
Searching for a counterexample to Kurepa’s conjecture in
average polynomial time

Author:
Rajkumar, Ramanan

Publication Date:
2019

DOI:
https://doi.org/10.26190/unsworks/21191

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/61941 in https://
unsworks.unsw.edu.au on 2024-04-29

http://dx.doi.org/https://doi.org/10.26190/unsworks/21191
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/61941
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

Searching for a counterexample to Kurepa’s conjecture in
average polynomial time

Ramanan Rajkumar

Supervisor: Dr. David Harvey

School of Mathematics and Statistics

UNSW Sydney

April 2019

Submitted in partial fulfilment of the requirements of the degree of

Masters by Research

I
�

UNSW
SYDNEY

Surname/Family Name

Given Name/s

Australia's

Global

University

Abbreviation for degree as give in the University calendar

Faculty

School

Thesis Title

Thesis/Dissertation Sheet

Rajkumar

Ramanan

MRes

Science

Mathematics and Statistics

Searching for a counterexample to Kurepa's conjecture in average polynomial
time

The left factorial of n is defined to be $0!+1!+\dots+(n-1)!$ and is denoted by $!n$. Kurepa conjectured that In is not divisible by n for
$n>2$ and showed that it was sufficient to check the conjecture for odd primes p. We provide a survey of articles written on the search for

a counterexample to Kurepa's conjecture and analyse the complexity of the algorithms used. These algorithms are all linear in p; that is,
exponential in $\log p$. We develop the first known algorithm whose complexity is polynomial in $\log p$ when averaged over primes.

Declaration relating to disposition of project thesis/dissertation

I hereby grant to the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or in part
in the University libraries in all forms of media, now or here alter known, subject to the provisions of the Copyright Act 1968. I retain all property rights,
such as patent rights. I also retain the right to use in Mure works (such as articles or books) all or part of this thesis or dissertation.

I also authorise University Microfilms to use the 350 word abstract of my thesis in Dissertation Abstracts International (this is applicable to doctoral

The University recognises that there may be exceptional circumstances requiring restrictions on copying or conditions on use. Requests for restriction
for a period of up to 2 years must be made in writing. Requests for a longer period of restriction may be considered in exceptional circumstances and
require the approval of the Dean of Graduate Research.

OR OFFICE USE ONLY Date of completion of requirements for Award:

COPYRIGHT STATEMENT

'I hereby grant the University of New South Wales or its agents the right to
archive and to make available my thesis or dissertation in whole or part in the
University libraries in all forms of media, now or here after known, subject to the
provisions of the Copyright Act 1968. I retain all proprietary rights, such as patent
rights. I also retain the right to use in future works (such as articles or books) all
or part of this thesis or dissertation.
I also authorise University Microfilms to use the 350 word abstract of my thesis in
Dissertation Abstract International (this is applicable to doctoral theses only).
I have either used no substantial portions of copyright material in my thesis or I
have obtained permission to use copyright material; where permission has not
been granted I have applied/will apply for a partial restriction of the digital copy of
my thesis or dissertation.'

Signed __ ---------------------------------------

Date .. 6.�.{�)J.�

AUTHENTICITY STATEMENT

'I certify that the Library deposit digital copy is a direct equivalent of the final
officially approved version of my thesis. No emendation of content has occurred
and if there are any minor variations in formatting, they are the result of the
conversion to digital format.'

Signed

Date .. .91/i.y.,.�

ORIGINALITY STATEMENT

'I hereby declare that this submission is my own work and to the best of my

knowledge it contains no materials previously published or written by another
person, or substantial proportions of material which have been accepted for the
award of any other degree or diploma at UNSW or any other educational
institution, except where due acknowledgement is made in the thesis. Any
contribution made to the research by others, with whom I have worked at
UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that
the intellectual content of this thesis is the product of my own work, except to
the extent that assistance from others in the project's design and conception or
in style, presentation and linguistic expression is acknowledged.'

Signed

Date ... �.Y./tijt.'\

INCLUSION OF PUBLICATIONS STATEMENT

UNSW is supportive of candidates publishing their research results during their candidature

as detailed in the UNSW Thesis Examination Procedure.

Publications can be used in their thesis in lieu of a Chapter if:
• The student contributed greater than 50% of the content in the publication and is the

"primary author", ie. the student was responsible primarily for the planning, execution and

preparation of the work for publication
• The student has approval to include the publication in their thesis in lieu of a Chapter from

their supervisor and Postgraduate Coordinator.
• The publication is not subject to any obligations or contractual agreements with a third

party that would constrain its inclusion in the thesis

Please indicate whether this thesis contains published material or not.

□

□

This thesis contains no publications, either published or submitted for publication

Some of the work described in this thesis has been published and it has been
documented in the relevant Chapters with acknowledgement

This thesis has publications (either published or submitted for publication)
incorporated into it in lieu of a chapter and the details are presented below

CANDIDATE'S DECLARATION
I declare that:

• I have complied with the Thesis Examination Procedure
• where I have used a publication in lieu of a Chapter, the listed publication(s)

below meet s the re uirements to be included in the thesis.
Signature Date (dd/mm/yy)

b t.+,(2\/ I Lt

1

Plagiarism statement

‘I hereby declare that this submission is my own work and to the best of my knowl-

edge it contains no materials previously published or written by another person,

or substantial proportions of material which have been accepted for the award of

any other degree or diploma at UNSW or any other educational institution, except

where due acknowledgement is made in the thesis. Any contribution made to the

research by others, with whom I have worked at UNSW or elsewhere, is explic-

itly acknowledged in the thesis. I also declare that the intellectual content of this

thesis is the product of my own work, except to the extent that assistance from

others in the project’s design and conception or in style, presentation and linguistic

expression is acknowledged.’

By signing this declaration I am agreeing to the statements and conditions above.

Signed: Date:

i

Acknowledgements

First and foremost, I would like to thank my supervisor, David. Simply put, without

him, this thesis would not exist.

I would like to thank the School of Mathematics and Statistics for their unbounded

support and assistance. In particular, I would like to thank Professor Warton and

Dr Potapov.

Special praise must be given to Raveen, who proofread my thesis and checked the

maths line by line. Also thanks to Jeffrey, Patrick, Prosha and Melinda for your

help with R.

Thanks must be given to all my family and friends. There are too many to name

individually, but I am deeply indebted to you.

Ramanan Rajkumar, 31 August 2018.

ii

Abstract

The left factorial of n is defined to be 0! + 1! + · · ·+ (n− 1)! and is denoted by !n.

Kurepa conjectured that !n is not divisible by n for n > 2 and showed that it was

sufficient to check the conjecture for odd primes p. We provide a survey of articles

written on the search for a counterexample to Kurepa’s conjecture and analyse the

complexity of the algorithms used. These algorithms are all linear in p; that is,

exponential in log p. We develop the first known algorithm whose complexity is

polynomial in log p when averaged over primes.

iii

Contents

Chapter 1 Previous results and methods 1

1.1 Kurepa’s hypothesis . 1

1.2 Equivalent statements . 2

1.3 Attempted proofs . 3

1.4 The search for a counterexample . 4

Chapter 2 A class of recurrence problems 6

2.1 Definitions . 6

2.2 Examples . 7

2.2.1 Wilson primes . 7

2.2.2 Wolstenholme primes . 7

2.2.3 Kurepa’s conjecture . 8

2.2.4 Central trinomial coefficient conjecture 9

Chapter 3 Basic complexity results 10

3.1 Complexity of arithmetic operations for integers 10

3.2 Complexity of arithmetic operations for integer matrices 12

3.3 Complexity for calculating each example naively 14

3.4 Naive complexity of calculating Wilson primes 16

Chapter 4 Accumulating remainder tree 18

4.1 Product tree algorithm . 18

4.2 Complexity of the product tree algorithm 19

4.3 Remainder tree algorithm . 24

v

4.4 Complexity of the remainder tree algorithm 27

4.5 Accumulating remainder tree algorithm 30

4.6 Complexity analysis of the accumulating remainder tree algorithm . 34

4.7 History of the accumulating remainder tree algorithm 41

Chapter 5 A toy implementation 43

Chapter 6 Conclusion 45

vi

Chapter 1

Previous results and methods

1.1 Kurepa’s hypothesis

Kurepa defined the left factorial of n as
∑n−1

m=0m! for non-negative integers n in

[Kur1971], where 0! := 1. He denoted the left factorial of n by !n. Other papers

refer to !p as κp such as in [Ham1999] and !n as K(n) when considering the analytic

continuation of !n such as in [Mal2003]. We shall denote the smallest non-negative

integer congruent to !n mod n by rn.

The left factorial has uses in combinatorics, such as the number of permutations

on [n] that avoid the patterns 2n1 and n12 where a 2n1 pattern is a (scattered)

subsequence a − n − b with a > b. Further uses include counting the number of

vertices of a certain sequence of recursively defined trees [PZ̆1999]. More uses can

be found in [OEIS, Sequence A003422].

Andrejić and Tatarevic defined the generalised left factorial function where

!kn :=
∑n−1

m=0(m!)k in [AT2014]. We note that !1n =!n.

The left factorial !n satisfies the functional equation f(n+ 1)− f(n) = Γ(n+ 1)

for all n. This leads to the analytic continuation of !n to the whole complex plane

excluding −1,−3,−4,−5, . . . and is denoted by K(z). Further information can be

found in [Mal2003] but these results are outside the scope of this thesis. Studying

K(z) leads to a different generalisation in the complex plane; further details were

provided by Milovanović in [Mil1996], Milovanović and Petojević [MP2002] and

Petojević in [Pet2002]. These results are outside of the scope of this thesis.

1

It is shown in [Kur1971] that !n 6≡ 0 mod n for infinitely many n. The major

question asked is if this is true for all n.

Conjecture 1.1.1 (Kurepa’s left factorial hypothesis). Let n be a positive integer

such that n > 2. Then !n 6≡ 0 mod n.

This conjecture is sometimes referred to as Kurepa’s hypothesis in the literature.

Kurepa then gives two equivalent statements to his conjecture in [Kur1971]. He

shows that to prove !n 6≡ 0 mod n for every positive integer n > 2, it is necessary

and sufficient to prove that !p 6≡ 0 mod p for every odd prime p. The greatest

common divisor of !n and n! is denoted by Mn; that is, Mn := gcd(!n,n!). Then

the statement that Mn = 2 for all n > 1 is also equivalent to Kurepa’s hypothesis

(Conjecture 1.1.1) as shown by Kurepa in [Kur1971].

