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Abstract

In this thesis we provide new results in additive combinatorics which in turn lead us
to new bounds of certain exponential sums. We also use known bounds on exponen-
tial and character sums to give new results in additive combinatorics. Specifically
we will see how bounds on some quantities from additive combinatorics appear natu-
rally when trying to bound multilinear exponential sums. We then find applications
to bounds of exponential sums of sparse polynomials. We also give new bounds for

an analogue of the energy variant of the sum-product problem over arbitrary finite
fields.
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Introduction

1.1 Background and Notation

This thesis is based on a collection of papers related to bounds of exponential sums
and results in additive combinatorics. For the entirety of this thesis we use the

notation

e,(x) = exp(2miz/p)

where p will always be a large prime number. We also use [F, to denote the finite
field of p elements. We consider the exponential sum, over some arbitrary subset
X c T,

2 el(f ()

TeX

for some suitably chosen function f. The challenge in studying such sums is to be
able to provide upper bounds. Trivially, one has

D elf@) <],

T€X

and for many functions and sets we are unable to say much more.

1



CHAPTER 1. INTRODUCTION

The field of additive combinatorics gives methods of providing upper bounds
on certain exponential sums, as we will see in Chapter 4. Similarly, bounds on
exponential and character sums also lead to estimates in additive combinatorics, as
we will see in Chapter 3.

Finally, we frequently use the notation
A« B and A=0(B)
which both are equivalent to |A| < ¢|B| for some absolute constant ¢. We also use
A« B and A= 0(B)

when ¢ depends on some other parameter k.

1.2 Overview of Thesis

Although this thesis is built on a collection of articles, we present them in a restruc-
tured format so as to keep related ideas together in chapters. The relevant articles

are:

e [22] which appears in Chapters 2 and 4,
e 24| which appears in Chapters 2 and 5,
®

18] which appears in Chapters 4 and 5,

22]
[24]
e [23] which appears in Chapter 3,
[18]
[21]

21| which appears in Chapter 5.

At the end of each chapter there will also be a section on open problems and other

possible directions. Here we provide a short overview of each chapter.

1.2.1 Collinear Triples

Bounds on the number of collinear triples are of particular importance when finding
bounds on certain types of exponential sums (as we will see in Chapters 4 and 5)
as well as being a tool for giving bounds on sum and product sets. We define the

number of collinear triples, T'(A, B), to be the number of solutions of
(Gl — ag)(bl — bg) = (a1 — ag)(bl — bg), a; € A, bz S B,Z = 1, 2, 3. (121)

In Chapter 2, we consider a more general form of this equation for further applica-

tions in Chapters 4 and 5.



CHAPTER 1. INTRODUCTION

Transforming our expression (1.2.1), we can see that T(A, B) can be considered

to be the number of solutions of
bl—cal :bQ—CCLQ :bg—Cag

with the a; € A, b; € B and c € F,,, if we include an added error term of O(|.A||B]* +
|A|?|BJ?), which comes from counting relevant zero solutions to (1.2.1). It is here
that we see collinear triples namesake more clearly. In this chapter, we adapt existing
techniques to give new bounds on the number of collinear triples, which are stronger
when A # B. Previous results on this asymmetric case have been given using
the Cauchy-Schwartz inequality by first finding bounds on T'(A, A). Although this
is usually just stated, we prove the following using multiplicative characters. If we
consider T*(.A, B) to be the non-zero solutions to (1.2.1), x a multiplicative character

and (2 the set of all multiplicative characters over F,, we have

T*(AB) = > > —Z ay — ag)x(by — ba)x (a1 — az)x(by — bs)

a;i€A  bieB p—1 xeQ

i=1,2,3i=1,2,3
-2 N | xa—a)
[lQEA

XEQ a1€A

2

2,

b1 eB

2

Z X(bl - 52)

b2 eB

We now square both sides and apply the Cauchy-Schwartz inequality to obtain

T*(A, B)? —ZZ > x(ar — as) D7 x(by = b)

XEQ |a1€A |age A boeB

= T*(A, A)T*(B, B).

2

2%

X€EQY |bi1€B

2 2|2

Instead, considering T'(A, B) directly leads to our improvements on previous results.
Such improvements become stronger when the size of A and B are significantly
different.

In this chapter we also provide some stronger bounds on the number of collinear
triples where our sets A and B are subgroups. Finally, as previously mentioned, in
this chapter we give a more general form of T'(A, B) then what has been considered
previously. We instead consider our collinear triples over two parameters A and pu.

This leads us to new bounds on multiplicative energy of shifted subgroups.

1.2.2 A Low Energy Decomposition

Additive and multiplicative energy have seen much study in recent years, as we will

see in Chapter 3. Of particular importance is their relationship to sum and product
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sets. We define the additive energy
ET(A,B) = |{(a1,a,b1,b2) € A> x B* 1 ay + by = ay + by}|.
Similarly, we define the multiplicative energy
E*(A,B) = |{(ay,as,b1,b2) € A% x B* : a1b; = ashy}|.

Here, we are most interested in the cases A = B and thus define E* (A, A) = ET(A)
and E* (A, B) = E*(A). We also define the sum and product sets respectively as

A+B={a+b:aec Abe B}
A-B={ab:ae Abe B}.

If we define r7(x) to be the number of solutions of a; + ay = z for aj,as € A it is

clear

SNori@) = AP and Y (7h(2)? = EF(A).

zeA+A zeA+A

Using the Cauchy-Schwartz inequality and squaring we have
A+ A|ET(A) = | A"

It follows that strong upper bounds on additive energy correspond to strong lower
bounds on the size of the sum set. Similarly, for product sets. This is of particular

importance as Erdés and Szemerédi [15] showed over finite sets of real numbers that
max(A + A, A- A) = |A]'FC

for some small € > 0. However, they also conjectured that we can take e arbitrarily
close to 1 when A is a finite subset over the reals.

In a similar way, one may hope to find an analogue of this result for energy,
that is we may hope that either the additive or multiplicative energy always has to
be small (of size |.A|?). Such hope is, of course, in vain as we can take A to be a
union of a geometric series and an arithmetic series each of size |.A|/2 to ensure both
energies are maximal. However, in this style, Balog and Wooley [2] showed that we

can find a decomposition of disjoint subsets B L C = A such that
max(ET(B), E*(C)) « |A]*™.

Their bound is given both over the reals and finite fields F,, (with different choices

of 0). The ideas of their proof rely on certain incidence results.

4
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One then might like to revisit the energy variant of the sum-product problem

and suggest that we can always find a decomposition such that
max(ET(B), E*(C)) « |A]%.

Balog and Wooley [2] also considered this in their paper and were able to construct

a set A for which any subset A’ satisfying |A'| = a|A| gives
ET(A), EX(A) » al A2

In Chapter 3 we consider a slightly different problem. We prove an extension of
results of Roche-Newton, Shparlinski and Winterhof [31] which shows

max(E*(B), E*(f(C))) « | AP~ (1.2.2)

over [F,, where ¢ is a prime power, f is a suitably chosen function and A is of
sufficient size. Our bounds, similarly to [31], rely on bounds on certain character
sums. Our extensions will show that we can replace E+ with E* in either or both

terms in (1.2.2), as long as we suitably change our restriction on our function f.

1.2.3 Multilinear Exponential Sums

Multilinear exponential sums are those of the form

T(X,...,X,) = Z Z ey,(ary ... x,)

r1EX] Tn€Xn

for X; € F, for each ¢ = 1,...,n and any a € . The first results in this direction
are due to Vinogradov who provided the following bound on bilinear exponential

sums (for example, see [5, Equation 1.4]). Here we also provide a simple proof.
Lemma 1.2.1. Let XY € F), and oy, B, be complex weights such that

D o =4 2. 16,1 = B.

reX yey

Then

< (pAB)'?

20 2, aByeylazy)

zeX yey

where a € IF;.
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Proof. By the Cauchy-Schwartz inequality we have

Z Z agfye,(ary)l <A Z

zeX yey zeX

2

2. Byeylazy)

yey

We now extend the outer sum over all I, to obtain

Z Z a8y ey(ary)l <A Z

zeX ye)y z€F,

2

Z By ep(azy)

yey

A Z Z By By €plaz(yr — y2))

2€F, y1,y2€)

=AY BBy Y. eplaz(yn — y2))

Y1,Y2€Y z€F,
Y1=y92

= Ap Z |By|2

yey
= pAB.

This completes the proof. O

The focus of this chapter is to consider multilinear exponential sums of the form

T(X,..., %)= Y, .. D wilx). .. w.(X) ey(az; ... 2,) (1.2.3)
TIEX]  Tn€Xy

where a € F) and the w;’s are n — 1 dimensional complex weights, that is, complex
numbers of modulus |w;| < 1 depending on all but the i-th coordinate of x. Our
results are an extension of [30] and use similar techniques, however some improve-
ments are made in certain regions on trilinear and quadrilinear exponential sums
due to estimates on collinear triples from Chapter 2. We have also been able to
extend these results to general multilinear sums beyond n = 4. This extension is

certainly non-trivial, and is due to some recent results in additive combinatorics.
An overview of similar types of sums will also be mentioned in this chapter as

we analyse the differences between the respective bounds.

1.2.4 Multinomial Exponential Sums

We define a t-sparse polynomial

t
Ty(X) = > a; X"
i=1
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with pairwise distinct, non-zero, integer exponents ki,...,k; with corresponding

coefficients ay,...,a; € F7. We consider the multinomial exponential sum

Se(W) = ) x(@) e, (Wi(a)). (1:2.4)
e

The bounds on such sums that appear in Chapter 5 come as a result of bounds
on weighted multilinear sums from Chapter 4. By extending the sum over ¢ multi-
plicative subgroups of F; we are able to express our multinomial sum as a weighted
multilinear sum. It is worth mentioning that in this chapter we find stronger results
on multilinear exponential sums than those in Chapter 4 for when our arbitrary sets

are, instead, multiplicative groups.
The methods used to give our bounds provide interesting results as our bounds
do not depend directly on the size of the powers of our polynomials, but rather
they depend on the size of some greatest common divisors of our powers. This is in

contrast to the well-known Weil bound, which gives

1Sx (Wy)| < max{ky, ..., k}p"2






Collinear Triples

2.1 Introduction

2.1.1 Set Up
We define the line
fup = {(2.9) € F2 -y = az 1 1)

for any (a,b) € F2. We let A, B < ), with |[A] = A, |B] = B and A < B. We also

define the number of incidences of any line with A x B to be

taxs(lap) = [{(A X B) N lop}].

Furthermore, for A, i € F%, we define the number of collinear triples T} ,(A, B) to

p7
be the number of solutions to

((11 — )\ag)(bl — [ng) = ((Il — )\&3)(b1 — [ng), a; € ./4, bl € B,Z = 1, 2, 3.

We define T1 (A, B) = T(A, B) and for A = B we define T(A, A) = T(A).

9



CHAPTER 2. COLLINEAR TRIPLES

2.1.2 New Results

Our main result of this chapter is the following theorem on the number of collinear

triples.
Theorem 2.1.1. Let A, B c F, with |A| = A< |B| =B and \,u € F;. Then

3

A3 3
Th (A, B) — « p?A’B3% + AB®.

Our bound is dependent on a result of Murphy et al. [27] on the number of
point-line incidences, which is given in the following section.

We also provide a new result on the number of collinear triples in subgroups.
More generally, for a multiplicative subgroup G of F; we define T\(G) = T1(G)
which is our main object of study.

Theorem 2.1.2. Let G be a multiplicative subgroup of F,. Then for any A € Fy, we
have

PRI 1] =
«q 1GPp2,if p*P > |G| = p'Plogp,

G|*1og |G|, if |G| < p*logp.

Remark 2.1.3. Theorem 2.1.2 is new only for subgroups of intermediate size,

TA(G) — |g_|6

where p** > |G| > p'/?, otherwise it is contained in [35, Proposition 1], see also
Lemma 2.3.2 below, or in the bound of Theorem 2.1.1.

Remark 2.1.4. The method of proof of Theorem 2.1.2 also works without any
changes for T (G, H) with two multiplicative subgroups, similarly to Lemma 2.3.2.
Howewver, for subgroups of significantly different sizes the optimisation part becomes

rather tedious.

2.1.3 Previous Results

Recent results on T'(A, B) have been given by using the Cauchy-Schwartz inequality
on bounds for T(A). For this reason previous bounds for T(A, B) are symmetric.
We compare our result with that of Aksoy Yazici, Murphy, Rudnev and Shkredov
[1, Proposition 5]

A6
T(A) « — 4 A%
p

hence, by the Cauchy-Schwartz inequality,

A 9/4 B 9/4 3

10



CHAPTER 2. COLLINEAR TRIPLES

We see that for A = B the bound in Theorem 2.1.1 is stronger for p'/? < A < p*?3

2/3

and of the same strength for A > p*°. More generally, our new bound is stronger

when AB? > p?. We also compare our result to that of Murphy, Petridis, Roche-
Newton, Rudnev and Shkredov [27, Theorem 10],

A6
T(A) « " + ATPpl2,
hence, by the Cauchy-Schwartz inequality,
A® 7/4, 1/4 B 7/4, 1/4 3
T(AB) <« | — + A""p — + B""p + AB”.
D P2
We see that our bound is equal to the above result for A = B, and stronger otherwise.
We also mention the trivial bound for A < B
T(A,B) < A*B?.

It is clear that this comes from taking all possible choice for aq, as, as, b1, by and then
there is at most one choice for bs. It follows that our bound from Theorem 2.1.1 is
non-trivial as long as A2B > p. It is also clear that there is an obvious trivial lower

bound coming from the zero solutions. Hence

T(A,B) = AB.

2.2 Collinear Triples Over Subsets

2.2.1 Preliminaries

In this section we use ¢ = (.4 to indicate lines of the form y = cz + d. We also use

the notation
DIEDIDN
4 celF, delFy,

to indicate that we are summing over all lines of the form ¢ ,.

We mention the following results.

