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Abstract

Boussinesq-type partial differential equations (BTEs) are a family of 1D or 

2D governing equations (i.e. continuity and momentum) to describe the 

motion of water waves. There are two important parameters associated with 

BTEs. One parameter (e) is a measure of non-linearity and is represented by 

the ratio of typical wave amplitude to characteristic water depth (e = ach/hch). 

The other parameter (p) is a measure of frequency dispersion and is 

represented by the ratio of the characteristic water depth to typical 

wavelength (p = IWLch).

This thesis focuses on numerically studying the performance of two 

existing sets of BTEs. These BTEs are two different extensions of what is 

termed ‘the basic governing equations’. The basic governing equations 

considered are the existing BTEs which include terms up to 0(e,p2) and are 

presented in terms of the horizontal velocity vector at an arbitrary z-elevation. 

A short description of the limits of the two sets of BTEs studied now follows.

(i) In the first set of BTEs, the basic governing equations were extended to 

yield a dispersion relation which is valid to deeper water i.e. h/L <1.0 

whereas the basic governing equations yield a dispersion relation which is
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valid for h/L< . (The reference solution is the dispersion relation of Airy 

wave theory).

(ii) In the second set of BTEs studied, the basic governing equations were 

extended to include dispersion terms associated with currents. These 

BTEs are capable of modelling an interacting wave and ambient current 

field.

Fulfilling the aims of the study requires the development of numerical 

models based on the two sets of BTEs in (i) and (ii) above, as well as a 

number of ancillary models. The ancillary models are developed for validating 

the main numerical models when laboratory data are unavailable. The 

ancillary models comprise a number of models based on the 1D and 2D non­

linear shallow water equations and 1D conservation of wave action equation. 

All these models are written by the present author.

In this thesis, all the governing equations considered are solved by the 

present author using an implicit non-staggered finite difference method. In 

space, the first-order derivatives are discretised using central approximations 

with fourth-order accuracy. However, the second- and third-order derivatives 

are approximated using central, second-order accurate finite difference 

approximations. To advance the solution in time, the third-order Adams- 

Bashforth predictor and fourth-order Adams-Moulton corrector are used. 

Emphasis is given to the determination of effective boundary conditions for 

each set of 1D and 2D governing equations. Due to the Sommerfeld radiation 

condition being applied at the boundaries, the resulting numerical models are 

limited to monochromatic waves.

Additionally, a new and systematic approach is developed by the present 

author for deriving the existing BTEs with include terms up to: (i) 0(8,p2); (ii) 

0(h2,£V); and (iii) 0(m4,eV).

For making comparisons with the existing BTEs, the author also develops 

new sets of BTEs with terms up to: (a) 0(c,p2) (4 sets, three of them with 

dispersion terms associated with currents included); and (b) 0(p2,83p2) (1 set).
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Symbol Description__________________________________________

a Wave amplitude

aCh Typical or characteristic wave amplitude
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C[2,2] Wave celerity (in the x-direction) corresponding to a Pade [2,2]
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C[4,4] Wave celerity (in the x-direction) corresponding to a Pade [4,4]
approximation of the dispersion relation in terms of kh

CA.ry Wave celerity (in the x-direction) from Airy wave theory

Cr Courant number i.e. Cr = Jgh— for 1D and
Ax

Cr = Jgh ...= for 2D
7 Ax2 + Ay2

Cc Chezy coefficient

E Variable grouping for spatial derivatives in the continuity
equations

F Variable grouping for spatial derivatives in the momentum
equations in the x-direction

Nomenclature



Variable grouping for combining temporal with cross-derivatives 
in the momentum equations in the x-direction

Variable grouping for spatial derivatives in the momentum 
equations in the y-direction

Variable grouping for combining temporal with cross-derivatives 
in the momentum equations in the y-direction

Gravitational acceleration

Local still water depth

Characteristic water depth

Still water depth at the incoming wave boundary

Wave height

Wave height at the incoming wave boundary 

Root-mean-square wave height 

Wave number vector 

Wave number (in the x-direction)

Wave number (in the x-direction) at the incoming wave boundary 

Wavelength (in the x-direction)

Wavelength (in the x-direction) in deep water

Typical or characteristic wavelength

Pressure field

Volume flux vector

Bottom friction in Chapter five

Time

Wave period

Horizontal velocity vector, u (x,y,z,t) = (u,v)

Horizontal velocity (in the x-direction), u (x,y,z,t)

Horizontal velocity vector at the seabed, Ub = u (x,y,-h,t) = (Ub,Vb)

Horizontal velocity (in the x-direction) at the seabed (z = -h),
Ub = u (x,y,-h,t)

Nomenclature
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U

u

u

u

Uc

Ua

Ua

Uaa, Uaa

U*,, ( )x

Ua

V

V

Va

Va

W

Za

a

(3, (3i, P2

At

Ax

Ay

s

Depth-averaged horizontal velocity vector, u = (u, v)

Depth-averaged horizontal velocity (in the x-direction), u(x,y,t)

Horizontal velocity vector at still water level (z = 0), 
u = u(x,y,0,t) = (u,v)

Horizontal velocity (in the x-direction) at still water level, 
u = u (x, y,0, t)

Current horizontal velocity, which is assumed to be uniform over 
the depth

Horizontal velocity vector at an arbitrary elevation (z = za),
Ua = (Ua,Va)

Horizontal velocity at z = z« in the x-direction 

Amplitudes of uaand u« respectively

dUa 3 / \

~dx' ax''
Part of the momentum equations containing temporal derivatives 
in the x-direction

Velocity vector, v = (u,w) = (u,v,w)

Horizontal velocity (in the y-direction), v (x,y,z,t)

Part of the momentum equations containing temporal derivatives 
in the y-direction

Horizontal velocity at z = za in the y-direction 

Vertical velocity, w (x,y,z,t)

z-location at which u« is taken, za = Zca h, -1 < Zca < 0

= | (zca f + Zca , - 0.5 < a < 0

Free coefficients in the continuity equation in Chapter Four

Time increment

Grid size in the x-direction

Grid size in the y-direction

Scaling parameter, which is a measure of the non-linearity
(= 3ch/hch)

Nomenclature
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O

y, yi, 72 

T]

Tla

Tit*Tlx

A

P

e
0i

p

CT

tn

Q

0)

COa

an

v

Velocity potential

Free coefficients in the momentum equation in Chapter Four 

Free surface elevation 

Amplitude of q

dr\ dr\

aT’ ax
Dispersion terms in the Boussinesq-type momentum equations

Scaling parameter, which is a measure of the frequency 
dispersion (= hch/Lch)

s < v < 1; v = 0(s) indicates weak current and v = 0(1) indicates 
strong current. This parameter is used when currents are present 
and terms up to 0(8,p2) are retained in the governing equations.

Dispersion terms in the Boussinesq-type continuity equations

Local wave angle with respect to the x-axis

Wave angle at the incident wave boundary with respect to the x- 
axis

Fluid density

Scaling parameter, which is a measure of spatial variation, 
ct = e / v. This parameter is used when currents are present and 
terms up to 0(8,p2) are retained in the governing equations.

Intrinsic angular frequency or frequency without any currents 
present.

Surface tension effects 

Fluid domain

Angular frequency. In the case of pure wave motion, w = co = a\.

Absolute angular frequency

Boundary

Part of the continuity equation containing temporal derivatives in 
Chapter Four

Stream function

Horizontal gradient operator, V = (d/dx,d/dy) = d/dx\ + d/dy \

Nomenclature
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V*u
= Ux +Vy

(u» V)u = (uux +vuy)i + (uvx +wy)j

u • Vr| = ur|x +vriy

V *(hu) = (hu)x +(hv)y

<1 -©
-

>>

+
XII>.

-©
-X

-©
-II

V 3D gradient operator,
V = (9/Sx, d/dy, d/dz) = d/dx i + 5/5y j + d/dz k

Nomenclature
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hi = 0.56 m, Ax = 0.02 m and At = 0.01 s.
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4.9. Top of the bar (i.e. 11.5m before the outgoing wave boundary): time 
series of the water surface elevation predicted by 1DDBMW-2 (bold 
line), the laboratory measurements of Luth et al. (thin line) and 
1 DBMW-1 (dashed line). Data: T = 2.02 s, Hi= 0.02 m, hi=0.4m, 
hi/Lo= 0.06, Ax = 0.08 m and At = 0.02 s.

4.10. Behind the bar (i.e. 7.7 m before the outgoing wave boundary): time
series of the water surface elevation predicted by 1DDBMW-2 (bold 
line), the laboratory measurements of Luth et al. (thin line) and
1 DBMW-1 (dashed line). Data: T = 2.02 s, Hi = 0.02 m, hi=0.4m,
hi/Lo= 0.06, Ax = 0.08 m and At = 0.02 s.

4.11. Top of the bar (i.e. 11.5m before the outgoing wave boundary): time
series of the water surface elevation predicted by 1DDBMW-2 (bold 
line), the laboratory measurements of Luth et al. (thin line) and
1 DBMW-1 (dashed line). Data: T= 1.01s, Hi= 0.041m, hi= 0.4 m, 
hi/Lo= 0.25, Ax = 0.08 m and At = 0.02 s.

4.12. Behind the bar (i.e. 7.7 m before the outgoing wave boundary): time
series of the water surface elevation predicted by 1DDBMW-2 (bold 
line), the laboratory measurements of Luth et al. (thin line) and
1 DBMW-1 (dashed line). Data: T= 1.01s, Hi= 0.041m, hi=0.4m, 
hi/Lo= 0.25, Ax = 0.08 m and At = 0.02 s.

5.1. Waves only case: the free surface elevation r| at the incoming wave 
boundary is varied sinusoidally with time.

5.2. Current only case: (a) the imposed current flows from the right to the left 
hand boundaries; and (b) the imposed current flows from the left to the 
right hand boundaries. Note: C = Vgh-

5.3. Wave-current interaction case: (a) waves and steady opposing current; 
and (b) waves and steady current in same direction.

5.4. Definitions for d, h and r).

5.5. Incident deep water waves propagating over a slope: time series of the 
free surface elevation at 0.28 and 0.07 m depth predicted by 1DBMWC- 
3 (bold lines), the laboratory measurements (thin lines) and 1 DBMW-1 
(dashed lines). Test condition: hi = 0.56 m, Hi = 0.04 m, T = 0.85 s, 
Ax = 0.04 m and At = 0.017 s.

5.6. Incident intermediate depth water waves propagating over a slope: time 
series of the free surface elevation at 0.24 and 0.10 m depth predicted 
by 1DBMWC-3 (bold lines), the laboratory measurements (thin lines) 
and 1 DBMW-1 (dashed lines). Test condition: hi = 0.56 m, Hi = 0.066 m, 
T = 1 s, Ax = 0.05 m and At = 0.02 s.

5.7. Channel with a submerged bar: the channel is 60 m long, 0.8 m deep 
on both sides of the bar and 0.2 m deep on top of the bar.

List of Figures



xxiv

5.8. Steady flow in open channel with a submerged bar (Test 1): comparison
of the free surface elevation predicted by 1DBMWC-3 (bold line) at 
t = 120s and 1DSSWM (thin line). Test condition: hi = 0.8 m,
uC(x=0) =0.17 m/s, Ax = 0.2 m and At = 0.05 s.

5.9. Steady flow in open channel with a submerged bar (Test 1): comparison 
of the horizontal velocity predicted by 1DBMWC-3 (bold line) at t = 120 s 
and 1DSSWM (thin line). Test condition: hi = 0.8 m, uC(x=0) =0.17 m/s,
Ax = 0.2 m and At = 0.05 s.

5.10. Waves propagating over a submerged bar against a steady, strong
opposing current (Test 2). The bold line denotes the computed 
instantaneous solution by 1 DBMWC-3 at t = 120 + 75 = 195 s. The thin 
lines defining the wave envelope denote the results of 1DWACM. Test 
condition: hi = 0.8 m, Hi = 0.02 m, T=1.2s, uC(x=0) = 0.17 m/s,
Ax = 0.1 m and At = 0.025 s.

5.11. Waves propagating over a submerged bar against a steady, strong 
opposing current (Test 2): the relationship between the absolute local 
current velocity (bold line) and the local wave celerity (circles) and the 
local group velocity (crosses) predicted by 1 DBMWC-3 at 
t = 120 + 75 = 195 s. Test condition: hi = 0.8 m, Hi = 0.02 m, T=1.2s, 
uc(x=0) =0.17 m/s, Ax = 0.1 m and At = 0.025 s.

5.12. Waves propagating over a submerged bar against a steady, weak
opposing current (Test 3). The oscillatory motion of the free surface 
elevation predicted 1 DBMWC-3 at t = 120 + 47.5 = 167.5 s is enclosed 
by the wave envelope (thin lines) of the results of 1DWACM. Test 
condition: hi = 0.8 m, Hi = 0.02 m, T = 2.4s, uC(x=0) = 0.17 m/s,
Ax = 0.2 m and At = 0.025 s.

5.13. Waves propagating over a submerged bar against a steady, weak 
opposing current (Test 3): the relationship between the absolute local 
current velocity (line) and local wave celerity (circles) and local group 
velocity (crosses) predicted by 1 DBMWC-3 at t = 120 + 47.5 = 167.5 s. 
Test condition: hi = 0.8 m, Hi = 0.02 m, T = 2.4s, uc(x=0) = 0.17 m/s,

Ax = 0.2 m and At = 0.025 s.

5.14. Steady flow in open channel with a submerged bar (Test 4): comparison
of the free surface elevation predicted by 1 DBMWC-3 (bold line) at 
t=120s and 1DSSWM (thin line). Test condition: hi = 0.8 m,
uc(x_g0) = 0.17 m/s, Ax = 0.2 m and At = 0.05 s.
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5.15. Waves and steady current in same direction moving over a submerged 
bar (Test 5): The bold line denotes the instantaneous water surface 
(with waves) from 1DBMWC-3 and the thin lines denote 1DWACM. Test 
condition: hi = 0.8 m, Hi = 0.02 m, T=1.2s, uC(x=60) = 0.17 m/s,
Ax = 0.1 m and At = 0.025 s.

6.1. Filter.

6.2. Plan (top) and perspective (bottom) views of numerical bathymetry 
following Chawla and Kirby’s (1996) laboratory set-up. Basin size is 
18m long and 18.2 m wide. Side walls are at y = 0 and 18.2 m. Centre 
of the circular shoal is located at (x,y) = (13,9.22) m. Transects of wave 
gauge locations: Sections A-A at y = 9.22 m, B-B at x = 6.88 m, C-C at 
x = 8.35 m, D-D at x = 10.005 m, E-E at x = 11.5 m, F-F at x = 13 m 
and G-G at x = 14.5 m.

6.3. Wave heights (Hrms) normalised with respect to the incoming wave
height: comparisons between 2DBMW-4 (-----) and laboratory data
(° ° °) along various transects for the experiment of Chawla and Kirby 
(1996). Data: T=1.0s, Hi= 0.0118 m, 0i=O°, heven = 0.45 m,
Ax = 0.05 m, Ay = 0.10 m and At = 0.01 s.

6.4. Results of 2DBMW-4: perspective views of monochromatic wave fields 
at t = 20s (top) and t = 40s (bottom). Data: T=1.0s, Hi =0.0118 m, 
0i= 0°, heven = 0.45 in, Ax = 0.05 m, Ay = 0.10 m and At = 0.01 s.

6.5. Plan (top) and perspective (bottom) views of numerical bathymetry 
following Berkhoff et a/.’s (1982) laboratory set-up. Basin size is 22 m 
long and 20 m wide. Side walls are at y = 0 and 20 m. Centre of the 
elliptic shoal is located at (x,y) = (12,10) m. Transects of wave gauge 
locations: Sections 1-1 at x = 11 m, 2-2 at x = 9 m, 3-3 at x = 7 m, 4-4 
at x = 5 m, 5-5 at x = 3 m, 6-6 at y = 12 m, 7-7 at y = 10 m and 8-8 at 
y = 8 m, heven = 0.45 m.

6.6. Wave height (Hrms) normalised with respect to the incoming wave
height: comparisons between 2DBMW-4 (------ ) and laboratory data
(°°°) along various Sections for the experiment of Berkhoff et al. 
(1982). Data: T=1.0s, rn= 0.0232 m, 0i=O°, heven = 0.45 m,
Ax = Ay = 0.10 m and At = 0.02 s.

6.7. Results of 2DBMW-4: perspective views of monochromatic wave fields 
at t=16s (top) and t = 32s (bottom). Data: T=1.0s, r|j= 0.0232 m, 
0i = 0°, heven = 0.45 m, Ax = Ay = 0.10 m and At = 0.02 s.

7.1. Boundary conditions for wave only case. The imposed monochromatic 
wave propagates from i = L to i = 1. Side walls are located at j = 1 
and j = M. Note: i = 1,2,3,...L. and j = 1,2,3,...,M.
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7.2. Boundary conditions for current only case. The imposed current flows
from i = 1 to i = L. Side walls are located at j = 1 and j = M. Note: 
i = 1,2,3,...L; j = 1,2,3,...,M and C = Jgb. Explanations for equations to
determine rj and u at inflow and outflow boundaries can be found in
Section 5.3.3.

7.3. Boundary conditions for wave-current interaction case: (a) waves and
steady opposing current; and (b) waves and steady current in same 
direction. Note: no-flow boundary conditions are same as those for 
waves or current only (see Figure 7.2). Explanations for equations to
determine r\ and u at inflow and outflow boundaries can be found in
Section 5.3.3.

7.4. Boundary conditions for current only case. The imposed current flows 
from i = 1 to i = L. Side walls are located at j = 1 and j = M. Note: 
i = 1,2,3,...L; j = 1,2,3,...,M and C = Vgh.

7.5. Wave heights (Hr™) normalised with respect to the incoming wave 
height in the case of pure wave motion: comparisons between the 
results of 2DBMWC-5 (bold lines), 2DBMW-4 (thin lines) and laboratory 
data (circles) along various sections for the experiment of Chawla and 
Kirby (1996). Data: T=1.0s, Hi=0.0118m, 0i=O°, heven = 0.45m, 
Ax = Ay = 0.10 m and At = 0.02 s.

7.6. Wave only case: plan (top) and perspective (bottom) views of the free 
surface elevation at t = 40s predicted by 2DBMWC-5. Data: T= 1.0 s, 
Hi= 0.0118 m, 0i= 0°, heven = 0.45 m, Ax = Ay = 0.10 m and At = 0.02 s.

7.7. Current only case (flow from x = 0tox = 18 m): comparisons of the free 
surface elevation at t = 65 s between results of 2DBMWC-5 (bold lines) 
and 2DUSWM-6 (thin lines) for x = 11, 13 and 15 m and fory = 0, 2, 5, 7 
and 9 m. Data: 0i=O°, heven = 0.45 m, uC(x=0) =0.10 m/s, vC(x=0) = 0 m/s,

Ax = Ay = 0.10 m and At = 0.02 s.

7.8. Current only case (flow from x = 0 to x=18m): comparisons of the 
magnitude of the x-component of velocity at t = 65 s between results of 
2DBMWC-5 (bold lines) and 2DUSWM-6 (thin lines) for x = 11, 13 and 
15 m and for y = 0, 2, 5, 7 and 9 m. Data: 0i=O°, heven = 0.45 m, 
uc(X_o) = 0.10 m/s, vc(x_0) = 0 m/s, Ax = Ay = 0.10 m and At = 0.02 s.

7.9. Current only case (flow from x = 0 to x=18m): comparisons of the 
magnitude of the y-component of velocity at t = 65 s between results of 
2DBMWC-5 (bold lines) and 2DUSWM-6 (thin lines) for x = 11, 13 and 
15 m and for y = 0, 2, 5, 7 and 9 m. Data: 0i=O°, heven = 0.45 m, 
uc(x=0) =0.10 m/s, vc(x=0) =0 m/s, Ax = Ay = 0.10 m and At = 0.02 s.
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7.10. Current only case (flow from x = 0tox = 18 m): perspective views of the 
free surface elevation (upside down) at t = 65 s predicted by 2DBMWC- 
5 (top) and by 2DUSWM-6 (bottom). Data: 0i=O°, heven = 0.45 m, 
uC(x=0) =0.10 m/s, vC(x=0) = 0 m/s, Ax = Ay = 0.10 m and At = 0.02 s.

7.11. Current only case (flow from x = 0 to x = 18 m): the velocity vectors at
t = 65 s predicted by 2DBMWC-5 (top) and by 2DUSWM-6 (bottom). 
Data: 0i=O°, heven = 0.45 m, uC(x=0) = 0.10 m/s, vC(x=0) = 0 m/s,
Ax = Ay = 0.10 m and At = 0.02 s.

7.12. Waves with period T=1s propagating against a steady, opposing 
current with steady inflow velocity of 0.1 m/s along the x = 0 boundary. 
Both free surface elevation predicted by 2DBMWC-5 at t = 40s. The 
waves with (bold lines) and without (thin lines) the presence of the 
ambient current for y = 2, 5, 7 and 9 m. Data: T = 1 s, Hi = 0.0118 m, 
0i= 0°, heven = 0.45 m, Ax = Ay = 0.10 m and At = 0.02 s.

7.13. Waves with period T=1s propagating against a steady, opposing 
current with steady inflow velocity of 0.1 m/s along the x = 0 boundary. 
Perspective views of the free surface elevation predicted by 2DBMWC- 
5 at t = 20 s (top) and at t = 40 s (bottom). Data: T = 1 s, Hi = 0.0118 m, 
0i= 0°, heven = 0.45 in, Ax = Ay = 0.10 m and At = 0.02 s.

7.14. Waves with period T = 1 s propagating against a steady, opposing 
current with steady inflow velocity of 0.1 m/s along the x = 0 boundary. 
The velocity vectors predicted by 2DBMWC-5 at t = 20 s (top) and at 
t = 40 s (bottom). The velocities shown in figures above are the total 
velocity (i.e. combined orbital waves and ambient current velocities at 
the particular times. Data: T = 1 s, Hi = 0.0118 m, 0i= 0°, heven = 0.45 m, 
Ax = Ay = 0.10 m and At = 0.02 s.

7.15. Waves with period T = 1 s propagating with a co-flowing steady current 
with steady inflow velocity of 0.1 m/s along the x = 18 m boundary. The 
free surface elevation predicted by 2DBMWC-5 at t = 40s. The waves 
with (bold lines) and without (thin lines) the presence of the ambient 
current for y = 2, 5, 7 and 9 m. Data: T = 1 s, Hi = 0.0118 m, 0i=O°, 
heven = 0.45 in, Ax = Ay = 0.10 m and At = 0.02 s.

7.16. Waves with period T = 1 s propagating with a co-flowing steady current 
with steady inflow velocity of 0.1 m/s along the x = 18m boundary. 
Perspective views of the free surface elevation predicted by 2DBMWC- 
5 at t = 20 s (top) and at t = 40 s (bottom). Data: T = 1 s, Hi = 0.0118m, 
0i= 0°, heven = 0.45 m, Ax = Ay = 0.10 m and At = 0.02 s.
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7.17. Waves with period T= 1 s propagating with a co-flowing steady current 
with steady inflow velocity of 0.1 m/s along the x = 18 m boundary. The 
velocity vectors predicted by 2DBMWC-5 at t = 20 s (top) and at t = 40 s 
(bottom). The velocities shown in figures above are the total velocity 
(i.e. combined orbital waves and ambient current velocities at the 
particular times. Data: T = 1 s, Hi = 0.0118 m, 0i=O°, heven = 0.45 m, 
Ax = Ay = 0.10 m and At = 0.02 s.
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Chapter One

Introduction

1.1. Background

Water waves and currents are natural phenomena, which occur in 

channels, lakes, estuaries and oceans. Waves are most commonly generated 

by winds, while currents may be generated by wind waves, tides, river flows 

and density differences. In coastal regions, waves and currents might cause 

erosion and sedimentation. To develop a safe recreational resort by a beach 

or in the coastal zone for example, an understanding of waves and currents is 

needed. The layout of the resort is usually designed by considering existing 

waves and currents as well as the predicted waves and currents due to the 

presence of the proposed resort.

An optimised design for a development can be obtained by modelling and 

simulating the significant factors mentioned above. Modelling and simulation 

can be undertaken in laboratories or on computers. Physical modelling in 

laboratories is well established, but can be relatively expensive compared to 

numerical modelling. Nevertheless, numerical modelling of wave processes 

on computers is less well established. This is because of the difficulty in 

deriving the governing equations and boundary conditions, which constitute
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the mathematical model1 and which accurately describe the physical 

processes (e.g. wave shoaling, refraction, diffraction, reflection and breaking) 

associated with waves. The next barrier is the difficulty in discretising the 

governing equations and boundary conditions using numerical methods to 

form a stable numerical model with solutions, which converge to the true 

solution as the computational mesh is refined.

There are various forms of the wave equations that can be used to 

describe wave processes; these are limited by the exclusion of those regions 

in which waves would be expected to break, (i.e. H/h < 0.78, where H = wave 

height and h = water depth). This breaker criterion was proposed by 

McCowan (1894). Five formulations of the wave equations will now be 

introduced.

A. Non-linear shallow water wave theory.

The governing equations from this theory are generally known as the long 

wave equations. These are more fully enunciated in Chapter Seven. In what 

follows, the second set of equation numbers refers to the equation numbers in 

Chapter Seven.

<l,+V.[(n + h)u] = 0 (1.1),(7.23)

ut +(u» V)u+gVr| = 0 (1.2),(7.24)

where r| is the free surface elevation, u is the depth-averaged horizontal 

velocity, V = (d/dx,d/dy) , g is the gravitational acceleration and the subscript t 

denotes partial differentiation with respect to time. The shallow water region is 

defined by kh < 7i/10 i.e. h/L < 1/20, where k is the wave number and L is the 

wavelength (Dean and Dalrymple, 1984). These equations retain the non­

linear terms in both the continuity and momentum equations and the vertical

' Terminology: mathematical model is the generic term which includes (i) the governing 
equations, initial and boundary conditions and (ii) numerical model. For brevity in this thesis, 
the term ‘model’ used on its own will be taken to denote a numerical model.
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component of the motion is completely neglected. The resulting wave shapes 

are of non-permanent form and are similar to the sinusoidal solutions of the 

linear shallow water wave equations. That the solutions are non-permanent is 

due to the fact that in the absence of friction, any forward facing slope of a 

wave will continue to steepen. However, the free surface elevation in the 

shallow water region is increasingly affected by the seabed. As a result, the 

long wave equations are increasingly incapable of reproducing the correct 

wave shapes in shallow water.

B. Stokes wave theory.

Other alternative wave equations are based on the Stokes expansions 

with the inclusion of three-dimensional kinematic and dynamic free surface 

boundary conditions. Imposition of these 3D boundary conditions in a model 

is computationally intensive and time demanding. As reported by Dean and 

Dalrymple (1984), the asymptotic values in shallow water for Stokes second- 

order wave theory are defined by ka < 8(kh)3/3 (where a is the wave 

amplitude). Thus, for kh = tt/10, the maximum ratio a/h which can be obtained 

when using Stokes second-order wave theory is 8ti2/300 (i.e. a/h * 0.263). 

However, based on the breaker criterion proposed by McCowan (1894) the 

ratio of a/h is closer to 0.4 (if a = H/2). Consequently, Stokes second-order 

wave theory does not perform well in shallow water near wave break. Dean 

and Dalrymple also reported that the details of the second-order Stokes wave 

theory are quite arduous to follow. Clearly, higher order Stokian wave theories 

(such as the fifth-order wave theory of Skjelbreia and Hendrickson, 1960) 

become complicated. The velocity potential of Stokes second-order wave 

theory is

<t> = —£ coshP«h + z>l sin(kx - wt) + cosh^<h + z>] sin[2(kx - cot)]
2 co cosh(kh) 32 sinh (kh)

First-order wave theory Second-order correction term

Second-order wave theory

(1.3a)
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where subscript 1 denotes Stokes first-order wave theory. The associated 

free surface elevation and dispersion relation (i.e. the relationship between 

angular frequency co and wave number k) are respectively

ti = ^ cos(kx - cot) + ^ ' [2 + cosh(2kh)] cos[2(kx - tot)]
2 16 sinh (kh)

^ First-order |

<—---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ------------------►
Second-order

(1.3b)

to2 = gktanh(kh) (1.3c)

in which the orbital velocities in the x- and z-directions are u = <t>x and w = ct>z 

respectively. The subscripts x and z denote partial differentiation with respect 

to the x- and z-directions respectively.

C. The stream function wave theory.

Dean (1965) developed the second-order stream function wave theory 

with the assumption that the Nth-order stream function is

N

^(x.z) = Cz + Y, X(n)sinh[nk(h + z)]cos(nkx) (1,4a)
n=1

where u = -Tz and w = , C is the wave celerity and X(n) is a set of N

coefficients. The dynamic and kinematic boundary conditions at the free 

surface can be respectively stated in stream function form as

l[(^z)2+(^x )2] + 9ti = Qb at z = r)(x) (1.4b)

Tx=-Tzr|x at z = n(x) (1.4c)

where Qb is a constant. It is noted that the free surface, dynamic boundary 

condition (1.4b) is not satisfied by equation (1.4a). The coefficients X(n) in the 

description (1.4a) are therefore chosen to satisfy this dynamic boundary 

condition at a number of discrete points along the wave profile, each point is 

denoted by i. The free surface, dynamic boundary condition is then evaluated
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at each i point along the profile, giving Cta. In this dynamic boundary 

condition, all the Cta must be equal to Qb, where Qb is a constant. This results 

in

QBi = \ [(^)? + (4^)?] + gr|i = Qb (1.4d)

The free surface elevation is obtained from the free surface, kinematic 

boundary condition (1.4c). To calculate equations (1.4a) and (1.4d), the X(n) 

must be known. This can be accomplished by an iterative procedure until the 

free surface, dynamic boundary condition is satisfied (i.e. Qb^Qb). To 

provide the best fit of the dynamic boundary condition, very high order stream 

function wave theory (e.g. 20th-order) is necessary (Dean and Dalrymple, 

1984).

D. Finite-amplitude wave theory for shallow water.

In this theory, the shallow water wave is assumed to be propagating 

without change in form; thus, by moving with the wave celerity C, the 

waveform and wave motion become steady. The steady-state form of the 

equation of the Korteweg-De Vries (1895) (see Dean and Dalrymple, 1984), 

was derived from this theory and is

1 d3r| 3arj dq drj f ga 1N 
3 dx3 (3 dx dx^pC^a py

(1.5a)

where C = ^/gh is the wave celerity, a = a/h and p = (h/L)2. There are two 

solutions of the Korteweg-De Vries equations.

First solution: One of the solutions of equation (1.5a) is the solitary wave of 

Boussinesq (1872), that is

r\ = a sech:
|3_a_ 
4 h3

(1.5b)

In a solitary wave, the free surface elevation is positive everywhere.

Introduction



Chapter One 6

Second solution: The other solution is a periodic wave is known as a cnoidal 

wave for which the theory spans the range between linear and solitary wave 

theories. The cnoidal wave shape is expressed in terms of the Jacobian 

elliptic function. The word cnoidal (to be ‘consonant’ with the sinusoidal or 

Airy theory) was coined by Korteweg-De Vries and the cnoidal function is 

represented by the letters cn (see e.g. Dean and Dalrymple, 1984 and Mei, 

1992). The free surface solution of equation (1.5a) for cnoidal waves can be 

expressed as

f
= a cn2

v
(1.5c)

where the parameter i is obtained from a graph of £ versus the Ursell 

parameter [Ur = (a/h)(h/L)2]. Both solutions [(1.5b) and (1.5c)] of the 

Korteweg-De Vries equation are only valid in shallow water.

In addition, Dean and Dalrymple (1984) examined the analytical validity of 

the three wave theories cnoidal, Airy and Stokes fifth-order (see Figure 1.1). 

The basis for assessing the accuracy of the wave theory was how well the 

free surface, dynamic boundary condition was satisfied. Cnoidal wave theory 

is applicable to shallow water, the Stokes V can be applied to deep water, 

and Airy wave theory does well for intermediate water depths.
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h/L0

10~2 lO'1 10°

Stokes V

Breaking
limit

Deep waterShallow
waveswater waves

h/T2 (ft/s2)

Figure 1.1. Domain of validity of three wave theories based on a criterion of goodness of fit to 
dynamic free surface boundary condition. Source: Dean and Dalrymple (1984).
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E. Boussinesq theory.

Two important parameters used in connection with Boussinesq-type 

equations are the non-linearity parameter (e), which represents the ratio of the 

typical wave amplitude to the characteristic water depth, and the frequency 

dispersion parameter (pi), which represents the ratio of the characteristic 

water depth to a typical wavelength. The terms (i) ‘weakly non-linear’ or ‘weak 

non-linearity’, (ii) ‘fully non-linear’ or ‘full non-linearity’ and (iii) ‘linearised’ 

equations are associated with Boussinesq-type equations. By making 

recourse to the non-dimensional continuity equation (1.13a) in terms of ua, 
the meaning of these terms can be clarified.

Tit + v • [(£T1 + h)Ua] + p2(n®0 + en®, + s2n«2 + s3n®3) = 0(p4) (1.13a)

^VeaklyjTor^inea^^eal^iorvlineanty or (e,p2)

Fully non-linear or full non-linearity or (p2,e3p2)
*

Linearised or (fi2)
<-► k— -►

Truncation error

(Frequency) dispersion terms
i--------------------------- >

where the n parameters stand for dispersion terms2 and involve third-order 

derivatives3.

2 A dispersion term is a dispersive term. In non-dimensional Boussinesq (-type) equations, 
the dispersive term always contains the (frequency) dispersion parameter such as p2 or p4 

and p2. As a result, this term is called (frequency) dispersion term. For brevity, the dispersion 
term is often written as p2 term or p4 term and depend on what order of the dispersion 
parameter retained is.
3 If p4 terms are retained, n parameters involve fifth-order derivatives.
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(i) Boussinesq equations as derived by Boussinesq in terms of bed 

velocity, Ub.

1872
Boussinesq’s most extensive publication on wave theory is datedAand is 

written in terms of bed velocity (p477 in Dingemans, 1977). In non- 

dimensional form, they are

il, +eUb»Vt1 + (eTi + h)(V.Ub)-|i:4h3V2(V.Ub) = 0(sn:V) (1.6),(2.29)

Ub, + s(Ub • V)Ub + Vr| - n2 ^h2V(V • Ub,) = 0(eh2,h4 ) (1.7),(2.30)

where Ub is the horizontal velocity vector at the seabed. Boussinesq reduced 

the description of the fluid motion to two horizontal dimensions. This was 

done by introducing a polynomial approximation of the vertical distribution of 

the flow field into the integral conservation laws of mass and momentum.

Following on from Boussinesq (1872), a number of investigators (e.g. 

Peregrine, 1967; Nwogu, 1993; and Chen et a/., 1998) have developed 

similar equations, which are termed as ‘Boussinesq-type equations’.

(ii) Boussinesq-type equations as derived by Peregrine in terms of 

depth-averaged velocity, u .

Peregrine (1967) derived two sets of Boussinesq-type equations. One set 

(i.e. the first set) of equations was presented in terms of the depth-averaged 

horizontal velocity vector u and is known as the ‘standard’ form of 

Boussinesq-type equations. In non-dimensional form, the standard 

Boussinesq-type equations of Peregrine are

rit+V.[(h + eri)u] = 0 (1.8),(2.111)

ut + s(u* V)u + Vq = p2{{hV[V»(hut)]-^h2V(V*ut)} + 0(sp2,p4)

(1.9),(2.112)

The Boussinesq equations [(2.29) and (2.30)] and the standard 

Boussinesq-type equations [(2.111) and (2.112)] are only capable of
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reproducing weakly non-linear shallow water waves. This is due to the weak 

non-linearity and dispersion properties retained in the both sets of equations 

[since they only include terms up to 0(8,p2)]. In the last two decades however, 

Boussinesq-type equations have been extended and shown to be capable of 

modelling free surface elevation and wave propagation from deep to shallow 

water over varying bathymetric and current conditions.

(iii) Boussinesq-type equations as derived by Nwogu in terms of 

velocity at an arbitrary elevation, u«.

In 1993, Nwogu derived an alternative set of Boussinesq-type (e,p2) 

equations4, which is presented in terms of the horizontal velocity at an 

arbitrary elevation ua, that is (in non-dimensional form)

n, +V*[(h + 8r|)Ua] + p2n®0 = 0(ep2,fi4) (1.10a)

Ua, + Vr) + e(Ua* V)Ua + p2A820 = 0(ep2,|i4) (1.10b)

where n20 and A820 are dispersion terms. This formulation gives an excellent

dispersion relation in that there is close agreement with co2 =gktanh(kh) for

depth to wavelength ratios (h/L) up to Vz, even though the p4 terms are 

excluded.

Figure 1.2 shows the dispersion relations (in terms of wave celerity C) for 

various linearised Boussinesq-type equations (i.e. s terms dropped) include 

terms up to 0(p2) in terms of: u«, Ub, u (the horizontal velocity vector at still 

water level) and u . The reference solution is the dispersion relation of Stokes 

linear wave theory or Airy wave theory. The good performance of the 

dispersion relation of Nwogu’s equations in terms of ua (compared to that of 

Boussinesq-type equations in terms of others horizontal velocities) is one of

4 For brevity in this thesis, ‘equations including terms up to 0(e,p2)’ is often written as '(e.p2)
equations' (see also Madsen and Schaffer, 1998).
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the reasons why the Boussinesq-type equations of Nwogu (1993) are chosen 

as the basic governing equations for a number of numerical models.

1.10 --

< 1.00

0.90 -■

Figure 1.2. Ratio of wave celerity, C/CAiry, CAiry is the Airy wave celerity and C is the wave 
celerity of various Boussinesq-type equations including terms up to 0(|i2) in terms of the 
horizontal velocity at: (1) an arbitrary z-level, ua; (2) the seabed, Ub; (3) still water level, u; 
and (4) depth-averaged horizontal velocity, u .

In 1995, Schaffer and Madsen extended the Boussinesq-type equations of 

Nwogu (1993) by incorporating some extra terms in the governing equations 

thereby improving the dispersion relation. This resulted in a new set of 

(dimensionless) Boussinesq-type equations

r|< + V • [(h + sri)Ua] + p2n®0 + p2V • {-pih2V[V • (hua)]
◄-----------------------------------------------------------------►

Nwogu's continuity equation

+ p2 V[h2V • (hUa)] - pi h2Vr)t + p2 V(h2qt)} = 0(s^2,^i4) (1.11a)

Uat + Vq + s(u« • V)Ua + p2{a820 -yih2V(V *Uat) + y2hV[V •(hUat)]
◄--------------------------------------------------------------------------►

Nwogu s momentum equation

- yih2V(V • Vrj) + y2hV[V • (h Vq)]} = 0(e|i2,p4 ) (1.11b)

where a, pi, p2, yi and y2 are the ‘free coefficients’. In Chapter Four, these 

equations are used to investigate the Boussinesq-type equations of Nwogu 

(1993) extended by Schaffer and Madsen (1995). This resulted in an 

improved dispersion relation albeit with the same order of the frequency 

dispersion. In other words, while the order of the frequency dispersion 

retained in Nwogu’s equations (1.10) and Schaffer and Madsen’s equations
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(1.11) is identical [i.e. 0(p2)], their dispersion relations (in terms of wave 

celerity) are significantly different (Figure 1.3). The dispersion relation of 

Nwogu’s equations corresponds to a Pade [2,2] approximation in terms of 

(kh), and the dispersion relation of Schaffer and Madsen’s equations 

corresponds to a Pade [4,4] approximation in terms of (kh).

1.05 -■

< 1.00

0.95 ~

Figure 1.3. Ratio of wave celerity, C/CAiry, where CAiry is determined by wave celerity of the 
Airy wave theory and C by the wave celerity of the equations of: (1) Schaffer and Madsen 
(1995); and (2) Nwogu (1993).

The equations of Chen et al. (1998) in Chapters Five and Seven are used 

to assess dispersion terms associated with currents, which are not included in 

Nwogu’s equations. In non-dimensional form, the equations of Chen et al. 

(1998) are:

r)t + V« (hUa) + 5r|V • Ua + vua • Vq + pi2(TI^c
◄---------------------------------------------------------------------------------------------------------- ►

Nwogu’s continuity equation

+ 5rif +52n2 + S3n2) = 0(e|i2,p4) (1.12a)
◄-------------------------------------------►

Dispersion terms associated with currents

Uat + v(Ua • V)Ua + Vr| + Ji2 [A®0
◄------------------------------------------------------------------------- ►

Nwogu s momentum equation

+ vA2 +§(A22 + vA2) + 52(A2 + vA25)] = 0(sji2,p4) (1.12b)
•4----------------------------------------------------------------------------- ►

Dispersion terms associated with currents

where v and 5 are additional scales associated with the presence of a current. 

Again fl and A are the dispersion terms, which involve third-order derivatives.
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The superscripts and subscripts in the dispersion terms are used to 

distinguish between them.

It can be concluded that:

• Schaffer and Madsen’s equations are equivalent to Nwogu’s equations 

with some additional dispersion terms. These terms in the governing 

equations result in an improved dispersion relation.

• Chen et a/.’s equations are equivalent to Nwogu’s equations extended to 

include a current.

Additionally, a comparison of the order of frequency dispersion terms 

retained, the dispersion relations and dispersion terms associated with 

currents in the governing equations is contained in Table 1.1.

Investigators Nwogu (1993) Schaffer and Madsen (1995) Chen et at. (1998)

Governing
equations

Equations (1.10a,b) Equations (1.11a,b) Equations (1.12a,b)

Order of
frequency
dispersion
terms
retained

2
M-

2
M-

2
M-

Dispersion
relation .’-jkV-*0*1'3*"”2

1-a(kh)2

u2 . gH2h[1+y(kh)2][1-(a-P+1/3)(kh)2] 

(1+p(kh)2 ][1-(a-y )(kh)2 ] 1-a(kh)2

Dispersion 
terms 
associated 
with currents

Not included Not included
Depth-uniform current 
[i.e. terms

n2(8n2 + 82 ni + 63 n§)
and
H2[vA? + 5(A| + vA2)

+ 52(a2 + vA§)]

in equations (1.12a,b)]

Table 1.1. Comparison of the order of frequency dispersion terms retained, the dispersion 
relations and dispersion terms associated with currents in the equations of Nwogu (1993), 
Schaffer and Madsen (1995) and Chen et at. (1998).
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Boussinesq-type equations have been solved by numerical models using 

various schemes. Peregrine (1967) proposed the first published finite 

difference method for the standard Boussinesq-type equations. Abbott et al. 

(1978) were probably the first investigators to develop a Boussinesq-type 

numerical model that can be used for practical engineering problems. There 

are a variety of widely published finite difference methods to solve 

Boussinesq-type equations. They are:

(i) the non-staggered explicit leapfrog scheme (utilised by Witting, 1984);

(ii) the implicit Crank-Nicholson finite difference scheme (used by Liu et al., 

1985; Yoon and Liu, 1989; Nwogu, 1993 and Kaihatu and Kirby, 1998) 

and

(iii) the time-centred, implicit scheme with the method based on the 

alternating direction implicit algorithm (employed by Abbott et al., 1984; 

Murray, 1989; Madsen et al., 1991 and Madsen and Sorensen, 1992).

Recently, Wei and Kirby (1995) presented an alternative implicit finite 

difference scheme for discretising the equations of Nwogu (1993). This 

alternative scheme was then adopted to solve Boussinesq-type equations in 

the lowest order frequency dispersion terms with either an improved 

dispersion relation (e.g. by Chen et al., 1998) or the highest order non­

linearity (e.g. by Wei et al., 1995). Therefore, it is finally decided to apply the 

numerical scheme of Wei and Kirby (1995) to all the governing equations 

considered in this thesis including the unsteady, non-linear shallow water 

equations in Chapter Seven.

An important aspect in developing a numerical model is to determine 

appropriate boundary conditions for the governing equations. A set of 

boundary conditions, which is suitable for one particular set of governing 

equations, is not necessarily appropriate for another set of governing 

equations. Many numerical models based on Boussinesq-type equations 

have been widely published, but detailed discussion of the 2D boundary 

conditions were not usually included. The present study is concerned with
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determining suitable boundary conditions for the 1D and 2D governing 

equations of Nwogu (1993), the 1D governing equations of Schaffer and 

Madsen (1995), the 1D and 2D governing equations of Chen et al. (1998), 

and the 2D unsteady, non-linear shallow water equations.

At the outgoing wave boundary, the Sommerfeld radiation condition is 

used to allow the passage and egress of the wave energy arriving from within 

the domain. Conversely, as revealed by Nwogu (1993), there will be some 

wave reflection from the boundary due to: (i) truncation errors, (ii) the initial 

transient, steep waves and (iii) the approximation of a single wave celerity for 

irregular waves.

Therefore, in the present study, three-point filters are introduced to reduce 

these problems as well as to enhance computational stability. On the other 

hand, the filters must be ‘soft’ so as not to have much effect on the order of 

the truncation error retained by the dispersion terms of the particular 

governing equations under consideration (Chapters Five, Six, and Seven).

The main concept behind the Boussinesq (-type) equations is the reduced 

mathematical description of the fluid motion to one or two horizontal 

dimensions. This can be explained through a derivation of the equations of 

Boussinesq (1872) and the various Boussinesq-type equations derived by 

Peregrine (1967), Schaffer and Madsen (1995) and Chen et al. (1998) in 

Sections 2.3, 2.4, 4.2 and 5.2 respectively.