Andrejić and Tatarevic asked whether the natural analogue of Kurepa’s hypoth-

esis (Conjecture 1.1.1) holds for the generalised left factorial function. They showed

that for every k = 2, 3, . . . , 99, there is an odd prime p such that p divides !kp so

the natural generalisation of Kurepa’s hypothesis is false [AT2014].

1.2 Equivalent statements

There are many equivalent statements of Kurepa’s hypothesis (Conjecture 1.1.1);

Mijajlović showed in [Mij1990] that

!p ≡
p−1∑
k=0

(−1)k+1/k! ≡
p−1∑
k=0

(−1)k(k + 1)(k + 2) · · · (p− 1) mod p.

We note that

Dn := n!
n−1∑
k=0

(−1)k+1/k!

is the sequence of derangement numbers. For more details on derangement numbers,

we direct the reader to [Has2003]. Hence Kurepa’s hypothesis is equivalent to

Dp−1 6≡ 0 mod p

2

for all odd primes p [Mes̆2015].

Mijajlović also gave a recursive formula in [Mij1990]. Let p be a prime and let

sp−1 := 0 in Fp. Define the recursion si := 1 + isi+1 in Fp for i = p− 2, p− 3, . . . , 1.

Then rp = s1 and this recurrence was used to verify Kurepa’s conjecture for all

primes up to 311009. Mes̆trović gathered a summary of equivalent statements of

Kurepa’s conjecture in [Mes̆2015]; see Kellner in [Kel2004], Ivić and Mijajlović in

[IM2004], Petojević, Z̆iz̆ović and Stana D. Cvejić in [PZ̆C1999], S̆ami in [S̆am1974]

and Z̆ivković in [Z̆iv1999], Stanković in [Sta1973] and Stanković and Z̆iz̆ović in

[SZ̆1974]. Most of these equivalent statements involve recurrence relations or sum-

mation formulae. Other equivalent statements can be found in [GR2014] using Bell

numbers and linear algebra. Some of the statements equivalent to Kurepa’s conjec-

ture involve recurrence relations, such as in [Mij1990], and are used to search for

counterexamples using a computer such as in [AT2014].

1.3 Attempted proofs

We define the n-th Bell number as the number of partitions of a set of size n and

denote the n-th Bell number by Bn; it is denoted by Dn in [Ham1999] and Pn in

[BB2004]. Bell numbers have many uses in combinatorics: for more information,

we refer the reader to [Bel1934]. Hamadene proved that !p ≡ Bp−1 − 1 mod p for

primes p [Ham1999]. Barsky and Benzaghou gave a formula for Bn mod p in terms

of the n-th power of the trace of a fixed element in the Artin-Schreier extension

of Fp. Hence they reduced Kurepa’s conjecture to a linear algebra problem and

claimed to have solved Kurepa’s conjecture [BB2004]. However it was pointed out

that there was a mistake in the calculations and the proof of Kurepa’s hypothesis

(Conjecture 1.1.1) was retracted due to ‘irreparable calculation errors’ in solving

the linear algebra problem; the equivalence of Kurepa’s conjecture and the linear

algebra problem was still valid [BB2011].

Reg. Bond proposed a proof which was unpublished but is mentioned by [Guy].

Z̆ivković mentions that Bond communicated that there was an error in a personal

email [Z̆iv1999] which we have not personally verified.

3

Currently, Kurepa’s hypothesis (Conjecture 1.1.1) has not been disproven. How-

ever it is heuristically conjectured to be false; under certain assumptions regarding

the uniform distribution of rp, the ‘probability’ of Kurepa’s conjecture holding is 0.

Furthermore, it is suggested that under these assumptions there are infinitely many

counterexamples and the probability of finding a counterexample in the interval

(x,xα] is approximately 1 − 1/α. Hence the probability of finding a counterexam-

ple in (x,x2] is 1/2. The probability of finding a counterexample in (2n, 2n+1] is

1/(n + 1). Two types of chi-square tests were carried out on the uniformity of rp

for primes in (2h, 2h+1) where h = 10, 11, . . . , 23. These tests did not contradict the

assumptions of the uniformity of rp which provides evidence that the assumptions

are valid. An exposition of the heuristics is presented in [Z̆iv1999].

1.4 The search for a counterexample

In Problem B44 of [Guy], Guy claims that Slavic checked up to 1000 using a com-

puter and Wagstaff checked up to 50000 though we are unable to verify this our-

selves. Mijajlovic checked Kurepa’s conjecture for all primes p ≤ 311009 ≈ 3.1 · 105

in [Mij1990]. The number of arithmetic operations required to verify Kurepa’s hy-

pothesis (Conjecture 1.1.1) for each p is 4p and is therefore exponential in log p.

Hence the time complexity is exponential in log p. Gogić checked all primes up to

p ≤ 106 in [Gog1991] but we were unable to obtain a copy of [Gog1991]. Z̆ivković

checked for all primes less than 223 ≈ 8.4 · 106 in [Z̆iv1999]. It is claimed that

Males̆ivić verified Kurepa’s conjecture for all primes p ≤ 3 · 106 in a personal com-

munication [Z̆iv1999] but we have been unable to verify this claim. Gallot checked

up to 226 ≈ 6.7 · 107 in [Gal2000] using an algorithm with a running time which

is exponential in log p. Jobling claimed to have checked up to 227 ≈ 1.4 · 108 in

[OEIS, Sequence A049782] and this is quoted in [AT2014] but we have been un-

able to verify this claim. Ilijas̆ević verified Kurepa’s conjecture up to 231 ≈ 2 · 109

in [Ili2015] using an algorithm with time complexity which is exponential in log p.

Andrejić and Tatarevic checked up to p < 234 ≈ 1.7 · 1010 and the time com-

plexity is exponential in log p [AT2014]. They also claim that the fastest known

4

algorithm to verify Kurepa’s hypothesis (Conjecture 1.1.1) for all primes up to N is

O(N2/ logN). It follows that the fastest known algorithm has an amortised average

running time which is exponential in logN . This means that for large N , verifying

Kurepa’s conjecture for all primes p less than N is not feasible using current algo-

rithms. In Chapter 4, we will give an algorithm which has an amortised average

running time which is polynomial in logN .

5

Chapter 2

A class of recurrence problems

In this section, we show how a certain class of problems can be expressed in terms of

recurrence relations. These problems all involve calculating some integer matrices

C1,C2, . . . ,CN .

2.1 Definitions

In this subsection, we give the framework required to define the recurrence relations.

Let A = (aij)ij be a matrix with integer entries and let m be a positive integer.

Then we define

A mod m := (aij mod m)ij.

When we write a mod m, we shall always choose the representative of the equiva-

lence class which is between 0 and m− 1 unless stated otherwise.

Suppose that A1, . . . ,AN−1 is a sequence of d × d matrices with integer entries

and that V ∈ Zd . Furthermore, we also assume that mn = nλ, for a fixed λ, if n

is prime and 1 otherwise. We define A0 to be the d× d identity matrix and m0 to

be 1 to simplify calculations in Section 4.2. Our goal is to calculate the sequence of

matrices C1, . . . ,CN where

6

C1 := A0V mod 1,

C2 := A1A0V mod 2λ,

C3 := A2A1A0V mod 3λ,

C4 := A3A2A1A0V mod 1,

C5 := A4A3A2A1A0V mod 5λ,

...

CN := AN−1 · · ·A1A0V mod mN .

Remark 2.1.1. We remark that An can be generalised to be any object with an

associative multiplication structure and mn can be any object such that division

with remainder of An−1 · · ·A0V by mn is defined.

2.2 Examples

In this subsection, we give examples of some problems which can be written in the

above formulation.

2.2.1 Wilson primes

Our first example is to compute the set of Wilson primes up to some bound N . We

remind the reader that Wilson’s theorem states that (p− 1)! + 1 ≡ 0 mod p for all

primes p [Lag1771]. A Wilson prime is defined to be a prime p that satisfies the

equation (p− 1)! + 1 ≡ 0 mod p2. The only known Wilson primes less than 2× 1013

are 5, 13, and 563 [CGH2014] but it is conjectured that there are infinitely many

Wilson primes [CGH2014]. Our object of interest is (p−1)! mod p2 for every prime

p < N . Hence we choose d := 1, An := n, V := 1, and λ := 2.

2.2.2 Wolstenholme primes

A similar example to the search for Wilson primes is to compute the set of Wolsten-

holme primes up to some bound N . Wolstenholme’s theorem states that
(
2p−1
p−1

)
≡

1 mod p3 for all primes p > 3 [Wol1862]. A Wolstenholme prime is a prime p such

that
(
2p−1
p−1

)
≡ 1 mod p4 [McI1995]. The only known Wolstenholme primes less than

109 are 16843 and 2124679 [MR2007] but it is conjectured that there are infinitely

7

many Wolstenholme primes [McI1995]. Hence our goal is to compute
(
2p−1
p−1

)
mod p4.

We note that (
2n− 1

n− 1

)
=

2(2n− 1)

n

(
2n− 3

n− 2

)
for n > 1 but this is not an integer recurrence. To avoid this issue, we calculate

the numerator and denominator separately. For the numerator, we let d := 1,

An := 2(2n + 1), V := 1, and λ := 5. Then we calculate Ap−1 · · ·A1A0V mod mp.

Now we calculate the denominator. We let d′ := 1, A′n := n+1, V ′ = 1 and λ′ := 5.

Then we calculate A′p−1 · · ·A′0V ′ mod mp. We write p ‖ n if p divides n and p2 does

not divide n. We note that p ‖ A′p−1 · · ·A′0V ′ so A′p−1 · · ·A′0V ′/p is invertible in

Z/p4Z. Thus we may calculate

(
2p− 1

p− 1

)
mod p4 = Cp/C

′
p mod p4

= Ap−1 · · ·A0V/A
′
p−1 · · ·A′0V ′ mod p4

= (Ap−1 · · ·A0V/p) /
(
A′p−1 · · ·A′0V ′/p

)
mod p4

as claimed.