Lemma 2.2.1. Let A, BeF, with |A| = A,|B| = B and \,u € F;. Then

D vass(lap) = > tass(lham) = pAB
V4 V4
and

Z vaxs(lap)taxs(Crary) = A*B*> — AB? + pAB.
7

11
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Proof. The first result is clear since for each choice of (z,y,u) € A x B x F, there is

a unique choice of v € I, that satisfies y = uxz + v. The second result we have

D vass(lap)tass(Crans)
0

— > [{(c,d) e F2: by = cay +d, by = Acay + pd}|.
(a17a2,617b2)€A2X82
Now, we can see there are AB quadruples (ay, as, by, bs) € A* x B? which are given
by (a1,b1) = (A tag, p'by) which define p pairs (c,d) = (c,b; — cay). There are
AB(B — 1) quadruples with b; # p'by and a; = A~ 'ay which do not define any

pairs (¢, d), as they are parallel. The remaining
A’B* -~ AB(B —1) — AB = A*B? — AB?
quadruples define one pair (¢, d) each, as they are the non-parallel lines. O

We immediately have the following corollary.

Corollary 2.2.2. Let A,BeF, with |A| = A,|B| = B and \,n € Fy. Then

AB\”
Z (LAXB(EAa,;Lb) - 7) < pAB

¢
We need an analogue of [27, Lemma 9]. First we recall [27, Theorem 7], which

is dependent on incident results of Stevens and de Zeeuw [41].

Lemma 2.2.3. Let A, B c F, with |A] = A < |B| = B and let L be a collection of

lines in F2. Assume that A|L| < p®. Then the number of incidences I(P, L) between

the point set P = A x B and L is bounded by

I(P, L) « A**BY2|L)* + |P| +|L].

We define Ly, , to be the collection of lines that are incident to between N and
2N points, that is

LN)\,[J. = {5)\@7#1, elL:N< LAxB(g)\a,,ub) < 2N}

for A, € F7, and L the collection of all lines in ]FZ. We then have the following
lemma.

Lemma 2.2.4. Let A,B < F, with |A| = A < |B| = B, A\, u € F; and furthermore
let 2AB/p < N < A be an integer greater than 1. Then

pAB A3BQ)

|LN)\7‘L| « min (W, W

12
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Proof. Since taxp(€rayw) = N for taxs(Craum) € Ly, ,, and AB/p < N/2, we have
[/.AXB(E)\(Z,MIJ) - AB/]? > N — N/2 = N/2

Therefore, using Corollary 2.2.2,

N2
T|LNA7H| < Z (LAXB(K)\a,/Lb) - AB/p)2
taxB(xa,ub)elny ,
< Z(LAXB(K)\a,ub) - AB/p)2 (221)
l
< pAB.

Now suppose 2AB/p < N < 2ABY?/p'/2. From (2.2.1)

pAB  pAB 4A?’B  4A3B?
N2 < N2 X N2p 4
D N

|LNM| &

We now suppose N > 2ABY2/p'/? > 2AB/p. By (2.2.1) Ly, , < 4pAB/N* < p*/A.

We can now apply Lemma 2.2.3 to obtain
N|Ly,,| « A¥*BY2|Ly, [P*+ AB + |Ly, |-

We now observe when each term dominates, omitting the last term as it gives N « 1,

to get
A3B?  AB
|LN)\7H| < W + W
We now recall N < A, hence
A3B?
|LNA,p,| < W
This completes the proof. Il

We now need the following lemma.

Lemma 2.2.5. For A,Bc I, with |[A| = A < |B| = B and A\, p € F},

AB\?
Z vaxB(lap) (LAxB(&a,ub) — —) « p'?A2B%?,
b
l

13
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Proof. We begin by splitting our sum over a parameter A > 2AB/p which will be
chosen later. We also observe that ¢ 4xp(xa,mw) < A. We then find a bound on

AB\?
Z taxB(lap) <LAxB(€Aa,Mb) - 7)

LAXB(ga,b)gA

AB\?
+ > taxB(lap) (LAxB(f,\a,ub) - 7)

LAXB(ea,b)>A
LAXB(E)\a,ub)éA

AB\”
+ > taxB(lap) (mxs(&a,ub) - 7) — I+ IT+1II

LAXB(éa,b)>A
L.AXB(Z)\a,,u,b)>A

By Corollary 2.2.2 it is clear that I < ApAB. By Lemma 2.2.1 we also have

AB\?
IT < Z taxB(Lap) (A — —>

s ()= b
AB\?
< <A . —) DAB.
p
From Lemma 2.2.1, and using the identity X? = (X —Y)? + 2XY — Y2, we have

> LaxB(Cap)taxs ()

taxBlap)>A
LAXB(K)\a,ub)>A

AB\?
> > taxB(lap) (LAxB(f,\a,ub) - 7)

taxB(lap)>A
L.A><B(£)\a,,u,b)>A

3A%B?
By

LAXB(ga,b)
LAxg(ga’b)>A

AB\?
=Y sl (LAXMM,M)—?) _ 111

taxBEap)>A
tAxBCra,pb)>A

We can now use a dyadic decomposition and Lemma 2.2.4 to obtain

Z taxB(lap)taxs(au)’ < Z (2"A)* Lol

L.AXB(ea,b)>A k=0
LAXB(Z)\a,;Lb)>A

A3B?
k A\3
& I;)(Q A) B2
A3B?
<«

14
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Therefore,
AB\?2 3n2
Z taxB(Lap) (LAxB(g)\awb) — 7) & ApAB + I1 +
¢
We choose A = 2ABY2/p'/2 = 2AB/p to get
2 1/2
N / p*?BY/?
p p'?
« pl? A2 B3
and
AB\?
Z taxs(lap) (LAxB(f,\a,ub) - 7) &« p1/2A283/2.
¢
This completes the proof. O

2.2.2 Proof of Theorem 2.1.1

We can transform T) ,(A, B) to be the number of solutions of

by — pby by — pbs

a; — Xas  a; — Aay’
by adding an error term of O(AB? + A?B?) coming from the trivial cases where
a1 = Aag = Aag, or a; = Aag and by = pbs, or a; = Aas and b; = pbs. Then
collecting our solutions for each c € [F),

by — pby by — pbs

a;p — Aag Q] — A

and rearranging and relabelling, we obtain
by — cay = pby — Acay = by — Acas.
Therefore,

T)\“u(.A, B) = Z L,AxB(ga,b)LAxB(g)\a,ub)z + O(A33 + AZB2). (2.2.2)
V4

We use the result X? = (X —Y)?+2XY —Y? with X = 1 4xp5(lraw) and Y = AB/p
and see

Z L.A><B(€a,b)b./4><B(€/\a,,ub)2
y4

AB\”
= Z L.AXB(KCL,b) (L.AXB(KA(I,MZ?) - 7) (223)
7
2AB A2 B2
+ —— > tax(lap)taxs(Caum) — e Z taxs(lap)-
7 7

15
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We now apply Lemma 2.2.1 to obtain,

Z LAXB(ga,b)LAXB(g)\a,,ub)Q
4
(2.2.4)

AB\? A3B3 _243B2
) + +2A%B2.

D p

= tuxs(lap) (LAxB(f,\a,ub) -

l

Combining (2.2.2), (2.2.3) and Lemma 2.2.5 we complete the proof.

2.2.3 Consequences

We give some results that come as a consequence of Theorem 2.1.1, these are nec-
essary for our proofs of Theorem 4.1.1 and Theorem 4.1.2.
We define D, (A, B) to be the number of solutions to

(a1 — Aag)(by — pbe) = (az — Aay)(bs — puby) (2.2.5)

for (a;,b;) € Ax B, i =1,2,3,4, and A\, € Fy. We define T} (A, B) to be the

number of solutions of

(a3 — Aag)(by — pby) = (a1 — Aag)(by — pbs) # 0
and, similarly, DY (A, B) to be the number of solutions of

(a1 — Xag)(by — pba) = (a3 — Aay)(bs — pby) # 0.

We also define Df,(A,B) = D*(A,B), D1.1(A,B) = D(A, B) and similarly define
Tl*,l(Aa B) = T*(A7 B)
Lemma 2.2.6. Let A, B c F, with |A| = A< |B| = B and \,u € F;;,. Then
434
D3 (A B) « p'?A*B? + A5
7 p

Proof. We rearrange D (A, B) so it is the number of solutions of

by — _
1 — pby _ bz — by 2 0.
as — Aaqg Q1 — Aao

We define J(£) to be the number of quadruples (a1, a, by, b) € A? x B* with

b—,ub1
a — \aq

=¢. (2.2.6)

16



CHAPTER 2. COLLINEAR TRIPLES

We also let J,,(§) be the number of pairs (a;,b—!) € A x B for which (2.2.6) holds.
Then by the Cauchy-Schwartz inequality, we have
2

DAM ./4 B Z J Z Z Ja,b(g)

&eFy ¢eFE \ (a,b)eAxB

<SAB Y > Ja(9)

¢eFy (a,b)eAxB

=AB ) > T’

(a,b)e AxB ¢eF

Now
b— pb b— pb
Zjab —|{ al,ag,bl,b2)€A2><l32 oL = H2 7’50}|,
* a — )\al a — )\CLQ
EelFy
hence
D3 (A, B) < ABTY (A, B)
< AB Z vaxi(lap)taxs(Cra )’
¢
4134
« p?APB? 4 A—B
p
by (2.2.4) and Lemma 2.2.5. This concludes the proof. ]

The number of solutions for when (2.2.5) is equal to 0 is O(A*B*+ A3B3+ A1 B?)

and we therefore get the following simple corollary.

Corollary 2.2.7. Let A, B c F, with |[A| = A< |B| = B and \,u € F;. Then
A*B!
Dy, (A B) « p'PA3BY? + —— 1 A?B*.
p

We compare the bound of Lemma 2.2.6 to that of Petridis and Shparlinski [30,
Corollary 2.9],

48
D*(A,A) « — + AB/2,
p

It is clear for the case A = B that our bound is stronger for A > p'/2. For A < B,
by the Cauchy-Schwartz inequality, [30, Corollary 2.9] gives
AABY pl3/apa

. I 1 AW/ARI3/A

D*(A,B) «

Again our bound gives stronger results for AY2B%? > p.

17
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2.3 Collinear Triples Over Subgroups

2.3.1 Preliminaries

We require some previous results. We note that we use Lemma 2.3.1 only for G = H,
however we present it and also some other results in full generality as we believe
they may find several other applications and this deserves to be known better.

The first one is a result of Mit’kin [25, Theorem 2| extending that of Heath-Brown
and Konyagin [17, Lemma 5], see also [19, 38] for further generalisations.
Lemma 2.3.1. Let G and H be subgroups of F; and let Mg and My be two complete

sets of distinct coset representatives of G and H respectively in Fy. For an arbitrary

set ©@ € Mg x My such that

p3
< mi s TS
o1 < i {174, e |

we have

Y, W@y eGxH : ur+ oy =1} < (IGI[H]|OF)".

(u,v)ed
Note that there is a natural bijection between Mg, M4y, and some subsets of the
factor groups /G and F/H. So, one can think of © as a subset of F}/G x F»/H.

Clearly, the trivial bound on the sum of Lemma 2.3.1 is

Z {(x,y) € G x H : ux +vy = 1}| « min{|G|, |H|}|O)|.
(u,v)e®
Hence if, for example, G = H, then Lemma 2.3.1 always significantly improves this
bound.
We recall from (2.2.2) and (2.2.3)

3 3
145 AP @as
AlIB[?
= 3 anCan) (camltonn) =PI ) 00APIBE + LABE).
(a,b)elF2 p
(2.3.2)

Finally, we need the following bound for small subgroups, which is a slightly
simplified form of [35, Proposition 1] combined with (2.3.19).

Lemma 2.3.2. Let G be a subgroup of F% with |G| = |H| and |G||H| < p. Then
Tau(G.H) « |GF[H]log ] .

18
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2.3.2 Initial Reductions

The argument below follows [35, 36].
First of all, note that Lemma 2.3.2 implies the required result provided |G||H| < p
while Theorem 2.1.1 implies it for |G| = p?/3

So it remains to consider the case
/3 - |g| - pl/Q

Let A > 3 be a parameter to be chosen later. Using Corollary 2.2.2 and (2.3.1),

we obtain

I(J|6

TA(G) — <GP+ AIGPPp+ W, (2.3.3)

where
YR}
W= > g (lap) | tg (lars) = =)
(a,b)eF? p

Lg( )>A

Clearly, the contribution to W from lines with ab = 0, is at most |G|* as in this

case (g ({yp) = 0 unless a € G or b e G, in which case g (¢4) = |G|. Therefore,

>, o (lap) (Lg (€ane) — %) =0(l9")-

(a,b)eF?
ab=0

Thus
W =w*+0(g]") (2.3.4)

where

. G2\
W* = 2 tg (Lap) | tg (Lapp) — — |
(a,b)e(F})? P
Lg(ﬂaﬁb)>A

which is the sum we now consider.

2.3.3 Sets O, and 9,

Let, as before, Mg be a set of distinct coset representatives of G in Fy. Take another

parameter 7 > A and put
O, = {(a,f) e MG : [{(z,9)€G® : az+ Py =1} =7}

19
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In other words, O is the set of (o, 8) € M for which the lines
Log={(x,y)eF) : ax+ Py =1} ={_,5-15- (2.3.5)
have the intersection with G2 of size
tg (lap1,-1) = 7.

In particular,

O, ={(a,B) e M : 1g(Lap) =T} (2.3.6)

By Lemma 2.3.1, we have |0,|7 « (|G||©,])*® provided

G*|O,| < p° (2.3.7)
and
0-] < [G/*. (2.3.8)
We also define the set
Q, = {(a,B) e (F2)” : 1g(Lap) =7}, (2.3.9)

Comparing (2.3.6) and (2.3.9), we see that we can think of ©, as a union of cosets
Q./G. Clearly, we have

19, = |G)?|6-| « |G|*T (2.3.10)

provided the conditions (2.3.7) and (2.3.8) are satisfied.

The condition (2.3.8) is trivial to verify. Indeed, since |G|*> > p, we have
0;] < [Mgl* = (p —1)%/|G* < |G

and thus (2.3.8) holds.
We now show that the condition (2.3.7) also holds for the following choice

A = c|G]>p~*2, (2.3.11)

with a sufficiently large constant ¢ (recalling that |G| > p'/? we see that the condition
A > 3 is satisfied).

