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Chapter 1: Introduction  
1.1 Human brain function  

1.1.1 Contemporary views of human brain functioning 

Through the 20th century, human behaviour and cognitive processes were predominantly 

postulated to arise from the functioning of discrete cerebral brain-regions. Under this 

classical view, localized variability in the composition or functioning of specialized brain 

centres led to inter-individual differences in psychological processes (Catani, 2005; 

Fornito et al., 2015). The 21st century, however, spawned rapid advancements in non-

invasive human magnetic resonance imaging (MRI) techniques. Spatially embedded 

(Roberts et al., 2016c) within the brain are complex anatomical wiring patterns that 

constitute large-scale networks (Hagmann et al., 2007; Sporns, 2013b; Sporns et al., 

2005). These discoveries catalysed our knowledge of the intimate association between 

human brain organisation and behaviour: The large-scale integration of segregated areas 

within brain networks (Sporns, 2013a, b) give rise to the complex perceptual, cognitive 

and behavioural features of human existence (Tononi, 2004; Tononi et al., 1994). Even 

subtle alterations to large-scale brain interactions are thought to underlie the symptomatic 

expression of neurodegenerative and psychiatric conditions such as Alzheimer’s disease 

(AD) and schizophrenia (Dennis and Thompson, 2014; Fornito and Bullmore, 2015; 

Fornito et al., 2015; Friston, 1998; Seeley et al., 2009). 
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1.1.2 Network science 

Network science allows the association between distributed brain function and behaviour 

to be investigated. Network science rests on a branch of mathematics known as graph 

theory (Euler, 1736).  Accordingly, systems are represented as complex networks, defined 

by their constituent elements (nodes) and interactions (edges). A social network of 

interactions between facebook friends, for example, is represented by each constituent 

person (nodes) linked by a relational measure of friendship (edges). Graph-theoretical 

tools have been applied to the investigation of many real-world systems including 

(Newman, 2003): food webs (Williams and Martinez, 2000), the neural network of the 

Caenorhabditis elegans (White et al., 1986), mammalian brains (Scannell et al., 1999; 

Sporns and Zwi, 2004; Stephan et al., 2000), the internet (Faloutsos et al., 1999), electrical 

and tele-communication grids (Aiello et al., 2000; Albert et al., 2004), and cellular and 

metabolic networks (Jeong et al., 2000; Kohn, 1999). 

 

1.1.3 Conceptualising the human brain as a complex network 

Human brain networks can be represented by structural or functional connectivity (edges) 

between constituent cerebral areas (nodes) (Fornito et al., 2013; Friston, 1994). Structural 

connectivity denotes the interconnecting white-matter axonal propagations from tracer 

studies or reconstructed in vivo through diffusion MRI (dMRI) and tractography. On the 

other hand, functional connectivity is defined as inter-regional statistical dependences (i.e. 

correlation coefficients) between remote neurophysiological signals – measured by 

functional MRI (fMRI), electroencephalography (EEG), or magnetoencephalography 

(MEG) (Fornito et al., 2013; Sporns, 2013b). Effective connectivity is another form of 

brain connectivity, quantifying the causal influence of one region’s neuronal activity upon 
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another (Friston et al., 2003). Connectivity estimates are combined with spatial 

knowledge (data-driven or priori) of cortical areas to construct a network of brain 

connectivity patterns. The resultant large-scale network of structural connectivity patterns 

is defined as the human connectome (Sporns et al., 2005; Stam, 2004). 

 

1.2 Empirical methods: Brain networks 

1.2.1 Structural brain networks 

1.2.1.1 Diffusion MRI  
The mapping of axonal trajectories was traditionally performed on non-human brain 

tissue through in vitro tract-tracing methods. Complex patterns of white-matter 

organisation were revealed for mammalian species, including the cat (Scannell et al., 

1999; Scannell and Young, 1993), primate (Felleman and Van Essen, 1991) and rat 

cortices (Burns and Young, 2000). Post-mortem studies in human brains were limited to 

gross reconstructions of large white matter tracts such as the internal capsule (Klingler 

and Ludwig, 1956). The advent of dMRI allowed, for the first time, the comprehensive 

reconstruction of human white-matter fibre bundles (Catani, 2005). 

 dMRI is an MRI acquisition sequence involving the application of spatially-varying 

gradient pulses, which detect the spin dephasing of protons in water molecules (Bastiani 

and Roebroeck, 2015; Jones et al., 2013). The intensity of the dMRI signals are 

reconstructed from the scanner readout (k-space) to form diffusion-weighted images 

(DWI), with diffusion measurements contained within each three-dimensional image grid 

(i.e. voxel) (Figure 1-1A). Free water diffusion is Gaussian and isotropic, obeying the 

diffusion equation. Water diffusion in white matter is anisotropic, because water diffusion 
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is restricted along gradient directions perpendicular to local axonal fibre bundles (Figure 

1-1B) (Basser et al., 1994; Chenevert et al., 1990; Le Bihan, 1991) 

 From the raw dMRI signal, a number of structural properties can be reconstructed for 

each voxel, which are now briefly reviewed. 

 

1.2.1.2 Diffusion Tensor Imaging 
Diffusion Tensor Imaging (DTI) (Basser, 1995; Basser et al., 1994; Pierpaoli et al., 1996) 

is the most frequently employed approach for modelling orientations of the underlying 

white-matter fibres. Tensor models assume a distribution of unimodal anisotropic 

diffusion - namely, that fibre-bundles are coherently organised parallel to the principal 

diffusion axis (i.e. diffusion tensor) (Assaf and Pasternak, 2008; Jones et al., 2013) 

(Figure 1-1C; middle).   

 

1.2.1.3 Diffusion Tensor Imaging indices  
The ratio of diffusivities parallel and perpendicular to the principal diffusion axis are also 

derived to calculate indices of white-matter “microstructural integrity” (Assaf and 

Pasternak, 2008). Fractional Anisotropy (FA) and Mean Diffusivity (MD) are highly 

implemented indices in clinical settings: FA yields the ratio of parallel to perpendicular 

diffusivity within a voxel, whilst MD refers to the average diffusivity (Assaf and 

Pasternak, 2008; Basser, 1995; Basser et al., 1994). 

 The extent to which these DTI-indices reflect changes in microstructural “integrity” 

of white-matter populations are, however, rather controversial (Farquharson et al., 2013; 

Jones et al., 2013). Consider voxel-populations with multiple underlying fibre-
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orientations, as is the case with “crossing” or “kissing” fibre-bundles (Figure 1-1C, 

bottom panel): DTI-based models erroneously infer isotropic diffusion along less 

coherently-organised fibre-bundles (Assaf and Pasternak, 2008; Jones et al., 2013), 

resulting in decreased FA and increased MD values. Given that approximately 90% of 

white-matter tissue contains crossing-fibre configurations (Jeurissen et al., 2013), the 

biological interpretability of simple tensor-based models is problematic. 

 

1.2.1.4 Constrained spherical deconvolution 
Alternative approaches to tensor-based modelling have been developed in order to 

alleviate the “crossing-fibre” problem (Jones et al., 2013). These models sample within 

each voxel an orientation density function (ODF) (Descoteaux et al., 2007; Tuch, 2004), 

or infer a fibre orientation density function (fODF) of the diffusion-signal. The latter 

procedure typically involves constrained spherical deconvolution (CSD) (Tournier et al., 

2007, 2012; Tournier et al., 2008) of the “response function” for diffusion signals. 

Subsequently obtained with CSD are estimates of fibre orientation distributions (FOD), 

relating to the relative fibre density along an angular structure. CSD is shown to superiorly 

sharpen the angular profile of local fibre-orientation estimates (Figure 1-1C; right) 

(Descoteaux et al., 2009; Farquharson et al., 2013), in comparison to both ODF and 

tensor-based approaches. Other more complex models of the diffusion signal include q-

ball imaging (Tuch, 2004) and the damped Richardson Lucy (dRL) algorithm (Dell'acqua 

et al., 2010). 
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1.2.1.5 Tractography  
Estimates of local fibre orientations are sequentially modelled by tractography 

algorithms to generate streamlines of fibre propagations (Figure 1-1E) (Farquharson et 

al., 2013; Jbabdi et al., 2015). The development of sophisticated yet user-friendly 

pipelines has led to an upsurge of research groups employing tractography approaches. 

For purposes of whole-brain tractography (Figure 1-1F), propagation is repeated at 

brain tissue voxels to generate comprehensive streamline maps. This procedure is 

performed until a specific threshold criterion has been met, such as the maximum 

number of fibres. Streamlines ideally propagate within white-matter tissue, with 

start/end points situated upon or near the grey/white-matter interface (Smith et al., 

2012a). 

 

1.2.1.6 Choice of tractography algorithm and acquisition sequences  
Our understanding of the spatial and topological features of human brain networks are 

further influenced by the choice of tractography algorithms. Deterministic algorithms 

track propagations along the singular peak (Mori et al., 1999; Mori and van Zijl, 2002), 

with areas containing multiple fibre-orientations pathways either not fully reconstructed 

(false negatives) or erroneously inferred (false positives) (Figure 1-1E; left) (Jones et al., 

2013). Probabilistic tractography (Aganj et al., 2011; Behrens et al., 2003) is typically 

employed with a more complex diffusion model such as CSD to allow multiple possible 

propagations through each voxel via the representation of uncertainty of the most likely 

tract directions via the fODF (Figure 1-1E; right) (Tournier et al., 2010; Tournier et al., 

2012). CSD-probabilistic methods are qualitatively shown to reconstruct fibre-bundles 

more sensitively compared to known anatomy - especially with those of high-angular 

trajectories (Jeurissen et al., 2011; Tournier et al., 2012). A trade-off for the increased  
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Figure 1-1: Schematic of the steps involved in fibre reconstruction from dMRI data. A, 

DWI of an axial slice for a representative elderly subject. B, Diffusivity of water 

molecules (arrows) showing anisotropy (restricted). C, DTI (middle panel; ellipsoids) 

and CSD (right; spherical harmonic functions) models for estimates of axonal 

orientations (left; sticks). DTI resolves the orientation for coherently-organised single-

fibre populations (top), whereas it fails for inferring “crossing-fibre” populations 

(bottom) relative to CSD. D, FODs of CSD approaches at different  gradient strengths, 

with higher b-values (bottom panel) sharpening the angular profile relative to low b-

values (top). E, Fibre-orientation estimates (top) and subsequent fibre-tracking 

(bottom) of CSD (right) and DTI-based (left) approaches for the corona radiata. For 

populations of “crossing-fibres” (cyan) only CSD separates the individual orientations. 

F, CSD and probabilistic whole-brain tractography, with streamlines overlayed on the 

coronal slice of the subject’s anatomical T1-weighted scan.                                       
Adapted from (Bastiani and Roebroeck, 2015; Descoteaux et al., 2009; Maffei et al., 2015) 
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sensitivity of probabilistic methods is “jittering” tracks which can lead to erroneous 

false positives (Thomas et al., 2014; Zalesky et al., 2016). The trade-off between the 

sensitivity of probabilistic methods versus the specificity of deterministic methods is an 

important issue that remains to be resolved. 

High-angular-resolution diffusion-weighted imaging (HARDI) acquisition 

schemes are essential for reconstructing complex fibre-configurations (Tournier et al., 

2011; Tuch et al., 2002). Within HARDI sequences the diffusion weighting (b-value; 

gradient strength and diffusion time) (Le Bihan and Breton, 1985) is typically increased 

to magnitudes of b = 2000-3000 s/mm2 (Descoteaux et al., 2009; Tournier et al., 2013). 

Longer diffusion times result in complete signal loss along the extra-axonal compartment, 

with increased sensitivity to anisotropic diffusion (i.e. dephasing) within intra-axonal 

compartments (Bastiani and Roebroeck, 2015; Jones et al., 2013). Whilst the angular 

resolution of the diffusion profile is sharpened (Descoteaux et al., 2009; Tournier et al., 

2013) (Figure 1-2D), the signal-to-noise ratio is however much lower and sequences are 

more suspectible to noise artifiacts (Andersson and Sotiropoulos, 2016; Pannek et al., 

2012a; Zalesky et al., 2016). A large number of diffusion-gradient pulses are also required 

with HARDI sequences to ensure comprehensive sampling over unique fibre-directions 

(Jones et al., 2013). Current recommendations for studies aiming to reconstruct complex 

fibre-configurations are to acquire at least 45 directions over the whole sphere (Tournier 

et al., 2013). Implementation of HARDI protocols within clinical settings is still relatively 

rare (Farquharson et al., 2013) due to the time constraints of such sequences and the 

complexity of the ensuing analyses. 
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1.2.1.7 Constructing the human connectome  
The start/termination points of whole-brain streamline maps (Figure 1-2A) are combined 

with a pre-defined parcellation of the grey matter to identify fibre propagations which 

connect node pairs. The resultant network of connectivity edges is known as the structural 

connectome (Figure 1-2C and Figure 1-2D) (Sporns, 2013b; Sporns et al., 2005). These 

pre-defined parcellation regions should ideally represent clusters of grey-matter voxels 

within spatially homogenous areas or with a similar functional specialization (i.e. visual 

vs motor areas) (Fornito et al., 2013; Zalesky et al., 2010b). 

 

Figure 1-2: Construction of structural connectomes. Whole-brain fibres (A) are 

combined with anatomical parcellation regions (B). A connection is identified if a 

streamline starts and terminates within regions i and j respectively, represented upon a 

network-perspective (C; lines linking circles), or as a weighted matrix entry (ith-column 

and jth-row) within an adjacency graph W (D). The top and lower quadrants of W show 

the high-density of intra-hemispheric connections, whilst the left and right panels indicate 

relatively very few inter-hemispheric edges (as shown in C). E, The fibre propagation 

between regions i and j denoted by Wij             
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 The strength of connectivity between node pairs can be weighted by the number of 

intersecting streamlines, despite the issues inherent with tractography-derived counts 

(Calamante et al., 2015; Jones et al., 2013).  Alternatively, connectomes can be weighted 

by the mean FA value for voxels along the intersecting fibres. Notwithstanding the 

controversies regarding DTI-indices, streamline count is correlated to a greater extent 

with the projection strength of interareal pathways derived by macaque tract-tracing 

methods (van den Heuvel et al., 2015). Regardless of the approach to reconstructing the 

diffusion signal, or the choice of tractography scheme, the resultant connectomes are 

undirected. That is, dMRI cannot distinguish afferent from efferent fibres – a substantial 

current limitation (Jones et al., 2013).  

 

1.2.2 Functional brain networks 

The most commonly employed neuroimaging technique in the construction of whole-

brain functional networks is fMRI. Whilst research on connectivity patterns using EEG 

and MEG is burgeoning, this work here focuses upon fMRI methods. 

 

1.2.2.1 Functional magnetic resonance imaging 
fMRI sequences measure changes in the contrast of blood oxygen-level dependent 

(BOLD) signals. BOLD signals are produced by the balance of oxyhaemoglobin and 

deoxyhaemoglobin in blood vessels (Ogawa, 2012; Ogawa et al., 1990): Local neural 

activity leads, through pathways poorly understood, to a transient dilation of blood vessels 

and an influx of oxyhaemoglobin. This changes the ratio of oxy- to- deoxyhemoglobin 

and resultantly a transient change in the local BOLD contrast (Ogawa, 2012; Ogawa et 
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al., 1990).  Psychological processes leads to the observable accentuation of BOLD signals 

in specific cerebral areas – hence the BOLD signal is an indirect measure of local evoked 

neural activation (Belliveau et al., 1991; Ogawa et al., 1992). The temporal co-

dependence (i.e. correlation) of activation patterns between spatially-distinct brain-

regions defines their functional connectivity (Friston, 1994; Friston et al., 1993; Friston 

et al., 1994). Patterns of increased functional connectivity (i.e. shared co-activation) 

between brain-regions may reflect the transfer of neural communication between these 

areas, or simply the co-activation of those areas driven by other sources.  

 

1.2.2.2 Resting-state functional magnetic resonance imaging 
Spontaneous brain activity is observed when subjects are resting and not attending to a 

task (Biswal et al., 1995; Biswal et al., 1997), supporting the notion of ongoing patterns 

of neural communication during internally directed thought (Fox and Raichle, 2007; van 

den Heuvel and Hulshoff Pol, 2010). Resting-state fMRI (rs-fMRI) sequences detect the 

spontaneous fluctuations of BOLD signals: Individuals are typically asked to close their 

eyes and not think of anything in particular, or rest with their eyes fixating on a cross hair. 

The influence of cardiac (Chang et al., 2009) and respiratory fluctuations (Birn et al., 

2008) remains, however, contentious, as does the meaning of changes in the background 

global signal and the impact of head motion (Fox and Raichle, 2007; van den Heuvel and 

Hulshoff Pol, 2010). However, simultaneous electrophysiological recordings have 

supported the neuronal predominance of rs-fMRI signals (Bianciardi et al., 2009; Shmuel 

and Leopold, 2008; Shmuel et al., 2002). Post-acquisition pipelines (Cox, 1996; 

Jenkinson et al., 2012; Yan and Zang, 2010) are designed to remove non-neuronal 

oscillations from the BOLD signals, such as the sampling of low-frequency spontaneous 
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fluctuations (0.01-0.1 Hz) (Cordes et al., 2001; Cordes et al., 2000) and the regression of 

nuisance variables.  

 As with structural networks, individual grey matter voxels are grouped into 

predefined parcellation regions. Functional connectivity patterns from task or resting state 

acquisitions are combined with parcellation templates to construct functional brain 

networks, which because of the nature of linear correlations, are fully-connected and 

undirected (Fornito et al., 2013; Sporns, 2013b) 

 

1.2.2.3 Resting-state networks 
The highly-correlated patterns of intrinsic fluctuations in resting state fMRI data support 

the relevance of spontaneous BOLD signals. Highly-correlated areas coincide with 

constellations of brain-regions that share anatomical features and functional 

specialization (i.e. visual cortices) (Damoiseaux et al., 2006; Fox et al., 2005; Smith et 

al., 2009). Such spatio-temporal patterns reflect the intrinsic functional organisation of 

the brain, with highly-correlated areas forming resting-state networks (RSN’s). RSN’s 

are typically identified through either the functional correlations of seed-regions of 

interest, or data decomposition approaches such as Independent Components Analysis 

(ICA) (Beckmann et al., 2005; McKeown et al., 1998). RSN’s highly replicated across 

the literature include: The heteromodal default-mode network (DMN), sensorimotor, 

attention-related, primary visual, extra-striate visual, fronto-parietal (bi-lateral) 

cognitive-control areas, and lastly, auditory networks (Figure 1-3) (Beckmann et al., 

2005; Damoiseaux et al., 2006; Smith et al., 2009). 



 

 13 

 

Figure 1-3:  RSN’s most commonly identified across rs-fMRI investigations. Z-score 

maps are overlayed on image, with warmer colours expressing the regions greater 

contribution to the RSN. Images are presented from sagittal (left column), coronal 

(middle) and axial (right) perspectives, with the left hand side corresponding to the 

right-hemisphere.   
Figure adapted from (Beckmann et al., 2005) 

 

1.2.2.4 Default-mode network 
Brain-regions comprising the DMN include inferior and medial (i.e. posterior cingulate, 

precuneus) parietal regions, and also medial (i.e. anterior cingulate, medial prefrontal  
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gyrus) prefrontal cortices (PFC). These regions exhibit higher levels of BOLD signal 

intensity and functional connectivity in resting state conditions compared to task 

performance and are have thus been denoted the brain’s “default” state (Buckner et al., 

2008; Greicius et al., 2003). Traditional fMRI studies reveal DMN activity to attenuate 

during demanding tasks which require cognitive or executive-control. Decreased 

functional connectivity is also observed to task-engaged areas such as fronto-parietal 

centers (Greicius et al., 2003; Lawrence et al., 2003; McKiernan et al., 2003). The 

integrity and functioning of DMN regions are associated with other higher-order 

functions such as episodic memory and self-referential processing (Northoff et al., 2006; 

Raichle, 2015; Seghier, 2013; Utevsky et al., 2014). 

 

1.3 Macroscopic features of human brain networks 

1.3.1 Calculation of complex brain network properties 

The utilization of graph-theoretical tools in the analysis of structural and functional 

connectivity patterns affords the quantification of complex brain network properties. 

Aptly known as graph-metrics (Rubinov and Sporns, 2010), these metrics have revealed 

complex topological, spatial, and spatio-temporal macroscopic features inherent within 

functional and structural brain networks (Bullmore and Sporns, 2009; Sporns, 2013b).  

Graph-metrics define individual elements (nodal-level) of brain-regions embedded within 

the network, as well as the global architecture of whole-brain interactions (Rubinov and 

Sporns, 2010). Nodal metrics typically implemented in connectomic investigations 

include:  
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1.3.1.1 Nodal graph metrics  

• Degree centrality (Figure 1-4A): Number of binary links that brain region i 

shares with the network. The weighted degree can be calculated by the total 

sum of all weighed connections for i 

• Betweenness centrality: Fraction of shortest paths between all pairs of brain 

regions that pass through i 

• Clustering coefficient (Figure 1-4B): The fraction of neighbouring brain areas 

linked to region i that are connected to one another, forming triangles 

• Characteristic path length (Figure 1-4C): Average shortest path length 

(minimal number of discrete steps) required to link brain-region i in the 

network 

• Efficiency: The inverse of the characteristic path length for brain-region i in 

the network  

 Conventional global graph-metrics employed are typically aggregates of nodal 

measures over all constituent regions. Their definitions are redundant and hence not listed 

here.    

 

1.3.2 Small-world characteristics of brain networks 

Networks demonstrate a “small-world” topology if their interactions preserve the 

cliquey/high-clustering of lattice-like graphs, but also display the long-range connections 

characteristic of random networks (Figure 1-5A) (Watts and Strogatz, 1998). As with 

many other real-world networks, both structural and functional brain networks exhibit 

small-worldness (Bassett and Bullmore, 2006; Sporns, 2013b; Sporns and Zwi, 2004). 
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Figure 1-4: Representation of key graph-metrics employed in brain network 

investigations. A graph is represented by its constituent edges (lines) linking nodes 

(circles). A, Degree centrality corresponding to the number of links (bold) attached to 

each node, shown for highly-connected (left; degree of five) and sparsely-connected 

nodes (right; degree of one). B, Clustering coefficient, relating the extent each nodes’ 

topological neighbours are also linked. Connections of highly-clustered regions (left) 

form multiple triangles (dashed) with other regions. C, Shortest number of paths 

required to link two nodes to each other, shown as three steps along the bold line. 
Adapted from (Sporns, 2013b) 

 

These observed features reflect the underlying structural organisation, which shapes the 

opposing requirements for functional integration and functional segregation in the brain 

(Friston et al., 1996a; Friston et al., 1995; Sporns, 2013a).  

 

1.3.3 Functional segregation 

As with lattice-like graphs, the connections of brain networks are highly-clustered or 

cliquey - as reflected through the global clustering coefficient (average nodal clustering 

coefficient) (Figure 1-5A; left panel). These cliques speak to the brain’s modular 
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organisation (Meunier et al., 2010; Sporns and Betzel, 2016): Regions densely-connected 

amongst themselves form clusters of communities which share a common functional 

specialisation or spatial neighbourhood (e.g. visual cortices) (Honey et al., 2007; Rubinov 

and Sporns, 2010) (Figure 1-5D). Sparser connections connect with other communities, 

indicating their functional segregation within the brain network (Figure 1-5B; left). The 

functional segregation of specialised brain-regions hence confers the rapid and efficient 

spread of information processing for task-demands (Bullmore and Sporns, 2012; Sporns, 

2013b). 

 

1.3.4 Functional integration 

Like random graphs, brain networks also exhibit many short paths (i.e. low characteristic 

path length) that link brain regions (Figure 1-5A; right) (Bassett and Bullmore, 2006). 

These short-communication paths ensue a high global efficiency (inverse of the 

characteristic path length over the whole-network) of brain networks, indicating a high 

capacity for information transfer (Rubinov and Sporns, 2010). The presence of a few 

long-range connections ensures the functional integration of segregated/specialized areas 

(Figure 1-5B; right) (Sporns, 2013a), which supports complex perceptual and cognitive 

processes (Friston et al., 1995; Tononi, 2004). 

 The macroscopic features of “small-world” brain networks flesh out the opposing 

requirements for functional integration and segregation in the human brain. This delicate 

balance may optimise brain function critical for human cognition and behaviour (Figure 

1-5C) (Bullmore and Sporns, 2012; Sporns, 2013a). Within psychopathological states, 

for example, increased functional segregation may reflect isolated neural processing and  
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Figure 1-5: Modular, small-word features of brain networks. A, Representations of 

connections (lines) between nodes (black circles) of different graphs, showing small-

world networks (middle panel) preserve the high-clustering of lattice-like graphs (left), 

whilst also short communication paths of random networks (right). B, Graph illustrations 

of functional segregation (left) and functional integration (right) in brain networks. 

Connections clusters in communities (left; red borders) reflective of segregation, but are 

integrated to other communities by efficient short-paths. C, Optimum brain state 

(shading) achieved by balancing segregation and integration. D, Communities (different 

colours) identified by community-detection algorithms on human structural networks. 

Adapted from (Aerts et al., 2016; Perry et al., 2015; Sporns, 2013a)  
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the “dysconnectivity” of spatially-distributed areas (Catani, 2005). On the other hand, 

highly-integrated random networks could lead to overly rigid and inflexible neuronal 

processes (Fornito and Bullmore, 2015; Fornito et al., 2015).     

 

1.3.5 Relation between structural and functional brain networks 

The anatomical landscape has been demonstrated to shape the brain’s functional 

interactions: Within healthy adults, strong structural connectivity is predictive of greater 

functional connectivity patterns (Hagmann et al., 2008b; Honey et al., 2009; Skudlarski 

et al., 2008), while weaker functional connections occurs over long-range distances (Goñi 

et al., 2014; Hermundstad et al., 2013). The topology of structural path interactions also 

predicts functional connectivity: The presence of local detours along clustered-cliques of 

brain-regions are associated with increased functional connectivity (Goñi et al., 2014). 

This boosting resonates with the enhanced functional connectivity within densely-

connected and segregated communities (Betzel et al., 2013; Hagmann et al., 2010; van 

den Heuvel and Sporns, 2013a). However, structural-functional relations are not one-to-

one, as strong and variable functional connections are observed over indirect structural 

linkages (Honey et al., 2009; Mišić et al., 2016). The non-overlapping patterns 

nonetheless support the proposal that the relatively stable structural architecture shapes 

variable and diverse functional connectivity patterns (Honey et al., 2010; Mišić et al., 

2016).  
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1.3.6 Neural brain dynamics 

Throughout this work, functional connectivity estimates predominately refer to “static” 

inter-regional correlations averaged over the entire rs-fMRI scan (Zalesky et al., 2014). 

Focusing upon “windows” of shorter time-courses has uncovered the rich spatiotemporal 

dynamics of RSN’s  (Chang and Glover, 2010; de Pasquale et al., 2015; Deco and Jirsa, 

2012; Smith et al., 2012b; Zalesky et al., 2014): At rest, brain regions temporally decouple 

from their core respective subsystems and synchronise with other regions. These dynamic 

brain patterns are attributed to the system exploring a broad diversity of functional 

repertoires (Deco et al., 2013; Ghosh et al., 2008; Honey et al., 2007).  

 Structural connectomic data can be integrated into computational models that 

simulate local neuronal (i.e. network nodes) activity along axonal pathways (i.e. edges). 

In brief, dynamic brain fluctuations are revealed within critical operating points at the 

brink of transition to ordered brain states (Deco and Jirsa, 2012; Deco et al., 2013). The 

integrative features of highly-connected structural “hub-regions” have been shown to be 

critical for synchronization and flexibility of such simulated neural patterns (Alstott et al., 

2009; Gollo et al., 2015; Senden et al., 2014; Senden et al., 2012; Váša et al., 2015). These 

findings reinforce the importance of the anatomical scaffold to large-scale dynamic 

neuronal interactions.  

 

1.3.7 Hub-regions  

The degree-distribution (i.e. number of links) of structural brain-regions shows a non-

Gaussian shape (Gong et al., 2009a; Hagmann et al., 2007; Zalesky et al., 2010b). These 

distributions (Barabási and Albert, 1999) reveal the presence of “hubs” that are more 
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highly-connected than other regions (van den Heuvel and Sporns, 2013b). Structural hub-

regions particularly overlap with DMN regions, orbitofrontal, and lateral prefrontal areas 

(Figure 1-6; left) (Gong et al., 2009a; Hagmann et al., 2008b; van den Heuvel and Sporns, 

2013b). Structural hubs also exhibit a high-degree of spatial overlap with hub areas 

identified from functional connectivity patterns (Figure 1-6; right) (Buckner et al., 2009; 

Power et al., 2013). Spatially-similar areas also exhibit other definitions of a region’s 

structural “hubness”, such as betweenness centrality, nodal efficiency, and participation 

index (i.e. extent of inter-modular links) (Gong et al., 2009a; Hagmann et al., 2008b; van 

den Heuvel and Sporns, 2013b). This reveals that these hub-regions are not only highly-

connected, but are also critical sources for functional integration within the human brain. 

 

Figure 1-6: Hub-regions across structural and functional human brain networks. A, 

Structural hub-regions identified by high-ranking accumulated scores over multiple 

nodal metrics of “hubness”, with warmer colours indicating increased hub-structure 

(hubs shown from green to red).  B) Intrinsic functional connectivity strength maps 

derived from rs-fMRI data, with warmer colours indicating increased connectivity of hub-

regions.  

 
Adapted from (Buckner et al., 2009; van den Heuvel et al., 2010)  
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1.4 Features of hub-regions within structural and functional 

brain networks 

1.4.1 The connections between hub-regions form a rich-club 

The wiring amongst hub-regions appears to be densely-connected, forming a core 

anatomical backbone known as the “rich-club” (van den Heuvel and Sporns, 2011) 

(Figure 1-7A; left). This term denotes the preferential wiring between “rich-club” regions, 

which are more highly-connected than expected by their degree alone. Rich-club 

organisation is assessed by the rich club coefficient (!), derived from the relative ratio of 

connectivity within brain-regions of degree-values > k (Figure 1-7B). The robustness of 

rich-club organisation as a general principle finds support through its presence in a 

number of non-human nervous systems, including the nematode worm (Towlson et al., 

2013), and also the macaque, cat and mouse brains (Buckner et al., 2009; de Reus and 

van den Heuvel, 2013; Fulcher and Fornito, 2016; Harriger et al., 2012; van den Heuvel 

et al., 2015).  

 

1.4.2 Rich-club connections are pivotal for global brain communication 

Identification and classification of rich-club regions allows connections of the structural 

connectome to be segregated into different types: Rich-club (linking rich-club regions), 

feeder (rich member to non-rich region), and local (non-rich to non-rich) connections 

(Figure 1-7A) (van den Heuvel et al., 2012). Relative to the other connection classes, rich-

club connections display greater streamline density, higher-levels of microstructural 

organisation (i.e. FA, MD), myelination (i.e. magnetization transfer ratio), and longer 

physical fibre-lengths (Collin et al., 2014b; van den Heuvel et al., 2012; van den Heuvel 
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and Sporns, 2013a). Global brain communication appears to take advantage of these 

architectural features of rich-club connections: Models suggest that network traffic is 

disproportionately routed along the rich-club for the shortest communication path 

between one region and another (van den Heuvel et al., 2012)  - and also for connections 

bridging segregated functional communities (de Reus et al., 2014; de Reus and van den 

Heuvel, 2013; van den Heuvel and Sporns, 2013a). Brain communication paths are also 

observed to follow ordered sequences of specific connection types, known as “path 

motifs”. The most over-representative motifs are those between lower-degree regions, for 

which traverse and exit through the rich-club (de Reus and van den Heuvel, 2013; van 

den Heuvel et al., 2012).   