2.2.3 Kurepa’s conjecture

A less trivial example is the verification of Kurepa’s conjecture up to some bound N .

As shown by Kurepa in [Kur1971], an equivalent formulation of Kurepa’s hypothesis

(Conjecture 1.1.1) is that !p 6≡ 0 mod p for all odd primes p. Thus our object of

interest is !n mod n which requires 2×2 matrices to form a recurrence relationship.

For this recurrence relation, we let

d := 2,A0 :=

1 0

0 1

 ,An :=

n 0

n 1

 ,V :=

1

1

 ,λ := 1

for n ≥ 1. Thus

Ap−1Ap−2 · · ·A1A0V ≡

(p− 1)!

!p

 mod p

8

and from this, we can read off !p mod p.

2.2.4 Central trinomial coefficient conjecture

Another example is the verification of the central trinomial coefficient conjecture

up to some bound N . We define T (n) as the coefficient of xn in the expansion of

(1 + x+ x2)n. It is conjectured that an integer n > 3 is prime if and only if T (n) ≡

1 mod n2 [Sun]. We would like to verify that if n is prime, then T (n) ≡ 1 mod n2.

Therefore our object of interest is T (p) mod p2. It is known that T (n) satisfies the

recurrence

T (n) =
(2n− 1)T (n− 1) + 3(n− 1)T (n− 2)

n

as proven in [Eul1765]. This can be written using matrices as

 T (n)

T (n− 1)

 =
1

n

2n− 1 3(n− 1)

n 0

T (n− 1)

T (n− 2)

 .

Similar to the search for Wolstenholme primes in Section 2.2.2, we do not have

an integer recurrence. Thus we will calculate the numerators and denominators

separately.

For the numerator, we let d := 2, An :=

2n+ 1 3n

n+ 1 0

, V :=

1

1

, and λ := 3.

Then we calculate Ap−1 · · ·A1A0V mod mp. Now we calculate the denominator. We

let d′ := 1, A′n := n+1, V ′ = 1 and λ′ := 3. Then we calculate A′p−1 · · ·A′1A′0V ′ mod

mp. We note that p ‖ A′p−1 · · ·A′1A′0V ′ so A′p−1 · · ·A′1A′0V ′/p is invertible in Z/p2Z.

Thus we may calculate

 T (p)

T (p− 1)

 mod p2 = Cp/C
′
p mod p2

= Ap−1 · · ·A1A0V/A
′
p−1 · · ·A′1A′0V ′ mod p2

= (Ap−1 · · ·A1A0V/p) /
(
A′p−1 · · ·A′1A′0V ′/p

)
mod p2

and read off T (p) mod p2 as required.

9

Chapter 3

Basic complexity results

3.1 Complexity of arithmetic operations for integers

In this section, we give basic results on the complexity of binary operations using

integers. Let B be a positive real number such that B ≥ 1. Throughout this section,

we assume that m and n are integers which are at most dBe bits. Then the time

complexity of adding m and n (or subtracting m from n) is O(B) and the space

complexity is O(B) [vZGG1999].

We denote M(B) as an upper bound for the time complexity of multiplying two

integers which are at most dBe bits. We assume that M(B)/B is increasing and M

is superlinear [vZGG1999, Ch.8]; that is, M(A + B) ≥ M(A) + M(B) for A,B ≥

1. These hypotheses guarantee that the running time of division with remainder

of two dBe-bit integers is O(M(B)) [vZGG1999, Ch.9]. We note that although

multiplication and division with remainder have the same asymptotic growth, the

constant in the division algorithm is larger. For further details, we refer the reader

to [vZGG1999, Ch.8,9].

We give some examples of the time complexity of multiplication algorithms.

Classical multiplication has time complexity O(B2). The Schönhage–Strassen al-

gorithm has time complexity O(B log(B) log log(B)) [vZGG1999, Thm 8.24]. The

fastest known method runs in O(B log(B)4log∗(B)) time [HvdH2018], where log∗ is

the iterated logarithm function. The space complexity of multiplying m and n and

dividing m by n with remainder is O(B) for all of these algorithms, so throughout

10

this thesis, we shall assume that the space complexity of multiplying m and n is

O(B).

Throughout this thesis, we define lg(n) as log2(n) for positive integers n and

0 if n = 0. The space required to store the positive integer n is dlg(n)e + 1 + C

where C is the overhead used to store pointers and memory allocation data. Now

we introduce a function β which approximates the space required to store different

objects. This is a purely theoretical measure and is independent of the computer

and the language. We define β(n) as lg(|n|) if n is a non-zero integer such that

|n| > 1 and 1 if n = −1, 0, 1.

Now β has some useful properties, such as the fact that it is sublogarithmic;

that is, β(mn) ≤ β(m)+β(n). Inductively, this implies that β(mk) ≤ kβ(m) which

provides a very useful bound which will be utilised throughout this thesis.

We can consider the integers to be 1× 1 matrices. We would like to define β for

arbitrarily sized d×dmatrices with integer entries such that β is still sublogarithmic.

We first suppose that X is a d× d matrix with integer coefficients. Then we define

β(X) := lg(max
1≤j≤d

(
d∑
i=1

|aij|)),

where max1≤j≤d(
∑d

i=1 |aij|) is the maximum column sum. This agrees with the

definition of β for integers if d = 1.

We remark that β(X) = lg(‖X‖1) where ‖·‖1 is the operator 1 norm [FRR1987,

Prop. 2.1.i].

Now we show that β is still sublogarithmic.

Lemma 3.1.1. Let X and Y be d×d matrices with integer entries. Then β(XY) ≤

β(X) + β(Y).

11

Proof. Let X and Y be d× d matrices with integer coefficients. It follows that

β(XY) = lg(‖XY ‖1)

≤ lg(‖X‖1‖Y ‖1)

≤ lg(‖X‖1) + lg(‖Y ‖1)

≤ β(X) + β(Y)

where the first inequality holds since ‖ · ‖1 is submultiplicative. Thus β(XY) ≤

β(X) + β(Y) as required.

3.2 Complexity of arithmetic operations for integer matrices

We begin this subsection with some introductory theorems about the time com-

plexity of arithmetic operations for integer matrices.

Throughout this thesis, we will use the definition of matrix multiplication to

multiply matrices instead of using faster algorithms such as Strassen’s algorithm

[Str1969], the Coppersmith–Winograd algorithm [CW1990] or Le Gall’s algorithm

[LG2014]. This is purely to simplify the analysis of the time and space complexity

bounds since the benefits from using faster matrix multiplication algorithms are

minimal.

Note that throughout this thesis, we shall ignore the dependency on d as the

applications that follow only deal with d ≤ 3.

Theorem 3.2.1. Suppose X and Y are d×d matrices with integer coefficients such

that β(X), β(Y) ≤ B. Then the time complexity of computing XY is O(M(B)) and

the space complexity of computing XY is O(B).

Proof. Let X = (xij)ij and Y = (yij)ij. Denote XY as Z = (zij)ij. We observe that

lg(|xij|), lg(|yij|) ≤ B since β(X), β(Y) ≤ B. Hence xij, yij are dBe-bit integers.

By definition, zij =
∑d

k=1 xikykj. We note that computing each xikykj requires

O(M(B)) time and O(B) bits. The time complexity of computing zij is O(M(B))

since addition of integers which are at most dB bits is O(dB) = O(M(B)). Likewise

12

the memory required is O(dB). The running time is O(d2M(B)) and the total

memory required is O(d3B) as there are d2 entries in Z. Hence the time and space

complexity of computing XY is O(M(B)) and O(B) respectively as d is fixed.

Theorem 3.2.1 links bounds on the memory required to store matrices X,Y

to an upper bound on the time required to compute XY and is therefore a very

powerful result for time complexity analysis.

Proposition 3.2.2. Suppose X is a d × d matrix with integer entries and n is a

positive integer. Then the time complexity of computing X mod n is

O(M(max(β(X), β(n)))).

Proof. Let X = (xij)ij. We note that xij is a β(xij)-bit integer and that n is a

β(n)-bit integer. The time complexity of computing xij mod n is

O(M(max(β(xij), β(n)))).

But each β(xij) is bounded above by β(X) so it follows that

O(M(max(β(xij), β(n)))) = O(M(max(β(X), β(n)))).

Thus the total time complexity is

O(d2M(max(β(X), β(n)))) = O(M(max(β(X), β(n))))

as claimed.

Proposition 3.2.3. Suppose X is a d × k matrix with integer entries and that n

is a positive integer. Then β(X mod n) ≤ lg d+ β(n).

13

Proof. We let X = (xij)ij and note that xij mod n is some non-negative integer less

than n for every i and j. Thus the maximum column sum is at most dn so it follows

that

β(X mod n) ≤ lg d+ lg n ≤ lg d+ β(n).

We remark that this bound is independent of k since we are taking the maximum

column sum. We note that the β(n) term dominates for large n since d is fixed.

3.3 Complexity for calculating each example naively

We recall from Section 2.1 that Cn := An−1An−2 · · ·A1A0V mod mn where each Ak

is a d × d matrix with positive integer entries and each mk = kλ if k is prime and

1 otherwise. We now define a naive algorithm for calculating each Cp individually

and analyse its complexity.

We remind the reader that the dependence on d will not be studied and d is

assumed to be fixed. Then we let A0, . . . ,AN−1,V and m0,m1, . . . ,mN−1 be as in

Section 2.1 and give a naive algorithm for calculating Cp for every prime p < N . We

calculate the time complexity of this algorithm under some general assumptions.

Finally, we calculate the time complexity of applying this algorithm to the Wilson

prime problem in Section 2.2.1.

Algorithm 1 Naïve Algorithm for calculating Cp
Input: V , pλ,A1, · · · ,Ap−1

Output: Cp

1: X ← V mod pλ

2: for k = 0 to p− 1 do

3: X ← AkX

4: X ← X mod pλ

5: end for

6: return X

14

We define τ as the maximum of β(A1), . . . , β(AN). From this point onwards

in the thesis, we shall assume that τ = O(logN). Similarly, we define σ as the

maximum of β(m1), . . . , β(mN). It follows that σ = O(logN). The examples in

Section 2.2 all satisfy these assumptions.

We now remind the reader of the Prime Number Theorem and one of its corol-

laries. This corollary will be used to simplify some of the bounds obtained.

