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Abstract

Boussinesq-type partial differential equations (BTEs) are a family of 1D or
2D governing equations (i.e. continuity and momentum) to describe the
motion of water waves. There are two important parameters associated with
BTEs. One parameter (g) is a measure of non-linearity and is represented by
the ratio of typical wave amplitude to characteristic water depth (e = acvhen).
The other parameter (u) is a measure of frequency dispersion and is
represented by the ratio of the characteristic water depth to typicél

wavelength (i = het/Len).

This thesis focuses on numerically studying the performance of two
existing sets of BTEs. These BTEs are two different extensions of what is
termed ‘the basic governing equations’. The basic governing equations
considered are the existing BTEs which include terms up to O(g,p?) and are
presented in terms of the horizontal velocity vector at an arbitrary z-elevation.
A short description of the limits of the two sets of BTEs studied now follows.

(i) In the first set of BTEs, the basic governing equations were extended to
yield a dispersion relation which is valid to deeper water i.e. h/L<1.0

whereas the basic governing equations yield a dispersion relation which is

Abstract



vi

valid for h/L < %2 . (The reference solution is the dispersion relation of Airy

wave theory).

(i) In the second set of BTEs studied, the basic governing equations were
extended to include dispersion terms associated with currents. These
BTEs are capable of modelling an interacting wave and ambient current
field.

Fulfilling the aims of the study requires the development of numerical
models based on the two sets of BTEs in (i) and (ii) above, as well as a
number of ancillary models. The ancillary models are developed for validating
the main numerical models when laboratory data are unavailable. The
ancillary rhodels comprise a number of models based on the 1D and 2D non-
linear shallow water equations and 1D conservation of wave action equation.
All these models are written by the present author.

In this thesis, all the governing equations considered are solved by the
present author using an implicit non-staggered finite difference method. In
space, the first-order derivatives are discretised using central approximations
with fourth-order accuracy. However, the second- and third-order derivatives
are approximated using central, second-order accurate finite difference
approximations. To advance the sblution in time, the third-order Adams-
Bashforth predictor and fourth-order Adams-Moulton corrector are used.
Emphasis is given to the determination of effective boundary conditions for
each set of 1D and 2D governing equations. Due to the Sommerfeld radiation
condition being applied at the boundaries, the resulting numerical models are

limited to monochromatic waves.

Additionally, a new and systematic approach is developed by the present
author for deriving the existing BTEs with include terms up to: (i) O(e,p?); (ii)
O(k?,£°w%); and (iii) O(u* £%).

For making comparisons with the existing BTEs, the author also develops

new sets of BTEs with terms up to: (a) O(e,u?) (4 sets, three of them with

dispersion terms associated with currents included); and (b) O(u?,e%4?) (1 set).
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Nomenclature

Symbol Description

a Wave amplitude

ach Typical or characteristic wave amplitude

C Wave celerity vector

C Wave celerity (in the x-direction)

Crea Wave celerity (in the x-direction) corresponding to a Padé {2,2]
approximation of the dispersion relation in terms of kh

Cuaa Wave celerity (in the x-direction) corresponding to a Padé [4,4]
approximation of the dispersion relation in terms of kh

Caiy Wave celerity (in the x-direction) from Airy wave theory

Cr Courant numberi.e. Cr = ‘/EFXAXE for 1D and
Cr=yah—2__ for2p

Jax? 4 ay?

Ce Chezy coefficient

E Variable grouping for spatial derivatives in the continuity
equations

F Variable grouping for spatial derivatives in the momentum

equations in the x-direction

Nomenclature



F1

Gs

hen
hi

Hi

Hrms

ki

Lo
Len

Ub

Ub

Variable grouping for combining temporal with cross-derivatives
in the momentum equations in the x-direction

Variable grouping for spatial derivatives in the momentum
equations in the y-direction

‘Variable grouping for combining temporal with cross-derivatives

in the momentum equations in the y-direction
Gravitational acceleration

Local still water depth

Characteristic water depth

Still water depth at the incoming wave boundary
Wave height

Wave height at the incoming wave boundary
Root-mean-square wave height

Wave number vector

Wave number (in the x-direction)

Wave number (in the x-direction) at the incoming wave boundary
Wavelength (in the x-direction)

Wavelength (in the x-direction) in déep water
Typical or characteristic wavelength

Pressure field

Volume flux vector

Bottom friction in Chapter five

Time

Wave period

Horizontal velocity vector, u (x,y,z,t) = (u,v)
Horizontal velocity (in the x-direction), u (x,y,z.,t)
Horizontal velocity vector at the seabed, ub = u (x,y,—h,t) = (us,vb)

Horizontal velocity (in the x-direction) at the seabed (z =-h),
us = u (x,y,-h,t)

Nomenclature



cl

=]

=]

Ua

Ua

Uca, Uaa

ey, ()

Ua

Va

Va

Za

B, B, B2
At

Ay

Depth-averaged horizontal velocity vector, u =(u,v)
Depth-averaged horizontal velocity (in the X-direction),ﬁ(x,y,t)

Horizontal velocity vector at still water level (z=0),
t=u(xy01)=(,vV)

Horizontal velocity (in the x-direction) at still water level,
i=u(xy0t)

Current horizontal velocity, which is assumed to be uniform over
the depth

Horizontal velocity vector at an arbitrary elevation (z = z.),
Ue = (Ua,Va)

Horizontal velocity at z = z. in the x-direction

Amplitudes of u. and u. respectively

OUa
o 5(-( )

Part of the momentum equations containing temporal derivatives
in the x-direction

Velocity vector, v = (u,w) = (u,v,w)
Horizontal velocity (in the y-direction), v (x,y,z.,t)

Part of the momentum equations containing temporal derivatives
in the y-direction

Horizontal velocity at z = z. in the y-direction

Vertical velocity, w (x,y,z,t) .

z-location at which ua«is taken, ze =Zca h, -1 <2ca <0

= 1{(zea) +2:a, =055 <0

Free coefficients in the continuity equation in Chapter Four
Time increment '

Grid size in the x-direction

Grid size in the y-direction

Scaling parameter, which is a measure of the non-linearity
(= acn/hen)

Nomenclature



Oi

Gi

Tn

xviii

Velocity potential

Free coefficients in the momentum equation in Chapter Four
Free surface elevation

Amplitude of n

on o
ot ox
Dispersion terms in the Boussinesg-type momentum equations

Scaling parameter, which is a measure of the frequency
dispersion (= hew/Len)

e <v<1; v=0(e) indicates weak current and v = O(1) indicates
strong current. This parameter is used when currents are present
and terms up to O(e,uz) are retained in the governing equations.

Dispersion terms in the Boussinesg-type continuity equations

Local wave angle with respect to the x-axis

Wave angle at the incident wave boundary with respect to the x-
axis

Fluid density

Scaling parameter, which is a measure of spatial variation,
o =¢/v. This parameter is used when currents are present and
terms up to O(e,u?) are retained in the governing equations.

Intrinsic angular frequency or frequency without any currents
present.

Surface tension effects

~ Fluid domain

Angular frequency. In the case of pure wave motion, ® = ® = c.
Absolute angular frequency
Boundary '

Part of the continuity equation containing temporal derivatives in
Chapter Four

Stream function

Horizontal gradient operator, V = (5/6x,8/dy) = 8/0xi+0/oy

Nomenclature
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Veu “ =Uu, +V,

(ueV)u =(uux+vuy)i+.(uvx+wy)j
UeVn =um, +vn,

Ve (hu) = (hu), +(hv),

Vo =(0,,0,)=0,i+0, ]

v 3D gradient operator,

V =(6/0x,0/8y,0/0z) = 5/ oxi+ 8]y j+ 8/ozk

Nomenclature
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4.9. Top of the bar (i.e. 11.5m before the outgoing wave boundary): time
series of the water surface elevation predicted by 1DDBMW-2 (bold
line), the laboratory measurements of Luth et al (thin line) and
1DBMW-1 (dashed line). Data: T=2.02s, H=0.02m, hi=04m,
h/Lo=0.06, Ax=0.08 m and At=0.02 s.

4.10. Behind the bar (i.e. 7.7 m before the outgoing wave boundary): time
series of the water surface elevation predicted by 1DDBMW-2 (bold
line), the laboratory measurements of Luth et al. (thin line) and
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Wave heights (Hms) normalised with respect to the incoming wave
height: comparisons between 2DBMW-4 (——) and laboratory data
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Results of 2DBMW-4: perspective views of monochromatic wave fields
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'Boundary conditions for wave only case. The imposed monochromatic

wave propagates from i=L to i=1. Side walls are located at j=1
and j=M. Note:i=1,2,3,...L.and j=1,2,3,.... M.

List of Figures



7.2

7.3.

7.4.

7.5.

7.6.

7.7.

7.8.

7.9.

xxvi

Boundary conditions for current only case. The imposed current flows
from i=1 to i=L. Side walls are located at j=1 and j=M. Note:
i=1,23,...Lj=123,...M and C=.gh. Explanations for equations to
determine n and u at inflow and outflow boundaries can be found in
Section 5.3.3.

Boundary conditions for wave-current interaction case: (a) waves and
steady opposing current; and (b) waves and steady current in same
direction. Note: no-flow boundary conditions are same as those for
waves or current only (see Figure 7.2). Explanations for equations to
determine n and u at inflow and outflow boundaries can be found in
Section 5.3.3.

Boundary conditions for current only case. The imposed current flows
from i=1 to i=L. Side walls are located at j=1 and j=M. Note:
i=123,...L1;j=12.3,...Mand C=gh.

Wave heights (Hms) normalised with respect to the incoming wave
height in the case of pure wave motion: comparisons between the
results of 2DBMWC-5 (bold lines), 2DBMW-4 (thin lines) and laboratory
data (circles) along various sections for the experiment of Chawla and
Kirby (1996). Data: T=1.0s, Hi=0.0118m, 6i=0° hewen=0.45m,
Ax=Ay=0.10m and At=0.02 s.

Wave only case: plan (top) and perspective (bottom) views of the free
surface elevation at t=40s predicted by 2DBMWC-5. Data: T=1.0s,
Hi=0.0118 m, 8i=0°, heven = 0.45m, Ax=Ay =0.10 m and At=0.02 s.

Current only case (flow from x = 0 to x = 18 m): comparisons of the free
surface elevation at t =65 s between resuits of 2DBMWC-5 (bold lines)
and 2DUSWM-6 (thin lines) for x =11, 13 and 15 mand fory=0,2,5,7
and 9 m. Data: 8i=0° hewn=0.45m, Tc,o =0.10 m/s, Ve, =0m/s,

Ax=Ay=0.10m and At=0.02 s.
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magnitude of the y-component of velocity at t =65 s between results of

2DBMWC-5 (bold lines) and 2DUSWM-6 (thin lines) for x=11, 13 and

15m and for y=0, 2, 5, 7 and 9m. Data: 6i=0° hewen=0.45m,
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Chapter One 1

Chapter One

Introduction

1.1. Background

Water waves and currents are natural phenomena, which occur in
channels, lakes, estuaries and oceans. Waves are most commonly generated
by winds, while currents may be generated by wind waves, tides, river flows
and density differences. In coastal regions, waves and currents might cause
erosion and sedimentation. To develop a safe recreational resort by a beach
or in the coastal zone for example, an understanding of waves and currents is
needed. The layout of the resort is usually designed by considering existing
waves and currents as well as the predicted waves and currents due to the
presence of the proposed resort.

An optimised design for a development can be obtained by modelling and
simulating the signiﬂéant factors mentioned above. Modelling and simulation
can be undertaken in laboratories or on computers. Physical modelling in
laboratories is well established, but can be relatively expensive compared to
numerical modelling. Nevertheless, numerical modelling of wave processes
on computers is less well established. This is because of the difficulty in

deriving the governing equations and boundary conditions, which constitute
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the mathematical model' and which accurately describe the physical
processes (e.g. wave shoaling, refraction, diffraction, reflection and breaking)
associated with waves. The next barrier is the difficulty in discretising the
governing equations and boundary conditions using numerical methods to
form a stable numerical model with solutions, which converge to the true

solution as the computational mesh is refined.

There are various forms of the wave equations that can be used to
describe wave processes; these are limited-by the exclusion of those regions
in which waves would be expected to break. (i.e. H/h < 0.78, where H = wave
height and h=water depth). This breaker criterion was proposed by
McCowan (1894). Five formulations of the wave equations will now be

introduced.

A. Non-linear shallow water wave theory.

The governing equations from this theory are generally known as the long
wave equations. These are more fully enunciated in Chapter Seven. In what
follows, the second set of equation numbers refers to the equation numbers in

Chapter Seven.
N +Ve[(n+h)u]=0 (1.1),(7.23)
u,+(ueV)u+gvn=0 (1.2),(7.24)

where .n is the free surface elevation, u is the depth-averaged horizontal
velocity, V = (8/0x,0/8y) , g is the gravitational acceleration and the subscript t
denotes partial differentiation with respect to time. The shallow water region is
defined by kh < n/10 i.e. h/L < 1/20, where k is the wave number and L is the
wavelength (Dean and Dalrymple, 1984). These equations retain the non-
linear terms in both the continuity and momentum equations and the vertical

' Terminology: mathematical model is the generic term which includes (i) the governing
equations, initial and boundary conditions and (ii) numerical model. For brevity in this thesis,
the term ‘model’ used on its own will be taken to denote a numerical model.
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component of the motion is completely neglected. The resulting wave shapes
are of non-permanent form and are similar to the sinusoidal solutions of the
linear shallow water wave equations. That the solutions are non-permanent is
due to the fact that in the absence of friction, any forward facing slope of a
wave will continue to steepen. However, the free surface elevation in the
shallow water region is increasingly affected by the seabed. As a result, the
long wave equations are increasingly incapable of reproducing the correct

wave shapes in shallow water.

B. Stokes wave theory.

Other alternative wave equations are based on the Stokes expansions
with the inclusion of three-dimensional kinematic and dynamic free surface
boundary conditions. Imposition of these 3D boundary conditions in a model
is computationally intensive and time demanding. As reported by Dean and
Dalrymple (1984), the asymptotic values in shallow water for Stokes second-
order wave theory are defined by ka<8(kh)/3 (where a is the wave
amplitude). Thus, for kh = n/10, the maximum ratio a’/h which can be obtained
when using Stokes second-order wave theory is 8n%/300 (i.e. a/h = 0.263).
However, based on the breaker criterion proposed by McCowan (1894) the
ratio of a/h is closer to 0.4 (if a =H/2). Consequently, Stokes second-order
wave theory does not perform well in shallow water near wave break. Dean
and Dalrymple also reported that the details of the ;econd-order Stokes wave
theory are quite arduous to follow. Clearly, higher order Stokian wave theories
(such as the fifth-order wave theory of Skjelbreia and Hendrickson, 1960)

become complicated. The velocity potential of Stokes second-order wave

theory is
‘ 2
© < Hi g cosh[k(h +2)] sin(kx - of) + 3Hw cosh[Zl:(h +2)] sin[2(kx - ot)]
2 o cosh(kh) o 32 sinh” (kh)
< First-order wave theory =l F Second-order correction term >
* Second-order wave theory >
(1.3a)
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where subscript 1 denotes Stokes first-order wave theory. The associated
free surface elevation and dispersion relation (i.e. the relationship between

angular frequency o and wave number k) are respectively

Hi’k cosh(kh)
16 sinh®(kh)

n= %cos(kx -ot)+ [2 + cosh(2kh)] cos[2(kx - ot)]

First-order |

>
rl

(1.3b)

Second-order

o® = gktanh(kh) (1.3c)

in which the orbital velocities in the x- and z-directions are u=®, and w =,

respectively. The subscripts x and z denote partial differentiation with respect

to the x- and z-directions respectively.

C. The stream function wave theory.

Dean (1965) developed the second-order stream function wave theory

with the assumption that the N"-order stream function is
N
¥(x,z) = Cz+ Y X(n)sinh[nk(h + z)]cos(nkx) (1.4a)
) n=1

where u=-¥, and w=Y¥,, C is the wave celerity and X(n) is a set of N

coefficients. The dynamic and kinematic boundary conditions at the free
surface can be respectively stated in stream function form as

2P, (¥, )] +gn=Qs at z=7(x) (1.4b)
¥, =-¥.n, at z=n(x) (1.4c)

where Qs is a constant. It is noted that the free surface, dynamic boundary
condition (1.4b) is not satisfied by equation (1.4a). The coefficients X(n) in the
description (1.4a) are therefore chosen to satisfy this dynamic boundary
condition at a number of discrete points along the wave profile, each point is

denoted by i. The free surface, dynamic boundary condition is then evaluated
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at each i point along the profile, giving Qsi. In this dynamic boundary
condition, all the Qs must be equal to Qs, where Qs is a constant. This results
in

Qi = 1[(F, 7 + (¥, %] +gni=Qs (1.4d)

The free surface elevation is obtained from the free surface, kinematic
boundary condition (1.4c). To calculate equations (1.4a) and (1.4d), the X(n)
must be known. This can be accomplished by an iterative procedure until the
free surface, dynamic boundary condition is satisfied (i.e. Qsi=Qs). To
provide the best fit of the dynamic boundary condition, very high order stream
function wave theory (e.g. 20"™-order) is necessary (Dean and Dalrymple,
1984).

D. Finite-amplitude wave theory for shallow water.

In this theory, the shallow water wave is assumed to be propagating
without change in form; thus, by moving with the wave celerity C, the
waveform and wave motion become steady. The steady-state form of the
equation of the Korteweg-De Vries (1895) (see Dean and Dalrymple, 1984),

was derived from this theory and is

3
1dn+3andn dn _ga_ oo (1.5a)
3dx* B dx dx(pC%a B

where C=./gh is the wave celerity, a=a/h and B=(h/L)’. There are two
solutions of the Korteweg-De Vries equations.

First solution: One of the solutions of equation (1.5a) is the solitary wave of
Boussinesq (1872), that is

' 3 a
_asech?| x> 1.5b)
n=asec [x i ) | (

In a solitary wave, the free surface elevation is positive everywhere.
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Second solution: The other solution is a periodic wave is known as a cnoidal
wave for which the theory spans the range between linear and solitary wave
theories. The cnoidal wave shape is expressed in terms of the Jacobian
elliptic function. The word cnoidal (to be ‘consonant’ with the sinusoidal or
Airy theory) was coined by Korteweg-De Vries and the cnoidal function is
represented by the letters cn (see e.g. Dean and Dalrymple, 1984 and Mei,
1992). The free surface solution of equation (1.5a) for cnoidal waves can be

expressed as

3a
n=a cnz(x W] (1.5¢)

where the parameter £ is obtained from a graph of £ versus the Ursell
parameter [U:=(a/h)(h/L)’]. Both solutions [(1.5b) and (1.5c)] of the

Korteweg-De Vries equation are only valid in shallow water.

In addition, Dean and Dalrymple (1984) examined the analytical validity of
the three wave theories cnoidal, Airy and Stokes fifth-order (see Figure 1.1).
The basis for assessing the accuracy of the wave theory was how well the
free surface, dynamic boundary condition was satisfied. Cnoidal wave theory
is applicable to shallow water, the Stokes V can be applied to deep water,
and Airy wave theory does well for intermediate water depths.
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Figure 1.1. Domain of validity of three wave theories based on a criterion of goodness of fit to
dynamic free surface boundary condition. Source: Dean and Dalrymple (1984).
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E. Boussinesq theory.

Two important parameters used in connection with Boussinesg-type
equations are the non-linearity parameter (g), which represents the ratio of the
typical wave amplitude to the characteristic water depth, and the frequency
dispersion parameter (u), which represents the ratio of the characteristic
water depth to a typical wavelength. The terms (i) ‘weakly non-linear’ or ‘weak
non-linearity’, (ii) ‘fully non-linear’ or ‘full non-linearity’ and (iii) ‘linearised’
equations are associated with Boussinesq-type equations. By making
recourse to the non-dimensional continuity equation (1.13a) in terms of us,
the meaning of these terms can be clarified.

N+ Ve [(en +h)ua] + p*(IT3, +€I13, + €°T15, +£°T15,) = O(p) (1.13a)

Weékly non-lirfear or weak non-linearity or (g,4%)

Fully noé-!inear or full non-linearity or (% e°u?)

Linearisecj or (1%

—

Truncation error

>

(Frequency) dispersion terms

where the I1 parameters stand for dispersion terms? and involve third-order

derivatives®.

? A dispersion term is a dispersive term. In non-dimensional Boussinesq (-type) equations‘;
the dispersive term always contains the (frequency) dispersion parameter such as p2 orp
and p% As a result, this term is called (frequency) dispersion term. For brevity, the dispersion
term is often written as pz term or p“ term and depend on what order of the dispersion
parameter retained is.

3 1f u* terms are retained, IT parameters involve fifth-order derivatives.
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(i) Boussinesq equations as derived by Boussinesq in terms of bed

velocity, uo.

1872
Boussinesq’s most extensive publication on wave theory is dated ‘and is

written in terms of bed velocity (p477 in Dingemans, 1977). In non-
dimensional form, they are

1, +€Us® V1 + (e +h)(V e Us) - p? 2h3V2(Ve us) = O(ep?,u*) (1.6),(2.29)
Ub, +&(Ub® V)Us+ V1 — p2 1h2V(V e us, ) = O(sp?,pn*) (1.7),(2.30)

where us is the horizontal velocity vector at the seabed. Boussinesq reduced
the description of the fluid motion to two horizontal dimensions. This was
done by introducing a polynomial approximation of the vertical distribution of
the flow field into the integral conservation laws of mass and momentum.

Following on from Boussinesq (1872), a number of investigators (e.g.
Peregrine, 1967; Nwogu, 1993; and Chen et al., 1998) have developed

similar equations, which are termed as ‘Boussinesg-type equations’.

(i) Boussinesq-type equations as derived by Peregrine in terms of

depth-averaged velocity, u.

Peregrine (1967) derived two sets of Boussinesg-type equations. One set
(i.e. the first set) of equations was presented in terms of the depth-averaged
horizontal velocity vector U and is known as the ‘standard’ form of
Boussinesq-type equations. In non-dimensional form, the standard

Boussinesg-type equations of Peregrine are
N +Ve[(h+en)u]=0 | (1.8),(2.111)
U, +&(Te V)T + V= p2{2hV[Ve(hid,)]-Th?V(VeT,)} + Oep® pn*)
' (1.9),(2.112)

The Boussinesq equations [(2.29) and (2.30)] and the standard
Boussinesg-type equations [(2.111) and (2.112)] are only capable of
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reproducing weakly non-linear shallow water waves. This is due to the weak
non-linearity and dispersion properties retained in the both sets of equations
[since they only include terms up to O(e,1?)]. In the last two decades however,
Boussinesqg-type equations have been extended and shown to be capable of
modelling free surface elevation and wave propagation from deep to shallow

water over varying bathymetric and current conditions.

(iii) Boussinesq-type equations as derived by Nwogu in terms of

velocity at an arbitrary elevation, u..

In 1993, Nwogu derived an alternative set of Boussinesg-type (e,u?)
equations®, which is presented in terms of the horizontal velocity at an
arbitrary elevation u., that is (in non-dimensional form)

M, + Ve [(h+en)ua] + p’13, = O(en®,p) (1.10a)
U, + VN +&(Ua @ V)ua + p?AS) = O(ep?, u*) (1.10b)

where I3, and A%, are dispersion terms. This formulation gives an excellent

dispersion relation in that there is close agreement with w? = gk tanh(kh) for

depth to wavelength ratios (h/L) up to ', even though the p* terms are

excluded.

Figure 1.2 shows the dispersion relations (in terms of wave celerity C) for
various linearised Boussinesq-type equations (i.e. € terms dropped) inciude
terms up to O(u?) in terms of: Ua, us, U (the horizontal velocity vector at still
water level) and u. The reference solution is the dispersion relation of Stokes
linear wave theory or Airy wave theory. The good performance of the
dispersion relation of Nwogu's equations in terms of u« (com‘pared to that of
Boussinesg-type equations in terms of others horizontal velocities) is one of

* For brevity in this thesis, ‘equations including terms up to O(s,pz)' is often written as ’(8,;,12)
equations’ (see also Madsen and Schéffer, 1998).
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the reasons why the Boussinesg-type equations of Nwogu (1993) are chosen

as the basic governing equations for a number of numerical models.

1.20

0.80
0.00 0.50 1.00 1.50 2.00 2.50 3.00
kh

Figure 1.2. Ratio of wave celerity, C/Cairy, Cairy is the Airy wave celerity and C is the wave
celerity of various Boussinesg-type equations including terms up to O(uz) in terms of the
horizontal velocity at: (1) an arbitrary z-level, uq«; (2) the seabed, ub; (3) still water level, U;
and (4) depth-averaged horizontal velocity, u .

In 1995, Schéffer and Madsen extended the Boussinesq-type equations of
Nwogu (1993) by incorporating some extra terms in the governing equations
thereby improving the dispersion relation. This resulted in a new set of
(dimensionless) Boussinesq-type equations

n + Ve [(h+en)ua] + p2T15, + p2V o {-1h?V[V » (hua))]

Nwogu's continuity equation

+B2V[h2V e (hua)] - Brh?Vn, + B2V(h?n, )} = O(en?,n*) (1.11a)

Ua, + VN +&(Ua @ V)Ua + n2{A%, —y1h?V(V e ua, ) + y2h V[V ¢ (hua, )]

»

Nwogu's momentum equation
- y1h2V(V e V1) + 72h V[V o (hvn)]} = O(epn?, u*) (1.11b)
where o, B1, B2, v+ and y2 are the ‘free coefficients’. In Chapter Four, these
equations are used to investigate the Boussinesg-type equations of Nwogu
(1993) extended by Schaffer and Madsen (1995). This resulted in an
improved dispersion relation albeit with the same order of the frequency
dispersion. In other words, while the order of the frequency dispersion
retained in Nwogu’s equations (1.10) and Schéffer and Madsen’s equations
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(1.11) is identical [i.e. O(u?)], their dispersion relations (in terms of wave
celerity) are significantly different (Figure 1.3). The dispersion relation of
Nwogu’'s equations corresponds to a Padé [2,2] approximation in terms of
(kh), and the dispersion relation of Schaffer and Madsen's equations
corresponds to a Padé [4,4] approximation in terms of (kh).

2
1054
£ ’
< 1.00
S 1
© 1
0054 - - - - - el oo
0.90
0.00 1.00 2.00 3.00 4.00 5.00 6.00

kh

Figure 1.3. Ratio of wave celerity, C/Cairy, where Caiy is determined by wave celerity of the
Airy wave theory and C by the wave celerity of the equations of: (1) Schéaffer and Madsen
(1995); and (2) Nwogu (1993).

The equations of Chen et al. (1998) in Chapters Five and Seven are used
to assess dispersion terms associated with currents, which are not included in
Nwogu's equations. In non-dimensional form, the equations of Chen et al.
(1998) are:

1N, + Ve (hua)+ MV e Ua + VUa » Y+ p*(T15,

< Nwogu's continuity equation >
+ 812 + 8%I12 + 8°I13) = O(ep?,pn*) (1.12a)
Dis;‘ersion terms associated with currfms

Uo, + V(Ua ® V)Ua + VN + p2[AS,

< - >
Nwogu's momentum equation

+yAf +8(A3 + VAL ) +8%(A% + vAZ;‘)] = O(ep?, 1) (1.12b)

Dispersion terms associated with cumrents

where v and § are additional scales associated with the presence of a current.

Again IT and A are the dispersion terms, which involve third-order derivatives.
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The superscripts and subscripts in the dispersion terms are used to
distinguish between them.

It can be concluded that:

»  Schéffer and Madsen’s equations are equivalent to Nwogu’s equations
with some additional dispersion terms. These terms in the governing
equations result in an improved dispersion relation. '

. Chen et al.’s equations are equivalent to Nwogu's equations extended to

include a current.

Additionally, a comparison of the order of frequency dispersion terms
retained, the dispersion relations and dispersion terms associated with

currents in the governing equations is contained in Table 1.1.

Investigators Nwogu (1993) Schiéffer and Madsen (1995) Chen et al. (1998)
Governing Equations (1.10a,b) Equations (1.11a,b) Equations (1.12a,b)
equations
Order of
frequency p2 “2 “2
dispersion
terms
retained
Dispersion 2_ 2y =(a+1/3)(kh)? 2 o2 [HYONPI=(a-B413YKN)Z] | o o -(a+1/3)(KN)?
relation A o =gk"h [1+B(kn)2 J{1—(a~y kN )Z] @ s T-a(kh)?
Depth-uniform current
Dispersion Not included Not included [i.e. terms
terms w? (s + 52113 + 5° 113)
associated and
with currents
p? [vA? + 5(A% + vA%)
+ 8% (A3 + vAR)]
in equations (1.12a,b)]

Table 1.1. Comparison of the order of frequency dispersion terms retained, the dispersion
relations and dispersion terms associated with currents in the equations of Nwogu (1993),
Schéffer and Madsen (1995) and Chen et al. (1998).
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Boussinesg-type equations have been solved by numerical models using
various schemes. Peregrine (1967) proposed the first published finite
difference method for the standard Boussinesg-type equations. Abbott et al.
(1978) were probably the first investigators to develop a Boussinesq-type
numerical model that can be used for practical engineering problems. There
are a variety of widely published finite difference methods to solve
Boussinesg-type equations. They are:

(i) the non-staggered explicit leapfrog scheme (utilised by Witting, 1984);

(if) the implicit Crank-Nicholson finite difference scheme (used by Liu et al.,
1985; Yoon and Liu, 1989; Nwogu, 1993 and Kaihatu and Kirby, 1998)
and

(iii) the time-centred, implicit scheme with the method based on the
alternating direction implicit algorithm (employed by Abbott et al., 1984;
Murray, 1989; Madsen et al., 1991 and Madsen and Sgrensen, 1992).

Recently, Wei and Kirby (1995) presented an alternative implicit finite
difference scheme for discretising the equations of Nwogu (1993). This
alternative scheme was then adopted to solve Boussinesqg-type equations in
the lowest order frequency dispersion terms with either an improved
dispersion relation (e.g. by Chen et al., 1998) or the highest order non-
linearity (e.g. by Wei et al., 1995). Therefore, it is finally decided to apply the
numerical scheme of Wei and Kirby (1995) to all the governing equations
considered in this thesis including the unsteady, non-linear shallow water

equations in Chapter Seven.

An important aspect in developing a numerical model is to determine
appropriate boundary conditions for the governing equations. A set of
boundary conditions, which is suitable for one partic_ular set of governing
equations, is not necessarily appropriate for another set of governing
equations. Many numerical models based on Boussinesg-type equations
have been widely published, but detailed discussion of the 2D boundary

conditions were not usually included. The present study is concerned with
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determining suitable boundary conditions for the 1D and 2D governing
equations of Nwogu (1993), the 1D governing equations of Schéaffer and
Madsen (1995), the 1D and 2D governing equations of Chen et al. (1998),

and the 2D unsteady, non-linear shallow water equations.

At the outgoing wave boundary, the Sommerfeld radiation condition is
used to allow the passage and egress of the wave energy arriving from within
the domain. Conversely, as revealed by Nwogu (1993), there will be some
wave reflection from the boundary due to: (i) truncation errors, (ii) the initial
transient, steep waves and (iii) the approximation of a single wave celerity for

irregular waves.

Therefore, in the present study, three-point filters are introduced to reduce
these problems as well as to enhance computational stability. On the other
hand, the filters must be ‘soft’ so as not to have much effect on the order of
the truncation error retained by the dispersion terms of the particular

governing equations under consideration (Chapters Five, Six, and Seven).

The main concept behind the Boussinesq (-type) equations is the reduced
mathematical description of the fluid motion to one or two horizontal
dimensions. This can be explained through a derivation of the equations of
Boussinesq (1872) and the various Boussinesqg-type equations derived by
Peregrine (1967), Schéffer and Madsen (1995) and Chen et al. (1998) in
Sections 2.3, 2.4, 4.2 and 5.2 respectively.

In this study, a different and new approach has also been developed for

deriving:

(i) the Boussinesg-type (e,1?) equations of Nwogu (1993) in Chapter Three
and Appendix C;

(i) the Boussinesq (e,1%) equations of Boussinesq (1872) in Appendix C;

(iii) the Boussinesq-type (e,u?) equations of Peregrine (1967) in terms of the_

still water level horizontal velocity in Appendix C;

Introduction



Chapter One 16

(iv) the fully non-linear Boussinesq-type equations with the lowest order
frequency dispersion [i.e. including terms up to O(u2¢%u?)] of Wei et al.
(1995) in Appendix C; and

(v) the fully non-linear Boussinesg-type equations with fourth-order
frequency dispersion [including terms up to O(u*e°u*)] of Madsen and
Schéffer (1998) in Appendix C.

All Boussinesq-type momentum equations in the new approach are based on
the Euler equation of motion together with the irrotationality condition.
However, the Boussinesq-type continuity equations are still based on the
depth-integrated continuity equation as in the work of Nwogu (1993), Wei et
al. (1995) and Madsen and Schéffer (1998).

Previous approaches to develop Boussinesg-type momentum equations

include:
a) Nwogu’s (1993) work:

The momentum equation (1.10b) in the work of Nwogu was based on the

depth-integrated momentum equation.
b) Waei et al.’s (1995) work:

In the work of Wei et al., the momentum equation (1.13b) was obtained by
substituting an approximate expression for the velocity potential directly into
the Bernoulli equation at the free surface (the free surface, dynamic boundary
condition). The equations of Wei et al. can be written as

M, + Vo [(en+h)ua] + p? (113, + eI, + 2118, + €115, ) = O(p*) (1.13a)

| —
|

Nwogu's continuity equation ri Dispersion terms with non-linearity

U, +&(Ua® V)Ua + VN + p?(AY + €A%, +62A%, +€°A3,) = O(u*)  (1.13b)
[P !

1

€

Nwogu's momentum equation Dispersion terms with non-linearity

where the general parameters I1 and A involve third order derivatives in n

and/or u.. The equations of Wei et al. above are Serre-type equations® since

5 Serre-type equations are Boussinesq-type equations with all ;,12 terms retained [i.e. including
terms up to O(u%e’u?)]. Serre-type equations can be called as fully non-linear Boussinesg-
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they include all dispersion terms with non-linearity. It can be seen that the
equations of Wei et al. [(1.13a) and (1.13b)] contain the Boussinesq-type
(e,u?) equations of Nwogu (1993).

¢) Madsen and Schiffer’s (1998) work:

Madsen and Schéffer introduced an expansion of the velocity potential as
a power series in the vertical coordinate to form the horizontal and vertical
velocities. They then incorporated the free surface, dynamic boundary
condition (i.e. the Bernoulli equation at the free surface) to develop a
momentum equation (C.35). The fully non-linear Boussinesg-type equations

of Madsen and Schéffer are

>

2 8 8 2118 31718
M + Vo [(en + hue] + p?(I15, +€I13, + €°T15, + €°T13,)
~ Waei et al.'s continuity equation

p(I15, +eIT3, + €T3, + °IT5, +&*T15, +&°I15) = O(n®) (1.14),(C.34)

Usy +8(Ua® V)Ua+ V + n2(AS, + A%, +€2A%, +8°A%, ),
»

I

pé (A% + SA‘;:I l'sz"k'{f'féé +e'A%, +e°A%) = O(p®) (1.15),(C.35)
where the general parameters I1 and A involve third-order derivatives when
multiplied by p? and fifth-order derivatives when multiplied by p*. (More details
can be found in Appendix C). If the u* terms are excluded, the Madsen and
Schaffer's (u*,€°u*) equations reduce to the Serre-type equations of Wei et al.
(1995)

(i) New (p2,e3p?) equations developed by the present author.

It is noted that the pressure distributions of both the fully non-linear
Boussinesg-type momentum equations [(1.13b) and (C.35)] do not involve the
free surface, kinematic boundary condition. Consequently, there is scope to

type equations in O(uz) [i.e. accurate to O(uz)]. Second-order is the lowest order in the
frequency dispersion parameter (u).
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develop new sets of fully non-linear Boussinesg-type equations which do
include the free surface, kinematic boundary condition in the momentum
equation. In the present study, a new set of fully non-linear Boussinesqg-type
equations with the lowest order frequency dispersion terms is developed, that
is
n, +V o [(en +h)ua] + (118 20+ ell3, +€°T15, + €°T15, ) = O(u*) (1.13a)
»

Nwogu’s continuity equation

le

F Nwogu's momentum equation

Uq, +€(Ua ® V)Ua + V1 + p?(AS, * ey, +8%A), +e°A%,) = O(u*)  (1.13¢)
;l

The equations above are a new alternative set of equations to that of Wei
et al. (1995) [(1.13a) and (1.13b)]. The new equations incorporate all

boundary conditions and are derived in full in Appendix C.

(ii) New (g,1?) equations with currents developed by the present author.

By the same method used to derive the equations (1.13a) and (1.13c),
three new sets of Boussinesq-type equations with an ambient current treated
explicitly® on the basis of weakly non-linear waves are developed by the
present author. The new equations are presented in terms of:

(i) the horizontal velocity at an arbitrary elevation u,

nt +V e (hua)+ 81V @ Ua + vUa ® Vi + n?(115,

Nwogu's continuity equation ']
+8TI3 + 87113 + 8°T13) = O(ep?, 1u*) (1.16a)

Dispersion terms associated with currents

oy + v(Ua ® V)Uo + VN + [A820>],

Nwogu's momentum equation

+ VAT +8(A] + VAY) +82(AS + VA )] O(ep?, 1) (1.16b)

" Dispersion terms associated with currents

(i) the horizontal velocity at the seabed ub,

® The word ‘explicit’ is used here in the sense that there are extra terms in the governing
equations, which are dispersion terms associated with the ambient current, even though the
veiocity u includes both orbital velocity and ambient current.
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M, + Ve (hus) + MV e us + vus e Vi + p? (I3

+ 311§ + 87103 +8°T15) = O(ep?, ) (1.17),(C.17)

Dlspersxon terms associated with current

Ua, + V(Ub e V)us + Vn + p?[A}

+vA‘+a(A4 +VA3)+8%(A% + VA )] O(ep?,p*)  (1.18),(C.18)

Dispersion terms associated with current

(iii) the horizontal velocity at still water level 4,

n+v o (ht)+dnV e U+ vii e Y+ p*(I15 + 8715 + 8°T13 ) = O(ep?,1u*)
I Peregrine’s (1967) second continuity equation " ispersion terms associated with current

(1.19),(C.24)

Iu L+ V(U e V)T + V1 + p? [vA5+6(A5 +VAS)+ 8% (AS + VAL )] O(ep?,u*)

{” Peregrine’s (1967) second momentum equation " e Dispersion terms associated with current

(1.20),(C.25)

These three new sets of equations are alternative sets to those derived by
Chen et al. (1998). The main differences between the present study and that

of Chen et al.'s work are:
(i) the method of derivation for the momentum equations and

(ity wvertical variations in the horizontal and vertical velocities are permitted in
the new formulations. This is in contrast to the equations of Chen et al. in
which these velocities are uniform through the water column.

A family tree of the various Boussinesg-type momentum equations, including
those which were developed by earlier investigators as well as those
developed by the present author are displayed in Figure 1.4.
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Flgure 1 4 Family tree of various Boussinesqg-type momentum equations.
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The main aims of this study are to develop and asses the performance of
numerical models based on two extensions of Nwogu's (1993) Boussinesg-
type equations [i.e. the governing equations developed by Schéffer and
Madsen (1995) and Chen et al. (1998)]. To the present author’s knowledge,
no numerical models have been based on those governing equations, which
are unproven in their performance. Some details of the untested governing

equations follow:

(i) Schaffer and Madsen (1995) extended Nwogu's equations to yield a
dispersion relation which was valid in deeper water for h/L ratios up to or
equal to 1.0, whereas Nwogu’'s equations yield a dispersion relation
which was valid for h/L £0.5. The reference solution is the dispersion

relation of Airy wave theory.

(i) Chen et al's (1998) second set of equations (see the right hand column
of Figure 1.4), which are equivaient to Nwogu’s equations extended to

include an ambient current.

To fulfill the aims of the study, a number of numerical models is required:

1. 1D and 2D numerical models based on Nwogu’'s (1993) equations.
These are the basic models whose results are compared against the

results of various other models.

2. 1D numerical model based on Schéffer and Madsen'’s (1995) equations.
The improved dispersion relation of this model permits the simulation of

waves in deeper water.

3. 1D and 2D numerical models based on Chen et al.’s (1998) equations.
These models permit the effects of waves and co-flowing and counter-
flowing ambient currents to be simulated. Ambient currents are not

.included in the basic models based on Nwogu'’s (1993) work.

4. 2D numerical model based on the (unsteady) non-linear shallow water
equations. This model is used for validation purposes where laboratory

data are unavailable in the study of 2D current effects.
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5. Following Chen et al. (1998) for comparing the numerical solutions
based on their third set of equations (see the right hand column of Figure
1.4) in the study of 1D current effects, two 1D simple numerical models
are developed by the present author. These two models are based on (i)
the (steady) non-linear shallow water equations and (ii) the conservation

of wave action equation.

1.2. Objectives

Six numerical models have been developed and coded up in this study.

These models have been labelled using the following strategy.

1D letters - no. (1to 6)
2D

While the primary objectives of this study are to assess the performance
of the two new numerical models based on the untested governing equations
of Schaffer and Madsen (1995) and of Chen et al. (1998), the specific

objectives are detailed below.

1.2.1. Primary objectives

1.a. 1DDBMW-2 (1D ‘Deeper water' Boussinesq-type numerical Model for
Waves only - Model No. 2). The present author develops a 1D numerical
model for wave transformation based on the Boussinesg-type equations
derived by Schaffer and Madsen (1995). Appropriate boundary
conditions are determined and incorporated into the numerical model.
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1.b.

Compare the solutions from 1DDBMW-2 against:
(i) sinusoidal waves in deep water for h/L = 1 and
(i) 1DBMW-1 and laboratory data for h/L < %

to assess the effects of the extended governing equations of 1DDBMW-
2 (i.e. Schaffer and Madsen, 1995).

2.a.

2.b.

1DBMWC-3 (1D Boussinesg-type numerical Model for Wave-Current
interaction - Model No. 3). The present author develops a 1D numerical
model with boundary conditions for full wave-current interaction based
on the second set of Boussinesqg-type equations derived by Chen et al.
(1998). The boundary conditions are applicable to the 3 cases: waves

only, currents only and fully combined wave-current interaction.

