
Low-level program verification under cached address
translation

Author:
Syeda, Hira

Publication Date:
2019

DOI:
https://doi.org/10.26190/unsworks/21362

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/63277 in https://
unsworks.unsw.edu.au on 2024-05-05

http://dx.doi.org/https://doi.org/10.26190/unsworks/21362
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/63277
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

Low-Level Program Verification under Cached

Address Translation

Hira Taqdees Syeda

ORCID: 0000-0002-4923-3783

Submitted in total fulfilment of the requirements of the degree of
Doctor of Philosophy

School of Computer Science and Engineering
Faculty of Engineering

The University of New South Wales

May 2019

Thesis/Dissertation Sheet

Surname/Family Name : Syeda

Given Name/s : Hira Taqdees

Abbreviation for degree as give in the University
calendar : PhD

Faculty : Engineering

School : Computer Science

Thesis Title : Low-Level Program Verification under Cached Address Translation

Abstract

Operating system (OS) kernels achieve isolation between user-level processes using multi-level page
tables. The hardware-implemented translation lookaside buffer (TLB) caches page table walks, and
therefore the TLB and its consistency with memory are security critical for OS kernels, including
formally verified kernels such as seL4. If performance is paramount, this consistency can be subtle to
achieve; yet, all major formally verified kernels currently leave the TLB as an assumption. They
assume correct TLB management because faithfully modeling the hardware details of a TLB would
significantly complicate the program logic used to verify the OS code. For instance, a simple memory
read operation would now change the state of the program.

In this thesis, we present a formal model of the memory management unit (MMU) in the interactive
proof assistant Isabelle/HOL for the ARMv7-A architecture which includes the TLB, its maintenance
operations, and its derived properties. We integrate this specification into the Cambridge ARM model.
We derive sufficient conditions for TLB consistency, and we abstract away the functional details of the
MMU using data refinement for simpler reasoning about executions in the presence of cached address
translation, including complete and partial walks.

Based on the verified abstraction of the MMU model of the ARMv7-A architecture, we present a logic in
Isabelle/HOL for reasoning about low-level programs in the presence of cached address translation.
We extract invariants and necessary conditions for correct TLB operation that mirror the informal
reasoning of OS engineers. We show that our program logic reduces to a standard logic for user-level
reasoning, reduces to side-condition checks for kernel-level reasoning, and can handle typical OS
kernel tasks such as context switching and page table manipulations.

This research removes the unnecessary TLB complexities from program reasoning, and provides a
reasoning framework for validating TLB management in OS kernel verification.

Declaration relating to disposition of project thesis/dissertation

I hereby grant to the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole
or in part in the University libraries in all forms of media, now or here after known, subject to the provisions of the Copyright Act 1968. I retain
all property rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or
dissertation.

I also authorise University Microfilms to use the 350 word abstract of my thesis in Dissertation Abstracts International (this is applicable to
doctoral theses only).

……………………………………………………
Signature

……………………………………..………
Witness Signature

 01/05/2019
 Date

The University recognises that there may be exceptional circumstances requiring restrictions on copying or conditions on use. Requests for
restriction for a period of up to 2 years must be made in writing. Requests for a longer period of restriction may be considered in exceptional
circumstances and require the approval of the Dean of Graduate Research.

INCLUSION OF PUBLICATIONS STATEMENT

UNSW is supportive of candidates publishing their research results during their candidature
as detailed in the UNSW Thesis Examination Procedure.

Publications can be used in their thesis in lieu of a Chapter if:
• The student contributed greater than 50% of the content in the publication and is the

“primary author”, ie. the student was responsible primarily for the planning, execution and
preparation of the work for publication

• The student has approval to include the publication in their thesis in lieu of a Chapter from
their supervisor and Postgraduate Coordinator.

• The publication is not subject to any obligations or contractual agreements with a third
party that would constrain its inclusion in the thesis

Please indicate whether this thesis contains published material or not.

☐ This thesis contains no publications, either published or submitted for
publication

☐ Some of the work described in this thesis has been published and it has been
documented in the relevant Chapters with acknowledgement

☐ This thesis has publications (either published or submitted for publication)
incorporated into it in lieu of a chapter and the details are presented below

CANDIDATE’S DECLARATION
I declare that:

• I have complied with the Thesis Examination Procedure
• where I have used a publication in lieu of a Chapter, the listed publication(s) below

meet(s) the requirements to be included in the thesis.

Name
Hira Taqdees Syeda

Signature Date (dd/mm/yy)
01/05/2019

ORIGINALITY STATEMENT

‘I hereby declare that this submission is my own work and to the best of my
knowledge it contains no materials previously published or written by another
person, or substantial proportions of material which have been accepted for the
award of any other degree or diploma at UNSW or any other educational
institution, except where due acknowledgement is made in the thesis. Any
contribution made to the research by others, with whom I have worked at
UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that
the intellectual content of this thesis is the product of my own work, except to
the extent that assistance from others in the project's design and conception or
in style, presentation and linguistic expression is acknowledged.’

Signed ……………………………………………..............

Date …………………………………………….............. 01/05/2019

 COPYRIGHT STATEMENT

‘I hereby grant the University of New South Wales or its agents the right to
archive and to make available my thesis or dissertation in whole or part in the
University libraries in all forms of media, now or here after known, subject to the
provisions of the Copyright Act 1968. I retain all proprietary rights, such as patent
rights. I also retain the right to use in future works (such as articles or books) all
or part of this thesis or dissertation.
I also authorise University Microfilms to use the 350 word abstract of my thesis in
Dissertation Abstract International (this is applicable to doctoral theses only).
I have either used no substantial portions of copyright material in my thesis or I
have obtained permission to use copyright material; where permission has not
been granted I have applied/will apply for a partial restriction of the digital copy of
my thesis or dissertation.'

Signed ……………………………………………...........................

Date ……………………………………………...........................

 AUTHENTICITY STATEMENT

‘I certify that the Library deposit digital copy is a direct equivalent of the final
officially approved version of my thesis. No emendation of content has occurred
and if there are any minor variations in formatting, they are the result of the
conversion to digital format.’

Signed ……………………………………………...........................

Date ……………………………………………...........................

Hira Taqdees
31/07/19

Hira Taqdees
31/07/19

Abstract

Operating system (OS) kernels achieve isolation between user-level processes using
multi-level page tables. The hardware-implemented translation lookaside buffer
(TLB) caches page table walks, and therefore the TLB and its consistency with
memory are security critical for OS kernels, including formally verified kernels such
as seL4. If performance is paramount, this consistency can be subtle to achieve;
yet, all major formally verified kernels currently leave the TLB as an assumption.
They assume correct TLB management because faithfully modeling the hardware
details of a TLB would significantly complicate the program logic used to verify
the OS code. For instance, a simple memory read operation would now change
the state of the program.

In this thesis, we present a formal model of the memory management unit (MMU)
in the interactive proof assistant Isabelle/HOL for the ARMv7-A architecture
which includes the TLB, its maintenance operations, and its derived properties.
We integrate this specification into the Cambridge ARM model. We derive suffi-
cient conditions for TLB consistency, and we abstract away the functional details
of the MMU using data refinement for simpler reasoning about executions in the
presence of cached address translation, including complete and partial walks.

Based on the verified abstraction of the MMU model of the ARMv7-A architec-
ture, we present a logic in Isabelle/HOL for reasoning about low-level programs
in the presence of cached address translation. We extract invariants and neces-
sary conditions for correct TLB operation that mirror the informal reasoning of
OS engineers. We show that our program logic reduces to a standard logic for
user-level reasoning, reduces to side-condition checks for kernel-level reasoning,
and can handle typical OS kernel tasks such as context switching and page table
manipulations.

This research removes the unnecessary TLB complexities from program reasoning,
and provides a reasoning framework for validating TLB management in OS kernel
verification.

i

Publications

The work presented in this thesis has produced the following publications.

Journal Paper

• Hira Taqdees Syeda and Gerwin Klein: Formal Reasoning under Cached Address
Translation. In: Journal of Automated Reasoning (JAR), Special Issue: ITP
2018.
Invited Submission, Status: Submitted, under Review

Refereed Conference Papers

• Hira Taqdees Syeda and Gerwin Klein: Reasoning about Translation Lookaside
Buffers. In: 21st International Conference on Logic for Programming, Artificial
Intelligence and Reasoning (LPAR-21). EPiC Series in Computing, vol 46, pages
490–508. Easy Chair.
Published: May 4, 2017

• Hira Taqdees Syeda and Gerwin Klein: Program Verification in the Presence
of Cached Address Translation. In: Interactive Theorem Proving (ITP 2018).
Lecture Notes in Computer Science, vol 10895, pages 542-559. Springer, Cham.
Published: July 4, 2018

ii

In the loving memory of my father who taught me perseverance.

In the loving memory of my mother who taught how to smile through life.

I am eternally grateful.

iii

Acknowledgements

Heartfelt thanks to my wonderful supervisor Gerwin Klein for almost everything
related to my PhD life. His unwavering support, dedicated supervision, research
vision, ethical work practices, calm optimism, perfect balance and joyful nature
have made this PhD once in a lifetime experience for me.

Many thanks to all my friends and colleagues at Trustworthy Systems, espe-
cially to Miki Tanaka for keeping me motivated and listening to my worries, to
Matthew Brecknell, Joel Beeren, Japheth Lim, Rafal Kolanski, Thomas Sewell,
Daniel Matichuk and Xin Gao for making me Isabelle friendly and for helping me
prove the initial results. Also, special thanks to Adrian Danis for explaining to
me how a TLB works, Yutaka Nagashima for his cheerful company, Peter Höfner
for impartially mentoring me, Christine Rizkallah for telling me the importance
of summer schools, June Andronick for helping me out in presentation skills, and
Gernot Heiser for taking care of the administration. Many thanks to Alejandro
Gómez, Robert Sison, Siwei Zhuang, Peter Chubb, Sidney Amani, Corey Lewis,
Carroll Morgan, Anna Lyons, Kent Mcleod, Qian Ge, Kofi Atuah, Amir Zarrabi,
Johannes Åman, Ramana Kumar, Callum Bannister, Santiago Bautista, Pang
Luo, Victor Duy and Brigitte Biscotto for their friendly company and many talks
over coffee.

Many thanks to the dean of my residential college, Susan Bazzana for always being
there when I needed her support. There is possibly no way to thank my amazing
sister, Warda. I owe a great deal to her not only during the PhD phase but to life.
Thanks for always being my support system, for loving me unconditionally, for
countless giggles, for keeping me in reality and for being with me through every
thick and thin of life. I strive to be like her. Thanks to my wonderful brother
Uzman for always giving me the best of advice, for facilitating me in every way
possible and for putting me ahead of his comfort. Thanks to my sweet sister Faria
for always motivating me to do my best. Thanks to my sibling’s significant others
Kiran, Najam and Mahmood for bringing joy to my life. Thanks to my friends
Sara, Muqaddas and Shuichi for many smiles and uplifting my spirits.

I would also like to thank my master’s supervisor Osman Hasan who introduced
me to the beautiful world of formal methods, and to my high-school teacher Saif-
ur-Rehman for making me passionate about mathematics.

iv

Contents

1 Introduction 1

1.1 Contributions . 5

1.2 Related Work . 6

1.3 Thesis Outline . 12

2 Notation 14

2.1 Isabelle . 15

2.2 HOL in Isabelle . 16
2.2.1 Types, Terms and Formulae 16
2.2.2 Higher-Order Logic Operations 17
2.2.3 Built-in Types used in this Thesis 17
2.2.4 Function Update and the Let Construct 19

2.3 Type Classes in Isabelle . 19

2.4 Record Types in Isabelle/HOL . 20

2.5 State Monads . 22

3 Virtual Memory in the ARMv7-A Architecture 23

3.1 Basic Concepts of Virtual Memory 24

3.2 Virtual Memory System in the ARMv7-A Architecture 26
3.2.1 Pages . 26
3.2.2 Page Tables . 27
3.2.3 Address Translation . 28
3.2.4 Translation Lookaside Buffer 29
3.2.5 Caches . 33

3.3 OS Kernel Management of ARM’s VMSA 34

3.4 Summary and Remarks . 37

4 A Formal Model of the ARMv7-A MMU 39

4.1 Page Table Abstraction . 40

4.2 A Formal TLB Model for the ARMv7-style MMU 43

4.3 From TLB to MMU Model . 46
4.3.1 Page Table Walk . 47

v

4.3.2 Address Translation . 49
4.3.3 Memory Operations . 50
4.3.4 Updating the Page Table Root Register 50
4.3.5 Flush Operations . 50

4.4 MMU Abstraction . 51
4.4.1 Determinism . 53
4.4.2 Invariance . 56
4.4.3 Essence . 60
4.4.4 Joining the Refinement Levels 65

4.5 Summary and Remarks . 67

5 A Formal Model of the ARMv7-A MMU with ASIDs 69

5.1 ARMv7-A MMU Model with ASIDs 70
5.1.1 Page Table Walk . 73
5.1.2 Memory Operations . 74
5.1.3 MMU Operations . 75

5.2 MMU Abstraction . 77
5.2.1 The Deterministic MMU Model 78
5.2.2 The Saturated MMU . 80
5.2.3 The Most Abstract MMU Model 83
5.2.4 Joining the Refinement Levels 92

5.3 Summary and Remarks . 93

6 A Formal Model of the ARMv7-A MMU with Two-Stage TLB 95

6.1 ARMv7-A MMU Model with TLB and PDC 96
6.1.1 Page Table Walk . 100
6.1.2 Memory Operations . 102
6.1.3 MMU Operations . 104

6.2 MMU Abstraction . 106
6.2.1 The Saturated MMU Model 107
6.2.2 The Most Abstract MMU Model 112
6.2.3 Joining the Refinement Levels 122

6.3 Summary and Remarks . 124

7 Program Logic in the Presence of Cached Address Translation 125

7.1 Program Logic . 126
7.1.1 Syntax . 127
7.1.2 Program State and Memory Model 128
7.1.3 Semantic Operations . 130
7.1.4 Operational Semantics . 133
7.1.5 Hoare Logic . 134

7.2 Safe Set . 136

7.3 Summary and Remarks . 139

vi

8 Case Study 141

8.1 MMU Layout - Formal Modeling 142
8.1.1 Kernel Data Structures . 144
8.1.2 Assertions on MMU Layout 146

8.2 User Execution . 150

8.3 Kernel Execution . 151

8.4 Context Switch . 153

8.5 Page Table Operations . 154

8.6 Summary and Remarks . 157

9 Conclusions 158

9.1 Summary of Novel Contributions 159

9.2 Proof Effort . 160

9.3 Comments on the TLB Modeling 161

9.4 Future Research and Engineering Directions 162

9.5 Final Remarks . 165

vii

List of Figures

3.1 Basic Concepts of Virtual Memory 25
3.2 An Example of Paged Memory in the ARM Architecture 27
3.3 An Example of Two-Level Page Table in the ARM Architecture . . 28
3.4 Translation Flow for a Section . 28
3.5 Translation Flow for a Small Page 29
3.6 Functional Role of the Translation Lookaside Buffer (TLB) 30
3.7 A Format for TLB Entries . 31
3.8 An Example of a TLB Lookup Resulting in a Hit 31
3.9 TLB, PDC and Page Table Lookup 33
3.10 Cache Hierarchy in the ARMv7-A Architecture 34
3.11 An Example of a Virtual Address Space with Kernel Window . . . 35
3.12 OS Kernel Page Table Management 36

4.1 An Abstraction of an ARMv7-style TLB 43
4.2 ARMv7-style Memory Management Unit 46
4.3 Refinement Stack for MMU Models 53
4.4 Refinement between Nondeterministic and Deterministic Translation 55
4.5 ARMv7-style Memory Management Unit with Abstract TLB 61
4.6 Refinement between Nondeterministic and Abstract MMU 65
4.7 Refinement between Nondeterministic and Abstract Memory Op-

erations . 67
4.8 Refinement between Nondeterministic and Abstract MMUOperations 68

5.1 ARMv7-style Memory Management Unit with ASIDs 71
5.2 Visual Representation of Page Table Walk Function 73
5.3 Refinement Stack for MMU Models 78
5.4 ARMv7-style Memory Management Unit with Abstract MMU . . . 83
5.5 Refinement between Nondeterministic and Abstract MMU 92
5.6 Refinement between Nondeterministic and Abstract Memory Op-

erations . 93
5.7 Refinement between Nondeterministic and Abstract MMUOperations 94

6.1 Address Translation in the Presence of a TLB and PDC 97
6.2 PDC Inconsistency Example . 98
6.3 ARMv7-A MMU with TLB and PDC 100
6.4 The Encoding of Two-Stage Page Table Walks 101
6.5 Refinement Stack for MMU Models 107
6.6 Hierarchical Saturation of PDC and TLB with Current Page Table 109
6.7 ARMv7-style Memory Management Unit with Abstract MMU . . . 113

viii

6.8 Refinement between Nondeterministic and Abstract MMU 122
6.9 Refinement between Nondeterministic and Abstract Memory Op-

erations . 123
6.10 Refinement between Nondeterministic and Abstract MMUOperations124

7.1 Syntax of the Heap based WHILE Language. 127
7.2 Abstracted TLB Memory Model . 129
7.3 Semantics of Arithmetic and Boolean Expressions 133
7.4 Big-Step Semantics of Commands with Successful Memory Access . 134
7.5 Big-Step Semantics of Commands with Unsuccessful Memory Access135
7.6 Hoare Logic Rules for Standard Commands 136
7.7 Hoare Logic Rules for Commands with TLB Effects 137

8.1 Virtual Address Space with Kernel Window 143
8.2 Page Table Layout by seL4-inspired Kernel 144
8.3 Roots Map Layout . 145

List of Tables

2.1 Higher-Order Logic Standard Operations 17
2.2 Notation for Set Operations . 17
2.3 Basic HOL Functions for List . 18
2.4 N-bit Operators . 18

3.1 TLBs in ARMv7-A Implementations 33

5.1 Read/Write Dependencies for Memory and MMU Operations 84

6.1 Read/Write Dependencies for Memory and MMU Operations 114
6.2 When does a Page Table Walk Change Produce an Inconsistency? . 116

ix

CHAPTER

ONE

Introduction

The operating system (OS) kernel is the collection of low-level programs that
communicate directly with the hardware and provide a high-level interface to user
applications. The OS kernel is responsible for correctly managing software-visible
hardware components such as caches and translation lookaside buffers (TLBs).
The execution state of these hardware components determines the correct func-
tionality of programs including the OS kernel itself. The interaction of low-level
programs with the hardware is security critical, and if compromised can lead to
leakage of confidential data. The Meltdown attack (Lipp et al., 2018) is an ex-
ample of exploiting vulnerabilities in software-visible hardware such as the TLB
which is a dedicated cache for address translation results. The Meltdown attack
exploits the fact that permission bits of TLB entries are not checked during specu-
lative execution on some platforms, and uses a cache side channel to thereby make
kernel-only privileged TLB mappings readable to non-privileged user space.

This thesis addresses the functional formal verification of low-level programs. The
main challenge in verifying low-level programs is memory virtualisation. In the
most widely deployed architectures, virtual memory is hardware-implemented and
software-managed. Address translation and its caching in the TLB impact the cor-
rect execution of otherwise functionally correct programs. For verifying programs
in the presence of cached address translation, we pursue the following approach:

• model the software-visible TLB,
• soundly abstract away unnecessary hardware details,
• capture the essential functionality of the TLB required for correct program
execution; and

• develop a program logic for verifying programs in the presence of these hard-
ware effects.

The methods used for software verification depend on the software itself and the
degree of assurance required. Simple programs, interacting indirectly with the
hardware through intermediate software, can be tested in a simulated execution
environment. This approach, however, is heuristic and provides incomplete ver-
ification. For critical software, such as an OS kernel or a low-level program,
verification is sought via formally mathematical models of implementation and
specifications. We can then formally verify and reason that the program im-
plements its specifications. Formal analysis methods constitute a spectrum that
contains fully automatic methods such as model checking for restricted logics, to
interactive methods for more expressive logics such as theorem proving.

This thesis advances the verification of low-level programs: we construct a soundly
abstracted memory model, and use this model to develop a logic for reasoning
about programs in the presence of cached address translation. We opt for theorem
proving as the verification method because we are aiming at high expressiveness
and high assurance for the correctness of low-level programs.

This thesis is the intersection of the following fields:

2

Chapter 1. Introduction

Operating Systems: The operating system is a collection of software routines
that manages the hardware. An operating system abstracts away the hardware
details, and provides a high-level interface to execute multiple user programs shar-
ing the same hardware by enforcing isolation and confidentiality between them;
c.f. (Tanenbaum and Bos, 2014, Chapter 1). Further, the operating system is
responsible for task scheduling, preventing unauthorized access to the hardware
and protecting itself from potential corruption by user programs.

The operating system kernel is the part of the operating system that has privi-
leged hardware access. The OS kernel configures the hardware and restricts direct
hardware access of user programs and other higher-level OS components. The OS
kernel is security critical, and any failure in the kernel compromises the function-
ality of the overall system. Therefore OS kernels are an excellent candidate for
formal verification, which provides the highest levels of assurance for correct exe-
cution. This thesis addresses the correctness of memory management by the OS
kernel, and develops a novel framework for formally verifying low-level programs.

Virtual Memory: Modern OS kernels together with sophisticated hardware
implement the concept of virtual memory; thus providing task scheduling and ex-
ecution of multiple applications at the same time. Virtual memory is a hardware-
implemented abstraction over physical memory in which a process cannot access
physical memory directly. Instead, a process accesses its virtual address space,
which is then resolved to its physical address space by a hardware-supported trans-
lation mechanism controlled by the OS kernel.

Virtual memory can be implemented through paging or segmentation mechanisms.
Most current virtual memory implementations use paging where the main memory
is divided into small equal-sized frames; in contrast to the variable-sized partitions
of the segmentation scheme. In addition to the protection of user programs from
each other, virtual memory prevents unauthorised access to hardware and protects
the operating system itself from corruption by user programs; c.f. (Stallings, 2008,
Chapter 8). Any fault in virtual memory management can lead to a security
breach, unauthorised communication between the processes and may compromise
the overall functionality of the system. We provide more background on virtual
memory in Chapter 3.

This thesis formlises the hardware aspects of virtual memory and then provides a
platform for reasoning about the correctness of the virtual memory management
by the operating system kernel.

Theorem Proving and Isabelle/HOL: Theorem proving is a technique where
formal logical systems and automated reasoning tools are combined to prove math-
ematical theorems. The logical systems vary from less-expressive but fully auto-
mated propositional and first-order logic to the more expressive but semi auto-
mated second-order and higher-order logics (Harrison, 2009). Non-classical logics,
such as intuitionistic logic, are also used for proving theorems. These logical
systems are combined with reasoning tools to validate any given theorem using

3

axioms and derived inference rules of the formal system.

Proof assistants are software tools that allow systems to be expressed in a formal
language and provide means for reasoning about these formalised systems in a log-
ical calculus. Any theorem proved with in the proof assistant is sound with respect
to the applied logical core. Proof assistants specialised in different logics are used
to formally verify the functional correctness of the systems, ranging from software
to hardware, biological and analog systems. The rigorous exercise of developing
a mathematical model of a system and analysing it using mathematical reasoning
increases the chances for catching subtle but critical design errors, that are often
ignored by traditional techniques such as simulation and computer-algebra based
software.

Our choice of theorem prover is the Isabelle proof assistant (Nipkow et al., 2002). It
is a generic proof assistant, and has been instantiated to several object-logics such
as first-order logic, higher-order logic, Zermelo-Fraenkel set theory etc. The most
widespread instance of Isabelle is Isabelle/HOL, which provides a higher-order
logic theorem proving environment that is more expressive and suitable for larger
applications. Chapter 2 covers the basic notation and functions of Isabelle/HOL
used in this thesis.

Logics for Low-level Program Verification: Hoare logic (Hoare, 1969) is a
technique for reasoning about the correctness of imperative programs; c.f. (Nip-
kow and Klein, 2014, Chapter 12). Hoare logic has several variants for different
verification environments, and it can successfully verify properties about low-level
programs that manipulate data structures on the heap. The computational state
models resources such as memory and registers. A set of inference rules for pro-
gram statements determines how the execution of a piece of code changes the state
of the computation. In this thesis, we develop a Hoare-style logic for reasoning
about programs in the presence of cached address translation.

Data Refinement: Data refinement is a technique for program development and
verification, and it relates an abstract data model to its concrete implementation
model. Data refinement is used to prove that one program soundly implements
another program (Morgan, 1994; Roever and Engelhardt, 2008). Typically, an
abstract specification is transformed into a series of concrete implementations;
with each refinement layer modeling the same behaviour as its predecessor but
with more implementation details. We use data refinement in this thesis to develop
a stack of abstraction layers of the memory model and its semantics for program
execution. The advantage of this kind of refinement is that if we manage to prove
safe execution behaviour of the abstraction, we will also have proved safe behaviour
of all possible actual executions. We detail our refinement chains in Chapters 4,
5 and 6.

We now list the contributions of this thesis towards the fields mentioned above.

4

Chapter 1. Introduction

1.1 Contributions

This thesis claims the following novel contributions:

1. A Formal Model for the ARMv7-A Translation Lookaside Buffer
(TLB):
We develop a formal operational model of the translation lookaside buffer (TLB)
for the ARMv7-A architecture in Isabelle/HOL. This model includes the TLB’s
essential hardware features such as virtual and physical base addresses, address
space identifiers (ASIDs) and global tags. We extend this TLB model for recent
ARMv7-A implementations to formalise a two-stage TLB, with a separate page
directory cache (PDC). This model captures the caching of partial and complete
page table walks, and is based on the information provided by ARM architecture
and implementation manuals (ARM, 2008, 2013).

2. A Formal Model for the ARMv7-A Memory Management Unit
(MMU):
We integrate the formal TLB model with the page table abstraction by Kolanski
(2011) to develop an MMU model for the ARMv7-A architecture in Isabelle/HOL.
We integrate this MMU model with the formal instruction set semantics by Fox
and Myreen (2010), and formalise instructions for memory operations, TLB main-
tenance and MMU register updates.

3. Abstraction of the MMU Model using Data Refinement:
We identify the inherent reasoning complexities the formal MMU model would
entail for program reasoning, and use data refinement to develop a comprehensive
refinement stack to reach an abstract yet sound MMU model. This abstract MMU
model allows simpler reasoning and is well-behaved for standard use cases such as
user-level programs and OS code under fixed address translation, and expressive
enough to allow for the kind of optimisations OS developers need to achieve.

4. A Hoare-style Logic for Program Verification in the presence of
Cached Address Translation:
We use the abstract MMU model as the memory model for defining the syntax and
operational semantics of a heap-based language with TLB management primitives.
Based on the operational semantics, we develop a Hoare-style logic for reasoning
about programs in the presence of cached address translation. We also develop
derived rules to facilitate simpler program reasoning for user-level code and specific
classes of kernel code.

5. A Case Study for Reasoning about Low-Level Programs:
As a demonstrative case study, we formalise the MMU layout of a toy kernel in-
spired by the seL4 microkernel (Klein et al., 2009). We apply our logic to extract
invariants and conditions necessary to reason about user-level and kernel-level
executions, context switching and page table operations. The case study demon-
strates that the program logic reduces to a standard logic for user-level reasoning,

5

1.2 Related Work

reduces to side-condition checks for kernel-level reasoning, and can handle typical
OS kernel tasks such as context switching and page table manipulations.

The models, theorems and logical results presented in this document are generated
through Isabelle/HOL; hence they accurately describe our formalisation. The
theory files are available online (Syeda, 2019).

1.2 Related Work

We now summarise the research relevant to the formal verification of operating
systems and reasoning about virtual memory systems. Our focus remains on the
modeling and reasoning about cached address translation.

Formal Verification of Operating Systems:
Operating systems are critical for the security, functionality and performance of
computing systems. Given this importance, formal verification of operating sys-
tems has a long research history. Formal verification of operating systems is
challenging: an operating system is a complex piece of software where several
individual routines are interconnected to perform different tasks, continuously
communicating with user programs and the underlying hardware. Nevertheless,
there have been successful attempts to formally verify operating systems; these
projects vary in their focus on specifications, implementation models, the degree
of assurance and size of the OS kernel.

We summarise below the notable projects for OS kernel verification.

PSOS: The provably secure operating system (PSOS) is almost a decade long first
attempt in the 1970s to design a general-purpose operating system with verifiable
security properties (Neumann and Feiertag, 2003). PSOS is a layered architecture;
with a total of 17 abstraction layers ranging from the application level to the
source code. The design of PSOS is significantly complete, and its specifications
are written in an assertion language called SPECIAL. Each abstraction layer and
its interface is formally specified in SPECIAL. However, PSOS is not actually
implemented; proofs for the code were not carried out. Nevertheless, PSOS has
pioneered operating system verification, and it is the first to aim at applying formal
methods for implementing operating systems.

UCLA Secure Linux: Effort to specify and verify the UCLA Secure Unix has
been reported by Walker et al. (1980). The aim was to verify the OS kernel; hence
this effort is a precursor of the modern operating system verification techniques.
The kernel of UCLA Secure Unix is implemented in a subset of Pascal; the Pascal
code is then read by a tool called XIVUS to perform verification. The code is
then abstracted in several layers to prove refinement properties between them.
Walker et al. report that about 90% of kernel specifications are complete and 20%
of the code is verified. The kernel is slow in performance; the proof assumes the

6

Chapter 1. Introduction

correctness of compiler, hardware and verification tools. Walker et al. suggested
in their report to wait for more machine aid and automation for the proof process,
which is now the case after 40 years.

KIT: The kernel for isolated tasks (KIT) is a small kernel written for a uniproces-
sor with a simple von Neumann architecture; it was introduced by Bevier (1989).
It is implemented in an artificial yet realistic assembler instruction set, and the
verification is conducted in the Boyer-Moore theorem prover (Boyer and Moore,
1988). The proof method is refinement and correspondence between different lev-
els of abstractions. KIT is significant because it is the first fully verified kernel
against its specifications. However, it has a limited functionality: it does provide
exception handling, single-word message passing and asynchronous I/O devices
access, but stops short of shared memory or virtual memory, dynamic processes
and services such as file systems.

Verisoft: The Verisoft project is an extensive proof effort started in 2003 and
later evolved into the Verisoft XT project. The aim was to achieve the formal
verification of a whole computer system from application software down to the
gate level (Paul et al., 2010). In Verisoft, all steps including compiler correct-
ness and instruction set model are formally verified. All artefacts of the Verisoft
project are implemented and formally specified, the majority of them are verified
in pen-and-paper proofs, and approximately 75% of the proofs are mechanised
in Isabelle/HOL. The primary code verification technique used is a generic envi-
ronment in Isabelle/HOL for the verification of sequential, imperative programs
using Floyd-Hoare-style logic (Hoare, 1969). The verification approach is based
on refinement and equivalence between different abstraction levels. The Verisoft
project is an impressive effort demonstrating the possibility of an entire trust-
worthy base for computing systems, but the project focuses on implementation
correctness only and did not provide high-level security policies or high perfor-
mance implementations.

seL4: The seL4 microkernel by Klein et al. (2009, 2014) is a general-purpose
OS microkernel belonging to the L4 microkernel family (Liedtke, 1996). The
seL4 microkernel emphasises security, performance, and reliability of embedded
systems, and the kernel provides a full functional correctness proof. The design
and verification projects for the seL4 microkernel were started concurrently in
2005 and the first major results were concluded in 2009.

Later, Klein et al. (2014) report on the comprehensive formal verification of the
kernel including a functional correctness proof of the kernel’s C implementation,
a proof of the correct implementation at the binary level for the C semantics, a
verified IPC fastpath, verified access-control enforcement, a proof of information-
flow noninterference, a sound worst-case execution time analysis of the binary,
and an automatic initialiser for user-level systems. Current work includes the
construction of secure systems on top of the kernel (Klein et al., 2018).

The main verification strategy is refinement between different abstraction lay-

7

1.2 Related Work

ers. The abstraction layers include: an abstract specification of the kernel, an
executable specification generated from Haskell (a functional programming lan-
guage), the high-performance C implementation of seL4 and the refinement proofs
are machine-checked in the Isabelle/HOL theorem prover, with the exception of
binary correctness, which uses the HOL4 theorem prover (HOL) and SMT solvers.

The verification of seL4 makes explicit assumptions about the correctness of the
hardware, the correctness of TLB and cache flushing operations as well as the cor-
rectness of machine interface functions implemented in inline assembly. The seL4
microkernel has been verified for 32-bit ARMv6, 32-bit ARMv7-A with hypervisor
extensions and 64-bit x86 processors. In summary, seL4 is the first general-purpose
microkernel with a code level machine-checked formal proof, that is also being used
in real-world scenarios.

CeriKOS: Another prominent effort to verify operating system kernels is the
certified kit operating system (CertiKOS) project by Gu et al. (2011, 2016). The
CertiKOS architecture focuses on the specification and verification of concurrent
OS kernels. The project uses a compositional approach for the kernel design, i.e.
a kernel with modular and individually certified constituent components.

The CertiKOS framework supports mainly two implemented systems: the mC2
kernel and the mCertiKOS hypervisor. The mC2 kernel is a concurrent OS kernel
with fine-grained locking and thread yield/sleep/wakeup primitives. It can also act
as a hypervisor and runs on x86 multicore machines. The mCertiKOS base kernel
is a simplified uniprocessor kernel designed for the 32-bit x86 architecture. The
mCertiKOS-hyp kernel, an extension of the base kernel, is a realistic hypervisor
kernel. These kernels are implemented in C and assembly language.

The CertiKOS architecture uses contextual refinement as the main reasoning tech-
nique for the concurrent systems. As concurrency involves interleaved module ex-
ecution, a strong contextual refinement property for modular systems states that
each implemented module will behave according to its specification under any
context with any valid interleaving. The CertiKOS verification framework is a
layered design, with each layer individually partitioned into functionally indepen-
dent blocks and collectively refining the underlying concrete layer. The multicore
hardware features are also abstracted using different machine layers, and the func-
tional correctness property implies that all system calls and traps will run safely
and terminate eventually. The refinement proofs are carried out in the Coq theo-
rem prover (Coq).

Similar to seL4, the CeriKOS verification explicitly lists the verification of TLB
management as a limitation. The TLB is not modeled in the machine model, hence
any code related to TLB management or TLB shootdown can not be verified.

Reasoning about Virtual Memory:
We now summarise the related work for reasoning about virtual memory primi-
tives. Our focus in the survey will remain on the TLB.

8

Chapter 1. Introduction

The TLB has the nice property that if managed correctly it has no functional
effect on the behaviour of the program. For this reason, all large-scale formal OS
kernel verifications so far have left correct TLB management as an assumption.
This includes the OS kernel verification work in seL4 and CertiKOS, which as
mentioned above do reason about page table structures, but omit the TLB.

Kolanski and Klein (2008) present mapped separation logic: an extension of sep-
aration logic to formally reason about page tables, virtual memory access, and
shared memory in Isabelle/HOL. The core logic is independent of particular page
table implementations, and they provide a case study for verifying OS level page
table manipulating code. Kolanski and Klein (2009) further extend their separa-
tion logic framework for reasoning about low-level C code in the presence of virtual
memory, and instantiate this framework to a formal model of ARMv6 page ta-
bles. However, their model does not include the TLB and does not address TLB
caching, consistency and invalidation. We build directly on the abstract interface
to page table encodings Kolanski et al. have developed, which makes our work
independent of the precise page table format the architecture uses.

Alkassar et al. (2008) provide a correctness proof of a kernel page fault handler
in Isabelle/HOL. They model interleaved executions of the page fault handler
written in a high-level programing language, and combine sequential reasoning
about the page fault handler with low-level concurrent machine model using sim-
ulation proofs. They successfully prove that the page fault handler establishes a
plain memory abstraction for the user, swapping in pages from disk as required.
However, this work does not include TLB modeling and its reasoning.

In further work, Alkassar et al. (2010) present the functional verification of a
small hypervisor (they call it baby hypervisor) using VCC, an automatic verifier
for concurrent C programs. The baby hypervisor uses a 32-bit RISC architecture
with single-level address translation (without TLB), and other features such as
interrupt handling, privilege levels etc. The verification technique includes mod-
eling of software/hardware interaction and simulation proofs in a first-order logic
setting. The verification results feature initialization of the guest partitions, a
simple shadow page table algorithm for memory virtualization and verification of
the simulation of the guest partitions.

Later, Alkassar et al. (2010) outline their initial work for formalising an x64-like
TLB for verifying TLB virtualization in a hypervisor setting. They carry out the
verification of a virtualization algorithm (implementing shadow page tables) in
VCC. They model the x64-like TLB as a set of complete and partial page table
walks, and provide semantics of the abstract TLB such as address translation and
invalidation operations. Alkassar et al. (2012) further extend and conclude the
verification of TLB virtualization, with address space identifiers (ASIDs). The
machine state contains a (processor local) TLB tagged with ASIDs, as well as an
ASID register providing the active ASID. This work counts as the first effort to
formalise the TLB for a modern hardware MMU. However, the focus of this effort
is to verify the TLB virtualization, and as such they formulate a TLB abstraction

9

1.2 Related Work

function on the host configuration to formulate the virtualised TLB for every
guest. We also model the TLB as a set of page table walks, but our aim is to
develop a generic reasoning framework for verifying programs (both kernel-level
and user-level) in the presence of a TLB in general.

In the continuation of the above work, Kovalev (2013) also provides a TLB model,
in particular a model of the Intel x64 TLB including selected maintenance op-
erations and partial walks. The verification setting proves the correspondence
between virtual and real TLB entries. Kovalev (2013) states a reduction theorem
for page table walks in ASID 0 for a specific hypervisor setup. However, while
other parts of this development are mechanised, this reduction theorem is not.
Additionally, the restriction to one ASID makes the model too conservative for
usual OS code.

Barthe et al. (2012) formalise a virtualization model similar to Xen on ARM,
featuring the TLB and cache. The model, formalised in the Coq proof assistant,
provides abstract reasoning about cache-based side-channels. Barthe et al. model
the TLB as a partial map from virtual addresses to machine addresses, and provide
axiomatic semantics of hypervisor actions. They then use the model for reasoning
about cache-based attacks and countermeasures, and prove flush-enforced isolation
between guest operating systems upon context switch. They also reason about the
transparency provided by the virtualization model to the guest operating system.
However, the work stops short of a program logic and a proof that the abstraction
of TLB is sound.

Daum et al. (2014) reason about user-level programs on top of seL4, including
page tables, but not about the TLB. Specifically, they distinguish user programs
from each other by restricting the memory accesses of each user program within
its virtual memory. This effort contributes towards proving the separation and
security properties of user programs on top of seL4 kernel, but they do not model
the TLB.

Dam et al. (2013) present a formal verification of information flow security for a
simple ARMv7-based separation kernel, called PROSPER, in the HOL4 theorem
prover. They provide guarantees for secure partitioning of different executions
using the PROSPER kernel. The top-level specification features explicit com-
munication between executing partitions. For obtaining the verification models,
they extend the formal model of the ARM instruction set architecture by Fox and
Myreen (2010) with a simple MMU. The MMU supports section-based one-level
page tables only, without address translation (only a page table prototype).

Khakpour et al. (2013) verify security properties of the ARMv7 instruction set
architecture (ISA) for user mode executions, establishing the main requirement
for the PROSPER kernel verification. In particular, they provide instruction level
noninterference and integrity properties in the HOL4 theorem prover, building on
the ARM ISA model. Their framework includes a simple MMU with single-level
page tables with translation, but it does not take caches, TLB, timing or hardware

10

Chapter 1. Introduction

extensions into account.

Nemati et al. (2015b) verify the isolation properties of a hypervisor that uses di-
rect paging on the ARMv7 architecture to virtualize the CPU memory subsystem.
They develop a formal CPU model in HOL4 by extending the formal ARM ISA
model by Fox and Myreen (2010) with an MMU. The MMU model provides ad-
dress translation through two-level page tables, and the CPU state includes system
MMU registers. Nemati et al. (2015a) extend this work further to design, imple-
ment and verify an MMU virtualization platform for the ARMv7-A architecture.
They demonstrate their hypervisor capability of hosting Linux as an untrusted
guest. The focus of their work is to virtualize the ARMv7 memory subsystem,
they do not model the TLB.

Bolignano et al. (2016) provide concrete and abstract models of a specific hypervi-
sor, and prove isolation properties based on the abstract model. Bolignano et al.
establish invariants on the concrete model, and then deduce the abstract model of
the hypervisor (with focus on the page tables) from these invariants. This work
provides guarantees about the page table mechanism, but not the TLB.

