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Abstract

The thesis is a study of the distribution of inversion counts for the permutations
of multisets by a four-tier architecture of integers, partitions, multisets and the
permutations of the multisets. It introduces two insertion methods to link the hier-
archical and peer to peer relationships between these entities. It centers around the
generating function for the inversion count distribution for the permutation of the
multisets. The main result is a recursive function for the parent/child relationship
between the permutations of multisets.

The secondary result is a rediscovery of the closed form expression for the gen-
erating function as a product of Gaussian binomial coefficients, also known as ¢-
nomials. For a partition n = ny + ng + - - - + ny, the inversion count distribution is
given by the coefficients of the polynomial

G(ni+ o+ -+ my)
where  G(n) = (2" — 1)(2" ' = 1)...(z —1).

P(ny,ng,...,ng) =

The thesis also studies the link between the coefficients of the generating poly-
nomial and the Ferrers diagram and also delivers an integer partition formula as a
special case of the closed form. It also analyses the conformance of natural and com-
puter generated sequences with the expected distribution of partition and inversion
counts.
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CHAPTER 1

Concepts

1.1 Inversion

Five cards each with a digit from 0 to 4 are laid on the table from left to right, as
illustrated below:
4 1 0 4 2

Take the leftmost card (here with value 4) and record the number I; of cards to its
right of lower value. In the example above, I = 3 since 1, 0 and 2 are smaller than
4. Repeat this count for the remaining cards, recording I, = 1,13 = 0 and I, = 1.
Now, let I = I} + I, + I3+ I4 = 5. This is the inversion count I = Inv(s) for the
sequence s = 41042. It can be shown by Lemma 2.2 to follow that the maximum
inversion count for a sequence of 5 numbers of which 4 are distinct is 9. In this
thesis, we consider inversion count for various types of sequences, some random
and others not. We address the natural question: “What is the probability distri-
bution of I, given some random sequence?”. Once such a probability distribution
is known, it can be used to analyse the digits of classical irrational numbers such
as m and e to determine whether they conform to expected distributions. We can
also use inversion count frequency distribution to analyse the efficiency of sorting
algorithms and also measure the randomness of quasi-random sequences generated
by computers.

1.2 Inversion distribution

The objective of the thesis is to deliver the expected distribution of inversion count
for the permutations of the elements of a multiset (See Section 2.1.2) This section
presents some of terminologies and related concepts at a high level using the digits
0 to 9. It will be assumed that d; < d; for 1 <¢ < j <5.

Let S = {00000, 00001, ...,99999} be the set of 5-digits numbers. For s € S,
let Inv(s) be the inversion count of its digits. The multiplicities of the digits of
a 5 digit number naturally induces 7 partitions of 5, these being: ‘1-1-1-1-17, ’2-
1-1-17, ’2-2-1°, ’3-2’, ’3-1-17, ’4-1’, ’5’. Let S; C S be those numbers where the
digits are distinct ('1-1-1-1-1), so that |S;| = 10 x 9 x 8 x 7 x 6 = 30,240. For
s; € S1, 0 < Inv(sy) < 10. For instance, Inv(25689) = 0, Inv(94310) = 10.
We are interested in the relative frequency of the Inversion Frequency Distribution
(IFD) in Ip(Sy). The result is tabulated in the first row of Table 1.1 below. Here,
Ir(S1) = (fo, f1,---, fi0) where fo = 1,f1 = 4,f, = 9,..., fio = 1. Note that
the sum of the row is 120 = 5! which is the factor to obtain actual frequencies.
S1 corresponds to the integer partition 5 = 1+ 1+ 14+ 1+ 1 and is denoted as
(1,1,1,1,1).



Next, we turn the attention to those 5-digit numbers Sy which have 4 distinct
digits with one repeated digit ('2-1-1-1) (e.g., 03074) with |S5| = 10 x 28T x
8 = 50,400. For sy € Sy, 0 < Inv(sy) < 9. For instance, Inv(02256) = 0,
Inv(77641) = 9. Sy is denoted as (2,1,1,1) and the relative frequency is given by
the second row in Table 1.1. Let ¢(.S) denote the permutations for the set S. For
instance, o({1,2,2,3,4}) contains the 30 permutations of 1,2,2,3,4. The natural
question that arises is whether Ir({dy,ds,ds,ds,ds}) = Ip({d1,dy,ds,ds,ds})? A
formal proof is given by the Family Partition Theorem (Theorem 6.3) which provides
a direct proof that the IFD is invariant of the ranking of the elements.

Table 1.1 also extends the calculations for the partitions (1-2-2), (1-1-3), (2-3),
(1-4), (5). Although the table can be computed, the numbers quickly get out of
control for large number of digits. The final row is the weighted sum of the rows
by multiplying IFD by the size of the dataset.

Table 1.1: Inversion distribution table for n =5

Inversion Frequency Distribution (IFD)
Partition | 0 1 2 3 4 5 6 7 8 9 10 Count
1-1-1-1-1 1 4 9 15 20 22 20 15 9 1 30,240
1-1-1-2 1 3 6 9 11 11 9 6 3 1 50,400
1-2-2 1 2 4 5 6 5 4 2 1 10,800
1-1-3 1 2 3 4 4 3 2 1 7,200
2-3 1 1 2 2 2 1 1 900
1-4 1 1 1 1 1 450
5 1 10
Total | 2002 | 5148 | 10098 | 14850 | 18150 | 17754 | 14850 | 9900 | 5148 | 1848 | 252 | 100,000

An important objective of the thesis is to construct IFDs at the partition level.
Observe also that in Table 1.1, IFD for a partition is symmetrical about the median
position. For instance, for the row ‘1-4’, fo = f4, f1 = f3. However, it is not sym-
metrical for the column total. The thesis analyses the partition and inversion count
distribution for the digits of irrational numbers and computer generated numbers
in Chapter 9.

1.3 Generating function for the symmetric group

The inversion count distribution for each partition is associated with a generating
function. The IFD for the partition ‘1-1-1-1-1"is (1, 4, 9, 15, 20, 22, 20, 15, 9, 4,
1) and this is represented by the generating polynomial where the coefficient of x*
corresponds to the frequency count of the inversion count k:

P(1-1-1-1-1) = 1+42+92° +152° + 202" +222° +202° + 152" +92° + 427 +- 2 .
(1.1)
Note that the sum of coefficients of P(1-1-1-1-1) is 5! = 120.

1.4 Generating function for the partitions with repeating elements

For the partition ‘1-1-1-2’, the permutations of the sets Sy = {d1, do, d3, d4, R} where
0<d <dy <ds <dyand R = dy,ds,ds3,d, spans all the 5-digits number with
one repeating digit. There are W x 4 = 840 permutations of the elements of

S,.  The collection of S, is defined as the partition family for ‘1-1-1-2°. For fixed



values of dq, ds, d3, R, the %' = 60 permutations can be split into inversion counts of
0 to 9. It is natural to ask whether the IFD (1,3,6,9,11,11,9,6,3,1) accounts for the
permutations of both the sets S, = {3,3,5,7,9},5) = {0,2,6,6,8}7 The Family
Partition Theorem (Theorem 6.3) provides a direct proof that the IFD is invariant
of the choice of elements. The Closed Form Theorem (Theorem 8.6) also provides
an indirect proof.



CHAPTER 2

Notation, terminology and preliminary results

2.1 Notation

This section defines the notation and provides examples of how they are used.

2.1.1 Set

Let S ={a,b,c,...} be aset with total order a <b<¢c=<---.
In the thesis, the set S will be the set of the first 10™ positive integers, where
n € Z*, represented as strings of length n:

In Chapter 9, the values n = 6,7,8,9 will be used. For the purpose of this thesis,
the ordering < is simply the usual integer order a < b <c < ---.

2.1.2 Multiset

A multiset S is a collection of elements in which elements may be repeated. In
the thesis, the elements are formed by the concatenation of digits. The distinct
elements of a multiset will be denoted as {ej, e, ..., e,}. Unless otherwise stated,
it will be assumed that e; < e; when ¢ < j.

Associated with each element e; is the multiplicity n; which is the number of
times the element is repeated in S. Given the elements ey, es, . . ., e, each multiset in
this thesis can be represented simply as S = [ny,ng, . . ., ny| where the multiplicities
are associated with each of the elements ey, e, ..., g, respectively. For instance,
the set S = {a,a,a,b,c,c} can be represented as [3,1,2]. It may also be denoted as
{a’bc?}.

2.1.83 Rank of multiset R(S)

For a multiset S = [ny,ng,...,ni|, the rank R(S) = k is the number of distinct
elements in S.

2.1.4 Permutation of multiset o(5)

The permutation set formed by the elements of S is defined as o(S). The elements
of o(S) are called sequences. For instance if S = {a,b,b, c}, then

o(S) = {abbc, abeb, acbb, babe, bacb, bbac, bbca, beab, beba, cabb, cbab, cbba} . (2.1)

10



2.1.5 Inversion count Inv(s)

The inversion count inv(s) of any sequence s = sq,...,S, of elements of s is the
number of pairs of elements in s which are out of order:

Inv(s) = [{(i,j) : 1<i<j< N, s> s}

For a multiset, m(S) denotes the maximum inversion count of the permutations
of S. In (2.1), the element cbba has inversion count 5 and m(S) = 5. Lemma 2.2
expresses m(S) for each multiset S = [ny,ng, ..., ngl.

2.1.6  Inversion frequency distribution Ir(S)
The Inversion Frequency Distribution (IFD) of multiset S is the (m(S) + 1)-tuple

Ip(S) = (fo, f1, -+ fonis))

where, for 0 < i < m(S), the number f; is the number of sequences in ¢(S) with
inversion count %:

fi= |{S €oa(S) : Inv(s) = z}|

Table 2.1: Inversion frequency distribution for o2, 1, 1]

Inv(s) Permutation
aabc
aacb, abac
abca, acab, baac
achba, baca, caab
bcaa, caba
cbaa

T W N = O

From Table 2.1, the number of sequences with inversion counts 0, 1,2, 3,4,5 are
1,2,3,3,2,1, respectively. Thus,

f0:1;f1:27f2:3af3:27f4:2:f5:17 m(S):E), IF(S):<1’2737372’1)'

2.1.7 Generating polynomial P(S)

The generating polynomial P(S) is a representation of Ir(S) = (fo, fi,-. ., fin(s)) In
polynomial form:

For the previous example where S = [2,1,1] and o(S) = (1,2,3,3,2,1),
P(S) =1+ 2x +32% + 32° + 22* + 2°.

It has an important role in the closed form expression for, as well as the recursive
calculations of, the inversion count frequency distribution; see Theorem 7.2. The

11



generating polynomial also acts an operator in the parent /child relationship between
partitions; see Examples 4.2 and 4.3.

As we are concerned only with the coefficients of the polynomial, it will be
assumed that x # 1.

2.1.8 Cayley’s notation

Cayley’s notation was used by P.A. MacMahon [10]. He remarked: “This notation
is exceeding illuminating, and is a striking example of mathematics that has gained
by an appropriate notation”. We will however use the modified notation G(n) to
avoid notational ambiguities later in the thesis.

