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Abstract 

Advanced composite arches can deliver superior mechanical performance to fulfil the 

criteria of the modern engineering design. Functionally graded material (FGM) and nano-

reinforced materials are two of the most efficient advanced composite materials. Because 

of the material property varies continually in the cross-section, the structural analysis is 

very challenging comparing to homogeneous materials.  

This dissertation aims to develop an analytical framework in the static behaviour of 

FG arches and nano-reinforced arches. Firstly, the linear static responses and the 

geometric nonlinear static responses are analysed; the significant of the geometric 

nonlinear analysis is stated by result comparison. Secondly, the static buckling analysis 

is conducted; particularly, two buckling modes are discussed, which are the limit point 

buckling and the bifurcation buckling. Finally, the equilibrium paths are illustrated in 

different buckling scenarios. 

Energy methods are adopted to establish the equilibrium differential equations. To 

verify the results of the proposed methods, numerical models are developed by using 

finite element analysis (FEA) software ANSYS. In the FE modelling, the cross-section 

of the arch is discretised into multiple layers to simulate the variation of the material 

property. From the numerical verification, the proposed analytical solution agrees well to 

the numerical models. Furthermore, a renovative nano-composite arch – the Functionally 

Graded Porous - Graphene Platelets Reinforced (FGP-GPLRC) arch is proposed in this 

research. By using the proposed analytical equations, the static responses and buckling 

behaviours is well analysed. From the results, the proposed FGP-GPLRC arch has an 

impressive strength-weight ratio against buckling. Compare to homogeneous arches, the 

FGP-GPLRC arch has a significant reduction in the self-weight without scarifying the 
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buckling capacity. This dissertation makes a notable contribution to those design 

engineering where requires a high strength arch structure with strict size or weight 

limitation. Also, it provides a useful references and benchmarks for the researchers in the 

area of advanced composite arches. 
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Chapter 1 

Introduction 

1.1 Motivation of research 

Arch was adopted in structure design since thousands of years ago, it has been testified 

as one of the most efficient engineering structures by the latest research in topology 

optimisation (Zuo Z.H. et al. 2009). It widely used in engineering design as shown in 

Figure 1.1. The stability is one of the primary considerations in arch design because it 

undergoes compressive force rather than tension. The buckling mechanism is complicated 

and can be triggered by various reasons such as structure imperfections, load eccentricity 

and variations of material properties. Buckling as a major failure mode in many 

engineering practises may lead to severe consequences. On the other hand, the composite 

material is widely used in the engineering industry and is approved to be a feasible method 

in mechanical performance improvement. However, for those advanced composite 

`material includes functionally graded material (FGM), porous steel and nanoplatelet 

reinforced nanocomposite material, there is lack of design code/standard for such a 

structure to be applied in general engineering practise. Thus, the buckling analysis is of 

paramount importance for the proposed composite arches to prove its feasibility in 

engineering implementation. This research is to investigate the stability analysis of 

advanced composite arches, hence, contribute to a stronger, lighter and more 

environmentally friendly design arches in the engineering industry.  
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Figure 1.1 Arches in engineering design 

1.2 Objective and scope 

From the literature review, the stability analysis of advanced composite arches is rarely 

found from the open literature. The objective of this thesis is to contribute the 

enhancement of structural analysis of advanced composite arches, thus to propose 

advanced composite arches that can be adopted for those practical engineering design 

which has extremely requirement in weight, spacing and strength. Original research will 

be conducted to develop analytical approaches with enhancement in the result accuracy 

and computation efficiency. This analytical approach can be potentially adopted as a 

benchmark for FEM development, reliability analysis and numerical experiments. 

Also, this thesis proposes a practical structure design framework for advanced 

composite arch structures. Explicitly, the proposed research will conduct following 

investigations in advanced composite arches including: 
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1. Establish an analytical analysis framework for linear and geometrically 

nonlinear static response.  

2. Establish an analytical analysis framework for buckling analysis 

This thesis is to investigate the in-plane static behaviour includes the linear, 

geometrically nonlinear, and the buckling analysis of composite arches. It proposed the 

analytical solution and validated by newly established numerical modelling. Firstly, the 

analytical solution of the composite arch will be derived by using potential energy 

method. The differences between the linear solution and the geometrically nonlinear 

solutions will be demonstrated and compared. Secondly, the various buckling modes will 

be investigated including the limit point and the bifurcation scenarios. The buckling 

strength and buckling modes switches are calculated and demonstrated by examples. 

Then the equilibrium path will be obtained to illustrates both pre-buckling and post-

buckling behaviour considering the geometric nonlinearity. Finally, numerical examples 

will be studied by adopting various material distribution and geometric properties; the 

advantage of the proposed advanced composite arches will be presented. 

1.3 Outline of thesis 

This thesis consists of five chapters, a brief summary of the contents is presented in as 

following:  

Chapter 1 presents the introduction of the thesis, and consists of the research 

motivation, objective, thesis outline and the list of publications.  

Chapter 2 presents a detailed literature review in the area of mechanics of arches 

structures, the current composite arch structures and the graphene platelet (GPL) and GPL 

reinforced structures. 
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Chapter 3 presents the research work in the functionally graded (FG) arches. The in-

plane static responses and buckling analysis of FG arches with pin-pin and fix-fix 

supports are investigated. Analytical linear/nonlinear solutions are derived by adopting 

the virtual energy method. Also, a numeric model is established by using commercial 

finite element software ANSYS 18.1. The results of the proposed method are validated, 

the computational accuracy and efficiency is discussed by illustration. 

Chapter 4 consists of the research work published in the International Journal of 

Engineering Science. Functionally graded porous (FGP) arches with graphene platelets 

(GPLs) reinforcements (i.e., FGP-GPLRC arches) is newly proposed. The FGP-GPLRC 

arch has extraordinary mechanical performance, the strength-weight ratio against 

deflection and buckling is extremely high. The in-plane static analysis considering 

geometric nonlinearity is conducted, particularly the system responses, internal actions 

and the stability analysis with two buckling mode – the symmetric buckling and anti-

symmetric buckling. Results are verified with the commercial FEM software ANSYS 

18.1, the proposed method increases the calculation efficiency amazingly while the 

accuracy is testified.  

Chapter 5 concludes the thesis; the conducted research work is summarised. 

Recommendations of the future research in structural analysis of advanced composite 

arches are proposed.  

  



  

5 

1.4 List of publications 

One journal paper and two conference papers are published during the research studies 

including: 

Journal Paper: 

Zhanpeng Liu, Chengwei Yang, Wei Gao, Di Wu and Guoyin Li. Nonlinear Behaviour 

and Stability of Functionally Graded Porous Arches with Graphene Platelets 

Reinforcements. International Journal of Engineering Science 137 (2019) 37-56 

Conference Paper: 

Zhanpeng Liu, Chengwei Yang, Wei Gao and Guoyin Li. Static Response of Functionally 

Graded Circular Shallow Arches with Consideration of Geometric Nonlinearity. 

3rd Australian Conference on Computational Mechanics (ACCM-3), Feb 12-14 

2018 Melbourne Australia. (Best paper award) 

Zhanpeng Liu, Di Wu, Wei Gao and Guoyin Li. Static Buckling Analysis of Functionally 

Graded Shallow Arches Considering Geometric Nonlinearity. 25th Australasian 

Conference on Mechanics of Structures and Materials (ACMSM25), Dec 4-7 

2018 Brisbane Australia.  
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Chapter 2 

Literature Review 

2.1 Introduction 

Arch is one of the most efficient structures which is prevalently implemented in 

modern engineering designs. Aerospace and military engineers adopt arch as the major 

structural element to support the overall structural skeleton, which are shown in Figure 

2.1, due to the specific and rigorous requirements on the weight and strength of the overall 

structure. Therefore, researches in the advanced arch structures with specific 

requirements of high strength-to-weight ratio is meaningful.  