Compare the numerical solutions from 1DBMWC-3 against the those
from 1DBMW-1, 1DSSWM (1D Steady, non-linear Shallow Water
numerical Model) and 1DWACM (1D principle of Wave Action
Conservation numerical Model) to analyse the effects of an ambient
current included in one-dimensional formulation.

2DBMWC-5 (2D Boussinesg-type numerical Model for Wave-Current
interaction - Model No. 5). The present author develops a 2D numerical
model for full wave-current motion based on the second set of
Boussinesqg-type equations derived by Chen et al. (1998). Determine
suitable boundary conditions for the 3 cases of waves only, currents only

and combined waves and currents.

To carry out the above primary objectives related to model development

and testing, it has also been necessary to develop several numerical models

based on well established governing equations to test particular scenarios of
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models 1DDBMW-2, 1DBMWC-3 and 1DBMWC-5. The development of the
specialised models is briefly described under the heading of Secondary
Objectives.

1.2.2. Secondary objectives

4.a. 1DBMW-1 (1D Boussinesqg-type numerical Model for Waves only -
Model No. 1). The present author develops a 1D numerical model for
wave propagation based on the Boussinesg-type equations derived by
Nwogu (1993). Appropriate boundary conditions are determined.

4.b. Verify 1DBMW-1 against existing laboratory data.

5.a. 2DBMW-4 (2D Boussinesq-type numerical Model for Waves only -
Model No. 4). The presenf author develops a 2D numerical model,
including the boundary conditions, for wave propagation based on the

Boussinesqg-type equatibns derived by Nwogu (1993).

5.b. Verify 2DBMW-4 against existing laboratory data.

6.a. 2DUSWM-6 (2D Unstedy, non-linear Shallow Water numerical Model -
Model No. 6). The present author develops a 2D numerical model with
appropriate boundary conditions, based on the unsteady, non-linear

shallow water equations.

6.b. Compare the results of 2DBMWC-5 against those of 2DBMW-4 and
laboratory data for the waves only case and against the resuits of
2DUSWM-6 for the current only case to assess the effects of an ambient

current included in two-dimensions.
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All discrete forms of the considered governing equations, including the
matrix systéms and boundary conditions are developed and then coded up in
Fortran by the present author. There is no part of the codes (including for
instance, the matrix solvers), which has been supplied by or adapted from

someone else’s work.

This study is limited to the consideration of periodic waves with a single
frequency due to the application of the Sommerfeld radiation condition at the
outgoing wave boundaries. Application of the Sommerfeld radiation condition
to irregular, multi-directional waves is considerably more difficult and is not a

focus of the present study.

The existing approaches for deriving the original Boussinesq equations of
Boussinesq (1872) and the Boussinesq-type equations of Peregrine (1967)
are presented in Chapter Two. A new and systematic approach is introduced

by the present author to formulate:

. existing Boussinesqg-type equations of Nwogu (1993) in Chapter Three
and Appendix C. Both these derivations are novel and different to each

other as well as Nwogu'’s original derivation,

e  existing original Boussinesq equations of Boussinesq (1872), existing
Boussinesq-type equations of Peregrine (1967) (in terms of the still
water level horizontal velocity), Wei et al. (1995) and Madsen and
Schéffer (1998) in Appendix C.

This derivation is for the purpose of the comparison with the existing

approaches.
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Five new Boussinesg-type equations have been developed by the present
author during the course of this study. Their development can be found in
Appendix C. These equations have been labelled using the following strategy:

Letters-no. (A toE)

While these equations are developed here, the assessment of how well they
simulate wave behaviour is a recommendation for future work.

. BEWCAV-A (2D Boussinesqg-type Equations for Wave-Current
interaction presented in terms of the Arbitrary horizontal Velocity —
Equations A). The present author derives a new set of 2D Boussinesg-
type (e,u?) equations for the interaction of waves and vertically varied
currents in terms of the horizontal velocity at an arbitrary elevation

(z=2d).

e BEWCBV-B (2D Boussinesg-type Equations for Wave-Current
interaction presented in terms of the Bottom horizontal Velocity —
Equations B). The present author derives a new set of 2D Boussinesg-
type (e,u’) equations for the interaction of waves and vertically varied

currents in terms of the horizontal velocity at elevation z =-h.

e« BEWCSV-C (2D Boussinesg-type Equations for Wave-Current
interaction presented in terms of the Still water level horizontal Velocity —
Equations C). The present author derives a new set of 2D Boussinesg-
type (s,pz) equations for the interaction of waves and vertically varied

currents in terms of the horizontal velocity at elevation z=0

e BEWSV-D (2D Boussinesg-type Equations for Waves only presented in
terms of the Bottom horizontal Velocity — Equations D). The present
author derives a new set of 2D Boussinesg-type (e,%) wave equations in
terms of the horizontal velocity at elevation z=-h by removing all

dispersion terms associated with currents from BEWCBV-B.
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FBE20O-E (2D Fully non-linear Boussinesg-type Equations accurate to
2" Order frequency dispersion terms — Equations E). The present
author derives a new set of second-order fully non-linear 2D
Boussinesq-type equations [i.e. including terms up to O(p?,e%u?)] in terms

of the horizontal velocity at an arbitrary z-elevation.

1.3. Outline of contents

This thesis consists of eight chapters and is organised as follows:

Chapter One: Introduction

In Section 1.1, a brief explanation of the background to this research is

given. This consists of:

(@

(D)

(iii)

(iv)

v)

(vi)

motivation for the selection of the basic governing equations of Nwogu;

a discussion of the basis for extending the basic equations to improve
the range of applicability of the dispersion relation into deeper water
through a study of Schéffer and Madsen’s (1995) equations;

a discussion of the basis for extending the basic equations to include
ambient currents through a study of Chen et al.’s (1995) equations;

the reasoning for the selection of the particular numerical scheme in the

numerical models developed in this thesis;

the background to the determination of suitable boundary conditions for

the governing equations under consideration;

the motivation for the development of new sets of Boussinesg-type
equations and of the new alternative derivations for the existing

Boussinesq-type equations.
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Section 1.2 is concerned with the study objectives and how they contribute
~to new knowledge. A short description of the structure of this thesis is given in
Section 1.3. '

Chapter Two: Literature Review

In Section 2.1, the evolution of the Boussinesg-type equations is reviewed
beginning with those originally derived by Boussinesq (1872). The selection of
the equations being reviewed is based on their relevance to the present
study. Similarly in Section 2.2, the numerical models based on those

Boussinesq-type equations, which are relevant to this study are reviewed.

Boussinesq's (1872) equations are presented in terms of the bottom
horizontal velocity and are re-derived by the existing approach in Section 2.3.
Additionally, in Section 2.4, two sets of Boussinesg-type equations originally
derived by Peregrine (1967), which are presented in terms of the depth-
averaged and still water level horizontal velocities, are re-derived by the

existing method.

Chapter Three: 1D Basic Model

The differences between the present and previous numerical models are
tabulated in Section 3.1. Section 3.2 focuses on the new derivation of the
existing Boussinesg-type wave equations of Nwogu (1993). The concept
behind the free coefficient a for specifying a particular elevation for the
velocities, which is contained in Nwogu's (g,u%) equations, is explained in
Section 3.3 under the heading “Review of dispersion relations”. Numerical
solution algorithms, which consist of the solution method and the formulation
and. inborporation of appropriate boundary conditions, are considered in
Section 3.4.

Finally, in Section 3.5, verification of 1DBMW-1 (the numerical model

developed in this chapter) using existing laboratory data for two different
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cases of a monochromatic wave train propagating in a channel is included.
The first set-up includes a channel with a single slope. The second set-up
incorporates a submerged bar.

Chapter Four: 1D Basic Model with an Improved Dispersion Relation

The governing equations considered in this chapter will be referred to as
‘deeper water’ Boussinesq-type equations, because they are applicable for
the range in relative depth h/L <1. The other Boussinesqg-type equations
which include terms up to O(e,u?) (e.g. the governing equation in Chapter

Three) are only applicable up to h/L = 0.5 (see also Figure 1.3).

Comparisons of various Boussinesg-type (g,1%) equations based on Padé
expansions of the dispersion relation in terms of (kh) are explained in Section
4.1. Schéffer and Madsen’s (1995) derivation of the Boussinesq-type wave
equations is in Section 4.2. The free coefficients (o,B,y) contained in Schaffer
and Madsen’s (g,u?) equations are tuned by the present author using the
exact dispersion relation of the linear wave theory instead of the approximate
one (Section 4.3). In Section 4.4, the solution method and boundary

conditions from Section 4.2 are applied.

Section 4.5 deals with verification of 1DDBMW-2 (the numerical model
developed in this chapter) to assess the corresponding governing equations
with the additional terms. These terms result in an improved dispersion
relation but with the same order of the frequency dispersion i.e. O(pz). This

verification consists of three experimental set-ups:

(i) wave propagation in very deep water (h/L=1) in a constant depth

channel;
(ii) * wave propagation up a slope; and

(iii) wave propagation in a channel with a submerged bar.

Introduction



Chapter One 30

The numerical solutions of 1DDBMW-2 for the last two experimental set-ups
are compared to those of 1DBMW-1 (from Chapter Three). This comparison
enables the evaluation of the effects of non-linear wave shape due to the
additional terms in the corresponding governing equations, which result in an

improved dispersion relation.

Chapter Five: 1D Basic Model with Current Effects

Section 5.2 deals with the derivation of the first and second sets of
Boussinesqg-type (8,p.2) equations of Chen et al. (1998). In this section, non-
dimensional variables based on wave only and wave-current scaling
parameters are considered where an ambient current is explicitly mentioned
in separate terms in the governing equations. The second set of (e.1?)
equations of Chen et al. with a current is discretised, and suitable boundary
conditions for three cases (waves only, current only and wave-current motion)
are developed by the present aqthor for IDBMWC-3 in Section 5.3.

In Section 5.4, a simple numerical model (1DSSWM) based on the steady,
non-linear shallow water equations is developed. A second simple numericai
model (1DWACM) based on the conservation of wave action is developed in
Section 5.5. Both these simple numerical models are used for making
comparisons with 1DBMWC-3 where laboratory data are unavailable.

Two experimental set-ups are used to verify 1DBMWC-3 (Section 5.6).
The first one is a channel with a single slope, which is the same as in Chapter
Three. This is used to assess the effects of the dispersion terms associated
with currents in the case of wave motion only. In other words, 1DBMWC-3
(with the dispersion terms associated with currents included) is operated
without currents being present. Under this condition, the second set of
equations of Chen ef al. mathematically reduces to Nwogu’'s (1993)
equations. The second set-up is a channel with a submerged bar (Section
5.7). This is used to evaluate 1DBMWC-3 in the cases of current motion only

and also wave-current interaction.
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Chapter Six: 2D Basic Model

In Section 6.1, the differences between the present basic numerical model
(i.e. 2DBMW-4) and previous models based on Nwogu’s (1993) equations are
tabled. The 2D governing equations being considered are written in
dimensional form in Section 6.2. The particular numerical algorithms and
appropriate boundary conditions for the corresponding equations are
considered in Section 6.3. The filter, which is introduced by the present author
and is used to enhance computational stability, is also given in this section.
Finally, 2DBMW-4 is verified using existing laboratory data in scenarios of
wave propagation over a circular shoal on a flat bottom basin and of wave

propagation over an elliptic shoal on a sloping bottom basin.

Chapter Seven: 2D Basic Model with Current Effects

Section 7.2 focuses on the development of the new model 2DBMWC-5,
which is based on the second set of equations of Chen et al., where the
dispersion terms associated with currents are included. The solution method
and determination of suitable boundary conditions for the three cases of
waves only, current only, and for wave-current interaction are also considered

in this section.

Section 7.3 deals with the development of 2DUSWM-6, which is based on
the 2D unsteady, non-linear shallow water equations, and is used to assess
the new model 2DBMWC-5. Numerical solution of the governing equations
together with the determination of appropriate boundary conditions for the

current only case is undertaken in this section.

In Section 7.4, a circular shoal on a flat bottom basin is used for the
experimental set-up. In the first test, 2DBMW-4 and 2DBMWC-5 are run to
simuléte wave propagation only. The solutions from both models are
compared to evaluate the effects of the inclusion of the dispersion terms
associated with currents in 2DBMWC-5. In the second test, 2DBMWC-5 and
2DUSWM-6 are run to simulate current motion only. The results of both
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models are then compared. The last set of tests is concerned with modelling

co-flowing and counter-flowing current and waves.

Chapter Eight: Conclusions and Recommendations

Chapter Eight contains the general conclusions from the present research.
Some recommendations for further research into numerical models based on
Boussinesq-type equations are also presented.
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Chapter Two

Literature Review

2.1. Boussinesq-type equations

Boussinesq (1872) developed the original formulation of the governing
equations for a free surface flow, which included the effects of surface waves
but in which the vertical dimension was eliminated. The formulation was in
terms of the bottom velocity and was restricted to simulating waves moving
over bathymetry with a flat bottom. Mei and LeMéhauté (1966) extended the
formulation to varying depth in one-dimension. Peregrine (1967) developed
two new formulations in two horizontal dimensions for the case of varying
depth in terms of (i) the depth-averaged velocity vector and (ii) the velocity
vector at still water level. The first formulation became known as the standard

form of Boussinesq-type equations.

There are two important parameters in association with the - non-
dimensional forms of Boussinesq-type equations. One parameter is a
measure of the non-linearity and is represented by the ratio of the typical
wave' amplitude to the characteristic water depth (g =aw/he). The other
parameter is a measure of the frequency dispersion and is represented by the

ratio of the characteristic water depth to the typical wavelength (u = hen/Len).
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The Boussinesqg-type equations have been extended based on these two

parameters.

For many applications, Boussinesg-type equations with lowest order
(frequency) dispersion terms (i.e. p? terms) usually give a weak dispersion
relation. A weak dispersion relation imposes a restrictive water depth
limitation i.e. an upper limit on the relative depth h/L. To address this problem
requires Boussinesq-type equations (i.e. the governing equations) with an
improved dispersion relation, which hoids in deeper water. Several alternative
Boussinesq-type equations with an improved dispersion relation have been
reported, for example by Witting (1984), Murray (1989), Madsen et al. (1991),
Madsen and Serensen (1992), Nwogu (1993) and Schéffer and Madsen
(1995). Although the dispersion relation of these Boussinesg-type equations
had been improved, the order of dispersion terms in the partial differential

equations was unchanged i.e. O(p?).

Witting (1984) first presented the Padé approximation technique in
connection with the dispersion relations of linear or Airy wave celerity. This
was intended to develop Boussinesq-type equations (i.e. partial differential
equations) with an improved dispersion relation. As a resuit, a number of free
coefficients appeared in the resulting Boussinesq-type equations. These
coefficients were determined by matching a Padé approximation' to the
dispersion relation of the linear wave celerity. The dispersion relation for
Witting’s equations corresponded to a Padé [2,2] approximation in terms of
-wave number k multiplied by the water depth h i.e. kh =2rh/L. The same
dispersion relation was also obtained, for example from the equations of
Madsen et al. (1991), Madsen and Serensen (1992) and Nwogu (1993).
Schéffer and Madsen (1995) extended Nwogu's Boussinesq-type equations
by incorporating some extra terms in the governing equations thereby
improving the dispersion relation in deeper water. The resulting Boussinesqg-

' Padé [m,n] approximations are rational functions in which the numerator is a polynomiatl of
order m and the denominator is a polynomial of order n. While polynomial approximations
suffer from the disadvantage of their tendency for oscillations and hence errors. Padé
approximations tend to spread the approximation error. [Faires and Burden (2003) p459]
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type equations had a dispersion relation corresponding to a Padé [4,4]
approximation in terms of (kh).

In contrast to the above investigators, Serre approached the problem of
non-linearity. Serre (1953) developed an alternative Boussinesq theory by
combining lowest-order frequency dispersion with full non-linearity (i.e. € is
arbitrary). In other words, Serre’s equations included terms up to O(u?,¢%u?).
In 1993, Madsen and Sgrensen studied the non-linearity properties of
Boussinesg-type equations. They developed the evolutionary equations for
triads of wave-wave interaction and second-order transfer functions for sub-
and super-harmonics. More recently, Wei et al. (1995) derived a new set of
Boussinesg-type equations, which they called ‘fully non-linear Boussinesg-
type equations’. These equations were derived in terms of the velocity at an
arbitrary z-level as first formulated by Nwogu (1993) instead of the depth-
averaged velocity as used in the equations of Serre.

Boussinesg-type equations with high order frequency dispersion terms
with or without non-linearity [including terms up to O(u*) and O(ep?) or higher]
were presented in unpublished work by Dingemans (1973). As reported by
Dingemans (1997), the equations of Dingemans (1973) were presented in two
versions; one version was given in terms of the depth-averaged velocity as
the velocity variable and the other in terms of the velocity variable at still
water level. Both versions of the partial differential equations retained terms
up to O(u*) and O(ep?) with the assumption that O(e) = O(p?). In 1998,
Madsen and Schéffer introduced higher order Boussinesg-type equations by

retaining all the terms up to O(u*), which allowed ¢ to be arbitrary [i.e.
retaining terms up to O(u*,e°u*)).

The study of Boussinesg-type equations for wave-current interaction has
achieved much less attention. As reported by Madsen and Schéffer (1998),
one consequence of the non-linearity of Boussinesg-type equations is the
automatic inclusion of wave-averaged effects such as radiation stress, setup,

undertow and wave-induced currents. This however, is not a guarantee for a
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correct representation of for example, the Doppler shift in connection with
current refraction and, in fact, it turns out that most Boussinesg-type
‘equations fail to model this phenomenon accurately. The Doppler shift
describes the kinematics of wave-current interaction for waves on a
homogeneous current field. The Doppler shift is defined by (0a— Gck)? =67,
where wa is the absolute angular frequency, Uc is the horizontal ambient
current velocity, which is assumed to be uniform over the depth, and i is the
intrinsic angular frequency. When the current disappears, o = @s = 6i Where o

is the angular frequency.

Work in wave-current interaction, where the current is explicitly? treated,
for Boussinesq-type equations was pioneered by Yoon and Liu (1989) and
then followed by Priiser and Zielke (1990). The equations of Yoon and Liu
and of Priiser and Zielke achieved a correct Doppler shift with a dispersion
relation corresponding to a Padé [0,2] approximation in terms of (kh).
Consequently, because of the relatively low order of Padé approximations,
both sets of equations were only applicable to the case of relatively small
wave number (i.e. long wavelength). In the case of waves and ambient
current motion being in opposite directions, the Doppler shift became invalid
as the wave numbers increased rapidly (i.e. wavelength become shorter) due
to the interaction, especially with a strong opposing current.

Chen et al. (1998) presented three sets of Boussinesq-type equations for
full wave-current motion with a correct representation of the Doppler shift.

(a) Firstly, they generalised the set of partial differential equations of Yoon
and Liu (1989) to allow for stronger currents. The corresponding
dispersion relation and the velocity variable of the first set of equations
derived by Chen et al. (1998) remained identical to that of Yoon and Liu.

(b) Secondly, they extended the derivation of their first set of equations by
replacing the depth-averaged velocity (u) with the velocity at an

% The word ‘explicit’ is used here in the sense that there are extra terms in the governing
equations, which are dispersion terms associated with the ambient current.
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arbitrary elevation (u=) as the velocity variable. This resulted in a second
new set of Boussinesg-type equations with a dispersion relation
corresponding to a Padé [2,2] approximation in terms of (kh) instead of a
Padé [0,2] approximation.

(c) Thirdly, following the approach of Schéaffer and Madsen (1995), Chen et
al. extended their second set of partial differential equations by
incorporating some extra terms in the governing equations thereby
improving the dispersion relation. The resulting Boussinesqg-type
equations had a dispersion relation corresponding to a Padé [4,4]

approximation in terms of (kh).

In addition, the problem of wave-current interaction ih the works of Yoon
and Liu (1989), Pruser and Zielke (1990) and Chen et al. (1998) have been
explicitly treated within the framework of weakly non-linear waves of
Boussinesqg-type equations. In other words, these sets of equations only
retained the lowest-order frequency dispersion and non-linearity terms [i.e.
O(e,n?)] in those terms in the governing equations associated with wave

motion.

It is seen that Boussinesqg-type equations can be derived in terms of
various types of velocity vector. Typical velocity variables are the still water
level velocity (Ui), bottom velocity (u»), depth-averaged velocity (u), depth-
integrated velocity component (i.e. volume flux, Q) and the velocity at an
arbitrary z-level (u.) (see Table 2.1).
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. Velocity Vector

Investigators

Stilt water level
velocity, U

Peregrine (1967)", Dingemans (1973)*,
Madsen and Schéffer (1998)* and Mera (Present study)*

Bottom velocity, ub

Boussinesq (1872), Witting (1984) and Mera (Present study)*

Depth-averaged
velocity, U

Serre (1953), Peregrine (1967)*, Dingemans (1973)*,
Freilich and Guza (1984), Yoon and Liu (1989),
Chen et. al. (1998)* and Madsen and Schaffer (1998)*

Depth-integrated
velocity (i.e. volume

flux), Q

Abbott et. al. (1978), Hauguel (1980), Murray (1989),
Madsen et. al. (1991), Madsen and Sgrensen (1992),
Schéffer and Madsen (1995)* and Borsboom et al. (2000)

Velocity at an
arbitrary z-level, Ua

Nwogu (1993), Schéaffer and Madsen (1995)*,
Wei et al. (1995), Chen et al. (1998)*,

Madsen and Schéffer (1998)* and Mera (Present study)*

Table 2.1. Various Boussinesq-type equations based on different definitions of the velocity
vector. The superscript * denotes that the investigators presented more than one set of
Boussinesg-type equations.

2.2. Numerical models based on Boussinesq-type equations

Peregrine (1967) developed a 1D numerical wave model based on his
own Boussinesqg-type equations with the depth-averaged velocity as the
velocity variable. This model was used to simulate a solitary wave
approaching a beach of uniform slope. Using a frequency domain wave
transformation derived from the equations of Peregrine, Freilich and Guza
(1984) developed two numerical models for the evolution of the wave field in
a region of shoaling based on the equations of Peregrine. They showed that
Fourier coefficients of the wave field through the shoaling region were

accurately predicted. By considering wave spectra derived from Peregrine’s

Literature Review



Chapter Two 39

equations, Elgar and Guza (1985) showed that the evolution of wave energy
spectra, wave celerity, free surface elevation skewness and group velocity
were well represented. Elgar et al. (1990) subsequently demonstrated that the
evolution of second and third moments of the horizontal velocity and

acceleration fields was also well predicted.

Abbott et al. (1978) converted the Boussinesq-type equations® of
Peregrine (1967) from being in terms of the depth-averaged horizontal
velocity to being in terms of the depth-integrated velocity (i.e. volume flux).
The corresponding equations were then augmented with other terms such as
those that account for a reduced flow area as occurs especially at permeable
breakwaters. Porosity, which was included in Abbott et al.’s equations, was
set to unity in the open water and set to its physical value in the breakwater.
The resulting equations were discretised using Preissmann’s implicit finite
difference scheme. In 1D, the resulting numerical model was tested for

simulation of:

e shoaling Waves,

e wauve reflection, and

‘» transmission of waves through permeable breakwaters.

Agreement between computed and mean measured results was within 5% of
elevation. In 2D, the resulting numerical model was tested to simulate a real
harbour (i.e. the Danish harbour. of Hanstholm). In the case of periodic wave
inputs, it was seen that the agreement between the numerical solutions and
the results obtained in the physical model of the real harbour were highly
satisfactory. In the case of irregular waves, comparisons were made between
root mean square elevation in physical and numerical models. These
comparisons agreed reasonably well. Further demonstrations of Abbott et
al.’s numerical model for shoaling, refraction, diffraction and partial reflection
cases were given by Madsen and Warren (1984). They compared Abbott et

% All Boussinesg-type equétions considered here are in 2D unless stated otherwise.
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al’s numerical solutions against analytical and experimental results in which

these comparisons were entirely satisfactory.

The 1D version of the equations of Abbott et al. (1978) was approximated
by Schaper and Zielke (1984) using their own finite difference scheme.
Schaper and Zielke also discussed the boundary conditions corresponding to
total, partial and non-reflecting wave boundary conditions. The resulting
numerical model was applied to simulate solitary, cnoidal and irregular waves.
It appears that agreement between the numerical and analytical solutions

were acceptable.

In 1980, Hauguel converted the equations of Serre (1953) from being in
terms of the depth-averaged velocity to being in terms of the depth-integrated
velocity (i.e. volume flux). This conversion gave rise to new terms a and B in
the resulting equations. (It is noted that these terms o and B are completely
different to the free coefficients in the equations of Schiffer and Madsen,
1995, and also the coefficients in the equation of Korteweg De-Vries, 1895).
The resulting equations were then discretised using a fractional step, finite
difference method* to form Hauguel's 1D and 2D numerical models. The 1D
numerical model was tested at various Courant numbers and numbers of
points per wavelengths (L/Ax) against analytical solutions. The results
showed that the best agreement was obtained with a Courant number equal
to 1 and a spatial resolution of L/Ax=20. The influence of the bathymetry
against solitary wave propagation was also studied. A solitary wave
propagating over a slope showed an incident solitary wave disintegrating into
several trains of solitary waves of decreasing wavelength.

Meanwhile, the 2D numerical model was applied in coastal engineering
practice to the case of the solitary waves. The first computations were done in
the port of Fecamp (a French port on the English Channel). All the

computational tests were carried out without any bottom friction, so there was

* The fractional step, finite difference method was used to compute the effect of the advective
terms in the first step and the friction terms in the second step.
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no damping to cause attenuation of the computed waves. Furthermore,
Hauguel made no 2D comparisons between his numerical solutions and

analytical solutions or laboratory/field measurements.

Liu et al. (1985) converted the Boussinesg-type equations of Peregrine
(1967) from elliptic equations into a set of parabolic equations. A Crank-
Nicholson implicit finite difference method was used to discretise the new set
of Boussinesg-type equations. The resulting numerical model was applied to
the propagation of monochromatic waves together with their non-linearly
generated harmonics in a wave tank with a bottom topography that acted as a
focusing lens. Good agreement was obtained between the numerical results
and the laboratory data.

Murray (1989) presented a new set of Boussinesg-type equations with an
improved dispersion relation for a water depth up to the incident deep water
(i.e. h/L =%%2). The equations of Murray were in terms of the surface elevation
and the depth-integrated volume flux as dependent variables. A 1D version of
these equations was solved by Murray using a finite difference method with a
space-staggered grid and the alternating direction implicit algorithm. Murray
did not compare the results from his model with laboratory or field data.
Instead he compared his model results with those of Abbott et al. (1978) and
noted that there were significant differences.

In 1991, Madsen et al. also derived a set of Boussinesqg-type equations,
which was presented in terms of the free surface elevation and the depth-
integrated velocity components (i.e. volume fluxes) as the dependent
variables. As confirmed by Madsen and Sgrensen (1992), the derivation of
the equations of Madsen et al. (1991) neglected all spatial derivatives of the
seabed in the dispersion terms. For this reason, Madsen and Sgrensen
(1993) revealed that the equations of Madsen et al. (1991) should not be
applied to a variable bathymetry. Schéffer and Madsen (1995) also stated that
the equations of Madsen et al. (1991) were valid for constant depth only.

However, they were applicable up to deep water. Although the equations of
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Madsen et al. were effectively linear in deep water, the non-linear behaviour
of Madsen et al's equations was similar to that of Peregrine’s (1967)

equations in shallow water.

The equations of Madsen et al. (1991) were discretised using a time-
centred implicit finite difference scheme with variables defined on a space-
staggered rectangular grid and the solution obtained using the alternative
direction implicit (ADI) algorithm. The resulting numerical model was then
used to simulate the propagation of monochromatic and bichromatic wave
trains in a channel with a horizontal bottom. To reduce the reflected waves at
the outgoing wave boundary, a sponge layer technique was applied.
Comparisons of the results from the model of Madsen et al. and a previous
model (Abbott et al., 1978) showed that the equations of Madsen et al. were
seen to improve the solution dramatically. For the 2D case, the waves were
generated internally at the centre of the fluid domain. Absorbing sponge
layers were applied along all surrounding boundaries. The computed results
showed that circular wave patterns occurred perfectly. Finally, the model was
applied to study wave diffraction in deep water and gave excellent agreement
with the diffraction curves for wave height in the Shore Protection Manual
(1984).

Madsen and Sgrensen (1992) re-derived the standard form of the
Boussinesq-type equations of Peregrine (1967) in terms of the depth-
integrated velocity component (i.e. volume flux) instead of the depth-averaged
velocity. The resulting equations were capable of describing irregular wave
propagation over slowly varying bathymetry from deep to shallow water. A 2D
Boussinesq-type numerical model based on their equations was developed
using a time-centred, implicit finite difference scheme with variables defined
on a space-staggered rectangular grid and the solution obtained using the
ADL algorithm. The numerical model was used to simulate non-linear
refraction-diffraction waves over a semicircular shoal. Considerable scatter in
the data was evident in front of the shoal but behind the shoal the agreement

between the data and the numerical results was acceptable. Generally, the
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amplitude of the first harmonic was slightly overestimated while that of the

second harmonic was slightly underestimated.

In addition, Serensen et al. (1998) extended the Boussinesg-type
numerical wave models of Madsen et al. (1991) and Madsen and Serensen
(1992) to the surf zone and swash zone by including wave breaking and a
moving boundary at the shoreline.

Beji and Battjes (1994) extended the 1D version of the equations of
Peregrine (1967) by adding two terms into the 1D momentum equation
thereby improving the dispersion relation. A numerical model based on the
resulting equations was developed. The model was then applied to a channel
with a submerged bar. Comparisons of the model results with measured
surface elevations showed that the model was capable of reproducing the

essential features of the wave field and non-linear wave transformations.

Witting (1984) developed a new set of Boussinesq-type equations in which
the bottom velocity was the velocity variable. The governing equations were
solved using a non-staggered leapfrog finite difference method. The resulting
numerical model was used to simulate solitary wave propagation. No detailed
comparison was made with either the results from other numerical ‘models or
laboratory measurements for specific problems. By referring to analytical
solutions for solitary wave speeds and amplitudes, it was demonstrated that
the equations of Witting predicted the wave celerity more accurately than the
earlier theory of Korteweg and de Vries (KdeV) and the regularised long wave
(RLW) equations (which were an alternative form of the KdeV equations).

Nwogu (1993) introduced a novel form of Boussinesg-type equations
using the velocity at an arbitrary distance from still water level as the velocity
variable. This resulted in a significantly improved dispersion relatioh and
made the Boussinesqg-type equations of Nwogu applicable to a wider range of
water depth (h/L <0.5). A 1D version of the corresponding equations was
solved using the implicit, Crank-Nicholson finite difference scheme. The

numerical model was then applied to the simulation of regular and irregular
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waves propagating over a concrete beach with a constant slope.
Comparisons of the model results with laboratory measurements indicated
that the model was capable of reasonably simulating several non-linear
effects that occurred in the shoaling of surface waves from deep water. These
effects included the amplification of the forced lower and higher frequency
wave harmonics and the associated increase in the horizontal and vertical

asymmetry of the waves.

Wei and Kirby (1995) presented a Boussinesqg-type numerical model
based on the equations of Nwogu (1993). A high order predictor-corrector
method was used to advance the solution in time and the spatial derivatives
were discretised to a sufficient order of accuracy to avoid unwanted numerical
diffusion errors. The numerical model was then applied to several cases of
wave propagation in variable depth. Comparisons of the computed solutions
with laboratory data showed that the model was capable of simulating wave
transformation from relatively deep water to shallow water. Other
comparisons of the model results with laboratory measurements indicated
that the model gave accurate predictions of the height and shape of both
regular and irregular shoaled waves. The numerical scheme used in the work
of Wei and Kirby is later adopted to solve all the governing equations in the

present studies.

Chen and Liu (1995) re-derived the equations of Nwogu (1993) but in
terms of the velocity potential (instead of the horizontal velocity) at an
arbitrary elevation and the free surface displacement. The dispersion relation
of the corresponding equations was found to depend strongly on the choice of
a free coefficient value, as was the case for Nwogu'’s original formulation. The
modified Boussinesq-type equations of Chen and Liu contained fourth-order
spatial derivatives. This made the equations more complicated to solve in the
time domain. For this reason, Chen and Liu then applied the parabolic
approximation to the modified equations in the frequency domain. Chen and
Liu next developed 2 Boussinesg-type numerical models: (i) a small-angle,

parabolic model for waves propagating primarily in a dominant direction; and
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(ii)-an angular-spectrum, parabolic model for studying the effect of approach
directions on the oblique interaction of two identical cnoidal wave trains in

shallow water.

~ Kaihatu and Kirby (1998) presented an alternative parabolic, frequency
domain, wave transformation equation starting with the equations of Nwogu
(1993). The equation was then discretised using a Crank-Nicholson finite
difference scheme. The discretisation was similar to that used by Liu et al.
(1985). To investigate the linear characteristics of the new equation, the
linearised version of the numerical model was compared to:

¢ the measurements of Berkhoff ef al. (1982) and
o the linear parabolic mild-slope model.

The Comparison showed that the linear characteristics of the model were very
similar to those of Airy wave theory well beyond the shallow water limit i.e.
h/L > 1/20. Finally, Kaihatu and Kirby compared the numerical solutions of

their numerical model with non-linear terms included to:

e laboratory measurements in an unpublished work by Whalin (1971),
e the solutions of Liu et al.’s (1985) 2D model and

o the solutions of Chen and Liu’s (1995) 2D model.

The comparisons showed that the models of Kaihatu and Kirby and of Chen
and Liu were in better agreement with laboratory data in intermediate water
depth than the model of Liu et al..

Wei et al. (1995) derived a set of fully non-linear Boussinesg-type
equations using the velocity at an arbitrary z-level as the velocity variable. A
high order finite difference model, based on the new equations was

developed and applied to the study of two canonical problems
e  solitary wave shoaling on a slope and

e an undular bore propagating over a horizontal bed.
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Resuits of the model with strong non-linearity (i.e. fully non-linear) and without
~strong non-linearity (i.e. weakly non-linear) were compared in detail to the
solutions from a boundary element model of the fully non-linear, potential flow
problem developed by Grilli et al. (1989). The comparisons showed that the
fully non-linear variant of the Boussinesg-type numerical wave model of Wei
et al. was found to predict wave heights, wave celerities and patrticle
kinematics more accurately than the weakly non-linear wave model.

Furthermore, Nwogu (1996) extended the set of fully non-linear
Boussinesg-type equations of Wei et al. (1995) to include depth limited wave
breaking, run-up and breaking-induced currents. Nwogu achieved this by
coupling the mass and momentum equations with a one-equation model for
the temporal and spatial evolution of the turbulent kinetic energy produced by
wave breaking. A 2D numerical model based on the new equations was
developed and applied to simulate the shoaling and run-up of regular and
irregular waves on a constant slope beach and wave-induced currents behind
a detached breakwater. An iterative Crank-Nicholson finite difference scheme
was employed to solve the governing equations, with a predictor-corrector
scheme to predict the initial values. The computational domain was
discretised using a rectangular staggered grid. Comparisons of the model
results with measured laboratory data showed that it was capable of

reproducing:
(i) a highly asymmetric wave profile in the surf zone,
(ii) the breaking of individual waves in an irregular wave train,

(i) the cross-spectral transfer of energy due to non-linear wave-wave

interactions and

(iv) the decrease in wave energy through the surf zone in an irregular wave

frain.

Borsboom et al. (2000) developed a new set of Boussinesg-type
equations that was based on the depth-integrated transport of continuity and

momentum. Both mass and momentum were strictly conserved. This set of
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equations was presented in terms of the depth-integrated velocity (i.e. volume
flux). To assess the performance of these equations, a 1D numerical model
based on the equations was developed and then applied to the simulation of
a monochromatic wave train propagating over a submerged bar. The
agreement with measurements was not as good for the shorter waves behind

the bar, and for higher amplitude waves.

Yoon and Liu (1989) derived a new set of Boussinesg-type equations,
which included the effects of both depth variations and varying currents® on
weakly non-linear waves. These equations were derived by assuming the
magnitude of the current velocity to be greater than the wave orbital velocity
but weaker than the group velocity. The effects of vorticity in the current field
were considered. The depth-averaged horizontal velocity components and the
free surface elevation were decomposed into the wave and current
components. They developed a 2D numerical model based on their équations
using a Crank-Nicholson finite difference scheme. The resulting numerical
model was applied to simulate the propagation of shallow water waves over
rip currents on a uniform slope to study the effects of the non-linearity.
Comparisons of the results of the full model with those of the linearised mode!
showed that the non-linearity grew and the Boussinesqg-type equations were
fully utilised as the waves propagated into shallow water and encountered the
current. Another scenario modelled was the propagation of cnoidal waves
over an isolated vortex ring in constant depth to analyse the effects of
refraction and diffraction. Comparisons of the wave height in the focal zones
indicated that the predictions of the model with non-linear terms included
were lower than those of the linearised model. The non-linearity improved the

diffraction in which there is a transfer of wave energy in the lateral direction.

Priser and Zielke (1990) extended the Boussinesg-type equations of
Peregrine (1967) to include ambient current effects. The resulting equations

® The currents horizontal velocity varied appreciably within a characteristic wavelength.
However, the horizontal velocity components were nearly uniform throughout the entire
depth.
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were used to investigate irregular, weakly non-linear waves propagating and
refracting on an ambient current. The validity of the equations of Priiser and
Zielke was analysed by comparing their governing equations with Airy wave
theory. In the case of sinusoidal waves, these equations were valid if the ratio
of the water depth to wave length (h/L) <0.1 and Froude number (Fr) was in
the range of — 0.2 < Fr<0.2. Fr < 0 indicates waves and a current in opposite
directions. A 2D numerical model based on these Boussinesqg-type equations
was developed and used to simulate irregular waves with a current in a flume.
The model results were in good agreement with the solution of Longuet-
Higgins and Stewart (1961).

As explained above, Chen et al (1998) presented three sets of
Boussinesg-type equations for fully combined wave-current motion. Following
the approach of Yoon and Liu (1989), Chen et al. (1998) derived a set of
Boussinesg-type equations based on the depth-integrated continuity equation
and Euler equations of motion. The equations of Chen et al. and those of
Yoon and Liu were presented in terms of the depth-averaged velocity as the
velocity variable. Both formulations achieved a correct representation of the
Doppler shift with the dispersion relation corresponding to a Padeé [0,2]
approximation in terms of (kh). When the current vanished, both sets of
equations reduced to those of Peregrine (1967) in terms of the depth-

averaged horizontal velocity.

The next advance by Chen et al. (1998) was to re-formulate their
equations by replacing the depth-averaged velocity with the velocity at an
arbitrary elevation as the velocity variable. The elevation was expressed as a
proportion of the depth. Consequently if the depth was varying in space, so
too was the elevation at which the horizontal velocity was defined. This
resulted in a new set of Boussinesqg-type equations with a correct Doppler
shift in which the dispersion relation corresponded to a Padé [2,2] expansion
in terms of (kh). These equations reduced to those of Nwogu (1993) for the

wave only case.
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The third and last development by Chen et al. (1998) was to extend these
equations by introducing four new free coefficients (B1,B2,y1,y2) < O(1) into the
governing equations thereby improving the dispersion relation. The resulting
equations had a dispersion relation corresponding to a Padé [4,4]
approximation in terms of (kh). This development technique followed the
approach of Schéffer and Madsen (1995). In the case of pure wave

propagation, these formulations reduce to those of Schéffer and-Madsen.

Chen et al. solved a 1D version of their third set of equations using an
implicit finite difference method with a space-staggered grid. The governing
equations were discretised using a fourth-order centred finite difference
approximation for the first-order spatial derivative terms and second-order
centred finite difference approximations for the second- and third-order spatial
derivative terms. This numerical approach was adopted from the work of Wei
et al. (1995). At the outgoing wave and outflow boundaries, the Sommerfeld

radiation condition (i.e. m,+Cn,=0) and the sponge layer technique

introduced by Larsen and Dancy (1983) were combined to radiate long waves
and dissipate unwanted currents. In the case of pure current motion,
comparisons of the results of the Boussinesg-type numerical model of Chen
et al. with those of the numerical model for the steady, non-linear shallow
water equations gave excellent agreement. For fully coupled, wave-current
motion, wave envelopes determined from the results of the numerical model
for wave action conservation equation were compared with those of the

Boussinesqg-type numerical model.
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2.3. Derivation of the equations of Boussinesq (1872)

Unlike the Boussinesg-type equations, the original Boussinesq equations
developed by Boussinesq (1872) can be obtained directly without passing
through non-dimensional forms. These Boussinesq equations consist of the
continuity equation and two horizontal momentum equations, and are only
applicable to a horizontal bottom. The basic idea can be explained as follows.

Consideration of incompressible inviscid fluid flow, the governing equation

is given by the 3D continuity equation as
Veu+w, =0 2.1)

where V is the 2D operator as defined as V =(0/6x,0/0y), u=(u,v) is the
horizontal velocity, w is the vertical velocity and the subscript z again denotes
partial differentiation with respect to the z-direction. The dynamic free surface
boundary condition and kinematic boundary conditions at the free surface

elevation and seabed are respectively

p=pa at z=n(x,y.t) (2.2)
N, +UeVn=w at z=n(xy,t) (2.3)
w+ueVh=0 at z=-h(x,y) (2.4)

where surface tension has been neglected, pa is atmospheric pfessure and
the subscript t denotes partial differentiation with respect to time.

The unsteady Bernoulli equation can be expressed as
d>,+%(u2+w2)+g+gz=0 (2.5)
P

where @ is the velocity potential.

