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Abstract

The thesis is a study of the distribution of inversion counts for the permutations
of multisets by a four-tier architecture of integers, partitions, multisets and the
permutations of the multisets. It introduces two insertion methods to link the hier-
archical and peer to peer relationships between these entities. It centers around the
generating function for the inversion count distribution for the permutation of the
multisets. The main result is a recursive function for the parent/child relationship
between the permutations of multisets.

The secondary result is a rediscovery of the closed form expression for the gen-
erating function as a product of Gaussian binomial coefficients, also known as q-
nomials. For a partition n = n1 + n2 + · · ·+ nk, the inversion count distribution is
given by the coefficients of the polynomial

P (n1, n2, . . . , nk) =
G(n1 + n2 + · · ·+ nk)

G(n1)G(n2) · · ·G(nk)

where G(n) = (xn − 1)(xn−1 − 1) . . . (x− 1).

The thesis also studies the link between the coefficients of the generating poly-
nomial and the Ferrers diagram and also delivers an integer partition formula as a
special case of the closed form. It also analyses the conformance of natural and com-
puter generated sequences with the expected distribution of partition and inversion
counts.
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Chapter 1

Concepts

1.1 Inversion

Five cards each with a digit from 0 to 4 are laid on the table from left to right, as
illustrated below:

4 1 0 4 2

Take the leftmost card (here with value 4) and record the number I1 of cards to its
right of lower value. In the example above, I1 = 3 since 1, 0 and 2 are smaller than
4. Repeat this count for the remaining cards, recording I2 = 1, I3 = 0 and I4 = 1.
Now, let I = I1 + I2 + I3 + I4 = 5. This is the inversion count I = Inv(s) for the
sequence s = 41042. It can be shown by Lemma 2.2 to follow that the maximum
inversion count for a sequence of 5 numbers of which 4 are distinct is 9. In this
thesis, we consider inversion count for various types of sequences, some random
and others not. We address the natural question: “What is the probability distri-
bution of I, given some random sequence?”. Once such a probability distribution
is known, it can be used to analyse the digits of classical irrational numbers such
as π and e to determine whether they conform to expected distributions. We can
also use inversion count frequency distribution to analyse the efficiency of sorting
algorithms and also measure the randomness of quasi-random sequences generated
by computers.

1.2 Inversion distribution

The objective of the thesis is to deliver the expected distribution of inversion count
for the permutations of the elements of a multiset (See Section 2.1.2) This section
presents some of terminologies and related concepts at a high level using the digits
0 to 9. It will be assumed that di ≤ dj for 1 ≤ i < j ≤ 5.

Let S = {00000, 00001, . . . , 99999} be the set of 5-digits numbers. For s ∈ S,
let Inv(s) be the inversion count of its digits. The multiplicities of the digits of
a 5 digit number naturally induces 7 partitions of 5, these being: ‘1-1-1-1-1’, ’2-
1-1-1’, ’2-2-1’, ’3-2’, ’3-1-1’, ’4-1’, ’5’. Let S1 ⊂ S be those numbers where the
digits are distinct (’1-1-1-1-1’), so that |S1| = 10 × 9 × 8 × 7 × 6 = 30, 240. For
s1 ∈ S1, 0 ≤ Inv(s1) ≤ 10. For instance, Inv(25689) = 0, Inv(94310) = 10.
We are interested in the relative frequency of the Inversion Frequency Distribution
(IFD) in IF (S1). The result is tabulated in the first row of Table 1.1 below. Here,
IF (S1) = (f0, f1, . . . , f10) where f0 = 1, f1 = 4, f2 = 9, . . . , f10 = 1. Note that
the sum of the row is 120 = 5! which is the factor to obtain actual frequencies.
S1 corresponds to the integer partition 5 = 1 + 1 + 1 + 1 + 1 and is denoted as
(1,1,1,1,1).

7



Next, we turn the attention to those 5-digit numbers S2 which have 4 distinct
digits with one repeated digit (’2-1-1-1’) (e.g., 03074) with |S2| = 10 × 9×8×7

3!
×

5!
2

= 50, 400. For s2 ∈ S2, 0 ≤ Inv(s2) ≤ 9. For instance, Inv(02256) = 0,
Inv(77641) = 9. S2 is denoted as (2, 1, 1, 1) and the relative frequency is given by
the second row in Table 1.1. Let σ(S) denote the permutations for the set S. For
instance, σ({1, 2, 2, 3, 4}) contains the 30 permutations of 1,2,2,3,4. The natural
question that arises is whether IF ({d1, d2, d2, d3, d4}) = IF ({d1, d1, d2, d3, d4})? A
formal proof is given by the Family Partition Theorem (Theorem 6.3) which provides
a direct proof that the IFD is invariant of the ranking of the elements.

Table 1.1 also extends the calculations for the partitions (1-2-2), (1-1-3), (2-3),
(1-4), (5). Although the table can be computed, the numbers quickly get out of
control for large number of digits. The final row is the weighted sum of the rows
by multiplying IFD by the size of the dataset.

Table 1.1: Inversion distribution table for n = 5

Inversion Frequency Distribution (IFD)
Partition 0 1 2 3 4 5 6 7 8 9 10 Count
1-1-1-1-1 1 4 9 15 20 22 20 15 9 4 1 30,240
1-1-1-2 1 3 6 9 11 11 9 6 3 1 50,400
1-2-2 1 2 4 5 6 5 4 2 1 10,800
1-1-3 1 2 3 4 4 3 2 1 7,200
2-3 1 1 2 2 2 1 1 900
1-4 1 1 1 1 1 450
5 1 10

Total 2002 5148 10098 14850 18150 17754 14850 9900 5148 1848 252 100,000

An important objective of the thesis is to construct IFDs at the partition level.
Observe also that in Table 1.1, IFD for a partition is symmetrical about the median
position. For instance, for the row ‘1-4’, f0 = f4, f1 = f3. However, it is not sym-
metrical for the column total. The thesis analyses the partition and inversion count
distribution for the digits of irrational numbers and computer generated numbers
in Chapter 9.

1.3 Generating function for the symmetric group

The inversion count distribution for each partition is associated with a generating
function. The IFD for the partition ‘1-1-1-1-1’ is (1, 4, 9, 15, 20, 22, 20, 15, 9, 4,
1) and this is represented by the generating polynomial where the coefficient of xk

corresponds to the frequency count of the inversion count k:

P (1−1−1−1−1) = 1+4x+9x2+15x3+20x4+22x5+20x6+15x7+9x8+4x9+x10 .
(1.1)

Note that the sum of coefficients of P (1-1-1-1-1) is 5! = 120.

1.4 Generating function for the partitions with repeating elements

For the partition ‘1-1-1-2’, the permutations of the sets S2 = {d1, d2, d3, d4, R} where
0 ≤ d1 ≤ d2 ≤ d3 ≤ d4 and R = d1, d2, d3, d4 spans all the 5-digits number with
one repeating digit. There are 10×9×8×7

3!
× 4 = 840 permutations of the elements of

S2. The collection of S2 is defined as the partition family for ‘1-1-1-2’. For fixed

8



values of d1, d2, d3, R, the 5!
2

= 60 permutations can be split into inversion counts of
0 to 9. It is natural to ask whether the IFD (1,3,6,9,11,11,9,6,3,1) accounts for the
permutations of both the sets S ′2 = {3, 3, 5, 7, 9}, S ′′2 = {0, 2, 6, 6, 8}? The Family
Partition Theorem (Theorem 6.3) provides a direct proof that the IFD is invariant
of the choice of elements. The Closed Form Theorem (Theorem 8.6) also provides
an indirect proof.
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Chapter 2

Notation, terminology and preliminary results

2.1 Notation

This section defines the notation and provides examples of how they are used.

2.1.1 Set

Let S = {a, b, c, . . .} be a set with total order a � b � c � · · · .
In the thesis, the set S will be the set of the first 10n positive integers, where

n ∈ Z+, represented as strings of length n:

n︷ ︸︸ ︷
0 · · · 0, . . . ,

n︷ ︸︸ ︷
9 · · · 9 .

In Chapter 9, the values n = 6, 7, 8, 9 will be used. For the purpose of this thesis,
the ordering � is simply the usual integer order a ≤ b ≤ c ≤ · · · .

2.1.2 Multiset

A multiset S is a collection of elements in which elements may be repeated. In
the thesis, the elements are formed by the concatenation of digits. The distinct
elements of a multiset will be denoted as {e1, e2, . . . , ek}. Unless otherwise stated,
it will be assumed that ei < ej when i < j.

Associated with each element ei is the multiplicity ni which is the number of
times the element is repeated in S. Given the elements e1, e2, . . . , ek, each multiset in
this thesis can be represented simply as S = [n1, n2, . . . , nk] where the multiplicities
are associated with each of the elements e1, e2, . . . , ek, respectively. For instance,
the set S = {a, a, a, b, c, c} can be represented as [3, 1, 2]. It may also be denoted as
{a3bc2}.

2.1.3 Rank of multiset R(S)

For a multiset S = [n1, n2, . . . , nk], the rank R(S) = k is the number of distinct
elements in S.

2.1.4 Permutation of multiset σ(S)

The permutation set formed by the elements of S is defined as σ(S). The elements
of σ(S) are called sequences. For instance if S = {a, b, b, c}, then

σ(S) = {abbc, abcb, acbb, babc, bacb, bbac, bbca, bcab, bcba, cabb, cbab, cbba} . (2.1)

10



2.1.5 Inversion count Inv(s)

The inversion count inv(s) of any sequence s = s1, . . . , sn of elements of s is the
number of pairs of elements in s which are out of order:

Inv(s) =
∣∣{(i, j) : 1 ≤ i < j ≤ N , si > sj}

∣∣ .
For a multiset, m(S) denotes the maximum inversion count of the permutations
of S. In (2.1), the element cbba has inversion count 5 and m(S) = 5. Lemma 2.2
expresses m(S) for each multiset S = [n1, n2, . . . , nk].

2.1.6 Inversion frequency distribution IF (S)

The Inversion Frequency Distribution (IFD) of multiset S is the (m(S) + 1)-tuple

IF (S) = (f0, f1, . . . , fm(S))

where, for 0 ≤ i ≤ m(S), the number fi is the number of sequences in σ(S) with
inversion count i:

fi =
∣∣{s ∈ σ(S) : Inv(s) = i}

∣∣ .
Table 2.1: Inversion frequency distribution for σ[2, 1, 1]

Inv(s) Permutation
0 aabc
1 aacb, abac
2 abca, acab, baac
3 acba, baca, caab
4 bcaa, caba
5 cbaa

From Table 2.1, the number of sequences with inversion counts 0, 1, 2, 3, 4, 5 are
1, 2, 3, 3, 2, 1, respectively. Thus,

f0 = 1 , f1 = 2 , f2 = 3 , f3 = 2 , f4 = 2 , f5 = 1 , m(S) = 5 , IF (S) = (1, 2, 3, 3, 2, 1) .

2.1.7 Generating polynomial P (S)

The generating polynomial P (S) is a representation of IF (S) = (f0, f1, . . . , fm(S)) in
polynomial form:

P (S) =

m(S)∑
i=0

fi x
i .

For the previous example where S = [2, 1, 1] and σ(S) = (1, 2, 3, 3, 2, 1),

P (S) = 1 + 2x+ 3x2 + 3x3 + 2x4 + x5 .

It has an important role in the closed form expression for, as well as the recursive
calculations of, the inversion count frequency distribution; see Theorem 7.2. The
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generating polynomial also acts an operator in the parent/child relationship between
partitions; see Examples 4.2 and 4.3.

As we are concerned only with the coefficients of the polynomial, it will be
assumed that x 6= 1.

2.1.8 Cayley’s notation

Cayley’s notation was used by P.A. MacMahon [10]. He remarked: “This notation
is exceeding illuminating, and is a striking example of mathematics that has gained
by an appropriate notation”. We will however use the modified notation G(n) to
avoid notational ambiguities later in the thesis.

G(n) = (xn − 1)(xn−1 − 1) · · · (x− 1), n ∈ Z+ .

2.1.9 Partition family

The partition family F(n1, n2, . . . , nk) is the collection of permutation sets on any
permutation of the multiplicities. For instance,

F(1, 2, 3) = {σ[1, 2, 3], σ[1, 3, 2], σ[2, 1, 3], σ[2, 3, 1], σ[3, 1, 2], σ[3, 2, 1]} .

The partition family establishes a one-to-many relationship between the positive
integer partitions of an integer n and the multisets with multiplicities given by the
permutations of the summands of the partition.

2.1.10 Partial integer partition count A(n, p,m)

Let A(n, p,m) be the number of partitions of a positive integer n into p parts each
of size at most m. For instance, A(6, 3, 4) is the number of partitions of 6 into 3
natural numbers, each of which is less than or equal 4, namely

6 = 4 + 2 + 0 ,

6 = 4 + 1 + 1 ,

6 = 3 + 3 + 0 ,

6 = 3 + 2 + 1 ,

6 = 2 + 2 + 2 .

There are five such partitions, so A(6, 3, 4) = 5. The number A(n, p,m) is an
extension of the Euler partition of the integer n into m parts [1]. The coefficients
of P (S) can be expressed in terms of A(n, p,m); see Corollary 5.5.

Next, we develop two results about the properties of the permutations of a multi-
set. These results will enable us to further the study of inversion count distribution
by the insertion method of the next chapter.

2.2 Supporting lemmas

We will first establish a well-known result for the cardinality for the permutation
set σ(S).

12



Lemma 2.1. Let S = [n1, n2, . . . , nk] be a multiset with n =
k∑
i=1

ni elements. Then

|σ(S)| = n!

n1!n2! · · ·nk!
.

Proof. Map the multiset S to a set S∗ so that if e ∈ S is repeated r times, then the

elements

r︷ ︸︸ ︷
e, e, . . . , e ∈ S are mapped to e(1), e(2), . . . , e(r) ∈ S∗. The number of such

mappings is n!. The positions of e ∈ S∗ can be permuted in r! ways to form the
same permutation in σ(S). By applying the multiplicative principle of counting,
the proof is now complete.

Recall that m(S) is the maximum inversion count of the sequences in the permu-
tation set σ(S). The next lemma establishes the value of m(S) in terms of the
multiplicities of the elements of S.

Lemma 2.2. Let S = [n1, n2, . . . , nk] be a multiset with k distinct elements. Then

m(S) =


0 , if k = 1
k−1∑
i=1

k∑
j=i+1

ninj , if k > 1

Proof 1: It is clear that if k = 1, then m(S) = 0.
For k > 1, the maximum inversion m(S) can be obtained by arranging the elements
of s ∈ σ(S) in reverse order which corresponds to the element s = s1s2 · · · sn, where
si ≤ sj, 1 ≤ i ≤ j ≤ |S|. Now, s consists of

(|S|
2

)
pairs and since each group of

identical elements has zero inversion count, the values
(
ni

2

)
must be subtracted from

the maximum possible inversion count. As |S| = n1 + n2 + · · ·+ nk, we have

m(S) =

(
|S|
2

)
−

k∑
i=1

(
ni
2

)

=

(
n1 + n2 + · · ·+ nk

2

)
−

k∑
i=1

(
ni
2

)

2m(S) =
k∑
i=1

ni ×

(
k∑
i=1

ni − 1

)
−

k∑
i=1

ni(ni − 1)

=

[
k∑
i=1

ni

]2
−

k∑
i=1

ni −
k∑
i=1

ni(ni − 1)

=
k∑
i=1

n2
i + 2

k−1∑
i=1

k∑
j=i+1

ninj −
k∑
i=1

ni −
k∑
i=1

n2
i +

k∑
i=1

ni

= 2
k−1∑
i=1

k∑
j=i+1

ninj .

�
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Proof 2: For k > 1, the maximum inversion m(S) can be obtained by arranging the
elements of s ∈ σ(S) in reverse order with s = ek · · · ek︸ ︷︷ ︸

nk

ek−1 · · · ek−1︸ ︷︷ ︸
nk−1

· · · e1 · · · e1︸ ︷︷ ︸
n1

.

For 2 ≤ i ≤ k, the element ei is followed by ni−1 + · · · + n1 elements of lower
ranking. We have

Inv(s) = nk(nk−1 + · · ·+ n1) + nk−1(nk−2 + · · ·+ n1) + · · ·+ n2(n1)

= n1(n2 + · · ·+ nk) + n2(n3 + · · ·+ nk) + · · ·+ nk−1nk

=
k−1∑
i=1

k∑
j=i+1

ninj .

�
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Chapter 3

Overview of the inversion distribution

3.1 Development history and overview

In 1750, G. Cramer [6] noticed, for a n × n matrix A = (ai,j), the relationship
between the sign of determinant detA and the parity of the inversion count:

det(A) =
∑

π∈σ(Sn)

(−1)Inv(π)
n∏
i=1

ai,πi , where π = (π1, π2, . . . , πn) .

The first-known work on inversion distribution for the symmetric group was pub-
lished by O. Rodrigues [14] in 1839, although it is generally attributed to Muir [13]
in 1899.

P (

k︷ ︸︸ ︷
1, 1, . . . , 1) =

k∏
i=1

(xi − 1)

(x− 1)k

=
G(k)

G(1) · · ·G(1)︸ ︷︷ ︸
k

See notation in (2.1.8)

(3.1)

For a multiset S = [n1, n2, . . . , nk], the objective of the thesis is to develop the
generating function for the inversion distribution of the sequences created by the
permutations of the elements of S. The generating function is given by

P (n1, n2, . . . , nk) =
G(n1 + n2 + · · ·+ nk)

G(n1)G(n2) · · ·G(nk)
. (3.2)

By setting ni = 1 for 1 ≤ i ≤ k, equation (3.2) reduces to equation (3.1). To
add to the words of P.A. MacMahon in Section 2.1.8, (3.2) is truly remarkable in
that G(n) can be considered as an object and is described as “the q-analogue of n!”
by R.P. Stanley [16]. Note that (3.2) can also assume the role of coefficients of a
multinomial expansion. In 1913, P.A. MacMahon [11] published an article on the
distribution of greater index, which is later named major index in his honor, for the
multiset with three distinct elements (k = 3) is given by equation (3.2). He went
on to prove that the distribution of major index for the permutations of a multiset
is identical to the inversion distribution [10]. As the technique naturally extends
to the general case, it was recognised by R.P. Stanley [16] as a complete solution.
The proof utilises the recursive parent/child relationship in the partition structure
which is formally proven in Theorem 7.2 for the general case.
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In 1967, L. Carlitz [3] independently provided a combinatoric proof for the
general case. The proof relies on the inversion distribution satisfying recursive
relations of the permutation by algebraic expressions. It delves into the parent/child
and peer to peer relationships between the permutations. R.P. Stanley [16, p.64]
describes this type of proof as “semi-combinatorial” where the proof is a verification
rather than a direct proof.

By using the Euler Pentagonal Theorem [1], D.E. Knuth [9] provided a beautiful
combinatorial closed form expression for the inversion count distribution of the
symmetric group. However, this form is of little computational value despite of its
beauty.

Let In(k) denote the number of elements with inversion count k in Sn:

In(k) =
∑
j≥1

(−1)j
[(
n+ k − uj − 1

k − uj

)
+

(
n+ k − uj − j − 1

k − uj − j

)]
(3.3)

where n ≥ k ≥ uj + j and

uj =
3j2 − j

2
.