 Global workspace theories postulate that a specific functional subsystem does not 

underlie a particular cognitive function (Dehaene et al., 1998; Dehaene and Naccache, 

2001). These theories instead propose that a core system characterised by complex 

interactions between the segregated subsystems gives rise to perceptual and cognitive 

brain states. This core system resonates with the wiring patterns of the rich-club, for 

which neural signalling appears to take advantage of its efficient, short communication 

paths (van den Heuvel et al., 2012).  The projections of rich-club connections allow the 

integration of multiple functional sources, and may thus reflect a neural substrate of this 

“global workspace” (van den Heuvel and Sporns, 2013a).  

 

1.4.3 Dynamic properties of hub-regions  

As reviewed above, temporally resolved rs-fMRI data reveals the presence of dynamic 

(nonstationary) connectivity patterns (Calhoun et al., 2014). Such patterns have also been 
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Figure 1-7:  Identification of hub-regions and rich-club architecture in structural brain 

networks. A, Brain regions are identified either as hubs (red circles) or non-hubs 

(orange), on virtue of their highly-connected structure (i.e. degree). Hub-identification 

allows structural connections to be classified as either hub-connections (red lines; linking 

hub-to-hub); feeder (orange; hub-to-non-hub) or local links (grey; linking non-hubs). B, 

Rich-club coefficients across k-levels (i.e. degree-levels) for empirical (!; black), degree-

preserving randomised networks (!rand ; grey), and the ratio of ! over !rand, yielding 

!norm (red).  Rich-club architecture is present if rich-club connectivity within ! exceeds 

!rand, reflected by !norm values (right y-axis) greater than 1 (dashed). 

 

reported in MEG data (de Pasquale et al., 2015). The links fluctuating most frequently 

appear to be long-range inter-modular connections - particularly for projections of DMN 

and fronto-parietal hub-areas (Zalesky et al., 2014). Interestingly, these fluctuations are 

also characterised by changes in the spatiotemporal structure of connectivity patterns: 

Intermittent periods of topological efficiency are observed, with the links of such hub-

regions more pronounced in brain states of high-efficiency (de Pasquale et al., 2015; 
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Zalesky et al., 2014). The dynamic behaviour of hub-connections during resting-state 

supports task-based findings of their capacity to flexibly reorganise under increasing 

cognitive demand (Bassett et al., 2011; Cocchi et al., 2013; Zalesky et al., 2014). It is thus 

apparent that under both resting and task-conditions, the dynamic behaviour of hub-

regions allows the efficient integration of information from multiple functional sources.   

 

1.4.4 Wiring and metabolic cost of rich-club connections 

Brain networks are thought to minimise wiring costs, whilst maximising computationally 

advantageous features (Bullmore and Sporns, 2012). For example, the “small-worldness” 

(i.e. short-range connections) within brain networks is indicative of the drive to minimise 

the costs of spatial embedding (Roberts et al., 2016c). The metabolic cost of the human 

brain, which is strikingly disproportionate to the total body weight (Karbowski, 2007), is 

primarily expended on the maintenance of neural signalling (Attwell and Laughlin, 2001). 

Genetic co-expression of rich-club connections is interestingly strongest for genes 

regulating the oxidative synthesis and metabolism of adenosine triphosphate utilization 

(ATP) (Fulcher and Fornito, 2016). This specific genetic coupling of rich-club 

connections, along with their considerable flow of network traffic, implicates their greater 

metabolic demand during neural signalling (Bullmore and Sporns, 2012; Fulcher and 

Fornito, 2016). Relative to non-hub areas, hub-regions also exhibit greater levels of 

aerobic glycolysis (Collin et al., 2014b), glucose metabolism (Tomasi et al., 2013) and 

regional blood flow (Liang et al., 2013). However, the increased metabolic and wiring 

costs incurred by rich-club architecture may be offset by their efficient-routing patterns 

and densely-myelineated axons (Bullmore and Sporns, 2012; Collin et al., 2014b).  
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1.5 Summary of graph-theoretical applications to human 

brain networks 

Connectomic approaches have identified unique features of large-scale neural 

architecture, which is thought to be critical for shaping neural dynamics. The early 

potential of graph-theoretical applications was realised with the seminal discoveries of 

“small-world” features: These features reflect the  opposing requirements for integration 

and segregation of cognitive information processing. Investigations have not yet had the 

opportunity to utilize recent developments in dMRI acquisition and streamline 

reconstruction methodology. The fledging promise of connectomic approaches was 

further fostered by the discovery of the anatomical core backbone – wiring patterns which 

are critical for integrated, efficient global brain communication. The functional repertoire 

of the rich-club translates beyond “static” network features, with the capacity of hub-

connections to dynamically transition between functionally-specialized areas. Changes to 

these brain network features may reflect changes to the delicate balance of functional 

integration and segregation. The subsequent changes to brain functioning are theorised to 

underlie age-related cognitive changes and psychiatric conditions, which I now review.    

 

1.6 Connectomic applications to normal ageing  

1.6.1 Cognitive changes associated with normal ageing 

Gradual changes in cognitive ability characterise normal human experience for 

individuals as they progress through their lifetime. Cognitive ageing is considered distinct 

from the declines associated with the neurodegenerative aspects of Alzheimer’s Disease 

(AD), or its prodromal stage, “Mild Cognitive Impairment” (MCI) (Deary et al., 2009). 
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Changes in cognitive performance occur across a swathe of neuropsychological tests, 

which comprise domains such as episodic memory, working memory, reasoning, 

visuospatial ability, and processing speed (Deary et al., 2009; Hedden and Gabrieli, 2004; 

Park and Reuter-Lorenz, 2009). All these domains reflect “fluid-based” mental abilities 

dependant on an individual’s cognitive processing ability. Interestingly, from early 

adulthood, age-related reductions appear to be similar across these domains (Deary et al., 

2009). In contrast, cognitive functions accrued (i.e. “crystallized”) over the lifespan - such 

as verbal abilities and semantic knowledge – are relatively preserved until later life (Park 

and Reuter-Lorenz, 2009).  

 The sensitivity of “fluid-based” domains have led to postulations of ageing as being 

characterized by changes to cognitive functions which require large-scale neural 

processing (Grady, 2012; Park and Reuter-Lorenz, 2009). Processing speed, one of the 

functions most sensitive to changes with age (Hoogendam et al., 2014; Schaie, 1996), 

also appears to account for varying performance across the other fluid domains (Baltes 

and Lindenberger, 1997; Finkel et al., 2007). In turn, it has been further postulated that 

an individual’s slowing is a general cognitive factor that underlies ageing changes 

(Salthouse, 1996; Salthouse, 2000). However, marked inter-individual differences exist 

in the trajectory of age-related changes - this complexity is exacerbated by the 

contribution of general medical, genetic, vascular, physiological, dietary and lifestyle 

factors (Deary et al., 2009). Elucidating macroscopic brain features that are tightly 

coupled with ageing is imperative to identify potential treatments which can modify these 

cognitive changes. Even “healthy” cognitive changes impact on the performance of 

everyday activities and occupational duties (Fisher et al., 2014; Salthouse, 2012). 

Identification of brain-behaviour patterns associated with normal ageing are also 
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important to disentangle their trajectories from the deleterious declines inherent within 

AD and MCI. 

 

1.6.2 Mild cognitive impairment and Alzheimer’s disease  

The most common form of dementia, AD, is a debilitating neurodegenerative disorder 

characterised by progressive declines in episodic memory (Ballard et al., 2011). It is 

estimated that approximately 5% of individuals aged 60 or above suffer from dementia. 

The years lived with disability (YLD) from AD exceed medical conditions such as cancer 

and cardiovascular disease (World Health Organization, 2003). In the later stages of AD, 

the more advanced impairments in domains such as memory, executive functioning, 

language, and visuospatial ability lead to a loss of overall functioning (Salmon and Bondi, 

2009; Weintraub et al., 2012). AD patients also experience a host of neuropsychiatric 

disturbances such as apathy, depression, anxiety, agitation, and psychosis (Mega et al., 

1996; Porsteinsson and Antonsdottir, 2015). The forgetting of faces or names is also 

distressing to caregivers. As the risk for late-onset AD progressively increases with age 

(Blennow et al., 2006; Plassman et al., 2007), the ageing global population represents an 

impending international health epidemic and is thus an utmost research priority: The 

prevalence of AD within the United States alone is expected to more than double by 2030 

(Federal Interagency Forum on Aging Related Statistics, 2004). Although there being no 

clear pathogenic marker for the development of AD, some individuals are more 

genetically susceptible than others (Ballard et al., 2011). Apolipoprotein E (APOE) 4 

allele carriers (Genin et al., 2011; Mahley et al., 2006) are estimated to have an odds ratio 

of 14.9 for disease-onset (Farrer et al., 1997; Mahley et al., 2006). 
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  It has been proposed that the pathophysiological cascade of AD is triggered by the 

accumulation of amyloid-beta(Aβ) plaques (Jack et al., 2013; Jack et al., 2010). However, 

the precise pathogenic mechanisms are unclear. It remains disputed whether abnormal tau 

aggregation - causing neurofibrillary tangles (NFTs) - mediates the causal link between 

plaque accumulation and AD pathogenesis (Jack et al., 2010). Nonetheless, the clinical 

deterioration that characterises AD is widely assumed to be triggered by either of these 

pathological insults which lead to atrophy, the death of surrounding neurons, and synaptic 

dysfunction (Hardy and Selkoe, 2002; Jack et al., 2010). Although physicians currently 

lack an objective in vivo MRI tool to accurately detect AD neuropathology, MRI 

biomarkers are commonly utilized to assist in the diagnosis of the disease (Ballard et al., 

2011). Traditional biomarkers of neuropathological Aβ accumulation include reduced 

cerebrospinal-fluid (CSF) amyloid-beta (Aβ42) levels (Sunderland et al., 2003), and the 

binding of  amyloid-based radiotracers with Positron Emission Topography (PET)-MRI 

(Duara et al., 1986). Binding patterns that are indicative of neuropathological 

accumulation of amyloid include the increased uptake of Pittsburgh Compound-B (PIB) 

(Klunk et al., 2004). Corresponding decreases in fluorodeoxyglucose 18F (FDG) reflect 

corresponding decreases in neuronal activity (Friedland et al., 1983). The atrophy of 

medial temporal structures such as the hippocampus and entorhinal cortex is a highly 

consistent MRI biomarker of AD (Scheltens et al., 1992). It’s accuracy in classifying 

patients, however, has not reached that required for a diagnostic tool. 

 Cognitive dysfunction in older individuals that do not meet the threshold required for 

the clinical diagnosis of dementia is defined as Mild Cognitive Impairment (MCI) 

(Petersen et al., 2001; Petersen et al., 2009). Individuals with MCI have an increased rate 

of conversion to Alzheimer’s (Fischer et al., 2007; Ward et al., 2012), and are hence 
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assumed to be experiencing a transitory, pre-clinical stage. Indeed, many of those with 

MCI demonstrate attenuated AD biomarkers (Belleville et al., 2014). However, the 

appropriateness of this “transitory” construct is questionable, as not all MCI individuals 

will later develop AD (Petersen et al., 2009). The variability in progression outcomes can 

be attributed to the large heterogeneity of MCI cohort. Conversion rates are even lower 

for general-population samples than those derived from clinical settings such as memory 

clinics (Ritchie et al., 2001). Furthermore, the operationalization of MCI is also disputed, 

as the cut-off criteria for MCI is influenced by normative psychological data, and the 

choice of clinical outcomes which define impairment (Bondi et al., 2014; Petersen et al., 

2009). Attempts to reduce the heterogeneity within MCI cohorts centre upon classifying 

individuals into the following subtypes (Petersen et al., 2001; Petersen et al., 2009): 

amnestic MCI (aMCI) individuals with deficits in a memory-related domain; non-

amnestic MCI (nMCI) characterised by complaints in a single non-memory domain; and 

multiple-domain MCI (i.e. md-aMCI or md-nMCI). Traditional MRI biomarkers are 

currently not sufficient on their own to accurately predict MCI classification or converters 

(Gomar et al., 2011; Shaffer et al., 2013; Trzepacz et al., 2014). 

 

1.6.3 Traditional neuroimaging investigations of age-related changes 

1.6.3.1 Grey matter changes with normal ageing 
The neurobiological correlates of age-related changes in healthy elders have traditionally 

focussed on morphological changes derived from T1-weighted MRI (Rodrigue and 

Kennedy, 2011). Macroscopic reductions in regional GM size are typically greatest 

within prefrontal cortices, followed by parietal association areas, and subcortical 

structures (Dennis and Cabeza, 2008; Park and Reuter-Lorenz, 2009; Raz et al., 2005). 
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Decreased episodic memory and executive functioning with normal ageing have been 

associated with the macroscopic volumetric changes in hippocampal and prefrontal 

cortices, respectively. The regional specificity of other cognitive domains is less clear. 

Reductions in the thickness of cortical folds have also been revealed with age in similar 

areas (Hedden and Gabrieli, 2004; Peters et al., 2011). However, the specificity of 

regional age-related changes for both morphological measures is generally mixed or 

contradictory (Rodrigue and Kennedy, 2011).  

 

1.6.3.2 White matter changes with normal ageing 
Consistent with so called “dysconnection theories” of psychiatric neurological disorders 

(Catani, 2005), age-related cognitive changes have been proposed to emerge from a loss 

of integrity of WM fibre-bundles which support cognitive processes (Bennett and 

Madden, 2014; O’Sullivan et al., 2001). Patterns of decreased FA and increased MD are 

well-documented with normal ageing. Changes to these DTI-derived indices of 

“microstructural integrity” are assumed to reflect the demyelineation and axonal loss 

observed in post-mortem tissues  (Peters, 2002; Tang et al., 1997). DTI-based correlates 

of normal ageing are typically measured within skeletonised populations of WM voxels 

and also reconstructed fibre-bundles. Processing speed and executive functioning observe 

the strongest associations across the cognitive domains for correlates of age-related WM 

changes (Bennett and Madden, 2014; Brickman et al., 2012; Salami et al., 2012; Ystad et 

al., 2011). However, the spatial specificity of WM areas/tracts that are most sensitive to 

the influence of age is still unclear. Whilst age-related changes are traditionally 

conceptualized to be more pronounced within anterior WM areas (Cabeza and Dennis, 

2012; Sullivan and Pfefferbaum, 2003), the involvement of later-myelinating regions are 
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also implicated (Bartzokis, 2004; Brickman et al., 2012). Given WM patterns and age are 

both intricately linked to inter-individual cognitive differences, establishing causal 

relations remains a challenge. Partial support is although provided for WM changes to 

mediate the link between normal ageing and cognitive performance (Borghesani et al., 

2013; Salami et al., 2012; Samanez-Larkin et al., 2012). 

 

1.6.3.3 Changes to large-scale communication patterns with age 
Traditionally, age-related variability in cognitive performance has been largely attributed 

to changes in particular anatomical pathways or structures (Andrews-Hanna et al., 2007). 

Univariate approaches however neglect the highly-complex patterns of neural 

interactions, and hence may only partially capture the complexity of normal ageing. 

Changes to large-scale neural communication across the lifespan were reported to account 

for age-related reductions in cognitive performance in a seminal investigation (Andrews-

Hanna et al., 2007). Here, decreases in the measures of structural connectivity (decreased 

FA) and resting-state functional connectivity within the DMN were identified to be 

closely associated with age. Furthermore, changes to both connectivity patterns were 

associated with decreased performance across a range of cogntive domains (Andrews-

Hanna et al., 2007). Age-related changes in large-scale communication is not surprising, 

given that the cognitive functions most sensitive to age are the fluid-based domains which 

require integrated, coordinated patterns of neural interactions. Age-related cognitive 

changes could thus be caused by changes in the balance of functional integration and 

segregation in structural and functional brain networks. Following this train of thought, 

multivariate connectomic approaches provide a more comprehensive tool to potentially 

understand the processes underlying normal ageing. 
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1.7 Structural connectomic investigations of healthy ageing 

1.7.1 Structural connectomic changes with age 
Only a few investigations of structural network changes with ageing have been conducted. 

Of those, the complexity of spatial and topological properties assessed are also limited. 

A relatively large study revealed a decreased efficiency of brain networks of healthy older 

adults (including MCI individuals) with increasing age (Wen et al., 2011). Global 

architectural changes with age suggest a decreased capacity for integrative brain 

communication, supported by a positive association between network efficiency and 

fluid-based performance (Wen et al., 2011). However, these structural brain networks 

were constructed and weighted from DTI-based approaches, limiting their 

interpretability. Lifespan studies have generally observed a decreased density of 

connections with age (Bennett and Madden, 2014; Gong et al., 2009b; Otte et al., 2015). 

Consistent observations of age-related changes in efficiency and other global architectural 

features (i.e. increased path length) further support a decreased integrative capacity of 

older brain networks underlying reductions in cognitive performance (Baggio et al., 2015; 

Otte et al., 2015; Zhao et al., 2015). 

 

1.8 Functional network investigations of healthy ageing 

1.8.1 Connectivity within large-scale systems 

Investigations of functional resting-state connectivity patterns have predominately used 

RSN’s identified through seed-based methods, or ICA. Functional connectivity has been 

consistently reported to decline with age within large-scale networks, independent of 

grey-matter changes. These changes to within-network functional connectivity patterns 
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appear to be partially associated with decreased cognitive functioning (Andrews-Hanna 

et al., 2007; Archer et al., 2015; Chan et al., 2014; Fjell et al., 2015; Geerligs et al., 2015; 

Onoda et al., 2012). Reductions are primarily observed within the DMN and other higher-

order subsystems such as the fronto-parietal and salience networks (Betzel et al., 2014; 

Geerligs et al., 2015). These observations have been largely identified through univariate 

calculations of average or total functional connectivity strength. However, connectomic 

brain regions can be assigned to their respective functional affiliations. Consequentially, 

decreases in within-network connectivity have been revealed to be intricately associated 

with changes to the functional architecture: Less efficient local networks (Geerligs et al., 

2015) and decreased modularity (Cao et al., 2014). 

 

1.8.2 Connectivity between large-scale systems 

Functional connectivity between large-scale networks increases with age (Betzel et al., 

2014; Chan et al., 2014; Geerligs et al., 2015; Grady et al., 2016). Interestingly, these 

opposing patterns (within versus between) point to decreases in within-network 

functional integration as well as increases for between-network integrations. Given brain-

regions within functional subsystems are linked by similar roles (Sporns, 2013a; van den 

Heuvel and Sporns, 2013a), increased between-network connectivity patterns with 

healthy ageing speaks to a reduction in functional specialisation/segregation (Chan et al., 

2014). The decreased modularity of functional networks with age is a corollary of this 

decreased segregation/specialization (Betzel et al., 2014; Cao et al., 2014; Geerligs et al., 

2015). Increased functional segregation is indeed associated with greater memory (age-

regressed) domain performance (Chan et al., 2014), highlighting the functional relevance 
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of the delicate balance between integration and segregation. However, this effect was not 

seen for any other cognitive domain.  

 

1.8.3 Whole-brain functional network changes with healthy ageing 

Examination of changes to whole-brain functional connectivity patterns with healthy 

ageing are also relatively scarce. Lifespan (Cao et al., 2014; Tomasi and Volkow, 2012a) 

and between-group investigations (Achard and Bullmore, 2007) have revealed decreases 

in network efficiency and long-range connectivity with age. These macroscopic changes 

are indicative of decreased functional integration with ageing, which at first glance 

contradicts the increases in integration observed for between-network communication. 

Opposing patterns of increased/decreased integration with age could however implicate 

distinct actions of age-related changes on different sets of connections/subnetworks. 

Although lifespan studies allow a comprehensive representation of the influence of age 

and the possibility of non-linear changes (Cao et al., 2014), these study designs introduce 

a host of methodological considerations: The population size of the older participants 

included is typically relatively small, and investigations require strict controls to ensure 

that ageing effects are not confounded by demographic and medical conditions.  

 Macroscopic functional network changes have also been replicated over narrower age 

spans (Marques et al., 2015; Sala-Llonch et al., 2014). Within an older cognitively-normal 

population (mean age, 65 years; SD, 11.8), decreases in edge-wise functional connectivity 

with age were reported for sets of edges that were particularly long-range projections 

(Sala-Llonch et al., 2014). The spatial specificity of the edges that were implicated is, 

however, unclear. The co-expression of macroscopic network features and age-related 
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cognitive changes has received little empirical attention. The aforementioned 

investigation only observed that the relations between increasing age and verbal memory 

changes were mediated by the clustering coefficients of frontal and sub-cortical areas 

(Sala-Llonch et al., 2014). Furthermore, other cognitive domains were not investigated. 

Interestingly, similar investigations of cognitively-normal older adults (Marques et al., 

2016; Marques et al., 2015) revealed a strong effect of increased educational attainment 

(years) on functional connectivity patterns. Modelling the influence of education has 

revealed that inter-individual variability in cognitive functioning can be accounted for 

factors other than age (Stern, 2002, 2012). However, the influence of education and other 

protective factors on the association between age-related cognitive changes and 

connectivity remains to be elucidated. 

 

1.9 Systematic investigation of hub-regions in normal ageing 

and Alzheimer’s 

1.9.1 Age-related changes to hub-regions and connections  

The integral value of hub-regions and their connections to human brain functioning 

strongly suggests that this neural substrate may also be implicated in age-related cognitive 

changes. As noted in healthy adults, neural signalling appears to take advantage of this 

anatomical backbone’s higher-capacity for network communication. The decreased 

integration of long-range connections observed with age implicates changes to the routing 

of communication along rich-club paths. Indeed, changes to the structural (Gong et al., 

2009b) and functional (Cao et al., 2014) topology of hub-regions have been identified to 

co-vary age. Interestingly, although changes appear to predominantly impact on the 
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topological structure of core DMN areas, the spatial distribution of hub-regions has also 

been demonstrated to be largely consistent across the lifespan (Betzel et al., 2014; Cao et 

al., 2014) 

The sensitivity of hub-connections to healthy ageing is reflected by the inverted-U 

trajectory of functional rich-club organisation with age (peaking at around 40 years) (Cao 

et al., 2014). The efficiency of the functional connectivity patterns of the anatomical hub 

connections (both hub and feeder classes) has also been identified to be susceptible to age 

(Betzel et al., 2014). Only one study (Baggio et al., 2015) has systematically investigated 

age-related changes to structural rich-club organisation - revealing no influence of age. 

However, this study used a relatively modest population size which spanned a large age-

range (i.e. n = 30; 39-79 years): More highly powered studies are clearly needed. 

 

1.9.2 Hub-regions in Alzheimer’s Disease  

A “dysconnectivity syndrome” has been proposed to underlie the disturbances of AD 

(Delbeuck et al., 2003; Seeley et al., 2009). Structural brain connections provide 

theoretical accounts of disease progression with an attractive substrate for the 

“transneuronal spread” of pathological AD agents (i.e. Aβ) (Jones et al., 2016; Raj et al., 

2012; Zhou et al., 2012). The vulnerability of large-scale subsystems in AD is widely 

evident, as disrupted neural communication, particularly within the DMN, is a hallmark 

feature of patients (Damoiseaux, 2012; Greicius et al., 2004; Seeley et al., 2009; Toga 

and Thompson, 2014). The centrality of anatomical hub-regions could potentially render 

themselves, and the interactions they support, more susceptible to pathogenic spreading 

(Fornito et al., 2015).  Indeed, Aβ deposition sites in AD are found to overlap with hub-



 

 38 

regions derived by functional connectivity patterns, particularly for areas coinciding with 

the DMN (Buckner et al., 2009). Across AD and other psychiatric disorders, the 

disproportionate metabolic requirements of hub-regions have been increasingly posited 

to increase their vulnerability to pathogenic stressors (Buckner et al., 2009; Crossley et 

al., 2014; Zhou et al., 2012). PET imaging findings are supportive of such “hub-opathy” 

in AD, because patients display hypometabolism patterns for areas overlapping with Aβ 

deposition sites (Edison et al., 2007; Förster et al., 2012; Oh et al., 2016). Lastly, a large 

meta-analysis (Crossley et al., 2014) of 392 studies involving 26 disorders revealed that 

grey-matter lesions in brain disorders are more likely to occur in regions identified as 

hubs in healthy adult connectomes: Distinct from other disorders, temporal lobe hubs 

have a higher lesion probability in AD (Crossley et al., 2014). 

 Graph-theoretical investigations have revealed the functional architecture of brain 

networks in AD patients and MCI individual’s express disruptions in the balance of 

functional integration and segregation (Dennis and Thompson, 2014). More recent 

applications have revealed that the decreased large-scale integration (i.e. reduced 

efficiency) in AD networks is associated with disturbances in long-distance projections 

(Dai et al., 2014; Lui et al., 2015). Moreover, disrupted long-distance projections 

selectively disturb the connectivity patterns of hub-regions in patients (Liu et al., 2014) - 

particularly for anterior-posterior DMN connections. It is highly suggestive to think that 

the fragmentation of global brain communication in patients is driven by disturbances to 

hub-regions/connections, thus supporting “hubopathy” models of AD. The connectivity 

patterns of hub-regions have also been identified as useful biomarkers for disease 

progression, and for classifying patients from controls (Dai et al., 2014; Lui et al., 2015). 
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The strength of this hubopathy view requires further validation. For example, a recent 

structural connectomic investigation (Daianu et al., 2015) of AD reported disruptions in 

mainly peripheral brain-regions. The sensitivity of detecting disturbances may be limited 

by methodological issues: This investigation employed dMRI acquisition and 

reconstruction methods, which are not optimal for resolving crossing and kissing fibre 

bundles. Furthermore, networks were constructed using a coarse parcellation template, 

which excludes subcortical interactions. Increasing the size of parcellation regions can 

result in the reduced spatial specificity of fibres which project to and from these cortical 

brain areas (Zalesky et al., 2010b). 

  

1.10  Connectomics of psychiatric disorders 

1.10.1 Contemporary mental health issues 

The plight of individuals suffering mental health issues is increasingly being brought to 

attention within our society.  The lifetime incidence of a psychiatric disorder in developed 

nations is approximately 25% (W. H. O. World Mental Health Survey Consortium, 2004; 

Wittchen and Jacobi, 2004). Psychiatric disorders are characterised by disturbances in 

behaviour, cognition, and mood - severe enough to impact on everyday functioning 

(American Psychiatric Association, 2013). The repercussions impact substantially on 

quality of life across the lifespan. Many psychiatric disorders are associated with 

abnormal perceptual and cognitive processes. Connectomic approaches provide a suitable 

theoretical and methodological framework for understanding the brain network 

alterations which may underpin these deviations from healthy human cognition and 

behaviour (Fornito and Bullmore, 2015; Fornito et al., 2015).  
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1.10.2 Bipolar Disorder 

Individuals with bipolar disorder (BD) experience severe fluctuations in mood and energy 

levels. These fluctuations range from the highs of manic episodes - characterized by 

elevated (but often irritable) moods and grandiosity – interspersed with low states of 

depressed mood and negative thinking (American Psychiatric Association, 2013; 

Saunders and Goodwin, 2010). Estimates of the population rates of BD are as high as 

8.3% (Akiskal et al., 2000), although the disorder encompasses a heterogenous group of 

phenotypical subtypes. Diagnoses of BD are classified into BD I or II subtypes: BD I is 

characterised by clear-cut manic episodes with psychosis (delusions, thought disorder and 

hallucinations) and  are often severe enough to require hospitalization. Individuals 

diagnosed with BD II largely experience depressive episodes, inter-mixed with 

hypomanic states (Akiskal and Pinto, 1999; Piver et al., 2002; Saunders and Goodwin, 

2010). Because hypomanic episodes are not as severe as manic states in BD I, BD II is 

under-diagnosed in both population and clinical samples (Akiskal et al., 2000) Given that 

suicide rates in affected individuals are higher than those with any other axis I psychiatric 

disorder, the accurate diagnosis and effective treatment of BD is imperative (Balázs et al., 

2006; Chen and Dilsaver). Furthermore, individuals within hypomania and mania stages 

are poor at judging the remittance of episodes, leading to poor adherence to 

pharmacological and behavioural interventions. Impairments in BD are not restricted only 

to affective domains: Cognitive deficits also occur in executive (Altshuler et al., 2004; 

Green et al., 2007; Pavuluri et al., 2006), psychomotor (Bora et al., 2009; Malhi et al., 

2007) and verbal-based abilities (Bearden et al., 2006; Martínez-Arán et al., 2005; van 

Gorp et al., 1999).  
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 The peak age for illness-onset of BD is between 15 to 20 years (Goodwin and 

Consensus Group of the British Association for Psychopharmacology, 2009; Perlis et al., 

2004; Weissman et al., 1988). The accurate diagnosis of BD is complicated by its episodic 

course. The occurence of a major depressive (MDD) episode typically precedes the 

clinical-threshold for manic symptoms (Angst et al., 2011; Chengappa et al., 2003). The 

clinical presentations of depressive episodes may also mask the hypomanic features of 

individuals, in turn leading to a misdiagnosis from the physician. The accurate diagnosis 

has implications for treatment options which stabilise the mood fluctuations, as their 

efficacy is influenced by the time of treatment initiation and phenotypic characteristics 

(Goodwin and Consensus Group of the British Association for Psychopharmacology, 

2009): Mood stabilisers such as lithium and atypical antipsychotics are effective in manic 

individuals (Geddes et al., 2004; Goodwin and Consensus Group of the British 

Association for Psychopharmacology, 2009; Saunders and Goodwin, 2010), whilst 

atypical antipsychotics such as quetiapine are more efficacious for treating bipolar 

depression (De Fruyt et al., 2012). Lithium, however, is more effective for long-term 

stabilization (Geddes et al., 2004). Despite the depressive stages of the disorder, the 

evidence for the effectiveness of antidepressants on their own is inconsistent (Sidor and 

MacQueen, 2012) - particularly for alleviating manic symptoms. Consequently, a 

combination of lithium, antipsychotics and antidepressant agents are often administered 

at various stages of the disorder  (Geddes and Miklowitz, 2013).  
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1.10.3 Neurobiological correlates of bipolar disorder 

The issues besetting the diagnosis of BD reinforce the need for an accurate classification 

of patients, and also to identify those at future risk for the disorder. It has been proposed 

that bipolar is underlined by disruptions to a constellation of key frontal, limbic and 

striatal brain regions (Frangou, 2014; Phillips and Swartz, 2014; Strakowski et al., 2012). 

The role of these areas for emotional, interoceptive and cognitive functions has been well 

established: Disturbances to the circuity between such areas hence speaks to the 

dysregulation of emotional and cognitive control that is characteristic of BD patients. 

