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1
Introduction

1.1 Background and Notation

This thesis is based on a collection of papers related to bounds of exponential sums

and results in additive combinatorics. For the entirety of this thesis we use the

notation

eppxq � expp2πix{pq

where p will always be a large prime number. We also use Fp to denote the finite

field of p elements. We consider the exponential sum, over some arbitrary subset

X � Fp, ¸
xPX

eppfpxqq

for some suitably chosen function f . The challenge in studying such sums is to be

able to provide upper bounds. Trivially, one has�����¸
xPX

eppfpxqq
����� ¤ |X |,

and for many functions and sets we are unable to say much more.

1



CHAPTER 1. INTRODUCTION

The field of additive combinatorics gives methods of providing upper bounds

on certain exponential sums, as we will see in Chapter 4. Similarly, bounds on

exponential and character sums also lead to estimates in additive combinatorics, as

we will see in Chapter 3.

Finally, we frequently use the notation

A ! B and A � OpBq

which both are equivalent to |A| ¤ c|B| for some absolute constant c. We also use

A !k B and A � OkpBq

when c depends on some other parameter k.

1.2 Overview of Thesis

Although this thesis is built on a collection of articles, we present them in a restruc-

tured format so as to keep related ideas together in chapters. The relevant articles

are:

• [22] which appears in Chapters 2 and 4,

• [24] which appears in Chapters 2 and 5,

• [23] which appears in Chapter 3,

• [18] which appears in Chapters 4 and 5,

• [21] which appears in Chapter 5.

At the end of each chapter there will also be a section on open problems and other

possible directions. Here we provide a short overview of each chapter.

1.2.1 Collinear Triples

Bounds on the number of collinear triples are of particular importance when finding

bounds on certain types of exponential sums (as we will see in Chapters 4 and 5)

as well as being a tool for giving bounds on sum and product sets. We define the

number of collinear triples, T pA,Bq, to be the number of solutions of

pa1 � a2qpb1 � b2q � pa1 � a3qpb1 � b3q, ai P A, bi P B, i � 1, 2, 3. (1.2.1)

In Chapter 2, we consider a more general form of this equation for further applica-

tions in Chapters 4 and 5.

2



CHAPTER 1. INTRODUCTION

Transforming our expression (1.2.1), we can see that T pA,Bq can be considered

to be the number of solutions of

b1 � ca1 � b2 � ca2 � b3 � ca3

with the ai P A, bi P B and c P Fp, if we include an added error term of Op|A||B|3�
|A|2|B|2q, which comes from counting relevant zero solutions to (1.2.1). It is here

that we see collinear triples namesake more clearly. In this chapter, we adapt existing

techniques to give new bounds on the number of collinear triples, which are stronger

when A � B. Previous results on this asymmetric case have been given using

the Cauchy-Schwartz inequality by first finding bounds on T pA,Aq. Although this

is usually just stated, we prove the following using multiplicative characters. If we

consider T �pA,Bq to be the non-zero solutions to (1.2.1), χ a multiplicative character

and Ω the set of all multiplicative characters over Fp, we have

T �pA,Bq �
¸
aiPA
i�1,2,3

¸
biPB
i�1,2,3

1

p� 1

¸
χPΩ

χpa1 � a2qχpb1 � b2qχpa1 � a3qχpb1 � b3q

� 1

p� 1

¸
χPΩ

¸
a1PA

����� ¸
a2PA

χpa1 � a2q
�����
2 ¸
b1PB

�����¸
b2PB

χpb1 � b2q
�����
2

.

We now square both sides and apply the Cauchy-Schwartz inequality to obtain

T �pA,Bq2 ¤ 1

p� 1

¸
χPΩ

������
¸
a1PA

����� ¸
a2PA

χpa1 � a2q
�����
2
������
2

1

p� 1

¸
χPΩ

������
¸
b1PB

�����¸
b2PB

χpb1 � b2q
�����
2
������
2

� T �pA,AqT �pB,Bq.

Instead, considering T pA,Bq directly leads to our improvements on previous results.

Such improvements become stronger when the size of A and B are significantly

different.

In this chapter we also provide some stronger bounds on the number of collinear

triples where our sets A and B are subgroups. Finally, as previously mentioned, in

this chapter we give a more general form of T pA,Bq then what has been considered

previously. We instead consider our collinear triples over two parameters λ and µ.

This leads us to new bounds on multiplicative energy of shifted subgroups.

1.2.2 A Low Energy Decomposition

Additive and multiplicative energy have seen much study in recent years, as we will

see in Chapter 3. Of particular importance is their relationship to sum and product

3



CHAPTER 1. INTRODUCTION

sets. We define the additive energy

E�pA,Bq � |tpa1, a2, b1, b2q P A2 � B2 : a1 � b1 � a2 � b2u|.

Similarly, we define the multiplicative energy

E�pA,Bq � |tpa1, a2, b1, b2q P A2 � B2 : a1b1 � a2b2u|.

Here, we are most interested in the cases A � B and thus define E�pA,Aq � E�pAq
and E�pA,Bq � E�pAq. We also define the sum and product sets respectively as

A� B � ta� b : a P A, b P Bu
A � B � tab : a P A, b P Bu.

If we define r�Apxq to be the number of solutions of a1 � a2 � x for a1, a2 P A it is

clear ¸
xPA�A

r�Apxq � |A|2 and
¸

xPA�A
pr�Apxqq2 � E�pAq.

Using the Cauchy-Schwartz inequality and squaring we have

|A�A|E�pAq ¥ |A|4.

It follows that strong upper bounds on additive energy correspond to strong lower

bounds on the size of the sum set. Similarly, for product sets. This is of particular

importance as Erdős and Szemerédi [15] showed over finite sets of real numbers that

maxpA�A,A �Aq ¥ |A|1�ε

for some small ε ¡ 0. However, they also conjectured that we can take ε arbitrarily

close to 1 when A is a finite subset over the reals.

In a similar way, one may hope to find an analogue of this result for energy,

that is we may hope that either the additive or multiplicative energy always has to

be small (of size |A|2). Such hope is, of course, in vain as we can take A to be a

union of a geometric series and an arithmetic series each of size |A|{2 to ensure both

energies are maximal. However, in this style, Balog and Wooley [2] showed that we

can find a decomposition of disjoint subsets B \ C � A such that

maxpE�pBq, E�pCqq ! |A|3�δ.

Their bound is given both over the reals and finite fields Fp (with different choices

of δ). The ideas of their proof rely on certain incidence results.

4



CHAPTER 1. INTRODUCTION

One then might like to revisit the energy variant of the sum-product problem

and suggest that we can always find a decomposition such that

maxpE�pBq, E�pCqq ! |A|2.

Balog and Wooley [2] also considered this in their paper and were able to construct

a set A for which any subset A1 satisfying |A1| � α|A| gives

E�pA1q, E�pA1q " α|A|7{3.

In Chapter 3 we consider a slightly different problem. We prove an extension of

results of Roche-Newton, Shparlinski and Winterhof [31] which shows

maxpE�pBq, E�pfpCqqq ! |A|3�δ (1.2.2)

over Fq, where q is a prime power, f is a suitably chosen function and A is of

sufficient size. Our bounds, similarly to [31], rely on bounds on certain character

sums. Our extensions will show that we can replace E� with E� in either or both

terms in (1.2.2), as long as we suitably change our restriction on our function f .

1.2.3 Multilinear Exponential Sums

Multilinear exponential sums are those of the form

T pX1, . . . ,Xnq �
¸
x1PX1

. . .
¸

xnPXn

eppax1 . . . xnq

for Xi � Fp for each i � 1, . . . , n and any a P F�p . The first results in this direction

are due to Vinogradov who provided the following bound on bilinear exponential

sums (for example, see [5, Equation 1.4]). Here we also provide a simple proof.

Lemma 1.2.1. Let X ,Y � Fp, and αx, βy be complex weights such that¸
xPX

|αx|2 � A
¸
yPY

|βy|2 � B.

Then �����¸
xPX

¸
yPY

αxβy eppaxyq
����� ¤ ppABq1{2

where a P F�p.

5



CHAPTER 1. INTRODUCTION

Proof. By the Cauchy-Schwartz inequality we have�����¸
xPX

¸
yPY

αxβy eppaxyq
�����
2

¤ A
¸
xPX

�����¸
yPY

βy eppaxyq
�����
2

.

We now extend the outer sum over all Fp to obtain�����¸
xPX

¸
yPY

αxβy eppaxyq
�����
2

¤ A
¸
xPFp

�����¸
yPY

βy eppaxyq
�����
2

� A
¸
xPFp

¸
y1,y2PY

βy1βy2 eppaxpy1 � y2qq

� A
¸

y1,y2PY
y1�y2

βy1βy2
¸
xPFp

eppaxpy1 � y2qq

� Ap
¸
yPY

|βy|2

� pAB.

This completes the proof. l

The focus of this chapter is to consider multilinear exponential sums of the form

T pX1, . . . ,Xnq �
¸
x1PX1

. . .
¸

xnPXn

ω1pxq . . . ωnpxq eppax1 . . . xnq (1.2.3)

where a P F�p and the ωi’s are n � 1 dimensional complex weights, that is, complex

numbers of modulus |ωi| ¤ 1 depending on all but the i-th coordinate of x. Our

results are an extension of [30] and use similar techniques, however some improve-

ments are made in certain regions on trilinear and quadrilinear exponential sums

due to estimates on collinear triples from Chapter 2. We have also been able to

extend these results to general multilinear sums beyond n � 4. This extension is

certainly non-trivial, and is due to some recent results in additive combinatorics.

An overview of similar types of sums will also be mentioned in this chapter as

we analyse the differences between the respective bounds.

1.2.4 Multinomial Exponential Sums

We define a t-sparse polynomial

ΨtpXq �
ţ

i�1

aiX
ki

6



CHAPTER 1. INTRODUCTION

with pairwise distinct, non-zero, integer exponents k1, . . . , kt with corresponding

coefficients a1, . . . , at P F�p . We consider the multinomial exponential sum

SX pΨtq �
¸
xPF�p

χpxq eppΨtpxqq. (1.2.4)

The bounds on such sums that appear in Chapter 5 come as a result of bounds

on weighted multilinear sums from Chapter 4. By extending the sum over t multi-

plicative subgroups of F�p we are able to express our multinomial sum as a weighted

multilinear sum. It is worth mentioning that in this chapter we find stronger results

on multilinear exponential sums than those in Chapter 4 for when our arbitrary sets

are, instead, multiplicative groups.

The methods used to give our bounds provide interesting results as our bounds

do not depend directly on the size of the powers of our polynomials, but rather

they depend on the size of some greatest common divisors of our powers. This is in

contrast to the well-known Weil bound, which gives

|SX pΨtq| ¤ maxtk1, . . . , ktup1{2.

7





2
Collinear Triples

2.1 Introduction

2.1.1 Set Up

We define the line

`a,b � tpx, yq P F2
p : y � ax� bu

for any pa, bq P F2
p. We let A, B � Fp, with |A| � A, |B| � B and A ¤ B. We also

define the number of incidences of any line with A� B to be

ιA�Bp`a,bq � |tpA� Bq X `a,bu|.

Furthermore, for λ, µ P F�p , we define the number of collinear triples Tλ,µpA,Bq to

be the number of solutions to

pa1 � λa2qpb1 � µb2q � pa1 � λa3qpb1 � µb3q, ai P A, bi P B, i � 1, 2, 3.

We define T1,1pA,Bq � T pA,Bq and for A � B we define T pA,Aq � T pAq.

9



CHAPTER 2. COLLINEAR TRIPLES

2.1.2 New Results

Our main result of this chapter is the following theorem on the number of collinear

triples.

Theorem 2.1.1. Let A,B � Fp with |A| � A ¤ |B| � B and λ, µ P F�p. Then

Tλ,µpA,Bq � A3B3

p
! p1{2A2B3{2 � AB3.

Our bound is dependent on a result of Murphy et al. [27] on the number of

point-line incidences, which is given in the following section.

We also provide a new result on the number of collinear triples in subgroups.

More generally, for a multiplicative subgroup G of F�p we define TλpGq � T1,λpGq
which is our main object of study.

Theorem 2.1.2. Let G be a multiplicative subgroup of F�p. Then for any λ P F�p, we

have

TλpGq � |G|6
p

!

$'&'%
p1{2|G|7{2, if |G| ¥ p2{3,

|G|5p�1{2, if p2{3 ¡ |G| ¥ p1{2 log p,

|G|4 log |G|, if |G|   p1{2 log p.

Remark 2.1.3. Theorem 2.1.2 is new only for subgroups of intermediate size,

where p2{3 ¡ |G| ¡ p1{2, otherwise it is contained in [35, Proposition 1], see also

Lemma 2.3.2 below, or in the bound of Theorem 2.1.1.

Remark 2.1.4. The method of proof of Theorem 2.1.2 also works without any

changes for Tλ,µpG,Hq with two multiplicative subgroups, similarly to Lemma 2.3.2.

However, for subgroups of significantly different sizes the optimisation part becomes

rather tedious.

2.1.3 Previous Results

Recent results on T pA,Bq have been given by using the Cauchy-Schwartz inequality

on bounds for T pAq. For this reason previous bounds for T pA,Bq are symmetric.

We compare our result with that of Aksoy Yazici, Murphy, Rudnev and Shkredov

[1, Proposition 5]

T pAq ! A6

p
� A9{2

hence, by the Cauchy-Schwartz inequality,

T pA,Bq !
�
A3

p1{2
� A9{4


�
B3

p1{2
�B9{4



� AB3.

10



CHAPTER 2. COLLINEAR TRIPLES

We see that for A � B the bound in Theorem 2.1.1 is stronger for p1{2   A   p2{3

and of the same strength for A ¥ p2{3. More generally, our new bound is stronger

when AB3 ¡ p2. We also compare our result to that of Murphy, Petridis, Roche-

Newton, Rudnev and Shkredov [27, Theorem 10],

T pAq ! A6

p
� A7{2p1{2,

hence, by the Cauchy-Schwartz inequality,

T pA,Bq !
�
A3

p1{2
� A7{4p1{4


�
B3

p1{2
�B7{4p1{4



� AB3.

We see that our bound is equal to the above result for A � B, and stronger otherwise.

We also mention the trivial bound for A ¤ B

T pA,Bq ¤ A3B2.

It is clear that this comes from taking all possible choice for a1, a2, a3, b1, b2 and then

there is at most one choice for b3. It follows that our bound from Theorem 2.1.1 is

non-trivial as long as A2B ¡ p. It is also clear that there is an obvious trivial lower

bound coming from the zero solutions. Hence

T pA,Bq ¥ AB3.

2.2 Collinear Triples Over Subsets

2.2.1 Preliminaries

In this section we use ` � `c,d to indicate lines of the form y � cx� d. We also use

the notation ¸
`

�
¸
cPFp

¸
dPFp

,

to indicate that we are summing over all lines of the form `c,d.

We mention the following results.

Lemma 2.2.1. Let A,B P Fp with |A| � A, |B| � B and λ, µ P F�p. Then¸
`

ιA�Bp`a,bq �
¸
`

ιA�Bp`λa,µbq � pAB

and ¸
`

ιA�Bp`a,bqιA�Bp`λa,λbq � A2B2 � AB2 � pAB.

11



CHAPTER 2. COLLINEAR TRIPLES

Proof. The first result is clear since for each choice of px, y, uq P A�B�Fp there is

a unique choice of v P Fp that satisfies y � ux� v. The second result we have¸
`

ιA�Bp`a,bqιA�Bp`λa,λbq

�
¸

pa1,a2,b1,b2qPA2�B2

|tpc, dq P F2
p : b1 � ca1 � d, b2 � λca2 � µdu|.

Now, we can see there are AB quadruples pa1, a2, b1, b2q P A2 � B2 which are given

by pa1, b1q � pλµ�1a2, µ
�1b2q which define p pairs pc, dq � pc, b1 � ca1q. There are

ABpB � 1q quadruples with b1 � µ�1b2 and a1 � λµ�1a2 which do not define any

pairs pc, dq, as they are parallel. The remaining

A2B2 � ABpB � 1q � AB � A2B2 � AB2

quadruples define one pair pc, dq each, as they are the non-parallel lines. l

We immediately have the following corollary.

Corollary 2.2.2. Let A,B P Fp with |A| � A, |B| � B and λ, µ P F�p. Then

¸
`

�
ιA�Bp`λa,µbq � AB

p


2

¤ pAB.

We need an analogue of [27, Lemma 9]. First we recall [27, Theorem 7], which

is dependent on incident results of Stevens and de Zeeuw [41].