Lemma 2.3.3. For A given by (2.3.11) the bound (2.3.7) holds.

20
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Proof. Suppose, to the contrary, that
0:| > p’/IGI". (2.3.12)

Whence, the number of incidences between points of P = G? and the lines £, 5 as
above with (o, ) € Q; is at least

Q-7 = |GP|O-|7 > p*|G|?A. (2.3.13)

On the other hand, by a classical result which holds over any field (see, for exam-
ple [8, Corollary 5.2] or [42, Exercise 8.2.1]) the number of incidences for any set of
points P and a set of lines Q, is at most |Q,|"/2|P| + |Q.|. Hence

Q-7 < |Q-"*1P| + Q-] (2.3.14)

and we obtain

Q. |7* « [P]* = |G|". (2.3.15)
Combining (2.3.13) and (2.3.15), we derive

PG| A < Q. « |G < [G]PA (2.3.16)

Recalling that |G| > p'/2, we see that for A given by (2.3.11) with a sufficiently
large constant ¢ the inequalities (2.3.16) are impossible, which also shows that our

assumption (2.3.12) is false and this concludes the proof. ]

2.3.4 Concluding the Proof of Theorem 2.1.2
We now define
R. = {(a,8) € (F})" : max{ig (Lap).ig (Lars)} = 7}

By Lemma 2.3.3, for the choice (2.3.11) of A we have the desired condition (2.3.7)
for any 7 > A. Hence, the bound (2.3.10) also implies that

IR:| = [GPe;] < IG|'T7°. (2.3.17)

We see from (2.3.5) that there is a one-to-one correspondence between the lines
Loy, (a,b) € (IF;)2 and the lines L, g, (o, B) € (IF;)Q. We now define

T, =€ A, j=0,1,...,J,

where

J = [log(|G]/A)] -
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Note that due to the choice of A and the condition |G| = p'/? we have
Tj Z To = A > |g|3p_3/2 Z |g|2/p7 j = 07 ]-7 teey J

Then, recalling also the bound (2.3.17), we conclude that the contribution to W*

from the lines with 7,41 = g (¢s5) > 7; is bounded by
R: | Tj1 (41 + |Q|2/p)2 <R |7} < |G| (2.3.18)
Summing up (2.3.18) we obtain
W* < JIGI* « |G]*1log|G|.

Substituting this bound in (2.3.4) and combining it with (2.3.3), we obtain

_lor
p

TA(9) + 0 (I61°p™ + |G| " log |])

in the range p?® > |G| = p'/?, which concludes the proof.

Remark 2.3.4. In principle, a stronger version of the classical incidence bound
which is used (2.3.14) may lead to improvements of Theorem 2.1.2. However, the
range where such improvements are known is far away from the range which appears

in our applications, see [{1].

2.3.5 Consequences

Given two sets U,V < F,, we define E*(U, V) to be the multiplicative energy of U

and V), that is, the number of solutions to
U1V = UV2, Ul,UQEZ/{, Ul,UQEV.

For U =V we also write

EX(U) = EX(U,U).
It is easy to see that for any subgroup of G, < I} and A, u € F we have
TauG H) = >, EX(G—Ag, H —puh)+O(IGPH]).

(9:n)EGxH (2.3.19)
= |GI[H[E*(G — A\, H — p) + O(IGI’|H]),

where the error term O(|G|*|H|) (which is obviously negative) accounts for zero
values of the linear forms in the definition of T ,(G,#). It follows that bounds on
the number of collinear triples over multiplicative subgroups leads us to new bounds

of multiplicative energy over shifted subgroups.
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2.4 Open Problems

A natural extension of considering the number of collinear triples is to instead con-

sider the number of collinear quadruples. One can consider this as the fourth moment

Q(A,B) = Z vaxs(lap).
¢
Similarly, one can reformulate this, similarly to what we have done to collinear

triples, to be the number of solutions to

a9 — aq bg—bl ay — aq b4—b1
= and =
as — aqp bg—bl a9 — a1 bg—bl

where a; € A and b; € B. One can look at [27, 29] for recent bounds on collinear
quadruples Q(A, A) = Q(A). Here we ask the same question as we have for T'(A, B)
of whether we can give new bounds for Q(A, B) where A and B are sets of different
sizes. Furthermore, we can also consider the generalisation @, ,, (A, B) in a equivalent
way to 1) ,(A, B).
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A Low Energy Decomposition of Subsets
of Finite Fields

3.1 Introduction

3.1.1 Set Up

Let F, denote the finite field of ¢ elements of characteristic p.

Given two sets U,V < F, we define their sum and product sets as
U+YV ={u+v:ueld,veV} and U-V={w:uel,veV}
We define the additive and multiplicative energy of a set as follows

EY(U) = #{(u1, ug, uz, ug) € U s uy + ug = ug + uy}

EX(Z/{) = #{(ul,u2,u3,u4) € Z/[4 TULUY = U3U4}.
We mention the interesting sum-product problem which suggests that at least one
of the sets U + U and U - U must be large. This problem has been studied exten-

sively in recent years, coming initially from work of Bourgain, Katz and Tao [8].

There is a natural relation to the sum-product problem to bounds on additive and
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multiplicative energy. For example, by applying the Cauchy-Schwarz inequality one

can see that

2
EXU) = ,

and similarly

U
ETU) = | .
@) U+ U|

It follows that strong upper bounds on energy results correspond to strong lower
bounds on the relevant sum-product estimate and vice-versa.

Balog and Wooley [2] proved that in finite fields the set ¢ can be decomposed
into a disjoint union of subsets V and W such that E7(V) and E*(W) are both
small. These results have been improved on by Konyagin and Shkredov [20] and
Rudnev, Shkredov and Stevens [33].

Our main results are an extension of [31], which themselves are a generalisation

of the Balog-Wooley decomposition [2, Theorem 1.3].

3.1.2 Notation

For a € F, and a rational function f € Fy(X) we use 75} ,,(f, a) to denote the number
of solutions to f(u) + f(v) = a, (u,v) € U x V. Similarly, we use r;;,,(f,a) to
denote the number of solutions to f(u)f(v) = a. If U =V we write 1 (f,a) and if
f(X) = X we write 17 ,,(a).

For this chapter we use the convention that capital letters in italics, such as
U, will be used to represent sets. Corresponding capital letters in Roman will
denote their cardinalities, such as U = |U|. We also use X and ¥ to denote the
sets of multiplicative and additive characters respectively, with A* indicating all
non-principal characters, and we will use the lower case y and i to represent their

respective characters.

3.1.3 Main Results

Here we extend the result of [31, Theorem 1.1] to multiplicative energy and a hybrid

of additive and multiplicative energies.
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Theorem 3.1.1. For any set A < F} and any rational function f € F(X) of degree
k which is not of the form f(X) = rg(X)¢X* where d|q — 1 and d = 2, there exist
disjoint sets S, T < A such that A=S v T and

X X AS
max{E"(S), E*(f(T))} <k M4
where
o g2 A4/5
M(A) = min {Al/?(log AV 25 (log A0 | °

Theorem 3.1.2. For any set A < F} and any rational function f € F,(X) of degree
k which is not of the form f(X) = g(X)P — g(X) + AX + p, there exist disjoint sets
S, T < A such that A=S uT and

3

max{E*(S), ET(f(T))} «& M

Theorem 3.1.3. For any set A < F} and any rational function f € F,(X) of degree
k which is not of the form f(X) = rg(X)¢X* where d|q — 1 and d = 2, there exist
disjoint sets S, T < A such that A=S U T and
+ x AP
max{E*(S), E*(f(T))} <& M)

1/2+€
2+¢ for

It is simple to check that the above results are all non-trivial for A > ¢
any fixed € > 0.

We also present the previous result of [31, Theorem 1.1]. It has the same condi-
tions as Theorem 3.1.2 and gives the bound

3

max{E"(S), ET(f(T))} <& W

We mention that it was our hope that these results would lead to further applications
in bounds of character sums, as in [31]. However, at this stage we were unable to
provide such applications due to the restrictions placed on the exceptional functions.

Despite this, we still hope that such applications will be possible.

3.2 Energy Bounds

3.2.1 Preliminary Results

We give a series of lemmas, the proofs of which follow those of [31] with multiplicative

characters replacing additive characters and other equivalent substitutions.
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Lemma 3.2.1. Let (x,v) € X* x U and x with order d and sets U,V Fy. For
any rational function f € Fy(X) of degree k, such that for any integers r and X f is
not of the form f(X) = rg(X)?X? if ¢ is trivial, we have

SO 0 (aw)h(uv) < A/TUVq.

uel veV

Proof. Let

2= > x(f(uv)y(uv).

uel vey
Then,

NI Y I I (T

zeF, T(erTd ueld vey
1
== Y D@ Y ) Y ).
o?fi)s-Td €l uelU veY

By the Weil bound we have

1/2
5 < qT > @)Y ).
TeX* |ueld veY
ord 7|d
Using the Cauchy-Schwarz inequality we obtain
2 [T [ 2T
TeX* |uel veyY
ord 7|d
) 1/2 , 1/2
<| 2|27 PRI
TeX® |ueld TEX® |veV
ord 7|d ord 7|d

< (PPUV)Y2,
O

Lemma 3.2.2. Suppose U,V,Y,Z < F}. For any rational function f € F,(X) of
degree k which is not of the form f(X) = rg(X)?X* where d|qg — 1 and d > 2, the

number of solutions J to the equation
flu) =yz  (w,0,y,2) EUXV XY x Z

satisfies the bound
uovyZz

P O:((UVY Zg)'?).

J <
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Proof. Using the approximate orthogonality of multiplicative characters, we have

T Y Y ),

(u,0,9,2)EUX VXY X Z q- XEX*

Re-arranging and separating the contribution from the trivial character

DIxt D x|

yey Z2€EZ

L Y YD)

¢—1 ¢—1 XEX* | (u,v)eld xV

Now by Lemma 3.2.1 with the trivial additive character, we have

uvyz vUVq _ _
S 3 x| | XY
q q XEX* |ye)y 2€Z
VUV
L q1/2 . (q2yz)1/2
This completes the proof. O

Lemma 3.2.3. Let A, S,U < F;. Let u > 0 be such that rg , .(x) = u for all

x€U. Let k be a fixed positive integer and suppose also that

kASU
T=2 )

L)

Then, for any rational function f € F (X) of degree k which is not of the form
f(X) =rg(X)*X* where dlp — 1 and d = 2, we have

AUSq

uT2 :

#{exelF,:rj(f,x) =1} <y

Proof. Our proof follows [31, Lemma 2.3] where here we replace ry(f,z) with
1, (f, ). Define

R={zelF,:r;(f,x) =T}
Clearly,

TR i(f.r) ={(z.y.2) e R x U x U -z = f(y)f(2)}-

TER

Now rg 4-:(2) = u for z € U, hence

#H(2,y,2) e RxU xU >z = f(y)f(2)}
<u ' {(v,w, ) eSS X AX R x U x = fly)flow™)}.
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Therefore, we have

TuR < #{(v,w,2,9) e S x Ax R xU :z = f(y)f(vw™)}
<k-#H(v,wz,2)eSx AxRx fU) 2= zf(vw 1)}

We then apply Lemma 3.2.2 to obtain

A
TuR < i ];SU + OR((ARSU¢)"?).

The assumed lower bound on 7 implies
TuR <, (ARSUq)"?,
This concludes the proof. L]

Lemma 3.2.4. Let Ay,..., A, € F;. Then

E* (O AZ-> < (i EX(AZ-)W) .

Proof. We assume the sets Ay, ..., A, are disjoint. Then using the Cauchy-Schwarz

inequality twice we have,

o (le Ai) . Z rj\nAj (@) 2,4, (%)

F/AN
1=
)
N
&
i
<
} X
RS
=
e
N——
S
N
=
X
x>
&
&
[\
N——
5

1,j=1 \z€F,
n
ij=1 \x€F, ’ !

A
Y Y e

This concludes the proof. ]
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Lemma 3.2.5. Let A c F,. Then for any rational function f € F,(X) of degree k
which is not of the form f(X) = rg(X)4X* where d|p — 1 and d > 2, there exists
U < A of cardinality U such that

EX (A)1/2

U> Al2(log A)TA

and

AU (log A)'/2 + AU3q(log A)S

E*(fU)) < oy

Proof. Clearly,

EX(A) = ) ri()”.

zeA-A

We dyadically decompose this sum and define the set
S*={reA-A:p<ri(z)<2p}

with some integer 1 < p < A where p is a power of 2, and such that

p°S » EX(A) (3.2.1)
where |S*| = S. Consider
P={(a,b)e Ax A:abe S™}.
Now we have
pS < P < 2pS. (3.2.2)

We then make another dyadic decomposition of S to find a large subset supported

on vertical lines. That is, we define
A, ={y: (z,y) € P}.
Therefore, for some s there exists a dyadic set
V={reAd:s< A, <2s}

such that

S
> L

% :
5 logA  logA

(3.2.3)
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We now separate into two cases. First, suppose

S

Z .
v (log A)1/2

Then for any x € V), there exist
Y1, Y2, .., ys€ A, < A
such that (z,y;) € P for all 1 <i < s. Therefore
TY1, LYo, ..., xYs € S™.

It follows that 7 (x) = s for every z € V and in this case we define

SXV_Afl
U=V and u=s. (3.2.4)
Now suppose
s
V< (log A2

We now consider the point set
Q= {(z,y)eP:xeV}

As before, for any x € V there exist at least s values of y € A, < A with (z,y) € P.
Hence @ = V's.

For any y € F, we define

Clearly,

Therefore, for some t there exists a dyadic set
W={ye A:t< B, <2t}
such that

Wit >

> . 3.2.5
log A~ logA ( )
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Now since Q@ < V x A we also have ¢t < V. From (3.2.5) and our assumption on s
we have

Vs - V2
log A~ (log A)Y/2’

WV =Wt>»

hence

Vv t
W > . 3.2.6
> Tog D)2 = (log AP (3.26)

Now, by (3.2.5) and (3.2.3)

Vs pS

t .
we> log A > (log A)?

