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Abstract

This thesis focusses on application as well as modifications of sequen-

tial Monte Carlo (SMC) utilising the smooth resampling procedure of

Pitt and Malik [2011] (smooth bootstrap) as a statistically and com-

putationally efficient method for parameter estimation of discrete and

continuous time stochastic processes that have intractable likelihoods;

arising in the modelling of volatility, primarily in financial markets but

also in other fields. Intractability of the likelihoods of the models we

consider arise due to either missing observations, temporally aggre-

gated observations, or from discrete observation of a continuous time

process.

The first class of models we consider is the famous GARCH(1,1) model

of Bollerslev [1986]. Estimation of this class of model is straightforward

given the full observation series, however due to the inherent observa-

tion driven volatility mechanism, the marginal likelihood of a subset of

the full observation series, that is when some observations are missing,

is in most cases of interest intractable. Also intractable is the likeli-

hood from observations through temporally aggregated elements. We

illustrate application of the smooth bootstrap to provide parameter es-

timates in both these cases via simulated maximum likelihood. While

for the case of partial observation of the GARCH series, application

of the smooth bootstrap filter is straightforward, for the case of ob-

servation through temporally aggregated elements, identification of a

specific state space representation is required for ease of implementa-

tion.



The second class of model considered is the COGARCH(1,1) model of

Kluppelberg et al. [2004], a continuous time counterpart to the discrete

time GARCH(1,1) model, invented for use in modelling increasingly

available high frequency financial data sets as well as utilised in the well

established continuous time option pricing framework. The likelihood

of discrete observations of the continuous time COGARCH process is

an intractable high dimensional integral. We identify a specific state

space representation for this model allowing for ease of implementa-

tion of the smooth bootstrap to provide parameter estimates through

simulated maximum likelihood.

The third class of models we consider are the relatively new Markov

switching (MS-)GARCH(1,1) models (cf. Bauwens et al. [2010]), a

concept to allow for structural changes in the otherwise fixed GARCH

parameters. These models assume the world can exist in one of a finite

set of regimes whereby regime evolution is through a Markov chain.

The data generating process has the same GARCH model structure

across all regimes but that each regime puts in effect its own set of

GARCH parameters. Even provided the full observation series, as one

does not observe the regimes, computation of the likelihood requires

integrating over all possible regime paths. This path dependency ren-

ders the likelihood intractable as the number of possible paths grow

exponentially. We extend the smooth resampling procedure of Pitt

and Malik [2011], which is limited to hidden Markov models where

the state equation can be summarised by a single state variable during

the resampling, to provide a means for parameter estimation for these

MS-GARCH(1,1) models, in which one needs two variables, volatil-

ity (which has a continuous support) and regime (which has a finite

support), to evolve the hidden state process.
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Chapter 1

Introduction

This thesis focusses on the development of statistically and computationally effi-

cient methods for accurate estimation of intractable likelihoods for discrete and

continuous time stochastic processes that arise in the modelling of volatility, pri-

marily in financial markets but also in other fields. With these approximated like-

lihoods, the otherwise infeasible task of obtaining parameters estimates through

maximum likelihood estimation is then possible.

For the models and applications we consider, the likelihoods are intractable aris-

ing either from observations of a discrete time process being missing or temporally

aggregated, or from discrete observation of a continuous time process. The meth-

ods are developed for the discrete time GARCH(1,1) model (Bollerslev [1986]) for

conditional heteroscedasticity, when there are missing observations or when obser-

vation is only through temporal aggregates of the underlying process. The methods

to be presented can be generalised to many variants of the GARCH model including

the EGARCH(1,1) (Nelson [1991]) and GJR-GARCH(1,1) (Glosten et al. [1992])

for instance. More challenging are the continuous time GARCH model (COGA-

RCH) of Kluppelberg et al. [2004] and the Markov switching (MS-)GARCH model

(cf. Bauwens et al. [2010]). The COGARCH process evolves in continuous time

but is observed at, typically, irregular time intervals and as a result many events

in the underlying process are not directly observed, while the MS-GARCH model
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allows model parameters to evolve over time according to an unobserved regime

process. The same fundamental methods are developed for these two more com-

plicated variants also.

Before reviewing the basic details of each model considered in the thesis, we

outline the main technical aspects of the approach used to obtain a simulated

estimate of the likelihood which is continuous in the model parameters and hence

capable of being optimised efficiently and for which a suitable Hessian can be

estimated to be used for calculation of standard errors of parameter estimates.

Here we introduce the key methods of this thesis initially through consideration

of a simple non-trivial example, that of the GARCH(1,1) discrete time process for

stochastic volatility. Since its introduction by Bollerslev [1986] the GARCH model

has been widely and successfully applied, primarily for modelling the volatility of

financial returns, but also in other applications such as high frequency wind speed

(cf. Cripps and Dunsmuir [2003]). GARCH models have a benefit over competing

stochastic volatility models in that using a single source of randomness (the latter

requires two sources) the model is able to capture a number of stylised features

associated with financial returns data such leptokurtosis, clustering of large moves

and small moves (volatility persistence) and mean reverting volatility (cf. Engle

and Patton [2001]). Formally, the GARCH(1,1) model is the following system of

recurrence equations

yi = σizi (1.1)

σ2
i = ω + αy2

i−1 + βσ2
i−1 (1.2)

for i = 1, . . . , N whereby

• (yi)i=1,...,N is termed the observation series,

• (zi)i=1,...,N is an independently and identically distributed (i.i.d) noise series

with density h and finite second moment,
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• ω > 0, α ≥ 0 and β ≥ 0 are model parameters.

It was proven in Nelson [1990] that (1.1)-(1.2) has a unique strictly stationary and

ergodic solution if and only if

E(log(αz2
1 + β)) < 0. (1.3)

As is seen from the volatility equation (1.2) the variance of observation yi

is dependent on the full history of observations prior (yj)j=1,...,i−1, that is σ2
i =

υ(yi−1, . . . , y1) for some function υ. Thus, provided the full observation series

(yi)i=1,...,N one can determine the full volatility series (σi)i=1,...,N , then assuming

the density h of the noise sequence and parameters specifying it are known, the

likelihood of (yi)i=1,...,N , conditional on initial values y0 and σ2
0 can be easily com-

puted as

py(y1, . . . , yN ; θ) =
N∏
i=1

h(yi/σi)

σi
, (1.4)

where θ = (ω, α, β). Utilising (1.4), maximum likelihood estimation of the param-

eters θ is straightforward.

Now, if an observation yj is omitted, this disrupts knowledge of future volatil-

ities (σi)i=j+1,...,N . Assume that we observe a GARCH(1,1) series on a set of

n < N time points t1 = 1 < t2 < . . . < tn = N , where tj ∈ {2, . . . , N − 1} for

j = 2, . . . , n − 1. Denote by M the complement of O := {t1, . . . , tn} in the set

T := {1, 2, . . . , N}, yO the collection of observed data and yM the collection of

missing observations. Define Yi = yti for i = 1, . . . , n and let Y = (Y1, . . . , Yn)

be the vector of observations. The marginal likelihood of observations Y is then

given by

pY (Y1, . . . , Yn; θ) =

∫
RN−n

py(y1, . . . , yN ; θ)dyM (1.5)
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that is, the full information density defined in (1.4) integrated over the missing

observations. The likelihood defined in (1.5) requires evaluation of integrals of

dimension N − n, which for even a modest amount of missing observations is

intractable, making maximum likelihood infeasible.

Somewhat suprisingly, there is not a lot of literature on the topic of how to

estimate GARCH models when one has gaps in the observation series. This is

particularly surprising given how important GARCH models are in practice and

that it is not unusual for real world data sets to contain missing observations. For

instance, most economic or financial time series can be considered to have missing

measurements on holidays or weekends, “although economic activity continues as

a product of political and social phenomena that will have a direct influence on the

next value of the studied index” -Bondon and Bahamonde [2012].

Even ignoring gaps due to holidays or weekends, financial instruments with

low liquidity can have missing values on trading days. Such a problem is faced

when modelling bond yields from corporations or governments of smaller emerging

nations. Figure 1.1 displays a time series of log yield changes, across trading days

of the Korean securities exchange (KRX), of a Korean treasury bond (4.25 coupon,

maturity 9th October 2014) for the period 10th September 2013 to 29th August

2014.
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Figure 1.1: Time series of log yield changes of a Korean treasury bond (4.25
coupon, maturity 9th October 2014) for the period 10th September 2013 to 29th
August 2014. This data was obtained from Bloomberg.
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While daily closing prices of stock price data on trading days are rarely missing,

as we move to a higher frequency of observation the data acquisition process is

more susceptible to transmission failures. Figure 1.2 displays the time series of

high frequency one-minute log price changes of the stock Boeing Co. (BA), for

each trading minute of the New York Stock Exchange (NYSE) on the 2nd of

January 2015.
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Figure 1.2: Time series of one-minute log price changes of the stock Boeing Co.
(BA), for each trading minute of the New York Stock Exchange (NYSE) on the
2nd of January 2015. This data was obtained from https://www.finam.ru/.

Outside of financial applications, the GARCH model has been applied to model

wind speed. Mechanical failures of measurement equipment can indeed lead to

gaps in high frequency wind data. The top plot in Figure 1.3 is a time series of

30 minute north-south wind speed measurements taken at Fort Denison, Sydney

from 00:00 hours 1st December 1999 to 00:00 hours 13th April 2000. The bottom

plot in Figure 1.3 displays the residuals after fitting an Autoregressive model of

order 3 to this wind data.

Furthermore, consider regression models where one wishes to account for cor-

relation in residuals by modelling them as a GARCH series. It can happen that

some recordings of the response or predictors are missing leading to unobserved

residuals. For instance, in finance, in line with arbitrage pricing theory (APT)

(see Ross [1976]), it is commonplace to study linearly the relationship between

https://www.finam.ru/
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an asset’s return and a number of macro-economic/financial factors or theoretical

indices. The return for a domestic asset could have a foreign asset as a factor and

due to time-zone and different public holiday schedules the response and predictor

series do not line up perfectly. Even domestic factors can be missing; for instance,

the New York Stock Exchange (NYSE) and NASDAQ are open on Columbus day

and Veteran’s day while the US bond market is not, thus factors derived from the

US bond market may not be available for those days. Furthermore, a complete

record of factors such as historical accounting ratios may be difficult to find.
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Figure 1.3: (Top:) Time series of 30 minute north-south wind speed measurements
taken at Fort Denison, Sydney from 00:00 hours 1st December 1999 to 00:00 hours
13th April 2000. (Bottom:) Residuals after fitting an Autoregressive model of
order 3 to the wind data.
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Various approaches to approximate the integrand (1.5) could be considered such

as series expansion (e.g. the Laplace approximation), Monte Carlo evaluation of

the likelihood (e.g. importance sampling), or, a combination of both – see Davis

and Rodriguez-Yam [2005] for example for a discussion of these concepts.

However, the integrand in (1.5) cannot be guaranteed to be log-concave for

all sample paths and configurations of sampling times, thus inhibiting the use of

Laplace approximations. While importance sampling, without a good approxi-

mating density, is prone to uneven coverage of samples with some samples having

very low probability and only a few samples having substantial probability mass

(Poole and Mackworth [2010]). For instance, if one were to simply simulate zi,k,

i ∈M, k = 1, . . . , K i.i.d random variables with density h and define

ỹ
(k)
i =


yi if i ∈ O

zi,k

√
υ(ỹ

(k)
i−1, . . . , ỹ

(k)
1 ) if i ∈M,

(1.6)

indeed

lim
K→∞

1

K

K∑
k=1

py(ỹ
(k)
1 , . . . , ỹ

(k)
N ; θ)∏

i∈M

h(zi,k)/

√
υ(ỹ

(k)
i−1, . . . , ỹ

(k)
1 )

= pY (Y1, . . . , Yn; θ), (1.7)

howeverK will have to be quite large to yield a reasonable estimate of pY (Y1, . . . , Yn

; θ), as a reckless amount of simulation effort will be wasted on many k for which

py(ỹ
(k)
1 , . . . , ỹ

(k)
N ; θ) ≈ 0, for the bulk of probability mass lies within only a small

region of the vast simulation space. Furthermore, due to the path dependency, one

component zi,k of (zi,j)j=1,....K is enough to be the difference in whether ỹ
(k)
1 , . . . , ỹ

(k)
N

falls in a region of meaningful probability mass or not.

A means to overcome the disproportionate allocation of probability mass among

simulated samples for hidden state space models is that of sequential Monte Carlo

(SMC), a.k.a particle filters, a Monte Carlo technique first introduced in Gordon
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et al. [1993] for which theoretical convergence results were established by Del Moral

[1996]. SMC utilises a bootstrap resampling mechanism that leads to more simu-

lated samples in regions of substantial probability mass.

We assume throughout that the process of interest is (yt) where t denotes

discrete time for the GARCH type models or denotes continuous time for the

COGARCH model. Observations are recorded at times t1 < t2 < . . . < tn which

are not necessarily equally spaced. The observations could represent the values of

y itself or aggregations of it over the intervals between successive ti. Regardless,

the available observations are denoted Yi, for i = 1, . . . , n. For all models consid-

ered herein a discrete time Markov process (Xi)i=1,...,n can be defined to give an

unobserved state process of the general form

Xi = g(Xi−1, Yi−1,Wi), (1.8)

in terms of which the observations (Yi)i=1,...,n are defined as

Yi = f(Xi, Zi), (1.9)

where f and g are suitably defined functions depending on the particular model

being considered, (Zi)i=1,...,n is a serially independent noise series and (Wi)i=1,...,n

is another serially independent noise series that is independent of (Zi)i=1,...,n. Note

that, in this specification, the Yi’s are serially correlated, but conditionally in-

dependent given the hidden state Xi. The hidden state Xi can be seen to be

Markovian as Xi = g
(
Xi−1, f(Xi−1, Zi−1),Wi

)
.

Utilising SMC one is able to obtain, through simulation, a consistent and unbi-

ased estimate of the likelihood pY (Y1, . . . , Yn; θ) (cf. Del Moral [1996]). However,

while the SMC’s bootstrap resampling leads to more samples in regions of substan-

tial probability mass; it comes with the drawback that, even fixing randomness,

the estimated likelihood surface is unlikely smooth in θ and thus generally not
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amenable to numerical optimisers.

The bootstrap resampling mechanism is equivalent to resampling according to

a step-wise cumulative distribution function (CDF). In the case when the support

of Xi is some interval of R, Pitt and Malik [2011] found an elegant solution to

the discontinuity problem by replacing the step-wise CDF with a piecewise linear

approximation.

We show in Chapter 3, how to obtain parameter estimates for a GARCH(1,1)

series with missing observations by framing the problem in the form (1.8)-(1.9)

and utilising SMC with the continuous resampling procedure of Pitt and Malik

[2011], henceforth referred to as smooth SMC.

While a particular model may have several state space representations, as we

will detail in Section 2.1, the SMC algorithm requires evaluation of p(Yi|Xi) and

thus certain state space representations have more convenient implementations

while others may be computationally challenging.

Consider the situation when one has as observations, at time points t1 < t2 <

. . . < tn = N , ti ∈ {1, . . . , N − 1}, i = 1, . . . , n − 1, the aggregated GARCH

series between times ti and ti−1 + 1, that is y̆i =
∑ni

k=1 yti−1+k where ni = ti− ti−1,

t0 = 0. This situation can be put in the form of (1.8)-(1.9) with a natural choice of

Xi to be σ2
ti−1+1, however p(

∑ni
k=1 yti−1+k|σ2

ti−1+1) cannot be evaluated analytically

and this hinders computational feasibility of the SMC procedure. In Chapter

4 we identify an alternative specification of the process Xi which allows for a

computationally feasible and easy implementation of the smooth SMC procedure

providing a method to obtain parameter estimates from an aggregated GARCH

series.

In Chapter 5 we identify a computationally feasible state space representation,

for smooth SMC, of a discretely observed COGARCH(1,1) process, whereby the

COGARCH(1,1) model introduced in Kluppelberg et al. [2004] is the following
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system of stochastic differential equations

dGt = σt dLt,

dσ2
t+ = (β − ησ2

t ) dt+ ϕσ2
t d[L,L]

(d)
t , (1.10)

where Lt is a Lévy process, β > 0, η > 0 and ϕ > 0 are model parameters, and

[L,L](d) denotes the discrete quadratic variation of the Lévy process (cf. Protter

[2005], p.66). Here and hereafter, t± indicates the right/left-hand limit at t.

The smooth SMC procedure is limited to models where the state equation

can be summarised by a single state variable during the resampling. In Chapter

6 we extend the smooth SMC procedure of Pitt and Malik [2011] for parameter

estimation of MS-GARCH(1,1) models which are defined as the following system

Yi = σizi + µ(Ri) (1.11)

σ2
i = ω(Ri) + α(Ri)(Yi−1 − µ(Ri−1))2 + β(Ri)σ

2
i−1 (1.12)

for i = 1, . . . , N whereby

• (Ri)i=1,...,N is an unobserved discrete time ergodic homogeneous Markov

chain on a finite space R := {1, . . . , J},

• ω(Ri), α(Ri), β(Ri) and µ(Ri) are functions taking values on the respec-

tive finite sets ω(R) := {ω1, . . . , ωJ} ∈ (0,∞)J , α(R) := {α1, . . . , αJ} ∈

[0,∞)J , β(R) := {β1, . . . , βJ} ∈ [0,∞)J and µ(R) := {µ1, . . . , µJ} ∈ RJ ,

• (zi)i=1,...,N as previously defined.
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Thus, to summarise, the remainder of this thesis is outlined as follows. In

Chapter 2 we introduce the sequential Monte Carlo (SMC) methodology and il-

lustrate its use, in Chapter 3, for parameter estimation of GARCH(1,1) models in

the presence of missing observations utilising the continuous resampling procedure

of Pitt and Malik [2011]. In Chapter 4 we deal with the task of parameter estima-

tion for GARCH(1,1) models when observations are not merely missing, but have

been temporally aggregated. An alternative state space representation is utilised

to again perform estimation through a SMC framework. Furthermore, we make

the connection that an AR(1)-GARCH(1,1) can be seen as a general form of a

temporally aggregated GARCH(1,1) series and thus also illustrate estimation of

AR(1)-GARCH(1,1) in the presence of missing data through a SMC framework.

In Chapter 5 we venture from the equally spaced discrete time GARCH(1,1) to

the continuous time GARCH (COGARCH) model of Kluppelberg et al. [2004].

Through a two-step estimation method we again utilise SMC to provide a means for

parameter estimation of a compound Poisson driven COGARCH(1,1). In Chapter

6 we extend the continuous resampling procedure of Pitt and Malik [2011], which

is limited to models where the state equation can be summarised by a single state

variable during the resampling, to provide a means for parameter estimation for

Markov switching GARCH(1,1) models in which one needs two variables, volatil-

ity (which has a continuous support) and regime (which has a finite support), to

evolve the state equation.

In response to the need for higher dimensional resampling, to tackle models

for which two or more continuous variables are required to evolve the state equa-

tion, a prototype copula approach is proposed in Appendix A.3. This method

however, is still in development and to be further investigated. Proof of concept

is demonstrated for parameter estimation of ARMA(1,1)-GARCH(1,1) models in

the presence of missing data.
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Chapter 2

The sequential Monte Carlo

likelihood approximation

Organisation of this chapter is as follows. Section 2.1 introduces the SMC method

for likelihood approximation for a general hidden state space model of the form

(1.8)-(1.9). Section 2.2 provides illustration of how the bootstrap resampling mech-

anism employed in SMC results in a likelihood surface prone to being discontinuous

in model parameters. A discontinuous likelihood surface is problematic for use in

numerical optimisers, inhibiting the ability to obtain parameter estimates through

maximum likelihood. An adjustment proposed by Pitt and Malik [2011] to yield

a continuous likelihood surface, possible when the support of the hidden state

process is some interval of the real line, is detailed in Section 2.3.
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2.1 Sequential Monte Carlo for likelihood

approximation

Suppose we wish to estimate a set of parameters θ that govern the system (1.8)-

(1.9), the likelihood is given as follows,

lik(θ) =
n∏
i=1

p(Yi|Y1:i−1) =
n∏
i=1

∫
p(Yi|Xi)P( dXi|Y1:i−1), (2.1)

with p(Yi|Y1:i−1) and P( dXi|Y1:i−1) interpreted as p(Y1) and P( dX1) respectively

when i = 1. In most cases of interest the conditional distributions P( dXi|Y1:i−1)

are intractable, which hinders direct evaluation of (2.1). In these cases, one can

resort to sequential Monte Carlo, which involves first simulating an i.i.d. ran-

dom sample X
(1:K)
i =

{
X

(1)
i , . . . , X

(K)
i

}
, called particles, from an approxima-

tion to P( dXi|Y1:i−1), denoted by P̃( dXi|Y1:i−1), to be described below. Then

secondly, replacing P( dXi|Y1:i−1) by the empirical distribution of the particles

P̂( dXi|Y1:i−1) = 1
K

∑K
k=1 δX(k)

i
( dXi), to approximate the integrals with respect to

the conditional distributions as follows

∫
p(Yi|Xi)P( dXi|Y1:i−1) ≈

∫
p(Yi|Xi)P̂( dXi|Y1:i−1) =

1

K

K∑
k=1

p(Yi|X(k)
i ). (2.2)

The SMC approximation of the likelihood is then given by

l̂ik(θ) =
n∏
i=1

( 1

K

K∑
k=1

p(Yi|X(k)
i )
)
. (2.3)

At this point, we emphasise that two approximations to the conditional distri-

bution P( dXi|Y1:i−1) are used: the “tilde” version P̃( dXi|Y1:i−1) is used to generate

particles, while the “hat” version P̂( dXi|Y1:i−1) is used both to approximate the

integrals in (2.2), and to produce the “tilde” version in the next time interval

where it is needed, as we shall explain next.
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To present the method to generate particles from P̃( dXi|Y1:i−1), we note that

P( dXi|Y1:i−1) =

∫
P( dXi|Xi−1, Yi−1)P( dXi−1|Y1:i−1), (2.4)

which motivates the “tilde” version approximation to P( dXi|Y1:i−1),

P̃( dXi|Y1:i−1) =

∫
P( dXi|Xi−1, Yi−1)P̂( dXi−1|Y1:i−1), (2.5)

where the posterior P̂( dXi−1|Y1:i−1), for i > 1, is determined by the particles from

the previous time step i− 1 via

P( dXi−1|Y1:i−1) =
p(Yi−1|Xi−1)P( dXi−1|Y1:i−2)∫
p(Yi−1|Xi−1)P( dXi−1|Y1:i−2)

≈

∑K
k=1 p(Yi−1|X(k)

i−1)δ
X

(k)
i−1

( dXi−1)∑K
k=1 p(Yi−1|X(k)

i−1)
=: P̂( dXi−1|Y1:i−1). (2.6)

Define wki := p(Yi|X(k)
i )/

∑K
j=1 p(Yi|X

(j)
i ) for k = 1, . . . , K, i = 1, . . . , n, then

combining (2.5) and (2.6) gives

P̃( dXi|Y1:i−1) =
K∑
k=1

P
(

dXi|X(k)
i−1, Yi−1

)
wki−1. (2.7)

To simulate a particle according to (2.7), one would first sample an index

ν from the set {1, . . . , K} according to the probabilities {w1
i−1, . . . , w

K
i−1} then

simulate a random variable Wi to draw a Xi = g(X
(ν)
i−1, Yi−1,Wi). Equivalently,

this process can be thought of as bootstrap resampling of the particles from the

previous time step {X(1)
i−1, . . . , X

(K)
i−1 } and then evolving this bootstrapped sample,

rather than the original sample, to generate the sample of X ′is for the next time

step. This bootstrap resampling provides a mechanism to propagate particles in

which the observation was more likely to result, thus concentrating “computation

effort on more “promising” regions of the state space” -Kantas et al. [2009]. The

bootstrap resampling SMC procedure we have described was developed by Gordon
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et al. [1993]. It was established in Del Moral [1996] that even for a finite particle

size K the estimator (2.3) is a consistent and unbiased estimator for the true

likelihood function. Computation underflow by multiplication of many small terms

can hinder evaluation of (2.3). An alternative is to calculate log
(
l̂ik(θ)

)
which is

an asymptotically (as K → ∞) unbiased estimator of the true log-likelihood,

although for finite K the bias is1 O(K−1) (see Del Moral [1996]).

2.2 Problem of discontinuous SMC likelihoods

While bootstrap resampling leads to more samples in regions of substantial prob-

ability mass; it comes with the drawback that (2.3) is generally not amenable to

numerical optimisers as even fixing randomness and evaluating (2.3) at different

parameter values the constructed likelihood surface is unlikely to be smooth. Us-

ing bootstrap resampling, discontinuities in the likelihood surface arise because at

each time step, the particles X
(k)
i are effectively resampled from a discontinuous

empirical cumulative distribution function (ECDF)

F̂K(x) = P̂(Xi ≤ x|Y1:i) =
K∑
k=1

P̂(X
(k)
i |Y1:i)I(X(k)

i ≤ x) (2.8)

where I(.) is the indicator function. Figure 2.1 illustrates how a small change in

parameters can be exacerbated by sampling from a step-wise discontinuous distri-

bution. While both the vertical and horizontal shifts in the ECDF are continuous

in θ, by inverting the ECDF and sampling Xi from a fixed set of uniform random

variables, one cannot guarantee that the whole set of sampled particles X
(1:K)
i is

continuous in θ. While it is possible that the initial magnitude of the difference

in the sampled particles across the parameter change is small, as the procedure is

sequential in nature, the difference will be compounded in all later iterations.

1For functions A and B that map positive integers to some subset of R, A(j) is O
(
B(j)

)
means there exists constants C > 0 and j0 ∈ Z+ such that |A(j)| ≤ C|B(j)| for every integer
j > j0.
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Resampling from a step−wise Discontinuous CDF
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Figure 2.1: The black (solid line) step function is the ECDF under some parameter
θ1 and the red (dashed line) step function is the ECDF under some parameter
θ2 very close to θ1. A small shift in parameter θ causes a small shift in the
ECDF. Fixing the same uniform U and inverting the two discontinuous step-wise
ECDFs, as illustrated above, can result in drastically different particles Xθ1 and
Xθ2 sampled.

2.3 Solution for continuous SMC likelihoods when

X ⊂ R

In the case when the support of Xi is some interval of R, Pitt and Malik [2011]

provide a simple solution to remedy the discontinuity problem by constructing a

continuous approximation F̃K(x) of F̂K(x) and then resampling particles X
(k)
i by

inverting uniforms based on F̃K(x). Assume the particles X
(k)
i , k = 1, . . . , K are

sorted in ascending order, then

F̃N(x) = π0I(x ≥ X
(1)
i ) +

K−1∑
k=1

πkH
( x−X(k)

i

X
(k+1)
i −X(k)

i

)
+ πKI(x ≥ X

(K)
i ) (2.9)
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where π0 = P̂(X
(1)
i |Y1:i)/2, πK = P̂(X

(K)
i |Y1:i)/2 and πk =

(
P̂(X

(k+1)
i |Y1:i) +

P̂(X
(k)
i |Y1:i)

)
/2 for k = 1, . . . K − 1 and H(z) := max

(
0,min(z, 1)

)
. Figure

2.2 illustrates the idea behind the procedure (see also Figure 1 in Pitt and Malik

[2011]). It was shown in Pitt and Malik [2011] that the distance ‖F̂K(x)−F̃K(x)‖∞

is of order 1
K

.

Resampling from a Continuous CDF Approximation
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Figure 2.2: Previously, inverting the same uniform across the ECDFs under θ1

(black solid line) and θ2 (red long-dashed line) could result in drastically different
particles Xθ1 and Xθ2 sampled. The continuous approximation of the ECDF un-
der θ1 is the blue (thin solid line) function and respectively under θ2 is the purple
(short-dashed line) function. By instead inverting these continuous approxima-
tions, large deviations between sampled particles under small parameter changes
are eliminated.
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Application: Likelihood inference

for partially observed

GARCH(1,1) series

This chapter illustrates application of the SMC methodology for parameter estima-

tion of GARCH(1,1) models in the presence of missing observations. Throughout,

the missingness is assumed to occur independently of the process being observed.

This may be deterministic sampling (such as regular omission of data on stock

indices on weekends or scheduled holidays), random (occuring for instance due to

intermittent failure of recording equipment) or a combination. However, whether

an observation is missed is not dependent on the values of the process of interest

either at the missing times or at any other observed times.

Organisation of this chapter is as follows. Section 3.1 details how a partially

observed GARCH(1,1) time series is of the form (1.8) − (1.9) allowing use of

the SMC method. In Section 3.2.1, through simulation studies, the performance

of this estimation method at varying degrees of missingness is assessed and also

compared in Section 3.2.2 against the performance of several common imputation

methods. Furthermore, in Section 3.2.3, for the special case of a partially observed
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GARCH(1,1) series at equally spaced time points the performance of this method is

compared against Drost and Nijman [1993]’s “Weak” GARCH formula. Utilisation

of the method on several real world applications such as modelling both daily

and high frequency intraday stock price returns as well as high frequency wind

strength measurements are illustrated in Section 3.3. The chapter concludes with

a discussion in Section 3.4.

3.1 SMC for partially observed GARCH(1, 1)

Throughout we let ni = ti − ti−1, i = 1, . . . , n with t0 = 0. To obtain, via SMC,

an approximation of the marginal likelihood of a partially observed GARCH(1,1)

time series (1.5), it is straightforward to put the problem in the form of (1.8)−(1.9)

by setting, for i = 1, . . . , n: Yi = yti , Zi = zti , Xi = σ2
ti

,

Wi =


{zti−1, . . . , zti−1+1} when ni > 1,

∅ when ni = 1,

(3.1)

with

Xi = g(Xi−1, Yi−1,Wi) =



ω + αY 2
i−1 + βXi−1, when ni = 1

ω + ω
( ni−1∑

j=1

j∏
k=1

(αz2
ti−k + β)

)
+ (αY 2

i−1 + βXi−1)

ni−1∏
j=1

(αz2
ti−j + β)

when ni > 1.

(3.2)

Then Yi = f(Xi, Zi) =
√
XiZi and

p(Yi|Xi) =
1√
Xi

h(
Yi√
Xi

). (3.3)
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Assuming one can simulate the noise zi as well as evaluate its density h, the SMC

likelihood approximation detailed in Section 2.1 can be performed. As the support

of Xi is an interval of R, a continuous log-likelihood surface can be constructed,

using the method detailed in section 2.3, and subsequently maximised to obtain

parameter estimates and their standard errors using the Hessian.

3.2 Simulation studies

3.2.1 Impact of proportion of missing data on SMC

performance

In this section we test the performance of the SMC estimation method at vary-

ing degrees of missingness. In order to study the impact of different amounts of

missingness, rather than variations in total number of observations, on the per-

formance of the method we keep the total sample size at 2000 observations. For

example, 20% missing with 2000 effective sample size results from a series of 2500

consecutive values of which 20% are missing. This allows us to study the impact of

missingness in isolation from any impact on performance attributable to smaller

sample sizes. Denote mp as the missing percentage. For each missing scenario

we simulate 1000 different data sets of a length N = b 2000
1−mpc GARCH(1,1) series

with standard normal innovations with true parameters ω = 0.1, α = 0.08 and

β = 0.9, then for each data set bmp×Nc different points between 1 and N (non-

inclusive) were randomly (with equal chance of selection) deleted. Note that the

configuration of missing observations is different between the 1000 data sets.

The SMC algorithm for likelihood approximation was implemented in C++

and the optimisation was performed in R using the constrOptim function from the

stats library. Parameters were optimised over the set

Ω = {ω > 0;α > 0; β > 0;α + β < 1}. (3.4)
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The inverse of the negative of the numerical Hessian H(θ), of the SMC obtained

log-likelihood, at the optimum θ̂ is used as the estimated covariance matrix of

θ̂ from which standard errors of individual parameter estimates are obtained

throughout.

Table 3.1 displays the results from 1000 simulations of the GARCH model with

missing percentages of 5%, 10%, 20%, 35% and 50%. This range was chosen to

reflect the extent of ‘missingness’ encountered in the real examples considered in

Section 3.3. In this table and in similar tables throughout the thesis we display

the following summary statistics, all taken over the 1000 replications that are

simulated:

i) Mean the average of the individual estimates.

ii) Bias the Mean minus the true parameter value.

iii) SD the standard deviation of the individual estimates.

iv) Mean SE the average of the standard errors obtained from the Hessian, as

described above, for each individual replication.

v) RMSE the root mean squared error of the individual estimates compared

to the true parameter values.

Results obtained utilising 250 and 1000 particles are also shown to assess the

impact of increasing particle simulation effort on the statistical performance of

the resulting parameter estimates. Comparing these, it is clear that using four

times as many particles scarcely impacts the statistical performance of SMC as

an approximation to the log-likelihood and the resulting parameters and their

reported standard errors, thus we will concentrate on summarising the impact on

estimation associated with increasing the proportion of missing data.
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Some points about Table 3.1 are:

• The average estimated standard error closely approximates the observed

standard deviation suggesting that the use of the Hessian for obtaining stan-

dard errors is reliable.

• Across all three parameters the RMSE is primarily due to variance with

squared bias being small in comparison.

• The bias as a percentage of true value is largest for estimation of ω and is

essentially negligible for estimation of α and β.

