
Organizing, querying, and analyzing ad-hoc processes' data

Author:
Beheshti, Seyed Mehdi Reza

Publication Date:
2012

DOI:
https://doi.org/10.26190/unsworks/16024

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/52493 in https://
unsworks.unsw.edu.au on 2024-04-29

http://dx.doi.org/https://doi.org/10.26190/unsworks/16024
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/52493
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

Organizing, Querying, and
Analyzing Ad-hoc Processes’ Data

Seyed Mehdi Reza Beheshti

A thesis in fulfilment of the requirements for the degree of

Doctor of Philosophy

Discovery and Adaptation of
Process Views

THE UNIVERSITY OF NEW SOUTH WALES

SYDNEY · AUSTRALIA

A dissertation submitted in fulfillment

of the requirements for the degree of

Doctor of Philosophy

in

Computer Science and Engineering

Hamid Reza Motahari Nezhad

Supervisor: Prof. Boualem Benatallah

12 February 2008

School of Computer Science and Engineering

Faculty of Engineering

Supervisor: Prof. Boualem Benatallah

September 2012

iii

ACKNOWLEDGEMENTS

Working at the School of Computer Science and Engineering at the University

of New South Wales (UNSW) has been a great pleasure and a wonderful privilege.

In the first place, I would like to express my sincere appreciation and deep grat-

itude to my supervisor, Professor Boualem Benatallah, for his exceptional support,

encouragement and guidance during the last three and a half years. Boualem taught

me how to do high quality research and helped me think creatively. His truly in-

credible academic excellence and beautiful mind have made him as a constant oasis

of ideas and passions in science, which has inspired and enriched my growth as a

student, a researcher and a scientist. Moreover, I thank him for providing me with

the opportunity to work with a talented team of researchers.

I gratefully thank my co-supervisor, Dr. Hamid Reza Motahari-Nezhad, for his

outstanding and insightful comments on my work and friendly support in all stages

of my study. Hamid is a passionate scientist, an excellent forward thinker, and an

oasis of novel ideas, some of which has been inspiring for me in the conception of

my scholarly research work.

My sincere thanks go to Dr. Sherif Sakr, my co-author. I thoroughly enjoyed his

fruitful collaboration, and I gained invaluable skills by working with him. The joy

and enthusiasm Sherif has for his research was contagious and motivational for me.

I am thankful to everyone in the Service-Oriented Computing (SOC) group at

UNSW, especially Dr. Adnene Guabtni, Mohammad Allahbakhsh, and Mohammad

Reza Nouri for their friendship, support and helpful comments. In addition, I would

like to thank the PhD review panels and the anonymous reviewers who provided

suggestions and helpful feedback on my publications.

I acknowledge the Australian Government, University of New South Wales, and

the Faculty of Engineering at UNSW for providing scholarships (APA, EETS, SEA,

and PRSS) to pursue doctoral studies. In addition, I would like to thank administra-

iv

tive and technical staff members of the school of computer science and engineering

at UNSW who have been kind enough to advise and help in their respective roles.

I am deeply and forever indebted to my parents and also my parents-in-law for

their love and inspiration.

Last, but not least, I would like to dedicate this thesis to my wife Shirin and my

son Barbod, for their love, patience, and understanding. They allowed me to spend

most of the time on this thesis. They are my source of strength and without their

countless support this thesis would have never been started.

Seyed-Mehdi-Reza Beheshti

Sydney, Australia

September 2012

v

To my wife Shirin and my son Barbod,

for their love, patience, and understanding

vi

ABSTRACT

Business processes are central to the operation of both public and private or-

ganizations. Recently, business world is getting increasingly dynamic as various

technologies such as social media and Web 2.0 have made dynamic processes more

prevalent. For example, outsourcing and the emphasis on customer service makes the

use of complex, dynamic and often knowledge intensive activities an inevitable task.

Ad-hoc processes, a special category of processes, have flexible underlying process

definition where the control flow between activities cannot be modeled in advance

but simply occurs during run time. In this dissertation, we investigate the problem

of explorative querying, and analyzing of ad-hoc processes. Addressing this problem

is challenging, as the information about process execution is scattered across several

systems and data sources. Moreover, in many cases, there is no well-documented

information on how this information is related to each other and to the overall busi-

ness process of the enterprise. Enabling above-mentioned analysis requires a model

and a query language for representing and querying process entities (e.g., events,

artifacts, and actors), relationships among them, and the evolution of business arti-

facts over time. Moreover, the model should support multi-dimensional/-level views

and analytics over ad-hoc processes data.

To address these challenges, we present a framework, simple abstractions and a

language for the explorative querying and understanding of ad-hoc processes data

from various user perspectives. We propose novel abstractions, folder and path,

for facilitating the analysis of ad-hoc processes data by enabling process analysts

to group related entities or find patterns among entities. We present FPSPARQL

(Folder-, Path-enabled SPARQL) as a language and a set of new methods for or-

ganizing, indexing and querying ad-hoc processes. We then extend FPSPARQL for

analyzing the evolution of process artifact, and for analyzing cross-cutting aspects

in ad-hoc processes. We introduce two concepts of timed-folder to represent evolu-

tion of artifacts over time, and activity-path to represent the process which led to

vii

artifacts. Finally, we propose a model, GOLAP, and extend FPSPARQL for online

analytical processing on process graphs. The approaches presented in this disser-

tation have been implemented in prototype tools, and experimentally validated on

synthetic and real-world datasets.

viii

DISSERTATION EXAMINERS:

• Prof. Schahram Dustdar, Vienna University of Technology, Austria

• Prof. Farouk Toumani, Blaise Pascale University, France

ix

PUBLICATIONS

• Beheshti S.M.R., Benatallah B., Motahari-Nezhad H.R., and Sakr S., “A query

language for analyzing business processes execution”, 9th International Con-

ference on Business Process Management (BPM), pages 281-297, Clermont-

Ferrand, France, 2011. (ERA Rank: A)

• Beheshti S.M.R., Benatallah B., Motahari-Nezhad H.R., and Allahbakhsh

M., “A Framework and a Language for On-Line Analytical Processing on

Graphs”, 13th International Conference on Web Information System Engi-

neering (WISE), pages 213-227, Paphos, Cyprus, 2012. (ERA Rank: A)

• Beheshti S.M.R., Benatallah B., and Motahari-Nezhad H.R., “Enabling the

Analysis of Cross-Cutting Aspects in Ad-hoc Processes”, 25th International

Conference on Advanced Information Systems Engineering (CAiSE), Valencia,

Spain, 2013. (ERA Rank: A)

• Beheshti S.M.R., Benatallah B., Motahari-Nezhad H.R., and Lagares Lemos

A., “FPSPARQL: A Query Engine for Explorative Querying and Analyz-

ing Information Networks”, 22th International World Wide Web Conference

(WWW), Rio de Janeiro, Brazil, 2013. -submitted- (ERA Rank: A)

• Beheshti S.M.R., Benatallah B., and Motahari-Nezhad H.R., “FPSPARQL:

A Graph Query Engine as a Service”, Second Australasian Symposium on

Service Research and Innovation, Sydney, Australia, 2012.

• Beheshti S.M.R., Motahari-Nezhad H.R., Benatallah B.: Temporal Prove-

nance Model (TPM): Model and Query Language. CoRR abs/1211.5009

(2012).

• Beheshti S.M.R., Sakr S., Benatallah B., Motahari-Nezhad H.R.: Extending

SPARQL to Support Entity Grouping and Path Queries. CoRR abs/1211.5817

(2012).

x

• Beheshti S.M.R., Benatallah B., Motahari-Nezhad H.R., “A Framework and a

Language for Analyzing Cross-Cutting Aspects in Ad-hoc Processes”, unsw-

cse-tr-201228, University of New South Wales, 2012.

• Beheshti S.M.R., Benatallah B., Motahari-Nezhad H.R., and Allahbakhsh M.,

“Online Analytical Processing on Graphs (GOLAP): Model and Query Lan-

guage”, unsw-cse-tr-201214, University of New South Wales, 2012.

• Beheshti S.M.R., Benatallah B., and Motahari-Nezhad H.R., “An Artifact-

Centric Activity Model for Analyzing Knowledge Intensive Processes”, unsw-

cse-tr-201210, University of New South Wales, 2012.

• Beheshti S.M.R., Benatallah B., Motahari-Nezhad H.R., and Sakr S., “FPSPARQL:

A Language for Querying Semi-Structured Business Process Execution Data”,

unsw-cse-tr-1103, University of New South Wales, 2011.

Contents

1 Introduction 1

1.1 Preliminaries . 3

1.1.1 Business Processes . 3

1.1.2 Ad-hoc Business Processes . 5

1.2 Key Research Issues . 7

1.2.1 Understanding Ad-hoc Process Data 7

1.2.2 Cross-cutting Aspects in Ad-hoc Processes 8

1.2.3 Business Process Analytics . 8

1.3 Contributions Overview . 9

1.3.1 Organizing, Indexing, and Querying Ad-hoc Process Data . . 9

1.3.2 Representing Cross-cutting Aspects in Ad-hoc Processes . . . 10

1.3.3 Analytics Over Ad-hoc Process Data 11

1.3.4 Software Prototype . 11

1.4 Dissertation Organization . 13

2 Background and State-of-the-Art 15

2.1 Business Processes . 16

2.1.1 From Structured to Unstructured Processes 20

2.2 Data Services . 25

xi

CONTENTS xii

2.3 Querying Business Processes Models and Instances 33

2.4 Process Mining . 38

2.5 Observations . 41

2.6 Summary . 44

3 Organizing, Indexing, and Querying Ad-hoc Processes Data 46

3.1 Introduction . 46

3.2 Process Log Analysis: Example Scenario 48

3.3 Organizing and Indexing Ad-hoc Process Data 50

3.3.1 Data Model . 51

Entities . 51

Relationships . 53

3.3.2 Representing and Organizing Ad-hoc Process Data 53

Folder Nodes . 54

Path Nodes . 54

3.4 Querying Ad-hoc Process Data . 55

3.4.1 Entity-Level Queries . 56

3.4.2 Aggregation-level Queries . 57

Folder Node Construction . 57

Path Node Construction . 59

Folder Node Queries . 59

Path Analysis Queries . 60

3.5 Case Study . 60

3.5.1 Preprocessing of SCM Log . 61

3.5.2 Partitioning of SCM Log . 61

CONTENTS xiii

3.5.3 Discovering Process Models 63

3.6 Architecture and Implementation: FPSPARQL 66

3.6.1 FPSPARQL Architecture . 66

3.6.2 Physical Storage Layer . 70

Relational Database System 71

Hadoop File System . 73

3.6.3 FPSPARQL Implementation 74

3.7 Experiments . 76

3.7.1 Datasets . 76

SCM . 76

Robostrike . 76

PurchaseNode . 76

3.7.2 Evaluation . 77

3.8 Related Work . 80

3.8.1 NoSQL Databases . 80

3.8.2 RDF/SPARQL . 82

3.8.3 Querying Process Models and Instances 84

3.8.4 Enterprise Search . 86

3.9 Summary . 87

4 Analyzing Cross-cutting Aspects in Ad-hoc Processes 88

4.1 Introduction . 88

4.2 Preliminaries . 90

4.3 Example Scenario: Case Management 93

4.4 Representing Cross-cutting Aspects 94

CONTENTS xiv

4.4.1 Time and Provenance . 94

4.4.2 AEM Data Model and Timed Abstractions 95

AEM Entities . 96

AEM Relationships . 97

4.5 Querying Cross-cutting Aspects . 99

4.5.1 Formalizing AEM Queries . 100

4.5.2 Simplifying Path Queries . 101

4.5.3 Evolution Queries . 102

4.5.4 Derivation Queries . 106

4.5.5 Timeseries Queries . 108

4.5.6 Constructing Timed Folders 109

4.6 Architecture and Implementation: Temporal Extension 112

4.6.1 Architecture . 112

4.6.2 Implementation . 115

4.7 Experiments . 117

4.7.1 Datasets . 117

Dutch Academic Hospital . 117

e-Enterprise Course . 118

Supply Chain Management . 119

4.7.2 Evaluation . 119

4.8 Related Work . 123

4.8.1 Artifact-centric Processes . 123

4.8.2 Provenance . 124

4.8.3 Modeling/Querying Temporal Graphs 125

4.9 Summary . 126

CONTENTS xv

5 Analytics over Ad-hoc Process Data 127

5.1 Introduction . 127

5.2 Example Scenario: Collaborative Case Management 130

5.3 Representing Analytics over Ad-hoc Process Data 132

5.3.1 GOLAP Data Model . 132

5.3.2 GOLAP Data Elements . 132

Cubes . 132

Dimensions . 135

Cells . 135

Measures . 136

Operations . 137

5.4 Querying Analytics over Ad-hoc Process Data 138

5.5 Architecture and Implementation: Analytics Extension 152

5.5.1 Architecture . 152

5.5.2 Analytics Queries Execution and Optimization 152

5.5.3 Implementation . 157

5.6 Experiments . 158

5.6.1 Datasets . 158

DBLP . 159

Amazon Online Rating System 159

5.6.2 Evaluation . 160

5.7 Related Work . 167

5.7.1 OLAP (On-Line Analytical Processing) 167

5.7.2 On-Line Analytical Processing on Graphs 168

5.7.3 Analytics over Process Data 170

CONTENTS xvi

5.8 Summary . 173

6 Conclusions and Future Work 175

6.1 Concluding Remarks . 175

6.2 Future Directions . 178

Bibliography 181

Appendix 213

A FPSPARQL Experimental Evaluation 214

A.0.1 Query Execution Time . 214

A.0.2 Graph Reachability Analysis 216

A.0.3 FPSPARQL Queries . 216

List of Figures

2.1 An example of the ad-hoc business process execution in an enterprise. 22

3.1 A simplified business process in SCM log for retailer service. 49

3.2 Event log analysis scenario. 51

3.3 Representation of the Graph, Folder, and Path. 52

3.4 FPSPARQL graph processing architecture. 68

3.5 Modular translation process for mapping SPARQL to Pig Latin. . . . 70

3.6 Physical layer for storing the sample graph represented in Figure 3.3

including: (A) object stores for storing nodes, edges, folder nodes, and

path nodes; (B) object property store for storing objects attributes

in triplestore format; (C) link stores for storing relationships among

entities; (D) entity store as a view over object stores; and (E) graph

store as a view over link stores. 72

3.7 A SPARQL query, its translation into a relational operator tree, and

its equivalent SQL query generated by our translation algorithm. . . 73

3.8 Screenshots of FPSPARQL GUI: (A) The query generation interface

in FPSPARQL, and (B) The discovered process model for the query

result in Example 7. 75

xvii

LIST OF FIGURES xviii

3.9 The performance evaluation results of the approach on three datasets,

illustrating: (i) the average execution time for partitioning: (A) SCM

log, (B) Robostrike log, and (C) PurchaseNode log; and (ii) the av-

erage execution time for mining: (D) SCM log, (E) Robostrike log,

and (F) PurchaseNode log; . 78

3.10 The evaluation results, illustrating the performance analysis between

RDBMS and Hadoop applied to SCM dataset: (A) the average exe-

cution time for partitioning SCM log; and (B) the average execution

time for mining SCM log. 80

4.1 Example case scenario for breast cancer treatment including a case

instance (A), parent artifacts, i.e. ancestors, for patient history doc-

ument (B) and its versions (C), and set of activities which shows how

version v2 of patient history document develops and changes gradually

over time and evolves into version v3 (D). 93

4.2 Implicit and explicit relationships between versions v2 and v3 of pa-

tient history document including: (A) activity edges; (B) constructed

activity-path stored as a timed (path node) abstraction; and (C) rep-

resentation and storage of the activity path. 99

4.3 Sample timeseries for: (A) patient history document between τ1 and

τ5; and (B) Eli, an actor, acting on patient history between τ1 and τ5. 109

4.4 FPSPARQL graph processing architecture: analytics extension. . . . 113

4.5 Overview of Time-aware Controller architecture. 114

4.6 Physical layer for storing a sample AEM graph and tables to store

AEM entities and relationships. 115

4.7 Screenshots of front end tool: (A) Query assistant tool; and (B) graph

visualization tool: to visualize AEM graphs. 116

4.8 e-Enterprise course scenario. 118

LIST OF FIGURES xix

4.9 A sample AEM graph for the hospital log (A), a sample OPM graph

generated from a part of AEM graph (B), and open provenance model

entities and relationships (C). 120

4.10 The query performance evaluation results, illustrating the average ex-

ecution time for applying evolution, derivation, and timeseries queries

on AEM and OPM graphs generated from: (A) Dutch academic hos-

pital dataset; (B) e-Enterprise course dataset; and (C) SCM dataset. 121

4.11 The evaluation results, illustrating the performance analysis between

RDBMS and Hadoop applied to Dutch academic hospital dataset. . . 123

5.1 Motivating Scenario in on-line analytical processing on process graphs.131

5.2 Examples of folder partitions: (A) result of Example 1; and (B) result

of Example 2. 133

5.3 Result of Example 3 grouped by: (A) authors; and (B) venues. . . . 135

5.4 FPSPARQL graph processing architecture: analytics extension. . . . 153

5.5 Execution plan for FPSPARQL analytics queries. 154

5.6 Execution plan for the query in Example 4. 156

5.7 Screenshots of front-end tool for: (a) writing functions in Example 8;

and (b) creating the regular expression and the path condition in

Example 5. 158

5.8 A sample of data stored in AMZLog. 160

LIST OF FIGURES xx

5.9 The evaluation results, illustrating: (A) performance analysis (for

queries in Examples 4 to 8) applied to the DBLP graph; (B) aver-

age execution time for 10 CC-Partition (blue line), 10 PC-Partition

(red line), and 10 Path-Partition (green line) queries applied to dif-

ferent sizes of DBLP graph dataset; (C) average execution time for

10 CC-Partition (blue line), 10 PC-Partition (red line), and 10 Path-

Partition (green line) queries applied to different sizes of AMZlog

graph dataset; (D) scalability with number of assignment operations

for 10 queries applied to DBLP dataset; (E) scalability with num-

ber of function operations for 10 queries applied to DBLP dataset;

(F) scalability with size of physical memory for CC-Partitions and

PC-Partitions; and (G) scalability with size of physical memory for

Path-Partitions. 161

5.10 The query optimization results, illustrating optimization compari-

son for CC-Partition (A), PC-Partition (B), and Path-Partition (C)

queries applied to DBLP dataset. 163

5.11 The evaluation results, illustrating the performance analysis between

RDBMS and Hadoop for: (A) queries in Examples 4 to 8 applied to

the DBLP graph; (B) the average execution time, between RDBMS

and Hadoop for the CC-, PC-, and Path-Partition queries applied to

the DBLP graph; (C) the average execution time, between RDBMS

and Hadoop for the CC-, PC-, and Path-Partition queries applied to

the AMZlog graph. 166

A.1 Query Execution Times. 217

List of Tables

3.1 Example of SCM service interaction log. 50

3.2 Characteristics of the proposed datasets. 77

4.1 FPSPQARL time semantics. 102

xxi

Chapter 1

Introduction

Business processes are central to the operation of both public and private orga-

nizations. A business process consists of a set of coordinated tasks and activities

employed to achieve a business objective or goal. Recently, business world is getting

increasingly dynamic, as various technologies such as Internet and email have made

dynamic processes more prevalent. Moreover, outsourcing1 and the emphasis on

customer service makes the use of complex, dynamic and often knowledge intensive

activities an inevitable task. Consequently, in modern enterprises, BPs are realized

over a mix of workflows, IT systems, Web services and direct collaborations of people

to support such ad-hoc and dynamic activities.

Ad-hoc processes, a special category of processes, have flexible underlying process

definition where the control flow between activities cannot be modeled in advance

but simply occurs during run time [126, 121, 307]. In such cases, the process exe-

cution path can change in a dynamic and ad-hoc manner due to changing business

requirements, dynamic customer needs, and people’s growing skills. Examples of

this, are the processes in the area of government, law enforcement, financial ser-

vices, and telecommunications. Conventional workflows do not provide sufficient

flexibility to reflect the nature of such processes. For example, working with ad-

hoc processes allows organizations to be very flexible, which is a prerequisite for a

1Outsourcing is the process of contracting an existing business process which an organization
previously performed internally to an independent organization, where the process is purchased as
a service.

1

2

competitive process performance when working with varying business partners.

Analyzing and understanding such dynamic processes offers important informa-

tion for the organization’s management. This information can be used to detect the

actual processing behavior and therefore, to improve the ad-hoc processes. However,

understanding of business processes and analyzing BP execution data (e.g., logs con-

taining events, interaction messages and other process artifacts) is difficult as the

information about process execution is scattered across several systems and data

sources. Moreover, in many cases, there is no well-documented information on how

this information is related to each other and to the overall business process of the

enterprise [252].

The main barrier for understanding ad-hoc processes is to identify the inter-

actions among entities (e.g., process stakeholders and process artifacts) within BP

execution data. In this context, most entities (structured or unstructured) in pro-

cess logs are interconnected through rich semantic information, where entities and

relationships among them can be modeled using graphs. Knowledge about business

processes is often hidden in the relationships among entities in process graphs, i.e.,

BP execution data modeled using graphs. Understanding this hidden knowledge in

terms of its scope and details is challenging specially as it is subjective: depend on

the perspective of the process analyst.

In this dissertation, we are interested in facilitating the analysis of process graphs

by proposing a framework, simple abstractions and a language for the explorative

querying and understanding of BP execution from various user perspectives. We pro-

vide facilities for analyzing cross-cutting aspects, e.g., versioning and provenance2,

and supporting timed queries in ad-hoc processes. Furthermore, we extend the pro-

posed framework and query language to support analytics over ad-hoc process data.

The rest of this chapter is organized as follows. We first introduce concepts

central to the work described in this dissertation. This is followed by a description

of the key research issues tackled in this dissertation. Next, we summarize our

contributions to the area. Finally, we describe the organization of this dissertation.