Theorem 3.3.1 (Prime Number Theorem). Suppose that π(x) counts the number

of primes p ≤ x. Then

π(x) ∼ x/ log x

where f ∼ g if limx→∞ f(x)/g(x) = 1.

Proof. A short exposition of the proof can be found in [New1980] and [Zag1997].

Corollary 3.3.2. It follows that π(x) = O(x/ log x).

Now we bound the running time of calculating each Cp naïvely using Algorithm

1.

Theorem 3.3.3. The running time of computing Cp for each prime p up to some

N using Algorithm 1 is O(N2+ε) where ε→ 0 as N →∞.

Proof. First we calculate the time complexity of the multiplication in Line 3. We

note that X has been reduced modulo pλ so

β(X) = O(β(pλ)) = O(logN).

Also, we recall that β(Ak) = O(logN). Thus the time complexity of computing

AkX is O(M(logN)).

Now we calculate the time complexity of the modular arithmetic in Line 4. We

note that

β(AkX) ≤ β(Ak) + β(X)

≤ τ + lg d+ σ

15

where the second inequality follows from Theorem 3.2.3. It follows that

β(AkX), β(pλ) ≤ τ + lg d+ σ.

Thus the time complexity of the modular arithmetic is

O(M(τ + lg d+ σ)) = O(M(logN))

since β(pλ) ≤ σ. Hence the total time to complete each iteration of the loop is

O(M(logN)) and there are p = O(N) iterations so each Cp takes O(NM(logN))

time.

Furthermore, the time complexity of calculating Cp for all prime p up to some N

using the naive algorithm above is O(Nπ(N)M(logN)) = O(N2+ε) using Corollary

3.3.2.

The time complexity of calculating each Cp is O(N1+ε). Thus the time com-

plexity of this algorithm is exponential in logN . Therefore this algorithm is too

slow for large N to be useful for practical purposes. Hence we need a more efficient

algorithm which will be introduced in Section 4.5.

3.4 Naive complexity of calculating Wilson primes

We now give an example to illustrate the time complexity of using the naive algo-

rithm to compute the set of Wilson primes less than N as in Example 2.2.1. We

note that this algorithm does not use the fastest subroutine for calculating n! but

it is one of the simplest; other methods involving calculating the prime factors such

as in [Bor1985] are superior. We recall that d := 1, An := n, V := 1, and λ := 2.

We note that β(Ap) = lg p, β(V) = 1, and that β(mp) = 2 lg p.

First we calculate the time complexity of the multiplication. We note that

β(k) ≤ lg p and that β((k − 1)! mod p2) ≤ 2 lg p. Hence the time complexity of

calculating k((k − 1)! mod p2) is O(M(2 lg p)) = O(M(logN)).

16

Next, we calculate the time complexity of the modular arithmetic. From the

analysis of the time complexity of the multiplication, we see that

β(k((k − 1)! mod p2)) ≤ β(k) + β((k − 1)! mod p2)

≤ 3 lg p.

We note that β(p2) ≤ 3 lg p so 3 lg p is an upper bound for β(p2), β(k(k−1)! mod p).

Hence the time complexity of the modular arithmetic is

O(M(3 lg p)) = O(M(logN))).

Thus the time complexity of each iteration of the loop is O(M(logN)). There

are p loops and p ≤ N so the time complexity of p loop iterations is O(NM(logN)).

Hence the time complexity of the entire loop is O(NM(logN)). Thus the time

required to calculate Cp is O(NM(logN)). Therefore the time complexity of calcu-

lating Cp for all primes p less than N is

O(Nπ(N)M(logN)) = O(N2+ε)

as claimed.

17

Chapter 4

Accumulating remainder tree

We recall from Section 2.1 that Cn := An−1An−2 · · ·A1A0V mod mn where each Ak

is a d × d matrix with positive integer entries and each mk = kλ if k is prime and

1 otherwise.

Throughout this section, we assume that N is a power of 2. In order to calculate

Cn for all n up to N we introduce the product tree, remainder tree and accumu-

lating remainder tree algorithms. We analyse the complexity of the accumulating

remainder tree algorithm and compare the running time with the running time of

the naive algorithm (Algorithm 1).

4.1 Product tree algorithm

The product tree takes as inputs two positive integers a and b such that b− a = 2h

and a sequence of matrices Xa,Xa+1, . . . ,Xb−1.

Throughout this chapter, Xa,b is defined as Xb−1Xb−2 · · ·Xa.

This algorithm recursively calculates Xa,b by ’halving the interval’. If b = a+ 1,

then Xa,b = Xa. Otherwise, we let c := b(a + b)/2c and calculate Xa,b recursively

using the relationship that Xa,b = Xc,bXa,c. The outputs are all such Xa′,b′ which

were calculated in the product tree.

We now give a simple example of the product tree algorithm. Suppose we

would like to compute 7! using the product tree algorithm. Let Xn := n for n =

1, . . . , 7. Thus a := 1. We need b − a to be a power of 2 so we round up to the

nearest power of 2 and let b := 9. Thus we define X8 := 1. This is similar to

18

the technique of zeropadding. For further details about zeropadding, we refer the

reader to [Ber2008]. Then

X1,9 = X5,9X1,5

= X7,9X5,7X3,5X1,3

= X8,9X7,8X6,7X5,6X4,5X3,4X2,3X1,2

= 1 · 7 · 6 · 5 · 4 · 3 · 2 · 1

= 5040.

This can be represented using a graph:
X1,9 ← 5040

X1,5 ← 24

X1,3 ← 2

X1,2 ← 1 X2,3 ← 2

X3,5 ← 12

X3,4 ← 3 X4,5 ← 4

X5,9 ← 210

X5,7 ← 30

X5,6 ← 5 X6,7 ← 6

X7,9 ← 7

X7,8 ← 7 X8,9 ← 1

4.2 Complexity of the product tree algorithm

In this section we give general bounds for the time and space complexity of the

product tree algorithm and then give specific bounds for the case where Xn = An

and Xn = mn where An and mn are defined as in Section 2.1.

Theorem 4.2.1. Suppose that X0, . . . ,XN−1 are d×d matrices with integer entries

such that β(Xn) ≤ Bn for all n. Then the time complexity of computing the product

tree for X0,X1, . . . ,XN−1 is

O

(
M

(
N−1∑
n=0

Bn

)
logN

)
.

Proof. We remind the reader that N = 2h for some non-negative integer h. First

we consider the time required to compute the first level. To compute X0,2h , we first

19

compute X0,2h−1 and X2h−1,2h and then multiply these to calculate X0,2h . We apply

this recursively until we must calculate the pairs

X0X1,X2X3, . . . ,X2h−2X2h−1.

Now we consider the time complexity of calculating the j-th level. Define w :=

2h−j. This involves calculating

X0,w ·Xw,2w,X2w,3w ·X3w,4w, . . . ,X(2j+1−2)w,(2j+1−1)w ·X(2j+1−1)w,2j+1w.

We bound the time complexity of calculating the product of X0,w and Xw,2w.

First, we note that

β(X0,w) ≤
w−1∑
n=0

β(Xn)

≤
w−1∑
n=0

Bn

using the fact that β is sublogarithmic and the assumption that β(Xn) ≤ Bn for all

n. Similarly,

β(Xw,2w) ≤
2w−1∑
n=w

Bn

so the product of X0,w and Xw,2w can be computed in

O

(
M

(
max

(
w−1∑
n=0

Bn,
2w−1∑
n=w

Bn

)))

= O

(
M

(
2w−1∑
n=0

Bn

))

20

time using Theorem 3.2.1. Similar bounds can be found for the 2j pairs of subprod-

ucts so the total time complexity of computing the j-th level is

2j−1∑
k=0

O

M

2(k+1)w−1∑
n=2kw

Bn

 = O

M

2j−1∑
k=0

2(k+1)w−1∑
n=2kw

Bn

= O

M

2h−1∑
n=0

Bn

where the first equality holds due to the superlinearity of M. Note that this bound

is independent of j and there are h levels so the the total time complexity is

O

hM
2h−1∑

n=0

Bn

 = O

(
M

(
N−1∑
n=0

Bn

)
logN

)

as claimed.

Remark 4.2.2. We remark that Theorem 4.2.1 and its proof is a generalisation

of [Bor1985, Prop. 1] and its proof from integers to arbitrarily sized matrices with

integer entries.

Corollary 4.2.3. The time required to compute X0 · · ·XN−1 is

O

(
M

(
N−1∑
n=0

Bn

)
logN

)

since calculating X0 · · ·XN−1 requires every level of the product tree.

Theorem 4.2.4. Suppose that X0, . . . ,XN−1 are d×d matrices with integer entries

such that β(Xn) ≤ Bn for all n. Then the space complexity of computing the product

tree for X0,X1, . . . ,XN−1 is

O

((
N−1∑
n=0

Bn

)
logN

)
.

Proof. We use the same method of proof as in the proof of Theorem 4.2.1. We

consider the space complexity of calculating the j-th level. Define w := 2h−j. This

21

involves calculating

X0,w ·Xw,2w,X2w,3w ·X3w,4w, . . . ,X(2j+1−2)w,(2j+1−1)w ·X(2j+1−1)w,2j+1w.

We bound the space required to calculate the product of X0,w and Xw,2w. We

note that

β(X0,w) ≤
w−1∑
n=0

Bn, β(Xw,2w) ≤
2w−1∑
n=w

Bn

from the proof of Theorem 4.2.1. Hence the space required to compute the product

of X0,w and Xw,2w is

O (max (β(X0,w), β(Xw,2w))) = O

(
max

(
w−1∑
n=0

Bn,
2w−1∑
n=w

Bn

))

= O

(
2w−1∑
n=0

Bn

)
.

Similar bounds can be found for the 2j pairs of subproducts so the total space

complexity of computing the j-th level is

2j−1∑
k=0

O

2(k+1)w−1∑
n=2kw

Bn

 = O

2j−1∑
k=0

2(k+1)w−1∑
n=2kw

Bn

= O

2h−1∑
n=0

Bn

 .

This bound is independent of j so the total space required is

O

h 2h−1∑
n=0

Bn

 = O

((
N−1∑
n=0

Bn

)
logN

)

as claimed.