(3.2.7)

Now, let y € W. Then there exist x1,...,2; € A such that (x;,y) € P for all
1 < i < t. Therefore,

1Y, ..., Ty €S.

Then rg 4-1(y) =t for every y € W.
We then take

u=w and u =t. (3.2.8)

It is clear for both (3.2.4) and (3.2.8) we have U ¢ A,

u
— 2.
U > (log )17 (3.2.9)
and
pS
2.1
ul » (log A? (3.2.10)
where rg , i (z) = u for all z € Y. Multiplying (3.2.9) and (3.2.10) and using (3.2.1)
we obtain
2 pS E*(A)
. 211
v (log A)>/2 7 A(log A)7/2 (3 )
We now need a bound on E*(f(U)). We have
EX(fU) = > rian@) < D) rilf, o) (3.2.12)

z€lFy €l

We define the set

Ro = {xEIFq:TZj(f,a:) <2kASU}

uq
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and for J = [log A/log 2], we define the sets

kASU L ARSU
Rj:{xelﬁ'qzw w <r,f,(f,:1:)<23+1—},jzl,...,J.

uq
Since,
> o) = U
z€lFy
we have
kEASU kASU?
D)’ <2 Sir(f.r) « . (3.2.13)
TERQ uq z€F, uq
Fori=1,...,J, we apply Lemma 3.2.3 with
A
- o kSU
uq
to obtain
A
Z i (f, ) < (27)°R; <x S2Uq. (3.2.14)
:UGR]' u
Combining (3.2.13) and (3.2.14) we get
ASU3  ASU
BX(fU) <o =, =+~ T1og A. (3.2.15)
Now, multiplying (3.2.10) with (3.2.11) and applying (3.2.1), we obtain
2Q2 X
s, PS5 SE*(A)
ulU” » (log A)772 > (log A)11/2
which gives
S U3(log A)M/?
— K 3.2.16
w S TTEAA (3:2.16)
Also, squaring (3.2.10) and applying (3.2.1)
2 Q2 X
2772 ) SE*(A)
uwU* » (log A)? > (log A)?
which gives
2 5
S Ulog A7 (3.2.17)

u? Ex(A)
Applying (3.2.16) and (3.2.17) into the first and second terms of (3.2.15) respectively
we obtain
AUSq(log A)1/2 + AU3q(log A)®
Ex(A) '
This concludes the proof. O

EX(fU)) <k
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Corollary 3.2.6. Let Ac F,. Then for any rational function f € F,(X) of degree
k which is not of the form f(X) = g(X)? — g(X) + AX + u, there exists U < A of
cardinality U such that

Ex (A)l/Q

u> A2 (log A)7/4

and

AU (log A)*/2 + AU3q(log A)S
EX(A) .

ET(fU)) <k

Proof. We follow the proof of Lemma 3.2.5, however we replace E* with E* in
(3.2.12), and then use analogous results following from [31, Equation 2.12]. Explic-

itly, we have

ET(fU)) = Z T}r(u)(iﬂ)z < Z 5 (f, @)% (3.2.18)

z€ly z€l,

We define the set

Ry = {:Uqu:rzj(f,x) <2kASU}

uq
and for J = [log A/log 2|, we define the sets

kA Ak
R;rz{xqu:ZJ SU<TJ(fa$)<2j+lﬂ},jzlw--w]-

uq uq
Since,
> rilfix) = U
€l
we have
kEASU kASU?
D) rlfe) <2 D ri(fir) « . (3.2.19)
TeERT x€Fy uq
For i = 1,...,J, we apply [31, Lemma 2.3] (which is the additive version of our
Lemma 3.2.3) with
Y AkSU
uq
to obtain
ASU
rp(fe) < @2r)RE < = ‘. (3.2.20)
u

+
aceRj
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Combining (3.2.19) and (3.2.20) we get
ASU?  ASUq
S
uq u
Applying (3.2.16) and (3.2.17) into the first and second terms of (3.2.21) respec-

tively we obtain

ET(fU)) <

log A. (3.2.21)

AUSq Y (log A)V/2 + AU3q(log A)°
EX(A) '

This concludes the proof as the first result is given in Lemma 3.2.5. O

EX(fU)) «x

Corollary 3.2.7. Let Ac F,. Then for any rational function f € F,(X) of degree
k which is not of the form f(X) = rg(x)4z* where dlp — 1 and d > 2, there exists
U < A of cardinality U such that
+(AYV1/2
U > &
A2(log A)7/A

and
AUSq Y (log A)1V2 + AU3q(log A)°
E*(A) '

Proof. We follow the proof of [31, Lemma 2.5], however we replace E* with E* in

EX(f(U)) <k

equation there (2.12) and the proceed as in our Lemma 3.2.5. Explicitly, from [31,
Equation (2.11)]

ET(A)
U2 > W (3222)

and from (3.2.15)
ASU3  ASUq

+ >— log
uq

EX(fU)) < A.

Again from [31], we have

§ U3(10g A)11/2

-~ < £+ (A) (3.2.23)
and
S U?(log A)®
Substituting into (3.2.15) we obtain
AU (log A)'/? + AU3q(log A)S
EX(f(U )
(Fa0) < =
This concludes the proof. ]
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3.2.2 Proof of Theorem 3.1.1

Proof. Our strategy is to construct nested sequences of subsets
F=Uc---cU,

and
V,c---cV,=A

where the disjoint union U; b V; = A. We suppose E*(V;) > A3/M(A) for some i.
By Lemma 3.2.5 there exists W, < V; such that

Ex(vi)l/Q A

Ve Ui eg vy MA P (log A

and

ViWEq(log Vi)"/2 + ViW2q(log V;)®

EX(fOWVi) <&

Ex(v) (3.2.25)
M(A) [ ViWWE(log A)'1/2 -
L 23 ) ( % ((;g ) + V;VV;’QGOgA)GS) )
It is clear that we have
Vi « WM (A)Y?(log A)74. (3.2.26)

We now define V;,; = V;\W,. Hence, U;1 = U; b W,. Tterating, we have
Uppr = | | Wi
j=1

We note that we have a uniform lower bound on W, and so V; is strictly decreasing.

Hence, we can reach the desired result
Vi < A%/ M(A),

at which point we terminate the sequence.
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Now, by Lemma 3.2.4, (3.2.25) and (3.2.26)

m—1 1/4 n
E*(f Un))* = <EX (U f(Wz)>> < Z EX(fOW)Y

i=1
m—1 - 6 11/2 14
3 (0 (I )

m—1 M(A) V;Wlﬁ(log A)11/2
A3 q

1/4
AT o A1) )

i=1

Clearly, A > V; > W, hence V;W5 < A3W} so

q A3 Z Wi.

i=1

11/2 3/2 3174\ 1/4m—1
Ex(f(um))1/4 &y (M(A)(logA) / + M(A) / Q(lOgA) / )

Since the W, are disjoint we have

m—1

W, < A.

i=1
Hence,

ATM(A)(log A)1/2
q

EX(fUyn)) <k + AM(A)*?q(log(A))*/4. (3.2.27)

We now choose M (A) as in the statement of Theorem 3.1.1 to balance (3.2.27) and

AS
M(A)

E*(Vn) <

This completes the proof. O

3.2.3 Proofs of Theorems 3.1.2 and 3.1.3

Proof. The proofs follow that of Theorem 3.1.1 but Corollary 3.2.6 and Corollary
3.2.7 are used in place of Lemma 3.2.5 respectively. Il

3.3 Open Problems

As mentioned in the beginning of this chapter, the hope in finding our bounds was
to be able to give applications to certain types of character sums. For example,
the authors in [31] are able to give some bounds on certain types of additive and

multiplicative character sums, mixed character sums and incomplete bilinear sums
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of Kloosterman sums. Unfortunately we have been unable to provide similar appli-
cations for natural choices of character sums, so here we leave the challenge for the
reader to find some applications to some interesting sums.

We also leave the question of whether we can consider a slightly more general

problem of
max{E*(S), E*(f(T), 9(T))

where = = {+, x}, and f and g¢ are suitably chosen functions. This was raised in
[31] and we extend it by taking any choice of additive or multiplicative energy. [31]
also leaves a question on bivariate polynomials which we encourage the reader to

consider.
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Multilinear Exponential Sums

4.1 Trilinear and Quadrilinear Exponential Sums

4.1.1 Set Up

We define the weighted trilinear exponential sums over sets X, Y, Z c F,

T(X, Y, Z;p,0,7) = Z Z Z Pay0s.2Ty,- €plazyz),

TEX yeY 262

where a € IF; and pg ), 042, Ty are 2-dimensional weights that are bounded by 1.

Similarly, we define the weighted quadrilinear exponential sums over sets
W, X,V Z cF,

T(W7X7y7z;,l97p70-77—)

- Z Z Z Z ﬂw?m’ypw71'7zo-w»yvz7—xzy7z ep(awajyz)7

weW zeX ye)Y zeZ

where a € F* and Uy zus Pwaz Owazs Tewe are 3-dimensional weights that are
p »TyY s Ly2) Y20 'Y,

bounded by 1.
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4.1.2 New Results

Using Lemma 2.2.6, which comes as a consequence of Theorem 2.1.1, we provide the
following new bounds on trilinear and quadrilinear exponential sums.

Theorem 4.1.1. Let X, Y, Z cF, with |X| =X, |[Y| =Y, |Z|=Z, and X 2 Y >
Z. Then,

T(X, y’ Z; 0,0, 7_) & p3/16X13/16Y7/8Z7/8.

We compare the above the result with previous bounds in the following section.
As an example, in the special case where X = Y = Z the bound from Theorem
4.1.1 is stronger than previous results for p'/? < X < p*/?.
Theorem 4.1.2. Let W, X, Y, Z c Fy with [W| =W, |X| = X,|Y| =Y, [Z]| =Z
and W =X =Y = Z. Then,

T(W, X, y7 Z, ,197 0,0, 7_) & p3/32W29/32X15/16Y15/16231/32 + p1/32W29/32XY15/16Z
+ WXy Z39/% 4 p VW XY Z + WXY T2,

Again, we give an example of when our bound is non-trivial by considering the
special case W = X =Y = Z and note that the bound from Theorem 4.1.2 is
stronger than existing bounds for p'/2 < W < p**.

In the proof we also compare it to the classical bilinear bound in the case of

one-dimensional weights. In this context it also is non-trivial for p'/2 < W < p'¥/24.

4.1.3 Previous Results

Trilinear sums have been estimated by Bourgain and Garaev [5]. Variations and
improvements have been made since, see [3, 4, 6, 16, 28]. More recently Petridis
and Shparlinski [30] have given new bounds on weighted trilinear and quadrilinear

exponential sums. We compare our bound on trilinear sums to [30, Theorem 1.3]
T(X, Y, Z;p,0,7) « p/SXTY /3272932 | Xy 73/4,

We see that our new bound, Theorem 4.1.1, improves that of Petridis and Shparlinski
[30] for XY/2Z/2 > p. Our bound from Theorem 4.1.1 is stronger than that of the

triangle inequality
T(X,V,Z;p,0,7) K XYZ
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for XY?/32%/3 > p. Similarly, it is also stronger than the classical bound on bilinear

sums (with one-dimensional weights), from Lemma 4.1.3,
T(X,Y,Z;p,0,7) < pPXPY2Z

for XY95Z-25 < p. Letting X = Y = Z we see that under these conditions
Theorem 4.1.1 is stronger than previous bounds for p'/? < X < p*9. We give
another example for when our bound is non-trivial. Setting X = p?3,Y = Z = p?/°

we obtain from Theorem 4.1.1
T(X7 y7 Z7 P7 g, 7—) < p343/240 == XYZp—3/80.

One can easily compare this with results from previous bounds and see that our new
bound is stronger. We also mention that our bound is strongest for X much larger
than Y. We finally mention the bound on unweighted trilinear sums due to Garaev
[16]. We note that when our bound is stronger than that of Shparlinski and Petridis
[30], it also outperforms that of Garaev [16].

Similarly, we also compare our results on quadrilinear exponential sums to [30,
Theorem 1.4]

TON, X, Y, Z;09,p,0,7) « p/OWWAS(Xy)6L64 73132 L ywxy™Bz  (4.1.1)

as well as that coming from the classical bound on bilinear sums (for one-dimensional

weights),
TON, X, Y, 2,9, p,0,7) < p?WY2X'2y 7 (4.1.2)

For W = X =Y = Z Theorem, 4.1.2 is stronger than the classical bound and
(4.1.1) for all p'/2 < W < p'¥?4 in this range it is also stronger than the bound
of Petridis and Shparlinski [30]. We give another example for when our bound is
non-trivial. Setting W = p*3, X =Y = Z = p*/® we obtain from Theorem 4.1.2

TW,X,,Z;0,p,0,7) « p'1%® = WXY Zp~7*,

We also mention that our bound is strongest for W much larger than X.

4.1.4 Preliminaries

We recall the classical bound for bilinear exponential sums, see [5, Equation 1.4] or
[16, Lemma 4.1].
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Lemma 4.1.3. For any sets X, Y € F, and any o = (z)zex, B = (By)yey with

Z |, |? = A and Z |5y|2 = B,

TEX yey

we have

3 3 0.8, ep(zy)| < /pAB.

zeX yey

We define N(X, ), Z) to be the number of solutions to

xl(yl - Zl) = 5E2(y2 - 22)

with 21,29 € X, y1,92 € Y and z1, 29 € Z. We now recall [30, Corollary 2.4].
Lemma 4.1.4. Let X, Y, Z = F* with |X| = X, |Y| = Y, |Z| = Z. Then

X2y?7?
N(X,V,2) « —— + X*PY32 732 4 MXYZ
p
where M = max(X,Y, 7).
We also recall [30, Lemma 2.10].

Lemma 4.1.5. Let n = 2. For any additive character ¢ of F,, sets X; < T, with
|Xil = Xi and weights w; = (w;(X))xern such that w;(x) does not depend on the ith

coordinate of x = (x1,...,%,),

max |w;(x)] < 1
xely

fori=1,...,n, and

Tp(Xy, ..., Xpwy, ..., wy,) = Z Z w1 (X) . w(X)p(xq ..y,

r1EX] Tn€Xn
we have

2n71

|T¢(X1,...,Xn;wl,...,wn)|
<XPTM X X)TTTE Y Y

T2,Y26X Tn,YnEXn

Z P(x1(ze —y2) - (Tn — Yn))| -

T1EX]
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4.1.5 Proof of Theorem 4.1.1

Our proof follows [30, Theorem 1.3] but we use Lemma 2.2.6 to give a new bound
on trilinear exponential sums.