2Provenance refers to the documented history of an object (e.g. documents, data, and resources)
or the documentation of processes in an object’s lifecycle [93, 54].

1.1. Preliminaries 3

1.1 Preliminaries

This section gives a brief introduction to the main topics of this dissertation, namely

business processes and ad-hoc business processes.

1.1.1 Business Processes

A business process is a set of coordinated tasks and activities3, carried out manually

or automatically, to achieve a business objective or goal [141, 225, 10, 8, 252]. A

business process is typically associated with a data flow, showing what data and

how they are transferred among activities and tasks, and a control flow, showing the

order in which activities and tasks are performed. Two types of business processes

are recognized: private and public. Public business processes, can be shared with

business partners (e.g., clients and suppliers) within an enterprise and can be used

in the business-to-business integration (B2Bi) context [75]. On the contrary, private

business processes, are internal to the enterprise, include execution details, and can

be used in enterprise application integration (EAI) context [28].

In order to manage organization performance through BPs, set of methods, tech-

niques, and tools, known as Business Process Management (BPM), are needed. In

particular, BPM supports the design, enactment, management, and analysis of op-

erational BPs, i.e., processes at the strategic level or processes that cannot be made

explicit are excluded [8]. An example of operational BPs is the product shipping

process. BPM enables organizations to be more efficient and capable of change,

both in human and technological aspects, throughout a lifecycle.

The BPM lifecycle can be divided into four phases [8]: (i) design: in this phase,

the process is (re-)designed and modeled; (ii) configuration: during this phase, a

process-aware system, e.g., a workflow management system, is configured; (iii) en-

actment: in the process enactment phase the operational business process is exe-

cuted; and (iv) diagnosis: in the diagnoses phase the process is monitored, analyzed,

and process improvement approaches are proposed. Workflows and workflow man-

3An activity is the smallest unit of work, performed by executing a program, enacting a human
or machine action or invoking another business process (known as sub-process) [10, 252].

1.1. Preliminaries 4

agement systems (WfMS) were introduced to support BPs lifecycle.

The Workflow Management Coalition [96, 183] defines a workflow as “the au-

tomation of a business process, in whole or part, during which documents, informa-

tion or tasks are passed from one participant to another for action, according to a

set of procedural rules” and defines a Workflow Management System (WfMS) as “a

system that defines, creates and manages the execution of workflows through the use

of software, running on one or more workflow engines, which is able to interpret the

process definition, interact with workflow participants, and where required, invoke

the use of IT tools and applications”.

From the definition it can be seen that a WfMS only supports the BPM lifecycle

from the process design to the process enactment phases. To address this shortcom-

ing, Business Process Management Systems (BPMS) are introduced as an extension

of classical WfMS focusing more on the diagnosis phase of the BPM lifecycle, i.e.,

monitoring, tracking, analysis and predication of business processes. In particular,

BPMS can be defined as a generic software system that is driven by explicit process

designs to enact and manage operational business processes [10].

Recently, many information systems in the enterprise have been implemented us-

ing Web services. Web service technology has become the preferred implementation

technology for realizing the Service Oriented Architecture (SOA) paradigm [28, 268].

SOA is an architectural style that provides guidelines on how services are de-

scribed, discovered and used. In SOA, software applications are packaged as “ser-

vices”, where services are defined to be standards-based, platform- and protocol-

independent to address interactions in heterogeneous environments [28, 268].

In such information systems, business process analysis (BPA) over a wide range

of information systems, services and softwares that implement the actual business

processes of enterprises is required. In particular, there is a significant demand

for approaches in an emerging area of BPA, called Business activity monitoring

(BAM) [83, 140, 10]. BAM intends to provide real-time business performance indi-

cators to improve the speed and effectiveness of business operations through discov-

ering business process models from the process logs, where tracking and analyzing

of process execution will be needed.

1.1. Preliminaries 5

Designing and maintaining BAM applications is challenging, as business pro-

cesses in modern enterprises are developed by different communities of practice, re-

side on different levels of abstractions, and handled by different IT systems [193, 137].

In particular, modern business processes, have flexible underlying process definition

where the process execution path can change in a dynamic and ad-hoc manner.

Next section gives an overview of such processes.

1.1.2 Ad-hoc Business Processes

Business world is getting increasingly dynamic. Various technologies such as In-

ternet and email have made dynamic processes more prevalent. Outsourcing and

the emphasis on customer service requires companies to continuously adapt their

Process-Aware Information Systems (PAIS) [1, 125] in order to cope with the fre-

quent and unprecedented changes in their business environment. Moreover, the phe-

nomenon of performing online collaborative tasks has been recognized as a promising

trend which is expected to grow due to the wide acceptance of Web 2.0 technolo-

gies and social systems [298, 313, 236]. For instance, in Gartner’s top five BPM

predictions for 2010, it has been identified as an overriding trend that business pro-

cess management will be extended to include the management of unstructured work

and data [192].

In practice, most of the business processes are conducted in an ad-hoc manner

and do not rely on integrated software solutions. Instead, a mix of computerized

systems and direct collaborations are often used. For instance, the processing of

orders in a company may involve the accounting system, the stock database and

personal productivity tools of the salesperson to follow up their customer and de-

cide on discounts. Hence, the data relevant to a business process is then scattered

across multiple systems with no integration between them, or they are spread across

multiple documents stored in the personal folders of employees and exchanged by

communication tools such as emails.

These challenges make the use of complex, dynamic and often knowledge inten-

sive activities an inevitable task [170, 125]. In particular, such processes have flex-

1.1. Preliminaries 6

ible underlying process definition where the control flow between activities cannot

be modeled in advance but simply occurs during run time [126, 121, 307]. Conse-

quently, the process execution path can change in a dynamic and ad-hoc manner

due to changing business requirements, dynamic customer needs, and people’s grow-

ing skills. In this dissertation, we use the term ad-hoc to refer to this category of

processes.

Existing business process management tools (WfMSs and BPMSs introduced in

Section 1.1.1) support well-structured [283] processes and do not provide sufficient

flexibility to reflect the nature of ad-hoc processes, i.e., structured processes are

fully prescribed how a future decision will be made. In particular, ad-hoc processes

can be divided into two types: unstructured [307] and semi-structured [284]. An

unstructured process is a process that can not be reduced to well-defined rules, unlike

well-structured processes. A semi-structured process, or case-based processes, is a

process which contains both structured and unstructured sub-processes.

Ad-hoc processes are complex not only because they are scattered across several

systems and organizations, but also they require many different people (having lots

of knowledge and experience) to collaborate to find the correct solution. Various

technologies, e.g., customer relationship management (CRM) and content manage-

ment systems (CMS) have been proposed for managing such dynamic and ad-hoc

processes, however, they are not sufficient to address the key requirements of these

types of processes: they are primarily driven by human participants reacting to

changing context and do not follow a predetermined path. In particular, in ad-hoc

processes, one process model would not serve the analysis purpose to understand

the next step.

In order to analyze business process execution, process mining [2, 8, 68, 329]

and querying [33, 47, 130, 134, 293] techniques received continuous attention in

recent years, where most of these techniques relies on two main assumptions: (i) the

availability of business processes specification that describe their operational logic,

i.e., the execution flow; and (ii) the availability of business processes execution

traces recorded in a standard formats. However, these two assumptions are not

always valid [192].

1.2. Key Research Issues 7

The main barrier for understanding ad-hoc processes is to identify the inter-

actions among entities (e.g., process stakeholders and process artifacts) within BP

execution data. In this context, most entities (structured or unstructured) in pro-

cess logs are interconnected through rich semantic information, where entities and

relationships among them can be modeled using graphs. Knowledge about business

processes is often hidden in the relationships among entities in process graphs, i.e.,

BP execution data modeled using graphs. In next section, we discuss key research

issues in understanding ad-hoc processes.

1.2 Key Research Issues

In this section, we outline key research issues tackled in this dissertation. We intend

to facilitate the analysis of process graphs for process analysts. We therefore separate

research issues into three areas: understanding ad-hoc process data, cross-cutting

aspects in ad-hoc processes, and business process analytics.

1.2.1 Understanding Ad-hoc Process Data

Business processes in modern enterprises are implemented over several applications

and Web services, and the information about process execution is scattered across

several data sources. Consequently, understanding of ad-hoc processes and analyzing

BP execution data will be difficult due to the lack of documentation and especially

as the process scope and how process events across these systems are correlated into

process instances are subjective: depend on the perspective of the process analyst.

As an example, one analyst may want to understand the delays to the ordering

process (the end-to-end from ordering to the delivery) for a specific customer, while

another analyst is only considered with the packaging process for any orders in the

shipping department. Certainly, one process model would not serve the analysis

purpose for both situations. Rather there is a need for a process-aware querying

approach that enables analysts to analyze the process events from their perspectives,

for the specific goal that they have in mind, and in an explorative manner.

1.2. Key Research Issues 8

1.2.2 Cross-cutting Aspects in Ad-hoc Processes

Ad-hoc processes have flexible underlying process definition. The semi-structured

nature of ad-hoc process data requires organizing process entities, people and ar-

tifacts, and relationships among them in graphs. The structure of process graphs,

describing how the graph is wired, helps in understanding, predicting and optimiz-

ing the behavior of dynamic processes. In many cases, however, process artifacts

evolve over time, as they pass through the business’s operations. Consequently,

identifying the interactions among people and artifacts becomes challenging and re-

quires analyzing the cross-cutting [204] aspects of process artifacts: we apply the

aspect-oriented programming (AOP) [204] paradigm to the process artifacts in BP

execution data, where AOP is used to add support for cross-cutting aspects to exist-

ing code without directly modifying that code [127]. In particular, process artifacts,

like code, has cross-cutting aspects such as versioning and provenance. Analyzing

these aspects will expose many hidden interactions among entities in process graphs.

For example, consider knowledge-intensive processes, e.g., those in domains such

as healthcare and governance, which involve human judgements in the selection of

activities that are performed. Such activities, almost always involves the collection

and presentation of a diverse set of artifacts, where artifacts are developed and

changed gradually over a long period of time. In this context understanding the

evolution of artifacts over periods of time needs analyzing cross-cutting aspects of

artifacts and supporting timed queries, in ad-hoc processes.

1.2.3 Business Process Analytics

In modern enterprises, businesses accumulate massive amounts of data from a variety

of sources. Analytics, i.e., the discovery and communication of meaningful patterns

in data, can help in understanding the business data with an eye to predicting

and improving business performance in the future. In particular, business process

analytics can facilitate the analysis of process graphs in a detailed and intelligent way

through describing the applications of analysis, data, and systematic reasoning [74,

171]. Consequently, an analyst can gather more complete insights using techniques

1.3. Contributions Overview 9

such as modeling, summarizing, and filtering.

While existing analytics solutions, e.g., traditional on-line analytical processing

(OLAP) techniques and tools, do a great job in collecting data and providing answers

on known questions, key business insights remain hidden in the interactions among

objects and data: most objects and data in the process graphs are interconnected,

forming complex, heterogeneous but often semi-structured networks. In particular,

traditional OLAP technologies were conceived to support multidimensional analysis,

however, they cannot recognize patterns among process graph entities and analyzing

multidimensional process graph data (from multiple perspectives and granularities)

may become complex and cumbersome.

1.3 Contributions Overview

Our goal is to facilitate and simplify the analysis of process graphs. To achieve this

goal, we propose a framework, simple abstractions and a language for: (i) organizing,

indexing, and querying ad-hoc process data; (ii) representing cross-cutting aspects

in ad-hoc processes; and (iii) supporting analytics over ad-hoc process data.

1.3.1 Organizing, Indexing, and Querying Ad-hoc Process

Data

The first step of process analysis is gathering and integration of process execution

data in a process event log from various, potentially heterogeneous, systems and

services. We assume that execution data are collected from the source systems

and transformed into an event log using existing data integration approaches [280],

and we can access the event metadata and the payload content of events in the

integrated process log. The next step is providing techniques to enable users define

the relationships between process events. In particular, most entities (structured or

unstructured) in process logs are interconnected through rich semantic information,

where entities and relationships among them can be modeled using graphs, i.e.,

process graphs.

1.3. Contributions Overview 10

We present a framework, simple abstractions and a language for the explorative

querying and understanding of process graphs from various user perspectives. We

propose a query language, FPSPARQL [53, 52, 51] (a Folder-, Path-enabled ex-

tension of SPARQL [276]), for facilitating the analysis of process graphs based on

the two concepts of folders and paths, which enable a process analyst to group re-

lated entities (e.g., process artifacts, events, and actors) in the process graph or find

patterns among entities. Folders and paths can be stored to be used in follow-on

analysis.

1.3.2 Representing Cross-cutting Aspects in Ad-hoc Pro-

cesses

To represent cross-cutting aspects in ad-hoc processes, the focus should be on inter-

actions among actors (i.e., people and services) and artifacts over time, where there

is no central system to capture such activities at different systems/departments.

This is challenging, as artifacts can be accessed/modified by different actors over

time, various versions of artifacts can be generated in different sysems/departments,

and each artifact version can be derived from various sources.

To address this challenge, we represent versioning and provenance as important

cross-cutting aspects of business artifacts: analyzing these aspects will help in un-

derstanding ad-hoc processes. We propose a temporal graph model for supporting

timed queries and representing the cross-cutting aspects of business artifacts. This

model [51] allows: (i) representing artifacts (and their evolution), actors, and inter-

actions between them through activity relationships; (ii) identifying derivation of

artifacts over periods of time; and (iii) discovering timeseries of actors and artifacts.

Moreover, we introduce two concepts of timed-folders to represent evolution of ar-

tifacts over time, and activity-paths to represent the process which led to artifacts.

Finally, we extend FPSPARQL for querying evolution, derivation, and timeseries

of artifacts.

1.3. Contributions Overview 11

1.3.3 Analytics Over Ad-hoc Process Data

To support analytics over ad-hoc process data, there are two major challenges to be

addressed: (i) how to extend decision support on process graphs considering both

data objects and the relationships among them: traditional OLAP technologies

cannot recognize patterns among graph entities and, consequently, enabling users to

analyze multidimensional graph data may become complex and cumbersome; and

(ii) in process graphs, providing multiple views at different granularities is subjective:

depends on the perspective of process analysts how to partition graphs and apply

further operations on top of them.

To address these challenges, we propose a graph data model, GOLAP [52], for

online analytical processing on process graphs. This data model enables extending

decision support on multidimensional networks considering both data objects and

the relationships among them as first class entities. We use the notions of folder and

path nodes to support multi-dimensional and multi-level views over process graphs.

We redefine OLAP data elements (e.g., cubes, dimensions, and measures) by consid-

ering the relationships among process graph entities as first class objects. Moreover,

we extend FPSPARQL to support n-dimensional computations on process graphs.

1.3.4 Software Prototype

To address the above challenges, we have developed a software prototype for orga-

nizing, indexing, and querying ad-hoc process data. As mentioned earlier, we model

process logs as a graph. In order to query this graph a graph query language is

needed. Among languages for querying graphs, SPARQL [276] is an official W3C

standard and based on a powerful graph matching mechanism. However, SPARQL

does not support the construction and retrieval of subgraphs. Also paths are not

first class objects in SPARQL [276, 181]. In order to analyze BPs event logs, we

propose a graph processing engine, i.e. FPSPARQL [53, 52, 51] (a Folder-, Path-

enabled extension of the SPARQL), to manipulate and query entities, and folder

and path nodes. We support two levels of queries: (i) Entity-level Queries: at this

level we use SPARQL to query entities in the process logs; and (ii) Aggregation-level

1.3. Contributions Overview 12

Queries: at this level we use FPSPARQL to construct and query folder and path

nodes. The query engine is implemented in Java and supports two types of storage

back-end:

• Relational Database System: As FPSPARQL core, we implemented a SPARQL-

to-SQL translation algorithm based on the proposed relational algebra for

SPARQL [103] and semantics preserving SPARQL-to-SQL query translation [91].

This algorithm supports aggregate and keyword search queries. We imple-

mented the proposed techniques on top of this SPARQL engine. We devel-

oped four optimization techniques proposed in [90, 292, 91] to increase the

performance of the query engine.

• Hadoop File System: we use Hadoop4 data processing platforms to store and

retrieve process graphs in Hadoop file system and to support cost-effective

and Web-scale processing of process graphs. We use Apache-Pig5, a high-

level procedural language on top of Hadoop and the MapReduce6 platform,

for querying large process graph stored in Hadoop file system. As FPSPARQL

core, we implemented a FPSPARQL-to-PigLatin translation algorithm based

on the intermediate algebra for optimizing RDF [235] (Resource Description

Framework) graph pattern matching on MapReduce proposed in [281, 206].

We use existing query optimization techniques [206, 188, 281] to generate the

optimal query plan by reinterpreting certain join tree structures as grouping

operations, i.e., to enable a greater degree of parallelism in join processing.

We have implemented a front-end tool for assisting users to create FPSPARQL

queries in an easy way. In particular, FPSPARQL supports primitive graph queries,

constructing folder/path nodes, applying further queries to constructed folder/path

nodes, applying external tools and algorithms to graph, and supporting n-dimensional

computations on graphs. The software prototype can be used to assist users in four

4Apache Hadoop [330] is an open source software framework that supports data-intensive dis-
tributed applications.

5http://pig.apache.org/
6MapReduce [106] is a programming model for processing large data sets, where a popular free

implementation is Apache Hadoop.

1.4. Dissertation Organization 13

steps: (i) preprocessing: generating graph models from process logs and provid-

ing indexing mechanisms; (ii) partitioning: organizing process graphs using fold-

ers and paths; (iii) analyzing: applying further operations to constructed parti-

tions; and (iv) visualizing: supporting the exploration of folders, paths, and the

result of queries.

1.4 Dissertation Organization

The remainder of this dissertation is organized as follows. We start with a discussion

of the current state of the art in analyzing ad-hoc processes data in Chapter 2. We

explain in more depth what business processes and ad-hoc business processes are, as

well as different abstractions involved in analyzing process graphs, e.g., data space,

data services, and business analytics, followed by a survey of existing work in these

domains. We identify what we believe are important research issues in analyzing

ad-hoc business processes.

After that, we present the details of our framework for analyzing business pro-

cesses execution in Chapter 3. In this chapter, we first present a case study on pro-

cess event logs. Then we present the proposed graph data model and the FPSPARQL

query language followed by a detailed discussion on how we use the query language

for analyzing the case study process log. Afterward we describe the query engine

implementation and evaluation experiments. Finally, we discuss related work in

domains such as NoSQL databases, RDF/SPARQL, querying process models and

instances, and enterprise search before concluding the chapter.

Chapter 4 discusses how our model facilitates the representation and analyzing

of cross-cutting aspects in ad-hoc processes. In order to understand cross-cutting

aspects, we present an example scenario in case management applications. Then

we represent cross-cutting aspects, versioning and provenance, and timed queries

followed by a detailed discussion on how we extend our data model using timed ab-

stractions. After that we present FPSPARQL extensions for querying cross-cutting

aspects in ad-hoc processes. Next we describe the query engine implementation, for

temporal extensions, and evaluation experiments. Finally, we discuss related work

1.4. Dissertation Organization 14

in domains such as provenance and modeling/querying temporal graphs before con-

cluding the chapter.

In Chapter 5, we present how our framework and query language can be used

for on-line analytical processing on process graphs. After presenting an example

scenario, in best practice processes applications, we propose a graph data model

for online analytical processing on process graphs. We discuss how this data model

enables extending decision support on multidimensional networks considering both

data objects and the relationships among them. Then we redefine OLAP data

elements (e.g., dimensions, measures, and cubes) by considering the relationships

among process graph entities as first class objects. After that we present FPSPARQL

extensions for supporting n-dimensional computations on process graphs. Next we

describe the query engine implementation, for analytic extensions, and evaluation

experiments. Finally, we discuss related work in domains such as on-line analytical

processing (OLAP), on-line analytical processing on graphs, and analytics over ad-

hoc process data before concluding the chapter.

Finally, in Chapter 6, we give concluding remarks of this dissertation and discuss

possible directions for future work.

Chapter 2

Background and State-of-the-Art

In this dissertation, we investigate the problem of explorative querying and under-

standing of ad-hoc business processes execution. This chapter therefore presents cen-

tral concepts and the current state-of-the-art in business processes, data services, and

querying business processes. In business processes (Section 2.1), we discuss related

work from structured to unstructured processes. We observe that in process-aware

information systems processes are implemented over several information systems in

an unstructured manner, and there is a need for a querying mechanism that enables

analysts to analyze the process events from their perspectives for the specific goal

that they have in mind and in an explorative manner.

In Section 2.2, we discuss data services as they provide rich metadata, expressive

languages, and APIs to simplify accessing, querying, and analyzing of information

over the Web and can be leveraged for organizing and managing ad-hoc process data.

We discuss related work in querying business processes (Sections 2.3 and 2.4) in three

categories: querying business process models, querying running instances of business

processes, and querying execution logs of completed business processes (also known

as process mining). We argue that our approach is complementary to process mining

techniques as we enable grouping entities (e.g., events, artifacts, or people) in the

process log that are then can be queried or considered as an input for process mining

algorithms, providing an explorative and interactive manner. Moreover, we enable

analyzing cross-cutting aspects of business artifacts, e.g., versioning and provenance,

15

2.1. Business Processes 16

and provide a framework for applying analytics to ad-hoc processes’ data.

We present our observations (Section 2.5) in terms of structured and ad-hoc

processes including understanding, correlating, querying, and exploring process ex-

ecution data in an interactive manner. Finally, we summarize the chapter (Sec-

tion 2.6) and highlight the remaining problems and gaps, and the need for querying

mechanisms for understanding processes in environments that do not support the

processes in a structured manner or with ad-hoc changes to the processes and/or

with flexible processes.