We can calculate both the time and space complexities of applying the algorithm

in Section 4.1 to A0, . . . ,AN−1 and m0, . . . ,mN−1 using Theorems 4.2.1 and 4.2.4

respectively.

22

We assume that the list of primes less than N have been precomputed; this can

be done in O(N logN log logN) time and O(N) memory [Pri1987].

Theorem 4.2.5. The time complexity of using the product tree algorithm in Section

4.1 to compute the product tree of m0, . . . ,mN−1 is O (M(N) logN).

Proof. We recall that β(mn) = λ lg(n) if n is prime and 1 otherwise. Thus we let

Bn := λ lg(n) if n is prime and 1 otherwise. Then the time complexity of computing

m1 · · ·mN is

O

(
M

(
N−1∑
n=0

Bn

)
logN

)
using Theorem 4.2.1. This expression simplifies to

O

(
M

(
N−1∑
n=0

Bn

)
logN

)
= O

(
M

(
N − π(N − 1) + λ

∑
p<N

lg p

)
logN

)

= O(M(N − π(N − 1) + λπ(N − 1) lgN) logN)

= O(M(N) logN)

where π(N) is approximated using Corollary 3.3.2.

Theorem 4.2.6. The space complexity of using the product tree algorithm in Section

4.1 to compute the product tree of m0, . . . ,mN−1 is O(N logN).

Proof. The space complexity is O
((∑N−1

n=0 Bn

)
logN

)
using Theorem 4.2.4. In a

similar vein to the proof of Theorem 4.2.5, we define Bn as λ lg(n) if n is prime and

1 otherwise. We have shown that
∑N−1

n=0 Bn = O(N) in the proof of Theorem 4.2.5

so it follows that the space required is O(N logN) as claimed.

Theorem 4.2.7. The time complexity of computing the product tree of objects

A0, . . . ,AN−1 using the algorithm in Section 4.1 is O(M(τN) logN).

Proof. We remind the reader that N is a power of 2. We recall that β(An) ≤ τ

for all n ≤ N . We define Bn := τ for all n. Thus the running time of computing

23

the product tree is O
(
M
(∑N−1

n=0 Bn

)
logN

)
using Theorem 4.2.1. The complexity

simplifies to O(M(τN) logN).

Remark 4.2.8. We note that the time complexity of computing the product tree

of m0, . . . ,mN−1 is smaller than the time complexity of computing the product tree

of A0, . . . AN−1 by a factor of logN as τ = O(logN) by assumption. This is due to

the fact that Bn = λ lg n if n is prime and 1 otherwise for the mn case and Bn = τ

for all n in the An case. Since primes are sparse in large intervals, Bn is 1 for almost

all n in the moduli case if N is large. However Bn = τ is a tight bound for the An

case.

Theorem 4.2.9. The space complexity of using Algorithm 4.1 to compute the prod-

uct tree of A0, . . . ,AN−1 is O(τN logN).

Proof. The proof uses the same method of proof as Theorem 4.2.6. Define Bn as τ

for all n. Then the space complexity is

O

((
N−1∑
n=0

Bn

)
logN

)
= O(τN logN)

as claimed.

4.3 Remainder tree algorithm

The remainder tree algorithm takes as inputs two positive integers a and b where

b−a = 2h, a sequence of positive integers na,na+1, . . . ,nb−1 and a vector U of length

d with integer entries. The output is the sequence of vectors U mod na,U mod

na+1, . . . ,U mod nb−1.

In order to calculate U mod na,U mod na+1, . . . ,U mod nb−1, we define the re-

mainder tree recursively. First we compute the product tree for na, . . . ,nb−1. We

24

define Ua,b := U mod na,b. If b 6= a + 1, then let c := b(a + b)/2c. Then we de-

fine Ua,c := Ua,b mod na,c and Uc,b := Ua,b mod nc,b and calculate recursively (this

notation should not be confused with the notation in Section 4.1).

Theorem 4.3.1. Suppose that na, . . . ,nb−1,U are defined as in Section 4.3. Then

Ua′,b′ = U mod na′,b′.

Proof. We prove this by induction on the levels of the tree. We remark that the

base case is true by the definition of Ua,b. Suppose the parent Ua′,b′ satisfies the

inductive hypothesis; that is, Ua′,b′ = U mod na′,b′ . Let c := b(a′ + b′)/2c. We

consider its children Ua′,c′ and Uc′,b′ . Now

Ua′,c′ = Ua′,b′ mod na′,c′

= (U mod na′,b′) mod na′,c′

= U mod na′,c′

where the last equality holds since na′,c′ divides na′,b′ . Similarly, it can be shown

that Uc′,b′ = U mod nc′,b′ . Hence the formula holds for the children if it holds for

the parent. This completes the proof.

Corollary 4.3.2. Suppose that na, . . . ,nb−1,U are defined as in Section 4.3. Then

Uk,k+1 = U mod nk.

Proof. This follows from Theorem 4.3.1.

We note that throughout this thesis, we shall not actually use the remainder

tree algorithm; it is included for completeness and to motivate the accumulating

remainder tree algorithm.

Suppose we want to calculate the sequence of integers 10! modulo 11, 13, 17,

19, 23, 29, 31 and 37. Then we let U := 10!, n1 := 11, n2 := 13, n3 := 17, n4 := 19,

n5 := 23, n6 := 29, n7 := 31, and n8 := 37.

25

The first step is to compute a product tree for the moduli.

n1,9 = n5,9 · n1,5

= n7,9 · n5,7 · n3,5 · n1,3

= n8,9 · n7,8 · n6,7 · n5,6 · n4,5 · n3,4 · n2,3 · n1,2

= 37 · 31 · 29 · 23 · 19 · 17 · 13 · 11

= 35336848261.

This can be represented using a graph:
n1,5 ← 46189

n1,3 ← 143

n1,2 ← 11 n2,3 ← 13

n3,5 ← 323

n3,4 ← 17 n4,5 ← 19

Now we compute the remainder tree itself.

The base case is

U1,5 = U mod n1,5

= 10! mod 46189

= 26058.

Thus

U1,3 = U1,5 mod n1,3

= 26058 mod 143

= 32

and we continue recursively.

This can be represented using a graph:

26

U1,5 ← 26058

U1,3 ← 32

U1,2 ← 10 U2,3 ← 6

U3,5 ← 218

U3,4 ← 14 U4,5 ← 9

Hence 10! is 10 mod 11, 6 mod 13, 14 mod 17, and 9 mod 19.

4.4 Complexity of the remainder tree algorithm

In this section, we calculate the time and space complexity of computing U mod

n0, . . . ,U mod nN−1 using the remainder tree algorithm in Section 4.3.

Theorem 4.4.1. Let U ∈ Zd and let n0, . . . ,nN−1 be a sequence of positive integers

such that β(U) ≤ β(nk) for all k. Let Bk be a sequence of real numbers such that

β(nk) ≤ Bk for all k. The time complexity of using the remainder tree algorithm in

Section 4.3 to compute a remainder tree for U ,n0, . . . ,nN−1 is

O

(
M

(
N−1∑
k=0

Bk

)
logN

)
.

Proof. We remind the reader that N = 2h for a non-negative integer h. First

we must calculate the product tree of n0,n1, . . . ,nN−1. This has running time

O(M(
∑N−1

k=0 Bk)) logN) using Theorem 4.2.1.

We recall that Ua,b = U mod na,b = U mod na · · ·nb−1.

Calculating U0,2h = U mod n0,2h has time complexity

O (M (β(n0 · · ·n2h−1))) = O

(
M

(
N−1∑
k=0

β(nk)

))

= O

(
M

(
N−1∑
k=0

Bk

))

since β(U) ≤ β(nk) for all k.

27

Now we calculate the time complexity of calculating the j-th level. Let w :=

2h−j. We know the 2j−1 parents which are

U0,2w,U2w,4w, . . . ,U(2j−2)w,2jw.

Each of those parents has two children in the j-th level; the children of

U2iw,2(i+1)w

are (
U2iw,2(i+1)w

)
2iw,(2i+1)w

,
(
U2iw,2(i+1)w

)
(2i+1)w,2(i+1)w

.

We observe that

β(U mod n2iw,2(i+1)w)

is an upper bound for

β(n2i)w · · ·n(2i+1)w−1), β(n(2i+1)w · · ·n2(i+1)w−1).

We note that

β(U mod n2iw,2(i+1)w) ≤ lg d+

2(i+1)w−1∑
k=2iw

β(nk)

using Theorem 3.2.3.

Hence the time complexity of computing the children is

O

M

lg d+

2(i+1)w−1∑
k=2iw

β(nk)

 = O

M

2(i+1)w−1∑
k=2iw

β(nk)

 .

28

Summing over all of the 2j−1 parents, the total time complexity is

2j−1−1∑
i=0

O

M

 2iw−1∑
k=2(i−1)w

β(nk)

 = O

M

2h−1∑
k=0

β(nk)

= O

M

2h−1∑
k=0

Bk

 .

This bound holds for every level and is independent of j and there are h levels

so the total time complexity is

O

hM
2h−1∑

k=0

Bk

 = O

(
M

(
N−1∑
k=0

Bk

)
logN

)

as required.

Theorem 4.4.2. The space complexity of using the algorithm in Section 4.3 to

compute a remainder tree for U ,n0, . . . ,nN−1 is

O

((
N−1∑
k=0

Bk

)
logN

)
.

Proof. We compute the space required to store the j-th level. Let w := 2h−j. Then

the space required to store the children of the parent U2iw,2(i+1)w is

lg d+ β(n2iw,(2i+1)w) + lg d+ β(n(2i+1)w,2(i+1)w) ≤ 2 lg d+

2(i+1)w−1∑
k=2iw

β(nk)

≤ 2 lg d+

2(i+1)w−1∑
k=2iw

Bk.

Summing over all i from 0 to 2j − 1, the space is

O

(
2j+1 lg d+

N−1∑
k=0

Bk

)
= O

(
N−1∑
k=0

Bk

)

29

space. There are logN levels so the total space is

O

((
N−1∑
k=0

Bk

)
logN

)

as claimed.

4.5 Accumulating remainder tree algorithm

We now have the tools to introduce the accumulating remainder tree algorithm.