Lemma 2.2.3. Let A,B � Fp with |A| � A ¤ |B| � B and let L be a collection of

lines in F2
p. Assume that A|L| ¤ p2. Then the number of incidences IpP,Lq between

the point set P � A� B and L is bounded by

IpP,Lq ! A3{4B1{2|L|3{4 � |P | � |L|.

We define LNλ,µ to be the collection of lines that are incident to between N and

2N points, that is

LNλ,µ � t`λa,µb P L : N   ιA�Bp`λa,µbq ¤ 2Nu

for λ, µ P F�p , and L the collection of all lines in F2
p. We then have the following

lemma.

Lemma 2.2.4. Let A,B � Fp with |A| � A ¤ |B| � B, λ, µ P F�p and furthermore

let 2AB{p ¤ N ¤ A be an integer greater than 1. Then

|LNλ,µ | ! min

�
pAB

N2
,
A3B2

N4



.

12
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Proof. Since ιA�Bp`λa,µbq ¥ N for ιA�Bp`λa,µbq P LNλ,µ and AB{p ¤ N{2, we have

ιA�Bp`λa,µbq � AB{p ¥ N �N{2 � N{2.

Therefore, using Corollary 2.2.2,

N2

4
|LNλ,µ | ¤

¸
ιA�Bp`λa,µbqPLNλ,µ

pιA�Bp`λa,µbq � AB{pq2

¤
¸
l

pιA�Bp`λa,µbq � AB{pq2

¤ pAB.

(2.2.1)

Now suppose 2AB{p ¤ N   2AB1{2{p1{2. From (2.2.1)

|LNλ,µ | !
pAB

N2
  pAB

N2
� 4A2B

N2p
� 4A3B2

N4
.

We now suppose N ¥ 2AB1{2{p1{2 ¥ 2AB{p. By (2.2.1) LNλ,µ ¤ 4pAB{N2 ¤ p2{A.

We can now apply Lemma 2.2.3 to obtain

N |LNλ,µ | ! A3{4B1{2|LNλ,µ |3{4 � AB � |LNλ,µ |.

We now observe when each term dominates, omitting the last term as it gives N ! 1,

to get

|LNλ,µ | !
A3B2

N4
� AB

N
.

We now recall N ¤ A, hence

|LNλ,µ | !
A3B2

N4
.

This completes the proof. l

We now need the following lemma.

Lemma 2.2.5. For A,B � Fp with |A| � A   |B| � B and λ, µ P F�p,

¸
`

ιA�Bp`a,bq
�
ιA�Bp`λa,µbq � AB

p


2

! p1{2A2B3{2.

13
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Proof. We begin by splitting our sum over a parameter ∆ ¥ 2AB{p which will be

chosen later. We also observe that ιA�Bp`λa,µbq ¤ A. We then find a bound on

¸
ιA�Bp`a,bq¤∆

ιA�Bp`a,bq
�
ιA�Bp`λa,µbq � AB

p


2

�
¸

ιA�Bp`a,bq¡∆
ιA�Bp`λa,µbq¤∆

ιA�Bp`a,bq
�
ιA�Bp`λa,µbq � AB

p


2

�
¸

ιA�Bp`a,bq¡∆
ιA�Bp`λa,µbq¡∆

ιA�Bp`a,bq
�
ιA�Bp`λa,µbq � AB

p


2

� I � II � III.

By Corollary 2.2.2 it is clear that I ¤ ∆pAB. By Lemma 2.2.1 we also have

II ¤
¸

ιA�Bp`a,bq¡∆

ιA�Bp`a,bq
�

∆� AB

p


2

¤
�

∆� AB

p


2

pAB.

From Lemma 2.2.1, and using the identity X2 � pX � Y q2 � 2XY � Y 2, we have¸
ιA�Bp`a,bq¡∆
ιA�Bp`λa,µbq¡∆

ιA�Bp`a,bqιA�Bp`λa,µbq2

¥
¸

ιA�Bp`a,bq¡∆
ιA�Bp`λa,µbq¡∆

ιA�Bp`a,bq
�
ιA�Bp`λa,µbq � AB

p


2

� 3A2B2

p2

¸
ιA�Bp`a,bq¡∆

ιA�Bp`a,bq

¥
¸

ιA�Bp`a,bq¡∆
ιA�Bp`λa,µbq¡∆

ιA�Bp`a,bq
�
ιA�Bp`λa,µbq � AB

p


2

� III.

We can now use a dyadic decomposition and Lemma 2.2.4 to obtain¸
ιA�Bp`a,bq¡∆
ιA�Bp`λa,µbq¡∆

ιA�Bp`a,bqιA�Bp`λa,µbq2 !
¸
k¥0

p2k∆q3|L2k∆|

!
¸
k¥0

p2k∆q3 A
3B2

p∆2kq4

! A3B2

∆
.

14
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Therefore, ¸
`

ιA�Bp`a,bq
�
ιA�Bp`λa,µbq � AB

p


2

! ∆pAB � II � A3B2

∆
.

We choose ∆ � 2AB1{2{p1{2 ¥ 2AB{p to get

II ! A2B

p

�
1� B1{2

p1{2



p3{2B1{2

! p1{2A2B3{2

and ¸
`

ιA�Bp`a,bq
�
ιA�Bp`λa,µbq � AB

p


2

! p1{2A2B3{2.

This completes the proof. l

2.2.2 Proof of Theorem 2.1.1

We can transform Tλ,µpA,Bq to be the number of solutions of

b1 � µb2

a1 � λa3

� b1 � µb3

a1 � λa2

,

by adding an error term of OpAB3 � A2B2q coming from the trivial cases where

a1 � λa2 � λa3, or a1 � λa3 and b1 � µb2, or a1 � λa2 and b1 � µb3. Then

collecting our solutions for each c P Fp,
b1 � µb2

a1 � λa3

� b1 � µb3

a1 � λa2

� c

and rearranging and relabelling, we obtain

b1 � ca1 � µb2 � λca2 � µb3 � λca3.

Therefore,

Tλ,µpA,Bq �
¸
`

ιA�Bp`a,bqιA�Bp`λa,µbq2 �OpAB3 � A2B2q. (2.2.2)

We use the result X2 � pX�Y q2�2XY �Y 2 with X � ιA�Bp`λa,µbq and Y � AB{p
and see¸

`

ιA�Bp`a,bqιA�Bp`λa,µbq2

�
¸
`

ιA�Bp`a,bq
�
ιA�Bp`λa,µbq � AB

p


2

� 2AB

p

¸
`

ιA�Bp`a,bqιA�Bp`λa,µbq � A2B2

p2

¸
`

ιA�Bp`a,bq.

(2.2.3)
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We now apply Lemma 2.2.1 to obtain,¸
`

ιA�Bp`a,bqιA�Bp`λa,µbq2

�
¸
`

ιA�Bp`a,bq
�
ιA�Bp`λa,µbq � AB

p


2

� A3B3 � 2A3B2

p
� 2A2B2.

(2.2.4)

Combining (2.2.2), (2.2.3) and Lemma 2.2.5 we complete the proof.

2.2.3 Consequences

We give some results that come as a consequence of Theorem 2.1.1, these are nec-

essary for our proofs of Theorem 4.1.1 and Theorem 4.1.2.

We define Dλ,µpA,Bq to be the number of solutions to

pa1 � λa2qpb1 � µb2q � pa3 � λa4qpb3 � µb4q (2.2.5)

for pai, biq P A � B, i � 1, 2, 3, 4, and λ, µ P F�p . We define T �
λ,µpA,Bq to be the

number of solutions of

pa1 � λa2qpb1 � µb2q � pa1 � λa3qpb1 � µb3q � 0

and, similarly, D�
λ,µpA,Bq to be the number of solutions of

pa1 � λa2qpb1 � µb2q � pa3 � λa4qpb3 � µb4q � 0.

We also define D�
1,1pA,Bq � D�pA,Bq, D1,1pA,Bq � DpA,Bq and similarly define

T �
1,1pA,Bq � T �pA,Bq.

Lemma 2.2.6. Let A,B � Fp with |A| � A ¤ |B| � B and λ, µ P F�p. Then

D�
λ,µpA,Bq ! p1{2A3B5{2 � A4B4

p
.

Proof. We rearrange D�
λ,µpA,Bq so it is the number of solutions of

b1 � µb2

a3 � λa4

� b3 � µb4

a1 � λa2

� 0.

We define Jpξq to be the number of quadruples pa1, a, b1, bq P A2 � B2 with

b� µb1

a� λa1

� ξ. (2.2.6)
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We also let Ja,bpξq be the number of pairs pa1, b�!q P A� B for which (2.2.6) holds.

Then by the Cauchy-Schwartz inequality, we have

D�
λ,µpA,Bq �

¸
ξPF�p

Jpξq2 �
¸
ξPF�p

�� ¸
pa,bqPA�B

Ja,bpξq
�2

¤ AB
¸
ξPF�p

¸
pa,bqPA�B

Ja,bpξq2

� AB
¸

pa,bqPA�B

¸
ξPF�p

Ja,bpξq2.

Now ¸
ξPF�p

Ja,bpξq2 � |tpa1, a2, b1, b2q P A2 � B2 :
b� µb1

a� λa1

� b� µb2

a� λa2

� 0u|,

hence

D�
λ,µpA,Bq ¤ ABT �

λ,µpA,Bq
¤ AB

¸
`

ιA�Bp`a,bqιA�Bp`λa,µbq2

! p1{2A3B5{2 � A4B4

p
.

by (2.2.4) and Lemma 2.2.5. This concludes the proof. l

The number of solutions for when (2.2.5) is equal to 0 is OpA2B4�A3B3�A4B2q
and we therefore get the following simple corollary.

Corollary 2.2.7. Let A,B � Fp with |A| � A ¤ |B| � B and λ, µ P F�p. Then

Dλ,µpA,Bq ! p1{2A3B5{2 � A4B4

p
� A2B4.

We compare the bound of Lemma 2.2.6 to that of Petridis and Shparlinski [30,

Corollary 2.9],

D�pA,Aq ! A8

p
� A13{2.

It is clear for the case A � B that our bound is stronger for A ¡ p1{2. For A   B,

by the Cauchy-Schwartz inequality, [30, Corollary 2.9] gives

D�pA,Bq ! A4B4

p
� A13{4B4

p1{2
� A13{4B13{4.

Again our bound gives stronger results for A1{2B3{2 ¡ p.
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2.3 Collinear Triples Over Subgroups

2.3.1 Preliminaries

We require some previous results. We note that we use Lemma 2.3.1 only for G � H,

however we present it and also some other results in full generality as we believe

they may find several other applications and this deserves to be known better.

The first one is a result of Mit’kin [25, Theorem 2] extending that of Heath-Brown

and Konyagin [17, Lemma 5], see also [19, 38] for further generalisations.

Lemma 2.3.1. Let G and H be subgroups of F�p and letMG andMH be two complete

sets of distinct coset representatives of G and H respectively in F�p. For an arbitrary

set Θ �MG �MH such that

|Θ| ¤ min

"
|G||H|, p3

|G|2|H|2
*

we have ¸
pu,vqPΘ

|tpx, yq P G �H : ux� vy � 1u| ! p|G||H||Θ|2q1{3.

Note that there is a natural bijection betweenMG,MH and some subsets of the

factor groups F�p{G and F�p{H. So, one can think of Θ as a subset of F�p{G � F�p{H.

Clearly, the trivial bound on the sum of Lemma 2.3.1 is¸
pu,vqPΘ

|tpx, yq P G �H : ux� vy � 1u| ! mint|G|, |H|u|Θ|.

Hence if, for example, G � H, then Lemma 2.3.1 always significantly improves this

bound.

We recall from (2.2.2) and (2.2.3)

Tλ,µpA,Bq � |A|3|B|3
p

(2.3.1)

�
¸

pa,bqPF2
p

ιA,B p`a,bq
�
ιA,B p`λa,µbq � |A||B|

p


2

�Op|A|2|B|2 � |A|B|3q .

(2.3.2)

Finally, we need the following bound for small subgroups, which is a slightly

simplified form of [35, Proposition 1] combined with (2.3.19).

Lemma 2.3.2. Let G be a subgroup of F�p with |G| ¥ |H| and |G||H|   p. Then

Tλ,µpG,Hq ! |G|3|H| log |G| .
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2.3.2 Initial Reductions

The argument below follows [35, 36].

First of all, note that Lemma 2.3.2 implies the required result provided |G||H|   p

while Theorem 2.1.1 implies it for |G| ¥ p2{3.

So it remains to consider the case

p2{3 ¡ |G| ¡ p1{2.

Let ∆ ¥ 3 be a parameter to be chosen later. Using Corollary 2.2.2 and (2.3.1),

we obtain

TλpGq � |G|6
p

! |G|4 �∆|G|2p�W , (2.3.3)

where

W �
¸

pa,bqPF2
p

ιGp`a,bq¡∆

ιG p`a,bq
�
ιG p`a,λbq � |G|2

p


2

.

Clearly, the contribution to W from lines with ab � 0, is at most |G|4 as in this

case ιG p`a,bq � 0 unless a P G or b P G, in which case ιG p`a,bq � |G|. Therefore,

¸
pa,bqPF2

p

ab�0

ιG p`a,bq
�
ιG p`a,λbq � |G|2

p


2

� O
�|G|4� .

Thus

W � W � �O
�|G|4� (2.3.4)

where

W � �
¸

pa,bqPpF�p q2

ιGp`a,bq¡∆

ιG p`a,bq
�
ιG p`a,λbq � |G|2

p


2

,

which is the sum we now consider.

2.3.3 Sets Θτ and Qτ

Let, as before,MG be a set of distinct coset representatives of G in F�p . Take another

parameter τ ¥ ∆ and put

Θτ � tpα, βq PM2
G : |tpx, yq P G2 : αx� βy � 1u| ¥ τu .
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In other words, Θτ is the set of pα, βq PM2
G for which the lines

Lα,β � tpx, yq P F2
p : αx� βy � 1u � `�αβ�1,β�1 (2.3.5)

have the intersection with G2 of size

ιG p`�αβ�1,β�1q ¥ τ.

In particular,

Θτ � tpα, βq PM2
G : ιG pLα,βq ¥ τu. (2.3.6)

By Lemma 2.3.1, we have |Θτ |τ ! p|G||Θτ |q2{3 provided

|G|4|Θτ |   p3 (2.3.7)

and

|Θτ | ¤ |G|2. (2.3.8)

We also define the set

Qτ � tpα, βq P �F�p�2
: ιG pLα,βq ¥ τu. (2.3.9)

Comparing (2.3.6) and (2.3.9), we see that we can think of Θτ as a union of cosets

Qτ{G. Clearly, we have

|Qτ | � |G|2|Θτ | ! |G|4τ�3 (2.3.10)

provided the conditions (2.3.7) and (2.3.8) are satisfied.

The condition (2.3.8) is trivial to verify. Indeed, since |G|2 ¡ p, we have

|Θτ | ¤ |MG|2 � pp� 1q2{|G|2 ¤ |G|2

and thus (2.3.8) holds.

We now show that the condition (2.3.7) also holds for the following choice

∆ � c|G|3p�3{2, (2.3.11)

with a sufficiently large constant c (recalling that |G| ¡ p1{2 we see that the condition

∆ ¥ 3 is satisfied).

Lemma 2.3.3. For ∆ given by (2.3.11) the bound (2.3.7) holds.
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Proof. Suppose, to the contrary, that

|Θτ | ¡ p3{|G|4 . (2.3.12)

Whence, the number of incidences between points of P � G2 and the lines Lα,β as

above with pα, βq P Qτ is at least

|Qτ |τ � |G|2|Θτ |τ ¡ p3|G|�2∆ . (2.3.13)

On the other hand, by a classical result which holds over any field (see, for exam-

ple [8, Corollary 5.2] or [42, Exercise 8.2.1]) the number of incidences for any set of

points P and a set of lines Qτ is at most |Qτ |1{2|P | � |Qτ |. Hence

|Qτ |τ ¤ |Qτ |1{2|P | � |Qτ | (2.3.14)

and we obtain

|Qτ |τ 2 ! |P |2 � |G|4. (2.3.15)

Combining (2.3.13) and (2.3.15), we derive

p3|G|�2∆   |Qτ |τ ! |G|4τ�1 ¤ |G|4∆�1. (2.3.16)

Recalling that |G| ¥ p1{2, we see that for ∆ given by (2.3.11) with a sufficiently

large constant c the inequalities (2.3.16) are impossible, which also shows that our

assumption (2.3.12) is false and this concludes the proof. l

2.3.4 Concluding the Proof of Theorem 2.1.2

We now define

Rτ �
!
pα, βq P �F�p�2

: max tιG pLα,βq , ιG pLα,λβqu ¥ τ
)
.