2.1 Business Processes

A business process (BP) is a set of coordinated tasks and activities, carried out

manually or automatically, to achieve a business objective or goal [141, 225, 10, 8,

252]. An activity is the smallest unit of work, performed by executing a program,

enacting a human or machine action or invoking another business process (known as

sub-process) [10, 252]. A business process is typically structured and, therefore, is

associated with a data flow, showing what data and how they are transferred among

activities and tasks, and a control flow, showing the order in which activities and

tasks are performed.

Two types of business processes are recognized: public and private. Public busi-

ness processes, can be shared with business partners (e.g., clients and suppliers)

within an enterprise and can be used in the business-to-business integration (B2Bi)

context [75]. On the contrary, private business processes, are internal to the enter-

prise, include execution details, and can be used in enterprise application integration

(EAI) context [28]. In order to manage organization performance through BPs, set

of methods, techniques, and tools, known as Business Process Management (BPM),

are needed.

Business Processes Management (BPM) is a “generic software system that is

driven by explicit process designs to enact and manage operational business pro-

cesses” [10], where operational processes refer to repetitive business processes per-

2.1. Business Processes 17

formed by organizations in their daily operations, which are explicitly defined and

modeled, e.g., the product shipping process. In this context, processes at the strate-

gic decision-making level, which are performed by the enterprise management, or

processes that are not explicit are excluded [252, 8]. For instance, if part of the busi-

ness process is performed by some legacy systems or services that their processes

are not explicitly defined, they are not covered.

Such systems should be process-aware and generic in the sense that it is possi-

ble to modify the processes they support. This challenge requires organizations to

continuously adapt their Process-Aware Information Systems (PAIS) [1] in order to

cope with the frequent and unprecedented changes in their business environment.

This will enable end-users to be able to issue queries to monitor, analyze and under-

stand the execution information of business processes and related business artifacts.

In particular, BPM enables organizations to be more efficient and capable of change,

both in human and technological aspects, throughout a lifecycle.

The BPM lifecycle can be divided into four phases [8]: (i) design: in this phase,

the process is (re-)designed and modeled, where the designs are often graphical and

the focus is on ‘structured processes’ that need to handle many cases [10]; (ii) con-

figuration: during this phase, a process-aware system, e.g., a workflow management

system, is configured; (iii) enactment: in the process enactment phase the opera-

tional business process is executed; and (iv) diagnosis: in the diagnoses phase the

process is monitored, analyzed, and process improvement approaches are proposed.

In the design phase, a modeling tool or technique [302, 282, 189] (e.g., BPMN,

CogNIAM, xBML, and EPC) will be used to specify the order of tasks in the busi-

ness process. Process modeling tools typically support a graph-based modeling ap-

proach adopting a popular process modeling notation such as the Business Process

Modeling Notation (BPMN) [155]. Process models created in the process design

phase are usually too high level to be executed, and therefore, an analytical pro-

cess model must be configured to an executable process model. Moreover, BPM

suite software provides programming interfaces (e.g., BPEL, WS-CDL, and XPDL

or other technologies including model-driven/service-oriented architecture) which al-

low enterprise applications to be built to leverage the BPM engine. Workflows and

2.1. Business Processes 18

workflow management systems (WfMS) were introduced to support BPs lifecycle.

The Workflow Management Coalition [96, 183] defines a workflow as “the au-

tomation of a business process, in whole or part, during which documents, informa-

tion or tasks are passed from one participant to another for action, according to a

set of procedural rules” and defines a Workflow Management System (WfMS) as “a

system that defines, creates and manages the execution of workflows through the use

of software, running on one or more workflow engines, which is able to interpret the

process definition, interact with workflow participants, and where required, invoke

the use of IT tools and applications”.

From the definition it can be seen that a WfMS only supports the BPM life-

cycle from the process design to the process enactment phases. To address this

shortcoming, Business Process Management Systems (BPMS) are introduced as an

extension of classical WfMS focusing more on the diagnosis phase of the BPM life-

cycle, i.e., monitoring, tracking, analysis and predication of business processes. In

a BPMS, various resource classes, e.g., human or non-human, application or non-

application, and individual or teamwork could contribute to tasks within a business

process. Most of BPMSs focus on task-resource allocation in terms of individual hu-

man resources only [265, 282, 63], i.e., they model control flow dependencies between

activities in structured business processes.

Currently, many workflow vendors are positioning their systems as BPM sys-

tems. In particular, workflow management systems [9, 302, 325] (e.g., Staffware,

MQSeries, and COSA) can be used to integrate existing applications and support

process changes by merely changing the workflow diagram [9, 8, 283]. Isolating the

management of business processes in a separate component is also consistent with

recent developments in the domain of web services, where many information systems

in the enterprise have been implemented using Web services. Web service technol-

ogy has become the preferred implementation technology for realizing the Service

Oriented Architecture (SOA) paradigm [28, 268]. SOA is an architectural style that

provides guidelines on how services are described, discovered and used. In particu-

lar, software applications are packaged as “services”, where services are defined to

be standard-based, platform- and protocol-independent to address interactions in

2.1. Business Processes 19

heterogeneous environments [28, 268].

Web services composition languages such as BPEL4WS, BPML, WSCI, XLANG,

and WSFL can be used to glue services defined using WSDL1 together. Web ser-

vices provide standard specifications to simplify integration at lower levels of ab-

stractions [82, 217], i.e., messaging, or at higher abstraction levels [250, 251, 252],

i.e., service interfaces, business protocols, and also policies. In fact, what is provided

at the higher levels of abstractions are languages to define the service specifications,

i.e., its interface, business protocol, and policies. Enabling the analysis of service

interactions, in the context of business process executions, and that of service inte-

gration, is a goal of enterprises today. In particular, business process analysis (BPA)

over a wide range of information systems, services and softwares that implement the

actual business processes of enterprises is required.

Business Process Analysis (BPA) is particularly concerned with the behavioral

properties of enacted processes, e.g., at runtime, through monitoring BPs, or af-

ter execution, through using process mining or querying techniques [270]. BPA is

typically structured around three different views [253, 270]: (i) process view: is

concerned with the enactment of processes and is thus mainly focussed on the com-

pliance of executed processes; (ii) resource view: is centered around the usage of

resources within processes; and (iii) object view: focusses on business objects, e.g.,

inquiries, orders or claims, and analyze the life-cycle of these objects. These three

views are populated with statistical information (e.g., the minimum, the average

or the deviation of some parameter of interest) and correlations are typically es-

tablished across them. Designing and maintaining BPA applications is challenging,

as business processes in modern enterprises are developed by different communities

of practice, reside on different levels of abstractions, and handled by different IT

systems [193, 137].

1Proposed by IBM and Microsoft, and later published as a W3C note [279], WSDL is a general
purpose XML language for describing the interface and also the implementation of Web services.
The interface describes the operations that a service offers.

2.1. Business Processes 20

2.1.1 From Structured to Unstructured Processes

Business world is getting increasingly dynamic as various technologies such as social

media and Web 2.0 have made dynamic processes more prevalent. For example,

email communication about a process, instant messaging to get a response to a pro-

cess related question, allowing business users to generate processes, and allowing

front-line workers to update process knowledge (using new technologies such as pro-

cess wikis) [313] makes the use of complex, dynamic and often knowledge intensive

activities an inevitable task.

Such processes have flexible underlying process definition where the control flow

between activities cannot be modeled in advance but simply occurs during run

time [126, 121, 307]. In such cases, the process execution path can change in a

dynamic and ad-hoc manner due to changing business requirements, dynamic cus-

tomer needs, and people’s growing skills. Examples of this, are the processes in the

area of government, law enforcement, financial services, and telecommunications. In

this dissertation, we use the term ad-hoc to refer to this category of processes.

Existing business process management tools (WfMSs and BPMSs) support well-

structured [283] processes and do not provide sufficient flexibility to reflect the nature

of ad-hoc processes: structured processes are fully prescribed how a future decision

will be made. Ad-hoc processes can be divided into two types: unstructured and

semi-structured. An unstructured process is a process that can not be reduced to

well-defined rules [307], unlike well-structured processes. A semi-structured process,

or case-based process, is a process which contains both structured and unstructured

sub-processes [284].

While ‘process-aware’ information systems (PAIS) do a great job in increasing

the productivity of organizations, it is known that their rigidity restricts their ap-

plicability [287, 141, 307]. Number of challenges for the next generation business

process management have been discussed in [287]. For example, generation, recog-

nition and application of reusable ‘task patterns’ and ‘process patterns’ suggested

as an alternative to static workflows. Basic directions for the utilization of task-

based approaches, to support users engaged in intensive and unstructured knowledge

2.1. Business Processes 21

work, have been discussed in [151]. A related approach has been proposed in [249]

to address the problem of recommending activity steps in collaborative IT support

systems, i.e., best practice processes.

An extended state of the art study in the area of flexible workflows and task

management and a further approach for integrating ad-hoc and routine work is pre-

sented in [197]. Moreover, the gap between completely ad-hoc processes and rigid,

predefined business processes have been discussed in [58]. These approaches provide

frameworks for enabling delivery of process models, process fragments, and past

cases for tasks where different stakeholders can enrich task resources and informa-

tion. Moreover, they reveals major issues concerning business process flexibility and

how it can be facilitated through interactive processes models [307].

Some approaches provide solutions for unstructured, e.g., in [185], and semi-

structured, e.g., in [13], processes. They proposed to use document-based, task-

based, and case-based techniques to manage the ad-hoc nature of such processes.

Advanced techniques for building personal knowledge spaces and wiki-based col-

laborative document spaces are also discussed in these approaches. Some other

techniques used email, which plays a central role for the exchange of tasks and

task-related information in organizations [56, 156, 306]. Also, there are approaches,

e.g., in [307], which support agile business processes focusing on email-based and

human-to-human cooperation, where the collaboration flow determines the enter-

prise process flow.

Ad-hoc processes are complex not only because they are scattered across sev-

eral systems and organizations, but also they require many different people (having

lots of knowledge and experience) to collaborate to find the correct solution. Case

Management, also known as case handling [314], defined as a common approach to

support knowledge intensive processes. Moreover, various technologies, e.g., cus-

tomer relationship management (CRM) and content management systems (CMS)

have been proposed for supporting such dynamic and ad-hoc processes, however,

they are not sufficient to address the key requirements of these types of processes:

they are primarily driven by human participants reacting to changing context and

do not follow a predetermined path.

2.1. Business Processes 22

Patient
GP Clinic Breast Cancer

Clinic (BCC)
refer

Breast Cancer
Specialist Clinic (BCSC)

Radiology
Clinic (RC)

Pathology
Clinic (PC)

refer

refer

refer

Multi-disiplinary
Team (MDT)

result

result

result

Next?

-Yes:
* Surgery, Radiotherapy,...

-No:
* reassure patient, ...

-Details-needed:
* consider core/surgical

biopsy, MDT review, ...

Send email
application

Email Logs People

Hospital Information
System RC System PC System

BCSC System

Workflow Engine
Execution Logs

Figure 2.1: An example of the ad-hoc business process execution in an enterprise.

To understand the problem, Figure 2.1 illustrates an example scenario in the

domain of semi-structured (case-based) processes. This scenario is based on breast

cancer treatment cases in Velindre hospital [314]. In this scenario, a General Prac-

titioner (GP) suspecting a patient has cancer, update patient history using hospital

information system, and referring the patient to a Breast Cancer Clinic (BCC). BCC

checks the patients history and requests assessments such as an examination, imag-

ing, fine needle aspiration, and core biopsy using a workflow engine. Therefore, the

workflow system refers patient to Breast Cancer Specialist Clinic (BCSC), Radiology

Clinic (RC), and Pathology Clinic (PC), where these departments use their own sys-

tems, apply medical examinations, and send the results to Multi-Disciplinary Team

(MDT). The results are gathered and send to MDT team members (e.g., surgeon

oncologist, radiologist, pathologist, clinical and medical oncologist, and a nurse)

through a send mail application. Analyzing the results and the patient history,

MDT members will decide for next steps, e.g., in case of positive findings, non-

surgical (Radiotherapy, Chemotherapy, Endocrine therapy, Biological therapy, or

Bisphosphonates) and/or surgical options will be considered.

As illustrated in the scenario, most of the processes are conducted in an ad-hoc

manner and do not rely on integrated software solutions. Instead, a mix of comput-

erized systems and direct collaborations are used. For instance, the processing of

orders in the hospital information system may involve the accounting system and

2.1. Business Processes 23

personal productivity tools of the laboratories to follow up patients. Hence, the

data relevant to a business process is then scattered across multiple systems, e.g.,

RC, BCSC, and PC System, with no integration between them, or they are spread

across multiple documents stored in the personal folders of GPs and exchanged by

communication tools such as emails. Moreover, the process itself might be only par-

tially specified or not specified at all. This yield to the fact that in many situations,

stakeholders can be aware of processes but they are not able to track or understand

it. Therefore, under such conditions, organizing, indexing, and querying ad-hoc

processes data becomes of a great practical value but clearly a very challenging

task as well.

Organizing Ad-hoc Process Data. In order to organize the ad-hoc process

data, the first step is gathering and integration of process execution data in a process

event log from various, potentially heterogeneous, systems and services. In general,

this step involves several phases [280, 178]: (i) data analysis: is required to detect

errors and inconsistencies of heterogeneous event logs; (ii) definition of transforma-

tion workflow and mapping rules: depending on the number of data sources and

their degree of heterogeneity of the data, a large number of data transformation and

cleaning steps may have to be executed; (iii) verification: the correctness and effec-

tiveness of a transformation workflow/definitions should be tested and evaluated;

and (iv) transformation: data transformations deal with schema/data translation

and integration, and with filtering and aggregating data to be stored in the inte-

grated process log.

The next step is providing techniques to identify entities (e.g., process stakehold-

ers and process artifacts) and the interactions among them within such integrated

process logs. In this context, most entities (structured or unstructured) in process

logs are interconnected through rich semantic information, where entities and rela-

tionships among them can be modeled using graphs. Since graphs form a complex

and expressive data type, there is a need for methods to organize and index the

graph data. Existing database models, including the relational model, lack native

support for advanced data structures such as graphs. In particular, as the graph

data increases in size and complexity, it becomes important that it is managed by a

2.1. Business Processes 24

database system. There are several approaches for managing graphs in a database.

A line of related work extended a commercial RDBMS engine, e.g., Oracle provides

a commercial DBMS for modeling and manipulating graph data [18], and some

other works used general purpose relational tables to support graph structure data,

e.g., triplestores.

Triplestores, a special purpose database for the storage and retrieval of RDF [235]

(Resource Description Framework) data, are optimized for the storage and retrieval

of a large number of short statements in the form of subject-predicate-object, like

“patient @age 35” or “Adam created patient-history”, which are called triples. Much

work has been done to support efficient data access on triplestores [19, 29]. While

these approaches do a great job in storing and managing graph data, they fail to

deliver needed performance to answer large graph queries.

A new stream of work used MapReduce [106] for processing huge amounts of

unstructured data in a massively parallel way. Hadoop [330], the open source im-

plementation of MapReduce, provides a distributed file system (i.e., HDFS2) and

a high level language for data analysis, i.e., Pig3. For example, a new stream of

work [199, 98, 228, 187, 297] used Hadoop for large scale graph storage and mining.

They store and retrieve large number of triples in Hadoop file system.

Indexing, and Querying Ad-hoc Process Data. In order to query process

graphs a graph query language is needed. A number of graph query languages have

been proposed in the literature. For example GOOD [163] and GraphDB [161] are

query languages which have the root in object-oriented databases. GraphQL [174]

extended the relational algebraic operators, including selection, cartesian product,

and set operations, to graph structures. SPARQL query language [276] is designed

to efficiently query RDF data. A SPARQL query may consist of triple patterns,

conjunctions, disjunctions, and optional patterns. The SPARQL query processor

will search for sets of triples that match the triple patterns. GraphGrep [144] and

GIndex [337], uses structural characteristics of the graph, e.g., paths and frequent

patterns, to facilitate the indexing and query processing. These approaches used

2http://hadoop.apache.org/
3http://pig.apache.org/

2.2. Data Services 25

as preprocessing filters, which remove irrelevant graphs from the underlaying data.

Another work [338] identified substructures in the underlaying graphs in order to

facilitate indexing. Some other works [350, 259] use the tree structures in the un-

derlaying graph to facilitate searching and indexing.

While existing query processing solutions do a great job in querying and index-

ing graph data, still many challenges remain to be addressed. For example, process

data is becoming increasingly large. Parallel processing, e.g., using MapReduce

framework, can be used to handle such large data, however, many graph algorithms

are very difficult to be parallelized [234]. Some works [206, 188, 281] focused on

query optimization techniques for the Hadoop Pig to store triples and querying

graphs. In addition to Pig, there are several high-level language and environments

for advanced MapReduce-like systems, including SCOPE [85], Sawzall [273], and

Sphere [154]. As another challenge, graph queries are becoming extremely com-

plected: queries against a complex ontology are often lengthy, regardless to the

graph query language to be used. To answer these challenges, keyword search [324]

and mining methods [226], have been used to simplify queries and to semi-automate

the query formation. Moreover, data services have been proposed to simplify ac-

cessing, querying, and analyzing of information, e.g., related to processes.

2.2 Data Services

In the enterprise world, data services play an important role in SOA architec-

tures [79, 286, 164, 80]. For example, when an enterprise wishes to controllably

share data (e.g., structured data such as relational tables, semi-structured informa-

tion such as XML documents, and unstructured information such as commercial

data from online business sources) with its business partners, via the Internet, it

can use data services to provide mechanisms to find out which data can be accessed,

what are the semantics of the data, and how the data can be integrated from multi-

ple enterprises. In particular, data services are “software components that address

these issues by providing rich metadata, expressive languages, and APIs for service

consumers to send queries and receive data from service providers” [80].

2.2. Data Services 26

A Web service, i.e., a method of communication between two electronic devices

over the Web [28], can be specialized, as a data service, to encapsulate a wide

range of data-centric operations, where these operations need to offer a semantically

richer view of their underlying data in order to use or integrate entities returned

by different data services [80]. Microsoft’s WCF data-services framework4, which

enables the creation and consumption of OData services for the web, and Oracle’s

ODSI5, which provides a wide array of data services designed to improve data access

from disparate data sources for a wide range of clients, are two of a number of

commercial frameworks that can be used to achieve this goal.

In this context, SOA applications will often need to invoke a service to obtain

data, operate locally on that data, and then notify the service of changes that the

application wishes to make to the data. Consequently, standards activity is needed

in the context of data services. For example, the Open SOA Collaborations Service

Data Objects (SDO) specification [286] addresses these needs by defining client-

side programming models, e.g., for operating on data retrieved from a data service

and for XML serializing objects, and their changes for transmission back to a data

service [79]. In particular, the use of data is bound to various rules imposed by data

owners and the (data) consumers should be able to find and select relevant data

services as well as utilize the data ‘as a service’.

Data as a service, or DaaS, is based on the concept that the data can be pro-

vided on demand to the user regardless of geographic or organizational separation

of provider and consumer [320]. In particular, data services are created to integrate

as well as to service-enable a collection of data sources. These services can be used

in mashups [341], i.e., Web applications that are developed starting from contents

and services available online, to use and combine data from two or more sources

to create new services. In particular, data services will be integral for designing,

building, and maintaining SOA applications [79]. For example, Oracle’s ODSI sup-

ports the creation and publishing of collections of interrelated data services, similar

to dataspaces.

4http://msdn.microsoft.com/en-us/data/bb931106
5http://docs.oracle.com/cd/E13162 01/odsi/docs10gr3/

2.2. Data Services 27

Dataspaces, are an abstraction in data management that aim to manage large

number of diverse interrelated data sources in enterprises in a convenient, integrated,

and principled fashion. Dataspaces are different from data integration approaches

in a way that they provide base functionality over all data sources, regardless of

how integrated they are. For example, a dataspace can provide keyword search over

its data sources, then more sophisticated operations (e.g., mining and monitoring

certain sources) can be applied to queried sources in an incremental, pay-as-you-go

fashion [166]. These approaches does not consider the business process aspects per

se, however, they can be leveraged for organizing and managing ad-hoc process data.

DataSpace Support Platforms (DSSPs), have been introduced as a key agenda

for the data management field and to provide data integration and querying ca-

pabilities on (semi-)structured data sources in an enterprise [166, 294]. For exam-

ple, SEMEX [77] and Haystack [200] systems extract personal information from

desktop data sources into a repository and represent that information as a graph

structure where nodes denote personal data objects and edges denote relationships

among them.

The design and development of DSSPs have been proposed in [135]. In particular,

a DSSP [166, 294, 135]: (i) helps to identify sources in a dataspace and inter-related

identified resources. A DSSP is required to support all the data in the dataspace

rather than leaving some out, as with DBMSs; (ii) offers basic searching, querying,

updating, and administering mechanisms over resources in a dataspace, including

the ability to introspect about the contents. However, unlike a DBMS, a DSSP is

not in full control of its data, as same data may also be accessible and modifiable

through an interface native to the system hosting the data; (iii) does not require

full semantic integration of the sources in order to provide useful services: there

is not a single schema to which all the data conforms and the data resides in a

multitude of host systems; (iv) offers a suite of interrelated (data integration and

querying) services in order to enable developers focusing on the specific challenges

of their applications. Queries to a DSSP may offer varying levels of service, as

sometimes individual data sources are unavailable and best-effort or approximate

answers can be produced at the time of the query; and (v) provides mechanisms for

2.2. Data Services 28

enforcing constraints and some limited notions of consistency and recovery, i.e., to

create tighter integration of data in the space as necessary.

Motivating applications for DSSPs includes scenarios in which related data are

scattered across several systems and data sources, e.g., personal information man-

agement systems [115, 124], which are used to acquire, organize, maintain, retrieve

and use information items (e.g., desktop documents, web pages and email messages)

accessed during a person’s lifetime, and scientific data management systems [150],

which are used for record management for most types of analytical data and doc-

umentation which ensures long-term data preservation, accessibility, and retrieval

during a scientific process.