By Lemma 4.1.5 we have

T(X7 y? Z; p7 0-7 T)4

< X?2y3 72 2 Z

Il,CEQEX 2172’262

e

yey

y(z1 — x2)(21 — 22))‘ .

Now the number of quadruples which satisfy (x; — x2)(z1 — 22) = 0 is at most

O(X?Z), in which case the inner sum is equal to Y. Hence,

T(X,Y,2;p,0,7)"

« X2y3 72 Z 2

T1,02€X 21,2062
$1#$2 21¢Z2

Z y(r — 29) (21 — 2))| + XY1Z3

yey

We now collect the quadruples (1, s, 21, 22) € X? x Z% with the value of the product
(1 —22)(21 — 22) = A€ Fy. And we let J(A) be the number of such quadruples for

each A. Hence,
T(X,Y, Z;p,0,7)

« X2y372 Z

AeFp

DTN ep(yN)| + XY ZE.

yey

Applying the Cauchy-Schwartz inequality we obtain

Z e,(yA)

yey

2
T(X,V,Z,p,0,7)0° « XY Z'K Z 4 XSS

AeF,

where

K=> JN\)?

AeFj

It is clear that
2

2

el

Z ey(yA)

yey

Therefore,

T(X,Y,Z;p,0,7)8 « pXYZ'K + X8Y825.
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Now K is simply D*(X, Z), hence by Lemma 2.2.6
T(X, Y, Z:p,0,7)8 <« p*2XBRYTZ7 4 X8YT 78 4+ X386, (4.1.3)

We now compare our result with the classical bound on bilinear sums, Lemma 4.1.3,

combined with the triangle inequality to obtain

|T(X7 yv Z; P, 0, T)|2 < XY Z Z Z 02,21 02,2 Ty,21 Ty, 22 ep(axy(zl - 22))
21,2262 z€X yeY (414)

< p1/4X3/4Y3/4Z,
where we have taken the bilinear bounds over z and y. For our bound to be stronger
than the inequality in (4.1.4) we need

P16 X 13/16y /8 7T/8 < 1/2 x3/2y73/2 72
or equivalently

X1y 1/8 7-1/8 < 1/16.
Now for XY?2Z 2 < p we have
XYZ:3/4 < p3/16X13/16Y5/829/8 < p3/16X13/16Y7/BZ7/8.

Hence our first term dominates our final term over the non-trivial region. Further-

more, when our bound is trivial, i.e. for XY?Z72 > p,
T(X,Y,Z;p,0,7) « p/* XY Z « pPOXBNOYTBZIE L Xy,

This concludes the proof.

4.1.6 Proof of Theorem 4.1.2

We use Lemma 2.2.6 in the proof of [30, Theorem 1.4] to give a new bound on
weighted quadrilinear exponential sums. As in the proof of [30, Theorem 1.4], after

permuting the variables, we have
T(W7 X’ y7 Z) /197 p? 0-7 7-)8
< (WXY)ZT Y T Tl (V) ep() + (WX 2)PY7, (4.1.5)
NEF; )\EFP
where I()\) is the number of triples (1, 9, 2) € X? x Z with z(w; —ws) = A, J(u)
is the number of quadruples (wy, wo, y1,y2) € W? x Y? with (wy — ws)(y1 — ) = i
and 7, is a complex number with |r,| = 1. It is clear that
Wiy
P

ST J(u)? = DWW, V) « pPWRY S 4

pefy
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We now use Lemma 4.1.4 to obtain
4 479

72X Z
DI« + Z3PX3 4+ 7XP « + X373,
AeF, p p

We now apply the classical bound for bilinear sums, Lemma 4.1.3, to (4.1.5) and

obtain
T(W7X7y72;197p70-77-)8
W?2y?
& (WXY)GZ7 <p1/4w5/4y3/2 + W) (p1/2X3/QZS/4 + X2Z)

+ (WXZ)3Y".

This concludes the proof.

We also compare the above bound with the classical bound on bilinear sums on

1 dimensional weights combined with the triangle inequality
TOV, X, Y, Z; 0, 8,7,6)° « p'WiXY® 28

coming from Lemma 4.1.3, where a = a(w) is bounded by 1, and similarly for /3, v

and 0. For our bound to be non-trivial in this setting we need
p3/4W29/4X15/2Y15/2Z31/4 < p4W4X4Y8Z8.
That is,
WA X T2y ~1/2 7-1/4 « 13/4

therefore, since Z <Y < X,
WX11/13 < p.

Now for WX1/13 < P,
X27 < p13/48X3/QZ < p13/32X3/223/4 < p1/2X3/223/4.

Similarly,

W?2y?2 p3/4w5/4y2

1/477/5/4%,71/52 1/41775/4%,3/2
pl/2 S X 33/52p1/2 sp /WY < p WY

Finally,

(WXZ)8Y7 < p3/4W29/4X383/52Y7ZB < p3/4W29/4X15/2Y7Z8
< PV X 152y 1502 731/
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Hence, for WX'"13 < p, after taking 8th roots
T(W, X, y7 27 19’ 0,0, 7_) « p3/32W29/32X15/16Y15/16Z31/32.
However, for WX"/13 > p then our bound is trivial and

TN, X, Y, Z:9,p,0,7) « pPWV2X Y2y 7
« p3/32W29/32X15/16Y15/16Z31/32_

4.2 Higher Dimensional Multilinear Exponential

Sums

4.2.1 Set Up

Given subsets A7, ..., &, € Fy and sequences of complex numbers w(X), . . ., w, (),

we define the weighted multilinear exponential sum over n variables by

S, Xwr, . wn) = Y D wi(X) . wa(X) ep(a . a),  (4.2.1)

T1EX] Tn€Xn

where the w; are n — 1 dimensional weights that depend on all but the ¢th variable.

Assuming each |w;(x)| < 1, we are interested in obtaining upper bounds of the form
1S(X0, . Xswr, o wn)| < XL Xp Y,

where |X;| = X;. For values of n > 3 progress has been made through additive com-
binatorics with the first results due to Bourgain, Glibichuck and Konyagin [7] under
some restrictions on the sets, weights and number of variables occuring in (4.2.1)
although their result was general enough to obtain new estimates for sums over small
subgroups. Bourgain [3] extended the results of [7] and obtained an optimal result
with respect to the size of X;...X,. In particular, Bourgain showed that for all

¢ > 0 there exists a § > 0 such that

Z Z ep(r1.. 1) « X1... Xpp™,

1316.)(1 :EnEXn

provided
Xi >p€a Xan >p1+€7

and we note that Bourgain gives the dependence of 4 on €. Recently, Shkredov [37]
has made significant quantitative improvements to the results of Bourgain by ex-

ploiting a direct connection with geometric incidence estimates of Rudnev [32]. Of
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particular relevance are the results of Petridis and Shparlinski [30] and Macourt [22],
which have been presented in the previous section, for recent estimates of three and
four dimensional multilinear sums and Shkredov [34] for the sharpest current results
for exponential sums over subgroups of medium size. We mention that a direct
application of the methods from [30, 22] is unable to give bounds for multilinear
sums beyond four dimensional sums. However, in this section we are able to break
through this barrier and apply related techniques to give new non-trivial results for

multilinear sums beyond four variables.

Given a set A € F,, and an integer k we let D, (A) count the number of solutions

to the equation

(a1 —ag)(az — as) ... (azk—1 — agk) = (by — b2)(b3 — ba) ... (b2—1 — ba),

for a;,b; € A. The quantity Dy(A) plays an important role in our arguments and
we obtain some new estimates for Dy (A), one of which improves the error term in
a result of Shkredov [37, Theorem 32] for sets of cardinality |A| = p'/?. We then
apply our estimates to obtain some new bounds for sums of the form (4.2.1) which
are motivated by applications to exponential sums with sparse polynomials in the
next chapter.

For the entirety of this section we let |X;| = X;, and similarly for other sets || =Y.

4.2.2 Main Results

In what follows we keep notation as in (4.2.1).

Theorem 4.2.1. Let n > 4, X; < F, subsets satisfying
X=X, Xiz2Xo=>--2X,,
and
X X2 < p.

n

Then we have
S(X1, .., Xywi,y W)

1 1 ST N .
“n Xan <W + -+ W +p2%X1 X, on+1 an(X;)>

1 1=2
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where
1 __2n2 1 1 217
p22n73(n,2)X 22n—3(n_2) +0(1)7 ,L'fp2+2n—1+2 > X > i3,
_w_i_o(l) 217 48
B, (X) =< X 27302 , if piss > X > por,
2" 2 142¢
e R0 ) 48
X 5 ), if X < por,
_ 1 _ 1
and c; = 37 and ¢ = 155

Here the X°M represents a power of log X and is used multiple times in the
remainder of this chapter to simplify the presentation of logarithmic terms. We give
an example of when Theorem 4.2.1 is nontrivial. Suppose n = 6 and X; = X, =

= X <p%. Then we have

3110399 + (1)

1
S(.)ﬁ, e, Xeswr, .. 7W6) « por X724

One can see that this is stronger than the trivial bound

S(Xl,...,?c'ﬁ;wl,...,w6) K X?

8/27

for X1 > p In the case of sets of cardinality a little larger than p'/? we can

obtain sharper estimates.

Theorem 4.2.2. Let X; < F,, satisfy |X;| = X;, Xhi2Xo=>--- = X,
|| > pt/2H/ET=0), (4.2.2)

Then we have

|S(X1,...,Xn;w1,...,wn)| Lpn

1 1 p1/2 /2"
— ... o (2
X1 X, <X1/2+ e <(X1...Xn)1/n .

1

4.2.3 Reduction Mean Values

The following result is a variant of [30, Lemma 2.10] which is more suitable for
applications to exponential sums when the variables may run through sets of differing

cardinalities.
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Lemma 4.2.3. Let n = 2. Suppose S(Xy,..., X ;wi,...,wy,) is defined as in
(4.2.1). Then

_ _ 1 1
X, Xy 2 (XX T —
|S( 1 y Apy W1, awn)| <<( 1 n) XTL,Q + +X2

n

XN XY Y Y]

z2,Yy2€X2 Tn,Yn€Xn
T2FY2 Tn#Yn
X Z ep(w1(r2 —yo) .. (¥ — yn))‘ :

rle/\ﬁ

Proof. We proceed by induction on n and first consider the case n = 2. Our sums
take the form

S(Xy, Xy wy,we) = Z Z w1 (T2)wa (1) ep(172),

x1€X] 12X

and hence by the Cauchy-Schwarz inequality

2

|S(X17X27w17w2)|2 < Xl Z

T1EX]

Z ep(7172)

ToEXs

Expanding the square, interchanging summation and isolating the diagonal contri-

bution, we get

|S(X1,X2,W1,W2)|2 <X12X2+X1 Z

T2,Y2€X2
T2FY2

Z ep(ah(% - y2))‘ .

r1EX]

Suppose the statement of Lemma 4.2.3 is true for some integer n—1 > 2 and consider

the sums S(Xy, ..., X,;wi,...,w,). By the Cauchy-Schwarz inequality

|S(X1,...,Xn;wl,...,wn)|2 < X1-~-Xn—1
2

Z Z wi(X) ... .wh_1(X)ep(xy ... 2p)

T, €EX; Tn€Xn
1<isn—1

Y

which after expanding the square, interchanging summation and isolating the diag-

onal contribution results in

Xi...X,)?
1S(X1, .. X wr, . wn)]” < K. X))
Xy
+X1...Xn_1 Z S(l'n’yn)’
Tn,Yn€Xn
xn?”:yn
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where
S(xna yn) =
Z wll(xla Ly yn) c e W;L_l(xla i yn)ep(xl cee xnfl(xn - yn)) )
T, €EX;
1<i<n—1
and
X = (21, Tpe1), WX T, yn) = wi(X, 2)W;5 (X, Yn).

By Holder’s inequality

n—1 X Xn 2n_1
|S(X17'"7Xn;w17'°‘7wn)|2 « ( 1 X2n—2)

(X X )P TXETE Y S (@)

ZTn,Yn€Xn
TnF#Yn

We next fix some pair x,, # y, and apply our induction hypothesis to the sum

S(Zn, yn). This gives

_ _ 1 1
S(anu) < (X X)) —— e —

F XTI X XY T

Z Z ep(T1(2 = Y2) -+ (Tno1 — Yno1)(Tn — Yn))

Zi,Yi€EX; |T1€EX]
T #Yi
2<i<n—1

b

which combined with the above implies

n— n—1 1 1
S(Xy, . Xwrn e w) <X X)) T e e —
| ( 1, ) y W1, y W )| ( 1 ) XQn—2+ +X2

n

FXTTNX, LX)

Y

< Y epan(ar —ye) - (@t — Yu) (@0 — Yn))
T,y €X; |T1€EX]

T FYi

2<i€n—1

and completes the proof. O

We mention that the above proof is independent of the sizes of the X;, and as

such the lemma is left without such restrictions.
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For any set A c I, we define

Dy (A)
= (a1 — aa) ... (agk—1 — agr) = (by — ba) ... (bagp—1 — bo) : a;, b; € A},

and extend the notation when variables run through different sets by defining
D (X,..., &) to be the number of solutions to

(wy — ). (we — ) = (1 — 21) - - (Y — 2k)5

for w;, x;,y;, z; € &;. Finally, we use the notation D,: * for the above cases where we

exclude the solutions when the equation is 0 and define

2
N (I, xi(x: - 1))
D" (X, ., ) = DI (X, ..., ) — p— .

We note that lN),: "* is the error in approximation of D;* by the expected main term.