In this study, a different and new approach has also been developed for 

deriving:

(i) the Boussinesq-type (s,p2) equations of Nwogu (1993) in Chapter Three 

and Appendix C;

(ii) the Boussinesq (e,p2) equations of Boussinesq (1872) in Appendix C;

(iii) the Boussinesq-type (e,pi2) equations of Peregrine (1967) in terms of the 

still water level horizontal velocity in Appendix C;
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(iv) the fully non-linear Boussinesq-type equations with the lowest order 

frequency dispersion [i.e. including terms up to 0(p2,83^i2)] of Wei et al. 

(1995) in Appendix C; and

(v) the fully non-linear Boussinesq-type equations with fourth-order 

frequency dispersion [including terms up to O(jAeV)] of Madsen and 

Schaffer (1998) in Appendix C.

All Boussinesq-type momentum equations in the new approach are based on 

the Euler equation of motion together with the irrotationality condition. 

However, the Boussinesq-type continuity equations are still based on the 

depth-integrated continuity equation as in the work of Nwogu (1993), Wei et 

al. (1995) and Madsen and Schaffer (1998).

Previous approaches to develop Boussinesq-type momentum equations 

include:

a) Nwogu’s (1993) work:

The momentum equation (1.10b) in the work of Nwogu was based on the 

depth-integrated momentum equation.

b) Wei et al.’s (1995) work:

In the work of Wei et al., the momentum equation (1.13b) was obtained by 

substituting an approximate expression for the velocity potential directly into 

the Bernoulli equation at the free surface (the free surface, dynamic boundary 

condition). The equations of Wei et al. can be written as

rit + v • [(^h + h)ua] + p2(u820 + sn^ + g2n®2 + e3n®3) = 0(p4)
-HNwogu s continuity equation Dispersion terms with non-lineanty 

8 , „2*8 , „3 *8Ua, + s(lJa • V )Ua + VT| + fj. (A2q + 8A21 + 8 A22 + 8 A23 ) = 0(|-l )
Nwogu s momentum equation Dispersion terms with non-linearity

(1.13a)

(1.13b)

where the general parameters n and A involve third order derivatives in r| 

and/or ua. The equations of Wei et al. above are Serre-type equations5 since

' Serre-type equations are Boussinesq-type equations with all fi2 terms retained [i.e. including 
terms up to 0(u2,e3h2)]. Serre-type equations can be called as fully non-linear Boussinesq-
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they include all dispersion terms with non-linearity. It can be seen that the 

equations of Wei et al. [(1.13a) and (1.13b)] contain the Boussinesq-type 

(e,p2) equations of Nwogu (1993).

c) Madsen and Schaffer’s (1998) work:

Madsen and Schaffer introduced an expansion of the velocity potential as 

a power series in the vertical coordinate to form the horizontal and vertical 

velocities. They then incorporated the free surface, dynamic boundary 

condition (i.e. the Bernoulli equation at the free surface) to develop a 

momentum equation (C.35). The fully non-linear Boussinesq-type equations 

of Madsen and Schaffer are

q, + v • [(sq + h )ua] + p2(n80 + 8n21 + 82n22 + 83n®3)
U------------------------------------------------------------------------------------ ►!
1 Wei el al.'s continuity equation 1

p4(n®0 + en841 + s2n;2 + 83nJ3 + 84n844 + e5n85) = 0(p6) (1.14),(C.34)

Uat + 8(Ua • V)ua + Vq + p2(A20 + 8A®21 + 82A®22 + s3A®3 )
U--------------------------------------------------------------- ►]

Wei el al. s momentum equation

p4(A840 + 8A®41 +s2A®2 +83A®3 +84A®4 + 85A®45) = 0(ji6) (1.15),(C.35)

where the general parameters n and A involve third-order derivatives when 

multiplied by \x2 and fifth-order derivatives when multiplied by p4. (More details 

can be found in Appendix C). If the p4 terms are excluded, the Madsen and 

Schaffer’s (p4,85p4) equations reduce to the Serre-type equations of Wei et al. 

(1995)

(i) New (p2,83p2) equations developed by the present author.

It is noted that the pressure distributions of both the fully non-linear 

Boussinesq-type momentum equations [(1.13b) and (C.35)] do not involve the 

free surface, kinematic boundary condition. Consequently, there is scope to

type equations in 0(p2) [i.e. accurate to 0(p2)]. Second-order is the lowest order in the 
frequency dispersion parameter (p).
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develop new sets of fully non-linear Boussinesq-type equations which do 

include the free surface, kinematic boundary condition in the momentum 

equation. In the present study, a new set of fully non-linear Boussinesq-type 

equations with the lowest order frequency dispersion terms is developed, that 

is

ri, + v • [(sti + h )u«] + \i2{u82Q + znl, + s2n®2 + 83n®3) = 0(p4 *)
Nwogu's continuity equation

k
Uat + e(Ua • V)Ua + V r\ + p2(A20 + eA721 + s2A22 + s3A23 ) = 0(p4)

Nwogu's momentum equation

(1.13a)

(1.13c)

The equations above are a new alternative set of equations to that of Wei 

et al. (1995) [(1.13a) and (1.13b)]. The new equations incorporate all 

boundary conditions and are derived in full in Appendix C.

(ii) New (8,p2) equations with currents developed by the present author.

By the same method used to derive the equations (1.13a) and (1.13c), 

three new sets of Boussinesq-type equations with an ambient current treated 

explicitly6 on the basis of weakly non-linear waves are developed by the 

present author. The new equations are presented in terms of:

(i) the horizontal velocity at an arbitrary elevation ua,

r)t + V «(hUa) + 5r|V • ua + vu« • Vr| + n2(ri20
•*----------------------------- :-------------------------- *|

Nwogu s continuity equation I

+ 8n?+62n^+63n=) = 0(sn2,n4) (1.16a)
N-------------- ----------- H

Dispersion terms associated with currents

+ v(Ua • V)Ua + Vr) + p2[A!
Nwogu s momentum equation

+ vA3 + 8(A3 + vA3 ) + 52(A3 + vA35 )] = 0(8ji2,p.4) 
N------------------------------------------------------- H

Dispersion terms associated with currents * 1

(ii) the horizontal velocity at the seabed Ub,

(1.16b)

0 The word ‘explicit’ is used here in the sense that there are extra terms in the governing 
equations, which are dispersion terms associated with the ambient current, even though the 
velocity u includes both orbital velocity and ambient current.
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r|[ + V »(hUb) + 8r|V»Ub +vUb* Vr| + n2(nJ

+ sn? + 52n4 +83n5) = 0(En2,n4)U-------------- H
Dispersion terms associated with current

Uat + v(Ub« V)Ub + Vr| + ji2[A40

(1.17),(C.17)

+ vAi + 5(A42 + vA43 ) + 52(A4 + vA4)] = 0(8p2,p4) (1.18),(C.18)
◄-------------------------------------------------------------p.\
' Dispersion terms associated with current

(iii) the horizontal velocity at still water level u,

ht + V*(hu) + 5r|V*u +vu* Vri + n2(rio + 52n2 + d3Yl53) = 0(8fi2,fi4)
Peregnne's (1967) second continuity equation ispersion terms associated with current

(1.19),(C.24)

ut + v(u • V)u + Vri + h2[vA^ + 6(A52 + vA53) + 62(A54 + vA55)] = 0(8fi2, ^4)
Peregnne s (1967) second momentum equation ^ ^ Dispersion terms associated with current ^

(1.20),(C.25)

These three new sets of equations are alternative sets to those derived by 

Chen et al. (1998). The main differences between the present study and that 

of Chen et al.'s work are:

(i) the method of derivation for the momentum equations and

(ii) vertical variations in the horizontal and vertical velocities are permitted in 

the new formulations. This is in contrast to the equations of Chen et al. in 

which these velocities are uniform through the water column.

A family tree of the various Boussinesq-type momentum equations, including 

those which were developed by earlier investigators as well as those 

developed by the present author are displayed in Figure 1.4.
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The main aims of this study are to develop and asses the performance of 

numerical models based on two extensions of Nwogu’s (1993) Boussinesq- 

type equations [i.e. the governing equations developed by Schaffer and 

Madsen (1995) and Chen et al. (1998)]. To the present author’s knowledge, 

no numerical models have been based on those governing equations, which 

are unproven in their performance. Some details of the untested governing 

equations follow:

(i) Schaffer and Madsen (1995) extended Nwogu’s equations to yield a 

dispersion relation which was valid in deeper water for h/L ratios up to or 

equal to 1.0, whereas Nwogu’s equations yield a dispersion relation 

which was valid for h/L < 0.5. The reference solution is the dispersion 

relation of Airy wave theory.

(ii) Chen et al.'s (1998) second set of equations (see the right hand column 

of Figure 1.4), which are equivalent to Nwogu’s equations extended to 

include an ambient current.

To fulfill the aims of the study, a number of numerical models is required:

1. 1D and 2D numerical models based on Nwogu’s (1993) equations. 

These are the basic models whose results are compared against the 

results of various other models.

2. 1D numerical model based on Schaffer and Madsen’s (1995) equations. 

The improved dispersion relation of this model permits the simulation of 

waves in deeper water.

3. 1D and 2D numerical models based on Chen et al.'s (1998) equations. 

These models permit the effects of waves and co-flowing and counter­

flowing ambient currents to be simulated. Ambient currents are not 

included in the basic models based on Nwogu’s (1993) work.

4. 2D numerical model based on the (unsteady) non-linear shallow water 

equations. This model is used for validation purposes where laboratory 

data are unavailable in the study of 2D current effects.
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5. Following Chen et al. (1998) for comparing the numerical solutions 

based on their third set of equations (see the right hand column of Figure 

1.4) in the study of 1D current effects, two 1D simple numerical models 

are developed by the present author. These two models are based on (i) 

the (steady) non-linear shallow water equations and (ii) the conservation 

of wave action equation.

1.2. Objectives

Six numerical models have been developed and coded up in this study. 

These models have been labelled using the following strategy.

"1D"

v2D, letters - no. (1 to 6)

While the primary objectives of this study are to assess the performance 

of the two new numerical models based on the untested governing equations 

of Schaffer and Madsen (1995) and of Chen et al. (1998), the specific 

objectives are detailed below.

1.2.1. Primary objectives

1.a. 1DDBMW-2 (1D ‘Deeper water’ Boussinesq-type numerical Mode! for 

Waves only - Model No. 2). The present author develops a 1D numerical 

model for wave transformation based on the Boussinesq-type equations 

derived by Schaffer and Madsen (1995). Appropriate boundary 

conditions are determined and incorporated into the numerical model.
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1.b. Compare the solutions from 1DDBMW-2 against:

(i) sinusoidal waves in deep water for h/L = 1 and

(ii) 1 DBMW-1 and laboratory data for h/L < 1/2

to assess the effects of the extended governing equations of 1DDBMW- 

2 (i.e. Schaffer and Madsen, 1995).

2.a. 1DBMWC-3 (1D Boussinesq-type numerical Model for Wave-Current 

interaction - Model No. 3). The present author develops a 1D numerical 

model with boundary conditions for full wave-current interaction based 

on the second set of Boussinesq-type equations derived by Chen et al. 

(1998). The boundary conditions are applicable to the 3 cases: waves 

only, currents only and fully combined wave-current interaction.

2.b. Compare the numerical solutions from 1DBMWC-3 against the those 

from 1 DBMW-1, 1DSSWM (1D Steady, non-linear Shallow Water 

numerical Model) and 1DWACM (1D principle of Wave Action 

Conservation numerical Model) to analyse the effects of an ambient 

current included in one-dimensional formulation.

3. 2DBMWC-5 (2D Boussinesq-type numerical Model for Wave-Current 

interaction - Model No. 5). The present author develops a 2D numerical 

model for full wave-current motion based on the second set of 

Boussinesq-type equations derived by Chen et al. (1998). Determine 

suitable boundary conditions for the 3 cases of waves only, currents only 

and combined waves and currents.

To carry out the above primary objectives related to model development 

and testing, it has also been necessary to develop several numerical models 

based on well established governing equations to test particular scenarios of
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models 1DDBMW-2, 1DBMWC-3 and 1DBMWC-5. The development of the 

specialised models is briefly described under the heading of Secondary 

Objectives.

1.2.2. Secondary objectives

4.a. 1 DBMW-1 (1D Boussinesq-type numerical Model for Waves only - 

Model No. 1). The present author develops a 1D numerical model for 

wave propagation based on the Boussinesq-type equations derived by 

Nwogu (1993). Appropriate boundary conditions are determined.

4.b. Verify 1 DBMW-1 against existing laboratory data.

5.a. 2DBMW-4 (2D Boussinesq-type numerical Model for Waves only - 

Model No. 4). The present author develops a 2D numerical model, 

including the boundary conditions, for wave propagation based on the 

Boussinesq-type equations derived by Nwogu (1993).

5.b. Verify 2DBMW-4 against existing laboratory data.

6.a. 2DUSWM-6 (2D Unstedy, non-linear Shallow Water numerical Model - 

Model No. 6). The present author develops a 2D numerical model with 

appropriate boundary conditions, based on the unsteady, non-linear 

shallow water equations.

6.b. Compare the results of 2DBMWC-5 against those of 2DBMW-4 and 

laboratory data for the waves only case and against the results of 

2DUSWM-6 for the current only case to assess the effects of an ambient 

current included in two-dimensions.
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All discrete forms of the considered governing equations, including the 

matrix systems and boundary conditions are developed and then coded up in 

Fortran by the present author. There is no part of the codes (including for 

instance, the matrix solvers), which has been supplied by or adapted from 

someone else’s work.

This study is limited to the consideration of periodic waves with a single 

frequency due to the application of the Sommerfeld radiation condition at the 

outgoing wave boundaries. Application of the Sommerfeld radiation condition 

to irregular, multi-directional waves is considerably more difficult and is not a 

focus of the present study.

The existing approaches for deriving the original Boussinesq equations of 

Boussinesq (1872) and the Boussinesq-type equations of Peregrine (1967) 

are presented in Chapter Two. A new and systematic approach is introduced 

by the present author to formulate:

• existing Boussinesq-type equations of Nwogu (1993) in Chapter Three 

and Appendix C. Both these derivations are novel and different to each 

other as well as Nwogu’s original derivation,

• existing original Boussinesq equations of Boussinesq (1872), existing 

Boussinesq-type equations of Peregrine (1967) (in terms of the still 

water level horizontal velocity), Wei et al. (1995) and Madsen and 

Schaffer (1998) in Appendix C.

This derivation is for the purpose of the comparison with the existing 

approaches.
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Five new Boussinesq-type equations have been developed by the present 

author during the course of this study. Their development can be found in 

Appendix C. These equations have been labelled using the following strategy:

Letters - no. (A toE)

While these equations are developed here, the assessment of how well they 

simulate wave behaviour is a recommendation for future work.

• BEWCAV-A (2D Boussinesq-type Equations for Wave-Current

interaction presented in terms of the Arbitrary horizontal Velocity - 

Equations A). The present author derives a new set of 2D Boussinesq- 

type (e,p2) equations for the interaction of waves and vertically varied 

currents in terms of the horizontal velocity at an arbitrary elevation 

(z = Za).

• BEWCBV-B (2D Boussinesq-type Equations for Wave-Current

interaction presented in terms of the Bottom horizontal Velocity - 

Equations B). The present author derives a new set of 2D Boussinesq- 

type (s,p2) equations for the interaction of waves and vertically varied 

currents in terms of the horizontal velocity at elevation z = -h.

• BEWCSV-C (2D Boussinesq-type Equations for Wave-Current

interaction presented in terms of the Still water level horizontal Velocity - 

Equations C). The present author derives a new set of 2D Boussinesq- 

type (s,p2) equations for the interaction of waves and vertically varied 

currents in terms of the horizontal velocity at elevation z = 0

• BEWSV-D (2D Boussinesq-type Equations for Waves only presented in 

terms of the Bottom horizontal Velocity - Equations D). The present 

author derives a new set of 2D Boussinesq-type (e,p2) wave equations in 

terms of the horizontal velocity at elevation z = -h by removing all 

dispersion terms associated with currents from BEWCBV-B.
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• FBE20-E (2D Fully non-linear Boussinesq-type Equations accurate to 

2nd Order frequency dispersion terms - Equations E). The present 

author derives a new set of second-order fully non-linear 2D 

Boussinesq-type equations [i.e. including terms up to 0(p2,83p2)] in terms 

of the horizontal velocity at an arbitrary z-elevation.

1.3. Outline of contents

This thesis consists of eight chapters and is organised as follows:

Chapter One: Introduction

In Section 1.1, a brief explanation of the background to this research is

given. This consists of:

(i) motivation for the selection of the basic governing equations of Nwogu;

(ii) a discussion of the basis for extending the basic equations to improve 

the range of applicability of the dispersion relation into deeper water 

through a study of Schaffer and Madsen’s (1995) equations;

(iii) a discussion of the basis for extending the basic equations to include 

ambient currents through a study of Chen et a/.’s (1995) equations;

(iv) the reasoning for the selection of the particular numerical scheme in the 

numerical models developed in this thesis;

(v) the background to the determination of suitable boundary conditions for 

the governing equations under consideration;

(vi) the motivation for the development of new sets of Boussinesq-type 

equations and of the new alternative derivations for the existing 

Boussinesq-type equations.
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Section 1.2 is concerned with the study objectives and how they contribute 

to new knowledge. A short description of the structure of this thesis is given in 

Section 1.3.

Chapter Two: Literature Review

In Section 2.1, the evolution of the Boussinesq-type equations is reviewed 

beginning with those originally derived by Boussinesq (1872). The selection of 

the equations being reviewed is based on their relevance to the present 

study. Similarly in Section 2.2, the numerical models based on those 

Boussinesq-type equations, which are relevant to this study are reviewed.

Boussinesq’s (1872) equations are presented in terms of the bottom 

horizontal velocity and are re-derived by the existing approach in Section 2.3. 

Additionally, in Section 2.4, two sets of Boussinesq-type equations originally 

derived by Peregrine (1967), which are presented in terms of the depth- 

averaged and still water level horizontal velocities, are re-derived by the 

existing method.

Chapter Three: 1D Basic Model

The differences between the present and previous numerical models are 

tabulated in Section 3.1. Section 3.2 focuses on the new derivation of the 

existing Boussinesq-type wave equations of Nwogu (1993). The concept 

behind the free coefficient a for specifying a particular elevation for the 

velocities, which is contained in Nwogu’s (s,p2) equations, is explained in 

Section 3.3 under the heading “Review of dispersion relations’. Numerical 

solution algorithms, which consist of the solution method and the formulation 

and incorporation of appropriate boundary conditions, are considered in 

Section 3.4.

Finally, in Section 3.5, verification of 1 DBMW-1 (the numerical model 

developed in this chapter) using existing laboratory data for two different
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cases of a monochromatic wave train propagating in a channel is included. 

The first set-up includes a channel with a single slope. The second set-up 

incorporates a submerged bar.

Chapter Four: 1D Basic Model with an Improved Dispersion Relation

The governing equations considered in this chapter will be referred to as 

‘deeper water’ Boussinesq-type equations, because they are applicable for 

the range in relative depth h/L < 1. The other Boussinesq-type equations 

which include terms up to 0(s,p2) (e.g. the governing equation in Chapter 

Three) are only applicable up to h/L = 0.5 (see also Figure 1.3).

Comparisons of various Boussinesq-type (e,p2) equations based on Pade 

expansions of the dispersion relation in terms of (kh) are explained in Section 

4.1. Schaffer and Madsen’s (1995) derivation of the Boussinesq-type wave 

equations is in Section 4.2. The free coefficients (a,p,y) contained in Schaffer 

and Madsen’s (s,p2) equations are tuned by the present author using the 

exact dispersion relation of the linear wave theory instead of the approximate 

one (Section 4.3). In Section 4.4, the solution method and boundary 

conditions from Section 4.2 are applied.

Section 4.5 deals with verification of 1DDBMW-2 (the numerical model 

developed in this chapter) to assess the corresponding governing equations 

with the additional terms. These terms result in an improved dispersion 

relation but with the same order of the frequency dispersion i.e. 0(p2). This 

verification consists of three experimental set-ups:

(i) wave propagation in very deep water (h/L=1) in a constant depth 

channel;

(ii) wave propagation up a slope; and

(iii) wave propagation in a channel with a submerged bar.
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The numerical solutions of 1DDBMW-2 for the last two experimental set-ups 

are compared to those of 1 DBMW-1 (from Chapter Three). This comparison 

enables the evaluation of the effects of non-linear wave shape due to the 

additional terms in the corresponding governing equations, which result in an 

improved dispersion relation.

Chapter Five: 1D Basic Model with Current Effects

Section 5.2 deals with the derivation of the first and second sets of 

Boussinesq-type (e,p2) equations of Chen et al. (1998). In this section, non- 

dimensional variables based on wave only and wave-current scaling 

parameters are considered where an ambient current is explicitly mentioned 

in separate terms in the governing equations. The second set of (e,p2) 

equations of Chen et al. with a current is discretised, and suitable boundary 

conditions for three cases (waves only, current only and wave-current motion) 

are developed by the present author for 1DBMWC-3 in Section 5.3.

In Section 5.4, a simple numerical model (1DSSWM) based on the steady, 

non-linear shallow water equations is developed. A second simple numerical 

model (1DWACM) based on the conservation of wave action is developed in 

Section 5.5. Both these simple numerical models are used for making 

comparisons with 1DBMWC-3 where laboratory data are unavailable.

Two experimental set-ups are used to verify 1DBMWC-3 (Section 5.6). 

The first one is a channel with a single slope, which is the same as in Chapter 

Three. This is used to assess the effects of the dispersion terms associated 

with currents in the case of wave motion only. In other words, 1DBMWC-3 

(with the dispersion terms associated with currents included) is operated 

without currents being present. Under this condition, the second set of 

equations of Chen et al. mathematically reduces to Nwogu’s (1993) 

equations. The second set-up is a channel with a submerged bar (Section 

5.7). This is used to evaluate 1DBMWC-3 in the cases of current motion only 

and also wave-current interaction.
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Chapter Six: 2D Basic Model

In Section 6.1, the differences between the present basic numerical model 

(i.e. 2DBMW-4) and previous models based on Nwogu’s (1993) equations are 

tabled. The 2D governing equations being considered are written in 

dimensional form in Section 6.2. The particular numerical algorithms and 

appropriate boundary conditions for the corresponding equations are 

considered in Section 6.3. The filter, which is introduced by the present author 

and is used to enhance computational stability, is also given in this section. 

Finally, 2DBMW-4 is verified using existing laboratory data in scenarios of 

wave propagation over a circular shoal on a flat bottom basin and of wave 

propagation over an elliptic shoal on a sloping bottom basin.

Chapter Seven: 2D Basic Model with Current Effects

Section 7.2 focuses on the development of the new model 2DBMWC-5, 

which is based on the second set of equations of Chen et al., where the 

dispersion terms associated with currents are included. The solution method 

and determination of suitable boundary conditions for the three cases of 

waves only, current only, and for wave-current interaction are also considered 

in this section.

Section 7.3 deals with the development of 2DUSWM-6, which is based on 

the 2D unsteady, non-linear shallow water equations, and is used to assess 

the new model 2DBMWC-5. Numerical solution of the governing equations 

together with the determination of appropriate boundary conditions for the 

current only case is undertaken in this section.

In Section 7.4, a circular shoal on a flat bottom basin is used for the 

experimental set-up. In the first test, 2DBMW-4 and 2DBMWC-5 are run to 

simulate wave propagation only. The solutions from both models are 

compared to evaluate the effects of the inclusion of the dispersion terms 

associated with currents in 2DBMWC-5. In the second test, 2DBMWC-5 and 

2DUSWM-6 are run to simulate current motion only. The results of both
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models are then compared. The last set of tests is concerned with modelling 

co-flowing and counter-flowing current and waves.

Chapter Eight: Conclusions and Recommendations

Chapter Eight contains the general conclusions from the present research. 

Some recommendations for further research into numerical models based on 

Boussinesq-type equations are also presented.
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Chapter Two

Literature Review

2.1. Boussinesq-type equations

Boussinesq (1872) developed the original formulation of the governing 

equations for a free surface flow, which included the effects of surface waves 

but in which the vertical dimension was eliminated. The formulation was in 

terms of the bottom velocity and was restricted to simulating waves moving 

over bathymetry with a flat bottom. Mei and LeMehaute (1966) extended the 

formulation to varying depth in one-dimension. Peregrine (1967) developed 

two new formulations in two horizontal dimensions for the case of varying 

depth in terms of (i) the depth-averaged velocity vector and (ii) the velocity 

vector at still water level. The first formulation became known as the standard 

form of Boussinesq-type equations.

There are two important parameters in association with the non- 

dimensional forms of Boussinesq-type equations. One parameter is a 

measure of the non-linearity and is represented by the ratio of the typical 

wave amplitude to the characteristic water depth (s = aCh/hCh). The other 

parameter is a measure of the frequency dispersion and is represented by the 

ratio of the characteristic water depth to the typical wavelength (p = IWLch).
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The Boussinesq-type equations have been extended based on these two 

parameters.

For many applications, Boussinesq-type equations with lowest order 

(frequency) dispersion terms (i.e. p2 terms) usually give a weak dispersion 

relation. A weak dispersion relation imposes a restrictive water depth 

limitation i.e. an upper limit on the relative depth h/L. To address this problem 

requires Boussinesq-type equations (i.e. the governing equations) with an 

improved dispersion relation, which holds in deeper water. Several alternative 

Boussinesq-type equations with an improved dispersion relation have been 

reported, for example by Witting (1984), Murray (1989), Madsen et al. (1991), 

Madsen and Sorensen (1992), Nwogu (1993) and Schaffer and Madsen 

(1995). Although the dispersion relation of these Boussinesq-type equations 

had been improved, the order of dispersion terms in the partial differential 

equations was unchanged i.e. 0(p2).

Witting (1984) first presented the Pade approximation technique in 

connection with the dispersion relations of linear or Airy wave celerity. This 

was intended to develop Boussinesq-type equations (i.e. partial differential 

equations) with an improved dispersion relation. As a result, a number of free 

coefficients appeared in the resulting Boussinesq-type equations. These 

coefficients were determined by matching a Pade approximation1 to the 

dispersion relation of the linear wave celerity. The dispersion relation for 

Witting’s equations corresponded to a Pade [2,2] approximation in terms of 

wave number k multiplied by the water depth h i.e. kh = 27rh/L. The same 

dispersion relation was also obtained, for example from the equations of 

Madsen et al. (1991), Madsen and Sorensen (1992) and Nwogu (1993). 

Schaffer and Madsen (1995) extended Nwogu’s Boussinesq-type equations 

by incorporating some extra terms in the governing equations thereby 

improving the dispersion relation in deeper water. The resulting Boussinesq-

Pade [m,n] approximations are rational functions in which the numerator is a polynomial of 
order m and the denominator is a polynomial of order n. While polynomial approximations 
suffer from the disadvantage of their tendency for oscillations and hence errors. Pade 
approximations tend to spread the approximation error. [Faires and Burden (2003) p459]
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type equations had a dispersion relation corresponding to a Pade [4,4] 

approximation in terms of (kh).

In contrast to the above investigators, Serre approached the problem of 

non-linearity. Serre (1953) developed an alternative Boussinesq theory by 

combining lowest-order frequency dispersion with full non-linearity (i.e. s is 

arbitrary). In other words, Serre’s equations included terms up to 0(p2,s3p2). 

In 1993, Madsen and Sorensen studied the non-linearity properties of 

Boussinesq-type equations. They developed the evolutionary equations for 

triads of wave-wave interaction and second-order transfer functions for sub- 

and super-harmonics. More recently, Wei et al. (1995) derived a new set of 

Boussinesq-type equations, which they called ‘fully non-linear Boussinesq- 

type equations’. These equations were derived in terms of the velocity at an 

arbitrary z-level as first formulated by Nwogu (1993) instead of the depth- 

averaged velocity as used in the equations of Serre.

Boussinesq-type equations with high order frequency dispersion terms 

with or without non-linearity [including terms up to 0(p4) and 0(sp2) or higher] 

were presented in unpublished work by Dingemans (1973). As reported by 

Dingemans (1997), the equations of Dingemans (1973) were presented in two 

versions; one version was given in terms of the depth-averaged velocity as 

the velocity variable and the other in terms of the velocity variable at still 

water level. Both versions of the partial differential equations retained terms 

up to 0(p4) and 0(ep2) with the assumption that 0(s) = 0(p2). In 1998, 

Madsen and Schaffer introduced higher order Boussinesq-type equations by 

retaining all the terms up to 0(p4), which allowed e to be arbitrary [i.e. 

retaining terms up to 0(p4,e5p4)].

The study of Boussinesq-type equations for wave-current interaction has 

achieved much less attention. As reported by Madsen and Schaffer (1998), 

one consequence of the non-linearity of Boussinesq-type equations is the 

automatic inclusion of wave-averaged effects such as radiation stress, setup, 

undertow and wave-induced currents. This however, is not a guarantee for a
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correct representation of for example, the Doppler shift in connection with 

current refraction and, in fact, it turns out that most Boussinesq-type 

equations fail to model this phenomenon accurately. The Doppler shift 

describes the kinematics of wave-current interaction for waves on a 

homogeneous current field. The Doppler shift is defined by (coa- uck)2 = CT2, 

where coa is the absolute angular frequency, Uc is the horizontal ambient 

current velocity, which is assumed to be uniform over the depth, and cti is the 

intrinsic angular frequency. When the current disappears, co = coa = cri where co 

is the angular frequency.

Work in wave-current interaction, where the current is explicitly2 treated, 

for Boussinesq-type equations was pioneered by Yoon and Liu (1989) and 

then followed by Pruser and Zielke (1990). The equations of Yoon and Liu 

and of Pruser and Zielke achieved a correct Doppler shift with a dispersion 

relation corresponding to a Pade [0,2] approximation in terms of (kh). 

Consequently, because of the relatively low order of Pade approximations, 

both sets of equations were only applicable to the case of relatively small 

wave number (i.e. long wavelength). In the case of waves and ambient 

current motion being in opposite directions, the Doppler shift became invalid 

as the wave numbers increased rapidly (i.e. wavelength become shorter) due 

to the interaction, especially with a strong opposing current.

Chen et al. (1998) presented three sets of Boussinesq-type equations for 

full wave-current motion with a correct representation of the Doppler shift.

(a) Firstly, they generalised the set of partial differential equations of Yoon 

and Liu (1989) to allow for stronger currents. The corresponding 

dispersion relation and the velocity variable of the first set of equations 

derived by Chen et al. (1998) remained identical to that of Yoon and Liu.

(b) Secondly, they extended the derivation of their first set of equations by 

replacing the depth-averaged velocity (u) with the velocity at an

2 The word ‘explicit’ is used here in the sense that there are extra terms in the governing 
equations, which are dispersion terms associated with the ambient current.
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arbitrary elevation (u«) as the velocity variable. This resulted in a second 

new set of Boussinesq-type equations with a dispersion relation 

corresponding to a Pade [2,2] approximation in terms of (kh) instead of a 

Pade [0,2] approximation.

(c) Thirdly, following the approach of Schaffer and Madsen (1995), Chen et 

al. extended their second set of partial differential equations by 

incorporating some extra terms in the governing equations thereby 

improving the dispersion relation. The resulting Boussinesq-type 

equations had a dispersion relation corresponding to a Pade [4,4] 

approximation in terms of (kh).

In addition, the problem of wave-current interaction in the works of Yoon 

and Liu (1989), Pruser and Zielke (1990) and Chen et al. (1998) have been 

explicitly treated within the framework of weakly non-linear waves of 

Boussinesq-type equations. In other words, these sets of equations only 

retained the lowest-order frequency dispersion and non-linearity terms [i.e. 

0(e,p2)] in those terms in the governing equations associated with wave 

motion.

It is seen that Boussinesq-type equations can be derived in terms of 

various types of velocity vector. Typical velocity variables are the still water 

level velocity (u), bottom velocity (Ub), depth-averaged velocity (u), depth- 

integrated velocity component (i.e. volume flux, Q) and the velocity at an 

arbitrary z-level (u«) (see Table 2.1).
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Velocity Vector Investigators

Still water level 
velocity, U

Peregrine (1967)*, Dingemans (1973)*,
Madsen and Schaffer (1998)* and Mera (Present study)*

Bottom velocity, Ub Boussinesq (1872), Witting (1984) and Mera (Present study)*

Depth-averaged 
velocity, U

Serre (1953), Peregrine (1967)*, Dingemans (1973)*,
Freilich and Guza (1984), Yoon and Liu (1989),
Chen et. al. (1998)* and Madsen and Schaffer (1998)*

Depth-integrated 
velocity (i.e. volume 
flux), Q

Abbott et. al. (1978), Hauguel (1980), Murray (1989),
Madsen et. al. (1991), Madsen and Sorensen (1992),
Schaffer and Madsen (1995)* and Borsboom et al. (2000)

Velocity at an 
arbitrary z-level, Ua

Nwogu (1993), Schaffer and Madsen (1995)*,
Wei et al. (1995), Chen et al. (1998)*,
Madsen and Schaffer (1998)* and Mera (Present study)*

Table 2.1. Various Boussinesq-type equations based on different definitions of the velocity 
vector. The superscript * denotes that the investigators presented more than one set of 
Boussinesq-type equations.

2.2. Numerical models based on Boussinesq-type equations

Peregrine (1967) developed a 1D numerical wave model based on his 

own Boussinesq-type equations with the depth-averaged velocity as the 

velocity variable. This model was used to simulate a solitary wave 

approaching a beach of uniform slope. Using a frequency domain wave 

transformation derived from the equations of Peregrine, Freilich and Guza 

(1984) developed two numerical models for the evolution of the wave field in 

a region of shoaling based on the equations of Peregrine. They showed that 

Fourier coefficients of the wave field through the shoaling region were 

accurately predicted. By considering wave spectra derived from Peregrine’s
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equations, Elgar and Guza (1985) showed that the evolution of wave energy 

spectra, wave celerity, free surface elevation skewness and group velocity 

were well represented. Elgar et al. (1990) subsequently demonstrated that the 

evolution of second and third moments of the horizontal velocity and 

acceleration fields was also well predicted.

Abbott et al. (1978) converted the Boussinesq-type equations3 of 

Peregrine (1967) from being in terms of the depth-averaged horizontal 

velocity to being in terms of the depth-integrated velocity (i.e. volume flux). 

The corresponding equations were then augmented with other terms such as 

those that account for a reduced flow area as occurs especially at permeable 

breakwaters. Porosity, which was included in Abbott et a/.’s equations, was 

set to unity in the open water and set to its physical value in the breakwater. 

The resulting equations were discretised using Preissmann’s implicit finite 

difference scheme. In 1D, the resulting numerical model was tested for 

simulation of:

• shoaling waves,

• wave reflection, and

• transmission of waves through permeable breakwaters.

Agreement between computed and mean measured results was within 5% of 

elevation. In 2D, the resulting numerical model was tested to simulate a real 

harbour (i.e. the Danish harbour of Hanstholm). In the case of periodic wave 

inputs, it was seen that the agreement between the numerical solutions and 

the results obtained in the physical model of the real harbour were highly 

satisfactory. In the case of irregular waves, comparisons were made between 

root mean square elevation in physical and numerical models. These 

comparisons agreed reasonably well. Further demonstrations of Abbott et 

a/.’s numerical model for shoaling, refraction, diffraction and partial reflection 

cases were given by Madsen and Warren (1984). They compared Abbott et

3 All Boussinesq-type equations considered here are in 2D unless stated otherwise.
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a/.’s numerical solutions against analytical and experimental results in which 

these comparisons were entirely satisfactory.

The 1D version of the equations of Abbott et al. (1978) was approximated 

by Schaper and Zielke (1984) using their own finite difference scheme. 

Schaper and Zielke also discussed the boundary conditions corresponding to 

total, partial and non-reflecting wave boundary conditions. The resulting 

numerical model was applied to simulate solitary, cnoidal and irregular waves. 

It appears that agreement between the numerical and analytical solutions 

were acceptable.

In 1980, Hauguel converted the equations of Serre (1953) from being in 

terms of the depth-averaged velocity to being in terms of the depth-integrated 

velocity (i.e. volume flux). This conversion gave rise to new terms a and (3 in 

the resulting equations. (It is noted that these terms a and p are completely 

different to the free coefficients in the equations of Schaffer and Madsen, 

1995, and also the coefficients in the equation of Korteweg De-Vries, 1895). 

The resulting equations were then discretised using a fractional step, finite 

difference method4 to form Hauguel’s 1D and 2D numerical models. The 1D 

numerical model was tested at various Courant numbers and numbers of 

points per wavelengths (L/Ax) against analytical solutions. The results 

showed that the best agreement was obtained with a Courant number equal 

to 1 and a spatial resolution of L/Ax = 20. The influence of the bathymetry 

against solitary wave propagation was also studied. A solitary wave 

propagating over a slope showed an incident solitary wave disintegrating into 

several trains of solitary waves of decreasing wavelength.

Meanwhile, the 2D numerical model was applied in coastal engineering 

practice to the case of the solitary waves. The first computations were done in 

the port of Fecamp (a French port on the English Channel). All the 

computational tests were carried out without any bottom friction, so there was

4 The fractional step, finite difference method was used to compute the effect of the advective 
terms in the first step and the friction terms in the second step.
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no damping to cause attenuation of the computed waves. Furthermore, 

Hauguel made no 2D comparisons between his numerical solutions and 

analytical solutions or laboratory/field measurements.

Liu et al. (1985) converted the Boussinesq-type equations of Peregrine 

(1967) from elliptic equations into a set of parabolic equations. A Crank- 

Nicholson implicit finite difference method was used to discretise the new set 

of Boussinesq-type equations. The resulting numerical model was applied to 

the propagation of monochromatic waves together with their non-linearly 

generated harmonics in a wave tank with a bottom topography that acted as a 

focusing lens. Good agreement was obtained between the numerical results 

and the laboratory data.

Murray (1989) presented a new set of Boussinesq-type equations with an 

improved dispersion relation for a water depth up to the incident deep water 

(i.e. h/L = 1/2). The equations of Murray were in terms of the surface elevation 

and the depth-integrated volume flux as dependent variables. A 1D version of 

these equations was solved by Murray using a finite difference method with a 

space-staggered grid and the alternating direction implicit algorithm. Murray 

did not compare the results from his model with laboratory or field data. 

Instead he compared his model results with those of Abbott et al. (1978) and 

noted that there were significant differences.

In 1991, Madsen et al. also derived a set of Boussinesq-type equations, 

which was presented in terms of the free surface elevation and the depth- 

integrated velocity components (i.e. volume fluxes) as the dependent 

variables. As confirmed by Madsen and Sorensen (1992), the derivation of 

the equations of Madsen et al. (1991) neglected all spatial derivatives of the 

seabed in the dispersion terms. For this reason, Madsen and Sorensen 

(1993) revealed that the equations of Madsen et al. (1991) should not be 

applied to a variable bathymetry. Schaffer and Madsen (1995) also stated that 

the equations of Madsen et al. (1991) were valid for constant depth only. 

However, they were applicable up to deep water. Although the equations of
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Madsen et al. were effectively linear in deep water, the non-linear behaviour 

of Madsen et al.'s equations was similar to that of Peregrine’s (1967) 

equations in shallow water.

The equations of Madsen et al. (1991) were discretised using a time- 

centred implicit finite difference scheme with variables defined on a space- 

staggered rectangular grid and the solution obtained using the alternative 

direction implicit (ADI) algorithm. The resulting numerical model was then 

used to simulate the propagation of monochromatic and bichromatic wave 

trains in a channel with a horizontal bottom. To reduce the reflected waves at 

the outgoing wave boundary, a sponge layer technique was applied. 

Comparisons of the results from the model of Madsen et al. and a previous 

model (Abbott et al., 1978) showed that the equations of Madsen et al. were 

seen to improve the solution dramatically. For the 2D case, the waves were 

generated internally at the centre of the fluid domain. Absorbing sponge 

layers were applied along all surrounding boundaries. The computed results 

showed that circular wave patterns occurred perfectly. Finally, the model was 

applied to study wave diffraction in deep water and gave excellent agreement 

with the diffraction curves for wave height in the Shore Protection Manual 

(1984).

Madsen and Sorensen (1992) re-derived the standard form of the 

Boussinesq-type equations of Peregrine (1967) in terms of the depth- 

integrated velocity component (i.e. volume flux) instead of the depth-averaged 

velocity. The resulting equations were capable of describing irregular wave 

propagation over slowly varying bathymetry from deep to shallow water. A 2D 

Boussinesq-type numerical model based on their equations was developed 

using a time-centred, implicit finite difference scheme with variables defined 

on a space-staggered rectangular grid and the solution obtained using the 

ADI algorithm. The numerical model was used to simulate non-linear 

refraction-diffraction waves over a semicircular shoal. Considerable scatter in 

the data was evident in front of the shoal but behind the shoal the agreement 

between the data and the numerical results was acceptable. Generally, the
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amplitude of the first harmonic was slightly overestimated while that of the 

second harmonic was slightly underestimated.

In addition, Sorensen et al. (1998) extended the Boussinesq-type 

numerical wave models of Madsen et al. (1991) and Madsen and Sorensen 

(1992) to the surf zone and swash zone by including wave breaking and a 

moving boundary at the shoreline.

Beji and Battjes (1994) extended the 1D version of the equations of 

Peregrine (1967) by adding two terms into the 1D momentum equation 

thereby improving the dispersion relation. A numerical model based on the 

resulting equations was developed. The model was then applied to a channel 

with a submerged bar. Comparisons of the model results with measured 

surface elevations showed that the model was capable of reproducing the 

essential features of the wave field and non-linear wave transformations.

Witting (1984) developed a new set of Boussinesq-type equations in which 

the bottom velocity was the velocity variable. The governing equations were 

solved using a non-staggered leapfrog finite difference method. The resulting 

numerical model was used to simulate solitary wave propagation. No detailed 

comparison was made with either the results from other numerical models or 

laboratory measurements for specific problems. By referring to analytical 

solutions for solitary wave speeds and amplitudes, it was demonstrated that 

the equations of Witting predicted the wave celerity more accurately than the 

earlier theory of Korteweg and de Vries (KdeV) and the regularised long wave 

(RLW) equations (which were an alternative form of the KdeV equations).

Nwogu (1993) introduced a novel form of Boussinesq-type equations 

using the velocity at an arbitrary distance from still water level as the velocity 

variable. This resulted in a significantly improved dispersion relation and 

made the Boussinesq-type equations of Nwogu applicable to a wider range of 

water depth (h/L<0.5). A 1D version of the corresponding equations was 

solved using the implicit, Crank-Nicholson finite difference scheme. The 

numerical model was then applied to the simulation of regular and irregular
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waves propagating over a concrete beach with a constant slope. 

Comparisons of the model results with laboratory measurements indicated 

that the model was capable of reasonably simulating several non-linear 

effects that occurred in the shoaling of surface waves from deep water. These 

effects included the amplification of the forced lower and higher frequency 

wave harmonics and the associated increase in the horizontal and vertical 

asymmetry of the waves.

Wei and Kirby (1995) presented a Boussinesq-type numerical model 

based on the equations of Nwogu (1993). A high order predictor-corrector 

method was used to advance the solution in time and the spatial derivatives 

were discretised to a sufficient order of accuracy to avoid unwanted numerical 

diffusion errors. The numerical model was then applied to several cases of 

wave propagation in variable depth. Comparisons of the computed solutions 

with laboratory data showed that the model was capable of simulating wave 

transformation from relatively deep water to shallow water. Other 

comparisons of the model results with laboratory measurements indicated 

that the model gave accurate predictions of the height and shape of both 

regular and irregular shoaled waves. The numerical scheme used in the work 

of Wei and Kirby is later adopted to solve all the governing equations in the 

present studies.

Chen and Liu (1995) re-derived the equations of Nwogu (1993) but in 

terms of the velocity potential (instead of the horizontal velocity) at an 

arbitrary elevation and the free surface displacement. The dispersion relation 

of the corresponding equations was found to depend strongly on the choice of 

a free coefficient value, as was the case for Nwogu’s original formulation. The 

modified Boussinesq-type equations of Chen and Liu contained fourth-order 

spatial derivatives. This made the equations more complicated to solve in the 

time domain. For this reason, Chen and Liu then applied the parabolic 

approximation to the modified equations in the frequency domain. Chen and 

Liu next developed 2 Boussinesq-type numerical models: (i) a small-angle, 

parabolic model for waves propagating primarily in a dominant direction; and
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(ii) an angular-spectrum, parabolic model for studying the effect of approach 

directions on the oblique interaction of two identical cnoidal wave trains in 

shallow water.

Kaihatu and Kirby (1998) presented an alternative parabolic, frequency 

domain, wave transformation equation starting with the equations of Nwogu 

(1993). The equation was then discretised using a Crank-Nicholson finite 

difference scheme. The discretisation was similar to that used by Liu et al. 

(1985). To investigate the linear characteristics of the new equation, the 

linearised version of the numerical model was compared to:

• the measurements of Berkhoff et al. (1982) and

• the linear parabolic mild-slope model.

The comparison showed that the linear characteristics of the model were very 

similar to those of Airy wave theory well beyond the shallow water limit i.e. 

h/L > 1/20. Finally, Kaihatu and Kirby compared the numerical solutions of 

their numerical model with non-linear terms included to:

• laboratory measurements in an unpublished work by Whalin (1971),

• the solutions of Liu et al.’s (1985) 2D model and

• the solutions of Chen and Liu’s (1995) 2D model.