In the remainder tree algorithm, we are changing the moduli but are keeping

the object we are reducing modulo constant so we calculate V mod ma,V mod

ma+1, . . . ,V mod mb−1. However, for the examples in Section 2.2, we would like to

calculate An−1An−2 · · ·A1A0V mod mn for all n up to N . Thus a remainder tree is

not applicable.

We define the accumulating remainder tree algorithm recursively. The algorithm

take as inputs positive integers a, b such that b−a = 2h,a sequence of matrices with

integer entries Ma, . . . ,Mb−1, a vector Y with integer entries and a sequence of

positive integers na, . . . ,nb−1. First, we calculate product trees for na, . . . ,nb−1 and

Ma, . . . ,Mb−1. Then we defineDa,b := Ya,b = Y mod na,b. If b 6= a+1, then we define

c := b(a + b)/2c. We define Da,c := Da,b mod na,c and Dc,b := Ma,cDa,b mod nc,b

and calculate recursively (This notation should not be confused with the notation

in Sections 4.1 or 4.3).

Theorem 4.5.1. Suppose that Ma, . . . ,Mb−1,Y and na, . . . ,nb−1 are defined as in

Section 4.5. Then Da′,b′ = Ma,a′Y mod na′,b′.

Proof. We prove this statement using induction on levels of the tree. For the base

case, we note that

Ma,aY mod na,b = Y mod na,b

= Da,b mod na,b

so the base case is true.

30

Now suppose that the parent Da′,b′ = Ma,a′Y mod na′,b′ . Let c′ := b(a′ + b′)/2c.

We show that Da′,c′ = Ma,a′Y mod na′,c′ and Dc′,b′ = Ma,c′ mod nc′,b′ . We note that

Da′,c′ = Da′,b′ mod na′,c′

= (Ma,a′Y mod na′,b′) mod na′,c′

= Ma,a′Y mod na′,c′

where the last equality holds as na′,c′ divides na′,b′ .

Also we observe that

Cc′,b′ = (Ma′,c′Ca′,b′) mod nc′,b′

= (Ma′,c′ (Ma,a′Y mod na′,b′)) mod nc′,b′

= Ma′,c′ mod nc′,b′ · (Ma,a′Y mod na′,b′) mod nc′,b′

= (Ma′,c′ mod nc′,b′) (Ma,a′Y mod nc′,b′)

= Ma,c′Y mod nc′,b′

as required. We note that the second-last equality holds as nc′,b′ divides na′,b′ . This

completes the proof so Ca′,b′ = Ma,a′Y mod na′,b′ .

Corollary 4.5.2. Suppose that A0, . . . ,AN−1,V and m0, . . . ,mN−1 are defined as

in Section 2.1. Let Mk = Ak, nk = mk and Dk = Ck for all k and let Y = V . Then

Dk,k+1 = Ck.

Proof. From Theorem 4.5.1, it follows that

Dk,k+1 = M0,kY mod mk,k+1

≡ A0,kV mod mk,k+1

= Ak−1 · · ·A0V mod mk

as required.

31

Remark 4.5.3. We note that the product tree, remainder tree and accumulating

remainder tree algorithms are only defined when b − a is a power of 2. They can

actually be defined more generally but analysing the time and space complexity of

the algorithms is more involved.

We give an example of the accumulating remainder tree algorithm. Suppose we

would like to verify Wilson’s theorem up to 7 as in Section 2.2.1.

We define Mk = Ak := k for k = 1, . . . , 7 and 1 for n = 8, Y = V := 1 and

nk = mk := k if k is prime and 1 otherwise. The first step is to compute the product

trees of m1, . . . ,m9 and A1, . . . ,A9.

We note that

m1,9 = m5,9m1,5

= m5,7m7,9m3,5m1,3

= m8,9m7,8m6,7m5,6m4,5m3,4m2,3m1,2

= 1 · 7 · 1 · 5 · 1 · 3 · 2 · 1

= 210.

This can be represented using a graph:
m1,9 ← 210

m1,5 ← 6

m1,3 ← 2

m1,2 ← 1 m2,3 ← 2

m3,5 ← 3

m3,4 ← 3 m4,5 ← 1

m5,9 ← 35

m5,7 ← 5

m5,6 ← 5 m6,7 ← 1

m7,9 ← 7

m7,8 ← 7 m8,9 ← 1

32

Furthermore, we observe that

A1,9 = A5,9A1,5

= A7,9A5,7A3,5A1,3

= A8,9A7,8A6,7A5,6A4,5A3,4A2,3A1,2

= 1 · 7 · 6 · 5 · 4 · 3 · 2 · 1

= 5040.

This can be represented using a graph:
A1,9 ← 5040

A1,5 ← 24

A1,3 ← 2

A1,2 ← 1 A2,3 ← 2

A3,5 ← 12

A3,4 ← 3 A4,5 ← 4

A5,9 ← 210

A5,7 ← 30

A5,6 ← 5 A6,7 ← 6

A7,9 ← 7

A7,8 ← 7 A8,9 ← 1

The second step is to compute the accumulating remainder tree itself.

The base case is

C1,9 = V mod m1,9

= 1 mod 210

= 1.

Recursively,

C1,5 = C1,9 mod m1,5

= 1 mod 6

= 1.

33

C5,9 = A1,5C1,9 mod m5,9

= 24 · 1 mod 35

= 24

and we continue recursively.

This can be represented using a graph:
C1,9 ← 1

C1,5 ← 1

C1,3 ← 1

C1,2 ← 0 C2,3 ← 1

C3,5 ← 2

C3,4 ← 2 C4,5 ← 0

C5,9 ← 24

C5,7 ← 4

C5,6 ← 4 C6,7 ← 0

C7,9 ← 6

C7,8 ← 6 C8,9 ← 0

Thus

(p− 1)! mod p = Cp = Cp,p+1 = p− 1

for every prime between 1 and 9 as required by Wilson’s Theorem.

4.6 Complexity analysis of the accumulating remainder tree

algorithm

In this section, we bound the space and time complexity of the accumulating re-

mainder tree algorithm in Section 4.5. Throughout this section, we will assume

that a := 0, b := N , Mk = Ak, nk = mk and Y = V where N , Mk, nk and V are

defined as Section 2.1.

Theorem 4.6.1. Suppose A0, . . . ,AN−1, τ and m0, . . . ,mN−1 are defined as in Sec-

tions 2.1 and 3.3. The time complexity of using the accumulating remainder tree

algorithm in Section 4.5 to compute C0, . . . ,CN−1 is

O(M(τN) logN).

34

Proof. Let Mk = Ak, nk = mk and Dk = Ck for all k and let Y = V . The

first step is to compute product trees for mn and An which have running times of

O(M(N) logN) and O(M(τN) logN) respectively using Theorems 4.2.5 and 4.2.7.

It follows that the time complexity of computing both trees is O(M(τN) logN) since

τ = O(logN) by assumption. We calculate the time required to compute each level.

The first level requires calculating V mod m0,2h which has time complexity

O(M(max(β(V), β(m0,2h)))) = O(M(2h))

since β(V) ≤ β(m0,2h) which is O(2h).

We now bound the time required to compute the j-th level for j > 1. We define

w := 2h−j. The parents in the (j − 1)-th level are of the form

C0,2w, . . . ,C(2j−1−2)w,2j−1w.

Let i = 0, . . . , 2j−1 − 1. We calculate the time taken to compute the children from

the parent C2iw,2(i+1)w.

The left child is

C2iw,(2i+1)w = C2iw,2(i+1)w mod m2iw,(2i+1)w

so we are only required to use modular arithmetic. We remark that C2iw,2(i+1)w is

a vector which has been reduced modulo m2iw,2(i+1)w so

β(C2iw,2(i+1)w) ≤ lg d+ β(m2iw,2(i+1)w)

using Proposition 3.2.3. We also observe that

β(m2iw,(2i+1)w) ≤ lg d+ β(m2iw,2(i+1)w).

35

Hence the time complexity of this modular arithmetic is

O(M(max(β(C2iw,2(i+1)w), β(m2iw,(2i+1)w)))) = O(M(lg d+ β(m2iw,2(i+1)w)))

= O(M(β(m2iw,2(i+1)w)))

= O(M(2(i+ 1)w − 2iw))

= O(M(2w)).

Now we bound the time complexity of computing the right child

C(2i+1)w,2(i+1)w = (A2iw,(2i+1)wC2iw,2(i+1)w) mod m(2i+1)w,2(i+1)w.

We first bound the time complexity of the multiplication. We remark that

β(A2iw,(2i+1)w) ≤ τw and β(C2iw,2(i+1)w) ≤ lg d + β(m2iw,2(i+1)w). Hence the time

complexity is

O(M(max(τw, lg d+ β(m2iw,2(i+1)w)))) = O(M(max(τw, β(m2iw,2(i+1)w))))

= O(M(max(τw, 2w)))

= O(M(τw)).

using the fact that τ = O(logN) by assumption.

Now we bound the time complexity of the modular arithmetic for the right child.

This involves reducing A2iw,(2i+1)wC2iw,2(i+1)w modulo m(2i+1)w,2(i+1)w. We note that

β(A2iw,(2i+1)wC2iw,2(i+1)w) ≤ β(A2iw,(2i+1)w) + β(C2iw,2(i+1)w)

≤ τw + lg d+ β(m2iw,2(i+1)w)

from the proof of the bound of the time complexity. We observe that

β(m(2i+1)w,2(i+1)w) ≤ τw + lg d+ β(m2iw,2(i+1)w).

36

Hence the time complexity of the modular arithmetic is

O(M(τw + lg d+ β(m2iw,2(i+1)w))) = O(M(τw + lg d+ 2w))

= O(M(τw)).

The total time complexity of the multiplication for computing these two children

is O(M(τw)). The total time complexity of the modular arithmetic for these two

children is O(M(2w)) +O(M(τw)) = O(M(τw)) since τ = O(logN) by assumption.

Thus the total running time of computing the two children is O(M(τw)). This

bound is independent of i. Hence the total time complexity of computing the j-th

level is

2j−1O(M(τw)) = O(M(τ2h))

using the superlinearity of M.

There are h levels so the time complexity of computing the accumulating re-

mainder tree is

hO(M(τ2h)) = O(M(τN) logN).

Thus the total complexity of the algorithm is

O(M(τN) logN) +O(M(τN) logN) = O(M(τN) logN)

as claimed.

