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Abstract 

 

This study examines various numerical aspects of smoothed point interpolation methods 

(SPIM) in computational geomechanics. The extension of SPIM to flow-deformation 

analysis of saturated porous media is formulated. The singularity problem encountered 

when original SPIM formulation is applied to axisymmetric setting is addressed. The 

proposed SPIM formulation is thoroughly examined through the extensive error 

analysis performed for the set of benchmark numerical problems in terms of appropriate 

variables of interest. An unconditionally consistent stabilisation method is then 

formulated in SPIM framework to mitigate the adverse consequences arising from the 

violation of the well-known inf-sup condition. The proposed stabilisation method offers 

absolute stability regardless of the a priori chosen scalar value, commonly known as the 

stabilisation parameter. The proposed stabilisation method allows the use of equal-order 

linear interpolation functions for both primary variables. The robustness of the 

stabilised SPIM is shown by the numerical simulation of a number of linear and 

materially nonlinear problems in saturated porous media. Finally, a mesh-independent 

representation of SPIM has been developed for flow-deformation analysis of saturated 

porous media with embedded interfaces. The proposed formulation allows the violation 

of inner-continuity assumption within supporting domains by enhancing the standard 

interpolation functions with the physically appropriate enrichment functions. This 

method enables the attainment of accurate numerical solutions without appealing to 

time-consuming techniques such as successive re-meshing, leading to a more practical 

treatment of problems including weak or strong discontinuities. A numerical contact 
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algorithm is developed to enable the computation of the frictional contact forces 

stemming from the onset of the closure mode in the cracks. The presence of the fluid 

flow within the cracks is represented by inclusion of the fluid continuity equation. The 

proposed mesh-independent method is verified by a number of single-phase and two-

phase problems which encompasses different aspects of the existing discontinuities.   
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1 Introduction 

 

1.1 Background 

The interaction between fluids and solids is at the heart of geotechnical engineering 

problems. Fully coupled flow-deformation analysis requires robust and efficient 

numerical schemes for reliable simulation of problems in geotechnical engineering. 

Advances in computing power and computational mechanics over the past three decades 

have led to the development of a variety of numerical techniques for the solution of 

geotechnical engineering problems.  

One of the most widely used numerical methods applied to geotechnical engineering 

problems is the finite element method (FEM). FEM is very reliable, well developed, and 

commonly used in the geotechnical engineering community. Incorporating material 

nonlinearity using advanced constitutive models, soil–water coupling behaviour, and 

geometric nonlinearities, some elegant solutions have already been achieved for several 

complicated geotechnical problems using FEM [1, 2]. 

Despite its convenience and robustness, FEM has some inherent deficiencies, such as a 

strong reliance on mesh quality, overly stiff behaviour, volumetric locking, poor 

derivative solutions, and poor performance in problems with potential mesh distortion, 

such as large deformation analysis and crack propagation simulations. FEM can be 

time-consuming in strongly nonlinear analyses with large deformations due to the 

required successive mesh generations and subsequent data transfers [3, 4]. The re-

meshing process might also produce erroneous outputs, as frequently reported in the 
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literature [4-6]. The root of all these problems can be traced to the high mesh 

dependency of the FEM formulation and the ensuing numerical results. 

One possible approach to overcoming at least some of the difficulties associated with 

FEM is the recently introduced mesh-free methods (MMs). MMs considerably relax the 

dependency of the numerical solution on mesh quality by performing numerical 

operations which extend beyond meshes, offering better convergence rates in numerical 

solutions as the relatively more complex shape functions and supporting nodes are 

employed in the approximation of the unknown variables. The sufficient smoothness of 

the numerical solutions and derivatives provided by MMs in obtaining accurate stress 

fields paves the way for the elimination of post-processing requirements such as 

meshadaptivity. This is one of the major advantages of MMs, especially in problems 

involving geometrical nonlinearity. To date, MMs have been applied in solving many 

geotechnical engineering problems, including two-dimensional contaminant transport 

through saturated porous media [7], prediction of subsidence over compacting 

reservoirs [8], consolidation analysis in saturated porous media [9], soil collapse and 

erosion processes in excavations [10], and analysis of slope stability and discontinuities 

[11].  

Despite their excellent flexibility, the interpolation functions in MMs may not 

necessarily create continuous approximation functions over the problem domain as there 

are a number of overlapping supporting domains for approximating primary unknowns, 

which may violate the required continuity of the primary unknowns in a C0 sense. C0 

means that the variable of interest must be continuous over the field and must have no 

enforcement of the continuity for the derivatives of the variables.   This results in 

difficulties when derivatives of approximation functions are required. A common 
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approach to overcome this problem is introduction of bell-shaped weight functions in 

the formulation (for example in Element-free Galerkin Method (EFGM) [12]). 

However, inclusion of weight functions increases the computational cost of the 

numerical scheme, mainly because it has complex shape functions calculated using 

large number of supporting nodes. Not only is the evaluation of the derivatives of such 

shape functions costly, but the ensuing property matrices have also large bandwidths. 

The property matrices are ones that mathematically express the certain feature of a 

porous medium in a discretised way such as stiffness, coupling and compressibility 

matrices. The globally assembled property matrices then fill the blocks of the global 

matrix representing the discretised form of the coupled flow-deformation equations. The 

smoothing strain technique based on the G space theory [13, 14] has been introduced as 

a relaxation technique to arrive at the weakened weak (𝑊𝑊2) formulation [15, 16] which 

removes the continuity requirement of the approximation function and therefore the 

need for weight functions. The weakened weak formulation has been adopted in 

association with the polynomial interpolation method (PIM) and the radial polynomial 

interpolation method (RPIM), which led to the development of the smoothed PIM 

(SPIM) and the smoothed RPIM (SRPIM) [15-20]. In these methods, the conventional 

compatible strain is replaced by the smoothed strain which is constant over arbitrary 

smoothing domains. The smoothed strain field construction overcomes the difficulties 

associated with the compatibility of the approximation functions by eliminating the 

need for derivatives of the approximation function, as opposed to the conventional 

numerical methods such as FEM and PIM/RPIM. The smoothing operation also leads to 

the attainment of more accurate numerical solutions [19, 21]. The elegant performance 

of SPIM/SRPIM has been shown in engineering problems in a variety of disciplines 

[21-33]. Smoothed-point interpolation methods also possess greater convergence 
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properties in terms of primary variables and energy norm compared to most previously 

adopted MMs [19]. 

 

1.2 Problem Statement and research gaps 

Despite their excellent features, SPIM/SRPIM have been vastly overlooked by 

geotechnical engineering community. There are only a few basic studies on the 

application of these methods for flow-deformation analyses in porous media. The 

studies presented in [34, 35] used a rudimentary node selection scheme with the 

involvement of a few supporting nodes, overlooked the possibility of the achievement 

of further softness by employing  more complex node selection schemes. These studies 

were restricted to exploit very simple nonlinear constitutive models or a linear elastic 

behaviour without any extension towards more complex problems, frequently 

encountered in geotechnical practice. 

It is, therefore, desirable to develop SPIM/SRPIM formulations for the flow-

deformation analysis of saturated porous media to exploit their full potentials in 

improving currently available numerical methods. First, it is necessary to investigate 

whether or not the extension of the SPIM/RPIM to the mixed Galerkin formulation 

retains its greater accuracy and convergence rate in terms of both primary variables 

compared to the conventional numerical methods. Such an investigation requires 

extensive numerical error analysis in terms of the quantities of interest, for example 

displacement, pressure, and strain energy, using the numerical solutions obtained from 

SPIM/RPIM and a conventional numerical method like the standard FEM. Such a 

thorough investigation is not available in the current literature. 
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Unlike most conventional numerical methods such as the FEM, the extension of the 

SPIM/RPIM formulation to axisymmetric problems is not trivial and requires additional 

adjustments in the formulations, even for single-phase problems. This difficulty is due 

to the existence of Gauss points along the axis of symmetry in the SPIM/SRPIM 

formulations, causing the singularity in the calculation of the stiffness matrix. This 

problem has not been yet properly addressed in the literature. Thus, adjustments must be 

made to the formulation of SPIM/SRPIM to analyse axisymmetric problems, both in 

single-phase and multi-phase porous media. because in an axisymmetric setting, the 

modelling of geotechnical-related problems is of relative importance. 

It is known that when conventional numerical techniques are used for analysis of mixed 

coupled formulations, stability problems may arise, particularly when low permeability 

or high loading rates are considered [36, 37]. Extensive numerical studies of the roots of 

these instabilities reveal that the fulfilment of a special relationship between the chosen 

spaces for the approximation of primary variables is required when (nearly) 

incompressible constraints are encountered in the standard variational formulation. This 

criterion corresponds to the famous Ladyzhenskaya–Babuska–Brezzi (LBB) condition, 

also known as the inf-sup condition [38, 39]. Inappropriate spaces chosen for 

approximation of primary variables lead to the violation of the inf-sup condition, which 

can have adverse implications, such as severe pressure oscillation or overestimation of 

the collapse load in geotechnical engineering practice.  

To overcome this problem, several stabilisation techniques have been proposed in the 

literature to remove the inherent deficiency related to the satisfaction of the inf-sup 

condition [40-48], and these have frequently been applied to geotechnical engineering 

problems [49-52]. Among these, one of the most appealing groups includes consistent 
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stabilisation methods in which the desirable consistency property is preserved by 

appending the residuals of the relevant strong differential equations to their 

corresponding variational statements. Consistent stabilisation methods not only 

eliminate the pressure oscillation but also exhibit optimal convergence in constrained 

numerical simulations of interest [43, 46, 47, 53].  

Unfortunately, the seemingly natural choice of equal linear subspaces for the primary 

variables leads to the violation of the LBB condition in coupled problems of porous 

media [36, 37, 54-57]. The consistent stabilisation techniques are able to restore the 

LBB condition in this case, but leave penalty errors as fail to preserve their consistency 

features, because the added terms containing second order derivatives are either 

vanished or poorly approximated rendering the consistent stabilisation technique 

ineffective is this case. Very few techniques have been proposed to enable the utilisation 

of equal linear interpolation subspaces, i.e. [58], but they give rise to other adverse 

consequences, such as increases in computational expense due to the appearance of 

several additional unknowns.  

A technique based on applying an appropriate smoothing gradient operation can 

potentially retrieve the utilisation of equal-order linear interpolation functions in a 

consistently stabilised formulation, because derivations of the approximation functions 

are eliminated by the smoothing operation. Such a consistently stabilised technique 

based on equal-order linear approximation functions could be very efficient, but has not 

been yet explored in the literature.  

The analysis of coupled problems with interfacial constraints is frequently encountered 

in geotechnical engineering as well as in the oil and gas industry. The flow-deformation 

analysis for fractured porous media associated with the possibility of the crack 
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propagation is relatively common in the oil industry, commonly known as hydraulic 

fracturing.The existence of the interfaces may arise from a mismatch in material 

properties or the existence of a jump in the value of a primary variable which may 

change over time. One of the considerable limitations of the FEM in such problems is 

the requirement of the alignment of the mesh topology with the configuration of the 

discontinuities. This leads to a cumbersome and potentially erroneous process when, for 

example, an evolving discontinuity such as a propagating crack changes its orientation 

over time or during iterations. One solution is to enrich the approximation functions 

with appropriate discontinuous functions which can truly capture the existence of 

interfaces throughout a problem domain. Perhaps the best-known method in this 

category is the extended finite element method (XFEM), which is based on the 

augmentation of the shape functions, restoring the partition of unity concept [59]. 

XFEM has frequently been adapted to various saturated porous media problems with 

different interfaces [60-69].  

The treatment of weak or strong discontinuities in multiphase porous media by MMs 

has gained very limited attention[70, 71]. In MMs, the formulation can be augmented to 

reproduce realistic numerical solutions to account for the presence of interfaces. This 

must be done in such a way that evolving interfaces can be simulated, without resorting 

to cumbersome techniques such as repeated generation of smoothing domains. The 

formulation must also be augmented with an appropriate fluid continuity equation, to 

account for the flow within evolving interfaces in saturated porous media. 

There are numerous examples in computational geomechanics, in which two or more 

bodies are in contact such as retaining walls along with backfill soils, shallow 

foundations, piles with their surrounding soils and conventional triaxial tests. Thus, the 



Chapter 1-Introduction 

8 
 

local contact behaviour can have a major influence on the global stress and deformation 

patterns over the domain of the problem. Thus, the proper modelling of the soil-

structure interaction and the closure mode of crack faces require the accurate 

implementation of an appropriate contact algorithm. A comprehensive contact algorithm 

must truly capture both opening/closing mode through the imposition of the contact 

constraint in the normal direction and stick/slipping mode through introducing a 

realistic constitutive model to determine the relative displacement of contacting bodies 

in the tangential direction [72]. Despite the contact modelling importance in 

geotechnical engineering, very few attempts have been made to include the contact 

algorithm in meshfree methods.  
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1.3 Objectives and layout of the thesis 

The objectives of this research are as follows: 

1) Extend the original SPIM/SRPIM formulations to coupled flow-deformation 

problems frequently encountered in geotechnical engineering, and to study their 

performance compared to standard numerical methods such as the FEM. 

2) Remove the inherent deficiency of SPIM/SRPIM formulation in axisymmetric 

problems when adopting a coupled formulation. 

3) Recover the utilisation of equal linear interpolation functions for both primary 

variables while satisfying the inf-sup condition in the context of a consistent 

stabilisation method.  

4) Augment the SPIM/SRPIM formulation to allow the inclusion of interfacial 

geometries without the alignment of smoothing domains and interfacial 

geometry, and develop a robust contact algorithm to account for tractions 

induced by closure modes in interfaces. 

 

Chapter 2 presents a comprehensive literature review related to the objectives of the 

thesis. The literature review includes previous studies related to a brief review of 

SPIM/SRPIM and other MMs, followed by the introduction of previous studies of MMs 

in geotechnical engineering. Chapter 2 also reviews stabilisation techniques previously 

applied in geomechanics and other relevant disciplines, such as Stokes equations, and 

elucidates their differences. This chapter ends by reviewing previous studies related to 

the inclusion of interfaces and contact behaviour in geotechnical engineering, especially 

those approaches which account for the coupled flow-deformation process. 
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Chapter 3 presents the cell-based SPIM/SRPIM developed on the basis of the 

generalised gradient smoothing technique for the numerical modelling of saturated 

porous media. To this end, spatial discretisation of the coupled flow-deformation 

equations is formulated by adopting the weakened weak (𝑊𝑊2) concept, or the 

generalised smoothed Galerkin method. Both primary variables, displacement and 

pressure fields, are approximated using the appropriate shape functions PIM and RPIM, 

which possess the Kronecker property, facilitating the imposition of essential boundary 

conditions for both primary variables. The validity and robustness of the proposed 

method is thoroughly assessed via the simulation of a number of benchmark examples 

and comparison with their reference solutions. The convergence properties and the 

accuracy of the proposed method are investigated through an extensive error analysis in 

terms of primary variables and energy, compared with conventional PIM/RPIM 

methods and the FEM. 

Chapter 4 adopts SPIM/SRPIM coupled formulations in axisymmetric settings. The 

method overcomes a difficulty encountered when using SPIMs in an axisymmetric 

setting, the inherent deficiency associated with the existence of Gauss points along the 

symmetry axis. A decomposition technique which differentiates the smoothed from the 

non-smoothed terms is presented that avoids the singularity problem which would 

otherwise arise. The proposed method restores the accuracy of the original 

SPIM/SRPIM formulations and incurs no increase in the required computational effort. 

The performance of the proposed method is investigated through the simulation of both 

benchmark and practical axisymmetric problems, accomplished via a set of convergence 

studies in terms of quantities of interest for various time and mesh densities. 
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Chapter 5 proposes a consistently stabilised smoothed point interpolation method 

(SPIM/SRPIM) which encompasses both linear and nonlinear numerical analysis in 

geomechanics. In the proposed method, equal-order linear interpolations as a natural, 

practical choice can be adopted for both displacement and pressure variables while 

circumventing the difficulties associated with the fulfilment of the inf-sup condition and 

achieving optimal convergence rates in computational geomechanics. The proposed 

method retains the contributing terms in conjunction with the displacement and its 

weighting function in order to preserve the consistency of the original formulation. The 

proposed method offers an unconditionally stable form of the edge-based smoothed 

finite element method (SFEM), which is used as the simplest representative form of 

SPIM, regardless of a priori chosen stabilisation parameter. The efficiency and 

robustness of the proposed method are thoroughly studied for a range of benchmark 

numerical problems, including material linearity and nonlinearity assumptions. 

Chapter 6 develops an Enriched SPIM/SRPIM formulation for flow-deformation 

analysis of saturated porous media which includes embedded interfaces. In this 

formulation, the PIM and RPIM shape functions are augmented by appropriate 

discontinuous functions representing the discontinuity involved in either the primary 

variables or their gradients within a domain without requiring generation of successive 

smoothing domains when interfaces change their orientations. The proposed method 

addresses the difficulties encountered in the standard FEM, SPIM, and SRPIM 

formulations which require the conformity of surface discontinuities with discretisation 

topology. Appropriate Heaviside and ridge enrichment functions are adopted to properly 

capture the discontinuities in the primary/secondary fields within supporting domains. 

The effects associated with the closure modes of discontinuities are included through 

the adaptation of a nonlinear contact algorithm, accounting for frictional effects in 
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discontinuities. The contact algorithm is numerically implemented based on the 

satisfaction of an inequality commonly known as the Kohn_Tucker inequality in both 

the normal and tangential directions. The effect of fluid exchange within discontinuities 

is formulated by the inclusion of a suitable and realistic form of the fluid continuity 

equation within the discontinuities, which is discretised and simultaneously solved with 

the discretised coupled flow-deformation equations of the surrounding medium. A set of 

numerical examples which accommodate the embedded interfaces due to both a large 

contrast in material properties and a jump in primary variables is numerically modelled 

and compared with the solutions proposed by previous studies. 

Chapter 7 summarizes the studies which have been done and presents the main findings 

of this thesis. Potential avenues for future exploration also presented. 
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2 Literature Review  

 

2.1 Introduction 

This chapter is devoted to a comprehensive literature review pertaining to the objectives 

of the thesis. The literature review carefully elucidates pertinent previous studies 

relevant to a brief review of SPIM/SRPIM and other MMs, followed by the application 

of MMs in geotechnical engineering. Chapter 2 also discusses various stabilisation 

techniques previously applied in geomechanics with their relevant special features and 

possible deficiencies, such as those methods applied to Stokes equations and the Darcy 

equation. This chapter gives a comprehensive review related to previous studies, 

devoted to the inclusion of interfaces and contacts in geotechnical engineering, 

especially those approaches which considers the flow-deformation process in saturated 

and unsaturated porous media. 

 

2.2 A brief review of meshfree methods 

The finite element method (FEM) is widely recognised as one of the most reliable 

numerical methods for simulation in the geotechnical engineering community. 

Numerous sophisticated geotechnical simulations have been performed using the FEM 

[2]. FEM exhibits robustness and accuracy in the majority of practical geotechnical 

problems. Despite its effectiveness, the FEM application in certain problems can be 

difficult, mainly due to its heavy reliance on mesh-based interpolations. Problematic 

cases include large deformation analysis, simulation of discontinuities, analysis of 

problems involving fragmentation, etc. A number of improvements to the FEM have 
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been proposed in the literature to overcome these difficulties. However, the proposed 

techniques have their own implications and most often demand considerably higher 

computational efforts compared to the standard FEM. In addition, the FEM 

approximation inherently engenders overly-stiff matrices that might end up with the 

appearance of volumetric locking if an exact numerical integration scheme is employed 

and/or Poisson’s ratio is taken as 0.5 (the incompressible material) [73].  

Over the past three decades, a relatively new class of numerical methods, collectively 

known as meshfree methods (MMs) has been introduced. MMs have undergone 

remarkable progress due to their distinct features, with the objective of addressing a 

major part of the deficiencies attributed to mesh-dependent numerical methods. MMs 

aim to compensate for at least some of the difficulties associated withthe FEM by 

resorting to more flexible approximation/interpolation techniques created by nodes 

scattered in a whole domain of interest.  

The first MM that can be found in the literature is referred to as smoothed particle 

hydrodynamics (SPH), which was introduced by Lucy [74] and Gingold and Monaghan 

[75], to evaluate astrophysics problems. Later,  Libersky, Petschek [76] exploited SPH, 

for the first time, in solid mechanics to demonstrate the application of the method in this 

field. MMs offer excellent flexibility for adaptation either based on a strong form, such 

as SPH and its corrected versions, or a global weak form. The element-free Galerkin 

(EFG) [12] was the first MM, formulated based on a global weak form, followed by the 

reproducing kernel particle method (RKPM) [77] one year later, even though striking 

similarities exist between EFG and RKPM. While both EFG and RKPM exploit the so-

called intrinsic bases, other MM formulations, deduced by utilisation of the extrinsic 

bases, admitted the partition of unity concept. It is worth mentioning that extrinsic basis 
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was initially incorporated into a p-refinement method, e.g. hp-cloud [78], and the 

partition of unity concept (PU) proposed by Melenk and Babuška [59]. 

MMs can be adapted on local weak forms and formulated on overlapping subdomains 

rather than global weak forms. The meshless local Petrov-Galerkin (MLPG) is one of 

the well-suited local MMs [79] where the numerical integration is performed on 

overlapping subdomains leading to a ‘truly’ MM because it eliminates the need for 

background meshes to perform numerical integration. 

MMs can be classified based on how they express approximation forms to represent 

unknown  variables in three general classes, as noted in [80]: 

• Finite integral representation methods, in which the approximation of 

unknown variables is expressed by integral forms. Some well-known MMs 

are classified in this group, such as SPH [4] and RKPM [7]. 

• Finite series representation method, in which the approximated variables are 

represented using a series of polynomial bases. This group includes MMs 

based on moving least square (MLS) concept [81], the partition of unity 

methods [59], and the general form of hp-cloud [78].  

• Differential representation methods, in which unknown variables are 

expanded using the Taylor expansion series up to the desired order of 

accuracy, for example  [82, 83].  

There are several advantages to using MMs. First, MMs can accommodate some 

enhancement techniques, such as h-adaptivity, easier than other methods, such as the 

FEM, which are formulated based on mesh-based interpolation functions. Second, the 

treatment of evolving interfaces in which the geometry and/or orientation changes over 

time, such as crack propagation, shear bands and even mismatch in material properties, 
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can be handled with more ease (compared to the FEM) in most MMs. Third, the 

enforcement of mesh conformity is relaxed when the inclusion of an interfacial 

configuration is required [84]. Fourth, the difficulties associated with mesh distortion 

are easier to handle while performing large deformation analysis. Fifth, MMs ensure 

higher order continuity by the inclusion of more supporting nodes and a variety of 

approximation/interpolation functions in comparison to the FEM. 

Performing numerical integration in MMs, however, necessitates assigning relatively 

more quadrature points over a supporting domain of interest to produce solutions with 

adequate accuracy because MMs often employ non-polynomial functions [85]. 

Moreover, the imposition of essential boundary conditions in MMs may be complicated 

by the difficulties that arise from the lack of Kronecker delta properties, which leads to 

the significant level of computation in MMs [86]. 

In the point interpolation method (PIM) proposed by Liu and Gu [87], the shape 

functions possess the Kronecker delta function property, which facilitates imposing the 

essential boundary conditions. However, the non-singularity associated with the 

creation of PIM interpolation functions is not guaranteed in this method. The radial 

point interpolation method (RPIM) was introduced to avoid the singularity problem 

through the augmentation of PIM shape functions with appropriate radial bases [88]. 

Nevertheless, in PIM and RPIM, the approximation functions violate continuity across a 

problem field. A penalty method was exploited to induce a continuous approximation 

instead of the discontinuous approximation produced by PIM and RPIM, but the 

increase in computational costs are preventive due to the enlarged bandwidth of the 

attained algebraic system [86]. 
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In recent years, a novel form of variational statement, together with G space theory, has 

been introduced to relax the continuity requirement. In this approach, the governing 

equations are reformed based on an innovative form of the variational statement, the so-

called weakened weak formulation (𝑊𝑊2) [20, 89]. The weakened weak formulation is 

formulated through the replacement of the compatible strain field obtained by the 

derivative of the displacement field with an equivalent smoothed strain expressed by an 

integral strain form, commonly known as a strain smoothing operation. Hence, the there 

is no need to compute the derivatives in order to acquire the strain-displacement matrix 

and other derivative-included matrices. The stability and convergence of the proposed 

method was mathematically proven by the rigorous properties established by the G 

space theory [89, 90] . 

The strain smoothing operation has been also applied to the conventional FEM by [91, 

92], which was originally formulated by Chen, Wu [93] to prevent the disappearance of 

the strain-displacement matrix in an EFG context as nodal integration is to be 

performed. This is viewed as a robust way to address the difficulties associated with 

using the FEM. Applying the smoothing gradient technique softens the stiffness matrix 

attained by the Smoothed FEM (SFEM), preventing the occurrence of volumetric 

locking and other adverse consequences such as overly-stiff evaluation of resultant 

matrices. SFEM has various forms, including the cell-based smoothed finite element 

method (CSFEM) [91], the edge-based smoothed finite element method (ESFEM) [94] 

and the node-based smoothed finite element method (NSFEM) [95]. The various 

theoretical aspects of SFEMs were investigated in [92, 96]. The non-local information 

that is brought in from the neighbouring elements leads to more supporting nodes being 

involved in the creation of the shape functions, and it therefore increases the bandwidth 
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of the resulting stiffness matrix in SFEMs. The capability of SFEMs in various fields 

has been demonstrated by applying them to several numerical problems in [97-100]. 

The introduction of the strain smoothing technique to PIM/RPIM leads to development 

of the smoothed point interpolation method (SPIM) and the smooth radial point 

interpolation method (SRPIM). Applying the smoothing operation technique requires 

smoothing domains that are properly constructed. The smoothing domains are generally 

independent from the background mesh, and they are constructed on top of the existing 

mesh in such a way that the no sharing rule is met [15, 16]. Different approaches to 

constructing permissible smoothing domains have been developed and reported in the 

literature [16, 20, 101, 102]. Using the strain smoothing operation in the smoothing 

domain associated with field nodes results in a specific form, known as the node-based 

smoothed point interpolation method (NSPIM) and the node-based smoothed radial 

point interpolation method (NSRPIM) [95]. A similar procedure, along with the 

construction of smoothing domains based on shared boundaries of adjacent meshes, has 

resulted in the edge-based smoothed point interpolation method (ESPIM) and the edge-

based smoothed radial point interpolation method (ESRPIM) [16]. The elements of the 

background mesh themselves can serve as smoothing domains, resulting in development 

of the cell-based smoothed point interpolation method (CSPIM) and the cell-based 

smoothed radial point interpolation method (CSRPIM).  

Smoothed point interpolation methods have been applied in a variety of disciplines, 

proving their appealing features through the use of extensive numerical simulations. A 

thorough assessment of the numerical properties of different SPIMs/SRPIMs was 

performed in [19]. A number of novel techniques have been proposed in an 

NSPIM/NSRPIM context [17] and in a CSPIM context [25] to properly capture the 
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stress singularity in fracture mechanics. ESPIM and ESPIM have been applied to 

include the presence of  discontinuities stemming from a large contrast in material 

property in the field of solid mechanics [26]. Various numerical problems associated 

with plates and shells have been simulated by applying SPIM and SRPIM [23, 24, 103]. 

SPIM and SRPIM can also be adopted to other mesh forms, such as quadratic forms as 

implemented in [31], in which a novel technique was employed to create a continuous 

and piecewise quadratic displacement field over the whole problem domain. The 

adjustments in SPIM and SRPIM can be extended to the adaptation of the slightly 

modified versions of PIM and RPIM shape functions, as seen in [27, 33]. Remedial 

techniques were also adopted in SPIM and SRIPIM with the objective of further 

improvement in the efficiency of the methods, as seen in the adaptivity technique used 

in ESPIM in [28]. Heat transfer problems have also been simulated using different 

SPIMs and SRPIMs, as seen in [21, 29]. The application of SPIM and SRPIM has not 

been restricted to the problems associated with static loading, and SPIM and SRPIM 

have been successfully applied to vibration problems in solid mechanics [22]. Wave 

propagation problems and transient thermo-elastic analysis have also been attempted in 

SPIM/SRPIM contexts as seen in [104] and [30], respectively. SPIM and SRPIM have 

been so far used in several practical civil engineering problems, e.g., the investigation of 

thermal effects in concrete dam construction [105]. 

 

2.3 Application of MMs in geotechnical engineering 

This section presents a comprehensive review of MM studies related to various 

geotechnical engineering problems. A wide range of MMs has been adopted to solve a 

number of problems that are frequently confronted in practical geotechnical 
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engineering. To the extent possible, this review is classified with respect to the MMs 

adopted in each study.  

The pioneering study conducted by Modaressi and Aubert [106] is referred to as the 

first application of MMs in geotechnical engineering in which the response associated 

with saturated porous media was investigated with the material elasticity assumption. In 

another study by Murakami and Kawabata [107], the EFG formulation was adopted for 

flow-deformation analysis of saturated porous media. A two-dimensional formulation 

based on EFG method was proposed in [7] for contaminant transport in saturated porous 

media. Oliaei and Pak [108] proposed a coupled EFG formulation to properly capture 

the consolidation process in saturated porous media, and that study investigated the 

numerical issues related to utilisation of EFG in conjunction with the hydro-mechanical 

analysis presented in [109]. The EFG-coupled formulation was then extended to three-

dimensional problems in [9, 110]. 

Soil properties, such as the friction angle and cohesion, were obtained from the 

laboratory results of an adaptation of the MLPG method in a set of numerical 

simulations, along with the Mohr-Coloumb failure criteria used in existing studies such 

as the study presented in[111]. A modified MLPG was also adopted to simulate 

saturated porous media using dynamic analysis in [112], followed by an unequal MLPG 

formulation to supress the pressure oscillation that arises from the imposition of 

volumetric constraint in [113]. 

The material point method (MPM), originally formulated in the early 1990s [111], is 

one of the prominent types of MMs that has been widely applied to a variety of 

disciplines. In MPM, the material points are sufficiently small Lagrangian elements to 

present the problem field of interest, while the gradient of the primary variables is 



Chapter 2-Literature review 

21 
 

calculated by the surrounding background mesh/grids. MPM has gained a significant 

amount of attention in the geotechnical engineering community, which has led to 

several numerical studies conducted by applying MPM. MPM was used in a dynamic 

analysis of the slope failure that includes weak layers in [114]. The slope failure study 

associated with an MPM application was extended to seismic loading in [115]. The soil-

structure interaction induced by the existence of anchors in soils was numerically 

studied in [116]. Investigation of the soil behaviour arising from the coupling 

interaction of solid grains and fluid flow was performed by Bandara and Soga [117], 

adopting MPM, which was originally inspired by applying MPM to a general study of 

granular media behaviour presented in [118]. The coupled flow-deformation analysis of 

porous media by MPM was extended to a coupled dynamic analysis in [119]. The mass 

movements frequently encountered in landslides incur large deformation, which was 

studied in [120]. MPM was also used in the study of cone penetration test with different 

drainage boundary conditions [121]. 

The discrete element method (DEM) is a class of numerical methods, often included in 

the MM category. The main idea behind DEM is to characterise the rotational 

movements of particles by including the distinguishable degrees of freedom, which 

appropriately captures the contact states of solid particles in granular media, originally 

proposed by Cundall and Strack [122]. DEM has been utilised in a number of 

geotechnical studies, including analysis of a shallow foundation lain on a slope [123]. 

The effect of tunnel lining on the distribution of the soil pressure within the earth was 

assessed by the DEM in [124]. A two-dimensional analysis of granular media was 

extended to three-dimensional simulations in a DEM context in [125]. The structural 

damage induced by blast loading with inclusion of soil-structure interaction was 

simulated by DEM in [73]. 
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The finite point-set method (FPM) is another example of MMs that has been extensively 

applied in fluid dynamics. Several FPM geotechnical applications can also be found in 

the literature. In FPM, a continuous medium is represented by a sufficient number of 

points, to which local properties, such as temperature, density and velocity, are 

assigned. The prominent feature of FPM is that it possesses the flexibility to express the 

problem of interest in Lagrangian, Eulerian or mixed Lagrangian-Eulerian discerption 

with ease of implementation. Therefore, representative points can either be moved or 

fixed in a space. The influence of a vehicle travelling through saturated porous media 

was studied by adopting a FPM in [126]. Other examples of the adaptation of FPM to 

soil mechanics are the study of tri-axial tests adopted by FPM together with a nonlinear 

constitutive model presented in [127] and the investigation relevant to the simulation of 

avalanches in [128]. The influence of cutting on the variations of stress and strain 

induced in soil media was investigated in [129]. 

Blanc and Pastor [130] applied a two dimensional SPH model to simulate debris flows. 

Bui and Fukagawa [131] proposed an improved version of SPH to properly capture the 

possible failure modes of embankments with the inclusion of the flow-deformation 

process in porous media, followed by the extension to large deformation analysis to 

evaluate the post-peak behaviour of segmental retaining walls in [132]. The use of SPH 

in large deformation analysis was also investigated in a study involving a hypo-plastic 

constitutive model developed in [133]. The coupling of fluid flow with soil particles 

was also considered in the numerical simulation of reservoirs by SPH in [134]. Hu, Liu 

[135] developed an SPH application in geotechnical engineering to conduct a three-

dimensional analysis to simulate the flow-like behaviour of soil particles under 

landslide conditions. The flow-like behaviour was also investigated by a combined 

technique referred to as the depth-integrated SPH, proposed by Blanc and Pastor [130]. 
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Another novel technique by combining SPH and DEM was proposed to properly model 

the brittle-viscous deformation in practical problems, such as hydro-fracturing in [136].  

The particle finite element method (PFEM) refers to a MM that utilises the FEM 

discretisation to integrate the partial differential equations, while allowing the 

corresponding nodes to move based on the adaptation of the motion equation in a 

Lagrangian sense. The balanced forces along with all the associative physical properties 

are transferred with the nodes that are moving as if they are behaving as particles. This 

unique feature has contributed to solving a number of complex geotechnical problems. 

The influence of the tunnelling process by rock cutting tool was presented by applying 

PFEM in [137]. The coupled flow-deformation process was also simulated in a study 

conducted by Oñate and Idelsohn [138]. 

PIM and RPIM have been frequently used to solve in geotechnical engineering 

problems due to their ease of implementation, Kronecker delta properties and striking 

similarities to the conventional FEM without mesh-dependent restrictive issues. Wang 

and Liu [139, 140] extended the application of PIM and RPIM to solve Biot’s equation. 

Wang and Wang [141] formulated an unequal order PIM/RPIM to eliminate the 

pressure oscillation arising from the violation of inf-sup condition. Then, Khoshghalb 

and Khalili [142] proposed a coupled flow-deformation formulation together with the 

utilisation of PIM and RPIM associated with a novel three-point temporal discretisation 

method [143] to alleviate the temporal insatiability that occurs during numerical 

simulation of the consolidation process. Khoshghalb and Khalili [144] also extended the 

PIM/RPIM formulation to model unsaturated porous media including hydraulic 

hysteresis, followed by the extension of the formulation to large deformation problems 
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[145]. PIM and RPIM were also involved in the assessment of wave-seabed interaction 

in [146, 147]. 

Despite the fact that SPIM/SRPIM possesses desirable properties, the application of 

SPIM and SRPIM in geotechnical engineering has received little attention. Soares [34] 

proposed an iterative algorithm adopted to a simplified version of ESPIM to simulate 

linear and nonlinear geotechnical problems, followed by another study to include the 

dynamic effects [35]. Nonetheless, these studies were restricted to simple node selection 

schemes and some simplifications in the calculation of the coupling matrix of the 

system. To address these deficiencies, Ghaffaripour and Khoshghalb [148] proposed a 

novel algorithm to properly capture the coupling effects related to the response of 

saturated porous media when material nonlinear models are adopted. In this study, more 

sophisticated nodal selection techniques, together with both PIM and RPIM shape 

functions, were adopted. 

A soft particle method was developed to simulate granular media in [149], followed by 

the simulation of shear bands by Schneider-Muntau and Chen [150].Among thevarious 

MMs methods that could not be classified under abovementioned well-known MMs, the 

first application of the maximum entropy shape functions in MM for elasto-static 

problems were introduced by Ullah and Augarde [151].Late, the formulation of EFG, 

along with the FEM that exploit the maximum entropy concept was presented in [152] 

including both small and  large deformation analysis. The local maximum entropy 

formulation was consequently developed in [153]. It was extended to include material 

nonlinearity in a study presented by  Kardani and Nazem [154]  associated with an 

adaptive version which  the FEM along with EFG employed the local maxim entropy 

shape functions in[155]. The material nonlinearity wasalso considered in a meshless 
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natural neighbour method developed in [156]. More sophisticated constitutive models 

were adopted in [157] to simulate cemented sand incorporating a bonded-particle 

method in [158] to capture the lateral spreading due to the liquefaction phenomenon 

using the Lattice Boltzman method. A Lagrangian MM was also proposed to allow for 

the movement of nodes by Wu and Chen [159]. 

   

2.4 Stabilisation methods in computational geomechanics 

The ever-increasing applications of coupled flow-deformation analysis in porous media 

have garnered a great deal of attention in the literature. The first theoretical contribution 

to the consolidation problem was described in the pioneering work by Terzaghi [160], 

in which the consolidation process was formulated for a one-dimensional soil column 

under a constant load. Later, the theory of the flow-deformation analysis of porous 

media was extended to a generalised three-dimensional formulation by Biot [161]. 

Biot’s formulation presents coupled equations of the time-dependent stress distributions 

and displacements in the solid phase in conjunction with the attendant pore-pressure 

dissipation in the fluid phase. This theory has provided a fundamental basis for 

subsequent studies in a wide variety of fields, such as geomechanics, biomechanics and 

rock mechanics. 

The necessity of analysing and understanding complex flow-deformation processes in 

porous media has led to the development of competent numerical methods to solve the 

governing equations. The first application of Biot’s theory using numerical methods 

was presented in [162], and it was later extended by Zienkiewicz in [56, 163]. The 

incremental forms of Biot’s equations, which are required for material and geometrical 

nonlinear analysis, were developed in [3, 57, 164]. The assumption of fully saturated 
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porous media was originally made in Biot equations. However, understanding the 

mechanism of the interactions among different phases in three-phase problems, such as 

unsaturated soils or oil–gas–soil reservoir simulation, necessitated further development 

of the coupled formulation into a more generalised approach that accommodates three 

coupled equations, each of which representing a certain phase [54, 144, 165, 166].  

A mixed u/p formulation is often used for numerical analysis of coupled flow-

deformation problems to obtain simultaneous approximations of the displacement of the 

solid phase in conjunction with the relevant fluid phase pressure distribution. The u/p 

formulations employ the mixed finite element method context, in which both primary 

variables are simultaneously obtained by introduction of the coupling effects through 

non-diagonal matrices to the global discretised equation. However, mixed formulations 

encounter difficulties, particularly when the flow-deformation problem is met with the 

constraints of low permeability or a high loading rate. To investigate the origins of these 

challenges, the mixed variational form of Biot’s equations can be scrutinised, revealing 

that a special relationship between displacement and pressure spaces must be fulfilled in 

the presence of (nearly) incompressibility constraints. This relationship assures the 

coincidence of the pressure space with the range of the Divergence operator. This 

crucial requirement corresponds to the famous Ladyzhenskaya-Babuska-Brezzi (LBB) 

condition [38], also known as the inf-sup condition [39, 167]. It can be shown that the 

stability of mixed finite element approximations is ensured by the fulfilment of a 

discrete version of the inf-sup condition as a requirement to yield stable solutions [38, 

168]. This enforces the pressure and displacement spaces of the approximations to 

satisfy a special relationship that imitates continuous cases.  
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Unfortunately, the seemingly natural choice of equal-order approximating spaces for 

both displacement and pressure fields violates the inf-sup condition. This violation 

causes oscillation in the numerical fluid pressure results and overestimation of the 

collapse load due to a tendency of the volumetric locking phenomenon in numerical 

simulations of (nearly) incompressible porous media when approaching a collapse state. 

Standard safe elements, such as the Taylor-Hood element families, in which the 

displacement field is approximated one order higher than the pressure field, have often 

been employed in the literature to this problem. A wide range of more sophisticated 

similar elements has been proposed in [40, 169] to overcome this problem. Nonetheless, 

from the point of view of implementation, it is desirable to adopt the same equal low-

order elements for both displacement and pressure approximations. In doing so, it is 

possible to generate uniform data structures to conduct large-scale computations easily 

and cost-effectively by generating property matrices of manageable sizes with small 

bandwidths in three-dimensional problems for both pairs of unknown field variables. 

Taylor-Hood elements tend to result in the convergence of the numerical solutions, but 

either with a major loss of optimal convergence rate or without the convergence of the 

Divergence of the rate of displacement[170]. 

The adverse implications associated with the violation of the inf-sup condition can be 

circumvented, or at least ameliorated, by the regularisation of the mixed problem, 

leading to the stabilised Galerkin methods [41, 171-173]. Although a unified 

classification of these stabilisation schemes would be difficult, they are formulated 

based on the modification or relaxation of the incompressibility constraint by adding 

stabilising terms to the mass balance equation(s). This stabilises the mixed formulations 

and retains the convergence properties of the solutions.  
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Many stabilised methods have been previously developed and applied in the fluid 

dynamics context, encompassing all the features of a constraint problem. Numerous 

stabilisation techniques can be found in the literature for Stokes [44-46, 172, 174-176] 

and Darcy equations [43, 48, 170, 177-181]. 

Time-stepping stabilising techniques are considered to be one of the pioneering 

stabilisation methods dating back to late 1990s [182]. The main idea behind these 

methods is to project the pressure gradient into the velocity space and to introduce this 

projection as an additional dependent variable. Consequently, the incompressibility 

constraint in the continuity equation is relaxed by subtracting the discontinuous pressure 

gradient from the additional projected variable. This technique, which is known as the 

fractional step method, has been applied in dynamic analysis of geotechnical problems 

[37, 55, 183]. The time-stepping technique was also introduced in an MM context as an 

appealing feature of this class of numerical methods to exhibit stability subjected to 

large deformation, frequently accompanied by dynamic loading, as proposed in [83, 

184]. Nonetheless, this class of stabilisation technique is not well-suited for quasi-static 

consolidation analysis because the intrinsic assumption in its formulation is more 

suitable for dynamic analysis [36]. 

Another prominent stabilisation technique is the finite increment calculus (FIC), or 

simply finite calculus [185-188], based on the pioneering work of Oñate [185]. In this 

technique, equations for the balance of mass and momentum in a space–time domain are 

reformulated using the Taylor-series expansion to account for higher-order terms, 

presenting variations of the transported variables within the balance domain. 

FEM formulations stabilised with the FIC technique, which express the first-order form 

of the FIC balance equation in space, have been applied frequently in the context of 
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computational fluid and solid mechanics [185-188]. FIC has also been successfully 

applied to both one- and two-dimensional coupled flow-deformation analyses of porous 

media [36]. Recently, a second-order FIC form of the mass balance equation [189, 190] 

was applied to two- and three-dimensional consolidation analyses of porous media, thus 

facilitating the ability to obtain a more stable form of the mass balance equation [191]. 

However, in a comprehensive assessment of the performance of stabilised Galerkin 

methods in geomechanics reported in [49], it was shown that the first-order form of the 

FIC technique failed to converge at early stages of a nonlinear stability analysis of a 

vertical cut using both the associated and non-associated nonlinear constitutive models. 

In [49], FIC was unable to make further improvements to the bearing capacity analysis 

of a strip footing in comparison to other classical stabilisation methods. Further 

investigations are required to assess the robustness and accuracy of the FIC approach in 

cases of a nonlinear numerical analysis of porous media. 

Several other stabilisation methods proposed in the literature can be classified as 

residual-based techniques. Residual-based stabilisation methods work based on the 

relaxation or modification of compressibility constraints by adding additional terms to 

the mixed variational formulations. These methods, collectively known as consistently 

stabilised Galerkin methods, provide consistency, in general, because the stabilising 

terms eventually vanish. These methods involve a positive parameter that must be a 

priori-specified, i.e. the stabilisation parameter. Based on the stability achieved for a 

range of the stability parameter in consistently stabilised Galerkin methods, these 

methods are categorised into two distinctive groups [192]: methods that yield 

conditionally stable solutions with a set of restricted stability parameters and methods 

that offer unconditional stability with respect to all mesh-dependent stability parameter 

values. In a comprehensive theoretical investigation [53], where the consistently 
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stabilised finite element methods proposed for the Stokes equation were assessed, the 

Galerkin least-squares (GLS) [47] and pressure-Poisson Galerkin methods [46] were 

considered to be conditionally stable, while the stabilisation method initially proposed 

for Stokes equations in [172] was shown to be unconditionally stabile. Consistently 

stabilised Galerkin methods have been successfully applied in computational 

geomechanics. For example, Truty [193] developed a GLS approach for the 

consolidation analysis of saturated soils. However, the proposed method fails to 

completely suppress pressure oscillations when a non-zero value of the fluid 

compressibility is assigned in a numerical simulation. The proposed method also used a 

transient stability parameter with the inclusion of the current time-step that might cause, 

on the basis of the authors’ investigations and according to the theoretical investigations 

in [53], either a faster onset of pressure oscillation or abrupt deviation from the exact 

solution by a small perturbation of the properly chosen stability parameter. The 

pressure-Poisson Galerkin like method was adapted to EFG in [194], which can be 

considered as the first application of a consistent stabilisation technique in MMs. 

Truty and Zimmerman then derived a formulation for Stokes problems based on the 

method presented in [44] and compared it with GLS and pressure-Poisson methods for 

fully saturated soils [50]. They later extended their approach to the analysis of 

unsaturated soils [51]. Good agreement was achieved with respect to the reference 

solutions in both linear and nonlinear cases, but their proposed method was only 

conditionally stable [53]. That could lead to the appearance of pressure oscillations or 

volumetric locking when an inappropriate stability parameter value is chosen. The same 

stabilisation technique was also adopted in [195], but with the stability parameter 

assumed independent from the time-step size. 
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It is frequently reported that consistently stabilised Galerkin methods, such as the 

formulations applied in [50, 51, 193, 195], are not well-behaved when equal low-order 

interpolations are used for both primarily unknown variables. This is because these 

methods are often formulated based on the residual of the strong form of the governing 

equation, which results in the appearance of second-order derivatives in variational 

forms in their corresponding formulations. Second-order derivatives are either vanished 

or poorly approximated when equal-order linear interpolations are employed [52, 53, 

177, 178, 192, 196] rendering the stabilising terms ineffective. A possible heuristic 

technique could be a reformulation that transforms the governing coupled equations into 

a first-order system of equations [171]. However, this might engender more unknown 

variables and larger algebraic problems that must be numerically solved. Other 

strategies include replacing a discrete operator with the Laplace operator [192] or 

reconstructing higher order derivatives [58] that have striking similarities and are 

referred to as weakly consistent methods. A global 𝐿𝐿2 projection is needed in both cases, 

which precludes the applicability of the previously mentioned remedial methods from 

the implementation of stabilising terms at the element level. The global projection refers 

to the projection that project the variable of interest itself on the whole domain of 

interest to the functional space, not on each background mesh/cell; thus, it would 

dramatically increase computational expenses.  

The method proposed in [192] is claimed to be an unconditional stable variant of the 

pressure-Poisson Galerkin stabilised method. However, according to the numerical 

investigation to assess the performance of stabilised Galerkin methods in geomechanics 

reported in [49], the added stabilising term relevant to the weighting function of the 

displacement has a negligible stabilising effect on the results. Hence, it was proposed 

that the corresponding term could be omitted from the proposed formulation for 
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practical simplification. This suggestion makes the proposed method similar to a 

pressure-Poisson Galerkin method; however, the elimination of the aforementioned 

term may cause considerable error by a small perturbation of the stability parameter. 

This error is especially notable for fluid pressure distribution because a large deviation 

could be observed in its approximated solutions [49]. Therefore, it is beneficial to 

develop an unconditional stabilisation technique irrespective of an a priori-specific 

stabilisation parameter similar to the absolute stable method proposed in [172]. 

Non-residual pressure projection stabilisation techniques have also been proposed as a 

possible remedy for applying equal low-order pair of spaces to a wide range of 

applications [42, 174, 197]. These techniques are motivated by the fractional step 

schemes for the optimal use of equal lowest-order interpolations without resorting to 

residuals of governing equations and the appearance of higher-order derivatives. 

Multiple stabilised pressure projection methods, which have been extensively applied to 

Darcy and Stokes equations, have been proposed, including global pressure gradient 

stabilisation [175, 198, 199], local pressure gradient stabilisation [174], polynomial 

pressure projection–based methods [177, 200] and local and global pressure jump 

formulations [197, 201]. The basic idea behind the pressure projection methods is to 

supplement the deficiency associated with the fulfilment of the inf-sup condition by 

imposing an additional term on the variational formulation, compensating for pressure 

deviations. The use of pressure projection methods eliminates the need to compute high-

order derivatives, and it preserves the symmetry of the resulting original global matrix 

obtained from the mixed formulation.  

Despite the striking similarities between the fractional step schemes and the polynomial  

pressure projection methods, the latter involves fewer computations because many of 
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the projections are implemented at the element level [200]. In geomechanics, the 

applications of the polynomial pressure projection method in numerical analysis have 

been investigated for fully coupled flow-deformation in linear and nonlinear saturated 

porous media [52] and porous media with double porosity [202]. The effectiveness of 

the polynomial pressure projection method in numerical hydraulic fracturing analysis 

was also confirmed in [203]. It was applied to RKPM as the application of polynomial 

pressure projection in MMs, which exhibited good agreement with reference solutions 

but with the assumption of elasticity; thus, an assessment of the capability of the 

proposed method for nonlinear problems was overlooked [204]. However, it was 

revealed that the polynomial pressure projection stabilisation method fails to remove the 

pressure oscillation in the vicinity of the drainage boundary where the presence of 

intensive pressure gradient exists [36]. 

The variational multiscale method is another approach that results in the general form of 

consistent stabilisation techniques that employ bubble functions to account for the 

approximation of the fine scale within each element. The first method in this category 

can be traced back to [205], which attempted to solve the Stokes problem. This method 

has also been applied to the numerical flow-deformation analysis of porous media for 

one- and two-dimensional benchmark problems [36]. The aforementioned study shows 

that the method results in stabilised matrices that are identical to those attained by the 

application of the pressure-Poisson Galerkin stabilised methods, provided that an 

appropriate bubble function is carefully selected. However, [36] shows that the bubble 

function method is not well-behaved for stabilising a one-dimensional flow-deformation 

analysis in geomechanics. 
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The concept of the softening effect introduced in [93] associated with G space theory 

[14, 89] was exploited in SFEM and SPIM/SRPIM to induce the desire softening effects 

needed to mitigate the overly-stiff behaviour of the FEM and SPIM/SRPIM. However, 

SFEMs and SPIM/SRPIM are not completely well-behaved when subjected to 

incompressible constraints [94]. Hence, some stabilisation techniques have been 

adapted to SFEMs to develop a fully locking-free form of SFEMs, e.g., the utilisation of 

bubble functions in SFEMs for single-phase problems subjected to an incompressible 

constraint [206-208]. The bubble functions are, however, inadequate to stabilise the 

general coupled flow-deformation variational statement in computational geomechanics 

[36]. Similar to the FEM, the original SFEMs also suffer from the inability to utilise 

equal linear order interpolation functions for both primary variables in a consistent 

stabilisation framework. To date, the application of a stabilised SFEM in computational 

geomechanics has not been studied. 

 

2.5 Numerical analysis of porous media including interfaces 

In geotechnical engineering, the load acting on structures is generally transferred to soil 

through the areas where the soil and structures are in contact. Such surfaces in contact 

can be generally modelled assuming either natural boundary conditions, including the 

flexibility of adjacent structures in the analysis of interest, or essential boundary 

condition relevant to a primary displacement variable, assuming fully rigid adjacent 

structures. These simplifications are, however, rudimentary and might yield erroneous 

predictions that are far from realistic behaviour and might only be applicable when the 

surfaces in contact are already known. Several complexities from the field of contact 

mechanics, such as frictional sliding accompanied by large deformations and opening or 



Chapter 2-Literature review 

35 
 

closing of crack surfaces of hydro-fracturing phenomena, are needed to simulate the 

contacting surfaces. The quality of the prediction of the overall behaviour of the soil-

structure interactions is influenced by the attainment of the realistic response where the 

surfaces are in contact. In geotechnical engineering, frictional contact between soil and 

structure is important in many applications including foundations, piles, soil anchors, 

retaining walls, and geotextile reinforcements in embankments and retaining structures. 

The zero-thickness model can be thought of as the simplest and earliest technique for 

numerical modelling of contacts in geotechnical engineering because of the simplicity 

of implementing zero-thickness elements in conventional FEM codes. A simple double-

noded interface element capable of accounting for fluid flow within a crack in fractured 

rock, but only in a tangential direction was formulated by Ng and Small [209] and by 

Noorishad and Ayatollahi [210]. Later on, in a study by Segura and Carol [211], the 

zero-thickness model was extended to incorporate transversal fluid flow. The theoretical 

framework for zero-thickness elements that assumes a discontinuous pressure field was 

established in [212] and its accuracy and robustness in coupled flow-deformation 

analysis were demonstrated in [213]. A horizontally aligned crack with the assumption 

of non-propagation was numerically simulated by a triple-noded zero-thickness element 

developed by Guiducci and Pellegrino [214]. Following this, Centeno Lobão and Eve 

[215] proposed a constrained interface formulation across which pressure continuity 

was preserved. The enforcement of pressure continuity across the element was also 

established by using Lagrange multipliers, developed in [216]. A zero-thickness 

element that assumed the discontinuity fields for both the pressure field and its gradient 

was developed in [60]. A zero-thickness element for stationary hydraulic fracturing, 

including a traction-displacement relationship in a two-dimensional setting, was also 

presented in [217], which, through imposing an additional degree of freedom, exploited 



Chapter 2-Literature review 

36 
 

the partition of unity concept to properly capture the displacement discontinuity across 

interfaces. The zero-thickness element proposed in [218] enables incorporation of the 

hardening behaviour of soils, including interfaces, and can be expressed in an 

incremental form, but it has limitations relevant to the geometrical predefinition of zero-

thickness elements.  

The geometrical restriction attributed to the use of zero thickness element was, for the 

first time, addressed as an application to soil-structure interaction problems in a 

pioneering study by Van den Berg [219], in which a soil mass streaming past a fixed 

cone was simulated by formulating of zero-thickness elements under an Eulerian setting 

that is able to handle large deformations. However, this study failed to capture a 

penetration procedure that starts from the ground surface. Liyanapathirana and Deeks 

[220] proposed a novel method that, through a set of predefined pile-soil interface 

elements that are successively activated with corresponding pile elements, simulates the 

installation process of displacement of open-ended piles with negligible wall thickness 

under circumstances of large deformation. Nonetheless, the extension of the proposed 

method to the simulation of closed-ended piles and piles with considerable thickness is 

not feasible because the pile and interface elements are not able to fill space while 

inactive. Despite the simplicity attributed to using zero-thickness elements in modelling 

discontinuities, their applicability is often restricted to problems where only pre-existing 

interfaces with previously known configurations exist. Thus, zero-thickness elements 

fail to produce qualitative solutions for boundary value problems in which interfaces 

move with time in an unpredicted fashion. 

In computational contact mechanics, and in particular in the FEM framework, the 

simplest way of treating interacting objects is perhaps an algorithm commonly known 
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as node-to-surface (NTS). NTS has been extensively employed in commercial and 

academic FEM codes. In this approach, the enforcement of constraints is effectively 

established though a node of one contact surface, commonly named the slave, and the 

corresponding surface (master), which effectively involves collocating the contact 

integrals at the slave nodes. This approach is able to include large deformation analysis.  

NTS was first applied in finite element modelling to Hertzian contact problems [221]. 

The first implementation of NTS in soil-structure interaction was due to [222], in which 

an NTS formulation associated with a Lagrange multiplier was applied to simulate the 

interaction between a buried culvert and the surrounding soil in order to address the 

difficulties associated with surface separation and re-closure. Nonetheless, the study 

was restricted to problems under the small sliding assumption between contacting 

nodes. A cantilever sheet-pile wall interaction in conjunction with the concept of 

frictional contact constrained by the NTS technique was modelled in [223, 224]. 

Despite its simplicity, the NTS method in general fails to pass the patch test, due to non-

uniformity of nodal forces arising from using high-order interpolation functions, even 

when the problem involves a uniform stress field [225]. In addition, the NTS method 

may induce the deterioration of mesh quality near the surfaces of the contacting bodies. 

Another well-established technique, known as the surface-to-surface (STS) algorithm, 

was subsequently proposed in which contact constraints are expressed in a weak form. 

As a result, the computation of contact integrals is not performed at slave nodes any 

longer. The STS technique was first formulated as an integration technique over contact 

segments for two-dimensional applications. It was firstly introduced as a segment-to-

segment approach in [226], followed by extension to two-dimensional settings in [227]. 

A frictional contact formulation accompanied by the STS algorithm was employed to 
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model pile installation in normally consolidated undrained soils with low permeability 

in [228]. This study successfully simulated a number of realistic features of pile 

penetration for piles of a finite depth, but could simulate only pre-bored piles under the 

small sliding assumption. Unlike NTS, the completion of the patch test in conjunction 

with the STS algorithm was ensured, but STS was not able to satisfy the inf-sup 

condition [38, 167]. 

The mortar technique was then proposed as a possible alternative for constraining 

contacting bodies. It is similar to STS but retains the consistency of variational 

statements subject to contact constraints, maintaining the optimal convergence rate for 

the primary variables. The mortar technique passes the patch test and meets the inf-sup 

stability condition. It has very frequently been applied to various solid mechanic 

problems [229-232] and has been extended to simulate the influence of interfaces on 

nonlinear saturated porous media [233], to analyse torpedo anchors [234], and to apply 

a quadratic mortar-like discretisation to model the pile installation process [235], in 

which a frictional contact formulation was introduced. In this study, a possible large 

deformation between piles and the surrounding soils was consistently considered by 

using quadratic solid elements. However, the mortar technique involves considerable 

computational expense due to the need to evaluate mortar integrals [236]. 

Contact mechanics has been incorporated into a number of soil-structure interaction 

problems associated with the FEM. The cone penetration test in cohesionless soils was 

simulated in [237]. There, the mechanism of penetration and the prominent factors that 

may influence the penetrating process were comprehensively investigated. The 

evaluation of the stress and strain distributions induced by pushed-in piles being 

installed and loaded was studied in [238]. In this study, contact constraints were 
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enforced by minimising the total potential energy by introducing an additional Lagrange 

multiplier. In another geotechnical application, a frictional contact formulation within a 

FEM framework was employed to evaluate the performance of piles with enlarged ends, 

resulting in an improved formulation for estimating the capacity of such piles [239].  

The contact constraints between two interacting bodies can, in general, be imposed 

through two main methods: the method of “Lagrange multipliers” and the “penalty 

method”. In the Lagrange multipliers method, the contact condition is imposed as a 

constraint on the governing variational formulation of the continuum problem. This 

way, the Lagrange multipliers can be interpreted as primary unknowns, by which the 

enforcement of the contact constraint is exactly imposed [240]. The Lagrange 

multipliers as primary variables are, therefore, to be treated like other primary variables 

and approximated in a similar fashion. Consequently, the introduction of the Lagrange 

multipliers as primary variables results in the increase of the algebraic system size and 

in the loss of the likely original symmetry of a formulation. In addition, the issues 

concerning the fulfilment of the inf-sup condition to ensure stability remain when 

employing Lagrange multipliers to introduce contact forces as primary variables [38]. 

The most convenient pair of choices associated with the approximation of primary 

variables, i.e., displacement and Lagrange multipliers, is ruled out by the inf-sup 

condition. Although several stabilisation remedies have been proposed to circumvent 

the inf-sup condition when Lagrange multipliers are introduced, e.g., see [241], they 

would likely either reduce numerical accuracy or impose difficulties when identifying 

and specifying the scale stabilisation parameter at an element level [85, 242, 243]. 