The comparisons showed that the models of Kaihatu and Kirby and of Chen 

and Liu were in better agreement with laboratory data in intermediate water 

depth than the model of Liu et al..

Wei et al. (1995) derived a set of fully non-linear Boussinesq-type 

equations using the velocity at an arbitrary z-level as the velocity variable. A 

high order finite difference model, based on the new equations was 

developed and applied to the study of two canonical problems

• solitary wave shoaling on a slope and

• an undular bore propagating over a horizontal bed.
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Results of the model with strong non-linearity (i.e. fully non-linear) and without 

strong non-linearity (i.e. weakly non-linear) were compared in detail to the 

solutions from a boundary element model of the fully non-linear, potential flow 

problem developed by Grilli et al. (1989). The comparisons showed that the 

fully non-linear variant of the Boussinesq-type numerical wave model of Wei 

et al. was found to predict wave heights, wave celerities and particle 

kinematics more accurately than the weakly non-linear wave model.

Furthermore, Nwogu (1996) extended the set of fully non-linear 

Boussinesq-type equations of Wei et al. (1995) to include depth limited wave 

breaking, run-up and breaking-induced currents. Nwogu achieved this by 

coupling the mass and momentum equations with a one-equation model for 

the temporal and spatial evolution of the turbulent kinetic energy produced by 

wave breaking. A 2D numerical model based on the new equations was 

developed and applied to simulate the shoaling and run-up of regular and 

irregular waves on a constant slope beach and wave-induced currents behind 

a detached breakwater. An iterative Crank-Nicholson finite difference scheme 

was employed to solve the governing equations, with a predictor-corrector 

scheme to predict the initial values. The computational domain was 

discretised using a rectangular staggered grid. Comparisons of the model 

results with measured laboratory data showed that it was capable of 

reproducing:

(i) a highly asymmetric wave profile in the surf zone,

(ii) the breaking of individual waves in an irregular wave train,

(iii) the cross-spectral transfer of energy due to non-linear wave-wave 

interactions and

(iv) the decrease in wave energy through the surf zone in an irregular wave 

train.

Borsboom et al. (2000) developed a new set of Boussinesq-type 

equations that was based on the depth-integrated transport of continuity and 

momentum. Both mass and momentum were strictly conserved. This set of
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equations was presented in terms of the depth-integrated velocity (i.e. volume 

flux). To assess the performance of these equations, a 1D numerical model 

based on the equations was developed and then applied to the simulation of 

a monochromatic wave train propagating over a submerged bar. The 

agreement with measurements was not as good for the shorter waves behind 

the bar, and for higher amplitude waves.

Yoon and Liu (1989) derived a new set of Boussinesq-type equations, 

which included the effects of both depth variations and varying currents5 on 

weakly non-linear waves. These equations were derived by assuming the 

magnitude of the current velocity to be greater than the wave orbital velocity 

but weaker than the group velocity. The effects of vorticity in the current field 

were considered. The depth-averaged horizontal velocity components and the 

free surface elevation were decomposed into the wave and current 

components. They developed a 2D numerical model based on their equations 

using a Crank-Nicholson finite difference scheme. The resulting numerical 

model was applied to simulate the propagation of shallow water waves over 

rip currents on a uniform slope to study the effects of the non-linearity. 

Comparisons of the results of the full model with those of the linearised model 

showed that the non-linearity grew and the Boussinesq-type equations were 

fully utilised as the waves propagated into shallow water and encountered the 

current. Another scenario modelled was the propagation of cnoidal waves 

over an isolated vortex ring in constant depth to analyse the effects of 

refraction and diffraction. Comparisons of the wave height in the focal zones 

indicated that the predictions of the model with non-linear terms included 

were lower than those of the linearised model. The non-linearity improved the 

diffraction in which there is a transfer of wave energy in the lateral direction.

Priiser and Zielke (1990) extended the Boussinesq-type equations of 

Peregrine (1967) to include ambient current effects. The resulting equations

5 The currents horizontal velocity varied appreciably within a characteristic wavelength. 
However, the horizontal velocity components were nearly uniform throughout the entire 
depth.
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were used to investigate irregular, weakly non-linear waves propagating and 

refracting on an ambient current. The validity of the equations of Pruser and 

Zielke was analysed by comparing their governing equations with Airy wave 

theory. In the case of sinusoidal waves, these equations were valid if the ratio 

of the water depth to wave length (h/L) <0.1 and Froude number (Fr) was in 

the range of - 0.2 < Fr < 0.2. Fr < 0 indicates waves and a current in opposite 

directions. A 2D numerical model based on these Boussinesq-type equations 

was developed and used to simulate irregular waves with a current in a flume. 

The model results were in good agreement with the solution of Longuet- 

Higgins and Stewart (1961).

As explained above, Chen et al. (1998) presented three sets of 

Boussinesq-type equations for fully combined wave-current motion. Following 

the approach of Yoon and Liu (1989), Chen et al. (1998) derived a set of 

Boussinesq-type equations based on the depth-integrated continuity equation 

and Euler equations of motion. The equations of Chen et al. and those of 

Yoon and Liu were presented in terms of the depth-averaged velocity as the 

velocity variable. Both formulations achieved a correct representation of the 

Doppler shift with the dispersion relation corresponding to a Pade [0,2] 

approximation in terms of (kh). When the current vanished, both sets of 

equations reduced to those of Peregrine (1967) in terms of the depth- 

averaged horizontal velocity.

The next advance by Chen et al. (1998) was to re-formulate their 

equations by replacing the depth-averaged velocity with the velocity at an 

arbitrary elevation as the velocity variable. The elevation was expressed as a 

proportion of the depth. Consequently if the depth was varying in space, so 

too was the elevation at which the horizontal velocity was defined. This 

resulted in a new set of Boussinesq-type equations with a correct Doppler 

shift in which the dispersion relation corresponded to a Pade [2,2] expansion 

in terms of (kh). These equations reduced to those of Nwogu (1993) for the 

wave only case.
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The third and last development by Chen et al. (1998) was to extend these 

equations by introducing four new free coefficients (Pi,£2,71,72) < 0(1) into the 

governing equations thereby improving the dispersion relation. The resulting 

equations had a dispersion relation corresponding to a Pade [4,4] 

approximation in terms of (kh). This development technique followed the 

approach of Schaffer and Madsen (1995). In the case of pure wave 

propagation, these formulations reduce to those of Schaffer and Madsen.

Chen et al. solved a 1D version of their third set of equations using an 

implicit finite difference method with a space-staggered grid. The governing 

equations were discretised using a fourth-order centred finite difference 

approximation for the first-order spatial derivative terms and second-order 

centred finite difference approximations for the second- and third-order spatial 

derivative terms. This numerical approach was adopted from the work of Wei 

et al. (1995). At the outgoing wave and outflow boundaries, the Sommerfeld 

radiation condition (i.e. r|t+Cqx=0) and the sponge layer technique

introduced by Larsen and Dancy (1983) were combined to radiate long waves 

and dissipate unwanted currents. In the case of pure current motion, 

comparisons of the results of the Boussinesq-type numerical model of Chen 

et al. with those of the numerical model for the steady, non-linear shallow 

water equations gave excellent agreement. For fully coupled, wave-current 

motion, wave envelopes determined from the results of the numerical model 

for wave action conservation equation were compared with those of the 

Boussinesq-type numerical model.
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2.3. Derivation of the equations of Boussinesq (1872)

Unlike the Boussinesq-type equations, the original Boussinesq equations 

developed by Boussinesq (1872) can be obtained directly without passing 

through non-dimensional forms. These Boussinesq equations consist of the 

continuity equation and two horizontal momentum equations, and are only 

applicable to a horizontal bottom. The basic idea can be explained as follows.

Consideration of incompressible inviscid fluid flow, the governing equation 

is given by the 3D continuity equation as

V*u + w2 =0 (2.1)

where V is the 2D operator as defined as V = (dldx,dldy), u = (u,v) is the 

horizontal velocity, w is the vertical velocity and the subscript z again denotes 

partial differentiation with respect to the z-direction. The dynamic free surface 

boundary condition and kinematic boundary conditions at the free surface 

elevation and seabed are respectively

(9
C

LIIQ
_ at z = rj(x,y,t) (2.2)

r|, +u» Vr| = w at z = r|(x,y,t) (2.3)

w + u* Vh = 0 at z = -h(x,y) (2.4)

where surface tension has been neglected, pa is atmospheric pressure and 

the subscript t denotes partial differentiation with respect to time.

The unsteady Bernoulli equation can be expressed as

Ot+^(u2 + w2) + —+ gz = 0 (2.5)
P

where O is the velocity potential.

For an irrotational flow, the curl of the velocity vector v [where v = (u,w)] 

must be zero

V x v = 0 = (wy - v2)i + (Uz - Wx)j + (Vx - uy)k (2.6)
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where V is the 3D operator defined by V =(d/dx,d/dy,d/dz). The curl of the 

velocity vector is a measure of the vorticity. The velocity vector can therefore 

be conveniently represented as

u = VO, w = 0Z (2.7)

The continuity equation (2.1) and the irrotationality condition (2.6) can be 

combined to form the Laplace equation

V • V<D(x, y, z, t) + <Da(x, y, z, t) = 0 (2.8)

Similarly, the kinematic boundary conditions become

qt + VO • Vr| = Oz at z = rj(x,y,t) (2.9)

O2+VO*Vh=0 at z = -h(x,y) (2.10)

and the unsteady Bernoulli equation becomes

<J>, +|[(v<J>)2+(4>z)2] + £ + gz = 0 (2.11)
P

The Bernoulli equation (2.11) can be applied at the water surface and is

0t +?[(V(1))2 +(^2)2] + - + 9rl = 0 at z = r|(x,y,t) (2.12)
P

Equation (2.12) is the new free surface, dynamic boundary condition in terms 

of the velocity potential O. The fluid is assumed to be at atmospheric pressure 

i.e. pa = 0. As a result, the free surface, dynamic boundary conditions [(2.2) 

and (2.12)] then become

p = 0 at z = r|(x,y,t) (2.13)

(I>t+i[(V(I))2+((I)z)2] + grl = 0 at z = Ti(x,y,t) (2.14)

Applying the V operator to equation (2.14) then allows this equation to be 

recast in terms of u

ut + (u*V)u + wVw + gVr| = 0 at z = rj(x,y,t) (2.15)
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By the use of the kinematic, bottom boundary condition for a horizontal 

bottom Oz =0 at z = -h, the Laplace equation (2.8) is integrated twice with 

respect to z leading to

0(x,y,z,t) = 0(x,y,-h,t)- J* J*[V* VO(x,y,z,t)]dzdz (2.16)

As reported by Dingemans (1997), the principal approximation now consists 

of the observation that for shallow water, the horizontal velocity VO is not 

much different from the velocity at the bottom VOb, where Ob(x,y,t) = 

0(x,y,-h,t) is the value of the velocity potential at the bottom. The horizontal 

acceleration is also assumed to be nearly equal to its value at the bottom i.e. 

V*VO = V«VOb. Equation (2.16) can be solved as

®(x, y, z, t) = Ot.(x, y, t) - V • VOb (2.17)

Substitution of the approximation (2.17) into equation (2.16) leads to

0(x, y,z, t) = Ob(x, y, t) - ^Z + h^- V • VOb + ^Z + h^ V2(V • VOb) (2.18)
2! 4!

The approximation (2.18) can be re-written in terms of the velocities u = VO 

and w = Oz, (again assuming the seabed to be flat), that is

u(x, y, t) = VO(x, y, z, t) = Ub(x, y, t) - V(v . Ub) + V[V2(V . Ub)]

(2.19)

w(z,t) = Oz(x,y,z,t) = -(z + h)V»Ub + ^Z-+— V2(V »Ub) (2.20)
3!

where again Ub is the horizontal velocity vector at the seabed. Substituting the 

approximations (2.19) and (2.20) into the kinematic and dynamic boundary 

conditions at the free surface elevation [(2.9) and (2.15)] and retaining the 

derivatives up to the third-order gives the set of original Boussinesq equations 

as
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r|t +Ub*Vr| + (r| + h)(V.Ub) = -±h3V2(V.Ub) (2.21)

Ubt +(ub» V)Ub + gVri = jh2V(V»Ubt) (2.22)

The original Boussinesq equations can be presented in non-dimensional 

forms by making use of the non-dimensional variables defined in Section 

2.4.1 below. Substitution of equations (2.31) and (2.32) into equations (2.9), 

(2.15), (2.19) and (2.20) leads to the following non-dimensional equations

tiV+suWti'—t-w'=0 at z' = et|' (2.23)
P

u't.+£(uW)u'+-^- w'V'w'+V'r|'= 0 atz’ = er|’ (2.24)

u’ = u’i, -n2 (z^ i V'(V'»u'b) + p4 (Z^ * v[V'2 (V'.u'b)] + 0(p6)

(2.25)

w's -p2 (z'+h’ )V'.u' b + p4 V'2 (VWb) + 0(p6) (2.26)

where V’ = (d/dx',d/dy'). Substituting the non-dimensional velocities [(2.25) and 

(2.26)] into the non-dimensional kinematic and dynamic boundary equations 

at the free surface elevation [(2.23) and (2.24)] and assuming 

O(s) = 0(p2) « 1 to give the non-dimensional forms of the original Boussinesq 

equations

ri^.+su'b* V'r|'+(Er|,+h')(V'»u'b)-|i2 jh’3 V'2 (V'«u'b) = 0(ejj.2,(j.4) (2.27)

u'b,. + E(u’b• V')u'b + Vif-p2 jh'2 V'(V’.u'b,.) = 0(sp2,p4 ) (2.28)

it is clear that only terms up to 0(s,p2) are retained in equations (2.27) and 

(2.28). If the primes are dropped, these equations become

n, +EUb.Vi1 + (ETi + h)(V.Ub)-n2^h3V2(V.Ub) = 0(£p2,n4) (2.29)

Ub, +£(Ub» V)Ub + Vq-p2 jh2V(V.ub,) = 0(£p2,p4) (2.30)
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2.4. Derivation of the equations of Peregrine (1967)

2.4.1. Non-dimensional variables

Two important length scales are the characteristic water depth hch for the 

vertical direction and the typical wavelength Lch for the horizontal direction. 

For effects due to the motion of the free surface, the typical wave amplitude 

ach is an important length scale. The parameters s = aCh/hch and n = hch/Lch 

are measures of the non-linearity and frequency dispersion respectively, and 

are assumed to be small i.e. O(s)« 1 and O(p)« 1. The independent, non- 

dimensional variables are defined as follows

where again g is the gravitational acceleration and primes are used to denote 

non-dimensional variables. However, the definitions of the dependent, non- 

dimensional variables adopted here follow those used by Nwogu (1993) 

rather than those used by Peregrine (1967). The dependent, non-dimensional 

variables are defined as follows

, u , V _ V w (2.32a)U — -------, v — ,------ , w
s-yghch Eyghch Eyghch

, n h,_ h pq i h , p
3ch hch pgach

(2.32b)

2.4.2. Continuity equation and Euler equations of motion

The governing equations for an inviscid, incompressible fluid in motion are 

the continuity equation and Euler equations of motion

V•u + wz =0 (2.1)

ut +(u» V)u + wuz + — Vp = 0 (2.33)
P
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1
wt +(u*V)w + ww2 + — p2 + g = 0

P
(2.34)

where u = u(x,y,z,t), u = (u,v), w = w(x,y,z,t) and p = p(x,y,z,t).

2.4.3. Boundary conditions

The fluid motion must satisfy the dynamic boundary condition at the free 

surface and the kinematic boundary conditions at the free surface and seabed

oIIQ
. at z = r] (2.13)

w = r|t +u* Vq at z = r| (2.3)

w = - u • Vh at z = -h (2.4)

where r| = r|(x,y,t) and h = h(x,y). The irrotationality condition (2.6) can be 

written as

u2 - Vw = 0 (2.35a)

uy - vx = 0 (2.35b)

where subscripts x and y denote partial differentiation with respect to the x- 

and y-directions respectively.

2.4.4. Depth-integrated continuity and momentum equations

The depth-integrated continuity equation can be obtained by integrating 

the continuity equation (2.1) from the seabed to the free surface elevation and 

applying the kinematic boundary conditions [(2.3) and (2.4)], that is

r|t + V • Q = 0 (2.36)

where Q=Pudz and Q = Q(x,y,z,t). Similarly, the depth-integrated
J-h

momentum equation is obtained by integrating the horizontal momentum
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equation (2.33) from -h to r| and applying the dynamic and kinematic 

boundary conditions [(2.13), (2.3) and (2.4)]. This results in

| £u dz + (u . V) £u dz +± [V £p dz - p|2= n Vh] = 0 (2.37)

Alternatively, by following Phillips (1977), both Nwogu (1993) and Chen et al. 

(1998) expressed the depth-integrated momentum equations as defined by 

equations (2.38) instead of (2.37).

— Pudz + — Pu2 dz + — Puvdz + -[— fn p dz — p| hx] = 0
r)t Th py J-h P\/ J-h p J-h ^z_ h

(2.38a)

— Pv dz + — Puv dz + — Pv2 dz +—[— Ppdz-p| h ] = 0
r)t J-h p)Y J-h r\j J-h p J-h ^z h V

(2.38b)

2.4.5. 1D horizontal equations

Using the non-dimensional variables defined by equations (2.31) and 

(2.32), equations (2.1), (2.33), (2.34), (2.13), (2.3), (2.4), (2.35a) and (2.36) 

can be converted into non-dimensional forms. After non-dimensionalising and 

dropping the primes, for one-dimensional horizontal equations, these 

equations become (2.39) through to (2.46)

Governinq equations:

P2ux + wz =0 (continuity) (2.39)

p2ut +ep2uux + ewuz + p2px =0 (x-momentum) (2.40)

2 s2 1 nswt +6 uwx + — wwz + epz +1 = 0 (z-momentum) (2.41)
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Boundary conditions:

P = 0 at z = 8ti (2.42)

w = p2r|t +e|i2ur|x at z = sr| (2.43)

w = -fi2uhx at z = -h (2.44)

uz-wx=0 (irrotational flow) (2.45)

and

r|t + Qx = 0 (depth-integrated continuity) (2.46)

where Q=fET1udz, u = u(x,z,t), w = w(x,z,t), p = p(x,z,t), ri = ri(x,t) and
J—h

h = h(x)

2.4.5.1. First-order 1D horizontal equations

Following the perturbation approach by Dingemans (1997), the dependent 

variables rj, u, w, p and Q are expanded as a series

f(x,z,t) = fo(x,z,t) + efi(x,z,t) + s2f3(x,z,t) + ... (2.47)

with all fi = 0(1).

Equation (2.41) can be stated as

poz+1 = 0(sp2) (2.48)

Integrating equation (2.48) over z to give

po = -z + 0(ep2) (2.49)

The first-order form of the vertical Euler equation of motion (2.41) is piz =0, 

so that

pi = Ci(x,t) (2.50)
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where ci is an integration constant and found from the first-order form of the 

dynamic, free surface boundary condition (2.42), that is

po + spi = 0 at z = sr|i (2.51)

Substitution of equation (2.49) into (2.51) leads to

Pi = r|i (2.52)

The first-order form of the irrotational condition (2.45) is uiz =0 and so

ui = Ui(x,t) (2.53)

where Ui is an integration constant and obtained by integrating the first-order 

form of equation (2.39) for the continuity equation from -h to z and applying 

the first-order form of equation (2.44) for the kinematic, seabed boundary 

condition to give

wi = — p2[(h + z)Ui]x (2.54)

The depth-integrated continuity equation (2.46) and the horizontal momentum 

equation (2.40) in the first-order forms respectively become

r|it + Qix = 0 (2.55)

Uit + rpx = 0 (2.56)

where Qi = hUi.

2.4.5.2. Second-order 1D horizontal equations

The second-order vertical Euler equations of motion is

sp2z=-wit (2.57)

Substituting equation (2.54) for wi into equation (2.57) and integrating over z 

to give

P2 = C2 + —zlhUt),,, + —|z2U,x, (2.58)
s s
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where C2 is an integration constant and obtained from the second-order form 

of the dynamic, free surface boundary condition (2.42), that is

po + epi + e2p2 = 0 at z = s2r|2 (2.59)

Substitution of equations (2.49) for po, (2.52) for pi and (2.58) for p2 into (2.59) 

gives

C2 = r)2 (2.60)

As a result, equation (2.58) can be re-written as

P2 = r|2 + — z(hUt,), + — ^z2Uixl 
s s

The second-order form of the irrotational condition (2.45) is

1
U2Z = — Wl, 

8

(2.61)

(2.62)

Substituting equation (2.54) for wi into (2.62) and integrating over z to obtain

U2 = U2- —z(hUi)„ - —jz2Ui„ (2.63)
8 8

where U2 is an integration constant and function of (x,t). The second-order 

form of the depth-integrated continuity equation (2.46) and of the horizontal 

momentum equation (2.40) are

r|2t + Q2 x = 0 u (2-64)

U2t + 8UiUix + p2x =0 (2.65)

Expressions for Q1 and Q2 can be found from the definition of Q

Q1 + 8Q2 = fn(ui + eu2)dz (2.66)
J-h

Substituting equations (2.53) for ui and (2.63) for U2 into (2.66) to give

Qi = hUi (267)
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Q2 = hlh + n,U, + i^-[lh2(hU,)„ —^■h3Uixx] (2.68)

The first-order depth-integrated continuity equation (2.55) and the first-order 

horizontal momentum equation (2.56) become

r|it +(hlli)x = 0 (2.69)

Uit+qix=0 (2.70)

and the second-order equations (2.64) and (2.65) become

r|2, +(hU2> =-(t|,Ui) [-jh2(hUi),„ -jh3Uixx]x (2.71)
c

U2t+sUiUix+ri2x =0 (2.72)

The first- and second-order equations are therefore combined by adding s 

times the second-order equations to the corresponding first-order equations. 

This results in

<ni + er,2), + (hUi + EhU2), + E(T1,U,)„ = -n2[jh2(hUi)xx - {h3U, (2.73)

(Ui + sLh), + eLIiUix + (r|i + et|2)x = 0 (2.74)

2.4.5.3. 1D horizontal equations in terms of u

Equation (2.69) can be written in terms of Qi and Q2 as

(r|i + crp), + (Q1 + eQ2)x = 0 (2 75)

where

Q, + £Q2 = hU, + EhU2 + £T1,U1 + n2[|h2(hU,)xx -1h3Uixx] (2.76)

The depth-averaged horizontal velocity u is defined as

e lj (x, t) = ————fnu(x,z,t) dz (2.77)
h 4- pn Th
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therefore

Ql + cQ2 = (h + 8T|)U (2.78)

hu = Qi - ErpIJi + eCh + 0(e2) (2.79)

Substitution of equation (2.76) into (2.79) leads to

u=U, + £U2 + ^h(hU,)„-±h2UiJ (2.80)

or

U. + eU^u-n^hu^-ihX,] (2.81)

From equation (2.81), it is clear that UiUix = u ux + 0(e2). Substituting

equation (2.81) into equations (2.73) and (2.74) gives the 1D Boussinesq-type

equations of Peregrine (1967) in terms of the depth-averaged horizontal

velocity u as

rlt+[(h + 8q)u]x =0 (2.82)

ut +8uux +r|x = P2[-jh(hut)xx -^h2uxxt] + 0(8p2,p4) (2.83)

2.4.5.4. 1D horizontal equations in terms of u

The horizontal velocity at z = 0 is defined as

eu(x,t) = u(x,0, t) (2.84)

Considering equations (2.53) for ui and (2.63) for U2, u(x,z,t) can be

expressed as

U(X, Z, t) = 8Ui(X, z, t) + E2U2(X, z, t)

= sUi(x,t) + s2U2(x,t)-8fi2[z(hUi)xx -yZ2Uixx] (2.85)

Substitution of z = 0 into equation (2.85) gives the expression for u

U = U1 + 8U2 (2.86)
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Substituting equation (2.86) into (2.73) and (2.74) gives the 1D Boussinesq- 

type equations of Peregrine (1967) in terms of the still water level horizontal 

velocity u as

r|t +[(h + £ti)u]x =-^h2(hu)„-ih3uJx+0(EH2,M4) (2.87)

ut + euux +r|x = 0(ep2,fi4) (2.88)

2.4.6. 2D horizontal equations

In the two-dimensional horizontal plane, the derivation of the Boussinesq- 

type equations of Peregrine (1967) follows the same lines as the 1D case in 

Section 2.4.5. Instead of equations (2.39) through to (2.46) in one-dimension, 

the two-dimensional analogues are written below with vector quantities such

as u = (u,v) written in bold letters.

Governing eauations:

(i2V*u +wz = 0 (2.89)

p2ut + sp2(u • V)u + ewuz + p2Vp = 0 (2.90)

e2

cwt + b2(u • V)w h—rWW + epz +1 = 0 (2.91)
P

Boundary conditions:

p = 0 at z = sr| (2.92)

w = p2r|t + ep2(u • Vq) at z = sr| (2.93)

w = -|i2(u* Vh) at z = -h (2.94)

Irrotational conditions:

uz - Vw = 0 (2.95a)

u - v =0y x (2.95b)
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Depth-integrated continuity equation:

nt+V.Q = 0 (2.96)

where Q= Pudz, u = u(x,y,z,t), w = w(x,y,z,t), p = p(x,y,z,t), rj = rj(x,y,t)
J-h

and h = h(x,y). The dependent variables r|, u, w, p and Q are then expanded 

as

f (x, y, z, t) = f o(x, y, z, t) + ef i(x, y, z, t) + s2f 3(x, y, z, t) +... (2.97)

where all fi = 0(1).

Equations (2.53) for ui and (2.63) for U2 are converted to two-dimensional 

forms

ui(x,y,z,t) = Ui(x,y,t) (2.98)

2 2
U2 = u2 - iL zv[V . (h Ui)l - j z2V(V . Ui) (2.99)

8 S

The 2D equivalent of equation (2.85) for u becomes 

u( x, y, z, t) = £Ui(x, y, z, t) + e2u2(x, y, z, t)

= eUi(x, y, t) + e2U2(x, y.t) - eh2{zV[V . (hUi)] - j z2V(V • Ui)}

(2.100)

The 2D version of the combined first- and second-order 1D depth-integrated 

continuity equation (2.75) becomes

(r|i + er|2)t + V • (Qi + eCh) = 0 (2.101)

In the same way, the 2D version of the 1D horizontal momentum equation 

(2.74) becomes

(Ui + eU2)t + e(Ui • V)Ui + V(ni + et|2) = 0 (2.102)

Literature Review



Chapter Two 64

2.4.6.1. 2D horizontal equations in terms of u

Introducing su(x,y,t) = u(x,y,0,t) and substituting into equation (2.100) 

gives

u(x, y, t) = Ui(x, y, t) + e(J2(x, y, t) (2.103)

thus

Qi + eQ2 = hu + sr|U + p2{{ h2V[V • (hu)] - { h3V( V • u)} (2.104)

Equations (2.103) and (2.104) are substituted into equations (2.101) and 

(2.102) to give the 2D Boussinesq-type equations of Peregrine (1967) in 

terms of the still water level velocity u (i.e. u at z = 0)

iit + V• [(h + sti)u] = - p2v{|h2V[V• (hu)]~h3V(V• u)} + 0(ep2,p4)

(2.105)

ut + b(u • V)u + Vr| = 0(c|i2,p4) (2.106)

In dimensional variables, equations (2.105) and (2.106) are

ri, +V.[(h + r|)u] = -V{|h2V[V.(hu)]-|h3V(V.u)} (2.107)

ut +(u* V)u + gVr| = 0 (2.108)

2.4.6.2. 2D horizontal equations in terms of u

The 1D equations (2.78) and (2.81) can be converted into the 2D forms 

Qi + sQ2 = (h + er|)u (2.109)

Ui + eU2 = u - p21 h V[V • (hu)] + p2 j h2V( V • u) (2.110)

Substituting equations (2.109) and (2.110) into equations (2.101) and (2.102) 

leads to the 2D Boussinesq-type equations of Peregrine (1967) in terms of 

the depth-averaged horizontal velocity u
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rit + V • [(h + 8T|)u] = 0

ut + £(U • V)u + Vti = n2{|hV[V .(hu,)] -1h2V(V . u,)} + 0(eh2

In dimensional quantities, equations (2.111) and (2.112) are 

^ • [(h + ti)u] = 0

u t + (u • V)u + g Vq = | h V[V • (hut)] - J h2V( V • u t)

(2.111)

■ H4) 

(2.112)

(2.113)

(2.114)
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Chapter Three

1D Basic Model

3.1. Introduction

In recent investigations, Boussinesq-type equations have been developed 

to enable the prediction of the shape of waves as they propagate from deep 

water to shallow water. Peregrine (1967) derived two sets of Boussinesq-type 

equations for water of varying depth, which were able to describe the non­

linear transformation of irregular, multidirectional waves in shallow water. 

These formulations were based on the Euler equation of motion and the 

depth-integrated equation for the conservation of mass of an incompressible, 

inviscid fluid.

Nwogu (1993) developed a new approach in the derivation of a novel set 

of Boussinesq-type equations that were expressed in terms of the velocity at 

an arbitrary elevation or z-level as the velocity variable. This was in contrast 

to the commonly used depth-averaged velocity, which was used in the 

standard form of the Boussinesq-type equations derived by Peregrine (1967), 

or depth-integrated velocity components (i.e. volume flux) as developed, for 

example by Abbott et al. (1978), Madsen et al. (1991) and Madsen and 

Sorensen (1992). Numerical experimentation to determine the wave celerity 

error in the linearised formulations of Nwogu showed that Nwogu’s equations
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were applicable to incident deep water waves (i.e. h/L = V2) with a particular 

value of a, where a = 0.5(Za/h)2 +za/h (Figures 3.2, 4.1 and 4.2). z« defines

the elevation of the horizontal velocity. A Crank-Nicholson implicit finite 

difference scheme was employed by Nwogu together with a predictor- 

corrector method to estimate the initial values of the dependent variables 

when advancing each time step.

Nwogu demonstrated that the water surface elevation of a regular wave 

train and the surface elevation spectra of irregular wave trains were well 

predicted. Although the effect of bottom friction was not included in Nwogu’s 

model, comparisons of Nwogu’s numerical model results and laboratory data 

seemed to indicate that bottom friction was not an important factor for the 

extent of the concrete beach, wave conditions and beach slope used in 

Nwogu’s experiments.

Subsequently, Wei and Kirby (1995) developed a high order numerical 

scheme for Nwogu’s formulations. A fourth-order predictor-corrector method 

was used to advance the solution in time and the spatial derivatives were 

discretised to a sufficient order of accuracy to avoid contamination of the 

second- and third-order spatial derivatives in the governing equations by the 

truncation errors. For the 1D version of the numerical model, Wei and Kirby 

also showed good predictions for the simulation of solitary waves propagating 

over a very long, flat bottom and for the simulation of random waves evolving 

on a slope. In another investigation of the 1D version of the numerical model 

reported in the same reference, they studied random waves propagating over 

a channel with a slope. Comparisons of the numerical model results with 

laboratory measurements showed that the numerical model reproduced the 

waveform quite well.

In spite of the equations of Nwogu (1993) having been solved by Nwogu 

and by Wei and Kirby (1995), these equations are still of interest to study. In 

the present study, the 1D version of the Boussinesq-type equations derived 

by Nwogu (1993) is discretised by the present author using the numerical
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approach used by Wei and Kirby (1995). However, the boundary conditions, 

which are determined here, are different to the boundary conditions in the 

work of Wei and Kirby (1995). A comparison of the differences in the 

approaches taken by various investigators can be found in Table 3.1.

Investigators Nwogu (1993) Wei and Kirby (1995) Mera (present study)

Governing Nwogu (1993) Nwogu (1993) Nwogu (1993)
equations

Numerical Crank-Nicholson and Wei and Kirby (1995) Wei and Kirby (1995)
scheme Predictor-Corrector (Fourth- and second-order (Fourth- and second-order

accurate finite difference accurate finite difference
schemes for spatial schemes for spatial
derivatives. Third-order derivatives. Third-order
predictor & fourth-order predictor & fourth-order
corrector schemes for time corrector schemes for time
integration) integration)

Incoming wave 1) Regular waves: 1) Regular waves: Regular waves:
boundary sinusoidal sinusoidal sinusoidal
condition monochromatic waves monochromatic waves monochromatic waves

2) Random waves: 2) Random waves:
JONSWAP spectrum Pierson-Moskowitz

spectrum

Outgoing wave Sommerfeld radiation Engquist and Majda Sommerfeld radiation
boundary condition (1977) condition
condition

Other Not discussed Damping terms added to Sommerfeld radiation
explanation the momentum equation condition is discretised
relating to the explicitly and implicitly.
outgoing wave
boundary
condition

Test cases 1) Monochromatic wave 1) Solitary wave 1) Monochromatic wave
propagation over a propagation over a flat propagation over a
sloping bed. bottom. sloping bed.
2) Irregular waves. 2) Random wave 2) Monochromatic wave

evolution on a slope. propagation over a
submerged bar.

Table 3.1. Differences between the current and previous research studies.
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At the incoming wave boundary, the free surface elevation is varied 

sinusoidally with time and the horizontal orbital velocity is obtained by 

considering a small amplitude, periodic wave. The Sommerfeld radiation 

condition is then discretised explicitly and implicitly by the present author to 

estimate predicted and corrected values of the free surface elevation at the 

outgoing wave boundary. Meanwhile, by substituting the Sommerfeld 

radiation condition and a small amplitude, periodic wave into the continuity 

equation with a locally constant depth, the horizontal velocity at the outgoing 

wave boundary is obtained. In this way, implementing non-reflecting wave 

boundary conditions, which use a sponge or damping layer, are not needed.

Finally in this chapter, an alternative numerical model is developed herein 

and is referred to as 1 DBMW-1. This model is run for two experimental set­

ups in which wave shoaling is significant. The first set-up considered is the 

propagation of regular waves over a constant slope. The second set-up 

modelled is of a regular wave train propagating in a channel with a 

submerged bar.

3.2. New derivation of the equations of Nwogu (1993)

Nwogu (1993) proposed a set of Boussinesq-type equations applicable to 

the horizontal propagation of regular or irregular, multi-directional waves in 

water of varying depth. Using the non-dimensional governing equations and 

boundary conditions for an inviscid, incompressible fluid motion (Section 2.4), 

the present author derives the equations of Nwogu (1993) as follows (see 

Figures 1.4 or 3.1).
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Substitute pressure with dynamic & kinematic bcs ► 
Retain terms up to 0(e,p2) ►

• »k..--------->- mnmonh im >

Legend: I denotes newly developed 
by the present author

” denotes a new derivation by the present 
i_ _ _ _ _ J author for the existing equations

Figure 3.1. New derivation of Nwogu's (1993) momentum equation.

In the work of Nwogu (1993) and Chen et a/. (1998), the Boussinesq-type 

momentum equations were obtained from the depth-integrated momentum 

equation (2.37) [or (2.38)]. This depth-integrated momentum equation was 

obtained by integrating the horizontal Euler equation of motion (2.90) and 

applying the boundary conditions for the free surface and seabed [(2.92) 

through to (2.94)]. Based on the non-dimensional variables defined by 

equations (2.31) and (2.32), equation (2.37) can be written in non- 

dimensional form as

IC u dz + E(u . V) j; U dz + V £p dz - p|2=.h Vh = 0 (3.1)

where the primes have been dropped. The resulting equation (3.1) becomes 

difficult and complicated when applied to derivations of Boussinesq-type 

equations with higher order terms than those with terms of 0(s,p2) included. 

Consequently, a different approach is developed in this study in which the 

irrotationality condition (2.95a) is applied to the horizontal Euler equation of 

motion (2.90) to give
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£
ut + e(u • V)u + — wVw + Vp = 0 

M-
(3.2)

The Boussinesq-type momentum equation is then obtained directly from 

equation (3.2) instead of from the depth-integrated momentum equation such 

as equation (3.1). The boundary conditions at (i) the free surface and (ii) the 

bed will now be incorporated into the pressure and vertical velocity terms in 

equation (3.2).

(i) Free surface boundary conditions:

Integration of the vertical Euler equation of motion (2.91) from z to zr\ leads to 

an expression for pressure. The dynamic and kinematic boundary conditions 

at the free surface [(2.92) and (2.93)] are subsequently incorporated into the 

equation of pressure and this results in

(ii) Bed boundary condition:

An expression for the vertical velocity w is obtained by integration of the 

continuity equation (2.89) from the seabed to z. Subsequent substitution of 

the seabed kinematic boundary condition (2.94) leads to

Equation (3.4) is also utilised in the work of Nwogu (1993) and Chen et al. 

(1998).

The horizontal velocity of the fluid is expanded as a Taylor series with 

respect to the arbitrary level velocities u« = u(x,y,Za,t) instead of the seabed 

velocities Ub = u(x,y,-h,t) as utilised by Nwogu.

u(x, y,z,t) = u(x,y,Za,t) + (z-Za)uz(x, y,za,t) + ^(z-Za)2uzz{x,y,Za,{) +...

rETl renJ wdz + s(u*V)J w dz (3.3)

(3.4)

Ua + (Z-Za)Ua2 + | (Z - Za)2+ ... (3.5)

1D Basic Model



Chapter Three 72

The vertical velocity equation (3.4) can be written as 

w = -ji2V»[u(z + h)]

= - n2[zV • u + V • (hu)] (3.6)

Making use of equation (2.95a) (i.e. uz = Vw) for the irrotationality condition, 

uz and Uzz can be obtained as

uz = — n2{zV(V • u) + V[V • (hu)]} (3.7)

and

Uz2=-^2V(V.u) (3.8)

Evaluating the horizontal velocity in equations (3.7) and (3.8) at z = z« gives 

Ua z =-^2{ZaV(V*Ua) + V[V*(hUa)]} (3.9)

and

uflzz = ji.2V(V • Ua) (3.10)

Substituting equations (3.9) and (3.10) into (3.5) leads to the horizontal 

velocity as

U = Ua-H2(Z-Za){ZaV(V*Ua) +V[V»(hUa)]}-|i2|(Z-Za)2V(V*Ua) + ..

= Ua + fi2 {Ta - ^Z2V(V • Ua) - zV[V • (hUa)]} + truncation error (3.11)

where

ra = ~ Za"V(V • Ua) + Za V[V • (hUa)] (3.1 1 3)

Substituting equation (3.11) into (3.4) for w and retaining terms of 0{p2) gives 

the vertical velocity, that is

w = - |i2[zV • Ua + V • (hUa)] + 0(fa4) (3.12)
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The truncation error for equation (3.11) can be determined by integrating 

the irrotationality condition (2.95a) from z« to z. This reads

u-Ua = [z Vw dz (3.13)
«Za

Substitution of equation (3.12) into (3.13) leads to

u = Ua + n2 {r» -1 z2V(V • Ua) - zV[V • (hUa)]} + 0(n“) (3.1 4)

The ‘spirit’ of the classical Boussinesq-type equations is a balance 

between O(s) (non-linearity) and 0(p2) (frequency dispersion), which these 

terms are small, i.e. 0(e) = 0(p2) «1. With this in mind, the pressure field is 

then obtained by inserting equation (3.12) for w and (3.14) for u into equation 

(3.3) for p and retaining terms up to 0(e) and 0(p2). This leads to

p = rj-- + p2[|z2V«Uat +zV*(hUat)] + 0(sp2,p4) (3.15)
8

With terms up to 0(e) and 0(p2), equations (3.14) and (3.15) show that the 

horizontal velocity vector and pressured field vary quadratically through the 

water column.

Substituting equation (3.14) for u into the depth-integrated continuity 

equation (2.96) and retaining terms up to 0(s) and 0(p2) leads to equation 

(3.16). Substituting equations (3.12) for w, (3.14) for u and (3.15) for p into 

equation (3.2) and retaining terms up to 0(s) and 0(p2) gives equation (3.17).

r\x + V*[(h + er|)Ua] + |i2V • (hT) = 0(sp2,fi4) (3.16)

Uat + Vri + 8(Ua*V)Ua + p2Tat = 0(sp2,p4) (3.17)

where Ta is defined by equation (3.11a) and

F = T« - h 2V( V • Ua) + {zV[V • (hUa)] (3.18)

Equations (3.16) and (3.17) are exactly the same as the set of Boussinesq- 

type equations derived by Nwogu (1993)
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It can be seen that the present derivation for the equations of Nwogu is 

different to the derivation of the equations of Peregrine (1967) in Chapter 

Two, which uses a perturbation method. However, both approaches retain the 

same orders in the terms of the measures of non-linearity and frequency 

dispersion, i.e. up to 0(c,p2). This indicates that both formulations are 

applicable for simulating weakly non-linear waves.

The continuity and momentum equations respectively [(3.16) and (3.17)] 

can be expressed in 1D dimensional form as

1, + [(h + n)u4 + (|Zc2 -|)(h3unxx)x + (zca + ^)[h2(hUa) J, =0 (3.19)

where again the subscripts x and t denote partial differentiation with respect 

to the x-direction and time respectively, r| = free surface elevation, h = local 

water depth, u« = horizontal velocity at an arbitrary level (z = za) below still 

water level, g = gravitational acceleration,

Uat + gr|x + Ua Uax + Za[~Za Ua^ + (hUa^)^] — 0 (3.20)

Za = Zca h - 1 < Zca < 0 (3.21)

and

(X — — (Zca ) + Zca - 0.5 < a < 0 (3.22)

a = 0 corresponds to Zca = 0 and za = 0 (at still water)

a = -A corresponds to Zc« = -1 and zH = -h (at the bed)

(See Appendix A for definition for q, ua, va, z, za, x, y).

1D Basic Model



Chapter Three 75

3.3. Review of dispersion relations

The linearised forms (non-linear terms dropped) of the 1D Boussinesq- 

type equations of Nwogu (1993) for constant depth can be expressed as

r|, + hua„ + (a + |)h3Ua„x = 0 (3.23)

Ua, + gr|x + ah2Uaxxl = 0 (3.24)

Consider a small amplitude, periodic wave with the angular frequency 

co = 2n/T and the wave number k = 2tc/L, where T = wave period and L = wave 

length, that is

r| = r|a exp[i(kx - cot)], u« = uaa exp[i(kx -cot)] (3.25)

in which r|a and uaa are the amplitudes of the water surface elevation and of 

the horizontal velocity respectively. Substituting equations (3.25) into 

equations (3.23) and (3.24) gives the dispersion relation, which corresponds 

to a Pade [2,2] approximation in terms of (kh), that is.

(C[2,2])2 = gh
1-(a + 3)(kh)2 

1 -a(kh)2
(3.26)

where Cp.21 is the wave celerity corresponding to the linearised equations of 

Nwogu. The wave celerity Q2.21 is normalised by using the celerity CAiry from 

Airy wave theory, where

(CAiry)2 = —tanh(kh) (3.27)
k

Figure 3.2 shows that the normalised wave celerity for different values of a 

are plotted as a function of (kh). Shallow water depth corresponds to 

kh < 0.17i (or h/L < 1/20) and deep water depth is kh > n (or h/L>1/£). An 

optimum value of a may be determined by minimising the wave celerity error 

over the entire range of 0<kh<7r. Nwogu obtained a value of a = -0.390 

which corresponds to z« = - 0.531 h with a maximum error of less than 1 % in 

C[2,2]/CAiry over the entire range of 0 < kh < n. This is in contrast to the standard
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form of the Boussinesq-type equations, which had a value of a = - 1/3 and 

resulted in a wave celerity error of 14 % when kh = 3.0. This confirms that the 

dispersion relation of Nwogu’s equations depends strongly on the choice of 

the a value.

1.10 —
-039

^ 1.00

0.90 —

Figure 3.2. Effect of a (- 0.5 < a < 0) on the ratio of the wave celerity corresponding to the 1D 
linearised form of the equations of Nwogu (1993) over the wave celerity corresponding to Airy 
wave theory: a = -0.5, a = 0, a = -1/3 (or equivalently the equations by Peregrine), and 
a = -0.390 (obtained by Nwogu).

3.4. Numerical solution algorithm for the 1D basic model 

(1 DBMW-1)

3.4.1. Solution method

The governing equations [(3.19) and (3.20)] are solved by the present 

author using a non-staggered finite difference method. The solution is 

advanced in time using the third-order Adams-Bashforth predictor and fourth- 

order Adams-Moulton corrector method. The first-order spatial derivatives are 

approximated by a fourth-order accurate finite difference scheme. However, 

the second-order accurate finite difference operators are employed to 

approximate the second- and third-order spatial derivatives (see Appendix B). 

The use of high order discretisation in space and time can avoid unwanted 

numerical diffusion errors, which are proportional to second-order spatial
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derivatives. The numerical technique adopted here follows the approach of 

Wei and Kirby (1995). Although the present model and Wei and Kirby’s model 

are based on the same governing equations and numerical scheme, the 

present model is to be used as a basis for comparisons with other newly 

developed models in this thesis.