In order to search and query dataspaces, a new formal model of queries and

answers should be specified. This is challenging as answers will come from multiple

sources and will be in different data models and schemas. Moreover, unlike tradi-

tional querying/answering systems, a DSSP can also return sources, i.e., pointers

to places where additional answers can be found. Some works [165, 237] presented

semantic mappings techniques to reformulate queries from one schema to another in

data integration systems. Another line of related work [61, 160] focused on ranking

answers in the context of keyword queries to handle the heterogeneity of resources.

Some other works, e.g., in [224], focused on finding relevant information sources in

large collections of formally described sources.

In dataspaces, a significant challenge is to answer historical queries which ap-

plied to heterogenous data. A line of research proposed techniques for modeling

and analyzing provenance [93] (also known as lineage and pedigree), uncertainty

and inconsistency of the heterogenous data in dataspaces [331, 191]. Many prove-

nance models [93, 136, 248, 305] have been presented, motivated by notions such

as influence, dependence, and causality in such systems. Moreover, the relationship

between uncertainty and provenance discussed in [331].

Dataspaces are large collections of heterogeneous and partially unstructured

data, and therefore, indexing support for queries that combine keywords and the

structure of the data can be challenging. For example, in [116], authors proposed an

indexing technique for dataspaces to capture both text values and structural infor-

2.2. Data Services 29

mation using an extended inverted list. Their proposed framework extend inverted

lists that capture attribute information and associations between data items, i.e., to

support robust indexing of loosely-coupled collections of data in the presence of vary-

ing degrees of heterogeneity in schema and data. Another indexing system [109],

designed to provide entity search capabilities over datasets as large as the entire

‘Web of Data’. Their approach supports full-text search, semi-structural queries

and top-k query results while exhibiting a concise index and efficient incremental

updates. Challenges in implementing a scalable and high performance system for

searching semi-structured data objects over a large heterogeneous and decentral-

ized infrastructure have been discussed in [108], where an indexing methodology for

semi-structured data have been introduced.

Recently, new class of data services designed for providing data management in

the cloud [326]: the cloud is quickly becoming a new universal platform for data stor-

age and management. In practice, data warehousing, partitioning and replication

are well-known strategies to achieve the availability, scalability, and performance

improvement goals in the distributed data management world. Moreover, database-

as-a-service proposed as an emerging paradigm for data management in which a

third party service provider hosts a database as a service [164]. Data services can be

employed on top of such cloud-based storage systems to address challenges such as

availability, scalability, elasticity, load balancing, fault tolerance, and heterogenous

environments in data services. For example, Amazon Simple Storage Service (S3) is

an online public storage Web service offered by Amazon Web Services6.

A growing number of organizations have begun turning to various types of non-

relational, NoSQL (not only SQL), databases such as Google Bigtable [87], Yahoo

PNUTS [101], and Amazon Dynamo [107]. NoSQL is a broad class of low-cost and

high performance database management systems and proposed to address RDBMSs

shortcomings: ever-increasing needs for scalability and new advances in Web technol-

ogy, which requires facilitating the implementation of applications as a distributed

and scalable services, have created new challenges for RDBMSs [308, 218, 84, 326].

Such databases are designed to be very scalable and reliable and they consists of

6http://aws.amazon.com/

2.2. Data Services 30

thousands of servers geographically distributed all over the world.

Major research challenges for providing heterogenous data management, e.g. us-

ing data services, need [80, 79, 269, 164]: (i) a dynamically reconfigurable runtime

architectures, distributed service components and resources should be leveraged to

create an optimal architectural configuration to both a particular users require-

ments and the application characteristics; (ii) an end-to-end security solutions, a

full system approach to test end-to-end security solutions at both the network and

application level is required; (iii) the infrastructure support for data and process

integration, uniform consistent access to all heterogenous data should be provided,

i.e., irrespective of the data format, source, or location; and (iv) the analytic support

for the discovery and communication of meaningful patterns in (process execution)

data, e.g., business analytics.

Business Analytics [241, 35, 210], is the family of methods and tools that

can be applied to process execution data in order to support decision-making in

organizations by analyzing the behavior of completed processes (i.e., Process Con-

trolling [254]), evaluating currently running process instances (i.e., Business Activity

Monitoring [83, 140, 10]), or predicting the behavior of process instances in the fu-

ture (i.e., Process Intelligence [89]). In particular, the intent of process analytics

can be motivated by performance, to shorten the reaction time of decision makers

to events that may affect changes in process performance, or compliance consid-

erations, to establish the adherence of process execution with governing rules and

regulations [241].

In enterprises, sources for process analytics data includes activities, stakehold-

ers, and business related artifacts (and data) which are scattered across several

systems and data sources. In particular, business process analytics might include

events from multiple processes, data sources outside the organization, and events

from non-process-centric information systems [241, 210]. Existing works on business

analytics focused more on exploration of new knowledge and investigative analysis

using broad range of analysis capabilities, including: (i) trend analysis, provide

techniques to explore data and track business developments; (ii) what-if analysis,

in which scenarios with capabilities for reorganizing, reshaping and recalculating

2.2. Data Services 31

data is of high interest; and (iii) advanced analysis, provide techniques to uncover

patterns in businesses and discover relationships among important elements in an

organization’s environment.

In order to apply analytics to business data, data sources (e.g., operational

databases and documents) should be streamed into data warehouse servers (e.g.,

relational DBMS or MapReduce engine). This can be done using ETL [322] (ex-

tract transform load) or complex event processing engines [230]. Multi-tier servers

(e.g., OLAP servers, enterprise search engines, data mining engines, text analytic

engines, and reporting servers) can be used on top of data warehouses for converting

process execution data into knowledge and to support business users with decision

making process. To understand the generated knowledge, set of interactions be-

tween business users and expert business analytics is inevitable. For example, most

analytic tools are designed for quantitative analysts, not the broader base of busi-

ness users who need the output to be translated into language and visualizations

(appropriate for business needs). Set of front-end applications (e.g., spreadsheets,

dashboards, and querying approaches) can be used to address this challenge. More-

over, visual query interface and storytelling techniques [295] can be used to facilitate

the understanding of business analytics results.

Several challenges have been introduced to characterize the gap between relevant

analytics and users strategic business needs [210, 241, 89] including: (i) cycle time:

the time needed for the overall cycle of collecting, analyzing, and acting on enterprise

data. Business constraints may impose limits on reducing the overall cycle time;

(ii) analytic time and expertise: the time needed for analyzing generated knowledge

from business data. Sometimes there are specific expertise necessary to analyze

the result; (iii) business goals and metrics: various measurements such as cycle

times, service-level variability, and even customer comments on a particular process

can be used to understand process analytics. For example, crowdsourcing, i.e., a

process that involves outsourcing tasks to a distributed group of people [114, 26, 27],

systems can be leveraged to understand the analytics results; and (iv) goals for data

collection and transformations: once metrics are identified, appropriate data must

be collected and transformed into business data warehouses.

2.2. Data Services 32

The ability for an organization to take all its capabilities and convert them into

knowledge, requires analyzing data about their customers and their suppliers. The

wide adoption of customer relationship management (CRM) and supply chain man-

agement (SCM) techniques has allowed enterprises to fully interface and integrate

their demand and supply chains. Trkman et al. [319] discussed the impact of busi-

ness analytics on supply chain performance through investigating the relationship

between analytical capabilities in the plan, source, make, and deliver area of the sup-

ply chain. Moreover, online analytical processing (OLAP) techniques can be used

for business reporting for sales, marketing, management reporting, budgeting and

forecasting, and financial reporting. In particular, OLAP servers can be used to ex-

pose the multidimensional view of business data to applications or users and enable

the common business intelligence operations, e.g., filtering, aggregation, drill-down

and pivoting.

In addition to traditional OLAP servers, newer ‘in-memory’ business intelligence

engines [275] are appearing that exploit todays large main memory sizes to dramati-

cally improve performance of multidimensional queries. For example, HYRISE [157]

and HyPer [202] are both recent academic main-memory DBMSs for mixed (OLTP

and BI) workloads. Hyper creates virtual memory snapshots by duplicating pages on

demand when BI queries conflict with OLTP queries. HYRISE seems to be an offline

analytical tool for deciding the proper grouping of columns and physical layout to

optimize performance for a given mixed workload. Also, the Blink project [39] pro-

posed for fast processing of business intelligence queries in mere seconds, regardless

of the database size, with an extremely low total cost of ownership and recently has

been incorporated into IBM accelerator products. A theoretical framework for un-

derstanding the role of business analytics in obtaining performance gains has been

proposed in [301]. In particular, the authors defined and used dynamic business

analytics capability (DBAC) to utilize the operational, and other, data available

in organizations.

Recently, engines based on the MapReduce paradigm, which originally built for

analyzing Web documents and Web search query logs [106], are now being targeted

for enterprise analytics [89]. These approaches can be used to address challenges in

2.3. Querying Business Processes Models and Instances 33

real-time business analytics where the goal is to reduce the latency between when

operational data is acquired and when analytics over that data is possible. Data

platforms based on the MapReduce paradigm and its variants have attracted strong

interest in the context of the ‘Big Data’ [231] challenge in enterprise analytics, i.e.,

Big Data can be considered as a collection of data sets so large and complex that it

becomes difficult to process using on-hand database management tools and has the

following characteristics: (i) volume: is the primary attribute of the big data and

can be quantified by counting (terabytes of) records, transactions, tables, or files;

(ii) variety: the big data contains a greater variety of (structured, unstructured, and

semi-structured) data sources including datasets, logs, and clickstreams [219]; and

(iii) velocity: big data can be described by its velocity or speed, e.g., batch, near

time, real time, and streams. For example, projects like MRShare [262], Nectar [159],

Scope [85], and Starfish [179] have been built on top of Hadoop to provide a self-

tuning system for big data analytics.

2.3 Querying Business Processes Models and In-

stances

Large organizations often run hundreds or even thousands of business processes. In

order to manage such large collections of business processes, BP model repositories,

i.e., repositories that are structured according to a process-specific conceptual model

and/or that have a process-specific interface [340], have been proposed. Moreover,

set of abstract models have been introduced to describe process models, e.g., (i) fi-

nite state machines (FSM): a model for process description composed of a finite

number of states (and transitions between them) and messages; (ii) process graphs:

a common formalism for modeling temporal and logical dependencies in process

models (e.g., BPMN [155]); and (iii) workflow-Net (WF-Net): a special class of

Petri Net [257] used for modeling processes.

In this context, extracting knowledge from existing processes, e.g., retrieving

relevant process models in such repositories, to better design new processes is a

2.3. Querying Business Processes Models and Instances 34

challenging task and have been addressed through querying business processes [340,

33, 47, 130, 134, 293, 48, 246, 274]. In particular, querying of business processes

can be divided into three categories [33]: (i) querying business process models: can

help business analysts to search for certain patterns within enterprise repository of

BPs; (ii) querying running instances of business processes: can help in monitoring

the status of running processes, tracing the progress of execution, and making ad-

hoc queries about a status of a certain process; and (iii) querying execution logs

of completed business processes (also known as business process mining): can help

in extracting information from event logs to capture the business process as it is

being executed.

The main limitation of these approaches is that they assume an ideal world in

which: (i) the business process models are pre-defined and available; and (ii) the ex-

ecution of the business processes is achieved through a business process management

system (e.g., BPEL) where the execution traces should comply with the defined pro-

cess models. In this section we discuss querying process models and instances and

in Section 2.4 we present the current state-of-the-art in process mining.

Querying BP Models. Several approaches have been proposed for process

matching and retrieval problem in various application domains such as Web services

discovery and integration [57, 321], retrieving scientific workflows [145, 45], retriev-

ing business processes in repository [112], auto-completion mechanism for modeling

processes [129], and version management [258, 215]. These approaches for matching

process models are based on different abstract models introduced earlier, e.g., FSM,

process graphs, and WF-Net. In particular, the comparison of two process models

can be done from two perspectives: (i) structural [153, 102, 133]: this approach

consider only the process topologies (i.e., the type of the control flow specified in

the process model); and (ii) behavioral [334, 258, 117]: in this approach the process

execution semantics are considered by comparing the traces (i.e., an execution of a

process instance starting from initial state and ending into a final state) generated

by the two processes.

Query languages for process retrieval [59, 47, 33, 304, 299, 205] enable comparing

a process model with a set of process models in a repository. Bernstein et al. [59]

2.3. Querying Business Processes Models and Instances 35

proposed a service retrieval approach that captures service semantics using process

models, and applies a pattern-matching algorithm to find the services with the

behavior of user interest. BP-QL [47] proposed to query business processes expressed

in BPEL [130]. BP-QL is a graphical language where queries are modeled using

process patterns and allow to retrieve paths inside a single process graph and to

zoom across process graphs of the used services (in case of compound activities).

BPMN-Q [33] is oriented to query generic process modeling concepts using Busi-

ness Process Modeling Notation [155] (BPMN). In particular, BPMN-Q provides a

visual interface, supports the navigation of process structures to answer queries, sup-

ports the notion of paths between nodes in the process graph, and provide techniques

to modify the results of queries to create new queries to support the iterative nature

for the querying scenarios. In this context, the result of the BPMN-Q query can be

either the whole process model containing a match to the query or only the matching

part. Moreover, the authors proposed the semantic expansion of BPMN-Q queries

in [34] which supports various vocabularies which may express the same concept.

Shen et al. [304] proposed a behavior model for web services using automata and

logic formalisms, where a web service process is modeled as an extended nondeter-

ministic finite automaton, i.e., the automaton contains states for sending/receiving

messages and states for performing internal activities. They defined the behavior

pattern as a regular expression over the set of activities and messages. Moreover,

they proposed a query language, to express temporal and semantic properties on ser-

vice behaviors, and query evaluation algorithms, to improve the query performance

using optimization approach such as RE-tree and some heuristics. VisTrails [299]

proposed as a scientific workflow and provenance management system that pro-

vides an intuitive interface for querying data flows, i.e., a data flow is composed of

modules which define specific operations and connections which specify the concep-

tual flow of data between modules. The main idea behind VisTrails is to leverage

query-by-example and visualization techniques where analogies are used as first-class

operations to guide scalable interactions.

Unlike the above approaches, which proposed dedicated process query language,

the work presented in [205] investigated the use of similarity measures in a pro-

2.3. Querying Business Processes Models and Instances 36

cess ontology retrieval task using the iSPARQL framework. In particular, to en-

able querying similar entities in semantic web knowledge bases, iSPARQL extends

SPARQL [276] graph query language with similarity operators. Several other stud-

ies focused on the comparison of semantic business processes either for retrieval,

discovery, matchmaking, or process alignment. For example, the works in [45, 129]

proposed an approach to semantically align business processes originally represented

as Petri nets [257]. The authors employed similarity measures from different cat-

egories to measure the affinity between elements of Petri nets. Klusch et al. [207]

presented an approach to perform hybrid semantic Web service matchmaking using

both semantic similarity measures and logic-based reasoning techniques.

Another line of related work proposed indexing and filtering techniques [86, 233,

339] for efficient retrieval of process models in large repositories. The RE-tree [86] is

an index structure for regular expressions based on R-tree [162] (i.e., a dynamic index

structure for spatial searching) in which each node entry is a finite state automata.

RE-tree have been constructed to accelerate the search process. Mahleko et al. [233]

proposed an approach for indexing and matching business process represented as

finite state machines, where the process matchmaking is reduced to the intersection

of state machines. Yan et al. [339] proposed a technique for improving the speed of

business process similarity search through matching a query process model against a

collection of process models specified as process graphs. The proposed feature-based

filtering technique is used to efficiently estimate model similarities and classify them

as relevant, irrelevant or potentially relevant to a query model.

Querying BP Instances. Querying running instances of business processes [48,

246, 274] represents another flavor of querying processes. It can be considered as a

tool in the hand of administrator of a business process enactment engine to monitor

the status of running processes and trace the progress of execution. Such queries can

be used to discover many problems such as: detecting the occurrence of deadlock

situations or recognizing unbalanced load on resources. Querying BP instances is in

flavor of Business Activity Monitoring (BAM) [83, 140, 10]. BAM intends to provide

real-time business performance indicators to improve the speed and effectiveness of

business operations through discovering business process models, where tracking and

2.3. Querying Business Processes Models and Instances 37

analyzing of process execution will be needed. Available solutions for BAM, e.g.,

Oracle BAM [264], focused on processing real-time events at the middle-ware level

using event processing systems [111].

Several approaches [48, 49, 41, 43, 42, 246, 274, 64, 245] have been proposed

in literature for specifying monitoring directives externally to the BPEL processes

and for supporting the run-time monitoring of these directives. For example, a

BP-Mon monitoring query [48, 49] is represented as a BPEL process that capture

interesting events of monitored processes, e.g., to monitor the bid cancelation events

of a bidding process, where a manager could be interested in tracking users who

make cancelations too often. BP-Mon allows users to visually define monitoring

tasks and associated reports, using a simple intuitive interface, similar to those

used for designing BPEL processes. In particular, monitoring the execution of BPs

for frequent and interesting patterns is critical for enforcing business policies and

meeting efficiency and reliability goals in enterprises [48].

The focus in [41] is on the specification of properties which may span over mul-

tiple executions of BPEL processes and that aggregate information about all these

executions. The proposed architecture separates the BPEL execution engine and

the monitoring engine. Baresi et al. [43] focused on the specification of monitoring

directives that can be activated and de-activated for each process execution. The

actual monitoring of these directives is performed by weaving them into the process

they belong to. Detailed comparison of these two approaches ([41] and [43]), e.g.,

in terms of the events they are able to monitor or the level of integration of process

execution and monitoring, have been presented in [44]. The approach presented

in [42] investigated how to monitor dynamic service compositions with respect to

contracts expressed via assertions on services. They represented dynamic compo-

sitions as BPEL processes which can be monitored at run-time to check whether

individual services comply with their contracts.

PQL [246] is a SQL-based query language with a main focus on querying biolog-

ical pathways, where the representation of a single enactment of a workflow process

is called a process instance and the execution of a process instance considered as

execution of a set of activity instances. In this context, every activity instance that

2.4. Process Mining 38

is an atomic activity is performed by one workflow participant, i.e., a resource that

may participate in process execution is called a workflow participant which adapted

to proposed workflow process definition and instance metamodel and a workflow

control data. The workflow process metamodel defines workflow entities, their re-

lationships and basic attributes. In PQL, the similarly to the process instance and

the behavior of an activity instance is represented by state diagram and stored as

activity instance state entities.

Pistore et al. [274] presented an approach based on model checking to mon-

itor the composition as well as the execution of web services. Starting with an

abstract BPEL specification, they focused on a model checking approach to find

a composition that reaches the goals as well as synthesizing a monitoring compo-

nent that checks whether the external services behave as specified in the protocol.

Bianculli et al. [64] proposed a process monitoring approach based on an algebraic

specification language focusing on monitoring functionality of conversational ser-

vices, whose behavior depends on the local state resulting from the client-service

interaction. Furthermore, a model-driven methodology for a top-down development

of a process-oriented IT support based on a SOA introduced in [245]. The pro-

posed approach is based on a SOA techniques, considered monitoring requirements

for business process controlling, and introduced metamodels for the specification of

process performance indicators in conjunction with the necessary monitoring. In

next section, we discuss the current state-of-the-art in querying execution logs of

completed business processes, i.e., process mining.

2.4 Process Mining

In order to analyze process execution data, querying execution logs of completed

business processes (i.e., process mining [2, 8]) received continuous attention in re-

search. The goal of process mining is to simplify process queries and to semi-

automate the query formation in order to easily establish links between the actual

processes, their data, and the process models. In particular, process mining helps in

discovering and improving real processes by extracting knowledge from event logs

2.4. Process Mining 39

through using process modeling/analysis, machine learning, and data mining tech-

niques. The main concern of these approaches is to reverse engineer the definitions

of business process models from execution logs of information system components.

Moreover, depending on how much details the log gives, they can provide statis-

tics about many aspects of the business processes such as: the average duration of

process instances or the average resource consumptions.

Recently, the IEEE Task Force on Process Mining released a manifesto describing

guiding principles and challenges in process mining [6], where the goal is to increase

the maturity of process mining as a new tool to improve the (re)design, control, and

support of operational business processes. In particular, process mining challenges

include [6, 11, 3, 8, 2]:

• mining hidden and duplicate tasks: one of the basic assumptions of process

mining is that each event is registered in the log. Consequently, it is challenging

to find information about tasks that are not recorded. Moreover, the presence

of duplicate tasks is related to hidden tasks and refers to the situation that

one can have a process model with two nodes referring to the same task.

• loops: in a process it may be possible to execute the same task multiple times,

i.e., this typically refers to a loop in the corresponding process model.

• temporal properties: the temporal metadata (e.g., event timestamps) can be

used for adding time information to the process model or to improve the quality

of the discovered process model.

• mining different perspectives: understanding process logs in terms of its scope

and details is challenging specially as it is subjective: depend on the perspec-

tive of the process analyst.

• dealing with noise and incompleteness: the log may contain noise (e.g., in-

correctly logged information) and can be incomplete (e.g., the log does not

contain sufficient information to derive the process).

• gathering data from heterogeneous sources: in modern enterprises, information

about process execution is scattered across several systems and data sources.

2.4. Process Mining 40

• visualization techniques: helps presenting the results of process mining in a

way that people actually gain insight in the process.

• delta analysis: is used to compare the two process models and explain the

differences. It can be useful as process models can be descriptive or normative.

Tree types of process mining are recognized [2, 4, 6]: (i) discovery: this technique

takes an event log and produce a model without using any a priority information.

