation (5.10). All

the material and damage model parameters used in the analysis are collated in table 5.6.

E (GPa) ν ε0 ε f l (mm)

20 0.2 90×10−6 7.0×10−3 5

Table 5.6. Material properties and damage parameters adopted in the 3D image-based
non-local analysis of a thick plate with 3 cylindrical cavities of different diameters.

The two meshes considered for the analysis consists of elements with maximum mesh

size of 2 mm and 4 mm with a minimum mesh size of 1 mm. Figure 5.54 shows the two
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meshes considered in the analysis. These meshes are automatically generated through the

octree meshing algorithm.

(a) Mesh 1 with maximum

element size 4 mm and

minimum element size 1

mm.

(b) Mesh 2 with maximum

element size 2 mm and

minimum element size 1

mm.

Figure 5.54. (a) Coarse (mesh 1) and (b) fine (mesh 2) SBFE unsmoothed meshes used
in the 3D image-based non-local analysis of a thick plate with 3 cylindrical cavities of
different diameters.

The analysis is run using the modified Newton Raphson method with displacement

controlled agitations on the top and bottom surfaces. The initial displacement step is

kept to 0.001 mm with automatic displacement control the analysis is completed in 350

iterations. The load-displacement curve produced in the analysis is given in figure 5.55.
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Figure 5.55. Force (kN) vs displacement (mm) output for the 3D image-based non-local
analysis of a thick plate with 3 cylindrical cavities of different diameters. SBFEM un-
smoothed meshes shown in figure 5.54 considered in the analysis.

With reference to figure 5.55 there is good agreement between the two analysis con-

ducted using the coarse and the fine meshes. Thus, satisfying the expected convergence

with mesh refinement in non-local analysis regimes. The simulation attains a peak load

of 0.8341 kN. An equivalent elastic plate cross section to attain the recorded maximum

load equates to 606.618mm2. With the development of damage in the plate, to attain an

effective area of 606.618mm2 the cross sectional plane passing through the inclusions

should therefore have an approximate damage development of 0.78 at the time the simu-

lation attains the maximum load carrying capacity. This damage value is closely reflected

in figure 5.58a which can be confidently approximated to fall within 0.75-0.85. Thus,

validating the result.

The contour plots depicted in figure 5.56 are for the vertical displacement. The first

contour shown in figure 5.56a is captured at displacement of 0.0088 mm corresponding to

a peak load of 0.8341 kN whereas the second contour shown in figure 5.56b is associated

to an instance where displacement and load values read 0.02245 mm and 0.72574 kN,

respectively. Moving from figure 5.56a to figure 5.56b the top part of the plate undergo

considerable deformation as damage accumulates in a narrow horizontal band passing

through the inclusions (see figures 5.58).
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(a) Vertical displacement con-

tour when node ‘A’ displace-

ment is 0.0088 mm.

(b) Vertical displacement con-

tour when node ‘A’ displace-

ment is 0.02245 mm.

-0.02247 -0.01124 0.00000 0.01123 0.02247

Figure 5.56. Vertical displacement (uy) contours obtained for the 3D image-based non-
local analysis of a thick plate with 3 cylindrical cavities of different diameters. Units:mm.
Results are obtained for mesh 2 shown in figure 5.54b.

The von Mises equivalent stress contours in figure 5.57 are captured at similar in-

stances as recorded in the displacement contours. When strains accumulate in the corners

of inclusions perpendicular to the direction of loading high stress zones are produced as a

consequence. At the same time however edges parallel to the direction of loading undergo

unloading.
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(a) Von Mises stress stress

contour when node ‘A’ dis-

placement is 0.0088 mm.

(b) Von Mises stress contour

when node ‘A’ displacement

is 0.02245 mm.

0.00000 0.00085 0.00170 0.00255 0.00340

Figure 5.57. Von Mises stress contours obtained in the 3D image-based non-local analysis
of a thick plate with 3 cylindrical cavities of different diameters.. Units:GPa. Results are
obtained for the mesh 2 shown in figure 5.54b.

For completeness, the damage contours in figure 5.58 captures an additional contour

resembling the end of the simulation at a displacement of 0.2338 mm and load of 0.0062

kN. The damage propagates from the high strain and stress accumulated zones evident

in the von Mises stress plots in figure 5.57. The damage contour spans from the central

larger diameter inclusion to the smaller diameter inclusions on either side.
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(a) Damage contour when

node ‘A’ displacement is

0.0088 mm.

(b) Damage contour when

node ‘A’ displacement is

0.02245 mm.

(c) Damage contour when

node ‘A’ displacement is

0.2338 mm.

0.0000 0.2500 0.5000 0.7500 1.0000

Figure 5.58. Damage (ω) contours obtained in the 3D image-based non-local analysis of
a thick plate with 3 cylindrical cavities of different diameters. Results are obtained for the
mesh shown in figure 5.54b.

The deformed shape of the specimen at the end of the analysis is as shown in figure

5.59. The result is scaled 100 times to exaggerate the result for better visualisation. As

expected the left and right edges of the inclusions undergo significant deformation as

damage accumulates in these regions.

Figure 5.59. Deformed shape of the specimen obtained in the 3D image-based non-local
analysis of a thick plate with 3 cylindrical cavities of different diameters. Results are
obtained for the mesh shown in figure 5.54b.
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5.8.5 3D cube with multiple spherical inclusions of different diamet-

ers

The uniaxial tensile behaviour of a 128×128×128 mm cube with 6 spherical inclusions

is studied in this section.

As shown in figure 5.60 the inclusions are of varying diameters and are positioned in

the central Y plane.
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128

128

Z
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U

Figure 5.60. Specimen dimensions (mm) and boundary conditions considered in the 3D
image-based non-local analysis of a cube with 6 spherical inclusions of different diamet-
ers.

These spherical inclusions have dimensions and location coordinates as given in table

5.7. The coordinates given in the table considers (0,0,0) at the bottom left hand corner.
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Inclusion notation Centre coordinates (mm) Diameter (mm)

A 26,64,100 32

B 30,64,30 28

C 64,64,64 30

D 90,64,20 24

E 110,64,70 20

F 94,64,108 16

Table 5.7. Location and the diameter of spherical cavities considered in the 3D image-
based non-local analysis of a cube with 6 spherical inclusions of different diameters.

The cube is restrained in Y directional movement and all rigid body movements

through restraints applied on the bottom face. The force applied on the top face of the

cube induces the tensile action.

The modulus of elasticity and poisons ratio is set to 20 GPa and 0.2, respectively. The

equivalent strain parameter k with reference to equation (5.8) is set to 10. The interaction

radius R is set to 7 mm with non-local weighting considered according to equation (5.11).

The damage evolution follows the exponential softening model given in equation (5.3)

with ε0 set to 7× 10−5 , α = 0.98 and β = 300. The stress-strain variation with respect

to these damage model parameters is given in figure 5.61.
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Figure 5.61. 1D element stress (GPa) vs strain profile considered in the 3D image-based
non-local analysis of a cube with 6 spherical inclusions of different diameters. The dam-
age evolution is with respect to the softening law in equation (5.3).

Figure 5.62 shows the two meshes automatically generated through image-based octree

decomposition. For better visualisation of the mesh details the meshes are shown in the

xz plane for one half of the cube. The two meshes are considered to demonstrate the con-

vergence of the results with improved mesh refinement. In mesh 1 the element size varies

from 1 mm to 8 mm whereas in mesh 2 the element size varies from 1 mm to 4 mm.

(a) Mesh 1 - minimum element size 1

mm and maximum element size 8 mm.

(b) Mesh 2 - minimum element size 1

mm and maximum element size 4 mm.

Figure 5.62. Two octree meshes used in the 3D image-based non-local analysis of a
cube with 6 spherical inclusions of different diameters. Minimum element size of 1 mm
considered.

The finer mesh is built up of 49,358 cells that generate 213,438 DOFs. The number

of cells generated is a mere 2.4% of the voxels present in the original image. The number
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of unique octree cells identified in the mesh is 168. Therefore, the number of master cells

are a 0.34% of the total number of cells.

The analysis is run using the modified Newton Raphson method coupled with the

arc-length technique. The initial displacement step is kept to 0.001 mm. The automatic

displacement control feature enables the analysis to completed in 198 iterations. The

load-displacement curve produced in the analysis with respect to the two meshes in figure

5.62b is shown in figure 5.63.
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Figure 5.63. Force (kN) vs displacement (mm) output for the 3D image-based non-local
analysis of a cube with 6 spherical inclusions of different diameters. Results are obtained
for the two SBFEM unsmoothed meshes shown in figure 5.62.

The peak load reached in the simulation is 20.8 kN when the node ’R’ displacement

is 0.0097 mm. The force-displacement response for the two meshes are comparatively

similar. This result is an indication of the analysis converging upon mesh refinement. It

can be expected, upon further refinement, the non-local analysis output will produce a

similar solution with a finite energy dissipation, independently of the mesh employed.

The contour plots produced below are for displacement (figure 5.64), maximum prin-

ciple stress (figure 5.65) and damage evolution (figure 5.66). The contours for displace-

ment, maximum principle stress and damage are at peak load and just after the peak load

for displacement value of 0.032 mm corresponding to a load of 10.2 kN. In addition to this

these contours, the damage evolution contours contains an extra contour corresponding to

the end of the simulation at displacement of 0.19 mm and load of 1.58 kN.

Since the spherical inclusions are positioned centrally in the Y plane, the displacement
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contours show a slight symmetry in the contours. However, due to the inclusions being of

different diameter, it is not in a perfect symmetry. As the load increases the central portion

of the cube show a clear definition of the differentiation in the magnitude of displacement

between the top and the bottom half of the cube. This can be interpreted as the formation

of a damage process zone that is evident in the damage contours shown in figure 5.66.

(a) Vertical displacement contour

when node ’R’ displacement is

0.0097 mm.

(b) Vertical displacement contour

when node ’R’ displacement is

0.032 mm.

0.00000 0.00800 0.01600 0.02400 0.03200

Figure 5.64. Vertical displacement (uy) contours obtained for the 3D image-based non-
local analysis of a cube with 6 spherical inclusions of different diameters. Units:mm.
Results shown for the SBFEM unsmoothed mesh in figure 5.62b.

The stress contours in figure 5.65 exemplify the damage induced softening in the

specimen. The contour plot in figure 5.65a is captured when the model registered the

maximum load therefore this contours show higher stress levels compared to the contour

in figure 5.65b which is reflective of the softening stage of the analysis.
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(a) Von Mises stress contour

when node ’R’ displacement

is 0.0097 mm.

(b) Von Mises stress contour

when node ’R’ displacement is

0.032 mm.

0.00000 0.00074 0.00148 0.00222 0.00296

Figure 5.65. Von Mises stress contours obtained for the 3D image-based non-local ana-
lysis of a cube with 6 spherical inclusions of different diameters. Units:(GPa). Results
shown for the SBFEM unsmoothed mesh in figure 5.62b.

The damage profiles in figures 5.66a-5.66c show the gradual development of damage.

Damage first appears between the larger inclusions and then gradually moves towards the

smaller inclusions before engulfing the whole section causing the cube to fail.

(a) Damage contour when

node ’R’ displacement is

0.0097 mm.

(b) Damage contour when

node ’R’ displacement is

0.032 mm.

(c) Damage contour when

node ’R’ displacement is 0.19

mm.

0.0000 0.2500 0.5000 0.7500 1.0000

Figure 5.66. Damage (ω) contours obtained for the 3D image-based non-local analysis of
a cube with 6 spherical inclusions of different diameters. Results shown for the SBFEM
unsmoothed mesh in figure 5.62b.
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The final deformed shape of the specimen at the end of the analysis is as shown in

figure 5.67. For better visualisation the deformation is magnified by 100.

Figure 5.67. Deformed shape of the specimen obtained for the 3D image-based non-local
analysis of a cube with 6 spherical inclusions of different diameters. Results shown for
the SBFEM unsmoothed mesh in figure 5.62b.

5.8.6 X-ray CT image generated 3D concrete cube

This example simulates the behaviour of a 3D concrete cube obtained by X-ray CT im-

ages. The images are courtesy of Huang et al. [490] where meso-scale fracture modelling

is investigated.

As shown in figure 5.68 the dimensions of the cube is set to 100× 100× 100 mm.

The boundary conditions adopted in the analysis is such that the top and the bottom faces

are agitated by a displacement U whilst one corner of the cube is restrained in horizontal

movement to avoid rigid body motions.
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Figure 5.68. Specimen dimensions (mm) and boundary conditions adopted in the 3D
X-ray CT image-based non-local analysis of concrete specimen.

The cube consists of aggregates of varying sizes ranging from approximately 4 mm

to 16 mm. The specimen is considered to have material properties as given in table 5.8.