• The RMSE is stable with increasing proportion of missingness for α and β.

However, for ω, RMSE decreases as the percentage of missingness increases

due, roughly equally, to bias and standard deviation both decreasing by

around 25% for the 50% missing scenario relative to the no missing scenario.

This may be somewhat counterintuitive. How can gaps in the data improve

estimation of the long-run variance for the GARCH process? We speculate

that the gaps in the data produce near independent complete subsequences

of realisations and that this in turn increases statistical efficiency. This

phenomena has been observed in other time series situations as demonstrated

in Dunsmuir [1981].

In summary, SMC has been demonstrated to provide accurate estimates of the

GARCH(1,1) parameters with performance that certainly does not degrade as the

percentage of missing data increases (holding the overall sample size constant) and

there is actually improvement in the estimation of ω, the parameter that directly

measures the overall level of variability in the series, as missingness increases.

Increasing the number of particles beyond 250 is not warranted in this setting.
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Additional graphical interpretation of the results of Table 3.1 as the percentage

of missingness increases can be obtained from Figure 3.1. We discuss these in more

detail in the next subsection where we compare the SMC based likelihood method

with other available methods based on single and multiple imputation.

A summary, across the 1000 simulations for each level of missingness, of com-

putational times using an Intel Xeon 3.06 GHz processor is provided in Table 3.2.

The time to complete a SMC likelihood evaluation can be seen to increase, roughly

linearly, with N as well as the number of particles K.

Table 3.1: SMC estimation of the GARCH(1,1) model with missing data: Sum-
mary statistics for 1000 replications for each level of missingness: Mean is the
sample mean of the estimates, Bias is Mean minus the true parameter value, SD
denotes standard deviation of the estimates across replications, Mean SE is the
average reported standard error using the Hessian and RMSE is the root mean
squared error of the estimates across replications.

250 Particles 1000 Particles

% Missing 0% 5% 10% 20% 35% 50% 5% 10% 20% 35% 50%

ω = 0.1

Mean 0.1176 0.1179 0.1178 0.1168 0.1142 0.1116 0.1177 0.1176 0.1164 0.1135 0.1105

Bias 0.0176 0.0179 0.0178 0.0168 0.0142 0.0116 0.0177 0.0176 0.0164 0.0135 0.0105

SD 0.0424 0.0409 0.0423 0.0403 0.0381 0.0345 0.0409 0.0419 0.0400 0.0376 0.0341

Mean SE 0.0383 0.0378 0.0373 0.0361 0.0340 0.0319 0.0378 0.0373 0.0361 0.0340 0.0320

RMSE 0.0459 0.0446 0.0459 0.0437 0.0406 0.0364 0.0446 0.0454 0.0433 0.0400 0.0357

α = 0.08

Mean 0.0801 0.0799 0.0801 0.0802 0.0806 0.0801 0.0798 0.0801 0.0802 0.0804 0.0799

Bias 0.0001 -0.0001 0.0001 0.0002 0.0006 0.0001 -0.0002 0.0001 0.0002 0.0004 -0.0001

SD 0.0131 0.0131 0.0131 0.0132 0.0135 0.0127 0.0131 0.0131 0.0132 0.0135 0.0127

Mean SE 0.0135 0.0134 0.0134 0.0134 0.0133 0.0133 0.0134 0.0134 0.0134 0.0133 0.0133

RMSE 0.0131 0.0131 0.0131 0.0132 0.0135 0.0127 0.0131 0.0131 0.0132 0.0135 0.0127

β = 0.9

Mean 0.8956 0.8956 0.8954 0.8956 0.8959 0.8970 0.8957 0.8955 0.8957 0.8963 0.8975

Bias -0.0044 -0.0044 -0.0046 -0.0044 -0.0041 -0.0030 -0.0043 -0.0045 -0.0043 -0.0037 -0.0025

SD 0.0178 0.0176 0.0180 0.0181 0.0183 0.0171 0.0177 0.0180 0.0181 0.0183 0.0171

Mean SE 0.0179 0.0178 0.0178 0.0177 0.0175 0.0174 0.0178 0.0178 0.0178 0.0175 0.0174

RMSE 0.0183 0.0182 0.0186 0.0187 0.0188 0.0173 0.0182 0.0185 0.0186 0.0186 0.0172
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Table 3.2: Summary, across the 1000 simulations for each level of missingness, of
computational times for the SMC optimisation using an Intel Xeon 3.06 GHz.

250 particles 1000 particles

Time (secs) Avg. number Avg. time Time (secs) Avg. number Avg. time

% Missing N to complete of function to evaluate to complete of function to evaluate

optimisation calls function (secs) optimisation calls function (secs)

5% 2105 16.91 157.45 0.107 71.67 157.77 0.454

10% 2222 17.95 160.04 0.112 75.39 158.63 0.475

20% 2500 20.72 169.24 0.122 87.22 168.98 0.516

35% 3076 25.38 175.62 0.145 106.48 175.39 0.607

50% 4000 30.64 168.36 0.182 126.54 166.31 0.761

3.2.2 Comparison of SMC with common imputation

methods

Additionally, we perform three common imputation procedures and compare their

performance with the SMC estimates. Imputation procedures yield artifically com-

plete data sets for which standard estimation methods are applied. The first pro-

cedure is a form of single imputation (SI), whereby all missing values are replaced

by the mean, which in this case is zero. The second procedure, multiple imputa-

tion (MI) (cf. Rubin [1987]) simulates m replications of the complete data set, the

estimate of the parameter of interest is taken as the average of the m complete

data estimates. The MI procedure simulates the missing innovations zi, where

i ∈ M to “complete” the data set. However, unlike the SMC procedure which

concentrates simulation effort on choices of the zi which are more likely given the

observed data, MI does not probabilistically match the simulated zi, i ∈M to the

observed yi, i ∈ O. As a result, simulation using the MI method is inefficient. MI

was performed using the code available in the SAS online manual1 using m = 250

replications. Finally, the third procedure is to ignore missing values (IG), skipping

over their occurrence, by concatenating the segments of non-missing observations

1https://support.sas.com/rnd/app/ets/examples/garchimpute/index.htm

https://support.sas.com/rnd/app/ets/examples/garchimpute/index.htm
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to form a shorter series with no gaps.

Estimates, under the same amounts of missingness as considered earlier, are

displayed in Table 3.3 for SI and MI and Table 3.4 for IG. Figure 3.1 provides a

visual comparison of the bias, standard deviation and RMSE performance of the

four estimators through the different degrees of missingness. Figure 3.2 displays

kernel density plots of the estimates obtained from the SMC algorithm and the

three imputation procedures for the 5% and 50% missing scenarios. Taken together

these tables and figures demonstrate:

• For the imputation methods (SI, MI and IG) the bias, across all three param-

eters, increases in absolute value as the percentage of missing data increases.

The effect of missingness on the standard deviation of estimates from the im-

putation methods is less clear to decipher, however looking at the totality of

bias and standard deviation through RMSE we see estimation performance

in this regard worsens, in particular for α and β, as missingness is increased.

• In constrast the SMC method (using either 250 or 1000 particles) give very

stable values for bias, standard deviation and hence overall RMSE as the

missingness increases.

• MI is the closest competitor to SMC but is considerably more biased in its

estimates of α and β for moderate to high levels of missingness.

• The kernel density plots in Figure 3.2 show that the distributions for the

imputation methods are skewed for large amounts of missingness whereas

those for SMC are close to symmetric and closer to normally distributed.

For small percentages of missing data (5%) the densities are similar for all

methods with the substantial positive skewness for the estimates of ω.

In summary, for small amounts of missing data, the imputation and SMC

methods give similarly accurate estimation results. However, as the percentage of
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missingness increases, SMC clearly provides an overall superior set of estimates in

terms of bias and standard deviation and in such situations the increased compu-

tational cost of SMC is worthwhile.

Table 3.3: Summary of estimation performance, across 1000 replications for each
level of missingness, utilising the single and multiple imputation methods.

single imputation multiple imputation

% Missing 5% 10% 20% 35% 50% 5% 10% 20% 35% 50%
ω = 0.1
Mean 0.1142 0.1203 0.1101 0.0898 0.0671 0.1175 0.1170 0.1139 0.1097 0.0867
Bias 0.0142 0.0203 0.0101 -0.0102 -0.0329 0.0175 0.0170 0.0139 0.0097 -0.0133
SD 0.0411 0.0573 0.0879 0.0621 0.0740 0.0402 0.0406 0.0380 0.0671 0.0285
Mean SE 0.0370 0.0387 0.0294 0.0227 0.0124 0.0397 0.0404 0.0377 0.0614 0.0262
RMSE 0.0435 0.0608 0.0885 0.0629 0.0810 0.0438 0.0440 0.0405 0.0678 0.0315
α = 0.08
Mean 0.0764 0.0751 0.0670 0.0554 0.0421 0.0783 0.0765 0.0725 0.0670 0.0553
Bias -0.0036 -0.0049 -0.0130 -0.0246 -0.0379 -0.0017 -0.0035 -0.0075 -0.0130 -0.0247
SD 0.0129 0.0118 0.0128 0.0103 0.0107 0.0129 0.0126 0.0121 0.0143 0.0102
Mean SE 0.0125 0.0121 0.0100 0.0075 0.0050 0.0133 0.0131 0.0125 0.0125 0.0090
RMSE 0.0134 0.0127 0.0182 0.0267 0.0394 0.0130 0.0131 0.0143 0.0194 0.0267
β = 0.9
Mean 0.8987 0.8967 0.9037 0.9153 0.9295 0.8973 0.8992 0.9035 0.9097 0.9238
Bias -0.0013 -0.0033 0.0037 0.0153 0.0295 -0.0027 -0.0008 0.0035 0.0097 0.0238
SD 0.0180 0.0215 0.0350 0.0271 0.0391 0.0173 0.0169 0.0165 0.0150 0.0146
Mean SE 0.0172 0.0180 0.0150 0.0129 0.0087 0.0181 0.0181 0.0173 0.0164 0.0131
RMSE 0.0181 0.0217 0.0352 0.0312 0.0490 0.0175 0.0169 0.0169 0.0178 0.0280

Table 3.4: Summary of estimation performance, across 1000 replications for each
level of missingness, utilising the IG method.

ω = 0.1 α = 0.08

% Missing 5% 10% 20% 35% 50% 5% 10% 20% 35% 50%
Mean 0.1235 0.1342 0.1454 0.1744 0.2196 0.0814 0.0831 0.0865 0.0924 0.0992
Bias 0.0235 0.0342 0.0454 0.0744 0.1196 0.0014 0.0031 0.0065 0.0124 0.0192
SD 0.0435 0.1380 0.0498 0.0568 0.0671 0.0134 0.0137 0.0143 0.0159 0.0163
Mean SE 0.0397 0.0413 0.0448 0.0511 0.0615 0.0136 0.0139 0.0144 0.0151 0.0163
RMSE 0.0494 0.1422 0.0674 0.0936 0.1371 0.0135 0.0141 0.0157 0.0202 0.0252

β = 0.9

% Missing 5% 10% 20% 35% 50%
Mean 0.8931 0.8892 0.8835 0.8717 0.8559
Bias -0.0069 -0.0108 -0.0165 -0.0283 -0.0441
SD 0.0182 0.0328 0.0204 0.0228 0.0246
Mean SE 0.0182 0.0187 0.0197 0.0213 0.0240
RMSE 0.0195 0.0346 0.0262 0.0363 0.0505
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Figure 3.1: Visual summary of estimation performance utilising the single imputa-
tion (black), multiple imputation (blue), IG (red), SMC at 250 particles (purple)
and SMC at 1000 particles (orange), at different levels of missingness.
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Figure 3.2: Kernel density plots of the estimates obtained utilising the single
imputation (black), multiple imputation (blue), IG (red), SMC at 250 particles
(purple) and SMC at 1000 particles (orange) for the 5% (left) and 50% (right)
missing scenarios.

3.2.3 Comparison with “Weak” GARCH approximation

An important result established by Drost and Nijman [1993] is that if one ob-

served every m− th observation of a GARCH series (Yi)i=1,...,N , the observed series

(Yim)i=1,...,bN
m
c is itself not a GARCH series. Drost and Nijman [1993] introduce

the concept of Weak GARCH, whereby a sequence (εi)i=1,...,N is said to be a Weak
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GARCH process if

B[εi|εi−1, εi−2, . . .] = 0 (3.5)

B[ε2i |εi−1, εi−2, . . .] =: hi = ω + αε2i−1 + βhi−1 (3.6)

whereB[x|εi−1, εi−2, . . .] denotes the best linear predictor of x in terms of 1, εi−1, εi−2,

. . . , ε2i−1, ε
2
i−2, . . . , that is,

E
(
x−B[x|εi−1, εi−2, . . .]

)
εri−j = 0 for j ≥ 1 and r = 0, 1, 2. (3.7)

It has been shown that if (εi)i=1,...,N is a weak GARCH series with parameters ω, α

and β then (εim)i=1,...,bN
m
c is also a weak GARCH with parameters

ω(m) = ω
1− (α + β)m

1− α− β
(3.8)

α(m) = (α + β)m − β(m) (3.9)

with β(m) ∈ (0, 1) as the solution to

β(m)

1 + β2
(m)

=
β(α + β)m−1

1 + α2 1−(α+β)2m−2

1−(α+β)2 + β2(α + β)2m−2
. (3.10)

From the above results, one may then infer via (3.8)-(3.10) a weak GARCH at one

frequency by fitting a weak GARCH at another frequency. The series (Yim)i=1,...,bN
m
c

is a weak GARCH series and since a GARCH series is also a weak GARCH series

one is able to utilise (3.8)-(3.10) to approximate the parameters of the higher fre-

quency standard GARCH series (Yi)i=1,...,N from the lower observational frequency

weak GARCH series (Yim)i=1,...,bN
m
c.

Below, we compare the performance of this approximation against that of the

SMC estimates using 250 particles. We generate 1000 data sets of a GARCH(1,1)

series with standard normal innovations with parameters ω = 0.1, α = 0.08 and
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β = 0.9, taking N = 10000 and m = 5 which leads to 80% of observations miss-

ing. Following Drost and Nijman [1993], the weak GARCH parameters ω(m), α(m)

and β(m) are estimated using Quasi-Maximum Likelihood (QML) (cf. Lee and

Hansen [1994]). The obtained weak GARCH estimates are then converted to esti-

mates of ω, α and β via (3.8)-(3.10), this process hereafter referred to as the Drost

approximation.

It is seen in Table 3.5 that the SMC estimates, driven by lower variances, are

slightly better than the Drost approximation estimates in terms of RMSE. Using

an Intel Xeon 3.06 GHz processor the Drost optimisation takes roughly 2 seconds,

while the SMC optimisation takes roughly 93 seconds (≈ 260 function evaluations

at ≈ 0.36 seconds per function evaluation). The Drost approximation is very fast

for a small loss in efficiency, however the method has limited applicability for

missing data in practice as it is restricted to only equally spaced missing data.

To our knowledge, the appropriate covariance estimator for the QML applied

to weak GARCH estimation has not been developed and thus we do not report

Mean SE for this method in Table 3.5.

Table 3.5: Comparison of performance of the Drost and SMC estimates across
1000 simulated data sets.

Drost approxmiation SMC estimates

ω α β ω α β

Mean 0.1121 0.0798 0.8974 0.1090 0.0808 0.8973

Bias 0.0121 -0.0002 -0.0026 0.0090 0.0008 -0.0027

SD 0.0356 0.0163 0.0220 0.0336 0.0148 0.0200

RMSE 0.0376 0.0163 0.0221 0.0348 0.0148 0.0202

Mean SE NA NA NA 0.0296 0.0143 0.0187
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3.3 Real data analysis

In this section we apply the SMC estimation method in four situations which

demonstrate various ways in which missingness can arise in volatility modelling.

Section 3.3.1 considers daily adjusted closing values of various stock indices over a

roughly 10 year period. Section 3.3.2 involves application to 30 minute wind data

from three weather stations in the Sydney region. Section 3.3.3 is a playful example

which revisits the hypothesis that bright sunny days tend to increase returns on

the stock market and Section 3.3.4 concerns high frequency capital asset pricing

and is a situation in which the missing data occurs not only in the individual stock

under consideration but also in the portfolio against which it is regressed.

3.3.1 Stock data

We consider the time series of daily adjusted close of the Australian S&P/ASX 200

Index (AXJO), the Mexican IPC Index (MXX) and the Japanese Nikkei 225 Index

(N225) for the period 28th of February 1994 to the 31st of March 2004 obtained

from Yahoo! Finance. These time series span 3685 calendar days for which 2633

are weekdays. Of those weekdays, 82, 109 and 147 are, respectively for Australia,

Mexico and Japan, public holidays. Denote

• P (AXJO)
i , P

(MXX)
i , P

(N225)
i , i = 1, . . . , 3685, the adjusted close of the three

indices for each of the 3685 calenders days. There are respectively 30.77%,

31.51% and 32.54% of observations missing in these three series attributed

to weekends and public holidays.

• P̃ (AXJO)
i , P̃

(MXX)
i and P̃

(N225)
i , i = 1, . . . , 2633, the adjusted close of the three

indices for each of the 2633 weekdays. That is, P̃i, operates on a time scale

that skips over weekends and sequentially numbers weekdays only. There are

respectively 3.11%, 4.14% and 5.58% of observations missing in these three

series attributed to public holidays.
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• P̄ (AXJO)
i , i = 1, . . . , 2551, P̄

(MXX)
i , i = 1, . . . , 2524 and P̄

(N225)
i , i = 1, . . . , 2486

the adjusted close of the three indices on a time scale that skips over all miss-

ing values and sequentially numbers days on which the respective market is

operating. There are no observations missing in these series.

A common approach by practitioners is to ignore missing values and perform

their analysis on the series (P̄i), however with the SMC methodology, a tool to

perform analysis on the series (Pi) and (P̃i) is now available.

For each of the three indices, we calculate three log return series (Ri), (R̃i), (R̄i),

whereby, for instance Ri := 100 × ln(Pi) − ln(Pi−1). The percentage of missing

data in (R
(AXJO)
i ), (R

(MXX)
i ), (R

(N225)
i ), (R̃

(AXJO)
i ), (R̃

(MXX)
i ) and (R̃

(N225)
i ) is

respectively 45.47%, 47.2%, 47.86%, 5.36%, 7.83% and 9.95%. We fit to the nine

log returns series µ+ εi, where (εi) is a GARCH(1,1) series with standard normal

innovations. The parameter estimates along with confidence intervals are displayed

in Table 3.6.

From the table, we see in all three indices, that estimates of α and β are not

statistically different under the three time treatments. However, in terms of ω,

consistent across the three indices, we see that the ω estimates from the R̃i and

R̄i series lie above the upper 95% level of the ω estimate from Ri.

To recap: Ri calculates returns over calendar days. R̃i calculates returns over

calendar days from Mon-Tue, Tue-Wed, Wed-Thu and Thu-Fri, but instead of

treating the time from Fri-Mon as 3 days, this convention compresses this physical

time to 1 day. R̄i has the same time conventions as R̃i, with the addition of further

physical time compression when trading holidays occur.

A reasonable conjecture would be to expect estimates of µ and the long-run

average variance ω
1−α−β to be higher in the more (physical) time compressed series.

However, from the table, there does not seem to be any statistical difference in

these quantities between the three time treatments. Although, looking at the point

estimates of ω
1−α−β , these appear, for all three indices, in line with the conjecture.
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Table 3.6: Estimated GARCH parameters with 95% confidence intervals for the
returns data.

ω α β µ ω/(1− α− β)

R
(AXJO)
i 0.018 (0.007, 0.028) 0.098 (0.068, 0.129) 0.874 (0.833, 0.916) 0.030 (0.000, 0.060) 0.644 (0.489, 0.799)

R̃
(AXJO)
i 0.028 (0.013, 0.043) 0.098 (0.070, 0.126) 0.860 (0.817, 0.903) 0.034 (0.006, 0.063) 0.675 (0.537, 0.812)

R̄
(AXJO)
i 0.031 (0.014, 0.048) 0.093 (0.065, 0.120) 0.861 (0.815, 0.906) 0.035 (0.006, 0.063) 0.676 (0.551, 0.801)

R
(MXX)
i 0.031 (0.010, 0.053) 0.102 (0.067, 0.138) 0.890 (0.851, 0.928) 0.151 (0.091, 0.212) 3.998 (1.329, 6.666)

R̃
(MXX)
i 0.064 (0.029, 0.099) 0.131 (0.094, 0.168) 0.854 (0.813, 0.896) 0.126 (0.071, 0.180) 4.307 (1.659, 6.956)

R̄
(MXX)
i 0.053 (0.020, 0.087) 0.115 (0.081, 0.148) 0.874 (0.836, 0.912) 0.122 (0.067, 0.176) 4.808 (1.165, 8.451)

R
(N225)
i 0.020 (0.007, 0.034) 0.065 (0.043, 0.088) 0.925 (0.899, 0.950) -0.013 (-0.067, 0.041) 2.056 (1.322, 2.791)

R̃
(N225)
i 0.047 (0.023, 0.071) 0.081 (0.057, 0.104) 0.898 (0.870, 0.926) -0.016 (-0.067, 0.034) 2.191 (1.582, 2.801)

R̄
(N225)
i 0.057 (0.031, 0.083) 0.077 (0.054, 0.099) 0.898 (0.869, 0.926) 0.004 (-0.047, 0.055) 2.236 (1.702, 2.771)

It is not within the scope of this thesis to advocate whether a practitioner

should ignore or incorporate data gaps due to public holidays and or weekends,

it is merely an illustration of a tool at the practitioners disposal should they

wish to incorporate these data gaps and compare the impact on volatility levels

and dynamics of the different ways in which gaps in the price series are treated.

Bondon and Bahamonde [2012] in their analysis of fitting an ARCH model in the

presence of missing observations used the Chilean IPSA stock index where weekend

gaps were ignored but public holidays were treated as missing observations.

If one ignores the data gaps, then one is making the assumption that no ad-

ditional volatility occurs on these days, whereas if one accounts for the gaps then

one is making the assumption that these days carry the same amount of volatility

as a trading day. Intuitively it may be realistic to have a mindset in between,

as “investors do receive and process information during periods when markets are

closed, and the information processed over a weekend will affect the price at and

after the opening on Monday” -Fortune [1999], however in the absence of volatility

spurred from market transactions it may be unrealistic to assume non-trading days

carry the same amount of volatility as trading days.
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In Section 3.3.3 we present an example of daily stock data regression with

GARCH residuals where we ignore gaps due to public holidays and weekends,

however missing residuals are encountered due to missingness in the predictor

series on trading days.

3.3.1.1 Diagnostics

As the SMC procedure does not yield point estimates of (σ2
i ), standardised resid-

uals cannot be calculated and investigated. As an alternative, a diagnostic, pro-

posed in Pitt et al. [2014], to assess the fitted model is to estimate the distribution

functions F (Yi|Y1:i−1) for i = 1, . . . , n via

F (Yi|Y1:i−1) =

∫
F (Yi|Xi)P(dXi|Y1:i−1) (3.11)

≈ 1

K

K∑
k=1

F (Yi|X(k)
i ) =: ûi. (3.12)

Then if the parameters and model are true, the estimated distribution functions

should be independently uniformly distributed through time, so ûi ∼ i.i.d U(0, 1)

for i = 1, . . . , n as K →∞ (see Rosenblatt [1952]).

For the six missing data time series in Section 3.3.1, Figure 3.3 displays QQ-

plots of the estimated ûi against the U(0, 1) distribution. All QQ-plots appear to

be fairly linear, supporting ûi to be uniformly distributed for all six series.

As a visual for the volatility evolution one can plot quantiles from the ECDF of

σ2
ti
|Y1:i obtained at each time step i = 1, . . . , n of the SMC procedure evaluated at

the fitted parameter estimates. Figure 3.4 displays the time series of the median as

well as 5% and 95% quantiles from the continuous ECDF of σ2
ti
|Y1:i for the series

R
(AXJO)
i .
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Figure 3.3: QQ-plots of the estimated ûi against the U(0, 1) distribution for each
of the six return series.
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Figure 3.4: Top: squared log returns of the S&P/ASX 200 index (R2
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|Y1:i obtained at each

time step of the SMC algorithm.
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3.3.2 Wind data

Cripps and Dunsmuir [2003] develop bivariate GARCH models for minute-by-

minute North-South and East-West components of winds in Sydney Harbour in

the context of understanding daily sailing conditions, particularly formation of the

sea-breeze effect, in preparation for the Sydney Olympic games. In their analysis

there were no missing observations on the days for which they performed the

analysis. Modelling volatility in wind speeds is also of interest in understanding

wind turbine power generation performance for intraday and interday management

of wind farms (cf. Kay et al. [2009], Trombe et al. [2012] or Jeon and Taylor [2016]).

Here we consider analysis of some 30 minute wind data over an approximately

four and half month period for three locations in the Sydney region: North Head,

Fort Denison and Penrith. Data were obtained from the Australian Bureau of

Meteorology1 and a summary of the data used here is in Table 3.7. This data was

also used in the original Sydney Olympics modelling project as part of a wider

study of synoptic conditions which favour sea-breeze formation.

We use the north-south component of wind speed at these three locations to il-

lustrate our method for fitting GARCH models with missing data. The half hourly

wind speed measurements were first modelled using AIC optimally selected autore-

gressive models of degree p (AR(p)) for 1 ≤ p ≤ 20 using the arima command in R

which allows for missing data in maximum likelihood estimation. Residuals from

these optimal lag autoregressive fits (see Figure 3.5) were then modelled using the

GARCH(1,1) model with standard normal innovations giving the results in Table

3.8. GARCH effects are observed in these series with parameter values that vary

by location.

The analysis presented here treats the residual process from an autoregressive

fit as the series of interest for GARCH modelling. However, the method of fitting

the autoregression ignores GARCH effects in the innovations for that process. Ad-

1http://www.bom.gov.au/climate/data/stations/about-weather-station-data.shtml

http://www.bom.gov.au/climate/data/stations/about-weather-station-data.shtml
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ditionally, the autoregressive residuals will have volatility induced by the increased

variability of prediction over gaps in the series which could confound the estima-

tion of any underlying volatility in the innovation of the autoregression. Hence the

analysis presented here is a two-step method. Ideally a method which combines

the fitting of the autoregression and the GARCH model for innovations should be

used. Although, as no such one-step method is known, the pragmatic two-step

approach was employed.

In Chapter 4 however, methodology to perform simultaneous estimation of

AR(1) models with GARCH(1,1) residuals will be introduced, for which we then

use to reanalyse these series. This approach though, does not appear to be ex-

tendable to AR(p) models with GARCH(1,1) residuals for p > 1.

Table 3.7: Description of half hourly wind data at three locations in the Sydney
Region. Gap lengths summarise the lengths of gaps in the observed record.
Site 66197 North Head Manly, 00:00 hrs Dec 1 1999 to 10:00 hrs Apr 20 2000,
Site 67113 Penrith Lakes, 00:00 hrs Dec 1 1999 to 10:00 hrs Apr 19, 2000,
Site 66022 Fort Denison, 00:00 hrs Dec 1 1999 to 12:30 hrs Apr 13 2000.

North Head Penrith Fort Denison

N (length) 6798 6741 6458

Missing (%) 5% 5% 9%

Gap lengths 1 : 9, 222 1 : 8, 13, 18, 213 1 : 6, 30, 82, 191, 222
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Fort Denison AR(3) residuals
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Figure 3.5: Residuals from autoregressive model fits at three locations in the
Sydney region – North Head is located on land on the north of the entrance
to Sydney Harbour, Fort Denison is located in the middle of the Sydney Main
Harbour and Penrith is located inland west of Sydney at Lake Penrith and is not
susceptible to sea-breeze effects. Plots show residuals from the best fitting AR(p)
model in each case for the North-South wind speed component. The grey “rug”
plot in each panel shows where data are missing.

Table 3.8: Estimated GARCH parameters with 95% confidence intervals for the
wind data.

ω α β

North Head 0.8930 (0.7291, 1.0568) 0.2610 (0.2180, 0.3040) 0.5316 (0.4664, 0.5968)

Penrith 0.9286 (0.6850, 1.1721) 0.1509 (0.1241, 0.1777) 0.6852 (0.6243, 0.7460)

Fort Denison 0.3017 (0.2246, 0.3788) 0.1825 (0.1470, 0.2179) 0.7779 (0.7391, 0.8168)
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3.3.3 Stock data regression against incomplete weather data

To illustrate how missing data can arise in the GARCH setting when covariates are

missing we use an example from research on the possible link between sunshine and

stock returns. A number of studies such as Persinger [1975], Cunningham [1979]

and Howarth and Hoffman [1984] have found that the number of hours of sunshine

exposure is inversely correlated with a negative mood or pessimistic outlook. In

the relatively new field of behavioural finance (cf. Shiller [2003]), it is considered

that psychological factors can impact an individual’s financial decision making.

These observations have led to empirical studies such as Saunders [1993], Hir-

shleifer and Shumway [2003] and Worthington [2009] that seek to test whether

weather (in particular sunshine) has a significant impact on stock market returns.

Saunders [1993] using daily returns from the Dow-Jones Industrial Average, New

York Stock Exchange and American Stock Exchange found that on days when

cloud cover (which is inversely related to sunshine) was 100 percent, returns were

below average, while days below 20 percent cloud cover had above average re-

turns. Hirshleifer and Shumway [2003] conducted an international study of the

relationship between cloud cover and returns in 26 markets. Like Saunders [1993]

a negative relationship was found to exist, but only in the three markets of Milan,

Rio de Janeiro, and Vienna were these results statistically significant. Worthing-

ton [2009] for the period 1958 to 2005 performed a regression of the daily returns

of the Australian All Ordinaries price index against eight daily weather variables,

one of which being hours of sunshine. Heteroskedasticity in the residuals were de-

tected and adjusting the standard errors by means of White [1980] and Newey and

West [1987], Worthington [2009] found no statistical evidence that the weather

variables influenced the Australian market returns.

Daily global solar exposure (DGSE) is the total amount of solar energy falling

on a horizontal surface for a day. Typical values for DGSE range from above 0 to

35 MJ/m2 (megajoules per square metre). The values are usually highest in clear
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sun conditions and lowest during very cloudy days. Thus one can use DGSE as a

proxy for sunshine.

At this date, one can obtain freely from the Australian Bureau of Meteorology

(ABOM) historical DGSE recorded from a number of weather stations. According

to the ABOM website, missing observations can occur due to problems with the

satellite or processing of the images used to estimate the solar exposure.

We obtain from Yahoo! Finance historical closing prices of the ASX200 index

from the 4th of January 1993 to the 31st of December 2016. For the sake of this

analysis, we do not treat weekends or public holidays as missing. We obtain from

the ABOM DGSE recorded from the Observatory Hill weather station (the closest

station to Sydney’s central business district) for the same period as the ASX200

returns. For the trading days in that period, we have 6082 daily ASX log returns

(Ri) and 5799 DGSE readings (DSGEi), corresponding to 4.65% of missing DGSE

readings.

Figure 3.6 displays the average return for days with DGSE readings falling

within specified MJ/m2 bands. Interestingly, days with DGSE < 32 MJ/m2

have an average return over the period of 0.016% whereas the average return for

days with DGSE ≥ 32 MJ/m2 is 0.19%, about 11.7 times larger than the latter.

Whether this impact on returns is statistically significant is the next question. We

fit the model

Ri = µ+ µD × I(DSGEi ≥ 32 MJ/m2) + εi (3.13)

and test if µD is statistically significant, however unlike Worthington [2009] we di-

rectly model heteroskedasticity taking (εi) as a GARCH(1,1) sequence with stan-

dard normal innovations. It is not our aim to perform as comprehensive an inves-

tigation as Worthington [2009] on the effects of weather on the Australian market,

this example is just to provide illustration of a regression analysis with GARCH

errors when some observations of the covariate series are missing leading to miss-
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ingness in the residual series.

Table 3.9 provides the estimated µ, µD and GARCH parameters along with

95% confidence intervals. As zero is contained within the confidence band for µD,

like Worthington [2009], we too find no statistical evidence of sunshine effecting

Australian index returns.
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Figure 3.6: Average return for days with DGSE readings falling within the specified
MJ/m2 bands for the trading days between 4th of January 1993 to the 31st of
December 2016 for which DGSE was available.

Table 3.9: Estimated µ, µD and GARCH parameters along with 95% confidence
intervals.

Estimate 95% confidence intervals

ω × 106 1.2050 (0.7394, 1.6705)

α 0.0784 (0.0348, 0.1219)

β 0.9082 (0.902, 0.9144)

µ 0.0004 (0.0001, 0.0008)

µD 0.0011 (-0.0003, 0.0025)
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3.3.4 High frequency CAPM

The capital asset pricing model (CAPM), developed by Sharpe [1964] and Lintner

[1965], is the following linear model of the relationship between an asset’s return

Ri and the return of a market portfolio RM,i

Ri −Rf,i = αCAPM + βCAPM(RM,i −Rf,i) + εi (3.14)

where Rf,i is the risk free interest rate, (εi) is an i.i.d noise sequence, βCAPM is

a parameter reflecting the sensitivity of the asset’s excess return (over the risk

free rate) to the market’s excess return and αCAPM is a parameter reflecting any

abnormal gain (if positive) or loss (if negative). The parameter αCAPM can be

used as a metric to evaluate the performance of an asset or portfolio relative to

the market. The parameter βCAPM is a measure of how volatile the asset is in

comparison to the market.