Knuth also outlined ideas on obtaining the closed form for the permutation of
multisets by considering the mapping of inversions with the cycles of permutations.
R.P. Stanley [16] provided two ‘”semi-combinatorial” proofs. The first proof is
based on decomposition properties of the inversion distribution of a multiset. The
second proof is a mapping of permutation cycles.

In summary, the distribution of inversion for multisets expressed as q-nomial
form in (3.2) has been established by the combinations of the different methods
listed below:

• By the link between major index and permutation of a multiset.
• By decomposition of permutation of multiset into components.
• By recursive relationships between the permutations of a multiset.
• By mapping of permutation cycles in a multiset.

3.2 Thesis overview

In my early University days, I came across three women sorting the 60,000 enrolment
forms in a basketball court over two or three weeks. Their method was to segregate
the forms into alphabet piles around the court, sort the piles separately and then
consolidate the piles into a single pile. The initial curiosity inspired me to try to
measure the efficiency of the method. As the sort process untangles pairs of out
of order, it led to the development of a model for measuring the expected number
of pairs out of order. The outcome, given in this thesis, is a study of inversion
count distribution in order to define a mechanism for measuring how far a sequence
deviates from the sorted state.

The thesis develops the hierarchical relationship between integer partitions and
permutations of multisets. The many-to-many parent/child relationships between
the permutations of multisets are expressed by insertion of elements.
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For n ∈ Z, the integer partitions of n can be formed by inserting an element
into integer partitions of n − 1. A partition P = (n1, n2, . . . , nk) where ni ∈ Z,
1 ≤ i ≤ k and n1 + n2 + · · ·+ nk = n is the child of partitions Pi = (n′1, n

′
2, . . . , n

′
k),

1 ≤ i ≤ k where

n′m =

{
nm , m 6= i

nm − 1 , m = i .

Therefore, a child partition with k distinct elements has k parent partitions. A
partition with k distinct elements is the parent of k+1 partitions. This is illustrated
in Figure 3.1 below.

1-2-2-3 Child

0-2-2-3 1-1-2-3 1-2-1-3 1-2-2-2 Parent

Figure 3.1: Hierarchy of partition

In Figure 3.1 above, let S = {a, b, b, c, c, d, d, d}. The parents for the permutations
of S are the permutations of

S1 = {b, b, c, c, d, d, d} ,
S2 = {a, b, c, c, d, d, d} ,
S3 = {a, b, b, c, d, d, d} ,
S4 = {a, b, b, c, c, d, d} .

The thesis develops methods for calculating the inversion count for the permuta-
tions of a multiset when one or more copies of new element is inserted. It develops
decomposition techniques for the permutation of multiset by insertion processes.
The insertion process can also be linked to Ferrers diagrams which leads to a gen-
erating polynomial for integer partitions as a special case of the closed form of the
distribution of inversion count in Theorem 8.6.

The two types of insertions explored are the insertion of a single element into
first or last position of a sequence and also the insertion of multiple copies of a new
element into a sequence represented by the upper diagonal of a hypercube.
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For the permutations of a multiset, the inversion count frequency distribution
is represented by a generating polynomial. The thesis derives the generating poly-
nomial for two distinct elements in q-nomial form and uses it to form the building
blocks for a closed form expression of the inversion count distribution.

The inversion count distribution of the integer partitioning provides a link to
Ferrers diagrams. Lemma 8.10 established a generating polynomial for the integer
partition function p(n) in terms of the coefficients of the polynomial P ([n, n]).
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Chapter 4

The insertion process

For a multiset S, the elements s of the permutation set σ(S) are referred to as
sequences. This chapter demonstrates the process of building sequences by inser-
tion of elements to the sequences in a parent/children hierarchy. The objective
is to provide a methodology to calculate the inversion count distribution for the
permutations of a multiset.

The insertion position k of an element into a sequence of length n is counted
from left to right starting at zero, where 0 ≤ k ≤ n.

s1 s2 sn

0 1 2 n− 1 n

Insertion positions for a sequence

4.1 Insertion of single copy of a new element

The following example demonstrates the insertion process and its relationship to
the inversion count distribution.

Example 4.1. Let T = {b, b, d}. Then sequences in σ(T ) = {bbd, bdb, dbb} have
inversion counts 0,1,2, respectively. Therefore, IF (T ) = (1, 1, 1). Let S = {b, b, c, d}.
We will form σ(S) and IF (S) by inserting the element c into positions 0, 1, 2, 3 of
each element of σ(T ) as in Table 4.1 below. The notations for the table are:

• IP - Insertion Position.
• I(s), I(t) - Inversion count for the sequence s ∈ σ(S), t ∈ σ(T ).

Table 4.1: Inversion count distribution by insertion

t I(t) IP s I(s) IP s I(s) IP s I(s) IP s I(s)
bbd 0 0 cbbd 2 1 bcbd 1 2 bbcd 0 3 bbdc 1
bdb 1 0 cbdb 3 1 bcdb 2 2 bdcb 3 3 bdbc 2
dbb 2 0 cdbb 4 1 dcbb 5 2 dbcb 4 3 dbbc 3

By combining the columns I(s) in Table 4.1, we have

IF (T ) = IF ([2, 1]) = (1, 1, 1) (4.1a)

IF (S) = IF ([2, 1, 1]) = (1, 2, 3, 3, 2, 1) . (4.1b)
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4.2 Insertion of multiple copies of a new element

The next two examples demonstrate the insertion process for the construction of
IF (S) as a sum of its parent partitions. The examples are simplified so that the
inserting elements are either of the highest or lowest ranking. It will be seen in the
Partition Family Theorem (Theorem 6.6) that IF (S) is invariant of the ranking of
the inserting element.

Example 4.2. Let us calculate IF (S), IF (S ′), IF (S ′′) for

S = {b2cd} , S ′ = {ab2cd} , and S ′′ = {b2cde} .

Note that S is the parent of S ′ and S ′′. From Equation (4.1b), IF (S) = (1, 2, 3, 3, 2, 1).
By Lemma 2.2, the maximum inversion count for σ(S ′) is 9 and therefore IF (S ′)
is a 10-tuple. To calculate IF (S ′), note that S ′ is obtained from S by adding the
element a. Since the letter a is of lower ranking than b, c and d, insertion into
position k results in a permutation s′ ∈ σ(S ′) with insertion count k greater than
that of s. This inserts in IF (S ′) k zeros to the leftmost coordinates, then inserts
4− k zeros to the rightmost coordinates, where 0 ≤ k ≤ 4. Therefore,

IF (S ′) = (1, 2, 3, 3, 2, 1, 0, 0, 0, 0) Insertion into position 0
+ (0, 1, 2, 3, 3, 2, 1, 0, 0, 0) Insertion into position 1
+ (0, 0, 1, 2, 3, 3, 2, 1, 0, 0) Insertion into position 2
+ (0, 0, 0, 1, 2, 3, 3, 2, 1, 0) Insertion into position 3
+ (0, 0, 0, 0, 1, 2, 3, 3, 2, 1) Insertion into position 4
= (1, 3, 6, 9, 11, 11, 9, 6, 3, 1) .

Therefore, P (S ′) = 1 + 3x+ 6x2 + 9x3 + 11x4 + 11x5 + 9x6 + 6x7 + 3x8 + x9

= (1 + 2x+ 3x2 + 3x3 + 2x4 + x5)(1 + x+ x2 + x3 + x4)
= P (S)(1 + x+ x2 + x3 + x4) .

Note that P (S ′) is formed by multiplying the P (S) by the polynomial matching
the insertion, namely 1 + x+ x2 + x3 + x4.

Now, S ′′ is formed by inserting the element e into S. Since e is of higher
ranking than b, c, d, inserting e into position k of s ∈ σ(S) results in a permutation
s′′ ∈ σ(S ′′) with inversion count 4 − k greater than that of s. This inserts in
IF (S ′′) 4−k zeros to the leftmost coordinates, then inserts k zeros to the rightmost
coordinates. Therefore,

IF (S ′′) = (0, 0, 0, 0, 1, 2, 3, 3, 2, 1) Insertion into position 0
+ (0, 0, 0, 1, 2, 3, 3, 2, 1, 0) Insertion into position 1
+ (0, 0, 1, 2, 3, 3, 2, 1, 0, 0) Insertion into position 2
+ (0, 1, 2, 3, 3, 2, 1, 0, 0, 0) Insertion into position 3
+ (1, 2, 3, 3, 2, 1, 0, 0, 0, 0) Insertion into position 4
= (1, 3, 6, 9, 11, 11, 9, 6, 3, 1) .

Therefore, P (S ′′) = 1 + 3x+ 6x2 + 9x3 + 11x4 + 11x5 + 9x6 + 6x7 + 3x8 + x9

= (1 + 2x+ 3x2 + 3x3 + 2x4 + x5)(1 + x+ x2 + x3 + x4)
= P (S)(1 + x+ x2 + x3 + x4) .

20



Therefore,
σ(S ′′) = σ(S ′) and P (S ′) = P (S ′′) .

The next example demonstrates the insertion of multiple copies of an element
and also provides a geometric interpretation.

Example 4.3. We will calculate P (S), P (S ′), and P (S ′′) for

S = {bcd} , S ′ = {a2bcd} , and S ′′ = {a3bcd} .

The elements of σ(S) are {bcd, bdc, cbd, cdb, dbc, dcb} with inversion counts 0,1,1,2,2,3,
respectively. Therefore, IF (S) = (1, 2, 2, 1) and P (S) = 1 + 2x+ 2x2 + x3.

We will use T = {abcd} as an intermediate set to explain the insertion process.
Each item s′ ∈ σ(S ′) is formed by inserting 2 copies of a into positions i and j of
s ∈ σ(S), where 0 ≤ i ≤ j ≤ 3. Insertion of the first copy of element a into position
i of s ∈ σ(S) forms t ∈ σ(T ) where Inv(t) = Inv(s)+ i. Insertion of the second copy
of a into position j in s ∈ σ(S) forms s′ ∈ σ(S ′). Now, Inv(s′) = Inv(t) + j since
the position of the first copy of a does not affect the increase in inversion count of
the second copy of a. Therefore, Inv(s′) = Inv(t) + j = Inv(s) + i+ j. Insertion of
the two copies of a into position i, j shifts IF (S) to the right by i+ j.

Figure 4.1: Insertion of 2 copies of a into elements of σ(b, c, d)

0 1 2 3

0

1

2

3

0 1 2 3

2 3 4

4 5

6

i

j

In Figure 4.1, the horizontal axis (reading downwards) is i and the vertical
axis (reading across) is j. The circled value is i + j. Notice that the insertions
correspond to the upper diagonal of the square. For instance, inserting a into
position 1 and 3 of bdc (inversion count 1) gives badca (inversion count 5) and
5 = 1 + (1 + 3). Since increase of inversion by k ≥ 0 has the effect of multiplying
by xk, the insertion of two copies of a can be treated as multiplying P (S) by the
operator 1 + x+ 2x2 + 2x3 + 2x4 + x5 + x6.

P (S ′) = (1 + x+ 2x2 + 2x3 + 2x4 + x5 + x6)P (S)

= (1 + x+ 2x2 + 2x3 + 2x4 + x5 + x6)(1 + 2x+ 2x2 + x3)

= 1 + 3x+ 6x2 + 9x3 + 11x4 + 11x5 + 9x6 + 6x7 + 3x8 + x9

IF (S ′) = (1, 3, 6, 9, 11, 11, 9, 6, 3, 1) .

(4.2)

Note that in the factor in the RHS of first line of (4.2), the coefficient of xi, 1 <=
i ≤ 6 corresponds to the number of circles with value i in Figure 4.1.

21



Next, s′′ ∈ S ′′ is formed by inserting 3 copies of a into positions i, j, k of s ∈ S,
where 0 ≤ i ≤ j ≤ k ≤ 3. Insertion into positions i, j, k shifts (1, 2, 2, 1), the
inversion count frequency of S, to the right by i+ j + k.

Figure 4.2: Insertion of a, a, a into σ(b, c, d)

0 1 2 3

2 3 4

4 5

6

3 4 5

5 6

7

6 7

8 9

i=0 i=1 i=2 i=3

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0

1

2

3

j

k k k k

The triplets (i, j, k) form an upper diagonal of a 3 dimensional cube. Thus

P (S ′′) = (1 + x+ 2x2 + 3x3 + 3x4 + 3x5 + 3x6 + 2x7 + x8 + x9)P (S)

= (1 + x+ 2x2 + 3x3 + 3x4 + 3x5 + 3x6 + 2x7 + x8 + x9)(1 + 2x+ 2x2 + x3)

= 1 + 3x+ 6x2 + 10x3 + 14x4 + 17x5 + 18x6 + 17x7 + 14x8

+ 10x9 + 6x10 + 3x11 + x12

IF (S ′′) = (1, 3, 6, 10, 14, 17, 18, 17, 14, 10, 6, 3, 1)

In the examples above, we have limited the insertion element to be either of
lowest or highest ranking, relative to the elements in set S.
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Chapter 5

Preliminary results

5.1 The generating polynomial P (S)

The coefficients of the generating polynomial P (S) represent the inversion frequency
distribution of the permutations σ(S) of the multiset S. This polynomial provides
the algebraic tool for the insertion process as demonstrated in Examples 4.2 and 4.3.
In this chapter, we will further develop the properties of this generating polynomial.
In particular, the exact form for P (S) where S consists of two distinct elements
(R(S) = 2) is established.

The reader would have noticed that the coordinates fk are symmetrical un-
der reflection: (f0, f1, . . . , fm−1, fm) = (fm, fm−1, . . . , f2, f1). The following lemma
provides a formal proof of this fact.

Lemma 5.1. Let S be a multiset with IF (S) = {f0, f1, . . . , fm(S)}. Then fj =
fm(S)−j for j = 0, 1, . . . ,m(S).

Proof. Reflect s = s1s2 . . . s|S| ∈ σ(S) about its median position to form s′ =
s′1s
′
2 . . . s

′
|S| so that si = s′|S|−i+1, 1 ≤ i ≤ |S|.

For a pair (i, j), 1 ≤ i < j ≤ |S|, there are three cases to consider:

1. si = sj. The pair does not contribute to the inversion count.
2. si > sj. The pair is included in Inv(s).
3. si < sj. The pair is included in Inv(s′) since s′|S|−j+1 > s′|S|−i+1.

Therefore, Inv(s′) + Inv(s) = m(S), by reflection. For every sequence s ∈ σ(S)
where Inv(s) = m, there exists a unique sequence in s′ ∈ σ(S) where Inv(s′) =
m(S)−m. Thus for 0 ≤ k ≤ m(S),

fk = |s ∈ σ(S) : Inv(s) = k| = |s′ ∈ σ(S) : Inv(s′) = m(S)− k| = fm(S)−k .

The following corollary is used for analysing the inversion count mean and me-
dian of datasets in Chapter 9.

Corollary 5.2. For a multiset S, the meanX of the inversion frequency distribution
IF (S) = {f0, f1, . . . , fm(S)}, is equal to the median value M ; indeed,

X = M =
m(S)

2
.
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Proof. Let T =
m(S)∑
i=0

fi; then X = 1
T

m(S)∑
i=0

ifi.

There are two cases to consider:

Case 1: m(S) is even, and so m(S) = 2M , where M is the median.

X =
1

T

(
M−1∑
i=0

ifi +MfM +
2M∑

j=M+1

jfj

)

=
1

T

(
M−1∑
i=0

ifi +MfM +
M−1∑
i=0

(2M − i)fi

)
(by Lemma 5.1)

=
1

T

(
2M

M−1∑
i=0

fi +MfM

)

=
M

T

(
M−1∑
i=0

fi + fM +
M∑
i=0

fi

)

=
M

T

(
M−1∑
i=0

fi + fM +
2M∑

i=M+1

fi

)
(by Lemma 5.1)

=
M

T

2M∑
i=0

fi

= M .

Case 2: m(S) is odd, and so m(S) = 2M ′ + 1 where M ′ is the median.

X =
1

T

(
M ′∑
i=0

ifi +
2M ′+1∑
j=M ′+1

jfj

)

=
1

T

(
M ′∑
i=0

ifi +
M ′∑
i=0

(2M ′ + 1− i)fi

)

=
2M ′ + 1

T

M ′∑
i=0

fi

=
2M ′ + 1

2T

(
M ′∑
i=0

fi +
M ′∑
i=0

fi

)

=
2M ′ + 1

2T

(
M ′∑
i=0

fi +
2M ′+1∑
i=M ′+1

fi

)
(by Lemma 5.1)

=
2M ′ + 1

2
=
m(s)

2

Lemma 5.3 formalises the calculations of the insertion process described in Exam-
ples 4.2 and 4.3.
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Lemma 5.3. Let S be a multiset with k distinct elements and let S ′ = S ∪ em
where e < min(S) or e > max(S). Then

P (S ′) = P (S)

m|S|∑
i=0

A(i, |S|,m)xi

where A(i, |S|,m) is the number of partitions of the integer i into m parts each of
size at most |S|.

Proof. Suppose that e < min(S) and insert m identical copies of e into S. Let
ci denote the number of copies of e inserted into position i, where 0 ≤ i ≤ |S|
and 0 ≤ ci ≤ m. The insertion positions can be represented as a (|S| + 1) -tuple
c = (c0, c1, . . . , c|S|).

Since e /∈ S, the elements in S can be regarded as being identical in ranking for
the insertion process . In the formation of σ(S ′), each (|S|+1)-tuple (c0, c1, . . . , c|S|)
increases the inversion count of s ∈ σ(S) by

K =

|S|∑
j=0

jcj where 0 ≤ K ≤ m|S| . (5.1)

The maximum value of K = m|S| is obtained by inserting all the m copies of e into
position |S|. The application of (c0, c1, . . . , c|S|) to σ(S) inserts K zeros to the left
of IF (S) and appends M(S)−K zeros to the right of IF (S) to form IF (S ′).

For a fixed value of K, the count of tuples (c0, c1, . . . , c|S|) satisfying Equa-
tion (5.1) is given by A(K, |S|,m). Now group the tuples by their value of K, the
group increases the inversion count for each s ∈ S by K. This represents multi-
plying the coefficient of each term in P (S) by xK . The lemma now follows by the
definition of coefficients of P (S ′).

By similar argument, the lemma is also true if e > max(S).

5.2 Ferrers diagram

A Ferrers diagram [2] is a representation of an integer partition n

n = n1 + n2 + · · ·+ nk , n1 ≥ n2 ≥ · · · ≥ nk ≥ 0 , n1, n2, . . . , nk ∈ Z .

Figure 5.1 below shows the partitions of the integer 4. The circles in the south-east
diagonal are marked as red. The conjugate of the Ferrers diagram is obtained by
reflecting along this diagonal. The conjugate pairs are (1,1,1,1) and (4), (2,1,1)
and (1,3), and (2,2) and (2,2). The partition (2,2) maps to itself is termed as self
conjugate. By considering the reflection image along the diagonal, it is clear that
each Ferrers diagram has a unique conjugate.
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Figure 5.1: Ferrers diagram for n = 4

1-1-1-1 2-1-1 2-2 3-1 4

The insertion of n copies of an element (see Example 4.3) into the permutations
of a multiset can be represented by the partitions of a Ferrers diagram. In this
section, we will examine this link which leads to a generating polynomial for integer
partition in Lemma 5.4. Each partition counted by A(n, p,m) can be represented
as a Ferrers diagram for n with the restriction that the number of summands is no
more than p and the maximum value of each summand is m. To illustrate, Table 5.1
below demonstrates the relationship between A(10, 7, 5) and A(10, 5, 7) using the
correspondence between the conjugate pairs in the Ferrers diagram.