Lemma 4.2.4. Let Xy,..., X, c F,. Then
DA, ., &) < (DUH(X) ... DI () VE,

Proof. We let K = D*(Xy,...,X) and express K in terms of multiplicative char-

acters
koY Y
w1,T1,Y1,21€X1 Wk, Tk Yk 2k EXE

]% Z X(wl - xl) e (wk — $k)Y(y1 — Zl) . (yk — Zk)

where €2 is the set of all distinct characters. Clearly,

1
K:EZ

XE

2 2

Z X(wl - 1‘1)

w1,T1€EX]

Z X(wi — )

W, TR EXy

Using Holder’s inequality, we obtain

2k

5

XEN

2k

Z X(wl - 551)

w1,r1E€EX]

Z X(wi — )

Wi, TEEX

& 1
ST

X€EN

= DX ... DI ().

53



CHAPTER 4. MULTILINEAR EXPONENTIAL SUMS

The proof of the following is similar to that of Lemma 4.2.4 with summation

only over non-principal characters.

Lemma 4.2.5. Let &y,..., X, c F,. Then

DI (X, ) < (DEH(X) . DI () Ve,

Using Lemma 4.2.3, Lemma 4.2.4 and Lemma 4.2.5 we give two general results
relating estimates for S(X;, ..., Xp;wi, ..., w,) to the quantities D (A) and D} (A).
Lemma 4.2.6. Let n = 2. Suppose S(X, ..., Xp;wi,...,wy) is defined as in (4.2.1)
and that

XizXy--- 2 X,

Then
(X Xrwr, ) € (X X)) (e e g
1yeeey@ny W10y Wn 1---An X%n,l Xgil
+ pXﬁ"—l()ﬁ .. 'Xn—1)2"_4(D:;*1(X1) o D:L*l(?fn_ﬂ)l/(n_l)-

Proof. Writing

S= > ... >

z1,Yy1€X1 Tn—1,Yn—1€Xn—1
T1#Y1 Tn—1FYn—1

Y

Z ep(zn(z1 —y1) .. (Tt — Yno1))

TnE€Xn

by Lemma 4.2.3 it is sufficient to show that

§% < pXA (D4 (X)L DL (X )Y,

n—1
Let I(\) count the number of solutions to the equation
A=@1—y). (Tt = Yn1), Ty € Xy T # Y,

so that

S=>1I()

A

Z ep()\wl)

Tn€EXn

Y

and hence by Lemma 4.1.3

5% < (Z I()\)2> pXa,

and the result follows from Lemma 4.2.4 since

DI =D (X, X)),
A
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Our next estimate does better in applications over Lemma 4.2.6 when our sets
X1, ..., X, have large cardinalities.
Lemma 4.2.7. Let n = 2. Suppose S(Xy,..., X ;wi,...,wy,) is defined as in
(4.2.1). Then we have

1S(Xa, . Xy wrs e wn) )P« (XL X)? ( +...+_)
(X0 XY T DE (X)L D

Proof. Writing

S= > ..

T2,Yy2EX>2 Tn,Yn€Xn
T2FY2 TnFYn

Z ep(Il(SL’Q - y2) ce (xn - yn))

Tr1EX]

)

by Lemma 4.2.3 it is sufficient to show that
4
_ (X1...X,)
X7
+ (Xy . X)) 2D . DX (X)) Y2,

Applying the Cauchy-Schwarz inequality, interchanging summation and isolating

the diagonal contribution gives

p—1
<X (X X)) (Xa X0 D T(Nep(V)] (4.2.3)
A=1
where I(\) counts the number of solutions to the equation
(@1 =) (@0 —yn) = A Ty €Xi, i # Y
Let
A Xi(X;—1)... Xn(X, — 1)
p—1 ’
and write
p—l p—1 p—l
I(Nep(N) = A D Jep(A) + D (T(A) = A)e, (M)
A=1 A=1 A=1
We have
p—1 (Xl X )2 p—1
I(Nep(N)| « 2 4 3 I(N) — A (4.2.4)
A=1 p A=1
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With notation as in Lemma 4.2.5, by the Cauchy-Schwarz inequality

p—1 p—1 1/2
PHLCYEFNES 6 <Z [I(A) — AF) = p 2D (X, X)),
A=1 A=1
and hence
p—1
DTN = Al < p"X (D) (X)) .. DX (),
A=1

Combining the above with (4.2.3) and (4.2.4) gives
(X1... X,)4 N (X1... X,)4

S? <
X7 p
+(Xy . X)) ADH(AY) . DI (X))
Xi... X,)4 ~ ~ .
« (IX—?,) + (Xa o X)) AD () . D (X))
1
and completes the proof. H

4.2.4 Estimates for D, (A)

In this section we give estimates for D (A) which will be combined with results from
Section 4.2.3 to obtain estimates for multilinear sums. We first recall the following
result [37, Theorem 32].

Lemma 4.2.8. Suppose A T, is a set and |A| = A. For all k = 2

4k
DI (A) — =— «, (log A)* A28 pre ()12
p
We then have the following lemma [37, Theorem 41].

Lemma 4.2.9. Let AcC F, be a set, A < p?846/4991 - Then for any ¢ < 4—:1,)4 one has

Dy (A) « A2

L

o5 One has

Furthermore, if A < p*™7  then for any c¢; <
Dy (A) « AP e,
We first notice that from the proof of [37, Theorem 32] we have

AAk=1) 1/2
P ) '
Using E7(A) < A3, combined with Lemma 4.2.9 and (4.2.5) we have the following

corollary.

4k

_D]:,< (A) — ? Lk (lOg A)2A2k+1 (D,:_l(A) —

(4.2.5)
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Corollary 4.2.10. Suppose A < F, is a set and |A| = A. For all k = 2

Atk B
DY (A) — — «, (log A)* AtF—212
p

k+1

Similarly if A < p™1/1991 " for any ¢ < & we have

4k
Dl: (A) - 7 Lk (log A)4A4k*2+2_k+1fc2—k+2

and if A < p*®°7 for any ¢; < Tiz we have

4k
Dl: ("4) —— £ (log A)4A4k—2+2*k+1_012—k+2.
p

It is clear that we can use the above to give other estimates on D} using previous
estimates on Dy . We recall the following result [22, Lemma 2.6], which is given from

Murphy et. al [27] result on collinear triples.
Lemma 4.2.11. Let Ac F,. Then
A8
Dy (A) — — « p2AY2,
p
Again, we have the following corollary.

Corollary 4.2.12. Let A< F,. Then

A4k 2l-k 4 Adk—2—2—k+1
D]:(A)—T Lg p (IOgA) AT .

We next prepare to give an estimate for D} (A) which improves on the above
results for sets of cardinality a little larger than p'/2. As in Shkredov [37], our main
tool is Rudnev’s point plane incidence bound [32].

Lemma 4.2.13. Let p be an odd prime, P IF]% a set of points and 11 a collection
of planes in ]Ff). Suppose |P| < |TI| and that k is the mazimum number of collinear

points in P. Then the number of point-planes incidences satisfies

11
Z(P,1I) < WD}# + |P|YA| + K|P|.

Lemma 4.2.14. For a prime number p and a subset A < F, with |A| = A we have

8
D (A) = ’% + 0 (A%(log A)? + p' 2 A*E, (A)*(log A)?)

+ 0 (pA*(log A)?) .
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Proof. We have

DX (A) = > 1+ O(A%).
a;eA

(a1—az)(az—as)=(as—ae)(ar—as)
as#ae

Let I(x) denote the indicator function of the multiset
{a—d : a,d e A},

and let I denote the Fourier transform of I. We note that the Fourier coefficients

satisfy

(4.2.6)

We have

Dy (A= Y1 <(C“ —aa){es a‘*)) +0(4°%)

(a5 — ag)

=+ 0(A% + W, (4.2.7)

where

We have

y=1z=1 a;eA
(a1—a2)y=(az—a4)z
az#aq

[(y)I(2) > 1,

y=1z=1 a;eA
(a1—a2)y=(az—a4)z

ad
ad

where we have removed the condition a3 # a4 in the last display since by (4.2.6) the

Fourier coefficients are nonnegative. The above implies

W < Wy + O(A%), (4.2.8)
where
1 p—1p—1 N N
Wo =~ > > 1(y)I(z) > 1.
py:lz:l a;€A

(a1—a2)y=(az—as)z
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For integer ¢ = 1 we define the sets

Ji)={1<z<p: 27'—1<1(z) <2 -1}, (4.2.9)
so that
1 o
Wo« = > 2HW(,j), (4.2.10)
p 1<i,j«<log A
where

Wi, j) = > 1.
a;eA,yeJ(i),zeJ(j)
(ar—az)y=(as—a4)z
Fix some pair (4, j) and consider W (i, 7). If |J(7)| < |J(j)|, then we consider the set
of points

7) = {(a1y7y7a’3) L YE J(Z)7 ap,as € A}J

and the collection of planes
II={x —asxs —zx3+a42=0 : z€ J(j), az,a4€ A}.

We see that W (i, j) is bounded by the number of point-plane incidences between P
and 11

W (i,7) < Z(P,TI).

Since the maximum number of collinear points in P is max{A, |J(i)|} an application

of Lemma 4.2.13 gives

LG
Wi, j) « . + A @)V ()] (42.11)
+ A% J(i)| max{A, |J(i)|}.
In a similar fashion, if |J(j)| < |[J(7)| then
wii,g) « OO o551y o

+ A?[J(j)| max{A, |J (j)[}.
This implies that

AN @)

Wi, j) « + AUT@)[21TG)] + AT ()]

+ A2 min{l (), 17G) )
« OOy sy 56y 2159)] + 4815121

+ A*[J(@)[ ()],
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and hence substituting the above into (4.2.10) we get

A4 o\
WO«F< Z 2|J(z)|>

1<iklog A

+%< 3 2"|J<z'>|1/2>< 3 2i|J<z‘>|>

1<i«log A 1<iklog A

A2 A
+?< > 2|J(z)|>.

1<i«log A

Recalling (4.2.6) and (4.2.9), we have

Y 2@ <p+ ), 200

1<ixlog A 2<tiklog A
P
< p+ logAZ | Z ep(ya)|* = pAlog A,
y=1 acA
and
2
( > 2i|J(i)|1/2> «p+logA > 27J()|
1<ixlog A 2<i«log A
» 4
< p+ (log A)® Z Z ep(ya)| ,
y=1 |acA
so that

D 21I6)M? « p'PEL(A) log A.

1<ixlog A
This implies
W « AS(log A)% + p'2A*E_(A)?(log A)? + pA*,

and hence by (4.2.7) and (4.2.8)

D (A) = %8 + 0 (AS(log A)?) + O (p'*A*E, (A)*(log A)?)
+O(pA*(log A)?),

which completes the proof.

We next establish a recurrence type inequality similar to [37, Theorem 32].
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Lemma 4.2.15. For a prime number p and a subset A € F, with |A| = A we have

A4k
Dyf(A) = ==+ O (A" 4 pA™ ™4 pVRATDIE (A)V7) log? 4) .

Proof. Let D;.(A) count the number of solutions to the equation

(Cll,l - al,z) ce (Gk,l - ak,2) = (ak+1,1 - &k+1,2) - (azk,l - a2k,2)7

with variables aq 1, ..., as 2 € A satisfying

a1l # a12, Qg+1,1 7 Op+1,2,
so that

D} (A) = Dj,(A) + O(A*2), (4.2.13)
Let I(y) denote the indicator function of the multiset

{(ag,1 —asp) ... (ak1 —arp) :asy,...,a2 € A},

and let T (y) denote the Fourier transform of /. We have

Di(A) = Z I((ars1,0 — ars12) - - (a2ry — age2)(ary — ar2) ™)

aj,1,a4,2€A
ai,17a1,2
Ak4+1,170k+1,2
1%

= }—)ylf(?/)

Z €p (_y(ak+1,l — Qg112) - - (Gop1 — ask2)(a1g — (11,2)_1)
aj71,aj72€.A
ai,17#a1,2
Ak+1,170k+1,2

12 -1
= - N i)i(—=) 2 L
P 2=1y=1 a; ;€A

y(ar,1—a1,2)=2(az,1—az2,2)
aj1#aj,2, j=1,2

which implies that

A4kz
Di(A) = > Wo + O(A*"2), (4.2.14)
where
1 p—1p—1 N R
Wo == > > I(y)I(-=2) > 1.
p z=1y=1 ai.’jG.A

y(a1,1—a1,2)=2(az,1—az2)
aj1#a5,2, j=1,2
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For integer ¢ = 1 we define
J@) ={yeF: : 27— 1< |I(y)| <2 -1},
so that
1 o
Wo < — > 2W(i,j), (4.2.15)
i,j<log A%k
where
W(i,j) = > 1.
ai,jEvA7
yeJ(i),z€J(7)
y(a1,1—a1,2)=2(az2,1—a2,2
aj1#aj2, j=1,2

Using Lemma 4.2.13 as in the proof of Lemma 4.2.14, we see that

Wi, j) «
+ AT ()T (7)]-

We have

2, 21JG)

i«log A

p—1
<Kp+ Z Z ep(y(ary —arg) ... (ag-11 — ax-12))

y=1 ai,1,az‘,2€-/4
1<i<k—1

p—1
<p+ Z Z Z ep(y(aZl — a272) . (ak_171 - ak—1,2)a)

ai’l,CLi’QE.A y=1 a€A

2

2<i<k—1
& pA2k73’
and
D2« p?
i<log A
o\ 1/2
p—1
+ | log A Z 2 ep(ylars —arz) ... (ag—11 — ax—12)) ,
y=1 ai71,ai,2€A
1<igk—1
so that

N 2T < (log A)2pM2 Dy (A)V2.

i<log A
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Combining the above with (4.2.15) and (4.2.16) we see that
Wo < (A2 4 pA™ 4 p! A D (A)'7?) log? A,

and hence by (4.2.13) and (4.2.14)

A4k
= 7
+ Ok ((A4k—2 +pA4k—4 + p1/2A2kD]:_1(.A)1/2) 10g2 A) ,

Dii(A)

which completes the proof. O

Combining Lemma 4.2.14 and Lemma 4.2.15 with an induction argument gives

the following Corollary.

Corollary 4.2.16. For a prime number p and a subset A < F, with |A| = A = p*/?
we have
A4k
Dy (A) = —
w (A) 5

+ O ((A4k_2 Y Sy O (A)Q_UH)) log* A) .