 

Figure 2.1 Applications of arch in (a) aircraft and (b) submarine 

(a) (b) 
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2.2 System response and stability of arches 

Research in the non-linear analysis and buckling analysis can be chased back to few 

decades ago. Numerous researches in stability analysis of conventional arch structure can 

be found from open literatures. Walker adopted Rayleigh-Ritz finite element method to 

investigate the large deflection behaviour of a shallow circular arch under a vertical point 

load, the stability including the symmetric deformation path and the post-buckling path 

behind the bifurcation point is presented (Walker, 1969). DaDeppo and Schmidt studied 

the anti-symmetric buckling of a deep, slender arch, subjected to a slowly increasing 

symmetric load based on the Bernoulli-Euler assumption, the result was validated by the 

classical eigenvalue theory of buckling of arches (DaDeppo & Schmidt, 1969). Austin 

presented a review article in the in-plane bending and buckling of deep arches (Austin, 

1971). In 1976, Austin and Ross published their work to fill the gap of the research in 

arches, particularly, the critical loads and the corresponding reactions, maximum 

moments, and crown deflections of two-hinged and fixed, parabolic and circular arches 

of constant cross section subjected to a vertical concentrated load at the crown or a vertical 

load uniformly distributed along the arch axis. Calhoun and DaDeppo developed a curved 

nonlinear finite element to analyse the behaviour of slender high-rise arches undergo large 

deflections (Calhoun and DaDeppo, 1983); the in-plane bending and buckling modes with 

fixed-fixed supports were analysed. Elias and Chen proposed a geometrically nonlinear 

curved-beam finite element for shallow and deep arches, it can be applied to the load-

deflection and buckling analysis. Wen and Suhendro developed a nonlinear curved-beam 

finite element for three-dimensional space system; principle of potential energy and 

polynomial functions is adopted (Wen and Suhendro, 1991).  
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Pi et al conducted a series of researches in the static response and stability of 

conventional arches (Pi, Bradford, & Uy, 2002; Pi & Trahair, 1996; 1998; 1999 Pi et al., 

2007; Pi, Bradford & Tin-Loi, 2007). The in-plane equilibrium path and equilibrium path 

switches of pinned-fixed arches under an arbitrary radial concentrated load is investigated 

(Liu, Bradford, & Pi, 2017;). Dou presented the work in the elastic buckling of steel 

arches with discrete lateral braces (Dou et al., 2018). Also, other than the in-plane static 

stability analysis, investigations in the lateral-torsional buckling (Liu et al., 2017; Liu et 

al., 2017), flexural-torsional (Dou et al., 2015; 2016) and in-plane dynamic buckling (Liu 

et al., 2017; 2018) of arches are also published.  

2.3 Current research in composite arches 

2.3.1 Concrete filled steel tube (CFST) arches 

CFST arch is increasingly prevalent in civil engineering, especially in the bridge 

engineering as shown in Figure 2.2. Because the concrete core is confined by the steel 

tube, the load capacity and ductility are increased significantly. Furthermore, the concrete 

core provides an effective resistance to increase the local buckling capacity of the steel 

tube. Comparing to the conventional steel arches, one of the most consideration of CFST 

arch is the time depended long-term strain caused by the concrete core (Arockiasamy et 

al., 2000; Ma and Wang, 2013; Ranzi et al., 2013). Pi et al. investigated the long-term 

nonlinear behaviour and in-plane buckling of the shallow CFST arches and derived the 

analytical solutions by virtual energy method. The in-plane strength of CFST tubular 

circular arches in studied by Pi et al., the commercial FE package ABAQUS/Standard is 

used for the nonlinear elastic and elastic-plastic analyses. Pi and Bradford presented the 

work in the long-term analyses of CFST arches accounting for the interval uncertainty. 
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Luo et al presented works in the long-term analysis of structural behaviour and stability 

of CFST arches in a systematic level (Luo et al., 2013a; 2013b; 2015); results shown the 

long-term effects, such as the creeps, shrinkage and temperature change, have a 

significate influence on the structural behaviour and the buckling modes. Wu et al. 

conducted a time-variant random interval response of CFST arches (Wu et al., 2016a; 

2016b). Wu et al. researched in the non-deterministic analysis in long-term behaviours of 

CFST, a finite-element-based computational method is proposed for time-dependent 

structural stability analysis of CFST arch with uncertain parameters (Wu, Gao, & 

Tangaramvong, 2017a).  

 

Figure 2.2 Applications of CFST arches in civil engineering 

2.3.2 Functionally graded material (FGM) and FGM arches 

In 1980s, Japanese space program proposed a revolutionary composite material - the 

functionally graded material (FGM) (Koizumi M. 1997). It can enhance the mechanic 
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performance of the material, also reduce the delamination and crack under the high 

temperature working environment. The FGM is commonly made from two material 

phases - metal phase and ceramic phase. Apart from the conventional composite 

materials, the transition between FGM is continuous and is defined by a continuous 

function. Nowadays, the FGM is widely used in engineering practise. Because of its 

extraordinary mechanical and thermal performance, numerus researches were conducted 

in the investigation of the structural behaviour of the FGM structures. The free vibration 

analysis of FG beams is studied by Aydogdu (Aydogdu, 2007). Shaker carried out 

stochastic finite element analysis of the free vibration of FGM plates, the basic random 

variables include ceramic and metal Young’s modulus and Poisson’s ratio (Shaker et al. 

2007). Şimşek studied the free and force vibration of FG beam subjected to a concentrated 

moving harmonic load (Şimşek and Kocatürk. 2009); Lagrange’s equations is used under 

the Euler-Bernoulli beam theory. Taczała investigated the nonlinear buckling and post-

buckling responses o fstiffened FGM plates in thermal environments by adopting finite 

element method (Taczała et al. 2017). Frikha presented their work in the static analysis 

of FGM shells considering the geometric nonlinearity with a discrete double directors 

shell element (Frikha and Dammak, 2017). Also, the non-deterministic analysis in the FG 

structures can be found from the open literature. Wu et al. conducted the non-

deterministic analysis in the FG beam by adopting finite element method; the interval 

uncertainties are assumed through both Euler-Bernoulli and Timoshenko beam theories 

(Wu et al. 2017b); and the stochastic uncertainties area ssumed through the Euler-

Bernoulli beam theories (Wu et al. 2017c).  

However, there are only a few published papers can be found related to FG arches. 

Bateni and Eslami conducted in the non-linear in-plane stability analysis of FG circular 
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shallow arches under central concentrated force (Bateni & Eslami, 2014) and uniform 

radial pressure (Bateni & Eslami, 2015). Shafiee et al investigated in the in-plane and out-

of-plane buckling of FGM arches (Shafiee, Naei, & Eslami, 2006), nonlinear analytical 

analyses were conducted, the equilibrium path and the post-buckling behaviours were 

investigated in systematic level. Asgari et al carried out a non-linear thermo-elastic and 

buckling analysis of FG shallow arches (Asgari et al., 2014); theoretical investigation in 

the nonlinear thermal bending and buckling of the through-the-thickness FGM shallow 

arches was conducted. 