By Lemma 2.3.3, for the choice (2.3.11) of ∆ we have the desired condition (2.3.7)

for any τ ¥ ∆. Hence, the bound (2.3.10) also implies that

|Rτ | � |G|2|Θτ | ! |G|4τ�3. (2.3.17)

We see from (2.3.5) that there is a one-to-one correspondence between the lines

`a,b, pa, bq P
�
F�p
�2

and the lines Lα,β, pα, βq P �F�p�2
. We now define

τj � ej∆, j � 0, 1, . . . , J,

where

J � rlogp|G|{∆qs .
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Note that due to the choice of ∆ and the condition |G| ¥ p1{2 we have

τj ¥ τ0 � ∆ " |G|3p�3{2 ¥ |G|2{p, j � 0, 1, . . . , J.

Then, recalling also the bound (2.3.17), we conclude that the contribution to W �

from the lines with τj�1 ¥ ιG p`a,bq ¡ τj is bounded by��Rτj

�� τj�1

�
τj�1 � |G|2{p�2 ! ��Rτj

�� τ 3
j�1 ! |G|4. (2.3.18)

Summing up (2.3.18) we obtain

W � ! J |G|4 ! |G|4 log |G|.

Substituting this bound in (2.3.4) and combining it with (2.3.3), we obtain

TλpGq � |G|6
p

�O
�|G|5p�1{2 � |G|4 log |G|�

in the range p2{3 ¥ |G| ¥ p1{2, which concludes the proof.

Remark 2.3.4. In principle, a stronger version of the classical incidence bound

which is used (2.3.14) may lead to improvements of Theorem 2.1.2. However, the

range where such improvements are known is far away from the range which appears

in our applications, see [41].

2.3.5 Consequences

Given two sets U ,V � Fp, we define E�pU ,Vq to be the multiplicative energy of U
and V , that is, the number of solutions to

u1v1 � u2v2, u1, u2 P U , v1, v2 P V .

For U � V we also write

E�pUq � E�pU ,Uq.
It is easy to see that for any subgroup of G,H � F�p and λ, µ P F�p we have

Tλ,µpG,Hq �
¸

pg,hqPG�H

E�pG � λg,H � µhq �Op|G|3|H|q.

� |G||H|E�pG � λ,H � µq �Op|G|3|H|q,
(2.3.19)

where the error term Op|G|3|H|q (which is obviously negative) accounts for zero

values of the linear forms in the definition of Tλ,µpG,Hq. It follows that bounds on

the number of collinear triples over multiplicative subgroups leads us to new bounds

of multiplicative energy over shifted subgroups.
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2.4 Open Problems

A natural extension of considering the number of collinear triples is to instead con-

sider the number of collinear quadruples. One can consider this as the fourth moment

QpA,Bq �
¸
`

ιA�Bp`a,bq4.

Similarly, one can reformulate this, similarly to what we have done to collinear

triples, to be the number of solutions to

a2 � a1

a3 � a1

� b2 � b1

b3 � b1

and
a4 � a1

a2 � a1

� b4 � b1

b2 � b1

where ai P A and bi P B. One can look at [27, 29] for recent bounds on collinear

quadruples QpA,Aq � QpAq. Here we ask the same question as we have for T pA,Bq
of whether we can give new bounds for QpA,Bq where A and B are sets of different

sizes. Furthermore, we can also consider the generalisationQλ,µpA,Bq in a equivalent

way to Tλ,µpA,Bq.
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3
A Low Energy Decomposition of Subsets

of Finite Fields

3.1 Introduction

3.1.1 Set Up

Let Fq denote the finite field of q elements of characteristic p.

Given two sets U ,V � Fq we define their sum and product sets as

U � V � tu� v : u P U , v P Vu and U � V � tuv : u P U , v P Vu.

We define the additive and multiplicative energy of a set as follows

E�pUq � #tpu1, u2, u3, u4q P U4 : u1 � u2 � u3 � u4u
E�pUq � #tpu1, u2, u3, u4q P U4 : u1u2 � u3u4u.

We mention the interesting sum-product problem which suggests that at least one

of the sets U � U and U � U must be large. This problem has been studied exten-

sively in recent years, coming initially from work of Bourgain, Katz and Tao [8].

There is a natural relation to the sum-product problem to bounds on additive and
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CHAPTER 3. A LOW ENERGY DECOMPOSITION

multiplicative energy. For example, by applying the Cauchy-Schwarz inequality one

can see that

E�pUq ¥ |U |4
|U � U | ,

and similarly

E�pUq ¥ |U |4
|U � U | .

It follows that strong upper bounds on energy results correspond to strong lower

bounds on the relevant sum-product estimate and vice-versa.

Balog and Wooley [2] proved that in finite fields the set U can be decomposed

into a disjoint union of subsets V and W such that E�pVq and E�pWq are both

small. These results have been improved on by Konyagin and Shkredov [20] and

Rudnev, Shkredov and Stevens [33].

Our main results are an extension of [31], which themselves are a generalisation

of the Balog-Wooley decomposition [2, Theorem 1.3].

3.1.2 Notation

For a P Fq and a rational function f P FqpXq we use r�U ,Vpf, aq to denote the number

of solutions to fpuq � fpvq � a, pu, vq P U � V . Similarly, we use r�U ,Vpf, aq to

denote the number of solutions to fpuqfpvq � a. If U � V we write r�U pf, aq and if

fpXq � X we write r�U ,Vpaq.
For this chapter we use the convention that capital letters in italics, such as

U , will be used to represent sets. Corresponding capital letters in Roman will

denote their cardinalities, such as U � |U |. We also use X and Ψ to denote the

sets of multiplicative and additive characters respectively, with X � indicating all

non-principal characters, and we will use the lower case χ and ψ to represent their

respective characters.

3.1.3 Main Results

Here we extend the result of [31, Theorem 1.1] to multiplicative energy and a hybrid

of additive and multiplicative energies.
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Theorem 3.1.1. For any set A � F�q and any rational function f P FqpXq of degree

k which is not of the form fpXq � rgpXqdXλ where d|q � 1 and d ¥ 2, there exist

disjoint sets S, T � A such that A � S Y T and

maxtE�pSq, E�pfpT qqu !k
A3

MpAq
where

MpAq � min

"
q1{2

A1{2plogAq11{4
,

A4{5

q2{5plogAq31{10

*
.

Theorem 3.1.2. For any set A � F�q and any rational function f P FqpXq of degree

k which is not of the form fpXq � gpXqp� gpXq � λX � µ, there exist disjoint sets

S, T � A such that A � S Y T and

maxtE�pSq, E�pfpT qqu !k
A3

MpAq .

Theorem 3.1.3. For any set A � F�q and any rational function f P FqpXq of degree

k which is not of the form fpXq � rgpXqdXλ where d|q � 1 and d ¥ 2, there exist

disjoint sets S, T � A such that A � S Y T and

maxtE�pSq, E�pfpT qqu !k
A3

MpAq .

It is simple to check that the above results are all non-trivial for A ¡ q1{2�ε, for

any fixed ε ¡ 0.

We also present the previous result of [31, Theorem 1.1]. It has the same condi-

tions as Theorem 3.1.2 and gives the bound

maxtE�pSq, E�pfpT qqu !k
A3

MpAq .

We mention that it was our hope that these results would lead to further applications

in bounds of character sums, as in [31]. However, at this stage we were unable to

provide such applications due to the restrictions placed on the exceptional functions.

Despite this, we still hope that such applications will be possible.

3.2 Energy Bounds

3.2.1 Preliminary Results

We give a series of lemmas, the proofs of which follow those of [31] with multiplicative

characters replacing additive characters and other equivalent substitutions.
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Lemma 3.2.1. Let pχ, ψq P X � � Ψ and χ with order d and sets U ,V � F�q . For

any rational function f P FqpXq of degree k, such that for any integers r and λ f is

not of the form fpXq � rgpXqdXλ if ψ is trivial, we have¸
uPU

¸
vPV

χpfpuvqqψpuvq !k

a
UV q.

Proof. Let

Σ �
¸
uPU

¸
vPV

χpfpuvqqψpuvq.

Then,

Σ �
¸
xPFq

ψpxqχpfpxqq1
d

¸
τPX�

ord τ |d

¸
uPU

¸
vPV

τpuvx�1q

� 1

d

¸
τPX�

ord τ |d

¸
xPFq

ψpxqχpfpxqqτpx�1q
¸
uPU

τpuq
¸
vPV

τpvq.

By the Weil bound we have

Σ !k
q1{2

d

¸
τPX�

ord τ |d

�����¸
uPU

τpuq
�����
�����¸
vPV

τpvq
����� .

Using the Cauchy-Schwarz inequality we obtain¸
τPX�

ord τ |d

�����¸
uPU

τpuq
�����
�����¸
vPV

τpvq
�����

¤

��� ¸
τPX�

ord τ |d

�����¸
uPU

τpuq
�����
2

��
1{2��� ¸

τPX�

ord τ |d

�����¸
vPV

τpvq
�����
2

��
1{2

¤ pd2UV q1{2.

l

Lemma 3.2.2. Suppose U ,V ,Y ,Z � F�q . For any rational function f P FqpXq of

degree k which is not of the form fpXq � rgpXqdXλ where d|q � 1 and d ¥ 2, the

number of solutions J to the equation

fpuvq � yz pu, v, y, zq P U � V � Y � Z

satisfies the bound

J ¤ UV Y Z

q � 1
�OkppUV Y Zqq1{2q.
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Proof. Using the approximate orthogonality of multiplicative characters, we have

J ¤
¸

pu,v,y,zqPU�V�Y�Z

1

q � 1

¸
χPX�

χpfpuvqpyzq�1q.

Re-arranging and separating the contribution from the trivial character

J � UV Y Z

q � 1
¤ 1

q � 1

¸
χPX�

������
¸

pu,vqPU�V

χpfpuvqq
������
�����¸
yPY

χpy�1q
�����
�����¸
zPZ

χpz�1q
����� .

Now by Lemma 3.2.1 with the trivial additive character, we have

J � UV Y Z

q � 1
!k

?
UV q

q � 1

¸
χPX�

�����¸
yPY

χpy�1q
�����
�����¸
zPZ

χpz�1q
�����

!k

?
UV

q1{2
� pq2Y Zq1{2.

This completes the proof. l

Lemma 3.2.3. Let A,S,U � F�q . Let u ¡ 0 be such that r�S,A�1pxq ¥ u for all

x P U . Let k be a fixed positive integer and suppose also that

τ ¥ 2
kASU

uq
.

Then, for any rational function f P FqpXq of degree k which is not of the form

fpXq � rgpXqdXλ where d|p� 1 and d ¥ 2, we have

#tx P Fq : r�U pf, xq ¥ τu !k
AUSq

u2τ 2
.

Proof. Our proof follows [31, Lemma 2.3] where here we replace rUpf, xq with

r�U pf, xq. Define

R � tx P Fq : r�U pf, xq ¥ τu.

Clearly,

τR ¤
¸
xPR

r�U pf, xq � tpx, y, zq P R� U � U : x � fpyqfpzqu.

Now r�S,A�1pzq ¥ u for z P U , hence

#tpx, y, zq P R� U � U : x � fpyqfpzqu
¤ u�1#tpv, w, x, yq P S �A�R� U : x � fpyqfpvw�1qu.
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Therefore, we have

τuR ¤ #tpv, w, x, yq P S �A�R� U : x � fpyqfpvw�1qu
¤ k �#tpv, w, x, zq P S �A�R� fpUq : x � zfpvw�1qu.

We then apply Lemma 3.2.2 to obtain

τuR ¤ kARSU

q
�OkppARSUqq1{2q.

The assumed lower bound on τ implies

τuR !k pARSUqq1{2.

This concludes the proof. l

Lemma 3.2.4. Let A1, . . . ,An � F�q . Then

E�

�
n¤
i�1

Ai

�
¤
�

ņ

i�1

E�pAiq1{4
�4

.

Proof. We assume the sets A1, . . . ,An are disjoint. Then using the Cauchy-Schwarz

inequality twice we have,

E�

�
n¤
i�1

Ai

�
�

ņ

i,j,k,`�1

¸
xPFq

r�Ai,Ajpxqr�Ak,A`pxq

¤
ņ

i,j,k,`�1

�¸
xPFq

r�Ai,Ajpxq2
�1{2�¸

xPFq

r�Ak,A`pxq2
�1{2

�
�� ņ

i,j�1

�¸
xPFq

r�Ai,Ajpxq2
�1{2

�2

�
�� ņ

i,j�1

�¸
xPFq

r�Ai,A�1
i

pxqr�Aj ,A�1
j

pxq
�1{2

�2

¤
�� ņ

i,j�1

�¸
xPFq

r�Ai,A�1
i

pxq2
�1{4�¸

xPFq

r�Aj ,A�1
j

pxq2
�1{4

�2

�
�� ņ

i�1

�¸
xPFq

r�Ai,A�1
i

pxq2
�1{4

�4

�
�

ņ

i�1

E�pAiq1{4
�4

.

This concludes the proof. l
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Lemma 3.2.5. Let A � Fq. Then for any rational function f P FqpXq of degree k

which is not of the form fpXq � rgpXqdXλ where d|p � 1 and d ¥ 2, there exists

U � A of cardinality U such that

U " E�pAq1{2
A1{2plogAq7{4

and

E�pfpUqq !k
AU6q�1plogAq11{2 � AU3qplogAq6

E�pAq .

Proof. Clearly,

E�pAq �
¸

xPA�A
r�Apxq2.

We dyadically decompose this sum and define the set

S� � tx P A �A : ρ ¤ r�Apxq   2ρu

with some integer 1 ¤ ρ ¤ A where ρ is a power of 2, and such that

ρ2S " E�pAq
logA

, (3.2.1)

where |S�| � S. Consider

P � tpa, bq P A�A : ab P S�u.

Now we have

ρS ¤ P   2ρS. (3.2.2)

We then make another dyadic decomposition of S to find a large subset supported

on vertical lines. That is, we define

Ax � ty : px, yq P Pu.

Therefore, for some s there exists a dyadic set

V � tx P A : s ¤ Ax   2su

such that

V s " P

logA
" ρS

logA
. (3.2.3)
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We now separate into two cases. First, suppose

V ¥ s

plogAq1{2 .

Then for any x P V , there exist

y1, y2, . . . , ys P Ax � A

such that px, yiq P P for all 1 ¤ i ¤ s. Therefore

xy1, xy2, . . . , xys P S�.

It follows that r�S�,A�1pxq ¥ s for every x P V and in this case we define

U � V and u � s. (3.2.4)

Now suppose

V   s

plogAq1{2 .

We now consider the point set

Q � tpx, yq P P : x P Vu.

As before, for any x P V there exist at least s values of y P Ax � A with px, yq P P .

Hence Q ¥ V s.

For any y P Fq we define

By � tx : px, yq P Qu.

Clearly, ¸
yPA

By � Q.

Therefore, for some t there exists a dyadic set

W � ty P A : t ¤ By   2tu

such that

Wt " Q

logA
¥ V s

logA
. (3.2.5)
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Now since Q � V � A we also have t ¤ V . From (3.2.5) and our assumption on s

we have

WV ¥ Wt " V s

logA
¡ V 2

plogAq1{2 ,

hence

W " V

plogAq1{2 ¥
t

plogAq1{2 . (3.2.6)

Now, by (3.2.5) and (3.2.3)

Wt " V s

logA
" ρS

plogAq2 . (3.2.7)

Now, let y P W . Then there exist x1, . . . , xt P A such that pxi, yq P P for all

1 ¤ i ¤ t. Therefore,

x1y, . . . , xty P S.

Then r�S,A�1pyq ¥ t for every y PW .

We then take

U �W and u � t. (3.2.8)

It is clear for both (3.2.4) and (3.2.8) we have U � A,

U " u

plogAq1{2 (3.2.9)

and

uU " ρS

plogAq2 (3.2.10)

where r�S,A�1pxq ¥ u for all x P U . Multiplying (3.2.9) and (3.2.10) and using (3.2.1)

we obtain

U2 " ρS

plogAq5{2 "
E�pAq

AplogAq7{2 . (3.2.11)

We now need a bound on E�pfpUqq. We have

E�pfpUqq �
¸
xPFq

r�fpUqpxq2 ¤
¸
xPFq

r�U pf, xq2. (3.2.12)

We define the set

R0 �
"
x P Fq : r�U pf, xq ¤ 2

kASU

uq

*
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and for J � rlogA{ log 2s, we define the sets

Rj �
"
x P Fq : 2j

kASU

uq
  r�U pf, xq ¤ 2j�1AkSU

uq

*
, j � 1, . . . , J.