The constituents of the cube consist of mortar and the aggregate. Mortar is considered

weaker of the two material and thus undergo damage, whereas the aggregate on the other

hand is assumed not to undergo any material deterioration. The damage evolution is in

accordance with the exponential damage model given in equation (5.3). The equivalent

strain criteria for non-local averaging is considered with reference to Mazars formulation

given in equation (5.5).
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Aggregate Matrix

Young’s modulus (GPa) 35 30

Poisson’s ratio 0.2 0.2

Non-local equivalent strain N/A Mazars, refer equation (5.5)

Damage initiation threshold N/A 0.124×10−4

Non-local length (mm) N/A 5

Damage evolution law N/A Exponential, refer equation (5.3)

Residual stress parameter N/A 0.999

Softening rate parameter N/A 500

Table 5.8. Material properties and damage parameters adopted in the 3D X-ray CT image-
based non-local analysis of concrete specimen.

The non-local length is considered as 5 mm with non-local weighting considered ac-

cording to equation (5.2). The non-local length is considered as 5 mm assuming the

maximum particle size of mortar as 1.85 mm with reference to [303]. The damage evolu-

tion is as per the softening model given in equation (5.3). Considering the above damage

parameters the behaviour of the damage evolution function is shown in figure 5.69.
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Figure 5.69. 1D element stress (GPa) vs strain profile considered in the 3D X-ray CT
image-based non-local analysis of concrete specimen. The damage evolution is with re-
spect to the softening law in equation (5.3).
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The meshes considered in the analysis consists of elements with minimum mesh size

1.56 mm (1 voxel), and a maximum mesh size of 3.125 mm (2 voxels) and 6.25 mm (4

voxels) for the fine mesh and the coarse mesh, respectively. Figure 5.70 depict the the two

meshes automatically generated by the image-based octree mesh generation algorithm.

The finer mesh consists of 72,160 cells that contribute to 519,552 DOFs. Compared to

the original 64×64×64 voxelized image, the total number of cells generated is approx-

imately around 27.5% of the total number of voxels in the image. Out of the 72,160 cells

0.18% are identified as master cells.

(a) Mesh 1 (coarse mesh) with minimum element size 1.56 mm and maximum element

size 6.25 mm.

(b) Mesh 2 (fine mesh) with minimum element size 1.56 mm and maximum element size

3.125 mm.

Figure 5.70. Two octree meshes used in the 3D X-ray CT image-based non-local analysis
of concrete specimen. Minimum element size of 1.56 mm.

The analysis is run using the modified Newton Raphson method with displacement
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controlled agitations applied on the top and bottom faces. The initial displacement step

is kept to 0.0001 mm. With automatic displacement control the analysis is completed

in 1500 iterations. The load-displacement curve produced in the analysis is presented in

figure 5.71.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.140

2

4

6 -SBFEM (coarse mesh)
-SBFEM (fine mesh)

Figure 5.71. Force (kN) vs displacement (mm) output for 3D X-ray CT image-based non-
local analysis of concrete specimen. Results are obtained for the two SBFEM unsmoothed
meshes shown in figure 5.70.

In regard to figure 5.71 there is good agreement in the force vs displacement curves

between the coarse and the fine mesh. The result therefore entails, with the mesh refine-

ment considered from mesh 1 to mesh 2 the overall response of the analysis converges.

The simulation exhibits linear behaviour up to a displacement value 0.0006 mm. This

displacement induces strains that roughly coincides with the damage initiation threshold

strain (ε0) of 0.124×10−4 . As the top and the bottom face displacements reaches a value

of 0.0006 mm this then induces a strain in the smallest elements (1.56×1.56×1.56 mm)

in the mesh very close to ε0 just prior to damage initiation. At a given cross section of

the cube the distribution of mortar to aggregate is approximately 60 to 40. Therefore the

load carrying capacity of the concrete block is largely influenced by material properties

of the weakest constituent of the concrete matrix (the mortar). With due consideration to

the distribution of constituents in the cube, an approximate calculation yields a load of 4

kN at damage initiation. This value is relatable to the simulation attained value of 4.15

kN. Thereon the non-localisation induced hardening helps the concrete cube to attain a

peak load of 5.555 kN.
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The contour plots below represent contours for displacement (figure 5.72), von Mises

stress for mortar (figure 5.73) and aggregates (figure 5.74), and damage evolution (figure

5.75). The contours for displacement, von Mises stress and damage are shown at dis-

placements of 0.00321 mm at node ‘A’ corresponding to a peak load of 5.555 kN on the

top face and just after the peak load for displacement value of 0.019891 mm correspond-

ing to a load of 4.198 kN (refer figure 5.71). In addition to this these load-displacement

instances the damage evolution contours contain an extra contour corresponding to the

end of the simulation at displacement of 0.1264 mm and load of 1.08 kN.

The displacement contours in figures 5.72a and 5.72b show clear evidence of the non-

linear distribution of displacement within the cube.

-0.00340 -0.00170 0.00000 0.00170 0.00340

(a) Vertical displacement contour when node ‘A’ displacement is 0.00321 mm.

-0.02000 -0.01000 0.00000 0.01000 0.02000

(b) Vertical displacement contour when node ‘A’ displacement is 0.019891 mm.

Figure 5.72. Vertical displacement (uy) contours obtained for the 3D X-ray CT image-
based non-local analysis of concrete specimen. Units:mm. Results are obtained for the
mesh shown in figure 5.70b.

The green-yellow shade of higher displacement contours appear to be expanding in

width moving from left vertical edge to the central vertical edge of the cube. This is due

to the higher concentration of aggregates around the central vertical edge as evident in
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figures 5.74a and 5.74b. The higher concentration of the aggregates induce localisation

of strains within the mortar that in turn induces damage to initiate within these regions.

(a) Von Mises stress contour when

node ‘A’ displacement is 0.00321

mm.

(b) Von Mises stress contour when

node ‘A’ displacement is 0.019891

mm.

0.00000 0.00035 0.00070 0.00105 0.00140

Figure 5.73. Von Mises stress contours for mortar and aggregate obtained for the 3D
X-ray CT image-based non-local analysis of concrete specimen. Units:GPa. Results are
obtained for the mesh shown in figure 5.70b.

(a) Von Mises stress contour

when node ‘A’ displacement is

0.00321 mm.

(b) Von Mises stress contour

when node ‘A’ displacement is

0.019891 mm.

0.00000 0.00200 0.00400 0.00600 0.00800

Figure 5.74. Von Mises stress contours for mortar and aggregate obtained for the 3D
X-ray CT image-based non-local analysis of concrete specimen. Units:GPa. Results are
obtained for the mesh shown in figure 5.70b.

The damage contours show the initial development of damage (see figure 5.75a) in
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the central portion of the cube and thereafter the damage profile migrates to a wider width

within the cube (see figures 5.75b and 5.75c).

(a) Damage contour when node ‘A’

displacement is 0.00321 mm.

(b) Damage contour when node

‘A’ displacement is 0.019891 mm.

(c) Damage contour when node ‘A’

displacement is 0.1264 mm.

0.0000 0.2500 0.5000 0.7500 1.0000

Figure 5.75. Damage (ω) contours obtained for the 3D X-ray CT image-based non-local
analysis of concrete specimen. Results are obtained for the mesh shown in figure 5.70b.

The final deformed shape magnified by 25 is shown in figure 5.76.

Figure 5.76. Deformed shape of the specimen obtained for the 3D X-ray CT image-based
non-local analysis of concrete specimen. Results are obtained for the mesh shown in
figure 5.70b.
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5.9 Conclusions

This chapter details a novel enhanced image-based damage analysis technique. Through-

out the formulation the focus is centred on full automation of the overall damage analysis

process. The quadtree and octree meshing technique aids in the development of an auto-

matic yet simple framework to conduct damage analyses using the SBFEM. Hanging

nodes created in the mesh generation are handled by the scaled boundary finite element

method without any additional meshing requirement.

For damage analysis the effect of mesh smoothing in quadtree proves not to be es-

sential due to the non-localisation of the process zone. An investigation into the effects

of strain non-localisation on multi material interfaces contributes to the realisation of the

detrimental effect of non-localisation over different material that are composed of largely

contrasting material properties.

The numerical simulations build in complexity to exemplify the efficiency of the

framework. The last example (refer section 5.8.6) is an epitome to this capability with

over half a million DOFs. Computational effort and time are significantly reduced by use

of a balanced mesh and storing only the unique cell patterns (master cells) data. This

chapter also focuses on and demonstrates the practical application of the technique with

2D and 3D material microstructures modelled in their entirety.

As a continuation of this work the SBFE in elsato-plastic analysis [73] can be easily

leveraged into an image-based approach for elsato-plastic damage analysis. The proposed

approach can also be extended to incorporate higher-order elements without additional

difficulty. The algorithm will also be able to accommodate complex problems in crack

propagation [543] and adaptive modelling [544]. Furthermore, the applications can extend

to analysis of complex non-linear problems such as the fracture modelling of concrete

[542, 545, 546].
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Chapter 6

Two Dimensional Automatic

Image-Based Adaptive Damage

Analysis (AIBADA) with the Scaled

Boundary Finite Element Method

6.1 Introduction

In this chapter, a novel quadtree based adaptive damage analysis technique within the

framework of the Scaled Boundary Finite Element Method (SBFEM) is detailed. A

simple yet effective, damage parameter (ω) based adaptive approach, suitable for mod-

elling highly localized damage zones is introduced in this work. The main focus is to

improve the efficiency of the SBFEM two dimensional (2D) formulation in damage ana-

lysis by reducing the requirement for mesh refinement beyond the Damage Process Zone

(DPZ).

The standard continuum theory for damage analysis consisting of softening stress-

strain laws [547] suffers from pathological sensitivity to the spatial discretization. In this

light, mesh refinement can cause the energy dissipated by the numerical model to decrease
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and tend to extremely low values. As a remedy, a regularized model based on generalized

continuum theories [250, 501, 548, 549] is used in this work to prevent the localization of

strain into an arbitrarily small volume. The integral-type regularisation model used here

consists of a continuously differentiable displacement field. High strains accumulate in

narrow bands, with a continuous transition to much lower strains in the neighbouring parts

of the domain. These narrow bands correspond to the DPZs. The DPZs are largely re-

sponsible for the overall behaviour of the simulation. Although non-local damage models

enable continuous distribution of strains, it is still necessary to use a sufficiently fine mesh

in the DPZ [467, 477, 479] to resolve narrow bands of highly localized strains. Beyond

the narrow bands of the DPZ a relatively coarse mesh can be maintained for the efficiency

of the computational process. Furthermore, in most cases the localisation pattern is not

known in advance. Therefore it is extremely difficult to manually construct a suitably

refined mesh around an assumed DPZ. An adaptive procedure becomes an attractive tech-

nique to reduce the number of DOFs by mapping and refining the exact locations of these

DPZs. The whole process then becomes an automatic technique with much improved

computational efficiency.

In numerical simulations a topological map, commonly referred to as a ‘mesh’, is

produced by spatial decomposition of the problem domain. The mesh consists of ele-

ments and nodes. The elements are connected by the nodes. A set of algebraic equations

which approximate the partial differential equations that describe the system are solved

to estimate the values of the unknowns at nodal points. The accuracy of the solutions

are determined by the shape of the elements and the spacing of the nodal locations. To

improve the accuracy of the solutions four distinct varieties of refinement techniques are

typically employed in an adaptive mesh refinement:

1. h-refinement - technique based on reducing the spacing of the nodes [422–427];

2. p-refinement - technique based on increasing the order of the polynomial approx-

imation [428];
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3. hp-refinement - a combination of both h and p refinement procedures above [429–

431]; and

4. r-refinement - technique based on modifying the location of the nodes considering

the local error [420, 421].

A h-refinement can be achieved by either uniformly or adaptively. A uniform refinement

employs a technique where the nodal spacing in the entire domain is reduced whereas

an adaptive refinement refines the mesh locally. A uniform mesh refinement is found

to be computationally more expensive than an adaptive refinement. Therefore in this

work the adaptive h-refinement technique is employed with the quadtree mesh generation

technique. The quadtree mesh refinement technique consists of terminating grids [44]

whereas other refinement techniques may have non-terminating or continuous grids (refer

figure 6.1).

(a)                           (b)                         (c)

Figure 6.1. Schematic illustration of different refinement techniques: (a) uniform refine-
ment, (b) adaptive refinement without terminating grids, and (c) adaptive refinement with
terminating grids - quadtree decomposition.