For an irrotational flow, the curl of the velocity vector v [where v = (u,w)]

must be zero

V x v =0 = (Wy— V2)i + (Uz — Wx)j + (Vx - Uy)K (2.6)
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where V is the 3D operator defined by V =(8/6x,0/dy,6/6z). The curl of the
~ velocity vector is a measure of the vorticity. The velocity vector can therefore

be conveniently represented as
u=vo, wW==0: 2.7)

The continuity equation (2.1) and the irrotationality condition (2.6) can be

combined to form the Laplace equation
VeVd(x,y,zt)+D,,(xYy,2t)=0 (2.8)
Similarly, the kinematic boundary conditions become

N +VOeVn=0, at z=n(xy.t) (2.9)

D, +VPeVh=0 at z=-h(x,y) (2.10)
and the unsteady Bernoulli equation becomes

q>,+g[(v¢)2+(q>z)2]+%+gz=o (2.11)
The Bernoulli equation (2.11) can be applied at the water surface and is

O, +2[(VD)? +(0,)?]+ 2 +gn=0 at z=n(xy,t) 2.12)
p

Equation (2.12) is the new free surface, dynamic boundary condition in terms
of the velocity potential ®. The fluid is assumed to be at atmospheric pressure
i.e. pa=0. As a result, the free surface, dynamic boundary conditions [(2.2)
and (2.12)] then become

p=0 at z=n(xy.t) (2.13)
@, + 1 [(VO)* +(®,)*]+gn =0 at z=n(xy,b) (2.14)

Applying the V operator to equation (2.14) then allows this equation to be

recast in terms of u

u, +(ueViu+wvw +gvn =0 at z=n(xy,t) (2.15)
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By the use of the kinematic, bottom boundary condition for a horizontal

bottom ®, =0 at z=-h, the Laplace equation (2.8) is integrated twice with

respect to z leading to
@@y@o=¢uyAuy¢:ﬁwuv¢uyznhmz (2.16)

As reported by Dingemans (1997), the principal approximation now consists
of the observation that for shallow water, the horizontal velocity V® is not
much different from the velocity at the bottom V®»,, where ®u(xy,t) =
d(x,y,—-h,t) is the value of the velocity potential at the bottom. The horizontal
acceleration is also assumed to be nearly equal to its value at the bottom i.e.
VeV® = VeV, Equation (2.16) can be solved as

D(x,Y,2,t) = Oo(x,y,t) - (z ‘; h)?

VeVdy (2.17)
Substitution of the approximation (2.17) into equation (2..1 6) leads to

VeVDy+

D(x,y,2,1) = do(x,y,t) - (z; h)

(z:m VA(VeVOR)  (2.18)

The approximation (2.18) can be re-written in terms of the velocities u=V®

and w =@, (again assuming the seabed to be flaf), that is

u(x,y,t) = VO(X,y,2,t) = us(x, y,t) - (z ; :1)2 V(Veus)+ L‘-"—:;—?—):V[VZ(V o )]
C (@219)
w(z,t) = D,(x,y,z,t) = ~(z+h)Veup + ——"— (z+h)° VZ(V e tb) (2.20)

31

where again us is the horizontal velocity vector at the seabed. Substituting the
approximations (2.19) and (2.20) into the kinematic and dynamic boundary
conditions at the free surface elevation [(2.9) and (2.15)] and retaining the
derivatives up to the third-order gives the set of original Boussinesq equations

as
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N, +Use VN +(n+h)(Veus)=<h*V?(Veus) (2.21)
Us, +(Us e V)ub + gV =2 h*V(Veus,) (2.22)

The original Boussinesq equations can be presented in non-dimensional
forms by making use of the non-dimensional variables defined in Section
2.4.1 below. Substitution of equations (2.31) and (2.32) into equations (2.9),
(2.15), (2.19) and (2.20) leads to the following non-dimensional equations

N'p+eu's V' '—iz w'=0 at zZ'=¢n/ (2.23)
. H
u',+g(u'eV’ )u'+i2 w'V'w'+Vin'=0 at z’=¢n’ (2.24)
u
AV 1, Wt 4 )
TP (Z—;r:)—v'(v'-u'm ut (i%“‘-)—v' [V'2 (V'eur's)] + O(1®)
' (2.25)
‘ 1, )3
w's —p?(Z'+h"V'eu's + p* %—)—V'z (V'eu's) + O(u®) (2.26)

where V' = (8/6x’,6/0y'). Substituting the non-dimensional velocities [(2.25) and
(2.26)] into the non-dimensional kinematic and dynamic boundary equations
at the free surface elevation [(2.23) and (2.24)] and assuming
O(g) = O(u?) << 1 to give the non-dimensional forms of the original Boussinesg
equations

', +eU's o V''+(en'+h')(Vieu's)— p? th® V' (V'eu's) = O(ep®,u*) (2.27)
Wop +8(Uoe VU's + V''—p? 1h2 V' (Vo' ) = O(ep?, ) (2.28)

it is clear that only terms up to O(e,u?) are retained in equations (2.27) and

(2.28). If the primes are dropped, these equations become

N, +EUs e Vi +(en+h)(Veur)~p? 1h*V? (Ve us) =O(ep®,n*)  (2.29)
Us, +(Ub e V)b + V1) — 2 Th2V(V eup, ) = O(ep?,n*) (2.30)
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2.4. Derivation of the equations of Peregrine (1967)
2.4.1. Non-dimensional variables

Two important length scales are the characteristic water depth hen for the
vertical direction and the typical wavelength Lo for the horizontal direction.
For effects due to the motion of the free surface, the typical wave amplitude

ach is an important length scale. The parameters € =aw/hen and p=hen/Len
are measures of the non-linearity and frequency dispersion respectively, and

are assumed to be small i.e. O(g) << 1 and O(u) << 1. The independent, non-

dimensional variables are defined as follows

=X yo¥ g % p_NGhe, 2.31)
Len Len hen Len

where agaih g is the gravitational acceleration and primes are used to denote
non-dimensional variables. However, the definitions of the dependent, non-
dimensional variables adopted here follow those used by Nwogu (1993)
rather than those used by Peregrine (1967). The dependent, non-dimensional

variables are defined as follows

' u ' \" ' 1

u'= , V= , W= w (2.32a)
nghm 8\/ghoh €+/ghen

p= =t =P ' ' (2.32b) -
ach hen "~ pgacn

2.4.2. Continuity equation and Euler equations of motion

The governing equations for an inviscid, incompressible fluid in motion are

the continuity equation and Euler equations of motion

‘'Veu+w,=0 (2.1)

u, +(ue Viu+wu, +1Vp =0 (2.33)
P
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wt+(UoV)w+wwz+1p;+g=0 | (2.34)
S o) .
where u=u(xy,zt), u=(u,v), w=w(x,y,zt) and p = p(x,y,z,t).

2.4.3. Boundary conditions

The fluid motion must satisfy the dynamic boundary condition at the free
surface and the kinematic boundary conditions at the free surface and seabed

p=0 at z=n (2.13)
wW=m,+UeVn at z=n (2.3)
w=-ueVh ' at z=-h (2.4)

where n=n(xy,t) and h=h(x,y). The irrotationality condition (2.6) can be

written as
u,-Vw =0 (2.35a)
u, -v, =0 (2.35b)

where subscripts x and y denote partial differentiation with respect to the x-
and y-directions respectively.

2.4.4. Depth-integrated continuity and momentum equations

The depth-integrated continUity equation can be obtained by integrating
the continuity equation (2.1)‘from the seabed to the free surface elevation and
applying the kinematic boundary conditions [(2.3) and (2.4)], that is

N +VeQ=0 (2.36)

where Q= J’:'hudz and Q=Q(x,y,zt). Similarly, the depth-integrated

momentum equation is obtained by integrating the horizontal momentum
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equation (2.33) from ~h to n and applying the dynamic and kinematic
~ boundary conditions [(2.13), (2.3) and (2.4)]. This results in

2 [udzewen fusze v [pcz-pl ,wl-0 @3

Alternatively, by following Phillips (1977), both Nwogu (1993) and Chen et al.
(1998) expressed the depth-integrated momentum equations as defined by
equations (2.38) instead of (2.37).

0 0 0 1¢ 0
gj_:u dz+&j_:u2 dz+5;.[:uv dz+;[& ['pdz-p|_,h,]=0

(2.38a)

0 0 0 10
-ét—ﬂv dz+&[:uv dz+5y—.[:v2 dz+3[5—y— _[:pdz—plzz_hhy]=0

(2.38b)

2.4.5. 1D horizontal equations

Using the non-dimensional variables defined by equations (2.31) and
(2.32), equations (2.1), (2.33), (2.34), (2.13), (2.3), (2.4), (2.35a) and (2.36)
can be converted into non-dimensional forms. After non-dimensionalising and
dropping the primes, for one-dimensional horizontal equations, these
equations become (2.39) through to (2.46)

Governing equations:

p?u +w, =0 (continuity) (2.39)

p2u, +epluu, +ewu, +p2p, =0 (x-momentum) (2.40)
82

EW, +ETUW, +—WW, +ep, +1=0 (z-momentum) (2.41)
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Boundary -conditions: .. .

p=0 at z=e¢n (2.42)

W = p’n, +eplun, at z=gen (2.43)

w =—p’uh, at z=-h (2.44)

u,-w, =0 ~ (irrotational flow) (2.45)
and

n,+Q, =0 (depth-integrated continuity) (2.46)

where Q=f:udz, u=u(xzt), w=w(xzt), p=p(x,z,t), n=n(x,t) and

h = h(x)

2.4.5.1. First-order 1D horizontal equations

Following the perturbation approach by Dingemans (1997), the dependent

variables n, u, w, p and Q are expanded as a series
f(x,z,t) = fo(x,z,t) + ef1(x,z,t) + €¥f3(X, 2, t) +... (2.47)
with all fi =>b(}1).-- |
Equation (2.41) can be stated as
po, +1=O(ep?) (2.48)
Integrating equation (2.48) over z to give
po = -z +0(ep?) (2.49)

The first-order form of the vertical Euler equation of motion (2.41) is ps, =0,

so that

p1=ci(x,t) (2.50)
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where c: is an integration constant and found from the first-order form of the

dynamic, free surface boundary condition (2.42), that is

po+ep1=0 at z=gem (2.51)
Substitution of equation (2.49) into (2.51) leads to

p1 =1 (2.52)
The first-order form of the irrotational condition (2.45) is u1, =0 and so

ur = Ui(x,t) . (2.53)

where U1 is an integration constant and obtained by integrating the first-order
form of equation (2.39) for the continuity equation from —h to z and applying
the first-order form of equation (2.44) for the kinematic, seabed boundary

condition to give
2
wi=—p?[(h+2z)U1], (2.54)

The depth-integrated continuity equation (2.46) and the horizontal momentum

equation (2.40) in the first-order forms respectively become
n, +Qi, =0 (2.55)
Uy +11, =0 (2.56)

where Q1 =hU.

2.4.5.2. Second-order 1D horizontal equations

The second-order vertical Euler equations of motion is
gp2, = — W1, (2.57)

Substituting equation (2.54) for wi into equation (2.57) and integrating over z

to give

2 2
m=m+%qmwh+%g£wn (2.58)
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where cz is an integration constant and obtained from the second-order form

of the dynamic, free surface boundary condition (2.42), that is
po+¢ep1+&’p2=0 at z=¢’n2 (2.59)

Substitution of equations (2.49) for po, (2.52) for p1 and (2.58) for pz into (2.59)

gives
C2=m2 ~ (2.60)

As a result, equation (2.58) can be re-written as
u? u?
pz =m2 +?Z(hU1t)x+—8—%ZzU1xt (2.61)
The second-order form of the irrotational condition (2.45) is

Uz, = w, (2.62)

z
€

Substituting equation (2.54) for w1 into (2.62) and integrating over z to obtain
2 2
uz =Uz— £ z(huy), -E-12%U1, (2.63)
€ €

where Uz is an integration constant and function of (x,t). The second-order
form of the depth-integrated continuity equation (2.46) and of the horizontal

momentum equation (2.40) are

M2, +Qz, =0 . (2.64)

Uz, +e&utls, +p2, =0 : (2.65)
Expressions for Q1 and Q2 can be found from the definition of Q

Qi+£Qe= [ (u1+2u2) dz - (2.66)

Substituting equations (2.53) for u1 and (2.63) for uz into (2.66) to give
Qi =hUs (2.67)
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2
Qz=hUz+n1U1+%[%h2(hU1)xx ~1h%Un,] (2.68)

The first-order depth-integrated continuity equation (2.55) and the first-order
horizontal momentum equation (2.56) become

m, +(hth), =0 ‘ (2.69)
Uy, +m1, =0 : (2.70)

and the second-order equations (2.64) and (2.65) become
2
N2, +(hU2), = — (mUy), - E=[2h2(hUy),, —1h%Us, ], (2.71)
€

Uz, + e, +m2, =0 : (2.72)

The first- and second-order equations are therefore combined by adding ¢
times the second-order equations to the corresponding first-order equations.

This results in
(1 + £n2), + (hUs + ehUz2), + e(mly), = —p[1h*(hUy), —3hUs ], (2.73)

(Ur+eU2), + el + (mi+em2), =0 (2.74)

2.4.5.3. 1D horizontal equations in terms of U
Equation (2.69) can be written in terms of Qi and Qz as

(m+en2), +(Q1+eQ2), =0 (2.75)
where

Q1+£Qz = hUs + ehUz + eniUr + pf 2 h?(hU9),, —+h'Un, ] (2.76)

The depth-averaged horizontal velocity u is defined as

gU(x,t) = h—1— ) ‘h”u(x, z,t)dz (2.77)
+€&n
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therefore
Qi+eQz=(h+en)u (2.78)
hU = Qi—emlUr+ Q2+ O(e?) (2.79)

Substitution of equation (2.76) into (2.79) leads to

U = Us+eUz + p?[Sh(hU),, - +h?Un, ] (2.80)
or B

Ui+ eUz = T - p*[Sh(hT),, ~+h?T, ] (2.81)

From equation (2.81), it is clear that UiUy =TT, +O(e?). Substituting

equation (2.81) into equations (2.73) and (2.74) gives the 1D Boussinesqg-type
equations of Peregrine (1967) in terms of the depth-averaged horizontal

velocity u as

N, +[(h+en)u], =0 (2.82)

T, + 60T, +1, = p2[2h(hT,) — +h?Te] + O(ep?, 1) (2.83)

2.4.5.4. 1D horizontal equations in terms of U
| The horizontal velocity at z =0 is defined as
li(x,1) = u(x,0,t) ) (2.84)

Considering equations (2.53) for u: and (2.63) for uz, u(x,zt) can be

expressed as
u(x, z,t) = eui(x, z,t) + e°uz(x, z,t)
= gUn(x, 1) + £2U2(x, 1) — ep?[2(hU1) o —22%U1,, ] (2.85)
Substitution of z = 0 into equation (2.85) gives the expression for U

U=Ui+gU2 (2.86)
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Substituting equation (2.86) into (2.73) and (2.74) gives the 1D Boussinesg-
type equatidns of Peregrine (1967) in terms of the still water level horizontal

velocity U as
M, +[(h+en)il], = -p?[3h?(hl) —h°Te ], + Ofen®,n) (2.87)
U, +eUU, +n, = O(ep?,pn*) (2.88)

2.4.6. 2D horizontal equations

In the two-dimensional horizontal plane, the derivation of the Boussinesg-
type equations of Peregrine (1967) follows the same lines as the 1D case in
Section 2.4.5. Instead of equations (2.39) through to (2.46) in one-dimension,
the two-dimensional analogues are written below with vector quantities such

as u = (u,v) written in bold letters.

Governing equations:

WVeu+w, =0 (2.89)

p2u, +ep’(ue V)u+ewu, +u’vp=0 (2.90)
82

eW, +E2(Ue V)W +—WW, +&p, +1=0 (2.91)
u

Boundary conditions:

p=0 at z=en (2.92)
w = p’n, +ep’(ue Vn) at z=¢gn (2.93)
w = —p*(ue Vh) at z=-h (2.94)

Irrotational conditions:
u,-vw =0 (2.95a)

=0 (2.95b)
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Depth-integrated continuity equation:

N, +VeQ=0 | | (2.96)

where Q = f:’udz, u=ux,y,zt), w=w(xy,zt), p=p(x,y,zt), n=n(x,y.t)

and h =h(x,y). The dependent variables n, u, w, p and Q are then expanded

as
f(x,y,z,t) = fo(x,y,z,t) + efs(x,y, Z.t) + £*fa(x, y,Z,1) +... (2.97)
where all fi = O(1).

Equations (2.53) for u1 and (2.63) for uz are converted to two-dimensional

forms

ui(x,y,z,t) = Ui(x,y,t) (2.98)
2 2

uz =Uz - £ 2v[v e (hU)]-E-122V(V e Uy) (2.99)
€ €

The 2D equivalent of equation (2.85) for u becomes
u(x,y,zt) = eu(x,y,z,t) + e®uzAx,y, z,t)
= eUi(x,y,1) + €2Uz(x,y,t) —ep{ZV[V ¢ (hU)] - 1 2*V(V e Un)}
(2.100)

The 2D version of the combined first- and second-order 1D depth-integrated
continuity equation (2.75) becomes

(m+en2), +Ve(Qi+£Q2) =0 (2.101)

In the same way, the 2D version of the 1D horizontal momentum equation
(2.74) becomes

(Ui+el2), +e(U1e VIUi+ V(1 +en2) =0 (2.102)
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2.4.6.1. 2D horizontal equations in terms of i

Introducing &ti(x,y,}) = u(x,y,0,t) and substituting into equation (2.100)

gives

u(x,y,t) = U(x,y, t) + eUzAx,y, t) (2.103)
thus

Q1+£Qz = hii + enli+ p?{Fh?V[V o ()] - 1h°V(V « )} (2.104)

Equations (2.103) and (2.104) are substituted into equations (2.101) and
(2.102) to give the 2D Boussinesqg-type equations of Peregrine (1967) in

terms of the still water level velocity U (i.e. u at z=0)

1, + Ve [(h+en)id] = - w*V{Zh?V[V e (hl)] - $h°V(V o )} + O(ep?, 1)

(2.105)
U, +e(e V)ti+Vn=0(u?,p*) (2.106)
In dimensional variables, equations (_2.105) and (2.106) are
N, +Ve[(h+n)l]= -v{ghzv_[v o (hi)] - +h*V(V « )} (2.107)
U, +(UeV)i+gvn=0 (2.108)

2.4.6.2. 2D horizontal equations in terms of U
The 1D equations (2.78) and (2.81) can be converted into the 2D forms
Qi+eQz=(h+en)u (2.109)
Ur+eUz =T - p?ShV[Ve (hT)]+ p? Th?V(Ve ) (2.110)

Substituting equations (2.109) and (2.110) into equations (2.101) and (2.102)
leads to the 2D Boussinesqg-type equations of Peregrine (1967) in terms of

the depth-averaged horizontal velocity u
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N +Ve[(h+en)u] =0 2.111)

U, +e(Ue V)U+Vn=p?{ZhV[Ve(hu,)]-th*V(VeT,)} +O(en®,pn*)

(2.112)

In dimensional quantities, equations (2.111) and (2.112) are
N +Ve[(h+n)u]=0 (2.113)
u,+(UeV)u+gVn =%hV[Vo(hﬁ,)]—%h2V(V-ﬁt) (2.114)
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Chapter Three

1D Basic Model

3.1. Introduction

In recent investigations, Boussinesg-type equations have been developed
to enable the prediction of the shape of waves as they propagate from deep
water to shallow water. Peregrine (1967) derived two sets of Boussinesq-type
equations for water of varying depth, which were able to describe the non-
linear transformation of irregular, multi}dir}ecti}onal waves in shallow water.
These formulations were based on the Euler equation of motion and the
depth-integrated equation for the conservation of mass of an incompressible,
inviscid fluid. .

Nwogu (1993) developed a new approach in the derivation of a novel set
of Boussinesq-type equations that were expressed in terms of the velocity at
an arbitrary elevation or z-level as the velocity variable. This was in contrast
to the commonly used depth-averaged velocity, which was used in the
standard form of the Boussinesg-type equations derived by Peregrine (1967),
or depth-integrated velocity components (i.e. volume flux) as developed, for
example by Abbott et al. (1978), Madsen et al. (1991) and Madsen and
Sarensen (1992). Numerical experimentation to determine the wave celerity
error in the linearised formulations of Nwogu showed that Nwogu’s equations
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were applicable to incident deep water waves. (i.e. h/L = 2) with a particular
value of «, where a =0.5(z«/h)? +z./h (Figures 3.2, 4.1 and 4.2). z. defines

the elevation of the horizontal velocity. A Crank-Nicholson implicit finite
difference scheme was employed by Nwogu together with a predictor-
corrector method to estimate the initial values of the dependent variables

when advancing each time step.

Nwogu demonstrated that the water surface elevation of a regular wave
train and the surface elevation spectra of irregular wave trains were well
predicted. Although the effect of bottom friction was not included in Nwogu’s
model, comparisons of Nwogu’s numerical model results and laboratory data
seemed to indicate that bottom friction was not an important factor for the
extent of the concrete beach, wave conditions and beach slope used in

Nwogu’s experiments.

Subsequently, Wei and Kirby (1995) developed a high order numerical
scheme for Nwogu’s formulations. A fourth-order predictor-corrector method
was used to advance the sblution in time and the spatial derivatives were
discretised to a sufficient order of accuracy to avoid contamination of the
second- and third-order spatial derivatives in the governing equations by the
truncation errors. For the 1D version of the numerical model, Wei and Kirby
also showed good predictions for the simulation of solitary waves propagating
over a very long, flat bottom and for the simulation of random waves evolving
on a slope. In another investigation of the 1D version of the numerical model
reported in the same reference, they studied random waves propagating over
a channel with a slope. Comparisons of the numerical model results with
laboratory measurements showed that the numerical model reproduced the

waveform quite well.

In spite of the equations of Nwogu (1993) having been solved by Nwogu
and by Wei and Kirby (1995), these equations are still of interest to study. In
the present study, the 1D version of the Boussinesqg-type equations derived
by Nwogu (1993) is discretised by the present author using the numerical
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approach used by Wei and Kirby (1995). However, the boundary conditions,
which are determined here, are different to the boundary conditions in the
work of Wei and Kirby (1995). A comparison of the differences in the
approaches taken by various investigators can be found in Table 3.1.

accurate finite difference
schemes for spatial
derivatives. Third-order

Investigators Nwogu (1993) Wei and Kirby (1995) Mera (present study)
Governing Nwogu (1993) Nwogu (1993) Nwogu (1993)
equations

Numerical Crank-Nicholson and Wei and Kirby (1995) Wei and Kirby (1995)
scheme Predictor-Corrector (Fourth- and second-order (Fourth- and second-order

accurate finite difference
schemes for spatial
derivatives. Third-order

spectrum

predictor & fourth-order predictor & fourth-order
corrector schemes for time corrector schemes for time
integration) integration)
Incoming wave | 1) Regular waves: 1) Regular waves: Regular waves:
boundary sinusoidal sinusoidal sinusoidal
condition monochromatic waves monochromatic waves monochromatic waves
2) Random waves: 2) Random waves:
JONSWAP spectrum Pierson-Moskowitz

relating to the
outgoing wave
boundary
condition

Outgoing wave | Sommerfeld radiation Engquist and Majda Sommerfeld radiation
boundary condition (1977) condition

condition

Other Not discussed Damping terms added to | Sommerfeld radiation
explanation the momentum equation | condition is discretised

explicitly and implicitly.

Test cases

1) Monochromatic wave
propagation over a
sloping bed.

2) lrregular waves.

1) Solitary wave
propagation over a flat
bottom.

2) Random wave
evolution on a slope.

1) Monochromatic wave
propagation over a
sloping bed.

2) Monochromatic wave
propagation over a
submerged bar.

Table 3.1. Differences between the current and previous research studies.
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At the incoming wave boundary, the free surface elevation is varied
sinusoidally with time and the horizontal orbital velocity is obtained by
considering a small amplitude, periodic wave. The Sommerfeld radiation
condition is then discretised explicitly and implicitly by the present author to
estimate predicted and corrected values of the free surface elevation at the
outgoing wave boundary. Meanwhile, by substituting the Sommerfeld
radiation condition and a small amplitude, periodic wave into the continuity
equation with a locally constant. depth, the horizontal velocity at the outgoing
wave boundary is obtained. In this way, implementing non-reflecting wave
boundary conditions, which use a sponge or damping layer, are not needed.

Finally in this chapter, an alternative numerical model is developed herein
and is referred to as 1DBMW-1. This model is run for two experimental set-
ups in which wave shoaling is significant. The first set-up considered is the
propagation of regular waves over a constant slope. The second set-up
modelled is of a regular wave train propagating in a channel with a

submerged bar.

3.2. New derivation of the equations of Nwogu (1993)

Nwogu (1993) proposed a set of Boussinesg-type equations applicable to
the horizontal propagation of regular or irregular, multi-directional waves in
water of varying depth. Using the non-dimensional governing equations and
boundary conditions for an inviscid, incompressible fluid motion (Section 2.4),
the present author derives the equations of Nwogu (1993) as follows (see
Figures 1.4 or 3.1).
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Euler equation of motion

Substitute irrotationality condition »

Euler equation of motion with the
irrotationality condition

Substitute pressure with dynamic & kinematic bcs »
Retain terms up to O(e,u?) »

BT o T e Lt e e o ]

- ‘imogus (1993) mo?iermn

1 denotes a new derivation by the present

Legend: | - - author for the existing equations

Figure 3.1. New derivation of Nwogu's (1993) momentum equation.

In the work of Nwogu (1993) and Chen et al. (1998), the Boussinesg-type
momentum equations were obtained from the depth-integrated momentum
equation (2.37) [or (2.38)]. This depth-integrated momentum equation was
obtained by integrating the horizontal Euler equation of motion (2.90) and
applying the boundary conditions for the free surface and seabed [(2.92)
through to (2.94)]. Based on the non-dimensional variables defined by
equations (2.31) and (2.32), equation (2.37) can be written in non-

dimensional form as
0 ren en en
EL‘udz+s(ro)J'_hudz+VJ'_hpdz—p|z=_th=0 3.1)

where the primes have been dropped. The resulting equation (3.1) becomes
difficult and complicated when applied to derivations of Boussinesq-type
equations with higher order terms than those with terms of O(g,p?) included.
Consequently, a different approach is developed in this study in which the
irrotationality condition (2.95a) is applied to the horizontal Euler equation of

motion (2.90) to give
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U, +e(Ue V)U+—WVW +Vp =0 ‘ (3.2)
v S

The Boussinesqg-type momentum equation is then obtained directly from
equation (3.2) instead of from the depth-integrated momentum equation such
as equation (3.1). The boundary conditions at (i) the free surface and (ii) the
bed will now be incorporated into the pressure and vertical velocity terms in

equation (3.2).
(i) Free surface boundary conditions:

Integration of the vertical Euler equation of motion (2.91) from z to en leads to
an expression for pressure. The dynamic and kinematic boundary conditions
at the free surface [(2.92) and (2.93)] are subsequently incorporated into the
equation of pressure and this results in

Z 0 ¢= en € 2
p=n—g+5jz wdz+e(ro)L wdz—Fw (3.3)

(i) Bed boundary condition:

An expression for the vertical velocity w is obtained by integration of the
continuity equation (2.89) from the seabed to z. Subsequent substitution of
the seabed kinematic boundary condition (2.94) leads to

W=-p?Ve j_‘hu dz (3.4)

Equation (3.4) is also utilised in the work of Nwogﬂ (1993) and Chen et al.
(1998).

The horizontal velocity of the fluid is expanded as a Taylor series with

respect to the arbitrary level velocities u« = u(x,y,z.,t) instead of the seabed

velocities u» = u(x,y,-h,t) as utilised by Nwogu.
u(x,y,z,t) = U(X, Y, Zo, t) + (Z = Za)U, (X, ¥, Za, 1) + 3 (Z — Za)°U, (X, ¥, Ze t) + ...

=Us +(Z — Za)Ua, +5(Z = Za) Uay, +... (3.5)
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The vertical velocity equation (3.4) can be written as
W =-—p?Velu(z+h)]
=-p?[zVeu+Ve(hu)] (3.6)

Making use of equation (2.95a) (i.e. u, = Vw ) for the irrotationality condition,

u; and u,; can be obtained as

u, = - p?{zV(Veu) + V[V e (hu)]} ' (3.7)
and

u, =-pu*V(Veu) (3.8)
Evaluating the horizontal velocity in equations (3.7) and (3.8) at z = z. gives

Ua, = — p?{ZaV(V e o) + V[V o (hua)]} (3.9)
and

Ue,, =—p’V(Veu) (3.10)

Substituting equations (3.9) and (3.10) into (3.5) leads to the horizontal:

velocity as
U = U — p?(2 = z2){ZaV(V o Ua) + V[V o (huo)]} - 1? 2(2 = Z2)* V(V o Ua) +..
= Ue+ p?{Ta — 2 22V(V o us) — 2V[V o (hua)]} + truncation error  (3.11)
where
o = 22a°V(V e Ua) + ZaV[V o (hua)] (3.11a)

Substituting equation (3.11) into (3.4) for w and retaining terms of O(p?) gives

the vertical velocity, that is

W =—p?[zV e U+ V o (hua)] + O(n*) (3.12)
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The truncation error for equation (3.11) can be determined by integrating
~ the irrotationality condition (2.95a) from z. to z. This reads

U—Ua = j:vW dz (3.13)

Substitution of equation (3.12) into (3.13) leads to
U=Us+p*{Ta-222V(Ve Ue)—2V[V e (hua)]} +O(u*) (3.14)

The ‘spirit’ of the classical Boussinesq-type equations is a balance
between O(g) (non-linearity) and O(n?) (frequency dispersion), which these
terms are small, i.e. O(g) = O(u?) <<1. With this in mind, the pressure field is
then obtained by inserting equation (3.12) for w and (3.14) for u into equation
(3.3) for p and retaining terms up to O(g) and O(u?). This leads to

p=n-Z+2[2°V o U, + 2V o (huie)]+ Ofen® 1*) (3.19)
€

With terms up to O(g) and O(u?), equations (3.14) and (3.15) show that the
horizontal velocity vector and pressured field vary quadraticaily through the

water column.

Substituting equation (3.14) for u into the depth-integrated continuity
equation (2.96) and retaining terms up to O(g) and O(pZ) leads to equation
(3.16). Substituting equations (3.12) for w, (3.14) for u and (3.15) for p into
equation (3.2) and retaining terms up to O(g) and O(p?) gives equation (3.17).

1, +V o [(h+enua) + p2V o (h[) = O(su?, u*) (3.16)

U, + V1 +&(Ua ® V)Uo + pn?Ta, = O(ep?,pu*) (3.17)
where T« is defined by equation (3.11a) and

T =Ta—1h*V(V e ua) +12V[V ¢ (hua)] (3.18)

Equations (3.16) and (3.17) are exactly the same as the set of Boussinesg-

type equations derived by Nwogu (1993)
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It can be seen that the present derivation for the equations of Nwogu is
different to the derivation of the equations of Pefegrine (1967) in Chapter
Two, wh‘ich uses a perturbation method. However, both approaches retain the
same orders in the terms of the measures of non-linearity and frequency
dispersion, i.e. up to O(a,pz). This indicates thét both formulations are

applicable for simulating weakly non-linear waves.

The continuity and momentum equations respectively [(3.16) and (3.17)]
can be expressed in 1D dimensional form as

N+ [0+ Mua], + (3 2o = 2 )(BUag ), +(2ea +3)[M3(hUa) o ] =0 (3.19)
Uay + QM + Us Usy + Zo| 3 Za Uage, + (U)o ] = O (3.20)

where again the subscripts x and t denote partial differentiation with respect
to the x-direction and time respectively, n = free surface elevation, h =local
water depth, u. =horizontal velocity at an arbitrary level (z=2.) below still

water level, g = gravitational acceleration,
Za=Zca h -1<2.50 (3.21)
and

@ = 2 (Zea)? + Zea ~0.5<a<0 (3.22)

a=0 corresponds to z.«=0 and z.=0 (at still water)
o = —Y2 corresponds to zc« = —1 and z« = -h (at the bed)

(See Appendix A for definition for 1, Uq, Va, Z, Z4, X, Y).
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3.3. Review of dispersion relations

The linearised forms (non-linear terms dropped) of the 1D Boussinesg-
type equations of Nwogu (1993) for constant depth can be expressed as

M, +hta, + (o + 3 )h%ua,,, =0 (3.23)
Ua, +@N, + 0h%Us,, =0 (3.24)

Consider a small amplitude, periodic wave with the angular frequency
o =27/T and the wave number k = 2n/L, where T = wave period and L = wave

length, that is
N = na exp[i(kx - wt)], Ua = Uaa eXpi(kx — wt)] (3.25)

in which na and u«a are the amplitudes of the water surface elevation and of
the horizontal velocity respectively. Substituting equations (3.25) into
equations (3.23) and (3.24) gives the dispersion relation, which corresponds
to a Padé [2,2] approximation in terms of (kh), that is.

1- (o +1)(kh)?
1-a(kh)?

(Cr22))* = gh (3.26)

where Cpz2 is the wave celerity corresponding to the linearised equations of
Nwogu. The wave celerity Cp21 is normalised by using the celerity Caiy from

Airy wave theory, where
(Cay)? = %tanh(kh) (3.27)

Figure 3.2 shows that the normalised wave celerity for different values of a
are plotted as a function of (kh). Shallow water depth corresponds to
kh<0.1n (or h/L < 1/20) and deep water depth is kh>=n (or h/L>7). An
opt(mum value of a may be determined by minimising the wave celerity error
over the entire range of 0 < kh <=n. Nwogu obtained a value of a=-0.390
which corresponds to z. =~ 0.531h with a maximum error of less than 1 % in

Cr.2/Cairy over the entire range of 0 < kh < n. This is in contrast to the standard
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form of the Boussinesq-type equations, which had a value of o =—-1/3 and
resulted in a wave celerity error of 14 % when kh = 3.0. This confirms that the

dispersion relation of Nwogu’s equations depends strongly on the choice of

the o value.

1.20

Cr2.2/Cairy
3

0.90

0.80 T T N— r r T
0.00 0.50 1.00 1.50 2.00 2.50 3.00

kh

Figure 3.2. Effect of a (- 0.5 < < 0) on the ratio of the wave celerity corresponding to the 1D
linearised form of the equations of Nwogu (1993) over the wave celerity corresponding to Airy
wave theory. a=-0.5, a=0, a=-1/3 (or equivalently the equations by Peregrine), and
o =-0.390 (obtained by Nwogu). -

3.4. Numerical solution algorithm for the 1D basic model
(1DBMW-1)

3.4.1. Solution method

The governing equations [(3.19) and (3.20)] are solved by the present
author using a non-staggered finite difference method. The solution is
advanced in time using the third-order Adams-Bashforth predictor and fourth-
order Adams-Moulton corrector method. The first-order spatial derivatives are
approximated by a fourth-order accurate finite difference scheme. However,
the second-order accurate finite difference operators are employed to
approximate the second- and third-order spatial derivatives (see Appendix B).
The use of high order discretisation in space and time can avoid unwanted

numerical diffusion errors, which are proportional to second-order spatial
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derivatives. The numerical technique adopted here follows the approach of
Wei and Kirby (1995). Although the present model and Wei and Kirby’s model
are based on the same governing equations and numerical scheme, the
present model is to be used as a basis for comparisons with other newly

developed models in this thesis.

The dimensional Boussinesq-type continuity equation (3.19) can be

written as
1, = E(M, Ua) | (3.28)
where
E(n,Ua) = ~[(h + nua], —(F 2ea® — Uy ), — (2o +3)[N?(hua) . ],
(3.29)

The dimensional Boussinesg-type momentum equation (3.20) can be

expressed as
Uq, = F(n,Uq) (3.30)
where the variable groupings U. and F are defined respectively as

Us = Ua + Za[ 1 Za Uay + (Ua) g ] (3.31)

F(n,ua) = - gn, — Ualla, (3.32)

The steps in the model solutions process are:

e Values of n*' and the intermediate, velocity related variable U.;*' are

1

calculated directly using the third-order explicit, Adams-Bashforth three-
step predictor scheme applied to equations (3.28) and (3.30)

respectively to give

N =t + 2 A23E" —16E"" +5E2] + O(AL°) (3.33)

Ua*! = Uqf + 3 A[23F' —16F " + 5F 2], + O(At®) (3.34)
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where the time level t (superscript) refers to values at the present, known
time level. All the terms on the right hand sides of equations (3.33) and

(3.34) are known from previous calculations.

t+1
i

¢ The values of Us,"" are then used to predict the horizontal velocity at the

t+1
i

new time level u.,*' using equation (3.31). This calculation requires the

solution of a tridiagonal matrix system in which the coefficient matrix is
constant in time as prescribed by equation (3.35). This equation is easily
solved using Gaussian elimination.

r A ( 5 t+1 r 3 t+1

Coefficient
<Ua f =4 Uu > (3.35)
matrix

L - \ 7 \ /

e  The newly predicted values of n*' and us*' are then used to calculate

Ei*' and F' using equations (3.29) and (3.32), respectively.

. In the next step, the fourth-order Adams-Moulton four-step corrector is
employed to equations (3.28) and (3.30) respectively, which are written

as
Nt =n! + L AOE™ +19E" —5E'" +E*?], + O(At°) (3.36)
Ual" = Ua! + = MOF™ +19F" —5F*' +F'2], + O(At°) (3.37)

e The corrector step is repeated if the misclose between two successive
results exceeds a pre-set upper limit. The misclose in each of the two

dependent variables 1 and u. is calculated separately as defined below:

2

A= (3.38)

Z ft+1

1

fit+1 _ fi(t+1)'
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where f denotes either n or u. and ( )* denotes the previous calculation.
The corrector phase of the calculation is repeated if Af>0.001 or 0.1 %

in either n or u..

The values of the free surface elevation and horizontal velocity determined
above are for inside the fluid domain. At the boundaries, these values are

determined using the boundary conditions explained below.

3.4.2. Boundary conditions
3.4.2.1. Incoming wave boundary conditions

The free surface elevation n at the incoming wave boundary is varied

sinusoidally with time as
n= %HiCOS(kX -~ ot) (3.39)

where Hi=incident wave height. For a locally constant depth, the continuity

equation (3.19) simplifies to
Ny + U, + (0 +NUay + (a0 +3)N°Ua, =0 (3.40)

The horizontal orbital velocity u. at the incoming wave boundary can be
obtained by substituting equations (3.25) into equation (3.40) and assuming
that n << h to give

B} on
t = k= (o< 1)(kh)?] (341

Equation (3.41) automatically satisfies the Sommerfeld radiation condition

(3.42) (see next section).
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3.4.2.2. Outgoing wave boundary conditions -

At the outgoing wave boundary, a 1D non-reflecting wave boundary
condition is used to allow the passage and egress of the wave energy arriving
from within the domain. An equation, which is equivalent to the Sommerfeld
radiation condition, is applied to the present model, that is.

7 +Cn, =0 (3.42)

where C=w/k. In practice, there will be some wave reflection from the
boundary due to truncation errors, the initial transient, steep waves and the
approximation of the wave celerity for irregular waves (Nwogu, 1993).
Discretising the Sommerfeld radiation condition (3.42) explicitly gives the free
surface elevation at the predictor stage in equation (3.43) and implicitly at the

corrector stage in equation (3.44).

=t — %0(3711 _4n, +1,)' + O(AX?, At) (3.43)
and
n:"‘ = ;[411: - nﬁ" + At—- C(4n, -1, )M:] + O(sz, Atz) (3.44)
At AX
3(1 + ?&C)

where the x-axis is as defined in Appendix A.

The corresponding horizontal orbital velocity at the outgoing wave
boundary is obtained by substituting equations (3.25) and equation (3.42) into
the continuity equation with a locally constant depth (3.40) to give an
equation, which is exactly the same as equation (3.41). The set of boundary
conditions for 1DBMW(C-1 are displayed in Figure 3.3 for waves only case.
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Figure 3.3. Boundary conditions for 1DBMW-1.

3.5. Model verification

3.5.1. Experimental set-up 1: Wave propagation up a slope

Solutions from the present numerical model (1IDBMW-1) are compared
with laboratory data collected by Nwogu (1993). The basin was 30 m wide,
20m long and 3m deep with a 1:25 constant slope beach with an
impermeable concrete cover. The toe of the beach was located 4.6 m from
the wave paddle and the water depth near the paddle was 0.56 m (Figure
3.4). Two tests are conducted with an incident deepwater wave (hi/L.=0.5)

and an intermediate depth water (hi/L. = 0.36).

Paddie Wave absorber

e md f 1:25 concrete beach
0.56m
v
4~~~ 46m >4

20m >

A

Figure 3.4. Experimental set-up 1 (Nwogu, 1993): the basin terminates with a 1:25 constant
slope, concrete beach.

1D Basic Model



Chapter Three 82

Test no. 1

In the first test with experimental set-up 1, an incident deep water wave
(T=0.85s and hi/l.=0.5) propagates from the incoming wave boundary
where the depth is hi=0.56 m to the outgoing wave boundary at a depth of
0.07m (rather than zero depth). The test conditions are: Hi=0.04m,
Hihi=0.071, kihi=n, L/Ax = 28.2, T/At=50.0 and the Courant number, based
on the incident wave depth, is given by |

At
Cri=\ghi— 3.45
ghi (3.45)

Cri=1.00 (in the first test)

Figures 3.5 and 3.6 show comparisons of the measured surface elevation
with the predictions from the present numerical model at depths of 0.28 m and
0.07 m respectively. Both figures show that the results from the present
numerical model underestimate the wave height by approximately 15 %. At
the outgoing wave boundary however (see Figure 3.6), the water surface
elevation in the computational model is flatter near the wave troughs
compared to the measured waves.

003 ’ h=0.28 m

¥

Surface elevation {m)
o
o

2]
=4

300 305 310 315 320 325 330 335 340 345 350
Time (s)

Figure 3.5. Incident deep water waves (hi'Lo = 0.5): time series of the free surface elevation at
0.28 m depth predicted by the present model (bold line) and the laboratory measurements of
Nwogu (thin line). Data: T=0.85 s, Hi=0.04 m, Hith = 0.143, kihi=7 and Cri= 1.00.
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0.03 . h=0.07 m

Surface elevation (m)

300 305 310 315 320 325 330 335 340 345 350
Time (s)

Figure 3.6. Incident deep water waves (hvlo = 0.5): time series of the free surface elevation at
the outgoing wave boundary (h = 0.07 m) predicted by the present model (bold line) and the
laboratory measurements of Nwogu (thin line). Data: T=0.85s, Hi=0.04 m, H/h=0.571,
kihi=n and Cri=1.00.