Table 5.1: A(10,7,5) and A(10,5,7)

A(10,5,7) A(10,7,5) A(10,5,7) A(10,7,5) A(10,5,7) A(10,7,5) A(10,5,7) A(10,7,5)
7-3 2-2-2-1-1-1-1 7-2-1 3-2-1-1-1-1-1 7-1-1-1 4-1-1-1-1-1-1 6-4 2-2-2-2-1-1
6-3-1 3-2-2-1-1-1 6-2-2 3-3-1-1-1-1 6-2-1-1 4-2-1-1-1-1 6-1-1-1-1 5-1-1-1-1-1
5-5 2-2-2-2-2 5-4-1 3-2-2-2-1 5-3-2 3-3-2-1-1 5-3-1-1 4-2-2-1-1
5-2-2-1 4-3-1-1-1 5-2-1-1-1 5-2-1-1-1 4-4-2 3-3-2-2 4-4-1-1 4-2-2-2
4-3-3 3-3-3-1 4-3-2-1 4-3-2-1 4-3-1-1-1 5-2-2-1 4-2-2-2 4-4-1-1
4-2-2-1-1 5-3-1-1 3-3-3-1 4-3-3 3-3-2-2 4-4-2 3-3-2-1-1 5-3-2
3-2-2-2-1 5-4-1 2-2-2-2-2 5-5

Lemma 5.4.
A(n, p,m) = A(n,m, p)

Proof. A(n, p,m) is the number of integer partitions of n into p blocks of size at
most m. Each such integer partitions can be represented as a Ferrers diagram that
represents an integer partition of n into m blocks of size at most p. This is a
bijection.

Corollary 5.5 below is the special case of Lemma 5.3 in which the multiset S
consists of two distinct elements.

Corollary 5.5. Let S ′ = [n1, n2]. Then

P (S ′) =

n1n2∑
i=0

A(i, n1, n2)x
i =

n1n2∑
i=0

A(i, n2, n1)x
i . (5.2)
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Proof. Let S = [n1] and S ′ = [n1, n2]. Since P (S ′) = 1, apply Lemmas 5.3 and 5.4,
we have

P (S ′) = P (S)

n1n2∑
i=0

A(i, n1, n2)x
i

=

n1n2∑
i=0

A(i, n1, n2)x
i

=

n1n2∑
i=0

A(i, n2, n1)x
i .
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Chapter 6

Partition family theorem

This chapter presents the Partition Family Theorem (Theorem 6.6) below which
states that multisets belonging to the same partition family have the same inversion
count frequency distribution.

6.1 Partition family with two distinct elements

The following lemma forms the base case for a proof by induction of the Parti-
tion Family Theorem. It also lays the groundwork for calculating the generating
polynomial P (S) by recursion as well as deriving its closed form.

Lemma 6.1. Let S = [n1, n2] and S ′ = [n2, n1], where n1, n2 are positive integers.
Then IF (S) = IF (S ′) and P (S) = P (S ′).

Proof 1: Write IF (S) = (f0, f1, . . . , fM) and IF (S ′) = (f ′0, f
′
1, . . . , f

′
M ′).

By Lemma 2.2, we have M = M ′. Denote M = m(S) = m(S ′). Then, Corol-
lary 5.5 implies that, for 0 ≤ i ≤M ,

fi = A(i, n1, n2) = A(i, n2, n1) = f ′i .

It follows that IF (S) = IF (S ′) and P (S) = P (S ′). �

Proof 2: This is an elementary proof based on the inversion count of the elements
in a sequence. Let S = {an1bn2} and S ′ = {an2bn1} and set n = n1 + n2. Then for
an element s ∈ σ(S), we form the unique element s′ ∈ σ(S ′) by the two following
operations (A) and (B).

(A) Reflect s to form the permutation s∗.
(B) Replace the elements a by b and b by a in s∗ to form s′ ∈ σ(S ′).

Let x be in position k1 and y be in position k2 in s. Consider the two cases:

Case 1: If x = y, then the pair aa is transformed into bb and vice versa, and,
therefore, the contribution of the inversion count of this pair to the inversion count
does not change.

Case 2: If x 6= y, then consider the three subcases (a), (b), (c) below, in which
M

| is
the median position in each diagram, and (A) and (B) corresponds the reflection
and swap operations as described above. Note that if n is even, then the median
position is not occupied by an element.

(a) x or y is at the median position: Suppose that x is at the median; then

(..
M
x..y..)

(A)7−→ (..y..
M
x..)

(B)7−→ (..x..
M
y ..).

(b) k1, k2 are on the same side of the median position: Then

(..x..y..
M

| ..) (A)7−→ (..
M

| ..y..x..) (B)7−→ (..
M

| ..x..y..)
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(c) k1, k2 are on the opposite sides of the median position: Then

(..x..
M

| ..y..) (A)7−→ (..y..
M

| ..x..) (B)7−→ ..x..
M

| ..y..)
In all three cases, the contribution of the pair x, y to the inversion count does

not change. Since the mapping S 7−→ S ′ is a bijection and since it preserves the
inversion count, it follows that IF (S) = IF (S ′) and P (S) = P (S ′). �

The next corollary is an important result for the iterative process in the calcu-
lation of IF (S). A generalised result for P (m,n) is given later by Lemma 8.5.

Corollary 6.2. For any positive integer n,

P (n, 1) = P (1, n) = 1 + x+ · · ·+ xn =
xn+1 − 1

x− 1
. x 6= 1

Proof. Let S = {an} and S ′ = {anb}. Note that σ(S) has only one element s =
n︷ ︸︸ ︷

aa . . . a and P (S) = 1. Then each element s′ ∈ σ(S ′) is formed by inserting a copy
of b into position i of s, where 0 ≤ i ≤ n:

s =

i︷ ︸︸ ︷
a . . . ab

n−i︷ ︸︸ ︷
a . . . a .

By inserting b into position i, each element to the right of b increases the
inversion count of s by 1. Since σ(S ′) consists of n+ 1 elements: one with element
b in position i for each 0 ≤ i ≤ n. Therefore,

P (n, 1) = 1 + x+ · · ·+ xn .

Hence by Lemma 6.1, P (1, n) = 1 + x+ · · ·+ xn.

Corollary 6.3 below proves that the insertion of a lower or higher ranking ele-
ment of any multiplicity to two multisets with the same inversion count frequency
distribution yield multisets with the same inversion count frequency distribution.
It will be used in the proof of the Partition Family Theorem to follow.

Corollary 6.3. Let S = [n1, n2, . . . , nk] and S ′ = [n′1, n
′
2, . . . , n

′
k] where {n1, n2, . . . , nk}

and {n′1, n′2, . . . , n′k} are permutations of each other , with IF (S) = IF (S ′). Let
eL, eH be elements such that eL < min(s),min(s′) and eH > max(s),max(s′), for
all s ∈ S, s′ ∈ S ′ and m ∈ Z+. Then

IF (S ∪ emL ) = IF (S ′ ∪ emL ) = IF (S ∪ emH) = IF (S ′ ∪ emH)
P (S ∪ emL ) = P (S ′ ∪ emL ) = P (S ∪ emH) = P (S ′ ∪ emH) .
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Proof. Let n =
∑
i

ni =
∑
i

n′i. By definition, IF (S) = IF (S ′) if and only P (S) =

P (S ′). Combining this with Lemma 5.3 gives

P (S ∪ emL ) = P (S)
nm∑
i=0

A(i,m, n)xi = P (S ′)
nm∑
i=0

A(i,m, n)xi = P (S ′ ∪ emL )

and P (S ∪ emH) = P (S)
nm∑
i=0

A(i,m, n)xi = P (S ′)
nm∑
i=0

A(i,m, n)xi = P (S ′ ∪ emH)

(6.1)

By Corollary 5.5,

P (S ∪ emL ) = P (S ∪ emH) (6.2)

P (S ′ ∪ emL ) = P (S ′ ∪ emH) . (6.3)

By Equation ( 6.1) and ( 6.2), we have

P (S ∪ emL ) = P (S ′ ∪ emL ) = P (S ∪ emH) = P (S ′ ∪ emH) .

6.2 Two sort processes α and β

For a sequence s of length n where the elements may be repeated, the α-sort and
β- sort processes are defined as follows:

• The α-sort arranges the first n− 1 elements in ascending order,
while position n in the sequence does not move.
• The β-sort arranges the last n− 1 elements in ascending order,

while position 1 in the sequence does not move.

These sort processes will be used for the proof in Theorem 6.6 and can be
combined together to sort a sequence of length n as shown below:

Example 6.4.

(A) (9,1,8,3,1,8,1,6)
α−→ (1,1,1,3,8,8,9,6)
β−→ (1,1,1,3,6,8,8,9)

(B) (9,1,8,3,1,8,1,0)
α−→ (1,1,1,3,8,8,9,0)
β−→ (1,0,1,1,3,8,8,9)
α−→ (0,1,1,1,3,8,8,9)

In the case of (B) where the lowest ranking element is in the last position, an
extra α-sort operation is required to complete the sort.

The following lemma is self-evident and is stated without proof.

Lemma 6.5. Let s = s1s2 . . . sn, n ≥ 3 be a sequence. Then the following opera-
tions will sort the elements of s into non-descending order.
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1. If sn > si for some 1 ≤ i ≤ n, , then the sort operations αβ arrange the
elements of s into non-descending order.

2. If sn ≤ si, for all 1 ≤ i ≤ n, , then the sort operations αβα arrange the
elements of s into non-descending order.

6.3 Partition Family Theorem

The theorem below asserts that the multisets belonging to the same partition family
have the same inversion count frequency distribution.

Theorem 6.6. LetN = [n1, n2, . . . , nk] andM = [m1,m2, . . . ,mk], where (n1, n2, . . . , nk)
and (m1,m2, . . . ,mk) are permutations of each other. Then

IF (N) = IF (M) and P (N) = P (M) .

Proof. The proof is by induction on the number of distinct elements k. Note that it
is valid to assume that the multisets M and N span over the same set of elements
{e1, e2, . . . , ek} where e1 ≤ e2 ≤ · · · ≤ ek. The case in which k = 2, that is, when
N = [n1, n2] and M = [n2, n1], is given by Lemma 6.1.

Assume that the theorem holds for all multisets with k − 1 distinct elements
with k ≥ 3 and consider the multisets M and N as in the theorem. Define
Z = [z1, z2, . . . , zk] to be the permutation of the multiplicities of M and N in
non-descending order. We will now prove that IF (M) = IF (Z) = IF (N).

We will first prove that the inversion count frequency is invariant under ap-
plication of the α-sort and of the β-sort. That is, if Y = [y1, y2, . . . , yk−1, yk] is
formed by applying the α-sort and β-sort to M = [m1,m2, . . . ,mk−1,mk], then
IF (M) = IF (Y ).

Denote M ′ = [m1,m2, . . . ,mk−1]. Arrange M ′ in nondecreasing order to form
Y ′ = [y1, y2, . . . , yk−1]. By the induction hypothesis, IF (M ′) = IF (Y ′). It follows
from Corollary 6.3 that:

IF (M) = IF
(
M ′ ∪ emk

k

)
= IF

(
Y ′ ∪ eykk

)
= IF (Y ) . (6.4)

Denote M ′′ = [m2,m3, . . . ,mk] Arrange M ′′ to form Y ′′ in nondecreasing order
to form Y ′′ = [y2, y3, . . . , yk]. By the induction hypothesis, IF (M ′′) = IF (Y ′′). Then
it follows from Corollary 6.3 that:

IF (M) = IF
(
em1
1 ∪M ′′) = IF

(
ey11 ∪ Y ′′

)
= IF (Y ) . (6.5)

By Lemma 6.5, the application of αβα-sort to the multiset M results in the
sorted multiset Z. By Equations (6.4) and (6.5), we have IF (M) = IF (Z). By the
same arguments above for N , we also have IF (N) = IF (Z). Therefore, IF (N) =
IF (M), and induction concludes the proof.

For the purpose of calculating inversion distribution, a very important corollary
of Theorem 6.6 is that when inserting an element e of multiplicity n into a multiset
S to form S ′, it is valid to assume that it is either of higher ranking or lower
ranking than all the elements in S. In practice, it is easier to form a new sequence
by inserting the lowest order element using Lemma 5.3.
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Corollary 6.7. Let S be a multiset and write S ′ = S ∪ enα and S ′′ = S ∪ enβ where
eα, eβ /∈ S. Then

IF (S ′) = IF (S ′′) and P (S ′) = P (S ′′) .

Proof. This result has been established in Corollary 6.3 where eα, eβ are both either
of higher ranking or of lower ranking than the elements of S. Since the multisets S ′

and S ′′ belong to the same partition family, then by Theorem 6.6, IF (S ′) = IF (S ′′).
By definition, it follows that P (S ′) = P (S ′′).
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Chapter 7

Parent-child relationship between partition families

Lemma 5.3 demonstrates a process of constructing σ(S) incrementally by inserting
many copies of a new element of either the lowest or highest ranking. This section
introduces a method of insertion into the leading position of a sequence which
encapsulates the parent/child relationship between partitions of length n and those
of n+ 1.

Example 7.1. We show how to derive the equality

P (1, 1, 3, 2) = P (1, 3, 2) + xP (1, 3, 2) + x2P (1, 1, 2, 2) + x5P (1, 1, 3, 1) .

Let S = {a, b, c, c, c, d, d}. Then the parents of σ(S) are

σ(Sa) = σ(b, c, c, c, d, d)

σ(Sb) = σ(a, c, c, c, d, d)

σ(Sc) = σ(a, b, c, c, d, d)

σ(Sd) = σ(a, b, c, c, c, d) .

The mapping F : ∪
α∈S

σ(Sα) → σ(S) which appends α to the beginning of the

sequences in σ(Sα) is surjective since if s ∈ σ(S), the element in the leading position
in s is a, b, c, d. It is also an injective mapping since each parent element in sα ∈
σ(Sα) is mapped to a unique element in σ(S). Therefore, F is a bijective mapping.

Let K(α) denote the number of elements in S of lower ranking than α. The
insertion of α into position 0 of a sequence in σ(Sα) forms s ∈ σ(S) where Inv(s) =
Inv(sα) + K(α). Since K(a) = 0, K(b) = 1, K(c) = 2, and K(d) = 5, the equality
now follows from the definition of P (S).

In fact, we have the following general result:

Theorem 7.2. Recursive expression for generating polynomial P (S)
Let S = [n1, n2, . . . , nk] and, for each 0 ≤ m ≤ k, define Sm = [n′m,1, . . . , n

′
m,k] where

n′m,i =

{
ni , i 6= m

ni − 1 , i = m.
(7.1)
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Then P (S) =
k∑

m=0

xcmP (Sm) where

cm =


0 , m = 0
m−1∑
j=1

n′m,j , m > 0 .
(7.2)

Proof. Let {e1, . . . , ek} be the distinct elements of S and assume that ei < ej when
i < j. Let s = s1s2 . . . s|S| ∈ σ(S), and suppose that s1 = em, where 1 ≤ m ≤ k.
Then s = ems

′ where s′ = s2 . . . s|S| ∈ σ(Sm), and Sm is defined by (7.1).
Define Fm : σ(Sm) → σ(S) to be the mapping which appends em to position 1

of the sequences in σ(Sm) and let

F =
⋃

1≤m≤k

Fm .

This mapping is surjective since the position 1 of each element s ∈ σ(S) is equal
to em for some m where 1 ≤ m ≤ k and the remaining positions satisfies s′ =
s2 . . . s|S| ∈ σ(Sm). If F(u) = F(v), where u = u1u2 . . . u|S| and v = v1v2 . . . v|S|,
then u1 = v1, and u2 . . . u|S| = v2 . . . v|S|. Therefore, u = v and F is injective. It
follows that F is a bijective mapping.

Let s = ems
′
m where s′m ∈ Sm,

Inv(s) = Inv(s′m) + Number of elements in s′m of higher ranking than em

= Inv(s′m) +
m−1∑
j=1

n′m,j

= Inv(s′m) + cm . [By (7.2)]

By the definition of IF (S) in Section 2.1.6, the above expression can be written as

IF (S) =
k∑

m=0

IF (Sm) + cm .

It follows from the definition of P (S) that

P (S) =
k∑

m=0

xcmP (Sm) .

Using Theorem 7.2, the inversion count frequency distributions are calculated it-
eratively for the digits 0 · · · 0︸ ︷︷ ︸

n

, . . . , 9 · · · 9︸ ︷︷ ︸
n

where n = 5, 6, 7, 8, 9, 10; see Tables 1.1, A1–

A7.
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Chapter 8

A closed form expression for the generating function P (S)

8.1 A closed form expression for the generating function P (S)

This chapter delivers a closed form expression for the generating function P (S)
where S = [n1, n2, . . . , nk]. To this end, Theorem 6.6 may be applied and allows
us to assume that ni ≤ nj and ei < ej for 1 ≤ i < j ≤ k. Recall that the ranking
R(S) of S is the number of distinct elements in S. The Decomposition Lemma
(Lemma 8.2) decomposes a generating polynomial for a multiset of ranking k as
a product of k − 1 generating polynomials composed of two elements in the form
P (n,m). The formula for generating polynomial where R(S) = 2 (Lemma 8.5)
provides a closed form for P (n,m). The two lemmas combine together to provide
a closed form expression for P (S); see Theorem 8.6.

Example 8.1. Show that P (1, 2, 3) = P (1, 5)P (2, 3).

Let S = {a, b, b, c, c, c}, T = {a, x, x, x, x, x}, U = {b, b, c, c, c}.
A sequence s ∈ σ(S) is obtained from a unique element u ∈ σ(U) by an insertion

position for a into u. Since b and c are of higher ranking than a, these elements can
be considered as having an identical higher ranking for the purpose of the insertion.
u is constructed by the insertion of 2 copies of b into 3 copies of c. Therefore,

Inv(s) = Inv(u) + insertion position of a into u

= Inv(u) + insertion position of a into 5 x’s.
(8.1)

By using (8.1) to sum over all the sequences s ∈ σ(S) and by the definition of P(S),
it follows that P (S) = P (T )P (U).

The example can also be verified algebraically.
By corollary 6.2, P (T ) = 1 + x+ x2 + x3 + x4 + x5.
By Table A1, P (U) = 1 + x+ 2x2 + 2x3 + 2x4 + x5 + x6 and
P (S) = 1+2x+4x2+6x3+8x4+9x5+9x6+8x7+6x8+4x9+2x10+x11 = P (T )P (U).

Lemma 8.2. (Decomposition Lemma)
Let n1, n2, . . . , nk ∈ Z+, where k ≥ 3. Then

P (n1, n2, . . . , nk) =
k−1∏
i=1

P (ni, ni+1 + · · ·+ nk) . (8.2)

Proof. By Theorem 6.6, we can assume elements satisfy ei < ej, 1 ≤ i ≤< k The
coefficients of P (n1, n2) form the inversion count frequency distribution for two
distinct elements e1, e2 with multiplicity of n1, n2 respectively.
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Another way of looking at P (n1, n2) is to consider the inversion count frequency
distribution resulting from inserting n1 copies of the element e1 into n2 copies of
the element e2. The result is a permutation in σ[n1, n2]. Each such sequence is of
length n1 + n2.