The dimensional Boussinesq-type continuity equation (3.19) can be 

written as

r|t = E(r|,Ua) (3.28)

where

E(l,Uo) = -[(h + ii)Ua]x -(jzco2 -|Xh3Ua„)x -(zc« +j)[h2(hUa)Jx

(3.29)

The dimensional Boussinesq-type momentum equation (3.20) can be 

expressed as

Uat =F(q,Ua) (3.30)

where the variable groupings Ua and F are defined respectively as

Ua = Ua + Za[|Za Uaxx +(hUa)X3(] (3.31)

F(ri.Ua) = -grix -UaUax (3.32)

The steps in the model solutions process are:

• Values of r|*+1 and the intermediate, velocity related variable Ua**1 are 

calculated directly using the third-order explicit, Adams-Bashforth three- 

step predictor scheme applied to equations (3.28) and (3.30) 

respectively to give

T|*+1 = r|* + ^At[23E* -16E*~1 +5E*-2]; + 0(At3) (3.33)

Ua*+1 — Ua * +^At[23F* -16F*-1 +5Ft'2]j +0(At3) (3.34)
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where the time level t (superscript) refers to values at the present, known 

time level. All the terms on the right hand sides of equations (3.33) and 

(3.34) are known from previous calculations.

• The values of Ua^1 are then used to predict the horizontal velocity at the 

new time level uQjt+1 using equation (3.31). This calculation requires the 

solution of a tridiagonal matrix system in which the coefficient matrix is 

constant in time as prescribed by equation (3.35). This equation is easily 

solved using Gaussian elimination.

Coefficient

matrix
(3.35)

• The newly predicted values of r|,t+1 and uajt+1 are then used to calculate 

E^1 and F^1 using equations (3.29) and (3.32), respectively.

• In the next step, the fourth-order Adams-Moulton four-step corrector is 

employed to equations (3.28) and (3.30) respectively, which are written 

as

r|jt+1 =ti' + ^At[9E,+1 + 19E* -5E1-1 + Et"2]i + 0(At5) (3.36)

UQjt+1 = U«; +^At[9Ft+1 + 19F* - 5F,_1 + Ft_2 ]j + 0( At5) (3.37)

• The corrector step is repeated if the misclose between two successive 

results exceeds a pre-set upper limit. The misclose in each of the two 

dependent variables r\ and u« is calculated separately as defined below:

(3.38)
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where f denotes either r| or ua and ( )* denotes the previous calculation. 

The corrector phase of the calculation is repeated if Af > 0.001 or 0.1 % 

in either r| or u«.

The values of the free surface elevation and horizontal velocity determined 

above are for inside the fluid domain. At the boundaries, these values are 

determined using the boundary conditions explained below.

3.4.2. Boundary conditions

3.4.2.1. Incoming wave boundary conditions

The free surface elevation rj at the incoming wave boundary is varied 

sinusoidally with time as

r| = jHiCOS(kx-cot) (3.39)

where Hi = incident wave height. For a locally constant depth, the continuity 

equation (3.19) simplifies to

T|t + UaT|x + (h + T|)Uax + (ct + — )h Uctj^ = 0 (3.40)

The horizontal orbital velocity ua at the incoming wave boundary can be 

obtained by substituting equations (3.25) into equation (3.40) and assuming 

that r| « h to give

Ua = =----7-5^----- (3.41)
kh[l-(a + I)(kh)2]

Equation (3.41) automatically satisfies the Sommerfeld radiation condition 

(3.42) (see next section).
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3.4.2.2. Outgoing wave boundary conditions

At the outgoing wave boundary, a 1D non-reflecting wave boundary 

condition is used to allow the passage and egress of the wave energy arriving 

from within the domain. An equation, which is equivalent to the Sommerfeld 

radiation condition, is applied to the present model, that is.

where C = co/k. In practice, there will be some wave reflection from the 

boundary due to truncation errors, the initial transient, steep waves and the 

approximation of the wave celerity for irregular waves (Nwogu, 1993). 

Discretising the Sommerfeld radiation condition (3.42) explicitly gives the free 

surface elevation at the predictor stage in equation (3.43) and implicitly at the 

corrector stage in equation (3.44).

where the x-axis is as defined in Appendix A.

The corresponding horizontal orbital velocity at the outgoing wave 

boundary is obtained by substituting equations (3.25) and equation (3.42) into 

the continuity equation with a locally constant depth (3.40) to give an 

equation, which is exactly the same as equation (3.41). The set of boundary 

conditions for 1DBMWC-1 are displayed in Figure 3.3 for waves only case.

Tit +Crlx =0 (3.42)

Tl!+1 = r|! -~~C(3r|-i -4t]2 +'n3)t + 0(Ax2, At2) 
Ax

(3.43)

and
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i—>. waves

Initial condition for ri

:* *.v -v -.v -.v -.V* tt-.Vtttt • Vtt

*—• Ua =

Figure 3.3. Boundary conditions for 1 DBMW-1.

3.5. Model verification

3.5.1. Experimental set-up 1: Wave propagation up a slope

Solutions from the present numerical model (1 DBMW-1) are compared 

with laboratory data collected by Nwogu (1993). The basin was 30 m wide, 

20 m long and 3 m deep with a 1:25 constant slope beach with an 

impermeable concrete cover. The toe of the beach was located 4.6 m from 

the wave paddle and the water depth near the paddle was 0.56 m (Figure 

3.4). Two tests are conducted with an incident deepwater wave (hi/Lo = 0.5) 

and an intermediate depth water (hi/Lo = 0.36).

Figure 3.4. Experimental set-up 1 (Nwogu, 1993): the basin terminates with a 1:25 constant 
slope, concrete beach.
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Test no. 1

In the first test with experimental set-up 1, an incident deep water wave 

(T = 0.85 s and hi/Lo = 0.5) propagates from the incoming wave boundary 

where the depth is hi = 0.56 m to the outgoing wave boundary at a depth of 

0.07 m (rather than zero depth). The test conditions are: Hi = 0.04 m, 

Hi/hi = 0.071, kihi = 7i, Lo/Ax = 28.2, T/At = 50.0 and the Courant number, based 

on the incident wave depth, is given by

Cn = v/ghi^ (3.45)

Cn = 1.00 (in the first test)

Figures 3.5 and 3.6 show comparisons of the measured surface elevation 

with the predictions from the present numerical model at depths of 0.28 m and 

0.07 m respectively. Both figures show that the results from the present 

numerical model underestimate the wave height by approximately 15%. At 

the outgoing wave boundary however (see Figure 3.6), the water surface 

elevation in the computational model is flatter near the wave troughs 

compared to the measured waves.

h=0.28 mS 0.03 -

0.02 -

Time (s)

Figure 3.5. Incident deep water waves (hi/Lo = 0.5): time series of the free surface elevation at 
0.28 m depth predicted by the present model (bold line) and the laboratory measurements of 
Nwogu (thin line). Data: T = 0.85 s, Hi = 0.04 m, Hi/h = 0.143, kihi = n and Cn = 1.00.
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E 0.03 - h=0.07 m

S> 0.01 -

3 -0.01 -

32.5

Time (s)

Figure 3.6. Incident deep water waves (hi/Lo = 0.5): time series of the free surface elevation at 
the outgoing wave boundary (h = 0.07 m) predicted by the present model (bold line) and the 
laboratory measurements of Nwogu (thin line). Data: T = 0.85 s, Hi = 0.04 m, Hi/h = 0.571, 
kihi = 7i and Cn = 1.00.

Test no. 2

In the second test, also with experimental set-up 1, the shoaling of an 

intermediate depth wave (T = 1 s, hi = 0.56 m and hi/Lo = 0.36) is investigated. 

The test conditions are: Hi = 0.066 m, Hi/hi = 0.118, kihi = 2.30, Lo/Ax = 39.0, 

T/At = 58.8 and Cn = 1.00. The time series for the water surface elevation was 

measured at the outgoing wave boundary (h = 0.10 m) and at a water depth of 

0.24 m. The results from the present Boussinesq-type numerical model and 

the laboratory data at 0.24 m depth agree well as shown in Figure 3.7. In 

Figure 3.8, the long wave troughs and peaked wave crests in the results of 

the present numerical model based on Nwogu’s equations, is seen to capture 

the general form of the non-linear waves with the long flat troughs and the 

peaked wave crests.
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0 05 - h=0.24 m
'T' 0.04 -

0.03 -

g 0.00

Time (s)

Figure 3.7. Intermediate depth water waves (hi/Lo= 0.36): time series of the free surface 
elevation at 0.24 m depth predicted by the present model (bold line) and the laboratory 
measurements of Nwogu (thin line). Data: T = 1 s, Hi= 0.066 m, Hi/h = 0.275, kihi= 2.30 and 
Cn= 1.00.

0.05 -
h=0.10 m■~r o.o4 -

0.03 -

0) 0.01

-0.03

27.5
Time (s)

Figure 3.8. Intermediate depth water waves (hi/Lo= 0.36): time series of the free surface 
elevation at the outgoing wave boundary (h = 0.10 m) predicted by the present model (bold 
line) and the laboratory measurements of Nwogu (thin line). Data: T = 1 s, Hi = 0.066 m, 
Hi/h = 0.66, kihi = 2.30 and Cn=1.00.

3.5.2. Experimental set-up 2: Wave propagation in a channel with 

a submerged bar

The present author also applies the present numerical model to a different 

experimental set-up i.e. with waves propagating over a submerged bar in a 

channel. A sketch of the bathymetry is shown in Figure 3.9. The channel is 

25 m long, 0.4 m deep on both sides of the bar and 0.1 m deep on top of the 

bar. The laboratory measurements of Luth et al. (1994) (see Borsboom et al., 

2000) are used to assess the performance of the present numerical model.
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Two tests are conducted with two incident, intermediate waves h,/Lo = 0.063 

and hi/Lo = 0.251

Wave propagation

x=11.5m x=7.7m

25 20 15 10 5 x 0

Distance from outgoing wave boundary (m)

Figure 3.9. Experimental set-up 2 (Luth et al., 1994): submerged bar topography with 25 m 
long channel, 0.4 m deep on both sides of the bar and 0.1 m deep on top of the bar.

Test no. 1

A train of waves with a period of 2.02 s and an incident wave height of 

0.02 m propagates down the channel. The incident wave is an intermediate 

depth wave with h./Lo = 0.63. The computation is performed with a grid 

resolution of Lo/Ax = 79.6 and T/At = 50.5. The Courant number at the 

incoming wave boundary is 0.99. The time series for the free surface 

elevation was measured by Luth et al. on top of the bar (i.e. 11.5m before the 

outgoing wave boundary) and behind the bar (i.e. 7.7 m before the outgoing 

wave boundary).

Figure 3.10 shows that the present numerical model results capture the 

main features of the free surface elevation time series at the top of the bar (at 

chainage x= 11.5 m). However, the numerical model is seen to slightly 

overestimate the highest wave crests, and underestimate the early portions of 

the lower wave crests. The lowest portions of the wave troughs are well 

represented by the numerical model.
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x=11.5 m

ra 0.01 -

a> 0.00 -

-0.01 -

-0.02 -

Time (s)

Figure 3.10. Top of the bar (i.e. 11.5 m before the outgoing wave boundary): time series of 
the water surface elevation predicted by the present model (bold line) and the laboratory 
measurements of Luth et at. (thin line). Data: T = 2.02 s, Hi = 0.02 m, Hi/h = 0.2, kihi = 0.67, 
hi/Lo= 0.06 and Cn = 0.99.

Figure 3.11 displays the numerical model results on the lee side of the bar 

at a chainage of x = 7.7 m from the outgoing boundary. The free surface 

elevation predicted by the numerical model marginally exceeds the measured 

wave crests but underestimates the wave troughs.

x=7.7 m

§ 0.02 -

13 0.00 -

-0.02 -

39.5
Time (s)

Figure 3.11. Behind the bar (i.e. 7.7 m before the outgoing wave boundary): time series of the 
water surface elevation predicted by the present model (bold line) and the laboratory 
measurements of Luth et at. (thin line). Data: T = 2.02 s, Hi=0.02 m, Hi/h = 0.05, kihi= 0.67, 
hi/Lo= 0.06 and Cn = 0.99.

Test no. 2

The last test conditions for experimental set-up 2 consist of a wave train 

with 1.01 s period waves and 0.041 m incident wave height propagating over 

the same bathymetry as displayed in Figure 3.9. The incident wave is an 

intermediate depth wave with h./Lo = 0.251. The computation is performed 

with a grid resolution of Lo/Ax = 19.9 and T/At = 33.7. The Courant number at
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the incoming wave boundary is 0.74. As for the previous test, the time series 

for the free surface elevation was measured on top of and behind the 

submerged bar. Figures 3.12 and 3.13 show comparisons of the measured 

and predicted surface elevations. In Figure 3.12, the results from the 

numerical model and laboratory measurements show close agreement 

through the wave troughs but the numerical model overestimates the wave 

crests.

On the other hand, Figure 3.13 shows that the present Boussinesq-type 

numerical model slightly overestimates the wave crests but underestimates 

wave troughs on the lee side of the submerged bar. The waves in the 

numerical model are seen to be more symmetrical than the measured waves.

x=11.5 m0.03 -

T 0.02 -

is 0.01 -
0.00 -

g -0.01 -

-0 03

Time (s)

Figure 3.12. Top of the bar (i.e. 11.5 m before the outgoing wave boundary): time series of 
the water surface elevation predicted by the present model (bold line) and the laboratory 
measurements of Luth et al. (thin line). Data: T= 1.01 s, Hi = 0.041 m, Hi/h = 0.2, kihi= 1.69, 
hi/Lo = 0.25 and Cn = 0.74.

x-7.7 m
§ 0.02 -

a> 0.00

-0.02 -f

Time (s)

Figure 3.13. Behind the bar (i.e. 7.7 m before the outgoing wave boundary): time series of the 
water surface elevation predicted by the present model (bold line) and the laboratory 
measurements of Luth et al. (thin line). Data: T= 1.01 s, Hi = 0.041 m, Hi/h = 0.05, kihi = 1.69, 
hi/Lo = 0.25 and Cn = 0.74.
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3.6. Conclusions

A new approach for deriving the Boussinesq-type momentum equation is 

introduced by the present author. This is done by applying the irrotationality 

condition to the horizontal Euler equation of motion. The present derivation is 

formulated directly at the arbitrary z-level velocity. In contrast, in the work of 

Nwogu (1993), the derivation was first directed through the bottom velocity, 

and then converted to the velocity at an arbitrary z-level. Although the present 

and Nwogu’s derivations are different, the resulting Boussinesq-type 

equations are identical.

A 1D numerical model based on the resulting Boussinesq-type equations 

[i.e. the equations originally derived by Nwogu (1993)] is then developed by 

the present author as the basic numerical model in 1D. The present numerical 

model (1 DBMW-1) is used to simulate incident monochromatic wave 

propagation from incident deep water (i.e. kh = n or h/L = Vz) to shallow water. 

This is confirmed by reasonable agreement between the present numerical 

model and laboratory data in the channel with a constant slope. The other 

tests show that the Boussinesq-type wave numerical model is capable of 

simulating a non-breaking wave transformation in a channel with a 

submerged bar. The effect of bottom friction is not included in the present 

numerical model. Comparisons of the results between the numerical model 

and the laboratory measurements seem to indicate that bottom friction is not 

a significant factor for the waves propagating over the physical model 

concrete beach and over the submerged bar used in these tests. However, 

while the numerical results from the model capture the general features of the 

waves over the bar, some disparities are noted in Figures 3.11 and 3.13.

The present numerical model is based on varying the incident free surface 

elevation sinusoidally. The horizontal velocity is then calculated by 

considering a periodic, small amplitude wave. At the outgoing wave boundary, 

the Sommerfeld radiation condition is discretised explicitly and implicitly to 

calculate predicted and corrected values (respectively) of the free surface
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elevation. The horizontal velocity is obtained by substituting a periodic, small 

amplitude wave into the continuity equation with a locally constant depth and 

satisfying the Sommerfeld radiation condition. The numerical model prediction 

of the water surface elevation at the outgoing wave boundary agrees well with 

measurements in the laboratory.

In the present numerical model, the numerical scheme, which was 

introduced by Wei and Kirby (1995), is used instead of the Crank-Nicholson 

numerical scheme applied to the previous numerical model by Nwogu (1993). 

The Sommerfeld radiation condition is applied to the present outgoing wave 

boundary instead of the scheme, which was introduced by Engquist and 

Majda (1997), used in the previous numerical model by Wei and Kirby (1995).
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Chapter Four

1D Basic Model with 
an Improved Dispersion Relation

4.1. Introduction

It is well known that the major restriction of Boussinesq-type equations is 

their water depth limitation. Boussinesq-type equations have since been 

extended in order to obtain an improved dispersion relation in relative deeper 

water (e.g. by Witting, 1984; Murray, 1989; Madsen et al., 1991; Madsen and 

Sorensen, 1992; Nwogu, 1993 and Schaffer and Madsen, 1995).

Schaffer and Madsen (1995) developed two sets of Boussinesq-type 

equations. Firstly, they generalised the Boussinesq-type equations of Madsen 

and Sorensen (1992) without the explicit restriction of small bottom slopes. 

However, the dispersion relation remained identical to that of Madsen and 

Sorensen. Secondly, they extended the Boussinesq-type equations of Nwogu 

(1993) by introducing four new free coefficients (pi,02,71,72) < 0(1) while 

retaining Nwogu’s free coefficient a in their second set of Boussinesq-type 

equations. Schaffer and Madsen’s second set of Boussinesq-type equations 

had a dispersion relation, which corresponds to a Pade [4,4] expansion in 

terms of kh. By making an evaluation of the free coefficients optimised
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according to some error minimisation criterion, the second set of equations 

was capable of describing wave propagation in ‘deeper water’ with h/L< 1. 

Previously before extending the Boussinesq-type equations, they were only 

valid for h/L < 0.5. The differences in the wave celerity of various linearised 

Boussinesq-type equations relative to the wave celerity of Airy (linear) wave 

theory at three relative depths are presented in Table 4.1. The relative depth 

is defined as the ratio of the water depth h, to the deep water wave length L>. 

(Note: in deep water i.e. h/L > 0.5, L = Lo).

[ OBoussinesq type equation
L CAiry wave theory

ij x 100%

Dispersion relation corresponds to: at at at
h/Lo= 0.3 h/Lo= 0.5 h/Lo= 1.0

a Pade [0,2] approximation in kh, such as the 5% 15% 34%
equations of Peregrine (1967) slower slower slower

a Pade [2,2] approximation in kh, such as the *0% < 1 % 11.4%
equations of: Madsen et. al. (1991), Madsen faster faster faster
and Sorensen (1992) and Nwogu (1993),
Mera (Present study)

a Pade [4,4] approximation in kh, such as the *0% *0% < 1 %
equations of Schaffer and Madsen (1995) faster faster faster

Table 4.1. Wave celerity of various linearised Boussinesq-type equations relative to the wave 
celerity of Airy wave theory.

The aim of the present study is to numerically examine the effects of the 

additional terms in the second set of equations of Schaffer and Madsen 

(1995). These terms result in an improved dispersion relation. Therefore, a 

1D numerical model for non-breaking waves based on the second set of 

Boussinesq-type equations derived by Schaffer and Madsen (1995)1 is

1 Throughout this thesis, the (set of Boussinesq-type) equations of Schaffer and Madsen 
(1995) refers to the second of two sets of Boussinesq-type equations in Schaffer and Madsen 
(1995)
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developed by the present author. This numerical model is referred to 

1DDBMW-2. At the incoming wave boundary, the free surface elevation is 

varied sinusoidally with time while the related horizontal velocity is determined 

from the continuity equation with a locally constant depth. At the outgoing 

wave boundary, the free surface elevation is obtained by employing the 

Sommerfeld radiation condition.

Finally, the present Boussinesq-type wave numerical model(1DDBMW-2) 

is applied to three experimental set-ups with incoming monochromatic waves. 

The experimental set-up are:

• a flat bottom channel,

• a channel with a sloping bottom and

• a channel with a submerged bar.

All scenarios numerically modelled exclude the effect of bottom friction. To 

assess the effects of the additional terms in the governing equations of 

1DDBMW-2 for h/L < 0.5, the numerical solutions from 1 DBMW-1 (i.e. the 

numerical model based on the governing equations without the additional 

terms) and 1DDBMW-2 are compared.

4.2. Derivation of the equations of Schaffer and Madsen (1995)

The frequency dispersion terms or p2 terms “in the Boussinesq-type 

equations of Nwogu (1993) as shown in equations (3.16) and (3.17) can be 

further refined by introducing four new free coefficients (pi,p2,71,72) < 0(1). 

Following Schaffer and Madsen (1995), the operators -p2piV»(h2V ) and 

p2p2V»V(h2) are applied separately to the continuity equation (3.16) and 

terms up to 0(e,p2) are retained to yield the next two equations:

- h2(3i {v . (h2Vr|,) + V . [h2V[V • (hua)]]} = 0(en V) (4.1)

and
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H2p2 {v . V(h2n,) + v . V[h2V . (hUo)]} = 0(£H2, n“) (4.2)

Similarly, the operators -p2yih2V(V* ) and p2y2hV(V»h ) are applied 

separately to the momentum equation (3.17) to give the next two equations:

- p2yi h2[V(V • u»t) + V(V • Vq)] = 0(ep2, p4) (4.3)

and

n2y2 h{v[V • (hu„,)] + V[V . (hVri)]} = 0(^2, n") (4.4)

Equations (4.1) and (4.2) are then added to the continuity equation (3.16), 

and equations (4.3) and (4.4) are added to the momentum equation (3.17) to 

obtain a set of ‘deeper water’ Boussinesq-type equations of Schaffer and 

Madsen (1995). The resulting Boussinesq-type equations are capable of 

describing wave transformation for relative depths (h/Lo) up to 1 (see Table

4.1) . The resulting continuity and momentum equations are respectively

r|, + V . [(h + et))Uo] + n2 V • {hf - Pih2 V[V . (hUa)] + p2V[h2V • (hu«)]

- pi h2Vn, + P2V(h2n,)} = 0(en2,n4) (4.5)

u», + Vr| + e(Uo» V)Ua + n2{ra, -yih2V(V»Ua,) + y2hV[V»(hUat)

- yih2V(V • Vip + y2hV[V . (h Vr))]} = 0(eh2, /) (4.6)

where r« and T are defined by (3.11a) and (3.18) respectively.

An interesting phenomenon is found here, that is the dispersion or p2 

terms in the equations of Nwogu (1993) [i.e. in equations (3.16) and (3.17)] 

have been refined. This results in an improved dispersion relation (see Table

4.1) and yet the order of the frequency dispersion and non-linearity retained in 

the resulting equations [(4.5) and (4.6)] remain identical to those of Nwogu 

(1993) and Peregrine (1967) i.e. up to 0(s,fi2). Subsequently, equations (4.5) 

and (4.6) are only applicable to weakly non-linear waves with the lowest order 

frequency dispersion terms, i.e. 0(e,fi2).
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The 1D version of the continuity and momentum equations [(4.5) and 

(4.6)] can be expressed in dimensional form as

n, + [(h + nXvL + (y Zc„2 - |)(h3Ua„ )x + (zca +1 - Pi)[h2(hua)Jx

+ p2[h2(hUa)xL-p,(h2TlJx+p2(h2Tl,)xx =0 (4.7)

and

Uat + grjx + UaUax + (| Zca' - yi^Ua^ + (Zca + y2)h(hUa( )xx

- Y'gh2rixxx + )„ =0 (4.8)

where a, Pi, p2, 71, and y2, are ‘free’ coefficients. The method of determining 

these coefficients is explained in the next section. The definitions for Za in 

equation (3.21) and a in equation (3.22) are still applicable here.

4.3. Dispersion relations

The 1D governing equations considered in the present Boussinesq-type 

numerical model [i.e. equations (4.7) and (4.8)] can be linearised (non-linear 

terms dropped) for constant depth, and are written as

ht + hu«x + (a -p + |)h3Uaxxx -ph2r|txx = 0 (4.9)

U«, +gr|„ +(a-y)h2u„xxt-gyh2nxxx =0 (4.10)

where p = pi-p2 and y = yi-y2 as defined by Schaffer and Madsen (1995). 

Substituting a periodic, small amplitude wave [i.e. equations (3.25)] into 

equations (4.9) and (4.10) gives the dispersion relation, which corresponds to 

a Pade [4,4] approximation in terms of kh:

(C[4,4]Sm)2
[1 + y(kh)2][l - (a - p + |)(kh)2] 

[1 + p(kh)2][1-(a-y)(kh)2]
(4.11)

where C[4,4]sm is the wave celerity corresponding to the equations of Schaffer 

and Madsen. The wave celerity expressed in equation (4.11) is an improved
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dispersion relation from the previous dispersion relation obtained from the 

equations of Nwogu [i.e. equation 3.3].

The dispersion relation equation (4.11) can be compared to the 

approximate celerity from Airy wave theory. This comparison is made easier 

by using a Pade [4,4] approximation of the dispersion relation from Airy wave 

theory. Witting (1984) found an approximate dispersion relation for Airy wave 

theory corresponding to a Pade [4,4] approximation in terms of kh for waves 

in an arbitrary depth, that is

(C[4,4]Airy)2 = gh
W(kh)2+^(kh)
1 + 4(kh)2 + -l(khr

+ 0[(kh)10] (4.12)

Schaffer and Madsen determined the free coefficients (a, (3, y) by imposing

C[4,4]SM — C[4,4]Airy (4.13)

which yields the following four sets of solutions

a,p,y (4.14)

The solution (4.14a) is inapplicable since -0.5<a<0 in order to keep the 

level Za inside the fluid i.e. - h < za < 0. To determine the free coefficients (3i, 

(32, yi, and 72, reference needs to be made to Schaffer and Madsen (1995).

In this study, the free coefficients are determined by imposing

C[4,4]SM = CAiry (415)

instead of equation (4.13), where the celerity Ca^ is from Airy wave theory, 

that is
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(CAiry)2 = ^tanh(kh) (4.16)

A particular solution set for the free coefficients is found to be a = - 0.39500, 

p = 0.03980 and y = 0.01051. This solution set is adopted in the present 

numerical model (1DDBMW-2).

The wave celerity C[4.4]sm corresponding to the particular solution 

(a = -0.39500, p = 0.03980 and y = 0.01051) and a, (3, y in equations 

(4.14b-d) are normalised with respect to the wave celerity of Airy wave 

theory CAiry and compared. Figure 4.1 displays the errors in the normalised 

wave celerity as a function of the relative depth h/Lo. The comparison 

indicates that the particular solution (a,p,y) = (- 0.395, 0.0398, 0.01051) gives 

the best approximation to the celerity of Airy wave theory i.e. a celerity error 

less than 1 % faster with h/Lo up to 1, while the other solutions i.e. (4.14b - d) 

give a celerity error of just over 1 % faster at the same relative depth.

0.8 —

0.6 —

0.4 —

Figure 4.1. A comparison of normalised celerity errors of the linearised Boussinesq-type 
wave equations of Schaffer and Madsen (1995) for different values of the free coefficients 
(a,p,y): (1) the three solutions (4.14b- d) which result in identical dispersion relations; and (2) 
the particular solution (a,p,y) = (-0.395, 0.0398, 0.01051) adopted in this study (1DDBMW- 
2).
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As shown in Figure 4.2, the linearised form of the Boussinesq-type 

equations derived by Schaffer and Madsen with a Pade [4,4] approximation to 

the dispersion relation, gives a celerity error less than that of other 

Boussinesq-type equations. However, the Boussinesq-type equations with a 

dispersion relation corresponding to a Pade [2,2] approximation in terms of kh 

(such as those of Madsen et al., 1991; Madsen and Sorensen, 1992 and 

Nwogu, 1993) give a celerity error of 11.4 % faster than the wave celerity of 

Airy wave theory with (h/L0)«1. Conversely, the normalised celerity of 

Peregrine’s (1967) formulation with a dispersion relation corresponding to a 

Pade [0,2] approximation in terms of kh give a celerity error of 33.4 % slower 

than the wave celerity of Airy wave theory at the same relative depth.

o —

-t> —

-20 —

-30 —

Figure 4.2. A comparison of normalised celerity errors of various linearised Boussinesq-type 
equations of: (1) Schaffer and Madsen (1995) with (a,p,y) = (-0.395,0.0398,0.01051) 
(1DDBMW-2); (2) Madsen et al. (1991), Madsen and Sorensen (1992) and Nwogu (1993) or 
equivalently the equations of Schaffer and Madsen with (a,p,y) = (-0.39,0,0); and 
(3) Peregrine (1967) or equivalently the equations by Schaffer and Madsen with 
(a,p,y) = (-1/3,0,0).
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4.4. Numerical solution algorithm for 1DDBMW-2 

4.4.1. Solution method

A finite difference method with a non-staggered grid is used by the present 

author to solve the dimensional governing equations [(4.7) and (4.8)]. The 

numerical scheme used in Chapter Three is also applied in this chapter.

The dimensional continuity equation (4.7) can be expressed as

Et = E(q,u«) (4.17)

where E and E are the variable groupings defined as

E = T1-|3i(h2T1x)x+p2(h2i1)xx (4.18)

E(r|,Ua) = -[(h + i^Uc],, -(jzca2 -i)(h3u0xj<)x

- (Zca +1- p,)[h2(hu„) J„ - p2 [h2(hUa)xL (4.19)

The continuity equation (4.17) is noted to be different to the corresponding 

continuity equation (3.28). This must result in a modification to how the 

governing equations in 1DDBMW-2 are implemented compared to 1 DBMW-1 

in Chapter Three. Following the procedure in Section 3.4.1, the dimensional 

momentum equation (4.8) can be written in the form of equation (3.30)

Uat =F(r|,Ua) (3.30)

where the variable groupings Ua and F become

Ua = Ua + (^Zca2 -yiJt^Ua^ + (Zca - y2)h(hUa)xx (4.20)

F(nU«) = -grix - u«Uax + yigh2^ -yzghfhri,,),,,, (4.21)

The Adams-Bashforth predictor scheme (3.33) and the Adams-Moulton 

corrector scheme (3.36) become equations (4.22) and (4.23) respectively.

Ejt+1 = E* +^At[23El -16E‘-1 +5Et'2]j (predictor) (4.22)
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E;+1 = Sj +^At[9Et+1 +19E’ -5E(-1 + Et-2]j (corrector) (4.23)

To obtain the free surface elevation r\ at the new time level (t+1), further 

calculation is needed using the values of E,t+1 obtained from equation (4.22) 

for the predictor step and from equation (4.23) for the corrector step. The 

values of E*+1 are then substituted into equation (4.18). Subsequently, 

equation (4.18) is arranged into a matrix form as shown in equation (4.24) to 

yield the new free surface elevation r^1.

Coefficient

Matrix
(4.24)

The horizontal velocities Ua-+1 are determined in the same way as set out 

in equation (3.35) of Section 3.4.1.

The values of the free surface elevation and horizontal velocity determined 

above are for inside the fluid domain. At the boundaries, these values are 

determined using the boundary conditions explained below.

4.4.2. Boundary conditions

4.4.2.1. Incoming wave boundary conditions

The model 1DDBMW-2 requires the surface elevation r\ and velocity ua at 

the incoming wave boundary to be specified. At the incoming wave boundary, 

the free surface elevation is varied sinusoidally as shown in equation (3.39). 

The continuity equation (4.7) with a locally constant depth is

r), +UaT|x +(h + r|)Uax +(a-p + y)h“Uaxxx -ph2r|txx = 0 (4.25)
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Furthermore, the horizontal fluid velocity u« at the incoming wave boundary is 

obtained by substituting equations (3.25) into (4.25) resulting in the 

expression below

ui= (426) 
kh[l - (a - p + j)(kh)2]

The Sommerfeld radiation condition (3.42) is also automatically satisfied by 

equation (4.26).

4.4.2.2. Outgoing wave boundary conditions

(i) Free surface elevation:

The Sommerfeld radiation condition (3.42) i.e. qt + Cqx = 0 is applied to

the outgoing wave boundary of the present numerical model. For 

implementation, this boundary condition can be written in the same form as 

equation (4.17).

St=E(Tl,Ua) (4.17)

where

S = q (4.27)

E(n,Ua) = -Cr1x (4.28)

The finite difference approximation applied to rix in equation (4.28) is

(n«)! = (3r|i - 4ti2 + n3)' (4-29>2Ax

(see Appendix A for the specification of the coordinate system).

(ii) Horizontal velocity:

While the boundary conditions for u« are being explored, experimentation 

with the numerical models revealed that it is necessary to treat the cases of
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(a) deep water and (b) transitional and shallow waters separately. In this 

study, no one boundary condition is successful in both cases.

(a) In deep water, the horizontal velocity u« is determined by imposing

Uat+CUax=0 (4.30)

For implementation, equation (4.30) is transformed into the form of equation 

(3.30), Ua and F may be defined as

Uat =F(Tl,Ua) (3.30)

where

Ua = Ua (4.31)

F(ri,Ua) = -Cuax (4.32)

The finite difference approximation applied to Uax in equation (4.32) is 

1
(^ax)l = TTT (3Ua, — 4Ua2 + Ua3 )* (4.33)

2 Ax

(b) In shallow water or intermediate depth water, the horizontal velocity is 

determined as follows. The Sommerfeld radiation condition (3.42) and 

the expression for a periodic, small amplitude wave are substituted into 

equation (4.25) to give an equation for Ua, which is identical to equation 

(4.26).

4.5. Model verification

4.5.1. Experimental set-up 1: Wave propagation in a constant 

depth channel

The standard form of the Boussinesq-type equations derived by Peregrine 

(1967) cannot simulate wave transformation in deep water with h/Lo= 1 since 

their dispersion relation gives a celerity error of 33.4 % slower than the wave 

celerity of Airy wave theory (Figure 4.2). A similar comment applies to the
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Boussinesq-type equations with a dispersion relation corresponding to a Pade 

[2,2] approximation in terms of kh (e.g. Madsen et al., 1991; Madsen and 

Sorensen, 1992 and Nwogu, 1993) since their dispersion relation gives a 

celerity error of 11.4 % faster than the wave celerity of Airy wave theory at the 

same relative depth (Figure 4.2).

Experimental set-up 1 (Figure 4.3) is aimed at testing the ability of the 

equations of Schaffer and Madsen to simulate the propagation of a 

monochromatic wave at h/Lo = 1. Consider, for example a train of waves with 

period T = 0.85 s, Lo= 1.13 and incoming wave height Hi=0.04 m propagating 

in a channel with a flat bottom, 1.13 m deep and 16.84 m long. The intention 

of choosing these values is to obtain h/Lo=1. The test conditions are: 

Ax = 0.02 m (Lo/Ax = 56.4) and At = 0.01s (T/At = 85.0). The longitudinal 

profiles of the free surface along the channel are displayed in Figure 4.4 at 

times t = 15, 20 and 25 s. The outgoing wave boundary is located at x = 0 m.

___________
t

1.13m

^-------------------------------------------------------------- 16.84m -----------------------------------------------------------------*■

Figure 4.3. Experimental set-up 1: the channel with a flat bottom.

Figure 4.4 shows comparisons of the free surface elevation predicted by 

the present Boussinesq-type wave, numerical model (1DDBMW-2) and 

sinusoidal waves at different times. As shown in Figures 4.1 and 4.2, the 

wave celerity of 1DDBMW-2 propagates slightly faster than that of Airy wave 

theory (i.e. a purely sinusoidal wave moving without change of form at celerity 

C). Furthermore, the model results in Figure 4.4 show that the longitudinal 

profiles of the free surface elevation in deep water are seen to behave 

according to sinusoidal waves as expected. After 25 s, it is observed in the
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bottom plot of Figure 4.4 that some (unwanted) wave reflection is emanating 

from the downwave boundary with the transmitting boundary condition.

t=15 s

8 -0.01

Distance from the outgoing w ave boundary (m)

t=20 s

8 -0.01

Distance from the outgoing wave boundary (m)

t=25 s

8 -0.01

-0.03

Distance from the outgoing wave boundary (m)

Figure 4.4. Deeper water (h/Lo= 1.0): the free surface elevation along the channel at t = 15, 
20 and 25 s predicted by 1DDBMW-2 (bold lines) and Airy wave theory (thin lines). Data: 
T = 0.85 s, Hi= 0.04 m, h = 1.13 m, Ax = 0.02 m and At = 0.01 s.
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4.5.2. Experimental set-up 2: Wave propagation up a slope

While 1DDBMW-2 is capable of simulating wave propagation in very deep 

water (i.e. h/Lo up to 1), it is still necessary to assess its performance in 

shallower water (h/Lo<0.5), as is done for 1 DBMW-1 in Chapter Three. 

Laboratory data collected by Nwogu (1993) are presented in Chapter Three 

and are used to assess the performance of 1DDBMW-2.

In the first test with experimental set-up 2 (Figure 3.4), an incident deep 

water wave (hi/Lo=0.5) propagates from the incoming wave boundary where 

the depth is 0.56 m, up a slope to the outgoing wave boundary where the 

depth is 0.07 m. The computation is carried out with the following wave and 

mesh parameters: T = 0.85 s, Hi= 0.04 m, Ax = 0.02 m (Lo/Ax = 56.4) and 

At = 0.01 s (T/At = 85.0). Comparisons of the time series for the water surface 

elevation predicted by 1DDBMW-2 (bold lines) and laboratory measurements 

(thin lines) at depths of 0.28 m and 0.07 m are shown in Figures 4.5 and 4.6 

respectively.

For a depth of 0.28 m, the results predicted by 1DDBMW-2 agree well with 

laboratory measurements. At the outgoing wave boundary however, the 

surface elevation in the computational model is a little flatter through the wave 

troughs compared to those of measured waves. At both depths, the present 

numerical model (1DDBMW-2) is seen to perform better than the numerical 

model developed in Chapter Three (1 DBMW-1).
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h=0.28 mS 0.03 -

0.02 -

o 0.00 -

Time (s)

Figure 4.5. Incident deep water waves (hi/Lo= 0.5): time series of the free surface elevation at 
0.28 m depth predicted by 1DDBMW-2 (bold line), the laboratory measurements of Nwogu 
(thin line) and 1 DBMW-1 (dashed line). Data: T = 0.85 s, Hi= 0.04 m, hi= 0.56 m, Ax = 0.02 m 
and At = 0.01 s.

h=0.07 m
-=* 0.03 -

o.oo -

32.5
Time (s)

Figure 4.6. Incident deep water waves (hi/Lo= 0.5): time series of the free surface elevation at 
the outgoing wave boundary (h = 0.07 m) predicted by 1 DBMW-2 (bold line), the laboratory 
measurements of Nwogu (thin line) and 1 DBMW-1 (dashed line). Data: T = 0.85 s, 
Hi = 0.04 m, hi= 0.56, Ax = 0.02 m and At = 0.01 s.

Another test is carried out using the same experimental set-up 2 but this 

time with an intermediate depth wave (hi/Lo= 0.36). The computation is 

performed with T = 1 s, Hi = 0.066 m, hi= 0.56 m, Ax = 0.02 m (Lo/Ax = 78.1) 

and At = 0.01 s (T/At= 100.0). The time series for the water surface elevation 

was measured at the outgoing wave boundary (h = 0.10 m) and at a water 

depth of 0.24 m (Figures 4.7 and 4.8).

A comparison of the surface elevation at 0.24 m depth between the results 

of 1DDBMW-2 and the laboratory data shows that 1DDBMW-2 accurately 

predicts the shoaling waves as shown in Figure 4.7. Meanwhile, the
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performance of 1DDBMW-2 (bold line) is better than that of 1 DBMW-1 

(dashed lines) at 0.24 m depth.

The results for the water surface elevation at the outgoing wave boundary 

(h = 0.10 m) provide a more severe test of the performance of the numerical 

model. Figure 4.8 shows the formation of non-linear waves predicted by 

1 DBMW-1 and 1 DDBMW-2 with the peaked wave crests and long low 

troughs. Interestingly, the results of each numerical model give different 

discrepancies against the laboratory measurements at h = 0.10 m, particularly 

around the wave crest.

h=0.24 m
o.o4

4> 0.01

-0.02 -

-0.03

27.5
Time (s)

Figure 4.7. Intermediate depth water waves (hi/Lo= 0.36): time series of the free surface 
elevation at 0.24 m depth predicted by 1 DDBMW-2 (bold line), the laboratory measurements 
of Nwogu (thin line) and 1 DBMW-1 (dashed line). Data: T = 1 s, Hi = 0.066 m, hi = 0.56 m, 
Ax = 0.02 m and At = 0.01 s.

0.05 -
h=0.10 m

■=- 0.04 -

0.03 -

0.02 -

0) 0.01 -

g 0.00 -
t -0.01 -

Time (s)

Figure 4.8. Intermediate depth water waves (hi/Lo= 0.36): time series of the free surface 
elevation at the outgoing wave boundary (h = 0.10 m) predicted by 1 DDBMW-2 (bold line), 
the laboratory measurements of Nwogu (thin line) and 1 DBMW-1 (dashed line). Data: T = 1 s, 
Hi= 0.066 m, hi = 0.56 m, Ax = 0.02 m and At = 0.01 s.
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4.5.3. Experimental set-up 3: Wave propagation in a channel with a 

submerged bar

The last experimental set-up modelled (Figure 3.9) is one in which waves 

propagate over a submerged bar in a channel. The numerical set-up 

represented in Figure 3.9 follows the physical set-up of Luth et al. (1994) (see 

Borsboom et al., 2000). The laboratory measurements of Luth et al. are also 

used to assess the accuracy of the numerical model results.

In the first test with the submerged shoal, a train of waves with a period of 

2.02 s and an incoming wave height of 0.02 m propagates down a channel, 

which is 0.40 m deep. The computation is carried out with Ax = 0.08 m 

(Lo/Ax = 79.6) and At = 0.02 s (T/At =101.0).

The results in Figure 4.9 show that 1DDBMW-2 captures the main 

features of the water surface time series at the top of the bar (x = 11.5 m). 

However, 1DDBMW-2 is seen to slightly overestimate the wave crests, and 

underestimate the early and late portions of the wave troughs. In Figure 4.10, 

a comparison of the water surface elevation on the lee side of the bar at a 

chainage of x = 7.7 m from the outgoing wave boundary shows that the 

results from 1DDBMW-2 marginally exceed the measured wave crests but 

more significantly underestimate the wave troughs.

0.03 - x=11.5

0.01 -

0.00 -

-0.01 -

w -0 02 -

Time (s)

Figure 4.9. Top of the bar (i.e. 11.5 m before the outgoing wave boundary): time series of the 
water surface elevation predicted by 1DDBMW-2 (bold line), the laboratory measurements of 
Luth et al. (thin line) and 1 DBMW-1 (dashed line). Data: T = 2.02 s, Hi = 0.02 m, hi = 0.4 m, 
hi/Lo= 0.06, Ax = 0.08 m and At = 0.02 s.
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x=7 7 m
o 0.02 -

0.00

Time (s)

Figure 4.10. Behind the bar (i.e. 7.7 m before the outgoing wave boundary): time series of the 
water surface elevation predicted by 1DDBMW-2 (bold line), the laboratory measurements of 
Luth et at. (thin line) and 1 DBMW-1 (dashed line). Data: T = 2.02 s, Hi = 0.02 m, hi = 0.4 m, 
hi/Lo= 0.06, Ax = 0.08 m and At = 0.02 s.

The last test investigated is of a train of steeper waves than the previous 

test i.e. with 1.01 s period and 0.041 m incoming wave height propagating 

over the same bathymetry as the previous test. The grid size and the time 

step are chosen to be 0.08 m (Lo/Ax = 19.9) and 0.02 s (T/At = 50.5) 

respectively. As for the previous test, the time series for water surface 

elevation was measured on top of and behind the submerged bar.

In Figure 4.11, a comparison of 1DDBMW-2 results with laboratory 

measurements of the water surface elevation on top of the bar show close 

agreement. On the outgoing wave side of the shoal at x = 7.7 m, Figure 4.12 

shows that while 1DDBMW-2 slightly overestimates the wave crests, it 

significantly underestimates the wave troughs on the lee of the submerged 

bar. The waves in 1DDBMW-2 are seen to be more symmetrical than the 

measured waves (Figure 4.12).
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E 0.03 - x=115 m
§ 0.02 -

0) 0.00 -

-0.03

Time (s)

Figure 4.11. Top of the bar (i.e. 11.5 m before the outgoing wave boundary): time series of 
the water surface elevation predicted by 1DDBMW-2 (bold line), the laboratory 
measurements of Luth et al. (thin line) and 1 DBMW-1 (dashed line). Data: T= 1.01s, 
Hi = 0.041 m, hi = 0.4 m, hi/Lo= 0.25, Ax = 0.08 m and At = 0.02 s.

x=7.7 m
§ 0.02 -

a> 0 00 -

Time (s)

Figure 4.12. Behind the bar (i.e. 7.7 m before the outgoing wave boundary): time series of the 
water surface elevation predicted by 1DDBMW-2 (bold line), the laboratory measurements of 
Luth et al. (thin line) and 1 DBMW-1 (dashed line). Data: T= 1.01 s, Hi =0.041 m, hi = 0.4 m, 
hi/Lo= 0.25, Ax = 0.08 m and At = 0.02 s.

Although Figures 4.9, 4.10 and 4.12 show that 1 DBMW-1 based on the 

equations of Nwogu (1993) presented in Chapter Three give generally slightly 

better results than 1DDBMW-2 based on the equations of Nwogu with the 

additional terms (i.e. the equations of Schaffer and Madsen, 1995), Figure 

4.11 shows the opposite.
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4.6. Conclusions

A 1D numerical model based on the Boussinesq-type equations derived 

by Schaffer and Madsen (1995) is developed by the present author. This 

numerical model is referred to 1DDBMW-2. At the incoming wave boundary, 

monochromatic, small amplitude waves are generated. At the outgoing wave 

boundary, a form of the Sommerfeld radiation condition is adopted to predict 

the free surface elevation and velocity.