In the penalty method, the amplitude of stiffness at the contact surface between two 

bodies is assigned a priori at the places where the contact constraints are to be imposed. 
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As a result, the introduction of penetration between two contacting boundaries is 

inevitably admitted; this is related to the normal contact force through the contact 

stiffness, commonly known as the penalty parameter [244]. The accuracy of numerical 

solutions associated with fulfilling the contact constraints relies heavily on the 

magnitude of the contact stiffness, which must be large enough to satisfy the constraint 

condition, but not too large; otherwise, ill-conditioning problems would ensue. 

Benefiting from the advantages of both these techniques, other constraint algorithms 

have been proposed and successfully applied to contact problems. One of these well-

established improved techniques is the augmented Lagrange multipliers method [240].  

The concept of adaptive re-meshing has been used in a wide range of disciplines to 

accurately obtain numerical solutions to problems that involve moving discontinuities. 

The idea behind adaptive re-meshing is to enforce the conformity of mesh topology to 

evolving discontinuities by creating successively ever more conforming meshes and 

their subsequent projections of data over time or during iterations. Simoni and Secchi 

[245] introduced a two-dimensional cohesive crack relationship along with an adaptive 

re-meshing technique based on Delaunay mesh generation. They used this combination 

in an FEM framework for saturated porous media, followed by a study of the 

application of the method for a gravity concrete dam subjected to cyclic loading. A 

study that accounted for the thermo-mechanical coupling was proposed by Schrefler and 

Secchi [246], in which optimal mesh size was assured by repeated re-meshing. An 

adaptive technique was then proposed in [247] with an appropriate mapping operator 

that ensures a priori local satisfaction of balance equations is directly applied to nodal 

forces and fluxes. The mesh adaptivity and the cohesive crack concept were also 

extended to three-dimensional porous media problems in [248]. Generally, the 

difficulties of the FEM due to the restriction of interfacial configurations to element 
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boundaries and the preservation of inner element continuities result in significant 

computational costs when modelling moving discontinuities. In addition, projection of 

data between successive re-meshing may produce numerical errors. 

Recently, much attention has been given to the “embedded” methods for simulation of 

interface problems. “Embedded” refers to problems where the interface geometry is 

allowed to be independent of some underlying bulk mesh. Related studies have 

extensively focused on the eXtended Finite Element Method (XFEM) and its 

application to a wide range of interface problems. XFEM can be seen as an extension of 

the finite element method for handling boundary value problems with moving 

discontinuities in which the conformity of the element boundaries to an interfacial 

geometry is not necessarily required. Conformity is satisfied through introducing 

enrichment functions to capture discontinuities inside elements representing cracks, 

material interfaces and even voids. The enrichment procedure exploits the partition of 

unity (PU) technique, originally proposed by Melenk and Babuška [59]. The PU 

property states that the sum of the interpolation functions must be unity. XFEM 

eliminates the necessity of successive mesh generations and the difficulties frequently 

encountered in the re-meshing procedure associated with the FEM. XFEM was first 

proposed for modelling two-dimensional cracks in [249, 250], followed by an extension 

to the three-dimensional setting in [251, 252]. Tangential discontinuities were modelled 

in [253, 254]. XFEM was applied to the modelling of voids in [255] and to material 

interfaces in [256]. 

The modelling of frictional contact across interfaces in XFEM framework has gained 

relatively less attention compared to the FEM. An XFEM formulation was presented by 

Khoei and Nikbakht [257] and by Liu and Borja [258] to properly simulate the frictional 
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contact problem constrained by the penalty technique. Liu and Borja [258] proposed an 

XFEM formulation, including embedded frictional contacts, for a finite deformation 

analysis that accommodated finite stretching and rotation. Nistor and Guiton [259] 

introduced a contact search algorithm that allowed systematic updates of contacting 

bodies in a hybrid X-FEM framework, formulated as XFEM coupled with a Lagrange 

large sliding contact algorithm under the assumption of large deformation. Recently, an 

NTS contact algorithm was formulated in [260] based on XFEM including large 

deformation employing the penalty technique. A stabilised augmented Lagrange 

multiplier was investigated in the XFEM framework in [261] in which the stabilisation 

technique previously employed by Béchet and Moës [241] was reformulated to alleviate 

the traction oscillation across a crack obtained by a constrained XFEM framework. 

In a pioneering study, De Borst, Réthoré [262] presented the application of XFEM in 

modelling a propagating discontinuity, such as a crack or a shear band, in saturated 

porous media under a biaxial plane-strain condition. This was followed by an extension 

to dynamic analysis in [263]. The studies presented in [262, 263] assumed two pressure 

degrees of freedom across the discontinuity, without permission of possible fluid 

movement and storage in the discontinuity. The latter phenomenon was included in the 

coupled flow-deformation equation for the surrounding medium later, through a 

modified fluid continuity equation that represents the fluid transport and storage within 

the interface in [264] under the assumption of linear elastic fracture mechanics. Later 

on, the cohesive crack model [265, 266] and large deformation analysis [68] were also 

studied. The formulation was then extended to coupled problems in unsaturated porous 

media [63, 267, 268] and extended to include thermo-hydro-mechanical analysis in a 

two-dimensional setting by Khoei and Moallemi [64] and in a three-dimensional setting 

by Prevost and Sukumar [269]. An uncoupled approach in conjunction with modelling 
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of a single crack propagation pressurised by fluid was investigated in [270] by 

introducing a special treatment for the enrichment of crack tips, and in [271-273] by 

assuming an impervious surrounding medium. A three-dimensional impervious medium 

with cracks induced by fluid pressurisation was evaluated by Gupta and Duarte [274].  

Remij, Remmers [275] also modelled a crack propagation induced by fluid pressure in a 

porous medium. They assumed an independent pressure variable for fluid within the 

discontinuity by including three independent pressure degrees of freedom at the 

interface. 

Khoei and Vahab [65] presented a coupled hydro-mechanical variational statement for 

saturated porous media, with the XFEM framework, subject to the contact constraints 

arising from the participation of the crack closure mode. The proposed method 

exploited the penalty method to account for the contact constraint and for the fluid flow 

ceasing within the crack where the closure mode of the crack appears. The influence of 

hydraulic fracturing in gravity dams was investigated by the adoption of XFEM with a 

proper cohesive crack model in [276]. Using the XFEM framework, a steady-state 

analysis of the fluid flow leaking into a layered soil medium with wells was performed 

in [277].  

An XFEM formulation was proposed in order to include weak discontinuities with 

arbitrary orientations arising from a large contrast in material properties in [61] in which 

the proposed formulation was verified by the simulation of a layered dam subjected to 

dynamic loading. Watanabe, Wang [217] proposed a novel method to represent the 

influence of pre-existing interfaces in rocks by employing lower-dimensional interfaces 

with locally defined enrichment functions. Two approaches relevant to the systematic 

computation of fluid flow and its corresponding interfacial forces within a cavity were 
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compared in [66] which  accounted for the mixed mode of fractures, that necessitates to 

formulate a contact algorithm appropriately. Taleghani and Olson [278] formulated an 

enriched numerical method in order to simulate the hydraulic fracturing phenomenon in 

porous media and consider natural discontinuities in a medium, but they failed to 

introduce an appropriate enrichment function when the induced fractures is intersected 

by natural interfaces. Accordingly, the proposed method is valid only up to the 

threshold of an interfacial junction. 

Although XFEM has shown robustness and accuracy in computational geomechanical 

applications, it possesses a number of inherent deficiencies. Numerical integration of 

discontinuous functions, used for reproducing the discontinuities in XFEM, complicates 

the numerical implementation of XFEM due to the necessary partitioning of elements 

intersected by an interface, reducing the accuracy of the numerical solutions. XFEM 

necessitates some recovery techniques, i.e., the derivative recovery proposed in [279] or 

the a posteriori treatment formulated in [280], in order to improve the computation of 

stress and its association with the stress intensity factor. 

The numerical simulation of interfaces in geomechanics by MMs has gained little 

attention. Aimene and Nairn [281] proposed an MPM formulation to investigate the 

interaction of induced hydraulic fractures with natural interfaces, within the framework 

of linear fracture mechanics. In this study, crack propagation was governed by the 

maximum hoop stress criterion, and, through the adaptation of continuous fracture 

modelling proposed in [282].  

In [283], SPH was applied to model rock fracturing stemming from magma intrusion.  

Oliaei, Pak [284] proposed a fully-coupled EFG formulation for the simulation of 

induced fractures in saturated porous media. This was followed by an improved form of 
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EFG, proposed in [285]. However, the numerical solutions obtained in the presence of 

discontinuities exhibited a slight oscillation, as previously reported for solid mechanics 

applications in [85, 286]. Thus, an enriched EFG formulation that incorporated weak 

discontinuities was proposed for both saturated and unsaturated porous media in [70] in 

order to restore the accuracy of the numerical solutions. In this study, various applicable 

enrichment functions relevant for the presence of a weak discontinuity were compared 

in term of accuracy. The previous study was then extended, in [71], to simulate a strong 

discontinuity due to a jump in the primary variable (displacement) and to compute its 

proportional cohesive forces, inspired by the formulation in [69]. Nonetheless, the term 

associated with fluid leakage in the fluid continuity equation arising from the transport 

or storage of fluid in cavity was overlooked. A novel DEM-SPH method was 

formulated in [136] to simulate induced fractures pressurised by a fluid. In this method, 

the displacement variable was represented by DEM while SPH adopted to simulate the 

fluid phase. This approach is however very computationally demanding. Some 

advanced MMs, e.g., SPIM and SRPIM, have not been yet applied in simulation of 

moving discontinuities in multiphase media. 

The Table 2-1 summarizes almost MMs applications in geotechnical engineering as 

well as geomechanics mentioned in this study. 
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Table 2-1. The summary of MMs applications in geotechnical engineering and 
geomechanics discussed in this study. 

Method Applications in geotechnical engineering and geomechanics 

EFG [106],[107],[287],[108],[284],[9],[110],[152],[153],[285],[70, 

71]. 

MPLG [111],[112],[288]. 

MPM [114],[115],[116],[117],[118],[119],[120],[121],[281]. 

DEM [123],[124],[125],[136]. 

FPM [126],[127],[128],[129]. 

SPH [130],[131],[132],[133],[134],[135],[283],[136]. 

PFEM  [137],[138]. 

PIM/RPIM [141],[142],[144],[145],[147],[146]. 

SPIM/SRPIM [35],[289],[148]. 

Soft Particle 

Method  

[149],[150] 

 

2.6 Conclusion  

In this chapter, a general classification of MMs has been presented in terms of their 

representation of the variable approximation, followed by their relative deficiencies 

compared to the recently proposed MMs such as PIM/RPIM. This chapter has also 

discussed a comprehensive application of MMs in geotechnical engineering and 

computational geomechanics which is more or less classified based on the methods 

used. Various stabilisation techniques have been discussed and classified. The special 

features of discussed stabilisation methods as well as their deficiencies have been 

highlighted in this chapter. It has been shown that the adoption of a consistent 
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stabilisation technique accompanied by the smoothing gradient technique would 

facilitate the use of equal order linear interpolation while obtaining theoretical 

consistency features. This needs to an extension of SPIM/SRPIM towards the coupled 

flow-deformation analysis of saturated porous media at first. The end section of this 

chapter has presented the various applications of numerical methods when interfaces are 

included in geotechnical engineering problems. These applications include soil-structure 

interactions and the saturated and unsaturated porous media with the propagating or pre-

existing cracks as well as the material interfaces. It has shown that various numerical 

techniques were applied to different interfacial configurations involved in geotechnical 

problems, some of which have addressed difficulties associated with inserting the 

interfacial geometries independent of the underlying discretisation such as XFEM. 
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3 Application of cell-Based smoothed point interpolation 

methods in the flow-Deformation analysis of saturated 

porous media 

 

3.1 Introduction   

In this chapter, the numerical techniques adopted for numerical analysis of the problems 

in this study is described in detail. These methods, called cell-based smoothed point 

interpolation methods (CSPIM), are based on the generalised gradient smoothing 

technique recently developed by Liu and his coworkers [13, 15, 16, 20, 89, 101, 105]. In 

the proposed methods, the problem domain is first discretised with the use of a simple 

triangular background mesh. The purpose of the background mesh is twofold: (i) it is 

used to select the supporting nodes for each point of interest for the construction of 

nodal shape functions, and (ii) the cells of the background mesh serve as the smoothing 

domains. Spatial discretisation of the coupled partial differential equations is derived by 

applying the weakened weak (𝑊𝑊2) formulation referred to as the Generalised Smoothed 

Galerkin method. Both displacement and pressure fields are interpolated using the point 

interpolation shape functions (polynomial and radial) which are described in detail in 

this chapter. In the formulations proposed, shape function differentiations are eliminated 

with the use of the smoothed gradient technique, leading to the definition of the 

smoothed strains and pressure gradients. Temporal discretisation is performed with a 

three-point time discretisation scheme with variable time steps. Different node selection 

schemes, known as T-schemes, to guarantee the non-singularity of the moment matrices 
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in creating shape functions are described. The methods are presented in this chapter for 

the solution of the fully coupled equations governing the behaviour of a fully saturated 

porous media. The accuracy and convergence rate of the methods are investigated 

through comparison of the numerical results of the proposed methods with those 

obtained using analytical/semi-analytical solutions, point interpolation methods, and 

standard finite element methods. The formulation presented in this chapter is adopted 

for further developments in the subsequest chapters. 

 

3.2 Governing equations 

The partial differential equations governing the fluid flow and deformation in elastic 

saturated porous media, first developed by Biot [161], are presented here. The saturated 

medium is presented by two interacting continuum phases, i.e. soil skeleton and fluid 

phase. The coupling of the two phases is described by the effective stress principle. 

Inertia effects are neglected, and homogeneity is assumed. The compact matrix-vector 

notation is used, with bold imprints denoting vectors and matrices, and an over-dot 

representing the time derivative. Throughout this thesis, for the soil skeleton, tensile 

stresses are assumed to be positive according to the sign convention of continuum 

mechanics. However, the pore fluid pressure is considered positive in compression 

according to soil mechanics convention. 

The combination of the overall equation of equilibrium, linear momentum balance and 

mass balance equations for the fluid phase results in the governing coupled differential 

equations for the domain as follows [161]: 

𝑳𝑳𝑑𝑑T(𝛔𝛔ˊ − 𝜂𝜂𝜂𝜂𝜹𝜹 ) + 𝜌𝜌𝐠𝐠 = 𝟎𝟎                         (Equilibrium)                           (3-1) 
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𝜵𝜵. �𝒌𝒌𝑓𝑓
𝜇𝜇𝑓𝑓
�−𝜵𝜵𝜂𝜂 + 𝜌𝜌𝑓𝑓𝐠𝐠��� + 𝛼𝛼𝑓𝑓�̇�𝜂 + 𝜵𝜵. �̇�𝒖 = 0 (Continuity)                                               (3-2) 

in which the differentiation operator 𝑳𝑳𝑑𝑑 is defined as:    

𝑳𝑳𝑑𝑑 =

⎣
⎢
⎢
⎢
⎡
𝜕𝜕
𝜕𝜕𝑥𝑥1

0

0
𝜕𝜕
𝜕𝜕𝑥𝑥2

𝜕𝜕
𝜕𝜕𝑥𝑥2
𝜕𝜕
𝜕𝜕𝑥𝑥1⎦

⎥
⎥
⎥
⎤

                                                                                                        (3-3) 

with 𝑥𝑥1 and 𝑥𝑥2 being space coordinates. 𝜵𝜵 is the gradient operator expressed as 𝜵𝜵 =

𝑳𝑳𝑑𝑑T𝜹𝜹, with 𝜹𝜹 = [1 1 0]T. Equation 3-1 is derived from the equilibrium equation for 

the solid phase, while Equation 3-2 represents the continuity condition for the fluid 

phase obtained by inserting Darcyʼs law for fluid flow within porous media into the 

fluid mass balance equation. 𝛔𝛔ˊ denotes the effective stress acting on the solid phase 

which is linked to the total stress 𝝈𝝈 by Terzaghi’s effective stress principle. 𝐠𝐠 =

[0 𝑔𝑔 0]T and 𝐠𝐠� = [0 𝑔𝑔]T express two different representations of the gravity 

acceleration vectors with 𝑔𝑔 denoting the gravitational constant. 𝒖𝒖 represents the 

displacement field of the solid phase; 𝜂𝜂 is the fluid pressure; 𝒌𝒌𝑓𝑓 indicates the intrinsic 

permeability of the porous media; 𝜇𝜇𝑓𝑓 is the dynamic viscosity of the fluid phase; 𝜌𝜌𝑓𝑓 is 

the density of the fluid; and 𝜌𝜌 is the buoyant porous medium density. 𝛼𝛼𝑓𝑓 =

𝑛𝑛�𝐶𝐶𝑓𝑓 − 𝐶𝐶𝑠𝑠� + 𝜂𝜂𝐶𝐶𝑠𝑠 , in which 𝜂𝜂 = 1 − 𝐶𝐶𝑠𝑠
𝐶𝐶

. 𝑛𝑛 is the porosity, and 𝐶𝐶𝑓𝑓, 𝐶𝐶𝑠𝑠 and C are the 

compressibility of the fluid phase, the compressibility of the solid grains, and the 

drained compressibility of the porous medium, respectively. 

The adequate essential and natural boundary conditions that are required for the sake of 

the solvability of Equation 3-1 and Equation 3-2 are presented in the following forms: 

𝒖𝒖(𝒙𝒙, 𝑡𝑡) = 𝒖𝒖�(𝑡𝑡)           𝑠𝑠𝜂𝜂𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝜂𝜂𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑛𝑛𝑡𝑡      𝑜𝑜𝑛𝑛 Γ𝑢𝑢                                           (3-4) 
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𝒏𝒏T𝝈𝝈′(𝒙𝒙, 𝑡𝑡) = �̅�𝒕(𝑡𝑡)            𝑠𝑠𝜂𝜂𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡𝑝𝑝𝑠𝑠𝑡𝑡𝑠𝑠𝑜𝑜𝑛𝑛          𝑜𝑜𝑛𝑛 Γ𝑡𝑡                                            (3-5) 

𝜂𝜂(𝒙𝒙, 𝑡𝑡) =   �̅�𝜂(𝑡𝑡)      𝑠𝑠𝜂𝜂𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  𝜂𝜂𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑡𝑡𝑠𝑠                 𝑜𝑜𝑛𝑛  Γ𝑝𝑝                                           (3-6) 

−𝒏𝒏T𝒘𝒘(𝒙𝒙, 𝑡𝑡) = 𝑞𝑞�(𝑡𝑡)         𝑠𝑠𝜂𝜂𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑝𝑝𝑝𝑝𝑥𝑥                   𝑜𝑜𝑛𝑛 Γ𝑞𝑞                                           (3-7) 

where 𝒏𝒏  is the outward unit normal vector, expressed in a matrix form as:  

𝒏𝒏 = �
𝑛𝑛𝑥𝑥1 0
0 𝑛𝑛𝑥𝑥2

𝑛𝑛𝑥𝑥2
𝑛𝑛𝑥𝑥1

�
T

                                                                                               (3-8) 

in which 𝑛𝑛𝑥𝑥1 and 𝑛𝑛𝑥𝑥2 are the unit normal components at the point of interest in the 𝑥𝑥1 

and 𝑥𝑥2 directions, respectively. The formulation presented here is developed for two-

dimensional setting. 

In the standard fashion, Γ𝑢𝑢, Γ𝑡𝑡, Γ𝑝𝑝, and Γ𝑞𝑞 are restricted regions of the boundary of the 

domain such that:  

Γ =  Γ𝑢𝑢  ∪  Γ𝑡𝑡 =  Γ𝑝𝑝 ∪ Γ𝑞𝑞                                                                                              (3-9) 

Γ𝑢𝑢  ∩  Γ𝑡𝑡 =  Γ𝑝𝑝 ∩ Γ𝑞𝑞 = ∅                                                                                             (3-10) 

 

3.3 Constitutive modelling 

For the sake of simplicity, isotropic elastic behaviour has been assumed for the solid 

phase throughout this thesis except some parts where other assumptions are emphasised. 

The stress–strain relationship expressing the interaction between the soil skeleton and 

the fluid phase is given by   

 �̇�𝝈 = 𝑫𝑫�̇�𝜺 − 𝜂𝜂�̇�𝜂𝜹𝜹                                                                                                         (3-11) 
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in which 𝝈𝝈 is the total stress tensor.The over dot here indicates the rate form of the 

stress-strain relationship due to the possible nonlinearity of the constitutive behaviour of 

the porous media. It does not mean the real time derivative. For isotropic elastic media, 

the stress–strain relationship can be written in the following form  

�̇�𝝈 = 2𝐺𝐺�̇�𝜺 − (𝜆𝜆 𝑡𝑡𝑡𝑡�̇�𝜺 + 𝜂𝜂 �̇�𝜂)𝜹𝜹                                                                                    (3-12) 

where 𝐺𝐺 = 𝐸𝐸
2(1+𝜈𝜈)

 and  𝜆𝜆 = 𝜈𝜈𝐸𝐸
(1+𝜈𝜈)(1−2𝜈𝜈)

 are Lamé constants, with E being the elasticity 

modulus and 𝜈𝜈 being the Poisson’s ratio. 𝑡𝑡𝑡𝑡 is the trace operator, with 𝑡𝑡𝑡𝑡�̇�𝜺 representing 

the soil volumetric strain.  

 

3.4 Cell-based smoothed PIM/RPIM 

As discussed in the previous chapter, the SPIM and SRPIM are powerfull meshfree 

methods that are recently developed. In these methods, instead of a compatible strain 

field, the smoothing operation is used to construct the smoothed strain field. Not only 

does the strain field construction solve the problem associated with the compatibility of 

approximation functions, it also increases the accuracy of the numercial solution, 

mainly through elimination of the need for the derivatives of the shape functions. To 

apply smoothing operation techniques, smoothing domains need to be constructed. The 

smoothing domains are generally independent from the background mesh and are 

constructed on top of the existing mesh in such a way that the no sharing rule is met 

[15, 16]. Different approaches to construct permissible smoothing domains have been 

developed in the literature [16, 20, 101, 102]. In the simplest case, the cells of the 

background mesh can be directly used to serve as the smoothing domains [20]. This 

process leads to one of the simplest SPIMs, called the cell-based SPIM (CSPIM). In this 
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method, no additional operation is needed to construct smoothing domains. This is 

adopted in this study and is fully described in the subsequent sections. 

 

3.4.1 Construction of shape functions  

Two types of shape functions, formulated with different basis functions, can be 

considered in cell-based smoothed methods: polynomial point interpolation method 

(PIM) shape functions which use polynomial basis functions [87], and radial point 

interpolation method (RPIM) shape functions which use both polynomial and radial 

basis functions (RBFs) [88]. 

For PIM shape functions, the  arbitrary field approximation function of interest, 𝑣𝑣(𝒙𝒙), in 

the space coordinates 𝒙𝒙 =[𝑥𝑥1, 𝑥𝑥2] is approximated at any point in the problem domain 

with the following series representation:  

𝑣𝑣(𝒙𝒙) = ∑ 𝑏𝑏𝑖𝑖𝜂𝜂𝑖𝑖(𝒙𝒙)𝑝𝑝
𝑖𝑖=1 = 𝒑𝒑T(𝒙𝒙)𝒃𝒃                                                                        (3-13) 

where 𝜂𝜂𝑖𝑖(𝒙𝒙) is the polynomial basis function (monomial terms), and 𝜂𝜂 is the number of 

nodes in the compact support domain (the supporting nodes) of the point of interest 

(referred to as set 𝑆𝑆𝑛𝑛 for each point of interest). 𝑏𝑏𝑖𝑖 is the coefficient for the 

corresponding monomial term 𝜂𝜂𝑖𝑖(𝒙𝒙), which forms vector 𝒃𝒃, as shown in Equation 3-13. 

The explicit forms of 𝒃𝒃 and 𝒑𝒑(𝒙𝒙) are as follows:   

𝒃𝒃T = [𝑏𝑏1 𝑏𝑏2   ⋯ 𝑏𝑏𝑝𝑝]                                                                                             (3-14) 

𝒑𝒑T(𝒙𝒙) = [1 𝑥𝑥1 𝑥𝑥2   𝑥𝑥12  𝑥𝑥1𝑥𝑥2  𝑥𝑥22   ⋯ ]                                                              (3-15) 
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The monomial terms of 𝒑𝒑, 𝜂𝜂𝑖𝑖(𝒙𝒙), are selected from Pascal’s triangle starting from lower 

orders to ensure completeness of the basis to a desired order, and also to satisfy the 

consistency requirement of the shape functions.  

In RPIM, radial basis functions augmented with polynomials are used to approximate 

the field function in the following way: 

𝑣𝑣(𝒙𝒙) = ∑ 𝑝𝑝𝑖𝑖𝑅𝑅𝑖𝑖(𝒙𝒙)𝑝𝑝
𝑖𝑖=1 + ∑ 𝑏𝑏𝑗𝑗𝜂𝜂𝑗𝑗(𝒙𝒙)𝑙𝑙

𝑗𝑗=1 = 𝑹𝑹T(𝒙𝒙)𝒂𝒂+ 𝒑𝒑T(𝒙𝒙)𝒃𝒃                         (3-16) 

in which 𝑅𝑅𝑖𝑖(𝒙𝒙) and 𝜂𝜂𝑗𝑗(𝒙𝒙) are the RBFs and monomial terms, respectively. 𝑝𝑝𝑖𝑖 is the 

coefficient for radial basis 𝑅𝑅𝑖𝑖(𝒙𝒙), and 𝑏𝑏𝑗𝑗 is the coefficient for the polynomial basis 

𝜂𝜂𝑗𝑗(𝒙𝒙). 𝜂𝜂 is again the number of nodes in the compact support domain of the point of 

interest (set 𝑆𝑆𝑛𝑛), and 𝑝𝑝 is the number of monomial terms. In a 2D setting, at least three 

monomial terms (𝑝𝑝 = 3) are needed to ensure the linear consistency of the 

approximation function. From Equation 3-16, it is clear that if no RBF is adopted and 

𝑝𝑝 = 𝜂𝜂 is assumed, RPIM formulation is reduced to PIM formulation. 

A number of different RBFs, such as the Multi-Quadric basis (MQ) function, the 

Gaussian function, the thin plate spline function, and the compactly supported RBF can 

be used in construction of RPIM shape functions. In this thesis, MQ is adopted resulting 

in the following definition for 𝑅𝑅𝑖𝑖(𝒙𝒙): 

𝑅𝑅𝑖𝑖(𝒙𝒙) = (𝑡𝑡𝑖𝑖2 + (𝛼𝛼𝑐𝑐𝑠𝑠𝑐𝑐)2)𝑞𝑞  ,       𝛼𝛼𝑐𝑐  ≥ 0                                                                   (3-17) 

in which 𝑡𝑡𝑖𝑖 is the distance between the point of interest 𝒙𝒙 = (𝑥𝑥1, 𝑥𝑥2) and the field node 

𝒙𝒙i = �𝑥𝑥1𝑖𝑖 , 𝑥𝑥2𝑖𝑖� (𝑡𝑡𝑖𝑖 = ��𝑥𝑥1 −  𝑥𝑥1𝑖𝑖�
2

+  �𝑥𝑥2 −  𝑥𝑥2𝑖𝑖�
2
), and  𝛼𝛼𝑐𝑐 and q are dimensionless 

parameters that control the shape of the approximation function. The shape parameters 

can be tuned to improve the performance of the numerical method. They are assumed as 
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𝛼𝛼𝑐𝑐=1 and 𝑞𝑞 = 1.03 in this study in accordance with the recommendations in [290]. 𝑠𝑠𝑐𝑐 

implies the average nodal spacing. 

The unknown coefficients 𝑝𝑝𝑖𝑖 and 𝑏𝑏𝑗𝑗 in Equation 3-16  are now determined by enforcing 

the approximation function to pass through all the nodes in the local support domain of 

the point of interest. Assuming only one degree of freedom per node for the sake of 

simplicity, 𝜂𝜂 equations are obtained as follows 

𝑣𝑣ℎ = 𝑣𝑣(𝒙𝒙ℎ) = ∑ 𝑝𝑝𝑖𝑖𝑅𝑅𝑖𝑖(𝒙𝒙ℎ)𝑝𝑝
𝑖𝑖=1 + ∑ 𝑏𝑏𝑗𝑗𝜂𝜂𝑗𝑗(𝒙𝒙ℎ)𝑙𝑙

𝑗𝑗=1     ,     ℎ = 1 , 2 ,⋯ ,𝜂𝜂                    (3-18) 

where 𝑣𝑣ℎ represents the nodal value of the independent variable at the ℎth node in the 

support domain. 𝑝𝑝 more equations are needed to uniquely quantify 𝑝𝑝𝑖𝑖 and 𝑏𝑏𝑗𝑗. The 

following extra 𝑝𝑝 constraints are enforced: 

∑ 𝑝𝑝𝑗𝑗𝜂𝜂𝑗𝑗(𝒙𝒙𝑖𝑖)
𝑝𝑝
𝑖𝑖=1 = 0       𝑗𝑗 = 1 , 2 ,⋯ , 𝑝𝑝.                                                                        (3-19) 

The matrix form of Equations 3-18 and 3-19 takes the following form: 

�𝑹𝑹0 𝑷𝑷
𝑷𝑷T 0

� �𝒂𝒂𝒃𝒃� = 𝑮𝑮 �𝒂𝒂𝒃𝒃� =  �𝒖𝒖𝟎𝟎�    �𝑮𝑮 =  �𝑹𝑹0 𝑷𝑷
𝑷𝑷T 0

��                                                      (3-20) 

where 

𝑹𝑹0 =  

⎣
⎢
⎢
⎡
𝑅𝑅1(𝑡𝑡1) 𝑅𝑅2(𝑡𝑡1) … 𝑅𝑅𝑝𝑝(𝑡𝑡1)
𝑅𝑅1(𝑡𝑡2) 𝑅𝑅2(𝑡𝑡2) … 𝑅𝑅𝑝𝑝(𝑡𝑡2)
⋮ ⋮ ⋱ ⋮

𝑅𝑅1(𝑡𝑡𝑝𝑝) 𝑅𝑅2(𝑡𝑡𝑝𝑝) … 𝑅𝑅𝑝𝑝(𝑡𝑡𝑝𝑝)⎦
⎥
⎥
⎤

(𝑝𝑝 ×𝑝𝑝)

                                                             (3-21) 

𝑷𝑷 =  �

𝑃𝑃1(𝒙𝒙1) 𝑃𝑃2(𝒙𝒙1) … 𝑃𝑃𝑙𝑙(𝒙𝒙1)
𝑃𝑃1(𝒙𝒙2) 𝑃𝑃2(𝒙𝒙2) … 𝑃𝑃𝑙𝑙(𝒙𝒙2)

⋮ ⋮ ⋱ ⋮
𝑃𝑃1(𝒙𝒙𝑝𝑝) 𝑃𝑃2(𝒙𝒙𝑝𝑝) … 𝑃𝑃𝑙𝑙(𝒙𝒙𝑝𝑝)

�

(𝑝𝑝 ×𝑙𝑙)

=  

⎣
⎢
⎢
⎢
⎢
⎡
1 𝑥𝑥11 𝑥𝑥21 … 𝑃𝑃𝑙𝑙(𝒙𝒙1)
1 𝑥𝑥12 𝑥𝑥22 … 𝑃𝑃𝑙𝑙(𝒙𝒙2)
1 𝑥𝑥13 𝑥𝑥23 … 𝑃𝑃𝑙𝑙(𝒙𝒙3)
⋮ ⋮ ⋱ ⋮
1 𝑥𝑥1𝑝𝑝 𝑥𝑥2𝑝𝑝 … 𝑃𝑃𝑙𝑙(𝒙𝒙𝑝𝑝)⎦

⎥
⎥
⎥
⎥
⎤

(𝑝𝑝 ×𝑙𝑙)

  (3-22) 



Chapter 3- Application of cell-based smoothed point interpolation methods in the flow-
deformation analysis of saturated porous media 

56 
 

𝑮𝑮 is the combined moment matrix and 𝒗𝒗 is the vector of nodal values with the following 

explicit form 

𝒗𝒗T =  [𝑝𝑝1 𝑝𝑝2 𝑝𝑝3 … 𝑝𝑝𝑝𝑝]                                                                                  (3-23)  

Using Equation 3-20, the approximation function can be presented as follows  

𝑣𝑣(𝒙𝒙) = 𝑹𝑹T(𝒙𝒙)𝒂𝒂+  𝒑𝒑T(𝒙𝒙)𝒃𝒃 = {𝑹𝑹T(𝒙𝒙)   𝒑𝒑T(𝒙𝒙)} �𝒂𝒂𝒃𝒃� = {𝑹𝑹T(𝒙𝒙)    𝒑𝒑T(𝒙𝒙)}𝑮𝑮−1 �𝒖𝒖𝟎𝟎�    (3-24) 

Finally, the RPIM shape functions, 𝜙𝜙𝑖𝑖(𝒙𝒙), can be obtained from Equation 3-24 as 

𝜙𝜙𝑖𝑖(𝒙𝒙) =  ∑ 𝑅𝑅𝑗𝑗(𝒙𝒙)𝐺𝐺𝑗𝑗,𝑖𝑖
−1 + 𝑝𝑝

𝑗𝑗=1 ∑ 𝜂𝜂𝑗𝑗(𝒙𝒙)𝐺𝐺𝑗𝑗+𝑝𝑝,𝑖𝑖
−1𝑙𝑙

𝑗𝑗=1                                                           (3-25) 

in which  𝐺𝐺𝑗𝑗,𝑖𝑖
−1 stands for the components of 𝑮𝑮−1. Invertibility of 𝑮𝑮 matrix can be 

guaranteed in all practicalcases by adopting appropriate node selection schemes for 

determination of the supporting nodes at each point of interest and also by imposing 𝑝𝑝 <

𝜂𝜂 [90]. 

The shape functions constructed using PIM or RPIM possess the Kronecker delta 

function property, which results in an easy implementation of the essential boundary 

conditions. The shape functions also satisfy the partition of unity (PU) condition at each 

point of interest, 𝒙𝒙, which is expressed as ∑ 𝜙𝜙𝑖𝑖(𝒙𝒙) = 1𝑝𝑝
𝑖𝑖=1 . When the point of interest 

moves across the problem domain, the nodes in the compact support domain of the 

point of interest are updated accordingly. This involves sudden inclusion or exclusion of 

new nodes in the support domain which results in the approximation function created 

using RPIM/PIM shape functions being discontinues across the problem domain. This 

issue will be thoroughly addressed later in the study. 
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3.4.2 Node selection schemes 

In the CSPIM and CSRPIM, the cells of the triangular background mesh are used for 

the selection of the supporting nodes at each point of interest within the problem 

domain. A set of supporting node selection schemes, known as T-schemes, has been 

proposed to provide automatic node selection algorithms using the background mesh 

that ensure the invertibility of the combined moment matrix. A salient feature of the T-

schemes is that supporting domains could be automatically and efficiently constructed 

without any manual operation. The node selection scheme must also be compatible with 

the smoothing domains selected to satisfy the no sharing rule. This rule stipulates that 

the selection of the smoothing domains and the T-scheme must be in such a way to 

ensure that boundary of the smoothing domains do not share any line segment on which 

the assumed displacement field is discontinues [291]. A good overview of the different 

node selection schemes permissible for CSPIM and CSRPIM and their properties can be 

found in [20]. In this chapter and other relevant chapters, two of the node selection 

schemes developed for CSPIM and CSRPIM, referred to as T4 and T2L, are adopted. 

T4 can be used in both CSPIM and CSRPIM, whereas T2L works only with CSRPIM. 

The schematic representation of the T4 and T2L node selection schemes is depicted in 

Figure 3.1. In all T-schemes, for any point of interest on the boundary of the problem 

domain, linear interpolation using the two boundary points adjacent to the point of 

interest is always used [20]. This is needed so that the numerical scheme can  pass the 

standard patch test [4]. 

As shown in Figure 3.1, for a point of interest (quadrature point) inside the domain, the 

T4 scheme selects four nodes of the two cells sharing the edge hosting the point of 

interest, as opposed to the T2L shceme which selects two layers of nodes around the 

point of interest. The first layer is the same as those nodes selected in the T4 scheme, 
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and the second layer are comprised of the nodes directly connected to the first-layer 

nodes. 

 

 

(a) 

 

(b) 

Figure 3.1.  T-schemes used in this study to select the supporting nodes, (a) T4 scheme; (b) T2L scheme. 

 

3.5 G Space theory and smoothing operation 

3.5.1 G space theory 

A G space containing a set of discrete functions has recently been proposed by Liu [13, 

14] and Liu and Zhang [20]. This space was introduced to include not only piecewise 

continuous functions, but also some discontinuous functions which allows a wider range 

of numerical techniques to be utilised for the solution of the equations of interest. The 

inclusion of some discontinuous functions in the G space allows the use of the 

smoothing gradient technique in the numerical procedure which has some attractive 

features discussed later throughout this thesis.  The 𝐺𝐺ℎ1  that is used throughout this 

thesis can then be expressed as follows: 
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𝐺𝐺ℎ1(Ω) = �
𝑣𝑣|𝑣𝑣 (𝒙𝒙) =  ∑ 𝜙𝜙𝑛𝑛𝑁𝑁

𝑛𝑛=1 (𝒙𝒙)𝑠𝑠𝑛𝑛 = 𝝓𝝓(𝒙𝒙)𝒆𝒆,𝒆𝒆 ϵ 𝑹𝑹𝑁𝑁                              
𝑣𝑣 𝜖𝜖 𝐿𝐿2(Ω) ,                                                                                              
∑ (∫ 𝑣𝑣(𝑆𝑆).

Γ𝑘𝑘
𝑠𝑠 𝑛𝑛𝑖𝑖  𝑠𝑠𝑠𝑠)2 > 0 ⇔ 𝑣𝑣 ≠∈ ℝ; i = 1, … , d𝑁𝑁𝑠𝑠

𝑘𝑘=1                    
            (3-26) 

in which 𝑣𝑣 is the field variable of interest, approximated by a set of shape functions 𝜙𝜙𝑛𝑛 

in terms of the yet unknown nodal values of the variable of interest 𝑠𝑠𝑛𝑛, globally 

collected in 𝝓𝝓(𝒙𝒙) and 𝒆𝒆 vectors, respectively. 𝑁𝑁 is the number of supporting nodes; 𝑁𝑁𝑠𝑠 

denotes the number of boundary segments of the domain of interest; 𝑠𝑠𝑠𝑠 is the length of 

the 𝑘𝑘𝑡𝑡ℎ boundary segment of the boundary; Ω is the domain of interest, ℝ symbolises 

the functional space, of which 𝜙𝜙𝑛𝑛 is the basis. 

The major difference between the 𝐺𝐺ℎ1 space and the 𝐻𝐻ℎ1 space is that the 𝐻𝐻ℎ1 space 

necessitates that the function as well as its first gradient be square integrable, while for 

the 𝐺𝐺ℎ1 space, only the function itself must be square integrable. Therefore, the 

functional requirement is now further weakened in addition to the already weakened 

requirement for functions in 𝐻𝐻ℎ1 space. Hence, the 𝐺𝐺ℎ1 space can be referred to as a space 

of a set of functions, each of which fulfils the weakened weak (W2) requirements on 

continuity. In 𝐻𝐻ℎ1 space, the continuity of the function is ensured by inducing the 

bounded condition upon the first derivatives of the function. Therefore, in numerical 

techniques that are cast in 𝐻𝐻ℎ1 space, like the FEM for example, the nodal shape 

functions need to be continuous over the problem domain. Thanks to the Poincare-

Friedrichs’ inequality, numerical stability is automatically guaranteed when 

approximation functions belong to 𝐻𝐻ℎ1 space, provided that the desired degree of 

smoothness is satisfied. However, in 𝐺𝐺ℎ1 space, the bounded condition is only enforced 

for the function. It can be shown that the numerical stability in the 𝐺𝐺ℎ1 space is 

guaranteed by proper creation of sufficient smoothing domains [92]. 
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A function in the 𝐺𝐺ℎ1 space is also a member of the L2 space, therefore, 𝐺𝐺ℎ1 space is 

indeed a subspace of L2 space. Any function interpolated by the  FEM shape functions 

fulfils the aforementioned three conditions for the inclusion in 𝐺𝐺ℎ1 space, and therefore 

is a member of the 𝐺𝐺ℎ1 space with the fulfilment of the minimum number of constructed 

smoothing domains. The proof is presented in [89]. Therefore, all the conjectures 

proven for functions in a 𝐺𝐺ℎ1 space also remain valid for those in 𝐻𝐻ℎ1. 

 

3.5.2 Smoothing gradient operation 

In SPIM/SRPIM, the gradient of the displacement field is approximated over smoothing 

domain by an integral representation, which is given by:  

𝜵𝜵�𝒖𝒖 =  ∫ 𝜵𝜵𝒖𝒖(𝜉𝜉)Ω 𝑊𝑊(𝒙𝒙 − 𝜉𝜉) 𝑠𝑠𝜉𝜉 ,                                                                               (3-27) 

in which 𝑊𝑊(𝒙𝒙 − 𝜉𝜉) is a pre-described smoothing function and 𝜵𝜵�𝒖𝒖 represents the 

smoothed form of the gradient of the displacement field. 𝒖𝒖 is assumed to be square 

integrable, in which Ω  is the area of any taken arbitrary domain in a two-dimensional 

setting in the sense of Lebesgue integration that allows occasional discontinuity at finite 

points within the domain of interest. 𝜉𝜉 implies the dependency of the pre-described 

smoothing function and the gradient of the displacement field, together commonly 

known as Convolution integral. For simplicity, the Heaviside function is conventionally 

adopted as the smoothing function:  

𝑊𝑊(𝒙𝒙 − 𝜉𝜉) = �
1
𝐴𝐴𝑘𝑘
𝑠𝑠          𝜉𝜉𝜖𝜖 Ω 𝒙𝒙

0           𝜉𝜉 ∉ Ω 𝒙𝒙

 ,                                                                               (3-28) 
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where Ω 𝒙𝒙  denotes the field domain accompanied by its boundary associated with the 

point of interest 𝒙𝒙 𝜖𝜖 Ω and 𝐴𝐴𝑘𝑘𝑠𝑠  is the area of the corresponding smoothing domain Ω𝑘𝑘𝑠𝑠 . 

Knowing the displacement field, the smoothed gradient of the displacement field can be 

obtained for any smoothing domain using Equations 3-27 and 3-28, and the Divergence 

theorem, resulting in: 

𝜺𝜺� = 1
𝐴𝐴𝑘𝑘
𝑠𝑠 ∫ 𝜵𝜵𝒖𝒖(𝒙𝒙)𝑠𝑠Ω = 

Ω
1
𝐴𝐴𝑘𝑘
𝑠𝑠 ∫ 𝑳𝑳𝑛𝑛𝒖𝒖(𝒙𝒙)𝑠𝑠Γ 

Γ  ,                                                                    (3-29) 

where 𝑳𝑳𝑛𝑛 stands for the matrix composed of the components of the unit outward normal 

vector, with the arrangement of entries as: 

𝑳𝑳𝑛𝑛 = �
𝑛𝑛𝑥𝑥1 0
0 𝑛𝑛𝑥𝑥2
𝑛𝑛𝑥𝑥2 𝑛𝑛𝑥𝑥1

�  .                                                                                                    (3-30) 

 

3.5.3 Cell-based smoothed strains 

To overcome the problem of discontinuity of the approximation function over the 

problem domain, smoothed strains are utalised in CSPIM and CSRPIM in place of 

compatible strains. The smoothed strains are obtained using the generalised smoothing 

operation (Equation 3-29). To this end, the problem domain, Ω, is divided into a number 

of linearly independent smoothing domains, Ω𝑘𝑘𝑠𝑠 , which satisfy the following conditions:  

Ω = � Ω𝑘𝑘𝑠𝑠
𝑁𝑁𝑆𝑆𝑆𝑆
𝑘𝑘=1                                                                                                              (3-31) 

Ω𝑖𝑖𝑠𝑠 ∩ Ω𝑗𝑗𝑠𝑠 = ∅, 𝑠𝑠 ≠ 𝑗𝑗                                                                                                     (3-32) 

where Ω𝑘𝑘𝑠𝑠  (𝑘𝑘 = 1,⋯ ,𝑁𝑁𝑆𝑆𝑆𝑆) is the 𝑘𝑘th smoothing domain, and 𝑁𝑁𝑆𝑆𝑆𝑆 is the total number of 

smoothing domains in the problem domain. As mentioned before, in CSPIM and 
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CSRPIM, the cells of the background mesh are directly used as the smoothing domains 

as depicted in Figure 3.2.  

 

 

 

Figure 3.2. The schematic representation of smoothing domains in CSPIM and CSRPIM methods. 

 

The smoothed strain can be expressed in terms of the nodal displacement values for 

each smoothing domain in the following familiar format:  

𝜺𝜺�(𝑘𝑘) = 𝑩𝑩�1 𝒖𝒖                                                                                                                (3-33) 

where 𝑩𝑩�1 is the smoothed strain-displacement matrix for each smoothing domain, 

which is obtained by the summation of the smoothed strain-displacement matrices 

computed at the quadrature points on the edges of the smoothing domains, as follows 

𝜺𝜺�(𝑘𝑘) = ∑ 𝑩𝑩�1𝑖𝑖𝒖𝒖𝑖𝑖
𝑞𝑞
𝑖𝑖=1                                                i ∈ 𝑆𝑆𝑠𝑠                                              (3-34) 

in which 𝑆𝑆𝑠𝑠 is the set of 𝑞𝑞 support nodes which includes all the nodes involved in the 

interpolation of quadrature points located on all segments of boundary Γ𝑘𝑘𝑠𝑠 for each 
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smoothing domain Ω𝑘𝑘𝑠𝑠 . 𝑆𝑆𝑛𝑛 which is defined earlier is always a subset of 𝑆𝑆𝑠𝑠 at each point 

of interest (quadrature point). An illustration of these two sets based on a T4 node 

selection scheme for an arbitrary quadrature point of interest is shown in Figure 3.3. 

The smoothed matrices 𝑩𝑩�1𝐼𝐼 and 𝑩𝑩�1 are in fact of the following forms, respectively: 

𝑩𝑩�1𝐼𝐼 = �
𝑏𝑏�𝐼𝐼𝑥𝑥1 0

0 𝑏𝑏�𝐼𝐼𝑥𝑥2
𝑏𝑏�𝐼𝐼𝑥𝑥2 𝑏𝑏�𝐼𝐼𝑥𝑥1

�                                                                                                    (3-35) 

𝑩𝑩�1 =  �
𝑏𝑏�1𝑥𝑥1 0

0 𝑏𝑏�1𝑥𝑥2
𝑏𝑏�1𝑥𝑥2 𝑏𝑏�1𝑥𝑥1

⋯
𝑏𝑏�𝑞𝑞𝑥𝑥1 0

0 𝑏𝑏�𝑞𝑞𝑥𝑥2
𝑏𝑏�𝑞𝑞𝑥𝑥2 𝑏𝑏�𝑞𝑞𝑥𝑥1

�

3×2𝑞𝑞

                                                              (3-36) 

in which the components of  𝑩𝑩�1 are obtained by summation over all the quadrature 

points along the segments of the boundary of each smoothing domain, 

𝑏𝑏�𝐼𝐼𝑙𝑙 = 1
2𝐴𝐴𝑘𝑘

𝑠𝑠 ∑ �𝐿𝐿𝑚𝑚𝑘𝑘 ∑ 𝑤𝑤𝑛𝑛 𝜙𝜙𝐼𝐼(𝒙𝒙𝑚𝑚𝑛𝑛)  𝑛𝑛𝑙𝑙(𝒙𝒙𝑚𝑚𝑛𝑛)  𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔
n=1 �  𝑁𝑁𝑠𝑠𝑠𝑠𝑔𝑔

m=1   (𝑝𝑝 = 𝑥𝑥1, 𝑥𝑥2)                        (3-37) 

where 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠 is the number of line segments of the boundary Γ𝑘𝑘𝑠𝑠, 𝐿𝐿𝑚𝑚𝑘𝑘  is the length of the 

𝑝𝑝th segment of Γ𝑘𝑘𝑠𝑠, 𝑛𝑛𝑙𝑙 represents the component of the unit outward normal to the 

corresponding segment of Γ𝑘𝑘𝑠𝑠 and 𝑁𝑁𝑠𝑠𝑔𝑔𝑢𝑢 is the number of quadrature points used in each 

segment of Γ𝑘𝑘𝑠𝑠, which is taken two for both CSPIM and CSRPIM in this study. 𝒙𝒙𝑚𝑚𝑛𝑛 is 

the 𝑛𝑛th quadrature point of the 𝑝𝑝th segment of Γ𝑘𝑘𝑠𝑠, and 𝑤𝑤𝑛𝑛 is the Gauss integration 

weight of the corresponding quadrature point. 𝜙𝜙𝑖𝑖(𝒙𝒙𝑚𝑚𝑛𝑛) is the shape function value for 

node 𝑠𝑠 ∈ 𝑆𝑆𝑠𝑠 at the point of interest 𝒙𝒙𝑚𝑚𝑛𝑛. If the current quadrature point 𝑠𝑠 ∉ 𝑆𝑆𝑛𝑛, 

then 𝜙𝜙𝑖𝑖(𝒙𝒙𝑚𝑚𝑛𝑛) = 0. 
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Figure 3.3. A schematic representation of 𝑆𝑆𝑛𝑛 and 𝑆𝑆𝑠𝑠 for an arbitrary quadrature point of interest assuming 

a T4 node selection scheme. 

 

Note that the formulation of the smoothed strains does not contain shape function 

derivatives. Therefore, the discontinuity of the approximation function over the problem 

domain does not pose any problem in calculation of the smoothed strains. Moreover, 

this implies that compared to the standard weak formulation, the consistency 

requirement to shape functions is further reduced which is why the formulation is called 

a weakened weak (W2) formulation [15, 16].  

 

3.6 Numerical model 

In this section, the Generalised Smoothed Galerkin (GS Galerkin) approach is used for 

spatial discretisation of the governing equations to obtain the weakend weak forms of 

the coupled flow-deformation equations. The weakend weak forms are then discretised 

in time to yield the fully discretised form of the governing equations. The unknown 
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variables are presented in terms of their nodal values with the use of PIM/RPIM shape 

functions. The unknown variables are solid phase displacements and excess pore fluid 

pressure in the domain.  

3.6.1 Spatial discretisation 

Applying the GS Galerkin method to governing Equations 3-1 and 3-2 yields the 

spatially discretised forms of the governing equations for saturated porous media in the 

following form [292]: 

𝑲𝑲�𝑼𝑼 −  𝜂𝜂𝑪𝑪�𝑷𝑷 = 𝑭𝑭                                                                                                        (3-38) 

𝜂𝜂𝑪𝑪�T�̇�𝑼 + 𝑯𝑯�𝑷𝑷 + 𝑝𝑝𝑓𝑓𝑴𝑴�̇�𝑷 = 𝑻𝑻                                                                                        (3-39) 

where 𝑼𝑼 is the global nodal displacement vector, 𝑷𝑷 is the nodal excess pore fluid 

pressure values, 𝑭𝑭 is the vector of nodal forces, 𝑻𝑻 is the vector of nodal fluxes, and 𝑲𝑲� , 𝑪𝑪� 

, 𝑯𝑯�  and 𝑴𝑴 are the global property matrices. These matrices are derived from assembly 

of the corresponding local property matrices obtained from each smoothing domain as 

follows:  

𝑲𝑲�𝑘𝑘𝑠𝑠 =  ∫ 𝑩𝑩�1T𝑫𝑫𝑩𝑩�1𝑠𝑠Ω  
Ω𝑘𝑘
𝑠𝑠                                                                                                 (3-40) 

𝑪𝑪�𝑘𝑘𝑠𝑠 =  ∫ 𝑩𝑩�1T𝜹𝜹𝑵𝑵𝑝𝑝𝑠𝑠Ω  
Ω𝑘𝑘
𝑠𝑠                                                                                                  (3-41) 

𝑯𝑯�𝑘𝑘𝑠𝑠 =  ∫
𝒌𝒌𝑓𝑓
𝜇𝜇𝑓𝑓

 𝑩𝑩�2T𝑩𝑩�2𝑠𝑠Ω  
Ω𝑘𝑘
𝑠𝑠                                                                                               (3-42) 

𝑴𝑴𝑘𝑘 =  ∫Ω𝑘𝑘𝑠𝑠𝑵𝑵
𝑝𝑝T𝑵𝑵𝑝𝑝𝑠𝑠Ω                                                                                                (3-43) 

𝑻𝑻𝑘𝑘 = ∫Γ𝑘𝑘𝑠𝑠𝑵𝑵
𝑝𝑝T𝑞𝑞�𝑠𝑠Γ                                                                                                      (3-44) 
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𝑭𝑭𝑘𝑘 =  ∫Ω𝑘𝑘𝑠𝑠𝑵𝑵
uT𝜌𝜌𝐠𝐠𝑠𝑠Ω + ∫Γ𝑘𝑘𝑠𝑠𝑵𝑵

uT�̅�𝒕dΓ                                                                           (3-45) 

The entries of 𝑲𝑲�  are calculated as follows: 

𝑲𝑲�  = ∑ 𝑲𝑲�𝑘𝑘𝑠𝑠
𝑁𝑁𝑆𝑆𝑆𝑆
𝑘𝑘=1 = ∑ 𝑩𝑩�1T𝑫𝑫𝑩𝑩�1𝐴𝐴𝑘𝑘𝑠𝑠

𝑁𝑁𝑆𝑆𝑆𝑆
𝑘𝑘=1                                                                              (3-46) 

in which summation indicates the conventional assembly procedures to construct the 

global stiffness matrix of the system. Equation 3-46 shows that no transformation to the 

natural coordinates is required in the CSPIM/CSRPIM because the smoothed strain-

displacement matrix (𝑩𝑩�1) is constant over the corresponding smoothing domain. 

For the fluid phase, the gradient of pore fluid pressure is constant over each smoothing 

domain. Applying the smoothing gradient operator, i.e. Equation 3-29, to the pore fluid 

pressure gradient, we have  

𝜵𝜵�𝑃𝑃 = 1
𝐴𝐴𝑘𝑘
𝑠𝑠 ∫ 𝜵𝜵𝜂𝜂(𝒙𝒙)𝑠𝑠Ω 

Ω𝑘𝑘
𝑠𝑠 = ∑ 𝑩𝑩�2𝑖𝑖𝜂𝜂𝑖𝑖

𝑞𝑞
𝑖𝑖=1 = 𝑩𝑩�2𝒑𝒑                                                            (3-47) 

in which 𝜵𝜵�𝑃𝑃 is the smoothed gradient of the pore fluid pressure change, 𝜂𝜂𝑖𝑖 is the pore 

fluid pressure at node 𝑠𝑠, and 𝒑𝒑 is the vector of pore fluid pressures for the supporting 

nodes of the current smoothing domain (set 𝑆𝑆𝑠𝑠). 𝑩𝑩�2 takes the following form at each 

point of interest: 

𝑩𝑩�2 = ∑ 𝑩𝑩�2𝑖𝑖𝑖𝑖∈𝑆𝑆𝑠𝑠 = ∑ �
𝑏𝑏�𝑖𝑖𝑥𝑥1
𝑏𝑏�𝑖𝑖𝑥𝑥2

�𝑖𝑖∈𝑆𝑆𝑠𝑠 = �
𝑏𝑏�1𝑥𝑥1
𝑏𝑏�1𝑥𝑥2

⋯
𝑏𝑏�𝑞𝑞𝑥𝑥1
𝑏𝑏�𝑞𝑞𝑥𝑥2

�
2×𝑞𝑞

                                           (3-48) 

As can be seen, the entries of 𝑩𝑩�2 are the same as those of 𝑩𝑩�1, so 𝑩𝑩�2 is readily available 

at no extra computational cost. In fact, by application of the smoothing technique, the 

integration of the pore fluid pressure gradient over the domain is converted to the sum 

of integrations along the boundaries of the smoothing domains. The smoothed fluid 
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flow matrix, 𝑯𝑯� , can then be evaluated by summation (assembly) of the local smoothed 

fluid flow matrixes of all the smoothing domains:  

𝑯𝑯� = ∑ 𝑯𝑯�𝑘𝑘𝑠𝑠
𝑁𝑁SD
𝑘𝑘=1 = ∑ 𝒌𝒌𝑓𝑓

𝜇𝜇𝑓𝑓
𝑁𝑁SD
𝑘𝑘=1  𝑩𝑩�2T𝑩𝑩�2𝐴𝐴𝑘𝑘𝑠𝑠                                                                             (3-49) 

The smoothed coupling matrix is obtained by assembly of the coupling matrices of 

smoothing domains in the form of  

𝑪𝑪� = ∑ 𝑪𝑪�𝑘𝑘𝑠𝑠
𝑁𝑁SD
𝑘𝑘=1 = ∑ ∫ 𝑩𝑩�1T𝜹𝜹𝑵𝑵𝑝𝑝𝑠𝑠Ω  

Ω𝑘𝑘
𝑠𝑠

𝑁𝑁SD
𝑘𝑘=1                                                                         (3-50) 

in which 𝑵𝑵𝑝𝑝 is the shape function matrix for pore fluid pressure at each point of interest 

defined as (for set 𝑆𝑆𝑠𝑠) 

𝑵𝑵𝑝𝑝 = [𝜙𝜙1(𝒙𝒙) 𝜙𝜙2(𝒙𝒙) ⋯ 𝜙𝜙𝑞𝑞(𝒙𝒙)]1×𝑞𝑞                                                             (3-51) 

According to Equation 3-41, the integrand in the definition of 𝑪𝑪�𝑘𝑘𝑠𝑠  contains the shape 

function matrix for pore fluid pressure which is not constant over the smoothing 

domain. Therefore, unlike the calculations of 𝑲𝑲�𝑘𝑘𝑠𝑠  and 𝑯𝑯�𝑘𝑘𝑠𝑠 , the integration in Equation 3-

50 cannot be readily evaluated for each smoothing domain. A simple approach is 

adopted in this study to overcome this problem tocalculate 𝑪𝑪�𝑘𝑘𝑠𝑠  and finally 𝑪𝑪� in CSPIM 

and CSRPIM. Knowing that 𝑩𝑩�1 is constant over each smoothing domain, Equation 3-50 

can be written in the following form,  

𝑪𝑪� = ∑ �𝑩𝑩�1T𝜹𝜹 �∫ 𝑵𝑵𝑝𝑝𝑠𝑠Ω  
Ω𝑘𝑘
𝑠𝑠 ��𝑁𝑁SD

𝑘𝑘=1                                                                                  (3-52) 

The integration ∫ 𝑵𝑵𝑝𝑝𝑠𝑠Ω  
Ω𝑘𝑘
𝑠𝑠  in Equation 3-52 needs to be evaluated over each smoothing 

domain with 𝜹𝜹 = [1 1 0]T.This can be done with the standard Gauss integration 

method over the triangular smoothing domain. The number of quadrature points per 
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smoothing domain depends on the degree of nonlinearity of the shape functions, as well 

as the accuracy required. In this chapter, three quadrature points per smoothing domain 

are adopted, but any other selection can be equally used. If the total number of 

quadrature points per smoothing domain is denoted by 𝑔𝑔, then the coupling matrix can 

be evaluated as follows: 

𝑪𝑪� = ∑ � 𝑩𝑩�1T𝜹𝜹�∑ 2𝐴𝐴𝑘𝑘𝑠𝑠𝑤𝑤𝑠𝑠𝑵𝑵𝑝𝑝𝑠𝑠
𝑗𝑗=1 ��𝑁𝑁𝑆𝑆𝑆𝑆

𝑘𝑘=1                                                                          (3-53) 

in which 𝑤𝑤𝑠𝑠 is the weight corresponding to the quadrature of interest. Figure 3.4 

schematically shows the locations of the quadrature points used for the computation of 

the coupling matrix for each smoothing domain. 

 

Figure 3.4.  Schematic locations of  the quadrature points used in this study for  calulation of the shape 

functions. 