2.4 GPLs and GPLs reinforced structures 

Graphene platelets reinforcement is the latest nano-manufactory technology in the 

material science (Govorov et al., 2018; Shahverdi, & Barati 2017; Srividhya et al., 2018; 

Wentzel, Millers, & Sevostianov 2017). Other than its excellence in electronic and 

thermal performances, researches also showed that the graphene platelets (GPLs) 

nanocomposites have a significant improvement in mechanical properties of the matrix 

at low nanofiller content. Established research works have demonstrated that the GPLs 

reinforcement can strengthen the porous structure sufficiently without sacrificing its 

weight reduction advantage (Kitipornchai, Chen, & Yang, 2017; Yang, Wu, & 

Kitipornchai, 2017), and has a higher mechanical strength comparing to the carbon 

nanotubes (CNTs) (Rafiee et al., 2009).  

The mechanical behaviour of functionally graded material and nano-composites have 

been modelled recently (Hashemi, 2016; Attia, & Rahman, 2018; Dehrouyeh-Semnani, 

2018; Evci, & Gulgec, 2018; Wentzel, & Sevostianov, 2018; Taati, 2018). Furthermore, 

the Pioneer researchers have conducted a series of studies in mechanical behaviour of 
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FGP-GPLRC structures. Chen et al presented their works in the free and forced vibrations, 

elastic buckling, and static bending of shear deformable FGP beam (Chen, Yang, & 

Kitipornchai, 2015; 2016a). Kitipornchai et al investigated the free vibration and elastic 

buckling of FGP beam reinforced by GPLs. The nonlinear vibration and post-buckling 

behaviour of the FGP-GPLRC beam is studied (Chen, Yang, & Kitipornchai, 2016b). By 

introducing multi-layer GPLs to beam, the static buckling strength can be improved 

(Yang, Wu, & Kitipornchai, 2017). Wu et al conducted a series of research in the dynamic 

instability in thermal environment, thermal buckling and thermal post-buckling 

behaviours of GPLs reinforced functionally graded polymer composite beams (Wu, 

Kitipornchai, & Yang, 2016; Wu, Kitipornchai, & Yang, 2017a; Wu, Yang, & 

Kitipornchai; 2017) and plate (Wu, Kitipornchai, & Yang, 2017b). Feng et al studied the 

nonlinear free vibration of polymer nanocomposite beams reinforced with non-uniformly 

distributed graphene platelets (Feng, Kitipornchai, & Yang, 2017a; 2017b). Song et al 

presented research work in the free and forced vibration of functionally graded polymer 

composite plates reinforced with GPLs (Song, Kitipornchai, & Yang, 2017;), buckling 

and post-buckling of biaxially compressed functionally graded multilayer GPLs 

reinforced polymer composite plates (Song et al., 2017). Zhao et al conducted bending 

and vibration analysis of functionally graded trapezoidal nanocomposite plates reinforced 

with GPLs (Zhao et al., 2017). Wang et al investigated the eigenvalue buckling of GPLs 

reinforced functionally graded cylindrical shell (Wang et al., 2018) and with cut-out 

(Wang et al., 2017). Numerical methods are also adopted in the investigation of the FGP 

structures. Wu et al integrated a finite element method analysis framework for free and 

forced vibration analyses of FGP beam type structures (Wu et al., 2018a) and the non-

deterministic linear elastic problem of bar-type FGP structures with uncertain-but-

bounded system parameters (Wu et al., 2018b). 
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Huang et al studied the buckling behaviour of functionally graded graphene platelet-

reinforced composite (FG-GPLRC) shallow arches with elastic rotational constraints 

under uniform radial load (Huang et al., 2018). Yang et al investigated the in-plane 

instability of functionally graded multilayer composite shallow arches reinforced with a 

low content of GPLs under a central point load (Yang et al., 2018).  

However, the system responses and buckling analyses of the FGP-GPLRC arches have 

not yet been studied in the published works. The FGP-GPLRC arch combines advantages 

of the porous materials and nano-reinforced materials, which can fulfil the strict 

requirements in the lightness and the strength in modern engineering design. 
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Chapter 3 

Static response and in-plane stability of FG 

arches 

3.1 Introduction 

This chapter presents an analytical approach to the static responses and in-plane 

buckling analysis of FGM circular shallow arch sustaining uniform radial pressure. 

Analytical solutions are derived by potential energy method based on Euler-Bernoulli 

beam theory. Results are verified by ANSYS APDL 18.1, the accuracy and the calculation 

efficiency are compared. System responses, internal actions and buckling analyses of the 

FGM arches are investigated. The significance of the geometric nonlinearity of FGM 

arches is discussed. 

3.2 Linear analysis in static response 

A circular FG shallow arch is considered as shown in Figure 3.1. The material 

properties (e.g. the Young’s modulus.) vary continuously along the radial direction in the 

cross section. A power-law function given by Eq. (3.1) is adopted to describe the changing 

of Young’s modulus in the cross section.  

 rZE
r

Z
)E (EE i

k

io(Z, k) 





 0for         (3.1) 
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where Z is the radial axis of the cross section, r is the radius of the cross section, k is the 

power-law exponent, Eo and Ei denote the Young’s modulus of the outer and the inner 

layer respectively.  

 

Figure 3.1 FG shallow arch under uniform distributed load with support condition: (a) 

pinned support, (b) fixed support 

Based on the Euler-Bernoulli hypothesis, the strain at an arbitrary point is the sum of 

the membrane strain m  and bending strain b  while the shear strains are neglected. The 

linear elastic strain equation for circular arches can be obtained as (Simitses G.J., 1976): 
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where w~  and v~ denote dimensionless axial and radial displacement, i.e. w~ = w/R and  v~

= v/R.  

While the arch is sustaining the uniform distributed load q and at equilibrium, the 

virtual potential energy vanishes:  
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By substituting Eq. (3.2) into Eq. (3.3) the potential energy equation of thin arches can 

be rewritten as: 
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and Eq. (3.4) can be rearranged as: 
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where N and M are compressive axial force and bending moment of the arch given in Eq. 

(3.6) and Eq. (3.7):  
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where Ka and Kb are the axial stiffness and the bending stiffness given by Eq. (3.8) and 

Eq. (3.9): 
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Substituting Eq. (3.6) and Eq. (3.7) into Eq. (3.5) and performing the calculus of 

variations leads to equilibrium equations in the radial direction and the axial direction 

given by Eq. (3.10) and Eq. (3.11): 
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where re is the effective radius of gyration given by: 

 
a

b
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The following boundary conditions are considered to solve differential equations Eq. 

(3.10) and Eq. (3.11): 0 and 0 atv w        for pin-supported FG arches and 

0 and 0 at
v

v  


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

  for fix-supported FG arches. Additionally, for pin-

supported FG arches, the bending strain at the boundary is zero thus 
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 ; for fix-supported FG arches, the slope at the boundary is 

zero thus 0 at
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
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


. Hence the dimensionless axial displacements and 

dimensionless radial displacements can be obtained as: 

 , 1 2 3 4( )p linear p p p pw A A A A    (3.13) 
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 2
4 2cos( ) sin( )pA R    (3.17) 

and  

 , 1 1 2 3( )p linear p p p pv A B B B    (3.18) 
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for pin-supported FG arches, and 
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 2 sin( )(cos( ) cos( ))fB      (3.28) 

for fix-supported FG arches. 

For pin-supported FG arches, subsuming Eq. (3.13) and Eq. (3.18) into Eq. (3.6) and 

Eq. (3.7), the linear elastic solution of compressive force N and the bending moment M 

can be obtained as: 
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For fix-supported FG arches, subsuming Eq. (3.22) and Eq. (3.26) into Eq. (3.6) and 

Eq. (3.7), the linear elastic solution of compressive force N and the bending moment M 

can be obtained as: 
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3.3 Nonlinear analysis in static response 

Researches shown the axial deformation of shallow arch has an insignificant influence 

on the radial deformation (Pi Y.-L et al., 1998; 2002; 2007), thus it is neglected in the 

nonlinear elastic strain equation. The nonlinear elastic strain equation is obtained as 

(Simitses G.J., 1976): 
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By substituting Eq. (3.33) into Eq. (3.3) the equilibrium equation of potential energy 

considering the geometric nonlinearity can be obtained as: 
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where N and M are compressive axial force and bending moment of the arch given in Eq. 