Upon the presentation of cognitive and emotional stimuli, patients at various illness stages 

display abnormal activation and connectivity between fronto-limbic areas (Chase and 

Phillips, 2016; Phillips et al., 2008). Two putative pathophysiological brain circuits have 

emerged in the literature, for which both involve the dysfunctional modulation of 

emotional reactivity in the amygdala and other limbic structures (Phillips et al., 2008; 

Phillips and Swartz, 2014): The first implicates ventrolateral prefrontal cortices (VLPFC) 

in their modulation of external emotional cues, whilst the latter involves involuntary 

regulation attributed to ventromedial prefrontal (VMPFC) areas such as the orbitofrontal 

cortex (OFC) and anterior cingulate. BD symptomatology has also been attributed to 

heightened reward sensitivity, reflected by the abnormal circuitry between ventral striatal 

and PFC areas (Phillips and Swartz, 2014) 

Our current knowledge of the structural underpinnings of abnormal brain 

functioning in BD is guided by DTI-based studies. DTI-derived alterations are typically 

localised to fronto-limbic white-matter skeletons/fibre-bundles (Phillips and Swartz, 

2014). Reductions of FA in anterior portions of the corpus callosum is a commonly 

replicated finding, with consistent support for abnormalities in other major fibre-bundles 
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such as the anterior cingulum, uncinate fasciculus, and the superior longitudinal 

fasciculus (Chaddock et al., 2009; Haller et al., 2011; Roberts et al., 2016b; Wang et al., 

2008). However, the direction of findings and anatomical specificity of disturbances are 

largely inconsistent (Nortje et al., 2013; Phillips and Swartz, 2014). 

 

1.10.4 Structural connectomic investigations of bipolar disorder 

A large structural connectomic investigation of 216 BD I patients (Collin et al., 2015) 

found reduced connectivity strength for inter-hemispheric connectivity in patients – 

mirroring the FA reductions observed within the corpus callosum. Inter-hemispheric 

degradation was associated with the reduced capacity for information processing (i.e. 

decreased network efficiency). Decreased inter-hemispheric communication was 

replicated in a much smaller connectomic study (Leow et al., 2013). This investigation 

also identified disturbances localised to fronto-limbic areas, as reflected through nodal-

level metrics: The brain networks of patients exhibited longer characteristic path lengths 

in regions such as orbitofrontal, hippocampal, and cingulate structures. Alterations to the 

integrative capacity of these key emotional and cognitive control areas speaks to 

structural underpinnings of the unstable mood regulation in patients. The mean age of 

patients (around 40 years) in both investigations is however much older than the typical 

age of illness onset (Loranger and Levine, 1978). In turn, both studies are limited in their 

capacity to determine whether the connectomic disturbances represent aetiological 

biomarkers of the disorder, or reflect illness burden.  
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1.10.5 Functional graph-theoretical investigations of bipolar disorder 

Relatively few whole-brain investigations of resting-state functional connectivity patterns 

have been conducted into BD. The functional networks of patients - constructed from the 

synchrony of EEG signals (Kim et al., 2013) - reveal macroscopic features indicative of 

both increased segregation and integration. The latter may be attributable to the increased 

randomization of connectivity patterns in BD. Decreased synchronization was also 

identified for signals emanating from a subnetwork involving fronto-central regions. EEG 

recordings however lack the spatial specificity possible with rs-fMRI acquisitions. A 

large rs-fMRI investigation revealed reduced functional connectivity patterns in a 

combined group of schizophrenic and BD patients with psychosis (Baker et al., 2014): 

Connections within fronto-parietal association networks were preferentially implicated. 

 

1.10.6  Rich-club degradation in schizophrenia and bipolar 

Schizophrenia is one of the most extensively investigated psychiatric disorders. 

“Dysconnectivity” models (Fornito et al., 2012b; Friston, 1998; Stephan et al., 2009) have 

long proposed that abnormal functional integration underpins the cognitive and 

behavioural disturbances of patients: hallucinations, delusions, apathy, and cognitive 

disorganization. Cross-disorder comparisons of the neurobiological correlates of BD and 

schizophrenia is useful given syndromal features such as psychosis are shared across the 

disorders (Keshavan et al., 2011). A substantial overlap has also been demonstrated for 

genetic susceptibility of the two disorders (Cardno and Owen, 2014; Lichtenstein et al., 

2009). 
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 Schizophrenia has emerged as a candidate for hubopathy models of psychiatric 

disorders. Disturbances to executive and association areas within patients impact upon 

hubs within frontal and temporal cortices (Crossley et al., 2014; Rubinov and Bullmore, 

2013; van den Heuvel et al., 2010). Selective disruptions to these core cognitive areas 

speaks to the disorganised behavioural patterns that are characteristic of the disorder. 

Structural connectomic investigations have consistently revealed widespread 

degradations to pathways between hub-regions - rich-club connections - in schizophrenia 

(Collin et al., 2014a; Klauser et al., 2016; van den Heuvel et al., 2013). Rich-club 

degradations are associated with compromised network architectures (Collin et al., 2014a; 

van den Heuvel et al., 2013), strongly suggesting disruptions to the neural substrate to 

underpin global brain dysfunctioning in patients. Furthermore, rich-club degradations 

correlate with less variability in functional connectivity patterns (van den Heuvel et al., 

2013), and clinical ratings such as increased illness duration and poor global functioning 

(Collin et al., 2014a). Interestingly, the only systematic investigation of rich-club 

architecture in BD revealed the relative preservation of the anatomical backbone in 

patients (Collin et al., 2015). The discrepancy between schizophrenic and BD suggests 

rich-club disruptions are not ubiquitous, but perhaps specific to the syndromal features of 

the disorder (Crossley et al., 2014). 

 

1.11  High-risk populations of psychiatric disorders 

1.11.1 Individuals at high-genetic risk for bipolar disorder 

Unaffected relatives of individuals diagnosed with heritable psychiatric illnesses are at 

high risk of developing the disorder. These individuals are largely free from the burden 
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associated with illness onset, including medication use. Neurobiological disturbances in 

unaffected relatives can thus potentially shed light on disorder endophenotypes, and serve 

as biomarkers for predicting illness-onset (Weissman et al., 1986). Bipolar disorder is a 

prime candidate for studies of unaffected relatives, with heritably estimates shown to be 

between 59 and 85% (McGuffin et al., 2003; Purcell et al., 2009).  First-degree relatives 

have a ~7-14-fold increased risk of diagnosis of the disorder (Mortensen et al., 2003; 

Purcell et al., 2009). First-degree relatives demonstrate subclinical disturbances in mood 

and anxiety, and also higher rates of major depressive disorder (DelBello and Geller, 

2001; Perich et al., 2015).  

The developmental period prior to the peak age of BD onset is characterised by 

profound behavioural changes and critical brain maturation. Aberrations to these 

maturational processes have been postulated to lead to cognitive and emotional 

disturbances (Baker et al., 2015; Casey et al., 2010; Paus et al., 2008). In turn, first-degree 

relatives at this critical age can be conceptualised as individuals at “high-risk” for 

developing BD (Goodwin and Jamison, 2007; Loranger and Levine, 1978). A 

longitudinal investigation of healthy 15-19 year olds over a two-year period revealed 

disproportionate developments in hub-hub structural connectivity with age (Baker et al., 

2015): Increases in structural connectivity in this study were predominately concentrated 

upon projections between subcortical, parietal and frontal regions - which house core 

cognitive control and emotional centres (Alvarez and Emory, 2006; Cole and Schneider, 

2007; Liakakis et al., 2011). 
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1.11.2 Connectomic investigations of unaffected relatives of bipolar patients  

There has been little research in this area that has used connectomics. The only existing 

structural connectomic investigation of unaffected first-degree relatives using 

tractography reported no significant differences to either healthy controls or BD I patients 

(Forde et al., 2015). However, this study was based on a relatively small sample size, thus 

lacking power. In addition, the field strength of the scanner (i.e. 1.5T MRI) may have not 

allowed sufficiently accurate structural connectomes to sensitively capture group 

differences. In addition, the mean age of the unaffected relatives was 42 years – after the 

peak age of onset - meaning that the population group may represent biologically resilient 

relatives.  

 

1.11.3 Other neurobiological correlates of high-risk subjects 

Studies of DTI-derived indices of white matter connectivity (FA, etc.) in high-risk 

individuals have revealed changes along fronto-limbic tracts, where disturbances are 

shared also with patients (Frazier et al., 2007; Roberts et al., 2016b; Sprooten et al., 2013; 

Sprooten et al., 2011). Shared disruptions in functional connectivity patterns have also 

been identified in unaffected siblings in RSN’s containing frontal, striatal, and subcortical 

regions (Khadka et al., 2013; Lui et al., 2015; Meda et al., 2012). Within both modalities, 

disruptions have been variously identified as either shared across unaffected relatives and 

patient probands, or unique to one group. This renders interpretations of the genetic 

vulnerability of first-degree relatives difficult.  
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 The inferior frontal gyrus (IFG) has emerged as a potential endophenotypical 

candidate underlying BD. In healthy adults, the normal functioning of the IFG is 

imperative for the integration of cognitive and emotional input (Cai et al., 2014; Liakakis 

et al., 2011). Abnormal functional activation of the IFG has been reported in both 

unaffected relatives (Brotman et al., 2014; Roberts et al., 2013) and BD patients (Foland-

Ross et al., 2012; Hafeman et al., 2014; Hajek et al., 2013a) in tasks assessing inhibition 

and emotional processing. Through Dynamic Causal Modelling (DCM), the observed 

hypoactivation of the IFG (Roberts et al., 2013) has been modelled within its broader 

network of regions responsible for emotion perception (i.e. anterior cingulate) and 

cognitive control (i.e. DLPFC) (Breakspear et al., 2015a): Alterations to large-scale 

effective connectivity in this study were unique to a young cohort at high-risk for BD, 

suggestive of their increased vulnerability for illness-onset throughout critical 

maturational stages.   

  

1.11.4 Individuals at high-risk for schizophrenia 

Schizophrenia is another psychiatric disorder with a strong genetic involvement (Harrison 

and Weinberger, 2005; O'donovan et al., 2008). Structural connectomic investigations of 

unaffected siblings of patients have revealed that this familial risk is associated with a 

compromise to the structural rich-club (Collin et al., 2014a): Compared with healthy 

controls, disturbances in rich-club density are more pronounced in patients and 

intermediate in unaffected siblings. An association between rich-club degradation and 

symptom severity in patients suggests the neurodevelopmental vulnerability of the core 

anatomical backbone is associated with disease-progression, as well as illness risk.  
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1.12  Summary of connectomic approaches to normal ageing 

and psychiatric disorders 

In sum, widespread empirical evidence suggests inter-individual differences in cognition 

and behaviour are underscored by changes in the capacity of large-scale brain network 

communication. Connectomic approaches afford a complementary approach to 

investigate these changes, relative to traditional univariate brain measures. Indeed, 

alterations in the delicate balance of functional integration and segregation of cortical 

information processing are apparent in both healthy ageing and psychiatric conditions - 

providing strong ground to propose that the expression of macroscopic network features 

reflects inter-individual phenotypical differences across these populations. Furthermore, 

high-cost hub-regions (and their connections) - critical for large-scale network 

communication - appear to be selectively implicated in behavioural and cognitive 

changes. Disruptions to hub-regions may not be ubiquitous, as fronto-limbic alterations 

in BD reverberate with the emotional lability that is characteristic of patients.  

Investigations of both ageing and BD patient cohorts have not yet benefited from 

the recent advances in dMRI acquisition and fibre-reconstruction, or the complex analysis 

of connectomic data. The investigations also typically use small to modest sample sizes, 

lacking sufficient power. Systematic investigation of the expression of connectomic 

features related to inter-individual differences in cognitive performance are clearly 

lacking within a healthy older population. Structural network disturbances in young adults 

at high-risk for BD also remain to be elucidated. Addressing these issues holds potential 

to identify biomarkers that are involved in pathophysiological mechanisms of illness-

onset.  



 

 50 

Chapter 2: The Organisation of the Elderly 
Connectome 
 

2.1 Abstract 

Investigations of the human connectome have elucidated core features of adult structural 

networks, particularly the crucial role of hub-regions. However, little is known regarding 

network organisation of the healthy elderly connectome, a crucial prelude to the 

systematic study of neurodegenerative disorders.  Here, whole-brain probabilistic 

tractography was performed on high-angular diffusion-weighted images acquired from 

114 healthy elderly subjects (age 76-94 years; 64 females). Structural networks were 

reconstructed between 512 cortical and subcortical brain regions. We sought to 

investigate the architectural features of hub-regions, as well as left-right asymmetries, and 

sexual dimorphisms. We observed that the topology of hub-regions is consistent with a 

young adult population, and previously published adult connectomic data. More 

importantly, the architectural features of hub connections reflect their ongoing vital role 

in network communication. We also found substantial sexual dimorphisms, with females 

exhibiting stronger inter-hemispheric connections between cingulate and prefrontal 

cortices. Lastly, we demonstrate intriguing left-lateralized subnetworks consistent with 

the neural circuitry specialised for language and executive functions, while rightward 

subnetworks were dominant in visual and visuospatial streams.  These findings provide 

insights into healthy brain ageing and provide a benchmark for the study of 

neurodegenerative disorders such as AD and Frontotemporal Dementia (FTD). 
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2.2  Introduction 

The human brain is a large-scale complex network known as the human “connectome” 

(Sporns et al., 2005). The application of graph theoretical analysis to human 

neuroimaging data has uncovered topological features of the connectome that mirror 

other complex systems (Fornito et al., 2013; Sporns, 2013b). These network features 

include “small-worldness” (Achard et al., 2006; Sporns and Zwi, 2004; Stephan et al., 

2000), highly-connected “hubs” (Hagmann et al., 2008b; van den Heuvel and Sporns, 

2011, 2013b), and a modular structure (Hagmann et al., 2008b; Meunier et al., 2009). 

Knowledge of the connectome has accelerated through recent advances in diffusion-

weighted imaging, including optimal acquisition parameters (Sotiropoulos et al., 2013; 

Tournier et al., 2013), improved reconstruction algorithms (Behrens et al., 2003; Tournier 

et al., 2010), and diffusion models (Aganj et al., 2011; Behrens et al., 2007; Jbabdi et al., 

2012; Tournier et al., 2008).  

 A crucial architectural feature of the adult human connectome is the presence of 

highly-connected regions (“hubs”), that are also densely connected with each other (van 

den Heuvel and Sporns, 2013b). These regions form what is known as a “rich-club”, and 

occur in cortical regions such as the precuneus, cingulum (anterior and posterior), insula, 

superior frontal and parietal areas, temporal regions, and also subcortical structures (van 

den Heuvel and Sporns, 2011, 2013b). Rich-club connections in human (Collin et al., 

2014b; van den Heuvel et al., 2012) , macaque (Harriger et al., 2012) and cat cortices (de 

Reus and van den Heuvel, 2013) have high topological efficiency, longer anatomical 

fibres, increased inter-modular connectivity and route a large proportion of network 

traffic. The structural rich-club may thus act as a central backbone that integrates 

communication between segregated brain regions (van den Heuvel and Sporns, 2013b). 
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This is exemplified by the disproportionate reduction in network “communicability” 

and/or “efficiency” when hub-regions or their connections are artificially lesioned 

(Crossley et al., 2013; de Reus et al., 2014; van den Heuvel and Sporns, 2011) .  

 These hub-regions overlap with transmodal areas known to be pivotal within-and-

between core neurocognitive systems such as the cognitive control, default mode, and 

salience network (Crossley et al., 2013; Dwyer et al., 2014; Sepulcre et al., 2012; Spreng 

et al., 2013; Tomasi and Volkow, 2011; Uddin et al., 2011; van den Heuvel and Sporns, 

2013a). Interestingly, alterations in functional connectivity of these large-scale systems 

in elderly populations have been associated with changes in working memory, processing 

speed and executive functions (Campbell et al., 2012; Damoiseaux et al., 2008; He et al., 

2014; Lim et al., 2014; Wang et al., 2010). These disruptions are thus suggestive of 

topological changes occuring to hub connections with ageing. Hub-regions are also 

metabolically costly, evident through their increased metabolic expenditure and wiring 

cost (Collin et al., 2014b; Liang et al., 2013; van den Heuvel et al., 2012). This increased 

energy expenditure of hub-regions further highlights their potential for age-related 

changes, as their high metabolic cost has been shown to potentially render such regions 

more vulnerable to pathological processes in neurodegenerative disorders (Crossley et al., 

2014; Liang et al., 2013; Tomasi et al., 2013). Indeed, hub-regions have shown to be more 

likely susceptible to normal ageing processes such as amyloid deposition (Buckner et al., 

2009; Toga and Thompson, 2014).  

 During cognitively demanding tasks, older adults increase their recruitment of 

contralateral brain regions, suggesting compensatory mechanisms (Cabeza et al., 2002; 

Davis et al., 2012; Park and Reuter-Lorenz, 2009). Left-hemisphere networks are well 

known to be dominant in language tasks, whilst the right-hemisphere is associated with 
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visuospatial abilities (Geschwind and Galaburda, 1985; Herve et al., 2013; Toga and 

Thompson, 2003). Although connectomic investigations (Caeyenberghs and Leemans, 

2014; Nielsen et al., 2013; Tomasi and Volkow, 2012b) have examinated lateralized 

organisation at the nodal-level, no study has specifically investigated lateralization of the 

elderly connectome. 

 Sexual dimorphism has also been an active area of research for the last few decades, 

with increasing interest from connectomic investigations (Dennis et al., 2013; Duarte-

Carvajalino et al., 2012; Gong et al., 2009b; Ryman et al., 2014). Across the lifespan, 

males have been shown to demonstrate greater performance in visuospatial tasks, whilst 

females excel on verbal tasks (Gur et al., 2012; Hoogendam et al., 2014; Kimura, 2004). 

Preferential wiring for inter-hemispheric structural connections was recently observed in 

female adolescents, whilst localised intra-hemispheric connectivity characterises cortical 

networks in young men (Ingalhalikar et al., 2014). Whether such topological differences 

persist into late adulthood is not known.  

 Hitherto, the structural connectomes of healthy elderly populations have been 

investigated through lifespan longitudinal studies (Betzel et al., 2014; Caeyenberghs and 

Leemans, 2014; Gong et al., 2009b). Whilst these incorporate sufficiently large numbers 

of subjects across the life span, the number of elderly subjects is invariably modest. The 

organisation of healthy older connectomes hence remains relatively unknown and has not 

benefitted from recent advances in the acquisition and analysis of structural connectomes. 

The present study addresses this gap by characterising network topology in elderly 

structural connectomes generated from high-angular resolution fibre bundles. For 

comparative purposes, structural networks of a young adult population (17-30 years old) 

are also investigated. 
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2.3 Methods 

2.3.1 Participants 

142 cognitively healthy elderly individuals were drawn from the Sydney Memory and 

Ageing Study (MAS) (Tsang et al., 2013). The longitudinal study involves community-

dwelling older adults aged 76-94 years, randomly recruited from the electoral roll. 

Participants in the present study were cognitively healthy, defined as performance on all 

neuropsychological test measures were within 1.5 standard deviations of normative 

published mean values (Tsang et al., 2013). Individuals not meeting these criteria, or who 

were reported to exhibit a decline in daily living activities by an informant, were excluded 

if they met international consensus criteria for MCI (Winblad et al., 2004), decided by a 

clinical case panel chaired by neuropsychiatrists, psychogeriatricians, and psychologists 

(Sachdev et al., 2010). Other exclusion criteria included dementia, mental retardation, 

schizophrenia, bipolar disorder, multiple sclerosis, motor neuron disease, active 

malignancy, or inadequate comprehension of English to complete a basic assessment. 

 

2.3.2 dMRI acquisition 

dMRI data were acquired from all subjects on a Philips 3T Achieva Quasar Dual MRI 

scanner (Philips Medical System, Best, The Netherlands), using a single-shot echo-planar 

imaging (EPI) sequence (TR = 13586 ms, TE = 79 ms). For each diffusion scan, 61 

gradient directions (b = 2400 s/mm²) and a non-diffusion-weighted acquisition (b = 0 

s/mm²) were acquired over a 96mm² image matrix (FOV 240 mm x 240 mm²); with a 

slice thickness of 2.5 mm and no gap, yielding 2.5 mm isotropic voxels.  
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2.3.3 Diffusion image pre-processing 

The diffusion MRI scan of each participant was visualised within FSLView (Smith et al., 

2004b). Participants were excluded from the study if their scan revealed the presence of 

artefact due to motion effects. Twenty-two participants were excluded due to diffusion 

artefact, along with six others whose networks were not completely connected. We thus 

analysed the structural connectomes from 50 males and 64 females (Table 2-1).  

Table 2-1. Demographic information of elderly subjects 

Gender (M/F) Male (n = 50) Female (n = 64) 

 Mean ± SD Mean ± SD 

Age (years) 83.35 ± 4.74 82.61 ± 4.02 

Education (years)* 13.37 ± 3.87 11.57 ± 2.91 

* p < .01 (t-test) 

 To correct for head motion, the gradient direction matrix was rotated using a 

customised in-house algorithm (Leemans and Jones, 2009; Raffelt et al., 2012b). Next, to 

reduce spatial intensity inhomogenities, bias corrections was performed on the b0 image 

and subsequently applied to all DWI (Sled et al., 1998a). Lastly, a Higher Order Model 

Outlier Rejection model (Pannek et al., 2012b) identified voxels with residual outliers in 

signals of the DWI. 
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2.3.4 Whole-brain fibre tracking 

We employed the probabilistic streamline algorithm (iFOD2) (Tournier et al., 2010) to 

generate high-resolution whole-brain fibre tracks until 5 million in number were reached. 

The orientation of fibre distributions (FOD) were estimated within MRtrix software 

(Tournier et al., 2012), by performing constrained spherical deconvolution (CSD, lmax = 

8) of the diffusion signal (Tournier et al., 2008). Using the default parameters for images 

of such acquisition (step size = 1.25 mm, minimum length = 12.5 mm, max length = 250 

mm, FA termination = 0.1, max angle = 45º), iFOD2 tracked the most probable fibre 

propagations by sampling a probability density function of the FOD at points along each 

candidate path. iFOD2 has been shown to improve the accuracy of reconstructing high-

angular fibre bundles (Tournier et al., 2012) and prevent biases caused by overshoot 

(Tournier et al., 2010). 

 

2.3.5 Construction of whole-brain structural networks 

The standard AAL template (Tzourio-Mazoyer et al., 2002a) was subdivided into 512 

cortical and sub-cortical parcellation regions of approximately uniform size (Zalesky et 

al., 2010b). The AAL parcellation is widely used in structural network investigations 

(Caeyenberghs and Leemans, 2014; Gong et al., 2009b; Lo et al., 2010; Shu et al., 2012; 

Shu et al., 2011), but does not include information on the GM-WM boundary for each 

parcel. We note that the echo-planar readout in diffusion acquisition induces geometric 

distortions within the diffusion image (Holland et al., 2010b). Thus, the spatial alignment 

of anatomical information (i.e. GM-WM boundary) from the T1 image and the diffusion-

weighted image are not particularly accurate (Smith et al., 2012a), precluding an explicit 

check of the GM-WM boundary for each parcel. However, following our dense seeding 
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(see below), all parcels in the group connectome had substantial connections. It is hence 

highly unlikely that any of the parcellated regions do not include a GM-WM boundary, 

being hence “hidden” from the WM.   

 Parcellations within subject-space were achieved by employing affine linear 

registrations within FSL (Smith et al., 2004b). First, the parcellated template was co-

registered to the Montreal Neurological Institute (MNI) T1 2mm brain template. The MNI 

template was then co-registered to the subject's FA image. The parcellation template (in 

MNI space) was subsequently transformed into subject-space by applying the 

transformation matrix generated from registering the MNI template to the FA image.  

 Within a weighted graph "#, a weighted connection $%& (if	$%& ≥ 3) represents the 

number of streamlines from region i terminating within a 2mm radius of j. $%& were 

adjusted by the mean fibre length between i and j (Hagmann et al., 2008b), as fibre 

densities are known to be over-estimated in longer fibre bundles (Smith et al., 2013b). 

These weighted networks were rendered sparse by thresholding to preserve the same 

connection density across subjects. All analyses reported here are on connectomes at 

7.5% sparsity, whilst other sparsities (5% and 10%) are reported within supplementary 

materials. We note that there do not exist reliable benchmarks for human tractography 

using a parcellation comparable to the present one. Density in anatomical studies from 

primates and rodents varies greatly according to the anatomical parcelleation and tracing 

method. The sparsity levels included in the present study are thus guided by prior practise. 

It is common practice for rs-fMRI, and to a lesser extent structural networks, to implement 

a variety of threshold levels around 10% (Sporns, 2013b). However, by selecting a 

multiple of thresholds, we ensure the topological distribution of the elderly connectome 

we report is not biased by the density of the networks (van Wijk et al., 2010). Binary 
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networks were constructed from these sparse weighted networks, by setting all 

connections to one. Average connectomes of the current population were also generated. 

Summary of the steps involved in structural brain network reconstruction is illustrated in 

Figure 2-1. All network and surface visualisations were generated using BrainNet Viewer 

(Xia et al., 2013) and CARET (Van Essen et al., 2001) software packages respectively. 

Figure 2-1: Steps involved in connectome construction for a representative elderly 

subject. A,  FODs were estimated by performing constrained spherical deconvolution of 

the diffusion signal within single-fibre voxels of the DWI. B, High-angular whole-brain 

fibre tracks were constructed from probabilistic sampling of the FOD. C, Networks 

representing structural connectivity information generated from the whole-brain fibre 

tracks were constructed. A connection (white lines) between region i and j (red dots) of 

the parcellation (in subject space) was said to be present if a track from i terminated 

within a 2mm radius of j. 

 

2.3.6 Graph theoretical characterisation 

2.3.6.1 Nodal-level measures 
All nodal-level network measures employed were computed using the Brain Connectivity 

Toolbox, and have been described elsewhere (Rubinov and Sporns, 2010). Formal 

definitions are given in Appendix 1. 
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2.3.6.2 Community structure 
A community detection algorithm (Blondel et al., 2008) was employed. The most optimal 

division of modularity (Q) was calculated and a fine-tune tuning algorithm was 

subsequently employed (Sun et al., 2009). The partition with the highest modularity was 

retained. 

 

2.3.7 Hub nodes and connection classes 

2.3.7.1 Identification of hub-regions.  
Network hubs may be defined according to various network criteria. Here, hub-regions 

were identified according to aggregate ranking across multiple metrics (Betzel et al., 

2014). First, for each subject, each node’s "hubness" was calculated from its composite 

average ranking across degree, betweenness and subgraph centrality scores. The top 15% 

composite scores (N = 76) were used to identify hub-regions within each subject, whist 

the top 15% most consistent hubs across subjects were defined as hub-regions across the 

group. 

 

2.3.8 Connection classes 

Partitioning nodes into hubs and non-hubs allowed connections to be classified into three 

types: (1) hub connections, linking hub nodes; (2) feeder connections, linking non-hub 

nodes to hub nodes; (3) local connections, linking non-hub nodes (van den Heuvel et al., 

2012). 
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2.3.9 Architectural features of connection classes 

2.3.9.1 Network density and cost 
The network cost for each connection was defined as its density (number of streamlines) 

times its physical length. The network cost for each connection class was calculated as 

the average cost of its connections. Cost/density ratios for each connection class were 

calculated as the network cost percentage, divided by its density percentage (van den 

Heuvel et al., 2012). 

 

2.3.9.2 Network Traffic 
The amount of network traffic along each connection class was based upon the percentage 

of its connections routing the shortest path between any region i and j. Here, the shortest 

path(s) was defined by the minimum number of paths (steps) to reach j from i, instead of 

the topological distance (van den Heuvel et al., 2012). 

 

2.3.10 Network Communicability 

 The communicability metric measures the “ease of communication”  between i and j, and 

is defined by all possible walks of k length (steps) between these regions (de Reus et al., 

2014; Estrada and Hatano, 2008). Although being a generalisation of shortest path 

“efficiency” information, the communicability measure does advantageously take into 

account multiple and longer paths between such regions (de Reus and van den Heuvel, 

2014), thus potentially capturing the “parallel processing” nature of brain networks 

(Alexander and Crutcher, 1990) and thus may be more sensitive to age-related changes 

impacting upon large number of communication paths.  Walks of longer k lengths 



 

 61 

between i and j have lower contributions to the communicability function than shorter 

ones, and is defined formally as:          

            	
*+,-	

(/0)+,	
0!

0345
035 -(6/)+,	,	

                (1.1) 

where G denotes the connectivity matrix, satisfying "%& = 1 if region i and j are 

connected, and "%&= 0 if not. Because a large number of walks can be yielded from large 

k walk lengths between i and j, :%& was computed until walks of length k = 10. 	:%& was 

averaged across all nodal pairs to calculate the overall network communicability within 

the entire network (de Reus et al., 2014).   

 

2.3.11 Rich-club organisation 

A modified algorithm (Samu et al., 2014) to calculate the weighted richness of hub 

connections within each subject was implemented. Formal definition of this algorithm, 

and the examination of the significance of rich-club architecture within these hub 

connections are detailed in Appendix 1.2.1 and 1.2.3.    

 

2.3.12 Computational attack of hub nodes and their connections 

To examine the criticality of hub nodes and their connections to global network 

communicability, lesions were simulated by randomly removing connections (binary-

wise) from each connection class. Because the distribution of connections is by definition 

unequal across classes (van den Heuvel et al., 2012), the same number of connections 

were removed across each class for each subject. This action was performed in 25% 
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increments (up until 75%) and average results over 1000 randomly simulated lesions at 

each increment level were calculated. The change in global network communicability 

after random edges from each connection class were lesioned, was expressed as a 

percentage of the intact network’s communicability. 

 

2.3.13 Statistical Analysis 

2.3.13.1 Architectural features of hub-regions and their connections 
Non-parametric permutation testing was used to assess statistical significance of class 

differences in connnection metrics (de Reus and van den Heuvel, 2013). First, the 

difference between the two classes for each subject were computed for a given metric. 

Second, for each permutation (N = 5000), the metric values were randomly assigned to 

two random groups and their group difference was computed, resulting in a null 

distribution of differences. The proportion of the null-distribution values that exceeded 

the observed original difference was computed and assigned a p-value (one-tailed). 

 

2.3.14 Lateralization and sex differences 

2.3.14.1 Network-Based Statistic  
A general linear model (GLM) was employed to identify differences in weighted edge-

wise connectivity. We identified subnetworks that differed significantly between the 

groups on each effect using the Network-Based Statistic (NBS) software package, which 

achieves control over family-wise error (Zalesky et al., 2010a). The NBS is based on the 

principles underpinning traditional cluster-based thresholding of statistical parametric 

maps and hence proceeds to identify subnetworks of topologically connected 
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suprathreshold connections. Networks were permuted 5000 times to obtain the empirical 

null distribution of the largest network component. A family-wise error (FWE) corrected 

p-value for the network component was estimated by the proportion of permutations for 

which a network of equal or greater size was identified. 

 To identify significantly lateralized subnetworks, a repeated measures GLM was 

employed. For each subject, left intra-hemispheric weighted networks were treated as one 

condition, whilst right intra-hemispheric networks were treated as the other. For between-

group analyses of sexual dimorphisms, age and education level were treated as covariates. 