Baumann et al. (2017) propose an approach for the compositional specification
and verification of system-on-chip (SoC) level security properties in a virtualization
context. The compositional specification enables abstraction: SoC components are
modeled as a communicating automata with abstract specifications. Baumann et
al. demonstrate this approach through a case study on abstract specification and
verification of an ARMv8 hypervisor. The TLB is not modeled yet.

Lutsyk (2018) provides a paper-and-pencil correctness proof for the pipelined
multi-core implementation of the MIPS-86 ISA, extended with nested translation.
This work models the TLB as a set of walks at the bare hardware level. Lutsyk’s
most abstract model is similar to the functionality and abstraction level of our
most concrete TLB model. This is a good indication that our bottom-level model
is a useful interface for future hardware verification. Our work here is concerned
with raising the level of abstraction and enabling reasoning about the TLB from
a software perspective.

Achermann et al. (2018) present a methodology for formalising physical addresses
interconnections for Systems-on-Chip (SoCs), and demonstrate their reasoning
methodology by modeling the physical address space of the MIPS R4600 TLB.
They develop a refinement stack for reasoning about the physical address inter-
connects of the TLB, and conclude that the manufacturer’s TLB specifications
are imprecise and hence prevent any proof of correct initialization. Our work,
on the other hand, focuses on the functional correctness of TLB management for
low-level program executions.

As a case study in Chapter 8, we reason about the OS context-switching code
recommended by the ARM architecture to avoid the TLB flush. Our focus is on
TLB management during context switching. However, we are not the only one

11

1.3 Thesis Outline

to report on the formalisation of context management. Ni et al. (2007) present
the mechanised verification of x86 context management code in the Coq proof
assistant. The verification includes modeling of function calls, byte-addressed
memory, conditional flags and stack but not the TLB.

Summary: The presented survey concludes that the TLB formalism does exist in
the literature, but with the focus on reasoning about concrete hypervisor settings.
The OS verification attempts explicitly assume the correct TLB management.
We are, therefore, the first to soundly model a stack of abstraction for the TLB
and to develop a generic logic for reasoning about programs in the presence of
TLB-address translation.

1.3 Thesis Outline

In Chapter 2 we summarise the syntax and notation of Isabelle/HOL used in this
thesis. Isabelle is a generic proof assistant, and Isabelle/HOL is an instantiation
of Isabelle for higher-order logic (HOL). Isabelle offers advanced functional pro-
gramming features such as type classes and record types. We use these features
to craft our formalisation with a generic interface that we later instantiate for
specific models. Our MMU formalisation is grounded in the formal model of the
ARM instruction set architecture (ISA) by Fox and Myreen (2010). This model
uses a state monad to formalise the state transformations, we use the same state
monad to define the semantics of our MMU operations.

Chapter 3 outlines the virtual memory system of the ARMv7-A architecture, with
a focus on its translation lookaside buffer (TLB). Virtual memory is a hardware-
implemented abstraction over the physical memory that is managed by the oper-
ating system (OS) kernel. It enables the execution of multiple applications at the
same time while sharing the same physical memory. The TLB is a constituent
component of the virtual memory system, and its correct functionality is critical
for the correctness of the overall system. This thesis is concerned with the correct
OS kernel management of ARMv7-A’s TLB and also examines the TLB’s effect
on program execution in general. This chapter serves as the background for the
MMU related concepts of this thesis.

In Chapter 4 we develop an operational model of the ARMv7-A memory manage-
ment unit (MMU) including the TLB in Isabelle/HOL. The MMU of ARMv7-A
consists of a TLB that caches page table walks from the main memory under
ASIDs. While our aim in this research is to model the ARMv7-A TLB with
ASIDs, in this chapter we focus on a TLB that caches entries without ASIDs.
We develop a base MMU model for such a TLB and identify the inherent rea-
soning complexities even this simple TLB would entail. We then provide a series
of refinements for the base MMU model to stepwise abstract away the hardware
details and to reach at an abstract MMU model that captures the essential TLB

12

Chapter 1. Introduction

functionality and is easier to reason about.

Chapter 5 builds on the MMU model of Chapter 4 to formalise the MMU with
the TLB caching page table entries under ASIDs and global tags. We again build
a refinement stack to abstract away the hardware details and also explain how our
refinement framework handles the added features.

In Chapter 6 we integrate the MMU model of Chapter 5 with a separate page
directory cache (PDC) to develop a two-stage TLB model caching the partial and
complete page table walks. We again build a refinement stack to abstract away the
hardware details and explain how our refinement framework handles the additional
PDC.

Chapter 7 uses the model from Chapter 6 to present a logic for reasoning about
low-level programs in the presence of TLB address translation. We define the
syntax and semantics of a heap based language with necessary instructions for TLB
management, we then present the Hoare logic rules for the operational semantics.
We also provide simplification rules for memory write to further facilitate the
program reasoning in the presence of TLB effects.

In Chapter 8 we apply the logic of Chapter 7 to extract invariants and condi-
tions necessary to reason about the user-level and kernel-level executions, context
switching and page table operations. This case study shows that our program
logic reduces to a standard logic for user-level reasoning, reduces to side-condition
checks for kernel-level reasoning, and can handle typical OS kernel tasks such as
context switching and page table manipulations.

Chapter 9 concludes the thesis. We summarise the novel contributions towards
verifying low-level programs in the presence of cached address translation. We then
provide the proof effort of our modeling and reasoning framework. The chapter
concludes with the future research and engineering directions.

13

CHAPTER

TWO

Notation

Chapter 2. Notation

In this chapter, we summarise the syntax and notation of Isabelle/HOL
used in this thesis. Isabelle is a generic proof assistant, and Isabelle/HOL
is an instantiation of Isabelle for higher-order logic (HOL).

Isabelle offers advanced functional programming features such as type
classes and record types. We use these features to craft our formalisa-
tion with a generic interface that we later instantiate for specific models.
Our MMU formalisation is grounded in the formal model of the ARM in-
struction set architecture (ISA) by Fox and Myreen (2010). This model
uses a state monad to formalise the state transformations, we use the same
state monad to define the semantics of our MMU operations.

This chapter is organised as: we begin by providing the notation of built-in
types and their functions upon which our formalisation is based. We then
summarise the constituent features of type classes, record types and the
state monad.

2.1 Isabelle

Isabelle has a polymorphic meta-logic in which one can formalise different logics.
The meta-logic itself is an intuitionistic higher-order logic and has connectives for
implication, quantification and equality. The implication expresses logical entail-
ment and is denoted by σ =⇒ ϕ, the quantification expresses generality in logical
entities and is denoted by

∧
x. ϕ x, while the equality expresses equivalence and

is denoted by σ ≡ ϕ. The meta-implication constitutes theorems with one to
multiple premises and a compound conclusion. In this document, we represent
theorems involving meta-implication with this logical notation:

σ1 σ2 σ3 σn

φ1 φ2 φm

For the purposes of this thesis, meta-quantifier is equivalent to the higher-order
logic quantifier (∀) and it is safe to assume that meta-equality is the same as
normal equality (=).

Isabelle supports a polymorphic type system. Type variables are written ’a, ’b,
etc. The notation t::τ means that term t has the type τ . By convention, type
names are usually lower case.

Functions in Isabelle are total and Isabelle denotes the space of total functions
by υ ⇒ τ , where υ and τ are the arguments and return types. Application of a
function f to arguments x and y is written as f x y, which yields two function
applications resulting in functions at each stage, i.e. ((f x)y). Isabelle also pro-
vides lambada notation, e.g. λx. x = y, custom syntax for constants, and infix

15

2.2 HOL in Isabelle

operators, e.g. a + b.

2.2 HOL in Isabelle

We now cover standard features of the HOL instantiation of Isabelle. This instan-
tiation also equips us with the features of functional programming for constructing
proofs.

2.2.1 Types, Terms and Formulae

The Isabelle/HOL type system provides base types, type constructors, function
types and type variables. Examples of the base types include bool (for truth
values), nat (for natural numbers) and int (for integers). Types in Isabelle usually
have one or more constructors, for example, type bool has two constructors True
and False. By convention, constructor names start with a capital letter. Each
constructor of a type is unique, for example, the constructors True and False of
type bool are distinct.

In HOL, formulae are terms of the type bool. Logical connectives combine terms
to make a formula, for example, equality with the type bool ⇒ bool ⇒ bool
works as “if and only if” connective for any given two terms of type bool.

Isabelle/HOL enables the users to define their own polymorphic types with one or
more constructors using the command datatype. For example, consider the type
mytype:

datatype (’a, ’b) mytype = Constructor1
| Constructor2 ’a
| Constructor3 ’a ⇒ ’b ⇒ bool

This declares the data type mytype as a polymorphic type having three unique,
disjoint and injective constructors Constructor1, Constructor2 and Constructor3.
The Constructor1 has no arguments, while Constructor2 and Constructor3 have
a single argument each of types ’a and ’a ⇒ ’b ⇒ bool respectively. Every
new type comes with automatically derived structural induction and simplifi-
cation rules for its constructors. Already defined types are abbreviated using
type synonym, for example:

type synonym string = char list

16

Chapter 2. Notation

2.2.2 Higher-Order Logic Operations

Isabelle/HOL formalises the standard operations of higher-order logic:

Operation Type Notation
Negation bool ⇒ bool ¬ P
Conjunction bool ⇒ bool ⇒ bool P ∧ Q
Disjunction bool ⇒ bool ⇒ bool P ∨ Q
Implication bool ⇒ bool P =⇒ Q
Universal Quantification (’a ⇒ bool) ⇒ bool ∀ x. P x
Existential Quantification (’a ⇒ bool) ⇒ bool ∃ x. P x

Table 2.1: Higher-Order Logic Standard Operations

2.2.3 Built-in Types used in this Thesis

We now briefly present the notation of Isabelle/HOL’s built-in types that we use
in this thesis. We also provide the standard notation of the basic functions defined
over these types.

Type set: In Isabelle/HOL, a set is formalised as the polymorphic type ’a
set, where ’a is the type of the elements of the set. The empty and universal
sets are represented by ∅ and UNIV respectively. Set enumeration has the form
{e1,e2,...,em}, and set comprehension has the form {x | P x}. Set operations
come with the usual notation and are summarised in Table 2.2.

Operation Notation Operation Notation
Membership x ∈ A, y /∈ A Subset A ⊆ B, A ⊂ B
Union A ∪ B Intersection A ∩ B
Infinitary Union

⋃
A Arbitrary Intersection

⋂
A

Difference A - B Complement - A

Table 2.2: Notation for Set Operations

The image of a function f over a set A is represented as f ‘ A and is defined as
{y | ∃ x∈A. y = f x}, infinitary union

⋃
A as {x | ∃ B∈A. x ∈ B}, and arbitrary

intersection
⋂

A as {x | ∀ B∈A. x ∈ B}. range f is the set of values returned by
function f, i.e. range f = {y | ∃ x. f x = y}. The interval set between countable
objects is represented as {l..u}, and is defined as {x | l ≤ x} ∩ {x | x ≤ u}.
For example, {(1::nat) .. 3} represents the set {(1::nat), 2, 3}.

Type list: The type ’a list of Isabelle/HOL formalises the list of elements of
the type ’a, with the two constructors Nil ([]) and Cons (#):

datatype ’a list = [] | ’a # (’a list)

17

2.2 HOL in Isabelle

[] represents an empty list, and # puts an element of the type ’a in front of a
list of the type ’a list. Table 2.3 summarises the basic HOL functions over lists.

HOL Function Purpose
hd gets the first element,
tl gets the rest,
length calculates the list length,
set constructs a set from the lists’s elements,
map applies a function to all list elements,
zip creates a list of pairs from two lists, and
foldl reduces a list to one element by applying a

folding function from left to right.

Table 2.3: Basic HOL Functions for List

Type word: Isabelle’s type system does not include dependent types, but can
encode numerals and machine words of fixed length. The type ’n word repre-
sents a word with n bits, for example, 32 word and 64 word. We use the type ’n
word to foramlise machine words. The notation of the basic bitwise operations is
summarised in Table 2.4.

Operator Notation Operator Notation
Bitwise Not NOT n Bitwise And n AND m
Bitwise Or n OR m Shift Left n << m
Shift Right n >> m Nth Bit as a Bool m !! n

Table 2.4: N-bit Operators

The function UCAST(’n → ’m) casts an n-bit word to another m-bit word. For
example, a 12-bit word is converted to its 32-bit equivalent word as: ucast (w::
12 word)::32 word. The function size returns the bit-length of a word in type
nat. For example, size (5 :: 3 word) = 3. Finally, the function mask x returns
an ’n word with the bottom x bits set to one, for example (mask 2) :: 4 word =
3 :: 4 word.

Type pair: An ordered pair of two types ’a and ’b is formalised as the type
’a × ’b. The term (a, b) represents an object of the pair type, where a and
b are terms of types ’a and ’b. The first element of a pair is accessed with the
function fst, the second with the function snd. Tuples are the right-associative
nesting of pairs. For example, (a, b, c) has the type ’a × ’b × ’c, which is
internally represented by ’a × (’b × ’c).

Type option: The type

datatype ’a option = None | Some ’a

adjoins a new element None to a type ’a. We use ’a option to model partial func-
tions, writing �a� instead of Some a and ’a ⇀ ’b instead of ’a ⇒ ’b option. The

18

Chapter 2. Notation

Some constructor has an underspecified inverse called the, satisfying the equation
the �x� = x. The domain of a partial function is obtained by dom m = {a | m a
�= None}.

With this we conclude presenting the Isabelle/HOL’s built-in types used in this
thesis.

2.2.4 Function Update and the Let Construct

Function update for a total function f is denoted as f(x := y) where f::’a ⇒ ’b,
x::’a and y::’b. For partial functions, we write f(x �→ y) representing f (x:=
Some y).

The Let construct improves readability by allowing us writing terms as:

let y = f x ;
z = g y

in h y z

instead of: h (f x) (g (f x)).

We have summarised the essential features of Isabelle/HOL and their notation.
While presenting our formalism later, we may repeat some of the concepts pre-
sented in this chapter for the reader’s ease. We now proceed to explain advanced
features of Isabelle: type class and record types. We also explain the constituent
functions of the ARM ISA model’s state monad.

2.3 Type Classes in Isabelle

Isabelle supports type classes: a type class is essentially a set of types with a
common interface. The interface of a type class is categorised by class axioms
and class functions. All types that are instances of a specific class must obey
the axioms and provide the functions of the interface. The usual benefit of type
classes is that they allow overloading, i.e. a constant may have multiple definitions
at different types, for example, the operator + for types nat, int, ’n word, etc. The
axioms of a class also allow us to reason on the level of the class.

For example, we declare an example type class ex_typ for ’a list that has an
axiom sum and a function tail_sum as:

19

2.4 Record Types in Isabelle/HOL

class ex_typ =
fixes sum :: ’a list ⇒ ’a list ⇒ ’a

definition tail_sum :: ’a
tail_sum l ≡ sum l (tl l)

We then simply instantiate the type class ex_typ to types nat and int for different
semantics of the axiom sum:

instantiation nat :: ex_typ instantiation int :: ex_typ
begin begin

sum l l’ ≡ hd l + hd l’ sum l l’ ≡ hd l + 1
instance .. instance ..
end end

The sum is then accessed by type inference: a sum expression with nat list picks
up the sum function for the nat, while the int picks up the int type instantiation.
Both types nat and int provide the semantics of tail_sum function of type class
ex_typ.

Type classes can be extended and organised in a hierarchy. For example, we can
define a type ex_typ_extended as an extension of our example type class ex_typ
with a prod parameter:

class ex_typ_extended = ex_typ +
fixes prod :: ’a list ⇒ ’a list ⇒ ’a

All the instantiations of the type class ex_typ_extended obey the parameters prod
and sum.

We make use of Isabelle’s type class support to build our MMU model, we also
instantiate this generic MMU interface with states having different TLB abstrac-
tions. This setup helps us greatly in the modeling of our refinement framework.

2.4 Record Types in Isabelle/HOL

We now briefly explain Isabelle/HOL’s record types, their notation and basic func-
tions. The Cambridge ARM formalisation (Fox and Myreen, 2010) models the
CPU state as a record type.

A record type of Isabelle/HOL is a collection of fields, with each field having a
type which may by polymorphic. There is a selector and an update function for
every record field. Isabelle/HOL also supports extensible records, i.e. new record

20

Chapter 2. Notation

types can be defined by extending the existing record types (Naraschewski and
Wenzel, 1998). We can also define custom operations over the record types.

We illustrate these concepts with an example. Suppose we want to model a state
having a memory and a list of registers. For that we define a record type ex_state:

record ex_state =
memory :: 8 word ⇒ 32 word
registers :: 32 word list

The type ex_state is a record type with the fields: memory :: 8 word ⇒ 32 word
and registers:: 32 word list. The selector and update functions for these fields
have the same names. For example, if s has type ex_state then memory s denotes
the value of the memory field of s, and s(|memory := id|) will update memory of s to
be the identity function id.

Every record structure has an implicit but accessible pseudo-field, more, that keeps
the extension as an explicit value. Its type is declared as completely polymorphic:
’a. Our definition of ex_state above has generated two type abbreviations:

ex_state = (|memory :: 8 word ⇒ 32 word, registers :: 32 word list|)
’a ex_state_scheme = (|memory :: 8 word ⇒ 32 word,

registers :: 32 word list, ... :: ’a|)

The type ex_state is for fixed records having exactly the two fields memory and
registers, while the polymorphic type ’a ex_state_scheme comprises all possible
extensions to these two fields. Now if we want to extend the original ex_state
with a program counter register, we can either do:

record ex_state_extended = ex_state_extended +
program_counter :: 32 word

or simply:

type synonym ex_state_extended = 32 word ex_state_scheme

The built-in functions extend and truncate are used to extend and truncate the
record types respectively:

– The function extend takes two arguments: a record to be extended and a
record containing the new fields.

– The function truncate takes a record and returns a fixed record, removing
any additional fields.

In our formalism, we extend the record type state of the ARM ISA model to
introduce the TLB model. Our modeling framework makes extensive use of record
types.

21

2.5 State Monads

2.5 State Monads

The ARM ISA formalisation (Fox and Myreen, 2010) uses a state monad to model
state transformers. A state monad generally encodes a purely functional model
of computation with side effects. In the ARM model, the associated monad type
for the result type ’r and the state type ’s is ’s ⇒ ’r × ’s. This type is abbre-
viated (’s, ’r) state_monad, i.e. a function from the current state to the next
state together with the computation result. A pure state transformer is typically
denoted by the one-valued result type unit, i.e. ’s ⇒ unit × ’s. The two monad
constructors return and bind are defined as follows:

return :: ’r ⇒ (’s, ’r) state_monad
return r ≡ λs. (r, s)

bind :: (’s,’a) state_monad ⇒ (’a ⇒ (’s,’b) state_monad) ⇒
(’s,’b) state_monad

f >>= g ≡ λs. let (r, s’) = f s in g r s’

The constructor return simply injects the value r into the monad type, passing
the state unchanged, while bind sequentially composes a computation f, and a
computation g (a function from the return type of f). We occasionally write bind
f g as f >>= g and use the do syntax for longer computations.

f >>= g ≡ do { x ← f; g x }

For fetching and updating a particular parameter from the state, the ARM model
uses the read_state and update_state functions (sometimes also called gets and
puts):

read_state f ≡ λs. (f s, s)
update_state f ≡ λs. ((), f s)

We abbreviate multiple read_state calls into tuple notation, for example
(a,b) ← read_state (f,g).

With this we conclude the chapter for notation: we have summarised the essential
features of Isabelle/HOL and their notation. While presenting our formalism later,
we may repeat some of the concepts presented in this chapter for the reader’s
convenience.

22

CHAPTER

THREE

Virtual Memory in the ARMv7-A
Architecture

3.1 Basic Concepts of Virtual Memory

This chapter outlines the virtual memory system of the ARMv7-A archi-
tecture, with a focus on its translation lookaside buffer (TLB). Virtual
memory is a hardware-implemented abstraction over the physical memory
that is managed by the operating system (OS) kernel. It enables the ex-
ecution of multiple applications at the same time while sharing the same
physical memory. The TLB is a constituent component of the virtual mem-
ory system, and its correct functionality is critical for the correctness of
the overall system. This thesis is concerned with the correct OS kernel
management of ARMv7-A’s TLB and also examines the TLB’s effect on
program execution in general. This chapter serves as the background for
the MMU related concepts of this thesis.

This chapter is organised as follows: after highlighting basic concepts of
virtual memory systems in general, we describe hardware features of the
ARMv7-A virtual memory system in particular, including pages, page ta-
bles, TLB and caches. Finally, we summarise the role of an OS kernel in
the management of the virtual memory system with specific focus on TLB
management.

3.1 Basic Concepts of Virtual Memory

Virtual memory is at the basis of protected-mode operating systems; a virtual
memory system provides:

• segmentation of the main memory,
• variable address space for applications,
• execution of multiple applications at the same time,
• isolation between user-level processes,
• authorized user-level accesses to the main memory,
• controlled and supervised memory sharing between applications,
• framework for kernel management of memory resources,
• localized memory management, and
• security mechanisms by associating access properties to memory locations
through central memory management.

Different hardware architectures together with OS kernels implement a virtual
memory system in various ways. However, at the core of all these implementations,
the processes being executed cannot access main memory (RAM) directly through
physical memory addresses. Whenever an active process has to operate on the
main memory, whether it be reading or writing, it issues the operation with a
virtual memory address. The memory management system then resolves that
virtual address to the actual (physical) address.

The main memory itself often comes with a partitioning mechanism. Paging and

24

Chapter 3. Virtual Memory in the ARMv7-A Architecture

Figure 3.1: Basic Concepts of Virtual Memory

segmentation are two well-known such memory partitioning schemes. In paging,
the hardware architecture divides the main memory into small fixed size frames.
The OS kernel then divides each process into frame-sized chunks called pages.
When a process is not active, its respective pages reside in the secondary memory.
Whenever a process is required to be brought in for processing, the relevant set
of its pages are loaded by the hardware into the available frames of main memory
on demand. Whereas in the segmentation scheme, the main memory has variable
sized segments and their size depends on the processes. While segmentation avoids
internal fragmentation in the main memory, it is inefficient when it comes to the
execution of multiple applications; c.f. (Stallings, 2008, Chapter 8). We omit any
discussion of segmented memory architectures. The x86 architecture is segmented,
but the segments are typically identical in size. ARM and PowerPC are prominent
architectures (among many others) that use paged memory management.

Figure 3.1 gives an overview of a paged memory environment. The main memory
has fixed size frames, and the processes A and B have their separate virtual address
spaces. The virtual address space of a process is an abstraction of the memory
that the process can access exclusively. A virtual address space is set up by the
OS kernel by dividing the data of the process in frame-sized pages. The range of
the virtual address space depends on the hardware’s instruction set architecture.
For example, the ARMv7-A architecture provides a flat address space of 232 8-bit
bytes, covering 4GBytes; c.f. (ARM, 2008, Chapter A3).

Suppose that the process A needs to write a value to the memory location at
address v1 of its virtual address space. The process A simply issues the memory
write operation with the virtual address v1. The memory management system then
resolves the virtual address v1 to the corresponding physical address p1 using the
translation map for the process A. The translation map of a process, known as
its page table, encodes the address translation from virtual to physical addresses.
In most widely deployed architectures, the page tables are hardware implemented

25

3.2 Virtual Memory System in the ARMv7-A Architecture

data structures that reside in the main memory and are managed by the OS
kernel. They also encode access permissions for the virtual addresses, for example,
an exception would be raised when the process A tries to write at the read-only
address v3. When the process B accesses the unmapped virtual address v10, an
exception would be raised by the hardware. Depending on the exception handler,
the OS kernel could then load the respective page into the main memory and
update the page table for that process accordingly.

In summary, we have briefly highlighted the virtual memory system main concepts
such as paging and address translation. We now describe the key features of
ARMv7-A virtual memory system architecture (VMSA) that are relevant to this
thesis.

3.2 Virtual Memory System in the ARMv7-A

Architecture

The ARM architecture provides multiple address translation modes that differ
in the number of translation levels and bit-length of virtual addresses. Without
loss of generality for the treatment of TLBs we focus on one of these modes in
this thesis — the TLB management in others is analogous. This mode is called
short-descriptor translation table format.

3.2.1 Pages

As mentioned in the previous section, ARM is a paging architecture. The short-
descriptor translation table format supports four types of pages and correspond-
ingly four types of frames; c.f. (ARM, 2008, Chapter B3):

• Small Page: a 4KB block of memory,
• Large Page: a 64KB block of memory,
• Section: a 1MB block of memory, and
• Supersection: a 16MB block of memory.

Small and large pages provide fine granularity for mapping and accessing pages,
and they are used effectively to map smaller applications, whereas sections and
supersections allow mapping of a larger region of memory. An important feature
of the ARM architecture’s paging mechanism is that frames in main memory can
overlap, i.e. a larger frame can contain smaller pages at the aligned locations.
Figure 3.2 describes an example of a paged memory layout.

26

Chapter 3. Virtual Memory in the ARMv7-A Architecture

Figure 3.2: An Example of Paged Memory in the ARM Architecture

3.2.2 Page Tables

Page tables provide translation of virtual addresses to physical addresses. In
the short-descriptor table format, two-level page tables are held in memory for
processes:

First-level Page Table: holds first-level descriptors, also called page directory
entries, that contain either

– the physical base address of the frame and translation properties for a section
or a supersection; or

– translation properties and pointers to a second-level table for a large page
or a small page.

Second-level Page Table: holds second-level descriptors, also called page table
entries, that contain the base address and translation properties for a small page
or a large page.

The first-level page table is located in the main memory by its root address.
For a 32-bit machine, the root of a page table is a 32-bit physical address.
Depending on the configuration of the VMSA, either register TTBR0 (an acronym
for translation table base register) or register TTBR1 holds the root of the page
table of the active process. Figure 3.3 shows an example of a two-level page table.

A descriptor of the page table is either:

• an invalid entry, or
• a pointer to the root of a next-level page table with translation properties,
or

• a base entry that defines the base address of a memory page and its access
properties, or

• a reserved format.

27

3.2 Virtual Memory System in the ARMv7-A Architecture

Figure 3.3: An Example of Two-Level Page Table in the ARM Architecture

3.2.3 Address Translation

We now explain how address translation works, using the two-level page table
of the ARM architecture. Figure 3.4 represents the translation flow of a 32-bit
virtual address v1 belonging to a section, i.e. a lookup that terminates at the
first-level.

While resolving the virtual address v1, the memory management unit (MMU)
locates the respective page table entry by combining the TTBR0 register and the
upper 12 bits of the virtual address v1. These bits provide the 12 bits page
table offset. In this case, the resultant page table entry is a section entry, and it
contains the base address and permission bits of the section the virtual address
v1 belongs to. At this point, the MMU checks the permissions for the section
against the active state of the processor. If it grants the access, the final physical
address is formulated by combining the 12 bits physical base address provided
by the page table entry and the section offset provided by the lower 20 bits of
the virtual address v1.

The translation flow for a supersection is analogous to that of a section: the
difference is that now the first-level page table entry signifies the supersection it

Figure 3.4: Translation Flow for a Section

28

Chapter 3. Virtual Memory in the ARMv7-A Architecture

Figure 3.5: Translation Flow for a Small Page

belongs to, and the lower 24 bits of the virtual address are supersection offset.
Virtual addresses belonging to small or large pages undergo two-level page table
translation. Figure 3.5 shows the translation flow of a 32-bit virtual address v2
belonging to a small page.

In this case, the first-level descriptor (found using the upper 12 bits of v2) pro-
vides a pointer to the second-level page table. The MMU then traverses the second
level pages table using the next 8 bits of the virtual address v2 to locate the re-
spective page table entry. The MMU also checks the permission and configuration
settings at both levels of the page table. Finally, the base address is combined
with the page offset to retrieve the final physical address. The translation flow for
a large page is analogous to that of a small page, the ARM manual documents
more details (ARM, 2008, Chapter B3).

3.2.4 Translation Lookaside Buffer

In a virtual memory system, a translation lookaside buffer (TLB) is a hardware
cache for storing address translations (page table entries). Without further help,
this central mechanism is slow: main memory is already significantly slower than
the processor, and traversing a page table can cost up to three memory accesses.
The TLB caches such lookups, and significantly reduces the number of such mem-
ory accesses.

Figure 3.6 shows the use of a TLB in the address translation process. While
resolving a virtual address, the CPU first checks the TLB. If the respective page
table entry is present in the TLB (a hit), the CPU directly generates the physical
address avoiding the page table walk. If the respective page table entry is not
present inside the TLB (a Miss), the CPU does the page table walk. If the
respective page is mapped in the main memory, the CPU generates the physical
address and also reloads the TLB for future use. Otherwise, the page fault handler
of the OS kernel is called. It will usually map the respective page in the main

29

3.2 Virtual Memory System in the ARMv7-A Architecture

Figure 3.6: Functional Role of the Translation Lookaside Buffer (TLB)

memory, update the page table and the TLB with the page table entry, and finally
generate the physical address. A TLB, in general, is either hardware-loaded or
software-loaded. For a hardware-loaded TLB, the hardware does the page table
walk and fills the TLB on a miss as explained above for the ARM architecture.
In contrast, in a software-loaded TLB, the OS kernel is responsible for page table
walk and loading the TLB.

The ARM architecture considers the TLB as an implementation technique; hence
the manual (ARM, 2008) describes the TLB as a black box, i.e. by its external
interface only. It does not specify its size, the replacement strategy, or exact
internal state. The architecture only defines certain principles for the TLB that
implementations must provide and that OS kernels can use for TLB management.
We now summarise these features:

Process-Specific TLB Entries: In a multitasking environment, usually each
process has its own page table; hence multiple page tables are present in the
main memory at a time. The TLB being a cache of these page tables must
implement some mechanism to distinguish between their entries. One approach
can be that the TLB caches only entries for the active process. Subsequently,
the TLB would be flushed during the context switch between processes. Flushing
of the TLB at every context switch has an adverse effect on the overall speed
of the system. Instead, the ARM architecture associates a process-specific tag
with translation entries of the TLB. This tag is called an address space identifier
(ASID). With ASIDs, translation entries from different processes co-exist in the
TLB, and new entries can be cached without removing the previous mappings.
The ARM architecture provides 8-bit ASIDs, which means, the TLB can cache
entries for up to 256 processes; c.f. (ARM, 2008, Chapter B3).

Global TLB Entries: In a virtual memory implementation, the OS kernel can
divide the main memory into global and non-global regions: any pages mapped
in the global regions are accessible by all processes, whereas non-global regions
have ASIDs associated to them. To enable this distinction, the ARM architecture
associates an nG (non-Global) bit with every TLB entry:

30

Chapter 3. Virtual Memory in the ARMv7-A Architecture

Figure 3.7: A Format for TLB Entries

• nG==0 implies the TLB entry is global, and
• nG==1 means the TLB entry is non-global (or ASID-specific).

TLB Matching: Although the ARM architecture does not provide any concrete
details about the structure of a TLB entry, conceptually a TLB entry is of the
form represented in Figure 3.7. A TLB entry essentially contains a physical base
address of a memory page corresponding to its virtual base address and an ASID
tag. It also encodes permissions for the respective memory region. The TLB itself
is then a memory structure that is accessed by virtual addresses together with
their ASIDs.

Figure 3.8 provides an overview of a TLB lookup resulting in a hit, i.e. a unique
match of the given virtual address along with the active ASID with only one TLB
entry. A TLB entry matches a virtual address when the entry’s ASID equals the
active ASID and the address’s top 12 bits for section or 20 bits for small page
match the virtual base address of the entry.

If a TLB does not contain any matching entry for a given virtual address, its TLB
lookup results in a Miss. The ARM architecture provides only hardware-loaded
TLBs, i.e. the processor does the page table walk on a TLB miss and it also reloads
the TLB for future use. Architectures such as MIPS have a software-loaded TLB
where the OS kernel is responsible for page table walk and loading the TLB in
case of a miss (MIP, 2015).

Although ARM’s TLB is hardware-loaded, it is not entirely invisible to software.
The OS kernel is responsible for maintaining the consistency of the cached TLB
entries with the page tables in the memory. Any update to the page table by

Figure 3.8: An Example of a TLB Lookup Resulting in a Hit

31

3.2 Virtual Memory System in the ARMv7-A Architecture

the OS kernel must be reflected in the TLB, and no more than one TLB entry
should provide the address translation for a given virtual address and its ASID.
An inconsistent TLB gives rise to unpredictable behaviour and may result in a
crash of the overall virtual memory system.

TLB Maintenance Operations: The ARM architecture provides certain TLB
maintenance operations to the OS kernel in order to flush entries from a TLB. The
TLB can potentially store any page table entry that does not generate transla-
tion fault, therefore the OS kernel must maintain the TLB’s consistency between
updating mapped page table entries and accessing memory locations whose trans-
lation is determined by those entries. The general TLB maintenance operations
provided by the ARM architecture are:

• invalidate all entries in the TLB,
• invalidate a single entry covering a range of virtual addresses for all ASIDs,
• invalidate a single entry covering a range of virtual addresses for a specified
ASID, and

• invalidate all TLB entries matching a specified ASID.

Additionally, the OS kernel implements special TLB maintenance while updating
the ASID and the page table root registers that we describe in Sect. 3.3.

TLB Lockdown: The ARM architecture has a concept of TLB lockdown, i.e. a
locked entry is guaranteed to remain in the TLB unless explicitly flushed. We do
not formalise locked TLB entries in the thesis, although our reasoning framework
is easily applicable with minor modifications to an implementation supporting the
TLB lockdown.

TLB Implementation Details: Different implementations of ARMv7-A are
allowed to implement the TLB’s architectural features differently. In an imple-
mentation, usually the TLB is split up into levels for increasing the speed of the
lookup. For example, Cortex-A9 has two levels with three TLBs:

• Instruction Micro-TLB: 32 or 64 fully associative entries
• Data Micro-TLB: 32 fully associative entries
• Unified Main-TLB: 2-way associative 2xn2 entry TLB,

where n ∈ {5, 6, 7, 8}

Micro-instruction and micro-data TLBs constitute the first-level of page table
caching, and they provide a fully associative lookup in a single clock cycle. The
main TLB makes the second-level, and it catches the misses from the micro TLBs.
TLB maintenance operations of the ARM architecture maintain these three TLBs.
Table 3.1 summarises TLB’s implementations in other ARMv7-A’s processors.

Additionally, higher implementations of ARMv7-A such as Cortex-A15 have ded-
icated caches to store intermediate levels of page table entries; c.f. (ARM, 2013,
Chapter 5). These intermediate TLBs are called page directory caches (PDCs).

32

Chapter 3. Virtual Memory in the ARMv7-A Architecture

Processor
Cores

Instruction
TLB

Data
TLB

Unified TLB

Cortex-A5 10 entries 10 entries 128 entries, 2-way set-associative
Cortex-A7 10 entries 10 entries 256 entries, 2-way set-associative
Cortex-A15 32 entries 32 entries 512 entries, 4-way set-associative
Cortex-A17 10 entries 10 entries 256 entries, 2-way set-associative

Table 3.1: TLBs in ARMv7-A Implementations

For a two-level page table, this setting gives us two stages of TLB caching. The
first stage that we refer to as simply TLB, caches entries that provide end-to-end
address translations, i.e. results of complete page table lookups, while the second
stage (PDC) caches the results of partial page table lookups – up to the first-level
traversal of the page table only. Figure 3.9 gives an overview of the page table
lookup and respective information cached in the two-stage TLB for a virtual ad-
dress mapped to a small page of the memory. Here, the TLB caches the physical
base address of the small page the virtual address resolves to, while the PDC
stores the pointer to the second-level page table. The ARM TLB maintenance
operations work on both TLB and PDC.

With this, we have covered the aspects of ARMv7-A TLB hardware features nec-
essary for this thesis. The main features not covered are related multiprocessor
effects on TLB maintenance operations. For more details, please refer to the
reference manual (ARM, 2008).

3.2.5 Caches

This thesis focuses on modeling the TLB and examining its effect on program
verification and does not investigate the effects of caches in the process. However,
for completeness, we briefly explain the role of caches in ARMv7-A VMSA.

The purpose of caches in any memory system is well-known: providing data to

Figure 3.9: TLB, PDC and Page Table Lookup

33

3.3 OS Kernel Management of ARM’s VMSA

the processor at a higher speed and avoiding traversal of larger memory struc-
tures for data operations. Cache implementation and organisation is a large field
with several features and mechanisms; from the point of view of virtual memory,
however, the dominant feature is the placement of a cache. In the cache hier-
archy of a memory system, any cache present before the address translation is
virtually-addressed (also called virtually-indexed), and the caches placed after are
physically-addressed (also called physically-indexed). A TLB itself is a virtually-
addressed cache dedicated to storing page table walks. The cache placement also
determines the responsibilities of the OS kernel for its management.

The ARMv7-A architecture provides cache levels; each core in the implementation
has its dedicated physically-addressed L1 (level-1) cache, whereas the L2 cache is
shared among the cores. An implementation is free to choose separate data- and
instruction-L1 caches, similar to that of the TLB. Figure 3.10 shows an example
of ARM’s cache structure for a uni-core processor. The architecture provides the
required cache maintenance operations for both levels. More details are available
in the manual; c.f. (ARM, 2008, Chapter B3).

In summary, we have detailed the hardware aspects of ARMv7-A virtual memory
system in this section and our focus has remained on the TLB and its constituent
features. We now explain responsibilities of the OS kernel towards the ARM
virtual memory system.

3.3 OS Kernel Management of ARM’s VMSA

The ARMv7-A architecture provides advanced hardware features for virtual mem-
ory; however, it leaves the setup of virtual address space, page table management
and TLB and cache maintenance for the OS kernel. In this section, we explain the
virtual address space setup for processes, the page table management and the TLB
maintenance of a toy OS kernel that is inspired by the seL4 microkernel (Klein
et al., 2009). These configurations also apply to all major protected-mode OS ker-
nels, e.g. Linux, Windows, MacOS, as well as most microkernels for the ARMv7-A
architecture. We omit the discussion of cache maintenance as our focus in this

Figure 3.10: Cache Hierarchy in the ARMv7-A Architecture

34

Chapter 3. Virtual Memory in the ARMv7-A Architecture

Figure 3.11: An Example of a Virtual Address Space with Kernel Window

thesis is on TLB maintenance. This section also serves as the background for our
case studies in Chapter 7.

Virtual Address Space Setup: Our toy OS kernel sets up the virtual address
space for every user-level process. The main assumption in setting up an address
space is that the toy OS kernel manages page tables and the TLB, and prevents
users from accessing them (as well as other kernel data structures) directly. This
means that our kernel maintains a set of user-level page tables, potentially shared
between multiple users; the set might even be a singleton for single-address-space
systems. Given this setting, there are multiple ways to achieve separation between
user-accessible memory and kernel memory. For instance, the kernel could switch
to its own page table and make sure that none of the user-level page tables contain
mappings to the physical addresses that store kernel data structures. For our toy
OS kernel, we choose a slightly more interesting and popular setting. To avoid
switching page tables for entering the kernel, the kernel maintains a so-called
kernel window in every virtual address space: a set of virtual addresses, typically
at the top end of the virtual address space, that are unavailable to the user,
and instead maintain kernel mappings with permissions set so that they are only
active in kernel mode of the processor1. Linux, for instance, uses this scheme,
and in a 32-bit address space, which would span 4GB of memory, e.g. only 3.5GB
may actually be addressable in user mode. The top 512KB implement the kernel
window. Figure 3.11 shows an example for a virtual address space maintained by
our toy OS kernel.

Page Table Management: The toy OS kernel maintains two-level page tables
for every user process. As required by the ARM architecture, the first level stores
mappings for memory sections and supersections, as well as pointers to the second-
level page tables. Since the kernel window is present in the virtual address spaces
of all processes, the kernel makes the page table mappings for these addresses
constant. Since the mappings are constant and their translation function is stat-
ically known, the corresponding page table entries are constant too. That means
each user-level page table that the kernel maintains has a number of known en-
tries which, for each user, reside at the same position in the page table encoding.

1This is the technique attacked by Meltdown (Lipp et al., 2018). Since hardware manufac-
turers are promising to fix this major flaw, we present the more interesting setting instead of
the less complex and slower scenario with a separate kernel address space.

35

3.3 OS Kernel Management of ARM’s VMSA

Figure 3.12: OS Kernel Page Table Management

Figure 3.12 describes this layout.