In a conventional adaptive procedure, a transfer of data structures, i.e. displacements

and internal variables, from the old mesh to the new mesh is performed. Thereafter,

the old discretization is made redundant and the new mapped configuration is analysed

at a constant value of the loading parameter at which a new mesh was generated. A

global equilibrium is then sought through internal equilibrium iterations. Thereon, the

next load increment is added and a global equilibrium is sought. The process repeats

till the requirement for refining the mesh is realised again. In principle, for a purely

damage variable based adaptive procedure the conventional transfer of data structures and

continuing the computation from the load step from which the mesh refinement algorithm
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was initiated will not yield satisfactory results. This is because the solution scheme can

take different failure trajectories depending on the mesh configuration the analysis is run

on. The underlying reason for this observation is due to a certain degree, regularised

integral-type formulations are susceptible to variations in the outputs due to the changes in

the mesh configurations [487]. This was identified in the numerical examples in chapters

3 and 4. An alternative to avoid the transfer of data structures is to restart the analysis

from the initial state after the new discretization [550,551]. Since the analysis has to now

begin from the first load step there is a loss in efficiency. Therefore, the adaptive mesh

refinement technique implemented in this work consists of control parameters to improve

the efficiency by controlling the frequency of mesh refinement, history variables that store

behaviour of past performance for future adaptive iterations, a damage variable based re-

meshing criterion and a mesh generator interface. A detailed description of the process

can be found in section 6.5.

In this work quadtree decomposition is adopted as a mesh generator interface. A

complete detailed description of the quadtree decomposition can be found in section 5.2.1

of chapter 5.

The quadtree structure [552–555] is a hierarchical mesh structure where the parent

element is recursively divided into four children. The technique is ideal for adaptive re-

finement as localised refinement can be adopted with ease. This creates fewer elements

which in turn produces a smaller number of Degrees Of Freedom (DOF). The only down-

side to this technique is the creation of hanging nodes (nodes 12,13,17 and 18) as shown

in figure 6.2.
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Figure 6.2. Hanging nodes created in adaptive mesh refinement in quadtree decomposi-
tion.

These hanging nodes warrant specialised treatments as conventional shape functions

are nonconforming at the boundary of these elements [556]. The nonconformity creates

displacement incompatibility between the adjacent elements. A few methods are proposed

in the literature to resolve this issue. These methods include:

• constraining the displacements at the hanging nodes through Lagrange multipliers

or penalty methods [557];

• constraining the hanging nodes to the corner nodes and adding temporary triangular

or rectangular elements [539];

• use of special transitional finite elements for the cells [556, 558, 559];

• modification to the shape functions [556]; and

• development of polygonal elements [560].

However, the SBFEM is flexible to be formulated on polygons with arbitrary number of

sides [204, 205]. This eliminates the need for any of the treatments outlined above. The

SBFEM polygonal formulation in 2D is first explained and utilised in chapter 3 section

3.4.

The SBFEM is a semi-analytical method invented to solve boundary value problems

by Song and Wolf [199]. To handle hanging nodes quadtree cells are treated as generic

polygons regardless of the presence of hanging nodes. This then requires no modification
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to the structure of the quadtree mesh. Thus, the efficiency of the quadtree data storage

and retrieval can be exploited without any compromises.

In this work accurate representation of the DPZ is achieved by localised refinement

of the damaged zones purely through the consideration of the damage variable (ω). The

h-adaptive mesh refinement technique is utilised with a quadtree meshing algorithm. The

quadtree algorithm enables rapid mesh transition between the DPZ and the rest of the

model. The meshing procedure is constrained by the 2:1 rule. This 2:1 rule in quadtree

meshing limits the maximum ratio of the size of adjacent quadtree cells to 2. This reduces

the number of patterns of cells as described in section 5.2.1 of chapter 5. This rule is

favourable as this allows pre-computation of element stiffness which leads to an increase

in the efficiency of the analysis.

In this chapter, first an overview of the integral-type damage model is presented in

section 6.2. Next an overview of the 2D SBFEM formulation is presented in section 6.3.

The implicit damage formulation in SBFEM is documented in section 6.4. Section 6.5

introduces the novel damage variable based adaptive quadtree mesh decomposition tech-

nique. Penultimately, in section 6.6, the integral-type continuum damage model is used

in tandem with the adaptive approach explained herein to model four benchmark con-

crete failure experiments and simulations. These problems highlight the computational

efficiency of the output generated via the automatic adaptive mesh compared to that of

a uniform conventional mesh. Conclusions, remarks and opportunities for future studies

are stated in section 6.7.

6.2 Damage model for concrete

An outline of the damage model for concrete is given in this section. For a detailed

explanation refer chapter 3 section 3.2.
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6.2.1 Isotropic damage model

The stiffness degradation in isotropic damage models is assumed to decrease proportion-

ally in different directions. Therefore, the Young’s modulus and the Poisson’s ratio can

be considered to contribute to the degradation of stiffness. Herein, the Poisson’s ratio

remains constant for the purpose of simplicity [34] of the formulation.

6.2.2 Evolution of damage

Two major streams of damage evolution functions can be found in the literature, linear

softening models and exponential softening models. A detailed description of these mod-

els can be found in chapter 3 section 3.2. In the numerical simulations in section 6.6 two

exponential softening models that describe the softening behaviour with respect to the

equivalent strain parameter are considered.

The exponential model below is extracted from [478] and is defined as

ω =


0 if κ ≤ ε0,

1− ε0
κ

exp
(
−(κ−ε0)

ε f−ε0

)
if κ > ε0.

(6.1)

in which ε0 = ft/E is the limit elastic strain under uniaxial tension, ft is the tensile

strength, E is the Young’s modulus, and ε f is a parameter affecting the ductility of the re-

sponse and related to the fracture energy. The area under the uniaxial stress-strain curve,

g f = ft(ε f − ε0/2), has the meaning of energy dissipated per unit volume of totally dam-

aged material under uniaxial tension. The second variant of the exponential softening

model given below is extracted from [481]

ω =


0 if κ ≤ ε0,

1− ε0
κ
(1−α +α× exp(−β (κ− ε0))) if κ > ε0,

(6.2)

in which α and β are two parameters to control the slope of the softening branch of the
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curve.

Amongst the numerous techniques described in chapter 3 section 3.2 for calculating

the equivalent strain parameter ε̃ , two widely used definitions of equivalent strain for

concrete are employed in this work.

The modified von Mises definition proposed by De Vree et al. [497] is as follows

ε̃ =
k−1

2k(1−ν)
Iε
1 +

1
2k

√
(k−1)2

(1−2ν)2 (I
ε
1 )

2 +
12k

(1+ν)2 Jε
2 , (6.3)

in which k is normally set equal to the ratio of the compressive uniaxial strength and the

tensile uniaxial strength, ν is the Poisson’s ratio, Iε
1 is the first invariant of the strain vector

defined as

Iε
1 = εxx + εyy + εzz, (6.4)

and Jε
2 is the second invariant of the deviatoric strain vector defined in equation (6.5).

Jε
2 =

1
3
[ε2

xx + ε
2
yy + ε

2
zz− εxxεyy + εyyεzz + εzzεxx +3(ε2

xy + ε
2
yz + ε

2
zx) (6.5)

The second equivalent strain definition considered in this analysis is a modification to

equation (6.3) above. This variant of the modified von Mises definition (refer equation

(6.6)) found in [561] has demonstrated an ability to better emulate and represent damage

patterns observed in notched beams.

ε̃ =
k−1

2k(1−2ν)
Iε
1 +

1
2k

√
(k−1)2

(1−2ν)2 (I
ε
1 )

2 +
6k

(1+ν)2 Jε
2 . (6.6)

6.2.3 Integral-type non-local damage models

In non-local integral-type models the stress at a certain point in a domain depends not

only on the state variables at that point but also on the distribution of state variables over

the whole body or in a finite neighbourhood of the point under consideration.

In this work equivalent strain ε̃ calculated through either equation (6.3) or equation
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(6.6) is replaced by its non-local counterpart obtained by weighted averaging over a spatial

neighbourhood of each point under consideration. The weighted averaging procedure is

detailed in section 3.2.4.

The commonly used distribution functions are either the Gauss distribution (refer

equation (6.7)) or the bell-shaped truncated quartic polynomial function (refer equation

(6.8)). The Gauss distribution function in [250], l represents the internal length of the

non-local continuum

α0(r) = exp

[
−0.5×

(
d
l

)2
]
. (6.7)

The bell-shaped distribution function by [477] is as follows

α0(r) =
〈

1− r2

R2

〉2

, (6.8)

in which R is the interaction radius related to the internal length and denotes the largest

distance of point ς that affects the non-local average at point x. However, since the Gauss

function 6.7 is unbounded its interaction radius R = ∞.

6.3 Overview of scaled boundary finite element method

In this section, a summary of the 2D SBFEM for elastic problems is presented. A com-

prehensive derivation of the method and detailed explanations are presented in chapter 3

section 3.4. The SBFEM allows discretization with arbitrary sided polygons subjected

to a scaling requirement under a unified formulation. This geometric requirement is eas-

ily satisfied by sub-structuring i.e. dividing the polygon into smaller subdomains. This

flexibility in formulation is most advantageous in the adaptive mesh refinement technique

employed in this chapter.
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6.3.1 Scaled boundary finite element equation

Formulation of the SBFEM in 2D is demonstrated with reference to figure 6.3. The sub-

domain is represented by scaling a defining curve S relative to a scaling centre. The only

requirement for the location of the scaling centre is that the entire subdomain boundary

has to be visible from the scaling centre. A normalised radial coordinate ξ is defined such

that at the scaling centre ξ = 0 and ξ = 1 at the boundary of the polygon. The edges

of the polygon boundary is discretised using one-dimensional finite elements with local

coordinate η . Similar to the FEM, η varies form −1 ≤ η ≤ 1. To interpolate the results

to the nodes one-dimensional Lagrange shape functions are used in this study.

Scaling Centre

Radial Lines

Line Element

(x1,y1),  = -1

(x2,y2),  = 1

S

= 1

Nodes

Figure 6.3. Concept of the SBFEM for an arbitrary polygon.

If a quadtree cell with hanging nodes is idealised as a polygon with m nodes, the

Cartesian coordinates within a line sector (see figure 6.3) on the boundary can be estab-

lished through

r(ξ ,η) = ξ Nu (η)rb, (6.9)

where Nu (η) and rb are vectors of shape functions and nodal coordinates, respectively.

These Nu (η) and rb vectors are represented as

Nu (η) =

 N1 0 N2 0 ... Nm 0

0 N1 0 N2 ... 0 Nm

 , (6.10)
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rb =

[
x1 y1 x2 y2 ... xm ym

]T

. (6.11)

The displacements of any point (ξ ,η) inside the domain can then be interpolated by

u(ξ ,η) = Nu(η)u(ξ ), (6.12)

in which u(ξ ) is the displacement along the radial lines calculated from the equilibrium

condition of a polygon.

The equilibrium condition in a polygon is formulated either through the principle of

virtual work [562] or by the method of weighted residuals [14]. Both formulations lead

to the scaled boundary finite element equation in displacement given by

E0ξ
2u(ξ ),ξ ξ +

(
E0 +ET

1 +E1
)

ξ u(ξ ),ξ −E2u(ξ ) = 0, (6.13)

where the coefficient matrices E0, E1 and E2 for each line element are as follows

E0 =

ˆ +1

−1
BT

1 DB1|J|dη , (6.14a)

E1 =

ˆ +1

−1
BT

2 DB1|J|dη , (6.14b)

E2 =

ˆ +1

−1
BT

2 DB2|J|dη , (6.14c)

where D is the material constitutive matrix and B1 and B2 are the two strain-displacement

matrices. |J| is the determinant of the Jacobian used in coordinate transformation. Once

the coefficient matrices are computed for each line element by discretising the polygon

boundary they are then assembled in a way similar to the finite element method [14]. The
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strain-displacement matrices and B1 and B2 are as follows

B1 =
1
|J|


N(η),ηyb 0

0 −N(η),ηxb

−N(η),ηxb N(η),ηyb

Nu(η), (6.15a)

B2 =
1
|J|


−N(η)yb 0

0 N(η)xb

N(η)xb −N(η)yb

Nu(η),η , (6.15b)

where N(η) is the vector of the shape functions of the line elements, and xb and yb are

the nodal Cartesian coordinates in x and y directions of the line elements, respectively.

N(η) =

[
N1 N2 N3 ... Nm

]
, (6.16a)

xb =

[
x1 x2 x3 ... xm

]T

, (6.16b)

yb =

[
y1 y2 y3 ... ym

]T

. (6.16c)

With reference to [562] the Jacobian matrix used in coordinate transformation is

J =

 N(η)xb N(η)yb

N(η),ηxb N(η),ηyb

 , (6.17)

with determinant J as

|J|= (N(η)xb)(N(η),ηyb)− (N(η)yb)(N(η),ηxb) . (6.18)

To obtain the solution for equation (6.13), it is transformed into a first order differential
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equation by introducing a variable χ (ξ )

χ (ξ ) =

[
u(ξ ) q(ξ )

]T

, (6.19)

where the analytical functions related to the internal nodal forces in the polygon are rep-

resented by q(ξ ). The second order differential equation in equation (6.13) now trans-

forms into

ξ χ (ξ ) ,ξ = Zχ (ξ ) . (6.20)

The Hamiltonian matrix Z is

Z =

 E−1
0 ET

1 −E−1
0

−E2 +E1E−1
0 ET

1 −E1E−1
0

 . (6.21)

The Hamiltonian matrix Z can now be decoupled into pairs of eigenvalues (−λi,λi) by

considering an eigenvalue decomposition as follows

ZΦ = Φ∆ , (6.22)

where Φ is a transformation matrix with independent column vectors. ∆ is a diagonal

matrix with elements corresponding to the eigenvalues for each eigenvector in Φ . Φ and

∆ are partitioned conformably as

Φ =

 Φ
(u)
n Φ

(u)
p

Φ
(q)
n Φ

(q)
p

 , (6.23a)

∆ =

 ∆n

∆p

 . (6.23b)

The diagonal matrix ∆ is sorted in the ascending order of the real parts. ∆ n and ∆ p
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contains the eigenvalues of negative and positive real parts, respectively.