Now, P (n1, n2, n3) arises from the insertion of n1 copies of the element e1 into
elements of σ[n2, n3]. Since e1 is of lower ranking than e2, e3, these elements can be
thought as having identical higher ranking for insertion purposes.

P (n1, n2, n3) = P (n1, n2 + n3)P (n2, n3) . (8.3)

Assume that (8.2) holds form = k. Any permutation of the multiset [n1, n2, . . . , nk+1]
is formed by inserting n1 copies of e1 into some permutation s ∈ σ(n2 + n3 + · · ·+
nk+1). Therefore,

P (n1, n2, . . . , nk+1) = P (n1, n2 + · · ·+ nk+1) P (n2, . . . , nk+1)

= P (n1, n2 + · · ·+ nk+1)
k∏
i=2

P (ni, ni+1 + · · ·+ nk+1) .

By induction,

P (n1, n2, . . . , nk+1) =
k∏
i=1

P (ni, ni+1 + · · ·+ nk+1) .

The following example demonstrates an application of Lemma 8.2.

Example 8.3.

P (1, 2, 2, 3, 4) = P (1, 2 + 2 + 3 + 4) P (2, 2 + 3 + 4) P (2, 3 + 4) P (3, 4)

= P (1, 11) P (2, 9) P (2, 7) P (3, 4)

= P (11, 1) P (9, 2) P (7, 2) P (4, 3) .

The next example demonstrates a technique for calculating P (n,m).

Example 8.4. Show that

P (2, 2) =
(x4 − 1)(x3 − 1)

(x2 − 1)(x− 1)
.

Any sequence s ∈ σ[2, 3] can be considered to be the permutation of 2 copies of e1
and 3 copies of e2.

1. If s = e1s
′, then Inv(s) = Inv(s′), where s′ ∈ σ[1, 3].

2. If s = e2s
′, then Inv(s) = Inv(s′) + 2, where s′ ∈ σ[2, 2].

By partitioning according to the element in the first position of s ∈ σ[2, 3] , we have

P (2, 3) = P (1, 3) + x2P (2, 2) . (8.4)
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Similarly, by considering s ∈ σ[3, 2], s is the permutation of the 3 copies of e1 and
2 copies of e2, so

P (3, 2) = P (2, 2) + x3P (1, 3) . (8.5)

By Lemma 6.1, P (2, 3) = P (3, 2) and P (1, 3) = P (3, 1). Also, by Corollary 6.2

P (3, 1) = 1 + x+ x2 + x3 =
x4 − 1

x− 1
. (8.6)

By equating the right hand sides of (8.4) and (8.5) and using (8.6),

P (2, 2) =
(x3 − 1)P (3, 1)

x2 − 1

=
(x4 − 1)(x3 − 1)

(x2 − 1)(x− 1)
.

The following lemma provides a closed form expression for the generating poly-
nomial P (n,m).

Lemma 8.5. Closed form expression for P (S) where R(S) = 2
For n,m ∈ Z+,

P (n,m) =
G(n+m)

G(n)G(m)
where G(n) =

n∏
i=1

(xi − 1) . (8.7)

Proof. Let S = {en+1
1 em2 }, S ′ = {em1 en+1

2 } where e1 < e2. By Lemma 6.1, IF (S) =
IF (S ′).

Case (1): Let s ∈ σ({en+1
1 em2 }). There are two subcases for the element in position

1 of s.

A. If s = e1s
′, where s′ ∈ σ[n,m], then Inv(s) = Inv(s′).

B. If s = e2s
′, where s′ ∈ σ[n+ 1,m− 1], then Inv(s) = Inv(s′) + n+ 1.

By Theorem 7.2, we have

P (n+ 1,m) = P (n,m) + xn+1P (n+ 1,m− 1) . (8.8)

Case (2): Let s ∈ σ({en+1
2 em1 }). By a similar argument to the previous case, we

have
P (n+ 1,m) = P (n+ 1,m− 1) + xmP (n,m) . (8.9)

By equating the right hand sides of (8.8) and (8.9), we see that

P (n,m) =
xn+1 − 1

xm − 1
P (n+ 1,m− 1) . (8.10)
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By applying (8.10) repeatedly, we have

P (n,m) =
(xn+1 − 1)(xn+2 − 1)

(xm − 1)(xm−1 − 1)
P (n+ 2,m− 2)

=
(xn+1 − 1)(xn+2 − 1)(xn+3 − 1)

(xm − 1)(xm−1 − 1)(xm−2 − 1)
P (n+ 3,m− 3)

...

=
m∏
i=1

(xn+i − 1)

(xm+1−i − 1)
P (n+m, 0)

=
m∏
i=1

(xn+i − 1)

(xm+1−i − 1)

=

m∏
i=1

(xn+i − 1)

m∏
i=1

(xi − 1)

=

m∏
i=1

(xn+i − 1)

m∏
i=1

(xi − 1)

×

n∏
i=1

(xi − 1)

n∏
i=1

(xi − 1)

=

n+m∏
i=1

(xi − 1)

m∏
i=1

(xi − 1)
n∏
i=1

(xi − 1)

=
G(n+m)

G(n)G(m)
.

This completes the proof.

We now finally consider the main result of the thesis, namely a closed form
expression for the generating polynomial P (n1, n2, . . . , nk).

Theorem 8.6. A closed form expression for P (n1, n2, . . . , nk)
For n1, n2, . . . , nk ∈ Z+,

P (n1, n2, . . . , nk) =
G(n1 + n2 + · · ·+ nk)

G(n1)G(n2) · · ·G(nk)
.
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Proof. By Lemma 8.2 and Lemma 8.5,

P (n1, n2, . . . , nk)

= P (n1, n2 + · · ·+ nk)P (n2, n3 + · · ·+ nk) · · ·P (nk−1, nk)

=
G(n1 + · · ·+ nk)

G(n1)G(n2 + · · ·+ nk)

G(n2 + · · ·+ nk)

G(n2)G(n3 + · · ·+ nk)
· · · G(nk−1 + nk)

G(nk−1)G(nk)

=
G(n1 + n2 + · · ·+ nk)

G(n1)G(n2) · · ·G(nk)
.

Note that the Partition Family Theorem (Theorem 6.6) was not used in the
proof of Theorem 8.6. Furthermore, the symmetry of P (n1, n2, . . . , nk) provides an
alternative proof to Theorem 6.6.

Example 8.7. Let us calculate P (1, 2, 3, 4):

P (1, 2, 3, 4) = P (1, 2 + 3 + 4)P (2, 3 + 4)P (3, 4) by Lemma 8.2

= P (1, 9)P (2, 7)P (3, 4)

= P (9, 1)P (7, 2)P (4, 3)

=
(x10 − 1)

(x− 1)
× (x8 − 1)(x9 − 1)

(x2 − 1)(x− 1)
× (x5 − 1)(x6 − 1)(x7 − 1)

(x3 − 1)(x2 − 1)(x− 1)
.

Therefore, cancelling and multiplying gives

P (1, 2, 3, 4) = 1 + 3x+ 8x2 + 17x3 + 33x4 + 57x5 + 93x6 + 141x7 + 204x8 + 280x9

+ 369x10 + 466x11 + 568x12 + 667x13 + 758x14 + 833x15 + 887x16 + 915x17

+ 915x18 + 887x19 + 833x20 + 758x21 + 667x22 + 568x23 + 466x24 + 369x25

+ 280x26 + 204x27 + 141x28 + 93x29 + 57x30 + 33x31 + 17x32 + 8x33

+ 3x34 + x35 .

The coefficients of P (1, 2, 3, 4) above agree with the row entry ‘4-3-2-1’ in Table A7
which is calculated using Theorem 6.6.

The original theorem by Muir [13] in 1899 for the permutation group Sn can be
recovered from Theorem 8.6 by setting ni = 1 for i = 1, 2, . . . , k.

Corollary 8.8. (Muir)

P (

k︷ ︸︸ ︷
1, 1, . . . , 1) =

1

(x− 1)k

k∏
i=1

(xi − 1) .

8.2 Integer partition polynomial

We will next establish the relationship between the coefficients of the generating
polynomial for P ([n, n]) and p(n), the integer partition of n. Recall that A(n, p,m)
is number of partitions of n into p parts of size at most m. It also corresponds
to the number of insertions of m elements into a sequence of length p where the
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sum of inversion count positions is equal to n. The ideas were demonstrated in
Examples 4.2–4.3 and formalised in Lemma 5.3.

Applying Corollary 5.5 with n1 = n2 = n gives

P ([n, n]) =
n2∑
i=0

A(i, n, n)xi .

For 0 ≤ i ≤ n, the insertion positions therefore corresponds to the integer partitions
of i.

Example 8.9. Let S = [6, 6]. By Theorem 8.6,

P (S) =
G(12)

G(6)G(6)
= 1 + x+ 2x2 + 3x3 + 5x4 + 7x5 + 11x6 + · · · .

The sum of coefficients of x0, x1, . . . , x6 correspond to p(1), p(2), . . . , p(6), the num-
ber of integer partitions of 1, 2, . . . , 6, respectively (see A000041 in the OEIS [15]).
In Table 8.1, the 11 partitions of the integer 6 are mapped to insertion positions as
shown.

Insertion Position
Partition 0 1 2 3 4 5 6
6 5 0 0 0 0 0 1
5+1 4 1 0 0 0 1 0
4+2 4 0 1 0 1 0 0
4+1+1 3 2 0 0 1 0 0
3+3 4 0 2 0 0 0 0
3+2+1 3 1 1 1 0 0 0
3+1+1+1 2 1 0 1 0 0 0
2+2+2 3 0 3 0 0 0 0
2+2+1+1 2 2 2 0 0 0 0
2+1+1+1+1 1 4 1 0 0 0 0
1+1+1+1+1+1 0 6 0 0 0 0 0

Table 8.1: Partition ↔ Insertion Position

Table 8.1 represents the 11 different possible ways of inserting 6 copies of e1
into the sequence e2e2e2e2e2e2. The possible insertion positions are 0, 1, . . . , 6. For
instance, the partition 3+2+1 corresponds insertion one copy of e1 into each of
position 3, 2, 1. The remaining three copies are inserted into position 0.

Lemma 8.10. Let P (S) =
n2∑
k=0

fk x
k = G(2n)

G(n)G(n)
be the generating polynomial of

S = [n, n]. Then fk = p(k) for each 0 ≤ k ≤ n.

Proof. Let S = {an bn}. Then each sequence in σ(S) is constructed by inserting n
copies of the element a into n copies of b into positions i = 0, 1, . . . , n. Let qi ≥ 0
denote the number of copies of a inserted into position i. Then

q0 + q1 + · · ·+ qn = n .
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Let I(k) be the set of (n+ 1)-tuples where the insertion results in an increase of k
in the inversion count. Note that the elements of I(K) are not necessarily in order.
Then

I(k) = {(q0, q1, . . . , qn) | q0 + q1 + · · ·+ qn = n,

n∑
i=0

i qi = k} .

Let J(k) be the set of integer partitions of k over m summands. Thus,

J(k) = {(p1, p2, . . . , pm) |
m∑
i=1

pi = k, p1, p2, . . . , pm ∈ Z+} .

For each partition π = (p1, . . . , pm) of k, let `i be the number of times that
integer i occurs in the partition π. Then

`i =
m∑
j=1

δ(i, pj) ,

where δ(i, pj) is the Kronecker delta. Define `0 = m −
m∑
i=1

`i and note that l0 ≥ 0.

Also, define

L(k) = {(`0, `1, . . . , `m) | `0 + `1 + · · ·+ `m = k,
m∑
i=0

i `i = k} .

Let ` = (`0, `1, . . . , `m) ∈ L(k) and let p = (p1, p2, . . . , pn) be a n-tuple which is
initially filled with zeros. LetMk : `→ p be the mapping that sequentially replaces
each set of `i leftmost zero coordinates in p by `i copies of i, for i = 1, 2, . . . ,m. The
resulting object Mk = p represents the insertion positions of n copies of b into n
copies of a such that the inversion count of the resultant sequence is k. Therefore,
c ∈ I(k) and so Mk is a mapping from L(k)→ J(k). By this construction, Mk is
injective.

For a given partition p = (p1, p2, . . . , pn) of S where p1 + p2 + · · · + pm = k,
let `i be the number of coordinates in p with the value i where 1 ≤ i ≤ m and let
`0 = k −

∑m
i=1 `i. Since ` = (`1, `2, . . . , `m) ∈ L(k), Mk is surjective. Furthermore,

we have L(k) = I(k). By the definition of the generating polynomial P (S), fk =
|I(k)| = |J(k)| for 0 ≤ k ≤ n. The proof is now complete.

Example 8.11. By proving and using an extension of the Euler Pentagonal The-
orem [1]

p(n) = p(n− 1) + p(n− 2)− p(n− 5)− p(n− 7) + · · · .

P.A. MacMahon [12] calculated by hand the values p(1), . . . , p(200), which took an
estimated 20,000 operations. By applying Lemma 8.10 with n = 200, we calculated

p(200) = 3, 972, 999, 029, 388

which took Matlab 2.4 seconds on a P7 Pentium Processor. This value has his-
torical significance since it was used to verify the Hardy-Ramanujan Asymptotic
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Formula [8] for integer partitions:

p(n) ≈ 1

4n
√

3
eπ
√

2n
3 .
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Chapter 9

Analysis of the distribution of sequences

9.1 Datasets

The purpose of this section is to analyse the fit of natural and computer gener-
ated sequences with the expected inversion frequency distribution at the integer

partitions level. The element sets are 10n digits of the numbers

n︷ ︸︸ ︷
0 . . . 0 to

n︷ ︸︸ ︷
9 . . . 9

for n = 6, 7, 8, 9, 10 extracted from consecutive digits of the datasets. Ten datasets
including six natural sequences and four computer generated sequences are used for
the thesis.

1. The 5,000,000th Fibonacci number with 1,044,938 digits created by a Python
application. Denote Fn as the nth Fibonacci number. Now Fn = Fn−1 +Fn−2,
n ≥ 3, so the final k ≥ 1 digits of Fn forms a cycle whenever a pair of
consecutive terms have the same values. Since there are 102k choices for the
consecutive pair, then it follows that the digits of the Fibonacci numbers must
form cycles. The cycle lengths for n = 1, 2 are 60, 300 respectively. For n ≥ 3,
the cycle is 1.5× 10n [17]. It is an interesting study to determine if the cycle
of digits affects the partition and inversion frequency distributions.

2. The first 5 million digits of
√

2 created by a python application.
3. Dataset is created by approximately the first 2 million digits of e [7].
4. The largest known prime at the time of writing, GIMPS prime 274,207,281 − 1

with 22,338,618 digits [8].
5. Dataset of 1, 437, 849 digits created by a Python application for 300000! with

the trailing zeros stripped off.
6. Dataset formed by the first billion digits of π.
7. Dataset of one billion digits created by Microsoft VBA (Visual Basic for Ap-

plication).
(i) The dataset MSA consisting of approximately 109 digit using a Visual

Basic for Application Version 1640.
(ii) It was discovered that rnd() call to return 9 digit numbers has a loop

of 100,663,295 irrespective of the seeding. The dataset MSB contains all
the digits of a single cycle in MSA.

8. The dataset MSC of 109 digits created by Visual C# 2012.
9. A dataset with 109 digits created by a Python 3.5 application. The Python

engine is based on entropic values of the environmental variables.
10. A dataset with 109 digits using the function randi() in MATLAB R2017b by

concatenating 10 digit numbers.
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Tables A24–A34 provide a breakdown of the mean inversion counts and the
frequency of the partition counts for each of the datasets. The application for the
data extraction and calculations is documented in Appendix A2.

For a dataset of size N , sequences of n consecutive digits are extracted from the
datasets as a sliding window where n = [log10N ] digits. For example, the dataset
for
√

2, n = [log10 5000000] = 6, the first number is obtained from positions 1 to 6,
the second number from positions 2 to 7, and the 49999995th number from positions
4999995 to 5000000.

The tests conducted in the thesis are the distribution of partition and the in-
version count for the datasets. The partition distribution is categorical data and
therefore normal distribution analysis cannot be applied to it. Preliminary study
of inversion distribution using Kurtosis count [18] suggests that the distribution is
asymptotically normal for large values of n. The Pearson’s χ2 testing [7] is chosen
because it does not assume normality although it does assume finite variances and
finite covariance which is the case for the datasets. It is applicable to categorical
data which can be classified into mutually exclusive classes where the probability
of each class is known. For instance, in the gaming industry, it can be used to test
loaded dice, slot machine randomness and the gravitational tilt of roulette tables.
The three χ2 tests conducted in this chapter are:

A Apply χ2 test of the actual partition probability in Table A24 to Table A34
with the expected partition distribution for the datasets in Table A8 and
Table A9.

B Apply χ2 test to the actual partition mean of inversion count in Table A24
to Table A34 for each partition of the datasets with the expected inversion
count mean.

C Apply χ2 test to the IFD for the dataset partitions with the calculated dis-
tributions in (Tables A10 to Table A23).

The following legends are used for the tables in this chapter.

1. χ2 - Pearson coefficient
2. DF - Degrees of freedom.
3. CV - Critical Value (χ2 value for 0.95)

9.2 χ2 test for the partition probability

The purpose of this section is to establish for a given value of n, the conformance
of the datasets to the expected partition probabilities. Tables A8–A9 tabulate
the probabilities that each partition occurs if we assume that each digit is chosen
uniformly at random for n = 6, 7, 8, 9, 10. In applying the χ2 test, the degree of
freedom is p(n)−1 where p(n) is the integer partition of n. The level of significance
is α = 0.95. The Pearson correlation coefficient is

χ2 =

Ip(n)∑
i=1

(Ei −Xi)
2

Ei
, (9.1)

where
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Ip(n) = Number of integer partitions of n.
Ei = Probability of partition i × size of dataset.

(See Tables A8–A9)
Xi = Actual population of the partition i in the dataset.

The null hypothesis H0 is that the population spread of the partition for the dataset
is consistent with the expected population spread. The alternative hypothesis H1

is that the population spread of the partition for the dataset is not consistent with
the expected population spread.

Table 9.1: χ2 test for the distribution of partitions for the datasets

Dataset Size Digits Ip(n) χ2 Conclusion
F5000000 1044930 6 11 0.73 H0

300000! 1437846 6 11 0.97 H1√
2 4999995 6 11 0.07 H0

e 2000063 6 11 0.26 H0

M49 22338612 7 15 0.95 H1

π 999999992 9 30 0.62 H0

MSCA 1000004008 9 30 1.00 H1

MSCB 100663295 8 22 0.59 H0

MSCC 1083333411 9 30 1.00 H1

Python 999995552 9 30 0.99 H1

MATLAB 999999991 9 30 1.00 H1

It is evident that the partition distributions for all the computer generated
sequences for the datasets do not satisfy the expected distributions.

9.3 χ2 test for the inversion count mean of the partition

For each dataset, the expected mean of the inversion count for each partition is
compared with the actual value. Corollary 5.2 proved that the expected inversion
mean for a partition is equal to the median.

For a given dataset, the χ2 test is applied over the partitions. In Tables A27–
A34, the mean value of the inversion count at the partition level is calculated and
are listed alongside of the expected mean. The χ2 test is applied to the partitions
of the datasets.