Conservative t-test thresholds were employed to yield strong, suprathreshold 

lateralizations in connectivity (t = 5.5, corresponding to an uncorrected p < 0.0001), and 

also sexual dimorphisms (t = 3.5, p = 0.0003). 

 

2.4 Results 

2.4.1 Identification of hub-regions and rich-club architecture 

Brain regions identified as hubs, by virtue of having consistently high composite scores 

across subjects are illustrated in Figure 2-2. These hubs (for index of surface colours see 

Figure 2-2C) are distributed bilaterally in subcortical structures (Figure 2-2B), and 

cortical (Figure 2-2A) regions including the insula, anterior cingulate, precentral gyrus, 

precuneus, superior frontal, supplementary motor area (SMA), temporal poles, occipital 

areas, and also the left IFG. Connections (red lines) between hub-regions are visualised 

(average connectome) on a circular graphical representation (Irimia et al., 2012; 

Krzywinski et al., 2009), arranged to their AAL region (Figure 2-2C). This allows 

straightforward identification of intra-and-inter-hemispheric connections that exist 
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between hub-regions. The outermost circular bar represents the hub parcellation region 

(and surface colour), whilst the middle and innermost bars indicate their average 

composite score (light red to very dark red), and consistency across subjects respectively 

(light blue to very dark blue). Sub-cortical structures and cortical regions including the 

anterior cingulate, insula, left precentral gyrus, left temporal pole, and left IFG have the 

highest composite scores and greatest consistency across subjects. Weighted rich-club 

architecture is found to be present (Φ[norm]>1) and significant for these hub connections 

(Figure 2-2e) in all subjects (mean p = < 0.0001). These hub-regions are consistently top 

ranked for the nodal metrics used to calculate their composite score (Figure A2-1), and 

are also consistently identified as hubs across different sparsity levels (Figure A2-2). 

 

2.4.2 Architectural features of hub nodes and their connections 

Connections with each each subject were classified as either hub (left panel), feeder 

(middle), or local (right) connections (Figure 2-3A, visualised here on the average 

connectome). Local connections accounted predominantly for the cost (left column) and 

streamline density (right column) across the network, followed by feeders, whilst hub 

connections comprised only a small percentage (Figure 2-3B). Non-parametric 

permutation testing of the cost/density ratios revealed that hub connections are more 

costly than predicted by their density alone, in comparison to both feeder and local 

connections (p < 0.0001) (Figure 2-3B, middle text column). Cost/density ratios of 

feeders were also significantly greater than the ratio of local connections (p < 0.0001). 

These patterns of findings were also identified for analyses of mean fibre lengths across 

connection classes (Figure 2-3B, p < 0.0001). Feeder connections significantly route the 

majority of traffic for the shortest communication path (i.e 40% of shortest paths must  



 

 65 

 

 

Figure 2-2: Identification of hub brain-regions and rich-club architecture within the 

elderly connectome. Surface and volumetric representation of cortical (A) and sub-

cortical (B) hub-regions respectively. Refer to C for the parcellation regions the surface 

colours index. C, Circular representation of hub-regions and connections among each 

other (red lines), with regions arranged according to their respective AAL region and 

hemispheric location (right-hemispheric on the right axis, left on the left). The 

outermost circular bar represents the hub parcellation region and their index colour 

(represented in A and B), whilst the middle and innermost bars indicate their average 

composite score (light red to very dark red) and consistency across subjects 

respectively (light blue to very dark blue). D, Network perspective of connections (red 

lines) among hub-regions (red dots). E, For these connections, the mean across subjects 

for the weighted rich-club coefficient Φ(h) (red column) , average random rich-club 

coefficient Φ(rand) (grey column), and normalised rich-club coefficient Φ(norm).  
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route through at least one hub) between regions (p < 0.0001, Figure 2-3D, right column). 

Hub connections route a significantly greater percentage of traffic than local connections 

(p < 0.0001). These analyses are consistent at other sparsity levels (Figure A2-3). 

 

2.4.3 Computational attack of hub connections 

To examine the role of hub connections to global network, simulated lesioning was 

performed on each connection class (Figure 2-3E). The mean percentage change in global 

network communicability when lesioning hub connections were significantly greater than 

lesioning the same number of feeder connections (p < 0.0001) except at the 75% 

increment level. Lesioning local connections had the least impact on communicability (p 

< 0.0001) at all increment levels. 

 

2.4.4 Comparison to a young adult population  

To aid the topological comparison of elderly and adult connectomic data, the structural 

networks were also examined from a subset of the young adult control population within 

study 3 (Chapter 4; cf 4.3.1). Here, the young population comprised of seventy-eight 

individuals (43 females) between the ages of 18 and 30 (mean age, 23.48 years). Although 

both groups were acquired on the same MRI scanner, dMRI data were acquired 

differently in the young controls (Appendix 4.2.1), leading to also subtle differences in 

the pre-processing and fibre reconstruction parameters relative to elderly subjects 

(Appendix 4.2.1. and 4.2.2). To avoid age and gender interactions, will limit the 

comparison to female subjects only in both cohorts. 
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Figure 2-3: Architectural features of the different connection classes. A, Hub 

connections (left panel) linking (red lines) hub (red dots) regions, feeder connections 

(middle, orange lines) linking hub to non-hub (orange dots), or local (right, grey lines) 

connections linking non-hub regions. B, Mean contributions of each connection class to 

density (number of streamlines) (left column) and cost to the network (right). The 

middle text column represents the mean cost/density ratios for each connection class. C, 

Mean fibre length (mm) for each connection class. D, The mean percentage of network 

traffic each connection class routes for the shortest path route. E, Mean percentage 

change in network communicability after removing specified number of edges from 

connection class, at 25% (top), 50% (middle), and 75% (bottom) increments. 
* p < .0001, permutation testing (N = 5000) 

 

 The comparison of connection classes and their architectural features across the young 

and old cohorts is illustrated in Figure 2-4. Visual inspection of the topological 
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distribution of connection class across the young (Figure 2-4A) and elderly (Figure 2-4B) 

cohorts is dominated by the overall consistent, with only relatively minor qualitative 

differences evident. In the young cohort, hub connections appear slightly more dispersed, 

while they also show increased inter-hemispheric connectivity (especially posteriorly) for 

feeder and local classes (for sagittal perspectives, see Figure A2-4). The architectural 

features between connection classes in the younger cohort are generally similar to those 

of the elderly cohort (both male and female), presented in section 2.4.2 (cf Figure 2-3, 

bottom panel). However, several notable differences between the two cohorts are 

apparent: The mean fibre lengths across the young female cohort (Figure 2-5D) are 

markedly longer than the corresponding connection classes in the elderly female cohort 

(Figure 2-5G). The proportion of network traffic routed through hub and feeder 

connections is slightly larger in young females (Figure 2-5E), whilst traffic routing 

through local connections is less in the younger relative to the elderly females (Figure 2-

5H).  

 A direct visual comparison of the distribution of hubs regions in each of these age 

cohorts is provided in Figure A2-4A. Considerable consistency in the distribution hub-

regions across the elderly and young adult populations: 72% of hubs identified in elderly 

females are also hubs in young females. The figure also shows subtle differences between 

the two cohorts: A cluster of hub nodes unique to the elderly appear within the right 

temporal pole, left mid-frontal, and prefrontal cortices. Conversely, a cluster of hub 

regions unique to the younger cohort are found in superior frontal, precentral, and ventral 

striatal areas. 
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Figure 2-4: Comparison of connection class architectural features across young adult 

and elderly females. A and B, Superior perspective of connections classified as either 

those of hub (left panel), feeder (middle), or local (right) connections in the young (top) 

and elderly connectomes (bottom). C and F, Mean contributions of each connection 

class to density (number of streamlines) (left column) and cost to the network (right) in 

young and elderly females, respectively. The middle text column represents the mean 

cost/density ratios for each connection class. E and G, Mean fibre length (mm) for each 

connection class in young and elderly females, respectively. E and B, The mean 
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percentage of network traffic each connection class routes for the shortest path route 

within young and elderly females, respectively.  
* p < .0001, permutation testing (N = 5000) 

   

2.4.5 Community structure and intra/inter-modular connectivity 

The average elderly connectome (at 7.5% sparsity) partitioned optimally into five distinct 

modules (Q = 0.67, Figure 2-5). The five modules are: left precuneus-occipital-temporal 

(yellow), left parietal-frontal (green), right frontal-prefrontal (orange), right precuneus-

occipital-temporal (red) and a bilateral prefrontal network (blue). Six and five modules 

were obtained at 5% and 10% sparsity respectively.  A force-vector algorithm that acts to 

cluster densely, mutually connected nodes (Jacomy et al., 2014), yields a network 

perspective of the connectome (Figure 2-5C). This reveals the intriguing topological 

organisation of inter-and-within-module connectivity. The clear division of both 

hemispheres (division running at an angle), demonstrates the dominance of inter-module 

intra-hemispheric connectivity. Notably, the integration of the inter-hemispheric 

community structure is almost entirely achieved through the bilateral prefrontal cortex. 

In addition, hub-regions (bigger circles) are predominately located along the boundaries 

of modules, and also embedded within their community affiliation, revealing their intra-

and-inter-module connectivity. The mean Pi (inter-module connectivity) and mean Z 

scores (intra-module connectivity) for hub-nodes were significantly greater than non-hub 

nodes (p < 0.0001, Figure 2-5D).   
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Figure 2-5: Community structure and intra-and-inter-module connectivity in the elderly 

connectome. Surface (A), and nodal representation (B) of community structure in the 

group average connectome, showing the formation of five distinct modules (indexed by 

different colours). C, Network perspective of the elderly average connectome through 

employing a force-vector algorithm, designed to cluster nodes (circles) by virtue of 

being densely mutually connected. D, Mean PI (inter-module participation, left panel) 

and Z-scores (intra-module participation, right panel) for hub and non-hub regions. 
* p < .0001, permutation testing (N = 5000) 

 

2.4.6 Lateralization 

Application of the NBS identified significant lateralization of weighted connectivity in 

two distinct left lateralized clusters (t = 5.5, p < 0.001, FWE-corrected) and three right-

lateralized clusters (t = 5.5, p < 0.0001, FWE-corrected):  
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2.4.6.1 Left-lateralized subnetworks 
Tracking of the fibre bundles corresponding to the first left-lateralized subnetwork reveals 

a large tract that is consistent with the cingulum and interior fronto-occipital bundles, 

connecting occipital, precuneus, thalamic, and cingulate structures to orbitofrontal areas 

(Figure 2-6A). The second subnetwork involves three distinct components; the first 

(Figure 2-6B) consistent with the frontal aslant, connecting the SMA to the inferior frontal 

operculum; the second (Figure 2-6C) consistent with the direct arcuate fasiculus, wiring 

superior temporal and inferior frontal regions; and the third (Figure 2-6D) connecting 

temporal (superior and middle) areas to angular and supramarginal regions. 

 

2.4.6.2 Right-lateralized subnetworks. 
 The first right-lateralised subnetwork invokes two distinct components; one consistent 

with superior longitudinal circuits spanning from superior temporal regions to the insula 

and ventral striatum, whilst the second component involving loops between precuneus 

and occipital regions (Figure 2-6E). The second subnetwork is consistent with superior 

longitudinal circuits connecting inferior parietal areas to the insula (Figure 2-6F). The last 

subnetwork is consistent with the circuits of optic radiations connecting the thalamus to 

medial temporal and occipital areas, but also includes connections between temporal 

(middle and medial) and occipital structures (Figure 2-6G).  

 Each cluster identified above was also significantly lateralized (p < 0.0001, t-test, N 

= 5000 perms) - within only right-handed subjects (n = 109) - in concordance with the 

NBS findings.  
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2.4.7 Sexual dimorphisms.  

We also identified gender-associated subnetworks (Figure 2-7, t = 3.5, p < 0.05, FWE-

corrected). Three distinct subnetworks were more strongly expressed in females, all 

involving increased inter-hemispheric connectivity: The first (Figure 2-7, top row, p = 

0.015, FWE-corrected) includes connection between middle cingulate structures, and also 

between the left middle cingulate and right SMA. The second (Figure 2-7A, middle, p < 

0.0001, FWE-corrected) includes connections spanning bilateral anterior cingulate 

structures, and also anterior cingulate and superior frontal structures. The third (right, p 

= 0.015, FWE-corrected) encompasses connections from the left IFG to the right middle 

and superior frontal regions. The strongest gender-related differences in males (Figure 2-

7, red) encompassed two similar subnetwork of connections; The first (p = 0.004, FWE-

corrected) encompassed connections within the left-hemisphere, spanning from 

subcortical (thalamus, putamen) and anterior cingulate structures to prefrontal 

(orbitofrontal, rectus, and superior medial) cortex. The second (p = 0.047, FWE-

corrected), within the right hemisphere, connected the ventral striatum to orbitofrontal 

cortex, with further connections to frontal superior medial regions. 

 

2.5 Discussion 

We sought to elucidate key features of the healthy elderly connectome, leveraging recent 

advances in the acquisition and analysis of brain networks. We found the topology and 

architectural features of hub-regions to be consistent with connectomic data from a young  
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Figure 2-6: Subnetwork clusters  identified by the NBS to demonstrate lateralized 

connectivity. The figure shows two significant (p < .05, FWE-corrected) network left-

lateralized (left panel, A, B, C, and D) clusters, and three right-lateralized (right panel, 

e, f, and g) network clusters. 

 

healthy adult cohort, and also with prior research in young adults (van den Heuvel and 

Sporns, 2011, 2013b) . We also report the presence of strongly lateralized subnetworks, 

and focal sexual dimorphisms in network organisation within the elderly connectome. 



 

 75 

2.5.1 Hubs in the elderly connectome 

Hub-regions identified in the elderly connectome are highly consistent with the topology 

we identified in the structural networks of a young adult population, although subtle 

differences do occur. Hub-regions identified here have also predominately been revealed 

as structural hubs -  according to various definitions - in other investigations of healthy 

adults (Collin et al., 2014b; van den Heuvel et al., 2012; van den Heuvel et al., 2010; van 

den Heuvel and Sporns, 2011). In our data, superior parietal and posterior cingulate 

regions were not identified as hubs in either the young or eldery connectomes, in contrast 

with most previous investigations. Hub-regions in the elderly connectome with the largest 

composite scores, and also showing the highest consistency across subjects, include 

subcortical structures (i.e. thalamus, striatum, and the amygdalae), and cortical regions 

such as the anterior cingulate, insula, and precentral gyrus. The majority of these regions 

have been shown to be the most highly connected (both weighted and binary-wise) in 

other studies of adult structural networks (Collin et al., 2014b; van den Heuvel and 

Sporns, 2011), where their nodal properties rank highly across multiple measures (Betzel 

et al., 2014; Crossley et al., 2014; van den Heuvel et al., 2010; van den Heuvel and Sporns, 

2011). Notably, these are core regions that have been proposed to form the adult “rich 

club”: Densely connected hubs, with enriched inter-hub connectivity suggesting an 

integral role in large-scale network communication (van den Heuvel and Sporns, 2011, 

2013b). Here we also we reveal that the topology of core hub-regions follow a consistent 

distribution across the healthy lifespan. 

 Many of the specific architectural features of hub connections are also consistent with 

young adults (Collin et al., 2014b; Crossley et al., 2014; van den Heuvel et al., 2012). 
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Figure 2-7: Focal gender differences in subnetwork connectivity identified by the NBS. 

A, Blue lines represent the significant (p < .05, FWE-corrected) subnetworks of 

anatomical connections between nodes (blue dots) where the NBS identified the 

strongest connectivity greater in females, relative to males. B, Red lines and dots 

indicates the localised connectivity of subnetworks strongest in males.  
SMA, Supplementary Motor Area; DCG; Middle Cingulate, SFGdor, Superior Frontal; SFGmed, medial Superior Frontal; ACG, 

Anterior Cingulate Gyrus; MFG, Middle Frontal; IFGtri, Inferior Frontal Triangularis ; THA, Thalamus; PUT, Putamen; REC, Rectus; 

ORB, Orbitofrontal. 

 

 Hub connections (including feeders) were found to exhibit longer projection distances 

and increased cost-to-density ratios (more costly than predicted by their density alone), 

underlining their likely high-cost to brain networks. Hub connections were also found to 

exhibit weighted rich-club architecture, route a greater proportion of network traffic 

(relative to their density), and possess stronger inter-and-intra-modular connectivity. 

Most notably, virtual lesioning of hub connections were found to result in a 

disproportionate reduction in global network communicability, in comparison to the 
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removal of feeder (except at the last increment level) and local connections. These high-

cost features of hub connections in the elderly appear to be offset by their functional 

advantages in integrating brain regions of distributed large-scale systems. Given these 

features are found within our younger cohort, and also previously published adult 

connectomic data (Collin et al., 2014b; van den Heuvel et al., 2012), these findings thus 

suggests the critical role of hub connections to large-scale network communication is 

ongoing across the lifespan.  

 The critical role of hub-regions and their connections to large-scale brain network 

dynamics is generating wider empirical attention. Hub-regions overlap with multiple 

large-scale functional networks (Braga et al., 2013; Crossley et al., 2013; Sepulcre et al., 

2012; Spreng et al., 2013; Tomasi and Volkow, 2011; van den Heuvel and Sporns, 2013a; 

Yeo et al., 2014), and their connections have been shown to be involved in a 

disproportionately greater amount of integration of these networks (van den Heuvel and 

Sporns, 2013a). Furthermore, hub-regions are predominately those regions important to 

the integration of dynamic large-scale networks during various cognitive states (Dwyer 

et al., 2014; Elton and Gao, 2014; Fornito et al., 2012a; Sripada et al., 2014), and overlap 

with areas implicated for their higher-order roles within-and-between such systems 

(Grahn et al., 2008; Lindquist et al., 2012; Menon and Uddin, 2010; Shackman et al., 

2011; van den Brink et al., 2014). Interestingly, the brain regions typically reported to 

display these characteristics in large-scale systems are transmodal subcortical (i.e. 

thalamus, caudate nucleus) and limbic (i.e. insula, anterior cingulate) areas also identified 

to be most representative of hubs in the elderly connectome (the precuneus was a notable 

exception in our data). In turn, this provides further plausibility regarding the stability 
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across normal ageing of not only the topology of core architectural brain features, but also 

their pivotal roles in large-scale network communication.  

 Despite these similarities across the age cohorts, we did observe some possible age-

related changes to hub-regions (and their connections). Notably, the mean fibre length of 

connections to hub-regions (both hub and feeder connections) in elderly females were 

found to be 40mm shorter than young females. We also observed an increase in the 

routing of simulated traffic in the elderly connectome through local connections and a 

corresponding decrease of hub-to-hub routing. These findings can be interpreted within 

the hallmarks of normal ageing. First, previous investigations of functional connectomic 

lifespan changes reported that long-distance connections are disproportionally affected in 

normal ageing (Cao et al., 2014; Tomasi and Volkow, 2012a; Wang et al., 2012). Second, 

cognitive domains (i.e. working memory, executive functions, processing speed) that 

consistently decline with healthy ageing rely on the integration and coordination of 

distributed large-scale systems, where long-distance connections are pivotal (Crossley et 

al., 2013; Dwyer et al., 2014; Lim et al., 2014; Park and Reuter-Lorenz, 2009; van den 

Heuvel and Sporns, 2013a). Finally, the fragility of healthy adult brain networks to 

simulated (computational) attack of hub connections has been posited to reflect 

pathogenic processes (i.e. amyloid deposition) in normal ageing and underlying 

neurodegenerative disorders such as AD, where the high metabolic activity of such 

regions has shown to render them more susceptible (Buckner et al., 2009; Crossley et al., 

2014; Toga and Thompson, 2014; Tomasi et al., 2013). The present findings, taken 

together with the literature regarding normal ageing, suggest while the core architectural 

features of hub connections remain pivotal in the elderly, their capacity for large-scale 

communication is reduced.  



 

 79 

 Several methodological challenges do limit the implications for direct age-related 

analysis. First, for direct statistical contrasts to be performed, the diffusion acquisition 

parameters should be identical between the two populations; otherwise the distribution of 

connectivity, regardless of age effects, will be non-uniform (Tournier et al., 2013; 

Vaessen et al., 2010; Zalesky et al., 2010b). Changes in the b-value, for example will 

impact upon the diffusion signal to noise ratio – changes that will likely propagate through 

the diffusion pipeline leading to systematic differences (such as the distribution of 

inferred fibre lengths). Data from the young adult population employed here were chosen 

on  the merits that the diffusion images were acquired on exactly the same MRI scanner. 

We do not, however, perform direct contrasts, but limit our comparison to a quantitative 

visualization. Second, differences in head motion, brain volume, white matter volume, 

brain anatomy and challenges in the appropriate matching of education and general 

medical issues are other substantial challenges that require substantial future work before 

direct comparisons between young and elderly connectomes can be confidentially made.  

 

2.5.2 Lateralization effects 

The first left-lateralized subnetwork cluster we identified in the elderly is consistent with 

the cingulum bundle and inferior fronto-occipital fibres, connecting occipital, precuneus, 

thalamic and cingulate structures to orbitofrontal regions. This is consistent with the left-

lateralized FA values commonly found within anterior portions of adult cingulum bundles 

(Takao et al., 2013). This lateralization is notable given segments of the cingulum bundle, 

and orbitofrontal structures, are thought to be essential for executive functions including 

decision-making and emotional processing (Grabenhorst and Rolls, 2011; Heilbronner 

and Haber, 2014; Schoenbaum et al., 2009; Shackman et al., 2011). 



 

 80 

 

 The first bundle of the second left-lateralized subnetwork interconnects parietal 

(angular and Geschwind's area) regions with temporal (middle and superior) areas, and 

the second is consistent with arcuate fasciculus circuits connecting Wernicke's to Broca's 

area. These are perisylvian circuits specialised for language (Catani et al., 2005; Price, 

2012). The other bundle is consistent with the frontal aslant connecting the SMA to the 

inferior frontal operculum, which has been reported to be leftward lateralized in adults 

(Catani et al., 2012; Vergani et al., 2014). The SMA and rolandic areas are activated 

during the movements essential for speech production (Bouchard et al., 2013; Brown et 

al., 2009; Price, 2012), thereby suggesting this subnetwork is specialised for sensorimotor 

integration. Nevertheless, these strong leftward lateralizations are surprising given 

decreased functional specialisation of both prefrontal and language networks is typically 

reported with age (Antonenko et al., 2013; Bergerbest et al., 2009; Cabeza et al., 2002; 

Davis et al., 2012). 

 We also identified three rightward lateralizations. The third of these is associated with 

visual circuits, consistent with the optic radiation wiring the thalamus to both occipital 

and medial temporal regions (Bassi et al., 2008; Bürgel et al., 1999; Thiebaut de Schotten 

et al., 2011b). The two other right-lateralized subnetworks are both consistent with 

superior longitudinal fasiculus bundles spanning from supramarginal and superior 

temporal regions to the insula and ventral striatum. These bundles are found to be right-

lateralized in adults (Thiebaut de Schotten et al., 2011a; Thiebaut de Schotten et al., 

2011b), but of more significance is that the degree of lateralization in these circuits has 

recently been associated with increased speed for visuospatial processing for targets in 

the left hemifield (Thiebaut de Schotten et al., 2011a). These findings suggest these 
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lateralized subnetworks remain specialised for visual and visuospatial processes in the 

elderly.  

 

2.5.3 Sexual dimorphisms    

We not only replicate findings of increased inter-hemispheric connectivity within female 

youths (Ingalhalikar et al., 2014), but show it is localised to subnetworks of circuits wiring 

cingulate structures (middle and anterior), as well as prefrontal cortices (lateral and 

middle). This observation builds upon prior evidence of distinct sexual dismorphisms 

within these anatomical areas, such as increased grey matter volume in the prefrontal 

cortices of females (Feis et al., 2013; Luders and Toga, 2010), as well as greater FA values 

within the corpus callosum (Kanaan et al., 2012; Phillips et al., 2013; Schmithorst et al., 

2008). Nevertheless, focal identification of these subnetworks is of interest, given that 

language and executive functions are associated with the same circuits (Gasquoine, 2013; 

Koechlin et al., 1999; Price, 2012), and females across all age groups demonstrate greater 

performance in cognitive tasks assessing these functions (Gur et al., 1999; Hoogendam et 

al., 2014; Kimura, 2004). Furthermore, increased FA of the corpus callosum has been 

associated with increased behavioural performance and inter-hemispheric functional 

connectivity during language-based tasks (Antonenko et al., 2013; Davis et al., 2012). 

Thus, it is possible the increased connectivity of these subnetworks in females facilitates 

superior performance in verbal-based abilities.     

 We also find stronger connectivity in males in subnetworks connecting ventral striatal, 

anterior cingulate and prefrontal regions (orbitofrontal and superior medial). The 

subnetworks encompass circuits that have been attributed to decision-making and 

regulatory functions (Basten et al., 2010; Grabenhorst and Rolls, 2011; Winecoff et al., 
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2013; Zald and Andreotti, 2010). Interestingly, males generally demonstrate more 

efficient behavioural regulation, and also differential functional activation in these areas 

for tasks involving emotion processing and decision-making (Lighthall et al., 2012; Ross 

and Monnot, 2011; van den Bos et al., 2013; Whittle et al., 2011). This pattern of stronger 

wiring found in males is thus consistent with the observed gender differences in tasks 

associated with these circuits.  

 

2.5.4 Conclusion 

In sum, our study is the first systematic investigation of network organisation in the 

elderly connectome. Notwithstanding the methodological caveats highlighted above, we 

provide preliminary evidence that the topology and architectural features of hub-regions 

are preserved into the healthy elderly. Moreover, our findings provide a benchmark for 

future longitudinal and clinical investigations, arguing that elucidating the topology and 

cost of hub regions may be key to connectomic changes. In particular the architectural 

features shown here provide a benchmark for further connectomic investigations to 

dissociate healthy ageing from neurodegenerative disorders.  
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Chapter 3: The independent influences of 
age and education on functional brain 
networks and cognition in healthy older 
adults 

 

3.1 Abstract 

Healthy ageing is accompanied by a constellation of characteristic changes in cognitive 

processes associated with alterations in functional brain networks. The relationships 

between brain networks and cognition during ageing are moderated by the influence of 

cognitive reserve factors in a complex and incompletely understood manner. Here, we 

leverage multivariate analyses to elucidate the dependence of latent patterns (or modes) 

of resting state functional connectivity on demographic and cognitive measures in 101 

cognitively-normal elders. We identified three modes of co-variation capturing 

interdependences between phenotypic measures and functional brain networks. The first 

significant mode (p=0.00043) captures the opposing influence of age and core cognitive 

processes such as attention and processing speed on functional connectivity patterns. The 

bilateral functional subnetwork expressed by this mode links lower-order sensorimotor 

and visual regions through key areas such as the parietal operculum and posterior insula. 

The second mode (p=0.012) links a strong and independent association between 

educational attainment and connectivity patterns, whilst the third (p=0.041) captures 

weak brain-behaviour relations. The opposing pull of age on attention and processing 

speed within the first mode suggests the parietal operculum and posterior insula are 

crucial to age-related changes in sensorimotor functioning. The connectivity of this 

network is influenced predominantly by intrinsic factors such as age. The influence of 
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extrinsic factors such as education split into a second, independent mode which confers 

reserve benefits by acting upon between-network interactions tied to key hub-regions.  

 

3.2 Introduction 

Normal ageing is associated with progressive changes in cognitive function which impact 

upon on functioning and inter-personal relations (Stuck et al., 1999; Willis et al., 2006). 

Fluid-based cognitive functions are particularly sensitive to change with specific, age-

related underlying neurobiological processes that are incompletely understood (Grady, 

2012; Park and Reuter-Lorenz, 2009). It is crucial to disambiguate these normal age-

related changes from the neurobiological pathology of neurodegenerative disorders such 

as AD (Dennis and Thompson, 2014). Traditionally, the more rapid progression of 

atrophy (indexed by volumetric size and thickness) in prefrontal, hippocampal, and 

parietal cortices is thought to underpin progressive age-related cognitive changes (Dennis 

and Cabeza, 2008; Park and Reuter-Lorenz, 2009; Raz et al., 2005). However, 

investigations that have reported macroscopic changes associated with age-related 

declines are rather inconsistent or contradictory (Rodrigue and Kennedy, 2011). 

Alterations in univariate measures of brain structure such as local cortical 

thickness, only partially capture the neurobiological processes underpinning age-related 

cognitive changes. Conceptualisation of human brain function as being shaped by 

interactions (connections) between its constituent elements (brain regions) has 

underpinned seminal observations that healthy brain networks are topologically organised 

in a highly complex, and interconnected manner (Bassett and Bullmore, 2006; Bullmore 

and Sporns, 2012; Sporns, 2013b). Such networks delicately balance functional 
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integration and segregation of spatially-distinct brain-regions, giving rise to cognitive and 

perceptual states (Friston et al., 1995; Sporns et al., 2000; Tononi et al., 1994). Networks 

can be constituted by structural connections, such as inferred from dMRI tractography 

(Hagmann et al. 2008), or functional connections measured by temporal correlations of 

spontaneous fluctuations in BOLD signals between brain regions (Biswal et al., 1995; 

Fornito et al., 2013; Fox and Raichle, 2007). 

The sensitivity of fluid-based cognitive functions to normal ageing, which require 

integrated and coordinated neural communication, suggests age-related changes may be 

attributable to the corresponding changes in large-scale communication (Andrews-Hanna 

et al., 2007). Evidence for this proposal is supported by reduced functional connectivity 

within specialised resting-state networks such as the DMN, whilst inter-network 

connectivity is conversely found to increase (Andrews-Hanna et al., 2007; Betzel et al., 

2014; Chan et al., 2014; Geerligs et al., 2015; Tsvetanov et al., 2016). Such changes 

appear partially associated with poorer cognitive performance (Andrews-Hanna et al., 

2007; Chan et al., 2014; Fjell et al., 2015; Onoda et al., 2012; Salami et al., 2014) although 

the complete picture of whole-brain network activity and age-related changes in cognition 

across multiple domains is lacking.  

Measures of intra/inter-network communication in this field have typically been 

derived from pair-wise estimates of connectivity between representative seed-regions, or 

aggregated across regions of respective networks. Graph-theoretical techniques afford 

characterisation of multivariate complex interactions within functional brain networks 

(Fornito et al., 2013; Sporns, 2013b). Applications of graph-theoretical techniques to the 

study of ageing have reported alterations in the connectivity of specific subnetworks, and 

decreases in connectivity pronounced over long-range distances (Cao et al., 2014; 
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Marques et al., 2015; Sala-Llonch et al., 2014; Tomasi and Volkow, 2012a). Disruptions 

to long-range communication are proposed to reflect decreased integration and increased 

segregation of functional brain networks with age, further substantiated by widely 

observed changes in global network topology (Bullmore and Sporns, 2012; Cao et al., 

2014; Sala-Llonch et al., 2014). Hitherto, only few investigations of functional networks 

in healthy elderly populations have been undertaken (Marques et al., 2015; Sala-Llonch 

et al., 2014), which is surprising given that the trajectories of cognitive decline are not 

uniform across the lifespan (Deary et al., 2009; Schaie, 1996).  