Traditionally, the CAPM is performed on daily or even lower frequency re-

turns, however the analysis here will be performed using high frequency one-minute

returns. Furthermore, we drop the i.i.d assumption on (εi) modelling it as a

GARCH(1,1) series with standard normal innovations. For convenience, in this

illustration we ignore Rf,i and perform the linear model on returns rather than

excess returns.

One-minute price data for the S&P 500 index, Apple Inc. (AAPL), Boeing

Co. (BA) and Chevron Corp. (CVX) was obtained from https://www.finam.ru/

for the period January 2015 to June 2015. The S&P 500 is taken as the market

portfolio. We fit a high frequency CAPM model, regressing the market portfolio

return multiplied by 100 against the respective stock return multiplied by 100, for

each individual month in that period, skipping over the minutes when the market

is closed, that is only minutes when the market is open that have missing price

information will be treated as missing. It is well known (cf. Harris [1986]) that

https://www.finam.ru/
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intraday volatility in equity returns are higher around the open and close of the

market than the middle of the trading day. As this is a trait common to both

response and predictor we choose not to adjust out this effect.

For reasons unknown, there are missing values in these price series, Figure 3.7

displays the one-minute returns (multiplied by 100) for these price series during

the month of February.

Tables 3.10, 3.11 and 3.12 are the respective, SMC obtained, estimates of the

GARCH and CAPM parameters for the AAPL, BA and CVX stock assets. The

right most column of those tables indicate the percentage of response and predictor

pairs missing in the respective data sets. Figure 3.8 displays the time series of the

estimated GARCH and CAPM parameters for the three stocks.

The βCAPM estimates for AAPL in each month are close to 1, indication that

this stock moves close in tandem with the market, which is not surprising given

that AAPL is a relatively large constituent of the S&P 500 index1. BA which

is a relatively small constituent of the S&P 500 index, is less sensitive to market

moves with βCAPM ranging from approximately 0.4 to 0.6. Interestingly CVX, a

relatively moderate constituent of the S&P 500 index, has higher βCAPM ranging

approximately from 0.8 to 1.1 during the first quarter of 2015, but then appears

to be less sensitive to the market for the second quarter with βCAPM ranging

approximately from 0.4 to 0.65.

In terms of αCAPM , for the six months under consideration none of the assets

have a statistically positive αCAPM . AAPL for January, April and June along with

BA for March and May had statistically negative αCAPM .

Regarding the GARCH parameters; BA and CVX have relatively similar α

and β parameters across the six months, while these parameters for AAPL are

relatively similar across January to May, a comparatively larger α and lower β

is exhibited for June. Besides February for AAPL, February and April for BA

1http://siblisresearch.com/data/market-caps-sp-100-us/

http://siblisresearch.com/data/market-caps-sp-100-us/
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along with January and February for CVX, statistically significant α were found.

In terms of the weighted long-run variance ω, common to the three stocks we see

that January yields higher ω estimates than the other months in the study.
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Figure 3.7: Time series of one-minute returns (multiplied by 100) for each trading
minute in the month of February 2015 for the S&P 500 index, AAPL, BA and
CVX. The grey “rug” plot in each panel shows where data are missing.
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Figure 3.8: SMC estimates of GARCH and CAPM parameters for Apple Inc.
(black), Boeing Co. (red) and Chevron Corp. (blue). The 95% confidence bands
are indicated by the dotted lines.
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Table 3.10: SMC estimates of GARCH and CAPM parameters along with their
estimated standard errors (SE) for Apple Inc. (AAPL).

ω × 1000 α β CAPM α CAPM β % Missing

Jan Est 0.1867 0.1125 0.8504 -0.0016 1.1080 5.51%

SE 0.0268 0.0270 0.0073 0.0006 0.0165

Feb Est 0.0310 0.1219 0.8773 -0.0007 0.8531 0.19%

SE 0.0037 0.0687 0.0005 0.0004 0.0171

Mar Est 0.0539 0.1134 0.8732 -0.0014 1.0194 1.18%

SE 0.0060 0.0288 0.0034 0.0004 0.0172

Apr Est 0.0513 0.1290 0.8553 -0.0008 0.9550 0.32%

SE 0.0061 0.0344 0.0040 0.0004 0.0170

May Est 0.0296 0.0775 0.9101 -0.0006 1.0870 0.03%

SE 0.0043 0.0245 0.0040 0.0004 0.0188

Jun Est 0.0890 0.2820 0.7149 -0.0007 1.0300 0.57%

SE 0.0079 0.1333 0.0015 0.0003 0.0150

Table 3.11: SMC estimates of GARCH and CAPM parameters along with their
estimated standard errors (SE) for Boeing Co. (BA).

ω × 1000 α β CAPM α CAPM β % Missing

Jan Est 0.0388 0.1150 0.8743 -0.0001 0.6059 5.62%

SE 0.0045 0.0321 0.0030 0.0004 0.0106

Feb Est 0.0168 0.1045 0.8945 0.0000 0.5354 7.68%

SE 0.0020 0.0567 0.0005 0.0004 0.0138

Mar Est 0.0217 0.1459 0.8480 -0.0013 0.4263 18.43%

SE 0.0026 0.0711 0.0030 0.0003 0.0132

Apr Est 0.0152 0.1324 0.8667 0.0000 0.5764 15.47%

SE 0.0019 0.0834 0.0006 0.0003 0.0137

May Est 0.0131 0.1496 0.8495 -0.0011 0.4958 15.44%

SE 0.0013 0.0759 0.0004 0.0003 0.0132

Jun Est 0.0117 0.1222 0.8761 -0.0001 0.3937 24.22%

SE 0.0011 0.0612 0.0008 0.0003 0.0105
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Table 3.12: SMC estimates of GARCH and CAPM parameters along with their
estimated standard errors (SE) for Chevron Corp. (CVX).

ω × 1000 α β CAPM α CAPM β % Missing

Jan Est 0.1168 0.1698 0.8291 0.0008 0.8053 1.04%

SE 0.0126 0.0988 0.0007 0.0006 0.0157

Feb Est 0.0373 0.0965 0.9025 -0.0006 1.0900 0.93%

SE 0.0053 0.0659 0.0007 0.0005 0.0214

Mar Est 0.0732 0.1362 0.8357 -0.0007 0.8250 2.28%

SE 0.0083 0.0267 0.0050 0.0004 0.0163

Apr Est 0.0606 0.1088 0.8530 -0.0002 0.6496 3.79%

SE 0.0064 0.0183 0.0049 0.0004 0.0169

May Est 0.0183 0.1293 0.8703 -0.0004 0.4096 6.33%

SE 0.0018 0.0605 0.0002 0.0003 0.0146

Jun Est 0.0292 0.1538 0.8302 -0.0001 0.5389 6.75%

SE 0.0030 0.0451 0.0048 0.0003 0.0115

3.4 Concluding remarks

In summary, this section has illustrated use of the SMC methodology for providing

a computationally feasible and reliable estimator (along with standard errors) to

tackle the problem of parameter estimation of a partially observed GARCH(1,1)

time series, outperforming common imputation methods, especially in regards to

the persistence parameters α and β, when the proportion of missing observations is

large. For the restricted case of a partially observed GARCH(1,1) series at equally

spaced time points, the “Weak” GARCH approximation of Drost and Nijman

[1993] is a very fast, for a small loss in efficiency, alternative.

While the analysis performed here have used standard normal innovations,

other innovations that are easy to simulate and have a density function easy to

evaluate can be simply substituted. It is straightforward to adapt the method

for use with other GARCH variants such as the EGARCH(1,1) (Nelson [1991]),

GJR-GARCH(1,1) (Glosten et al. [1992]), NGARCH(1,1) (Engle and Ng [1993]),

QGARCH(1,1) (Sentana [1995]) etc.
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While the general GARCH(p, q) models with p > 1 or q > 1 or both are of the

form (1.8)-(1.9), the state vectors of these representations are not one-dimensional

inhibiting the use of Pitt and Malik [2011]’s procedure. However, as “the over-

whelmingly most popular GARCH models in applications has been the GARCH(1,

1) model” -Terasvirta [2009] methods for maximum likelihood estimation for this

model are of considerable practical value.

With regards to the comment in Section 3.3.1 about the perceived difference

in volatility behaviour between trading and non-trading days. One could explore

this idea further by utilising the SMC procedure to fit a GARCH series that

evolves switching between two sets of parameters, one for trading days and one

for non-trading days, and gain an insight on the difference in volatility behaviour

by comparing the two sets of estimated driving parameters.
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Chapter 4

Applications: Likelihood inference

for aggregated GARCH(1,1)

series and partially observed

AR(1)-GARCH(1,1) series

In some cases when dealing with missing observations it may be more appropriate

to treat the data as aggregated rather than missing. To illustrate the difference

between these two scenarios consider daily stock price returns. These are calculated

from daily measurements of the stock price level usually taken at the same time

each day. Now, if the market is shut on a particular day (say due to holidays or

technical failure) then the returns on two successive days will be unavailable as a

result of one day of missing stock price information.

For example, Bondon and Bahamonde [2012], in their analysis of fitting an

ARCH model in the presence of missing observations used the Chilean IPSA stock

index where for weekends they ignore the gap and treat returns from Friday to the

next Monday as being on equal footing to daily returns from successive days in the

working week. The IPSA stock index time series considered, denoted (Pi), covers
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2869 calendar weekdays of which 127 are public holidays on which the Chilean

stock exchange is closed and the IPSA index is not available. The percentage of

missing data in the price series (Pi) is therefore equal to 4.427%. The actual series

being analysed are the daily log returns (Ri) derived via Ri = lnPi − lnPi−1 and

as a result of missing a single price Pi this will will mean two one day returns Ri+1

and Ri will be missing, resulting in the percentage missing of log returns to be

8.438%.

Modelling of (Ri) calculated in this way, as was done in Bondon and Baha-

monde [2012], corresponds to what we refer to as having “partial” observation of

the series (Ri), or the series (Ri) with “missing” observations. This treatment of

(Ri) was the convention utilised throughout Chapter 3.

However, when deriving returns from an incomplete price series (Pi) one can

in fact utilise additional information from the underlying price series than was the

case with “partial” observation. Suppose one were to observe the prices Pi+1 and

Pi−1 but missed the price Pi, indeed Ri+1 and Ri will be unknown, however as

ln(Pi+1/Pi−1) = ln(Pi+1/Pi) + ln(Pi/Pi−1) = Ri+1 +Ri (4.1)

one in fact has record of the two-period log return, which is the aggregated value

of the two missing one-period log returns. By taking log differences of succes-

sively available Pi one would observe an aggregated return over periods of missing

price data, which corresponds to what we will refer to as having “aggregated”

observation of the underlying series (Ri).

In the above case, both “partial” and “aggregated” observation treatments

take Ri+1 and Ri as unknown, however “aggregated” observation incorporates

the available information that the aggregated value Ri+1 + Ri is observed, while

“partial” observation ignores this piece of information.

In economics, measurements can be classified as either stocks or flows (c.f,

Fisher [1896]). A stock measurement is taken at one specific time, and represents
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a quantity existing at that point in time whereas a flow measurement is taken

over an interval of time. As we have seen, if the quantity to be modelled is a

flow measurement (ie. returns) which are derived from a stock measurement (ie.

price) then one unnecessarily loses information utilising a “partial” observation

treatment and thus would be recommended to use the “aggregated” observation

treatment.

Although, if the quantity to be modelled is either a stock measurement or a

flow measurement not derived from an underlying stock measurement, then the

“partial” observation treatment is the only choice possible. For instance, if only

the available one-period returns were provided to the practitioner, without access

to the underlying price series, then the “partial” observation treatment is the only

available route.

This chapter illustrates utilisation of SMC for obtaining parameter estimates of

a GARCH(1,1) series from temporally aggregated observations, equivalent to par-

tial observation of the cumulative sum series (
∑i

j=1 yj) of the underlying GARCH

series (yi)i=1,...,N . The task entails identifying a particular state space representa-

tion for ease of implementation of the SMC likelihood approximation from Section

2.1, as well as an extra step before application of the continuous resampling pro-

cedure from Section 2.3; these details are discussed in Section 4.1. Simulation

studies are performed in Section 4.1.1 to assess the performance of this estimation

method at varying levels of aggregation as well as for comparison against Drost

and Nijman [1993]’s Weak GARCH formula for the special case when the data is

consecutively aggregated in non-overlapping blocks of equal size. Utilisation of the

method on a real world stock return application is illustrated in Section 4.1.2. In

Section 4.2, an estimator for partially observed AR(1)-GARCH(1,1) series is pre-

sented, established through the notion that such a series can be seen as a general

form of a temporally aggregated GARCH(1,1). A simulation study to test the per-

formance of the AR(1)-GARCH(1,1) estimator at varying degrees of missingness
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is conducted in Section 4.2.1 with a real world application of the method on wind

data illustrated in Section 4.2.2. Finally Section 4.3 concludes with a discussion.

4.1 SMC for aggregated GARCH(1,1)

Assume (yi)i=1,...,N is a GARCH(1,1) series and suppose one has as observations

at time points t1 < . . . < tn = N , where tj ∈ {1, . . . , N − 1} for j = 1, . . . , n− 1,

the aggregated value of GARCH elements between times tj and tj−1 + 1 (with

convention t0 ≡ 0), that is y̆j =
∑nj

k=1 ytj−1+k where nj = tj − tj−1.

Assuming one can simulate the noise zj as well as evaluate its density q, we

can again turn to SMC to approximate the otherwise intractable likelihood of

(y̆1, . . . , y̆n) by formulating the problem in the form of (1.8)− (1.9). Note however,

when nj > 1, p(y̆j|σ2
tj−1+1) is not analytical and thus σ2

tj−1+1 is not the best choice

for Xj. Alternatively, consider for j = 1, . . . , n the following 3-dimensional state

process

Xj =
(
σ2
tj−1+1, I(nj > 1)

nj−1∑
k=1

ztj−1+kσtj−1+k, σ
2
tj

)
. (4.2)

Denote Xj,k for k = 1, . . . , 3 the k − th component of Xj. Now, taking for j =

1, . . . , n: Yj = y̆j and Zj = ztj , we the have

Yj = f(Xj, Zj) = Xj,2 +
√
Xj,3Zj,

with the analytical quantity,

p(Yj|Xj) =
1√
Xj,3

q(
Yj −Xj,2√

Xj,3

). (4.3)
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Furthermore, with

Wj =


{ztj−1+1, . . . , ztj−1+nj−1} when nj > 1,

∅ when nj = 1,

(4.4)

we then have

Xj = g(Xj−1, Yj−1,Wj) =
(
g1(Xj−1, Yj−1), g2(Xj−1, Yj−1,Wj), g3(Xj−1, Yj−1,Wj)

)

with,

g1(Xj−1, Yj−1) = ω + α(Yj−1 −Xj−1,2)2 + βXj−1,3 (4.5)

g2(Xj−1, Yj−1,Wj) = I(nj > 1)ztj−1+1

√
g1(Xj−1, Yj−1) (4.6)

+ I(nj > 2)

nj−1∑
k=2

ztj−1+k

√
g̃(Xj−1, Yj−1,Wj, k) (4.7)

g3(Xj−1, Yj−1,Wj) = I(nj = 1)g1(Xj−1, Yj−1)

+ I(nj > 1)g̃(Xj−1, Yj−1,Wj, nj) (4.8)

where for nj > 1 we define for k = 2, . . . , nj

g̃(Xj−1, Yj−1,Wj, k) = ω + I(k > 2)ω
( k−1∑
i=2

i−1∏
l=1

(αz2
tj−1+k−l + β)

)
+ g1(Xj−1, Yj−1)

k−1∏
i=1

(αz2
tj−1+i + β). (4.9)

By construction {Xj} is a vector Markov process. Using this alternative specifica-

tion of the state (4.2), (4.3) is straightforward to evaluate, enabling implementa-

tion of the SMC likelihood approximation detailed in Section 2.1. Although, as the

state is now a 3-dimensional quantity, the procedure in Section 2.3 for resampling

the hidden state in a continuous manner cannot be directly applied.
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However, as the model structure can be depicted as in Figure 4.1, we see that

in fact a one dimensional quantity Xj,1 is sufficient to propagate the process and

thus we really only need to find a way to continuously resample the Xj,1.

· · ·

· · ·

Xj,1Xj−1 Xj Xj+1,1 Xj+1 · · ·

Yj−1 Yj Yj+1

Figure 4.1: Aggregated GARCH model structure.

To begin, we first construct an empirical cumulative distribution of Xj+1,1 from

the particles {X(k)
j }k=1,...,K as

Q̂(Xj+1,1 ≤ x|Y1:j) =
K∑
k=1

wkI(g1(X
(k)
j , Yj) ≤ x) (4.10)

where wk := P̂(X
(k)
j |Y1:j). Now, since the weights wk are continuous in Xj and

not Xj+1,1, even if X
(k)
j+1,1 = g1(X

(k)
j , Yj) and X

(k+1)
j+1,1 = g1(X

(k+1)
j , Yj) are close

together, this does not guarantee that the weights wk and wk+1 will be. Due to

this, one then should not directly apply the continuous approximation of Section

2.3 to (4.10) with an illustration as to why provided in Figure 4.2.
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Figure 4.2: Assume the black and the red-dashed step functions are (4.10) con-
structed respectively with parameters θ1 and θ2 that are close to one another.
Assume we have two particles denoted by X

(A)
θ,1 and X

(B)
θ,1 which are geographically

close to one another but with respective weights w
(A)
θ and w

(B)
θ which are quite

different in magnitude. Suppose that under θ1 it is the case X
(A)
θ1,1

> X
(B)
θ1,1

, but

for a small parameter change to θ2 it is then the case that X
(A)
θ2,1

< X
(B)
θ2,1

, that is
the order of particles has switched after the parameter change. As the weights
are continuous in θ we will have w

(A)
θ1
− w

(B)
θ1
≈ w

(A)
θ2
− w

(B)
θ2

, that is the magni-
tude of difference of the weights still remains roughly the same after the particles
have switched order, however a large structural change in the CDF functions has
occurred; under θ1 the CDF first increases by w

(A)
θ1

and then w
(B)
θ1

, while under

θ2 the CDF now increases by w
(B)
θ2

before increasing by w
(A)
θ2

. The blue function
is the continuous approximation to the black step function and the green-dashed
function is the continuous approximation to the red-dashed step function. As can
be seen the structural change after the crossover carries through to the continuous
approximations which can lead to large differences in resampled particles across
small parameter changes (see X̃θ1 and X̃θ2 in the figure). The fact that w

(A)
θ and

w
(B)
θ can be far apart despite X

(A)
θ,1 and X

(B)
θ,1 being in close proximity to one an-

other is the root of the issue, in that if w
(A)
θ ≈ w

(B)
θ then essentially no structural

change would result from a crossover (see Figure 4.3).
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Figure 4.3: In contrast to Figure 4.2, when the weights w̃
(A)
θ and w̃

(B)
θ attached to

respective particles X
(A)
θ,1 and X

(B)
θ,1 that are close in proximity to each others are

also close in magnitude, then essentially no structural change would result if the
particles X

(A)
θ,1 and X

(B)
θ,1 switched order under a parameter change.

In view of Figures 4.2 and 4.3 an operation to smooth the weights of (4.10) such

that particles that are in close proximity to one another have attached weights of

similar magnitude must be performed. The following kernel smoothing approach

was proposed in Pitt and Malik [2011]

w̄k =

∑K
l=1wlφ

(
(X

(l)
j+1,1 −X

(k)
j+1,1)/h

)
∑K

l=1 φ
(

(X
(l)
j+1,1 −X

(k)
j+1,1)/h

) (4.11)

w̃k =
w̄k∑K
l=1 w̄l

for k = 1, . . . , K (4.12)

where φ(.) is the standard Gaussian density and h = c/K for a very small number

c. One then can proceed via the method in Section 2.3 to obtain a continuous

approximation to

P̂(Xj+1,1 ≤ x|Y1:i) =
K∑
k=1

w̃kI(X(k)
j+1,1 ≤ x) (4.13)
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to continuously resample the Xj+1,1.

4.1.1 Simulation studies

4.1.1.1 Impact of level of aggregation on SMC performance

We define the term aggregation percentage (AP) to be

1− Total number of aggregation windows

Total number of underlying observations
. (4.14)

In this section we test the performance of the SMC estimation method at varying

aggregation percentage levels, while keeping the total number of aggregation win-

dows at 2000 in order to study the impact of aggregation percentage in isolation

from any impact on performance attributable to smaller sample sizes. For a given

AP, we simulate 1000 different data sets of a length N = b 2000
1−AP c GARCH(1,1)

series with standard normal innovations with true parameters ω = 0.1, α = 0.08

and β = 0.9, then for each data set we set as the last aggregation window end point

tn = N , where n = 2000 and the remaining n− 1 aggregation window end points

chosen with equal probability (without replacement) from the set {1, . . . , N − 1}.

Note that the configuration of aggregations is different between the 1000 data sets.

Parameters were again optimised over the set defined in (3.4) using an inte-

grated C++ and R implementation. Table 4.1 displays the results from utilising

250 and 1000 particles for 1000 simulations of the GARCH model at aggregation

percentages of 5%, 10%, 20%, 35% and 50%. Refer to Section 3.2.1 for definitions

of the summary statistics (Mean, Bias etc.) for the table. Some points about

the table are:

• The average estimated standard error closely approximates the observed

standard deviation suggesting that the use of the Hessian for obtaining stan-

dard errors is reliable.

• Across all three parameters the RMSE is primarily due to variance with
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squared bias being small in comparison.

• The bias as a percentage of true value is largest for estimation of ω and is

essentially negligible for estimation of α and β.

• Across all three parameters, RMSE is improved using more particles. The

improvement is more pronounced at higher AP levels. At the 50% AP level,

RMSE is roughly 10% lower for all parameters by increasing particles from

250 to 1000.

• Again, similar to Section 3.2.1, RMSE of ω decreases, as AP increases (while

keeping n fixed), driven for the case of 250 particles by lower standard devi-

ations and for the case of 1000 particles by both lower standard deviations

and bias.

• In terms of RMSE for α and β, as AP increases (while keeping n fixed),

at 250 particles there is a slight increase, while at 1000 particles RMSE is

stable.

In summary, SMC utilising a modest 250 particles even at high AP levels is

shown to be a reliable estimator, with the ability to improve estimation perfor-

mance by utilisation of more particles.

Computational times using an Intel Xeon 3.06 GHz processor are provided in

Table 4.2. The time to complete a SMC likelihood evaluation can be seen to be

linear in N as well as the number of particles K.

Remark 4.1.1.1

Exact calculation of (4.11)-(4.12) would require proportionately K2 operations.

For computational efficiency, following Appendix 4 of Pitt and Malik [2011], the

densities φ() were truncated at values where |X(l)
j+1,1−X

(k)
j+1,1| > 3h, delivering the

(almost) linear in K SMC likelihood evaluation times observed.
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Table 4.1: SMC estimation of a GARCH(1,1) model from aggregated observations:
Summary statistics from 1000 replications for each level of aggregation.

250 Particles 1000 Particles

AP 5% 10% 20% 35% 50% 5% 10% 20% 35% 50%

ω = 0.1

Mean 0.1186 0.1182 0.1176 0.1170 0.1175 0.1184 0.1177 0.1165 0.1150 0.1129

Bias 0.0186 0.0182 0.0176 0.0170 0.0175 0.0184 0.0177 0.0165 0.0150 0.0129

SD 0.0414 0.0424 0.0400 0.0402 0.0393 0.0413 0.0421 0.0395 0.0392 0.0359

Mean SE 0.0379 0.0371 0.0354 0.0328 0.0301 0.0380 0.0374 0.0360 0.0341 0.0319

RMSE 0.0454 0.0462 0.0437 0.0437 0.0430 0.0452 0.0457 0.0428 0.0420 0.0381

α = 0.08

Mean 0.0802 0.0801 0.0803 0.0817 0.0830 0.0801 0.0800 0.0800 0.0808 0.0809

Bias 0.0002 0.0001 0.0003 0.0017 0.0030 0.0001 <0.0001 <0.0001 0.0008 0.0009

SD 0.0131 0.0134 0.0134 0.0139 0.0146 0.0131 0.0133 0.0134 0.0137 0.0136

Mean SE 0.0134 0.0134 0.0133 0.0133 0.0131 0.0135 0.0135 0.0134 0.0134 0.0133

RMSE 0.0131 0.0134 0.0134 0.0140 0.0149 0.0131 0.0133 0.0134 0.0137 0.0136

β = 0.9

Mean 0.8951 0.8954 0.8954 0.8946 0.8936 0.8952 0.8955 0.8958 0.8957 0.8962

Bias -0.0049 -0.0046 -0.0046 -0.0054 -0.0064 -0.0048 -0.0045 -0.0042 -0.0043 -0.0038

SD 0.0179 0.0184 0.0183 0.0192 0.0195 0.0179 0.0183 0.0182 0.0189 0.0181

Mean SE 0.0179 0.0178 0.0175 0.0171 0.0166 0.0179 0.0179 0.0178 0.0176 0.0174

RMSE 0.0185 0.0189 0.0189 0.0199 0.0205 0.0185 0.0188 0.0187 0.0194 0.0185

Table 4.2: Summary, across the 1000 simulations for each level of aggregation, of
computational times for the SMC optimisation using an Intel Xeon 3.06 GHz.

250 particles 1000 particles

Time (secs) Avg. Number Avg. time Time (secs) Avg. Number Avg. time

AP N to complete of function to evaluate to complete of function to evaluate

optimisation calls function (secs) optimisation calls function (secs)

5% 2105 23.69 222.47 0.106 93.61 211.31 0.443

10% 2222 27.23 238.45 0.114 105.87 223.37 0.474

20% 2500 33.94 261.87 0.130 131.45 242.89 0.541

35% 3076 44.22 277.10 0.160 172.79 258.02 0.670

50% 4000 60.35 303.10 0.199 234.79 278.33 0.844
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4.1.1.2 Comparison with “Weak” GARCH approximation

Drost and Nijman [1993] established that if (εi)i=1,...,N is a weak GARCH series with

parameters ω, α, β and unconditional kurtosis κ then the m-period aggregation of

that series denoted by (ε̆i)i=1,...,bN
m
c, whereby ε̆i :=

∑m
j=1 ε(i−1)m+j, is also a weak

GARCH series with unconditional kurtosis

κ̆ = 3 +
κ− 3

m
+ 6(κ− 1)

(m− 1−m(α + β) + (α + β)m)(α− βα(α + β))

m2(1− α− β)2(1− β2 − 2βα)

(4.15)

and parameters

ω̆ = mω
1− (α + β)m

1− α− β
(4.16)

ᾰ = (α + β)m − β̆ (4.17)

with −1 < β̆ < 1 as the solution to

β̆

1 + β̆2
=

ă(α + β)m − b̆
ă(1 + (α + β)2m)− 2b̆

(4.18)

where

ă = m(1− β)2 + 2m(m− 1)
(1− α− β)2(1− β2 − 2αβ)

(κ− 1)(1− (α + β)2)

+ 4
(m− 1−m(α + β) + (α + β)m)(α− αβ(α + β))

1− (α + β)2
(4.19)

b̆ = (α− βα(α + β))
1− (α + β)2m

1− (α + β)2
. (4.20)

Thus, similarly as the case in Section 3.2.3, one can approximate the parame-

ters of the higher frequency standard GARCH series (yi)i=1,...,N from its m-period

aggregation weak GARCH series (y̆i)i=1,...,bN
m
c (whereby y̆i =

∑m
j=1 y(i−1)m+j) util-

ising (4.16)-(4.20).
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Below, we compare the performance of this approximation against that of the

SMC estimates. We generate 1000 data sets of a GARCH(1,1) series with standard

normal innovations and true parameters ω = 0.1, α = 0.08 and β = 0.9, taking

N = 10000 and m = 5 which leads to an aggregation percentage of 80%.

Results from estimating the observed weak GARCH series by QML and then

applying (4.16)-(4.20) to ascertain the underlying GARCH series, this process

hereafter referred to as Drost QML, are displayed in Table 4.3. Large biases, in

particular for the persistence parameters α and β are exhibited.

In light of these biases, before proceeding to compare the Drost approximation

to the SMC estimates, we mention that while Drost and Nijman [1993] utilised

the QML in weak GARCH estimation and found from their empirical experiments

that “the asymptotic bias of the QML, if there is any, is very small”, Nijman and

Sentana [1996] found it to be the case that “the QML estimator is approximately

consistent in some cases and clearly inconsistent in others”. In Francq and Zakoian

[2000] it was established that the weak GARCH “estimators computed from the

QML equations will unfortunately be inconsistent in general”.

Thus, in an attempt to see if the large biases in α and β are resultant from

biased estimates of ᾰ and β̆ using the QML we also employ the least squares weak

GARCH estimator (LSE) of Francq and Zakoian [2000] for which they proved to

be a consistent and asymptotically normal estimator. The results from estimating

the weak GARCH parameters by LSE and then application of (4.16)-(4.20), this

process hereafter referred to as Drost LSE, are also displayed in Table 4.3. As

stated by Francq and Zakoian [2000], the LSE “is likely to be inefficient relative to

the QML estimator” and we do indeed notice this in Table 4.3 with the very large

sample standard deviations of the Drost LSE estimates compared to the Drost

QML. Furthermore, the same direction of bias using the consistent LSE as the

inconsistent in general QML is observed and at an even higher level of magnitude.

Thus, employing a consistent LSE does not eliminate the biases in the persistence
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parameters α and β for this finite sample size either.

As mentioned in the previous chapter, to our knowledge, the appropriate co-

variance estimator for the QML applied to weak GARCH estimation has not been

developed. Regarding the LSE, details for constructing the asymptotic covariance

matrix have been provided in Francq and Zakoian [2000], for which approximate

standard errors of ω̆, ᾰ and β̆ can be obtained, with application of the delta method

(cf. Oehlert [1992]) required to obtain the standard errors of the higher frequency

GARCH parameters ω, α and β. While estimated standard errors for the Drost

LSE are in theory possible, we do not pursue this process as the focus of this section

is on empirical performance of the Drost approximation to the SMC estimation

method.

As the Drost QML is shown above to be a less biased and lower variance

estimator than the Drost LSE we proceed to compare the performance of the

SMC estimator to the Drost QML. The SMC estimates using 250, 1000 and 2000

particles are also displayed in Table 4.3. It is seen that even at 250 particles

the SMC method produces superior estimates in terms of bias and variance for

α and β compared to the Drost QML. As the number of particles increases, the

RMSE of the SMC estimates improves, driven by both improvements in bias and

standard deviation. The Drost QML however does produce superior estimates of

ω compared to the SMC using 250 and 1000 particles. Although, increasing the

number of particles to 2000 the SMC then overtakes the Drost QML in RMSE

performance for ω.

Regarding performance of approximate standard errors for the SMC method,

it appears at this high level of aggregation, 1000 particles are not enough to accu-

rately estimate the variance observed in estimates across simulates. Utilising 2000

particles, better alignment between SD and Mean SE is observed.

Box plots of the Drost QML and SMC estimates are displayed in Figure 4.4.

We see that the Drost QML estimates the parameter ω well, however has difficulty
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accurately estimating the persistence parameters α and β. SMC on the other

hand, even at a modest 250 particles generally does well estimating α and β with

performance improving as more particles are utilised. In terms of ω however, it

appears 250 particles may be insufficient requiring 2000 particles to best the Drost

QML.

Using an Intel Xeon 3.06 GHz processor the Drost QML optimisation takes

roughly 2 seconds, with computation times for the SMC optimisation provided in

Table 4.4. While the Drost approximation is considerably faster, it yields unreliable

estimates of α and β. The parameter α determines the reaction to market shocks

with Alexander [2008] describing the parameter as the volatility-of-volatility and

characterising markets that exhibit high α (>0.1) as being nervous or jumpy.

The parameter β is a measure of how long elevation due to shocks persist in the

variance.

The Drost approximation overestimates α and underestimates β considerably

more than the SMC method. Overestimating α and underestimating β results

in a comparatively more spiky volatility process than is otherwise the case. Not

being able to accurately assess the impact of market shocks to future volatility,

in particular not being able to distinguish between a volatility process where the

impact of market shocks are large but short lived versus a volatility process in

which the same market shock would lead to a less initial elevation in volatility

but whose effects are longer lasting, can lead to different perceived effects when

making financial decisions. For instance regarding options, if it is perceived that

a market shock has a large but short lived impact on future volatility, one may

have the impression that long dated option positions in one’s portfolio are less

impacted than is otherwise the case and short dated option positions are more

impacted than is otherwise the case.



66 SMC for aggregated GARCH(1,1)

Table 4.3: Comparison of the estimation performance, across 1000 simulated data
sets, of the Drost approximation against the SMC method utilising 250, 1000 and
2000 particles.