In this work bounded polygons are considered, therefore, only the displacement modes

corresponding to ∆n lead to finite displacements at the scaling centre. Thus, the solution

to equation (6.20) considering equation (6.22) is

u(ξ ) = Φ
(u)
n ξ

−∆nc, (6.24a)

q(ξ ) = Φ
(q)
n ξ

−∆nc, (6.24b)

where c denotes the integration constants that depend on the boundary conditions. These

constants can be determined by the nodal displacements on the polygon boundary ub =

u(ξ ) |ξ=1 as

c =
(

Φ
(u)
n

)−1
ub. (6.25)

The stiffness matrix of a polygon Ks can be then formed as

Ks = Φ
(q)
n

(
Φ

(u)
n

)−1
. (6.26)

To obtain the complete displacement field, equation (6.24a) is substituted in equation

(6.12) to yield

u(ξ ,η) = Nu(η)Φ
(u)
n ξ

−∆nc. (6.27)

The stress field σ(ξ ,η) can now be derived as a product of the the strain ε , linear

differential operator matrix L and the material constitutive matrix D as

σ(ξ ,η) = DLε, (6.28)

where

ε = Lu(ξ ,η), (6.29)
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and

L = J−1


N(η),ηyb 0

0 −N(η),ηxb

−N(η),ηxb N(η),ηyb

 ∂

∂ξ
+

...J−1


−N(η)yb 0

0 N(η)xb

N(η)xb −N(η)yb

 ∂

∂η

(6.30)

Substituting equation (6.30) into equation (6.28) yields

σ(ξ ,η) = Ψσ (η)ξ
−∆n−Ic, (6.31)

where Ψσ (η) is the stress mode

Ψσ (η) =

[
Ψσxx (η) Ψσyy (η) Ψτxy (η)

]T

, (6.32)

obtained by

Ψσ (η) = D
(
−B1(η)Φ

(u)
n ∆n +B2(η)Φ

(u)
n

)
. (6.33)

6.4 Implicit damage formulation in SBFEM

As discussed in detail in section 3.5 of chapter 3, material damage can be assumed to be

uniform in one subdomain if the mesh within the DPZ is sufficiently refined. Substituting

equation (3.1) into equations (6.14a - 6.14c), we obtain

ED
0 = (1−ω)

ˆ +1

−1
BT

1 DB1|J|dη = (1−ω)E0, (6.34a)

ED
1 = (1−ω)

ˆ +1

−1
BT

2 DB1 |J|dη = (1−ω)E1, (6.34b)
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ED
2 = (1−ω)

ˆ +1

−1
BT

2 DB2|J|dη = (1−ω)E2, (6.34c)

where ED
0 , ED

1 and ED
2 are substitutes to the elastic coefficient matrices as a result of

incorporating material degradation through the damage variable ω of one subdomain.

The degraded stiffness matrix of one subdomain is obtained by factoring out the ef-

fect of damage (1−ω) from the stiffness formulation in equation (6.26). The damage

incorporated stiffness of one subdomain KD can now be written as

KD = (1−ω)Ks. (6.35)

The upside to this formulation is that at each load step, the damage degraded stiffness

matrix KD of each subdomain can be calculated from the original undamaged stiffness

matrix of the subdomain calculated within the preprocessing end of the program. In

each load step, only the integration constants c affected by the boundary conditions (refer

equation (6.24a)) are updated according to the displacement field. Thereafter, the stress

and strain fields are updated by using equation (6.28) and equation (6.29) respectively.

Finally, assembling the subdomain stiffness matrices leads to the non-linear global

equation system

KU = P (6.36)

in which K is the global stiffness matrix after considering damage degradation, U global

displacement vector and P global force vector. To solve this system of equations in equa-

tion (6.36) the implicit Newton Raphson method (NRm) with arc-length technique [498]

is adopted in this work. For comprehensive details on the solver refer to chapter 3 section

3.5.
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6.5 Damage variable ω based adaptive quadtree mesh re-

finement

The basic concept of this adaptive framework is to adopt a coarse grid initially and then

as the simulation progresses to identify and refine regions reaching damage values equal

to or greater than the refinement trigger.

The first step of the process is to produce the image-based initial coarse grid Agrid .

This matrix is formed by taking into consideration the material and geometrical features

in the model depending on the colour intensities present in the image. Therefore Agrid

represents the initial quadtree mesh configuration obtained through the image decompos-

ition process. The elements in Agrid vary from the user defined smallest element edge

size Smin to the largest element edge size Smax. A typical initial mesh generated around a

square inclusion is shown in figure 6.4.

Figure 6.4. Initial coarse mesh around a square inclusion. Element size range from Smin
to Smax. Colour light blue indicate minimum element size Smin , colour grey indicate the
maximum element size Smax and colour dark purple indicate an intermediate element size.

The colour light blue indicates the user defined smallest element size Smin and the

colour grey indicate the largest user defined element size Smax. The colour dark purple is
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an intermediate element size bridging the gap between Smin and Smax.

Agrid is the starting point for the adaptive mesh refinement process. Within the adapt-

ive process Smax is overwritten by the maximum allowable element edge size Sallow
max . This

variable ensures sufficient elements are produced within the damage process zone. Sallow
max

is governed by the non-local interaction radius R. To achieve affective non-localised res-

ults Sallow
max is kept as a fraction of R such that there are at least four sampling points [487]

for regularisation within the domain.

There are two control parameters used in this algorithm. ω0 controls the damage

threshold value triggering further mesh refinement and
(
Dq
)

is the quantifying parameter

which governs the percentage of newly damaged elements that is required to trigger mesh

refinement. The history variable (Nmax
ω ) represents the maximum number of damaged ele-

ments (ω ≥ ω0) recorded up to the current converged adaptive iteration. The flowchart in

figure 6.5 depicts the process of utilizing these parameters with respect to the continuing

NR iterations.
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jth Adaptive iteration, nth Load step, 𝑖th NR iteration 

Calculate  𝑁𝜔 
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jth Adaptive iteration, (𝑛 + 1)th Load step, 1st NR iteration 
No 

Update 

𝑁𝜔
𝑚𝑎𝑥 = 𝑁𝜔

𝐴𝑔𝑟𝑖𝑑 = 𝐴𝑔𝑟𝑖𝑑
𝑗+1

𝑁𝜔 > (1 + 𝐷𝑞)𝑁𝜔
𝑚𝑎𝑥

Check 

Convergence 

||𝑓𝑛
𝑅|| < 𝐹𝑇𝑂𝐿

n = NSTEPS  

Figure 6.5. Flowchart for the damage parameter ω based adaptive mesh refinement pro-
cedure

Upon reaching an equilibrium state
∣∣∣∣ f R

n
∣∣∣∣< FTOL the solution state is updated. Here

the FTOL is the convergence tolerance limit which is compared against the the norm of

the residual force vector f R
n corresponding to a given load increment. If the condition

is unsatisfied, further iterations within the NR scheme is carried out to obtain an agree-

able solution. After passing through
∣∣∣∣ f R

n
∣∣∣∣ < FTOL, the load step number n is com-

pared against the maximum number of load steps, NSTEPS, if n = NSTEPS the analysis

is terminated as the user defined maximum number of load steps has been reached. If

n 6= NSTEPS the re-meshing criterion is initiated. First, the number of damaged elements

(Nω) is calculated. The elements that are counted for Nω require to have their damage

value ω equal to or greater than the damage threshold parameter (ω0). Agrid is then
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updated to identify the locations of these elements.

Figure 6.6 illustrates the process of updating Agrid . Assume the element ‘T’ marked

in red has undergone damage ω ≥ ω0 and therefore need to be subdivided. In order to

trigger mesh refinement a unique decimal value corresponding to the adaptive iteration

number ‘j’ and load step number ‘n’ is used to overwrite the values at the upper left

corner of a damaged element ‘T’. It is assumed in this example Smin = 1 and Smax = 2.

(a)                           (b)                         (c)

j.n 0 0 0
0 0 0
0 0 0
0 0 0

0
0
0

2

2

1
1

T

Figure 6.6. Method updating Agrid and the mesh refinement thereafter. (a) Element ‘T’
marked red assumed damage exceeding the damage threshold parameter (ω0), (b) sub-
stitution of a unique decimal value in the upper left quadrant of the element ‘T’, and (c)
quadtree decomposition of Agrid .

In figure 6.6a the element ‘T’ marked in red is assumed to have undergone damage

exceeding the damage threshold parameter (ω0). Therefore, the upper left quadrant of

that element is replaced by a unique decimal value (refer figure 6.6b) corresponding to

the adaptive iteration and load step number relevant at the time of identification of the

damaged element. The other matrix entries remain zero, as Agrid is initialised to an all

zeros matrix. Nω can now be calculated by summing up the entries in the matrix Agrid.

The updated Agrid forms the basis of the automatic quadtree based generation of a

new spatial discretization. If Nω > (1+Dq)Nmax
ω the algorithm proceeds to generate a

new refined mesh through which element ‘T’in figure 6.6a is subdivided into 4 equal

sized elements. Alongside this process of mesh refinement the matrix Agrid and Nmax
ω

is updated and stored. If Nω ≯ (1+Dq)Nmax
ω the analysis continues with the next load

increment n+1 utilising the current mesh.
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6.6 Numerical simulations

Four numerical examples with unique damage formation characteristics are presented to

show the robustness of the adaptive damage analysis technique introduced in this work. In

all the examples the output produced by the optimised adaptive simulation is compared to

an output produced by a uniform or a refined static mesh configuration. All the examples

presented in this section deal with conventional problems involving weak singularities.

The objective of the first two examples is to validate the results obtained through the

adaptive formulation by comparing them with the results obtained in chapter 3. Thus the

three point bending beam problem (refer section 6.6.1) and the L-shaped specimen (refer

section 6.6.2) are extracted from 3. The next two examples expand the application of the

this procedure through modelling the behaviour of a short cantilever beam (refer section

6.6.3) and a single edge notched beam (refer section 6.6.4).

6.6.1 Three point bending beam

A biaxial bending beam problem presented in this section is extracted from [501] and

[495]. With reference to these publications the model dimensions are considered as given

in figure 6.7. These dimensions also correspond to the experiments performed by Kormel-

ing and Reinhardt [502] and by Grassl et al. [503] with a plastic damage model.

450

100
5

50

Figure 6.7. Specimen dimensions (mm) for the 2D image-based adaptive non-local dam-
age analysis of the biaxial bending test.

The length of the beam is 450 mm with a depth and breadth of 100 mm. A central

notch of 5 mm is modelled. The depth of the notch extends to half way up the beam.

The loading is to replicate a three point bending mechanism as shown in figure 6.8. The
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bottom left corner of the beam is pinned and thus is restrained in movement in x and y

directions. The bottom right corner of the beam is modelled as a roller support and thus

is restrained in movement in the y direction. A central concentrated load ‘P’ is applied at

the centre of the beam to prompt the structural response.

P
A

Figure 6.8. Loading configuration for the 2D image-based adaptive non-local damage
analysis of the biaxial bending test.

The material properties, Young’s modulus and Poisson’s ratio are set to 20 GPa and

0.2 respectively. A non-local isotropic damage model based on non-local equivalent strain

is considered to overcome strain localisation issues. As adopted in the reference the non-

local averaging function given in equation (6.8) is considered with internal length para-

meter R set to 4 mm. The exponential damage model (refer equation (6.1)) considered for

this simulation has a stress-strain behaviour as shown in figure 6.9.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.040

0.5

1

1.5

2

σx10-3

ε

Figure 6.9. 1D element stress (GPa) vs strain profile considered in the 2D image-based
adaptive non-local damage analysis of the biaxial bending test. The damage evolution is
with respect to the softening law in equation (6.2).

To obtain the above behaviour the parameter ε0 is set to 90×10−6 and strain at which

material is fully damaged
(
ε f
)

is taken as 7.0× 10−3. To calculate the equivalent strain
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the parameter k with reference to equation (6.3) is set to 10 to emulate more realistic

material constants related to concrete. These parameters are chosen to be the same as

those used in the finite element modelling carried out in the reference [477].

Prior to the initiation of the adaptive process the initial mesh geometry is obtained

by an automatically generated quadtree mesh. Due to the presence of the notch, initial

refinement is seen around the notched region (see figure 6.10a). The analysis is then

allowed to run automatically, through which meshes shown in figures 6.10b-6.10f are

generated adaptively.
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(a) Mesh 1 generated for the biaxial bending test when node ‘A’ vertical

displacement is 0.0 mm.