(3.35) and Eq. (3.36):  
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Substituting Eq. (3.35) and Eq. (3.36) into Eq. (3.5) and performing the calculus of 

variations leads to equilibrium equations in the radial direction and the axial direction 

given by Eq. (3.37) and Eq. (3.38): 
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and rearranging Eq. (3.38) by substituting Eq. (3.36) leads to:  
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For pin-supported arches, the radial displacements, the axial displacements and the 

bending moment are zero at the support at both ends. By applying these boundary 

conditions, the dimensionless displacements w~  and v~  can be obtained by solving 

differential equations Eq. (3.37) and Eq. (3.39): 
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for the pin-supported FG arches and  
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for the fix-supported FG arches, where: 
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By substituting Eq. (3.41) into Eq. (3.36), the nonlinear equation of bending moment 

can be obtained as: 
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for the pin-supported arches and 
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for the fix-supported arches. 

Eq. (3.37) implies the axial force is constant through arch, which can be expressed as: 
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Substituting Eq. (3.35) and Eq. (3.41) into Eq. (3.46), and considering the 

displacements at the support are constant, the following equilibrium equation can be 

obtained: 
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for the pin-supported FG arches and  
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for fix-supported FG arches. 

The axial force Np and Nf considering the geometric nonlinearity can be obtained by 

solving Eq. (3.45). and Eq. (3.61) respectively. 

3.4 In-plane stability analysis 

The energy equation of the in-plane buckling can be obtained from the second 

variation of the total potential energy Eq. (3.5), where the buckling displacements are 

expressed as bv v   and bw w  . 
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Considering the axial buckling displacement, 0mb






 can be obtained which implies 

that mb is constant in the axial direction. The following differential equation can be 

obtained by re-arranging Eq. (3.56) 
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and the average membrane strain during buckling mb  can be obtained as 
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Substituting Eq. (3.41) into Eq. (3.58) and apply the pin-supported support boundary 

conditions in Eq. (3.60): 
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By substitute Eq. (3.61) into Eq. (3.58) and Eq. (3.59), the equilibrium equation under 

the snap-through symmetric buckling scenario for a pin-supported FG arch can be 

obtained as: 
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Solving Eq. (3.48) and Eq. (3.63) simultaneously, the symmetric snap-through 

buckling load sbq q  for pin-supported FG arches can be obtained. 

Moreover, substituting Eq. (3.43) into Eq. (3.58), and then apply the boundary 

conditions stated in Eq. (3.65) 
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By substituting Eq. (3.66) into Eq. (3.59), the equilibrium equation under the snap-

through symmetric buckling scenario for a fix-supported FG arch can be obtained as: 
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Solving Eq. (3.52) and Eq. (3.68) simultaneously, the symmetric snap-through 

buckling load sbq q  for fix-supported FG arches can be obtained. 

When the arch has initial imperfections or under perturbations, it may buckle in the 

anti-symmetric mode. In this case, the membrane strain 0mb  , substitute it into Eq. 

(3.58) leads to 
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For pin-supported arches, solving Eq. (3.70) by apply the boundary conditions stated 

in Eq. (3.60) leads to 

 sin 0p
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 (3.71) 

and the fundamental solution for Eq. (3.71) can be obtain as  
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Substituting Eq. (3.73) into Eq. (3.48), the anti-symmetric buckling load for pin-

supported FG arches bbq can be solved. 

For fix-supported arches, solving Eq. (3.70) by applying the boundary conditions 

stated in Eq. (3.65) leads to 
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and the lowest value to satisfy Eq. (3.74) can be obtain as  
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By substituting Eq. (3.76) into Eq. (3.52), the anti-symmetric buckling load for fix-

ended FG arches bbq
can be solved.3.5 

Result validation and numerical examples 

In order to validate the proposed method, numerical verifications were performed in 

ANSYS by adopting BEAM188 elements. As the variation of the material properties 

cannot be modelled in the finite element as the current stage, the cross-section is 

discretised into 200 layers in its radial direction to simulate the various of materials as 

illustrated in Figure 3.2; 360 elements are used along the span of the arch. Four case 

studies are demonstrated in this session. Following computer configurations are used in 

the numerical simulation: 

System: Microsoft Windows 7 

CPU: Intel Core i7-6700 3.4 GHz 

RAM: 16.0 GB 

First two examples present static responses with the numerical verifications. In the first 

example, a pin-supported FG arch under radial uniform distributed load is investigated 

by adopting the derived equations. The following parameters are adopted: Eo = 390 GPa, 

Ei = 210 GPa, r = 200 mm, L = 12 m, f/L = 1/12 and applied uniform distributed load q = 

3905.2 kN/m. The results of this example are illustrated in Figures 3.3 to 3.6, which 

include the radial central displacement (vc, 0 ), axial displacement at quarter point 

(wq,,  5.0 ), central compressive axial force (Nc, 0 ) and central bending 

moment(Mc, 0 ) by various power-law exponent k from 0 to 5, respectively. The 

numerical verification of fix-supported FG arch is illustrated in the Figures 3.7 to 3.10. 
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The following parameters are adopted: Eo = 390 GPa, Ei = 210 GPa, r = 200 mm, L = 12 

m, f/L = 1/12 and applied uniform distributed load q = 2662.7 kN/m. Results show the 

proposed analytical solution agrees well to the ANSYS’s prediction. In Figure 3.6 and 

Figure 3.10, it can be observed that the linear elastic analysis predicts a very small 

decrement in axial forces while the nonlinear analysis demonstrates a significant 

increasing. Moreover, the result shows the nonlinear static responses of the FG shallow 

circular arch are more significant that the linear analysis. 

 
Figure 3.2  Illustration of cross-section of FEA model 
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Figure 3.3 Radial central displacement vc of pin-supported FG arches 

 
Figure 3.4 Axial displacement at quarter point wq of pin-supported FG arches 

0 1 2 3 4 5
40

45

50

55

60

65

70

75

Analytical linear solution
ANSYS linear solution
Analytical nonlinear solution
ANSYS nonlinear solution

v c
 (m

m
) 

k 

0 1 2 3 4 5
1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

Analytical linear solution
ANSYS linear solution
Analytical nonlinear solution
ANSYS nonlinear solution

k 

w
q 

(m
m

) 



  

31 

 
Figure 3.5 Central moment Mc of pin-supported FG arches 

 
Figure 3.6 Central axial force Nc of pin-supported FG arches 
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Figure 3.7 Radial central displacement vc of fix-supported FG arches 

 
Figure 3.8 Axial displacement at quarter point wq of fix-supported FG arches 
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Figure 3.9 Central moment Mc of fix-supported FG arches 

 
Figure 3.10 Central axial force Nc fix-supported FG arches 
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FG arches decrease rapidly when the exponential factor k is between 0 and 10 and the 

decreasing rate reduces significantly when the k factor is greater than 10. As illustrated, 

the proposed analytical solution agrees well to the ANSYS’s prediction. However, the 

computational time consumption of the ANSYS prediction is very expensive. It took 

more than 10 hours in the limit point buckling analysis and more than 40 hours for arches 

with initial imperfection per calculation point. By adopting the proposed analytical 

equations, the computational efficiency can be increased dramatically, by coding in 

MatLab 2017, the computational time can be reduced to within 5 seconds per calculation 

point, which is thousands of times faster than the ANSYS prediction. 