For example, the α-algorithm [12] takes an event log and produce a Petri net [257]

model which explains the behavior recorded in the log; (ii) conformance: in this

technique an existing process model is compared with an event log of the same

process. Conformance checking can be used to check if reality, as recorded in the

log, conforms to the model and vice versa. For example, the conformance checking

algorithm proposed in [289] can be used to quantify and diagnose deviations; and

(iii) enhancement: this technique can be used to extend or improve an existing

process model using information about the actual process recorded in some event

log. In this context, two types of enhancement are recognized: repair, can be used

to modify the model to better reflect reality, and extension, can be used to add a

new perspective to the process model by cross-correlating it with the log.

A recent book [2] and surveys [4, 8, 11] discuss the entire process mining spec-

trum from process discovery to operational support. Moreover, growing number of

software vendors added process mining functionality to their tools. For example,

ProM [7] offers a wide range of tools related to process mining and process analysis.

In particular, ProM is a workflow discovery prototype tool that offers some of above

approaches. Agrawal et al. [20] proposed an approach to apply process mining in

the context of workflow management systems and to address the problem of model

construction. Datta [104] proposed algorithms for the discovery of business process

models. Also, similar approaches in the the context of software engineering processes

have been addressed in [100]. Herbst [177] presented a learning algorithm that is

capable of inducing concurrent workflow models. The proposed approach focused on

processes containing duplicate tasks and presented a specialization-based technique

for discovering sequential model of process logs represented using HMM (Hidden

2.5. Observations 41

Markov Model).

Conformance checking techniques [17, 256] are used to relate events in the log

to activities in the model. Adriansyah et al. [17] presented techniques to measure

the conformance of an event log for a given process model. The approach quantifies

conformance and provides intuitive diagnostics and has been implemented in the

ProM framework. Munoz-Gama et al. [256] presented an approach to enrich the

process conformance analysis for the precision dimension. Some other examples of

approaches focused on precision for: measuring the percentage of potential traces

in the process model that are in the log [152], comparing two models and a log to

see how much of the first models behavior is covered by the second [238], comparing

the behavioral similarity of two models without a log [118], and using minimal

description length to evaluate the quality of the model [78].

Enhancement techniques heavily rely on the relationship between elements in

the model and events in the log. These relationships may be used to: (i) replay

the event log on the model, e.g., bottlenecks can be identified by replaying an event

log on a process model while examining the timestamps [2]; (ii) modify the model

to better reflect reality; and (iii) add a new perspective to the process model by

cross-correlating it with the log. Subramanian et al. [309] proposed an approach for

enhancing BPEL engines with facilities that permit satisfying self-healing require-

ments. Moreover, the concept of self-healing as a part of autonomic computing has

been proposed in [203], where self-healing systems will automatically detect, diag-

nose, and repair localized problems resulting from failures. A diagnostic reasoning

techniques and diagnosis-aware exception handlers for exception handling proposed

in [32]. Also, a framework for providing a proxy-based solution to BPEL, as an

approach for dynamic adaptation of composite Web services, presented in [132].

2.5 Observations

Understanding, analyzing, and ultimately improving business processes is a goal

of enterprises today. As discussed in this chapter, most related work in the area

of analyzing business process execution assumes well defined processes, however,

2.5. Observations 42

business world is getting increasingly dynamic and there are cases where the process

execution path can change in a dynamic and ad-hoc manner. Current state-of-the-

art in querying business processes does not provide sufficient techniques for the

analysis of ad-hoc process data. For example, some of the basic assumptions of

existing BPs querying techniques is that each event should be registered in the log,

the BP models should be pre-defined and available, and the execution traces should

comply with the defined process models.

In particular, the understanding of business processes and analyzing BP execu-

tion data is difficult due to the lack of documentation and especially as the process

scope and how process events across these systems are correlated into process in-

stances are subjective: depend on the perspective of the process analyst. Conse-

quently, there is a need for querying approaches that enables analysts to analyze the

process events from their perspectives, for the specific goal that they have in mind,

and in an explorative manner.

Moreover, most objects and data in the integrated process logs are intercon-

nected, forming complex, heterogeneous but often semi-structured networks and

can be modeled using graphs. Understanding modern business processes entails

identifying the relationships among entities in process graphs. Viewing process logs

as a network, process graphs, and studying systematically the methods for mining

such networks, of events, actors and process artifacts, is a promising frontier in

database and data mining research: process mining provides an important bridge

between data mining and business process modeling and analysis [6].

There are many studies on the analysis of graphs, such as network measures [327],

statistical behavior study [260], modeling of trend and dynamic and temporal evo-

lution of networks [221, 184, 211], clustering [310, 277], ranking [312, 311], and

similarity search [338]. All these approaches can be leveraged for mining and ana-

lyzing process graphs. Moreover, for effective discovery of ad-hoc process knowledge

it is important to enhance process data by various data mining methods, i.e., to

help data cleaning/integration, trustworthiness analysis, role discovery, and ontol-

ogy discovery, which in turn help improving business processes.

To address these challenges, set of works [252, 291, 290] focused on the correla-

2.5. Observations 43

tion discovery between events in process logs, i.e., event correlation is the process

of finding relationships between events that belong to the same process execution

instance. In particular, the problem of event correlation can be seen as related to

that of discovering functional dependency [229, 272] in databases. These works are

complementary to process mining techniques as they enable grouping events in the

log into process instances that are then input to process mining algorithms.

Some other related works, focused on converting process execution data into

knowledge to support the decision making process [241, 35, 210]. They presented

a family of methods and tools for developing new insights and understanding of

business performance based on collection, organization, analysis, interpretation, and

presentation of ad-hoc process data. While existing analytics solutions, e.g., OLAP

techniques and tools, do a great job in collecting data and providing answers on

known questions, key business insights remain hidden in the interactions among

objects and data. Existing approaches [169, 317, 92, 349, 278, 208, 198, 131], in

on-line analytical processing on graphs, took the first step by supporting multi-

dimensional and multi-level queries on graphs, however, much work needs to be

done to make OLAP heterogeneous networks a reality [168].

In our approach, we focus on providing a framework, simple abstractions and

a language for the explorative querying and understanding of process graphs from

various user perspectives. The framework caters for lifecycle activities important for

wide range of processes, from unstructured to structured, including understanding,

analyzing, correlating, querying, and exploring process execution data in an inter-

active manner. Moreover, the framework provides techniques for applying existing

mining algorithms and analytics to process data. We propose a query language

for facilitating the analysis of process graphs based on the two concepts of folders

and paths, which enable a process analyst to group related entities in the graph or

find patterns among entities. We use this framework for organizing, indexing, and

querying ad-hoc process data. We provide abstractions for analyzing cross-cutting

aspects in ad-hoc processes and supporting analytics over ad-hoc process data.

2.6. Summary 44

2.6 Summary

In this chapter, we have given an overview of existing abstractions and specifications

in the areas of business processes, ad-hoc processes, data-spaces, data-services and

querying business processes. In business processes, central concepts such as pro-

cesses management, workflow management systems, Web services, business process

analysis, business activity monitoring, and process mining and querying approaches

have been presented. Moreover, existing methods and techniques for understanding

and analyzing ad-hoc processes have been introduced and challenges in organizing,

querying, and analyzing ad-hoc processes data have been addressed.

We discussed the current state-of-the-art in data-space and data services as they

can be leveraged in order to organize, index, and query ad-hoc process data. We

discussed that the exponential growth in the amount of business data needs revolu-

tionary techniques for data management, analysis and accessibility. Moreover, the

current state-of-the-art in business analytics have been presented as organizations

today create vast amounts of transactional data and converting process execution

data into knowledge, to support the decision making process, is the focus of busi-

ness analytics. In summary, there are three main limitations with respect to current

approaches:

• Understanding of ad-hoc processes and analyzing BP execution data will be

difficult as the information about process execution is scattered across sev-

eral data sources. Moreover, due to the lack of documentation, the process

scope and how process events across these systems are correlated into process

instances are subjective: depend on the perspective of the process analyst.

• The structure of process graphs can help in understanding, predicting and

optimizing the behavior of dynamic processes, however, in many cases pro-

cess artifacts evolve over time, as they pass through the business’s operations.

Consequently, identifying the interactions among people and artifacts becomes

challenging and requires analyzing the cross-cutting [204] aspects of process ar-

tifacts such as versioning and provenance. Analyzing these aspects will expose

many hidden interactions among process related entities.

2.6. Summary 45

• In modern enterprises, businesses accumulate massive amounts of data from

a variety of sources, where business analytics can help in understanding the

business data with an eye to predicting and improving business performance

in the future. While existing analytics solutions, e.g., OLAP techniques and

tools, do a great job in collecting data and providing answers on known ques-

tions, key business insights remain hidden in the interactions among objects

and data: most objects and data in the process graphs are interconnected,

forming complex, heterogeneous but often semi-structured networks.

Enabling above-mentioned analysis requires a model and a query language for

representing and querying process entities (e.g., events, artifacts, and actors), rela-

tionships among them, and the evolution of business artifacts over time. Moreover,

the model should support multi-dimensional/-level views and analytics over ad-hoc

processes data. We will address these challenges in the following chapters of this

thesis.

Chapter 3

Organizing, Indexing, and

Querying Ad-hoc Processes Data

3.1 Introduction

A business process (BP) consists of a set of coordinated tasks and activities employed

to achieve a business objective or goal. In modern enterprises, BPs are realized over

a mix of workflows, IT systems, Web services and direct collaborations of people.

The understanding of business processes and analyzing BP execution data (e.g., logs

containing events, interaction messages and other process artifacts) is difficult due to

the lack of documentation and especially as the process scope and how process events

across these systems are correlated into process instances are subjective: depend on

the perspective of the process analyst.

As an example, one may want to understand the delays to the ordering process

(the end-to-end from ordering to the delivery) for a specific customer, while another

analyst is only considered with the packaging process for any orders in the shipping

department. Certainly, one process model would not serve the analysis purpose

for both situations. Rather there is a need for a process-aware querying approach

that enables analysts to analyze the process events from their perspectives, for the

specific goal that they have in mind, and in an explorative manner. In this chapter,

we focus on addressing this problem.

46

3.1. Introduction 47

The first step of process analysis is gathering and integration of process execution

data in a process event log from various, potentially heterogeneous, systems and

services. We assume that execution data are collected from the source systems and

transformed into an event log using existing data integration approaches [280], and

we can access the event metadata and the payload content of events in the integrated

process log.

The next step is providing techniques to enable users define the relationships

between process events. The various ways in which process events may be correlated

are characterized in earlier works ([46, 252]. In [252], the authors introduced the

notion of a correlation condition as a binary predicate defined on the attributes

of event payload that allows to identify whether two or more events are potentially

related to the same execution instance of a process. We use the concept of correlation

condition to formulate the relationships between any pairs of events in the log.

In this chapter, we introduce a data model for process events and their rela-

tionships, and a query language to query and explore events, their correlations and

possible aggregation of events into process related abstractions. We introduce two

concepts of folders and paths, which help in partitioning events in logs into groups

and paths, in order to simplify the discovery of process related relationships (e.g.,

process instances) and abstractions (e.g., process models). We define a folder node

as a placeholder for a group of inter-related events. We use a path node to repre-

sent the set of events that are related to each other through transitive relationships.

These paths may lead into discovering process instances.

In summary, we present a novel framework for organizing, indexing, and querying

ad-hoc processes data. The unique contributions of this chapter are as follows:

• We propose a graph data model that supports typed and untyped entities

(e.g., events, artifacts, and actors), and introduce folder and path nodes as

first class abstractions. A folder node contains a collection of related events,

and a path node represent the results of a query that consists of one or more

paths in the process graph based on a given correlation condition.

• We present a process event query language and graph-based querying process-

3.2. Process Log Analysis: Example Scenario 48

ing engine called FPSPARQL, which is a Folder-, Path-enabled extension of

SPARQL [276]. We use FPSPARQL to query and analyze events, folder and

path nodes in order to analyze business process execution data.

• We describe the implementation of FPSPARQL, the results of the evaluation

of the performance of the engine, and the quality of results over large event

logs. The evaluation shows that the approach is performing well.

• We provide a front-end tool for the exploration and visualization of results in

order to enable users to examine the event relationships and the potential for

discovering process instances and process models.

The remainder of this chapter is organized as follows: we present a case study

on process event logs in Section 3.2. In Section 3.3 we give an overview of the

query language and the data model. We present the FPSPARQL query language in

Section 3.4. In Section 3.5 we show how we use the query language for analyzing the

case study process log. In Section 3.6 we describe the query engine implementation

and in Section 3.7 we discuss the evaluation experiments. Finally, we discuss related

work in Section 3.8, before concluding the chapter in Section 3.9.

3.2 Process Log Analysis: Example Scenario

Let us assume a set of web services that are interacting to realize a number of

business processes. In this context, two or more services exchange messages to

fulfil a certain functionality, e.g., to order goods and deliver them. The events

related to messages exchanged during service conversations may be logged using

various infrastructures [252]. A generic log model L represented by set of messages

L = {m1,m2, ...,mn} where each message m is represented by a tuple mi ∈ A1 ×
A2 × ... × Ak [250]. Attributes A1, ..., Ak represent the union of all the attributes

contained in all messages. Each single message typically contains only a subset of

these attributes and mx.Ai denotes the value of attribute Ai in message mx. Each

message mx has a mandatory attribute τ that denotes the timestamp at which the

event (related to the exchange of mx) has been recorded.

3.2. Process Log Analysis: Example Scenario 49

Start

Catalog Received

PO Submitted

P-Shipped

R-Invoice Sent

StartP-Paid

R-Invoice Sent

R-Paid

StartR-Shipped

makePayment

sendInvoice

ShipInfo

makePayment

shippingInfosendInvoice

submitPO

getCatalog

su
bm

itP
O

ge
tC

at
al

og

ge
tC

at
al

og

OS:PurchaseOrder System
PS:Payment System
CRS:Customer
Relationship System
CO OS:ConfirmPO
PO OS:SubmitPO
Inv PS:SendInv
Pay PS:makePayment
NP CRS:NewProductInfo
SR CRS:SurveyResut

Figure 3.1: A simplified business process in SCM log for retailer service.

In particular, we use the interaction log of a set of services in a supply scenario

provided by WS-I (the Web Service Interoperability organization1), referred in the

following as SCM. Figure 3.1 illustrates a simplified business process in SCM (Supply

Chain Management) log for retailer service and Table 3.1 shows an example of the

SCM log. The log of the SCM business service contains 4,050 messages, 14 service

operations (e.g., CO, PO, and Inv), and 28 attributes (e.g., sequenceid, custid,

and shipid).

We will use this log to demonstrate how various users use the querying frame-

work introduced in this chapter for exploring and understanding process event logs.

For example, we will show how an analyst can: (i) use correlation conditions to par-

tition SCM log, e.g., see Examples 5 and 6 in Section 3.5; (ii) explore the existence of

transitive relationships between messages in constructed partitions to identify pro-

cess instances, e.g., see Examples 7 and 8 in Section 3.5; and (iii) analyze discovered

process instances by discovering a process model to understand the result of the

query in terms of process execution visually, e.g., see Example 9 in Section 3.5.

1http://www.ws-i.org

3.3. Organizing and Indexing Ad-hoc Process Data 50

Table 3.1: Example of SCM service interaction log.

M
es

sa
ge

ID

Service Operation

O
rd

er
ID

In
vo

ic
eI

D

Cu
st

om
er

ID

Sh
ip

ID

Q
uo

te
ID

Pa
yI

D

...

00001 Catalogue get 21 ...
00002 Quoting RFQuote 21 Q1 ...
00003 Ordering PO O1 Q1 ...
00004 Ordering RejectOrder O1 ...
00005 Ordering PO O2 ...
00006 Invoice Invoice O2 ...
00007 Payment Pay I2 P2 ...
00008 Shipping Ship I2 S2 P2 ...
00009 Ordering OrderFulfil O2 S2 ...

...

3.3 Organizing and Indexing Ad-hoc Process Data

We introduce a graph-based data model for modeling the process entities (e.g.,

events, artifacts, and actors) in process logs and their relationships, in which the

relationship among entities could be expressed using regular expressions. In order

to enable the explorative querying of the process logs represented in this model, we

propose the design and development of an interactive query language that operates

on this graph-based data model. The query language enables the users to find

entities of their interests and their relationships.

The data model includes abstractions which act as higher level entities of related

entities to browse the results as well as store the result for follow-on queries. The

process events in these higher level entities could be used for further process-specific

analysis purposes. For instance, inspecting entities for finding process instances, as

well as applying process mining algorithms on containers having process instances for

discovering process models. Figure 3.2 shows an overview of the steps in analyzing

process event logs (i.e. preprocessing, partitioning, and analysis) in our framework,

which is described in the following sections.

3.3. Organizing and Indexing Ad-hoc Process Data 51

Partitions
D

om
ai

n
Ex

pe
rt

s

Partitioning

discovered
Process Instances

Mining

Examining
Analyzing

Preprocessing

Process Event Logs Graph Data Model

Th
e

Q
ue

ry
 L

an
gu

ag
e

(i.
e.

 F
PS

PA
R

Q
L)

(Stored in Path Nodes)

(Stored in Folder Nodes)

Figure 3.2: Event log analysis scenario.

3.3.1 Data Model

We propose to model a process log as a graph of typed nodes and edges. We de-

fine a graph data model for organizing a set of entities as graph nodes and entity

relationships as edges of the graph. This data model supports: (i) uniform repre-

sentation of nodes and edges. In order to support querying attributed graphs, both

nodes and edges are treated as first class citizens where any node/edge can be de-

scribed by an arbitrary set of attributes; (ii) entities, which is represented as a data

object that exists separately and has a unique identity. Entities can be structured

or unstructured; (iii) folder nodes, which contain entity collections. A folder node

represents the results of a query that returns a collection of related entities; and

(iv) path nodes, which refer to one or more paths in the graph, which are the result

of a query, too. A path is the transitive relationship between two entities. Entities

and relationships are represented as a directed attributed graph G = (V,E) where

V is a set of nodes representing entities, folder or path nodes, and E is a set of

directed edges representing relationships among nodes.

In order to understand entities, relationships, and folder/path abstractions, we

present a simple example in bibliographical networks illustrated in Figure 3.3.

Entities

Entities could be structured or unstructured. Structured entities are instances of

entity types. An entity type consists of a set of attributes. Unstructured entities,

are also described by a set of attributes but may not conform to an entity type.

3.3. Organizing and Indexing Ad-hoc Process Data 52

Paper2
id=p2

SIGMOD
id=v2

Author2
id=a2

Author3
id=a3

Paper4
id=p4

Paper3
id=p3

Author1
id=a1

Paper1
id=p1

CAiSE
id=v1

au
th

or
ed

B
y

id
=e

12
pu

bl
is

he
dI

n
id

=e
10

editedBy

id=e11

cit
ed

By
id=

e9ci
te

dB
y

id
=e

6

citedBy
id=e3

authoredBy
id=e1

authoredBy
id=e7

publishedIn
id=e5

au
th

or
ed

By
id

=e
4

publishedIn
id=e8

pu
bl

is
he

dI
n

id
=e

2

file1 Document1derivedFrom Paper1derivedFrom

Author3 Author1

ed
ite

dB
yeditedBy

authoredBy

Type: ITEM Type: Word document Type: PDF

(A) Sample bibliographical network graph. (B) Sample historical graph for the ancestry
relationships of 'paper1' illustrated in Figure 1-A.

Object Store
Subject

(entity‐id)
Predicate

(entity‐attribute)
Object

(attribute‐value)
P1 @Type Paper
P1 @class entityNode
P1 @Title Paper1
A1 @Type Author
A1 @class entityNode
A1 @Name Author1
V1 @Type Venue
V1 @class entityNode
V1 @Name CAiSE
E1 @type directedLink
E1 @Class Edge
E1 @Label authoredBy

Folder1 @Class folderNode
Folder1 @Name CAiSEPapers
Path1 @Class pathNode
Path1 @Name p2p1Path

...

Link Store
Subject

(node‐from)
Predicate

(edge)
Object

(node‐to)
P2 E1 A3
P2 E2 V2
P2 E3 P4
P4 E4 A3
P4 E5 V2
P4 E6 P3
P3 E7 A2
P3 E8 V1
P3 E9 P1
P1 E12 A1
P1 E11 A3
P1 E10 V1
...

Folder Store
Folder‐id Subject

(node‐from)
Predicate

(edge)
Object

(node‐to)
Folder1 P3 E7 A2
Folder1 P3 E8 V1
Folder1 P3 E9 P1
Folder1 P1 E12 A1
Folder1 P1 E11 A3
Folder1 P1 E10 V1

...

Path Store
Path‐

id
Paths

Include
Subject

(node‐from)
Predicate

(edge)
Object

(node‐to)
Path1 Path #1 P2 E3 P4
Path1 Path #1 P4 E6 P3
Path1 Path #1 P3 E9 P1

...

(C) Sample entity-store for the graph
represented in Figure 1-A.

(D) Sample triplestore for the graph represented
in Figure 1-A.

(E) Sample folder-store for the result of
Example 2.

(F) Sample path-store for the result of Example 3.

Figure 3.3: Representation of the Graph, Folder, and Path.

3.3. Organizing and Indexing Ad-hoc Process Data 53

This entity model offers flexibility when types are unknown and take advantage

of structure when types are known. We assume that all unstructured entities are

instances of a generic type called ITEM. ITEM is similar to generic table in [263].

We store entities in the object store.

Example 1 . Consider the bibliographical network in Figure 3.3-A. In this graph we have

entity types such as author, paper and venue. The graph in Figure 3.3-B illustrates the

creation (i.e., ancestry relationships) of ‘paper1’. ‘paper1’ and ‘document1’ are structured

entities. ‘file1’ is an unstructured entity with unknown entity type. The sample object-store

in Figure 3.3-C contains all the nodes and edges in this graph, i.e., the model supports

uniform representation of nodes and edges in the graph. The link-store in Figure 3.3-D,

contains all the directed links between entities. We use triplestores to store graphs: a

triplestore is a purpose-built database for the storage and retrieval of triples, a triple being

a data entity composed of subject-predicate-object, like ”Bob @age 35” or ”Bob knows

Fred”. See Section 3.6.2 for details.