Gn)=(2"-1@@""'=1)---(x—1),ne Z".

2.1.9 Partition family

The partition family F(nqy,na,...,ng) is the collection of permutation sets on any
permutation of the multiplicities. For instance,

F(1,2,3) = {o[1,2,3],0[1,3,2],0[2,1,3],0[2,3,1],0[3,1, 2], 0[3,2, 1]} .

The partition family establishes a one-to-many relationship between the positive
integer partitions of an integer n and the multisets with multiplicities given by the
permutations of the summands of the partition.

2.1.10 Partial integer partition count A(n,p,m)

Let A(n,p, m) be the number of partitions of a positive integer n into p parts each
of size at most m. For instance, A(6,3,4) is the number of partitions of 6 into 3
natural numbers, each of which is less than or equal 4, namely

6=4+2+0,
6=4+1+1,
6=3+3+0,
6=3+2+1,
6=2+2+2.

There are five such partitions, so A(6,3,4) = 5. The number A(n,p,m) is an
extension of the Euler partition of the integer n into m parts [1]. The coefficients
of P(S) can be expressed in terms of A(n,p, m); see Corollary 5.5.

Next, we develop two results about the properties of the permutations of a multi-
set. These results will enable us to further the study of inversion count distribution
by the insertion method of the next chapter.

2.2 Supporting lemmas

We will first establish a well-known result for the cardinality for the permutation
set o (9).

12



k

Lemma 2.1. Let S = [ny, no, ..., ni) be a multiset with n = ) n; elements. Then
i=1
n!
oS)=———7+-—7"—.
Proof. Map the multiset S to a set S* so that if e € S is repeated r times, then the
T

elements €, e, ..., e € S are mapped to e, e ... e € S* The number of such

mappings is n!. The positions of e € S* can be permuted in r! ways to form the
same permutation in ¢(S). By applying the multiplicative principle of counting,
the proof is now complete. n

Recall that m(S) is the maximum inversion count of the sequences in the permu-
tation set o(S). The next lemma establishes the value of m(S) in terms of the
multiplicities of the elements of S.

Lemma 2.2. Let S = [ny, ng,...,ng] be a multiset with k& distinct elements. Then
0 , ifk=1
S) = k-1 &k
i=1 j=i+1

Proof 1: 1t is clear that if k£ = 1, then m(S) = 0.

For k > 1, the maximum inversion m(S) can be obtained by arranging the elements
of s € 0(9) in reverse order which corresponds to the element s = s185 - - - s, Where
si <s;,1 <i<j<|S]. Now, s consists of (lg‘) pairs and since each group of
identical elements has zero inversion count, the values (”') must be subtracted from

2
the maximum possible inversion count. As |S| = ny + ng + - -+ + ng, we have

o= ()5
_ (m +n2+2 +nk) z"”: (n)
Qm(S):ZZ;:nix (an_1> Zk:nz( i—1)

5] S S

k k

:an—I—ZZanJ an Zn —I-an

=1 j=i+1

13



Proof 2: For k > 1, the maximum inversion m(.S) can be obtained by arranging the

elements of s € g(5) in reverse order with s = e - epex_1---€x_1---€1---ey.
—_——T—— N——

nk Np—1 ni
For 2 < i < k, the element ¢; is followed by n;_1 + - - - + ny elements of lower
ranking. We have

]m;(s) :nk(nk_l—i—---—l—nl)+nk_1(nk_2—|—---+n1)+---+n2(n1)
=ni(ng+ -+ ng) +Fna(ng+---+ng) + -+ ng_1ng

k-1 k
i=1 j=i+1

14



CHAPTER 3

Overview of the inversion distribution

3.1 Development history and overview

In 1750, G. Cramer [6] noticed, for a n x n matrix A = (a;;), the relationship
between the sign of determinant det A and the parity of the inversion count:

n

det(A) = Z (—1)tvm Hami ,  where m = (71, M2, ..., Ty) .

w€o(Sn) =1

The first-known work on inversion distribution for the symmetric group was pub-
lished by O. Rodrigues [14] in 1839, although it is generally attributed to Muir [13]
in 1899.

e (3.1)
G(k
- ﬁ See notation in (2.1.8)
k
For a multiset S = [ny, ng, ..., ngl, the objective of the thesis is to develop the

generating function for the inversion distribution of the sequences created by the
permutations of the elements of S. The generating function is given by

G(ni+ng+ - +ny)
G(n1)G(ng) -+~ Glng) -

P(ni,ng,...,ng) = (3.2)

By setting n; = 1 for 1 < i < k, equation (3.2) reduces to equation (3.1). To
add to the words of P.A. MacMahon in Section 2.1.8, (3.2) is truly remarkable in
that G(n) can be considered as an object and is described as “the g-analogue of n!”
by R.P. Stanley [16]. Note that (3.2) can also assume the role of coefficients of a
multinomial expansion. In 1913, P.A. MacMahon [11] published an article on the
distribution of greater index, which is later named major index in his honor, for the
multiset with three distinct elements (k = 3) is given by equation (3.2). He went
on to prove that the distribution of major index for the permutations of a multiset
is identical to the inversion distribution [10]. As the technique naturally extends
to the general case, it was recognised by R.P. Stanley [16] as a complete solution.
The proof utilises the recursive parent/child relationship in the partition structure
which is formally proven in Theorem 7.2 for the general case.

15



In 1967, L. Carlitz [3] independently provided a combinatoric proof for the
general case. The proof relies on the inversion distribution satisfying recursive
relations of the permutation by algebraic expressions. It delves into the parent /child
and peer to peer relationships between the permutations. R.P. Stanley [16, p.64]
describes this type of proof as “semi-combinatorial” where the proof is a verification
rather than a direct proof.

By using the Euler Pentagonal Theorem [1], D.E. Knuth [9] provided a beautiful
combinatorial closed form expression for the inversion count distribution of the
symmetric group. However, this form is of little computational value despite of its
beauty.

Let I,(k) denote the number of elements with inversion count k in S,:

S (G QTR

j>1

where n > k > u; + j and
32—
U=
Knuth also outlined ideas on obtaining the closed form for the permutation of
multisets by considering the mapping of inversions with the cycles of permutations.
R.P. Stanley [16] provided two ‘’semi-combinatorial” proofs. The first proof is
based on decomposition properties of the inversion distribution of a multiset. The

second proof is a mapping of permutation cycles.

In summary, the distribution of inversion for multisets expressed as g-nomial
form in (3.2) has been established by the combinations of the different methods
listed below:

By the link between major index and permutation of a multiset.
By decomposition of permutation of multiset into components.
By recursive relationships between the permutations of a multiset.
By mapping of permutation cycles in a multiset.

3.2 Thesis overview

In my early University days, I came across three women sorting the 60,000 enrolment
forms in a basketball court over two or three weeks. Their method was to segregate
the forms into alphabet piles around the court, sort the piles separately and then
consolidate the piles into a single pile. The initial curiosity inspired me to try to
measure the efficiency of the method. As the sort process untangles pairs of out
of order, it led to the development of a model for measuring the expected number
of pairs out of order. The outcome, given in this thesis, is a study of inversion
count distribution in order to define a mechanism for measuring how far a sequence
deviates from the sorted state.

The thesis develops the hierarchical relationship between integer partitions and
permutations of multisets. The many-to-many parent/child relationships between
the permutations of multisets are expressed by insertion of elements.
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For n € Z, the integer partitions of n can be formed by inserting an element
into integer partitions of n — 1. A partition P = (nq,na,...,ng) where n; € Z,
1 <i<kandny+ng+---+mng =nis the child of partitions P, = (n},nb,...,n}),

1 < i < k where
, {nm ,mF i
n, = ,

Nm—1 ,m=1.

Therefore, a child partition with k distinct elements has k parent partitions. A
partition with k£ distinct elements is the parent of k+1 partitions. This is illustrated
in Figure 3.1 below.

0-2-2-3 1-1-2-3 1-2-1-3 1-2-2-2 Parent

1-2-2-3

Y
A

Child

Figure 3.1: Hierarchy of partition

In Figure 3.1 above, let S = {a,b,b,¢,c,d,d,d}. The parents for the permutations
of S are the permutations of

Sy =4{b,b,¢c,c,d,d,d},
Sy =A{a,b,c,c,d, d,d},
S3 ={a,b,b,c,d,d,d},
Sy ={a,b,b,c,c,d,d}.

The thesis develops methods for calculating the inversion count for the permuta-
tions of a multiset when one or more copies of new element is inserted. It develops
decomposition techniques for the permutation of multiset by insertion processes.
The insertion process can also be linked to Ferrers diagrams which leads to a gen-
erating polynomial for integer partitions as a special case of the closed form of the
distribution of inversion count in Theorem 8.6.

The two types of insertions explored are the insertion of a single element into
first or last position of a sequence and also the insertion of multiple copies of a new
element into a sequence represented by the upper diagonal of a hypercube.
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For the permutations of a multiset, the inversion count frequency distribution
is represented by a generating polynomial. The thesis derives the generating poly-
nomial for two distinct elements in g-nomial form and uses it to form the building
blocks for a closed form expression of the inversion count distribution.

The inversion count distribution of the integer partitioning provides a link to
Ferrers diagrams. Lemma 8.10 established a generating polynomial for the integer
partition function p(n) in terms of the coefficients of the polynomial P([n,n]).
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CHAPTER 4

The insertion process

For a multiset S, the elements s of the permutation set o(S) are referred to as
sequences. This chapter demonstrates the process of building sequences by inser-
tion of elements to the sequences in a parent/children hierarchy. The objective
is to provide a methodology to calculate the inversion count distribution for the
permutations of a multiset.

The insertion position k of an element into a sequence of length n is counted
from left to right starting at zero, where 0 < k < n.

Ny E i K

0 1 2 n—1 n

Insertion positions for a sequence

4.1 Insertion of single copy of a new element

The following example demonstrates the insertion process and its relationship to
the inversion count distribution.

Example 4.1. Let T' = {b,b,d}. Then sequences in o(T) = {bbd, bdb,dbb} have
inversion counts 0,1,2, respectively. Therefore, Ir(T) = (1,1,1). Let S = {b, b, ¢, d}.
We will form o(S) and I7(S) by inserting the element ¢ into positions 0, 1, 2, 3 of
each element of ¢(7") as in Table 4.1 below. The notations for the table are:

e [P - Insertion Position.
e [(s), I(t) - Inversion count for the sequence s € o(S5), t € o(T).

Table 4.1: Inversion count distribution by insertion

t | I®)|IP| s |I(s)|IP| s |I(s)|IP| s |I(s)|IP| s | I(s)
bbd| O | 0 | cbbd| 2 1 |bchd | 1 2 |bbed| 0 | 3 |bbde| 1
bdb| 1 | 0 |cbdb| 3 1 | bedb | 2 2 | bdeb| 3 | 3 |bdbc| 2
dbb | 2 0 | cdbb | 4 1 | dcbb | 5 2 | dbcb | 4 3 | dbbc | 3

By combining the columns (s) in Table 4.1, we have

Ix(T)
Ir(S)

Ir(2,1]) =(1,1,1) (4.1a)
Ip(2,1,1]) = (1,2,3,3,2,1) . (4.1b)
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4.2 Insertion of multiple copies of a new element

The next two examples demonstrate the insertion process for the construction of
Ir(S) as a sum of its parent partitions. The examples are simplified so that the
inserting elements are either of the highest or lowest ranking. It will be seen in the
Partition Family Theorem (Theorem 6.6) that Ix(5) is invariant of the ranking of
the inserting element.