(b) Mesh 2 generated for the biaxial bending test when node ‘A’ vertical

displacement is 0.05 mm.

(c) Mesh 3 generated for the biaxial bending test when node ‘A’ vertical

displacement is 0.1 mm.

(d) Mesh 4 generated for the biaxial bending test when node ‘A’ vertical

displacement is 0.2 mm.

(e) Mesh 5 generated for the biaxial bending test when node ‘A’ vertical

displacement is 0.3 mm.

(f) Mesh 6 generated for the biaxial bending test when node ‘A’ vertical

displacement is 0.5 mm.

Figure 6.10. Six meshes automatically generated within the simulation for the 2D image-
based adaptive non-local damage analysis of the biaxial bending test.
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The analysis is run with ω0 = 0.6 and Dq = 20%. As the damage is controlled by

the DPZ a finer mesh around the notch and a coarse mesh away from the notch can be

maintained as adopted in the reference [501]. The mesh size varies from the smallest of

Smin= 1.25 mm within the DPZ and to the largest of Smax= 10 mm away from the DPZ.

Next to validate the findings obtained in the adaptive process the finest mesh out of

the three reference meshes shown in figure 6.11 is considered. This reference mesh has a

smallest subdomain size of 0.556 mm (refer figure 6.11c).

(b) (c)(a)

Figure 6.11. Three mesh configurations considered in section 3.7.2 for the biaxial bending
test (a) mesh 1 with Smin= 5 mm), (b) mesh 2 with Smin= 1.667 mm, and (c) mesh 3 with
Smin= 0.5556mm.

The displacement control analysis is run using the modified Newton Raphson method

with arc-length technique. The displacement and the force are both recorded at point ‘A’

to produce the force-displacement output shown in figure (6.12).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.70
DISPLACEMENT

1.0

1.5

0.5

U

P

-Reference converged result
-SBFEM reference mesh
-SBFEM adaptive mesh

Figure 6.12. Force (kN) vs displacement (mm) output for the 2D image-based adaptive
non-local damage analysis of the biaxial bending test. The adaptive formulation in SB-
FEM compared against the reference output [501] and the mesh 3 result in section 3.7.2.

The most refined mesh shown in figure 6.10f produces the load-displacement curve

(refer figure 6.12) closely relatable to the reference solution obtained in chapter 3 section
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3.7.2. This conformity validates the result obtained in this work.

The first vertical displacement contour plot shown in figure 6.13a is recorded when

the simulation attains a peak load (1.3 kN) when node ‘A’ displacement corresponds to

0.1187 mm. The second contour is captured soon after the model achieves its peak load

(0.91 kN) when displacement is 0.214 mm.

The vertical displacement contours show a clear symmetry about the central notch.

This is expected of the analysis due to the symmetrical geometry, boundary conditions

and loading conditions adopted.

(a) Vertical displacement contour for the

adaptive mesh 6 (refer figure 6.10f) when

mid span displacement is 0.1187 mm.

(b) Vertical displacement contour for the

adaptive mesh 6 (refer figure 6.10f) when

mid span displacement is 0.214 mm.

-0.24000 -0.18000 -0.12000 -0.06000 0.00000

Figure 6.13. Vertical displacement (mm) contours for the 2D image-based adaptive non-
local damage analysis of the biaxial bending test. Outputs recorded for the adaptive mesh
6 shown in figure 6.10f.

The stress contour plots shown below are captured at similar instances to that of the

displacement contours recorded above. Figure 6.14a depicts the initial stress concentra-

tion at the tip of the notch. When the applied external load increases this high stress

contour migrates to the top face of the beam in the shape of a plume. This migrating front

leaves behind elements that undergo unloading due to the effects of damage.
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(a) Stress (σx) contour for the adaptive

mesh 6 (refer figure 6.10f) at mid span

displacement of 0.1187 mm.

(b) Stress (σx) contour for the adaptive

mesh 6 (refer figure 6.10f) at mid span

displacement of 0.214 mm.

-0.01400 -0.00995 -0.00590 -0.00185 0.00220

Figure 6.14. Stress (σx) contours (MPa) for the 2D image-based adaptive non-local dam-
age analysis of the biaxial bending test. Outputs recorded for the adaptive mesh 6 shown
in figure 6.10f.

The contour plots for damage evolution is at a peak load (see figure 6.15a) and at the

end of the simulation when vertical displacement is 0.563 mm corresponding to a load of

0.13 kN (see figure 6.15b). This latter contour shows the clear propagation of the DPZ

from the tip of the notch to the top face of the beam. Since the adaptive framework is

based on the damage variable ω , the damage contours show a close resemblance to the

adaptive meshes (see figure 6.10) obtained in the simulation.

(a) Damage contour for the adaptive

mesh 6 (refer figure 6.10f) at mid span

displacement of 0.1187 mm.

(b) Damage contour for the adaptive

mesh 6 (refer figure 6.10f) at mid span

displacement of 0.563 mm.

0.0000 0.2500 0.5000 0.7500 1.0000

Figure 6.15. Damage (Ω) contours for the 2D image-based adaptive non-local damage
analysis of the biaxial bending test. Outputs recorded for the adaptive mesh 6 shown in
figure 6.10f.

The adaptive process simulates the evolution of the DPZ precisely as anticipated. The

number of elements produced in the adaptive simulation is 1258 compared to the reference

mesh (see figure 6.11c) containing 1634 elements. It is also noteworthy the reference
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mesh is created with considerable human intervention and prior knowledge of the location

of the DPZ. Therefore this example a comparably similar result is obtained in the adaptive

mesh refinement with a 23% reduction in number of elements and no human intervention

in the meshing process.

The final deformed shaped obtained in the simulation is shown in figure 6.16. For

better visualisation the deformation is amplified 50 times.

Figure 6.16. The final deformed shape of the specimen obtained in the 2D image-based
adaptive non-local damage analysis of the biaxial bending test. Results shown for the
mesh shown in figure 6.10f.

6.6.2 L-shaped specimen

As the second example the L-shaped specimen shown in figure 6.17 (previously simulated

and analysed in chapter 3 section 3.7.3) is analysed with use of the adaptive non-local

damage analysis process. The objective of the simulation is to compare the adaptive

formulation to the output obtained through a conventional static mesh generated with a

certain amount of human intervention.

The problem is modelled with reference to [482, 505]. The plate has a height and

a width of 500 mm with a rectangular 250× 250 mm quarter cut out. The thickness

considered in the model is 200 mm.
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Figure 6.17. Geometry (mm) and boundary conditions adopted with reference to [505]
for the 2D image-based adaptive non-local damage analysis of the L-shaped specimen.

Displacement boundary conditions are considered to avoid free rotation of the rigid

end-plates. The end plates are modelled by assigning them a modulus of elasticity 1000

times larger than the rest of the plate. This way of modelling the end-plates avoids un-

desirable damage around the loading points.

The modulus of elasticity of the plate is set to E = 10 GPa in its undamaged state. The

Poisson’s ratio is considered as ν= 0.2. With reference to equation (6.3) modified von

Mises strain is considered for the calculation of the non-local equivalent strain with the

parameter k set at 10. As exemplified through the previous problem a non-local formu-

lation is considered to avoid issues related to strain localisation. The Gauss distribution

function for non-local averaging considered in this simulation is given in equation (6.7)

with the non-local length scale l of 7.07 mm. An exponential damage model is considered

for this analysis as given in equation (6.2) with ε0 = 4×10−4, α = 0.98 and β = 80. Fig-

ure 6.18 depicts the behaviour of the damage model in relation to these parameters. Plane

stress conditions are assumed.
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Figure 6.18. 1D element stress (GPa) vs strain profile considered in the 2D image-based
adaptive non-local damage analysis of the L-shaped specimen. The damage evolution is
with respect to the softening law in equation (6.2).

Similar to the previous example the damage threshold value initiating mesh refinement

ω0 is set to 0.6 and the percentage damage limit Dq = 20% is considered.

In the adaptive algorithm the damage process zone is automatically refined and no

artificial mesh controls need to be set in order to produce the meshes shown in figure

6.19. The user defined element size parameters, smallest element size Smin= 3.9 mm and

the largest element size is taken 4 times greater than Smin. The process refines the mesh

diagonally from the convex inner corner to its opposite outer corner (see figure 6.19).
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(a) Mesh 1 generated for the L-shaped

specimen when node ‘A’ vertical dis-

placement is 0.0 mm.

(b) Mesh 2 generated for the L-shaped

specimen when node ‘A’ vertical dis-

placement is 0.25 mm.

(c) Mesh 3 generated for the L-shaped

specimen when node ‘A’ vertical dis-

placement is 0.495 mm.

(d) Mesh 4 generated for the L-shaped

specimen when node ‘A’ vertical dis-

placement is 0.97 mm.

(e) Mesh 5 generated for the L-shaped

specimen when node ‘A’ vertical dis-

placement is1.57 mm.

(f) Mesh 6 generated for the L-shaped

specimen when node ‘A’ vertical dis-

placement is 2.75 mm.

Figure 6.19. Six meshes automatically generated for the 2D image-based adaptive non-
local damage analysis of the L-shaped specimen.
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To obtain the reference solution a mesh as shown in figure 6.20 is developed by as-

suming the DPZ to progress from convex inner corner to the diagonally opposite outer

corner.

Figure 6.20. Static mesh configuration used in the 2D damage analysis of the L-shaped
specimen in section 3.7.3.

The reference mesh in figure 6.20 consists of 4686 elements. In comparison the num-

ber of elements produced in the most refined adaptive simulation is 2488. Therefore in

this instance the reduction in number of elements in the two meshes is almost 50%.

The arc-length incorporated modified Newton Raphson method is used in the analysis

with displacement control agitation. With reference to figure 6.17 the displacement and

the force are both recorded at point ‘A’.
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Figure 6.21. Force (kN) vs displacement (mm) output for the 2D image-based adapt-
ive non-local damage analysis of the L-shaped specimen. The adaptive formulation in
SBFEM compared against [505] and the force vs displacement output in section 3.7.3.

Figure 6.21 shows the load-displacement curve of the proposed approach obtained

with the mesh configuration in figure 6.19f compared against the output obtained in
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chapter 3 section 3.7.3 using the reference mesh shown in figure 6.20. Furthermore the

results obtained through the adaptive and the reference meshes are compared with the

solution published by [505]. It is evident that the results obtained through the adaptive

formulation agree very closely to the reference force-displacement output. This compar-

ably similar result in the adaptive analysis is achieved by a considerable reduction in the

number of elements.

The displacement magnitude (see figure 6.22), von Mises stress (see figure 6.23) and

the damage evolution (see figure 6.24) contours are shown in the following figures. The

contours for displacement and von Mises stress are presented at a vertical displacement of

0.5372 mm at node ‘A’ reflecting the peak load of 18.6 kN achieved in the simulation and

at a displacement value of 0.987 mm corresponding to a load of 15.4 kN in the softening

limb of the force-displacement curve.

The displacement magnitude contours display the symmetry in the simulation attained

through the symmetrical loading and boundary conditions implemented in the analysis.

(a) Displacement magnitude

contour for the adaptive mesh

6 (refer figure 6.19f) when

node ‘A’ displacement is

0.5372 mm.

(b) Displacement magnitude

contour for the adaptive mesh

6 (refer figure 6.19f) when

node ‘A’ displacement is

0.987 mm.

0.17521 0.43141 0.68760 0.94380 1.20000

Figure 6.22. Displacement magnitude contours (mm) for the 2D image-based adaptive
non-local damage analysis of the L-shaped specimen. Outputs recorded for the adaptive
mesh 6 shown in figure 6.19f.
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The advancing high stress front moves symmetrically along the diagonal. Similar to

the observation in the biaxial bending test in section 6.6.1 this moving front leaves behind

elements that unload as the model goes through softening behaviour induced by the spread

of damage. When the model approaches the softening stage, the DPZ keeps advancing

(refer figure 6.24b) whereas the size of the zone of high stress shrinks (refer figure 6.23b).

(a) Von Mises stress contour

for the adaptive mesh 6 (refer

figure 6.19f) when node ‘A’

displacement is 0.5372 mm.

(b) Von Mises stress contour

for the adaptive mesh 6 (refer

figure 6.19f) when node ‘A’

displacement is 0.987 mm.

0.00000 0.00200 0.00400 0.00600 0.00800

Figure 6.23. Von Mises stress contours (MPa) for the 2D image-based adaptive non-local
damage analysis of the L-shaped specimen. Outputs recorded for the adaptive mesh 6
shown in figure 6.19f.

The contour set for damage evolution shown below are recorded at the peak load and

at the end of the simulation corresponding to displacement of 2.504 mm and force 5.436

kN.
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(a) Damage contour for the

adaptive mesh 6 (refer figure

6.19f) when node ‘A’ displace-

ment is 0.5372 mm.