 

In a similar fashion, the other global matrices that do not include derivatives of the 

shape functions (𝑴𝑴, 𝑻𝑻 and 𝑭𝑭) are calculated by assembly of the local matrixes (𝑴𝑴𝑘𝑘, 𝑻𝑻𝑘𝑘 

and 𝑭𝑭𝑘𝑘) obtained for each smoothing domain similar to the standard practice in the 

FEM. The shape function matrix 𝑵𝑵𝑢𝑢 at each point of interest in a smoothing domain is 
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defined in the following form to make use of the values already computed for 𝑵𝑵𝑝𝑝 and 

therefore to keep the computational cost at minimum, 

𝑵𝑵𝑢𝑢  = �𝜙𝜙1
(𝒙𝒙) 0
0 𝜙𝜙1(𝒙𝒙) ⋯

𝜙𝜙𝑞𝑞(𝒙𝒙) 0
0 𝜙𝜙𝑞𝑞(𝒙𝒙)�

2×2𝑞𝑞
                                                  (3-54) 

in Equation 3-44, 𝑞𝑞 � is the fluid flux across the boundary. 𝜌𝜌𝐠𝐠 and �̅�𝒕 in the definition of 

𝑭𝑭𝑘𝑘 in Equation 3-45 are the body force vector and the boundary traction, respectively.  

 

3.6.2 Temporal discretisation  

Time discretisation is performed with the use of the three-point time discretisation 

scheme with variable time steps [143]. This method is unconditionally stable, has 

second-order accuracy and avoids spurious oscillation on the numerical results. In this 

method, the calculation starts with an initial time step (∆𝑡𝑡0), and then each subsequent 

time step grows by a constant growth factor of 𝛼𝛼 (𝛼𝛼 > 1). The time derivatives of an 

arbitrary function 𝑠𝑠 at time 𝑡𝑡 + 𝛼𝛼∆𝑡𝑡 can then be estimated in terms of the function 

values at times 𝑡𝑡 + 𝛼𝛼∆𝑡𝑡, 𝑡𝑡 and 𝑡𝑡 − ∆𝑡𝑡, 

𝑠𝑠̇𝑡𝑡+𝛼𝛼∆𝑡𝑡 ≈  𝐴𝐴𝑓𝑓
𝑡𝑡+𝛼𝛼∆𝑡𝑡− 𝐵𝐵𝑓𝑓𝑡𝑡+ 𝐶𝐶𝑓𝑓𝑡𝑡−∆𝑡𝑡

∆𝑡𝑡
                                                                                    (3-55) 

where 𝐴𝐴, 𝐵𝐵 and 𝐶𝐶 are the constant coefficients obtained by the following equations: 

𝐴𝐴 =  2𝛼𝛼+1
𝛼𝛼(𝛼𝛼+1)

,     𝐵𝐵 =  𝛼𝛼+1
𝛼𝛼

,     𝐶𝐶 =  1
𝐵𝐵
                                                                        (3-56) 

Applying the three-point time discretisation scheme to Equations 3-38 and 3-39 over the 

time increment (1 + 𝛼𝛼)∆𝑡𝑡 (from 𝑡𝑡 − ∆𝑡𝑡 to 𝑡𝑡 + 𝛼𝛼∆𝑡𝑡) gives 

𝑲𝑲�𝑼𝑼𝑡𝑡+𝛼𝛼∆𝑡𝑡 − 𝜂𝜂𝑪𝑪�𝑷𝑷𝑡𝑡+𝛼𝛼∆𝑡𝑡 = 𝑭𝑭𝑡𝑡+𝛼𝛼∆𝑡𝑡                                                                        (3-57) 
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𝐴𝐴𝜂𝜂𝑪𝑪�T𝑼𝑼𝑡𝑡+𝛼𝛼∆𝑡𝑡 +  �∆𝑡𝑡𝑯𝑯� + 𝐴𝐴𝑝𝑝𝑓𝑓𝑴𝑴�𝑷𝑷𝑡𝑡+𝛼𝛼∆𝑡𝑡 =  ∆𝑡𝑡𝑻𝑻𝑡𝑡+𝛼𝛼∆𝑡𝑡 +  𝐵𝐵𝜂𝜂𝑪𝑪�T𝑼𝑼𝑡𝑡 −  𝐶𝐶𝜂𝜂𝑪𝑪�T𝑼𝑼𝑡𝑡−∆𝑡𝑡 +

 𝐵𝐵𝑝𝑝𝑓𝑓𝑴𝑴𝑷𝑷𝑡𝑡 −  𝐶𝐶𝑝𝑝𝑓𝑓𝑴𝑴𝑷𝑷𝑡𝑡−𝛼𝛼∆𝑡𝑡                                                                                         (3-58) 

The overall matrix equation of the system is therefore expressed as 

𝑬𝑬𝑬𝑬 = 𝒀𝒀                                                                                                                     (3-59) 

𝑬𝑬 =  �
𝐴𝐴𝑲𝑲�2𝑁𝑁×2𝑁𝑁 −𝐴𝐴𝜂𝜂𝑪𝑪�2𝑁𝑁×𝑁𝑁

𝐴𝐴𝜂𝜂𝑪𝑪�T𝑁𝑁×2𝑁𝑁 �∆𝑡𝑡𝑯𝑯� + 𝐴𝐴𝑝𝑝𝑓𝑓𝑴𝑴�𝑁𝑁×𝑁𝑁

�
3𝑁𝑁×3𝑁𝑁

                                                     (3-60)  

𝑬𝑬 =  �𝑼𝑼
𝑡𝑡+𝛼𝛼∆𝑡𝑡

2𝑁𝑁×1
𝑷𝑷𝑡𝑡+𝛼𝛼∆𝑡𝑡𝑁𝑁×1

�
3𝑁𝑁×1

                                                                                           (3-61) 

𝒀𝒀 =  �
 𝐴𝐴(𝑭𝑭𝑡𝑡+𝛼𝛼∆𝑡𝑡)2𝑁𝑁×1

(∆𝑡𝑡𝑻𝑻𝑡𝑡+𝛼𝛼∆𝑡𝑡 +  𝐵𝐵𝜂𝜂𝑪𝑪�T𝑼𝑼𝑡𝑡 −  𝐶𝐶𝜂𝜂𝑪𝑪�T𝑼𝑼𝑡𝑡−∆𝑡𝑡 +  𝐵𝐵𝑝𝑝𝑓𝑓𝑴𝑴𝑷𝑷𝑡𝑡 −  𝐶𝐶𝑝𝑝𝑓𝑓𝑴𝑴𝑷𝑷𝑡𝑡−𝛼𝛼∆𝑡𝑡)𝑁𝑁 ×1
�
3𝑁𝑁×1

 

(3-62) 

where 𝑁𝑁 is the total number of field nodes. The three point time discretisation can be 

used only from the second time step onward. The first time step should be solved with a 

conventional two-point finite difference scheme. The backward implicit scheme is used 

for this purpose in this study. 

 

3.7 Numerical examples     

The formulation presented above is adopted as the base framework for the subsequent 

developments in this study. Therefore, in this section, the presented formulation is 

thoroughly verified, and the performances of different cell-based smoothed MMs are 

investigated for coupled flow-deformation problems in saturated media. A set of 
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benchmark examples is studied and the numerical results are compared to analytical or 

reference solutions. For the sake of comparison, the numerical results of PIM/RPIM 

with a T4 node selection scheme, and the standard linear FEM using the same 

background mesh are also provided for all presented problems. For the sake of 

comparision, the identical u/p formulation is adopted to the FEM. The constant strain 

triangular elements have been used throughout this thesis whenever the FEM analysis is 

required to compare the adequacy and efficiency of the FEM with CSPIM/CSRPIM as 

these methods employ triangular background mesh associated with three nodes to 

perform node selection schemes. 

 

3.7.1 One-dimensional consolidation 

The benchmark problem of Terzaghi’s one-dimensional consolidation is first analysed 

as shown in Figure 3.5, in association with its boundary conditions and material 

properties. Figure 3.5 also shows the background mesh constituting cell-based 

smoothing domains. The height and width of the domain are assumed to  ℎ = 30 m and 

𝑝𝑝 = 1 𝑝𝑝, respectively. 𝑤𝑤 = 1 kPa  is assumed to suddenly apply on the top edge of the 

model. The analytical solution for this problem is available in [161]. 

This problem is studied here using all the smoothed MMs presented in this study. The 

same background triangular mesh (presented in Figure 3.5) is used for all cases. The 

initial dimensionless time step adopted was ∆𝑡𝑡𝑆𝑆 = 1.2 sec , with the time step growth 

factor taken as 𝛼𝛼 = 1.3 . The numerical results are presented in terms of dimensionless 

surface settlement,  𝑝𝑝 𝑝𝑝𝑢𝑢𝑙𝑙𝑡𝑡⁄  (𝑝𝑝𝑢𝑢𝑙𝑙𝑡𝑡 is the final settlement obtained using the analytical 

solution), and dimensionless excess pore pressure, 𝜂𝜂𝑓𝑓/𝑤𝑤, with respect to dimensionless 
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time, 𝑡𝑡𝑑𝑑 = 𝐸𝐸𝑘𝑘𝑓𝑓(1−𝜈𝜈)

𝜇𝜇(1+𝜈𝜈)(1−2𝜈𝜈)ℎ2
𝑡𝑡. The results of the numerical analysis are shown in Figure 

3.6 for three field nodes whose coordinates are presented in Figure 3.5. As can be seen 

in Figure 3.6, there are excellent agreements between the results of the proposed 

methods and the analytical solution in terms of the surface displacement and excess 

pore fluid pressure. 

 

Figure 3.5. Schematic representation of the soil column and its associated smoothing domains for 

modelling one-dimensional consolidation problem. 
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(a) 

 

(b) 

Figure 3.6. Numerical analysis of one dimensional consolidation problem: a) Change of the excess pore 

fluid pressure with time at three different points, and b) variation of surface settlement with time. 

 

To assess the accuracy and convergence rate of the proposed methods, the error norms 

of different solutions are precisely examined. Four different background meshes with 

different densities are used to investigate the convergence rate of the numerical 

solutions. Three types of error norms are adopted in this chapter, namely displacement 

error norm (𝐸𝐸𝑑𝑑), pore fluid pressure error norm (𝐸𝐸𝑓𝑓) and energy error norm (𝐸𝐸𝑠𝑠). These 

are defined as follows: 

𝐸𝐸𝑑𝑑 = �
∑ ��𝒖𝒖𝑖𝑖

𝑠𝑠𝑒𝑒𝑒𝑒−𝒖𝒖𝑖𝑖
𝑛𝑛𝑔𝑔𝑛𝑛�T�𝒖𝒖𝑖𝑖

𝑠𝑠𝑒𝑒𝑒𝑒−𝒖𝒖𝑖𝑖
𝑛𝑛𝑔𝑔𝑛𝑛��𝑁𝑁

𝑖𝑖=1

∑ ��𝒖𝒖𝑖𝑖
𝑠𝑠𝑒𝑒𝑒𝑒�T𝒖𝒖𝑖𝑖

𝑠𝑠𝑒𝑒𝑒𝑒�𝑁𝑁
𝑖𝑖=1

                                                                  (3-63) 

𝐸𝐸𝑝𝑝 = �∑ �𝑝𝑝𝑖𝑖
𝑠𝑠𝑒𝑒𝑒𝑒−𝑝𝑝𝑖𝑖

𝑛𝑛𝑔𝑔𝑛𝑛�2𝑁𝑁
𝑖𝑖=1

∑ �𝑝𝑝𝑖𝑖
𝑠𝑠𝑒𝑒𝑒𝑒�2𝑁𝑁

𝑖𝑖=1
                                                                                             (3-64) 

𝐸𝐸𝑠𝑠 = 1
𝐴𝐴𝑘𝑘
𝑠𝑠 �

1
2
∑ ∫ (𝜺𝜺𝑘𝑘𝑠𝑠𝑥𝑥𝑐𝑐 − 𝜺𝜺𝑘𝑘𝑛𝑛𝑢𝑢𝑚𝑚)T𝑫𝑫(𝜺𝜺𝑘𝑘𝑠𝑠𝑥𝑥𝑐𝑐 − 𝜺𝜺𝑘𝑘𝑛𝑛𝑢𝑢𝑚𝑚)Ω𝑘𝑘

𝑠𝑠 𝑠𝑠Ω𝑁𝑁𝑆𝑆𝑆𝑆
𝑘𝑘=1                                        (3-65)  
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where 𝒖𝒖𝑖𝑖𝑠𝑠𝑥𝑥𝑐𝑐 is the exact solution for the displacements at node 𝑠𝑠, 𝒖𝒖𝑖𝑖𝑛𝑛𝑢𝑢𝑚𝑚 is the 

displacement vector resulting from the numerical solution at node 𝑠𝑠 (both 𝒖𝒖𝑖𝑖𝑠𝑠𝑥𝑥𝑐𝑐 and 

𝒖𝒖𝑖𝑖𝑛𝑛𝑢𝑢𝑚𝑚 are 2 × 1 matrices), 𝜂𝜂𝑖𝑖𝑠𝑠𝑥𝑥𝑐𝑐 is the exact solution for pore fluid pressure at node 𝑠𝑠 and 

𝜂𝜂𝑖𝑖𝑛𝑛𝑢𝑢𝑚𝑚 is the numerical result for the pore fluid pressure at node 𝑠𝑠. Similarly, 𝜺𝜺𝑘𝑘𝑠𝑠𝑥𝑥𝑐𝑐 and 

𝜺𝜺𝑘𝑘𝑛𝑛𝑢𝑢𝑚𝑚 are the exact and numerical strains corresponding to each smoothing domain. 

The properties of the models used for the error norm assessment of the one-dimensional 

consolidation problem are listed in Table 3-1. The background mesh shown in Figure 

3.5 corresponds to configuration number 2. 

 

Table 3-1. Properties of different configurations used for the assessment of the error norms for the one-

dimensional consolidation problem. 
 

Configuration number Number of field nodes Number of smoothing domains 

1 22 20 

2 31 30 

3 63 80 

4 93 120 

 

Figure 3.7 to Figure 3.9 illustrate the convergence rate of the numerical solutions in 

terms of the different error norms for the proposed methods at two dimensionless 

times: 𝑡𝑡𝑑𝑑 = 0.1 and 𝑡𝑡𝑑𝑑 = 1.0. In these figures, ℎ stands for average nodal spacing and 𝑅𝑅 

denotes the convergence rate calculated as the average slopes of all segments for each 

convergence graph. As can be seen from these figures, all the solutions using 

CSPIMs/CSRPIMs, the FEM and PIM/RPIM converge to the exact solution with the 

increasing number of smoothing domains.  Figure 3.7 to Figure 3.9 show that 
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CSPIMs/CSRPIMs are more accurate compared to the FEM and PIM/RPIM in terms of 

all the error norms. In terms of both displacement and pressure norms, CSPIM-T4 is 

found to yield the most accurate results, while CSRPIM-T2L showing the highest 

convergence rate among all of the methods studied. In general, it can be seen that the 

cell-based smoothed methods show higher convergence rates and better accuracy in 

terms of the energy error norm compared to the FEM. For this example, the energy error 

norm convergence rates of the proposed smoothed cell-based methods are between 0.8 

and 1.0, while the convergence rate of the FEM is between 0.3 and 0.4.  

Figure 3.10 shows the variation of strain energy with time for the FEM solution and 

also for the three smoothed cell-based methods proposed in this study, obtained using 

configuration number 3. The strain energy is defined by replacing 𝜺𝜺𝑘𝑘𝑠𝑠𝑥𝑥𝑐𝑐 − 𝜺𝜺𝑘𝑘𝑛𝑛𝑢𝑢𝑚𝑚 with 

𝜺𝜺𝑘𝑘𝑛𝑛𝑢𝑢𝑚𝑚 in Equation 3-65. In all methods, the strain energy converges to 0.002175kJ, 

which is the theoretical value corresponding to the strain energy of a single-phase 

medium with the same dimensions under a similar load. It can be clearly observed that 

among the methods studied, CSPIM-T2L has the lowest strain energy at any time 

during the analysis. This indicates that in this method, consolidation rate is slower and 

therefore, according to Biot’s theory [161], the soil behaviour is softer compared to 

other methods. 

This softness in the behaviour could be due to the use of higher-order shape functions in 

CSRPIM-T2L resulting in a more accurate strain approximation over the smoothing 

domains compared to linear FEM, as also reported in [15]. There is also a softening 

effect due to the reduced integration used in the computation of the numerical 

integrations [42]. However, these softening effects are compounded by the stiffening 

effect due to the presence of boundary cells, given that only linear interpolation is used 
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in boundary cells according to CSRPIM-T2L formulation. As a result, when the 

background mesh is coarse, far fewer supporting nodes are, on average, involved in the 

computation of the shape functions compared to a fine background mesh. Thus, 

CSRPIM-T2L may no longer manifest its soft behaviour and in fact often errs on the 

stiff side when a coarse background mesh is used. That is why CSRPIM-T2L is very 

sensitive to background mesh density in all the cases studied and, specially, performs 

poorly compared to other studied methods in terms of displacement and pressure error 

norms when the background mesh is relatively coarse. However, according to Figure 

3.7 to Figure 3.9 , CSRPIM-T2L yields very accurate numerical solution in terms of all 

error norms, especially energy error norm, when a fine background mesh is used.  

 

(a) 

 

(b) 

Figure 3.7. Displacement error norms at dimensionless time 𝑡𝑡𝑑𝑑 = 0.1 (a) and 𝑡𝑡𝑑𝑑 = 1.0 (b) for one-

dimensional consolidation problem. 
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(a) 

 

(b) 

Figure 3.8. Pore fluid pressure error norms at dimensionless time 𝑡𝑡𝑑𝑑 = 0.1 (a) and 𝑡𝑡𝑑𝑑 = 1.0 (b) for one-

dimensional consolidation problem. 

 

 

(a) 

 

(b) 

Figure 3.9. Energy error norms at dimensionless time 𝑡𝑡𝑑𝑑 = 0.1 (a) and 𝑡𝑡𝑑𝑑 = 1.0 (b) for one-dimensional 

consolidation problem. 
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Figure 3.10. Strain energy (kJ) versus time for one-dimensional consolidation problem using 

configuration number 3. 

 
Table 3-2. Comparison of the computational time required by different numerical procedures adopted in 

example 3.7.1. 

Method 
Total time of the 

analysis with respect to 
that of the FEM 

FEM 1 

CSPIM-T4 1.133 

CSRPIM-T2L 1.2 41 

 

Table 3-2 compares the computational efficiency of various CSPIM/CSRPIMs with 

respect to that of the FEM. The total times for the analyses for the various methods are 

normalised with respect to the FEM [90]. As can be seen, despite the fact that 

CSPIM/CSRPIM are more computationally expensive, there is little difference between 

the total times for the numerical analyses using different methods because the geometry 

of the soil column enforces different CSPIM/CSRPIMs to create linear-interpolation 

functions. 
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3.7.2 Two-dimensional consolidation 

The second example involves two-dimensional consolidation of a saturated soil layer 

subjected to a strip loading. A unit thickness of soil is taken assuming a plane strain 

condition. A strip loading of 𝑞𝑞 = 10 kPa is suddenly applied on the surface of the soil. 

Due to the symmetry, only half of the domain with a width of 6𝑝𝑝 and a height of 9𝑝𝑝 is 

modelled here, with 𝑝𝑝 being the width of the loaded area. All boundaries are taken to be 

impervious except the top surface of the domain. Along the vertical boundaries, the 

horizontal displacements are constrainted and all displacements are fixed along the 

bottom of the domain. A schematic model of the problem and its associated background 

mesh (smoothing domains) are shown in Figure 3.11.  

The values of the model parameters are taken as follows: 𝜇𝜇𝑓𝑓 = 1 × 10−6 kPa 𝑠𝑠,  𝑘𝑘𝑓𝑓 =

1 × 10−15  m2,  𝐸𝐸 = 10,000 kPa, 𝜈𝜈 = 0 and 𝑝𝑝 = 1 m. The initial time step adopted is 

∆𝑡𝑡0 = 1000 sec, which is equivalent to the dimensionless time step of ∆𝑡𝑡𝑑𝑑 = 0.01, with 

the dimensionless time step defined as 𝑡𝑡𝑑𝑑 = 𝐸𝐸𝑘𝑘𝑓𝑓
(1+𝜈𝜈)𝜇𝜇𝑓𝑓𝑔𝑔2

𝑡𝑡. The time step growth factor is 

assumed 𝛼𝛼 =1.1. 
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Figure 3.11. Representation of a two-dimensional consolidation problem and the background mesh 

(smoothing domains) used in the numerical analysis. 

 

The numerical results of excess pore fluid pressure, with respect to the depth ratio (𝑧𝑧/𝑝𝑝) 

under the centre of the loading strip, at dimensionless time 𝑡𝑡𝑆𝑆 = 0.1 are presented in 

Figure 3.12 Also presented in this figure are the semi-analytical solution [293], and 

solutions obtained using the FEM and PIM/RPIM. As can be seen from this figure, all 

the cell-based smoothed MMs produce accurate results. CSPIM-T4 provides the closest 

solution to the semi-analytical solution amongst all the methods studied. To investigate 

the convergence rate of different methods, again, four different models with irregularly 

disturbed nodes of different densities are adopted in this example. The mesh densities 

are listed in Table 3-2. The background mesh shown in Figure 3.11 corresponds to 

configuration number 2. 
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Figure 3.12. Dimensionless excess pore fluid pressure versus depth ratio under the centre of the loaded 

area at 𝑡𝑡𝑑𝑑 = 0.1 

 
 
 

Table 3-3. The properties of different configurations adopted for numerical analysis of the two-

dimensional consolidation problem. 
 

Configuration number Number of field nodes Number of smoothing domains 

1 66 100 

2 384 736 

3 651 1,200 

4 925 1,728 

 

Figure 3.13 to Figure 3.15 depict a comparison of the convergence rate and accuracy of 

different methods in terms of displacement, pressure and energy error norms, 

respectively, for the two-dimensional consolidation problem at dimensionless times 𝑡𝑡𝑆𝑆 

= 0.1 and 𝑡𝑡𝑆𝑆 = 1. In general, smoothed cell-based methods presented in this study are 

more accurate than the FEM and PIM/RPIM, regardless of the mesh density and node 

selection scheme adopted. However, the difference between different smoothed cell-

based methods are almost negligible in terms of all error norms, although CSPIM-T4 is 
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slightly more accurate in general compared to the other two. From Figure 3.13 to Figure 

3.15, it can be seen that the convergence rates of all the methods examined in this 

example are almost similar with an average value of slightly above 2.0 in terms of 

displacement and pore fluid pressure error norms, and slightly below 1.0 in terms of 

energy error norm.  

The flat segments in Figure 3.13(a) can be attributed to the nature of the consolidation 

process, which produces the very negligible values of the displacement field at the very 

early stage in many places of the soil medium. Therefore, the mesh sizes with increasing 

density do not affect the accuracy of the displacement norm. As the mesh sizes attain 

the values smaller than a certain threshold, the accuracy of the displacement field would 

be improved. Because of the medium geometry, the development of the displacement 

field is restricted to the relative small region beneath the foundation. Therefore, the flat 

segments can be even seen in Figure 3.13(b) even though the consolidation process has 

been almost completed. 

For the sake of comparison, the total time of the anlysis for various CSPIM/CSRPIM 

normalised with that of the FEM are presented in Table 3-4. The CSRPIM-T2L is the 

most time-consuming alanysis as the more complex shape functions are created by 

much more supporting nodes compared to CSPIM-T4. CSPIM-T4 has less 

computational efficiency in comparison with the FEM because CSPIM-T4 is able to 

have more than twice supporting nodes comparet to the FEM to create the polynomial 

shape functions. 
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Table 3-4. Comparison of the computational time required by different numerical procedures adopted in 
example 3.7.2 

Method 
Total time of the 

analysis with respect to 
that of the FEM 

FEM 1 

CSPIM-T4 1.211 

CSRPIM-T2L 1.315 

 

 

(a) 

 

(b) 

Figure 3.13. Displacement error norms at dimensionless times 𝑡𝑡𝑑𝑑 = 0.1 (a) and 𝑡𝑡𝑑𝑑 = 1.0 (b) for two-

dimensional consolidation problem. 
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       (a) 

 

(b) 

Figure 3.14. Pore fluid pressure error norms at dimensionless times 𝑡𝑡𝑑𝑑 = 0.1 (a) and 𝑡𝑡𝑑𝑑 = 1.0 (b) for 

two-dimensional consolidation problem. 

 

 

 (a) 

 

(b) 

Figure 3.15. Energy error norms at dimensionless times 𝑡𝑡𝑑𝑑 = 0.1 (a) and 𝑡𝑡𝑑𝑑 = 1.0 (b) for two-

dimensional consolidation problem. 
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The flat segments in Figure 3.14(a) can be due to the severe pressure oscillations at the 

early stage of the consolidation process because of employing equal order interpolation 

functions for both displacement and pressure fields. Consequently, the use of the 

relatively coarse meshes along with the adopted time steps fails to eliminate pressure 

oscillations. A stabilisation technique is required to eliminate the oscillations, which is 

fully addressed in chapter 5 of this study. On the other hand, the reduction of the mesh 

size in Figure 3.14(b) fails to achieve more accurate results since almost all the excess 

pore water pressure has been dissipated at that time of interest. Therefore, moderate 

mesh refinement does not produce meaningfully more accurate results up to a certain 

threshold where the mesh is very fine and increase in the accuracy of the excess pore 

pressure estimation is finally observed. 

 
 

3.7.3 One-dimensional hydraulic pulse test 

The last example concerns a one-dimensional hydraulic pulse test which involves 

sudden hydraulic loading of a longitudinal saturated soil sample to investigate its 

hydraulic properties. As shown in Figure 3.16, the saturated medium is connected to a 

rigid water chamber which is suddenly pressurised. This pressure pulse is then 

conveyed through the saturated soil sample. The time-dependent water pressure change 

within the sample is used for estimation of the permeability of the soil. More details on 

the test can be found in [294, 295]. 
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Figure 3.16. Geometry and background mesh assumed in one-dimensional hydraulic pulse simulation. 

 

A soil sample of 5m in length and 10mm in diameter is considered in this example. A 

very large aspect ratio for the sample is considered in the numerical modelling since the 

semi-analytical solution for this problem assumes semi-infinite media. The parameters 

used in this example are as follows: 𝑘𝑘𝑓𝑓 = 1 × 10−19 m2, 𝜇𝜇𝑓𝑓=1 × 10−6 kPas, 𝐸𝐸 =

10,000 kPa and 𝜈𝜈 = 0.3. The chamber width is assumed 4𝑝𝑝𝑝𝑝 with an initial pressure 

of 𝜂𝜂𝑓𝑓0 = 100 kPa. The compressibility of water in the chamber is assumed to be 𝑠𝑠𝑓𝑓 =

4.45 × 10−10 Pa−1. 

The essential boundary condition on the left side of the soil sample needs to be updated 

at each time step according to the following [294, 295] 

𝑷𝑷𝑓𝑓𝑡𝑡+𝛼𝛼∆𝑡𝑡 =  𝑷𝑷𝑓𝑓𝑡𝑡 +  � 𝑞𝑞𝑖𝑖
𝑉𝑉𝑤𝑤𝑐𝑐𝑓𝑓

�
𝑡𝑡

 𝛼𝛼∆𝑡𝑡                                                                                    (3-66) 

in which 𝑉𝑉𝑤𝑤 is the volume of the rigid chamber and 𝑞𝑞𝑖𝑖 is the nodal flux. Figure 3.17 

shows the dimensionless pore fluid pressure, 𝜂𝜂𝑓𝑓/𝜂𝜂0, with respect to dimensionless time 

(𝛹𝛹2𝑡𝑡 with 𝛹𝛹2 = �𝒌𝒌𝑓𝑓
𝜇𝜇𝑓𝑓
� 𝑝𝑝𝑓𝑓( 𝐴𝐴𝑒𝑒

𝑉𝑉𝑤𝑤𝐶𝐶𝑓𝑓
)2 in which 𝐴𝐴𝑐𝑐 is the cross section area of the soil normal 

to the flow direction according to [295]), at the middle row field node with 𝑥𝑥 = 4.6 𝑝𝑝𝑝𝑝 
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obtained using CSPIM-T4, CSRPIM-T2L and the FEM in association with the semi-

analytical solution. The numerical analyses are performed using an initial time step of 

∆𝑡𝑡0 = 1sec, equivalent to the dimensionless time step of  𝛹𝛹2𝑡𝑡 = 2.33 × 10−3; and a 

time step growth factor of 𝛼𝛼 = 1.1. As can be seen from Figure 3.17, while all the 

solutions agree well with the semi-analytical solution, CSPIM-T4 and CSPIM-T2L are 

clearly more accurate than  the FEM.  

 

 

 

Figure 3.17.Variation of fluid pressure at 𝑥𝑥 = 4.6 mm versus dimensionless time for one-dimensional 

hydraulic pulse test. 

 

Convergence rates of the different numerical methods are investigated in this example 

too using different mesh densities. The mesh densities used for the error assessments are 

listed in Table 3-3. The background mesh shown in Figure 3.16 is associated with 

configuration number 2. 
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Table 3-5. The mesh properties used for one-dimensional hydraulic pulse test. 
 

Configuration Number Number of field nodes Number of smoothing domains 

1 505 800 

2 1,255 2,000 

3 2,505 4,000 

4 3,050 4,700 

 

In the simulation of the one dimensional hydraulic pulse test, all the field nodes are 

constrained with zero displacement. Therefore, only the error norm in terms of pore 

fluid pressure is investigated. Figure 3.18 shows the results of the numerical 

investigation at two different times during the analysis. As can be seen from this figure, 

while the convergence rates are more or less the same for all the methods investigated, 

cell-based smoothed methods again result in more accurate solutions compared to the 

FEM and PIM/RPIM for all different mesh densities. Among the cell-based smoothed 

methods, the CSPIM-T4 performs the best with accuracies almost an order of 

magnitude higher than those of the FEM.  
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        (a) 

 

(b) 

Figure 3.18. Pressure error norms at dimensionless times 𝑡𝑡𝑑𝑑 = 0.1 (a) and 𝑡𝑡𝑑𝑑 = 1.0 (b) for one- 

dimensional hydraulic pulse test. 

 

3.8 Conclusions 

In this chapter, a group of cell-based smoothed point interpolation methods were 

proposed for the flow-deformation analysis of saturated porous media, in which 

displacement and pressure fields are approximated using PIM shape functions 

(polynomial PIM or radial PIM) and strains and pressure gradients are smoothed over 

smoothing domains using the generalised gradient smoothing technique. A set of T-

schemes for the node selection were applied to guarantee non-singularity of the moment 

matrix used in the construction of shape functions. According to node selection schemes 

and PIM/RPIM shape functions, three cell-based MMs have been proposed for coupled 

numerical analysis of two phase media incorporating a novel approach for calculation of 

flow property matrices. A number of benchmark examples have been studied to 

investigate the properties of the presented models and to compare its performance with 

the FEM and PIM/RPIM. Based on these investigations, the following conclusions can 

be drawn: 
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• All the proposed cell-based meshfree methods provide more accurate results 

in terms of displacement, pore fluid pressure and energy error norms 

compared to  the FEM and PIM/RPIM for flow-deformation analysis of 

saturated porous media. 

• In terms of displacement and pore fluid pressure accuracy, CSPIM-T4 

stands out among all the numerical methods studied, with CSRPIM-T4being 

a close second. All the proposed cell-based methods show higher 

convergence rates in comparison with the FEM and PIM/RPIM.  

• In terms of energy error norm, CSRPIM-T2L provides the best results in 

terms of both accuracy and convergence rate. The high accuracy of the 

CSRPIM-T2L is because both high order shape functions and reduced 

integration adopted in the method increase the softness of the model, often 

resulting in a close-to-exact stiffness. The accuracy of CSRPIM-T2L is, 

however, highly affected by the fineness of the background mesh as the 

softening effects are considerably hampered when a coarse mesh is used due 

to a high number of boundary cells (compared to total number of cells) 

which stiffen the behaviour of the model.  
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4 A novel approach for application of smoothed point 

interpolation methods to axisymmetric problems in 

poroelasticity 

 

4.1 Preface 

The application of the smoothed point interpolation methods (SPIM) is extended to 

axisymmetric problems in poroelasticity in this chapter. A novel, yet simple, approach 

is presented to overcome the difficulty encountered when using the standard SPIMs in 

an axisymmetric setting. The problem is related to the presence of Gauss points along 

the symmetry axis which is inherent in the original SPIM/SRPIM formulations. The 

approach proposed involves decomposition of the property matrices to smoothed terms 

and non-smoothed terms which avoids the singularity problem that would otherwise 

arise. Here, the cell-based SPIM/SRPIM (CSPIM/CSRPIM) are used for the 

presentation of the proposed method since they offer the simplest form for the creation 

of the smoothing domains. The approach presented is, however, applicable if other 

forms of the SPIM are selected. The salient feature of the proposed method is that it 

neither incurs additional computation nor compromises on the accuracy of the method. 

In this chapter, the proposed method is detailed and investigated by numerical 

modelling of a number of benchmark axisymmetric problems, along with a set of 

convergence studies in terms of various quantities of interest for various time and mesh 

densities. 
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4.2 Governing equations 

A two-phase porous medium consisting of a solid matrix and a saturating fluid is 

considered. As presented in Chapter 3, in isothermal conditions, the linear momentum 

and mass balance equations for the medium are Equation 3-1 and 3-2. The polar 

coordinate system (𝒙𝒙=[𝑡𝑡  𝑧𝑧]) is, however, adopted in this chapter instead of the 

Cartesian coordinate system 𝒙𝒙=[𝑥𝑥1  𝑥𝑥2] of Chapter 3, as the polar coordinate system is 

appropriate for problems in axisymmetric settings. Furthermore, the differentiation 

operator must be redefined for axisymmetric setting, as follows, 

𝑳𝑳𝑑𝑑 = �
𝜕𝜕
𝜕𝜕𝜕𝜕

0

0 𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕
𝜕𝜕𝜕𝜕

1
𝜕𝜕

𝜕𝜕
𝜕𝜕𝜕𝜕

0
�

T

                                                                                              (4-1) 

The solvability of the coupled flow-deformation equations can be ensured by imposing 

the sufficient and appropriate boundary and initial conditions as defined in Equations 3-

4 to 3-7. 

 

4.3 Constitutive modelling 

A constitutive model is needed to relate the effective stress to the strain of the solid 

phase. For simplicity, small strains and elastic behaviour are assumed for the solid 

skeleton, and therefore, the stress-strain relationship has a similar form as Equation 3-11 

and 3-12; however, with the following definitions for the stress and strain, given by: 

𝝈𝝈′ = [𝜎𝜎𝜕𝜕′ 𝜎𝜎𝜕𝜕′ 𝜏𝜏𝜕𝜕𝜕𝜕′ 𝜎𝜎𝜃𝜃′  ]T                              (4-2) 

𝜺𝜺 = [𝜀𝜀𝜕𝜕 𝜀𝜀𝜕𝜕 𝛾𝛾𝜕𝜕𝜕𝜕 𝜀𝜀𝜃𝜃 ]T = [𝜕𝜕𝑢𝑢𝑟𝑟
𝜕𝜕𝜕𝜕

𝜕𝜕𝑢𝑢𝑧𝑧
𝜕𝜕𝜕𝜕

𝜕𝜕𝑢𝑢𝑟𝑟
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝑢𝑢𝑧𝑧
𝜕𝜕𝜕𝜕

𝑢𝑢𝑟𝑟
𝜕𝜕

 ]T                                   (4-3) 
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in which,  𝑝𝑝𝜕𝜕 and 𝑝𝑝𝜕𝜕 are displacement components in r and z directions, respectively. 𝜎𝜎𝜃𝜃′  

is the effective stress in 𝜃𝜃 direction in an axisymmetric setting 

4.4 Variational statement 

The variational forms of the governing Equations 3-1 and 3-2 are explicitly derived in 

this section. The variational form of the governing equations are confined to a pair of 

sub spaces 𝑺𝑺𝑢𝑢 and 𝑆𝑆𝑝𝑝, defined as follows: 

𝑺𝑺𝑢𝑢 =  {𝒖𝒖: Ω →  𝑹𝑹2|𝒖𝒖 ∈ 𝑮𝑮ℎ1  ,𝒖𝒖 = 𝒖𝒖�  𝑜𝑜𝑛𝑛 Γ𝑢𝑢}                                                                (4-4) 

𝑆𝑆𝑝𝑝 =  �𝜂𝜂: Ω →  𝑅𝑅 |𝜂𝜂 ∈ 𝐺𝐺ℎ1 ,𝜂𝜂 = �̅�𝜂  𝑜𝑜𝑛𝑛 Γ𝑝𝑝� ,                                                                 (4-5) 

The corresponding kinematically admissible subspaces, 𝑽𝑽𝒗𝒗,0 and 𝑉𝑉𝑞𝑞,0 respectively, are 

defined as follows: 

𝑽𝑽𝑣𝑣,0 =  �𝒗𝒗: Ω →  𝑹𝑹2|𝒗𝒗 ∈ 𝑮𝑮ℎ,0
1  ,𝒗𝒗 = 𝟎𝟎  𝑜𝑜𝑛𝑛 Γ𝑢𝑢�                                                            (4-6) 

𝑉𝑉𝑞𝑞,0 =  �𝑞𝑞: Ω →  𝑅𝑅 |𝑞𝑞 ∈ 𝐺𝐺ℎ,0
1  , 𝑞𝑞 = 0  𝑜𝑜𝑛𝑛 Γ𝑝𝑝� .                                                            (4-7) 

As discussed in the previous chapter, in general, shape functions constructed by the PIM 

and RPIM methods are not continuous over the problem domain. Such shape functions 

are not in H1, but are in 𝐺𝐺1 which does not require compatibility of shape functions. 

Therefore, the continuity requirement of the functions in 𝐺𝐺1 is further weakened 

compared to the already weakened requirement for functions in 𝐻𝐻1. Hence, 𝐺𝐺1 can be 

viewed as the space of functions with weakened weak (𝑊𝑊2) requirements on continuity 

[90].  

Again, the approximation of the displacement and excess pore fluid pressure fields are 

obtained as follows: 
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𝒖𝒖 = 𝑵𝑵𝑢𝑢𝒖𝒖� ,    𝜂𝜂 = 𝑵𝑵𝑝𝑝�̅�𝜂                              (4-8) 

where 𝑵𝑵𝑢𝑢 and 𝑵𝑵𝑝𝑝 represent the matrix of displacement and excess pore fluid pressure 

shape functions, respectively, as presented in Equations 3-54 and 3-51. The Galerkin’s 

weighting functions may be represented as: 

𝒗𝒗 = 𝑵𝑵𝑢𝑢𝒄𝒄 ,    𝑞𝑞 = 𝑵𝑵𝑝𝑝𝑠𝑠̅                                                                                                   (4-9) 

where, 𝐜𝐜 and 𝒄𝒄� are arbitrary unknown weights for the displacement and pressure field 

approximations, respectively. The weak form of the problem seeks to find {𝒖𝒖,𝜂𝜂}𝒔𝒔 

𝜖𝜖 𝑆𝑆𝑢𝑢  ×  𝑆𝑆𝑝𝑝 such that for all {𝒗𝒗,𝑞𝑞} 𝜖𝜖 𝑉𝑉𝑢𝑢,0  ×  𝑉𝑉𝑝𝑝,0, we have: 

∫ 𝒗𝒗𝑳𝑳𝑑𝑑T 𝝈𝝈′Ω 𝑡𝑡𝑠𝑠Ω − 𝜂𝜂 ∫ 𝒗𝒗𝑳𝑳𝑑𝑑T𝜂𝜂𝜹𝜹Ω 𝑡𝑡𝑠𝑠Ω − ∫ 𝒗𝒗𝜌𝜌𝐠𝐠Ω r𝑠𝑠Ω = 0                                           (4-10) 

∫ 𝑞𝑞𝜵𝜵.�𝒌𝒌𝑓𝑓
𝜇𝜇𝑓𝑓
�−𝜵𝜵𝜂𝜂 + 𝜌𝜌𝑓𝑓𝐠𝐠��� 𝑡𝑡𝑠𝑠Ω + ∫ 𝑞𝑞𝜵𝜵. �̇�𝒖𝑡𝑡𝑠𝑠𝑟𝑟𝛺𝛺 +Ω 𝛼𝛼𝑓𝑓 ∫ 𝑞𝑞�̇�𝜂𝑡𝑡𝑠𝑠𝑟𝑟𝛺𝛺 = 0                    (4-11) 

where the integrations are written for 1 𝑡𝑡𝑝𝑝𝑠𝑠 rotation of the domain about the axis of 

symmetry. Applying Divergence theorem to Equations 4-10 and 4-11, the equivalent 

weak forms are expressed in the following forms: 

∫ (𝜵𝜵𝒗𝒗)T𝝈𝝈′𝑡𝑡𝑠𝑠ΩΩ − 𝜂𝜂 ∫ (𝒗𝒗)T𝜵𝜵𝜂𝜂𝜹𝜹 𝑡𝑡𝑠𝑠ΩΩ − ∫ (𝒗𝒗)T𝜌𝜌𝐠𝐠𝑡𝑡𝑠𝑠ΩΩ − ∫ (𝒗𝒗)TΓ𝑡𝑡
�̅�𝒕 𝑡𝑡𝑠𝑠Γ = 0      (4-12) 

𝜂𝜂 ∫ 𝑞𝑞𝜵𝜵. �̇�𝒖 𝑡𝑡𝑠𝑠ΩΩ + ∫
𝒌𝒌𝑓𝑓
𝜇𝜇𝑓𝑓Ω (𝜵𝜵𝑞𝑞)T𝜵𝜵𝜂𝜂 𝑡𝑡𝑠𝑠Ω − ∫ 𝑞𝑞𝑞𝑞�Γ𝑞𝑞

𝑡𝑡𝑠𝑠Γ + 𝛼𝛼𝑓𝑓 ∫ 𝑞𝑞�̇�𝜂 𝑡𝑡𝑠𝑠Ω Ω = 0         (4-13) 

For SPIM implementations, Equations 4-12 and 4-13 must be fully discretised in space 

and time. 
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4.5 Domain discretisation and support node selection 

4.5.1 Domain discretisation 

In SPIM/SRPIM, the problem domain is partitioned into 𝑁𝑁𝑆𝑆𝑆𝑆 smoothing domains that 

satisfy the conditions expressed by Equations 3-31 and 3-32.The smoothing domains 

can be created using a triangular background mesh in different ways, resulting in 

different types of SPIMs [15, 16, 20, 101, 105]. Following the formulation presented in 

the previous chapter, the cells of the background mesh are directly used as the 

smoothing domains in this study, resulting in the development of the cell-based 

SPIM/SRPIM (CSPIM/CSRPIM). 

 

4.5.2 Support node selection schemes 

In CSPIM/CSRPIM, selection of supporting nodes at each point of interest is not 

arbitrary and has to be performed in such a way so that the resulting approximation 

function is square integrable on the boundary of the smoothing domains [101]. Two 

node selection schemes, T4 and T2L described in section 3.4.2, are adopted in this 

chapter. A linear approximation is again applied where the Gauss point of interest is 

located on the boundary of the domain.  

 

4.5.3 Nodal shape functions 

In this chapter, the PIM and RPIM [88] are adopted for the construction of the nodal 

shape functions. A similar procedure as presented in section 3.4.1 is performed to obtain 

the shape functions in an axisymmetric setting. 



Chapter 4- A novel approach for application of smoothed point interpolation methods to 
axisymmetric problems in poroelasticity 

96 
 

Having computed the nodal shape functions, the displacement and excess pore fluid 

pressure can be obtained at each point of interest, as follows: 

𝒖𝒖 = 𝑵𝑵𝑢𝑢𝒖𝒖�  =∑ �𝜙𝜙𝑖𝑖
(𝒙𝒙) 0
0 𝜙𝜙𝑖𝑖(𝒙𝒙)�

𝑞𝑞
𝑖𝑖=1 �

𝑝𝑝𝜕𝜕𝑖𝑖
𝑝𝑝𝜕𝜕𝑖𝑖

�                                                                    (4-14) 

 𝜂𝜂 = 𝑵𝑵𝑝𝑝𝒑𝒑� = ∑ 𝜙𝜙𝑖𝑖(𝒙𝒙)𝜂𝜂𝑖𝑖
𝑞𝑞
𝑖𝑖=1                                                                                          (4-15) 

where 𝑝𝑝𝜕𝜕𝑖𝑖 and 𝑝𝑝𝜕𝜕𝑖𝑖 are the components of nodal displacements, and 𝑵𝑵𝑢𝑢 and 𝑵𝑵𝑝𝑝 can be 

explicitly presented as: 

 𝑵𝑵𝑢𝑢 = �𝜙𝜙1
(𝑥𝑥) 0
0 𝜙𝜙1(𝑥𝑥) ⋯

𝜙𝜙𝑞𝑞(𝑥𝑥) 0
0 𝜙𝜙𝑞𝑞(𝑥𝑥)�

2×2𝑞𝑞
                                                  (4-16) 

𝑵𝑵𝑝𝑝 =[𝜙𝜙1(𝒙𝒙) 𝜙𝜙2(𝒙𝒙) ⋯ 𝜙𝜙𝑞𝑞(𝒙𝒙)]1×𝑞𝑞                                                                     (4-17) 

 

4.5.4 Smoothed strains 

Given that the cells of the background mesh serve as the smoothing domains in 

CSPIM/CSRPIM, the smoothed gradient of the displacement field (i.e., smoothed 

strain) is computed for each cell by the smoothing operation technique [90] and the 

Divergence theorem, as presented by Equation 3-29. However, the matrix containing the 

components of the unit outward normal vector is defined in the polar coordinate system, 

as: 

𝑳𝑳𝑛𝑛 = �
𝑛𝑛𝜕𝜕 0
0 𝑛𝑛𝜕𝜕
𝑛𝑛𝜕𝜕 𝑛𝑛𝜕𝜕

�                                                                                                          (4-18) 

in which 𝑛𝑛𝜕𝜕 and 𝑛𝑛𝜕𝜕 denote the components of the unit outward normal to the boundary 

of the 𝑘𝑘th smoothing domain at the Gauss point of interest. The relationship between 
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smoothed strain and nodal displacements is established as Equation 3-33, with the 

smoothed strain displacement matrix under an axisymmetric setting taking the 

following form:  

𝑩𝑩�1 = ∑ 𝑩𝑩�1𝑖𝑖
𝑞𝑞
𝑖𝑖=1 =  ∑

⎣
⎢
⎢
⎢
⎡𝑏𝑏
�𝑖𝑖𝜕𝜕 0
0 𝑏𝑏�𝑖𝑖𝜕𝜕
𝑏𝑏�𝑖𝑖𝜕𝜕 𝑏𝑏�𝑖𝑖𝜕𝜕
𝜙𝜙𝑖𝑖
𝜕𝜕

0 ⎦
⎥
⎥
⎥
⎤

𝑞𝑞
𝑖𝑖=1                    𝑠𝑠 ∈ 𝑆𝑆𝑠𝑠                                                (4-19) 

where the smoothed strain-displacement matrix terms are computed according to 

Equation 3-37.  

 

4.6 Solution to the singularity problem 

In SPIM/SRPIM formulations, the term 𝜙𝜙𝑖𝑖
𝜕𝜕

 in Equation 4-19 leads to a singularity 

problem due to the Gauss points located on the axis of symmetry as shown in Figure 

4.1. To overcome this problem, a novel, yet simple idea is proposed here, in which the 

smoothed strain-displacement matrix is decomposed into two matrices:  

𝑩𝑩�=𝑩𝑩�1𝑠𝑠+𝑩𝑩𝛳𝛳                                                                                                                 (4-20) 

where  

𝑩𝑩�1𝑠𝑠 = ∑ 𝑩𝑩�1𝑠𝑠𝑖𝑖𝑖𝑖∈𝑆𝑆𝑠𝑠 = ∑

⎣
⎢
⎢
⎡𝑏𝑏
�𝑖𝑖𝜕𝜕 0
0 𝑏𝑏�𝑖𝑖𝜕𝜕
𝑏𝑏�𝑖𝑖𝜕𝜕 𝑏𝑏�𝑖𝑖𝜕𝜕
0 0 ⎦

⎥
⎥
⎤

𝑖𝑖∈𝑆𝑆𝑠𝑠                    i= 1,..., q ∈ 𝑆𝑆𝑠𝑠                               (4-21) 

𝑩𝑩𝜃𝜃 = ∑ 𝑩𝑩𝜃𝜃𝑖𝑖𝑖𝑖∈𝑆𝑆𝑠𝑠 = ∑

⎣
⎢
⎢
⎡

0 0
0 0
0 0
𝜙𝜙𝑖𝑖
𝜕𝜕

0⎦
⎥
⎥
⎤

𝑖𝑖∈𝑆𝑆𝑠𝑠                       i= 1,..., q ∈ 𝑆𝑆𝑠𝑠                                   (4-22)  
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Figure 4.1. A schematic illustration of the Gauss points causing singularity problem in the computation 

of the property matrices. 

 

The decomposition separates the terms causing the singularity from the rest of the 

strain-displacement matrix. Given that no smoothing is required for 𝜙𝜙𝑖𝑖
𝜕𝜕

 terms, the 

integrations involving this term can be carried out over the smoothing domains rather 

than the boundary of the smoothing domains, resulting in the removal of the singularity 

problem (see Figure 4.2). The procedure involves no additional computational cost as in 

any case, the shape function values are required at the Gauss points inside the 

smoothing domains for the calculation of the property matrices, as detailed in the 

following sections. The accuracy of the approach is considerably higher compared to 

using the coordinates of the centroid of the background triangular mesh [37], especially 

when non-linear nodal shape functions (e.g., radial point interpolation shape functions) 

or high number of support nodes (e.g., T2L node selection scheme) are used in the 
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computation of the property matrices. Furthermore, benefiting from the separation 

technique proposed, the smoothed part of the strain displacement matrix, 𝑩𝑩�1𝑠𝑠, remains 

constant over each smoothing domain, preserving the unique features of the 

SPIM/SRPIM formulations [13].  

 

4.7 Discretisation in space  

Using the Generalised Smoothed Galerkin (GS Galerkin) approach [90], the spatial 

discretisation of Equations 3-1 and 3-2 in the axisymmetric setting are obtained as 

presented in Equations 3-38 and 3-39.  

The property matrices of stiffness, coupling, permeability and mass are obtained from 

the contributions of each smoothing domain through a standard assembly procedure in 

the following form: 

𝑲𝑲�𝑘𝑘𝑠𝑠 =  ∫ �𝑩𝑩�1𝑠𝑠 + 𝑩𝑩𝛳𝛳�
T
𝑫𝑫 (𝑩𝑩�1𝑠𝑠 + 𝑩𝑩𝛳𝛳)𝑡𝑡𝑠𝑠ΩΩ𝑘𝑘

𝑠𝑠                                                                (4-23) 

𝑪𝑪�𝑘𝑘𝑠𝑠 =  ∫ �𝑩𝑩�1𝑠𝑠 + 𝑩𝑩𝛳𝛳�
T
𝜹𝜹𝑵𝑵𝑝𝑝𝑡𝑡𝑠𝑠ΩΩ𝑘𝑘

𝑠𝑠                                                                                 (4-24) 

𝑯𝑯�𝑘𝑘𝑠𝑠 =  ∫ 1
𝜇𝜇𝑓𝑓
𝑩𝑩�2

T𝒌𝒌𝑓𝑓𝑩𝑩�2𝑡𝑡 𝑠𝑠ΩΩ𝑘𝑘
𝑠𝑠                                                                                      (4-25) 

𝑴𝑴𝑘𝑘 =  ∫ 𝑵𝑵𝑝𝑝T𝑵𝑵𝑝𝑝𝑡𝑡𝑠𝑠ΩΩ𝑘𝑘
𝑠𝑠                                                                                                (4-26) 

For the global stiffness matrix, Equation 4-23 is rewritten in an expanded form as 

follows: 
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𝑲𝑲�𝑘𝑘𝑠𝑠  = ∫ �𝑩𝑩�1𝑠𝑠�
T
𝑫𝑫 (𝑩𝑩�1𝑠𝑠)𝑡𝑡𝑠𝑠ΩΩ𝑘𝑘

𝑠𝑠 +∫ �𝑩𝑩�1𝑠𝑠�
T
𝑫𝑫 (𝑩𝑩𝛳𝛳)𝑡𝑡𝑠𝑠ΩΩ𝑘𝑘

𝑠𝑠                                             (4-27)  

+∫ (𝑩𝑩𝛳𝛳)T𝑫𝑫 (𝑩𝑩�1𝑠𝑠)𝑡𝑡𝑠𝑠ΩΩ𝑘𝑘
𝑠𝑠  +∫ (𝑩𝑩𝛳𝛳)T𝑫𝑫 (𝑩𝑩𝛳𝛳)𝑡𝑡𝑠𝑠ΩΩ𝑘𝑘

𝑠𝑠  

  

The smoothed stiffness matrix is, therefore, divided into four sub-matrices.  

𝑲𝑲�𝑘𝑘1𝑠𝑠  is calculated similar to the computation of the stiffness matrix in CSPIM/CSRPIM 

of plane strain problems (Equation 3-46) [20]: 

𝑲𝑲�𝑘𝑘1𝑠𝑠 = 𝑩𝑩�1𝑠𝑠T 𝑫𝑫𝑩𝑩�1𝑠𝑠 ∫ 𝑡𝑡𝑠𝑠ΩΩ𝑘𝑘
𝑠𝑠 =2𝑩𝑩�1𝑠𝑠T 𝑫𝑫𝑩𝑩�1𝑠𝑠𝐴𝐴𝑘𝑘𝑠𝑠 ∑ 𝑤𝑤𝑖𝑖

𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔
𝑖𝑖=1 𝑡𝑡𝑖𝑖                                                (4-28) 

 

Figure 4.2. Gauss points located on the edges and over a smoothing domain to evaluate the local property 

matrices. 

where ∑ stands for both summation and the standard assembly process, and subscript 

𝑠𝑠 indicates that the corresponding parameter is calculated at the 𝑠𝑠th Gauss point (of the 

𝑲𝑲�𝑘𝑘1𝑠𝑠  𝑲𝑲�𝑘𝑘2𝑠𝑠  

𝑲𝑲�𝑘𝑘3𝑠𝑠  𝑲𝑲�𝑘𝑘4𝑠𝑠  
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𝑘𝑘th smoothing domain), e.g. 𝑤𝑤𝑖𝑖 and 𝑡𝑡𝑖𝑖 are the Gauss integration weight and radius 

corresponding to the 𝑠𝑠th Gauss point.  

The second and third terms are calculated by adopting an approach similar to that 

proposed in Equation 3-52 [296] for the calculation of the 𝑪𝑪�𝑆𝑆𝑆𝑆 matrix, as follows: 

𝑲𝑲�𝑘𝑘2𝑠𝑠 = 𝑲𝑲�𝑘𝑘3𝑠𝑠
T = 𝑩𝑩�1𝑠𝑠T 𝑫𝑫∫ (𝑩𝑩𝛳𝛳)Ω𝑘𝑘

𝑠𝑠 𝑡𝑡𝑠𝑠Ω=2𝑩𝑩�1𝑠𝑠T 𝑫𝑫𝐴𝐴𝑘𝑘𝑠𝑠 ∑ 𝑩𝑩𝛳𝛳𝑗𝑗
𝑠𝑠
𝑗𝑗=1 𝑤𝑤𝑗𝑗  𝑡𝑡𝑗𝑗                                  (4-29) 

where, 𝑔𝑔 is the number of Gauss points used over smoothing domains for the 

computation of non-smoothed terms, which is taken as three in this study as shown in 

Figure 4.2. 𝑤𝑤𝑗𝑗 is the corresponding weight used in the Gaussian integration rule. This 

procedure avoids singularity because the non-smoothed strain-displacement matrix, 𝑩𝑩𝜃𝜃, 

does not involve calculations over the boundary of the smoothing domains. The last 

term of the stiffness matrix does not involve any smoothing and is calculated over the 

smoothing domains using the standard Gauss integration approach, as follows: 

𝑲𝑲�𝑘𝑘4𝑠𝑠 =∫ (𝑩𝑩𝛳𝛳)T𝑫𝑫(𝑩𝑩𝛳𝛳)𝑡𝑡𝑠𝑠ΩΩ𝑘𝑘
𝑠𝑠 =2𝐴𝐴𝑘𝑘𝑠𝑠 ∑ �𝑩𝑩𝛳𝛳𝑗𝑗�

T
𝑫𝑫𝑖𝑖𝑩𝑩𝛳𝛳𝑗𝑗  𝑡𝑡𝑗𝑗𝑤𝑤𝑗𝑗

𝑠𝑠
𝑗𝑗=1                                         (4-30) 

Once 𝑲𝑲�𝑘𝑘1𝑠𝑠  to 𝑲𝑲�𝑘𝑘4𝑠𝑠  are calculated, the global stiffness matrix is evaluated as follows: 

𝑲𝑲�  = ∑ (𝑲𝑲�𝑘𝑘1𝑠𝑠
𝑁𝑁𝑆𝑆𝑆𝑆
𝑘𝑘=1 + 𝑲𝑲�𝑘𝑘2𝑠𝑠 + 𝑲𝑲�𝑘𝑘3𝑠𝑠 + 𝑲𝑲�𝑘𝑘4𝑠𝑠 )                                                                      (4-31) 

where ∑ stands for the standard assembly process.  

The coupling matrix is obtained as follows 

𝑪𝑪� = ∑ 𝑪𝑪�𝑘𝑘𝑠𝑠
𝑁𝑁SD
𝑘𝑘=1 = ∑ �∫ �𝑩𝑩�1𝑠𝑠 + 𝑩𝑩𝛳𝛳�

T
𝜹𝜹𝑵𝑵𝑝𝑝𝑡𝑡𝑠𝑠ΩΩ𝑘𝑘

𝑠𝑠 �𝑁𝑁SD
𝑘𝑘=1                                                    (4-32) 

The contribution of each smoothing domain to the coupling matrix can be written in the 

following form:  
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𝑪𝑪�𝑆𝑆𝑆𝑆 = �∫ �𝑩𝑩�1𝑠𝑠�
T
𝜹𝜹𝑵𝑵𝑝𝑝𝑡𝑡𝑠𝑠ΩΩ𝑘𝑘

𝑠𝑠 + ∫ (𝑩𝑩𝛳𝛳)T𝜹𝜹𝑵𝑵𝑝𝑝𝑡𝑡𝑠𝑠ΩΩ𝑘𝑘
𝑠𝑠 �                                                  (4-33) 

 

It is noted that 𝑪𝑪�𝑘𝑘1𝑠𝑠  has a from similar to 𝑲𝑲�𝑘𝑘2𝑠𝑠  or𝑲𝑲�𝑘𝑘3𝑠𝑠 , and therefore can be obtained with 

minor modifications to the formulation of either 𝑲𝑲�𝑘𝑘2𝑠𝑠  or 𝑲𝑲�𝑘𝑘3𝑠𝑠 : 

𝑪𝑪�1𝑆𝑆𝑆𝑆 =∫ �𝑩𝑩�1𝑠𝑠�
T
𝜹𝜹𝑵𝑵𝑝𝑝𝑡𝑡𝑠𝑠ΩΩ𝑘𝑘

𝑠𝑠  = 2𝐴𝐴𝑘𝑘𝑠𝑠𝑩𝑩�1𝑠𝑠
T𝜹𝜹∑ 𝑵𝑵𝑗𝑗

𝑝𝑝𝑤𝑤𝑗𝑗
𝑠𝑠
𝑗𝑗=1 𝑡𝑡𝑗𝑗                                               (4-34) 

𝑪𝑪�2𝑆𝑆𝑆𝑆 is calculated as follows: 

𝑪𝑪�2𝑆𝑆𝑆𝑆=∫ (𝑩𝑩𝛳𝛳)T𝜹𝜹𝑵𝑵𝑝𝑝𝑡𝑡𝑠𝑠ΩΩ𝑘𝑘
𝑠𝑠 = 2𝐴𝐴𝑘𝑘𝑠𝑠 ∑ (𝑩𝑩𝛳𝛳)T𝜹𝜹 𝑵𝑵𝑝𝑝𝑡𝑡𝑗𝑗

𝑠𝑠
𝑗𝑗=1 𝑤𝑤𝑗𝑗                                                (4-35) 

The permeability matrix (𝑯𝑯� ) includes only smoothed terms because the fluid flows in 

either z or r directions, with no flow in 𝜃𝜃 direction. Thus, the terms associated with 𝑩𝑩𝛳𝛳 

vanishes from the evaluation of the permeability matrix over each smoothing domain. 