SMC 250 SMC 1000 SMC 2000

ω α β ω α β ω α β

Mean 0.1507 0.1024 0.8701 0.1203 0.0882 0.8884 0.1133 0.0850 0.8925

Bias 0.0507 0.0224 -0.0299 0.0203 0.0082 -0.0116 0.0133 0.0050 -0.0075

SD 0.1077 0.0287 0.0464 0.0643 0.0195 0.0302 0.0357 0.0157 0.0208

RMSE 0.1190 0.0364 0.0552 0.0674 0.0211 0.0324 0.0381 0.0165 0.0221

Mean SE 0.0344 0.0139 0.0184 0.0286 0.0135 0.0174 0.0293 0.0138 0.0180

Drost QML Drost LSE

ω α β ω α β

Mean 0.1142 0.1322 0.8447 0.1332 0.1488 0.8243

Bias 0.0142 0.0522 -0.0553 0.0332 0.0688 -0.0757

SD 0.0382 0.0935 0.0956 0.0973 0.1805 0.1906

RMSE 0.0407 0.1071 0.1105 0.1028 0.1932 0.2051

Table 4.4: Summary of the computational times on an Intel Xeon 3.06 GHz proces-
sor, across the 1000 simulated data sets, of the SMC optimisation utilising various
particle sizes.

Number of particles 250 1000 2000

Time to complete optimisation (secs) 153.37 585.34 1144.14

Avg. number of function calls 362.38 332.48 319.32

Avg. time to evaluate function (secs) 0.42 1.76 3.58
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Figure 4.4: Boxplot summaries of the estimates obtained, from 1000 simulated
data sets, from utilising the Drost QML and SMC method with 250, 1000 and
2000 particles.
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4.1.2 Real data analysis

For each of the price series (P
(AXJO)
i ), (P

(MXX)
i ), (P

(N225)
i ), (P̃

(AXJO)
i ), (P̃

(MXX)
i )

and (P̃
(N225)
i ) defined in Section 3.3.1 we calculate the corresponding aggregated

log return series between successively available prices. Details summarising the

occurence of time spacings between sucessively available observations encountered

in each price series are provided in Table 4.5. Regarding calender time spacings

(CS), which is associated with the time convention of Pi, a regular weekend without

additional public holidays corresponds to ni = 3. Whereas for the time scale that

ignores weekend spacings (IWS), which is associated with the time convention of

P̃i, regular weekends have ni = 1.

Table 4.5: Summary of frequencies of occurence of time spacings between suces-
sively available observations encountered in each price series.

Spacings (ni) 1 2 3 4 5 6 7

AXJO (CS) 2009 12 485 26 17 0 1

AXJO (IWS) 2491 38 20 0 1 0 0

MXX (CS) 1945 50 483 35 10 0 0

MXX (IWS) 2426 85 12 0 0 0 0

N225 (CS) 1921 37 449 61 7 7 3

N225 (IWS) 2370 97 7 8 3 0 0

Utilising the SMC methodology presented in this chapter, the underlying GARCH

parameters implied by each of these aggregated return series are presented in Table

4.6. Comparing Table 4.6 to Table 3.6 we see that the point estimates from each

table are within the corresponding 95% confidence band indicated in the other ta-

ble, with the exception of the parameter µ for the MXX series with calendar time

spacings. For the MXX returns series with calendar time spacings, the “missing”

observation treatment yields an estimate of µ, the mean daily log return, of 0.1514

(0.0910, 0.2119), whereas the “aggregated” observation treatment here estimates

a much lower mean daily log return of 0.0783 (0.0386, 0.1180).
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Acting on a calender time scale, the “missing” observation treatment in Section

3.3.1 ignores price changes between the close of trade on the last trading day of

a week and the close of trade on the first trading day of the following week. For

instance, assuming a regular weekend, the change in price from the close of Friday

to the close of the following Monday is not accounted for, as the three one-day

log returns (Friday-Saturday, Saturday-Sunday, Sunday-Monday) are considered

missing. Whereas the “aggregated” observation treatment (with calendar time

spacings), incorporates said price change as an observation of the aggregated value

of three successive one-day log returns.

The difference in estimated mean daily log return for the MXX price series

(with calendar time spacings) between the “missing” and “aggregated” observa-

tion treatments may suggest that the MXX index has a tendency to decline over

weekends.

Now, comparing CS and IWS treatments in Table 4.6, we see in all three

indices, that estimates of α and β are not statistically different between treatments.

However, in terms of ω, consistent across the three indices, we see that the ω

estimate using IWS lie above the upper 95% level of the ω estimate using CS. In

terms of µ and the long-run average variance ω
1−α−β , there does not seem to be any

statistical difference in these quantities between treatments. Although, looking at

the point estimates of µ and ω
1−α−β , these appear, for all three indices, in line with

the conjecture of Section 3.3.1, that one would expect these quantities to rise as

physical time is compressed.
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Table 4.6: Estimated GARCH parameters with 95% confidence intervals for the
aggregated returns data.

ω α β µ ω/(1− α− β)

AXJO (CS) 0.019 (0.009, 0.028) 0.106 (0.075, 0.136) 0.862 (0.819, 0.904) 0.025 (0.005, 0.046) 0.570 (0.447, 0.693)

AXJO (IWS) 0.028 (0.013, 0.043) 0.096 (0.069, 0.124) 0.862 (0.818, 0.905) 0.035 (0.008, 0.063) 0.668 (0.534, 0.802)

MXX (CS) 0.039 (0.019, 0.058) 0.124 (0.092, 0.156) 0.866 (0.831, 0.900) 0.078 (0.039, 0.118) 3.660 (1.332, 5.987)

MXX (IWS) 0.061 (0.027, 0.095) 0.128 (0.091, 0.164) 0.858 (0.818, 0.899) 0.116 (0.064, 0.169) 4.349 (1.605, 7.093)

N225 (CS) 0.024 (0.011, 0.036) 0.074 (0.053, 0.095) 0.913 (0.889, 0.937) 0.001 (-0.035, 0.038) 1.836 (1.249, 2.422)

N225 (IWS) 0.046 (0.023, 0.068) 0.082 (0.059, 0.104) 0.897 (0.871, 0.924) 0.004 (-0.044, 0.052) 2.181 (1.558, 2.803)

4.2 SMC for partially observed AR(1)-GARCH(1,1)

Rather than model the phenomena as a differenced series, alternative first order

difference relations can be utilised. One such is the Autoregressive (AR) process.

The AR(1) process (Pi)i=1,...,N is defined as

Pi = c0 + c1Pi−1 + εi (4.21)

where (εi)i=1,...,N is an i.i.d noise series.

Replacing (εi)i=1,...,N with a GARCH(1,1) sequence, we arrive at the AR(1)-

GARCH(1,1) model

Pi = c0 + c1Pi−1 + ziσi (4.22)

σ2
i = ω + α(Pi−1 − c0 − c1Pi−2)2 + βσ2

i−1. (4.23)

One may wish to model a series directly as an AR(1)-GARCH(1,1) process.

Consider the case when Pi and Pi−2 are observed, however Pi−1 is not. In this

instance we have

Pi = c0 + c1(c0 + c1Pi−2 + zi−1σi−1) + ziσi (4.24)

= c0(1 + c1) + c2
1Pi−2 + c1zi−1σi−1 + ziσi. (4.25)



Chapter 4. Applications: Likelihood inference for aggregated GARCH(1,1) series and
partially observed AR(1)-GARCH(1,1) series 71

In general, for an integer r ≥ 1,

Pi − cr1Pi−r =
r−1∑
j=0

(zi−jσi−j + c0)cj1. (4.26)

Thus, it can be seen that the treatment for “aggregated” observation is the

special case of the AR(1)-GARCH(1,1) when c0 = 0 and c1 = 1.

Assume one partially observes (Pj)j=1,...,N at time points 1 = t1 < t2 < . . . <

tn = N , where ti ∈ {2, . . . , N − 1} for i = 2, . . . , n− 1. To put this problem in the

form of (1.8)− (1.9) we take

Yi = Pti − c
ni
1 Pti−1

(4.27)

Zi = zti (4.28)

Xi =
(
σ2
ti−1+1, I(ni > 1)

ni−1∑
k=1

(zti−1+kσti−1+k + c0)cni−k1 , σ2
ti

)
, (4.29)

where again ni = ti − ti−1 and Wi the same as (4.4), with

Yi = f(Xi, Zi) = c0 +Xi,2 +
√
Xi,3Zi (4.30)

Xi = g(Xi−1, Yi−1,Wi) =
(
g1(Xi−1, Yi−1), g2(Xi−1, Yi−1,Wi), g3(Xi−1, Yi−1,Wi)

)

whereby,

g1(Xi−1, Yi−1) = ω + α(Yi−1 −Xi−1,2 − c0)2 + βXi−1,3 (4.31)

g2(Xi−1, Yi−1,Wi) = I(ni > 1)(zti−1+1

√
g1(Xi−1, Yi−1) + c0)cni−1

1

+ I(ni > 2)

ni−1∑
k=2

(zti−1+k

√
g̃(Xi−1, Yi−1,Wi, k) + c0)cni−k1 (4.32)

with g3(Xi−1, Yi−1,Wi) and g̃(Xi−1, Yi−1,Wi, k) defined respectively as in (4.8) and

(4.9) using the updated definitions (4.31)-(4.32). Then one can proceed as in the

“aggregated” observation case to perform likelihood inference.
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4.2.1 Simulation study

We repeat the simulation study described in Section 3.2.1, this time using an

AR(1)-GARCH(1,1), standard normal innovations, true parameters ω = 0.1, α =

0.08, β = 0.9, c0 = 10 and c1 = 0.65. Using an integrated C++ and R implementa-

tion, the GARCH parameters were optimised over the set defined in (3.4) without

any constraints on the AR parameters.

Table 4.7 displays the results from utilising 250 and 1000 particles for 1000

simulated AR-GARCH data sets at missing percentages of 5%, 10%, 20%, 35% and

50%. Regarding the GARCH parameters, the comments for Table 4.7 are identical

to the comments made for Table 3.1. Thus we just summarise the following findings

regarding the AR parameters:

• Like the GARCH parameters, the AR parameters are scarcely impacted by

a four fold increase in particles.

• While the average bias in estimates of c0 and c1 as missing percentage in-

creases (while keeping n fixed) is seen to improve, standard deviations remain

roughly constant. RMSE, having variance as the dominating component, also

exhibits the same behaviour, stable with increasing proportions of missing-

ness. The RMSE at the 50% missingness scenario is on par with that of the

no missingness scenario.

A summary, across the 1000 simulations for each level of missingness, of com-

putational times using an Intel Xeon 3.06 GHz processor is provided in Table 4.8.

The time to complete a SMC likelhood evaluation can be seen to be linear in N as

well as the number of particles K.
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Table 4.7: SMC estimation of the AR(1)-GARCH(1,1) model with missing data:
Summary statistics across 1000 replications for each level of missingness.

250 particles 1000 particles

% Missing 0% 5% 10% 20% 35% 50% 5% 10% 20% 35% 50%

ω = 0.1

Mean 0.1179 0.1176 0.1171 0.1163 0.1147 0.1133 0.1168 0.1164 0.1152 0.1134 0.1107

Bias 0.0179 0.0176 0.0171 0.0163 0.0147 0.0133 0.0168 0.0164 0.0152 0.0134 0.0107

SD 0.0418 0.0427 0.0439 0.0411 0.0397 0.0364 0.0426 0.0435 0.0407 0.0391 0.0351

Mean SE 0.0384 0.0382 0.0375 0.0360 0.0338 0.0316 0.0382 0.0377 0.0364 0.0342 0.0323

RMSE 0.0455 0.0462 0.0471 0.0442 0.0423 0.0388 0.0458 0.0465 0.0434 0.0414 0.0367

α = 0.08

Mean 0.0802 0.0814 0.0813 0.0812 0.0818 0.0814 0.0814 0.0813 0.0811 0.0814 0.0808

Bias 0.0002 0.0014 0.0013 0.0012 0.0018 0.0014 0.0014 0.0013 0.0011 0.0014 0.0008

SD 0.0131 0.0135 0.0137 0.0136 0.0140 0.0133 0.0135 0.0136 0.0136 0.0140 0.0131

Mean SE 0.0135 0.0137 0.0136 0.0136 0.0135 0.0134 0.0137 0.0137 0.0136 0.0136 0.0135

RMSE 0.0131 0.0135 0.0137 0.0137 0.0141 0.0133 0.0136 0.0137 0.0137 0.0141 0.0132

β = 0.9

Mean 0.8954 0.8948 0.8950 0.8952 0.8951 0.8958 0.8950 0.8952 0.8956 0.8957 0.8969

Bias -0.0046 -0.0052 -0.0050 -0.0048 -0.0049 -0.0042 -0.0050 -0.0048 -0.0044 -0.0043 -0.0031

SD 0.0176 0.0182 0.0186 0.0185 0.0191 0.0178 0.0182 0.0185 0.0184 0.0190 0.0175

Mean SE 0.0179 0.0180 0.0179 0.0177 0.0175 0.0173 0.0180 0.0180 0.0179 0.0177 0.0176

RMSE 0.0182 0.0189 0.0193 0.0191 0.0197 0.0183 0.0188 0.0191 0.0189 0.0195 0.0177

c0 = 10

Mean 10.0624 9.8513 9.8649 9.8881 9.9002 9.9150 9.8423 9.8526 9.8774 9.8874 9.8983

Bias 0.0624 -0.1487 -0.1351 -0.1119 -0.0998 -0.0850 -0.1577 -0.1474 -0.1226 -0.1126 -0.1017

SD 0.4961 0.4870 0.4883 0.4747 0.4745 0.4958 0.4860 0.4884 0.4697 0.4710 0.4876

Mean SE 0.4560 0.4536 0.4465 0.4327 0.4218 0.4039 0.4535 0.4481 0.4344 0.4145 0.3946

RMSE 0.5000 0.5092 0.5066 0.4877 0.4849 0.5031 0.5110 0.5101 0.4855 0.4843 0.4981

c1 = 0.65

Mean 0.6479 0.6552 0.6547 0.6539 0.6535 0.6529 0.6555 0.6551 0.6543 0.6539 0.6535

Bias -0.0021 0.0052 0.0047 0.0039 0.0035 0.0029 0.0055 0.0051 0.0043 0.0039 0.0035

SD 0.0173 0.0170 0.0171 0.0166 0.0166 0.0173 0.0170 0.0171 0.0164 0.0165 0.0170

Mean SE 0.0162 0.0162 0.0159 0.0154 0.0151 0.0145 0.0162 0.0160 0.0155 0.0148 0.0142

RMSE 0.0175 0.0178 0.0177 0.0170 0.0169 0.0175 0.0178 0.0178 0.0170 0.0169 0.0174
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Table 4.8: Summary, across the 1000 simulations for each level of missingness, of
computational times for the SMC optimisation using an Intel Xeon 3.06 GHz.

250 particles 1000 particles

Time (secs) Avg. Number Avg. time Time (secs) Avg. Number Avg. time

% Missing N to complete of function to evaluate to complete of function to evaluate

optimisation calls function (secs) optimisation calls function (secs)

5% 2105 83.56 912.80 0.092 347.47 912.33 0.381

10% 2222 90.34 919.99 0.098 371.88 911.29 0.408

20% 2500 101.53 896.98 0.113 414.32 882.47 0.470

35% 3076 129.71 924.42 0.140 531.13 917.80 0.579

50% 4000 184.30 1024.96 0.180 708.68 945.73 0.749

4.2.2 Real data analysis

We reanalyse the three wind time series considered in Section 3.3.2 estimating from

them AR(1)-GARCH(1,1) models obtained in two ways. The first is the two-step

estimation procedure employed in Section 3.3.2, using the arima command in R

to obtain first the AR(1) parameters ignoring the GARCH effects, then fitting a

GARCH(1,1) to the partially available AR(1) residuals. The second is the simul-

taneous estimation of the AR(1) and GARCH(1,1) parameters through the SMC

configuration presented in Section 4.2.

Table 4.9 displays the fits obtained using both methods for each of the three

wind time series. Comparing the two methods we see that the GARCH parameters

are within each others respective confidence intervals and, for all but c0 for Penrith,

the AR parameters are outside each others confidence intervals.

In the case of a full observation series, it is known (cf. Gourieroux [1997]) that

two-step estimation result in consistent although inefficient estimates. In the case

of missing data it is not clear if these results carry over but it is likely that the

two-step procedure continues to be inefficient.
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Table 4.9: Fitted AR(1)-GARCH(1,1) models for the wind data. Top: Using a
two-step estimation method - first fitting the AR(1) ignoring the GARCH effects
then fitting a GARCH(1,1) to the partially available AR(1) residuals. Bottom:
Simultaneous estimation of the AR(1) and GARCH(1,1) parameters.

Two-Stage Estimation

ω α β

North Head 0.8842 (0.7194, 1.0490) 0.2459 (0.2047, 0.2871) 0.5462 (0.4814, 0.6111)

Penrith 1.0619 (0.7792, 1.3446) 0.1630 (0.1336, 0.1923) 0.6551 (0.5867, 0.7235)

Fort Denison 0.2960 (0.2207, 0.3712) 0.1814 (0.1472, 0.2156) 0.7805 (0.7432, 0.8179)

c0 c1 ω/(1− α− β)

North Head -0.0085 (-0.0540, 0.0369) 0.9747 (0.9694, 0.9800) 4.2547 (3.8177, 4.6916)

Penrith -0.1646 (-0.2226, -0.1067) 0.8836 (0.8722, 0.8950) 5.8372 (5.4074, 6.2670)

Fort Denison -0.0383 (-0.0906, 0.0139) 0.9495 (0.9417, 0.9573) 7.7736 (5.1940, 10.353)

Simultaneous Estimation

ω α β

North Head 0.9259 (0.7626, 1.0893) 0.2770 (0.2324, 0.3216) 0.5146 (0.4505, 0.5786)

Penrith 1.1217 (0.8169, 1.4266) 0.1732 (0.1413, 0.2052) 0.6356 (0.5612, 0.7100)

Fort Denison 0.3291 (0.2368, 0.4214) 0.2054 (0.1609, 0.2500) 0.7559 (0.7076, 0.8042)

c0 c1 ω/(1− α− β)

North Head 0.0733 (0.0344, 0.1122) 0.9831 (0.9783, 0.9879) 4.4416 (3.9218, 4.9615)

Penrith -0.1690 (-0.2229, -0.1150) 0.9034 (0.8923, 0.9146) 5.8680 (5.4292, 6.3068)

Fort Denison 0.0375 (-0.0052, 0.0802) 0.9610 (0.9521, 0.9699) 8.5157 (5.3442, 11.687)
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4.3 Concluding remarks

In summary, this section has illustrated use of the SMC methodology for pro-

viding computationally feasible and reliable estimators (along with standard er-

rors) to tackle the problems of parameter estimation for temporally aggregated

GARCH(1,1) series as well as partially observed AR(1)-GARCH(1,1) series.

For the restricted case when the data is consecutively aggregated in non-

overlapping blocks of equal size - a condition required for application of the “Weak”

GARCH approximation of Drost and Nijman [1993], the SMC method has been

shown to provide better estimates, in particular for the persistence parameters α

and β, for which the Drost approximation displays large biases.

Regarding partially observed AR(p)-GARCH(1,1), p > 1 series and tempo-

rally aggregated AR(1)-GARCH(1,1) series, the inability to propagate such series

through a single variable at each time step means these problems cannot be solved

using the technique utilised in this chapter.



Chapter 5

Application: Likelihood inference

from discrete observation of a

COGARCH process

5.1 Introduction

Seeking a continuous time counterpart to the discrete time GARCH(1,1) model,

to be used in modelling increasingly available high frequency financial data sets as

well as utilised in the well established continuous time option pricing framework

(see for instance Harrison and Pliska [1991]), Kluppelberg et al. [2004] developed

the COGARCH(1,1) process.

To arrive at the COGARCH model, the univariate noise series of a discrete

time GARCH model is replaced by the increments of a Lévy process. The re-

sulting COGARCH model is then a continuous time analogue of the discrete time

GARCH model, both being systems driven by only a single source of noise and

both incorporating a feedback mechanism whereby a perturbation in the current

period continues to affect the variance of future perturbations.

Calibration of the COGARCH model to data is still an open topic. The cur-
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rently available methods can be grouped into three categories. The first group

employs the use of theoretical moments. Haug et al. [2007] equates theoretical

moments with sample based estimates, while Bibbona and Negri [2015] use the-

oretical moments to construct prediction based estimating functions. Both these

procedures however, have only been demonstrated under the assumption of equally

spaced observation. To extend to irregularly spaced data requires overcoming the

problem that the moments needed for both these methods depend on the time

spacings between observations.

The second is the quasi maximum likelihood (QML) method, which maximises

a quasi likelihood in place of the true likelihood. First suggested for COGARCH

models in Maller et al. [2008], this method is based on a first jump approximation

to the driving Lévy process and an assumption that the observed increments are

Gaussian and conditionally independent. These simplifying assumptions lead to

construction of a tractable likelihood very similar to that used for fitting GARCH

models to discrete time data. The QML method can be applied to regularly

and irregularly spaced observations. However, as pointed out by Muller [2010],

the QML estimator is not consistent in general. Although Kim and Lee [2013]

established the consistency and asymptotic normality of a QML estimator based

on a slightly different form of quasi likelihood, they assumed an asymptotic scenario

where the observation times grow infinitely dense, which is rather unrealistic from a

practical point of view. Marin et al. [2015] uses a data cloning technique to explore

the quasi likelihood surface by Markov chain Monte Carlo (MCMC) methods.

The third is the MCMC Bayesian procedure developed by Muller [2010], for

the specific case of a compound Poisson driving Lévy process. It was reported

that the posterior mode estimator outperformed the QML estimator in simulation

studies. However, this MCMC procedure is computationally very expensive as

the procedure attempts to uncover the complete sample path of the underlying

compound Poisson process. Moreover, the choices of the prior distributions for
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the parameters and hyper-parameters influences the performance of the estimators

and there does not seem to be a principled approach to making these choices.

Inferences for the COGARCH model based on the genuine likelihood, how-

ever, have not been addressed, although as a general inference methodology, the

maximum likelihood method is expected to have various advantages such as being

applicable both to regularly spaced and to irregularly spaced data, ease of variance

estimation, and asymptotic efficiency. The challenge in making inferences based on

the genuine likelihood in COGARCH models is the computation of the likelihood

function, as the likelihood lacks a tractable form and its computation entails the

evaluation of infinite-dimensional integrals.

Development of a computationally feasible method for maximum likelihood es-

timation in the COGARCH model is the concern of this chapter. Since in many

high frequency financial data sets, especially intraday data, time intervals without

price changes are often observed, the model based on finite activity pure jump

processes, or the compound Poisson process, seems more fitting. Therefore, as in

Muller [2010], in this work we consider only the COGARCH model driven by a

compound Poisson process. We will demonstrate that the sequential Monte Carlo

(SMC) technique can be applied with the bootstrap particle filter [Gordon et al.,

1993] to obtain an unbiased estimate of the likelihood of the compound Poisson

COGARCH process based on either regularly or irregularly spaced discrete ob-

servations. The approximated likelihood function by the bootstrap particle filter

is not continuous in the model parameters in general, even if the randomness in

the Monte Carlo simulation is controlled. This creates difficulty in numerically

optimising the likelihood function to obtain the maximum likelihood estimator

(MLE). To overcome this issue, we use the continuous resampling procedure de-

veloped by Pitt and Malik [2011] to produce a smooth likelihood surface which is

amenable to numerical optimisation. Unlike the MCMC procedure of Muller [2010]

which essentially attempts to fill in the missing information, the SMC procedure



80 The COGARCH(1,1) model

effectively integrates out the missing information. We demonstrate superior finite

sample performance in comparison with the QML method through simulations.

We also present numeric evidence that the Hessian matrix of the negative loga-

rithm of the approximate likelihood can be inverted to estimate the variance of

the MLE.

This chapter is organised as follows. A brief description of the COGARCH pro-

cess is provided in Section 5.2. The intractable likelihood of a COGARCH process

based on discrete observations is detailed in Section 5.3. Parameter estimation

through simulated maximum likelihood using SMC is addressed in Section 5.4. A

real world application of the procedure is illustrated on high frequency intraday

financial data in Section 5.5. Simulation studies are conducted in Section 5.6. The

chapter concludes in Section 5.7 with a discussion.

A paper based on the contents of this chapter is currently under revision with

the Journal of Financial Econometrics.

5.2 The COGARCH(1,1) model

The COGARCH(1,1) model introduced in Kluppelberg et al. [2004] is the following

system of stochastic differential equations

dGt = σt dLt,

dσ2
t+ = (β − ησ2

t ) dt+ ϕσ2
t d[L,L]

(d)
t , (5.1)

where Lt is a Lévy process, β > 0, η > 0 and ϕ > 0 are model parameters, and

[L,L](d) denotes the discrete quadratic variation of the Lévy process (cf. Protter

[2005], p.66). Here and hereafter, t± indicates the right/left-hand limit at t.

For a finite activity pure jump Lévy process, if we denote Nt as the number of

jumps on the interval [0, t], τ1, . . . , τNt as the ordered jump times and z1, . . . , zNt as

the corresponding i.i.d. (independent and identically distributed) jump sizes, then
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the COGARCH(1,1) process, with an initial volatility value σ0, can be represented

as

Gt = G0 +

∫ t

0

σs dLs = G0 +
Nt∑
i=1

στizi,

where the skeleton volatility process (στi)i=1,...,Nt is given recursively by

σ2
τi

=
β

η

(
1− e−η(τi−τi−1)

)
+ e−η(τi−τi−1)σ2

τi−1+, (5.2)

σ2
τi+

= σ2
τi

(1 + ϕz2
i ), i = 1, . . . , Nt, and σ2

τ0+ := σ2
0. (5.3)

We see from the representation above that β/η bounds the squared volatility pro-

cess from below, and can be interpreted as a baseline value that the squared

volatility decays to in the absence of jumps. The parameter η determines the

speed of this decay, with ϕ controlling the degree of impact new jumps have on

the volatility. For parameter identifiability, it is common, such as was done in Haug

et al. [2007] and Maller et al. [2008], to standardise the mean and variance per unit

time of the driving Lévy process to be 0 and 1 respectively (that is E(L1) = 0 and

E(L2
1) = 1), which we assume hereafter. The initial value of the squared volatility

is often set at its long term mean σ2
0 = β/(η−ϕ) (see Proposition 4.2 of Kluppel-

berg et al. [2004]). Existence of a stationary distribution for the volatility process

(σt)t≥0 is guaranteed if η − ϕ > 0 (see Theorem 3.2 of Kluppelberg et al. [2004]).
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5.3 Likelihood based on discrete observations of

the COGARCH process

Assume the driving Lévy process is compound Poisson with arrival rate λ and a

jump size distribution with density q(·) relative to Lebesgue measure µ. Note that

this implies the jump size distribution has no point mass at 0. If one observes

the complete sample path of the process Gt on the observation interval [0, T ], or

equivalently the number NT of jumps of the process in the interval together with

the jump times τ1, . . . , τNT and the respective jump sizes gi = Gτi − Gτi−, then

the likelihood of the model parameters θ = (β, η, ϕ, λ), is the density function of

the distribution of the compound Poisson COGARCH process, interpreted as a

function of the parameter vector θ, given by

likc(θ) = λNT e−λT
NT∏
i=1

1

στi
q

(
gi
στi

)
,

where the στi ’s depend on the parameters θ and the initial volatility σ2
0 = β/(η−ϕ)

through the recursions (5.2)-(5.3), with the zi in (5.3) replaced by gi/στi . The

parameter space is Θ = {(β, η, ϕ, λ) : β > 0, ϕ > 0, η > ϕ, λ > 0}.

While the complete data likelihood is easy to compute and is a smooth function

of the parameter vector, in practice we do not normally have continuous observa-

tions of the COGARCH process. The typical observations we have are the values

of the process at a set of discrete time points 0 = t0 < t1 < . . . < tn = T .

It is assumed that the observation times ti, i = 1, . . . , n are independent of the

COGARCH process and their choice does not depend on the parameters of the

COGARCH model. Assume the COGARCH process has a known initial value

G0, then the observations are equivalent to the observed increments of G over

successive observation times, Ḡi := Gti − Gti−1
, i = 1, . . . , n. Since each Ḡi has a

positive probability to be 0 (due to the compound Poisson Lévy process), we define

the likelihood to be the density pθ(Ḡ1:n) of the observations (Ḡ1, . . . , Ḡn) =: Ḡ1:n
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with respect to the product measure (δ0 + µ)⊗n, interpreted as a function of the

parameter vector θ. Here, and hereafter, we use δx to denote the Dirac measure

at x. Formally, the likelihood can be written in the following form,

lik(θ) = pθ(Ḡ1:n) =
n∏
i=1

pθ(Ḡi|Ḡ1:i−1)

=
n∏
i=1

e−λ∆tiI(Ḡi=0)
{

(1− e−λ∆ti)

∫
1

στNti
q

(
Gti −GτNti

−

στNti

)

× P( dGτNti
−, dστNti

|Ḡ1:i−1)
}I(Ḡi 6=0)

,

(5.4)

where ∆ti = ti−ti−1, P( dGτNti
−, dστNti

|Ḡ1:i−1) denotes the conditional joint distri-

bution of GτNti
− and στNti

given the observations Ḡ1:i−1. Recall that, when Ḡi 6= 0,

there is at least one jump in the interval (ti−1, ti] and GτNti
− represents the value

of the process G just before the last jump time in the interval, Gti − GτNti
− the

size of the last jump of G in the interval, and στNti
the volatility just before the

last jump in the interval.

The conditional distributions P( dGτNti
−, dστNti

|Ḡ1:i−1) in (5.4) are intractable

in general, and therefore the likelihood can’t be directly computed. We will show

in the next section how this intractable likelihood can be approximated using SMC.

5.4 SMC for discretely observed COGARCH(1,1)

In this section we outline the procedure for parameter estimation through simu-

lated maximum likelihood using SMC. To begin, we first formulate the observed

non-zero increments of the COGARCH process as the observations of a hidden

Markov process model (of the form (1.8)-(1.9)). While there are various ways

to do this, we do it in such a way that the resulting model is suitable for SMC

implementation.
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5.4.1 State space representation

For notational convenience, let ni be the number of jumps of the COGARCH

process that occur in the interval (ti−1, ti], ti−1 < τi,1 < . . . < τi,ni < ti be the ni

jump times, and zi,1, . . . , zi,ni the corresponding ni jump sizes of the underlying

compound Poisson process. That is, ni = Nti − Nti−1
, and τi,j = τNti−1+j, zi,j =

zNti−1+j, j = 1, . . . , ni. When ni = 0 we define τi,0 := ti−1. Recall that

Ḡi = Gti −Gti−1
=

ni∑
j=1

στi,jzi,j, (5.5)

where the στi,j , j = 1, . . . , ni are recursively given as in (5.2) and (5.3), with initial

value σ2
τi,0+ = σ2

ti−1
, and the sum is interpreted as 0 when ni < 1. Let

xi =

(
σ2
ti−1

,

ni−1∑
j=1

στi,jzi,j, σ
2
τi,ni

, τi,ni

)
, (5.6)

and denote xi,j the j-th element of xi. Then xi,1 is the volatility at the beginning

of the i-th observation interval, xi,2 is the increment of the COGARCH process in

the interval before the last jump time in the interval, xi,3 is the volatility at the last

jump time, and xi,4 is either the last jump time or the beginning of the observation

interval, depending on whether ni > 0 or ni = 0. Note that the distribution of xi,2:4

is fully determined once xi,1 is given. Note also from (5.5) that the distribution of

Ḡi is fully determined by xi,2:4 via

Ḡi =


0, xi,4 = ti−1 ⇔ ni = 0,

xi,2 +
√
xi,3zi,ni , xi,4 > ti−1 ⇔ ni > 0.

(5.7)
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The conditional density of Ḡi given xi, relative to the measure δ0 + µ, has this

explicit form,

p(Ḡi|xi) =


I(Ḡi = 0), xi,4 = ti−1,

1√
xi,3
q
(
Ḡi−xi,2√

xi,3

)
I(Ḡi 6= 0), xi,4 > ti−1,

(5.8)

where we recall that q is the µ-density of the jump sizes of the underlying compound

Poisson process. Now, observe that

p(Ḡi|Ḡ1:i−1) = p(Ḡi|Ḡ1:i−1, xi,4 = ti−1)P(xi,4 = ti−1|Ḡ1:i−1)

+ p(Ḡi|Ḡ1:i−1, xi,4 > ti−1)P(xi,4 > ti−1|Ḡ1:i−1)

(5.9)

=


e−λ∆ti , Ḡi = 0,

(1− e−λ∆ti)
∫
p(Ḡi|xi)P( dxi|Ḡ1:i−1, xi,4 > ti−1), Ḡi 6= 0.

(5.10)

where we have used (5.8) and the facts P(xi,4 = ti−1|Ḡ1:i−1) = P(ni = 0) = e−λ∆ti

and P(xi,4 > ti−1|Ḡ1:i−1) = P(ni > 0) = 1 − e−λ∆ti . The likelihood of Ḡ1, . . . , Ḡn

is given by

lik(θ) =
n∏
i=1

p(Ḡi|Ḡ1:i−1) (5.11)

=
n∏
i=1

(
I(Ḡi = 0)e−λ∆ti

+ I(Ḡi 6= 0)(1− e−λ∆ti)

∫
p(Ḡi|xi)P( dxi|Ḡ1:i−1, xi,4 > ti−1)

)
.