In applying the χ2 test, the degree of freedom is p(n) − 1 where p(n) is the
integer partition of n. The level of significance is α = 0.95. The Pearson correlation
coefficient is

χ2 =

Ip(n)∑
i=1

Pi(Ei −Xi)
2

Ei
, (9.2)

where

Ip(n) = Number of integer partitions of n
Ei = Expected mean value of the inversion count for the partition
Ei = Probability of partition i × size of dataset (see Tables A8–A9)
Xi = Actual mean of the partition i (see Tables A24–A34)
Pi = Population of partition i.
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The null hypothesis H0 is that the mean of the inversion count of the partition
for the dataset is consistent with the expected population mean. The alternative
hypothesis H1 is that the mean of the inversion count of the partition for the dataset
is not consistent with the expected population mean.

Table 9.2: Pearson test for inversion count mean by partition

Dataset DF χ2 P (χ2 < CV ) Hypothesis
F500000 10 12.62 0.75 H0

300000! 10 17.03 0.93 H0

M49 15 12.62 0.99 H1√
2 10 12.26 0.73 H0

e 10 7.70 0.34 H0

π 29 62.23 0.99 H1

MSA 29 990.55 1.00 H1

MSB 21 505.86 1.00 H1

MSC 29 44.91 0.97 H1

Python 29 43.72 0.96 H1

MATLAB 29 380.01 1.00 H1

9.4 χ2 test of the IFD for the datasets

In this section, we will analyse the fit of the inversion count distribution between the
calculated values in Tables A1–A7 and that of the ten datasets in Tables A10–A23.
The χ2 test is on the spread of the inversion count for each partition. For instance,
the dataset F5000000 contains 1044930 digits. The number of digits extracted from
the dataset n = [log10 1044930] = 6 which has 11 partitions. For each partitions in
Table A10, χ2 is calculated from the spread of inversion count. For the partition
[n1, n2, . . . , nk], the Pearson correlation coefficient is

χ2 =
M∑
i=0

(Ei −Xi)
2

Ei
, (9.3)

where

M = Maximum inversion count for partition (n1, n2, . . . , nk) (see Lemma 2.2)
Ei = Probability of inversion count i × size of partition (see Tables A1–A5)
Xi = Count of inversion count i in the partition (n1, n2, . . . , nk) for the dataset.

The null hypothesis H0 is that the population of the spread of the inversion count
for the a partition of the dataset is consistent with the spread of the expected
population. The alternative hypothesis H1 is that the population of the spread
of the inversion count for the a partition of the dataset is not consistent with the
spread of the expected population.

The detailed analysis for the datasets in Table 9.3 below can be found in Ta-
bles A10–A23 in the appendices.
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Table 9.3: χ2 inversion count analysis for the partitions of datasets

Partitions Partitions
Dataset Size No. digits Tested Failed
F5000000 1044930 6 11 1
300000! 1437846 6 11 0√

2 4999995 6 11 0
e 2000063 6 11 0
M49 22338612 7 15 1
π 999999995 6 11 1
π 999999994 7 15 1
π 999999993 8 22 3
π 999999992 9 30 3
MSA 1000004008 9 30 30
MSB 100663288 9 22 5
MSC 1083333411 9 30 4
Python 999995552 9 30 3
MATLAB 999999991 9 30 6

9.5 Summary of distributional tests

1. e and
√

2 passed all three tests.
2. F5000000 passed two of the three tests.
3. M49, π and 30000! passed one of the three tests.
4. Three partitions for π failed the χ2 test for the inversion count distribution

for 9 consecutive digits (n = 9). As a result, tests were also conducted for
n = 6, 7, 8 to determine the parent/child relationship for the failing partitions.
(A) For n = 6, the dataset passed 10 out 11 tests.

The partition (3,2,1) failed the χ2 test.
(B) For n = 7, the dataset passed 14 out 15 tests.

The partition (4,3) failed the χ2 test.
(C) For n = 8, the dataset passed 19 out 22 tests.

The partitions (1,1,1,1,1,1,1,1), (3-2-1-1-1), (4,4) failed the χ2 test.
(D) For n = 9, the dataset passed 27 out 30 tests.

The partitions (3-3-2-1), (4-2-2-1), (4-4-1) failed the χ2 test.
Note the parent/child relationships between the partitions (3-2-1) and (3-3-
2-1) and between (4-3), (4-4), (4-4-1).

5. All four computer generated sequences failed all three tests against the ex-
pected values.

6. The digits of dataset MSA contain repeated sets of the 100,663,295 digits and
failed all the partition tests. Let k be the repetition factor for MSA. In
Equation (9.2), by substituting Ei and Xi by kEi and kXi, respectively, χ2

increases by a factor of k. Thus, the repetition of data resulted in all the
partitions failing the χ2 test.
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Chapter 10

Conclusion

The first part of the thesis is a study of expected inversion distribution sequences
by insertion techniques. It provides an elementary and self-contained approach
to the structure of the permutations of multisets and the relationships. This ap-
proach makes this structure clearer and more accessible for readers than previous
approaches such as Stanley’s “semi-combinatorial” proof [16, p. 64]. The hierar-
chical structure of partitions and their relationships is summarised in the Entity
Relationship diagram below.

Figure 10.1: Entity Relationship Diagram

Integer Z

Partition
F(n1, n2, . . . , nk)

1-M

Multiset S

1-M
Permutation
of mul-
tiplicty

Sequence s

1-MPermutation
of S

Inv(s)
inversion

count

σ(S)

M-1

inversion

distribution

IF (n1, . . . , nk)

M-1

inversion

distribution

Generating
Poynomial

1-1

The closed form for the generating function is created by:

• Four tiers structure of integer → partition → multiset → sequence.
• Permutation of multiset by the ordering of elements.
• Permutation of multiset by the multiplicities.
• Insertion method as upper diagonal of hypercube.
• Insertion method into leading position of a sequence.
• Expansion of generating function as products of generating polynomial with

two distinct elements. (Polynomial of rank 2)
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• Closed form for generating polynomial P (n1, n2, . . . , nk).

The insertion method provided a tool for linking the Ferrer diagram in with
integer partition and as a result, a generating polynomial for integer partition was
delivered.

These are potential areas for further research:

1. Find an asymptotic function for P (n1, n2, . . . , nk). Preliminary studies indi-
cate that such a function is asymptotic normal. For the symmetric group

Sn = P (

n︷ ︸︸ ︷
1, 1, . . . , 1), Conger and Viswanath [4] gave the approximation func-

tion by a probabilistic approach:∣∣∣∣P( Inv(π)− 1
2

(
n
2

)√
n(n− 1)(2n+ 5)/12

≤ x

)
− φ(x)

∣∣∣∣ ≤ C√
n
.

(A) π is an element of the permutation group Sn.
(B) Inv(π) is the inversion count of the permutation.
(C) φ(x) is the standardised normal function.
(D) P () is the probability function.

2. Establish the asymptotic function for an integer n by summing all the parti-
tions by the probability of the partition. This could be a very difficult task.
Preliminary study indicates that the function is slightly skewed to the left.
The recommended approach is a probabilistic rather than deriving an exact
function.

3. Of lesser practical importance but higher in academic pursuit is a combinato-
rial closed form for P (n1, n2, . . . , nk) generalising Knuth’s pentagonal expan-
sion in (3.3).

4. Another method of measuring inversion count that is more pertinent to com-
puting science is to define the inversion count as the sum distance between
pairs of order. Sort algorithms such as the Bubble and Merge sorts [5] com-
pares (near) adjacent pairs and progressively reduce the distance between
pairs out of order on each pass.

5. The thesis assumes that each element has equal probability of being selected.
While this is applicable to digits of natural and computer generated sequence,
in the real world, the model needs to be adjusted by the probabilities of
elements being selected.

6. A partial sort is the ranking of top k items from a set of size of n. For
instance, an internet search may retrieve 10 million items but it is likely the
user will only want to see the first 100. The efficiency of a sort algorithm
is determined by the number of comparisions C(n, k). It is a rich topic of
practical importance.

The second part of the thesis is the analysis of inversion frequencies and partition
distributions were applied to computer generated (MATLIB, Python and Microsoft
VBA and C++) and natural sequences (

√
2, e, π, M49, n! and Fibonacci numbers).

The conclusions are:

• The natural sequences conform better than the computer generated sequences
in the expected values of partition and inversion frequency distributions.
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• There are some issues with the randomness of the first billion digits of π. It
could be an interesting study to increase the size of the database to determine
if the partitions failing the tests spur negative child patterns.
• The Microsoft randomiser for Visual Basic for Application produces repeated

patterns irrespective of seeding.
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A1 Supporting data tables

Table A1: IFD table for n = 6

Proba IFD
Partition -bility Mean SD 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1-1-1-1-1-1 0.15 7.5 2.66 1 5 14 29 49 71 90 101 101 90 71 49 29 14 5 1
1-1-1-1-2 0.45 7 2.61 1 4 10 19 30 41 49 52 49 41 30 19 10 4 1
1-1-2-2 0.23 6.5 2.57 1 3 7 12 18 23 26 26 23 18 12 7 3 1
2-2-2 0.01 6 2.52 1 2 5 7 11 12 14 12 11 7 5 2 1

1-1-1-3 0.1 6 2.48 1 3 6 10 14 17 18 17 14 10 6 3 1
1-2-3 0.04 5.5 2.43 1 2 4 6 8 9 9 8 6 4 2 1
3-3 0 4.5 2.29 1 1 2 3 3 3 3 2 1 1

1-1-4 0.01 4.5 2.22 1 2 3 4 5 5 4 3 2 1
2-4 0 4 2.16 1 1 2 2 3 2 2 1 1
1-5 0 2.5 1.71 1 1 1 1 1 1
6 0 0 0 1

In Tables A2–A7, k/M − k denotes the calculated inversion count frequency for fk
and fm(S)−k (see Lemma 5.1).

Table A2: Expected IFD for n = 7

Std. Max IFD k/M − k
Partition Probabilty Mean Dev Inv 0 1 2 3 4 5 6 7 8 9 10

1-1-1-1-1-1-1-1 0.06048 10.5 10.5 21 1 6 20 49 98 169 259 359 455 531 573
2-1-1-1-1-1 0.31752 10 10 20 1 5 15 34 64 105 154 205 250 281 292
2-2-1-1-1 0.31752 9.5 9.5 19 1 4 11 23 41 64 90 115 135 146
2-2-2-1 0.05292 9 9 18 1 3 8 15 26 38 52 63 72 74

3-1-1-1-1 0.10584 9 9 18 1 4 10 20 34 51 69 85 96 100
3-2-1-1 0.10584 8.5 8.5 17 1 3 7 13 21 30 39 46 50
3-2-2 0.00756 8 8 16 1 2 5 8 13 17 22 24 26
3-3-1 0.00504 7.5 7.5 15 1 2 4 7 10 13 16 17

4-1-1-1 0.01764 7.5 7.5 15 1 3 6 10 15 20 24 26
4-2-1 0.00756 7 7 14 1 2 4 6 9 11 13 13
4-3 0.000315 6 6 12 1 1 2 3 4 4 5

5-1-1 0.001512 5.5 5.5 11 1 2 3 4 5 6
5-2 0.000189 5 5 10 1 1 2 2 3 3
6-1 0.000063 3 3 6 1 1 1 1
7 0.000001 0 0 0 1
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Table A3: Expected IFD for n = 8

Std. Max IFD k/M − k
Partition Prob. Mean Dev Inv 0 1 2 3 4 5 6 7 8 9 10 12 13 14

1-1-1-1-1-1-1-1 0.018144 14 4.04 28 1 7 27 76 174 343 602 961 1415 1940 2493 3450 3736 3836
2-1-1-1-1-1 0.169344 13.5 4.01 27 1 6 21 55 119 224 378 583 832 1108 1385 1818 1918
2-2-1-1-1-1 0.31752 13 3.98 26 1 5 16 39 80 144 234 349 483 625 760 946 972
2-2-2-1-1 0.127008 12.5 3.95 25 1 4 12 27 53 91 143 206 277 348 412 486
2-2-2-2 0.005292 12 3.92 24 1 3 9 18 35 56 87 119 158 190 222 248

3-1-1-1-1-1 0.084672 12.5 3.93 25 1 5 15 35 69 120 189 274 369 465 551 651
3-2-1-1-1 0.169344 12 3.89 24 1 4 11 24 45 75 114 160 209 256 295 330
3-2-2-1 0.042336 11.5 3.86 23 1 3 8 16 29 46 68 92 117 139 156
3-3-1-1 0.014112 11 3.81 22 1 3 7 14 24 37 53 70 86 100 109
3-3-2 0.002016 10.5 3.77 21 1 2 5 9 15 22 31 39 47 53 56

4-1-1-1-1 0.021168 11 3.76 22 1 4 10 20 35 55 79 105 130 151 165
4-2-1-1 0.021168 10.5 3.73 21 1 3 7 13 22 33 46 59 71 80 85
4-2-2 0.001512 10 3.7 20 1 2 5 8 14 19 27 32 39 41 44
4-3-1 0.002016 9.5 3.64 19 1 2 4 7 11 15 20 24 27 29

4-2-2-1 0.0000315 8 3.46 16 1 1 2 3 5 5 7 7 8
5-1-1-1 0.0028224 9 3.49 18 1 3 6 10 15 21 27 32 35 36
5-2-1 0.0012096 8.5 3.45 17 1 2 4 6 9 12 15 17 18
5-3 0.0000504 7.5 3.35 15 1 1 2 3 4 5 6 6

6-1-1 0.0002016 6.5 3.04 13 1 2 3 4 5 6 7
6-2 0.0000252 6 3 12 1 1 2 2 3 3 4
7-1 0.0000072 3.5 2.29 7 1 1 1 1
8 0.0000001 0 0 9 1

Table A4: Expected IFD for n = 9, Part A

Std. Max Inversion count Frequency k/M − k
Partition Probabilty Mean SD Inv 0 1 2 3 4 5 6 7 8
1-1-1-1-1-1-1-1-1 0.0036288 18 4.8 36 1 8 35 111 285 628 1230 2191 3606
2-1-1-1-1-1-1-1 0.0653184 17.5 4.77 35 1 7 28 83 202 426 804 1387 2219
2-2-1-1-1-1-1 0.2286144 17 4.74 34 1 6 22 61 141 285 519 868 1351
2-2-2-1-1-1 0.190512 16.5 4.72 33 1 5 17 44 97 188 331 537 814
2-2-2-2-1 0.0285768 16 4.69 32 1 4 13 31 66 122 209 328 486
3-1-1-1-1-1-1 0.0508032 16.5 4.7 33 1 6 21 56 125 245 434 708 1077
3-2-1-1-1-1 0.190512 16 4.67 32 1 5 16 40 85 160 274 434 643
3-2-2-1-1 0.1143072 15.5 4.65 31 1 4 12 28 57 103 171 263 380
3-2-2-2 0.0063504 15 4.62 30 1 3 9 19 38 65 106 157 223
3-3-1-1-1 0.0254016 15 4.6 30 1 4 11 25 49 86 139 209 295
3-3-2-1 0.0127008 14.5 4.57 29 1 3 8 17 32 54 85 124 171
3-3-3 0.0002016 13.5 4.5 27 1 2 5 10 17 27 41 56 74
4-1-1-1-1 0.0190512 15 4.56 30 1 5 15 35 70 125 204 309 439
4-2-1-1-1 0.0381024 14.5 4.54 29 1 4 11 24 46 79 125 184 255
4-2-2-1 0.0095256 14 4.51 28 1 3 8 16 30 49 76 108 147
4-3-1-1 0.0063504 13.5 4.46 27 1 3 7 14 25 40 60 84 111
4-3-2 0.0009072 13 4.43 26 1 2 5 9 16 24 36 48 63
4-4-2 0.0002268 12 4.32 24 1 2 4 7 12 17 24 31 39
5-1-1-1-1 0.0038102 13 4.34 26 1 4 10 20 35 56 83 115 150
5-2-1-1 0.0038102 12.5 4.31 25 1 3 7 13 22 34 49 66 84
5-2-2 0.0002722 12 4.28 24 1 2 5 8 14 20 29 37 47
5-3-1 0.0003629 11.5 4.23 23 1 2 4 7 11 16 22 28 34
5-4 0.0000113 10 4.08 20 1 1 2 3 5 6 8 9 11
6-1-1-1 0.0004234 10.5 3.99 21 1 3 6 10 15 21 28 35 41
6-2-1 0.0001814 10 3.96 20 1 2 4 6 9 12 16 19 22
6-3 0.0000076 9 3.87 18 1 1 2 3 4 5 7 7 8
7-1-1 0.0000259 7.5 3.45 15 1 2 3 4 5 6 7 8 8
7-2 0.0000032 7 3.42 14 1 1 2 2 3 3 4 4 4
8-1 0.0000008 4 2.58 8 1 1 1 1 1 1 1 1 1
9 0 0 0 0 1
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Table A5: Expected IFD for n = 9, Part B

Std. Max Inversion count Frequency k/M − k
Partition Probabilty Mean SD Inv 9 10 11 12 13 14 15 16 17 18
1-1-1-1-1-1-1-1-1 0.0036288 18 4.8 36 5545 8031 11021 14395 17957 21450 24584 27073 28675 29228
2-1-1-1-1-1-1-1 0.0653184 17.5 4.77 35 3326 4705 6316 8079 9878 11572 13012 14061 14614 14614
2-2-1-1-1-1-1 0.2286144 17 4.74 34 1975 2730 3586 4493 5385 6187 6825 7236 7378 7236
2-2-2-1-1-1 0.190512 16.5 4.72 33 1161 1569 2017 2476 2909 3278 3547 3689 3689 3547
2-2-2-2-1 0.0285768 16 4.69 32 675 894 1123 1353 1556 1722 1825 1864 1825 1722
3-1-1-1-1-1-1 0.0508032 16.5 4.7 33 1541 2087 2688 3304 3886 4382 4744 4935 4935 4744
3-2-1-1-1-1 0.190512 16 4.67 32 898 1189 1499 1805 2081 2301 2443 2492 2443 2301
3-2-2-1-1 0.1143072 15.5 4.65 31 518 671 828 977 1104 1197 1246 1246 1197 1104
3-2-2-2 0.0063504 15 4.62 30 295 376 452 525 579 618 628 618 579 525
3-3-1-1-1 0.0254016 15 4.6 30 394 500 605 700 776 825 842 825 776 700
3-3-2-1 0.0127008 14.5 4.57 29 223 277 328 372 404 421 421 404 372 328
3-3-3 0.0002016 13.5 4.5 27 93 110 125 137 142 142 137 125 110 93
4-1-1-1-1 0.0190512 15 4.56 30 589 750 910 1055 1171 1246 1272 1246 1171 1055
4-2-1-1-1 0.0381024 14.5 4.54 29 334 416 494 561 610 636 636 610 561 494
4-2-2-1 0.0095256 14 4.51 28 187 229 265 296 314 322 314 296 265 229
4-3-1-1 0.0063504 13.5 4.46 27 139 166 189 206 215 215 206 189 166 139
4-3-2 0.0009072 13 4.43 26 76 90 99 107 108 107 99 90 76 63
4-4-2 0.0002268 12 4.32 24 45 51 54 56 54 51 45 39 31 24
5-1-1-1-1 0.0038102 13 4.34 26 185 217 243 260 266 260 243 217 185 150
5-2-1-1 0.0038102 12.5 4.31 25 101 116 127 133 133 127 116 101 84 66
5-2-2 0.0002722 12 4.28 24 54 62 65 68 65 62 54 47 37 29
5-3-1 0.0003629 11.5 4.23 23 39 43 45 45 43 39 34 28 22 16
5-4 0.0000113 10 4.08 20 11 12 11 11 9 8 6 5 3 2
6-1-1-1 0.0004234 10.5 3.99 21 45 47 47 45 41 35 28 21 15 10
6-2-1 0.0001814 10 3.96 20 23 24 23 22 19 16 12 9 6 4
6-3 0.0000076 9 3.87 18 8 8 7 7 5 4 3 2 1 1
7-1-1 0.0000259 7.5 3.45 15 7 6 5 4 3 2 1
7-2 0.0000032 7 3.42 14 3 3 2 2 1 1
8-1 0.0000008 4 2.58 8
9 0 0 0 0