 

Figure 3.11 Limit point buckling load qsb of pin-supported FG arches 
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Figure 3.12 Bifurcation buckling load qbb of pin-supported FG arches 

 

Figure 3.13 Limit point buckling load qsb of fix-supported FG arches 
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Figure 3.14 Bifurcation buckling load qbb of fix-supported FG arches 
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- the deformations and internal forces are increasing with the increment of power-

law exponent k; 

- the buckling load can be decreased by adopting higher k for the power-law of the 

FG material. 

The proposed method can be used as benchmarks for the further numerical 

investigations of the FGM arches. Furthermore, the enhanced calculation efficiency can 

contribute to the further design optimisation or reliability analysis of FGM arches when 

numerous calculations are required. 
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Chapter 4 

Static response and in-plane stability of FG 

porous arches with graphene platelets 

reinforcements 

4.1 Introduction 

This chapter presents an analytical approach for nonlinear static responses and stability 

analysis of functionally graded porous (FGP) arches with graphene platelets (GPLs) 

reinforcements (i.e., FGP-GPLRC arches). The constitutive material composition of the 

FGP-GPLRC arch varies along the radial direction of the cross section specifically, so 

that the mechanical performance of the arch such as buckling strength and weight can be 

well controlled for various engineering design purposes. The effective Young’s modulus 

of the FGP-GPLRC arch is determined by the volume fraction distribution of materials. 

Based on the Euler-Bernoulli hypothesis, the structural responses of the arch considering 

the geometric nonlinearity are derived by using the virtual work method. Two boundary 

conditions are considered which are including the pinned-pinned and the fixed-fixed 

supports. The loading condition is defined as uniformly distributed load in the radial 

direction of the arch. Different buckling modes are discussed by the illustration of the 

equilibrium paths. By adopting the developed analytical solution, the relationship 

between the structural response, buckling load, self-weight, porosity level and the 

percentage of content of the GPLs can be investigated efficiently. The applicability and 
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effectiveness of the proposed analytical approach for the geometric nonlinear analysis of 

FGP-GPLRC arch structures are demonstrated through numerical examples.  

4.2 Static stability analysis of FGP-GPLRC arches 

A circular FGP-GPLRC arch is considered as shown in Figure 4.1. The porosity of the 

material varies continuously along the radial direction in the cross section. Figure 4.2 and 

Figure 4.3 demonstrate the two considered porosity distributions with GPLs 

reinforcement and, Z is the radial axis in the cross section, r is the radius of the cross 

section, Emax and Emin denote the maximum and the minimum elastic modulus of porous 

material shown in the diagram respectively. 

 

 

Figure 4.1 Shallow arch under uniformly distributed load with support condition: (a) 

pinned support, (b) fixed support 

4.2.1 The porosity distributions and GPLs reinforcement 

Following the dramatic improvement of modern manufacturing technology, the 

manufacture of porous materials can be customised according to engineers’ design 
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specifications. Conceivably, many different porous materials with various porosity 

distributions can be manufactured to fulfil the engineering demands (Chen, Yang, & 

Kitipornchai, 2015). For example, various types of aluminium foam were manufactured 

and then their mechanical properties were tested in (Hangai Y. et al. 2013).  

In this study, the material composition of the FGP-GPLRC arch is assumed to be 

varied in the radial direction of the cross-section. According to the well-established 

literatures (Magnucki K. & Stasiewica P., 2004; Magnucka-Blandzi E., 2008; 2010; 

Jabbari M., Mojahedin A, Khorshidvandb A. & Eslami M., 2014), two non-uniform FG 

pore distributions are adopted herein, which can be explicitly formulated as: 
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 (4.1) 

where 0e  denotes the porosity coefficient which is defined as 

 min
0

max

1
E

e
E

   (4.2) 

The effects of the two adopted porosity distributions on the overall Young’s modulus of 

a structural member are illustrated in Figure 4.2 and Figure 4.3.  

Under the Gaussian random field scheme, the mechanical properties of the closed-cell 

cellular solids can be expressed as (Song et al., 2017) 
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 (4.3) 

which leads to the expression of the mass coefficient me  
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  (4.4) 

Research shows that the Halpin-Tsai micromechanics model has a good prediction in 

the Young’s modules of the non-porous nanocomposite structures which was extended to 

the estimation of the nano-composite reinforced porous materials (Kitipornchai, Chen, & 

Yang, 2017; Yang, Wu, & Kitipornchai, 2017; Rafiee et al., 2009). That is.  
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and 

 1 GPL GPL M MV V     (4.8) 

where GPL  denotes the weight fraction of the GPLs reinforcement in percentage unit; 

GPLl , GPLw , and GPLt are the length, width and thickness of the graphene platelets 

respectively. 

 

Figure 4.2 Porosity distribution 1 and GPLs reinforcement 

 

Figure 4.3 Porosity distribution 2 and GPLs reinforcement 
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4.2.2 Nonlinear responses and internal actions 

Based on the Euler-Bernoulli hypothesis, the strain at an arbitrary point at the centroid 

line of the arch is the sum of the membrane strain m  and bending strain b  while the 

shear strains are neglected. Researches shown that the axial deformation of the shallow 

arch has an insignificant influence on the radial deformation (Pi, Bradford, & Uy, 2002; 

Pi, & Trahair, 1998), thus it is neglected in the nonlinear elastic strain equation. The 

nonlinear elastic strain equation is obtained from (Pi, & Trahair, 1998) as: 

 

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

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
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2

22 ~~

2
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

 v

R

yv
v

w
 (4.9) 

where w~  and v~ denote the dimensionless axial and radial displacements, i.e. w~ = w/R 

and v~ = v/R.  

While the arch is sustaining the uniform distributed load q and at equilibrium, the 

virtual potential energy vanishes:  

 2

-
d d 0

V
V qR v




          (4.10) 

By substituting Eq. (4.10) into Eq. (4.11), the nonlinear equilibrium equation of the 

potential energy can be obtained as: 
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where N and M are compressive axial force and bending moment of the arch given in Eq. 

(4.13) and Eq. (4.14):  
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where Ka and Kb are the axial stiffness and the bending stiffness given by Eq. (4.15) and 

Eq. (4.16): 

 ( )0
2 d

r

a ZK E Z Z   (4.14) 

 3
( )0

d
r

b ZK E Z Z   (4.15) 

and re is the effective radius of gyration defined by Eq. (4.17): 

 b
e

a

K
r

K
  (4.16) 

Substituting Eq. (4.13) and Eq. (4.14) into Eq. (4.12) and then apply the calculus of 

variations to the resultant formulation leads to the equilibrium equations in the radial 

direction and the axial direction given by Eq. (4.17) and Eq. (4.18): 

 0
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
N

 (4.17) 
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Moreover, the substitution of Eq. (4.13) into Eq. (4.18) leads to: 
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The boundary conditions for pin-supported arches are 

 0 and 0 atv w        (4.20) 

and the boundary conditions for fix-supported arches are 

 0 and 0 at
v

v  



   


  (4.21) 

By applying the boundary conditions in Eq. (4.20) for the pin-supported and Eq. (4.21) 

for the fix-supported arches, the dimensionless displacements w~  and v~  for pin-

supported arches can be obtained by solving the differential equations formulated by Eq. 

(4.22) and Eq. (4.23) accordingly: 
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The dimensionless displacements w~  and v~  for the fix-supported arches can be 

obtained by solving the differential equations presented in Eq. (4.23) and Eq. (4.24): 
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where 
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By substituting Eq. (4.22) and Eq. (4.24) into Eq. (4.12), the nonlinear equation of 

bending moment can be obtained as: 
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for the pin-supported FGP-GPLRC arches and 
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for the fix-supported FGP-GPLRC arches. 