The effects of the additional terms in the equations of Schaffer and 

Madsen (1995), which result in an improved dispersion relation, can be seen 

where the present Boussinesq-type wave numerical model (1DDBMW-2) is 

applicable to the simulation of the propagation of a monochromatic wave in 

channel with a flat bottom in very deep water (h/L=1). The deep water 

criterion is taken to be h/L > 0.5. As predicted by the dispersion relation, the 

wave celerity associated with the governing equations in the present model is 

slightly faster than the wave celerity of Airy wave theory. The predicted free 

surface elevation in deep water compares well with Airy wave theory as 

expected.

1DDBMW-2 is capable of simulating non-breaking wave transformation in 

a channel with a slope. This is confirmed by good agreement between 

computed and measured free surface elevation. The other tests indicate that 

1DDBMW-2 is also capable of simulating the propagation of a monochromatic 

wave in a channel with a submerged bar although 1DDBMW-2 performance 

on the downwave side of the bar is not as good as it is on the incoming wave 

side. As in 1 DBMW-1, the effect of bottom friction is not included in 

1DDBMW-2. Comparisons of 1DDBMW-2 results with the laboratory 

measurements indicate that bottom friction is not a significant factor for the 

waves propagating on the model concrete beach and over the submerged bar 

used in these tests.

Although 1DDBMW-2 is applicable to water depths up to h/L = 1 

(compared with 1 DBMW-1 developed in Chapter Three which is only valid up
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to h/L = 0.5), 1 DBMW-1 seems to give generally better results than 

1DDBMW-2 within the applicable range of 1 DBMW-1 (i.e. h/L < 0.5).

It can be concluded that the additional terms in the governing equations of 

1 DDBMW-2, which result in an improved dispersion relation but with the 

same order of the frequency dispersion as 1 DBMW-1 does not give a 

noticeably improved result. Based on the relative results of the 1D tests of 

1 DDBMW-2 and 1 DBMW-1, the development of a 2D numerical model based 

on the equations of Schaffer and Madsen (1995) in this thesis is not 

considered necessary.
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Chapter Five

1D Basic Model 
with Current Effects

5.1. Introduction

In the present study, a finite difference model based on the second set of 

partial differential equations of Chen et al. (1998) is coded up by the present 

author. This model, which is referred to 1DBMWC-3, is used to investigate 

numerically the effects of the dispersion terms associated with currents. That 

is, the results from 1DBMWC-3 are compared to the results from a model 

without currents [i.e. a model based on Nwogu’s (1993) equations or 

1 DBMW-1].

5.2. Derivation of the equations of Chen et al. (1998)

5.2.1. Non-dimensionalisation based on wave scaling parameters

Following the approach of Chen et al. (1998), the first set of their 

equations is re-derived based on the depth-integrated continuity and 

momentum equations. In this study, the derivation here expands on the work 

of Chen et al. for greater clarity. The wave scaling parameters, which will be
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used here, are identical to those defined by equations (2.31) and (2.32) when 

deriving the equations of Peregrine, 1967 (Section 2.4), Nwogu, 1993 

(Section 3.2) and Schaffer and Madsen, 1995 (Section 4.2) instead of the 

wave scaling parameters in the work of Chen et al. (1998). The dependent, 

non-dimensional variables defined by equations (2.32) for waves only can be 

written as

u = 0(c)y/ghch u', v = 0(s)A/ghch v', w = 0(sp)7ghch w' (5.1 a)

q = 0(e)hchq', p = 0(c)pghchp' (5.1b)

where again the primes denote non-dimensional variables.

5.2.2. Non-dimensionalisation based on wave-current scaling 

parameters

Parameters e, v, 5 and a are introduced as explicit measures of the order 

of magnitude of each term in the equations, where E = aCh/hch, ct = e/v and 

5 = 0(e,v2). To ensure the equations will be valid in the limit of vanishing 

current, it is necessary to specify 0(e) <v< 0(1). The extreme cases are: (i) 

v = 0(e) meaning waves only and (ii) v = 0(1) meaning (waves interacting 

with) a strong current. The velocity variable is assumed to consist of two 

parts, a wave orbital velocity and a current velocity. In this derivation, the 

difference in horizontal scaling of ambient current and wave components is 

made. The current velocity is assumed to be steady, uniform over the depth

and no greater than the shallow water wave celerity C = ^gh . The spatial

variation of the steady current is closely related to the variation of the bottom 

bathymetry. As reported by Madsen and Schaffer (1998), the horizontal 

length scales of the current variation and of the depth variation are assumed 

to be much longer than the characteristic wavelength. Consequently, strong 

currents [with v = 0(1)] can be treated only on weakly varying bathymetry.
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However, weak currents [with v = 0(e)] do not imply any restriction on the 

bathymetry variations.

It can be summarised that the wave-scaling parameters consist of two 

parts i.e. wave and current scaling parameters. Consequently, the dependent, 

non-dimensional variables for waves and currents can be written as

u = 0{z,v)jghch u', v = 0(c,v)7ghch v', w = CKsp.crvp^ghch w' (5.2a)

r| = 0(s, v2) hch r)', p = 0(e,v2) pghch p' (5.2b)

Details of these scales can be found in Chen (1997) p27-32 and Chen et al. 

(1998) p 16-20.

As a result, the non-dimensional equations (2.95a), (2.96), (3.1), (3.3) and 

(3.4), which are written in terms of wave scaling parameters (e,p), can be 

converted into those in terms of wave-current scaling parameters (s,p,8,v) to 

give

uz - —Vw = 0
V

(5.3)

r8ri
r|t + V* udz = 0

J-h
(5.4)

Jj- J^udzn-v(u* V) J^udz* V J°Jpdz-5p|z hVh = 0 (5.5)

Z d r8n f5n v •?
p(x,y,z,t) = x]- — + — w dz + v(u* V) w dz—Tw 

o di Jz Jz p
(5.6)

8 o f2w = —pV • udz
8 ^_h

(5.7)
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5.2.3. First set of equations of Chen et a/. (1998)

The first set of Boussinesq-type equations of Chen et al. (1998) for wave- 

current interaction is presented in terms of the depth-averaged velocity u . 

The derivation of this set of partial differential equations can be demonstrated 

by following the approach of Chen et al., although the wave scaling parameter 

used here differ from those used by Chen et al..

The horizontal velocity of the fluid is expanded as a Taylor series with 

respect to the still water level, horizontal velocity u = u(x,y,0,t).

Evaluating equations (3.7) for uz and (3.8) for Uzz at z = 0, and substituting 

into equation (5.8) gives the horizontal velocity (written in terms of the wave- 

current scaling parameters, as explained in Section 5.2.2)

Without stating as much, Chen et al. (1998) assumed that e = v in the vertical 

velocity or in other words, the vertical velocity due to the ambient current is 

very small compared to the orbital vertical velocity due to the waves. Now, the 

truncation error of equation (5.9) can be determined by integrating the 

irrotationality condition (5.3) from z to 0. This results in

u(x, y, z, t) = u(x, y,0, t) + zuz(x, y,0, t) + j z2uzz(x, y,0, t) +...

u + zuz + \z2uzz + ... (5.8)

u = u--p2{|z2V(V • u) + zV[V • (hu)]} + truncation error (5.9)
v 2

Substituting equation (5.9) for u into (5.7) for w gives

(5.10)

- 8 ro
u-u = — Vw dz 

v Jz
(5.11)
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Inserting equation (5.10) for w into (5.11) leads to

u = u - — p2 z2V(V • u) + zV[V • (hu)]} + of — ji4 
v W ;

(5.12)

Substituting equation (5.12) into the definition of the depth-averaged velocity

u = J^udz , and integrating leads to

•3 3 , u3 :2„2 u2

v [65ri + h 2 6r| + h

u - V{ j h2V(V . U) -1 h V[V . (hu)]}
V

+ 8—n2r|{|hV(V»u)-}V[V • (hu)]}

l+°(f \-p4 J

-82-h2jT|2V(V.u) + 0 V (5.13)

Note: (53t}3+h3)/(5ri + h) = 52r)2+h2-5r|h and (52r|2 -h2)/(5r| + h) = 5r|-h. 

Equation (5.12) can be expressed in terms of u by subtracting equation 

(5.13) from (5.12) and substituting the terms u = u + 0(ep2/v) [also from 

equation (5.13)] into the dispersive terms i.e. 0(ep2 /v,5sp2 /v,52ep2 / v) gives

u = u+-n2{Qh2-}z2)v(v.u)-(z+}h)v[v.(hu)]}
v

- 8 Vh{?hv(v. u) - } v[v. (h u)]}

+ 82 — (a2 j r|2V(V • u) + O'Vvv
(5.14)

In the expression for the horizontal velocity above, the vertical variation 

through the water column comes about through the presence of the vertical 

coordinate z. It will be noted that the coordinate z does not appear in the last 

two terms of equation (5.14) (unlike other Boussinesq-type equations to be
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developed in Appendix C) and in this sense, the vertical variation of u is 

somewhat more limited. The vertical velocity can be expressed in terms of U 

by substitution of equation (5.14) for u into equation (5.7) for w:

w p2V«[(z + h)u] + 0V 4' (5.15)

Substitution of equation (5.14) for u, and equation (5.15) for w, into equation 

(5.6) for p leads to

v uy
+ fn2[jz2V . u, + zV . (hu,)] -e|x2[8\n2V . ut + T)V . (hu,)] 

0

+ —ji2{^z2u • V(V* u) + zu • V[V*(hu)]} 
5

- v8p2{5yT12u • V(V • u) + r| u • V[V • (hu)]}

+ 0
\

J
(5.16)

Use of the definition of the depth-averaged velocity in the depth-integrated 

continuity equation (5.4) leads to equation (5.17). Substitution of equations 

(5.14) for u, and equation (5.16) for p into the depth-integrated momentum 

equation (5.5) leads to equation (5.18). Equations (5.17) and (5.18) are the 

first set of Boussinesq-type equations of Chen et al. (1998) for wave-current 

interaction in shallow water.

r|t + V• (hu) + 5r)V• u + vu • Vr\ = 0 (5.17)

and

ut + v(u • V)u + Vr|

+ p2[A10 + vA1, + S(A12 + vA13) + 52(A14 + vA15)] = 0(sp2,fi4) (5.18)
◄------ —---------------------------------►

Dispersion terms associated with currents

where

A10 = hft (5 18a)
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a', = (u.v)(hr) (5.18b)

A'2 = -n{r, + v[v.(hut)]} (5.18c)

A3 = -r|(u • V){r + V[V • (hu)]} (5.18d)

A’4 =-jtl2V(V.U,) (5.18e)

A1s =-A^2(u»V)[V(V«u)] (5.18f)

in which

r = ^hv(v.u)-]v[v.(hu)] (5.18g)

The dispersion relation corresponds to equations (5.17) and (5.18) is a 

Pade [0,2] expansion of the dispersion relation given by Airy wave theory. 

Only the dispersion terms A- (i=2,3.4,5) include the free surface elevation r\. 

When the ambient currents vanish, the dispersion terms associated with 

currents [i.e. A1, (i = 1,2.3,4.5)] become negligible as detailed by Chen (1997) p27- 

32 and Chen et al. (1998) p16-20. As a result, this set of equations reduces to 

the equations of Peregrine (1967) written below.

r|t + V • [(h + 8r|)u] = 0 (2.111)

u, + e(u • V)u + = n2{| h V[V . (hu t)] - A h2V(V • u,)} + 0(cn2, n")

(2.112)
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5.2.4. Second set of equations of Chen et a/. (1998)

The second set of partial differential equations of Chen et al. (1998) is 

presented in terms of the horizontal velocity at an arbitrary elevation ua.

Evaluating u = ua at z = z«, equation (5.14) leads to

Ua = 0 + ^H2{(|h2 - \z„2)V('V . u) - (za + \h)v[v .(hu)]}

- 8^n2r,{|hV(V . u)-{V[V • (hu)]}

+ 52-n2^ti2v(V*u)+of-n4
v Vv )

Re-arranging equation (5.19) to make u the subject gives

u = u. - n2 {(2 - } z.2 )v(V . u) - (z. + j h )v[v • (h U )]}

(5.19)

+ 6-n2n{|hV(V . u)-1V[V .(hu)]}

- 52 — n2 t>12V(V • u)+0
( p ^V
vv J

(5.20)

Substitution of the terms u = u« + 0(sp2 /v) into the second derivative terms 

of equation (5.20) leads to

U = Ua +— |i2{(^Za2 - jh2)V(V»Ua) + (Za+|h)V[V*(hUa)]}

+ 8—)i2r|{^ hV(V . Ua) - \ V[V • (hu.)]}

-52-n2-]r|2V(V.u„) + 0 V
vv

(5.21)

Since there is no mention of z in the above equation, there is no vertical 

variation of the current field. Substitution of equation (5.21) for u into the first
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set of equations [(5.17) and (5.18)] gives the second set of Boussinesq-type 

equations of Chen et at..

rjt + V • (hlla) + 5r|V • ua + vua • Vq

+ n2(n2 + snf + 52n2 + s3n2) = 0(eh2, p4) (5.22)
◄----------------------------------------- ►

Dispersion terms associated with currents

and

Uat + v(lJa* V)Ua+Vq

+ p2[A20 + vA2 + 5(A2 + vA2) + 82(A2 + vA25)] = 0(sp2,p4) (5.23)
◄------------------------------------------------------------------------------►

Dispersion terms associated with currents

where

n2 = v.(hr) (5.22a)

n2 =nvra (5.22b)

n2=-ih2v2[v*(hu0)] (5.22c)

n3 =-?h3V2(V.Ua) (5.22d)

Ag = Ta, (5.23a)

A2 = (Ua • V)r» (5.23b)

A2 =-nV[V.(hu„t)] (5.23c)

A2 = -r|(u« • V)V[V • (hUa)] (5.23d)

a2 =-|n2v(v»uat) (5.23e)

A2 = r|2(lla • V)V(V »Ua) (5.23f)

in which Ta and r are defined by equations (3.11a) and (3.18) respectively, 

and V2=V*V. The equations (5.22) and (5.23) are applicable to the 

combined motion of waves and currents in the coastal zone but exclude 

bottom friction and wave breaking. The dispersion terms associated with
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currents [i.e. Uf 0=1.2.3) in the continuity equation (5.22) and A* (1 = 1,2.3.45) in 

the momentum equation (5.23)] become negligible when the ambient currents 

vanish as detailed by Chen (1997) p27-32 and Chen et al. (1998) p16-20. 

With no ambient currents, this second set of Chen et a/.’s equations reduces 

to the Boussinesq-type equations of Nwogu (1993) written below.

r|t + V • [(h + eri)Ua] + p2 *V • (hr) = 0(sp2,|i4) (3.16)

Uat + Vr) + 8(Ua • V )Ua + p.2Fat=0(8p.2,|J.4) (3.17)

The terms associated with currents are parts of terms with non-linearity. The 

terms associated with currents do not affect the dispersion relation1. 

Consequently, the dispersion relation of the second set of equations of Chen 

et al. (1998) [(5.22) and (5.23)] is identical to the dispersion relation 

associated with the partial differential equations of Nwogu (1993) (i.e. a Pade 

[2,2] from Airy wave theory) (see also Table 1.1).

The second set of Boussinesq-type equations of Chen et al. (1998) [(5.22) 

and (5.23)] can be expressed in 1D dimensional form. The Boussinesq-type 

continuity equation (5.22) is

r|t + [(h + T])Ua]x + n2D = 0 (5.24)

where
Dispersive terms associated with currents

◄-------------------------------------------------------------------- ►

nfo =(hra)x -[^U^ - jh2(hUa)J„ +Tir„x -jn^hUaU

(5.24a)

ra=|Za2U<.xx + Za(hUa)„ (5.24b)

and the Boussinesq-type momentum equation (5.23) now with bottom friction 

included is

1 The dispersion relation is obtained: (i) from the non-dimensional governing equations with
terms with non-linearity e dropped or (ii) from the dimensional governing equations with non­
linear terms dropped (see Sections 3.3 and 4.3).
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U«. + gn* + U« Ua„ + | Za'u.^ + Z„(hUa)to

+ ua{|zc<,(h2u„xl<), + Zc.[h(hu.)Jx}

-Tl(hUa,)„ -ilUo^Ua)^-^r)2uaixx —rfuaUa^ = Rc

where

Rc
g | Ua|Ua

Cc2 h

(5.25)

(5.25a)

and Rc = bottom friction term, Cc = Chezy coefficient and free coefficient 

a = - 0.39 (see Section 3.3). For the frictionless case Rc is zero.

5.3. Boussinesq-type numerical model (1DBMWC-3)

5.3.1. Solution method

The 1D governing equations with bottom friction included [(5.24) and 

(5.25)] are solved by the present author in a similar fashion as the governing 

equations in Chapter Three. The continuity equation (5.24) can be then 

written as equation (3.28):

r|t=E(r|,Ua) (3.28)

where

E(T1,ua) = -[(h + T1)ua]x-ni2D (5.26)

The momentum equation (5.25) can also be expressed in the form of 

equation (3.30):

U«t =F(r|,Ua) (3.30)

where

Ua = Ua + Za[j Za Ua,, + (tlUa) J - r|[(hUa)x> (5.27)

and
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F(r|,Ua) - -gr|x -UaUax -Ua{yZca2(h2Uaxx)x + Zca[h(hUa)xx ]x }

+ rjUa[(hUa)xxx+ ^rjuaxxx] + Rc (5.28)

The continuity and momentum equations, which are written in the form of 

equations (3.28) and (3.30) respectively, are then discretised on a 1D mesh 

and integrated using the Adams-Bashforth three-step predictor and Adams- 

Moulton four-step corrector schemes (similar to what is done in Chapter 

Three). This gives values of r\ and Ua at time level (t+1).

The velocities at the new time level Uajt+1 remain to be solved. In the next 

step of the solution process, equation (5.27) is arranged into a matrix form as 

shown in equation (5.29). It is noted that the resulting coefficient matrix for 

calculating values of u« varies with time since it contains terms at time level 

(t+1). This is in contrast to 1 DBMW-1 in Chapter Three, where the coefficient 

matrix is constant in time. Equation (5.29) is easily solved using Gaussian 

elimination.

~ t+1 ' t+1 '

Coefficient

Matrix

< Ua ► = < Ua (5.29)

The values of the free surface elevation and horizontal velocity determined 

above are for inside the fluid domain. At the boundaries, these values are 

determined using the boundary conditions explained below.
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5.3.2. Boundary conditions for waves only case

5.3.2.1. Incoming wave boundary conditions

For a locally constant depth, the continuity equation (5.24) reduces to

Tit + UaT|x + (h + Ti)Uax + [(a + {)h3 + cth2r| -|hr|2 - jifjua^ = 0 (5.30)

If the incoming wave is prescribed as a periodic, small amplitude wave [i.e. 

r| = ^HiC0S(kx - cot)], the corresponding horizontal velocity at an arbitrary 

level (z = Za) Ua can be obtained by substituting equations (3.25) i.e. 

r\ = r\a exp[i(kx - cot)] and u« = uaa exp[i(kx - cot)] into equation (5.30) giving

COT)

k{h -k2[(a + |)h3 + ah2r| -jhr|2 - i r|3]}
(5.31)

The Sommerfeld radiation condition (3.42) (i.e. qt +Cqx =0) is automatically 

satisfied by equation (5.31).

5.3.2.2. Outgoing wave boundary conditions

The Sommerfeld radiation condition (3.42) can be used to predict the free 

surface elevation at the outgoing wave boundary.

The Boussinesq-type continuity equation in terms of the depth-averaged 

velocity u is

ht+[(h + h)U]x=0 (5.32)

Equation (5.32) is substituted into the Sommerfeld radiation condition (3.42) 

to eliminate qt giving

[<h + n)u]x = cn, (5.33)

For a locally constant depth, the horizontal velocity is then obtained by 

integrating equation (5.33) over the x-direction to yield
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u
(h + r|)

(5.34)

Having solved for u in equation (5.34), equation (5.19) is applied to 

determine u«. The set of boundary conditions for 1DBMWC-3 are displayed in 

Figure 5.1 for waves only case.

Figure 5.1. Waves only case: the free surface elevation r| at the incoming wave boundary is 
varied sinusoidally with time.
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5.3.3. Boundary conditions for current only case

Boundary conditions for the current only case have some similarities with 

the waves only case and are schematised in Figure 5.2.

2nt+[(h+n)u]x+Cnx=o

(b)

• a. a. a. a. a- a. a. a* a. a. a. a. a. a_ a_ a- a- a- a. a- a- a — a— a- a- a- a. a- a- a _ a- a _ ■- a _ a - «**

2r)t+[(h+r|)u]x+Crix=0 nt+cnx-0 |
U=C—3— 

h+r|

Figure 5.2. Current only case: (a) the imposed current flows from the right to the left hand 
boundaries; and (b) the imposed current flows from the left to the right hand boundaries. 
Note: C = yjgh .

At the upstream end, the depth-averaged velocity is specified but the 

boundary condition also needs to involve r|. One way of linking u and r| at the 

upstream end is to combine the Sommerfeld radiation condition (3.42) and 

the continuity equation (5.32) to give

2r)t + [(h + r|)u]x + Cr)x = 0 (5.35)
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5.3.4. Boundary conditions for wave-current interaction case

The governing equations considered in the present Boussinesq-type 

numerical model (1DBMWC-3) were derived based on a steady ambient 

current. In the model tests, the following procedure is adopted i.e.

• 1DBMWC-3 is run with current only from an arbitrary free surface 

elevation.

• The results from 1DBMWC-3 settle down to a steady state with r\c as the 

water level.

• After the steady state is reached, a sinusoidally varying surface elevation 

is imposed at the inflow or outflow boundary. This results in a wave train 

propagating into the computational domain.

Two boundary conditions applied at each end in the model for wave-current 

interaction are shown in Figure 5.3.
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waves

y Hisin(kx - o>t)

current
uc (specified)

W • % »s •% • *» • s ■ s >s • % ■ \■ *. ■ % ■ - % ■ % ■% ■ s ■ % ■ s ■ % ■ \ - s ■% ■% • %-s • % ■ % ■ ■

r] = r^c + yHisin(kx - oat)

u = Uc +
k{h-k2[(a+-)h3+ah2t1--hri2—n3D

3 2 6

waves

uc (specified)
current

r) = r|c + y Hi sin(kx - cot)

u=C—

k{h-k2 [(a+-)h3 +ah2r|--hr|2 --r|3 ]} 
3 2 6

Figure 5.3. Wave-current interaction case: (a) waves and steady opposing current; and (b) 
waves and steady current in same direction.

The total velocity at the incoming wave boundary are specified by adding the 

steady current velocity to the orbital wave velocity as

u = Uc + —j;------- --------------^-----------------------ry (5.36)
k{h-k2[(a + j)h3 +ah2n-jhr|2 ~r|3]}

The same comment applies to the free surface elevation as

r| = r|C + YHiSin(kx - cot) (5.37)
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5.4. 1D steady, non-linear shallow water numerical model 
(1DSSWM)

3*-----------------------------^E=~*--------------------------------------
„ z >

swl n ^

flow

i

hi
d

s-----------------------------------------------------^
X

h2

r

Figure 5.4. Definitions for d, h and r\.

Referring to Figure 5.4, the 1D steady, non-linear shallow water equations 

with bottom friction included are

t(h + n)u]x = 0 (5.38)

gr|x + uux=Rc (5.39)

where

lulu
Rc=-g W (5.40)

where u is the depth-averaged horizontal velocity, Rc is the energy slope and 

Cc is the Chezy coefficient. A numerical model based on equations (5.38) and 

(5.39) can be used to predict the free surface elevation and velocity of a 

steady current in a wide channel (since the hydraulic radius has been 

approximated by the depth). It is noted that Chen (1997) also developed a 

numerical model based on the equations above for making comparisons with 

their 1D Boussinesq-type numerical model based on their third equations in 

the case of pure current motion. In the present study, the procedure of Chen 

(1997) is followed as far as equation (5.44).
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Equations (5.38) and (5.39) can be expressed respectively as

(du)x = 0 (5.41)

gdx + uux =ghx+Rc (5.42)

where d = h + r| is the water depth from the free surface to the bottom and hx 

is the bottom slope. Equation (5.42) is re-arranged as

(gd + ju2)„ =gh„+Rc (5.43)

The momentum equation (5.43) may be discretised using a first-order 

accurate, finite difference operator to obtain

(gd + { u2=(gd + |u2)i+| Ax[(gh„ + Rc)M + (ghy + Rc),] (5.44)

where the unknowns are dM and uM. (Note: The convention for the axes 

adopted here is shown in Figure 5.4). The unknown in equation (5.44) is 

eliminated by substitution of the continuity equation (du^ = (du)^ and the

lulu
definition of the friction term Rc = -gJ—into equation (5.44). The result of

Cc h

these operations is the cubic equation in the single unknown dM.

g(di.1)3-X,(di.,)2 + X2 = 0 (5.45)

where

Xi = (gd + {u2), -{gAx
u | uA

vc7h-y
+ g(h|_i-h,)

X2 = m<d f Uj +gAX
(Cc2h)M

(5.45a)

(5.45b)

Equation (5.45) is then solved for dM using the Newton-Raphson technique 

to yield 3 solutions. These correspond to (i) a negative depth, (ii) a depth for 

subcritical flow and (iii) a depth for supercritical flow. The solution adopted
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corresponds to the subcritical flow. Free surface elevation due to a current 

r|j_1 can be drawn using dj_1 — hj_1

5.5. 1D conservation of wave action numerical model 

(1DWACM)

As explained in Chapter Two, the Doppler shift for a wave train moving on 

a current can be expressed as

coa - Uc k = ai (5.46)

or

(C0a-Uck)2 -<7i2 =0 (5.47)

where coa is the absolute angular frequency, Uc is the horizontal ambient 

current velocity in the direction of wave propagation, k is the wave number, Gi 

is the intrinsic or relative angular frequency. The Boussinesq-type equations 

[(5.22) and (5.23)] give rise to the Doppler shift (5.47) with a dispersion 

relation corresponding to a Pade [2,2] approximation in terms of kh, that is

gk2h
1-(g-4)(kh);

1-a(kh)2
(5.48)

in which h is the water depth and the free coefficient a is used to defined za. 

Substitution of equation (5.48) for cri into equation (5.47) leads to

CDa
2 -2(Da Uc k + (uc k)2 -gk2h

1 -(g-4Xkh);
1 -a(kh)2

0 (5.49)

If the wave period coa = 27i/T and uc are given, equation (5.49) can be solved 

for wave number k, using for example the Newton-Raphson method. The 

valid values for k are always positive and are then used to calculate the 

intrinsic angular frequency g\ and the group velocity Cg as set out respectively 

below:
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<J\ = COa - Uc k (5.50)

Cg — nC (5.51)

r 2khwhere C = — and n 
k v

1 +--------
sinh(2kh)

The principle of conservation of wave action equation is expressed as

where Aw = E/ai is the wave action, E = jpgH2 is the wave energy, p is the

fluid density and H is the wave height. Substituting the definition Aw= E/ai into 

equation (5.52) and then discretising using a first-order accurate, finite 

difference operator gives

If Hj is given, a wave envelope can be drawn using r\.^ ±^HM, where tim is

the free surface elevation due to a steady current (without waves) at i - 1 (see 

Section 5.4). Although the conservation of wave action model (1DWACM) 

involves wave height, the results do not yield information on the propagation 

of individual waves, only on the spatial variation of wave height. This is in 

contrast to Boussinesq-type model models, which yield information on 

individual waves and how the water level varies within the wave period.

5.6. Experimental set-up 1: a slope

When the current vanishes, the governing equations of 1DBMWC-3 (i.e. 

the second set of equations of Chen et al., 1998) mathematically reduce to 

the governing equations of 1 DBMW-1 (i.e. the equations of Nwogu, 1993). 

Thus, 1DBMWC-3 is run for simulating wave propagation over a slope with 

the same numerical experiment set-up as used in 1 DBMW-1 (Figure 3.4).

(Cg Aw)x = 0 (5.52)

(5.53)
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In the first test, 1DBMWC-3 is run with the same test conditions as 

1 DBMW-1 (i.e. Hi/hi = 0.071, k.hi = tt, hi/Lo = 0.5, Lo/Ax = 28.2, T/At = 50.0) to 

simulate incident wave propagation from deep water (i.e. hi/Lo = 0.5). The 

results in Figure 5.5 show that the numerical solutions of both models for the 

free surface elevation nearly coincide. The small discrepancy between the 

results of the two models is possibly due to the differences in the boundary 

conditions for the two models (see Figures 3.3 and 5.2). Comparisons on the 

model results versus the laboratory measurements are located in Chapter 

Three. This section focuses on 1DBMWC-3 compared with 1 DBMW-1.

h=0.28 mS 0.03 -

0.02 -

Time (s)

h=0.07 m

0) 0.01 -

g o.oo -

Time (s)

Figure 5.5. Incident deep water waves propagating over a slope: time series of the free 
surface elevation at 0.28 and 0.07 m depth predicted by 1DBMWC-3 (bold lines), the 
laboratory measurements (thin lines) and 1 DBMW-1 (dashed lines). Test condition: 
hi = 0.56 m, Hi = 0.04 m, T = 0.85 s, Ax = 0.04 m and At = 0.017 s.
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The second test is to simulate the shoaling of an intermediate depth wave 

(T = 1 s, Hi = 0.066 m, Hi/hi = 0.118, kihi = 2.30, hi/Lo = 0.36) with experimental 

set-up 1. With a grid resolution of Lo/Ax = 39.0 and T/At = 58.8, 1 DBMW-1 

(waves only) remains stable. However, 1DBMWC-3 (with the dispersion terms 

associated with currents included) but operated without currents being 

present does not remain stable. Consequently, the grid resolution for both 

models is made coarser to Lo/Ax = 31.2 and T/At = 50.0 with the result that the 

model remains stable. The predicted free surface elevation of both models is 

shown in Figure 5.6. As in the previous test, both numerical solutions are 

relatively close.

0.05 - h=0.24 m
'T 0.04

Time (s)

0.05 -
h=0.10 m0.04 -

0.03 -

£ -0.01

w -0.02

27.5
Time (s)

Figure 5.6. Incident intermediate depth water waves propagating over a slope: time series of 
the free surface elevation at 0.24 and 0.10 m depth predicted by 1DBMWC-3 (bold lines), the 
laboratory measurements (thin lines) and 1 DBMW-1 (dashed lines). Test condition: 
hi = 0.56 m, Hi = 0.066 m, T = 1 s, Ax = 0.05 m and At = 0.02 s.
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5.7. Experimental set-up 2: a submerged bar

The second set-up for the numerical experiments consists of a channel 

with a submerged bar and is represented in Figure 5.7. The channel is 60 m 

long, 0.8 m deep on both sides of the bar and 0.2 m deep on top of the bar. 

The Chezy coefficient (Cc) is used to quantify the friction effects along the 

channel: between chainages 0-5 m, Cc = 300 m1/2/s; between chainages 

5-23 m, Cc = 30m1/2/s and between chainages 23-60 m, Cc = 300 m1/2/s. 

This set-up follows that of Chen et al. (1998). As reported by Chen et al., the 

use of the relatively strong bed friction between chainages 5 - 23 m serves to 

stabilise the flow simulation.

60 50 40 30 20 10 0
Chainage (m)

Figure 5.7. Channel with a submerged bar: the channel is 60 m long, 0.8 m deep on both 
sides of the bar and 0.2 m deep on top of the bar.

5.7.1. Test 1 with submerged bar (set-up 2): Steady current only 

case

Initially, a flat water surface and a constant inflow velocity of 0.17 m/s is 

imposed at the right hand boundary (x = 0 m) [see also Figure 5.2(a) for 

boundary conditions]. The imposed current flows from the right to the left 

hand boundaries, and reaches a steady state condition after about 120 s. The 

surface elevation increases to about 0.065 m at the right hand boundary and 

to approximately 0.052 m at the left hand boundary. Figures 5.8 and 5.8 show 

that the free surface elevation and velocity predicted by 1DBMWC-3 (bold
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lines) at t=120s agree well with the results of 1DSSWM (thin lines). The 

closeness of the results in Figures 5.8 and 5.9 indicate that the dispersion 

terms included in 1DBMWC-3 have only a slight effect on the free surface 

elevation. The biggest difference in the model results occurs where the water 

surface curvature is large upstream of the bar.

t=120s

Flow direction

30 25
Chainage (m)

Figure 5.8. Steady flow in open channel with a submerged bar (Test 1): comparison of the 
free surface elevation predicted by 1DBMWC-3 (bold line) at t=120s and 1DSSWM (thin 
line). Test condition: hi = 0.8 m, uc(x=0) = 0.17 m/s, Ax = 0.2 m and At = 0.05 s.

t=120s

Flow direction

Chainage (m)

Figure 5.9. Steady flow in open channel with a submerged bar (Test 1): comparison of the 
horizontal velocity predicted by 1DBMWC-3 (bold line) at t = 120 s and 1DSSWM (thin line). 
Test condition: hi = 0.8 m, uc(x=0) =0.17 m/s, Ax = 0.2 m and At = 0.05 s.
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5.7.2. Test 2 with submerged bar (set-up 2): Waves and steady 

strong opposing current

Once the currents through the channel reach a steady state at t= 120 s, 

the free surface elevation at the left hand boundary (x = 60m) is varied 

sinusoidally with time [see also Figure 5.3(a) for boundary conditions]. The 

incoming wave has a period T= 1.2 s and an initial wave height of 0.02 m. 

This computation is performed with a grid resolution of Lo/Ax = 22.5 and 

T/At = 48.0 where Lo = gT2/(27t) = 2.25 m.

Figure 5.10 shows the free surface elevation predicted by 1DBMWC-3 for 

combined wave-current motion at a time of 120+ 75= 195 s. The wave is 

blocked at about x = 26.5 m (Figure 5.11) when the local current velocity 

equals the opposing local group velocity. This phenomenon shows that the 

Boussinesq-type equations can permit an opposing current, which can 

exceed the group velocity. Figure 5.10 shows a comparison of an 

instantaneous solution from 1DBMWC-3 (bold line) and the results of 

1DWACM (thin lines). They show good agreement from the left hand 

boundary (x = 60m) to a chainage of about x = 33m and then 1DWACM 

predicts increasingly higher and higher wave heights which go to infinity at the 

blocking point.

t=( 120+75) s

o 0.06

Flow directiong 0.03

£ 0.02 Wave direction
w 0.01

0.00 ■

Chainage (m)

Figure 5.10. Waves propagating over a submerged bar against a steady, strong opposing 
current (Test 2). The bold line denotes the computed instantaneous solution by 1DBMWC-3 
at t = 120 + 75 = 195 s. The thin lines defining the wave envelope denote the results of 
1DWACM. Test condition: hi = 0.8m, Hi = 0.02 m, T=1.2s, uc(x=0) = 0.17 m/s, Ax = 0.1m 

and At = 0.025 s.
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OOOOOOOOOo t=( 120+75) so o o

s S 8 8"57 125

Flow directionWave direction
current velocity

Chainage (m)

Figure 5.11. Waves propagating over a submerged bar against a steady, strong opposing 
current (Test 2): the relationship between the absolute local current velocity (bold line) and 
the local wave celerity (circles) and the local group velocity (crosses) predicted by 1DBMWC-
3 at t = 120 + 75 = 195 s. Test condition: hi = 0.8 m, Hi = 0.02 m, T= 1.2 s, Uc(x=0) =0.17 m/s, 

Ax = 0.1 m and At = 0.025 s.

5.7.3. Test 3 with submerged bar (set-up 2): Waves and steady 

weak opposing current

Test 3 is similar to the previous test, except that this time a wave period of 

2.4 s is used instead of 1.2 s [see also Figure 5.3(a) for boundary conditions]. 

The computation is carried out with a grid resolution of Lo/Ax = 45 and 

T/At = 96. 1DBMWC-3 is run for a time of t = 120 + 47.5 = 167.5 s. Figure 5.12 

shows that the current does not block the 2.4 s wave, which is able to 

propagate against the current. This is confirmed by Figure 5.13, where it is 

seen that the local current velocity does not exceed the local group velocity at 

any location in the channel (compare with the 1.2 s wave in Figure 5.11). In 

Figure 5.12, it is evident that there is good agreement between the results of 

1 DBMWC-3 and those of 1DWACM except between x=10m and x = 26m. 

In this region of the channel, the wave heights predicted by 1 DBMWC-3 are 

contained with the envelope of wave heights predicted by 1DWACM.
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Row direction

t=( 120+47.5) s. Wave direction

Chainage (m)

Figure 5.12. Waves propagating over a submerged bar against a steady, weak opposing 
current (Test 3). The oscillatory motion of the free surface elevation predicted 1DBMWC-3 at 
t = 120 + 47.5 = 167.5 s is enclosed by the wave envelope (thin lines) of the results of 
1DWACM. Test condition: hi = 0.8m, Hi = 0.02m, T = 2.4s, Uc(x=0) = 0.17 m/s, Ax = 0.2m 

and At = 0.025 s.

XX XXX XXX XX

liOOOOOOO Oo O OOO OOO O0

t=( 120+47.5) s
Current velocity

Chainage (m)

Figure 5.13. Waves propagating over a submerged bar against a steady, weak opposing 
current (Test 3): the relationship between the absolute local current velocity (line) and local 
wave celerity (circles) and local group velocity (crosses) predicted by 1DBMWC-3 at 
t = 120 + 47.5 = 167.5 s. Test condition: hi = 0.8 m, Hi = 0.02 m, T = 2.4 s, uc(x=0) = 0.17 m/s,

Ax = 0.2 m and At = 0.025 s.

5.7.4. Test 4 with submerged bar (set-up 2): Steady current only 

case

The fourth test considered here is similar to the first test, but now a 

constant inflow velocity of 0.17 m/s is imposed at the left hand boundary 

(x = 60 m) instead of at the right hand boundary [see also Figure 5.2(b) for 

boundary conditions]. The imposed current flows from the left to the right 

hand boundaries and reaches a steady state condition after about 120 s. This 

gives rise to a water surface, which varies from about 0.065 m at the left hand
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boundary (x = 60m) to approximately 0.053 m at the right hand boundary 

(x = 0 m) at the steady state condition at t = 120 s. A comparison of the free 

surface elevation predicted by 1DBMWC-3 (bold line) with 1DSSWM (thin 

line) gives good agreement as shown in Figure 5.14. As in the first test, the 

dispersion terms incorporated in 1DBMWC-3 are seen to barely cause any 

discernible difference in the free surface elevation, even where the curvature 

of the water surface is large.

t=120 s

& 0.05 -

Flow
direction

Chainage (m)

Figure 5.14. Steady flow in open channel with a submerged bar (Test 4): comparison of the 
free surface elevation predicted by 1DBMWC-3 (bold line) at t=120s and 1DSSWM (thin 
line). Test condition: hi = 0.8 m, Uc^^ = 0.17 m/s, Ax = 0.2 m and At = 0.05 s.

5.7.5. Test 5 with submerged bar (set-up 2): Waves and steady 

current in same direction

After the current reaches a steady state condition (Test 4), the free 

surface elevation at the left hand boundary (x = 60m) is varied sinusoidally 

with time [see also Figure 5.3(b) for boundary conditions]. The wave period, 

incident wave height, grid resolution and time increment remain identical to 

the values used in the second test (i.e. T=1.2s, Hi = 0.02 m, Ax = 0.2 m, 

Lo/Ax = 22.5, At = 0.025 s and T/At = 48.0). The effects of a current on waves 

moving in the same direction lead to a noticeable stretching of the 

wavelengths compared to the case with waves and current in opposite 

directions (compare Figures 5.15 and 5.10). It can be seen in Figure 5.15 that 

except near the right hand boundary (x = 0 m), good agreement is obtained in
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a comparison of the free surface elevation from 1DBMWC-3 results (bold line) 

at t = 120 + 75 = 195 s and the results of 1DWACM (thin lines). The 

discrepancy between the two model results near the right hand boundary is 

due to boundary conditions, which are evidently not performing well.

t=( 120+75) s

a> 0.05

>C 0.04 Row & w ave directions

Chainage (m)

Figure 5.15. Waves and steady current in same direction moving over a submerged bar (Test 
5): The bold line denotes the instantaneous water surface (with waves) from 1DBMWC-3 and 
the thin lines denote 1DWACM. Test condition: hi = 0.8 m, Hi = 0.02 m, T=1.2s, 
ljc(x_6o) =0.17 m/s, Ax = 0.1 m and At = 0.025 s.

5.8. Conclusions

A numerical model together with various boundary conditions for fully 

combined wave-current motion is developed by the present author. This 

numerical model is referred to as 1DBMWC-3. The governing equations are 

the 1D Boussinesq-type equations with a Doppler shift in which the dispersion 

relation corresponds to a Pade [2,2] expansion in terms of kh as derived by 

Chen et al. (1998). The boundary conditions for the present numerical model 

(1DBMWC-3) are determined for the particular cases of waves only, current 

only and wave-current interaction.

The governing equations of 1DBMWC-3 mathematically reduce to those of 

1 DBMW-1 in the absence of an ambient current. This is numerically 

confirmed by the close agreement between the numerical solutions from 

1DBMWC-3 and 1 DBMW-1. However, numerical corroboration is still required 

by extending this work into 2D, which is documented in Chapter Seven.
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In the case of pure current motion, the results of 1DBMWC-3 are 

compared to those of 1DSSWM. Excellent agreement is obtained. When 

waves are present, the results from the 1DWACM are compared with those 

from 1DBMWC-3 in the case of fully coupled wave-current motion. The 

comparison indicates generally good agreement between the results.
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Chapter Six

2D Basic Model

6.1. Introduction

One of the main difficulties in a 2D numerical wave model compared to a 

1D numerical model is in the furnishing of a set of boundary conditions. Two- 

dimensional Boussinesq-type numerical models have been proposed; some 

examples are by Abbott et al. (1978), Hauguel (1980), Yoon and Liu (1989), 

Madsen et al. (1991), Madsen and Sorensen (1992), Wei and Kirby (1995), 

Nwogu (1996) and Sorensen et al. (1998). However, detailed consideration of 

the 2D boundary conditions was not usually included, with a notable 

exception being that of Wei and Kirby.

Wei and Kirby (1995) developed a 2D Boussinesq-type wave numerical 

model based on the equations of Nwogu (1993). Their numerical model 

included incoming, reflecting and outgoing wave boundary conditions. In the 

case of a monochromatic wave propagating over a shoal, the incoming wave 

specified was a small amplitude wave. The horizontal velocity at the incoming 

wave boundary was determined using Airy wave theory. At the reflecting 

wave boundary, the free surface elevation was obtained by setting the spatial 

derivative of the free surface elevation normal to an impermeable wall to zero 

(i.e. Vr|» n = 0). The horizontal velocity at that boundary was obtained by

2D Basic Model



Chapter Six 144

imposing a no-shear condition for the flow along the boundary wall. At the 

outgoing wave boundary, an approximate radiation boundary condition 

proposed by Engquist and Majda (1977) was adopted to predict the free 

surface elevation. However, this boundary condition inevitably introduced 

some wave reflection along that boundary that led to instability. To reduce the 

reflection, damping terms were added to the momentum equations. The 

governing equations and boundary conditions were discretised using an 

implicit finite difference scheme and a non-staggered grid. Wei and Kirby 

applied their model: (i) to study wave evolution in a closed basin to verify the 

symmetry of the computed results and to test various boundary conditions 

and (ii) to simulate monochromatic wave propagation over an elliptic shoal. A 

comparison between the numerical model results and laboratory 

measurements showed that the numerical model was capable of providing a 

solution for wave propagation over a wide range of water depths.

The 1D numerical model based on the equations of Nwogu (1993) is 

detailed in Chapter Three (1 DBMW-1). However, the aim of the present study 

is to simulate 2D wave propagation by developing a 2D numerical model 

based on the Boussinesq-type equations of Nwogu. This 2D numerical model 

is referred to 2DBMW-4. The numerical scheme applied by Wei and Kirby 

(1995) is employed by the present author in the model being developed. 

Three kinds of boundary conditions are incorporated into the numerical 

scheme:

(i) incoming wave boundary condition,

(ii) outgoing wave boundary condition and

(iii) reflecting wave boundary condition.

At the incoming wave boundary, monochromatic, small amplitude waves 

are generated. At the outgoing wave boundary, the 2D Sommerfeld radiation 

condition is applied to calculate both the free surface elevation and horizontal 

velocity. The reflecting wave boundary conditions are based on zero normal 

flux.
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2DBMW-4 is tested using data from the physical experiments of Chawla 

and Kirby (1996) [see Chen et al. (2000)] and also Berkhoff et al. (1982). The 

main differences between the present work and the previous work of Wei and 

Kirby (1995) and Wei et al. (1999) are in the determination of the appropriate 

boundary conditions. See Table 6.1 for a summary of the various differences.