Using the trivial bound E, (A) < A% in Corollary 4.2.16 gives the following sharp
asymptotic formula for D (A) for sets of cardinality a little larger than p*/2.

Corollary 4.2.17. For any k > 3 and A = p/2*/@*"=6) ye have

4k
D} (A) = 7 + O (A4k72 10g4 A) .

4.2.5 Proof of Theorem 4.2.1

We define N(&X, Y, Z) to be the number of solutions to

$1(y1 - 21) = $2(y2 - 22)

with 21,20 € X, y1,y2 € YV and 21,29 € Z.
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Let
S = S(Xb...,/l’n;wl,...,wn).

By Lemma 4.2.3, after permuting the variables, we have

- - 1 1
on 1 on 1
|S] < (Xp...X,) (Xn1+...+F>

(X X)X Y Y

z1,Y1€X1 Tn—1,Yn—1€Xn—1
T1#Y1 Tpn-17FYn—1
Z ep(Tn(T1 —y1) ... (Tpo1 — yn_l))‘ :
Tn€Xn

We now collect together (xo — ys)... (2, 1 —yn_1) = A and denote the number of
solutions to this equation to be J(A). Similarly we collect z1(x,, — y,) = p and we

denote the number of solutions to this equation to be I'(u). Hence,

_ - 1 1
on 1 on 1
|S] L (X7...X,) <Xn1 +...+W>

(X1 X )P XY I

AeF

D I(p) ey (M)

uely

n—1 1 1
= (X;...X,)? +ot ——
) (X X%"‘)

+ (X1 X)X Y T (1) ep (M)

)\E]F; ueky

for some complex weight 1, with |n,] = 1. Now, by Lemma 4.1.4 with X =Y =
X1, Z = X,, we have

D I(p)? = N(X,, X1, X)) « XPX32,
HeEFy

Similarly,

By Lemma 4.2.4 we have

1

DI < (D)5(X) . DY (X)) (4.2.17)

XeFy
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Then applying the bound on bilinear exponential sums, Lemma 4.1.3, we have

_ - 1 1
on 1 on 1
|S]| K (Xy... Xp) (Xn1+...+W>

1/2

+(Xr X )X LY T Y ()

AeF neFp

Finally, we apply Corollary 4.2.10 and 4.2.12 to (4.2.17) to best optimise over each

set, and define

1 2" =241 1 1
— +o(1 . EONT S 217
p22n73(n,2)X 22n—3(n—2) of ), if p2+2n_1+2 >X > pas3
2" 2 142¢;
— s, 1 . 217 48
B, (X) = { X~ =it T, it pi > X = pir,
272 1420
X ey P, it X < pir,
where ¢; = £ and ¢ = 155. Finally, we obtain

_ - 1 1
on 1 on 1
|S] L (Xy...X5) (an—l—...—i-w)

n—1
+ (Xl o Xn)Qn_lpl/QX;1/2X;1/4 (H Bn(.)(i)zn_1> )

This completes the proof.

4.2.6 Proof of Theorem 4.2.2

We note that the conditions (4.2.2) and Corollary 4.2.17 imply that
D" (X;) « (logp)*X/"2,

and hence by Lemma 4.2.7

|S(X17...,Xn;wl7...,(J.Jn)|2 < (X]_...Xn)2 (F_i_..._i_x_'n)

+ (logp)4p1/2(X1 .. .Xn)Qn’l/",

from which the desired result follows.
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4.3 Open Problems

One could consider arbitrary finite field analogues of the sums

S(Xy, . Xy wry e wpy) = Z Z wi(X) ... wp(x)eq(xy...2p),

$1€X1 xneXn

where X; © F, where ¢ = p*. We mention that recent progress has been made
in the field of additive combinatorics over arbitrary finite fields. Moreover, [26]
has provided new bounds on point-line incidences over F,, which was central to
our results on trilinear and quadrilinear exponential sums over F,. We present [26,

Theorem 2] as a lemma below.

Lemma 4.3.1. Let Ac F, and let L be a set of lines in F,. Suppose that
A A (cG + d)| « max{|G["/?, | AP,
for all proper subfields G = I, and all elements c,d € F,. Then

T(A) &« |A|571/104 + q*1/95|./4|5+1/95
](_A % A) & (|A|173/104 + q_1/285|A|476/285)|£|2/3 + |£|
L(A x A) » min{| AP/, /%% AP=2/95)

where T(A) is the number of collinear triples, I(A x A) is the number of point-line
incidences and L(A x A) is the number of distinct lines determined by pairs of points
of A x A.

We also mention that our bounds in this section can easily be adapted to multi-
linear exponential sums with one-dimensional weights, or no weights using bounds
in this chapter. However, we do not consider these as our motivation was to give
applications to multinomial exponential sums, as we will see in the next chapter.

Finally, as part of our exploration of the term D} (A) we considered the number
of solutions of sums of products. That is, we let D} (A) be the number of solutions
to

a1b1 + (lng + -+ akbk = Cldl + ngg + -+ dek‘

Our hope was that we could apply similar techniques to Lemma 4.2.14 and Lemma
4.2.15. However, we were unable to reduce the problem to one where we could apply

the bound of Rudnev [32] on point-plane incidences.
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Multinomial Exponential Sums

5.1 Introduction

5.1.1 Set Up

For a t-sparse polynomial

t
U(X) =) a; X" (5.1.1)
i=1
with some pairwise distinct non-zero integer exponents ki, ..., k; and coefficients
a,...,a; € Fy, and a multiplicative character x of F we define the sums

S (0) = > x(@) e, (¥(x)),

*
el

where X is an arbitrary multiplicative character of ;. The challenge for such sums

is to provide a bound that is stronger than the Weil bound
1Sy (V)| < max{ky,..., ko2,

see [43, Appendix 5, Example 12], by taking advantage of the arithmetic structure

of the exponents. The case of exponential sums of monomials has seen much study
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with Shparlinski [39] providing the first such bound. Further improvements have
been made by various other authors, see [7, 3, 17, 19, 34, 40]. We also mention
that Cochrane, Coffelt and Pinner, as well as others, have given several bounds on
exponential sums with sparse polynomials, see [9, 10, 11, 12, 13, 14] and references

therein, some of which we outline in Section 5.1.2.

First we provide some new bounds on trinomial and quadrinomial exponential

sums. We thus define

Us(X) = aX® + X 4+ cX™ (5.1.2)

Uy(X) = aX" + X" + cX™ +dX". (5.1.3)

We mention that all our results extend naturally to more general sums with poly-

nomials of the shape
U(X) =aXF + (XY + g(X™) + h(X™)

for polynomials f, g, h € F,[ X].

5.1.2 Previous Results

We compare our results for trinomials and quadrinomials to those of Cochrane,
Coffelt and Pinner [9, Theorem 1.1]

S, (D) <<( kbmn ))1/9p8/9 (5.1.4)

max(k,{, m,n

which is non-trivial for
kfmn

max(k, £, m,n) =P

and of Cochrane and Pinner [11, Theorem 1.1]
S, () « (klmn)'/16p7/8 (5.1.5)

which is non-trivial for k¢mmn < p?. Our new results in Theorem 5.1.1 and Theorem
5.1.2 are independent of the size of the exponents but instead depend on various

greatest common divisors. We also mention a similar result of Cochrane and Pinner
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[13, Theorem 1.1} which for Laurent polynomials g, g2, g3, g4 where g(z) contains a

monomial aX*, k; # 0, pta, and
U(X) = g(X) + ga(X"™) + - + g, (X*)

we have

r—2 1
ng(k‘rfi) klyp - 1) 2t % 1— L
&mospzé(gw%Pﬂrﬂ) + DTy (5.1.6)

where

Do deg(g) — 1, if g(X) is a polynomial,
ged(ky,p—1) — 1, if g(X) = aX* is a monomial.

5.1.3 Main Results

Our main results are the theorems given in this section.

Theorem 5.1.1. Let W(X) be a trinomial of the form (5.1.2) with a,b,c € F.
Define

d= ng(kvp - 1)a € = ng(&p - 1)a f = ng(map - 1)

and

d e

I=dd ) " sede )

Suppose f = g = h, then
S, () « ph~/4

P88, if b = (plogp)'?,
+ 9 pEIS(f/R) Y (logp) 'L if g = (plogp)'? > b,
p(f/gh)® (logp)'®,  if g < (plogp)"*.

Note that the assumption f > g = h of Theorem 5.1.1 does not present any
additional restriction on the class of polynomials to which it applies as the roles of
k, ¢ and m are fully symmetric: if h > g, say, one can simply interchange g and h
in the bound.

Theorem 5.1.2. Let W(X) be a quadrinomial of the form (5.1.3) with a,b,c,d € Fy,.
Define

a=ged(k,p—1), f=ged(l,p—1), v=ged(m,p—1), § = ged(n,p—1)
and 3
a v
— 2 g=—  h=—T
[= @y 97 wed(,9) 5d(7,0)
Suppose f = g = h. Then p/d > f and
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S\ (¥) <<Pg_1/8

plo/1651/32 if g = p'*logp,
N P32§1/32 g ~1/16+0(1), if f=pY?logp > g,
p51/32(fg)—1/16+o(1), if /6 = p1/2 logp > f,

p31/32+o(1)53/32(fg)fl/lfi’ z'fp/é <pl/2 1ng'

Similarly to Theorem 5.1.1, we mention that our result is independent of the size
of our powers k,[,m,n and is strongest when ¢ is small and f, g, h are large. Here
o(1) represents some power of a log and is used here, and other times in this chapter,
to simplify the presentation and calculation of logarithmic factors. As mentioned
in the previous section, many previous results become trivial for quadrinomials of
large degree. It is easy to see that our bound is non-trivial and improves previous
results for a wide range of exponents k, ¢, m and n. By Theorem 5.1.2 we present

the following example as a corollary.

Corollary 5.1.3. Let W(X) be a quadrinomial of the form (5.1.3) with a,b, c,d € .
Suppose p/2 > |n| > |k| > |¢] > |m| = p"?logp, § = 1 and k,L|p — 1, where § is
defined as in Theorem 5.1.2. Then

S, () « po/18,

Clearly in the above example both (5.1.4) and (5.1.5) are trivial. We compare
this to (5.1.6). One can see (5.1.6) gives a weaker bound than Theorem 5.1.1 when
N < i/
stronger than [13, Theorem 1.2]. Indeed, it is possible to give results in which
Theorem 5.1.1 is stronger than (5.1.6) for all four bounds of Theorem 5.1.1 by

restricting the size of h, as in the above example.

. One can also check that in this instance our bound also gives something

Here we also mention one can get a similar result to Theorem 5.1.2 using [30,
Theorem 1.4], however this gives strictly weaker results due to the results in Section
5.2 being stronger in the case of subgroups rather than subsets.

Using Theorem 5.1.2, as well as the results mentioned in Section 5.1.2, we can
give classes of quadrinomials where we have savings in terms of p. For example we
have the following result using Theorem 5.1.1 and the bounds (5.1.4), (5.1.5) and
(5.1.6).

Corollary 5.1.4. Let V(X) be a quadrinomial of the form (5.1.3) with a, b, c,d € .
Suppose k,l,m|p—1, ged(n,p—1) =1 and k = ¢ =>m =n. Then

SX(\I]) & p15/16+o(1) )
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Additionally, using [13, Theorem 1.2], as well as the results of Section 5.1.2, we

get the following bound which does not depend on the size of n.

Corollary 5.1.5. Let W(X) be a quadrinomial of the form (5.1.3) with a,b, c,d € Fy,.
Suppose k., m|p—1, ged(n,p—1) =1 and k = ¢ = m. Then

SX(\I]) « p71/72+0(1) )

Finally, we give a bound on multinomial exponential sums that extends past

quadrinomials. The following is a consequence of Theorem 4.2.1.

Theorem 5.1.6. Let V(X)) be a multinomial of the form (5.1.1), with coefficients
a; € Fy fori=1,...,t. We define

g, = ng(klap - 1)

and

B = ——
¢ ng(Ozki, Oékt)
Suppose Py, = -+ = Br,_,. Then
Sy (V)
1 =2
A, ? 5721 ;Tgl 1
<rll,-7) + BE + -+ B2 +prColaw,) [ [ Di(Br,)
=1
where
3 3 1
a2 Tp 2+ if o = p2 log p,
Ct(a = 1 _ 1 . 1
a2 TpTet,if a < p2logp,
and

1

Di(B) p e, iz p? logp,
B FEH, if B < ptlogp.

We mention that Theorem 5.1.6 returns the same bound as 5.1.2 when ¢ = 4.
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5.2 Trinomial and Quadrinomial Exponential

Sums

5.2.1 Preliminaries

We define D (U) to be the number of solutions of
(up — v1)(ug — va) = (ug — v3)(ug — vy), u, v, €U, i =1,2,3,4.
We also define the multiplicative energy E* (U, V) to be the number of solutions of
UIV] = U9 ueU, v; eV, i=1,2.

When U =V, we write EX(U,U) = E*(U).
We have the following lemma as a consequence of Theorem 2.1.2 and the proof
of Lemma 2.2.6.

Lemma 5.2.1. For a multiplicative subgroup G < Fy, we have

G, if |G| = p'/?log p,

D, (G
() « { 1G|%1og |G|, if |G| < p'/?logp.

We also have the following lemma which comes as a result of (2.3.19).

Lemma 5.2.2. Let G be a multiplicative subgroup of F,. Then for any A € F}, we
have
al p2G1P, Z:flgl > p??,
EX(G+A) — ==« [GPp 12, if p* > |G| = p'/*logp,
G log |G], if |G| < p'/*log p.

We immediately obtain the following result by observing the dominant term from
Lemma 5.2.2.

Corollary 5.2.3. Let G be a multiplicative subgroup of ¥;. Then for any A € F7,
we have
GI"/p, if 1G] = p'/*logp,

E*(G+)\) «
( ) { IG|?log |G|, if |G] < p"/?logp.

We define N(F,G,H) to be the number of triples of solutions to the equation
fi(gr — g2) = fa(hy — hs) where f; € F,g; € G,h; € H for i = 1,2. Using Corollary

5.2.3 we obtain the following result.
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Lemma 5.2.4. Let F,G,H be multiplicative subgroups of ¥, with cardinalities
F,G, H respectively with G = H. Additionally, let M = max(F,G). Then

, [ G2EPp if H = p"/?logp,
N(F,G,H) « M1/2 G?H3/2+eWp=14 if G = p'Plogp > H,
(GH)3/?+o), if G < p'/?logp.

