Program distribution estimation with grammar models

Author:
Shan, Yin

Publication Date:
2005

DOI:
https://doi.org/10.26190/unsworks/18079

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/38737 in https://
unsworks.unsw.edu.au on 2024-05-03

http://dx.doi.org/https://doi.org/10.26190/unsworks/18079
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/38737
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

Program Distribution Estimation
with Grammar Models

Yin Shan
B.Sci., M.Sci. (Wuhan Cehui Technical University, China)

|| SCIENTIA ||

A thesis submitted in fulfillment of the requirements
for the degree of
Doctor of Philosophy

University of New South Wales

Supervisors:

Robert I. McKay, University of New South Wales, Australia
Daryl L. Essam, University of New South Wales, Australia
Hussein A. Abbass, University of New South Wales, Australia

Examiners:

Alan Blair, University of New South Wales, Australia
Hitoshi Iba, University of Tokyo, Japan
Una-May O’Reilly, Massachusetts Institute of Technology, USA

Abstract

Program Distribution Estimation with Grammar Models
Yin Shan

This thesis studies grammar-based approaches in the application of Estimation of
Distribution Algorithms (EDA) to the tree representation widely used in Genetic
Programming (GP).

Although EDA is becoming one of the most active fields in Evolutionary computa-
tion (EC), the solution representation in most EDA is a Genetic Algorithms (GA)
style linear representation. The more complex tree representations, resembling GP,
have received only limited exploration. This is unfortunate, because tree repre-
sentations provide a natural and expressive way of representing solutions for many
problems. This thesis aims to help fill this gap, exploring grammar-based approaches
to extending EDA to GP-style tree representations.

This thesis firstly provides a comprehensive survey of current research on EDA with
emphasis on EDA with GP-style tree representation. The thesis attempts to clarify
the relationship between EDA with conventional linear representations and those
with a GP-style tree representation, and to reveal the unique difficulties which face
this research.

Secondly, the thesis identifies desirable properties of probabilistic models for EDA
with GP-style tree representation, and derives the PRODIGY framework as a con-
sequence.

Thirdly, following the PRODIGY framework, three methods are proposed. The
first method is Program Evolution with Explicit Learning (PEEL). Its incremental
general-to-specific grammar learning method balances the effectiveness and efficiency
of the grammar learning. The second method is Grammar Model-based Program
Evolution (GMPE). GMPE realises the PRODIGY framework by introducing el-
egant inference methods from the formal grammar field. GMPE provides good
performance on some problems, but also provides a means to better understand
some aspects of conventional GP, especially the building block hypothesis. The
third method is Swift GMPE (sGMPE), which is an extension of GMPE, aiming at
reducing the computational cost.

il

Fourthly, a more accurate Minimum Message Length metric for grammar learning
in PRODIGY is derived in this thesis. This metric leads to improved performance
in the GMPE system, but may also be useful in grammar learning in general. It is
also relevant to the learning of other probabilistic graphical models.

il

Extended Abstract

Program Distribution Estimation with Grammar Models
Yin Shan

This thesis studies grammar-based approaches in the application of Estimation of
Distribution Algorithms (EDA) to the tree representation widely used in Genetic
Programming (GP).

Evolutionary Computation (EC), motivated by evolution in the real world, has be-
come one of the most widely used Machine Learning techniques, because of its
effectiveness and versatility. Partially due to the disruptiveness of the genetic op-
erators, there has been a growing interest in Estimation of Distribution Algorithms
(EDA). The basic idea of EDA is to capture the interactions among genes, which
represent the internal structure of problem solutions, and in this way to estimate
the distribution of good solutions directly, rather than employing genetic operators.
More specifically, in each generation, a model, typically a probabilistic model, is
inductively learnt from good individuals (training examples), and is sampled to cre-
ate new individuals of the next generation. A population is not usually maintained
between generations, and genetic operators are omitted from EDAs.

Although EDA is becoming one of the most active fields in EC, the solution rep-
resentation in most EDA is a Genetic Algorithms (GA) style linear representation
(one dimensional array, known as the chromosome in GA literature). The more
complex tree representations, resembling Genetic Programming (GP), have received
only limited exploration, perhaps as a result of their intrinsic complexity. This is
unfortunate, because tree representations provide a natural and expressive way of
representing solutions for many problems. This is a significant gap in EDA and GP
research, because EDA not only has the potential to improve GP performance, but
also provides a new perspective for understanding GP. This thesis aims to help fill
this gap, exploring grammar-based approaches to extending Estimation of Distribu-
tion Algorithms to GP-style tree representations.

Extending conventional EDA to tree representations is not trivial, because of the
complexity of tree structures. Tree representations provide an alternative way of rep-
resenting solutions, which is important to a large class of problems, but at the same
time introduce important complications, including larger search spaces and more

v

complex interactions among tree nodes. This thesis proposes a framework, called
Program Distribution Estimation with Grammar Models (PRODIGY), which signif-
icantly extends previous applications of EDA to GP-style tree representations. The
core of this framework is a Stochastic Context-free Grammar model (SCFG). In this
research, we confirm both theoretically and empirically that PRODIGY is able to
learn a wide range of the dependencies among nodes in tree form individuals that are
believed to be important in current GP literature. Two different approaches under
the PRODIGY framework are proposed and implemented. The first one iteratively
refines the grammar model (but requires additional constraints on the search), while
the second one builds a full grammar model, including both its probability and struc-
ture components, directly from the training samples. These approaches performed
well on the problems studied, exhibiting search characteristics complementary to
those of GP. Specifically, the contributions of the thesis are as follows.

1. Providing a comprehensive survey of current research on EDA with emphasis
on EDA with GP-style tree representation. We attempt to clarify the relation-
ship between EDA with conventional linear representations and those with a
GP-style tree representation, and to reveal the unique difficulties which face
this research.

2. Identifying desirable properties of probabilistic models for EDA with GP-style
tree representation, and deriving the PRODIGY framework as a consequence.

3. Proposing Program Evolution with Explicit Learning (PEEL) as one imple-
mentation of PRODIGY. PEEL’s incremental general-to-specific grammar learn-
ing method balances the effectiveness and efficiency of the grammar learning.

4. Proposing Grammar Model-based Program Evolution (GMPE) as another im-
plementation of PRODIGY. GMPE realises the PRODIGY framework by in-
troducing elegant inference methods from the formal grammar field. It pro-
vides good performance on some problems, but also provides a means to better
understand some aspects of conventional GP, especially the building block hy-
pothesis.

5. Proposing Swift GMPE (sGMPE), which is an extension of GMPE, aiming at
reducing the computational cost.

6. Deriving a more accurate Minimum Message Length metric for grammar learn-
ing in PRODIGY. This metric leads to improved performance in the GMPE
system, but may also be useful in grammar learning in general. It is also
relevant to the learning of other probabilistic graphical models.

Acknowledgement

My journey towards this Ph.D. was a long and arduous one, and would not have
been possible without the support of so many wonderful people.

The people to whom I am most indebted are my parents, Zuo Fengxian and Shan
Boquan, and my brother, Shan Di. I can never overstate their importance to me,
for this achievement would never have been possible without their love and support.

I thank my current supervisors Dr. Robert I. McKay, Dr. Daryl Essam and Dr.
Hussein Abbass for their patience, encouragement and guidance. I also would like to
thank a number of people with whom I am fortunate enough to work, in particular

David Paull, Rohan Baxter and Chris Lokan.

The road to my Ph.D. can be, to some extent, traced back to my stay in Hong Kong.
I would like to thank my supervisor, Dr. Lin Hui, and my friends who made my
stay in HK a most enjoyable experience: Zhao Yibin, He Jie, Freeman Wong, Lu
Jia, Tan Qian and Han Haiyang.

I want to thank all of my fellow postgraduates for their assistance and their company;,
particularly Yang Ang, Jennifer Badham, Mehrdad Khodai-Joopari, Xie Shuiwei and
Nguyen Xuan Hoai.

Arriving and staying overseas has always been a challenge to me. I thank my
friends in Canberra who made my stay here more comfortable and pleasant. Above
all I thank Anthony Mabanta, Cesar Gonzales, Terry Stocker and my two fantastic
flatmates Do-Seong Byun and Wayne Bland. Special thanks go to Rodolfo Gomez-
Balderas for his constant support and encouragement.

Finally, I would like to thank all the members of the school who provided such
an amiable environment in which to work, especially Wen Ung, Pam Giannakakis,
Alison McMaster, Tony Watson, Eri Uchida and Philip McGarva.

vi

Certificate of Originality

I hereby declare that this submission is my own work and that, to the best of
my knowledge and belief, it contains no material previously published or written by
another person, nor material which to a substantial extent has been accepted for the
award of any other degree or diploma at UNSW or any other educational institution,
except where due acknowledgement is made in the thesis. Any contribution made to
the research by colleagues, with whom I have worked at UNSW or elsewhere, during
my candidature, is fully acknowledged.

I also declare that the intellectual content of this thesis is the product of my own
work, except to the extent that assistance from others in the project’s design and
conception or in style, presentation and linguistic expression is acknowledged.

Yin Shan

vil

List of Publications

Journal Publications

1. Y. Shan, R. I. McKay, H. A Abbass, D. Essam. Program Distribution Estima-
tion with Grammar Models. IEEE Transaction on Evolutionary Computation.
(submitted)

2. Y. Shan, D. Paull, R. I. McKay. Machine Learning of Poorly Predictable
Ecological Data. Ecological Modelling. Elsevier (accepted, subject to revision)

Refereed Conference Publications

1. Y Shan, R.I. McKay, D. Essam, J. Liu (2004, Dec). Modularity and position
independence in EDA-GP. In Proceedings of The Second Asia-Pacific Work-
shop on Genetic Programming, Cairns, Australia.

2. Y. Shan, R. I. McKay, H. A Abbass, D. Essam (2004, Dec). Program Distribu-
tion Estimation with Grammar Models: A Preliminary Study. In Proceedings
of The 8th Asia Pacific Symposium on Intelligent and Evolutionary Systems,
Cairns, Australia.

3. Y. Shan, R.I. McKay, R. Baxter, H. Abbass, D. Essam, H.X. Nguyen (2004,
June). Grammar Model-based Program Evolution. In Proceedings of The
Congress on Evolutionary Computation 2004, Portland, US. pp. 478-485.

4. Y. Shan, R. I. McKay, H. A. Abbass, D. Essam (2003, Dec). Program Evolu-
tion with Explicit Learning: a New Framework for Program Automatic Syn-
thesis. In Proceedings of The Congress on Evolutionary Computation, Can-
berra, Australia, pp. 1639-1646. Also available as Technical Report CS04/03.
School of Computer Science, Univ. College, Univ. of New South Wales. 2003

5. Y. Shan, H. A. Abbass, R.I. McKay, D. Essam (2002, Nov). AntTAG: a
Further Study. In Proceedings of The Sixth Australia-Japan Joint Workshop
on Intelligent and Evolutionary Systems, Canberra, Australia.

viil

6. N.X. Hoai, Y. Shan and R.I. McKay (2002, Nov). Is Ambiguity Useful or
Problematic for Grammar Guided Genetic Programming? A Case Study. In
Proceedings of 4th Asia-Pacific Conference on Simulated Evolution And Learn-
ing, Singapore.

7. Y. Shan, R.I. McKay and D. Paull (2002, Nov) Building Ecological Models
Using Genetic Programming. In Proceedings of 4th Asia-Pacific Conference
on Simulated Evolution And Learning, Singapore.

8. Y. Shan, R.I. McKay, C.J. Lokan and D.L. Essam (2002). Software Project Ef-
fort Estimation Using Genetic Programming. In Proceedings of International
Conference on Communications Circuits and Systems, Chengdu, China, pp.

1108-1112, UESTC Press.
Edited Proceedings

1. S.-B. Cho, H. X. Nguyen, Y. Shan (2003, Dec). Proceedings of The First Asian-
Pacific Workshop on Genetic Programming. Canberra, Australia. ISBN:
0975172409

X

Contents

Abstract

Extended Abstract

Acknowledgements

Declaration

List of Publications

Table of Contents

List of Figures

List of Tables

List of Acronyms

1

Introduction

1.1 Background o
1.2 Theme of the Thesis
1.3 Thesis Outline
1.4 Major Contributions oL
Fundamentals

2.1 Grammar and Grammar Inference

2.2

2.1.1 Stochastic Context-free Grammar
2.1.1.1 Derivation
2.1.1.2 Probability of Derivation.

2.1.2 Learning Grammar with Minimum Encoding Inference

Genetic Programming and Grammar Guided Genetic Programming .
2.2.1 Genetic Programming 0L
2.2.1.1 Selection Mechanism
2.2.1.2 Genetic Operators
2.2.1.3 Incorporation of New Individuals
2.2.2 Some Issuesin GP 0oL
2.2.2.1 Semantics

ii

iv

Vi

vii

viii

2.2.2.2 Building Blockso 00000 20

2.2.2.3 Bloat and Introns 21

2.2.3 Grammar Guided Genetic Programming 22
2.2.4 Individuals of GP and GGGP 22

2.3 Estimation of Distribution Algorithms 24
2.3.1 Algorithm 25
232 Exampleo 26

2.4 Estimation of Distribution Algorithms with Linear Representation . . 27
2.4.1 Learning in Genetic Algorithms 29
2.4.2 No Dependence Model 30
2.4.3 Pairwise Dependence Model 31
2.4.4 Multivariate Dependence Model 32
2.4.4.1 Learnable Evolution Model 33

2.4.5 Inference of Probabilistic Graph Model 34

2.5 Estimation of Distribution Algorithms with Tree Representation . . . 35
2.5.1 Imtroductiono 35
2.5.2 Learning in Genetic Programming 36
2.5.2.1 Modularity and Building Blocks 36

2.5.2.2 Permutation and Crossover 37

253 PIPEModel 37
2.5.3.1 Probabilistic Incremental Program Evolution 38

2.5.3.2 Extended Compact Genetic Programming 39

2.5.3.3 Estimation of Distribution Programming 41

2.5.3.4 Summary 41

2.5.4 Grammar Model 42
2.5.4.1 Conventional GGGP with Grammar Learning 43

2.5.4.2 Learning Parameters of a Grammar Model 45

2.5.4.3 Learning Structure and Parameter of Grammar Model 47

2.5.5 Inference of Probabilistic Graph Model 48
25,6 SUMMATY 49

2.6 Ant Colony Optimisation and Automatic Program Synthesis 50
2.6.1 Grammar Based Works 51
2.6.2 Non-grammar Based Works 52

2.7 Conclusion 52
Program Distribution Estimation with Grammar Models 53
3.1 Imtroduction 53
3.2 Lessons from GP Research in Searching for Models 54
3.2.1 Internal Hierarchical Structure 55
3.2.2 Locality of Dependence 55
3.2.3 Position Independence 56
3.2.4 Modularity 58
3.2.5 Non-fixed Complexity 59

3.3 Framework of PRODIGY 59
3.3.1 Algorithm 60

xi

3.3.2 Grammar Model 60

3.3.3 Grammar Model Sampling and Learning 63
3.3.3.1 Initial Grammar 64
3.3.3.2 Multiple Iterations of Grammar Learning 64
3.3.4 Search in the Grammar Space 65
3.3.5 Relationship with Other Works 66
3.4 Learning Issues L 67
3.4.1 General-to-specific and Specific-to-general Learning Method . 67
3.4.2 Incremental Learning 68
3.4.3 Additional Constraints 70
3.4.4 Exploration versus Exploitation 71
3.4.5 Sample Clustering 72
3.5 Two Algorithms: PEEL and GMPE 73
3.6 Conclusion 74
Program Evolution with Explicit Learning 76
4.1 Algorithm 76
4.1.1 SCFG Model in PEEL 7
4.1.2 Model Learningo o 80
4.1.2.1 Learning Probability 80
4.1.2.2 Learning Structure 81
4.1.3 Model Mutation 86
4.1.4 Model Sampling 87
4.2 Experiment 87
4.2.1 Simple Symbolic Regression Problem 88
4.2.2 Second Regression Problem 90
4.2.3 Time Series Prediction 93
4.3 Empirical Analysis 97
4.3.1 Methodology 97
4.3.2 Benchmark Problem 100
433 Results. 100
4.3.3.1 Grammar Learning Interval and Positional Indepen-
dence 100
4.3.3.2 Grammar Learning Interval and Modularity 101
4.3.3.3 Impact of Positional Independence and Modularity
on Performance 106
4.3.4 Summary 107
4.4 Related Worko 109
4.5 Conclusion 111
Minimum Encoding Inference of Grammars 112
5.1 Introduction 112
5.2 Minimum Encoding Inference 114
5.3 MML Metric for Grammar Learning in PRODIGY 115
5.3.1 MML Metric for SCFG 115

xii

5.3.1.1 Example. 119

5.3.2 Cost of Coding the Probability Distribution of an SCFG . . . 121
5.3.2.1 Multinomial Distribution 121
5.3.2.2 Dirichlet Prior for Multinomial Distribution 121

5.3.2.3 Cost of Coding Probability Distribution with the
Dirichlet Prior 122
5.3.24 Example. 124
5.3.3 MML Metrics in Natural Language Processing and PRODIGY 125
5.3.3.1 Multiple Iterations of Grammar Learning 125
5.4 Related Work in Natural Language Processing 126
54.1 Chen 126
5.4.2 Stolke and Omohundro 127
54.3 Grunwald 128
544 Kellerand Lutz oo 128
54.5 Osborne 129
5.5 Conclusion e 130
Grammar Model-based Program Evolution 131
6.1 Introduction 131
6.2 Problem Decomposition 132
6.3 Bayesian SCFG Grammar Induction, 133
6.3.1 The Method 134
6.3.1.1 Merge operator 135
6.3.1.2 Chunk Operator 137
6.3.2 Scoring Metric 138
6.4 Grammar Model-based Program Evolution 139
6.4.1 Algorithm 139
6.4.2 Learning the Grammar Model 139
6.4.2.1 Obtaining the Primitive Grammar 141
6.4.2.2 Initial-Grammar-Consistent Merge Operator 143
6.4.2.3 Merge and Crossover 146
6.4.3 Sampling the Learnt Grammar 146
6.4.4 Restoration of the Initial Search Bias 147
6.5 Experimental study oL 147
6.5.1 Royal Tree Problem 148
6.5.1.1 Problem Description 148
6.5.1.2 Results o 151
6.5.2 Max Problem 155
6.5.2.1 Problem Description 155
6.5.2.2 Results Lo 156
6.5.3 Simple Symbolic Regression Problem 158
6.5.3.1 Problem Description, 158
6.5.3.2 Results o 159
6.5.4 Discussion 162
6.5.4.1 GMPE on benchmark problems 162

xiii

6.6 Related work
6.7 Conclusion

6.5.4.2 Hill-climbing and Other Search Methods

7 Swift GMPE

7.1 Time complexity of GMPE
7.2 Algorithm

7.2.1

7.3.1

7.5 Empirical Studies
Royal Tree Problem
Max Problem . . .

7.5.1
7.5.2

Phase I: MML Metric Improvement Merge
7.2.2 Phase II: Random Merge
7.3 Disruption of Building Blocks by Random Merge
Definition of Schema in GMPE
7.3.2 Disruption from Merge
7.4 Exploration Enhancement

7.5.3 Simple Symbolic Regression Problem

7.6 Conclusion

8 Conclusion and Future Research

8.1 Conclusion
8.2 Future Research

8.2.1
8.2.2
8.2.3
8.2.4
8.2.5
8.2.6

Bibliography

Grammar Learning Method
Knowledge Extraction, Reuse and Incorporation
Parsimony Pressure and Noisy Data
Incremental Learning
Making Use of Negative Examples

Developing Theory

Xiv

List of Figures

1.1

2.1

2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10

3.1
3.2
3.3

3.4
3.5

4.1
4.2

4.3

4.4

4.5

4.6

4.7

Structure of the thesis 4

A commonly used Stochastic Context-free grammar for symbolic re-

gression problems. oL Lo 10
Derivation tree of string x-(x+x) 10
Basic Algorithm of GP 15
Crossover in Genetic Programming 18
Mutation in Genetic Programming 19
High level algorithm of EDA 26
A simplified example of EDA. 28
Probabilistic Incremental Program Evolution 39
Probability distribution model in EDP 41
Comparison of different probabilistic models in EDA-GP 42
Automatically Defined Functionsof GP 58
High level algorithm of PRODIGY 60
An Example of position independence and modularity in tree-shaped

individuals 62
A trivial grammar model 63
Relations among EDA-GP methods 67
Basic algorithm of PEEL oL 77
Relative coordinates of the nodes in PEEL probabilistic model. A

node’s position is described by a tuple of n coordinates (by, b, - -, b,),

where n is the depth of the node in the tree, and b; indicates which

branch to choose at level 4. 0oL 78
A commonly used Context-free grammar for symbolic regression prob-

lem . . .o 79
Example of fragment of initial PEEL grammar model for generating

individuals at depth 1o 79
Generation of stings x-(x+x) and (x+x)-x from the grammar in Fig-

ure 4.3 . .. L 82
Comparison of PEEL and GGGP on cumulative frequency of success-

ful runs on the problem f(z) =2+ 23 + 2% +2. 89
Context-free grammar for the simple symbolic regression problem

fley=a*+23+22+x 90

XV

4.9
4.10

4.11

4.12

4.13
4.14

5.1
5.2

6.1
6.2
6.3

6.4
6.5
6.6
6.7

6.8
6.9
6.10
6.11
6.12

6.13
6.14

6.15

7.1
7.2

7.3
7.4

Best solution found by PEEL on regression problem f(z) = 23 xe™® X

cos(x) x sin(x) x ((sin(x))* x cos(x) —1) 93
Best solution found by PEEL on sunspot prediction problem 95
Average context length of last generations of runs at six different

learning intervals Lo 102
Average reuse of rules among elitists at different learning intervals.