(b) Damage contour for the

adaptive mesh 6 (refer figure

6.19f) when node ‘A’ displace-

ment is 2.504 mm.

0.0000 0.2500 0.5000 0.7500 1.0000

Figure 6.24. Damage (Ω) contours for the 2D image-based adaptive non-local damage
analysis of the L-shaped specimen. Outputs recorded for the adaptive mesh 6 shown in
figure 6.19f.

The damage evolution in figure 6.24 shows an accurate representation of the failure

pattern expected in this analysis. The damage formation developed from the concave

corner to the diagonally opposite corner.

The final deformed shape developed in the analysis is shown in figure 6.25. The 100

times amplified result gives evidence to the anticipated large deformation within elements

near to the concave corner.
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Figure 6.25. The final deformed shape of the specimen obtained in the 2D image-based
adaptive non-local damage analysis of the L-shaped specimen. Results shown for the
mesh shown in figure 6.19f.

6.6.3 Short cantilever subjected to uniform pressure

This example is inspired by the work published by [44] on an SBFEM based adaptive

refinement strategy for linear elasticity problems. The example simulates the behaviour

of a short cantilever beam under plane strain conditions. The problem exhibits two strong

stress concentrations at the top and bottom left corners restrained in movement.

The dimensions and boundary conditions are considered as given in figure 6.26. The

length, breadth and depth of the beam (L) is set to 500 mm.
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Figure 6.26. Specimen dimensions (mm) and boundary conditions for the 2D image-
based adaptive non-local damage analysis of the short cantilever beam subjected to uni-
form pressure.

The cantilever beam is loaded on the top edge by applying a uniform pressure and it

is retrained in movement in both x and y directions on the left edge.

Material properties are considered with reference to the experiments carried out by

[563] on fracture processes in concrete. The Young’s modulus and Poisson’s ratio are

thus set to 35 GPa and 0.2. Equivalent strain for the analysis is calculated using the

equation (6.3) with parameter k set to 10 to emulate the behaviour of concrete. The

non-local averaging function given in equation (6.7) is considered with the characteristic

length l set at 8 mm. The damage formulation in the material is governed by the equation

(6.1) with ε0 set to 90×10−6 and ε f set to 7.0×10−3. The stress-strain behaviour of this

damage model is as shown in figure 6.27.
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Figure 6.27. 1D element stress (GPa) vs strain profile considered in the adaptive damage
analysis of a short cantilever beam subjected to uniform pressure. The damage evolution
is with respect to the softening law in equation (6.1).

The automatically generated quadtree mesh is initially controlled by the maximum

element size of Smax =15.625 mm.To exemplify the convergence of the results a fine mesh

and a coarse mesh is analysed by the setting the minimum element size Smin of 1.95 mm

for the fine mesh and 3.91 mm for the coarse mesh. As the analysis progresses meshes

shown in figures 6.28b-6.28f are generated automatically for the fine mesh configuration.
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(a) Mesh 1 generated for the short

cantilever beam simulation when

node ‘A’ vertical displacement is

0.0 mm.

(b) Mesh 2 generated for the short

cantilever beam simulation when

node ‘A’ vertical displacement is

0.0055 mm.

(c) Mesh 3 generated for the short

cantilever beam simulation when

node ‘A’ vertical displacement is

0.01 mm.

(d) Mesh 4 generated for the short

cantilever beam simulation when

node ‘A’ vertical displacement is

0.14 mm.

(e) Mesh 5 generated for the short

cantilever beam simulation when

node ‘A’ vertical displacement is

0.022 mm.

(f) Mesh 6 generated for the short

cantilever beam simulation when

node ‘A’ vertical displacement is

0.025 mm.

Figure 6.28. Six meshes automatically generated in the 2D image-based adaptive non-
local damage analysis of the short cantilever beam subjected to uniform pressure. Meshes
shown for the fine mesh with Smin = 1.95 mm and Smax = 15.625 mm.
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The mesh refinement is initiated when the number of elements damaged (Nω) above

the damage threshold ω0 = 0.6 is above the percentage of damaged elements Dq = 20%

compared to history variable Nmax
ω .

In order to validate the results a uniform mesh is also considered in this example. A

comparison of the three meshes are shown in figure 6.29.

(a) Uniform mesh considered in short

cantilever beam simulation. Smin =

1.95 mm and Smax = 1.95.

(b) Coarse mesh at the end of the

analysis considered in short cantilever

beam simulation. Smin = 3.91 mm and

Smax = 15.625.

(c) Fine mesh at the end of the analysis

considered in short cantilever beam

simulation. Smin = 1.95 mm and Smax =

15.625.

Figure 6.29. SBFEM (a) uniform (b) coarse and (c) fine meshes used in the 2D image-
based adaptive non-local damage analysis of the short cantilever beam subjected to uni-
form pressure.

An automatic force controlled analysis is run with the arc-length incorporated mod-
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ified Newton Raphson method. The load is applied in 0.01 kN increments. Figure 6.30

plots the total load on the top edge against the vertical displacement at point ‘A’ (see figure

6.26).
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Figure 6.30. Force (kN) vs displacement (mm) output for the 2D image-based adaptive
non-local damage analysis of the short cantilever beam subjected to uniform pressure.
SBFEM result for the fine mesh (refer figure 6.29c) compared to the coarse mesh (refer
figure 6.29b) and the uniform mesh (refer figure 6.29b).

The plots depict a converged result between the coarse and the fine meshes. Both the

adaptive mesh outputs are closely relatable to the force-displacement output of the uni-

form mesh. The three meshes produce similar results due to the adopted mesh configur-

ations producing ample sampling points for the non-local averaging scheme. Confirming

to the observations in chapter 3, two or more elements within the non-local radius tend to

produce similar results. Therefore Smin used in the coarse mesh act as a limiting value to

conform to this condition.

The vertical displacement contours in figure 6.31 are captured when the simulation

records a peak load of 0.379 kN (corresponding node ‘A’ displacement is 0.0213 mm)

and a load of 0.21 kN (corresponding node ‘A’ displacement is 0.1 mm) on the top edge.

The beam’s cantilevered action results in higher deformations at the free end and no

deformations in the restrained end. The restraints in the left edge localises the strains and

stresses adjacent to this edge.
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(a) Vertical displacement contour for

the fine mesh (refer figure 6.29c)

when vertical downward displacement

at point ‘A’ is 0.0213 mm.

(b) Vertical displacement contour for

the fine mesh (refer figure 6.29c)

when vertical downward displacement

at point ‘A’ is 0.1 mm.

0.00000 0.02500 0.05000 0.07500 0.10000

Figure 6.31. Vertical displacement (mm) contours for the 2D image-based adaptive non-
local damage analysis of the short cantilever beam subjected to uniform pressure. Outputs
recorded for the adaptive mesh shown in figure 6.29c.

The principal stress contours are also captured at similar instances to those considered

in the displacement contours.
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(a) Principal stress contour for the fine

mesh (refer figure 6.29c) when vertical

downward displacement at point ‘A’ is

0.0213 mm.

(b) Principal stress contour for the fine

mesh (refer figure 6.29c) when vertical

downward displacement at point ‘A’ is

0.1 mm.

-0.00080 -0.00005 -0.00070 0.00145 0.00220

Figure 6.32. Principal stress contours (MPa) for the 2D image-based adaptive non-local
damage analysis of the short cantilever beam subjected to uniform pressure. Outputs
recorded for the adaptive mesh shown in figure 6.29c.

The damage contours are captured at the peak load and at the end of the simulation

when vertical displacement is 0.3 mm corresponding to a load of 0.008 kN. The final

damage profile of the simulation is as shown in 6.33b. The initial formation of damage

on the top restrained corner of the specimen is characteristic of the tensile strain induced

damage formation in concrete.
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(a) Damage contour for the fine

mesh (refer figure 6.29c) when vertical

downward displacement at point ‘A’ is

0.0213 mm.

(b) Damage contour for the fine

mesh (refer figure 6.29c) when vertical

downward displacement at point ‘A’ is

0.3 mm.
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Figure 6.33. Damage (Ω) contours for the 2D image-based adaptive non-local damage
analysis of the short cantilever beam subjected to uniform pressure. Outputs recorded for
the adaptive mesh shown in figure 6.29c.

The damage variable based adaptive scheme produces meshes shown in figure 6.28

that closely resemble the damage contours above. As the damage develops in the speci-

men a finer mesh is observed in the restrained end of the cantilever beam .

The deformed shape of the beam is shown in figure 6.34. The output is magnified to

better visualise the deformation.

Figure 6.34. The final deformed shape of the specimen obtained in the 2D image-based
adaptive non-local damage analysis of the short cantilever beam subjected to uniform
pressure. Results shown for the mesh shown in figure 6.29c.
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As anticipated the adaptive mesh refinement tracks the damage evolution accurately

and by doing so it controls and refines the output of the simulation. The number of

elements produced by the uniform mesh is quite large totalling up to a 65536 elements.

Compared to this, the coarse mesh saves on the number of elements by 94.7% and the fine

mesh by 84.7%.

6.6.4 Single-edge notched beam

As the last example for this chapter a Single Edge Notched Beam (SENB) subject to an-

tisymmetric four-point-shear loading is considered. This problem is previously analysed

experimentally and numerically by [563]. Then later numerically simulated by [561] in

damage and crack modelling of single and double edge notched concrete beams.

The geometry and the loading conditions shown in figure 6.35 are adopted similar

to that of the references for both experimental and numerical simulations. The overall

length, width and thickness of the beam are 450, 100 and 50 mm. A 5 mm wide 20 mm

deep notch is centrally located in the beam. Four rigid platens located on the top and

bottom edges of the beam induce the boundary conditions. At the top left platen near

the notch x and y directional movement is restrained centrally whereas at the top right

platen vertical y directional movement is restrained centrally. A nodal force is centrally

applied on the bottom rigid loading platens. The loading platens at the lower left and

right extremities of the beam were applied with a forces such that the bottom right platen

experience an agitation 10 times greater than that experienced by the bottom left platen.
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Figure 6.35. Specimen dimensions (mm) and boundary conditions for the 2D image-
based adaptive non-local damage analysis of the single-edge notched beam.

The material parameters are set similar to [561] with Young’s modulus E = 35 GPa,

and Poisson’s ratio ν = 0.2. The platens are modelled as rigid bodies with E = 1× 106

GPa. Equivalent strain is calculated as per equation (6.6) with compression and tension

sensitivity parameter k set to 15. The damage model as given in equation (6.2) is con-

sidered with the damage initiation history parameter ε0= 6×10−5. The damage evolution

law parameters α and β are set to 0.96 and 100, respectively. The stress-strain behaviour

of the damage function is depicted in figure 6.36.
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Figure 6.36. 1D element stress (GPa) vs strain profile considered in the 2D image-based
adaptive non-local damage analysis of the single-edge notched beam. The damage evolu-
tion is with respect to the softening law in equation (6.2).

The characteristic length parameter l is set to 1.7 mm with respect to the non-local

averaging function in equation (6.7). Plane stress conditions are assumed upon consider-

ation of the model dimensions.
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An automatically generated quadtree mesh is used in the first instance with Smin and

Smax set to of 2.5 mm and 10 mm, respectively. As the analysis progresses, the adaptive

refinement around the damage process zone is improved by modifying the smallest mesh

size control to 1,25 mm. The adaptive mesh generation occurs during analysis producing

the meshes shown in figures 6.37b-6.37f. The mesh refinement is initiated when the

damage variable reaches ω0 = 0.6 and the percentage of damaged elements reach Dq =

10% beyond the previous converged adaptive iteration.

397



(a) Mesh 1 generated for the single-edge notched beam when CMOD is 0.0 mm.

(b) Mesh 2 generated for the single-edge notched beam when CMOD is 0.001 mm.

(c) Mesh 3 generated for the single-edge notched beam when CMOD is 0.04 mm.

(d) Mesh 4 generated for the single-edge notched beam when CMOD is 0.1 mm.

(e) Mesh 5 generated for the single-edge notched beam when CMOD is 0.3 mm.

(f) Mesh 6 generated for the single-edge notched beam when CMOD is 0.5 mm.

Figure 6.37. Six meshes automatically generated within the simulation for the 2D image-
based adaptive non-local damage analysis of the single-edge notched beam.

398



To validate the results a uniform mesh is considered with an element size of 1.25 mm

in addition to the adaptive meshes above. The adaptive mesh in its most refined state

produces 3211 elements whereas the uniform mesh produces 28352 elements. These two

meshes are shown in figure 6.38.

(a) Uniform mesh considered single-edge notched beam simulation. Smin = 1.25 mm and

Smax = 1.25.

(b) Adaptive mesh considered single-edge notched beam simulation. Smin = 1.25 mm and

Smax = 10.

Figure 6.38. SBFEM (a) uniform and (b) adaptive meshes used in the 2D image-based
adaptive non-local damage analysis of the single-edge notched beam.