The relationship between age-related cognitive changes and functional brain 

networks is moderated by cognitive reserve (CR) in a manner that remains poorly 

understood. Higher levels of educational attainment, intelligence, occupational status and 

particular lifestyle factors confer protection against the effects of ageing on cognition as 

well as the onset of Alzheimer’s symptomatology (Stern, 2012; Valenzuela and Sachdev, 

2006). Such factors - postulated to contribute to an individual’s CR (Stern, 2002) - are 

associated with a relative preservation of brain structure and more efficient neural activity 

during cognitive demands (Bartrés-Faz and Arenaza-Urquijo, 2011). Increased 

educational attainment is also associated with increased connectivity in distributed 

cortical networks (Marques et al., 2016; Marques et al., 2015). However, it remains to be 

elucidated whether CR confers greater resilience upon cognitive networks sensitive to 

age-related decline, or rather indirectly via non-task specific networks  (Bartrés-Faz and 

Arenaza-Urquijo, 2011; Stern, 2009; Stern et al., 2008).  

Multivariate analyses allow a broad picture of brain-behaviour relationships. 

Using canonical correlation analysis (CCA) Smith et al. (2015) studied the inter-

relationships between 158 phenotypic measures and whole-brain functional connectivity 
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patterns in a large cohort of healthy younger adults (Van Essen et al., 2013). Intriguingly, 

the covariation between the full suite of phenotypic markers and functional connectivity 

loaded onto a single positive-negative axis. Positive personal traits (e.g. life satisfaction, 

education years, and fluid intelligence) shared strong co-variations with connectivity 

patterns. Conversely, characteristically negative traits (e.g. substance use, rule-breaking 

behaviour) load negatively onto these brain-behaviour associations. A recent CCA-based 

investigation of brain networks in ageing revealed specific co-variation of intra-and-inter-

network connectivity with particular cognitive domain scores (Tsvetanov et al., 2016). 

However, the relative influence of both age and CR proxies within these co-variation 

patterns was not examined.  

Here we use CCA to examine inter-relations amongst age, cognitive performance, 

and CR in relation to patterns of functional connectivity in 101 cognitively-normal elders. 

In particular, we ask whether the single axis of associations between behavioural 

indicators of cognition and functional brain networks seen in young adults (Smith et al., 

2015b), persists under the influence of ageing. Cognitive domains loading against age are 

potentially most susceptible to decline. We ask whether proxies for CR exert their 

influence upon the same networks associated with age, or rather onto independent brain-

behaviour modes. 

 

3.3 Methods 

3.3.1 Participants 

Cognitively normal individuals were drawn from a longitudinal, population-based  study 

(the Sydney Memory and Ageing Study (Sachdev et al., 2010)). At the baseline of this 
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longitudinal study, community-dwelling participants initially between 70-90 years of age 

were randomly recruited from the electoral roll. Imaging and phenotypic data for the 

present study were acquired during the fourth wave of this study (approximately 6 years 

following study baseline). Subjects were classified as cognitively normal at the current 

wave if their performance on neuropsychological test measures was less than 1.5 SDs 

below normative values (Tsang et al., 2013). Exclusion criteria at study entry included a 

Mini-Mental Statement Examination (MMSE) (Folstein et al., 1975) adjusted (Anderson 

et al., 2007) score below 24, a diagnosis of dementia, developmental disability, a history 

of schizophrenia, bipolar disorder, multiple sclerosis or motor neuron disease, active 

malignancy, or inadequate comprehension of English to complete a basic assessment. 135 

participants met inclusion criteria. The study was approved by the Ethics Committee of 

the University of New South Wales and participants gave written, informed consent. 

 

3.3.2 Neuropsychological measures 

A comprehensive neuropsychological battery was administered by trained graduate 

psychologists to cover five cognitive domains of attention/processing speed, memory, 

language, visuospatial ability, and executive function (Kochan et al., 2010; Sachdev et 

al., 2010). Each domain consists of a composite of individual tests (Table 3-1). Memory 

was further subdivided into verbal memory after exclusion of a visual retention test. The 

individual test scores for each subject were transformed into quasi Z-scores based upon 

the mean and standard deviation of tests scores for a healthy, reference group (n=723) 

phenotyped at study baseline. Domain scores were calculated as the average of the quasi 

Z-scores of tests comprising each domain. If necessary, the signs of the z-scores were 

reversed so that higher scores reflect better performance.  
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The National Adult Reading Test (NART) (Nelson and Willison, 1991) was 

administered to a subset of the current population at study baseline. The NART IQ 

estimates premorbid intelligence levels (Bright et al., 2002).  

 

 Table 3-1. Neuropsychological tests to measure cognitive domain scores 

Cognitive Domain Neuropsychological Test 

Attention/Processing 
Speed 

• Digit Symbol-Coding (Wechsler, 1997a) 
• Trail Making Test (TMT) A (Strauss et al., 2006) 

Memory • Logical Memory Story A delayed recall (Wechsler, 
1997b) 

• Rey Auditory Verbal Learning Test (RAVLT) (Strauss 
et al., 2006): 

o RAVLT total learning; sum of trials 1-5 
o RAVLT short-term delayed recall; trial 6 
o RAVLT long-term delayed recall; trial 7 

• Benton Visual Retention Test recognition (Benton et 
al., 1996) 
 

Verbal Memory • As above, but not including the Benton Visual 
Retention Test. 
 

Language • Boston Naming Test – 30 items (Kaplan, 2001) 
• Semantic  Fluency (Animals) (Strauss et al., 2006) 

 
Visuospatial Ability • Block Design (Wechsler, 1981) 

Executive Function 
 

• Controlled Oral Word Association Test (Strauss et al., 
2006) 

• TMT B (Strauss et al., 2006) 
 

3.3.3 Acquisition and pre-processing of MRI data 

Eyes-closed rs-fMRI data consisting of 208 time-points  were acquired with a T2* 

weighted echo-planar imaging sequence (TE = 30 ms, TR = 2000 ms, 1.87 x 1.87 x 4.50  

mm3  voxels)  on a Philips 3T Achieva Quasar Dual MRI scanner. Structural T1-weighted 

MRI were also acquired (TR = 6.39 ms, TE = 2.9 ms, 1mm3  isotropic voxels). FSLView 
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was used to visualise every MRI scan for artifact inspection. Subjects were removed if 

severe signal dropout (particularly around orbitofrontal areas) or spatial distortions 

were present. Data from 111 participants thus entered the study. 

Steps in pre-processing were performed using the Data Processing Assistant for 

Resting-State fMRI (DPARSF, v3.2 advanced edition) software package (Yan and Zang, 

2010), which calls functions from SPM8 (http://www.fil.ion.ucl.ac.uk/spm/). Basic pre-

processing steps included slice-timing, realignment to mean functional image, co-

registration of the structural image, linear detrending, and nuisance regression of head 

motion  (24 paramters) (Friston et al., 1996b)  and WM/CSF signals (Ashburner and 

Friston, 2005). Native functional images were transformed into an average population-

based T1 template and then MNI space (3mm3 voxels). rs-fMRI images were smoothed 

(6mm) and temporal band-pass filtering applied (0.01–0.08 Hz). Global signal regression 

was not performed. Full description of the steps involved for the acquisition and pre-

processing of rs-fMRI data are provided in Appendix 3 (A3.1 and 3.2).  

 Data from one-hundred and one subjects were included in the main analysis (Table 3-

2, left-column). Of the initial subject population (n = 135), fifteen were removed due to 

severe signal loss (thirteen within rs-fMRI scans), ten had incomplete cognitive 

information, whilst nine failed adequate co-registration between their T1-weighted and 

mean functional image. No significant differences for demographic (Table 3-1) or 

cognitive (Table A4-1) information (p<0.05, t-test) were found to the subset of subjects 

(n = 91; Table 3-2, right column) receiving a NART IQ assessment at study baseline. 
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Table 3-2. Basic demographic and cognitive information of subjects.  

Cohort All subjects (n = 101) With baseline IQ (n 
= 91) 

NESB (n) 10 1 

M/F (n) 44/57 39/52 

 Mean (+- SD) Mean (+- SD) 

Age (years) 82.65 (3.81) 82.45 (3.73) 

Education (years) 12.71 (3.64) 12.51 (3.55) 

MMSE 29.45 (0.90) 29.40 (0.93) 

NART IQ N/A 109.98 (9.41) 

NESB, Non-English speaking background 

 

3.3.4 Construction and normalization of functional brain networks 

Full description of the steps involved for the construction and normalization of functional 

brain networks are provided in Appendix 3 (3.3 and 3.4). In brief, the Pearson’s 

correlation coefficient of the mean BOLD signals between all pairs of 512 uniformly-

sized regions (Zalesky et al., 2010b) was calculated to construct the functional 

connectivity matrix M. Fisher’s transformation was applied to M, and subsequent upper-

triangle values were concatenated across all subjects, forming matrix N1.  

 

3.3.5 Normalization and demeaning of connectivity matrices  

The connectivity matrices N1 were normalized and demeaned according to the procedure 

of (Smith et al., 2015b) (also available online at http://fsl.fmrib.ox.ac.uk/analysis/HCP-
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CCA/hcp_cca.m), resulting in the matrix N2 for subsequent analyses.  The mean frame-

wise displacement (FD) (Power et al., 2012) was calculated to also remove potential 

confounding effects of head motion in N2 to form N3. There was no significant effect of 

age on subject motion (FD) (p > 0.39, r = -0.09) 

 

3.3.6 CCA  

Eight subject measures were chosen for inclusion in the CCA: Age, education years, and 

the domain scores for attention and processing speed, language, executive function, 

visuo-spatial ability, memory, and verbal memory. NART IQ scores were only included 

in an auxiliary analysis as only a subset of subjects were administered this test at wave 1. 

 Principal Components Analysis was implemented via the FSLNets toolbox (Smith et 

al., 2014) within MATLAB to reduce the dimensionality of N3 to eight eigenvectors 

(corresponding to the number of non-imaging measures employed). CCA was then 

applied to these reduced data yielding eight modes which constitute weighted linear 

combinations of orthogonalized subject measures and functional connectivity 

eigenvectors: Each mode represents canonical correlations which correspond to the 

maximum residual covariation between the two variate sets in decreasing rank order. Each 

CCA mode m is represented by the vectors Um and Vm, representing the individual subject 

weights for subject measures and connectivity matrices respectively: 

- Um is the extent to which each subject is (positively or negatively) correlated to 

population variation in subject measures within mode m 

- Vm is the extent to which each subject is correlated to population variation in brain 

connectivity within mode m  
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The correlation of Um and Vm yields rm, the strength of the population co-variation in 

mode m shared between brain connectivity and subject measures. 

 

3.3.7 Association of connectivity edges and nodal regions within each mode 

We next assessed which connectivity edges are most strongly associated with population 

variations in connectivity captured within mode m. First, to obtain the relative weight 

(and directional signs) of each edges association with the connectivity within mode m, 

we correlated Vm with the original connectivity estimates in N3, resulting in a vector AFm. 

The connectivity edges identified most strongly associated with either positive or 

negative co-variations between Um and Vm, were chosen as the top 250 (representing 

0.0019% of all network edges) strongest connections with positive and negative signs 

within AFm respectively.  

    

3.3.8 Statistical analyses 

 
To determine the significance of interdependence between the variates sets within each 

mode m, Wilk's Lambda (λ) was first calculated and transformed into Rao's 

Approximation F-statistic (Rao, 1952). Shared variances captured between the respective 

variate sets of mode m were determined as significant if p<0.05, thus rejecting the null 

hypothesis (H0) that subject measures and functional components are independent of each 

other within mode m.  
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3.4 Results 

Multivariate analysis were employed to capture the latent relations between age and 

cognitive changes with respect to resting-state connectivity in 101 cognitively-normal 

elders. We further investigated the mitigating influence of cognitive reserve factors such 

as education years amongst these age-related associations with connectivity. In the full 

sample, we first assessed the complex relationships between age, gender, education and 

six cognitive domains: verbal memory, memory, visuospatial function, executive 

function, language and attention/processing speed. Performance across these cognitive 

domains is highly correlated (Figure 3-1); Performance positively correlates with years 

of education, and generally negatively with age, particularly for attention/processing 

speed (p<0.001). As expected, memory and verbal memory (being largely redundant) 

correlate very strongly. Verbal memory (p<0.001) and visuospatial function (p<0.05) are 

significantly correlated with female sex (Figure 3-1). In a subsample of the main cohort, 

we also examined relations with IQ (Figure A4-1). 

 

Figure 3-1: Strength and direction of relations between cognitive and demographic 

measures 
* p<0.05, ** p<0.01, *** p<0.001; FDR-corrected 
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 We next used CCA to examine the primary modes that relate these (correlated) 

demographic and cognitive variables to patterns of resting state fMRI data. CCA 

identified three significant canonical modes (p<0.05) of interdependence between these 

non-imaging measures and functional connectivity (Table 3-3). 

Table 3-3. Significant CCA modes in the main-analysis  

CCA Mode One Two Three 

df1 64 49 36 

df2 496.76 441.03 384.80 

F 1.77 1.55 1.48 

λ 0.30 0.45 0.57 

r2 0.32 0.21 0.20 

RI 0.072 0.030 0.023 

p 0.00043 0.012 0.041 

RI, redundancy index 

Each CCA mode consists of a set of weights that reflect the loading of the 

cognitive and demographic variables onto the corresponding resting state patterns (Figure 

3-2). The first mode (p<0.00043) is characterised by a split between all cognitive domains 

(particularly memory, attention and processing speed) which load along a positive axis, 

and age which loads strongly and negatively (Figure 3-2A, left panel). Language and 

education have close to zero loading within this mode. The opposing pull of attention and 

processing speed versus age can be seen by plotting the subject specific measure weights 

versus the corresponding connectivity weights, coloured according to age (Figure 3-2D) 

or attention processing speed (Figure 3-2E). Younger subjects (Figure 3-2D, blue circles) 
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cluster in the top right corner of the panel, indicating how they weigh positively with the 

corresponding connectivity-behaviour relations. Likewise, fast and attentive performers 

(Figure 3-2E, green to dark red) also load positively on the first CCA mode. These plots 

show that faster, attentive, younger performers weight positively, whereas poorer 

performers, whom are also older, contribute to negative associations within this mode.  

In contrast, the second mode (p<0.012) is characterised by an independent 

positive association of education years with connectivity (Figure 3-2B, 3-2F). Although 

executive function loads moderately on this mode, all other variables load very weakly 

(in both directions). While age and memory load negatively, their contributions are weak. 

There also exists a weakly significant third mode (p<0.041). This mode splits 

cognitive measures into moderately positive visuospatial and memory weights versus 

weakly negative attention and processing speed (Figure 3-2C). Age and education weight 

close to zero.  
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Figure 3-2: Associations between cognitive and demographic measures captured by the 

significant CCA modes. A-C, Correlation between subject measures and functional 

connectivity variation (Vm), with the strength and direction of the relations indicated by 

vertical position and font size. D-F, Scatter plots showing for each subject (data points) 

their weighting towards non-imaging measures (Um, x-axis) and functional connectivity 

patterns (Vm, y-axis), captured for the first (D-E) and second modes (F). Colour is 

scaled according to subjects age (D), Attention/Processing Speed performance (E), and 

education level (F).  
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Each of these three CCA modes also load onto patterns of functional brain 

connectivity. To study these, we calculated the 250 edges most strongly associated with 

each mode in both the positive and negative directions. The functional connectivity edges 

most strongly expressed by positive associations in the first mode (mean r = 0.64, SD = 

0.02) primarily involve bi-lateral connections between occipital, temporal (inferior and 

medial portions), superior parietal, and pre/post central gyral regions (Figure 3-3A). 

Functional connections between occipital areas and pre/post-central regions within the 

right hemisphere are also evident. To disentangle the functional basis of this network of 

strongly associated connections, we assigned regions in our parcellation to broader 

functional network clusters; default-mode, cognitive-control, somatomotor, dorsal 

attention, salience ventral attention, visual, and limbic networks (Yeo et al., 2011). Hence, 

revealing that positive edges in the first mode are predominately clustered between visual, 

somatomotor, and to a lesser extent, dorsal attention networks. Of note is the convergence 

of connections upon bi-lateral parietal operculum/posterior insular areas. This topological 

distribution motivates visualisation of the network using a force-vector algorithm 

(Jacomy et al., 2014) which spatially co-localises nodal brain regions (circles) that are 

mutually and densely interconnected (Figure 3-3B);. “Hub” nodes (top 5% highly-

connected regions within the network; larger circles) representing rolandic and insular 

areas are centrally positioned and exhibit a high clustering of strong connections to other 

regions. Cortical regions that organise around these hubs derive from multiple functional 

networks.  
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Figure 3-3: Connectivity edges most positively expressed by the first CCA mode. A, 

Connectivity edges exhibiting strongest positive associations with functional 

connectivity patterns (V1). Line width indexes strength of correlation. Circle size is 

scaled to the number of connections each region shares within the network, whilst 

coloured  to functional network affiliation (Yeo et al., 2011). The brain meshes are 

presented from axial (bottom left panel), posterior (middle left), and customised 

perspectives of the left (top left; elevation = 0, azimuth = -120) and right-hemisphere 

(top right; azimuth = -240). B, Force-vector perspective, clustering regions (circles) 

both mutually and densely interconnected (lines weighted by the mean functional 

correlation across N1). Larger circles indicate the most top 5% highly-connected 

regions within the network. 
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INS, Insula; IOG, Inferior Occipital Gyrus; PoCG, Post-central Gyrus, ROL, Rolandic Operculum; STG, 

Superior Temporal Gyrus; TPOsup, Superior Temporal Pole; L, Left-hemisphere; R, Right-hemisphere 

 

We then identified the functional connectivity edges most negatively expressed 

by the first mode (mean = -0.27, SD = 0.03). These connections form two distinct clusters: 

The first cluster inter-connects pre-motor, pre/post central gyri and superior medial 

frontal areas (SMA, pre-SMA, superior frontal gyri) (Figure 3-4A). A second cluster 

involves inter-hemispheric connections between inferior parietal areas, and additional 

connections between these areas and left superior parietal regions (Figure 3-4B). On a 

coarser scale these edges connect default-mode and cognitive control networks areas to 

regions affiliated with all other networks except for limbic areas, particularly default-

mode connectivity with both the somatomotor and dorsal attention networks. 

The edges most strongly expressed within the second mode are quite distinct from 

the networks identified within the first mode, mirroring the divergent loading of 

phenotypic measures onto these two modes. The edges exhibiting the strongest positive 

associations (mean = 0.73, SD = 0.01) with the second mode stretch between visual 

cortices and dorsolateral prefrontal areas, whilst connections from superior parietal 

(dorsal attention) and pre/post-central gyri (somatomotor) converge at both dorsolateral 

and ventrolateral regions, lying within default and control networks (Figure 3-5A). 

Assigning regions to their respective functional networks shows that edges from the 

default and control networks inter-connect preferentially with visual, somatomotor, and 

dorsal attention networks (Figure 3-5B). 
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Figure 3-4: Connectivity edges most negatively expressed by the first CCA mode. A, 

Connectivity edges exhibiting strongest negative associations with functional 

connectivity patterns (V1) captured by the first mode.  Line width indexes strength of 

correlation. Circle size is scaled to the number of connections each region shares 

within the network, whilst coloured  to their functional network specialisation. The 

brain meshes are presented from axial (bottom-middle), posterior (bottom-left), and 

angular perspectives of the left (top-middle) and right-hemisphere (top-right). B, 

Coarse perspective of connectivity distributions across the functional networks, with 

warmer colours indicating greater number of connections.  
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Figure 3-5: Connectivity edges most positively expressed by the second CCA mode. A, 

Connectivity edges exhibiting strongest positive associations with functional 

connectivity patterns (V2), hence representing connections expressed by the increased 

education level of elders.  Line width indexes strength of correlation. Circle size is 

scaled to the number of connections each region shares within the network, whilst 

coloured to their functional network specialisation. The brain meshes are presented 

from axial (bottom middle panel), posterior (bottom left), and angular perspectives of 

the left (top right) and right-hemisphere (top-left). B, Coarse perspective of connectivity 

distributions across the functional networks, with warmer colours indicating greater 

number of connections.  

 

The edges exhibiting the strongest positive associations (mean = 0.64, SD = 0.02) 

with the third mode also comprise distinct networks to the prior two modes. Functional 

connections predominately cluster around ventrolateral and orbitofrontal divisions of left 

prefrontal nodes encompassing default-mode, cognitive control, and limbic areas (Figure 
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A4-2A). Edges stretch between these areas and bi-lateral frontomedial regions (anterior 

cingulate and superior portions), the left cingulate (middle and posterior portions), and 

left inferior parietal lobe. Assigning these networks to functional subdivisions of the brain 

shows they are predominately distributed within-and-between default-mode and control 

network areas, with additional connections between all other networks (except for visual) 

(Figure A4-2B).  

 

3.4.1 Additional analyses: The influence of sex, verbal memory and intelligence  

Given the strong correlations between sex and cognitive performance across specific 

domains (Figure 3-1), we undertook an additional CCA with sex (males coded as 1) 

included (hence with nine functional components).  Two significant CCA modes were 

identified (p<0.05, Table A4-2), showing subtle differences to the principle modes 

explored above (Figure A4-3). In the first mode (Figure A4-3A), cognitive domains are 

again spread along the positive axis, with (male) sex loading most strongly on the negative 

axis followed by age and education years. The strong independent association of 

education with connectivity remains in the second mode (Figure A4-3B), whilst gender 

and the cognitive domains demonstrate weak to moderate associations.   

The construct of memory in the main analysis includes verbal memory and is 

hence partly redundant (and thus strongly correlated) when verbal memory is also coded 

separately. However, two significant CCA modes (Table A3-3) were also identified with 

the removal of verbal memory scores with almost identical loading distributions to those 

in the main analysis (Figure A4-4). 
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To check the dependence of our findings on the number of regions within the 

parcellation scheme, the analysis was performed identically with a coarser brain template 

of 256 uniformly-sized regions (Zalesky et al., 2010b). The positive-negative split of 

cognitive domains and age remains present within the first modes albeit slightly less 

significant (Table A4-5, Figure A4-5A). The second mode is again characterised by a 

strong independent association with connectivity, although it no longer exceeds statistical 

significance (p=0.054; Figure A4-5B).  

Education and intelligence are highly-correlated (Figure A4-1), and both 

considered central to cognitive reserve (Stern, 2009).  The positive co-variation between 

greater education years and increased connectivity captured by the second mode in the 

main analyses thus raises an interesting question regarding the contribution of 

intelligence. We thus performed CCA (with nine functional components) using the full 

cohort of subjects whom received NART IQ assessment at study baseline (n=91). This 

analysis yielded two significant modes (p<0.05; Table A4-5). The modes capture latent 

relations that are similar to the main analysis, although interesting differences between 

education and intelligence emerge (Figure 3-6). Within the first mode, NART IQ loads 

positively and of similar magnitude to memory and visuospatial ability. Although NART 

IQ scores also bear a moderate positive association with connectivity captured by the 

second mode, the strength of this loading is weaker than education.  Thus NART IQ splits 

across mode, with a component in opposition to age and a component loading 

independently with education. 
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Figure 3-6: Associations between behavioural and demographic measures captured by 

the CCA modes significant with including intelligence scores. A-B, Correlation between 

subject measures and functional connectivity variation (Vm), with the strength and 

direction of the relations indicated by vertical position and font size. C-D, Scatter plots 

showing for each subject (data points) their weighting towards non-imaging measures 

(Um, x-axis) and functional connectivity patterns (V2, y-axis), captured for the second 

modes. Colour is scaled according to participants education level (C) and NART IQ 

scores (D).  
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 The strong influence of education when also including IQ in the CCA model suggest 

the functional connectivity patterns captured here may be distinct from the main 

analysis. The edges exhibiting the strongest positive associations (mean = 0.74, SD = 

0.015) are distributed throughout the cortex (Figure 3-7). Several key features are 

evident: Connections converge (larger circles) upon parietal default-mode areas 

including right -and medial (precuneus) portions, as well as superior (dorsal attention), 

and paracentral areas (somatomotor). Edges connect these areas to default-mode and 

dorso- and ventrolateral- prefrontal areas as well as lateral pre- and postcentral- gyri. 

Only a small proportion of function connections (24/250 edges = 9.6%) also occur 

within the corresponding mode of the main analysis (Figure A4-7). Visualising this 

network with an edge bundling connectogram which acts to cluster hierarchical 

relationships shows that edges predominately cluster between default-mode (red circles) 

and control-network (orange) areas to all other networks except for limbic regions 

(Figure 3-7B). Notably, the edges cluster around key default-mode and control-network 

regions (larger circles). 

 

3.5 Discussion 

We used a multivariate approach to elucidate the complex relationships between 

demographic factors, cognitive performance and functional brain networks in 

cognitively-normal elders. Whereas a single mode links cognitive and behavioural traits 

to functional connectivity patterns within healthy adults (Smith et al., 2015b), we 

identified three modes capturing significant interdependencies between phenotypic 

measures and connectivity. The first mode opposes cognitive performance and age on 
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Figure 3-7: Connectivity edges most positively expressed by the second CCA mode 

including intelligence scores. A, Connectivity edges exhibiting strongest positive 

associations with functional connectivity patterns (V2), hence representing connections 

expressed by increased education level of elders.  Line width indexes strength of 

correlation. The brain meshes are presented from axial (bottom-left panel), posterior 

(middle-left), and customised superior (top-middle) and lateral (top-right) perspectives. 

B, Edge-bundling connectogram which clusters the hierachial relationships between 

these set of connections. Positions of regions are according to their network affiliation. 
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Edges are coloured by their respective affiliation if they link to either default-mode or 

control-network regions. All other possible interactions are coloured grey. For both (A) 

and (B), circle size is scaled to the number of connections each region shares within the 

network, whilst coloured to their functional network specialisation. 

 

connectivity patterns. The second mode distinctly accounts for an independent and 

positive association of education with connectivity, whilst the third mode captures only 

weak relations. Age thus appears to exert an influence on brain-behaviour relations by 

splitting the single mode expressed in younger adults into three separate modes, with age 

and CR loading orthogonally. 

All cognitive domains in the first mode load along a positive axes, mirroring 

positive traits within healthy adults (Smith et al., 2015b). Age, on the other hand, is 

positioned on the negative pole. This mode thus captures opposing associations between 

cognitive performance and age to connectivity. Greater attention and processing speed 

most strongly oppose age-related changes, suggesting functional connectivity changes are 

strongest for circuits supporting such functions. Indeed, cognitive function in these 

domains robustly predicts normal ageing (Park and Reuter-Lorenz, 2009) and cognitive 

decline in other tasks (Baltes and Lindenberger, 1997; Finkel et al., 2007; Salthouse, 

1996). The functional connections most positively expressed within this mode are 

between visual and somatosensory cortices, with additional involvement of parietal 

association areas. These regions are distinctly linked by bi-lateral insular (posterior) and 

operculum (parietal) areas - areas not only associated with sensorimotor tasks (Cauda et 

al., 2012; Chang et al., 2012; Roski et al., 2013), but also integration of these systems 

(Sepulcre, 2014; Sepulcre et al., 2012). Age-related changes observed here builds upon 

reductions in resting-state connectivity with age within senorimotor systems (Betzel et 
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al., 2014; Chan et al., 2014; Geerligs et al., 2015), as well as for the parietal operculum 

itself (Cao et al., 2014; Tomasi and Volkow, 2012a).  

There conversely exists a network of functional connections negatively expressed 

by this mode involving links between pre-motor, pre- and- post-central gyri and superior 

medial frontal areas - regions involved for planning and performing motor output (Gollo 

et al., 2015; Nachev et al., 2008; Tremblay and Gracco, 2010). Whereas deficits in motor 

performance occur with age (Ketcham and Stelmach, 2001; Seidler et al., 2010), 

increased functional (bilateral) activations  are reported during motor tasks for these areas 

in older subjects (Heuninckx et al., 2008; Kleerekooper et al., 2016; Seidler et al., 2010). 

Increased activations are attributed as compensation of decline in neural integrity (Cabeza 

et al., 2002), and/or the decreased functional specialisation of brain regions (Seidler et al., 

2010). Although relative decreases in connectivity for better (and younger) performers 

may reflect correlates of the aforementioned postulations, the association of connection 

edges here are much weaker than those observed with positive expressions.  

 Of interest, education loads only weakly on the networks expressed by the age-related 

changes in cognitive performance (i.e mode one). This is in apparent contradiction to the 

mitigation of age-related cognitive-decline observed for CR proxies (Stern, 2002). In our 

data, education instead loads upon a second mode, whose functional connections are 

distinct from the first mode. Connections occur between visual, salience, superior 

parietal, and somatomotor regions, converging upon the lateral prefrontal areas - circuitry 

(especially fronto-parietal links) consistently implicated in cognitive control (Cocchi et 

al., 2013; Koechlin et al., 2003; Spreng et al., 2010). Executive function partially loads 

onto this mode, revealing increased education may provide partial neuroprotection.  
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IQ and education both represent typical proxies of CR, and are highly-correlated 

(Stern, 2012). However, in our auxiliary CCA, we observed that IQ loads with other 

cognitive domains in opposition to age on the first mode, while education remains 

independently captured by the second mode. The relatively higher association of 

intelligence towards the first mode suggests age-related changes are influenced by 

intrinsic rather than extrinsic/modifiable factors such as education level. Nonetheless, 

functional connections within the second mode are predominately between key default-

mode (inferior and medial parietal) and control-network transmodal hub-areas (middle 

frontal), to all other networks. There is strong evidence that higher-order cognitive 

functions are subserved by these transmodal areas (Cole and Schneider, 2007; Raichle, 

2015; Seghier, 2013; Utevsky et al., 2014).  The predominance of between-network 

interactions is salient given the dynamic integration of functional subsystems are critical 

upon task-demands (Bassett et al., 2011; Braun et al., 2015; Cocchi et al., 2013). A third 

mode linked relatively weak positive associations between connectivity patterns to 

memory and visuo-spatial abilities. Although only weakly significant, the third mode may 

capture cognitive correlates relatively independent of subject’s age and education.  

Including participants’ sex with the CCA model revealed a similar latent structure 

of phenotypic inter-relations to the first mode of the original analysis. Sex (males) loaded 

negatively, hence with age and in opposition to memory performance.  Males demonstrate 

poorer performance on verbal-based memory tasks (Gur et al., 2012; Hoogendam et al., 

2014; Kimura, 2004): Our data reveals the functional connectivity patterns associated 

with these sexual dimorphisms.  

 The relatively large cohort and the multivariate nature of CCA bring new insights into 

the relationship between age, cognition and functional brain networks. However, these 
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findings should be interpreted in light of a number of limitations. The cross-sectional and 

association-based nature of the study design precludes causal inferences. A formal 

analysis of the influence of age would mandate a longitudinal within-subjects design. 

Furthermore, the influence of education on CR via functional connectivity patterns also 

requires further validation.  