Note the y-axis of last figure is on different scale. 103
Mean of average reuse of rules among elitists. Note the y-axes of last

figures are on different scale. o000 105
Maximum number of reuses of rules among elitists 106
Average best fitnesses of runs at six learning intervals. 108
A simple grammar example 120
Dirichlet prior at different o values 123
Basic algorithm of GMPE 139
Grammar for simple symbolic regression problem f(z) = z*+ 23 +2?+2141

Retrieval of rules from a set of individuals to construct primitive

grammar for GMPE00 143
Initial grammar for Royal Tree Problem 148
Examples of perfect trees of Royal Tree Problem 149
Example trees with scores of Royal Tree Problem 150
Cumulative frequency of successful runs of GMPE on Royal Tree

Problem. 152
Average best fitness of all runs of GMPE on Royal Tree Problem. . . 153
Initial grammar for Max problem 155
Cumulative frequency of successful runs of GMPE on Max Problem. . 156
Average best fitness of all runs of GMPE on Max Problem. 157
Cumulative frequency of success runs of GMPE and GGGP on prob-

lem ot + a3+ 2242 ..o 160
Average best fitness of all runs of GMPE on Problem z* 4 2% + 22 + 2.161

Cumulative frequency of successful runs of PEEL, GMPE and GGGP
on regression problem z* + 2% + 22+ 2. L. 162
Complex building blocks which might not be able to be found by
hill-climbing searcho oo 164
Grammar learning method of sGMPE 172
Cumulative frequency of successful runs of SGMPE on Royal Tree
Problem. 179

Cumulative frequency of successful runs of sGMPE on Max problem. 180
Cumulative frequency of successful runs of sGMPE on simple regres-
sion problem x* + 23 + 2% +x 181

xXvi

List of Tables

4.1

4.2

4.3

4.4

4.5

4.6
4.7
4.8
4.9

4.10

6.1
6.2
6.3
6.4
6.5
6.6
6.7

6.8

7.1
7.2
7.3

Parameter settings for GGGP on simple symbolic regression problem
fl)y=az'+23+2%+x ...
Parameter settings for PEEL on simple symbolic regression problem
fley=x*+23+22+x
Parameter settings for GGGP on complex symbolic regression prob-
lem f(z) =23 x e7® x cos(x) x sin(zx) x ((sin(z))? x cos(x) — 1)
Parameter settings for PEEL on complex symbolic regression problem
f(z) =23 x e x cos(z) x sin(z) x ((sin(x))? x cos(x) —1)
Comparison of PEEL and GGGP on the symbolic regression problem
f(x) = 2% x e™ x cos(z) x sin(x) x ((sin(x))? x cos(x) —1)
Parameter settings for GP on sunspot prediction problem
Parameter settings for PEEL on sunspot prediction problem
The comparison of PEEL and GP on sunspot prediction problem
Average context length of last generations of runs for different learn-
ing intervals
Maximum number of reuses of rules among elitists

Parameter settings for GMPE on Royal Tree Problem
Parameter settings for GP on Royal Tree Problem
Comparison of GP and GMPE on Royal Tree Problem.
Parameter settings for GMPE on Max Problem
Parameter settings for GP on Max Problem
Comparison of GP and GMPE on MAX problem
Parameter settings for GMPE on simple symbolic regression problem

fly=a*+23+2%+x
Parameter settings for GGGP on simple symbolic regression problem

fley=a*+23+2%+ox

Success rate of different p,, of sGMPE on Royal Tree problem

Success rate of different p,, of sGMPE on Max problem
Success rate of different p,, of sSGMPE on symbolic regression problem
fley=a*+23+2%+x

XVii

List of Acronyms

EC

EDA
EDA-GP
GA
GGGP
GMPE

GP

IGC merge
MBS

MDL
MML

NLP
PEEL

PIPE
PRODIGY
SCFG

Evolutionary Computation

Estimation of Distribution Algorithms

EDA with tree representation, resembling GP individual.

Genetic Algorithms

Grammar Guided Genetic Programming

Grammar Model-based Program Evolution. One of the algorithms

proposed in this thesis.
Genetic Programming

Initial-Grammar-Consistent merge

Model-base Search

Minimum Description Length

Minimum Message Length, also referring to minimum encoding in-

ference.
Natural Language Processing

Program Evolution with Explicit Learning. One of the algorithms

proposed in this thesis.
Probabilistic Incremental Program Evolution

Program Distribution Estimation with Grammar Models
Stochastic Context-free Grammar

xviil

Chapter 1

Introduction

This thesis studies grammar-based approaches in the application of Estimation of
Distribution Algorithms to the tree representation widely used in Genetic Program-

ming.

1.1 Background

Evolutionary Computation (EC) (Spears, Jong, Béack, Fogel, and de Garis 1993),
motivated by evolution in the real world, has become one of the most widely used
Machine Learning techniques, because of its effectiveness and versatility. It main-
tains a population of solutions, that evolve according to rules of selection and genetic
operators, such as recombination and mutation. Each individual in the population
receives a measure of its fitness. Then, genetic operators perturb those individu-
als, thus providing general heuristics for exploration. EC algorithms often provide

robust and powerful adaptive search mechanisms.

EC, generally speaking, is an inductive learning process. However, the knowledge
learnt is cryptically encoded in the form of the population, which is under continuous

evolution. Because of the highly dynamic nature of the evolving population, it is

CHAPTER 1. INTRODUCTION 2

extremely difficult to work out what the encoded knowledge is, let alone make use of
it to improve the search performance. Furthermore the genetic operators, which are
usually imposed with uniform distribution on the nodes of individuals, may cause

severe disruption of partial solutions (also known as building blocks).

These issues in EC ! led to the proposal of Estimation of Distribution Algorithms
(EDA) (Larranaga and Lozano 2001; Miiehlenbein and Paafl 1996), also known as
Probabilistic Model-building Genetic Algorithms (PMBGA) (Pelikan 2002) or Iter-
ated Density Estimation Evolutionary Algorithms (IDEA) (Bosman and Thierens
1999). EDAs explicitly encode the knowledge accumulated in the course of the
search in well-structured models, typically probabilistic models, and thus explicit
exploitation of the knowledge becomes possible. More specifically, these models are
inductively learnt from good individuals (training examples), and are sampled to
create new individuals of the next generation. A population is not usually main-
tained between generations, and genetic operators are omitted from EDAs, either
partially of completely. Instead, EDA is designed to capture the interactions among
genes, which represent the internal structure of problem solutions, and in this way it
estimates the distribution of good solutions directly, rather than employing genetic
operators. The major differences between EDA methods lie in the model formalisms,

depending on the type of knowledge which is intended to be represented.

There are several reasons for the increasing interest in EDA. The first reason is
the theoretical attraction. The highly complex and dynamic consequences of ge-
netic operators are extremely hard to understand and predict, hindering efforts to
further improve the performance of EC systems. Replacing genetic operators and
populations with a simple yet powerful model makes it simpler to understand sys-
tem behaviour. In some simple cases, EDA is a quite accurate approximation of
conventional EC (Harik, Lobo, and Goldberg 1999; Miiehlenbein and Paafl 1996).
Secondly, in terms of practical usefulness, superior performance of EDAs relative

to conventional EC has been reported in a number of publications (Blanco, Inza,

'EC covers a wide range of techniques, but we will frame our discussion primarily in terms of

Genetic Algorithms (Goldberg 1989) and Genetic Programming (Cramer 1985; Koza 1992).

CHAPTER 1. INTRODUCTION 3

and Larranaga 2003; Bengoetxea, Larranaga, Bloch, Perchant, and Boeres 2002;
Sagarna and Lozano 2004; Paul and Iba 2004; Pelikan, Goldberg, Ocenasek, and
Trebst 2003).

1.2 Theme of the Thesis

Although EDA is becoming one of the most active fields in EC, the solution rep-
resentation in most EDA is a Genetic Algorithms (GA) style linear representation
(one dimensional array, known as the chromosome in GA literature). The more
complex tree representations, resembling Genetic Programming (GP) have received
only limited exploration, perhaps as a result of their intrinsic complexity. This is
unfortunate, because tree representations provide a natural and expressive way of
representing solutions for many problems. This is a significant gap in EDA and GP
research, because EDA not only has the potential to improve GP performance, but
also provides a new perspective for understanding GP. This thesis aims to help fill
this gap, exploring grammar-based approaches to extending Estimation of Distribu-

tion Algorithms to GP-style tree representations.

Extending conventional EDA to tree representations is non-trivial, because of the
complexity of tree structures. Tree representations provide an alternative way of rep-
resenting solutions, which is important to a large class of problems, but at the same
time introduce important complications, including larger search spaces and more
complex interactions among tree nodes. This thesis proposes a framework, called
Program Distribution Estimation with Grammar Models (PRODIGY), which signif-
icantly extends previous applications of EDA to GP-style tree representations. The
core of this framework is a Stochastic Context-free Grammar model (SCFG). In this
research, we confirm both theoretically and empirically that PRODIGY is able to
learn a wide range of the dependencies among nodes in tree form individuals, which
are believed to be important in current GP literature. Two different approaches

under the PRODIGY framework are proposed and implemented. One iteratively re-

CHAPTER 1. INTRODUCTION 4

Introduction (Chapter 1)

Fundamentals (Chapter2)

|

PRODIGY (Chapter3) Minimum Encoding Inference

framework of Grammar (Chapter5)
PEEL (Chapter 4) GMPE (Chapter 6)
approach 1 approach 2
SGMPE (Chapter 7)
modified GMPE
Conclusion (Chapter8)

Figure 1.1: Structure of the thesis

fines the grammar model (but requires additional constraints on the search), while
the other builds a full grammar model, including both its probability and structure
components, directly from the training samples. On the problems studied, these ap-
proaches performed well, exhibiting search characteristics complementary to those

of GP.

1.3 Thesis Outline

There are eight chapters in this thesis. The relationships among these chapters are
illustrated in Figure 1.1. The first two chapters provide the basics of this thesis, in-
cluding the themes of the thesis and the necessary fundamentals. Chapter 3 presents
the PRODIGY framework for extending EDA to tree representations. Chapter 4
and Chapter 6 present two approaches (PEEL and GMPE respectively) under the
PRODIGY framework. Chapter 5 and Chapter 7 are related to Chapter 6. Chapter
5 describes minimum encoding inference of grammars, which provide the basis for

grammar learning in Chapter 6, while Chapter 7 presents a modified version of the

CHAPTER 1. INTRODUCTION 5

method proposed in Chapter 6, with improved computational efficiency. The final

chapter gives the conclusions and discusses future research directions.

1.4 Major Contributions

The object of the thesis is the important and challenging effort to extend conven-
tional EDA to GP-style tree representation. This research attempts to address some
of the critical issues of this extension. Specifically, the major contributions of the

thesis are as follows.

1. Providing a comprehensive survey of current research on EDA with emphasis
on EDA with GP-style tree representation. We attempt to clarify the rela-
tionship between EDA with conventional fixed-complexity representations and
those with a GP-style tree representation, and to reveal the unique difficulties

which face this research.

2. Identifying the desirable properties of probabilistic models for EDA with GP-
style tree representation, and deriving the PRODIGY framework as a conse-

quence.

3. Proposing Program Evolution with Explicit Learning (PEEL) as one imple-
mentation of PRODIGY. PEEL’s incremental general-to-specific grammar learn-

ing method balances the effectiveness and efficiency of the grammar learning.

4. Proposing Grammar Model-based Program Evolution (GMPE) as another im-
plementation of PRODIGY. GMPE realises the PRODIGY framework by in-
troducing elegant inference methods from the formal grammar field. It pro-
vides good performance on some problems, but also provides a means to better
understand some aspects of conventional GP, especially the building block hy-

pothesis.

CHAPTER 1. INTRODUCTION 6

5. Deriving a more accurate Minimum Message Length metric for grammar learn-
ing in PRODIGY. This metric leads to improved performance in the GMPE
system, but may also be useful in grammar learning in general. It is also

relevant to the learning of other probabilistic graphical models.

Chapter 2

Fundamentals

This chapter presents the fundamental knowledge upon which this thesis is based.
This thesis aims at filling a gap between the Estimation of Distribution Algorithms
(EDA) (Bosman and Thierens 1999; Larrafiaga and Lozano 2001; Miiehlenbein and
Paafl 1996; Pelikan 2002) and Genetic Programming (GP) (Cramer 1985; Schmid-
huber 1987; Koza 1992). One of the essential issues in EDA is choosing both an
appropriate probabilistic model and also its corresponding learning method. The
probabilistic model employed in this research is a grammar model. Hence, there are

three bodies of knowledge involved in this research

e Stochastic Context-free Grammars (SCFG) and their inference methods,

e Genetic Programming (GP), in particular, Grammar Guided Genetic Pro-

gramming (GGGP),

e EDA, especially EDA with tree representations.

The start of this chapter discusses grammars and their corresponding learning meth-
ods, then moves on to GP and GGGP (Wong and Leung 1995; Whigham 1995b;
Gruau 1996). The following sections present the basics of EDA, with emphasis on
EDA with GP-style tree representations. Related works using Ant Colony Opti-

CHAPTER 2. FUNDAMENTALS 8

misation (Bonabeau, Dorigo, and Theraulaz 1999) to synthesise programs are also

briefly discussed.

2.1 Grammar and Grammar Inference

Stochastic Context-free Grammars (SCFG) (Manning and Schiitze 1999) are dis-
cussed in this section. We are particularly interested in the inference of SCFGs (Stol-
cke 1994; Chen 1996), since model inference is one of the essential parts of EDA. In
this research, the scoring metric is based on minimum encoding inference (Wallace
and Boulton 1968; Wallace and Dowe 1999; Rissanen 1989). Grammars are also

closely related to Grammar Guided Genetic Programming (GGGP).

2.1.1 Stochastic Context-free Grammar

The most common grammar formalism used in GGGP is the Context-free Gram-
mar (CFG). This research mainly uses a Stochastic Context-free Grammar (SCFG),
which can be viewed as a straightforward extension of the Context-free Grammar

(CFG), i.e. a CFG with an extra probability component.

Formally, a Stochastic Context-free Grammar (SCFG) M consists of

a set of nonterminal symbols NV,

a set of terminal symbols (or alphabet) 3,

a start nonterminal S € N,

a set of productions or rules R. The productions are of the form
X = A

where X € N and A is in the union of all powers of the elements of NUZY, i.e.
A€ (NUX)*. X is called the left-hand side (LHS) of the production, while A
is the right-hand side (RHS),

CHAPTER 2. FUNDAMENTALS 9

e production probabilities p(r) for all » € R. For any given LHS symbol X, the
sum of the probabilities of rules which have LHS X must be 1, i.e.

Z p(r) = 1.

r has LHS X

The naming convention is as follows. The nonterminal symbols are distinguished
by starting with a capital letter. Terminal symbols are defined by lower-case let-
ters. A string that may be composed of both terminal and nonterminal symbols is

represented by lower-case Greek letters.

Figure 2.1 is an example of a Stochastic Context-free Grammar (SCFG) for a sym-
bolic regression problem. The symbol “|” represents disjunction which means the
particular LHS may be rewritten with any of the RHSs connected by |. For example,
LHS symbol Exp may be rewritten with either rule 1, 2 or 3. Similarly, Op may
be written as +, —, X,/ under rules, 4, 5, 6, 7, respectively. We assume that the
probabilities follow a uniform distribution, and therefore the probabilities attached

to the rules are omitted.

2.1.1.1 Derivation

For any strings v and § in (VU X)*, if string 7S can be transformed to string
~vyad by rule S — «a, we say that vS0 directly derives yad in grammar M, or yad is
directly derived from ~S¢. This is denoted as follows.

vS§ =G Yoo

If there exists a sequence of direct derivations oy = a1,a1 = Q9,..., 01 = Q,
where ag = a, a, = 5, o € (NUX)* and n > 0, which transforms string « to

string (3, we say « derives (3, or (3 is derived from «, denoted as follows.

oz:*>ﬁ

Such a sequence is called a derivation. Thus a derivation corresponds to a sequence

of applying productions to generate a string. A derivation can be represented in a

CHAPTER 2. FUNDAMENTALS 10

(0)
(1)
(2)
(3)
(4)
(5)
— X | (6)
(7)
(8)
(9)
(
(

Exp — Exp Op Exp |
— Pre Exp |

7
8
9
10)
11)

Pre — sin |
— cos |

— e |

— In

Figure 2.1: A commonly used Stochastic Context-free grammar for symbolic regres-

sion problems.

Exp depth (

I
Exp Op Exp depth 1
TN ,
X - Exp Op Exp depth Z
>‘< "I' ‘x depth @

Figure 2.2: Derivation tree of string x-(x+x)

parse tree format, called a derivation tree or parse tree. For example, Figure 2.2 is a
derivation tree of string « — (x + z). Unfortunately CFG theory and GP theory use
the term “parse tree” inconsistently with each other; to avoid confusion, this thesis
will use the term “derivation tree” (which is not otherwise used in GP) rather than

“parse tree”.

CHAPTER 2. FUNDAMENTALS 11

2.1.1.2 Probability of Derivation

The probability attached to each production rule indicates the probability of being
chosen. If the probability component in the above definition is removed (i.e. a
uniform distribution is imposed on the productions), an SCFG becomes a Context-
free Grammar (CFG). CFGs are commonly used in GGGP to impose grammar
constraints. A simple example of a CFG can be found in Figure 2.1 (it is in fact an
SCFG, but it is equivalent to a CFG because a uniform distribution is assumed.) As
can be seen, it is possible that one nonterminal can be rewritten in different ways.
For example, nonterminal “Exp” can be rewritten using either rule 1, 2 or 3. In a
CFG, all of these rules have equal probabilities to be chosen and therefore there is
no bias. In an SCFG, the added probability component makes it possible to bias

toward some rules rather than others.

In SCFGs, the probability of a derivation (or a derivation tree) is the product of
the probabilities of all the production rules involved. Formally, the probability of
a derivation oy = aq,1 = ao,...,q,_1 = «,, where each step of derivation is a

direct derivation, is

plag = ap) = p(Xi=N\) (2.1)

i=0
where production rule X; = \; is used to derive ;1 from «; and p(X; = \;) is the

probability of rule X; = \;.

Note: although a derivation corresponds to only one string, a string without brack-
eting to represent its internal structure, may (in general) be derived in a number
of different ways from a given grammar. In Natural Language Processing (NLP),
this phenomenon, known as ambiguity, causes severe difficulty when inferring gram-
mars from sentence examples. However in Grammar Guided Genetic Programming
(GGGP), and in the research presented in this thesis, this is not an issue, because
in both fields of research, the derivations of the individuals/examples from the given

grammar are preserved, and thus correct, unique derivations are known.

In the thesis, sampling an SCFG grammar means deriving a set of strings from the

CHAPTER 2. FUNDAMENTALS 12

given SCFG grammar. When deriving a string, a LHS may have more than one RHS.
If we come to this kind of LHS, we need to choose one of its RHSs. This chapter
has previously defined that an SCFG has a probability component attached to each
rule (more accurately to each RHS), the RHS is chosen based on this probability.

For example, a common SCFG grammar for the symbolic regression problem is
illustrated in Figure 2.1. An individual, which may be derived or sampled from this
grammar, is illustrated in Figure 2.2. The individual in Figure 2.2 is derived by
applying the following sequence of rules. Starting from the starting symbol S, rule

0 is chosen to rewrite S and obtain

Exp Op Exp.

After probabilistically choosing rules 3, 5 and 1 to respectively rewrite these three

symbols, the following string is obtained:

x - (Exp Op Exp).

Symbols “x” and “-” are terminals because there is no rule which can rewrite them.
Therefore, only the last three symbols are written with rules 3, 4 and 3 respectively.

The eventual result is:

x-(x+x).

As defined in Equation 2.1, the probability of the above derivation can be calculated
as the product of the probabilities of all the rules involved. The rules involved in

this derivation were used in the following order

035134 3.

The probability of rule 0 is 1 because there is no other alternative. Given the

assumption of uniform distribution, because “Exp” can be written with rule 1, 2 or

CHAPTER 2. FUNDAMENTALS 15

3, the probability of rule 3 is 1/3. Similarly we may work out the probability of
other rules. Thus, the probability of this derivation is

As mentioned before that some symbols can be rewritten with more than one rule.
For example, the symbol “Exp” can be rewritten using either rule 1, 2 or 3. In
conventional GGGP, uniform distribution of the probabilities of rules is assumed.
Therefore, the choice of which rule to apply is made uniformly randomly. However,
it does not have to be so. In some work, such as (Whigham 1995b), weights, which
roughly correspond to the probabilities attached to rules, are assigned to rules, so

that this choice can be made to stochastically favour some rules over others.

2.1.2 Learning Grammar with Minimum Encoding Infer-

ence

Since grammar is originated from the field of Natural Language Processing (NLP)
and it is an important means to model language, its inference (learning) has been

extensively studied in NLP (Sakakibara 1997).

In this thesis, we are particularly interested in the inference of SCFGs. An SCFG
can be understood as a CFG with probabilities attached. Therefore, it has two parts:
the structure (the CFG part) and the probability part. To learn an SCFG model, we
have to learn these two parts. The inference of the structure (CFG) (Angluin 1990;
Sakakibara 1990; Sakakibara 1992) and of the probabilities given CFG (Lari and
Young 1990; Lari and Young 1991; Pereira and Schabes 1992) were initially studied
separately. However, recent works address the inference of the full SCFG simultane-
ously, including both the structure and probabilities of SCFG (Stolcke 1994; Chen
1995; Keller and Lutz 1997; Grunwald 1994; Osborne 1999). The methods inferring
the full SCFG are usually based on the Bayesian framework.

More specifically, given data set D, the preferred model G is a maximum a posteriori

CHAPTER 2. FUNDAMENTALS 14

(MAP) model which maximises the posterior probability:
Grap = argmax p(G|D)

= argmax (2.2)

= argmax p(D|G)p(G)

Equation 2.2 can also be interpreted in the light of basic concepts from information

theory. From this perspective, it can be rewritten as:
Guap = argmax p(D|G)p(G)
= argmax log p(D|G) + log p(G) (2.3)

= argmin — log p(D|G) — log p(G)

As the negative logarithm of probability is the optimal description length, Equa-

tion 2.3 can be expressed in the form of description length:

Guaap = argmin — log p(D|G) — log p(G) (2.4)
= L(D|G) + L(G)

where L(-) is the description length.

Equation 2.4 indicates that the preferred model is the one which minimises the
sum of description length of the model and the description length of accuracy of
the model given data. This is the basic idea of minimum encoding inference, more
commonly referred to as the Minimum Message Length (MML) principle (Wallace
and Boulton 1968; Wallace and Freeman 1987; Wallace and Dowe 1999) or Minimum
Description Length (MDL) principle (Rissanen 1989). In this thesis, the term MML
is employed to refer to both.