The analysis is run using the arc-length algorithm coupled with line search method.

The initial agitation ‘P’ is set to 0.025 kN. A total of 763 iterations are run to produce the

final load vs Crack Mouth Opening Displacement (CMOD) output below in figure 6.39.
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Figure 6.39. Force (kN) vs CMOD displacement (mm) output for the adaptive non-local
damage analysis of a Single-edge notched beam beam. Adaptive SBFEM compared to
the numerical simulations published by [561], the experimental results of [563], and the
static uniform mesh.

As the meshes are refined, the most refined mesh shown in figure 6.38b produces the

load vs CMOD displacement curve closely relatable to the reference solution published

by [561] and the experimental results published by [563]. Figure 6.39 also validates the

mesh independence of the adaptive simulation by producing comparably similar results

to the output generated from the SBFEM uniform mesh shown in figure 6.38a.

Displacement magnitude (refer figure 6.40) and damage evolution (refer figure 6.41)

results are produced at CMODs of 0.0024 mm at peak load and after peak load at 0.1 mm.

Furthermore, the damage contours include an additional instance corresponding to the

end of the simulation when CMOD is 0.5 mm to illustrate the full extent of the damage

evolution process.
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(a) Displacement magnitude contour (mm) for the adaptive mesh

6 (refer figure 6.37f) at CMOD displacement of 0.0024 mm.

(b) Displacement magnitude contour (mm) for the adaptive mesh 6

(refer figure 6.37f) at CMOD displacement of 0.1 mm.

0.00000 0.03300 0.06600 0.09900 0.13200

Figure 6.40. Displacement magnitude contours (mm) for the 2D image-based adaptive
non-local damage analysis of the single-edge notched beam. Outputs recorded for the
adaptive mesh shown in figure 6.37f.

The antisymmetric loading of the beam results in a curved crack path, which starts

from the right corner of the notch and ends at the lower right loading platen (see figure

6.41). As the damage grows from the notch damage growth at the bottom of the beam is

arrested.
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(a) Damage contour for the adaptive mesh 6 (refer figure 6.37f)

at CMOD displacement of 0.0024 mm.

(b) Damage contour for the adaptive mesh 6 (refer figure 6.37f)

at CMOD displacement of 0.1 mm.

(c) Damage contour for the adaptive mesh 6 (refer figure 6.37f)

at CMOD displacement of 0.5 mm.
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Figure 6.41. Damage (Ω) contours for the 2D image-based adaptive non-local damage
analysis of the single-edge notched beam. Outputs recorded for the adaptive mesh shown
in figure 6.37f.

Figure 6.41 has a close resemblance with the experimentally observed curve crack

path (refer figure 6.42) in [563].
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Figure 6.42. Crack path observed by [563] in laboratory experiments conducted on the
single-edge notched beam.

The final deformed shape of the beam is shown in figure 6.43. The output confirms

the crack path observed in the experimental findings as the highest distorted elements are

observed from the right corner of the notch extending towards the lower edge platen.

Figure 6.43. The final deformed shape of the specimen obtained in the 2D image-based
adaptive non-local damage analysis of the single-edge notched beam. Output recorded
for the adaptive mesh shown in figure 6.37f.

There is a good agreement between the numerical model output to that of the exper-

imental results. The adaptive algorithm reduces the number of elements by a mammoth

89% compared to the uniform static mesh. It is also determined that the closeness of the

simulation to the experimental observations is a product of proper definition of the equi-

valent strain in equation (6.6). A considerable influence of the boundary conditions in

the loading supports and the effect of the sensitivity to compressive strains versus tensile

strains has been observed while setting up this simulation. It is also noted, other defini-

tions [480] in past publications have failed to predict the correct crack path .
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6.7 Conclusions

A new highly efficient Automatic Image-Based Adaptive Damage Analysis (AIBADA) is

produced in this chapter. AIBADA expands the SBFEM based 2D automatic image-based

non-local damage formulation introduced in chapter 5. A simplistic, purely damage vari-

able ω based adaptive algorithm incorporates the salient and efficient features of quadtree

decomposition. The new method enables refinement of the DPZ to obtain regularised res-

ults. The quadtree based adaptive meshing technique is found to work seamlessly with the

SBFEM. The credit is mainly owed to SBFEM’s ability to handle hanging nodes through

use of polygonal elements, which does not warrant any additional treatments. The effi-

ciency in the computation process is improved by the lesser number of elements produced

in the adaptive process. Although it is difficult to generalise the varying computational

benefits observed in the four different simulations, an approximate 90% reduction in the

number of elements (compared to a uniform mesh) can be attained by adopting an adapt-

ive mesh. The numerical results are verified with both numerical and experimental results

in available literature. It is found, the isotropic integral-type damage model adopted is

capable in obtaining good agreement between experimental results and numerical sim-

ulations. In addition to the type of damage model the effect of proper definition of the

equivalent strain parameter has also been critiqued in the SENB example.

The proposed technique is robust and general such that it can be directly extended to

adaptive damage analysis in 3D with octree meshing algorithms. Furthermore, there is

opportunity to explore the effectiveness of p-refinement, hp-refinement and r-refinement

techniques compared to that of h-refinement adopted in this study.
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Chapter 7

Conclusions and Recommendations

7.1 Concluding statements – Automatic Image-Based Ad-

aptive Damage Analysis (AIBADA) with SBEFM

Material and structures are constantly susceptible to damage and deterioration. The pro-

cess of deterioration begins from the development of a process zone in which micro-

cracks emerge and deformations localise. The accumulation of damage in these localised

deformation zones eventually leads to the evolution of traction-free macrocracks which

results in the loss of load-carrying capacity. The primary intention of this work is to

explore this behaviour in materials and structures.

At the beginning of this research the field of Damage Analysis was explored in order to

recognise prevailing challenges in the field of computational Continuum Damage Mech-

anics (CDM). Most methods available to date were found to be computationally expens-

ive which made the application of these frameworks inefficient in handling models with a

large number of degrees of freedom especially found in three dimensional (3D) models.

Contemporary damage analysis platforms also have difficulties in computer modelling

due to the inability to obtain CAD based geometrical data, for example in digital images

of materials. These problems also generate a high number of unknowns due to their inher-

ent complex geometries. Therefore these applications have not been thoroughly explored
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to date. To overcome these issues an Automatic Image-Based Adaptive Damage Analysis

(AIBADA) technique has been developed in this thesis, with the novel semi-analytical

Scaled Boundary Finite Element Method (SBFEM) as a numerical tool. The adaptive

technique minimised mesh refinement, and in turn the number of unknowns introduced in

the analysis, which effectively reduced the computational effort. Moreover, the SBFEM

polygon (2D) and polyhedral (3D) meshing algorithms assisted in overcoming meshing

difficulties around complex material boundaries.

Furthermore, poor solution convergence of numerical solvers in non-linear soften-

ing problems is also a difficulty highlighted by many researchers. To overcome this a

robust numerical solver incorporated in this study has the capability to accurately trace

the equilibrium path beyond limit points till the eventual generation of the macro cracks.

The method as a whole provides the user an automatic process with flexibility to analyse

numerous types of problems.

The following subsections categorised by each chapter intend to concisely and se-

quentially present the development of the key outcomes of this research.

7.1.1 Two dimensional damage analysis by the Scaled Boundary Fi-

nite Element Method

This thesis first demonstrates in chapter 3 the capability of the SBFEM for material and

structural damage analysis in two dimensional space. This extension involves the de-

rivation of the SBFE equations through incorporation of material damage models. The

damage analysis framework is built according to the framework of thermodynamics. An

elaborate study of damage definitions and measures, damage growth equations, and an-

isotropy effects are also presented in this chapter.

The geometrical description of the model is through the SBFE polygonal formulation.

Each polygonal element is modelled as a linear polygonal element in SBFEM. The bound-

ary of each polygonal element is built up of line elements with one dimensional (1D)

shape functions. This polygonal description allows for the elements to have an arbitrary
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number of edges which can assist in meshing complex geometrical features commonly

encountered in CDM.

The investigations involving local damage models are found to be mesh dependent as

the damage localisation effects contribute to varying overall responses of the simulations.

To overcome this issue non-local models are implemented through exchange of inform-

ation between integration points. This is a feature not found in standard Finite Element

(FE) codes. A comparative study between the local and the non-local damage analysis

approaches shows that, while the local approach exhibits severe mesh objectivity, the

integral-type non-local model generates solutions that converge to an accurate solution

with mesh refinement.

To simplify the modelling process and to reduce the number of unknowns in the solu-

tion space the SBFE Scaling Centre (SC) damage formulation is introduced in this chapter.

A thorough validation of this novel reduced SC formulation is presented in this chapter

with comparisons to the Full Gauss Point (FGP) formulation. This comparison proves the

SC damage formulation to be as equally effective as the the FGP formulation. The chapter

further validates both the two dimensional (2D) SBFEM SC formulation and the 2D SB-

FEM FGP formulation through comparisons, with published literature in both regularised

and non-regularised analysis techniques.

This part of the research adopts the modified Newton Raphson (m-NR) method with

the arc-length technique. The capabilities of the arc-length technique are apparent in the

numerical examples presented in this chapter where limit points induced through snap-

back behaviour are overcome to follow accurately the damage process of materials and

structures very close to failure.

7.1.2 Three dimensional damage analysis by the Scaled Boundary

Finite Element Method

The natural continuation of the 2D SBFEM-based damage analysis to 3D SBFEM-based

damage analysis is explored in chapter 4. Similar to chapter 3, chapter 4 introduces the
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derivation of the SBFEM for damage analysis in the 3D space.

The SBFE polyhedral element formulation considered in this section enables the use

of elements with arbitrary number of faces, with each face consisting of a n-sided poly-

gon. The formulation accounts for the discretisation of the surfaces of each cell into

triangular and quadrilateral elements. Thereafter each surface element is interpolated by

adopting standard 2D finite element shape functions for triangles and quadrilateral ele-

ments. The formulation assists in the 3D mesh generation of complex features without

the restriction of a handful of number of elements (tetrahedral and hexahedral elements),

which relaxes the meshing constraints usually experienced in the standard Finite Element

Method (FEM).

To maintain the efficiency of the analysis process this chapter continued the use of the

2D SBFE SC formulation by its extension to 3D. The method is validated by comparing

the results obtained in the present formulation with published numerical and experimental

results found in the CDM literature. The proposed approach demonstrates good synergies

with the experimental observations and numerical simulations. The numerical simulations

also provide evidence that at least two subdomains are required over the characteristic

length of non-local models to obtain mesh independent behaviour.

It is demonstrated that the efficiency of the damage analysis framework is enhanced

by the inherent advantageous of the SBFEM to pre-compute strain modes and weight

function prior to the iterative solution process, and the reduction of spatial dimension by

one requiring only integration on the boundary. These advantages enable the framework

to handle 3D problems that involve large number of DOFs.

This chapter also presents the development of the arc-length incorporated m-NR method

to include accelerating and damping line search algorithms. A crucial comparison of the

effectiveness of the this robust implicit solver to that of an explicit solver is conducted in

this chapter. Here the implicit scheme is found to perform better than the explicit scheme

as it enabled a higher level of accuracy in tracing the equilibrium path. The efficiency of

the implicit scheme although lower than the explicit scheme tend to become comparably
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similar for problems that exhibit complex softening behaviour. This is owed to the fact

that the explicit scheme require small iteration steps to overcome certain “difficult” points

in the post peak softening regime.

7.1.3 Two and three dimensional Automatic Image-Based Damage

Analysis with the Scaled Boundary Finite Element Method

Chapter 5 introduces the novel Automatic Image-Based Damage Analysis technique with

the SBFEM. The most important capability of this presentation is the development of the

SBFEM-based damage analysis technique to incorporate a simple image of a structure or

a microstructural material composition as the starting point of the spatial description of

the modelling process. This capability of the framework extends the computational CDM

to numerous practical applications in the 2D and the 3D space.

The study incorporates the automatic quadtree and octree mesh generation algorithm.

The polygonal and the polyhedral formulation respectively used in chapters 3 and 4 are

used in the quadtree and octree element formulation. The heirachical mesh generation

technique is found to be useful to effectively refine the Damage Process Zone (DPZ) and

reduce the number of DOFs. The automatic meshing algorithms are found to be cap-

able in modelling features at different scales efficiently through a simple local refinement

procedure.

The computational effort and time is significantly reduced by use of a balanced mesh

and storing only the unique cell patterns (master cells) data. However, unlike other nu-

merical methods such a approach does not interfere with the efficiency of the technique

presented here because the SBFEM’s capability to handle the hanging nodes created in the

mesh generation without any additional meshing requirement. The ability to pre-compute

the stiffness of the master cells and the calculation of stiffness of other geometrically

similar cells by simple scalar multiplication enables the parallelisation of the stiffness

calculation for the model. The numerical simulations provides evidence of the efficiency

of the technique to model and analyse complex problems consisting of over half a million
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DOFs using an Intel Core i7 @3.4 GHz desktop computer with 16 GB RAM.