Test no. 2

In the second test, also with experimental set-up 1, the shoaling of an
intermediate depth wave (T =1 s, hi=0.56 m and hv/L. = 0.36) is investigated.
The test conditions are: Hi=0.066 m, Hvhi=0.118, kihi=2.30, Lo/Ax =39.0,
T/At=58.8 and Cri = 1.00. The time series for the water surface elevation was
measured at the outgoing wave boundary (h =0.10 m) and at a water depth of
0.24 m. The results from the present Boussinesg-type numerical model and
the laboratory data at 0.24 m depth agree well as shown in Figure 3.7. In
Figure 3.8, the long wave troughs and peaked wave crests in the results of
the present numerical model based on Nwogu’s equations, is seen to capture
the general form of the non-linear waves with the long flat troughs and the

peaked wave crests.
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Figure 3.7. Intermediate depth water waves (hiLo=0.36). time series of the free surface
elevation at 0.24 m depth predicted by the present model (bold line) and the laboratory
measurements of Nwogu (thin line). Data: T=1s, Hi=0.066 m, Hvh = 0.275, kihi=2.30 and
Cri=1.00.
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Figure 3.8. Intermediate depth water waves (hilo=0.36): time series of the free surface
elevation at the outgoing wave boundary (h=0.10 m) predicted by the present model (bold
line) and the laboratory measurements of Nwogu (thin line). Data: T=1s, Hi=0.066 m,
Hih = 0.66, kihi=2.30 and Cri= 1.00.

3.5.2. Experimental set-up 2: Wave propagation in a channel with

a submerged bar

The present author also applies the present numerical model to a different
experimental set-up i.e. with waves propagating over a submerged bar in a
channel. A sketch of the bathymetry is shown in Figure 3.9. The channel is
25 m"long, 0.4 m deep on both sides of the bar and 0.1 m deep on top of the
bar. The laboratory measurements of Luth et al. (1994) (see Borsboom et al.,

2000) are used to assess the performance of the present numerical model.
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Two tests are conducted with two incident, intermediate waves hi/L. =0.063
and hi/llo = 0.251

Wave propagation
01— x=11.5m x=7 7m

0.0 s A - r |

Elevation (m)

25 20 15 10 5 X 0

Distance from outgoing wave boundary (m)

Figure 3.9. Experimental set-up 2 (Luth et al., 1994): submerged bar topography with 25 m
long channel, 0.4 m deep on both sides of the bar and 0.1 m deep on top of the bar.

Test no. 1

A train of waves with a period of 2.02 s and an incident wave height of
0.02 m propagates down the channel. The incident wave is an intermediate
depth wave with hi/l.=0.63. The computation is performed with a grid
resolution of Lo/Ax=79.6 and T/At=50.5. The Courant number at the
ihcoming wave boundary is 0.99. The}time» series for the free surface
elevation was measured by Luth ef al. on top of the bar (i.e. 11.5 m before the
outgoing wave boundary) and behind the bar (i.e. 7.7 m before the outgoing

wave boundary).

Figure 3.10 shows that the present numerical model results capture the
main features of the free surface elevation time series at the top of the bar (at
chainage x=11.5m). However, the numerical model is seen to slightly
overestimate the highest wave crests, and underestimate the early portions of
the lower wave crests. The lowest portions of the wave troughs are well

represented by the numerical model.
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Figure 3.10. Top of the bar (i.e. 11.5 m before the outgoing wave boundary): time series of
the water surface elevation predicted by the present model (bold line) and the laboratory
measurements of Luth et al. (thin line). Data: T=2.02s, Hi=0.02m, Hvh=0.2, kihi=0.67,
hi/Lo=0.06 and Cri=0.99.

Figure 3.11 displays the numerical model results on the lee side of the bar
at a chainage of x=7.7 m from the outgoing boundary. The free surface
elevation predicted by the numerical model marginally exceeds the measured

wave crests but underestimates the wave troughs.
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Figure 3.11. Behind the bar (i.e. 7.7 m before the outgoing wave boundary): time series of the
water surface elevation predicted by the present model (bold line) and the laboratory
measurements of Luth et al. (thin line). Data: T=2.02 s, Hi= 0.02 m, Hith=0.05, kihi= 0.67,
hi¥lLo=0.06 and Cri=0.99.

Test no. 2

The last test conditions for experimental set-up 2 consist of a wave train
with 1.01's period waves and 0.041 m incident wave height propagating over
the same bathymetry as displayed in Figure 3.9. The incident wave is an
intermediate depth wave with hi/lLo=0.251. The computation is performed

with a grid resolution of Lo/Ax = 19.9 and T/At=33.7. The Courant number at
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the incoming wave boundary is 0.74. As for the previous test, the time series
for the free surface elevation was measured on top of and behind the
submerged bar. Figures 3.12 and 3.13 show comparisons of the measured
and predicted surface elevations. In Figure 3.12, the results from the
numerical model and laboratory measurements show close agreement
through the wave troughs but the numerical model overestimates the wave
crests.

On the other hand, Figure 3.13 shows that th'e present Boussinesqg-type
numerical model slightly overestimates the wave crests but underestimates
wave troughs on the lee side of the submerged bar. The waves in the

numerical model are seen to be more symmetrical than the measured waves.
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Figure 3.12. Top of the bar (i.e. 11.5 m before the outgoing wave boundary): time series of
the water surface elevation predicted by the present model (bold line) and the laboratory
measurements of Luth et al. (thin line). Data: T=1.01s, Hi=0.041 m, H/h = 0.2, kihi= 1.69,
hi/Le = 0.25 and Cri=0.74.
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Figure 3.13. Behind the bar (i.e. 7.7 m before the outgoing wave boundary): time series of the
water surface elevation predicted by the present model (bold line) and the laboratory
measurements of Luth et al. (thin line). Data: T=1.01s, Hi= 0.041 m, Hi’h = 0.05, kihi= 1.69,
hi’lLo =0.25 and Cri=0.74.
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3.6. Conclusions

A new approach for deriving the Boussinesqg-type momentum equation is
introduced by the present author. This is done by applying the irrotationality
condition to the horizontal Euler equation of motion. The present derivation is
formulated directly at the arbitrary z-level velocity. In contrast, in the work of
Nwogu (1993), the derivation was first directed through the bottom velocity,
and then converted to the velocity at an arbitrary z-level. Although the present
and Nwogu's derivations are different, the resulting Boussinesqg-type

equations are identical.

A 1D numerical model based on the resulting Boussinesq-type equations
[i.e. the equations originally derived by Nwogu (1993)] is then developed by
the present author as the basic numerical model in 1D. The present numerical
model (1DBMW-1) is used to simulate incident monochromatic wave
propagation from incident deep water (i.e. kh =n or h/L = %2) to shallow water.
This is confirmed by reasonable agreement between the present numerical
model and laboratory data in the channel with a constant slope. The other
tests show that the Boussinesqg-type wave numerical model is capable of
simulating a non-breaking wave transformation in a channel with a
submerged bar. The effect of bottom friction is not included in the present
numerical model. Comparisons of the results between the numerical model
and the laboratory measurements seem to indicate that bottom friction is not
a 'signiﬂcant factor for the waves propagating over the physical model
concrete beach and over the submerged bar used in these tests. However,
while the numerical results from the model capture the general features of the

waves over the bar, some disparities are noted in Figures 3.11 and 3.13.

The present numerical model is based on varying the incident free surface
elevation sinusoidally. The horizontal velocity is then calculated by
considering a periodic, small amplitude wave. At the outgoing wave boundary,
the Sommerfeld radiation condition is discretised explicitly and implicitly to
calculate predicted and corrected values (respectively) of the free surface
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elevation. The horizontal velocity is obtained by substituting a periodic, small
amplitude wave into the continuity equation with a locally constant depth and
satisfying the Sommerfeld radiation condition. The numerical model prediction
of the water surface elevation at the outgoing wave boundary agrees well with
measurements in the laboratory.

In the present numerical model, the numerical scheme, which was
introduced by Wei and Kirby (1995), is used instead of the Crank-Nicholson
numerical scheme applied to the previous numerical model by Nwogu (1993).
The Sommerfeld radiation condition is applied to the present outgoing wave
boundary instead of the scheme, which was introduced by Engquist and
Majda (1997), used in the previous numerical model by Wei and Kirby (1995).

1D Basic Model



Chapter Four 90

Chapter Four

1D Basic Model with
an Improved Dispersion Relation

4.1. Introduction

It is well known that the major restriction of Boussinesq-type equations is
their water depth limitation. Boussinesqg-type equations have since been
extended in order to obtain an improved dispersion relation in relative deeper
water (e.g. by Witting, 1984; Murray, 1989; Madsen et al., 1991; Madsen and
Sgrensen, 1992; Nwogu, 1993 and Schéffer and Madsen, 1995).

Schaffer and Madsen (1995) developed two sefs of Boussinesqg-type
equations. Firstly, they generalised the Boussinesqg-type equations of Madsen
and Sarensen (1992) without the explicit restriction of small bottom slopes.
However, the dispersion relation remained identical to that of Madsen and
Sarensen. Secondly, they extended the Boussinesg-type equations of Nwogu
(1993) by introducing four new free coefficients (B1,B2,y1,y2) <O(1) while
retaining Nwogu’s free coefficient a in their second set of Boussinesq-type
equations. Schéffer and Madsen’s second set of Boussinesq-type equations
had a dispersion relation, which corresponds to a Padé [4,4] expansion in
terms of kh. By making an evaluation of the free coefficients optimised
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according to some error minimisation criterion, the second set of equations
was capable of describing wave propagation in ‘deeper water with h/L < 1.
Previously before extending the Boussinesg-type equations, they were only
valid for h/L <0.5. The differences in the wave celerity of various linearised
Boussinesq-type equations relative to the wave celerity of Airy (linear) wave
theory at three relative depths are presented in Table 4.1. The relative depth
is defined as the ratio of the water depth h, to the deep water wave length L.
(Note: in deep water i.e. h/L>0.5, L = Lo).

CBoussinesqtypeequaﬁon _ 1 x 100 %
CAiry wave theory

Dispersion relation corresponds to: at at at

hiLo=0.3 | h/iLo=0.5 h/lLo=1.0
a Padé [0,2] approximation in kh, such as the 5% 15 % 34 %
equations of Peregrine (1967) slower slower slower
a Padé [2,2] approximation in kh, such as the =0% <1% 11.4%
equations of. Madsen et. al. (1991), Madsen faster faster faster
and Serensen (1992) and Nwogu (1993),
Mera (Present study)
a Padé [4,4] approximation in kh, such as the ~0% =0% <1%
equations of Schaffer and Madsen (1995) faster faster faster

Table 4.1. Wave celerity of various linearised Boussinesq-type equations relative to the wave
celerity of Airy wave theory.

The aim of the present study is to numerically examine the effects of the
additional terms in the second set of equations of Schaffer and Madsen
(1995). These terms result in an improved dispersion relation. Therefore, a
1D numerical model for non-breaking waves based on the second set of
Bouséinesq-type equations derived by Schéffer and Madsen (1995)! is

! Throughout this thesis, the (set of Boussinesg-type) equations of Schaffer and Madsen
(1995) refers to the second of two sets of Boussinesg-type equations in Schéffer and Madsen
(1995)
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developed by the present author. This numerical model is referred to
1DDBMW-2. At the incoming wave boundary, the free surface elevation is
varied sinusoidally with time while the related horizontal velocity is determined
from the continuity equation with a locally constant depth. At the outgoing
wave boundary, the free surface elevation is obtained by employing the

Sommerfeld radiation condition.

Finally, the present Boussinesqg-type wave numerical model (1DDBMW-2)
is applied to three experimental set-ups with incoming monochromatic waves.

The experimental set-up are:

e aflat bottom channel,

e achannel with a sloping bottom and
e achannel with a submerged bar.

All scenarios numerically modelled exclude the effect of bottom friction. To
assess the effects of the additional terms in the governing equations of
1DDBMW—2 for h/L £0.5, the numerical solu{ions from 1DBMW-1 (i.e. the
numerical model based on the governing equations without the additional

terms) and 1DDBMW-2 are compared.

4.2. Derivation of the equations of Schéaffer and Madsen (1995)

The frequency dispersion terms or p? terms ‘in the Boussinesg-type
equations of Nwogu (1993) as shown in equations (3.16) and (3.17) can be
further refined by introducing four new free coefficients (B1,B2,y1,y2) < O(1).

Following Schiffer and Madsen (1995), the operators —p’B1Ve(h’V ) and
u’B2VeV(h?) are applied separately to the continuity equation (3.16) and

terms up to O(e,n?) are retained to yield the next two equations:
— 2B {V o (h?Vn,) + V o [N2V[V o (hua)]]} = O(ep?, 1) 4.1)
and
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1Bz {V ¢ V(h*n,) + V e V[1*V o (hu)]} = O(ep? ) (4.2)

Similarly, the operators -p%:h*V(Ve ) and p?y2hV(Veh ) are applied

separately to the momentum equation (3.17) to give the next two equations:
=Py’ [V(V e uq,) + V(V o V)] = O(ep?, p*) (4.3)
and
w2 h{V[V ¢ (hue,)]+ V[V o (hV)]} = O(ep?, 1*) (4.4)

Equations (4.1) and (4.2) are then added to the continuity equation (3.16),
and equations (4.3) and (4.4) are added to the momentum equation (3.17) to
obtain a set of ‘deeper water Boussinesg-type equations of Schiffer and
Madsen (1995). The resulting Boussinesg-type equations are capable of
describing wave transformation for relative depths (h/Ls) up to 1 (see Table

4.1). The resulting continuity and momentum equations are respectively
1, + Ve [(h+enue] + p2V o {hT" - Bih2V[V e (hua)] + B2V[h2V e (hua)]
— Bth?Vn, +BzV(h*n,)} = O(en?,n*) (4.5)
Ua, + V1 + &(Ua ® V)Ua + p2{T«, —y1h?V(V e Ua,) + y2h V[V o (hua,)
= y1h?V(V » Vn) + y2hV[V o (hVn)]} = Oep?, u*) (4.6)

where I' and T are defined by (3.11a) and (3.18) respectively.

An interesting phenomenon is found here, that is the dispersion or p?
terms in the equations of Nwogu (1993) [i.e. in equations (3.16) and (3.17)]
have been refined. This results in an improved dispersion relation (see Table
4.1) and yet the order of the frequency dispersion and non-linearity retained in
the resulting equations [(4.5) and (4.6)] remain identical to those of Nwogu
(1993) and Peregrine (1967) i.e. up to O(s,pz). Subsequently, equations (4.5)
and (4.6) are only applicable to weakly non-linear waves with the lowest order

frequency dispersion terms, i.e. O(g,u?).
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The 1D version of the continuity and momentum equations [(4.5) and
(4.6)] can be expressed in dimensional form as

M+ [0+ Ml + (£ 2ea? —2)(0°Ue ), +(2ea + 2~ Br)[n3(hUa), ],

+B[h?(hua), 1 — Bt (W*ny, )y + Bz (hPn,),, = O (4.7)
and

Uay + @GN, + Uallay + (3 Zea® = y1)h2Uay, +(Zea + Y2)h(hUa, ),

—Y1gh2nxxx + YZgh(hTIx )xx =0 (48) ‘

where a, B1, B2, y1, and y2, are ‘free’ coefficients. The method of determining
these coefficients is explained in the next section. The definitions for z. in

equation (3.21) and a in equation (3.22) are still applicable here.

4.3. Dispersion relations

The 1D governing equations considered in the present Boussinesg-type
numerical model [i.e. equations (4.7) and (4.8)] can be linearised (non-linear

terms dropped) for constant depth, and are written as
M, +hua, + (a0 =B + 5 )h°Ua,, —Bh* Ny, =0 (4.9)
Uey +gN, + ((X - ‘}')hZUaxxt - gyhznxxx =0 (410) .

where B =p1-f2 and y=y1-1v2 as defined by Schéaffer and Madsen (1995).
Substituting a periodic, small amplitude wave [i.e. equations (3.25)] into
equations (4.9) and (4.10) gives the dispersion relation, which corresponds to

a Padé [4,4] approximation in terms of kh:

[+ y(kh)?][1-(a-B +1)(kh)] (4.11)

Cra.s1sm)? = gh
(Comsm) = O khY T = (@ — ) (k)]

where Cu.qsm is the wave celerity corresponding to the equations.of Schéffer

and Madsen. The wave celerity expressed in equation (4.11) is an improved
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dispersion relation from the previous dispersion relation obtained from the

~equations of Nwogu [i.e. equation 3.3].

The dispersion relation equation (4.11) can be compared to the
approximate celerity from Airy wave theory. This comparison is made easier
by using a Padé [4,4] approximation of the dispersion relation from Airy wave
theory. Witting (1984) found an approximate dispersion relation for Airy wave
theory corresponding to a Padé [4,4] approximation in terms of kh for waves
in an arbitrary depth, that is

1+ 1(kh)? + o= (kh)*
5(kh)2 2 (kh)*

(Craaiaiy)® = gh +0[(kh)"] (4.12)

Schiffer and Madsen determined the free coefficients (a, 3, y) by imposing
Cia.a1om = Cpa,41airy (4.13)

which yields the following four sets of solutions

([, [65 621 ,, fe84 , [621
=3+, f—+,|—= 4+ |— W |—
& 945, 63. 9‘5 0.06143,0.40528,0.10058  (a)
.y {62 , . ’sz
63 . 63. ~0.02865,0.40528,0.101052 (b)
B,y =4 (4.14)

L / f sz . {684 { sz

63 . 53. -0.30469,0.03917,0.10058  (c)
__,__[ﬁ _/__* _’52

83 —, -0.39476,0.03917,0.01052  (d)
\

The solution (4.14a) is inapplicable since — 0.5 <a <0 in order to keep the

level z. inside the fluid i.e. - h<z.<0. To determine the free coefficients B1,

Bz, 1, and 2, reference needs to be made to Schéffer and Madsen (1995).
In this study, the free coefficients are determined by imposing
Craaism = Caiy (4.15)

instead of equation (4.13), where the celerity Caiy is from Airy wave theory,

that is
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(Caiy)? = —E—tanh(kh) | (4.16)

A particular solution set for the free coefficients is found to be o = — 0.39500,
B=0.03980 and y=0.01051. This solution set is adopted in the present
numerical model (1DDBMW-2).

The wave celerity Cuaqsm corresponding to the particular solution
(0 =-0.39500, B=0.03980 and y=0.01051) and «, B, y in equations
(4.14b —d) are normalised with respect to the wave celerity of Airy wave
theory Cary and compared. Figure 4.1 displays the errors in the normalised
wave celerity as a function of the relative depth h/L.. The comparison
indicates that the particular solution (a,B,y) = (- 0.395, 0.0398, 0.01051) gives
the best approximation to the celerity of Airy wave theory i.e. a celerity error
less than 1 % faster with h/L. up to 1, while the other solutions i.e. (4.14b —d)

give a celerity error of just over 1 % faster at the same relative depth.

% Normalised celerity errors

02 v T T T T T T . T
0.0 01 02 03 04 05 06 07 08 09 10

Figure 4.1. A comparison of normalised celerity errors of the linearised Boussinesg-type
wave equations of Schaffer and Madsen (1995) for different values of the free coefficients
(a,B,y): (1) the three solutions (4.14b — d) which result in identical dispersion relations; and (2)
the particular solution (c,B,y) = (- 0.395, 0.0398, 0.01051) adopted in this study (1DDBMW-
2).
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As shown in Figure 4.2, the linearised form of the Boussinesqg-type
equations derived by Schéffer and Madsen with a Padé [4,4] approximation to
the dispersion relation, gives a celerity error less than that of other
Boussinesqg-type equations. However, the Boussinesg-type equations with a
dispersion relation corresponding to a Padé [2,2] approximation in terms of kh
(such as those of Madsen et al., 1991; Madsen and Sgrensen, 1992 and
Nwogu, 1993) give a celerity error of 11.4 % faster than the wave celerity of
Airy wave theory with (h/Lo)~ 1. Conversely, the normalised celerity of
Peregrine’s (1967) formulation with a dispersion relation corresponding to a
Padé [0,2] approximation in terms of kh give a celerity error of 33.4 % slower

than the wave celerity of Airy wave theory at the same relative depth.

20

o o (2) Pade [2,2]
2 ol _ . _ ___ _ _ Pk e
: /
= 0 — —
: 7
8 ol _ _ o T, (1) Pade[d4] ©
3
g 20— — — — — — e — T e
2 0 (3) Pade [0.2] —
°\° — — — — m——— — — rw— - — — — — - e m— e — — w—— —
-40 T . r r r T T T T
0.0 01 02 03 04 05 06 07 08 08 10

Figure 4.2. A comparison of normalised celerity errors of various linearised Boussinesg-type
equations of: (1) Schéffer and Madsen (1995) with (a,B,y) = (- 0.395,0.0398,0.01051)
(1DDBMW-2); (2) Madsen et al. (1991), Madsen and Serensen (1992) and Nwogu (1993) or
equivalently the equations of Schaffer and Madsen with (a,B,y)=(-0.39,0,0); and
(3) Peregrine (1967) or equivalently the equations by Schaffer and Madsen with
(a,B,y) = (-1/3,0,0).
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4.4. Numerical solution algorithm for 1DDBMW-2

4.4.1. Solution method

A finite difference method with a non-staggered grid is used by the present
author to solve the dimensional governing equations [(4.7) and (4.8)]. The
numerical scheme used in Chapter Three is also applied in this chapter.

The dimensional continuity equation (4.7) can be expressed as
E, =E(n,ua) (4.17)
where E and E are the variable groupings‘ defined as
E =n-PB1(h*n,), + B2 (h*n), (4.18)
E(n,ua) = [(h+nual, - (52" - $)(M°uay),

—(Zea + 2 = B1)[N*(hua),, ], — B2 [N (hua), ], (4.19)

The continuity equation (4.17) is noted to be different to the corresponding
continuity equation (3.28). This must result in a modification to how the
governing equations in 1DDBMW-2 are implemented compared to 1DBMW-1
in Chapter Three. Following the procedure in Section 3.4.1, the dimensional
momentum equation (4.8) can be written in the form of equation (3.30)

Us, =F(n,ua) (3.30)
where the variable groupings U. and F become
Ua = ta + (3 Zea® = 71)h?Uayy +(Zea ~ y2)D(hUa),, (4.20)
F(n,Ue) = — gn, — Ualla, + 718NN ~ ¥2Gh (N1, ), , (4.21)
The Adams-Bashforth predictor scheme (3.33) and the Adams-Moulton
corrector scheme (3.36) become equations (4.22) and (4.23) respectively.

= = B!+ L M[23E' ~16E"" +5E2)  (predictor) (4.22)
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2 = !+ A{OE™ +19E' -5E"" +E™?], (corrector) - (4.23)

To obtain the free surface elevation n at the new time level (t+1), further
calculation is needed using the values of ="' obtained from equation (4.22)
for the predictor step and from equétion (4.23) for the corrector step. The
values of ="' are then substituted into equation (4.18). Subsequently,
equation (4.18) is arranged into a matrix form as shown in equation (4.24) to

yield the new free surface elevation n*'.

o T 3y t+1 3 t+1
[ (

Coefficient w
My =4Ep (4.24)

Matrix

L _LJ \ J

The horizontal velocities u.;*' are determined in the same way as set out

in equation (3.35) of Section 3.4.1.

The values of the free surface elevation and horizontal velocity determined
above are for inside the fluid domain. At the boundaries, these values are

determined using the boundary conditions explained below.

4.4.2. Boundary conditions
4.4.2.1. Incoming wave boundary conditions

The model 1DDBMW-2 requires the surface elevation n and velocity u. at
the incoming wave boundary to be specified. At the incoming wave boundary,
the free surface elevation is varied sinusoidally as shown in equation (3.39).

The continuity equation (4.7) with a locally constant depth is

M +Uat, + (M +MUa, + (0 ~ B+ )N sy — BNy, =0 (4.25)
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Furthermore, the horizontal fluid velocity u. at the incoming wave boundary is
_obtained by substituting equations (3.25) into (4.25) resulting in the

expression below

on[1+B(kh)?]
4.26
kh[1- (o - B +1)(kh)?] (420

Ua =

The Sommerfeld radiation condition (3.42) is also automatically satisfied by
equation (4.26).

4.4.2.2. Outgoing wave boundary conditions
(i) Free surface elevation:

The Sommerfeld radiation condition (3.42) i.e. n, + Cn, =0 is applied to

the outgoing . wave boundary of the present numerical model. For
implementation, this boundary condition can be written in the same form as

equation (4.17).

=, = E(n, us) (4.17)
where
E=1 (4.27)
E(n,us) = - Cn, (4.28)

The finite difference approximation applied to n, in equation (4.28) is

1
(M); = 5,30, 4n, + 1) (4.29)

(see Appendix A for the specification of the coordinate system).
(ii) Horizontal velocity:

While the boundary conditions for u. are being explored, experimentation
with the numerical models revealed that it is necessary to treat the cases of
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(a) deep water and- (b) transitional and shallow waters separately. In this
study, no one boundary condition is successful in both cases.
(@) In deep water, the horizontal velocity u. is determined by imposing

Uay + CUax =0 o . R (430)

For implementation, equation (4.30) is transformed into the form of equation
(3.30), Us and F may be defined as

U, = F(0, Ua) (3.30)
where

Ua = Ua (4.31)

F(n,u«) = - Cuq, (4.32)

The finite difference approximation applied to u., in equation (4.32) is
1
(Uay ) = Z—Ax-(3um1 —4Ua, +Uq,)' (4.33)

(b) In shallow water or intermediate depth water, the horizontal velocity is
determined as follows. The Sommerfeld radiation condition (3.42) and
the expression for a periodic, small amplitude wave are substituted into
equation (4.25) to give an equation for u«, which is identical to equation
(4.26).

4.5. Model verification

4.5.1. Experimental set-up 1: Wave propagation in a constant

depth channel

The standard form of the Boussinesq-type equations derived by Peregrine
(1967) cannot simulate wave transformation in deep water with h/L.=1 since
their dispersion relation gives a celerity error of 33.4 % slower than the wave

celerity of Airy wave theory (Figure 4.2). A similar comment applies to the
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Boussinesq-type equations with a dispersion relation corresponding to a Padé
[2,2] approximation in terms of kh (e.g. Madsen et al.,, 1991; Madsen and
Saerensen, 1992 and Nwogu, 1993) since their dispersion relation gives a
celerity error of 11.4 % faster than the wave celerity of Airy wave theory at the

same relative depth (Figure 4.2).

Experimental set-up 1 (Figure 4.3) is aimed at testing the ability of the
equations of Schéaffer and Madsen to simulate the propagation of a
monochromatic wave at h/Lo= 1. Consider, for example a train of waves with
period T=0.85s, Lo =1.13 and incoming wave height Hi= 0.04 m propagating
in a channel with a flat bottom, 1.13 m deep and 16.84 m long. The intention
of choosing these values is to obtain h/Lo=1. The test conditions are:
Ax=0.02m (LJ/Ax=56.4) and At=0.01s (T/At=85.0). The longitudinal
profiles of the free surface along the channel are displayed in Figure 4.4 at

times t = 15, 20 and 25 s. The outgoing wave boundary is located at x=0m.

. -
T e

16.84m >

<
«

Figure 4.3. Experimental set-up 1: the channel with a flat bottom.

Figure 4.4 shows comparisons of the free surface elevation predicted by
the present Boussinesqg-type wave, numerical model (1DDBMW-2) and
sinusoidal waves at different times. As shown in Figures 4.1 and 4.2, the
wave celerity of 1DDBMW-2 propagates slightly faster than that of Airy wave
theory (i.e. a purely sinusoidal wave moving without change of form at celerity
C). Furthermore, the model results in Figure 4.4 show that the longitudinal
profiles of the free surface elevation in deep water are seen to behave

according to sinusoidal waves as expected. After 25 s, it is observed in the
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bottom plot of Figure 4.4 that some (unwanted) wave reflection is emanating

from the downwave boundary with the transmitting boundary condition.
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Figure 4.4. Deeper water (h/Lo= 1.0): the free surface elevation along the channel at t =15,
20 and 25 s predicted by 1DDBMW-2 (bold lines) and Airy wave theory (thin lines). Data:
T=0.85s,Hi=0.04m, h=1.13m, Ax=0.02 m and At=0.01s.
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4.5.2. Experimental set-up 2: Wave propagation up a slope

While 1DDBMW-2 is capable of simulating wave propagation in very deep
water (i.e. h/Lo up to 1), it is still necessary to assess its performance in
shallower water (h/Lo<0.5), as is done for 1DBMW-1 in Chapter Three.
Laboratory data collected by Nwogu (1993) are presented in Chapter Three
and are used to assess the performance of 1DDBMW-2.

In the first test with experimental set-up 2 (Figure 3.4), an incident deep
water wave (h/L.=0.5) propagates from the incoming wave boundary where
the depth is 0.56 m, up a slope to the outgoing wave boundary where the
depth is 0.07 m. The computation is carried out with the following wave and
mesh parameters: T=0.85s, Hi=0.04m, Ax=0.02m (L./Ax=256.4) and
At=0.01 s (T/At = 85.0). Comparisons of the time series for the water surface
elevation predicted by 1DDBMW-2 (bold lines) and laboratory measurements
(thin lines) at depths of 0.28 m and 0.07 m are shown in Figures 4.5 and 4.6

respectively.

For a depth of 0.28 m, the results predicted by 1DDBMW-2 agree well with
laboratory measurements. At the outgoing wave boundary however, the
surface elevation in the computational model is a little flatter through the wave
troughs compared to those of measured waves. At both depths, the present
numerical model (1DDBMW-2) is seen to perform better than the numerical
model developed in Chapter Three (1DBMW-1).
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Figure 4.5. Incident deep water waves (hi/Lo = 0.5): time series of the free surface elevation at
0.28 m depth predicted by 1DDBMW-2 (bold line), the laboratory measurements of Nwogu
(thin line) and 1DBMW-1 (dashed line). Data: T=0.85s, Hi=0.04 m, hi=0.56 m, Ax=0.02m
and At=0.01s.
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Figure 4.6. Incident deep water waves (hi/Lo= 0.5): time series of the free surface elevation at
the outgoing wave boundary (h =0.07 m) predicted by 1DBMW-2 (bold line), the laboratory
measurements of Nwogu (thin line) and 1DBMW-1 (dashed line). Data: T=0.85s,
Hi=0.04 m, hi=0.56, Ax=0.02 m and At=0.01s.

Another test is carried out using the same experimental set-up 2 but this
time with an intermediate depth wave (h/l.=0.36). The computation is
performed with T=1s, Hi=0.066m, hi=0.56m, Ax=0.02m (Lo/Ax=78.1)
and At=0.01s (T/At=100.0). The time series for the water surface elevation
was measured at the outgoing wave boundary (h=0.10m) and at a water
depth of 0.24 m (Figures 4.7 and 4.8).

A comparison of the surface elevation at 0.24 m depth between the results
of 1DDBMW-2 and the laboratory data shows that 1DDBMW-2 accurately

predicts the shoaling waves as shown in Figure4.7. Meanwhile, the
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performance of 1DDBMW-2 (bold line) is better than that of 1DBMW-1
(dashed lines) at 0.24 m depth.

The results for the water surface elevation at the outgoing wave boundary
(h =0.10 m) provide a more severe test of the performance of the numerical
model. Figure 4.8 shows the formation of non-linear waves predicted by
1DBMW-1 and 1DDBMW-2 with the peaked wave crests and long low
troughs. Interestingly, the results of each numerical model give different
discrepancie.s against the laboratory measurements at h = 0.10 m, particularly
around the wave crest.
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Figure 4.7. Intermediate depth water waves (hilLo=0.36): time series of the free surface
elevation at 0.24 m depth predicted by 1DDBMW-2 (bold line), the laboratory measurements
of Nwogu (thin line) and 1DBMW-1 (dashed line). Data: T=1s, Hi=0.066 m, hi=0.56 m,
Ax=0.02 m and At=0.01s.

Figure 4.8. Intermediate depth water waves (hiLo=0.36): time series of the free surface
elevation at the outgoing wave boundary (h = 0.10 m) predicted by 1DDBMW-2 (bold line),
the laboratory measurements of Nwogu (thin line) and 1DBMW-1 (dashed line). Data: T=1s,
Hi=0.066 m, hi=0.56 m, Ax=0.02 m and At=0.01s.

1D Basic Model with an Improved Dispersion Relation



Chapter Four ) 107

4.5.3. Experimental set-up 3: Wave propagation in a channel with a

subrﬁerged bar

The last experimental set-up modelled (Figure 3.9) is one in which waves
propagate over a submerged bar in a channel. The numerical set-up
represented in Figure 3.9 follows the physical set-up of Luth et al. (1994) (see
Borsboom et al., 2000). The laboratory measurements of Luth et al. are also

used to assess the accuracy of the numerical model results.

In the first test with the submerged shoal, a train of waves with a period of
2.02's and an incoming wave height of 0.02 m propagates down a channel,
which is 0.40 m deep. The computation is carried out with Ax=0.08 m
(Lo/Ax =79.6) and At=0.02 s (T/At=101.0).

The results in Figure 4.9 show that 1DDBMW-2 captures the main
features of the water surface time series at the top of the bar (x=11.5m).
However, 1DDBMW-2 is seen to slightly overestimate the wave crests, and
underestimate the early and late portions of the wave troughs. In Figure 4.10,
a comparison of the water surface elevation on the lee side of the bar at a
chainage of x=7.7m from the outgoing wave boundary shows that the
results from 1DDBMW-2 marginally exceed the measured wave crests but

more significantly underestimate the wave troughs.
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Figure 4.9. Top of the bar (i.e. 11.5 m before the outgoing wave boundary): time series of the
water surface elevation predicted by 1DDBMW-2 (bold line), the laboratory measurements of
Luth et al. (thin line) and 1DBMW-1 (dashed line). Data: T=2.02s, Hi=0.02m, hi=0.4m,
hi/Lo=0.06, Ax=0.08 mand At=0.02 s.
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Figure 4.10. Behind the bar (i.e. 7.7 m before the outgoing wave boundary): time series of the
water surface elevation predicted by 1DDBMW-2 (bold line), the laboratory measurements of
Luth et al. (thin line) and 1DBMW-1 (dashed line). Data: T=2.02s, Hi=0.02m, hi=0.4m,
hi/llo=0.06, Ax=0.08 m and At=0.02 s.

The last test investigated is of a train of steeper waves than the previous
test i.e. with 1.01 s period and 0.041 m incoming wave height propagating
over the same bathymetry as the previous test. The grid size and the time
step are chosen to be 0.08 m (LJ/Ax=19.9) and 0.02s (T/At=50.5)
respectively. As for the previous test, the time series for water surface
elevation was measured on top of and behind the submerged bar.

In Figure 4.11, a comparison of 1DDBMW-2 results with laboratory
measurements of the water surface elevation on top of the bar show close
agreement. On the outgoing wave side of the shoal at x=7.7 m, Figure 4.12
shows that while 1DDBMW-2 slightly overestimates the wave crests, it
significantly underestimates the wave troughs on the lee of the submerged
bar. The waves in 1DDBMW-2 are seen to be more symmetrical than the

measured waves (Figure 4.12).
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Figure 4.11. Top of the bar (i.e. 11.5 m before the outgoing wave boundary): time series of
the water surface elevation predicted by 1DDBMW-2 (bold line), the Iaboratory
measurements of Luth et al (thin line) and 1DBMW-1 (dashed line). Data: T=1.01s,
Hi=0.041m, hi=0.4 m, hillo=0.25, Ax=0.08 m and At=0.02 s.
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Figure 4.12. Behind the bar (i.e. 7.7 m before the outgoing wave boundary): time series of the
water surface elevation predicted by 1DDBMW-2 (bold line), the laboratory measurements of
Luth et al. (thin line) and 1DBMW-1 (dashed line). Data: T=1.01s, Hi=0.041m, hi=0.4 m,
hiLo=0.25, Ax=0.08 m and At=0.02 s. '

Although Figures 4.9, 4.10 and 4.12 show that 1DBMW-1 based on the
equations of Nwogu (1993) presented in Chapter Three give generally slightly
better results than 1DDBMW-2 based on the equations of Nwogu with the
additional terms (i.e. the equations of Schéffer and Madsen, 1995), Figure

4.11 shows the opposite.
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4.6. Conclusions -

A 1D numerical model based on the Boussinesq-type equations derived
by Schéffer and Madsen (1995) is developed by the present author. This
numerical model is referred to 1DDBMW-2. At the incoming wave boundary,
monochromatic, small amplitude waves are generated. At the outgoing wave
boundary, a form of the Sommerfeld radiation condition is adopted to predict

the free surface elevation and velocity.

The effects of the additional terms in the equations of Schéffer and
Madsen (1995), which result in an improved dispersion relation, can be seen
where the present Boussinesq-type wave numerical model (1DDBMW-2) is
applicable to the simulation of the propagation of a monochromatic wave in
channel with a flat bottom in very deep water (h/L=1). The deep water
criterion is taken to be h/L > 0.5. As predicted by the dispersion relation, the
wave celerity associated with the gbveming equations in the present model is
slightly faster than the wave celerity of Airy wave theory. The predicted free
surface elevation in deep water compares well with Airy wave theory as
expected.

1DDBMW-2 is capable of simulating non-breaking wave transformation in
a channel with a slope. This is confimed by good agreement between
computed and measured free surface elevation. The other tests indicate that
1DDBMW-2 is also capable of simulating the propagation of a monochromatic
wave in a channel with a submerged bar although 1DDBMW-2 performance
on the downwave side of the bar is not as good as it is on the incoming wave
side. As in 1DBMW-1, the effect of bottom friction is not included in
1DDBMW-2. Comparisons of 1DDBMW-2 results with the laboratory
measurements indicate that bottom friction is not a significant factor for the
waves propagating on the model concrete beach and over the submerged bar

used in these tests.

Although 1DDBMW-2 is applicable to water depths up to h/L=1
(compared with 1DBMW-1 developed in Chapter Three which is only valid up
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to h/L=0.5), 1DBMW-1- seems to give generally better results than
1DDBMW-2 within the applicable range of 1DBMW-1 (i.e. h/L <0.5).

It can be concluded that the additional terms in the governing equations of
1DDBMW-2, which result-in an improved dispersion relation but with the
same order of the frequency dispersion as 1DBMW-1 does not give a
noticeably improved result. Based on the relative results of the 1D tests of
1DDBMW-2 and 1DBMW-1, the development of a 2D nume_rical'model based
on the equations of Schaffer and Madsen (1995) in this thesis is not

considered necessary.
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Chapter Five

1D Basic Model
with Current Effects

5.1. Introduction

In the present study, a ﬁn.ite difference model based on the second set of
partial differential equations of Chen et al. (1998) is coded up by the present
author. This model, which is referred to 1DBMWC-3, is used to investigate
numerically the effects of the dispersion terms associated with currents. That
is, the results from 1DBMWC-3 are compared to the results from a model
without currents [i.e. a model based on Nwogu’'s (1993) equations or
1DBMW-1].

5.2. Derivation of the equations of Chen et al. (1998)

5.2.1. Non-dimensionalisation based on wave scaling parameters

Following the approach of Chen et al. (1998), the first set of their
equations is re-derived based on the depth-integrated continuity and
momentum equations. In this study, the derivation here expands on the work
of Chen et al. for greater clarity. The wave scaling parameters, which will be
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used here, are identical to those defined by equations (2.31) and (2.32) when
‘deriving the equations of Peregrine, 1967 (Section 2.4), Nwogu, 1993
(Section 3.2) and Schéffer and Madsen, 1995 (Section 4.2) instead of the
wave scaling parameters in the work of Chen et al. (1998). The dependent,

non-dimensional variables defined by equations (2.32) for waves only can be

written as
u=0(e)y/ghen u’, v =0O(g)y/ghen V', W = O(gp)y/ghen W' (5.1a)
n=0(g)henn’, p=0(g) pghen p’ (5.1b)

where again the primes denote non-dimensional variables.

5.2.2. Non-dimensionalisation based on wave-current scaling

parameters

Parameters ¢, v, 6 and ¢ are introduced as explicit measures of the order
of magnitude of each term in the equations, where &= acvhen, 6'=s/v and
8 =0(g,v?). To ensure the equations will be valid in the limit of vanishing
current, it is necessary to specify O(g) < v < O(1). The extreme cases are: (i)
v =0(g) meaning waves only and (ii) v=0(1) meaning (waves interacting
with) a strdng current. The velocity variable is assumed to consist of two
parts, a wave orbital velocity and a current velocity. In this derivation, the
difference in horizontal scaling of ambient current and wave components is
made. The current velocity is assumed to be steady, uniform over the depth
and no greater than the shallow water wave celerity C=Jg_h . The spatial
variation of the steady current is closely related to the variation of the bottom
bathymetry. As reported by Madsen and Schiffer (1998), the horizontal
length scales of the current variation and of the depth variation are assumed
to be much longer than the characteristic wavelength. Consequently, strong

currents [with v=0(1)] can be treated only on weakly varying bathymetry.
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However, weak currents [with v=0(g)] do not imply any restriction on the

bathymetry variations.

It can be summarised that the wave-scaling parameters consist of two
parts i.e. wave and current scaling parameters. Consequently, the dependent,

non-dimensional variables for waves and currents can be written as
u=O(g,v)y/ghen U, v =O(g,v)y/ghen V', W = O(ep,ovp)y/ghe W' (5.2a)
n=0(g,v¥) hen y', p = O(g,v?) pghen p’ (5.2b)

Details of these scales can be found in Chen (1997) p27-32 and Chen ef al.
(1998) p16-20.

As a result, the non-dimensional equations (2.95a), (2.96), (3.1), (3.3) and
(3.4), which are written in terms of wave scaling parameters (g,u), can be

converted into those in terms of wave-current scaling parameters (g,u,8,v) to

give
o
u, -—vw =0 (5.3)
\Y . - - .
n+Ve [udz=0 (5:4)
9 fud V) ["udz+V [ 'pdz-sp,_  Vh=0 (5.5)
5‘[hu z +v(u )_[hu zZ+ Lp p,.,Vh= .
o(xy.zty=n-2+2 "wdz+v(ue V) ["wdz- 2 w? (5.6)
o otz z n
-_E 2 z
= 8“ Ve L,Udz (5.7)
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5.2.3. First set of equations of Chen et al. (1998)

The first set of Boussinesq-type equations of Chen et al. (1998) for wave-
current interaction is presented in terms of the depth-averaged velocity u.
The derivation of this set of partial differential equations can be demonstrated
by following the approach of Chen et al., although the wave scaling parameter

used here differ from those used by Chen et al..