Investigators Wei and Kirby (1995) Wei etal. (1999) Mera (present study)

Governing equations Nwogu (1993) Nwogu (1993) Nwogu (1993)

Time integration in the Wei and Kirby (1995) Wei and Kirby (1995) Wei and Kirby (1995)
numerical scheme (Third-order predictor & (Third-order predictor & (Third-order predictor &

fourth-order corrector fourth-order corrector fourth-order corrector
schemes) schemes) schemes)

Incoming wave 1) Monochromatic waves 1) Monochromatic and 1) Monochromatic and
boundary condition 2) Continuity equation and random waves random waves

Sommerfeld radiation 2) Source function 2) Continuity equation and
condition method (Wei et al.,

1999)
Sommerfeld radiation 
condition

Reflecting wave 
boundary condition

Wei and Kirby (1995) Wei and Kirby (1995) Mera (Present study)

Outgoing wave Engquist and Majda (1977) Engquist and Majda Sommerfeld radiation
boundary condition (1977) condition

Other explanation Damping terms added to Damping terms added to Use a filter to reduce
relating to the 
outgoing wave 
boundary condition

the momentum equation the momentum equation reflecting wave from 
boundary. (Mera. present 
study)

Test cases 1) Wave evolution in a 1) Monochromatic wave 1) Monochromatic wave
closed basin. propagation over a propagation over a flat
2) Monochromatic wave sloping bed with an bottom with an elliptic
propagation over a sloping elliptic shoal [Berkhoff et shoal [Chawla and Kirby’s
bed with an elliptic shoal al.'s (1982) set-up (1996) set-up]
[Berkhoff et al.'s (1982) 
set-up

2) 2D random wave. 2) Monochromatic wave 
propagation over a sloping 
bed with an elliptic shoal 
[Berkhoff et al.'s (1982) 
set-up]

Table 6.1. Differences between the current and previous research.

2D Basic Model



Chapter Six 146

6.2. Governing equations for 2D basic model (2DBMW-4)

The governing equations of 2DBMW-4 (the present Boussinesq-type 

numerical model) are the 2D equations of Nwogu (1993) [i.e. equations (3.16) 

and (3.17)], which are applicable to the horizontal propagation of regular or 

irregular, multi-directional waves in water of varying depth. The dimensional 

form of these equations is

Tit + V • [(h + n)Ua] + V • {(TZa2 -^h2 )hV(V • u«)

+ (za + |h)hV[V«(hua)]} = 0 (6.1)

Uat +gVr) + (Ua* V)Ua + Za{YZaV(V»Uat) +V[V»(hUat)]} = 0 (6.2)

where ua = (u«,va) = horizontal velocity vector at an arbitrary level (z = za) 

below still water level. The definitions for z« in equation (3.21) and a in 

equation (3.22) for 1D are also valid in 2D. The Boussinesq-type continuity 

equation (6.1) can be written as

Tit + + rt)Ualx + [(h + T|)Vct]y

+ (-jZc«2 -•j)[h3(Uaxx + Vaxy)]x +(zca + |){h2[(hu(i)xx +(hVa)xy]}x

+ (jZM - ?)[h3(U.xy + V.,,)], + (zc . {){h2[(hUa)w + (hVa)yy]}y = 0

(6.3)

where zca = zJh. Similarly, the Boussinesq-type momentum equation (6.2) in 

the x- and y-directions can be written as

Uat +yZa2(Uatxx + Va^ ) + Za [(hUat )xx + (hVa, )xy ] + gTlx + UaUax + VaUay = 0

(6.4)

Vat + {Za2(Uatxy + Vatyy) + Za[(hUat)xy + (hV«t)yy] + + UaVax + VaVay = 0

(6.5)

where the subscripts x and y denote partial differentiation with respect to the 

x- and y-directions respectively.
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6.3. Numerical solution algorithm for 2DBMW-4 

6.3.1. Solution method

The governing equations [(6.3) through to (6.5)] are discretised by the 

present author using the equivalent 2D form of the 1D implicit non-staggered 

finite difference method in Chapter Three.

• Continuity equation

The continuity equation (6.3) can be written as

qt = E(T], Ua, Vet) (6.6)

where

E(ri, Ua, Va) = - [(h + Tl)Ua]x - [(h + ll)Va]y

- (iZca1 - 5)th3(Ua„ + Va,, )]„ - (Zca * ^){h2[(hUa )„ + (llVa) j}x 

-({zcaI-|)[h3(Uaxy + -(zc„.|){h2[(hua)xy + (hv.)y>]}y = 0

(6.7)

• Momentum equations

The momentum equations [(6.4) and (6.5)] can be expressed as

Ua, = F(r|, Ua, Va) + [Fl(Va)]t (6.8)

Va, = G(r|, Ua, Va) + [Gl(Ua)]t (6.9)

where U«, V«, F, G, Fi and Gi are the variable groupings defined below:

Ua = Ua + Za[TZa Ua^ + (llUa)^] (6.10)

Va = Va +Za[^Za Vayy +(hVa)yy] (6-11)

F(r|,Ua,Va) = — gr|x -UaUax - VaUay (6.12)

G(n,Ua,Va) = -gr|y -UaV«x - VaVay (6.13)
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Fl(Va) = -Za[|Za Va^ + (hVa)xy ] (6.14)

Gl(lla) = — Za[ —Za Ua^ + (hUa)^ ] (6.15)

• Predictor algorithm

The predictor scheme adopted is the explicit third-order Adams-Bashforth 

method and is applied to the continuity equation (6.6) and the momentum 

equations [(6.8) and (6.9)] to give

=ii;j + ^At[23E,-16E-, + 5E-2]l( (6.16)

U«;*' = U«;, + ^ At[23F' -16F'-1 + 5F'-2],, + [2F,‘ - 3F,'-1 + Ft'"2]ij (6.17)

V„;;' = V„', + ^At[23G' -16G'"1 +5G,'2]jj + [2G/ -3Gi'*1 + Gi’”2],, (6.18)

All the terms on the right hand sides of equations (6.16) to (6.18) are at the 

earlier time levels [(t-2) to t] and known from previous calculations.

As in the 1D version of the model (1 DBMW-1), values of r^1 are 

calculated directly. However, the horizontal velocity components (u«,Va) at the 

new time level (t+1) are calculated from the known intermediate variables 

(Ua,Va) at the new time level (t+1) and defined in equations (6.10) and (6.11). 

In matrix form, these equations can be written in the form of equations (6.19). 

These equations require the solution of tridiagonal matrix systems, where the 

coefficient matrices are constant in time and equations (6.10) and (6.11) are 

solved using Gaussian elimination.

” t + 1

Coefficient
< Ua > = < Ua

matrix

>

(6.19a)
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■ t+1

Coefficient

matrix
< Va > = . Va

Equations (6.19) yield the (x,y) velocity components (Ua,v«).

(6.19b)

• Corrector algorithm

The newly predicted values of rtf*1, Ua-j1 and Vajj1 are then substituted into

equations (6.7), (6.12) to (6.15) to yield E‘*1, F^1, G*J1, (Fi)J*1 and (Gi)‘;1

respectively. These values of these parameters are then substituted into the 

continuity equation (6.6) and the momentum equations [(6.8) and (6.9)], which 

are converted to the form of the fourth-order Adams-Moulton corrector, that is

r1'*, = n,j + ^At[9Ew+19E,-5E,-1 + E,-2]ij (6.20)

Ua“ = + ^At[9F'*’ +19F' - 5F1"1 + F'-2],, + [F,M -Fi’],, (6.21)

V„;; = VaV + ^At[9G’*1 + 19G' - 5G,_1 + G’-2],, + [G/*1 - G.% (6.22)

The corrector step is repeated until the misclose between two successive 

results is less than a pre-set upper limit. The misclose in each of the three 

dependent variables rj, ua and v« is calculated separately and defined below:

Lic-r’i
Af = M xir| (6,23)

U

where f denotes any one of the dependent variables and ( )* denotes the 

previous iteration values. The corrector step is repeated if Af > 0.001 = 0.1 %.
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The values of the free surface elevation and horizontal velocities 

determined above are for inside the fluid domain. At the boundaries, these 

values are determined using boundary conditions explained below.

6.3.2. Boundary conditions

6.3.2.1. Incoming wave boundary conditions in 2D

The free surface elevation r\ at the incoming wave boundary is varied 

sinusoidally as

r\ = ^HiSin(k • x - cot) (6.24)

where Hi = incoming wave height, k • x = (k cos 0i) x + (k sin 0i) y, k = wave 

number vector, k = |k| (see Appendix A for vector components),

x = horizontal spatial vector and 0i = incoming wave angle between the 

direction of propagation and the x-axis.

The velocity boundary condition is now considered. A periodic, small 

amplitude wave is now expressed in exponential form with angular frequency

(0.

r| = r|a exp[i(k• x-cot)], u« = u«a exp[i(k• x-cot)] (6.25)

where r\a = amplitude of the water surface elevation and u«a = amplitude of the 

horizontal velocity. For a locally constant depth, the continuity equation (6.1) 

simplifies to

n, + (h + r|)(V • Ua) + u„ • Vri + (a + j)h3V • [V(V • u«)] = 0 (6.26)

The horizontal velocity at the incoming wave boundary can be obtained by 

substituting equations (6.25) into equation (6.26) to eliminate the time and 

spatial derivatives to give
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cor|

kh[l-(a + ^)(kh)2]
(6.27)

where rj «h for a small amplitude wave. Equation (6.27) automatically 

satisfies the Sommerfeld radiation condition (6.30) in which C = co/k. 

Expressing equation (6.27) in the x- and y-directions gives

(DT|

kh[l-(a + ^)(kh)2]
COS 0i (6.28)

cor|

kh[l-(a + ^)(kh)2]
sin 0i (6.29)

Hence at the incoming wave boundary, equation (6.24) specifies r\ while 

equations (6.28) and (6.29) yield the velocity components (ua,Va) respectively.

6.3.2.2. Outgoing wave boundary conditions in 2D

The boundary condition for r\ is considered first. At the outgoing wave 

boundary, the 2D Sommerfeld radiation condition is used to allow the 

passage and egress of the wave energy, that is

r|t+C»Vr| = 0 (6.30)

where

C = | C | cos 0 i -h | C | sin 0 j (6.31)

in which C and 0 is the local wave propagation direction defined by

0 tan'1
\

y_

X )
for r|x*0 (6.32)

(see Appendix A for a coordinate system). For implementation of the outgoing 

wave boundary condition into the code, equation (6.30) is transformed into 

the form of equation (6.6) giving
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E(r),Ua,va) = -| C | cos0 r|x — | C | sin0 rjy (6.33)

where the derivatives are discretised as

(nj;, =^(3r|l-4r|,.1 + TV2)' (6.34)

M., =^y(v.-'V,): (6.35)

The boundary condition for the velocity components is considered next. 

The depth-integrated continuity equation (2.36) can be expressed in terms of 

the depth-averaged horizontal velocity as

r|t + V • [(h + r|)u] = 0 (6.36)

Equation (6.36) is the exact continuity equation and is identical to the 

Boussinesq-type continuity equation in terms of the depth-averaged velocity 

as the velocity variable. Equation (6.36) is then substituted into equation 

(6.30) to eliminate r|t giving

V • [(h + rj)u] = C • Vr| (6.37)

For a locally constant depth, equation (6.37) may be integrated over the fluid 

domain to obtain the horizontal velocities

u = C ^ cos 0 (6.38)
h + q

v = C -- sin 0 (6.39)
h + r\

where C = |C|. Having solved for u, v in equations (6.38) and (6.39), 

equation (5.19) is applied to determined Ua, va.

The formulations for determining the free surface elevation and horizontal 

velocity in the present numerical model (2DBMW-4) are different to those in 

the work of Wei and Kirby (1995). These investigators predicted the free
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surface elevation at a boundary (parallel to the y-axis) using the 

approximation (6.40) proposed by Engquist and Majda (1977) instead of 

equation (6.30).

n« +Cr|x,-jC2r|yy =0 (6.40)

where C = -Jgh .

Wei and Kirby then calculated the horizontal velocity using the momentum 

equations with damping terms included instead of equations (6.38) and 

(6.39). The damping terms were analogous to linear viscous terms in the 

Navier-Stokes equations (Israeli and Orszag, 1981). More information about 

the damping terms used in the momentum equations can be found in Wei and 

Kirby (1995).

Hence the boundary condition for r| at the outgoing wave boundary is 

specified by equation (6.30) and for (ua,Va), the boundary conditions are 

equations (6.38) and (6.39).

6.3.2.3. Reflecting wave boundary conditions in 2D 

Boundary condition for v«

The kinematic boundary condition at an impermeable wall can be stated 

as

Ua»n = 0 xedQ (6.41)

where n is an outward normal vector, Q is the fluid domain, dQ is the 

boundary and x is a position in the boundary. Consider, for example, the case 

of an impermeable wall being parallel to the x-axis. Equation (6.41) is a 

boundary condition and can be written as

Va — 0 x e dQ (6.42)
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Boundary condition for n

The slope and the curvature of v« normal to the impermeable wall is assumed 

to be zero and expressed respectively as

Vay = 0 and v«yy =0 xedQ (6.43)

The continuity equation (6.1) can be expressed in terms of the volume flux 

vector Q as

r|t + V • Q = 0 (6.44)

where

Q = (h + T|)Ua + (jZa2 - j-h2)hV(V . Ua) + (za + jh)hV[V . (hUa)] (6.45)

Once again, the kinematic boundary can be expressed in terms of the volume 

flux vector at an impermeable wall as

Q • n = 0 x e dQ (6.46)

For the case of the impermeable wall being parallel to the x-axis, the volume 

flux in the y-direction at the boundary becomes zero or

(h + tl)V. + (J-Za2 - j-h2 )h(Uaw + v«„) + (za + jh)h[(hUa)w + (hVa)yy] = 0

x e 5n (6.47)

Substituting equation (6.47) into equation (6.3) gives a reflecting wave 

boundary condition for calculating the free surface elevation at the boundary 

wall as set out below:

r|t +[(h + rj)Ua]x +(jZca2 - ^)[h3(uaxx + vQxy)]x

+ (zca • y){h2t(hu„)„ + (hVayK =0 xeffl (6.48)

The present approach differs from that of Wei and Kirby, who predicted the 

free surface elevation at the reflecting wave boundary by imposing

Vr|»n = 0 xedQ (6.49)
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Boundary condition for u«

For a locally constant depth, the horizontal velocity in the x-direction may 

be obtained by substituting equations (6.42) and (6.43) into equation (6.47) 

giving

uaxy =0 X e dQ (6.50)

The last condition is also different to the work of Wei and Kirby, who imposed 

a condition of zero shear stress along the boundary wall to estimate ua.

For a boundary parallel to the x-axis, the boundary conditions are 

equations (6.48), (6.50) and (6.42) for r\, ua and va respectively.

6.3.3. Filter

To enhance the stability of the computation, two three-point filters are 

applied to riff1, Uajj1 and Vaff1. The filters take the form:

f,r=”(c,,+r-f'+c,r (6.51)

and

(6.52)

where f* denotes rj, ua and va, and f denotes the new values of r|, ua and va. rx 

and ry are constant smoothing coefficients which are determined empirically.
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Outgoing wave

4 4 4
Incoming wave

• Equation (6.52) applied

Equation (6.51) applied

Figure 6.1. Filter.

From Figure 6.1 can be seen that equation (6.51) is applied to all points in the 

fluid domain excluding the boundaries. Equation (6.52) however, is only 

applied to a strip of the fluid domain, which is about two times the incoming 

wavelength in width and is adjacent to the outgoing wave boundary. 

Consequently, equations (6.7), (6.12) through to (6.15) and (6.20) through to 

(6.22) are re-calculated after the results have been filtered.

The filters are said to be ‘soft’ filters because the effects on the results at a 

particular point are small. To achieve this, the values of the coefficients rx and 

ry should be large numbers. In these computations, for example, rx and ry are 

set to 2000 and 100, respectively. However, small values for rx and ry result in 

large effects on the filtered dependent variables (f^1), which may be followed

by spurious attenuation of the wave heights. The values for rx and ry are 

obtained by trial and error. As the values of the coefficients are relatively large 

numbers and the filtered variables are re-calculated, this will probably not
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have much effect on the order of the truncation error retained of the governing 

equations.

6.4. Model verification

6.4.1. Scenario 1: Wave propagation over a circular shoal on a flat 

bottom basin

As reported by Chen et al. (2000), Chawla and Kirby (1996) conducted 

laboratory experiments of non-breaking wave propagation over a submerged 

shoal. The physical wave basin was approximately 18 m long and 18.2m 

wide. The numerical representation of this wave basin is in Figure 6.2. The 

centre of the shoal was located at (x,y) = (13,9.22) m with the perimeter given 

by

(x-13)2 +(y-9.22)2 = (2.57)2 (6.53)

The water depth over the circular shoal was given by

h = heven + 8.73 - ^82.81 - (x -13)2 - (y - 9.22)2 (6.54)

in which heven was the constant depth of the wave basin while the rest of the 

basin bathymetry was flat. The incoming wave boundary is located at 

x= 18 m, the outgoing wave boundary is at x = 0 m and the reflecting wave 

boundaries are situated at y = 0 m and y = 18.2 m.

Chen et al. (2000) also used the laboratory set-up of Chawla and Kirby to 

verify their numerical model, which was based on the Boussinesq-type 

equations proposed by Wei et al. (1995). As noted by Chen et al., the wave 

height at the incoming wave boundary was 0.0118 m, the wave period was 

1.0 s, the depth heven in equation (6.54) was 0.45 m and the top of the shoal 

had a depth of 0.08 m.
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Sections
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Figure 6.2. Plan (top) and perspective (bottom) views of numerical bathymetry following 
Chawla and Kirby’s (1996) laboratory set-up. Basin size is 18 m long and 18.2 m wide Side 
walls are at y = 0 and 18.2 m. Centre of the circular shoal is located at (x,y) = (13,9.22) m. 
Transects of wave gauge locations: Sections A-A at y = 9.22 m, B-B at x = 6.88 m, C-C at 
x = 8.35 m, D-D at x= 10.005 m, E-E at x = 11.5 m, F-F at x= 13 m and G-G at x= 14 5 m.
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The computation is performed with Ax = 0.05 m, Ay = 0.1m and 

At = 0.01 s. The initial conditions for 2DBMW-4 runs are a flat water surface at 

still water level. A monochromatic wave is generated at the incoming wave 

boundary.

After running 2DBMW-4, the computed free surface elevation is collected 

during the last 10 s of the 40 s simulation and transformed to the root-mean- 

square wave height (Hrms). The Hrms values are normalised by the incoming 

wave height and represented by solid lines. The computed values for the 

normalised Hrms are compared to the physical data, which are plotted as small 

circles in Figure 6.3.

The data in Figure 6.3 shows how the waves shoal as they pass over the 

circular shoal. The wave height is seen to increase sharply by a factor of 

more than two and half times on top of the shoal, and decrease dramatically 

behind the shoal. These phenomena are shown along Section A-A. The 

results of 2DBMW-4 are seen to capture the effects of the combined 

refraction-diffraction wave field as shown along Sections B-B to G-G. 

Although the computational shoal is not quite symmetrically located (centred 

at y = 9.22 m instead of y = 9.10 m), 2DBMW-4 is still able to accurately 

simulate the wave field. Perspective views of the shoaling, refracting and 

diffracting asymmetrical waves can be seen in Figure 6.4.

In addition, 2DBMW-4 is based on the weakly non-linear Boussinesq-type 

equations. However, when the results from 2DBMW-4 are qualitatively 

compared with those from fully non-linear model of Chen et al. (2000), the 

accuracy of both models is seen to be comparable.
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Section A-A 
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Figure 6.3. Wave heights (Hrms) normalised with respect to the incoming wave height:
comparisons between 2DBMW-4 (------ ) and laboratory data (°°°) along various transects
for the experiment of Chawla and Kirby (1996). Data: T=1.0s, Hi=0.0118m, 9i=0°, 

heven = 0.45 m, Ax = 0.05 m, Ay = 0.10 m and At = 0.01 s.
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Wave direction

Surface elevation (m):

□ -0.015—0.01 ■ -0.01-0.005 □-0.005-0 □ 0-0.005 ■ 0.005-0.01 □ 0.01-0.015 ■0.015-0.02

Wave direction t=40 s

-0.0 -B
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Figure 6.4. Results of 2DBMW-4: perspective views of monochromatic wave fields at t = 20 s 
(top) and t = 40 s (bottom). Data: T = 1.0 s, Hi = 0.0118 m, 0i = 0°, heven = 0.45 m, Ax = 0.05 m, 
Ay = 0.10 m and At = 0.01 s.
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6.4.2. Scenario 2: Wave propagation over an elliptic shoal on a 

sloping bottom basin

Berkhoff et al. (1982) conducted some laboratory experiments of wave 

refraction and diffraction as an incoming monochromatic wave propagated 

over complex bathymetry. The experimental bathymetry consisted of an 

elliptic shoal lying on a plane sloping bottom with a slope of 1:50 (the 

numerical wave basin is shown in Figure 6.5). The bathymetry had the same 

centre point as the shoal. The depth contours were inclined at an angle of 20° 

to a straight wave paddle. The physical wave basin was approximately 25 m 

long and 20 m wide. At one side of the basin, waves were generated and at 

the opposite side, the wave energy was nearly totally dissipated by a breaking 

process at a gravel beach. At the incoming wave boundary, a monochromatic 

wave was generated with a period T= 1.0 s and amplitude rjj = 0.0232 m. For 

the initial conditions, the water surface is set to still water level. More 

information about the physical experiment can be found in Berkhoff et al. 

(1982).

Because 2DBMW-4 only applies to non-breaking waves, the numerical 

wave basin is truncated to be 3 m shorter than the physical one. 

Consequently, the numerical basin becomes 22 m long and 20 m wide. The 

incoming wave boundary is located at the same position as in the laboratory 

(i.e. x = 22 m) and the outgoing wave boundary is at the opposite side at 

x = 0 m. Meanwhile, the reflecting wave boundaries remain in the same 

location i.e. at y = 0 m and y = 20 m, and the depth over the flat bottom is 

0.45 m.

The computation is performed with Ax = Ay = 0.1 m and At = 0.02 m. The 

computed free surface elevation is recorded during the last 6 s of the 32 s 

simulation and transformed to the root-mean-square wave height (Hrms). As for 

the first scenario tested, the Hrms wave heights are then normalised by the 

incoming wave height.
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(m):
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□-0.1-0.05 
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■-0.25-0.2 

□-0.3-0.25 
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Figure 6.5. Plan (top) and perspective (bottom) views of numerical bathymetry following 
Berkhoff et al.'s (1982) laboratory set-up. Basin size is 22 m long and 20 m wide. Side walls 
are at y = 0 and 20 m. Centre of the elliptic shoal is located at (x,y) = (12,10) m. Transects of 
wave gauge locations: Sections 1-1 at x=11 m, 2-2 at x = 9m, 3-3 at x = 7m, 4-4 at 
x = 5m, 5-5 at x = 3 m, 6-6 at y = 12 m, 7-7 at y = 10 m and 8-8 at y = 8 m, heven = 0.45 m.
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Figure 6.6 shows comparisons of the normalised wave height between the 

numerical model (lines) and laboratory data (circles). In this scenario, the 

reflection and diffraction effects are stronger than for the first scenario. It is 

evident from the results however, that 2DBMW-4 is capable of reasonably 

simulating the transverse variation of the wave field as shown along Sections 

1-1 to 5-5 except for Section 2-2. Here it is noted that the model significantly 

overestimates the wave height. Wave shoaling can be seen in the longitudinal 

Sections 6-6 to 8-8 of Figure 6.6. Along the central Section 7-7 it is evident 

that the model overestimates the wave height significantly in the vicinity of 

x = 7-9 m. 2DBMW-4 simulates the wave shoaling beyond the shoal over the 

slope reasonably well. Perspective views of these phenomena can be seen in 

Figure 6.7.

Wei and Kirby (1995) and Wei et al. (1999) also used the laboratory data 

of Berkhoff et al. (1982) to compare against the results of their numerical 

models. The numerical models of both of these groups of investigators and 

2DBMW-4 (the present numerical model) are all based on the Boussinesq- 

type equations proposed by Nwogu (1993). The numerical models differ 

however, in the different formulations of the boundary conditions. Although 

based on limited comparisons of laboratory data and numerical model 

predictions, some general conclusions on the quality of the numerical model 

solutions can be made. Comparisons show that the wave fields predicted by 

2DBMW-4 are generally better than those of Wei and Kirby (1995) but not as 

good as those of Wei et al. (1999).
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Figure 6.6. Wave height (Hrms) normalised with respect to the incoming wave height:
comparisons between 2DBMW-4 (------ ) and laboratory data (° ° °) along various Sections for
the experiment of Berkhoff et al. (1982). Data: T= 1.0 s, r|i= 0.0232 m, 0i= 0°, heven = 0.45 m, 
Ax = Ay = 0.10 m and At = 0.02 s.
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Figure 6.7. Results of 2DBMW-4: perspective views of monochromatic wave fields at t = 16 s 
(top) and t = 32 s (bottom). Data: T=1.0s, r)j= 0.0232 m, 01=0°, heven = 0.45 m,
Ax = Ay = 0.10 m and At = 0.02 s.
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6.5. Conclusions

A 2D numerical model based on the Boussinesq-type equations proposed 

by Nwogu (1993) is developed by the present author as the basic numerical 

model in studying the effects of 2D dispersion terms associated with currents 

in the next chapter. In the present Boussinesq-type numerical model 

(2DBMW-4), a monochromatic, small amplitude wave is generated at the 

incoming wave boundary by varying the free surface elevation sinusoidally. 

The 2D Sommerfeld radiation condition is employed at the outgoing wave 

boundary to predict all dependent variables. The reflecting wave boundary 

conditions are based on zero normal flux. 2DBMW-4 results are compared to 

the laboratory data for monochromatic wave transformations over a 

submerged circular shoal lying on a flat bottom basin (Chawla and Kirby, 

1996) and over a submerged elliptic shoal resting on a sloping bottom basin 

(Berkhoff et a/., 1982). Comparisons of the results of 2DBMW-4 with 

laboratory measurements show that it is capable of simulating a non-breaking 

wave field over a variable bathymetry.

In the previous models by Wei and Kirby (1995) and Wei et at. (1999), the 

absorbing wave boundary introduced by Engquist and Majda (1977) was 

applied to the outgoing wave boundary instead of the Sommerfeld radiation 

condition as used in 2DBMW-4. Meanwhile the differences between the 

previous models themselves were:

• Wei et a/.’s model employed a source function method at the incoming 

wave boundary.

• Wei and Kirby’s model used a combination of the Boussinesq-type 

continuity equation and Sommerfeld radiation condition at the incoming 

wave boundary.
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Chapter Seven

2D Basic Model 
with Current Effects

7.1. Introduction

The effects of wave-current interaction in a 1D Boussinesq-type, 

numerical model formulation have been reported by the present author in 

Chapter Five. This formulation is based on the second set of equations of 

Chen et at. (1998) (1DBMWC-3). A similar but different model was also 

proposed by Chen et al. (1998) but based on their third set of equations.

As mentioned in Chapter Five, the main goal of the present study is to 

investigate numerically the effects of the dispersion terms associated with 

currents, which are not included in the equations of Nwogu (1993). The 

effects of the dispersion terms associated with currents in a 1D numerical 

model (1DBMWC-3) have been investigated in Chapter Five. Here, the 

investigation is extended to 2D. Several 2D Boussinesq-type numerical 

models have already been developed by Yoon and Liu (1989) and Priiser and 

Zielke (1990).

A 2D numerical model based on the second set of Boussinesq-type 

equations derived by Chen et al. (1998) is developed by the present author.
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This 2D numerical model is referred to 2DBMWC-5. The second set of 

equations of Chen et al. is equivalent to the equations of Nwogu extended to 

include a current. The governing equations in 2DBMWC-5 are solved by the 

present author using the non-staggered finite difference method detailed in 

Chapter Six. A suitable set of boundary conditions is determined by the 

present author for the three cases of waves only, current only and combined 

wave-current motion.

The experimental set-up consists of a circular shoal lying on a flat bottom 

basin. The tests modelled are waves only case, currents only case, waves 

and opposing current, and waves and current in same direction. To reduce 

the computational instability believed to be due to the small reflected waves 

from the outgoing wave boundary, a three-point filter introduced by the 

present author is applied in the x- and y-directions.

For comparison purposes, laboratory data are only available for the case 

of wave motion only. Consequently, a 2D numerical model based on the 

unsteady, non-linear shallow water equations is also developed by the 

present author. This 2D numerical model is referred to 2DUSWM-6 and is 

compared with the present Boussinesq-type numerical model (2DBMWC-5) 

for the currents only case.

7.2. 2D Boussinesq-type numerical model (2DBMWC-5)

7.2.1. Governing equations

The governing equations considered in 2DBMWC-5 are the second set of 

Boussinesq-type equations for fully coupled wave-current motion derived by 

Chen et al. (1998) [i.e. equations (5.22) and (5.23)]. The dimensional form of 

the continuity equation (5.22) is

r|t +V*[(h + r|)Ua] + n2 =0 (7.1)

where
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n2 =v.(hr„)-v.{^h3v(v.ua)-|h2[v.(hua)]}+r|(v.ra)

- |n2v • {v[v. (hua)]} - |ii3v. [v(v. u„)] (7.1a)

Again r« is defined by equation (3.11a). The dimensional momentum 

equation (5.23) is expressed as

Uat +gVr| + (Ua • V)ua + A21 + A2s = 0 (7.2)

where

A2' = r«t - T)'V[V . (hUa,)] - \ r|2V(V . Ua,) (7.2a)

A25 = (Ua . V)r. - T)(Ua • V)[V . (hUa)] - { lf(Ua • V)[V( V • Ua)] (7.2b)

The dimensional continuity equation (7.1) can be written as

T)t + [(h + n)u.]x + [(h + ri)Va]y + n2x + n2' = 0 (7.3)

where

n2X = (jZca2 -T)[h3(uaxx + Vaxy)]x +(zca +T){h2[(hUa)xx +(hv«)xy]}x 

+ niZcaJ[h2(Uaxx +Vaxy)]x +T|Zca{h[(hU„)xx + (hv„)j}„

-|rt2[(hu«)100, + (hva),^] + v0xxy) (7.3a)

n211 = (|zca! - i)[h3(Uaxy + V«„)]y + (zca + \){h2f(hU.)„, + (hVa)yy]}y 

+ T1 jZca2[h2(Uaxy +Vayy)]y +T|Zca{h[(hUa)xy +(hVa)yy]}y

-lTi2[(hUa)wy +(hVa)m]-jri3^^ + Vawy) (7.3b)

The dimensional momentum equation (7.2) can be expressed in the x- and y- 

directions respectively as

Uat + A2tX +gr|x +Ua Uax + Va Uay + A2** =0 (7.4)
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Vat + A2ty + griy + Ua Vax + Va Vay + A2sy = 0 (7.5)

where

A2tX = {Za2(Uato + Va^ ) + Za[(hUa)K( + (hV«),J - ^(llUa,),* + (hVajJ

-in'tU-Kx+V-txy) (74a)

A2“ = UaZca^Zcth2^,, + Vo,,)], +{h[(hUa)xx + (hVa)^] }„}

+ Va Zca {“ Zcath'tUa,, + Va,,)], + {h[(hUa)„ + (hVa)^]},}

- TlfUaKhUa)^ + (hVa)^] + VafthUa)^ + (hVa),,,]}

_7Tl2[Ua(Ua)OOc + Vaxxy) + V“(u“xxy + Vaxy>)] (7-4t>)

A2t> = \ Z„2(Ualxv + V0tyy ) + Za [(hUa)^ + (hUa)^] - ^[(hUa,)*, + (hVa, )„ ]

“lTl2(Uatxy + Vatyy) (7-5a)

A2S> = UaZca{iZca[h2(Uaxy + Va„)]x +{h[(hUa)„y + (hVa)„ ]}„ }

+ Va Zca{| Zca[h2(U0xy + Va„)]y + {hfttlUa),,, + (hV„)yy]}y}

- niUaKhUa)^ + (hVa)^] + Va[(hUa)w + (hVa)m]}

-iri2[u«(u«w + V.m) + v«(u.w +V«yyy)] (7.5b)
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7.2.2. Numerical solution algorithm for 2DBMWC-5

7.2.2.1. Solution method

In the present work, the governing equations [(7.3), (7.4) and (7.5)] are 

solved using an implicit, non-staggered finite difference method. The 

numerical technique adopted here follows that in Chapter Six and is not 

repeated here but rather a brief outline of the equations solved is given.

The dimensional continuity equation (7.3) can be written in the form of 

equation (6.6), that is

Tlt = E(t|, Ua, Va) (6.6)

where

E(n. Ua, Va) = -[(h + n)u.]x - [(h + ri)v„]y - n2* - n2' (7.6)

The dimensional momentum equations (7.4) and (7.5) can be expressed 

in the form of equations (6.8) and (6.9) respectively, that is

Ua, = F(r|, Ua, Va) + [Fl(Va)]t (6.8)

Va, = G(r|, Ua, Va) + [Gl(Ua)]t (6.9)

where Ua, Va, F, G, Fi and Gi are

Ua =Ua+|(Za2 -ri2)Uaxx + (Za - Tl)(hUa)xx (7.7)

Va = Va+^(Za2 -r|2)Vayy +(Za-Tl)(hVa)yy (7.8)

F(r|, Ua, Va) = - grix - u« Uax - Va Uay - A2sx (7.9)

G(ri, Ua, Va) = — griy — u« Vax - Va Vay - A2sy (7.1 0)

Fi(Va)= ~(Za2 rj2)vaxy -(Za-r|)(hVa)xy (7.11)

Gi(Ua) = -\{za2 -r|2)uaxy (Za r))(hUa)xy (7.12)
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Equations (7.7) and (7.8) can be arranged into matrix form as shown in 

equations (7.13). It is noted that all matrices are at the time level (t+1) with the 

coefficient matrix varying with time. (This is in contrast to those in Chapter 

Six, which are constant in time). Equations (7.13) are solved using Gaussian 

elimination.

- t+1 ■ t+1

Coefficient

matrix

< Ua ► = < Ua >

i- -] t+1 r -> t+1 r

Coefficient

matrix

< Va ► = < Va

(7.13a)

(7.13b)

7.2.2.2. Boundary conditions for waves only case in 2D

The set of boundary conditions for the waves only case is discussed first. 

(In subsequent subsection, the other cases of currents only and waves plus 

currents will be considered).

7.2.2.2.1. Incoming wave boundary conditions in 2D

For a locally constant depth, the continuity equation (7.1) reduces to

rjt + (h + r|)(V • Ua) + u« • Vr)

+ [(a + j)h3 + ah2r|-|hri2 -^rf] V • [V(V • u«)] = 0 (7.14)

If the prescribed incoming wave is a periodic, small amplitude wave defined 

by equations (6.25), the horizontal velocity at the incoming wave boundary 

can be obtained by substituting equations (6.25) into equation (7.14) giving
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oo r)
k{h-k2[(a + ^)h3 +ah2n-^hr|2 -^ti3]}

(7.15)

It is noted that the Sommerfeld radiation condition (6.30) i.e. r|t+C»VTi = 0

(in which C = co/k) is automatically satisfied by equation (7.15). If equation 

(7.15) is expressed in the x- and y-directions the result is

C0T|

k{h -k2[(a + |)h3 + ah2r| - \hr|2 - ±r|3]}
cos0i (7.16)

corj

kfh-k^a + j^+ahVjhn2-^3]}
sin 0i (7.17)

7.2.2.2.2. Outgoing wave boundary conditions in 2D

As in Chapter Six, the 2D Sommerfeld radiation condition (6.30) is applied 

at the outgoing wave boundary to predict the free surface elevation. The 

horizontal velocities are determined based on the depth-integrated continuity 

equation. As a result, equations (6.38) and (6.39) for u and v respectively 

are also valid here, that is

u=C—— cos0 (6.38)
h + q

v=C—'sine (6.39)
h + q

Having solved for u, v in equations (6.38) and (6.39), equation (5.19) is 

applied to determined u«, v«.
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7.2.2.2.3. Reflecting wave boundary conditions in 2D

The reflecting wave boundary conditions in 2DBMWC-5 are similarly 

derived as for 2DBMW-4 in Chapter Six. Using the conditions specified in 

equations (6.41) through to (6.43), the continuity equation (7.1) can be 

expressed in terms of the volume flux vector Q as in equation (6.44)

rjt + V • Q = 0 (6.44)

where

Q = (h + T|)(Ua + Ta)~(h3 + r|3)V(V • u«) + {(h2 -ti2)V[V • (hu«)] (7.18)

Applying the kinematic boundary condition in terms of the volume flux 

vector at an impermeable wall as shown in equation (6.46), the volume flux in 

the y-direction (i.e. for the case of the impermeable wall being parallel to the 

x-axis) at the boundary, is zero

Qy =0 xedQ (7.19)

i.e.

(h + ri)Va + [|zo2(h + Ti) -|(h3 +r|3)](u0l<y + v„„)

+ [z.(h + t)) + |(h2 + r|2)][(hu0)1<y + (hVo)yy] = 0 xeSfi (7.20)

Following the procedures in Chapter Six, the continuity equation (6.48) for 

predicting the free surface elevation and uQxy =0 i.e. equation (6.50) for the

horizontal velocity at the reflecting wave boundary become equations (7.21) 

and (7.22) respectively.

qt+[(h + r|)Ua]x+n2x = 0 xedQ (7.21)

uaxy=0 xedQ (7.22)

where equation (7.22) remains identical to equation (6.50).

For a boundary parallel to the x-axis, the boundary conditions are 

equations (7.21), (7.22) and (5.23) for rj, u« and v« respectively. Two set of
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boundary conditions for 2DBMWC-5 are deployed in Figure 7.1 for the waves 

only case.

Outgoing waves

Incoming waves

Incoming wave boundary 
conditions:

Equations (7.16) and (7.17)

Hi cos 9i

Reflecting wave boundary 
conditions:

nt + l(h + n)ua]x + n

Outgoing wave boundary conditions:

cos 0i

sin 6i

Figure 7.1. Boundary conditions for wave only case. The imposed monochromatic wave 
propagates from i = L to i = 1. Side walls are located at j = 1 and j = M. Note: i = 1,2,3,...L 
and j = 1,2,3,...,M.
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7.2.2.3. Boundary conditions for current only case in 2D

Boundary conditions for current only case are carried over from Section 

5.3.3 (for r| and u at inflow and outflow boundaries) and Subsection 12.2.2 

(for no-flow boundary conditions i.e. equivalent to the reflecting wave 

boundary conditions). These boundary conditions are schematised in Figure 

7.2.

Inflow

Outflow

Inflow boundary conditions:

No-flow boundary conditions:

•n, + l(h + n)ua]x + n

Outflow boundary conditions:

(specified)

Figure 7.2. Boundary conditions for current only case. The imposed current flows from i = 1 to
i = L. Side walls are located at j = 1 and j = M. Note: i = 1,2,3,...L; j = 1,2,3.....M and
C = Tgh . Explanations for equations to determine r\ and u at inflow and outflow boundaries 
can be found in Section 5.3.3.
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7.2.2.4. Boundary conditions for wave-current interaction case in 2D

As in the 1D model tests (Chapter Five), the following procedure is again

adopted i.e.

• Model is run with current only from an arbitrary free surface elevation 

(see Figure 7.2).

• The results from the model settle down to a steady state.

• After the steady state is reached, a sinusoidally varying surface elevation 

is imposed at the inflow or outflow boundary. This results in a wave train 

propagating into the computational domain (see Figure 7.3).
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waves

(specified)

current

= n<= + i- Hi sin(k • x - wt)

COS 6i

k{h-k2 ((a-t^Jh3 +ah2r!—hrf --n3 ]} • vc = o (specified)

k{h-k2[(a+-)h3+ah2T1—hri2—n3D

waves

-j Hi sin(k • x - cot)

^>uc (specified)

current

= r|c + ^Hisiritk • x - cot)

u=C—!-
COS 0i

k{h-k2[(a+-)h3+ah2T1--hri2—n3D
3 2 6

k{h-k2[(a+-)h3+ah2n—hn2—n3D
3 2 6

L-» vc = o (specified)

Figure 7.3. Boundary conditions for wave-current interaction case: (a) waves and steady 
opposing current; and (b) waves and steady current in same direction. Note: no-flow 
boundary conditions are same as those for waves or current only (see Figure 7.2). 
Explanations for equations to determine r\ and u at inflow and outflow boundaries can be 
found in Section 5.3.3.
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7.3. 2D unsteady, non-linear shallow water numerical model 

(2DUSWM-6)

The model 2DUSWM-6 is developed in order to enable comparisons to be 

made between it and the Boussinesq-type wave-current interaction model 

2DBMWC-5 run with currents only.

7.3.1. Governing equations

The dimensional unsteady, non-linear shallow water equations are

rit + V • [(h + r|)u] = 0 (7.23)

and

u,+gVr| + (u • V)u = 0 (7.24)

where friction is not included. The dimensional continuity equation (7.23) can 

be written as

Tit + I(h + ri)u]x + [(h + n)v]y = 0 (7.25)

and the (frictionless) dimensional momentum equation (7.24) can be 

decomposed into the x- and y-directions respectively as

u t + gr|x + u ux + v uy = 0 (7.26)

vt +gr|y + uvx + wy = 0 (7.27)

7.3.2. Numerical solution algorithm for 2DUSWM-6

7.3.2.1. Solution method

Equations (7.25) through to (7.27) are solved by the present author in a 

similar way as the governing equations in 2DBMWC-5. The dimensional 

continuity equation (7.25) can be written as

2D Basic Model with Current Effects



Chapter Seven 181

r|t =E(ti,u,v) (7.28)

where

E(ri, u, v) = - [(h + r|)u]x - [(h + Ti)v]y (7.29)

The dimensional momentum equations (7.26) and (7.27) can be expressed

respectively as

ut=F(n,u,v) (7.30)

v, = G(t|,u,v) (7.31)

where

F(n,u,v) = -grix -uux -vuy (7.32)

G(r|, u, v) = - gr|y - uvx - vvy (7.33)

The third-order explicit, Adams-Bashforth predictor scheme is applied to

the continuity equation (7.28) and the momentum equations [(7.30) and

(7.31)] to give

nT = < + ^At[23E' -16E'-1 +5E'-2], , (7.34)

m*’ = m + At[23F* -16F1'1 + 5F1'2],j (7.35)

v,r = v;, + ^ At[23G' -16G'~1 + 5G'-2],, (7.36)

where the right hand sides only involve terms at the earlier time levels oft, t-1 

and t-2. Values of r\]+\ u,1*1 and Vg1 are calculated directly. (This is in

contrast to 2DBMWC-5 in which the intermediate variables U, V are first 

computed and from which the horizontal velocity components ua, va can be 

determined).

The newly predicted values of rig1, Ug+1 and v1*1 are then used to 

calculate estimates of Eg1, F^1 and Gg1 using equations (7.29), (7.32) and
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(7.33) respectively. Employing the fourth-order Adams-Moulton corrector to 

the continuity and momentum equations leads to

<1 = ^ +^At[9Et+1 +19E< -5E*~1 +Et~2]jj (7.37)

IT1 = IT. + ± At[9Ft+1 +19F* - 5F,_1 + Ft 2]u (7.38)

v;;1 = v;. + At[9Gt+1 +19G‘ - 5Gt_1 + G1"2^ (7.39)

where the right hand sides involve terms at the time levels of t+1, t, t-1 and 

t-2. Note that equations (7.34) and (7.37) remain identical to equations (6.16) 

and (6.20) respectively. The corrector step is repeated if the error between 

two successive results exceeds a pre-set upper limit. The relative error in 

each of the three dependent variables rj, u and v is calculated separately 

and defined according to equation (6.23).

7.3.2.2. Boundary conditions for current only case in 2D

The free surface elevation and the horizontal velocity at the inflow and 

outflow boundary conditions for 2DUSWM-6 are derived in the same way as 

those for the Boussinesq-type numerical model (2DBMWC-5). The resulting 

boundary conditions for 2DUSWM-6 are identical to those for 2DBMWC-5 

(compare Figures 7.2 and 7.4).

A no-flow boundary, parallel to the x-axis (say) is considered. At a no-flow 

boundary however, the formulations in 2DUSWM-6 are slightly different from 

those in 2DBMWC-5. As there is no n2x terms in 2DUSWM-6 and u is used 

instead of ua, equation (7.21) is utilised to estimate the free surface elevation 

and is re-written as

n, +[(h + ii)u]x =0 (7.40)

Equation (7.40) is solved using the same method as in Section 7.3.2.1. To 

determine the horizontal velocity (say in the x-direction) parallel to an
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impermeable wall, a condition of zero shear is imposed on the flow along the 

boundary wall. This can be mathematically stated as

uy=o xsan (7.41)

Then, the horizontal velocity in the y-direction (i.e. perpendicular to the 

impermeable wall) is

v = 0 xedCl (7.42)

The set of boundary conditions for 2DUSWM-6 are displayed in Figure 7.4 

for the currents only case.

Inflow

Inflow boundary conditions:

No-flow boundary conditions: 

•n, + [(h + n)ua]x = 0

Outflow boundary conditions:

(specified)

Outflow
j = 1 j = M

Figure 7.4. Boundary conditions for current only case. The imposed current flows from i = 1 to 
i = L. Side walls are located at j = 1 and j = M. Note: i = 1,2,3,...L ■ j = 1,2,3,...,M and 
C = ^/gh.
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7.4. Experimental set-up

The numerical set-up is the same as that in scenario 1 depicted in Figure 

6.2 and follows the physical set-up in a laboratory of Chawla and Kirby (1996) 

(see Chen et al., 2000).