Since, ¸
xPFq

r�U pf, xq � U2

we have ¸
xPR0

r�U pf, xq2 ¤ 2
kASU

uq

¸
xPFq

r�U pf, xq !
kASU3

uq
. (3.2.13)

For i � 1, . . . , J , we apply Lemma 3.2.3 with

τ � 2j
AkSU

uq

to obtain ¸
xPRj

r�U pf, xq2 ¤ p2τq2Rj !k
ASUq

u2
. (3.2.14)

Combining (3.2.13) and (3.2.14) we get

E�pfpUqq !k
ASU3

uq
� ASUq

u2
logA. (3.2.15)

Now, multiplying (3.2.10) with (3.2.11) and applying (3.2.1), we obtain

uU3 " ρ2S2

plogAq9{2 "
SE�pAq
plogAq11{2

which gives

S

u
! U3plogAq11{2

E�pAq . (3.2.16)

Also, squaring (3.2.10) and applying (3.2.1)

u2U2 " ρ2S2

plogAq4 "
SE�pAq
plogAq5

which gives

S

u2
! U2plogAq5

E�pAq . (3.2.17)

Applying (3.2.16) and (3.2.17) into the first and second terms of (3.2.15) respectively

we obtain

E�pfpUqq !k
AU6q�1plogAq11{2 � AU3qplogAq6

E�pAq .

This concludes the proof. l
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Corollary 3.2.6. Let A � Fq. Then for any rational function f P FqpXq of degree

k which is not of the form fpXq � gpXqp � gpXq � λX � µ, there exists U � A of

cardinality U such that

U " E�pAq1{2
A1{2plogAq7{4

and

E�pfpUqq !k
AU6q�1plogAq11{2 � AU3qplogAq6

E�pAq .

Proof. We follow the proof of Lemma 3.2.5, however we replace E� with E� in

(3.2.12), and then use analogous results following from [31, Equation 2.12]. Explic-

itly, we have

E�pfpUqq �
¸
xPFq

r�fpUqpxq2 ¤
¸
xPFq

r�U pf, xq2. (3.2.18)

We define the set

R�
0 �

"
x P Fq : r�U pf, xq ¤ 2

kASU

uq

*
and for J � rlogA{ log 2s, we define the sets

R�
j �

"
x P Fq : 2j

kASU

uq
  r�U pf, xq ¤ 2j�1AkSU

uq

*
, j � 1, . . . , J.

Since, ¸
xPFq

r�U pf, xq � U2

we have ¸
xPR�

0

r�U pf, xq2 ¤ 2
kASU

uq

¸
xPFq

r�U pf, xq !
kASU3

uq
. (3.2.19)

For i � 1, . . . , J , we apply [31, Lemma 2.3] (which is the additive version of our

Lemma 3.2.3) with

τ � 2j
AkSU

uq

to obtain ¸
xPR�

j

r�U pf, xq2 ¤ p2τq2R�
j !k

ASUq

u2
. (3.2.20)
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Combining (3.2.19) and (3.2.20) we get

E�pfpUqq !k
ASU3

uq
� ASUq

u2
logA. (3.2.21)

Applying (3.2.16) and (3.2.17) into the first and second terms of (3.2.21) respec-

tively we obtain

E�pfpUqq !k
AU6q�1plogAq11{2 � AU3qplogAq6

E�pAq .

This concludes the proof as the first result is given in Lemma 3.2.5. l

Corollary 3.2.7. Let A � Fq. Then for any rational function f P FqpXq of degree

k which is not of the form fpXq � rgpxqdxλ where d|p � 1 and d ¥ 2, there exists

U � A of cardinality U such that

U " E�pAq1{2
A1{2plogAq7{4

and

E�pfpUqq !k
AU6q�1plogAq11{2 � AU3qplogAq6

E�pAq .

Proof. We follow the proof of [31, Lemma 2.5], however we replace E� with E� in

equation there (2.12) and the proceed as in our Lemma 3.2.5. Explicitly, from [31,

Equation (2.11)]

U2 " E�pAq
AplogAq7{2 (3.2.22)

and from (3.2.15)

E�pfpUqq !k
ASU3

uq
� ASUq

u2
logA.

Again from [31], we have

S

u
! U3plogAq11{2

E�pAq (3.2.23)

and

S

u2
! U2plogAq5

E�pAq . (3.2.24)

Substituting into (3.2.15) we obtain

E�pfpUqq !k
AU6q�1plogAq11{2 � AU3qplogAq6

E�pAq .

This concludes the proof. l
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3.2.2 Proof of Theorem 3.1.1

Proof. Our strategy is to construct nested sequences of subsets

H � U1 � � � � � Um

and

Vm � � � � � V1 � A

where the disjoint union Ui \ Vi � A. We suppose E�pViq ¡ A3{MpAq for some i.

By Lemma 3.2.5 there exists Wi � Vi such that

Wi " E�pViq1{2
V

1{2
i plog Viq7{4

" A

MpAq1{2plogAq7{4

and

E�pfpWiqq !k
ViW

6
i q

�1plog Viq11{2 � ViW
3
i qplog Viq6

E�pViq
!k

MpAq
A3

�
ViW

6
i plogAq11{2

q
� ViW

3
i qplogAq6



.

(3.2.25)

It is clear that we have

Vi ! WiMpAq1{2plogAq7{4. (3.2.26)

We now define Vi�1 � VizWi. Hence, Ui�1 � Ui \Wi. Iterating, we have

Ui�1 �
i§

j�1

Wi.

We note that we have a uniform lower bound on Wi and so Vi is strictly decreasing.

Hence, we can reach the desired result

Vm ¤ A3{MpAq,

at which point we terminate the sequence.
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Now, by Lemma 3.2.4, (3.2.25) and (3.2.26)

E�pfpUmqq1{4 �
�
E�

�
m�1¤
i�1

fpWiq
��1{4

¤
ņ

i�1

E�pfpWiqq1{4

!k

m�1̧

i�1

�
MpAq
A3

�
ViW

6
i plogAq11{2

q
� ViW

3
i qplogAq6



1{4

!k

m�1̧

i�1

�
MpAq
A3

�
ViW

6
i plogAq11{2

q
�MpAq1{2W 4

i qplogAq31{4



1{4

.

Clearly, A ¥ Vi ¥ Wi, hence ViW
6
i ¤ A3W 4

i so

E�pfpUmqq1{4 !k

�
MpAqplogAq11{2

q
� MpAq3{2qplogAq31{4

A3


1{4 m�1̧

i�1

Wi.

Since the Wi are disjoint we have

m�1̧

i�1

Wi ¤ A.

Hence,

E�pfpUmqq !k
A4MpAqplogAq11{2

q
� AMpAq3{2qplogpAqq31{4. (3.2.27)

We now choose MpAq as in the statement of Theorem 3.1.1 to balance (3.2.27) and

E�pVmq ¤ A3

MpAq .

This completes the proof. l

3.2.3 Proofs of Theorems 3.1.2 and 3.1.3

Proof. The proofs follow that of Theorem 3.1.1 but Corollary 3.2.6 and Corollary

3.2.7 are used in place of Lemma 3.2.5 respectively. l

3.3 Open Problems

As mentioned in the beginning of this chapter, the hope in finding our bounds was

to be able to give applications to certain types of character sums. For example,

the authors in [31] are able to give some bounds on certain types of additive and

multiplicative character sums, mixed character sums and incomplete bilinear sums
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of Kloosterman sums. Unfortunately we have been unable to provide similar appli-

cations for natural choices of character sums, so here we leave the challenge for the

reader to find some applications to some interesting sums.

We also leave the question of whether we can consider a slightly more general

problem of

maxtE�pSq, E�pfpT q, gpT qq

where � � t�,�u, and f and g are suitably chosen functions. This was raised in

[31] and we extend it by taking any choice of additive or multiplicative energy. [31]

also leaves a question on bivariate polynomials which we encourage the reader to

consider.
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4
Multilinear Exponential Sums

4.1 Trilinear and Quadrilinear Exponential Sums

4.1.1 Set Up

We define the weighted trilinear exponential sums over sets X ,Y ,Z � Fp

T pX ,Y ,Z; ρ, σ, τq �
¸
xPX

¸
yPY

¸
zPZ

ρx,yσx,zτy,z eppaxyzq,

where a P F�p and ρx,y, σx,z, τy,z are 2-dimensional weights that are bounded by 1.

Similarly, we define the weighted quadrilinear exponential sums over sets

W ,X ,Y ,Z � Fp

T pW ,X ,Y ,Z;ϑ, ρ, σ, τq
�
¸
wPW

¸
xPX

¸
yPY

¸
zPZ

ϑw,x,yρw,x,zσw,y,zτx,y,z eppawxyzq,

where a P F�p and ϑw,x,y, ρw,x,z, σw,y,z, τx,y,z are 3-dimensional weights that are

bounded by 1.
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4.1.2 New Results

Using Lemma 2.2.6, which comes as a consequence of Theorem 2.1.1, we provide the

following new bounds on trilinear and quadrilinear exponential sums.

Theorem 4.1.1. Let X ,Y ,Z � Fp with |X | � X, |Y | � Y, |Z| � Z, and X ¥ Y ¥
Z. Then,

T pX ,Y ,Z; ρ, σ, τq ! p3{16X13{16Y 7{8Z7{8.

We compare the above the result with previous bounds in the following section.

As an example, in the special case where X � Y � Z the bound from Theorem

4.1.1 is stronger than previous results for p1{2   X   p5{9.

Theorem 4.1.2. Let W ,X ,Y ,Z � F�p with |W | � W, |X | � X, |Y | � Y , |Z| � Z

and W ¥ X ¥ Y ¥ Z. Then,

T pW ,X ,Y ,Z;ϑ, ρ, σ, τq ! p3{32W 29{32X15{16Y 15{16Z31{32 � p1{32W 29{32XY 15{16Z

�WX15{16Y Z31{32 � p�1{16WXY Z �WXY 7{8Z.

Again, we give an example of when our bound is non-trivial by considering the

special case W � X � Y � Z and note that the bound from Theorem 4.1.2 is

stronger than existing bounds for p1{2   W   p3{4.

In the proof we also compare it to the classical bilinear bound in the case of

one-dimensional weights. In this context it also is non-trivial for p1{2   W   p13{24.

4.1.3 Previous Results

Trilinear sums have been estimated by Bourgain and Garaev [5]. Variations and

improvements have been made since, see [3, 4, 6, 16, 28]. More recently Petridis

and Shparlinski [30] have given new bounds on weighted trilinear and quadrilinear

exponential sums. We compare our bound on trilinear sums to [30, Theorem 1.3]

T pX ,Y ,Z; ρ, σ, τq ! p1{8X7{8Y 29{32Z29{32 �XY Z3{4.

We see that our new bound, Theorem 4.1.1, improves that of Petridis and Shparlinski

[30] for XY 1{2Z1{2 ¥ p. Our bound from Theorem 4.1.1 is stronger than that of the

triangle inequality

T pX ,Y ,Z; ρ, σ, τq ! XY Z
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for XY 2{3Z2{3 ¡ p. Similarly, it is also stronger than the classical bound on bilinear

sums (with one-dimensional weights), from Lemma 4.1.3,

T pX ,Y ,Z; ρ, σ, τq ! p1{2X1{2Y 1{2Z

for XY 6{5Z�2{5 ¤ p. Letting X � Y � Z we see that under these conditions

Theorem 4.1.1 is stronger than previous bounds for p1{2   X   p5{9. We give

another example for when our bound is non-trivial. Setting X � p2{3, Y � Z � p2{5

we obtain from Theorem 4.1.1

T pX ,Y ,Z; ρ, σ, τq ! p343{240 � XY Zp�3{80.

One can easily compare this with results from previous bounds and see that our new

bound is stronger. We also mention that our bound is strongest for X much larger

than Y . We finally mention the bound on unweighted trilinear sums due to Garaev

[16]. We note that when our bound is stronger than that of Shparlinski and Petridis

[30], it also outperforms that of Garaev [16].

Similarly, we also compare our results on quadrilinear exponential sums to [30,

Theorem 1.4]

T pW ,X ,Y ,Z;ϑ, ρ, σ, τq ! p1{16W 15{16pXY q61{64Z31{32 �WXY 7{8Z, (4.1.1)

as well as that coming from the classical bound on bilinear sums (for one-dimensional

weights),

T pW ,X ,Y ,Z;ϑ, ρ, σ, τq ! p1{2W 1{2X1{2Y Z. (4.1.2)

For W � X � Y � Z Theorem, 4.1.2 is stronger than the classical bound and

(4.1.1) for all p1{2   W   p13{24, in this range it is also stronger than the bound

of Petridis and Shparlinski [30]. We give another example for when our bound is

non-trivial. Setting W � p2{3, X � Y � Z � p3{8 we obtain from Theorem 4.1.2

T pW ,X ,Y ,Z;ϑ, ρ, σ, τq ! p1355{768 � WXY Zp�7{256.

We also mention that our bound is strongest for W much larger than X.

4.1.4 Preliminaries

We recall the classical bound for bilinear exponential sums, see [5, Equation 1.4] or

[16, Lemma 4.1].
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Lemma 4.1.3. For any sets X ,Y � Fp and any α � pαxqxPX , β � pβyqyPY with

¸
xPX

|αx|2 � A and
¸
yPY

|βy|2 � B,

we have �����¸
xPX

¸
yPY

αxβy eppxyq
����� ¤apAB.

We define NpX ,Y ,Zq to be the number of solutions to

x1py1 � z1q � x2py2 � z2q

with x1, x2 P X , y1, y2 P Y and z1, z2 P Z. We now recall [30, Corollary 2.4].

Lemma 4.1.4. Let X ,Y ,Z � F�p with |X | � X, |Y | � Y, |Z| � Z. Then

NpX ,Y ,Zq ! X2Y 2Z2

p
�X3{2Y 3{2Z3{2 �MXY Z

where M � maxpX, Y, Zq.
We also recall [30, Lemma 2.10].

Lemma 4.1.5. Let n ¥ 2. For any additive character φ of Fq, sets Xi � Fq with

|Xi| � Xi and weights wi � pwipxqqxPFnq such that wipxq does not depend on the ith

coordinate of x � px1, . . . , xnq,

max
xPFnq

|wipxq| ¤ 1

for i � 1, . . . , n, and

TφpX1, . . . ,Xn;w1, . . . , wnq �
¸
x1PX1

. . .
¸

xnPXn

ω1pxq . . . ωnpxqφpx1 . . . xnq,

we have

|TφpX1, . . . ,Xn;w1, . . . , wnq|2n�1

¤ X2n�1�1
1 pX2 . . . Xnq2n�1�2

¸
x2,y2PX2

. . .
¸

xn,ynPXn����� ¸
x1PX1

φpx1px2 � y2q . . . pxn � ynqq
����� .
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4.1.5 Proof of Theorem 4.1.1

Our proof follows [30, Theorem 1.3] but we use Lemma 2.2.6 to give a new bound

on trilinear exponential sums.

By Lemma 4.1.5 we have

T pX ,Y ,Z; ρ, σ, τq4

¤ X2Y 3Z2
¸

x1,x2PX

¸
z1,z2PZ

�����¸
yPY

eppypx1 � x2qpz1 � z2qq
����� .

Now the number of quadruples which satisfy px1 � x2qpz1 � z2q � 0 is at most

OpX2Zq, in which case the inner sum is equal to Y . Hence,

T pX ,Y ,Z; ρ, σ, τq4

! X2Y 3Z2
¸

x1,x2PX
x1�x2

¸
z1,z2PZ
z1�z2

�����¸
yPY

eppypx1 � x2qpz1 � z2qq
������X4Y 4Z3.

We now collect the quadruples px1, x2, z1, z2q P X 2�Z2 with the value of the product

px1 � x2qpz1 � z2q � λ P F�p . And we let Jpλq be the number of such quadruples for

each λ. Hence,

T pX ,Y ,Z; ρ, σ, τq4

! X2Y 3Z2
¸
λPF�p

�����¸
yPY

Jpλq eppyλq
������X4Y 4Z3.

Applying the Cauchy-Schwartz inequality we obtain

T pX ,Y ,Z; ρ, σ, τq8 ! X4Y 6Z4K
¸
λPFp

�����¸
yPY

eppyλq
�����
2

�X8Y 8Z6

where

K �
¸
λPF�p

Jpλq2.

It is clear that ¸
λPFp

�����¸
yPY

eppyλq
�����
2

� pY.