The horizontal velocity of the fluid is expanded as a Taylor series with

respect to the still water level, horizontal velocity U = u(x,y,0,t).
u(x,y,z,t) = u(x,y,0,t) + zu,(x,y,0,t) + 3 2°u,,(x,y.0,) +...
=U+2zl, +52°0,, +... (5.8)

Evaluating equations (3.7) for u; and (3.8) for uz at z=0, and substituting
into equation (5.8) gives the horizontal velocity (written in terms of the wave-

current scaling parameters, as explained in Section 5.2.2)
u=t- % p? {% 22V(V o i) ;- zV[V e (hii)]} + truncation error (5.9)
Substituting equation (5.9) for u into (5.7) for w gives
w=—-;—uz[ZVOG+VO(hﬁ)]+O(~§—p4) (5.10)

Without stating as much, Chen et al. (1998) assumed that e = v in the vertical
velocity or in other words, the vertical velocity due to the ambient current is
very small compared to the orbital vertical velocity due to the waves. Now, the
truncation error of equation (5.9) can be determined by integrating the

irrotationality condition (5.3) from z to 0. This resuilts in

: u—ﬁ=-§j°vW dz (5.11)
v 2
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Inserting equation (5.10) for w into (5.11) leads to
u =ﬁ—%pz{%ZZV(VOﬁ)+zV[V0(hﬁ)]}+O(£p.4) (5.12)
v

Substituting equation (5.12) into the definition of the depth-averaged velocity

1

u= h+dn

ﬁ" udz, and integrating leads to

— ~ € 5|18 +h® ~ 10°-h? ) € 4
U=U—-——pHA-—-——--ou-V(Veu)+-———V|Ve(h O -
vu{s smeh (Vel)+3 sm+h [Ve(hi)];+ e

= fj-% p*{Ih?V(V o i) - 2hV[V « (hT)]}
+8 2 n{IhV(V o 1)~ VIV« (hT)]}

—SZ%HZ%nZV(Voﬁ)+O(—E—u4) (5.13)

Note: (8°n® +h®)/(5n+h) = 8°n? -i-hz -dnh and (8*n?-h?)/(dn+h)=dn-h.
Equation (5.12) can be expressed in terms of u by subtracting equation

(5.13) from (5.12) and substituting the terms U=u+O(gu?/v) [also from

equation (5.13)] into the dispersive terms i.e. O(en® /v,5ep?/v,8%eu? /v) gives

us= ti+§ w2 {(in? - 122)V(Vet)-(z+1h)V[V o(hT)]}

v

-3 pn{3hv(V o )~ VIV+ ()]}
+82%p2 gnZV(v.ﬁ)mGp“) (5.14)

In the expression for the horizontal velocity above, the vertical variation
through the water column comes about through the presence of the vertical
coordinate z. It will be noted that the coordinate z does not appear in the last
two terms of equation (5.14) (unlike other Boussinesg-type equations to be
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developed in _Appendix C) and in this sense, the vertical variation of u is
somewhat more limited. The vertical velocity can be expressed in terms of u

by substitution of equation (5.14) for u into equation (5.7) for w:
€ » — € 4
W=-gp. Vo[(z+h)u]+0(gu ) (5.15)

Substitution of equation (5.14) for u, and equation (5.15) for w, into equation
(5.6) for p leads to

p= (n -§)+§pz[gz2v o U, +2zVe(hl,)]-ep’[53n?Ve T, +nV e (hT,)]
+%;ﬁ{gzzﬁw(v-a)+zaov[v-(hﬁ)]}

—vep? {81 Ue V(Vel)+nUe V[V e (hT)]}

+o(?61p2,§p4J (5.16)
Use of the definition of the depth-averaged velocity in the depth-integrated
continuity equation (5.4) leads to equation (5.17). Substitution of equations
(5.14) for u, and equation (5.16) for p into the depth-integrated momentum
equation (5.5) leads to equation (5.18). Equations (5.17) and (5.18) are the
first set of Boussinesq-type equations of Chen et al. (1998) for wave-current
interaction in shallow water.

n,+Ve(hu)+dnVeu+vueVn=0 (5.17)
and
u,+v(ueVi)u+Vn
+p2[AY + VAL + (AL + VAL ) + 8% (A + vAY)] = O(ep?®,n*) (5.18)
« Dispersion terms associated with currents >
where

Al =hr, (5.18a)
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Al = (Ue V)(hID) (5.18b)
A, = -n{, + V[V« (hT )]} (5.18c)
Ay = -n(Ue VI + V[V e (ht)]} (5.18d)
Ay =—-In’V(Vel,) (5.18¢e)
Ay =—5ni(Ue V)[V(Veu)] (5.18f)
in which
I =2hV(Vel)-2V[Ve(hl)] (5.189)

The dispersion relation corresponds to equations (5.17) and (5.18) is a
Padé [0,2] expansion of the dispersion relation given by Airy wave theory.
Only the dispersion terms A} (i-2345) include the free surface elevation 1.
When the ambient currents vanish, the dispersion terms associated with
currents [i.e. A} (i-12345)] become negligible as detailed by Chen (1997) p27-

32 and Chen et al. (1998) p16-20. As a result, this set of equations reduces to
the equations of Peregrine (1967) written below.

n,+Ve[(h+en)u] =0 2.111)

U, +&(U e V)u+Vn=p2{IhV[Ve(hT,)]-+h?V(V e T,)} + O(ep?,1*)
(2.112)
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5.2.4. Second set of equations of Chen et al. (1998)

The second set of partial differential equations of Chen et al. (1998) is

presented in terms of the horizontal velocity at an arbitrary elevation u..

Evaluating u = u. at z = z,, equation (5.14) leads to

Ua = T+ = p2{(2h? = 222 V(V 0 T) ~ (2o + 2h)V[V o ()]}
v
=8 pin{ghV(V e W) -39V e (hT)]}
+8? %pz N V(Veu)+ o(gu‘) (5.19)
Re-arranging equation (5.19) to make u the subject gives

U= -% n2{(1h? - 12.2)V(V e )~ (2o + 1h)V[V « ()]}
+3Zuin{3hv(V « T) - VIV« (W]}
—82 Zp2in?v(vVe )+ o(fp‘) (5.20)
v v

Substitution of the terms U =u. +O(ep?/v) into the second derivative terms

of equation (5.20) leads to

U=Ua +§ 12{(22e% - 12 )V(V o Ua) + (2o + Th)V[V o (hua)]}
+ Sgpzn{%hV(V o Ua)— V[V o (hua)]}
-52 82 gnZV(Vouu)+o(ip4) (5.21)
v A%

Since there is no mention of z in the above equation, there is no vertical
variation of the current field. Substitution of equation (5.21) for u into the first

1D Basic Model with Current Effects



Chapter Five 120

set of equations [(5.17) and (5.18)] gives the second set of Boussinesqg-type

equations of Chen et al..

N+ Ve (hua)+ 3V eus + vua » Vn

+ P3(TT + 8I1F +8°T13 + 8°T13) = O(ep?, p*) - (522)
‘Dispersion terms associated WI; curents

and

Ua, + V(Uu L] V) Ua + VT]

+2[AG + VAT +8(A] + VAY) + 82 (A] + vAS)] = Oep®,p*)  (5.23)

Dispersion terms associated with currents

where
I12 = Ve (hT) (5.22a)
I12 =qVTla (5.22b)
M2 = - in?V2[Ve(huo)] (5.22c)
M2 =-inV3(Veu)  ~ (5.22d)
A2 =T, (5.23a)
A2 =(Ua® V)la (5.23b)
A2 = V[V o (hua,)] (5.23¢)
A2 = —n(Ua e V)V[V o (hua)] (5.23d)
A} =—31°V(Veuy,) | (5.23e)
Ay =—31*(Ua e V)V(V e Ua) (5.23f)

in which T. and T are defined by equations (3.11a) and (3.18) respectively,
and V2 =VeV. The equations (5.22) and (5.23) are applicable to the

combined motion of waves and currents in the coastal zone but exclude

bottom friction and wave breaking. The dispersion terms associated with
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currents [i.e. TI? (i-123) in the continuity equation (5.22) and A? (i-12345) in
the momentum equation (5.23)] become negligible when the ambient currents
vanish as detailed by Chen (1997) p27-32 and Chen et al. (1998) p16-20.
With no ambient currents, this second set of Chen et al.’s equations reduces

to the Boussinesq-type equations of Nwogu (1993) written below.
N+ Ve [(h+enua] +p?V o (hT) = O(ep? 1) . (B19)
Ua, + VN +&(Ua @ V)Ua + u?Ta, =O(ep?,pn*) (3.17)

The terms associated with currents are parts of terms with non-linearity. The
terms associated with currents do not affect the dispersion relation®.
Consequently, the dispersion relation of the second set of equations of Chen
et al. (1998) [(5.22) and (5.23)] is identical to the dispersion relation
associated with the partial differential equations of Nwogu (1993) (i.e. a Padé
[2,2] from Airy wave theory) (see also Table 1.1).

The second set of Boussinesq-type equations of Chen et al. (1998) [(5.22)
and (5.23)] can be expressed in 1D dimensional form. The Boussinesg-type
continuity equation (5.22) is

N +[(h+n)ua], +115, =0 (5.24)

where

Dispersive terms associated with currents

<

o

I}, = (hFe), = [Fh°Ua, — 707 (RUa) ], + MTa, =3 12 (MUe) g, — 4 N Ut
(5.24a)

Ta = 3 Zo Uay, + Za(hUa),, (5.24b)

and the Boussinesqg-type momentum equation (5.23) now with bottom friction

included is

' The dispérsion relation is obtained: (i) from the non-dimensional governing equations with
terms with non-linearity € dropped or (ii) from the dimensional governing equations with non-
linear terms dropped (see Sections 3.3 and 4.3).
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UGt + gT]x + Ua Ua, +'% ZaZUatxx + Za(hUa)bo(

+ e} Zealhing), + zea[(hUc), 1}

- n(hua,),, —NUa(hua) —%T]ZUQW —%T]ZUQ Ua,, =Re (5.25)
where
9| ua|ua
Rc = _-_Cﬂ— (5253)

and Rc=Dbottom friction term, Cc=Chezy coefficient and free coefficient

a =-0.39 (see Section 3.3). For the frictionless case Rc is zero.

5.3. Boussinesq-type numerical model (1DBMWC-3)

531 Solution method

The 1D governing equations with bottom friction included [(5.24) and
(5.25)] are solved by the present author in a similar fashion as the governing |
equations in Chapter Three. The continuity equation (5.24) can be then

written as equation (3.28):

N, = E(n,u«) (3.28)
where

E(n,ua) = ~{(h+n)ua], - I15 (5.26)

The momentum equation (5.25) can also be expressed in the form of
equation (3.30):

U, =F(1,Ua) (3.30)
where

Us = Ua + Za[ 3 Za Uay, + (MUa) o]~ n[(hUa) 4 +3 MUy ] (5.27)
and
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F(1n,Ua) = — gN, ~ Uala, —Ua {3 Zea?(h?Uay, ), + Zea[(hUa) o ], }
+ MUaf(hUa) ., + 2 NUage ]+ Re (5.28)

The continuity and momentum equations, which are written in the form of
equations (3.28) and (3.30) respectively, are then discretised on a 1D mesh
and integrated using the Adams-Bashforth three-step predictor and Adams-
Moulton four-step corrector schemes (similar to what is done in Chapter

Three). This gives values of  and U« at time level (t+1).

The velocities at the new time level U.;*' remain to be solved. In the next
step of the solution process, equation (5.27) is arranged into a matrix form as
shown in equation (5.29). It is noted that the resulting coefficient matrix for
calculating values of u. varies with time since it contains terms at time level
(t+1). This is in contrést to 1DBMW-1 in Chapter Three, where the coefficient
matrix is constant in time. Equation (5.29) is easily solved using Gaussian

elimination.

r it+1 ( N t+1 ¢ y t+1

Coefficient
SUap  =<Uap (5.29)
Matrix

i I O

The values of the free surface elevation and horizontal velocity determined
above are for inside the fluid domain. At the boundaries, these values are
determined using the boundary conditions explained below.
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5.3.2. Boundary conditions for waves only case
5.3.2.1. Incoming wave boundary conditions

For a locally constant depth, the continuity equation (5.24) reduces to

M, +Uam, +(h+ s, +[(@+ 1 +ah®n-2hn2 - 1n®ua,, =0 (5.30)

6
If the incoming wave is prescribed as a periodic, small amplitude -wave [i.e.
n=§Hacos(kx—mt)], the corresponding horizontal velocity at an arbitrary

level (z=2z.) u« can be obtained by substituting equations (3.25) i.e.

1 =na expli(kx — t)] and u. = uas explikx - ot)] into equation (5.30) giving

e = = (5.31
B [ O T e el | )

The Sommerfeld radiation condition (3.42) (i.e. n, +Cn, =0) is automaticaily

satisfied by equation (5.31).

5.3.2.2. Outgoing wave boundary conditions

The Sommerfeld radiation condition (3.42) can be used to predict the free

surface elevation at the outgoing wave boundary.

The Boussinesqg-type continuity equation in terms of the depth-averaged
velocity U is

ne+[(h+n)u], =0 (5.32)

Equation (5.32) is substituted into the Sommerfeld radiation condition (3.42)

to eliminate n, giving

[(h+n)a], =Cn, (5.33)

For a locally constant depth, the horizontal velocity is then obtained by

integrating equation (5.33) over the x-direction to yield
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T=C 0 :‘ 5 (5.34)

Having solved for u in equation (5.34), equation (5.19) is applied to
determine u.. The set of boundary conditions for 1DBMWC-3 are displayed in
Figure 5.1 for waves only case.

waves

/ swL v

<o
Y .

Lpie ” -
7 Hisin(kx - ot) Initial condition for

A 4
N e T T T T R T T e

Ua = on ny +qu =0
k{h—k2[(a+)h? +ah2q—;hn2 —;n3 i
3

Figure 5.1. Waves only case: the free surface elevation n at the incoming wave boundary is
varied sinusoidally with time.
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5.3.3. Boundary conditions for current oniy case

Boundary conditions for the current only case have some similarities with

the waves only case and are schematised in Figure 5.2.

swL 4 \o
3 _— X
@ Initial condition for 3 (speci -
h n u (specified) —1
T T Rt P L T L T T L T T TR LA L TR T T Te T T T
Ng+Cny = 20, +{(h+n)iil, +Cn, =0
@ H:CL
h+n
z
SWL \ 4
— h O
X

(b) [ > 1 (specified)

Initial condition for n h
r
pebrbrbababah b b M bR A b b b b b b b he b b ha b b haba bbb
20y +{(h+n)T], +Cny =0 np+Cny =0
=_a_ N
u=C——
h+n

Figure 5.2. Current only case: (a) the imposed current flows from the right to the left hand
boundaries; and (b) the imposed current flows from the left to the right hand boundaries.

Note: C = ,/gh.

At the upstream end, the depth-averaged velocity is specified but the
boundary condition also vneeds to involve 1. One way of linking U and n at the
upstream end is to combine the Sommerfeld radiation condition (3.42) and
the continuity equation (5.32) to give

2n, +[(h+n)u], +Cn, =0 (5.35)
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5.3.4. Boundary conditions for wave-current interaction case

The governing equations considered in the present Boussinesg-type
numerical model (1DBMWC-3) were derived based on a steady ambient
current. In the model tests, the following procedure is adopted i.e.

. 1DBMWC-3 is run with current only from an arbitrary free surface

elevation.

*  The results from 1DBMWC-3 settle down to a steady state with nc as the

water level.

e After the steady state is reached, a sinusoidally varying surface elevation
is imposed at the inflow or outflow boundary. This results in a wave train
propagating into the compUtationaI domain.

Two boundary conditions applied at each end in the model for wave-current

interaction are shown in Figure 5.3.
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waves
1 —
7 Hisin{kx - ot)
2
/A i/ / A\
n N\ SWE - Tne ;
<10
(@ : x
current
h Te (specified) < ] .
RS IS IS RS R0 TR TR TR SR 0 1S PR e T e TR TR T YR LS LS o Lo T T T o T h e T b W X R LR L T
N = ne + T Hisin(kx ~ o) '
o " on 2ny +[(h+n)Tel, +Cny =0
U = Uc + ) 1 T3
k(h—kzl(a+;)h3+ahzn—2hq2—sn 1}
waves
¥ Hisin(kx ~ ot)
\// ad
- z
1 SWL ne \
\ <0
X
(b)
> v (spectieq) h
current
TR T T T D D R T i Db T T T Db T P T T T Tk D T T DA T R Pk D Pk D T 1

ny+Cny =
n = ne + THisin(kx - wt) T
on f=c

U=Ue+ 7 N 3 h+n
k{h-k?f(a+-)h* +uhzn-;hn2-;n3]}
3

Figure 5.3. Wave-current interaction case: (a) waves and Steady opposing current; and (b)
waves and steady current in same direction.

The total velocity at the incoming wave boundary are specified by adding the
steady current velocity to the orbital wave velocity as

U=+ on (5.36)
k{h ~k?[(a +2)h* + ah?n—2hn? ——;-ns]}

The same comment applies to the free surface elevation as

n = nNe + 5 Hisin(kx — ot) (5.37)
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5.4. 1D steady, non-linear shallow water numerical model
(1DSSWM)

——
ZA
SWL L
) < 0
(b) d
— "R
hz
AN LT LT L TN Tt 3 e rw -
A T A T T A T A L L S T o o s
R L L A A L YL AL LA AL L AL N AL Pk RN L R A R EA AL AR LAY
R B e I E b I yF b e ey YR LA a3

Figure 5.4. Definitions for d, h and 7.

Referring to Figure 5.4, the 1D steady, non-linear shallow water equations
with bottom friction included are

[(h+n)u], =0 | (5.38)

gn, +utl, =R« | (5.39)
where

Re= g ICUL: (5.40)

where T is the depth-averaged horizontal velocity, Re is the energy slope and
C. is the Chezy coefficient. A numerical model based on equations (5.38) and
(5.39) can be used to predict the free surface elevation and velocity of a
steady current in a wide channel (since the hydraulic radius has been
approximated by the depth). It is noted that Chen (1997) also developed a
numerical model based on the equations above for making comparisons with
their 1D Boussinesq-type numerical model based on their third equations in
the case of pure current motion. In the present study, the procedure of Chen
(1997) is followed as far as equation (5.44).
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Equations (5.38) and (5.39) can be expressed respectively as
(du), =0 (5.41)
gd, +uu, =gh, +Rc (5.42)

where d = h + n is the water depth from the free surface to the bottom and h,

is the bottom slope. Equation (5.42) is re-arranged as
(gd+5T%), =gh, +Re (5.43)

The momentum equation (5.43) may be discretised using a first-order

accurate, finite difference operator to obtain
(gd+30%)., = (gd+7T%) +3Ax(gh, +Re), +(gh, +Re)]  (5.44)

where the unknowns are d_, and u_,. (Note: The convention for the axes
adopted here is shown in Figure 5.4). The unknown u_, in equation (5.44) is
eliminated by substitution of the continuity equation (du), =(du),_, and the
B
Ce*h

these operations is the cubic equation in the single unknown d_,.

definition of the friction term Rc = —g into equation (5.44). The result of

a(d,_,)* = Xs(d_,)* + X2 =0 (5.45)
where
X1=(gd+10?) —%QAX([CL; l: ) +g(h_,~h) (5.45a)
Xz = %E(d;)z[ﬂi +gAx (—C'—?h—l—} (5.45b)
¢ )i

Equation (5.45) is then solved for d,_, using the Newton-Raphson technique

to yield 3 solutions. These correspond to (i) a negative depth, (ii) a depth for
subcritical flow and (iii) a depth for supercritical flow. The solution adopted
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corresponds to the subcritical flow. Free surface elevation due to a current

1., can be drawn using d_,—-h._,.

5.5. 1D conservation of wave action numerical model
(1DWACM)

As explained in Chapter Two, the Doppler shift for a wave train moving on

a current can be expressed as

0a—UcK =0i (5.46)
or

(wa—0ck)? —0i* =0 (5.47)

where wa is the absolute angular frequency, Uc is the horizontal ambient
current velocity in the direction of wave propagation, k is the wave number, i
is the intrinsic or relative angular frequency. The Boussinesqg-type equations
[(6.22) and (5.23)] give rise to the Doppler shift (6.47) with a dispersion
relation corresponding to a Padé [2,2] approximation in terms of kh, that is

1- (o +3 Xkh)?

1-a(kh)? (548)

oi’ = gk*h

in which h is the water depth and the free coefficient a is used to defined z..

Substitution of equation (5.48) for oi into equation (5.47) leads to

1- (o + 1 Xkh)? o

32—2 aﬁck+ Gckz— kzh
@m0 (Uek)” — gk h— )2

(5.49)

If the wave period wa=2n/T and Uc are given, equation (5.49) can be solved
for wave number k, using for example the Newton-Raphson method. The
valid values for k are always positive and are then used to calculate the
intrinsic angular frequency oi and the group velocity Cg as set out respectively

below:
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0'i=(,0a—l:|ck (550)

Ce=nC (5.51)

where C=22 and n == 1+—,&
k sinh(2kh)

The principle of conservation of wave action equation is expressed as
(CaAw)x=0 (5.52)

where Aw=E/ci is the wave action, E =%ng2 is the wave energy, p is the

fluid density and H is the wave height. Substituting the definition Aw = E/ci into
equation (5.52) and then discretising using a first-order accurate, finite

difference operator gives

H. )Y =H) &%))1 : (5.53)

If Hi is given, a wave envelope can be drawn using 1., +H,,, where n,_, is

the free surface elevation due to a steady current (without waves) ati— 1 (see
Section 5.4). Although the conservation of wave action model (1DWACM)
involves wave height, the results do not yield information on the propagation
of individual waves, only on the spatial variation of wave height. This is in
contrast to Boussinesq-type model models, which yield information on
individual waves and how the water level varies within the wave period.

5.6. Experimental set-up 1: a slope

When the current vanishes, the governing equations of 1DBMWC-3 (i.e.
the second set of equations of Chen et al.,, 1998) mathematically reduce to
the governing equations of 1DBMW-1 (i.e. the equations of Nwogu, 1993).
Thus, 1DBMWC-3 is run for simulating wave propagation over a slope with -

the same numerical experiment set-up as used in 1DBMW-1 (Figure 3.4).
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In the first test, 1IDBMWC-3 is run with the same test conditions as
1DBMW-1 (i.e. H/hi=0.071, khi=n, h/lo=0.5, Lo/Ax =28.2, T/At=50.0) to
simulate incident wave propagation from deep water (i.e. h/L.=0.5). The
results in Figure 5.5 show that the numerical solutions of both models for the
free surface elevation nearly coincide. The small discrepancy between the
results of the two models is possibly due to the differences in the boundary
conditions for the two models (see Figures 3.3 and 5.2). Comparisons on the
mbdel results versus the laboratory measurements are located in Chapter
Three. This section focuses on 1DBMWC-3 compared with 1DBMW-1.

1 e +

00Tm 4
< I’ 3353
A IR IR

225

T

o
£

h=0.28 m

o o
S 8
X

Surface elevation (m)
=3 =3
4 4

300 305 310 315 320 325 330 335 340 345 350
Time (s) .

Surface elevation (m)

300 305 310 315 320 325 330 335 340 345 350
Time (s)

Figure 5.5. Incident deep water waves propagating over a slope: time series of the free
surface elevation at 0.28 and 0.07 m depth predicted by 1DBMWC-3 (bold lines), the
laboratory measurements (thin lines) and 1DBMW-1 (dashed lines). Test condition:
hi=0.56m, Hi=0.04m, T=0.85s, Ax=0.04 mand At=0.017 s.
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The second test is to simulate the shoaling of an intermediate depth wave
(T=1s, Hi=0.066 m, Hv/hi=0.118, kihi=2.30, hv/Lo = 0;36) with experimental
set-up 1. With a grid resolution of Lo/Ax=39.0 and T/At=58.8, 1DBMW-1
(waves only) remains stable. However, 1DBMWC-3 (with the dispersion terms
associated with currents included) but operated without currents being
present does not remain stable. Consequently, the grid resolution for both
models is made coarser to Lo/Ax = 31.2 and T/At = 50.0 with the result that the
model remains stable. The predicted free surface elevation of both models is
shown in Figure 5.6. As in the previous test, both numerical solutions are
relatively close.
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003 . - . . x . , . .

250 255 260 265 270 275 280 285 290 295 300
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Figure 5.6. Incident intermediate depth water waves propagating over a slope: time series of
the free surface elevation at 0.24 and 0.10 m depth predicted by 1DBMWC-3 (bold lines), the
laboratory measurements (thin lines) and 1DBMW-1 (dashed lines). Test condition:
hi=0.56m,Hi=0.066m, T=1s, Ax=0.05mand At=0.02 s.
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5.7. Experimental set-up 2: a submerged bar

The second set-up for the numerical experiments consists of a channel
with a submerged bar and is represented in Figure 5.7. The channel is 60 m
long, 0.8 m deep on both sides of the bar and 0.2 m deep on top of the bar.
The Chezy coefficient (Cc) is used to quantify the friction effects along the
channel: between chainages 0-5m, Cc=300m"%s; between chainages
5-23m, C.=30m"%s and between chainages 23 - 60 m, Cc=300 m"%s.
This set-up follows that of Chen et al. (1998). As reported by Chen et al., the
use of the relatively strong bed friction between chainages 5 — 23 m serves to

stabilise the flow simulation.

—x

Elevation (m)
0000600600600
OONDN B WSO -

-

60 50 40 30 20 10 0
Chainage (m)

Figure 5.7. Channel with a submerged bar: the channel is 60 m long, 0.8 m deep on both
sides of the bar and 0.2 m deep on top of the bar.

5.7.1. Test 1 with submerged bar (set-up 2): Steady current only
case

Initially, a flat water surface and a constant inflow velocity of 0.17 m/s is
imposed at the right hand boundary (x=0m) [see also Figure 5.2(a) for
boundary conditions]. The imposed current flows from the right to the left
hand boundaries, and reaches a steady state condition after about 120 s. The
surface elevation increases to about 0.065 m at the right hand boundary and
to approximately 0.052 m at the left hand boundary. Figures 5.8 and 5.8 show
that the free surface elevation and velocity predicted by 1DBMWC-3 (bold
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lines) at t=120s agree well with the results of 1IDSSWM (thin lines). The
closeness of the results in Figures 5.8 and 5.9 indicate that the dispersion
terms included in 1DBMWC-3 have only a slight effect on the free surface
elevation. The biggest difference in the model results occurs where the water

surface curvature is large upstream of the bar.

007

E o
§ t=120s
®
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g 004 | '
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003 . T ; : T T r r r r :
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Figure 5.8. Steady flow in open channel with a submerged bar (Test 1): comparison of the
free surface elevation predicted by 1DBMWC-3 (bold line) at t=120s and 1DSSWM (thin

line). Test condition: hi=0.8 m, Uc(,_g, =0.17 m/s, Ax=0.2m and At=0.05s.
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Figure 5.9. Steady flow in open channel with a submerged bar (Test 1): comparison of the
horizontal velocity predicted by 1DBMWC-3 (bold line) at t= 120 s and 1DSSWM (thin line).

Test condition: hi=0.8 m, Uc(,_4) =0.17 m/s, Ax=0.2m and At=0.05s.

1D Basic Model with Current Effects



Chapter Five 137

5.7.2. Test 2 with submerged bar (set-up 2): Waves and steady

strong opposing current

Once the currents through the channel reach a steady state at t=120s,
the free surface elevation at the left hand boundary (x=60m) is varied
sinusoidally with time [see also Figure 5.3(a) for boundary conditions]. The
incoming wave has a period T=1.2s and an initial wave height of 0.02 m.
This computation is performed with a grid resolution of L./Ax=22.5 and
T/At = 48.0 where Lo = gT%/(2n) = 2.25 m.

Figure 5.10 shows the free surface elevation predicted by 1DBMWC-3 for
combined wave-current motion at a time of 120 +75=195s. The wave is
blocked at about x=26.5m (Figure 5.11) when the local current velocity
equals the opposing local group velocity. This phenomenon shows that the
Boussinesg-type equations can permit an opposing current, which can
exceed the group velocity. Figure 5.10 shows a comparison of an
instantaneous solution from 1DBMWC-3 (bold line) and the results of
1DWACM (thin lines). They show good agreement from the left hand
boundary (x=60m) to a chainage of about x=33 m and then 1DWACM
predicts increasingly higher and higher wave heights which go to infinity at the
blocking point.
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Figure 5.10. Waves propagating over a submerged bar against a steady, strong opposing
current (Test 2). The bold line denotes the computed instantaneous solution by 1DBMWC-3
at t=120+75=195s. The thin lines defining the wave envelope denote the results of

1DWACM. Test condition: hi=0.8m, Hi=0.02m, T=12s, Uc,_, =0.17m/s, Ax=0.1m
and At=0.025s. ’
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Figure 5.11. Waves propagating over a submerged bar against a steady, strong opposing
current (Test 2): the relationship between the absolute local current velocity (bold line) and
the local wave celerity (circles) and the local group velocity (crosses) predicted by 1DBMWC-

3att=120+75=195s. Test condition: hi=0.8 m, Hi=0.02m, T=1.2, Uc,_4 =0.17 m/s,
Ax=0.1mand At=0.025s.

5.7.3. Test 3 with submerged bar (set-up 2): Waves and steady

weak opposing current

Test 3 is similar to the previous test, except that this time a wave period of
2.4 s is used instead of 1.2 s [see also Figure 5.3(a) for boundary conditions].
The computation is carried out with a grid resolution of Lo/Ax=45 and
T/At =96. 1DBMWC-3 is run for a time of t =120 + 47.5 = 167.5 s. Figure 5.12
shows that the current does not block the 2.4 s wave, which is able to
propagate against the current. This is confirmed by Figure 5.13, where it is
seen that the local current velocity does not exceed the local group velocity at
any location in the channel (compare with the 1.2's wave in Figure 5.11). In
Figure 5.12, it is evident that there is good agreement between the results of
1DBMWC-3 and those of 1IDWACM except between x=10m and x=26 m.
In this region of the channel, the wave heights predicted by 1DBMWC-3 are
contained with the envelope of wave heights predicted by 1DWACM.
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Figure 5.12. Waves propagating over a submerged bar against a steady, weak opposing

current (Test 3). The oscillatory motion of the free surface elevation predicted 1DBMWC-3 at
t=120+47.5=167.5s is enclosed by the wave envelope (thin lines) of the results of

1DWACM. Test condition: hi=0.8m, Hi=0.02m, T=24s, Uc, =0.17m/s, Ax=02m
and At=0.025s.
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Figure 5.13. Waves propagating over a submerged bar against a steady, weak opposing
current (Test 3): the relationship between the absolute local current velocity (line) and local
wave celerity (circles) and local group velocity (crosses) predicted by 1DBMWC-3 at

t=120+47.5=167.5s. Test condition: hi=0.8m, Hi=0.02m, T=24s, Uc(,_,, =0.17 m/s,
Ax=0.2mand At=0.025s.

5.7.4. Test 4 with submerged bar (set-up 2): Steady current only

case

The fourth test considered here is similar to the first test, but now a
constant inflow velocity of 0.17 m/s is imposed at the left hand boundary
(x=60 m) instead of at the right hand boundary [see also Figure 5.2(b) for
boundary conditions]. The imposed current flows from the left to the right
hand boundaries and reaches a steady state condition after about 120 s. This

gives rise to a water surface, which varies from about 0.065 m at the left hand
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boundary (x =60 m) to approximately 0.053 m at the right hand boundary
(x=0m) at the steady state condition at t=120s. A comparison of the free
surface elevation predicted by 1DBMWC-3 (bold line) with 1DSSWM (thin
line) gives good agreement as shown in Figure 5.14. As in the first test, the
dispersion terms incorporated in 1DBMWC-3 are seen to barely cause any
discernible difference in the free surface elevation, even where the curvature

of the water surface is large.
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Figure 5.14. Steady flow in open channel with a submerged bar (Test 4). comparison of the
free surface elevation predicted by 1DBMWC-3 (bold line) at t=120s and 1DSSWM (thin

line). Test condition: hi= 0.8 m, Uc,_g5, =0.17 m/s, Ax=0.2m and At=0.05s.

5.7.5. Test § with submerged bar (set-up 2): Waves and steady

current in same direction

After the current reaches a steady state condition (Test 4), the free
surface elevation at the left hand boundary (x =60 m) is varied sinusoidally
with time [see also Figdre 5.3(b) for bbundary conditions]. The wave period,
incident wave height, grid resolution and time increment remain identical to
the values used in the second test (i.e. T=12s, Hi=0.02m, Ax=0.2 m,’
Lo/Ax =22.5, At=0.025 s and T/At=48.0). The effects of a current on waves
moving in the same direction lead to a noticeable stretching of the
wavelengths compared to the case with waves and current in opposite
directions (compare Figures 5.15 and 5.10). It can be seen in Figure 5.15 that

except near the right hand boundary (x = 0 m), good agreement is obtained in
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a comparison of the free surface elevation from 1DBMWC-3 results (bold line)
at t=120+75=195s and the results of 1DWACM (thin lines). The
discrepancy between the two model results near the right hand boundary is
due to boundary conditions, which are evidently not performing well.
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Figure 5.15. Waves and steady current in same direction moving over a submerged bar (Test
5). The bold line denotes the instantaneous water surface (with waves) from 1DBMWC-3 and
the thin lines denote 1DWACM. Test condition: hi=0.8m, Hi=0.02m, T=12s,

Ue(y.g0y =0.17 m/s, Ax=0.1 m and At=0.025s.

5.8. Conclusions

A numerical model together with various boundary conditions for fully
combined wave-current motion is developed by the present author. This
numerical model is referred to as 1DBMWC-3. The governing equations are
the 1D Boussinesg-type equations with a Doppler shift in which the dispersion
relation corresponds to a Padé [2,2] expansion in terms of kh as derived by
Chen et al. (1998). The boundary conditions for the present numerical model
(1DBMWC-3) are determined for the particular cases of waves only, current

only and wave-current interaction.

The governing equations of 1DBMWC-3 mathematically reduce to those of
1DBMW-1 in the absence of an ambient current. This is numerically
confirmed by the close agreement between the numerical solutions from
1DBMWC-3 and 1DBMW-1. However, numerical corroboration is still required

by extending this work into 2D, which is documented in Chapter Seven.
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In the case of pure current motion, the results of 1DBMWC-3 are
compared to those of 1DSSWM. Excellent agreement is obtained. When
waves are present, the results from the 1DWACM are compared with those
from 1DBMWC-3 in the case of fully coupled wave-current motion. The
comparison indicates generally good agreement between the resulits.
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Chapter Six

2D Basic Model

6.1. Introduction

One of the main difficulties in a 2D numerical wave model compared to a
1D numerical model is in the furnishing of a set of boundary conditions. Two-
dimensional Boussinesqg-type numerical models have been proposed; some
examples are by Abbott et al. (1978), Hauguel (1980), Yoon and Liu (1989),
Madsen et al. (1991), Madsen and Sgrensen (1992), Wei and Kirby (1995),
Nwogu (1996) and Sgrensen et al. (1998). However, detailed consideration of
the 2D boundary conditions was not usually included, with a notable
exception being that of Wei and Kirby.

Wei and Kirby (1995) developed a 2D Boussinesq-type wave numerical
model based on the equations of Nwogu (1993). Their numerical model
included incoming, reflecting and outgoing wave boundary conditions. In the
case of a monochromatic wave propagating over a shoal, the incoming wave
specified was a small amplitude wave. The horizontal velocity at the incoming
wave' boundary was determined using Airy wave theory. At the reflecting
wave boundary, the free surface elevation was obtained by setting the spatial
derivative of the free surface elevation normal to an impermeable wall to zero
(i.,e.Vnen=0). The horizontal velocity at that boundary was obtained by
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imposing a no-shear condition for the flow along the boundary wall. At the
outgoing wave boundary, an approximate radiation boundary condition
proposed by Engquist and Majda (1977) was adopted to predict the free
surface elevation. However, this boundary condition inevitably introduced
some wave reflection along that boundary that led to instability. To reduce the
reflection, damping terms were added to the momentum equations. The
governing equations and boundary conditions were discretised using an
implicit finite difference scheme and a non-staggered grid. Wei and Kirby
applied their model: (i) to study wave evolution in a closed basin to verify the
symmetry of the computed results and to test various boundary conditions
and (ii) to simulate monochromatic wave propagation over an elliptic shoal. A
comparison between the numerical model results and laboratory
measurements showed that the numerical model was capable of providing a

solution for wave propagation over a wide range of water depths.

The 1D numerical model based on the equations of Nwogu (1993) is
detailed in Chapter Three (1DBMW-1). However, the aim of the present study
is to simulate 2D wave propagation by developing a 2D numerical model
based on the Boussinesg-type equations of Nwogu. This 2D numerical model
is referred to 2DBMW-4. The numerical scheme applied by Wei and Kirby
(1995) is employed by the present author in the model being developed.
Three kinds of boundary conditions are incorporatéd into the numerical

scheme:

(i) incoming wave boundary condition,

(i) outgoing wave boundary condition and
(i) reflecting wave boundary condition.

At the incoming wave boundary, monochromatic, small amplitude waves
are generated. At the outgoing wave boundary, the 2D Sommerfeld radiation
condition is applied to calculate both the free surface elevation and horizontal
velocity. The reflecting wave boundary conditions are based on zero normal

flux.
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2DBMW-4 is tested using data from the physical experiments of Chawia
and Kirby (1996) [see Chen et al. (2000)] and also Berkhoff et al. (1982). The
main differences between the present work and the previous work of Wei and
Kirby (1995) and Wei et al. (1999) are in the determination of the appropriate

boundary conditions. See Table 6.1 for a summary of the various differences.

Investigators

Wei and Kirby (1995)

Wei et al. (1999)

Mera (present study)

Governing equations

Nwogu (1993)

Nwogu (1993)

Nwogu (1993)

Time integration in the
numerical scheme

Wei and Kirby (1995)
(Third-order predictor &
fourth-order corrector
schemes)

Wei and Kirby (1995)
(Third-order predictor &
fourth-order corrector
schemes)

Wei and Kirby (1995)
(Third-order predictor &
fourth-order corrector
schemes)

Incoming wave
boundary condition

1) Monochromatic waves
2) Continuity equation and
Sommerfeld radiation
condition

1) Monochromatic and
random waves

2) Source function
method (Wei et al.,
1999)

1) Monochromatic and
random waves

2) Continuity equation and
Sommerfeld radiation
condition

Reflecting wave
boundary condition

Wei and Kirby (1995)

Wei and Kirby (1995)

Mera (Present study)

closed basin.

2) Monochromatic wave
propagation over a sloping
bed with an elliptic shoal
[Berkhoff et al.’s (1982)
set-up

propagation over a
sloping bed with an

elliptic shoal [Berkhoff et '

al’s (1982) set-up
2) 2D random wave.

Outgoing wave Engquist and Majda (1977) | Engquist and Majda Sommerfeld radiation
boundary condition (1977) condition

Other explanation Damping terms added to Damping terms added to | Use a filter to reduce
relating to the the momentum equation the momentum equation | reflecting wave from
outgoing wave boundary. (Mera, present
boundary condition study)

Test cases 1) Wave evolution in a 1) Monochromatic wave | 1) Monochromatic wave

propagation over a flat
bottom with an elliptic
shoal [Chawla and Kirby’s
(1996) set-up}

2) Monochromatic wave
propagation over a sloping
bed with an elliptic shoal
[Berkhoff et al.’s (1982)
set-up]

Table 6.1. Differences between the current and previous research.
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6.2. Governing equations for 2D basic model (2DBMW-4)

The governing equations of 2DBMW-4 (the present Boussinesq-type
numerical model) are the 2D equations of Nwogu (1993) [i.e. equations (3.16)
and (3.17)], which are applicable to the horizontal propagation of regular or
irregular, multi-directional waves in water of varying depth. The dimensional
form of these equations is

1, +Ve[(h+nua]+ V e {(32:2 - 1h?hV(V e uc)
+(2a+2h)hV[V e (hu)]} =0 (6.1)
Uy +QVN+ (U ® V)Ua + Za{3 2sV(V 0 s, ) + V[V o (hua, )]} = 0 (6.2)

where u. = (Us,Ve) = horizontal velocity vector at an arbitrary level (z=2z.)
below still water level. The definitions for z« in equation (3.21) and « in
equation (3.22) for 1D are also valid in 2D. The Boussinesqg-type continuity
equation (6.1) can be written as

N +[(h+Mua], +[(h+n)va],
+ (%Zcuz —-;—)[h3(uaxx +Vay )], + (2ea + %){hz[(huu)xx + (hVu)xy]}x

+ (';'z':"z _%)[hs(u“xy +Vay )]y + (z°°‘ * %){hz[(hu“)xy + (hv“)w]}y =0
' (6.3)

o

where z.. = z«/h. Similarly, the Boussinesg-type momentum equation (6.2) in
the x- and y-directions can be written as
Uy +5 Za” (Uagy + Vapy ) + Za[(hUa,), + (hVa,),, ]+ 9N, +Ualla, + Valle, =0
(6.4)
‘Vay + 3 Za?(Uay + Vay, ) + Za[(ha,),, + (hve),, ]+ gn, +UaVa, +VaVa, =0
(6.5)

where the subscripts x and y denote partial differentiation with respect to the

x- and y-directions respectively.
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6.3. Numerical solution algorithm for 2DBMW-4

6.3.1. Solution method

The governing equations [(6.3) through to (6.5)] are discretised by the
present author using the equivalent 2D form of the 1D implicit non-staggered
finite difference method in Chapter Three.

. Continuity equation

The continuity equation (6.3) can be written as
N, = E(n, Uq, Va) (6.6)
where

E(MUe,Va) = = [(h + nua], ~[(h + n)Vva],
~(325a* = 2)[0*(Uag + Vo )] = (Zea + 2H{N[(hua),, + (hVa),, I},

~(3zea* = 3)[N*(Uay, +Vay,)], — (2o + 3){N[(hua),, +(hva),, I}, =0

(6.7)
¢  Momentum equations
The momentum equations [(6.4) and (6.5)] can be expressed as
Uq, = F(1,Ue, Va) + [Fi(va)], (6.8)
Ve, = G(1, Ua, Va) + [Gi(ua)], 6.9)

where Uq, Ve, F, G, F1 and G1 are the variable groupings defined below:

Ua = Ua + Zaf 3 Za Uay +(NUa)y ] (6.10)
Va = Va + Za[ 1 Za Va,, +(hVa),, ] | 6.11)
k F(n,Ue, Va) = ~ gn, — Ualla, — Valla, (6.12)
G(n,Uq,Va) = — gN, — UaVa, — VaVa, (6.13)
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Fi(Va) = = Za[ 32 Va,, + (hva),, ] (6.14)
Gi(Ua) = — Za[ 3Za Ua,, +(hUa),, ] | (6.15)

. Predictor algorithm

The predictor scheme adopted is the explicit third-order Adams-Bashforth
method and is applied to the continuity equation (6.6) and the momentum
equations [(6.8) and (6.9)] to give

Nt =+ S A23E" —16E"" + 5E], (6.16)

2

Ut = Usy, + 5 M[23F* —16F"" + 5F2], +[2F+ ~ 3F#" + Fi+2]

J

(6.17)
Vol = Va!, + - A[23G! —16G*" +5G* 2] +[2G — 3G+ + G+2],, (6.18)

All the terms on the right hand sides of equations (6.16) to (6.18) are at the
earlier time levels [(t-2) to t] and known from previous calculations.