We therefore have: 

𝑯𝑯�𝑘𝑘𝑠𝑠= 1
𝜇𝜇𝑓𝑓
𝑩𝑩�2

T𝒌𝒌𝑓𝑓𝑩𝑩�2 ∫ 𝑡𝑡𝑠𝑠ΩΩ𝑘𝑘
𝑠𝑠  =2 𝐴𝐴𝑘𝑘

𝑠𝑠

𝜇𝜇𝑓𝑓
𝑩𝑩�2

T𝒌𝒌𝑓𝑓𝑩𝑩�2 ∑ 𝑤𝑤𝑖𝑖
𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔
𝑖𝑖=1 𝑡𝑡𝑖𝑖                                           (4-36) 

in which the entries of 𝑩𝑩�2 are obtained by omitting the components in the 4th row of 

𝑩𝑩�𝑠𝑠, as explicitly presented in Equation 3-48.  

The global permeability matrix is then assembled in the conventional way: 

𝑯𝑯� = ∑ 𝑯𝑯�𝑘𝑘𝑠𝑠
𝑁𝑁SD
𝑘𝑘=1                                                                                                              (4-37) 

The compressibility matrix (𝑴𝑴) does not involve any smoothing and can, therefore, be 

computed following the standard assembly procedure, as follows:                          

𝑴𝑴 = ∑ 𝑴𝑴𝑘𝑘
𝑁𝑁SD
𝑘𝑘=1                                                                                                             (4-38)  

𝑪𝑪�𝑘𝑘1𝑠𝑠  𝑪𝑪�𝑘𝑘2𝑠𝑠  
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𝑴𝑴𝑘𝑘=∫ 𝑵𝑵𝑝𝑝T𝑵𝑵𝑝𝑝𝑡𝑡𝑠𝑠ΩΩ𝑘𝑘
𝑠𝑠 = 2𝐴𝐴𝑘𝑘𝑠𝑠 ∑ 𝑵𝑵𝑖𝑖

𝑃𝑃T𝑵𝑵𝑖𝑖
𝑃𝑃 𝑤𝑤𝑖𝑖 𝑡𝑡𝑖𝑖

𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔
𝑖𝑖=1                                                  (4-39) 

The global matrix of external forces and flux can also be computed by assembling the 

local external force vectors and flux, respectively, which in turn can be calculated for 

each smoothing domain from as computed for the plain strain condition. 

4.8 Discretisation in time  

The three-point time discretization scheme [143] is adopted in this chapter for time 

discretisation of the governing equations as explained in section 3.6.2. The discretised 

form of the governing equations will be identical to those presented in Equations 3-59 

to 3-62.   

4.9 Numerical examples 

The formulation presented is adopted in this section to solve three benchmark examples 

to evaluate the accuracy and performance of the scheme suggested. The numerical 

results are compared with the analytical solutions (when available) and the solution 

obtained from the standard linear FEM using the same background mesh through a 

comprehensive error norm and convergence rate analysis.  

4.9.1 Cryer’s problem 

The benchmark consolidation problem of Cryer [297] is adopted here for verification 

purposes. In this problem, a uniformly distributed surface load of 𝜂𝜂0 = 1 kPa is 

concentrically applied to a saturated porous sphere with a radius of 𝑝𝑝 = 1.0 m. Only 

one-quarter of the sphere cross-section was modelled because of the symmetry. The 

outer boundary of the sphere was assumed to be permeable, and the permeability of the 

sphere was assumed to be 𝑘𝑘 = 1 m sec⁄ . The geometry and boundary conditions of the 
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problem, along with the triangular background mesh used for the spatial discretisation 

of the problem domain, are shown in Figure 4.3. The background mesh shown consists 

of 840 elements and 475 field nodes. Three different cases are studied using three 

different sets of elastic properties as presented in Table 4-1. Case 3 approximates an 

incompressible material (v = 0.5). In all the cases, the initial dimensionless time step 

(𝑡𝑡𝑑𝑑 = 𝐸𝐸𝑘𝑘(1−𝜈𝜈)
𝜇𝜇𝑓𝑓(1+𝜈𝜈)(1−2𝜈𝜈)𝑔𝑔2

𝑡𝑡) is taken 0.0005 with a time step growth factor of 𝛼𝛼 = 1.2.  

Table 4-1. Soil properties used in the analysis of Cryer’s problem (E is the Young modulus and v is the 

Poisson’s ratio) 

Case Number v E (kPa) 

1 0.0 1.0 

2 0.333 0.666 

3 0.496 0.0299 
 

 

 

(a) 

 

(b) 

Figure 4.3. (a) The schematic representation of Cryer’s problem, (b) the background mesh used in the 

analysis 
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As an example, the numerical results for the excess pore water pressure contours from 

the analysis of case 1 at dimensionless time 0.0529 are shown in Figure 4.4. As 

expected, the symmetry of the geometry and the applied load results in the symmetry of 

the excess pore water pressure contour about the centre of the sphere. Similar results are 

also obtained for other cases studied (not presented due to similarity with Figure 4.4). 

 

Figure 4.4.The contour of excess pore pressure for Cryer’s problem (case 1) at dimensionless time 

0.0529. 

The results of the numerical analyses in terms of the dimensionless excess pore water 

pressure (𝑃𝑃𝑐𝑐 = 𝑠𝑠𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜂𝜂𝑜𝑜𝑡𝑡𝑠𝑠 𝜂𝜂𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑡𝑡𝑠𝑠/𝜂𝜂0) at the centre of the sphere versus the 

dimensionless radial displacement of the surface of the sphere (𝑈𝑈𝜕𝜕 =

 𝑠𝑠𝑝𝑝𝑡𝑡𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠𝑛𝑛𝑡𝑡/𝑝𝑝), and the variation of the dimensionless surface settlement 

with dimensionless time are compared with the analytical solutions presented in [35] for 

all three cases, as shown in Figure 4.5. Both SPIM and SRPIM with different node 

selection schemes are adopted as identified in the Figure 3.1. As can be seen from 

Figure 4.5, there is excellent agreement between the results of the numerical solution 

and the analytical solution for all three cases studied. In all cases, the pore pressure 

increases over the entire sphere to the value of the applied load upon the application of 
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the load. The pore pressure then initially increases at the centre of the sphere in cases 1 

and 2 before decreasing due to the consolidation process. This effect, known as the 

Mandel–Cryer effect [297, 298], is perfectly captured in the numerical analyses. For 

case 3, where the soil is incompressible, no increase in pore water pressure at the centre 

of the sphere is observed, which also agrees with the analytical solution for this case. 

The Mandel–Cryer effect cannot be captured using the original Terzaghi formulation for 

consolidation and can only be simulated when the governing equations for the solid and 

water phases are properly coupled. More discussion on this matter can be found in 

[299]. 

 

 
(a) 

 
(b) 

Figure 4.5. Solutions to the Cryer’s problem; (a) The distribution of dimensionless excess pore pressure 

versus dimensionless surface displacement; (b) the variation of dimensionless surface displacement with 

respect to the square root of the dimensionless time. 

 

To quantitatively scrutinise the proposed methods, an error analysis is performed using 

four background meshes with different densities. The accuracy and convergence rate of 

the proposed method are studied, and also compared with those of the conventional 

linear FEM with the same background meshes. To this end, two types of error norms, 

namely the displacement and the pore pressure error norms, are defined as presented by 
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Equation 3-63 and 3-64, respectively: The properties of the non-uniform background 

meshes used for the error analysis of the Cryer’s problem are listed in Table 4-2.  

 

Table 4-2. The number of field nodes and elements (smoothing domains) for different background 

meshes adopted for the error analysis of Cryer’s problem. 
 

Configuration number Number of field nodes Number of smoothing 

domains 

1 30 50 

2 108 200 

3 387 730 

4 1722 2920 

 

A comparison of the convergence rate (shown with 𝑅𝑅) and accuracy of the different 

methods proposed in this study, and also the standard linear FEM, with respect to the 

various mesh densities at two different dimensionless times, 𝑡𝑡𝑑𝑑  = 0.1 and 𝑡𝑡𝑑𝑑 = 1.0, is 

depicted in Figure 4.6 and Figure 4.7, for displacements and pressures, respectively. As 

can be seen, all the methods presented in this study are in general more accurate 

compared to the FEM, in terms of both displacement and pore fluid pressure 

calculations. In terms of convergence rates, again CSPIMs/CSRPIMs are in general 

superior to the FEM, although the difference between the convergence rates of the 

different methods are not considerable in some cases. Considering the error analysis in 

terms of displacements, CSRPIM-T2L produces the most accurate results and shows 

better convergence rates. However, the difference in accuracy and the convergence rate 

between CSRPIM-T2L and CSRPIM-T4 in terms of displacements at 𝑡𝑡𝑑𝑑 = 0.1 isnot 
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considerable. The relatively similar performances of CSRPIM-T2L and CSRPIM-T4 in 

this case may be attributed to the limited dissipation of the excess pore water pressure at 

𝑡𝑡𝑑𝑑 = 0.1. This results in a displacement field which is mainly concentrated to a small 

layer at the surface of the sphere. The approximated displacement field in the T2L 

scheme has therefore very similar accuracy to that of the T4 node selection scheme 

because most of the additional nodes involved in the T2L scheme have negligible 

displacements. This effect diminishes as time passes, and the difference between the 

solutions of CSRPIM-T2L and CSRPIM-T4 becomes more meaningful at 𝑡𝑡𝑑𝑑 = 1.0, as 

seen from Figure 4.6. In general, it can be concluded that CSRPIM-T2L yields the most 

accurate results and exhibits the highest convergence in terms of both displacements and 

pressures for the Cryer’s problem.   

 

(a) 

 

(b) 

Figure 4.6. Displacement error norms for Cryer’s problem at dimensionless time (a) 𝑡𝑡𝑑𝑑=0.1; and (b) 

𝑡𝑡𝑑𝑑=1.0 . 
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(a) 

 
(b) 

Figure 4.7. Excess pore pressure norms for Cryer’s problem at dimensionless time (a) 𝑡𝑡𝑑𝑑=0.1; and (b) 

𝑡𝑡𝑑𝑑=1.0. 

 

4.9.2 De Leeuw’s problem 

The second problem studied here is the De Leeuw’s problem, originally considered in 

[300], which involves a cylindrical saturated porous medium (with radius and height of 

a = 1 m) constrained between two rigid horizontal plates so that the vertical 

displacements at the top and the bottom of the model are zero, as shown in Figure 4.8. 

The outer radial boundary of the sample is drained. A uniform compressive radial stress 

with a magnitude of  𝜂𝜂0 = 1 kPa is applied to the sample at the outer boundary. The soil 

properties are taken E = 1 kPa and v = 0, and 𝑘𝑘 = 1 m sec⁄ , in accordance with those 

adopted in [301]. Both solid grains and water are assumed to be incompressible. The 

first time step is taken as 𝑡𝑡𝑑𝑑 = 0.001, and the time step growth factor is assumed 𝛼𝛼 =

1.05. For the numerical analysis, an axisymmetric section of the medium was 

discretised by a background mesh with 450 elements and 256 nodes, as shown in 

Figure4.9. 
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(a) 

 

(b) 

Figure 4.8. A schematic representation of (a) the section and (b) the plan view of the cylinder relevant to 

De Leeuw’s problem. 

 

 

Figure4.9. The mesh configuration adopted for the numerical solution of the De Leeuw’s problem. 

 

The numerical results in terms of dimensionless excess pore pressure (𝑃𝑃𝑐𝑐 =

𝑠𝑠𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜂𝜂𝑜𝑜𝑡𝑡𝑠𝑠 𝜂𝜂𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑡𝑡𝑠𝑠/𝜂𝜂0) at different dimensionless radii (𝑡𝑡 𝑝𝑝⁄ ) and different 

dimensionless times, along with their corresponding analytical solutions taken from 

[301], are presented in Figure 4.10. It is seen from this figure that the numerical results 

using both CSPIM-T4 and CSRPIM-T2L perfectly match the analytical solutions at all 

times. The Mandel-Cryer effect is again evident from Figure 4.10, with excess pore 
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water pressure initially increasing beyond the initial applied pressure at the centre of the 

cylinder, before dissipating due to consolidation.  

 

Figure 4.10.Variation of the dimensionless excess pore pressure versus dimensionless radius at different 

dimensionless times. 

 

A thorough error analysis in terms of displacement and pressure solutions is again 

performed for this example using four different background meshes, whose properties 

are listed in Table 4-3. 
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Table 4-3. The properties of the different background meshes employed in the error analysis of De 

Leeuw’s problem. 
 

Configuration number Number of field nodes Number of smoothing 

domains 

1 121 200 

2 256 450 

3 441 800 

4 676 1250 

 

Figure 4.11 and Figure 4.12 illustrate the results of the error analysis of De Leeuw’s 

problem in terms of the displacement and pressure error norms, respectively. 

 

(a) 

 

(b) 

Figure 4.11. Displacement error norms for De Leeuw’s problem at dimensionless time (a) 𝑡𝑡𝑑𝑑 = 0.1; and 

(b) 𝑡𝑡𝑑𝑑 = 1.0. 
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(a) 

 

(b) 

Figure 4.12. Pressure error norms for De Leeuw’s problem at dimensionless time (a) 𝑡𝑡𝑑𝑑 = 0.1; and (b) 𝑡𝑡𝑑𝑑 

= 1.0. 

 

All the proposed methods yield more accuracy compared to the FEM in terms of 

displacement and pressure error norms. In terms of convergence rate, again the methods 

presented in this study outperform the standard FEM. Among all CSPIMs, CSPIM-T2L 

achieves the most accurate results in terms of both displacement and pressure. 

Consistent with the pervious example, the superiority of CSPIM-T2L is less evident in 

terms of displacement at dimensionless time 𝑡𝑡𝑑𝑑 = 0.1, perhaps due to the same reasons 

discussed in the previous example.  

4.9.3 The study of Noordbergum effect  

The last numerical example concerns the Noordbergum effect, first observed in a field 

well in the small village of Noordbergum in the Netherlands [302]. The observation 

showed that in a three-layered soil medium composed of a clay layer sandwiched 

between two sand layers, when the pumping of water from the lower sand layer is 

stopped, the water level in the aquifer quickly increased, as expected. However, in the 

upper sand layer, the water level initially decreased for a period of time, before starting 
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to increase. A similar effect was observed when pumping from the lower sand layer 

resumed, with the water level in the upper aquifer increased for a while before it was 

decreased. This phenomenon is also referred to as a reverse groundwater level 

fluctuation [303]. The Noordbergum effect can be attributed to the radial displacement 

of the clay layer around the well stemming from the Poisson’s ratio effect. The 

extraction of water from the bottom sand layer causes decrease in pore water pressure in 

the bottom sand layer, and therefore in the bottom of the clay layer. This suction 

initiates consolidation process in the clay layer, resulting in an increase in the effective 

stress, initially in the lower part of the clay layer, and therefore compression of the clay 

layer, in both horizontal and vertical directions. The radial displacements, in turn, apply 

confining pressure to the upper part of the clay layer and also the upper sand layer 

around the well resulting in an increase in pore water pressure in those layers. The pore 

water pressure increase is more pronounced in the clay layer due to its lower hydraulic 

permeability compared to the upper sand layer. 

For the numerical simulation of the Noordbergum effect, a 2m thick clay layer confined 

by two 4m thick sand layers is simulated. The schematic geometry of the problem and 

its relevant boundary conditions are depicted in Figure 4.13. The properties of the two 

sand layers are identical. The soil parameters used in the simulations are listed in Table 

4-4, in accordance to those assumed in [304]. The clay and sand layers were assumed to 

be homogeneous and isotropic. A vertical well is drilled through all three layers. The 

water is extracted from the lower sand layer at a constant rate of 𝑞𝑞� = 2 × 10−2 m3 sec⁄ , 

as depicted in Figure 4.13. At r = 0, the flux boundary condition is assumed for the 

lower sand layer, while no-flow boundary condition is prescribed for the clay and the 

upper sand layers. The radial extension of the domain is assumed r = 1000 m, to 

approximate infinite lateral extension and minimise the boundary effects. The 
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compressibility of water is taken 5 × 10−10 m2 𝑁𝑁⁄ , and the solid grains are assumed 

incompressible. The wall of the well is free to move in the vertical direction, but is fixed 

in horizontal direction. 

 

 

(a) 

 

(b) 

Figure 4.13.(a) Illustration of the three-layered medium and its corresponding boundary conditions 

employed for the numerical simulation of the Noordbergum effect, and (b) representation of a portion 

(0m ≤ 𝑧𝑧 ≤ 10m, 0m ≤ 𝑡𝑡 ≤ 110m) of the background mesh adopted in the study of the Noordbergum 

effect. 
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Table 4-4. The soil properties adopted in the simulation of the Noordbergum effect. 

Parameter Sand Clay 

        n 0.44 0.66 

𝑘𝑘 ( m
sec

) 9.06 × 10−4  2.29 × 10−6  

       v 0.25 0.35 

 E (kPa) 8.33 × 103 3.12 × 102 
 

 

To simulate the problem, an unstructured triangular background mesh composed of 310 

elements and 180 nodes is adopted, as partially shown in Figure 4.13. As can be seen 

from this figure, the background mesh is very fine near the pumping well and becomes 

coarser steadily as 𝑡𝑡 increases. The first time step is taken as 0.1 sec and increases by a 

factor of 𝛼𝛼 = 1.5 throughout the analysis. The numerical solution in terms of the 

hydraulic heads and displacements at different points and times are obtained using the 

proposed CSPIM and CSRPIM. The results from the FEM using a very fine mesh is 

also obtained and used as the benchmark solution. Figure 4.14 shows the variation of 

the hydraulic head versus time at three different levels of 𝑧𝑧 = 2𝑝𝑝, 𝑧𝑧 = 5𝑝𝑝, and 𝑧𝑧 =

8𝑝𝑝. The hydraulic head is defined as z + 𝑝𝑝𝑡𝑡
𝜌𝜌𝑓𝑓𝑠𝑠

 in which 𝜂𝜂𝑡𝑡 is the total pore water 

pressure. A comparison of the numerical results for excess pore pressure is made at two 

different radial distances: r = 10 m and r = 100 m. As can be seen from Figure 4.14, the 

numerical results for CSPIM-T4 and CSRPIM-T2L properly capture the benchmark 

solutions at all different levels and radial distances. Also included in Figure 4.14 are the 

numerical results obtained by Kim and Parizek [304] for the same problem, but with 

slightly different assumptions (e.g., volume change dependent coefficient of 

permeabilities, suction effects in the unsaturated zone, etc.). That is why although both 
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solutions are qualitatively similar and show similar trends, the values obtained in the 

two solutions are not the same. Comparison of the numerical results at r = 10 m and r = 

100 m for CSPIMs and the FEM shows that the Noordbergum effect is mainly observed 

in the regions close to the pumping well.  

Figure 4.15 depicts the surface settlement and the radial displacement at z = 10m with 

respect to the radial distance at t = 86400 sec = 24 hr, using CSPIM-T4, CSRPIM-T2L 

and the benchmark FEM, along with the results obtained by [304] Again, both CSPIM 

solutions are in very good agreement with the benchmark solution and show similar 

trends to the results obtained by [304]. The variation of the horizontal displacement is of 

special interest in Figure 4.15. As it can be seen, the horizontal displacement increases 

with radial distance and picks at some point, before decreasing for points farther from 

the well. This lateral compression around the well is the main reason for the unexpected 

increase in the pore water pressure and leads to the Noordbergum effect. 

 

 

(a) 

 

(b) 

Figure 4.14. The variation in the hydraulic head versus time for the Noordbergum problem. 
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Figure 4.15. The surface and radial displacements at z = 10m for the Noordbergum problem. 

 

4.10 Conclusion 

A novel approach was proposed in this chapter to solve the singularity condition 

associated with the application of the smoothed point interpolation methods to 

axisymmetric problems. In the method proposed, the property matrices of the 

discretised form of the coupled flow–deformation equations are decomposed into 

submatrices that either contain, or do not contain differentiation of the independent 

variables. The smoothing operation is then applied only to those submatrices that 

contain differentiation, while the rest of the submatrices are calculated using the Gauss 

integration method, very similar to the standard finite element method. The approach 

proposed gracefully avoids any singularity in theclay  formulation, with no need for 

additional computations compared to the formulation in the plain strain conditions. The 

applicability and performance of the proposed method to solve axisymmetric coupled 

problems were studied through simulation of three benchmark problems. The numerical 

solutions were compared with the analytical solutions or benchmark solutions. In all 

cases, the numerical results of the proposed method showed excellent agreement with 
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the analytical or the reference solutions. The robustness and accuracy of the proposed 

method were further investigated by performing error norm analyses in terms of 

displacement and excess pore pressure. It was shown that the proposed methods 

outperform the linear finite element method in terms of both accuracy and convergence 

rate. Among the proposed methods, CSRPIM-T2L generally exhibited the best 

performance in terms of both displacement and excess pore pressure, with CSPIM-T4 

being a close contestant.  
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5 A stabilized, low-order edge-based smoothed point 

interpolation method for numerical analyses in 

geomechanics 

 

5.1 Preface 

A stabilised smoothed point interpolation method for both linear and nonlinear 

numerical analysis in geomechanics is proposed. The presented method retrieves the use 

of equal-order linear interpolations as a natural, practical choice in the context of 

consistently stabilised Galerkin methods in computational geomechanics. The 

formulation presented avoids numerical instabilities and sub-optimal convergence rates 

often observed when (nearly) incompressible conditions are studied. In this study, the 

smoothing gradient technique is adopted to preserve the consistency of the proposed 

method for equal-order linear interpolations while discretising the field domain with a 

set of triangular elements. The proposed technique is generic in nature and can be 

applied to any SPIM/SRPIM, however, for the sake of simplicity, a special case of the 

edge-based SPIM with linear shape functions, often referred to as the edge-based 

smoothed FEM (ESFEM)[91, 92], has been adopted in this chapter for the presentation 

of the method and obtaining the numerical solutions. The proposed smoothed 

formulation retains consistency by eliminating all derivatives that appear in consistently 

stabilised formulations by employing the smoothing gradient operator, in which 

integrations of the interested quantities over the smoothing domains are transformed 

into those over the boundaries of the smoothing domains using the Divergence theorem. 

SFEMs are mathematically proven to possess greater accuracy and super convergence 
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than the FEM in a variety of disciplines [17, 94, 97-99, 206]. An unconditionally 

stabilised Galerkin method is applied to the ESFEM, which is used as a representative 

form of the smoothed FEM (SFEM) and in general SPIM, to demonstrate the 

applicability of the proposed method in a numerical coupled flow-deformation analysis 

in computational geomechanics that offers unconditional stability irrespective of a 

priori chosen mesh-dependent stabilisation parameter. This is the first time that such an 

unconditionally stabilised method is implemented to coupled flow-deformation 

problems in geomechanics. The robustness and accuracy of the proposed method are 

examined by comparing the attained numerical results with respect to the reference 

solutions of several benchmark coupled problems that encompass both linear and 

nonlinear material behaviour. The numerical results are also compared with those 

obtained by the stabilised polynomial pressure projection FEM, which has been applied 

previously in geomechanics [52].  

 

5.2 Notation  

In the following sections the domain Ω represents a d-dimensional connected bounded 

region in 𝑹𝑹𝑑𝑑 (𝑠𝑠 = 2, 3) with a sufficiently smooth, in the Lipschitz sense, boundary Γ. 

The usual notations 𝐻𝐻𝑝𝑝(Ω), ||. ||𝑝𝑝 and (. , . )𝑝𝑝 are used (with p being a nonnegative 

integer) to characterise Sobolev spaces, including all functions that have square 

integrable derivatives up to order p on Ω, the standard Sobolev norm, and the inner 

product, respectively. 𝐿𝐿2(Ω) is replaced by 𝐻𝐻0(Ω) when p = 0, and the inner product 

designation index is dropped. The symbol |. |𝑘𝑘, 0 <  𝑘𝑘 ≤  𝜂𝜂 represents the 𝑘𝑘th seminorm 

on 𝐻𝐻𝑝𝑝(𝑟𝑟).  𝐻𝐻0
𝑝𝑝 (Ω) stands for the closure of 𝐶𝐶0∞ (Ω) with respect to the norm ||. ||𝑝𝑝. G1 

represents the G space, whose associated norm and inner product are shown by ||. ||𝐺𝐺1 
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and  (. , . )𝐺𝐺1, respectively. Vectors, matrices and spaces that include vector-valued 

functions are shown in boldface. The Euclidean inner product and norm are denoted by 

<.,.> and |. |, respectively. The over-dot indicates the time derivative. 

The symbol 𝑋𝑋ℎ  stands for a finite dimensional space (denoted by the superscript ‘h ’) of 

function 𝑋𝑋 which approximates it with respect to a regular subdivision 𝒯𝒯ℎ (which is 

triangulation in this study) of the domain Ω into 𝒦𝒦 finite subdomains, each denoted by 

Ω𝑠𝑠. ∎�  denotes that ∎ is smoothed over the smoothing domains. 

 

5.3 The smoothed mixed Galerkin method 

The variational statement of the coupled flow-deformation equations originally 

proposed by Biot [161], including material nonlinearity and with small deformation 

assumption, are briefly described in this section. The generalized weak form that 

includes the smoothed strain concept is presented. The edge-based smooth finite 

element method (ESFEM) is briefly discussed. Subsequently, the resulting smoothed 

global matrix system is linearised with the standard Newton-Raphson iterative scheme.  

 

5.3.1 Coupled flow-deformation governing equations 

The coupled equations that govern a two-phase saturated porous medium consisting of 

solid and fluid phases are expressed by Equation 3-1 and Equation 3-2 in conjunction 

with the similar definition for 𝑳𝑳𝑑𝑑 as presented in Equation 3-3. The adequate essential 

and natural boundary conditions that are required for the solvability of Equations 3-1 

and 3-2 are defined in Equations 3-4 to 3-7 with the identical notations associated with 
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the definitions of the disjointed boundaries for introducing the appropriate essential and 

natural boundary conditions as prescribed by Equation 3-9 and Equation 3-10. 

 

5.3.2 Constitutive modelling  

It is necessary to introduce a constitutive model in a general rate form to characterise 

the relation between the field variables, that are the displacement and pressure fields of 

a porous medium, and the effective stress and volume change of the porous media. In its 

general form, a constitutive relation in a porous medium can be stated as:  

�̇�𝝈′ = 𝑫𝑫𝑠𝑠𝑝𝑝�̇�𝜺                                                                                                                    (5-1) 

in which 𝜺𝜺 is the infinitesimal strain defined as follows: 

𝜺𝜺 = 𝑳𝑳𝑑𝑑𝒖𝒖                                                                                                                       (5-2) 

and 𝑫𝑫𝑠𝑠𝑝𝑝 is the tangent elasto-plastic constitutive matrix. When material nonlinearity is 

assumed, a strain decomposition is required for the strain rate, such that: 

𝜺𝜺 ̇ = 𝜺𝜺 ̇ 𝑠𝑠 +  𝜺𝜺 ̇ 𝑝𝑝                                                                                                              (5-3) 

where 𝜺𝜺e is the elastic (reversible) part of the strain and 𝜺𝜺𝑝𝑝 denotes the plastic 

(irreversible) part of the strain. To obtain the plastic strain, a flow rule must be adopted. 

In general, the calculation of the plastic strain is expressed as:  

�̇�𝜺𝑃𝑃 =  �̇�𝛾 𝜕𝜕𝑤𝑤
𝜕𝜕𝝈𝝈

=  �̇�𝛾𝒓𝒓(𝝈𝝈)                                                                                                    (5-4)  

in which 𝛾𝛾 ̇  is the scalar plastic multiplier and w denotes the plastic potential function, 

which can be different from the yield function if non-associativity is assumed. Finally, 

the consistency condition implies the following condition: 
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𝑠𝑠(𝝈𝝈) = 0                                                                                                                       (5-5) 

in which 𝑠𝑠 stands for the yield function. In the examples presented in this study, both 

elastic isotropic materials and nonlinear materials are considered. For nonlinearity, 

Mohr-Coulomb behaviour is assumed along with both associative and non-associative 

flow rules. For the sake of brevity, the related yield and potential functions of Mohr-

Coulomb constitutive model and their relevant implementation details are not discussed 

here, and interested readers are referred to [2]. 

 

5.3.3 Variational form of the standard mixed Galerkin method 

The variational form of the coupled flow-deformation equations with the assumption of 

the isotropic permeability is obtained by seeking (u,p) ∈  𝑯𝑯0
1 (Ω) × 𝐻𝐻01(Ω) such that: 

𝐴𝐴(𝒖𝒖,𝒗𝒗) − 𝜂𝜂𝐵𝐵(𝒗𝒗,𝜂𝜂) = 𝐹𝐹 (𝒗𝒗)                            ∀ 𝒗𝒗 ∈ 𝑯𝑯0
1(Ω)                                         (5-6) 

𝜂𝜂𝐵𝐵(�̇�𝒖,𝑞𝑞) + 𝑘𝑘𝑓𝑓
𝜇𝜇𝑓𝑓
𝐻𝐻(𝑞𝑞,𝜂𝜂) + 𝛼𝛼𝑓𝑓𝑀𝑀(𝑞𝑞, 𝜂𝜂) = 𝑇𝑇(𝑞𝑞)    ∀ 𝑞𝑞 ∈ 𝐻𝐻01(Ω)                                      (5-7) 

where 𝐴𝐴 (. , . ), 𝐵𝐵 (. , . ),  𝐹𝐹 (. ) and 𝐻𝐻(. ) are defined by: 

𝐴𝐴 (𝒖𝒖,𝒗𝒗)= ∫ 𝜺𝜺T(𝒗𝒗)𝛔𝛔ˊ(𝜺𝜺(𝒖𝒖))𝑠𝑠Ω     
Ω                                                                                (5-8) 

𝐵𝐵 (𝒗𝒗,𝜂𝜂) =   ∫ 𝜂𝜂 𝜵𝜵.𝒗𝒗 𝑠𝑠Ω    
Ω                                                                                            (5-9)  

𝐻𝐻(𝑞𝑞,𝜂𝜂) = ∫ (𝜵𝜵𝑞𝑞)T𝜵𝜵𝜂𝜂 𝑠𝑠Ω     
Ω                                                                                      (5-10) 

𝑀𝑀(𝑞𝑞,𝜂𝜂) =∫ 𝑞𝑞�̇�𝜂 𝑠𝑠Ω     
Ω                                                                                                 (5-11) 

𝐹𝐹 (𝒗𝒗)=∫ (𝒗𝒗)T�̅�𝒕𝑠𝑠Γ  
Γ𝑡𝑡

+∫ 𝜌𝜌(𝒗𝒗)T𝐠𝐠𝑠𝑠Ω     
Ω                                                                         (5-12) 
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𝑇𝑇(𝑞𝑞)=∫ 𝑞𝑞𝑞𝑞�𝑠𝑠Γ     
Γ𝑞𝑞

                                                                                                      (5-13) 

In the interest of formulations offered in the next sections, Equations 5-6 and 5-7 are 

rewritten in the following form: 

𝑄𝑄 (𝒖𝒖,𝜂𝜂;𝒗𝒗, 𝑞𝑞) = 𝐿𝐿 (𝒗𝒗, 𝑞𝑞)     ∀ (𝒗𝒗, 𝑞𝑞) ∈ 𝑯𝑯0
1 (Ω)  × 𝐻𝐻01 (Ω),                                        (5-14) 

where  

𝑄𝑄 (𝒖𝒖,𝜂𝜂;𝒗𝒗, 𝑞𝑞) = 𝐴𝐴 (𝒖𝒖,𝒗𝒗) −  𝜂𝜂𝐵𝐵 (𝒗𝒗,𝜂𝜂) + 𝜂𝜂𝐵𝐵 (�̇�𝒖,𝒒𝒒 ) + 𝑘𝑘𝑓𝑓
𝜇𝜇𝑓𝑓
𝐻𝐻(𝑞𝑞,𝜂𝜂) + 𝛼𝛼𝑓𝑓𝑀𝑀(𝑞𝑞,𝜂𝜂)        (5-15) 

and 

𝐿𝐿 (𝒗𝒗, 𝑞𝑞)=𝐹𝐹(𝒗𝒗)+𝑇𝑇(𝑞𝑞)                                                                                                  (5-16) 

The global bilinear form of the equations presented above is based on Sobolev spaces, 

which are conventionally used in spatial discretisation used in the FEM to adopt the 

smoothing gradient technique for application in ES-FEM.  

 

5.3.4 Smoothing domains in ESFEM 

In this chapter, a linear ESFEM is adopted for the developments that follow; thus, the 

smoothing domains are constructed based only on the shared boundaries of 

neighbouring elements. However, other forms of the SFEM and also SPIM can also be 

implemented in a similar fashion.  

The creation of smoothing domains for ESFEM analysis requires a subdivision of the 

problem domain. Triangulation is adopted as it is perhaps the simplest method of 

domain discretisation which can be performed automatically, similar to the meshing 

method used in the standard FEM. The mesh is assumed to be composed of Ne non-
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overlapping elements, such that Ω = � Ω𝑠𝑠
𝑁𝑁𝑠𝑠
𝑠𝑠=1 , N nodes, and Ns edges. In ESFEM, a set 

of smoothing domains must be created on top of the background mesh. To this end, an 

internal node is first added at the centroid of each element Ω𝑠𝑠 ,  as shown in Figure 5.1. 

The partitioning of the problem domain Ω into a set of NSD smoothing domains (Ω𝑘𝑘𝑠𝑠 ) is 

then performed such that Ω = � Ω𝑘𝑘𝑠𝑠
𝑁𝑁𝑆𝑆𝑆𝑆
𝑘𝑘=1  and Ω𝑖𝑖𝑠𝑠 ∩ Ω𝑗𝑗𝑠𝑠 = ∅, 𝑠𝑠 ≠ 𝑗𝑗. The smoothing domain 

Ω𝑘𝑘𝑠𝑠  pertaining to edge k is created by connecting two end-edge points to the internal 

nodes of neighbouring elements, as shown in Figure 5.1. 

 

Figure 5.1. A mesh composed of linear triangular elements and its corresponding smoothing domains. An 

interior smoothing domain Ω𝑘𝑘𝑠𝑠  corresponding to edge k of the background mesh, and a boundary 

smoothing domain Ω𝑚𝑚𝑠𝑠  corresponding to edge 𝑝𝑝 of the background mesh are highlighted. 

5.3.5 Smoothing gradient operation 

In SFEMs, the gradient of the displacement field is approximated over a smoothing 

domain by an integral representation, similar to thatpresented in Equation 3-27. The 
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smoothed gradient of the displacement field can be obtained for any smoothing domain 

using Equation 3-29. 

 

5.3.6 Generalised smoothed mixed Galerkin formulation 

The generalised smoothed Galerkin formulation for the coupled flow-deformation 

equations can now be developed. The variational form of the governing Equations 5-6 

and 5-7 are confined to a pair of spaces 𝑺𝑺𝑢𝑢 and 𝑆𝑆𝑝𝑝, defined as follows: 

𝑺𝑺𝑢𝑢 =  {𝒖𝒖: Ω →  𝑹𝑹2|𝒖𝒖 ∈ 𝑮𝑮ℎ1  ,𝒖𝒖 = 𝒖𝒖�  𝑜𝑜𝑛𝑛 Γ𝑢𝑢}                                                              (5-17) 

𝑆𝑆𝑝𝑝 =  �𝜂𝜂: Ω →  𝑅𝑅 |𝜂𝜂 ∈ 𝐺𝐺ℎ1 ,𝜂𝜂 = �̅�𝜂  𝑜𝑜𝑛𝑛 Γ𝑝𝑝�                                                                 (5-18) 

The corresponding kinematically admissible spaces, 𝑽𝑽𝒗𝒗,0 and 𝑉𝑉𝑞𝑞,0 respectively, are 

defined as follows: 

𝑽𝑽𝑣𝑣,0 =  �𝒗𝒗: Ω →  𝑹𝑹2|𝒗𝒗 ∈ 𝑮𝑮ℎ,0
1  ,𝒗𝒗 = 𝟎𝟎  𝑜𝑜𝑛𝑛 Γ𝑢𝑢�                                                          (5-19) 

𝑉𝑉𝑞𝑞,0 =  �𝑞𝑞: Ω →  𝑅𝑅 |𝑞𝑞 ∈ 𝐺𝐺ℎ,0
1  , 𝑞𝑞 = 0  𝑜𝑜𝑛𝑛 Γ𝑝𝑝�                                                            (5-20) 

Applying the smoothing operation technique to Equations 5-6 and 5-7, the 

corresponding discrete problems are obtained, which is to seek (𝒖𝒖ℎ,𝑞𝑞ℎ)  ∈  𝑺𝑺𝑢𝑢 ×

𝑆𝑆𝑝𝑝 such that 

�̃�𝐴 (𝒖𝒖,𝒗𝒗) − 𝜂𝜂𝐵𝐵�  (𝒗𝒗,𝜂𝜂) = 𝐹𝐹(𝒗𝒗)    ∀ 𝒗𝒗 ∈ 𝑽𝑽𝑢𝑢,0                                                              (5-21) 

𝜂𝜂𝐵𝐵�  (�̇�𝒖,𝑞𝑞) + 𝑘𝑘𝑓𝑓
𝜇𝜇𝑓𝑓
𝐻𝐻�(𝑞𝑞,𝜂𝜂) + 𝛼𝛼𝑓𝑓𝑀𝑀(𝑞𝑞, 𝜂𝜂) = 𝑻𝑻(𝑞𝑞)     ∀ 𝑞𝑞 ∈ 𝑉𝑉𝑝𝑝0                                       (5-22) 

Alternately, the general smoothed form of the governing equations can be demonstrated 

as: 
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𝑄𝑄�  (𝒖𝒖,𝜂𝜂;𝒗𝒗, 𝑞𝑞) = 𝐿𝐿(𝒗𝒗, 𝑞𝑞)   ∀ (𝒗𝒗, 𝑞𝑞) ∈ 𝑽𝑽𝑢𝑢,0  × 𝑉𝑉𝑝𝑝,0                                                      (5-23) 

where 

𝑄𝑄�  (𝒖𝒖,𝜂𝜂;𝒗𝒗, 𝑞𝑞)=�̃�𝐴(𝒖𝒖,𝒗𝒗)+𝜂𝜂𝐵𝐵�(𝒗𝒗,𝜂𝜂)+𝜂𝜂𝐵𝐵�(�̇�𝒖,𝑞𝑞)+𝑘𝑘𝑓𝑓
𝜇𝜇𝑓𝑓

 𝐻𝐻�(𝑞𝑞,𝜂𝜂)+𝛼𝛼𝑓𝑓𝑀𝑀(𝑞𝑞,𝜂𝜂)                        (5-24)  

𝐿𝐿(𝒗𝒗, 𝑞𝑞)= 𝑭𝑭 (𝒗𝒗) + 𝑻𝑻(𝑞𝑞),                                                                                              (5-25) 

where the smoothed bilinear forms are as follows: 

�̃�𝐴 (𝒖𝒖,𝒗𝒗)= ∫ 𝜺𝜺�(𝒗𝒗)𝛔𝛔ˊ(𝜺𝜺�(𝒖𝒖))𝑠𝑠Ω     
Ω                                                                                (5-26) 

𝐵𝐵�  (𝒗𝒗,𝜂𝜂) =   ∫ 𝜂𝜂𝜵𝜵�.𝒗𝒗 𝑠𝑠Ω    
Ω                                                                                          (5-27) 

𝐻𝐻�(𝑞𝑞,𝜂𝜂) = ∫ (𝜵𝜵�𝑞𝑞)T𝜵𝜵� 𝜂𝜂 𝑠𝑠Ω.     
Ω                                                                                     (5-28) 

Equation 5-23 is referred to as the weakened weak (W2) form [13, 14, 89, 305], because 

only the displacement and pressure fields, and not their derivatives, are required to be 

square integrable in this form. Using this form, computation of derivatives of the 

primary variables is no longer required. It can be proved [40] that the globally smoothed 

bilinear form (Equation 5-23) has a unique solution when edge-based smoothing 

domains are used. 

It is worth mentioning that the functionals 𝐹𝐹(𝒗𝒗) and 𝑇𝑇(𝑞𝑞) are not involved in employing 

the smoothing gradient technique and have exactly the same form as the linear 

functionals existing in  FEM variational forms.  
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5.4 Matrix form of the generalised smoothed mixed Galerkin FEM  

5.4.1 Creation of linear shape functions and approximated solutions 

The shape functions used in ESFEM are identical to those applied in the standard FEM 

associated with linear triangular elements [92]. They are computed directly using the 

three nodes of the triangular element hosting the point of interest. Accordingly, the pair 

of equal-order subspaces 𝑺𝑺𝑢𝑢ℎ and 𝑆𝑆𝑝𝑝ℎ of trial functions and the subspaces 𝑽𝑽𝑣𝑣,0
ℎ  and 𝑉𝑉𝑞𝑞,0

ℎ  of 

weighting functions contain piecewise linear functions for the interpolation of the field 

variables, and are defined as follows: 

𝑺𝑺𝑢𝑢ℎ = �𝒖𝒖ℎ ∈ 𝑮𝑮ℎ1 ,𝒖𝒖ℎ|Ω𝑠𝑠 ∈ 𝑷𝑷1(Ω𝑠𝑠)�                                                                             (5-29) 

𝑆𝑆𝑝𝑝ℎ = �𝜂𝜂ℎ ∈ 𝐺𝐺ℎ1,𝜂𝜂ℎ|Ω𝑠𝑠 ∈ 𝑃𝑃1(Ω𝑠𝑠)�                                                                              (5-30) 

𝑽𝑽𝑣𝑣,0
ℎ = �𝒗𝒗ℎ ∈ 𝑮𝑮ℎ,0

1 ,𝒗𝒗ℎ|Ω𝑠𝑠 ∈ 𝑷𝑷1(Ω𝑠𝑠)�                                                                         (5-31) 

𝑉𝑉𝑞𝑞,0
ℎ = �𝑞𝑞ℎ ∈ 𝐺𝐺ℎ,0

1 , 𝑞𝑞ℎ|Ω𝑠𝑠 ∈ 𝑃𝑃1(Ω𝑠𝑠)�                                                                          (5-32) 

where 𝑃𝑃1(Ω𝑠𝑠) possesses a set of polynomials of up to degree one.  

Having calculated the shape functions, the approximated displacement and pressure 

field variables at an arbitrary point of interest x ∈ Ω𝑠𝑠 are interpolated in the following 

forms: 

𝒖𝒖ℎ(𝒙𝒙)|Ω𝑠𝑠 = 𝑵𝑵𝑢𝑢(𝒙𝒙)𝒖𝒖� = ∑ �𝜙𝜙𝐼𝐼
(𝒙𝒙) 0
0 𝜙𝜙𝐼𝐼(𝒙𝒙)�

3
𝐼𝐼=1 �𝑝𝑝�𝐼𝐼�̅�𝑣𝐼𝐼

�                                                      (5-33) 

𝜂𝜂ℎ(𝒙𝒙)|Ω𝑠𝑠 = 𝑵𝑵𝑝𝑝(𝒙𝒙)𝒑𝒑� = ∑ 𝜙𝜙𝐼𝐼(𝒙𝒙)�̅�𝜂𝐼𝐼3
𝐼𝐼=1                                                                        (5-34) 

in which, similar to the previous chapters, 𝑝𝑝�𝐼𝐼 and �̅�𝑣𝐼𝐼 are the components of nodal 

displacement field values, �̅�𝜂𝐼𝐼 is the nodal fluid pressure, and 𝜙𝜙𝐼𝐼(𝐱𝐱) ∈ 𝑃𝑃1(Ω𝑠𝑠) is the 
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linear shape function associated with node I.  𝑵𝑵𝑢𝑢(𝒙𝒙) is the shape function matrix related 

to the displacement field defined in the expanded form as:  

𝑵𝑵𝑢𝑢(𝒙𝒙)|Ω𝑠𝑠=�
𝜙𝜙1(𝒙𝒙) 0

0 𝜙𝜙1(𝒙𝒙)
𝜙𝜙2(𝒙𝒙) 0

0 𝜙𝜙2(𝒙𝒙)
𝜙𝜙3(𝒙𝒙) 0

0 𝜙𝜙3(𝒙𝒙)�2×6
                        (5-35) 

and 𝑵𝑵𝑝𝑝(𝒙𝒙) stands for the shape function matrix for the interpolation of the pore fluid 

pressure variable within an element of interest: 

𝑵𝑵𝑝𝑝(𝒙𝒙)|Ω𝑠𝑠 = [𝜙𝜙1(𝒙𝒙) 𝜙𝜙2(𝒙𝒙) 𝜙𝜙3(𝒙𝒙)]1×3                                                                (5-36) 

𝒖𝒖� and 𝒑𝒑� are vectors where the unknown nodal displacement and pressure values for an 

element of interest Ω𝑠𝑠  are collected, respectively. The Galerkin weighting functions 

may be represented as: 

𝒗𝒗ℎ(𝒙𝒙)|Ω𝑠𝑠 = 𝑵𝑵𝑢𝑢(𝒙𝒙)𝒄𝒄 ,    𝑞𝑞ℎ(𝒙𝒙)|Ω𝑠𝑠 = 𝑵𝑵𝑝𝑝(𝒙𝒙)𝒄𝒄� .                                                           (5-37) 

where 𝒄𝒄 and 𝒄𝒄� collect arbitrary nodal weights. 

 

5.4.2 Computation of the property matrixes 

The discretised form of Equation 5-23 includes a global coefficient matrix comprising 

of diagonal and off-diagonal blocks representing the contribution of different phases of 

the porous media. The computation of each contributing matrix and the standard global 

matrix form are presented in this section. 

The smoothed strain 𝜺𝜺�(𝑘𝑘) over the smoothing domain Ω𝑘𝑘𝑠𝑠  can be expressed by Equation 

3-34. Similar to the previous chapters, 𝑆𝑆𝑠𝑠 collects a set of 𝑞𝑞 supporting nodes that 

contribute to the computation of the smoothed quantity of the interest over the 

smoothing domain Ω𝑘𝑘𝑠𝑠 . The supporting nodes 𝑆𝑆𝑠𝑠 , for the schematic inner smoothing 
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domain shown in Figure 5.1 is 𝑆𝑆𝑠𝑠 = {𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷} and for the boundary smoothing 

domain shown in the same figure is 𝑆𝑆𝑠𝑠 = {𝐴𝐴,𝐵𝐵,𝐶𝐶}.  𝑩𝑩�1𝐼𝐼 represents the smoothed strain–

displacement matrix for arbitrary supporting node I of the smoothing domain Ω𝑘𝑘𝑠𝑠 ,  given 

by the similar formulation given in Equation 3-35 along with its expanded form given in 

Equation 3-36.  

As seen from Equation 3-37, the smoothed strain-displacement matrix is computed on 

the boundary of the smoothing domain Γ𝑘𝑘𝑠𝑠 and the participation of the derivatives of the 

shape functions is eliminated. In ESFEM, the line integration of Equation 3-37 requires 

a sufficient number of Gauss points for numerical integration. As linear shape functions 

are adopted in this study, one Gauss point is adequate for each segment of the boundary 

of the smoothing domain (Γ𝑚𝑚𝑚𝑚𝑠𝑠 ∈ Γ𝑘𝑘𝑠𝑠). For linear ESFEM, the form of 𝑏𝑏�𝐼𝐼𝑙𝑙 after including 

the numerical integration is the same as that presented in Equation 3-37. Same notations 

as presented in Chapter 3 are adopted in this chapter, except that 𝑁𝑁𝑠𝑠𝑔𝑔𝑢𝑢 = 1 is used per 

each segment of a smoothing domain boundary herein. The smoothed strain-

displacement matrix for smoothing domain Ω𝑘𝑘𝑠𝑠  (𝑩𝑩�1) is sequentially obtained in linear 

ESFEM by the standard assembly procedure and can be presented in the following 

form: 

𝑩𝑩�1 = �∑ 𝑩𝑩�1𝐼𝐼𝐼𝐼∈𝑆𝑆𝑠𝑠 �
3×2𝑞𝑞

                                                                                                (5-38) 

For the term 𝜵𝜵𝜂𝜂(𝒙𝒙) in the standard varitional formulation (Equation 5-7), a similar 

procedure as presented in Chapter 3 (Equation3-47) must be performed to obtain the 

smoothed pressure gradient. 

Rewriting the discrete version of bilinear form (Equations 5-26) in matrix forms, yields: 

𝑲𝑲�𝑘𝑘𝑠𝑠 = ∫ 𝜺𝜺�(𝒗𝒗ℎ)𝛔𝛔ˊ(𝜺𝜺�(𝒖𝒖ℎ))𝑠𝑠Ω  
Ω𝑘𝑘
𝑠𝑠 = ∫ 𝑩𝑩�1T𝑫𝑫ep𝑩𝑩�1𝑠𝑠Ω  

Ω𝑘𝑘
𝑠𝑠 =𝑩𝑩�1T𝑫𝑫𝑠𝑠𝑝𝑝𝑩𝑩�1𝐴𝐴𝑘𝑘𝑠𝑠                            (5-39) 
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where 𝐴𝐴𝑘𝑘𝑠𝑠  stands for the area of the smoothing domain Ω𝑘𝑘𝑠𝑠 . The discrete form of 

Equation 5-27 is identical to that presented in Equation 3-42. One of the prominent 

features of ESFEM is that the numerical integration is performed with no mapping rule 

requirement, in contrast to  the FEM. Omitting the need for the mapping rule 

ameliorates the difficulties associated with numerical integration when the mesh 

undergoes distortion.  

The coupling matrix is calculated by Equation 3-52, represented here as:  

𝑪𝑪�𝑘𝑘𝑠𝑠  = ∫ 𝜂𝜂ℎ𝜵𝜵� .𝒗𝒗ℎ 𝑠𝑠Ω 
𝛺𝛺  =  ∫ 𝑩𝑩�1T𝜹𝜹𝑵𝑵𝑝𝑝𝑠𝑠Ω  

Ω𝑘𝑘
𝑠𝑠 = 𝑩𝑩�1T𝜹𝜹 ∫ 𝑵𝑵𝑝𝑝𝑠𝑠Ω 

Ω𝑘𝑘
𝑠𝑠  .                                      (5-40) 

The term ∫Ω𝑘𝑘𝑠𝑠𝑵𝑵
𝑝𝑝𝑠𝑠Ω in Equation 5-40 is calculated over each smoothing domain, rather 

than the boundary of the smoothing domains, as no smoothing operation is applied to it. 

This numerical integration is performed by the subdivision of each of the interior 

smoothing domains into two sub-triangles and by using the standard Gauss integration 

method for the sub-triangular areas. Subdivision is not, however, required for the 

boundary smoothing domains. One Gauss point per sub-triangle located on its centroid 

is needed to attain adequate accuracy for numerical integrations. We can therefore write, 

𝑪𝑪�𝑘𝑘𝑠𝑠  = 𝑩𝑩�1T𝜹𝜹∫ 𝑵𝑵𝑝𝑝𝑠𝑠Ω  
Ω𝑘𝑘
𝑠𝑠 = 2𝑩𝑩�1T𝜹𝜹∑ 𝐴𝐴𝑖𝑖𝑡𝑡𝜕𝜕

𝑛𝑛𝑡𝑡𝑟𝑟
𝑖𝑖=1 𝑵𝑵𝑖𝑖

𝑝𝑝𝑤𝑤𝑖𝑖                                                             (5-41) 

where 𝑛𝑛𝑡𝑡𝜕𝜕 denotes the number of sub-triangles for the smoothing domain of interest and 

𝐴𝐴𝑖𝑖𝑡𝑡𝜕𝜕 is the area of the triangle that hosts the Gauss points of interest. Finally, the fluid 

compressibility matrix (𝑴𝑴𝑘𝑘) is calculated over each smoothing domain in a manner 

similar to the standard FEM, because there is no smoothing operation involved in its 

definition. The vector of nodal fluxes 𝑻𝑻𝑘𝑘 and the vector of nodal forces 𝑭𝑭𝑘𝑘 are also 

calculated using Equations 3-44 and 3-45, respectively. 
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The standard assembly procedure is then performed to form the global property matrices 

and vectors of spatially discretised coupled flow-deformation equations as:  

𝑲𝑲�  = ∑ 𝑲𝑲�𝑘𝑘𝑠𝑠
𝑁𝑁𝑆𝑆𝑆𝑆
𝑘𝑘=1                                                                                                             (5-42) 

𝑯𝑯�  = ∑ 𝑯𝑯�𝑘𝑘𝑠𝑠
𝑁𝑁𝑆𝑆𝑆𝑆
𝑘𝑘=1                                                                                                             (5-43) 

 𝑪𝑪�  = ∑ 𝑪𝑪�𝑘𝑘𝑠𝑠
𝑁𝑁𝑆𝑆𝑆𝑆
𝑘𝑘=1                                                                                                             (5-44) 

𝑴𝑴 = ∑ 𝑴𝑴𝑘𝑘
𝑁𝑁𝑆𝑆𝑆𝑆
𝑘𝑘=1                                                                                                            (5-45) 

𝑭𝑭 = ∑ 𝑭𝑭𝑘𝑘
𝑁𝑁𝑆𝑆𝑆𝑆
𝑘𝑘=1                                                                                                              (5-46) 

𝑻𝑻 = ∑ 𝑻𝑻𝑘𝑘
𝑁𝑁𝑆𝑆𝑆𝑆
𝑘𝑘=1                                                                                                              (5-47) 

where 𝑲𝑲� , 𝑯𝑯� , 𝑪𝑪�, 𝑴𝑴, 𝑭𝑭 and 𝑻𝑻 are already introduced in Chapter 3. 

 

5.4.3 Linearisation  

Equations 5-21 and 5-22, in general, express two nonlinear residual equations whose 

solution requires an appropriate iterative procedure. Here, the standard Newton-

Raphson procedure is adopted. Accordingly, the coupled equations are linearly 

expanded about the configuration of interest. The residual forms of Equations 5-21 and 

5-22 can be written as follows:  

𝛹𝛹𝑢𝑢(𝒖𝒖ℎ,𝜂𝜂ℎ,𝒗𝒗ℎ) = �̃�𝐴 (𝒖𝒖ℎ,𝒗𝒗ℎ) − 𝜂𝜂𝐵𝐵�  (𝒗𝒗ℎ,𝜂𝜂ℎ) − 𝐹𝐹(𝒗𝒗ℎ) = 0                                      (5-48) 

𝛹𝛹𝑝𝑝(𝒖𝒖ℎ,𝜂𝜂ℎ, 𝑞𝑞ℎ) = 𝜂𝜂𝐵𝐵�  (�̇�𝒖ℎ,𝑞𝑞ℎ) + 𝑘𝑘𝑓𝑓
𝜇𝜇𝑓𝑓
𝐻𝐻�(𝑞𝑞ℎ,𝜂𝜂ℎ) + 𝛼𝛼𝑓𝑓𝑀𝑀(𝑞𝑞ℎ,𝜂𝜂ℎ) − 𝑇𝑇(𝑞𝑞ℎ) = 0          (5-49) 

Expanding Equations 5-48 and 5-49 about a trial solution (𝒖𝒖𝑖𝑖ℎ, 𝜂𝜂𝑖𝑖ℎ) results in: 
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 𝜳𝜳𝑢𝑢(𝒖𝒖ℎ,𝜂𝜂ℎ,𝒗𝒗ℎ) ≈ 𝜳𝜳𝑢𝑢 �𝒖𝒖𝑖𝑖ℎ,𝜂𝜂𝑖𝑖ℎ,𝒗𝒗ℎ� + ∆𝜳𝜳𝑢𝑢 �𝑠𝑠𝒖𝒖𝑖𝑖ℎ,𝑠𝑠𝜂𝜂𝑖𝑖ℎ,𝒗𝒗ℎ� = 𝟎𝟎                            (5-49) 

 𝜳𝜳𝑝𝑝(𝒖𝒖ℎ,𝜂𝜂ℎ, 𝑞𝑞ℎ) ≈ 𝜳𝜳𝑝𝑝 �𝒖𝒖𝑖𝑖ℎ,𝜂𝜂𝑖𝑖ℎ, 𝑞𝑞ℎ� +  ∆𝜳𝜳𝑝𝑝 �𝑠𝑠𝒖𝒖𝑖𝑖ℎ,𝑠𝑠𝜂𝜂𝑖𝑖ℎ, 𝑞𝑞ℎ� = 𝟎𝟎                            (5-50) 

in which 𝑠𝑠 represents the incremental variation of the quantity of interest used to update 

the unknown variables, i.e., 𝒖𝒖𝑖𝑖+1ℎ =  𝒖𝒖𝑖𝑖ℎ +  𝑠𝑠𝒖𝒖𝑖𝑖ℎ and 𝜂𝜂𝑖𝑖+1ℎ =  𝜂𝜂𝑖𝑖ℎ +  𝑠𝑠𝜂𝜂𝑖𝑖ℎ, and index i 

represents the ith iteration in the current time step. ∆ represents the imbalance of the 

residuals due to the trial solutions not being perfect. The updated solution is sought by 

rendering the residuals zero, resulting in:   

∆𝜳𝜳𝑢𝑢 �𝑠𝑠𝒖𝒖𝑖𝑖ℎ,𝑠𝑠𝜂𝜂𝑖𝑖ℎ,𝒗𝒗ℎ� = − 𝜳𝜳𝑢𝑢 �𝒖𝒖𝑖𝑖ℎ,𝜂𝜂𝑖𝑖ℎ,𝒗𝒗ℎ�                                                               (5-51) 

∆𝜳𝜳𝑝𝑝 �𝑠𝑠𝒖𝒖𝑖𝑖ℎ,𝑠𝑠𝜂𝜂𝑖𝑖ℎ, 𝑞𝑞ℎ� = − 𝜳𝜳𝑝𝑝 �𝒖𝒖𝑖𝑖ℎ,𝜂𝜂𝑖𝑖ℎ, 𝑞𝑞ℎ�                                                               (5-52) 

The Newton-Raphson standard procedure involves iteratively linearising the left-hand 

side of Equations 5-52 and 5-53, and solving the ensuing linear problems to find the 

approximated solutions so that the residuals approach zero. Before obtaining the 

corresponding linear equations explicitly, the system of equations needs to be 

discretised in the time domain too. In this study, a three-point time discretisation 

technique with variable time steps is adopted [143], except for the first time step, in 

which a standard forward Euler scheme is utilised. In this technique, the estimation of 

the time derivative of a function of interest f at time 𝑡𝑡 + 𝛼𝛼∆𝑡𝑡 is made based on the 

function values at times 𝑡𝑡 − ∆𝑡𝑡, 𝑡𝑡 and 𝑡𝑡 + 𝛼𝛼∆𝑡𝑡, using Equation 3-55 associated with its 

relevant defined coefficients presented in Equation 3-56.  