Proof. By multiplying both sides of fi(g1 — g2) = f2(hi — ho) by the inverses f,*
and hy' and taking a factor of g, from the left hand side, and defining

S={fgh:feF,geG,heH}

we have

F?GH
|51

N(F,G, M) = D (g ) eG xH:Mg—1) =h—1}].

AeS

By two applications of the Cauchy-Schwartz inequality,

FAG*H? hi—1 hy—1
N]-“,Q,’H2<—{ h)EeGxH, i=12: - }‘
( ) |51 (901 n-1 g-1
FAG?H?
< T(EX(g — DEX(H — 1))/2.
By Corollary 5.2.3,
G*H?/p, if H>=p'?logp,
PG /p o p'/?logp
N(F,G,H)" « BT G2HY&eWp=12 if G = p'2logp > H,
(GH) oW, if G < p'2logp.
Since |S| = M we complete our proof. O

5.2.2 Bounds On Trilinear and Quadrilinear Exponential

Sums Over Subgroups

Applying Lemma 5.2.1 and Lemma 5.2.4 in the proof of [30, Theorem 1.4], we obtain

the following result on quadrilinear sums over subgroups.
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Lemma 5.2.5. For any multiplicative subgroups F,G,H S} of cardinalities F, G
and H, respectively, with F' > G = H and weights p = (puw), 0 = (Ouw) and

T = (Tyw) with

max |pu.| <1, max o, <1, max  |7,.,| <1,
(u,0)eEF %G (u,w)eF xH (v,w)eGxH

for the sum

T - Z Z Z pu,vamwTv,w ep(auvw)

ueF veEG weH

we have

T « FGH?*

FT8GH, if H> (plogp)'”,
+ 3 pYSFTSGHS (logp)'®,  if G = (plogp)'* > H,
PEFTRGTRHTS (logp)'®, if G < (plogp)"”,

: *
uniformly over a € Fy.

Proof. We see from [30, Equation (3.8)] that
T® « pF'"G*H*K + F3G®HS,
where K is the number of solutions to the equation

(up — ug)(wy — wy) = (uz — uy)(ws — wy) # 0,

(ui,wi)egx'H, 121,2,3,4.

As in the proof of [30, Theorem 1.3], expressing K via multiplicative character sums
and using the Cauchy-Schwartz inequality, we obtain K2 < D, (G)Dx(H). Applying

Lemma 5.2.1, instead of [30, Equation 3.9], we now obtain

G*H*/p, if H = (plogp)"?,
K «{ G*H?p~'?(logp)"?, if G = (plogp)1/2 > H,
(GH)31log p, if G < (plogp)“>.
Taking 8th roots we complete the proof. O

Clearly, the bound of Lemma 5.2.5 is nontrivial when F'; G and H are all a little
larger than p'/3. More formally, for any € > 0 there exists some § > 0 such that if
F > G = H > p'/?*¢ then the exponential sums of Lemma 5.2.5 are bounded by
O(FGHp™).
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Lemma 5.2.6. For any multiplicative subgroups W, X, Y, Z < F, of cardinalities
W, X,Y and Z, respectively, with W = X >Y = Z and weights 0 = (9yuy),

p=(pwsz), 0 =(Owy:) and 7 = (Tyy..) with

max Vgl < 1, max |Pw,e,z| < 1,
(w,z,y)EWX X xY (w,z,y)EWXXXZ
max |owy-| <1, max |To .2 <1,
(w,z,y)EWXYxZ (w,x,y)EX XY X Z

for the sums
T= 2,2, YwesPusOuy:Toy.: elawryz)
weW zeX ye) zeZ

we have

IT| « WXZY™®

WYY 7 1 if Y = p'?logp,
J3L/532 Xy 15/16+0(1) 7 if X = p?logp > Y,
W32 XY )1o/16+0(1) 7p1/32 - if W = p'?logp > X,
W 29/32+0(0) (XY )I5/16 Zpl/16 - if W < pl/2 Jog p,

- S
uniformly over a € Fy.

Proof. We see from [30, p. 24] that

1« WXYIZT S 3 TG0 I e + (WX 2",
LEF* AeF,
where 7, € Fy are complex numbers with [,| = 1, J(u) is the number of quadru-
ples (1,2, y1,12) € X% x Y? such that (z; — 22)(y1 — y2) = p € F} and I()) is the
number of triples (wy, wq, z) € W? x Z such that z(w; — wy) = X € F,. We estimate

J(p) as in [30, Equation 3.10] but using our bound from Lemma 5.2.1 to obtain

XY*/p, if Y = p'/2logp,
Z J(p)? « & XAy3+eMp=12 if X > p'”2logp > Y, (5.2.1)
persy (XY)3+e), if X < p'?logp.

Now

2 1)

= {wi,wa €W, z;€ Z,i=1,2,3,4: z1(w1 — wy) = zo(w3 — wy)}|

= N(Z, W, W).

75



CHAPTER 5. MULTINOMIAL EXPONENTIAL SUMS

Therefore, by Lemma 5.2.4,

Z I(\)? «

AEF,

Z2WoHe) - if W< p/2 log p. (5:2.2)

{ Z2WTPp=12 i W = pM2 log p,
Applying the classical bound on bilinear exponential sums from Lemma 4.1.3 to-
gether with (5.2.1) and (5.2.2), we get

TP «(WXZ)®Y"
I/V31/4‘X'8Y'8282771/47 ifYy > p1/2 1ng7
W31/4X8Y15/2+0(1)Z8, if X > p1/2 logp - Y,
WSYA(XY )1o2reM) Z8plA it W > p'/2logp > X,
W29/4+o(1) (XY)lE)/QZSpl/Q, it W < p1/2 logp

Hence,
IT| «WXZY/8
W3YBLXY Zp~ /52, if Y = p'*logp,
W31/32Xyl5/16+o(1)Z’ if X > p1/2 1ng > Y,
+ W31/32(Xy)15/16+o(1)Zp1/32, W > p1/2 logp > X,
W29/32+0(1) (XY)15/16Zp1/16, if W < p1/2 logp.
This completes the proof. O

We compare our bound for subgroups from Lemma 5.2.6 with that for arbitrary

sets coming from [30, Theorem 1.4]

25 20 20 2 PP Oy Te p(awry2)

weW zeX ye)Y zeZ (523)
& p1/16W15/16 (XY)61/64Z31/32.

For example, if W = X =Y = Z = p'/?*°(1) then the bounds become p!'2>/64+o(1)

63/32-+0(

and p 1) respectively.
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5.2.3 Proof of Theorem 5.1.1

Let G4 and Ge be the subgroups of I formed by the elements of orders dividing d

and e, respectively. We have,

Z Z Z x(zyz) e,(V(zyz))

yegd z€0e zeFy

= — Z Z Z z)ep, (ax 2F bty + cxmymzm)

erF* Y€Gq 2€G,

= 5 Z Z Z pxyaxzep meymzm)

erF* 2€Ge Y€Gq

where

pry = X(@)x () €, (b2y") and o, = x(z) e, (az*2").

Clearly, the set X = {2 : 2 € F}} of non-zero mth powers contains (p —1)/f ele-
ments, each appearing with multiplicity f. Furthermore, direct examination shows
that the sets Y = {y™ : y € G4} and Z = {2™ : z € G.} contain g and h ele-
ments with multiplicities ged(d, f) and ged(e, f), respectively. We recall that by our

assumption we have f > g > h and invoke Lemma 5.2.5, which gives us,

f ged(d, ];)6 ged(e, f) 0/ F)gh** + f ged(d, ];)egcd(e, ),

(p/f)Bgh, if h = p'/2log p,
P (p/ F)TBgh™® (log p) /', it g = (plogp)'* > h,
PV (p/ £)BgTERTE (log p)* | if g < (plogp)'/?,
— ph
P8 I8, ith>(p logp)m
+ 8 I8 fUSRS (log p) 1 if g = (plogp)'* > b,
pfYEg= BRI (log p)® | if g < (plogp) /.

Sy (¥) «

This concludes the proof.
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5.2.4 Proof of Theorem 5.1.2

Let Ga, s, G, be the subgroups of Fy generated by the elements of orders «, 8 and
~ respectively. Then,

Z Z Z Z X (wzyz) e, (V(wryz))

xega yEGp 2€Gy weF

S EDIDIDID)

mega YEGE 2€Gy weFy

nnnn)

X(wxyz) e, (awy 27 + bw'a 2t + cw™a™y™ + dwa"y"
= Ofﬁ Z Z Z Z ﬁwmypwrzawyzep(dwn$nynzn)
v z€Ga YEG 2€G~ welFy
where we choose

Dwwy = X(W0TY) €,(cw™s™y™),  puw. = x(2) e,(bw'z’2")

and
k, k_k

Owy: = €plaw”y”z").
Now the image W = {w" : w € Fy} of non-zero nth powers contains (p — 1)/6
elements, each appearing with multiplicity 0. Similarly, we can see that the images
X ={2":20e€G,},Y ={y":ye Gz} and Z = {z" : z € G,} contain f,g and h
elements with multiplicity ged(a, d), ged(8,0) and ged(v, d) respectively. We apply
Lemma 5.2.6, recalling our assumption that f > ¢ and noticing fé = lem(a, ) <

p — 1, hence f < p/d, which gives us
b ged(0,6) ged(5,8) ged (1, 6)

Sy(¥) « aBy (p/0)f9"*h
5gcd(0z d) ged(3,0) ged(y, 6)
aBy
(p/0)>V/32 fghp=1/32, if g = p'logp,
(p/0)*1/32 f go/16+e W, if f=p'?logp > g,
(p/8)3/32( fg) o/ 16+eMppl/32 if /5 = p'2logp > f,
(p/5)29/32+o(1)(fg)15/16hp1/167 if p/o < p1/2 log p,
—

p15/16§1/32 if g = p?logp,

N pB1/32§1/32 g=1/16+0(1) if f=p"logp >y,
pSY32( fg)~1/16+0(), if p/6 = p*?logp > f,

p31/32+°(1)53/32(fg)_1/16, if p/(s < pl/Q logp.

This concludes the proof.
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5.3 Multinomial Exponential Sums

5.3.1 Preliminaries

The aim of this section is to extend the results of the previous section beyond the

cases of trinomials and quadrinomials, to more general multinomial sums.
Combining Corollary 5.2.3 with (4.2.5) and observing which term dominates we

get the following corollary.

Corollary 5.3.1. Let G S Fy be a multiplicative subgroup with |G| = G. Then

y GY¥p~! if G = pz logp,
Dy (g) « { G4k—2+o(1)

We also have the following result as a consequence of Lemma 5.2.4

if G < p% log p.

Lemma 5.3.2. Let G,H < F, be multiplicative subgroups with cardinalities G, H
respectively with G = H. Then,
H2Gip~2  if G = p2 logp,

N(H,G,9) < 5 \
( g g) { H2G5+0(1), ifG<p§ logp.

We then have the following result on multilinear exponential sums over sub-
groups, which may be of independent interest to the reader.
Lemma 5.3.3. Let X; < F,, be multiplicative subgroups with |X;| = X;, X1 = Xo =
=X, n>=4. Then with S(X1, ..., X, wi,...,w,) as given in (4.2.1),

n—1

S(Xr, ., Xy, wn) <o (X0 Xa)p? Ay () [ | Bul(X)

=2

1 1
+ (X1 X)) | —++ —
' <X5/2 X11/2>

where
—kr 1
Ay d eI i X = prlogp,
n(d1) = X*ﬁ“(l) . 1
| . if Xy <p2logp,
and
B, (X)) = p IO, if X > p logp,

1
X, T X < pelogp.

Proof. The proof follows that of Theorem 4.2.1, however we use Corollary 5.3.1 and

Lemma 5.3.2 in place of their relevant results on arbitrary sets. ]
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5.3.2 Proof of Theorem 5.1.6

Let oy, = ged(k;,p — 1) for each i = 1,...,¢t. We then let G,, be the subgroups of

[} generated by the elements of order ay,. Then

S = . )

P Oékt71 :Elegal xt,legat,l
3 1o ) (W)
xtE]F;I;
1
T .o 2 2 2 X
ky -Gk 1€Ga, rt-1€Gay_y zn€Fy

ep(ar(za. .. o)) oeplag 1 (my .. 0x) ) ey(ap(y - . 2)™)

:%;Zm D

Lo O
t—1 fvlegozl zt—legat_l

Z wi(x) ... wi(x) ey(ar(@r ... ).

xtelF;i‘

Now the image X; = {zf* : z, € ¥} of non-zero kith powers contains (p — 1)/ay,
elements, each appearing with multiplicity ay,. Similarly, we notice the images
X = {al .2 € Gay, } contain ay,/ged(ay,, ay,) elements, each appearing with
multiplicity ged(ag,, ay,), for i = 1,...,t — 1. Hence, we apply Lemma 5.3.3 to

obtain

O, 1 p— 1 -
V) €« =—————- 27 By, | As By (B,
S(¥) <t gt <p B ( o )H (B )>

1
A, p_]- (67°8 2 ;21 ;tl
+ By B ( ) +BZ 4+ 82 ).
Bry o Brpy Oy ! ( p—1 h Fim

By simplifying we reach the required result.

5.4 Open Problems

In this chapter we were able to give stronger bounds on weighted multilinear expo-
nential sums for when our sets are multiplicative subgroups of F,. One could also
consider analogues over other interesting sets, such as intervals or sets contained in
arithmetic progressions for example. In these cases we can take advantage of our
subsets having small sum-sets, which may lead us to some stronger bounds.

It would also be interesting to consider short multinomial exponential sums or

sums over some other choices of sets. Our techniques here unfortunately don’t lend
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themselves naturally to such applications. However, it should be possible to apply
similar ideas when the sets are subgroups of [F,,.

Finally, another possible direction one could take this problem would be to con-
sider taking the sum over composite moduli, rather than a prime p. Again, it seems
that in this case new techniques will need to be developed and considered to provide

new bounds.
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