(5.12)

In general the conditional distributions P( dxi|Ḡ1:i−1, xi,4 > ti−1) are intractable,

which hinders direct evaluation of (5.12). The likelihood contributions for obser-

vations that are zero can be evaluated exactly, however we resort to a SMC ap-

proach to approximate the likelihood contributions of the non-zero observations.

Let κm := min{k :
∑k

j=1 I(Ḡj 6= 0) = m} denote the index of the m-th non-zero
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observation, for m = 1, 2, . . . , ñ :=
∑n

j=1 I(Ḡj 6= 0). Then we can approximate the

likelihood contribution for the non-zero increments by framing the the evolution

of the conditionally non-zero increments in the form of (1.8)-(1.9) by setting for

i = 1, . . . , ñ

Yi = Ḡκi , Xi = xκi , Zi = zκi,nκi (5.13)

Wi = {nκi , τκi,1, . . . , τκi,nκi , ζ(nκi)} (5.14)

where

ζ(nκi) =


{zκi,1, . . . , zκi,nκi−1} when nκi > 1,

∅ when nκi = 1,

(5.15)

with

Yi = f(Xi, Zi) = Xi,2 +
√
Xi,3Zi (5.16)

Xi,1 = β/η + e−η(tκi−1−Xi−1,4) (Xi−1,3 + ϕ(Yi−1 −Xi−1,2)2 − β/η
)

(5.17)

=: g1(Xi−1, Yi−1, tκi−1)

Xi = [g1(Xi−1, Yi−1, tκi−1), g2(Xi,1,Wi), g3(Xi,1,Wi), g4(Wi)]
T (5.18)

for some functions g2(Xi,1,Wi) = Xi,2, g3(Xi,1,Wi) = Xi,3 and g4(Wi) = Xi,4.

With the specifications (5.13)-(5.18), proceeding as outlined in Section 2.1, yields

a consistent and unbiased, K particle, SMC approximation of the likelihood, given

by

l̂ikK(θ) =
n∏
i=1

(
I(Ḡi = 0)e−λ∆ti + I(Ḡi 6= 0)

)
×

ñ∏
i=1

(
(1− e−λ∆tκi )

1

K

K∑
k=1

p(Yi|X(k)
i )
)
,

(5.19)

whereby X
(k)
i i = 1, . . . , ñ, k = 1, . . . , K are the SMC obtained particles.
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The ease of evaluating (5.8) is a big advantage of our choice of the state variable

Xi over other possible choices. For instance, if the state variable is chosen as σ2
tκi−1

,

then the resulting p(Ḡκi |Xi) does not admit an analytical form and is very difficult

to evaluate, although we still have a hidden Markov model.

The noise Wi encompasses the following components of the compound Poisson

process in the interval [tκi−1, tκi ] : the number of jumps in the interval nκi (condi-

tional that nκi ≥ 1), the times at which these jumps occurred tκi−1 < τκi,1 < . . . <

τκi,nκi < tκi and the size of these jumps (except for the last jump) zκi,1, . . . , zκi,nκi−1.

A procedure to simulateWi is as follows. Define ui = τκi,1−tκi−1, then ui follows

a truncated exponential distribution with rate λ whereby P(ui < t) = 1−e−λt
1−e−λ∆tκi

for

t < ∆tκi . Thus, one can simulate a Uniform(0,1) random variable U1 to obtain

τκi,1 = tκi−1 −
1

λ
log(1− (1− e−λ∆tκi )U1). (5.20)

Then one can simulate a Poisson random variable r with mean λ(tκi − τκi,1) to

obtain the number of jumps, conditional that at least one jump occurred, as nκi =

1 + r. Proceeding, simulate r i.i.d Uniform(0,1) random variables, denote by

U2, . . . , Unκi the sorted uniforms, and then obtain

τκi,s = τκi,1 + Us(tκi − τκi,1), s = 2, . . . , nκi . (5.21)

Finally, the zκi,1, . . . , zκi,nκi−1 are r i.i.d simulates from the density q.

Pseudo code summarising the above steps for obtaining log(l̂ikK(θ)) is provided

in Appendix A.1 (Algorithm 1).

5.4.2 Estimating parameters

The aim is to estimate the COGARCH parameters β, η, ϕ and the jump intensity

λ. Recall, for parameter identifiability, E(L1) = 0 and E(L2
1) = 1. In this way, the

variance of the jump distribution will be set as the inverse of the jump rate λ.
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5.4.2.1 Estimating λ

Now, unlike the parameters β, η and ϕ, it is impossible to fix randomness while

varying λ, as λ directly drives the noise components Wi. To overcome this, we

proceed with a two-step approach. Taking advantage of the fact that in a given

interval [ti−1, ti] the probability that no jumps occurs is e−λ∆ti and the probability

that at least one jump occurred is 1 − e−λ∆ti we first estimate λ, denoting this

estimate λ̂, by maximising the partial likelihood

L(λ) =
n∏
i=1

e−λ∆tiI(Ḡi=0)(1− e−λ∆ti)I(Ḡi 6=0). (5.22)

In practice, the high frequency data sets usually associated with COGARCH mod-

elling are sufficiently large for (5.22) to yield very precise estimates of λ.

5.4.2.2 Estimating β, η and ϕ

Even with randomness fixed across parameter changes of β, η and ϕ, recall from

Section 2.2, that a procedure for resampling the hidden states Xi in a continu-

ous manner is required to obtain a SMC approximated likelihood surface that is

continuous in the parameters (β, η and ϕ) and thereby amenable to numerical op-

timisation. Now, in our case, Xi is a 4-dimensional vector, so we cannot (directly)

apply the 1-dimensional continuous resampling procedure from Section 2.3. How-

ever, like the aggregated GARCH(1,1) case (see Section 4.1), the model structure

here can also be depicted as in Figure 4.1, thus we really only need to find a

way to continuously resample the Xi+1,1 = σ2
tκi+1−1

a 1-dimensional quantity in-

stead. This can be achieved in fact, the same way as the aggregated GARCH(1,1)

case, with pseudo code for implementing the continuous resampling procedure pro-

vided in Appendix A.1 (Algorithm 2). The log-likelihood surface, obtained using

SMC with continuous resampling and noise components driven by λ̂, is maximised

to estimate β, η and ϕ. Figure 5.1 illustrates the contrast between the jagged
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log-likelihood surface obtained using bootstrap resampling (Algorithm 1) and the

smooth log-likelihood surface obtained using continuous resampling (Algorithm 2).
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Figure 5.1: A data set with 5000 equally spaced observations of a COGARCH
model with true parameters β = 1, η = 0.06 and ϕ = 0.0425 was generated.
The above plots show the simulated log-likelihoods of this data set as β is varied
(keeping η and ϕ fixed at their true values). LHS utilises bootstrap resampling
and RHS utilises the continuous resampling procedure.

5.5 Real data analysis

In this section we use the SMC and QML procedures to model the intra-week

volatility of the AUD/USD exchange rate for 50 consecutive trading weeks of 2015.

The Forex market is international and a trading week commences Sunday 22:00

GMT at the weekly opening of the financial centre in Sydney, Australia and runs

continuously until Friday 22:00 GMT at the weekly close of the financial centre in

New York.

One-minute price data was obtained from www.histdata.com. Due to the pres-

ence of missing observations, the data is not exactly equally spaced, however a

large percentage (99.6%) of observations are spaced 1 minute apart, with the re-

mainder spaced from 2 to 41 minutes apart. For each of the 50 consecutive weeks

a separate COGARCH model will be fitted. The first trading week runs from the

4th of January 2015 22:00 GMT to the 9th of January 2015 22:00 GMT and the

last trading week runs from from the 13th of December 2015 22:00 GMT to the

www.histdata.com
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18th of December 2015 22:00 GMT.

Two data pre-processing steps were required so as to render the data appro-

priate for modelling with the COGARCH model. The first step used Winsorising

to exclude possible outliers, large isolated return spikes that were not followed

by an elevated volatility expected under the COGARCH model. The second step

adjusted for intra-week trends in hourly volatility. Previous empirical studies on

foreign exchange rates have documented intra-week volatility patterns (cf. Muller

et al. [1990]). The COGARCH model cannot meaningfully be applied to non-

stationary data and as such; to account for intra-week hourly volatility patterns

a transformation from the physical time scale to a virtual business time scale is

applied leading to irregularly spaced data as trading hours with higher than nor-

mal volatility are expanded while trading hours with lower than normal volatility

are compressed. This acts to balance out the volatility per unit of virtual time.

Details of these data preprocessing steps are provided in Appendix A.2.

The likelihood maximisation was performed using the Broyden - Fletcher -

Goldfarb - Shanno (BFGS) algorithm as implemented in the optim package of the

stats library in R.

5.5.1 Results

We fit for each of the 50 trading weeks a separate COGARCH model driven by

a compound Poisson process with mean zero normally distributed jumps using

both the SMC and QML methodologies. Recall, for parameter identifiability we

assume E(L2
1) = 1. In this way, the variance of the jump distribution will be set

as the inverse of the jump rate λ. Thus, a total of four parameters β, η, ϕ and λ

are estimated for each trading week. The jump rate λ was estimated via (5.22).

As E(L2
1) = 1 is fixed, the estimated λ does not factor into the QML method.

However, for the SMC method it specifies the parameters of the driving compound

Poisson process. For the SMC procedure, K = 1000 particles were employed and
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this choice seemed reasonable in light of simulation evidence in Section 5.6. The

fits obtained for the 50 trading weeks analysed are displayed in Figure 5.2. It is

seen that estimates for β, η and ϕ are generally higher using the SMC method

compared to the QML.

Unfortunately, in the current literature, diagnostics to determine which set of

parameter values provide the better fit for the data have not been substantially

developed. However, one could compare summary statistics such as the mean

stationary squared volatility E(σ2
∞) := β

η−ϕ (see Proposition 4.2 of Kluppelberg

et al. [2004]) as well as the lower bound of the squared volatility process σ2
min := β

η

(see Proposition 2 of Kuppelberg et al. [2006]).

An estimate of E(σ2
∞) can also be obtained empirically by

∑n
i=1

Ḡ2
i

∆ti
(see Propo-

sition 5.1 of Kluppelberg et al. [2004]). This, along with the estimated mean sta-

tionary squared volatilities given by the QML and SMC, are displayed in Figure

5.3a. In general, we observe strong agreement between these three quantities. The

QML and SMC estimates of σ2
min are displayed in Figure 5.3b. Both quantities

seem to track each other well, however the QML estimates are higher almost all

of the time.

Clearly there is a discrepancy between estimates from the two methods. To

better determine which of the two methods one would place more confidence in,

we turn to a simulation study in the next section, where we can examine the

performance of each estimator. What is found is that the QML method’s estimates,

in particular for η and ϕ, are substantially biased in comparison to those from the

SMC method.
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Figure 5.2: Estimated COGARCH parameters for the AUD/USD exchange rate
for the 50 consecutive trading weeks. The SMC parameter estimates are given by
the solid blue line with the dotted black lines giving the 95% confidence intervals.
The QML parameter estimates are given by the dashed red line.
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5.6 Simulation studies

In this section, we perform a total of four simulation studies. The first two are

based on the real data analysis of the previous section, while the last two are based

on experiments in Maller et al. [2008].

5.6.1 Inspired from the real data analysis

We perform two simulation studies based on the parameter estimates and circum-

stances of the first trading week, the 4th of January 2015 22:00 GMT to the 9th of

January 2015 22:00 GMT. This is a week where the difference between the QML

and SMC are close to typical in the 50 week period under study. For both studies

the driving compound Poisson process has arrival intensity λ = 3.265474 and jump

size variance 1
3.265474

= 0.3062343. Each simulated COGARCH process is observed

at exactly those times at which observations were made during the first trading

week (on the adjusted time scale). Thus each data set has n = 7183 irregularly

spaced observations with T = 7199.495.

For the first simulation study we simulate 1000 data sets of a COGARCH
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with β = 1.96771 × 10−9, η = 0.24372 and ϕ = 0.200345 which are based on

the SMC parameter estimates and for the second, we simulate 1000 data sets of

a COGARCH with β = 4.497526 × 10−10, η = 0.07017203 and ϕ = 0.06759063

which are based on the QML parameter estimates.

The parameter λ was estimated using (5.22). The estimated λ’s had a mean of

3.268242, a standard deviation of 0.059794 and mean estimated standard error of

0.058795 with the estimated 95% confidence intervals yielding a 94.4% empirical

coverage probability (ECP95), that is, the proportion of estimated 95% confidence

intervals (assuming normality) that contained the true λ.

The SMC procedure was run with 250, 500, 1000, 2500 and 5000 particles

allowing us to study the impact of choice in the number of particles. The results

are summarised in Tables 5.1 and 5.2. Refer to Section 3.2.1 for definitions of the

summary statistics (Mean, Bias, SD, Mean SE etc.) in these tables. As can

be seen, as the number of particles increases, Bias and SD both decrease giving an

overall reduction in RMSE.

For the first simulation study: In terms of β the QML estimates are less biased

with lower variance in comparison to the SMC with 250 and 500 particles. As

the SMC’s particles are increased to 1000, the bias becomes on par with the QML

although the variance of the estimates is still higher. As the particles increase to

2500, the SMC starts to become superior to the QML with less biased estimates

that have a lower variance. Further improvements in bias and variance are achieved

by increasing to 5000 particles. In terms of η and ϕ, even at 250 particles, a

large reduction in bias is achieved from using the SMC instead of the QML. The

variance in the QML estimates is always lower than the SMC even with 5000

particles, however even with 250 particles the SMC is a superior estimator in

terms to RMSE due to the significant biases of the QML. As can be seen in the

kernel density plots in Figure 5.4, the QML exhibits a substantial downward bias

in estimates of η and ϕ while the SMC with 5000 particles is considerably less
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biased but with slightly higher variability.

For the second simulation study: In terms of β the QML estimates are less

biased with lower variance in comparison to the SMC with 250 particles. As the

SMC’s particles are increased to 500, the bias becomes on par with the QML

although the variance of the estimates is still higher. As the particles increase

to 1000, the SMC starts to yield less biased estimates than the QML and RMSE

becomes on par. At 2500 particles, the SMC starts to become superior to the

QML with less biased estimates that have a lower variance. Further improvements

in bias and variance are achieved by increasing to 5000 particles. In terms of η

and ϕ, even at 250 particles, a large reduction in bias is achieved from using the

SMC instead of the QML. The variance in the QML estimates is always lower than

the SMC even with 5000 particles, however even with 250 particles the SMC is a

superior estimator in terms to RMSE due to the significant biases of the QML.

As can be seen in the kernel density plots in Figure 5.5, the QML again exhibits

a substantial downward bias in estimates of η and ϕ while the SMC with 5000

particles is considerably less biased but with slightly higher variability.

Regarding standard errors for the QML, Maller et al. [2008] use the inverse

of the numerical Hessian. However, as the QML does not maximise the true

likelihood, it is typically the case that a sandwich covariance estimator (see Heyde

[1997]) is required. To date, the appropriate covariance estimator for the QML

has not been developed and thus we do not provide standard error information for

this method.

Adjustment to the inverted numerical Hessian of the SMC log-likelihood func-

tion is also in theory merited for standard error estimation due to the fact that

a two-stage estimation procedure was used (see Murphy and Topel [1985]). How-

ever, given that it is generally the case and indeed exhibited here, that very precise

estimates of λ are obtained from (5.22) any impact of such adjustments would be

expected to be minimal to negligible. Thus the fields Mean SE and ECP95 in



96 Simulation studies

Tables 5.1 and 5.2 are based on the standard errors obtained from the inverted

numerical Hessian of the SMC log-likelihood function. We find that, as the number

of particles increase:

• Mean SE and SD move closer to one another, being within close proximity

of each other, for all parameters, by 5000 particles.

• ECP95 increases towards 95%, for all parameters, driven by lower bias and

variability.

ECP95 not yet reaching the 95% mark by 5000 particles could be in part due to

normality being asymptotic in the number of observations, not just particles.

Tables 5.3 and 5.4 display respectively for these first two simulation studies

the average number of function calls and gradient approximations used per BFGS

optimisation, as well as the required time to evaluate a simulated likelihood, with

an integrated R and C++ implementation, using an Intel Xeon 3.06 GHz processor.



Chapter 5. Application: Likelihood inference from discrete observation of a
COGARCH process 97

TRUE β = 1.96771E-09

QML SMC 250 SMC 500 SMC 1000 SMC 2500 SMC 5000

Mean 2.17E-09 2.36E-09 2.26E-09 2.17E-09 2.11E-09 2.07E-09

Bias 2.00E-10 3.95E-10 2.94E-10 2.02E-10 1.41E-10 1.07E-10

SD 4.18E-10 6.40E-10 5.27E-10 4.53E-10 3.81E-10 3.71E-10

RMSE 4.63E-10 7.52E-10 6.03E-10 4.96E-10 4.06E-10 3.87E-10

Mean SE NA 3.35E-10 3.45E-10 3.35E-10 3.30E-10 3.31E-10

ECP95 NA 63.40% 77.90% 85.40% 91.40% 93.30%

TRUE η = 0.24372

QML SMC 250 SMC 500 SMC 1000 SMC 2500 SMC 5000

Mean 0.1588 0.2840 0.2723 0.2630 0.2558 0.2521

Bias -0.0850 0.0403 0.0286 0.0193 0.0121 0.0084

SD 0.0223 0.0453 0.0355 0.0312 0.0277 0.0264

RMSE 0.0878 0.0606 0.0456 0.0367 0.0302 0.0277

Mean SE NA 0.0244 0.0247 0.0240 0.0237 0.0238

ECP95 NA 54.30% 72.70% 83.20% 89.60% 91.80%

TRUE ϕ = 0.200345

QML SMC 250 SMC 500 SMC 1000 SMC 2500 SMC 5000

Mean 0.1158 0.2428 0.2286 0.2186 0.2108 0.2071

Bias -0.0845 0.0425 0.0282 0.0183 0.0105 0.0068

SD 0.0174 0.0375 0.0286 0.0250 0.0228 0.0213

RMSE 0.0863 0.0566 0.0402 0.0310 0.0250 0.0224

Mean SE NA 0.0208 0.0203 0.0196 0.0193 0.0193

ECP95 NA 47.90% 68.10% 80.30% 89.20% 90.30%

Table 5.1: Simulation study 1: Even with a small number of 250 particles, max-
imising the SMC log-likelihood produces superior estimates of η and ϕ in terms of
RMSE than the QML method.
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TRUE β = 4.50E-10

QML SMC 250 SMC 500 SMC 1000 SMC 2500 SMC 5000

Mean 5.74E-10 6.64E-10 5.89E-10 5.41E-10 5.11E-10 5.11E-10

Bias 1.25E-10 2.15E-10 1.39E-10 9.11E-11 6.15E-11 6.14E-11

SD 2.05E-10 3.17E-10 2.66E-10 2.23E-10 2.04E-10 1.91E-10

RMSE 2.40E-10 3.83E-10 3.01E-10 2.41E-10 2.13E-10 2.01E-10

Mean SE NA 1.42E-10 1.51E-10 1.46E-10 1.44E-10 1.46E-10

ECP95 NA 47.30% 66.20% 81.20% 86.10% 89.80%

TRUE η = 0.07017203

QML SMC 250 SMC 500 SMC 1000 SMC 2500 SMC 5000

Mean 0.0409 0.0805 0.0772 0.0746 0.0724 0.0719

Bias -0.0292 0.0104 0.0071 0.0044 0.0023 0.0017

SD 0.0054 0.0141 0.0113 0.0094 0.0084 0.0082

RMSE 0.0297 0.0175 0.0133 0.0104 0.0087 0.0084

Mean SE NA 0.0075 0.0077 0.0075 0.0074 0.0075

ECP95 NA 58.30% 73.90% 86.00% 92.10% 92.80%

TRUE ϕ = 0.06759063

QML SMC 250 SMC 500 SMC 1000 SMC 2500 SMC 5000

Mean 0.0378 0.0777 0.0743 0.0717 0.0696 0.0689

Bias -0.0298 0.0101 0.0067 0.0041 0.0020 0.0014

SD 0.0049 0.0134 0.0106 0.0088 0.0078 0.0076

RMSE 0.0302 0.0168 0.0125 0.0097 0.0080 0.0078

Mean SE NA 0.0073 0.0074 0.0072 0.0071 0.0071

ECP95 NA 58.70% 76.10% 86.90% 92.90% 93.50%

Table 5.2: Simulation study 2: Even with a small number of 250 particles, max-
imising the SMC log-likelihood produces superior estimates of η and ϕ in terms of
RMSE than the QML method.
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Figure 5.4: Kernel density plots for simulation study 1 - QML (red) compared to
SMC (blue) with 5000 particles. The percentage bias of the mean of the QML
estimates relative to the true values, respectively for β, η and ϕ, are 10%, -35%
and -42%. The respective percentage biases obtained for the SMC estimates are
considerably lower at 5.4%, 3.4% and 3.4%.
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Figure 5.5: Kernel density plots for simulation study 2 - QML (red) compared to
SMC (blue) with 5000 particles. The percentage bias of the mean of the QML
estimates relative to the true values, respectively for β, η and ϕ, are 28%, -42%
and -44%. The respective percentage biases obtained for the SMC estimates are
considerably lower at 13.6%, 2.4% and 2.1%.

SMC 250 SMC 500 SMC 1000 SMC 2500 SMC 5000

Average number of function calls 150.02 138.13 125.77 101.49 86.17

Average number of gradient calls 18.15 17.86 17.23 36.65 13.95

Avg. time req. for one function call (secs) 2.39 4.87 9.40 23.69 48.64

Table 5.3: Simulation study 1 - Computational speed information based on an Intel
Xeon 3.06 GHz processor. Optimisation was performed using the BFGS method
implemented in R with likelihood evaluations performed in C++.
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SMC 250 SMC 500 SMC 1000 SMC 2500 SMC 5000

Average number of function calls 146.08 135.80 128.57 111.93 95.18

Average number of gradient calls 14.88 15.52 16.43 16.58 16.12

Avg. time req. for one function call (secs) 2.40 4.68 9.27 23.81 48.10

Table 5.4: Simulation study 2 - Computational speed information based on an Intel
Xeon 3.06 GHz processor. Optimisation was performed using the BFGS method
implemented in R with likelihood evaluations performed in C++.

5.6.2 Parameter set of Maller et al. [2008]

Interestingly, the QML displayed a similar downward bias in η and ϕ for the

simulation studies presented in Maller et al. [2008]. For comparison we repeat

those experiments, presenting the results in Tables 5.5 and 5.6. In both cases a

large reduction in bias is achieved using the SMC over the QML. Note that the

conditional variance formula used for the QML was misspecified in Maller et al.

[2008] and should actually be

E(Ḡ2
i |σ2

ti−1
) =

(
σ2
ti−1
− β

η − ϕ

)(1− e−(η−ϕ)∆ti

η − ϕ

)
+
β∆ti
η − ϕ

, (5.23)

this was confirmed through correspondence with two of the authors. Our QML

results have been implemented using the correct formula, which accounts for vari-

ation between the QML results presented here and those reported in Maller et al.

[2008].
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β = 1 η = 0.06 ϕ = 0.0425 λ = 1

QML SMC 1000 QML SMC 1000 QML SMC 1000

Mean 1.1622 1.1035 0.0535 0.0621 0.0334 0.0428 1.0010

Bias 0.1622 0.1035 -0.0065 0.0021 -0.0091 0.0003 0.0010

SD 0.5242 0.3888 0.0150 0.0122 0.0078 0.0074 0.0187

RMSE 0.5486 0.4023 0.0164 0.0124 0.0120 0.0074 0.0187

Mean SE NA 0.3319 NA 0.0112 NA 0.0078 0.0186

ECP95 NA 94.1% NA 95.3% NA 94.3% 94.1%

Table 5.5: Based on the equally spaced simulation study of Maller et al. [2008].
The SMC estimates are significantly less biased and have a lower variance than
the QML estimates.

β = 1.5 η = 0.085 ϕ = 0.069 λ = 1

QML SMC 1000 QML SMC 1000 QML SMC 1000

Mean 1.7048 1.6438 0.0647 0.0852 0.0477 0.0679 1.0013

Bias 0.2048 0.1438 -0.0203 0.0002 -0.0213 -0.0011 0.0013

SD 1.0212 0.7878 0.0286 0.0291 0.0188 0.0228 0.0269

RMSE 1.0416 0.8008 0.0351 0.0291 0.0284 0.0228 0.0269

Mean SE NA 0.5189 NA 0.0158 NA 0.0125 0.0267

ECP95 NA 88.3% NA 87.2% NA 87.3% 95.2%

Table 5.6: Based on the irregularly spaced simulation study of Maller et al. [2008].
The SMC estimates are significantly less biased than the QML estimates. The
variance of the QML estimates for η and ϕ are lower than those of the SMC,
however the SMC still is the superior estimator in terms to RMSE due to the
significant biases of the QML.

5.7 Concluding remarks

In conclusion, the QML, although simple to implement and fast to compute, has

been shown in a number of simulation studies to exhibit a considerable downward

bias in the parameters η and ϕ, whereas very little bias is observed in the SMC

estimates of all model parameters. The downward bias in the QML estimates of

η and ϕ are not isolated to our simulation studies and have also been observed

in the simulation studies presented in Maller et al. [2008] and Bibbona and Negri

[2015].
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The QML employs both a first jump approximation, wherein any change in the

observed process is assumed to come from one jump at the start of observation

interval; as well as a normal distribution in place of the actual conditional distri-

bution of the observed return. Which of these two approximations has the biggest

impact on bias is yet to be determined.

As the QML estimates β and the long-run variance β/(η−ϕ) reasonably well,

by underestimating η the minimum variance β/η is overestimated, while the peaks

in volatility at each jump time will be underestimated when ϕ is underestimated.

In totality, the bias in QML will imply that the estimated volatility process in

continuous time is flatter than it should be. This could having implications if one

is calibrating the COGARCH model for use in option pricing, risk management or

trading strategies.

In this chapter we have focussed on the case where the jump distribution is the

normal distribution. Extension to other jump size distributions is straightforward.

The ideas presented here could be easily adapted to the compound Poisson driven

exponential COGARCH(1,1) process of Huag and Czado [2007] and the compound

Poisson driven asymmetric COGARCH(1,1) process of Behme et al. [2014].

Observing financial phenomena at higher frequencies increases the presence of

zeroes in the data. This supports the use of a compound Poisson driver for the

increasing available high frequency financial data sets. Furthermore, any other

pure jump Lévy process can be approximated by a sequence of compound Poisson

processes.

Although the QML makes no assumptions about the form of the driving Lévy

process, in practice if one were to model under the assumption of COGARCH

dynamics, knowledge of exactly what the underlying Lévy process is, would be

required to simulate sample paths for the pricing and hedging of exotic options,

performance evaluation of trading strategies as well as forecasts required for risk

management proposes.



Chapter 6

Extension: Likelihood inference

for Markov switching

GARCH(1,1) models

6.1 Introduction

It has been argued that artificially high persistence (measured as α+ β) obtained

in empirical studies utilising the standard GARCH(1,1) specification (1.1)-(1.2)

can be avoided by allowing the GARCH parameters to evolve over time; see for

instance Dieobold [1986], Lamoureux and Lastrapes [1990] and Mikosch and Star-

ica [2004]. Indeed, studies such as Schwert [1989], Hamilton and Lin [1996] and

Perez-Quiros and Timmermann [2001] have found that stock returns possess differ-

ent characteristics during expansionary and contractionary phases of the business

cycle. Of course, the standard GARCH model with its fixed parameters can have

trouble accounting for this stylised fact.

One could somehow pre-process the underlying data set to take out the effects

of business cycles or other structural changes. However, as phenomena such as

business cycles are random in nature, the fitted model obtained after determinis-
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tically pre-processing out the effects of business cycles is not useful for forecasting

purposes unless one has in addition a mechanism to incorporate the random nature

of future business cycles.

A popular method, first utilised by Hamilton [1989], for incorporating struc-

tural changes of a random nature into a model structure, is to assume the world

can exist in one of a finite set of regimes and assume the data generating process

has the same model structure across all regimes but that each regime puts in effect

its own set of model parameters. A finite state discrete time Markov chain is then

used to model the regime evolution.

Enriching the standard GARCH specification, in the spirit of Hamilton [1989],

yields what Francq and Zakoian [2008], Bauwens et al. [2010] among others,

call the Markov-switching (MS-)GARCH model. Formally, let (Ri)i=1,...,N be an

unobserved discrete time ergodic homogeneous Markov chain on a finite space

R := {1, . . . , J} corresponding to J different regimes. Then the MS-GARCH(1,1)

is defined as the following system

Yi = σizi + µ(Ri) (6.1)

σ2
i = ω(Ri) + α(Ri)(Yi−1 − µ(Ri−1))2 + β(Ri)σ

2
i−1 (6.2)

whereby ω(Ri), α(Ri), β(Ri) and µ(Ri) are functions taking values on the re-

spective finite sets ω(R) := {ω1, . . . , ωJ} ∈ (0,∞)J , α(R) := {α1, . . . , αJ} ∈

[0,∞)J , β(R) := {β1, . . . , βJ} ∈ [0,∞)J and µ(R) := {µ1, . . . , µJ} ∈ RJ with

(zi)i=1,...,N a sequence of i.i.d zero mean, unit variance noise. Denote the J × J

transition matrix which governs the regime evolution by P with elements defined

as Pk,l = P(Ri = l|Ri−1 = k). Let πk := P(R1 = k), k = 1, . . . , J be the stationary

distribution of the regime Markov chain. It was proven in Francq et al. [2001] that
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a strictly stationary solution to (6.1)-(6.2) exists if and only if

J∑
k=1

πkE(log(αkz
2
1 + βk)) < 0. (6.3)

Therefore, for strict stationarity it need not be the case that under all regimes the

stability condition of Nelson [1990] (see (1.3)) on the GARCH parameters hold.

Thus, there is flexibility to preserve strict stationarity while allowing regimes with

unstable GARCH parameters, in the sense of persistences in excess of 1, to exist. It

was shown in Bauwens et al. [2010] that the higher the unconditional probabilities

of being in regimes with stable GARCH parameters, the higher the persistence

unstable regimes can assume whilst maintaining the condition (6.3).

As one does not observe the regimes, computation of the likelihood requires

integrating over all possible regime paths. This path dependency renders the

likelihood intractable as the number of possible paths grow exponentially with the

observation periods making maximum likelihood estimation (MLE) infeasible.

Several alternative specifications of a GARCH model incorporating Markov-

switching effects, devised with intention of preserving tractability of the likelihood

function, have been proposed. The models by Gray [1996], Dueker [1997] and

Klaassen [2002] avoid path dependency by collapsing the conditional variances in

each regime into a single variance at each time point thereby removing from the

variance evolution dependency on the full history of regimes. The model by Haas

et al. [2004] avoids path dependency by separating the GARCH dynamics from

the regime process.

Despite these alternative specifications where MLE is feasible, the specification

(6.1)-(6.2) as stated by Klaassen [2002] and Haas et al. [2004] is the most natural

application of the GARCH(1,1) model in a regime-switching context. As such,

much research, as we will summarise shortly, into estimation methods for the

specification (6.1)-(6.2), which bypass exact evaluation of the likelihood, have been

proposed. To clarify, hereafter by MS-GARCH we are referring to the specification
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(6.1)-(6.2).

A number of Bayesian Markov Chain Monte Carlo (MCMC) estimation pro-

cedures have been developed for these MS-GARCH models. This class of method

circumvent the path dependency problem by including the whole regime path in

the parameter space. The first of these procedures was developed by Bauwens

et al. [2010] which employed a Gibbs sampling algorithm to sample the regime at

each time point individually. This single-move Gibbs sampler showed slow con-

vergence, motivating the work of Bauwens et al. [2014], which develop a particle

Gibbs sampler to instead sample jointly the whole regime path history. Further re-

search into multi-move sampling techniques for Bayesian inference of MS-GARCH

models was conducted in Billio et al. [2016].

In terms of frequentist methods for this class of model, the first was developed

by Augustyniak [2014] who employed the Monte Carlo Expectation Maximisation

algorithm, simulating regimes from the single-move Gibbs sampler of Bauwens

et al. [2010]. Later, a non-simulation based frequentist approach was developed by

Augustyniak et al. [2017] based on a collapsing procedure that generalises those

of Gray [1996], Dueker [1997] and Klaassen [2002].

Other developments towards estimation are the works of Francq and Zakoian

[2008] who propose a generalised method of moments approach, Bildirici and Ersin

[2014] who utilise neural networks and Elliott et al. [2012] who propose a Viterbi

based technique for sampling the regimes.

In employing a particle filter approach, Bauwens et al. [2014] was able to ob-

tain, through simulation, an estimated likelihood function. However, particle filter

(a.k.a SMC) likelihood estimates although consistent and unbiased (cf. Del Moral

[1996]) are simulated in such a way that make them prone to being discontinuous

functions of the parameters (as explained in Section 2.2), thus inhibiting their

use in numerical optimisers, which is why Bauwens et al. [2014] proceeded with a

MCMC approach.
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The purpose of this chapter is modification of the standard SMC likelihood

estimation procedure to yield estimated likelihood surfaces that are amenable to

numerical optimisation providing a computationally feasible method for parame-

ter estimation of MS-GARCH(1,1) models through simulated maximum likelihood.