Equations 5-48 and 5-49 are now rewritten in the fully discretised forms at the current 

time step 𝑡𝑡 + 𝛼𝛼∆𝑡𝑡 in the following way:  

(𝜳𝜳𝑢𝑢)𝑡𝑡+𝛼𝛼∆𝑡𝑡 = ∫ 𝑩𝑩�1T(𝛔𝛔′)𝑡𝑡+𝛼𝛼∆𝑡𝑡Ω 𝑠𝑠Ω − 𝜂𝜂𝑪𝑪�𝑷𝑷𝑡𝑡+α∆𝑡𝑡 − 𝑭𝑭𝑡𝑡+𝛼𝛼∆𝑡𝑡 = 𝟎𝟎                                 (5-53) 
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(𝜳𝜳𝑝𝑝)𝑡𝑡+𝛼𝛼∆𝑡𝑡 = 𝜂𝜂𝑪𝑪�T(𝐴𝐴𝑼𝑼𝑡𝑡+𝛼𝛼∆𝑡𝑡 − 𝐵𝐵𝑼𝑼𝑡𝑡 + 𝐶𝐶𝑼𝑼𝑡𝑡−∆𝑡𝑡) + ∆𝑡𝑡𝑯𝑯�𝑷𝑷𝑡𝑡+𝛼𝛼∆𝑡𝑡 + 𝑝𝑝𝑓𝑓𝑴𝑴(𝐴𝐴𝑷𝑷𝑡𝑡+𝛼𝛼∆𝑡𝑡 − 𝐵𝐵𝑷𝑷𝑡𝑡 +

𝐶𝐶𝑷𝑷𝑡𝑡−∆𝑡𝑡) − ∆𝑡𝑡𝑻𝑻𝑡𝑡+𝛼𝛼∆𝑡𝑡 = 𝟎𝟎                                                                                           (5-54) 

where 𝑼𝑼 and 𝑷𝑷 are the global nodal displacement and nodal pressure vectors, 

respectively, in which all nodal displacement and pressure components for a discretised 

domain are stored. The term ∫Ω𝑩𝑩�1
T(𝛔𝛔′)𝑡𝑡+𝛼𝛼∆𝑡𝑡𝑠𝑠Ω represents another form of 𝑲𝑲�𝑇𝑇𝑼𝑼𝑡𝑡+𝛼𝛼∆𝑡𝑡 

when the material nonlinearity is included. The subscript 𝑇𝑇 in 𝑲𝑲�𝑇𝑇 implies that the 

stiffness matrix is calculated based on the tangent elasto-plastic constitutive model, as 

follows: 

𝑫𝑫𝑠𝑠𝑝𝑝 =
 𝜕𝜕𝛔𝛔𝑘𝑘ˊ
 𝜕𝜕𝜺𝜺�𝑘𝑘

                                                                                                               (5-55) 

Refinement to the trial solutions needs to be performed to achieve the nodal 

displacements and pore fluid pressures that satisfy Equations 5-53 and 5-54. An 

iterative procedure is therefore required at the current time step, in the form of:  

(𝜳𝜳𝑢𝑢)𝑖𝑖+1 𝑡𝑡+𝛼𝛼∆𝑡𝑡 = ∫Ω𝑩𝑩�1
T(𝛔𝛔′)𝑖𝑖+1𝑡𝑡+𝛼𝛼∆𝑡𝑡𝑠𝑠Ω − 𝜂𝜂𝑪𝑪�𝑷𝑷𝑖𝑖+1𝑡𝑡+𝛼𝛼∆𝑡𝑡 − (𝑭𝑭 )𝑖𝑖+1𝑡𝑡+𝛼𝛼∆𝑡𝑡 = 𝟎𝟎                            (5-56) 

�𝜳𝜳𝑝𝑝�𝑖𝑖+1
 𝑡𝑡+𝛼𝛼∆𝑡𝑡

= 𝜂𝜂𝑪𝑪�T�𝐴𝐴𝑼𝑼𝑖𝑖+1
𝑡𝑡+𝛼𝛼∆𝑡𝑡 − 𝐵𝐵𝑼𝑼𝑡𝑡 + 𝐶𝐶𝑼𝑼𝑡𝑡−∆𝑡𝑡� + ∆𝑡𝑡𝑯𝑯�𝑷𝑷𝑖𝑖+1𝑡𝑡+𝛼𝛼∆𝑡𝑡 + 𝑝𝑝𝑓𝑓𝑴𝑴�𝐴𝐴𝑷𝑷𝑖𝑖+1𝑡𝑡+𝛼𝛼∆𝑡𝑡 −

𝐵𝐵𝑷𝑷𝑡𝑡 + 𝐶𝐶𝑷𝑷𝑡𝑡−∆𝑡𝑡� − ∆𝑡𝑡(𝑻𝑻 )𝑖𝑖+1𝑡𝑡+𝛼𝛼∆𝑡𝑡 = 𝟎𝟎                                                                         (5-57) 

Using Taylor series expansion, the following equations can be developed to find the 

solution at (𝑠𝑠 + 1)𝑡𝑡ℎ iteration using the solution obtained at 𝑠𝑠𝑡𝑡ℎ iteration: 

�
(𝜳𝜳𝑢𝑢)𝑖𝑖+1 𝑡𝑡+𝛼𝛼∆𝑡𝑡

 �𝜳𝜳𝑝𝑝�𝑖𝑖+1
 𝑡𝑡+𝛼𝛼∆𝑡𝑡� = �

(𝜳𝜳𝑢𝑢)𝑖𝑖 𝑡𝑡+𝛼𝛼∆𝑡𝑡

�𝜳𝜳𝑝𝑝�𝑖𝑖
 𝑡𝑡+𝛼𝛼∆𝑡𝑡� + 𝑱𝑱𝑖𝑖 �

𝑠𝑠𝑼𝑼𝑖𝑖+1
𝑡𝑡+𝛼𝛼∆𝑡𝑡

𝑠𝑠𝑷𝑷𝑖𝑖+1𝑡𝑡+𝛼𝛼∆𝑡𝑡� = 𝟎𝟎                                                 (5-58) 

in which the Jacobian matrix is defined as: 
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𝑱𝑱 = �
𝜕𝜕𝜳𝜳𝑔𝑔
𝜕𝜕𝑼𝑼

𝜕𝜕𝜳𝜳𝑔𝑔
𝜕𝜕𝑷𝑷

𝜕𝜕𝜳𝜳𝑝𝑝

𝜕𝜕𝑼𝑼
𝜕𝜕𝜳𝜳𝑝𝑝

𝜕𝜕𝑷𝑷

�                                                                                                         (5-59) 

A more explicit form of the Jacobian matrix can be expressed as: 

𝑱𝑱𝑖𝑖 = �
�𝑲𝑲�𝑇𝑇�𝑖𝑖

 𝑡𝑡+𝛼𝛼∆𝑡𝑡
−𝜂𝜂𝑪𝑪�

𝐴𝐴𝜂𝜂𝑪𝑪�T �𝐴𝐴𝑝𝑝𝑓𝑓𝑴𝑴 + ∆𝑡𝑡𝑯𝑯��
�                                                                         (5-60) 

The Jacobian matrix will be independent of the iteration number if a linear elastic 

constitutive model is adopted.  

The incremental displacement vector 𝑠𝑠𝑼𝑼𝑖𝑖+1
𝑡𝑡+𝛼𝛼∆𝑡𝑡 and pressure vector 𝑠𝑠𝑷𝑷𝑖𝑖+1𝑡𝑡+𝛼𝛼∆𝑡𝑡 at iteration 

i+1 are then computed using the following equation: 

�
𝑠𝑠𝑼𝑼𝑖𝑖+1

𝑡𝑡+𝛼𝛼∆𝑡𝑡

 𝑠𝑠𝑷𝑷𝑖𝑖+1𝑡𝑡+𝛼𝛼∆𝑡𝑡� = −𝑱𝑱𝑖𝑖−1 �
(𝜳𝜳u)𝑖𝑖 𝑡𝑡+𝛼𝛼∆𝑡𝑡

�𝜳𝜳p�𝑖𝑖
 𝑡𝑡+𝛼𝛼∆𝑡𝑡�                                                                             (5-61) 

Numerical algorithms and convergence criteria similar to those used in [148] were 

adopted in this study to perform the Newton-Raphson iterations at each time step. 

5.5 Consistently stabilised mixed ESFEM 

It is reported in the literature [e.g., [38, 46, 167, 306] that in general, the formulation 

presented based on equal-order 𝑺𝑺𝑢𝑢ℎ and 𝑆𝑆𝑝𝑝ℎ subspaces leads to volumetric locking and the 

presence of severe oscillation in the approximated pressure solution in the case of 

(nearly) incompressible material. In this sense, ESFEM suffers from the same 

deficiencies as the standard FEM. In this section, the root of these instabilities is 

discussed, and a stabilised ESFEM is developed to overcome them. 
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5.5.1 The inf–sup condition 

The linearised smoothed matrix from of the flow-deformation equation (Equation 5-58) 

produces stable solutions if and only if a pair of subspaces (𝑽𝑽𝑢𝑢 ,𝑉𝑉𝑝𝑝) satisfies the inf–sup 

condition [1, 2, 27]: 

𝑠𝑠𝑛𝑛𝑠𝑠
𝑞𝑞ℎ ∈ 𝑉𝑉𝑝𝑝 𝑞𝑞ℎ ≠ 0  

𝑠𝑠𝑝𝑝𝜂𝜂
𝒗𝒗ℎ ∈ 𝑽𝑽𝑢𝑢  𝒗𝒗ℎ ≠ 0  

𝐵𝐵�  �𝒗𝒗ℎ,𝑞𝑞ℎ�
�𝒗𝒗ℎ�𝐺𝐺1�𝑞𝑞

ℎ�𝐺𝐺1
= 𝑘𝑘ℎ ≥ 𝑘𝑘ℎ𝑚𝑚𝑖𝑖𝑛𝑛 > 0                         (5-62) 

in which 𝑘𝑘ℎ𝑚𝑚𝑖𝑖𝑛𝑛 is a constant independent of the mesh size h. This condition equivalently 

implies that the coupling matrix 𝑪𝑪�𝑘𝑘𝑠𝑠  must be uniformly of full row rank with respect to 

the mesh size approaching zero [53, 167, 306, 307]. There are many pairs of subspaces 

for displacements and fluid pressure that results in an unstable solution, including the 

equal-order interpolation functions with respect to the same triangulation, which is 

perhaps the simplest choice. In addition, there are other combinations of spaces (such as 

bilinear–constant pairs) used for interpolation of the disrcretised Stokes equation that 

show severe instability when is employed in the Galerkin formulation [38, 40, 41, 167, 

306]. The primary incentive to design stabilised methods is to permit attainment of 

stable and accurate solutions by simple pairs of spaces, offering additional 

computational benefits (e.g., uniform data structures and local mass conservation). 

 

5.5.2 Consistently stabilised smoothed Galerkin methods  

The general form of the consistently stabilised smoothed Galerkin methods can be 

stated as families of the bilinear forms for the Biot’s equations in the following form: 

𝑄𝑄�(𝒖𝒖ℎ,𝜂𝜂ℎ;𝒗𝒗ℎ, 𝑞𝑞ℎ) + 〈�̇�𝑹𝑚𝑚 (𝒖𝒖ℎ,𝜂𝜂ℎ), �̇�𝑬𝑚𝑚(𝒗𝒗ℎ, 𝑞𝑞ℎ)〉𝑚𝑚 +  〈�̇�𝑹𝑐𝑐 (𝒖𝒖ℎ,𝜂𝜂ℎ), �̇�𝑬𝑐𝑐(𝒗𝒗ℎ, 𝑞𝑞ℎ)〉𝑐𝑐 =

𝐿𝐿(𝒗𝒗ℎ, 𝑞𝑞ℎ)         ∀(𝒗𝒗ℎ, 𝑞𝑞ℎ) ∈ 𝑽𝑽𝑣𝑣,0
ℎ × 𝑉𝑉𝑞𝑞,0

ℎ                                                                     (5-63) 
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where �̇�𝑹𝑚𝑚 (𝒖𝒖ℎ,𝜂𝜂ℎ)|Ω𝑠𝑠 and �̇�𝑹𝑐𝑐 (𝒖𝒖ℎ,𝜂𝜂ℎ)|Ω𝑠𝑠 stand for the smoothing domain-based, rate-

dependent residual of the equilibrium equation and the fluid continuity equation in the 

coupled flow-deformation formulation, respectively, expressed in the following forms:  

�̇�𝑹𝑚𝑚 (𝒖𝒖ℎ,𝜂𝜂ℎ)|Ω𝑠𝑠 = 𝑳𝑳𝑑𝑑T�̇�𝝈(𝒖𝒖ℎ,𝜂𝜂ℎ) + 𝜌𝜌𝐠𝐠����̇                                                                     (5-64) 

�̇�𝑹𝑐𝑐 (𝒖𝒖ℎ,𝜂𝜂ℎ) |Ω𝑠𝑠 = 𝜵𝜵. �𝒌𝒌𝑓𝑓
𝜇𝜇𝑓𝑓
�−𝜵𝜵𝜂𝜂ℎ + 𝜌𝜌𝑓𝑓𝐠𝐠��� + 𝛼𝛼𝑓𝑓�̇�𝜂ℎ + 𝜵𝜵. �̇�𝒖ℎ                                      (5-65) 

〈 〉𝑚𝑚 and 〈 〉𝑐𝑐 denote discrete inner 𝐿𝐿2 products for the residuals of the equilibrium 

and continuity equations, respectively, which are associated with �̇�𝑬𝑚𝑚(𝒗𝒗ℎ, 𝑞𝑞ℎ) and 

�̇�𝑬𝑐𝑐(𝒗𝒗ℎ,𝑞𝑞ℎ), the corresponding forms of the weighting functions. 

Equation 5-63 presents the consistently stabilised smoothed Galerkin method in its most 

general form. In the formulations to follow, the weighting function corresponding to the 

residual of the continuity equation is set to zero (𝑬𝑬𝑐𝑐 = 0) since studies show that the 

stabilisation resulting from these terms cannot effectively alleviate the fluid pressure 

instabilities when a porous medium with compressible constituents is considered [193]. 

For the weighting function corresponding to the residual of the equilibrium equation, 

the following form is adopted:  

 𝑬𝑬𝑚𝑚(𝒗𝒗ℎ, 𝑞𝑞ℎ)|Ω𝑘𝑘𝑠𝑠 =  𝑳𝑳𝑑𝑑T𝝈𝝈(𝛼𝛼𝒗𝒗ℎ,𝛽𝛽𝑞𝑞ℎ)                                                                         (5-66) 

where 𝝈𝝈(𝛼𝛼𝒗𝒗ℎ,𝛽𝛽𝑞𝑞ℎ) = 𝛔𝛔ˊ(𝛼𝛼𝒗𝒗ℎ) − 𝜂𝜂𝛽𝛽𝑞𝑞ℎ𝜹𝜹, 𝛼𝛼 can take values of ± 1 or 0, and the value 

of 𝛽𝛽 can be either 1 or -1. The discrete inner product in Equation 5-64 is defined as the 

weighted summation of the integrations over the smoothing domains, as follows: 

 〈𝒖𝒖ℎ,𝒗𝒗ℎ〉𝑚𝑚 =  ∑  𝜏𝜏(𝒖𝒖ℎ,𝒗𝒗ℎ)0,Ω𝑘𝑘
𝑠𝑠 

Ω𝑘𝑘
𝑠𝑠 ∈Ω                                                                           (5-67) 
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The positive, real-value 𝜏𝜏 is known as the stabilisation parameter, whose value must be 

properly selected to ensure stability in consistently stable Galerkin methods. The 

stabilisation parameter will be quantified and discussed later in this chapter.  

The consistently stabilised SFEM adopted in this study can then be represented as 

follows:  

𝑄𝑄�𝛼𝛼𝛼𝛼(𝒖𝒖ℎ,𝜂𝜂ℎ;𝒗𝒗ℎ, 𝑞𝑞ℎ) = 𝐿𝐿𝛼𝛼𝛼𝛼(𝒗𝒗ℎ, 𝑞𝑞ℎ)             ∀(𝒗𝒗ℎ, 𝑞𝑞ℎ) ∈ 𝑽𝑽𝑣𝑣,0
ℎ  × 𝑉𝑉𝑞𝑞,0

ℎ                        (5-68) 

where, 𝑄𝑄�𝛼𝛼𝛼𝛼 stands for the globally stabilised smoothed bilinear form, parameterised by 

𝛼𝛼 and 𝛽𝛽, and 𝐿𝐿𝛼𝛼𝛼𝛼 denotes the associated linear functional. 𝑄𝑄�𝛼𝛼𝛼𝛼 has the following form: 

𝑄𝑄�𝛼𝛼𝛼𝛼(𝒖𝒖ℎ,𝜂𝜂ℎ;𝒗𝒗ℎ, 𝑞𝑞ℎ) = �̃�𝐴 (𝒖𝒖ℎ,𝒗𝒗ℎ) − 𝐵𝐵�(𝒗𝒗ℎ,𝜂𝜂ℎ) +  𝛽𝛽𝐵𝐵�(𝒖𝒖ℎ,𝑞𝑞ℎ) 

+∑ �𝑳𝑳𝑑𝑑T𝝈𝝈(𝛼𝛼𝒗𝒗ℎ,𝛽𝛽𝑞𝑞ℎ), 𝜏𝜏(𝑳𝑳𝑑𝑑T�̇�𝝈(𝒖𝒖ℎ,𝜂𝜂ℎ) + 𝜌𝜌𝐠𝐠����̇�)0,Ω𝑘𝑘
𝑠𝑠 

Ω𝑘𝑘
𝑠𝑠∈Ω                                               (5-69) 

and the linear functional is defined as follows: 

𝐿𝐿𝛼𝛼𝛼𝛼 (𝒗𝒗ℎ, 𝑞𝑞ℎ) =  𝐹𝐹 (𝒗𝒗ℎ) + 𝐻𝐻(𝑞𝑞ℎ) −∑  �𝜌𝜌𝐠𝐠����̇,𝑳𝑳𝑑𝑑T𝝈𝝈(𝛼𝛼𝒗𝒗ℎ,𝛽𝛽𝑞𝑞ℎ)�
0,Ω𝑘𝑘

𝑠𝑠
 
Ω𝑘𝑘
𝑠𝑠 ∈Ω                     (5-70) 

Depending on the selected values for 𝛼𝛼, different consistently stabilised Galerkin 

methods can be obtained. For 𝛼𝛼 = 1, 0,−1 along with 𝛽𝛽 = 1 the stabilised method 

corresponds, respectively, to the Galerkin least squares (GLS) method [308], the 

pressure-Poisson stabilised Galerkin method [46], and the absolute stabilised method of 

Douglas and Wang [172]. Different values of 𝛽𝛽 equal to either 1 or -1 may result in 

obtaining different global algebraic systems, which might possess either strong 

coercivity or weak coercivity properties [53]; however, they will result in identical 

numerical results for displacement and pressure variables if the same 𝛼𝛼 is chosen [53]. 

GLS has been successfully applied in the numerical modelling of geomechanical 
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problems, ignoring the flow-deformation process in [50]. The pressure-Poisson 

stabilised Galerkin was proposed in association with simplifying assumptions compared 

to the GLS method, and has, to date, been adopted for the flow-deformation analysis of 

both saturated and unsaturated porous media [51, 195], which has much less 

computational costs without losing the desired accuracy. However, the abrupt change in 

the displacement and pressure contours can be observed in numerical results presented 

in [50]. Furthermore, the effectiveness of the pressure-Poisson stabilisation technique is 

highly sensitive to the selection of the stabilisation parameter.  

The added stabilisation term, in general, contains the abstract notion of the residual of 

the differential equilibrium equation. The consistency is, hence, provided by term 

𝑳𝑳𝑑𝑑T�̇�𝝈(𝒖𝒖ℎ,𝜂𝜂ℎ) which vanishes as the mesh size approaches zero. The advantageous 

property of the methods represented by Equation 5-64 is that all stabilising terms are 

implementable at the smoothing domain level. 

The added stabilising term is based solely on the residual of the equilibrium equation, 

but the coupling between the displacement and pressure variables, naturally provided 

through Terzaghi’s effective stress principle, results in effective alleviation of fluid 

pressure oscillations in the numerical results when consistently equilibrium-based 

stabilised methods are used.  

The introduction of stabilising terms to the governing bilinear form of the problem 

results in appearance of additional bilinear terms in the governing bilinear form. 

Adopting a linearisation similar to that used for the original governing equations, 

Equation 5-77 can be rewritten as follows: 

𝑄𝑄�𝛼𝛼𝛼𝛼(𝒖𝒖ℎ,𝜂𝜂ℎ;𝒗𝒗ℎ, 𝑞𝑞ℎ) = �̃�𝐴 (𝒖𝒖ℎ,𝒗𝒗ℎ) − 𝐵𝐵�(𝒗𝒗ℎ,𝜂𝜂ℎ) +  𝛽𝛽𝐵𝐵�(𝒖𝒖ℎ,𝑞𝑞ℎ)+𝛼𝛼𝐷𝐷(𝒖𝒖ℎ,𝒗𝒗ℎ) + 

𝛼𝛼𝑂𝑂(𝒗𝒗ℎ, 𝑞𝑞ℎ) + 𝛽𝛽𝑂𝑂(𝒖𝒖ℎ,𝑞𝑞ℎ) +𝛽𝛽𝑌𝑌(𝜂𝜂ℎ, 𝑞𝑞ℎ)                                                                   (5-71)  
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where D, O and Y are the bilinear forms corresponding to stabilising contributions 

arising from the discretisation of the added residual of equilibrium equation. They 

contribute to the stiffness, coupling and permeability blocks in the global matrix system, 

respectively. In this chapter, the method similar to the one proposed by Douglas and 

Wang [172] is adopted (i.e., 𝛼𝛼 = −1,𝛽𝛽 = 1) as it offers unconditional stability, 

regardless of the value of the stabilisation parameter 𝜏𝜏 [53].  

Equation 5-69 can thus be restricted to the form of: 

𝑄𝑄�−1,1(𝒖𝒖ℎ,𝜂𝜂ℎ;𝒗𝒗ℎ, 𝑞𝑞ℎ) = 𝐿𝐿−1,1 (𝒗𝒗ℎ,𝑞𝑞ℎ)       ∀(𝒗𝒗ℎ,𝑞𝑞ℎ) ∈ 𝑽𝑽𝑣𝑣,0
ℎ  × 𝑉𝑉𝑞𝑞,0

ℎ                         (5-72) 

where   

𝑄𝑄�−1,1(𝒖𝒖ℎ,𝜂𝜂ℎ;𝒗𝒗ℎ, 𝑞𝑞ℎ) = �̃�𝐴 (𝒖𝒖ℎ,𝒗𝒗ℎ) − 𝐵𝐵�(𝒗𝒗ℎ,𝜂𝜂ℎ) + 𝐵𝐵�(𝒖𝒖ℎ,𝑞𝑞ℎ) + 𝐷𝐷(𝒖𝒖ℎ,𝒗𝒗ℎ) +

𝑂𝑂(𝒗𝒗ℎ,𝜂𝜂ℎ) + 𝑂𝑂(𝒖𝒖ℎ, 𝑞𝑞ℎ) + 𝑌𝑌(𝜂𝜂ℎ, 𝑞𝑞ℎ)                                                                         (5-73) 

It can be easily identified that the yet non-smoothed bilinear terms 𝐷𝐷 and O that are 

added to the globally smoothed bilinear form contain second-order derivatives of the 

displacement and its corresponding weight function. As a result, simple equal-order 

linear interpolation functions for displacement and fluid pressure cannot be effectively 

used if this bilinear form of the governing equations is adopted, because the added 

stabilising terms of the displacement variable are vanished in this case, and the 

stabilisation term is reduced to  ∑ (𝜵𝜵𝑞𝑞ℎ, 𝜏𝜏𝜵𝜵𝜂𝜂ℎ))0,Ω𝑘𝑘
𝑠𝑠 

Ω𝑘𝑘
𝑠𝑠 ∈Ω , which corresponds to the 

inconsistently stabilised method proposed in [44]. This method was compared with the 

other stabilisation methods proposed in geomechanics in [37, 50, 51, 193] and was 

shown that has sub-optimal convergence rate and poor accuracy. The deterioration of 

accuracy intensifies as the pressure variable is exposed to an incorrect natural boundary 

condition as the naturally induced boundary condition term ∑ (𝜟𝜟𝒖𝒖ℎ, 𝜏𝜏𝜵𝜵𝑞𝑞ℎ)0,Ω𝑘𝑘
𝑠𝑠 

Ω𝑘𝑘
𝑠𝑠∈Ω  
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vanishes when employing equal-order linear interpolation functions. This problem is 

gracefully circumvented by smoothing the additional bilinear terms over the smoothing 

domains, as discussed later in this chapter. 

 

5.5.3 Stabilisation parameter  

A dimensional analysis shows that 𝜏𝜏 has the unit of 𝑝𝑝2 𝑘𝑘𝑁𝑁
𝑚𝑚2� . The  basic scalar form of 

the stabilisation parameter introduced in [46] is adopted in this study:  

𝜏𝜏 = 𝛼𝛼𝒆𝒆(ℎ𝒆𝒆)2

2𝐺𝐺𝑖𝑖
                                                                                       (5-74) 

where ℎ𝒆𝒆 is the size of the smoothing domain which has the directional character, 

computed in the direction of the current pressure gradient vector by the method 

proposed in [193], as edge-based smoothing domains are four-sided convex non-regular 

areas. 𝐺𝐺𝑖𝑖 stands for the current shear modulus of the smoothing domain of interest. This 

corresponds to elastic shear modulus G when material linearity is considered, and to the 

component of 𝐷𝐷33,𝑖𝑖
𝑠𝑠𝑝𝑝  of the tangent elasto-plastic matrix 𝑫𝑫𝑠𝑠𝑝𝑝 in a general elasto-plastic 

material behaviour [ref]. The stabilisation parameter therefore accounts for the variation 

of the shear modulus during a materially nonlinear analysis of a porous medium. 

Another method for accounting for the variation of the stabilisation parameter with the 

shear modulus was proposed in [52]. However, based on this thesis’s investigations, this 

method is not effective in severely nonlinear cases; especially for the computation of the 

collapse load of footings.  

Equation 5-75 is indeed a simple form for calculation of the stabilisation parameter. 

There are more complex forms suggested for quantification of the stabilisation 
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parameters in the literature, for example for the stabilisation of the transient analysis of 

advection-diffusion problems in computational fluid dynamics [309, 310], and for the 

stabilisation of the flow-deformation discretised equations [193], which are also adopted 

in [51]. It has to be noted that the time step has also a major influence in the numerical 

results of a stabilised numerical method as reported in [311, 312], which show that the 

time step should have a proportionality relationship with the mesh size. The 

aforementioned references show that when a relatively very small time step is taken, 

even the consistently stabilised methods may either generate pressure oscillations or 

diverge from the exact solutions. However, accurate results can be achieved when time 

step sizes are chosen in proportion to the mesh size, using both time step-dependent 

stabilisation parameter and the simple form of the stabilisation parameter presented 

above [53, 311, 312].        

 

5.5.4 Spatial and temporal discretisation of the proposed stabilisation method 

The term that has been added to the global smoothed bilinear form (𝑸𝑸�) for the 

stabilisation can be presented in the following form: 

∑ �(𝑳𝑳𝑑𝑑T𝝈𝝈(−𝒗𝒗ℎ,𝑞𝑞ℎ)), 𝜏𝜏(𝑳𝑳𝑑𝑑T�̇�𝝈(𝒖𝒖ℎ,𝜂𝜂ℎ) + 𝜌𝜌𝐠𝐠����̇�
0,Ω𝑘𝑘

𝑠𝑠
 
Ω𝑘𝑘
𝑠𝑠∈Ω                                                   (5-75) 

Considering the general case that includes material nonlinearity, the weighting part of 

Equation 5-76, 𝑳𝑳𝑑𝑑T𝝈𝝈(−𝒗𝒗ℎ,𝑞𝑞ℎ), can be expanded in the following form: 

 𝑳𝑳𝑑𝑑T𝝈𝝈(−𝒗𝒗ℎ, 𝑞𝑞ℎ)=𝑳𝑳𝑑𝑑T(𝑫𝑫e(𝜺𝜺(−𝒗𝒗ℎ,𝑞𝑞ℎ)− 𝜺𝜺𝑃𝑃(−𝒗𝒗ℎ))− 𝜂𝜂𝜹𝜹𝑞𝑞ℎ)                                          (5-76) 

According to [50, 51], the contribution of the plastic strain embedded in the 

displacement weighting function can be ignored compared to that of the elastic strain, 
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and therefore omitted in order to avoid unnecessary linearisation of the weighting 

function, and to prevent undue difficulties that would otherwise arise in the calculation 

of the global matrix system. Thus, Equation 5-76 can be simplified to the following 

spatially discretised form: 

∑ ∫ [−𝑮𝑮𝑠𝑠𝑙𝑙𝑢𝑢 𝒗𝒗� − 𝜂𝜂𝜵𝜵𝑵𝑵𝑝𝑝𝑞𝑞�]T𝜏𝜏 
Ω𝑘𝑘
𝑠𝑠 �𝑳𝑳𝑑𝑑T�̇�𝛔(𝒖𝒖ℎ,𝜂𝜂ℎ) + 𝜌𝜌𝐠𝐠����̇� 

Ω𝑘𝑘
𝑠𝑠∈Ω 𝑠𝑠Ω                                        (5-77) 

where 𝑮𝑮𝑠𝑠𝑙𝑙𝑢𝑢  is the stabilising matrix representing the contribution of the weighting 

function of the displacement variable in the proposed stabilisation formulation. The 

body forces are assumed independent of time in this study, therefore, the term 𝜌𝜌𝐠𝐠����̇ is 

omitted from the formulation in the rest of this chapter. 

The residual of the equilibrium equation term 𝑳𝑳𝑑𝑑𝑇𝑇�̇�𝛔(𝒖𝒖ℎ,𝜂𝜂ℎ) can be written in terms of 

unknown nodal values of displacement and pressure variables in the following form: 

𝑳𝑳𝑑𝑑T�̇�𝛔(𝒖𝒖ℎ,𝜂𝜂ℎ)= (𝑮𝑮𝑠𝑠𝑝𝑝𝑢𝑢 𝒖𝒖�̇ − 𝜂𝜂𝜵𝜵𝑵𝑵𝑝𝑝�̇̅�𝜂)                                                                             (5-78) 

in which 𝑮𝑮𝑠𝑠𝑝𝑝𝑢𝑢  denotes the contributing matrix resulted from the displacement variable in 

the proposed stabilisation formulation. 

For the standard FEM formulation, 𝑮𝑮𝑠𝑠𝑝𝑝𝑢𝑢  and 𝑮𝑮𝑠𝑠𝑙𝑙𝑢𝑢  can be expressed in the following form: 

𝑮𝑮𝑠𝑠𝑝𝑝𝑢𝑢  =𝑳𝑳𝑑𝑑T𝑫𝑫𝑠𝑠𝑝𝑝𝑩𝑩                                                                                                            (5-79) 

𝑮𝑮𝑠𝑠𝑙𝑙𝑢𝑢  =𝑳𝑳𝑑𝑑T𝑫𝑫𝑠𝑠𝑩𝑩                                                                                                              (5-80) 

where 𝑩𝑩 stands for the standard strain-displacement matrix containing the first-order 

derivatives of the shape functions. 𝑮𝑮𝑠𝑠𝑝𝑝𝑢𝑢  is equivalent to 𝑮𝑮𝑠𝑠𝑙𝑙𝑢𝑢  when elastic linear material 

is assumed in the analysis. 
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As can be seen, the contributing matrices associated with displacement and its 

weighting function (𝑮𝑮𝑠𝑠𝑝𝑝𝑢𝑢  and 𝑮𝑮𝑠𝑠𝑙𝑙𝑢𝑢 ) would vanish if a linear interpolation function is 

adopted for the displacement variable, due to the existence of second-order derivatives 

in 𝑮𝑮𝑠𝑠𝑝𝑝𝑢𝑢  and 𝑮𝑮𝑠𝑠𝑙𝑙𝑢𝑢 . Accordingly, the proposed formulation would lose most of its benefits, 

and reduce to the inconsistent stabilisation method proposed in [44] when linear 

interpolations are used. To overcome this difficulty, the next section presents a new 

technique for computation of 𝑮𝑮𝑠𝑠𝑝𝑝𝑢𝑢  and 𝑮𝑮𝑠𝑠𝑙𝑙𝑢𝑢 .  

 

5.5.5 Computation of the smoothed 𝑮𝑮𝒆𝒆𝒑𝒑𝒖𝒖  and 𝑮𝑮𝒆𝒆𝒆𝒆𝒖𝒖  

Ensuring the effective contribution of the displacement and its weighting function in the 

proposed formulation even when linear interpolation functions are used, requires the 

elimination of derivatives from their corresponding stabilising matrices. To this end, the 

smoothing gradient technique is applied to the standard formulations of 𝑮𝑮𝑠𝑠𝑝𝑝𝑢𝑢  and 𝑮𝑮𝑠𝑠𝑙𝑙𝑢𝑢  

(Equations 5-79 and 5-80). However, given that the smoothed stress is constant over the 

smoothing domains, 𝑮𝑮𝑠𝑠𝑝𝑝𝑢𝑢  and 𝑮𝑮𝑠𝑠𝑝𝑝𝑢𝑢  cannot be directly obtained. The smoothing gradient 

technique is applicable to 𝑮𝑮𝑠𝑠𝑝𝑝𝑢𝑢  and 𝑮𝑮𝑠𝑠𝑙𝑙𝑢𝑢  provided that the smoothed stress over the 

smoothing domain of interest is first expressed in terms of its supporting nodal values. 

Thus, a technique is proposed here to obtain the smoothed nodal stresses by means of 

global projection. This technique is based on replacing the constant smoothed stress 

over the smoothing domains with an equivalent nodal smoothed stress in such a way 

that the global error associated with this replacement is minimized over the domain of 

the problem of interest in the formulation. 
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We define 𝜺𝜺�∗(𝑘𝑘) as the vector of the recovered smoothed strain at any point of interest 

(𝒙𝒙𝑘𝑘) within its corresponding smoothing domain (Ω𝑘𝑘𝑠𝑠 ), as follows:  

 𝜺𝜺�∗(𝑘𝑘) = 𝑵𝑵𝑢𝑢∗(𝒙𝒙𝑘𝑘)𝜺𝜺�(𝑘𝑘)                                                                                                 (5-81) 

where 𝑵𝑵𝑢𝑢∗ is the matrix of interpolation functions over the smoothing domain of 

interest, relating the recovered smoothed strain to its corresponding recovered nodal 

values, defined as follows: 

𝑵𝑵𝑢𝑢∗(𝒙𝒙𝑘𝑘) = �∑ 𝑵𝑵𝐼𝐼
𝑢𝑢∗(𝒙𝒙𝑘𝑘)𝐼𝐼∈𝑆𝑆𝑠𝑠 �

3×3𝑞𝑞
                                                                               (5-82) 

 𝑵𝑵𝐼𝐼
𝑢𝑢∗(𝒙𝒙𝑘𝑘) = �

𝜙𝜙𝐼𝐼(𝒙𝒙𝑘𝑘) 0 0
0 𝜙𝜙𝐼𝐼(𝒙𝒙𝑘𝑘) 0
0 0 𝜙𝜙𝐼𝐼(𝒙𝒙𝑘𝑘)

�

𝐼𝐼∈𝑆𝑆𝑠𝑠

                                                         (5-83) 

where 𝜺𝜺�(𝑘𝑘) is the vector of recovered nodal strains which defined over each smoothing 

domain as: 

𝜺𝜺�(𝑘𝑘)= 𝑬𝑬(𝑘𝑘) 𝜺𝜺�(𝑘𝑘)                                                                                                          (5-84) 

where 𝑬𝑬(𝑘𝑘) contains the rows and columns that correspond to the smoothing domain 𝑘𝑘, 

deduced from the globally computed W matrix, given as:  

W = (∫ 𝑵𝑵𝑠𝑠𝑙𝑙,𝑢𝑢∗T𝑵𝑵𝑠𝑠𝑙𝑙,𝑢𝑢∗𝑠𝑠Ω) 
Ω

−1
(∫ 𝑵𝑵𝑠𝑠𝑙𝑙,𝑢𝑢∗T𝑠𝑠Ω) 
Ω                                                             (5-85) 

W relates the recovered nodal smoothed strain globally computed over the problem 

domain (𝜺𝜺�) to its corresponding smoothed stain of all smoothing domains (𝜺𝜺�)  in the 

following form: 

𝜺𝜺�= 𝑬𝑬𝜺𝜺�                                                                                                                        (5-86) 
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so that it minimises the global error associated with using the recovered smoothed strain 

instead of the smoothed strain on the domain of interest. 𝑵𝑵𝑠𝑠𝑙𝑙,𝑢𝑢∗ stands for the globally 

assembled form of 𝑵𝑵𝑢𝑢∗ computed over each smoothing domain.  

The terms of 𝑵𝑵𝑢𝑢∗ are evaluated by numerical integration over the corresponding 

smoothing domain using the Gauss points at the centroids of the sub-triangles, which 

are also used for the integration of some of the property matrixes (e.g., compressibility 

matrix 𝑴𝑴𝑘𝑘). Then, the standard assembly procedure is performed to obtain the global 

matrix  𝑵𝑵𝑠𝑠𝑙𝑙,𝑢𝑢∗ as follows: 

𝑵𝑵𝑠𝑠𝑙𝑙,𝑢𝑢∗ = ⋃ 𝑵𝑵𝑢𝑢∗𝑁𝑁𝑆𝑆𝑆𝑆
𝑘𝑘=1                                                                                                     (5-87) 

And we then have:  

 𝜺𝜺�∗ = 𝑵𝑵𝑠𝑠𝑙𝑙,𝑢𝑢∗𝜺𝜺�                                                                                                             (5-88) 

The variation of the recovered smoothed strain (𝛿𝛿𝜺𝜺�∗) is also evaluated in a similar 

fashion and is expressed as: 

𝛿𝛿𝜺𝜺�∗ = 𝑵𝑵𝑠𝑠𝑙𝑙,𝑢𝑢∗𝛿𝛿𝜺𝜺�                                                                                                           (5-89) 

The global error associated with using the recovered smoothed strain instead of the 

smoothed strain can be defined as follows: 

𝒆𝒆� = 𝜺𝜺�∗ − 𝜺𝜺�                                                                                                                 (5-90) 

To minimise this error, we enforce the orthogonality of the projection of the space of the 

recovered smoothed strain variation to that of the relevant error, mathematically 

expressed as follows: 

∫ 𝛿𝛿𝜺𝜺�∗T𝒆𝒆�𝑠𝑠Ω  
Ω  = ∫ 𝛿𝛿𝜺𝜺�∗T(𝜺𝜺�∗ − 𝜺𝜺�)𝑠𝑠Ω  

Ω = 0                    ∀𝛿𝛿𝜺𝜺�∗                                         (5-91) 
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Inserting Equations 5-89, 5-90 and 5-87 into Equation 5-91 results in the following 

form: 

𝛿𝛿𝜺𝜺�𝑇𝑇 ∫ 𝑵𝑵𝑠𝑠𝑙𝑙,𝑢𝑢∗T(𝑵𝑵𝑠𝑠𝑙𝑙,𝑢𝑢∗𝜺𝜺� −𝑬𝑬−1𝜺𝜺�)𝑠𝑠Ω  
Ω𝑘𝑘
𝑠𝑠 = 0      ∀𝛿𝛿𝜺𝜺�∗(𝑘𝑘)                                              (5-92) 

where, the global matrix W can be readily obtained by some simple manipulations 

presented in Equation 5-85. As a result, the corresponding terms related to the specific 

smoothing domain 𝑬𝑬(𝑘𝑘) can be extracted from the globally computed matrix W. The 

smoothed effective stress is also defined over each smoothing domain as: 

𝛔𝛔�′(𝑘𝑘)= 𝑫𝑫𝜺𝜺�(𝑘𝑘)=𝑫𝑫𝑩𝑩�1𝒖𝒖�                                                                                                  (5-93)  

The residual term 𝑳𝑳𝑑𝑑𝑇𝑇�̇�𝛔(𝒖𝒖ℎ,𝜂𝜂ℎ) can be viewed as the rate of the residual of the 

equilibrium equation at any point of interest within its associated smoothing domain. 

The term �̇�𝛔(𝒖𝒖ℎ,𝜂𝜂ℎ) must consequently be presented in terms of the rate of the 

recovered smoothed effective stress 𝛔𝛔�̇′∗(𝑘𝑘) which is variable over each smoothing 

domain. To obtain the recovered smoothed effective stress at any point of interest 

within its associated smoothing domain, a definition similar to that used for the 

recovered strain can be adopted, as follows: 

𝛔𝛔�′∗(𝑘𝑘) = 𝑵𝑵𝑢𝑢∗(𝒙𝒙𝑘𝑘)𝛔𝛔�′(𝑘𝑘)                                                                                               (5-94) 

where the assigned nodal values of the recovered smoothed effective stress can be 

formulated as follows: 

𝛔𝛔�′(𝑘𝑘)= 𝑫𝑫𝜺𝜺�(𝑘𝑘) = 𝑫𝑫 𝑬𝑬(𝑘𝑘)𝜺𝜺�(𝑘𝑘)= 𝑫𝑫𝑬𝑬(𝑘𝑘)𝑩𝑩�1𝒖𝒖�                                                                  (5-95) 

Then, Equation 5-78 can be written in the following form: 

𝑳𝑳𝑑𝑑T𝛔𝛔�̇∗(𝑘𝑘)(𝒖𝒖ℎ,𝜂𝜂ℎ)=𝑳𝑳𝑑𝑑T�𝑵𝑵𝑢𝑢∗(𝒙𝒙𝑘𝑘)𝛔𝛔�̇′(𝑘𝑘)� − 𝜂𝜂𝛁𝛁𝑵𝑵𝑝𝑝�̇̅�𝜂                                                       (5-96) 
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The term representing the contribution of the displacement variable in Equation 5-96 

can be smoothed over each smoothing domain, as follows: 

1
𝐴𝐴𝑘𝑘
𝑠𝑠 ∫ 𝑳𝑳𝑑𝑑T𝛔𝛔�̇′∗(𝑘𝑘)(𝒖𝒖ℎ,𝜂𝜂ℎ)𝑠𝑠Ω  

Ω𝑘𝑘
𝑠𝑠 = 1

𝐴𝐴𝑘𝑘
𝑠𝑠 ∫ (𝑳𝑳𝑑𝑑T(𝑵𝑵𝑢𝑢∗(𝒙𝒙𝑘𝑘))𝑠𝑠Ω 

Ω𝑘𝑘
𝑠𝑠 )𝛔𝛔�̇′(𝑘𝑘) =

1
𝐴𝐴𝑘𝑘
𝑠𝑠 ∫ 𝑳𝑳𝑛𝑛T(𝑵𝑵𝑢𝑢∗(𝒙𝒙))𝑠𝑠Γ𝛔𝛔�̇′(𝑘𝑘) 

Γ𝑘𝑘
𝑠𝑠                                                                                           (5-97)  

Thus, the smoothed forms of 𝑮𝑮𝑠𝑠𝑝𝑝𝑢𝑢  and 𝑮𝑮𝑠𝑠𝑙𝑙𝑢𝑢  can be defined as follows:  

 𝑮𝑮�𝑠𝑠𝑝𝑝𝑢𝑢 = 1
𝐴𝐴𝑘𝑘
𝑠𝑠 ∫ 𝑳𝑳𝑛𝑛T(𝑵𝑵𝑢𝑢∗(𝒙𝒙))𝑠𝑠Γ𝑫𝑫𝑖𝑖

𝑠𝑠𝑝𝑝𝑬𝑬(𝑘𝑘)𝑩𝑩�1
 
Γ𝑘𝑘
𝑠𝑠                                                                     (5-98) 

𝑮𝑮�𝑠𝑠𝑙𝑙𝑢𝑢 = 1
𝐴𝐴𝑘𝑘
𝑠𝑠  ∫ 𝑳𝑳𝑛𝑛T(𝑵𝑵𝑢𝑢∗(𝒙𝒙))𝑠𝑠Γ𝑫𝑫𝑠𝑠𝑬𝑬(𝑘𝑘)𝑩𝑩�1

 
Γ𝑘𝑘
𝑠𝑠                                                                        (5-99) 

As can be seen, all derivatives in conjunction with the standard variational statement of 

𝑮𝑮𝑠𝑠𝑝𝑝𝑢𝑢  and 𝑮𝑮𝑠𝑠𝑙𝑙𝑢𝑢  are eliminated by performing the smoothing gradient technique, allowing 

the linear interpolations to be used effectively.  

The numerical integrations over the boundary of the smoothing domains can be 

performed in Equations 5-98 and 5-99 similar to that used to obtain the strain-

displacement matrix (Equation 3-37). Therefore, components of 𝑮𝑮�𝑠𝑠𝑝𝑝𝑢𝑢  and 𝑮𝑮�𝑠𝑠𝑙𝑙𝑢𝑢  for 

supporting node I of the smoothing domain Ω𝑘𝑘𝑠𝑠  can be calculated as:  

𝑮𝑮�𝑠𝑠𝑝𝑝𝑢𝑢 𝐼𝐼
 = 1
2𝐴𝐴𝑘𝑘

𝑠𝑠 � (𝑤𝑤𝑚𝑚𝑳𝑳𝑛𝑛𝑚𝑚T (𝑵𝑵𝑢𝑢∗(𝒙𝒙𝑚𝑚))𝑝𝑝𝑚𝑚
(𝑘𝑘))

𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔

𝑚𝑚=1
𝑫𝑫𝑖𝑖
𝑠𝑠𝑝𝑝𝑬𝑬𝐼𝐼

(𝑘𝑘)𝑩𝑩�1𝐼𝐼                                       (5-100) 

𝑮𝑮�𝑠𝑠𝑙𝑙𝑢𝑢 𝐼𝐼 =
1
2𝐴𝐴𝑘𝑘

𝑠𝑠 � (𝑤𝑤𝑚𝑚𝑳𝑳𝑛𝑛𝑚𝑚T (𝑵𝑵𝑢𝑢∗(𝒙𝒙𝑚𝑚))𝑝𝑝𝑚𝑚
(𝑘𝑘))

𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔

𝑚𝑚=1
𝑫𝑫𝑠𝑠𝑬𝑬𝐼𝐼

(𝑘𝑘)𝑩𝑩�1𝐼𝐼                                          (5-101) 

where the notations have been introduced according to those used in Equation 3-37. 

then,  
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𝑮𝑮�𝑠𝑠𝑝𝑝𝑢𝑢 = �∑ 𝑮𝑮�𝑠𝑠𝑝𝑝𝑢𝑢 𝐼𝐼𝐼𝐼∈𝑆𝑆𝑠𝑠 �
2𝑞𝑞×2𝑞𝑞

                               (5-102) 

𝑮𝑮�𝑠𝑠𝑙𝑙𝑢𝑢 = �∑ 𝑮𝑮�𝑠𝑠𝑙𝑙𝑢𝑢 𝐼𝐼𝐼𝐼∈𝑆𝑆𝑠𝑠 �
2𝑞𝑞×2𝑞𝑞

                               (5-103) 

A similar procedure is performed to eliminate derivatives from for term 𝜵𝜵𝑁𝑁𝑝𝑝 to achieve 

a globally consistent formulation. The same formulation as used in Equation 3-47 is 

adopted here:  

𝜵𝜵�𝑵𝑵𝑝𝑝𝒑𝒑�𝐼𝐼 = � 𝑩𝑩�2𝐼𝐼(𝒙𝒙𝑘𝑘)𝒑𝒑�𝐼𝐼𝐼𝐼∈𝑆𝑆𝑠𝑠
                                                                                     (5-104) 

The spatially discretised form of the stabilisation term (Equation 5-76) at iteration i+1 

for the current time step 𝑡𝑡 + 𝛼𝛼∆𝑡𝑡 can, therefore, be written in the following form: 

∑ ∫ ��−𝑮𝑮�𝑠𝑠𝑙𝑙𝑢𝑢 𝒗𝒗� − 𝜂𝜂𝑩𝑩�2𝑞𝑞��
T

, 𝜏𝜏�𝑮𝑮�𝑠𝑠𝑝𝑝𝑢𝑢 𝒖𝒖�̇𝑖𝑖+1𝑡𝑡+𝛼𝛼∆𝑡𝑡 − 𝜂𝜂𝑩𝑩�2�̇̅�𝜂𝑖𝑖+1𝑡𝑡+𝛼𝛼∆𝑡𝑡��
0,Ω𝑘𝑘

𝑠𝑠Ω𝑘𝑘
𝑠𝑠

 
Ω𝑘𝑘
𝑠𝑠∈Ω                          (5-105) 

Straightforward manipulations lead to the introduction of the following stabilising 

matrices: 

𝑲𝑲�𝑠𝑠𝑡𝑡𝑔𝑔𝑚𝑚𝑆𝑆𝑆𝑆 =∫ 𝑮𝑮�𝑠𝑠𝑙𝑙𝑢𝑢
T𝜏𝜏𝑮𝑮�𝑠𝑠𝑝𝑝𝑢𝑢 𝑠𝑠Ω  

Ω𝑘𝑘
𝑠𝑠 = 𝑮𝑮� 𝑠𝑠𝑙𝑙

𝑢𝑢 T𝜏𝜏𝑮𝑮�𝑠𝑠𝑝𝑝𝑢𝑢 𝐴𝐴𝑘𝑘𝑠𝑠                                                                    (5-106) 

𝑯𝑯�𝑠𝑠𝑡𝑡𝑔𝑔𝑚𝑚𝑆𝑆𝑆𝑆 =∫ 𝑩𝑩�2
T𝜏𝜏𝑩𝑩�2𝑠𝑠Ω = 𝑩𝑩�2T𝜏𝜏𝑩𝑩�2

 
Ω𝑘𝑘
𝑠𝑠 𝐴𝐴𝑘𝑘𝑠𝑠                                                                        (5-107) 

𝑪𝑪�𝑠𝑠𝑡𝑡𝑔𝑔𝑚𝑚𝑆𝑆𝑆𝑆 =∫ 𝑮𝑮�𝑠𝑠𝑙𝑙𝑢𝑢
T𝜏𝜏𝑩𝑩�2𝑠𝑠Ω  

Ω𝑘𝑘
𝑠𝑠 =𝑮𝑮�𝑠𝑠𝑙𝑙𝑢𝑢

T𝜏𝜏𝑩𝑩�2𝐴𝐴𝑘𝑘𝑠𝑠                                                                        (5-108) 

𝑪𝑪�𝑠𝑠𝑡𝑡𝑔𝑔𝑚𝑚
∗,𝑆𝑆𝑆𝑆 =∫ 𝑮𝑮�𝑠𝑠𝑝𝑝𝑢𝑢

T𝜏𝜏𝑩𝑩�2𝑠𝑠Ω  
Ω𝑘𝑘
𝑠𝑠 = 𝑮𝑮�𝑠𝑠𝑝𝑝𝑢𝑢

T𝜏𝜏𝑩𝑩�2𝐴𝐴𝑘𝑘𝑠𝑠                                                                    (5-109) 

As can be seen, all the contributing matrices are derived directly in Equations 5-16 to 5-

109, with no need for any mapping, by taking advantage of the smoothing technique. It 
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is worth noting that contribution matrixes defined in Equations 5-106 to 5-109 are 

constant over each smoothing domain. 

Having obtained the contributing stabilisation matrices, Equation 5-106 can be rewritten 

as follows: 

∑ (−𝑲𝑲�𝑠𝑠𝑡𝑡𝑔𝑔𝑚𝑚𝑆𝑆𝑆𝑆 𝒖𝒖�̇𝑖𝑖+1𝑡𝑡+𝛼𝛼∆𝑡𝑡 + 𝜂𝜂𝑪𝑪�𝑠𝑠𝑡𝑡𝑔𝑔𝑚𝑚𝑆𝑆𝑆𝑆 �̇̅�𝜂𝑖𝑖+1𝑡𝑡+𝛼𝛼∆𝑡𝑡 − 𝜂𝜂𝑪𝑪�𝑠𝑠𝑡𝑡𝑔𝑔𝑚𝑚
∗,𝑆𝑆𝑆𝑆 T

𝒖𝒖�̇𝑖𝑖+1𝑡𝑡+𝛼𝛼∆𝑡𝑡 + 𝜂𝜂2𝑯𝑯�𝑠𝑠𝑡𝑡𝑔𝑔𝑚𝑚𝑆𝑆𝑆𝑆 �̇̅�𝜂𝑖𝑖+1𝑡𝑡+𝛼𝛼∆𝑡𝑡) 
Ω𝑘𝑘
𝑠𝑠∈Ω        (5-110)  

The linearised residuals (Equations 5-56 and 5-57) at the current time step 𝑡𝑡 + 𝛼𝛼∆𝑡𝑡 can 

then be modified into the following forms: 

�𝜳𝜳𝑢𝑢,𝑠𝑠𝑡𝑡𝑔𝑔𝑚𝑚�𝑖𝑖+1
 𝑡𝑡+𝛼𝛼∆𝑡𝑡

= ∫Ω𝑩𝑩�1
T(𝛔𝛔′)𝑖𝑖+1𝑡𝑡+𝛼𝛼∆𝑡𝑡𝑠𝑠Ω − 𝑲𝑲�𝑠𝑠𝑡𝑡𝑔𝑔𝑚𝑚 �

𝐴𝐴𝑼𝑼𝑖𝑖+1
𝑡𝑡+𝛼𝛼∆𝑡𝑡−𝐵𝐵𝑼𝑼𝑡𝑡+𝐶𝐶𝑼𝑼𝑡𝑡−∆𝑡𝑡

∆𝑡𝑡
� − 𝜂𝜂𝑪𝑪�𝑷𝑷𝑖𝑖+1𝑡𝑡+𝛼𝛼∆𝑡𝑡 +

𝜂𝜂𝑪𝑪�𝑠𝑠𝑡𝑡𝑔𝑔𝑚𝑚 �
𝐴𝐴𝑷𝑷𝑖𝑖+1

𝑡𝑡+𝛼𝛼∆𝑡𝑡−𝐵𝐵𝑷𝑷𝑡𝑡+𝐶𝐶𝑷𝑷𝑡𝑡−∆𝑡𝑡

∆𝑡𝑡
�−(𝑭𝑭)𝑖𝑖+1𝑡𝑡+𝛼𝛼∆𝑡𝑡 = 𝟎𝟎                                                           (5-111) 

�𝜳𝜳𝑝𝑝,𝑠𝑠𝑡𝑡𝑔𝑔𝑚𝑚�𝑖𝑖+1
 𝑡𝑡+𝛼𝛼∆𝑡𝑡

= 𝜂𝜂𝑪𝑪�T �𝐴𝐴𝑼𝑼𝑖𝑖+1
𝑡𝑡+𝛼𝛼∆𝑡𝑡−𝐵𝐵𝑼𝑼𝑡𝑡+𝐶𝐶𝑼𝑼𝑡𝑡−∆𝑡𝑡

∆𝑡𝑡
� − 𝜂𝜂𝑪𝑪�𝑠𝑠𝑡𝑡𝑔𝑔𝑚𝑚∗T �𝐴𝐴𝑼𝑼𝑖𝑖+1

𝑡𝑡+𝛼𝛼∆𝑡𝑡−𝐵𝐵𝑼𝑼𝑡𝑡+𝐶𝐶𝑼𝑼𝑡𝑡−∆𝑡𝑡

∆𝑡𝑡
� +

𝑯𝑯�𝑷𝑷𝑖𝑖+1𝑡𝑡+𝛼𝛼∆𝑡𝑡 + 𝜂𝜂2𝑯𝑯�𝑠𝑠𝑡𝑡𝑔𝑔𝑚𝑚 �
𝐴𝐴𝑷𝑷𝑖𝑖+1

𝑡𝑡+𝛼𝛼∆𝑡𝑡−𝐵𝐵𝑷𝑷𝑡𝑡+𝐶𝐶𝑷𝑷𝑡𝑡−∆𝑡𝑡

∆𝑡𝑡
� + 𝑝𝑝𝑓𝑓𝑴𝑴�𝐴𝐴𝑷𝑷𝑖𝑖+1

𝑡𝑡+𝛼𝛼∆𝑡𝑡−𝐵𝐵𝑷𝑷𝑡𝑡+𝐶𝐶𝑷𝑷𝑡𝑡−∆𝑡𝑡

∆𝑡𝑡
� − (𝑻𝑻)𝑖𝑖+1𝑡𝑡+𝛼𝛼∆𝑡𝑡 = 𝟎𝟎  

(5-112) 

A similar Newton-Raphson procedure discussed earlier can be adopted for solving the 

global matrix system to obtain the nodal displacements 𝑼𝑼𝑖𝑖+1
𝑡𝑡+𝛼𝛼∆𝑡𝑡 and the nodal pore 

pressures 𝑷𝑷𝑖𝑖+1𝑡𝑡+𝛼𝛼∆𝑡𝑡. The solution procedure can then be rewritten for the stabilised 

formulation as follows: 

�
�𝜳𝜳𝑢𝑢,𝑠𝑠𝑡𝑡𝑔𝑔𝑚𝑚�𝑖𝑖+1

 𝑡𝑡+𝛼𝛼∆𝑡𝑡

 �𝜳𝜳𝑝𝑝,𝑠𝑠𝑡𝑡𝑔𝑔𝑚𝑚�𝑖𝑖+1
 𝑡𝑡+𝛼𝛼∆𝑡𝑡� = �

�𝜳𝜳𝑢𝑢,𝑠𝑠𝑡𝑡𝑔𝑔𝑚𝑚�𝑖𝑖
 𝑡𝑡+𝛼𝛼∆𝑡𝑡

�𝜳𝜳𝑝𝑝,𝑠𝑠𝑡𝑡𝑔𝑔𝑚𝑚�𝑖𝑖
 𝑡𝑡+𝛼𝛼∆𝑡𝑡� + 𝑱𝑱𝑠𝑠𝑡𝑡𝑔𝑔𝑚𝑚,𝑖𝑖 �

𝑠𝑠𝑼𝑼𝑖𝑖+1
𝑡𝑡+𝛼𝛼∆𝑡𝑡

𝑠𝑠𝑷𝑷𝑖𝑖+1𝑡𝑡+𝛼𝛼∆𝑡𝑡� = 𝟎𝟎                       (5-113)  

in which the stabilised Jacobian matrix 𝑱𝑱𝑠𝑠𝑡𝑡𝑔𝑔𝑚𝑚 is formulated as: 
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𝑱𝑱𝑠𝑠𝑡𝑡𝑔𝑔𝑚𝑚 = �
𝜕𝜕𝜳𝜳𝑔𝑔,𝑠𝑠𝑡𝑡𝑔𝑔𝑠𝑠

𝜕𝜕𝑼𝑼
𝜕𝜕𝜳𝜳𝑔𝑔,𝑠𝑠𝑡𝑡𝑔𝑔𝑠𝑠

𝜕𝜕𝑷𝑷
𝜕𝜕𝜳𝜳𝑝𝑝,𝑠𝑠𝑡𝑡𝑔𝑔𝑠𝑠

𝜕𝜕𝑼𝑼
𝜕𝜕𝜳𝜳𝑝𝑝,𝑠𝑠𝑡𝑡𝑔𝑔𝑠𝑠

𝜕𝜕𝑷𝑷

� .                                                                                   (5-114) 

The linearisation of the stabilised Jacobian matrix can be represented in the following 

form: 

𝑱𝑱𝑠𝑠𝑡𝑡𝑔𝑔𝑚𝑚,𝑖𝑖 = �
(�𝑲𝑲�𝑇𝑇�𝑖𝑖

 𝑡𝑡+𝛼𝛼∆𝑡𝑡
− 𝐴𝐴

∆𝑡𝑡
𝑲𝑲�𝑠𝑠𝑡𝑡𝑔𝑔𝑚𝑚) 𝜂𝜂(−𝑪𝑪� + 𝐴𝐴

∆𝑡𝑡
𝑪𝑪�𝑠𝑠𝑡𝑡𝑔𝑔𝑚𝑚)

𝐴𝐴𝐴𝐴
∆𝑡𝑡

(𝑪𝑪� − 𝑪𝑪�𝑠𝑠𝑡𝑡𝑔𝑔𝑚𝑚∗ )T �𝐴𝐴𝑔𝑔𝑓𝑓
∆𝑡𝑡
𝑴𝑴 + 𝑯𝑯� + 𝐴𝐴𝐴𝐴2

∆𝑡𝑡
𝑯𝑯�𝑠𝑠𝑡𝑡𝑔𝑔𝑚𝑚�

�                           (5-115) 

The incremental displacement vector 𝑠𝑠𝑼𝑼𝑖𝑖+1
𝑡𝑡+𝛼𝛼∆𝑡𝑡 and pressure vector 𝑠𝑠𝑷𝑷𝑖𝑖+1𝑡𝑡+𝛼𝛼∆𝑡𝑡 at iteration 

i+1 can then be computed as follows: 

�
𝑠𝑠𝑼𝑼𝑖𝑖+1

𝑡𝑡+𝛼𝛼∆𝑡𝑡

 𝑠𝑠𝑷𝑷𝑖𝑖+1𝑡𝑡+𝛼𝛼∆𝑡𝑡� = −𝑱𝑱𝑠𝑠𝑡𝑡𝑔𝑔𝑚𝑚,𝑖𝑖
−1 �

�𝜳𝜳𝑢𝑢,𝑠𝑠𝑡𝑡𝑔𝑔𝑚𝑚�𝑖𝑖
 𝑡𝑡+𝛼𝛼∆𝑡𝑡

�𝜳𝜳𝑝𝑝,𝑠𝑠𝑡𝑡𝑔𝑔𝑚𝑚�𝑖𝑖
 𝑡𝑡+𝛼𝛼∆𝑡𝑡�                                                               (5-116)  

 

5.6 Polynomial pressure projection method 

To date, the pressure projection stabilisation method has been successfully applied to 

numerical solutions of Darcy’s equation [177], and coupled flow-deformation problems 

in geomechanics [52]. In this section of the chapter, the polynomial pressure projection 

stabilisation method [58,64] is applied to the standard FEM with equal low-order 

interpolation functions. This method is presented here for the sake of completeness, 

because it has been used as the benchmark when the stabilisation method proposed in 

this chapter is numerically examined later.  