Therefore,

T pX ,Y ,Z; ρ, σ, τq8 ! pX4Y 7Z4K �X8Y 8Z6.
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Now K is simply D�pX ,Zq, hence by Lemma 2.2.6

T pX ,Y ,Z; ρ, σ, τq8 ! p3{2X13{2Y 7Z7 �X8Y 7Z8 �X8Y 8Z6. (4.1.3)

We now compare our result with the classical bound on bilinear sums, Lemma 4.1.3,

combined with the triangle inequality to obtain

|T pX ,Y ,Z; ρ, σ, τq|2 ¤ XY
¸

z1,z2PZ

¸
xPX

¸
yPY

σx,z1σx,z2τy,z1τy,z2 eppaxypz1 � z2qq

¤ p1{4X3{4Y 3{4Z,

(4.1.4)

where we have taken the bilinear bounds over x and y. For our bound to be stronger

than the inequality in (4.1.4) we need

p3{16X13{16Y 7{8Z7{8 ¤ p1{2X3{2Y 3{2Z2,

or equivalently

X1{16Y 1{8Z�1{8 ¤ p1{16.

Now for XY 2Z�2 ¤ p we have

XY Z3{4 ¤ p3{16X13{16Y 5{8Z9{8 ¤ p3{16X13{16Y 7{8Z7{8.

Hence our first term dominates our final term over the non-trivial region. Further-

more, when our bound is trivial, i.e. for XY 2Z�2 ¥ p,

T pX ,Y ,Z; ρ, σ, τq ! p1{4X3{4Y 3{4Z ! p3{16X13{16Y 7{8Z7{8 �XY 7{8Z.

This concludes the proof.

4.1.6 Proof of Theorem 4.1.2

We use Lemma 2.2.6 in the proof of [30, Theorem 1.4] to give a new bound on

weighted quadrilinear exponential sums. As in the proof of [30, Theorem 1.4], after

permuting the variables, we have

T pW ,X ,Y ,Z;ϑ, ρ, σ, τq8

! pWXY q6Z7
¸
µPF�p

¸
λPFp

JpµqηµIpλq eppλµq � pWXZq8Y 7, (4.1.5)

where Ipλq is the number of triples px1, x2, zq P X 2 � Z with zpw1 � w2q � λ, Jpµq
is the number of quadruples pw1, w2, y1, y2q PW2 � Y2 with pw1 � w2qpy1 � y2q � µ

and ηµ is a complex number with |ηµ| � 1. It is clear that¸
µPF�p

Jpµq2 � D�pW ,Yq ! p1{2W 5{2Y 3 � W 4Y 4

p
.
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We now use Lemma 4.1.4 to obtain¸
λPFp

Ipλq2 ! Z2X4

p
� Z3{2X3 � ZX3 ! X4Z2

p
�X3Z3{2.

We now apply the classical bound for bilinear sums, Lemma 4.1.3, to (4.1.5) and

obtain

T pW ,X ,Y ,Z;ϑ, ρ, σ, τq8

! pWXY q6Z7

�
p1{4W 5{4Y 3{2 � W 2Y 2

p1{2


�
p1{2X3{2Z3{4 �X2Z



� pWXZq8Y 7.

This concludes the proof.

We also compare the above bound with the classical bound on bilinear sums on

1 dimensional weights combined with the triangle inequality

T pW ,X ,Y ,Z;α, β, γ, δq8 ! p4W 4X4Y 8Z8

coming from Lemma 4.1.3, where α � αpwq is bounded by 1, and similarly for β, γ

and δ. For our bound to be non-trivial in this setting we need

p3{4W 29{4X15{2Y 15{2Z31{4 ¤ p4W 4X4Y 8Z8.

That is,

W 13{4X7{2Y �1{2Z�1{4 ¤ p13{4,

therefore, since Z ¤ Y ¤ X,

WX11{13 ¤ p.

Now for WX11{13 ¤ p,

X2Z ¤ p13{48X3{2Z ¤ p13{32X3{2Z3{4   p1{2X3{2Z3{4.

Similarly,

W 2Y 2

p1{2
¤ p3{4W 5{4Y 2

X33{52p1{2
¤ p1{4W 5{4Y 71{52 ¤ p1{4W 5{4Y 3{2.

Finally,

pWXZq8Y 7 ¤ p3{4W 29{4X383{52Y 7Z8 ¤ p3{4W 29{4X15{2Y 7Z8

¤ p3{4W 29{4X15{2Y 15{2Z31{4.

47



CHAPTER 4. MULTILINEAR EXPONENTIAL SUMS

Hence, for WX11{13 ¤ p, after taking 8th roots

T pW ,X ,Y ,Z;ϑ, ρ, σ, τq ! p3{32W 29{32X15{16Y 15{16Z31{32.

However, for WX11{13 ¡ p, then our bound is trivial and

T pW ,X ,Y ,Z;ϑ, ρ, σ, τq ! p1{2W 1{2X1{2Y Z

! p3{32W 29{32X15{16Y 15{16Z31{32.

4.2 Higher Dimensional Multilinear Exponential

Sums

4.2.1 Set Up

Given subsets X1, . . . ,Xn � F�p and sequences of complex numbers ω1pxq, . . . , ωnpxq,
we define the weighted multilinear exponential sum over n variables by

SpX1, . . . ,Xn;ω1, . . . , ωnq �
¸
x1PX1

. . .
¸

xnPXn

ω1pxq . . . ωnpxq eppx1 . . . xnq, (4.2.1)

where the ωi are n� 1 dimensional weights that depend on all but the ith variable.

Assuming each |ωipxq| ¤ 1, we are interested in obtaining upper bounds of the form

|SpX1, . . . ,Xn;ω1, . . . , ωnq| ¤ X1 . . . Xnp
�δ,

where |Xi| � Xi. For values of n ¥ 3 progress has been made through additive com-

binatorics with the first results due to Bourgain, Glibichuck and Konyagin [7] under

some restrictions on the sets, weights and number of variables occuring in (4.2.1)

although their result was general enough to obtain new estimates for sums over small

subgroups. Bourgain [3] extended the results of [7] and obtained an optimal result

with respect to the size of X1 . . . Xn. In particular, Bourgain showed that for all

ε ¡ 0 there exists a δ ¡ 0 such that¸
x1PX1

. . .
¸

xnPXn

eppx1 . . . xnq ! X1 . . . Xnp
�δ,

provided

Xi ¡ pε, X1 . . . Xn ¥ p1�ε,

and we note that Bourgain gives the dependence of δ on ε. Recently, Shkredov [37]

has made significant quantitative improvements to the results of Bourgain by ex-

ploiting a direct connection with geometric incidence estimates of Rudnev [32]. Of
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particular relevance are the results of Petridis and Shparlinski [30] and Macourt [22],

which have been presented in the previous section, for recent estimates of three and

four dimensional multilinear sums and Shkredov [34] for the sharpest current results

for exponential sums over subgroups of medium size. We mention that a direct

application of the methods from [30, 22] is unable to give bounds for multilinear

sums beyond four dimensional sums. However, in this section we are able to break

through this barrier and apply related techniques to give new non-trivial results for

multilinear sums beyond four variables.

Given a set A � Fp and an integer k we let D�
k pAq count the number of solutions

to the equation

pa1 � a2qpa3 � a4q . . . pa2k�1 � a2kq � pb1 � b2qpb3 � b4q . . . pb2k�1 � b2kq,

for ai, bi P A. The quantity DkpAq plays an important role in our arguments and

we obtain some new estimates for DkpAq, one of which improves the error term in

a result of Shkredov [37, Theorem 32] for sets of cardinality |A| ¥ p1{2. We then

apply our estimates to obtain some new bounds for sums of the form (4.2.1) which

are motivated by applications to exponential sums with sparse polynomials in the

next chapter.

For the entirety of this section we let |Xi| � Xi, and similarly for other sets |Y | � Y.

4.2.2 Main Results

In what follows we keep notation as in (4.2.1).

Theorem 4.2.1. Let n ¥ 4, Xi � F�p subsets satisfying

|Xi| � Xi, X1 ¥ X2 ¥ � � � ¥ Xn,

and

X1X
1{2
n ¤ p.

Then we have

SpX1, . . . ,Xn;ω1, . . . , ωnq

!n X1 . . . Xn

�
1

X
1{2
1

� � � � � 1

X
1{2n
n

� p
1
2nX

� 1
2n

1 X
� 1

2n�1
n

n�1¹
i�2

BnpXiq
�
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where

BnpX q �

$'''&'''%
p

1
22n�3pn�2qX

� 2n�2�1

22n�3pn�2q
�op1q

, if p
1
2
� 1

2n�1�2 ¥ X ¥ p
217
433 ,

X
�

2n�2�1�2c1
22n�3pn�2q

�op1q
, if p

217
433 ¡ X ¥ p

48
97 ,

X
�

2n�2�1�2c2
22n�3pn�2q

�op1q
, if X   p

48
97 ,

and c1 � 1
434

and c2 � 1
192

.

Here the Xop1q represents a power of logX and is used multiple times in the

remainder of this chapter to simplify the presentation of logarithmic terms. We give

an example of when Theorem 4.2.1 is nontrivial. Suppose n � 6 and X1 � X2 �
� � � � X6 ¤ p

48
97 . Then we have

SpX1, . . . ,X6;ω1, . . . , ω6q ! p
1
64X

3110399
524288

�op1q

1 .

One can see that this is stronger than the trivial bound

SpX1, . . . ,X6;ω1, . . . , ω6q ! X6
1

for X1 ¡ p8{27. In the case of sets of cardinality a little larger than p1{2 we can

obtain sharper estimates.

Theorem 4.2.2. Let Xi � Fp satisfy |Xi| � Xi, X1 ¥ X2 ¥ � � � ¥ Xn

|Xi| ¥ p1{2�1{p2n�1�6q. (4.2.2)

Then we have

|SpX1, . . . ,Xn;ω1, . . . , ωnq| !n

X1 . . . Xn

�
1

X
1{2
1

� � � � � 1

X
1{2n
n

� pop1q
�

p1{2

pX1 . . . Xnq1{n

1{2n

�
.

4.2.3 Reduction Mean Values

The following result is a variant of [30, Lemma 2.10] which is more suitable for

applications to exponential sums when the variables may run through sets of differing

cardinalities.
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Lemma 4.2.3. Let n ¥ 2. Suppose SpX1, . . . ,Xn;ω1, . . . , ωnq is defined as in

(4.2.1). Then

|SpX1, . . . ,Xn;ω1, . . . , ωnq|2n�1 ! pX1 . . . Xnq2n�1

�
1

X2n�2

n

� � � � � 1

X2



�X2n�1�1

1 pX2 . . . Xnq2n�1�2
¸

x2,y2PX2
x2�y2

. . .
¸

xn,ynPXn
xn�yn

�
����� ¸
x1PX1

eppx1px2 � y2q . . . pxn � ynqq
����� .

Proof. We proceed by induction on n and first consider the case n � 2. Our sums

take the form

SpX1,X2, ω1, ω2q �
¸
x1PX1

¸
x2PX2

ω1px2qω2px1qeppx1x2q,

and hence by the Cauchy-Schwarz inequality

|SpX1,X2, ω1, ω2q|2 ¤ X1

¸
x1PX1

����� ¸
x2PX2

eppx1x2q
�����
2

.

Expanding the square, interchanging summation and isolating the diagonal contri-

bution, we get

|SpX1,X2, ω1, ω2q|2 ¤ X2
1X2 �X1

¸
x2,y2PX2
x2�y2

����� ¸
x1PX1

eppx1px2 � y2qq
����� .

Suppose the statement of Lemma 4.2.3 is true for some integer n�1 ¥ 2 and consider

the sums SpX1, . . . ,Xn;ω1, . . . , ωnq. By the Cauchy-Schwarz inequality

|SpX1, . . . ,Xn;ω1, . . . , ωnq|2 ¤ X1 . . . Xn�1¸
xiPXi

1¤i¤n�1

����� ¸
xnPXn

ω1pxq . . . ωn�1pxqeppx1 . . . xnq
�����
2

,

which after expanding the square, interchanging summation and isolating the diag-

onal contribution results in

|SpX1, . . . ,Xn;ω1, . . . , ωnq|2 ¤ pX1 . . . Xnq2
Xn

�X1 . . . Xn�1

¸
xn,ynPXn
xn�yn

Spxn, ynq,
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where

Spxn, ynq ��������
¸
xiPXi

1¤i¤n�1

ω11px1, xn, ynq . . . ω1n�1px1, xn, ynqeppx1 . . . xn�1pxn � ynqq

������� ,
and

x1 � px1, . . . , xn�1q, ωjpx1, xn, ynq � ωjpx1, xnqωjpx1, ynq.

By Hölder’s inequality

|SpX1, . . . ,Xn;ω1, . . . , ωnq|2
n�1 ! pX1 . . . Xnq2n�1

X2n�2

n

� pX1 . . . Xn�1q2n�2

X2n�1�2
n

¸
xn,ynPXn
xn�yn

Spxn, ynq2n�2

.

We next fix some pair xn � yn and apply our induction hypothesis to the sum

Spxn, ynq. This gives

Spxn, ynq2n�2 ¤ pX1 . . . Xn�1q2n�2

�
1

X2n�3

n�1

� � � � � 1

X2



�X2n�2�1

1 pX2 . . . Xn�1q2n�2�2

¸
xi,yiPXi
xi�yi

2¤i¤n�1

����� ¸
x1PX1

eppx1px2 � y2q . . . pxn�1 � yn�1qpxn � ynqq
����� ,

which combined with the above implies

|SpX1, . . . ,Xn;ω1, . . . , ωnq|2
n�1 ¤ pX1 . . . Xnq2n�1

�
1

X2n�2

n

� � � � � 1

X2



�X2n�1�1

1 pX2 . . . Xnq2n�1�2

�
¸

xi,yiPXi
xi�yi

2¤i¤n�1

����� ¸
x1PX1

eppx1px2 � y2q . . . pxn�1 � yn�1qpxn � ynqq
����� ,

and completes the proof. l

We mention that the above proof is independent of the sizes of the Xi, and as

such the lemma is left without such restrictions.
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For any set A � Fp we define

D�
k pAq
� |tpa1 � a2q . . . pa2k�1 � a2kq � pb1 � b2q . . . pb2k�1 � b2kq : ai, bi P Au|,

and extend the notation when variables run through different sets by defining

D�
k pX1, . . . ,Xkq to be the number of solutions to

pw1 � x1q . . . pwk � xkq � py1 � z1q . . . pyk � zkq,

for wi, xi, yi, zi P Xi. Finally, we use the notation D�,�
k for the above cases where we

exclude the solutions when the equation is 0 and define

rD�,�
k pX1, . . . ,Xkq � D�,�

k pX1, . . . ,Xkq �

�±k
i�1XipXi � 1q

	2

p� 1
.

We note that rD�,�
k is the error in approximation of D�,�

k by the expected main term.

Lemma 4.2.4. Let X1, . . . ,Xk � Fp. Then

D�,�
k pX1, . . . ,Xkq ¤ pD�,�

k pX1q . . . D�,�
k pXkqq1{k.

Proof. We let K � D�,�
k pX1, . . . ,Xkq and express K in terms of multiplicative char-

acters

K �
¸

w1,x1,y1,z1PX1

. . .
¸

wk,xk,yk,zkPXk
1

p� 1

¸
χPΩ

χpw1 � x1q . . . pwk � xkqχpy1 � z1q . . . pyk � zkq

where Ω is the set of all distinct characters. Clearly,

K � 1

p� 1

¸
χPΩ

����� ¸
w1,x1PX1

χpw1 � x1q
�����
2

. . .

����� ¸
wk,xkPXk

χpwk � xkq
�����
2

.

Using Holder’s inequality, we obtain

Kk ¤ 1

pp� 1qk
¸
χPΩ

����� ¸
w1,x1PX1

χpw1 � x1q
�����
2k

. . .
¸
χPΩ

����� ¸
wk,xkPXk

χpwk � xkq
�����
2k

� D�,�
k pX1q . . . D�,�

k pXkq.

l
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The proof of the following is similar to that of Lemma 4.2.4 with summation

only over non-principal characters.

Lemma 4.2.5. Let X1, . . . ,Xk � Fp. Then

rD�,�
k pX1, . . . ,Xkq ¤ p rD�,�

k pX1q . . . rD�,�
k pXkqq1{k.

Using Lemma 4.2.3, Lemma 4.2.4 and Lemma 4.2.5 we give two general results

relating estimates for SpX1, . . . ,Xn;ω1, . . . , ωnq to the quantities D�
k pAq and rD�

k pAq.
Lemma 4.2.6. Let n ¥ 2. Suppose SpX1, . . . ,Xn;ω1, . . . , ωnq is defined as in (4.2.1)

and that

X1 ¥ X2 � � � ¥ Xn.