Example 4.2. Let us calculate Ir(S), Ip(S’), Ip(S") for
S = {b%cd}, S ={ab*cd}, and S” = {b*cde}.

Note that S is the parent of S" and S”. From Equation (4.1b), Ir(S) = (1,2,3,3,2,1).
By Lemma 2.2, the maximum inversion count for ¢(S’) is 9 and therefore I (S")

is a 10-tuple. To calculate Ir(S’), note that S’ is obtained from S by adding the

element a. Since the letter a is of lower ranking than b, ¢ and d, insertion into

position k results in a permutation s’ € o(S’) with insertion count k greater than

that of s. This inserts in [r(S") k zeros to the leftmost coordinates, then inserts

4 — k zeros to the rightmost coordinates, where 0 < k < 4. Therefore,

Ir(S") =(1,2,3,3,2,1,0,0,0,0) Insertion into position 0
+(0,1,2,3,3,2,1,0,0,0) Insertion into position 1
+(0,0,1,2,3,3,2,1,0,0) Insertion into position 2
+(0,0,0,1,2,3,3,2,1,0) Insertion into position 3
+(0,0,0,0,1,2,3,3,2,1) Insertion into position 4
= (1,3,6,9,11,11,9,6,3,1) .

1+ 3z + 622 + 92° + 11z + 112° + 925 + 627 + 328 + 2*
(1422 + 322 + 323 + 22 + 2°)(1 + = + 2% + 23 + 2%)
=PS)1+z+ 2>+ 23+ ).

Note that P(S’) is formed by multiplying the P(S) by the polynomial matching
the insertion, namely 1 + = 4+ 2% + 2% + 2.

Now, S” is formed by inserting the element e into S. Since e is of higher
ranking than b, ¢, d, inserting e into position k of s € ¢(S) results in a permutation
s" € o(S"”) with inversion count 4 — k greater than that of s. This inserts in
Ip(S") 4 —k zeros to the leftmost coordinates, then inserts k zeros to the rightmost
coordinates. Therefore,

Therefore, P(5")

Ir(S") =(0,0,0,0,1,2,3,3,2,1) Insertion into position 0
+(0,0,0,1,2,3,3,2,1,0) Insertion into position 1
+(0,0,1,2,3,3,2,1,0,0) Insertion into position 2
+(0,1,2,3,3,2,1,0,0,0) Insertion into position 3
+(1,2,3,3,2,1,0,0,0,0) Insertion into position 4
=(1,3,6,9,11,11,9,6,3,1).

1+ 3z + 622 4+ 92% + 11z* + 112° + 925 + 627 + 328 + 2°
(1+ 2z + 322 + 3% 4+ 2z* + 2°) (1 + x + 2® + 2° + z*)
PS)Y1+x+ 2> +2° 4+ 2%).

Therefore,  P(S")
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Therefore,

o(§")=0(S) and  P(S) = P(5").

The next example demonstrates the insertion of multiple copies of an element
and also provides a geometric interpretation.

Example 4.3. We will calculate P(S), P(S’), and P(S”) for
S ={bed}, S ={a’bed}, and S” = {a’bed}.

The elements of o(S) are {bed, bde, cbd, cdb, dbe, deb} with inversion counts 0,1,1,2,2,3,
respectively. Therefore, Ir(S) = (1,2,2,1) and P(S) = 1 + 2z + 222 + 2°.

We will use T' = {abcd} as an intermediate set to explain the insertion process.
Each item s € o(S’) is formed by inserting 2 copies of a into positions ¢ and j of
s € 0(S5), where 0 < i < j < 3. Insertion of the first copy of element a into position
iof s € o(S) forms t € o(T) where Inv(t) = Inv(s) 4. Insertion of the second copy
of a into position j in s € o(S) forms s’ € ¢(5’). Now, Inv(s’) = Inv(¢) + j since
the position of the first copy of a does not affect the increase in inversion count of
the second copy of a. Therefore, Inv(s') = Inv(t) + j = Inv(s) + i + j. Insertion of
the two copies of a into position 4, j shifts Iz(S) to the right by i + 7.

Figure 4.1: Insertion of 2 copies of a into elements of (b, ¢, d)
0 1 2 3

In Figure 4.1, the horizontal axis (reading downwards) is ¢ and the vertical
axis (reading across) is j. The circled value is i + j. Notice that the insertions
correspond to the upper diagonal of the square. For instance, inserting a into
position 1 and 3 of bde (inversion count 1) gives badca (inversion count 5) and
5 =1+ (1+ 3). Since increase of inversion by k > 0 has the effect of multiplying
by ¥, the insertion of two copies of a can be treated as multiplying P(S) by the
operator 1 + x + 222 + 223 + 2z + 2° 4 25.

P(S") = (1 + o+ 22% + 22° + 22* + 2° + 2%) P(S)
= (142 + 22 +22° + 22" + 2° + 2%) (1 + 20 + 222 + 2%)
2 3 4 5 6 7 8, .9 (4.2)
=1+3z 462" +92° + 11z” + 112° + 92° + 62" + 32" +
Ir(S") = (1,3,6,9,11,11,9,6,3,1) .

Note that in the factor in the RHS of first line of (4.2), the coefficient of 2,1 <=
? < 6 corresponds to the number of circles with value ¢ in Figure 4.1.
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Next, s” € §” is formed by inserting 3 copies of a into positions 7, j, k of s € S,
where 0 < ¢ < j < k < 3. Insertion into positions i, j, k shifts (1,2,2,1), the
inversion count frequency of .S, to the right by ¢ + 7 + k.

Figure 4.2: Insertion of a, a,a into o(b, ¢, d)

o 1 2 3 0 1 2 3 0o 1 2 3 0 1 2 3
k k

©

8 C)
i=2 i=3

The triplets (i, j, k) form an upper diagonal of a 3 dimensional cube. Thus

P(S") = (1 + o + 2% + 32% + 32* + 32° 4+ 32° + 227 + 2® + 27) P(9)
= (1+z+22% 4+ 32° + 32" + 32° + 32° + 22" + 2® + 2°) (1 + 22 + 227 + 2%)
= 14 3z + 62% + 102% + 142 + 172° 4+ 182° + 1727 + 1428
+ 102 4+ 620 + 3zt 4+ 22
Ir(S") =(1,3,6,10,14,17,18,17,14,10,6, 3, 1)

In the examples above, we have limited the insertion element to be either of
lowest or highest ranking, relative to the elements in set S.
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CHAPTER 5

Preliminary results

5.1 The generating polynomial P(S)

The coefficients of the generating polynomial P(S) represent the inversion frequency
distribution of the permutations ¢ (.S) of the multiset S. This polynomial provides
the algebraic tool for the insertion process as demonstrated in Examples 4.2 and 4.3.
In this chapter, we will further develop the properties of this generating polynomial.
In particular, the exact form for P(S) where S consists of two distinct elements
(R(S) = 2) is established.

The reader would have noticed that the coordinates f; are symmetrical un-
der reflection: (fo, fi,---, fme1s fn) = (fims frne1,-- -, fo, f1). The following lemma
provides a formal proof of this fact.

Lemma 5.1. Let S be a multiset with Ip(S) = {fo, f1,-.., fmes)}. Then f; =

fm(s)—; for j =0,1,...,m(5).

Proof. Reflect s = s155...5g) € o(S) about its median position to form s =
S18y ... S|g so that s; = s{g_;,,, 1 <@ <[S].

For a pair (i,7),1 <1i < j < S|, there are three cases to consider:

1. s; = s;. The pair does not contribute to the inversion count.

2. s; > s;. The pair is included in Inv(s).

3. s; < s;. The pair is included in Inv(s’) since 815|—j+1 > 3\,5\—1'+1~
Therefore, Inv(s") + Inv(s) = m(S), by reflection. For every sequence s € o(S)
where Inv(s) = m, there exists a unique sequence in s’ € o(S) where Inv(s') =

m(S) —m. Thus for 0 < k < m(S5),
fe=1s€a(S):Inv(s) =k| =1|s" € o(S) : Inv(s') = m(S) — k| = fr(s)—k -
O]

The following corollary is used for analysing the inversion count mean and me-
dian of datasets in Chapter 9.

Corollary 5.2. For a multiset S, the mean X of the inversion frequency distribution
Ip(S) = {fo, fi,---, fmes)}, is equal to the median value M; indeed,

X m(s)
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m(S) _ m(S)
Proof. Let T = 3" fi; then X = 7 > if;.
i=0 i

There are two cases to consider:

Case 1: m(S) is even, and so m(S) = 2M, where M is the median.

g M 2M
X=X ifit Mt Y m)
=0 j=M+1
s M-1
= Zifi+MfM+ Z(QM—z)fl> (by Lemma 5.1)
=0 i=0

. M-1
== 2MZfi—|—MfM>
(Z fit+ fu+ Z fz) (by Lemma 5.1)

i=M+1

Case 2: m(9S) is odd, and so m(S) = 2M’ + 1 where M’ is the median.

o 1 M’ 2M’+1
X =z (Zz‘m > jfj)

i=0 J=M'+1
1 M’ M’
=7 (Zifi+2(2M’+1—i)fi>
1=0 1=0

2M’+1M
Z

2]\/[’

(E51)
(Z Z fi> (by Lemma 5.1)

i=M'+1

2M’+1 m(s)
2 2

]

Lemma 5.3 formalises the calculations of the insertion process described in Exam-
ples 4.2 and 4.3.
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Lemma 5.3. Let S be a multiset with & distinct elements and let S = S U e™
where e < min(S) or e > max(S). Then

m|S|
P(S") = P(S) Z A(i,|S|, m)a’

where A(i,|S], m) is the number of partitions of the integer ¢ into m parts each of
size at most |S].

Proof. Suppose that e < min(S) and insert m identical copies of e into S. Let
¢; denote the number of copies of e inserted into position i, where 0 < i < |5
and 0 < ¢; < m. The insertion positions can be represented as a (|.S| + 1) -tuple
c=(co,c1,-..,C])-

Since e ¢ S, the elements in S can be regarded as being identical in ranking for
the insertion process . In the formation of ¢(S5"), each (|S|+1)-tuple (co, c1, ..., ¢s))
increases the inversion count of s € o(S) by

S|
K:chj where 0 < K <m|S]. (5.1)

=0

The maximum value of K = m/|S| is obtained by inserting all the m copies of e into
position |S|. The application of (co,c1,...,¢5)) to o(S) inserts K zeros to the left
of Ir(S) and appends M(S) — K zeros to the right of Iz(S) to form Ir(5").

For a fixed value of K, the count of tuples (co,c1,...,¢5) satisfying Equa-
tion (5.1) is given by A(K,|S|,m). Now group the tuples by their value of K, the
group increases the inversion count for each s € S by K. This represents multi-
plying the coefficient of each term in P(S) by z®. The lemma now follows by the
definition of coefficients of P(S").