 

3.6 Conclusion 

In sum, the present study expands upon a recent multivariate analysis of behaviour and 

functional brain networks in young adults (Smith et al., 2015b) through extension into 

cognitively-normal elders. Under the influence of age, we find brain-behaviour relations 

spilt into more than one mode, with age and education loading onto separate modes of 

functional connectivity. Age-related changes are most strongly exerted upon 

sensorimotor networks subserving core cognitive processes such as attention and 

processing speed. We identify that extrinsic factors such as higher education obtainment 

may confer its influence on cognitive reserve independent of age-related effects, but 

rather upon critical between-network interactions. The influence of age and education 

upon normal ageing reported here provides an important benchmark for the study of 

Alzheimer’s. Whereas effects of education and sex are often controlled for within ageing 

investigations, the present multivariate approach further highlights the rich and complex 

phenotypic inter-influence on functional connectivity patterns. 
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Chapter 4:  Structural dysconnectivity of key 
cognitive and emotional hubs in young 
people at high genetic risk for bipolar 
disorder  

 

4.1 Abstract 

Emerging evidence suggests that psychiatric disorders are associated with disturbances 

in structural brain networks. Little is known, however, about brain networks in those at 

high risk of BD, with such disturbances carrying substantial predictive and etiological 

value. Whole-brain tractography was performed on diffusion-weighted images acquired 

from 84 unaffected high-risk individuals with at least one first-degree relative with 

bipolar disorder (HR), 38 young patients with BD and 96 matched controls with no family 

history of mental illness (CN). We studied structural connectivity differences between 

these groups, with a focus on highly connected hubs and networks involving emotional 

centres. HR participants showed lower structural connectivity in two lateralised sub-

networks centred upon bilateral inferior frontal gyri and left insular cortex, as well as 

increased connectivity in a right lateralised limbic sub-network compared to CN subjects. 

BD was associated with weaker connectivity in a small right-sided sub-network involving 

connections between fronto-temporal and temporal areas. Although these sub-networks 

preferentially involved structural hubs, the integrity of the highly connected structural 

backbone was preserved in both groups. Weaker structural brain networks involving key 

emotional centres occur in young people at genetic risk of BD and those with established 

BD. In contrast to other psychiatric disorders such as schizophrenia, the structural core of 

the brain remains intact despite the local involvement of network hubs. These results add 
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to our understanding of the neurobiological correlates of BD and provide predictions for 

outcomes in young people at high genetic risk for bipolar disorder. 

 

4.2 Introduction 

Large-scale brain networks arise from white matter tracts that link cortical regions and 

subcortical structures, following topologically complex (Sporns, 2013b; Sporns et al., 

2005),  geometrically constrained  principles (Roberts et al., 2016c). Disturbances to these 

networks have been observed in a variety of neurological and psychiatric disorders, 

including schizophrenia (Zalesky et al., 2011), depression (Bai et al., 2012), attention-

deficit hyperactivity disorder (Cao et al., 2013), mild cognitive impairment (Bai et al., 

2012), and epilepsy (Widjaja et al., 2015). Even subtle perturbations to brain networks 

can cause disturbances in cognitive and emotional processes (Stephan et al., 2006), 

particularly if they target highly connected hubs in executive, emotional and association 

regions (Collin et al., 2014a; van den Heuvel et al., 2010). 

BD is a disabling psychiatric disorder characterised by episodic disturbances in 

emotion and cognition. Studies have inferred reduced WM integrity in BD from 

alterations to DTI-derived indices, such as FA (Heng et al., 2010; Nortje et al., 2013; 

Vederine et al., 2011; Xekardaki et al., 2011). Although findings are somewhat 

inconsistent, there is a trend towards DTI-derived alterations in BD patients compared to 

controls in circuits linking prefrontal, striatal and limbic regions. Such findings suggest a 

link between the emotional and cognitive phenotype of BD and dysfunction in the 

networks supporting these functions. 
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Unaffected first-degree relatives of patients with BD have an odds ratio of ~7-14 

of developing BD (Mortensen et al., 2003). Given the strong heritability of WM 

morphology (Chiang et al., 2012), studying individuals at familial risk of developing BD 

may help identify neurobiological factors that pre-empt the development of BD as well 

as factors associated with resilience. This objective is particularly pertinent in young first-

degree relatives whom have not yet passed the peak age of illness onset (Arat et al., 2015). 

Studying unaffected relatives also mitigates the influence of illness-related confounds 

such as psychotropic medication (Whalley et al., 2011). A number of studies have 

revealed evidence of WM alterations in unaffected first-degree relatives although the 

spatial distribution and extent of these impairments remains uncertain (Emsell et al., 

2014; Frazier et al., 2007; Linke et al., 2013; Mahon et al., 2013; Matsuo et al., 2012; 

Roybal et al., 2015; Sprooten et al., 2013; Sprooten et al., 2011; Versace et al., 2010).  

Whilst DTI-derived indices have shed light on disturbances in specific WM 

pathways, such methods are insensitive to complex interactions among multiple brain 

regions. Developments in the acquisition of DWI and fibre-bundle reconstruction have 

allowed structural brain networks to be mapped with increased precision. The application 

of graph theoretical techniques to these networks has shown that healthy brain networks 

demonstrate ‘small-world’ features (indicative of balanced integration and segregation), 

minimising total fibre length (Bassett and Bullmore, 2006; Sporns, 2013b). Such 

organisational properties appear to be compromised in many disorders, exemplified by 

the  burgeoning connectomic research elucidating network aberrations in schizophrenia 

(Bassett et al., 2008; Fornito et al., 2012b). Disturbances appear to involve highly-

connected hub-regions (Crossley et al., 2014), particularly those hub-regions with dense 

wiring amongst themselves, known as the ‘rich club’ (van den Heuvel and Sporns, 2011). 
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Intriguingly, this core architectural feature may also be compromised in unaffected 

relatives of schizophrenia patients (Collin et al., 2014a). 

Whist prior connectomic studies of BD show impairments in connectivity across 

the callosum and amongst limbic regions (Collin et al., 2015; Leow et al., 2013), the rich 

club backbone may be preserved (Collin et al., 2015). A recent study of unaffected 

relatives of BD patients did not reveal any structural network differences in either 

patients, or controls (Forde et al., 2015). However, this study had a modest sample size 

(n=58), and the mean age of unaffected relatives was 42 years, suggesting that many 

would have already passed the typical onset age of BD illness (<30 years) (Goodwin and 

Jamison, 2007) and may represent a resilient group of high-risk individuals. Alterations 

of topographical network organisation in unaffected first-degree relatives of patients with 

BD who have not passed the peak age of onset remains to be elucidated.  

We leveraged recent advances in tractography and complex network analyses to 

investigate whole-brain structural networks in a large young sample of young unaffected 

‘high risk’ (HR) first-degree relatives of patients with BD, patients with BD, and control 

subjects (CN). Crucially, our study cohort is relatively young (<30years), encompassing 

the peak age of illness onset. We studied specific sub-network differences in connectivity, 

as well as the topological properties of the highly connected ‘rich club’, and the global 

network architecture of the brain. We hypothesised that structural connectome 

disturbances in key regions involved in emotional regulation would be an early marker of 

vulnerability to BD. 
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4.3 Methods 

4.3.1 Participants 

218 richly phenotyped participants aged 12-30 years comprised three age- and gender-

matched groups:  1) 84 participants at ‘high-risk’ (HR) for BD, 2) 96 controls (CN) 

without a family history of mental illness, and 3) 38 BD participants. Sample 

ascertainment and separate clinical assessments for younger (12-21) and older (22-30) 

age categories are provided in an epidemiological study of the population cohorts (Perich 

et al., 2015), and also within Appendix 5.1. We pooled data across both age cohorts unless 

there was a specific correlation between a brain network measure and an age-specific 

clinical variable in either group. Summary demographic and clinical data are presented in 

Table 4-1 and Appendix 5 (5.6 and Table A5-1). 

 

Table 4-1: Demographic information for control, high-risk, and Bipolar patient groups  

Demographic data CN 
(n=96) 

HR 
(n=84) 

BD 
(n=38) 

Difference 
Statistic 

p 

Females, n (%) 
 

53 (55.2) 45 (53.6) 23 (60.5) χ2 = 0.52 .77 

Males, n (%) 
 

43 (44.8) 39 (46.4) 15 (39.5) χ2= 0.52 .77 

Intelligence Quotient, mean 
(SD)  
 

117.7 
(10.3) 

116.3 
(10.7) 

117.3 
(12.0) 

F= 0.36 .69 

Age, mean (SD) 22.6 (3.8) 22.4 (4.7) 23.9 (3.4)  F= 2.08 .13 

CN, Controls; HR; High-risk; BD, Bipolar Disorder 

 

4.3.2 Diffusion MRI acquisition, pre-processing, and whole-brain tractography 

DWI data were acquired using a 3T Philips Achieva X MRI scanner. Full description of 

the acquisition parameters are provided in Appendix 5.2.1. The pre-processing of DWI 
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data, and subsequent whole-brain streamline generation is almost identical to the steps 

involved in Chapter 2 (cf 2.3.3 and 2.3.4). In brief, pre-processing steps included motion 

correction, rotation of the gradient matrix, and bias correction (Appendix 5.2.1). CSD 

was then employed in conjunction with probabilistic tractography (iFOD2 algorithm) 

(Tournier et al., 2010) to generate 5 million high-resolution whole-brain streamlines, 

representing the most probable propagations of fibre tracts between brain regions. 

 

4.3.3 Construction of structural networks 

The steps involved in the construction of whole-brain structural networks derived from 

these data are similar to those applied within Chapter 2 (cf 2.3.5). For full description of 

the steps involved in connectome construction see Appendix 5.2.3. In brief, the standard 

AAL template (Tzourio-Mazoyer et al., 2002a) was subdivided into 512 cortical and sub-

cortical parcellation regions of approximately uniform size (Zalesky et al., 2010b). 

Subject-specific parcellations were combined with the individual’s whole brain 

tractography to generate weighted structural networks where each network edge 

corresponds to the total number of streamlines that intersect pairs of region, adjusted by 

the physical fibre length between those regions (Hagmann et al., 2008b). All main 

analyses reported here are on structural networks thresholded with a connection density 

of 10%; brain network investigations typically employ threshold levels centring around 

this value (Sporns, 2013b). We also checked the robustness of our main results at sparsity 

levels of 7.5% and 12.5%. 
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4.3.4 Network-based statistics  

We tested for group differences in sub-networks of these structural connectomes. To 

achieve this, we used a GLM in conjunction with the NBS (Zalesky et al., 2010a), a 

permutation-based method to control for FWE over the large number of connectome 

edges tested (cf 2.3.12.3). An omnibus F-test (F=6.0, corresponding to an uncorrected 

p=0.003) was first conducted to test for the influence of group on sub-networks of 

connections, based upon their topological extent. Two-sample one-tailed t-tests were then 

calculated to test for differences in sub-network connectivity between specific pairs of 

groups. A conservative test threshold of t=3.3 (p=0.002) was chosen in order to yield 

strong, supra-threshold differences (Zalesky et al., 2012). A liberal height threshold of 

t=3 (p =0.003, uncorrected) is the default optimization within the statistical tool, which 

identifies relatively larger and more distributed subnetworks of connections. 

 

4.3.5 Complex network analyses 

4.3.5.1 Hub nodes and connection classes 
Each brain region’s “hubness” was defined by virtue of its (binary) nodal degree; that is 

the total number of edges connected to each region. The top 15% degree-ranking scores 

were used to identify hub-regions within each individual. The top 15% most consistent 

hubs across the CN group were then defined as hub-regions (Figure 4-1A). This cut-off 

threshold centers upon values typically employed in brain network research (Perry et al., 

2015). Classification of regions as either hubs (red) or non-hubs (grey) allowed network 

connections in each individual to be categorised into three connection classes: 1. hub 

connections (red), linking hub nodes; 2. feeder connections (orange), linking hubs to non-

hub nodes; and 3. local connections (grey), linking non-hub nodes.  
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4.3.5.2 Rich club organisation 
High degree hubs connect to other highly connected hubs more often than to peripheral 

nodes of low degree simply by virtue of their high degree. A rich club is said to exist 

when the connections among high degree hubs are enriched above what would be 

predicted by their degree alone (van den Heuvel and Sporns, 2011). This organisation can 

be summarized by the rich club coefficient (RCC; Appendix 1.2.2). We calculated the 

RCC of the individual structural connectomes across a range of degrees (k-levels). 

Significance testing of group differences in RCCs was assessed across all node degrees 

encompassing hub nodes using a false discovery rate (FDR) correction (Benjamini and 

Hochberg, 1995). 

 

4.3.5.3 Network segregation and integration 
We calculated two traditional graph-theoretical measures of global network topology:  a 

measure of integration (characteristic path length, CPL), and a measure of segregation ( 

clustering coefficient, CC) (Appendix 1.3) (Rubinov and Sporns, 2010).  

 

4.3.5.4 Nodal strength 
For each region, we also calculated the nodal strength, namely the number of weighted 

connections that region shares with the network (Appendix 1.1). 

 

4.3.6 Statistical Analyses  

Generalized estimating equations (GEE) (Liang and Zeger, 1986) were used to 

accommodate within-family correlations when assessing effects of diagnostic category, 
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age-group interactions, and when investigating if group effects were influenced by 

depressive mood state (Appendix 5.3.1 and 5.3.2). Corrections for multiple testing of the 

effects of diagnostic category were carried out with FDR correction (Benjamini and 

Hochberg, 1995). Post hoc comparisons were carried out using Sidak's adjustment for 

multiple comparisons.  

 

4.4 Results 

4.4.1 Hub-regions and connection classes 

The structural connectomes of the young CN cohort exhibit a core-periphery hierarchy, 

consistent with that previously documented in healthy mid-life and elderly adults (Perry 

et al., 2015; van den Heuvel and Sporns, 2011, 2013b) (Figure 4-1A). Densely connected 

hub regions form a bilateral structural core, including bilateral cortical regions located 

within dorsolateral and ventrolateral prefrontal cortices, anterior and middle cingulate, 

superior parietal and frontal, temporal poles, fronto-temporal, medial temporal, 

paracentral and precuneus areas, and subcortical structures (Table A5-2). The topological 

distribution of hub-to-hub connections consist of long-range tracts, with mid-length 

feeder and short local connections (Figure 4-1B). There were no significant group 

differences in the relative proportion of hub, feeder and local edges between our three 

groups (Wald χ2 >1.1, p>0.20) (Wald χ2 >2.9, p>0.23), nor in the relative proportion of 

weighted streamlines across these classes (Wald χ2 >1.4, p>0.50, Figure 4-1C) 
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Figure 1: Hub-regions and connection classes across the population groups. A , 

Distribution of brain-regions into hubs and non-hubs, with connections grouped into 

classes (hub, feeder, or local). B, Mean fibre length of each connection class across 

controls. C, Density of connections: Left to right shows hub, feeder and local 

connections.  
CN, Controls; HR, High-risk; BD, Bipolar Disorder; L, left; R, right. 

 

4.4.2 Sub-network connectivity differences: Network Based Statistics 

We applied NBS to study between group sub-network differences. Application of an 

omnibus F-test revealed a strong and significant effect of group (F=6.0, pcorrected=0.018). 

Post-hoc t-tests revealed significant effects for CON>HR, HR>CON and CON>BD 

contrasts. The HR group show decreased connectivity in two lateralized structural 

networks compared to the CN group, both containing structural hubs. A left-lateralized 

network centres upon the left IFG and insular cortex, with connections between superior 

frontal and postcentral areas (pcorrected=0.01, hedge’s g=0.86, Figure 4-2A). A right-

lateralized network largely encompasses connections from middle and superior frontal 

gyri to IFG and superior temporal poles (pcorrected=0.005, hedge’s g=0.96, Figure 4-2B). 
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 Notably, 5 of the 10 nodes comprising the left sub-network are hubs (pars triangularis 

of the IFG, postcentral gyrus, insula and superior frontal gyrus), which is unlikely to occur 

by chance (p=0.009, n=5000 perms). Of the edges comprising this subnetwork, 33% are 

hub-to-hub and 44% are feeder (hub to local) connections, compared to much smaller 

proportions (5% and 32% respectively) in the whole brain network (Figure A5-1). The 

right sub-network includes 3 structural hubs (par orbitalis of the IFG, superior temporal 

pole, caudate). Although there are no hub-to-hub edges comprising this subnetwork, there 

are twice as many feeder edges (63%) compared to the whole brain (32%).   

A right-temporal network was more strongly connected in HR compared to CN 

participants (pcorrected<0.02, hedge’s g=0.87, Figure 4-2C), with connections connecting 

the hippocampus (a hub-region) with middle and superior temporal gyri. One small right-

lateralized network showed weaker connectivity in BD compared to CN participants 

(pcorrected=0.027, hedge’s g=0.93, Figure 4-2D). Notably all edges connected a single hub 

region (the rolandic operculum) with neighbouring fronto-temporal areas.  

Sub-networks derived from a more liberal test threshold (t=3.0) are provided in 

Figure A5-2. For the CN>HR comparisons, this liberal threshold yields larger, but still 

lateralised sub-networks which remain centred upon IFG/insular regions of the 

corresponding hemispheres. These network differences are also expressed at sparsity 

levels of 7.5% and 12.5% (Figure A5-3). No significant group effects were found for any 

of the other group contrasts (CN<BD, HR>BD, and HR<BD). 
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Figure 4-2: Significant sub-networks of connections for group contrasts identified by 

the NBS. Connections (lines) between nodes (circles) exhibiting significant (p<0.05, 

FWE-corrected; t=3.3) post-hoc group differences in streamline count. A and B, 

CN>HR; C, CN<HR; D, CN>BD. Perspectives are from angular (middle panel), 

saggital (top right only), and coronal views. 
CN, Controls; HR, High-risk; BD, Bipolar Disorder; L, left; R, right; α, azimuth. 

 

The distribution of node degree in our data is heavy-tailed, showing an 

approximately log-normal distribution (Figure A5-4). The classification of the top-15% 

of connected nodes as hubs centers upon thresholds previously employed in brain network 

research (Perry et al., 2015; van den Heuvel and Sporns, 2011, 2013b). In our data, this 
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threshold is one standard deviation above the mean, thus capturing the heavy right hand 

tail (Figure A5-4A). We also identified hubs at more conservative (12.5%) and liberal 

(17.5%) cut-off points (Figure A5-5). These supplementary analyses show that the 

relatively high proportion of hubs within the networks is robust to the exact choice of hub 

threshold. 

 

4.4.3 Topological Network Analyses 

4.4.3.1 Rich club organisation 
These NBS results suggest preferential involvement of hub nodes in group effects. To 

study whether these effects on hub nodes extend to involve hub-to-hub (rich) connections, 

we studied the rich club coefficients (RCC). Data from all three groups show a highly 

enriched hub-to-hub (rich club) connectivity across a broad range of node degree (Figure 

4-3A). However, there were no statistically significant differences (pcorrected>0.59) in the 

RCC between our three cohorts.  

 

4.4.3.2 Nodal Strength   
While the enrichment of the structural core is preserved, there remains the possibility that 

the localized connectivity of hubs differs between our three cohorts. This was tested by 

analyzing the strength of all nodes (Figure 4-3B, Table 4-2). Decreased strength of the 

HR group compared to the CN group occurred in the left parahippocampus and right IFG 

(left panel). Decreased nodal strength for the BD compared to both HR and CN groups 

was evident in the right precentral gyrus and left insula (middle). Decreased node strength 

for both HR and BD groups compared to CN was observed in the left SFG, left 

hippocampus and left middle occipital gyrus (right). While these effects occur in cortical  
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Figure 4-3: Group contrasts of nodal, global, and rich-club graph metrics. A, Mean 

normalized rich-club coefficients across different k-levels for the population groups. 

Grey lines depict group uncertainty, obtained through permutation of group labels. B, 

Regions exhibiting significant group (p<0.05, FDR-corrected) differences in nodal 

strength. C, Mean global graph metric values across population groups.  
CN, Controls; HR, High-risk; BD, Bipolar disorder; L, left; R, right; *, p<0.05 ; **, p<0.01.  
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regions that contain hub nodes such as the IFG, insula and hippocampus, it is noteworthy 

that none of these eight nodes are themselves hubs. 

 

4.4.3.3 Integration and segregation 
A significant main effect of group was detected for both the CC (pcorrected=0.016) and CPL 

(pcorrected=041), with a significantly higher CC (pcorrected=0.008, hedges g=0.446) and 

longer CPL (pcorrected=.049, hedges g=0.313) in BD subjects compared to the CN group 

(Figure 4-3C). Corresponding values in the HR group were intermediate to the BD and 

CN groups. 

 

Table 4-2: Significant group differences in nodal strength 

Region Node p¹ Post-hoc contrasts 
   CNvsHR g CNvsBD g HRvsBD g 

Left Superior 
Frontal Gyrus 

211 0.015   ↑ CN*** 0.55 ↑ CN**  0.66 - - 

Left 
Hippocampus 

83 0.015 ↑ CN** 0.48 ↑ CN**  0.70 - - 

Right Precentral 
Gyrus  

511 0.017 - - ↑ CN*** 0.66 ↑ HR*  0.40 

Left Insula  197 0.026 - - ↑ CN*** 0.63 ↑ HR* 0.49 

Left Middle 
Occipital  

202 0.039 ↑ CN* 0.38 ↑ CN*** 0.74 - - 

Left 
Parahippocampal 
Gyrus  

198 0.039 ↑ CN*** 0.52 - - - - 

Right Inferior 
Frontal Gyrus / 
Pars Triangularis 

504 0.039 ↑ CN*** 0.54 - - - - 

CN, Controls; HR, High-risk; BD, Bipolar Disorder 
¹ FDR-corrected 
*** p < 0.001; ** p < 0.01; * p < 0.05 
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4.4.3.4 Auxiliary analyses 
Current mood state was not significantly associated with total strength of NBS identified 

networks (p>0.07), or graph metrics (p>0.16), suggesting that these disturbances are not 

driven by mood but reflect an underlying trait disturbance. For nodal strengths, the 

precuneus demonstrated an effect of mood (p<0.001). 

Given that a major depressive episode (MDE) often precedes the onset of mania 

in those who will later develop BD (Perich et al., 2015), the occurrence of a MDE in 

subjects at genetic risk for BD may represent a developmental stage of BD. We therefore 

undertook additional analyses to address this issue. We first subdivided our HR group 

into those with at least one lifetime depressive episode (n=22) or an anxiety disorder 

(n=15). For the HR>CN sub-network (Figure 4-2C), HR participants with a lifetime 

anxiety disorder show less connectivity compared to those without (p=0.037). No sub-

group differences were evident for the remaining three NBS identified networks (p>0.12), 

nor for the graph metrics (p>0.60). We also removed subjects with a prior MDE from 

within the HR group and re-analyzed the between group effects.  Highly significant group 

differences (p<0.001) in structural connectivity remained for all NBS contrasts involving 

the HR cohort. 

Within the BD group, current use of lithium, mood stabilisers or antidepressants 

were not associated with CPL (p>0.32) or CC (p>0.34). Current antipsychotic use was 

significantly associated with lower CC (p=0.024). Measures of illness severity in the BD 

group (age of onset and total number of mood episodes) were not significantly associated 

with any connectivity measures. 

Five of the 84 HR participants (6%) had a single relative within the BD group. 

We removed these 5 individuals from each group (10 in total) and repeated the 

corresponding analyses. As per the original contrasts, there were no significant 
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differences in global graph metrics or NBS subnetworks (p>0.27) between the HR and 

BD groups. The greater nodal strength in HR compared to BD subjects in the left insula 

(i.e. Figure 4-3B, middle panel) remained significant when removing these subjects 

(p=0.007), although the effect in the right precentral gyrus drops below statistical 

threshold (p=0.054). 

 

4.5 Discussion 

In sum, our young HR cohort show weaker structural connections than the CN group in 

two lateralised sub-networks centering upon fronto-temporal hubs, and stronger 

connectivity in a right lateralised prefrontal network.  The young BD group show reduced 

connection strengths in a single left fronto-temporal sub-network. While key structural 

hubs such as the IFG and insula are repeatedly involved in these sub-networks, the inter-

connected structural “rich club” backbone does not differ between groups. The perturbed 

sub-networks thus involve key emotional and cognitive circuitry, but “hang off” a 

preserved structural core. Lack of substantial correlations with key clinical indices 

suggest that these effects represent a trait marker of increased risk for BD and not an 

effect of mood state or medications. 

The two lateralized networks that showed decreased connectivity in the HR group 

centre upon bilateral prefrontal gyri, inferior frontal gyri, and the left insular cortex. These 

regions recapitulate those reported to have reduced WM volume and density, and 

reductions in FA in prior studies of unaffected relatives of BD patients (Chaddock et al., 

2009; Kieseppä et al., 2003; McIntosh et al., 2005; Sprooten et al., 2013; Sprooten et al., 

2011; Tzourio-Mazoyer et al., 2002a) in addition to those with established BD (Adler et 

al., 2006; Beyer et al., 2005; Bruno et al., 2008; Chaddock et al., 2009; Coffman et al., 
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1990; Haznedar et al., 2005; Kafantaris et al., 2009; Nugent et al., 2006). The specific 

involvement of the IFG adds to a converging body of evidence from structural and 

functional studies of BD (Breakspear et al., 2015a; Brotman et al., 2014; Chen et al., 

2011; Hajek et al., 2013b; Papmeyer et al., 2015; Roberts et al., 2013). Likewise, the 

involvement of the insula adds to a growing number of reports of structural and functional 

differences in HR cohorts (Kempton et al., 2009; Matsuo et al., 2012; Sepede et al., 2012; 

Thermenos et al., 2010). Both the IFG and anterior insula are key areas for emotional, 

interoceptive and cognitive regulation (Goldin et al., 2008; Menon and Uddin, 2010; 

Sprengelmeyer et al., 1998). We extend prior research by suggesting that, rather than 

being focal abnormalities in HR individuals, these changes occur in distributed structural 

networks that integrate interoception and emotional regulation with executive function 

and cognitive control. 

The stronger structural connections in the HR cohort centre upon the right 

hippocampus (a hub-region) and connect neighboring insular and STG areas. Again, these 

regions recapitulate those previously identified as having both altered FA (Mahon et al., 

2013; Roybal et al., 2015) and decreased radial diffusivity (Versace et al., 2010) in high-

risk individuals. The presence of this sub-network of stronger connections could be a 

compensatory response to the weaker sub-networks elsewhere in this our HR cohort, 

preserving adaptive emotional regulation. Alternatively, increased integration amongst 

this sub-network could confer risk in its own right, as cognitive function is thought to 

arise from a delicate balance of integration and segregation in structural networks 

(Sporns, 2013b): The hippocampus is associated with memory and regulatory function 

during emotional processing (Richardson et al., 2004) whilst the STG is involved in social 

cognition processes such as facial emotion recognition (Neves et al., 2015). Therefore, 
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strengthened connections between the hippocampus, other temporal regions and the 

insula could contribute to hypervigilance to emotional stimuli and social cues. 

Disambiguating these possibilities – and recalling that only a subset of our HR subjects 

will convert to BD – is to be the subject of future prospective study of this cohort. 

Several observations pertain to the effects in our young BD group. We observed 

a small right-sided sub-network of weaker connections between a rolandic opercular hub-

region and neighbouring fronto-temporal areas (insula, Heschl’s gryus). This sub-

network is distinct to, and not an extension of the network of right sided regions in the 

HR group. In addition, there were also subtle changes in measures of network integration 

and segregation specific to the BD group, although here the HR group showed an 

intermediate (“dose-dependent” response). We observed both shared and unique 

differences in node strength between groups. Hence, there are findings that are distinct to 

each of the HR and BD groups as well as effects where the HR group falls between the 

CN and BD group. The former (group-specific) changes may speak to the influence of 

mood stabilising medication and/or compensatory responses to mood episodes in the BD 

group, as well as the heterogeneous nature of the HR group. Disambiguating these will 

again be the focus of future work as we follow this cohort longitudinally. 

 

4.6 Conclusion 

To optimize the sensitivity of our constructed connectomes, we employed state-of-the-art 

probabilistic tractography. In contrast, the majority of existing high-risk studies of BD 

have used voxel-based or track based spatial statistics derived from deterministic 

algorithms, challenging direct comparison between the present results and previous 
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findings. A key finding relative to the present study is a decrease in the enrichment of 

hub-to-hub connections in schizophrenia patients (van den Heuvel et al., 2013) and their 

unaffected relatives (Collin et al., 2014a): Despite involvement of key emotional and 

cognitive structural hubs in weakened sub-networks, we find preserved integrity of the 

rich club structure in young people with BD and our HR cohort, mirroring a recent finding 

in older BD patients (Forde et al., 2015). Although schizophrenia and BD show a 

substantial genetic overlap (Moskvina et al., 2009), this difference mirrors the relative 

preservation of cognitive function in BD (McCormack et al., 2015), and may be a key 

neurobiological difference between the disorders. Testing such a hypothesis will require 

large, multi-disorder studies of psychotic and affective phenotypes. 
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Chapter 5: Discussion 
 

Throughout this thesis, I sought to investigate the expression of structural and functional 

brain networks across young adult and elderly population cohorts. Neuroimaging data 

were treated through connectomic approaches, conceptualizing the human brain upon its 

complex structural and functional interactions. The spatial, topological, and 

spatiotemporal macroscopic features of these large-scale networks in relation to their 

ability to understand and predict human brain functioning were investigated through three 

studies. More specifically, I identified macroscopic features within elderly brain networks 

indicative of normal ageing and age-related cognitive changes. Furthermore, I also 

identified disruptions to large-scale structural networks in patients with BD and those at 

high-genetic risk for the disorder. I discuss the present findings here in light of the key 

features of human brain organisation - patterns of functional integration and segregation. 

Changes to the balance between these key features are reflective of inter-individual 

differences in cerebral processing capacity that drive phenotypic and genotypic 

expression. The core of this discussion is devoted to the implications of the reduced 

integrative capacity of hub-regions and their connections. Finally, I raise consideration of 

the limitations inherent within this work, which provide a catalyst for preliminary 

analyses and further neuroimaging studies of elderly and younger adult psychiatric 

populations.    

 In Chapter 2, I provided a systematic description of the structural connectomic 

features characteristic of healthy older adults. In reference to young adult connectomic 

data, I found the continued presence of the high-cost features of hub-regions and their 

connections within the “elderly connectome” - reflective of their ongoing role in global 
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brain communication. Interestingly, the capacity of these hub-connections for functional 

integration appears to be reduced in the elderly, which I postulate to be characteristic of 

age-related cognitive changes. 

The functional brain networks of a subset of these elderly participants were 

examined in chapter 3. I leveraged multivariate analysis to investigate the expression of 

functional connectivity patterns with respect to cognitive changes that occur with ageing 

in healthy elders. Here, a diffuse functional sensorimotor subnetwork was identified 

whose expression opposes age against core cognitive processes such as attention and 

processing speed. I further revealed the functional connectivity within this subnetwork to 

be relatively resilient to modifiable factors such as increased education years. 

In chapter 4 I shifted focus to large-scale structural disruptions which underlie BD 

and unaffected relatives at high-genetic risk for the disorder. Within the high-risk 

population, I identified trait disturbances in circuits supporting emotional and cognitive 

control. These disturbances are suggestive of the neurodevelopmental vulnerability of 

such high-risk individuals, which potentially pre-empts the development of emotional 

instabilities. The structural backbone was also otherwise found to remain relatively intact 

in both patient and high-risk groups, which provides an interesting comparison to other 

psychiatric conditions.    