As in the 1D version of the model (1DBMW-1), values of n*' are

calculated directly. However, the horizontal velocity components (u.,v.) at the
new time level (t+1) are calculated from the known intermediate variables
(Ua,Va) at the new time level (t+1) and defined in equations (6.10) and (6.11).
In matrix form, théSe equations can be written in the form of equations (6.19).
These equations require the sblution of tridiagonal matrix systems, where the
coefficient matrices are constant in time and equations (6.1 0) and (6.11) are
solved using Gaussian elimination.

- T ( 3 t+1 (Y t+1

Coefficient
{Ua b =<Uaﬁ (6.19a)
matrix
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F T ( N t+1 [ t+1

Coefficient
{Vap =4Vab (6.19b)
matrix

i I O R

Equations (6.19) yield the (x,y) velocity components (uq,Va).

) Corrector algorithm

The newly predicted values of n;;",uq;;' and vq}" are then substituted into

equations (6.7), (6.12) to (6.15) to yield E!I',F"' G"

Ry Gy L (F)T and (G
respectively. These values of these parameters are then substituted into the
continuity equation (6.6) and the momentum equations [(6.8) and (6.9)], which

are converted to the form of the fourth-order Adams-Moulton corrector, that is
ni;' = + 5 A9E™ +19E' - 5E' + E?], (6.20)
Ualy' = Ual, + o A[OF™! +19F* - BF* 4 F*-2] 4 [P —Fot], (6.21)
V' = V), + 2 A{9G"" +19G' - 5G" + G*?] +[G*" - G1'] | (6.22)

The corrector step is repeated until the misclose between two successive
results is less than a pre-set upper limit. The misclose in each of the three

dependent variables 1, u« and va is calculated separately and defined below:

2l -5
A=t (6.23)

PR

ij

where f denotes any one of the dependent variables and ( )* denotes the

previbus iteration values. The corrector step is repeated if Af>0.001=0.1 %.
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The values of the free surface elevation and horizontal velocities
determined above are for inside the fluid domain. At the boundaries, these

values are determined using boundary conditions explained below.

6.3.2. Boundary conditions
6.3.2.1. Incoming wave boundary conditions in 2D

The free surface elevation n at the incoming wave boundary is varied

sinusoidally as

= %Hssin(k o X —ot) (6.24)
where Hi=incoming wave height, ke x=(k cos 6i) x + (k sin 8) y, k=wave
number vector, k=|k| (see Appendix A for vector components),

x = horizontal spatial vector and 6i=incoming wave angle between the

direction of propagation and the x-axis.

The velocity boundary condition is now considered. A periodic, small
amplitude wave is now expressed in exponential form with angular frequency

.
N = na explik e x — ot)], Ua = Uaa eXp[i(k X — ot)] (6.25)

where 1na = amplitude of the water surface elevation and u«a = amplitude of the
horizontal velocity. For a locally constant depth, the continuity equation (6.1)

simplifies to
N+ (+n)(Veus) +Uae Vn+ (o + 1V o [V(Veus)] = 0 (6.26)

The horizontal velocity at the incoming wave boundary can be obtained by
substituting equations (6.25) into equation (6.26) to eliminate the time and

spatial derivatives to give
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o1

Uo = (6.27)
kh[1-(a+ 1 )(kh)?]

where n<<h for a small amplitude wave. Equation (6.27) automatically

satisfies the Sommerfeld radiation condition (6.30) in which C =w/k.

Expressing equation (6.27) in the x- and y-directions gives

on .
Ua = cos 6 6.28
kh[1- (o + 1 )kh)?] (6:28)

o= on ) 6.29
Y kh[1—(a+31)(kh)2]sm ©.29)

Hence at the incoming wave boundary, equation (6.24) specifies n while

equations (6.28) and (6.29) yield the velocity components (u.,v.) respectively.

6.3.2.2. Outgoing wave boundéry conditions in 2D

The boundary condition for 1 is considered first. At the outgoing wave
boundaryv,‘ the 2D Sommerfeld radiation condition is used to allow the

passage and egress of the wave énérgy, that is

M, +CeVn=0 : (6.30)
where
C=|C|cosbi+|C|sind j ) (6.31)
in which | Cc l = ]—% and 0 is the local wave propagation direction defined by
0= tan“(ﬂi) for m,20  (6.32)
T«

(see Appendix A for a coordinate system). For implementation of the outgoing
wave boundary condition into the code, equation (6.30) is transformed into

the form of equation (6.6) giving
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E(1,Ua,va) =—| C|cos6n, —|C|sinbn, (6.33)

where the derivatives are discretised as
- 3n,-4 : 6.34
(M, )i _—ZTX( M — 41, + M) (6.34)

1

24y (nj+1 _“1-1)it (6.35)

t
(n, e

The boundary condition for the velocity components is considered next.
The depth-integrated continuity equation (2.36) can be expressed in terms of
the depth-averaged horizontal velocity as

n,+Ve[(h+n)u]=0 | (6.36)

Equation (6.36) is the exact continuity equation and is identical to the
Boussinesg-type continuity equation in terms of the depth-averaged velocity
as the velocity variable. Equation (6.36) is then substituted into equation

(6.30) to eliminate n; giving
Ve[(h+n)u]=CeVn (6.37)

For a locally constant depth, equation (6.37) may be integrated over the fluid

domain to obtain the horizontal velocities

T=C—1_cos (6.38)
h+n

v=C—1 sing (6.39)
h+n

where C=|C|. Having solved for U, V in equations (6.38) and (6.39),
equation (5.19) is applied to determined uo, Va.

The formulations for determining the free surface elevation and horizontal
velocity in the present numerical model (2DBMW-4) are different to those in
the work of Wei and Kirby (1995). These investigators predicted the free
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surface elevation at a boundary (parallel to the y-axis) using the
~approximation (6.40) proposed by Engquist and Majda (1977) instead of
equation (6.30).

My +Cne —3Cn,, =0 | (6.40)
where C = \/g_h

Wei and Kirby then calculated the horizontal velocity using the momentum
equations with damping terms included instead of equations (6.38) and
(6.39). The damping terms were analogous to linear viscous terms in the
Navier-Stokes equations (Israeli and Orszag, 1981). More information about
the damping terms used in the momentum equations can be found in Wei and
Kirby (1995).

Hence the boundary condition for n at the outgoing wave boundary is
specified by equation (6.30) and for (u«ve«), the boundary conditions are
equations (6.38) and (6.39).

6.3.2.3. Reflecting wave boundary conditions in 2D

Boundary condition for vq«

The kinematic boundary condition at an impermeable wall can be stated

as
Ucon=0 X € 0Q (6.41)

where n is an outward normal vector, Q is the fluid domain, 9Q is the

boundary and x is a position in the boundary. Consider, for example, the case

of an impermeable wall being parallel to the x-axis. Equation (6.41) is a

boundary condition and can be written as

Va=0 X €0Q (6.42)
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Boundary condition for n

The slope and the curvature of v. normal to the impermeable wall is assumed

to be zero and expressed respectively as

Vo, =0 and v, =0 X €0Q (6.43)

The continuity equation (6.1) can be expressed in terms of the volume flux

vector Q as

n+VeQ=0 (6.44)
where

Q = (h+Mua +(72:* — Th? I V(V e ta) +(za + Th)hV[V e (hua)]  (6.45)
Once again, the kinematic boundary can be expressed in terms of the volume
flux vector at an impermeable wall as

Qen=0 X € 0Q (6.46)

For the case of the impermeable wall being parallel to the x-axis, the volume
flux in the y-direction at the boundary becomes zero or

(h+ Ve + (322 = 2h?J(Uay, +Vay, ) + (2o + Fh)h[(hua),, +(hva),,] =0
X € Q) (6.47)

Substituting equation (6.47) into equation (6.3) gives a reflecting wave
boundary condition for calculating the free surface elevation at the boundary

wall as set out below:
N, +[(h+ua], +(3zea® = 2)[° (Uay, + Ve, )],
+(2Zea + 2Y{P?[(hUe) o + (Va) o ]}, =0 X €0Q (6.48)

The present approach differs from that of Wei and Kirby, who predicted the

free surface elevation at the reflecting wave boundary by imposing

Vnen=0 X €0Q (6.49)
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Boundary condition for u«

For a locally constant depth, the horizontal velocity in the x-direction may
be obtained by substituting equations (6.42) and (6.43) into equation (6.47)

giving
Ua,, =0 X €0Q (6.50)

xy

The last condition is also different to the work of Wei and Kirby, who imposed
a condition of zero shear stress along the boundary wall to estimate u..

For a boundary parallel to the x-axis, the boundary conditions are

equations (6.48), (6.50) and (6.42) for 1}, u« and va. respectively.

6.3.3. Filter

"To enhance the stability of the computation, two three-point filters are

applied to n;}", us;’ and va;j'. The filters take the form:

ij

. 1 . v e e
fltj = et 2 (fi+1,j +0x-f 4+ ! (6.51)
and
. 1 . C e e
flt] "= o+ 2 (fi.j-1 +ry-f+ 5 )t ! (6.52)

where f* denotes 1, Us and vq, and f denotes the new values of 11, us and ve. 1

and ry are constant smoothing coefficients which are determined empirically.

2D Basic Model



Chapter Six 156

Qutgoing wave
<Y
!

2uI x ) : #Equation (6.52) applied

X
a}
X
X

X

N
N
N

N
v N ‘&\‘ \
N Y

N
N
NN

N
BN

N
N
NN

N \

N

R
NN

AHRNTT
X
N

7

N\
\
\
NiIRR
X

N
N

N
X

Nl S Hra

AN

T N s

N
™~

e Equation (6.51) applied

AN
N

N
N
\\\:§\:

AMHINN

N
N
NN

N

N
N

s

A A

incoming wave

>

Figure 6.1. Filter.

From Figure 6.1 can be seen that equation (6.51) is applied to all points in the
fluid domain excluding the boundaries. Equation (6.52) however, is only
applied to a strip of the fluid domain, which is about two times the incoming
wavelength in width and is adjacent to the outgoing wave boundary.
Consequently, equations (6.7), (6.12) through to (6.15) and (6.20) through to
(6.22) are re-calculated after the results have been filtered.

The filters are said to be ‘soft’ filters because the effects on the results at a
particular point are small. To achieve this, the values of the coefficients rx and
ry should be large numbers. In these computations, for example, rx and ry are
set to 2000 and 100, respectively. However, small values for rx and ry result in

large effects on the filtered dependent variables (f"), which may be followed

by spurious attenuation of the wave heights. The values for rx and ry are
obtained by trial and error. As the values of the coefficients are relatively large

numbers and the filtered variables are re-calculated, this will probably not
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have much effect on the order of the truncation error retained of the governing

equations.

6.4. Model verification

6.4.1. Scenario 1: Wave propagation over a circular shoal on a flat

bottom basin

As reported by Chen et al. (2000), Chawla and Kirby (1996) conducted
laboratory experiments of non-breaking wave propagation over a submerged
shoal. The physical wave basin was approximately 18 m long and 18.2m
wide. The numerical representation of this wave basin is in Figure 6.2. The
centre of the shoal was located at (x,y) = (13,9.22) m with the perimeter given
by

(x —13)% +(y - 9.22)? = (2.57)? (6.53)

The water depth over the circular shoal was given by

h = heven + 8.73 — 4/82.81— (x = 13)? — (y —9.22)? (6.54)

in which heven was the constant depth of the wave basin while the rest of the
basin bathymetry was flat. The incoming wave boundary is located at
x = 18 m, the outgoing wave boundary is at x=0m and the reflecting wave

boundaries are situated aty=0mandy=18.2 m.

Chen et al. (2000) also used the laboratory set-up of Chawla and Kirby to
verify their numerical model, which was based on the Boussinesqg-type
equations proposed by Wei et al. (1995). As noted by Chen et al., the wave
height at the incoming wave boundary was 0.0118 m, the wave period was

1.0 s, the depth hewen in equation (6.54) was 0.45 m and the top of the shoal
had a depth of 0.08 m.
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Figure 6.2. Plan (top) and perspective (bottom) views of numerical bathymetry following
Chawla and Kirby’s (1996) laboratory set-up. Basin size is 18 m long and 18.2 m wide. Side
walls are at y=0 and 18.2 m. Centre of the circular shoal is located at (x,y) = (13,9.22) m.
Transects of wave gauge locations: Sections A-A at y=9.22m, B-B at x=6.88m, C-C at
x=28.35m, D-D at x=10.005m, E-E at x=11.5m, F-F at x=13 mand G-G at x=14.5m.
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The computation is performed with Ax=0.05m, Ay=0.1m and
At=0.01 s. The initial conditions for 2DBMW-4 runs are a flat water surface at
still water level. A monochromatic wave is generated at the incoming wave

boundary.

After running 2DBMW-4, the computed free surface elevation is collected
during the last 10 s of the 40 s simulation and transformed to the root-mean-
square wave height (Hms). The Hms values are normalised by the incoming
wave height and represented by solid lines. The computed values for the
normalised Hms are compared to the physical data, which are plotted as small

circles in Figure 6.3.

The data in Figure 6.3 shows how the waves shoal as they pass over the
circular shoal. The wave height is seen to increase sharply by a factor of
more than two and half times on top of the shoal, and decrease dramatically
behind the shoal. These phenomena are shown along Section A-A. The
results of 2DBMW-4 are seen to capture the effects of the combined
refraction-diffraction wave field as shown along Sections B-B to G-G.
Although the computational shoal is not quite symmetrically located (centred
at y=9.22m instead of y=9.10 m), 2DBMW-4 is still able to accurately
simulate the wave field. Perspective views of the shoaling, refracting and

diffracting asymmetrical waves can be seen in Figure 6.4.

In addition, 2DBMW-4 is based on the weakly non-linear Boussinesg-type
equations. However, when the results from 2DBMW-4 are qualitatively
compared with those from fully non-linear model of Chen et al. (2000), the

accuracy of both models is seen to be comparable.
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Figure 6.3. Wave heights (Hms) normalised with respect to the incoming wave height:
comparisons between 2DBMW-4 (——) and laboratory data (o< -
for the experiment of Chawla and Kirby (1996). Data: T= 105 Hi=0.0118 m, 6i=0°
heven=0.45m, Ax=0.05m, Ay=0.10m and At=0.01s.
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Figure 6.4. Results of 2DBMW-4: perspective views of monochromatic wave fields at t=20s

(top) and t =40 s (bottom). Data: T=1.0s, Hi=0.0118 m, 8i=0° heven=0.45m, Ax=0.05m,
Ay =0.10m and At=0.01s.
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6.4.2. Scenario 2: Wave propagation over an elliptic shoal on a
slobing bottom basin

Berkhoff et al. (1982) conducted some laboratory experiments of wave
refraction and diffraction as an incoming monochromatic wave propagated
over complex bathymetry. The experimental bathymetry consisted of an
elliptic shoal lying on a plane sloping bottom with a slope of 1:50 (the
numerical wave basin is shown in Figure 6.5). The bathymetry had the same
centre point as the shoal. The depth contours were inclined at an angle of 20°
to a straight wave paddle. The physical wave basin was approximately 25 m
long and 20 m wide. At one side of the basin, waves were generated and at
the opposite side, the wave energy was nearly totally dissipated by a breaking
process at a gravel beach. At the incoming wave boundary, a monochromatic
wave was generated with a period T =1.0 s and amplitude ni=0.0232 m. For
the initial conditions, the water surface is set to still water level. More
information about the physical experiment can be found in Berkhoff et al.
(1982). |

Because 2DBMW-4 only applies to non-breaking waves, the numerical
wave basin is truncated to be 3 m shorter than the physical one.
Consequently, the numerical basin becomes 22 m long and 20 m wide. The
incoming wave boundary is located at the same position as in the laboratory
(i.,e. x=22m) and the outgoing wave boundary is at the opposite side at
x=0m. Meanwhile, the reflecting wave boundaries remain in the same
location i.e. at y=0m and y=20m, and the depth over the flat bottom is
0.45m.

The computation is performed with Ax=Ay=0.1m and At=0.02m. The
computed free surface elevation is recorded during the last 6 s of the 32s
simuletion and transformed to the root-mean-square wave height (Hms). As for
the first scenario tested, the Hms wave heights are then normalised by the

incoming wave height.
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Figure 6.5. Plan (top) and perspective (bottom) views of numerical bathymetry following
Berkhoff et al.’s (1982) laboratory set-up. Basin size is 22 m long and 20 m wide. Side walls
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Figure 6.6 shows comparisons of the normalised wave height between the
numerical model (lines) and laboratory data (circles). In this scenario, the
reflection and diffraction effects are stronger than for the first scenario. It is
evident from the results however, that 2DBMW-4 is capable of reasonably
simulating the transverse variation of the wave field as shown along Sections
1-1 to 5-5 except for Section 2-2. Here it is noted that the model significantly
overestimates the wave height. Wave shoaling can be seen in the longitudinal
Sections 6-6 to 8-8 of Figure 6.6. Along the central Section 7-7 it is evident
that the model overestimates the wave height significantly in the vicinity of
x = 7-9 m. 2DBMW-4 simulates the wave shoaling beyond the shoal over the
slope reasonably well. Perspective views of these phenomena can be seen in

Figure 6.7.

Wei and Kirby (1995) and Wei et al. (1999) also used the laboratory data
of Berkhoff et al. (1982) to compare against the results of their numerical
models. The ndmerical models of both of these groups of investigators and
2DBMW-4 (the present numerical model) are all based on the Boussinesg-
type equations proposed by Nwogu (1993). The numerical models differ
however,.in the different formulations of the boundary conditions. Although
based on limited comparisons of laboratory data and numerical model
predictions, some general conclusions on the quality of the numerical model
solutions can be made. Comparisons show that the wave fields predicted by
2DBMW-4 are generally better than those of Wei and Kirby ('1 995) but not as
good as those of Wei et al. (1999).
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Figure 6.7. Results of 2DBMW-4: perspective views of monochromatic wave fields att=16s
(top) and t=32s (bottom). Data: T=1.0s, 1n,=0.0232m, 6i=0° heven=0.45m,
Ax=Ay=0.10m and At=0.02 s.
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6.5. Conclusions

A 2D numerical model based on the Boussinesq-type equations proposed
by Nwogu (1993) is developed by the present author as the basic numerical
model in studying the effects of 2D dispersion terms associated with currents
in the next chapter. In the present Boussinesq-type numerical model
(2DBMW-4), a monochromatic, small amplitude wave is generated at the
incoming wave boundary by varying the free sdrface elevation sinusoidally.
The 2D Sommerfeld radiation condition is employed at the outgoing wave
boundary to predict all dependent variables. The reflecting wave boundary
conditions are based on zero normal flux. 2DBMW-4 results are compared to
the laboratory data for monochromatic wave transformations over a
submerged circular shoal lying on a flat bottom basin (Chawla and Kirby,
1996) and over a submerged elliptic shoal resting on a sloping bottom basin
(Berkhoff et al., 1982). Comparisons of the results of 2DBMW-4 with
laboratory measurements show that it is capable of simulating a non-breaking

wave field over a variable bathymetry.

In the previous models by Wei and Kirby (1995) and Wei et al. (1999), the
absorbing wave boundary introduced by Engquist and Majda (1977) was
applied to the outgoing wave boundary instead of the Sommerfeld radiation
condition as used in 2DBMW-4. Meanwhile the differences between the

previous models themselves were:

¢ Wei et al.’s model employed a source function method at the incoming

wave boundary.

e Wei and Kirby’s model used a combination of the Boussinesqg-type
continuity 'equation and Sommerfeld radiation condition at the incoming

wave boundary.
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Chapter Seven

2D Basic Model
with Current Effects

7.1. Introduction

The effects of wave-current interaction in a 1D Boussinesg-type,
numerical model formulation have been reported by the present author in
Chapter Five. This formulation is based on the second set of equations of
Chen et al. (1998) (1DBMWC-3). A similar but different model was also
proposed by Chen et al. (1998) but based on their third set of equations.

As mentioned in Chapter Five, the main goal of the present study is to
investigate numerically the effects of the dispersion terms associated with
currents, which are not included in the equations of Nwogu (1993). The
effects of the dispersion terms associated with currents in a 1D numerical
model (1IDBMWC-3) have been investigated in Chapter Five. Here, the
investigation is extended to 2D. Several 2D Boussinesq-type numerical
models have already been developed by Yoon and Liu (1989) and Priiser and
Zielke (1990).

A 2D numerical model based on the second set of Boussinesqg-type
equations derived by Chen et al. (1998) is developed by the present author.
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This 2D numerical model is referred to 2DBMWC-5. The second set of
equations of Chen et al. is equivalent to the equations of Nwogu extended to
include a current. The governing equations in 2DBMWC-5 are solved by the
present author using the non-staggered finite difference method detailed in
Chapter Six. A suitable set of boundary conditions is determined by the
present author for the three cases of waves only, current only and combined

wave-current motion.

The experimental set-up consists of a circular shoal lying on a flat bottom
basin. The tests modelled are waves only case, currents only case, waves
and opposing current, and waves and current in same direction. To reduce
the computational instability believed to be due to the small reflected waves
from the outgoing wave boundary, a three-point filter introduced by the
present author is applied in the x- and y-directions.

For comparison purposes, laboratory data are only available for the case
of wave motion only. Consequently, a 2D numerical model based on the
unsteady, non-linear shallow -water equations is also developed by the
present author. This 2D numerical model is referred to 2DUSWM-6 and is
compared with the present Boussinesqg-type numerical model (2DBMWC-5)

for the currents only case.

7.2. 2D Boussinesq-type numerical model (2DBMWC-5)

7.2.1. Governing equations

The governing equations considered in 2DBMWC-5 are the second set of
Boussinesqg-type equations for fully coupled wave-current motion derived by
Chen et al. (1998) [i.e. equations (5.22) and (5.23)]. The dimensional form of
the continuity equation (5.22) is

Ny +Ve[(h+nua]+I12 =0 (7.1)

where
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I1? =V e (hla) - Vo {Th*V(V e ua) — 2h2[V e (hua)]} + 7(V o T)
—%nZVO{V[VO(hua)]}——%n:’VO[V(Voua)] (7.1a)

Again I« is defined by equation (3.11a). The dimensional momentum

equation (5.23) is expressed as
U, +GVN +(Ue e VU + A2 + A2 =0 . (7.2
where

A =Ta, —mV[V e (hta)]-In°V(Veus,) (7.2a)

A** = (Ua® V)T a—1(Ua ® V)[V o (hta)] - 312 (Ua » V)[V(V o ua)] (7.2b)

The dimensional continuity equation (7.1) can be written as
M +[(h+nua], +[(h+n)ve], + T + 11 = 0 (7.3)
where
T2 = (F2ea? = 3 )N (Ung, + Vayy ) + (22 + 3 {2 [(ht1a) + (v, T},
+1 3 Zea® [N (Uayy + Vag, )], +NZea {hl(BUa) + (hVa),, 1},
— 3 M2[(hUa) g + (hVa) oo ] = 511 (Uae + Vi) (7.3a)
T = (3 zea® = 2)[N®(Uay, +Vay, )], + (2o + 3 ){02E(hUa),, + (hva),, ]},
+1 7 Zea'[h?(Uay, +Vay, )], +NZea{h[(hua),, +(hva),, ]},
—202[(hUa), + (hVa),yy ] = 21 (Usyy + Vayy) (7.3b)

The dimensional momentum equation (7.2) can be expressed in the x- and y-

directions respectively as

Uy + A? +gn, +Ua Usy +Va Ua, +A*> =0 (7.4)
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Va, + A + 9N, +Ua Va, +Va Vo, + A% =0 (7.5)
where

A2 = 1262 (Uayy, + Vg ) + Za[(RUa)yg, + (Wa)y, ] = nl(hUa, ) + (W), ]
(g + Vg ) | (7.43)
A2 = Ua Zea{ L Zea[N? (Ua + Ve )], + {Dl(hU), + (BVa),, 1}
+VaZea {2 Zea[N? (Uay + Ve, )], + {Hl(hUG) + (hVe) T}, }
~{ua[(hua) o + (AVa) e, ] + Va[(hUa),o,, +(hVa),, I}
~ 31 [Ua (Uayy + Vo) + Va(Uay + Vayy, )] (7.4b)
A = 123 (Uay, + Vay, ) + Za[(hUe)y, + (hUa),,, ] - nl(hUay),,, + (hVa,),, ]
Uy + Vo) (7.5a)
A = o Zea {3 Zea[n? (U, + Ve )], + {hl(UG),, +(hva),, T}
+VaZea{ ] 2ea[h? (U, + Ve, )], + {hl(hua), + (hva), I}
- n{uu[(ﬁua)m +(ha),yy ]+ va[(hua),,, + (hva),,, ]}

-%ﬂZIUa(UuW +v°‘xyy)+v“(u"xyy +Vum>] (75b)
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7.2.2. Numerical solution algorithm for 2DBMWC-5
7.2.2.1. Solution method

In the present work, the governing equations [(7.3), (7.4) and (7.5)] are
solved using an implicit, non-staggered finite difference method. The
numerical technique adopted here follows that in Chapter Six andv is not

repeated here but rather a brief outline of the equations solved is given.

The dimensional continuity equation (7.3) can be written in the form of
equation (6.6), that is

n, = E(n,Ue, Va) (6.6)
where

E(1,Us, Va) = —[(h +n)ua), —[(h+n)va], — T2 - 11¥ (7.6)

The dimensional momentum equations (7.4) and (7.5) can be expressed
in the form of equations (6.8) and (6.9) respectively, that is

Us, = F(1), Ua, Va) + [F1(va)], (6.8)
Va, = G(n, Us, Va) + [Gr(ua)], (6.9)

where Uaq, Vo, F, G, F1 and G1 are

Ua = Ua + 3 (Za® =11 e + (2« —M)(hUa) . 7.7)
Va = Va +5(Za* = % Vay, +(Za —1)(hVa),, (7.8)
F(1,Ua, Va) = — g1, — UaUa, = Valla, — AZ (7.9)

' G(1,Uq, Va) = = gN, — UaVa, — VaVa, — AZ (7.10)
Fi(Va) = — (Za® =1 Way, —(Za—n)(hVa),, (7.11)
Gi(Ua) = =2 (22 =% )Uay, — (Za —M)(NUa),, (7.12)
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Equations (7.7) and (7.8) can be arranged into matrix form as shown in
equations (7.13). It is noted that all matrices are at the time level (t+1) with the
coefficient matrix varying with time. (This is in contrast to those in Chapter
Six, which are constant in time). Equations (7.13) are solved using Gaussian

elimination.
r —t+1 0yt 4 3 t+H1
Coefficient
duab  =qUa} (7.13a)
matrix
i U {
r -t+t oyt ( N t+1
Coefficient
<Var =ﬁVu} (713b)
matrix
L J \ J L J

7.2.2.2. Boundary conditions for waves only case in 2D

The set of boundary conditions for the waves only case is discussed first.
(In subsequent subsection, the other cases of currents only and waves plus

currents will be considered).

7.2.2.2.1. Incoming wave boundary conditions in 2D
For a locally constant depth, the continuity equation (7.1) reduces to

N+ h+n)(Veus)+UaeVn
+[(o+ ) +ah®n—2thn? 1] Ve [V(Veus)] =0 (7.14)

If the prescribed incoming wave is a periodic, small amplitude wave defined
by equations (6.25), the horizontal velocity at the incoming wave boundary
can be obtained by substituting equations (6.25) into equation (7.14) giving
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Ue = on (7.15)
k{h-Kk2[(c+ 1) + ah?n - 1hn? - 1n°]}

It is noted that the Sommerfeld radiation condition (6.30) i.e. n,+CeVn=0
(in which C =w/k) is automatically satisfied by equation (7.15). If equation

(7.15) is expressed in the x- and y-directions the result is

on

Ua = cos i (7.16)
k{h-Kk2[(a+2)h° + ah?n-1hn? - 1n?]}

on ,
Vo = singi (717)
k{h-k2[(a+ 1) +ah’n-1hn? - in°]}

7.2.2.2.2. Outgoing wave boundary conditions in 2D

As in Chapter Six, the 2D Sommerfeld radiation condition (6.30) is applied
at the outgoing wave boundary to predict the free surface elevation. The
horizontal velocities are determined based on the depth-integrated continuity
equation. As a result, equations (6.38) and (6.39) for U and v respectively

are also valid here, that is

T=C— cos® (6.38)
h+n

v=C—"_sino | (6.39)
h+n

Having solved for u, v in equations (6.38) and (6.39), equation (5.19) is

applied to determined uq, Va.
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7.2.2.2.3. Reflecting wave boundary conditions in 2D

The reflecting wave boundary conditions in 2DBMWC-5 are similarly
derived as for 2DBMW-4 in Chapter Six. Using the conditions specified in
equations (6.41) through to (6.43), the continuity equation (7.1) can be
expressed in terms of the volume flux vector Q as in equation (6.44)

n,+VeQ=0 . (6.44)
where
Q=(h+n)(u«+Ta) —%(h3 +1n°)V(Veua) + %(h2 -1n?%)V[Ve(hus)] (7.18)

Applying the kinematic boundary condition in terms of the volume flux
vector at an impermeable wall as shown in equation (6.46), the volume flux in
the y-direction (i.e. for the case of the impermeable wall being parallel to the

x-axis) at the boundary, is zero

Q, =0 X €60 (7.19)

(h+mVe+[22a2(h+ M) = 2(h* +1*)](Uay, + Va,,)
+[za(h + 1)+ 3(h? + 1*)][(hua)y, +(hva),, ] = 0 X €9Q (7.20)

Following the procedures in Chapter Six, the Continuity equation (6.48) for
predicting the free surface elevation and u.,, =0 i.e. equation (6.50) for the

horizontal velocity at the reflecting wave boundary become equations (7.21)
and (7.22) respectively.

N, +[(h+nua], +11%* =0 X € 6Q (7.21)
Ua,, =0 X € 5Q (7.22)

where equation (7.22) remains identical to equation (6.50).

For a boundary parallel to the x-axis, the boundary conditions are

equations (7.21), (7.22) and (5.23) for n, u« and v. respectively. Two set of
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boundary conditions for 2DBMWC-5 are deployed in Figure 7.1 for the waves

only case.

Outgoing wave boundary conditions:

.71'+0qu=0

i=¢C h—:; cos i
Outgoing waves l_ sv=C F-‘:_n- sin 6i

o > - 1=1
/
’ 4
" /
/] /
/] 4
/] /
7 /
/] Reflecting wave boundary /!
; conditions: ;
/] n + [(h+ T])Ua]x + nz' =0 /
g OUQ“ =0 2
/ eva =0 /
/] ’
7 4
/] Incoming wave boundary ,
/ conditions: ’,
7 | 7
A " en = 3 Hicos 6i /i

2

5 » Equations (7.16) and (7.17) 5

4 ‘F «—i=L

j=1 Incoming waves - =M

Figure 7.1. Boundary conditions for wave only case. The imposed monochromatic wave
propagates from i=L to i=1. Side walls are located at j=1 and j=M. Note: i=1,2,3,...L.
andj=1,2.3,....M.
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7.2.2.3. Boundary conditions for current only case in 2D

Boundary conditions for current only case are carried over from Section
5.3.3 (for n and u at inflow and outflow boundaries) and Subsection 7.2.2.2
(for no-flow boundary conditions i.e. equivalent to the reflecting wave
boundary conditions). These boundary conditions are schematised in Figure
7.2.

Infiow boundary conditions:
e, +[(h+n)U), +Cn, =0

No-flow boundary conditions:

o, +{(h+mual, + 117 = 0

. =0
Uax'

*Va =0

Qutflow boundary conditions:
*2n, +[(h+mu) +Cn, =0

- n
u=C——
* ] h+n

AT T T T T T T T T S S S S S S S S SAaaN

*Viee = Vit

ALl LR LL LWL L LY \\\\\\\\\m'p

]

44— =L

Quitflow

7
" —p

-
"
-
—

Figure 7.2. Boundary conditions for current only case. The imposed current flows fromi=1 to
i=L. Side walls are located at j=1 and j=M. Note: i=1,23,...L,; j=1,2,3,....M and
C= Jg_h . Explanations for equations to determine n and T at inflow and outflow boundaries
can be found in Section 5.3.3.
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7.2.2.4. Boundary conditions for wave-current interaction case in 2D

As in the 1D model tests (Chapter Five), the following procedure is again
adopted i.e.

e  Model is run with current only from an arbitrary free surface elevation
(see Figure 7.2).

¢  The results from the model settle down to a steady state.

o  After the steady state is reached, a sinusoidally varying surface elevation
is imposed at the inflow or outflow boundary. This results in a wave train
propagating into the computational domain (see Figure 7.3).
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A
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~® T = Te + — 3“”‘2 o8 & 2n, + [(h + n)Tc], + Cn, =0
k(h"k'[(a*—;)h +ahy Tl—zh’l -—6"1 1] Ve = 0 (specified)
- = on .
@V =Vc+ 7 T 7 sin G
k{h—k?[(a+=)*+ah*n—hn?—n’]
waves
3 Hisin(k » x - ot)
/ 4 A
— =z
n S SWL Tnc
7y |0
(b) .
[ > uc (specified) h
current ’

D T T R T T e L TR T e fe Tt T T e T Y
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| n = ne+FHisin(k » x — ot) e +Cny =0

I n
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@ U =1Uc+ T n 7 7 cos 6 u Ch+y]
k{h—k2[(a+-)h*+ah®n—hn?—n]
3 2 [ v =V
on =t =2
e v = Ve sin 6

+
k(h—kzl(u%)*ﬁ+ah’n—;hnvz—;-n°]}

e vc = 0 (specified)

Figure 7.3. Boundary conditions for wave-current interaction case: (a) waves and steady
opposing current; and (b) waves and steady current in same direction. Note: no-flow
boundary conditions are same as those for waves or current only (see Figure 7.2).
Explanations for equations to determine n and u at inflow and outflow boundaries can be

found in Section 5.3.3.
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7.3. 2D unsteady, non-linear shallow water numerical model
(2DUSWM-6)

The model 2DUSWM-6 is developed in order to enable comparisons to be
made' between it and the Boussinesg-type wave-current interaction model
2DBMWC-5 run with currents only.

7.3.1. Governing equations
The dimensional unsteady, non-linear shallow water equations are
N, +Ve[(h+n)u]=0 (7.23)
and
U, +gVn+(Ue V)ﬁ =0 (7.24)

where friction is not included. The dimensional continuity equation (7.23) can

be written as
N +[(h+n)ul, +[(h+m)V], =0 (7.25)

and the (frictionless) dimensional momentum equation (7.24) can be
decomposed into the x- and y-directions respectively as

u,+gn, +Uu +vl, =0 (7.26)

V,+gn, + 0V, +W, =0 (7.27)

7.3.2. Numerical solution algorithm for 2DUSWM-6

7.3.2.1. Solution method

Equations (7.25) through to (7.27) are solved by the present author in a
similar way as the governing equations in 2DBMWC-5. The dimensional

continuity equation (7.25) can be written as
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n, = E(n,u,v) (7.28)
where
E(n,0,V) =-[(h+n)u], - [(h+n)V], (7.29)

The dimensional momentum equations (7.26) and (7.27) can be expressed
respectively as

u, =F(n,u,v) (7.30)

v, =G(n,u,v) (7.31)
where

F(n,U,v)=-gn,-Uu, - VU, (7.32)

G(n,u,v)=-gn, -uv, -, (7.33)

The third-order explicit, Adams-Bashforth predictor scheme is applied to
the continuity equation (7.28) and the momentum equations [(7.30) and
(7.31)] to give

Nt =1l + SA23E" —16E"" +5E?],, (7.34)
U =T, + 5A23F —16F"" + 5F*?] | ’ (7.35)
Vi =V + 2AH23G' -16G"" +5G'2],, (7.36)

where the right hand sides only involve terms at the earlier time levels of t, t-1

and t-2. Values of ni*', U}" and V' are calculated directly. (This is in
i

contrast to 2DBMWC-5 in which the intermediate variables U, V are first
computed and from which the horizontal velocity components u«, v« can be

determined).

t+1 —t+1
u

The newly predicted values of ', U;' and V)" are then used to

calculate estimates of E,‘j’,l’-’,’;" and G;' using equations (7.29), (7.32) and
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(7.33) respectively. Employing the fourth-order Adams-Moulton corrector to
the continuity and momentum equations leads to

' =n + o A[9E! +19E" - 5EY 4 E2] (7.37)
ﬁ:;‘ '= L_l"] +2%At[9Fm +1 éFt ~5F* 4+ Ft_z]i,j (7.38)
V' =V, + - A9GY +19G! - 5G" + G*7] (7.39)

where the right hand sides involve terms at the time levels of t+1, t, t-1 and
t-2. Note that equations (7.34) and (7.37) remain identical to equations (6.16)
and (6.20) respectively. The corrector step is repeated if the error between
two successive results exceeds a pre-set upper lim}it. The relative error in
each of the three dependent variables n, U and Vv is calculated separately

and defined according to equation (6.23).

7.3.2.2. Boundary conditions for current only case in 2D

The free surface elevation and the horizontal velocity at the inflow and
outflow boundary cohditions for 2DUSWM-6 are derived in the same way as
those for the Boussinesq-type numerical model (2DBMWC-5). The resulting
boundary conditions for 2DUSWM-6 are identical to those for 2DBMWC-5
(compare Figures 7.2 and 7.4).

A no-flow boundary, parallel to the x-axis (say) is considered. At a no-flow
boundary however, the formulations in 2DUSWM-6 are slightly different from
those in 2DBMWC-5. As there is no IT* terms in 2DUSWM-6 and U is used
instead of u., equation (7.21) is utilised to estimate the free surface elevation

and is re-written as
- +[(h+n)ul, =0 X €0Q (7.40)

Equation (7.40) is solved using the same method as in Section 7.3.2.1. To
determine the horizontal velocity (say in the x-direction) parallel to an
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impermeable wall, a condition of zero shear is imposed on the flow along the
boundary wall. This can be mathematically stated as

G, =0 X €0Q (7.41)

Then, the horizontal velocity in the y-direction (i.e. perpendicular to the

impermeable wall) is
V=0 X €0Q (7.42)

The set of boundary conditions for 2DUSWM-6 are displayed in Figure 7.4

for the currents only case.

Inflow boundary conditions:
en, +{(h+n)u] +Cn =0

} ] | 5"—" i=1
u u 7’
(specified) ;
7] i’
/] A
7 7
’ No-flow boundary conditions: ;
/ en, +1(h+ nlual, = 0 /]
/ sU =0 ;
7! Y /’
7 =0 A
7] ’
7 2
’ Outflow boundary conditions: ;
; e2n, +{(h+ )], +Cn =0 5
7 ool /
/ n v
’/’ l_ Vi = Vit ;
14 freine
i1 Outflow =M

Figure 7.4. Boundary conditions for current only case. The imposed current flows fromi=1to
i=L. Side walls are located at j=1 and j=M. Note: i=123,...L; j=1,23,....M and

C=.gh.
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7.4. Experimental set-up

The numerical set-up is the same as that in scenario 1 depicted in Figure
6.2 and follows the physical set-up in a laboratory of Chawla and Kirby (1996)
(see Chen et al., 2000).

7.4.1. Test 1: Waves only case

As noted by Chen et al. (2000), the wave height at the incident wave
boundary was 0.0118 m, the wave period was 1.0s, the depth hewen was
0.45 m and the depth of water above the top of the shoal was 0.08 m. In this
test, with Ax=0.05, Ay=0.10m and At=0.01s, 2DBMW-4 (waves only)
remains stable. However, 2DBMWC-5 (with the dispersion terms associated
with currents included) but operated without currents being presented does
not remain stable. Consequently, the computational mesh for both models is
coarsened to Ax=Ay=01m and At=0.02s. This coarsening of the
computational mesh results in“an increase in the Courant number by 58 %

where in 2D, the Courant number is defined by

Cr=gh—2 (7.43)
Jax® +ay?

Then, the free surface elevation at the incoming wave boundary (x=18 m
in Figure 6.2) is varied sinusoidally. The initial conditions for the mode! runs
are a flat water surface at still water level. The computed free surface
elevation over the numerical basin is stored for the last 10 s of the 40s
simulation périod and the results processed to find the root-mean-square
wave height (Hms). The results from 2DBMWC-5 and 2DBMW—4 as well as

the measured values in the laboratory are presented in Figure 7.5.

Tﬁe results for Sections A-A through to G-G reveal that the results of
2DBMWC-5 and 2DBMW-4 nearly coincide. The governing equations for
2DBMW-4 (waves only) and 2DBMWC-5 (waves + currents) are different but
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since in this particular scenario, no currents are present, the results from both
models should be the same and almost coincide. This seems to confirm that
the more general model 2DBMWC-5 collapses down to 2DBMW-4 in the
waves only case. Plan and perspective views of shoaling, refracting and
diffracting asymmetrical waves at t=40s by 2DBMWC-5 can be seen in
Figure 7.6.
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Figure 7.5. Wave heights (Hms) normalised with respect to the incoming wave height in the
case of pure wave motion: comparisons between the resuits of 2DBMWC-5 (bold lines),
2DBMWH44 (thin lines) and laboratory data (circles) along various sections for the experiment
of Chawla and Kirby (1996). Data: T=1.0s, Hi=0.0118m, 6i=0° heven=0.45m,

Ax=Ay=0.10mand At=0.02 s.
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7.4.2. Test 2: Current only case

In this test, the same bathymetry is used as for Test 1. A flat water surface
and a steady velocity of 0.10 m/s is imposed at the northern boundary
(x=0m) (see also Figure 7.2). The computation is carried out with the same
mesh as in the first test. This test is applied to both 2DBMWC-5 and
2DUSWM-6. The imposed current flows from x=0m to x=18m, and
reaches a steady state condition after about t =65 s. Figures 7.7 shows some
significant differences in the free surface elevation over the circular shoal (at
x=11 and 15 mand y =9 m). It is evident from the model results in Figure 7.7
that 2DBMWC-5 produced generally flatter water surface than 2DUSWM-6.
Interestingly, the two sets of numerical model results agree well along the

centreline of the shoal (at x= 13 m).