Relationships

A relationship is a directed link between a pair of entities, which is associated with

a predicate (i.e., a regular expression) defined on the attributes of entities that

characterizes the relationship. A relationship can be explicit, such as ‘was triggered

by’ in ‘event1 wasTriggeredBy event2’ in a BPs execution log. Also a relationship

can be implicit, such as a relationship between an entity and a larger (composite)

entity that can be inferred from the nodes.

3.3.2 Representing and Organizing Ad-hoc Process Data

In this section we introduce abstractions and methods that enable the querying and

exploration of process entities (e.g., events, artifacts, and actors) and the relation-

ships among them, which facilitate the discovery of potential process models and

process instances.

3.3. Organizing and Indexing Ad-hoc Process Data 54

Folder Nodes

A folder node contains a set of entities that are related to each other, i.e., the set of

entities in a folder node is the result of a given query that requires grouping graph

entities in a certain way. The folder concept is akin to that of a database view

defined on a graph. However, a folder is part of the graph and creates a higher level

node that other queries could be executed on it. Folders can be nested, i.e., a folder

can be a member of another folder node, to allow creating and querying folders with

relationships at higher levels of abstraction. A folder may have a set of attributes

that describes it. A folder node is added to the graph and can be stored in the

database to enable reuse of the query results for frequent or recurrent queries.

Example 2 . [Correlation Condition] A correlation condition ψ proposed as a binary

predicate defined on the attributes of entities that allows to identify whether two or more

entities (in a given process graph) are potentially related [252]. We call two entities corre-

lated if the predicate is evaluated to true. For example, consider the correlation condition

x.venue=‘CAiSE’ where x is an instance of type paper. This query, groups set of papers

published in ‘CAiSE’ conference. As illustrates in the Figure 3.3-A the result of this query

is the set {‘paper1’,‘paper3’}. We add a folder node to the original graph, and store the

result of this query in the folder store (Figure 3.3-E). For this purpose, we filter all the

tuples in the link-store (Figure 3.3-D) whose column ‘node-from’ is ‘paper1’ or ‘paper3’.

Properties of this folder will be stored in the object-store (Figure 3.3-C). In the folder-store,

the nodes under the column ‘subject’ are the members of this folder.

Path Nodes

A path is a transitive relationship between two entities showing a sequence of edges

from the start entity to the end. This relationship can be codified using regular

expressions [23, 50] in which alphabets are the nodes and edges from the graph. We

define a path node for each query that results in a set of paths. We use existing

reachability approaches (See Appendix-A) to verify whether an entity is reachable

from another entity in the graph. Some reachability approaches (e.g., all-pairs short-

est path [50]) report all possible paths between two entities. We define a path node

as a triple of (Vstart, Vend, RE) in which Vstart is the starting node, Vend is the ending

3.4. Querying Ad-hoc Process Data 55

node, and RE is a regular expression. We store all paths of a path node in the

path store.

For example, in a bibliographic graph, one possible query that results in a set of

paths in the graph is “find all conferences for papers citing a given paper”. Such a

query will help to understand which conferences cite papers from a given conference.

The details of such a query is a set of paths from the current paper to the publication

venue of papers citing the given paper. In cases, where the second entity of a target

path query is not given, the query requires a maximum length to limit the search

for matching end entities within that maximum length from the start entity.

Example 3 . Consider the bibliographical network presented in Figure 3.3-A. Assume

we are interested in finding occurrences of following pattern: ‘paper2’ cited-by ‘paper1’

possibly indirectly. This path can be written as the regular expression “paper (citedBy

paper)+”, where regular expression elements (nodes and edges from the graph) can be

defined by a set of attributes. The plus sign indicates that there is one or more of the

preceding element. The result of this example stored in the sample path-store presented in

Figure 3.3-F.

Example 4 . Consider the historical graph presented in Figure 3.3-B. The ancestry

relationships, found in the provenance [93], form a directed graph, i.e., historical graph.

When an object A is found to have been derived from some other object B, we say that

there is an ancestry path between A and B [181]. Figure 3.3-B illustrates the ancestry path

between ‘paper1’ and ‘file1’ (follow the red edges in the figure). Ancestry paths through

historical graphs form the basis of many provenance queries.

3.4 Querying Ad-hoc Process Data

As mentioned earlier, we model process logs as a graph. In order to query this graph

a query language is needed. Among languages for querying graphs, SPARQL [276]

is an official W3C standard and based on a powerful graph matching mechanism.

However, SPARQL does not support the construction and retrieval of subgraphs.

Also paths are not first class objects in SPARQL [276, 181]. In order to analyze

3.4. Querying Ad-hoc Process Data 56

BPs execution data, we propose a graph processing engine, i.e. FPSPARQL [55]

(a Folder-, Path-enabled extension of the SPARQL), to manipulate and query enti-

ties, and folder and path nodes. We support two levels of queries: (i) Entity-level

Queries: at this level we use SPARQL to query entities in the process logs; and

(ii) Aggregation-level Queries: at this level we use FPSPARQL to construct and

query folder and path nodes.

3.4.1 Entity-Level Queries

At this level, we support the use of SPARQL to query entities and their attributes

in the process logs. SPARQL is a declarative and extendable graph query language,

standardized by the World Wide Web Consortium, for semantic Web. SPARQL

contains capabilities for querying required and optional graph patterns along with

their conjunctions and disjunctions. SPARQL also supports extensible value testing

and constraining queries. The results of SPARQL queries can be results sets or RDF

graphs. A basic SPARQL query has the following form:

select ?variable1 ?variable2 ...

where {

pattern1.

pattern2.

Other Patterns

}

Each pattern consists of subject, predicate and object, and each of these can be

either a variable or a literal. The query specifies the known literals and leaves the

unknowns as variables. To answer a query we need to find all possible variable

bindings that satisfy the given patterns. We use the ‘@’ symbol for representing

attribute edges and distinguishing them from the relationship edges between graph

nodes. As an example, we may be interested in retrieving a list of messages in

SCM log (Section 3.2) that have the same value on ‘requestsize’ and ‘responsesize’

attributes and the values for their timestamps falls between t1 and t2. Following is

the SPARQL query for this example:

3.4. Querying Ad-hoc Process Data 57

1 select ?m where {

2 ?m @type message.

3 ?m @requestsize ?x.

4 ?m @responsesize ?y.

5 ?m @timestamp ?t.

6 FILTER (?x=?y && ?t > t1 && ?t < t2).

7 }

In this query, variable ?m represents messages in the SCM log. Variables ?x,

?y, and ?t represent the value of the attributes ‘requestsize’ (line 3), ‘responsesize’

(line 4), and ‘timestamp’ (line 5) respectively. Finally, the filter statement (line 6)

restrict the result to those messages for which the filter expression evaluates to true.

3.4.2 Aggregation-level Queries

Standard SPARQL querying mechanism is not enough to support querying needs for

analyzing BP execution data, based on the introduced data model in Section 3.3.1.

In particular, SPARQL does not support folder and path nodes and querying them

natively. In addition, querying the result of a previous query becomes complex

and cumbersome, at best. Also path nodes are not first class objects in SPARQL

[50, 181]. We extend SPARQL to support aggregation-level queries to satisfy specific

querying needs of proposed data model. Aggregation-level queries in FPSPARQL

include two special constructs: (a) construct queries: used for constructing folder

and path nodes, and (b) apply queries: used to simplify applying queries to folder

and path nodes.

Folder Node Construction

To construct a folder node (e.g., a partition in the process graph), we introduce the

fconstruct statement. This statement is used to group a set of related entities or

folders. A basic folder node construction query looks like this:

3.4. Querying Ad-hoc Process Data 58

fconstruct <Folder_Node Name>

[select ?var1 ?var2 ... | (Folder_Node1, Folder_Node2, ...)]

where {

pattern1.

pattern2.

Other Patterns

}

A query can be used to define a new folder node by listing folder node name

and entity definitions in the fconstruct and select statements, respectively. Also

a folder node can be defined to group a set of entities, folder nodes, and path

nodes, e.g., see Example 6 in Section 3.5. A set of user defined attributes for this

folder can be defined in the where statement. We instrument folder construction

query with the correlate statement in order to apply a correlation condition on entity

nodes (e.g., messages in service event logs) and correlated the entity nodes for which

the condition evaluates to true. Here, we consider a correlation condition ψ as a

predicate over the attributes of events for attesting whether two events belong to the

same instance. For example, considering SCM log, one possible correlation condition

is ψ(mx,my) : mx.custid = my.custid, where ψ(mx,my) is a binary predicate defined

over the attribute custid of two messages mx and my in the log. This predicate is

true when mx and my have the same value and false otherwise. A basic correlation

condition query looks like this:

correlate {

(entity1, entity2, edge1, condition)

pattern1.

pattern2.

Other Patterns

}

As a result, entity1 will be correlated to entity2 through a directed edge edge1 if

the condition evaluates to true. Patterns (e.g., pattern1) can be used for specifying

the edge attributes. Example 5 in Section 3.5 illustrates such a query.

3.4. Querying Ad-hoc Process Data 59

Path Node Construction

We introduce the pconstruct statement to construct a path node. This statement

can be used to: (i) discover transitive relationships between two entities, e.g., by

using an existing graph reachability algorithm; or (ii) discover frequent pattern(s)

between set of entities, e.g., by using an existing process mining algorithm. In both

cases the result will be a set of paths which can be stored under a path node name.

In general a basic path node construction query looks like this:

pconstruct <Path_Node Name>

(Start-Node,

End-Node,

Regular-Expression)

where {

pattern1.

pattern2.

Other Patterns

}

A regular expressions can be used to define a transitive relationship between

two entities, i.e., starting node and ending node, or set of frequent patterns to

be discovered. Attributes of starting node, ending node, and regular expressions

alphabets (i.e., graph nodes and edges) can be defined in the where statement. The

query applied to a folder, in Example 7 Section 3.5, illustrates such a query.

Folder Node Queries

We introduce the apply statement to retrieve information, i.e., by applying queries,

from the underlying folder nodes. These queries can apply to one folder node or the

composition of several folder nodes. Our model supports the standard set operations

(union, intersect, and minus) to apply queries to the composition of several folder

nodes. In general, a basic folder node query looks like this:

3.5. Case Study 60

[Folder Node | (Composition of Folder Nodes)]

APPLY (

[<Entity-level Queries> |

<Aggregation-level Queries> |

<Existing process mining algorithms>]

)

Entity-level queries or aggregation-level queries can be applied to folder nodes by

listing folder node or composition of folder nodes before apply statement, and placing

the query in parenthesis after apply statement. We also developed an interface

to support applying existing process mining algorithms to folder and path nodes.

Examples 7 and 8 in Section 3.5 illustrate such queries.

Path Analysis Queries

This type of query is used to retrieve information, i.e., by applying entity-level

queries, from the underlying path node by using apply statement. Domain experts

may use such queries in order to examine the discovered process instances. In

general, a basic path node query looks like this:

Path_Node_Name APPLY (

[Entity-level Query]

)

An entity-level query can be applied to a path node by listing path node name

before apply statement, and placing the query in parenthesis after apply statement.

Example 9 in Section 3.5 illustrates such a query.

3.5 Case Study

In this section we show how we use FPSPARQL query language to analyze process

logs. We focus on the case study presented in Section 3.2.

3.5. Case Study 61

3.5.1 Preprocessing of SCM Log

The aim of preprocessing of the log is to generate a graph by considering the set

of messages in the log as nodes of the graph, and correlation between messages

as edges between nodes. In order to preprocess the SCM log we performed the

following two steps: (i) generating graph nodes: we extracted messages and their

attributes from the log and formed a graph node for each message with no relations

among nodes; and (ii) generating candidate correlations: we used the correlation

condition discovery technique introduced in [252] to generate a set of candidate

correlation conditions that could be used for examining the relationship between

process events.

3.5.2 Partitioning of SCM Log

We use the candidate conditions, in preprocessing phase, to partition the log. Iden-

tifying the interestingness of a certain way of partitioning the logs or grouping the

process events is “subjective”, i.e., depends on the user perspective and the par-

ticular querying goal. To cater for interestingness, we enable users to choose the

candidate conditions they are interested in to explore as a basis of relationships

among events.

Example 5 . Adam, an analyst, is interested in partitioning the SCM log into a set

of related messages having the same customer ID. To achieve this he can construct a

folder node (i.e., ‘custID’) and apply the correlation condition ψ(mx,my) : mx.custid =

my.custid, where ψ(mx,my) is a binary predicate defined over the attribute custid of

two messages mx and my in the log, to the folder. As a result, related messages will be

discovered and stored in the folder node ‘custID’. Figure 3.8-A in Section 3.7 illustrates

how our front-end tool enables users choosing the correlation condition(s) and generating

FPSPARQL queries automatically. Following is the FPSPARQL query for this example.

1 fconstruct custID as ?fn

2 select ?m_id, ?n_id

3 where {

3.5. Case Study 62

4 ?fn @description ’custid=custid’.

5 ?m @isA entityNode.

6 ?m @type message.

7 ?m @id ?m_id.

8 ?m @custid ?x.

9 ?n @isA entityNode.

10 ?n @type message.

11 ?n @id ?n_id.

12 ?n @custid ?y.

13 correlate{

14 (?m,?n, ?edge, FILTER(?x=?y && ?n_id>?m_id))

15 ?edge @isA edge.

16 ?edge @label "custid".

17 }

18 }

In this query, the variable ?fn represent the folder node to be constructed, i.e.,

‘custID’ (line 1). Variables ?m and ?n represent the messages in SCM log and ?m id

and ?n id represent IDs of these messages respectively (lines 5 to 12). Variables ?x

(line 8) and ?y (line 12) represent the values for ‘m.custid’ and ‘n.custid’ attributes.

The condition ?x =?y (line 14) applied to the log to group messages having same

value for custid attribute. The condition ?nid >?mid (line 14) makes sure that

only the correlation between each message and the following messages in the log are

considered. The correlate statement will connect messages, for which the condition

(?x =?y && ?nid > ?mid) evaluates to true, with a directed labeled edge, i.e.,

variable ?edge. The result will be stored in the folder ‘custID’ and can be used for

further queries.

Example 6 . Consider two folder nodes ‘custID’ and ‘payID’ each representing corre-

lated messages based on correlation conditions ‘ψ(mx,my) : mx.custid = my.custid’ and

‘ψ(mx,my) : mx.payid = my.payid’ respectively. It is possible to construct a new folder

(e.g., ‘custID payID’) on top of these two folders in order to group them. The folder

3.5. Case Study 63

‘custID payID’ will contain events related to customer orders that have been paid. Queries

applied to the folder ‘custID payID’ will be applied to all its subfolders. Example query is

defined as follows.

1 fconstruct custID_payID as ?fn (custID,payID)

2 where {

3 ?fn @description ‘set of ...’.

4 }

In this example the variable ?fn represents the folder node to be constructed,

i.e., ‘custID payID’. This folder node contains two sub-folders and has a user defined

attribute description. Sub-folders are hierarchically organized by part-of edge, i.e.,

an implicit relationship.

3.5.3 Discovering Process Models

In this phase a query can be applied to previously constructed partitions to discover

process models. As mentioned earlier, a folder node, as a result of a correlation

condition, partitions a subset of the events in the log into instances of a process.

The process model, which the instances inside a folder represent, can be discovered

using one of the many existing algorithms for process mining [8, 7, 251].

It is possible that some folders contain a set of related process events (e.g., the

set of orders for a given customer), but not process instances. It is possible for the

analyst to apply a regular expression based query on the events in a folder. The

regular expression may define a relationship that is not captured by any candidate

correlation conditions. Applying such queries to a folder node may result in forming

a set of paths which can be then stored in a path node. The constructed path node

can be examined by the analysts and may considered as a set of process instances.

Example queries are defined as follows.

Example 7 . Adam is interested in discovering patterns, in ‘custID’ partition (see Ex-

ample 5), between specific orders (i.e., messages with IDs ’3958’ and ’4042’) which contains

3.5. Case Study 64

product confirmation. He can codify his knowledge into a regular expressions that describe

paths through sequence of messages in the partition. The path query can be applied on the

partition and the result can be stored in a path node (i.e., ‘OrderDiscovery’). As a result,

one path (i.e., a process model) discovered. Figure 3.8-B in Section 3.7 illustrates the visu-

alized result of this example generated by the front-end tool. Following is the FPSPARQL

query for this example.

1 (custID)

2 apply(

3 pconstruct OrderDiscovery

4 (?startNode,?endNode,(?e ?n)* e ?msg e (?n ?e)*)

5 where {

6 ?startNode @isA entityNode.

7 ?startNode @type message.

8 ?startNode @id ’3958’.

9 ?endNode @isA entityNode.

10 ?endNode @type message.

11 ?endNode @id ’4042’.

12 ?n @isA entityNode.

13 ?e @isA edge.

14 ?msg @isA entityNode.

15 ?msg @type message.

16 ?msg @operation ’OrderFulfil’.

17 }

18)

In this example a path construction query, i.e., pconstruct query, applied to the

folder ‘custID’. Variables ?startNode and ?endNode denote messages mid=3958 and

mid=4042 respectively (lines 6 to 11). Variables ?n (line 12) and ?e (line 13) denote any

edge or node in the transitive relationship between mid=3958 and mid=4042. Finally,

variable ?msg (lines 14 to 16) denotes a message having the value ‘OrderFulfil’ for

the attribute operation. In the regular expression (line 4), parentheses are used to

3.5. Case Study 65

define the scope and precedence of the operators and the asterisk indicates there are

zero or more of the preceding element.

Example 8 . Adam is interested in discovering frequent patterns between correlated

messages in ‘custID’ partition (see Example 5), to analyze the process of producing a

product. He can codify his knowledge into regular expressions that describe paths having the

pattern “ start with a message having the value produce for the attribute operation, which

followed by a message having the value ‘confirmProduction’ for the attribute operation,

and end with a message having the value pay for the attribute operation”. The path

query can be applied on the partition and the result can be stored in a path node (i.e.,

‘ProductDiscovery’). As the result set of this query, 12 paths discovered. Unlike Example 7,

these paths have different starting and ending nodes. Following is the FPSPARQL query

for this example.

1 (custID)

2 apply(

3 pconstruct ProductDiscovery

4 (?startNode, ?endNode, e ?msg e)

5 where {

6 ?startNode @isA entityNode.

7 ?startNode @type message.

8 ?startNode @operation ’Produce’.

9 ?endNode @isA entityNode.

10 ?endNode @type message.

11 ?endNode @operation ’Pay’.

12 ?e @isA edge.

13 ?msg @isA entityNode.

14 ?msg @type message.

15 ?msg @operation ’ConfirmProduction’.

16 }

17)

In this example a pconstruct query is applied to the folder ‘custID’, in which

3.6. Architecture and Implementation: FPSPARQL 66

?startNode and ?endNode denote set of starting and ending nodes (lines 6 to 11).

Variable ?e (line 12) denotes any edges in the regular expression pattern and variable

?msg (lines 13 to 15) denotes a message having the value ‘ConfirmProduction’ for

the attribute operation. A frequent sequence mining algorithm, developed based on a

process mining method, is used to generate frequent pattern(s) based on the specified

regular expression (line 4), i.e., “?startNode → e → ?msg → e → ?endNode”.

Example 9 . Consider the path node ‘OrderDiscovery’ constructed in Example 7. We

are interested to find messages in this path node, that have the keyword ‘Retailer’ in their

binding attributes. Following is the FPSPARQL query for this example.

1 (OrderDiscovery)

2 apply (select ?m_id

3 where {

4 ?m @isA entityNode. ?m @type message.

5 ?m @binding ?b.

6 Filter regex(?b,"Retailer").

7 }

8)

In this example, variable ?m id (line 3) denotes message IDs that fall inside ‘Or-

derDiscovery’ path node. The query “retrieve the messages that have the keyword

Retailer in their binding attributes” will apply on this path node.

3.6 Architecture and Implementation: FPSPARQL

3.6.1 FPSPARQL Architecture

We have developed a software prototype for organizing, indexing, and querying ad-

hoc process data. As mentioned earlier, we model process logs as a graph. In order to

analyze process graphs, we propose a graph processing engine, i.e., FPSPARQL [53,

52, 51] (a Folder-, Path-enabled extension of the SPARQL), to manipulate and query

3.6. Architecture and Implementation: FPSPARQL 67

entities, and folder and path nodes. The query engine is implemented in Java and

supports two types of storage back-end:

• Relational Database System: The simplest way to store a set of RDF state-

ments is to use a relational database with a single table that includes columns

for subject, property and object. While simple, this schema quickly hits scal-

ability limitations [292]. To avoid this we developed a relational RDF store

including its three classification approaches [292]: vertical (triple), property

(n-ary), and horizontal (binary). The query engine supports various relational

database management systems (e.g., IBM DB2, PostgreSQL, and Microsoft

SQL Server) to generate physical storage layer.

• Hadoop File System: We use Hadoop [330], an open source software frame-

work that supports data-intensive distributed applications, data processing

platforms to store and retrieve process graphs in Hadoop file system and to

support cost-effective and Web-scale processing of process graphs. We use

Apache-Pig2, a high-level procedural language on top of Hadoop for querying

large process graphs.

Figure 3.4 illustrates FPSPARQL graph processing architecture which consists

of the following components:

• Data Mapping Layer : This layer is responsible for creating data element map-

pings between semantic web technology (i.e., Resource Description Frame-

work) and physical storage layer, i.e., relational database schema and Hadoop

File System. In order to generate the physical layer, we developed a workload-

independent physical design loader algorithm.