In summary, the OS kernel manages page tables for the user processes and also
for itself, e.g. by adding, removing, or changing mappings, by keeping a page table
structure per user process, and by maintaining invariants, such as never giving
a user access to kernel-private data structures, ensuring that certain mappings
are always present, or ensuring non-overlapping mappings between different page
tables if so desired.

TLB Management: Since a TLB caches address translation, page table oper-
ations by the OS kernel may leave the TLB out of date for the page table in
memory, and the OS kernel must flush (invalidate) the TLB before that lack of
synchronisation can affect program execution. Since flushing the TLB is expen-
sive, OS kernel designers work hard to delay and minimise flushes and to make
them as specific as possible using ASIDs for invalidating only specific sets of en-
tries. The requirement of TLB flushing after a page table operation depends on
the page table operation itself: if the operation is to remap or unmap a page, then
the OS kernel must invalidate the respective TLB entries, as a TLB potentially
caches any mapped page table entry. Mapping a page, on the other hand, does
not require TLB maintenance as the TLB in ARMv7-A does not store transla-
tion fault entries. If TLB management is done correctly, the TLB has no effect
other than speeding up execution. If it is done incorrectly, machine execution
leads to unpredictable behaviour and wrong memory contents are read/written,
or unexpected memory access faults might occur.

In addition to the page table operations, an OS kernel has to take special care
during a context switch between processes to maintain TLB consistency. In ARM’s
VMSA, two separate registers hold values for the active ASID and page table root,
and these two registers cannot be updated atomically during a context switch.
This lack of atomicity is a problem because any speculative memory access by the
processor might contaminate the TLB in these two ways:

• the old ASID being associated with entries from the new page table, or

36

Chapter 3. Virtual Memory in the ARMv7-A Architecture

• the new ASID being associated with entries from the old page table.

The ARM architecture leaves TLB synchronisation after updating ASID and page
table root registers to the OS kernel, and it recommends specific code sequences
for the OS kernel to avoid TLB contamination. We provide two of these here that
are widely used.

Using a reserved ASID to synchronize TLB:
update ASID register to reserved ASID 0
ISB
update page table root register
ISB
update ASID register to new ASID

Using a page table with only global mappings to synchronize TLB:
update page table root register to the global-only mappings
ISB
update ASID register to new ASID
ISB
update page table root register to new root

We prove the correctness of the first sequence in the case study Chapter 8.

In summary, this section has outlined the responsibilities of an OS kernel to man-
age the virtual memory system of ARMv7-A architecture.

3.4 Summary and Remarks

In this chapter, we have outlined the background information required to under-
stand the virtual memory aspects addressed in this thesis. The chapter includes a
brief overview of ARMv7-A VMSA’s features such as pages, page tables and most
importantly the TLB. We have also described the TLB maintenance requirements
for the OS kernel in the VMSA. The main message of this chapter is that a TLB is
security-critical in a virtual memory system because a poorly managed TLB will
lead to

• compromise in process isolation,
• wrong memory operations, and
• unpredictable behavior.

An alternative to the virtual memory system of ARMv7-A, the ARMv7-R archi-
tecture provides another memory protection mechanism, called protected memory
system architecture (PMSA). The PMSA scheme uses control registers in a mem-
ory protection unit (MPU) instead of page tables to achieve memory protection;
it does not have the non-deterministic behaviour introduced by potential TLB

37

3.4 Summary and Remarks

misses. Though PMSA is easier to implement and to manage than VMSA, its
memory control is less fine-grained as compared to that of pages in the VMSA.
PMSA is not a point of interest in this thesis.

The focus of the thesis is TLB reasoning for the ARMv7-A architecture, but
Chapter 9 will give an outlook of how the reasoning technique might apply to
other architectures such as x86, RISC-V and MIPS.

38

CHAPTER

FOUR

A Formal Model of the ARMv7-A MMU

4.1 Page Table Abstraction

In this chapter, we develop an operational model of the ARMv7-A memory
management unit (MMU) including the TLB in Isabelle/HOL. As outlined
in the previous chapter, the MMU of ARMv7-A consists of a TLB that
caches page table walks from the main memory under ASIDs. While our
aim in this research is to model the ARMv7-A TLB with ASIDs, in this
chapter we focus on a TLB that caches entries without ASIDs. We develop
a base MMU model for such a TLB and identify the inherent reasoning
complexities even this simple TLB would entail. We then provide a series
of refinements for the base MMU model to stepwise abstract away the
hardware details and to reach at an abstract MMU model that captures
the essential TLB functionality and is easier to reason about.

In the next two chapters, we then build on the MMU model of this chap-
ter to introduce ASIDs and global TLB entries, and eventually a two-
stage TLB that is implemented in the more recent implementations of the
ARMv7-A architecture. For page table operations, we reuse Kolanski’s
existing ARMv6 page table model (Kolanski and Klein, 2009), update it
to ARMv7-A and integrate it with the TLB formalisation that we build up
in this and the next chapters to form the MMU models.

We begin this chapter by summarising our memory layout and Kolanski’s
page table model. We then develop a generic formal model of an ARMv7-
style TLB and instantiate this model for a TLB without ASIDs. Next
we present our base MMU model including page table interface for TLB
reloading, address translation, memory operations, updating page table
root register and TLB maintenance operations. We then identify reasoning
complexities for this base MMU model and provide a series of refinements
to abstract the hardware details. In the end we join refinement levels to
prove the soundness of our abstraction and conclude the chapter.

This chapter is based on the published work (Syeda and Klein, 2017).

4.1 Page Table Abstraction

As described in the previous chapter (Sect. 3.2), the ARMv7-A architecture pro-
vides multiple address translation modes that differ in the number of translation
levels and bit-length of virtual addresses. Without loss of generality for the treat-
ment of TLBs we focus on one of these modes here — the others are analogous.
This mode provides four sizes of pages (small, large, section, and supersection; c.f.
(ARM, 2008, Chapter B3)) and a two-level page table structure.

In this section we provide the page table abstraction that we use for MMU opera-
tions. For page table operations, we reuse Kolanski’s existing ARMv6 page table
model (Kolanski and Klein, 2009), update it to ARMv7-A and integrate it with

40

Chapter 4. A Formal Model of the ARMv7-A MMU

our TLB formalisation.

Addresses: Kolanski’s model differentiates between virtual and physical address
by type, and we continue in that tradition. He defines addresses addr_t as:

datatype (’a, ’p) addr_t = Addr ’a

where ’a is the address size (e.g. 32 word) and ’p is a tag which can be physical
or virtual. For modeling the addresses of an ARMv7-style machine, we specialise
addr_t as:

vaddr = (32 word,virtual) addr_t paddr = (32 word,physical) addr_t

We use addr_val (Addr a) = a to extract the address.

Main Memory: We model main memory as the partial function

heap :: paddr ⇀ 8 word

to express that it works on physical addresses and that not all physical address
might be backed by memory in the machine. If a computation accesses non-
existing memory, an exception should be raised.

Page Table Root: In paging, location of the first-level of a page table is deter-
mined by its root address, we model the root of the page table with type paddr.

Page Directory Entry: In our page table abstraction, an entry of the first level
of a page table is referred to as page directory entry and it is of the type pde:

datatype pde = InvalidPDE
| ReservedPDE
| PageTablePDE paddr
| SectionPDE paddr arm_perm_bits

A pde is either an InvalidPDE, a ReservedPDE, a PageTablePDE with the pointer to
the start of second level of the page table, or a SectionPDE with the base address
and access permission bits of the section it belongs to. arm_perm_bits simply
encodes the access permission bits of an ARMv7-A translation context.

Without loss of generality for the treatment of TLBs, we omit formalising super-
sections and their page directory entries.

Page Table Entry: An entry of the second level of the page table is called a page
table entry and formalised as:

41

4.1 Page Table Abstraction

datatype pte = InvalidPTE
| SmallPagePTE paddr arm_perm_bits

It is either an InvalidPTE, or holds the base physical address of a small page along
with its permission bits. Again for the treatment of TLBs, we omit formalising
large pages and their page table entries, as any results based on the model having
small page table entries will be applicable to the model having large page table
entries.

Page Table Lookup: We reuse lookup functions from Kolanski’s page table
model to obtain page directory entries and page table entries for given virtual
addresses. We provide these functions here with a brief explanation.

For any virtual address va, the function get_pde encodes its respective page direc-
tory entry from the page table rooted at the physical address rt in the memory
mem (for mask and bit shifts operations, please refer to Sect. 2.2.3 in the chapter of
notation):

get_pde :: heap ⇒ paddr ⇒ vaddr ⇒ pde option
get_pde mem rt va ≡
let pd_idx_offset = (addr_val va >> 20) && mask 12 << 2
in decode_heap_pde mem (rt + pd_idx_offset)

Based on the translation flow explained in Sect. 3.2.3, the function get_pde first
calculates the offset for page table traversal using the page table root rt and the
virtual address va, and then decodes the corresponding machine word into a page
directory entry using the function decode_heap_pde (definition not shown here).

Similar to function get_pde, the function get_pte returns a page table entry pte
given any virtual address va and a pointer to the page table pt_base.

get_pte mem pt_base va ≡
let pt_idx_offset = (addr_val va >> 12) && mask 8 << 2
in decode_heap_pte mem (pt_base + pt_idx_offset)

In this thesis, we use functions get_pde and get_pte to derive TLB entries from
page tables present in the main memory. With this we conclude the interface
functions of our page table abstraction and now explain our generic ARMv7-style
TLB model.

42

Chapter 4. A Formal Model of the ARMv7-A MMU

4.2 A Formal TLB Model for the ARMv7-style

MMU

In this section we introduce our formal TLB model for ARMv7-style MMU and
its constituent operations. As mentioned in the previous chapter (Sect. 3.2.4), the
ARM architecture manual (ARM, 2008) describes the TLB as a black box, i.e.
by its external interface only. It does not specify the replacement strategy or its
exact internal state. We use the same approach and base our abstraction directly
on the architecture manual: we specify a TLB model and its lookup operation.
Together with Kolanski’s ARM page table model, this will then form the basis for
specifying the semantics of memory operations and TLB maintenance operations
that we eventually want to reason about.

Figure 4.1: An Abstraction of an
ARMv7-style TLB

The state of a TLB is straightforward: it
is merely a set of TLB entries, where a
TLB entry consists of an ASID, a virtual
base address, a physical base address,
and a set of flags for access control and
other page attributes. Figure 4.1 gives
a visual representation. Corresponding
to the four page sizes of the architecture,
there are four different sizes of TLB entries. In this thesis we restrict ourselves to
small pages and sections, and therefore we have two types of TLB entries, one with
20-bit base addresses for small pages and one with 12-bits for sections. Formally:

type synonym ’a tlb = ’a tlb_entry set

datatype ’a tlb_entry =
EntrySmall (’a option) (20 word) (20 word) flags

| EntrySection (’a option) (12 word) (12 word) flags

We have specified the ASID field with a polymorphic type ’a option, so that we
can instantiate our TLB model for different caching layouts. For example in this
chapter where we model a simple TLB without ASIDs, we simply instantiate ’a
tlb_entry with the unit type. Later in Chapter 5, we instantiate the ASID field
with a type asid to formalise TLB with ASIDs and global entries, where a TLB
entry with None ASID field represents a global translation entry and with Some
ASID a process-specific translation entry.

The field flags in the type ’a tlb_entry is a record type for access permission
bits of TLB entries. The ARMv7-A architecture manual specifies the following
permission bits that are encoded in the TLB entries during page table walks:

43

4.2 A Formal TLB Model for the ARMv7-style MMU

record flags =
nG :: 1 word -- non-global bit
perm_APX :: 1 word -- access permission bit 2
perm_AP :: 2 word -- access permission bits 1 and 0
perm_XN :: 1 word -- execute-never bit

The nG bit of a TLB entry represents whether this entry provides address transla-
tion globally or for a process under an ASID. For a TLB without ASIDs we ignore
the nG bit in lookup and reload operations. We utilise the nG bit in our TLB
models with ASIDs in Chapter 5. The rest of the TLB flags are access permission
bits.

TLB Lookup: With the TLB state formalised, we now describe its lookup. For
any given 32-bit virtual address, a TLB lookup finds the corresponding TLB entry.
A lookup can have three kinds of results:

datatype ’e lookup_type = Miss | Incon | Hit ’e

These results are: either there is no corresponding entry and the TLB needs to
be refilled (Miss), or there is more than one matching entry and the TLB is in-
consistent (Incon), or there is exactly one correct result (Hit). We have kept the
lookup_type polymorphic for a generic TLB model.

For TLB lookup, we specify the virtual address range covered by a TLB entry
wrapped up in a type class entry_op:

class entry_op =
fixes range_of :: ’e ⇒ vaddr set

A TLB entry matches a virtual address va when range_of that TLB entry includes
the virtual address va. The lookup operation is then defined as:

entry_set :: ’e set ⇒ vaddr ⇒ ’e set
entry_set t va ≡ {e ∈ t | va ∈ range_of e}

lookup :: (vaddr ⇒ ’e set) ⇒ vaddr ⇒ ’e lookup_type
lookup eset va ≡
if eset va = ∅ then Miss
else if ∃ x. eset va = {x} then Hit (the_elem (eset va)) else Incon

where the_elem {x} = x. The function entry_set simply collects entries of the
given TLB matching the virtual address va. The lookup function expects a
matched entry set and performs a cardinality check to determine the resultant
lookup value. For notation of set operations, please refer to Sect. 2.2.3 of the
notation chapter.

44

Chapter 4. A Formal Model of the ARMv7-A MMU

It is worthwhile to discuss our choice of polymorphism for the parameter range_of:
we define it for any type ’e instead of an ’a tlb_entry because eventually we
will reason about a two-stage TLB framework having a separate page directory
cache (PDC). This choice allows us to conveniently instantiate class entry_op for
PDC entries in Chapter 6. For the TLB we instantiate the class entry_op for all
possible instantiations of ’a tlb_entry, since a virtual address range of a TLB
entry is independent of its ASID field:

range_of :: ’a tlb_entry ⇒ vaddr set
range_of e ≡
case e of
EntrySmall a vba pba fl ⇒

Addr ‘ {base_addr vba..base_addr vba + (212 - 1)}
| EntrySection a vba pba fl ⇒

Addr ‘ {base_addr vba..base_addr vba + (220 - 1)}

Where

base_addr v ≡ UCAST(’a → 32) v << 32 - size v

The range_of a small TLB entry is the set of all virtual addresses with their most-
significant 20-bits equal to the virtual base address of that entry. For a section
TLB entry, this range is for the most-significant 12-bits. The function base_addr
converts the 12-bit or 20-bit base address to the respective 32-bit address using
bit shifts operations <<. The function size returns the bit-length of a word in
type nat.

Physical Address from a TLB Lookup: Any result Hit e for a given vaddr va
can be translated directly into a paddr pa by replacing the most-significant bits
of va with the 12-bit or 20-bit physical base address stored in e. The function
va_to_pa performs this operation (for details about the notation and functions
over the type word, please refer to Sect. 2.2.3 in the chapter of notation):

va_to_pa va (EntrySmall a vba pba fl) =
Addr ((UCAST(20 → 32) pba << 12) || addr_val va && mask 12)

va_to_pa va (EntrySection a vba pba fl) =
Addr ((UCAST(12 → 32) pba << 20) || addr_val va && mask 20)

With this we conclude our generic TLB formal model for ARMv7-A architecture.

45

4.3 From TLB to MMU Model

Figure 4.2: ARMv7-style Memory Management Unit

4.3 From TLB to MMU Model

We now present a formal MMU model based on the ARM architecture man-
ual (ARM, 2008) integrated with the instruction set architecture (ISA) semantics
by Fox and Myreen (Fox and Myreen, 2010). This MMU model consists of a sim-
ple TLB that caches entries from the page table present in main memory without
ASIDs.

The purpose of this model is to highlight complexities even a simple TLB would
entail for program reasoning. It also introduces key concepts of our modeling and
refinement framework for the advanced MMU models of the next chapters. This
model also signifies how our reasoning methodology can potentially be scaled to
different TLB layouts.

The ARM ISA model is very detailed and extensively validated, but it assumes
a flat, total function MEM :: 32 word ⇒ 8 word without address translation as its
model for memory. We keep MEM as the basic model for physical memory, but
generalise it to the partial function MEM :: paddr ⇀ 8 word to express that it
works on physical addresses and that not all physical address might be backed by
memory in the machine. We then change all read and write instructions that access
main memory to not access physical memory directly, but to go through the TLB
and address translation first. The existing Cambridge ARM model conveniently
provides a narrow interface to memory with the functions mem_write and mem_read
that all other memory accesses go through, so we concentrate our work there.

Since our plan for this research is to provide a series of MMU models that differ
in the TLB abstraction, making them simpler and easier to reason about as we
progress, we design the interface between the rest of the ARMmodel and the MMU
as a type class mmu in Isabelle that we can instantiate. Separate instances will give
us separate models between which we then can prove refinement theorems.

46

Chapter 4. A Formal Model of the ARMv7-A MMU

Figure 4.2 gives an overview of our MMU model. To formalise this picture, we
extend the original state record of the Cambridge ARM model with an additional
hardware register: the page table root register TTBR0. As explained in the previous
section, for a TLB without ASIDs we instantiate ’a tlb as:

type synonym TLB = unit tlb

Next we use Isabelle’s extensible records (Naraschewski and Wenzel, 1998) to
extend state with the type TLB which will contain the TLB hardware state. The
TLB lookup operation for a virtual address va is simply:

abbreviation tlb_lookup t va = lookup (entry_set t) va

The main interface for the rest of the ARM model to the MMU is wrapped up in
the type class mmu:

class mmu =
mmu_translate :: vaddr ⇒ ’a state_scheme ⇒ paddr × ’a state_scheme
mmu_read :: vaddr × nat ⇒ ’a state_scheme ⇒ bl × ’a state_scheme
mmu_write ::

bl × vaddr × nat ⇒ ’a state_scheme ⇒ unit × ’a state_scheme
update_TTBR0 :: paddr ⇒ ’a state_scheme ⇒ unit × ’a state_scheme
flush :: flush_type ⇒ ’a state_scheme ⇒ unit × ’a state_scheme

Where ’a state_scheme are the potential extensions of the existing record type
state. The interface for the values being read and written in the ARM model
is via bl = bool list instead of machine words directly, which we keep here,
and the nat parameter indicates how many bytes to read/write, e.g. one byte, a
word, a double word, etc. The OS kernel may update the page table root register
during context switches which requires TLB maintenance, therefore we introduce
an update_TTBR0 instruction. The flush instruction, as the name describes, is
specified to invalidate TLB entries for maintaining coherency.

We now explain the instantiation of each of the parameters of type class mmu for
our MMU model. These functions also constitute the base model of our refinement
chain in Sect. 4.4. We begin by presenting the interface between TLB and page
table present in the main memory.

4.3.1 Page Table Walk

As explained in Sect. 3.2.4, in the ARMv7-A architecture the processor walks
the page table after a TLB miss and it also reloads the TLB with the respective
translation entry. We formalise such a page table walk from Kolanski’s page table
model (Kolanski and Klein, 2009) using his functions get_pde and get_pte to find

47

4.3 From TLB to MMU Model

the respective page table entries and to encode the result in the corresponding
’a tlb_entry format. Formally:

pt_walk :: ’a ⇒ heap ⇒ paddr ⇒ vaddr ⇒ ’a tlb_entry option
pt_walk asid mem root va ≡
case get_pde mem root va of None ⇒ None
| �PageTablePDE p� ⇒

case get_pte mem p va of None ⇒ None | �InvalidPTE� ⇒ None
| �SmallPagePTE bpa perms� ⇒ �to_sml_entry bpa perms va asid�

| �SectionPDE bpa perms� ⇒ �to_sec_entry bpa perms va asid�
| �_� ⇒ None

After reading the entry from the page table present in the memory mem at the
location root for the given virtual address va, the function pt_walk returns an
’a tlb_entry option: None in the case of an invalid page table entry and Some TLB
entry for a valid page table entry. The functions to_sml_entry and to_sec_entry
convert base physical address and permission bits stored in the page table entries
to the TLB entry format. They also encode the base virtual address from the
virtual address va and and determine the ASID field for the resultant TLB entry.
They are defined as (for bit shifts operations, please refer to Sect. 2.2.3):

to_sec_entry bpa perms va asid ≡
EntrySection (tag_conv asid (to_flgs perms))
(UCAST(32 → 12) (addr_val va >> 20))
(word_extract 31 20 (addr_val bpa)) (to_flgs perms)

to_sml_entry bpa perms va asid ≡
EntrySmall (tag_conv asid (to_flgs perms))
(UCAST(32 → 20) (addr_val va >> 12))
(word_extract 31 12 (addr_val bpa)) (to_flgs perms)

We have defined these conversion functions with a generic ASID interface, so that
we can instantiate them to different MMU layouts. The function to_flgs converts
the permission bits of the given page table entry to the respective TLB flags, and
the function word_extract extracts the specified number of bits from the given
n-bits word. The function tag_conv determines the ASID for the TLB entry. The
ASID field of a TLB entry is determined as: if the nG bit of the respective page
table entry is global, the ASID field of the TLB entry is None, otherwise the given
ASID is assigned to the TLB entry.

As the function pt_walk is defined for ’a tlb_entry, we access it for the MMU
model of Figure 4.2 as

pt_walk () mem root va

receiving an entry with type unit tlb_entry option. The tag conversion for the
unit case is automatically instantiated as:

48

Chapter 4. A Formal Model of the ARMv7-A MMU

tag_conv ut perms ≡ �()�

where the parameter ut is of type unit.

4.3.2 Address Translation

The address translation for memory operations is defined as:

mmu_translate va = do {
update_state (λs. s(|TLB := TLB s - tlb_evict s|));
(mem, ttbr0, tlb) ← read_state (MEM, TTBR0, TLB);
case tlb_lookup tlb va of
Miss ⇒

let entry = pt_walk () mem ttbr0 va
in if fault entry then raise PAGE_FAULT

else do {
update_state (λs. s(|TLB := TLB s ∪ {the entry}|));
return (va_to_pa va (the entry))

}
| Incon ⇒ raise IMPLEMENTATION_DEFINED
| Hit entry ⇒ return (va_to_pa va entry)

}

The function mmu_translate first evicts an underspecified set of entries from the
TLB. This models the fact that the architecture does not define the replacement
strategy and the programmer must assume that any entry could be evicted at any
time.1 Since the rest of the Cambridge ARM model is deterministic, we use an
oracle function tlb_evict here instead of true nondeterminism.

The next step in mmu_translate after reading out the hardware state is to do a
TLB lookup for the virtual address va to be translated. If the result of that lookup
is Incon, the machine raises an unrecoverable exception and halts, expressing the
fact that in normal operation, this state should never be encountered.

If the result is Hit entry, we translate entry to the corresponding physical address
pa using the function va_to_pa and return that address. A full formalisation would
at this point additionally check flags and access rights and generate the appropriate
exception information where needed.

If the result is Miss, we perform a page table walk using the function pt_walk
starting from the root address TTBR0. If the result of the page table walk is a page
fault i.e. fault entry ≡ (entry = None), we raise this fault, which will cause the
machine to jump to the appropriate exception handler. If the result of the walk

1ARM also provides locked down entries that will not be evicted automatically. These could
be modelled easily here by excluding them from the eviction set.

49

4.3 From TLB to MMU Model

is a particular mapping entry e, we perform a TLB reload by adding this entry to
the TLB, and execute address translation as in the Hit case.

4.3.3 Memory Operations

Reusing the original functions mem_write and mem_read from the ARM model for
physical memory, the instances for memory operation of the MMU model are
straightforward:

mmu_write (val, va, sz) = do {
pa ← mmu_translate va;
when_no_exc mem_write (val, pa, sz)

}

when_no_exc f = do {
exception ← read_state exception;
if exception = NoException then f else return ()

}

mmu_read (va, sz) = do { pa ← mmu_translate va; mem_read (pa, sz) }

Both, mmu_write and mmu_read, first perform address translation, and then their
original purpose, but using translated addresses instead. In case of an exception in
mmu_translate, the write function does nothing to give the translation exception
precedence, while the pure read function can continue, because it does not change
the state.

4.3.4 Updating the Page Table Root Register

In this base model, update_TTBR0 instruction merely does what its name describes,
TLB eviction is not entailed with updating the page table root register:

update_TTBR0 r = update_state (λs. s(|TTBR0 := r|))

4.3.5 Flush Operations

As described in section Sect. 3.2.4, the ARM architecture provides TLB main-
tenance operations to the OS kernel for flushing the entire TLB and also for
invalidating (evicting) outdated entries either by ASID or by virtual addresses
or by virtual addresses globally for all ASIDs. We formalise these maintenance

50

Chapter 4. A Formal Model of the ARMv7-A MMU

operations, and since our TLB model does not yet support ASIDs in this chapter
we model the required flush operations as:

datatype flush_type = FlushTLB | Flushvarange (vaddr set)

The instantiation for this base model is:

flush f ≡
case f of FlushTLB ⇒ update_state (λs. s(|TLB := ∅|))
| Flushvarange vset ⇒

update_state (λs. s(|TLB := flush_vset (TLB s) vset|))

FlushTLB simply makes the TLB set empty, whereas Flushvarange flushes the
entries matching the given set of virtual addresses, i.e.,

flush_vset t vset = t - (
⋃

v∈vset {e ∈ t | v ∈ range_of e})

With this we conclude presenting the base MMU model. By redirecting all other
memory-related functions in the ARM model to go through the interface of class
mmu and by introducing instructions for TLB maintenance operations, we arrive
at a full operational model that supports address translation and TLB caching
without ASIDs. The purpose of this research is not to provide a fully detailed
formalisation that is validated to comprehensively conform with existing hard-
ware, but to present the main ideas on how to simplify reasoning in the presence
of a TLB of ARMv7-A architecture. Despite this focus, we have validated the
model by executing a number of instructions in Isabelle/HOL, manually checking
consistency with the expected behaviour. A full formalisation would need a more
extensive test suite in the spirit of Fox and Myreen (Fox and Myreen, 2010).

In summary, we have so far extended the Cambridge ARM model by: a change of
memory model to admit the notion of unmapped memory, the introduction of an
MMU including the TLB and page table lookup mechanisms, the extension with
maintenance operations, and an adjustment of the subsequent memory operations
to include the address translation layer.

4.4 MMU Abstraction

The MMU model of Sect. 4.3 gives us the ground truth of how hardware operates,
and thereby the foundation for a logic for programs under the TLB without ASIDs,
but even this simple model is hard to reason about directly. From Sect. 4.3, we
identify that a TLB introduces:

• nondeterminism through unspecified entry replacement strategy,

51

4.4 MMU Abstraction

• potential state change caused by any mapped memory access, including
reads,

• potential (internally) inconsistent TLB state from multiple conflicting en-
tries, and

• potential (external) inconsistency between page table and TLB.

The latter two are states the program must avoid. The first two introduce unnec-
essary complexity: a program that is otherwise deterministic should not require
reasoning about nondeterminism, and a correctly operated TLB framework should
not complicate reasoning about memory reads nor memory writes that are unre-
lated to page tables.

In this section, we show how we can construct a model that avoids the additional
complexity and produces sufficient conditions for safe execution. In particular,
we build a series of formal abstractions of the concrete MMU model of Sect. 4.3
that are increasingly easier to reason about, but preserve functionality and the
optimisation opportunities OS developers must be able to exploit. We verify these
step-wise abstractions by refinement theorems.

Our refinement stack is shown in Figure 4.3 and it consists of three levels. In the
first refinement, we abstract our base MMU model to remove the eviction of TLB
entries, thus eliminating the nondeterminism for any logic built for this abstract
model. Next we abstract the deterministic TLB to cache the mapped state of the
active page table completely, giving us an MMU model with a saturated TLB and
hence eliminating state change on memory reads. Finally we abstract the TLB to
an extent that no actual TLB lookup is required: TLB inconsistencies are tracked
using a set of virtual addresses, while MMU operations are performed using the
page tables present in main memory. For each level up in the refinement stack
we prove that its abstraction preserves a refinement relation and is sound with
respect to its immediate concrete MMU model. We then join refinement levels in
order to show the soundness of the most abstract model with respect to the base
model of Sect. 4.3. We argue that the most abstract model is sound for program
verification by the usual data refinement idea, that if we manage to prove that a
program execute safely with the most abstract model, it will execute safely with
the concrete TLB model.

The main burden on the proof engineer that we cannot hope to eliminate com-
pletely in general will be to show that the TLB is currently in a consistent state
for the address to be accessed. We formalise consistency for a virtual address as:

consistent mem root tlb va =
(tlb_lookup tlb va = Hit (the (pt_walk () mem root va)) ∧
no_fault (pt_walk () mem root va) ∨
tlb_lookup tlb va = Miss)

This condition combines internal consistency of the TLB (no Incon results per-
mitted), with external consistency, i.e. synchronicity with the current state of the

52

Chapter 4. A Formal Model of the ARMv7-A MMU

Figure 4.3: Refinement Stack for MMU Models

mapped page table for this particular address. The condition for Hit ensures that a
TLB does not store translation entries for unmapped virtual addresses (no_fault).
We will see in the most abstract model that, while not eliminated, the condition
can be greatly simplified.

4.4.1 Determinism

With this in mind, we observe as the first step in our abstraction chain that a
TLB with fewer entries is always more consistent, and in this sense safer, than
one with more entries. Formally, lookup results naturally form an order with Miss
being the bottom element, and Incon the top:

l ≤ l’ ≡ l = Miss ∨ l’ = l ∨ l’ = Incon

We can prove monotonicity

Lemma 1. t ⊆ t’ =⇒ tlb_lookup t v ≤ tlb_lookup t’ v

Proof. By case distinction and unfolding the definitions.

We can use this in the abstraction chain by making the abstraction less safe, i.e.
more inconsistent, with the standard refinement idea that if we manage to prove
safe behaviour of the abstraction, we will also have proved safe behaviour of all
possible actual executions.

This means, we can use our observation above by noting that, instead of a TLB
that nondeterministically evicts entries, we can use a TLB that never evicts en-
tries, unless explicitly instructed. If we can prove a program safe with this larger
TLB, it will also be safe with the smaller TLB. We can prove this fact by instantiat-
ing mmu_translate for a deterministic version in which the TLB does not evict en-
tries and then proving refinement. We name this instantiation mmu_translate_det
and define it as:

53

4.4 MMU Abstraction

mmu_translate_det va ≡ do {
(mem, ttbr0, tlb) ← read_state (MEM, TTBR0, TLB);
case tlb_lookup tlb va of
Miss ⇒

let entry = pt_walk () mem ttbr0 va
in if fault entry then raise PAGE_FAULT

else do {
update_state (λs. s(|TLB := TLB s ∪ {the entry}|));
return (va_to_pa va (the entry))

}
| Incon ⇒ raise IMPLEMENTATION_DEFINED
| Hit entry ⇒ return (va_to_pa va entry)

}

For mmu_translate_det, the only difference to mmu_translate from Sect. 4.3.2 is
the missing tlb_evict line. We now present the refinement theorem between
mmu_translate and mmu_translate_det.

Theorem 1. Assuming that two states s and t have the refinement relationship

tlb_rel_det s t ≡ truncate s = truncate t ∧ TLB s ⊆ TLB t

where the notation truncate s means all fields of the extensible state record with-
out the TLB extension. That is, the states s and t differ only in the contents of the
TLB, and the TLB of s contains fewer entries. If the TLB of t is consistent w.r.t.
lookups in va, then the address translation of a virtual address va performed using
mmu_translate in s is the same as the one performed by mmu_translate_det in
t. Moreover, the resultant final states retain the relationship tlb_rel_det and the
TLBs remain consistent w.r.t. va. Figure 4.4 depicts this theorem as a diagram.
Formally:

mmu_translate va s = (pa, s’) mmu_translate_det va t = (pa’, t’)
consistent t va tlb_rel_det s t

pa’ = pa ∧ consistent t’ va ∧ tlb_rel_det s’ t’

Proof. We observe that the abstract TLB in state t is consistent for va, that is, a
lookup for va will either produce Miss or Hit. Given the subset relationship and
Lemma 1, we get that either both TLBs produce the same Hit e, or both walk
the page table (with the same result, since the states only differ in TLB content),
or that t produces a Hit, but s walks the page table. Since t is consistent for va,
the result of the walk has to agree with the Hit.

The definitions of the memory write and read operations remain unchanged com-
pared to the base model, but they now pick up the new mmu_translate_det in-
stance of the mmu class. The refinement between mmu_write and mmu_write_det is
presented below.

54

Chapter 4. A Formal Model of the ARMv7-A MMU

Figure 4.4: Refinement between Nondeterministic and Deterministic Translation

Theorem 2. Assuming that two states s and t have the refinement relationship
tlb_rel_det as defined for Theorem 1, if the TLB of t is consistent w.r.t. lookups
in va, then a memory write of value val to the virtual address va using mmu_write
is same as one performed by mmu_write_det in t. Moreover, the resultant final
states retain the relationship tlb_rel_det. Formally:

mmu_write (val, va, sz) s = ((), s’)
mmu_write_det (val, va, sz) t = ((), t’)

consistent t va tlb_rel_det s t
tlb_rel_det s’ t’

Proof. Since Theorem 1 says that mmu_translate_det and mmu_translate return
the same results, memory write is trivially equal to the base model.

It is important to note here that consistency of the TLB cannot be preserved
in Theorem 2, since memory writes can change the page table. This means, re-
establishing consistency on writes will be an obligation on the proof engineer, not
an automatic invariant that is provided by the model. This mirrors the reasoning
OS developers do mentally. Consistency is established either by reasoning that
the write was not to a page table, by using appropriate invalidation instructions,
or by reasoning that if a page table was changed, the change was unrelated to the
address that is about to be accessed.

Refinement between deterministic and nondeterministic memory read functions is
straightforward:

Theorem 3. Memory reads preserve tlb_rel_det and TLB consistency.

mmu_read (va, sz) s = (val, s’)
mmu_read_det (va, sz) t = (val’, t’)
consistent t va tlb_rel_det s t

val = val’ ∧ consistent t’ va ∧ tlb_rel_det s’ t’

Proof. Since Theorem 1 says that mmu_translate_det and mmu_translate return
the same results, memory read is trivially equal to the base model.

55

4.4 MMU Abstraction

The instructions update_TTBR0_det and flush_det have identical instantiations to
their nondeterministic version, since TLB is not evicted in these instructions. We
have proved their trivial refinement for completeness and omit presenting these
theorems here.

This MMU model removes nondeterminism from the base model and is sound for
executions in which the larger TLB never triggers an inconsistency. We will now
present our second abstract model based on this deterministic MMU.

4.4.2 Invariance

As the next step, we eliminate TLB state change for memory reads. We note that
the presence of an inconsistent entry in the TLB is not dangerous yet, only using
the inconsistent entry is. This means, for every memory transaction and MMU
operation we can add to the TLB all the mapped entries that the current page
table produces. As we have seen in the previous step, this is sound because we
add more entries that are consistent with the page table, and inconsistency with
older entries is not dangerous yet. This gives us a TLB that is always saturated
with entries for the mapped virtual addresses. On read operations, the state will
not change, because the set of page table results before and after reading is the
same. On write operations outside the page table we have the same — only on
writes to the page table we will get a state change in the TLB, which is what we
should expect. We saturate the TLB with the mapped page table entries after
updating the page table root register and flush operations as well. This way, we
fully capture the mapped state of the active page table after all MMU operations.

Formally, we instantiate mmu_translate of type class mmu in this model such that
the TLB always remains saturated i.e. whenever it accesses memory it reloads the
mapped page table to the TLB. We name the operation mmu_translate_sat:

mmu_translate_sat va = do {
tlb_refill;
tlb ← read_state TLB;
case tlb_lookup tlb va of Miss ⇒ raise PAGE_FAULT
| Incon ⇒ raise IMPLEMENTATION_DEFINED
| Hit entry ⇒ return (va_to_pa va entry)

}

tlb_refill = do {
(mem, ttbr0, tlb) ← read_state (MEM, TTBR0, TLB);
let mapped_ptable = ran (pt_walk () mem ttbr0);
update_state (λs. s(|TLB := tlb ∪ mapped_ptable|))

}

The call to tlb_refill at the beginning of mmu_translate_sat achieves the satu-

56

Chapter 4. A Formal Model of the ARMv7-A MMU

ration mentioned above by adding the ran of the pt_walk function to the TLB, i.e.
ran m = {b | ∃ a. m a = �b�}. In this saturated TLB mmu_translate_sat then
performs a standard lookup. Incon results still lead to the same exception as be-
fore. Miss results represents a page fault, and Hit results are the same as in the
previous models.

The saturation of the TLB with the mapped page table implies that we have
reduced external and internal inconsistency conditions to one condition: our sat-
urated TLBs always encode the full state of the mapped page table.

We now show refinement between mmu_translate_det of the last section with this
mmu_translate_sat.

Theorem 4. With the refinement relation
tlb_rel_sat s t ≡ truncate s = truncate t ∧ TLB s ⊆ TLB t ∧ saturated t
where
saturated t ≡ ran (pt_walk () (MEM t) (TTBR0 t)) ⊆ TLB t

We get data refinement between the deterministic mmu_translate_det and
mmu_translate_sat:

mmu_translate_det va s = (pa, s’)
mmu_translate_sat va t = (pa’, t’)
consistent t va tlb_rel_sat s t

pa’ = pa ∧ consistent t’ va ∧ tlb_rel_sat s’ t’

This means, we still get the same address translation results, and preserve consis-
tency, as well as the refinement relation, including saturation.

Proof. Essentially the same argument as before, observing that entries stemming
from pt_walk cannot make a va-consistent entry inconsistent.

For this MMU model, we also change the memory operations to preserve satura-
tion. The new instantiations for saturated TLBs are mmu_write_sat and
mmu_read_sat:

mmu_write_sat (val, va, sz) = do {
pa ← mmu_translate_sat va;
when_no_exc do { mem_write (val, pa, sz); tlb_refill }

}

mmu_read_sat (va, sz) = do {
pa ← mmu_translate_sat va;
mem_read (pa, sz)

57

4.4 MMU Abstraction

}

In mmu_write_sat, the TLB is refilled after the write operation to maintain sat-
uration as this write could have been to a page table present in the memory.
Similarly in mmu_read_sat, this saturation is being achieved implicitly through
mmu_translate_sat function in the start, as reading from the memory does not
affect the state of page table.

Theorem 5. Memory writes preserve the TLB refinement relation tlb_rel_sat,
including saturation.

mmu_write_det (val, va, sz) s = ((), s’)
mmu_write_sat (val, va, sz) t = ((), t’)

consistent t va tlb_rel_sat s t
tlb_rel_sat s’ t’

Proof. Follows directly from the refinement result on mmu_translate_sat.

Theorem 6. Memory reads preserve the TLB refinement relation tlb_rel_sat,
including TLBs consistency and saturation.

mmu_read_det (va, sz) s = (val, s’)
mmu_read_sat (va, sz) t = (val’, t’)
consistent t va tlb_rel_sat s t

val = val’ ∧ consistent t’ va ∧ tlb_rel_sat s’ t’

Proof. Follows directly from the refinement result on mmu_translate_sat.

Similarly, updating the page table root and flush functions now need to include
a global TLB refill after their operations to preserve saturation. We saturate the
TLB after the flush operations so that the TLB always capture the mapped state
of the page table. Their instantiations are presented below:

update_TTBR0_sat r =
do { update_state (λs. s(|TTBR0 := r|)); tlb_refill }

flush_sat f = do {
tlb ← read_state TLB;
(case f of FlushTLB ⇒ update_state (λs. s(|TLB := ∅|))
| Flushvarange vset ⇒

update_state (λs. s(|TLB := flush_vset tlb vset|)));
tlb_refill

}

These instantiations preserve tlb_rel_sat refinement relation.

58

Chapter 4. A Formal Model of the ARMv7-A MMU

Theorem 7. Updating the page table root register preserves the refinement relation
between saturated and deterministic states.

update_TTBR0_det r s = ((), s’)
update_TTBR0_sat r t = ((), t’) tlb_rel_sat s t

tlb_rel_sat s’ t’

Proof. Follows directly from the definitions of update_TTBR0_det and
update_TTBR0_sat.

Theorem 8. TLB flush operations preserve the refinement relation between sat-
urated and deterministic states.

flush_det f s = ((), s’)
flush_sat f t = ((), t’) tlb_rel_sat s t

tlb_rel_sat s’ t’

Proof. Follows directly from the definitions of flush_det and flush_sat.

With this we complete the presentation of the second abstract MMU model in our
refinement chain. Before concluding this section, we comment on the reductions
and reasoning simplifications for memory operations based on this saturated MMU
model.