Figures 7.8 and 7.9 show comparisons of the magnitude of the x- and y-
velocity components predicted by both numerical models. Unlike the surface
elevation, the two sets of velocity components generally coincide but there is
a notable exception near the incident current boundary for the y-component of
velocity (Figure 7.9 at y =2, 5 and 7 m) where there is a series of oscillations.
The maximum magnitude of the x-velocity occurs over the centre of the shoal
as illustrated in Figure 7.8 (at x=13 and y =9 m). Additionally, the results in
Figure 7.9 (at x=11 and 15m and y=7m) show that the maximum
magnitude of the y-velocity occurs near the centre of the shoal. Perspective
views of the surface elevations at t = 65 s predicted by both numerical models
are shown in Figure 7.10. Moreover, Figure 7.11 shows the velocity vectors

predicted by both numerical models att=65s.
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Figure 7.10. Current only case (flow from x=0 to x=18 m): perspective views of the free
surface elevation (upside down) at t = 65 s predicted by 2DBMWC-5 (top) and by 2DUSWM-6

(bottom). Data: 6i=0° heven=0.45m, Uc(,_, =0.10m/s, Ve, o =0m/s, Ax=Ay=0.10m
and At=0.02 s.

2D Basic Model with Current Effects



192

|

Chapter Seven
Current
direction

65s

~ ~~
- o xm\ Yol = ,m‘
\0 - W - N o o 0 e ] o Q
r Eand hand
— — T v —. v v —q v TN —. Y -u—- T T n« T T —-
JEN N
naliie sl el i s e e I T e ol SN R l.ww Bl e S e S e e e e ol T DT N S
i i e i e i e I S S I VA o ] e e e e e e R e e e i e e i e e e
i i e e e I I R I I S ] ©
e clieofin e Jlny et e s e i i R I i R i S R s e R T
- > - ]
i i I s T e e S e . S IR N A A b i e I e e I e e I R e S I S N P
. -
-

i e i e S i e s e O e i i e i e e i e S e I e
il e e i e i e S i I e R T ] i i e e e e R e R . A e e e I
bl e R e e . R haalicd - o

> \H*’u.W.J...f.fuf -1~ e e e e O e e e e B = UE VR P
N
4 ~
e e B R e I e Ll X .
s.\t l.v..(.v»l,..f}vnf \W/ e I e I T I e T P i e R o VPTG
) \
- e e B e oy e e A A W B ey o o . =4 O ' A ey
N ;V_ 1/Vz\ .?.?.'.?J..i.fl\.*.f..f..lv s e .
'
J.ni.?‘.ufu*‘nf.?.*'..fl’iz!\f‘.n* ‘..13.17*.'1*1*:1.?)&..'10.i.!.4.4.-*
\ 1 :
?
u!.é.-?u?u'.).(to'..f.f.’»ﬂ.,‘?lx\.\cv.*} ln_8 .?l?lv.l!.?n*tv:inf.f’f'f{fl.v%l}n?.f.*
« - R N v
G > o B N e e o e oy oD > o *.;?ni.l?l?.'ltut..'n?u?:'!bi)l\.uh\l..{nvav
il e e ol i e R e e e S e B T i I I I S Ns] B e e A e g . e e e . G e P P B e o
- -y T ;
It e i diie e e Jis A i e e e e 1 e e e R e T T T T T T s Cppr Sp i U
i i e i R T T T I S -
e e 3 T N A A e e e S e e ~h By e e e e
4
[P
i e e e . e I I e e e S e e R i i e e i S e S e s T . = s
4
i i i e s i e I R S R T e e R SR S . [ I B e B B o B s s > > e > o
i i e i e i i e i O e R I A T ] G e ey > e e e e > > o
e e e e e e e e o e e e e e e e e - o e e e oy e e e iy e e e e i e ety

>

Current
direction

18 20

16
0.02s.

18 m): the velocity vectors at t

14

12
0tox=
0.10 m and At

10

y(m)

Figure 7.11. Current only case (flow from x

Ay =

0O m/s, Ax
2D Basic Model with Current Effects

0) =

predicted by 2DBMWC-5 (top) and by 2DUSWM-6 (bottom). Data: 8i= 0°, heven=0.45m,

ﬁc(x=0) =0.10 m/s, Vc(x



Chapter Seven 193

7.4.3. Test 3: Waves and opposing current

Once the currents in the basin reach a steady state (after about t =65 ),
the free surface elevation at the southern boundary (x = 18 m) is sinusoidally
varied with time to generate an incident wave [see also Figure 7.3(a)]. The
incoming wave specifications and the grid resolution remain the same as is
used in the first test ie. T=1.0s, H=0.0118m, Ax=Ay=0.1m and
At=0.02 s. At the incoming wave boundary (x = 18 m), the ambient current is
allowed to pass through, leaving the flow domain. The wavelengths due to the
waves propagating against a steady opposing current are slightly shorter than
those due to the pure wave motion. This is evident in Figure 7.12, where the
bold lines represent the waves with an opposing current and the thin Iines'
denote the waves without a current. In Figure 7.12, the surface elevation with
a current present is raised by about 0.0225m (see also Figure 7.7).
Perspective views of the surface elevation predicted by 2DBMWC-5 at
t=20s and at t=40s are shown in Figure 7.13. Figure 7.14 shows the
corresponding velocity vectors predicted by 2DBMWC-5.
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Figure 7.12. Waves with period T =1s propagating against a steady, opposing current with
steady inflow velocity of 0.1 m/s along the x=0 boundary. Both free surface elevation
predicted by 2DBMWC-5 at t = 40 s. The waves with (bold lines) and without (thin lines) the
presence of the ambient current fory=2, 5, 7 and 9m. Data: T=1s, Hi=0.0118 m, 6i=0°,

heven =0.45m, Ax=Ay=0.10m and At=0.02 s.
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7.4.4. Test 4: Current only case

In this test, a flat water surface and a constant inflowing velocity of
0.10 m/s is imposed in the opposite direction to that in Test 2, i.e. at the
southern boundary (x = 18 m) instead of at the northern boundary. This leads
to a steady currents flowing from x=18m to x=0m of the basin (not

presented here).

7.4.5. Test 5: Waves and current in same direction

On top of the steady current field (Test 4), a sinusoidal wave train with a
period of 1.0 s and a wave height of 0.0118 m is imposed at x=18 m [see
also Figure 7.3(b)]. The incoming wave period and wave height are same as

is used in Test 1.

The results in Figure 7.15 show that the waves propagating with a co-
flowing steady current (bold lines) have slightly increased wavelengths
compared to the case with only wave propagation (thin lines) at t=40s.
Perspective views of the free surface elevation predicted by 2DBMWC-5 at
t=20s and at t=40s are shown in Figure 7.16 and the predicted velocity

vectors are illustrated in Figure 7.17.
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Figure 7.15. Waves with period T=1s propagating with a co-flowing steady current with
steady inflow velocity of 0.1 m/s along the x=18 m boundary. The free surface elevation
predicted by 2DBMWC-5 at t = 40 s. The waves with (bold lines) and without (thin lines) the
presence of the ambient current for y=2, 5, 7 and 9m. Data: T=1s, Hi=0.0118 m, 6i=0°,
heven=0.45m, Ax=Ay=0.10 m and At=0.02 s.
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surface elevation predicted by 2DBMWC-5 at t=20s (top) and at t=40s (bottom). Data:
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7.5. Conclusions

Two 2D numerical models, one based on the Boussinesg-type equations
for full wave-current interaction (2DBMWC-5) and the other based on the
unsteady, non-linear shailow water equations (2DUSWM-6) are developed by
the present author. The governing equations of both numerical models are
solved using an implicit finite difference method with a non-staggered grid.
For the Boussinesqg-type numerical model (2DBMWC-5), the boundary
conditions are determined on the basis of particular cases i.e. waves only,
currents only and combined wave-current motion. For the unsteady, non-
linear shallow water numerical model (2DUSWM-6) however, the boundary
conditions correspond to the currents only case. This is due to 2DUSWM-6
being developed for comparison purposes in the current only case.

The results of 2DBMWC-5 agree reasonably well with those of 2DBMW-4
(the numerical model, which is developed in Chapter Six, with the dispersion
terms associated with currents excluded) and the available laboratory data in
the case of pure wave motion. This reinforces the fact that 2DBMWC-5
reduces to 2DBMW-4 when the currents vanish.

2DBMWC-5 and 2DUSWM-6 give similar results except near the shoal
and this is where it can be expected that the higher order derivatives (i.e. the
dispersion terms) representing the effects of non-hydrostatic pressure

become more important.

The effects of including depth uniform currents in the second set of
equations of Chen et al. (1998) are seen to be the effects on wavelength: in
the case of waves and opposing current, the wavelengths become shorter
and in the case of waves propagating with a co-flowing current, the
wavelengths become longer. Due to a lack of laboratory and field data, the
effects of current on a 2D wave field are only examined quantitatively.
Consequently, the suitable laboratory data for verification of the observed

behaviour will be worth exploring for the future research.

2D Basic Model with Current Effects
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Chapter Eight

Summary, Conclusions and
Recommendations

8.1. Summary

Three new Boussinesqg-type numerical models are developed by the

present author:

() 1DDBMW-2 based on the existing partial differential equations of
Schéffer and Madsen (1995), and

(i) 1DBMWC-3 and 2DBMWC-5 based on the existing partial differential
equations of Chen et al. (1998)

The numerical performance of the above three new models has not been
previously assessed. The governing (partial differential) equations
corresponding to the three models (1DDBMW-2, 1DBMWC-3, 2DBMWC-5)
are extensions (comprising additional terms) to what is referred to here as the
basic partial differential equations of Nwogu (1993). The present author
develops two basic numerical models in 1D (1DBMW-1) and 2D (2DBMW-4)
based on Nwogu’s partial differential equations. By comparing the results
from the three new models with the results from the basic numerical models,
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it is possible to assess the effects of the additional terms in the three new
models.

More specifically, the research is focused on:

. numerically studying the effects of the additional terms in the governing
partial differential equations of 1DDBMW-2 which improve the dispersion
relation in deeper water. At the same time, the order of the frequency
dispersion and non-linearity in Schaffer and Madsen’s (1995) partial
differential equations are the same as in the basic partial differential
equations of Nwogu (1993).

. numérically investigating the effects of the additional dispersion terms
associated with currents in the governing partial differential equations of
1DBMWC-3 and 2DBMWC-5. While the basic partial differential
equations of Nwogu are not applicable to wave-current interaction, Chen
et al.’s partial differential equations with the additional terms permit the

interaction of ambient currents and waves.

Three additional ancillary (simplified case) models are developed by the
present author to assist in the validation of the more complex Boussinesq-

type equations
(@) 1DSSWM based on the 1D steady, non-linear shallow water equations,
(b) 1DWACM based on the 1D conservation of wave action equation and

(c) 2DUSWM-6 based on the 2D unsteady, non-linear shallow water

equations.
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8.2. Conclusions

The specific conclusions for this study are:

(i) the additional terms in the governing equations of 1DDBMW-2 result in
this model being applicable in deeper water (i.e. h/L < 1). This conclusion
is based on the fact that while the basic models (1DBMW-1 and
2DBMW-4) run satisfactorily in shallower water (i.e. h/L S"/z), they are
unstable in deeper water (i.e. h/L > %2). This result is obtained in spite of
the fact that the ﬁnite difference operator is implicit. On the other hand,
the new model (1DDBMW-2) works well in the depth h/L =1.

(i) the additional terms in the governing equations of 1DBMWC-3 and
2DBMWC-5 lead to both medels capable of simulating wave-current
interaction. Although no laboratory data are available, this conclusion is
based on the 1D results of the new model (1DBMWC-3) operated in a
scenario in which the waves are blocked by an opposing current with a

velocity equal to the group velocity of the oncoming waves.

- The study also gives emphasis to the determination of the appropriate
boundary . conditions in connection with the governing equations and
numerical scheme considered. When both waves and currents are present,
the appropriate boundary conditions depend on whether the waves and
currents are co-flowing or counter flowing. With oneuexception, the boundary

conditions reasonably work well.

With the new models, the scenario simulated includes waves with and
without currents. If a boundary condition in a numerical model is not

functioning well, this can show itself in one or two ways:

e atthe boundary, model resuits with a sudden change in wave height are

indicative of an unsatisfactory boundary condition.

e within the modelling domain, disagreement between the measured and

simulated results could also indicate an unsatisfactory boundary
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condition. The generally good agreement between the results of the new
models and laboratory data or the results from one of the ancillary
models indicates that the boundary conditions must have been

functioning reasonably well.

The one exception is in the case where the waves and currents are co-

flowing. At the downstream boundary, it is noted that unwanted wave

attenuation occurs. [It is interesting to note that Wei et al. (1999) published

the results for a waves-only scenario and experienced significant unwanted

attenuation].

New sets of Boussinesqg-type partial differential equations are also

developed by the present author. They consist of:

0]

(i)

(iii)

Boussinesqg-type (e,u?) equations with an ambient current included and

presented in terms of:

(a) the arbitrary z-level horizontal velocity (BEWCAV-A),
(b) the bottom velocity (BEWCBV-B) and

(c) the still water level velocity (BEWCSV-C);

Boussinesqg-type (e,u?) equations for weakly non-linear waves presented
in terms of the bottom velocity (BEWBV-D);

Boussinesg-type (u2,3u?) equations in terms of the horizontal velocity at
an arbitrary z-elevation (FBE20-E).

The present author also successfully re-derives a number of the existing

Boussinesq-type partial differential equations in a new and systematic

methodology. They are:

(a)
(b)

(c)
(d)

the (g,1?) equations of Boussinesq (1872),

the (e,u?) equations of Peregrine (1967) (in terms of the still water level

horizontal velocity),
the (g,u?) equations of Nwogu (1993),
the (u2,€°u?) equations of Wei et al. (1995) and
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(e) the (n*e°u*) equations of Madsen and Schéffer (1998)

-Although the above partial differential equations in (a) - (e) are not new, they

are significantly different from existing derivations.

8.3. Recommendations

Recommendations for future research related to and arising from this

study include:

(i) Laboratory work needs to be undertaken to provide free surface
elevation and velocity measurements in the case of full interaction
between waves and ambient currents. These data are urgently required
as verification of the Boussinesqg-type numerical models and particularly
for 2D wave and ambient current fields.

(ii) Improvement in the capabilities of the boundary conditions in the present
numerical models, so that the resulting numerical models are applicable
to regular and irregular waves with and without current effects. One
boundary condition needing to be improved is the downstream boundary

in the case of co-flowing waves and currents (see Figure 5.15).

(i) Develop some numerical models based on an unstructured grid. Such a
facility would significantly expand the region of applicability of the
Boussinesg-type numerical models in coastal regions.

(iv) Five new sets of Boussinesq-type partial differential equations have
been developed by the present author in Appendix C. These partial
differential equations need to be discretised into numerical models and
their performance assessed to uncover any advantages or

disadvantages over other formulations.
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Appendix A

Coordinate Systems
and Orientations

The coordinate system and the convention adopted for the positive
directions of various parameters and variables used in this thesis are defined
in the figures below. This particular selection is made in order to maintain a
correspondence with the x-,y-axes normally chosen as Cartesian coordinates.
This can be easily seen by rotating Figure A.3 through 90° in anticlockwise

direction.
. r4
A ) n SWL A
a X
7 Y S -
Va / o= y
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Figure A.1. Definition for 0, ue, Ve, 2, Za, X, ¥y and their positive directions.
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Figure A.3. 2D Cartesian coordinate system and the positive directions for the velocity
components uq, Va and the incident wave direction 0i.
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Appendix B

- Central,
Finite Difference Operators

All the Boussinesqg-type equations and the 2D unsteady, non-linear
shallow water equations considered in this thesis are discretised using fourth-
order accurate finite difference operators for the ﬂrst—ofder spatial derivatives
and second-order accurate finite difference operators for the second- and
third-order spatial derivatives. Derivatives with mixed order spatial derivatives
are discretised using second-order accurate finite difference operators. This
selection of finite difference forms retains up to five points in the
computational stencil. The present finite difference operators are derived

based on the convention for positive slopes shown in Figure B.1.

(+) (+)

4
<
4
4
L 2
<

Figure B.1. Convention adopted for positive slopes.
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Although this convention is unusual, it follows the Cartesian coordinate

system used in this thesis (see Appendix A).

As examples, spatial derivatives of variable P, are discretised as

ZX_P =ﬁx"('°i-2 ~8P,,+8P,, -P,,), + O(ax)* (B.1)
%U - ﬁ(pj_z 8P, +8P,, —P,,) +O(ay)’ (B.2)
.gg =%(pm ~P,.), +O(ax)’ (8.3)
%u =2%y(Pj+1 ~P.,) +O(ay)’ (B.4)
in:i‘j = KlF(P“‘ -2P, +P,,), +O(Ax)’ (B.5)
Z; P - ﬁ(ﬁ_, ~2P+P,,) +O(ay)’ (B.6)
Z; P - 2(;)3 (-P_, +2P_,-2P,, +P,,), + O(Ax)* (B.7)
‘;; P - 2(A1y)3 (P, +2P_,-2P,, +P,,) +Oay) (B.8)

Derivatives with mixed order spatial derivatives for h and u are discretised as

62
ax?

au

- [hi—1 (Ui ._ ui-z)_ 2 hi(ui+1 - ui—1)+ hi+1 (ui+2 - ui)]j

5)

ox

ij

20 +0(Ax)

(B.9)

- [hi+1 (ui -2u,,+u

.+2)_ hi-1 (ui-z -2 U, + ui)]j + O(Ax)2

2(Ax)?
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Appehdix C

Alternative
2D Boussinesq-Type Equations

C.1. Introduction

It is generally agreed by investigators, who developed Boussinesq-type
equations, that a Boussinesqg-type continuity equation was an expression of
the form of the depth-integrated continuity equation (2.96) [see e.g. Peregrine
(1967), Nwogu (1993), Wei et al. (1995), Chen et al. (1998) and Madsen and
Schaffer (1998)].

N +Ve f:udz=0 (2.96)

Equation (2.96) is written in dimensionless form based on the wave scaling
parameters (g,u) (where the primes have been dropped) as defined by
equations (2.31) and (2.32). The investigators differed however, in their

determination of a Boussinesg-type momentum equation.

Alternative 2D Boussinesq-Type Equations
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In this appendix, the present author:
(i) derives four new sets of Boussinesg-type (e,u?) equations;

(i) derives a new set of fully non-linear Boussinesqg-type (Serre-type) -

equations and

(i) demonstrates new alternative derivations of the two existing sets of fully

non-linear Boussinesq-type equations of:
(a) Wei et al. (1995) and
(b) Madsen and Schéffer (1998).

C.1.1. Existing derivations of existing Boussinesq-type equations

As explained in Section 3.2, the Boussinesg-type momentum equations in
the work of Nwogu (1993) and Chen et al. (1998) were obtained from the
depth-integrated momentum equation. This equation was obtained by
integrating the horizontal Euler equation of motion and applying the dynamic
free surface and kinematic seabed boundary conditions.

Conversely, Wei et al. (1995) introduced a series expansion for ¢ (the
velocity potential) at z=—h, and then converted it to z = z.. The approximate
expression for ¢ (at z=z.) was then substituted into equation (C.1), the free
surface, dynamic boundary condition (i.e. the Bernoulli equation applied at the
free surface) with pressure p=0, to form a Boussinesq-type momentum

equation.

®, +3[e(VO) +5(®,)]+1=0 at z=en(xy)  (C.1)
p

Madsen and Schéffer (1998) introduced an expansion of the velocity
potential as a power series in the vertical coordinate to form the horizontal

and vertical velocities and then utilised equation (C.1) for the free surface,
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dynamic boundary condition to develop a Boussinesg-type momentum
equation.

Interestingly, since the free surface, dynamic boundary condition i.e.
equation (C.1) was used instead of the governing equation (for example the
horizontal Euler equation of motion), the expression for the pressure through
the water column was not required in the work of both groups of investigators
(Wei et al., 1995 and Madsen and Schéffer, 1998).

C.1.2. Four new sets of Boussinesq-type (g,1?) equations

Three of the four new sets of Boussinesq-type equations with the lowest
order of frequency dispersion and non-linearity [i.e. including terms up to
Of(e,p?)] derived by the present author are the Boussinesg-type equations with

ambient current included. They are presented in terms of:
(a) the horizontal velocity at an arbitrary z-level, u. (BEWCAV-A);
(b) the bottom velocity, uo (BEWCBV-B); and

(c) the still water level velocity, i (BEWCSV-C).

Since the non-linearity parameter € is neglected in the dispersion terms of
BEWCAV-A, BEWCBV-B and BEWCSV-C, the problem of wave-current
interaction in these sets of equations is then treated explicitly?. All scaling
assumptions for combined wave-current motion are based on those in the
work of Chen et al. (1998). The details of the séaling are not explained here
but can be found in Chen et al. p16-20 and Chen (1997) p27-32. A short
explanation is given in Section 5.2.2. In the work of Chen et al., the horizontal
velocity was considered uniform over the depth. In the present study
however, vertical variation of the horizontal velocity is allowed.

! See Section C.6.

2 The word ‘explicit’ is used here in the sense that there are extra terms in the governing
equations, which are dispersion terms associated with the ambient current, even though the
velocity u includes orbital velocity and ambient current.
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If the dispersion terms associated with currents are removed from
BEWCBV-B, another set of Boussinesg-type equations (BEWBV-D) arises.
To the author's knowledge, BEWBV-D are a new set of Boussinesqg-type

equations for weakly non-linear waves.

C.1.3. New set of Serre-type equations

A new set of Serre-type equations in which all terms of O(u?) are included
and ¢ is allowed to be arbitrary (FBE20-E), is also developed by the present
author. These new equations are an alternative set of fully non-linear
Boussinesq-type equations [including terms up to O(u?,e3p?)] to the equations
derived by Wei et al. (1995). The momentum equation in FBE20-E is derived
by the present author from a depth-integrated form of the horizontal Euler
equation of motion together with the irrotationality condition.

C.1.4. New derivation of existing fully non-linear Boussinesq-type

equations

New derivations for two existing sets of fully non-linear Boussinesq-type

equations of:
(i) Wei et al. (1995) [including terms up to O(p?,e*u?)] and
(i) Madsen and Schaffer (1998) [including terms up to O(u* £%u%)]

are also presented by the present author. The momentum equations in both
sets of fully non-linear Boussinesq-type equations are derived here from the
horizontal Euler equation of motion together with the irrotationality condition.
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C.2. Derivation of four new sets of (¢,u?) equations

The procedure developed by the present author for deriving: (i) four new
momentum equations (in BEWCAV-A, BEWCBV-B, BEWCSV-C and
BEWBV-D), and (ii) three existing momentum equations [in Nwogu’s (1993),
Boussinesq’s (1872) and Peregrine’s (1967) equations] is illustrated in Figure

C.1 (and Figure 1.4).

Euler equation

of motion

Substitute irrotationality condition »
Depth-integrate »

Depm-lmegmﬁad Eu]er equaﬁon of
otion with the ilrotaﬁonalny condition

Substitute pressure with dynamic & kinematic bcs »
Retain terms up to O(e,p?) in the wave quantities »

Path (1) >¢ Path (2) >¢

¢< Path (3)

equatlon with a cunent

- New (5,4%) momentum | | New (e,®) momentum

New (e,p’) momentum

4

" New(ep?)
J'nomenhmequaﬁon
* ““interms ofub

"+ (in BEWBV-D). -
fe mSedlonCZZ‘

Horizontal bottom »

Boussinesq s (1 872) momentum
equat:onnterms ofus

(1)) Peregnne S (1967) 7
, momentum equation in.
[ temsof &

; denotes newly developed 1 =
Legend: L-:I by the present author

Figure C.1. New derivations of four new and three existing (e,1%) momentum equations.
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A new depth-integrated momentum equation can be obtained by
integrating the horizontal Euler equation of motion with the irrotationality

 condition included [i.e. equation (3.2)]. This results in
f21] €
J‘ [ut +a(u-V)u+—2wVw+Vp] dz=0 (C.2)
~h 13

A pressure distribution in the equation above can be obtained by integrating
the vertical Euler equation of motion [i.e. equation (2.91)] from z to e}, and
then applying the free surface, dynamic boundary condition [i.e. equation
(2.92)] to give

Z=gn 2

2

] (C.3)

Z=2

p =n—§+ _En[wt +s(u-V)w]dz+i7% w

The above expression for pressure i.e. equation (C.3) only satisfies the free
surface, dynamic boundary condition. It can be compared to the pressure
expression presented in equation (3.3) in which the dynamic and kinematic
boundary conditions at the free surface are both satisfied.

Z O rpen en € 2
p=n—;+5L wdz+e(ro)J; wdz—Fw (3.3)

Equation (C.3) is an alternative to equation (3.3).

C.2.1. New (g,1?) equations in terms of the velocity at an arbitrary z-
elevation, ua
Path (1) in Figure C.1:

Equations (2.96), (C.2), (C.3) and (3.3) above are written in terms of wave
scaling parameters (g,u1). These equations will now be re-written in terms of a
different set of scaling parameters i.e. the wave-current scaling parameters
(e,11,5,v). The details can be found in Section 5.2.2 and Chen (1997) p27-32
and Chen et al. (1998) p16-20. This results in the following four equations

respectively.
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on
M +Ve [ udz=0 (5.4)
8n v
.L [ut+v(ro)u+u—2wVw+Vp]dz=O , (C4)
p= Tl“g“" F"[wt +v(ue V)w] dz+L2% w ™" —w? ] (C.5)
r4 u Z=Z
Z O ¢ 8n v
p=n—g+5L wdz+v(ro)L wdz—u—zw2 (5.6)

Similarly, equations (2.95a) for the irrotationality condition, (3.4) and (3.12)

for w and (3.14) for u can be written as

u, —EVW =0 (5.3)
v .
€ z
w=-c pve j_hu dz (5.7)
W= —%pz[ZVOUa +Vo(hua)]+0(—§-p“J (C.6)
€ 2 1,2 € 4
u=ts+—p*{la—32 V(Vouu)-—zV[VO(huu)]}+O(—-p ) (C.7
A% ' A%

Due to the presence of the elevation z in equations (C.6) and (C.7), it is clear
that the vertical and horizontal velocities are permitted to vary through the
water column. Inserting equations (C.6) for w and (C.7) for u into either (C.5)
or (5.6) for p, integrating and retaining terms up to O(g) and O(p?) in the wave

quantities gives
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Z €
—t -

5 8lu“‘[;zz(v-uu,)+zv-(rmm,)]

p=n-
+ep’[-28n°(V e te) -1V @ (hua,)]
+v % {2 2% (Ua » V)(V o Ua) + Z(Ua o V)[V o (hua)]}

+vep?{~3 1% (Ua o V)(V o Us) ~1(Ua o V)[V » (hua)]}

g? 8
O] —p?=pn* C.8
+(6“6”J (C.8)

Substituting equation (C.7) for u into the depth-integrated continuity equation
(5.4) and retaining terms up to O(¢) and O(p?) in the wave quantities leads to
equation (C.9). Substituting equations (C.6) for w, (C.7) for u and (C.8) for p
into (C.4) for the depth-integrated momentum equation, integrating and
retaining terms up to O(g) and O(pz) in the wave quantities leads to equation
(C.10).

N, +Ve(hue)+dnV e+ vuae V1

+ (g + 113 +8°T1; +8°113) = O(ep?,n*) (C.9)

Dispersion terms iated with currents

Uq, + v(Ua ® V)ua + V1

+2[AY + VAT +8(A] +VAS) + 87 (A% +vAL)] = O(ep®,n*)  (C.10)

Dispersion terms associated with curents

where
I =112, I3 =113, T3 =113, 13 =113 (C.9a)
A=A A=/ A=A (C.10a)
A = V(Ua 0 Ta) +$h*V(V e Ue)? - 2 h[(V e ua)V @ (hua)] +2[V e (hua)J?
(C.10b)

A = -V{(Ua o V)[V o (huo)]} = 2nhV(V e ua)? + 31 V[(V e Ua)V » (hua)]
(C.10c)
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A% =—31°V[(Ua e V)(V o Ua)] + £ 0P V(V 0 Ua)? (C.10d)

2

The particular dispersion terms IT? (i-01.23) and A? (i-024) are defined by
equations (5.22) and (5.23) respectively. Again I'« is defined by equations
(3.11a). Equations (C.9) and (C.10) are a new set of Boussinesg-type (&,u?)
equations with an ambient current. To avoid confusion with the analysis in
Sections C.5 and C.6, the new set of Boussinesg-type equations [(C.8) and
(C.10)] is referred to as BEWCAV-A (see Figure C.1). It appears that the
continuity equation (C.9) remains identical to the continuity equation (5.22) in
the second set of equations of Chen et al. (1998).

When the ambient current vanishes, the dispersion terms associated with
currents [i.e. I1> (i-123) and A} (i-12345)] become negligible as detailed by

Chen et al. (1998) p16-20. As a result, BEWCAV-A reduce to the equations of
Nwogu (1993) written below.

Ny + Ve [(h+enua] + p?V e () = O(ep?,u*) (3.16)

Uo, + V1 + &(Ua ® V)Uo + n°Ta, = O(gp?,p*) (3.17)

C.2.2. New (g,11?) equations in terms of the velocity at the seabed,
Ub
Path (2) in Figure C.1: N

The dimensional horizontal velocity of the fluid at elevation z is expanded

as a Taylor series with respect to the velocity us =u(x,y,~h,t) at z=-h. This

results in

(z+h)?

u(x,y,zt)= u(x,y,—h,t)+(z+h)u,(x,y,—ht) + u,(xy—ht)+..

2
@+hy

S (C.11)

=upb+(Z+h)u, +
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Evaluating equations (3.7) for u, and (3.8) for u, at z=-h, and substituting
into (C.11) gives the non-dimensional horizontal velocity (written in the wave-
current scaling parameters) as
U=un+ = p? {% (h? = 22)V(V e ) — (h+ Z)V[V  (hus)]} + truncation error
\'%
(C.12)

Substitution of equation (C.12) for u into (5.7) for w and retaining terms up to

O(epn?/5) gives the vertical velocity
w=-%uz[zVouwv-(hub)]+o(§p‘) (C.13)

Without stating as much, Chen et al. (1998) assumed that € = v in the vertical
velocity or in other words the vertical velocity due to the ambient current is
very small compared to the orbital vertical velocity due to the waves. The
truncation error of equation (C.12) can be determined by integrating the
irrotationality condition (5.3) from —h to z. This results in

u—ub=§szwdz (C.14)
v -h
Inserting equation (C.13) for w into (C.14) gives

Uu=ub+ -gp.z{%(hz -Z®)V(Veu)—(h+2z)V[V o(hub)]} + O(% p“) (C.15)

It is evident from equations (C.13) and (C.15) that w and u can vary through
the water column. The pressure field can be obtained by inserting equations
(C.13) for w and (C.15) for u into either (C.5) or (5.6) for p, integrating and

retaining terms up to O(g) and O(n?) in the wave quantities to give
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p=n _3+ : 2 p2[123(V e us,) +2V o (hu,)]

+ep’[-38n° (Ve us,) —nV o (hus,)]
+v§ 12{22%(Us o V)(V e us) + Z(us » V)[V  (huv)]}

+vep? {351 (Us e V)(V e us) —i(us o V)[V o (hus)]}

+o( ;ﬁ%;ﬁ) (C.16)

In a similar way to the development of BEWCAV-A in Section C.2.1,
equations (C.13) for w, (C.15) for u and (C.16) for p are utilised [instead of
equations (C.6) for w, (C.7) for u and (C.8) for p respectively]. As a result, the
equivalent of equations (C.9) (continuity equation) and (C.10) (momentum
equation) become equations (C.17) and (C.18) respectively.

M +Ve(hu)+nVeus+vureVn

+p?(ITg + 8117 +8°I15 +8 H") O(ep?,u*) (C.A7)

Dispersion terms assouated with currents

Ub, + v(Ube V)us +Vn

+p,2[A‘ +vA“ +6(A“ +VAY) + 8% (AL + VAL )] O(ep?,n*) (C.18)

Dispersion terms iated with currents

where

I1¢ = Ve {1h°V(V e ) ~h2V[V e (hu)]} - T h*V*(V e ub) + 3 h? V[V o (huw)]

(C.17a)

IT{ =V e {h?V(V e us) ~hV[V « (hus)]} (C.17b)

IT; = —20°V2[V e (hup)] (C.17¢)

| M = —<n°Vi(Veus) (C.17d)
Ay =5h*V(V eun) —hV[V e (hus,)] (C.18a)
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A4 = V{(us e V)[2h2(V e us)] - (s » V)[NV @ (huw)] + [V » (hus) 2}
+ 1h2V(V o Us)2 —LhV[(V o us)V @ (hu)] (C.18b)
AY = -nmV[V e (huy,)] (C.18¢c)

A} = —T]V{(Ub o V)[V (hUb)]} nhV (Veun)® +3 T]V[(V Oub)V (hUb)

(C.18d)
Ay =—30°V(Veun,) (C.18e)
A% = —21°[(Ub e VY(V e )] + 21 V(V e )’ (C.18f)

Equations (C.17) and (C.18) are a new set of Boussinesq-type equations
[including terms up to O(s,uz) in the wave quantities] with an ambient current
in terms of the horizontal bottom velocity. This new set of Boussinesq-type
equations is then referred to as BEWCBV-B (see Figure C.1). When the

ambient current vanishes, the dispersion terms IT} (i-123) in equation (C.17)

and A} (-12345) in equation (C.18), which are associated with currents,

become negligible as detailed by Chen et al. (1998) p16-20. Consequently,
BEWCBV-B reduce to the new set of Boussinesq-type equations (BEWBV-D)
(Figure C.1) written below.

N, + Vo [(h+en)us] + p’1; = O(ep®,p*) (C.19)
Uq, +£(Us® V)Ub + VN + p?AG = O(ep?,n*) (C.20)

If the water depth is assumed to be constant, BEWBV-D i.e. equations (C.19)
and (C.20) reduce to the equations of Boussinesq (1872) written below.

1, +eUbe VN +(en+h) (Ve us)—p? Zh*V?(Vew) = O(ep?,u*)  (2.29)

Up, +£(Ub ® V)b + V1 — 2 ThEV(V e s, ) = O(ep2, 1*) (2.30)
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C.2.3. New (g,1%) equations in terms of the velocity at still water
level, u
Path (3) in Figure C.1:

In a similar procedure to that in Section C.2.2 but with z =0, expressions

for the vertical and horizontal velocities as well as pressure field are

w=—§p2[zV-G+Vo(hﬁ)]+0(§p4) (C.21)
u= ﬁ~§ pZ{;ZZV(v.ﬁ)+zv[v-(hﬁ)]}+o(§ u‘) (C.22)

z ~ ~
p= n-g%uz[%Zz(V-u‘HZV°(hut)]

+ep?[- 1813 (V o fi,) -V o (hT,)]

+ V_g. },12 %Zz(ﬁ eV)(Ve ﬁ) + z(ﬁo V)[V b (hﬁ)]}

+VSHZ{—%&IZ(G'V)(V'G)—n(ﬁoV)[Vo(hﬁ)]}+O(8—;p2,§ m)

(C.23)

In the expressions for the vertical and horizontal velocities above, vertical
variation through the water column is allowed. Utilising equations (C.21) to
(C.23) for w, u and p [instead of (C.6), (C.7) and (C.8) respectively],
equations (C.17) andv (C.18) become (C.24) and (C.25) respectively, (which
are newly developed by the present author).

N, + Ve (hll)+ 5V e U+ viie Vi +p?(I15 + 8°I15 +8°T13) = O(epn?,p*)

Dispersion terms associated with currents (C24)

U, + v(te V)U+Vn+p?[vAS +8(A5 + vAS) + 8%(A5, + vAS )] = O(ep?, 1)

Dispersion terms associated with cumrents
(C.25)
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where
IT; = -V e {Ih*V(V e i)~ 1h?V[V « (hil)]} (C.24a)
I = - 1n2V2[V e (hil)] (C.24b)
5 = —2n’V¥(Vell) (C.24¢)
AL =3 W2V(V e G)? - ZhV[(V e G)V o (hTli)] + 5 V[V o (hT)] " (C.25a)
Ay =-nV[Ve(hi)] | (C.25b)

A% = -nV{(@e V)V & (W)} - 4 N0 V(T o D)2 + I VI(V # D)V o ()]

(C.25c¢)
Ay ==3*V(Veii) (C.25d)
Ay = =3[ e VY(V e li)] + 1 n*V(V o i) (C.25€)

Equations (C.24) and (C.25) are a new set of Boussinesqg-type equations
[including terms up to O(e,u?) in the wave quantities] with an ambient current
in terms of the horizontal velocity at still water level. This new set of
Boussinesg-type equations is referred to as BEWCSV-C (Figure C.1). When
the ambient current vanishes, all the dispersion terms associated with

currents (i.e. the IT and A terms above except for I1;) will become negligible

as detailed by Chen et al. (1998) p16-20. The resulting equations then reduce
to the equations of Peregrine (1967) in terms of U and are written below.

n, +V o [(h+en)i] = - p2V{Lh2V[V o (h)] - Th*V(V  B)} + O(en?,p*)
(2.105)

b, +e(ie V)i+Vn=0(sp?,p*) (2.106)
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C.3. New derivation for new and existing (p?,°n?) equations

In this new derivation by the present author, the current is no longer
treated explicitly (as in Section C.2) but implicitly. Consequently, the next
derivation is similar to the derivation for pure wave motion (in Chapter Three).
An illustration of the steps involved in this derivation is shown in Figure C.2

(and Figure 1.4).

Euler equation
of motion

Substitute irrotationality condition »

<« Depth-integrate

<« Substitute pressure with dynamic bc »
< Retain terms up to O(u?,e’p?) »

& kinematic bcs
< Retain terms up to O(?e*u?)

< Substitute pressure with dynamic
Path (3) »

Path (2) »

Path (1) »

e )
- - ——

S &
'\.\ < Discard terms of /."
"\, O(en’) and higher » -
AY 7/

denotes newly developed

Legend: |- | by the present author

Figure C.2. New derivations of Wei et al.’s (1993) and new (p%,£°u%) momentum equations.
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Path (1) in Figure C.2:

Substitution of equation (3.12) for w and (3.14) for u into (C.3) for p and
integrating leads to the pressure distribution

z
p=n-=+1[;2%(V *Ua)+ 2V o (hta,)]

+ ep.z{—nV o (huq,) + %Zz[(Uu e V)(Veud)—(Veua)’]
+2{(Ua o V)[V & (h1a)] = (V o ua)V o (huta)}}
+ 202 {~1n3(V o Uay) + n{(V # Ue)V ® (NU) - (U » V)[V o (hua)]}}

+ e {202 [(V o Ua) — (Ua @ V)(V o Ua)]} + O(t*) (C.26)

Inserting equation (3.14) for the horizontal velocity into equation (2.96) for
the depth-integrated continuity equation and integrating leads to equation
(C.27). Inserting equation (3.12) for the vertical velocity, (3.14) for the
horizontal velocity and (C.26) for the pressure into equation (3.2) i.e. the
horizontal Euler equation of motion combined with the irrotationality condition,
leads to equation (C.28).

N, + V o [(en + h)ua] + p?(T15, + el + 7115, +€°T15,) = O(u*) (C.27)

Ua, + &(Ua ® V)Uo + V1 + p2(AS, + A5, +2A5, +8°A%;) =0(n*)  (C.28)

where
15, = Ve (hT) (C.27a)
15, = Ve(nla) (C.27b)
TS, = -V e {~2 n?V[V o (hu)]} (C.27¢c)
Vngs =-Ve[In*V(Ve uu)]. (C.27d)
A%y =T, (C.28a)
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Ay = V{ta e T~V o (hua,) +1[V o (hua )} (C.28b)
A5, = V{-2n3(V o te) + n{(V # Ua)V o (hte) - (Ua » V)[V » (hua)]} } (C.28c)
Ay = V{EN[(V e ta)? — (Ua o V)(V o ua)]} (C.28d)

in which T'= and T are defined by equations (3.11a) and (3.18) respectively.
Equations (C.27) and (C.28) are a set of fully non-linear Boussinesg-type
(Serre-type) equations, and are, as it turns out, exactly the same as that of
Wei et al. (1995).

Although the present derivation is significantly different from the derivation
in the work of Wei et al. (1995), the resulting equations are identical.
Interestingly, because the free surface, kinematic boundary condition is not
incorporated in the present derivation for Wei et al.’s momentum equation, the
free surface, kinematic boundary condition is not satisfied. Consequently,
there is scope to develop a new set of fully non-linear Boussinesg-type
equations, which include the free surface, kinematic boundary condition (see
Path (3) in Figure C.2).

Path (2) in Figure C.2:
Similar to Path (1), but equation (C.2) is used instead of equation (3.2) to

develop a Boussinesg-type momentum equation. The resulting equation is
exactly the same as that in Path (1) i.e. equation (C.28).

Path (3) in Figure C.2:

A procedure to develop a new set of Boussinesq-type equations is as
follows. The free surface, kinematic boundary condition defined by equation
(2.93) is inserted into the momentum equation by utilising the pressure field
defined by equation (3.3) instead of being defined by equation (C.3). This

results in a new expression for the pressure field as
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V4
p=n-=+W[32%(Veus)+2V e (hus,)]

+ep2{-nV o (hta,) — 1,V @ (hua) ~ [V o (hua)
+327[(Ua @ V)(V e Us) — 2(V o uc)?]
+2{(Ua ® V)[V o (hta)] - 2(V o )V @ () }}
+ &2 {~21°(V o Ua) -y (V * Ua) — (Ua @ V) [V @ (hua) ]}
— PP (Ua e V)[Z 2 (Voud)]+O@?Y) (C.29)

The above expression for the pressure is substituted into equation (C.2) for
the depth-integrated momentum equation to yield the following new

momentum equation.
Uo, + E(Ua ® V)Ua + VN + p? (AL, + €A, + %A, +8°A,) =O(u*)  (C.30)
where
Npo = A (C.30a)
Ay = V{ua e Ta =V o (hta,) -1,V  (htua) ~ 1 [V o (hua) ]}
—2h?V(V e Us)? + 2hV[(V e ua)V ¢ (hua)] (C.30b)
Ny = V{=30%(V o Us) -, (V # Ua) = (Ua & V) [ Voo (hua)]}
+2MhV(V e ta)? =21 V[(V e Ua)V ¢ (hUa)] (C.30c)
Ny == V{(ta o V)[20A(V 0 ue)]} - 2 1?V(V o ua)? (C.30d)

The new set of equations, which consists of the continuity eduation (C.27)
and momentum equation (C.30), is referred to as FBE20O-E (see Figure C.2).
FBE20-E satisfy all boundary conditions (i.e. the kinematic and dynamic free
surface boundary conditions and the kinematic bottom boundary condition).
FBE20-E are an alternative set to equations (C.27) and (C.28).
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Furthermore, no relation between ¢ and p has been assumed in either set
of equations. If terms of O(g) = O(u?) is assumed, both sets of equations
[(C.27) and (C.28); and (C.27) and (C.30)] reduce to the equations of Nwogu
(1993).