• Loader algorithm: Input graph can be in the form of RDF, N3 (or Notation3,

is a W3C standard and shorthand non-XML serialization of RDF models), or

XML. Notice that, in the RDF data model, graph edges can not be described

by attributes. In addition, graph edges are used to represent both of the at-

tribute/literal value pairs of the nodes and the structural relationship with

2http://pig.apache.org/

3.6. Architecture and Implementation: FPSPARQL 68

Graph Loader

Data Mapping

Regular Expression Processor

FPSPARQL Query Engine

Ti
m

e-
aw

ar
e

C
on

tro
lle

r

External (mining) algorithm/tool Controller

Relational RDF
(Storage and Indexing)

FP
S

P
AR

Q
L Q

uery

R
D

F/N
3/XM

L (G
raph)

Graph Processing
Architecture

SPARQL Queries

Folder/Path QueriesQ
ue

ry
O

pt
im

iz
er

(FPSPARQL-To-SQL Translation and Processing)

Query Mapping

(FPSPARQL-to-PigLatin Translation and Processing)
Hadoop File System

Figure 3.4: FPSPARQL graph processing architecture.

other nodes in the graph with no differentiation. Such uniform treatment for

attributes and edges in the graph data will increase the size of graph topol-

ogy. To avoid this, we prepared an XML schema to support attributed graphs

where both nodes and edges of the graph may include rich semantic informa-

tion. We developed a workload-independent physical design by developing a

loader algorithm. This algorithm is responsible for: (i) validating the input

graph, i.e., RDF, N3, and XML format; (ii) generating the relational/Hadoop

representation of triple store, for manipulating and querying entities, folders,

and paths; and (iii) generating powerful indexing mechanisms for relational

database systems.

• Time-aware Controller : RDF databases are not static and changes may ap-

ply to graph entities (i.e., nodes, edges, and folder/path nodes) over time.

Time-aware controller is responsible for data changes, data manipulation, and

incremental graph loading.

• Query Mapping Layer : This layer is responsible for FPSPARQL queries trans-

lation and processing. We use the relational representation of triple RDF store,

to store, manipulate, and query folder nodes and path nodes. To describe con-

straints on the path nodes, we reused expressions proposed in [23]. This layer

contains two components:

3.6. Architecture and Implementation: FPSPARQL 69

– SPARQL-to-SQL Translation Algorithm: We implemented a schema-

independent SPARQL-to-SQL translation algorithm based on the pro-

posed relational algebra for SPARQL and semantics preserving SPARQL-

to-SQL query translation proposed in [103, 91]. This algorithm sup-

ports Aggregate queries and Keyword Search queries. Figure 3.7 shows

a SPARQL query, its translation into a relational operator tree, and its

equivalent SQL query which is generated by this algorithm.

– FPSPARQL-to-PigLatin translation algorithm: In order to translate

FPSPARQL queries into Pig-Latin we follow a specific format in which

data is read from the Hadoop file system, a number of operations (e.g.,

LOAD, SPLIT, JOIN, FILTER, GROUP, and STORE) are performed on

the data, and then the resulting relation is written back to the file sys-

tem. We used the techniques proposed in [297], for mapping SPARQL

queries to Pig Latin program and consequently to generate MapReduce

jobs. Figure 3.5 illustrates the modular translation process for this map-

ping. In particular, SPARQL graph pattern matching is dominated by

join operations, and is unlikely to be efficiently processed. We use exist-

ing query optimization techniques [206, 188, 281] to generate the optimal

query plan by reinterpreting certain join tree structures as grouping op-

erations, i.e., to enable a greater degree of parallelism in join processing.

• Regular Expression Processor : To describe constraints on the path nodes, we

reused the specification for regular expressions and filter expressions proposed

in [23, 50]. We developed a regular expression processor which supports op-

tional elements (?), loops (+,*), alternation (|), and grouping ((...)).

• External Algorithm/Tool Controller : Is responsible to support applying ex-

ternal graph reachability/mining algorithms to the process graph. We devel-

oped an interface to support various graph reachability algorithms [19] such as

Transitive Closure, GRIPP, Tree Cover, Chain Cover, Path-Tree Cover, and

Shortest-Paths [158]. Please see Section 3.6.3 for more details.

3.6. Architecture and Implementation: FPSPARQL 70

Parser
Syntax Tree

SPARQL Query

Algebra Compiler

Algebra Tree

Algebra Optimizer

Algebra Tree

Pig Latin Translator

Pig Latin Program

Pig

MapReduce Jobs

Figure 3.5: Modular translation process for mapping SPARQL to Pig Latin.

• Query Optimizer : We leveraged the techniques proposed in [206, 188, 281]

to optimize the execution of queries in Hadoop platform. Moreover, to op-

timize the performance of queries in relational databases, we developed four

optimization techniques proposed in [90, 292, 91]: (i) selection of queries with

specified varying degrees of structure and spanning keyword queries; (ii) se-

lection of the smallest table to query based on the type information of an

instance; (iii) elimination of redundancies in basic graph pattern based on the

semantics of the patterns and database schema; and (iv) create separate tables

(property tables) for subjects that tend to have common properties to reduce

the self-join problem.

3.6.2 Physical Storage Layer

In this section we describe the techniques used to store process graphs in both

relational database systems and Hadoop file system.

3.6. Architecture and Implementation: FPSPARQL 71

Relational Database System

The Resource Description Framework (RDF) represents a special kind of attributed

graphs: in the RDF data model, graph edges can not be described by attributes. We

model graphs based on a RDF data representation, where we support the uniform

representation of nodes and edges in the graph. Figure 3.6 illustrates the physical

layer for storing the sample graph presented in Figure 3.3, where four types of

objects can be stored: nodes, edges, folder-nodes, and path-nodes. Each object

has the following mandatory attributes: ID (a unique identifier), class (can be set

to entity-node, edge, folder, and path node), type (each node may conform to an

entity type, e.g., author and paper), and label. Each object may have other user

descriptive attributes (Figure 3.6-B), where these attributes can be defined in objects

properties.

As illustrated in Figure 3.6-B, we use triplestores to store each attribute. At-

tributes may conform to an entity type, e.g., ‘author:name’ which means the at-

tribute ‘name’ of type ‘author’. We use the ‘@’ symbol for representing attribute

edges (e.g., the triple ‘a1,@author:name,Boualem’ in Figure 3.6-B) and distinguish-

ing them from the relationship edges (e.g., the triple ‘a3,e1,p2’ in Figure 3.6-C) be-

tween graph nodes. To store links between graph entities (i.e., nodes, folder-nodes,

and path-nodes), we define triplestores for each edge type. For example, considering

Figure 3.6-C, all the links typed as ‘author-of’ are stored in a separate triplestore.

The link itself defined as an object and will be stored separately (Figure 3.6-A).

In folder nodes, entities and relationships among them will be stored in the folder-

store (Figure 3.6-A). Folder node, as a graph entity, will have set of attributes. These

attributes will be stored in folder-nodes-properties triplestores (see Figure 3.6-B).

For example, for the query in Example 2, we add a folder node to the original graph,

and store the result of the query in the folder-store. Properties of this folder will be

stored in folder-nodes-properties triplestores.

3.6. Architecture and Implementation: FPSPARQL 72

m
em

be
r-

of
 (t

rip
le

-ta
bl

e)

...
...

...

...
...

...

(E
) G

ra
ph

-S
to

re

(A
) O

bj
ec

ts

id
su

bj
ec

t
(n

od
e-

fro
m

)
pr

ed
ic

at
e

(e
dg

e)
ob

je
ct

(n
od

e-
to

)

fo
ld

er
-s

to
re

 (
ta

bl
e)

fo
ld

er
1

p2
e2

v2

fo
ld

er
1

p4
e7

v2

...
...

...
...

id
pa

th
s

in
cl

ud
e

su
bj

ec
t

(n
od

e-
fro

m
)

pr
ed

ic
at

e
(e

dg
e)

ob
je

ct
(n

od
e-

to
)

pa
th

-s
to

re
 (

ta
bl

e)

pa
th

1
#1

a3
e1

p2

pa
th

1
#1

p2
e2

v2

pa
th

1
#2

a3
e4

p4

pa
th

1
#2

p4
e7

v2

...
...

...
...

...

su
bj

ec
t

(o
bj

ec
t)

pr
ed

ic
at

e
(a

ttr
ib

ut
e)

ob
je

ct
(v

al
ue

)
a1

@
cl

as
s

en
tit

y-
no

de

a1
@

ty
pe

au
th

or

a1
@

au
th

or
:n

am
e

bo
ua

le
m

ob
je

ct
-s

to
re

 (v
ie

w
)

...
...

...

e1
@

cl
as

s
ed

ge

e1
@

ty
pe

au
th

or
-o

f

e1
@

au
th

or
-o

f:a
ut

ho
r-

or
de

r
1

...
...

...

fo
ld

er
1

@
cl

as
s

pa
pe

rs

fo
ld

er
1

...
S

IG
M

O
D

...

su
bj

ec
t

(n
od

e-
fro

m
)

pr
ed

ic
at

e
(e

dg
e)

ob
je

ct
(n

od
e-

to
)

fo
ld

er
1

@
cl

as
s

fo
ld

er

fo
ld

er
1

@
ty

pe
S

IG
M

O
D

...

fo
ld

er
-n

od
es

pr
op

er
tie

s
(tr

ip
le

-ta
bl

e)

fo
ld

er
1

...
...

pa
th

1
@

cl
as

s
pa

th
-n

od
e

pa
th

1
@

ty
pe

au
th

or
-p

ap
...

pa
th

1
@

na
m

e
au

th
or

s-
p.

..

...
...

...

su
bj

ec
t

(n
od

e-
fro

m
)

pr
ed

ic
at

e
(e

dg
e)

ob
je

ct
(n

od
e-

to
)

p2
e2

v2

p2
e3

p4

a3
e1

p2

gr
ap

h-
st

or
e

(v
ie

w
)

a3
e4

p4

p4
e7

v2

p4
e8

p3

a2
e1

1
p3

...
...

...

F
ol

de
r-

N
od

es

Pa
th

-N
od

es

su
bj

ec
t

(o
bj

ec
t)

pr
ed

ic
at

e
(a

ttr
ib

ut
e)

ob
je

ct
(v

al
ue

)

au
th

or
:n

am
e

(tr
ip

le
-ta

bl
e)

a1
@

au
th

or
:n

am
e

bo
ua

le
m

a2
@

au
th

or
:n

am
e

H
am

id
-R

ez
a

...
...

...

su
bj

ec
t

(o
bj

ec
t)

pr
ed

ic
at

e
(a

ttr
ib

ut
e)

ob
je

ct
(v

al
ue

)

pu
bl

is
he

d-
in

:tr
ac

k-
na

m
e

(tr
ip

le
-ta

bl
e)

e1
@

pu
bl

is
he

d-
in

:tr
ac

k-
na

m
e

W
eb

S
er

vi
ce

e4
@

pu
bl

is
he

d-
in

:tr
ac

k-
na

m
e

D
at

ab
as

e

...
...

...

au
th

or
 (

ta
bl

e)

a1 a2

ot
he

r n
od

es

ty
pe

au
th

or

au
th

or

N
od

es

id
la

be
l

A
le

x
(a

1)

A
da

m
 (a

2)

...
...

...

pa
pe

r
(ta

bl
e)

p1 p2

ty
pe

pa
pe

r

pa
pe

r

id
la

be
l

pa
pe

r-
p1

P
ap

er
-p

2

...

ot
he

r e
dg

es

ty
pe

au
th

or
-o

f

au
th

or
-o

f

E
dg

es

id
la

be
l

au
th

or
O

f (
e1

)

au
th

or
O

f (
e4

)

pu
bl

is
he

d-
in

 (
ta

bl
e)

e1 e4 ...
...

cl
as

s

en
tit

y-
no

de

en
tit

y-
no

de

...

cl
as

s

en
tit

y-
no

de

en
tit

y-
no

de

...
...

cl
as

s

ed
ge

ed
ge ...

au
th

or
-o

f
(ta

bl
e)

...

...

ty
pe

pu
bl

is
he

d-
in

pu
bl

is
he

d-
in

id
la

be
l

pu
bl

is
he

dI
n

(e
2)

pu
bl

is
he

dI
n

(e
7)

e2 e7 ...
...

cl
as

s

ed
ge

ed
ge ...

...

(B
) O

bj
ec

ts
 P

ro
pe

rt
ie

s

su
bj

ec
t

(o
bj

ec
t)

pr
ed

ic
at

e
(a

ttr
ib

ut
e)

ob
je

ct
(v

al
ue

)

au
th

or
-o

f:a
ut

ho
r-

or
de

r(
tr

ip
le

-ta
bl

e)

e1
@

au
th

or
-o

f:a
ut

ho
r-

or
de

r
1

e4
@

au
th

or
-o

f:a
ut

ho
r-

or
de

r
3

...
...

...

su
bj

ec
t

(o
bj

ec
t)

pr
ed

ic
at

e
(a

ttr
ib

ut
e)

ob
je

ct
(v

al
ue

)

pa
pe

r:
tit

le
(tr

ip
le

-ta
bl

e)

p1
@

pa
pe

r:t
itl

e
Q

oS
-a

w
ar

e
m

id
dl

e.
..

p2
@

pa
pe

r:t
itl

e
Q

ua
lit

y-
dr

iv
en

 w
eb

...

...
...

...

ot
he

r t
rip

le
-ta

bl
es

 fo
r e

ac
h

ob
je

ct
 a

ttr
ib

ut
e

(C
) L

in
k

St
or

es

su
bj

ec
t

(n
od

e-
fro

m
)

pr
ed

ic
at

e
(e

dg
e)

ob
je

ct
(n

od
e-

to
)

au
th

or
-o

f (
tr

ip
le

-ta
bl

e)

a3
e1

p2

a3
e4

p4

...
...

...

su
bj

ec
t

(n
od

e-
fro

m
)

pr
ed

ic
at

e
(e

dg
e)

ob
je

ct
(n

od
e-

to
)

ci
te

d
(tr

ip
le

-ta
bl

e)

p2
e3

p4

p3
e9

p1

...
...

...

su
bj

ec
t

(n
od

e-
fro

m
)

pr
ed

ic
at

e
(e

dg
e)

ob
je

ct
(n

od
e-

to
)

pu
bl

is
he

d-
in

 (t
rip

le
-ta

bl
e)

p2
e2

v2

p4
e7

v2

...
...

...

su
bj

ec
t

(n
od

e-
fro

m
)

pr
ed

ic
at

e
(e

dg
e)

ob
je

ct
(n

od
e-

to
)

ed
ite

d
(tr

ip
le

-ta
bl

e)

p1
e5

a3

p4
e1

3
a2

...
...

...

ot
he

r t
rip

le
-ta

bl
es

 fo
r e

ac
h

ob
je

ct
 a

ttr
ib

ut
e

...
...

...

(D
) O

bj
ec

t-
St

or
e

su
bj

ec
t

(n
od

e-
fro

m
)

pr
ed

ic
at

e
(e

dg
e)

ob
je

ct
(n

od
e-

to
)

pa
th

1
@

cl
as

s
pa

pe
rs

pa
th

1
@

ty
pe

P
ap

er
2.

..

pa
th

-n
od

es
pr

op
er

tie
s

(tr
ip

le
-ta

bl
e)

...
...

...

su
bj

ec
t

(n
od

e-
fro

m
)

pr
ed

ic
at

e
(e

dg
e)

ob
je

ct
(n

od
e-

to
)

p2
m

em
be

r-
of

fo
ld

er
1

p4
m

em
be

r-
of

fo
ld

er
1

a3
m

em
be

r-
of

pa
th

1

a2
m

em
be

r-
of

pa
th

1

...
...

...

fo
ld

er
1

m
em

be
r-

of
fo

ld
er

3

fo
ld

er
2

m
em

be
r-

of
fo

ld
er

3

F
ig

u
re

3.
6:

P
h
y
si

ca
l

la
ye

r
fo

r
st

or
in

g
th

e
sa

m
p
le

gr
ap

h
re

p
re

se
n
te

d
in

F
ig

u
re

3.
3

in
cl

u
d
in

g:
(A

)
ob

je
ct

st
or

es
fo

r
st

or
in

g
n
o
d
es

,
ed

ge
s,

fo
ld

er
n
o
d
es

,
an

d
p
at

h
n
o
d
es

;
(B

)
ob

je
ct

p
ro

p
er

ty
st

or
e

fo
r

st
or

in
g

ob
je

ct
s

at
tr

ib
u
te

s
in

tr
ip

le
st

or
e

fo
rm

at
;

(C
)

li
n
k

st
or

es
fo

r
st

or
in

g
re

la
ti

on
sh

ip
s

am
on

g
en

ti
ti

es
;

(D
)

en
ti

ty
st

or
e

as
a

v
ie

w
ov

er
ob

je
ct

st
or

es
;

an
d

(E
)

gr
ap

h
st

or
e

as
a

v
ie

w
ov

er
li
n
k

st
or

es
.

3.6. Architecture and Implementation: FPSPARQL 73

Figure 3.7: A SPARQL query, its translation into a relational operator tree, and its
equivalent SQL query generated by our translation algorithm.

In path nodes, set of related paths will be stored in the path-store (Figure 3.6-A).

Path node, as a graph entity, will have set of attributes. These attributes will be

stored in path-nodes-properties triplestores (see Figure 3.6-B). For example, for the

query in Example 3, we add a path node to the original graph, and store the result

of the query in the path-store. In the path-store, each path (in a path node) will

have a unique identifier, e.g., values ‘#1’ and ‘#2’ in the column ‘paths-include’ of

the table path-store (Figure 3.6-A). Properties of this path node will be stored in

path-nodes-properties triplestore.

Finally, we create two views (i.e., object-store and graph-store) over the above

explained physical layer. Object-store (Figure 3.6-D) will include all the objects (i.e.,

nodes, edges, folder-nodes, and path-nodes) in the graph. Graph-store (Figure 3.6-

E) will include all the links among graph entities (i.e., nodes, folder-nodes, and

path-nodes).

Hadoop File System

We used the techniques proposed in [187] to store and retrieve large number of RDF

triples in Hadoop file system. In particular, the graph will be divided into multiple

files: (i) predicate split, the graph data will be divided according to the predicates;

and (ii) predicate object split, the RDF type file is first divided into as many files

3.6. Architecture and Implementation: FPSPARQL 74

as the number of distinct objects predicates have. For each distinct object values of

the predicates, a file will be generated. Notice that, the literals remain in the file

named by the predicate: no further processing is required for them. Finally, objects

will be moved into their respective file named as predicate type.

3.6.3 FPSPARQL Implementation

To address the above challenges, we have developed a software prototype for organiz-

ing, indexing, and querying ad-hoc process data. The query engine is implemented

in Java and supports two types of storage back-end: Relational Database System

and Hadoop File System. Moreover, a front-end tool prepared to assist users in

four steps:

Step1: [Preprocessing] We have developed a workload-independent algorithm

for: (i) processing and loading a log file into an RDBMS/Hadoop for manipulating

and querying entities, folders, and paths; (ii) generating powerful indexing mech-

anisms for relational databases. We also provided inverted indexes [344] on folder

store in order to increase the performance of queries applied on folders. For the

Hadoop file system, we used existing query optimization techniques [206, 188, 281]

to generate the optimal query plan.

Step2: [Partitioning] We provide users with a list of interesting correlation con-

ditions based on the algorithm for discovering interesting conditions in [252]. Users

may choose these correlation conditions to partition a log. In order to generate

folder construction queries, we provide users with an interface (Figure 3.8-A) to

choose the correlation condition(s) and generate FPSPARQL queries automatically.

Step3: [Mining] We provide users with templates to generate regular expres-

sions and use them in path queries. We developed a regular expression processor.

Moreover, an interface has been implemented to support various graph reachabil-

ity algorithms [19] such as Transitive Closure, GRIPP, Tree Cover, Chain Cover,

Path-Tree Cover, and Shortest-Paths [158]. In general, there are two types of graph

3.6. Architecture and Implementation: FPSPARQL 75

Figure 3.8: Screenshots of FPSPARQL GUI: (A) The query generation interface in
FPSPARQL, and (B) The discovered process model for the query result in Exam-
ple 7.

reachability algorithms [19]: (i) algorithms traversing from starting vertex to ending

vertex using breadth-first or depth-first search over the graph, and (ii) algorithms

checking whether the connection between two nodes exists in the edge transitive

closure of the graph. Considering G = (V,E) as directed graph that has n nodes

and m edges, the first approach incurs high cost as O(n+m) time which requires too

much time in querying. The second approach results in high storage consumption in

O(n2) which requires too much space. In the experiment, we used the GRIPP [318]

algorithm which has the querying time complexity of O(m− n), index construction

time complexity of O(n+m), and index size complexity of O(n+m).

Step4: [Visualizing] We provided users with a graph visualization tool for the

exploration of results, e.g., see Figure 3.8-B which illustrates the discovered process

model for the query result in Example 3. Users are able to view folders, paths, and

the result of queries in a list and visualized format. This way, event relationships

and candidate process instances can be examined by the analyst.

3.7. Experiments 76

3.7 Experiments

3.7.1 Datasets

We carried out experiments on three datasets: SCM, Robostrike, and PurchaseNode.

SCM

This dataset has been introduced in the case study, Section 3.2. In this dataset, the

interaction log of Web services with clients was collected using a real-world com-

mercial logging system for Web services, i.e., HP SOA Manager3. The services in

SCM scenario are implemented in Java and use Apache Axis as SOAP implemen-

tation engine and Apache Tomcat as Web application server. Table 3.2 shows the

characteristics of this dataset.

Robostrike

This log is the interaction log of a multi-player on-line game service called Ro-

bostrike4. In this game, clients (players) exchange XML messages with the game

service performing various operations, e.g., designing new games and playing. Each

session of a player may include several game plays or game creations. The log con-

tains 40,000 messages (Table 3.2), which correspond to one day of activities of the

game service.