This SMC procedure adds to the class of frequentist methods developed for these

MS-GARCH(1,1) models, utilising a superior sampling mechanism through parti-

cle filtering than the single-move Gibbs sampler employed in Augustyniak [2014]

and not resorting to the auxiliary model structure used in Augustyniak et al.

[2017]. Furthermore, we illustrate the capability of this SMC approach in extend-

ing to parameter estimation of MS-GARCH(1,1) series for which one has missing

observations - a so far unexplored real world application encountered every so

often.

Organisation of this chapter is as follows. Section 6.2 describes the expo-

nentially increasing in time state space of the volatility, which results from an

unobserved regime process and renders exact calculation of the likelihood of the

MS-GARCH(1,1) model infeasible. An overview of the collapsed model structure

used by Augustyniak et al. [2017] for approximating the MS-GARCH(1,1) model

is provided in Section 6.3. Our modified SMC procedure, for parameter estimation

of MS-GARCH(1,1) models through simulated maximum likelihood is introduced

in Section 6.4. Extension of the SMC procedure to the, occasionally encountered,

although unchartered problem of parameter estimation when in addition to the un-

observed regime process one only has partial observation of the MS-GARCH(1,1)

series, is outlined in Section 6.5. Section 6.6.1 compares through simulation studies

the performance of the SMC estimation method to the estimates obtained using

the approximating model structure of Augustyniak et al. [2017]. The additional

functionality of the SMC method, as a parameter estimation method when faced

with varying degrees of missingness in the MS-GARCH(1,1) series, is tested in Sec-

tion 6.6.2. Two real world applications of the SMC method are illustrated. Section
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6.7.1 analyses the volatility of stock returns allowing for structural changes brought

about by phenomena such as changing business cycles. Section 6.7.2 studies the

volatility of natural gas spot price returns, a commodity subjected to cyclical fluc-

tuations in consumer demand and also a real world example when unscheduled

trading interruptions, such as natural disasters, result in gaps in the observation

series. The chapter closes with some concluding remarks in Section 6.8.

6.2 Likelihood

Hereafter, for ease of exposition, we restrict our discussion to the case of only

two possible regimes, although the ideas presented can be generalised to any finite

number of regimes. Denote the (unobserved) regime path up to time i as R1:i =

{R1, . . . , Ri}, the observation history up to time i as Y1:i = {Y1, . . . , Yi} (and for

notational convenience Y1:0 ≡ 0) and define the functions

hi(Y1:i−1, R1:i) = ω(Ri) + α(Ri)
(
Yi−1 − µ(Ri−1)

)2

+ β(Ri)hi−1(Y1:i−2, R1:i−1)

(6.4)

for i = 2, . . . , n with h1(0, R1) = E(σ2
1|R1). From Francq and Zakoian [2008],

E(σ2
1|R1 = r), r = 1, 2 are obtained by solving the stationary equations

1− P1,1(α1 + β1) −P2,1(α1 + β1)

−P1,2(α2 + β2) 1− P2,2(α2 + β2)


π1E(σ2

1|R1 = 1)

π2E(σ2
1|R1 = 2)

 =

P1,1ω1 P2,1ω1

P1,2ω2 P2,2ω2


π1

π2


(6.5)

whereby π1 := P2,1

P1,2+P2,1
and π2 := P1,2

P1,2+P2,1
. Given Y1:i−1, σ2

i has a discrete proba-

bility distribution with Figure 6.1 displaying (for i up to 3) how the sample space
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of possible values for σ2
i expands as i increases. At i = 1 we have

{σ2
1, R1} =


{h1(0, {1}), 1} w.p π1

{h1(0, {2}), 2} w.p π2.

(6.6)

Then at i = 2 we have

{σ2
2, R2}|Y1 =



{h2(Y1:1, {1, 1}), 1} w.p π1P1,1
p(Y1|σ2

1=h1(0,{1}),R1=1)

p(Y1)

{h2(Y1:1, {1, 2}), 2} w.p π1P1,2
p(Y1|σ2

1=h1(0,{1}),R1=1)

p(Y1)

{h2(Y1:1, {2, 1}), 1} w.p π2P2,1
p(Y1|σ2

1=h1(0,{2}),R1=2)

p(Y1)

{h2(Y1:1, {2, 2}), 2} w.p π2P2,2
p(Y1|σ2

1=h1(0,{2}),R1=2)

p(Y1)
,

(6.7)

with

p(Y1) = π1p(Y1|σ2
1 = h1(0, {1}), R1 = 1) + π2p(Y1|σ2

1 = h1(0, {2}), R1 = 2). (6.8)

For general i, there are 2i possible realisations of R1:i which we denote by

R
(k)
1:i , k = 1, . . . , 2i. These in turn, given Y1:i−1, result in 2i possible realisations

of σ2
i given by hi(Y1:i−1, R

(k)
1:i ), k = 1, . . . , 2i that occur, conditional on Y1:i−1, with

probability w
(k)
i , whereby

w
(k)
i := π

R
(k)
1
A

(k)
1 . . . A

(k)
i−1 (6.9)

A
(k)
i−1 :=P

R
(k)
i−1,R

(k)
i

p(Yi−1|σ2
i−1 = hi−1(Y1:i−2, {R(k)

1 , . . . , R
(k)
i−1}), Ri−1 = R

(k)
i−1)

p(Yi−1|Y1:i−2)

(6.10)

with R
(k)
j , j = 1, . . . , i being the j-th component of R

(k)
1:i . That is,

P(σ2
i , Ri|Y1:i−1) =

2i∑
k=1

w
(k)
i δ{hi(Y1:i−1,R

(k)
1:i }),R

(k)
i }

(σ2
i , Ri) (6.11)
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where δ{a,b} is the bivariate Dirac measure at the point (a, b). The quantity (6.11)

is a sum of size 2i. When the number of observations n is not too large, one could

compute the likelihood via

p(Y1:n) =
n∏
i=2

p(Yi|Y1:i−1)p(Y1) (6.12)

=
n∏
i=2

( ∑
σ2
i ,Ri

p(Yi|σ2
i , Ri)P(σ2

i , Ri|Y1:i−1)
)
p(Y1). (6.13)

However, in most practical situations n will be too large to evaluate (6.13) us-

ing (6.11). The next two sections detail methods of trimming, so to speak, the

branches (σ2
i , Ri) such that for all i, they never exceed 2q for some chosen q. Trim-

ming is conducted in a manner such that the resultant approximated likelihood

surfaces are amenable to numerical optimisation. The first procedure discussed is

the general collapsing procedure (GCP) of Augustyniak et al. [2017] which trims

the branches by combining pairs of branches. The second procedure is a modified

SMC approach, trimming by resampling the branches, weighting them by how

likely they would result in the given observation.
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R3 = 1,

σ2
3 = h3(Y1:2, {1, 1, 1})

R2 = 1,

σ2
2 = h2(Y1:1, {1, 1})

R3 = 2,

σ2
3 = h3(Y1:2, {1, 1, 2})

R1 = 1,

σ2
1 = h1(0, {1})

R3 = 1,

σ2
3 = h3(Y1:2, {1, 2, 1})

R2 = 2,

σ2
2 = h2(Y1:1, {1, 2})

R3 = 2,

σ2
3 = h3(Y1:2, {1, 2, 2})

R3 = 1,

σ2
3 = h3(Y1:2, {2, 1, 1})

R2 = 1,

σ2
2 = h2(Y1:1, {2, 1})

R3 = 2,

σ2
3 = h3(Y1:2, {2, 1, 2})

R1 = 2,

σ2
1 = h1(0, {2})

R3 = 1,

σ2
3 = h3(Y1:2, {2, 2, 1})

R2 = 2,

σ2
2 = h2(Y1:1, {2, 2})

R3 = 2,

σ2
3 = h3(Y1:2, {2, 2, 2})

P 1,1

P
1,2

P 2,1

P
2,2

P1,1

P
1,2

P2,1

P
2,2

P1,1

P
1,2

P2,1

P
2,2

Figure 6.1: Sample space of σ2
i |Y1:i−1 for i = 1, 2, 3.
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6.3 General collapsing procedure

The GCP of Augustyniak et al. [2017] is as follows. Assume at some time point q

we have hq(Y1:q−1, R1:q) and p(R1:q|Y1:q) for all the 2q possible realisations of R1:q.

In order to prevent an expansion of the tree to 2q+1 branches at time q + 1, the

GCP will first collapse the tree into 2q−1 branches then expand back to 2q branches

for the next time step. To this end, note that there are 2q−1 permutations of R2:q

which we will denote by R
(k)
2:q for k = 1, . . . , 2q−1. For each k = 1, . . . , 2q−1, one

then “collapses” the two realisations of R1:q that coincide with R
(k)
2:q to the following

quantity

νq(Y1:q, R
(k)
2:q ) :=

1

a
(k)
q

2∑
i=1

p(R1:q = {i, R(k)
2:q}|Y1:q)hq(Y1:q−1, {i, R(k)

2:q}) (6.14)

where a
(k)
q :=

∑2
i=1 p(R1:q = {i, R(k)

2:q}|Y1:q). The idea is then to expand the tree

back to 2q nodes (h̃q+1(Y1:q, R
(j)
2:q+1), w̃

(j)
q+1, R

(j)
2:q+1) for j = 1, . . . , 2q at the next time

step q + 1, whereby

h̃q+1(Y1:q, {R(k)
2:q , l}) := ω(l) + α(l)

(
Yq − µ(R(k)

q )
)2

+ β(l)νq(Y1:q, R
(k)
2:q ) (6.15)

b
(2(k−1)+l)
q+1 := p(Yq+1|σ2

q+1 = h̃q+1(Y1:q, {R(k)
2:q , l}), Rq+1 = l)P

R
(k)
q ,l

a(k)
q

(6.16)

w̃
(2(k−1)+l)
q+1 := b

(2(k−1)+l)
q+1 /

2q∑
j=1

b
(j)
q+1 (6.17)

R
(2(k−1)+l)
2:q+1 := {R(k)

2:q , l} (6.18)

for l = 1, 2 and k = 1, . . . , 2q−1. Then for i ∈ {q+ 2, . . . , N} one maintains a total

of 2q nodes (h̃i(Y1:i−1, R
(j)
i+1−q:i), w̃

(j)
i , R

(j)
i+1−q:i), j = 1, . . . , 2q for each time point i,

by collapsing the 2q nodes at the previous time point i − 1 to the 2q−1 auxiliary
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nodes (νi−1(Y1:i−1, R
(k)
i+1−q:i−1), a

(k)
i−1), k = 1, . . . , 2q−1 whereby

νi−1(Y1:i−1, R
(k)
i+1−q:i−1) :=

1

a
(k)
i−1

2q∑
j=1

(
h̃i−1(Y1:i−2, R

(j)
i−q:i−1)

× w̃(j)
i−1I(R

(j)
i+1−q:i−1 = R

(k)
i+1−q:i−1)

) (6.19)

a
(k)
i−1 :=

2q∑
j=1

w̃
(j)
i−1I(R

(j)
i+1−q:i−1 = R

(k)
i+1−q:i−1) (6.20)

Then expanding these auxiliary nodes to obtain h̃i(Y1:i−1, R
(j)
i+1−q:i) and w̃

(j)
i for

j = 1, . . . , 2q using (with i − 1 in place of q and R
(k)
i+1−q:i−1 in place of R

(k)
2:q ) the

equations (6.15)-(6.17). Furthermore, R
(2(j−1)+l)
i+1−q:i = {R(j)

i+1−q:i−1, l} for l = 1, 2 and

j = 1, . . . , 2q−1.

Formally, the GCP model structure is as follows

Ỹi = σ̃izi + µ(Ri) (6.21)

σ̃2
i =


hi(Ỹ1:i−1, R1:i) for i = 1, . . . , q

h̃i(Ỹ1:i−1, Ri+1−q:i) for i = q + 1, . . . , N.

(6.22)

Up to time q the GCP follows the MS-GARCH model structure, thereafter it

follows the collapsed model structure. An illustration of the GCP for q = 3 is

provided in Figure 6.2. The GCP generalises the collapsing procedures of Dueker

[1997] and Klaassen [2002] which correspond to the GCP when q = 2 and q = 1

respectively.

The log-likelihood of the collapsed model is

log(L(Ỹ1:N)) =

q∑
i=1

log
( 2i∑
j=1

p(Ỹi|Ỹ1:i−1, R1:i = R
(j)
1:i )p(R1:i = R

(j)
1:i |Ỹ1:i−1)

)
+

N∑
i=q+1

log(
2q∑
j=1

b
(j)
i ).

(6.23)
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R3 = 1,

σ̃2
3 = h3(Y1:2, {1, 1, 1}) =: σ̃

2(1)
3 ,

p(R1:3 = {1, 1, 1}|Y1:3) =: w̃
(1)
3

R2:4 = {1, 1, 1},

σ̃2
4 = h̃4(Y1:3, {R(1)

2:3, 1}) =: σ̃
2(1)
4 ,

b
(1)
4 := p(Y4|σ̃2

4 = σ̃
2(1)
4 , R4 = 1)P1,1a

(1)
3 ,

w̃
(1)
4 := b

(1)
4 /

∑8
i=1 b

(i)
4

R2 = 1

R
(1)
2:3 = {1, 1},

ν3(Y1:3, R
(1)
2:3) := (w̃

(1)
3 σ̃

2(1)
3 + w̃

(5)
3 σ̃

2(5)
3 )/a

(1)
3 ,

a
(1)
3 := w̃

(1)
3 + w̃

(5)
3

R3 = 2,

σ̃2
3 = h3(Y1:2, {1, 1, 2}) =: σ̃

2(2)
3 ,

p(R1:3 = {1, 1, 2}|Y1:3) =: w̃
(2)
3

R2:4 = {1, 1, 2},

σ̃2
4 = h̃4(Y1:3, {R(1)

2:3, 2})) =: σ̃
2(2)
4 ,

b
(2)
4 := p(Y4|σ̃2

4 = σ̃
2(2)
4 , R4 = 2)P1,2a

(1)
3 ,

w̃
(2)
4 := b

(2)
4 /

∑8
i=1 b

(i)
4

R1 = 1

R3 = 1,

σ̃2
3 = h3(Y1:2, {1, 2, 1}) =: σ̃

2(3)
3 ,

p(R1:3 = {1, 2, 1}|Y1:3) =: w̃
(3)
3

R2:4 = {1, 2, 1},

σ̃2
4 = h̃4(Y1:3, {R(2)

2:3, 1}) =: σ̃
2(3)
4 ,

b
(3)
4 := p(Y4|σ̃2

4 = σ̃
2(3)
4 , R4 = 1)P2,1a

(2)
3 ,

w̃
(3)
4 := b

(3)
4 /

∑8
i=1 b

(i)
4

R2 = 2

R
(2)
2:3 = {1, 2},

ν3(Y1:3, R
(2)
2:3) := (w̃

(2)
3 σ̃

2(2)
3 + w̃

(6)
3 σ̃

2(6)
3 )/a

(2)
3 ,

a
(2)
3 := w̃
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3 + w̃

(6)
3

R3 = 2,

σ̃2
3 = h3(Y1:2, {1, 2, 2}) =: σ̃

2(4)
3 ,

p(R1:3 = {1, 2, 2}|Y1:3) =: w̃
(4)
3

R2:4 = {1, 2, 2},

σ̃2
4 = h̃4(Y1:3, {R(2)

2:3, 2}) =: σ̃
2(4)
4 ,

b
(4)
4 := p(Y4|σ̃2

4 = σ̃
2(4)
4 , R4 = 2)P2,2a

(2)
3 ,

w̃
(4)
4 := b

(4)
4 /

∑8
i=1 b

(i)
4

R3 = 1,

σ̃2
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2(5)
3 ,
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(5)
3
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σ̃2
4 = h̃4(Y1:3, {R(3)

2:3, 1}) =: σ̃
2(5)
4 ,

b
(5)
4 := p(Y4|σ̃2

4 = σ̃
2(5)
4 , R4 = 1)P1,1a

(3)
3 ,

w̃
(5)
4 := b

(5)
4 /

∑8
i=1 b

(i)
4

R2 = 1

R
(3)
2:3 = {2, 1},

ν3(Y1:3, R
(3)
2:3) := (w̃

(3)
3 σ̃
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(7)
3 σ̃
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3 )/a

(3)
3 ,

a
(3)
3 := w̃

(3)
3 + w̃

(7)
3

R3 = 2,

σ̃2
3 = h3(Y1:2, {2, 1, 2}) =: σ̃

2(6)
3 ,

p(R1:3 = {2, 1, 2}|Y1:3) =: w̃
(6)
3

R2:4 = {2, 1, 2},

σ̃2
4 = h̃4(Y1:3, {R(3)

2:3, 2}) =: σ̃
2(6)
4 ,

b
(6)
4 := p(Y4|σ̃2

4 = σ̃
2(6)
4 , R4 = 2)P1,2a

(3)
3 ,

w̃
(6)
4 := b

(6)
4 /

∑8
i=1 b

(i)
4
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3
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3 ,
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(7)
4 /
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4
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4 /
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4

Figure 6.2: Illustration of the general collapsing procedure for q = 3.
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Augustyniak et al. [2017] proposes obtaining parameter estimates by assuming

the MS-GARCH observations Y1:N come from the collapsed model (6.21)-(6.22)

and maximising (6.23). It was reasoned in Augustyniak et al. [2017] that (6.23) is

a continuous function of the model parameters.

6.4 Modified SMC approach

The SMC approach we propose is as follows. Calculate the likelihood exactly up

to time q. Then at time q we note that we have the exact quantities

P(Rq = r|Y1:q) =

∑2q−1

j=1 p(Yq|σ2
q = σ

2(j)
q,r , Rq = r)P(R1:q = {R(j)

1:q−1, r}|Y1:q−1)∑2
s=1

∑2q−1

j=1 p(Yq|σ2
q = σ

2(j)
q,s , Rq = s)P(R1:q = {R(j)

1:q−1, s}|Y1:q−1)
,

(6.24)

P(σ2
q |Y1:q, Rq = r) =

2q−1∑
j=1

w(j)
q,rδ{σ2(j)

q,r }
(σ2

q ) (6.25)

for each r = 1, 2, where

w(j)
q,r :=

p(Yq|σ2
q = σ

2(j)
q,r , Rq = r)P(R1:q = {R(j)

1:q−1, r}|Y1:q−1)∑2q−1

k=1 p(Yq|σ2
q = σ

2(k)
q,r , Rq = r)P(R1:q = {R(k)

1:q−1, r}|Y1:q−1)
, (6.26)

σ2(j)
q,r = hq(Y1:q−1, {R(j)

1:q−1, r}) (6.27)

for j = 1, . . . , 2q−1. The idea going forward is to approximate P(σ2
i+1, Ri+1|Y1:i),

i = q, . . . , N − 1, for which the pair (σ2
i+1, Ri+1) can take on 2i+1 possible values

by an approximate measure P̂(σ2
i+1, Ri+1|Y1:i) for which (σ2

i+1, Ri+1) is restricted

to 2q possible values, denote these by (σ
2(j)
i+1 , R

(j)
i+1), j = 1, . . . , 2q. Essentially we

trim the tree so to speak, never allowing the possible branch nodes (σ2
i+1, Ri+1),

i = q, . . . , N − 1, to exceed 2q. This is achieved using resampling ideas from

SMC. Then from these P̂(σ2
i+1, Ri+1|Y1:i) we will obtain the approximate likelihood
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components p̂(Yi+1|Y1:i) via

p(Yi+1|Y1:i) =
∑

σ2
i+1,Ri+1

p(Yi+1|σ2
i+1, Ri+1)P(σ2

i+1, Ri+1|Y1:i) (6.28)

≈
2q∑
j=1

(
p(Yi+1|σ2

i+1 = σ
2(j)
i+1 , Ri+1 = R

(j)
i+1)

× P̂(σ2
i+1 = σ

2(j)
i+1 , Ri+1 = R

(j)
i+1|Y1:i)

) (6.29)

=: p̂(Yi+1|Y1:i). (6.30)

Now, note that

P(σ2
i+1, Ri+1|Y1:i) =

∑
σ2
i ,Ri

P(σ2
i+1, Ri+1|σ2

i , Ri, Yi)P(σ2
i , Ri|Y1:i) (6.31)

P(σ2
i+1, Ri+1|σ2

i , Ri, Yi) =


(
h(Yi, σ

2
i , Ri, 1), 1

)
w.p PRi,1(

h(Yi, σ
2
i , Ri, 2), 2

)
w.p PRi,2 = 1− PRi,1,

(6.32)

where h(y, σ2, r, k) := ωk+αk(y−µr)2 +βkσ
2. Thus to obtain P̂(σ2

i+1, Ri+1|Y1:i) for

which the couple (σ2
i+1, Ri+1) is restricted to 2q possible values, due to the regime

branching mechanism (6.32), one can first obtain P̂(σ2
i , Ri|Y1:i) for which (σ2

i , Ri)

is restricted to 2q−1 possible values, then replace P(σ2
i , Ri|Y1:i) with P̂(σ2

i , Ri|Y1:i)

in (6.31) to obtain the required P̂(σ2
i+1, Ri+1|Y1:i). We begin at the first step i = q

and discuss several ways P̂(σ2
q , Rq|Y1:q) could be obtained.

• The first is to resample K = 2q−1 unique pairs of (σ2
q , Rq) from the discrete

distribution

P(σ2
q , Rq|Y1:q) =

2∑
r=1

(
P(Rq = r|Y1:q)

2q−1∑
j=1

w(j)
q,rδ{σ2(j)

q,r ,r}
(σ2

q , Rq)
)
. (6.33)

This however, is the bootstrap resampling of Gordon et al. [1993] for which

we have explained (see Section 2.2) produces SMC likelihood surfaces not

amenable to numerical optimisers. The continuous resampling procedure of
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Pitt and Malik [2011] cannot be applied to resample the pair (σ2
q , Rq).

• The second is to resample K1 = bKP(Rq = 1|Y1:q)c (b.c being the floor

function) draws of σ2
q from a continuous approximation to P(σ2

q |Y1:q, Rq = 1)

and then K2 = K − K1 draws of σ2
q from a continuous approximation to

P(σ2
q |Y1:q, Rq = 2). However, K1 and K2 via P(Rq|Y1:q) are dependent on θ

and drastically different σ2
q could be drawn by switching drawing from one

P(σ2
q |Y1:q, Rq) to the other under a small parameter change, again resulting

in discontinuities of the approximated likelihood.

• The third is to proceed as in the second, except, to prevent K1 and K2

changing across parameter changes, setting K1 = K2 = K/2. Eliminating

the source of discontinuity of the second procedure, this third procedure is

conducive in providing continuous SMC likelihood surfaces.

Proceeding as per the third procedure, initialise

P̂(σ2
q |Y1:q, Rq) = P(σ2

q |Y1:q, Rq) (6.34)

P̂(Rq|Y1:q) = P(Rq|Y1:q) (6.35)

and we detail how to proceed from P̂(σ2
i |Y1:i, Ri) and P̂(Ri|Y1:i), i = q, . . . , N − 1

to the next P̂(σ2
i+1|Y1:i+1, Ri+1) and P̂(Ri+1|Y1:i+1) obtaining along the way the

required P̂(σ2
i , Ri|Y1:i). To begin, for each r = 1, 2 draw σ2

i , K/2 = 2q−2 times

from the continuous approximation1 to the discrete distribution P̂(σ2
i |Y1:i, Ri =

r), denote these draws by σ̂
2(j)
i,r , j = 1, . . . , 2q−2. Then construct the empirical

distribution

P̂(σ2
i , Ri|Y1:i) =

2∑
r=1

( P̂(Ri = r|Y1:i)

K/2

2q−2∑
j=1

δ{σ̂2(j)
i,r ,r}(σ

2
q , Rq)

)
, (6.36)

1Details of how to construct this continuous approximation are provided later in Section
6.4.1.
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for which replacing P(σ2
i , Ri|Y1:i) with (6.36) in (6.31) and using (6.32) we arrive

at

P̂(σ2
i+1, Ri+1 = r|Y1:i) =

2q−1∑
j=1

w̄
(j)
i+1,rδ{σ2(j)

i+1,r,r}
(σ2

i+1, Ri+1), (6.37)

for r = 1, 2, whereby

w̄
(j)
i+1,r =


P1,rP̂(Ri = 1|Y1:i)(2/K) for j = 1, . . . , 2q−2

P2,rP̂(Ri = 2|Y1:i)(2/K) for j = 2q−2 + 1, . . . , 2q−1

(6.38)

σ
2(j)
i+1,r =


h(Yi, σ̂

2(j)
i,1 , 1, r) for j = 1, . . . , 2q−2

h(Yi, σ̂
2(j−2q−2)
i,2 , 2, r) for j = 2q−2 + 1, . . . , 2q−1.

(6.39)

From (6.29) and (6.37) we then obtain the approximated likelihood component

p̂(Yi+1|Y1:i) =
2∑
r=1

2q−1∑
j=1

w̄
(j)
i+1,rp(Yi+1|σ2

i+1 = σ
2(j)
i+1,r, Ri+1 = r). (6.40)

Next, using (6.37) and (6.40) we obtain P̂(σ2
i+1, Ri+1 = r|Y1:i+1) via

P(σ2
i+1, Ri+1 = r|Y1:i+1) =

p(Yi+1|σ2
i+1, Ri+1)P(σ2

i+1, Ri+1 = r|Y1:i)

p(Yi+1|Y1:i)
(6.41)

≈
p(Yi+1|σ2

i+1, Ri+1)P̂(σ2
i+1, Ri+1 = r|Y1:i)

p̂(Yi+1|Y1:i)
(6.42)

=
2q−1∑
j=1

ẁ
(j)
i+1,rδ{σ2(j)

i+1,r,r}
(σ2

i+1, Ri+1) (6.43)

:= P̂(σ2
i+1, Ri+1 = r|Y1:i+1) (6.44)

where

ẁ
(j)
i+1,r =

w̄
(j)
i+1,rp(Yi+1|σ2

i+1 = σ
2(j)
i+1,r, Ri+1 = r)∑2

s=1

∑2q−1

k=1 w̄
(k)
i+1,sp(Yi+1|σ2

i+1 = σ
2(k)
i+1,s, Ri+1 = s)

. (6.45)
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Furthermore,

P(Ri+1 = r|Y1:i+1) =
∑
σ2
i+1

P(σ2
i+1, Ri+1 = r|Y1:i+1) (6.46)

≈
∑
σ2
i+1

P̂(σ2
i+1, Ri+1 = r|Y1:i+1) (6.47)

=
2q−1∑
j=1

ẁ
(j)
i+1,r =: P̂(Ri+1 = r|Y1:i+1) (6.48)

P̂(σ2
i+1|Y1:i+1, Ri+1 = r) :=

P̂(σ2
i+1, Ri+1 = r|Y1:i+1)

P̂(Ri+1 = r|Y1:i+1)
(6.49)

=
2q−1∑
j=1

ŵ
(j)
i+1,rδ{σ2(j)

i+1,r}
(σ2

i+1). (6.50)

where

ŵ
(j)
i+1,r := ẁ

(j)
i+1,r/

2q−1∑
k=1

ẁ
(j)
i+1,r, j = 1, . . . , 2q−1. (6.51)

The required quantities P̂(Ri+1|Y1:i+1) and P̂(σ2
i+1|Y1:i+1, Ri+1) to repeat the

process for the next time step i + 1 have been provided. After iterating through

to the last time point, the SMC likelihood approximation is then given by

L̂(Y1:N) = p(Y1:q)
N−1∏
i=q

p̂(Yi+1|Y1:i). (6.52)

6.4.1 Continuous approximation to P̂(σ2
i |Y1:i, Ri)

The above steps required resampling from continuous approximations to the dis-

crete distributions

P̂(σ2
i |Y1:i, Ri = r) =


P(σ2

q |Y1:q, Rq = r) =
∑2q−1

j=1 w
(j)
q,rδ{σ2(j)

q,r }
(σ2

q ) ,i = q∑2q−1

j=1 ŵ
(j)
i,r δ{σ2(j)

i,r }
(σ2

i ) ,i = q + 1 . . . , N − 1.

(6.53)
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We detail here how these continuous approximations, for smooth SMC likelihoods,

are constructed. For i = q the weights w
(j)
q,r , see (6.26), for a given r are in

addition to σ2
q also functions of R1:i−1. Thus, as explained in Section 4.1 we need

to smooth the weights w
(j)
q,r such that σ

2(j)
q,r that are close together have weights close

in magnitude before application of the procedure from Pitt and Malik [2011]. The

kernel smoothing approach of Section 4.1 achieves this. Proceeding, we calculate

ẇ(j)
q,r =

∑2q−1

k=1 w
(j)
q,rφ
(

(σ
2(k)
q,r − σ2(j)

q,r )/h
)

∑2q−1

k=1 φ
(

(σ
2(k)
q,r − σ2(j)

q,r )/h
) (6.54)

ẅ(j)
q,r =

ẇ
(j)
q,r∑2q−1

k=1 ẇ
(k)
q,r

for j = 1, . . . , 2q−1, (6.55)

where φ(.) is the standard Gaussian density and h = c/2q−1 for a very small

number c. One then can proceed by means of Pitt and Malik [2011], see Section

2.3, to obtain a continuous approximation to

P̈(σ2
q ≤ x|Y1:q, Rq = r) =

2q−1∑
j=1

ẅ(j)
q,rI(σ2(j)

q,r ≤ x) (6.56)

to continuously resample the σ2
q , in a manner conducive with smooth SMC likeli-

hoods.

Now, in the case of i = q + 1, . . . , N − 1 note that the weights ŵ
(j)
i,r , see (6.51),

(6.45) and (6.38) are functions of σ2
i and Ri−1. Taking advantage of the fact that

Ri−1 can take on only two possible values, a computationally cheaper operation

than kernel smoothing is available. Note that from (6.51), (6.45) and (6.38) the

weights ŵ
(j)
i,r , j = 1, . . . , 2q−2 correspond to Ri−1 = 1 and differ only through σ

2(j)
i,r ,

whereby the variation in ŵ
(j)
i,r is continuous in σ

2(j)
i,r , that is if σ

2(k)
i,r and σ

2(l)
i,r for

some k, l = 1, . . . , 2q−2 are close in proximity, so too are their respective weights

ŵ
(k)
i,r and ŵ

(l)
i,r. Likewise, the weights ŵ

(j)
i,r , j = 2q−2 + 1, . . . , 2q−1 which correspond

to Ri−1 = 2 possess the same attribute.

Thus one can continuously approximate the individual quantities A(x) :=
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∑2q−2

j=1 ŵ
(j)
i,r I(σ

2(j)
i,r ≤ x) and B(x) :=

∑2q−2

j=1 ŵ
(j+2q−2)
i,r I(σ2(j+2q−2)

i,r ≤ x), then com-

bine both continuous approximations, keeping in mind that the sum of continuous

functions is also a continuous function.

Sort (σ
2(j)
i,r , ŵ

(j)
i,r ), j = 1, . . . , 2q−2 in ascending order by first element and denote

the sorted series by (σ
2(j)
i,r,1, ŵ

(j)
i,r,1), j = 1, . . . , 2q−2 and also sort (σ

2(j+2q−2)
i,r , ŵ

(j+2q−2)
i,r ),

j = 1, . . . , 2q−2 in ascending order by first element and denote the sorted series by

(σ
2(j)
i,r,2, ŵ

(j)
i,r,2), j = 1, . . . , 2q−2. The continuous approximations to A(x) and B(x)

are given respectively by

Ā(x) := γ0,1I(x ≥ σ
2(1)
i,r,1) +

K−1∑
k=1

γk,1H
( x− σ2(k)

i,r,1

σ
2(k+1)
i,r,1 − σ2(k)

i,r,1

)
+ γK,1I(x ≥ σ

2(K)
i,r,1 ) (6.57)

B̄(x) := γ0,2I(x ≥ σ
2(1)
i,r,2) +

K−1∑
k=1

γk,2H
( x− σ2(k)

i,r,2

σ
2(k+1)
i,r,2 − σ2(k)

i,r,2

)
+ γK,2I(x ≥ σ

2(K)
i,r,2 ) (6.58)

where K = 2q−2, γ0,s = w
(1)
i,r,s/2, γK,s = w

(K)
i,r,s/2, s = 1, 2 and γk,s = (w

(k+1)
i,r,s +

w
(k)
i,r,s)/2 k = 1, . . . K − 1, s = 1, 2 with H(z) := max

(
0,min(z, 1)

)
. Now, the

quantity C̄(x) = Ā(x) + B̄(x) will have four point masses at x = σ
2(1)
i,r,1, σ

2(1)
i,r,2, σ

2(K)
i,r,1

and σ
2(K)
i,r,2 . Based on the Pitt and Malik [2011] procedure the two point masses at

σ
2(1)
min := min(σ

2(1)
i,r,1, σ

2(1)
i,r,2) and σ

2(K)
max := max(σ

2(K)
i,r,1 , σ

2(K)
i,r,2 ) are admissible, however

the two point masses at σ
2(1)
max := max(σ

2(1)
i,r,1, σ

2(1)
i,r,2) and σ

2(K)
min := min(σ

2(K)
i,r,1 , σ

2(K)
i,r,2 )

may be problematic for smooth SMC likelihoods. Note that Ā−1(u) is continuous in

the interval [0,
∑2q−2

j=1 w
(j)
i,r,1] and B̄−1(u) is continuous in the interval [0,

∑2q−2

j=1 w
(j)
i,r,2].