The polynomial pressure projection method can be viewed as a non-residual 

stabilisation method as it stabilizes the global bilinear form of the governing equations 

without resorting to the residual terms. Thus, the method is considered as an 
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inconsistent stabilisation method in the sense that the resulting discretised governing 

equations may not be exactly satisfied by the exact solution. Although different 

variations of the inconsistent stabilisation methods, commonly known as local pressure 

projection methods, exist, they are all based on the stabilisation framework proposed by 

Brezzi and Fortin [42]. The first specific version of this general stabilisation framework 

is the pioneering work of Silvester [197]. An extensive theoretical and numerical 

investigation of the local pressure projection methods were later presented by Becker 

and Brack [174].  

The main idea behind all classes of local pressure projection methods is decomposition 

of pressure space into two parts, 𝑉𝑉�𝑝𝑝ℎ and 𝑉𝑉𝑝𝑝ℎ\𝑉𝑉�𝑝𝑝ℎ, in such a way that the inf-sup condition 

is satisfied for the displacement/pressure subspaces 𝑽𝑽𝑢𝑢ℎ × 𝑉𝑉�𝑝𝑝ℎ. Therefore, robust and 

accurate numerical solutions can be obtained if the other part of the pressure space 

(𝑉𝑉𝑝𝑝ℎ\𝑉𝑉�𝑝𝑝ℎ) is stabilised. An operator is then needed to project the pressure from the richer 

space 𝑉𝑉𝑝𝑝ℎ to the smaller space 𝑉𝑉�𝑝𝑝ℎ, which can be symbolically shown as: 

𝜫𝜫: 𝑉𝑉𝑝𝑝ℎ → 𝑉𝑉�𝑝𝑝ℎ                                                                                                             (5-117)  

where 𝜫𝜫 is known as the projection operator.  

The bilinear form of the stabilisation term in polynomial pressure projection method can 

be generally expressed as follows: 

𝑆𝑆𝑝𝑝𝑝𝑝(𝜂𝜂ℎ,𝑞𝑞ℎ) = ∑  𝜏𝜏�𝜂𝜂ℎ − 𝜫𝜫𝜂𝜂ℎ�������������, 𝑞𝑞ℎ − 𝜫𝜫𝑞𝑞ℎ�
0,Ω𝑠𝑠

 
Ω𝑠𝑠∈𝒯𝒯ℎ                                               (5-118) 

where 𝑆𝑆𝑝𝑝(𝜂𝜂ℎ,𝑣𝑣ℎ) is the stabilisation term added to the global FEM standard bilinear 

form of coupled flow-deformation equations (Equation 5-14), resulting in: 

𝑄𝑄𝑃𝑃𝑃𝑃 (𝒖𝒖ℎ,𝜂𝜂ℎ;𝒗𝒗ℎ,𝜂𝜂ℎ) =  𝑄𝑄(𝒖𝒖ℎ,𝜂𝜂ℎ;𝒗𝒗ℎ,𝜂𝜂ℎ) + 𝑆𝑆𝑃𝑃𝑃𝑃(𝜂𝜂ℎ,𝑞𝑞ℎ)                                      (5-119) 
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where 𝑄𝑄𝑃𝑃𝑃𝑃 (𝒖𝒖ℎ,𝜂𝜂ℎ;𝒗𝒗ℎ,𝜂𝜂ℎ) stands for the global bilinear form of the flow-deformation 

equations that is stabilised by the polynomial pressure projection method. When equal 

linear order interpolation functions are used, the projection operator is defined as 

follows: 

 𝜫𝜫: 𝑳𝑳2(Ω) →  𝑅𝑅0                                                                                                      (5-120) 

where, 𝑅𝑅0 denotes a set of piecewise constants. A pressure projection with a range of 

piecewise constants can be given in the following form: 

𝜫𝜫𝜂𝜂ℎ|Ω𝑠𝑠 = 1
𝐴𝐴𝑘𝑘
𝑠𝑠  ∫ 𝜂𝜂ℎ 

Ω𝑠𝑠 𝑠𝑠Ω                                                                                           (5-121) 

in which the constants correspond to the average of 𝜂𝜂ℎ over the elements when the 

linear interpolation function is employed. 

Having defined 𝑆𝑆𝑃𝑃𝑃𝑃(𝜂𝜂ℎ, 𝑞𝑞ℎ) and 𝜫𝜫, [200] showed that the inherent deficiency 

associated with using equal-order linear interpolation functions that prevents the 

fulfilment of the inf-sup condition is overcome by the appearance of an additional 

𝐶𝐶2 ‖𝑞𝑞ℎ −  𝜫𝜫𝑞𝑞ℎ‖0 term in the original inf-sup condition. Consequently, the weak inf-sup 

condition is satisfied, shown as: 

𝑠𝑠𝑝𝑝𝜂𝜂
𝒗𝒗ℎ ∈ 𝑽𝑽𝑢𝑢  𝒗𝒗ℎ ≠ 0  

𝐵𝐵�𝒗𝒗ℎ,𝑞𝑞ℎ�
 �𝒗𝒗ℎ�1

≥ 𝐶𝐶1‖𝑞𝑞ℎ‖1 − 𝐶𝐶2 ‖𝑞𝑞ℎ −  𝜫𝜫𝑞𝑞ℎ‖0                                   (5-122) 

The contributing stabilisation matrix produced by bilinear 𝑆𝑆𝑃𝑃𝑃𝑃(𝜂𝜂ℎ, 𝑞𝑞ℎ) is then presented 

in the following form: 

𝑴𝑴𝑃𝑃𝑃𝑃 =  ∫ 𝜏𝜏 
Ω𝑠𝑠

(𝑵𝑵𝑝𝑝 −  𝜫𝜫(𝑵𝑵𝑃𝑃))T(𝑵𝑵𝑝𝑝 −  𝜫𝜫(𝑵𝑵𝑝𝑝))𝑠𝑠Ω                                                 (5-123) 

Note that the numerical integration of Equation 5-124 is performed similar to that of the 

compressibility matrix 𝑴𝑴. 
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When applying the pressure projection technique to the standard variational form, the 

equilibrium residual (𝜳𝜳𝑢𝑢) remains unchanged, but the fluid continuity residual changes 

and takes the following form (after discretisation): 

�𝜳𝜳𝑝𝑝�𝑃𝑃𝑃𝑃,𝑖𝑖+1
 𝑡𝑡+𝛼𝛼∆𝑡𝑡

= 𝜂𝜂𝑪𝑪T�𝐴𝐴𝑼𝑼𝑖𝑖+1
𝑡𝑡+𝛼𝛼∆𝑡𝑡 − 𝐵𝐵𝑼𝑼𝑡𝑡 + 𝐶𝐶𝑼𝑼𝑡𝑡−∆𝑡𝑡� + ∆𝑡𝑡𝑯𝑯𝑷𝑷𝑖𝑖+1𝑡𝑡+𝛼𝛼∆𝑡𝑡 + 

𝑝𝑝𝑓𝑓(𝑴𝑴+ 𝑴𝑴𝑃𝑃𝑃𝑃)�𝐴𝐴𝑷𝑷𝑖𝑖+1𝑡𝑡+𝛼𝛼∆𝑡𝑡 − 𝐵𝐵𝑷𝑷𝑡𝑡 + 𝐶𝐶𝑷𝑷𝑡𝑡−∆𝑡𝑡� − ∆𝑡𝑡�𝑭𝑭p�𝑖𝑖+1
𝑡𝑡+𝛼𝛼∆𝑡𝑡

= 𝟎𝟎                           (5-124) 

in which �𝜳𝜳𝑝𝑝�𝑃𝑃𝑃𝑃,𝑖𝑖+1
 𝑡𝑡+𝛼𝛼∆𝑡𝑡

 represents the linearised residual of the fluid continuity equation at 

the time step 𝑡𝑡 + 𝛼𝛼∆𝑡𝑡, stabilised by the pressure projection method. All contributing 

matrices, in conjunction with the coupled-flow deformation analysis, are then 

formulated by the standard FEM procedure [2]. 

The resulting discretised system of equations can again be solved using the standard 

Newton-Raphson procedure, similar to the procedureexplained before:  

�
(𝜳𝜳𝑢𝑢)𝑖𝑖+1 𝑡𝑡+𝛼𝛼∆𝑡𝑡

 �𝜳𝜳𝑝𝑝�𝑃𝑃𝑃𝑃,𝑖𝑖+1
 𝑡𝑡+𝛼𝛼∆𝑡𝑡� = �

(𝜳𝜳𝑢𝑢)𝑖𝑖 𝑡𝑡+𝛼𝛼∆𝑡𝑡

�𝚿𝚿𝑝𝑝�𝑃𝑃𝑃𝑃,𝑖𝑖
 𝑡𝑡+𝛼𝛼∆𝑡𝑡� + 𝑱𝑱𝑃𝑃𝑃𝑃,𝑖𝑖 �

𝑠𝑠𝑼𝑼𝑖𝑖+1
𝑡𝑡+𝛼𝛼∆𝑡𝑡

𝑠𝑠𝑷𝑷𝑖𝑖+1𝑡𝑡+𝛼𝛼∆𝑡𝑡� = 𝟎𝟎                                           (5-125) 

in which the Jacobian matrix is: 

𝑱𝑱𝑃𝑃𝑃𝑃,𝑖𝑖 = �
(𝑲𝑲𝑇𝑇)𝑖𝑖 𝑡𝑡+𝛼𝛼∆𝑡𝑡 −𝜂𝜂𝑪𝑪
𝐴𝐴𝜂𝜂𝑪𝑪T �𝐴𝐴𝑝𝑝𝑓𝑓(𝑴𝑴 + 𝑴𝑴𝑃𝑃𝑃𝑃) + ∆𝑡𝑡𝑯𝑯�

�                                                   (5-126) 

As can be seen, the stabilising matrix 𝑴𝑴𝑃𝑃𝑃𝑃 eliminates the zero-diagonal block that may 

otherwise exist at very early stages of the flow-deformation process due to initial 

incompressibility of the porous media. The polynomial pressure projection method 

retains the sparsity of the matrix system, as 𝑴𝑴𝑃𝑃𝑃𝑃 is created by the same shape functions 

that are used for other contributing matrices.                             
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5.7 Numerical Examples 

Three benchmark numerical examples are presented in this section to study the validity 

and robustness of the consistent stabilisation method proposed in this study and to 

compare the performance of the proposed method to the performance of the polynomial 

pressure projection method. 

 

5.7.1 One dimensional consolidation  

The first example presented in this section concerns Terzaghi's one-dimensional 

problem. The example includes a linear-elastic soil mass with a height of h = 30 m and 

a width of a = 1 m with a low permeability of k = 10−6 m sec⁄ , as shown in Figure 

5.2(a). The soil column is composed of 80 triangular elements associated with 63 nodes, 

as shown in Figure 5.2(b). The lower boundary of the soil column is rigidly restricted 

both vertically and horizontally, while its lateral boundaries are only horizontally fixed. 

The upper boundary of the soil medium is assumed to be fully drained (p = 0). 

However, the lateral sides and the base of the soil column are impermeable. The 

assigned boundary conditions of the soil column are also shown in Figure 5.2(a).  

According to Terzaghi's formulation, an instantaneous increase in excess pore water 

pressure can be expected in the column as result of a sudden surface-distributed load of 

𝑞𝑞 = 1 kPa at the top of the soil column. After the instantaneous increase, the excess 

pore water pressure gradually dissipates over time.  

The linear properties of the soil column arethe elastic modulus of 𝐸𝐸 = 1 kPa and  

Poisson's ratio of 𝜈𝜈 = 0.0. Other relevant parameters used in numerical modelling 
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include: an initial time step of ∆𝑡𝑡0 = 1 s, the time step growth factor of 𝛼𝛼 =1.1, the 

porosity of 𝑛𝑛 = 0.2, the solid grain compressibility of 𝐶𝐶𝑠𝑠 = 0 and the fluid 

compressibility of 𝐶𝐶𝑓𝑓 = 0.454 × 10−6 kPa−1. The densities of the fluid (𝜌𝜌𝑓𝑓) is 10  

k𝑁𝑁 m3⁄ . Regarding the material properties used in this numerical example, the soil 

column can be thought of as a nearly incompressible medium. The scalar value of 𝛼𝛼𝑠𝑠  is 

taken as 0.05. 

                       

 

   

                                 

Figure 5.2. A schematic representation of (a) the soil column with its assigned boundary conditions (not 

to scale), and (b) the discretisation used for the numerical analyses. 
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Figure 5.3 shows the pressure profile of the soil column along its height after the initial 

time step for the standard ESFEM. It also shows the numerical results obtained with the 

proposed consistent stabilisation method and numerical results obtained with the 

polynomial pressure projection method. According to Terzaghi's consolidation theory, 

pore pressure throughout the soil column must be equal to overburden stress; however, 

the ESFEM produced a pathological profile of excess pore pressure and wild node-to-

node pressure oscillations throughout the domain of the column. This is because of the 

violation of the inf-sup condition as a result of using equal-order linear interpolation 

functions for pressure and displacement variables.  

The numerical results obtained with the proposed stabilised ESFEM perfectly match the 

reference solution [313], as can be clearly seen in Figure 5.3. The added stabilisation 

term led to a successful fulfilment of the inf-sup condition. The results obtained with the 

polynomial pressure projection method do not alleviate pressure oscillation near the 

drainage boundary of the soil medium due to a sharp gradient of pressure near the 

surface of the soil column. The numerical results, therefore, concur with [36] regarding 

the failure of the polynomial pressure projection method in terms of the complete 

elimination of pressure oscillation in a numerical flow-deformation analysis. 
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Figure 5.3. A pressure profile, along the height of the soil column, presented with the stabilised ESFEM 

proposed in this study, the standard ESFEM and the stabilised FEM obtained with the polynomial 

pressure projection method. 

 

Contrary to stabilisation parameters proposed in other studies [51, 193], the simple 

steady-state based stabilisation parameter used in this study managed to tune the size of 

the stabilisation terms to alleviate erratic pressure oscillation without a need to include 

the time step size and its associated growth factor into the stabilisation parameter. The 

influence of the time step and its relevant growth factor directly appear in the resultant 

stabilised matrix system in this study through the existence of the coefficient  𝐴𝐴 ∆𝑡𝑡⁄ in all 

blocks of the global matrix system.  

According to Equation 5-115, it can be seen that the size of the required time step size 

must be large enough, relative to the element size, to be used in an analysis of interest. 

Thus, the formulation proposed in this chapter confirms the findings of other studies 

that state that the size of the time step needs to be larger than a certain value depending 
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on the mesh size; otherwise, it could lead to the appearance of either pressure oscillation 

or a Divergence of the converged solution from an adequately accurate numerical 

approximation [53, 311, 312]. Indeed, these were found even with the absolute 

stabilisation method associated with Stokes problems that was proposed by Douglas and 

Wang [172].  

The numerical experiments in this study shows that the necessity of using time-

dependent stabilisation parameters in methods proposed in other studies [51, 193] likely 

stems from failures to provide sufficient amount of weighting function related to the 

added stabilisation terms due to the exclusion of the displacement weight function. 

Thus, added residual terms only affects the discretised fluid continuity equation. This 

approach can, however, be erroneous because the discretised equilibrium equation 

remains unchanged, and the influence of stabilising terms, which can be produced by 

the inclusion of the displacement weight function is overlooked. Therefore, introducing 

the size of the time step to the stabilisation parameter somehow tries to compensate for 

elimination of the displacement weight functions in the aforementioned stabilisation 

methods to provide sufficient amount of stabilisation and to avoid the destabilising 

effects of overly diffusive terms caused by inappropriately chosen stabilisation 

parameter. Such an approach is, however, not rigorous and may not work all the time 

Figure 5.4 depicts the contours of excess pore pressure obtained using the standard 

ESFEM and the proposed stabilised ESFEM after three sequential time steps for the 

three rows of the triangular elements from the top of the soil column. The representation 

of the pressure contours is restricted to the top of the column since for the rest of the 

column, a uniform pressure distribution was obtained for the numerical results 

associated with the stabilised ESFEM and a repeatedly erratic pressure contour was 
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obtained using the standard ESFEM. As can be seen, a wildly erroneous pressure 

contour pattern across the domain was substantially ameliorated using the proposed 

stabilisation method, and the stabilised numerical results perfectly agree to the 

Terzaghi's consolidation theory.    

 

  

 

(a) 

 

(b) 

Figure 5.4. The contours of the approximated pressure solutions (kPa) for three elements on the top of the 

soil column obtained by (a) stabilised ES-FEM and (b) standard ES-FEM after three initially subsequent 

time steps. 

5.7.2 Mandel’s problem 

The second example presented in this section examines the proposed method by 

studying a well-known benchmark example: Mandel's problem. It consists of a long 
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saturated soil slab with a length of 2L = 40 m and a width of 2a = 4 m confined by two 

rigid plates at the top and bottom of the slab, which are assumed to be frictionless and 

impermeable, as shown in Figure 5.5(a). The rigidity of each plate causes equal vertical 

displacements for all nodes directly connected the plate, while the nodes are 

horizontally unconstrained. The fluid and soil constituents of the medium are assumed 

to be incompressible.  

The plates are subjected to a distributed load of q = 2 kPa, which is compressively 

applied and results in the appearance of an initial excess pore pressure of p = 2 kPa 

throughout the medium, except for at the drainage boundaries at 𝑥𝑥1 = ± 𝐿𝐿 according to 

Mandel's analytical solution [298]. A quarter of the medium is modelled due to 

symmetry. The discretisation of the medium is performed using 606 triangular elements 

created by 1,000 nodes, as shown in Figure 5.5(b). It is worth noting that the adopted 

mesh is more refined at the right side of the domain to attain better accuracy. The elastic 

parameters are 𝐸𝐸 = 104 kPa and 𝜈𝜈 = 0.0, which correspond to the consolidation 

coefficient 𝑠𝑠v = 1 and the permeability coefficient k = 10−4 m sec⁄ . The soil porosity is 

assumed 𝑛𝑛 = 0.2. The scaler value of 𝛼𝛼𝑠𝑠  was assumed to be 0.072. 
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                                                            (a) 

 

                                                                      (b) 

Figure 5.5. (a) a schematic (not to scale) representation of the geometry of Mandel’s problem (b) the 

discretisation used for modelling a quarter of the domain. 

 

Figure 5.6 shows that variations in the pressure profile at time t = 0.004 sec 

corresponded to the dimensionless time 𝑡𝑡𝑑𝑑 = 1× 10−5 calculated by 𝑡𝑡𝑑𝑑 = 

𝐸𝐸𝑘𝑘𝑡𝑡
2𝜇𝜇𝑠𝑠(1+𝑣𝑣)(1−2𝑣𝑣)𝐿𝐿2

, which was obtained using the standard FEM, the standard ES-FEM 

and their stabilised counterparts. Due to symmetry, the pressure variation is one-

dimensional with no change along any vertical line, therefore pressure variations are 

depicted only along horizontal direction. The dimensionless length is defined as  𝑥𝑥1 𝐿𝐿⁄  

while the dimensionless pressure is 𝜂𝜂 𝜂𝜂0⁄  . It can be seen that utilising standard 

formulations with equal-order interpolation functions for both primary variables 

produces pressure oscillations that are intensified in the vicinity of the drainage 

boundary. The proposed stabilised ES-FEM was able to produce a smoothly realistic 

pressure profile, which agrees well with Mandel's analytical solution [298]. 
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(a) 

 

(b) 

Figure 5.6. The variation of the dimensionless excess pore pressure along the dimensionless length of the 

soil medium at dimensionless time 𝑡𝑡𝑑𝑑 = 1× 10−5 for (a) standard and stabilised FEM and (b) for standard 

ES-FEM and proposed method for the stabilisation of ESFEM. 

 

Figure 5.7 shows pressure contours in part of the domain obtained using the numerical 

results of the standard ESFEM and the proposed stabilised ESFEM. As aforementioned, 

the standard formulation shows wild pressure oscillations near the drainage boundary 

that are associated with unrealistic vertical variations of pressure in some regions. In 

contrast, the pressure distribution obtained using the stabilised formulation is stable and 

accurate. 
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(a) 

 

 

(b) 

Figure 5.7. The contours of dimensionless pressure distribution after the first time step of ∆𝑡𝑡0 = 0.01 sec 

for (a) standard ESFEM, and (b) stabilised ESFEM 
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5.7.3  Bearing capacity of a strip footing 

Volumetric locking at a fully developed plastic flow is one of the most challenging 

issues of computational elastoplasticity, especially when a computation of a collapse 

load, which is prone to large errors, must be considered [314]. Various techniques have 

been proposed, which will briefly introduced, to address mesh locking induced by 

elastoplastic constitutive models which results in overestimation of the collapse load. 

The simplest solution is the reduced integration method that under-integrates internal 

force vectors and subsequently under-integrates relevant stiffness matrices [315]. The 

technique employs an integration scheme one order lower than a sufficient order needed 

to evaluate an exact integration. However, the approach leads to the appearance of 

spurious kinematic modes with no rises in internal energy. The propagation of spurious 

kinematic modes into adjacent elements with the reduced integration method was 

reported in [316].  

Another approach that has been proposed is the selective integration, known as the B-

concept, which differentiates Gauss points used for integrations of shear strain and 

Gauss points used to integrate volumetric strain [317]. Nonetheless, it has been shown 

that the B-concept fails to address the mesh locking issue for the general case of 𝜓𝜓 ≠ 0 

where 𝜓𝜓 denotes a dilation angle [315]. 

Another possible solution that has been proposed is the enhanced assumed strain 

approach, which was suggested by Simo and Rifai [318]. The approach includes 

augmentations of the standard strain fields obtained using continuous displacement 

fields with local element-based strain fields. However, this approach has spurious 

modes in the analyses of interest when material nonlinearity (damage or plasticity) is 

assumed. This failure to produce accurate results, when material nonlinearity is 
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included, happens with other mixed formulations as well, such as the u/p formulation 

adopted in this thesis [315]. 

The effectiveness and robustness of the proposed stabilisation method, in regard to 

overcoming the volumetric locking issue, is investigated in the third numerical example 

in this section. The investigation incorporates material nonlinearity by using Mohr-

Coulomb's nonlinear constitutive model. The model is used to compute the bearing 

capacity of a strip footing placed on a soil medium.  

The example includes a smooth flexible impervious strip footing lain on a saturated 

low-permeable soil medium with a thickness of 5 m that extends laterally 10 m from the 

footing's axis of symmetry, as shown in Figure 5.8(a). It is assumed that the soil 

medium is weightless and the underlyingrigid bedrock is impervious. Non-associativity 

for the soil medium is also with a friction angle of ∅ = 30° and a dilation angle of  𝜓𝜓 =

0. The cohesion is 𝑠𝑠 = 1 kPa, and free drainage is assumed for the ground surface. Due 

to symmetry only half of the medium is modelled.  

The elastic modulus and Poisson's ratio are assumed to be 𝐸𝐸 = 100 kPa and 𝜈𝜈 = 0.25, 

respectively, and the coefficient of permeability is assumed k = 3.2 × 10−9 m sec⁄ . 

These parameters correspond to aconsolidation coefficient of 𝑠𝑠v = 1 × 10−6 m2/sec. 

The porosity is assumed n = 0.2, and both solid and fluid ingredients are assumed to be 

incompressible. The soil medium is discretised using a set of triangular elements, which 

contains 441 elements and 800 nodes, as shown in Figure 5.8(b). The scalar stabilisation 

parameter 𝛼𝛼𝑠𝑠  is taken as 0.055 in this example. 
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(a) 

 

(b) 

Figure 5.8. (a) The geometry of the strip footing (not to scale) and the saturated porous medium used to 

estimate the collapse load and (b) the discretisation adopted for the numerical solution. 
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The surface load acts on the strip footing at the length a = 1 m, as shown in Figure 5-

8(a). The vertical surface load instantaneously increases from q = 0 kPa to q = 3.14 kPa, 

which corresponds to an elastic limit load, as per an analytical solution by Prandtl [319], 

equal to 𝑞𝑞𝑠𝑠 = 𝜋𝜋𝐶𝐶 . The elastic limit load is applied in five subsequent time steps with 

equal dimensionless lengths of 𝑡𝑡𝑑𝑑 = 4 × 10−8 where 𝑡𝑡𝑑𝑑 =  𝐸𝐸𝑘𝑘𝑡𝑡
2𝜇𝜇𝑓𝑓(1+𝑣𝑣)(1−2𝑣𝑣)𝑝𝑝2 Then, the 

load is increased in steps of 0.005𝑞𝑞𝑠𝑠 until failure occurs, which should correspond to the 

ultimate limit load of 𝑞𝑞𝑢𝑢𝑙𝑙𝑡𝑡 = (𝜋𝜋 + 2)𝐶𝐶 . The time step size and its corresponding 

growth factor is ∆𝑡𝑡0 = 1.5 sec and 𝛼𝛼 = 1, respectively. 

Figure 5.9 shows pressure variations along the axis of symmetry beneath the strip 

footing at the dimensionless time 𝑡𝑡𝑑𝑑 = 5 × 10−8, which is equal to t = 1.25 sec. The 

pressure variations are obtained using the standard FEM, the standard ESFEM and their 

corresponding stabilised formulations. Elegant numerical results are attained by 

adopting stabilised formulations contrary to their standard counterparts, which show 

poor accuracy. It is important to note that the standard ESFEM produced more 

oscillatory pressure results than the standard FEM. 
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(a) 

 

(b) 

Figure 5.9. Pressure variations along the axis of symmetry beneath the strip footing at the dimensionless 

time 𝑡𝑡v = 5 × 10−8, obtained by (a) standard and stabilised FEM and (b) standard ESFEM and proposed 

stabilised ESFEM. 

 

Figure 5.10 compares variations in the vertical load versus variations in the vertical 

displacement just below the strip footing obtained using different approaches. The 

figure also compares the computed collapse loads of the standard FEM, ESFEM and 

their stabilised counterparts, and also Prandtl's analytical solution. As can be seen, the 

standard FEM produced the worst numerical results and had the most overestimations 

of collapse loads (1.07𝑞𝑞𝑢𝑢𝑙𝑙𝑡𝑡). The proposed stabilised ES-FEM successfully overcame 

the volumetric locking issue and was the most accurate method in terms of 

computations of the strip-footing collapse load with respect to the analytical solution 

(1.008 𝑞𝑞𝑢𝑢𝑙𝑙𝑡𝑡).  

The standard ESFEM was softer than the standard FEM, as was expected based on 

various studies [91, 92, 94]; with the computed collapse load of 1.04 𝑞𝑞𝑢𝑢𝑙𝑙𝑡𝑡. Nonetheless, 

in regards to polynomial pressure projections, the stabilised FEM was unable to address 

volumetric locking inherent in the standard FEM and to accurately predict strip-footing 
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collapse load (1.036 𝑞𝑞𝑢𝑢𝑙𝑙𝑡𝑡). The same failure, relevant to the computation of the collapse 

load, was observed with a slightly better accuracy when polynomial pressure 

projections were adopted for the standard ESFEM. 

 

(a) 

 

(b) 

Figure 5.10. Vertical load variations with respect to vertical displacements just below the strip footing, 

plotted for (a) the standard and stabilised FEM and (b) the standard ESFEM and the stabilised ESFEM 

using the method proposed in this study. 

 

Figure 5.11 shows the pressure contours obtained in the last convergent step of the 

analysis, just before collapse occurs with the standard ESFEM and the stabilised 

ESFEM, corresponding to approximated pressure solutions at the dimensionless times 

𝑡𝑡𝑑𝑑 = 5.4 × 10−6 and 𝑡𝑡𝑑𝑑 = 5.64 × 10−6, respectively. It can be seen that the stabilised 

method proposed in this study has resolved the violation of the inf-sup condition, which 

is the root cause of the erroneous estimation of the pressure distribution across the soil 

medium. Moreover, this study's method successfully produces realistic pressure 

contours, as can be seen in the figure. 
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P(kPa) 

(a) 

 
P(kPa) 

(b) 
Figure 5.11. Pressure contours, at the last convergent step, obtained using (a) the proposed stabilised 

ESFEM at the dimensionless time 𝑡𝑡𝑑𝑑 = 5.64 × 10−6 and (b) the standard ESFEM at the dimensionless 
time 𝑡𝑡𝑑𝑑 = 5.4 × 10−6 . 

 

 

5.8 Conclusion 

A consistent stabilisation method has been proposed in this study. The proposed 

stabilised technique has been introduced within the ESFEM framework as perhaps the 

simplest form of edge-based SPIM to prove the viability and the robustness of the 

proposed method. A novel technique based on the combination of the global strain 

projection along with the application of the smoothing gradient technique has been 

exploited in order to retrieve the use of equal-order linear interpolation functions for 

approximations of the primary variables, the displacement and the pore pressure. An 

unconditional stable consistent method based on that proposed in [172] has been applied 

to satisfy the inf-sup condition irrespective of the chosen stabilisation parameter, 

resulting in the elimination of the pathological oscillatory pore pressure behaviour and 

the overestimation of the collapse load in computational geomechanics. The versatility 

and the accuracy of the proposed stabilisation method have been shown by the 
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simulation of the number of geotechnical examples, including both linear and nonlinear 

cases. It has also numerically proven that proposed method exhibit the superior 

performance that its contender (pressure projection method) when equal-order linear 

interpolations are used. The superiority was rooted to the better estimation of the 

collapse load in the strip footing and the efficient vanishing the pathological pattern of 

the pore pressure distribution near the drainage boundary. 
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6 An Enriched smoothed point interpolation method for the 

flow-deformation analysis of saturated porous media with 

embedded interfaces 

 

6.1 Preface 

An enriched smoothed point interpolation method is proposed for the numerical 

simulation of saturated porous media containing embedded interfaces. Embedded 

interfaces are those in which the underlying bulk discretisation is not aligned with the 

interface geometries. The well-established coupled flow-deformation equations 

developed by Biot (presented in Chapter 3) govern the behaviour of a saturated porous 

medium away from a discontinuity. A viscous fluid represents the flow within a 

discontinuity at the microscale while restoring the momentum and mass couplings to the 

coupled flow-deformation equations of a saturated porous medium with the assumption 

of validity on a macroscopic scale. In this chapter, the formulation proposed to describe 

the interfacial inflow exploits the aperture-dependent permeability of the discontinuity 

cavity in addition to the utilisation of the standard Darcy flow. The proposed 

formulation enables the incorporation of both the opening and the enforcement of the 

closure mode, where either the fluid exchange is recovered or the contact condition is 

imposed at the interface of interest. The presence of interfaces on the approximation of 

the primary and secondary variables is inserted by augmenting the shape functions (PIM 

and RPIM) with properly defined enrichment functions and by exploiting the partition-

of-unity (PU) property of the adopted shape functions. The penalty method is used to 

present the contact behaviour in which the solid and fluid phases are subjected to 
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relevant constraints. It is shown that the smoothing gradient technique eliminates the 

need for the sub-division of supporting domains crossed by discontinuity. Temporal 

discretisation is performed using the three-point time discretisation scheme. The 

resultant algebraic system is non-linear due to the nonlinearity of the coupling terms, 

and is solved by application of a consistent Newton–Raphson iterative algorithm. The 

chapter concludes by a rigorous numerical examination of the proposed method using a 

set of benchmark examples.  

 

6.2 Governing equations of saturated porous media with interfaces 

The partial differential equations developed in [161] govern the coupled solid 

deformation and saturating fluid flow in a saturated porous medium surrounding a 

discontinuity, which includes the linear momentum balance equation (the equilibrium 

equation) in association with the entire porous medium and the continuity equation of 

flow that describes the saturating fluid phase. The forms of coupled flow-deformation 

equations are similar to Equations 3-1 and 3-2.  

The essential and natural boundary conditions identical to those presented in Equations 

3-4 to 3-7 are specified to close the boundary value problems away from a 

discontinuity. The imposed boundary conditions are assumed to apply on the 

complementary parts of the boundary, satisfying the conditions presented in Equation 3-

9 and Equation 3-10. Throughout this chapter, linear elastic behaviour is assumed for 

the medium away from an interface as represented by Equation 3-11 and Equation 3-12. 

A schematic representation of a saturated porous medium with inclusion of an internal 

interface (Γ𝑑𝑑) is provided in Figure 6.1. In this figure, 𝑛𝑛Γ𝑑𝑑+ and 𝑛𝑛Γ𝑑𝑑− are the unit normal 
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vectors directed to Ω− and  Ω+, respectively, where the signs + and − above Γ𝑑𝑑 indicate 

the two sub-domains of the discontinuity. The internal interface is characterised by the 

outward unit normal vector to Γ𝑑𝑑 pointing to Ω+ with 𝐧𝐧Γ𝑑𝑑 = 𝐧𝐧Γ𝑑𝑑−= − 𝐧𝐧Γ𝑑𝑑+ , such that 

Γ𝑑𝑑 = Γ𝑑𝑑−  ∪  Γ𝑑𝑑+. The interface enables the representation of a discontinuity in the field 

of either the secondary primary variables, such as strain and fluid flux, or the primary 

variables, which are the displacement and pore pressure fields. The former refers to 

weak discontinuity, such as material heterogeneity interfaces, and the latter refers to a 

strong discontinuity, such as a crack. The presence of geomechanical discontinuities 

(Γ𝑑𝑑) enforces the imposition of additional boundary conditions on the surface of the 

interface. These additional boundary conditions naturally appear in the weak form of the 

coupled flow-deformation equations of a saturated porous medium that contains an 

interface through the application of the Divergence theorem to the strong form of the 

equations. 

 

 

Figure 6.1. A schematic representation of a saturated porous medium Ω with internal boundary Γ𝑑𝑑 
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6.2.1 Weak forms 

The derivation of weak forms that do not necessitate coincidence between the mesh 

topology and the interfacial geometry requires the definition of functional subspaces 

containing an embedded discontinuity. Thus, the subspaces chosen for the 

approximation of the displacement (u) and pore pressure (p) are identically given as 

introduced in Equations 5-17 and 5-18 in addition to their corresponding test functions 

(v and q) in Equations 5-19 and 5-20, respectively. 

To build discontinuity into the weak forms of the coupled flow-deformation equations, 

the momentum balance (Equation 3-1) and the fluid mass balance (Equation 3-2) are 

multiplied by kinematically admissible test functions for displacement (v) and for pore 

pressure (q), respectively. Introducing the internal boundary Γ𝑑𝑑, integrating over domain 

Ω , and applying the Divergence theorem accompanied by the specific boundary 

conditions (Equations 3-4 to 3-7) yields the explicit form of the corresponding weak 

forms: 

∫ 𝜺𝜺T(𝒗𝒗)𝛔𝛔ˊ�𝜺𝜺(𝒖𝒖)�𝑠𝑠Ω − 
Ω ∫ 𝒗𝒗+𝑇𝑇( 𝐧𝐧Γ𝑑𝑑+

T 𝝈𝝈+ Γ𝑑𝑑
+ )𝑠𝑠Γ − ∫ 𝒗𝒗−𝑇𝑇( 𝐧𝐧Γ𝑑𝑑−

T 𝝈𝝈−Γ𝑑𝑑
− )𝑠𝑠Γ −

𝜂𝜂 ∫ 𝜂𝜂 𝜵𝜵.𝒗𝒗 𝑠𝑠Ω − ∫ 𝒗𝒗T�̅�𝒕𝑠𝑠Γ  
Γ𝑡𝑡

− ∫ 𝜌𝜌𝒗𝒗T𝐠𝐠𝑠𝑠Ω = 0  
Ω

 
Ω   ∀ 𝒗𝒗 ∈ 𝑽𝑽𝑢𝑢,0                                       (6-1) 

𝜂𝜂 ∫ 𝑞𝑞 𝜵𝜵. �̇�𝒖 𝑠𝑠Ω  
Ω − ∫ 𝑞𝑞+( 𝐧𝐧Γ𝑑𝑑+

T 𝒘𝒘+
Γ𝑑𝑑
+  )𝑠𝑠Γ − ∫ 𝑞𝑞−(𝐧𝐧Γ𝑑𝑑−

T 𝒘𝒘− Γ𝑑𝑑
− )𝑠𝑠Γ+ 𝑘𝑘𝑓𝑓

𝜇𝜇𝑓𝑓
∫ (𝜵𝜵𝑞𝑞)T𝜵𝜵𝜂𝜂 𝑠𝑠Ω + 
Ω

𝛼𝛼𝑓𝑓 ∫ 𝑞𝑞�̇�𝜂 𝑠𝑠Ω − ∫ 𝑞𝑞𝑞𝑞�𝑠𝑠Γ = 0  
Γ𝑞𝑞

   
Ω     ∀ 𝑞𝑞 ∈ 𝑉𝑉𝑝𝑝,0                                                               (6-2) 

where 𝒘𝒘 is the fluid velocity, which is related to the pressure gradient through the 

Darcy law. 

Based on Equations 6-1 and 6-2, the imposition of the constraints associated to an 

internal boundary Γ𝑑𝑑 into the weak forms leads to the natural appearance of the external 
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tractions and the exchange of the fluid flux through the faces of the internal boundary. 

Indeed, these terms provide the hydro-mechanical couplings between a discontinuity 

and the surrounding saturated porous medium. The solvability of the constrained weak 

forms due to the presence of geomechanical discontinuity (Γ𝑑𝑑) requires appropriate 

imposition of additional boundary conditions that rely on the inherent nature of the 

discontinuity. 

Assuming equilibrium between the cavity within a strong discontinuity and the 

surrounding medium, we can write, 

𝐧𝐧Γ𝑑𝑑+
T 𝝈𝝈+=−𝐧𝐧Γ𝑑𝑑−

T 𝝈𝝈− = 𝒕𝒕cont − 𝜂𝜂 𝐧𝐧Γ𝑑𝑑                                                                            (6-3) 

where 𝒕𝒕cont denotes the frictional contact tractions on Γcont ⊂ Γ𝑑𝑑, where Γcont expresses 

the active contact surface of the discontinuity. Appropriate contact numerical algorithms 

should be imposed to quantify the likely effects of the opening/closing and 

sticking/slipping modes of the discontinuity faces. In this study, the contact constraints 

are established by two nested Kuhn–Tucker inequalities, which will be elaborated later. 

The term 𝜂𝜂 𝐧𝐧Γ𝑑𝑑 in Equation 6-3 recovers the influence of the fluid-induced traction 

acting on the faces of a strong discontinuity, which arises from the presence of the fluid 

within the cavity. The fluid-induced traction and the frictional contact traction provide 

mechanical coupling between the discontinuity and the surrounding bulk. 

Using Equation 6-3, the compact form of the equilibrium equation (Equation 6-1) is 

obtained as follows: 

∫ 𝜺𝜺T(𝒗𝒗)𝛔𝛔ˊ�𝜺𝜺(𝒖𝒖)�𝑠𝑠Ω + ∫ ⟦𝒗𝒗⟧TΓ𝑑𝑑
(𝒕𝒕𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡 − 𝜂𝜂 .𝐧𝐧Γ𝑑𝑑)𝑠𝑠Γ  

Ω − 𝜂𝜂 ∫ 𝜂𝜂 𝜵𝜵.𝒗𝒗 𝑠𝑠Ω − ∫ 𝒗𝒗T�̅�𝒕𝑠𝑠Γ  
Γ𝑡𝑡

− 
Ω

∫ 𝜌𝜌𝒗𝒗T𝐠𝐠𝑠𝑠Ω = 0  
Ω   ∀ 𝒗𝒗 ∈ 𝑽𝑽𝑢𝑢,0                                                                                        (6-4) 
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where ⟦∗⟧ is the jump operator that indicates the difference of the variable of interest * 

between the two faces of internal boundary, i.e., ⟦∗⟧ =∗+−∗−. 

It is assumed that the equilibrium between the cavity and the surrounding porous 

medium as well as the uniqueness of the frictional contact traction values at the faces of 

a discontinuity result in the attainment of the same value relevant to the pressure field at 

the faces of a discontinuity [320, 321]. Therefore, the same values obtained for the 

pressure weighting functions q = 𝑞𝑞+= 𝑞𝑞− are inevitably admitted.  

Considering the same pressure weighting functions at both faces of the discontinuity, 

Equation 6-2 is modified as follows: 

𝜂𝜂 ∫ 𝑞𝑞 𝜵𝜵. �̇�𝒖 𝑠𝑠Ω − ∫ 𝑞𝑞⟦𝒘𝒘⟧T 𝐧𝐧Γ𝑑𝑑Γ𝑑𝑑
𝑠𝑠Γ  

Ω + 𝑘𝑘𝑓𝑓
𝜇𝜇𝑓𝑓
∫ (𝜵𝜵𝑞𝑞)T𝜵𝜵𝜂𝜂 𝑠𝑠Ω + 𝛼𝛼𝑓𝑓 ∫ 𝑞𝑞�̇�𝜂 𝑠𝑠Ω − 

Ω
 
Ω

∫ 𝑞𝑞𝑞𝑞�𝑠𝑠Γ = 0  
Γ𝑞𝑞

     ∀ 𝑞𝑞 ∈ 𝑉𝑉𝑝𝑝0                                                                                         (6-5) 

The jump in the flux ⟦𝒘𝒘⟧ is introduced in Equation 6-5, multiplied by 𝐧𝐧Γ𝑑𝑑, indicating 

that the normal flow to the faces of a strong discontinuity may be discontinuous. Thus, 

the mass balance coupling stemming from the exchange of flow between the cavity and 

the surrounding porous medium naturally appears in the weak form of the fluid 

continuity equation were ⟦𝒘𝒘⟧ implies that some of the fluid can be stored within the 

cavity or transported in a tangential direction to a strong discontinuity. 

Considering the weak discontinuity caused by the contrast in the material properties, the 

terms including jumps in Equations 6-4 and 6-5, would be eliminated, i.e.,  

∫ ⟦𝒗𝒗⟧TΓ𝑑𝑑
�𝒕𝒕𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡 − 𝜂𝜂 .𝐧𝐧Γ𝑑𝑑�𝑠𝑠Γ = 0                                                                                 (6-6) 

and 
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∫ 𝑞𝑞⟦𝒘𝒘⟧T 𝐧𝐧Γ𝑑𝑑Γ𝑑𝑑
𝑠𝑠Γ =0                                                                                                   (6-7) 

and Equations 6-4 and 6-5 default to those with discontinuities only in the secondary 

variable (i.e., strain). 

 

6.2.2 Fluid flow formulation within a strong discontinuity 

The continuity equation for the fluid inside a fully open discontinuity is as follows: 

𝜵𝜵.𝒘𝒘 + 𝜂𝜂𝜵𝜵. �̇�𝒖 + 𝑠𝑠𝑓𝑓�̇�𝜂 = 0                                                                                       (6-8) 

where 𝜂𝜂 and 𝑠𝑠𝑓𝑓 are defined in section 3.2 of this thesis. The Darcy velocity vector, 𝒘𝒘, is 

related to pressure gradient as follows: 

𝒘𝒘 = 𝑘𝑘𝑐𝑐𝜕𝜕(−𝜵𝜵𝜂𝜂 + 𝜌𝜌𝑓𝑓𝐠𝐠�)                                                                                                 (6-9) 

where 𝑘𝑘𝑐𝑐𝜕𝜕 is the crack permeability with respect to the fluid. It is assumed that a viscous 

fluid flow with Newtonian rheology fills the cavity of the discontinuity. Assuming 

isotropy inside the discontinuity, The well-known cubic low [264] is adopted to 

estimate the opening-dependent crack permeability as follows: 

𝑘𝑘𝑐𝑐𝜕𝜕 = 1
𝜅𝜅

ℎ2

12𝜇𝜇𝑓𝑓
                                                                                                              (6-10) 

where h denotes the discontinuity (crack) opening and 𝜅𝜅 is a coefficient that varies from 

1.04 to 1.65, to account for the unrealistic assumption of the parallel faces condition 

[322]. 

The weak form of the fluid continuity within the crack is then developed to obtain the 

coupling between fluid flow within the discontinuity and the surrounding porous 
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medium. To this end, the pressure test function q is multiplied in Equation 6-8 and 

integrated over the discontinuity domain Ω′, as follows: 

∫ 𝑞𝑞(𝜵𝜵.𝒘𝒘 + 𝜂𝜂𝜵𝜵. �̇�𝒖 + 𝑠𝑠𝑓𝑓�̇�𝜂) 𝑠𝑠Ω = 0 
Ω′                                                                            (6-11) 

Inserting Equation 6-9 into Equation 6-11 then yields the following: 

∫ 𝑞𝑞(𝜵𝜵. [𝑘𝑘𝑐𝑐𝜕𝜕(−𝜵𝜵𝜂𝜂 + 𝜌𝜌𝑓𝑓𝐠𝐠�)] + 𝜂𝜂𝜵𝜵. �̇�𝒖 + 𝑠𝑠𝑓𝑓�̇�𝜂) 𝑠𝑠Ω = 0 
Ω′                                                 (6-12) 

Introducing an appropriate form of the Divergence theorem with discontinuities into 

Equation 6-12, the weak form of Equation 6-8 is obtained as follows: 

∫ 𝑞𝑞 𝜂𝜂𝜵𝜵. �̇�𝒖𝑠𝑠Ω − ∫ 𝑞𝑞⟦𝒘𝒘⟧T𝐧𝐧Γ𝑑𝑑𝑠𝑠Γ + ∫ (𝜵𝜵𝑞𝑞)T𝑘𝑘𝑐𝑐𝜕𝜕𝜵𝜵𝜂𝜂 𝑠𝑠Ω 
Ω′

 
Γ𝑑𝑑

+ ∫ 𝑞𝑞 
Ω′ 𝑠𝑠𝑓𝑓�̇�𝜂𝑠𝑠Ω −

 
Ω′

∫ (𝜵𝜵𝑞𝑞)T𝑘𝑘𝑐𝑐𝜕𝜕𝜌𝜌𝑓𝑓𝐠𝐠�𝑠𝑠Ω = 0 
Ω                                                                                              (6-13) 

Hence, the mass coupling term is systematically obtained by the relation established 

through Equation 6-13 as follows: 

� 𝑞𝑞⟦𝒘𝒘⟧T𝐧𝐧Γ𝑑𝑑𝑠𝑠Γ =
 

Γ𝑑𝑑
− � (𝜵𝜵𝑞𝑞)T𝑘𝑘𝑐𝑐𝜕𝜕𝜵𝜵𝜂𝜂 𝑠𝑠Ω

 

Ω′�������������
−

𝐼𝐼𝑛𝑛𝑡𝑡𝑠𝑠𝑠𝑠𝜕𝜕𝑔𝑔𝑙𝑙 (𝐼𝐼)

 � 𝑞𝑞
 

Ω′
𝑠𝑠𝑓𝑓�̇�𝜂𝑠𝑠Ω�������

𝐼𝐼𝑛𝑛𝑡𝑡𝑠𝑠𝑠𝑠𝜕𝜕𝑔𝑔𝑙𝑙 (𝐼𝐼𝐼𝐼)

−� 𝑞𝑞𝜂𝜂 𝜵𝜵. �̇�𝒖 𝑠𝑠Ω
 

Ω′���������
+

𝐼𝐼𝑛𝑛𝑡𝑡𝑠𝑠𝑠𝑠𝜕𝜕𝑔𝑔𝑙𝑙 (𝐼𝐼𝐼𝐼𝐼𝐼)

 

∫ (𝜵𝜵𝑞𝑞)T𝑘𝑘𝑓𝑓𝑑𝑑𝜌𝜌𝑓𝑓𝐠𝐠�𝑠𝑠Ω
 
Ω�������������

𝐼𝐼𝑛𝑛𝑡𝑡𝑠𝑠𝑠𝑠𝜕𝜕𝑔𝑔𝑙𝑙 (𝐼𝐼𝑉𝑉)

                                                                                                    (6-14) 

The evaluation of Equation 6-14 is investigated under the local Cartesian coordinate 

system (𝑥𝑥′, 𝑦𝑦′), in which the coordinate system coincides with the tangent and normal 

directions of the strong discontinuity as shown in Figure 6.2. It is assumed the 

equilibrium between the cavity and the surrounding porous medium results in the 

association of the uniform fluid pressure with its corresponding test function across the 

width of the discontinuity [66]. Therefore, derivations of integrals of (𝐼𝐼)-(𝐼𝐼𝑉𝑉) in 

Equation 6-14 are performed in the following manner: 



Chapter 6-An enriched smoothed point interpolation method for the flow-deformation 
analysis of saturated porous media with embedded interfaces 

182 
 

∫ 𝜵𝜵𝑞𝑞T𝑘𝑘𝑐𝑐𝜕𝜕𝜵𝜵𝜂𝜂 𝑠𝑠Ω 
Ω′����������� =

𝐼𝐼𝑛𝑛𝑡𝑡𝑠𝑠𝑠𝑠𝜕𝜕𝑔𝑔𝑙𝑙 (𝐼𝐼)

∫ ∫ 𝜵𝜵𝑞𝑞T 𝑘𝑘𝑐𝑐𝜕𝜕𝜵𝜵𝜂𝜂 𝑠𝑠𝑦𝑦′𝑠𝑠𝑥𝑥′
+ℎ2
−ℎ2

 
Γ𝑑𝑑

=  ∫ ∫ 𝑘𝑘𝑐𝑐𝜕𝜕 �
𝜕𝜕𝑞𝑞
𝜕𝜕𝑥𝑥′

𝜕𝜕𝑝𝑝
𝜕𝜕𝑥𝑥′

+
+ℎ2
−ℎ2

 
Γ𝑑𝑑

𝜕𝜕𝑞𝑞
𝜕𝜕𝑦𝑦′

𝜕𝜕𝑝𝑝
𝜕𝜕𝑦𝑦′
� 𝑠𝑠𝑦𝑦′𝑠𝑠𝑥𝑥′ = ∫ 𝑘𝑘𝑐𝑐𝜕𝜕(ℎ) 𝜕𝜕𝑞𝑞

𝜕𝜕𝑥𝑥′
𝜕𝜕𝑝𝑝
𝜕𝜕𝑥𝑥′

𝑠𝑠𝑥𝑥′ 
Γ𝑑𝑑

                                                                   (6-15) 

 

∫ 𝑞𝑞 
Ω′ 𝑠𝑠𝑓𝑓�̇�𝜂𝑠𝑠Ω�������
𝐼𝐼𝑛𝑛𝑡𝑡𝑠𝑠𝑠𝑠𝜕𝜕𝑔𝑔𝑙𝑙 (𝐼𝐼𝐼𝐼)

 = ∫ ∫ 𝑞𝑞𝑠𝑠𝑓𝑓 �̇�𝜂 𝑠𝑠𝑦𝑦′𝑠𝑠𝑥𝑥′
+ℎ2
−ℎ2

 
Γ𝑑𝑑

= ∫ 𝑞𝑞(ℎ) 
Γ𝑑𝑑

𝑠𝑠𝑓𝑓�̇�𝜂𝑠𝑠𝑥𝑥′                          (6-16) 

 

∫ 𝑞𝑞𝜂𝜂 𝜵𝜵. �̇�𝒖 𝑠𝑠Ω 
Ω′���������
𝐼𝐼𝑛𝑛𝑡𝑡𝑠𝑠𝑠𝑠𝜕𝜕𝑔𝑔𝑙𝑙 (𝐼𝐼𝐼𝐼𝐼𝐼)

=∫ ∫ 𝑞𝑞𝜂𝜂𝜵𝜵. �̇�𝒖 𝑠𝑠𝑦𝑦′𝑠𝑠𝑥𝑥′
+ℎ2
−ℎ2

 
Γ𝑑𝑑

=  ∫ ∫ 𝑞𝑞𝜂𝜂 �𝜕𝜕�̇�𝑢𝑒𝑒′
𝜕𝜕𝑥𝑥′

+ 𝜕𝜕�̇�𝑢𝑦𝑦′
𝜕𝜕𝑦𝑦′

�
+ℎ2
−ℎ2

 
Γ𝑑𝑑

𝑠𝑠𝑦𝑦′𝑠𝑠𝑥𝑥′ =

∫ 𝑞𝑞 𝜂𝜂(ℎ) 1
2
�𝜕𝜕�̇�𝑢𝑒𝑒′
𝜕𝜕𝑥𝑥′

|+ℎ2
+ 𝜕𝜕�̇�𝑢𝑒𝑒′

𝜕𝜕𝑥𝑥′
|−ℎ2

� 𝑠𝑠𝑥𝑥′ + 
Γ𝑑𝑑

∫ 𝑞𝑞 𝜂𝜂 ��̇�𝑝𝑦𝑦′|+ℎ2
− �̇�𝑝𝑦𝑦′|−ℎ2

� 𝑠𝑠𝑥𝑥′ 
Γ𝑑𝑑

=

∫ 𝑞𝑞 𝜂𝜂 (ℎ) 〈𝜕𝜕�̇�𝑢𝑒𝑒′
𝜕𝜕𝑥𝑥′

〉 𝑠𝑠𝑥𝑥′ 
Γ𝑑𝑑

+ ∫ 𝑞𝑞 𝜂𝜂��̇�𝑝𝑦𝑦′� 𝑠𝑠𝑥𝑥′ 
Γ𝑑𝑑

                                                   (6-17) 

 

∫ (𝜵𝜵𝑞𝑞)T𝑘𝑘𝑐𝑐𝜕𝜕𝜌𝜌𝑓𝑓𝐠𝐠�𝑠𝑠Ω
 
Ω�������������

𝐼𝐼𝑛𝑛𝑡𝑡𝑠𝑠𝑠𝑠𝜕𝜕𝑔𝑔𝑙𝑙 (𝐼𝐼𝑉𝑉)

 =∫ ∫ 𝜕𝜕𝑞𝑞
𝜕𝜕𝑥𝑥′

g�𝑥𝑥′ + 𝜕𝜕𝑞𝑞
𝜕𝜕𝑦𝑦′

g�𝑦𝑦′ 𝑠𝑠𝑦𝑦′𝑠𝑠𝑥𝑥′
+ℎ2
−ℎ2

 
Γ𝑑𝑑

= ∫ 𝑘𝑘𝑐𝑐𝜕𝜕𝜌𝜌𝑓𝑓
 
Γ𝑑𝑑

(ℎ) 𝜕𝜕𝑞𝑞
𝜕𝜕𝑥𝑥′

g�𝑥𝑥′𝑠𝑠𝑥𝑥′      

(6-18) 

where �̇�𝑝𝑥𝑥′ and �̇�𝑝𝑦𝑦′ stand for the projected solid velocity on the local longitudinal (𝑥𝑥′) 

and tangantial axes (𝑦𝑦′), respectively. In the above derivations, a linear variation of �̇�𝑝𝑥𝑥′ 

and 𝜕𝜕�̇�𝑢𝑒𝑒′
𝜕𝜕𝑥𝑥′

 is assumed with respect to 𝑦𝑦′ direction over the width of the discontinuity[66]. 

Also, the derivatives of fluid pressure in conjunction with its test function in the 𝑦𝑦′ 

direction are eliminated because of the uniform pressure distribution over the width of 

the discontinuity h arising from the equilibrium between the cavity and the surrounding 
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medium. 〈∗〉 obtains the average value of the quantity of the interest * at the 

discontinuity faces. Substitution of Equations 6-15 to 6-18 into Equation 6-14 yields: 

∫ 𝑞𝑞⟦𝒘𝒘⟧T𝐧𝐧Γ𝑑𝑑𝑠𝑠𝑥𝑥
′ 

Γ𝑑𝑑
=−∫ 𝑘𝑘𝑐𝑐𝜕𝜕(ℎ) 𝜕𝜕𝑞𝑞

𝜕𝜕𝑥𝑥′
𝜕𝜕𝑝𝑝
𝜕𝜕𝑥𝑥′

𝑠𝑠𝑥𝑥′ − ∫ 𝑞𝑞 (ℎ) 
Γ𝑑𝑑

𝑠𝑠𝑓𝑓�̇�𝜂𝑠𝑠𝑥𝑥′ −
 
Γ𝑑𝑑

∫ 𝑞𝑞 𝜂𝜂 (ℎ) 〈𝜕𝜕�̇�𝑢𝑒𝑒′
𝜕𝜕𝑥𝑥′

〉 𝑠𝑠𝑥𝑥′ 
Γ𝑑𝑑

− ∫ 𝑞𝑞T 𝜂𝜂��̇�𝑝𝑦𝑦′� 𝑠𝑠𝑥𝑥′ + 
Γ𝑑𝑑

 ∫ 𝑘𝑘𝑐𝑐𝜕𝜕𝜌𝜌𝑓𝑓
 
Γ𝑑𝑑

(ℎ) 𝜕𝜕𝑞𝑞
𝜕𝜕𝑥𝑥′

g�𝑥𝑥′𝑠𝑠𝑥𝑥′            (6-19) 

Equation 6-19 expresses the fluid leak-off between a discontinuity and the surrounding 

saturated porous media. It is worth noting that the contribution term related to integral II 

is conventionally eliminated from Equation 6-19 based on the assumption of 

incompressible fluid within the cavity. The term ∫ 𝑞𝑞⟦𝒘𝒘⟧T𝐧𝐧Γ𝑑𝑑𝑠𝑠𝑥𝑥
′ 

Γ𝑑𝑑
 produces a strong 

nonlinearity in the global equation system because of the dependence of the crack 

permeability as well as other terms in Equation 6-19 to the width of discontinuity h, 

which is a priori unknown. The width of discontinuity is equal to �𝑝𝑝𝑦𝑦′� and can be 

simply related to the displacement field as follows: 

ℎ = �𝑝𝑝𝑦𝑦′� = 𝐧𝐧Γ𝑑𝑑
T⟦𝒖𝒖⟧                                                                                                 (6-20) 

 
Figure 6.2. A schematic representation of the geometry and the corresponding local coordinate system in 

the cavity 
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6.3 Enriched SPIM for saturated porous media with interfaces 

To capture the hydo-mechanical coupling that stems from the contact tractions acting on 

the discontinuity faces and the fluid exchange from the strong discontinuity into the 

surrounding medium, the displacement and fluid pressure fields must be enhanced to 

reproduce the physical discontinuities. The nonalignment of the material heterogeneity 

boundaries with the underlying mesh topology is also captured by the enhancement of 

the displacement derivative field (i.e., strain). The existence of a crack implies a 

discontinuity on the displacement field in conjunction with the normal discontinuous 

fluid flux to the crack. The pressure field can be assumed to be continuous across the 

crack, which is the case in this chapter based on the discussion presented in previous 

sections. Based on the type of discontinuity, appropriate enrichment functions are 

carefully selected to enable physical representation the discontinuities. In this chapter, 

the Heaviside function is chosen to represent the displacement discontinuity over the 

crack faces. The fluid pressure is modelled using a proper function of the level set 

function (i.e., the ridge function) to accommodate the flux discontinuity normal to the 

crack faces caused by the transport and storage of the fluid flow in the tangential 

direction of the discontinuity. Because of the weak discontinuity in the fluid phase, the 

ridge function is also adopted as the displacement variable. 