Eq. (4.17) implies the axial force is constant through the arch, which can be expressed 

as: 

 
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d

2

1
NN  (4.29) 

For pin-supported arches, substituting Eq. (4.12) and Eq. (4.20) into Eq. (4.27); and 

for fix-supported arches, substituting Eq. (4.12) and Eq. (4.21) into Eq. (4.27) with 

consideration of the axial displacements at the end-supports are zero, the following 

equilibrium equations can be obtained for pin-supported arches in Eq. (4.30): 
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and fix-supported arches in Eq. (4.34): 
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The axial force Np of the pin-supported arch and Nf of the fix-supported arch with the 

consideration of geometric nonlinearity can be obtained by solving Eq. (4.30) and Eq. 

(4.34) respectively. 

4.2.3 Buckling analysis 

The energy equation of the in-plane buckling can be obtained from the second 

variation of the total potential energy Eq. (4.11), where the buckling displacement can be 

expressed as bv v   and bw w  . 
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Considering the axial buckling displacement, 0mb






 can be obtained which 

implies mb is a constant in the axial direction. The following differential equation can 

be obtained by re-arranging Eq. (4.38) 

 
4 2 2

4 2 2 2 2
1 0b b b mb b

e

v K v K v

NR Nr


  

   
       

  
 (4.40) 

and the average membrane strain during buckling can be obtained as 
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For pin-supported arches, substituting Eq. (4.23) into Eq. (4.40) and then apply the 

boundary conditions presented in Eq. (4.42) 
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where 

 
   

2
2 2

1pvb
b

qR N R
D

K
 


   (4.44) 

 
   2

2
pvb

b

qR N R
D C S C S

N K
    


   (4.45) 

 3

2
1 1pvb

CqR
D

N C




         
 (4.46) 

By substituting Eq. (4.43) into Eq. (4.41), the equilibrium equation under the snap-

through symmetric buckling scenario for a pin-supported FGP-GPLRC arch can be 

obtained as: 
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Solving Eqs. (4.30) and (4.47) simultaneously, the symmetric snap-through buckling 

load sbq q  for pin-supported FGP-GPLRC arches can be obtained. 

Moreover, substituting Eq. (4.25) into Eq. (4.40), and then apply the boundary 

conditions stated in Eq. (4.51) 
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By substituting Eq. (4.52) into Eq. (4.41), the equilibrium equation under the snap-

through symmetric buckling scenario for a fix-supported FGP-GPLRC arch can be 

obtained as: 
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By solving Eqs. (4.34) and (4.56) simultaneously, the symmetric snap-through 

buckling load sbq q for fix-supported FGP-GPLRC arches can be obtained. 

When the arch is buckled in the anti-symmetric mode, the membrane strain 0mb  , and 

the substitution of it into Eq. (4.40) leads 

 
4 2

4 2 2
0b b bv K v

NR 
 

 
 

 
 (4.60) 
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For pin-supported arches, solving Eq. (4.60) by apply the boundary conditions stated 

in Eq. (4.42) leads to 

 sin 0p

b

N
R

K


 
  

 
 (4.61) 

and the fundamental solution for Eq. (4.61) can be obtain as  

 p

b

N
R

K
   (4.62) 

then 

 
2

2 2
b

p pcr

K
N N

R




   (4.63) 

By substituting Eq. (4.63) into Eq. (4.30), the anti-symmetric buckling load for pin-

ended FGP-GPLRC arches bbq can be solved. 

For fix-supported arches, solving Eq. (4.60) by applying the boundary conditions 

stated in Eq. (4.51) leads to 

 tan f f

b b

N N
R R

K K
 

 
  

 
 (4.64) 

and the lowest value to satisfy Eq. (4.64) can be obtain as  
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 1.4303f

b

N
R

K
   (4.65) 

 
2

2 2

(1.4303 ) b
f fcr

K
N N

R




   (4.66) 

By substituting Eq. (4.66) into Eq. (4.34), the anti-symmetric buckling load for fix-

ended FGP-GPLRC arches bbq can be solved. 

4.3 Numerical investigation 

In this section, the numerical verification and investigation are presented. Aluminium 

based metal matrix is adopted in the numerical study with the following material 

properties: EM = 70 GPa, M  = 2700 kg/m3. The adopted properties of the graphene 

platelets are based on the previous researches (Kitipornchai, Chen, & Yang, 2017; Chen, 

Yang, & Kitipornchai, 2016b): EGPL=1010 GPa, GPL =1062.5 kg/m3, GPLl =2.5 μm, 

GPLw =1.5 μm, GPLt =1.5 nm. 

In order to validate the proposed method, geometric nonlinear analyses were 

performed by using the commercial finite element analysis software ANSYS 18.1 with 

the adoption of BEAM188 elements. To simulate the material variation, the cross section 

is subdivided into multiple layers in the radial direction. The material properties are 

assigned to each layer according to Eq. (3.2). From the convergence study, the variance 

of the results between 400 layers and 200 layers is less than 0.5%. Thus, 200 sub-layers 

are adopted in the numerical verification for efficient computation but without 

compromising the accuracy of the results. The proposed analytical approaches are coded 
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by MATLAB 2016b. Following computer configurations are used in the numerical 

simulation: Microsoft Windows 7; Intel Core i7-6700 3.4 GHz; 16.0 GB RAM. 

4.3.1 Result verifications of the nonlinear structural responses 

In the nonlinear structural response analysis, the radial central displacement (vc, 0

), axial displacement at quarter point (wq,,  5.0 ), central compressive axial force (Nc, 

0 ) and central bending moment(Mc, 0 ) are verified with various GPLs weight 

fractions GPL . In Case 1, the nonlinear static response verification of a pin-supported 

aluminium based FGP-GPLRC arch is illustrated in Figure 4.4. In this example, the 

following geometry parameters are adopted: r = 25 mm, L = 2 m, f/L = 1/10, where r, L, 

f are the radius of the cross section, span length and fall of the arch illustrated in Figure 

4.1. The applied uniform distributed load is 
0.65 pcrN

q
R

 . The porosity coefficient 0e  

= 0.3 and the porosity distribution 2 are adopted for this numerical verification. In Case 

2, the nonlinear static response verification of a pin-supported aluminium based FGP-

GPLRC arch is illustrated in Figure 4.5. The arch is under a uniform pressure 

0.65 fcrN
q

R
 . The following geometry parameters are adopted in this study: r = 25 mm, 

L = 2 m, f/L = 1/10, 0e  = 0.4 with porosity distribution 1. 
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Figure 4.4 Results validation of (a) radial central displacement cv ; (b) axial 

displacement at quarter point qw ; (c) central moment Mc and (d) central axial force Nc 

for a pin-supported aluminium based FGP-GPLRC arch. 
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Figure 4.5 Results validation of (a) radial central displacement 
cv ; (b) axial 

displacement at quarter point qw ; (c) central moment Mc and (d) central axial force Nc 

for a fix-supported aluminium based FGP-GPLRC arch. 
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In the verifications of the nonlinear structural responses, agreements of results between 

the proposed approach and the ANSYS simulation can be well observed in Figure 4.4 and 

Figure 4.5. In addition to the demonstration of the accuracy of the proposed method, the 

computational times of two methods are also recorded herein. The total computational 

time of ANSYS was approximately 90 mins per individual calculating point in Figure 4.4 

and Figure 4.5, whereas the calculation time of the proposed method was approximate 

0.5 seconds per calculation point (less than 50 second for 101 individual calculation 

points). Thus, the proposed method has superior computational efficiency over the 

numerical method through ANSYS.  