Simplification Lemmas: For memory reads, as planned, the TLB state remains
unchanged in this saturated model, eliminating one of the major difficulties in
reasoning about the TLB.

Lemma 2. In saturated states, memory reads do not change the TLB.

mmu_read_sat (va, sz) s = (val, t) saturated s
TLB t = TLB s

Proof. By observing that memory reads do not change the state and that a satu-
rated TLB already contains all current mapped page table entries.

A simple optimisation to this model would be to not update the TLB for every
memory write, but only for writes to the current page table structure or the page
table root register. This immediately produces a reduction result: if the current
page table structure is not writeable, and if the execution mode is unprivileged,
i.e. the page table root register cannot be changed, then we know that no memory
transaction will change the saturated TLB state, and we can therefore reason
about a much simpler model without TLB and with fixed address translation.
This is what user-level execution expects: users should not need to worry about the
presence or absence of a TLB. The following theorem encapsulates the conditions
for this reduction.

59

4.4 MMU Abstraction

Lemma 3. Memory writes that do not change the page table content leave the
saturated TLB constant, preserving consistency and saturation.

mmu_write_sat (val, va, sz) s = ((), s’)
∀ va. pt_walk () (MEM s) (TTBR0 s) va = pt_walk () (MEM s’) (TTBR0 s’) va

consistent s v saturated s
TLB s’ = TLB s ∧ consistent s’ v ∧ saturated s’

Proof. The condition that all pt_walk outcomes remain the same after the memory
write directly implies that the range (pt_walk () mem ttbr0) term in tlb_refill
remains the same, and since the TLB is already saturated, the TLB refill has no
effect.

In summary, reasoning about the TLB has become much more tractable in this
model. Inconsistency is reduced to internal inconsistency only, and nondetermin-
ism as well as unnecessary state change are removed. For a program logic on top
of this model it would suffice to guarantee the absence of inconsistencies, and to
treat page faults the same way a program logic for standard address translation
would, e.g. as in Kolanski’s work (Kolanski, 2011).

4.4.3 Essence

This leads us to the last refinement step, where we abstract the saturated TLB
to the extent that no actual TLB lookup is required: the functionality of the TLB
of Figure 4.2 can be captured completely by only keeping record of those virtual
addresses that are inconsistent in the TLB with the current page table. It is
then enough to perform address translation using the page table only. Figure 4.5
presents an overview of the ARMv7-A MMU with our abstract TLB.

For this last abstraction, we extend the record type state not with tlb, but with
incon_set of type vaddr set and instantiate mmu_translate of type class mmu to:

mmu_translate_set va ≡
do {

(mem, ttbr0, incon_set) ← read_state (MEM, TTBR0, incon_set);
if va ∈ incon_set then raise IMPLEMENTATION_DEFINED
else let entry = pt_walk () mem ttbr0 va

in if fault entry then raise PAGE_FAULT
else return (va_to_pa va (the entry))

}

Note that this address translation contains no state change at all any more, apart
from potentially raising exceptions.

60

Chapter 4. A Formal Model of the ARMv7-A MMU

Figure 4.5: ARMv7-style Memory Management Unit with Abstract TLB

With this definition, we get the following theorem.

Theorem 9. Let tlb_rel_set denote the refinement relation
tlb_rel_set s t ≡
truncate s = truncate t ∧ incon_addrs s ⊆ incon_set t ∧ saturated s

where
incon_addrs s ≡
{va | tlb_lookup (TLB s) va = Incon} ∪
{va | ∃ x. tlb_lookup (TLB s) va = Hit x ∧

fault (pt_walk () (MEM s) (TTBR0 s) va)}

constructs the set of TLB-inconsistent addresses and false hits in the saturated
TLB. False hits are those unmapped virtual addresses with resepct to the current
page table that produces a Hit instead of a Miss in the TLB lookup. The functions
mmu_translate_sat and mmu_translate_set preserve this relation and yield the
same result. Formally:

mmu_translate_sat va s = (pa, s’)
mmu_translate_set va t = (pa’, t’)

va /∈ incon_set t tlb_rel_set s t
pa = pa’ ∧ va /∈ incon_set t’ ∧ tlb_rel_set s’ t’

Proof. According to the refinement relation, the incon_set tracks the inconsistent
entries in the saturated TLB. We are, therefore, in the else branch of the function
mmu_translate_set and in the Hit case of mmu_translate_sat. The results must
agree, because saturated says that the Hit results represent precisely the walks
we perform in mmu_translate_set.

61

4.4 MMU Abstraction

As in the previous step, the memory access instantiations have to change. For
mmu_write_set, we must figure out which new addresses might have become in-
consistent. We do this by comparing the page tables before and after the physical
write operation. For mmu_read_set, the definition is similar to the base-level model,
we only use the new mmu_translate_set instance.

mmu_write_set (val, va, sz) = do {
(mem, ttbr0, incon_vaddrs) ← read_state (MEM, TTBR0, incon_set);
pa ← mmu_translate_set va;
when_no_exc do {

mem_write (val, pa, sz);
mem’ ← read_state MEM;
let pt_comp =

ptable_comp (pt_walk () mem ttbr0) (pt_walk () mem’ ttbr0);
update_state (λs. s(|incon_set := incon_vaddrs ∪ pt_comp|))

}
}

ptable_comp wlk wlk’ ≡
{va | no_fault (wlk va) ∧ no_fault (wlk’ va) ∧ wlk va �= wlk’ va ∨

no_fault (wlk va) ∧ fault (wlk’ va)}

mmu_read_set (va, sz) = do {
pa ← mmu_translate_set va;
mem_read (pa, sz)

}

To figure out the new TLB-inconsistencies as the result of a memory write, we
compare the results of page table walks before and after the write operation using
the ptable_comp function. Two scenarios might add inconsistent entries: changing
an existing mapping (first disjunct of ptable_comp), or removing an existing map-
ping (second disjunct). Note that a single heap write can affect multiple mappings
at once, for instance when it changes the pointer to an entire page table level. It
is the effect of this comparison that OS engineers reason about informally when
they compute which addresses need to be flushed from the TLB.

For mmu_translate_set and mmu_read_set it is now obvious in this model that the
entire state remains constant if there is no translation exception, and, with Theo-
rem 9 also that memory reads return the correct result. Moreover, mmu_write_set
also preserves tlb_rel_set with the saturated mmu_write_sat and we provide its
refinement below.

Theorem 10. Memory writes for TLB-consistent addresses preserve the refine-
ment relation tlb_rel_set.

62

Chapter 4. A Formal Model of the ARMv7-A MMU

mmu_write_sat (val, va, sz) s = ((), s’)
mmu_write_set (val, va, sz) t = ((), t’)

va /∈ incon_set t tlb_rel_set s t
tlb_rel_set s’ t’

Proof. First, we observe that, with Theorem 9, the TLB lookup produces the same
result on each abstraction level, and therefore the two physical write operations
produce the same memory state. Second, we need to establish that incon_set
correctly tracks which entries in the saturated TLB have become inconsistent.
These are the mapped entries with those addresses for which pt_walk now yields
a different result, which is precisely what ptable_comp computes.

Refinement between mmu_read_set and mmu_read_sat is presented below.

Theorem 11. Memory reads for TLB-consistent addresses preserve the refine-
ment relation tlb_rel_set.

mmu_read_sat (va, sz) s = (val, s’)
mmu_read_set (va, sz) t = (val’, t’)
va /∈ incon_set t tlb_rel_set s t

val = val’ ∧ va /∈ incon_set t’ ∧ tlb_rel_set s’ t’

Proof. By noting that the state of TLB and the incon set remain constant in
mmu_read_sat and mmu_read_set, and their memory read results are equal.

For this abstract MMU model that keeps track of inconsistent virtual addresses
with the current page table, updating the page table root register has an effect
on the incon set similar to changing the state of the current page table with a
memory write operation. In update_TTBR0_set, we use the ptable_comp function
with walks from two page tables to compute the resultant inconsistent virtual
addresses.

update_TTBR0_set r = do {
(mem, ttbr0, incon_set) ← read_state (MEM, TTBR0, incon_set);
let ptable_comp =

ptable_comp (pt_walk () mem ttbr0) (pt_walk () mem r);
update_state
(λs. s(|TTBR0 := r|)(|incon_set := incon_set ∪ ptable_comp|))

}

For flush operations, we simply remove the given virtual addresses from the incon
set.

flush_set f ≡

63

4.4 MMU Abstraction

case f of FlushTLB ⇒ update_state (λs. s(|incon_set := ∅|))
| Flushvarange vset ⇒ do {

incon_set ← read_state incon_set;
update_state (λs. s(|incon_set := incon_set - vset|))

}

update_TTBR0_set and flush_set preserve the refinement relation with their re-
spective saturated instantiations.

Theorem 12. Updating the page table root register preserves the refinement rela-
tion tlb_rel_set.

update_TTBR0_sat r s = ((), s’)
update_TTBR0_set r t = ((), t’) tlb_rel_set s t

tlb_rel_set s’ t’

Proof. By establishing that incon_set correctly tracks the inconsistent entries
using ptable_comp of the respective saturated TLB after updating the page table
root.

Theorem 13. Flush instruction preserve the refinement relation tlb_rel_set.

flush_sat f s = ((), s’)
flush_set f t = ((), t’) tlb_rel_set s t

tlb_rel_set s’ t’

Proof. By unfolding definitions and basic set reasoning.

We now conclude our most abstract MMU model and its refinement. In this
model the TLB modeling has been reduced to merely a consistency check for
virtual addresses (using incon_set), there is no actual TLB lookup, and after
every MMU operation the resultant inconsistencies are detected and loaded into
the incon_set. A program reasoning framework taking this MMU model as its
memory model would avoid the complexities of TLB reasoning that are identified
in the beginning of this section. In our program logic and case study for program
verification (Chapter 7 and Chapter 8), we show that for unprivileged user-level
code we can reduce to a model without TLB and with fixed address translation.
For privileged OS-level code, address translation is usually fixed for the OS code
itself and all locations it accesses. In this case, the TLB will always return these
fixed mappings, and cannot become inconsistent since they never change. That
means, if we prove that each OS memory access remains within a safe set of
addresses and that the page table mappings for this set never change, execution
is safe and does not need to reason about the TLB. For seL4 for instance, this
property is already proved as part of its reasoning about page tables without the
TLB.

64

Chapter 4. A Formal Model of the ARMv7-A MMU

Figure 4.6: Refinement between Nondeterministic and Abstract MMU

4.4.4 Joining the Refinement Levels

In this section, we join the refinement levels of Figure 4.3 to show that our most
abstract model is sound with respect to the base model. The resultant refinement is
between the abstract and the base model through the deterministic and saturated
MMU models as shown in Figure 4.6. The refinement relation tlb_rel is:

tlb_rel r t ≡
∃ s s’. tlb_rel_det r s ∧ tlb_rel_sat s s’ ∧ tlb_rel_set s’ t

Where the state r has the nondeterministic TLB, the state s has the deterministic
TLB, the state s’ has the saturated TLB and the state t has incon set. The
functions tlb_rel_det, tlb_rel_sat and tlb_rel_set are the refinement relations
provided in Sect. 4.4.1, Sect. 4.4.2 and Sect. 4.4.3 respectively.

Since we have explained refinement of every MMU operation for each level of Fig-
ure 4.3 in the previous sections, we now group MMU operations and supply their
refinement collectively. We use the same approach while explaining refinement of
MMU models with ASIDs and two-stage TLBs in Chapter 5 and Chapter 6. We
group MMU operations as:

datatype mem_op_typ = translate (vaddr)
| read (vaddr × nat)
| write (bool list × vaddr × nat)

datatype mmu_op_typ = root_update (paddr)
| tlb_flush (flush_type)

We have grouped memory operations separately from MMU maintenance because
memory operations require TLB consistency for the given virtual address for suc-
cessful evaluation and subsequent refinement, and MMU operation do not require
TLB consistency. We encode the results of memory operations as:

65

4.4 MMU Abstraction

datatype mem_res_typ = PA (paddr)
| BL (bool list)
| UT (unit)

The mem_res_typ represents the result of memory operations: a physical address
paddr for address translation, a machine word in the form of bool list for mem-
ory read and unit for memory write. The result value of MMU operations is
simply unit. The evaluation functions for memory and MMU operations in a
state extended with either of the TLB interfaces is then:

mem_op :: mem_op_typ ⇒ ’a state_scheme ⇒ res_typ × ’a state_scheme
mem_op (translate va) s =
(PA (fst (mmu_translate va s)), snd (mmu_translate va s))
mem_op (read (va, sz)) s =
(BL (fst (mmu_read (va, sz) s)), snd (mmu_read (va, sz) s))
mem_op (write (bl, va, sz)) s =
(UT (fst (mmu_write (bl, va, sz) s)), snd (mmu_write (bl, va, sz) s))

mmu_op :: mmu_op_typ ⇒ ’a state_scheme ⇒ unit × ’a state_scheme
mmu_op (root_update rt) s = update_TTBR0 rt s
mmu_op (tlb_flush f) s = flush f s

Note that these evaluation functions are polymorphic with ’a state_scheme, and
this polymorphism enables us to have a generic interface for different MMU mod-
els: we simply access these functions with a nondeterministic TLB state and
name these accesses as mem_op_nondet and mmu_op_nondet. Similarly, mem_op_set
and mmu_op_set represent the evaluation for the abstract TLB model having the
incon_set.

We then have two refinement theorems between the nondeterministic and the ab-
sstract MMU models as present below and also shown in Figure 4.7 and Figure 4.8.

Theorem 14. Refinement between nondeterministic and abstract memory opera-
tions.

mem_op_nondet f r = (res, r’)
mem_op_set f t = (res’, t’) consistent_set f t tlb_rel r t

res = res’ ∧ tlb_rel r’ t’

where mem_op_nondet and mem_op_set simply evaluate the memory operation f of
type mem_op_typ for the given states giving the respective results res and res’ and
reaching the evaluated states. The consistent_set ensures that the abstract state
t is TLB-consistent: the given virtual address is not an element of incon_set of
state t.

Proof. By case analysis on the function f and using the respective refinement
theorems of Sect. 4.4.1, Sect. 4.4.2 and Sect. 4.4.3 and observing that for each

66

Chapter 4. A Formal Model of the ARMv7-A MMU

Figure 4.7: Refinement between Nondeterministic and Abstract Memory Opera-
tions

level, the address consistency condition on this level implies address consistency
on the level below.

Theorem 15. Refinement between nondeterministic and abstract MMU mainte-
nance operations.

mmu_op_nondet f r = ((), r’)
mmu_op_set f t = ((), t’) tlb_rel r t

tlb_rel r’ t’

where mmu_op_nondet and mmu_op_set simply evaluates the MMU operation f of
type mmu_op_typ for the given states reaching the evaluated states.

Proof. By case analysis on the function f and using the respective refinement
theorems of Sect. 4.4.1, Sect. 4.4.2 and Sect. 4.4.3.

With this we conclude presenting the refinement stack.

4.5 Summary and Remarks

In this chapter, we have presented our formal page table interface and a generic
TLB model for the ARMv7-A architecture. We have then instantiated our TLB
model to a simple TLB caching translation entries without ASIDs and have pro-
vided an MMU model with memory and maintenance operations integrated with
the Cambridge ARM ISA model. We have then identified the reasoning complex-
ities entailed by the TLB and have presented our refinement framework in detail
that avoids these additional complexities and abstracts away unnecessary hard-
ware details. We have concluded this chapter by presenting the soundness of our
abstraction with respect to the base model.

67

4.5 Summary and Remarks

Figure 4.8: Refinement between Nondeterministic and Abstract MMU Operations

The main message of the refinement chain available online (Syeda, 2019) and
presented in this chapter is that a program logic on top of this model only has
to keep track of and check for inconsistent TLB entries, and that TLB entries
can only be made inconsistent with changes to the page table and TTBR0. TLB
invalidation can be selective and can be deferred until we can no longer prove from
other sources that we only access consistent mappings. In essence, the refinement
chain in this chapter hides the low-level hardware TLB reasoning and provides a
much simpler interface to the proof engineer.

In Chapter 5 and Chapter 6, we build on the MMU model of this chapter to
formalise advanced MMU features such as ASIDs, global TLB entries and two-
stage TLB.

68

CHAPTER

FIVE

A Formal Model of the ARMv7-A MMU
with ASIDs

5.1 ARMv7-A MMU Model with ASIDs

In the previous chapter, we have presented an operational model of the
ARMv7-A memory management unit (MMU) without ASIDs. In this chap-
ter, we build on that model to formalise the MMU with the TLB caching
page table entries under ASIDs and global tags. We again build a refine-
ment stack to abstract away the hardware details and we also explain how
our refinement framework handles the added features. In Chapter 6, we ex-
tend the MMU model of this chapter with a separate page directory cache
(PDC) to develop a two-stage TLB model for more recent implementations
of the ARMv7-A architecture.

This chapter is organised as: we instantiate the generic TLB model pre-
sented in the previous chapter (Sect. 4.2) to the TLB caching entries under
ASIDs and global tags. We then provide the base MMU model including
address translation, memory operations, TLB maintenance operations as
well register update instructions affecting the state of the TLB. We then
provide a series of refinements to abstract away the hardware details of this
base MMU model. For each refinement level, we first explain the model
and then provide the refinement theorems collectively as we presented in
Sect. 4.4.4. In the end we join the refinement levels and conclude the
chapter.

This chapter is based on the published work (Syeda and Klein, 2017) and
the submitted work (Syeda and Klein, 2019).

5.1 ARMv7-A MMU Model with ASIDs

We now present a formal MMU model with ASIDs for the ARMv7-A architecture
(ARM, 2008) and integrate it with the instruction set architecture (ISA) semantics
by Fox and Myreen (Fox and Myreen, 2010). This MMU model includes a TLB
that caches entries under ASIDs from the page table present in the main memory.
As mentioned in the virtual memory chapter (Sect. 3.2.4), the ARMv7-A architec-
ture associates a process-specific tag called address space identifier (ASID) with
translation entries of the TLB. The ASIDs enable the TLB to cache translation
entries from different processes. The architecture provides 8-bit ASIDs, which
means the TLB can cache entries for up to 256 processes; c.f. (ARM, 2008, Chap-
ter B3). The architecture also supports global page table entries: a page table
entry marked as global is cached in the TLB providing address translation for
all processes. On a TLB miss, the processor does the page table walk, checks
the global bit of the page table entry to determine the nG bit (non-global bit) for
the respective TLB entry. We model ASIDs and global attributes for our formal
ARMv7-A MMU specification, and also develop a refinement stack to abstract the
hardware details. This model is then used in the next chapter to formalise the
MMU with the two-stage TLB as implemented in Cortex-A15.

70

Chapter 5. A Formal Model of the ARMv7-A MMU with ASIDs

Figure 5.1: ARMv7-style Memory Management Unit with ASIDs

Figure 5.1 gives an overview of the ARMv7-A MMU with ASIDs. This MMU is
similar to the MMU without ASIDs (Figure 4.2), but now the TLB stores entries
with ASIDs and global tags. To formalise the simpler MMU of Figure 4.2, we had
extended the original state record type of the Cambridge ARM model with the
page table root register TTBR0. For the TLB with ASIDs and global entries, we
now additionally introduce the type asid as:

type synonym asid = 8 word

and instantiate ’a for the type ’a tlb, introduced in Sect. 4.2, as:

type synonym TLB = asid tlb

An ASID-specific TLB entry has an ASID field Some asid, while None represents
a global TLB entry. The range_of a TLB entry remains independent of its ASID
field, and we use the same instantiation provided as in Sect. 4.2. However, TLB
lookup now has to change to a lookup under an ASID. We model the TLB lookup
under an ASID by finding the matched entry set of the TLB for that ASID:

asid_entry_set :: asid tlb_entry set ⇒ vaddr ⇒ asid tlb_entry set
asid_entry_set t a va ≡
{e ∈ entry_set t va | asid_of e = None ∨ asid_of e = �a�}

abbreviation tlb_lookup t a va = lookup (asid_entry_set t a) va

Where lookup is the same function as presented in Sect. 4.2 on Page 44. Given
a virtual address va and an ASID a, the function asid_entry_set is a filter for
the matched entry_set: an entry matching the virtual address va has to be either
global or under the same ASID a in order to provide translation for the virtual ad-
dress va. The function asid_of simply returns the ASID field of a TLB entry. We
can also classify a given TLB within its global_entries and non_global_entries:

71

5.1 ARMv7-A MMU Model with ASIDs

global_entries :: asid tlb_entry set ⇒ asid tlb_entry set
global_entries t = {e ∈ t | asid_of e = None}

non_global_entries :: asid tlb_entry set ⇒ asid tlb_entry set
non_global_entries t = {e ∈ t | ∃ a. asid_of e = �a�}

Next we use Isabelle’s extensible records (Naraschewski and Wenzel, 1998) to
extend the record type state with the type asid × TLB which will contain the
active ASID register and the TLB hardware state. This MMU model inherits
all operations of the base model without ASIDs (presented in Sect. 4.3). These
operations include address translation, memory read and write, updating the page
table root register and TLB maintenance instructions. The state of the TLB
caching entries under ASIDs is also affected when the OS kernel changes the
ASID register, therefore for this MMU we add instruction for updating the ASID
register. We also formalise the TLB flush operations under ASIDs.

This means, we extend the interface of type class mmu, presented in Sect. 4.3, as:

class mmu_extended = mmu +
fixes update_ASID :: 8 word ⇒ ’a state_scheme ⇒ unit × ’a state_scheme
fixes flush_with_ASID ::

asid_flush_type ⇒ ’a state_scheme ⇒ unit × ’a state_scheme

Where ’a state_scheme are the potential extensions of the existing record type
state. The type class mmu_extended inherits all the parameters of its parent class
mmu. We will explain asid_flush_type in the MMU operations of the base model
in Sect. 5.1.3.

For presenting the MMU model and then later the refinement stack, we group the
parameters of the type class mmu_extended similar to as before:

datatype mem_op_typ = translate (vaddr)
| read (vaddr × nat)
| write (bool list × vaddr × nat)

datatype mmu_op_typ = root_update (paddr)
| asid_update (asid)
| flush_addr (flush_type)
| flush_asid (asid_flush_type)

Note that the type mmu_op_typ now contains additional ASID operations.

We evaluate the operations of the type class mmu_extended in an ’a state_scheme
reaching the output state as:

72

Chapter 5. A Formal Model of the ARMv7-A MMU with ASIDs

Figure 5.2: Visual Representation of Page Table Walk Function

mem_op :: mem_op_typ ⇒ ’a state_scheme ⇒ res_typ × ’a state_scheme
mmu_op :: mmu_op_typ ⇒ ’a state_scheme ⇒ unit × ’a state_scheme

Note that these evaluation functions are polymorphic with ’a state_scheme, and
this polymorphism will enable us to have a generic interface for different MMU
models later in our refinement stack. For an example of a similar evaluation
function, please refer to the refinement section of the previous chapter (Sect. 4.4.4).

We now explain the instantiation of each of the parameters of the type class
mmu_extended for our MMU model, these functions will also constitute the base
model of our refinement chain in Sect. 5.2.

5.1.1 Page Table Walk

We have explained our generic page table interface for encoding the TLB entries
in the previous chapter (Sect. 4.1). For the MMU model with ASIDs, we access
this interface for a virtual address va under an ASID tag asid to retrieve the TLB
entry from the page table located at the root address root in the memory mem as:

pt_walk asid mem root va

This access provides us with a TLB entry of the type asid tlb_entry option.

The Figure 5.2 gives an overview of our page table interface. The function pt_walk
uses a function called tag_conv to determine the ASID field of the resultant TLB
entry:

tag_conv asid perms ≡ if nG perms = 0 then None else �asid�

This function checks the nG (non-global) bit of the arm_perm_bits of a page table
entry to determine the value of the ASID field.

73

5.1 ARMv7-A MMU Model with ASIDs

5.1.2 Memory Operations

We now explain memory operations including address translation, memory read
and write for our MMU model. In the end of this section, we wrap them in the
interface type mem_op_typ.

Address Translation: The address translation for memory operations is:

mmu_translate va = do {
update_state (λs. s(|TLB := TLB s - tlb_evict s|));
(mem, ttbr0, asid, tlb) ← read_state (MEM, TTBR0, ASID, TLB);
case tlb_lookup tlb asid va of
Miss ⇒

let entry = pt_walk asid mem ttbr0 va
in if fault entry then raise PAGE_FAULT

else do {
update_state (λs. s(|TLB := TLB s ∪ {the entry}|));
return (va_to_pa va (the entry))

}
| Incon ⇒ raise IMPLEMENTATION_DEFINED
| Hit entry ⇒ return (va_to_pa va entry)

}

The strength of our modeling is that the above function is structurally similar to
the address translation function of the base model of Chapter 4, it now takes the
current ASID into account for TLB lookup and reloading. As before, the first step
in the function mmu_translate is to evict an underspecified set of entries from the
TLB.

The next step in the mmu_translate function after reading out the hardware state
is to do a TLB lookup for the virtual address va to be translated under the active
ASID. If the result of that lookup is Incon, the machine raises an unrecoverable
exception and halts, expressing the fact that in normal operation, this state should
never be encountered.

If the result is Hit entry, we translate e to the corresponding physical address pa
using the function va_to_pa and return that address.

If the result is Miss, we perform a page table walk using the function pt_walk
starting from the root address TTBR0 under the active ASID. If the result of the
page table walk is a page fault, we raise this fault. If the result of the walk is a
particular mapping entry entry, we perform a TLB reload by adding this entry to
the TLB, and execute address translation as in the Hit case.

Memory Write and Read: Again, the memory operations are structurally sim-
ilar to that of the base model of Chapter 4, they are now carried out under the
current ASID. We reuse the original functions mem_write and mem_read from the

74

Chapter 5. A Formal Model of the ARMv7-A MMU with ASIDs

ARM model for physical memory to define the instances for memory operations:

mmu_write (val, va, sz) = do {
pa ← mmu_translate va;
when_no_exc mem_write (val, pa, sz)

}

mmu_read (va, sz) = do {
pa ← mmu_translate va;
mem_read (pa, sz)

}

Similar to the base model of Chapter 4, mmu_write and mmu_read first perform
address translation, and then their original purpose, but using translated addresses
instead. In case of an exception in mmu_translate, the write function does nothing
to give the translation exception precedence, while the pure read function can
continue, because it does not change the state.

Evaluation: We instantiate the function mem_op for the state having the asid and
the nondeterministic TLB, and call this instantiation mem_op_nondet. The generic
interface of the function mem_op and the type class mmu_extended then picks up the
definitions for translate, read and write presented above (Page 72).

5.1.3 MMU Operations

We now explain MMU operations including updating the page table root and
ASID registers and flush operations. In the end of this section, we wrap them in
the type mmu_op_typ for their evaluation.

Updating the Page Table Root Register: In this base model, the instruction
update_TTBR0 merely does what its name describes. TLB eviction is not entailed
by updating the page table root register:

update_TTBR0 r = update_state (λs. s(|TTBR0 := r|))

Updating the ASID Register: The update_ASID instruction merely does what
its name describes. Again, TLB eviction is not entailed by updating the ASID
register:

update_ASID a = update_state (λs. s(|ASID := a|))

Flush Operations: As described in the chapter of virtual memory (Sect. 3.2.4),
the ARM architecture provides TLB maintenance operations to the OS kernel for

75

5.1 ARMv7-A MMU Model with ASIDs

flushing the entire TLB and also for invalidating (evicting) outdated entries either
by ASID or by virtual addresses or by virtual addresses globally for all the ASIDs.
We formalise these TLB maintenance operations as:

datatype flush_type = FlushTLB | Flushvarange (vaddr set)

datatype asid_flush_type = FlushASID (asid)
| FlushASIDvarange (asid) (vaddr set)

The instantiations of flush operations for this base model are:

flush f ≡
case f of FlushTLB ⇒ update_state (λs. s(|TLB := ∅|))
| Flushvarange vset ⇒

update_state (λs. s(|TLB := flush_vset (TLB s) vset|))

flush_with_ASID f ≡
case f of
FlushASID a ⇒ update_state (λs. s(|TLB := flush_asid (TLB s) a|))
| FlushASIDvarange a vset ⇒

update_state (λs. s(|TLB := flush_asid_vset (TLB s) a vset|))

FlushTLB simply makes the TLB set empty, whereas Flushvarange flushes the
entries matching the given set of virtual addresses, i.e.,

flush_vset t vset = t - (
⋃

v∈vset {e ∈ t | v ∈ range_of e})

FlushASID flushes all the entries under the given ASID:

flush_asid t a = t - {e ∈ t | asid_of e = �a�}

And, FlushASIDvarange flushes the entries for the given set of virtual addresses
under the given ASID:

flush_asid_vset t a vset =
t - (

⋃
v∈vset {e ∈ t | v ∈ range_of e ∧ asid_of e = �a�})

Evaluation: We instantiate the function mmu_op for the state having the asid and
the nondeterministic TLB, and call this instantiation mmu_op_nondet. The generic
interface of the function mmu_op and the type class mmu_extended then picks up the
above presented definitions.

With this we conclude presenting the base MMU model.

76

Chapter 5. A Formal Model of the ARMv7-A MMU with ASIDs

5.2 MMU Abstraction

As in Chapter 4, the base MMU model presented above gives us the ground truth
of how the hardware operates, and thereby the foundation for a logic for programs
under the TLB with ASIDs and global translation entries, but as in Chapter 4
this model is hard to reason about directly. It inherits the reasoning complexities
of a simple MMU model caching TLBs without ASIDs, and it involves reasoning
about ASIDs and global tags.

In this section, we show how we construct a model that avoids the additional
complexity and produces sufficient conditions for TLB-safe execution. Similar
to the refinement stack of Sect. 4.4, we build a series of formal abstractions of
the base MMU model that are increasingly easier to reason about, but preserve
functionality and the optimisation opportunities OS developers must be able to
exploit. We verify these step-wise abstractions by refinement theorems.

Our refinement stack is shown in Figure 5.3 and it consists of three levels. The
first two levels are similar to the refinement stack of the previous chapter: first we
remove the TLB eviction and then saturate the TLB with the mapped state of the
page table, but this time, under the active ASID. This gives us an MMU model
with the saturated TLB and hence eliminating the TLB-state change on memory
reads. For the last level, the abstraction technique is similar to the abstract model
of the previous chapter, but the models are not the same. This abstraction still
keeps track of the inconsistent virtual addresses under the active ASID, but to
soundly model the effect of the update_ASID instruction without requiring unnec-
essary flushes, this new model keeps track of a conservative estimate of what the
TLB might remember from the time an ASID was last active. This model also
caters for global inconsistencies while updating the page table either by memory
write or page table root update. The strength of our abstract MMU model is its
simplicity: we still abstract away the TLB lookup and keep the record of incon-
sistent virtual addresses, and the actual address translation is carried out by the
page table in the memory.

For each level up in the refinement stack of Figure 5.3 we prove that its abstraction
preserves a refinement relation and is sound with respect to its immediate concrete
MMU model. We then join refinement levels in order to show the soundness of
the abstract model with the base model of Sect. 4.3.

As in Chapter 4, the main burden on the proof engineer that we cannot hope
to eliminate completely in general will be to show that the TLB is currently in a
consistent state for the address to be accessed under the active ASID. We formalise
consistency for a virtual address in the base and saturated models as: (note that
the definition now mentions the current ASID).

consistent mem root asid tlb va =
(tlb_lookup tlb asid va = Hit (the (pt_walk asid mem root va)) ∧

77

5.2 MMU Abstraction

Figure 5.3: Refinement Stack for MMU Models

no_fault (pt_walk asid mem root va) ∨
tlb_lookup tlb asid va = Miss)

We now provide our MMU models and their refinement.

5.2.1 The Deterministic MMU Model

In this abstraction, we remove non-determinism from the MMU model of Sect. 5.1
by eliminating the tlb_evict function. We then prove refinement of each op-
eration of the type class mmu_extended with the base MMU model. In addition
to the parameters of the type class mmu, the type class mmu_extended includes the
instructions for updating the ASID register and for flushing the TLB under ASIDs.

Memory Operations: The deterministic address translation mmu_translate_det
is simply:

mmu_translate_det va ≡ do {
(mem, ttbr0, asid, tlb) ← read_state (MEM, TTBR0, ASID, TLB);
case tlb_lookup tlb asid va of
Miss ⇒

let entry = pt_walk asid mem ttbr0 va
in if fault entry then raise PAGE_FAULT

else do {
update_state (λs. s(|TLB := TLB s ∪ {the entry}|));
return (va_to_pa va (the entry))

}
| Incon ⇒ raise IMPLEMENTATION_DEFINED
| Hit entry ⇒ return (va_to_pa va entry)

}

For the function mmu_translate_det, the only difference to the nondeterministic
mmu_translate is the missing tlb_evict line in the start.

78

Chapter 5. A Formal Model of the ARMv7-A MMU with ASIDs

The definitions of the memory write and read operations remain unchanged com-
pared to the base model, but they now pick up the new mmu_translate_det instance
of the mmu_extended class. Similar to the evaluation of the base model functions,
we instantiate the function mem_op for the state having the deterministic TLB, and
call this instantiation mem_op_det.

MMU Operations: MMU operations including the page table root and ASID
update and flush instructions remain the same as the base model, since they do
not involve TLB eviction. We wrap up their evaluation for the state with the
deterministic TLB in the function mmu_op_det.

Refinement: We now present the refinement theorems between the nondetermin-
istic and the deterministic MMU model. The refinement relation is:

tlb_rel_det s t ≡
truncate s = truncate t ∧ ASID s = ASID t ∧ TLB s ⊆ TLB t

Where the notation truncate s means all fields of the extensible state record
without the ASID and TLB extension. The relation states the states s and t differ
only in the contents of the TLB, and the TLB of s contains fewer entries than the
TLB of t.

Theorem 16. The nondeterministic and deterministic memory operations pre-
serve the refinement relation given the consistency of the deterministic TLB for
the virtual address.

mem_op_nondet f s = (res, s’)
mem_op_det f t = (res’, t’) consistent_det f t tlb_rel_det s t

res’ = res ∧ tlb_rel_det s’ t’

Where consistent_det ensures that memory operation is for a consistent virtual
address with respect to the deterministic TLB.

Proof. Essentially by using operational definitions and the refinement relation.

Theorem 17. The nondeterministic and deterministic MMU operations preserve
the refinement relation.

mmu_op_nondet f s = ((), s’)
mmu_op_det f t = ((), t’) tlb_rel_det s t

tlb_rel_det s’ t’

Proof. Trivially true through the operational definitions and the refinement rela-
tion.

With this we conclude our deterministic MMU model and its refinement with the
nondeterministic MMU model.

79

5.2 MMU Abstraction

5.2.2 The Saturated MMU

We now present the second model of our refinement chain, where we saturate the
TLB with the mapped state of the page table under the active ASID after every
MMU operation. This abstraction eliminates the TLB state change for memory
reads and for memory writes outside of the page table.

Memory Operations: Formally, we instantiate the parameter mmu_translate
of the type class mmu_extended in this model such that the TLB always remains
saturated under the active ASID i.e. whenever it accesses memory it reloads the
mapped page table to the TLB. We name the operation mmu_translate_sat:

mmu_translate_sat va = do {
tlb_refill;
(asid, tlb) ← read_state (ASID, TLB);
case tlb_lookup tlb asid va of Miss ⇒ raise PAGE_FAULT
| Incon ⇒ raise IMPLEMENTATION_DEFINED
| Hit entry ⇒ return (va_to_pa va entry)

}

tlb_refill = do {
(mem, ttbr0, asid, tlb) ← read_state (MEM, TTBR0, ASID, TLB);
let mapped_ptable = ran (pt_walk asid mem ttbr0);
update_state (λs. s(|TLB := tlb ∪ mapped_ptable|))

}

The call to tlb_refill at the beginning of mmu_translate_sat achieves the sat-
uration mentioned above by adding the ran of the pt_walk function to the TLB
under the active ASID, i.e. ran m = {b | ∃ a. m a = �b�}. In this saturated TLB
mmu_translate_sat then performs a standard lookup under the active ASID. Incon
results still leads to the same exception as before. Miss results represent a page
fault, and Hit results are the same as in the previous models.

For this abstraction level, we also change the memory operations to preserve sat-
uration as in Chapter 4. The new instantiations for the saturated TLBs are
mmu_write_sat and mmu_read_sat:

mmu_write_sat (val, va, sz) = do {
pa ← mmu_translate_sat va;
when_no_exc do { mem_write (val, pa, sz); tlb_refill }

}

mmu_read_sat (va, sz) = do {
pa ← mmu_translate_sat va;
mem_read (pa, sz)

80

Chapter 5. A Formal Model of the ARMv7-A MMU with ASIDs

}

As in Chapter 4, in mmu_write_sat the TLB is refilled after the write operation to
maintain saturation as this write could have been to a page table present in the
memory. In mmu_read_sat this saturation is being achieved implicitly through the
function mmu_translate_sat in the start, as reading from the memory does not
affect the state of page table.

We wrap up the evaluation of functions mmu_translate_sat, mmu_write_sat and
mmu_read_sat in the function mem_op, and call it mem_op_sat.

MMU Operations: Similar to the memory operations, we saturate the TLB
after updating the page table root and ASID register with the mapped state of
the page table under the active ASID. We also saturate the TLB after the flush
operations. We do that so that the TLB always captures the mapped state of the
page table. The instantiations of MMU operations for this model are presented
below.

update_TTBR0_sat r =
do { update_state (λs. s(|TTBR0 := r|)); tlb_refill }

update_ASID_sat a =
do { update_state (λs. s(|ASID := a|)); tlb_refill }

The instantiations for the flush operations are:

flush_sat f = do {
(case f of FlushTLB ⇒ update_state (λs. s(|TLB := ∅|))
| Flushvarange vset ⇒

update_state (λs. s(|TLB := flush_vset (TLB s) vset|)));
tlb_refill

}

flush_with_ASID_sat f = do {
(case f of
FlushASID a ⇒ update_state (λs. s(|TLB := flush_asid (TLB s) a|))
| FlushASIDvarange a vset ⇒

update_state (λs. s(|TLB := flush_asid_vset (TLB s) a vset|)));
tlb_refill

}

We wrap up the evaluation of the functions update_TTBR0_sat, update_ASID_sat,
flush_sat and flush_with_ASID_sat in the function mem_op_sat.

81

5.2 MMU Abstraction

Refinement: We now present the refinement between the deterministic and sat-
urated MMU models. The refinement relation is:

tlb_rel_sat s t ≡
truncate s = truncate t ∧
ASID s = ASID t ∧ TLB s ⊆ TLB t ∧ saturated t

Where
saturated t ≡ ran (pt_walk (ASID t) (MEM t) (TTBR0 t)) ⊆ TLB t

The relation states the states s and t differ only in the contents of their TLBs, the
TLB s has fewer entries than the TLB t and the abstract state t is TLB-saturated
with the mapped state of the page table under the active ASID.

Theorem 18. The deterministic and saturated memory operations preserve the
refinement relation given the consistency of the saturated TLB for the virtual ad-
dress.

mem_op_det f s = (res, s’)
mem_op_sat f t = (res’, t’) consistent_sat f t tlb_rel_sat s t

res’ = res ∧ tlb_rel_sat s’ t’

Where consistent_sat ensures that memory operation is for a consistent virtual
address with respect to the saturated TLB.

Proof. We observe that the deterministic TLB of state s is consistent for the
virtual address va given the TLB-subset relationship and the consistency of the
saturated TLB of state t. The lookup for va in both states t and s will produce
either a Miss or a Hit. When the saturated-TLB of state t produces a Miss
(implies a page table fault), the deterministic TLB of state s also has a Miss and
the memory operation completes the translation for the address va through page
table walk to eventually encounter a page table fault. In case of a Hit with an
entry in the saturated-TLB of state t, the TLB of s either agrees on the same
entry with a Hit or performs a page table walk.

Theorem 19. The deterministic and saturated MMU operations preserve the re-
finement relation.

mmu_op_det f s = ((), s’)
mmu_op_sat f t = ((), t’) tlb_rel_sat s t

tlb_rel_sat s’ t’

Proof. By using operational definitions and basic set reasoning.

With this we conclude our saturated MMU model and its refinement with the
deterministic MMU.