 

5.1 Functional integration and segregation in the elderly 

connectome  

Early connectomic investigations were heralded for their seminal discoveries of the 

modular, “small-world” organisation of structural wiring patterns in humans and other 
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species (Hagmann et al., 2008b; Hagmann et al., 2007; Sporns et al., 2000; Sporns and 

Zwi, 2004). Chapter 2 identified features expressive of the continued presence of 

functional integration and segregation within the “elderly connectome”. Within healthy 

older adults, a modular organization (i.e. segregation) is observed - and more importantly 

- the existence of highly-connected hub-regions. The dense-wiring (i.e. hub-connections) 

among these hub-regions form the core anatomical backbone known as the “rich-club” 

(van den Heuvel and Sporns, 2011). Consistent with adult connectomic data, the rich-

club in older adults exhibit architectural features indicative of its high-capacity for 

functional integration: increased inter-modular links, greater projection lengths of fibres, 

and disproportionate routing of network traffic (Collin et al., 2014b; van den Heuvel et 

al., 2012; van den Heuvel and Sporns, 2011; van den Heuvel and Sporns, 2013a; van den 

Heuvel and Sporns, 2013b). Presumably, the high-volumetric-and-metabolic costs ensued 

by the wiring patterns of hub-regions (Bullmore and Sporns, 2012) are offset by the 

substrate’s ongoing role for network communication in the elderly brain.   

 

5.2 Changes to the integrative capacity of hub-connections in 

normal ageing 

The continual role of the rich-club for global brain communication in healthy older adults 

is interesting in light of the cognitive changes associated with normal ageing and AD. 

Age-related cognitive changes are foremost observed for fluid-based functions which 

require integrated and coordinated neural processes (Park and Reuter-Lorenz, 2009). The 

critical role of rich-club wiring for facilitating dynamic patterns of neural fluctuations 

(Gollo et al., 2015; Senden et al., 2014; Senden et al., 2016; van den Heuvel and Sporns, 

2013b) suggests that the integrative capacity of hub-regions may be influenced by age. 
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The continued existence of hub-connections within healthy older adults is indicative of 

their role of maintaining functioning, relative to the marked deteriorations in AD. 

However, chapter 2 does reveal macroscopic features that reflect the reduced integrative 

capacity of hub-connections and subsequent cognitive changes in later-life: Subtle 

decreases in the projection length and routing of network traffic of hub-connections are 

demonstrated in older participants. These findings suggest that, despite the preservation 

of their overall topological structure, reductions in the integrative capacity of hub-

connections occur. This postulation is in agreement with the sparse ageing literature in 

this area: Whilst the spatial location of hub-regions are relatively consistent across the 

lifespan, there are reductions in the enrichment of the functional (Cao et al., 2014) and 

structural rich-club (Betzel et al., 2014; Zhao et al., 2015). 

 

5.3 Neurobiological correlates of age-related cognitive 

changes  

In Chapter 3, I identified the expression of a more specific functional subnetwork linking 

lower-order visual and somatomotor areas to oppose increasing age against greater 

attention and processing speed. Multivariate analysis revealed younger, better cognitive 

performers weighed towards increased expression of this subnetwork. In contrast, the 

patterns of older, poorer performers are reflected by relative decreases in this subnetwork. 

Whilst these functional links don’t necessarily overlap with the structural rich-club as 

shown in Chapter 2, these findings nonetheless reinforce that macroscopic brain network 

features are tied to age-related cognitive changes. External factors, such as increased 

education, can potentially modify age-related changes (Stern, 2002). Interestingly, these 

factors had a weak effect on this age-related subnetwork. Increased education instead 
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conferred enhanced functional connectivity patterns between higher- and lower- level 

cognitive networks. This is salient, given that between-network interrelations depend 

critically upon task-states (Bassett et al., 2011; Braun et al., 2015; Cocchi et al., 2013).   

 The neurobiological correlates of age-related changes are most commonly 

conceptualized as degenerative processes that underlie cognitive decline. An alternative 

framework, however, embodies the adaptive effects with normal ageing that endow the 

maintenance of cognitive functioning (Moran et al., 2014). Cognitive functions can be 

maintained within healthy individuals in later life, as exemplified by tasks assessing 

accrued knowledge (Deary et al., 2009; Park and Reuter-Lorenz, 2009). A large lifespan 

study which employed DCM for MEG data, indeed revealed the synaptic connectivity 

strengths of older brains are attenuated to the short-term sensory learning of auditory 

stimuli (Moran et al., 2014). This finding suggests that older individuals demonstrate less-

complex connectivity patterns that are optimized over the lifespan for robustly encoding 

multiple sensory inputs (Moran et al., 2014). The increases in between-network functional 

connectivity observed in healthy older adults during resting and task-states further reflects 

complex functional reconfigurations with age (Betzel et al., 2014; Chan et al., 2014; 

Geerligs et al., 2015). Within chapter 2, the relative increase in older subjects for network 

routing along less-complex wiring patterns (i.e. local connections) could indicate adaptive 

reconfigurations. The connectivity patterns associated with increased education years - as 

identified in chapter 3 – is also potentially reflective of factors which can confer adaptive 

reorganizations. By narrowly conceptualizing ageing as a degenerative process, prior 

investigations may neglect the complex influences of age and other factors on brain 

connectivity patterns. 
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5.4 Large-scale networks are compromised in young adults 

with mental illness 

The macroscopic features identified in the elderly connectome are altered within both BD 

patients and unaffected relatives. Alterations to structural connectivity patterns reflects 

the “disconnection” of neural processing, which potentially underpins clinical phenomena 

(Fornito and Bullmore, 2015; Fornito et al., 2015; Friston, 1998). The dysregulation of 

emotional and cognitive control within patients suggests a dysconnectivity in networks 

which support such functions (Phillips and Swartz, 2014; Strakowski et al., 2012). Indeed, 

in Chapter 4, structural disturbances of fronto-limbic circuits was revealed in patients - 

and also in high-risk individuals. The few prior connectomic investigations have 

consistently revealed inter-hemispheric degradations in patients (Collin et al., 2015; Leow 

et al., 2013). Disturbances in high-risk individuals studied in my thesis occur within large-

scale networks largely involving anterior insula and IFG areas, which bridge key 

emotional, cognitive, and somatosensory areas. These alterations recapitulate deviations 

in brain function that can arise from the disruption of communication between specialized 

areas (Fornito et al., 2015). These disturbances are unique to high-risk individuals, which 

is perhaps reflective of their vulnerability at critical developmental periods - further 

suggesting the clinical utility of connectomic approaches in predicting later illness-onset. 

Features indicative of widespread alterations (i.e. reduced global efficiency) to network 

communication are apparent only within patients - and hence perhaps represent markers 

of illness-expression.  

Emerging frameworks of emotional experience and psychopathology have 

repositioned brain (dys)functioning in light of its interactions with internal body systems 

(Seth and Friston, 2016; Stephan et al., 2016). These interactions are postulated to occur 
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through a process known as interception: Physiological changes are sensed from “within”, 

such as those from autonomic and visceral afferent, which yield changes particularly in 

the limbic cortices (Craig, 2003; Critchley et al., 2004). Following Bayesian ideas, 

contemporary active interoceptive inference models have postulated these hierarchical 

representations to be encoded as prediction signals (i.e. probability distributions) in 

agranular cortices (Barrett et al., 2016; Seth and Friston, 2016): Descending predictions 

of bodily states are compared to the ascending sensory input from lower-order regions - 

with the difference between the two derived as the prediction error (Friston, 2008; Friston 

and Kiebel, 2009). The signal encoded in this prediction error actively updates the higher-

order representations. Prediction errors serve allostatic needs by engaging visceromotor 

responses that are central to our affective content and feelings, such as heart palpitations 

and blushing (Barrett et al., 2016; Seth and Friston, 2016). Emotional experience can 

hence be considered a circular process, where interoceptive signals inform and update 

these prior beliefs. 

It is notable that the agranular cortices postulated to embed interoceptive 

predictions are fronto-limbic areas (Barrett et al., 2016; Gu et al., 2013; Seth and Friston, 

2016). The regulation of cognitive and emotional processes are well-supported by these 

areas, exemplified by regions such as the anterior cingulate, anterior insula, IFG, and 

orbitofrontal cortex (Bechara et al., 2000; Craig, 2009; Liakakis et al., 2011; MacDonald 

et al., 2000). The dysregulation of mood and energy levels within BD naturally implicates 

the “hub-opathies” of fronto-limbic areas involved in interoceptive processes. The 

disturbed subnetworks identified for high-risk participants in Chapter 4 is not only 

suggestive of interoceptive disturbances, but also of patterns of broader network 

dysfunction involving lower ends of the cortical hierarchy. The symptomatic expression 
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of mania/hypomania in BD could first be attributable to fronto-limbic dysfunction that 

leads to abnormal world representations. For example, features of the external milieu are 

perceived in BD patients as increasingly salient and/or threatening (Green et al., 2007; 

Jones et al., 2005). A system breakdown may also relate to the inability to update these 

abnormal internal models (O’Donnell et al., 2017) - based upon the predictive errors 

which propagate from (extero- and intero-) sensory cortices. These proposed models of 

abnormal interoceptive inference in patients accommodate the larger-scale patterns of 

network dysfunction observed in BD (Breakspear et al., 2015a; Collin et al., 2015). 

Furthermore, they encompass the considerable inter-individual heterogeneity in the 

clinical and neurobiological presentation of BD. 

 

5.5 The connectivity patterns of hub-regions are implicated 

in cognitive and behavioural changes 

A central theme emerging across the three main studies of this thesis relates the 

integrative capacity of hub-regions to phenotypic and genotypic differences. Whilst 

changes in the communication capacity of the anatomical backbone is reflected within 

older adults in Chapter 2, Chapter 3 also implicates their functional connectivity patterns 

as important to the integrative capacity of sensorimotor, default-mode and control-

network hub-areas. Chapter 4 extends these findings by highlighting the disruption to 

hub-regions as potentially pre-empting the development of affective instabilities. With 

hindsight, the selective involvement of hub-regions within these studies is perhaps not 

surprising, given their topological structure within the human connectome supports their 

heteromodal functions, and also their putative role in critical (unstable) brain dynamics 

(Senden et al., 2014; van den Heuvel and Sporns, 2013b). The selective disturbances of 
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hub-regions across a variety of psychiatric conditions have catalysed postulations 

regarding their increased vulnerability to pathological processes (Crossley et al., 2014): 

First, the embedded topological structure of connections may increase their propensity 

for axonal transport of disease-causing agents in certain neurodegenerative disorders such 

as AD (Fornito et al., 2015). Second, the increased metabolic rates of hub-regions increase 

their vulnerability to pathogenic metabolic processes (Crossley et al., 2014; Fulcher and 

Fornito, 2016).  The pathogenic mitochrondial processes implicated in BD hence 

resonates with the disruptions to hub-regions within high-risk individuals (Clay et al., 

2011; Stork and Renshaw, 2005).  

 

5.6 Benchmarks for neurodegenerative and other psychiatric 

disorders 

The systematic investigation of healthy older adults through Chapters 2 and 3 contributes 

an important benchmark to understand the deviations from healthy ageing. The 

fragmented network breakdown in AD patients (Dennis and Thompson, 2014) has also 

raised the possibility of sensitive disruptions to the long-range hub-connections. Changes 

in the integrative capacity of hub-regions may be differ in their spatial properties in AD 

compared to healthy ageing. The findings of Chapter 3 implicate age-related cognitive 

changes to occur foremost in lower-order sensorimotor hub-regions. Previous work 

suggests that disturbances to default-mode and temporal-hubs are characteristic of AD 

patients. On the other hand, the advanced volumetric decline in cortical size (Douaud et 

al., 2014) and thickness (Fjell et al., 2012) has been revealed within AD patients in areas 

that are also sensitive to normal ageing changes. Regardless, the influence of education 

on core DMN and fronto-parietal hubs in Chapter 3 is also an interesting reference point: 
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CR proxies are associated with decreased volumetric size in AD patient groups (Bartrés-

Faz and Arenaza-Urquijo, 2011). Although few studies exist, increased functional 

connectivity patterns observed for patients with high CR may reflect compensatory 

processes (Bosch et al., 2010; Bozzali et al., 2015; Solé-Padullés et al., 2009). 

 The delineation of structural disturbances in BD patients and high-risk individuals is 

also an important reference to schizophrenia patients. Features shared across the two 

disorders include clinical features such as psychosis (Keshavan et al., 2011), genetic 

susceptibility (Potash and Bienvenu, 2009), and brain abnormalities associated with the 

genetic risk (Baker et al., 2014; Caseras et al., 2015). Schizophrenia has emerged as an 

archetypical disorder with structural rich-club degradation (van den Heuvel et al., 2013): 

Disturbances are further associated with illness severity (Collin et al., 2014a), and also 

found in those at high-risk for psychosis (Collin et al., 2014b; Schmidt et al., 2016). The 

widespread disturbances across frontal, parietal, and temporal hub-regions associated 

with schizophrenia (Crossley et al., 2014; Klauser et al., 2016) may reflect the increased 

severity in impairments relative to BD (Vöhringer et al., 2013). Discrete disturbances to 

cognitive and emotional hub regions in BD and at-risk populations is hence more 

intimately related to the unstable mood swings characteristic of this disorder. 

Conceptualization of hub-degradation as disorder-general is perhaps an 

overgeneralization (Crossley et al., 2014). To further disentangle the potentially unique 

neurodevelopmental disturbances in BD and schizophrenia, studies of structural 

connectivity disturbances in the unaffected relatives of both proband groups are required. 

 



 

 142 

5.7 Limitations and future directions 

5.7.1 Selective biases of hub-regions 

As reviewed above, considerable evidence has implicated the selective involvement of 

hub-regions and their connections for inter-individual differences in cognition and 

behaviour. However, the topological features of hub-regions may bias their identification 

in brain-behaviour correlates. Behavioural observations may become apparent only after 

changes to the integrative capacity of embedded hub-regions has a cascading influence 

upon broader network interrelations (Crossley et al., 2014): The cascade of grey-or-white-

matter changes with normal ageing or psychiatric-onset could initially impact non-hub 

regions or local connections. AD provides a mechanistic neurodegenerative example. The 

global loss of functioning in AD patients may be evident only in clinical settings once 

neurotoxins have spread to the longer axonal projections of hub-regions (Fornito et al., 

2015; Zhou et al., 2012). The combination of multiple MRI modalities and the use of a 

longitudinal study design are required to delineate the initial events that lead to cognitive 

and behavioural changes versus downstream events that may lead to later symptoms. 

 It is worth noting that disturbances to hub-regions and their connections observed in 

Chapter 4 are present even in the relatives unaffected by BD. As noted, rich-club 

degradation is evident in the unaffected relatives of schizophrenia probands (Collin et al., 

2014a). Together, these findings in high-risk populations are highly suggestive that 

symptomatic presentation is not merely due to the selective disturbances of hub-regions. 

Furthermore, the “control” group matched to the high-risk population within Chapter 4 

also have had psychiatric episodes, including anxiety and depression. Group differences 

were robust to the removal of high-risk participants with any affective disturbances. 
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5.7.2 Integrating structural and functional connectivity 

It remains to be elucidated the extent to which changes to the underlying architecture in 

both young and elderly populations shape functional connectivity patterns. In each 

chapter, the brain network features that were investigated were those constructed from 

either structural or functional connectivity alone. Although structure is a robust predictor 

of function in the human brain, the relation is not one-to-one, as differential dynamic 

interactions are shown to emerge across the scaffolding (Deco et al., 2013). The limitation 

of employing one MRI modality is apparent when interpreting changes to inter-regional 

communication which is routed through the backbone (Chapter 2): Changes to the 

integrative capacity of hub-connections could plausibly influence subsequent decreases 

in long-range functional connectivity. Interestingly, as noted, ageing is associated with 

increases in functional connectivity patterns over long-range communication paths (i.e. 

binary paths) (Betzel et al., 2014). While long-range paths are assumed to implicate the 

wiring of hub-regions, that study did not demarcate the different connection classes. 

Future studies of normal ageing would also benefit from employing high-temporal 

resolution fMRI data which captures the brain spontaneous fluctuations over time 

(Zalesky et al., 2014).  The decreased integrative capacity of hub-regions could perhaps 

drive decreases in the functional repertoire of neural fluctuations (Deco et al., 2013; 

Senden et al., 2014; Senden et al., 2016). Increases in functional connectivity patterns 

over long-range paths with age have been proposed to be reflective of less-variability in 

brain dynamics (Betzel et al., 2014).  

 



 

 144 

 Investigation of structural-functional relations in psychiatric populations provides 

another layer to advance our understanding of pathophysiological mechanisms behind 

such disorders. It is unknown whether trait disturbances to emotional and cognitive 

control networks in high-risk populations are also associated with alterations to functional 

connectivity patterns. Changes to the “normal” relation between structural and functional 

connectivity patterns in patients are commonly perceived as alterations to brain dynamics 

(Wang et al., 2015): Both increases (van den Heuvel et al., 2013) and decreases (Cocchi 

et al., 2014) in the strength of structural-functional coupling has been revealed in 

schizophrenia connectomes.  The relations between structural and functional connectivity 

patterns are typically assessed over sets of identical connectomic 

connections/subnetworks. However, this approach neglects the spatially-distinct 

functional configurations that are shaped from the underlying architecture (Mišić et al., 

2016). Structural disturbances to the functionally diverse fronto-limbic areas in 

individuals at high-risk for BD may influence broader patterns of brain dysfunction.  

 

5.7.3 Controllability of structural networks 

The application of concepts from network control theory have afforded recent exploration 

of how structural wiring patterns can drive temporal brain states. Those brain states which 

require a substantial energy expenditure to reach are proposed to be analogous to modes 

of cognitively-demanding function. Controllability quantifies this energetic input 

required to traverse the brain system. Replicating a previous study (Gu et al., 2015), 

analyses of our data shows that highly-connected hub-areas (weighted connectivity) 

exhibit high average controllability (Figure 5-1A; Top-right corner) for steering the 

network into states with little energy required.  On the other hand, weakly-connected areas 
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have high modal controllability (B; Top-left) for systems requiring substantial energy 

expenditure. Preliminary controllability analysis was conducted for the regions exhibiting 

significant nodal strength differences between control and high-risk populations in 

Chapter 4 (i.e. Figure 4.3). Here, the control group display significantly greater modal 

controllability for both the left parahippocampal (pcorrected=0.01; C) and left superior 

frontal gyrus (pcorrected=0.009; D), whilst the R inferior frontal gyrus approaches  

significance (pcorrected=0.06). The decreased modal controllability in high-risk individuals 

suggests that disturbances to fronto-limbic areas culminates in substantially more energy 

required to reach cognitive or emotional states. Although future analyses are clearly 

warranted, no other investigations have thus far revealed patterns of altered network 

controllability in psychiatric populations.   

 

5.7.4 Limitations of cross-sectional designs 

The investigations in this thesis were all undertaken within cross-sectional settings. 

Coincidentally, the young and elderly cohorts were investigated at respective critical 

periods of brain maturation and neural decline. Given that the longitudinal status of 

participants that convert to threshold BD is currently unknown, cross-sectional studies of 

high-risk populations (Chapter 4) are problematic: It remains to be elucidated whether the 

structural disturbances (relative to controls) are predictive of future progression, or rather 

features that ensure resilience. Longitudinal follow-up is warranted in this elderly cohort 

to determine if connectivity changes are also predictive of further reductions in processing 

speed. Future longitudinal investigations would further benefit efforts to disentangle the 

protective effect of education years on neurocognitive networks. Interestingly, 

preliminary analysis reveals that the relative change in attention and processing speed 
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Figure 5-1: Controllability of structural networks in control and high-group groups. A, 

Scatter plot of average controllability as a function of nodal strength for each node (blue 

circles), showing a highly-correlated positive association (red line). B, Modal 

controllability as a function of nodal strength, showing an inverse relationship. Mean 

modal controllability for (A) Left superior frontal and (B) Left parohippocampal brain-

regions across control (black bars) and high-risk groups (red). 
* p<0.05; **p<0.01  

 

performance over time is significantly associated (r=0.37,p=0.0001) with age-related 

functional connectivity patterns captured by the first CCA mode (i.e. V1): Individuals who 

experience greater reductions in performance from study baseline, are those with negative 

contributions towards functional connectivity variations in the present wave (~6 years 

after study baseline). However, functional connectivity estimates were not measured at 

baseline – hence it is unclear if connectivity changes mirror cognitive reductions over 

time.  
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Figure 5-2: Scatter plot of functional connectivity variation (V1) captured by the first 

CCA mode, as a function of longitudinal change in attention and processing speed. The 

red line shows the linear regression fit. The moderate correlation visualised here 

indicates a significant association (r=0.37, p=0.0001) between longitudinal decline and 

functional connectivity patterns captured in the present wave.   

 

5.7.5 Improving the biological accuracy of diffusion tractography  

The patterns of structural connectomic findings revealed for the young and elderly 

populations (Chapters 2 and 4) are dependent on the biological accuracy of the 

reconstructed fibres. The strong, rapid switching of gradients during dMRI acquisition 

leads to spatial distortions along the phase-encoding direction (Tournier et al., 2011). 
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Future prospective studies should ideally acquire additional b0 images with opposing 

phase-encoding directions in order to estimate the spatial inhomogeneity patterns 

(Andersson and Sotiropoulos, 2016; Holland et al., 2010b). In doing so, accurate co-

registration can be achieved between the diffusion and T1-weighted images. Anatomical 

priors of tissue and fluid types can allow more reliable estimations of fibre orientations 

(Jeurissen et al., 2014) - as estimates can be noisy in non-pure WM areas (i.e. partial 

volume effects) (Roine et al., 2014). Furthermore, through a procedure known as 

Anatomically Constrained Tractography (ACT) (Smith et al., 2012a), information of the 

GM/WM boundaries allows fibre propagations to only project/terminate at the tissue-

interface. Lastly, a recently proposed “spherical-informed filtering tractogram” (SIFT) 

algorithm  can also perform a correction on the streamline counts that more closely 

reflects the underlying fibre density (Smith et al., 2013a, 2015b). These sophisticated 

developments prevent reconstruction biases, improve the biological plausibility of 

streamlines, and thus increase the reliability of resultant connectomes (Jeurissen et al., 

2014; Smith et al., 2012a, 2013a; Smith et al., 2015a; Smith et al., 2015b). However, 

studies of both the young and elderly populations in this thesis were commenced prior to 

knowledge of the benefits of reverse phase-encoding acquisitions. Future studies would 

benefit in acquiring optimised acquisitions to demonstrate the replicability of the spatial 

and topological features in our connectomes.  

 

5.7.6 Confounding issues of tractography in older participants 

Whole-brain tractography approaches typically generate an arbitrary pre-defined number 

of streamlines (five million fibres within the present studies). This parameter setting is 

chosen to avoid inter-individual network differences being potentially driven by fibre 
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reconstruction biases. Within the context of ageing research, assuming a constant 

streamline density over participants of varying ages is inconsistent with the characteristic 

regional grey and white changes that co-occur. Because of this confounding issue, age-

related macroscopic changes were not directly investigated in Chapter 2. Within our 

elderly data, linear increases in weighted connectivity (Figure 5-3) were uncovered at a 

liberal significance threshold (p < 0.10, FDR-corrected): Increases in connectivity with 

age were found for the left putamen (left panel), right middle frontal gyrus (middle), and 

also the right thalamus (right). These findings oppose lifespan studies which reveal 

decreases in streamline density across a very large age-span (Betzel et al., 2014; Otte et 

al., 2015). Fibre-seeding within these studies was, however, based upon the number of 

representative brain voxels in each participant. The contradictory findings in the present 

study may be attributable to streamlines being continuously generated along relatively-

preserved tracts.  

 A recent computational study showed that the virtual simulation of a pathological 

lesion in a healthy participant (by removal of grey matter voxels), lead to apparent 

increases in streamline density within the surrounding tissues (Calamante et al., 2015).  

This confounding increase in structural connectivity supports the potential biases of 

current tractography approaches in ageing and neurodegenerative populations. A 

quadratic (Figure 5-3B; dashed lines) function illustrates the oldest participants (top-right 

corner) - who presumably experience greater structural changes - appearing to drive linear 

connectivity increases (solid lines). Whilst severe pathological disturbances may not be 

present within these relatively-older participants (each scan is checked by a radiologist), 

future investigations would benefit from addressing these concerns. It would be 

advantageous to provide biologically-relevant indexes (i.e. SIFT) of streamline counts 
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Figure 5-3: Brain regions that reveal increases in weighted connectivity with age at 

liberal significance thresholds. A, Volumetric structures of significant regions (p < 0.10, 

FDR-corrected), presented from axial and medial perspectives. Colour denotes the 

different regions, including the left putamen (green), right middle frontal gyrus (blue), 

and right thalamus (red). Linear (solid lines) and quadratic fits (dashed) as a function of 

age for the regions. 
* FDR-corrected  
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that matches the underlying axonal density. Approaches such as Apparent Fibre Density 

(AFD) (Raffelt et al., 2012b) and neurite morphology (Zhang et al., 2012) do not rely on 

fibre tracking, and can potentially provide localised measures of microstructural white 

matter changes with age (Raffelt et al., 2016). It is also recommended in future studies to 

perform a modelled penalisation of reconstructed streamline counts, potentially based 

upon the volumetric size of the white-matter, age, or indexes of white-matter health. 
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Appendix 1 | Network Measures 
 

A1.1  Nodal-level 

 Strength.  For weighted networks "#, nodal strength $% was calculated as the sum 

of all connections node i shared between other j nodes in the network.  

 Degree. For binary networks "<, nodal degree =% was calculated as the number of 

j nodes connected to node i. 

 Betweenness Centrality. For "<, nodal betweenness centrality >% was calculated as 

the fraction of all shortest paths that pass through i, and defined formally as: 

>% =
?@&(A)
?@&@,&	∈C

@	D&,@	D%,&	D%

,																																																											(A1.1) 

where ƿ&@is the number of shortest paths between j and h, and ƿ&@ A  is the number of 

shortest paths between j and h that pass through i.  

 Subgraph Centrality. For "<, to characterise the participation of each node in all 

subgraphs in a network, nodal subgraph centrality H:% was calculated and defined 

formally (Estrada and Rodríguez-Velázquez, 2005) as: 

H:%	 =
µJA
=!

K

J-L

,																																																																								(A1.2) 

with k the length of walks from i, and µJA the local spectral moments of the number of 

closed walks of length k starting and ending at i.  
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 Participation Index. For "<, to identify the level of connectedness of node i to 

other modules within each subject matrix, the participation index (PI) of node i was 

calculated and formally defined as:    

NO% = 1 − QR
S = 1

=%R
=%

T

,																																																			(A1.3) 

with QR, the number of modules; and =%R, the number of binary connections from node 

i to module m. 

 Within-module degree Z score. For "<, to identify the level of connectedness of 

node i to other nodes in the same module m, the within-module degree Z-score of node i 

was calculated and formally defined as: 

       

U% = 	
=%	 S% −	= S%

ƠJ(R+) ,																																																													(A1.4) 

       

with S% the module containing node i, =%(S%) is the within-module degree of i (the 

number of links between i and all other nodes in S%), and =(S%) and ƠJ(R+) are the 

respective mean and standard deviation of the within-module S% degree distribution. 

 

A1.2  Rich-club coefficients and significance 

A1.2.1  Weighted rich-club coefficients  

To calculate the weighted richness of hub connections, all connections of the individual 

network N were first rank ordered by weight, resulting in a vector XYZ[\]^. Next, the 
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sum of the weights of the connections between the predefined hub-regions h was 

calculated and defined as X_. The weighted rich-club parameter Φ(h) was then 

computed as the ratio between X_, and their maximum possible weight sum X											_
`Za . 

Formally, Φ(h) is given by the following equation (Samu et al., 2014):  

    

b ℎ =
d@

d@
Ref 	= 	

d@
						g@Ref

																	 $hiejJ6k
l	=1

,																																																	 A1.5 	

where g@Ref is the maximum possible number of edges among hub-regions h, and 

dh
iejJ6k is the weight of the ith strongest edges in the network.  

 

A1.2.2  Binary rich-club coefficients   

Rich-club coefficients can also be measured for binary-relations to connectivity. For 

each k-level within N, all nodes (and their connections) with a degree less than k were 

removed from the network. Next, the renaming number of connections of between 

nodes with degree >k were defined as gnJ. The rich-club parameter ! was then 

computed as the ratio between gnJ and the total number of possible of the network if it 

was fully connected. Formally, ! as given by the following equation (Colizza et al., 

2006; McAuley et al., 2007): 

																											 

																																									!	 = = 	
2gnJ

QnJ QnJ − 	1
.																																																								(1.6) 

A1.2.2 Rich-club organisation and significance  
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To estimate the specific enrichment of hub connections for both weighted and binary 

variants of the rich-club coefficients, the normalized rich-club coefficient Φ(norm) was 

calculated by dividing the rich-club coefficient against the average rich-club coefficient 

Φ(rand) generated from a set of 1000 random networks (Maslov and Sneppen, 2002). 

For the binary-variant, randomised networks preserve the degree-distribution of regions, 

whilst weighted random networks were degree-and-strength matched. Rich-club 

architecture was said to be present if  Φ(norm) > 1 (van den Heuvel and Sporns, 2011).  

 For the weighted variant, a nonparametric test was also used to test whether each 

subject’s hub connections contained rich-club architecture. First, a null distribution of 

rich-club coefficients Φ(rand) was obtained from the population of 1000 networks 

randomised from each subjects empirical network (as above). Next, a subject-specific p 

value was assigned to Φ(norm) as the percentage of Φ(h) which exceeded Φ(rand). 

 

A1.3  Global-metrics 

We characterised the global topology of the connectome using two metrics: (1) The 

shortest characteristic path length (CPL), a global measure which captures the average 

binary distance (the number of steps) between each node and all other regions; (2) The 

normalised clustering coefficient (CC) is a local measure that captures the tendency of 

nodes to form local cliques. Mathematical definitions of these selected graph metrics are 

provided below: 
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Table A1-1: Global graph-theoretical measures implemented in Chapter 4 

Measure  Definition 

Characteristic path 
length  

Characteristic path length of the network: 

p =
1
n p% =

1
r	

s%&&∈C,&D%

r − 1
%∈C

 

Li is the average distance between node i and all other nodes. 

Clustering 
coefficient 

Clustering coefficient of the network:  

: =
1
r	 :%

%∈C

	=
1
r

2t%
=%	 =% − 1%∈C

 

Ci is the clustering coefficient of node i (Ci = 0 for ki < 2). 