By similar argument, the lemma is also true if e > max(.5). O

5.2 Ferrers diagram

A Ferrers diagram [2] is a representation of an integer partition n
n=ni+neg+---+ng, nNg>ng>--->n,>0, ny,ng,...,n; €L.

Figure 5.1 below shows the partitions of the integer 4. The circles in the south-east
diagonal are marked as red. The conjugate of the Ferrers diagram is obtained by
reflecting along this diagonal. The conjugate pairs are (1,1,1,1) and (4), (2,1,1)
and (1,3), and (2,2) and (2,2). The partition (2,2) maps to itself is termed as self
conjugate. By considering the reflection image along the diagonal, it is clear that
each Ferrers diagram has a unique conjugate.
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Figure 5.1: Ferrers diagram for n = 4

1-1-1-1 2-1-1 2-2 3-1 4

® ® O ® O ® O O ® O OO
O O O @ O

O O

O

The insertion of n copies of an element (see Example 4.3) into the permutations
of a multiset can be represented by the partitions of a Ferrers diagram. In this
section, we will examine this link which leads to a generating polynomial for integer
partition in Lemma 5.4. Each partition counted by A(n,p,m) can be represented
as a Ferrers diagram for n with the restriction that the number of summands is no
more than p and the maximum value of each summand is m. To illustrate, Table 5.1
below demonstrates the relationship between A(10,7,5) and A(10,5,7) using the
correspondence between the conjugate pairs in the Ferrers diagram.

Table 5.1: A(10,7,5) and A(10,5,7)

A(105,7) | A(10,75) | A(10,5,7) | A(10,7.5) | A(10,5,7) | A(10,7,5) | A(10,5,7) | A(10,7,5)
73 2:2-2-1-1-1-1 | 7-2-1 3-2-1-1-1-1-1 | 7-1-1-1 | 4-1-1-1-1-1-1 | 64 222211
631 320111 | 622 331011 | 6201 | 42-0-1-1-1 | 6-1-1-1-1 | 5-1-1-1-1-1
55 2:2-2-2-2 5-4-1 3-2-2-2-1 5-3-2 3-3-2-1-1 5311 | 4-2-2-1-1
5291 | 43111 52111 | 52-1-1-1 ) 3322 4401|4222
133 3-3-3-1 1321 | 4321 43-1-1-1 | 5-2-2-1 1222 | 44-1-1
4-2-2-1-1 | 5-3-1-1 3-3-3-1 4-3-3 3-3-2-2 4-4-2 3-3-2-1-1 | 5-3-2
32221 | bd-1 22222 | 55

Lemma 5.4.
A(n,p,m) = A(n,m,p)

Proof. A(n,p,m) is the number of integer partitions of n into p blocks of size at
most m. Each such integer partitions can be represented as a Ferrers diagram that
represents an integer partition of n into m blocks of size at most p. This is a
bijection. O]

Corollary 5.5 below is the special case of Lemma 5.3 in which the multiset S
consists of two distinct elements.

Corollary 5.5. Let S = [ny,n3]. Then

nin2 ning
P(SI) = Z A(ianhnz)iﬁi = Z A(i,ng,nl)xi. (5.2)
=0 1=0
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Proof. Let S = [n1] and S’ = [n, ny]. Since P(S’) = 1, apply Lemmas 5.3 and 5.4,
we have

P(S') = P(S) Y A(i,n1,ny)a’
=0

ninz

= Z A(i,ny, ng)a’
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CHAPTER 6

Partition family theorem

This chapter presents the Partition Family Theorem (Theorem 6.6) below which
states that multisets belonging to the same partition family have the same inversion
count frequency distribution.

6.1 Partition family with two distinct elements

The following lemma forms the base case for a proof by induction of the Parti-
tion Family Theorem. It also lays the groundwork for calculating the generating
polynomial P(S) by recursion as well as deriving its closed form.

Lemma 6.1. Let S = [ny,ns] and S’ = [ng, ny], where ny, ny are positive integers.

Then Ir(S) = Ir(S") and P(S) = P(S5").

Proof 1: Write Ir(S) = (fo, f1,-- -, far) and Ip(S") = (fo, f1 -y fip)-
By Lemma 2.2, we have M = M’. Denote M = m(S) = m(S’). Then, Corol-
lary 5.5 implies that, for 0 < i < M,

fi - A(i7n17n2) = A<i7n27n1) = fl/

It follows that Ir(S) = Ip(S’) and P(S) = P(5’). O
Proof 2: This is an elementary proof based on the inversion count of the elements
in a sequence. Let S = {a" ™} and S’ = {a"b™ } and set n = n; + ny. Then for
an element s € ¢(.5), we form the unique element s’ € o(S’) by the two following
operations (A) and (B).

(A) Reflect s to form the permutation sx.

(B) Replace the elements a by b and b by a in sx to form ' € o(S").

Let x be in position k; and y be in position ko in s. Consider the two cases:

Case 1: If x = y, then the pair aa is transformed into bb and vice versa, and,
therefore, the contribution of the inversion count of this pair to the inversion count

does not change.

M
Case 2: If z # y, then consider the three subcases (a), (b), (c) below, in which | is

the median position in each diagram, and (A) and (B) corresponds the reflection
and swap operations as described above. Note that if n is even, then the median
position is not occupied by an element.

(a) z or y is at the median position: Suppose that z is at the median; then

ooy ) i G ) e ).

(b) ki, ko are on the same side of the median position: Then
G P @), N
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(¢) ki, ko are on the opposite sides of the median position: Then

M M M
(4) (B)

In all three cases, the contribution of the pair x,y to the inversion count does
not change. Since the mapping S — S’ is a bijection and since it preserves the
inversion count, it follows that Ix(S) = Ir(S’) and P(S) = P(5’). O

The next corollary is an important result for the iterative process in the calcu-
lation of Ir(S). A generalised result for P(m,n) is given later by Lemma 8.5.

Corollary 6.2. For any positive integer n,

$n+1 -1

Proof. Let S = {a"} and S’ = {a"b}. Note that o(S) has only one element s =

z—1

aa...a and P(S) = 1. Then each element s’ € o(5’) is formed by inserting a copy
of b into position 7 of s, where 0 <7 < n:

By inserting b into position 4, each element to the right of b increases the
inversion count of s by 1. Since o(S’) consists of n + 1 elements: one with element
b in position i for each 0 <7 < n. Therefore,

Pn,1)=14+x+4 -4 2".
Hence by Lemma 6.1, P(1,n) =1+a+--- + 2" O

Corollary 6.3 below proves that the insertion of a lower or higher ranking ele-
ment of any multiplicity to two multisets with the same inversion count frequency
distribution yield multisets with the same inversion count frequency distribution.

It will be used in the proof of the Partition Family Theorem to follow.

Corollary 6.3. Let S = [ny,ng, ..., ng and S" = [n},n), ..., n,] where {ny,na, ... ,ny}
and {nf,n},...,n}} are permutations of each other , with Ip(S) = Ir(5’). Let
er,em be elements such that e, < min(s), min(s’) and ey > max(s), max(s’), for
all se€ S, s € 8" and m € Z*. Then

Irp(SUuel) = Ip(S'Uel) = Ip(SUely) = Irp(S'Ueh)
P(Suer) = PS'Uel) = PSUen) = P(S'Uen).
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Proof. Let n = Y n; = > nl. By definition, Ip(S) = Ip(5’) if and only P(S) =
P(S"). Combining this with Lemma 5.3 gives

P(SUep) = ZAzmn P(S") ZAzmn = P(S"Uel)
and  P(SUey) = ZAzmn P(S) ZAzmn P(S"Uey)
(6.1)

By Corollary 5.5,

P(SuUel")
P(S"UeT)

P(SUem) (6.2)
P(S'Uem). (6.3)

By Equation ( 6.1) and ( 6.2), we have

P(Suel)=P(S"Ue}l)=P(SUcel) = P(S" Ue).

6.2 Two sort processes o and

For a sequence s of length n where the elements may be repeated, the a-sort and
(- sort processes are defined as follows:
e The a-sort arranges the first n — 1 elements in ascending order,
while position n in the sequence does not move.
e The [-sort arranges the last n — 1 elements in ascending order,
while position 1 in the sequence does not move.
These sort processes will be used for the proof in Theorem 6.6 and can be
combined together to sort a sequence of length n as shown below:

Example 6.4.

(A) (9,1,83,181,6) — (1,1,1,3,8.8,9,6)
L (1,1,1,3,6,8,8,9)

(B) (9,1,8,3,18,1,00 - (1,1,1,3,8.8,9,0)
L (1,0,1,1,3,8,8,9)
-~ (0,1,1,1,3,8,8,9)

In the case of (B) where the lowest ranking element is in the last position, an
extra a-sort operation is required to complete the sort.

The following lemma is self-evident and is stated without proof.

Lemma 6.5. Let s = s155...5,, n > 3 be a sequence. Then the following opera-
tions will sort the elements of s into non-descending order.

30



1. If s, > s; for some 1 < i < n, , then the sort operations «f arrange the
elements of s into non-descending order.

2. If s, < s, for all 1 < 4 < n, , then the sort operations af«a arrange the
elements of s into non-descending order.

6.3 Partition Family Theorem

The theorem below asserts that the multisets belonging to the same partition family
have the same inversion count frequency distribution.

Theorem 6.6. Let N = [nq,na,...,ng] and M = [my, ma, ..., my|, where (nq,no, . ..

and (mq,mo, ..., my) are permutations of each other. Then
Ip(N)=1p(M) and P(N)=P(M).

Proof. The proof is by induction on the number of distinct elements k. Note that it
is valid to assume that the multisets M and N span over the same set of elements
{e1,€9,...,¢ex} where e < ey < --- < e The case in which k& = 2, that is, when
N = [n1,n9] and M = [ng,ny], is given by Lemma 6.1.

Assume that the theorem holds for all multisets with & — 1 distinct elements
with £ > 3 and consider the multisets M and N as in the theorem. Define
Z = [z1,29,...,2k] to be the permutation of the multiplicities of M and N in
non-descending order. We will now prove that I[p(M) = Ip(Z) = Ir(N).

We will first prove that the inversion count frequency is invariant under ap-
plication of the a-sort and of the (-sort. That is, if Y = [y1,v2,. .., Yk_1,Yx] 18

formed by applying the a-sort and f-sort to M = [my,ma,..., mg_1,my], then
Ip(M) = Ip(Y).
Denote M’ = [my,ma, ..., my_1]. Arrange M’ in nondecreasing order to form

Y' = [y1,y2,...,Yk—1]. By the induction hypothesis, Ir(M') = Ir(Y”"). It follows
from Corollary 6.3 that:

Denote M" = [mgy, mg, ..., mg] Arrange M" to form Y” in nondecreasing order
to form Y = [yo, y3, ..., yx]. By the induction hypothesis, Ir(M") = Ir(Y"). Then
it follows from Corollary 6.3 that:

Ip(M) =Ip(e UM") = Ip(ef' UY") = Ip(Y). (6.5)

By Lemma 6.5, the application of afa-sort to the multiset M results in the
sorted multiset Z. By Equations (6.4) and (6.5), we have Ip(M) = Ip(Z). By the
same arguments above for N, we also have Irp(N) = Ip(Z). Therefore, Ir(N) =
Ir(M), and induction concludes the proof. O

For the purpose of calculating inversion distribution, a very important corollary
of Theorem 6.6 is that when inserting an element e of multiplicity n into a multiset
S to form S’ it is valid to assume that it is either of higher ranking or lower
ranking than all the elements in S. In practice, it is easier to form a new sequence
by inserting the lowest order element using Lemma 5.3.
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Corollary 6.7. Let S be a multiset and write S" = S U ey, and 5" = S U eff where
easep ¢ S. Then

Ip(S") = Ip(S") and P(S') = P(S").