One of the crucial conclusions of this chapter is revealed by the comparison of the

analysis outputs obtained through the smoothened and non-smoothened meshes. Mesh

smoothing is concluded to not be a necessary requirement in damage analysis as the

damage development is dependent on the equivalent strain parameter calculated by the

weighted average of the strain field within a certain radius of influence. This averaging

therefore smooths the effects of strain concentration at jagged interfaces. The chapter also

explores the effects of the non-local formulations through material interfaces, considering

material characteristic length parameter associated with the width of the microstructural

damage zone.

7.1.4 Two dimensional Automatic Image-Based Adaptive Damage Ana-

lysis (AIBADA) with the Scaled Boundary Finite Element Method

The process of adaptive mesh refinement in damage analysis is explored in chapter 6. This

chapter develops a highly efficient damage variable ω based adaptive damage analysis

framework in 2D.

This method is found to further reduce the computational burden by only refining the

DPZ. The SBFEM’s ability to handle hanging nodes within the polygonal formulation

aids in eliminating processes such as triangulation or enrichment of interpolation func-

tions. This further enhances the efficiency of the overall framework. The efficiency in the

computation process is improved by the less number of elements produced in the adapt-

ive process. The adaptive process is validated by comparing the results to numerical and

experimental results found in the CDM research literature.

The research builds an overall efficient image-based damage analysis framework that

develops the geometrical description of the model through the colour distribution of an

image. The automatic quadtree heirachical mesh generation technique efficiently gener-

ates a spatial decomposition of the problem domain which seamlessly functions with the

numerical method, the SBFEM. The AIBADA adaptive process enhances and improves
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the accuracy of the solution space by adaptively refining the DPZ.

7.2 Recommendations for future work

The following subsections highlight the viable future extensions of this work.

7.2.1 Implicit gradient-based damage analysis with the Scaled Bound-

ary Finite Element Method

The integral-type damage models calculate the non-local equivalent strain ε̃ parameter by

means spatial averaging over the surrounding domain V with respect to a weight function

α0 such that

ε̃ (x) =

r
v α0(||x−θ ||)ε̃ (θ)dθ
r

v α0(||x−θ ||)dθ
. (7.1)

Usually, an isotropic function such as the Gauss distribution function

α0(r) = exp
[
− d2

2l2

]
, (7.2)

is chosen as weight function over the domain V . This weight function depends on the

distance r = ||x− θ || between points x and θ and on a parameter l called the internal

length scale. This quantity represents a measure of the non-local averaging.

The implicit and the explicit gradient-based damage formulations are differential coun-

terparts of the integral-type damage model. These models incorporate the first or higher

order gradients of internal variables into the constitutive relations. The gradient formula-

tion can be derived by considering an alternative description of the local equivalent strain

ε̃ in a Taylor series around x. Substituting the Taylor series expansion into equation (7.1)

and considering an isotropic weighting function such as the Gaussian distribution function

given in equation (7.2) produces

ε̃ (x) = ε̃ (x)+
1
2

l2
∇

2
ε̃ (x)+

1
8

l4
∇

4
ε̃ (x)+ . . . , (7.3)
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where the odd terms cancel because of the isotropy of α0. In equation (7.3), ∇ is the

Laplacian operator. Retaining up to the second term in equation (7.3) gives the Helm-

holtz’s equation as

ε̃ (x) = ε̃ (x)+ c∇
2
ε̃ (x) , (7.4)

where, c = l2/2. Therefore in relation to equation (7.4) in gradient-based models damage

is assumed to be driven by the local equivalent strain ε̃ and also by its Laplacian, ∇2ε̃ .

This explicit dependence of the non-local variable ε̃ on the corresponding local variable

ε̃ in equation (7.4) is referred to as the explicit gradient-enhancement.

The presence of the second derivatives of internal variables make the explicit mod-

els hard to implement numerically. Therefore the implicit formulation is usually adopted

which defines the non-local variable indirectly as the solution of a Helmholtz-type differ-

ential equation ( [301]).

The implicit form of the inhomogeneous elliptic equation given in equation (7.5) is

produced by applying the Laplacian operator to equation (7.3) and multiplying by c. The

resultant equation is then subtracted from equation (7.3).

ε̃ (x)− c∇
2
ε̃ (x) = ε̃ (x) (7.5)

Equation (7.5) can be treated in a weak form and applied a divergence theorem to only

impose C0 continuity requirement on the displacement shape functions.

The boundary value problem can now be formulated in tensorial form by the following

coupled governing equations:

ε̃ (x)− c∇
2
ε̃ (x) = ε̃ (x)inV, (7.6a)

∇ ·σ = 0 inV, (7.6b)

where, σ is the Cauchy stress tensor. The boundary conditions can then be applied such
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that

σn = t̄ inSt , (7.7a)

u = ūinSu, (7.7b)

∇ε̃ ·n = 0inS, (7.7c)

where, n is the unit vector normal to the boundary S, t̄ are the prescribed tractions and ū

are the prescribed displacements. St represents the boundary where tractions are applied

and Su represents the part of the boundary where displacement boundary conditions are

applied. St and Su are disjointed parts of the boundary such that Su
⋃

St = S. Similar to the

integral-type formulation the Cauchy stress tensor σ is related to the infinitesimal strain

tensor ε by

σ = (1−ω)D : ε, (7.8)

where, D is the fourth-order constant elasticity tensor and ω is the isotropic damage vari-

able.

The gradient enhanced formulation limits the localisation as the curvature of the strain

profile is negative around the point in the domain that experiences the largest strain.

Therefore with reference to equation (7.4), due to the presence of the Laplacian term

the non-local equivalent strain is smaller than the local strain. This slows down the strain

growth in the central part of the localized zone where negative curvature of the strain pro-

file is large whereas the adjacent regions will experience an accelerated growth in strain,

so the localization zone expands.

7.2.2 Elastoplastic damage analysis with the Scaled Boundary Finite

Element Method

In this section the possible future extension of the SBFE elastoplastic analysis framework

to an image-based approach for elastoplastic damage analysis is described. The model
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considers the softening behaviour characterized by degradation of the yield limit. The

adoption of the non-local continuum avoids problems of convergence at mesh refinement

and spurious mesh sensitivity.

The applications of the SBFEM in elastoplastic material non-linearity was first intro-

duced by Ooi et al. [73] in their 2014 publication on the SBFE polygon-based formulation

for elastoplastic analysis. The softening plasticity non-local formulation was first invest-

igated in [300]. This development was subsequent to the development of the non-local

elastoplasticity model by Eringen [564, 565].

In this formulation the non-local concept is only applied to parameters which cause

the degradation while keeping the definition of the strains local. Therefore the degradation

is assumed to affect of the yield limit. The yield limit is associated with the reduction of

the areas of cohesive or plastic frictional connections. The formulation therefore does not

consider the material stiffness degradation. This consideration produces the unloading

slope same as the initial elastic slope as shown in figure 7.1.

σ

ε

Figure 7.1. Degradation of the yield limit and the resultant unloading slope similar to the
initial elastic slope.

7.2.2.1 Non-local elastoplastic continuum formulation

The non-local formulation considers the spatial average of the magnitude of plastic strain

εp . At a location x, εp may be defined by the equation

〈εp (x)〉= 1
Vr (x)

ˆ
v
α (s− x)ε

p (s)dV =

ˆ
v
α
∗ (x,s)ε

p (s)dV, (7.9)
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where

Vr (x) =
ˆ

v
α0 (s− x)dV, (7.10)

and

α
∗ (x,s) = α0 (s− x)/Vr (x) . (7.11)

In equation (7.9), the 〈〉 denote the averaging operator, V represents the volume of the

body, α0 (x) is the weighting function that defines the averaging, s is the general coordin-

ate vector, and Vr is the representative volume. The averaging may be specified by the

normal (Gaussian) distribution function

α (x) = exp

[
−
(

k |x|
l

)2
]
, (7.12)

where for one, two and three dimensions

1D : |x|2 = x2 k =
√

π = 1.772, (7.13a)

2D : |x|2 = x2 + y2 k =2 , (7.13b)

3D : |x|2 = x2 + y2 + z2 k =
(
6
√

π
)1/3

= 2.179, (7.13c)

and l is the characteristic length.

7.2.2.2 Non-local generalization of classical incremental plasticity

The derivation presented here begins with the local plasticity model. Thereafter building

on the this local plasticity model the generalised non-local plasticity model is presented.

For a typical plasticity model the yield surfaces can be written as

F(σ ,κ) = 0, (7.14)

where,

F(σ ,κ) = f (σ)− γ. (7.15)
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Here σ denotes the stress tensor, the function f (σ) can be taken as the effective stress

σ∗, and γ is a hardening-softening parameter. κ may be interpreted as the yield limit

which can either increase when hardening or decrease when softening. In a simplified

formulation one parameter in the model can be considered to influence the hardening or

softening behaviour of the material.

Next the normality rule between the incremental plastic strain 4εp and plastic strain

tensor εp can be set as follows

4ε
p= F,σ4λ = f ,σ4λ . (7.16)

The derivatives F,σ and f,σ represent respectively ∂F/∂σ and ∂ f/∂σ . The parameter

4λ is a scalar proportionality coefficient. The loading-unloading condition given by

F4λ = 0, (7.17a)

4λ ≥ 0, (7.17b)

F≤ 0, (7.17c)

should hold concurrently.

Considering κ to depend only on εp , Prager’s continuity condition can be introduced

as

F,σ :4σ +F,κκ,εp : F,σ4λ = 0. (7.18)

Taking H as the plastic tangential modulus given by

H =−F,κκ,εpε
p
,εp : F,σ , (7.19)

equation (7.18) reduces to

F,σ :4σ −H4λ = 0. (7.20)
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Rearranging equation (7.20) yields

4λ = (F,σ :4σ)/H (7.21)

Using equations (7.16) and (7.21) the incremental stress-strain relationship can be written

as

4σ = D : (4ε−4ε
p), (7.22)

where, D is the tensor of elastic moduli. Substituting equation (7.22) into equation (7.21)

gives

4λ =
F,σ : D :4ε

F,σ : D : F,σ +H
. (7.23)

The effective plastic strain can be considered as the path length of plastic strain, i.e

4εp = (4εp :4εp)1/2, or defined by work equivalence σ :4εp = σ∗4εp. The latter is

considered in this formulation. Making 4εp the subject of the equation and substituting

from equation (7.16) gives

4ε
p =

1
σ∗

σ : F,σ4λ . (7.24)

Considering equation (7.15), function f (σ) is assumed to be a homogeneous function

of degree n. Therefore by applying Euler’s theorem

σ : f,σ = n f . (7.25)

Also if the yield function is written in the form such that n = 1 and f (σ) = σ∗, and the

hardening-softening parameter κ assumed as a function of the effective plastic strain εp

such that k = k (εp) then the equation (7.18) for H is further simplified as

H=−F,κκ,εpε
p
,εp : F,σ = κ,εpε

p
,εp : f,σ , (7.26a)

H = κ,εp
1

σ∗
(σ : f,σ ) = κ,εp

n f
σ∗

, (7.26b)

H = κ,εp. (7.26c)
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Now, equation (7.22) can be generalized as

4σ = D : (4ε−4ε̃
p), (7.27)

by applying the concept of non-local continuum with local strain. Here 4ε̃p is the non-

local plastic strain increment.

7.2.3 3D adaptive damage analysis and hp-adpative damage analysis

with the Scaled Boundary Finite Element Method

A continuation of the 2D adaptive damage analysis framework can be implemented in the

3D adaptive damage analysis space. The general adaptive framework thereafter can be

extended to the image-based adaptive quadtree and octree damage analysis technique.

  P                    Q                    R   P                                          
Q1 Q2

Q3
Q41 Q42

Q43 Q44

R1 R2

R3 R4

Adaptive
hp-refinement

   (a)                                                                                          (b)

-Node
-Hanging node

Figure 7.2. Adaptive hp-refinement strategy for non-local damage analysis.

Furthermore, there is an opportunity to also explore the effectiveness of other adapt-

ive refinement strategies such as the p-refinement, hp-refinement and r-refinement tech-

niques. As a demonstration the adaptive hp-refinement strategy is shown in figure 7.2.

In this demonstration the lower right corner of element Q in figure 7.2a is assumed to be

damaged. The h-adaptive process then recursively subdivides the element Q to generate

the element decomposition for element Q shown in figure 7.2b. The h-adaptive process

now has separated the damaged element to element Q44. The process also requires the

subdivision of the element R to four separate elements R1-R4 in order to maintain the 2:1

rule. In the hp-adpative scheme this stage is followed by the p-adaptive process where or-

der of the polynomial approximation in element Q44 is increased from linear interpolation

to quadratic interpolation for better description of the displacement field.
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Through the power of persistent curiosity and strategic insight,

every process can be refined to be made more efficient, accur-

ate, adaptive and automatic.

Dion Dilina Dissanayake
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