Q is the set of all nodes in the network, and r is the number of nodes. p is the set of all links in the 
network, and u is number of links: Formulas are adapted from elsewhere (Rubinov and Sporns, 2010). 
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Appendix 2 | Supplementary figures for   
study 1 

 

 
Figure A2-1: Superior and lateral perspectives of nodal regions most consistently 

ranked (top 15%) as top nodes across subjects by values of degree (A),  betweenness 

centrality (B), and subgraph centrality (C). For a given metric, yellow dots indicate top 

ranked regions which are also hub-regions in the elderly connectome at 7.5% sparsity, 

while red dots index indicate top ranked nodes which are not 
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Figure A2-2: Superior and medial perspectives of nodal regions identified to be hub-

regions for subjects connectomes at 5% (A) and 10% (B) sparsity levels.  For a given 

sparsity level, yellow dots indicate hub-regions which are also hubs in the elderly 

connectome at 7.5% sparsity, while red dots index indicate hub-regions which are not 
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Figure A2-3: Architectural features of hub (red), feeder (orange), and local (grey) 

connection classes in the elderly connectome, at 5 (top panel) and 10% (bottom) 

sparsity levels. A and E, Mean contributions of each connection class to density 

(number of streamlines) (left column) and cost to the network (right). The middle text 

column represents the mean cost/density ratios for each connection class. B and F, 

Mean fibre length (mm) for each connection class. C and G, The mean percentage of 

network traffic each connection class routes for the shortest path (minimum number of 

paths) between any region i and j. E and H, Mean percentage change in network 

communicability after removing specified number of edges from connection class, at 

25% (i.e. 25% of rich-club connections) (top), 50% (middle), and 75% (bottom) 

increments. 

* p < .01, permutation testing (N = 5000) 
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Figure A2-4: Comparison of hub-regions, and connection classes, across young adult 

and elderly females. A, Hub regions identified to be either unique to either young (green 

circles) or elderly (red) female subjects, or those consistent as hubs across both 

(yellow) populations. This figure shows a high consistency for regions to be identified 

as hubs in both cohorts. B and C, Sagittal perspective of connections of either hub (left 

panel), feeder (middle), or local (right) connection classes in young and elderly 

females, respectively.  
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Appendix 3 | Steps involved in functional 
network construction 

A3.1  Acquisition and pre-processing of MRI data 

Structural and functional MRI data were acquired with a Philips 3T Achieva Quasar Dual 

MRI scanner (Philips Medical System, Best, The Netherlands), utilising an 8 channel 

head coil. Resting-state fMRI data were acquired while participants lay quietly in the 

scanner with their eyes closed using a T2* weighted echo-planar imaging sequence (TE 

= 30 ms, TR = 2000 ms, flip angle = 90º, FOV 250 mm, 136 x 136 mm matrix size in 

Fourier space). Each volume consisted of twenty-nine contiguous 4.5 mm axial slices (no 

gap) to achieve whole-brain coverage. A total of 208 volumes were collected for 

approximately seven minutes and two seconds. Structural T1-weighted MRI were also 

acquired, using the following parameters: TR = 6.39 ms, TE = 2.9 ms, flip angle = 8°, 

matrix size = 256 × 256, FOV = 256 × 256 × 190, and slice thickness = 1 mm with no 

gap between; yielding 1 mm × 1 mm × 1 mm isotropic voxels. The structural and 

functional MRI scans of all subjects were visualised within FSLView (Smith et al., 

2004b) for artifact inspection. All MRI data were visually inspected and excluded if 

severe signal dropout (particularly around orbitofrontal areas) or spatial distortions 

were present. Data from 111 participants thus entered the study.  

 

A3.2  rs-fMRI pre-processing 

Pre-processing of rs-fMRI data was conducted using the Data Processing Assistant for 

Resting-State fMRI (DPARSF, v3.2 advanced edition) (Yan and Zang, 2010), which calls 
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functions from SPM8 (http://www.fil.ion.ucl.ac.uk/spm/) in MatLab. Data were slice-

time corrected and volumes were realigned to the mean functional image. Individual 

structural images were linearly co-registered to the mean functional image (6 degrees-of-

freedom), and the resultant spatial alignments were visualised within MRview (MRtrix) 

(Tournier et al., 2012). Linear detrending was next performed, followed by nuisance 

covariate regression of 24 head-motion parameters (Friston et al., 1996b), and signals 

derived from the individually segmented WM/CSF masks (Ashburner and Friston, 2005). 

The T1 images (in functional space) were processed by the Diffeomorphic Anatomical 

Registration Through Exponentiated Lie algebra (DARTEL) (Ashburner, 2007) tool to 

generate an average population-based brain template. This allowed native functional 

images to be transformed into Montreal Neurological Institute (MNI) space (via the 

average template) and resampled to 3-mm isotropic voxels. rs-fMRI images were then 

smoothed with a full-width half-maximum Gaussian kernel (6 mm) performed upon the 

native image intensities. Finally, temporal band-pass filtering (0.01–0.08 Hz) was 

applied. Global signal regression was not performed. 

 

A3.3  Construction of functional brain networks 

The standard AAL template (Tzourio-Mazoyer et al., 2002b) within MNI space was 

subdivided into 512 cortical and sub-cortical parcellation regions of approximately 

uniform size (Zalesky et al., 2010b). A functional connectivity matrix M was derived in 

each participant by calculating the Pearson’s correlation coefficient between the mean 

BOLD signals between all pairs of regions. The entries of M were transformed into Z-

score matrices using Fisher’s transformation. The upper triangle of M for each subject 
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was concatenated across all subjects, resulting in a 101 (subjects) x 130816 (unique 

edges) matrix N1. 

 

A3.4  Normalization and demeaning of connectivity matrices 

The connectivity matrices N1 were normalized and deconfounded according to the 

procedure of (Smith et al., 2015b) (available online at 

http://fsl.fmrib.ox.ac.uk/analysis/HCP-CCA/hcp_cca.m). Each column within N1 was 

normalized according to its mean value, resulting in an additional matrix N2. Badly 

conditioned columns (mean value < 0.1) within N2 were removed. Each remaining 

column within N2 was further demeaned, and global variance normalization was applied. 

We note that (Smith et al., 2015b) found almost identical correlations of the subject 

weightings, and uncorrected data (N1) to orthogonalized components of either the non-

normalized (N1) or normalized (N2) matrices. Consequently, the present analysis solely 

employed N2 for subsequent analyses. 

The potential confounding effect of head motion was additionally addressed. 

Head motion for each subject was calculated by their mean frame-wise displacement (FD) 

(Power et al., 2012) across the fMRI acquisition. Subject motion calculations were 

demeaned and squared, to help account for potentially nonlinear effects of this confound. 

Subject motion was then regressed out of N2, resulting in N3.   Regardless, no significant 

influence of age on subject motion (FD) is identified (p > 0.39, r = -0.09). 
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Appendix 4 | Supplementary tables and 
figures for study 2 

 

Table A4-1: Cognitive domain scores of subjects 

Cohort All subjects (n= 101) With baseline IQ (n= 91) 

 Mean (+- SD) Mean (+- SD) 

Attention/Processing Speed 0.07 (0.91) 0.11 (0.93) 

Executive Function 0.37 (0.77) 0.43 (0.71) 

Visuospatial Ability 0.19 (0.92) 0.23 (0.90) 

Language 0.34 (0.93) 0.35 (0.91) 

Memory 0.57 (0.90) 0.61 (0.90) 

Verbal Memory 0.50 (0.93) 0.55 (0.93) 
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Figure A4-1: Strength and direction of relations between demographic and cognitive 

measures for those receiving (n= 91) NART IQ assessment. 
* p< 0.05, ** p< 0.01, *** p< 0.001; FDR-corrected 
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Figure A4-2:  Connectivity edges most positively expressed by the third CCA mode. A, 

Connectivity edges exhibiting strongest positive associations with functional 

connectivity patterns (V3).  Line width indexes strength of correlation. Circle size is 

scaled to the number of connections each region shares within the network, whilst 

coloured  to their functional network specialisation. The brain meshes are presented 

from axial (middle panel), posterior (top right), and sagittal perspectives of the left and 

right-hemisphere. B, Coarse perspective of connectivity distributions across the 

functional networks, with warmer colours indicating greater number of connections.  

 

 

 

 

Table A4-2: CCA modes significant with the inclusion of sex  
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CCA Mode One  Two 

df1 81 64 

df2 545.36 490.99 

F 1.64 1.38 

λ 0.24 0.38 

R2 0.36 0.25 

RI 0.067 0.038 

p 0.00075  0.033 

RI, redundancy index 
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Figure A4-3:  Associations between cognitive and demographic measures captured 

significant CCA modes with including sex. A-B, Correlation between subject measures 

and functional connectivity variation (Vm) 
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Table A4-3: CCA modes significant with the removal of verbal-memory scores 

CCA Mode One  Two 

df1 49 36 

df2 446.11 389.20 

F 1.99 1.68 

λ 0.37 0.53 

R2 0.31 0.21 

RI 0.044 0.030 

p 0.00017  0.0097 

RI, redundancy index 
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Figure A4-4: Associations between cognitive and demographic measures captured by 

the CCA modes with the removal of verbal-memory scores. A-B, Correlation between 

subject measures and functional connectivity variation (Vm) 
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Table A4-5: CCA modes significant with a coarser parcellation scheme 

CCA Mode One  

df1 64 

df2 496.76 

F 1.59 

λ 0.34 

R2 0.30 

RI 0.064 

p 0.0035 

RI, redundancy index 
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Figure A4-5:  Associations between cognitive and demographic measures captured by 

the first (p=0.003) and second CCA modes (p=0.057) utilizing a coarser parcellation 

scheme. A-B, Correlation between subject measures and functional connectivity 

variation (Vm) 
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Table A4-5: CCA modes significant with including intelligence scores 

CCA Mode One Two 

df1 81 64 

df2 480.73 433.31 

F 1.65 1.38 

λ 0.21 0.34 

R2 0.40 0.28 

RI 0.077 0.038 

p 0.0008 0.037 

RI , redundancy index 
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Figure A4-7: Functional connections strongly expressed for both with and without 

including intelligence in the second CCA mode. Circle size is scaled to the number of 

connections each region shares within the network, whilst coloured to their functional 

network specialisation. The brain meshes are presented from axial (top right panel), 

and customised perspectives of the left (top left; elevation= 0, azimuth = -120) and 

right-hemisphere (bottom left; azimuth = -240) 
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Appendix 5 | Supplementary information 
and results for study 3 

 

A5.1  Sample selection and characterization  

A5.1.1  Participants 

A total of 326 individuals were scanned, of whom 45 (11 CN, 26 HR, and 8 BD) were 

removed due to excessive head movement or poor image quality (see below).  In order 

to minimize possible confounding effects of gender and age, we selected three age- and 

gender-matched sub-groups. The age- and gender-matched sample comprised three 

groups: i) 96 controls (CN) defined as subjects with no parent or sibling with bipolar I 

or II disorder, recurrent major depression, schizoaffective disorder, schizophrenia, 

recurrent substance abuse or any past psychiatric hospitalisation; and no parent with a 

first degree relative who had a past mood disorder hospitalisation or history of 

psychosis; ii) 84 subjects genetically at high risk for BD who had not yet developed this 

condition (HR), defined as children or siblings of a proband with a confirmed DSM-IV 

diagnosis of bipolar I or II disorder; and iii) 38 BD subjects, meeting DSM-IV criteria 

for either bipolar I or bipolar II disorder. All participants were aged between 12 and 30 

years and with an IQ above 80. Clinical details of the three groups are described (Perich 

et al., 2015). Of the 84 HR participants, 65 had a parent with BD and 19 a sibling with 

BD. Of the 38 BD patients, 18 had DSM-IV Bipolar I Disorder and 20 DSM-IV Bipolar 

II Disorder. The lifetime or current presence of psychiatric disorders besides BD was 

not an exclusion factor for either HR or CN subjects. This ecological approach has been 
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used by similar studies of individuals at high genetic risk for BD (Nurnberger et al., 

2011). 

All participants are involved in an ongoing longitudinal study of individuals at-

risk for BD aged 12-30 years. HR and BD participants were recruited from families who 

had previously participated in a BD pedigree molecular genetics study or a specialized 

BD research clinic, or were otherwise recruited from clinicians, mental health consumer 

organisations and other forms of publicity. CN subjects were recruited via print and 

electronic media, as well as noticeboards in universities and local communities. 

The subjects aged between 12-21 years are involved in a collaborative high-risk 

study with a U.S. consortium headed by Dr John Nurnberger which is based at Indiana 

University, Johns Hopkins University, Washington University in St. Louis, and 

Michigan University.(Nurnberger et al., 2011) As this US-Australian collaboration 

involves common assessments for participants aged 15-21 years, we report separately 

on instruments used for the younger (15-21years) and older (22-30 years) age groups in 

this sample. Both groups shared consensus Best-Estimate DSM-IV current and lifetime 

diagnoses derived from semi-structured diagnostic interviews. Brain imaging studies 

were only undertaken in the Australian sample. A number of studies on this BD HR 

sample have been recently reported (Breakspear et al., 2015b; McCormack et al., 2015; 

Perich et al., 2015; Roberts et al., 2013; Roberts et al., 2016a). 

 

A5.1.2  Clinical and phenotypic characterization 

Proband consensus DSM-IV diagnosis was determined by two independent raters 

following Best Estimate methodology (Leckman JF et al., 1982), using information 

from the Diagnostic Interview for Genetic Studies (DIGS) Version 4, the Family 

Interview for Genetic Studies (FIGS) and medical records (where available). 
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Confidence rating ranges using the Best Estimate Methodology vary from 1-4, where 1 

represents criteria not met for a diagnosis and 4 represents a definite diagnosis. All 

diagnoses reported have a confidence rating of 3 or 4. Structured diagnostic interviews 

were also performed on all HR, CN and BD participants. For those aged between 15 and 

21 (CN, n=40; HR group, n=36; BD group, n=9), an adapted version of the Schedule 

for Affective Disorders and Schizophrenia for School-Age Children – Present and 

Lifetime Version (K-SADS-BP) was developed specifically for use in the US-Australia 

collaborative study of young people at genetic risk for bipolar disorder (Nurnberger et 

al., 2011). The K-SADS-BP combines items from the K-SADS Present and Lifetime 

Version (Kaufman J et al., 1997), and uses extended sections on depression, mania and 

ADHD derived from the Washington University in St Louis K-SADS (WASH-U K-

SADS) to elicit detailed information on pre-pubertal mania, rapid-cycling, attentional 

and sub-threshold bipolar symptoms (Geller B et al., 2001). The KSADS-BP was 

administered to both the child and one parent. For participants aged under 21, clinicians 

completed the Children’s Global Assessment Scale (CGAS).  

For participants aged between 22 and 30 (CN, n=56; HR group, n=48; BD 

group, n=29), the DIGS (Version 4) was used to measure the current and lifetime 

presence of axis I DSM-IV disorders. Consensus DSM-IV diagnoses of the HR, BD, 

and CON subjects were determined by two independent raters with Best Estimate 

methodology (Leckman JF et al., 1982), using the DIGS, the FIGS and medical records 

(where available).  For participants aged between 22 and 30, clinicians completed the 

Global Assessment Scale (GAS).  To assess current mood state, for those aged between 

15 and 21, the Children’s Depression Inventory (CDI) was used, and for participants 

aged 22-30 years, the Montgomery-Asberg Depression Rating Scale (MADRS) was 

administered. Intellectual ability was assessed with the Wechsler Abbreviated Scale of 
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Intelligence (WASI). Participants aged 15-30 years completed clinical and 

neuropsychological assessments on the same day as the scan. The majority of parental 

reports using the K-SADS were also completed on the same day as the scan. 

 Among the 26 BD patients taking a mood stabiliser (Table A5-1), 3 were taking 

lithium, 15 were taking another mood stabiliser, and 8 were taking lithium in addition to 

another mood stabiliser. Of the 11 BD participants taking an antipsychotic, 10 were also 

taking a mood stabiliser. 
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Table A5-1: Clinical information for control, high-risk, and Bipolar patient population groups. 
 CN (n=96) HR (n=84) BD (n=38) Difference Statistic p-value Post-hoc Effects 
Lifetime DSM-IV diagnosis       
Any diagnosis, n (%) 24 (25.0) 39 (46.4) 38 (100.0) χ2 = 61.59 <.001 HR>CN** 

BD>CN*** 
At least one MDE, n (%) 9 (9.4) 22 (26.2) 36 (94.7) χ2= 94.51 <.001 HR>CN** 

BD>CN*** 
BD>HR*** 

Recurrent MDD, n (%) 
 

1 (1.0) 7 (8.3) - χ2= 5.61 .01 HR>CN* 

Any anxiety disorder, n (%) 9 (9.5) 15 (18.3) 15 (39.5) χ2 = 16.45 <.001 BD>CN*** 
BD>HR* 

Any behavioural disorder, n (%) 1 (1.1) 6 (7.4) 7 (18.9) χ2 = 13.86 <.001 HR>CN* 
BD>CN*** 

Any substance disorder, n (%) 
 

6 (6.3) 9 (10.7) 6 (15.8) χ2 = 3.03 .220 - 

Symptom severity scales       
22 to 30 years n=51 n=41 n=25    
MADRS, mean (SD) 
 

1.9 (3.2) 2.5 (3.7) 10.1 (9.5) F= 22.10 <.001 BD>CN*** 
BD>HR*** 

12 to 21 Years n=34 n=33 n=9    
CDI, mean (SD) 
 

6.8 (3.7) 9.0 (6.6) 21.7 (8.7) F=23.78 <.001 BD>CN*** 
BD>HR*** 

Clinical Characteristics       
Global Functioning       
GAF, mean (SD) 
 

91.7 (4.7) 87.4 (8.5) 78.6 (12.0) F= 38.49 <.001 CN> HR*** 
CN> BD*** 
HR>BD*** 

Age at First 
 

      

MDE, mean (SD) 19.1 (3.2) 18.5 (4.5) 15.4 (3.7) F= 6.63 .002 BD<CN** 
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 BD<HR** 
Hypomanic episode, mean (SD) - - 17.0 (4.3) - - - 
Manic episode, mean (SD) 
 

- - 17.5 (3.2) - - - 

Elevated mood episode, mean (SD) 
 

- - 17.0 (4.0) - - - 

Mood episode, mean (SD) 
 

19.1 (3.2) 18.5 (4.5) 14.9 (3.8) F=8.68 <.001 BD<CN** 
BD<HR** 

Any anxiety disorder 
 

10.3 (6.7) 13.5 (6.4) 13.3 (7.0) F=1.31 .277  

Number of Episodes       
Major depressive episode, mean (SD) 
 

1.4 (1.3) 2.0 (2.1) 12.0 (12.5) F=12.89 <.001 BD>CN*** 
BD>HR*** 

Hypomanic episodes, mean (SD) 
 

- - 10.2 (10.3) - - - 

Manic episode, mean (SD) 
 

- - 2.8 (2.5) - - - 

Any elevated mood episode, mean (SD) 
 

- - 9.9 (10.9) -  - 

Any mood episode, mean (SD) 1.4 (1.3) 2.0 (2.1) 21.7 (21.5) F=16.93 <.001 BD>CN*** 
BD>HR*** 

Psychotropic Medication       
Anti-depressants, n (%) 
 

0 (0.0) 0 (0.0) 15 (39.5) - - - 

Mood stabilisers, n (%) 
 

0 (0.0) 0 (0.0) 26 (68.4) - - - 

Anti-psychotics, n (%) 
 

0 (0.0) 0 (0.0) 11 (28.9) - - - 

Benzodiazepines, n (%) 
 

0 (0.0) 0 (0.0) 0 (0.0) - - - 

Stimulants, n (%) 0 (0.0) 0 (0.0) 0 (0.0) - - - 
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Anti-convulsants, n (%) 
 

0 (0.0) 0 (0.0) 21 (65.6) - - - 

*** p < 0.001, ** p < 0.01, * p < 0.05 
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A5.2  Data acquisition, pre-processing and structural network 

construction 

A5.2.1  dMRI acquisition & pre-processing  

DWI data were acquired with a 3-T Philips Achieva scanner at Neuroscience Research 

Australia (NeuRA) in Sydney with an 8-channel head coil (Figure A5-1A). One 

acquisition of 32 directional DWI (b =1000 s/mm2, with one non-diffusion-weighed 

image) was acquired using a single-shot echo planar imaging (EPI) sequence. The 

imaging parameters were as follows: TR = 7767 ms, TE = 68 ms, 55 slices, slice 

thickness = 2.5 mm, gap = 0 mm, acquisition matrix size = 96 × 96 (field of view = 

240×240×137.5 mm), flip angle = 90°, reconstructed to yield 

1 mm  × 1 mm × 2.5 mm voxels (where the longer dimension is along the dorsoventral 

axis). A custom in-house package was employed to correct for head-motion (Raffelt et 

al., 2012a)  followed by rotation of the gradient direction matrix (Leemans and Jones, 

2009). To decrease spatial intensity inhomogeneities, bias field correction was 

performed on the b0 image and subsequently applied to all DW images (Sled et al., 

1998b). Data were then visualised using FSL view for quality-control purposes (Smith 

et al., 2004a). Participants were excluded if there was evidence of substantial signal 

dropout, most likely caused by subject motion. Excessive signal drop out was defined as 

characteristic zebra-like blurring, or the complete drop out of diffusion signal across 

volume slice(s)  (Pannek et al., 2012a).  

 

A5.2.2  Whole-brain fibre tractography 
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The fibre orientation distribution (FOD) within each voxel was estimated using MRtrix 

software (www.mrtrix.org; version 0.3.12-515), by performing CSD (lmax = 6) of the 

diffusion signal in white matter voxels with singularly-oriented (FA > 0.7) fibre 

bundles. The iFOD2 (Tournier et al., 2010)  probabilistic streamline algorithm was 

subsequently employed to generate plausible fibre propagations by random sampling of 

the orientation uncertainty inherent in each FOD at points along each candidate path. 

Tracking parameters were as follows: step size = 0.2 mm, minimum length = 10 mm, 

max length = 250 mm, FOD termination threshold = 0.1, curvature constraint = 1 mm 

radius, with 5 million streamlines per subject initialized from random seeds throughout 

the brain volume. 

 

A5.2.3  Whole-brain structural network construction 

Subject-specific parcellations were achieved by employing affine linear registrations all 

within the FSL software package (Smith et al., 2004a). First, AAL regions were 

subdivided into 512 subregions of approximately equivalent volume using a random 

parcellation (Zalesky et al., 2010b). This parcellation template of 512 regions was co-

registered into a standard-space template representing an average FA image (FMRIB58; 

available within FSL) derived from 58 healthy subjects. For each individual, the 

FMRIB58 1 mm template was co-registered to the subject's FA image. The parcellation 

template was transformed into subject space by applying the transformation matrix 

generated from co-registering the FA template to the individual’s FA image. We note 

this randomized template was employed due to the strong, rapid switching of diffusion 

gradients in single-shot EPI sequences (Andersson and Sotiropoulos, 2016; Holland et 
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al., 2010a). Thus, the grey-and-white-matter boundaries of parcellaton regions derived 

from T1-weighted images will not be perfectly aligned with the anatomical boundaries 

inherent within the DWI. 

The anatomical information of subject-specific parcellations and fibre streamline 

trajectories are combined to yield whole-brain structural connectivity graphs, termed 

here as W. A weighted connection between i and j, Wij, represents the total number of 

fibre streamlines which start/terminate within a radial 2 mm distance of voxels located 

in the pair of parcels i and j. Due to the greater number of random seeds along longer 

WM tracts, fibre densities are known to be over-estimated in longer fibre bundles 

(Smith et al., 2013c). Hence, distance-correction is performed by adjusting each 

streamline within Wij by the physical fibre length between its start and termination point 

dij (Hagmann et al., 2008a). All single subject networks were thresholded to retain the 

strongest 10% of edges. Binary networks were constructed from these thresholded 

weighted networks by setting all these remaining 10% of connections to one. 

 

A5.3  Statistical Analyses  

A5.3.1  Generalised estimating equations (GEE) analyses 

To investigate if the association between total connectivity of our structural 

subnetworks identified with one-tailed two-sample t-tests, nodal strengths that survived 

correction for multiple comparisons, graph metrics, and diagnostic category were 

influenced by depressive mood state, Generalised Estimating Equations (GEE) (Liang 

and Zeger, 1986) were performed with current mood state included as a mean-centred 
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covariate. GEEs accommodate within-family correlations arising from the inclusion of 

siblings from within the same family in either the CN, HR or BD groups (families were 

not split between diagnostic groups). Because current mood state was assessed by 

different instruments in younger and older age ranges, each model was run separately 

for the younger and older age groups.  

In the whole-sample (across both younger and older age ranges), GEE models 

were also used to compare whole-brain nodal strengths, proportion of hub, feeder, and 

local edges and streamlines, mean rich-club coefficient, and graph metrics across 

diagnostic groups. To address whether the relationship between age and these dependent 

variables differed between groups, a second set of GEE models were fitted where the 

age x group interaction was also included as an interaction term in the base model that 

only identified group differences. In order to select the most parsimonious model, the 

base model was selected for dependent variables with no significant age x group 

interaction (p>0.05 uncorrected). In the whole sample NBS networks were identified as 

they revealed group-wise differences that survived FWE correction. Therefore, these 

sub-networks only underwent GEE analyses that included the age x group interaction. 

All GEE analyses (for total sample, younger only, and older only) included age and 

gender as covariates. All reported p-values are Wald chi-square statistics and all post 

hoc tests are Šidák tests from the GEE analysis. Correction for multiple testing of the 

main effects of group was carried out using false-discovery rate (FDR) q values using 

the Benjamini & Hochberg method (Benjamini and Hochberg, 1995).  

 

A5.3.2  Auxiliary GEE analyses  



 

Page | 186  

 

As rates of non-bipolar psychopathology were significantly higher in the HR compared 

to the CN group (Table A5-1), a secondary analysis was performed in order to 

determine whether non-bipolar psychopathology influenced our results. Within the HR 

group diagnosis of at least one depressive episode (n=22) and anxiety (n=15) were 

included as predictors.  Within the BD group, current use of lithium, mood stabilisers, 

antipsychotics, and antidepressants were included as predictors. To determine effects of 

BD sub-type Bipolar I vs Bipolar II diagnosis were included as predictors. Finally, 

measures of illness severity and course (as assessed by age of onset of any mood 

episode, and total number of mood episodes) were included as predictors.  GEE 

analyses that included age and gender as covariates were also used for all post hoc 

analyses. Separate models predicted each dependent variable. 

 

A5.4   Group differences in demographic and clinical features 

The three groups did not significantly differ on age, IQ, or gender distribution (see 

Table  A5-1). BD subjects had higher depression symptom severity scores (MADRS, 

CDI) than both the HR and CN participants, with no significant differences between the 

latter two groups. At the time of testing, no participants in any of the three groups met 

DSM-IV criteria for a current episode of major depression or mania/hypomania.  

Consistent with prior reports of at-risk populations (Birmaher B et al., 2009; Nurnberger 

et al., 2011), the occurrence of any lifetime affective disorder (including at least one 

major depressive episode) was significantly greater in the HR group (p<0.001) 

compared to the CN group. Rates of any lifetime anxiety disorder (p<0.001) were also 

significantly higher in the BD group, compared to both the HR and the CN participants. 
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There was also a significant difference between the latter two groups (p<0.001).  

Furthermore, rates of any lifetime behavioral disorder (p<0.05) and any lifetime 

substance disorder (p<0.01) were significantly higher in the BD group, compared to 

both the HR and the CN participants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Page | 188  

 

A5.5   Supplementary results 

Table A5-2: AAL Labels of brain regions identified as hubs in control subjects 

AAL Label Frequency   AAL Label Frequency  
L. Superior Temporal Pole 4 R. Caudate Nucleus 1 
L. Insula 4 L. Caudate Nucleus 1 
L. Precentral Gyrus 4 L. Paracentral Lobule 1 
R. Middle Temporal Pole 3 L. Precuneus 1 
L. Middle Cingulate Gyrus 3 R. Superior Parietal Lobule 1 
R. Superior Temporal Pole 2 R. Postcentral Gyrus 1 
L. Thalamus 2 L. Postcentral Gyrus 1 
R. Precuneus 2 L. Fusiform Gyrus 1 
R. Fusiform 2 L. Superior Occipital Gyrus 1 
R. Superior Occipital 
Gyrus 

2 L. Lingual 1 

R. Lingual 2 L. Cuneus 1 
R. Cuneus 2 R. ParaHippocampal Gyrus 1 
R. Calcarine Sulcus 2 R. Hippocampus 1 
R. Anterior Cingulum 2 R. Middle Cingulate Gyrus 1 
L. Anterior Cingulum 2 R. Medial Orbitofrontal 

Cortex 
1 

R. Insula 2 L. Olfactory Cortex 1 
L. Inferior Frontal 
Gyrus/Pars Orbitalis 

2 R. Supplementary Motor 
Area 

1 

L. Inferior Frontal 
Gyrus/Pars Triangularis 

2 R. Rolandic Operculum 1 

R. Precentral Gyrus 2 L. Rolandic Operculum 1 
L. Middle Temporal Pole 1 R. Inferior Frontal 

Gyrus/Pars Orbitalis 
1 

R. Middle Temporal Gyrus 1 L. Inferior Frontal 
Operculum 

1 

L. Middle Temporal Gyrus 1 L. Middle Frontal Gyrus 1 
R. Thalamus 1 R. Superior Frontal Gyrus 1 
R. Putamen 1 L. Superior Frontal Gyrus 1 
L. Putamen 1   
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Figure A5-1:  Distribution of connection classes across the whole-brain and CN>HR 

NBS networks. (A) Proportion of hub (red, hub-to-hub), feeder (orange, hub-to-local), 

and local (gray, local-to-local) connections across the average CN connectome. Edges 

involving hub nodes (hub and feeder connections) comprise 5% and 32% of all edges 

across the network. (B) Proportion of corresponding classes within the first (left panel) 

and second (right) CN>HR networks. The panels show the significantly disproportionate 

amount of hub and feeder connections within the NBS networks, relative to the whole 

brain. 

 * p<0.05, N=5000 permutations.  
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Figure A5-2:  Significant NBS subnetworks (p<0.05, FWE-corrected) at a relatively 

liberal test threshold (t = 3.0), for contrasts reported within the main text. The first (A) 

and second (B) subnetworks to have stronger connectivity in the control group (CN) 

relative to high-risk subjects (HR). (C) HR>CON network. Brain views are presented 

from coronal (anterior) and customized angle views (azimuth = 135°, elevation = 10 for 

left-hemisphere views; azimuth = 225° for right-hemisphere). 
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Figure A5-3: Streamline count of NBS-derived subnetworks (t=3.3) across different 

sparsity levels of 7.5%, 10%, and 12.5%. Mean streamline counts calculated at network 

density levels of 7.5% (left panel), 10% (middle), and 12.5% (right). (A) and (B), The first 

and second CN>HR networks respectively. (C) HR>CN and (D) CN>BD networks. Error 

bars indicate standard error of mean. 
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Figure A5-4: Degree-distribution across brain regions. (A) Distribution of nodal-degree 

across all structural networks. Nodes classified as hubs based upon their top 15% degree-

values correspond to degree of greater or equal to 64 (red bars), with their location on 

the curves heavy-tail. (B) Histogram of log (node degree) shows that degree is 

approximately log-normal distributed.  
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Figure A5-5: Proportion of hub-regions within each of the four NBS-identified 

networks as a function of the hub-threshold. Left column, 12.5%; Middle column 15% 

(as presented in the main text); Right column, 17.5%.  (A and B) The first and second 

subnetwork (bottom) of connections (lines) between nodes (circles) identified in the 

CN’s to exhibit increased connectivity relative to HR subjects. (C) HR>CN and (D) 
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CN>BD networks.  Brain meshes are presented from customized angle views (azimuth 

= 135°, elevation = 10 for left-hemisphere views; azimuth = 225° for right-hemisphere) 
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