Proof. This result has been established in Corollary 6.3 where e,, es are both either
of higher ranking or of lower ranking than the elements of S. Since the multisets S’
and S” belong to the same partition family, then by Theorem 6.6, Ip(S") = Ir(S”).
By definition, it follows that P(S") = P(S"). O
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CHAPTER 7

Parent-child relationship between partition families

Lemma 5.3 demonstrates a process of constructing o(.S) incrementally by inserting
many copies of a new element of either the lowest or highest ranking. This section
introduces a method of insertion into the leading position of a sequence which
encapsulates the parent /child relationship between partitions of length n and those
of n+ 1.

Example 7.1. We show how to derive the equality
P(1,1,3,2) = P(1,3,2) + 2 P(1,3,2) + 2°P(1,1,2,2) + 2°P(1,1,3,1) .

Let S ={a,b,c,c,c,d,d}. Then the parents of o(S) are

c(S,) =a(b,c,c, e d,d)
o(Sy) =ol(a,c,c e d,d)
o(S.) =o(a,b,c, c,d,d)
o(Sy) =o(a,b,c,c cd).

The mapping F : USU(SQ) — 0(S) which appends « to the beginning of the
ac

sequences in o(S,) is surjective since if s € o(.5), the element in the leading position
in sis a,b,c,d. It is also an injective mapping since each parent element in s, €
0(S,) is mapped to a unique element in o(S). Therefore, F is a bijective mapping.

Let K(«) denote the number of elements in S of lower ranking than «. The
insertion of v into position 0 of a sequence in o(S,,) forms s € o(S5) where Inv(s) =
Inv(sy) + K (). Since K(a) =0, K(b) =1, K(c¢) = 2, and K(d) = 5, the equality
now follows from the definition of P(S).

In fact, we have the following general result:
Theorem 7.2. Recursive expression for generating polynomial P(5)

Let S = [n1,ny, ..., n;] and, for each 0 < m < k, define S,, = [n,,, ,,...,n;, ] where
M = {n, 7 Z%m (7.1)
’ n—1 , 1=m.
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k
Then P(S) = Z " P(S,,) where
m=0

0 , m=20
m—1
¢ Z Ny, >, m>0. (72)
j=1
Proof. Let {e1,...,e;} be the distinct elements of S and assume that e; < e; when

i < j. Let s = s155...55 € 0(5), and suppose that s; = e,,, where 1 < m < k.
Then s = e,,s" where s’ = 55...55) € 0(Sy,), and S, is defined by (7.1).

Define F,, : 0(S;,) — o(S) to be the mapping which appends e, to position 1
of the sequences in o(5,,) and let

F=J Fu.

1<m<k

This mapping is surjective since the position 1 of each element s € o(S) is equal

to e,, for some m where 1 < m < k and the remaining positions satisfies s’ =

Sy...85] € 0(Sn). If F(u) = F(v), where u = wyuy ... ug) and v = v1vy... 99,
then u; = vy, and uy...ug) = vy...v5. Therefore, u = v and F is injective. It
follows that F is a bijective mapping.

Let s = e,,s,, where s/, € S,

Inv(s) = Inv(s),) + Number of elements in s/, of higher ranking than e,
m—1
= Inv(s)) + Z .y
=1
= Inv(s),) + cm - By (7.2)]

By the definition of Ir(S) in Section 2.1.6, the above expression can be written as

k

Ip(S) = Ip(Sm) + cm -

m=0

It follows from the definition of P(S) that

P(S) =Y 2" P(S,).
[

Using Theorem 7.2, the inversion count frequency distributions are calculated it-
eratively for the digits 0---0,...,9---9wheren = 5,6,7,8,9, 10; see Tables 1.1, A1-
—— —

n n

AT.
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CHAPTER 8

A closed form expression for the generating function P(.S)

8.1 A closed form expression for the generating function P(S)

This chapter delivers a closed form expression for the generating function P(S5)
where S = [nq,na,...,n,]. To this end, Theorem 6.6 may be applied and allows
us to assume that n; < n; and e; < e; for 1 < ¢ < j < k. Recall that the ranking
R(S) of S is the number of distinct elements in S. The Decomposition Lemma
(Lemma 8.2) decomposes a generating polynomial for a multiset of ranking % as
a product of k — 1 generating polynomials composed of two elements in the form
P(n,m). The formula for generating polynomial where R(S) = 2 (Lemma 8.5)
provides a closed form for P(n,m). The two lemmas combine together to provide
a closed form expression for P(S); see Theorem 8.6.

Example 8.1. Show that P(1,2,3) = P(1,5)P(2,3).
Let S ={a,b,b,c,c,c}, T ={a,x,x,z,x,x}, U=1{bb,c,c,c}.

A sequence s € o(95) is obtained from a unique element u € o(U) by an insertion
position for a into w. Since b and ¢ are of higher ranking than a, these elements can

be considered as having an identical higher ranking for the purpose of the insertion.
u is constructed by the insertion of 2 copies of b into 3 copies of ¢. Therefore,

Inv(s) = Inv(u) + insertion position of a into u 5.1)
= Inv(u) + insertion position of a into 5 z’s. '

By using (8.1) to sum over all the sequences s € o(S) and by the definition of P(S),
it follows that P(S) = P(T)P(U).
The example can also be verified algebraically.
By corollary 6.2, P(T) =1+ x + 2? + 23 + 2* + 2°.
By Table A1, P(U) = 1+ x + 2z* + 22° + 22* + 2° + 2° and
P(S) = 142z +42? +62° +8x* +92° + 925482+ 625+ 427 + 220+ 2!t = P(T)P(U).

Lemma 8.2. (Decomposition Lemma)
Let nq,no,...,n, € Z*, where k > 3. Then

k—1
P(nthw'-;nk):Hp<ni7ni+1+"'+nk)- (8.2)

i=1

Proof. By Theorem 6.6, we can assume elements satisfy e; < e;,1 <7 << k The
coefficients of P(nj,ng) form the inversion count frequency distribution for two
distinct elements ey, es with multiplicity of ny, ny respectively.
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Another way of looking at P(nq,ns) is to consider the inversion count frequency
distribution resulting from inserting n; copies of the element e; into ny copies of
the element ey. The result is a permutation in o[nq,ny|. Each such sequence is of
length ny + ns.

Now, P(ny,ng,n3) arises from the insertion of n; copies of the element e; into
elements of o[ngy, ng]. Since e is of lower ranking than ey, ez, these elements can be
thought as having identical higher ranking for insertion purposes.

P(nl,ng,ng) = P(nl,ng -+ ng)P(TLQ, Tlg) . (83)

Assume that (8.2) holds for m = k. Any permutation of the multiset [ny, ng, ..., ngi1]
is formed by inserting n; copies of e; into some permutation s € o(ny +ng + -+ +
ng+1). Therefore,

P(nl,ng,...,nkH) :P(nl,n2+---+nk+1) P(ng,...,nk+1)
k
:P(n1,n2+'--+nk+1)HP(ni,ni+1+"'+nk+1).
=2

By induction,

The following example demonstrates an application of Lemma 8.2.
Example 8.3.

P(1,2,2,3,4) = P(1,24+2+3+4) P(2,2+3+4) P(2,3+4) P(3,4)
= P(1,11) P(2,9) P(2,7) P(3,4)
P(11,1) P(9,2) P(7,2) P(4,3).

The next example demonstrates a technique for calculating P(n,m).
Example 8.4. Show that

(¢ = D(a* — )

PR =" yeon

Any sequence s € o[2,3] can be considered to be the permutation of 2 copies of e;
and 3 copies of e5.

1. If s = e1¢/, then Inv(s) = Inv(s'), where s’ € o[1, 3].

2. If s = eyd, then Inv(s) = Inv(s') + 2, where §' € 0[2,2].
By partitioning according to the element in the first position of s € ¢[2, 3] , we have

P(2,3) = P(1,3) + 2°P(2,2). (8.4)
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Similarly, by considering s € o3, 2], s is the permutation of the 3 copies of e; and
2 copies of e, S0
P(3,2) = P(2,2) + 2°P(1,3). (8.5)

By Lemma 6.1, P(2,3) = P(3,2) and P(1,3) = P(3,1). Also, by Corollary 6.2

=1

xr—1"

PB 1) =1+x+2’+2°= (8.6)

By equating the right hand sides of (8.4) and (8.5) and using (8.6),

(3 —1)P(3,1)

P(2,2) =

2 —1
_ (z = 1)(2® = 1)
(22 —=1)(x—1)

The following lemma provides a closed form expression for the generating poly-
nomial P(n,m).
Lemma 8.5. Closed form expression for P(S) where R(S) = 2
For n,m € Z*,

G(n+m) o
P(n,m) = ————= where Gn)=||="-1). (8.7)
G(n)G(m) g
Proof. Let S = {e/Tep}, S' = {eMeh ™} where e; < e5. By Lemma 6.1, I(S) =
Ip(9).
Case (1): Let s € o({e}*'em}). There are two subcases for the element in position
1 of s.

A. If s = €15, where §' € o[n,m], then Inv(s) = Inv(s').
B. If s = eys’, where s € o[n+1,m — 1],  then Inv(s) = Inv(s') + n + 1.
By Theorem 7.2, we have

P(n+1,m)=Pn,m)+z"""Pn+1,m—1). (8.8)

Case (2): Let s € o({e5"'e}). By a similar argument to the previous case, we
have
Pn+1,m)=Pn+1,m—1)+zmP(n,m). (8.9)

By equating the right hand sides of (8.8) and (8.9), we see that

P(n,m) — —11P(n+1,m— 1. (8.10)
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By applying (8.10) repeatedly, we have

n+1 1)<xn+2
(zm = 1)(zm=t = 1)

( n+1 1)<xn+2 1)( n+3 _
(m = 1)(am=t = 1)

P(n,m)—( )P(n+2,m—2)

1) B
@I D) P(n+3,m—3)

n+i __

T 1
— H —(:im“ — )1) P(n+m,0)

B ( n+i 1)
o H (xm-i-l i 1)

_ i::n « i;l
[[ -1 [ -1
i=1 =1
n+m )
[T -1
_ i=1
[ -0 ][] -1
=1 =1
_ G(n+m)
- G(n)G(m)
This completes the proof. n
We now finally consider the main result of the thesis, namely a closed form
expression for the generating polynomial P(nq,na, ..., ng).
Theorem 8.6. A closed form expression for P(ny,ns,...,n)
For ny,na,...,n, € ZT,

G(n1+n2+---+nk)
G(n1)G(na) - Glmg) -

P(ny,ng,...,ng) =
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Proof. By Lemma 8.2 and Lemma 8.5,

P(ny,ng, ... ,ng)
= P(ny,ng+---+ng)P(ng,ng+ -+ +ng) - P(ng_1,n)
G(ny + -+ +ng) G(ng + -+ +ny) G(ng—1 + ng)

G(n1)G(ng + - +np) G(na)G(ng + - +ni)  Glne—1)G(ny)

G(ny+ng+---+ng)
G(m)G(n2) -+ G(ng)

O

Note that the Partition Family Theorem (Theorem 6.6) was not used in the
proof of Theorem 8.6. Furthermore, the symmetry of P(ny,ng,...,ng) provides an
alternative proof to Theorem 6.6.