4.3.2 Result verifications of the structural buckling loads 

The result verificaitons of the structural buckling loads of pin- and fix-ended supports 

are presented in this section. Figure 4.6 (a) presents the numerical verification for the anti-

symmetric bifurcation buckling load for a fix-supported FGP-GPLRC arch with r=20mm, 

L=2m, f/L = 1/25, 0e = 0.6 and porosity distribution 1. On the other hand, Figure 4.6 (b) 

presents the numerical verification for the symmetric limit point buckling load for a pin-

supported FGP-GPLRC arch with r=5 mm, L=2 m, f/L=1/25, 0e =0.6, and porosity 

distribution 2. 
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Figure 4.6 Results validation of buckling analysis (a) anti-symmetric bifurcation 

buckling load of a fix-supported aluminium based FGP-GPLRC arch and (b) limit point 

buckling load of a pin-supported aluminium based FGP-GPLRC arch. 
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In the buckling analysis verifications, the results presented in Figure 4.6 illustrate that 

the proposed analytical solution agrees well with the ANSYS’s prediction. The total 

calculation time of ANSYS is about 10 hours per individual calculating point for the limit 

point buckling analysis and over 40 hours for the bifurcation buckling analysis. However, 

the calculation time of the proposed method is about 5 seconds per calculation point for 

the limit point buckling analysis and 0.5 seconds for the bifurcation buckling analysis. 

Once again, the computational efficiency of the proposed method is well demonstrated.  

4.3.3 Numerical investigation - system responses and internal actions 

The system responses and internal actions of FGP-GPLRC arches are studied in this 

section. Two case studies are presented: Case A presents a pin-supported FGP-GPLRC 

arch with porosity distribution type 1; and Case B presents a fix-supported FGP-GPLRC 

arch with porosity distribution type 2. The following parameters are adopted for both 

cases: r = 25 mm, L = 2 m, f/L = 1/10. The applied pressure is adopted as 
0.7 pcrN

q
R

  

for Case A and 
0.7 fcrN

q
R

  for Case B. Figure 4.7 to Figure 4.10 present the the radial 

central displacement (vc, 0 ), axial displacement at quarter point (wq,,  5.0 ), 

central compressive axial force (Nc, 0 ), central bending moment(Mc, 0 ) and per 

meter length normalised to the solid arch without GPLs reinforcement. Figure 4.7 to 

Figure 4.10 are illustrated with various porosity coefficients in the x-axis and GPLs 

weight fractions in the y-axis, so the effectiveness of the graphene platelet reinforcement 

on the concerned nonlinear structural responses can be illustrated. As shown in Figure 4.7 

to Figure 4.10, the GPLs reinforcement significantly reduces the nonlinear system 

responses of the arches with all porosity levels. Figure 4.11 presents the impacts of the 
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porosity and the weight fraction of the GPLs reinforcement on the overall normalized 

mass of the arch. Indeed, the porosity has a significant contribution in the weight-

reduction of the structure. On the other hand, the increase of the weight fraction of the 

GPLs reinforcement barely affects the normalized mass of the structure. Therefore, the 

mass contribution from the inserted GPLs on the overall structural weight can be 

neglected.  
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Figure 4.7 Normalised Radial Displacement vc in the Case A: pin-supported; and in the 

Case B: fix-supported. 
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Figure 4.8 Normalised Axial Displacement wq in the Case A: pin-supported; and in the 

Case B: fix-supported. 
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Figure 4.9 Normalised Bending Moment Mc in the Case A: pin-supported; and in the 

Case B: fix-supported. 
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Figure 4.10 Normalised Compressive Axial Force Nc in the Case A: pin-supported; and 

in the Case B: fix-supported. 
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Figure 4.11 Normalised Mass per Arch Length in the Case A: pin-supported; and in the 

Case B: fix-supported. Note: y-axis(e0) in Figure 4.11 is inversed for illustration 

purpose 

N
or

m
al

is
ed

 M
as

s 

Case A 

N
or

m
al

is
ed

 M
as

s 

Case B 



  

69 

4.3.4 Numerical investigation - buckling load and specific strength 

The in-plane buckling strength and specific strength against buckling are studied in 

this section. The specific strength is the ratio between the buckling load and the mass of 

the arch which is defined as: 

 
arch

bbSpecific streng
q

th = 
M

 (4.67) 

for bifurcation buckling load or 

 
arch

sbSpecific streng
q

th = 
M

 (4.68) 

for limit point buckling load, where archM  denotes the mass of the arch structure.  

Case 1 presents the anti-symmetric bifurcation buckling load study of a pin-supported 

FGP-GPLRC with porosity distribution type 1. Figure 4.12 illustrates the bifurcation 

buckling load and specific strength defined in Eq. (4.68). The following geometrical 

parameters are used in this numerical investigation: r=20mm, L=2 m, f/L=1/25.  

In the second case study, the symmetric limit point buckling load of a fix-supported 

FGP-GPLRC arch with porosity distribution type 2 is analysed by the proposed method. 

Figure 4.13 illustrates the symmetric limit point buckling load and the specific strength 

defined in Eq. (4.69). The following geometrical parameters are used in this example: r 

= 25 mm, L = 2 m, f/L = 1/25. 
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Figure 4.12 Stability analysis of a pin-supported FGP-GPLRC arch (a) normalised 

bifurcation buckling load (b) normalised specific strength against bifurcation buckling 
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Figure 4.13 Stability analysis of a fix-supported FGP-GPLRC arch (a) normalised limit 

point buckling load (b) normalised specific strength against limit point buckling 
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In Figure 4.12 and Figure 4.13, it is noticeable that at any specific GPL , the increase 

of porosity 0e  reduces the buckling load of the pin- and fix-supported arches, but 

increases the specific strength of the two arches. The variations of the buckling loads and 

the specific strengths of the two considered arches against GPL  and 0e  are not linear, 

but they are monotonic. Even though the porosity 0e  has a remarkable contribution in the 

specific strength, the side effect of this is that the buckling load of the arches will be 

reduced.  

By introducing the GPL nano-composites, the buckling capacity and the specific 

strength of the two investigated arches increase significantly at all level of 0e . Therefore, 

the FGP-GPLRC arch has an excellent performance in specific strength against buckling 

and maintains a high level static buckling capacity. By using the proposed equations, the 

influence of the porosity and the GPLs reinforcement can be well illustrated. For example 

in Figure 4.13, it is evidently illustrated that by introducing a porosity level of 0.6, the 

specific strength is increased by approximately 20%. However, the buckling strength is 

reduced over 20% in this case. By adding 1% GPLs, the buckling load is maintained at 

the same level as the one without porosity. The specific strength, as demonstrated in 

Figure 4.13 (b), is increased dramatically by 60%.  

4.3.5 Numerical investigation - equilibrium paths 

In addition to the investigation on the buckling capacity of the FGP-GPLRC arch with 

various GPL  and 0e , the equilibrium paths of the FGP-GPLRC arch with different 

porosity distributions are explored in this section. More specifically, the equilibrium paths 

of the FGP-GPLRC arches, the solid arch with the same geometric dimension of the FGP-
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GPLRC arch, as well as the FGP arch without nano-composites against various porosities 

and GPL weight fractions are investigated. The illustrated result is normalised to the 

second mode flexural buckling load of the corresponding solid arch (Pi, Bradford, & Uy, 

2002) given by:
 

2

2=
/ 2

cr

EI
N

S

  for pin supported arches, and 
 

 

2

2

1.4303
=

/ 2
cr

EI
N

S


 for fix-

supported arches. For each case, all adopted parameters are shown in the corresponding 

figure. The slenderness of the solid arch , is defined as 
2

=
e

R

r

  and used to distinguish 

the various buckling mode of the arch (Pi, Bradford, & Uy, 2002). 