Inferring an SCFG is a difficult problem. Given the MML principle, most of the
current methods in SCFG inference are based on greedy search. In greedy search,
the SCFG is altered using some variation operators. If after a given number of
variations, a better SCFG is found, it is accepted as the basis for the next iteration.
Otherwise, the search usually stops. During the search, the MML principle is used

to compare competing models.

CHAPTER 2. FUNDAMENTALS 15

1. Generate a population P randomly.
2. Select a set of fitter individuals G from population P.
3 Apply genetic operators on the set of selected individuals G to ob-

tain a set of children G’.
4. Incorporate the children G’ into population P.

5. If the termination condition is not satisfied, go to 2.

Figure 2.3: Basic Algorithm of GP

More detailed discussion of grammar inference with minimum encoding inference

will be presented in Chapter 5.

2.2 Genetic Programming and Grammar Guided

Genetic Programming

This section covers GP and one of its variants, Grammar Guided Genetic Program-
ming (GGGP) which is particularly related to this thesis. Some GP issues, such
as semantics, building blocks and introns, are also discussed. There are several ter-
minologies used inconsistently in the field of GP, especially in GGGP. To eliminate
confusion caused by the inconsistent usage, these important concepts are clarified

at the end of this section.

2.2.1 Genetic Programming

Genetic Programming (GP) (Cramer 1985; Schmidhuber 1987; Koza 1992) is an
Evolutionary Computation approach (EC). GP can be most readily understood by
comparison with Genetic Algorithms (GA) (Holland 1975; Goldberg 1989). The
basic algorithm of GP can be found in Figure 2.3. This algorithm is very similar
to that of GA. Essentially, an initial population is randomly generated. Then to

each population in turn, genetic operators are imposed on stochastically selected

CHAPTER 2. FUNDAMENTALS 16

individuals from one population to obtain its subsequent population.

Rather than evolving a linear string as GA does, Genetic Programming evolves
computer programs, which are usually tree structures. The fitness of each individ-
ual is a function of the effectiveness of the program. The genetic operators, such
as crossover, are refined to act upon sub-trees, so as to ensure that the child is

syntactically correct.

Given the basic algorithm in Figure 2.3, some important details of this algorithm will
be highlighted in the following subsections. In step 2, several selection methods may
be applied. They are discussed in Section 2.2.1.1. There are usually three genetic
operators involved in step 3, which are presented in Section 2.2.1.2. In step 4, two
possible approaches can be used, generational approach and steady-state approach,

which are presented in Section 2.2.1.3.

2.2.1.1 Selection Mechanism

A number of selection methods have been proposed in EC. Most of them are appli-
cable to both GA and GP. One of the important reasons for this variety of selection
mechanism is that different selection mechanisms are needed to impose an appro-

priate level of selection pressure for the problem at hand.

Truncation Selection This selection method has very strong selection pressure.
In every generation, only the top t% of individuals are deterministically selected
for breeding. Thus, the individuals with poorer fitnesses rapidly disappear. Hence,

truncation selection may lead to too-rapid convergence.

Fitness Proportionate Selection This is one of the most common selection
methods in GA, also known as “roulette wheel selection”. For this method, the

individuals are selected probabilistically, where the probability of selecting individual

CHAPTER 2. FUNDAMENTALS 17

I; is given by ; @)
1tness(1;

) = J

p(lj) S 2% fitness(Iy)

where fitness(Iy) is the fitness of individual I and the sum is over the entire

(2.5)

population, which has size pop. The fitness proportionate selection has less selection

pressure than truncation selection.

Tournament Selection Tournament selection is not based on population wide
competition, but is limited to a subset of the population. Given a tournament size t,
t individuals are randomly chosen (regardless of their fitness). The best individual
in this subset is then selected. Tournament selection has adjustable selection pres-
sure, controlled by tournament size ¢, where a bigger tournament size has stronger

selection pressure.

2.2.1.2 Genetic Operators

There are three basic genetic operators in GP and GA: reproduction, crossover and

mutation.

Reproduction Reproduction is straightforward. It simply copies the individual

and places it into the new population.

Crossover Crossover combines the genetic material of two parents by swapping
certain parts from both parents. Given two parents which are obtained by some

selection method, the crossover performs two steps:

1. Select randomly a sub-tree in each parent.

2. Swap the selected sub-trees between parents.

This is illustrated in Figure 2.4. The sub-trees selected in parents are highlighted in
the rectangle box on the left hand side. On the right hand side, two sub-trees have

CHAPTER 2. FUNDAMENTALS 18

Parents @ Children @

éé%\ éqca é% éq@

. J

Crossover

—

<\ Z

~

) 9

A2 1 4h)

Figure 2.4: Crossover in Genetic Programming

e

been swapped to generate children.

Mutation Mutation acts on only one individual. It introduces a certain amount of
randomness, to encourage exploration. Given one parent obtained by some selection
method, the mutation performs three steps:

1. Select randomly a sub-tree in the parent.

2. Remove the selected sub-tree.

3. Generate randomly a new sub-tree to replace the removed sub-tree.
This is illustrated in Figure 2.5. To obtain the child, the selected sub-tree highlighted

in the rectangular box on the left hand side is replaced by the newly generated sub-

tree on the right hand side.

CHAPTER 2. FUNDAMENTALS 19

Parent @ Child @

——AN\ - N
A 56 ﬂé

~ @@

Figure 2.5: Mutation in Genetic Programming

2.2.1.3 Incorporation of New Individuals

There are two alternatives to implement step 5 of the algorithm in Figure 2.3,
the generational approach and the steady-state approach. In each iteration, the
generational approach discards the entire old population P and replaces it with a
newly created set of individuals G’. Each iteration is a generation. In contrast, for
the steady-state approach, once the individuals G’ are created, they are incorporated
back into the population P directly, i.e. the old population P is maintained and
some of its individuals are replaced by the new individuals according to some rules.

Therefore, there are no clearly identifiable generations.

2.2.2 Some Issues in GP

Although the basic ideas of GA and GP are similar, they have unique character-
istics because of the representation differences. This section discusses some of the
characteristics of GP that are relevant to this thesis. In order to highlight these char-
acteristics, we need to sometimes make a comparison with classic GA on which the
conventional EDA is base. Classic GA in this discussion is roughly the GA system
with fixed length, semantics attached to the locus and no genotype to phenotype

mapping.

CHAPTER 2. FUNDAMENTALS 20

2.2.2.1 Semantics

When evolving a linear structure, as classic GA does, it is usually assumed that
the semantics are attached to the locus (each position of GA linear string is called
locus). For example, when using classic GA to solve a travelling salesman problem,
one common encoding method has each locus representing one step, in which one
specific city is visited. In other words, the first locus is interpreted as a city ID that

is to be visited in the first step, the second locus is the second city to be visited, etc.

However, it is very hard, if not impossible, to find such an analogy in GP. GP tries
to assemble a set of symbols which have meaning on their own. Thus, the meaning
does not change, no matter where the symbol is. Consequently, the effect of the
node has to be understood in its surrounding context, not by the absolute position
of the symbol. For example, the Artificial Ant Problem (Koza 1992) is one of the
standard GP benchmark problems, requiring GP to find a sequence of instructions
(GP symbols) manipulating the artificial ant to find the food in the given grid. Each
symbol has its meaning. In the Artificial Ant Problem, symbol move means move
forward one step. Hence, the meaning does not need to be interpreted according to
its position. No matter whether mowe sits on either the root node or a node at some
other depth level, move has the same meaning. However, the effect of move needs

to be understood by considering its surrounding context.

2.2.2.2 Building Blocks

The Schema Theorem and its related Building Block Hypothesis (Holland 1975;
Goldberg 1989) provide a mathematical perspective to analyse GA and interpret its

behaviour. These ideas have also been extended to GP research.

In GA, the schema is defined as any string composed of 0’s, 1’s and *’s. Each

schema represents the set of bit strings containing the indicated 0’s and 1’s, with

Wk

each interpreted as a “don’t care”. For example schema 0*1 represents the set

of bit strings composed of 001 and 011 exclusively. As we can see, in this definition,

CHAPTER 2. FUNDAMENTALS 21

a schema implicitly takes position as a reference. This is related to the semantics
discussed above. In theoretical GP research, such as (Koza 1992; O’Reilly and
Oppacher 1995; Whigham 1995c¢), due to fact that semantics are attached to the
symbols, the schemas are non-rooted and thus the position reference is removed.
In these studies, a schema is defined as a sub-tree of some kind and the absolute
position of the sub-tree is not considered. The quality of a non-rooted schema is
hence determined by its own structure, not just by where it is. There are some recent
studies which introduce rooted schema. However, we believe it is more likely due to
the mathematical tractability of schema modelling. This issue will be revisited in

Section 3.2.3)

This subtle change in the definition of GP schema makes GP schema research more
relevant than just taking the original GA definition into GP. For example, in the
Artificial Ant Problem, the effect of the symbol move would depend on where the
ant has been positioned by the sequence of symbols before this move, i.e. the context
surrounding move. Taking another example from symbolic regression problems, the
symbol '+’ returns completely different values depending on its surrounding context

— two operands in this case.

2.2.2.3 Bloat and Introns

In GP, the individuals tend to bloat, i.e. to grow rapidly in size over the course of a
run. This has been observed many times, and is well recognised in GP research (An-
geline 1994; Angeline 1994; Banzhaf, Nordin, Keller, and Francone 1998). Bloat of-
ten involves introns. When evolving solutions in GP, it is common that some parts of
an individual do not contribute to its fitness, and thus can be removed when evaluat-
ing fitness. These parts of the individual are called introns. More rigorously, introns
in Genetic Programming are areas of code that are unnecessary since they can be
removed from the program without altering the solution the program represents.
There is no consensus on the cause of introns or their impact on GP performance,

but their existence is amply confirmed. In contrast, this phenomenon does not exist

CHAPTER 2. FUNDAMENTALS 22

in classic GA, which usually employs a fixed length linear representation.

2.2.3 Grammar Guided Genetic Programming

Grammar Guided Genetic Programming (GGGP) (Wong and Leung 1995; Whigham
1995b; Gruau 1996) is a Genetic Programming approach relying on a grammar
constraint. All kinds of grammars can be used to describe the constraint but this
thesis will mainly focus on Context-free Grammars (CFG). Similar to Strongly-

typed GP (Montana 1993), grammars in GGGP provide a systematic way to handle

typing.

More importantly, GGGP can constrain the search space so that only grammatically
correct individuals can be generated. Thus it can be used to reduce the search space
or to introduce some background knowledge. Use of a grammar requires that the
genetic operators, such as mutation and crossover, must respect the grammar con-
straint, i.e. after imposing a genetic operation, the child must still be grammatically
correct. In other words, the child must still be consistent, after genetic operations,

with the given grammar.

2.2.4 Individuals of GP and GGGP

In the early days of GP, the connections between GP representation and CFGs was
recognised, and some terminology from natural language processing was imported
into GP. Unfortunately, the interconnection was not carefully explored, and as a
consequence, when grammars were fully adopted in GGGP, some inconsistencies in
terminology appeared. These concepts and terminologies are closely related to this

thesis, and thus deserve this dedicated section. This confusion is largely caused by

the different forms of individuals in GP and GGGP.

The GP individual is the tree structure proposed in (Koza 1992), which has become
the standard concept in the GP literature. In the GP tree, each node is a GP

CHAPTER 2. FUNDAMENTALS 23

terminal or nonterminal, and therefore can be evaluated. To remove confusion, we

refer to this structure as an expression tree.

The GGGP individual has a very different form. A typical individual is represented
in GGGP in Figure 2.2. As can be seen, the nonterminals, such as “Exp”, in this
GGGP individual, are not conventional GP nonterminals. They are grammar non-
terminals; they are used for indicating the structure and may not be able to be
evaluated. This difference has been discussed in (Whigham 1995b). To distinguish
these two concepts, we use the terms GP terminal /nonterminal and grammar ter-
minal /nonterminal, respectively. On most occasions in this thesis, if no confusion is

likely to occur, we will use terminal /nonterminal to refer to the latter.

The expression tree of GP is not irrelevant to GGGP. The individual in GGGP is a
derivation tree not an expression tree. A derivation tree records the structure of the
tree and therefore can be directly used for evaluation. Although a derivation tree
can be uniquely mapped to an expression tree with parentheses (which indicate the
structure), it seems there is not any need to do so. In GGGP, as well as most of
the research reported in this thesis, since we generally have the derivation tree as an
individual, there is no need to parse an individual. Note that this is an important
difference from the field of Natural Language Processing (NLP), where grammar
theory originated. In NLP, most of the time we do not have the derivation tree and
thus we have to parse the sentence to obtain its hierarchical structure (derivation
tree), so that the sentence may be understood. However, in GGGP, each individual
is a derivation tree and it is not usual to remove its hierarchical structure, convert
it into a linear string and then re-parse it. In NLP, it is possible that a sentence
can be parsed in many different ways for a given grammar. This phenomenon is
known as ambiguity, and often causes severe difficulty in NLP. However, because of
the elimination of parsing, this ambiguity problem in general does not arise in either

GGGP or most of the research reported in this thesis.

In the remainder of this thesis, we will usually refer to the GGGP individual (deriva-

tion tree) as a tree, without further detail; this is unlikely to cause confusion, because

CHAPTER 2. FUNDAMENTALS 24

the expression tree of GP is largely irrelevant to this research.

2.3 Estimation of Distribution Algorithms

One common theory to interpret GA, as well as GP, is that through the genetic op-
erations - especially crossover - building blocks, which are high quality partial solu-
tions, are discovered and combined to form better solutions (Holland 1975; Goldberg

1989).

Therefore, if we can learn these building blocks directly, instead of applying the semi-
blind genetic operators (which may destroy building blocks) we hope to significantly
improve the performance of GA and GP.

A more formal perspective is as an estimation of the distribution of good solutions,
known as Estimation of Distribution Algorithms (EDA) (Larranaga and Lozano
2001; Miiehlenbein and Paafl 1996). EDA is also known as Probabilistic Model-
building Genetic Algorithms (PMBGA) (Pelikan 2002), or Iterated Density Estima-
tion Evolutionary Algorithms (IDEA) (Bosman and Thierens 1999). This thesis
will use the term EDA. EDA uses a probabilistic model to estimate the distribution
of promising solutions and to guide further exploration of the search space. By
iteratively building and sampling the probabilistic model, the distribution of good

solutions is (hopefully) approximated.

Due to the lack of knowledge of the true distribution, a probabilistic model to ap-
proximate the distribution has to be introduced. The particular form of introduced

probabilistic model is strongly related to specific assumptions about building blocks.

The formal description of EDA can be found in (Bosman and Thierens 1999). Briefly,
assume Z is the vector of variables we are interested in. D¥(Z) is the probability
distribution of individuals whose fitnesses are greater than some threshold H (with-
out loss of generality, we assume we are dealing with a maximisation problem). Now

if we know Dfert(Z) for the optimal fitness H,,, we can find a solution by simply

CHAPTER 2. FUNDAMENTALS 25

drawing a sample from this distribution. However, usually we do not know this

distribution.

Hence, because we have no prior information on this distribution, we start from
a uniform distribution. In the commonest form of the algorithm, we generate a
population P with n individuals and then select a set of good individuals G from
P. Since G contains only selected individuals, it represents the search space that is
worth further investigation. We now estimate a probabilistic model M((, 6) from G.
(is the structure of the probabilistic model M while 6 is the associated parameter
vector. With this model M, we can obtain an approximation D, (Z) of the true
distribution D¥(Z). To further explore the search space, we sample distribution
D/{{A(Z), and the new samples are then re-integrated into population P by some

replacement mechanism. This starts a new iteration.

Two representations of encoding solutions may be used in EDA, i.e. GA style linear
string and GP-style tree representation. This section presents the general theory of
EDA while the following two sections will respectively discuss EDA based on GA-
style linear strings, and EDA based on GP-style tree representation. For simplicity,
the former will be referred to as conventional EDA and the later as EDA-GP. This
term EDA-GP reflects the connection between EDA and GP, but is not intended to

imply that EDA-GP employs genetic search.

2.3.1 Algorithm

All the EDA methods share a similar high level algorithm. This high level algo-
rithm of EDA can be found in Figure 2.6. EDA starts with a randomly generated
population P. A probabilistic model M is learnt from a set of individuals G se-
lected from this population. A new set of individuals G’ is generated by sampling
the learnt model M. The new population is formed by incorporating G’ into the

original population P. The next iteration starts again from this new population.

Given this high level algorithm, there are many variants. For example, each iteration

CHAPTER 2. FUNDAMENTALS 26

Generate a population P randomly.

Select a set of fitter individuals G from P.

Estimate a probabilistic model M over G.

Sample the probabilistic model M to obtain a set of new individuals G'.

Incorporate G’ into population P.

S A o

If the termination condition is not satisfied, go to 2.

Figure 2.6: High level algorithm of EDA

may create a new population, or may simply replace part of the old population with
newly generated individuals. The system may learn a model from scratch or simply

update the previous model.

In the field of EDA, due to the lack of prior knowledge of the true distribution,
it is assumed that the distribution follows some well studied model. Therefore, a
vital part in the EDA algorithm is the accuracy of the model chosen with respect
to the true model. This is the reason that current EDA research is largely devoted
to finding appropriate models and is hence one of the natural ways to differentiate

EDA methods, i.e. with respect to their probabilistic models.

2.3.2 Example

The following is an extremely simplified example of EDA, similar to the example

given in (Pelikan, Goldberg, and Canti-Paz 1999; Larranaga and Lozano 2001).

The problem we want to solve is to maximise the OneMaz function. This problem
was originally defined in the context of GA. Given a binary string encoding of a
solution, corresponding to GA individuals, the OneMax function is defined as the

sum of the “1”7 bits in the string, i.e.

F(X) = ZXz' (2.6)

where X = (Xj,...,X,_1) is a possible solution (binary string) of the OneMax

CHAPTER 2. FUNDAMENTALS 27

problem and n is the length of the solution. In this example, n = 5, i.e. X =

(Xo, X1, Xo, X3, X4), the population size is 6 and truncation selection is used.

The first two generations of a simple EDA run are illustrated in Figure 2.7. In the
0-th generation, six individuals are randomly generated. With truncation selection,

the first half of the population is retained, i.e. the top 3 individuals.

The probabilistic model used in this example is a simple probability vector with
dimension n. In this case, n = 5, and the probabilistic vector is P = (po,. .., p4).
Each element of this vector is the probability of 1 occurring in the corresponding
location in the individual, p; = p(X; = 1). This probability is learnt by counting the
frequency of 1s in each position. For example, the left most element in probability
vector pg = % = 1.00. This is obtained by counting the frequency of Xy = 1 in the

selected individuals, e.g. Xy = 1 in three out of three selected individuals.

Once the probabilistic model is constructed, the next population is obtained by sam-
pling this probability model, i.e. the value of each locus is decided stochastically
based on its probability. Not surprisingly, the fitnesses of this population are gener-
ally better than the previous one. This cycle is then repeated until some termination

conditions are satisfied.

In this example, a probability vector is used as a probabilistic model to estimate the
distribution of the selected individuals. However, in most cases, this simple model
is not adequate to represent the complex interactions among genes. Therefore,

methods with more complex probabilistic models are proposed.

2.4 Estimation of Distribution Algorithms with

Linear Representation

The two possible encodings for EDA solutions are GA style linear strings and GP-

style tree representations. Therefore, there are two identifiable streams of EDA

CHAPTER 2. FUNDAMENTALS 28

Population 0 Selected Individuals
Individuals fitness Individuals fitness ‘
10111 4 Truncation Selection 10111 4
o 11011 4 11011 4
S 00101 2 10110 3
< 10110 3 Learning }
I 11000 5 (Model Building)
© 00001 L 31232 | propanility Vector
M
Sampling 33‘333 (Model)
Population 1 Selected Individuals
Individuals fitness Individuals fitness ‘
10111 4 Truncation Selection 10111 4
- 10110 3 11111 5
IS 11111 5 10111 4
g 10111 4 Learning !
I 11011 4 (Model Building)
© 31333 | probability Vector
10010 2 33333 (Model)

Figure 2.7: A simplified example of EDA.

works, i.e. EDA with GA style linear string representation, referred to as conven-
tional EDA, and EDA with GP-style tree representation, referred to as EDA-GP.
In this section, we discuss conventional EDA studies and leave EDA-GP to the

following section.

If each locus in the GA chromosome is a random variable, the entire GA chromosome
is a vector of random variables. Therefore, EDA attempts to estimate the probability
distribution of this vector of random variables. One of the desirable ways to estimate
this probability distribution, is to consider the joint probability distribution of all

the random variables in this vector.

Assume X = {X;} is the vector of random variables, i.e. each of its X; elements is
a random variable. A sample of X corresponds to a chromosome of GA. The joint

probability distribution over X is:
p(X) =p(X1|Xo ... Xn)p(Xo| X5 ... X)) o (X1 | X) p(X0) (2.7)

Obviously, due to the combinatorial nature of this problem, it is not practical to

CHAPTER 2. FUNDAMENTALS 29

directly compute this joint probability distribution. Therefore, the main problem
in EDA is how to estimate this probability. This has led to three types of approx-
imation where the specific probability distribution is assumed to factorise the joint

probability. These three types of methods are:

1. assuming the genes in the chromosome are independent (Baluja 1994; Harik,

Lobo, and Goldberg 1999; Miiehlenbein and Paaf3 1996),

2. taking into account pairwise interactions (de Bonet, Isbell, and Viola 1997;

Baluja and Davies 1997; Pelikan and Miihlenbein 1999),

3. accurately modelling very complex problem structures with highly overlap-
ping multivariate building blocks (Miihlenbein and Mahnig 1999; Harik 1999;
Pelikan, Goldberg, and Canti-Paz 1999; Etxeberria and Larranaga 1999).

Since there are comprehensive surveys (Pelikan, Goldberg, and Lobo 1999; Larranaga
and Lozano 2001) in the field of conventional EDA, this section just describes typ-
ical methods of these three categories in this section. It is organised as follows.
First, some related works prior to conventional EDA are briefly mentioned in Sec-
tion 2.4.1. Then, conventional EDA approaches which assume gene independence
are presented in Section 2.4.2. Finally, conventional EDA approaches assuming pair-
wise and multivariate dependence are presented in Section 2.4.3 and Section 2.4.4,

respectively.