C.4. New derivation of new and existing (u*e°u*) equations

Figure C.3 shows the steps in the derivations of two (u*.e°n*) momentum

equations.

Euler equation
of motion

Substitute irrotationality condition »

<« Depth-integrate

Faed “equation of motion with the =~
: irmtationalﬂy oondltion B :

with the irrotationa]ﬂy condition -

R A AR S e SR R 5ty )

<« Substitute pressure with dynamic bc »

< Retain terms up to O(u* ¢°u*) » <« Substitute pressure with dynamic

& kinematic bcs
< Retain terms up to O(u* eu*)

Path (1) » Path (2) » Path (3) »

2
]
)
i
3
)
1

—] denotes newly developed ;=
by the present author =

7 denotes a new derivation by the present

Legend: -} author for the existing equations

Figure C.3. New derivations of Madsen and Schaffer's (1998) and new (p*¢°u*) momentum
equations.
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The second-order accurate vertical and horizontal velocities [(3.12) and
(3.14)] [i.e. O(n?)] can be extended to the fourth-order (truncating at the sixth-

order) using the same procedure as in Chapter Three. This results in

W = —p?[zV e ua + V o (hud)]

W VAV o) + 322V ¢ ()] Z(V o o) -V o (ND)}+ O(°)
(C.31)

U = Ua+ p?{Ta = 2 22V(V e ua) - ZV[V @ (hua)]}
{2 -z WVIVA(V o ua)] + 2(2 - 22)V{ V[V o (hu)]}
+3(2a ~ 22)V(V o Ta) + (22 ~2)V[V » (hT)]} + O(1°) (C.32)

Again, T and T are defined by (3.11a) and (3.18) respectively.
Path (1) in Figure C.3:

Substituting equation (C.31) for w and (C.32) for u into equation (C.3) for p
and integrating leads to the pressure distribution

b= n__-:;,,uz[%zz(v.uﬂt)ﬁ»zv.(huu,')]
+ep?{-nV o (hua,) + 2 22[(Ua 0 V)V 0 Us) — (V s a)?]
+2z{(Ua 0 V)[V o (hUa)] = (Vo U)V (hua)}}
+e2p2{- 212V o Ua) + n{(V 0 U2)V @ (hta) — (e » V)[V ¢ (hua)]}}
+ e {2 2[(V @ Ua)? = (e 0 V)(V o ua)]}
+ {1 2*VA(V e te)) - 3 Z°V?[V o (hUa,)] + 3 Z°(V # T,
+2V s (hT)}

+ep*{-nV e (hT)) + = 2*[4(V o ua)VA(V o ua)
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—(Ua® V)V3(Voud)-3V(Veud)e V(Veu)]
+22°{3(V e u)V?[V & (hua)] ~3V(V e Ua) ¢ V[V o (hua)]
+V o (hUa)VZ(V o Ua) — (Ua ® V)VZ[V o (hua)]}
+32°{(Us ¢ V)(V o Ta) + (T e V)(V o Ua) ~ 2(V @ Ua)(V o [
+V o (hua)V[V o (hua)] - V[V  (hua)] o V[V o (hua)]}
+2{((ua® V)[V ¢ (hT)] - (V o ua)V o (hT) |
+(Tas V)[V o (hua)] (Vo T)V e (hu)}}

+2u* {-1n%(V o T) + n{(V » Ua)V & (hT) — (Ua # V)[V & (hT)]
+(V eTa)V o (hta) — (Ta o V)[V ¢ (hua)]}}

+ et {InVALY o (hue )]+ 302 {{VIV » (hua)]}*
- Vo (hua)V3[V e (hua)] +2(V e Us)(V e )
—(Us o V)(V o Ta) — (Ta e V)(V o ua) }}

+e' N VA(V e ua) + 20 {(us e V)V?[V o (hua)]
~V o (hua)V3(V # Ua) + 3V(V o Ua) ® V[V ¢ (hu)]
_3(V o ua)V2[V » (hua)[}}

+e5ut {1 {(Ue o VIVA(V 0 te) + 3[V(V e o)

— 4(V o Uua)V3(V o us)}} + O(1) (C.33)
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Inserting equation (C.32) for the vertically varied horizontal velocity into
equation (2.96) for the depth-integrated continuity equation gives equation
(C.34). Inserting the vertically varied velocities [(C.31) and (C.32)] and
pressure distribution (C.33) into equation (3.2) gives equation (C.35).

N, + Vo [(en + hua] + p?(115, + I3, + 7115, + °T15,)

w (115, + el15, + €°T15, + £°T15, +&°T1%, +€°T1% ) = O(u®) (C.34)
Ua, + €(Ua ® V)Ua + VI + p? (A, + €A%, +82A%, +€°A%,)

(A%, + A, +82A%, + A%, + €A%, +°A%,) = O(p®) (C.35)

where

3, =115, 15, =113, 115, =115, 15, =113, (C.34a)
3, = Ve {(-Lh* - L za* hV[VZ(V e us)]

+(zh° —32° (V2 [V o (hua))])

+(32a2 - 202 )hV(V o Ta) + (2o + 1N V[V o (hT)]} (C.34b)

12, = Ve {- L 2*nV[V(V e ua)] - 1 20 V{V?[V & (hua)]}

+12.*nV(V e Ta) + 2 V[V ¢ (WD)} (C.34c)
%, = -Ve{-1n?V[Ve(hD)]} (C.34d)
M, =-Ve[ln’V(VeTu)] (C.34e)
18, = Vo {1 0*V{V?[V ¢ (hua)]}} (C.34f)
18 = Ve {Ln°V[V3(Veud)]} (C.34g)
Ay = A8, NS, =A%, AL, =A%y, NS =A%, (C.35a)
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Ao = 55 2:*V[V*(V e ts,)] - 1 23V{V?[V s (hu.,)]}

+22:2V(V 0 Ta,) + V[V o (hT})] (C.35b)
A%, = V{1Tu? +(V e ua)V o (hT) —1V o (hT})

+Ua o {- 2o V[V(V 0 )] - 2 2°V{V?[V o (hu)]}

+122V(VeTo)+zV[Ve(hD)]}} (C.35¢)
Ay = V{113V e Ta) + n{(V * Ua)V & (hT) — (U » V)[V & (hT)]

+(V e Ta)V o (hua) = (Ta e V)[V o (hua)] }} (C.35d)
Ky = ViV [(hue)]+ 12 {{V [V « (hua)]}?

—V o (hua)V2[V o (hua)] + 2(V e ua)(V o Ta)

—(Ua® V)(V o Ta)— (Ta® V)(V e te) }} (C.35€)
A%, = V{L VAV e te) + 21 {(Ua e V)V?[V o (hua)]

—V o (hU)V3(V o Ua) + 3V(V o Ua) » V[V o (hua)]

~3(V e ua)V2[V » (hua)]}} (C.35f)

As = V{1 {(Uae VI)VA(V o a) + 3[V(V o ua)] 2 AV o U VE(V o us)}}
(C.35g)
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Equations (C.34) and (C.35) are a set of fully non-linear Boussinesqg-type
equations which are accurate to O(u*). As in Section C.3, no relation between
¢ and u has been assumed in equations (C.34) and (C.35). This set of
(1*£°u?*) equations is identical to that of Madsen and Schaffer (1998) (see
Figure C.3). If all the p* terms are removed, this set of equations reduces to
the equations of Wei et al. (1995) (see Figure C.3). In the present derivation
(see Paths (1) and (2) in Figure C.3), the free surface, kinematic boundary
condition has not been involved in the momentum equation (C.35).

Path (2) in Figure C.3:

Similar to Path (1), but equation (C.2) is used instead of equation (3.2) to
develop a Boussinesqg-type momentum equation. The resulting equation is
exactly the same as that in Path (1) i.e. equation (C.35).

Path (3) in Figure C.3:

An new alternative set of (u*e°u*) equations can be developed by utilising
the pressure field defined by equation (3.3), which includes the free surface
kinematic and dynamic boundary conditions, instead of equation (C.3), which
only includes the free surface dynamic boundary condition. Consequently, the
resulting (u*,e°p®) equations (FBE4O-F) are very long but they satisfy all the

boundary conditions (not presented here).
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C.5. Transfer functions® for regular waves

Following Madsen and Schaffer (1998), all the sets of Boussinesg-type
equations derived in this appendix are analysed to quantify the embedded
characteristics with respect to frequency dispersion and non-linearity.
Although the derivation of the (e,u?) equations has been based on the
assumption of u << 1 and O(g) = O(n?), and the derivation of the (u2,¢°1?) and
(n*,e°u*) equations based on << 1 and arbitrary ¢, the analysis will now be
made under the assumption of ¢ << 1 (i.e. weakly non-linear solutions) and
arbitrary pu. Use will be made of a Stokes-type Fourier analysis on a horizontal

bottom and first- and second-order solutions of the following form will be

sought.

o Second-order

- First-order A Second-order correction term

1 =11€0S 0 + €12 COS 20 (C.36a)
Ub = Ub1 COS O + €Ub2 COS 20 , (C.36b)
U = U1cos 0 +¢li2cos 20 (C.36¢)
U =Uu1cos 6 + €Uz cos 20 (C.36d)
Ua = Ua1COS O + EUa2 COS 20 (C.36e)

where 6 = ot —kx. n1, n2 are the amplitudes of n in the first-order and the
second-order correction term for regular waves. A similar comment applies to
Ubt, Ubz; U1,U2; Us,U2; and Ua, Uez; It is emphasised that the analysis will not
involve non-linear terms with powers of ¢ higher than one, although such
terms are retained in the complete equations of the (n%e3p?) and (u*e%u®)

equations.

® The term ‘transfer function’ refers to that used in the work of Madsen and Schaffer (1998).
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For making comparisons, the following existing sets of equations will be

analysed to the first- and second-order transfer functions for regular waves®*:

the equations of Boussinesq (1872) [equations (2.29) and (2.30)] and

the first and second sets of equations of Peregrine (1967) [equations
(2.111)-(2.112) and (2.105)-(2.106)]

the equations of Nwogu (1993) [equations (3.16) and (3.17)] and
the equations of Schéffer and Madsen (1995) [equations (4.5) and (4.6)]

The first and second sets of equations of Chen et al. (1998) [equations
(5.17)-(5.18) and (5.22)-(5.23)},

The 1D forms of the new and existing Boussinesq-type equations

corresponding to a horizontal bottom are:

BEWCBV-B, BEWBV-D and the equations of Boussinesq (1872) reduce
to

M, +hus, —p? 2hius, . +e(mub), = O(ep?, u*) (C.37)
Ub, + 1), — u? 5 h?Ub,q + UbUb, = O(ep?, p) (C.38)

BEWCSV-C and the second set of equations of Peregrine (1967) reduce
to

N, +hl, +p? 3h°0,, +e(nl), =O(en? u*) (C.39)

G, +m, +ell, = O(ep?,nt) (C.40)

* The sets of equations of Nwogu (1993) and Schaffer and Madsen (1895) have been
analysed to the first-order transfer functions for regular waves in Section 3.3 and Section 4.3
respectively. The analysis in both sections is intended to determine the free coefficients
contained in both sets of equations. Consequently, in this appendix, both sets of equations
will be analysed to the second-order only.

Alternative 2D Boussinesq-Type Equations



Appendix C

The first set of equations of Chen et al. (1998) and the first set of

equations of Peregrine (1967) reduce to

n, +hu, +e(nu), =0 (C.41)

T, + 1, - Th?T, +€UT, = O(ep®,p) (C.42)

BEWCAV-A, the equations of Nwogu (1993) and the second set of

equations of Chen et al. (1998) reduce to

M, +he, + p2(a +3)h%Uay, +E(MUa), = Oep?, p*) (C.43)

Ua, + 1, +p2ah®Ua,, +€Uala, = O(ep?,p*) (C.44)
The equations of Schéffer and Madsen (1995) reduce to

My + e + p2[ (00 = B+ 1)Uy — BN°Me ] + E(MUG), = O(ep?,p*)  (C.45)

Ua, + 1, + 12[(a = ¥)h%Uay, — ¥ BP0 ] + EUUa, = O(ep?, n*) (C.46)
The equations of Wei et al: (1995) reduce to

N, +hay + p2(0 + 3 )h%Uayy, +[NUa + p2a hMua, ], = O(e’p?, %) (C.47)

Uay + 1, + 20 WUy, + EUUa, +ep2[ah?Ualay + 2 h?(Ua,)? = nhuay],

= O(e”w?, p*) (C.48)

FBE20O-E reduce to

N, +hue, +p?(a+ ';')hleam +€[NUa + p2ah™Mua,, ], = O(%u?, 1) (C.47)

U, + 1, +p2ah?Ua, +€Ula, +ep?[ath?Uaa,, —3h? (Uay)?

—nhua, ~nhus, ], =Oe??, u) (C.49)
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. The equations of Madsen and Schaffer (1998) reduce to

N, +hua, +p?(0+ 2 %Ua g, + p*01h°Ua, + &[NUa + pZah?ua,,
+utozh'nue ], = O(e°u%,e%n*, u®) (C.50)

Ua, + M, +p2ath?Ua,, + p*c2h*Ua, + EUUG,
+ep?[oth?Ua U, +2h?(Ua,)? = Moy ],
+ e[ 2 02h* (Uay)? + 620 %Ua Ua o + (o +§)h3(huaxuaxxx ~NUay)],
=O(en? &%, 1°) (C.51)

where
01=%(a+§)2, cz=§a(a+§) (C.52)

and a is defined by equation (3.22).

In the next steps, the expression for the free surface elevation [equation
(C.36a)] and the appropriate expression for the horizontal velocity [one of
equations (C.36b) - (C.36e)] is substituted into the appropriate sets of
governing equations. Terms of O(c%) are collected to yield the first-order
transfer functions and terms of O(e') are collected to yield the second-order

transfer functions. In particular, substitute:

(i) equations (C.36a) and (C.36b) into (C.37) andu(C.38) to give equations
(C.53a) and (C.70a),

(i) equations (C.36a) and (C.36¢) into (C.39) and (C.40) to give equations
(C.53b) and (C.70b),

(iii) equations (C.36a) and (C.36d) into (C.41) and (C.42) to give equations
(C.53c) and (C.70c), and

(iv) equations (C.36a) and (C.36e) into (C.43) through to (C.51) to give
equations (C.53d) and (C.70d),
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Details of the various first-order transfer functions are given in the next

section.

C.5.1. First-order transfer functions for regular waves

In determining the first-order transfer functions for regular waves, those

terms of O(°) are collected.

m®  m] {m } _ {o} (C.533)

m(2'1’ m‘;z)_ Ub1 0
M (1) 7]
m11 m12 n’ _ 0 (C 53b)
m®  m® ||t 0 )
21 22

™ o g, ’
My My, | (U 0
mg? 2]l "o

e  The coefficients (m{),m{),m{),m{)) in equation (C.53a) for BEWCBV-B,
BEWBV-D and the equations of Boussinesq (1872) including terms up to
O(p?) are

m)=o, m{)=-kh(1+u? 1k*h?)

M- _k O = o1+ p? 1k%h?) (C.54)
My =-K, My =o{1+u" 3

Hence, the solution (relating the velocity and surface elevation) of the
algebraic system of equations (C.53a) with the coefficients defined by
equation (C.54) is

on C.55
kh(1+p? Tk*h?) (€.59)

“Ubt =
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and the dispersion relation is

214212
02 1+p’lk?h

k’h  1+p2lk*h?

(C.56)

e  The coefficients (m{®,m®,m, m) in equation (C.53b) for BEWCSV-C
and the second set of equations of Peregrine (1967) including terms up

to O(u?) are
mY =, miY =—-kh(1-p?Lk?h?
11 ©, 12 ( H 3 ) (057)
my = m =

The solution and dispersion relation for the first-order transfer function
are

~ oM
ui= C.58
" kh(1- 12 TkPh?) (€.59)

w  1-p?lk%h?

L T3 C.59
k’h 1 ( )

e The coefficients (m{},m{),m{?, m{2) in equation (C.53c) for the first set of
equations of Chen et al. (1998) and the first set of equations of
Peregrine (1967) including terms up to .O(pz) are
m® =0, m=—kh

(C.60)
m® =k, mg = o(1+u? Lkh?)

The solution and dispersion relation for the first-order transfer function

are

| C.61
U= (C.61)
R (C.62)
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»  The coefficients (m{?,m{),m}),m})) in equation (C.53d) for BEWCAV-A,
FBE20-E, the second set of equations of Chen et al. (1998) and the

equations of Wei et al. (1995) equations including terms up to O(u?) are

m® =,  mi = —kh[1-p2(a + 1 K?h?]

(C.63)
mg} = -k, mf = o(1-p’ak’h’)
The solution and dispersion relation are
o
Uat = (C.64)
kh[1-p?(c + 1 K?h?]
o’ _ 1—p.2(ot+%)k2h2 (C.65)

Kh  1-plak®h?
e The coefficients (m},m{),m{),m{)) in equation (C.53d) for the equations

of Madsen and Schiffer (1998) including terms up to O(u*) are

m?=w,  m =—kn[1- 2o+ D +ptorkch’]

(C.66)

my) = -k, m$) = o(1-p?ak?h? +p'o2k*h)

The solution is
oM
Uat = (C.67)
kh[1-p2(o + 1 %02 + p*ork*h?]

and the dispersion relation is

o 1-p*(a+Ikh? +ptork*h’ (C.68)

k*h  1-plak®h? + plozk*h?

The reference solution, which is adopted herein, is the dispersion relation

of Stokes or Airy, that is

o) _tanhikh) (C.69)
k2h Stokes kh
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The expressions (C.56) and (C.65) are Padé [2,2] expansions in kh of (C.69),
expression (C.59) is a Padé [2,0] expansion in kh of (C.69), expression (C.62)
is a Padé [0,2] expansion in kh of (C.69), and (C.68) is a Padé [4,4]
expansion in kh of (C.69).

The phase speed or celerity ratio is C/Cstokes, Wwhere C = w/k is determined
from equations (C.56), (C.59), (C.62), (C.65) and (C.68), and Cstkes from
equation (C.69). The various celerity ratios are depicted in Figures C.4 and
C.5.

Figure C.4 shows the variation of the wave celerity ratio with the
dimensionless depth kh of the Boussinesq-typ'e equations including terms up
to O(u?) based on several definitions of the horizontal velocity. It appears that
the (u?) equations presented in terms of the horizontal velocity at an arbitrary
z-elevation (o =-0.39, see Chapter Three for a) i.e. curve no. 1 in Figure C.4

gives the minimum error in the wave celerity.

Furthermore, Figure C.5 shows the dimensionless dispersion relation for
Boussinesg-type equations including terms up to O(u*) with the horizontal
velocity at several arbitrary levels, where a=-0.429648 (suggested by

Madsen and Schaffer, 1998) gives excellent results.

1.20

-

a

o
)

C/CStokes
3

0.90 -
0.80 . T r . T T
0.00 0.50 1.00 1.50 2.00 2.50 3.00
kh

Figure C.4. Wave celerity ratio, C/Cstokes, where C is determined by: (1) equation (C.65) (with
o =-0.39); (2) equation (C.56); (3) equation (C.53); and (4) equation (C.62). [Boussinesq-
type equations include terms up to O(u?)], and Cstokes from (C.69).
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=
[=]
o

C/CStokes
g

0.95 -

0.90 r v . T -
0.00 1.00 2.00 3.00 4.00 5.00 6.00
kh

Figure C.5. Wave celerity ratio, C/Cstokes, Where C is determined by equation (C.68), and
Cswokes from equation (C.69). Boussinesq-type equations include terms up to O(p‘).
(1) @ =-0.429648, (2) a=-4/9, (3Q)a=-2/5and (4) a=-1/2, (2) a.=0.

C.5.2. Second-order transfer functions for regular waves

The analysis is continued to second order for the transfer functions of

regular waves by collecting those terms of O(e"). This results in

) ©.708

it (o)) 700

] "12}=(Tl1)2 {Fa} ) (C.700)

{"2 } _ {F’} (C.70d)
Ua2 h |F2
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e  The coefficients (m{?,m{?,mZ,m%) in equation (C.70a) for BEWCBV-B,

BEWBV-D and the equations of Boussinesq (1872) including terms up to

O(u?g) are
m? =2m, m? =-2kh(1+ p? 2k*h?) (C.71)
m? = -2k, m? =20(1+u?2k?h?)

and
" e 1 (C.72)

Tepf ke 2kh(T+ p 1 Kk2h?)

*  The coefficients (m?,m?,m2,my) in equation (C.70b) for BEWCSV-C
and the second set of equations of Peregrine (1967) including terms up
to O(u?e) are

m@ =20, m@ =-2kh(1-p? 2k?*h?)

(C.73)
m® =2k, m? =20

® 1
-2 F C.74
12 T2 T 2h(1-p? 1kPn?) €74

e  The coefficients (m?,m{2,m2, m{) in equation (C.70c) for the first set of
equations of Chen et al. (1998) and the first set of equations of
Peregrine (1967) including terms up to O(p?,¢) are

m? =20, m® =-2kh

(C.75)
m@ = -2k, m@ =20(1+p?$k*h?)
and
2
Fizw,  Fo=— (C.76)
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e The coefficients (m{?, m{?m2 m2) in equation (C.70d) for BEWCAV-A,
the equations of Nwogu (1993) and the second set of equations of Chen

et al. (1998) including terms up to O(u?¢) are

m? =20, m{ =-2kh[1- p*4(a + 1 Kh’]

(C.77)
m@ =2k m® = 20(1— p24ak?h?)
and
F © F2 1 (C.78)

- 1+ p%(a+3)kh? B 2kh[1_+ ¥ (o + 1 K%h?]

e  The coefficients (m{%’,m{?,m ,m{Z) in equation (C.70d) for the equations

of Schaffer and Madsen (1995) including terms up to O(p? ¢) are

m® = 20(1+ p?4pk?h?), m@ = —2kh[1-p24(c - B + 1 k2h?]

(C.79)
m? = -2k(1+p?4vyk*h?), m =20[1-p?4(a - y)k?h?]
and
k 2 2.2 2 2 21,212
Fi o o(1+ p*Bk*h*) E, o’ (1+ u*Bk*h®) (C.80)

T 1-p (o -+ 2K © 2kh[1-p2(o - B+ L KNP
e  The coefficients (m!?,m{?,m2 m2) in equation (C.70d) for the equations

of Wei et al. (1995) including terms up to O(u?,ep?) are

M =20, m = -2kn[1- 4o D]

(C.81)

m@ = -2k, mQ =20(1-p*4ak’h?)

and
1-p?ak®h?
Fi= ,
O 2 (a + L2

1o p{te 20 - 2f1- p¥(a + L 02 e

Foet M H 3 (C.82)

2kh[1- p?(o + 1 k7]
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e  The coefficients (m?,m? m? mY) in equation (C.70d) for FBE20O-E

including terms up to O(u2,ep?) are

m® =20, m =-2kh[1-p24(a+ P ?]

, (C.83)
m2 = -2k, mP =20(1-u?4 ak?h?)
and
Fie 1-plak?h?
1 pZ(a + 1)(2h2 !
1-p2{- 1+ 20 + 41— p2(a + 2 202 Jeh?
Fz2= 3 2 (C.84)

2kh[1- p2(a + 1 K?n?]

e The coefficients (m!?,m?, m@,m%) in equation (C.70d) for the equations

of Madsen and Schaffer (1998) including terms up to O(u? ep?) are

m® =2a, m@ = -2kh[1-p?4(a + 1 k3h? + p?1601k*h*]

(C.85)
m@ =-2k, mP =20(1-p24ak’h? + p*1602k*h*)
and
Fieo 1-p?ak?h? + p*o2k*h*
12+ DI + ok
22 4 1 ‘he
g, 1om 2(1+ 20 + 2 fus)k?h? + p*[ 202 + 2(cx + 1 X1+ fus) + o k*h (C.86)

2kh[1-p? (o + 1 K2 + pior k‘h‘]
where fus =1—p? (a + %)<2h2 +uork*h?.

From equations (C.70), the free surface solution for the second-order

transfer function is

2 (2) (2)

(1) ( Fimg —Fzm{ ) (C.87)
(2)pyn(2) (2)pa{2)

h (miYm;; —m;/mi;

ne=
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The Stokes second-order solution (see, e.g. Skjelbreia and Hendrickson,
1960 and Madsen and Schaffer, 1998) for the free surface is used as a
reference and is

1(n)° _ kh >
1 _1 C.88
N2s10kes 4 h tanh(kh) [tanhz(kh) ] ( )

Figure C.6 displays the ratios of the amplitudes of the second harmonics,
N2/maswokes for the six different versions of the Boussinesg-type equations. It
seems that FBE20O-E and Wei et al’s (1995) Boussinesqg-type equations
(curve 1 in Figure C.6) are superior to the Boussinesqg-type equations with the

lowest order non-linearity.

Figure C.7 shows that a=-0.429648 is still the best value for o for
Boussinesq-type equations of Madsen and Schéffer (1998) in the second

harmonic.

15

n2/n2Stokes

0.75 4

05 T T . , . ,
0.00 0.50 1.00 1.50 2.00 2.50 3.00

Figure C.6. Ratio of second harmonic, na/mzsikes, Where . is determined by equation (C.87)
and 12stokes DY €quation (C.88). (1) FBE20O-E and Wei et al.’s (1995) equations include terms
up to O(n? en?); (2) BEWCAV-A, Nwogu's (1993) and Chen et al.’s (1998) second equations
include terms up to O(i%¢); (3) BEWCBV-B and BEWBV-D include terms up to O(u%e); (4)
BEWCSV-C include terms up to O(u%¢); (5) Chen et al.’s first equations include terms up to
O(u%e); and (6) Schaffer and Madsen’s (1995) equations include terms up to O(14%¢).
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1.5
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Figure C.7. Ratio of second harmonic, na/maswkes, Where 1, is determined by equation (C.87)
and nastkes DY equation (C.88). Boussinesg-type equations include terms up to O(p‘,ep‘).
(1) a=-0.429648; (2) a =-4/9; (3) a =-2/5; (4) a =-1/2; and (5) a = 0.

C.6. Wave-current interaction and Doppler shift

Chen et al. (1998) and Madsen and Schéffer (1998) reported that one
consequence of the non-linearity of the Boussinesq (-type) equations is the
automatic inclusion of wave-averaged effects such as radiation stress, setup,
undertow and wave-induced currents. This is however, not a guarantee for a
correct representation of for example, the Doppler shift in association with
current refraction and in fact, most Boussinesg-type equations fail to model

this phenomenon accurately.

Yoon and Liu (1989) were the first to address theé problem of wave-current
interaction in relation to Boussinesq-type equations. Their study was followed
by for example, Priiser and Zielke (1990), Chen et al. (1998) and Madsen and

Schaffer (1998).

In the lowest order Boussinesqg-type equations in which terms up to
O(s,p.z) are retained, the inclusion of an ambient current needs special
attention and scaling. This can be found in the work of Yoon and Liu (1989),
Chen et al. (1998) and also the présent study (see Section C.2). Wave-

current interaction in those (g,1%) equations was considered as weakly non-
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linear waves with slowly varying currents and topography. The magnitude of

the current velocity was assumed to be larger than that of the characteristic

wave orbital velocity but less than that of the wave group velocity. Chen et al.

then allowed current speeds to exceed the intrinsic wave group velocity® in

order to simulate wave blocking phenomenon. The spatial variation of the

current was closely related to the variation of the bottom bathymetry, and

these variations were assumed to be a larger scale than the characteristic

wavelength. Consequently, strong currents can be treated only on weakly

varying bathymetry. However, weak currents do not imply any restriction on

the bathymetry variation.

horizontal bottom.

BEWCBV-B include terms up to O(g,u?)

N +hus, +e(nus), + 1 (= 3h° =70 = 2P =31 Wb = Olep® 1)

U, + gUss, +7, +12[(~1h? —nh =202 Kus, + UsUs,)]
+(-2h? =inh-1n? )beub,,] = O(ep?,p*)
BEWCSV-C include terms up to O(e,u?)
N, +hil, + &), +p*(3h° - 3n°h - 5n? i = Oen’ 1)

at + E;T‘ﬁ.‘i’x +nx + “2[(_nh _%nz )(ijxxt + uum)

+(3h? -Inh-1n? )ﬁxﬁxx] =O(ep?,n*)

% Intrinsic group velocity is the group velocity relative to the current.

Altemative 2D Boussinesq-Type Equations

(C.89)

(C.90)

(C.91)

(C.92)

Following Chen et al. (1998), the analysis will be restricted to 1D on a
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e The first set of equations of Chen et al. (1998) include terms up to
O(e,1?)

n, +hi, +e(nd), =0 (C.93)
U, +EUT, +1, —p?(3h? + 20+ 102 (Uye + Ul,) = Oep?,pn*)  (C.94)

e BEWCAV-A and the second set of equations of Chen et al. (1998)

include terms up to O(g,1?)

M, +hua, +&(nUa), +},I.2[(0.+%)h3 +ah2n—%n2h-%n3]uam = O(ep?, 1)
(C.95)

Uay + Elala, +1, +p2[(ah? = 1ih = 212 Ua,gq + UaUare)
+(ah? + 1% - Inh =102 e U | = Ofen?, 1) (C.96)
e  The equations of Wei et al. (1995) include terms up to O(u?,e%p?)
M, +ha, +e(mua), +p?[ (o + D)% Ua g + 0 (MU ),
&% $h(NUay), — € 3 (MUa,), ] = O(1*) (C.97)
Ua, + €Uala, +M, + }lz{ahZUum +g[ath? (UaUa o +Ua,Uay,)
"i'hZUaanxx —h(NUay ) ]+ €[~ 2 (N%Uay ) + (MU Uay —NUalay,), ]

+8°[2(M?Uayla, ~N2Usliay,), ]} = O(u*) (C.98)
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e  FBE20-E include terms up to O(p?,e3u?)
M, + e, +&(mua), +p[(a + 2 )°Ua g + 0th? (Mo, ),
— €2 Th(nUa,, ), — &° 2 (M°Ueg), ] = O1*) (C.97)
Ug, +&Uala, +M, + pz{ahZUam +e{ath?(UaUa,y, + U, Ua,,)
= h[(1 sy ), + (Mg )] — 3hPUa U }
+ 62{3 (1%Uayg), — (s, ), — hlUa(mue, ), ] — ShnUa e, }

+ 8% {- 2 [ua(nUa, ) Jy — TN UayUag 1} = O(1*) (C.99)
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e The equations of Madsen and Schiéffer (1998) include terms up to
O(n*,e’n*)

M, +hue, +&(nua), + uz[(a + 203U + EAN?(NUay, ), — €% 3 h(MPUay ),
-g %(T]3Uu>o<)x] + u‘[m hUo, o + scré h‘(nuumo;jx
— €% 20+ NP (NPUa )y — € 2 Eh? (MU ) + & 2 NN Ui )s
+ 8% - (PUa )i ] = O(1®) (C.100)
Ua, + EUala, + 1, +p {ahzlJum + e[ah?(Ua oy, +Ua,Ua, )
+ h2Ue Ua g, ~ h(MUay ) ]+ €2 [~ 3 (MPUay )y +N(NUa ey — NUalay, ), ]
+&°[2 (MUa, o ~ NUalay,), |}
+pt {o-zh“uuxxxxt + g[a®h*Ua, U, +62h* (Uala, oy +Ua,Uayy,)
+ (@ + 20 0(UoyUar), ~ (M), ] + €2~ F0h2 (N ),
(0 3 0 (MUt = MU Ut ) + 0N (Ua, U, = Ul )]
+ €[ 2 (MU ree)x + 2 h2(MPUa g U = NUayUare )y
+ ath?(N2Ua Uy — %nzu-u Uat o =~ 5 TN Ua Ut )x]
+ 8 {55 (N*Uoe ) + [N (Uala g — 4Ua e, + 3Ua U, )], }

+65{ 2 [ (Uo oo — 4 Uy, +3 Uaxquxx)]x}} +0@u®)  (C.101)
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The velocity field is decomposed into the wave orbital velocity and
ambient current components. The ambient current speed Uc is assumed to be
a known quantity, which is constant in space (horizontal and vertical) and

time. This results in the following non-dimensional forms.

Ub = Ubw + %ﬁc (C.102a)
a=aw+%ac | ©(C.1020)
U:Uw+gﬁc (C.1020¢)
Ua = Uaw + —1-Gc (C.1024d)

€
where subscripts w and ¢ denote wave and current components respectively.

In the next steps, the appropriate expression for the horizontal velocity
[one of equations (C.102a) — (C.102d)] is substituted in the appropriate sets of

governing equations. In particular,

e  Substitution of equation (C.102a) into (C.89) and (C.90) [i.e. BEWCBV-B

including terms up to O(g,n?)] leads to
Ny +hubw, +Gen, —p? 2 hPubw . = O(€) (C.103)
Ubw, + cUbw, +1, —p? %hz(Ubwm‘l-ﬁcUbwm):O('B) (C.104)

e  Substitution of equation (C.102b) into (C.91) and (C.92) [i.e. BEWCSV-C

including terms up to O(g,n?)] leads to
1, +hiiw, + e, +p* 3 3l =O(e) : (C.105)

»ﬁwt-i-ﬁcawx + Ny =O(€) (0106)
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Substitution of equation (C.102c) into (C.93) and (C.94) [i.e. the first set
of equétions of Chen et al. (1998) including terms up to O(e,u?)] leads to

n, +hTw, +de, =O(e) (C.107)
T, + e Tw, + 1, — P2 T2 (T g +GeTwg) = O(e) (C.108)

Substitution of equation (C.102d) into (C.95) through to (C.99) [i.e.
BEWCAV-A and the second set of equations of Chen et al. (1998)
including terms up to O(e,p?), and FBE20-E and the equations of Wei et
al. (1995) including terms up to O(u?,e3p?)] leads to

1, +htaw, + e, +p? (0t + 3 )0 Uaw e = O(€) (C.109)
Uaw, + UcUaw, + 1, +p2ah?(Uaw o, +Uclaw,, ) = O(g) (C.110)

Substitution of equation (C.102d) into (C.100) and also into (C.101) [i.e.
the equations of Madsen and Schéffer (1998) including terms up to
O(u? °u*)] leads to

N + huaw, +Gen, +p2 (00 + 2 )h°Uaw + 1401 h%Uaw g = O(E) (C.111)
Uaw, + UcUaw, +1, + R ah?(Uawo, + OcUaw o, )

+ 1402 h* (Uaw g + e Uaw oy ) = O(E) (C.112)

First-order wave solutions of the following forms will be sought

=m1€0S 0 ' (C.113a)
Ubw = Ub1 COS O (C.113b)
Uw = U1cos 6 (C.113¢c)
‘ Uw=u1cos 6 (C.113d)
Uaw = Ua1COS 6 (C.113e)
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In the next steps, the expression for the surface elevation [i.e. equation
(C.113a)] and the appropriate expression for the horizontal velocity [one of
equations (C.113b) - (C.113e)] is substituted in the appropriate sets of

governing equations. In particular,

e Inserting equations (C.113a) and (C.113b) into (C.103) and (C.104) [i.e.
BEWCBV-B including terms up to O(u?)] leads to the algebraic system of

equations (C.53a) with the coefficients (m{?, m{2, m{?, m{!) defined by

m{) =w-Gck, m{) = -kh(1+p? k*h?)

R 1 (C.114)
mé) = -k, m$) = (o —Gck)(1+ u? S k?h?)
The associated dispersion relation is
1 . 1+ pu? 1k2h?
——(0—-Uck)? = ——32 —— (C.115)
kzh( ) 1+;12%k2h2

o Inserting equations (C.113a) and (C.113c) into (C.105) and (C.106) [i.e.
BEWCSV-C including terms up to O(u?)] leads to the algebraic system of

equations (C.53b) with the coefficients (m{?,m{,m$?, m{}) defined by

™ ok, m = -kh(1-y k)

(C.116)
m$) = -k, m$) = o —lck
The associated dispersion relation is
1 A 1- }.12 1 k2h2
W(Q—Uck)z ='——"—1?"——— (C117)

¢ Inserting equations (C.113a) and (C.113d) into (C.107) and (C.108) [i.e.
the first set of equations of Chen et al. (1998) including terms up to
O(u?)] leads to the algebraic systems of equation (C.53c) with the
coefficients (m{},m{7,m}),m{3) defined by

m{? =0 -Gck, m) =-kh

o o A 2 1 2h3 (C.118)
my; =K, my; = (o—Uck)(1+p° 3k*h”)
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The associated dispersion relation is

1 o-tek)? = —

L C.119
k’h 1+p? 1k?h? ( )

o Inserting equations (C.113a) and (C.113e) into (C.109) and (C.110) [i.e.
BEWCAV-A, FBE20-E, the second set of equations of Chen et al.
(1998) and the equations of Wei et al’s (1995) including terms up to
O(n?)] leads to the algebraic system of equations (C.53d) with the

coefficients (m{?,m{}),m{), m{2) defined by

m{ = 0-Gck, m = —kh[1-p?(a+1k2h?]

(C.120)
md) = K, my) = (o —Uck)(1- p?ak?h?)
The associated dispersion relation is
1 . 1-p?(a+1 k2h?
—kz—h(m—uck)"’ = 1—p2ak32h2 (C.121)

. Inserting equations (C.113a) and (C.113e) into (C.111) and (C.112) [i.e.
the equations of Madsen and Schaffer (1998) including terms up to
O@u")] lead to the algebraic system of equations (C.53d) with the

coefficients (m!{},m{),m{), m{)) defined by

mi) =o-Gek,  m = kh[1-p?(a+ P? +uork*h?]

(C.122)
mg =K, m§) = (o - Gek)(1- p2ak?h? + p*oz2k*h*)
The associated dispersion relation is
N 1-p?(a+1k%h? + n*ork*h?*
(- ick)? = —F (2 32)"2 el (C.123)
k<h 1-p°ak®h® +p°oc2k*h

Obviously, all the new Boussinesq-type equations (except BEWBV-D, this
is due to BEWBV-D for waves only), the Boussinesqg-type equaiions of Chen
et al. (1995) (the first and second sets), of Wei et al. (1995) and of Madsen
and Schéffer (1998) provide the correct form of the Doppler shift.
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C.7. Conclusions

Three new sets of weakly non-linear Boussinesg-type (e,u?) equations with
an ambient current are developed by the present author. They are written in
terms of the horizontal velocities at an arbitrary z-level (BEWCAV-A), the
bottom (BEWCBV-B) and still water level (BEWCSV-C). The scaling
assumptions for wave-current interaction follow those of the work of Chen et
al. (1998). In the present study however, currents are allowed to be vertically
sheared instead of the depth-uniform currents as in the work of Chen et al..
The present depth-integrated momentum equation is obtained by integrating
the horizontal Euler equation of motion including the irrotationality condition
instead of including the kinematic and dynamic boundary conditions as in the
work of Nwogu (1993) and Chen et al. (1998). The free surface kinematic and
dynamic boundary conditions are then inserted into the expression for the
pressure field and the kinematic seabed boundary condition is inserted into
the expression for the vertical velocity. Nevertheless, the present depth-
integrated continuity équation remains identical to that employed by Nwogu,
Chen et al., Wei et al. (1995) and Madsen and Schaffer (1998).

Removing all dispersion terms associated with currents in BEWCBV-B
leads to a new set of Boussinesqg-type equations for weakly non-linear waves
(BEWBV-D).

Making use of the new alternative approach for deriving the equations of
Nwogu (1993) in Section 3.2, but with the free surface kinematic boundary
condition excluded, the fully non-linear Boussinesq-type equations of Wei et
al. (1995) [including terms up to O(u%e3u?)] and of Madsen and Schaffer

(1998) [including terms up to O(u* e°u*)] are successfully re-derived.

Wei et al. derived their (p%e*u?) equations by introducing a series
expansion for ¢ at z=—h, and converting it to z = z.. This expansion was then
substituted into the free surface, dynamic boundary condition to develop the

Boussinesg-type momentum equation.
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Madsen and Schaffer derived their (u*,¢°u*) equations by introducing an
expansion of the velocity potential as a power series in the vertical coordinate
to form the horizontal and vertical velocities and then utilising the free surface,
dynamic boundary condition to develop the Boussinesg-type momentum

equation.

A new alternative set of (u,¢°u?) equations (FBE20-E) is derived by use
of the depth-integrated momentum equation as used in the derivation of the
new (g,1%) equations (BEWCAV-A, BEWCBV-B and BEWCSV-C).

Furthermore, the existing and new Boussinesqg-type equations are
analysed by Fourier analysis to show the dispersion relationship (first-order
transfer function for regular waves) and non-linear properties (second-order
transfer function for regular waves) of the corresponding governing equations.

In the first-order transfer function for regular waves, the governing
equations with u* terms included are superior to those with p? terms. The
governing equations including the lowest-order frequency dispersion (i.e. u?)
terms presented in terms of the arbitrary horizontal velocity give an excellent
dispersion relation compared to those in terms of other velocity definitions.
For Boussinesqg-type equations including fourth-order frequency dispersion
(i.e. p*) terms, the horizontal velocity at z=-0.429648 h (suggested by
Madsen and Schéffer, 1998) gives the best dispersion relation when
compared to Stokes dispersion relation (i.e. the Stokes first-order solution). In
the second-order transfer function for regular waves, the same trends apply.
The reference solution is the Stokes second-order solution.

In addition, all the new Boussinesq-type equations presented in this
appendix (except BEWBV-D) and the first and second sets of (e.1?) equations
of Chen et al. (1998) presented in Chapter Five provide the correct
representation of the Doppler shift in association with current refraction.
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