Then

|SpX1, . . . ,Xn;ω1, . . . , ωnq|2n ! pX1 . . . Xnq2n
�

1

X2n�1

1

� � � � � 1

X2
n�1



� pX2n�1

n pX1 . . . Xn�1q2n�4pD�,�
n�1pX1q . . . D�,�

n�1pXn�1qq1{pn�1q.

Proof. Writing

S �
¸

x1,y1PX1
x1�y1

. . .
¸

xn�1,yn�1PXn�1
xn�1�yn�1

����� ¸
xnPXn

eppxnpx1 � y1q . . . pxn�1 � yn�1qq
����� ,

by Lemma 4.2.3 it is sufficient to show that

S2 ¤ pXnpD�,�
n�1pX1q . . . D�,�

n�1pXn�1qq1{pn�1q.

Let Ipλq count the number of solutions to the equation

λ � px1 � y1q . . . pxn�1 � yn�1q, xi, yi P Xi, xi � yi,

so that

S �
¸
λ

Ipλq
����� ¸
xnPXn

eppλx1q
����� ,

and hence by Lemma 4.1.3

S2 ¤
�¸

λ

Ipλq2
�
pXn,

and the result follows from Lemma 4.2.4 since¸
λ

Ipλq2 � D�
n�1pX1, . . . ,Xn�1q.

l
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Our next estimate does better in applications over Lemma 4.2.6 when our sets

X1, . . . ,Xn have large cardinalities.

Lemma 4.2.7. Let n ¥ 2. Suppose SpX1, . . . ,Xn;ω1, . . . , ωnq is defined as in

(4.2.1). Then we have

|SpX1, . . . ,Xn;ω1, . . . , ωnq|2n ! pX1 . . . Xnq2n
�

1

X2n�1

1

� � � � � 1

Xn



� p1{2pX1 . . . Xnq2n�2p rD�,�

n pX1q . . . rD�,�
n pXnqq1{2n.

Proof. Writing

S �
¸

x2,y2PX2
x2�y2

. . .
¸

xn,ynPXn
xn�yn

����� ¸
x1PX1

eppx1px2 � y2q . . . pxn � ynqq
����� ,

by Lemma 4.2.3 it is sufficient to show that

S2 ¤ pX1 . . . Xnq4
X2

1

� pX2 . . . Xnq2p1{2p rD�,�
n pX1q . . . rD�,�

n pXnqq1{2n.

Applying the Cauchy-Schwarz inequality, interchanging summation and isolating

the diagonal contribution gives

S2 ¤ X1pX2 . . . Xnq4 � pX2 . . . Xnq2
�����
p�1̧

λ�1

Ipλqeppλq
����� , (4.2.3)

where Ipλq counts the number of solutions to the equation

px1 � y1q . . . pxn � ynq � λ, xi, yi P Xi, xi � yi.

Let

∆ � X1pX1 � 1q . . . XnpXn � 1q
p� 1

,

and write

p�1̧

λ�1

Ipλqeppλq � ∆
p�1̧

λ�1

eppλq �
p�1̧

λ�1

pIpλq �∆qeppλq.

We have �����
p�1̧

λ�1

Ipλqeppλq
����� ! pX1 . . . Xnq2

p
�

p�1̧

λ�1

|Ipλq �∆|. (4.2.4)
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With notation as in Lemma 4.2.5, by the Cauchy-Schwarz inequality

p�1̧

λ�1

|Ipλq �∆| ¤ p1{2

�
p�1̧

λ�1

|Ipλq �∆|2
�1{2

� p1{2 rD�,�
n pX1, . . . ,Xnq1{2,

and hence

p�1̧

λ�1

|Ipλq �∆| ¤ p1{2p rD�,�
n pX1q . . . rD�,�

n pXnqq1{2n.

Combining the above with (4.2.3) and (4.2.4) gives

S2 ¤ pX1 . . . Xnq4
X3

1

� pX1 . . . Xnq4
p

� pX2 . . . Xnq2p1{2p rD�,�
n pX1q . . . rD�,�

n pXnqq1{2n

! pX1 . . . Xnq4
X3

1

� pX2 . . . Xnq2p1{2p rD�,�
n pX1q . . . rD�,�

n pXnqq1{2n,

and completes the proof. l

4.2.4 Estimates for D�

k pAq

In this section we give estimates for D�
k pAq which will be combined with results from

Section 4.2.3 to obtain estimates for multilinear sums. We first recall the following

result [37, Theorem 32].

Lemma 4.2.8. Suppose A � Fp is a set and |A| � A. For all k ¥ 2

D�
k pAq �

A4k

p
!k plogAq4A4k�2�2�k�2

E�pAq1{2k�1

.

We then have the following lemma [37, Theorem 41].

Lemma 4.2.9. Let A � Fp be a set, A ¤ p2846{4991. Then for any c   1
434

one has

D�
2 pAq ! A13{2�c.

Furthermore, if A ¤ p48{97, then for any c1   1
192

one has

D�
2 pAq ! A13{2�c1 .

We first notice that from the proof of [37, Theorem 32] we have

D�
k pAq �

A4k

p
!k plogAq2A2k�1

�
D�
k�1pAq �

A4pk�1q

p


1{2

. (4.2.5)

Using E�pAq ¤ A3, combined with Lemma 4.2.9 and (4.2.5) we have the following

corollary.
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Corollary 4.2.10. Suppose A � Fp is a set and |A| � A. For all k ¥ 2

D�
k pAq �

A4k

p
!k plogAq4A4k�2�2�k�1

.

Similarly if A ¤ p2846{4991, for any c   1
434

we have

D�
k pAq �

A4k

p
!k plogAq4A4k�2�2�k�1�c2�k�2

and if A ¤ p48{97, for any c1   1
192

we have

D�
k pAq �

A4k

p
!k plogAq4A4k�2�2�k�1�c12�k�2

.

It is clear that we can use the above to give other estimates on D�
k using previous

estimates on D�
2 . We recall the following result [22, Lemma 2.6], which is given from

Murphy et. al [27] result on collinear triples.

Lemma 4.2.11. Let A � Fp. Then

D�
2 pAq �

A8

p
! p1{2A11{2.

Again, we have the following corollary.

Corollary 4.2.12. Let A � Fp. Then

D�
k pAq �

A4k

p
!k p

21�kplogAq4A4k�2�2�k�1

.

We next prepare to give an estimate for D�
k pAq which improves on the above

results for sets of cardinality a little larger than p1{2. As in Shkredov [37], our main

tool is Rudnev’s point plane incidence bound [32].

Lemma 4.2.13. Let p be an odd prime, P � F3
p a set of points and Π a collection

of planes in F3
p. Suppose |P | ¤ |Π| and that k is the maximum number of collinear

points in P. Then the number of point-planes incidences satisfies

IpP ,Πq ¤ |P ||Π|
p

� |P |1{2|Π| � k|P |.

Lemma 4.2.14. For a prime number p and a subset A � Fp with |A| � A we have

D�
2 pAq �

A8

p
�O

�
A6plogAq2 � p1{2A4E�pAq1{2plogAq2�

�O
�
pA4plogAq2� .
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Proof. We have

D�
2 pAq �

¸
aiPA

pa1�a2qpa3�a4q�pa5�a6qpa7�a8q
a5�a6

1�OpA6q.

Let Ipxq denote the indicator function of the multiset

ta� a1 : a, a1 P Au,

and let pI denote the Fourier transform of I. We note that the Fourier coefficients

satisfy

pIpxq � �����¸
aPA

eppaxq
�����
2

. (4.2.6)

We have

D�
2 pAq �

¸
aiPA
a5�a6

I

�pa1 � a2qpa3 � a4q
pa5 � a6q



�OpA6q

� A8

p
�OpA6q �W, (4.2.7)

where

W � 1

p

p�1̧

y�1

pIpyq ¸
aiPA
a5�a6

epp�ypa1 � a2qpa3 � a4qpa5 � a6q�1q.

We have

W ¤ 1

p

p�1̧

y�1

p̧

z�1

pIpyqpIpzq ¸
aiPA

pa1�a2qy�pa3�a4qz
a3�a4

1

� A5

p

p�1̧

y�1

pIpyq � 1

p

p�1̧

y�1

p�1̧

z�1

pIpyqpIpzq ¸
aiPA

pa1�a2qy�pa3�a4qz

1,

where we have removed the condition a3 � a4 in the last display since by (4.2.6) the

Fourier coefficients are nonnegative. The above implies

W ¤ W0 �OpA6q, (4.2.8)

where

W0 � 1

p

p�1̧

y�1

p�1̧

z�1

pIpyqpIpzq ¸
aiPA

pa1�a2qy�pa3�a4qz

1.
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For integer i ¥ 1 we define the sets

Jpiq � t1 ¤ z ¤ p : 2i�1 � 1 ¤ pIpzq   2i � 1u, (4.2.9)

so that

W0 ! 1

p

¸
1¤i,j!logA

2i�jW pi, jq, (4.2.10)

where

W pi, jq �
¸

aiPA,yPJpiq,zPJpjq
pa1�a2qy�pa3�a4qz

1.

Fix some pair pi, jq and consider W pi, jq. If |Jpiq| ¤ |Jpjq|, then we consider the set

of points

P � tpa1y, y, a3q : y P Jpiq, a1, a3 P Au,
and the collection of planes

Π � tx1 � a2x2 � zx3 � a4z � 0 : z P Jpjq, a2, a4 P Au.
We see that W pi, jq is bounded by the number of point-plane incidences between P
and Π

W pi, jq ¤ IpP ,Πq.
Since the maximum number of collinear points in P is maxtA, |Jpiq|u an application

of Lemma 4.2.13 gives

W pi, jq ! A4|Jpiq||Jpjq|
p

� A3|Jpiq|1{2|Jpjq|

� A2|Jpiq|maxtA, |Jpiq|u.
(4.2.11)

In a similar fashion, if |Jpjq| ¤ |Jpiq| then

W pi, jq ! A4|Jpiq||Jpjq|
p

� A3|Jpjq|1{2|Jpiq|

� A2|Jpjq|maxtA, |Jpjq|u.
(4.2.12)

This implies that

W pi, jq ! A4|Jpiq||Jpjq|
p

� A3|Jpiq|1{2|Jpjq| � A3|Jpjq|1{2|Jpiq|

� A2 mint|Jpiq|2, |Jpjq|2u

! A4|Jpiq||Jpjq|
p

� A3|Jpiq|1{2|Jpjq| � A3|Jpjq|1{2|Jpiq|

� A2|Jpiq||Jpjq|,
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and hence substituting the above into (4.2.10) we get

W0 ! A4

p2

� ¸
1¤i!logA

2i|Jpiq|
�2

� A3

p

� ¸
1¤i!logA

2i|Jpiq|1{2
�� ¸

1¤i!logA

2i|Jpiq|
�

� A2

p

� ¸
1¤i!logA

2i|Jpiq|
�2

.

Recalling (4.2.6) and (4.2.9), we have¸
1¤i!logA

2i|Jpiq| ! p�
¸

2¤i!logA

2i|Jpiq|

! p� logA
p̧

y�1

|
¸
aPA

eppyaq|2 � pA logA,

and � ¸
1¤i!logA

2i|Jpiq|1{2
�2

! p� logA
¸

2¤i!logA

22i|Jpiq|

! p� plogAq2
p̧

y�1

�����¸
aPA

eppyaq
�����
4

,

so that ¸
1¤i!logA

2i|Jpiq|1{2 ! p1{2E�pAq1{2 logA.

This implies

W ! A6plogAq2 � p1{2A4E�pAq1{2plogAq2 � pA4,

and hence by (4.2.7) and (4.2.8)

D�
2 pAq �

A8

p
�O

�
A6plogAq2��O

�
p1{2A4E�pAq1{2plogAq2�

�OppA4plogAq2q,

which completes the proof. l

We next establish a recurrence type inequality similar to [37, Theorem 32].
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Lemma 4.2.15. For a prime number p and a subset A � Fp with |A| � A we have

D�
k pAq �

A4k

p
�Ok

��
A4k�2 � pA4k�4 � p1{2A2kD�

k�1pAq1{2
�

log2A
�
.

Proof. Let D1
kpAq count the number of solutions to the equation

pa1,1 � a1,2q . . . pak,1 � ak,2q � pak�1,1 � ak�1,2q . . . pa2k,1 � a2k,2q,

with variables a1,1, . . . , a2k,2 P A satisfying

a1,1 � a1,2, ak�1,1 � ak�1,2,

so that

D�
k pAq � D1

kpAq �OpA4k�2q. (4.2.13)

Let Ipyq denote the indicator function of the multiset

tpa2,1 � a2,2q . . . pak,1 � ak,2q : a2,1, . . . , ak,2 P Au,

and let pIpyq denote the Fourier transform of I. We have

D1
kpAq �

¸
aj,1,aj,2PA
a1,1�a1,2

ak�1,1�ak�1,2

Ippak�1,1 � ak�1,2q . . . pa2k,1 � a2k,2qpa1,1 � a1,2q�1q

� 1

p

p�1̧

y�1

pIpyq¸
aj,1,aj,2PA
a1,1�a1,2

ak�1,1�ak�1,2

ep
��ypak�1,1 � ak�1,2q . . . pa2k,1 � a2k,2qpa1,1 � a1,2q�1

�

� 1

p

p̧

z�1

p�1̧

y�1

pIpyqpIp�zq ¸
ai,jPA

ypa1,1�a1,2q�zpa2,1�a2,2q
aj,1�aj,2, j�1,2

1,

which implies that

D1
kpAq �

A4k

p
�W0 �OpA4k�2q, (4.2.14)

where

W0 � 1

p

p�1̧

z�1

p�1̧

y�1

pIpyqpIp�zq ¸
ai,jPA

ypa1,1�a1,2q�zpa2,1�a2,2q
aj,1�aj,2, j�1,2

1.
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For integer i ¥ 1 we define

Jpiq � ty P F�p : 2i�1 � 1 ¤ |pIpyq| ¤ 2i � 1u,

so that

W0 ! 1

p

¸
i,j!logA2k

2i�jW pi, jq, (4.2.15)

where

W pi, jq �
¸

ai,jPA,
yPJpiq,zPJpjq

ypa1,1�a1,2q�zpa2,1�a2,2q
aj,1�aj,2, j�1,2

1.

Using Lemma 4.2.13 as in the proof of Lemma 4.2.14, we see that

W pi, jq ! A4|Jpiq||Jpjq|
p

� A3|Jpiq|1{2|Jpjq| � A3|Jpjq|1{2|Jpiq| (4.2.16)

� A2|Jpiq||Jpjq|.

We have ¸
i!logA

2i|Jpiq|

! p�
p�1̧

y�1

�������
¸

ai,1,ai,2PA
1¤i¤k�1

eppypa1,1 � a1,2q . . . pak�1,1 � ak�1,2qq

�������
¤ p�

¸
ai,1,ai,2PA
2¤i¤k�1

p�1̧

y�1

�����¸
aPA

eppypa2,1 � a2,2q . . . pak�1,1 � ak�1,2qaq
�����
2

! pA2k�3,

and ¸
i!logA

2i|Jpiq|1{2 ! p1{2

�

���logA
p�1̧

y�1

�������
¸

ai,1,ai,2PA
1¤i¤k�1

eppypa1,1 � a1,2q . . . pak�1,1 � ak�1,2qq

�������
2��

1{2

,

so that ¸
i!logA

2i|Jpiq|1{2 !k plogAq1{2p1{2D�
k�1pAq1{2.
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Combining the above with (4.2.15) and (4.2.16) we see that

W0 !k

�
A4k�2 � pA4k�4 � p1{2A2kD�

k�1pAq1{2
�

log2A,

and hence by (4.2.13) and (4.2.14)

D�
k pAq �

A4k

p

�Ok

��
A4k�2 � pA4k�4 � p1{2A2kD�

k�1pAq1{2
�

log2A
�
,

which completes the proof. l

Combining Lemma 4.2.14 and Lemma 4.2.15 with an induction argument gives

the following Corollary.

Corollary 4.2.16. For a prime number p and a subset A � Fp with |A| � A ¥ p1{2

we have

D�
k pAq �

A4k

p

�Ok

��
A4k�2 � p1�2�pk�1q

A4k�4E�pAq2�pk�1q
	

log4A
	
.

Using the trivial bound E�pAq ¤ A3 in Corollary 4.2.16 gives the following sharp

asymptotic formula for D�
k pAq for sets of cardinality a little larger than p1{2.

Corollary 4.2.17. For any k ¥ 3 and A ¥ p1{2�1{p2k�1�6q we have

D�
k pAq �

A4k

p
�Ok

�
A4k�2 log4A

�
.