2.4.1 Learning in Genetic Algorithms

Before the EDA framework was proposed, there had been some studies in GA which
explicitly identified and facilitated the interactions among genes, known as linkage,
such as Messy GA (Goldberg, Korb, and Deb 1989) and Linkage Learning GA
(LLGA) (Harik and Goldberg 1997).

In both of these two studies, the chromosome is of variable length. It consists of

movable genes, encoded as (gene number, allele) pairs. This coding makes it possible

CHAPTER 2. FUNDAMENTALS 30

to tighten and preserve the linkages among closely related genes, which might be far
apart in conventional GA encoding. Modified genetic operators and new mechanisms
for interpreting chromosomes were proposed in these methods, to suit the variable

length chromosome and also to encourage the discovery of building blocks.

2.4.2 No Dependence Model

One very simplified way to approximate the joint probability in Equation 2.7 is to
assume that all of the random variables in vector X are independent from each

other, i.e. there is no dependence.

Population-Based Incremental Learning (PBIL) (Baluja 1994) is a typical work
which assumes no dependence. In PBIL, as in other works which make the same as-
sumption, the n-dimensional joint distribution factorises as a product of n univariate,
independent probability distributions. Under this independence assumption, p(X)

can be approximated as follows.

p(X) =[] () (2.8)

In the basic PBIL algorithm, each random variable p; on probability vector P is the
probability of generating a 1 at the corresponding position in the binary chromosome,
pi = p(X; = 1). The probability of generating a 0 is 1 —p,. Initially, because we have
no prior knowledge, vector P is initialised with uniform distribution, i.e. p; = 0.5.
P is updated every iteration with the best individual. If the value at position ¢ of
chromosome is 1, the probability p; is shifted a certain amount toward 1.0. Otherwise
toward 0.0. Formally,

pi —pi- (L.O—1r)+ X" - r (2.9)

where [r < 1 is a predefined learning rate, X;"** is the value at position 7 of the

chromosome of the best individual maz. Since it is a binary chromosome, X% &

{0,1}.

CHAPTER 2. FUNDAMENTALS 31

As can be seen, the assumption in PBIL is that each random variable X; is indepen-
dent, and thus each of them is treated separately. However, it is obvious that this
assumption will not hold in general. As a result, more complex models have been

proposed.

2.4.3 Pairwise Dependence Model

One of the typical works which considers pairwise dependence is Information-Maximising

Input Clustering (MIMIC) (de Bonet, Isbell, and Viola 1997).

In MIMIC, only pairwise conditional probabilities, p(X;|X,) are considered, and
thus X; is conditionally independent of any other X}, where k # j. Therefore, p(X)

in Equation 2.7 can be approximated as follows:

Pr(X) = p(Xy [Xy)p(Xiy | Xiy) - - p(Xi,_, [X,)(XG,,) (2.10)

where ™ = iq15 .. .1, is a permutation of the numbers between 1 and n.

It is not possible to capture all possible joint distributions of n variables using only
pairwise conditional probabilities. Hence, the problem becomes how to choose a
chain of pairwise conditional probabilities to approximate the true joint distribution

p(X) of the training samples as closely as possible.

Formally, assuming the distribution p,(X) uses m as an ordering for the pairwise
conditional probabilities, our goal is to choose the permutation 7 that maximises the
agreement between p,(X) and the true distribution p(X). The agreement between

two distributions can be measured by the Kullback-Liebler divergence:
D(pllp=) = > _ p(logp — log p)
X

= E,logp — E,log p- (2'11>
= —h(p) — Epllog p(Xi, | Xs,) p(X5 | Xis) - .. p(Xi, | X3,)p(Xi,)]

= —h(p) + h(X, | Xsy) + M(X5y | Xiy) + -+ WX, [X5,) + h(X5,)

CHAPTER 2. FUNDAMENTALS 32

where h(-) is entropy. The optimal 7 is the one which minimises this divergence.
The first term in the divergence does not depend on mw. Therefore, we only need
to minimise the rest of the terms. However, it is not practical to enumerate all
n! permutations to obtain the optimal solution, and thus a simple greedy search is
employed in (de Bonet, Isbell, and Viola 1997). The model p,(X) is estimated every

generation using the selected superior individuals.

2.4.4 Multivariate Dependence Model

It is conceivable that more complex dependence (than pairwise interaction) may
exist among genes. Therefore, methods that can handle multivariate interaction
have been proposed. We briefly describe a typical work — the Bayesian Optimisation
Algorithm (BOA) (Pelikan, Goldberg, and Canti-Paz 1999). BOA factorises the

joint probability into a Bayesian Network (BN).

A BN is a probabilistic graphical model. It has two components: a structure S
and a set of probability distributions on S. The structure S for X represents a
set of conditional dependence assertions on the variables on X. It is usually de-
scribed as a Directed Acyclic Graph (DAG). Given structure S, Pa} is the set of
parents of variable X;. In the structure S, X; and variables other than its parents,
{X1,...,X,}\Pa?, are independent given Pa?, i = 2,...,n. Thus the factorisation
of p(X) of Equation 2.7 is as follows:

(2.12)

As can be seen, the BN is a more general model than the models described in
previous sections. In each generation, the BN is re-estimated. Since the BN is a
more complex model, the estimation is more difficult. It includes both estimation of
the structure .S, and also of its probability distributions. Usually, a greedy search is

employed for this estimation. To measure the goodness of the model, a number of

CHAPTER 2. FUNDAMENTALS 33

scoring metrics have been proposed. A more detailed description of BOA and other
EDA work considering multivariate dependence are referred to in (Miihlenbein and
Mahnig 1999; Harik 1999; Pelikan, Goldberg, and Canti-Paz 1999; Etxeberria and
Larranaga 1999).

In this section, only some typical works in conventional EDA have been briefly
reviewed. For a comprehensive survey of this field, readers are referred to (Pelikan,

Goldberg, and Lobo 1999; Larranaga and Lozano 2001; Bosman and Thierens 1999).

2.4.4.1 Learnable Evolution Model

In addition to the conventional EDA works described above, a further interesting

work considering complex interaction among multiple genes is the Learnable Evolu-

tion Model (LEM) (Michalski 2000).

The basic procedure of LEM is similar to conventional EDAs. A model, which is a
set of inductive hypotheses in LEM, is inferred from high-fitness individuals. The

new population is then created according to this model.

The model used in LEM differentiates it from other EDA works of this subsection.
Instead of a conventional probabilistic model, a model consisting a set of inductive
hypotheses in the form of annotated predicate calculus (Michalski 1983) is employed
(Other models from Machine Learning can potentially be used as well, such as
decision tree, neural network and propositional logic). It is not hard to see that,
although they are in different forms, the function of the model in LEM is similar to
that of models in EDA, i.e. to bias the search toward promising areas of the search

space.

LEM can be loosely understood as an EDA approach with a multivariate dependence
model. In the current version of LEM, the model is a set of attribute rules, which
describes the interactions among multiple genes. Hence, the model in LEM can also

be roughly viewed as a probabilistic graph model with only binary probabilities, i.e.

CHAPTER 2. FUNDAMENTALS 34

either 1 or 0. Therefore, although the learning methods and the forms of models
are different, LEM is consistent with the other conventional EDA works in this

subsection.

2.4.5 Inference of Probabilistic Graph Model

Besides the traditional perspective of model dependence, there is an alternative
perspective for viewing EDA. That is the perspective of probabilistic graph model.
Because most of the models used in EDA can be regarded as a kind of probabilistic
graph model, the EDA works can be conceptualised into three categories based on

the learning methods of probabilistic graph models:

1. inferring only the probability of the probabilistic graph model (assuming a

fixed structure),

2. inferring only the structure of the probabilistic graph model (assuming a crisp

binary value of probability),

3. inferring both the structure and probability of the probabilistic graph model.

On this basis, most EDA models require inference of both structure and probability
of the probabilistic graph model and therefore fall into the third category. Those
which assume independence among genes, such as PBIL, and thus do not learn the
structure, belong to the first category, while LEM alone - so far - belongs to the

second category.

CHAPTER 2. FUNDAMENTALS 35

2.5 Estimation of Distribution Algorithms with

Tree Representation

2.5.1 Introduction

In GA, a solution or individual is usually a one dimensional array. In other words,
an individual is a linear string. Most EDA research is based on this GA-style
linear string representation because of the close relation between EDA and GA.
There is only a very limited amount of work on more complex tree representations
(Salustowicz and Schmidhuber 1997; Yanai and Iba 2003; Sastry and Goldberg 2003;
Ratle and Sebag 2001; Tanev 2004; Bosman and de Jong 2004), resembling Genetic
Programming (GP) (Cramer 1985; Schmidhuber 1987; Koza 1992). Given small
number of publications in this area, it is very unfortunate that some of the works in
this area often are not fully aware of the existence of the others. This section aims
at providing a comprehensive and critical survey on these works. For simplicity,
we refer to the idea of applying EDA approaches to estimate the distribution of
GP-style tree form solutions as EDA-GP.

Although EDA-GP is in its infancy, the idea of EDA-GP is not entirely new. At
first, this type of learning was applied in forms such as a kind of adaptive genetic
operator as a mechanism for learning modularity, i.e. as various forms of modifica-
tion of conventional GP. Later, this research became more and more independent
of conventional GP and methods which systematically learn mathematical model
were proposed. EDA-GP, and EDA in general, is not just about improving EC per-
formance, but more importantly, about providing insight into aspects of problem

decomposition and solution distribution.

There are two main streams of works in EDA-GP. The first stems from Probabilistic
Incremental Program Evolution (PIPE) (Salustowicz and Schmidhuber 1997) and
other derived works based on the probabilistic model proposed in PIPE. The second

is a stream of grammar based work. These two streams will be discussed separately.

CHAPTER 2. FUNDAMENTALS 36

In this section, we describe related works in conventional GP in Section 2.5.2. Two
distinctive streams of EDA-GP work are reviewed in Section 2.5.3 and Section 2.5.4,

respectively.

2.5.2 Learning in Genetic Programming

In conventional GP research, for a long time, the knowledge encoded in the popula-
tion, and the value of using it, have been a focus of study. Consequently, numerous
methods have been proposed to utilise this knowledge, for example adaptive genetic

operators, and learning modularity.

Although a significant proportion of these kinds of studies are ad hoc and lack a
solid theoretical support, studies in this direction did provide some insight into how

GP works and as a result have had an important influence on EDA-GP research.

2.5.2.1 Modularity and Building Blocks

Modularity and building blocks are related to the processes of hierarchical problem
solving and decomposition. Building blocks (BBs) are defined as frequently appear-
ing sub-trees in good individuals. If building blocks can be correctly identified and

used, the performance of GP may be significantly improved.

This line of research includes Automatically Defined Functions (ADF) (Koza 1992),
Genetic Library Builder (GliB) (Angeline and Pollack 1994) and Adaptive Repre-
sentation (AR) (Rosca and Ballard 1994). The basic idea is that during the search,
the sub-trees are identified, either heuristically or by means of evolution, and are
then explicitly encapsulated in some form as one entity, so that they can be reused

later on.

CHAPTER 2. FUNDAMENTALS 37

2.5.2.2 Permutation and Crossover

Permutation and crossover are closely related to Building Blocks (BBs). Since dis-
covery and utilisation of BBs are important aspects of GP, it is important to adapt

genetic operators so that they can help to preserve and promote BBs.

In (Angeline 1995), two self-adaptive crossover operators, selective self-adaptive
crossover and self-adaptive multi-crossover, were proposed. These new operators
adaptively determine where crossover will occur in an individual. Experimental
results demonstrate that both of these self-adaptive operators perform as well or

better than standard Genetic Programming crossover.

Recombinative guidance for GP is proposed in (Iba and de Garis 1996). In this
approach, all the performance values for all the sub-trees of a GP tree are calcu-
lated. These values are then used to decide which sub-tree will be chosen to apply
GP operations. Although GP with recombinative guidance performs well on some

problems, the definition of sub-tree value is problem dependent.

2.5.3 PIPE Model

Having discussed the related work in conventional GP, we now move on to EDA-GP.
The earliest EDA-GP work was the Probabilistic Incremental Program Evolution
(PIPE) (Salustowicz and Schmidhuber 1997). PIPE is motivated by the corre-
sponding work in conventional EDA. A number of studies based on the probabilistic
model of PIPE have followed, including ECGP (Sastry and Goldberg 2003) and
EDP (Yanai and Iba 2003).

Interestingly, PIPE and its related works can fit into the same framework as con-
ventional EDA. This is possible because the prototype tree of PIPE is basically
a model assuming no dependence among random variables, while EDP considers

pairwise dependences only, and ECGP extends this to multivariate dependence.

CHAPTER 2. FUNDAMENTALS 38

2.5.3.1 Probabilistic Incremental Program Evolution

PIPE (Salustowicz and Schmidhuber 1997) uses the Probabilistic Prototype Tree
(PPT) to represent the probability distribution of tree form programs. Its basic
algorithm is consistent with EDA’s illustrated in Figure 2.6 and the learning method
to update PPT resembles the probability learning methods of PBIL (Baluja 1994).

PIPE iteratively generates successive populations of tree form programs according
to an adaptive probability distribution over all possible programs, represented as a
Probabilistic Prototype Tree (PPT). For example, in Figure 2.8 which is adopted
from (Salustowicz and Schmidhuber 1997), the left hand side is a PPT where each
node is a probability vector (more precisely each node is a random variable), indi-
cating the probability of occurrence of different symbols. The right hand side is one

of the possible GP trees, sampled from the PPT.

More specifically, the basic procedure of PIPE is as follows. Firstly, probabilities on
the prototype tree are initialised uniformly. Starting from the root, we keep visiting
nodes on the prototype tree until a valid tree, acting as an individual, is generated.
When visiting each node, we choose a symbol according to the probabilities in the
probability table of that node. In this way, a set of individuals (i.e. a population)
is generated. Good individuals are then selected from the population and all of the
probabilities of entries in the probability table, which were used to generate those
selected individuals, are increased. In other words, the probabilities of generating
those good individuals are increased. Therefore, in each iteration, the probability
distribution is updated using the best programs. Thus, the structures of promising
individuals are learnt and encoded in the PPT. This is the learning process for a
prototype tree. A new population is then generated from this updated prototype

tree and a new iteration starts.

PIPE is the first work of its kind. However, it can be regarded as a tree-based
extension of the linear string based PBIL (Baluja 1994). In PIPE, each node of the

PPT is treated as an independent random variable in that its probability is learnt

CHAPTER 2. FUNDAMENTALS 39

P(x) =0.01

P(R) =0.01
P(+) =0.04
P(-) =0.02
P(*) =0.05
P(%) =0.01
P(sin) =0.01
P(cos)=0.02
P(exp)= 0.8

P(rlog)=0.03

Figure 2.8: Probabilistic Incremental Program Evolution

independently from the other nodes. Therefore, what PIPE tries to learn is the
probability of particular functions. PIPE also implicitly assumes that the building
blocks are position dependent, i.e. in the PPT, the useful sub-trees/building blocks

are attached to specific positions and cannot be easily moved to other positions.

2.5.3.2 Extended Compact Genetic Programming

ECGP (Sastry and Goldberg 2003) is a direct extension of ECGA (Harik 1999) to
the tree representation. It is based on PIPE prototype tree.

In ECGA, Marginal Product Models (MPMs) are used to model the interaction
among genes, represented as random variables, given a population of Genetic Al-
gorithm individuals. MPMs are formed as a production of marginal distribution
on a partition of random variables. For example, in ECGA, a MPM for a four-bit

problem is

[1,3][2][4]
It could represent that the 1st and 3rd genes have intensive interaction and the
2nd and 4th genes are independent. That MPM would consist of the following
marginal probabilities. {p(z1 = 0,23 = 0), p(z1 = 0,23 = 1), p(z; = 1,23 = 0),
p(ry = 1,23 = 1), p(xe = 0), p(xs = 1), p(x4 = 0), p(xy = 1)}, where z; is the value
of the ith gene.

This idea has been extended to the GP tree representation in ECGP. ECGP is

CHAPTER 2. FUNDAMENTALS 40

based on PIPE prototype tree and thus each node in the prototype tree is a random
variable. ECGP decomposes or partitions the prototype tree into sub-trees, and the
MPM factorises the joint probability of all nodes of the prototype tree, to a product

of marginal distributions on a partition of its sub-trees.

A greedy search heuristic is used to find an optimal MPM mode. A metric is needed
to score MPM. Minimum Description Length (MDL) (Rissanen 1989) is taken as a
quality measure of the MPM model in ECGP. The MDL metric is the sum of two
components:

minimise (Cy, + Cyp) (2.13)

where model complexity C,, is the complexity of the partition, and compressed
population complexity C),, also known as the accuracy of the model, represents the
cost of representing the population given the model. It is very intuitive that the
preferred model should be simple and accurate. Further, as although a too-complex
model may have better accuracy, it is very probable that it will not generalise
well, i.e. it will not work well on unseen data. Conversely, a too-simple model
may have very bad accuracy, and thus should also be penalised. MDL, and the
very similar metric, Minimum Message Length (MML), are important information-
theoretic inference methods, which are both intuitive and also have solid theoretical

support. The concept of MML and MDL will be revisited later.

ECGP can represent the probability distribution for more than one node at a time.
Unfortunately there is no explicit definition of partition in (Sastry and Goldberg
2003). In particular, it is unclear whether it is required to be a fully connected
sub-tree, or just a set of nodes with no connectivity constraint. How the partition
is found, is not fully specified, either. However, it is clear that it extends PIPE in

that the interactions among nodes are considered.

CHAPTER 2. FUNDAMENTALS 41

() (=) () (x)

C{\ ST C{\ C{\
SN N N N
ONONONCOIOMONORIO
SN N SN TN TN S

/N N

Figure 2.9: Probability distribution model in EDP

2.5.3.3 Estimation of Distribution Programming

Estimation of Distribution Programming (EDP) is another extension of PIPE. In-
stead of treating each node as an independent random variable, EDP tries to model

the conditional dependency among adjacent nodes in the PIPE prototype tree.

It is argued in (Yanai and Iba 2003) that strong dependence should exist between
each particular node and its parent, grandparent and sibling nodes. Some possible
combinations of these dependences are illustrated in Figure 2.9. The basic structure
is again a PIPE prototype tree. For example, if node X, is under examination,
then the thick lines indicate the important dependences. The right-most model
is the most comprehensive model, which captures all the dependences believed to
be important, while the left-most one is the most simplified model, in which only
dependence between one node and its immediate parent node is considered. Because
of the computational overhead, among these possible models, the left-most model is

implemented in (Yanai and Iba 2003).

2.5.3.4 Summary

A visualised comparison of PIPE, ECGP and EDP can be found in Figure 2.10.
Each grey circle stands for a node of a PIPE prototype tree. The dependences

considered in each model are illustrated by the bounded regions.

The left most figure in Figure 2.10 corresponds to PIPE. Clearly, each node is treated

CHAPTER 2. FUNDAMENTALS 42

Figure 2.10: Comparison of different probabilistic models in EDA-GP

as an independent variable. The figure in the middle is ECGP. The prototype tree
is divided into sub-trees and there is no dependence considered among different sub-
trees. The right most figure is EDP, the conditional probability of the node given

its parent is modelled.

In summary, all these works are based on the prototype tree of PIPE where prob-
ability tables of a Prototype tree are organised in a tree form. Therefore, these
PIPE-based works can well handle the GP-style tree structure. In the original
PIPE, each node is an independent random variable and thus its probability does
not depend on any neighbouring nodes. The extensions, made in EDP and ECGP,
make it possible to consider interactions among nodes. Further, the PIPE prototype
tree does not have a problem in handling individuals with varying complexity. How-
ever, we cannot see any obvious way for PIPE-based methods to handle building

blocks with no fixed position. These issues will be revisited in the next chapter.

2.5.4 Grammar Model

Grammar model-based EDA-GP has a close connection with GGGP. In GGGP, the
grammar, as a formal model, effectively imposes a constraint on the search space,

but the main search mechanism is still conventional genetic search.

Grammar model-based EDA-GP takes grammars as probabilistic models, just like
any other probabilistic model used in EDA research. Grammars are well-studied

formalism, originally proposed to model the internal hierarchical structure of lan-

CHAPTER 2. FUNDAMENTALS 43

guages, either natural languages or formal languages. They are particularly suitable
for modelling GP-style tree structures because GP-style tree structures are just an-

other kind of hierarchical structure.

Grammar model-based EDA-GP work can be also fitted into the same framework
as conventional EDA. In a grammar model, each rule describes the dependence
between the LHS symbols and the RHS symbols. Therefore, it is primarily a model
of pairwise dependence. Through the chain of dependency, it is also adequate to
describe structures which have more than two closely related symbols. This thesis

is particularly interested in grammar model based EDA-GP.

In this section, we first describe some related works in GGGP. EDA-GP with a
grammar model is discussed in the two separate subsections that follow. These
subsections are divided according to the types of grammar learning methods within

them.

2.5.4.1 Conventional GGGP with Grammar Learning

In conventional GGGP, it had been noticed early on that a grammar can not only
be used to impose the initial bias, but can also be revised during search to further

bias the search according to updated available experience. There are two studies in

this field.

Whigham’s work In (Whigham 1995a), grammar refinement is introduced into
conventional GGGP. More specifically, it is a conventional GGGP system but the
grammar is refined during the search, and new individuals generated from the refined

grammar are fed back into the population.

The refinement of the grammar has two components. The first is to update the
probabilities of rules. Merit, derived from probability, is attached to each rule to
reflect the frequency of the rule use. This merit is updated according to the superior

individuals. Then, when generating new individuals, the merit has a similar function

CHAPTER 2. FUNDAMENTALS 44

as the probability in SCFG. The second component is to add new production rules.
New productions are learnt from the superior individuals, and they are chosen in a

way to have minimum impact on the original grammar.

The population in the new generation not only has individuals obtained by applying

genetic operators, but also individuals generated from the updated grammar.

As can be seen, this work is essentially a conventional GGGP, because its main search
mechanism is the conventional genetic search, and the incorporation of individuals
generated from the refined grammar is only an aid to further bias the search. The
grammar learning is also ad hoc. However, the importance of this work is that it first

showed that grammars may be a good model for incrementally guiding the search.