82

Chapter 5. A Formal Model of the ARMv7-A MMU with ASIDs

Figure 5.4: ARMv7-style Memory Management Unit with Abstract MMU

5.2.3 The Most Abstract MMU Model

We now present the last and the most abstract model of our refinement chain
for the TLB with ASIDs. This model abstracts the TLB lookup completely and
the functionality of the TLB is soundly modeled using a set of TLB-inconsistent
virtual addresses. In this MMU, we do not extend the state with asid tlb_entry
set to model the TLB, rather the TLB is modeled using these three components:

incon_set :: vaddr set
global_set :: vaddr set
snapshot :: asid ⇒ vaddr set × (vaddr ⇒ asid tlb_entry option)

Before presenting the details of this abstraction, we would like to briefly revisit the
relation of the TLB with the page tables: the TLB caches entries from multiple
page tables present in the main memory under different ASIDs. Now that we aim
to completely abstract the TLB and to capture its caching functionality using
inconsistent virtual addresses with the page table(s), we would have to remember
a conservative estimate of what the TLB might remember from the time an ASID
was last active. Essentially this is, for each ASID, a snapshot of the current
page table state when that ASID was last active modulo all addresses that were
inconsistent at that time. This estimate then enables us to keep track of the
inconsistencies for different ASIDs and also to detect new inconsistencies while
switching between the ASIDs.

Figure 5.4 gives an overview of the ARMv7-A MMU with our most abstract TLB
interface. This model might appear complicated, as it has three components and
the snapshot contains an actual page table state encoded in the TLB entry for-
mat. However, this model indeed provides a simpler TLB interface for reasoning.

83

5.2 MMU Abstraction

For better understanding, we summarise the read/write dependencies of the most
abstract model for memory and MMU operations in Table 5.1 before explaining
the model itself.

Operation Utilise from Abs. MMU Update to Abs. MMU

Address Translation incon_set Nothing

Memory Read incon_set Nothing

Memory Write incon_set incon_set, global_set

Root Update Nothing incon_set, global_set

ASID Update
incon_set, global_set,
snapshot incon_set, snapshot

Flush Operations Nothing
incon_set, global_set,
snapshot

Table 5.1: Read/Write Dependencies for Memory and MMU Operations

The address translation and memory operations which constitute the majority of
program instructions use only the incon_set as their TLB interface. The snapshot
is used only to detect inconsistent addresses while switching the ASID register.
The ASID register is only updated on a context switch between processes, and
we will see later in this section that snapshot is used there for the page table
comparison: there is no actual TLB lookup involved.

We now explain our abstract TLB model. The incon_set keeps track of the
inconsistent virtual addresses for the current state. This includes the inconsistent
virtual addresses for the active ASID as well as the globally mapped inconsistent
virtual addresses. The address translation and memory operations are carried
out under the active ASID, hence they utilise only the incon_set. The MMU
model reloads the incon_set with the resultant inconsistent addresses each time
the ASID register is updated or the current mapped page table is changed. The
current mapped page table can be changed either through a memory write or
by updating the page table root register. The TLB flush operations for virtual
addresses and the active ASID simply make this set smaller.

The global_set consists of all globally mapped virtual addresses irrespective of
their consistency. The contents of the global_set do not have to strictly equal
the globally mapped virtual addresses of the current state, i.e., we keep reload-
ing global_set after every write to the page table and after updating the page
table root register. The purpose of the global_set is to then detect the global
inconsistencies while switching ASIDs. Its contents are evicted using TLB flush
operations.

The TLB-snapshot of the page table state modulo the inconsistent virtual ad-
dresses for every ASID is modeled as a pair type of vaddr set and the map type
vaddr ⇒ asid tlb_entry option. The vaddr set of a snapshot for an ASID a

84

Chapter 5. A Formal Model of the ARMv7-A MMU with ASIDs

contains the inconsistent virtual addresses under the ASID a, and the page table
state holds the mapped non-global entries. A Some TLB entry in the page table
state represents a mapped non-global virtual address, and the None encodes both
global and unmapped virtual addresses. We explain in this section how our model
uses snapshot to express the effects of updating the ASID register. As expected,
the flush operations under ASIDs are able to alter the content of the snapshot.

We now explain the operations of our most abstract MMU model for ASIDs and
also provide the refinement theorems between the saturated and the most abstract
MMU model.

Memory Operations: For translating a virtual address, we simply check its
TLB-consistency using the incon_set and subsequently carry out the translation
from the page table itself.

mmu_translate_set va ≡ do {
(mem, ttbr0, asid, incon_set) ←

read_state (MEM, TTBR0, ASID, incon_set);
if va ∈ incon_set then raise IMPLEMENTATION_DEFINED
else let entry = pt_walk asid mem ttbr0 va

in if fault entry then raise PAGE_FAULT
else return (va_to_pa va (the entry))

}

Note that we have used only incon_set for checking the consistency of the virtual
address va as it is being resolved under the active ASID.

For mmu_write_set, we must figure out which new addresses might have become
inconsistent. We do this by comparing the page tables before and after the physical
write operation.

mmu_write_set (va, va, sz) = do {
(mem, ttbr0, asid, incon_set, global_set) ←

read_state (MEM, TTBR0, ASID, incon_set, global_set);
paddr ← mmu_translate va;
when_no_exc do {

mem_write (va, paddr, sz);
mem’ ← read_state MEM;
let incon_set_new =

ptable_comp (pt_walk asid mem ttbr0) (pt_walk asid mem’ ttbr0);
let global_set_new = global_varange asid mem’ ttbr0;
update_incon_set (incon_set ∪ incon_set_new);
update_global_set (global_set ∪ global_set_new)

}
}

Where

85

5.2 MMU Abstraction

ptable_comp wlk wlk’ ≡
{va | no_fault (wlk va) ∧ no_fault (wlk’ va) ∧ wlk va �= wlk’ va ∨

no_fault (wlk va) ∧ fault (wlk’ va)}

global_varange a m rt ≡⋃
e∈global_entries (ran (pt_walk a m rt)) range_of e

The first step in the memory write is to resolve the given virtual address. On
a successful translation we simply write to the physical memory. To figure out
the potential TLB-inconsistencies as the result of this memory write, we compare
the results of page table walks before and after the write operation using the
function ptable_comp. Two scenarios might add inconsistent entries: changing an
existing mapping (first disjunct of ptable_comp), or removing an existing map-
ping (second disjunct). Note that the ptable_comp function automatically detects
the change of non-global to global entries and vice versa, because the result of
pt_walk changes when an entry becomes global. This enables us to solely rely on
the incon_set for memory operations while determining the consistency of global
addresses. The function update_incon_set in the function mmu_write_set simply
updates the incon_set of the state with the given argument.

We also reload the global_set with the address range of new global mappings after
the memory write. This helps us to soundly model the inconsistencies while switch-
ing ASID as we will see later in this section. The function global_varange simply
computes the range_of the global_entries (the TLB entries with None ASID tag)
from the page table starting at the location rt in the memory m. The function
update_global_set in the function mmu_write_set updates the global_set of the
state with the given argument.

For the read operation mmu_read_set, the definition is similar to the base MMU
model, we only use the new mmu_translate_set instance.

mmu_read_set (va, sz) = do {
pa ← mmu_translate_set va;
mem_read (pa, sz)

}

We wrap up the evaluation of functions mmu_translate_set, mmu_write_set and
mmu_read_set in the function mem_op, and call it mem_op_set.

MMU Operations: The effect that updating the page table root register has
on our most abstract TLB model is similar to changing the state of the cur-
rent page table through the memory write operation. In the following function
update_TTBR0_set, we use the ptable_comp function with walks from the two page
tables to compute the resultant inconsistent virtual addresses. We also reload the
global_set with the updated global virtual addresses.

86

Chapter 5. A Formal Model of the ARMv7-A MMU with ASIDs

update_TTBR0_set r = do {
(mem, ttbr0, asid, incon_set, global_set) ←

read_state (MEM, TTBR0, ASID, incon_set, global_set);
update_state (λs. s(|TTBR0 := r|));
let incon_set_new =

ptable_comp (pt_walk asid mem ttbr0) (pt_walk asid mem r);
let global_set_new = global_varange asid mem r;
update_incon_set (incon_set ∪ incon_set_new);
update_global_set (global_set ∪ global_set_new)

}

We now explain our instruction for updating the ASID register. Until now, we have
only used incon_set from our abstract model, while only reloading the global_set.
The ASID update will manipulate all three components of the abstract TLB model.

The snapshot stores the inconsistencies and the page table state for an ASID
when it was last active, i.e. the type of snapshot is asid ⇒ vaddr set × (vaddr
⇒ asid tlb_entry option). Now that we want to switch from one ASID to an-
other, we need to first store the inconsistencies for the active ASID to its snapshot
so that we can preserve and later retrieve the inconsistencies when we switch back
to this ASID. We will also have to retrieve the inconsistencies for the new ASID, so
that we can have a sound execution with the new ASID. For this, we compute the
inconsistencies from the stored snapshot of the new ASID and its comparison from
the page table since the page table state would likely have changed through mem-
ory writes and updating the page table root register. The global inconsistencies
play an interesting role: a globally mapped inconsistent addresses is inconsistent
for all ASIDs. Therefore, we are required to propagate the global inconsistencies to
the new ASID, we use global_set for this purpose. We summarise these concepts
in the following three steps:

1. For updating the ASID register, we start by storing the incon_set and the
page table state to the snapshot for the ASID we are switching away from,

2. next we update the active ASID to the new ASID,

3. and finally we compute the new incon_set for the new ASID by combining
the global inconsistencies, the stored incon_set in its snapshot and by com-
paring the page table state stored for the new ASID and the active page
table.

The update_ASID instruction is then instantiated as:

update_ASID_set a = do {
(mem, ttbr0, asid, incon_set, global_set) ←

read_state (MEM, TTBR0, ASID, incon_set, global_set);
snapshot ← read_state_iset snapshot;

87

5.2 MMU Abstraction

let new_snp = snapshot(asid := (incon_set, pt_walk asid mem ttbr0));
update_snapshot new_snp;
update_state (λs. s(|ASID := a|));
let global_incon = incon_set ∩ global_set;

incon_set_snap = fst (new_snp a);
ptcomp_snap =

ptable_comp (snd (new_snp a)) (pt_walk a mem ttbr0)
in update_incon_set (global_incon ∪ incon_set_snap ∪ ptcomp_snap)

}

In the above definition, we first store the incon_set and the page table state of the
active ASID to the snapshot. The function update_snapshot updates the snapshot
of the state with the given argument. Next we update the ASID register to the
ASID a. For finding the incon_set for the ASID a, we

• find the globally inconsistent virtual addresses by intersecting the incon_set
and the global_set,

• retrieve the stored inconsistent virtual addresses from the snapshot of the
ASID a, and finally

• compare the stored page table state and the active page table using the
function ptable_comp.

We simply update the incon_set with these sets of inconsistent virtual addresses
using the update_incon_set function and the execution can continue with the
new ASID under its incon_set. It should be noted that the order of updating
the snapshot and then finding the incon_set is important: we always update the
snapshot for the previous ASID before updating to the new one, since the ASID
a could have been identical to the active ASID.

We now proceed to explaining the flush operations for our most abstract model.
The flush operations remove the relevant virtual addresses from the incon_set and
the global_set, and also unmap them from snapshot depending on the nature of
the flush instruction. We trivially saturate the global_set with the mapped global
addresses of the current page table after the flush instructions for virtual addresses;
this helps us proving the refinement later. The instantiation flush_set for flushing
either the TLB or a range of virtual addresses (irrespective of ASIDs) is:

flush_set f = do {
(mem, ttbr0, asid, incon_set, global_set, snapshot) ←

read_state (MEM, TTBR0, ASID, incon_set, global_set, snapshot);
case f of FlushTLB ⇒ do {

update_incon_set ∅;
update_global_set (global_varange asid mem ttbr0);
update_snapshot (λa. (∅, empty))

}
| Flushvarange vset ⇒ do {

update_incon_set (incon_set - vset);
update_global_set

88

Chapter 5. A Formal Model of the ARMv7-A MMU with ASIDs

(global_set - vset ∪ global_varange asid mem ttbr0);
update_snapshot
(λa. (fst (snapshot a) - vset,

λv. if v ∈ vset then None else snd (snapshot a) v))
}

}

FlushTLB empties the incon_set and the inconsistent addresses of snapshot for
all ASIDs, unmaps the stored page table state, and reloads the global_set with
the consistent globally mapped virtual addresses of the current state. Similary,
Flushvarange removes the given set of virtual addresses from the incon_set and
from the inconsistent addresses of snapshot for all ASIDs, unmaps them from the
stored page table state of all the ASIDs, and removes them from the global_set
before making the global_set saturated with the globally mapped virtual ad-
dresses of the current state.

The flush operation for invalidating virtual addresses under ASIDs is instantiated
as:

flush_with_ASID_set f = do {
(mem, ttbr0, asid, incon_set, global_set, snapshot) ←

read_state (MEM, TTBR0, ASID, incon_set, global_set, snapshot);
case f of
FlushASID a ⇒

if a = asid then update_incon_set (incon_set ∩ global_set)
else update_snapshot (snapshot(a := (∅, empty)))

| FlushASIDvarange a vset ⇒
if a = asid
then update_incon_set (incon_set - (vset - global_set))
else let iset = fst (snapshot a); pt = snd (snapshot a)

in update_snapshot
(λa’. if a’ = a

then (iset - vset,
λv. if v ∈ vset then None else pt v)

else snapshot a’)
}

For the active ASID, FlushASID removes the ASID-specific addresses from the
incon_set. While for an inactive ASID as its argument, FlushASID unmaps the
ASID’s snapshot. The FlushASIDvarange repeats the same process for the given
set of virtual addresses under an ASID.

We instantiate the evaluation of functions update_TTBR0_set, update_ASID_set,
flush_set and flush_with_ASID_set for the function mmu_op, and call this function
mmu_op_set.

Refinement We now present the refinement theorems between the saturated and
the most abstract models.

89

5.2 MMU Abstraction

The refinement relation should provide a lookup order between the abstract TLB
(incon_set, global_set and snapshot) and the saturated TLB. Such a refinement
relation is:

tlb_rel_set s t ≡
truncate s = truncate t ∧
ASID s = ASID t ∧
saturated s ∧
incon_addrs s ⊆ incon_set t ∧
(
⋃

e∈global_entries (TLB s) range_of e) ⊆ global_set t ∧
(∀ a v. a �= ASID s −→

tlb_lookup (non_global_entries (TLB s)) a v
≤ tlb_lookup_from (snapshot t) a v)

Where the function incon_addrs constructs the set of inconsistent addresses under
the active ASID in the saturated TLB of state s:

incon_addrs s ≡
{va | tlb_lookup (TLB s) (ASID s) va = Incon} ∪
{va | ∃ e. tlb_lookup (TLB s) (ASID s) va = Hit e ∧

fault (pt_walk (ASID s) (MEM s) (TTBR0 s) va)}

This subset relation between the incon_addrs of state s and the incon_set of
state t is analogous to the subset assumption of our earlier refinement between the
saturated and the non-deterministic MMU model. This subset relation provides us
with the TLB lookup order, hence guarantees about safe executions. We impose a
similar lookup order for the global addresses cached in the saturated TLB of state
s and between the global_set of state t.

The last conjunct of the refinement relation tlb_rel_set provides us with a
similar order for the inactive ASIDs. The TLB of state s is not saturated for
these ASIDs; therefore we assert that the stored snapshot of the abstract state
t covers all possible ASID-specific executions (represented by the tlb_lookup on
non_global_entries) of the underlying TLB of state s. Formally:

tlb_lookup_from snp a va ≡
let iset = fst (snp a); pt = snd (snp a)
in if va ∈ iset then Incon

else case pt va of None ⇒ Miss
| �entry� ⇒ if asid_of entry = None then Miss else Hit entry

The function tlb_lookup_from estimates a TLB lookup for the given ASID a
and virtual address va from the snaphot snp. The resultant lookup is Incon if the
address va is in the inconsistent set of the snaphot snp, otherwise faults and global
addresses are encoded to Miss, and an ASID-specific entries to Hit.

90

Chapter 5. A Formal Model of the ARMv7-A MMU with ASIDs

We now present the refinement theorems.

Theorem 20. The saturated and abstract memory operations preserve the re-
finement relation given the consistency of the most abstract TLB for the virtual
address.

mem_op_sat f s = (res, s’)
mem_op_set f t = (res’, t’) consistent_set f t tlb_rel_set s t

res’ = res ∧ tlb_rel_set s’ t’

Where consistent_set ensures that memory operation is for a consistent virtual
address i.e. the virtual address is not an element of incon_set of state t.

Proof. We first explain how the refinement works for address translation. Accord-
ing to the refinement relation, the incon_set of state t tracks the inconsistent
virtual addresses for the active ASID in the saturated TLB of state s. We are
therefore in the else branch of mmu_translate_set, and in either the Hit or the
Miss branch of mmu_translate_sat. In both these cases, the results must agree
because saturated and tlb_rel_set say that the Hit and Miss results represent
precisely the walks we perform in mmu_translate_set.

For memory reads, the refinement relation after the address translation holds
trivially. Memory writes are interesting: we validate that the function ptable_comp
correctly tracks the resultant inconsistencies for memory writes, we also verify that
the global_set reload of the abstract model is sound and that its subset relation
still holds with the global entries of the saturated state.

Note that the last conjunct of tlb_rel_set is trivially true in this refinement,
because the memory operations are being carried out under the active ASID.

Theorem 21. The saturated and abstract MMU operations preserve the refine-
ment relation tlb_rel_set.

mmu_op_sat f s = ((), s’)
mmu_op_set f t = ((), t’) tlb_rel_set s t

tlb_rel_set s’ t’

Proof. The proof strategy for the update_TTBR0 instantiations is similar to that
of memory writes, as the ptable_comp comparison is inherently the same. The
proof for flush instructions includes set reasoning about preserving the refinement
relation after the respective incon_set, global_set and snapshot updates.

The refinement proof for the update_ASID instruction is interesting: overall we are
required to establish that the incon_set correctly models the inconsistencies of the
saturated TLB after updating the ASID, the global_set holds the subset relation
and the snapshot provides the lookup order for the all the inactive ASIDs. The

91

5.2 MMU Abstraction

Figure 5.5: Refinement between Nondeterministic and Abstract MMU

main observation that makes the proof possible is that the saturated TLB can be
classified into its global and non-global entries. We can then reason about the
disjoint lookup order for the non-global entries. The global entries are reasoned
about by the subset relation of the global entries and global_set. The snapshot
order is preserved by proving that the ptable_comp function correctly detects the
inconsistencies.

With this we conclude our most abstract MMU model and its refinement with the
saturated MMU model.

5.2.4 Joining the Refinement Levels

In this section, we join the refinement levels of Figure 5.1 to show that our most
abstract model is sound with respect to the base model. The resultant refinement is
between the abstract and the base model through the deterministic and saturated
MMU models as shown in Figure 5.5. The refinement relation tlb_rel is:

tlb_rel r t ≡
∃ s s’. tlb_rel_det r s ∧ tlb_rel_sat s s’ ∧ tlb_rel_set s’ t

Where the state r has the nondeterministic TLB, the state s has the deterministic
TLB, the state s’ has the saturated TLB and the state t has the most abstract
TLB. The functions tlb_rel_det, tlb_rel_sat and tlb_rel_set are the refinement
relations provided in Sect. 5.2.1, Sect. 5.2.2 and Sect. 5.2.3 respectively. We then
have two refinement theorems, presented below and also shown in Figure 5.6 and
Figure 5.7.

Theorem 22. Refinement between the nondeterministic and the abstract memory
operations.

92

Chapter 5. A Formal Model of the ARMv7-A MMU with ASIDs

Figure 5.6: Refinement between Nondeterministic and Abstract Memory Opera-
tions

mem_op_nondet f r = (res, r’)
mem_op_set f t = (res’, t’) consistent_set f t tlb_rel r t

res = res’ ∧ tlb_rel r’ t’

where consistent_set ensures that the abstract state t is TLB-consistent, i.e. the
given virtual address is not an element of the incon_set of state t.

Proof. By case analysis on the function f and using the respective refinement
theorems of Sect. 5.2.1, Sect. 5.2.2 and Sect. 5.2.3, and observing that for each
level, the address consistency condition on this level implies address consistency
on the level below.

Theorem 23. Refinement between nondeterministic and abstract MMU mainte-
nance operations.

mmu_op_nondet f r = ((), r’)
mmu_op_set f t = ((), t’) tlb_rel r t

tlb_rel r’ t’

Proof. By case analysis on the function f and using the respective refinement
theorems of Sect. 5.2.1, Sect. 5.2.2 and Sect. 5.2.3.

With this we conclude presenting the refinement stack.

5.3 Summary and Remarks

In this chapter, we have built on the MMU model of Chapter 4 to introduce
ASIDs and global tags for the ARMv7-style TLB. We have identified the additional
reasoning complexities these features entail, have developed a refinement stack

93

5.3 Summary and Remarks

Figure 5.7: Refinement between Nondeterministic and Abstract MMU Operations

that abstracts away the hardware details and have reached at an abstract model
of a TLB with ASIDs and global entries that is easier to reason about.

The abstract model has three components for modeling the TLB: a set of incon-
sistent virtual addresses for the active ASID-specific and globally mapped virtual
addresses, a set of globally mapped virtual addresses and a snapshot of the page
table state modulo the inconsistent addresses for all ASIDs. The main message
of the refinement chain presented in this chapter is that any logic taking this
abstract model as its memory interface would avoid the reasoning complexities
of the actual hardware state of the TLB. This model is sound to reason about
for the implementations of ARMv7-A architecture that do not have the separate
PDC to cache the partial walks. The model and refinement chain of this chapter
is available online in the form of Isabelle theories (Syeda, 2019).

In the next chapter (Chapter 6), we build on the MMU model of this chapter to
formalise a two-stage TLB, and again abstract away the hardware details.

94

CHAPTER

SIX

A Formal Model of the ARMv7-A MMU
with Two-Stage TLB

6.1 ARMv7-A MMU Model with TLB and PDC

In the previous chapter, we have presented an operational model of the
ARMv7-A memory management unit (MMU) where the TLB caches page
table entries under ASIDs and global tags. In this chapter, we integrate
that model with a separate page directory cache (PDC) to develop a two-
stage TLB model caching partial and complete page table walks. We
again build a refinement stack to abstract away the hardware details and
also explain how our refinement framework handles the additional PDC. In
Chapter 7, we use the most abstract model of this chapter as the memory
model of a program logic for reasoning about programs in the presence of
cached address translation.

This chapter is organised as: we instantiate the generic TLB model pre-
sented in Sect. 4.2 to a PDC caching partial walks from two-level page
tables. We then provide the base MMU model including address trans-
lation, memory operations, TLB maintenance operations as well register
update instructions affecting the state of the two-stage TLB. Next we pro-
vide a series of refinements to abstract away the hardware details of this
base MMU model. For each refinement level, we first explain the model
and then provide the refinement theorems collectively. In the end we join
the refinement levels and conclude the chapter.

This chapter is based on the published work (Syeda and Klein, 2017) and
the submitted work (Syeda and Klein, 2019).

6.1 ARMv7-A MMU Model with TLB and PDC

We now present a formal MMU model for the ARMv7-A architecture (ARM,
2008) that includes a two-stage TLB for caching partial and complete page table
walks. As mentioned in the virtual memory chapter (Sect. 3.2.4), the recent im-
plementations of ARMv7-A implement a two-stage TLB that collectively caches
entries and the machinery required for resolving address translations using the
page table from main memory when needed. The first stage caches entries that
provide end-to-end address translations, i.e. results of complete page table lookups,
we simply call this stage “the TLB”. The second stage, called the page directory
cache (PDC), caches the results of partial page table lookups – up to the first-level
traversal of the page table only. For a two-level page table this means that the
PDC stores translation entries for sections and supersections, and pointers to the
second level page table containing small and large page translation entries.

While resolving virtual addresses, the processor checks the PDC on every TLB miss
before consulting the page table present in the main memory. If the processor finds
a cached PDC entry, it simply completes the translation either by a page table
walk (for small and large pages) or by resolving the virtual address directly (for
sections and supersections). Figure 6.1 gives an overview of the information cached

96

Chapter 6. A Formal Model of the ARMv7-A MMU with Two-Stage TLB

Figure 6.1: Address Translation in the Presence of a TLB and PDC

in TLB and PDC for a virtual address mapped to a small page of the memory.
We formalise the PDC and its effect on address translation and subsequently the
MMU operations. Similar to the previous chapter, we develop a refinement stack
for the base MMU model, but now with TLB and PDC. In the next chapter, we
use the most abstract model we develop here as the memory model for the logic
we use to reason about programs in the presence of cached address translation.

Why consistency of the PDC is important to establish: The TLB model
presented in the previous chapter (Chapter 5) has a single TLB with ASIDs and
global tags. This model is sound for the ARMv7-A implementations that do not
have the PDC. However, in the presence of the PDC, the model fails to detect
some inconsistent scenarios. We explain a specific example below.

Example

In the MMUmodel of the previous chapter, the TLB entries contain end-to-end physical
base addresses. This leaves a hole in the model for hardware caching partial page table
walks in the PDC. Consider a page directory entry E that points to a page table A.
Now if we do the following (Figure 6.2 gives an overview):

1. make a copy B of the page table A, then

2. update E to point to B, then

3. change an entry of page table A.

These steps do not affect the final result of the page table translation, so the pt_walk
output remains the same. However, hardware with a two-stage TLB may be caching
E in the PDC, and then a memory access in the corresponding area may still cause
lookups in the page table A, which has changed, resulting in the inconsistency.

97

6.1 ARMv7-A MMU Model with TLB and PDC

Figure 6.2: PDC Inconsistency Example

To overcome this problem, it should suffice to record the addresses of the intermediate
page tables in the ’a tlb_entry type. Alternatively, the state could contain separate
TLBs for each level of the virtual to physical address translation. We opt for the
second approach as it is closer to the actual hardware and introduce a separate PDC
in the MMU model that caches the results of first-level page table walks.

We formalise the PDC similarly to how we have formalised the TLB in Sect. 4.2:
The PDC is a set of PDC entries. As we model only two types of page table entries
in our work, the PDC entries specify either 32-bit base addresses for sections or
32-bit pointers to the second level page tables.

type synonym pdc = pdc_entry set

datatype pdc_entry =
PDE_Table (asid) (12 word) (32 word)

| PDE_Section (asid option) (12 word) (32 word) flags

Where the type asid is an abbreviation for 8 word. We always associate an ASID
with PDE_Table since the hardware does not provide global tables (only global
pages). The constructor PDE_Section can have an ASID or a global tag depending
on the nG bit of its flags.

PDC lookup With the PDC state formalised, we now describe its lookup. For
any given 32-bit virtual address, a PDC lookup finds the corresponding PDC entry.
The lookup of the PDC is modeled using the type ’e lookup_type from Sect. 4.2.

In order to find the virtual address range of a PDC entry, we simply instantiate

98

Chapter 6. A Formal Model of the ARMv7-A MMU with Two-Stage TLB

the range_of parameter of type class entry_op (presented in Sect. 4.2, Page 44)
for pdc_entry as:

range_of :: pdc_entry ⇒ vaddr set
range_of e ≡
Addr ‘ {base_addr (vba_of e)..base_addr (vba_of e) + (220 - 1)}

base_addr v ≡ UCAST(’a → 32) v << 32 - size v

Where vba_of e returns the 12 word virtual base address stored in e. For nota-
tion of operations over the types set and word, please refer to Sect. 2.2.3 of the
notation chapter. The PDC lookup is then defined using the functions lookup and
entry_set from Sect. 4.2 as:

pdc_entry_set :: pdc ⇒ vaddr ⇒ pdc
pdc_entry_set p a va ≡
{e ∈ entry_set p va | asid_of e = None ∨ asid_of e = �a�}

abbreviation pdc_lookup p a va = lookup (pdc_entry_set p a) va

Given a virtual address va and an ASID a, the function pdc_entry_set is a filter
for the matched entry_set: an entry matching the virtual address va has to be
either global or under the same ASID a in order to provide translation for the
virtual address va. The function asid_of returns the ASID field of a TLB entry.

Similar to the TLB, we can also partition the PDC into its global_entries (en-
tries with None ASID) and non_global_entries (entries with Some ASIDs). The
PDE_Table entries are always non_global_entries, whereas the PDE_Section en-
tries can be global or non-global entries.

From PDC Entry to TLB Entry: The aim of a PDC lookup is to find the
respective PDC entry and decode it into the form of a TLB entry, so that we
can at least partially reuse our existing definitions for the PDC. We write a func-
tion pdc_to_tlb to convert a PDC entry to the corresponding TLB entry. For a
PDE_Table entry, that holds a pointer to the page table, we simply complete the
page table walk for a virtual address va from the memory mem:

pdc_to_tlb (PDE_Table a vba pba) mem va =
(case get_pte mem (Addr pba) va of None ⇒ None | �InvalidPTE� ⇒ None
| �SmallPagePTE p’ perms� ⇒ �to_sml_entry p’ perms va a�)

In the above definition, the function get_pte finds the page table entry and the
function to_sml_entry simply encodes information into a small TLB entry. From
a PDE_Section, that already provides the base physical address of the section it
belongs to, we directly encode an asid tlb_entry:

99

6.1 ARMv7-A MMU Model with TLB and PDC

Figure 6.3: ARMv7-A MMU with TLB and PDC

pdc_to_tlb (PDE_Section a vba pba fl) mem va =
�EntrySection a (UCAST(32 → 12) (addr_val va >> 20))

(UCAST(32 → 12) (pba >> 20)) fl�

Figure 6.3 gives an overview of the ARMv7-A MMU with the TLB and the PDC.
To formalise it, we use Isabelle’s extensible records (Naraschewski and Wenzel,
1998) to extend the record type state with the type asid × TLB × pdc which
will contain the active ASID register and the hardware state of TLB and PDC.
We then instantiate this extended state for type class mmu_extended of Sect. 5.1.
This gives us the base MMU model that has both the TLB and the PDC with
instructions for address translation, memory read and write, updating the page
table root and ASID registers and TLB maintenance operations. We group these
operations into the types mem_op_typ and mmu_op_typ (defined previously on Page
72) for presenting the MMU models and their refinement.

We now present the base MMU model.

6.1.1 Page Table Walk

As explained in the example of the previous section (Page 97), we are required to
update our page table walk interface to soundly model the presence of the PDC.
For a two-stage TLB reload from the two-level page table, we classify page table
walks as:

datatype pt_walk_typ = Fault
| Partial_Walk (pdc_entry)
| Full_Walk (asid tlb_entry) (pdc_entry)

For a virtual address va a page table walk resulting in a Fault represents an un-

100

Chapter 6. A Formal Model of the ARMv7-A MMU with Two-Stage TLB

Figure 6.4: The Encoding of Two-Stage Page Table Walks

mapped virtual address, the Partial_Walk with a PDC entry means that either
the virtual address va belongs to a mapped section, or its translation can be con-
tinued using the page table presents at the specified location in memory. Whereas
the Full_Walk with TLB and PDC entries represents that the virtual address va
is fully mapped: it either belongs to a section, or to a mapped small page of the
memory. Note that a Partial_Walk with a PDE_Table entry does not ensure that
a Full_Walk exists.

Figure 6.4 gives an overview how the two-stage page table walk is encoded. We
then define ptd_walk (page table-directory walk) as:

ptd_walk :: asid ⇒ heap ⇒ paddr ⇒ vaddr ⇒ pt_walk_typ
ptd_walk a mem rt va ≡
case pdc_walk a mem rt va of None ⇒ Fault
| �pde� ⇒

case pdc_to_tlb pde mem va of None ⇒ Partial_Walk pde
| �tlbentry� ⇒ Full_Walk tlbentry pde

For a given virtual address va, the function ptd_walk walks the first level of the
page table present at the root rt in memory mem under the ASID a. This first
level walk is formalised using the function pdc_walk, which we explain in the next
paragraph. For an invalid first level entry we simply return Fault, while we convert
a valid page table entry to either Partial_Walk or Full_Walk using the function
pdc_to_tlb.

The function pdc_walk decodes the first level page table entry into a PDC entry
(for the notation of operations for the type word, please refer to Sect. 2.2.3 in the
notation chapter):

101

6.1 ARMv7-A MMU Model with TLB and PDC

pdc_walk :: asid ⇒ heap ⇒ paddr ⇒ vaddr ⇒ pdc_entry option
pdc_walk a mem rt va ≡
case get_pde mem rt va of None ⇒ None
| �PageTablePDE p� ⇒

�PDE_Table a (UCAST(32 → 12) (addr_val va >> 20)) (addr_val p)�
| �SectionPDE bpa perms� ⇒ �to_sec_pde bpa perms a va� | �_� ⇒ None

Where the function to_sec_pde encodes base physical address and permission bits
for the virtual address va under the ASID a to a section TLB entry.

6.1.2 Memory Operations

We now explain memory operations including address translation, memory read
and write for our MMU model.

Address Translation: The address translation for memory operations is defined
as:

mmu_translate va = do {
update_state (λs. s(|TLB_PDC := TLB_PDC s - tlb_evict s|));
(asid, tlb, pdc) ← read_state (ASID, TLB_PDC);
case tlb_lookup tlb asid va of
Miss ⇒ pdc_lookup_reload_translation va
| Incon ⇒ raise IMPLEMENTATION_DEFINED
| Hit entry ⇒ return (va_to_pa va entry)

}

As in previous chapters, the function mmu_translate first evicts an underspecified
set of entries from TLB and PDC. The next step in mmu_translate after reading
out the hardware state is to do a TLB lookup for the virtual address va to be
translated under the current ASID. The TLB-Miss case is different from the base
model of single-stage TLB, but the Incon and Hit cases are similar as in previous
chapters. We now explain them. If the result of that lookup is Incon, the machine
raises an unrecoverable exception and halts, expressing the fact that in normal
operation, this state should never be encountered. If the result is Hit entry,
we translate this TLB entry to the corresponding physical address pa using the
function va_to_pa and return that address.

If the result of the TLB lookup is Miss, using the pdc_lookup_reload_translation
function we perform the PDC lookup, the potential TLB reload and the address
translation. It is defined as:

pdc_lookup_reload_translation va = do {
(asid, tlb, pdc) ← read_state (ASID, TLB_PDC);
case pdc_lookup pdc asid va of Miss ⇒ translation_tlb_pdc_reload va

102

Chapter 6. A Formal Model of the ARMv7-A MMU with Two-Stage TLB

| Incon ⇒ raise IMPLEMENTATION_DEFINED
| Hit pde ⇒ tlb_reload_trans pde va

}

In the above function, if the result of PDC lookup is Incon the machine raises an
unrecoverable exception and halts. If the PDC lookup results in Hit pde, we use
the function tlb_reload_trans to complete the partial translation for address va
from the page directory entry pde and store the result in the TLB.

tlb_reload_trans pde va = do {
(mem, ttbr0, asid) ← read_state (MEM, TTBR0, ASID);
let entry = pdc_to_tlb pde mem va;
if fault entry then raise PAGE_FAULT
else do {

update_state
(λs. s(|TLB_PDC := TLB_PDC s ∪ ({the entry}, ∅)|));

return (va_to_pa va (the entry))
}

}

Going back to the pdc_lookup_reload_translation function, if the result of the
PDC lookup is Miss, we use the function translation_tlb_pdc_reload to perform
the full address translation from the page table using the function ptd_walk, and
potentially reload both PDC and TLB:

translation_tlb_pdc_reload va = do {
(asid, mem, ttbr0) ← read_state (ASID, MEM, TTBR0);
let walk = ptd_walk asid mem ttbr0 va;
case walk of Fault ⇒ raise PAGE_FAULT
| Partial_Walk pde ⇒ do {

update_state (λs. s(|TLB_PDC := TLB_PDC s ∪ (∅, {pde})|));
raise PAGE_FAULT

}
| Full_Walk entry pde ⇒ do {

update_state (λs. s(|TLB_PDC := TLB_PDC s ∪ ({entry}, {pde})|));
return (va_to_pa va entry)

}
}

In the above function, if the result of the ptd_walk is the Fault, we raise this fault
which will cause the machine to jump to the appropriate exception handler, and if
we get the Partial_Walk we reload the PDC and again raise the page table fault.
If the result is Full_Walk with the TLB and PDC entries we simply add them
to the TLB and PDC respectively, and execute address translation as in the Hit
case.

103

6.1 ARMv7-A MMU Model with TLB and PDC

Memory Write and Read: Reusing the original physical memory functions
mem_write and mem_read from the ARM model, the instances for the memory
operations of the MMU model are straightforward:

mmu_write (val, va, sz) = do {
pa ← mmu_translate va;
when_no_exc mem_write (val, pa, sz)

}

mmu_read (va, sz) = do {
pa ← mmu_translate va;
mem_read (pa, sz)

}

The definitions are unchanged from previous chapters, but now use the new
mmu_translate function of this chapter.

Evaluation: We instantiate the function mem_op for the state with asid and the
nondeterministic TLB and PDC, and call this instantiation mem_op_nondet. The
generic interface of the function mem_op and the type class mmu_extended then picks
up the definitions for translate, read and write presented above (Page 72).

6.1.3 MMU Operations

We now explain MMU operations including updating the page table root and
ASID registers and flush operations.

Updating the Page Table Root Register: In this base model, the instruction
update_TTBR0 merely does what its name describes, and as in the base models of
the previous chapter, this instruction does not entail TLB eviction:

update_TTBR0 r = update_state (λs. s(|TTBR0 := r|))

Updating the ASID Register: The update_ASID instruction merely does what
its name describes, and similar to the update_TTBR0 instruction, it does not entail
TLB eviction:

update_ASID a = update_state (λs. s(|ASID := a|))

Flush Operations: The flush instructions operate on both the TLB and the PDC.
We have defined the flush types flush_type and asid_flush_type in the previous
chapter (Sect. 5.1.3, Page 76). The instantiation of these flush instruction for this
base model is:

104

Chapter 6. A Formal Model of the ARMv7-A MMU with Two-Stage TLB

flush f ≡
case f of FlushTLB ⇒ update_state (λs. s(|TLB_PDC := (∅, ∅)|))
| Flushvarange vset ⇒

update_state (λs. s(|TLB_PDC := flush_vset (TLB_PDC s) vset|))

flush_with_ASID f ≡
case f of
FlushASID a ⇒

update_state (λs. s(|TLB_PDC := flush_asid (TLB_PDC s) a|))
| FlushASIDvarange a vset ⇒

update_state
(λs. s(|TLB_PDC := flush_asid_vset (TLB_PDC s) a vset|))

The FlushTLB instruction makes the TLB and PDC sets empty, whereas the
Flushvarange instruction takes a pair (TLB × pdc) and flushes the entries match-
ing the given set of virtual addresses, i.e.,

flush_vset tp vset =
(let tlb = fst tp; pdc = snd tp
in (tlb - (

⋃
v∈vset {e ∈ tlb | v ∈ range_of e}),

pdc - (
⋃

v∈vset {e ∈ pdc | v ∈ range_of e})))

FlushASID flushes all entries under the given ASID:

flush_asid tp a =
(let tlb = fst tp; pdc = snd tp
in (tlb - {e ∈ tlb | asid_of e = �a�},

pdc - {e ∈ pdc | asid_of e = �a�}))

Finally, FlushASIDvarange flushes the entries for the given set of virtual addresses
under the given ASID:

flush_asid_vset t a vset =
(let tlb = fst t; pdc = snd t
in (tlb - (

⋃
v∈vset {e ∈ tlb | v ∈ range_of e ∧ asid_of e = �a�}),

pdc - (
⋃

v∈vset {e ∈ pdc | v ∈ range_of e ∧ asid_of e = �a�})))

Evaluation: We instantiate the function mmu_op for the state with asid and the
nondeterministic TLB and PDC, and call this instantiation mmu_op_nondet. The
generic interface of the function mmu_op and the type class mmu_extended then picks
up the above presented definitions.

105

6.2 MMU Abstraction

6.2 MMU Abstraction

Similar to the base model of the previous chapters, the MMUmodel of the previous
section gives us the ground truth of how hardware operates, and thereby the
foundation for a logic for programs under the two-stage TLB with ASIDs and
global translation entries, but this model is hard to reason about directly. It
inherits the reasoning complexities of an MMU model with a single-stage TLB as
identified in Sect. 5.2. It also involves an additional PDC lookup potentially on
every memory transaction, as demonstrated by the address translation function
mmu_translate of the previous section.

In this section, we show how we construct a model that avoids the PDC and TLB
lookups and produces sufficient conditions for safe execution. We have already
observed from the abstraction chains of the single-stage MMU models (Sect. 4.4
and Sect. 5.2) that a TLB lookup forms an order with Miss being the bottom
element and Incon the top. Since we have modeled the PDC with the same ’e
lookup_type, a PDC lookup forms the same order and we can prove monotonicity.

Lemma 4. t ⊆ t’ =⇒ pdc_lookup t a v ≤ pdc_lookup t’ a v

Proof. By case distinction and unfolding the definitions.