Table A6: Expected IFD for n = 10 Part A

Std. Max Inversion count frequency k/M − k
Partition Prob. Mean Dev Inv 0 1 2 3 4 5 6 7 8 9 10 11
1-1-1-1-1-1-1-1-1-1 0.00036288 22.5 5.59 45 1 9 44 155 440 1068 2298 4489 8095 13640 21670 32683
2-1-1-1-1-1-1-1-1 0.0163296 22 5.568 44 1 8 36 119 321 747 1551 2938 5157 8483 13187 19496
2-2-1-1-1-1-1-1 0.1143072 21.5 5.545 43 1 7 29 90 231 516 1035 1903 3254 5229 7958 11538
2-2-2-1-1-1-1 0.190512 21 5.523 42 1 6 23 67 164 352 683 1220 2034 3195 4763 6775
2-2-2-2-1-1 0.071442 20.5 5.5 41 1 5 18 49 115 237 446 774 1260 1935 2828 3947
2-2-2-2-2 0.00285768 20 5.477 40 1 4 14 35 80 157 289 485 775 1160 1668 2279
3-1-1-1-1-1-1-1 0.0217728 21 5.508 42 1 7 28 84 209 454 888 1596 2673 4214 6300 8982
3-2-1-1-1-1-1 0.1524096 20.5 5.485 41 1 6 22 62 147 307 581 1015 1658 2556 3744 5238
3-2-2-1-1-1 0.190512 20 5.462 40 1 5 17 45 102 205 376 639 1019 1537 2207 3031
3-2-2-2-1 0.0381024 19.5 5.439 39 1 4 13 32 70 135 241 398 621 916 1291 1740
3-3-1-1-1-1 0.031752 19.5 5.424 39 1 5 16 41 90 176 315 524 819 1213 1712 2313
3-3-2-1-1 0.0381024 19 5.401 38 1 4 12 29 61 115 200 324 495 718 994 1319
3-3-2-2 0.0031752 18.5 5.377 37 1 3 9 20 41 74 126 198 297 421 573 746
3-3-3-1 0.0014112 18 5.339 36 1 3 8 18 35 62 103 159 233 326 435 558
4-1-1-1-1-1-1 0.0127008 19.5 5.393 39 1 6 21 56 126 251 455 764 1203 1792 2541 3446
4-2-1-1-1-1 0.047628 19 5.37 38 1 5 16 40 86 165 290 474 729 1063 1478 1968
4-2-2-1-1 0.0285768 18.5 5.346 37 1 4 12 28 58 107 183 291 438 625 853 1115
4-2-2-2 0.0015876 18 5.323 36 1 3 9 19 39 68 115 176 262 363 490 625
4-3-1-1-1 0.0127008 18 5.307 36 1 4 11 25 50 90 150 234 345 484 649 835
4-3-2-1 0.0063504 17.5 5.284 35 1 3 8 17 33 57 93 141 204 280 369 466
4-3-3 0.0001512 16.5 5.22 33 1 2 5 10 18 29 46 66 92 122 155 189
4-4-1-1 0.0007938 16.5 5.188 33 1 3 7 14 26 43 67 98 137 182 232 284
4-4-2 0.0001134 16 5.164 32 1 2 5 9 17 26 41 57 80 102 130 154
5-1-1-1-1-1 0.00381024 17.5 5.204 35 1 5 15 35 70 126 209 324 474 659 875 1114
5-2-1-1-1 0.00762048 17 5.18 34 1 4 11 24 46 80 129 195 279 380 495 619
5-2-2-1 0.00190512 16.5 5.156 33 1 3 8 16 30 50 79 116 163 217 278 341
5-3-1-1 0.00127008 16 5.115 32 1 3 7 14 25 41 63 91 125 164 206 249
5-3-2 0.00018144 15.5 5.091 31 1 2 5 9 16 25 38 53 72 92 114 135
5-4-1 0.00009072 14.5 4.992 29 1 2 4 7 12 18 26 35 46 57 68 78
5-5 0.000001134 12.5 4.787 25 1 1 2 3 5 7 9 11 14 16 18 19
6-1-1-1-1 0.00063504 15 4.916 30 1 4 10 20 35 56 84 119 160 205 251 295
6-2-1-1 0.00063504 14.5 4.89 29 1 3 7 13 22 34 50 69 91 114 137 158
6-2-2 0.00004536 14 4.865 28 1 2 5 8 14 20 30 39 52 62 75 83
6-3-1 0.00006048 13.5 4.822 27 1 2 4 7 11 16 23 30 38 46 53 59
6-4 0.00000189 12 4.69 24 1 1 2 3 5 6 9 10 13 14 16 16
7-1-1-1 0.00006048 12 4.491 24 1 3 6 10 15 21 28 36 44 51 56 59
7-2-1 0.00002592 11.5 4.463 23 1 2 4 6 9 12 16 20 24 27 29 30
7-3 0.00000108 10.5 4.387 21 1 1 2 3 4 5 7 8 9 10 10 10
8-1-1 0.00000324 8.5 3.862 17 1 2 3 4 5 6 7 8 9 9 8 7
8-2 0.000000405 8 3.83 16 1 1 2 2 3 3 4 4 5 4 4 3
9-1 0.00000009 4.5 2.872 9 1 1 1 1 1 1 1 1 1 1
10 0.000000001 0 0 10 1
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Table A7: Expected IFD for n = 10 Part B

Inversion count Frequency k/M − k
Partition 12 13 14 15 16 17 18 19 20 21 21 22 23
1-1-1-1-1-1-1-1-1-1 32683 47043 64889 86054 110010 135853 162337 187959 211089 230131 243694 250749 250749
2-1-1-1-1-1-1-1-1 19496 27547 37342 48712 61298 74555 87782 100177 110912 119219 124475 126274 124475
2-2-1-1-1-1-1-1 11538 16009 21333 27379 33919 40636 47146 53031 57881 61338 63137 63137 61338
2-2-2-1-1-1-1 6775 9234 12099 15280 18639 21997 25149 27882 29999 31339 31798 31339 29999
2-2-2-2-1-1 3947 5287 6812 8468 10171 11826 13323 14559 15440 15899 15899 15440 14559
2-2-2-2-2 2279 3008 3804 4664 5507 6319 7004 7555 7885 8014 7885 7555 7004
3-1-1-1-1-1-1-1 8982 12265 16095 20352 24851 29352 33579 37246 40087 41886 42502 41886 40087
3-2-1-1-1-1-1 5238 7027 9068 11284 13567 15785 17794 19452 20635 21251 21251 20635 19452
3-2-2-1-1-1 3031 3996 5072 6212 7355 8430 9364 10088 10547 10704 10547 10088 9364
3-2-2-2-1 1740 2256 2816 3396 3959 4471 4893 5195 5352 5352 5195 4893 4471
3-3-1-1-1-1 2313 3002 3753 4529 5285 5971 6538 6943 7154 7154 6943 6538 5971
3-3-2-1-1 1319 1683 2070 2459 2826 3145 3393 3550 3604 3550 3393 3145 2826
3-3-2-2 746 937 1133 1326 1500 1645 1748 1802 1802 1748 1645 1500 1326
3-3-3-1 558 690 822 947 1057 1141 1195 1214 1195 1141 1057 947 822
4-1-1-1-1-1-1 3446 4486 5622 6798 7945 8987 9849 10465 10786 10786 10465 9849 8987
4-2-1-1-1-1 1968 2518 3104 3694 4251 4736 5113 5352 5434 5352 5113 4736 4251
4-2-2-1-1 1115 1403 1701 1993 2258 2478 2635 2717 2717 2635 2478 2258 1993
4-2-2-2 625 778 923 1070 1188 1290 1345 1372 1345 1290 1188 1070 923
4-3-1-1-1 835 1034 1235 1425 1591 1720 1802 1830 1802 1720 1591 1425 1235
4-3-2-1 466 568 667 758 833 887 915 915 887 833 758 667 568
4-3-3 189 224 254 280 299 308 308 299 280 254 224 189 155
4-4-1-1 284 336 383 422 450 465 465 450 422 383 336 284 232
4-4-2 154 182 201 221 229 236 229 221 201 182 154 130 102
5-1-1-1-1-1 1114 1364 1610 1835 2022 2156 2226 2226 2156 2022 1835 1610 1364
5-2-1-1-1 619 745 865 970 1052 1104 1122 1104 1052 970 865 745 619
5-2-2-1 341 404 461 509 543 561 561 543 509 461 404 341 278
5-3-1-1 249 290 326 354 372 378 372 354 326 290 249 206 164
5-3-2 135 155 171 183 189 189 183 171 155 135 114 92 72
5-4-1 78 87 93 96 96 93 87 78 68 57 46 35 26
5-5 19 20 20 19 18 16 14 11 9 7 5 3 2
6-1-1-1-1 295 334 365 385 392 385 365 334 295 251 205 160 119
6-2-1-1 158 176 189 196 196 189 176 158 137 114 91 69 50
6-2-2 83 93 96 100 96 93 83 75 62 52 39 30 20
6-3-1 59 64 66 66 64 59 53 46 38 30 23 16 11
6-4 16 18 16 16 14 13 10 9 6 5 3 2 1
7-1-1-1 59 60 59 56 51 44 36 28 21 15 10 6 3
7-2-1 30 30 29 27 24 20 16 12 9 6 4 2 1
7-3 10 10 9 8 7 5 4 3 2 1 1
8-1-1 7 6 5 4 3 2 1
8-2 3 3 2 2 1 1
9-1
10

Table A8: Partition probability n = 6, 7, 8

n = 6 n = 7 n = 8
Partition Probability Partition Probability Partition Probability
1-1-1-1-1-1 0.1512 1-1-1-1-1-1-1-1 0.06048 1-1-1-1-1-1-1-1 0.018144
1-1-1-1-2 0.4536 2-1-1-1-1-1 0.31752 2-1-1-1-1-1 0.169344
1-1-2-2 0.2268 2-2-1-1-1 0.31752 2-2-1-1-1-1 0.31752
2-2-2 0.0108 2-2-2-1 0.05292 2-2-2-1-1 0.127008
1-1-1-3 0.1008 3-1-1-1-1 0.10584 2-2-2-2 0.005292
1-2-3 0.0432 3-2-1-1 0.10584 3-1-1-1-1-1 0.084672
3-3 0.0009 3-2-2 0.00756 3-2-1-1-1 0.169344
1-1-4 0.0108 3-3-1 0.00504 3-2-2-1 0.042336
2-4 0.00135 4-1-1-1 0.01764 3-3-1-1 0.014112
1-5 0.00054 4-2-1 0.00756 3-3-2 0.002016
6 0.00001 4-3 0.000315 4-1-1-1-1 0.021168

5-1-1 0.001512 4-2-1-1 0.021168
5-2 0.000189 4-2-2 0.001512
6-1 0.000063 4-3-1 0.002016
7 0.000001 4-4 0.0000315

5-1-1-1 0.0028224
5-2-1 0.0012096
5-3 0.0000504
6-1-1 0.0002016
6-2 0.0000252
7-1 0.0000072
8 0.0000001

55



Table A9: Partition probability n = 9, 10

n = 9 n = 10
Partition Probability Partition Probability
1-1-1-1-1-1-1-1-1 0.0036288 1-1-1-1-1-1-1-1-1-1 0.00036288
2-1-1-1-1-1-1-1 0.0653184 2-1-1-1-1-1-1-1-1 0.0163296
2-2-1-1-1-1-1 0.2286144 2-2-1-1-1-1-1-1 0.1143072
2-2-2-1-1-1 0.190512 2-2-2-1-1-1-1 0.190512
2-2-2-2-1 0.0285768 2-2-2-2-1-1 0.071442
3-1-1-1-1-1-1 0.0508032 2-2-2-2-2 0.00285768
3-2-1-1-1-1 0.190512 3-1-1-1-1-1-1-1 0.0217728
3-2-2-1-1 0.1143072 3-2-1-1-1-1-1 0.1524096
3-2-2-2 0.0063504 3-2-2-1-1-1 0.190512
3-3-1-1-1 0.0254016 3-2-2-2-1 0.0381024
3-3-2-1 0.0127008 3-3-1-1-1-1 0.031752
3-3-3 0.0002016 3-3-2-1-1 0.0381024
4-1-1-1-1-1 0.0190512 3-3-2-2 0.0031752
4-2-1-1-1 0.0381024 3-3-3-1 0.0014112
4-2-2-1 0.0095256 4-1-1-1-1-1-1 0.0127008
4-3-1-1 0.0063504 4-2-1-1-1-1 0.047628
4-3-2 0.0009072 4-2-2-1-1 0.0285768
4-4-1 0.0002268 4-2-2-2 0.0015876
5-1-1-1-1 0.00381024 4-3-1-1-1 0.0127008
5-2-1-1 0.00381024 4-3-2-1 0.0063504
5-2-2 0.00027216 4-4-3 0.0001512
5-3-1 0.00036288 4-4-1-1 0.0007938
5-4 0.00001134 4-4-2 0.0001134
6-1-1-1 0.00042336 5-1-1-1-1-1 0.00381024
6-2-1 0.00018144 5-2-1-1-1 0.00762048
6-3 0.00000756 5-2-2-1 0.00190512
7-1-1 0.00002592 5-3-1-1 0.00127008
7-2 0.00000324 5-3-2 0.00018144
8-1 0.00000081 5-4-1 0.00009072
9 0.00000001 5-5 0.000001134

6-1-1-1-1 0.00063504
6-2-1-1 0.00063504
6-2-2 0.00004536
6-3-1 0.00006048
6-4 0.00000189
7-1-1-1 0.00006048
7-2-1 0.00002592
7-3 0.00000108
8-1-1 0.00000324
8-2 0.000000405
9-1 0.00000009
10 0.000000001

The following legends apply to Tables A10–A23:

• χ2 - Pearson coefficient
• DF - Degrees of freedom.
• CV - Critical Value (χ2 value for 0.95).

56



Table A10: χ2 test for IFD - F5000000

Partition DF χ2 P (χ2<CV ) Hypothesis

1-1-1-1-1-1 15 11.32 0.27 H0

2-1-1-1-1 14 15.88 0.68 H0

2-2-1-1 13 19.86 0.90 H0

2-2-2 12 15.25 0.77 H0

3-1-1-1 12 18.85 0.91 H0

3-2-1 11 11.47 0.60 H0

3-3 9 8.23 0.49 H0

4-1-1 9 20.34 0.98 H1

4-2 8 5.18 0.26 H0

5-1 5 3.78 0.42 H0

6 0 - - -

Table A11: χ2 test for IFD - 300000!

Partition DF χ2 P (χ2<CV ) Hypothesis

1-1-1-1-1-1 15 13.12 0.48 H0

2-1-1-1-1 14 16.53 0.78 H0

2-2-1-1 13 11.84 0.54 H0

2-2-2 12 15.87 0.85 H0

3-1-1-1 12 12.08 0.64 H0

3-2-1 11 16.83 0.92 H0

3-3 9 7.50 0.52 H0

4-1-1 9 7.23 0.49 H0

4-2 8 8.92 0.74 H0

5-1 5 4.62 0.67 H0

6 0 - - -

Table A12: χ2 test for IFD -
√

2

Partition DF χ2 P (χ2<CV ) Hypothesis

1-1-1-1-1-1 15 17.98 0.74 H0

2-1-1-1-1 14 22.23 0.93 H0

2-2-1-1 13 17.20 0.81 H0

2-2-2 12 16.2 0.82 H0

3-1-1-1 12 8.79 0.28 H0

3-2-1 11 15.73 0.85 H0

3-3 9 13.12 0.84 H0

4-1-1 9 6.68 0.33 H0

4-2 8 12.95 0.89 H0

5-1 5 10.02 0.93 H0

6 - - - -

Table A13: χ2 test for IFD - e

Partition DF χ2 P (χ2<CV ) Hypothesis

1-1-1-1-1-1 15 7.24 0.05 H0

2-1-1-1-1 14 22.93 0.94 H0

2-2-1-1 13 10.08 0.31 H0

2-2-2 12 17.67 0.87 H0

3-1-1-1 12 15.41 0.78 H0

3-2-1 11 11.67 0.61 H0

3-3 9 12.36 0.81 H0

4-1-1 9 13.42 0.86 H0

4-2 8 11.16 0.81 H0

5-1 5 5.26 0.62 H0

6 0 - - -
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Table A14: χ2 test for IFD - M49

Partition DF χ2 P (χ2 < CV ) Hypothesis
1-1-1-1-1-1-1 21 20.66 0.52 H0

2-1-1-1-1-1 20 22.65 0.69 H0

2-2-1-1-1 19 29.73 0.95 H1

2-2-2-1 18 20.42 0.69 H0

3-1-1-1-1 18 22.34 0.78 H0

3-2-1-1 17 10.38 0.11 H0

3-2-2 16 21.89 0.85 H0

3-3-1 15 17.03 0.68 H0

4-1-1-1 15 6.78 0.04 H0

4-2-1 14 21.42 0.91 H0

4-3 12 8.7 0.27 H0

5-1-1 11 8.28 0.31 H0

5-2 10 10.5 0.6 H0

6-1 6 4.91 0.45 H0

7 0 0 - -

Table A15: χ2 test for IFD - π, (6 digits)

Partition DF χ2 P (χ2 < CV ) Hypothesis
1-1-1-1-1-1 15 11.32 0.27 H0

2-1-1-1-1 14 15.88 0.68 H0

2-2-1-1 13 19.86 0.90 H0

2-2-2 12 15.25 0.77 H0

3-1-1-1 12 18.85 0.91 H0

3-2-1 11 11.47 0.60 H0

3-3 9 8.23 0.49 H0

4-1-1 9 20.34 0.98 H1

4-2 8 5.18 0.26 H0

5-1 5 3.78 0.42 H0

6 0 0 - -
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Table A16: χ2 test for IFD - π (7 digits)

Partition DF χ2 P (χ2 < CV ) Hypothesis
1-1-1-1-1-1-1 21 23.5 0.68 H0

2-1-1-1-1-1 20 7.13 0.004 H0

2-2-1-1-1 19 17.81 0.47 H0

2-2-2-1 18 23.36 0.82 H0

3-1-1-1-1 18 23.41 0.83 H0

3-2-1-1 17 19.51 0.7 H0

3-2-2 16 6.81 0.02 H0

3-3-1 15 8.51 0.1 H0

4-1-1-1 15 11.57 0.29 H0

4-2-1 14 9.63 0.21 H0

4-3 12 26.32 0.99 H1

5-1-1 11 7.12 0.21 H0

5-2 10 12.86 0.77 H0

6-1 6 2.72 0.16 H0

7 0 0 - -

Table A17: χ2 test for IFD - π (8 digits)