Inspired by the extrinsically enriched functions applied in XFEM [242, 250, 323, 324], 

the enriched approximations of displacement and pressure variables are proposed as 

follows: 

𝒖𝒖ℎ(𝒙𝒙) = ∑ 𝑵𝑵𝐼𝐼
𝑢𝑢(𝒙𝒙)𝒖𝒖�𝐼𝐼 +𝐼𝐼∈𝑆𝑆𝑠𝑠 ∑ 𝑵𝑵𝐽𝐽

𝑢𝑢,𝑠𝑠𝑛𝑛𝜕𝜕(𝒙𝒙)𝒂𝒂�𝐽𝐽𝐽𝐽∈𝑆𝑆𝑠𝑠𝑠𝑠𝑛𝑛𝑟𝑟                                                       (6-21) 

𝜂𝜂ℎ(𝒙𝒙) = ∑ 𝑵𝑵𝐼𝐼
𝑝𝑝(𝒙𝒙)𝒑𝒑�𝐼𝐼 +𝐼𝐼∈𝑆𝑆𝑠𝑠 ∑ 𝑵𝑵𝐽𝐽

𝑝𝑝,𝑠𝑠𝑛𝑛𝜕𝜕(𝒙𝒙)𝒃𝒃�𝐽𝐽𝐽𝐽∈𝑆𝑆𝑠𝑠𝑠𝑠𝑛𝑛𝑟𝑟                                                        (6-22) 
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where 𝑵𝑵𝑢𝑢  and 𝑵𝑵𝑝𝑝  correspond to standard shape functions for the displacement and 

pressure variables, respectively. They are created by either PIM or RPIM, as presented 

in section 3.4 of this thesis, using the collection of supporting nodes in 𝑆𝑆𝑠𝑠. 𝑵𝑵
𝑢𝑢,𝑠𝑠𝑛𝑛𝜕𝜕 and 

𝑵𝑵𝑝𝑝,𝑠𝑠𝑛𝑛𝜕𝜕 stand for the contributing functions that are relevant to the enriched part of the 

displacement and pressure approximations, respectively. 𝑆𝑆𝑠𝑠𝑠𝑠𝑛𝑛𝜕𝜕 collects the nodes whose 

supporting domains are intersected by the discontinuity which can be taken equal to 𝑆𝑆𝑠𝑠. 

𝒂𝒂�𝐽𝐽 and 𝒃𝒃�𝐽𝐽 are the vectors that collect additional nodal degrees of freedom assigned to 

enriched supporting nodes for the displacement and pressure approximations, 

respectively. The contributing enriched functions are as follows: 

𝑵𝑵𝐽𝐽
𝑢𝑢,𝑠𝑠𝑛𝑛𝜕𝜕(𝒙𝒙) = 𝑵𝑵𝐽𝐽

𝑢𝑢(𝒙𝒙)(𝜓𝜓𝑢𝑢,𝑠𝑠𝑛𝑛𝜕𝜕(𝒙𝒙) − 𝜓𝜓𝑢𝑢,𝑠𝑠𝑛𝑛𝜕𝜕�𝒙𝒙𝐽𝐽�)                                                          (6-23) 

𝑵𝑵𝐽𝐽
𝑝𝑝,𝑠𝑠𝑛𝑛𝜕𝜕(𝒙𝒙) = 𝑵𝑵𝐽𝐽

𝑝𝑝(𝒙𝒙)(𝜓𝜓𝑝𝑝,𝑠𝑠𝑛𝑛𝜕𝜕(𝒙𝒙)− 𝜓𝜓𝑝𝑝,𝑠𝑠𝑛𝑛𝜕𝜕�𝒙𝒙𝐽𝐽�)                                                          (6-24) 

where 𝜓𝜓𝑢𝑢,𝑠𝑠𝑛𝑛𝜕𝜕and 𝜓𝜓𝑝𝑝,𝑠𝑠𝑛𝑛𝜕𝜕 are the enrichment function for the displacement and pressure 

fields, respectively. As mentioned previously in this chapter, 𝜓𝜓𝑢𝑢,𝑠𝑠𝑛𝑛𝜕𝜕 can represent either 

the Heaviside function to capture strong discontinuity or the ridge function when only 

the discrepancy in material properties exists, whereas 𝜓𝜓𝑝𝑝,𝑠𝑠𝑛𝑛𝜕𝜕 can only possess the ridge 

function to represent the presence of the discontinuity of the pressure gradient normal to 

crack faces. The enrichment functions are shifted by the subtraction of 𝜓𝜓𝑢𝑢,𝑠𝑠𝑛𝑛𝜕𝜕�𝒙𝒙𝐽𝐽� and 

𝜓𝜓𝑝𝑝,𝑠𝑠𝑛𝑛𝜕𝜕�𝒙𝒙𝐽𝐽� to preserve the Kronecker delta property, which leads to the achievement of 

the real nodal values when the point of interest coincides any node (𝒖𝒖ℎ�𝒙𝒙𝐽𝐽� 

and 𝜂𝜂ℎ�𝒙𝒙𝐽𝐽�). Similar to standard interpolation functions that possess partition of unity 

(PU), the enriched approximations presented in this chapter are a PU. The enrichment 

functions used in this chapter will be introduced in the following sections. 
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6.3.1 The signed distance function 

The well-established level set method [322] which allows quantification of the existence 

of interfaces using implicit functions is adopted here. A domain is split into two sub-

domains  Ω+ and  Ω− by the interface Γ𝑑𝑑 as previously shown in Figure 6.3. The 

positions of the points on Γ𝑑𝑑 are set at zero. The positions of other points over the 

domains can be defined with respect to the zero iso-contour (i.e., the interface position). 

The most conventional level set function is the signed distance function, which is 

represented as follows: 

𝑠𝑠(𝒙𝒙) = min‖𝒙𝒙 −𝒙𝒙∗‖𝑠𝑠𝑠𝑠𝑔𝑔𝑛𝑛 ( (𝒙𝒙 − 𝒙𝒙∗)𝐧𝐧Γ𝑑𝑑)                                                              (6-25) 

where 𝒙𝒙∗ is the point on the discontinuity that is the closest distance from point x. ‖ ‖ 

stands for the Euclidean norm where ‖𝒙𝒙 −𝒙𝒙∗‖ expresses the distance between the point 

of interest 𝒙𝒙 and the interface Γ𝑑𝑑. Based on Equation 6-25, two sides of an interface are 

differentiated by the assignment of different signs. This definition implicitly determines 

the position of the discontinuity as the zero iso-contour of the level set function as 

follows: 

𝑠𝑠(𝒙𝒙)�
> 0 𝑠𝑠𝑠𝑠 𝒙𝒙 ∈   Ω+  
= 0 𝑠𝑠𝑠𝑠 𝒙𝒙 ∈  Γ𝑑𝑑

< 0 𝑠𝑠𝑠𝑠 𝒙𝒙 ∈   Ω−
                                                                                               (6-26) 

The schematic representation of signed distance function is shown in Figure 6.3. 
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Figure 6.3. A signed distance function applied to quantify the position of a node with respect to the 

interface 

 

6.3.2 Heaviside function 

A strong discontinuity (crack) occurs because of different displacements on the faces of 

the discontinuity. The kinematic representation of the strong discontinuity can be 

recovered by exploiting the Heaviside function. The form of the Heaviside function 

applied in this chapter is as follows: 

𝜓𝜓𝑢𝑢,𝑠𝑠𝑛𝑛𝜕𝜕(𝒙𝒙) = 𝐻𝐻(𝒙𝒙) = �+1 𝑠𝑠(𝒙𝒙) ≥ 0
0 𝑠𝑠(𝒙𝒙) < 0                                                                          (6-27) 

 

6.3.3 Ridge function 

The incorporation of weak discontinuities requires the introduction of appropriate 

continuous functions that belong to 𝐶𝐶0 space, but not to 𝐶𝐶1 space. This requirement 

implies the utilisation of a non-differentiable function with respect to its first order 

differentiation to kinematically represent the weak discontinuity. A weak discontinuity 
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can be properly captured by using the modified abs-enrichment function, which is 

commonly known as the ridge enrichment function, expressed as follows: 

𝜓𝜓𝑖𝑖,𝑠𝑠𝑛𝑛𝜕𝜕(𝒙𝒙) =∑ 𝑵𝑵𝐽𝐽
𝑝𝑝(𝒙𝒙)𝐽𝐽∈𝑆𝑆𝑠𝑠𝑠𝑠𝑛𝑛𝑟𝑟 �𝑠𝑠𝐽𝐽� − �∑ 𝑵𝑵𝐽𝐽

𝑝𝑝(𝒙𝒙)𝐽𝐽∈𝑆𝑆𝑠𝑠𝑠𝑠𝑛𝑛𝑟𝑟 𝑠𝑠𝐽𝐽�  i=u, p                                   (6-28) 

where 𝑠𝑠𝐽𝐽 is the value of the signed distance function at node J, and superscript i 

indicates that the ridge function can be included to both primary displacement and 

pressure variables under the required circumstances. The use of ridge enrichment is 

advantageous compared with the commonly used alternative |𝑠𝑠(𝒙𝒙)| because it prevents 

the violation of the PU property in the smoothing domains adjacent to the enriched 

smoothing domain that contain no interfaces (blending smoothing domains) [6]. 

Blending smoothing domains violates the PU property because a mix of the enriched 

and standard field nodes contributes to the creation of the interpolation function over 

blending smoothing domains. The ridge function vanishes at the field nodes of the 

blending smoothing domains and therefore the PU is restored [250, 254, 323]. The one-

dimensional representation of the ridge function, the enriched nodes, and the standard 

nodes are depicted in Figure 6.4. 



Chapter 6-An enriched smoothed point interpolation method for the flow-deformation 
analysis of saturated porous media with embedded interfaces 

189 
 

 

Figure 6.4. Schematic representation of the ridge function to reproduce a weak discontinuity 

 

6.3.4 Domain discretisation 

In SPIM/SRPIM, the problem domain is partitioned into 𝑁𝑁𝑆𝑆𝑆𝑆 smoothing domains that 

satisfy the conditions expressed by Equations 3-31 and 3-32. The smoothing domains 

can be created using a triangular background mesh in different ways, which results in 

different types of SPIMs/SRPIMs [15, 16, 20, 101, 105]. Following the formulation 

presented in Chapter 3, the cells of the background mesh are again used directly as the 

smoothing domains in this chapter, which results in the development of the Enriched 

cell-based SPIM/SRPIM (CSPIM/CSRPIM). 

 

6.3.5 Supporting node selection schemes 

In Enriched CSPIM/CSRPIM, the selection of supporting nodes at each point of interest 

is not arbitrary. It must be performed so that the resulting approximation function is 

square-integrable on the boundary of the smoothing domains [101]. Two node selection 
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schemes, T4 and T2L, which are described in section 3.4.2, are adopted in this chapter. 

Only two supporting nodes are again adopted where the Gauss point of interest is 

located on the boundary of the domain. 

 

6.3.6 Creation of standard shape functions 

In this chapter, the PIM and RPIM [88] are adopted to construct the standard nodal 

shape functions. A procedure similar to that presented in section 3.4.1 is performed to 

obtain the standard shape functions (𝑵𝑵𝑢𝑢  𝑝𝑝𝑛𝑛𝑠𝑠 𝑵𝑵𝑝𝑝 ) to present the standard part of the 

enriched approximation. 

 

6.3.7 Computation of smoothed strain and pressure gradient in Enriched SPIM 

Because the cells of the background mesh serve as the smoothing domains in 

CSPIM/CSRPIM, the smoothed gradient of the displacement field (i.e., smoothed 

strain) is computed for each cell using the smoothing operation technique [90] and the 

Divergence theorem as shown by Equation 3-29. 

From Equation 6-21, the smoothed strain can be obtained as follows: 

𝜺𝜺�(𝑘𝑘) = ∑ 𝑩𝑩�1𝐼𝐼𝒖𝒖�𝐼𝐼 +𝐼𝐼∈𝑆𝑆𝑠𝑠 ∑ 𝑩𝑩�1𝐽𝐽𝑠𝑠𝑛𝑛𝜕𝜕𝒂𝒂�𝐽𝐽𝐽𝐽∈𝑆𝑆𝑠𝑠𝑠𝑠𝑛𝑛𝑟𝑟                                                                        (6-29) 

where 𝑩𝑩�1 is the standard smoothed strain-displacement matrix as previously formulated 

in Chapter 3 (Equation 3-35), obtained by applying the smoothing gradient technique 

(Equation 3-27). In a similar manner, the enriched part of the strain-displacement matrix 

(𝑩𝑩�1𝑠𝑠𝑛𝑛𝜕𝜕) is computed as follows [325, 326]: 
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𝑩𝑩�1𝐽𝐽𝑠𝑠𝑛𝑛𝜕𝜕 = �
𝑏𝑏�𝐽𝐽𝑥𝑥1
𝑢𝑢,𝑠𝑠𝑛𝑛𝜕𝜕 0
0 𝑏𝑏�𝐽𝐽𝑥𝑥2

𝑢𝑢,𝑠𝑠𝑛𝑛𝜕𝜕

𝑏𝑏�𝐽𝐽𝑥𝑥2
𝑠𝑠𝑛𝑛𝜕𝜕 𝑏𝑏�𝐽𝐽𝑥𝑥1

𝑠𝑠𝑛𝑛𝜕𝜕

�                                                                                           (6-30) 

𝑩𝑩�1𝑠𝑠𝑛𝑛𝜕𝜕 =  �
𝑏𝑏�1𝑥𝑥1
𝑢𝑢,𝑠𝑠𝑛𝑛𝜕𝜕 0
0 𝑏𝑏�1𝑥𝑥2

𝑢𝑢,𝑠𝑠𝑛𝑛𝜕𝜕

𝑏𝑏�1𝑥𝑥2
𝑢𝑢,𝑠𝑠𝑛𝑛𝜕𝜕 𝑏𝑏�1𝑥𝑥1

𝑢𝑢,𝑠𝑠𝑛𝑛𝜕𝜕
⋯

𝑏𝑏�𝑞𝑞𝑥𝑥1
𝑢𝑢,𝑠𝑠𝑛𝑛𝜕𝜕 0
0 𝑏𝑏�𝑞𝑞𝑥𝑥2

𝑢𝑢,𝑠𝑠𝑛𝑛𝜕𝜕

𝑏𝑏�𝑞𝑞𝑥𝑥2
𝑢𝑢,𝑠𝑠𝑛𝑛𝜕𝜕 𝑏𝑏�𝑞𝑞𝑥𝑥1

𝑢𝑢,𝑠𝑠𝑛𝑛𝜕𝜕
�

3×2𝑞𝑞

                                                (6-31) 

where numerical integration must be performed over all segments of the boundaries 

associated with the smoothing sub-domain of interest created as the original smoothing 

domain is cut by an interface as shown in Figure 6.5. Summing the contributions related 

to the entries of 𝑩𝑩�1𝑠𝑠𝑛𝑛𝜕𝜕 over all Gauss points along the boundary segments, 𝑏𝑏�𝐽𝐽𝑙𝑙
𝑢𝑢,𝑠𝑠𝑛𝑛𝜕𝜕 results 

in the following: 

𝑏𝑏�𝐽𝐽𝑙𝑙
𝑢𝑢,𝑠𝑠𝑛𝑛𝜕𝜕 =

1
2𝐴𝐴𝑠𝑠𝑢𝑢𝑚𝑚,𝑘𝑘

𝑠𝑠 � �𝐿𝐿𝑚𝑚𝑘𝑘 � 𝑤𝑤𝑛𝑛 𝜙𝜙𝐼𝐼(𝒙𝒙𝑚𝑚𝑛𝑛) �𝜓𝜓𝑢𝑢,𝑠𝑠𝑛𝑛𝜕𝜕(𝒙𝒙𝑚𝑚𝑛𝑛) − 𝜓𝜓𝑢𝑢,𝑠𝑠𝑛𝑛𝜕𝜕�𝒙𝒙𝐽𝐽��𝑛𝑛𝑙𝑙(𝒙𝒙𝑚𝑚𝑛𝑛) 

 𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔

n=1

� 

 𝑁𝑁𝑠𝑠𝑠𝑠𝑔𝑔

m=1

 

 (𝑝𝑝 = 𝑥𝑥1, 𝑥𝑥2)                                                                                                               (6-32) 
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Figure 6.5. A supporting domain cut by an interface and its associated Gauss points used in the numerical 

integrations 

 

in which the notations are the same as those presented in section 3.5.3 of chapter 3. 

𝐴𝐴𝑠𝑠𝑢𝑢𝑚𝑚,𝑘𝑘
𝑠𝑠  indicates the area of either subdomains  Ω1 or Ω2 when the smoothing domain is 

cut by an interface. It is worth noting that the numerical integration using the Gauss 

points along the interface is performed by the inclusion of all the supporting nodes 

contributing to the creation of the standard shape functions of the nodes of the 

smoothing domain of interest (𝑆𝑆𝑠𝑠). The numerical integration using the Gauss points 

along the boundaries of the background mesh are, however, performed based on the 

supporting nodes selected by the chosen T-scheme for the specific boundary (𝑆𝑆𝑛𝑛) as 

depicted in Figure 3-3. In this chapter, 𝑁𝑁𝑠𝑠𝑔𝑔𝑢𝑢 is taken as two in all chosen T-schemes. 

From Equation 6-24, the pressure gradient is obtained in a similar fashion as follows: 
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𝜵𝜵�𝑃𝑃 = ∑ 𝑩𝑩�2𝐼𝐼𝒑𝒑�𝐼𝐼 +𝐼𝐼∈𝑆𝑆𝑠𝑠 ∑ 𝑩𝑩�2𝐽𝐽𝑠𝑠𝑛𝑛𝜕𝜕𝒃𝒃�𝐽𝐽𝐽𝐽∈𝑆𝑆𝑠𝑠𝑠𝑠𝑛𝑛𝑟𝑟                                                                          (6-33) 

As discussed in Chapter 3, 𝑩𝑩�2 has identical entries to 𝑩𝑩�1, but with different 

arrangements of them (Equation 3-48). Similarly, 𝑩𝑩�2𝑠𝑠𝑛𝑛𝜕𝜕 has a different arrangement of 

entries compared to its counterpart 𝑩𝑩�1𝑠𝑠𝑛𝑛𝜕𝜕 . It also contains different components with 

respect to 𝑩𝑩�1𝑠𝑠𝑛𝑛𝜕𝜕 when a strong discontinuity is considered. 

The matrix 𝑩𝑩�2𝐽𝐽𝑠𝑠𝑛𝑛𝜕𝜕 associated with the node of interest J takes the form expressed as 

follows: 

𝑩𝑩�2𝐽𝐽𝑠𝑠𝑛𝑛𝜕𝜕 = �
𝑏𝑏�𝐽𝐽𝑥𝑥1
𝑝𝑝,𝑠𝑠𝑛𝑛𝜕𝜕

𝑏𝑏�𝐽𝐽𝑥𝑥2
𝑝𝑝,𝑠𝑠𝑛𝑛𝜕𝜕�                                                                                                          (6-34) 

Consequently, 

𝑩𝑩�2𝑠𝑠𝑛𝑛𝜕𝜕 = �
𝑏𝑏�1𝑥𝑥1
𝑝𝑝,𝑠𝑠𝑛𝑛𝜕𝜕

𝑏𝑏�1𝑥𝑥2
𝑝𝑝,𝑠𝑠𝑛𝑛𝜕𝜕 ⋯

𝑏𝑏�𝑞𝑞𝑥𝑥1
𝑝𝑝,𝑠𝑠𝑛𝑛𝜕𝜕

𝑏𝑏�𝑞𝑞𝑥𝑥2
𝑝𝑝,𝑠𝑠𝑛𝑛𝜕𝜕�

2×𝑞𝑞

                                                                               (6-35) 

where the components of 𝑩𝑩�2𝑠𝑠𝑛𝑛𝜕𝜕 are computed in the following form: 

𝑏𝑏�𝐽𝐽𝑙𝑙
𝑝𝑝,𝑠𝑠𝑛𝑛𝜕𝜕 =

1
2𝐴𝐴𝑠𝑠𝑢𝑢𝑚𝑚,𝑘𝑘

𝑠𝑠 � �𝐿𝐿𝑚𝑚𝑘𝑘 � 𝑤𝑤𝑛𝑛 𝜙𝜙𝐼𝐼(𝒙𝒙𝑚𝑚𝑛𝑛) �𝜓𝜓𝑝𝑝,𝑠𝑠𝑛𝑛𝜕𝜕(𝒙𝒙𝑚𝑚𝑛𝑛) − 𝜓𝜓𝑝𝑝,𝑠𝑠𝑛𝑛𝜕𝜕�𝒙𝒙𝐽𝐽�� 𝑛𝑛𝑙𝑙(𝒙𝒙𝑚𝑚𝑛𝑛) 

 𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔

n=1

� 

 𝑁𝑁𝑠𝑠𝑠𝑠𝑔𝑔

m=1

  

(𝑝𝑝 = 𝑥𝑥1, 𝑥𝑥2)                                                                                                                (6-36) 

Introducing the SPIM framework with the extrinsic enrichment results in the 

elimination of complexities associated with the sub-integration in XFEM [322] by 

transforming the integration over the smoothing sub-domains into that along the 

boundaries of the smoothing sub-domains (including material interfaces and cracks). In 

addition, as will be shown later in the numerical examples, the enriched SPIM 
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formulated above offers a substantial improvement in terms of stress calculation, which 

poses difficulties in XFEM especially near the crack tips where the computations of 

stress intensity factors are of importance [326]. 

The original mapping–rule independency of SPIM is restored when enrichment 

functions are selected in such a way that 𝑩𝑩�1𝑠𝑠𝑛𝑛𝜕𝜕 and 𝑩𝑩�2𝑠𝑠𝑛𝑛𝜕𝜕 are constant over the smoothing 

domains. Consequently, the contribution of 𝑩𝑩�1𝑠𝑠𝑛𝑛𝜕𝜕 and 𝑩𝑩�2𝑠𝑠𝑛𝑛𝜕𝜕 can be taken out from the 

numerical integration over the smoothing domains without resorting to the mapping 

rule, which otherwise would require a significant level of computational expenses 

especially when the number of Gauss points is discernibly increased compared to the 

corresponding standard formulation, which is the case in XFEM because the elements 

are sub-patriated [322]. 

 

6.4 Contact behaviour along interfaces 

The evaluation of the contact forces in fractured saturated porous media with the 

occurrence of a discontinuity closure mode requires the imposition of the contact 

constraints to solid and fluid phases. The treatment of the contact constraints in XFEM 

has been investigated in solid mechanics [258, 261, 323] as well as in saturated and 

unsaturated porous media [62, 65, 67, 327, 328]. In this section, a penalty method 

accompanied by enriched SPIM is adopted to computationally estimate the frictional 

contact forces stemming from the closing mode of a strong discontinuity. The proposed 

contact algorithm accounts for both normal forces and frictional contact forces with the 

inclusion of the stick and slip modes. 
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6.4.1 Contact conditions: the Kuhn–Tucker rule 

Figure 6.6 shows two solid bodies, referred to as a master body and a slave body. Their 

initial domains are denoted by ΩMaster and ΩSlave, respectively. The jump notation can 

be exploited to represent the relative displacement from an arbitrary point S located on 

the surface of the slave body ΓSlave  with respect to an arbitrary point M on the surface 

of the master body ΓMaster [322]: 

⟦𝒖𝒖⟧ =  𝒖𝒖Slave −  𝒖𝒖Master  on Γ =  ΓSlave  ∪  ΓMaster                                                (6-37) 

where 𝒖𝒖Slave and 𝒖𝒖Master are the absolute displacements with respect to the origin of the 

assigned Cartesian coordinate in association with the slave point S and master point M, 

respectively. Representing the outward unit vector normal to the surface of the master 

body by 𝐧𝐧Γcont, the gap functions can be defined in the normal direction in the 

following form: 

𝑔𝑔𝑁𝑁 ≡  𝐧𝐧Γcont
T ⟦𝐮𝐮⟧  on Γ =  ΓSlave ∪  ΓMaster                                                             (6-38) 

as well as the gap function in a tangential direction, given by: 

𝑔𝑔𝑇𝑇 = ⟦𝒖𝒖⟧ 𝐦𝐦Γcont  ≡  (𝐈𝐈 − 𝐧𝐧Γcont
T 𝐧𝐧Γcont)⟦𝒖𝒖⟧  on Γ =  ΓSlave ∪  ΓMaster                  (6-39) 

where 𝐧𝐧Γcont
T 𝐧𝐧Γcont denotes the projection matrix of the normal direction, in a two-

dimensional setting, and 𝐈𝐈 is the identity matrix. The non-penetration condition can be 

stated by 𝑔𝑔𝑁𝑁 ≥ 0 where 𝑔𝑔𝑁𝑁 = 0 indicates the contact condition, in which a compressive 

normal contact force is produced, which is indicated by 𝑡𝑡𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡,𝑁𝑁 ≤ 0 on the master body. 

The mathematical description of the contact interface can be written by Γ𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡= ΓSlave ∩

 ΓMaster. The existence of a gap between two contacting bodies is stated as 𝑔𝑔𝑁𝑁 ≥ 0 and 
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𝑡𝑡𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡,𝑁𝑁 = 0. Hence, the mathematical form of the contact conditions can be defined as 

follows: 

𝑔𝑔𝑁𝑁 ≤ 0 , 𝑡𝑡cont,𝑁𝑁 ≥ 0 ,𝑔𝑔𝑁𝑁𝑡𝑡cont,𝑁𝑁 = 0                                                            (6-40) 

which is commonly known as the Kuhn–Tucker inequality [72]. The first statement of 

Equation 6-40 prevents the interpenetration of the contacting bodies, and the second 

statement expresses the development of a compressive contact force that arise from the 

onset of a closed gap. The last relation in Equation 6-40 assures the elimination of the 

contact tractions pertaining to the onset of the opening mode. Hence, Equation 6-40 

provides a robust means of handling contact problems under the constrained 

optimisation framework, which is well-established for imposing a contact constraint to 

variational statement. 

The term Γ𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡 is unknown within a time step, and the complementary part of the strong 

discontinuity is subjected to a fully open mode under traction-free condition, with active 

contact surface being unknown. An iterative solution strategy is then adopted to handle 

the kinematic quantities in a nonlinear algebraic system that is exposed to a contact 

constraint. 

 
Figure 6.6. Schematic representation of two bodies in contact in association with gap functions in normal 

and transversal directions with the constrained condition [322] 
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6.4.2 Coulomb theory of frictional contact 

As shown in Figure 6.7, when two contacting bodies, a master and a slave, have no 

normal gap and therefore are in contact, only a tangential relative displacement between 

them is allowed. A decomposition of the relative displacement into normal and 

tangential components that are analogous to those used in classical plasticity is needed. 

By preserving the nearly constant 𝐧𝐧Γcont throughout the sliding process during the 

contact and sliding of the two bodies, the normal and tangential loads 𝑡𝑡cont,𝑁𝑁 and 𝑡𝑡cont,𝑇𝑇 

are defined on the contact surface of the master body 

 

 
Figure 6.7. A sliding slave body with respect to a master body undergoing a relative tangential 

displacement[322] 

 

The frictional behaviour is formulated here based on the stick-slip condition introduced 

by Curnier [329]. According to the stick-slip theory, the relative displacement at the 

surfaces in contact is decomposed into two parts: one part, the stick, is reversible, which 

can be interpreted as the elastic deformation; the other part, the slip, is irreversible, 
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which can be interpreted as plastic deformation. For a slip along 𝛤𝛤𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡, the 

decomposition of the relative tangential displacement can be performed as follows: 

 ⟦𝒖𝒖𝑇𝑇⟧ =  ⟦𝒖𝒖𝑇𝑇𝑠𝑠 ⟧ +  �𝒖𝒖𝑇𝑇
𝑝𝑝�  𝑜𝑜𝑛𝑛 Γcont                                                                               (6-41) 

where ⟦𝒖𝒖𝑇𝑇⟧ stands for the relative displacement in the tangential direction shown by 

⟦𝒖𝒖𝑇𝑇⟧  = (𝐈𝐈 − 𝐧𝐧Γcont
T 𝐧𝐧Γcont)⟦𝒖𝒖⟧. In Equation 6-41, the superscripts e and p indicate the 

stick/elastic and slip/ plastic parts of ⟦𝒖𝒖𝑇𝑇⟧, respectively. 

In this chapter, the resultant unilateral contact condition is established by the imposition 

of constraints through the implementation of the penalty method. This method,  unlike 

the Lagrangian multiplier method [38], avoids introducing additional unknown 

variables in the formulation. In the penalty method, the non-penetration constraint is 

established by embedding extremely stiff springs on the active contacting surfaces. As a 

result, the normal contact forces 𝑡𝑡cont,𝑁𝑁  can be attained through the multiplication of the 

penalty parameter 𝑘𝑘𝑁𝑁  by the relative displacement in the normal direction ⟦𝒖𝒖𝑁𝑁⟧. The 

elastic part of the contact force in the tangential direction 𝑡𝑡cont,𝑇𝑇 is calculated in a 

similar manner. The penalty parameters 𝑘𝑘𝑁𝑁 and 𝑘𝑘𝑇𝑇  can be thought of as the normal and 

tangential amplitudes of stiffness, which are a priori selected at the contact surface. 

Consequently, the constitutive law that relates the normal and tangential relative 

displacements to their corresponding contact loads can be elaborated as follows: 

𝑡𝑡cont,𝑁𝑁 = �𝑫𝑫𝑓𝑓𝑠𝑠�𝑁𝑁⟦𝒖𝒖
𝑠𝑠⟧                                                                                                 (6-42) 

𝑡𝑡cont,𝑇𝑇 = �𝑫𝑫𝑓𝑓𝑠𝑠�𝑇𝑇⟦𝒖𝒖
𝑠𝑠⟧                                                                                                  (6-43) 

where �𝑫𝑫𝑓𝑓𝑠𝑠�𝑇𝑇  and �𝑫𝑫𝑓𝑓𝑠𝑠�𝑇𝑇  indicate the parts of the elastic modulus contributing to the 

normal and tangential directions as follows: 
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�𝑫𝑫𝑓𝑓𝑠𝑠�𝑁𝑁 = 𝑘𝑘𝑁𝑁(𝐧𝐧Γcont
T 𝐧𝐧Γcont)                                                                                     (6-44) 

�𝑫𝑫𝑓𝑓𝑠𝑠�𝑇𝑇 = 𝑘𝑘𝑇𝑇  (𝐈𝐈 − 𝐧𝐧Γcont
T 𝐧𝐧Γcont)                                                                                 (6-45) 

where 𝑘𝑘𝑁𝑁 and 𝑘𝑘𝑇𝑇 represent the constant normal and tangential stiffness, respectively. 

The decomposition of the relative tangential displacements into stick and slip parts 

requires the use of a slip criterion in the formulation. The slip criterion is needed to 

build a theoretical description that expresses the relationship between the stress and 

stick-slip movement at the body surfaces in contact. In the stick condition, the relative 

movement between the contacting bodies is assumed to be zero in the tangential 

direction, whereas in the sliding condition, a relative movement is allowed at the point 

of interest in the tangential direction at the interface. In this chapter, the well-established 

Coulomb’s friction law is applied to capture the frictional contact behaviour as a 

function of contact forces 𝒕𝒕cont, which has been used, frequently and successfully, to 

represent frictional contact behaviour. Coulomb’s friction law defined as a function of 

the contact force 𝒕𝒕cont is simply shown as follows: 

𝐹𝐹𝑓𝑓(𝒕𝒕cont ,𝑤𝑤) =  �𝒕𝒕cont,𝑇𝑇� −  𝜇𝜇𝑓𝑓�𝒕𝒕cont,𝑁𝑁 ,𝑤𝑤��𝒕𝒕cont,𝑁𝑁� �
= 0 𝑠𝑠𝑝𝑝𝑠𝑠𝜂𝜂

< 0 𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑘𝑘
                           (6-46) 

where 𝜇𝜇𝑓𝑓  denotes the Coulomb friction coefficient calculated by 𝜇𝜇𝑓𝑓  =  𝑡𝑡𝑝𝑝𝑛𝑛 𝜑𝜑𝑓𝑓 , where 

𝜑𝜑𝑓𝑓  indicates the friction angle at the interface of interest. The friction coefficient 𝜇𝜇𝑓𝑓  is 

assumed to rely on two parameters: the frictional work parameter w, and the normal 

contact force 𝒕𝒕𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡,𝑁𝑁.  𝐹𝐹𝑓𝑓 < 0 implies that a stick situation governs the relative 

displacement between two contacting bodies; 𝐹𝐹𝑓𝑓  ≥  0 implies a slip situation between 

two bodies in contact where the shear stress is restricted to the value satisfying 𝐹𝐹𝑓𝑓  =  0. 
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The slip criterion dictates the dependency of shear stress on the normal contact force 

𝒕𝒕𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡,𝑁𝑁 when slip condition is satisfied. 

According to the conventional plasticity theory, the slip direction is determined by an 

appropriate slip rule, which can be specified by the gradient of a convex potential 

function, Z. Assuming associative rule, the potential function Z can be replaced by the 

slip criterion 𝐹𝐹𝑓𝑓. However, despite its convenience, the assumption of associativity may 

engender an erroneous normal force that could cause an unrealistic separation between 

the contacting surfaces. The avoidance of the anomalies related to the separation from 

the surfaces in contact requires the adoption of a non-associative slip rule [329]. Hence, 

in this chapter, a non-associative slip potential function, represented by 𝑍𝑍 = �𝒕𝒕cont,𝑇𝑇�, is 

applied for an isotropic frictional contact, in which the outward normal to the slip 

potential function determines the slip direction. Consequently, the tangential plastic 

deformation ⟦𝒖𝒖𝑇𝑇𝑃𝑃⟧ is obtained by defining the slip rule as follows: 

�𝒖𝒖𝑇𝑇
𝑝𝑝� = 𝑠𝑠𝛾𝛾 𝜕𝜕𝜕𝜕

𝜕𝜕𝒕𝒕cont,𝑇𝑇
= 𝑠𝑠𝛾𝛾𝐦𝐦Γcont                                                                        (6-47) 

where 𝑠𝑠𝛾𝛾 stands for the plastic multiplier representing the magnitude of the slip 

increment with respect to the outward normal to the potential Z, and 𝐦𝐦Γcont =

𝒕𝒕𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡,𝑇𝑇/ �𝒕𝒕𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡,𝑇𝑇 is the unit tangential vector. 

The tangent stiffness matrix, 𝑫𝑫𝑓𝑓
𝑠𝑠𝑝𝑝, is unsymmetrical because of the non-associativity 

induced by the slip rule. Assuming that the contact tractions in horizontal and tangential 

directions are decoupled, independent constitutive expressions can be established 

between the normal and tangential contact tractions and the relative displacements in the 

following forms: 
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𝑠𝑠𝒕𝒕𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡,𝑁𝑁 = �𝑫𝑫𝑓𝑓�𝑁𝑁 𝑠𝑠⟦𝒖𝒖⟧                                                                                            (6-48) 

𝑠𝑠𝒕𝒕𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡,𝑇𝑇 = �𝑫𝑫�𝑓𝑓�𝑇𝑇 𝑠𝑠⟦𝒖𝒖⟧                                                                                     (6-49) 

where (𝑫𝑫𝑓𝑓)𝑁𝑁  = 𝑘𝑘𝑁𝑁((𝐧𝐧Γcont
T 𝐧𝐧Γcont) and �𝑫𝑫�𝑓𝑓�𝑇𝑇 = 𝑘𝑘�𝑇𝑇(𝐈𝐈 − 𝐧𝐧Γcont

T 𝐧𝐧Γcont), where 𝑘𝑘�𝑇𝑇  is the 

tangential stiffness parameter. The stick-slip condition can be determined by a careful 

selection of 𝑘𝑘�𝑇𝑇  derived from a stick-slip relationship for the contact. In the stick 

condition, no contact tangential movement results in the attainment of the contact 

friction forces. In this case, the stick tangential stiffness 𝑘𝑘�𝑇𝑇 = 𝑘𝑘𝑇𝑇 > 0 can be directly 

obtained from the relationship between �𝒕𝒕𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡,𝑇𝑇� and ‖𝒈𝒈𝑇𝑇‖ for the contact. At the 

threshold of slippage, the frictional forces are derived directly from the restriction 

induced by𝐹𝐹𝑓𝑓  =  0, resulting in the attainment of a constant value of 𝜇𝜇𝑓𝑓�𝒕𝒕𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡,𝑁𝑁�. 

Consequently, the slip tangential stiffness 𝑘𝑘�𝑇𝑇 = 0 is adopted in the slip mode.  

The incremental total contact traction can, therefore, be written as follows: 

𝑠𝑠𝒕𝒕cont = 𝑠𝑠𝒕𝒕𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡,𝑁𝑁 + 𝑠𝑠𝒕𝒕𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡,𝑇𝑇 = �𝑫𝑫𝑓𝑓�𝑁𝑁 𝑠𝑠⟦𝒖𝒖⟧ + �𝑫𝑫�𝑓𝑓�𝑇𝑇 𝑠𝑠⟦𝒖𝒖⟧ = 𝑫𝑫�𝑓𝑓
𝑠𝑠𝑝𝑝𝑠𝑠⟦𝒖𝒖⟧                  (6-50) 

where 

𝑫𝑫�𝑓𝑓
𝑠𝑠𝑝𝑝 = 𝑘𝑘𝑁𝑁 (𝐧𝐧Γcont

T 𝐧𝐧Γcont)  + 𝑘𝑘�𝑇𝑇  ((𝐈𝐈 − 𝐧𝐧Γcont
T 𝐧𝐧Γcont)                                                 (6-51) 

The conventional predictor–corrector algorithm frequently adopted in the classical 

plasticity theory along with a return mapping algorithm can be adopted efficiently to 

solve the nonlinear contact problem formulated above. The adopted predictor–corrector 

algorithm leads to a smooth transition from the stick condition to the slip condition 

when tangential forces increase. The step-by-step implementation of the predictor–

corrector algorithm is given in Table 6-1. 
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Table 6-1. The predictor–corrector algorithm for a frictional contact problem (superscript 𝑛𝑛 or 

𝑛𝑛 + 1 indicates trial number) [322]. 
 

1) Compute the normal traction by 

𝒕𝒕𝐜𝐜𝐜𝐜𝐧𝐧𝐜𝐜,𝑵𝑵𝒏𝒏+𝟏𝟏 =  𝒕𝒕𝐜𝐜𝐜𝐜𝐧𝐧𝐜𝐜,𝑵𝑵𝒏𝒏 + �𝑫𝑫𝒇𝒇
𝒆𝒆�
𝑵𝑵
⟦∆𝒖𝒖⟧𝒏𝒏 

2) Set 𝒌𝒌�𝑻𝑻 = 𝒌𝒌𝑻𝑻𝑺𝑺𝒕𝒕𝑺𝑺𝒄𝒄𝒌𝒌 and evaluate the trial magnitude of the elastic frictional traction 

�𝒕𝒕𝐜𝐜𝐜𝐜𝐧𝐧𝐜𝐜,𝑻𝑻𝒏𝒏+𝟏𝟏 �
𝒕𝒕𝒓𝒓𝑺𝑺𝒂𝒂𝒆𝒆 =  𝒕𝒕𝐜𝐜𝐜𝐜𝐧𝐧𝐜𝐜,𝑻𝑻𝒏𝒏 + �𝑫𝑫�𝒇𝒇𝒆𝒆�𝑻𝑻⟦∆𝒖𝒖⟧

𝒏𝒏 

3) If       𝑭𝑭𝒇𝒇 = �(𝒕𝒕𝐜𝐜𝐜𝐜𝐧𝐧𝐜𝐜,𝑵𝑵𝒏𝒏+𝟏𝟏 )𝒕𝒕𝒓𝒓𝑺𝑺𝒂𝒂𝒆𝒆� −  𝝁𝝁𝒇𝒇�𝒕𝒕𝐜𝐜𝐜𝐜𝐧𝐧𝐜𝐜,𝑵𝑵𝒏𝒏+𝟏𝟏 < 𝟎𝟎,   

    Then        𝒕𝒕𝐜𝐜𝐜𝐜𝐧𝐧𝐜𝐜,𝑻𝑻𝒏𝒏+𝟏𝟏 = �𝒕𝒕𝐜𝐜𝐜𝐜𝐧𝐧𝐜𝐜,𝑻𝑻𝒏𝒏+𝟏𝟏 �
𝒕𝒕𝒓𝒓𝑺𝑺𝒂𝒂𝒆𝒆

     and     exit 

    Else,    Go to step 4. 

4) Adjust the frictional traction estimated by the trial amplitude, and the friction 

stiffness by 

𝒕𝒕𝐜𝐜𝐜𝐜𝐧𝐧𝐜𝐜,𝑻𝑻𝒏𝒏+𝟏𝟏 = 𝝁𝝁𝒇𝒇�𝒕𝒕𝐜𝐜𝐜𝐜𝐧𝐧𝐜𝐜,𝑵𝑵𝒏𝒏+𝟏𝟏 �
∆𝒈𝒈𝑻𝑻𝒏𝒏+𝟏𝟏

�∆𝒈𝒈𝑻𝑻𝒏𝒏+𝟏𝟏�
 𝒂𝒂𝒏𝒏𝒂𝒂 𝒌𝒌�𝑻𝑻 =

𝝁𝝁𝒇𝒇�𝒕𝒕𝐜𝐜𝐜𝐜𝐧𝐧𝐜𝐜,𝑵𝑵𝒏𝒏+𝟏𝟏 � −  �𝒕𝒕𝐜𝐜𝐜𝐜𝐧𝐧𝐜𝐜,𝑻𝑻𝒏𝒏+𝟏𝟏 �
�∆𝒈𝒈𝑻𝑻𝒏𝒏+𝟏𝟏�

 

 

 

6.4.3 The Enriched SPIM formation for contact modelling 

In this section, the enriched SPIM formulation proposed for the incorporation of contact 

modelling in solid mechanics is presented. This formulation, commonly applied in 

computational contact mechanics, is described here to ensure completeness. In 

subsequent sections, the proposed contact formulation will be included in the coupled 

flow-deformation analysis of saturated porous media with an embedded interface. 

For a solid body with a contacting interface within its domain, the overall static 

equilibrium can be expressed as: 
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𝜵𝜵 .𝝈𝝈 + 𝒃𝒃 = 0                                                                                                             (6-52) 

with the boundary condition as presented in Equations 3-4 and 3-5. A procedure similar 

to that presented in section 6.2.1 is performed to obtain the weak form of Equation 6-52,  

∫ 𝜺𝜺T(𝒗𝒗)𝝈𝝈��𝜺𝜺(𝒖𝒖)�𝑠𝑠Ω − 
Ω𝑘𝑘
𝑠𝑠 ∫ 𝒗𝒗+𝑇𝑇(𝐧𝐧Γ𝑑𝑑+

T 𝝈𝝈�+ Γcont
+ )𝑠𝑠Γ − ∫ 𝒗𝒗−𝑇𝑇( 𝐧𝐧Γ𝑑𝑑−

T 𝝈𝝈�−Γcont− )𝑠𝑠Γ −

∫ 𝒗𝒗T�̅�𝒕𝑠𝑠Γ  
Γ𝑡𝑡

− ∫ 𝜌𝜌𝒗𝒗T𝐠𝐠𝑠𝑠Ω = 0  
Ω𝑘𝑘
𝑠𝑠   ∀ 𝒗𝒗 ∈ 𝑽𝑽𝑢𝑢,0                                                             (6-53) 

A simple manipulation then results in the compact form of Equation 6-53, as follows: 

∫ 𝜺𝜺T(𝒗𝒗)𝝈𝝈��𝜺𝜺(𝒖𝒖)�𝑠𝑠Ω + ∫ ⟦𝒗𝒗⟧TΓcont
 𝐧𝐧Γcont
T 𝝈𝝈�𝑠𝑠Γ  

Ω𝑘𝑘
𝑠𝑠 − ∫ 𝒗𝒗T�̅�𝒕𝑠𝑠Γ  

Γ𝑡𝑡
− ∫ 𝜌𝜌𝒗𝒗T𝐠𝐠𝑠𝑠Ω = 0  

Ω𝑘𝑘
𝑠𝑠   

 ∀ 𝒗𝒗 ∈ 𝑽𝑽𝑢𝑢,0                                                                                                              (6-54) 

with the boundary condition 𝐧𝐧Γcont
T 𝝈𝝈� =  𝒕𝒕cont. 

Using Equation 6-21 and introducing the Heaviside enrichment function to represent the 

strong discontinuity in contact problems, the jump in the displacement field is 

elaborated as follows: 

⟦𝒖𝒖⟧ =  ⟦𝑵𝑵𝑢𝑢(𝒙𝒙)𝒖𝒖� +  𝑵𝑵𝑢𝑢,𝑠𝑠𝑛𝑛𝜕𝜕(𝒙𝒙)𝒂𝒂�⟧ = ⟦𝑵𝑵𝑢𝑢(𝒙𝒙)𝒖𝒖�⟧ +  ⟦𝑵𝑵𝑢𝑢,𝑠𝑠𝑛𝑛𝜕𝜕(𝒙𝒙)𝒂𝒂�⟧ =  ⟦𝑵𝑵𝑢𝑢,𝑠𝑠𝑛𝑛𝜕𝜕(𝒙𝒙)𝒂𝒂�⟧ =

𝑵𝑵𝑢𝑢(𝒙𝒙)�𝐻𝐻 (𝒙𝒙) −𝐻𝐻 �𝒙𝒙𝐽𝐽��𝒂𝒂� ≡ 𝑵𝑵𝑢𝑢(𝑥𝑥)𝒂𝒂�                                                                                 (6-55) 

The enriched displacement weight function 𝒗𝒗 can be expressed in terms of the 

corresponding nodal values as follows: 

𝒗𝒗(𝒙𝒙) = ∑ 𝑵𝑵𝐼𝐼
𝑢𝑢(𝒙𝒙)𝒄𝒄�𝐼𝐼 +𝐼𝐼∈𝑆𝑆𝑠𝑠 ∑ 𝑵𝑵𝐽𝐽

𝑢𝑢,𝑠𝑠𝑛𝑛𝜕𝜕(𝒙𝒙)𝛿𝛿𝒂𝒂�𝐽𝐽𝐽𝐽∈𝑆𝑆𝑠𝑠𝑠𝑠𝑛𝑛𝑟𝑟                                                        (6-56) 

where 𝒄𝒄� denotes an arbitrary unknown weight vector related to the standard 

approximation of the displacement variable, and 𝛿𝛿𝒂𝒂� corresponds the weight vector of 

the enrichment displacement approximation. Substituting Equations 6-21, 6-29, 6-55 
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and 6-56 into Equation 6-54, the weak form incorporating the discretised contact 

constraint is obtained, as follows: 

∫ �𝑩𝑩�1𝒄𝒄� +  𝑩𝑩�1𝑠𝑠𝑛𝑛𝜕𝜕𝛿𝛿𝒂𝒂��
T 

Ω 𝝈𝝈��𝜺𝜺(𝒖𝒖)�𝑠𝑠Ω + ∫ ⟦𝑵𝑵𝑢𝑢𝒄𝒄� + 𝑵𝑵𝑢𝑢,𝑠𝑠𝑛𝑛𝜕𝜕𝛿𝛿𝒂𝒂�⟧T 
Γcont

𝒕𝒕cont 𝑠𝑠Γ −  ∫ (𝑵𝑵𝑢𝑢 𝒄𝒄� + 
Γ𝑡𝑡

𝑵𝑵𝑢𝑢,𝑠𝑠𝑛𝑛𝜕𝜕𝛿𝛿𝒂𝒂�)T �̅�𝒕𝑠𝑠Γ − ∫ (𝑵𝑵𝑢𝑢 𝒄𝒄� + 𝑵𝑵𝑢𝑢,𝑠𝑠𝑛𝑛𝜕𝜕 𝛿𝛿𝒂𝒂�)T 
Ω  𝒃𝒃𝑠𝑠Ω = 0                                                      (6-57) 

A manipulation similar to Equation 6-55 is performed on the second term of Equation 

6-57 as follows: 

∫ ⟦𝑵𝑵𝑢𝑢𝒄𝒄� + 𝑵𝑵𝑢𝑢,𝑠𝑠𝑛𝑛𝜕𝜕𝛿𝛿𝒂𝒂�⟧T 
Γcont

𝒕𝒕cont 𝑠𝑠Γ =∫ 𝛿𝛿𝒂𝒂�T(𝑵𝑵𝑢𝑢)T 
Γcont

𝒕𝒕cont 𝑠𝑠Γ                                        (6-58) 

Given that 6-57 must hold for any arbitrary 𝒄𝒄� and 𝛿𝛿𝒂𝒂�, it can be rearranged to yield the 

expanded residual forms as follows: 

𝜳𝜳1
𝑢𝑢(𝒖𝒖� ,𝒂𝒂�)  ≡  ∫ 𝑩𝑩�1

T 
Ω𝑘𝑘
𝑠𝑠 𝝈𝝈��𝜺𝜺(𝒖𝒖)�𝑠𝑠Ω − ∫ (𝑵𝑵𝑝𝑝)T 

Γ𝑡𝑡
�̅�𝒕𝑠𝑠Γ − ∫ (𝑵𝑵𝑝𝑝)T 

Ω𝑘𝑘
𝑠𝑠 𝒃𝒃𝑠𝑠Ω = 𝟎𝟎             (6-59) 

𝜳𝜳2
𝑢𝑢(𝒖𝒖� ,𝒂𝒂�) ≡ ∫ �𝑩𝑩�1𝑠𝑠𝑛𝑛𝜕𝜕�

T 
Ω𝑘𝑘
𝑠𝑠 𝝈𝝈�𝑠𝑠Ω + ∫ (𝑵𝑵𝑢𝑢)T 

Γcont
𝒕𝒕cont𝑠𝑠Γ − ∫ (𝑵𝑵𝑢𝑢.𝑠𝑠𝑛𝑛𝜕𝜕)T 

Γ𝑡𝑡
�̅�𝒕𝑠𝑠Γ −

∫ (𝑵𝑵𝑢𝑢.𝑠𝑠𝑛𝑛𝜕𝜕)T 
Ω𝑘𝑘
𝑠𝑠 𝒃𝒃𝑠𝑠Ω = 𝟎𝟎                                                                                                          (6-60) 

Equations 6-59 and 6-60 present the residual of the nonlinear weak form attributed to a 

single-phase problem with the inclusion of an internal interface that is subjected to a 

contact constraint. The nonlinearity of the resultant algebraic system arising from the 

frictional contact constraint necessitates the adoption of an iterative procedure. In this 

study, the well-established Newton–Raphson iterative algorithm, similar to that 

presented in section 5.4.3, is adopted. Therefore, at iteration 𝑠𝑠 + 1 in each time step, we 

have, 

𝑲𝑲�𝑖𝑖
𝑡𝑡𝑛𝑛+1 �

𝑠𝑠𝒖𝒖�𝑖𝑖+1
𝑠𝑠𝒂𝒂�𝑖𝑖+1

�= �𝑲𝑲
�𝑢𝑢𝑢𝑢 𝑲𝑲�𝑢𝑢𝑔𝑔
𝑲𝑲�𝑔𝑔𝑢𝑢 𝑲𝑲�𝑔𝑔𝑔𝑔

�
𝑖𝑖
�
𝑠𝑠𝒖𝒖�𝑖𝑖+1
𝑠𝑠𝒂𝒂�𝑖𝑖+1

� =  −�𝜳𝜳1
𝑢𝑢

𝜳𝜳2
𝑢𝑢�

𝑖𝑖
                                             (6-61) 
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where 𝑲𝑲�  stands for the smoothed stiffness matrix that is composed of four sub-matrices 

as seen in Equation 6-61. The smoothed sub-matrix 𝑲𝑲�𝑢𝑢𝑢𝑢 contains only contributing 

entities derived from the standard degrees of freedom, whereas the smoothed sub-matrix 

𝑲𝑲�𝑔𝑔𝑔𝑔 is related to the additional degrees of freedom with no relation to the standard 

degrees of freedom. The off-diagonal sub-matrices 𝑲𝑲�𝑢𝑢𝑔𝑔 and 𝑲𝑲�𝑔𝑔𝑢𝑢 present the coupling 

stiffness effects due to the interaction of standard and additional degrees of freedom. 

The sub-matrices are derived in the standard manner conventionally adopted in 

nonlinear problems, as follows: 

𝑲𝑲�𝑢𝑢𝑢𝑢 = 𝜕𝜕𝜳𝜳1
𝑔𝑔

𝜕𝜕𝒖𝒖�
= ∫ 𝑩𝑩�1

T 
Ω𝑘𝑘
𝑠𝑠

𝜕𝜕𝝈𝝈�
𝜕𝜕𝒖𝒖�
𝑠𝑠Ω                                                                                     (6-62) 

𝑲𝑲�𝑢𝑢𝑔𝑔 = 𝜕𝜕𝜳𝜳1
𝑔𝑔

𝜕𝜕𝒂𝒂�
= ∫ �𝑩𝑩�1

𝑠𝑠𝑛𝑛𝑡𝑡�
T 

Ω𝑘𝑘
𝑠𝑠

𝜕𝜕𝝈𝝈�
𝜕𝜕𝒂𝒂�
𝑠𝑠Ω                                                                                (6-63) 

𝑲𝑲�𝑔𝑔𝑢𝑢 = 𝜕𝜕𝜳𝜳2
𝑔𝑔

𝜕𝜕𝒖𝒖�
= ∫ �𝑩𝑩�1

𝑠𝑠𝑛𝑛𝑡𝑡�
T 

Ω𝑘𝑘
𝑠𝑠

𝜕𝜕𝝈𝝈�
𝜕𝜕𝒖𝒖�
𝑠𝑠Ω                                                                                (6-64) 

𝑲𝑲�𝑔𝑔𝑔𝑔 = 𝜕𝜕𝜳𝜳2
𝑔𝑔

𝜕𝜕𝒂𝒂�
= ∫ �𝑩𝑩�1

𝑠𝑠𝑛𝑛𝑡𝑡�
T 

Ω𝑘𝑘
𝑠𝑠

𝜕𝜕𝝈𝝈�
𝜕𝜕𝒂𝒂�
𝑠𝑠Ω +  ∫ (𝑵𝑵𝑝𝑝)T 

Γcont
𝜕𝜕𝒕𝒕cont
𝜕𝜕𝒂𝒂�

𝑠𝑠Γ                                          (6-65) 

Consequently, the full smoothed stiffness matrix takes the following form: 

𝑲𝑲�𝑖𝑖 = �
∫ 𝑩𝑩�1

T 
Ω𝑘𝑘
𝑠𝑠  𝑫𝑫 𝑩𝑩�1𝑠𝑠Ω ∫ 𝑩𝑩�1

T 
Ω𝑘𝑘
𝑠𝑠  𝑫𝑫 𝑩𝑩�1

𝑠𝑠𝑛𝑛𝑡𝑡 𝑠𝑠Ω

∫ �𝑩𝑩�1
𝑠𝑠𝑛𝑛𝑡𝑡�

T 
Ω𝑘𝑘
𝑠𝑠 𝑫𝑫 𝑩𝑩�1𝑠𝑠Ω ∫ �𝑩𝑩�1

𝑠𝑠𝑛𝑛𝑡𝑡�
T 

Ω𝑘𝑘
𝑠𝑠 𝑫𝑫 𝑩𝑩�1

𝑠𝑠𝑛𝑛𝑡𝑡𝑠𝑠Ω + ∫ (𝑵𝑵𝑝𝑝)T 
Γcont

𝑫𝑫�𝑓𝑓
𝑠𝑠𝑝𝑝𝑵𝑵𝑝𝑝𝑠𝑠Γ�������������

𝑲𝑲𝑠𝑠𝑜𝑜𝑛𝑛

�

𝑠𝑠

         (6-66) 

The terms 𝑲𝑲𝑐𝑐𝑐𝑐𝑛𝑛 and ∫ (𝑵𝑵𝑢𝑢)T 
Γcont

𝒕𝒕cont 𝑠𝑠Γ (Equation 6-58) can be thought of as the 

contact stiffness and the contact force vector, which incorporate the contact constraint 

into the Enriched CSPIM formulation. According to the linear elastic assumption 

related to material behaviour, the incremental stress-strain relation can be elaborated as 

follows: 
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𝑠𝑠𝝈𝝈� = 𝑫𝑫𝑠𝑠𝜺𝜺�  ≡ 𝑫𝑫𝑩𝑩�1 𝑠𝑠𝒖𝒖� +  𝑫𝑫𝑩𝑩�1
𝑠𝑠𝑛𝑛𝑡𝑡𝑠𝑠𝒂𝒂�                                                                          (6-67) 

A similar constitutive model was established in the previous section (Equation 6-50) to 

characterise the nonlinearity induced by the existence of the frictional contact behavior, 

given as: 

𝑠𝑠𝒕𝒕cont =  𝑫𝑫�𝑓𝑓
𝑠𝑠𝑝𝑝 𝑠𝑠⟦𝒖𝒖⟧  ≡  𝑫𝑫�𝑓𝑓

𝑠𝑠𝑝𝑝𝑵𝑵𝑢𝑢 𝑠𝑠𝒂𝒂�                                                                          (6-68) 

The numerical integration of sub-matrices included in 𝑲𝑲�  does not require a mapping to 

perform numerical integrations because both 𝑩𝑩�1 and 𝑩𝑩�1𝑠𝑠𝑛𝑛𝜕𝜕 are constant over each 

smoothing domain: 

𝑲𝑲�𝑢𝑢𝑢𝑢 = ∫ 𝑩𝑩�1
T 

Ω𝑘𝑘
𝑠𝑠Ω  𝑫𝑫 𝑩𝑩�1𝑠𝑠Ω = 𝑩𝑩�1T𝑫𝑫𝑩𝑩�1𝐴𝐴𝑘𝑘𝑠𝑠                                                                           (6-69) 

𝑲𝑲�𝑢𝑢𝑔𝑔 = ∫ 𝑩𝑩�1
T 

Ω𝑘𝑘
𝑠𝑠  𝑫𝑫 𝑩𝑩�1𝑠𝑠𝑛𝑛𝜕𝜕 𝑠𝑠Ω = 𝑩𝑩�1T𝑫𝑫𝑩𝑩�1

𝑠𝑠𝑛𝑛𝑡𝑡𝐴𝐴𝑘𝑘𝑠𝑠                                                                      (6-70) 

𝑲𝑲�𝑔𝑔𝑢𝑢 = ∫ �𝑩𝑩�1𝑠𝑠𝑛𝑛𝜕𝜕�
T 

Ω𝑘𝑘
𝑠𝑠 𝑫𝑫 𝑩𝑩�1𝑠𝑠Ω = �𝑩𝑩�1𝑠𝑠𝑛𝑛𝜕𝜕�

T𝑫𝑫𝑩𝑩�1𝐴𝐴𝑘𝑘𝑠𝑠                                                               (6-71) 

𝑲𝑲�𝑔𝑔𝑔𝑔 = ∫ �𝑩𝑩�1𝑠𝑠𝑛𝑛𝜕𝜕�
T 

Ω𝑘𝑘
𝑠𝑠 𝑫𝑫 𝑩𝑩�1𝑠𝑠𝑛𝑛𝜕𝜕𝑠𝑠Ω = �𝑩𝑩�1𝑠𝑠𝑛𝑛𝜕𝜕�

T𝑫𝑫𝑩𝑩�1𝑠𝑠𝑛𝑛𝜕𝜕𝐴𝐴𝑘𝑘𝑠𝑠                                                              (6-72) 

The evaluation of the contact stiffness matrix 𝑲𝑲𝑐𝑐𝑐𝑐𝑛𝑛 and the contact force vector 

(Equation 5-58) needs a proper numerical integration scheme over the contact surface 

Γcont. To this end, the contact discontinuity is first partitioned to a set of straight lines, 

and the intersection of the contact surface and the cut smoothing domains are identified, 

as depicted in Figure 6.8. The same Gauss points used to calculate 𝑩𝑩�1 and 𝑩𝑩�1𝑠𝑠𝑛𝑛𝜕𝜕 are 

adopted to perform the numerical integration over each sub-smoothing domain, 

requiring no additional Gauss points. The already-computed shape functions involved in 

the calculation of 𝑩𝑩�1 and 𝑩𝑩�1𝑠𝑠𝑛𝑛𝜕𝜕 are also used for the numerical evaluation of the contact 

stiffness and the contact force vector.  
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Figure 6.8. A schematic representation of the partitioning of the contact interface and the relevant Gauss 

points on the contact surface used for the numerical integration. 

 

Finally, the convergence of the iterative solution is evaluated by the following criterion: 

𝜂𝜂 =  ��(𝜳𝜳1
𝑝𝑝)T 𝜳𝜳2

𝑝𝑝 �  / ‖𝑭𝑭𝑠𝑠𝑥𝑥𝑡𝑡‖�  ≤  𝜂𝜂𝑔𝑔𝑖𝑖𝑚𝑚                                                                            (6-73) 

where 𝜂𝜂𝑔𝑔𝑖𝑖𝑚𝑚 is a previously chosen percentage error. Because the penalty method is 

adopted in this chapter, the contact term is determined in association with the Gauss 

points on the active contact surface on which the normal opening 𝑔𝑔𝑁𝑁 attains a negative 

value within the Newton–Raphson iterative scheme. The predictor-corrector algorithm 

presented in Table 6-1 is adopted to differentiate between the stick and slip conditions. 
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6.5 The fully discretised Enriched cell-based SPIM formulation for 

saturated porous media with an embedded interface 

According to the formulation presented in section 6.4 and the weak forms of the 

coupled flow-deformation of porous media along with the fluid continuity equation 

within a cavity, it is possible to derive a comprehensive formulation that simultaneously 

demonstrates all potential effects induced by the existence of an embedded interface. 