Similar to the refinement stack of the single-stage TLB model (Sect. 5.2), we
build a series of formal abstractions of the concrete two-stage TLB model that are
increasingly easier to reason about, but preserve functionality and the optimisation
opportunities OS developers must be able to exploit.

Our refinement stack is shown in Figure 6.5 and this time it consists of two lev-
els. In the first level, we hierarchically saturate the PDC and the TLB with the
mapped state of page table, this eliminates nondeterminism, state change for the
memory reads and the PDC lookup from the model. Next we abstract the PDC
and the TLB completely and reach at the most abstract MMU model similar to
the abstract model of single-stage TLB (Sect. 5.2.3). The highlight of our most
abstract two-stage TLB model is that it has the same three components as the
single-stage most abstract model: the incon_set, the global_set and the snapshot.
The only difference between these models is the updated page table interface with
pt_walk_typ and now a more conservative page table comparison function.

As before, for each level up in the refinement stack of Figure 6.5 we prove that
its abstraction preserves a refinement relation and is sound with respect to its
immediate concrete MMU model. We then join these refinement levels in order to
prove the soundness of the most abstract model with the base model.

As in the previous models we need to be able to express what it means that the
TLB and the PDC are currently in a consistent state for an address to be accessed.

106

Chapter 6. A Formal Model of the ARMv7-A MMU with Two-Stage TLB

Figure 6.5: Refinement Stack for MMU Models

We formalise consistency of TLB and PDC for a virtual address in the base and
saturated model as:

consistent mem root tlb pdc asid va ≡
tlb_consistent mem root tlb asid va ∧
pdc_consistent mem root pdc asid va

Where

tlb_consistent mem root tlb asid va ≡
tlb_lookup tlb asid va = Hit (the (pt_walk asid mem root va)) ∧
no_fault (pt_walk asid mem root va) ∨
tlb_lookup tlb asid va = Miss

pdc_consistent mem root pdc asid va ≡
pdc_lookup pdc asid va = Hit (the (pdc_walk asid mem root va)) ∧
no_fault (pdc_walk asid mem root va) ∨
pdc_lookup pdc asid va = Miss

Similar to the consistency condition of previous chapters, the above condition com-
bines internal consistency of the TLB and the PDC (no Incon results permitted),
with external consistency, i.e. synchronicity with the current state of the mapped
page table for this particular address. The condition for Hit ensures that TLB and
PDC do not store translation entries for unmapped virtual addresses (no_fault).
We will again see in the most abstract model that the condition can be greatly
simplified.

We now provide our MMU models and their refinement.

6.2.1 The Saturated MMU Model

In this abstraction, we remove nondeterminism and state change on memory reads
by removing the TLB’s and the PDC’s eviction and also by saturating them hi-
erarchically with the mapped page table entries after every memory and MMU

107

6.2 MMU Abstraction

operation. We leave out a separate refinement step for only removing eviction
because the TLB and PDC evictions can influence each other, and it is therefore
easier to merge eviction abstraction with saturation. We observe that this satu-
ration enables us to also eliminate the potential PDC lookup while resolving the
virtual addresses: we first saturate the PDC with the mapped page table entries of
the current state, and then from this saturated PDC we carry out page table walks
and saturate the TLB. This way the TLB contains all the mapped entries for the
current page table through the saturated PDC, and a TLB Miss implies a page
table fault. Figure 6.6 gives an overview. The critical aspect of our saturation
framework is that we propagate the inconsistencies of the PDC for the active state
entirely to the TLB, this is required to capture the complete information stored
in the PDC in the TLB.

Memory Operations: We instantiate the parameter mmu_translate of the type
class mmu_extended for the deterministic and saturated two-stage TLB and name
it mmu_translate_sat:

mmu_translate_sat va = do {
pdc_tlb_refill;
(asid, tlb, pdc) ← read_state (ASID, TLB_PDC);
case tlb_lookup tlb asid va of Miss ⇒ raise PAGE_FAULT
| Incon ⇒ raise IMPLEMENTATION_DEFINED
| Hit entry ⇒ return (va_to_pa va entry)

}

pdc_tlb_refill = do {
(m, rt, a) ← read_state (MEM, TTBR0, ASID);
let pdes = ran (pdc_walk a m rt);

entries = these (
⋃

v to_tlb pdes a m rt v)
in update_state (λs. s(|TLB_PDC := TLB_PDC s ∪ (entries, pdes)|))

}

The call to pdc_tlb_refill at the beginning of mmu_translate_sat achieves the
saturation mentioned above by adding all mapped page directory entries and then
all mapped TLB entries for the current state and ASID. Here, ran f = {b | ∃ a.
f a = �b�} and these f’ ≡ the ‘ (f’ ∩ {x | x �= None}). Next we do the TLB
lookup for the given virtual address va: Incon still leads to the same exception as
before. Miss implies a page fault, since the TLB is saturated with the mapped
entries, and Hit gives us the respective physical address.

The function to_tlb in the function pdc_tlb_refill plays an important role to
soundly capture the information cached in the PDC: it takes a PDC and essentially
returns a set of TLB entries for a given virtual address and an ASID through the
PDC lookup and the page table walk from the memory:

to_tlb pdc asid mem rt va =
(case pdc_lookup pdc asid va of Miss ⇒ {pt_walk asid mem rt va}

108

Chapter 6. A Formal Model of the ARMv7-A MMU with Two-Stage TLB

Figure 6.6: Hierarchical Saturation of PDC and TLB with Current Page Table

| Incon ⇒ (λx. pdc_to_tlb x mem va) ‘ pdc_entry_set pdc asid va
| Hit pde ⇒ {pdc_to_tlb pde mem va})

For a virtual address va and an ASID a, we first do the PDC lookup in the above
function. If the result of the PDC lookup is Miss, we simply return the pt_walk
as a singleton set containing either a Some TLB entry or None (in case of a page
table fault). If the PDC lookup results in Hit, we complete the page table walk
using the function pdc_to_tlb. The Incon PDC lookup is interesting: we take all
matching PDC entries (using pdc_entry_set) and return a set of respective TLB
entries. This way the inconsistency in the PDC is preserved in the TLB.

For this MMU model, we also change the memory operations to preserve satura-
tion. The new instantiations for the saturated PDC and TLB are mmu_write_sat
and mmu_read_sat:

mmu_write_sat (val, va, sz) = do {
pa ← mmu_translate_sat va;
when_no_exc do { mem_write (val, pa, sz); pdc_tlb_refill }

}

mmu_read_sat (va, sz) = do {
pa ← mmu_translate_sat va;
mem_read (pa, sz)

}

The function mmu_write_sat refills the two-stage TLB after the write operation
to maintain saturation, as this write could have been to a page table present in
the memory. The function mmu_read_sat achieves this saturation implicitly in the
start through the mmu_translate_sat function, as reading from the memory does
not affect the state of page table.

We wrap up the evaluation of functions mmu_translate_sat, mmu_write_sat and

109

6.2 MMU Abstraction

mmu_read_sat in the function mem_op, and call this function mem_op_sat.

MMU Operations: Similar to the memory operations, we saturate the two-stage
TLB after updating the page table root and ASID register with the mapped state
of the page table under the active ASID. We also saturate the two-stage TLB after
the flush operations. We saturate the two-stage TLB after the flush operations so
that we can maintain the invariant that it always captures the mapped state of the
page table. The instantiations of MMU operations for this model are presented
below.

update_TTBR0_sat r = do {
update_state (λs. s(|TTBR0 := r|));
pdc_tlb_refill

}

update_ASID_sat a = do {
update_state (λs. s(|ASID := a|));
pdc_tlb_refill

}

The instantiations for flush operations are:

flush_sat f = do {
(case f of FlushTLB ⇒ update_state (λs. s(|TLB_PDC := (∅, ∅)|))
| Flushvarange vset ⇒

update_state (λs. s(|TLB_PDC := flush_vset (TLB_PDC s) vset|)));
pdc_tlb_refill

}

flush_with_ASID_sat f = do {
(case f of
FlushASID a ⇒

update_state (λs. s(|TLB_PDC := flush_asid (TLB_PDC s) a|))
| FlushASIDvarange a vset ⇒

update_state
(λs. s(|TLB_PDC := flush_asid_vset (TLB_PDC s) a vset|)));

pdc_tlb_refill
}

We wrap up the evaluation of the functions update_TTBR0_sat, update_ASID_sat,
flush_sat and flush_with_ASID_sat in the function mem_op_sat.

Refinement: We now present the refinement between the deterministic and the
saturated MMU models. The refinement relation is:

110

Chapter 6. A Formal Model of the ARMv7-A MMU with Two-Stage TLB

tlb_rel_sat s t ≡
let tlb_nondet = fst (TLB_PDC s); pdc_nondet = snd (TLB_PDC s);

tlb_sat = fst (TLB_PDC t); pdc_sat = snd (TLB_PDC t)
in truncate s = truncate t ∧

ASID s = ASID t ∧
tlb_nondet ⊆ tlb_sat ∧ pdc_nondet ⊆ pdc_sat ∧ saturated t

This relation demands that the states s and t differ only in the contents of their
TLBs and PDCs. The nondeterministic TLB of state s has fewer entries than
the saturated TLB of state t, and the nondeterministic PDC of state s has fewer
entries than the saturated PDC of state t. These subset relations provide the
lookup order between the states s and t. The saturated assertion represents that
both TLB and PDC of state t are saturated with the mapped page table under
the active ASID:

saturated t ≡ tlb_saturated t ∧ pdc_saturated t

Where

tlb_saturated t ≡
let tlb_sat = fst (TLB_PDC t)
in ran (pt_walk (ASID t) (MEM t) (TTBR0 t)) ⊆ tlb_sat
pdc_saturated t ≡
let pdc_sat = snd (TLB_PDC t)
in ran (pdc_walk (ASID t) (MEM t) (TTBR0 t)) ⊆ pdc_sat

Theorem 24. The nondeterministic and saturated memory operations preserve
the refinement relation tlb_rel_sat given the consistency of the two-stage satu-
rated TLB for the virtual address.

mem_op_nondet f s = (res, s’)
mem_op_sat f t = (res’, t’) consistent_sat f t tlb_rel_sat s t

res’ = res ∧ tlb_rel_sat s’ t’

Where consistent_sat ensures that memory operation is for a consistent virtual
address with respect to the two-stage saturated TLB including the PDC.

Proof. For address translation, we observe that the TLB and the PDC of state s
are consistent given the subset relationship, and the fact that the TLB and the
PDC of state t are consistent. The lookup for va in both the states t and s will
either produce Miss or Hit. When the saturated-TLB of state t produces Miss
(implies a page table fault), the nondeterministic TLB of state s also produces a
Miss and we will be in the PDC lookup case. The nondeterministic PDC of state
s then has to conform with the saturated-PDC of state t: producing either Miss or
Hit with a consistent page directory entry and completing the translation for the

111

6.2 MMU Abstraction

address va through page table walk to eventually encounter the page table fault.
In the case of Hit with an entry in the saturated-TLB of state t, the TLB of s
either agrees on the same entry with Hit, or performs a consistent PDC lookup
and page table walk. The refinement for memory read and write follows directly
from the refinement of the address translation.

Theorem 25. The nondeterministic and saturated MMU operations preserve the
refinement relation tlb_rel_sat.

mmu_op_nondet f s = ((), s’)
mmu_op_sat f t = ((), t’) tlb_rel_sat s t

tlb_rel_sat s’ t’

Proof. By using operational definitions and basic set reasoning.

With this we conclude our saturated MMU model and its refinement with the
nondeterministic MMU.

6.2.2 The Most Abstract MMU Model

We now present the last and most abstract model of our refinement chain. Similar
to the abstract model of the single-stage TLB (Sect. 5.2.3), we abstract the two-
stage TLB completely and soundly model its functionality using the record of
inconsistent virtual addresses. As expected and required, this abstract model is
conservative in detecting inconsistencies for the caching of each level of the page
table walks. In this MMU, we do not extend the state with TLB × pdc, rather the
two-stage TLB is modeled using these three components:

incon_set :: vaddr set
global_set :: vaddr set
snapshot :: asid ⇒ vaddr set × (vaddr ⇒ pt_walk_typ)

For motivation of snapshot, please refer to the starting paragraphs of the most
abstract model of the single-stage TLB (Page 83). The snapshot now stores the
pt_walk_typ instead of asid tlb_entry option. We will go into more detail on
this later in this section. Figure 6.7 gives an overview of the ARMv7-A MMU
with our most abstract TLB interface. The read/write dependencies of the model
are similar to the abstract model for the single-stage TLB, and we summarise it
in Table 6.1 for the reader’s convenience.

As in the single-stage case, the address translation and memory operations which
constitute the majority of program instructions use only the incon_set as their
TLB interface. The snapshot is used only to detect the inconsistent addresses

112

Chapter 6. A Formal Model of the ARMv7-A MMU with Two-Stage TLB

Figure 6.7: ARMv7-style Memory Management Unit with Abstract MMU

while switching the ASID register. The ASID register is only updated on a context
switch between processes, and we will see later in this section that snapshot is used
there for the page table comparison: there is no actual TLB lookup involved.

We now explain our abstract TLB model. The incon_set and the global_set are
identical to the previous abstract model: the incon_set stores inconsistent virtual
addresses that are either global or under the active ASID, the global_set consists
of all the globally mapped virtual addresses irrespective of their consistency. The
snapshot now holds the state of two-stage page table walks pt_walk_typ for all
inactive ASIDs. This implies that this model is more conservative in detecting
inconsistencies than the single-stage TLB, and this is exactly what we should
expect. The TLB-snapshot of the page table state modulo the inconsistent virtual
addresses for every ASID is modeled as the pair type of vaddr set and the map
type vaddr ⇒ pt_walk_typ. The vaddr set of a snapshot an ASID a contains the
inconsistent virtual addresses under the ASID a, and the page table state holds
the mapped non-global entries. A None in the page table state represents either
global or unmapped virtual addresses. As expected, the flush operations under
ASIDs are able to alter the content of the snapshot.

We now explain the operations of the most abstract MMU model on the two-stage
TLB and also provide the refinement theorems between the saturated and the
most abstract MMU models.

Memory Operations: For translating a virtual address, we simply check its
consistency for the two-stage TLB using the incon_set and subsequently carry
out the translation from the page table itself.

mmu_translate_set va ≡ do {
(mem, ttbr0, asid) ← read_state (MEM, TTBR0, ASID);

113

6.2 MMU Abstraction

Operation Utilise from Abs. MMU Update from Abs. MMU

Address Translation incon_set Nothing

Memory Read incon_set Nothing

Memory Write incon_set incon_set, global_set

Root Update Nothing incon_set, global_set

ASID Update
incon_set, global_set,
snapshot incon_set, snapshot

Flush Operations Nothing
incon_set, global_set,
snapshot

Table 6.1: Read/Write Dependencies for Memory and MMU Operations

incon_set ← read_state_iset incon_set;
if va ∈ incon_set then raise IMPLEMENTATION_DEFINED
else let entry = pt_walk asid mem ttbr0 va

in if fault entry then raise PAGE_FAULT
else return (va_to_pa va (the entry))

}

Note that for address translation, we have used the function pt_walk which gives
us end-to-end address translation. This is another highlight of our most abstract
model: since we carry out the address translation from the actual page table it-
self, we are not required to do the conservative two-stage page table walk. From
the abstract two-stage TLB model, we have utilised only incon_set for checking
the consistency of the virtual address va as it is being resolved under the active
ASID. The reader is encouraged to compare the complexity of the nondetermin-
istic address translation function of Sect. 6.1.2 to this simple yet sound address
translation function.

We now proceed to the memory write operation. For its instantiated function
mmu_write_set, we must figure out which new addresses might have become incon-
sistent for the two-stage TLB. For keeping track of such inconsistencies stemming
from two different page table walks, we introduce a less or equal relation between
pt_walk_typ walks as:

walk � walk’ ≡
walk = Fault ∨
walk = walk’ ∨
(∃ pde. walk = Partial_Walk pde ∧

(∃ tlbentry. walk’ = Full_Walk tlbentry pde))

In the above relation, the first two disjuncts imply that a Fault walk is always
smaller then a Partial_Walk and a Full_Walk. The third disjunct states that a
walk is less than the another walk’ if walk is a Partial_Walk with a pde, and walk’
is a Full_Walk with the same pde and a tlbentry.

114

Chapter 6. A Formal Model of the ARMv7-A MMU with Two-Stage TLB

Using the less or equal relation for page table walks, we define the ptable_comp
function that compares two page tables and returns a set of all the virtual addresses
that are two-stage TLB-inconsistent :

ptable_comp walk walk’ ≡ {va | ¬ walk va � walk’ va}

This comparison gives us the set of unmapped and remapped virtual addresses, as
well as virtual addresses that result in the same end-to-end translation from the
both walk and walk’ but have different page directory entries. The later category
covers an important aspect of the two stages of page table caching in the concrete
MMU model of Sect. 6.1.

The memory write instantiation mmu_write_set for this abstracted model is:

mmu_write_set (val, va, sz) = do {
(m, rt, a, incon_set, global_set) ←

read_state (MEM, TTBR0, ASID, incon_set, global_set);
paddr ← mmu_translate_set va;
when_no_exc do {

mem_write (val, paddr, sz);
m’ ← read_state MEM;
let incon_set_new =

ptable_comp (ptd_walk a m rt) (ptd_walk a m’ rt);
let global_set_new = global_varange a m’ rt;
update_incon_set (incon_set ∪ incon_set_new);
update_global_set (global_set ∪ global_set_new)

}
}

Where

global_varange a m rt ≡⋃
e∈global_entries (ran (pt_walk a m rt)) range_of e

The first step in the memory write is to resolve the given virtual address. On
the successful translation we simply write to the physical memory. To figure out
the potential TLB-inconsistencies as the result of this memory write, we compare
the results of the two-stage page table walks (ptd_walk) before and after the
write operation using the function ptable_comp. We enumerate all cases of this
page table comparison in Table 6.2 for the reader’s convenience. The function
update_incon_set in the function mmu_write_set updates the incon_set of the
state with the given argument.

We also reload the global_set with the address range of new global mappings
after the memory write. This helps us to soundly model the inconsistencies while
switching ASID as we will see later in this section. The function global_varange
simply computes the range_of the global_entries (the TLB entries with None

115

6.2 MMU Abstraction

before va after va Check
Partial_Walk pde Fault True
Partial_Walk pde Partial_Walk pde’ pde �= pde’
Partial_Walk pde Full_Walk e pde’ pde �= pde’
Full_Walk e pde Fault True
Full_Walk e pde Full_Walk e pde’ pde �= pde’
Full_Walk e pde Full_Walk e’ pde e �= e’
Full_Walk e pde Partial_Walk pde’ True
Full_Walk e pde Full_Walk e’ pde’ pde �= pde’ ; e �= e’

where before = ptd_walk a m rt and after = ptd_walk a m’ rt

Table 6.2: When does a Page Table Walk Change Produce an Inconsistency?

ASID tag) from the page table starting at the location rt in the memory m. Note
that for global entries, we use the end-to-end page table walk function (pt_walk)
instead of the two-stage ptd_walk, because global entries are inherently determined
by the final address translation. This will also make reasoning simpler later in the
logic. The function update_global_set in the function mmu_write_set updates the
global_set of the state with the given argument.

For mmu_read_set, the definition is similar to the base-level model, we only use
the new mmu_translate_set instance.

mmu_read_set (va, sz) = do {
pa ← mmu_translate_set va;
mem_read (pa, sz)

}

We wrap up the evaluation of functions mmu_translate_set, mmu_write_set and
mmu_read_set in the function mem_op, and call this function mem_op_set.

MMU Operations:We now explain MMU operations for our most abstact MMU
model.

As in the most abstract model of the single-stage TLB, updating the page table
root register has an effect on the most abstract two-stage TLB similar to changing
the state of the current page table through the memory write operation. In the
instantiation update_TTBR0_set, we use the page table comparison ptable_comp
function with walks from two page tables, in order to compute the resultant in-
consistent virtual addresses. We also reload the global_set with the updated
global virtual addresses.

update_TTBR0_set r = do {
(mem, ttbr0, asid, incon_set, global_set) ←

read_state (MEM, TTBR0, ASID, incon_set, global_set);
update_state (λs. s(|TTBR0 := r|));

116

Chapter 6. A Formal Model of the ARMv7-A MMU with Two-Stage TLB

let incon_set_new =
ptable_comp (ptd_walk asid mem ttbr0) (ptd_walk asid mem r);

let global_set_new = global_varange asid mem r;
update_incon_set (incon_set ∪ incon_set_new);
update_global_set (global_set ∪ global_set_new)

}

We now explain the instruction for updating the ASID register. Until now, we have
only used the incon_set from our most abstract model, while only reloading the
global_set. Now, as in the single-stage TLB, we will manipulate all three com-
ponents of the most abstract TLB model. The instantiation update_ASID_set for
the two-stage TLB is almost identical to the respective instantiation for a single-
stage abstract TLB model that we presented in the previous chapter (Sect. 5.2.3,
Page 87). This similarity is another salient feature of our refinement framework.

The updateASID instruction is instantiated as:

update_ASID_set a = do {
(mem, ttbr0, asid, incon_set, global_set) ←

read_state (MEM, TTBR0, ASID, incon_set, global_set);
snapshot ← read_state_iset snapshot;
let new_snp = snapshot

(asid := (incon_set, ptd_walk asid mem ttbr0));
update_snapshot new_snp;
update_state (λs. s(|ASID := a|));
let global_incon = incon_set ∩ global_set;

incon_set_snap = fst (new_snp a);
ptcomp_snap =

ptable_comp (snd (new_snp a)) (ptd_walk a mem ttbr0)
in update_incon_set (global_incon ∪ incon_set_snap ∪ ptcomp_snap)

}

We proceed as in the single-stage case, only with ptd_walk instead of pt_walk: we
first store the incon_set and the two-level page table state (ptd_walk) of the active
ASID to the snapshot. The function update_snapshot updates the snapshot of
the state with the given argument. Next we update the ASID register to the ASID
a. For finding the incon_set for the ASID a, we

• mask the globally inconsistent virtual addresses by intersecting the incon_set
and the global_set,

• retrieve the stored inconsistent virtual addresses from the snapshot of ASID
a, and finally

• compare the stored two-level page table state and the active page table using
the ptable_comp function.

We simply update the incon_set with these set of inconsistent virtual addresses
using the update_incon_set function and the execution can continue with the new
ASID under its incon_set.

117

6.2 MMU Abstraction

We now proceed to explaining the flush operations for our most abstract model.
Depending on the nature of the flush instruction, the flush operations remove the
relevant virtual addresses from the incon_set and the global_set, and unmap
them from snapshot. To unmap an address from the snapshot means to make
its respective snapshot the Fault, since flush instructions operate both on the
PDC and the TLB. We trivially saturate the global_set with the mapped global
addresses of the current page table after the flush instructions for virtual addresses;
this helps us proving the refinement later. The instantiation flush_set for flushing
either the TLB or a range of virtual addresses (irrespective of ASIDs) is defined
as:

flush_set f = do {
(m, rt, a, iset, gset, snp) ←

read_state (MEM, TTBR0, ASID, incon_set, global_set, snapshot);
case f of FlushTLB ⇒ do {

update_incon_set ∅;
update_global_set (global_varange a m rt);
update_snapshot (λa. (∅, λv. Fault))

}
| Flushvarange vset ⇒ do {

update_incon_set (iset - vset);
update_global_set (gset - vset ∪ global_varange a m rt);
update_snapshot
(λa. (fst (snp a) - vset,

λv. if v ∈ vset then Fault else snd (snp a) v))
}

}

FlushTLB empties the incon_set and inconsistent addresses of snapshot for all
ASIDs, unmaps the stored page table state to make it Fault, and reloads the
global_set with the consistent globally mapped virtual addresses of the current
state. Similary, Flushvarange removes the given set of virtual addresses from the
incon_set and from the inconsistent addresses of snapshot for all ASIDs, unmaps
them from the stored page table state of all ASIDs, and removes them from the
global_set before making the global_set saturated with the globally mapped
virtual addresses of the current state.

The flush operation for the two-stage TLB is instantiated as:

flush_with_ASID_set f = do {
(m, rt, asid, iset, gset, snp) ←

read_state (MEM, TTBR0, ASID, incon_set, global_set, snapshot);
case f of
FlushASID a ⇒

if a = asid then update_incon_set (iset ∩ gset)
else update_snapshot (snp(a := (∅, λv. Fault)))

| FlushASIDvarange a vset ⇒

118

Chapter 6. A Formal Model of the ARMv7-A MMU with Two-Stage TLB

if a = asid then update_incon_set (iset - (vset - gset))
else let iset = fst (snp a); pt = snd (snp a)

in update_snapshot
(λa’. if a’ = a

then (iset - vset,
λv. if v ∈ vset then Fault else pt v)

else snp a’)
}

For the active ASID, FlushASID simply removes the ASID-specific addresses from
the incon_set. While for an inactive ASID as its argument, the FlushASID unmaps
the ASID’s snapshot. The FlushASIDvarange repeats the same process for the
given set of virtual addresses under an ASID.

We instantiate the evaluation of functions update_TTBR0_set, update_ASID_set,
flush_set and flush_with_ASID_set for the function mmu_op, and call this function
mmu_op_set.

Refinement: We now present the refinement theorems between the saturated and
the most abstract models.

The refinement relation should provide a lookup order between the abstract TLB
model (incon_set, global_set and snapshot) and the saturated TLB and PDC.
Such a refinement relation is:

tlb_rel_set s t ≡
let tlb_sat = fst (TLB_PDC s); pdc_sat = snd (TLB_PDC s)
in truncate s = truncate t ∧

ASID s = ASID t ∧
saturated s ∧
incon_addrs s ⊆ incon_set t ∧
global_range s ⊆ global_set t ∧
(∀ a v. a �= ASID s −→

tlb_lookup (non_global_entries tlb_sat) a v
≤ tlb_lookup_from (snapshot t) a v ∧
pdc_lookup (non_global_entries pdc_sat) a v
≤ pdc_lookup_from (snapshot t) a v)

Where the function incon_addrs constructs the set of inconsistent addresses under
the active ASID in the saturated TLB and PDC of state s:

incon_addrs s ≡ tlb_incon_addrs s ∪ pdc_incon_addrs s

Where
tlb_incon_addrs s ≡
let tlb = fst (TLB_PDC s); a = ASID s; m = MEM s; rt = TTBR0 s
in {va | tlb_lookup tlb a va = Incon} ∪

119

6.2 MMU Abstraction

{va | ∃ e. tlb_lookup tlb a va = Hit e ∧ fault (pt_walk a m rt va)}

pdc_incon_addrs s ≡
let pdc = snd (TLB_PDC s); a = ASID s; m = MEM s; rt = TTBR0 s
in {va | pdc_lookup pdc a va = Incon} ∪

{va | ∃ e. pdc_lookup pdc a va = Hit e ∧ fault (pdc_walk a m rt va)}

This subset relation between the incon_addrs of state s and the incon_set of
state t is analogous to the subset assumption of our earlier refinement between the
saturated and the non-deterministic MMU model. This subset relation provides
us with the TLB’s and the PDC’s lookup order, hence guarantees about safe
execution. We impose a similar lookup order for the global addresses cached in
the saturated TLB and PDC of state s and between the global_set of state t.
The function global_range (provided below) computes the global addresses of the
saturated TLB and PDC, and we assert that these addresses are in the subset
relation with the global_set of state t. The global_range for the state s is
computed as:

global_range s ≡ tlb_global_range s ∪ pdc_global_range s

Where
tlb_global_range s ≡
let tlb = fst (TLB_PDC s) in

⋃
e∈global_entries tlb range_of e

pdc_global_range s ≡
let pdc = snd (TLB_PDC s) in

⋃
e∈global_entries pdc range_of e

The last conjunct of the refinement relation tlb_rel_set provides us with a similar
order for the inactive ASIDs. The TLB and the PDC of sate s are not saturated
for these ASIDs; therefore we assert that the stored snapshot of the abstract state
t covers all possible ASID-specific executions (represented by the tlb_lookup on
non_global_entries) of the TLB and the PDC of state s. Formally:

tlb_lookup_from snp a va ≡
let iset = fst (snp a); pt = snd (snp a)
in if va ∈ iset then Incon

else case pt va of
Full_Walk te pe ⇒ if asid_of te = None then Miss else Hit te
| _ ⇒ Miss

pdc_lookup_from snp a va ≡
let iset = fst (snp a); pt = snd (snp a)
in if va ∈ iset then Incon

120

Chapter 6. A Formal Model of the ARMv7-A MMU with Two-Stage TLB

else case pt va of Fault ⇒ Miss
| Partial_Walk pe ⇒ if asid_of pe = None then Miss else Hit pe
| Full_Walk te pe ⇒

if asid_of te = None ∧ asid_of pe = None then Miss
else Hit pe

The function tlb_lookup_from estimates a TLB lookup for the given ASID a
and virtual address va from the snaphot snp: the resultant lookup is Incon if
the address va is in the inconsistent set of the snaphot snp, otherwise Faults
and global addresses are encoded to Miss, and an the ASID-specific entries to Hit.
Similarly, the function pdc_lookup_from estimates PDC lookup for the given ASID
a and virtual address va from the snaphot snp: the resultant lookup is Incon if
the address va is in the inconsistent set of the snaphot snp, otherwise Faults and
global addresses are encoded to Miss, global Partial_Walks to Miss, non-global
Partial_Walks to Hit, global Full_Walks to Miss, and non-global Full_Walks to
Hit.

We now present the refinement theorems.

Theorem 26. The saturated and abstract memory operations preserve the re-
finement relation given the consistency of the most abstract TLB for the virtual
address.

mem_op_sat f s = (res, s’)
mem_op_set f t = (res’, t’) consistent_set f t tlb_rel_set s t

res’ = res ∧ tlb_rel_set s’ t’

Where consistent_set ensures that the memory operation is for a consistent vir-
tual address i.e. the virtual address is not an element of the incon_set of state
t.

Proof. We first explain how the refinement works for address translation. Accord-
ing to the refinement relation, the incon_set of state t tracks the inconsistent
virtual addresses for the active ASID in the saturated TLB of state s. We are
therefore in the else branch of mmu_translate_set, and in either the Hit or the
Miss branch of mmu_translate_sat. In both these cases, the results must agree
because saturated and tlb_rel_set say that the Hit and Miss results represent
precisely the walks we perform in mmu_translate_set.

As in the single-stage case, memory reads preserve the refinement relation after
the address translation in a straight forward way. Memory writes are again similar
to the single-stage case, but we now need to observe that the new definition of
ptable_comp with two-stage walks correctly captures all possibilities for creating
inconsistencies.

Theorem 27. The saturated and abstract MMU operations preserve the refine-
ment relation.

121

6.2 MMU Abstraction

Figure 6.8: Refinement between Nondeterministic and Abstract MMU

mmu_op_sat f s = ((), s’)
mmu_op_set f t = ((), t’) tlb_rel_set s t

tlb_rel_set s’ t’

Proof. As before, the proof strategy for the update_TTBR0 instantiations is sim-
ilar to that of memory writes, as the ptable_comp comparison is inherently the
same. The proof for flush instructions includes the set reasoning about preserving
the refinement relation after the respective incon_set, global_set and snapshot
updates.

The refinement proof for the update_ASID instruction follows the same structure
as the single-stage case. Overall we are required to establish that the incon_set
correctly models the inconsistencies of the saturated TLB and PDC after updating
the ASID, the global_set holds the subset relation and the snapshot provides the
lookup order for the all the inactive ASIDs. The main observation that makes the
proof possible is that the saturated TLB and PDC can be partitioned into its global
and non-global entries, and then we can reason about the disjoint lookup order
for the non-global entries. The global entries are reasoned about by the subset
relation of the global entries and global_set. The snapshot order is preserved by
proving that the ptable_comp function correctly detects the inconsistencies.

With this we conclude our most abstract MMU model and its refinement with the
saturated MMU.

6.2.3 Joining the Refinement Levels

In this section, we join the refinement levels of Figure 6.5 to show that our most
abstract model is sound with respect to the base model. The resultant refinement
is between the most abstract and the base model through the saturated MMU
model as shown in Figure 6.8. The refinement relation tlb_rel is:

tlb_rel r t ≡ ∃ s. tlb_rel_sat r s ∧ tlb_rel_set s t

122

Chapter 6. A Formal Model of the ARMv7-A MMU with Two-Stage TLB

Figure 6.9: Refinement between Nondeterministic and Abstract Memory Opera-
tions

Where the state r has the nondeterministic two-stage TLB, the state s has the
saturated two-stage TLB and the state t has the most abstract TLB.

The functions tlb_rel_sat and tlb_rel_set are the refinement relations provided
in Sect. 6.2.1 and Sect. 6.2.2 respectively. We then have two refinement theorems,
presented below and also shown in Figure 6.9 and Figure 6.10.

Theorem 28. Refinement between nondeterministic and abstract memory opera-
tions.

mem_op_nondet f r = (res, r’)
mem_op_set f t = (res’, t’) consistent_set f t tlb_rel r t

res = res’ ∧ tlb_rel r’ t’

where consistent_set ensures that the abstract state t is TLB-consistent: the
given virtual address is not an element of the incon_set of state t.

Proof. By case analysis on the function f and using the respective refinement
theorems of Sect. 6.2.1 and Sect. 6.2.2, and proving that consistency of a virtual
address on the most abstract model implies its consistency on the base model.

Theorem 29. Refinement between nondeterministic and abstract MMU mainte-
nance operations.

mmu_op_nondet f r = ((), r’)
mmu_op_set f t = ((), t’) tlb_rel r t

tlb_rel r’ t’

Proof. By case analysis on the function f and using the respective refinement
theorems of Sect. 6.2.1 and Sect. 6.2.2.

With this we conclude presenting the refinement stack.

123

6.3 Summary and Remarks

Figure 6.10: Refinement between Nondeterministic and Abstract MMU Opera-
tions

6.3 Summary and Remarks

In this chapter, we have built on the MMU model of Chapter 5 to introduce
a separate page directory cache (PDC) resulting in a two-stage TLB. We have
identified the additional reasoning complexities this two-stage TLB entails and
have developed a refinement stack that abstracts away the hardware details and
that reaches at an abstract model of ARMv7-A MMU that is easier to reason
about.

The abstract model has three components for modeling the two-stage TLB: a set
of inconsistent virtual addresses for the active ASID-specific and globally mapped
virtual addresses, a set of globally mapped virtual addresses and a snapshot of the
two-stage page table state modulo the inconsistent addresses for all ASIDs. The
main message of the refinement chain presented in this chapter is that any logic
taking this abstract model as its memory interface would avoid the reasoning
complexities of the actual hardware state of the TLB. This model is sound to
reason about for the implementations of the ARMv7-A architecture that caches
partial page table walks under ASIDs and global tags. The model and refinement
chain of this chapter is available online in the form of Isabelle theories (Syeda,
2019).

In the next chapter, we use the most abstract model of this chapter as the memory
model of a program logic for reasoning about programs in the presence of cached
address translation.

124

CHAPTER

SEVEN

Program Logic in the Presence of Cached
Address Translation

7.1 Program Logic

Operating system (OS) kernels achieve isolation between user-level pro-
cesses using multi-level page tables and translation lookaside buffers (TLBs).
Controlling the TLB correctly is a fundamental security property. We
present a logic for reasoning about low-level programs in the presence of
TLB address translation. For its memory model, we use the sound abstrac-
tion of the ARM7-A MMU presented in the previous chapter. In the next
chapter, we apply the rules of this logic to extract invariants and necessary
conditions for correct program execution at the TLB level.

This chapter is organised as: we define the syntax and semantics of a heap
based language with the instructions necessary for TLB management, we
then present the Hoare logic rules on top of the operational semantics.
We also provide simplification rules for memory write to further facilitate
program reasoning in the presence of TLB effects.

This chapter is based on the published work (Syeda and Klein, 2018) and
the submitted work (Syeda and Klein, 2019).

7.1 Program Logic

We present a program logic in Isabelle/HOL (Nipkow et al., 2002) for verifying
programs in the presence of an ARMv7-style memory management unit, consisting
of multi-level page tables and a two-stage translation lookaside buffer for caching
page table walks. This logic builds on the work of Chapter 6, a machine model with
a sound abstraction of the ARMv7-style two-stage TLB with ASIDs and global
tags. While program logics for reasoning in the presence of address translation
exist (Kolanski and Klein, 2009), reasoning in the presence of a TLB has so far
remained hard, and is left as an assumption in all large-scale operating system (OS)
kernel verification projects such as seL4 (Klein et al., 2014) and CertiKOS (Gu
et al., 2011).

The OS kernel manages page table structures, e.g. by adding, removing, or chang-
ing mappings, by keeping a page table structure per user process, and by main-
taining invariants on them (details then in the next chapter). Since the TLB
caches address translation, each of these operations may leave the TLB out of
date w.r.t. the page table in memory, and the OS kernel must flush the TLB be-
fore that lack of synchronisation can affect program execution. Since flushing the
TLB is expensive, OS kernel designers work hard to delay and minimise flushes
and to make them as specific as possible, e.g. using ASIDs or global entries. If this
management is done correctly, the TLB has no effect other than speeding up exe-
cution. If it is done incorrectly, machine execution will diverge from the semantics
usual program logics assume, e.g. wrong memory contents will be read/written,
or unexpected memory access faults might occur. The logic we demonstrate here
will enable proof engineers to reason about such effects.

126

Chapter 7. Program Logic in the Presence of Cached Address Translation

datatype aexp =
Const val

| UnOp (val ⇒ val) aexp
| BinOp (val ⇒ val ⇒ val) aexp aexp
| HeapLookup aexp

datatype bexp =
BConst bool

| BComp (val ⇒ val ⇒ bool) aexp aexp
| BBinOp (bool ⇒ bool ⇒ bool) bexp bexp
| BNot bexp

datatype mode_t = Kernel | User

datatype com =
SKIP

| aexp := aexp
| com ;; com
| IF bexp THEN com ELSE com
| WHILE bexp DO com
| Flush flush_type
| UpdateRoot aexp
| UpdateASID asid
| SetMode mode_t

type synonym asid = 8 word
type synonym val = 32 word

datatype flush_type = flushTLB | flushVR (val set)
| flushASID asid | flushASIDVR asid (val set)

Figure 7.1: Syntax of the Heap based WHILE Language.

We demonstrate our logic by implementing it for a small deeply-embedded imper-
ative language, which contains memory operations and TLB maintenance instruc-
tions, as well as a distinction between privileged kernel mode and unprivileged
user mode. We then define semantics of the language with the abstract MMU
model of the previous chapter as its memory model. Based on the semantics, we
derive Hoare logic rules and prove their soundness. The logic is generic and can
easily be adapted to, for instance, the shallow embedding the seL4 specifications
use, or the more deeply embedded C semantics of the same project. It should also
transfer readily to other settings such as the lower levels of CertiKOS in Coq.

We now present the syntax of our heap-based language.

7.1.1 Syntax

We define the syntax of a simple Turing-complete heap language with TLB man-
agement primitives. Figure 7.1 shows the Isabelle data types for the abstract
syntax of the language.

Control structures are the standard SKIP, IF, WHILE and assignment, where as-
signment expects the left-hand side to evaluate to a heap address. In addition,
we have specific privileged commands for flushing the TLB, updating the current
page table root, the current ASID, and the processor mode. Flush operation has
a number of variants: invalidate all entries, invalidate by virtual address or by
virtual address/ASID pair, and invalidate an entire ASID.

For simplicity, there are no local variables in this language, only the global heap.
We identify values and pointers and admit arbitrary HOL functions for compari-

127

7.1 Program Logic

son, binary, and unary arithmetic expressions.

We now present the program state and the memory model for defining the seman-
tics of our language.

7.1.2 Program State and Memory Model

In the previous chapter we have developed an abstract and sound MMU model
that keeps track of the TLB-inconsistent addresses and uses direct page table
access for address translation. We use the same model here, but there is a break
in logic: the model of the previous chapter is at the ISA level, the program logic we
present here is for a higher-level language with explicit memory access, intended
for languages such as C.