Figure 4.14 to Figure 4.17 present the equilibrium paths of pin-supported FGP-GPLRC 

arches, and Figure 4.18 to Figure 4.21 illustrated the equilibrium paths of fix-supported 

FGP-GPLRC arches. Figure 4.14 and Figure 4.18 demonstrate the case that no local 

extrema can be found thus the structure remains stable. That is, the buckling is not 

occurred for the pin- and fix-supported arches in Figure 4.14 and Figure 4.18, 

respectively. Figure 4.15 and Figure 4.19 demonstrate the case which only symmetric 

buckling mode is triggered. In these two figures, the porosity and GPL weight fraction 

have more obvious impacts on the upper limit points of the arches than the lower limit 

points. Figure 4.16 and Figure 4.20 demonstrate the case that symmetric buckling mode 

is triggered before the anti-symmetric buckling. In Figure 4.16, the lower bifurcation 

points are very close, while the variation of the upper bifurcation point is larger. Figure 

4.17 and Figure 4.21 demonstrate the case that the anti-symmetric buckling mode occurs 

before the symmetric buckling mode is occurred. When the upper bifurcation point is 

reached, it snaps from the upper bifurcation point to the lower one. 
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From the observation, by adding the porosity to the arch, the static response is 

increased, and the buckling load is reduced. The FGP arch with the porosity distribution 

2 has less static responses and has a higher buckling capacity comparing to the FGP arch 

with the porosity distribution 1. This phenomenon is not changed with the GPLs 

reinforcement. Figure 4.15 shows the porosity result a significant reduction in the 

buckling capacity. By introducing the GPLs reinforcement, the overall structural strength 

is improved significantly; the buckling capacity is also increased. In the extreme case, i.e. 

when porosity level is very high such as shown in Figure 4.16 and 3.20, the FGP-GPLRC 

arch with low level of GPLs reinforcement may not reach the same buckling capacity 

comparing to the solid arch with the same geometric configuration (Figure 4.16), but can 

lead to a better result with higher level of GPLs reinforcement (Figure 4.19). 
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Figure 4.14 Nonlinear equilibrium paths of a pin-supported aluminium based FGP-

GPLRC arch, Case 1 
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Figure 4.15 Nonlinear equilibrium paths of a pin-supported aluminium based FGP-

GPLRC arch, Case 2 
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Figure 4.16 Nonlinear equilibrium paths of a pin-supported aluminium based FGP-

GPLRC arch, Case 3 

qR
/N

cr
 

Nc/Ncr 

L = 2m, f /L=1/20, r = 45mm 

Solid Arch λ = 8.92 
D1, e0 = 0.5 
D1, e0 = 0.5, Λ = 1% 
D2, e0 = 0.5 
D2, e0 = 0.5, Λ = 1% 
Bifurcation Point 
Limit Point 

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

qR
/N

cr
 

vc/f 

L = 2m, f /L=1/20, r = 45mm 

Solid Arch λ = 8.92 
D1, e0 = 0.5 
D1, e0 = 0.5, Λ = 1% 
D2, e0 = 0.5 
D2, e0 = 0.5, Λ = 1% 
Bifurcation Point 
Limit Point 
 



  

78 

 

Figure 4.17 Nonlinear equilibrium paths of a pin-supported aluminium based FGP-

GPLRC arch, Case 4 
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Figure 4.18 Nonlinear equilibrium paths of a fix-supported aluminium based FGP-

GPLRC arch, Case 1 
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Figure 4.19 Nonlinear equilibrium paths of a fix-supported aluminium based FGP-

GPLRC arch, Case 2 
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Figure 4.20 Nonlinear equilibrium paths of a fix-supported aluminium based FGP-

GPLRC arch, Case 3 
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Figure 4.21 Nonlinear equilibrium paths of a fix-supported aluminium based FGP-

GPLRC arch, Case 4  
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4.4 Conclusion 

In this chapter, the nonlinear static response and buckling analysis of FGP-GPLRC 

circular shallow arch under radial uniform load are investigated. The nonlinear elastic 

equations based on the Euler-Bernoulli hypothesis are derived by adopting the potential 

energy method. In order to verify the correctness of the proposed approaches, the 

computational results are compared with those produced by commercial software ANSYS 

18.1. The results show the proposed equations conform to the calculation of ANSYS, but 

with much better calculation efficiency. Thus, the proposed method can be used as 

benchmarks for the further numerical investigations of the FGP-GPLRC arches. 

Furthermore, the enhanced calculation efficiency can contribute to the further design 

optimisation or reliability analysis of FGP-GPLRC arches when numerous calculations 

are required.  

The advantages of the GPLs reinforcement are illustrated in 3-dimensional figures. 

Compare to the solid arch, the FGP arch has a good performance in weight reduction and 

has a high strength-to-weight ratio, however, the strength is sacrificed, and the static 

responses are increased. By introducing the GPLs reinforcing technique, the FGP-

GPLRC arches maintain all the advantages of the FGP arches, furthermore, it improves 

the buckling capacity and reduces the static responses significantly. Also, the self-weight 

of the arch is further reduced as the density of GPLs is much smaller than most metal 

matrixes. Moreover, it is found the FGP-GPLRC arches with porosity distribution 2 has 

less static response and higher buckling load than the FGP-GPLRC arches with porosity 

distribution 1 from the equilibrium path illustration. 
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Chapter 5 

Conclusion and future studies 

5.1 Conclusion 

In order to meet the modern engineering design, the in-plane static behaviour of two 

types of advanced composite arches have been discussed in this thesis. Analytical 

solutions are provided and validated. Comparing to the commercial finite element 

software, the proposed analytical approach has an unbeatable calculation efficiency, 

while the accuracy is guaranteed.  

Chapter 3 investigates the in-plane static responses and buckling analysis of FG 

shallow arch structures under uniform pressures. Based on the Euler-Bernoulli 

hypothesis, analytical solutions of the buckling load are derived by using the virtual work 

method. Both linear and geometric nonlinear equation in static responses are given. Also, 

two buckling modes are discussed in the stability analysis, which are the symmetric 

buckling and the anti-symmetric buckling. The solutions are validated by ANSYS APDL 

18.1. By adopting the derived analytical solution, the relationship between the buckling 

load and the various FG material properties can be analysed efficiently. The applicability 

and effectiveness of the proposed analytical approach for the geometric nonlinear 

buckling analysis of FG arch structures are demonstrated through numerical examples. 

Chapter 4 presents an analytical approach to the static responses and in-plane buckling 

analysis of FGP-GPLRC circular shallow arch sustaining uniform radial pressure. The 
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geometric nonlinearity is considered. Analytical solutions are derived by potential energy 

method based on Euler-Bernoulli beam theory. Results are verified by ANSYS APDL 

18.1, the accuracy and the calculation efficiency are compared. The effect of various 

porosity patterns, porosity level and nano-reinforcement ratio are discussed. System 

responses, internal actions, buckling analyses, and equilibrium paths of the FGP-GPLRC 

arches are investigated. In addition, the influence of the porosity level and nano-

reinforcement level are illustrated against the nonlinear responses, internal actions and 

the buckling strength. 

5.2 Future studies 

This thesis assessed static responses and buckling analysis of the FGM arches and 

FGP-GPLRC arches under uniform pressure. Further researches and investigations are 

needed to fulfil the design criteria of advanced composite arch, including: 

1. Static responses and stability analysis of FGP-GPLRC arches under point load at 

arbitrary point. 

2. Natural frequency of FGP-GPLRC arches. 

3. Dynamic responses and instabilities of FGP-GPLRC arches under imposed/cyclic 

load. 

4. Non-deterministic study in the FPG-GPLRC arches considering geometric and 

material uncertainties.  
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