4.2.5 Proof of Theorem 4.2.1

We define NpX ,Y ,Zq to be the number of solutions to

x1py1 � z1q � x2py2 � z2q

with x1, x2 P X , y1, y2 P Y and z1, z2 P Z.
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Let

S � SpX1, . . . ,Xn;ω1, . . . , ωnq.

By Lemma 4.2.3, after permuting the variables, we have

|S|2n�1 ! pX1 . . . Xnq2n�1

�
1

Xn�1

� � � � � 1

X2n�2

1



� pX1 . . . Xn�1q2n�1�2X2n�1�1

n

¸
x1,y1PX1
x1�y1

. . .
¸

xn�1,yn�1PXn�1
xn�1�yn�1����� ¸

xnPXn

eppxnpx1 � y1q . . . pxn�1 � yn�1qq
����� .

We now collect together px2 � y2q . . . pxn�1 � yn�1q � λ and denote the number of

solutions to this equation to be Jpλq. Similarly we collect x1pxn � ynq � µ and we

denote the number of solutions to this equation to be Ipµq. Hence,

|S|2n�1 !n pX1 . . . Xnq2n�1

�
1

Xn�1

� � � � � 1

X2n�2

1



� pX1 . . . Xn�1q2n�1�2X2n�1�1

n

¸
λPF�p

Jpλq
����� ¸
µPFp

Ipµq eppλµq
�����

� pX1 . . . Xnq2n�1

�
1

Xn�1

� � � � � 1

X2n�2

1



� pX1 . . . Xn�1q2n�1�2X2n�1�1

n

¸
λPF�p

¸
µPFp

JpλqηλIpµq eppλµq

for some complex weight ηλ with |ηλ| � 1. Now, by Lemma 4.1.4 with X � Y �
X1, Z � Xn we have ¸

µPFp

Ipµq2 � NpXn,X1,X1q ! X3
1X

3{2
n .

Similarly, ¸
λPF�p

Jpλq2 � D�,�
n�2pX2, . . . ,Xn�1q.

By Lemma 4.2.4 we have¸
λPF�p

Jpλq2 ¤ �D�,�
n�2pX2q . . . D�,�

n�2pXn�1q
� 1
n�2 . (4.2.17)
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Then applying the bound on bilinear exponential sums, Lemma 4.1.3, we have

|S|2n�1 !n pX1 . . . Xnq2n�1

�
1

Xn�1

� � � � � 1

X2n�2

1




� pX1 . . . Xn�1q2n�1�2X2n�1�1
n p1{2

��¸
λPF�p

Jpλq2
¸
µPFp

Ipµq2
�1{2

Finally, we apply Corollary 4.2.10 and 4.2.12 to (4.2.17) to best optimise over each

set, and define

BnpX q �

$'''&'''%
p

1
22n�3pn�2qX

� 2n�2�1

22n�3pn�2q
�op1q

, if p
1
2
� 1

2n�1�2 ¥ X ¥ p
217
433 ,

X
�

2n�2�1�2c1
22n�3pn�2q

�op1q
, if p

217
433 ¡ X ¥ p

48
97 ,

X
�

2n�2�1�2c2
22n�3pn�2q

�op1q
, if X   p

48
97 ,

where c1 � 1
434

and c2 � 1
192

. Finally, we obtain

|S|2n�1 !n pX1 . . . Xnq2n�1

�
1

Xn�1

� � � � � 1

X2n�2

1



� pX1 . . . Xnq2n�1

p1{2X
�1{2
1 X�1{4

n

�
n�1¹
i�2

BnpXiq2n�1

�
.

This completes the proof.

4.2.6 Proof of Theorem 4.2.2

We note that the conditions (4.2.2) and Corollary 4.2.17 imply that

rD�,�
n pXiq ! plog pq4X4n�2

i ,

and hence by Lemma 4.2.7

|SpX1, . . . ,Xn;ω1, . . . , ωnq|2n ! pX1 . . . Xnq2n
�

1

X2n�1

1

� � � � � 1

Xn



� plog pq4p1{2pX1 . . . Xnq2n�1{n,

from which the desired result follows.
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4.3 Open Problems

One could consider arbitrary finite field analogues of the sums

SpX1, . . . ,Xn;ω1, . . . , ωnq �
¸
x1PX1

. . .
¸

xnPXn

ω1pxq . . . ωnpxq eqpx1 . . . xnq,

where Xi � Fq where q � pk. We mention that recent progress has been made

in the field of additive combinatorics over arbitrary finite fields. Moreover, [26]

has provided new bounds on point-line incidences over Fq, which was central to

our results on trilinear and quadrilinear exponential sums over Fp. We present [26,

Theorem 2] as a lemma below.

Lemma 4.3.1. Let A � Fq and let L be a set of lines in Fq. Suppose that

|AX pcG� dq| ! maxt|G|1{2, |A|51{52u,

for all proper subfields G � Fq and all elements c, d P Fq. Then

T pAq ! |A|5�1{104 � q�1{95|A|5�1{95

IpA�Aq ! p|A|173{104 � q�1{285|A|476{285q|L|2{3 � |L|
LpA�Aq " mint|A|2�1{52, q2{95|A|2�2{95u

where T pAq is the number of collinear triples, IpA�Aq is the number of point-line

incidences and LpA�Aq is the number of distinct lines determined by pairs of points

of A�A.

We also mention that our bounds in this section can easily be adapted to multi-

linear exponential sums with one-dimensional weights, or no weights using bounds

in this chapter. However, we do not consider these as our motivation was to give

applications to multinomial exponential sums, as we will see in the next chapter.

Finally, as part of our exploration of the term D�
k pAq we considered the number

of solutions of sums of products. That is, we let D�
k pAq be the number of solutions

to

a1b1 � a2b2 � � � � � akbk � c1d1 � c2d2 � � � � � ckdk.

Our hope was that we could apply similar techniques to Lemma 4.2.14 and Lemma

4.2.15. However, we were unable to reduce the problem to one where we could apply

the bound of Rudnev [32] on point-plane incidences.
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5
Multinomial Exponential Sums

5.1 Introduction

5.1.1 Set Up

For a t-sparse polynomial

ΨpXq �
ţ

i�1

aiX
ki (5.1.1)

with some pairwise distinct non-zero integer exponents k1, . . . , kt and coefficients

a1, . . . , at P F�p , and a multiplicative character χ of F�p we define the sums

SχpΨq �
¸
xPF�p

χpxq eppΨpxqq,

where χ is an arbitrary multiplicative character of F�p . The challenge for such sums

is to provide a bound that is stronger than the Weil bound

|SχpΨq| ¤ maxtk1, . . . , ktup1{2,

see [43, Appendix 5, Example 12], by taking advantage of the arithmetic structure

of the exponents. The case of exponential sums of monomials has seen much study
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with Shparlinski [39] providing the first such bound. Further improvements have

been made by various other authors, see [7, 3, 17, 19, 34, 40]. We also mention

that Cochrane, Coffelt and Pinner, as well as others, have given several bounds on

exponential sums with sparse polynomials, see [9, 10, 11, 12, 13, 14] and references

therein, some of which we outline in Section 5.1.2.

First we provide some new bounds on trinomial and quadrinomial exponential

sums. We thus define

Ψ3pXq � aXk � bX` � cXm (5.1.2)

Ψ4pXq � aXk � bX` � cXm � dXn. (5.1.3)

We mention that all our results extend naturally to more general sums with poly-

nomials of the shape

ΨpXq � aXk � fpX`q � gpXmq � hpXnq

for polynomials f, g, h P FprXs.

5.1.2 Previous Results

We compare our results for trinomials and quadrinomials to those of Cochrane,

Coffelt and Pinner [9, Theorem 1.1]

SχpΨq !
�

k`mn

maxpk, `,m, nq

1{9

p8{9 (5.1.4)

which is non-trivial for

k`mn

maxpk, `,m, nq   p,

and of Cochrane and Pinner [11, Theorem 1.1]

SχpΨq ! pk`mnq1{16p7{8 (5.1.5)

which is non-trivial for k`mn   p2. Our new results in Theorem 5.1.1 and Theorem

5.1.2 are independent of the size of the exponents but instead depend on various

greatest common divisors. We also mention a similar result of Cochrane and Pinner
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[13, Theorem 1.1] which for Laurent polynomials g, g2, g3, g4 where gpxq contains a

monomial aXk1 , k1 � 0, p - a, and

ΨpXq � gpXq � g2pXk2q � � � � � grpXkrq
we have

SχpΨq ¤ p
r�2̧

i�0

�
gcdpkr�i, k1, p� 1q

gcdpkr�i, p� 1q

 1

2i�1

�D
1

2r�1 p1� 1
2r (5.1.6)

where

D �
#

degpgq � 1, if gpXq is a polynomial,

gcdpk1, p� 1q � 1, if gpXq � aXk1 is a monomial.

5.1.3 Main Results

Our main results are the theorems given in this section.

Theorem 5.1.1. Let ΨpXq be a trinomial of the form (5.1.2) with a, b, c P F�p.

Define

d � gcdpk, p� 1q, e � gcdp`, p� 1q, f � gcdpm, p� 1q
and

g � d

gcdpd, fq , h � e

gcdpe, fq .
Suppose f ¥ g ¥ h, then

SχpΨq ! ph�1{4

�

$'&'%
p7{8f 1{8, if h ¥ pp log pq1{2,
p15{16pf{hq1{8 plog pq1{16 , if g ¥ pp log pq1{2 ¡ h,

ppf{ghq1{8 plog pq1{8 , if g   pp log pq1{2.
Note that the assumption f ¥ g ¥ h of Theorem 5.1.1 does not present any

additional restriction on the class of polynomials to which it applies as the roles of

k, ` and m are fully symmetric: if h ¡ g, say, one can simply interchange g and h

in the bound.

Theorem 5.1.2. Let ΨpXq be a quadrinomial of the form (5.1.3) with a, b, c, d P F�p.

Define

α � gcdpk, p� 1q, β � gcdp`, p� 1q, γ � gcdpm, p� 1q, δ � gcdpn, p� 1q
and

f � α

gcdpα, δq , g � β

gcdpβ, δq , h � γ

gcdpγ, δq .
Suppose f ¥ g ¥ h. Then p{δ ¡ f and
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SχpΨq !pg�1{8

�

$''''&''''%
p15{16δ1{32, if g ¥ p1{2 log p,

p31{32δ1{32g�1{16�op1q, if f ¥ p1{2 log p ¡ g,

pδ1{32pfgq�1{16�op1q, if p{δ ¥ p1{2 log p ¡ f,

p31{32�op1qδ3{32pfgq�1{16, if p{δ   p1{2 log p.

Similarly to Theorem 5.1.1, we mention that our result is independent of the size

of our powers k, l,m, n and is strongest when δ is small and f, g, h are large. Here

op1q represents some power of a log and is used here, and other times in this chapter,

to simplify the presentation and calculation of logarithmic factors. As mentioned

in the previous section, many previous results become trivial for quadrinomials of

large degree. It is easy to see that our bound is non-trivial and improves previous

results for a wide range of exponents k, `,m and n. By Theorem 5.1.2 we present

the following example as a corollary.

Corollary 5.1.3. Let ΨpXq be a quadrinomial of the form (5.1.3) with a, b, c, d P F�p.

Suppose p{2 ¡ |n| ¡ |k| ¡ |`| ¡ |m| ¥ p1{2 log p, δ � 1 and k, `|p � 1, where δ is

defined as in Theorem 5.1.2. Then

SχpΨq ! p15{16.

Clearly in the above example both (5.1.4) and (5.1.5) are trivial. We compare

this to (5.1.6). One can see (5.1.6) gives a weaker bound than Theorem 5.1.1 when

γ   p1{8. One can also check that in this instance our bound also gives something

stronger than [13, Theorem 1.2]. Indeed, it is possible to give results in which

Theorem 5.1.1 is stronger than (5.1.6) for all four bounds of Theorem 5.1.1 by

restricting the size of h, as in the above example.

Here we also mention one can get a similar result to Theorem 5.1.2 using [30,

Theorem 1.4], however this gives strictly weaker results due to the results in Section

5.2 being stronger in the case of subgroups rather than subsets.

Using Theorem 5.1.2, as well as the results mentioned in Section 5.1.2, we can

give classes of quadrinomials where we have savings in terms of p. For example we

have the following result using Theorem 5.1.1 and the bounds (5.1.4), (5.1.5) and

(5.1.6).

Corollary 5.1.4. Let ΨpXq be a quadrinomial of the form (5.1.3) with a, b, c, d P F�p.

Suppose k, `,m|p� 1, gcdpn, p� 1q � 1 and k ¥ ` ¥ m ¥ n. Then

SχpΨq ! p15{16�op1q.
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Additionally, using [13, Theorem 1.2], as well as the results of Section 5.1.2, we

get the following bound which does not depend on the size of n.

Corollary 5.1.5. Let ΨpXq be a quadrinomial of the form (5.1.3) with a, b, c, d P F�p.

Suppose k, `,m|p� 1, gcdpn, p� 1q � 1 and k ¥ ` ¥ m. Then

SχpΨq ! p71{72�op1q.

Finally, we give a bound on multinomial exponential sums that extends past

quadrinomials. The following is a consequence of Theorem 4.2.1.

Theorem 5.1.6. Let ΨpXq be a multinomial of the form (5.1.1), with coefficients

ai P F�p for i � 1, . . . , t. We define

αki � gcdpki, p� 1q

and

βki �
αki

gcdpαki , αktq
.

Suppose βk1 ¥ � � � ¥ βkt�1. Then

SχpΨq

! p

��
αkt
p� 1


 1
2

� β
�1

22

k1
� � � � � β

�1
2t

kt�1
� p

1
2tCtpαktq

t�2¹
i�1

Dtpβkiq
�

where

Ctpαq �
#
α

3
2t�1 p�

3
2t�1 , if α ¥ p

1
2 log p,

α
1

2t�1 p�
1
2t , if α   p

1
2 log p,

and

Dtpβq �
#
p
� 1

2tpt�2q , if β ¥ p
1
2 log p,

β
� 1

2t�1pt�2q , if β   p
1
2 log p.

We mention that Theorem 5.1.6 returns the same bound as 5.1.2 when t � 4.
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5.2 Trinomial and Quadrinomial Exponential

Sums

5.2.1 Preliminaries

We define D�pUq to be the number of solutions of

pu1 � v1qpu2 � v2q � pu3 � v3qpu4 � v4q, ui, vi P U , i � 1, 2, 3, 4.

We also define the multiplicative energy E�pU ,Vq to be the number of solutions of

u1v1 � u2v2 ui P U , vi P V , i � 1, 2.

When U � V , we write E�pU ,Uq � E�pUq.
We have the following lemma as a consequence of Theorem 2.1.2 and the proof

of Lemma 2.2.6.

Lemma 5.2.1. For a multiplicative subgroup G � F�p, we have

D�pGq !
#
|G|8p�1, if |G| ¥ p1{2 log p,

|G|6 log |G|, if |G|   p1{2 log p.

We also have the following lemma which comes as a result of (2.3.19).

Lemma 5.2.2. Let G be a multiplicative subgroup of F�p. Then for any λ P F�p, we

have

E�pG � λq � |G|4
p

!

$'&'%
p1{2|G|3{2, if |G| ¥ p2{3,

|G|3p�1{2, if p2{3 ¡ |G| ¥ p1{2 log p,

|G|2 log |G|, if |G|   p1{2 log p.

We immediately obtain the following result by observing the dominant term from

Lemma 5.2.2.

Corollary 5.2.3. Let G be a multiplicative subgroup of F�p. Then for any λ P F�p,

we have

E�pG � λq !
#
|G|4{p, if |G| ¥ p1{2 log p,

|G|2 log |G|, if |G|   p1{2 log p.

We define NpF ,G,Hq to be the number of triples of solutions to the equation

f1pg1 � g2q � f2ph1 � h2q where fi P F , gi P G, hi P H for i � 1, 2. Using Corollary

5.2.3 we obtain the following result.
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Lemma 5.2.4. Let F ,G,H be multiplicative subgroups of F�p with cardinalities

F,G,H respectively with G ¥ H. Additionally, let M � maxpF,Gq. Then

NpF ,G,Hq ! F 2

M1{2

$'&'%
G2H2p�1{2, if H ¥ p1{2 log p,

G2H3{2�op1qp�1{4, if G ¥ p1{2 log p ¡ H,

pGHq3{2�op1q, if G   p1{2 log p.