The coupled flow-deformation weak form of saturated porous media with the inclusion 

of the contact behaviour is obtained in this section by extending thatpresented in section 

6-4. 

To arrive at the discretised weak forms, including the equilibrium and flow continuity 

equations, the spatially interpolation functions introduced in sections 3.4.1 and 6.3 are 

inserted into Equations 6-4 and 6-5 in the Galerkin sense, in which the test functions 𝒗𝒗  

and q and their corresponding, equal order, trial functions are chosen from appropriate 

subspaces. By fulfilling the requirement that the weak form must remain valid for all 

kinematically admissible test functions, the discrete form of the residuals related to solid 

and fluid phases at the current time step 𝑡𝑡 + 𝛼𝛼∆𝑡𝑡 are obtained as follows: 

𝜳𝜳𝑢𝑢
𝑠𝑠𝑛𝑛𝜕𝜕 = 𝑲𝑲𝑼𝑼� − 𝑪𝑪𝑡𝑡𝑐𝑐𝑡𝑡𝑔𝑔𝑙𝑙𝑷𝑷� + 𝑭𝑭𝛤𝛤𝑑𝑑 − 𝑭𝑭𝑠𝑠𝑥𝑥𝑡𝑡 = 𝟎𝟎                                                             (6-74) 

𝜳𝜳𝑝𝑝
𝑠𝑠𝑛𝑛𝜕𝜕 = 𝑪𝑪𝑡𝑡𝑐𝑐𝑡𝑡𝑔𝑔𝑙𝑙T𝑼𝑼�̇ + 𝑯𝑯𝑡𝑡𝑐𝑐𝑡𝑡𝑔𝑔𝑙𝑙𝑷𝑷� + 𝑴𝑴𝑡𝑡𝑐𝑐𝑡𝑡𝑔𝑔𝑙𝑙𝑷𝑷�̇ − 𝒒𝒒𝑠𝑠𝑥𝑥𝑡𝑡 = 𝟎𝟎                                               (6-75) 

where, 

𝑲𝑲 = 𝑲𝑲� +  𝑲𝑲𝑐𝑐𝑐𝑐𝑛𝑛, 𝑪𝑪𝑡𝑡𝑐𝑐𝑡𝑡𝑔𝑔𝑙𝑙 = 𝑪𝑪� + 𝑪𝑪Γ𝑑𝑑  , 𝑯𝑯𝑡𝑡𝑐𝑐𝑡𝑡𝑔𝑔𝑙𝑙 = 𝑯𝑯� + 𝑯𝑯Γ𝑑𝑑 + 𝑯𝑯closure , 𝑴𝑴𝑡𝑡𝑐𝑐𝑡𝑡𝑔𝑔𝑙𝑙 = 𝑴𝑴 +

𝑴𝑴Γ𝑑𝑑                                                                                                                           (6-76) 
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𝜳𝜳𝑢𝑢
𝑠𝑠𝑛𝑛𝜕𝜕 and 𝜳𝜳𝑝𝑝

𝑠𝑠𝑛𝑛𝜕𝜕 are the residual forms of the nonlinear equations corresponding to the 

solid and fluid phases, respectively. 𝑼𝑼�  and 𝑷𝑷� are the collection of the standard and 

enriched degrees of freedom for the solid phase and fluid phase, respectively. The 

global 𝑲𝑲� , 𝑪𝑪,�  𝑯𝑯� , and M matrices were computed in Chapter 3 for an elastic linear 

medium with no discontinuity. In the presence of a discontinuity, the definition of these 

matrices must be updated to accommodate the effect of the additional degrees of 

freedom due to enrichment functions, as follows,  

𝑲𝑲� = �
∫ 𝑩𝑩�1T𝑫𝑫𝑩𝑩�1Ω𝑘𝑘

𝑠𝑠 𝑠𝑠Ω ∫ 𝑩𝑩�1T𝑫𝑫𝑩𝑩�1𝑠𝑠𝑛𝑛𝜕𝜕Ω𝑘𝑘
𝑠𝑠 𝑠𝑠Ω

∫ �𝑩𝑩�1𝑠𝑠𝑛𝑛𝜕𝜕�
T
𝑫𝑫𝑩𝑩�1Ω𝑘𝑘

𝑠𝑠 𝑠𝑠Ω ∫ �𝑩𝑩�1𝑠𝑠𝑛𝑛𝜕𝜕�
T
𝑫𝑫𝑩𝑩�1𝑠𝑠𝑛𝑛𝜕𝜕Ω𝑘𝑘

𝑠𝑠 𝑠𝑠Ω
�                                                (6-77) 

𝑪𝑪� = �
∫ �𝑩𝑩�1�

T
𝜂𝜂𝜹𝜹𝑵𝑵𝑝𝑝

Ω𝑘𝑘
𝑠𝑠 𝑠𝑠Ω ∫ 𝑩𝑩�1T𝜂𝜂𝜹𝜹𝑵𝑵𝑝𝑝,𝑠𝑠𝑛𝑛𝜕𝜕

Ω𝑘𝑘
𝑠𝑠 𝑠𝑠Ω

∫ �𝑩𝑩�1𝑠𝑠𝑛𝑛𝜕𝜕�
T
𝜂𝜂𝜹𝜹𝑵𝑵𝑝𝑝

Ω𝑘𝑘
𝑠𝑠 𝑠𝑠Ω ∫ �𝑩𝑩�1𝑠𝑠𝑛𝑛𝜕𝜕�

T
𝜂𝜂𝜹𝜹𝑵𝑵𝑝𝑝,𝑠𝑠𝑛𝑛𝜕𝜕

Ω𝑘𝑘
𝑠𝑠 𝑠𝑠Ω

�                                      (6-78) 

𝑯𝑯� = �
∫ 𝑩𝑩�2T

𝑘𝑘𝑓𝑓
𝜇𝜇𝑓𝑓
𝑩𝑩�2Ω𝑘𝑘

𝑠𝑠 𝑠𝑠Ω ∫ 𝑩𝑩�2T
𝑘𝑘𝑓𝑓
𝜇𝜇𝑓𝑓
𝑩𝑩�2𝑠𝑠𝑛𝑛𝜕𝜕Ω𝑘𝑘

𝑠𝑠 𝑠𝑠Ω

∫ �𝑩𝑩�2𝑠𝑠𝑛𝑛𝜕𝜕�
T 𝑘𝑘𝑓𝑓
𝜇𝜇𝑓𝑓
𝑩𝑩�1Ω𝑘𝑘

𝑠𝑠 𝑠𝑠Ω ∫ �𝑩𝑩�2𝑠𝑠𝑛𝑛𝜕𝜕�
T 𝑘𝑘𝑓𝑓
𝜇𝜇𝑓𝑓
𝑩𝑩�2𝑠𝑠𝑛𝑛𝜕𝜕Ω𝑘𝑘

𝑠𝑠 𝑠𝑠Ω
�                                            (6-79) 

𝐌𝐌 = �
∫ (𝑵𝑵𝑝𝑝)T𝛼𝛼𝑓𝑓𝑵𝑵𝑝𝑝
Ω𝑘𝑘
𝑠𝑠 𝑠𝑠Ω ∫ (𝑵𝑵𝑝𝑝)T𝛼𝛼𝑓𝑓𝑵𝑵𝑝𝑝,𝑠𝑠𝑛𝑛𝜕𝜕

Ω𝑘𝑘
𝑠𝑠 𝑠𝑠Ω

∫ (𝑵𝑵𝑝𝑝,𝑠𝑠𝑛𝑛𝜕𝜕)T𝛼𝛼𝑓𝑓𝑵𝑵𝑝𝑝
Ω𝑘𝑘
𝑠𝑠 𝑠𝑠Ω ∫ (𝑵𝑵𝑝𝑝,𝑠𝑠𝑛𝑛𝜕𝜕)T𝛼𝛼𝑓𝑓𝑵𝑵𝑝𝑝,𝑠𝑠𝑛𝑛𝜕𝜕

Ω𝑘𝑘
𝑠𝑠 𝑠𝑠Ω

�                                    (6-80) 

 

where the numerical integrations are performed in a similar manner to that described in 

Chapter 3. The Gauss points used for the numerical integrations of the enriched 

smoothed matrices and their corresponding interpolation functions to represent the 

approximation of the enriched part of displacement and pressure variables are the same 

as those used for the calculation of the standard property matrices, as shown in Figure 

3-4. 
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Introducing the fluid continuity equation within a strong discontinuity into the global 

flow-deformation equation of a saturated porous medium introduces two important 

effects into the global behaviour of the saturated porous media: hydraulic coupling and 

mechanical coupling. Hydraulic coupling is introduced to the global equation because 

of the fluid exchange between the discontinuity and the surrounding permeable porous 

medium. Consequently, it affects the pressure-pressure block as well as the pressure-

displacement block of the global coefficient matrix through the appearance of  𝐂𝐂Γ𝑑𝑑,𝑯𝑯𝛤𝛤𝑑𝑑 , 

and 𝑴𝑴Γ𝑑𝑑 as the contributing matrices, which are expressed as follows: 

𝑪𝑪𝛤𝛤𝑑𝑑 = �
𝟎𝟎 𝟎𝟎

∫ (𝑵𝑵𝑢𝑢)𝑇𝑇𝐧𝐧𝑑𝑑𝐍𝐍𝑝𝑝
Γ𝑑𝑑

𝑠𝑠Γ ∫ (𝑵𝑵𝑢𝑢)𝑇𝑇𝐧𝐧𝑑𝑑𝐍𝐍�𝑝𝑝Γ𝑑𝑑
𝑠𝑠Γ�                                                 (6-81) 

𝑯𝑯𝛤𝛤𝑑𝑑 = �
∫ 𝑩𝑩�2   

T 𝒌𝒌Γd𝑩𝑩�2 Γd
ℎ𝑠𝑠Γ ∫ 𝑩𝑩�2   

T 𝒌𝒌Γd𝑩𝑩�2
𝑠𝑠𝑛𝑛𝜕𝜕

Γd
ℎ𝑠𝑠Γ

∫ �𝑩𝑩�2𝑠𝑠𝑛𝑛𝜕𝜕�
T
𝒌𝒌Γd𝑩𝑩�2Γd

ℎ𝑠𝑠Γ ∫ �𝑩𝑩�2𝑠𝑠𝑛𝑛𝜕𝜕�
T
𝒌𝒌Γd𝑩𝑩�2

𝑠𝑠𝑛𝑛𝜕𝜕
Γd

ℎ𝑠𝑠Γ
�      𝑤𝑤𝑠𝑠𝑡𝑡ℎ �

𝒌𝒌Γ𝑑𝑑 = 𝒎𝒎𝒂𝒂𝑘𝑘𝑐𝑐𝜕𝜕𝒎𝒎𝑑𝑑
𝑇𝑇

𝑘𝑘𝑐𝑐𝜕𝜕 = ℎ2
12𝜇𝜇𝑓𝑓�

  

(6-82) 

𝑴𝑴Γ𝑑𝑑 = �
∫ (𝑵𝑵𝑝𝑝)T𝑠𝑠𝑓𝑓𝑵𝑵𝑝𝑝ℎΩ𝑘𝑘

𝑠𝑠 𝑠𝑠Ω ∫ (𝑵𝑵𝑝𝑝)T𝑠𝑠𝑓𝑓𝑵𝑵𝑝𝑝,𝑠𝑠𝑛𝑛𝜕𝜕ℎΩ𝑘𝑘
𝑠𝑠 𝑠𝑠Ω

∫ (𝑵𝑵𝑝𝑝,𝑠𝑠𝑛𝑛𝜕𝜕)T𝑠𝑠𝑓𝑓𝑵𝑵𝑝𝑝ℎΩ𝑘𝑘
𝑠𝑠 𝑠𝑠Ω ∫ (𝑵𝑵𝑝𝑝,𝑠𝑠𝑛𝑛𝜕𝜕)T𝑠𝑠𝑓𝑓𝑵𝑵𝑝𝑝,𝑠𝑠𝑛𝑛𝜕𝜕ℎΩ𝑘𝑘

𝑠𝑠 𝑠𝑠Ω
�                               (6-83) 

The hydraulic coupling effects are complemented by the involvement of an additional 

flux term induced by the weight of the existing fluid within the cavity. This term, which 

is added to the natural flux term of the standard weak form of the governing equations, 

is expressed as follows: 

𝒒𝒒𝑠𝑠𝑥𝑥𝑡𝑡 = �
∫ (𝑵𝑵𝑝𝑝)T𝑞𝑞�Γ𝑤𝑤

𝑠𝑠Γ

∫ (𝑵𝑵𝑝𝑝,𝑠𝑠𝑛𝑛𝜕𝜕)T𝑞𝑞�Γ𝑤𝑤
𝑠𝑠Γ
� + �

∫ 𝑩𝑩�2   
T 𝑘𝑘𝑓𝑓

𝜇𝜇𝑓𝑓
𝜌𝜌𝑓𝑓𝐠𝐠�Ω𝑘𝑘

𝑠𝑠 𝑠𝑠Ω

∫ �𝑩𝑩�2𝑠𝑠𝑛𝑛𝜕𝜕�
T 𝑘𝑘𝑓𝑓
𝜇𝜇𝑓𝑓
𝜌𝜌𝑓𝑓𝐠𝐠�Ω𝑘𝑘

𝑠𝑠 𝑠𝑠Ω
�                                      (6-84) 
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The mechanical coupling effects arise from the tractions induced by either the exerted 

fluid pressure within the strong discontinuity or the development of frictional contact 

forces due to the appearance of the closure mode in the strong discontinuity. The force 

vector induced by the mechanical coupling effect is added into the solid residual term 

by the following expression: 

𝑭𝑭𝛤𝛤𝑑𝑑 = �
0

∑�∫ 𝑵𝑵𝑇𝑇𝒕𝒕𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡𝛤𝛤𝑒𝑒𝑐𝑐𝑛𝑛𝑡𝑡
𝑠𝑠𝛤𝛤 + ∫ (𝑵𝑵𝑢𝑢)𝑇𝑇𝒑𝒑𝛤𝛤𝑑𝑑

𝑠𝑠𝛤𝛤��                                                          

(6-85) 

where ∫ (𝑵𝑵𝑢𝑢)𝑇𝑇𝒕𝒕𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡Γcont
𝑠𝑠𝛤𝛤 indicates the contact forces, and ∫ (𝑵𝑵𝑢𝑢)𝑇𝑇𝒑𝒑𝛤𝛤𝑑𝑑

𝑠𝑠𝛤𝛤 is due to the 

forces induced by the fluid pressure within the cavity, both of which are enforced at the 

crack faces. The elaboration of ∫ (𝑵𝑵𝑢𝑢)𝑇𝑇𝒕𝒕𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡Γcont
𝑠𝑠Γ was presented in the previous 

section. It is worth noting that the closure mode of the crack results in introducing the 

frictional contact stiffness, 𝑲𝑲𝑐𝑐𝑐𝑐𝑛𝑛 added to the global stiffness matrix and applied by the 

penalty method using the formulation described for the single-phase problems in the 

previous section. 

The onset of the closure mode in a strong discontinuity necessitates the elimination of 

the enriched pressure degrees of freedom, which is mathematically expressed as 

follows: 

𝒑𝒑𝑠𝑠𝑛𝑛𝜕𝜕 = 0                              𝑜𝑜𝑛𝑛 Γcont                                                                          (6-86) 

This is captured by incorporating a penalisation term into the weak form of the fluid 

continuity equation, resulting in: 

(𝑲𝑲Γ𝑒𝑒𝑐𝑐𝑛𝑛)𝑓𝑓 = ∫ (𝑵𝑵�𝑝𝑝)T𝜖𝜖𝑁𝑁Γ𝑒𝑒𝑐𝑐𝑛𝑛
𝑵𝑵�𝑝𝑝𝑠𝑠Γ                                                                         (6-87) 
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where 𝜖𝜖𝑁𝑁 is a scalar penalty parameter for imposing the essential boundary conditions 

related to 𝒑𝒑𝑠𝑠𝑛𝑛𝜕𝜕. This matrix, which resembles the permeability matrix, is added to the 

discretised formulation through 𝑯𝑯𝑐𝑐𝑙𝑙𝑐𝑐𝑠𝑠𝑢𝑢𝜕𝜕𝑠𝑠 matrix (see Equation 6-76) defined in the 

following form: 

𝑯𝑯𝑐𝑐𝑙𝑙𝑐𝑐𝑠𝑠𝑢𝑢𝜕𝜕𝑠𝑠 = �
0 0
0 (𝑲𝑲Γ𝑒𝑒𝑐𝑐𝑛𝑛)𝑓𝑓�                                                                                      (6-88) 

The external forces corresponding to the standard and additional degrees of freedom 

related to the solid phase can be calculated by the following expression:𝑭𝑭𝑠𝑠𝑥𝑥𝑡𝑡 =

�
∑ �∫ 𝑵𝑵𝑇𝑇�̅�𝒕𝛤𝛤𝑘𝑘 𝑠𝑠𝛤𝛤 + ∫ 𝑵𝑵𝑇𝑇𝜌𝜌𝒈𝒈𝑠𝑠𝑟𝑟𝛺𝛺𝑘𝑘 �

∑�∫ (𝑵𝑵𝑠𝑠𝑛𝑛𝜕𝜕)T�̅�𝒕𝛤𝛤𝑘𝑘 𝑠𝑠𝛤𝛤 + ∫ (𝑵𝑵𝑠𝑠𝑛𝑛𝜕𝜕)T𝜌𝜌𝒈𝒈𝑠𝑠𝑟𝑟𝛺𝛺𝑘𝑘 �
�                                                (6-89) 

For temporal discretisation of Equation 6-75, a three-point time discretisation technique 

with variable time steps detailed in Chapter 3 is again adopted in this chapter. 

consequently, the fully discretised forms of Equations 5-48 and 5-49 can be obtained at 

the current time step 𝑡𝑡 + 𝛼𝛼∆𝑡𝑡 as follows: 

(𝜳𝜳𝑢𝑢
𝑠𝑠𝑛𝑛𝜕𝜕)𝑡𝑡+𝛼𝛼∆𝑡𝑡 = 𝑲𝑲𝑼𝑼�𝑡𝑡+α∆𝑡𝑡 − 𝑪𝑪𝑡𝑡𝑐𝑐𝑡𝑡𝑔𝑔𝑙𝑙𝑷𝑷�𝑡𝑡+α∆𝑡𝑡 − 𝑭𝑭Γ𝑑𝑑

𝑡𝑡+𝛼𝛼∆𝑡𝑡 − 𝑭𝑭𝑠𝑠𝑥𝑥𝑡𝑡𝑡𝑡+𝛼𝛼∆𝑡𝑡 = 𝟎𝟎                          (6-90) 

(𝜳𝜳𝑝𝑝
𝑠𝑠𝑛𝑛𝜕𝜕)𝑡𝑡+𝛼𝛼∆𝑡𝑡 = 𝑪𝑪𝑡𝑡𝑐𝑐𝑡𝑡𝑔𝑔𝑙𝑙T(𝐴𝐴𝑼𝑼�𝑡𝑡+𝛼𝛼∆𝑡𝑡 − 𝐵𝐵𝑼𝑼�𝑡𝑡 + 𝐶𝐶𝑼𝑼�𝑡𝑡−∆𝑡𝑡) + ∆𝑡𝑡𝑯𝑯𝑡𝑡𝑐𝑐𝑡𝑡𝑔𝑔𝑙𝑙𝑷𝑷�𝑡𝑡+𝛼𝛼∆𝑡𝑡  + 

𝑴𝑴𝑡𝑡𝑐𝑐𝑡𝑡𝑔𝑔𝑙𝑙(𝐴𝐴𝑷𝑷�𝑡𝑡+𝛼𝛼∆𝑡𝑡 − 𝐵𝐵𝑷𝑷�𝑡𝑡 + 𝐶𝐶𝑷𝑷�𝑡𝑡−∆𝑡𝑡) − ∆𝑡𝑡𝒒𝒒𝑠𝑠𝑥𝑥𝑡𝑡𝑡𝑡+𝛼𝛼∆𝑡𝑡 = 𝟎𝟎                                               (6-91) 

A similar Newton-Raphson procedure discussed earlier can be adopted for solving the 

above nonlinear global matrix system to obtain the nodal displacements 𝑼𝑼�𝑖𝑖+1𝑡𝑡+𝛼𝛼∆𝑡𝑡 and the 

nodal pore pressure 𝑷𝑷�𝑖𝑖+1𝑡𝑡+𝛼𝛼∆𝑡𝑡 at (𝑠𝑠 + 1)th iteration at time 𝑡𝑡 + 𝛼𝛼∆𝑡𝑡. The solution 

procedure can be rewritten as follows: 
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�
(𝜳𝜳𝑢𝑢

𝑠𝑠𝑛𝑛𝜕𝜕)𝑖𝑖+1 𝑡𝑡+𝛼𝛼∆𝑡𝑡

 �𝜳𝜳𝑝𝑝
𝑠𝑠𝑛𝑛𝜕𝜕�

𝑖𝑖+1
 𝑡𝑡+𝛼𝛼∆𝑡𝑡� = �

(𝜳𝜳𝑢𝑢
𝑠𝑠𝑛𝑛𝜕𝜕)𝑖𝑖 𝑡𝑡+𝛼𝛼∆𝑡𝑡

𝜳𝜳𝑝𝑝
𝑠𝑠𝑛𝑛𝜕𝜕

𝑖𝑖
 𝑡𝑡+𝛼𝛼∆𝑡𝑡 � + 𝑱𝑱𝑠𝑠𝑛𝑛𝜕𝜕,𝑖𝑖 �

𝑠𝑠𝑼𝑼�𝑖𝑖+1𝑡𝑡+𝛼𝛼∆𝑡𝑡

𝑠𝑠𝑷𝑷�𝑖𝑖+1𝑡𝑡+𝛼𝛼∆𝑡𝑡� = 𝟎𝟎                                    (6-92) 

in which the enriched Jacobian matrix 𝑱𝑱𝑠𝑠𝑛𝑛𝜕𝜕 is formulated as: 

𝑱𝑱𝑠𝑠𝑛𝑛𝜕𝜕,𝑖𝑖 = �
𝑲𝑲 −𝑪𝑪𝑡𝑡𝑐𝑐𝑡𝑡𝑔𝑔𝑙𝑙

𝐴𝐴(𝑪𝑪𝑡𝑡𝑐𝑐𝑡𝑡𝑔𝑔𝑙𝑙)T (𝐴𝐴𝑴𝑴𝑡𝑡𝑐𝑐𝑡𝑡𝑔𝑔𝑙𝑙 + ∆𝑡𝑡𝑯𝑯𝑡𝑡𝑐𝑐𝑡𝑡𝑔𝑔𝑙𝑙)
�
𝑖𝑖
                                                        (6-93) 

The convergence of the solution is evaluated by checking the following criterion: 

𝜂𝜂 =  ��(𝜳𝜳𝑝𝑝
𝑠𝑠𝑛𝑛𝑡𝑡)T  𝜳𝜳𝜂𝜂

𝑠𝑠𝑛𝑛𝑡𝑡�  / ‖𝑭𝑭𝑠𝑠𝑥𝑥𝑡𝑡‖�  ≤  𝜂𝜂𝑔𝑔𝑖𝑖𝑚𝑚                                                                    (6-94) 

where 𝜂𝜂𝑔𝑔𝑖𝑖𝑚𝑚 is a priori chosen error tolerance. 

 

6.6 Numerical verifications 

The robustness and efficiency of the proposed Enriched SPIM are examined in this 

section through the simulation of a set of numerical examples, which include both 

single-phase and saturated porous media. The numerical examples are selected such that 

all aspects of the formulation are tested. The numerical results are presented for both 

structured and unstructured triangulations. For all numerical examples, the alignment of 

the triangular boundaries with the interfaces is not preserved. All examples are 

evaluated under the plane-strain condition. The problems are simulated through 

different node selection schemes (T-schemes) to investigate the influence of different 

number of supporting nodes on the overall behaviour of the problem of interest. 
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6.6.1 Single-phase medium with an inclined interface subjected to compressive loading 

The first example involves simulation of a plate 1 m × 1 m with an inclined interface, 

following a Columbian frictional model subjected to compressive loading induced by a 

uniform vertical displacement of 𝑝𝑝𝑥𝑥2 = –0.1 m acting on the top edge of the medium, as 

sketched in Figure 6.9. The material interface Γ𝑑𝑑 splits the domain into two sub-

domains, where the level set is specified by the equation of an inclined plane 𝑠𝑠(𝒙𝒙) =

𝑥𝑥2 − 0.2𝑥𝑥1 − 0.4586, in which the position of the material interface is defined by 

𝑠𝑠(𝒙𝒙) = 0. The boundary conditions adopted in this examples are also depicted in Figure 

6.9. 

The interfacial inclination is represented by the slope of the line equal to 𝜃𝜃 =

𝑡𝑡𝑝𝑝𝑛𝑛−1(0.2), as shown in Figure 6.9. Identical material properties are assumed for both 

sub-domains on both sides of the material interface. The elastic modulus is taken 

as 𝐸𝐸1 = 𝐸𝐸2 = 104 MPa, while assuming the Poisson’s ratio of 𝑣𝑣1 = 𝑣𝑣2 = 0.3. The inclined 

interface is characterized by two discernible frictional coefficients, 𝜇𝜇 = 0.21 and 

𝜇𝜇 = 0.19, for two different simulations indicating the stick and slip conditions, 

respectively, according to the classical problem of a rigid block laid on a rough surface. 

Given 𝜃𝜃 = 𝑡𝑡𝑝𝑝𝑛𝑛−1(0.2), a sliding response is expected with 𝜇𝜇 = 0.19, while a stick 

condition is expected otherwise.  

The square domain is discretised by a structured triangulation of 2,450 triangular 

background elements, as shown in Figure 6.9. The imposition of the contact constraint 

is made by applying the penalty method using the Enriched cell-based SPIM/SRPIM 

proposed in this chapter. The penalty stiffness in both horizontal and tangential 

directions are identically taken as 𝑘𝑘𝑁𝑁 = 𝑘𝑘𝑇𝑇 = 1 × 1012 MPa
m3 .  
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The entire load is applied in one load step, and the resulting numerical solutions are 

shown in Figure 6.10 and Figure 6.11. Perfectly matched numerical results are achieved 

compared to numerical reference solutions presented by Annavarapu and Hautefeuille 

[330], which  is consistent with theoretical expectations. As can be seen in Figure 6.10, 

the sliding response is recovered when the frictional coefficient between the blocks is 

taken as less than the tangent of the inclined interface (𝜇𝜇 = 0.19), while the stick state is 

observed with the larger assigned frictional coefficient (𝜇𝜇 = 0.21). The convergent 

solutions were achieved within a maximum of 6 iterations. The specified tolerance is set 

to 𝜂𝜂𝑔𝑔𝑖𝑖𝑚𝑚 = 1.5 × 10−8. 

 

 

 

(a) 

 

(b) 

Figure 6.9. (a) A schematic representation of the unit square geometry with a frictional interface. (b) The 

discretization used for the computations [261]. 
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(a) 

 

(b) 

Figure 6.10. The contours of the horizontal displacement associated with the deformed medium with an 

inclined interface subjected to compressive loading when 𝜇𝜇 < tan 𝜃𝜃, slipping state for (a) the Enriched 

CSRPIM-T2L of this study, and (b) the numerical result presented in [330]. 

 

Width (m)

H
ei

gh
t(

m
)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Ux
0.005

-0.005

-0.015

-0.025

-0.035

-0.045



Chapter 6-An enriched smoothed point interpolation method for the flow-deformation 
analysis of saturated porous media with embedded interfaces 

217 
 

 

 

(a) 

 

(b) 

Figure 6.11. The contours of the horizontal displacement associated with the deformed medium with 

an  inclined interface subjected to the compressive loading when 𝜇𝜇 > tan 𝜃𝜃, stick condition for (a) the 

Enriched CSRPIM-T2L of this study and (b) the numerical result presented in [330]. 
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6.6.2 Single-phase medium with the horizontal interface subjected to non-

uniform compression 

The second numerical example concerns a unit square medium containing an interface, 

characterized by the level set as 𝑠𝑠(𝒙𝒙) = 𝑥𝑥2 − 0.5. The interface decomposes the 

medium into two sub-domains, where the material properties are identical for both sides 

of the medium as 𝐸𝐸1 =  𝐸𝐸2= 104 MPa and 𝑣𝑣1 = 𝑣𝑣2 = 0.3. The investigation of stick/slip 

behaviour is performed by assigning two different frictional coefficient values of 𝜇𝜇 =

0.1 and 𝜇𝜇 = 0.4. The bottom surface of the medium is horizontally and vertically 

constrained, while the top of the medium is subjected to a non-uniform vertical 

displacement specified as 𝑝𝑝𝑥𝑥2= 0.09 𝑥𝑥1 – 0.1 m as well as a uniform horizontal 

displacement of 𝑝𝑝𝑥𝑥1 = 0.05 m, as depicted in Figure 6.12. The sides of the domain are 

unconstrained. The discretisation of the medium is performed by a uniform structured 

triangulation of 2,450 smoothing domains (elements). The normal and tangential 

penalty parameters were assumed 𝑘𝑘𝑁𝑁 = 𝑘𝑘𝑇𝑇 = 1 × 1010 MPa
m3  , respectively. A trial and 

error analysis is performed to fine-tune the values of the penalty parameters ensuring 

that the non-penetration constraint is accurately enforced, while preventing the 

emergence of oscillatory behaviour as encountered when too-high values for the penalty 

parameters are selected. The geometry of the unit square and the imposed boundary 

conditions, together with the mesh topology used in this study, are depicted in Figure 

6.12. The specified tolerance is set to 𝜂𝜂𝑔𝑔𝑖𝑖𝑚𝑚 = 1 × 10−10. 
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(a) 

 

(b) 

Figure 6.12. (a) A unit squared medium compressively loaded and sheared at the top edge and fixed at 

the bottom edge. (b) The underlying discretisation used in this study. 

 

Figure 6.13 and Figure 6.14 depict the profiles of normal contact stress and the variation 

of tangential sliding for the cases of 𝜇𝜇 = 0.1 and 𝜇𝜇 = 0.4, respectively. The attained 

numerical results are presented for both Enriched CSPIM T4 and CSRPIM T2L and are 

compared with those presented by Hirmand and Vahab [261]. It is evident that the 

numerical results attained by the proposed methods in this chapter are in excellent 

agreement with the results presented in [261].  
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(a) 

 

(b) 

Figure 6.13. The profile of normal contact stress (a) and the variation of tangential sliding with respect to 

the interfacial length for the case where the frictional coefficient is 𝜇𝜇 = 0.1, which corresponds to the 

slipping condition. 

 

 
(a) 

 
(b) 

 
Figure 6.14. The profile of normal contact stress (a) and the variation of tangential sliding with respect to 

the interfacial length for the case where the frictional coefficient is taken as 𝜇𝜇 = 0.4, which corresponds 

to the stick and slip conditions. 

 

The horizontal displacement of the deformed medium is shown in Figure 6.15 for both 

the cases analysed (𝜇𝜇 = 0.1 and  𝜇𝜇 = 0.4). In the case with 𝜇𝜇 = 0.1, the threshold of the 

slip limit is readily reached by the mobilised frictional contact forces, which results in 
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the development of the slip condition along the entire length of the interface. The 

tangential contact forces are then directly computed by the amplitude of the normal 

contact forces, which aligns with the tangential sliding direction. However, the 

specification of a higher frictional coefficient value of 𝜇𝜇 = 0.4 lead to the appearance of 

two distinct regions. The region where the high amplitude of the prescribed vertical 

displacement prevents the onset of slip, and no relative displacement occurs between the 

bodies in contact. The other region is where the frictional stress exceeds the slip limit 

and the tangential contact mode switches to the slipping mode. As a result, relative 

displacement between the two contacting bodies occurs in this region, and the frictional 

stresses are obtained according to the Coulomb’s frictional constitutive model between 

the contacting bodies.  
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(a) 

 

(b) 

Figure 6.15. The horizontal displacement contours on the deformed medium of a unit square subjected to 

non-uniform compression with the frictional coefficient (a) 𝜇𝜇 = 0.1 and (b) 𝜇𝜇 = 0.4. 
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6.6.3 Multi-layered elastic foundation 

The next example examines a multi-layered flexible foundation with the assumption of 

linear behaviour of the soil medium away from the interfaces subjected to a surface step 

loading of 350 kN
m2. The soil stratum contains vertical and horizontal material interfaces, 

through which the medium is decomposed into three subdomains. This problem was 

previously used to study strain localisation in [331], and modelling weak discontinuity 

by XFEM in [61] under dynamic loading. For this example, a quasi-static step loading 

on the foundation is assumed as shown in Figure 6.16. The foundation is 30 × 30 m, 

and the corresponding essential and natural boundary conditions are shown in Figure 

6.16.  

 

Figure 6.16. The representation of the multi-layered saturated porous medium with interfacial 

geometries, along with the corresponding boundary conditions [61]. 

 

 

 



Chapter 6-An enriched smoothed point interpolation method for the flow-deformation 
analysis of saturated porous media with embedded interfaces 

224 
 

 

Figure 6.17. The triangulation adopted for the proposed Enriched CSPIM/CSRPIM for the simulation of 

the multi-layered saturated porous medium, together with the coordinates of the nodes of interest for the 

examination of numerical results. 

 

The domain is partitioned using a mesh composed of 450 smoothing domains generated 

by 256 nodes. The domain discretisation, with interfacial geometries and the positions 

of the nodes of interest which are used for the representation of the numerical results, 

are depicted in Figure 6.17. The coordinates of point 𝐏𝐏1 are (28.26 m, 28.26 m), and 𝐏𝐏2 

are (28.26 m, 20.86 m). The assigned material properties for the three sub-domains are 

listed in Table 6-2. The larger regions are numbered first. 
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Table 6-2. Material properties assigned for the numerical simulation of the multi-layered elastic 

foundation. 
 

Material properties Region 1 Region 2 Region 3 

Young’s modulus E (kPa) 20 × 103 40 × 103 100 × 103 

Poisson ratio ν 0.2 0.2 0.2 

Solid density 𝛒𝛒𝒔𝒔 (kN/𝐦𝐦𝟑𝟑) 20 20 20 

Fluid density 𝛒𝛒𝒇𝒇 (kN/𝐦𝐦𝟑𝟑) 10 10 10 

Fluid compressibility 𝒄𝒄𝒇𝒇 

(1/Pa) 

0.91 × 10−9 0.91 × 10−9 0.91 × 10−9 

Solid compressibility 𝒄𝒄𝒔𝒔 

(1/Pa) 

1.0 × 10−20 1.0 × 10−20 1.0 × 10−20 

Porosity n 0.25 0.3 0.35 

Permeability k (𝐦𝐦/sec) 1.0 × 10−5 5.0 × 10−5 19.6 × 10−4 

 

The numerical results are verified against the reference solutions obtained by the FEM 

simulation using a very fine mesh. In the FEM simulation, the mesh conformity with the 

interfacial geometries is enforced, while in the proposed Enriched SPIM/SRPIM 

simulations, the interfaces cut through the smoothing domains, as can be see in Figure 

6.17. The initial time step is set to ∆𝑡𝑡0 = 0.01 sec with time-step growth factor 

coefficient 𝛼𝛼 = 1.2. Figure 6.18 presents the variation of pore pressure with respect to 

time at nodes 𝐏𝐏1 and 𝐏𝐏2 defined earlier. As can be seen from this figure, the numerical 

results obtained by the proposed method are in excellent agreement with the reference 

FEM solution. The variation of vertical displacement at nodes 𝐏𝐏1 and 𝐏𝐏2 obtained by the 

proposed Enriched cell-based SPIM/SRPIM, along with the corresponding FEM results 

as the reference solution, are also plotted in Figure 6.19.  
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𝐏𝐏1 

 

𝐏𝐏2 

Figure 6.18. The variation of excess pore water pressure with time at nodes 𝐏𝐏1 and 𝐏𝐏2. 
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𝐏𝐏1 

 

𝐏𝐏2 

Figure 6.19. The variation of vertical displacement with respect to time at nodes 𝐏𝐏1 and 𝐏𝐏2. 

 

Figure 6.20 and Figure 6.21 graphically compare the contours of the excess pore 

pressure and displacement obtained by the Enriched CSRPIM-T2L and the reference 

FEM solution, respectively at an arbitrary time t = 20.47 sec. It is clear from these 

figures that the two solutions agree very well, qualitatively, over the whole domain.  
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(a) 

 

(b) 

Figure 6.20. The excess pore pressure contours obtained by (a) FEM and (b) CSRPIM-T2L at 

t = 20.47 sec. 
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(a) 

 

(b) 

Figure 6.21. The displacement contours obtained by (a) FEM and (b) CSRPIM-T2L at time t = 20.47 sec. 
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6.6.4 Saturated porous rectangular block with vertical discontinuity 

The last example concerns planestrain consolidation of a saturated porous medium 

of 1𝑝𝑝 × 1𝑝𝑝  with a strong vertical discontinuity passing through the middle of the 

medium, as shown in Figure 6.22(a). In this case, the flow and deformation patterns no 

longer followed the standard one-dimensional consolidation. There is no theoretical 

solution for this problem, hence the verification of the proposed method is performed 

through comparison of the numerical results obtained in this study with those presented 

by Khoei and Vahab [65], who exploited the LATIN iterative procedure together with 

the penalty method adapted to an XFEM framework.  

The permeability along the vertical discontinuity is aperture-dependent, as discussed 

earlier in this chapter, and could be highly variable over time. The possible closure of 

the crack was recovered by the adoption of the contact active set strategy accompanied 

by the fulfilment of the contact constraint with the application of the penalty method. 

The geometry of the rectangular saturated porous medium, along with its corresponding 

boundary conditions, are depicted in. Figure 6.22(a).  Figure 6.22(b) shows the mesh 

topology, which in this example was composed of 242 triangular smoothing domains 

created by 144 nodes. The top edge of the medium allowed drainage, while other 

boundaries are set to be impermeable. The lateral boundaries are horizontally 

constrained and the bottom of the medium was restricted in both directions. A 

uniformly distributed surcharge of w = 10 kPa acted on the top of the medium. The 

material properties of the discontinuous rectangular saturated porous medium are listed 

in Table 6-3.  
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(a) 

 

(b) 

Figure 6.22. (a) Geometry of the discontinuous saturated porous block [65] and (b) the domain 

discretisation used in the numerical simulation. 

 

Table 6-3. The material properties assigned to the consolidation problem of the discontinues saturated 

porous medium [65]. 

Elasticity modulus E = 1000 kPa 

Poisson ratio ν = 0.2 

Biot’s constant α = 1 

Porosity n = 0.3 

Solid grain density ρ𝑠𝑠 = 2000 kg/𝑝𝑝3 

Water density ρ𝑤𝑤 = 1000 kg/𝑝𝑝3 

Water compressibility α𝑓𝑓 = 0.33× 10−9 Pa-1 

Permeability 𝒌𝒌 𝑓𝑓 = 1.157 × 10−9 𝑝𝑝3/N s 

Water viscosity μ𝑓𝑓 = 1 × 10−3 Pa s 
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Figure 6.25 depicts the profile of the dimensionless pore water pressure (𝑝𝑝
𝑤𝑤

) obtained by 

the Enriched CSPIM-T4 over the height of the medium along the strong discontinuity at 

four different times during the consolidation process: 𝑡𝑡 = 0.0007 days, 𝑡𝑡 =

0.0021 days, 𝑡𝑡 = 0.0035 days and 𝑡𝑡 = 0.007 days. Also included in the figure are the 

solutions presented in [65], and also the results for the case without the existence of the 

crack. Convergent solutions were achieved within 14 iterations (at most) under Newton-

Raphson iterative scheme adopted in this chapter. 

Figure 6.24 shows the amount of the discontinuity opening along the height of the 

discontinuity at the same four times as those presented in the previous paragraph. The 

evolution of the general flow pattern in the domain, with and without the discontinuity, 

at different times is also shown in Figure 6.25. 

 

 

 

 

 

 

 

 



Chapter 6-An enriched smoothed point interpolation method for the flow-deformation 
analysis of saturated porous media with embedded interfaces 

233 
 

Dimensionless pressure

H
ei

gh
t(

m
)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2
Khoei and Vahab (2014) - with crack
Enriched CSPIM T4 - with crack
Khoei and Vahab (2014) - without crack
Enriched CSPIM T4 - without crack

0

p
p

 

(a) 𝑡𝑡 = 0.0007 days 
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(b) 𝑡𝑡 = 0.0021 days 
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(c) 𝑡𝑡 = 0.0035 day 
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(d)  𝑡𝑡 = 0.007 days 

Figure 6.23. The dimensionless excess pore pressure profiles along the strong discontinuity at time (a) 

𝑡𝑡 = 0.0007 days; (b) 𝑡𝑡 = 0.0021 days; (c) 𝑡𝑡 = 0.0035 days; and (d) 𝑡𝑡 = 0.007 days 
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(a) 𝑡𝑡 = 0.0007 days 

 

(b) 𝑡𝑡 = 0.0021 days 

 

(c) 𝑡𝑡 = 0.0035 days 

 

(d) 𝑡𝑡 = 0.007 days 

Figure 6.24. The evolution of the opening at the strong discontinuity for time (a) 𝑡𝑡 = 0.0007 days; (b) 

𝑡𝑡 = 0.0021 days; (c) 𝑡𝑡 = 0.0035 days; and (d) 𝑡𝑡 = 0.007 days, obtained by CSRPIM-T2L. 

 

 

Opening on the interface (mm)

H
ei

gh
t(

m
)

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

1.2

Opening on the interface (mm)

H
ei

gh
t(

m
)

0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1

1.2

Opening on the interface (mm)

H
ei

gh
t(

m
)

0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1

1.2

Opening on the interface (mm)

H
ei

gh
t(

m
)

0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1

1.2



Chapter 6-An enriched smoothed point interpolation method for the flow-deformation 
analysis of saturated porous media with embedded interfaces 

235 
 

     

(𝑝𝑝) 𝑡𝑡 = 0.0007 days 

P
0

-2000
-4000
-6000
-8000
-10000

p (Pa)

 

    

(𝑏𝑏) 𝑡𝑡 = 0.0021 days 

P
0

-2000
-4000
-6000
-8000
-10000

p (Pa)

 

     

(𝑠𝑠) 𝑡𝑡 = 0.0035 days 

P
0

-2000
-4000
-6000
-8000
-10000

p (Pa)

 

     

(𝑠𝑠) 𝑡𝑡 = 0.007 days 

P
0

-2000
-4000
-6000
-8000
-10000

p (Pa)

 

(1) without crack (2) with crack  

Figure 6.25. The evolution of the consolidation process for time (a) 𝑡𝑡 = 0.0007 days;(b) 𝑡𝑡 =

0.0021 days;(c) 𝑡𝑡 = 0.0035 days; and (d) 𝑡𝑡 = 0.007 days in (1) a continuous saturated porous 

block and (2) a discontinuous saturated porous block. The arrows are flow lines. 
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In this example, the dissipation of the excess pore pressure is strongly dependent on the 

coupling between the flow through the discontinuity and that of the surrounding porous 

medium. As can be clearly seen in Figure 6.23(a) and Figure 6.25(a), the excess pore 

pressure initially dissipated faster in the strong discontinuity and its surrounding 

medium, compared to the identical saturated porous medium without a crack. This is 

because the crack is initially opened as can be seen from Figure 6.24(a), resulting in a 

higher permeability in the discontinuity compared to the surrounding porous medium. 

The opened crack shortens the drainage path, resulting in higher rate of consolidation. 

However, as the consolidation process proceeds, starting from the upper edge of the soil 

block where the drainage is allowed, the permeability of the discontinuous medium 

decreases because of the development of the closure mode in the discontinuity. The 

closure mode starts from the upper region, where soil consolidates first, and develops 

downwards, as can be seen in Figure 6.24. The figure shows that the strong 

discontinuity closes rapidly (in the upper region first and then along the whole length of 

the discontinuity) and thereafter could not drain the water from the surrounding porous 

medium. Once the crack is fully closed, the discontinuous media indeed becomes a 

porous medium with no discontinuity and is therefore consolidated with the same rate as 

a continuous porous medium. At the early stage of the consolidation, when the crack is 

partly open, a preferential path for the flow in the lower region of the medium is 

developed which results in an increase of the water pressure in the upper region of the 

domain and a decrease of the water pressure in the lower region of the domain, 

compared to that of a porous medium with no discontinuity, as clearly seen from Figure 

6.25(a).  

The effect of the discontinuity on the flow path during consolidation can be seen from 

Figure 6.25. For further clarification, the contours of horizontal (𝑥𝑥1 direction) fluid flux 
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is shown in Figure 6.26 at the four different times used for the previous representation 

of the numerical results. It is apparent that fluid exchange between the surrounding 

medium and the crack exists at the early stage of the consolidation process when the 

crack is still open. The development of the closure mode results in the satisfaction of the 

fluid continuity condition across the contacting faces of the discontinuity, and 

thereafter, the medium acts as an intact porous medium without the crack, resulting is 

zero horizontal flux in the medium. 
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Figure 6.26. The variation of the fluid flux in 𝑥𝑥1 direction for time (a) 𝑡𝑡 =

0.0007 days; (b) 𝑡𝑡 = 0.0021 days; (𝑠𝑠)𝑡𝑡 = 0.0035 days; and (d) 𝑡𝑡 =

0.007 days for the saturated porous medium (1) without crack and (2) with 

crack. 

 

6.7 Conclusion 

A novel mesh-independent methodology was formulated to properly include interfaces 

such as cracks, material heterogeneities, and shear bands in the coupled formulation of a 

porous medium. In this formulation, the interfacial geometry (embedded interface) can 

be located arbitrarily in the domain, irrespective of the underlying discretisation. The 

influence of the interfaces on the approximation of the variables of interest was 

considered through the enhancement of the shape functions by physically appropriate 

enrichment functions.  

A proper form of the Divergence theorem was adopted to include the effects of the 

interfaces, which led to the appearance of additional terms arising from the hydraulic 

and mechanical couplings between the interface and the surrounding porous medium. A 

two-scale approach was formulated, in which the representative fluid continuity 

equation included the presence of fluid flow within the cavity (micro-scale), 

independent from the fluid flow in the surrounding porous medium (macro-scale). The 

weak forms of the governing equations were obtained and discretised adopting a cell-

based SPIM based on a set of standard and enriched shape functions chosen based on 

the type of the discontinuity of interest. The Heaviside and ridge functions were used as 

the enrichment functions to represent strong and weak discontinuities, respectively, 

which observe partition of unity concept.  
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A frictional contact numerical algorithm with a robust method for inclusion of the 

closure mode in the pre-existing cracks was developed. The development of the 

frictional tractions was included through implementation of the penalty method. The 

resultant global matrix system was obtained which included all the coupling effects. The 

smoothing gradient technique was adopted for quantification of the property matrixes, 

removing the need for sub-dividing the supporting domains (elements) cut by the 

discontinuity for numerical integrations. This results in a marked drop in the number of 

Gauss points required for the numerical integration compared to methods like XFEM, 

with no loss of accuracy. A number of numerical examples, including both weak and 

strong discontinuities under stick-slip and opening and closure modes, were analysed 

and verified the proposed Enriched SPIM. 
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7 Conclusions and further work 

This thesis was devoted to the development of a numerical SPIM procedure applied to a 

coupled flow-deformation analysis of saturated media. The contributions and findings 

made in this thesis are briefly presented in the following sections. Possible future 

research avenues are also discussed. 

There were some research limitations encountered during this research. The most 

challenging limitation was to handle the large-scale problems because some numerical 

methods adopted in this study were time-consuming as much more supporting nodes 

were involved for the approximation of the unknown variables compared to the 

conventional methods such as FEM. In some cases, it was almost impossible to handle 

complex large-scale numerical simulations with fine mesh sizes, such as the 

Noordbergum problem presented in chapter 4, without appealing to the implementation 

of the advanced algebraic solvers to significantly reduce computational expenses. This 

was rooted in the increase in the bandwidths of the property matrices and in interrupting 

the sparsity of the property matrices. Another difficulty was related to the over-softness 

of the some SPIM stiffness matrices where a numerical analysis approached the collapse 

state in a nonlinear analysis of porous media under either an undrained condition or the 

drained condition. This was because of applying smoothing gradient technique to the 

standard variational formulations, resulting in the reduction in the estimation of the 

stiffness property compared to those approaches which employ the compatible strain 

concept. Consequently, the achievement of the convergence near the collapse state 

needed some careful treatments such as more iterations or smaller time steps needed to 

attain the accurate collapse loads; otherwise, the analysis would be suddenly terminated 
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before the realistic collapse state was reached and would result in the underestimation of 

the collapse load for some numerical methods such as CSRPIM-T2L or ESFEM-T3. 

 

 

7.1 Contributions and findings 

7.1.1 Application of cell-based smoothed point interpolation methods in the flow-

deformation analysis of saturated porous media 

A novel cell-based smoothed point interpolation method for the flow-deformation 

analysis of saturated porous media was studied in which the primary variables were 

estimated using PIM shape functions (polynomial PIM or radial PIM). The derivatives 

of the primary variables were smoothed by applying the smoothing gradient technique. 

Careful node selection techniques, commonly known as T-schemes, for the creation of 

shape functions were exploited to ensure the solvability of the algebraic system. Upon 

introducing different T-schemes, various cell-based SPIM have been created, each of 

which exhibits discernible superiority compared to conventional numerical methods, 

such as the FEM and PIM/RPIM. An extensive numerical investigation was performed 

to compare the performance of the proposed method with its contenders. This included 

studying a set of benchmark problems with analytical solutions adopting the proposed 

methods, the FEM and PIM/RPIM. 

 A comprehensive error analysis performed for each benchmark example showed that 

the proposed method provides better accuracy in terms of primary variables and energy 

error norms in comparison with the FEM and PIM/RPIM when considering the flow-

deformation analysis of saturated porous media. In terms of primary variables, i.e. 
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displacement and the excess pore pressure, CSPIM-T4 showed superiority among all 

the numerical methods studied, with CSRPIM-T4 being a close second. Theoretically 

proven higher convergence rates of SPIMs compared to the FEM and PIM/RPIM were 

confirmed by error analysis of the numerical results. 

CSRPIM-T2L produced the best results in terms of both accuracy and convergence rate 

of the energy norms. The superior performance of CSRPIM-T2L can be attributed to the 

adaptation of higher-order shape functions and a reduced numerical integration given 

the number of supporting nodes involved in the creation of shape functions, intensifying 

the softness of the model which often results in a close-to-exact stiffness. The accuracy 

of CSRPIM-T2L was, however, highly influenced by the fineness of the background 

mesh, as the softening effects were considerably hampered when a coarse mesh is used 

due to a high number of boundary cells (compared to total number of cells), which 

stiffens the behaviour of the model. 

 

7.1.2 A novel approach for application of smoothed point interpolation methods 

to axisymmetric problems in poroelasticity 

A novel approach was introduced to overcome the singularity problem arises when 

SPIM is used in an axisymmetric setting, due to the existence of the Gauss points on the 

axisymmetric axes. To this end, a heuristic decomposition technique was proposed to 

obtain the property matrices of the discretised form of the coupled flow-deformation 

equations, in which the submatrix that does not contain derivative of the primary 

variables is distinguished from those containing differentiation terms. The smoothing 

operation was then applied only to the submatrices with derivative terms, while the 

other submatrix was treated in a standard manner using the Gauss integration method 
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over each smoothing domain. With this approach, the avoidance of the singularity was 

ensured, while the same level of computational expense was involved, in comparison 

with the proposed SPIM formulation for plain strain problems. The validity and 

robustness of the proposed method in axisymmetric coupled problems was investigated 

through simulation of a set of axisymmetric coupled problems, which included both 

theoretical and practical problems. The attained numerical results were compared with 

their corresponding reference solutions. In all cases, the numerical performance of the 

proposed method exhibited superiority. A proper error analysis in terms of primary 

variables was performed. It was shown that the proposed method retains the appealing 

feature of SPIM when adapting to an axisymmetric setting. Among various cell-based 

SPIM, CSRPIM-T2L showed slightly better performance in terms of both displacement 

and excess pore pressure variables, followed closely by CSPIM-T4. 

 

7.1.3 A stabilised, low-order smoothed point interpolation method for numerical 

analyses in geomechanics 

An approach for consistently stabilising SPIM was proposed for both linear and 

nonlinear numerical analysis in geomechanics. The presented method facilitated the 

utilisation of equal-order linear interpolations in the context of consistently stabilised 

Galerkin methods in computational geomechanics, which would otherwise result in a 

sub-optimal convergence rate. The adoption of a smoothing gradient technique together 

with an unconditionally consistent stabilised method provided a stabilisation parameter-

independent method while discretising the field domain with the simplest form of 

triangulation. The consistency was retained as the smoothing gradient technique 

removes all derivatives that exists in the standard stabilisation formulation that if 
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untreated, would incur the elimination of the contributing terms in association with the 

displacement variable and its test function. The proposed approach was implemented 

through a simple form of the edge-based SPIM, which is often known as edge-based 

smoothed finite element method (SFEM). The integrations of the interested quantities 

over the elements were transformed to those over the edges of the sub-triangles 

constructed based on the shared boundaries of triangular elements, commonly known as 

edge-based smoothing domains. The implementation of the smoothing technique in the 

proposed method requires the attainment of the smoothed strain nodal values from the 

the smoothed strains over smoothing domains. A novel projection technique was 

proposed to obtain this by minimising the error in conjunction with the use of smoothed 

strain nodal values. The proposed method stabilised the solution independent of a priori 

chosen stabilisation parameter, unlike many other consistent stabilised techniques 

applied in computational geomechanics. The robustness and accuracy of the proposed 

method were investigated by comparing the attained numerical results with their 

corresponding reference solutions for several benchmark coupled problems with both 

linear and nonlinear constitutive models. It was also shown that the stabilisation 

parameter is a purely spatial parameter with the objective of providing sufficient 

coercivity to the weak form of the governing equations, and therefore should be 

independent form the time step. The simplest form of the stabilisation method was used 

in this study and successfully tuned the required amount of weighting function to ensure 

the fulfilment of the inf-sup condition. It was shown that complex forms of stabilisation 

parameter are unnecessary and can be avoided if the weighting functions associated 

with the displacement variable are considered in the added stabilisation terms. 
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7.1.4 An enriched smoothed point interpolation method for flow-deformation 

analysis of saturated porous media with embedded interfaces 

A novel mesh-independent methodology was formulated to properly include interfaces 

such as cracks, material heterogeneities and shear bands in the analysis of porous 

medium. In this formulation, the interfacial geometry can be arbitrary located, 

irrespective of the underlying discretisation. To include the effect of interfaces, the 

shape functions were enhanced by the physically reasonable enrichment functions. A 

proper form of the Divergence theorem was adopted to represent the interfaces, which 

led to the appearance of the additional terms arising from the hydro-mechanical 

couplings between the interface and the surrounding porous medium. The representative 

fluid continuity equation was successfully formulated to quantify the coupling between 

an interface and the surrounding porous bulk. The weak forms were discretised using 

SPIM with a set of standard and enriched shape functions which are chosen based on 

the type of the discontinuity of interest. The Heaviside and ridge functions were used as 

the enrichment functions to represent strong and weak discontinuities, respectively, 

which uphold the partition of unity condition, similar to the FEM shape functions. A 

frictional contact numerical algorithm was adopted to provide a robust mean for 

inclusion of the closure mode of discontinuities. The frictional tractions were included 

in the formulation through implementation of the penalty method applied to both solid 

and fluid phases. The smoothing gradient technique was applied to all relevant 

contributing matrices, which, unlike XFEM, removes the need for sub-dividing the 

supporting domains (elements) hosting discontinuity for the evaluation of the numerical 

integrations. It was shown that when smoothing gradient technique is adopted, the 

number of Gauss points required for numerical integrations of the matrices of a 

discontinuous medium increases only slightly compared to those of a continuous 
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medium due to the use of the same Gauss points for the numerical integration of the 

property matrices and the frictional contact tractions, as well as the elimination of sub-

partitioning commonly used in XFEM. A number of numerical examples, including 

both weak discontinuity and strong discontinuity under stick-slip and opening and 

closure modes, were analysed and confirmed the efficiency of the proposed Enriched 

SPIM. 

 

7.2 Future research 

In line with the studies presented in this thesis, future research work can be carried out 

in the following areas: 

 A comprehensive assessment of the stabilisation techniques proposed in 

computational geomechanics. Various stabilisations techniques have been 

proposed to apply to different geotechnical problems routinely encountered in 

practice. According to the literature, they perform differently under various 

circumstances. As an example, pressure projection method proposed in [52] fails 

to recover the excess pore pressure response near drainage boundary at early 

stage of the consolidation process. In addition, the ability of the pressure 

projection method to efficiently capture the failure condition is still 

undetermined. An extensive comparison study would be desirable to investigate 

all well-established stabilisation techniques applied to various problems, such as 

the analysis of shear bands, stability of vertical cut, hydraulic fracturing, etc. For 

each stabilisation approach, a set of sensitivity analysis with respect to the 

quality of the variables of interest can be performed as the stabilisation 
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parameter varies to specify the robustness of the proposed method and to obtain 

proper bounds for the stabilisation parameters. 

 

 Development of the proposed Enriched SPIM methods towards crack 

propagation problems. The majority of the problems with the cracks necessitate 

a proper criterion to take into account the possible crack propagation in an 

arbitrary direction which may change during time. The complexities associated 

with the application of the FEM to crack propagation problems, such as a need 

for successive remeshing and subsequent data transfer that deteriorates the 

quality of the numerical results, leave room for the efficient use of a mesh-

independent Enriched SPIM to benefit from desirable features of both the 

smoothing gradient technique and the mathematically implicit representation of 

interfaces through employing enrichment functions. Applying Enriched SPIM 

delivers unique benefits for crack propagation problems, such as the elimination 

of sub-partitioning which is quite time-consuming in XFEM. 

 

 Implementation of the Lagrange multiplier method to impose the contact 

constraint. The efficiency of the penalty method presented in this thesis hinges 

on the proper selection of the stiffness value assigned to both horizontal and 

tangential directions, which would otherwise lead to an ill-conditioned resultant 

matrix if too-high values are assigned. However, the Lagrange multiplier 

approach eliminates the necessity of a priori specified stiffness values, as it 

satisfies the contact condition exactly by introducing additional unknown 

variables which present the contact fluxes. Any Lagrange multiplier 

implementation must be formulated in such a way to satisfy the inf-sup 
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condition, which would restrict using the same spaces for additional variables 

and primary variables. 

 

 An extension towards assuming independent pressure degrees of freedom across 

a strong discontinuity in the flow-deformation analysis of fractured porous 

media. The simplified assumption regarding the pressure continuity between the 

strong discontinuity faces arises from the equilibrium assumption hold between 

the cavity and the surrounding porous medium. The relaxation of the 

equilibrium assumption at the faces of the cavity can be made by assigning 

different pressure degrees of freedom, which is more realistic when a low-

permeable cavity is considered [212, 262]. The drop of this assumption in 

Enriched SPIM proposed in this thesis results in a more comprehensive 

formulation which would be well-settled in hydraulic fracturing analysis.    

 An extension toward three-dimensional settings. It is evident that all proposed 

methods in this study are limited to two-dimensional setting. To apply the 

proposed methods to three-dimensional settings, the strain-displacement matrix 

should include additional rows that represent the deformation along another axis. 

The derivation of the formulation could then be straightforward; however, 

including discontinuity is not a trivial task because enriching the proposed 

method in three-dimensional settings would encounter some difficulties, 

including the implementation of the level-set method and representing the curve 

discontinuities in three-dimensional settings. These difficulties have been 

reported frequently in relation to the application of XFEM in three-dimensional 

setting. Consequently, it is recommended that more advanced techniques be 
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developed to represent discontinuities by adjusting the potential function, 

including the phase field, of the SPIM. 
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