In the event σ
2(1)
max ≤ σ

2(K)
min it can be seen that C̄−1(u) is continuous in the interval

[0, 1], thus the point masses of C̄(x) at x = σ
2(1)
max and σ

2(K)
min are admissible under

these circumstances. However, in the event σ
2(1)
max > σ

2(K)
min , then C̄−1(u) is not

continuous in the interval [0, 1], (see Figure 6.3) having a single discontinuity at

u =


∑2q−2

j=1 w
(j)
i,r,1 if σ

2(K)
i,r,1 < σ

2(1)
i,r,2∑2q−2

j=1 w
(j)
i,r,2 if σ

2(K)
i,r,2 < σ

2(1)
i,r,1

(6.59)
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leading to the same problem associated with resampling according to a discrete

CDF. Thus, a continuous approximation for resampling σ2
i , conducive for smooth

SMC likelihoods, is

P̄(σ2
i ≤ x|Y1:i, Ri = r) := C̄(x) +D(x) (6.60)

D(x) =



0, if σ
2(1)
max ≤ σ

2(K)
min

(γK,1 + γ0,2)H
( x− σ2(K)

min

σ
2(1)
max − σ2(K)

min

)
− γK,1I(x ≥ σ

2(K)
i,r,1 )− γ0,2I(x ≥ σ

2(1)
i,r,2),

if σ
2(K)
i,r,1 < σ

2(1)
i,r,2

(γK,2 + γ0,1)H
( x− σ2(K)

min

σ
2(1)
max − σ2(K)

min

)
− γK,2I(x ≥ σ

2(K)
i,r,2 )− γ0,1I(x ≥ σ

2(1)
i,r,1).

if σ
2(K)
i,r,2 < σ

2(1)
i,r,1

(6.61)

Resampling K values of σ2
i from (6.60) can be done in proportionate to K oper-

ations. Furthermore, we avoid the (proportionate to) K2 overhead computational

cost1 that would have resulted if we had simply kernel smoothed the weights.

1While, see Remark 4.1.1.1, approximately kernel smoothing through truncation of the den-
sities φ() can deliver almost linear in K computation times, proceeding by means of (6.60) is
still slightly more computationally efficient.
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Figure 6.3: For the two top plots, the dashed red line construct is the continuous
approximation Ā(x) to the solid red line function A(x) and the dashed blue line
construct is the continuous approximation B̄(x) to the solid blue line function

B(x). The top left plot corresponds to the case when σ
2(1)
max ≤ σ

2(K)
min and the bottom

left plot is the resultant C̄(x), for which C̄−1(u) can be seen to be continuous in

the interval [0, 1]. The top right plot corresponds to the case when σ
2(1)
max > σ

2(K)
min

and the bottom right plot is the resultant C̄(x), for which C̄−1(u) can be seen to
exhibit a singular discontinuity in the interval [0, 1].

6.5 Extension to the case of missing observations

Now, assume that we do not observe the full MS-GARCH series Y1:N , we only have

n < N observations taken on an increasing set of times 1 = t1 < . . . < tn = N , such

that ti ∈ {2, . . . , N − 1} for i = 2, . . . , n − 1. One can adapt the SMC procedure

from the previous section for parameter estimation of the partially observed MS-

GARCH series Yt1:tn = {Yt1 , . . . , Ytn}.
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Figure 6.4 displays SMC approximated likelihood profile plots, using the stan-

dard bootstrap resampler, for a simulated MS-GARCH(1,1) series with N = 2000

and n = 1600, that is only 80% of the series is (randomly) observed. As can

be seen, the approximated likelihood surface produced using SMC with the stan-

dard bootstrap resampling mechanism is profoundly discontinuous (even fixing

randomness across parameter changes). On the other hand, Figure 6.5 displays

the approximated likelihood profile plots of the same MS-GARCH(1,1) simulated

data set using the modified resampling procedure we will detail in this section.

While, for reasons to be clear shortly, the procedure we describe is not guaranteed

to be continuous in the transition probability parameters P1,2 and P2,1, there is

undeniably a vast improvement in smoothness in Figure 6.5 over Figure 6.4, to the

extent of appearing adequately smooth for use with numerical optimisers. Indeed,

as will be seen in the simulation studies of Section 6.6.2, this procedure we propose

proves itself to be a computationally feasible and accurate method for parameter

estimation of MS-GARCH(1,1) series in the presence of missing observations.

We now proceed to detail the procedure. Start by assuming that at time step

i one has at hand the following quantities

P̃(σ2
ti+1|Yt1:ti , Rti+1 = r) =

2q−1∑
k=1

v
(k)
i,r δ{σ2(k)

ti+1,r}
(σ2

ti+1) and P̂(Rti+1|Yt1:ti) (6.62)

for which v
(k)
i,r , σ

2(k)
ti+1,r, r = 1, 2, k = 1, . . . , 2q−1 and P̂(Rti+1|Yt1:ti), are determined

recursively from the previous time step i − 1 and their derivation revealed as we

proceed to obtain v
(k)
i+1,r, σ

2(k)
ti+1+1,r, r = 1, 2, k = 1, . . . , 2q−1 and P̂(Rti+1+1|Yt1:ti+1

),

required to repeat the procedure at the next time step. Proceeding, for each

r = 1, 2 draw 2q−2 values of σ2
ti+1 from a continuous approximation (details given

shortly) to the discrete distribution P̃(σ2
ti+1|Yt1:ti , Rti+1 = r). Denote these draws



Chapter 6. Extension: Likelihood inference for Markov switching GARCH(1,1)
models 125

by σ̂
2(k)
ti+1,r, k = 1, . . . , 2q−2, r = 1, 2 and construct

P̂(σ2
ti+1|Yt1:ti , Rti+1 = r) =

1

2q−2

2q−2∑
k=1

δ{σ̂2(k)
ti+1,r}

(σ2
ti+1). (6.63)

In the case ti+1 = ti + 1, set σ̂
2(k)
ti+1,r = σ̂

2(k)
ti+1,r and R

(k,r)
ti+1

= r for k = 1, . . . , 2q−2, r =

1, 2. However, in the case ni+1 := ti+1 − ti > 1, we require simulation to move

from (σ2
ti+1, Rti+1) to (σ2

ti+1
, Rti+1

). To this end, for each r = 1, 2 simulate 2q−2

regime trajectories Rti+2, . . . , Rti+1
given Rti+1 = r, denote these R

(k,r)
ti+2:ti+1

:=

{R(k,r)
ti+2 , . . . , R

(k,r)
ti+1
}, k = 1, . . . , 2q−2, along with 2q−2 sets of ni+1 − 1 innovations

z
(k,r)
ti+1:ti+1−1 := {z(k,r)

ti+1 , . . . , z
(k,r)
ti+1−1}. Given σ̂

2(k)
ti+1,r, R

(k,r)
ti+2:ti+1

, Rti+1 = r and z
(k,r)
ti+1:ti+1−1

obtain σ̂
2(k)
ti+1,r recursively from

σ̂
2(k)
ti+1+j,r = h(

√
(z

(k,r)
ti+j

)2σ̂
2(k)
ti+j,r

, σ̂
2(k)
ti+j,r

, R
(k,r)
ti+j

, R
(k,r)
ti+1+j) (6.64)

for j = 1, . . . , ni − 1, where R
(k,r)
ti+1 = r. We then construct

P̂(σ2
ti+1

, Rti+1
|Yt1:ti) =

2∑
r=1

P̂(Rti+1 = r|Yt1:ti)
1

2q−2

2q−2∑
k=1

δ
σ̂

2(k)
ti+1,r

,R
(k,r)
ti+1

(σ2
ti+1

, Rti+1
)

(6.65)

and yield the approximate likelihood component

p̂(Yti+1
|Yt1:ti) =

2∑
r=1

(
P̂(Rti+1 = r|Yt1:ti)

1

2q−2

×
2q−2∑
k=1

p(Yti+1
|σ2
ti+1

= σ̂
2(k)
ti+1,r, Rti+1

= R
(k,r)
ti+1

)

)
.

(6.66)
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Then from (6.32) and

P(σ2
ti+1+1|Yt1:ti+1

, Rti+1+1) =

∫
σ2
ti+1

,Rti+1

(
P(σ2

ti+1+1, Rti+1+1|σ2
ti+1

, Rti+1
, Yti+1

)

×
p(Yti+1

|σ2
ti+1

, Rti+1
)P(σ2

ti+1
, Rti+1

|Yt1:ti)

P(Rti+1+1|Yt1:ti+1
)p(Yti+1

|Yt1:ti)

)
(6.67)

we arrived at

P̃(σ2
ti+1+1|Yt1:ti+1

, Rti+1+1 = r) =
2q−1∑
k=1

v
(k)
i+1,rδ{σ2(k)

ti+1+1,r}
(σ2

ti+1+1) (6.68)

whereby

v
(k)
i+1,r =



p(Yti+1
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(k,1)
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×
P
R

(k,1)
ti+1

,r
P̂(Rti+1 = 1|Yt1:ti)
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)
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|σ2
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2(k−2q−2)
ti+1,2

, Rti+1
= R

(k−2q−2,2)
ti+1
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|Yt1:ti)

×
P
R

(k−2q−2,2)
ti+1

,r
P̂(Rti+1 = 2|Yt1:ti)
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)

for k = 2q−2 + 1, . . . , 2q−1

(6.69)

σ
2(k)
ti+1+1,r =


h(Yti+1

, σ̂
2(k)
ti+1,1

, R
(k,1)
ti+1

, r) for k = 1, . . . , 2q−2

h(Yti+1
, σ̂

2(k−2q−2)
ti+1,2

, R
(k−2q−2,2)
ti+1

, r) for k = 2q−2 + 1, . . . , 2q−1

(6.70)

for which

P̂(Rti+1+1 = r|Yt1:ti+1
) =

2∑
s=1

(
P̂(Rti+1 = s|Yt1:ti)

2q−2p̂(Yti+1
|Yt1:ti)

×
2q−2∑
k=1

P
R
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,r
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|σ2
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= σ̂
2(k)
ti+1,r, Rti+1

= R
(k,s)
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)

)
.

(6.71)
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The required quantities P̃(σ2
ti+1+1|Yt1:ti+1

, Rti+1+1) and P̂(Rti+1+1|Yt1:ti+1
) to repeat

the process for the next time step have been provided.

Now, the reason why this procedure is not guaranteed to be continuous in the

transition probability parameters P1,2 and P2,1 is that, unlike z
(k,r)
ti+1:ti+1−1 which are

invariant across parameter changes, the noise components R
(k,r)
ti+2:ti+1

vary as either

P1,2 or P2,1 change.

The weights v
(k)
i+1,r, see (6.69), in addition to σ2

ti+1
have components that differ

by Rti+1 and Rti+1
. Note that by design the component Rti+1 is invariant across

parameter changes. However, as mentioned, the component Rti+1
can vary as

either P1,2 or P2,1 change. Despite this, sufficiently smooth likelihood surfaces for

numerical optimisation (as confirmed in the simulation studies of Section 6.6.2)

are able to be obtained from approximating a continuous version to the discrete

P̃(σ2
ti+1+1|Yt1:ti+1

, Rti+1+1) by partitioning by Rti+1 into two step-wise functions and

proceeding in the manner (6.60) was obtained.
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Figure 6.4: SMC approximated likelihood profile plots, using bootstrap resam-
pling, for a partially observed MS-GARCH(1,1) series (N = 2000 with 20% of
observations missing). The true parameters are indicated by the red vertical lines.
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Figure 6.5: SMC approximated likelihood profile plots, using the resampling mech-
anism presented in this section, for a partially observed MS-GARCH(1,1) series
(same data set as Figure 6.4). The true parameters are indicated by the red vertical
lines.
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6.6 Simulation studies

6.6.1 Full Y observation series

We simulate 1000 data sets of 1500 observations of a two regime MS-GARCH(1,1)

series with standard normal innovations, with true parameters ω1 = 0.3, α1 = 0.35,

β1 = 0.2, ω2 = 2, α2 = 0.1, β2 = 0.6, P1,2 = 0.02, P2,1 = 0.04, µ1 = 0.06 and

µ2 = −0.09. This parameter set, inspired by empirical studies, was employed by

Bauwens et al. [2010] for testing their Bayesian MCMC algorithm. Parameter

estimates obtained utilising the SMC procedure and GCP approximation on these

1000 data sets are summarised respectively in Tables 6.1 and 6.2. Refer to Section

3.2.1 for definitions of the summary statistics (Mean, Bias etc.) in these tables.

Some points about these tables are:

• The SMC and GCP methods are seen to be on par in terms of estimation

performance, having very similar RMSE for all parameters. Both methods

perform reasonably well, with low percentage biases for most of the param-

eters.

• Estimation performance of both methods appears stabilised by q = 8, with

no substantial improvement in either Bias or SD by increasing to q = 10 or

q = 12.

• Numerical Hessians from the SMC approximated log-likelihood and GCP

log-likelihood at their respective optimal parameter values are computed.

The inverse of the negative of these numerical Hessians are used to obtain

approximate standard errors. The summary statistic Mean SE is the aver-

age of these approximated standard errors across the 1000 data sets. Both

methods are seen to produce very similar Mean SE for all parameters. For

both methods, for all parameters, there is little deviation in Mean SE from

utilising q = 8, 10 or 12. In general, we see Mean SE to be reasonably close
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to the observed SD.

Computational times using an Intel Xeon 3.06 GHz processor for both SMC

and GCP optimisations both utilising integrated C++ and R implementations are

presented in Table 6.3. Both methods display optimisation times roughly linear

in 2q. For a given q, the SMC optimisation takes on average 40% longer than the

GCP.

Table 6.1: Summary of SMC estimates for 1000† simulated data sets of 1500
observations from a MS-GARCH model with true parameters ω1 = 0.3, α1 = 0.35,
β1 = 0.2, ω2 = 2, α2 = 0.1, β2 = 0.6, P1,2 = 0.02, P2,1 = 0.04, µ1 = 0.06 and
µ2 = −0.09.

SMC

ω1 α1 β1 ω2 α2 β2 P1,2 P2,1 µ1 µ2

q = 8

Mean 0.2991 0.3499 0.2009 2.4157 0.0991 0.5335 0.0205 0.0422 0.0612 -0.0938

Bias -0.0009 -0.0001 0.0009 0.4157 -0.0009 -0.0665 0.0005 0.0022 0.0012 -0.0038

SD 0.0548 0.0719 0.0965 1.1937 0.0629 0.2125 0.0062 0.0133 0.0230 0.1155

RMSE 0.0548 0.0719 0.0965 1.2640 0.0629 0.2227 0.0062 0.0135 0.0230 0.1155

Mean SE 0.0523 0.0990 0.1444 1.1313 0.1251 0.1754 0.0059 0.0119 0.0237 0.1150

SD/ Mean SE 1.0478 0.7263 0.6683 1.0552 0.5028 1.2115 1.0508 1.1176 0.9705 1.0043

q = 10

Mean 0.3001 0.3499 0.1996 2.4160 0.1003 0.5323 0.0205 0.0420 0.0612 -0.0937

Bias 0.0001 -0.0001 -0.0004 0.4160 0.0003 -0.0677 0.0005 0.0020 0.0012 -0.0037

SD 0.0551 0.0717 0.0973 1.2119 0.0632 0.2137 0.0062 0.0128 0.0229 0.1151

RMSE 0.0551 0.0717 0.0973 1.2813 0.0632 0.2242 0.0062 0.0130 0.0229 0.1152

Mean SE 0.0527 0.0996 0.1667 1.1328 0.1253 0.1720 0.0059 0.0118 0.0237 0.1143

SD/ Mean SE 1.0455 0.7199 0.5837 1.0698 0.5044 1.2424 1.0508 1.0847 0.9662 1.0070

q = 12

Mean 0.3000 0.3501 0.1997 2.4010 0.1001 0.5348 0.0205 0.0424 0.0612 -0.0942

Bias 0.0000 0.0001 -0.0003 0.4010 0.0001 -0.0652 0.0005 0.0024 0.0012 -0.0042

SD 0.0546 0.0718 0.0969 1.2280 0.0631 0.2165 0.0060 0.0192 0.0229 0.1162

RMSE 0.0546 0.0718 0.0969 1.2918 0.0631 0.2261 0.0061 0.0193 0.0230 0.1163

Mean SE 0.0523 0.0988 0.1489 1.1405 0.1242 0.1723 0.0059 0.0119 0.0237 0.1151

SD/ Mean SE 1.0440 0.7267 0.6508 1.0767 0.5081 1.2565 1.0169 1.6134 0.9662 1.0096

†Results from two data sets for which both the SMC and GCP methods produced abnormally
large estimates of P2,1 were removed.
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Table 6.2: Summary of GCP estimates for 1000† simulated data sets of 1500
observations from a MS-GARCH model with true parameters ω1 = 0.3, α1 = 0.35,
β1 = 0.2, ω2 = 2, α2 = 0.1, β2 = 0.6, P1,2 = 0.02, P2,1 = 0.04, µ1 = 0.06 and
µ2 = −0.09.

GCP

ω1 α1 β1 ω2 α2 β2 P1,2 P2,1 µ1 µ2

q = 8

Mean 0.3005 0.3502 0.1986 2.3734 0.1000 0.5387 0.0205 0.0419 0.0612 -0.0937

Bias 0.0005 0.0002 -0.0014 0.3734 0.0000 -0.0613 0.0005 0.0019 0.0012 -0.0037

SD 0.0547 0.0719 0.0971 1.1937 0.0632 0.2139 0.0060 0.0127 0.0228 0.1151

RMSE 0.0547 0.0719 0.0972 1.2507 0.0632 0.2226 0.0060 0.0128 0.0229 0.1152

Mean SE 0.0525 0.0993 0.1531 1.1201 0.1229 0.1705 0.0059 0.0119 0.0237 0.1153

SD/ Mean SE 1.0419 0.7241 0.6342 1.0657 0.5142 1.2545 1.0169 1.0672 0.9620 0.9983

q = 10

Mean 0.3004 0.3502 0.1987 2.3730 0.0997 0.5390 0.0205 0.0419 0.0613 -0.0936

Bias 0.0004 0.0002 -0.0013 0.3730 -0.0003 -0.0610 0.0005 0.0019 0.0013 -0.0036

SD 0.0547 0.0719 0.0971 1.1928 0.0632 0.2141 0.0060 0.0127 0.0229 0.1151

RMSE 0.0547 0.0719 0.0971 1.2498 0.0632 0.2226 0.0060 0.0128 0.0229 0.1152

Mean SE 0.0526 0.0995 0.1527 1.1220 0.1234 0.1707 0.0059 0.0119 0.0237 0.1154

SD/ Mean SE 1.0399 0.7226 0.6359 1.0631 0.5122 1.2542 1.0169 1.0672 0.9662 0.9974

q = 12

Mean 0.3004 0.3501 0.1988 2.3763 0.0997 0.5385 0.0205 0.0419 0.0613 -0.0936

Bias 0.0004 0.0001 -0.0012 0.3763 -0.0003 -0.0615 0.0005 0.0019 0.0013 -0.0036

SD 0.0546 0.0720 0.0971 1.1951 0.0632 0.2146 0.0060 0.0127 0.0229 0.1151

RMSE 0.0547 0.0720 0.0972 1.2530 0.0632 0.2232 0.0060 0.0128 0.0229 0.1152

Mean SE 0.0526 0.0996 0.1526 1.1237 0.1234 0.1709 0.0059 0.0119 0.0237 0.1155

SD/ Mean SE 1.0380 0.7229 0.6363 1.0635 0.5122 1.2557 1.0169 1.0672 0.9662 0.9965

†Results from two data sets for which both the SMC and GCP methods produced abnormally
large estimates of P2,1 were removed.
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Table 6.3: Summary, across the 1000 simulated data sets, of computational times
for the SMC and GCP optimisations utilising an Intel Xeon 3.06 GHz proces-
sor. The optimisations were performed with R’s implementation of the Broyden
- Fletcher - Goldfarb - Shanno (BFGS) algorithm with a relative tolerance set to
10−6.

SMC GCP

Avg. time to Avg. number Avg. number Avg. time to Avg. number Avg. number

q complete of function of gradient complete of function of gradient

optimisation (secs) evaluations evaluations optimisation (secs) evaluations evaluations

8 21.77 70.53 23.10 15.58 58.39 21.89

10 87.71 66.74 22.67 62.10 58.21 21.84

12 348.82 62.74 22.28 247.37 58.24 21.83

6.6.2 Partial Y observation series

In this section we test the performance of the SMC estimation method at varying

degrees of missingness. In order to study the impact of missingness, rather than

total number of observations, on the performance of the method we keep the

effective sample size at 1500 observations. This allows us to study the impact of

missingness in isolation from any impact on performance attributable to smaller

sample sizes. Denote mp as the missing percentage. For each missing scenario

we simulate 1000 different data sets of a length N = b 1500
1−mpc two regime MS-

GARCH(1,1) series with standard normal innovations with true parameters ω1 =

0.3, α1 = 0.35, β1 = 0.2, ω2 = 2, α2 = 0.1, β2 = 0.6, P1,2 = 0.02, P2,1 = 0.04,

µ1 = 0.06 and µ2 = −0.09. Then for each data set bmp × Nc different points

between 1 and N (non-inclusive) were randomly (with equal chance of selection)

deleted. Note that the configuration of missing observations is different between

the 1000 data sets.

Missing percentages of 10%, 20%, 35% and 50% were analysed. Tables 6.4,

6.5 and 6.6 provide summary statistics for the parameters estimated from 1000

simulated data sets at each missing percentage level using the SMC method with

respective values of q = 8, 10, 12. A visual summary of Bias, SD and Mean SE
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against missing percentage is provided in Figure 6.6. From these:

• Estimation performance in terms of RMSE for the dominant1 regime’s volatil-

ity and mean parameters (ω1, α1, β1 and µ1) is seen to slightly worsen as

missingness levels increase. Whereas the transition probability parameters

as well as the less dominant regime’s volatility and mean parameters are seen

to either slightly improve or maintain RMSE performance as missingness in-

creases (while holding the overall sample size constant).

• By increasing q, substantial improvements in Bias for most of the parameters

is achieved. However little to no improvement is observed in SD by increasing

q from 8 to 12. RMSE, being dominated in composition by SD, displays the

same behaviour.

• In general, Mean SE appear to be reasonably close to the observed SD. For

the GARCH parameters of the second less dominant regime (ω2, α2 and β2)

Mean SE is perhaps mildly larger than the observed SD. Figure 6.7 displays

the ratio of SD to Mean SE utilising q = 8, 10 and 12 at each level of

missingness analysed. More noticeably, at the higher levels of missingness,

35% and 50%, it appears the SD to Mean SE ratio moves closer towards

unity as q increases from 8 to 12. At the 10% missing level, it may be

apparent that while increasing q, the SD to Mean SE ratio remains flat for

some parameters, having converged to a number away from 1, this is perhaps

not surprising given that one would expect normality to be asymptotic in

the number of observations, not just particles/branches.

Computational times using an Intel Xeon 3.06 GHz processor for the SMC

optimisations are presented in Table 6.7. The average time to complete a SMC

likelhood evaluation can be seen to be linear in N as well as 2q.

1Dominant in the sense P(Ri = 1) = 2/3 > 1/3 = P(Ri = 2).
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Table 6.4: SMC estimation with q = 8 for partially observed MS-GARCH(1,1)
series: Summary statistics from 1000 replications for each level of missingness.

q = 8

ω1 α1 β1 ω2 α2 β2 P1,2 P2,1 µ1 µ2

10% Missing

Mean 0.2820 0.3487 0.2312 1.9531 0.0863 0.6254 0.0210 0.0446 0.0613 -0.0793

Bias -0.0180 -0.0013 0.0312 -0.0469 -0.0137 0.0254 0.0010 0.0046 0.0013 0.0107

SD 0.0612 0.0832 0.1133 0.4934 0.0598 0.1052 0.0065 0.0148 0.0232 0.1222

Mean SE 0.0513 0.1029 0.1035 0.8747 0.0912 0.1223 0.0048 0.0106 0.0237 0.1026

RMSE 0.0638 0.0832 0.1175 0.4956 0.0614 0.1082 0.0066 0.0155 0.0232 0.1227

20 % Missing

Mean 0.2716 0.3433 0.2527 1.9348 0.0845 0.6320 0.0215 0.0459 0.0611 -0.0759

Bias -0.0284 -0.0067 0.0527 -0.0652 -0.0155 0.0320 0.0015 0.0059 0.0011 0.0141

SD 0.0650 0.0935 0.1276 0.3651 0.0602 0.0853 0.0066 0.0150 0.0241 0.1231

Mean SE 0.0491 0.1011 0.1381 0.8517 0.0866 0.1161 0.0043 0.0100 0.0237 0.0964

RMSE 0.0709 0.0937 0.1381 0.3709 0.0621 0.0911 0.0067 0.0162 0.0242 0.1239

35% Missing

Mean 0.2516 0.3268 0.2966 1.9273 0.0873 0.6368 0.0221 0.0487 0.0617 -0.0771

Bias -0.0484 -0.0232 0.0966 -0.0727 -0.0127 0.0368 0.0021 0.0087 0.0017 0.0129

SD 0.0679 0.0980 0.1390 0.3606 0.0666 0.0859 0.0071 0.0186 0.0255 0.1286

Mean SE 0.0492 0.1041 0.0821 0.9017 0.0876 0.1226 0.0039 0.0098 0.0243 0.1009

RMSE 0.0834 0.1007 0.1693 0.3679 0.0678 0.0935 0.0074 0.0206 0.0255 0.1293

50% Missing

Mean 0.2372 0.3027 0.3344 1.9291 0.0877 0.6367 0.0233 0.0513 0.0617 -0.0682

Bias -0.0628 -0.0473 0.1344 -0.0709 -0.0123 0.0367 0.0033 0.0113 0.0017 0.0218

SD 0.0703 0.1040 0.1475 0.3383 0.0667 0.0793 0.0076 0.0199 0.0264 0.1299

Mean SE 0.0525 0.1104 0.0865 0.9525 0.0900 0.1301 0.0038 0.0092 0.0253 0.1002

RMSE 0.0943 0.1143 0.1996 0.3457 0.0678 0.0873 0.0083 0.0228 0.0264 0.1317
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Table 6.5: SMC estimation with q = 10 for partially observed MS-GARCH(1,1)
series: Summary statistics from 1000 replications for each level of missingness.

q = 10

ω1 α1 β1 ω2 α2 β2 P1,2 P2,1 µ1 µ2

10% Missing

Mean 0.2867 0.3537 0.2218 1.9956 0.0889 0.6152 0.0204 0.0439 0.0610 -0.0822

Bias -0.0133 0.0037 0.0218 -0.0044 -0.0111 0.0152 0.0004 0.0039 0.0010 0.0078

SD 0.0615 0.0891 0.1103 0.6005 0.0625 0.1217 0.0065 0.0159 0.0239 0.1273

Mean SE 0.0512 0.1011 0.1176 0.9766 0.1002 0.1416 0.0051 0.0111 0.0236 0.1070

RMSE 0.0629 0.0892 0.1124 0.6005 0.0635 0.1226 0.0066 0.0164 0.0240 0.1275

20 % Missing

Mean 0.2827 0.3513 0.2293 1.9404 0.0878 0.6257 0.0208 0.0445 0.0608 -0.0827

Bias -0.0173 0.0013 0.0293 -0.0596 -0.0122 0.0257 0.0008 0.0045 0.0008 0.0073

SD 0.0650 0.0935 0.1251 0.4803 0.0624 0.1033 0.0065 0.0153 0.0247 0.1298

Mean SE 0.0516 0.1046 0.1527 0.9744 0.0992 0.1352 0.0049 0.0108 0.0238 0.1070

RMSE 0.0672 0.0935 0.1285 0.4840 0.0636 0.1064 0.0066 0.0159 0.0247 0.1300

35% Missing

Mean 0.2711 0.3445 0.2539 1.9753 0.0870 0.6254 0.0210 0.0456 0.0608 -0.0837

Bias -0.0289 -0.0055 0.0539 -0.0247 -0.0130 0.0254 0.0010 0.0056 0.0008 0.0063

SD 0.0694 0.0990 0.1332 0.4444 0.0657 0.0953 0.0066 0.0181 0.0257 0.1308

Mean SE 0.0527 0.1085 0.1135 0.9932 0.1005 0.1334 0.0046 0.0101 0.0243 0.1056

RMSE 0.0752 0.0991 0.1437 0.4450 0.0669 0.0986 0.0066 0.0190 0.0257 0.1310

50% Missing

Mean 0.2572 0.3333 0.2850 1.9616 0.0815 0.6319 0.0213 0.0469 0.0605 -0.0798

Bias -0.0428 -0.0167 0.0850 -0.0384 -0.0185 0.0319 0.0013 0.0069 0.0005 0.0102

SD 0.0734 0.1120 0.1458 0.4095 0.0699 0.0957 0.0066 0.0159 0.0266 0.1320

Mean SE 0.0546 0.1200 0.1015 1.0777 0.1045 0.1464 0.0043 0.0097 0.0249 0.1096

RMSE 0.0850 0.1132 0.1688 0.4113 0.0723 0.1008 0.0067 0.0174 0.0266 0.1324
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Table 6.6: SMC estimation with q = 12 for partially observed MS-GARCH(1,1)
series: Summary statistics from 1000 replications for each level of missingness.

q = 12

ω1 α1 β1 ω2 α2 β2 P1,2 P2,1 µ1 µ2

10% Missing

Mean 0.2885 0.3571 0.2171 2.0143 0.0915 0.6092 0.0202 0.0433 0.0607 -0.0867

Bias -0.0115 0.0071 0.0171 0.0143 -0.0085 0.0092 0.0002 0.0033 0.0007 0.0033

SD 0.0626 0.0980 0.1111 0.7010 0.0682 0.1387 0.0067 0.0162 0.0250 0.1320

Mean SE 0.0519 0.1054 0.1302 1.0077 0.1138 0.1521 0.0054 0.0114 0.0235 0.1124

RMSE 0.0637 0.0983 0.1124 0.7011 0.0687 0.1390 0.0067 0.0165 0.0250 0.1320

20 % Missing

Mean 0.2881 0.3574 0.2167 1.9958 0.0906 0.6124 0.0203 0.0433 0.0604 -0.0886

Bias -0.0119 0.0074 0.0167 -0.0042 -0.0094 0.0124 0.0003 0.0033 0.0004 0.0014

SD 0.0671 0.0988 0.1229 0.6549 0.0667 0.1299 0.0066 0.0151 0.0261 0.1308

Mean SE 0.0522 0.1049 0.1893 1.0204 0.1117 0.1620 0.0052 0.0110 0.0238 0.1128

RMSE 0.0681 0.0990 0.1241 0.6549 0.0673 0.1305 0.0066 0.0154 0.0261 0.1308

35% Missing

Mean 0.2799 0.3536 0.2336 2.0240 0.0884 0.6128 0.0204 0.0441 0.0604 -0.0925

Bias -0.0201 0.0036 0.0336 0.0240 -0.0116 0.0128 0.0004 0.0041 0.0004 -0.0025

SD 0.0700 0.1044 0.1311 0.6461 0.0680 0.1289 0.0064 0.0143 0.0267 0.1353

Mean SE 0.0548 0.1134 0.1449 1.0862 0.1135 0.1539 0.0049 0.0104 0.0242 0.1140

RMSE 0.0729 0.1044 0.1353 0.6466 0.0689 0.1296 0.0064 0.0149 0.0267 0.1354

50% Missing

Mean 0.2723 0.3478 0.2500 1.9881 0.0829 0.6222 0.0206 0.0445 0.0600 -0.0882

Bias -0.0277 -0.0022 0.0500 -0.0119 -0.0171 0.0222 0.0006 0.0045 0.0000 0.0018

SD 0.0762 0.1167 0.1453 0.5589 0.0710 0.1193 0.0063 0.0139 0.0277 0.1358

Mean SE 0.0577 0.1244 0.1494 1.2182 0.1190 0.1756 0.0047 0.0100 0.0248 0.1162

RMSE 0.0811 0.1167 0.1537 0.5591 0.0731 0.1214 0.0063 0.0147 0.0277 0.1358
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Figure 6.6: Visual summary from the simulation study of Bias, SD and RMSE at
different levels of missingness utilising the SMC method with q = 8 (black), q = 10
(red) and q = 12 (blue).
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Figure 6.7: Ratio of SD to Mean SE, for the parameters ω1 (black), α1 (red), β1

(green), ω2 (blue), α2 (purple), β2 (orange), P1,2 (magenta), P2,1 (cyan), µ1 (brown)
and µ2 (grey), utilising q = 8, 10 and 12 at each of the four levels of missingness
analysed.