Proof. By multiplying both sides of f1pg1 � g2q � f2ph1 � h2q by the inverses f�1
2

and h�1
2 and taking a factor of g2 from the left hand side, and defining

S � tfgh : f P F , g P G, h P Hu

we have

NpF ,G,Hq � F 2GH

|S|
¸
λPS

|tpg, hq P G �H : λpg � 1q � h� 1u|.

By two applications of the Cauchy-Schwartz inequality,

NpF ,G,Hq2 ¤ F 4G2H2

|S|
����"pgi, hiq P G �H, i � 1, 2 :

h1 � 1

g1 � 1
� h2 � 1

g2 � 1

*����
¤ F 4G2H2

|S| pE�pG � 1qE�pH � 1qq1{2.

By Corollary 5.2.3,

NpF ,G,Hq2 ! F 4G2H2

|S|

$'&'%
G2H2{p, if H ¥ p1{2 log p,

G2H1�op1qp�1{2, if G ¥ p1{2 log p ¡ H,

pGHq1�op1q, if G   p1{2 log p.

Since |S| ¥M we complete our proof. l

5.2.2 Bounds On Trilinear and Quadrilinear Exponential

Sums Over Subgroups

Applying Lemma 5.2.1 and Lemma 5.2.4 in the proof of [30, Theorem 1.4], we obtain

the following result on quadrilinear sums over subgroups.

73



CHAPTER 5. MULTINOMIAL EXPONENTIAL SUMS

Lemma 5.2.5. For any multiplicative subgroups F ,G,H � F�p of cardinalities F,G

and H, respectively, with F ¥ G ¥ H and weights ρ � pρu,vq, σ � pσu,wq and

τ � pτv,wq with

max
pu,vqPF�G

|ρu,v| ¤ 1, max
pu,wqPF�H

|σu,w| ¤ 1, max
pv,wqPG�H

|τv,w| ¤ 1,

for the sum

T �
¸
uPF

¸
vPG

¸
wPH

ρu,vσu,wτv,w eppauvwq

we have

T ! FGH3{4

�

$'&'%
F 7{8GH, if H ¥ pp log pq1{2,
p1{16F 7{8GH7{8 plog pq1{16 , if G ¥ pp log pq1{2 ¡ H,

p1{8F 7{8G7{8H7{8 plog pq1{8 , if G   pp log pq1{2,

uniformly over a P F�p.

Proof. We see from [30, Equation (3.8)] that

T 8 ! pF 7G4H4K � F 8G8H6,

where K is the number of solutions to the equation

pu1 � u2qpw1 � w2q � pu3 � u4qpw3 � w4q � 0,

pui, wiq P G �H, i � 1, 2, 3, 4.

As in the proof of [30, Theorem 1.3], expressing K via multiplicative character sums

and using the Cauchy-Schwartz inequality, we obtain K2 ¤ D�pGqD�pHq. Applying

Lemma 5.2.1, instead of [30, Equation 3.9], we now obtain

K !

$'&'%
G4H4{p, if H ¥ pp log pq1{2,
G4H3p�1{2plog pq1{2, if G ¥ pp log pq1{2 ¡ H,

pGHq3 log p, if G   pp log pq1{2.

Taking 8th roots we complete the proof. l

Clearly, the bound of Lemma 5.2.5 is nontrivial when F , G and H are all a little

larger than p1{3. More formally, for any ε ¡ 0 there exists some δ ¡ 0 such that if

F ¥ G ¥ H ¥ p1{3�ε then the exponential sums of Lemma 5.2.5 are bounded by

OpFGHp�δq.
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Lemma 5.2.6. For any multiplicative subgroups W ,X ,Y ,Z � F�p of cardinalities

W,X, Y and Z, respectively, with W ¥ X ¥ Y ¥ Z and weights ϑ � pϑw,x,yq,
ρ � pρw,x,zq, σ � pσw,y,zq and τ � pτx,y,zq with

max
pw,x,yqPW�X�Y

|ϑw,x,y| ¤ 1, max
pw,x,yqPW�X�Z

|ρw,x,z| ¤ 1,

max
pw,x,yqPW�Y�Z

|σw,y,z| ¤ 1, max
pw,x,yqPX�Y�Z

|τx,y,z| ¤ 1,

for the sums

T �
¸
wPW

¸
xPX

¸
yPY

¸
zPZ

ϑw,x,yρw,x,zσw,y,zτx,y,z eppawxyzq

we have

|T | ! WXZY 7{8

�

$''''&''''%
W 31{32XY Zp�1{32, if Y ¥ p1{2 log p,

W 31{32XY 15{16�op1qZ, if X ¥ p1{2 log p ¡ Y ,

W 31{32pXY q15{16�op1qZp1{32, if W ¥ p1{2 log p ¡ X,

W 29{32�op1qpXY q15{16Zp1{16, if W   p1{2 log p,

uniformly over a P F�p.

Proof. We see from [30, p. 24] that

|T |8 ! pWXY q6Z7
¸
µPF�p

¸
λPFp

JpµqIpλqηµ eppλµq � pWXZq8Y 7,

where ηµ, µ P F�p are complex numbers with |ηµ| � 1, Jpµq is the number of quadru-

ples px1, x2, y1, y2q P X 2 � Y2 such that px1 � x2qpy1 � y2q � µ P F�p and Ipλq is the

number of triples pw1, w2, zq PW2 �Z such that zpw1 �w2q � λ P Fp. We estimate

Jpµq as in [30, Equation 3.10] but using our bound from Lemma 5.2.1 to obtain

¸
µPF�p

Jpµq2 !

$'&'%
X4Y 4{p, if Y ¥ p1{2 log p,

X4Y 3�op1qp�1{2, if X ¥ p1{2 log p ¡ Y ,

pXY q3�op1q, if X   p1{2 log p.

(5.2.1)

Now ¸
λPFp

Ipλq2

� |tw1, w2 PW , zi P Z, i � 1, 2, 3, 4 : z1pw1 � w2q � z2pw3 � w4qu|
� NpZ,W,W q.
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Therefore, by Lemma 5.2.4,

¸
λPFp

Ipλq2 !
#
Z2W 7{2p�1{2, if W ¥ p1{2 log p,

Z2W 5{2�op1q, if W   p1{2 log p.
(5.2.2)

Applying the classical bound on bilinear exponential sums from Lemma 4.1.3 to-

gether with (5.2.1) and (5.2.2), we get

|T |8 !pWXZq8Y 7

�

$''''&''''%
W 31{4X8Y 8Z8p�1{4, if Y ¥ p1{2 log p,

W 31{4X8Y 15{2�op1qZ8, if X ¥ p1{2 log p ¡ Y ,

W 31{4pXY q15{2�op1qZ8p1{4, if W ¥ p1{2 log p ¡ X,

W 29{4�op1qpXY q15{2Z8p1{2, if W   p1{2 log p.

Hence,

|T | !WXZY 7{8

�

$''''&''''%
W 31{32XY Zp�1{32, if Y ¥ p1{2 log p,

W 31{32XY 15{16�op1qZ, if X ¥ p1{2 log p ¡ Y ,

W 31{32pXY q15{16�op1qZp1{32, if W ¥ p1{2 log p ¡ X,

W 29{32�op1qpXY q15{16Zp1{16, if W   p1{2 log p.

This completes the proof. l

We compare our bound for subgroups from Lemma 5.2.6 with that for arbitrary

sets coming from [30, Theorem 1.4]

����� ¸
wPW

¸
xPX

¸
yPY

¸
zPZ

ϑw,x,yρw,x,zσw,y,zτx,y,z eppawxyzq
�����

! p1{16W 15{16pXY q61{64Z31{32.

(5.2.3)

For example, if W � X � Y � Z � p1{2�op1q then the bounds become p125{64�op1q

and p63{32�op1q respectively.
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5.2.3 Proof of Theorem 5.1.1

Let Gd and Ge be the subgroups of F�p formed by the elements of orders dividing d

and e, respectively. We have,

SχpΨq � 1

de

¸
yPGd

¸
zPGe

¸
xPF�p

χpxyzq eppΨpxyzqq

� 1

de

¸
xPF�p

¸
yPGd

¸
zPGe

χpxqχpyqχpzq ep
�
axkzk � bx`y` � cxmymzm

�
� 1

de

¸
xPF�p

¸
zPGe

¸
yPGd

ρx,yσx,z ep pcxmymzmq ,

where

ρx,y � χpxqχpyq ep
�
bx`y`

�
and σx,z � χpzq ep

�
axkzk

�
.

Clearly, the set X � txm : x P F�pu of non-zero mth powers contains pp � 1q{f ele-

ments, each appearing with multiplicity f . Furthermore, direct examination shows

that the sets Y � tym : y P Gdu and Z � tzm : z P Geu contain g and h ele-

ments with multiplicities gcdpd, fq and gcdpe, fq, respectively. We recall that by our

assumption we have f ¥ g ¥ h and invoke Lemma 5.2.5, which gives us,

SχpΨq ! f gcdpd, fq gcdpe, fq
de

� pp{fqgh3{4 � f gcdpd, fq gcdpe, fq
de

�$'&'%
pp{fq7{8gh, if h ¥ p1{2 log p,

p1{16pp{fq7{8gh7{8 plog pq1{16 , if g ¥ pp log pq1{2 ¡ h,

p1{8pp{fq7{8g7{8h7{8 plog pq1{8 , if g   pp log pq1{2,
� ph�1{4

�

$'&'%
p7{8f 1{8, if h ¥ pp log pq1{2,
p15{16f 1{8h�1{8 plog pq1{16 , if g ¥ pp log pq1{2 ¡ h,

pf 1{8g�1{8h�1{8 plog pq1{8 , if g   pp log pq1{2.

This concludes the proof.
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5.2.4 Proof of Theorem 5.1.2

Let Gα,Gβ,Gγ be the subgroups of F�p generated by the elements of orders α, β and

γ respectively. Then,

SχpΨq � 1

αβγ

¸
xPGα

¸
yPGβ

¸
zPGγ

¸
wPF�p

χpwxyzq eppΨpwxyzqq

� 1

αβγ

¸
xPGα

¸
yPGβ

¸
zPGγ

¸
wPF�p

χpwxyzq eppawkykzk � bw`x`z` � cwmxmym � dwnxnynznq
� 1

αβγ

¸
xPGα

¸
yPGβ

¸
zPGγ

¸
wPF�p

ϑw,x,yρw,x,zσw,y,z eppdwnxnynznq

where we choose

ϑw,x,y � χpwxyq eppcwmxmymq, ρw,x,z � χpzq eppbw`x`z`q
and

σw,y,z � eppawkykzkq.
Now the image W � twn : w P F�pu of non-zero nth powers contains pp � 1q{δ
elements, each appearing with multiplicity δ. Similarly, we can see that the images

X � txn : x P Gαu,Y � tyn : y P Gβu and Z � tzn : z P Gγu contain f, g and h

elements with multiplicity gcdpα, δq, gcdpβ, δq and gcdpγ, δq respectively. We apply

Lemma 5.2.6, recalling our assumption that f ¥ g and noticing fδ � lcmpα, δq  
p� 1, hence f   p{δ, which gives us

SχpΨq !δ gcdpα, δq gcdpβ, δq gcdpγ, δq
αβγ

pp{δqfg7{8h

� δ gcdpα, δq gcdpβ, δq gcdpγ, δq
αβγ

�

$''''&''''%
pp{δq31{32fghp�1{32, if g ¥ p1{2 log p,

pp{δq31{32fg15{16�op1qh, if f ¥ p1{2 log p ¡ g,

pp{δq31{32pfgq15{16�op1qhp1{32, if p{δ ¥ p1{2 log p ¡ f,

pp{δq29{32�op1qpfgq15{16hp1{16, if p{δ   p1{2 log p,

�pg�1{8

�

$''''&''''%
p15{16δ1{32, if g ¥ p1{2 log p,

p31{32δ1{32g�1{16�op1q, if f ¥ p1{2 log p ¡ g,

pδ1{32pfgq�1{16�op1q, if p{δ ¥ p1{2 log p ¡ f,

p31{32�op1qδ3{32pfgq�1{16, if p{δ   p1{2 log p.

This concludes the proof.
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5.3 Multinomial Exponential Sums

5.3.1 Preliminaries

The aim of this section is to extend the results of the previous section beyond the

cases of trinomials and quadrinomials, to more general multinomial sums.

Combining Corollary 5.2.3 with (4.2.5) and observing which term dominates we

get the following corollary.

Corollary 5.3.1. Let G � F�p be a multiplicative subgroup with |G| � G. Then

D�
k pGq !

#
G4kp�1 if G ¥ p

1
2 log p,

G4k�2�op1q, if G   p
1
2 log p.

We also have the following result as a consequence of Lemma 5.2.4

Lemma 5.3.2. Let G,H � F�p be multiplicative subgroups with cardinalities G,H

respectively with G ¥ H. Then,

NpH,G,Gq !
#
H2G

7
2p�

1
2 if G ¥ p

1
2 log p,

H2G
5
2
�op1q, if G   p

1
2 log p.

We then have the following result on multilinear exponential sums over sub-

groups, which may be of independent interest to the reader.

Lemma 5.3.3. Let Xi � Fp be multiplicative subgroups with |Xi| � Xi, X1 ¥ X2 ¥
� � � ¥ Xn, n ¥ 4. Then with SpX1, . . . ,Xn;ω1, . . . , ωnq as given in (4.2.1),

SpX1, . . . ,Xn;ω1, . . . , ωnq !n pX1 . . . Xnqp 1
2nAnpX1q

n�1¹
i�2

BnpXiq

� pX1 . . . Xnq
�

1

X
1{2
n

� � � � � 1

X
1{2n

1

�
where

AnpX1q �
$&% X

� 1
2n�1

1 p�
1

2n�1 , if X1 ¥ p
1
2 log p,

X
� 3

2n�1�op1q

1 , if X1   p
1
2 log p,

and

BnpXiq �
$&% p�

1
2npn�2q , if Xi ¥ p

1
2 log p,

X
� 1

2n�1pn�2q

i , if Xi   p
1
2 log p.

Proof. The proof follows that of Theorem 4.2.1, however we use Corollary 5.3.1 and

Lemma 5.3.2 in place of their relevant results on arbitrary sets. l
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5.3.2 Proof of Theorem 5.1.6

Let αki � gcdpki, p � 1q for each i � 1, . . . , t. We then let Gαi be the subgroups of

F�p generated by the elements of order αki . Then

SχpΨq � 1

αk1 . . . αkt�1

¸
x1PGα1

. . .
¸

xt�1PGαt�1¸
xtPF�p

χpx1 . . . xtq eppΨpx1 . . . xtqq

� 1

αk1 . . . αkt�1

¸
x1PGα1

. . .
¸

xt�1PGαt�1

¸
xnPF�p

χpx1 . . . xtq

eppa1px2 . . . xtqk1q . . . eppat�1px1 . . . xt�2xtqkt�1q eppatpx1 . . . xtqktq
� 1

αk1 . . . αkt�1

¸
x1PGα1

. . .
¸

xt�1PGαt�1¸
xtPF�p

ω1pxq . . . ωtpxq eppatpx1 . . . xtqktq.

Now the image Xt � txktt : xt P F�pu of non-zero ktth powers contains pp � 1q{αkt
elements, each appearing with multiplicity αkt . Similarly, we notice the images

Xi � txkti : xi P Gαkiu contain αki{ gcdpαki , αktq elements, each appearing with

multiplicity gcdpαki , αktq, for i � 1, . . . , t � 1. Hence, we apply Lemma 5.3.3 to

obtain

SχpΨq !t
αkt

βk1 . . . βkt�1

�
�
p

1
2t βkt�1At

�
p� 1

αkt


 t�2¹
i�1

Btpβkiq
�

� αkt
βk1 . . . βkt�1

� p� 1

αkt
βk1 . . . βkt�1

��
αkt
p� 1


 1
2

� β
�1

22

k1
� � � � � β

�1
2t

kt�1

�
.

By simplifying we reach the required result.

5.4 Open Problems

In this chapter we were able to give stronger bounds on weighted multilinear expo-

nential sums for when our sets are multiplicative subgroups of Fp. One could also

consider analogues over other interesting sets, such as intervals or sets contained in

arithmetic progressions for example. In these cases we can take advantage of our

subsets having small sum-sets, which may lead us to some stronger bounds.

It would also be interesting to consider short multinomial exponential sums or

sums over some other choices of sets. Our techniques here unfortunately don’t lend
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themselves naturally to such applications. However, it should be possible to apply

similar ideas when the sets are subgroups of Fp.
Finally, another possible direction one could take this problem would be to con-

sider taking the sum over composite moduli, rather than a prime p. Again, it seems

that in this case new techniques will need to be developed and considered to provide

new bounds.
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