7.4.1. Test 1: Waves only case

As noted by Chen et al. (2000), the wave height at the incident wave 

boundary was 0.0118 m, the wave period was 1.0 s, the depth Iwn was 

0.45 m and the depth of water above the top of the shoal was 0.08 m. In this 

test, with Ax = 0.05, Ay = 0.10m and At = 0.01 s, 2DBMW-4 (waves only) 

remains stable. However, 2DBMWC-5 (with the dispersion terms associated 

with currents included) but operated without currents being presented does 

not remain stable. Consequently, the computational mesh for both models is 

coarsened to Ax = Ay = 0.1m and At = 0.02 s. This coarsening of the 

computational mesh results in an increase in the Courant number by 58 % 

where in 2D, the Courant number is defined by

Cr = Tgh—===== (7.43)
y Ax + Ay

Then, the free surface elevation at the incoming wave boundary (x= 18 m 

in Figure 6.2) is varied sinusoidally. The initial conditions for the model runs 

are a flat water surface at still water level. The computed free surface 

elevation over the numerical basin is stored for the last 10 s of the 40 s 

simulation period and the results processed to find the root-mean-square 

wave height (Hrms). The results from 2DBMWC-5 and 2DBMW-4 as well as 

the measured values in the laboratory are presented in Figure 7.5.

The results for Sections A-A through to G-G reveal that the results of 

2DBMWC-5 and 2DBMW-4 nearly coincide. The governing equations for 

2DBMW-4 (waves only) and 2DBMWC-5 (waves + currents) are different but
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since in this particular scenario, no currents are present, the results from both 

models should be the same and almost coincide. This seems to confirm that 

the more general model 2DBMWC-5 collapses down to 2DBMW-4 in the 

waves only case. Plan and perspective views of shoaling, refracting and 

diffracting asymmetrical waves at t = 40s by 2DBMWC-5 can be seen in 

Figure 7.6.

Section A-A 
y=9.22 m

x(m)

Section B-B
x=6.88 m

Section D-D 
x=10.0 m

I 10

Section C-C
x=8.35 m

Section E-E 
x=11.5 m

Section F-F 
x=13 m

Figure 7.5. Wave heights (Hrms) normalised with respect to the incoming wave height in the 
case of pure wave motion: comparisons between the results of 2DBMWC-5 (bold lines), 
2DBMW-4 (thin lines) and laboratory data (circles) along various sections for the experiment 
of Chawla and Kirby (1996). Data: T=1.0s, Hi= 0.0118 m, 0i=O°, heven = 0.45 m, 
Ax = Ay = 0.10 m and At = 0.02 s.
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Wave direction t=40 s

▼

Surface elevation (m):

□-0.015-0.01 ■ -0.01-0.005 □-0.005-0 □ 0-0.005 ■ 0.005-0.01 □ 0.01-0.015 *0.015-0.02

Wave direction t=40 s

x (m)

-O.OB

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Surface elevation (m): y (m)

□-0.015-0.01 ■ -0.01-0.005 □-0.005-0 □ 0-0.005 *0.005-0.01 □ 0.01-0.015 *0.015-0.02

Figure 7.6. Wave only case: plan (top) and perspective (bottom) views of the free surface 
elevation at t = 40s predicted by 2DBMWC-5. Data: T = 1.0s, Hi =0.0118 m, 6i=0°, 
heven = 0.45 m, Ax = Ay = 0.10 m and At = 0.02 s.
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7.4.2. Test 2: Current only case

In this test, the same bathymetry is used as for Test 1. A flat water surface 

and a steady velocity of 0.10 m/s is imposed at the northern boundary 

(x = 0 m) (see also Figure 7.2). The computation is carried out with the same 

mesh as in the first test. This test is applied to both 2DBMWC-5 and 

2DUSWM-6. The imposed current flows from x = 0m to x=18m, and 

reaches a steady state condition after about t = 65 s. Figures 7.7 shows some 

significant differences in the free surface elevation over the circular shoal (at 

x = 11 and 15m and y = 9 m). It is evident from the model results in Figure 7.7 

that 2DBMWC-5 produced generally flatter water surface than 2DUSWM-6. 

Interestingly, the two sets of numerical model results agree well along the 

centreline of the shoal (at x = 13 m).

Figures 7.8 and 7.9 show comparisons of the magnitude of the x- and y- 

velocity components predicted by both numerical models. Unlike the surface 

elevation, the two sets of velocity components generally coincide but there is 

a notable exception near the incident current boundary for the y-component of 

velocity (Figure 7.9 at y = 2, 5 and 7 m) where there is a series of oscillations. 

The maximum magnitude of the x-velocity occurs over the centre of the shoal 

as illustrated in Figure 7.8 (at x= 13 and y = 9 m). Additionally, the results in 

Figure 7.9 (at x=11 and 15 m and y = 7m) show that the maximum 

magnitude of the y-velocity occurs near the centre of the shoal. Perspective 

views of the surface elevations at t = 65 s predicted by both numerical models 

are shown in Figure 7.10. Moreover, Figure 7.11 shows the velocity vectors 

predicted by both numerical models at t = 65 s.
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Figure 7.7. Current only case (flow from x = 0 to x= 18 m): comparisons of the free surface 
elevation at t = 65 s between results of 2DBMWC-5 (bold lines) and 2DUSWM-6 (thin lines) 
for x=11, 13 and 15 m and for y = 0, 2, 5, 7 and 9 m. Data: 0i=O°, heven = 0.45 m, 
uc(x=0) =0.10 m/s, vC(x=0) = 0 m/s, Ax = Ay = 0.10 m and At = 0.02 s.
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Figure 7.11. Current only case (flow from x = 0 to x=18m): the velocity vectors at t = 65s 
predicted by 2DBMWC-5 (top) and by 2DUSWM-6 (bottom). Data: 0i=O°, heven = 0.45 m, 
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2D Basic Model with Current Effects



Chapter Seven 193

7.4.3. Test 3: Waves and opposing current

Once the currents in the basin reach a steady state (after about t = 65s), 

the free surface elevation at the southern boundary (x = 18 m) is sinusoidally 

varied with time to generate an incident wave [see also Figure 7.3(a)]. The 

incoming wave specifications and the grid resolution remain the same as is 

used in the first test i.e. T=1.0s, Hi= 0.0118 m, Ax = Ay = 0.1m and 

At = 0.02 s. At the incoming wave boundary (x = 18 m), the ambient current is 

allowed to pass through, leaving the flow domain. The wavelengths due to the 

waves propagating against a steady opposing current are slightly shorter than 

those due to the pure wave motion. This is evident in Figure 7.12, where the 

bold lines represent the waves with an opposing current and the thin lines 

denote the waves without a current. In Figure 7.12, the surface elevation with 

a current present is raised by about 0.0225 m (see also Figure 7.7). 

Perspective views of the surface elevation predicted by 2DBMWC-5 at 

t = 20s and at t = 40s are shown in Figure 7.13. Figure 7.14 shows the 

corresponding velocity vectors predicted by 2DBMWC-5.
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Figure 7.12. Waves with period T = 1 s propagating against a steady, opposing current with 
steady inflow velocity of 0.1 m/s along the x = 0 boundary. Both free surface elevation 
predicted by 2DBMWC-5 at t = 40 s. The waves with (bold lines) and without (thin lines) the 
presence of the ambient current for y = 2, 5, 7 and 9 m. Data: T = 1 s, Hi = 0.0118 m, 0i = 0°, 
heven = 0.45 m, Ax = Ay = 0.10 m and At = 0.02 s.
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surface elevation predicted by 2DBMWC-5 at t = 20s (top) and at t = 40s (bottom). Data: 
T = 1 s, Hi = 0.0118 m, 0i= 0°, heven = 0.45 m, Ax = Ay = 0.10 m and At = 0.02 s.
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7.4.4. Test 4: Current only case

In this test, a flat water surface and a constant inflowing velocity of 

0.10 m/s is imposed in the opposite direction to that in Test 2, i.e. at the 

southern boundary (x = 18 m) instead of at the northern boundary. This leads 

to a steady currents flowing from x=18m to x = 0m of the basin (not 

presented here).

7.4.5. Test 5: Waves and current in same direction

On top of the steady current field (Test 4), a sinusoidal wave train with a 

period of 1.0 s and a wave height of 0.0118 m is imposed at x= 18 m [see 

also Figure 7.3(b)]. The incoming wave period and wave height are same as 

is used in Test 1.

The results in Figure 7.15 show that the waves propagating with a co­

flowing steady current (bold lines) have slightly increased wavelengths 

compared to the case with only wave propagation (thin lines) at t = 40s. 

Perspective views of the free surface elevation predicted by 2DBMWC-5 at 

t = 20s and at t = 40s are shown in Figure 7.16 and the predicted velocity 

vectors are illustrated in Figure 7.17.
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Figure 7.15. Waves with period T=1 s propagating with a co-flowing steady current with 
steady inflow velocity of 0.1 m/s along the x= 18 m boundary. The free surface elevation 
predicted by 2DBMWC-5 at t = 40s. The waves with (bold lines) and without (thin lines) the 
presence of the ambient current for y = 2, 5, 7 and 9 m. Data: T = 1 s, Hi = 0.0118 m, 0i = 0°, 
heven = 0.45 m, Ax = Ay = 0.10 m and At = 0.02 s.
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2D Basic Model with Current Effects



Chapter Seven 200

Wave and 
current direction

\ \ \ 11 jt

M M H

y(m)

Wave and 
current direction

Figure 7.17. Waves with period T=1 s propagating with a co-flowing steady current with 
steady inflow velocity of 0.1 m/s along the x= 18 m boundary. The velocity vectors predicted 
by 2DBMWC-5 at t = 20 s (top) and at t = 40 s (bottom). The velocities shown in figures above 
are the total velocity (i.e. combined orbital waves and ambient current velocities at the 
particular times. Data: T = 1 s, Hi = 0.0118 m, 0i=O°, heven = 0.45 m, Ax = Ay = 0.10 m and 
At = 0.02 s.
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7.5. Conclusions

Two 2D numerical models, one based on the Boussinesq-type equations 

for full wave-current interaction (2DBMWC-5) and the other based on the 

unsteady, non-linear shallow water equations (2DUSWM-6) are developed by 

the present author. The governing equations of both numerical models are 

solved using an implicit finite difference method with a non-staggered grid. 

For the Boussinesq-type numerical model (2DBMWC-5), the boundary 

conditions are determined on the basis of particular cases i.e. waves only, 

currents only and combined wave-current motion. For the unsteady, non­

linear shallow water numerical model (2DUSWM-6) however, the boundary 

conditions correspond to the currents only case. This is due to 2DUSWM-6 

being developed for comparison purposes in the current only case.

The results of 2DBMWC-5 agree reasonably well with those of 2DBMW-4 

(the numerical model, which is developed in Chapter Six, with the dispersion 

terms associated with currents excluded) and the available laboratory data in 

the case of pure wave motion. This reinforces the fact that 2DBMWC-5 

reduces to 2DBMW-4 when the currents vanish.

2DBMWC-5 and 2DUSWM-6 give similar results except near the shoal 

and this is where it can be expected that the higher order derivatives (i.e. the 

dispersion terms) representing the effects of non-hydrostatic pressure 

become more important.

The effects of including depth uniform currents in the second set of 

equations of Chen et al. (1998) are seen to be the effects on wavelength: in 

the case of waves and opposing current, the wavelengths become shorter 

and in the case of waves propagating with a co-flowing current, the 

wavelengths become longer. Due to a lack of laboratory and field data, the 

effects of current on a 2D wave field are only examined quantitatively. 

Consequently, the suitable laboratory data for verification of the observed 

behaviour will be worth exploring for the future research.
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Chapter Eight

Summary, Conclusions and 
Recommendations

8.1. Summary

Three new Boussinesq-type numerical models are developed by the 

present author:

(i) 1DDBMW-2 based on the existing partial differential equations of 

Schaffer and Madsen (1995), and

(ii) 1DBMWC-3 and 2DBMWC-5 based on the existing partial differential 

equations of Chen et al. (1998)

The numerical performance of the above three new models has not been 

previously assessed. The governing (partial differential) equations 

corresponding to the three models (1DDBMW-2, 1DBMWC-3, 2DBMWC-5) 

are extensions (comprising additional terms) to what is referred to here as the 

basic partial differential equations of Nwogu (1993). The present author 

develops two basic numerical models in 1D (1 DBMW-1) and 2D (2DBMW-4) 

based on Nwogu’s partial differential equations. By comparing the results 

from the three new models with the results from the basic numerical models,
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it is possible to assess the effects of the additional terms in the three new 

models.

More specifically, the research is focused on:

• numerically studying the effects of the additional terms in the governing 

partial differential equations of 1DDBMW-2 which improve the dispersion 

relation in deeper water. At the same time, the order of the frequency 

dispersion and non-linearity in Schaffer and Madsen’s (1995) partial 

differential equations are the same as in the basic partial differential 

equations of Nwogu (1993).

• numerically investigating the effects of the additional dispersion terms 

associated with currents in the governing partial differential equations of 

1DBMWC-3 and 2DBMWC-5. While the basic partial differential 

equations of Nwogu are not applicable to wave-current interaction, Chen 

et a/.’s partial differential equations with the additional terms permit the 

interaction of ambient currents and waves.

Three additional ancillary (simplified case) models are developed by the 

present author to assist in the validation of the more complex Boussinesq- 

type equations

(a) 1DSSWM based on the 1D steady, non-linear shallow water equations,

(b) 1DWACM based on the 1D conservation of wave action equation and

(c) 2DUSWM-6 based on the 2D unsteady, non-linear shallow water 

equations.
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8.2. Conclusions

The specific conclusions for this study are:

(i) the additional terms in the governing equations of 1DDBMW-2 result in 

this model being applicable in deeper water (i.e. h/L < 1). This conclusion 

is based on the fact that while the basic models (1 DBMW-1 and 

2DBMW-4) run satisfactorily in shallower water (i.e. h/L < 14), they are 

unstable in deeper water (i.e. h/L > 14). This result is obtained in spite of 

the fact that the finite difference operator is implicit. On the other hand, 

the new model (1DDBMW-2) works well in the depth h/L = 1.

(ii) the additional terms in the governing equations of 1DBMWC-3 and 

2DBMWC-5 lead to both models capable of simulating wave-current 

interaction. Although no laboratory data are available, this conclusion is 

based on the 1D results of the new model (1DBMWC-3) operated in a 

scenario in which the waves are blocked by an opposing current with a 

velocity equal to the group velocity of the oncoming waves.

The study also gives emphasis to the determination of the appropriate 

boundary conditions in connection with the governing equations and 

numerical scheme considered. When both waves and currents are present, 

the appropriate boundary conditions depend on whether the waves and 

currents are co-flowing or counter flowing. With one exception, the boundary 

conditions reasonably work well.

With the new models, the scenario simulated includes waves with and 

without currents. If a boundary condition in a numerical model is not 

functioning well, this can show itself in one or two ways:

• at the boundary, model results with a sudden change in wave height are 

indicative of an unsatisfactory boundary condition.

• within the modelling domain, disagreement between the measured and 

simulated results could also indicate an unsatisfactory boundary
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condition. The generally good agreement between the results of the new 

models and laboratory data or the results from one of the ancillary 

models indicates that the boundary conditions must have been 

functioning reasonably well.

The one exception is in the case where the waves and currents are co­

flowing. At the downstream boundary, it is noted that unwanted wave 

attenuation occurs. [It is interesting to note that Wei et al. (1999) published 

the results for a waves-only scenario and experienced significant unwanted 

attenuation].

New sets of Boussinesq-type partial differential equations are also 

developed by the present author. They consist of:

(i) Boussinesq-type (s,|i2) equations with an ambient current included and 

presented in terms of:

(a) the arbitrary z-level horizontal velocity (BEWCAV-A),

(b) the bottom velocity (BEWCBV-B) and

(c) the still water level velocity (BEWCSV-C);

(ii) Boussinesq-type (e,p2) equations for weakly non-linear waves presented 

in terms of the bottom velocity (BEWBV-D);

(iii) Boussinesq-type (p2,e3p2) equations in terms of the horizontal velocity at 

an arbitrary z-elevation (FBE20-E).

The present author also successfully re-derives a number of the existing 

Boussinesq-type partial differential equations in a new and systematic 

methodology. They are:

(a) the (s,p2) equations of Boussinesq (1872),

(b) the (e,p2) equations of Peregrine (1967) (in terms of the still water level 

horizontal velocity),

(c) the (£,p2) equations of Nwogu (1993),

(d) the (p2,e3p2) equations of Wei et al. (1995) and
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(e) the (|i4,e5ji4) equations of Madsen and Schaffer (1998)

Although the above partial differential equations in (a) - (e) are not new, they 

are significantly different from existing derivations.

8.3. Recommendations

Recommendations for future research related to and arising from this

study include:

(i) Laboratory work needs to be undertaken to provide free surface 

elevation and velocity measurements in the case of full interaction 

between waves and ambient currents. These data are urgently required 

as verification of the Boussinesq-type numerical models and particularly 

for 2D wave and ambient current fields.

(ii) Improvement in the capabilities of the boundary conditions in the present 

numerical models, so that the resulting numerical models are applicable 

to regular and irregular waves with and without current effects. One 

boundary condition needing to be improved is the downstream boundary 

in the case of co-flowing waves and currents (see Figure 5.15).

(iii) Develop some numerical models based on an unstructured grid. Such a 

facility would significantly expand the region of applicability of the 

Boussinesq-type numerical models in coastal regions.

(iv) Five new sets of Boussinesq-type partial differential equations have 

been developed by the present author in Appendix C. These partial 

differential equations need to be discretised into numerical models and 

their performance assessed to uncover any advantages or 

disadvantages over other formulations.
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Appendix A

Coordinate Systems 
and Orientations

The coordinate system and the convention adopted for the positive 

directions of various parameters and variables used in this thesis are defined 

in the figures below. This particular selection is made in order to maintain a 

correspondence with the x-,y-axes normally chosen as Cartesian coordinates. 

This can be easily seen by rotating Figure A.3 through 90° in anticlockwise 

direction.

Figure A.1. Definition for rj, u«, Va, z, z<x, x, y and their positive directions.
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Figure A.2. 1D Cartesian coordinate system and the positive direction for ua.

Northern boundary

■> Va

Southern boundary

Incident 
wave /

Figure A.3. 2D Cartesian coordinate system and the positive directions for the velocity 
components ua, va and the incident wave direction 0l
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> y

Figure A.4. Vector components and the positive directions for C, k, u and ua.
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Appendix B

Central,
Finite Difference Operators

All the Boussinesq-type equations and the 2D unsteady, non-linear 

shallow water equations considered in this thesis are discretised using fourth- 

order accurate finite difference operators for the first-order spatial derivatives 

and second-order accurate finite difference operators for the second- and 

third-order spatial derivatives. Derivatives with mixed order spatial derivatives 

are discretised using second-order accurate finite difference operators. This 

selection of finite difference forms retains up to five points in the 

computational stencil. The present finite difference operators are derived 

based on the convention for positive slopes shown in Figure B.1.

Figure B.1. Convention adopted for positive slopes.

Central, Finite Difference Operators
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Although this convention is unusual, it follows the Cartesian coordinate 

system used in this thesis (see Appendix A).

As examples, spatial derivatives of variable P, are discretised as

dP
dx

-1
12 Ax (P|-2 ~ ® R-1 + 8 Pi*, - P|*2 ), + 0(Ax)4

dP
dy

= ^ (Pj-2 - 8 p,_, + 8 PH - P,.2 \ + 0(Ay y

dP
dx

-1
2Ax

(Pw -Pm), +0(Ax)2

dP
dy

^(PH-PH)i+0(Ay )2

(B.1)

(B.2)

(B.3)

(B.4)

1
(Pl_1-2Pi+Pi+1)j+0(Ax)2

a2p
ay2

i.j

- 2 P, + PH). + O(Ay)2

(B.5)

(B.6)

a3p
dx3

i.j

-1
2(Ax)3

(“ P|-2 + 2 P,--! _ 2 Pj+1 + Pj+2 )j + O(Ax)2

a3p
ay3 U 2(Ay)'

(~ Pj-2 + 2 Pj-! - 2 Pj+1 + Pj+2) + 0(Ay)2

(B.7)

(B8)

Derivatives with mixed order spatial derivatives for h and u are discretised as

a2 ( aA -[h,-,(U| -ui_2)-2h,(uM -uM)+hw(ul+2 -u,
^ + olAx1!2

ax21 ax.
i.j

2(AX)3

a f^a2u) -[hi^(Ui -2um +ui+2)-hM(u,_2 -2u,_, +u,)])

(B.9)

+ o(ax)2C
M£

i.j
2(Ax)3

(B 10)
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Appendix C

Alternative 
2D Boussinesq-Type Equations

C.1. Introduction

It is generally agreed by investigators, who developed Boussinesq-type 

equations, that a Boussinesq-type continuity equation was an expression of 

the form of the depth-integrated continuity equation (2.96) [see e.g. Peregrine 

(1967), Nwogu (1993), Wei et al. (1995), Chen et al. (1998) and Madsen and 

Schaffer (1998)].

r|t + V* Hudz =0 (2.96)
J-h

Equation (2.96) is written in dimensionless form based on the wave scaling 

parameters (s,p) (where the primes have been dropped) as defined by 

equations (2.31) and (2.32). The investigators differed however, in their 

determination of a Boussinesq-type momentum equation.
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In this appendix, the present author:

(i) derives four new sets of Boussinesq-type (e,p2) equations;

(ii) derives a new set of fully non-linear Boussinesq-type (Serre-type) 

equations and

(iii) demonstrates new alternative derivations of the two existing sets of fully 

non-linear Boussinesq-type equations of:

(a) Wei et al. (1995) and

(b) Madsen and Schaffer (1998).

C.1.1. Existing derivations of existing Boussinesq-type equations

As explained in Section 3.2, the Boussinesq-type momentum equations in 

the work of Nwogu (1993) and Chen et al. (1998) were obtained from the 

depth-integrated momentum equation. This equation was obtained by 

integrating the horizontal Euler equation of motion and applying the dynamic 

free surface and kinematic seabed boundary conditions.

Conversely, Wei et al. (1995) introduced a series expansion for <j> (the 

velocity potential) at z = -h, and then converted it to z = za. The approximate 

expression for <|> (at z = z«) was then substituted into equation (C.1), the free 

surface, dynamic boundary condition (i.e. the Bernoulli equation applied at the 

free surface) with pressure p = 0, to form a Boussinesq-type momentum 

equation.

cDt+^[s(v<D)2+-^-(Oz)2] + Ti = 0 at z = sri(x,y,t) (C.1)
H-

Madsen and Schaffer (1998) introduced an expansion of the velocity 

potential as a power series in the vertical coordinate to form the horizontal 

and vertical velocities and then utilised equation (C.1) for the free surface,
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dynamic boundary condition to develop a Boussinesq-type momentum 

equation.

Interestingly, since the free surface, dynamic boundary condition i.e. 

equation (C.1) was used instead of the governing equation (for example the 

horizontal Euler equation of motion), the expression for the pressure through 

the water column was not required in the work of both groups of investigators 

(Wei et al., 1995 and Madsen and Schaffer, 1998).

C.1.2. Four new sets of Boussinesq-type (e,p.2) equations

Three of the four new sets of Boussinesq-type equations with the lowest 

order of frequency dispersion and non-linearity [i.e. including terms up to 

0(e,p2)] derived by the present author are the Boussinesq-type equations with 

ambient current included. They are presented in terms of:

(a) the horizontal velocity at an arbitrary z-level, ua (BEWCAV-A);

(b) the bottom velocity, Ub (BEWCBV-B); and

(c) the still water level velocity, u (BEWCSV-C).

Since the non-linearity parameter e is neglected in the dispersion terms of 

BEWCAV-A, BEWCBV-B and BEWCSV-C, the problem of wave-current 

interaction1 in these sets of equations is then treated explicitly2. All scaling 

assumptions for combined wave-current motion are based on those in the 

work of Chen et al. (1998). The details of the scaling are not explained here 

but can be found in Chen et al. p16-20 and Chen (1997) p27-32. A short 

explanation is given in Section 5.2.2. In the work of Chen et al., the horizontal 

velocity was considered uniform over the depth. In the present study 

however, vertical variation of the horizontal velocity is allowed.

1 See Section C.6.
2 The word ‘explicit’ is used here in the sense that there are extra terms in the governing 
equations, which are dispersion terms associated with the ambient current, even though the 
velocity u includes orbital velocity and ambient current.
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If the dispersion terms associated with currents are removed from 

BEWCBV-B, another set of Boussinesq-type equations (BEWBV-D) arises. 

To the author’s knowledge, BEWBV-D are a new set of Boussinesq-type 

equations for weakly non-linear waves.

C.1.3. New set of Serre-type equations

A new set of Serre-type equations in which all terms of 0(p2) are included 

and b is allowed to be arbitrary (FBE20-E), is also developed by the present 

author. These new equations are an alternative set of fully non-linear 

Boussinesq-type equations [including terms up to 0(p2,c3fi2)] to the equations 

derived by Wei et al. (1995). The momentum equation in FBE20-E is derived 

by the present author from a depth-integrated form of the horizontal Euler 

equation of motion together with the irrotationality condition.

C.1.4. New derivation of existing fully non-linear Boussinesq-type 

equations

New derivations for two existing sets of fully non-linear Boussinesq-type 

equations of:

(i) Wei et al. (1995) [including terms up to 0(p2,s3|i2)] and

(ii) Madsen and Schaffer (1998) [including terms up to 0(p4,e5p4)]

are also presented by the present author. The momentum equations in both 

sets of fully non-linear Boussinesq-type equations are derived here from the 

horizontal Euler equation of motion together with the irrotationality condition.
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C.2. Derivation of four new sets of (e,|i2) equations

The procedure developed by the present author for deriving: (i) four new 

momentum equations (in BEWCAV-A, BEWCBV-B, BEWCSV-C and 

BEWBV-D), and (ii) three existing momentum equations [in Nwogu’s (1993), 

Boussinesq’s (1872) and Peregrine’s (1967) equations] is illustrated in Figure 

C.1 (and Figure 1.4).

Substitute irrotationality condition ► 
Depth-integrate ►

Substitute pressure with dynamic & kinematic bcs ► 
Retain terms up to 0(e,p2) in the wave quantities ►

1 ◄ Path (3)Path (1) ► f Path (2) ►

Current vanishes ► ! ! ◄ Current vanishesCurrent vanishes ► •

(II) Peregrine’s (1967) J 
momentum equation in * 

terms of S -

Euler equation 
of motion

motion with the irrotationality condition

New (e,p2) 
momentum equation 

in terms of ub

(in BEWCSV-C) 
in Section C.2.3

New (E,p2) momentumNew (e,p2) momentum 
equation with a current 

in terms of ua

Horizontal bottom ► j

i ~ ,
| Boussinesq’s (1872) momentum , 

equation in terms of ub

Legend: denotes newly developed i i denotes a new derivation by the present
by the present author ■_______| author for the existing equations

Figure C.1. New derivations of four new and three existing (e,ji2) momentum equations.
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A new depth-integrated momentum equation can be obtained by 

integrating the horizontal Euler equation of motion with the irrotationality 

condition included [i.e. equation (3.2)]. This results in

[u +s(u» V)u + -^-wVw +Vpldz = 0 (C.2)
J-h P

A pressure distribution in the equation above can be obtained by integrating 

the vertical Euler equation of motion [i.e. equation (2.91)] from z to eq, and 

then applying the free surface, dynamic boundary condition [i.e. equation 

(2.92)] to give

p = q--+ fEn[wt+e(u» V)w]dz + -^-y[w2|z En-w2| 1 (C.3)
s jz p 1 lz=z

The above expression for pressure i.e. equation (C.3) only satisfies the free 

surface, dynamic boundary condition. It can be compared to the pressure 

expression presented in equation (3.3) in which the dynamic and kinematic 

boundary conditions at the free surface are both satisfied.

p = q- — + J nw dz + s(u» V)J nw dz--^-w2 (3.3)

Equation (C.3) is an alternative to equation (3.3).

C.2.1. New (e,p2) equations in terms of the velocity at an arbitrary z- 

elevation, u«

Path (1) in Figure C.1:

Equations (2.96), (C.2), (C.3) and (3.3) above are written in terms of wave 

scaling parameters (e,p). These equations will now be re-written in terms of a 

different set of scaling parameters i.e. the wave-current scaling parameters 

(s,p,5,v). The details can be found in Section 5.2.2 and Chen (1997) p27-32 

and Chen et at. (1998) p16-20. This results in the following four equations 

respectively.
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r|t + V* pudz = 0
J-h

(5.4)

[ut + v(u* V)u + -^-wVw +Vp] dz = 0
J-h P

(C.4)

P = T)- — + fn[w( + v(u» V)w]dz + -^-|[w2|z 5n -w2
§ Jz |iz 2 1 lz=z

(C.5)

Z 3 r§n f5n v ?p = r| — +— wdz + v(u*V) w dz—-w
S 5tJz Jz p2

(5.6)

Similarly, equations (2.95a) for the irrotationality condition, (3.4) and (3.12)

for w and (3.14) for u can be written as

6^uz —Vw = 0
V

(5.3)

w = --p2V • Pudz
5

(5.7)

p (£ \
W =----p2 [zV • Ua + V • (hUa)] + 0 -p4

5 U J
(C.6)

U = Ua + - H2 {fa - { Z2 V(V • Ua) - ZV[V • (h Ua)]} + of J (C.7)

Due to the presence of the elevation z in equations (C.6) and (C.7), it is clear 

that the vertical and horizontal velocities are permitted to vary through the 

water column. Inserting equations (C.6) for w and (C.7) for u into either (C.5) 

or (5.6) for p, integrating and retaining terms up to O(s) and 0(p2) in the wave 

quantities gives
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p = n - f+1 ^2[i z2<v. iic,) + zv. (hii„,)] 
o o

+ En2R8112(v.ual)-'nV.(hu„t)]

224

+ V - JI2{^ Z2(Ua • V)(V • Ua) + Z(Ua • V)[V • (hUa)]}
5

+ vE|^2{-|5r)2(Ua • V)(V • Ua) -r)(Ua • V)[V • (hu«)]}

+ o
f c2 eb 2 b 4
— M- , —U 

v 5 8

A

J
(C.8)

Substituting equation (C.7) for u into the depth-integrated continuity equation 

(5.4) and retaining terms up to 0(c) and 0(p2) in the wave quantities leads to 

equation (C.9). Substituting equations (C.6) for w, (C.7) for u and (C.8) for p 

into (C.4) for the depth-integrated momentum equation, integrating and 

retaining terms up to 0(b) and 0(p2) in the wave quantities leads to equation 

(C.10).

r\t + V • (hUa) + 5r|V • ua + vu« • Vr|

+ p2(n3 + m* + 52n3 + 53n3) = 0(ep2,p4)
■4------------------------------------------- ►

Dispersion terms associated with currents

Uat + v(Ua • V)Ua + Vr|

(C.9)

+ p2[A30 + vA3 + 5(A2 + vA33) + 52(A3 + vA35 )] = 0(8p2,p4) (C.10)
Dispersion terms associated with currents

where

n3 = n2, n3 = n2, n3 = n2, n (C.9a)

Ao = A0, A2 = A2, A4 = A (C.10a)

A3 = V(Ua • Ta) + ^h2V(V • Ua)2 - jh[(V • Ua)V • (hUa)] + {[V • (hUa)]2

(C.10b)

A3 = -7-|V{(Ua* V)[V*(hUa)]}-^r|hV(V»Ua)2 +Yrlv[(v#Ua)v#(hUa)]

(C.10c)
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A35 = -\ ri2V[(Ua • V)(V • Ua)] + \ ri2V(V • Ua)2 (C.10d)

The particular dispersion terms n2 (1=0.12,3) and A2 (1=02,4) are defined by 

equations (5.22) and (5.23) respectively. Again Ta is defined by equations 

(3.11a). Equations (C.9) and (C.10) are a new set of Boussinesq-type (e,p2) 

equations with an ambient current. To avoid confusion with the analysis in 

Sections C.5 and C.6, the new set of Boussinesq-type equations [(C.9) and 

(C.10)] is referred to as BEWCAV-A (see Figure C.1). It appears that the 

continuity equation (C.9) remains identical to the continuity equation (5.22) in 

the second set of equations of Chen et al. (1998).

When the ambient current vanishes, the dispersion terms associated with 

currents [i.e. n3 (=1.2.3) and A3 (=1.2.3,4.5)] become negligible as detailed by 

Chen et al. (1998) p16-20. As a result, BEWCAV-A reduce to the equations of 

Nwogu (1993) written below.

C.2.2. New (s,ji2) equations in terms of the velocity at the seabed,

Ub

Path (2) in Figure C.1:

The dimensional horizontal velocity of the fluid at elevation z is expanded 

as a Taylor series with respect to the velocity Ub = u(x,y,-h,t) at z = -h. This 

results in

u(x, y, z, t) = u(x, y,-h, t) + (z + h)uz(x, y,-h, t) + uzz(x, y-h, t) +...

q, + V • [(h + sr|)Ua] + p2V • (hr) = 0(£p2,p4) (3.16)

Uat + Vr| + e(Ua» V)Ua + p2Tat =0(ep2,p4) (3.17)

(C.11)
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Evaluating equations (3.7) for uz and (3.8) for Uzz at z = -h, and substituting 

into (C.11) gives the non-dimensional horizontal velocity (written in the wave- 

current scaling parameters) as

u = Ub + — p2{^(h2 -Z2)V(V •Ub)-(h + z)V[V •(hUb)]} + truncation error 
v

(C.12)

Substitution of equation (C.12) for u into (5.7) for w and retaining terms up to 

0(ep2/5) gives the vertical velocity

w [zV • Ub + V • (hub)] + O (C.13)

Without stating as much, Chen et al. (1998) assumed that s = v in the vertical 

velocity or in other words the vertical velocity due to the ambient current is 

very small compared to the orbital vertical velocity due to the waves. The 

truncation error of equation (C.12) can be determined by integrating the 

irrotationality condition (5.3) from -h to z. This results in

u-Ub = —pVwdz (C.14)

Inserting equation (C.13) for w into (C.14) gives

u = Ub + -H2{{(h2 -z2)V(V • Ub)-(h + z)V[V . (hub)]} + Opn“J (C.15)

It is evident from equations (C.13) and (C.15) that w and u can vary through 

the water column. The pressure field can be obtained by inserting equations 

(C.13) for w and (C.15) for u into either (C.5) or (5.6) for p, integrating and 

retaining terms up to O(s) and 0(p2) in the wave quantities to give
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p = 11 -1+1 z-1'('v •Ub, >+zV • <h 1u»t)]o o

+ 8|i2 [- ^ 5ri2 (V • Ubt) - ri V • (hUbt)]
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+ v — p2{? z2(Ub • V)(V • Ub) + z(Ub • V)[V • (hub)]}
8

+ v£(4.2 {— y 8r)2 (Ub • V)(V • Ub) - r|(Ub • V)[V • (hub)]}

+ 0^e2 2 c 4
— Li U
5 8

(C.16)

In a similar way to the development of BEWCAV-A in Section C.2.1, 

equations (C.13) for w, (C.15) for u and (C.16) for p are utilised [instead of 

equations (C.6) for w, (C.7) for u and (C.8) for p respectively]. As a result, the 

equivalent of equations (C.9) (continuity equation) and (C.10) (momentum 

equation) become equations (C.17) and (C.18) respectively.

r|t + V • (hub) + 8r|V • Ub + vUb • Vr\

+ p2(nj + sn? + 82n4 + 83n4) = Q(sp2,p4) (c.17)
Dispersion terms associated with currents

Ubt + v(Ub* V)Ub + Vr|

+ H2[A4o + + 5(Al, + vA4) + 52(A4 + vA45)] - 0(sp2,p4) (C.18)
◄-------------------------------------------------------------------------------------- ►

Dispersion terms associated with currents

where

nj = V . {i h3V(V . Ub) - h2V[V . (hub)]} - ± h3V2( V • Ub) + \ h2V2[V • (hub)]
(C.17a)

n? = nv*{|h2v(v.ub)-hv[v.(hub)]} (C.17b)

n2 = -|n2v2[v*(hub)] (C.17c)

n3 = -|n3v2(v.ub) (C.17d)

A40 = jh2V(V.Ubt)-hV[V.(hUb,)] (C.18a)
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A4, = v{(Ub • V)[-i h2(V . Ub)] - (Ub. V)[h V . (hub)] + [V . (hub)]2}

+ |h2V(V.Ub)2 --jhV[(V• Ub)V• (hub)] (C.18b)

A4 = —1| V[V • (hub,)] (C.18c)

A4 = -r|V{(Ub • V)[V • (hUb)]}-|r)hV(V . Ub)2 +^nv[(v • Ub) V • (hub)]

(C.18d)

A4 =-|T!2V(V.Ubt) (C.18e)

A4 =-|ri2[(Ub.V)(V.Ub)] + iTi2V(V.Ub)2 (C.18f)

Equations (C.17) and (C.18) are a new set of Boussinesq-type equations 

[including terms up to 0(s,p2) in the wave quantities] with an ambient current 

in terms of the horizontal bottom velocity. This new set of Boussinesq-type 

equations is then referred to as BEWCBV-B (see Figure C.1). When the 

ambient current vanishes, the dispersion terms n4 0 = 1.2.3) in equation (C.17) 

and A4 (1=1.2,3.4,5) in equation (C.18), which are associated with currents, 

become negligible as detailed by Chen et al. (1998) p16-20. Consequently, 

BEWCBV-B reduce to the new set of Boussinesq-type equations (BEWBV-D) 

(Figure C.1) written below.

rit + V • [(h + erl)Ub] + P2TIo = 0(8p2,p4) (C.19)

Uat + s(Ub • V)Ub + Vr| + p2A40 = 0(sp2,fi4) (C.20)

If the water depth is assumed to be constant, BEWBV-D i.e. equations (C.19) 

and (C.20) reduce to the equations of Boussinesq (1872) written below.

T]t + sub• Vr\ + (cr| + h)(V* Ub)-p2 ^-h3V2(V* Ub) = 0(ep2,p4) (2.29)

Ubt + s(Ub • V)ub + Vq - p2 |h2V(V • Ubt) = 0(ep2,p4) (2.30)
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C.2.3. New (s,fi2) equations in terms of the velocity at still water 

level, u

Path (3) in Figure C.1:

In a similar procedure to that in Section C.2.2 but with z = 0, expressions 

for the vertical and horizontal velocities as well as pressure field are

w =-|^2[zv*u + V.(hu)] + 0^n4l (C.21)

u = u - - n2{i z2V( V • u) + zV[V • (hu)]} + O e 4 (C.22)

p = ti-^ + |^^2[^z2(V -uJ + rV -(bu,)]
O O

+ sp2[-{5ri2(V • ut) - T1V • (h ut)]

+ v - p2{| z2(u • V)(V • u) + z(u • V)[V • (hu)]} 
5

+ ve(x2{--j8r|2(u • V)(V • u) - r|(u • V)[V . (hu)]} + O
/ 2 \
— P2,-|I4

(C.23)

In the expressions for the vertical and horizontal velocities above, vertical 

variation through the water column is allowed. Utilising equations (C.21) to 

(C.23) for w, u and p [instead of (C.6), (C.7) and (C.8) respectively], 

equations (C.17) and (C.18) become (C.24) and (C.25) respectively, (which 

are newly developed by the present author).

rit +V*(hu) + 8r|V*u + vu*Vr| + p2(no + 52n2 +8^3) = 0(sp2,p4)
◄----------------------------►

Dispersion terms associated with currents

ut + v(u* V)u + Vri + p^vA5! + 5(A2 +vA53) + 82(A54 + vA55)] = 0(8p2,p4)
◄--------------------------------------------- ►

Dispersion terms associated with currents

(C.25)
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where

n* = -V • {jh3V(V • u)-|h2V[V • (hu)]} (C.24a)

n* =-In2V2[V.(hu)] (C.24b)

n3 =-i'13V2(V.u) (C.24c)

A5, =|h2V(V.u)2-{hV[(V.u)V.(hu)] + yV[V.(hu)]2 (C.25a)

A52 =-r|V[V.(hut)] (C.25b)

a53 = -riv{(u • v)[v. (hu)]} -ir|hV(V • u)2 + ^r) V[(V • u)V . (hu)]

(C.25c)

A4=-t12V(V.u,) (C.25d)

As =-712[(u*V)(V.u)] + |t12V(V.u)2 (C.25e)

Equations (C.24) and (C.25) are a new set of Boussinesq-type equations 

[including terms up to 0(s,p2) in the wave quantities] with an ambient current 

in terms of the horizontal velocity at still water level. This new set of 

Boussinesq-type equations is referred to as BEWCSV-C (Figure C.1). When 

the ambient current vanishes, all the dispersion terms associated with 

currents (i.e. the n and A terms above except for n^) will become negligible

as detailed by Chen et al. (1998) p16-20. The resulting equations then reduce 

to the equations of Peregrine (1967) in terms of u and are written below.

r|, + V• [(h + st))u] = - n2v{jh2V[V• (hu)]-|h3V(V. u)} + 0(£n2,n4)

(2.105)

u, +e(u.V)u + Vti = 0(£h2,h4) (2.106)
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C.3. New derivation for new and existing (|a2,sV) equations

In this new derivation by the present author, the current is no longer 

treated explicitly (as in Section C.2) but implicitly. Consequently, the next 

derivation is similar to the derivation for pure wave motion (in Chapter Three). 

An illustration of the steps involved in this derivation is shown in Figure C.2 

(and Figure 1.4).

Substitute irrotationality condition ►

◄ Depth-integrate

◄ Substitute pressure with dynamic be ► 
\ ◄ Retain terms up to 0(p2,eV) ► /

◄ Substitute pressure with dynamic 
& kinematic bes

◄ Retain terms up to 0(p2,eV)
Path (3) ►Path (2) ►Path (1) ►

1 Wei et at.s (1995) momentum !
^ am ■4+i/an in farms ■ ■

◄ Discard terms of

Euler equation 
of motion

motion with the irrotationality condition

\ 0(ep2) and higher ► /

------------------ -- - .-'7 - -
; Nwogu’s (1993) momentum > 
; equation in terms of ua !

Legend: denotes newly developed 
by the present author

i i denotes a new derivation by the present
i 1 author for the existing equations

Figure C.2. New derivations of Wei et al.'s (1993) and new (p2,e3^2) momentum equations.
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Path (1) in Figure C.2:

Substitution of equation (3.12) for w and (3.14) for u into (C.3) for p and 

integrating leads to the pressure distribution

P = n - - + H2[{ Z2(V • Ua,) + ZV • (hUa,)]
S

+ 8p2{-q V • (hUat) + \ Z2[(Ua • V)(V • Ua) - (V • Ua)2]

+ z {(Ua • V)[V • (hUa)] — (V • Ua)V • *" ]]

+ 82p2{-| rj2(V • Uat) + r|{(V • Ua)V • (hUa) - (Ua • V)[V • (hUa)]}}

+ eV{{Ti2[(V • Ua)2 - (Ua • V)(V • Ua)]} + 0(p4) (C.26)

Inserting equation (3.14) for the horizontal velocity into equation (2.96) for 

the depth-integrated continuity equation and integrating leads to equation 

(C.27). Inserting equation (3.12) for the vertical velocity, (3.14) for the 

horizontal velocity and (C.26) for the pressure into equation (3.2) i.e. the 

horizontal Euler equation of motion combined with the irrotationality condition, 

leads to equation (C.28).

Tit + V • [(sti + h)Ua] + p2(n®0 + en621 + e2r4 + e3n®3) = 0(p4) (C.27)

Uat +e(Ua • V)Ua + Vr| + p2(A620 + +82A622 +83A23) = 0(p4) (C.28)

where

n20 = V.(hf) (C.27a)

n^t = V«(Tir«) (C.27b)

n22 = -v*{-iTl2V[v*(hu«)]} (C.27C)

n®3 = -V • [j ri3V(V . Ua)] (C.27d)

A620 = fa, (C.28a)
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A62, = v{ua.ra-nV*(huat) + i[V.(hu„)]2} (C.28b)

a622 = v{-1n2(v • u«t) + r|{(V • Ua)V . (hUa)-(Ua • V)[v . (hUa)]}} (C.28c)

A623 = v{^r|2[(V • Uo)2 -(u„ . V)(V • u„)]} (C.28d)

in which ra and r are defined by equations (3.11a) and (3.18) respectively. 

Equations (C.27) and (C.28) are a set of fully non-linear Boussinesq-type 

(Serre-type) equations, and are, as it turns out, exactly the same as that of 

Wei etal. (1995).

Although the present derivation is significantly different from the derivation 

in the work of Wei et at. (1995), the resulting equations are identical. 

Interestingly, because the free surface, kinematic boundary condition is not 

incorporated in the present derivation for Wei et a/.’s momentum equation, the 

free surface, kinematic boundary condition is not satisfied. Consequently, 

there is scope to develop a new set of fully non-linear Boussinesq-type 

equations, which include the free surface, kinematic boundary condition (see 

Path (3) in Figure C.2).

Path (2) in Figure C.2:

Similar to Path (1), but equation (C.2) is used instead of equation (3.2) to 

develop a Boussinesq-type momentum equation. The resulting equation is 

exactly the same as that in Path (1) i.e. equation (C.28).

Path (3) in Figure C.2:

A procedure to develop a new set of Boussinesq-type equations is as 

follows. The free surface, kinematic boundary condition defined by equation 

(2.93) is inserted into the momentum equation by utilising the pressure field 

defined by equation (3.3) instead of being defined by equation (C.3). This 

results in a new expression for the pressure field as
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P = T1 - - + \i2[\ Z2(V • Uat) + ZV • (hUat)]
8

+ 8p2{-r|V •(hUat)-r)tV •(hua)-[V*(hUa)]2 

+ j Z2[(Ua • V)(V • Ua) - 2( V • Ua)2]

+ z{(Ua • V)[V • (hUa)] - 2(V • Ua)V • (hUa)}}

+ 82p2{-^ri2(V»Uat)-ririt(V • ua)-(Ua • V)[rjV • (hu«)]}

- 6 V(u« • V)[{ r|2(V • Ua)] + 0(p4) (C.29)

The above expression for the pressure is substituted into equation (C.2) for 

the depth-integrated momentum equation to yield the following new

momentum equation.