Theorem 4.6.2. The space complexity of the accumulating remainder tree algo-

rithm in Section 4.5 is O(τN logN).

Proof. Let Mk = Ak, nk = mk and Dk = Ck for all k and let Y = V . The first

step is to compute the product trees for mn and An. The space complexity of

the product trees for mn and An is O(N logN) and O(τN logN) respectively. It

37

follows that the total space complexity of storing both trees is O(τN logN) since

τ = O(logN) by assumption.

The first level requires calculating V mod m0,2h . The space complexity of cal-

culating V mod m0,2h is

O(max(β(V), β(m0,2h))) = O(2h)

since β(V) ≤ β(m0,2h) which is O(2h).

We now bound the space required to compute the j-th level for j > 1. We define

w := 2h−j. The parents in the (j − 1)-th level are of the form

C0,2w, . . . ,C(2j−1−2)w,2j−1w.

Let i = 0, . . . , 2j−1− 1. We calculate the memory required to compute the children

from the parent C2iw,2(i+1)w.

The left child is

C2iw,(2i+1)w = C2iw,2(i+1)w mod m2iw,(2i+1)w

so we are only required to use modular arithmetic. We remark that C2iw,2(i+1)w is

a vector which has been reduced modulo m2iw,2(i+1)w so

β(C2iw,2(i+1)w) ≤ lg d+ β(m2iw,2(i+1)w)

using Proposition 3.2.3. We also observe that

β(m2iw,(2i+1)w) ≤ lg d+ β(m2iw,2(i+1)w).

38

Hence the space complexity of this modular arithmetic is

O(max(β(C2iw,2(i+1)w), β(m2iw,(2i+1)w))) = O((lg d+ β(m2iw,2(i+1)w))

= O(β(m2iw,2(i+1)w))

= O(2(i+ 1)w − 2iw)

= O(2w).

Now we bound the space complexity of computing the right child

C(2i+1)w,2(i+1)w = (A2iw,(2i+1)wC2iw,2(i+1)w) mod m(2i+1)w,2(i+1)w.

We first bound the memory required for the multiplication. We remark that

β(A2iw,(2i+1)w) ≤ τw and β(C2iw,2(i+1)w) ≤ lg d + β(m2iw,2(i+1)w). Hence the space

complexity is

O(max(β(A2iw,(2i+1)w), β(C2iw,2(i+1)w))) = O(max(τw, lg d+ β(m2iw,2(i+1)w))

= O(max(τw, 2w))

= O(τw)

using the fact that τ = O(logN) by assumption.

Now we bound the space complexity of the modular arithmetic for the right

child. This involves reducing A2iw,(2i+1)wC2iw,2(i+1)w modulo m(2i+1)w,2(i+1)w. We

note that

β(A2iw,(2i+1)wC2iw,2(i+1)w) ≤ β(A2iw,(2i+1)w) + β(C2iw,2(i+1)w)

≤ τw + lg d+ β(m2iw,2(i+1)w)

from the bounding of the space complexity. We observe that

β(m(2i+1)w,2(i+1)w) ≤ τw + lg d+ β(m2iw,2(i+1)w).

39

Hence the memory required for the modular arithmetic is

O(τw + lg d+ β(m2iw,2(i+1)w)) = O(τw + lg d+ 2w)

= O(τw).

The total space used for the multiplication for computing these two children

is O(τw). The total space complexity of the modular arithmetic for these two

children is O(2w) + O(τw) = O(τw) since τ = O(logN) by assumption. Thus

the total memory required to compute the two children is O(τw). This bound is

independent of i. Hence the total space complexity of computing the j-th level is

2j−1O(τw) = O(τ2h).

There are h levels so the space complexity of computing the accumulating re-

mainder tree is

hO(τ2h) = O(τN logN).

Thus the total space complexity of the algorithm is

O(τN logN) +O(τN logN) = O(τN logN)

as claimed.

Corollary 4.6.3. Kurepa’s conjecture can be verified for every prime up to N in

O(M(N logN) logN) time using O(N log2N) space.

Proof. We let

d := 2,A0 :=

1 0

0 1

 ,An :=

n 0

n 1

 ,V :=

1

1

 ,λ := 1

40

for n ≥ 1. Thus

Ap−1Ap−2 · · ·A1A0V ≡

(p− 1)!

!p

 mod p

and from this, we can read off !p mod p. We note that β(An) = O(log n) so

τ = O(logN). Every Cp can be computed for every prime less than N using the

accumulating remainder tree algorithm in 4.5. The time and space complexity of us-

ing this algorithm are O(M(τN) logN) and O(τN logN) using Theorems 4.6.1 and

4.6.2 respectively. This simplifies to O(M(N logN) logN) time using O(N log2N)

space since τ = O(logN) which completes the proof.

4.7 History of the accumulating remainder tree algorithm

The product tree has been invented independently by many authors; most of the

early uses of product trees only considered specific applications and not in full gen-

erality. Some of these applications include calculating the sum of two non-negative

integers [WS1958] and single variable polynomial evaluation [Est1960]. We were un-

able to obtain a copy of [WS1958]. Kogge and Stone recognised that H.R. Downs,

H Lomax and Trout had independently discovered the product tree algorithm in

full generality [KS1973]. Further information can be found in [Ber2008].

The remainder tree was first introduced by Moenck and Borodin and defined

for elements of a Euclidean Domain [MB1972]. It is then applied to dividing poly-

nomials and applying the Chinese remainder theorem for integers.

The accumulating remainder tree algorithm was first used by Gerbicz in 2011

[Ger] and was first published in 2014 to search for Wilson primes in [CGH2014]. It

was subsequently used in [Har2014] to compute the zeta function of a hyperelliptic

curve over Fp for all p < N and generalised to all arithmetic schemes in [Har2015].

It was also applied in [HS2014] to compute the Hasse-Witt matrix of an arbitrary

hyperelliptic curve for all primes of good reduction up to some upper bound N . This

algorithm was subsequently improved in [HS2016]. Another use was in [HMS2016]

to calculate the local zeta functions of a given curve of genus three. In essence, these

applications are all very similar; rather than calculate some Cp mod p individually

41

where Cp is defined as in Section 2.1, a recurrence relation is sought and all Cp are

calculated simultaneously to minimise repeating the same calculations while using

modular arithmetic to shorten computation times.

Further space and running time optimisations to the accumulating remainder

tree are possible. One important optimisation is the accumulating remainder forest

technique; the idea can be found in [HS2014] and [HS2016] for example. However

this technique is outside the scope of this thesis.

42

Chapter 5

A toy implementation

We produced an implementation to verify Kurepa’s conjecture up to some bound

N . We remark that it was merely a proof of concept implementation and was not

designed to improve the bounds that were found in [AT2014]. The implementation

was written in Sage [Sag]. Sage uses the GMP library [Gra] for computations with

large integers. We measured the time taken to verify Kurepa’s conjecture up to

N = 104, 2 · 104, . . . , 120 · 104. The implementation ran using 1 core on a 4 core

i-7-4790 processor at 3.60 GHz and using 16 GB RAM. This took 1 CPU-hour for

all the calculations. The code can be accessed at [Raj].

43

A separate test was done to verify the correctness of the algorithm; a random

prime p < N was selected and !p mod p was calculated using a for-loop and com-

pared to the result from the accumulating remainder tree algorithm. This was

repeated 1000 times and they agreed every time. The code can be accessed at

[Raj].

The graph provides evidence that the algorithm is running in quasilinear time.

As an example, the time taken to compute N = 5 · 106 is roughly half the time

required to compute N = 107.

It remains to scale up this implementation and write it using a language with

lower overheads such as C++. Further possible optimisations include parallelising

the implementation and using the accumulating remainder forest technique.

44

Chapter 6

Conclusion

The left factorial of n is defined to be 0! + 1! + · · ·+ (n− 1)! and is denoted by !n.

Kurepa conjectured that !n is not divisible by n for n > 2 and showed that it was

sufficient to check for odd primes p. We provided a survey of known results on the

search for a counterexample to Kurepa’s conjecture and analysed the complexity of

the algorithms used. These algorithms are all exponential in log p. We developed

the first known algorithm whose complexity is polynomial in log p when averaged

over primes.

Further research could involve applying the accumulating remainder tree to sim-

ilar problems in number theory. Other directions of interest could be applying the

accumulating remainder forest technique from [HS2014] and [HS2016], writing the

code in C++ and parallelisng it and optimising the algorithm to be more space

efficient at the cost of increasing the time complexity such as in [CGH2014].

45

References

[AT2014] V. Andrejić and M. Tatarevic, Searching for a counterexample to Kurepa’s Conjec-

ture, Math. Comp. 85 (September 2014), no. 302, 3061–3068.

[BB2004] D. Barsky and B. Benzaghou, Nombres de Bell et somme de factorielles, J. Théor

Nombres Bordeaux 16 (2004), no. 1, 1–17 (French).

[BB2011] D. Barsky and B. Benzaghou, Erratum à l àrticle Nombres de Bell et somme de

factorielles, J. Théor. Nombres Bordeaux 23 (2011), no. 2, 527 (French).

[Bel1934] E. T. Bell, Exponential Numbers, Amer. Math. Monthly 41 (1934), no. 7, 411–419.

[Ber2008] D. J. Bernstein, Fast multiplication and its applications, Algorithmic number theory:

lattices, number fields, curves and cryptography, 2008, pp. 325–384.

[Bor1985] P. B. Borwein, On the complexity of calculating factorials, J. Algorithms 6 (1985),

no. 3, 376–380.

[CGH2014] E. Costa, R. Gerbicz, and D. Harvey, A search for Wilson primes, Math. Comp. 83

(2014), no. 290, 3071–3091.

[CW1990] D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressions,

J. Symbolic Comput. 9 (1990), no. 3, 251–280.

[Est1960] G. Estrin, Organization of Computer Systems: The Fixed Plus Variable Structure

Computer, Papers Presented at the May 3-5, 1960, Western Joint IRE-AIEE-ACM

Computer Conference (San Francisco, California), 1960, pp. 33–40.

[Eul1765] L. Euler, Observationes Analyticae, Novi Comment. Acad. Sci. Imp. Petropol. 11

(1765), 129–130.

[FRR1987] C. K. Fong, H. Radjavi, and P. Rosenthal, Norms for matrices and operators, J.