Example 8.7. Let us calculate P(1,2,3,4):

9) P(2,7) P(3,4)

1) P(7,2) P(4,3)

LGP @D D) (@D )T 1)
(x—1) (x2=1)(x —1) (3 =1)(x2 = 1)(x—1)

P(1,2,3,4) = P(1,2+3+4) P(2,3+4) P(3,4) by Lemma 8.2
(1,
9,

P(1
P9

Therefore, cancelling and multiplying gives

P(1,2,3,4) = 1+ 32 + 8% + 172° 4 332* + 572° + 932° + 1412”7 + 2042® + 280"
+ 3692 4 4662 + 5682 + 6672 + 7582 4 8332 + 88720 + 915217
+ 9152 + 8872 + 833220 + 75822! + 667x* 4 56827 + 4662°* + 3692%°
+ 280220 + 20427 + 1412% + 9322 + 5723 + 3323 4 17232 + 8233
+ 323 + 2%

The coefficients of P(1,2,3,4) above agree with the row entry ‘4-3-2-1" in Table A7
which is calculated using Theorem 6.6.

The original theorem by Muir [13] in 1899 for the permutation group .S, can be
recovered from Theorem 8.6 by setting n; =1 fort=1,2,...,k.
Corollary 8.8. (Muir)

k
—

P(1,1,...,1):($_—11),€H(9:

8.2 Integer partition polynomial

We will next establish the relationship between the coefficients of the generating
polynomial for P([n,n]) and p(n), the integer partition of n. Recall that A(n,p,m)
is number of partitions of n into p parts of size at most m. It also corresponds
to the number of insertions of m elements into a sequence of length p where the
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sum of inversion count positions is equal to n. The ideas were demonstrated in
Examples 4.2-4.3 and formalised in Lemma 5.3.
Applying Corollary 5.5 with n; = ny = n gives

P([n,n]) = ZA(z',n,n)xi.

For 0 < i < n, the insertion positions therefore corresponds to the integer partitions
of i.
Example 8.9. Let S = [6,6]. By Theorem 8.6,

G(12) 2 3 4 5 6
P(S) = =1 2 3 ) 7 11 s
()G(6)G(6) + 2+ 22" + 327 + ba® 4 Tx’ + 112° +
The sum of coefficients of 2°, 2!, ... 2 correspond to p(1),p(2),...,p(6), the num-

ber of integer partitions of 1,2, ...,6, respectively (see A000041 in the OEIS [15]).
In Table 8.1, the 11 partitions of the integer 6 are mapped to insertion positions as
shown.

Insertion Position
Partition 0|1]2|3|4]5]6
6 5100|0001
5+1 411(0(0]0]1]0
442 410(1(0]1]0]0
44+1+1 3121010111010
3+3 410(2(0]0]0]0
34+2+1 3|1|1|11/10]010
3+14+1+1 2|11]101110]010
24242 31013/010]010
2424141 212121010010
24+14+1+14+1 1(4]1]0]0]0]0
1+14+14+14+14+1 {0 |6 |0 |00 ]0 |0

Table 8.1: Partition <« Insertion Position

Table 8.1 represents the 11 different possible ways of inserting 6 copies of e;
into the sequence eseseseseses. The possible insertion positions are 0,1,...,6. For
instance, the partition 34241 corresponds insertion one copy of e; into each of
position 3, 2, 1. The remaining three copies are inserted into position 0.

n2
Lemma 8.10. Let P(S) = > fra* = % be the generating polynomial of
k=0

S = [n,n]. Then f; = p(k) for each 0 < k < n.

Proof. Let S = {a"b"}. Then each sequence in o(5) is constructed by inserting n
copies of the element a into n copies of b into positions i = 0,1,...,n. Let ¢; > 0
denote the number of copies of a inserted into position ¢. Then

o+q+-+gn=n.
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Let I(k) be the set of (n + 1)-tuples where the insertion results in an increase of k
in the inversion count. Note that the elements of I(K') are not necessarily in order.
Then

=0

Let J(k) be the set of integer partitions of k& over m summands. Thus,

m

J(k) = {<p1>p27 SR 7pm) ’ Zpi =k, p1,p2,--,Pm € Z+}

i=1

For each partition @ = (p1,...,pm) of k, let ¢; be the number of times that
integer ¢ occurs in the partition 7. Then

j=1

where 6(i,p;) is the Kronecker delta. Define ¢, = m — Z&- and note that o > 0.
i=1

Also, define

L(k) = {(lo, 1, ) [ lo + L1+ -+ by =k, Y ily =K}

1=0

Let ¢ = (Co,l1,...,0m) € L(k) and let p = (p1,p2,...,pn) be a n-tuple which is
initially filled with zeros. Let M : £ — p be the mapping that sequentially replaces
each set of ¢; leftmost zero coordinates in p by ¢; copies of i, for7 =1,2,...,m. The
resulting object M = p represents the insertion positions of n copies of b into n
copies of a such that the inversion count of the resultant sequence is k. Therefore,
c € I(k) and so My, is a mapping from L(k) — J(k). By this construction, My is
injective.

For a given partition p = (p1,pa,...,pn) of S where p; + ps + -+ + p = Kk,
let ¢; be the number of coordinates in p with the value ¢ where 1 < i < m and let
bo=Fk—>Y " ¢ Since { = (1,0s,...,0,) € L(k), My, is surjective. Furthermore,
we have L(k) = I(k). By the definition of the generating polynomial P(S), fx =
|I(k)| =|J(k)| for 0 < k < n. The proof is now complete. O

Example 8.11. By proving and using an extension of the Euler Pentagonal The-
orem [1]
p(n) =pn—1)+p(n—2) —pn—>5)—pn—T7)+---

P.A. MacMahon [12] calculated by hand the values p(1),...,p(200), which took an
estimated 20,000 operations. By applying Lemma 8.10 with n = 200, we calculated

p(200) = 3,972,999, 029, 388

which took Matlab 2.4 seconds on a P7 Pentium Processor. This value has his-
torical significance since it was used to verify the Hardy-Ramanujan Asymptotic
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Formula [8] for integer partitions:
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CHAPTER 9

Analysis of the distribution of sequences

9.1

Datasets

The purpose of this section is to analyse the fit of natural and computer gener-
ated sequences with the expected inversion frequency distribution at the integer
n n

A
partitions level. The element sets are 10" digits of the numbers 0...0 to 9...9
for n =6,7,8,9, 10 extracted from consecutive digits of the datasets. Ten datasets
including six natural sequences and four computer generated sequences are used for
the thesis.

1.

@

10.

The 5,000,000"* Fibonacci number with 1,044,938 digits created by a Python
application. Denote F, as the n'"* Fibonacci number. Now F,, = F,,_1 + F,,_o,
n > 3, so the final £ > 1 digits of F), forms a cycle whenever a pair of
consecutive terms have the same values. Since there are 10%* choices for the
consecutive pair, then it follows that the digits of the Fibonacci numbers must
form cycles. The cycle lengths for n = 1, 2 are 60, 300 respectively. For n > 3,
the cycle is 1.5 x 10™ [17]. It is an interesting study to determine if the cycle
of digits affects the partition and inversion frequency distributions.

. The first 5 million digits of v/2 created by a python application.

Dataset is created by approximately the first 2 million digits of e [7].
The largest known prime at the time of writing, GIMPS prime 274297:281 _ 1
with 22,338,618 digits [8].

. Dataset of 1,437,849 digits created by a Python application for 300000! with

the trailing zeros stripped off.
Dataset formed by the first billion digits of 7.
Dataset of one billion digits created by Microsoft VBA (Visual Basic for Ap-
plication).
(i) The dataset MS4 consisting of approximately 10° digit using a Visual
Basic for Application Version 1640.
(ii) It was discovered that rnd() call to return 9 digit numbers has a loop
of 100,663,295 irrespective of the seeding. The dataset MSg contains all
the digits of a single cycle in MS4.

. The dataset MS¢ of 10° digits created by Visual C# 2012.
. A dataset with 10° digits created by a Python 3.5 application. The Python

engine is based on entropic values of the environmental variables.
A dataset with 10 digits using the function randi() in MATLAB R2017b by
concatenating 10 digit numbers.
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Tables A24-A34 provide a breakdown of the mean inversion counts and the
frequency of the partition counts for each of the datasets. The application for the
data extraction and calculations is documented in Appendix A2.

For a dataset of size N, sequences of n consecutive digits are extracted from the
datasets as a sliding window where n = [log,, V] digits. For example, the dataset
for v/2, n = [log,, 5000000] = 6, the first number is obtained from positions 1 to 6,
the second number from positions 2 to 7, and the 49999995 number from positions
4999995 to 5000000.

The tests conducted in the thesis are the distribution of partition and the in-
version count for the datasets. The partition distribution is categorical data and
therefore normal distribution analysis cannot be applied to it. Preliminary study
of inversion distribution using Kurtosis count [18] suggests that the distribution is
asymptotically normal for large values of n. The Pearson’s x? testing [7] is chosen
because it does not assume normality although it does assume finite variances and
finite covariance which is the case for the datasets. It is applicable to categorical
data which can be classified into mutually exclusive classes where the probability
of each class is known. For instance, in the gaming industry, it can be used to test
loaded dice, slot machine randomness and the gravitational tilt of roulette tables.
The three y? tests conducted in this chapter are:

A Apply x? test of the actual partition probability in Table A24 to Table A34
with the expected partition distribution for the datasets in Table A8 and
Table A9.

B Apply x? test to the actual partition mean of inversion count in Table A24
to Table A34 for each partition of the datasets with the expected inversion
count mean.

C Apply x? test to the IFD for the dataset partitions with the calculated dis-
tributions in (Tables A10 to Table A23).

The following legends are used for the tables in this chapter.

1. x? - Pearson coefficient
2. DF - Degrees of freedom.
3. CV - Critical Value (x? value for 0.95)

9.2 2 test for the partition probability

The purpose of this section is to establish for a given value of n, the conformance
of the datasets to the expected partition probabilities. Tables A8-A9 tabulate
the probabilities that each partition occurs if we assume that each digit is chosen
uniformly at random for n = 6,7,8,9,10. In applying the x? test, the degree of
freedom is p(n) — 1 where p(n) is the integer partition of n. The level of significance
is a« = 0.95. The Pearson correlation coefficient is

Ip(n)
(B — X;)?
ooy B 01
i=1 v

where
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L) Number of integer partitions of n.
E; = Probability of partition ¢ x size of dataset.
(See Tables A8-A9)
X; = Actual population of the partition 7 in the dataset.