Tanev’s work Another similar approach is proposed in (Tanev 2004). Tanev
incorporated learning Stochastic Context-sensitive Grammars (SCSG) into conven-

tional GGGP.

This work is in the context of a dynamic environment. At the end of the run, the
grammar is learnt from the best-of-run individuals. It is then moved to the new
environment. In the new environment, part of the new population is generated
from the learnt grammar, and the mutation operator must also respect the learnt

graminar.

The grammar used here is an SCSG, which in this circumstance can be loosely
understood as an SCFG with a context constraint. With the extra constraint,
whether a rule is admissible is not only decided by matching the LHS, but also
by matching the context. In (Tanev 2004), the probabilities and context are learnt

in order to favour some rules, and to restrict the places where a rule can be applied.

More specifically, SCSG grammar learning happens at two levels. One is the prob-
ability learning. The other is the context learning. A fixed amount of context is
added to the grammar to make the grammar more specific, so that some areas of

the search space can be more intensively investigated.

CHAPTER 2. FUNDAMENTALS 49

This research is an enhancement of GGGP with the aid of a grammar model. The
grammar learning occurs only once, and the main search mechanism is still genetic
search. Through a comparison with conventional GGGP, this work empirically veri-
fies that grammars can be used to efficiently bias search to promising areas and thus

obtain superior performance.

2.5.4.2 Learning Parameters of a Grammar Model

Having discussed the conventional GP with the aid of grammar learning, we move
on to EDA-GP with a grammar model. Regarding the grammar model, we are
largely interested in Stochastic Context-free Grammars (SCFGs). We know that an
SCFG model can be understood as a normal Context-free Grammar (CFG) with a
probability component. Therefore, the inference of an SCFG model usually consists
of inferring these two parts, namely the structure of the SCFG (which is essentially
a CFG) and its associated probability component. Accordingly, we identify two
streams of EDA-GP with grammar models. One stream learns the probability only.
The other learns both structure and probability. The former will be discussed in

this section and the latter will be left to the next section.

Note that, theoretically, there is no intrinsic difference between grammar structure
learning and probability learning. The grammar structure is actually only a form
of probability where absence of a particular rule implies that the probability at-
tached to the rule is zero. Therefore, theoretically we may have a grammar which
has all possible rules, and where probability learning will assign probability 0 to
the unnecessary or incorrect rules. Distinguishing grammar structure learning and
probability learning is largely a matter of implementation convenience, efficiency

and comprehensibility.

Stochastic Grammar-based GP Stochastic grammar-based GP (SG-GP) (Ra-
tle and Sebag 2001) is an interesting but overlooked work proposed by Ratle et.

al. To the best of our knowledge, it is the earliest attempt to introduce grammar

CHAPTER 2. FUNDAMENTALS 46

models into EDA-GP.

Essentially, what SG-GP does, is to learn the probability of an SCFG while keeping
the structure of the grammar fixed. The basic algorithm of SG-GP is consistent
with the EDA algorithm described in Section 2.3.1, i.e. it is an iteration of model

learning and sampling.

SG-GP starts with a CFG and weights attached to each rule (the probability can be
obtained by normalising the weights). Initially, because we have no prior knowledge,
all of the weights are set to equal values (corresponding to a uniform distribution).
Generating individuals from the grammar is similar to generating individuals from an
SCFG, as discussed previously. Also, similarly at each generation, the probability
is updated. To do this, the weight of those rules which contribute to superior
individuals are increased, while the weights of those rules involved in generating
inferior individuals are decreased. More precisely, assuming rule r; is used in a
superior individual and r; in an inferior individual, their weights w; and w; are

updated as follows:

w; — w;(1+1r)
(2.14)

where [r is a predefined learning rate.

There are two variants of SG-GP proposed in (Ratle and Sebag 2001), namely scalar
and vectorial SG-GP. What we have discussed is scalar SG-GP while vectorial is a
straightforward extension of scalar SG-GP. Note that in scalar SG-GP, tree position
does not play a role. Each rule can be used to generate any position of the tree
as long as its LHS matches the nonterminal. However, this causes serious problems
when the number of rules is small, which is usually the case. For example, the
grammar in Figure 2.1 which is a commonly used grammar for symbolic regression
problems, has only 11 rules. No matter how we update the probability attached to
each rule, it is unlikely that this grammar would be able to hold enough information
to progressively bias the search. In other words, the model is too simple to be able

to adequately describe the solution space. For example, suppose one particular rule

CHAPTER 2. FUNDAMENTALS 47

is only beneficial if it is applied at depth d, but not at depth d’, where d # d'. In

scalar SG-GP there is no way to record this information.

To alleviate this problem, vectorial SG-GP was proposed. In vectorial SG-GP, a
weight vector is attached to each rule. Each element of the vector then represents
the weight of the rule at a particular depth. Therefore, the depth information is
used to effectively increase the total number of rules, i.e. the model complexity was

increased.

However, in both scalar and vector SG-GP the overall structure of the grammar
is fixed and it does not change with the progress of the search. Clearly, in this
method, because of the fixed grammar structure, i.e. the number of rules is fixed,
the complexity of the grammar model does not change. Therefore, the search will
either stop very quickly, especially when the number of rules is very small, which is
usually the case, or the search will converge very slowly if too many redundant rules

are involved in the probability learning.

2.5.4.3 Learning Structure and Parameter of Grammar Model

Besides the work reported in this thesis, Bosman’s work (Bosman and de Jong
2004) is, to our best knowledge, the only work which intentionally extends EDA to

EDA-GP, and infers a full grammar (both grammar structure and probabilities).

In (Bosman and de Jong 2004), we understand that the derivation trees are not
preserved - an unusual practise in GGGP - so ambiguity occurs when re-parsing the
individual. Therefore, a large amount of effort is put into correctly re-parsing the

derived sentence (individual), and a highly complicated method is used.

The basic idea of (Bosman and de Jong 2004) is as follows. It starts with a minimum
SCFG. In each iteration, the grammar is learnt and sampled to obtain the next
population. The grammar structure learning method is rule expansion (with some

constraints to ensure correct parsing). The learning method is a greedy search

CHAPTER 2. FUNDAMENTALS 48

similar to most EDA work, and the scoring metric is MDL. In MDL, the model
complexity term is measured by the number of symbols in the grammar. When

estimating the probabilities of rules, depth is introduced as an extra dimension,

similar to SG-GP.

Through the expansion of grammar rules, more production rules are added and their
probabilities are estimated accordingly. Thus the grammar becomes more specific,

enabling the system to progressively bias search.

2.5.5 Inference of Probabilistic Graph Model

In Section 2.4.5, we provided an alternative view of conventional EDA. The same
view can be applied to EDA-GP as well, as most of the models used in EDA can be
regarded as a kind of probabilistic graph model. Based on the graph model learning
method, EDA-GP can be divided into the same three categories as with conventional

EDA:

1. inferring only the probability of the probabilistic graph model (assuming a
fixed structure) (Salustowicz and Schmidhuber 1997; Yanai and Iba 2003; Ra-
tle and Sebag 2001; Abbass, Hoai, and McKay 2002),

2. inferring only the structure of the probabilistic graph model (assuming the

crisp binary value of probability - not, to our knowledge, studied yet),

3. inferring both the structure and probability of the probabilistic graph model (Sas-
try and Goldberg 2003; Bosman and de Jong 2004; Shan, McKay, Abbass, and
Essam 2003; Shan, McKay, Baxter, Abbass, Essam, and Nguyen. 2004).

This perspective provides a unified view to understand EDA-GP regardless of the
specific form of model. Interestingly, we are not aware of any work of category 2
in EDA-GP, even though such approaches do exist in conventional EDA (LEM).
However, we cannot see any intrinsic difficulty in applying this kind of method to

EDA-GP.

CHAPTER 2. FUNDAMENTALS 49

2.5.6 Summary

In this section, we reviewed the major works in EDA-GP. It is not hard to see that
this field is still in its infancy, given the limited number of studies. However, as
tree representation, which has been widely used in GP, is suitable for a number of

problems, the limited research in EDA-GP is a significant gap.

We have identified two streams of works in EDA-GP. One is based on the PIPE
prototype tree, while the other is based on a grammar model. PIPE-based work is
relatively less computationally expensive than grammar-based work, while the latter
is more flexible in terms of capturing different kinds of interactions among nodes. In
this thesis, we emphasise the latter approach, i.e. EDA-GP with grammar model.
The relationship among these existing EDA-GP works, in particular with respect to
the works proposed in this thesis, will be further discussed in Section 3.3.5 and the

Figure 3.5 in that section will provide an visualised description of this relationship.

The lack of research in EDA-GP may have two reasons. The first is the strong
connection between EDA and GA. Since EDA research started from addressing the
problems in GA, it is natural that most studies focus on the GA side of EDA research.
The second reason is the complication due to the complex tree structure. Suitable
probabilistic models are needed to model the GP-style tree structure but common
probabilistic models are not directly applicable to EDA-GP. Because of this, we
have witnessed slow progress in this field. The earliest EDA-GP work (Salustowicz
and Schmidhuber 1997) dates back to 1997, and there appears to have been no
subsequent work until 2001 (Ratle and Sebag 2001). Most EDA-GP publications
have appeared in the last three or four years, which may suggest that appropriate
probabilistic models are emerging; we are convinced, and also hope to demonstrate,

that a stochastic grammar model is one of them.

CHAPTER 2. FUNDAMENTALS 50

2.6 Ant Colony Optimisation and Automatic Pro-

gram Synthesis

Sometimes, EDA may be viewed as a Model-based Search (MBS) (Zlochin, Birattari,
Meuleau, and Dorigo 2004). In MBS algorithms, candidate solutions are generated
using a parameterised probabilistic model that is updated using the previously seen
solutions in such a way that the search will concentrate in the regions containing

high quality solutions.

Ant Colony Optimisation (ACO) (Bonabeau, Dorigo, and Theraulaz 1999) is an-
other well-studied field of MBS. The similarity between ACO and EDA methods
which only consider univariate probability distribution, such as PBIL (Baluja 1994),
can be easily seen because of the similarity in the probabilistic model and the prob-
ability updating methods. However, it is harder to make a direct analogy between
EDA considering more complicated dependences and ACO at the level of probabilis-
tic model and mechanism of probability updating although they are almost identical
at the abstract level. For more detailed description of MBS and the discussion of
ACO and EDA from the perspective of the MBS, please refer to (Zlochin, Birattari,
Meuleau, and Dorigo 2004).

In this section, given the major emphasis of the thesis is EDA-GP, a number of
closely related works using ACO to synthesise programs will be reviewed. With
a few exceptions, most ACO based automatic synthesis methods are ad hoc and,
with very limited theoretical justification, simply try to translate the conventional
program synthesis problem by converting the program space to a representation,
such as a graph, amenable to search by ACO. In the following subsections, as with
the review of EDA-GP in the previous section, these works are grouped into grammar

based and non grammar based categories.

CHAPTER 2. FUNDAMENTALS 51

2.6.1 Grammar Based Works

ant-TAG (Abbass, Hoai, and McKay 2002) use grammar and ACO to synthesise
programs. In this work, Tree-adjunct Grammars (TAGs) (Joshi, Levy, and Taka-
hashi 1975), instead of CFGs, are used. The individuals are assembled by combining
elementary trees which can be loosely understood as repetitively applying rules of

an SCF'G to nonterminal symbols.

ant-TAG starts with a given grammar with uniform distribution because it does
not have any prior knowledge. At each generation, the probabilities are updated by

increasing the probabilities of those rules which contributed to superior individuals.

Note that, in each iteration, only the probabilities are updated while the structure
of the grammar is fixed. From the perspective of EDA-GP, ant-TAG is very similar
to SG-GP (Ratle and Sebag 2001), except that different grammar formalisms are
used. We anticipate that ant-TAG may suffer from the same difficulties as SG-GP
due to the fixed grammar structure, namely due to fixed complexity, it might not be
able to capture all the necessary information for constructing a good solution. The
name ant-TAG reflects the facts that the probability update mechanism in ant-TAG
is motivated by Ant Colony Optimisation (Bonabeau, Dorigo, and Theraulaz 1999)

and TAG grammars are involved.

Generalised Ant Programming (GAP) (Keber and Schuster 2002) is a CFG grammar
based work. It is different from ant-TAG in that it deals with a model of non-fixed
structure. Instead of only updating the probabilities of grammar and keeping the
structure unchanged, GAP records the whole path which an ant has visited. There-
fore, it is very much like PIPE based EDA-GP work, especially EDP, because the
probabilities in GAP are attached to the rules, and thus are conditional probabilities,

representing the pairwise interactions.

However, because the probabilities in GAP are attached to the rules, they are con-
ditional probabilities representing the pairwise interactions, while probabilities in

PIPE are independent of other nodes.

CHAPTER 2. FUNDAMENTALS 52

2.6.2 Non-grammar Based Works

Among the non-grammar based work, Ant Programming (AP)(Roux and Fonlupt
2000) appears to be the earliest attempt at using ACO to synthesise programs. It
is elegant and consistent with PIPE based EDA-GP works. ACO search is used to
explore good paths along the prototype tree of PIPE, representing a program. The
probability update mechanism (pheromone update policy) is the major characteristic

that discriminates it from PIPE.

Other non-grammar based works, such as Ant Colony Optimisation (Green, Whal-
ley, and Johnson 2004) and Ant Colony Programming (ACP) (Boryczka and Czech
2002), employ arbitrarily predefined graphs whose nodes could be either a GP sym-
bol (terminal or nonterminal) or an arbitrarily chosen program statement. ACO
search is used to find a path representing a program. Slightly different, Grid Ant
Colony Programming (GACP) (Rojas and Bentley 2004) introduces a temporal
index, which closely corresponds to the depth constraint of some EDA-GP methods,

so that the probability (pheromone) can have a depth reference.

2.7 Conclusion

This section introduces the necessary background on which this thesis is based. The
focus of this thesis is EDA with tree representation, with emphasis on grammar as
a probabilistic model. Therefore, at the start of section, grammar and Grammar
Guided Genetic Programming are discussed. The following sections presented the
basics of EDA, especially EDA with GP-style tree representations, referred to as
EDA-GP. A critical and comprehensive survey of EDA-GP is presented. Because of
the close relationship between EDA and Ant Colony Optimisation (ACO), related

works in this area are also discussed at the end of the section.

Chapter 3

Program Distribution Estimation

with Grammar Models

3.1 Introduction

There has been growing interest in Estimation of Distribution Algorithms (EDA)
(Bosman and Thierens 1999; Larranaga and Lozano 2001; Miiehlenbein and Paaf
1996; Pelikan 2002). EDA mainly uses a linear string representation, resembling
an individual of Genetic Algorithms (GA), because conventional EDA research is

closely related to GA.

There has only been a very limited amount of work on more complex tree repre-
sentations (Salustowicz and Schmidhuber 1997; Yanai and Iba 2003; Sastry and
Goldberg 2003; Ratle and Sebag 2001; Tanev 2004; Bosman and de Jong 2004), re-
sembling Genetic Programming (GP). However the success of GP demonstrates that
there is an important class of problems for which a tree representation is suitable, so
that the limited consideration of tree representation in previous EDA literature is a
significant gap in the research. EDA not only has the potential to improve GP per-
formance on some problems, but also provides a new perspective for understanding

GP. Our work aims to help to fill this gap.

CHAPTER 3. PROGRAM DISTRIBUTION ESTIMATION WITH GRAMMARS 54

In this chapter, we propose a framework, called Program Distribution Estimation
with Grammar Models (PRODIGY), which extends conventional EDA to a more
complex tree representation. The basic algorithm of PRODIGY is consistent with
the EDA algorithm. The core of this framework is a grammar model. In this
research, we show, both theoretically and experimentally, that a grammar model
has many of the properties we need for the estimation of distribution of tree form

solutions.
The purpose of this chapter is to fulfil the following goals:
1. to clarify why grammars, in particular SCF'G, are a suitable probabilistic model
for EDA-GP,
2. to propose a high level algorithm for introducing grammars into EDA-GP,
3. to address some considerations regarding the implementation of PRODIGY,
4. to establish a connection between grammar based EDA-GP and grammar

learning in Natural Language Processing (NLP).

This Chapter is organised as follows. Properties that a probabilistic model should
have for EDA-GP are discussed in Section 3.2. The PRODIGY framework is pro-
posed in Section 3.3. Some important issues related to the implementation of
PRODIGY are presented in Section 3.4. In Section 3.5, we briefly introduce two spe-
cific methods, developed under the PRODIGY framework, which will be presented

in detail in later chapters. Conclusions are given in the last section.

3.2 Lessons from GP Research in Searching for

Models

CHAPTER 3. PROGRAM DISTRIBUTION ESTIMATION WITH GRAMMARS 55

Because the basic idea of EDA is to approximate the true distribution using a model
M, it is vital to choose an appropriate model M. Consequently, conventional EDA
research, which often employs a GA-style linear string to encode individuals, heavily
focuses on finding a suitable probabilistic model M. The GA literature supports
the belief that there are dependencies between genes (also known as linkages). In
the EDA literature, many different kinds of probabilistic models have been proposed

to represent linkage.

Estimation of the distribution of tree form solutions is far more complex than simply
applying conventional EDA to a tree representation. One of the major difficulties
lies in finding an appropriate probabilistic model. We may take lessons from GP
research in this respect. Based on current GP understanding, we are convinced that
a good model for EDA-GP should have the properties listed below. In addition to
the theoretical discussion of these properties in this chapter, the relevance of some of

these properties to problem solving will be empirically verified in the next chapter.

3.2.1 Internal Hierarchical Structure

The tree representation has an internal structure — an intrinsic hierarchical structure.
The model for EDA-GP needs to be able to represent this structure. Thus when
sampling the model, i.e. when generating individuals from the model, a valid tree
structure should be guaranteed. In this context, a valid tree is a tree that can be
evaluated and complies with the given constraints, such as legitimate terminal and

non-terminal symbol sets, depth limit and typing.

3.2.2 Locality of Dependence

In conventional EDA, the model employed does not usually assume specific depen-
dencies between adjacent loci - a reasonable assumption for GA representations.

However, in a tree structure, dependence exhibits strong locality, and this is the

CHAPTER 3. PROGRAM DISTRIBUTION ESTIMATION WITH GRAMMARS 56

primary dependence which we should consider in tree representation. For exam-
ple, dependencies (relationships) between parent and child nodes are expected to be

stronger than among other nodes.

Another perspective for viewing this locality of dependence comes from semantics.
When evolving a linear structure, as conventional EDA does, usually we assume the
semantics are attached to the locus. For example, when using GA to solve a travel-
ling salesman problem, one common encoding method uses each locus to represent
a single step in which one specific city is visited. By contrast, in tree representation,
the meaning of the node is clearly defined by the symbol attached and the effect
of the node has to be interpreted in its surrounding context. For example, in an
Artificial Ant Problem (Koza 1992), one of the standard GP benchmark problems,
the node move would have the same meaning anywhere. Its effect would depend
on the current location of the ant, i.e. the surrounding symbols which previously
positioned the ant. Taking another example from symbolic regression problems, the
symbol "+’ returns completely different values depending on the two operands. The
model chosen for evolving tree structure has to be able to represent this strong local

dependence, as well as dependence on a larger scale.

3.2.3 Position Independence

Position independence is actually very closely related to locality of dependence.
It emphasises that, in GP tree representations, the absolute position of a symbol
does not play a large role. Because of locality of dependence, a sub-structure may
occur in various locations in different GP trees, but still have an identical or similar

contribution to the overall fitness.

This belief is well reflected in various GP schema theories (Koza 1992; O’Reilly
and Oppacher 1995; Whigham 1995¢). In these studies, a schema is defined as a
sub-tree of some kind and absolute position of the sub-tree is often not considered.

Consequently, the quality of a schema is determined by its own structure, not just

CHAPTER 3. PROGRAM DISTRIBUTION ESTIMATION WITH GRAMMARS 57

by where it is. Although there are some recent studies introducing positional in-
formation into schema (Rosca 1997a; Langdon and Poli 2002), this appears to be
more for the sake of mathematically tractability rather than because it is a desirable

characteristic of building blocks.!

The prevalence of introns (Angeline 1994) in GP representations provides a second
reason for emphasising the importance of positional independence in EDA-GP mod-
els. When evolving solutions in GP, it is common that some parts of an individual
do not contribute to the fitness, and thus can be removed when evaluating fitness.
There is no consensus on the cause of introns or their impact on GP performance,
but their existence and importance is amply confirmed. If EDA-GP models are
position-dependent, introns which move the location of a particular building block
complicate the learning process, since each location has to be learnt separately; in
a position-independent model, occurrences of a building block in different locations
can reinforce each other. However, a position-independent EDA-GP model is very
computationally expensive to obtain. Thus, one of the two methods proposed in this
thesis — PEEL — does not completely insist on position independence, but rather
allows for an adaptive sliding scale between dependence and independence, which

can change appropriately during the searching process.

!The differences between position-dependent (rooted) and position-independent (non-rooted)
schemata are clearly presented in (Langdon and Poli 2002) but it is hard to find direct evidence in
this publication to support the view that position-dependent is superior to position independent
in terms of GP performance. One of the major concerns is that the position-independent schema
may be counted multiple times in one individual. However, we cannot see any problem with
this in problem solving using GP. Real world programming experience has shown that a sub-
program should be allowed to be called multiple times (logically equivalent to one piece of code
occurs multiple times in one program). This issue of modularity would be further discussed in the
Section 3.2.4. Position-dependent schema certainly makes mathematical modelling possible and it
is helpful in conceptualising the dynamics of GP. However, we are not convinced it is a desirable

property for GP problem solving.

CHAPTER 3. PROGRAM DISTRIBUTION ESTIMATION WITH GRAMMARS 58

Function Defining
Branch

Result Producing
Branch

(CADF) (Arguement List) (Function Definition)

Figure 3.1: Automatically Defined Functions of GP

3.2.4 Modularity

In a tree representation, it is common that building blocks, which are relatively inde-
pendent sub-solutions, may need to be shared among tree branches and individuals.
Therefore, one building block may occur multiple times, either in one individual or

across the population.