Uat +e(Ua* V)Ua +Vr| + |i2(A720 + eA21 + e2A22 + 83A23) = 0(p4) (C.30)

where

A720 = A620 (C.30a)

A21 = V{u„ • r» - nV • (hUa,) - r|,V • (hu«) - {[v • (hUa)]2}

- J h2V(V • Uo)2 + j hV[(V . Ua)V • (hUa)] (C.30b)

A722 = v{—jT12(V • Uat) - r,nt(V • Ua) - (u. • V)[r|V.» (hUa)]}

+ ^ T|h V( V • Ua)2 - | r) V[(V . Ua)V • (hUa)] (C.30C)

a723 = - v{(u„. V)[i n2( V. Ua)]} -1 ^2V(V. Ua)2 (C.30d)

The new set of equations, which consists of the continuity equation (C.27) 

and momentum equation (C.30), is referred to as FBE20-E (see Figure C.2). 

FBE20-E satisfy all boundary conditions (i.e. the kinematic and dynamic free 

surface boundary conditions and the kinematic bottom boundary condition). 

FBE20-E are an alternative set to equations (C.27) and (C.28).
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Furthermore, no relation between e and \x has been assumed in either set 

of equations. If terms of O(s) = 0(p2) is assumed, both sets of equations 

[(C.27) and (C.28); and (C.27) and (C.30)] reduce to the equations of Nwogu 

(1993).

C.4. New derivation of new and existing (|i4,s5|i4) equations

Figure C.3 shows the steps in the derivations of two (p4,e5|i4) momentum 

equations.

Substitute inrotationality condition ►

◄ Depth-integrate

◄ Substitute pressure with dynamic be ► 
v ◄ Retain terms up to 0(p4,eV) ► ◄ Substitute pressure with dynamic 

& kinematic bes
◄ Retain terms up to 0(p4,e5p4)

Path (1) ► Path (2) ► / Path (3) ►

Madsen and Schaffer’s (1998) j 
momentum equation in terms i

Euler equation 
of motion

motion with the irrotationality condition ____ • • _______ ____________

...
New (p ,e p 7 momentum 
equation in terms of u« 

(in FBE40-F)
(not presented here)

! ◄ Discard all n4 terms ► !
I I

equation in terms of u«_'___ __r*___ ,

Legend: denotes newly developed 
by the present author

t ~i denotes a new derivation by the present
i________ } author for the existing equations

Figure C.3. New derivations of Madsen and Schaffer’s (1998) and new (ji4,s5|i4) momentum 
equations.
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The second-order accurate vertical and horizontal velocities [(3.12) and 

(3.14)] [i.e. 0(p2)] can be extended to the fourth-order (truncating at the sixth- 

order) using the same procedure as in Chapter Three. This results in

W = - |I2[ZV • Ua + V • (hUa)]

+ n" { j z3v2(v • ua) + j z2v2[v. (hua)] - z(v. r.) - v • (hF)} + 0(|/)

(C.31)

U = Ua + H2{r» - |z2V(V . Ua) - ZV[V . (hUa)]}

+ p" {i (Z4 - Za4 )V[V2( V . U«)] + i (Z3 - Z„3 )V{V2[V . (hlla)]}

+ {(Za2 - z2)V('V . r«) + (z» -z)V[V .(hFa)]} + 0(p6) (C.32)

Again, Ta and T are defined by (3.11a) and (3.18) respectively.

Path (1) in Figure C.3:

Substituting equation (C.31) for w and (C.32) for u into equation (C.3) for p 

and integrating leads to the pressure distribution

P = T1 - - + H2[{ Z2(V • Ua,) + ZV . (hUc, )]
8

+ £p2{-r|V • (hUat) + ^Z2[(Ua • V)(V • Ua) - (V • Ua)2]

+ z{(Ua • V)[V • (hUa)] - (V • Ua)V • (hUa)}}

+ E2p2{--ir)2(^ •Ua,) + n{(V • Ua)V • (hUa) — (Ua • V)[V »(hUa)]}}

+ £3H2{| r|2[(V • Ua)2 - (Ua • V)(V • Ua)]}

+ P4 {- £ Z"V2( V • Ua,) - -1 Z3V2[V • (hUa, )] + ^ Z2( V • Ta, )

+ zV.(hF,)}

+ EP4 {-T| V • (hF, ) + ^ Z4 [4(V • Ua)V2(V • Ua)
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- (u« • V)V2(V • Ua) - 3V(V • Ua) • V(V • Ua)]

+1 z3{3(V . u.)V2[V . (hUa)] - 3V(V . Ua) • V[V • (hu„)]

+ V . (hUa)V2(V . Ua) - (Ua . V)V2[V • (hUa)]}

+ |z2{(Ua • V)(V . Ta) + (r» • V)(V . Ua) - 2(V . Ua)(V • Ta)

+ V • (hUa)V2[V • (hUa)] - V[V • (hUa)] • V[V • (hUa)]}

+ z{((Ua • V)[V . (hF)] - (V . Ua)V • (hF)

+ (r« • V)[V . (hUa)] -(V . Ta)V . (hUa)}}

+ s V {-J ri2(V • Ta,) + r|{( V . Ua)V • (hF) - (Ua . V)[V . (hF)]

+ (V • ra)V • (hUa) - (Fa • V)[V • (hUa)]}}

+ E V41 T13V2[V . (hUa,)] + i T,2{{V[V . (hUa)]}2

- V • (hUa)V2[V • (hUa)] + 2(V • Ua)(V • Ta)

- (Ua • V)(V • Ta) - {Ta • V)(V • Ua)}}

+ E V4U n4v2(v •u«,) +1 n3{(u. • v)v2[v. (hua)]

- V . (hUa)V2(V . Ua) + 3V(V . Ua) • V[V • (hUa)] 

-3(V«Ua)V2[V.(hUa)]}}

+ £ V {^f <14 {(Ua . V)V2(V . Ua) + 3[V( V • Ua)]2

-4(V.Ua)V2(V.Ua)}} + 0(|/) (C.33)
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Inserting equation (C.32) for the vertically varied horizontal velocity into 

equation (2.96) for the depth-integrated continuity equation gives equation 

(C.34). Inserting the vertically varied velocities [(C.31) and (C.32)] and 

pressure distribution (C.33) into equation (3.2) gives equation (C.35).

T|t + V • [(CT| + h)Ua] + p (1^20 + + B2n22 + E 023 )

P4(n80 + znl + B2n®2 + £3n83 + + E5n85) = 0(p6) (C.34)

Ua{ + c(Uu • V)lJa + VTJ + p (A2Q ^"^21 ^ A22 ^ -^23)

p4 (A840 + bA841 + b2 A842 + e3 A43 + b4A844 + e5 A45) = 0(p6) (C.35)

where

n20 = n20I n21 = n82, n82 = n82, n823 = n83,

n« = V • {(^h4 -^z/ )hV[V2(V .Ua)]

+ (^h3-|z„3)hv(v2[v.(hu0)])

+ (j Za2 -1 h2 )hV(V . Ta) + (za +1 h)h V[V . (hr)]} 

nj, = V . {-A Zo41iV[V2(V . Ua)] -1 Za3riV{V2[V . (hUa)]}

+ |Za2nV(V . Ta) + Za TlV[V • (hF)]}

n« = -v*Hh2v[v*(hr)]} 

nj3 =-v*[J-r|3v(v.ra)] 

n« = v.{^r!4v{v2[v.(hua)]}} 

n« = v*{^n5v[v2(v.ua)]}

(C.34a)

(C.34b)

(C.34c)

(C.34d)

(C.34e)

(C.34f)

(C.34g)

(C.35a)
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A840 = - £ Za4V[V2(V . Ua,)] -i Za3V{V2[V . (hua,)]}

+1 z„2V( V . r„,) + Za v[v . (hr,)] (C.35b)

a84, = v{|ra2+(v.ua)v.(hr)-r|V.(hrt)

+ Ua . {-^Z„4V[V2(V . Ua)] - | Za3V{V2[V • (hUa)]}

+-i za2v(v. r») + z„v[v. (hr)]}} (C.35c)

A42 = v{-3r|2(V .r„,) + X]{( V . Ua)V . (hF) - (u a • V)[V . (hF)]

+ (V » Ta)V . (hua) - (r. • V)[V . (hUa)]}} (C.35d)

A« = V{? h3V2[(hUa,)] + |n2{{V [V . (hUa)]}2

- V . (hUa)V2[V . (hUa)] + 2( V . Ua)(V • Ta)

- (u« • v)( v • r«) - (ra • v>( v • ua)}} (C. 35e)

A44 = ^’(V • Ua,) + i n3 {(Ua * V)V2[V • (hU»)]

- V • (hUa)V2(V . Ua) + 3V( V . Ua) . V[V . (hUa)]

- 3(V • Ua)V2[V • (hUa)]}} (C.35f)

A45 = v{^J Tl4 {(Ua . V)V2(V • Ua) + 3[V(V • Ua)] 2 - 4(V . Ua)V2( V . Ua)}}

(C.35g)
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Equations (C.34) and (C.35) are a set of fully non-linear Boussinesq-type 

equations which are accurate to 0(p4). As in Section C.3, no relation between 

c and p has been assumed in equations (C.34) and (C.35). This set of 

(p4,e5p4) equations is identical to that of Madsen and Schaffer (1998) (see 

Figure C.3). If all the p4 terms are removed, this set of equations reduces to 

the equations of Wei et al. (1995) (see Figure C.3). In the present derivation 

(see Paths (1) and (2) in Figure C.3), the free surface, kinematic boundary 

condition has not been involved in the momentum equation (C.35).

Path (2) in Figure C.3:

Similar to Path (1), but equation (C.2) is used instead of equation (3.2) to 

develop a Boussinesq-type momentum equation. The resulting equation is 

exactly the same as that in Path (1) i.e. equation (C.35).

Path (3) in Figure C.3:

An new alternative set of (p4,e5p4) equations can be developed by utilising 

the pressure field defined by equation (3.3), which includes the free surface 

kinematic and dynamic boundary conditions, instead of equation (C.3), which 

only includes the free surface dynamic boundary condition. Consequently, the 

resulting (p4,s5p4) equations (FBE40-F) are very long but they satisfy all the 

boundary conditions (not presented here).
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C.5. Transfer functions3 for regular waves

Following Madsen and Schaffer (1998), all the sets of Boussinesq-type 

equations derived in this appendix are analysed to quantify the embedded 

characteristics with respect to frequency dispersion and non-linearity. 

Although the derivation of the (s,p2) equations has been based on the 

assumption of p « 1 and 0(e) = 0(p2), and the derivation of the (p2,£3p2) and 

(p4,s5p4) equations based on p « 1 and arbitrary e, the analysis will now be 

made under the assumption of e « 1 (i.e. weakly non-linear solutions) and 

arbitrary p. Use will be made of a Stokes-type Fourier analysis on a horizontal 

bottom and first- and second-order solutions of the following form will be 

sought.

^_____________ Second-order_____________ i

First-order Second-order correction term
► *----------------------►

r) = r)i cos 0 + et|2 cos 20 (C.36a)

Ub = Ubi COS 0 + £Ub2 cos 20 (C.36b)

U = U1 COS 0 + £U2 cos 20 (C.36c)

U = Ui COS 0 + £U2 cos 20 (C.36d)

Ua = Ua1 COS 0 + £Ua2 COS 20 (C.36e)

where 0 = cot-kx. rp, rp are the amplitudes of r| in the first-order and the 

second-order correction term for regular waves. A similar comment applies to 

Ubi, Ub2; ui,U2; ui,U2; and Uai, ua2; It is emphasised that the analysis will not 

involve non-linear terms with powers of e higher than one, although such 

terms are retained in the complete equations of the (p2,s3p2) and (p4,£5p4) 

equations.

3 The term 'transfer function’ refers to that used in the work of Madsen and Schaffer (1998).
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For making comparisons, the following existing sets of equations will be

analysed to the first- and second-order transfer functions for regular waves4:

• the equations of Boussinesq (1872) [equations (2.29) and (2.30)] and

• the first and second sets of equations of Peregrine (1967) [equations 

(2.111 )-(2.112) and (2.105)-(2.106)]

• the equations of Nwogu (1993) [equations (3.16) and (3.17)] and

• the equations of Schaffer and Madsen (1995) [equations (4.5) and (4.6)]

• The first and second sets of equations of Chen et al. (1998) [equations 

(5.17)-(5.18) and (5.22)-(5.23)],

The 1D forms of the new and existing Boussinesq-type equations

corresponding to a horizontal bottom are:

• BEWCBV-B, BEWBV-D and the equations of Boussinesq (1872) reduce 

to

’ll + hubx — fJ2 ^ h3Ut>XJO< + e(r|Ub)x = 0(sn2,n4) (C.37)

U», + Tlx - n2 J h'ub^ + £UbUbx = CHen2, n4) (C.38)

• BEWCSV-C and the second set of equations of Peregrine (1967) reduce 

to

T1t +hux +p2yh3uxxx +s(riu)x =0(£p2,p4) (C.39)

ut +r|x + suux = 0(eji2,p4) (C.40)

4 The sets of equations of Nwogu (1993) and Schaffer and Madsen (1995) have been 
analysed to the first-order transfer functions for regular waves in Section 3.3 and Section 4.3 
respectively. The analysis in both sections is intended to determine the free coefficients 
contained in both sets of equations. Consequently, in this appendix, both sets of equations 
will be analysed to the second-order only.
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• The first set of equations of Chen et al. (1998) and the first set of 

equations of Peregrine (1967) reduce to

T)t + hUx + e(t)U)x = 0 (C.41)

ut+iix-H2jh2Uxl<t + EuOx =0(en2,n4) (C.42)

• BEWCAV-A, the equations of Nwogu (1993) and the second set of 

equations of Chen et al. (1998) reduce to

qt + hUax + jj.2(cx + y)h3Uaxxx + s(r|Ua)x = 0(8fi2,) (C.43)

Ua{+r)x+JJ. Cth Ua)ort+SUaUax=0(8fJ. ,|J. ) (C.44)

• The equations of Schaffer and Madsen (1995) reduce to

rit + hUax + n2[(a - (3 + j)h3uaxxx - ph3^] + e(TiUa)x = 0(en2,) (C.45)

Uat + r|x + ji2[(a - y)h2uaxxt - y h2^^] + eUau«x = 0(sjx2, ^i4) (C.46)

• The equations of Wei et al. (1995) reduce to

r|t +huax +fi2(a + y)h3uaxxx + e[r|Ua + fi2a h2r|Uotxx]x = 0(e2n2,|i4) (C.47)

u«t + r|x + }i2a h2uaxxt + cuuax + 8|x2[ah2UaUaxx + Yh2(Uotx)2 _rlhUaxt]x

= 0(e2nV) (C.48)

• FBE20-E reduce to

rjt + hUax +fi2(a + y)h3uaxxx +e[r|Ua + n2ah2riUaxx]x = 0(82|x2,|x4) (C.47)

Uat + r|x +fi2ah2uaxxt + 8uu«x + 8jx2[ah2UaUaxx --Jh2(Uax)2

-rihUajrt -n,hUax]x =0(8V,n4) (C.49)
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The equations of Madsen and Schaffer (1998) reduce to

r|t + hUa„ + n2(a + |)h3uUxxx + n4ai h5u0xxxxx + E^Ua + nWriUa^

+ H4a2h4nUax)TO]x = CKsV.eW6) (C.50)

Ua, + r|x + ^2ah2u0xxt + h4(72 h4u0xxxx, + £UUax

+ £(i2[ah2u«u0xx + jh2(u<.x)2 -rihua^],,

+ £|^4[^a2h4(Uoxx)2 + cj2h2Ua unxxxx + (a + ^’(hUa.Ua^ - nu0xxxl)]:

(C.51)

where

ai CT2 = (C.52)

and a is defined by equation (3.22).

In the next steps, the expression for the free surface elevation [equation 

(C.36a)] and the appropriate expression for the horizontal velocity [one of 

equations (C.36b) - (C.36e)] is substituted into the appropriate sets of 

governing equations. Terms of 0(s°) are collected to yield the first-order 

transfer functions and terms of 0(s1) are collected to yield the second-order 

transfer functions. In particular, substitute:

(i) equations (C.36a) and (C.36b) into (C.37) and (C.38) to give equations 

(C.53a) and (C.70a),

(ii) equations (C.36a) and (C.36c) into (C.39) and (C.40) to give equations 

(C.53b) and (C.70b),

(iii) equations (C.36a) and (C.36d) into (C.41) and (C.42) to give equations 

(C.53c) and (C.70c), and

(iv) equations (C.36a) and (C.36e) into (C.43) through to (C.51) to give 

equations (C.53d) and (C.70d),
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Details of the various first-order transfer functions are given in the next 

section.

C.5.1. First-order transfer functions for regular waves

In determining the first-order transfer functions for regular waves, those 

terms of 0(8°) are collected.

'n

.0)

i(1)12 ni
Ubll

(C.53a)

■ii

,0)

i(1)12 rji |

ui|
(C.53b)

i(1)mi '12

,0) U1
(C.53c)

'12

»0>

ni
Ua1 I

(C.53d)

• The coefficients (m^.m^m^myj) in equation (C.53a) for BEWCBV-B, 

BEWBV-D and the equations of Boussinesq (1872) including terms up to 

0(p2) are

= to, mi I* = -kh(l + p2 ^ k2h2)
11 12 v h 6 ' (C.54)

= -k, m(22 = co(l + \i2 ± k2h2)

Hence, the solution (relating the velocity and surface elevation) of the 

algebraic system of equations (C.53a) with the coefficients defined by 

equation (C.54) is

_ (orp

UM_ kh(l + p2^k2h2)
(C.55)
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and the dispersion relation is

co2 J^2;k2h2 

k2h ~ 1 + p2|k2h2
(C.56)

• The coefficients in equation (C.53b) for BEWCSV-C

and the second set of equations of Peregrine (1967) including terms up 

to 0(p2) are

m= co, mjy = —kh(l - p2 T k2h2) 

= -k, = co
(C.57)

The solution and dispersion relation for the first-order transfer function 

are

kh(l-p2 ~ k2h2)

co2 1-p2 yk2h2

k2h ~ 1

(C.58)

(C.59)

• The coefficients in equation (C.53c) for the first set of

equations of Chen et al. (1998) and the first set of equations of 

Peregrine (1967) including terms up to 0(p2) are

= co, m‘2 = -kh 

= -k, myj = co(l + p2 3- k2h2)
(C.60)

The solution and dispersion relation for the first-order transfer function 

are

U1
cor|i
ktT

(C.61)

k2h 1 + p2 3 k2h2
(C.62)
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• The coefficients (mS11),m<l12),m(211,1m(212)) in equation (C.53d) for BEWCAV-A, 

FBE20-E, the second set of equations of Chen et al. (1998) and the 

equations of Wei et al. (1995) equations including terms up to 0(p2) are

mH = <■>. m™ = -kh[l-n2(a + |)kV] (C63)

= -k, = co(1 - p2ak2h2)

The solution and dispersion relation are

corp

kh[l-ji2(a + ^)k2h2]

cd2 _ 1 -p2(a + ^)k2h2 
k2h 1-p2ak2h2

(C.64)

(C.65)

• The coefficients (mjy.mjl/.m^m^) in equation (C.53d) for the equations 

of Madsen and Schaffer (1998) including terms up to 0(p4) are

mSV = to, mjy = -kh[l - |i2(a + {)k2h2 + ji4ai k4h4] 

= -k, = co(1 - ji2ak2h2 + ji4ci2 k4h4)

The solution is

_ C0T|1

kh[l-ji2(a + ^)k2h2 +p4aik4h4]

and the dispersion relation is

co2 1-p2(a + ^)k2h2 + p4aik4h4 
k2h 1-fi2ak2h2+p4a2k4h4

(C.66)

(C.67)

(C.68)

The reference solution, which is adopted herein, is the dispersion relation 

of Stokes or Airy, that is

( 2 "\
CO

Vk ^7stokes

tanh(kh)
kh

(C.69)
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The expressions (C.56) and (C.65) are Pade [2,2] expansions in kh of (C.69), 

expression (C.59) is a Pade [2,0] expansion in kh of (C.69), expression (C.62) 

is a Pade [0,2] expansion in kh of (C.69), and (C.68) is a Pade [4,4] 

expansion in kh of (C.69).

The phase speed or celerity ratio is C/Cstokes, where C = co/k is determined 

from equations (C.56), (C.59), (C.62), (C.65) and (C.68), and Cstokes from 

equation (C.69). The various celerity ratios are depicted in Figures C.4 and 

C.5.

Figure C.4 shows the variation of the wave celerity ratio with the 

dimensionless depth kh of the Boussinesq-type equations including terms up 

to 0(p2) based on several definitions of the horizontal velocity. It appears that 

the (p2) equations presented in terms of the horizontal velocity at an arbitrary 

z-elevation (a = -0.39, see Chapter Three for a) i.e. curve no. 1 in Figure C.4 

gives the minimum error in the wave celerity.

Furthermore, Figure C.5 shows the dimensionless dispersion relation for 

Boussinesq-type equations including terms up to 0(p4) with the horizontal 

velocity at several arbitrary levels, where a = -0.429648 (suggested by 

Madsen and Schaffer, 1998) gives excellent results.

1.10 —

0.90 —

kh

Figure C.4. Wave celerity ratio, C/Cstokes, where C is determined by: (1) equation (C.65) (with 
a = -0.39); (2) equation (C.56); (3) equation (C.59); and (4) equation (C.62). [Boussinesq- 
type equations include terms up to 0(p2)], and Cstokes from (C.69).
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1.05 —

0.95 —

Figure C.5. Wave celerity ratio, C/Cstokes, where C is determined by equation (C.68), and 
Cstokes from equation (C.69). Boussinesq-type equations include terms up to 0(p4). 
(1) a = -0.429648, (2) a =-4/9, (3) a = -2/5 and (4) a = -1/2, (2)a = 0.

C.5.2. Second-order transfer functions for regular waves

The analysis is continued to second order for the transfer functions of 

regular waves by collecting those terms of 0(s1). This results in

T"|2

Ub2

(tii r (C.70a)

'12

.(2)

r|2

U 2

(T11)2 [Fl l 
h F2|

(C.70b)

i(2) 111 T]2

U2I

(m)2 [Fr
h f2

(C.70c)

'11

i(2)

'12

»(2)

T)2

Ua2

OrOi fp1
h F2

(C.70d)
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• The coefficients in equation (C.70a) for BEWCBV-B,

BEWBV-D and the equations of Boussinesq (1872) including terms up to 

0(p2,c) are

m52)=2co, mj2) = -2kh(l + p2|k2h2) 

m(22) = -2k, mg} = 2to(1 + p22k2h2)

and

Fi
1 + k IT

F2
_______ 1_______
2kh(l + nJ^k2h2)

(C.71)

(C.72)

• The coefficients in equation (C.70b) for BEWCSV-C

and the second set of equations of Peregrine (1967) including terms up 

to 0(|i2,e) are

mS? = 2<b, mS22' = -2kh(l-n2|k2h2) (C ?3)

m(22) = -2k, m^2) = 2co

and

1-p |k h‘ 2kh(l-p2 ^k2h2)
(C74)

The coefficients (rn^.m^.m^.m^) in equation (C.70c) for the first set of 

equations of Chen et al. (1998) and the first set of equations of 

Peregrine (1967) including terms up to 0(p2,c) are

mj2) = 2co, = -2kh

m^2) = -2k, m(22) = 2co(l + p21 k2h2)
(C.75)

and

F F 0)2F1 = co, F2 =------ (C.76)
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• The coefficients in equation (C.70d) for BEWCAV-A,

the equations of Nwogu (1993) and the second set of equations of Chen 

et al. (1998) including terms up to 0(ji2,8) are

= 2(o, = -2kh[l - p24(a + ^)k2h2]

m^2) = -2k, m(22) = 2co(1 - p24ak2h2)

and

(C.77)

Fi =
(0

1 + p2(a + ^)k2h2'
F2

_________1_________

2kh[l + n2(a + |)k2h2]
(C.78)

• The coefficients (m^.m^.m^.m^) in equation (C.70d) for the equations 

of Schaffer and Madsen (1995) including terms up to 0(p2,s) are

mj2) = 2co(1 + p24pk2h2), m*2* = -2kh[l - ji24(a - p + |)k2h2]

m(22) = -2k(1 + p24 yk2h2), m(22) = 2co[1 - p24(a - y)k2h2]
(C.79)

and

P_ co(1 + |i2pk2h2) _ co2(1 + p2pk2h2)2
1-H2(oc-p +j)k2h2' 2~ 2kh[l-n2(a-p + 7)k2h2]2

(C.80)

• The coefficients (m^.m^.m^.m^) in equation (C.70d) for the equations 

of Wei et al. (1995) including terms up to 0(p2,sp2) are

mj2) = 2co, mj2) = -2kh[l - ji24(a + j)k2h2] 

m(22) = -2k, m(22) =2©(1-p24ak2h2)

and

Fi = (o
1-fi2ak2h2 

1-H2(a + ^)k2h2 ’

1 - p2{l + 2a - 2[l - p2(a + |)k2h2]}k2h2 

2kh[l - p2(a + |)k2h2]

(C.81)

(C.82)
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• The coefficients in equation (C.70d) for FBE20-E

including terms up to 0(p2,sp2) are

mj2) = 2co, = -2kh[l - ji24(a + ^)k2h2]

m(22) = -2k, mi,2) = 2co(1 - p24 ak2h2)

and

Fi 1-p2ak2h2 
1 - p2(a + |)k2h2 ’

1-H2{-3 + 2a + 4[1~H;(a + ^)k2h2]}kV

2kh[l-n2(a + ^)k2h2]

(C.83)

(C.84)

• The coefficients in equation (C.70d) for the equations

of Madsen and Schaffer (1998) including terms up to 0(p4,sp4) are

mj2) = 2co, mi2) = -2kh[l-p24(a + ^)k2h2 + p216m k4h4] 

m(22) = -2k, m(22) = 2co(1 - p24ak2h2 + p216a2 k4h4)

and

(C.85)

1 - p2a k2h2 + p4a2 k4h4 
1-W1_^(a + A)k2h2+M4aik4h4’

1 - p2(1 + 2a + 2 fMS)k2h2 + p4[2a2 + 2(a + + fas) + a2]k4h4

2kh[l - p2(a + |)k2h2 + p4ai k4h4]

where fas = 1 - ji2(a + |)k2h2 + p4ai k4h4.

(C.86)

From equations (C.70), the free surface solution for the second-order 

transfer function is

*12
(TlO2

h
Fi mjjj. - F2
»(2)m(2)m 'm , - m' /m(2)m(2)

12 J

(C.87)
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The Stokes second-order solution (see, e.g. Skjelbreia and Hendrickson, 

1960 and Madsen and Schaffer, 1998) for the free surface is used as a 

reference and is

_ 1 (t]i)2 kh 
n2s,okes “ 4 h tanh(kh)

Figure C.6 displays the ratios of the amplitudes of the second harmonics, 

h2/h2stokes for the six different versions of the Boussinesq-type equations. It 

seems that FBE20-E and Wei et a/.’s (1995) Boussinesq-type equations 

(curve 1 in Figure C.6) are superior to the Boussinesq-type equations with the 

lowest order non-linearity.

Figure C.7 shows that a = -0.429648 is still the best value for a for 

Boussinesq-type equations of Madsen and Schaffer (1998) in the second 

harmonic.

tanh (kh)
-1 (C.88)

Figure C.6. Ratio of second harmonic, ri2/r|2stoKes. where ri2 is determined by equation (C.87) 
and r|2Stokes by equation (C.88). (1) FBE20-E and Wei et a/.’s (1995) equations include terms 
up to 0(p2,£p2); (2) BEWCAV-A, Nwogu’s (1993) and Chen et a/.’s (1998) second equations 
include terms up to 0(p2,e); (3) BEWCBV-B and BEWBV-D include terms up to 0(p2,s); (4) 
BEWCSV-C include terms up to 0(|i2,e); (5) Chen et a/.’s first equations include terms up to 
0(p2,e); and (6) Schaffer and Madsen’s (1995) equations include terms up to 0(p2,e).

Alternative 2D Boussinesq-Type Equations



Appendix C 254

1.25 —

0.75 —

Figure C.7. Ratio of second harmonic, r^/^stokes, where r\2 is determined by equation (C.87) 
and r)2stokes by equation (C.88). Boussinesq-type equations include terms up to 0(|i4,e|i4). 
(1) a = -0.429648; (2) a = -4/9; (3) a = -2/5; (4) a = -1/2; and (5) a = 0.

C.6. Wave-current interaction and Doppler shift

Chen et al. (1998) and Madsen and Schaffer (1998) reported that one 

consequence of the non-linearity of the Boussinesq (-type) equations is the 

automatic inclusion of wave-averaged effects such as radiation stress, setup, 

undertow and wave-induced currents. This is however, not a guarantee for a 

correct representation of for example, the Doppler shift in association with 

current refraction and in fact, most Boussinesq-type equations fail to model 

this phenomenon accurately.

Yoon and Liu (1989) were the first to address the problem of wave-current 

interaction in relation to Boussinesq-type equations. Their study was followed 

by for example, Pruser and Zielke (1990), Chen et al. (1998) and Madsen and 

Schaffer (1998).

In the lowest order Boussinesq-type equations in which terms up to 

0(s,p2) are retained, the inclusion of an ambient current needs special 

attention and scaling. This can be found in the work of Yoon and Liu (1989), 

Chen et al. (1998) and also the present study (see Section C.2). Wave- 

current interaction in those (s,p2) equations was considered as weakly non-
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linear waves with slowly varying currents and topography. The magnitude of 

the current velocity was assumed to be larger than that of the characteristic 

wave orbital velocity but less than that of the wave group velocity. Chen et al. 

then allowed current speeds to exceed the intrinsic wave group velocity5 in 

order to simulate wave blocking phenomenon. The spatial variation of the 

current was closely related to the variation of the bottom bathymetry, and 

these variations were assumed to be a larger scale than the characteristic 

wavelength. Consequently, strong currents can be treated only on weakly 

varying bathymetry. However, weak currents do not imply any restriction on 

the bathymetry variation.

Following Chen et al. (1998), the analysis will be restricted to 1D on a 

horizontal bottom.

• BEWCBV-B include terms up to 0(s,p2)

ri, + hub„ + E(riUb)x + h2(“ ? h3 -1 h2,l -11 ri3 Jut,^ = 0(eh2, h4 )

(C.89)

u„, + EUbUbx + nx + H2[(“7h2 - t|h --1 ri2 Xub^ + UbUb^)]

+ (-jh2 -I„h-^2Ku»J = 0(shV) (C.90)

• BEWCSV-C include terms up to 0(c,p2)

n, + hux +e(t)U)x +n2(|h3 -yr|2h-^r|3)uxxx =0(eh2,h4) (C.91)

u, +euux +r|x + n2[(-r)h--iri2Xuxx, +22^)

+ (|h24nh4n2)u,uJ = 0(E^V) (C.92)

5 Intrinsic group velocity is the group velocity relative to the current.

Alternative 2D Boussinesq-Type Equations



Appendix C 256

• The first set of equations of Chen et al. (1998) include terms up to 

0(e,m2)

r|t + hux + e(r|u)x = 0 (C.93)

u, + EUU, +r1<-n2(Ih2 + {^ + |n2 + Ou^) = 0(en2,n4) (C.94)

• BEWCAV-A and the second set of equations of Chen et al. (1998) 

include terms up to 0(s,p2)

qt +hu«x +e(TiUa)x +p2[(a + ^)h3 +ah2Ti-^ri2h-^r|3]uaxxx = 0(sp2,p4)
(C.95)

Uat +8U«Uax + r|x + p2[(ah2 -rjh-•^ri2)(Uaxxt + UaUaxxx)

+ (ah2 +^h2 -{rih-^ri2)uaxUaxx] = 0(8p2,p4) (C.96)

• The equations of Wei et al. (1995) include terms up to 0(p2,83p2)

rit + hUax + e(Tiu«)x + p2[(a + {)h3uaxxx + eah2(r|Uaxx)x

-82|h(Tl2Uaxx)x-83{(T13Uaxx)x] = 0(p4) (C.97)

Ua, +8UaUax +T|X + p2{ah2Uaxxt + 8[ah 2 (Ua Ua ^ +UaxUaxx)

+ h2UaxUaxx -h(r)Uax()x] + 82[-{(Tl2Uax1)x +h(TlUaxUax -TlUaUa^jJ

+ 83[^(Tl2UaxUax -Tl2UaUaxx)x]} = 0(p4) (C.98)

Alternative 2D Boussinesq-Type Equations



Appendix C 257

• FBE20-E include terms up to 0(p2,e3p2)

r|t + hu«x + e(r|Ua)x + p2[(a + y^Ua^ + Eah2(r|Uaxx)x

- e2 | h(Ti2uaxx )x - s3 ^ (Ti3uaxx )x] = 0(p4)

Ua, +EUaUax + T|x + p2 {oth^Ua^ + c{ah2 (Ua UQxxx -t-UaxUaxx)

-h[(r| Uax1)x +(r|tUax)x]-^h2UaxUaxx}

+ s2{j(ri2Uaxt)x -(ntitu«x)x -h[u«(riUax)x]x -fhriUa^} 

+ E3{-i[MTl2Uax)x]x -l^Ua.Ua^}} = 0(p4)

(C97)

(C.99)

Alternative 2D Boussinesq-Type Equations



Appendix C 258

• The equations of Madsen and Schaffer (1998) include terms up to

o(nVV)

T|t +hUa„ +E(TlUa)x + |^ [(<* + { + EClh2 (r| U„ „ )x - £2 { h^Ua „

- S’ J + H4[CT1 + SC2 h^TlUa^),

-E2 Ka + i)h3(n2u«*xJx -S3 jah^^Ua^),, + E4 

+ s5^(ti5u^)J = 0(m6) (C.100)

Ua, + £Ua Ua x + t|x +H2{ah2Uo^ +£[ah2(UoUaioo< + UaxUaxx)

+ h2Uaxunxx -h(r|Uo!<t)>] + 82[--l(ri2Uoxt)x + h(riUaxUax -r|UaUai0I)J

+ e3[i(T12u“xUc‘x _r|2UaUaxx)x]}

+ |a4 {<J2h4Ua100o(, + 8[a2h4UaxxUoXJOt + a2h4(UoUoXJOOO( + Uoj.Ua,^)

+ (a + ^)^3[h(UaJ(Ua1O0()x - (T)Uaxxxt)x] + £2[-J «h2 (ifUa,^),,

+ (a + y)h3(r|Uaxuaxx), -riUoUOlo00I)x +ah3(UaxU0xxx -TlUoUo,^),,]

+ £3[^h(T|3Uaxxx,)x +|h2(rt2UaxxUaxx -T|2UaxUaxxx)„

+ ah2(r|2UoxUoxxx -yr|2UoUo,^ -|T|2UaxxUaxx)x]

+ e4{^r(n4Uoooxt)x +^h[r|3(U«Ua»oo< -^UoxUaxxx +3UoxxUaxx)]x}

+ ^{-JT [VfUaUa^ - 4 Ua.Ua^ + 3 Ua^Uaj],,}} + 0(n6) (C.1 01)
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The velocity field is decomposed into the wave orbital velocity and 

ambient current components. The ambient current speed uc is assumed to be 

a known quantity, which is constant in space (horizontal and vertical) and 

time. This results in the following non-dimensional forms.

1.
(C.102a)Ub — Ubw H-----Uc

8

~ ~ 1 „
U — Uw H-----Uc (C.102b)

8

_ _ 1 „
U = Uw + -Uc (C.102c)

8

1 .
Ua — Uaw H-----Uc (C.102d)

8

where subscripts w and c denote wave and current components respectively.

In the next steps, the appropriate expression for the horizontal velocity 

[one of equations (C.102a) - (C.102d)] is substituted in the appropriate sets of 

governing equations. In particular,

• Substitution of equation (C.102a) into (C.89) and (C.90) [i.e. BEWCBV-B 

including terms up to 0(e,p2)] leads to

r|t +hut>wx +ucrjx -p2 7 h^bw^ =0(8) (C.103)

Ubwt +UcUbwx + T|x —fl2—h2(Ubwxxt + UcUbwxxx ) = 0(^8) (0.1 04)

• Substitution of equation (C.102b) into (C.91) and (C.92) [i.e. BEWCSV-C 

including terms up to 0(e,p2)] leads to

r|t +huwx +Ucqx + p2 y t^Uw^ = 0(e) (C.105)

Uwt + UcUwx + t]x = 0(c) (0.106)
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• Substitution of equation (C.102c) into (C.93) and (C.94) [i.e. the first set 

of equations of Chen et al. (1998) including terms up to 0(c,p2)] leads to

t|{ + huwx + UcT|x = 0(e) (C. 107)

Uwt +UcUwx + t|x —p2—h2(Uwxxt + Uc Uwxxx) = 0(s) (C. 108)

• Substitution of equation (C.102d) into (C.95) through to (C.99) [i.e. 

BEWCAV-A and the second set of equations of Chen et al. (1998) 

including terms up to 0(8,p2), and FBE20-E and the equations of Wei et 

al. (1995) including terms up to 0(p2,e3p2)] leads to

T|t + h U aw x +UcT|x + p2((X + — )h3Uawxxx = 0(s) (C.1 09)

Uaw( + Uc Uaw x + T)x + p2Och 2 (Uaw ^ + Uc Uaw^^ ) = O(s) (C. 1 1 0)

• Substitution of equation (C.102d) into (C.100) and also into (C.101) [i.e. 

the equations of Madsen and Schaffer (1998) including terms up to 

0(pVp4)] leads to

+ hUawx +UcT)x +p2(ot + — )h Uawxxx + p h UawxjQQQj = O(s) (C. 1 11)

Uawt + UcUawx+T]x+P ah (UaWxx(+ Uc Uaw )

+ p4CJ2 h 4 (Uaw xxxxt +^cUawxxxxx) = 0(E) (C.1 12)

First-order wave solutions of the following forms will be sought

r| = r)i cos 0 (C.113a)

Ubw = Ubl COS 0 (C.113b)

Uw = U1 cos 0 (C.113c)

Uw = U1cos 0 (C.113d)

Uaw = Ua1 COS 0 (C.113e)
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In the next steps, the expression for the surface elevation [i.e. equation 

(C.113a)] and the appropriate expression for the horizontal velocity [one of 

equations (C.113b) - (C.113e)] is substituted in the appropriate sets of 

governing equations. In particular,

• Inserting equations (C.113a) and (C.113b) into (C.103) and (C.104) [i.e. 

BEWCBV-B including terms up to 0(p2)] leads to the algebraic system of 

equations (C.53a) with the coefficients (mj1/,m^,m^,m^) defined by

=co-Uck, = -kh(1 + p2^k2h2)

m^ =-k, = (to-uck)(1 + p2 ^k2h2)

The associated dispersion relation is

—(co - Uck)2
k h

1 + ji2 ^ k2h2 

1 + ji2 j k2h2

(C.114)

(C.115)

• Inserting equations (C.113a) and (C.113c) into (C.105) and (C.106) [i.e. 

BEWCSV-C including terms up to 0(p2)] leads to the algebraic system of 

equations (C.53b) with the coefficients (m^.my^m^.m^) defined by

mft = co-uck, mjy = —kh(1 — pi2 ^k2h2)

= -k, m(22 = to - Uck
(C.116)

The associated dispersion relation is

—(co-uck)2
k h

1-p2 ^k2h;
(C.117)

Inserting equations (C.113a) and (C.113d) into (C.107) and (C.108) [i.e. 

the first set of equations of Chen et al. (1998) including terms up to 

0(p2)] leads to the algebraic systems of equation (C.53c) with the 

coefficients (m^m^m^n^) defined by

Uck, ,<1> _
M2

.0) -= -k, (o)-Uck)(1 + p2 ^k2h3)
(C.118)
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The associated dispersion relation is

1
k*h

(co-Uck)2
1

l + p^kV
(C.119)

• Inserting equations (C.113a) and (C.113e) into (C.109) and (C.110) [i.e. 

BEWCAV-A, FBE20-E, the second set of equations of Chen et al. 

(1998) and the equations of Wei et al.'s (1995) including terms up to 

0(p2)] leads to the algebraic system of equations (C.53d) with the 

coefficients (m^m^m^m^) defined by

mi? = co-Uck, mlS =-kh[l-p2(a + ^)k2h2] ^ ^

m^? =-k, m(22 = (co-Uck)(1-p2ak2h2)

The associated dispersion relation is

-i-(co-Uck)2
k h

1-p2(a + ^)k2h2 

1 - ji2ak2h2
(C.121)

• Inserting equations (C.113a) and (C.113e) into (C.111) and (C.112) [i.e. 

the equations of Madsen and Schaffer (1998) including terms up to 

0(p4)] lead to the algebraic system of equations (C.53d) with the 

coefficients (m^mSJ.mJj.m^) defined by

mi? = co-Uck, mi? = -kh[l - p2(a + j)k2h2 + p4ai k4h4] 

m(2? = -k, = (co - Uck)(1 - p2ak2h2 + p4a2 k4h4)
(C.122)

The associated dispersion relation is

1
k2h

(co-Uck)2
1-p2(a + ^)k2h2 +p4aik4h4 

1 - p2a k2h2 + p4a2 k4h4
(C.123)

Obviously, all the new Boussinesq-type equations (except BEWBV-D, this 

is due to BEWBV-D for waves only), the Boussinesq-type equations of Chen 

et al. (1995) (the first and second sets), of Wei et al. (1995) and of Madsen 

and Schaffer (1998) provide the correct form of the Doppler shift.
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C.7. Conclusions

Three new sets of weakly non-linear Boussinesq-type (s,p2) equations with 

an ambient current are developed by the present author. They are written in 

terms of the horizontal velocities at an arbitrary z-level (BEWCAV-A), the 

bottom (BEWCBV-B) and still water level (BEWCSV-C). The scaling 

assumptions for wave-current interaction follow those of the work of Chen et 

al. (1998). In the present study however, currents are allowed to be vertically 

sheared instead of the depth-uniform currents as in the work of Chen et al.. 

The present depth-integrated momentum equation is obtained by integrating 

the horizontal Euler equation of motion including the irrotationality condition 

instead of including the kinematic and dynamic boundary conditions as in the 

work of Nwogu (1993) and Chen et al. (1998). The free surface kinematic and 

dynamic boundary conditions are then inserted into the expression for the 

pressure field and the kinematic seabed boundary condition is inserted into 

the expression for the vertical velocity. Nevertheless, the present depth- 

integrated continuity equation remains identical to that employed by Nwogu, 

Chen et al., Wei et al. (1995) and Madsen and Schaffer (1998).

Removing all dispersion terms associated with currents in BEWCBV-B 

leads to a new set of Boussinesq-type equations for weakly non-linear waves 

(BEWBV-D).

Making use of the new alternative approach for deriving the equations of 

Nwogu (1993) in Section 3.2, but with the free surface kinematic boundary 

condition excluded, the fully non-linear Boussinesq-type equations of Wei et 

al. (1995) [including terms up to 0(p2,83fi2)] and of Madsen and Schaffer 

(1998) [including terms up to 0(p4,85p4)] are successfully re-derived.

Wei et al. derived their (p2,83p2) equations by introducing a series 

expansion for <j> at z = -h, and converting it to z = za. This expansion was then 

substituted into the free surface, dynamic boundary condition to develop the 

Boussinesq-type momentum equation.
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Madsen and Schaffer derived their (p4,e5p4) equations by introducing an 

expansion of the velocity potential as a power series in the vertical coordinate 

to form the horizontal and vertical velocities and then utilising the free surface, 

dynamic boundary condition to develop the Boussinesq-type momentum 

equation.

A new alternative set of (p2,e3p2) equations (FBE20-E) is derived by use 

of the depth-integrated momentum equation as used in the derivation of the 

new (e,h2) equations (BEWCAV-A, BEWCBV-B and BEWCSV-C).

Furthermore, the existing and new Boussinesq-type equations are 

analysed by Fourier analysis to show the dispersion relationship (first-order 

transfer function for regular waves) and non-linear properties (second-order 

transfer function for regular waves) of the corresponding governing equations.

In the first-order transfer function for regular waves, the governing 

equations with p4 terms included are superior to those with p2 terms. The 

governing equations including the lowest-order frequency dispersion (i.e. p2) 

terms presented in terms of the arbitrary horizontal velocity give an excellent 

dispersion relation compared to those in terms of other velocity definitions. 

For Boussinesq-type equations including fourth-order frequency dispersion 

(i.e. p4) terms, the horizontal velocity at z = -0.429648 h (suggested by 

Madsen and Schaffer, 1998) gives the best dispersion relation when 

compared to Stokes dispersion relation (i.e. the Stokes first-order solution). In 

the second-order transfer function for regular waves, the same trends apply. 

The reference solution is the Stokes second-order solution.

In addition, all the new Boussinesq-type equations presented in this 

appendix (except BEWBV-D) and the first and second sets of (c,p2) equations 

of Chen et al. (1998) presented in Chapter Five provide the correct 

representation of the Doppler shift in association with current refraction.
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