Operator Theory 18 (1987), no. 1, 99–113.

[GR2014] L. H. Gallardo and O. Rahavandrainy, Bell Numbers Modulo a Prime Number, Traces

and Trinomials, Electron. J. Combin. 21 (2014), no. 4, P4.49.

46

[Gal2000] Y. Gallot, Is the number of primes 1
2

∑n−1
i=0 i! finite? (2000), http://yves.gallot.

pagesperso-orange.fr/papers/lfact.html. Accessed June 21, 2018.

[Ger] R. Gerbicz, Factorial modulo a prime, http://ftp.mersenneforum.org/

showthread.php?t=15948&page=7. Accessed June 21, 2018.

[Gog1991] G. Gogić, Parallel algorithms in arithmetic, Masters Thesis, Belgrade University,

1991.

[Gra] T. Granlund, The GNU Multiple Precision Arithmetic Library (Version 6.1.2),

https://gmplib.org. Accessed July 25, 2018.

[Guy] R. Guy, Unsolved Problems in Number Theory, 3rd ed., Vol. 1, Springer-Verlag.

[OEIS] OEIS Foundation Inc. (2018), The On-Line Encyclopedia of Integer Sequences,

https://oeis.org/. Accessed June 28, 2017.

[Ham1999] A. G. Hamadene, Congruences pour quelques suites classiques de nombres; sommes

de factorielles et calcul ombral, Ph.D. Thesis, Universite De Neuchatel, 1999, https:

//doc.rero.ch/record/4372/files/2_these_GertschHamadeneA.pdf (French).

[HvdH2018] D. Harvey and J. van der Hoeven, Faster integer multiplication using short lattice

vectors, ArXiv e-prints (2018), available at 1802.07932.

[HMS2016] D. Harvey, M. Massierer, and A. V. Sutherland, Computing L-series of geometrically

hyperelliptic curves of genus three, LMS J. Comput. Math. 19 (2016).

[HS2014] D. Harvey and A. V. Sutherland, Computing Hasse–Witt matrices of hyperelliptic

curves in average polynomial time, LMS J. Comput. Math. 17 (2014).

[HS2016] D. Harvey and A. V. Sutherland, Computing Hasse–Witt matrices of hyperelliptic

curves in average polynomial time, II, Frobenius distributions: Lang–Trotter and

Sato–Tate conjectures, 2016.

[Har2014] D. Harvey, Counting points on hyperelliptic curves in average polynomial time, Ann.

of Math. 179 (2014), no. 2, 783-803.

[Har2015] D. Harvey, Computing zeta functions of arithmetic schemes, Proc. Lond. Math. Soc.

111 (2015), no. 6, 1379–1401.

[Has2003] M. Hassani, Derangements and Applications, J. Integer Seq. 6 (2003), no. 1.

[Ili2015] I. Ilijas̆ević, Verification of Kurepa’s Left Factorial Conjecture for Primes up to 231,

Transactions on Internet Research (January 2015).

47

http://yves.gallot.pagesperso-orange.fr/papers/lfact.html
http://yves.gallot.pagesperso-orange.fr/papers/lfact.html
http://ftp.mersenneforum.org/showthread.php?t=15948&page=7
http://ftp.mersenneforum.org/showthread.php?t=15948&page=7
https://gmplib.org
https://oeis.org/
https://doc.rero.ch/record/4372/files/2_these_GertschHamadeneA.pdf
https://doc.rero.ch/record/4372/files/2_these_GertschHamadeneA.pdf
1802.07932

[IM2004] A. Ivić and Z̆. Mijajlović, On Kurepa’s problems in number Theory, Publ. Inst. Math.

(Beograd) (N.S.) 57(71) (January 2004), 19–28.

[Lag1771] J. L. Lagrange, Demonstration dú n thÃľoréme nouveau concernant les nombres pre-

miers, Nouveaux Mémoires de l’Académie Royale des Sciences et Belles-Lettres 2

(1771), 125–137 (French).

[LG2014] F. Le Gall, Powers of Tensors and Fast Matrix Multiplication, Proceedings of the 39th

International Symposium on Symbolic and Algebraic Computation (Kobe, Japan),

2014, pp. 296–303.

[Kel2004] B. C. Kellner, Some remarks on Kurepa’s left factorial (November 2004), unpub-

lished.

[KS1973] P. M. Kogge and H. S. Stone, A Parallel Algorithm for the Efficient Solution of a

General Class of Recurrence Equations, IEEE Trans. Computers C-22 (1973), no. 8,

786–793.

[Kur1971] Ð. Kurepa, On The Left Factorial !n, Math. Balkanica (N.S.) 1 (1971), 147–153.

[Mal2003] B. J. Males̆ević, Some considerations in connection with Kurepa’s function, Univ.

Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 14 (January 2003), 26–36.

[Mes̆2015] R. Mes̆trović, The Kurepa-Vandermonde matrices arising from Kurepa’s left factorial

hypothesis, Filomat 29 (2015), no. 10, 2207–2215.

[Mij1990] Z̆. Mijajlović, On some formulas involving !n and the verification of the !n-hypothesis

by use of computers, Publ. Inst. Math. (Beograd) (N.S.) 47(61) (January 1990), 24–

32.

[Mil1996] G. V. Milovanović, A sequence of Kurepa’s functions, Sci. Rev. Ser. Sci. Eng. 19–20

(January 1996), 137–146.

[MP2002] G. V. Milovanović and A. Petojević, Generalized Factorial Functions, Numbers and

Polynomials, Math. Balkanica (N.S.) 16 (2002), no. 1–4, 113–130.

[McI1995] R. J. McIntosh, On the converse of Wolstenholme’s Theorem, Acta Arith. 71 (1995),

no. 4, 381–389.

[MR2007] R. J. McIntosh and E. Roettger, A search for Fibonacci-Wieferich and Wolstenholme

primes, Math. Comp. 76 (2007), no. 260, 2087-2094.

[MB1972] R. Moenck and A. Borodin, Fast Modular Transforms via Division, Proceedings of

the 13th Annual Symposium on Switching and Automata Theory (Swat 1972), 1972,

pp. 90–96.

48

[New1980] D.J. Newman, Simple Analytic Proof of the Prime Number Theorem, Amer. Math.

Monthly 87 (1980), no. 9, 693–696.

[Pet2002] A. Petojević, The function vMm(s : a, z) and some well-known sequences, J. Integer

Seq. 5 (2002), no. 1, 16.

[PZ̆1999] A. Petojević and M. Z̆iz̆ović, Trees and the Kurepa hypothesis for left factorial, Filo-

mat 13 (1999), 31–40.

[PZ̆C1999] A. Petojević, M. Z̆iz̆ović, and S. D. Cvejić, Difference Equations and New Equivalents

of the Kurepa Hypothesis, Math. Morav. 3 (1999), 39–42.

[Pri1987] P. Pritchard, Linear Prime-Number Sieves: A Family Tree., Sci. Comput. Program-

ming, 1987, pp. 17–35.

[Raj] R. Rajkumar, Accumulating remainder tree code, https://github.com/

ramananrajkumar92/accumulating-remainder-tree-algorithm-code. Accessed

January 11, 2019.

[Sag] SageMath (Version 8.3), https://www.sagemath.org. Accessed July 25, 2018.

[S̆am1974] Z. S̆ami, On the M -hypothesis of Dj. Kurepa, Math. Balkanica (N.S.) 4 (1974), 530–

532.

[Sta1973] J. Stanković, Über einige Relationen zwischen Fakultäten und den linken Fakultäten,

Math Balkanica (N.S.) 3 (1973), 488–497.

[SZ̆1974] J. Stanković and M. Z̆iz̆ović, Noch einige Relationen zwischen den Fakultäten und

den linken Fakultäten, Math Balkanica (N.S.) 4 (1974), 555–559.

[Str1969] V. Strassen, Gaussian Elimination is Not Optimal, Numer. Math. 13 (1969), no. 4,

354–356.

[Sun] Z. Sun, Characterizing primes via central trinomial coefficients, https://listserv.

nodak.edu/cgi-bin/wa.exe?A2=ind1612&L=NMBRTHRY&P=1301. Accessed Decem-

ber 7, 2016.

[vZGG1999] J. von Zur Gathen and J. Gerhard, Modern Computer Algebra, 1st ed., Cambridge

University Press, 1999.

[WS1958] A. Weinberger and J.L. Smith, A Logic for High-Speed Addition, National Bureau of

Standards Circulation 591 (1958), 3–12.

[Wol1862] J. Wolstenholme, On Certain Properties of Prime Numbers, The Quarterly Journal

of Pure and Applied Mathematics (1862), 35–39.

49

https://github.com/ramananrajkumar92/accumulating-remainder-tree-algorithm-code
https://github.com/ramananrajkumar92/accumulating-remainder-tree-algorithm-code
https://www.sagemath.org
https://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind1612&L=NMBRTHRY&P=1301
https://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind1612&L=NMBRTHRY&P=1301

[Zag1997] D. Zagier, Newman’s Short Proof of the Prime Number Theorem, Amer. Math.

Monthly 104 (1997), no. 8, 705–708.

[Z̆iv1999] M. Z̆ivković, The number of primes
∑n

i=1(−1)n−ii! is finite, Math. Comp. 225

(January 1999), no. 68, 403–409.

50

	Title page: Searching for a counterexample to Kurepa’s conjecture inaverage polynomial time
	Acknowledgements
	Abstract
	Contents

	Previous results and methods
	Kurepa's hypothesis
	Equivalent statements
	Attempted proofs
	The search for a counterexample

	A class of recurrence problems
	Definitions
	Examples
	Wilson primes
	Wolstenholme primes
	Kurepa's conjecture
	Central trinomial coefficient conjecture

	Basic complexity results
	Complexity of arithmetic operations for integers
	Complexity of arithmetic operations for integer matrices
	Complexity for calculating each example naively
	Naive complexity of calculating Wilson primes

	Accumulating remainder tree
	Product tree algorithm
	Complexity of the product tree algorithm
	Remainder tree algorithm
	Complexity of the remainder tree algorithm
	Accumulating remainder tree algorithm
	Complexity analysis of the accumulating remainder tree algorithm
	History of the accumulating remainder tree algorithm

	A toy implementation
	Conclusion