This has been validated by numerous studies, such as Automatically Defined Func-
tions (ADF) (Koza 1992), Genetic Library Builder (GLiB) (Angeline and Pollack
1994) and Adaptive Representation (AR) (Rosca and Ballard 1994). In these stud-
ies, the “useful” sub-trees are identified, either by means of evolution or by some
other heuristics, and are then encapsulated as intermediate building blocks so that
they can be used multiple times within both one individual and also shared across
the population. By identifying and reusing the useful structures, these studies have

reported improvement over conventional Genetic Programming.

An example of an ADF can be found in Figure 3.1. When using ADFs, a GP tree
has two parts, the result producing branch and a function defining branch. The
function defining branch, on the left hand side in Figure 3.1, defines a sub-tree as
function so that it can be called multiple times in the result producing branch. The
result producing branch is a normal GP tree which can return the value of the entire
program, but in addition to using the predefined functions (also called nonterminals
in the thesis), it can also refer to the functions defined by the function defining

branches.

CHAPTER 3. PROGRAM DISTRIBUTION ESTIMATION WITH GRAMMARS 59

3.2.5 Non-fixed Complexity

Non-fixed complexity of a GP individual is one of the important properties of GP.
In this, it differs radically from GA, which uses a fixed length string to encode indi-
vidual. GP is aimed at problems where no prior knowledge is available regarding the
complexity of their solution. Hence, theoretically, there is no complexity constraint

on individual GP trees.

Even if we do impose some limits, such as maximum depth or maximum number of
nodes, the individual complexity still varies significantly from individual to individ-
ual, from generation to generation. We cannot see how to make a fixed-complexity
model, resembling some models in conventional EDA in having a fixed size in terms
of number of variables, reflect this variation. Note that variable complexity does not
necessarily imply greater complexity. In a fixed complexity model, the initial model
must be sufficiently complex to model solutions. Otherwise search will fail. Hence,
there is a temptation to start with a high complexity model, leading to high search
cost. By contrast a variable complexity system can start with a low complexity

model, relying on the learning method to increase its complexity lately.

In order to effectively extend conventional EDA to tree representation, we may
take lessons from GP research, which also employs the same representation. From
the perspective of current GP research, we have identified the above five properties
which are important for probabilistic models of EDA-GP. Based on these properties,

a framework for EDA-GP is proposed in the next section.

3.3 Framework of PRODIGY

In this section, we propose our framework, called Program Distribution Estimation
with Grammar Models (PRODIGY). The core of PRODIGY is the use of Stochastic
Context Free Grammars (SCFGs). Based on the desirable properties of a proba-
bilistic model that we discussed above in Section 3.2, we argue that SCFGs satisfy

CHAPTER 3. PROGRAM DISTRIBUTION ESTIMATION WITH GRAMMARS 60

Generate a population P from some initial grammar M,

Select a set of fitter individuals G from the population P.
Estimate an SCFG model M over G.

Sample the SCFG model M to obtain a set of new individuals G'.

Incorporate G’ into population P.

I A e

If the termination condition is not satisfied, go to 2.

Figure 3.2: High level algorithm of PRODIGY

these criteria well.

3.3.1 Algorithm

The high level algorithm of PRODIGY can be found in Figure 3.2. It is consistent
in its essentials with the EDA algorithm. In more detail, assuming an initial model
of the problem space M, PRODIGY starts with a population P generated from
M. A Stochastic Context-free Grammar model (SCFG) M, which will be discussed
later, is learnt from the fitter individuals G selected from this population. A new set
of individuals G’ is generated by sampling the learnt model M. The new population
is then formed by incorporating G’ into the original population P. The next iteration

starts again from this new population.

3.3.2 Grammar Model

The key component in the PRODIGY framework is a Stochastic Context-free Gram-
mar model (SCFG) (Charniak 1993). A Stochastic Context-free Grammar (SCFG),
also called a Probabilistic Context-free Grammar, is the probabilistic model which
we use in the PRODIGY framework. The formal definition of SCFG can be found
in Section 2.1.1. As we foreshadowed in Section 3.2, in this section, we will look at
the proposed desirable criteria for an EDA-GP model, to see to what extent SCFG

meets them.

CHAPTER 3. PROGRAM DISTRIBUTION ESTIMATION WITH GRAMMARS 61

Grammars were invented to represent the internal hierarchical structure of natural
language in a general way. Consequently, the SCFG model intrinsically respects
the tree structure, which is a basic requirement of GP. Therefore, it can represent

GP-style tree structure naturally. No extra constraint needs to be introduced.

SCFG grammars can model locality of dependence very well. The probability at-
tached to each SCFG production rule can be regarded as a conditional probability,
describing dependencies between parents and children. As mentioned before, this

dependence is the primary dependence in tree structures.

A position dependent model, such as in PIPE (Salustowicz and Schmidhuber 1997)
or other prototype tree based work, has to learn identical building blocks at different
positions separately. The SCFG model does not assume any position dependence.
Thus, common structures (building blocks) shared by individuals, even if they are
not at the same position, can be represented and preserved by the grammar model.

It may be easier to illustrate this point with an example.

Suppose we have selected the two individuals illustrated in Figure 3.3. Between
them, one sub-tree occurs in three positions A, B and C. If a model is position
dependent, the sub-trees in positions A and C would be considered different because
of their different positions in the tree, although they are obviously identical sub-trees.
Therefore, a position dependent model cannot gain any learning advantage from the
duplication of the sub-trees in positions A and C, while a grammar model, such as
Figure 3.4, can reflect this common structure very well. The common structure in
Figure 3.3 only occurs once in this grammar, represented through rules 2, 4 and 6
of Figure 3.4. This confirms that the grammar can represent position independent
building blocks. Note that the probability component of the SCFG is omitted in

Figure 3.4, because it is not relevant to this specific discussion.

The structure constraint imposed by an SCFG is flexible. The SCFG is a con-
strained probabilistic graphical model, i.e. the common structure can be shared,

while the individual generated is guaranteed to be a valid tree structure. This sug-

CHAPTER 3. PROGRAM DISTRIBUTION ESTIMATION WITH GRAMMARS 62

S S
E>‘<p0 ELPO
A | B c
“TEXpI-., Opl Expl . EXpI-. Opl.~EXpL ..
SN S NN
{Expz Op2Exp2':: X Exp2 Op2 EpoI{Epo Op2Exp2':,

Figure 3.3: An Example of position independence and modularity in tree-shaped

individuals

gests that SCFG can represent the modularity in tree representation appropriately.
In this respect, the SCFG model differs essentially from models employing a rigid
tree structure. With SCFG, a common structure can be used multiple times in an

individual, yet not have to be re-learnt each time.

Let us again look at the example used above. The common structure, which is
represented by rules 2, 4 and 6, occurs in the grammar model illustrated in Figure 3.4
only once, but it occurs twice in the right-hand individual in Figure 3.3. This
suggests that in SCFG, common structure can be shared both within the individual,
and of course across the population. It may be easier to understand this from another
perspective. If we take the symbols in this grammar as nodes and the rules as edges,
it is clear that this grammar is actually a graph. Thus, its components can be shared,

while the individual generated is still guaranteed to be a valid tree.

This example clearly demonstrates that a common structure, which is repeated at
different positions, can be represented by a grammar model. The common structure
represented by a grammar can be easily shared among tree branches, either in one
individual or across the population. Furthermore, this makes learning more efficient,
because we do not need to re-learn the common structure in different positions.
For example, in Figure 3.3, the sub-trees at A, B and C are identical (although
at different locations) and therefore they all contribute to learning rules 2, 4 and
6. Hence, the total number of training cases needed is reduced, and this improves

learning efficiency. Another issue worth mentioning, is that SCFG does not presume

CHAPTER 3. PROGRAM DISTRIBUTION ESTIMATION WITH GRAMMARS 63

S — Exp0 (0)
Exp0 — Expl Opl Expl (1)
Expl — Exp2 Op2 Exp2 | (2)
Expl — x (3)
Exp2 — x (4)
Opl — -— (5)
Op2 — + (6)

Figure 3.4: A trivial grammar model

a particular shape for building blocks, and it appears to be able to represent the

various kinds of building blocks previously studied in GP research.

Although an SCFG grammar does not usually refer to position, and we argue that
position independence is advantageous in EDA-GP, an SCFG grammar variant can
learn position dependence by adding position constraints, such as depth, to limit
the rule admission, as in SG-GP (Ratle and Sebag 2001) and PEEL (Shan, McKay,
Abbass, and Essam 2003).

Lastly, tree individuals have no fixed complexity. Models with fixed structure, which
resemble some models in EDA in having a fixed size in terms of number of variables,
cannot reflect this variation. With an appropriate learning method, the grammar
model may vary in size so as to reflect the superior individuals (training samples),

while also generalising them to an appropriate extent.

Hence, we conclude that an SCFG model has the desirable characteristics for an

EDA-GP model proposed in Section 3.2.

3.3.3 Grammar Model Sampling and Learning

In PRODIGY, the new population is generated by sampling an SCFG grammar
model. The sampling method for SCFG has been discussed in Section 2.1.1.

CHAPTER 3. PROGRAM DISTRIBUTION ESTIMATION WITH GRAMMARS 64

Regarding the grammar model learning method, the PRODIGY framework does
not have to be bundled with a specific SCFG model learning method. Any SCFG
model learning method can be used. In this framework section, we will not describe
any particular learning method. In later chapters, two of our methods based on
PRODIGY will be discussed, each employing a different grammar learning method.
However, when introducing a grammar learning method from NLP to PRODIGY,
there are some considerations that one must be aware of, which we discuss in the
following subsections. Some aspects of these considerations will also be revisited in

Section 3.4.

3.3.3.1 Initial Grammar

PRODIGY generally relies on an initial grammar, My, to specify the initial search
space; in contrast, an initial grammar is rarely available in NLP. This initial grammar
introduces typing and some level of background knowledge, as in GGGP, and it also
imposes a constraint on the grammar learning. All later grammar models learnt
must be consistent with the initial grammar. Otherwise, infeasible individuals may

be generated.

3.3.3.2 Multiple Iterations of Grammar Learning

Grammar learning in NLP is one-shot learning, while PRODIGY involves multiple
iterations of grammar learning. One implication is that, in conventional one-shot
learning, if the goodness measure for the grammar - such as a metric derived from
Minimum Message Length methods - is not very accurate, we may still be able to
manually tune the parameters or incorporate fudge factors to largely cancel out the
errors caused by the inaccurate measure in the context of this particular situation.
However, in multiple iterated learning such as in EDA, it is generally difficult - if
not impossible - to find a single set of parameter values which can offset the error

at a suitable level for every iteration. The training examples and patterns behind

CHAPTER 3. PROGRAM DISTRIBUTION ESTIMATION WITH GRAMMARS 65

the samples may change from iteration to iteration. A set of parameters suitable to
offset the errors in one iteration may not be suitable for other iterations, particu-
larly when the structure of the learning set changes - as is the deliberate intention
in EDA methods - from generation to generation. This issue will be revisited in

Section 5.3.3.1.

3.3.4 Search in the Grammar Space

From the perspective of search, EDA methods search a different space from the
original problem space, mapping the search from the original problem space to the
model space. However different EDA methods have different forms of models and
thus different mapping methods. Due to these differences, the connectivities and
distance metrics of the model spaces may be entirely different, both from the original
problem space, and from each other. This leads to a variation in performance of

different EDA methods on different problems.

PRODIGY maps its problems to a grammar space. We anticipate that the search in
the new grammar space may be beneficial for some problems. Firstly, by mapping
the problem to a new grammar space, infeasible solutions are excluded from the
search i.e. the search space shrinks. This has been repeatedly empirically demon-
strated in GGGP, which uses the same underlying problem space. Secondly, the
distance metric and the connectivity of the grammar space is different from other
representations, and in particular, very different from that of methods based on
PIPE’s prototype tree. For example, two grammars which share some position-
independent components will be closer to each other in PRODIGY-based distance
metrics than if they did not share those components. There is no corresponding

effect in prototype-tree methods such as PIPE.

From this perspective, EDA methods, including PRODIGY, are about finding an
appropriate mapping to a new model space, so that the search in the new space is

easier than in the original problem space.

CHAPTER 3. PROGRAM DISTRIBUTION ESTIMATION WITH GRAMMARS 66

3.3.5 Relationship with Other Works

PRODIGY provides a unified framework for grammar based EDA-GP, including
SG-GP (Ratle and Sebag 2001), Bosman’s work (Bosman and de Jong 2004) and
methods to be presented in this thesis. It may also help to understand related
work such as grammar-based systems using Ant Colony Optimisation (ACO) (see
Section 2.6) and conventional GGGP with a grammar learning component (Tanev
2004; Whigham 1995a). Although these approaches are not strictly EDA-GP, they
fit the PRODIGY perspective in using a stochastic grammar model, and in refining

this model through learning from fit individuals.

Figure 3.5 gives a conceptual overview of some of the main EDA-GP approaches:
PIPE (Salustowicz and Schmidhuber 1997), EDP (Yanai and Iba 2003), vector
SG-GP (Ratle and Sebag 2001), ECGP (Sastry and Goldberg 2003), Bosman’s
work (Bosman and de Jong 2004), PEEL (Shan, McKay, Abbass, and Essam 2003),
GMPE (Shan, McKay, Baxter, Abbass, Essam, and Nguyen. 2004). The last two,
PEEL and GMPE, will be presented in detail in later chapters of this thesis.

Different approaches are organised according to the degree of constraint imposed
on their handling of dependence. This constraint has two dimensions, the type of
interactions among nodes (i.e. the complexity of the interaction relationships that
can be represented), and position dependence (i.e. whether the dependence between
nodes is positional). These two properties are summarised in brackets under the
name of each method. The lower part of the figure lists approaches consistent with
the PRODIGY framework, while the upper part lists systems based on the PIPE
prototype tree.

Among all these approaches, the earliest - PIPE - is the most rigid. In PIPE,
probabilities sit at particular positions of the prototype tree and thus cannot be
moved around, and the probabilities in each node are independent. GMPE, at the
other extreme, is the most flexible, in that its probability model does not have

any positional reference, and the probabilities on the grammar productions can

CHAPTER 3. PROGRAM DISTRIBUTION ESTIMATION WITH GRAMMARS 67

Prototype Tree Based

PIPE EDP ECGP
(fixed, independent) (fixed, pairwise) (fixed, multivariate)

Bossman’s GMPE
(SdG—f;P (V_ect_or)) (depth pairwise/multivariate),, nosition constraint
epth, pairwise P R
pth. P PEEL pairwise/multivariate)
Grammar Based (depth, pairwise/multivariate)

Figure 3.5: Relations among EDA-GP methods

represent pairwise or even multivariate interaction among nodes. Some methods in
the middle of the spectrum, such as SG-GP, take only depth, instead of full position,

as a reference.

3.4 Learning Issues

The PRODIGY framework proposed in this section is a general framework which
can be implemented in various ways depending on the specific emphasis of each im-
plementation. Some related issues, most of which are intertwined with the learning

methods, are discussed in this section.

3.4.1 General-to-specific and Specific-to-general Learning Method

In each iteration, the learning may start from a general grammar model and then
specialise it, or the other way around, i.e. start from a specific grammar and then
generalise it. For example, the grammar in Figure 2.1 is a very general grammar
for symbolic regression problems. It covers all the possible solutions for certain
symbolic regression problems indiscriminately. If we start building models from
this grammar, we would usually want to specialise the grammar so that promising
solutions are favoured, i.e. that the probability of deriving these promising solutions

increases (consequently the probability of deriving bad solutions decreases). Much

CHAPTER 3. PROGRAM DISTRIBUTION ESTIMATION WITH GRAMMARS 68

of the time, this will be done by updating the probabilities attached to the rules
(originally a uniform distribution), but this process will generally reach a limit,
beyond which further learning requires a new, more specialised, probability model
(grammar). This new grammar would generally be obtained by replacing one or
more general rules with a larger number of more specific rules. While this general-
to-specific search can be effective, it is also worth considering the reverse, specific-to-
general search. This starts with a very specialised grammar, for example a grammar
which covers only the currently selected, fitter individuals (the training examples),
and then generalises it to cover a larger area of search space. Again this is done

either by changing the probability distribution, or by reducing the number of rules.

Note that the learning being discussed here is the learning in each iteration, not the
learning across the entire run. When adopting either approach, we must ensure that

the learnt grammar is consistent with the given initial grammar.

3.4.2 Incremental Learning

PRODIGY requires the estimation of an SCFG model in each iteration. This model
can be either estimated from scratch based on the currently selected fitter individuals
from the population, or learnt in an incremental way. Usually, it would be desirable

to make use of previously learnt experience, i.e. to learn incrementally.

This distinction is closely related to one commonly made in EC, between genera-
tional and steady-state approaches, discussed in Section 2.2.1.3. In the generational
EC approach, an entirely new population is created in each iteration. In contrast,
for the steady-state EC approach, once an individual is created, it is incorporated
back into the population straightaway. Therefore, there are no clearly identifiable

generations.

Using the analogy of these two EC approaches, PRODIGY also has a generational
approach (in which the model is learnt from scratch each iteration) and a steady-

state approach (in which it is learnt incrementally). However, there is a very impor-

CHAPTER 3. PROGRAM DISTRIBUTION ESTIMATION WITH GRAMMARS 69

tant difference between the EC and PRODIGY approaches. In PRODIGY,, it is the
SCFG which conveys information across the run. Therefore, the emphasis is on the
model rather than the population. More specifically, generational PRODIGY learns
an entirely new model from scratch in each iteration, while steady-state PRODIGY

progressively updates its model.

Generational PRODIGY is not an explicit incremental learning method, because at
each iteration its model is built from scratch. By contrast, a steady-state PRODIGY
builds its current model based on the one learnt in the previous iteration and thus
is an incremental method. It is likely that incremental learning would in general
be more effective (in terms of fitness evaluations required), but it also introduces
more complex issues of probability update and model combination. While there are
straightforward Bayesian methods for incrementally updating probabilities within
a fixed model, methods for incrementally updating probabilities in the context of

changing models are at or beyond the state of the art in statistical theory.

In our experience, generational PRODIGY is relatively straightforward to imple-
ment. At each iteration of generational PRODIGY, given all its training samples,
a model is built, often using a hill-climbing method, and in this it is similar to a

standard grammar learning problem in Natural Language Processing (NLP).

However, steady-state PRODIGY raises problems that do not usually occur in NLP.
The most critical issue is how to update the model from the previous iteration. Be-
sides needing to consider the specific learning technique, one must know how to
weight evidence from the previous model against evidence from the current train-
ing example. An arbitrary learning rate parameter can be used to discount the
importance of the previous model, but Bayesian induction would be a preferable
alternative. Bayesian induction translates this problem into choosing an appropri-

ate prior. However there is no easy method to make this choice.? Not only might

2In (Stolcke 1994), there are two implementations proposed for grammar model learning, online
and batch versions. They both learn maximum a posteriori probability (MAP) grammar models

with respect to some given training data set. However, both of these versions are only directly

CHAPTER 3. PROGRAM DISTRIBUTION ESTIMATION WITH GRAMMARS 70

different distributions be chosen for the prior, but even if a simple choice such as
uniform prior is chosen, there are multiple uniform priors available, one for each

grammar (probability model) generated throughout the learning process.

3.4.3 Additional Constraints

Additional constraints can be used in PRODIGY and EDA-GP to limit the rule
admission or symbol applicability. For example, although there are no position
references in the standard SCFG model, additional constraints, such as the position
in the tree structure, may be introduced into SCFG for other reasons, such as

efficiency or implementation convenience.

Position constraint is the most common constraint. It can be in the form of the
depth of the tree as a vertical coordinate in some reference system, or a full position
constraint including both vertical and horizontal coordinates. The PIPE prototype

tree appears to be a common and natural reference system.

A number of approaches based on grammar models EDA-GP (Ratle and Sebag 2001;
Shan, McKay, Abbass, and Essam 2003; Bosman and de Jong 2004) adopt a depth
constraint. The approaches based on the PIPE probabilistic model known to us —
PIPE (Salustowicz and Schmidhuber 1997), ECGP (Sastry and Goldberg 2003) and
EDP (Yanai and Iba 2003) — can be regarded as using a full position constraint.

Additional position constraints may limit the flexibility of the probabilistic model
of EDA-GP. However, it may significantly simplify the learning of the probabilistic

model, and hence reduce the computational overhead.

applicable to generational PRODIGY. In the batch version, the whole training data set is available
for learning. In the online version, although only part of the entire set of training examples is used
each time, in order to reduce the computational cost, the entire training set is still available for
computing the posterior probability. However, this is not the case in steady-state PRODIGY, i.e.

the complete training set is generally unavailable.

CHAPTER 3. PROGRAM DISTRIBUTION ESTIMATION WITH GRAMMARS 71

3.4.4 Exploration versus Exploitation

The EDA algorithm in general strongly favours exploitation over exploration. To
understand this, let us consider an EDA with no selection. Assuming the current
model is M, a sample set G’ of infinite size can be drawn from M. Assuming perfect
learning methods, and in the limit of infinite population sizes, the new model M’
learnt from G’ should be equivalent to M from which G’ was generated. In this case,
the search is stagnant. If selection is introduced, which is normally the case in EDA,
the search space covered by the selected set of individuals G will not be greater than
G', G C @', consequently the new model M’ learnt from G covers less search space
than the original model M which generated G. Therefore, M’ is more specialised

than M. This reasoning is based on two assumptions:

1. perfect learning method

2. infinite sample size.

Although these two assumptions do not always hold in reality, it does suggest that
EDA algorithms, in general, strongly favour exploitation to exploration. In fact,
finite sample size increases the bias toward exploitation. Given a sufficient number
of training examples, EDA should be able to efficiently shrink the search space and

to thus locate the optimal solution.

Therefore, to improve the probability of obtaining an optimal solution, the sample
size (population size) has to be examined carefully. This issue of population sizing
is well known in conventional EDA (Pelikan 2002). From the perspective of problem
decomposition, if the problem only needs to be decomposed once, the time com-
plexity of solving the problem is exponential to the size of the biggest sub-solution,

regardless of other sub-solutions.