The null hypothesis Hj is that the population spread of the partition for the dataset
is consistent with the expected population spread. The alternative hypothesis H;
is that the population spread of the partition for the dataset is not consistent with
the expected population spread.

Table 9.1: x? test for the distribution of partitions for the datasets

Dataset Size | Digits | Ii,y | x* | Conclusion
Fs000000 1044930 6 11 10.73 Hy
300000! 1437846 6 11 |0.97 H,
V2 4999995 | 6 11 | 0.07 H
e 2000063 6 11 | 0.26 Hy
My 22338612 7 15 1095 H,
™ 999999992 9 30 | 0.62 H,
MSC4 1000004008 9 30 | 1.00 H,
MSCp 100663295 8 22 | 0.59 H,
MSCe 1083333411 9 30 | 1.00 H,
Python 999995552 9 30 | 0.99 H,
MATLAB | 999999991 9 30 | 1.00 H,

It is evident that the partition distributions for all the computer generated
sequences for the datasets do not satisfy the expected distributions.

9.3 x? test for the inversion count mean of the partition

For each dataset, the expected mean of the inversion count for each partition is
compared with the actual value. Corollary 5.2 proved that the expected inversion
mean for a partition is equal to the median.

For a given dataset, the x? test is applied over the partitions. In Tables A27-
A34, the mean value of the inversion count at the partition level is calculated and
are listed alongside of the expected mean. The x? test is applied to the partitions
of the datasets.

In applying the x? test, the degree of freedom is p(n) — 1 where p(n) is the
integer partition of n. The level of significance is a = 0.95. The Pearson correlation
coefficient is

) 2
P(E; - X,
¢S RE X

2 — 5 (9.2)
where
L) Number of integer partitions of n
E; = Expected mean value of the inversion count for the partition
E; Probability of partition ¢ x size of dataset (see Tables A8-A9)
X; Actual mean of the partition i (see Tables A24-A34)
P, = Population of partition .
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The null hypothesis H is that the mean of the inversion count of the partition
for the dataset is consistent with the expected population mean. The alternative
hypothesis H; is that the mean of the inversion count of the partition for the dataset
is not consistent with the expected population mean.

Table 9.2: Pearson test for inversion count mean by partition

Dataset | DF x* | P(x* < CV) | Hypothesis
Fsoo000 | 10 | 12.62 0.75 Hy
300000! | 10 | 17.03 0.93 Hy
My | 15 | 12.62 0.99 H,
V2| 10 | 12.26 0.73 H,
e | 10 7.70 0.34 Hq
™| 29 | 62.23 0.99 H;
MS, | 29 | 990.55 1.00 H;
MSp | 21 | 505.86 1.00 H,
MSe | 29 | 4491 0.97 H,
Python | 29 | 43.72 0.96 H,
MATLAB | 29 | 380.01 1.00 H,

9.4 2 test of the IFD for the datasets

In this section, we will analyse the fit of the inversion count distribution between the
calculated values in Tables A1-A7 and that of the ten datasets in Tables A10-A23.
The x? test is on the spread of the inversion count for each partition. For instance,
the dataset Fjooo000 contains 1044930 digits. The number of digits extracted from
the dataset n = [log;,1044930] = 6 which has 11 partitions. For each partitions in
Table A10, x? is calculated from the spread of inversion count. For the partition
[n1,ng, ..., ngl, the Pearson correlation coefficient is

V2= ZM7 (9.3)

1=0 EZ
where
M = Maximum inversion count for partition (n,ng,...,ng) (see Lemma 2.2)
E; = Probability of inversion count i x size of partition (see Tables A1-A5)
X; = Count of inversion count 7 in the partition (ny,ns,...,ng) for the dataset.

The null hypothesis Hj is that the population of the spread of the inversion count
for the a partition of the dataset is consistent with the spread of the expected
population. The alternative hypothesis H; is that the population of the spread
of the inversion count for the a partition of the dataset is not consistent with the
spread of the expected population.

The detailed analysis for the datasets in Table 9.3 below can be found in Ta-
bles A10-A23 in the appendices.
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9.5

1.
2. F5000000 passed two of the three tests.

3.

4. Three partitions for 7 failed the y? test for the inversion count distribution

Table 9.3: x? inversion count analysis for the partitions of datasets

Partitions | Partitions

Dataset Size No. digits | Tested Failed
F5000000 1044930 6 11 1
300000! 1437846 6 11 0
V2 4999995 6 11 0

e 2000063 6 11 0
Myg 22338612 7 15 1

T 999999995 6 11 1

T 999999994 7 15 1

s 999999993 8 22 3

T 999999992 9 30 3
MS4 1000004008 9 30 30
MSp 100663288 9 22 5
MS¢ 1083333411 9 30 4
Python 999995552 9 30 3
MATLAB | 999999991 9 30 6

Summary of distributional tests
e and /2 passed all three tests.

Myg, m and 30000! passed one of the three tests.

for 9 consecutive digits (n = 9). As a result, tests were also conducted for
n = 6, 7,8 to determine the parent/child relationship for the failing partitions.
(A) For n = 6, the dataset passed 10 out 11 tests.

The partition (3,2,1) failed the x? test.
(B) For n =7, the dataset passed 14 out 15 tests.

The partition (4,3) failed the x? test.
(C) For n =8, the dataset passed 19 out 22 tests.

The partitions (1,1,1,1,1,1,1,1), (3-2-1-1-1), (4,4) failed the x? test.
(D) For n =9, the dataset passed 27 out 30 tests.

The partitions (3-3-2-1), (4-2-2-1), (4-4-1) failed the x? test.
Note the parent/child relationships between the partitions (3-2-1) and (3-3-
2-1) and between (4-3), (4-4), (4-4-1).
All four computer generated sequences failed all three tests against the ex-
pected values.

. The digits of dataset MS 4 contain repeated sets of the 100,663,295 digits and

failed all the partition tests. Let k£ be the repetition factor for MS4. In
Equation (9.2), by substituting E; and X; by kE; and kX;, respectively, x?
increases by a factor of k. Thus, the repetition of data resulted in all the
partitions failing the y? test.
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CHAPTER 10

Conclusion

The first part of the thesis is a study of expected inversion distribution sequences
by insertion techniques. It provides an elementary and self-contained approach
to the structure of the permutations of multisets and the relationships. This ap-
proach makes this structure clearer and more accessible for readers than previous
approaches such as Stanley’s “semi-combinatorial” proof [16, p. 64]. The hierar-
chical structure of partitions and their relationships is summarised in the Entity
Relationship diagram below.

Figure 10.1: Entity Relationship Diagram

’ inversion
Sequence s Inv(s)
’ count

Permutation 1-M M-1
of S
Multiset S ’ inversion zs)
| distribution
Permutation
of mul- 1-M M
tiplicty i
f(nPa;tltlon ) ’ inversion Ir(na,. .., ng)
L9 (20 000 L | distribution
1M 1-1
Generating
4‘ Integer Z | Poynomial

The closed form for the generating function is created by:

Four tiers structure of integer — partition — multiset — sequence.
Permutation of multiset by the ordering of elements.

Permutation of multiset by the multiplicities.

Insertion method as upper diagonal of hypercube.

Insertion method into leading position of a sequence.

Expansion of generating function as products of generating polynomial with
two distinct elements. (Polynomial of rank 2)
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e Closed form for generating polynomial P(ny,ng, ..., ng).

The insertion method provided a tool for linking the Ferrer diagram in with
integer partition and as a result, a generating polynomial for integer partition was
delivered.

These are potential areas for further research:

1. Find an asymptotic function for P(ny,ng,...,ng). Preliminary studies indi-

cate that such a function is asymptotic normal. For the symmetric group
n

* . . .
S, = P(1,1,...,1), Conger and Viswanath [4] gave the approximation func-
tion by a probabilistic approach:

'P(W(I;V—(g (;i(:;;) wh x) ~ o)

< C
f— \/ﬁ M
) 7 is an element of the permutation group S,,.

) Inv(7) is the inversion count of the permutation.
)

¢(z) is the standardised normal function.
D) P() is the probability function.

2. Establish the asymptotic function for an integer n by summing all the parti-
tions by the probability of the partition. This could be a very difficult task.
Preliminary study indicates that the function is slightly skewed to the left.
The recommended approach is a probabilistic rather than deriving an exact

function.
3. Of lesser practical importance but higher in academic pursuit is a combinato-
rial closed form for P(ny, no,...,n;) generalising Knuth’s pentagonal expan-

sion in (3.3).

4. Another method of measuring inversion count that is more pertinent to com-
puting science is to define the inversion count as the sum distance between
pairs of order. Sort algorithms such as the Bubble and Merge sorts [5] com-
pares (near) adjacent pairs and progressively reduce the distance between
pairs out of order on each pass.

5. The thesis assumes that each element has equal probability of being selected.
While this is applicable to digits of natural and computer generated sequence,
in the real world, the model needs to be adjusted by the probabilities of
elements being selected.

6. A partial sort is the ranking of top k items from a set of size of n. For
instance, an internet search may retrieve 10 million items but it is likely the
user will only want to see the first 100. The efficiency of a sort algorithm
is determined by the number of comparisions C(n, k). It is a rich topic of
practical importance.

The second part of the thesis is the analysis of inversion frequencies and partition
distributions were applied to computer generated (MATLIB, Python and Microsoft
VBA and C++) and natural sequences (v/2, e, 7, M49, n! and Fibonacci numbers).

The conclusions are:

e The natural sequences conform better than the computer generated sequences
in the expected values of partition and inversion frequency distributions.
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e There are some issues with the randomness of the first billion digits of w. It
could be an interesting study to increase the size of the database to determine
if the partitions failing the tests spur negative child patterns.

e The Microsoft randomiser for Visual Basic for Application produces repeated
patterns irrespective of seeding.
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A1l Supporting data tables

Table Al: IF'D table for n =6

Proba IFD

Partition | -bility | Mean | SD | 0| 1| 2 | 3 | 4| 5| 6 7 8 9 10|11 (12|13 |14 |15
1-1-1-1-1-1 | 0.15 7.5 266 |1 |5|14(29]49 |71 (90| 101|101 |90 | 71 49|29 5 1
1-1-1-1-2 0.45 7 261141019 30|41 49| 52 | 49 |41|30|19 10| 4 | 1
1-1-2-2 0.23 6.5 257 13| 7 |12 1823126 26 | 23 | 1812 7 | 3 |1

2-2-2 0.01 6 252|125 | 7 (1112|1412 |11 | 7|5 |2 |1

1-1-1-3 0.1 6 248 11|36 |10 14|17 |18 17 | 14 |10| 6 | 3 | 1

1-2-3 0.04 55 24312416 |8]9|9]| 8 6 |42 |1

3-3 0 4.5 229111233313 2 1 1

1-1-4 0.01 45 222|123 |4 |5 |54 3 2 1

2-4 0 4 216 | 1|12 |2 ]3| 2|2 1 1

1-5 0 25 171111 1|11

6 0 0 0 |1

In Tables A2-A7, k/M — k denotes the calculated inversion count frequency for fy
and fy,(s)-k (see Lemma 5.1).