Table 6.7: Summary, across the 1000 simulated data sets at each missing per-
centage level, of computational times for the SMC optimisations utilising an Intel
Xeon 3.06 GHz processor. The optimisations were performed with R’s constrOptim
function with a relative tolerance set to 10−6.

q = 8 q = 10

Time (secs) Avg. Number Avg. time Time (secs) Avg. Number Avg. time
Missing % N to complete of function to evaluate to complete of function to evaluate

optimisation calls function (secs) optimisation calls function (secs)
10% 1667 59.93 1770.25 0.034 232.41 1667.86 0.139
20% 1875 68.89 1775.52 0.039 279.53 1748.96 0.160
35% 2308 88.51 1843.02 0.048 357.63 1811.98 0.197
50% 3000 110.47 1783.93 0.062 467.4 1821.25 0.257

q = 12

Time (secs) Avg. Number Avg. time
Missing % N to complete of function to evaluate

optimisation calls function (secs)
10% 1667 946.68 1629.72 0.581
20% 1875 1137.69 1698.47 0.670
35% 2308 1474.01 1772.13 0.832
50% 3000 1964.49 1849.78 1.062
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6.7 Real data analysis

6.7.1 Full Y observation series

Daily percentage log returns on the S&P 500 price index from May 20, 1999 to

April 25, 2011 (3000 observations) were obtained from Yahoo! Finance. This

time series is displayed as the top plot in Figure 6.8. Returns were calculated

on successive trading days, thus no returns are considered missing. A zero mean,

standard normal innovation, two regime MS-GARCH(1,1) model was fit to this

series multiplied by 100 using both the SMC and GCP methods. The fits, along

with estimated 95% confidence intervals, for both methods are provided in Ta-

ble 6.8. The fits from both methods can be seen to be very similar and within

each other’s confidence intervals, thus we proceed with commentary based on the

SMC estimates. Regime 1 has a stationary variance of 0.0123
1−0.019−0.9541

= 0.457 and

stationary probability P(Ri = 1) = 0.0011
0.0011+0.0015

= 42.31%, while regime 2 has a

stationary variance of 2.526 and stationary probability of 57.69%. Regime 2 is

the more volatile regime. Both persistence parameters (α and β) are statistically

significant for regime 2, while regime 1’s confidence interval for α contains zero

possibly signalling a non-stochastic time dependent volatility process. The bot-

tom plot of Figure 6.8 displays the time series of the SMC estimated probability

of being in regime 1 given the current and past observations. Based on this plot,

one could conjecture four regime changes. The process starts out in regime 2 (the

more volatile regime) and this prevails till roughly late August 2003. Regime 1

then remains in effect until about late July 2007. Thereafter there is a switch

back to regime 2. Regime 2 remains prevalent until around perhaps October 2010;

while indeed between May 2009 to September 2010 there is some ambiguity in

which regime is in effect, there is a more definitive indication of a transition out of

regime 2 by October 2010. Thereafter regime 1 continues until the end of the study
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period. The “dot-com bubble” began in April 1997 and ended in June 20031 this

is consistent with the prevalence of regime 2 during this time period. The second

period that regime 2 is prevalent coincides with the “subprime mortgage crisis” of

2007-20092.

Table 6.8: The fits, along with estimated 95% confidence intervals, for the S&P
500 index returns data, using both the SMC and GCP methods. To clarify, in
reference to regime 1 for instance, by regime exit probability this refers to the
parameter P1,2.

Regime ω α β regime exit probability

SMC 1 0.0123 (0.0053, 0.0194) 0.0190 (-0.0020, 0.0399) 0.9541 (0.9400, 0.9681) 0.0015 (-0.0002, 0.0031)

2 0.0538 (0.0286, 0.0791) 0.0941 (0.0351, 0.1531) 0.8846 (0.8730, 0.8961) 0.0011 (-0.0001, 0.0023)

GCP 1 0.0126 (0.0031, 0.0220) 0.0195 (-0.0117, 0.0508) 0.9533 (0.9351, 0.9715) 0.0014 (-0.0008, 0.0036)

2 0.0531 (0.0256, 0.0805) 0.0938 (0.0287, 0.1589) 0.8845 (0.8715, 0.8975) 0.0011 (-0.0006, 0.0027)

S&P500 log returns
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Figure 6.8: (Top:) Daily percentage log returns on the S&P 500 price index from
May 20, 1999 to April 25, 2011. (Bottom:) SMC estimated probability of being
in regime 1 given the current and past observations.

1https://www.businessinsider.com.au/heres-why-the-dot-com-bubble-began-and-
why-it-popped-2010-12?r=US&IR=T

2https://en.wikipedia.org/wiki/Subprime mortgage crisis

https://www.businessinsider.com.au/heres-why-the-dot-com-bubble-began-and-why-it-popped-2010-12?r=US&IR=T
https://www.businessinsider.com.au/heres-why-the-dot-com-bubble-began-and-why-it-popped-2010-12?r=US&IR=T
https://en.wikipedia.org/wiki/Subprime_mortgage_crisis
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6.7.2 Partial Y observation series

Henry Hub is a natural gas pipeline that is the pricing point for natural gas fu-

tures on the New York Mercantile Exchange (NYMEX). A time series for the

Henry Hub natural gas spot price on trading days of the NYMEX from March

17, 2003 to March 24, 2008 was obtained from the Federal Reserve Bank of St.

Louis’s FRED database. Returns calculated from successive NYMEX trading days

are displayed as the top plot in Figure 6.9. Due to hurricane Rita, Henry Hub was

forced to shut down from September 23, 2005 to October 6, 2005 resulting in a

11 day stretch of unavailable NYMEX trading day natural gas spot price returns.

Thus we have N = 1257 and n = 1246. A zero mean, standard normal innovation,

two regime MS-GARCH(1,1) model was fit to this returns series multiplied by 100

using the SMC method of Section 6.5. The fits obtained, along with estimated

95% confidence intervals, are provided in Table 6.9. Regime 1 has a stationary

variance of 4.74 and stationary probability of 62.9% while regime 2 has a station-

ary variance of 499.1 and stationary probability of 37.1%. Regime 2 is the much

more volatile regime. Both regimes are estimated to have statistically significant

persistence parameters (α and β), although regime 1’s α is very close to zero. The

bottom plot of Figure 6.9 displays the time series of the SMC estimated proba-

bility of being in regime 2 given the current (if available) and past observations.

These probabilities over the gap of missing observations are indicated by the red

line segment in that plot. This plot appears to indicate 10 regime switches during

the study period. The natural gas market tends to have two annual phases, an

injection season (November to March) and a withdrawal season (April to Octo-

ber)1. Injections of gas into storage are made during periods of low demand and

withdrawn from storage during periods of peak demand such as the cold winter

months. During the injection season, demand for gas comes primarily from the

energy consuming sector. As alternatives to gas for electricity generation are avail-

1https://seekingalpha.com/article/4060690-logic-injection-season-need-know

https://seekingalpha.com/article/4060690-logic-injection-season-need-know
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able, the demand for gas from these energy consumers is relatively price elastic.

In contrast, during the withdrawal season, demand is primarily driven by heating

needs from residential and commercial consumers. Presented with limited short

term alternatives, demand for gas for heating purposes during this period is fairly

price inelastic. While demand during the winter months is expected to be elevated,

the exact level is uncertain, depending on realised weather conditions. The “fixed

supply and uncertain demand creates substantial volatility in the months leading up

to the end of the storage filling season, that is, September and October, and during

the early winter months when cold spells are likely to be sill ahead. During the rest

of the year average volatility is substantially lower as lower gas demand during the

spring and summer months alleviates pressure on supply” -Alterman [2012]. These

cycles of lower and higher periods of volatility appear to be identified in the con-

ditional regime occurrence probabilities in Figure 6.9. The comparatively longer

duration in the higher volatility regime beginning in the later half of 2005 may per-

haps be due to disruptions to production and distribution channels brought about

by the onset and aftermath of hurricanes Katrina and Rita. The relatively earlier

than usual onset of the higher volatility regime in April 2006 potentially might

have been induced by large speculative actions of the hedge fund Amaranth1.

Table 6.9: The fits, along with estimated 95% confidence intervals, for the Henry
Hub returns data using the SMC method.

Regime ω α β regime exit probability

1 0.3840 (0.3381,0.4300) 0.0014 (0.0009,0.0018) 0.9176 (0.9117,0.9236) 0.0130 (0.0112,0.0147)

2 0.5810 (0.4709,0.6912) 0.0499 (0.0358,0.0641) 0.9489 (0.9484,0.9493) 0.0220 (0.0185,0.0255)

1http://uk.reuters.com/article/amaranth-senate-report-idUKN2425785820070625

http://uk.reuters.com/article/amaranth-senate-report-idUKN2425785820070625
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Henry Hub natural gas spot price returns
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Figure 6.9: (Top:) Daily NYMEX trading day Henry Hub natural gas spot price
returns from March 17, 2003 to March 24, 2008. Due to hurricane Rita, Henry Hub
was forced to shut down from September 23, 2005 to October 6, 2005 resulting
in a 11 day stretch of unavailable NYMEX trading day natural gas spot price
returns. (Bottom:) SMC estimated probability of being in regime 2 given the
current (if available) and past observations. These probabilities over the gap of
missing observations are indicated by the red line segment.
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6.8 Concluding remarks

In summary, this chapter has introduced a modified SMC approach, providing a

computationally feasible and reliable frequentist method for obtaining parameter

estimates (along with standard errors) for MS-GARCH(1,1) models, even when

one does not observe the full MS-GARCH(1,1) series.

When provided full observation of the MS-GARCH(1,1) series, the GCP method

of Augustyniak et al. [2017] is able to be utilised. However, unlike SMC, the GCP

procedure is unequipped for dealing with partially observed MS-GARCH(1,1) data

sets. Through simulation studies, the estimation performance (for fully observed

MS-GARCH(1,1) series) of the SMC and GCP methods was seen to be on par,

with the GCP method having a modest speed advantage.

Extension of the GCP method to estimate MS-GARCH(p,q) for either p > 1

or q > 1 has so far not been developed and the feasibility of this requires further

research. For the SMC framework proposed here to be extended to higher order

MS-GARCH models would require development of a method for resampling in

more than one continuous dimension conducive to smooth SMC likelihoods.

The technique presented in this chapter could be combined with that of Section

4.1 for parameter estimation of aggregated MS-GARCH(1,1) series, however this

has not been investigated.
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Chapter 7

Conclusions and future work

In this thesis we have utilised and further developed SMC with the smooth resam-

pling procedure of Pitt and Malik [2011] (smooth bootstrap) as a statistically and

computationally efficient method for providing likelihood inference in many appli-

cations for which exact likelihood evaluation is infeasible. While smooth bootstrap

is already a well established procedure, for the stochastic volatility models consid-

ered in this thesis careful development of suitable state space representations as

well as modifications to the smooth bootstrap procedure was required.

These developments have substantially expanded the range of practical appli-

cations and scope of smooth bootstrap SMC and allowed accurate likelihood based

inference to be used for statistical models that, hitherto, had been estimated using

biased and inefficient adhoc methods.

If one is able to identify a state space representation of the form (1.8)-(1.9)

that has

i) a noise component Wi that is easy to simulate,

ii) a combination of Yi and Xi for which p(Yi|Xi) is easy to evaluate,

iii) a state Xi that has continuous support on some interval of the real line,

then implementation of smooth bootstrap is fairly straightforward, as we saw
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in Chapter 3 utilising this method for likelihood inference of partially observed

GARCH(1,1) series.

For the case of temporally aggregated GARCH(1,1) series, the more familiar

state space representation while satisfying i and iii did not satisfy ii. We identified

in Chapter 4 an alternative 3-dimensional state specification for which p(Yi|Xi)

was analytical. Despite this specification not satisfying iii, we deduced that this

3-dimensional state specification could be in fact still propagated using only a

1-dimensional quantity Xi,1. Thus with some slight adjustments we were still

eventually able to proceed by applying the smooth bootstrap to resample at each

time step Xi,1 instead of Xi.

The same principled approach used for temporally aggregated GARCH(1,1)

series was extended to provide a method for likelihood inference of the COGA-

RCH(1,1) model in Chapter 5.

We showed in Chapter 6, it was possible to modify the standard smooth boot-

strap to provide a means for parameter estimation for MS-GARCH(1,1) models

in which one needs two variables, volatility (which has a continuous support) and

regime (which has a finite support), to evolve the hidden state process.

While the developments of this thesis have considerably expanded the range of

models for stochastic volatility to which likelihood inference can now be applied,

extensions to models with higher order lags in the autocorrelation and the GARCH

recursions are required for more complex applications.

Development of a method for resampling in more than one continuous dimen-

sion conducive to smooth SMC likelihoods would significantly increase the scope

for which the smooth bootstrap could be utilised. A step towards this is the work

of Lee [2008] who utilises tree based resampling schemes, that although do not

generate a continuous estimate of the likelihood function, has been shown able to

provide a much “smoother” estimate. An alternative prototype approach based on

copula is proposed in Appendix A.3. This method however, is still in development
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and to be further investigated. Proof of concept is demonstrated for parameter

estimation of ARMA(1,1)-GARCH(1,1) models in the presence of missing data

which is an example of when resampling in two continuous dimensions is required.

Making use of higher dimensional copulas this method naturally extends to higher

dimensional state processes necessary for applications requiring for instance higher

order lags in their model specification.

Throughout, our SMC procedures have utilised the system transition distribu-

tion p(Xi|Xi−1, Yi−1) to simulate the hidden state process, “this is the most widely

used distribution, since it is simple to compute, but it can be inefficient, since it

ignores the most recent evidence, Yi” -van der Merwe et al. [2000]. That being

said, additional improvements in performance could be sought exploring a change

of measure, simulating the state from something other than the system dynamics

(cf. Doucet et al. [2000]).

While a fixed number of particles have been employed throughout each iteration

of our SMC implementations, this is not essential. Indeed, it would be worthwhile

future research to analyse the relationship between the number of consecutive

missing (or aggregated) observations and particle degeneracy measures such as

effective sample size (ESS; cf. Liu [2001]). The ESS of a set of particles has the

interpretation that inference using this set of particles “is approximately equivalent

(in terms of estimator variance) to inference based on ESS perfect samples from the

target distribution” -Doucet and Johansen [2011]. Thus if it is found that iterations

that involve a large block of consecutively missing (or aggregated) underlying series

elements are synonymous with low ESS values, then it may be beneficial to utilise

more particles at iterations where the “length” of the missing (or aggregated)

block is large relative to when it is small, perhaps choosing the number of particles

employed by some non-decreasing function of the block length.

Resampling was conducted at each iteration of our SMC procedures. There are

schemes such as adaptive resampling (cf. Del Moral et al. [2012]) that only trigger
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a resampling operation when some measure, commonly ESS, drops below some

threshold. Note however that ESS is a function of the particle weights and thus

the model parameters. Therefore resampling schedules that are dictated by ESS

could be drastically different across model parameters imposing discontinuities

across the approximated likelihood surface.

Other simulation based frequentist approaches that have been applied to hidden

Markov models include Approximate Bayesian Computation Maximum Likelihood

(ABC-ML; cf. Dean et al. [2014]) and online Expectation Maximisation (EM; cf.

Cappe [2009], Cappe [2011]). Potentially some of the ideas and techniques devel-

oped in this thesis could be applied in these contexts, however the feasibility of

implementing these approaches for the models we have considered in this thesis

remains to be investigated. In regards to the online EM method, ease of implemen-

tation generally requires that the model structure possess sufficient statistics that

are of an additive form as well as an inverse mapping of these sufficient statistics

that can be used to recover the model parameters - these aspects would have to

be explored for the models we have considered.
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A.1 COGARCH SMC pseudo code

Algorithm 1 SMC log-likelihood approximation using bootstrap resampling

1: procedure

2: Initilisation:

3: X1:N
0,3 ← β

η−ϕ

4: loglik← Y0 ← t0 ← X1:N
0,2 ← X1:N

0,4 ← κ← 0

5: Set Seed to fix randomness

6: Loop:

7: for i in 1 : n do

8: if Yi 6= 0 then

9: loglik← loglik + log(1− e−λ∆ti)

10: for j in 1 : N do

11: if κ > 0 then

12: Sample ν from the set {1, . . . N} according to the probabilities {w1
κ, . . . w

N
κ }

13: else

14: ν ← j

15: Xj
i,1 ←

β
η

+ (Xν
κ,3 + ϕ(Yκ −Xν

κ,2)2 − β
η

)e−η(ti−1−Xνκ,4)

16: Simulate U1 ∼ Uniform(0, 1)

17: τ ji,1 ← ti−1 − 1
λ

log(1− (1− e−λ∆ti)U1)

18: Xj
i,2 ← 0

19: Xj
i,3 ←

β
η

+ (Xj
i,1 −

β
η

)e−η(τ
j
i,1−ti−1)

20: Simulate r ∼ Poisson(λ(ti − τ ji,1))

21: if r > 0 then

22: Simulate z1, . . . , zr ∼ i.i.d random variables with density q

23: Simulate U2 < · · · < Ur+1 as i.i.d standard uniforms sorted in ascending order

24: for s in 1 : r do

25: τ ji,s+1 ← τ ji,1 + Us+1(ti − τ ji,1)

26: Xj
i,2 ← Xj

i,2 +
√
Xj
i,3zs

27: Xj
i,3 ←

β
η

+ (Xj
i,3(1 + ϕz2

s)− β
η

)e−η(τ
j
i,s+1−τ

j
i,s)

28: Xj
i,4 ← τ ji,r+1

29: wji ← 1√
X
j
i,3

q
(
Yi−X

j
i,2√

X
j
i,3

)
30: loglik← loglik + log( 1

N

∑N
j=1 w

j
i )

31: Normalise wji ←
w
j
i∑N

j=1 w
j
i

32: κ← i

33: else

34: loglik← loglik− λ∆ti
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Algorithm 2 SMC log-likelihood approximation using continuous resampling
Lines 1-9 from Algorithm 1

10: for j in 1 : N do

11: if κ > 0 then

12: γ1 ← γ2 ← 0

13: for p in 1 : N do

14: if j = 1 then

15: Xp
i,1 ←

β
η

+ (Xp
κ,3 + ϕ(Yκ −Xp

κ,2)2 − β
η

)e−η(ti−1−X
p
κ,4)

16: γ1 ← γ1 + wpκφ
(

(Xj
i,1 −X

p
i,1)/h

)
17: γ2 ← γ2 + φ

(
(Xj

i,1 −X
p
i,1)/h

)
18: αj ← γ1/γ2

19: else

20: Xj
i,1 ←

β
η

+ (Xj
κ,3 + ϕ(Yκ −Xj

κ,2)2 − β
η

)e−η(ti−1−X
j
κ,4)

21: if κ > 0 then

22: Normalise αj ← αj/
∑N
j=1 α

j

23: Sort {Xj
i,1, α

j}j=1...N ascending in Xj
i,1.

24: π0 ← 1
2
α1

25: πN ← 1
2
αN

26: Simulate Ũ1 < · · · < ŨN as i.i.d standard uniforms sorted in ascending order

27: s← 1

28: t← π0

29: for j in 1 : N do

30: if Ũ j < π0 then

31: X̃j
i,1 = X1

i,1

32: else if Ũ j > 1− πN then

33: X̃j
i,1 = XN

i,1

34: else

35: while Ũ j > t do

36: πs = 1
2
(αs + αs+1)

37: t← t+ πs

38: s← s+ 1

39: X̃j
i,1 = Xs−1

i,1 + Ũj−(t−πs−1)

πs−1 (Xs
i,1 −Xs−1

i,1 )

40: Set X1:N
i,1 = X̃1:N

i,1

41: for j in 1 : N do

Lines 16-34 from Algorithm 1



154 Data pre-processing for Section 5.5 data set

A.2 Data pre-processing for Section 5.5 data set

Let us denote

• t - as the number of minutes elapsed since the open of the trading week

(Sunday 22:00 GMT),

• Si(t) the AUD/USD price on week i at time t,

• Oi the number of observations available on week i.

We then define the log returns

r(i)(tj) = log
( Si(tj)

Si(tj−1)

)
for j = 2, . . . , Oi. (A.1)

A.2.1 Winsorised sample

In our preliminary analysis, we found that the presence of outliers tended to inflate

estimates of the decay parameter η. Intuitively, the reason behind this, lies at the

essence of the GARCH type relationship in that perturbations in the current period

flow on to affect future volatility. Thus, if a one off significant spike is observed

without a subsequent increase in volatility for the next few observations - to make

a COGARCH model conform to such a situation would be to have a COGARCH

model that decays off that large spike quickly so that the volatility is back down

again for subsequent observations.

A simple technique to reduce the effect of possibly spurious outliers is to work

with a Winsorised sample. That is, for each trading week any time standardised

log returns that are below the x-th percentile for that week are set to the value

of the x-th percentile and any time standardised log returns that are above the

(100 − x)-th percentile for that week are set to the value of the (100 − x)-th
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percentile. Formally, the Winsorised log returns for our analysis are obtained as

r(i)
w (tj) = max

(
min

(r(i)(tj)

∆tj
, r

(i)
100−x

)
, r(i)
x

)
×∆tj (A.2)

where r
(i)
x and r

(i)
100−x are respectively the x-th and (100 − x)-th percentiles from

the sample
r(i)(tj)

∆tj
j = 2, . . . , Oi. The time standardised log returns as opposed to

simply the log returns is Winsorised to factor in that naturally a larger observation

interval allows a larger magnitude of price change to manifest compared to a

shorter observation interval. Our analysis is performed with x = 0.01, in this

way approximately 99.8% of the original returns are preserved. Hereafter, by log

returns we will implicitly mean the Winsorised log returns.

A.2.2 Virtual time scale

To account for intra-week volatility patterns a transformation from the physical

time scale to the virtual time scale of Dacorogna et al. [1993] will be applied. The

adjustment begins with the empirical scaling law of Muller et al. [1990], which

relates | r∆t | the mean absolute log return over a time interval to the size of this

interval ∆t via

| r∆t | = c∆t
1
E . (A.3)

The mean absolute log return | r∆t | for observations spaced 1 minute, 2 minutes,

up to 10 minutes apart were computed. The | r∆t | values for different interval

sizes ∆t are not totally independent, as the larger intervals are aggregated from

the smaller intervals - however as an approximation using simple least squares

regression we obtain almost perfect fits with ĉ = 0.0001469908 and Ê = 2.038489.

There are 120 trading hours between Sunday 22:00 GMT to Friday 22:00 GMT.
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Define the Activity of the h-th hour as

â(h) =
( µ̂h
ĉ∗

)Ê
(A.4)

where

µ̂h =

∑50
i=1

∑Oi
j=2 |

r
(i)
w (tj)

∆t
1
Ê
j

| I(b tj
60
c = h)∑50

i=1

∑Oi
j=2 I(b

tj
60
c = h)

(A.5)

is the mean time standardised absolute log return for trading hour h over all

the 50 trading weeks, b.c is the floor function and ĉ∗ is calibrated to satisfy the

normalisation condition
∑120

h=1 â(h) = 120. The new virtual observation times will

then be given by

ϑj = ϑj−1 + â
(
b tj

60
c
)

(tj − tj−1) , j = 2, . . . , Oi,

ϑ1 = 0.

A physical time trading hour associated with higher volatility results in a higher

Activity for that hour. Thus, the new virtual time scale ϑ slows down during

physical time trading hours associated with higher volatility as well as speeds up

during physical time trading hours associated with lower volatility. In turn, the

volatility per unit of virtual time is more balanced.

The estimated Activities are displayed in Figure A.1. One would expect three

periods of higher than normal volatility each day corresponding to the opening

hours of the Asian, European and American Forex markets. The results appear

in line with this expectation as three spurts in Activities are observed to begin at

1:00 AM GMT, 7:00 AM GMT and 1:00 PM GMT each day corresponding to the

start of trade of the aforementioned markets.

Physical time trading hour h = 1 would be expected to be relatively quiet as

only the thinner Australian and New Zealand markets are open. We have â(1) =
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0.5052 so virtual time will be running approximately twice as fast during physical

trading hour h = 1. On the other hand, trading activity would be expected to

pick up during physical time trading hour h = 4 at the open of the Hong Kong

market. We have â(4) = 1.2018, so virtual time will be running at approximately

83% the speed of physical time during trading hour h = 4.

0

1

2

3

0 30 60 90 120
Trading Hour

A
ct

iv
ity

Financial Market

Australia

Frankfurt

Hong Kong

New York

Estimated Activity for each trading hour of the AUD/USD

Figure A.1: Estimated Activities for each of the 120 trading hours (black verti-
cal lines). The trading sessions of certain financial markets are indicated by the
horizontal lines.
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A.3 Resampling using Copula

A prototype method of utilising SMC with the “NORmal To Anything” (NORTA)

method of Cario and Nelson [1997] is proposed in this section. The aim of this

pairing is to yield, for hidden markov models that require two or more continuous

variables to evolve the state equation, SMC likelihood surfaces that are amenable

to numerical optimisation.

A.3.1 The NORTA method

To generate a realisation of a d−dimensional multivariate random variable V =

(V1, . . . , Vd), the NORTA method of random vector generation, as described by

Channouf and L’Ecuyer [2009], is as follows. Denote the marginal distribution

function for each component Vj, j = 1, . . . , d by Fj(x) = P(Vj ≤ x). Calculate the

rank correlation (a.k.a Spearman’s ρ)

rVi,j = Corr
(
Fi(Vi), Fj(Vj)

)
(A.6)

for each i, j = 1, . . . , d. Simulate a d−dimensional multivariate normal S =

(S1, . . . , Sd) with d−dimensional mean vector all zeroes and d × d−dimensional

covariance matrix Σ with each element given by

Σi,j = 2sin(πrVi,j/6). (A.7)

Then a realisation of V is given by

(
F−1

1

(
Φ(S1)

)
, . . . , F−1

d

(
Φ(Sd)

))
, (A.8)

where Φ(.) is the standard normal cumulative distribution function and F−1
j (u) =

inf{x : Fj(x) ≥ u}, j = 1, . . . , d.
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A.3.2 SMC with NORTA resampling

Assume a hidden Markov model with d−dimensional hidden state Xi (with d > 1).

Recall that at each time step i = 1, . . . , n, the SMC algorithm produces a set

of K particles X
(k)
i = (X

(k)
i,1 , . . . , X

(k)
i,d ), k = 1, . . . , K with associated weights

w
(k)
i = p(Yi|Xi = X

(k)
i )/

∑K
l=1 p(Yi|Xi = X

(l)
i ). Instead of a bootstrap multinomial

resample from the set {X(k)
i }k=1,...,K according to the probabilities {w(k)

i }k=1,...,K ,

another approach is to use the NORTA method for resampling.

To this end, construct for j = 1, . . . , d,

F̂j(x) =
K∑
k=1

ŵ
(k)
i,j I(x ≥ X

(k)
i,j ) (A.9)

whereby

w̃
(k)
i,j =

∑K
l=1w

(l)
i φ
(

(X
(k)
i,j −X

(l)
i,j )/h

)
∑K

l=1 φ
(

(X
(k)
i,j −X

(l)
i,j )/h

) (A.10)

ŵ
(k)
i,j =

w̃
(k)
i,j∑K

l=1 w̃
(l)
i,j

for k = 1, . . . , K (A.11)

where φ(.) is the standard normal density and h a very small number. Then

construct for each F̂j(x), j = 1, . . . , d, its continuous approximation

F̄j(x) = w̄
(0)
i,j I(x ≥ X

(1)
i,j ) +

K−1∑
k=1

w̄
(k)
i,j H

( x−X(k)
i,j

X
(k+1)
i,j −X(k)

i,j

)
+ w̄

(K)
i,j I(x ≥ X

(K)
i,j )

(A.12)

where w̄
(0)
i,j = ŵ

(1)
i,j /2, w̄

(K)
i,j = ŵ

(K)
i,j /2 and w̄

(k)
i,j = (ŵ

(k+1)
i,j +ŵ

(k)
i,j )/2 for k = 1, . . . K−1

and H(z) := max
(

0,min(z, 1)
)

.

Then using for each j = 1, . . . , d, F̄j(x) in place of Fj(x) in (A.6) and F̄−1
j (u) in

place of F−1
j (u) in (A.8), a new realisation of Xi can be obtained by the NORTA

method.
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A.3.3 Pilot test case: ARMA-GARCH with missing data

The ARMA(1,1)-GARCH(1,1) is specified by

yi − ϕyi−1 = εi + ϑεi−1 (A.13)

εi = σizi (A.14)

σ2
i = ω + αε2i−1 + βσ2

i−1 (A.15)

where |ϕ| < 1, |ϑ| < 1 and zi ∼ i.i.d according to some zero mean, unit variance

distribution D(0, 1). Now we have,

yi − εi = ϕyi−1 + ϑεi−1 (A.16)

= ϕ(yi−1 − εi−1) + (ϕ+ ϑ)εi−1. (A.17)

Let µi = yi − εi, then

µi = ϕµi−1 + (ϕ+ ϑ)εi−1. (A.18)

Thus, yi = µi + εi and

yi|µi, σ2
i ∼ D(µi, σ

2
i ). (A.19)

Assume one only has partial observation of the series (yi)i=1,...,N at a set of

times 1 = t1 < t2 < . . . < tn = N where ti ∈ {2, . . . , N − 1} for i = 2, . . . , n − 1.

The marginal likelihood of the partially observed ARMA(1,1)-GARCH(1,1) can

be approximated using SMC by putting the problem in the form of (1.8) − (1.9)

by setting, for i = 1, . . . , n: Yi = yti , Zi = zti , Xi = (Xi,1, Xi,2) = (µti , σ
2
ti

),
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ni = ti − ti−1 (with t0 = 0),

Wi =


{zti−1, . . . , zti−1+1} when ni > 1,

∅ when ni = 1,

(A.20)

with

Xi = g(Xi−1, Yi−1,Wi) =
(
g1(Xi−1, Yi−1,Wi), g2(Xi−1, Yi−1,Wi, ni)

)

where

g1(Xi−1, Yi−1,Wi) =



(ϕ+ ϑ)Yi−1 − ϑXi−1,1 when ni = 1,

ϕniXi−1,1 + ϕni−1(ϕ+ ϑ)(Yi−1 −Xi−1,1)

+ (ϕ+ ϑ)

ni−1∑
k=1

ϕk−1zti−k
√
g2(Xi−1, Yi−1,Wi, ni − k)

when ni > 1,

(A.21)

g2(Xi−1, Yi−1,Wi, u) =



ω + α(Yi−1 −Xi−1,1)2 + βXi−1,2 when u = 1,

ω + ω
( u−1∑
j=1

j∏
k=1

(αz2
ti−k + β)

)
+ (α(Yi−1 −Xi−1,1)2 + βXi−1,2)

u−1∏
j=1

(αz2
ti−j + β)

when u > 1.

(A.22)

Then Yi = f(Xi, Zi) = Xi,1 +
√
Xi,2Zi, with

p(Yi|Xi) =
1√
Xi,2

q(
Yi −Xi,1√

Xi,2

), (A.23)

whereby q is the density of zi.

This application is an example of a situation when two continuous variables

are required to evolve the state equation.
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The left hand side of Figure A.2 displays approximated log-likelihood profile

plots using SMC with bootstrap resampling (keeping randomness fixed across pa-

rameter changes), for a simulated, partially observed ARMA(1,1)-GARCH(1,1)

data set. The right hand side of Figure A.2 displays approximated log-likelihood

profile plots using SMC with NORTA resampling, for the same data set. As is seen,

while SMC with NORTA resampling does not appear to lead to likelihood surfaces

that are perfectly smooth, they are considerably smoother than their bootstrap

resampled counterparts and in fact, demonstrated in the simulation study below,

to be sufficiently smooth for numerical optimisation to yield reliable parameter

estimates.

A.3.3.1 A simulation study

We simulate 1000 data sets of a lenght N = 2000, ARMA(1,1)-GARCH(1,1) series

with standard normal innovations and true parameters ω = 0.1, α = 0.08, β =

0.9, ϕ = 0.7 and ϑ = −0.55. Within each data set, each observation at time i =

2, . . . , N−1 was with a 20% independent chance set to missing. The configuration

of missing observations is different across data sets.

The results from maximising the log-likelihood surface obtained utilising SMC

with NORTA resampling, using 200 particles, for these data sets are summarised

in Table A.1, with kernel density plots of the estimates obtained provided in Figure

A.3. Based on these preliminary results, while likelihood surfaces produced by this

method are not perfectly smooth, the improvement in smoothness, appears at least

in this scenario, to be sufficent for numerical optimisation to yield fairly accurate

parameter estimates.
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Figure A.2: SMC approximated log-likelihood profile plots, for each of the five
ARMA(1,1)-GARCH(1,1) model parameters (LHS: using bootstrap resampling,
RHS: using NORTA resampling), for a simulated, partially observed ARMA(1,1)-
GARCH(1,1) data set (N = 2000 with approximately 20% of observations miss-
ing). The true parameter values are indicated by the red vertical lines.
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Table A.1: Summary statistics of the parameter estimates obtained, across the
1000 simulated, partially observed ARMA(1,1)-GARCH(1,1) data sets, by utilising
SMC with NORTA resampling using 200 particles. Refer to Section 3.2.1 for
definitions of the summary statistics Mean, Bias, SD and RMSE.

ω α β ϕ ϑ

Mean 0.1271 0.0825 0.8913 0.6746 -0.5240

Bias 0.0271 0.0025 -0.0087 -0.0254 0.0260

SD 0.0529 0.0149 0.0217 0.0974 0.1093

RMSE 0.0594 0.0151 0.0234 0.1006 0.1124
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Figure A.3: Kernel density plots of the parameter estimates obtained from the 1000
simulated, partially observed ARMA(1,1)-GARCH(1,1) data sets, utilising SMC
with NORTA resampling employing 200 particles. The true parameter values are
indicated by the red vertical lines.
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