In the absence of a formal compiler correctness statement, there is one main dif-
ference to consider and justify in making this jump: the high-level language makes
fewer memory accesses visible than the low-level machine model. In particular, a
compiler from a higher-level language to the previous binary-level machine model
will implement a stack for local variables, will have a memory area for global vari-
ables, and a memory area for the code itself. These memory accesses are under
address translation and might be relevant for TLB reasoning. We will initially de-
velop a model that simply ignores this issue and then come back to it in Sect. 7.2.
We will see that for kernel-level code, we have to assume that these memory areas
(code, stack, globals) are statically known and that the compiler will not generate
additional memory accesses outside the program heap and these memory areas.
This is a reasonable assumption — otherwise kernel code could never be sure that
privileged memory areas such as memory-mapped devices are not randomly over-
written by compiler-generated accesses. We will then have to prove that we never
remove or change active mappings for these areas (adding new mappings for e.g.
the stack would be fine). For user-level code, we will see that the issue becomes
irrelevant.

The state of our language model has the following components (Figure 7.2 gives
an overview):

• the heap (physical memory),
• the set of inconsistent virtual addresses (global and under the active ASID),
• the set of globally mapped virtual addresses,
• the active page table root,
• the active ASID,
• page table snapshot which represents the last known ASID-specific page
table state modulo inconsistencies for all inactive ASIDs, and

• the processor mode.

The first of these is for traditional heap manipulation, the rest for keeping track

128

Chapter 7. Program Logic in the Presence of Cached Address Translation

Figure 7.2: Abstracted TLB Memory Model

of the abstract TLB interface. This state model is the same as the TLB-relevant
machine state of the previous chapter on the ISA level. We use the types vaddr
and paddr for virtual and physical addresses from Kolanski’s page table inter-
face (Kolanski and Klein, 2009). To simplify the language, we make it operate
exclusively on type val = 32 word. The program state is modeled as the record
type p_state with fields:

• heap :: paddr ⇀ val,
• iset :: iset,
• gset :: gset,
• pt_snpshot :: ptable_snapshot,
• root :: paddr,
• asid :: asid, and
• mode :: mode_t.

Where

type synonym iset = vaddr set
type synonym gset = vaddr set
type synonym ptable_snapshot = asid ⇒ vaddr set × (vaddr ⇒ pt_walk_typ)

The type iset is the set of TLB-inconsistent virtual addresses that are either
mapped globally or under the active ASID, and the type gset is the set of glob-
ally mapped virtual addresses. ptable_snapshot is the same type for the page
table snapshot as introduced in the abstract MMU model of the previous chapter
(Sect. 6.2.2). We summarise it here; the motivation for page table snapshot can be
found in the abstract memory model at Page 83. For each ASID, we keep a snap-
shot of the ASID-specific current page table state when that ASID was last active
modulo all addresses that were inconsistent at that time. The ptable_snapshot is
the map from asid to the pair of the inconsistent vaddr set and the page table

129

7.1 Program Logic

state vaddr ⇒ pt_walk_typ. The pt_walk_typ is the same type as introduced for
the two-level page table walk in the previous chapter (Sect. 6.1.1).

We use the type mode_t to decode access control information in the page table,
that is, some mappings might be accessible in kernel mode only and lead to a page
fault otherwise.

We now proceed to the semantic operations that are used for defining the big-step
semantics of our language.

7.1.3 Semantic Operations

We interpret the values val of the language as virtual addresses, which means
memory read and write first undergo address translation. To decode page tables,
we reuse Kolanski’s existing ARM page table formalisation (Kolanski and Klein,
2009), extended with this access control behaviour for the machine mode as men-
tioned above. Our interface to this formalisation is the function pt_lookup, which
takes a heap, a page table root, and the current mode, and yields a partial function
from virtual address to physical address. The function pt_lookup uses the same
constituent functions as that of the pt_walk function of Sect. 4.3, but it returns
a physical address instead of a TLB entry. Using the function pt_lookup, we can
formalise address translation, read, and write under a TLB.

Adding a TLB to address translation only adds a check that the virtual address
is not part of the iset:

phy_ad :: iset ⇒ heap ⇒ root ⇒ mode_t ⇒ vaddr ⇀ paddr
phy_ad IS hp rt m va ≡ if va /∈ IS then pt_lookup hp rt m va else None

The memory read and write functions are then simply:

read :: iset ⇒ heap ⇒ root ⇒ mode_t ⇒ vaddr ⇀ val
read IS hp rt m va ≡ phy_ad IS hp rt m va � load_value hp

write :: iset ⇒ heap ⇒ root ⇒ mode_t ⇒ vaddr ⇒ val ⇀ heap
write IS hp rt m va v ≡
case phy_ad IS hp rt m va of None ⇒ None | �y� ⇒ �hp(y �→ v)�

where x � g ≡ case x of None ⇒ None | �y� ⇒ g y. Both functions first per-
form address translation, then access the physical heap. The read operation re-
turns None when the translation failed, and the write returns a new heap if suc-
cessful and None otherwise.

The effect of a write operation extends further than the heap. If the operation has
modified the active page table, we may have to add new inconsistent addresses

130

Chapter 7. Program Logic in the Presence of Cached Address Translation

to the TLB iset, and new globally mapped addresses to the gset. For the iset
reload, we compare the page table before and after:

ptable_comp wlk wlk’ ≡ {va | ¬ wlk va � wlk’ va}

incon_comp a hp hp’ rt rt’ =
ptable_comp (ptd_walk a hp rt) (ptd_walk a hp’ rt’)

where a is the current ASID. The function ptable_comp compares the walks of two
page tables for inconsistencies and is same as the page table comparison function
defined in the previous chapter. More details about less or equal relation between
walks are in Sect. 6.2.2 on page 114, with enumerated cases in Table 6.2. For the
function incon_comp, we compare the results of page table walks in a heap hp from
a root rt with walks in a different, updated heap hp’ and potentially different root
rt’. For heap writes, the root will be the same, and for root updates, the heaps
will be the same. Note that a single heap write can affect multiple mappings at
once, for instance when it changes the pointer to an entire page table level. It
is the effect of this comparison that OS engineers reason about informally when
they compute which addresses need to be flushed from the TLB. We will show
examples in the case study (Chapter 8).

As in the ISA-level model, for the global set reload after the memory write, we
add the resultant virtual address range of the global entries of mapped page table
after the write as follows.

global_vaddrs a hp rt ≡
let mapped_ptable = ran (pt_walk a hp rt);

global_ptable = global_entries mapped_ptable
in

⋃
x∈global_ptable range_of x

The effect of a write is then

heap_iset_gset_upds (pp �→ v) ≡
let hp = heap s; hp’ = hp(pp �→ v); rt = root s; a = asid s
in s(|heap := hp’, iset := iset s ∪ incon_comp a hp hp’ rt rt,

gset := gset s ∪ global_vaddrs a hp’ rt|)

and the effect of a page table root update is

root_iset_gset_upds rt’ ≡
let rt = root s; hp = heap s; a = asid s
in s(|root := rt’, iset := iset s ∪ incon_comp a hp hp rt rt’,

gset := gset s ∪ global_vaddrs a hp rt’|)

For changing the current ASID, we make use of the page table snapshots to deter-
mine which addresses have become inconsistent since that ASID was last active.

131

7.1 Program Logic

There are two steps involved: first we store the snapshot for the ASID we are
switching away from, and second we compute the inconsistent addresses for the
new ASID from its snapshot, iset and the active page table (more details in the
previous chapter at Page 117). The snapshot update is formalised as:

new_snp s ≡
let a = asid s; hp = heap s; rt = root s
in (pt_snpshot s)(a := (iset s, λv. ptd_walk a hp rt v))

Taking a snapshot is taking the iset and ptd_walks in the current state, marking
everything in the iset to the inconsistent addresses of the snapshot, and all un-
mapped entries as Fault, and then storing that function under the current ASID
in new_snp.

Determining the iset for the new ASID a compares the entries in the snapshot for
the ASID a with the current ptd_walk. We use new_snp s instead of pt_snpshot
s, because the ASID a could also be the current ASID. We also preserve the global
inconsistencies in the process, intersecting iset with the gset.

snp_incon a s ≡
let snp = new_snp s; iset = iset s; gset = gset s; hp = heap s;

rt = root s; snp_incon = fst (snp a); glb_incon = iset ∩ gset;
pt_incon = ptable_comp (snd (snp a)) (ptd_walk a hp rt)

in snp_incon ∪ glb_incon ∪ pt_incon

The UpdateASID command then executes as:

asid_iset_snp_upds a ≡
s(|asid := a, iset := snp_incon a s, pt_snpshot := new_snp s|)

The final set of semantic effects are flush operations. The functions

flush_iset :: flush_type ⇒ iset ⇒ asid ⇒ iset and
flush_gset :: flush_type ⇒ gset ⇒ asid ⇒ iset and
flush_snpshot :: flush_type ⇒ pt_snpshot ⇒ asid ⇒ pt_snpshot

simply remove the relevant entries from the iset, gset and set them to Fault in the
pt_snpshot depending on the specific flush instruction. The identical definitions of
flush operations for the abstract MMU model have been presented in the previous
chapter, in Sect. 6.2.2 at Page 118. The effect of the flush instruction on the state
is:

iset_gset_snp_upds f ≡
let is = iset s; gs = gset s; snp = pt_snpshot s; a = asid s;

hp = heap s; rt = root s

132

Chapter 7. Program Logic in the Presence of Cached Address Translation

[[Const c]] s = �c�
[[UnOp f e]] s = case [[e]] s of None ⇒ None | �v� ⇒ �f v�
[[BinOp f e1 e2]] s = case ([[e1]] s, [[e2]] s) of

(�v1�, �v2�) ⇒ �f v1 v2� | _ None
[[HeapLookup vp]] s = case [[vp]] s of None ⇒ None

| �v� ⇒ read (iset s) (heap s) (root s) (mode s) (Addr v)

[[BConst b]]b s = �b�
[[BComp f e1 e2]]b s = case ([[e1]] s, [[e2]] s) of

(�v1�, �v2�) ⇒ �f v1 v2� | _ None
[[BBinOp f b1 b2]]b s = case ([[b1]]b s, [[b2]]b s) of

(�v1�, �v2�) ⇒ �f v1 v2� | _ None
[[BNot b]]b s = (case [[b]]b s of None ⇒ None | �v� ⇒ �¬ v�)

Figure 7.3: Semantics of Arithmetic and Boolean Expressions

in s(|iset := flush_iset f is gs a, gset := flush_gset f gs a hp rt,
pt_snpshot := flush_snpshot f snp a|)

With this we conclude presenting the semantics operations and proceed to the
big-step operational semantics of our language.

7.1.4 Operational Semantics

The semantics of arithmetic and Boolean expressions, [[A]] s and [[B]]b s, are partial
functions from program state to val and bool, respectively. They are shown in
Figure 7.3. All of these are straightforward: HeapLookup is the memory read in the
current state after the successful evaluation to a valid virtual pointer.

Figure 7.4 and Figure 7.5 show a big-step operational semantics of commands in
the language. We write (c, s) ⇒ �s’� if command c, started in s, evaluates to s’.
As usual, the semantics is the smallest relation satisfying the rules of Figure 7.4
and Figure 7.5. We model memory access failure explicitly by writing (c,s) ⇒
None for executions that fail. Figure 7.4 presents the semantic rules for successful
memory access and Figure 7.5 summarizes the cases of memory access failure.
These relations use the semantics operations of the previous section (Sect. 7.1.3)
to model state effects.

The semantics could be made slightly more precise by distinguishing between
situations that must always be avoided, such as using inconsistent TLB entries,
and page faults, which can be recoverable by executing a page fault handler. In
kernel-level code, page faults are usually unwanted as modelled here, in user-level
code they will usually be recovered from by a page fault handler. We omit the
distinction here for simplicity. It could easily be added by including a jump to a
page fault exception handler if desired.

133

7.1 Program Logic

(SKIP, s) ⇒ �s� (c1, s1) ⇒ �s2� (c2, s2) ⇒ s3
(c1;; c2, s1) ⇒ s3

[[lval]] s = �vp� [[rval]] s = �v� vp /∈ IC s Addr vp ↪→s pp
(lval ::= rval, s) ⇒ �heap_iset_gset_upds (pp �→ v)�
〈b〉 s (c1, s) ⇒ t

(IF b THEN c1 ELSE c2, s) ⇒ t
¬〈b〉 s (c2, s) ⇒ t

(IF b THEN c1 ELSE c2, s) ⇒ t

〈b〉 s (c, s) ⇒ �s’’� (WHILE b DO c, s’’) ⇒ s’
(WHILE b DO c, s) ⇒ s’

¬〈b〉 s
(WHILE b DO c, s) ⇒ �s�

mode s = Kernel
(Flush f, s) ⇒ �iset_gset_snp_upds f�

mode s = Kernel [[rte]] s = �rt�
(UpdateRoot rte, s) ⇒ �root_iset_gset_upds Addr rt�

mode s = Kernel snp = new_snp s is = snp_incon a s
(UpdateASID a, s) ⇒ �s(|asid := a, iset := is, pt_snpshot := snp|)�

mode s = Kernel
(SetMode m, s) ⇒ �s(|mode := m|)�

Figure 7.4: Big-Step Semantics of Commands with Successful Memory Access

The assignment rule in the second row of Figure 7.4 requires that both the arith-
metic expressions for the left and right hand side evaluate without failure. The
left hand side is taken as a virtual pointer, the right hand side as the value being
assigned. The assignment succeeds if the virtual address vp is consistent in the
current state: vp /∈ IC s represents Addr vp /∈ iset s and mapped : Addr vp ↪→s

pp means

phy_ad (iset s) (heap s) (root s) (mode s) (Addr vp) = �pp�

Updating the page table root and ASID registers require the privileged (Kernel)
mode for successful operation.

7.1.5 Hoare Logic

We now proceed to the logic rules of these semantics. Having shown the semantics,
we can now proceed to defining Hoare triples. Validity is the usual:

{|P|} c {|Q|} ≡ ∀ s s’. (c, s) ⇒ s’ ∧ P s −→ (∃ r. s’ = �r� ∧ Q r)

134

Chapter 7. Program Logic in the Presence of Cached Address Translation

[[lval]] s = �vp� [[rval]] s = �v� vp ∈ IC s ∨ Addr vp ↪→s None
(lval ::= rval, s) ⇒ None

[[lval]] s = None ∨ [[rval]] s = None
(lval ::= rval, s) ⇒ None

(c1, s1) ⇒ None
(c1;; c2, s1) ⇒ None

[[b]]b s = None
(IF b THEN c1 ELSE c2, s) ⇒ None

mode s = User
(Flush f, s) ⇒ None

〈b〉 s (c, s) ⇒ None
(WHILE b DO c, s) ⇒ None

[[b]]b s = None
(WHILE b DO c, s) ⇒ None

mode s = User ∨ [[rt]] s = None
(UpdateRoot rt, s) ⇒ None

mode s = User
(UpdateASID a, s) ⇒ None

mode s = User
(SetMode m, s) ⇒ None

Figure 7.5: Big-Step Semantics of Commands with Unsuccessful Memory Access

Instead of defining a separate syntactic Hoare calculus, we directly derive Hoare
rules from validity as theorems in Isabelle/HOL. Figure 7.6 and Figure 7.7 show
the resulting rules. Figure 7.6 summarizes the rules for traditional commands such
as SKIP, WHILE, etc. and Figure 7.7 gives the rules for the commands that interact
with the cached address translation layer. We note that the traditional rules
are completely standard. As expected, cached address translation had no direct
influence there. We write 〈〈b〉〉 s to denote that [[b]]b s �= None: the precondition
in the IF and WHILE case must be strong enough to guarantee failure free evaluation
of the condition b. The rules in Figure 7.7 are in weakest-precondition form. They
have a generic postcondition P and the weakest precondition that will establish P.
We will now explain them.

The assignment rule requires that the expressions l and r evaluate without failure.
The assignment succeeds if the virtual address vp is consistent in the current state
(vp /∈ IC s) and vp is mapped (Addr vp ↪→s pp). The effect of the assignment
is the heap, iset and gset update heap_iset_gset_upd as we described in the
semantic operations (Sect. 7.1.3).

The rule for the command UpdateRoot, only available in kernel mode, updates the
current page table root to the value of the expression rte. The effect is modelled
by root_iset_gset_upd defined in the semantic operations (Sect. 7.1.3).

The UpdateASID command, also only available in kernel mode, sets the new ASID
a, increases the iset using snp_incon, and records a page table snapshot for the
old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_gset_snp_upd from the

135

7.2 Safe Set

semantic operations (Sect. 7.1.3).

With this we conclude presenting the logic rules, we use these rules along with the
simplification theorems of the next section to verify programs in Chapter 8.

7.2 Safe Set

This section identifies a key concept that simplifies reasoning for code that does
not directly modify page tables, and even for code that does modify page tables
safely.

As outlined in the previous section, the assignment rule involves reasoning about:
a) consistency of the ASID and virtual address pair in the current state b) valid
address translation, and c) potential update of the inconsistent set (iset) and the
global set (gset). The functions phy_ad and ptable_comp explicitly mention page
table walks, which means reasoning for every memory write has to be aware of
them: the proof engineer has to discharge the page table obligations even if the
memory write has nothing to do with page tables. Even though the assignment
rule is phrased in a weakest-precondition style, the resulting verification conditions
will accumulate quickly.

Our aim in developing a program logic that models low-level details of virtual
memory management is to verify the correctness of OS kernel code, including code
that manipulates the virtual memory layer, but at the same time also to create
a framework that allows us to easily show the absence of TLB inconsistencies in
other kernel code as well as user code.

While the set of potentially inconsistent addresses might be large, the only com-
mands that add new elements to this set are assignments to page tables and
changing the page table root and ASID registers. This section focuses on assign-
ments, which is an extremely frequent operation, whereas updating the page table
root and ASID registers only happens in context switching code.

{|P|} SKIP {|P|} {|P|} c {|Q|} P’ −→ P
{|P’|} c {|Q|}

{|P ∧ 〈b〉|} c1 {|Q|} {|P ∧ ¬〈b〉|} c2 {|Q|}
{|P ∧ 〈〈b〉〉|} IF b THEN c1 ELSE c2 {|Q|}

{|P ∧ 〈b〉|} c {|P|} P −→ 〈〈b〉〉
{|P|} WHILE b DO c {|P ∧ ¬〈b〉|}

{|P|} c1 {|Q|} {|Q|} c2 {|R|}
{|P|} c1;; c2 {|R|}

Figure 7.6: Hoare Logic Rules for Standard Commands

136

Chapter 7. Program Logic in the Presence of Cached Address Translation

{|λs. [[l]] s = �vp� ∧ [[r]] s = �v� ∧ vp /∈ IC s ∧ Addr vp ↪→s pp ∧
P (heap_iset_gset_upds (pp �→ v))|}

l ::= r {|P|}

{|λs. mode s = Kernel ∧ [[rte]] s = �rt� ∧ P root_iset_gset_upds Addr rt|}
UpdateRoot rte {|P|}

{|λs. ∃ snp il. mode s = Kernel ∧ snp = new_snp s ∧ il = snp_incon a s ∧
P s(|asid := a, iset := il, pt_snpshot := snp|)|} UpdateASID a {|P|}

{|λs. mode s = Kernel ∧ P iset_gset_snp_upds f|} Flush f {|P|}

{|λs. mode s = Kernel ∧ P (s(|mode := flg|))|} SetMode flg {|P|}
Figure 7.7: Hoare Logic Rules for Commands with TLB Effects

The key insight is that OS engineers do not reason about a constantly changing
set of inconsistent addresses when they write kernel code, but instead approach
the problem from the other direction. Given a set of virtual addresses we know is
consistent and safe to write to, the only way this set can become unsafe is when
we change page table mappings that are responsible for translating the addresses
in this set. All other mappings can change arbitrarily, as long as we stay within
that set.

To formalise this notion, we re-use another function from Kolanski’s page table
interface (Kolanski and Klein, 2009) ptable_trace (for bit shift notation, please
refer to Sect. 2.2.3):

ptable_trace h rt vp ≡
let vp_val = addr_val vp; pd_idx_offset = vaddr_pd_index vp_val << 2;

pt_idx_offset = vaddr_pt_index vp_val << 2;
pd_touched = {rt + pd_idx_offset};
pt_touched = λpt_base. {pt_base + pt_idx_offset}

in case decode_pde (the (h (rt + pd_idx_offset))) of
PageTablePDE pt_base ⇒ pd_touched ∪ pt_touched pt_base
| _ ⇒ pd_touched

This function takes a heap, a root, and a virtual address va, and returns the set
of physical addresses that are used in the page table walk for va. The function
decode_pde (definition not shown here) decodes the corresponding machine word
in to a page directory entry.

The page table interface has the property that memory writes outside this set will
not change the outcome of the walk for va. Generalising this notion to a set of
virtual addresses, we can define

137

7.2 Safe Set

ptrace_set V s = (
⋃

x∈V ptable_trace (heap s) (root s) x)

The ptrace_set V gives us the set of physical addresses that encode the translation
for the virtual addresses in V. Using this set, we can define when a set of virtual
address is a safe set, that is, a static set of addresses that we can write to in the
current state without making that same set unsafe:

safe_set V s ≡ ∀ va∈V. va ∈ C s ∧ (∃ p. va ↪→s p ∧ p /∈ ptrace_set V s)

where C s ≡ {va | va /∈ iset s}. In words, a set V is a safe set in state s iff all
addresses va ∈ V are consistent in the current state under the current ASID, if
they map to a physical physical address p, and if that address is not part of the
page table encoding for any of the addresses in V.

Our first observation is that once a set V is a safe set, assignments within it can
no longer make it unsafe, and the safe set property will remain invariant:

Theorem 30. Any write to the safe set will preserve the safe set. Formally:

{|λs. safe_set V s ∧
(∃ vp v. [[lval]] s = �vp� ∧ [[rval]] s = �v� ∧ Addr vp ∈ V)|}

lval ::= rval {|λs. safe_set V s|}

Proof. We apply the previous weakest-precondition rule for assignment and reason
that a write to a mapped virtual address vp from the set V does not resolve to
the page table trace of set V, and therefore will not change any page table entries
for the set V. Hence none of the addresses in V will be added to the inconsistent
set in the incon_comp update, and if they were consistent before, they will be
consistent afterwards. While we might have changed other mappings, the trace
of the mappings for V has not changed, and so all conditions of safe_set are still
satisfied.

The next theorem shows that it is sufficient to check that the address is part of
the safe set to reason about the heap effect of the memory write. Since we already
know that the safe set will remain invariant, we can ignore how the inconsistent
set develops during execution as long we only operate within the safe set. When
switching modes, we will still be interested in at least parts of the inconsistent
set, for instance in the fact that we have only invalidated virtual addresses for
the current ASID, but not for any other ASID. To enable this kind of reasoning,
we leave the information in the rule, but note that the only reference to the
inconsistent set is inside the definition of safe_set, which we already have shown
invariant.

138

Chapter 7. Program Logic in the Presence of Cached Address Translation

Theorem 31. In the assignment rule, it is sufficient to check the static safe set
instead of the dynamic inconsistent set IC.

{|λs. (∃ vp v. [[V]] s = �vp� ∧ [[rval]] s = �v� ∧ Addr vp ∈ V ∧
Q (heap_iset_gset_upds (the_phy_ad vp s �→ v))) ∧ safe_set V s|}

V ::= rval {|Q|}

where
the_phy_ad vp s ≡ the (pt_lookup (heap s) (root s) (mode s) (Addr vp))

Proof. Follows directly from the definition of safe_set and the existing assignment
rule.

For the parts of the code that are not interested in TLB effects, i.e. outside con-
text switching and page table manipulations, this rule enables proof engineers
to treat the code as if no TLB was present as long as they can show that each
memory access is within a statically known safe memory region. The majority
of OS and user-level code satisfies this condition. The rule still mentions address
translation — reducing reasoning under address translation to traditional Hoare
logic reasoning is orthogonal and, for instance, solved in Kolanski’s separation
logic framework (Kolanski, 2011), or in simpler instances by maintaining locally
injective constant memory mappings, which then behave like standard memory.

The reduction to checking a static set of addresses also give us the justification
that compilers do not introduce additional complexity into reasoning under the
TLB, they merely give us additional addresses that need to be part of this safe
set, e.g. the area of virtual memory that contains code, stack, and global variables
should be part of the set that we show safe once at the beginning of program
execution.

This section has presented the main tool for reducing TLB reasoning to a simpler,
static setting. The next chapter use this rule to show how the program logic
behaves in the scenarios that are common in OS kernel code.

7.3 Summary and Remarks

In this chapter, we have presented a Hoare-style logic for verifying programs in the
presence of TLB-address translation. We have provided the syntax and semantics
of a generic heap based language that takes the abstract ARMv7-A MMU model
of Chapter 6 into account, and have derived the soundness of their Hoare logic
rules. We have also provided reduction rules for memory write operations.

139

7.3 Summary and Remarks

The strength of the logic is its simplicity, which took multiple iterations to achieve,
finding a balance between abstraction soundness, not too complex reasoning, and
not too much conservatism for allowing optimisations and idioms used in real OS
code, resulting in a program logic that feels familiar to proof engineers.

In the next chapter, we use the logic to prove reduction theorems that mirror the
informal reasoning OS engineers perform when they write kernel code. It also
allows us to drop into a simpler setting when we reason about code that does not
affect virtual memory mappings.

140

CHAPTER

EIGHT

Case Study

8.1 MMU Layout - Formal Modeling

In the previous chapter, we have presented a logic for verifying programs in
the presence of cached address translation. In this chapter, we apply this
logic to extract invariants and conditions necessary for reasoning about
user-level and kernel-level executions, context switching and page table
operations. This case study shows that our program logic reduces to a
standard logic for user-level reasoning, reduces to side-condition checks
for kernel-level reasoning, and can handle typical OS kernel tasks such as
context switching and page table manipulations.

This chapter is organised as: we present the formal MMU layout of a toy
kernel inspired by the seL4 microkernel, we then present reductions theo-
rems for standard user-level code, kernel-level code without TLB or page
table manipulations, context-switching, and page table manipulations.

This chapter is based on the published work (Syeda and Klein, 2018) and
the submitted work (Syeda and Klein, 2019).

8.1 MMU Layout - Formal Modeling

In this chapter, we apply the program logic and its reduction theorem presented
in the previous chapter to reason about program fragments in multiple scenarios.
The aim is not to verify specific OS kernel code or user-level code, but rather to
demonstrate how the logic behaves in the settings one might expect to use it in.
These are: kernel-level code without TLB or page table manipulations, standard
user-level code, context-switching, as well as a representative example for a page
table manipulation.

The case study uses the seL4 microkernel as inspiration to distill out code se-
quences for a toy kernel that manages page tables and the TLB, and prevents
users from accessing these, as well as other kernel data structures, directly. It
maintains a set of page tables, typically one per user, potentially shared. This
setting applies to all major protected-mode OS kernels, e.g. Linux, Windows, Ma-
cOS, as well as most microkernels, e.g. the L4 family, including seL4, etc. While
simplified, the case study aims to be realistic in demonstrating popular techniques
for avoiding TLB flushes, such as ASIDs.

There are multiple ways to achieve separation between user-accessible memory
and kernel memory. For instance, the kernel could switch to its own page table
and make sure that none of the user-level page tables contain mappings to the
physical addresses that store kernel data structures. For our example, we choose
a slightly more interesting and popular setting. To avoid switching page tables for
entering the kernel, the kernel maintains a so-called kernel window. 1 The kernel

1This is the technique attacked by Meltdown (Lipp et al., 2018). Since hardware manufac-
turers are promising to fix this flaw, we present the more interesting setting instead of the less

142

Chapter 8. Case Study

Figure 8.1: Virtual Address Space with Kernel Window

window is a set of virtual addresses, unavailable to the user, backed by kernel
mappings with permissions that make them available only in kernel mode. Linux,
for instance, uses this scheme, and in a 32-bit address space, which would span
4GB of memory, e.g. only 3.5GB may actually addressable in user mode. The top
512KB implement the kernel window. Figure 8.1 shows an example for a virtual
address space maintained by our toy OS kernel.

As is customary, the mappings for this kernel window are constant and global,
and typically implement just a very simple offset to transform a virtual into a
physical address, although any injective function would work. Since the mappings
are constant and their translation function is statically known, the corresponding
page table entries are constant too. That means, each user-level page table that
the kernel maintains has a number of known entries which, for each user, reside
at the same position in the page table encoding. Thinking back to Sect. 7.2,
this gives us a very simple candidate for the safe set that we can use for reasoning
about standard kernel code: all addresses mapped by the kernel window minus the
addresses that are used to encode the kernel mappings in any of the potentially
active page table data structures.

Figure 8.2 gives an overview of the page table layout maintained by our toy ker-
nel. We have used two-level ARMv7-A page tables and have chosen very simple
concrete encodings, fixing a specific layout. The reasoning ideas below do not de-
pend on this encoding, they just represent a simple instance of the general setting.
The page granularities used in our example will be section: 1MB and pages : 4KB
blocks of physical memory. The first-level page table contains either mappings for
sections, or pointers to the second-level page table, while the second-level page
table has mappings for pages. The kernel window is mapped in the high area of
the first-level of every page table. Page tables are stored in the memory locations
mapped by kernel window, and at any time, more than one such page table will
usually be present, e.g. one for each user. The kernel maintains specific data struc-
tures to maintain page table layout, we explain these data structures and their
formalisation below.

complex and slower scenario with a separate kernel address space.

143

8.1 MMU Layout - Formal Modeling

Figure 8.2: Page Table Layout by seL4-inspired Kernel

8.1.1 Kernel Data Structures

We now explain the formal modeling of kernel features and data structures essen-
tial to maintain the above mentioned MMU setting.

The Kernel Physical Memory: We specify kernel physical memory as the set
of consecutive physical addresses between a lower and an upper bound:

kernel_lower :: paddr
kernel_upper :: paddr
kernel_phy_mem = {kernel_lower..kernel_upper}

Where {l..u} represents the set of consecutive enumerations between l and u.

The Kernel Window: The kernel window of the address space is mapped by the
high part of the page table. For a page table starting at the root rt, we specify
its region mapping the kernel window as:

k_window_lower :: paddr
k_window_upper :: paddr
high_ptable rt = {rt + k_window_lower..rt + k_window_upper}

We will associate translation properties of the kernel window with high_ptable in
our MMU layout later in this section.

The Map between Page Table Roots and ASIDs: In paging, processes have
their page tables with specific roots, and the OS kernel assigns ASIDs to these
roots in order to enable TLB caching. The OS kernel is required to store the
information of which ASIDs are assigned to which page tables. It might maintain
an explicit map, or stores this information implicitly as part of a larger data
structure. We formalise such a map between page table roots and ASIDs for our
toy kernel.

144

Chapter 8. Case Study

We assign a contiguous portion of memory to store the page table roots and their
assigned ASIDs. We specify this portion of memory as:

rt_map_lower :: paddr
rt_map_upper :: paddr
rt_map_area = {rt_map_lower..rt_map_upper}

The layout of rt_map_area is shown in the Figure 8.3. The data stored in the
rt_map_area is read and logically interpreted as:

(heap s) n represents a root, and
heap s (n + 1) represents an ASID, where
rt_map_lower ≤ 2n < rt_map_upper, n ∈ {0, 1, 2, ..}

We then define a function root_set to encode the data stored in rt_map_area in
the form of:

root_set :: p_state ⇒ (paddr × asid option) set

Figure 8.3: Roots Map Layout

where p_state is the record type for the program
state. The root_set reads the rt_map_area from
the heap of the given program state, and returns a
set of pairs of page table roots (paddr) and their
assigned ASIDs. The assigned ASIDs are mod-
eled with the option type, representing the situa-
tion when some processes are not yet assigned an
ASID. The page table roots are 32-bit physical
addresses, while ASIDs are only 8-bit.

Using the function root_set, we define the map of the page table roots to their
ASIDs as:

root_map :: p_state ⇒ (paddr ⇒ asid option)
root_map s =
(λrt. if rt ∈ fst ‘ root_set s then SOME a. (rt, a) ∈ root_set s

else None)

The function root_map converts the root_set of the given program state to the
map from roots to the assigned ASIDs. Here, SOME denotes the Hilbert’s choice
operator.

With this we conclude presenting the page table roots map, we will assert MMU
properties on this root map later in this section.

The Log of Page Table Roots: Given the root-map, we can compute a list of
page table roots that have an ASID assigned to them. Given a program state, the
log of the page table roots that have an ASID assigned is formalised as:

145

8.1 MMU Layout - Formal Modeling

valid_roots :: p_state ⇒ 32 word list
valid_roots s = filter (λr. root_map s (Addr r) �= None) enum

root_log :: p_state ⇒ paddr list
root_log s = map Addr (valid_roots s)

Given a program state s, the function valid_roots returns the list of valid 32-bit
roots from root_map after filtering those roots that do not have an assigned ASID.
The function enum enumerates all physical addresses. We can then convert this
list of valid roots to a set as:

roots :: p_state ⇒ paddr set
roots s = set (root_log s)

Where the function set converts an ’a list to ’a set.

Page Table Footprint: We find the footprint of a two-level page table starting
at the location rt as:

pt_area :: p_state ⇒ paddr ⇒ paddr set
pt_area s rt ≡ ⋃

v ptable_trace (heap s) rt v

This means, the footprint of a page table starting at root rt is the set of all
addresses that can be produced by a ptable_trace.

Kernel Data: To obtain the memory the kernel maintained data structures reside
in, we combine the pt_areas of all valid page tables and the rt_map_area:

kernel_data :: p_state ⇒ paddr set list
kernel_data s ≡ map (pt_area s) (root_log s) @ [rt_map_area]

kernel_data_area :: p_state ⇒ paddr set
kernel_data_area s ≡ ⋃

set (kernel_data s)

With this we conclude the presentation of MMU-related kernel data structures,
and proceed to the assertions for these data structures that the kernel is required
to maintain for correct execution.

8.1.2 Assertions on MMU Layout

We now formulate the assertions for MMU layout; the OS kernel provides and
preserves these assertions for ensuring the correct execution of user programs and
of itself. The assertions will also be invariants for program verification in this case
study.

146

Chapter 8. Case Study

The assertions on the MMU layout are

1. all kernel data structures reside in physical kernel memory,
2. no kernel data structures overlap,
3. page table roots are word-aligned,
4. the current ASID is associated correctly with the current page table root,
5. all page tables contain the kernel mappings,
6. kernel mappings are global and static; which means even the kernel is not

allowed to change them,
7. user mappings are always non-global,
8. no page table contains mappings that allows user mode to resolve to physical

kernel memory,
9. the mapping from page table roots to ASIDs is injective, and
10. the global set is saturated with the global kernel mappings.

Additionally, for our abstract TLB model, we assert that the global set gset is
equal to the globally mapped virtual addresses of the current state. As kernel
mappings are the only mappings marked as global and they are static in all the
page tables, this assertion implies that the global set is equal to the globally
mapped virtual addresses of all page tables.

The following two properties are true for most of the execution of the system, but
are invalidated temporarily:

1. The kernel window minus the entries that encode kernel mappings is a safe
set. This property only holds in kernel mode.

2. The ASID snapshots agree with the page table for that ASID/user. This
property is invalidated for a specific ASID between page table manipulations
and flush instructions.

Formally, the MMU layout is:

mmu_layout s ≡
kernel_data_area s ⊆ kernel_phy_mem ∧
non_overlapping (kernel_data s) ∧
aligned (roots s) ∧
root_map s (root s) = �asid s� ∧
kernel_mappings s ∧
user_mappings s ∧ partial_inj (root_map s) ∧ saturated_gset s

Where kernel_phy_mem, kernel_data, kernel_data_area, root_map are the same
functions as presented in the previous section. We now explain the MMU layout
assertions.

Non-overlapping Kernel Data Structures: We impose that the memory re-
gion kernel_data_area is located in the kernel_phy_mem, and the kernel_data

147

8.1 MMU Layout - Formal Modeling

(the list) is non_overlapping. The definition of a list of sets of addresses being
non-overlapping is:

non_overlapping [] = True
non_overlapping (x · xs) = (x ∩ ⋃

set xs = ∅ ∧ non_overlapping xs)

From non-overlapping kernel data, we derive a slightly more direct predicate for
non-overlapping page tables: the page tables with different page table roots do not
overlap.

non_overlapping_tables s ≡
∀ rt rt’.

rt ∈ roots s ∧ rt’ ∈ roots s ∧ rt �= rt’ −→
pt_area s rt ∩ pt_area s rt’ = ∅

Kernel Mappings: The kernel_phy_mem is mapped by the kernel_mappings. The
kernel_mappings predicate states that

kernel_mappings s ≡ kernel_window s ∧ high_ptable_equal s

Where

kernel_window s ≡
∀ rt∈roots s.

(∀ va. rt + pd_offset va ∈ high_ptable rt −→
global_static_kmappings (heap s) rt va) ∧

(∀ va. rt + pd_offset va /∈ high_ptable rt −→
non_global (heap s) rt (Addr va))

high_ptable_equal s ≡
∀ rt rt’.

rt ∈ roots s ∧ rt’ ∈ roots s −→
(∀ va. rt + pd_offset va ∈ high_ptable rt −→

get_pde (heap s) rt (Addr va) =
get_pde (heap s) rt’ (Addr va))

The function kernel_window asserts that all the valid page tables of the given state
s have global_static_kmappings in their high_ptable area, while rest of the area
is for non_global user addresses. The global and static kernel mappings of the
page table starting at the root rt in the heap hp are asserted as:

global_static_kmappings hp rt va ≡
(∃ p perms.

get_pde hp rt (Addr va) = �SectionPDE p perms� ∧
arm_p_nG perms = 0 ∧ ¬ user_perms perms) ∧

pt_lookup hp rt Kernel (Addr va) = �Addr va - offset� ∧

148

Chapter 8. Case Study

Addr va - offset ∈ kernel_phy_mem

Together with the kernel_window, the above assertion states that the kernel maps
itself through high_ptable areas of all page tables to memory sections. Also,
the kernel window provides offset translation, such that for all virtual addresses
va in the kernel window, we get Addr (va - offset) as the physical address, i.e.
the outcome of the translation is easily described statically. Additionally, we
choose offset such that for all va in the kernel window, Addr (va - offset) ∈
kernel_phy_mem. This is a simple yet realistic setup, similar to what e.g. seL4 uses.

The assertion high_ptable_equal for kernel_mappings formalises the requirement
that the kernel_window in all of the page tables of the given state s are identical.
It simply equates the get_pdes of the high_ptables of all the valid roots.

User Mappings: The restriction on user mappings is easily phrased with address
translation predicates. We also assert that the user mappings are non_global (nG
= 1):

user_mappings s ≡
∀ rt∈roots s.

∀ va pa.
pt_lookup (heap s) rt User va = �pa� −→
pa /∈ kernel_phy_mem ∧ non_global (heap s) rt va

Injectivity of Assigned ASIDs: The mmu_layout also asserts that the active
root is correctly associated with the active ASID, and the ASIDs have injective
mappings. The definition of injectivity is only for the parts where an ASID is
assigned:

partial_inj f ≡ ∀ x y. x �= y −→ f x �= f y ∨ f x = None ∧ f y = None

Saturated Global Set: Finally, the assertion saturated_gset in mmu_layout
states that the global set of the abstract TLB is equal to the globally mapped
virtual addresses of the active page table (effectively to all page tables as globally
mapped virtual addresses are equal across all page tables).

saturated_gset s ≡
{va | root s + pd_offset (addr_val va) ∈ high_ptable (root s)} =
gset s

This concludes the formalisation of the main kernel invariants needed in the case
study.

Consistency of Assigned ASIDs: To avoid flushing the TLB, we maintain for
most of the execution the additional invariant that the TLB is fully consistent for

149

8.2 User Execution

all ASIDs that we might switch to, and that for each ASID the TLB snapshot
agrees with the page table that we would switch to for that ASID. This means,
if there were page table modifications for a user we are about to switch to, we
assume that the corresponding flush has already happened. Since the property
is not valid for all ASIDs between page table modifications and flush, we provide
a set of ASIDs as argument to exclude. If this set is empty, we will omit the
argument in the notation. We assert ASIDs consistency as:

asids_consistent S s ≡
assigned_asids_consistent S s ∧ gset_consistent s

assigned_asids_consistent S s ≡
∀ r a. let is = fst (pt_snpshot s a); snp_pt = snd (pt_snpshot s a);

ptwalk = ptd_walk a (heap s) r
in root_map s r = �a� ∧ a /∈ S ∪ {asid s} −→

is = ∅ ∧ ptable_comp snp_pt ptwalk = ∅

gset_consistent s ≡
∀ r a. let is = fst (pt_snpshot s a); snp_pt = snd (pt_snpshot s a);

ptwalk = ptd_walk a (heap s) r
in r ∈ roots s −→ gset s ∩ (is ∪ ptable_comp snp_pt ptwalk) = ∅

The assertion assigned_asids_consistent ensures the consistency of the stored
TLB snapshot for the assigned ASIDs excluding the active ASID as well as known
inconsistent ASIDs. It asserts for these ASIDs that the stored inconsistent set
of virtual address is empty and the stored page table agrees with the respec-
tive page table in the memory (empty ptable_comp set). Similarly, the assertion
gset_consistent ensures the TLB-consistency of the globally mapped virtual ad-
dresses for all the page table present in the memory.