In conventional EDA, it is usually possible to only decompose the problem once.
Although hierarchical problem decomposition is desirable, this is usually primarily

an issue of efficiency. By contrast, in EDA-GP, it is rare that only one decomposition

CHAPTER 3. PROGRAM DISTRIBUTION ESTIMATION WITH GRAMMARS 72

is required, and thus it is often necessary to hierarchically decompose the problem.
This is because in EDA-GP, we need to not only find the sub-solutions, but to also
combine them to form bigger sub-solutions. More specifically, we hypothesise that

EDA-GP has two iterative epochs.

1. discovering sub-solutions - decomposition

2. combining sub-solutions to obtain bigger sub-solutions at some higher level -

aggregation.

In the first epoch, of discovering sub-solutions, the problem is decomposed and sub-
solutions are identified. This is an exploitation- dominated stage. The next epoch
explores the combination of the sub-solutions to obtain bigger sub-solutions. This
stage is dominated by exploration. Then, based on the bigger sub-solutions, the
next iteration starts. This is a hierarchical decomposition. Therefore, we envisage
that it would be desirable to explicitly identify and manage these two epochs in the

EDA-GP algorithm.

3.4.5 Sample Clustering

It is possible that the problem at hand may have a number of optimal solutions.
Conventional GA usually converges to only one of these solutions. More importantly,
it may also be the case, for problems having multiple solutions, that combining good

solutions coming from different parts of the search space results in poor solutions.

To overcome this problem, clustering can be used to group the samples into sub-
populations, and to then conduct conventional genetic search or EDA search on each
of these subpopulations (Hocaoglu and Sanderson 1997; Pelikan and Goldberg 2000;

Larranaga and Lozano 2001).

This is even more important for tree representation based methods, such as EDA-

GP and conventional GP. Except for some artificial problems, most problems have

CHAPTER 3. PROGRAM DISTRIBUTION ESTIMATION WITH GRAMMARS 73

more than one solution - if for no other reason than the prevalence of introns. Unfor-
tunately, those multiple solutions may distract the search. To deal with this, similar
clustering techniques can be used in EDA-GP. Another advantage of introducing
clustering is to improve efficiency, as EDA is usually computationally expensive,
and EDA-GP is even more so. Clustering may reduce the number of training sam-
ples while improving EDA-GP learning efficiency because each subpopulation has

more consistent samples.

3.5 Two Algorithms: PEEL and GMPE

We present two algorithms under PRODIGY framework in the thesis, PEEL and
GMPE, and an extension of GMPE — sGMPE. Although both of these two algo-
rithms are based on the same framework, these two methods have different emphases

and thus radically different grammar learning methods are used.

As mentioned before, learning a completely positional independent model of EDA-
GP is computationally expensive, Program Evolution with Explicit Learning (PEEL)
employs a semi-positional independent grammar model. In this grammar model of
PEEL, depth is taken as an extra dimension, which simplifies the learning. Thus,

PEEL is a trade-off between computational cost and effectiveness.

Grammar Model based Program Evolution (GMPE) is based on grammar learning
methods from the field of Natural Language Processing. It tries to learn a standard
SCFG model. The Minimum Message Length principle is used to direct the search
for a good SCFG model. It appears that most types of building blocks previously

considered in GP research can be explicitly represented and preserved in GMPE.

The characteristics of these two implementations are summarised as follows.

1. Grammar learning approach. Grammar learning is general-to-specific search
in PEEL. It starts with a general grammar and rules are added as the search

progresses. The added rules make the grammar more specific. In GMPE, in

CHAPTER 3. PROGRAM DISTRIBUTION ESTIMATION WITH GRAMMARS 7/

each iteration of grammar learning, there is a specific-to-general search. It
starts with a grammar which only covers the training samples, and a merge
operator is imposed on the grammar to generalise it. Note that in GMPE, in
general, the grammars learnt at later stages are more specific than grammars
learnt earlier but, in each iteration of grammar learning, it follows a specific-

to-general approach.

2. Incremental learning. In the current implementation, PEEL uses an incremen-
tal learning approach while GMPE learns its grammars from scratch (although
in both cases, these were pragmatic choices for simple implementation; either

choice could be reversed).

3. Depth constraint. In PEEL, depth is introduced as an extra constraint, in
common with a number of other methods of EDA-GP (Bosman and Thierens
1999; Ratle and Sebag 2001). It simplifies the learning, but imposes a disad-
vantage in that building blocks cannot be shared among positions of different
depth due to this constraint. In GMPE, a grammar learning method from the
field of Natural Language Processing is used. Based on the Minimum Mes-
sage Length principle, a standard SCFG grammar model is learnt . Thus no
depth constraint is considered. It is more flexible in the sense that there is no

limitation on the position of the building blocks.

3.6 Conclusion

Estimation of distribution of tree form solutions, EDA-GP for short, is an interesting
research direction not only because it has potential to improve GP performance, but
also because it provides a new perspective to understand GP. It is vital to find a
proper model for this kind of research. Based on current GP research, we have

identified some desirable properties in a model for this purpose.

A framework for grammar-based EDA-GP, known as PRODIGY, has been pro-

CHAPTER 3. PROGRAM DISTRIBUTION ESTIMATION WITH GRAMMARS 75

posed. The core of this framework is a Stochastic Context-free Grammar model
(SCFG). We have argued that SCFG, a probabilistic model with a flexible structure
constraint, exemplifies the properties we identified as desirable for EDA-GP. Some
important implementation considerations for PRODIGY methods were discussed.
Two algorithms under the PRODIGY framework were briefly outlined, and will be

discussed in detail in the later chapters.

Chapter 4

Program Evolution with Explicit

Learning

We present in this chapter one of our implementations of PRODIGY, which repre-
sents a significant extension to our earlier method — Program Evolution with Explicit
Learning (PEEL) (Shan, McKay, Abbass, and Essam 2003). We still refer to this
significantly extended version as PEEL. In PEEL, we choose a specialised SCFG
model in this implementation. The implementation of PEEL is a trade-off between

the efficiency and effectiveness.

4.1 Algorithm

The basic algorithm is sketched in Figure 4.1. Obviously, it is consistent with
the algorithm of PRODIGY. It starts with a population P randomly generated by
sampling the given initial SCFG model M. A Stochastic Context-free Grammar
model (SCFG) M is learnt from the individuals G selected from this population.
A new set of individuals G’ is generated by sampling the learnt model M. The
new population is formed by replacing the original population P with G’. The next

iteration starts again from this new population.

CHAPTER 4. PROGRAM EVOLUTION WITH EXPLICIT LEARNING 77

Generate a population P from a given minimum SCFG model M.
Select a set of fitter individuals G.

Update the SCFG model M over G.

Sample the SCFG model M to obtain a set of new individuals G'.

Replace population P with G'.

SIS A e

If the termination condition is not satisfied, go to 2.

Figure 4.1: Basic algorithm of PEEL

In the experiments in this chapter, we set the size of the selected individual set G to
2. Hence, G has two individuals, the best individual in the current generation and
the best individual found so far, also called the elite. In other words, we use these

two individuals to incrementally learn the grammar in each generation.

4.1.1 SCFG Model in PEEL

Our grammar model is a specialised stochastic parametric Lindenmayer system (L-
system) (Prusinkiewicz and Lindenmayer 1990). The reason we use this specialised
SCFG is that we want to balance between expressiveness of the grammar model and
learning efficiency. This L-system is equivalent to a standard SCFG with two extra

conditions on the LHS.

The two conditions we introduce are depth and location. So the modified form of a

production rule is

X(d,l) = X (p)

The first parameter, depth d is an integer, indicating that when generating individ-
uals, this rule may only be applied at level d. The second parameter is a location
[, which indicates the relative location where this rule may be applied. (Note that
this relative location information is relative to the current location where the rule
may be applied. More details will be presented in Section 4.1.2.2). p is the attached

probability. From now on, matching the LHS does not mean merely matching the

CHAPTER 4. PROGRAM EVOLUTION WITH EXPLICIT LEARNING 78

Exp (0) depth (
PN |
Exp Op Exp (0 2) depth :
L AN ,
X - Exp Op Exp 022) depth 2

(0200) x + x (0220) depth:

Figure 4.2: Relative coordinates of the nodes in PEEL probabilistic model. A node’s
position is described by a tuple of n coordinates (by, bs,- - -, b,), where n is the depth

of the node in the tree, and b; indicates which branch to choose at level i.

LHS symbol X, but also matching these two conditions on the left hand side.

The location information is encoded as the relative coordinate in the tree, somewhat
similar to the approach of (D’haeseleer 1994). The position of each node in a rooted
tree can be uniquely identified by specifying the path from the root to this specific
node. A node’s position can therefore be described by a tuple of n coordinates
T = (b1, b, -+, b,), where n is the depth of the node in the tree, and b; indicates

which branch to choose at level 7.

For example, in Figure 4.2 to reach the bottom right-most node, from the root (with
coordinate 0) we need to choose the 2nd, 2nd and 0-th branch, subsequently. This
gives us 0220. Similarly, we can obtain the location of the left = at depth 3 in the
left tree as 0200. Note: in this paper the depth of the root is 0, the branch in each
sub-tree which connects to the left-most child node is the Oth branch and thus the
left-most child is the Oth child.

For any given problem, we assume there is an initial grammar specifying the search
space, as in Grammar Guided Genetic Programming (GGGP). The starting gram-
mar, called the primitive grammar, of our implementation is very similar to this
grammar, except that this set of rules is duplicated at each depth level. For ex-
ample, the grammar rules in Figure 4.3 are changed into the rules in Figure 4.4 to

generate individuals at depth 1:

CHAPTER 4. PROGRAM EVOLUTION WITH EXPLICIT LEARNING

79

Exp

Pre

Exp
Exp
Pre

sin
CoS

e

In

Op Exp

Exp |

(0)
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)

Figure 4.3: A commonly used Context-free grammar for symbolic regression problem

Exp(d=1,]l=#
Exp(d=1,l=#
(

Op (d=1,]=#

p (d=1,l=%#

)
)
Exp(d=1,1=#)
)
)
)

(
(

Op (d=1,1=#
(

Op (d=1,1=#)
Pre (d=1,1=#

Pre

(
(
Pre (
(

)
d=1,1=#)
)
)

d=1,1=#

Pre (d=1,1=#

Exp Op
Pre Exp

sin
CoS

e

In

=
I
&

i~
I
&

3
I
&

3
I
ot

s
I
<3

3
I
<3

3
I
<3

=3
I
>t

[

A~ T~ Y~ Y~
b~ 3
I I

e i i i e e e e e

[\3[\3[\3[\3[\3@[@[\3030303
N N N N N s

3
I
3t

Figure 4.4: Example of fragment of initial PEEL grammar model for generating

individuals at depth 1

CHAPTER 4. PROGRAM EVOLUTION WITH EXPLICIT LEARNING 80

The rules at other depth level can be defined in a similar way. The first condition,
d = 1, indicates these rules can only be used to generate the 1st level (d = 1) of
the tree. The probabilities are initialised uniformly, and are then subject to update
by the probability learning method. All locations [are initialised to the value #,
“don’t care” or “match to any value”. When necessary, the grammar will be refined
by the structure learning method, and location information will be incrementally
added. The grammar model learning, which includes learning both probabilities

and structures, will be discussed in the following section.

The last issue worth mentioning is the treatment of constants in PEEL. As the
probabilistic model in PEEL is a variant of SCFG, constants can be treated in the
same way as in GGGP. To enable constants, we just need to add rules with constants
in their RHS’s. For example, if we want to add constant 1 to the grammar in

Figure 4.4, the following rule would need to be added:

Exp — 1

In all our experiments of PEEL, we decided not to include rules with constants to

keep the grammar as compact as possible.

4.1.2 Model Learning

The SCFG grammar model has two components: structure and parameters (prob-
abilities attached to rules). Learning of these two components will be presented in

the following two sections.

4.1.2.1 Learning Probability

The basic idea of probability learning is to increase the probabilities of production

rules which are used to generate good individuals.

CHAPTER 4. PROGRAM EVOLUTION WITH EXPLICIT LEARNING 81

We want to increase probabilities according to individual id. Assume the rules
involved in deriving individual id are R®. To update the probability of each rule

p(ri) , i € R

inc(r;) = inc(r;) + (1 —p(r;)) (4.1)

p(ri) = plri) + (1 —p(r:)) < Ir (4.2)

where [r is the predefined learning rate. p(r;) is then renormalised among rules with
identical LHS (including both the LHS symbols and the two conditions). inc(r;) is
used to accumulate the increments and does not need to be normalised. It will be

used later in structure learning.

This grammar model has the potential to recover from over-specialising when the
probabilities attached to the rules are not zero. Practically, it is possible that the
probabilities of some rules approach zero, with the resultant effect that they may
never be selected. To overcome this and encourage exploration, a lower and upper
bound of the probabilities can be set as in (Stutzle and Hoos 1997). As the search
progresses however, better and, very likely, bigger individuals may be discovered. To
alleviate the bias toward individuals of a specific size limit, as implicitly set by the
bounds of probabilities, it may be better to employ a proper annealing mechanism

to decide these bounds rather than setting fixed values.

4.1.2.2 Learning Structure

The starting grammar (also called primitive grammar) will usually be minimal,
representing the search space at a very coarse level. Then, when necessary, rules are
added to focus the search to a finer level. The way we add new rules is by splitting
existing rules, adding more context information. Once more context information

has been added, one production can be split into several.

For example, assume we have the grammar illustrated in Figure 4.3. One of its

initial rules in the SSDT representation is:

CHAPTER 4. PROGRAM EVOLUTION WITH EXPLICIT LEARNING 82

Exp Op Exp (02) (00) Exp Op Exp depth :
TN SN
Exp —Exp Op Exp 022 Exp Op Exp - X depth :
I .
(0200) x + x (0220 x + X depth {

Figure 4.5: Generation of stings x-(x+x) and (x+x)-x from the grammar in Fig-

ure 4.3

Exp(d=1,]=#) — Exp Op Exp (p=0.33)

This rule would be applied to rewrite predecessor Fxp at depth 1. [= # implies
that no location information will be considered. Therefore, at depth 1, as long as
predecessor Exp is matched, the rule would be applied with probability p = 0.33
no matter where the predecessor Exp is. As a result, this rule cannot distinguish
between the derivations for x — (z 4+ z) and (z + x) — x given in Figure 4.5 as these
two trees must have the same probability of being generated for any probability

distribution over our original grammar.

Thus, it is necessary for the system to be able to increase the expressiveness of the

grammar through refinement. For example, if we split the above rule into three:

Exp(d=1,]=0) — Exp Op Exp (po)
Exp(d=1,=1) — Exp Op Exp (p1)
Exp(d=1,1=2) — Exp Op Exp (p2)

then the two trees in Figure 4.5 may have different probabilities, because at depth
1 (d = 1) the Ezp at location 2 will be rewritten as Exp Op FExp with probability
po while at location 0, it will be rewritten with probability pg.

Note that in PEEL, Left Hand Side (LHS) matching is partial matching. The relative
location | is matched right to left, with the rightmost symbol matching the current

location, the next matching its parent, etc., until the relative location is exhausted.

CHAPTER 4. PROGRAM EVOLUTION WITH EXPLICIT LEARNING 83

For example in the left tree in Figure 4.5, the complete location of the right-most

Ezp at depth 1is (0 2). The rule:
Exp(d=1,1=2) — Exp Op Exp (p)

can match even if its predecessor location is [= 2. In these circumstances, we start
matching from the right of the complete location string since it is the closest (or
most relevant) information. Therefore, in this example, for the complete location (0

2), both [=2 and | = 02 can match, but not [= 20.

Therefore, the key idea here is to split the production rule by using more contextual
information; it is partially motivated by (Bockhorst and Craven 2001). Two steps
are needed in this splitting:

1. detect the most loaded Left Hand Side (LHS),

2. split the most loaded LHS.

The most loaded LHSs are those which are both highly influential, and badly con-
verged. Specifically, we calculate the load for each LHS in the grammar. The LHS
with the largest load is called the most loaded LHS. The load of a LHS L is defined

as:

load(L) = Z inc(r;)

r; with LHS L

where inc(r;) is defined in Equation 4.1. The idea behind this measure is: if one LHS
L keeps being rewritten using different RHS’s, it suggests that there is a great degree
of uncertainty regarding which RHS should be chosen given LHS L. The following
small example may help to understand this. Suppose we have the following set of

rules.

Exp(d=1]=#) — Exp Op Exp (p1=0.33) (1)
Exp(d=1,]=#) — Pre Op (p2 =0.33) (2)
Exp(d=1]=#) — x (ps =0.33) (3)

CHAPTER 4. PROGRAM EVOLUTION WITH EXPLICIT LEARNING 84

When structure learning happens, let’s study two scenarios. The first scenario is
that in good individuals the first rule is always chosen. The second scenario is that
each of the first and last rules are chosen half of the time. Obviously, in these two
scenarios, it is more certain in the first scenario than the second one in choosing
the RHS for LHS Exp(d = 1,1 = #). We can substantiate this example with more
detail. For example, in the first scenario, the first rule could be used twice. If the

learning rate = 0.4, the load would be calculated as follows:

load(Exp(d = 1,1 = #)) = inc(ry) + inc(ry) + inc(r3)
+ine(r?) +inc(ry) + inc(r3)
1 2 3 (43)
=0400+0+04+0526+0+0
=0.93

J

where 77 is the increment of the rule i at time step j.

In the second scenario, each of the first and last rule could be used once each

sequentially. The load is then calculated as follows:

load(Exzp(d = 1,1 = #)) = inc(r}) + inc(ry) + inc(r3)
+inc(r]) + inc(ry) + inc(r)
=0.400+0+0+0+40+0.737

=1.14

Thus, the load of LHS Exp(d = 1,1 = #) is greater in the second scenario than in
the first one, which means that there is more uncertainty in the second scenario.
Note that it is obvious that this definition of load is, to some extent, related to
the entropy of the LHS. However, the reason that entropy was not chosen is that
it cannot represent the dynamics of the search. Entropy can measure which LHS is
badly converged, but cannot determine which rule is highly influential at a particular

moment of a search. For example, at one point in time, one LHS could be badly

CHAPTER 4. PROGRAM EVOLUTION WITH EXPLICIT LEARNING 85

converged, i.e. all of its RHS’s have the same probabilities, but this LHS might
be very rarely used in constructing good individuals. In this case, this LHS should
not be chosen for splitting if there are much more frequently used LHS’s with the
same convergence. The measure of entropy cannot distinguish these different kinds

of LHS’s. Therefore, in the PEEL algorithm, load is a better measure than entropy.

To reduce above-mentioned uncertainty, we need to add more contextual informa-
tion, which is represented by the relative location. By adding more context informa-
tion, rules become distinguishable. Once the context information has been added,

one production can be split into several. For example, the rule

Exp(d=1]l=#) — Exp Op Exp (p=0.33)

can be split into three rules by adding more relative location information according

to the grammar in Figure 4.3:

Exp(d=1,l=0) — Exp Op Exp (p=0.33)
Exp(d=1]=1) — Exp Op Exp (p=0.33)
Exp(d=1,l=2) — Exp Op Exp (p=0.33)

Initially, the new rules each have the same probability as the original. However,
after further learning, i.e., probability learning, these three rules may have different

probabilities.

More specifically, in this example, originally the rule

Exp(d=1]=#) — Exp Op Exp (p=0.33)

will be applied with equal probability anywhere in depth 1 as long as the LHS
symbol “Exp” is matched, no matter what precedes it. In other words, it cannot
recognise its surrounding context. By adding relative context, this one rule becomes

three. Thus, at different relative locations, it may have different probabilities. This

CHAPTER 4. PROGRAM EVOLUTION WITH EXPLICIT LEARNING 86

means that it is now possible to recognise the context to a certain extent. Note
that the location information is added incrementally — each time, only the minimum
location information is added. The location information describes the location of
the current node relative to its ancestor node. Thus the location information will
be accumulated upward, toward the ancestor of all nodes — the root. In the above
example, with added minimum relative location, this rule now depends on its im-
mediate parent. If this is not enough, in the next iteration of learning, more relative
location information may be added so that this rule can recognise not only its im-
mediate parent but also its more distant ancestors. In the current implementation,
this structure learning happens at predefined intervals, i.e. after predefined number

of generations, the load is calculated and the rules are split accordingly.

As can be seen, our implementation is an incremental learning approach. It starts
from a minimum initial L-system, a special kind of SCFG in this context, which
describes the search space very roughly. Then, when necessary, rules are added to

the L-system to focus the search to a finer level.

4.1.3 Model Mutation

A primary exploration mechanism is mutation. We want to explore the search
space surrounding good individuals. Therefore, we consider individuals in defining
grammar mutation. Assume we want to do mutation with respect to individual id.
R are all rules involved in deriving id. Q™ are all rules which have an identical
LHS with any of the rules in R¥. We mutate all the rules in RUQ*. The mutation
probability is p,,. n, is the total number rules of R U Q™. There is a risk that the
number of rules mutated may increase too fast as the size of individuals increases,

so we make p,, depend inversely on the n,.:

Pm = Cm/nr

where ¢, is a predefined mutation rate.

The purpose of mutation is to allow the search to escape from the areas of previously

CHAPTER 4. PROGRAM EVOLUTION WITH EXPLICIT LEARNING 87

learnt knowledge, and thus explore different parts of the search area. Consequently,
our mutation will force converged LHSs to partially lose their convergence, thus
encouraging exploration. If rule r; is mutated, its probability p(r;) is changed as

follows.:
p(ri) = p(ri) +mi x (1 —p(r;))

where p(r;) is the probability of rule r; which is being mutated, and mi is a predefined

mutation intensity. p(r;) is renormalised after mutation.

4.1.4 Model Sampling

Grammar model sampling, i.e. generating individuals from the grammar, is basically
consistent with SCFG grammar sampling, — keep rewriting nonterminals according
to the production rules until no nonterminal is left. This has been illustrated in the
previous chapter. There is only one minor difference in matching the LHS. In this
implementation, matching the LHS includes matching both the LHS symbol and

the two conditions on the left hand side, depth and location.

4.2 Experiment

In this section, to demonstrate PEEL’s relevance to general problem solving, we
present two symbolic regression problems and one time series problem. The first
problem has some degree of regularity, which may be useful for algorithms which
can handle build blocks, such as PEEL. The second one was used by a very related
method and thus serves as a good benchmark for comparison. The last problem is a
real world problem with a noisy data set. This is useful for testing the generalisation
of the algorithm. Furthermore, these problems have similar initial grammars and
thus have reduced the implementation effort. Due to the variety of the test problems,

we expect the results may generalise to other problems.