Partition DF χ2 P (χ2 < CV ) Hypothesis
1-1-1-1-1-1-1-1 28 42.12 0.96 H1

2-1-1-1-1-1-1 27 20.68 0.2 H0

2-2-1-1-1-1 26 21.48 0.28 H0

2-2-2-1-1 25 18.93 0.2 H0

2-2-2-2 24 17.93 0.19 H0

3-1-1-1-1-1 25 18.5 0.18 H0

3-2-1-1-1 24 40.85 0.98 H1

3-2-2-1 23 34.32 0.94 H0

3-3-1-1 22 33.25 0.94 H0

3-3-2 21 24.49 0.73 H0

4-1-1-1-1 22 18.56 0.33 H0

4-2-1-1 21 24.67 0.74 H0

4-2-2 20 29.91 0.93 H0

4-3-1 19 20.57 0.64 H0

4-4 16 33.47 0.994 H1

5-1-1-1 18 20.51 0.7 H0

5-2-1 17 18.93 0.67 H0

5-3 15 22.97 0.92 H0

6-1-1 13 9.32 0.59 H0

6-2 12 12.5 0.59 H0

7-1 7 4.45 0.27 H0

8 0 0 - -
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Table A18: χ2 test for IFD - π (9 digits)

Partition DF χ2 P (χ2 < CV ) Hypothesis
1-1-1-1-1-1-1-1-1 36 43.09 0.81 H0

2-1-1-1-1-1-1-1 35 31.88 0.38 H0

2-2-1-1-1-1-1 34 45.35 0.91 H0

2-2-2-1-1-1 33 29.68 0.37 H0

2-2-2-2-1 32 23.6 0.14 H0

3-1-1-1-1-1-1 33 44.82 0.92 H0

3-2-1-1-1-1 32 28.19 0.34 H0

3-2-2-1-1 31 32.65 0.61 H0

3-2-2-2 30 37.49 0.84 H0

3-3-1-1-1 30 23.76 0.22 H0

3-3-2-1 29 49.51 0.99 H1

3-3-3 27 34.87 0.86 H0

4-1-1-1-1-1 30 25.78 0.31 H0

4-2-1-1-1 29 17.98 0.06 H0

4-2-2-1 28 53.2 0.997 H1

4-3-1-1 27 19.86 0.16 H0

4-3-2 26 30.99 0.77 H0

4-4-1 24 38.7 0.97 H1

5-1-1-1-1 26 30.18 0.74 H0

5-2-1-1 25 14.55 0.05 H0

5-2-2 24 30.12 0.82 H0

5-3-1 23 21.34 0.44 H0

5-4 20 21.12 0.61 H0

6-1-1-1 21 13.48 0.11 H0

6-2-1 20 9.28 0.02 H0

6-3 18 14.76 0.32 H0

7-1-1 15 11.66 0.3 H0

7-2 14 15.36 0.65 H0

8-1 8 10.48 0.77 H0

9 0 0 - -
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Table A19: χ2 test for IFD - MSA

Partition DF χ2 P (χ2 < CV ) Hypothesis
1-1-1-1-1-1-1-1-1 36 354.39 1 H1

2-1-1-1-1-1-1-1 35 367.51 1 H1

2-2-1-1-1-1-1 34 458.18 1 H1

2-2-2-1-1-1 33 310.72 1 H1

2-2-2-2-1 32 524.71 1 H1

3-1-1-1-1-1-1 33 491.42 1 H1

3-2-1-1-1-1 32 358.36 1 H1

3-2-2-1-1 31 367.18 1 H1

3-2-2-2 30 256.49 1 H1

3-3-1-1-1 30 399.2 1 H1

3-3-2-1 29 369.68 1 H1

3-3-3 27 136.22 1 H1

4-1-1-1-1-1 30 619.35 1 H1

4-2-1-1-1 29 433.64 1 H1

4-2-2-1 28 456.2 1 H1

4-3-1-1 27 373.38 1 H1

4-3-2 26 176.54 1 H1

4-4-1 24 295.41 1 H1

5-1-1-1-1 26 296.49 1 H1

5-2-1-1 25 269.75 1 H1

5-2-2 24 126.19 1 H1

5-3-1 23 649.51 1 H1

5-4 20 136.74 1 H1

6-1-1-1 21 149.32 1 H1

6-2-1 20 336.75 1 H1

6-3 18 182.06 1 H1

7-1-1 15 193.83 1 H1

7-2 14 108.32 1 H1

8-1 8 86.41 1 H1

9 0 - -
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Table A20: χ2 test for IFD - MSB

Partition DF χ2 P (χ2 < CV ) Hypothesis
1-1-1-1-1-1-1-1 28 24.42 0.34 H0

2-1-1-1-1-1-1 27 22.67 0.3 H0

2-2-1-1-1-1 26 31.21 0.78 H0

2-2-2-1-1 25 30.59 0.80 H0

2-2-2-2 24 42.88 0.99 H1

3-1-1-1-1-1 25 19.42 0.22 H0

3-2-1-1-1 24 36.12 0.95 H1

3-2-2-1 23 35.56 0.95 H1

3-3-1-1 22 20.27 0.43 H0

3-3-2 21 19.69 0.46 H0

4-1-1-1-1 22 19.64 0.40 H0

4-2-1-1 21 35.37 0.97 H1

4-2-2 20 19.96 0.54 H0

4-3-1 19 21.78 0.71 H0

4-4 16 10.87 0.18 H0

5-1-1-1 18 14.35 0.29 H0

5-2-1 17 39.86 1.00 H1

5-3 15 20.46 0.85 H0

6-1-1 13 16.92 0.61 H0

6-2 12 10.97 0.47 H0

7-1 7 10 0.81 H0

8 - - - n/a
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Table A21: χ2 test for IFD - MSC

Partition DF χ2 P (χ2 < CV ) Hypothesis
1-1-1-1-1-1-1-1-1-1 45 27.27 0.02 H0

2-1-1-1-1-1-1-1-1 44 38.25 0.28 H0

2-2-1-1-1-1-1-1 43 56.05 0.91 H0

2-2-2-1-1-1-1 42 33.94 0.19 H0

2-2-2-2-1-1 41 39.18 0.45 H0

2-2-2-2-2 40 66.62 1.00 H1

3-1-1-1-1-1-1-1 42 51.07 0.84 H0

3-2-1-1-1-1-1 41 33.35 0.2 H0

3-2-2-1-1-1 40 45.99 0.76 H0

3-2-2-2-1 39 30.43 0.17 H0

3-3-1-1-1-1 39 38.21 0.5 H0

3-3-2-1-1 38 37.04 0.49 H0

3-3-2-2 37 48.25 0.9 H0

3-3-3-1 36 41.85 0.77 H0

4-1-1-1-1-1-1 39 44.75 0.76 H0

4-2-1-1-1-1 38 59.18 0.99 H1

4-2-2-1-1 37 54.1 0.97 H1

4-2-2-2 36 42.76 0.8 H0

4-3-1-1-1 36 28.99 0.21 H0

4-3-2-1 35 36.34 0.59 H0

4-3-3 33 43.4 0.89 H0

4-4-1-1 33 22.19 0.08 H0

4-4-2 32 34.3 0.64 H0

5-1-1-1-1-1 35 37.92 0.66 H0

5-2-1-1-1 34 26.67 0.19 H0

5-2-2-1 33 41.32 0.85 H0

5-3-1-1 32 23.15 0.13 H0

5-3-2 31 37.48 0.8 H0

5-4-1 29 41.57 0.94 H0

5-5 25 23.38 0.45 H0

6-1-1-1-1 30 17.26 0.03 H0

6-2-1-1 29 48.24 0.99 H1

6-2-2 28 25.41 0.39 H0

6-3-1 27 30.53 0.71 H0

6-4 24 27.05 0.7 H0

7-1-1-1 24 28.81 0.77 H0

7-2-1 23 21.32 0.44 H0

7-3 21 17.75 0.34 H0

8-1-1 17 14.35 0.36 H0

8-2 16 22.21 0.86 H0

9-1 9 9.35 0.59 H0

10 0 0 0 -
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Table A22: χ2 test for IFD - Python

Partition DF χ2 P (χ2 < CV ) Hypothesis
1-1-1-1-1-1-1-1-1 36 23.94 0.06 H0

2-1-1-1-1-1-1-1 35 35.56 0.56 H0

2-2-1-1-1-1-1 34 38.71 0.74 H0

2-2-2-1-1-1 33 46.59 0.94 H0

2-2-2-2-1 32 31.13 0.49 H0

3-1-1-1-1-1-1 33 40.29 0.82 H0

3-2-1-1-1-1 32 32.94 0.58 H0

3-2-2-1-1 31 41.74 0.91 H0

3-2-2-2 30 29.46 0.51 H0

3-3-1-1-1 30 39.96 0.89 H0

3-3-2-1 29 34.35 0.77 H0

3-3-3 27 21.95 0.26 H0

4-1-1-1-1-1 30 52.45 0.993 H1

4-2-1-1-1 29 38.91 0.9 H0

4-2-2-1 28 29.67 0.62 H0

4-3-1-1 27 28.03 0.59 H0

4-3-2 26 17.34 0.1 H0

4-4-1 24 13.42 0.04 H0

5-1-1-1-1 26 33.2 0.84 H0

5-2-1-1 25 31.78 0.84 H0

5-2-2 24 17.21 0.16 H0

5-3-1 23 19.53 0.33 H0

5-4 20 25.47 0.82 H0

6-1-1-1 21 16.18 0.24 H0

6-2-1 20 13.24 0.13 H0

6-3 18 20.96 0.82 H0

7-1-1 15 23.71 0.93 H0

7-2 14 24.71 0.96 H1

8-1 8 17.24 0.97 H1

9 0 0 - -
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Table A23: χ2 test for IFD - MATLAB

Partition DF χ2 P (χ2 < CV ) Hypothesis
1-1-1-1-1-1-1-1-1-1 45 34.03 0.12 H0

2-1-1-1-1-1-1-1-1 44 43.71 0.52 H0

2-2-1-1-1-1-1-1 43 39.61 0.38 H0

2-2-2-1-1-1-1 42 62.75 0.98 H1

2-2-2-2-1-1 41 54.51 0.92 H0

2-2-2-2-2 40 36.15 0.36 H0

3-1-1-1-1-1-1-1 42 23.92 0.01 H0

3-2-1-1-1-1-1 41 45.48 0.71 H0

3-2-2-1-1-1 40 51.91 0.9 H0

3-2-2-2-1 39 47.97 0.85 H0

3-3-1-1-1-1 39 42.34 0.67 H0

3-3-2-1-1 38 44.86 0.79 H0

3-3-2-2 37 41.56 0.72 H0

3-3-3-1 36 57.81 0.99 H1

4-1-1-1-1-1-1 39 49.21 0.87 H0

4-2-1-1-1-1 38 47.11 0.85 H0

4-2-2-1-1 37 36.49 0.51 H0

4-2-2-2 36 52.12 0.96 H1

4-3-1-1-1 36 52.61 0.96 H1

4-3-2-1 35 48.39 0.93 H0

4-3-3 33 31.87 0.48 H0

4-4-1-1 33 33.19 0.54 H0

4-4-2 32 27.02 0.28 H0

5-1-1-1-1-1 35 35.95 0.57 H0

5-2-1-1-1 34 42.65 0.85 H0

5-2-2-1 33 44.95 0.92 H0

5-3-1-1 32 28.31 0.35 H0

5-3-2 31 56.98 1.00 H1

5-4-1 29 31.49 0.66 H0

5-5 25 17.1 0.12 H0

6-1-1-1-1 30 39.35 0.88 H0

6-2-1-1 29 21.01 0.14 H0

6-2-2 28 13.43 0.009 H0

6-3-1 27 22.6 0.29 H0

6-4 24 27.63 0.72 H0

7-1-1-1 24 14.77 0.07 H0

7-2-1 23 31.13 0.88 H0

7-3 21 20.99 0.54 H0

8-1-1 17 16.51 0.51 H0

8-2 16 7.07 0.03 H0

9-1 9 6.86 0.35 H0

10 - 0 0 -
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Table A24: Frequency & Mean - F5000000

Frequency Mean
Partition Actual Exp. Actual Exp.
1-1-1-1-1-1 157845 157992 7.497 7.5
2-1-1-1-1 473267 473975 6.991 7.0
2-2-1-1 237526 236988 6.505 6.5
2-2-2 11239 11285 6.014 6.0
3-1-1-1 105260 105328 6.009 6.0
3–2-1 45329 45141 5.502 5.5
3-3 965 940 4.491 4.5
4-1-1 11573 11285 4.542 4.5
4-2 1375 1411 4.01 4.0
5-1 540 564 2.511 2.5
6 11 10 0 0.0

Table A25: Frequency & Mean -√
2

Frequency Mean
Partition Actual Exp. Actual Exp.
1-1-1-1-1-1 755316 756000 7.4973 7.5
2-1-1-1-1 2268728 2268000 6.9965 7.0
2-2-1-1 1133971 1134000 6.5031 6.5
2-2-2 54005 54000 6.0030 6.0
3-1-1-1 504235 504000 6.0056 6.0
3-2-1 215732 216000 5.4904 5.5
3-3 4508 4500 4.4361 4.5
4-1-1 53910 54000 4.4954 4.5
4-2 6796 6750 4.0511 4.0
5-1 2757 2700 2.5455 2.5
6 42 50 0 0.0

Table A26: Frequency & Mean -
e

Frequency Mean
Partition Actual Exp. Actual Exp.
1-1-1-1-1-1 302232 302410 7.503 7.5
2-1-1-1-1 906770 907229 6.999 7.0
2-2-1-1 454604 453614 6.496 6.5
2-2-2 21671 21601 5.975 6.0
3-1-1-1 201437 201606 6.004 6.0
3-2-1 86199 86403 5.500 5.5
3-3 1777 1800 4.521 4.5
4-1-1 21678 21601 4.507 4.5
4-2 2621 2700 3.939 4.0
5-1 1054 1080 2.516 2.5
6 20 20 0 0.0

Table A27: Frequency & Mean -
300000!

Frequency Mean
Partition Actual Exp. Actual Exp.
1-1-1-1-1-1 217312 217402 7.508 7.5
2-1-1-1-1 651799 652207 7.000 7.0
2-2-1-1 327479 326103 6.508 6.5
2-2-2 15605 15529 5.956 6.0
3-1-1-1 144571 144935 5.997 6.0
3-2-1 61941 62115 5.492 5.5
3-3 1218 1294 4.555 4.5
4-1-1 15223 15529 4.467 4.5
4-2 1898 1941 3.981 4.0
5-1 785 776 2.434 2.5
6 15 14 0.000 0.0
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Table A28: Frequency & Mean - M49

Frequency Mean
Partition Actual Exp. Actual Exp.
1-1-1-1-1-1-1 1350810 1351038 10.493 10.5
2-1-1-1-1-1 7088692 7092949 9.999 10.0
2-2-1-1-1 7093093 7092949 9.502 9.5
2-2-2-1 1183903 1182158 8.998 9.0
3-1-1-1-1 2362096 2364316 8.999 9.0
3-2-1-1 2368793 2364316 8.499 8.5
3-2-2 168837 168880 8.004 8.0
3-3-1 113159 112586 7.517 7.5
4-1-1-1 393483 394053 7.498 7.5
4-2-1 169285 168880 7.014 7.0
4-3 7158 7037 6.055 6.0
5-1-1 33627 33776 5.509 5.5
5-2 4229 4222 5.106 5.0
6-1 1425 1407 3.060 3.0
7 20 22 0.000 0.0

Table A29: Frequency & Mean - MSB

Frequency Mean
Partition Actual Exp. Actual Exp.
1-1-1-1-1-1-1-1 1826309 1826435 14.0021 14.0
2-1-1-1-1-1-1 17047001 17046724 13.5000 13.5
2-2-1-1-1-1 31957432 31962607 12.9999 13.0
2-2-2-1-1 12786336 12785043 12.4984 12.5
2-2-2-2 532923 532710 11.997 12 .0
3-1-1-1-1-1 8530313 8523362 12.5002 12.5
3-2-1-1-1 17043916 17046724 12.0016 12.0
3-2-2-1 4263358 4261681 11.4998 11.5
3-3-1-1 1418065 1420560 11.0015 11.0
3-3-2 203167 202937 10.5006 10.5
4-1-1-1-1 2130759 2130840 10.9977 11.0
4-2-1-1 2131307 2130840 10.4998 10.5
4-2-2 152403 152203 10.0035 10.0
4-3-1 202730 202937 9.5100 9.5
4-4 3255 3171 7.9239 8.0
5-1-1-1 283386 284112 8.9945 9.0
5-2-1 121895 121762 8.4935 8.5
5-3 5135 5073 7.4869 7.5
6-1-1 20254 20294 6.4863 6.5
6-2 2561 2537 5.9879 6.0
7-1 776 725 3.4026 3.5
8 7 10 0.0000 0.0
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Table A30: Frequency & Mean - π

Frequency Mean
Partition Actual Exp. Actual Exp.
1-1- · · · -1 3631181 3628800 17.9978 18.0
2-1- · · · -1 65342549 65318400 17.4988 17.5
2-2-1-1-1-1-1 228597082 228614399 17.0002 17.0
2-2-2-1-1-1 190481668 190511999 16.4999 16.5
2-2-2-2-1 28572040 28576800 15.9989 16.0
3-1-1-1-1-1-1 50796060 50803200 16.4999 16.5
3-2-1-1-1-1 190520840 190511999 16.0001 16.0
3-2-2-1-1 114318703 114307199 15.4997 15.5
3-2-2-2 6347093 6350400 14.9956 15.0
3-3-1-1-1 25403542 25401600 14.9998 15.0
3-3-2-1 12703937 12700800 14.4986 14.5
3-3-3 201998 201600 13.5097 13.5
4-1-1-1-1-1 19053904 19051200 15.0011 15.0
4-2-1-1-1 38108708 38102400 14.5003 14.5
4-2-2-1 9526839 9525600 14.0002 14.0
4-3-1-1 6349876 6350400 13.5005 13.5
4-3-2 908296 907200 13.0093 13.0
4-4-1 226376 226800 12.0227 12.0
5-1-1-1-1 3810585 3810240 13.0015 13.0
5-2-1-1 3810333 3810240 12.4995 12.5
5-2-2 272577 272160 11.9883 12.0
5-3-1 362606 362880 11.5088 11.5
5-4 11297 11340 10.0264 10.0
6-1-1-1 423197 423360 10.4980 10.5
6-2-1 181028 181440 10.0091 10.0
6-3 7604 7560 9.0178 9.0
7-1-1 26049 25920 7.5101 7.5
7-2 3199 3240 7.0672 7.0
8-1 816 810 4.0723 4.0
9 9 10 0.0000 0.0