This concludes the formalisation of the necessary kernel invariants.

8.2 User Execution

With the invariants in place, we can proceed to reduction theorems. The simplest
of these is user-level execution: when the kernel has switched to user mode, the
inconsistent set should be empty for the current ASID, and since the user cannot
perform any actions that adds addresses to this set, it will remain empty. Most
actions that have any effect on the inconsistent set are explicitly privileged, i.e.
unavailable in user mode. Only assignments could possibly have an adverse effect.

The following theorem shows that they do not, and that any arbitrary assignment
in user mode will preserve not only this property of the inconsistent set, but, almost

150

Chapter 8. Case Study

trivially, also all kernel invariants. In that sense it is a simple demonstration of
the separation that virtual memory achieves between kernel and user processes.

Theorem 32. When the kernel invariants hold, we are in user mode, the inconsis-
tent set is empty, then these three conditions are preserved, and the heap is updated
as expected. We additionally have to assume that the address the left-hand side
resolves to is mapped.

{|λs. mmu_layout s ∧ mode s = User ∧
IC s = ∅ ∧ [[lval]] s = �vp� ∧ [[rval]] s = �v� ∧ Addr vp ↪→s p|}

lval ::= rval
{|λs. mmu_layout s ∧ mode s = User ∧ IC s = ∅ ∧ heap s p = �v�|}

Proof. We take the set of all user-mapped addresses as the safe set, and then using
the assignment theorem for the safe set (Theorem 31) reason that the update is
safe i.e. the inconsistent set remains empty. Moreover, we also know from the ker-
nel invariants that user addresses do not map to page tables, so the heap update
cannot modify a page table, and therefore does not add anything to the inconsis-
tent set. Neither can the update touch any of the other kernel data structures,
which all reside in kernel memory only.

The invariant part of the rule above could be moved to the definition of validity
and be hidden from the user completely. We would still have to assume that the
address vp is mapped, because we do not distinguish between recoverable page
faults and program failure. In the settings we are interested in, we aim to avoid
page faults. In a setting with dynamically mapped pages, e.g. by a page fault
handler, the logic can be extended to take this conditional execution into account,
for instance using an exception mechanism or a conditional jump. In that case, the
condition that addresses are mapped can be dropped, and we arrive at a standard
Hoare logic assignment rule.

8.3 Kernel Execution

User execution boils down to standard reasoning. Using our safe set concept from
the previous chapter (Sect. 7.2) we can show that kernel execution without virtual
memory modifications does as well.

As mentioned in the MMU layout description (Sect. 8.1), the safe set for kernel
execution is the entire kernel window, i.e. the virtual addresses that are mapped
by the kernel mappings, minus the addresses of the page table entries that encode
these kernel mappings. Since we will need to re-establish this set every time we
switch to a different page table, and it is always safe to reduce the safe set, we
not only take out the page table entries that encode the kernel mappings for the
current page table, but we also take out the addresses of the high page table region

151

8.3 Kernel Execution

of all page tables the kernel maintains and might switch to. Formally, the kernel
safe set is:

kernel_safe s = vas_by_kmappings (root s) - vas_to_kmappings s

Where the function vas_to_kmappings models the set of virtual addresses mapped
to the high page tables of all the roots in the memory, i.e.

vas_to_kmappings s ≡
let rt = root s; hp = heap s; high_ptables =

⋃
r∈roots s high_ptable r

in {va ∈ vas_by_kmappings rt | ptable_trace hp rt va ⊆ high_ptables}

Since we know the form of global mappings from mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe:

k_phy_ad vp = Addr vp - offset

With these, we can formulate a theorem for assignments in kernel mode that do
not touch any of the virtual memory data structures, i.e. when the write does not
take place in any of the addresses covered by kernel_data.

Theorem 33. If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-relevant
data structures, then the mmu_layout invariants are preserved and the effect is a
simple heap update with known constant address translation.

{|λs. mmu_layout s ∧ mode s = Kernel ∧ safe_set (kernel_safe s) s ∧
asids_consistent ∅ s ∧ [[lval]] s = �vp� ∧ [[rval]] s = �v� ∧
Addr vp ∈ kernel_safe s ∧ k_phy_ad vp /∈ kernel_data_area s|}

lval ::= rval
{|λs. mmu_layout s ∧ mode s = Kernel ∧ safe_set (kernel_safe s) s ∧

asids_consistent ∅ s ∧ heap s (k_phy_ad vp) = �v�|}

Proof. The safe set theorem for the assignment from the previous chapter (Theo-
rem 30) gives us preservation of the kernel safe set and the fact that the write is
safe and has the expected simple heap update semantics. The fact that the ad-
dress is part of the kernel safe set and mmu_layout defines constant mappings for
this set gives us the simple, closed address translation, and the fact that the write
is outside any of the MMU-relevant data structures gives us the stronger fact that
we do not add any entries to the inconsistent set, which allows us to re-establish
asids_consistent after the write. The other components of mmu_layout are pre-
served the same way as in a user-level write: since none of the data structures
change, they remain true in the new heap.

This lemma covers kernel code that is uninteresting for the purposes of the MMU
and TLB, which is the majority of code in a normal kernel. We will see an example
of reasoning about a page table modification further below in Sect. 8.5.

152

Chapter 8. Case Study

8.4 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.
There are many ways for the OS to implement context switching — our example
shows one where we change to a new address space, i.e. a new page table and
ASID, without flushing the TLB, establishing the conditions of heap assignment
(Theorem 32) for user-level reasoning.

Switching page table roots without TLB flushing is non-trivial, and the ARM ar-
chitecture manual (ARM, 2008, Chapter B3.10) provides certain code sequences
to achieve this. We have summarised these sequences in Chapter 3 while explain-
ing OS kernel TLB management, and encourage the reader to find more details
in Sect. 3.3. The manual provides these sequences, because speculative execution
might otherwise contaminate the new ASID with mappings from the old page ta-
ble, i.e. the TLB might still contain entries from the previous user, or the previous
user might be contaminated with content from the new table. In this section, we
show that our model is conservative for speculative execution, but precise enough
so we can reason about these sequences and see why they are safe.

We choose the recommended sequence listed on Page 36 for our case study. This
sequence switches to a new user-level page table and ASID by using a reserved
ASID (in this case 0). It first switches to this reserved ASID, then sets the new
page table root, then switches to the ASID for that root, before it switches to user
mode. A real kernel would at this point also restore registers, which we omit.

Theorem 34. The context switch sequence to a new ASID a and new page table
root r preserves the mmu_layout and ASID snapshot consistency invariants and
establishes the conditions for user-level reasoning, provided that the TLB has no
inconsistent addresses at this point, that the reserved ASID 0 is not used for any
user page table, and that that r is a known page table associated with ASID a.

{|λs. mmu_layout s ∧ asids_consistent ∅ s ∧ mode s = Kernel ∧
IC s = ∅ ∧ 0 /∈ ran (root_map s) ∧ root_map s (Addr r) = �a�|}

UpdateASID 0;; UpdateRoot (Const r);; UpdateASID a;; SetMode User
{|λs. mmu_layout s ∧ IC s = ∅ ∧ mode s = User ∧ asids_consistent ∅ s|}

Proof. Using the weakest-precondition rules from the logic for the commands
UpdateASID, UpdateRoot, and SetMode, we see that the switch to ASID 0 means that
any TLB entries that might be inconsistent between the current page table and r
are only loaded under ASID 0. They do not affect ASID a, because the inconsis-
tent set update only happens for the UpdateRoot instruction. The global mappings
remain consistent even for ASID 0, since they are never changed. It is then safe
to switch to ASID a, because no further page table modifications or page table
root updates will happen. We know from assumption asids_consistent that the
inconsistent set for ASID a is empty, establishing the IC part of the post condition.

153

8.5 Page Table Operations

Since we are switching to a known root and all other conditions of mmu_layout only
depend on the heap, which this sequence does not modify, the mmu_layout invari-
ant is also preserved, as is asids_consistent, because assigned_asids_consistent
does not mention ASID 0 and gset_consistent holds for all the roots.

For compiler correctness, we would additionally need to know that ASID 0 does
not have inconsistent entries for the code and data areas of the kernel, which is
maintained if ASID 0 is used only in the way above. To make this more explicit,
we could add a static set to the program logic for code and data that must always
be consistency, and the condition asids_consistent would maintain that at least
the global kernel mappings are consistent in ASID 0.

8.5 Page Table Operations

In this final example we show the effect of updating the page table. There are
a number of different scenarios in which the kernel might change a page table,
usually to map a new page, change an existing mapping, or remove an existing
mapping. The update could happen on the currently active page table or on one
of the page tables for a currently inactive user, in which case it looks like a simple
heap access, but would have TLB-relevant effects the next time we switch to that
page table.

As the representative examples, we map and unmap a section, updating the first
level of the current page table (the page directory). Mapping a section is a single
heap update: writing one word that encodes the new page directory entry pde
to the previous InvalidPDE’s location. Similarly, unmapping a mapped section
is writing a word to its page directory entry to make it InvalidPDE. For these
operations, the write is not outside the kernel data structures and does change
virtual memory mappings. We observe that for mapping the section, we do not
get TLB-inconsistent addresses, since our model allows transitions from is_fault
to no_fault in the page table comparison. This is identical to the informal TLB
maintenance reasoning OS engineers perform. While unmapping a section, we do
get inconsistent addresses for the current ASID, i.e. there are now addresses the
kernel must not access. However, since we are not writing to the kernel mappings,
we still do know that everything in the kernel window remains safe, and we can
delay a TLB flush until a later time, before we return to the user — we might for
instance be in a loop to change multiple mappings in one kernel call.

Mapping a Section: We now present the theorem for mapping a section.

Theorem 35. If the mmu_layout kernel invariants hold, and the address vp does
not point to the encoding of a kernel mapping (Addr vp ∈ kernel_safe s), if the
physical address for vp is part of the current page table, if the heap at that address

154

Chapter 8. Case Study

contains an invalid section entry, and if the new entry pde is a section entry, then
the heap access is safe, and there is no resultant TLB-inconsistency.

{|λs. mmu_layout s ∧
mode s = Kernel ∧
safe_set (kernel_safe s) s ∧
Addr vp ∈ SM ∧
SM = kernel_safe s ∧
IC s = ∅ ∧
asids_consistent ∅ s ∧
k_phy_ad vp ∈ pt_area s (root s) ∧
heap s (k_phy_ad vp) = �w� ∧
decode_pde w = InvalidPDE ∧
decode_pde pde = SectionPDE base perms ∧ arm_p_nG perms = 1|}

Const vp ::= Const pde {|λs. IC s = ∅ ∧ asids_consistent ∅ s|}

Proof. The inconsistent set remains empty because the ptable_comp function does
not track unmapped addresses. From injectivity of the root_map in mmu_layout
and the condition that the current ASID is part of the root_map, we know that
no other ASID overlaps it. Additionally, we know from the page table footprint
condition that the memory area does not overlap with the root_log and root_map,
or any other page table in the system. This allows us to conclude that all other
ASIDs in asids_consistent remain consistent. From the fact that the write is in
the safe set and not to a kernel mapping, we can conclude that the write is safe
for the kernel to perform and that the safe set is preserved.

We leave out the proof that the mapping update maintains the kernel invariants.
It does of course do so, but the proof is mainly concerned with the technicalities
of page table encoding and is not interesting for TLB reasoning.

Unmapping a Section: We now present the theorem for unmapping a mapped
section.

Theorem 36. If the mmu_layout kernel invariants hold, and the address vp does
not point to the encoding of a global mapping (Addr vp ∈ kernel_safe s), if the
physical address for vp is part of the current page table, if the heap at that address
contains a section entry, and if the new entry pde is an InvalidPDE, then the
heap access is safe, and the only inconsistency that we introduce is for the current
ASID.

{|λs. mmu_layout s ∧
mode s = Kernel ∧
safe_set (kernel_safe s) s ∧
Addr vp ∈ SM ∧
SM = kernel_safe s ∧
asids_consistent ∅ s ∧
k_phy_ad vp ∈ pt_area s (root s) ∧

155

8.5 Page Table Operations

heap s (k_phy_ad vp) = �pde� ∧
(∃ p perms. decode_pde pde = SectionPDE p perms) ∧
decode_pde pde’ = InvalidPDE|}

Const vp ::= Const pde’ {|λs. asids_consistent {asid s} s|}

Proof. From injectivity of the root_map in mmu_layout and the condition that the
current ASID is part of the root_map, we know that no other ASID overlaps it.
Additionally, we know from the page table footprint condition that the memory
area does not overlap with the root_log and root_map, or any other page table in
the system. This allows us to conclude that all other ASIDs in asids_consistent
remain consistent. From the fact that the write is in the safe set and not to a
global mapping, we can conclude that the write is safe for the kernel to perform
and that the safe set is preserved.

As mentioned, since we still maintain the safe set, we can live with some (user-level)
addresses being inconsistent and delay the flush instruction. It is straightforward
to see that a flush for this specific ASID will re-establish consistency for all users.

Theorem 37. An ASID flush for ASID a re-establishes the TLB consistency
invariant for that ASID.

{|λs. asids_consistent {a} s ∧ mode s = Kernel|} Flush (flushASID a)
{|λs. asids_consistent ∅ s|}

Proof. The effect of this specific flush instruction is to remove all pairs from the
inconsistent set that have ASID a as their first component, establishing the con-
dition of asids_consistent for a. The consistency of other ASIDs follows directly
from the precondition.

Since flush instructions only make things safer, they trivially also maintain the
rest of the kernel invariants.

Theorem 38. ASID flushes maintain kernel invariants.

{|λs. mmu_layout s ∧ mode s = Kernel ∧ safe_set (kernel_safe s) s|}
Flush (flushASID a)
{|λs. mmu_layout s ∧ mode s = Kernel ∧ safe_set (kernel_safe s) s|}

Proof. In all cases the inconsistent set is mentioned in the invariants (e.g. in the
safe set), a smaller inconsistent set is safer, and the flush instruction reduces the
set.

In this example we have flushed the entire ASID, i.e. all addresses this user might
have accessed in the past. The logic would also allow us to be more targeted and
flush only precisely the addresses that were affected in this page table update.

156

Chapter 8. Case Study

This concludes the case study examples for our logic. We have seen that we
can reason about user code, ‘uninteresting’ kernel code, and kernel code that
manipulates paging structures, each at their appropriate level of abstraction.

8.6 Summary and Remarks

In this chapter, we have presented a case study that uses the seL4 microkernel as
inspiration to distill out code sequences for a toy kernel that manages page tables
and the TLB. We have extracted invariants and necessary conditions for correct
TLB operation that mirror the informal reasoning of OS engineers. Our program
logic reduces to a standard logic for user-level reasoning, reduces to side-condition
checks for kernel-level reasoning, and can handle typical OS kernel tasks such as
context switching and page table manipulations

157

CHAPTER

NINE

Conclusions

Chapter 9. Conclusions

This chapter concludes the thesis, and is organised as: we summarise
the novel contributions presented in the thesis towards verifying low-level
programs under cached address translation. We then provide the proof
effort of our modeling and reasoning framework. The thesis concludes
with the future research and engineering directions.

9.1 Summary of Novel Contributions

In this thesis, we have presented a verified sound abstraction of the memory man-
agement unit of the ARMv7-A architecture including a two-stage TLB with ad-
dress space identifiers (ASIDs) and global entries. We have used this abstraction
as the underlying model to develop a logic for reasoning about low-level programs
in the presence of cached address translation and demonstrated how the logic
behaves in a number of examples.

This thesis has claimed the following novel contributions:

1. Formal modeling for ARMv7-A TLB in Isabelle/HOL,
2. Formal modeling for ARMv7-A MMU including the TLB,
3. Abstraction of multiple, increasingly complex MMU models using data re-

finement,
4. Hoare-style logic for program verification under cached address translation;

and
5. Demonstrative case study of reasoning about low-level programs.

We have presented the above contributions in the following structure:

In Chapter 4, we have developed an operational model of the ARMv7-A memory
management unit (MMU) including the TLB that caches entries without ASIDs.
We have developed a base MMU model for such a TLB and have provided a series
of refinements to stepwise abstract away the hardware details and to reach at an
abstract MMU model that captures the essential TLB functionality and is easier
to reason about.

In Chapter 5, we have extended the MMU model of Chapter 4 with the TLB
caching page table entries under ASIDs and global tags. We have again built a
refinement stack to abstract away the hardware details and also have explained
how our refinement framework handles the added features.

In Chapter 6, we have formalised a separate page directory cache (PDC) to develop
a two-stage TLB model caching the partial and complete page table walks. We
have again built a refinement stack to abstract away the hardware details and
have also explained how our refinement framework handles the additional PDC.

In Chapter 7, we have used the most abstract MMU model of Chapter 6 to de-

159

9.2 Proof Effort

velop a logic for reasoning about low-level programs in the presence of TLB address
translation. We have defined the syntax and semantics of a heap based language
with necessary instructions for TLB management, we have then presented the
Hoare logic rules for the operational semantics. We have also provided simplifi-
cation rules for memory write to further facilitate the program reasoning in the
presence of TLB effects.

In Chapter 8, we have applied the logic to extract invariants and conditions neces-
sary to reason about the user-level and kernel-level executions, context switching
and page table operations. This case study has shown that our program logic re-
duces to a standard logic for user-level reasoning, reduces to side-condition checks
for kernel-level reasoning, and can handle typical OS kernel tasks such as context
switching and page table manipulations.

9.2 Proof Effort

We now summarise the proof effort towards mechanising this thesis in Isabelle/HOL.
The thesis implementation has two parts: the machine model and the logic.

The machine model includes the MMU specification, and is formalised at the ISA
level of the ARMv7-A architecture. We have specified the MMU model as a type
class in Isabelle/HOL, and have integrated this type class with the formal ARM
ISA model. The type class has equipped us with a generic MMU interface, that we
have instantiated to different MMU models varying in their TLB features. Using
Isabelle’s extensible records, we have extended the machine state with different
TLB layouts to access these MMU instantiations. Using the overall setting of type
class and record states, we have developed three machine models:

1. The MMU model with TLB caching entries without ASIDs:
This machine model has the following four instantiations: the nondetermin-
istic TLB, the deterministic TLB, the saturated TLB and the most abstract
TLB.

2. The MMU model with TLB caching entries under ASIDs and global tags:
This machine model has the following four instantiations: the nondetermin-
istic TLB, the deterministic TLB, the saturated TLB and the most abstract
TLB.

3. The MMU model with TLB and PDC caching entries under ASIDs and
global tags:
This machine model has the following three instantiations: the nondeter-
ministic TLB, the saturated TLB and the most abstract TLB.

The machine model (excluding the updated ARM ISA theories, page table ab-
straction and bit-word libraries) consists of approximately 15k lines of Isabelle

160

Chapter 9. Conclusions

code. It builds on existing large formalisations. Of these, the Cambridge ARM
ISA model is approximately 50k, the page table abstraction is approximately 2.2k,
and bit-word library is approximately 9.2k lines of Isabelle code.

The logic and the case study constitute the second part of thesis implementation.
The logic, along with the abstract memory model and simplification rules, consists
of approximately 1.4k lines of Isabelle code. The case study, including the mod-
eling definitions and reasoning, has approximately 2k lines of Isabelle code. The
resultant simplicity in the reasoning demonstrates the objective of the extensive
refinement effort.

We have also spent considerable effort to generalise modeling and simplification
theorems through out the formalisation. For example, the TLB model is type
classed to have a generic TLB lookup function. Similarly, the page table walk
function is defined generically to decode entries for different TLB configurations.
The MMU operations are also grouped together for proving the refinement the-
orems collectively. All Isabelle/HOL theories for this thesis are available online
(Syeda, 2019).

9.3 Comments on the TLB Modeling

We now comment on the TLB modeling presented in this thesis.

We have modeled ASID specific and global TLB entries, but currently do not
treat locked (pinned) TLB entries. The modeling can easily be extended to include
them: pinned TLB entries would have the effect of explicitly allowing inconsistency
between the TLB and the page table, with the TLB taking preference.

Our logic does not address concurrency aspects — they are orthogonal. In a
multi-core setting, each core has its own TLB which reads from global memory.
Modifying a page table that is active on another core is almost never safe, unless
the change merely adds new mappings or the change happens in the same safe
set style presented here, where the execution on all cores must adhere to the
intersection of all safe sets.

Weak memory and caches do have an interaction point with the TLB, because page
table walks are subject to both and caches can be either virtually or physically
indexed. We expect our safe set reasoning to transfer directly, requiring cache
flushes and/or barrier instructions in addition to TLB flushes. We leave a cache
formalisation for future work.

The model presented here does not have full fidelity for any specific ARM architec-
ture version, but shows the principles to be applied for constructing such a model.
If the intent is to reason on the ISA directly, a useful next step would be to lift the
refinement theorems for the memory interface we have shown to the entire ISA

161

9.4 Future Research and Engineering Directions

model. This is a mostly mechanical exercise, since the refinement theorems show
equality for the effect of the memory operations on the state the rest of the ARM
model cares about. If the intent is to reason about higher-level languages, we have
laid the groundwork for compiler correctness in the presence of a TLB and the
main reduction needed for a program logic: we know we only have to keep track
of and avoid TLB-inconsistent addresses. All other low-level TLB complexity can
be abstracted away.

9.4 Future Research and Engineering Directions

We now summarise the potential research and engineering directions.

Formal Reasoning about Software-Visible Hardware Components:
In this thesis, we have followed the idea of modeling software-visible hardware
components and to reason about their OS kernel management. We have modeled
the TLB, which is a software-visible hardware cache for address translation. How-
ever, the TLB is not the only hardware component that is managed by the OS
kernel. Other examples include caches and system control registers.

Similar to the TLB management, the OS kernel is responsible for cache manage-
ment at the ISA level. Caches classify themselves into data and instruction caches.
Data cache management is conceptually similar to TLB management: the OS ker-
nel is required to flush data caches to maintain their coherency, and it is required
to use barriers for propagating write effects across memory models. We propose
a modeling similar to this thesis for reasoning about the functional correctness of
data cache management. The instruction cache is interesting, because the con-
tents of the instruction cache remain static during the code execution unless the
processor is executing self-modifying code. In the latter case, the OS kernel might
be required to manage the instruction caches, and this management can also be
verified using the modeling and refinement techniques presented in this thesis.

Similarly to the ASID and TTBR0 registers of the ARM architecture, we can
reason about operations causing changes to the system control register and hence
requiring the system management by the OS kernel.

The scope of reasoning about software-visible hardware components extends fur-
ther than proving functional correctness. For example, once we have modeled the
hardware features of caches, we can reason about the possibility of timing chan-
nels. We can capture the essential microarchitecture details causing the timing
channels, can abstract these details to obtain only their effects, and can reason to
avoid or solve the timing channels. Heiser et al. (2019) are proposing to use ideas
similar to this thesis for reasoning about time protection mechanisms.

The same line of reasoning can be used for modeling defective hardware, and
enforcing the hardware-software contract. For example, the TLB model of this

162

Chapter 9. Conclusions

thesis can capture the effect of attacks such as Meltdown (Lipp et al., 2018) which
exploits the fact that permission bits of TLB entries are not checked during specu-
lative execution on some platforms, and uses a cache side channel to thereby make
kernel-only TLB mappings readable to user space. To conservatively formalise the
effect of this attack, one could change the model to ignore read restrictions in TLB
entries. A system that can be proved safe under that conservative model, should
then be safe under Meltdown.

Closing the TLB Management Assumption in the seL4 Verification:
In this thesis, we have crafted an infrastructure for validating the TLB manage-
ment assumption in the seL4 verification. We now briefly outline how we can
incorporate this infrastructure into the seL4 verification. The proposed steps are:

1. We would begin by adding the most abstract TLB model to the translation
validation/binary verification step of the seL4 verification, this would make
sure we are forced to prove all necessary side conditions.

2. These side conditions would demand the inclusion of code, stack, and globals
area in the safe set.

3. In the next layer up (C verification), we would have to prove the additional
side conditions generated by the translation validation; potentially still based
on a TLB model like in Chapter 7.

4. The proof of the additional TLB side conditions would make use of invariants
proved on higher levels, e.g. that all memory accesses are within the safe
set, and in particular that the kernel never writes to global mappings, and
flushes correctly before returning to user.

5. The upper refinement layers would not have an explicit TLB model, but
they are now required to produce the invariants necessary for the refinement
to succeed. Almost all of these invariants are already proved.

With these suggestions, we leave the seL4 TLB validation as a future engineering
project.

Application of Reasoning Methodology to other Architectures:
The model and case study presented in this thesis use the ARMv7-A architec-
ture, but our interface to page table encodings is generic and should apply to
all architectures with conventional multi-level page tables. The details of TLB
maintenance may differ between architectures, but the ideas of the model should
again transfer readily. We now outline the engineering roadmap for applying the
TLB reasoning framework to the x86, RISC-V and MIPS architectures, as well as
ARMv7-R and ARMv7-M profiles.

TLB Management in the x86 Architecture: The x86 architecture supports
multi-level page tables, most 32-bit implementations use 2-level page tables, while

163

9.4 Future Research and Engineering Directions

64-bit implementations usually scale up to 4-level page tables. The TLB is im-
plemented stage-wise to cache complete and partial page table walks, and the
architecture supports ASID-specific, global and pinned TLB entries. On a TLB
miss, the hardware does the page table walk and reloads the respective stages of
the TLB with translation entries. Similar to the ARM architecture, the OS kernel
is responsible for invalidating TLB entries after updating the page tables. The
hardware flushes the TLB automatically during a context switch; therefore the
OS kernel is not required to flush the TLB or to follow specific code sequences to
avoid TLB flushes, as in for the ARM architecture.

The MMU modeling presented in Chapters 4 to 6 can readily scale to the above
mentioned MMU setting for the x86 architecture. We can increase the number of
levels in the abstract page table interface, and can model the multi-stage TLB as
we have modeled the two-stage TLB in Chapter 6. We can then formalise memory
and MMU operations such as TLB flushing. Once we have the base MMU model,
we can apply stepwise data refinement to abstract away the hardware details and
to extract a page table comparison function for TLB-related operations, as we have
done in Chapters 4 to 6 for the ARM architecture. The instructions of a heap
based language would be identical, the semantics would now take the updated
abstract model into account, and the case study reasoning will readily apply to
the x86-based MMU layout. As the OS kernel does not have to flush the TLB in
this case, we expect even simpler context switching reasoning to that of the ARM
architecture.

TLB Management in the RISC-V Architecture: The RISC-V architecture
allows a configurable number of page table levels. The TLB can be implemented
in single or multi-stage, with ASID-specific, global and pinned entries. The RISC-
V architecture specifies TLB flushing as a fence instruction for cleaner semantics.
The architecture emphasises on a hardware loaded TLB, but an implementation
can choose to implement software TLB refills using a machine-mode trap handler.

The main steps of our TLB reasoning framework are: TLB and MMU modeling,
refinement of the machine model, logic on top of the abstract MMU model, and the
case study for a specific MMU layout. These generic steps are equally applicable
to the OS kernel management for the RISC-V architecture. The roadmap for this
verification is similar to the one outlined for the x86 adaptation.

TLB Management in the MIPS Architecture: The MIPS architecture leaves
the page table implementation, TLB refills and eviction, and page table walks to
the OS kernel. The OS kernel typically implements ASID-specific and global TLB
entries. The relevant kernel traps handle the address translation errors and TLB
misses. The OS kernel can also flush the TLB during a context switch.

Given the MIPS-TLB as a software-maintained cache, we can formulate a nicer
formal model to begin with, avoiding the hardware details. We can also apply
the refinement and again compute an address comparison function as the abstract
TLB model. The logic and case study will be applicable straightforwardly.

164

Chapter 9. Conclusions

TLB Management in ARMv7-R and ARMv7-M Profiles: The ARMv7-
R and ARMv7-M profiles use protected memory system architecture (PMSA).
The PMSA has control registers in a memory protection unit (MPU) instead of
page tables; which means that it does not have the non-deterministic behaviour
introduced by potential TLB misses.

TLB Management in the ARMv8-A Architecture: The TLB functional-
ity and the kernel’s TLB management are functionally similar in the ARMv7-A
and ARMv8-A architectures. The ARMv8-A architecture provides more insights
though, for example, it recommends specific break-before-make sequences for the
kernel to avoid TLB conflicts. Again, both the modeling and reasoning frame-
work of this thesis are scalable to the reasoning about TLB management in the
ARMv8-A architecture.

9.5 Final Remarks

In this thesis, we have developed multiple and increasingly complex MMU models
and their refinement stacks for the ARMv7-A architecture in Isabelle/HOL. We
have also developed a program logic for reasoning about low-level programs in the
presence of cached address translation, with a multi-stage TLB, ASIDs, and global
entries. The logic allows us to prove reduction theorems that mirror the informal
reasoning OS engineers perform when they write kernel code. It also allows us to
drop into a simpler setting when we reason about code that does not affect virtual
memory mappings. In these cases, we only need to show that memory accesses
are within a set of safe addresses. Our work shows that reasoning in the presence
of a TLB does not need to be significantly more onerous than without.

165

Bibliography

The Coq proof assistant. http://coq.inria.fr. Accessed: April 2019.

The HOL4 proof assistant. http://hol.sourceforge.net/. Accessed: April
2019.

Achermann, R, Humbel, L, Cock, D, and Roscoe, T. Physical addressing on real
hardware in Isabelle/HOL. In Avigad, J and Mahboubi, A, editors, Interactive
Theorem Proving, pages 1–19, Cham, 2018. Springer International Publishing.

Alkassar, E, Schirmer, N, and Starostin, A. Formal pervasive verification of a
paging mechanism. In Tools and Algorithms for the Construction and Analysis
of Systems, pages 109–123. Springer Berlin Heidelberg, 2008.

Alkassar, E, Cohen, E, Hillebrand, M, Kovalev, M, and Paul, W. J. Verifying
shadow page table algorithms. In Formal Methods in Computer Aided Design,
pages 267–270, Oct 2010.

Alkassar, E, Hillebrand, M. A, Paul, W, and Petrova, E. Automated verification
of a small hypervisor. In Verified Software: Theories, Tools, Experiments, pages
40–54. Springer Berlin Heidelberg, 2010.

Alkassar, E, Cohen, E, Kovalev, M, and Paul, W. J. Verification of TLB vir-
tualization implemented in C. In VSTTE 2012, volume 7152 of LNCS, pages
209–224, Philadelphia, PA, USA, Jan 2012.

ARM Architecture Reference Manual, ARMv7-A and ARM v7-R. ARM Ltd., Apr
2008. ARM DDI 0406B.

ARM Cortex-A15 MPCore Processor Technical Reference Manual. ARM Ltd.,
June 2013. ARM DDI 0438I.

Barthe, G, Betarte, G, Campo, J. D, and Luna, C. Cache-leakage resilient OS
isolation in an idealized model of virtualization. In 25th CSF, pages 186–197,
2012.

166

BIBLIOGRAPHY

Baumann, C, Schwarz, O, and Dam, M. Compositional verification of security
properties for embedded execution platforms. In PROOFS 2017. 6th Interna-
tional Workshop on Security Proofs for Embedded Systems, volume 49 of EPiC
Series in Computing, pages 1–16. EasyChair, 2017.

Bevier, W. R. Kit: a study in operating system verification. IEEE Transactions
on Software Engineering, 15(11):1382–1396, Nov 1989. ISSN 0098-5589. doi:
10.1109/32.41331.

Bolignano, P, Jensen, T, and Siles, V. Modeling and abstraction of memory man-
agement in a hypervisor. In Proceedings of the 19th International Conference on
Fundamental Approaches to Software Engineering - Volume 9633, pages 214–
230. Springer-Verlag New York, Inc., 2016.

Boyer, R. S and Moore, J. S. A Computational Logic Handbook. Academic Press
Professional, Inc., San Diego, CA, USA, 1988. ISBN 0-12-122952-1.

Dam, M, Guanciale, R, Khakpour, N, Nemati, H, and Schwarz, O. Formal verifi-
cation of information flow security for a simple ARM-based separation kernel. In
Proceedings of the 2013 ACM SIGSAC Conference on Computer & Com-
munications Security, CCS ’13, pages 223–234. ACM, 2013.

Daum, M, Billing, N, and Klein, G. Concerned with the unprivileged: User
programs in kernel refinement. Formal Aspects Comput., 26(6):1205–1229, Oct
2014.

Fox, A and Myreen, M. A trustworthy monadic formalization of the ARMv7
instruction set architecture. In 1st ITP, volume 6172 of LNCS, pages 243–258,
Edinburgh, UK, Jul 2010.

Gu, L, Vaynberg, A, Ford, B, Shao, Z, and Costanzo, D. CertiKOS: A certified
kernel for secure cloud computing. In 2nd APSys, 2011.

Gu, R, Shao, Z, Chen, H, Wu, X, Kim, J, Sjöberg, V, and Costanzo, D. CertiKOS:
An extensible architecture for building certified concurrent OS kernels. In Pro-
ceedings of the 12th USENIX Conference on Operating Systems Design and
Implementation, OSDI’16, pages 653–669, Berkeley, CA, USA, 2016. USENIX
Association.

Harrison, J. Handbook of Practical Logic and Automated Reasoning. Cambridge
University Press, 2009.

Heiser, G, Klein, G, and Murray, T. C. Can we prove time protection? CoRR,
abs/1901.08338, 2019. URL http://arxiv.org/abs/1901.08338.

Hoare, C. A. R. An axiomatic basis for computer programming. Commun. ACM,
12(10):576–580, Oct. 1969. ISSN 0001-0782. doi: 10.1145/363235.363259. URL
http://doi.acm.org/10.1145/363235.363259.

167

BIBLIOGRAPHY

Khakpour, N, Schwarz, O, and Dam, M. Machine assisted proof of ARMv7 in-
struction level isolation properties. In Certified Programs and Proofs, pages
276–291. Springer International Publishing, 2013.

Klein, G, Elphinstone, K, Heiser, G, Andronick, J, Cock, D, Derrin, P, Elkaduwe,
D, Engelhardt, K, Kolanski, R, Norrish, M, Sewell, T, Tuch, H, and Winwood,
S. seL4: Formal verification of an OS kernel. In SOSP, pages 207–220, Big Sky,
MT, USA, Oct 2009.

Klein, G, Andronick, J, Elphinstone, K, Murray, T, Sewell, T, Kolanski, R, and
Heiser, G. Comprehensive formal verification of an OS microkernel. Trans.
Comp. Syst., 32(1):2:1–2:70, Feb 2014.

Klein, G, Andronick, J, Fernandez, M, Kuz, I, Murray, T, and Heiser, G. Formally
verified software in the real world. Commun. ACM, 61(10):68–77, Sept. 2018.
ISSN 0001-0782.

Kolanski, R. Verification of Programs in Virtual Memory Using Separation Logic.
PhD thesis, UNSW, Sydney, Australia, Jul 2011. Available from publications
page at http://ts.data61.csiro.au/.

Kolanski, R and Klein, G. Mapped separation logic. In Verified Software: Theo-
ries, Tools, Experiments, pages 15–29. Springer Berlin Heidelberg, 2008.

Kolanski, R and Klein, G. Types, maps and separation logic. In TPHOLs, pages
276–292, Munich, Germany, Aug 2009.

Kovalev, M. TLB Virtualization in the Context of Hypervisor Verification. PhD
thesis, Saarland University, Saarbrücken, Germany, 2013.

Liedtke, J. Toward real microkernels. Commun. ACM, 39(9):70–77, Sept. 1996.
ISSN 0001-0782.

Lipp, M, Schwarz, M, Gruss, D, Prescher, T, Haas, W, Mangard, S, Kocher, P,
Genkin, D, Yarom, Y, and Hamburg, M. Meltdown. ArXiv e-prints, 1801.01207,
Jan. 2018.

Lutsyk, P. Correctness of Multi-core Processors with Operating System Support.
PhD thesis, Saarland University, Saarbrücken, Germany, 2018. URL https:
//publikationen.sulb.uni-saarland.de/handle/20.500.11880/27182.

MIPS Architecture For Programmers, MIPS32 and microMIPS32 Privileged Re-
source Architecture. MIPS Technologies, July 2015.

Morgan, C. Programming from Specifications (2nd Ed.). Prentice Hall Interna-
tional (UK) Ltd., Hertfordshire, UK, UK, 1994. ISBN 0-13-123274-6.

Naraschewski, W and Wenzel, M. Object-oriented verification based on record
subtyping in higher-order logic. In 11th TPHOLs, volume 1479 of LNCS, pages
349–366, Canberra, Australia, Sep 1998.

168

BIBLIOGRAPHY

Nemati, H, Dam, M, Guanciale, R, Do, V, and Vahidi, A. Trustworthy memory
isolation of Linux on embedded devices. In Conti, M, Schunter, M, and Askoxy-
lakis, I, editors, Trust and Trustworthy Computing, pages 125–142. Springer
International Publishing, August 2015a.

Nemati, H, Guanciale, R, and Dam, M. Trustworthy virtualization of the ARMv7
memory subsystem. In 41st SOFSEM, volume 8939 of LNCS, pages 578–589,
Jan 2015b.

Neumann, P. G and Feiertag, R. J. PSOS revisited. In 19th Annual Computer
Security Applications Conference, 2003. Proceedings., pages 208–216, Dec 2003.
doi: 10.1109/CSAC.2003.1254326.

Ni, Z, Yu, D, and Shao, Z. Using XCAP to certify realistic systems code: machine
context management. In Schneider, K and Brandt, J, editors, Theorem Proving
in Higher Order Logics, pages 189–206. Springer Berlin Heidelberg, 2007.

Nipkow, T and Klein, G. Concrete Semantics: With Isabelle/HOL. Springer
Publishing Company, Incorporated, 2014. ISBN 3319105418, 9783319105413.

Nipkow, T, Paulson, L, and Wenzel, M. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

Paul, W, Rieden, T. I. d, and Broy, M. The Verisoft XT project. http://www.
verisoftxt.de, 2010. Accessed: April 2019.

Roever, W.-P. d and Engelhardt, K. Data Refinement: Model-Oriented Proof
Methods and Their Comparison. Cambridge University Press, New York, NY,
USA, 1st edition, 2008. ISBN 9780521103503.

Stallings, W. Operating Systems: Internals and Design Principles. Prentice Hall
Press, 6th edition, 2008.

Syeda, H. T. Isabelle/HOL program logic for cached address translation. https:
//github.com/SEL4PROJ/tlb, 2019.

Syeda, H. T and Klein, G. Reasoning about translation lookaside buffers. In
LPAR-21. 21st International Conference on Logic for Programming, Artificial
Intelligence and Reasoning, volume 46 of EPiC Series in Computing, pages 490–
508. EasyChair, 2017.

Syeda, H. T and Klein, G. Program verification in the presence of cached ad-
dress translation. In Interactive Theorem Proving, pages 542–559, Cham, 2018.
Springer International Publishing.

Syeda, H. T and Klein, G. Formal reasoning under cached address translation. In
Journal of Automated Reasoning (JAR), Special Edition ITP2018, 2019. sub-
mitted, under Review.

169

BIBLIOGRAPHY

Tanenbaum, A. S and Bos, H. Modern Operating Systems. Prentice Hall
Press, Upper Saddle River, NJ, USA, 4th edition, 2014. ISBN 013359162X,
9780133591620.

Walker, B. J, Kemmerer, R. A, and Popek, G. J. Specification and verification
of the UCLA Unix security kernel. Commun. ACM, 23(2):118–131, Feb. 1980.
ISSN 0001-0782. doi: 10.1145/358818.358825. URL http://doi.acm.org/10.
1145/358818.358825.

170

	Title Page - Low-Level Program Verification under Cached Address Translation
	Thesis/Dissertation Sheet
	Abstract
	Publications
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables

	Chapter 1 - Introduction
	Chapter 2 - Notation
	Chapter 3 - Virtual Memory in the ARMv7-A Architecture
	Chapter 4 - A Formal Model of the ARMv7-A MMU
	Chapter 5 - A Formal Model of the ARMv7-A MMU with ASIDs
	Chapter 6 - A Formal Model of the ARMv7-A MMU with Two-Stage TLB
	Chapter 7 - Program Logic in the Presence of Cached Address Translation
	Chapter 8 - Case Study
	Chapter 9 - Conclusions
	Bibliography