CHAPTER 4. PROGRAM EVOLUTION WITH EXPLICIT LEARNING 88

Population size | 100
Generation | 50
Maximum depth | 10
Crossover rate | 0.9
Mutation rate | 0.1
Tournament size 3

Total number of runs | 50

Table 4.1: Parameter settings for GGGP on simple symbolic regression problem

flx)y=a*+2*+2?+x

4.2.1 Simple Symbolic Regression Problem

Symbolic regression problems are often used in the GP literature for evaluating the
performance of an algorithm. In this experiment, we adopt a widely used function,

originating from (Koza 1992). The function is:
fry=a*+ 2> +2° + 2

The fitness cases were sampled at 20 equidistant points in the interval [-1,1). Fitness
was the sum of absolute value of error. 5,000 program evaluations were set for both
PEEL and GGGP. The grammar for this problem can be found in Figure 4.7, which
is the reduced grammar of Figure 4.3 with unary operators removed. The major

settings for GGGP and PEEL can be found in Table 4.1 and 4.2.

Fifty runs were generated for both systems. We measured the number of successful
runs. A successful run is a run which found a perfect solution. The cumulative
number of successful runs were plotted in Figure 4.6. The x-axis is the number of
individual evaluations and the y-axis is the cumulative number of successful runs.
As can been seen, 38 out of 50 PEEL runs found the perfect solution while 32 GGGP
runs succeeded. Briefly, on this problem, the performance of our implementation of

PEEL is at least comparable to GGGP.

To understand the difficulty of this problem, we also conducted random search.

CHAPTER 4. PROGRAM EVOLUTION WITH EXPLICIT LEARNING 89

Population size 10
Generation 500

Maximum depth 10
Mutation rate C,, 0.4
Mutation intensity msi 0.2
Learning rate Ir 0.4
Number of elitists 1
Learning interval | 10 generations
Total number of runs 50

Table 4.2: Parameter settings for PEEL on simple symbolic regression problem

fle)=a'+2*+ 2>+

100%

90% - q

80% - q

70% - 7

60% - B

50% - q

40% 4

30% - q

Cumulative Frequency of Successful Runs

20% - q

10% 7

0%

I I I I I I I I I
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of Individual Evaluations

Figure 4.6: Comparison of PEEL and GGGP on cumulative frequency of successful

runs on the problem f(z) = 2%+ 23 + 2? + z.

CHAPTER 4. PROGRAM EVOLUTION WITH EXPLICIT LEARNING 90

S — Exp (0)
Exp — Exp Op Exp | (1)
— X (3)
op — + | (1)
- - ()
~ x|)
-/ (7)

Figure 4.7: Context-free grammar for the simple symbolic regression problem f(x) =

4+’

This was done by turning off the grammar learning module of our system. In
total, 250,000 individuals (equivalent to 50 runs x 5000 individuals per run) were

generated and evaluated. No solution was found.

4.2.2 Second Regression Problem

This is a more complicated symbolic regression problem. In this experiment, the
function to be approximated is adopted from (Salustowicz and Schmidhuber 1997).
This complicated function was chosen to prevent the algorithm from simply guessing

it. The function is:

f(z) =2 x e x cos(z) x sin(x) x ((sin(x))? x cos(z) — 1)

The following results compare PEEL and Grammar Guided Genetic Programming
(GGGP). The results of PIPE in (Salustowicz and Schmidhuber 1997) over the same

problem are also briefly mentioned.

The fitness cases were sampled at 101 equidistant points in the interval [0,10],
100,000 program evaluations were set for both PEEL and GGGP, the same as in
(Salustowicz and Schmidhuber 1997). The major settings for GGGP and PEEL can

be found in Table 4.3 and 4.4. The errors (sum of absolute value of error) of the

CHAPTER 4. PROGRAM EVOLUTION WITH EXPLICIT LEARNING 91

Population size | 2,000
Generation 50
Maximum depth 15
Crossover rate 0.9
Mutation rate 0.1
Tournament size 3

Total number of runs 30

Table 4.3: Parameter settings for GGGP on complex symbolic regression problem

f(x) = 2% x e™® x cos(z) x sin(x) x ((sin(x))? x cos(x) — 1)

best individual in each run are summarised in Table 4.5. The grammar for both

systems can be found in Figure 4.3.

As can be seen from Table 4.5, when considering the mean and median statistics,
PEEL gets much better results than GGGP, although both the standard deviation
and range of results for PEEL is larger than for GGGP. We conducted a two-tailed
student t-test to see whether the difference of means between these two systems is
statistically significant. We found that at p < 0.01, the difference is statistically

significant.

We also presented the size in term of the number of terminal nodes (i.e., GP symbols
- nonterminal grammar symbols are not counted) in Table 4.5. The difference of the
sizes is not statistically significant. It is interesting to see that PEEL found better

solutions than GGGP did, but the sizes of these solutions were similar.

Comparing PEEL with the results of PIPE and GP in (Salustowicz and Schmidhuber
1997), we find that PEEL is no worse than GP and PIPE in terms of mean of
fitness of the best individuals, even though we use less tree depth and have no
ephemeral constants in PEEL. Overall, in terms of the general accuracy, on this

specific problem, PEEL has roughly similar performance to PIPE.

The best solution found by PEEL is presented in Figure 4.8. It has 77 nodes with

CHAPTER 4. PROGRAM EVOLUTION WITH EXPLICIT LEARNING 92

Population size 10
Generation 10,000

Maximum depth 15
Mutation rate C,, 0.4
Mutation intensity msi 0.2
Learning rate Ir 0.4
Number of elitists 1
Learning interval | 10 generations
Total number of runs 30

Table 4.4: Parameter settings for PEEL on complex symbolic regression problem

f(x) =2 x e x cos(z) x sin(x) x ((sin(x))* x cos(z) — 1)

Algorithm mean+std dev. max median min size
PEEL 5.44+4.55 20.32 3.78 0.89 75.68+24.14
GGGP 7.87£3.54 14.00 7.56 0.95 74.07£32.94

Table 4.5: Comparison of PEEL and GGGP on the symbolic regression problem

f(x) = a® x e™® x cos(z) x sin(x) x ((sin(x))? x cos(x) — 1)

CHAPTER 4. PROGRAM EVOLUTION WITH EXPLICIT LEARNING 93

((Ce(((e(n(x)))-(x))- (I ((sin((cos(x))+ (cos((cos((elelx
)))/ (x)))+ (In((e((x)/(x)))*(sin((x)+(x)))))))))+ (e
x))))))/ ((sin(In(elx))))*(((x)-(x))-(x))))*((x)*((sin
(((cos ((cos(x))*(sin((cos(x))+(x)))))+ (cos(sin((sin (cos(
x)))+(x)))))-(e(In(x)))))* (((x)-(x))+(In(e(x)))))))

Figure 4.8: Best solution found by PEEL on regression problem f(x) = 23 X ™ X

cos(z) x sin(x) x ((sin(x))? x cos(x) — 1)

fitness 0.893954.

4.2.3 Time Series Prediction

For this problem, we used the sunspot benchmark series for years 1700-1979 (The
data can be obtained from ftp://ftp.santafe.edu/pub/Time-Series/data/). It con-
tains 280 data points, divided into three subsets: the data points from years 1700-
1920 are used for training, while 1921-1955 and 1956-1979 are for testing.

The task of prediction is to map data points from lag space to an estimate of the
future value:

Tpp1 = f(ﬁt, Tp—1yen- ,xt—a)
where 0 is the order of the model, which is set to 5 in this work, and ¢ is the time

index.

The accuracy of the model is measured by Average Relative Variance (ARV) (Weigend,
Huberman, and Rumelhart 1992). Given data set S, ARV is defined as:
_ Dies (target, — prediction,)?

ARV (S) =
(%) Y ieg (target, — mean)?
11 o
= iy 2 (@—)
tes

where target; or x; are the actual values, prediction; or z; are the predicted values,
N is the total number of data points, and o2 is the variance of the total dataset (i.e.

from year 1700-1979). It is set to 0.041056, as in (Jéaske 1996).

CHAPTER 4. PROGRAM EVOLUTION WITH EXPLICIT LEARNING 94

Population size | 200
Generation | 3000
Maximum depth | N/A
Crossover rate | 0.2
Mutation rate | 0.3
Reproduction rate | 0.01

Total number of runs 10

Table 4.6: Parameter settings for GP on sunspot prediction problem

Population size 10
Generation 60,000

Maximum depth 15
Mutation rate C,, 0.4
Mutation intensity ms: 0.2
Learning rate [r 0.4
Number of elitists 1
Learning interval | 50 generations
Total number of runs 27

Table 4.7: Parameter settings for PEEL on sunspot prediction problem

Twenty-seven PEEL runs were generated using the same settings as in the function
regression experiment, except that the number of generations was set to 600,000 to
make it comparable with the GP runs in (Jéske 1996), and the grammar struc-
ture learning interval was increased from 10 to 50 to reduce computational time.
The major settings are listed in Table 4.6 and 4.7. The results are summarised in

Table 4.8.

The GP results, which are the statistics of ten runs, are adopted from (Jaske 1996),
which is a widely cited comparison work for GP on the sunspot data. The first row
is the statistics of all PEEL runs. The second and third rows are the top 80% of

PEEL runs and GP runs respectively, measured by training accuracy. The fourth

CHAPTER 4. PROGRAM EVOLUTION WITH EXPLICIT LEARNING 95
Algorithm Training ARV~ Generalisation ARV~ Generalisation ARV size
1700-1920 1921-1955 1956-1979
PEEL(all) 0.122+0.033 0.196+0.098 0.324+0.187 44.34+13.7
PEEL(top 80%) 0.10840.010 0.163+0.037 0.307+0.197 47.54+12.5
GP(top 80%) 0.155+£0.045 0.235£0.090 0.43+0.10 52.5
t-test p < 0.01 p < 0.05 p < 0.05
PEEL(top 60%) 0.1044+0.007 0.153+0.034 0.25940.123 47.7410.0
GP(top 60%) 0.125+0.006 0.182+0.037 0.37£0.06 66.5
t-test p < 0.001 p <0.15 p < 0.01
Table 4.8: The comparison of PEEL and GP on sunspot prediction problem
(sin ((sin (e(((e{In((x2)+ (x5))))/ (sin ((((x2)*((((x1)*((
x1)*(x1)))+(x1))+(x6)))+ (cos(In(x3))))+(((x2)/((x3)
)))+((x2)+(x2)))))))*(x5))))
(‘e sin (

/ (((sin ((x6)* (cos (((x

sin (

(x1))+ ((x6)+

+(
6))
+(x3)))*((In(sin (cos (x6)
6) +
x3)))))/(x1))))

Figure 4.9: Best solution found by PEEL on sunspot prediction problem

row is a two-tailed student t-test of the above two rows. The fifth and sixth rows are
accuracies of the top 60% of PEEL runs and GP runs respectively. The fourth row
is two-tailed student t-test. The right-most column, size, is the number of nodes in
the best individuals. The reason we report the top 80% and 60% runs is that this
is the only comparison data reported in (Jéske 1996).

The best individual among all PEEL runs, in terms of ARV on the training data
set, can be found in Figure 4.9. This best individual has 61 nodes and attains an
error rate of 0.099 on the training dataset, 0.092 on the first testing dataset and
0.143 on the second testing dataset.

As can be seen from Table 4.8, PEEL’s mean error rates on both the training

CHAPTER 4. PROGRAM EVOLUTION WITH EXPLICIT LEARNING 96

and the two testing datasets are all smaller than their GP counterparts. Most of
the differences are statistically significant, as suggested by the p-value from our ¢-
test. Therefore, on this problem, PEEL, one of our implementations of PRODIGY

outperforms conventional GP.

We notice that PEEL generalises no worse than the GP system. Note that the
GP in (Jaske 1996) was carefully designed to alleviate overfitting, while neither

overfitting control nor explicit parsimony pressure were used in PEEL.

Much research has been done on parsimony pressure and control of individual com-
plexity in GP (Bleuler, Brack, Thiele, and Zitzler 2001; Rosca 1997b; Iba, de Garis,
and Sato 1994; Zhang and Miihlenbein 1995). It is notable that, in our work, al-
though no complicated parsimony mechanism is used, the results still maintained
low complexity, yet the concomitant problem in GP, i.e., premature convergence,

was not observed as severe as in GP because better generalisation was obtained.

This leads to the question, where does the parsimony pressure in PEEL come from?
We hypothesise that PEEL, as well as PRODIGY in general, has a built-in Occam’s
Razor because of its probabilistic nature. Given a particular probability distribution
on the production rules, it is harder to generate specific larger structures (i.e., their
overall probabilities are lower) than it is to generate smaller. Thus learning a larger
structure requires greater convergence of the probability distribution, requiring more

learning time. This explains why the PEEL results tend to be compact.

We note in passing that more accurate models for predicting sunspots have been
obtained by GP (Nikolaev and Iba 2001). However Nikolaev’s method uses highly
specialised heuristics for non-linear function fitting, and hence have limited value

for comparison of generalised GP methods.

CHAPTER 4. PROGRAM EVOLUTION WITH EXPLICIT LEARNING 97

4.3 Empirical Analysis

As discussed in the previous chapter, there are five important properties that an
appropriate model should have for EDA-GP. We argue that an SCFG model has
all these five properties. In this chapter, we empirically confirm the importance
of these properties and investigate their relationship to the PRODIGY framework

using implementation of PEEL.

Of the five properties, internal hierarchical structure and non-fixed complexity are
generally accepted as important for EDA-GP; since SCFG representation is able
to handle them, we will not pursue them further here. Locality of dependence is
difficult to measure directly. However, it is closely related to position independence
and modularity. Therefore, the purpose of this section is to examine the impact of
position independence and modularity on the behaviour of PRODIGY. We intend
to show how these two properties can be controlled and measured in our imple-
mentation of PRODIGY, and measure the correlation between them and search

performance.

4.3.1 Methodology

In PEEL’s implementation of PRODIGY, position independence and modularity are
embodied in the use of rules. More specifically, position dependence and modularity
are respectively embodied in the amount of context and the level of reuse of rules,

respectively.

We firstly examine how position dependence is related to the amount of context.
Recall that, in the PEEL implementation of PRODIGY, the context is represented
as a unique path from the root to the specific node. If this path is fully defined, the
rule can only be used in the position defined by this path. There is no other place
where this rule can be applied. If the path is only partially defined, the rule can

be shared among tree branches. In the PEEL implementation, the context is added

CHAPTER 4. PROGRAM EVOLUTION WITH EXPLICIT LEARNING 98

incrementally. So the more context is added, the more restricted are the locations
where the rule can be applied, and thus the less the position independence. The

amount of context can be measure by the length of context.

The modularity is reflected by the rule reuse. Recall that modularity emphasises
that some sub-tree structures are used multiple times in constructing one individ-
ual. In PEEL, this is translated into rule reuse, because individuals are generated
by repeatedly applying rules to nonterminals. If every rule is only used once in
constructing one individual, this individual does not have any component which
is shared within itself. The number of times that a rule is used can be directly

measured.

In PEEL, these two factors, position independence and modularity, are controlled
by the grammar structure learning, or more precisely, by the frequency of grammar
structure learning. As we saw, in this implementation in Section 4.1.2.2, the gram-
mar structure learning happens at predefined intervals - that is, grammar structure
learning happens a fixed number of generations apart. The effect is that when
grammar structure learning occurs, contextual information is added, and thus the
contexts in which a rule may be applied become more restricted. This leads to
reduced position independence. A second effect is that the rule is less likely to be
shared within one individual, due to the increasing contextual information, and thus
the individual becomes less modular. Therefore, the shorter the learning interval is,
the more frequently contextual information is added. With more contextual infor-
mation, the number of places that one rule may apply will be reduced very quickly.

In other words, modularity and position independence are reduced.

Because the interval of grammar structure learning controls the degree of position in-
dependence and modularity, we can control the grammar structure learning interval
to examine the impact of position independence and modularity on the behaviour of
PRODIGY. By observing the performance change with different levels of modularity

and position independence, we may analyse the interaction between them.

CHAPTER 4. PROGRAM EVOLUTION WITH EXPLICIT LEARNING 99

We expect that, with an increase in modularity and position independence, the
performance will increase in general. However, this issue is intertwined with the
learnability of PRODIGY and the expressiveness of the grammar. If the grammar
is an extremely simple general grammar, it has very high modularity and position
independence, but it does not help us to find the solution, because it covers too many
individuals indiscriminately. We need to make the grammar more specific, to bias
toward promising areas of the search space. In PRODIGY, this is done by grammar
learning. Therefore, we would expect the performance would start to deteriorate

again after reaching a certain length of interval of grammar structure learning.

In summary, in this section, we study how the grammar learning interval influences
the position independence and modularity, and then in turn how these two impact

on PRODIGY behaviour. We have formed the following three hypotheses.

Hypothesis 1 With increased length of the grammar learning interval, the position

independence will increase.

Hypothesis 2 With increased length of the grammar learning interval, the modu-

larity will increase.

Hypothesis 3 With an increase in modularity and position independence, the per-
formance will increase in general. However, the performance will start to then de-

teriorate after reaching a certain length of interval of grammar structure learning.

The following three sets of experiments corresponding to above three hypotheses are

reported in this section.

e Experiments on the correlation between grammar structure learning interval
and position independence. In these experiments, the positional independence
is measured by the amount of context. These experiments are to verify Hy-

pothesis 1

CHAPTER 4. PROGRAM EVOLUTION WITH EXPLICIT LEARNING 100

e Experiments on the correlation between grammar structure learning interval
and modularity. Modularity is measured by the amount of rule reuse. These

experiments are to verify Hypothesis 2

e Experiments on the performances of PRODIGY with different levels of modu-

larity and position independence. These experiments are to verify Hypothesis 3

4.3.2 Benchmark Problem

In this study, we chose as a test problem the first symbolic regression problem which

we previously discussed in Section 4.2.2.

The total number of program evaluations was 100,000. The other settings were
population size 10, maximum depth 15, mutation rate ¢,, = 0.4, and mutation
intensity m: = 0.2, and the number of elitists was 1. We generated 6 sets of runs.
Twenty runs were generated for each set. Among these 6 sets of runs, the structure
learning happened every 1, 5, 10, 50, 100 and oo generations, respectively. The last
setting oo means there is no structure learning at all. The fitness is measured by

the sum of the absolute values of the error. Hence, this is a minimisation problem.

4.3.3 Results

4.3.3.1 Grammar Learning Interval and Positional Independence

In this section, we examine Hypothesis 1, i.e. the correlation between the length of
the grammar structure learning interval, and position independence. We expect to
see an increase of position independence with an increase of the length of learning
interval. Position independence is measured by the amount of context in the gram-
mar. The amount of context is the length of location [defined in Section 4.1.1. For
example, if [only refers to the parent of current node, the length of [is 1 and if [

refers to both the parent and grandparent, the length is 2, etc.

CHAPTER 4. PROGRAM EVOLUTION WITH EXPLICIT LEARNING 101
Interval 1 | Interval 5 | Interval 10 | Interval 50 | Interval 100 | Interval oo
mean 7.6380 6.1141 5.1799 3.4730 2.6204 0
std 0.3615 0.5045 0.4342 0.4755 0.3206 0

Table 4.9: Average context length of last generations of runs for different learning

intervals

The average context of the grammar can be found in Table. 4.9. The data in this
table is also presented in Figure 4.10. The first data row is the mean of average
length of context and the second one is their standard deviation. The columns rep-
resent different learning intervals. The average context length is around 7 with the
length of interval 1 (the left most data column) while it decrease to around 2 with
length of interval 100 (the second right most data column). The right most column
represents the scenario with no grammar structure learning, and thus no context
information is added. Therefore, it remains 0. It is clear that the amount of context
decreases as learning interval increases. Less context information means more po-
sitional independence, as mentioned before. Hence, we can see from Table 4.9 that

position independence increases as the learning interval increases.

4.3.3.2 Grammar Learning Interval and Modularity

In this section, we examine Hypothesis 2, i.e. the correlation between the length
of the grammar structure learning interval, and modularity. We expect to see an
increase of modularity with an increase of the length of learning interval. Modularity

is measured by the average number of times that a rule is reused.

The average number of times that a rule is used among elitists can be found in
Figure 4.11. The six plots represent the different learning intervals. The y-axis is
the average number of times that a given rule is used, for simplicity called average
reuse. Each plot represents the average rule reuse in the best individuals in each
generation of a single run. The x-axis is the generation. Note that because the

average reuse is under 8 in most cases, the y-axis is truncated to 7. The only

CHAPTER 4. PROGRAM EVOLUTION WITH EXPLICIT LEARNING 102

Average Context Length
N
T
|

1 1 1 1 1 &
Interval 1 Interval 5 Interval 10 Interval 50 Interval 100 Interval inf
Learning Interval

Figure 4.10: Average context length of last generations of runs at six different

learning intervals

exception is Figure 4.11.f, in which the maximum y-axis value is 14.

The pattern in Figure 4.11 is clear. In Figure 4.11.a and b, which have intervals 1
and 5 respectively, rules are used only slightly more than once. When the interval
increases to 10, average reuse also increases. When the interval reaches 50 and 100,
the average reuse rises to an average of around 2. When the interval reaches oo
(Figure 4.11.f), which means no structure learning, runs with an average reuse of
4 or more can be frequently observed (note that the y-axis is on a different scale
in Figure 4.11.f). Figure 4.11 confirms our argument, that with an increase in the

length of the learning interval, modularity also increases.

Another pattern clearly visible in all six figures in Figure 4.11 is that average reuse
decreases as learning progresses. This also confirms our basic assumption, that the
more learning happens, the more restricted are the locations where the rule can be

applied and thus the less the modularity.

In Figure 4.11, all the runs are plotted in one figure. To better comprehend the

CHAPTER 4. PROGRAM EVOLUTION WITH EXPLICIT LEARNING

103

7 7
6 il 6 il
5 il 5 il
2 2
3 3
2 2
2 2
E 1 D) 1
& &
g <
o 5]
2 s
< <
3 q 3 q
2 q 2 q
|
i ——
1 1 =
0 1000 2000 3000 4000 5000 6000 7000 8000 90