Table A31: Frequency & Mean - MSA

Frequency Mean
Partition Actual Exp. Actual Exp.
1-1- · · · -1 3624242 3628800 18.0023 18.0
2-1- · · · -1 65323120 65318400 17.4971 17.5
2-2-1-1-1-1-1 228612721 228614399 17.0006 17.0
2-2-2-1-1-1 190445434 190511999 16.5000 16.5
2-2-2-2-1 28596300 28576800 16.0027 16.0
3-1-1-1-1-1-1 50829685 50803200 16.5015 16.5
3-2-1-1-1-1 190545488 190511999 16.0006 16.0
3-2-2-1-1 114327458 114307199 15.4981 15.5
3-2-2-2 6347260 6350400 14.9971 15.0
3-3-1-1-1 25361239 25401600 15.0022 15.0
3-3-2-1 12708686 12700800 14.4917 14.5
3-3-3 201322 201600 13.5094 13.5
4-1-1-1-1-1 19073225 19051200 15.0018 15.0
4-2-1-1-1 38089234 38102400 14.5032 14.5
4-2-2-1 9530887 9525600 13.9942 14.0
4-3-1-1 6349032 6350400 13.4931 13.5
4-3-2 908251 907200 13.0086 13.0
4-4-1 228248 226800 12.0479 12.0
5-1-1-1-1 3802180 3810240 12.9897 13.0
5-2-1-1 3806335 3810240 12.499 12.5
5-2-2 272081 272160 11.9993 12.0
5-3-1 363662 362880 11.6328 11.5
5-4 11292 11340 10.0620 10.0
6-1-1-1 421890 423360 10.4769 10.5
6-2-1 182172 181440 9.9802 10.0
6-3 7754 7560 9.2063 9.0
7-1-1 26377 25920 7.4747 7.5
7-2 3476 3240 6.8728 7.0
8-1 943 810 3.5567 4.0
9 0 10 0.0000 0.0
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Table A32: Frequency & Mean - MSC

Frequency Mean
Partition Actual Exp. Actual Exp.
1-1-. . .-1 3629234 3628800 18.0029 18.0
2-1-. . .-1 65358048 65318405 17.5007 17.5
2-2-1-1-1-1-1 228637484 228614416 17.0000 17.0
2-2-2-1-1-1 190489960 190512014 16.5003 16.5
2-2-2-2-1 28562402 28576802 16.0000 16.0
3-1-1-1-1-1-1 50808374 50803204 16.5003 16.5
3-2-1-1-1-1 190505627 190512014 15.9998 16.0
3-2-2-1-1 114274857 114307208 15.5008 15.5
3-2-2-2 6355236 6350400 14.9969 15.0
3-3-1-1-1 25399196 25401602 14.9997 15.0
3-3-2-1 12695837 12700801 14.5008 14.5
3-3-3 201381 201600 13.5008 13.5
4-1-1-1-1-1 19058919 19051201 14.9988 15.0
4-2-1-1-1 38100158 38102403 14.5008 14.5
4-2-2-1 9525188 9525601 14.0022 14.0
4-3-1-1 6349315 6350400 13.4973 13.5
4-3-2 908382 907200 12.9963 13.0
4-4-1 226956 226800 11.9868 12.0
5-1-1-1-1 3813847 3810240 13.0008 13.0
5-2-1-1 3812086 3810240 12.5034 12.5
5-2-2 271819 272160 12.0034 12.0
5-3-1 361635 362880 11.5001 11.5
5-4 11443 11340 9.9692 10.0
6-1-1-1 423357 423360 10.5103 10.5
6-2-1 181381 181440 10.0119 10.0
6-3 7660 7560 9.0604 9.0
7-1-1 26027 25920 7.516 7.5
7-2 3403 3240 6.9668 7.0
8-1 843 810 4.0107 4.0
9 17 10 0.0000 0.0

Table A33: Frequency & Mean Python

Frequency Mean
Partition Actual Exp. Actual Exp.
1-1-. . .-1 3623408 3628784 18.0013 18.0
2-1-. . .-1 65291573 65318109 17.5004 17.5
2-2-1-1-1-1-1 228597060 228613383 17.0001 17.0
2-2-2-1-1-1 190505257 190511153 16.4999 16.5
2-2-2-2-1 28573940 28576673 16.0010 16.0
3-1-1-1-1-1-1 50817196 50802974 16.4994 16.5
3-2-1-1-1-1 190521632 190511153 16.0002 16.0
3-2-2-1-1 114323924 114306692 15.5000 15.5
3-2-2-2 6348302 6350372 14.9997 15.0
3-3-1-1-1 25409279 25401487 14.9994 15.0
3-3-2-1 12705258 12700744 14.4999 14.5
3-3-3 201573 201599 13.486 13.5
4-1-1-1-1-1 19045989 19051115 15.0005 15.0
4-2-1-1-1 38111257 38102231 14.4982 14.5
4-2-2-1 9529693 9525558 14.0000 14.0
4-3-1-1 6351445 6350372 13.4991 13.5
4-3-2 907074 907196 13.0004 13.0
4-4-1 227118 226799 12.0133 12.0
5-1-1-1-1 3807904 3810223 12.9994 13.0
5-2-1-1 3808146 3810223 12.499 12.5
5-2-2 272548 272159 12.0192 12.0
5-3-1 363815 362878 11.5037 11.5
5-4 11238 11340 10.0500 10.0
6-1-1-1 421816 423358 10.5092 10.5
6-2-1 181475 181439 9.9999 10.0
6-3 7614 7560 8.9980 9.0
7-1-1 25871 25920 7.5368 7.5
7-2 3261 3240 6.9197 7.0
8-1 869 810 4.0299 4.0
9 17 10 0.000 0.0
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Table A34: Frequency & Mean - MATLAB

Frequency Mean
Partition Actual Expected Actual Excepted

1-1-1-1-1-1-1-1-1 3626925 3628800 18.0013 18.0
2-1-1-1-1-1-1-1 65318282 65318399 17.5004 17.5
2-2-1-1-1-1-1 228635599 228614398 17.0002 17.0
2-2-2-1-1-1 190560331 190511998 16.5002 16.5
2-2-2-2-1 28576352 28576800 15.9996 16.0

3-1-1-1-1-1-1 50792445 50803200 16.4993 16.5
3-2-1-1-1-1 190499720 190511998 15.9999 16.0
3-2-2-1-1 114296958 114307199 15.5002 15.5
3-2-2-2 6349861 6350400 14.9969 15.0

3-3-1-1-1 25400616 25401600 15.0024 15.0
3-3-2-1 12700452 12700800 14.5013 14.5
3-3-3 201260 201600 13.5214 13.5

4-1-1-1-1-1 19039559 19051200 15.0002 15.0
4-2-1-1-1 38093464 38102400 14.5007 14.5
4-2-2-1 9524275 9525600 13.9968 14.0
4-3-1-1 6345456 6350400 13.5028 13.5
4-3-2 905797 907200 12.9915 13.0
4-4-1 227286 226800 11.9957 12.0

5-1-1-1-1 3807643 3810240 12.996 13.0
5-2-1-1 3808746 3810240 12.5007 12.5
5-2-2 272936 272160 12.0092 12.0
5-3-1 363065 362880 11.4901 11.5
5-4 11324 11340 10.0155 10.0

6-1-1-1 422990 423360 10.5054 10.5
6-2-1 181276 181440 10.0063 10.0
6-3 7430 7560 8.9828 9.0

7-1-1 25874 25920 7.4908 7.5
7-2 3247 3240 6.9587 7.0
8-1 817 810 4.0392 4.0
9 6 10 0.0000 0.0
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A2 Extraction application

This application is written in Visual Basic for Application. It extracts d consec-
utive digits from a dataset. The variable numDigits stipulates the number of
digits. The data may span over multiple records and is controlled by the variable
singleRecord. In some cases, the input record is preceded and ended by a quote
and it is necessary to stipulate skip quote = True. The application takes care
of numbers which span across the consecutive records. The output is written di-
rectly to a XLS file and are controlled by the variables colMax, rowNo, colNo,
HeaderCol.

The application uses product of prime numbers to identify the partitions. To
run the application, select d = 2, 3, . . . , 10 where d is the number of consecutive
digits to be selected from the dataset (See Section 9.1). Replace the variables
cFactord, cPatternd which are commented out and rename them as cFactor
and cPattern respectively. For a given value of d, cPatternd stores the possible
partitions of d. Internally, the application identifies a partition by the product of
prime factors by mapping the frequency count to a prime number. Thus the prime
number assignments p(f) for frequencies f are:

p(1) = 2 , p(2) = 3 , . . . , p(3) = 5 , p(4) = 7 , p(10) = 29 .

Thus, the partition [1,2,2,4] is represented as p(1) × p(2)2 × p(7) = 126. This
representation allows the application to detect the patterns in any permutations.

Sub P r o c e s s f i l e M ( )

’ This sub rou t ine c a l c u l a t e s the in v e r s i on d i s t r i b u t i o n
from an input f i l e .

’ The f i l e may have mu l t i p l e records in which case t he r e
are carry over d i g i t s from the prev ious record .

’ The gap opt ion s p e c i f i e s the number o f d i g i t s to s k i p (0
meaning the next d i g i t )

’ The quote opt ion i s used to ignore the f i r s t and l a s t
d i g i t o f the input record .

Dim sTime , eTime , prime , cFactor , patte rn As Variant
Dim iCount , dCount , dSize , durat ion As Long
Dim t e x t l i n e , invStr ing , dStr ing As String
Dim d i g i t s (10) , numDigits As Integer
Dim l ength As Double
Dim invers ionCount As Integer
Dim invCount (100) As Double
Dim i n v e r s i o n (42 , 45) As Double
prime = Array (0 , 2 , 3 , 5 , 7 , 11 , 13 , 17 , 19 , 23 , 29)
’ cFactor2 = Array (4 , 3)
’ cFactor3 = Array (8 , 6 , 5)
’ cFactor4 = Array (16 , 12 , 9 , 10 , 7) ’5
’ cFactor5 = Array (32 , 24 , 18 , 20 , 15 , 14 , 11) ’7
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’ cFactor6 = Array (64 , 48 , 36 , 27 , 40 , 30 , 25 , 28 , 21 , 22 ,
13) ’11

’ cFactor7 = Array (128 , 96 , 72 , 54 , 80 , 60 , 45 , 50 , 56 , 42 ,
35 , 44 , 33 , 26 , 17) ’15

’ cFactor8 = Array (256 , 192 , 144 , 108 , 81 , 160 , 120 , 90 ,
100 , 75 , 112 , 84 , 63 , 70 , 49 , 88 , 66 , 55 , 52 , 39 , 34 ,
19) ’22

’ cFactor9 = Array (512 , 384 , 288 , 216 , 162 , 320 , 240 , 180 ,
135 , 200 , 150 , 125 , 224 , 168 , 126 , 140 , 105 , 98 , 176 ,
132 , 99 , 110 , 77 , 104 , 78 , 65 , 68 , 51 , 38 , 23) ’30

’ cFactor10 = Array (1024 , 768 , 576 , 432 , 324 , 243 , 640 , 480 ,
360 , 270 , 400 , 300 , 225 , 250 , 448 , 336 , 252 , 189 , 280 ,

210 , 175 , 196 , 147 , 352 , 264 , 198 , 220 , 165 , 154 , 121 ,
208 , 156 , 117 , 130 , 91 , 136 , 102 , 85 , 76 , 57 , 46 , 29)
’42

’ pa t t e rn2 = Array (” ’1−1” , ‘ ‘ ’2−0” , ‘ ‘”)
’ pa t t e rn3 = Array(”’1−1−1”, ‘ ‘ ’2−1” , ‘ ‘ ’3−0” , ‘ ‘”)
’ pa t t e rn4 = Array(”’1−1−1−1”, ‘ ‘ ’2−1−1” , ‘ ‘ ’2−2” , ‘ ‘ ’3−1” ,

‘ ‘ ’ 4”)
’ pa t t e rn5 = Array(”’1−1−1−1−1”, ‘ ‘ ’2−1−1−1”, ‘ ‘ ’2−2−1” ,

‘ ‘ ’3−1−1” , ‘ ‘ ’3−2” , ‘ ‘ ’4−1” , ‘ ‘ ’ 5”)
’ pa t t e rn6 = Array(”’1−1−1−1−1−1”, ‘‘’2−1−1−1−1”,

‘ ‘ ’2−2−1−1”, ‘ ‘ ’2−2−2” , ‘ ‘ ’3−1−1−1”, ‘ ‘ ’3−2−1” , ‘ ‘ ’3−3” ,
‘ ‘ ’4−1−1” , ‘ ‘ ’4−2” , ‘ ‘ ’5−1” , ‘ ‘ ’ 6”) ’11

’ pa t t e rn7 = Array(”’1−1−1−1−1−1−1”, ‘‘’2−1−1−1−1−1”,
‘‘’2−2−1−1−1”, ‘ ‘ ’2−2−2−1”, ‘‘’3−1−1−1−1”, ‘ ‘ ’3−2−1−1”,
‘ ‘ ’3−2−2” , ‘ ‘ ’3−3−1” , ‘ ‘ ’4−1−1−1”, ‘ ‘ ’4−2−1” , ‘ ‘ ’4−3” ,
‘ ‘ ’5−1−1” , ‘ ‘ ’5−2” , ‘ ‘ ’6−1” , ‘ ‘ ’ 7”)

’ pa t t e rn8 = Array(”’1−1−1−1−1−1−1−1”, ‘‘’2−1−1−1−1−1−1”,
‘‘’2−2−1−1−1−1”, ‘‘’2−2−2−1−1”, ‘ ‘ ’2−2−2−2”,
‘‘’3−1−1−1−1−1”, ‘‘’3−2−1−1−1”, ‘ ‘ ’3−2−2−1”,
‘ ‘ ’3−3−1−1”, ‘ ‘ ’3−3−2” , ‘‘’4−1−1−1−1”, ‘ ‘ ’4−2−1−1”,
‘ ‘ ’4−2−2” , ‘ ‘ ’4−3−1” , ‘ ‘ ’4−4” , ‘ ‘ ’5−1−1−1”, ‘ ‘ ’5−2−1” ,
‘ ‘ ’5−3” , ‘ ‘ ’6−1−1” , ‘ ‘ ’6−2” , ‘ ‘ ’7−1” , ‘ ‘8”)

’ pa t t e rn9 = Array(”’1−1−1−1−1−1−1−1−1”,
‘‘’2−1−1−1−1−1−1−1”, ‘‘’2−2−1−1−1−1−1”, ‘‘’2−2−2−1−1−1”,
‘‘’2−2−2−2−1”, ‘‘’3−1−1−1−1−1−1”, ‘‘’3−2−1−1−1−1”,

‘‘’3−2−2−1−1”, ‘ ‘ ’3−2−2−2”, ‘‘’3−3−1−1−1”, ‘ ‘ ’3−3−2−1”,
‘ ‘ ’3−3−3” , ‘‘’4−1−1−1−1−1”, ‘‘’4−2−1−1−1”, ‘ ‘ ’4−2−2−1”,
‘ ‘ ’4−3−1−1”, ‘ ‘ ’4−3−2” , ‘ ‘ ’4−4−1” , ‘‘’5−1−1−1−1”,
‘ ‘ ’5−2−1−1”, ‘ ‘ ’5−2−2” , ‘ ‘ ’5−3−1” , ‘ ‘ ’5−4” , ‘ ‘ ’6−1−1−1”,
‘ ‘ ’6−2−1” , ‘ ‘ ’6−3” , ‘ ‘ ’7−1−1” , ‘ ‘ ’7−2” , ‘ ‘ ’8−1” , ‘ ‘ ’ 9”)

’ pa t t e rn10 = Array(”’1−1−1−1−1−1−1−1−1−1”,
‘‘’2−1−1−1−1−1−1−1−1”, ‘‘’2−2−1−1−1−1−1−1”,
‘‘’2−2−2−1−1−1−1”, ‘‘’2−2−2−2−1−1”, ‘‘’2−2−2−2−2”,
‘‘’3−1−1−1−1−1−1−1”, ‘‘’3−2−1−1−1−1−1”, ‘‘’3−2−2−1−1−1”,
‘‘’3−2−2−2−1”, ‘‘’3−3−1−1−1−1”, ‘‘’3−3−2−1−1”,
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‘ ‘ ’3−3−2−2”, ‘ ‘ ’3−3−3−1”, ‘‘’4−1−1−1−1−1−1”,
‘‘’4−2−1−1−1−1”, ‘‘’4−2−2−1−1”, ‘ ‘ ’4−2−2−2”,
‘‘4−3−1−1−1”, ‘ ‘ ’4−3−2−1”, ‘ ‘ ’4−3−3” , ‘ ‘ ’4−4−1−1”,
‘ ‘ ’4−4−2” , ‘‘’5−1−1−1−1−1”, ‘‘’5−2−1−1−1”, ‘ ‘ ’5−2−2−1”,
‘ ‘ ’5−3−1−1”, ‘ ‘ ’5−3−2” , ‘ ‘ ’5−4−1” , ‘ ‘ ’5−5” ,
‘‘’6−1−1−1−1”, ‘ ‘ ’6−2−1−1”, ‘ ‘ ’6−2−2” , ‘ ‘ ’6−3−1” ,
‘ ‘ ’6−4” , ‘ ‘ ’7−1−1−1”, ‘ ‘ ’7−2−1” , ‘ ‘ ’7−3” , ‘ ‘ ’8−1−1” ,
‘ ‘ ’8−2” , ‘ ‘ ’9−1” , ‘ ‘ ’10” , ‘ ‘”)

Dim Idx (1024) As Integer
Dim endFlag As Boolean

sTime = Now( )
iCount = 0
numDigits = 9
Gap = 1
rData = ‘ ‘ ”
colMax = 36
rowNo = 121
colNo = 9
HeaderCol = 1
sk ip quote = False
numpatterns = 30
s ing l eRecord = False
For i = 0 To numpatterns − 1

f a c t o r = cFactor ( i )
Idx ( f a c t o r ) = i

Next
i n f i l e = ‘ ‘ Input f i l e name”
Open i n f i l e For Input As #1
endFlag = False
Do While Not EOF(1 ) And endFlag = False
Line Input #1, pData
I f sk ip quote = True Then

pData = Mid( pData , 2 , Len( pData ) − 2)
End I f
pLength = Len( pData )
I f s ing l eRecord = True Then

pData = pData & Left ( pData , numDigits − 1)
End I f
pData = rData & pData
I f Gap > 1 Then

c y c l e = Int (Len( pData ) / Gap)
Else

c y c l e = Len( pData ) + 1 − numDigits
End I f
rData = Right ( pData , numDigits − 1)
For i = 1 To c y c l e
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f a c t o r = 1
For j = 0 To 10

d i g i t s ( j ) = 0
Next
i nvS t r i ng = Mid( pData , Gap ∗ ( i − 1) + 1 ,

numDigits )
For j = 1 To numDigits

iData = Mid( invStr ing , j , 1)
indexPos = Int ( iData )
d i g i t s ( indexPos ) = d i g i t s ( indexPos ) + 1

Next
For j = 0 To 10

I f d i g i t s ( j ) > 0 Then
index = d i g i t s ( j )
f a c t o r = f a c t o r ∗ prime ( index )

End I f
Next
vCount = 0
For j = 1 To numDigits − 1

lChar = Mid( invStr ing , j , 1)
For k = j + 1 To numDigits

rChar = Mid( invStr ing , k , 1)
I f ( lChar > rChar ) Then

vCount = vCount + 1
End I f

Next
Next
iPos = Idx ( f a c t o r )
i n v e r s i o n ( iPos , vCount ) = i n v e r s i o n ( iPos , vCount ) +

1
dCount = dCount + 1
iCount = iCount + 1
endFlag = True
Next

Loop
Close #1
For i = 0 To numpatterns − 1

C e l l s ( rowNo + i , HeaderCol ) = pattern ( i )
For j = 0 To colMax

I f i n v e r s i o n ( i , j ) > 0 Then
C e l l s ( rowNo + i , colNo + j ) = i n v e r s i o n ( i , j )
sCount = sCount + i n v e r s i o n ( i , j )

End I f
Next

Next
Close #1
End Sub
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