Table A2: Expected IFD for n =7

Std. | Max IFD k/M — k
Partition Probabilty | Mean | Dev | Inv |0 1] 2 | 3 | 4 5 6 7 8 9 10
1-1-1-1-1-1-1-1 | 0.06048 105 | 105 21 | 16|20 |49 |98 | 169 | 259 | 359 | 455 | 531 | 573
2-1-1-1-1-1 0.31752 10 10 20 | 15|15 |34 |64 | 105 | 154 | 205 | 250 | 281 | 292
2-2-1-1-1 0.31752 9.5 9.5 19 |14 1123 |41 64 | 90 | 115 | 135 | 146
2-2-2-1 0.05292 9 9 18 |13 8 [15(26] 38 |52 |63 | 72 | 74
3-1-1-1-1 0.10584 9 9 18 [114110]20|34] 51 | 69 | 8 | 96 | 100
3-2-1-1 0.10584 8.5 8.5 17 (13| 7 |13]21| 30 | 39 | 46 | 50
3-2-2 0.00756 8 8 16 | 1|25 |8 |13 17 | 22 | 24 | 26
3-3-1 0.00504 7.5 7.5 5 (1124 |7 |10] 13| 16 | 17
4-1-1-1 0.01764 7.5 7.5 5 |13 6|10|15] 20 | 24 | 26
4-2-1 0.00756 7 7 14 (121416911 |13 |13
4-3 0.000315 6 6 12 |11, 2 3|4 4 5
5-1-1 0.001512 5.5 5.5 11 (12| 3|4|5] 6
5-2 0.000189 5 5 10 |11 212]3)| 3
6-1 0.000063 3 3 6 |11|1]1
7 0.000001 0 0 0 |1
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Table A3

: Expected IFD for n = 8

Std. | Max IFD k/M — k
Partition Prob. Mean | Dev | Inv |0 1| 2 | 3 4 5 6 7 8 9 10 12 13 14
1-1-1-1-1-1-1-1 | 0.018144 14 4.04| 28 | 1|7 |27 |76 | 174 | 343 | 602 | 961 | 1415 | 1940 | 2493 | 3450 | 3736 | 3836
2-1-1-1-1-1 0.169344 | 13.5 [4.01 | 27 | 1|6 |21 |55 | 119|224 | 378 | 583 | 832 | 1108 | 1385 | 1818 | 1918
2-2-1-1-1-1 0.31752 13 [398] 26 [1]5|16]39| 80 | 144|234 | 349 | 483 | 625 | 760 | 946 | 972
2-2-2-1-1 0.127008 125 | 395 | 25 | 1|4 |12|27| 53 | 91 | 143|206 | 277 | 348 | 412 | 486
2-2-2-2 0.005292 120 (392 24 |13 |9 | 18| 35 | 56 | 87 | 119| 158 | 190 | 222 | 248
3-1-1-1-1-1 125 1393 25 |1|5]15]35] 69 | 120 | 189 | 274 | 369 | 465 | 551 | 651
12 389 | 24 | 1|4|11|24| 45 | 75 | 114|160 | 209 | 256 | 295 | 330
115 |3.86| 23 |13 ] 8 |16] 29 | 46 | 68 | 92 | 117 | 139 | 156
g 11 [381] 22 [1]3| 7 [14| 24 |37 |53 70 | 8 100 | 109
3-3-2 0.002016 | 10.5 |3.77 | 21 | 1|25 | 9 | 15| 22 | 31 | 39 | 47 53 56
4-1-1-1-1 0.021168 11 376 22 | 141020 35 | 55 | 79 | 105 | 130 | 151 165
4-2-1-1 0.021168 | 10.5 |3.73 | 21 |1 |3 ] 7 |13 22 |33 |46 | 59 | 71 80 85
4-2-2 0.001512 10 3.7 20 | 125 |8 | 14|19 | 27 | 32 39 41 44
4-3-1 0.002016 95 |364| 19 |1|2]| 4|7 |11 15 | 20 | 24 27 29
4-2-2-1 0.0000315 8 346 16 |1 |12 3] 5 5 7 7 8
5-1-1-1 0.0028224 9 349 18 |13 6 |10] 15 | 21 | 27 [ 32 | 35 36
5-2-1 0.0012096 | 85 |345| 17 |1]|2| 4| 6 9 12 | 15 | 17 18
5-3 0.0000504 | 7.5 [335| 15 |1 |1| 2|3 | 4 5 6 6
6-1-1 0.0002016 | 6.5 [3.04| 13 |1]2[ 3 | 4 5 6 7
6-2 0.0000252 6 3 12 |1|1|2]2 3 3 4
7-1 0.0000072 | 35 [229| 7 |1|1|1]|1
8 0.0000001 0 0 9 |1

Table A4: Expected IFD

for n =9, Part A

Std. | Max Inversion count Frequency k/M — k

Partition Probabilty | Mean | SD | Inv [0 | 1] 2 3 4 5 6 7 8
1-1-1-1-1-1-1-1-1 | 0.0036288 18 48 | 36 |1|8]35|111 | 285|628 | 1230 | 2191 | 3606
2-1-1-1-1-1-1-1 0.0653184 | 17.5 |4.77 | 35 | 1|7 |28 | 83 | 202|426 | 804 | 1387 | 2219
2-2-1-1-1-1-1 0.2286144 17 | 474| 34 | 1]|6|22| 61 |141 |285| 519 | 868 | 1351
2-2-2-1-1-1 0.190512 165 | 472 33 |1|5| 17| 44 | 97 | 188 | 331 | 537 | 814
2-2-2-2-1 0.0285768 16 469 | 32 |1]4|13| 31 | 66 | 122 | 209 | 328 | 486
3-1-1-1-1-1-1 0.0508032 | 16.5 | 47 | 33 | 1|6 |21 | 56 | 125|245 | 434 | 708 | 1077
3-2-1-1-1-1 0.190512 16 | 467| 32 | 1|5 |16| 40 | 8 | 160 | 274 | 434 | 643
3-2-2-1-1 0.1143072 | 155 |4.65| 31 |1 |4|12| 28 | 57 | 103 | 171 | 263 | 380
3-2-2-2 0.0063504 15 | 462| 30 | 1|39 | 19 | 38 | 65 | 106 | 157 | 223
3-3-1-1-1 0.0254016 15 46 | 30 | 1|4 |11] 25 | 49 | 8 | 139 | 209 | 295
3-3-2-1 0.0127008 | 14.5 | 457 | 29 | 13| 8 | 17 | 32 | 54 | &5 124 | 171
3-3-3 0.0002016 | 13.5 | 45 | 27 | 12| 5 | 10 | 17 | 27 | 41 56 74
4-1-1-1-1 0.0190512 15 | 456| 30 | 1|5 15| 35 | 70 | 125 | 204 | 309 | 439
4-2-1-1-1 0.0381024 | 14.5 [ 454 | 29 | 1[4 | 11| 24 | 46 | 79 | 125 | 184 | 255
4-2-2-1 0.0095256 14 | 451 28 | 13| 8|16 |30 |49 | 76 108 | 147
4-3-1-1 0.0063504 | 13.5 |4.46| 27 | 13| 7 | 14 | 25 | 40 | 60 84 111
4-3-2 0.0009072 13 |443| 26 |1|2| 5| 9 16 | 24 | 36 48 63
4-4-2 0.0002268 12 1432 24 |12 4| 7 |12 |17 | 24 31 39
5-1-1-1-1 0.0038102 13 | 434) 26 |1|4|/10] 20 | 35 | 56 | 83 115 | 150
5-2-1-1 0.0038102 | 12,5 | 431 | 25 | 13| 7 | 13 | 22 | 34 | 49 66 84
5-2-2 0.0002722 12 | 428| 24 |1|2| 5| 8 14 120 | 29 37 47
5-3-1 0.0003629 | 11.5 [ 423 | 23 |12 4| 7 | 11 | 16 | 22 28 34
5-4 0.0000113 10 [4.08| 20 |1|1] 2| 3 5 6 8 9 11
6-1-1-1 0.0004234 | 10.5 399 | 21 | 13| 6| 10 | 15 | 21 28 35 41
6-2-1 0.0001814 10 396 20 |12 4] 6 9 12 16 19 22
6-3 0.0000076 9 387 18 |1|1]| 2| 3 4 5 7 7 8
7-1-1 0.0000259 | 7.5 [345| 15 |1|2] 3| 4 5 6 7 8 8
7-2 0.0000032 7 342 14 |11 2] 2 3 3 4 4 4
81 0.0000008 4 258 8 |[1(1]1 1 1 1 1 1 1
9 0 0 0 0 |1
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Table Ab: Expected IFD for n =9, Part B

Std. | Max Inversion count Frequency k/M — k
Partition Probabilty | Mean | SD | Inv 11 12 13 14 15 16 17 18
1-1-1-1-1-1-1-1-1 | 0.0036288 18 4.8 36 11021 | 14395 | 17957 | 21450 | 24584 | 27073 | 28675 | 29228
2-1-1-1-1-1-1-1 0.0653184 | 17.5 | 4.77 | 35 6316 | 8079 | 9878 | 11572 | 13012 | 14061 | 14614 | 14614
2-2-1-1-1-1-1 0.2286144 17 474 34 3586 5385 | 6187 | 6825 | 7236 | 7378 | 7236
2-2-2-1-1-1 0.190512 | 16.5 | 472 | 33 2017 2909 | 3278 | 3547 | 3689 | 3689 | 3547
2-2-2-2-1 0.0285768 16 | 4.69 | 32 1123 1556 | 1722 | 1825 | 1864 | 1825 | 1722
3-1-1-1-1-1-1 0.0508032 | 16.5 | 4.7 | 33 2688 3886 | 4382 | 4744 | 4935 | 4935 | 4744
3-2-1-1-1-1 0.190512 16 4.67 | 32 1499 2081 2301 | 2443 | 2492 | 2443 | 2301
3-2-2-1-1 0.1143072 | 155 | 4.65 | 31 828 1104 | 1197 | 1246 | 1246 | 1197 | 1104
3-2-2-2 0.0063504 15 | 4.62| 30 452 579 618 628 618 579 525
0.0254016 15 4.6 | 30 605 776 825 842 825 776 700
0.0127008 | 14.5 | 4.57 | 29 328 404 421 421 404 372 328
0.0002016 | 13.5 | 4.5 | 27 125 142 142 137 125 110 93
0.0190512 15 [ 4.56 | 30 910 1171 | 1246 | 1272 | 1246 | 1171 | 1055
0.0381024 | 14.5 | 4.54 | 29 494 610 636 636 610 561 494
0.0095256 14 451 | 28 265 314 322 314 296 265 229
0.0063504 | 13.5 | 4.46 | 27 189 215 215 206 189 166 139
0.0009072 13 [ 4