PurchaseNode

This process log was produced by a workflow management system supporting a

purchase order management service called PurchaseNode (PN). The PN dataset

contains 34,803 tuples corresponding to task executions within workflow instances

(Table 3.2). It is private process log of a service in which all messages are cor-

related using atomic conditions. This dataset was originally organized into two

3http://managementsoftware.hp.com/products/soa
4http://www.robostrike.com

3.7. Experiments 77

Table 3.2: Characteristics of the proposed datasets.

Chapter 3. Correlation of Messages into Conversations 111

Table 3.1: Characteristics of the datasets
Dataset SCM Robostrike PurchaseNode
service operations 14 32 26
messages in log 4,050 40,000 34,803
attributes 28 98 26

Table 3.1 shows the characteristics of this dataset. The log has 4, 050 tuples, each

corresponding to an operation invocation. The protocol of SCM has three paths, for

which conversations of one path is correlated using disjunctive conditions (the same

as those of node 4 in Figure 3.2), the other using an atomic condition (not show in the

figure) and finally the other is correlated a conjunctive condition (the same as those of

node 3 in Figure 3.2). HP SOA Manager records meta-data about message exchange in

13 attributes, and we extracted 15 attributes from messages in this dataset. This dataset

mainly provide an example of a system, for which its conversations are correlated in a

chain-based method.

Robostrike. This is the interaction log of a multi-player on-line game service

called Robostrike8. In this game, clients (players) exchange XML messages with the

game service performing various operations, e.g., designing new games and playing.

Each session of a player may include several game plays or game creations. The log

contains 40, 000 messages (Table 3.1), which correspond to one day of activities of

the game service. In a pre-processing step, we extracted all the attributes of messages

to present them as a single relation. The XML pre-processing method is explained in

Section 3.5.1.1. This dataset represent a system, which its conversations are correlated

using a key-based approach having very long conversations.

PurchaseNode. This process log was produced by a workflow management sys-

tem supporting a purchase order management service called PurchaseNode (PN). The

PN dataset contains 34, 803 tuples corresponding to task executions within workflow

8http://www.robostrike.com

tables: one for the workflow definitions and the other for the workflow instances

(execution data).

3.7.2 Evaluation

We evaluated the performance and the query results quality using SCM, Robostrike,

and PurchaseNode process logs. Also in the Appendix A, we evaluated the perfor-

mance of the FPSPARQL query engine compared to one of the well-known graph

databases, the HyperGraphDB [190], which shows the good performance of the

FPSPARQL query engine.

Performance. The performance of FPSPARQL queries assessed using query exe-

cution time metric. The preprocessing step took 3.8 minutes for the SCM log, 11.2

minutes for the Robostrike log, and 9.7 minutes for the PurchaseNode log. For the

partitioning step, we constructed 10 folders for each process log (i.e., SCM, Ro-

bostrike, and PurchaseNode). Constructed folders, i.e., partitions, selected accord-

ing to provided list of interesting correlation conditions by the tool. Figures 3.9-A,

-B, and -C show the average execution time for constructing selected folders for each

process log.

For the mining step, we applied path node construction queries on each con-

structed folder. These path queries generated by domain experts who were familiar

with the process models of proposed process logs. For each folder we applied one

path query. As the result, the set of paths for each query were discovered and stored

in path nodes. Figures 3.9-D, -E, and -F show the average execution time for apply-

ing constructed path queries on the folders for each log. We ran these experiments

for different sizes of process logs.

3.7. Experiments 78

Messages in Log Average Execution Time (milliseconds)
4050 4356
3000 4124
2000 3510
1000 1977

Messages in Log Average Execution Time (milliseconds)
40000 13856
30000 10517
20000 8439
10000 6914

Messages in Log Average Execution Time (milliseconds)
34803 15334
26000 13061
17400 7102
8700 4395

Messages in Log Average Execution Time (milliseconds)
4050 329
3000 243
2000 71
1000 27

Messages in Log Average Execution Time (milliseconds)
40000 1082
30000 396
20000 211
10000 81

Messages in Log Average Execution Time (milliseconds)
34803 970
26000 410
17400 201
8700 62

PurchaseNode Log

SCM Log

Robostrike Log

PurchaseNode Log

SCM Log

Robostrike Log

0

1000

2000

3000

4000

5000

0 1000 2000 3000 4000 5000

Ti
m

e
(m

ill
is

ec
on

ds
)

Number of Messages in Log

Average Execution Time for Partitioning
SCM Log (in milliseconds)

0
2000
4000
6000
8000

10000
12000
14000
16000

0 10000 20000 30000 40000 50000

Ti
m

e
(m

ill
is

ec
on

ds
)

Number of Messages in Log

Average Execution Time for Partitioning
Robostrike Log (in milliseconds)

0

5000

10000

15000

20000

0 5000 10000 15000 20000 25000 30000 35000 40000

Ti
m

e
(m

ill
is

ec
on

ds
)

Number of Messages in Log

Average Execution Time for Partitioning
PurchaseNode Log (in milliseconds)

0
50

100
150
200
250
300
350

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Ti
m

e
(s

ec
on

ds
)

Number of Messages in Log

Average Execution Time for Mining
SCM Log (in seconds)

0
200
400
600
800

1000
1200

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

Ti
m

e
(s

ec
on

ds
)

Number of Messages in Log

Average Execution Time for Mining
Robostrike Log (in seconds)

0

200

400

600

800

1000

1200

0 5000 10000 15000 20000 25000 30000 35000 40000

Ti
m

e
(s

ec
on

ds
)

Number of Messages in Log

Average Execution Time for Mining
PurchaseNode Log (in seconds)

(A)

(B)

(C)

(D)

(E)

(F)

Figure 3.9: The performance evaluation results of the approach on three datasets,
illustrating: (i) the average execution time for partitioning: (A) SCM log, (B) Ro-
bostrike log, and (C) PurchaseNode log; and (ii) the average execution time for
mining: (D) SCM log, (E) Robostrike log, and (F) PurchaseNode log;

Quality. The quality of the results is assessed using classical precision metric

which defined as the percentage of discovered results that are actually interesting.

For evaluating the interestingness of the result, we ask domain experts who have the

most accurate knowledge about the dataset and the related process to: (i) codify

their knowledge into regular expressions that describe paths through the nodes and

edges in the folders; and (ii) analyze discovered paths and identify what they con-

sider relevant and interesting from a business perspective. The quality evaluation

applied on SCM log. Five folders constructed and three path queries applied to each

folder. As a result 31 paths discovered, examined by domain experts, and 29 paths

(precision=93%) considered relevant.

3.7. Experiments 79

Performance Comparison Between RDBMS and Hadoop Execution Plans.

As mentioned earlier, FPSPARQL queries can be run on two types of storage back-

end: RDBMS and Hadoop. In this part we compare the performance of query plans

on relational triplestores and Hadoop file system. All experiments in this part were

conducted on a virtual machine, having 32 cores and 192GB RAM. Figure 3.10

illustrates the performance analysis between RDBMS and Hadoop for queries (av-

erage execution time) in Figure 3.9-A (partitioning) and -D (mining) applied to

SCM dataset. Figure 3.10 shows a linear scalability between the response time of

FPSPARQL queries applied to Hadoop file system and the number of events in

the log. The evaluation shows that, Hadoop platform can handle addition of large

number of nodes and edges, different size of the datasets, without affecting its per-

formance significantly.

Discussion. We evaluated our approach using different types of process event

logs, i.e. PurchaseNode (a single-process log), SCM (a multi-service interaction

log), and Robostrike (a complex logic of a real-world). The evaluation shows that

the approach is performing well. (also in the Appendix A, we have evaluated the

performance of the FPSPARQL query engine compared to HyperGraphDB [190]).

As illustrated in Figure 3.9 we divided each log into regular number of messages

(we sampled the graphs carefully to guarantee the properties of the samples) and

ran the experiment for different sizes of process logs. The evaluation shows a poly-

nomial (nearly linear) increase in the execution time of the queries in respect with

the dataset size. Based on the lesson learned, we believe the quality of discovered

paths is highly related to the regular expressions generated to find patterns in the

log, i.e., generating regular expressions by domain experts will guarantee the quality

of discovered patterns.

3.8. Related Work 80

Messages in Log Average Execution Time (milliseconds) hadoop
4050 4356 2367
3000 4124 2267
2000 3510 2201
1000 1977 2177

Messages in Log Average Execution Time (milliseconds) hadoop
4050 329 24
3000 243 21
2000 71 17.9
1000 27 16

SCM Log (partitioning)

SCM Log (mining)

0

1000

2000

3000

4000

5000

0 1000 2000 3000 4000 5000

Ti
m

e
(m

ill
is

ec
on

ds
)

Number of Messages in Log

Average Execution Time for Partitioning
SCM Log (in milliseconds)

FPSPARQL (RDBMS)

FPSPARQL (Pig)

0
50

100
150
200
250
300
350

0 1000 2000 3000 4000 5000

Ti
m

e
(s

ec
on

ds
)

Number of Messages in Log

Average Execution Time for Mining
SCM Log (in seconds)

FPSPARQL (RDBMS)

FPSPARQL (Pig)

(A)

(B)

Figure 3.10: The evaluation results, illustrating the performance analysis between
RDBMS and Hadoop applied to SCM dataset: (A) the average execution time for
partitioning SCM log; and (B) the average execution time for mining SCM log.

3.8 Related Work

3.8.1 NoSQL Databases

Relational database management systems (RDBMSs) have repeatedly shown that

they are very efficient and scalable. However, ever-increasing needs for scalability

and new advances in Web technology, which requires facilitating the implementation

of applications as a distributed and scalable services, have created new challenges

for RDBMSs [308, 218, 84, 326]. For example, database requirements for Web,

enterprise, and cloud computing applications may vary as storage data consistency

is not necessary for all applications. NoSQL (Not only SQL) is a broad class of low-

cost and high performance database management systems and proposed to address

these challenges.

Specific characteristics of NoSQL systems, such as horizontal scalability (i.e.,

the ability to distribute both the data and the load of operations over many servers,

with no RAM or disk shared among the servers), weak consistency model, distributed

3.8. Related Work 81

indexes and semi-structured data schema, enables working with a huge quantity of

data where availability, scalability, elasticity, load balancing, fault tolerance, and

the ability to run in a heteroecious environment are critical system goals [308, 326].

In the literature, the term NoSQL has been used for any database system that is

not relational, such as: (i) graph database systems: is a database management sys-

tem which uses graph structures with nodes, edges, and properties to represent and

store data, e.g., Neo4j5 and OrientDB6; (ii) object-oriented database systems: is a

database management system in which information is represented in the form of ob-

jects as used in object-oriented programming, e.g., Versant7 and db4objects8 (by Ver-

sant); (iii) distributed object-oriented stores: is a database management system and

very similar to object-oriented DBMSs which use distribute objects in-memory and

on multiple servers, e.g., GemFire9; (iv) document stores: is a document-oriented

database in which various techniques (e.g., collections, tags, non-visible metadata,

and directory hierarchies) are used for organizing and/or grouping different types of

documents, e.g., they all assume documents encapsulate and encode data (or infor-

mation) in some standard formats or encodings such as XML, YAML, JSON, and

BSON, as well as binary forms like PDF and Microsoft Office documents. Examples

are Lotus Notes10 and IBM Lotus Domino11; and (v) key-value stores, is similar

to file systems which enables applications to store their data in a schema-less way,

e.g., data could be stored in a data-type of a programming language or an object.

Examples are Apache Cassandra12 and Dynamo13.

In particular, the main NoSQL systems are: (i) Google Bigtable [87]: is a scal-

able and distributed storage system used for Google products such as Google Docs14,

5http://neo4j.org/
6http://www.orientdb.org/
7http://www.versant.com/
8http://www.db4o.com/
9http://www.vmware.com/products/application-platform/vfabric-gemfire/overview.html

10http://www-01.ibm.com/software/lotus/products/notes/
11http://www-01.ibm.com/software/lotus/products/domino/
12http://cassandra.apache.org/
13http://aws.amazon.com/dynamodb/
14https://drive.google.com/

3.8. Related Work 82

Earth15, Finance16, and search engine17. Bigtable data model, is a simple data model

with dynamic control and semi-structured schema, i.e., supports changing data lay-

out/format without being restricted by data schemas; (ii) Yahoo PNUTS [101]: is a

scalable database system, consists of multiple geographically distributed regions, for

storing tables (that are horizontally partitioned and scattered across many servers)

of attributed records to support Yahoo applications; and (iii) Amazon Dynamo [107]:

is a scalable and very reliable database system, consists of thousands of servers ge-

ographically distributed all over the world.

Another line of work used MapReduce [106] for processing huge amounts of

unstructured data in a massively parallel way. Hadoop [330], the open source imple-

mentation of MapReduce, provides the distributed file system (HDFS18) and Pig19,

a high level language for data analysis. A new stream of work [199, 98, 228, 187, 297]

used Hadoop for large scale graph storage and mining. Many works [206, 188, 281]

focused on query optimization techniques for the Pig to store triples and querying

graphs. In addition to Pig, there are several high-level language and environments

for advanced MapReduce-like systems, including SCOPE [85], Sawzall [273], and

Sphere [154].

3.8.2 RDF/SPARQL

Graphs are essential modeling and analytical objects for representing information

networks. Several graph querying techniques, e.g., pattern match query [348, 352],

reachability query [97, 196], shortest path query [94, 328] and subgraph search [346,

347], have been proposed for querying and analyzing graphs. These methods rely

on constructing some indices to prune the search space of each vertex to reduce the

whole search space.

A recent book [19] and survey [29] discuss a number of data models and query

languages for graph data. Many of these models use RDF [235] (Resource Descrip-

15http://www.google.com/earth/
16http://www.google.com/finance
17http://www.google.com/
18http://hadoop.apache.org/
19http://pig.apache.org/

3.8. Related Work 83

tion Framework), an official W3C recommendation for semantic Web data models,

to model graphs and use SPARQL, an official W3C recommendation for querying

RDF graphs [276]. In particular, SPARQL queries are pattern matching queries on

triples that constitute an RDF data graph, where RDF is a data model for schema-

free structured information.

Several research efforts have been proposed to address efficient and scalable man-

agement of RDF data [292, 14, 232]. Many of existing RDF systems have mapped

RDF triples onto relational tables, such as RDFSuite [22], Sesame [73], Jena [332],

and Oracle’s RDF match implementation [95]. In RDF, the schema may evolve

over the time which fits well with the modern notion of data management, datas-

paces [166], and its pay-as-you-go philosophy [194].

SPARQL [276] is a declarative query language, an W3C standard, for querying

and extracting information from directed labeled RDF graphs. SPARQL supports

queries consisting of triple patterns, conjunctions, disjunctions, and other optional

patterns. However, there is no support for querying grouped entities. Paths are

not first class objects in SPARQL [276, 181]. PSPARQL [31] extends SPARQL with

regular expressions patterns allowing path queries. SPARQLeR [209] is an extension

of SPARQL designed for finding semantic associations (and path patterns) in RDF

bases. In FPSPARQL [53, 52, 51], we support folder and path nodes as first class

entities that can be defined at several levels of abstractions and queried. In addition,

we provide an efficient implementation of a query engine that support their querying.

Some of existing approaches for querying and modeling graphs [123, 138] focused

on defining constraints on nodes and edges simultaneously on the entire object of

interest, not in an iterative one-node-at-a-time manner. These approaches do not

support querying nodes at higher levels of abstraction. Authors of [138] propose an

Information Fragment as an abstraction for representing a subgraph. They do not

support querying information fragments.

BiQL [123] is an SQL-based graph query language focused on the uniform treat-

ment of nodes and edges and supports queries that return subgraphs. BiQL supports

a closure property on the result of its queries meaning that the output of every query

can be used for further querying. Compared to BiQL, in our work folders and paths

3.8. Related Work 84

are first class abstractions (graph nodes) and can be defined in a hierarchical man-

ner, over which queries are supported. HyperGraphDB20 is a graph database based

on hypergraphs (a hypergraph node is connected through an edge to all vertices that

are contained in it). There is no query language for HyperGraphDB and querying

is performed through special purpose APIs. HyperGraphDB builds on two prior

approaches of Hypernode [223] and GROOVY [222] graph representation models

which focus on representing objects and object schemas. GROOVY and Hypernode

only support typed objects, and have no support for hypernode specific operations.

3.8.3 Querying Process Models and Instances

In recent years, querying techniques for BPs received high interest in the research

community. Some of existing approaches for querying BPs [33, 47, 130, 134, 293]

focused on querying the definitions of BP models. They assume the existence of

enterprise repository of business process models. They provide business analysts

with a visual interface to search for certain patterns and analyze and reuse BPs that

might have been developed by others. These query languages are based on graph

matching techniques. BP-QL [47] and [130] are designed to query business processes

expressed in BPEL. BPMN-Q [33, 293] and VQL [134] are oriented to query generic

process modeling concepts.

A recent book [2] and a survey [8] discuss the entire process mining spectrum

from process discovery to operational support. Moreover, ProM [7] offers a wide

range of tools related to process mining and process analysis. The main concern

of these approaches is to reverse engineer the definitions of business process models

from execution logs of information system components. Moreover, depending on

how much details the log gives, they can provide statistics about many aspects of

the business processes such as: the average duration of process instances or average

resource consumptions. Our process querying approach enables querying and ex-

ploring the relationships and correlations among process events, and various ways

to form process instances, and therefore it is complementary to process mining tools.

20http://www.hypergraphdb.org/

3.8. Related Work 85

Querying running instances of business processes represents another flavor of

querying [48, 246, 274]. It can be considered as a tool in the hand of administrator of

a business process enactment engine to monitor the status of running processes and

trace the progress of execution. Such queries can be used to discover many problems

such as: detecting the occurrence of deadlock situations or recognizing unbalanced

load on resources. PQL [246] is an SQL-based query language with a main focus

on querying biological pathways. BP-Mon monitoring query [48] is represented as a

BPEL process that capture interesting events of monitored processes. For instance,

a monitoring query could listen to bid cancelation events of a bidding process. A

manager could be interested in tracking users who make cancelations too often.

In [274] Pistore et al. presented an approach based on model checking to monitor the

composition as well as the execution of web services. Starting with an abstract BPEL

specification, they depend on model checking approach to find a composition that

reaches the goals as well as synthesizing a monitoring component that checks whether

the external services behave as specified in the protocol. The main limitation of

these approaches is that they assume an ideal world in which: (i) the business

process models are pre-defined and available; and (ii) the execution of the business

processes is achieved through a business process management system (e.g., BPEL)

where the execution traces should comply with the defined process models.

In our approach, understanding the processes, in the enterprise, and their exe-

cution through exploration and querying event logs is a major goal. The focus is

also on scenarios, which is often the case in today’s environments, where processes

are implemented over IT systems, and there is: (i) no up-to-date documentation

of process definition and it’s execution; and/or (ii) no data on the correlation rules

for process events into process instances. Proposed query language, FPSPARQL,

provides an explorative approach which enables users to correlated entities and un-

derstand which process instances are interesting. Moreover, we support for executing

external process mining algorithms on the graph and partitions, folders, to facilitate

the analysis of BPs execution.

3.8. Related Work 86

3.8.4 Enterprise Search

Enterprise search is the practice of making content from multiple enterprise-type

sources [173], e.g., electronic forms, external/internal Website, email, databases,

and documents. Enterprise search systems, e.g., Google enterprise solutions21, IBM

OmniFind solution for enterprise search22, Panoptic enterprise search engine23, and

Verity enterprise search solution24, index (structured and unstructured) data and

documents from a variety of sources such as: file systems, intranets, document

management systems, and databases in order to describe the software of search

information within an enterprise [173, 255].

Enterprise search differs from Internet search in many ways [173, 255, 72, 37, 110]:

(i) The result of an enterprise search should be the exact right answer, but on the

Internet, users are looking for the most relevant results, i.e., a large number of

documents are typically relevant to an Internet search query; (ii) Stakeholders in the

Internet are known/unknown authors who are free to publish any content, but in an

intranet, stakeholders are known and they follow the entities that the organization

serves; and (iii) Internet search engines are fully controlled and managed by one

organization as a service, but in enterprises, the search software is licensed to and

deployed by a variety of organizations in diverse environments.

In an enterprise search systems, content goes through various phases [143, 173,

255]: (i) Content ingestion, or content collection, is usually either a polling (i.e.,

periodic data pull at a predefined interval), streaming (i.e., an open call that allows

data to be pushed to the caller), or publish-subscribe (i.e., this involves register-

ing to a hub that actively sends data only when new content is available) model;

(ii) Content processing and analysis, includes processing and normalizing the in-

coming documents, which may have many different formats or types; (iii) Indexing,

will be applied to the resulting text for quick lookups; and (iv) Query parsing and

matching, various querying filters should be provided for intranet search (e.g., to

locate company policies, financial information, client histories, and online services),

21http://www.google.com/enterprise/
22http://www-306.ibm.com/software/data/integration/db2ii/editions womnifind.html
23http://www.panopticsearch.com
24http://www.verity.com/products/search/enterprise web search/index.html.

3.9. Summary 87

internal multi-source search (to integrate various sources related to a specific query,

e.g., some data are in official database, some in emails, and some in spreadsheets),

and even forensic search (to answer questions of interest to a legal system).

A new stream of work [175, 296, 66, 113] focused on using Linked Data [65],

which is a by-product of the Semantic Web and has been promoted to address inter-

operability and sharing issues for open and online datasets, to enhance the intelli-

gence of Web and enterprise search as well as in supporting information integration

and entity extraction. These approaches used Linked Data to provide a publishing

paradigm in which not only documents, but also data, can be a first class citizen of

the Web and enterprise search.

3.9 Summary

In this chapter, we presented a data model and query language for querying and

analyzing business processes execution data. The data model supports structured

and unstructured entities, and introduces folder and path nodes as first class ab-

stractions. Folders allow breaking down an event log into smaller clearer groups.

Mining folder nodes may result in discovering process related relationships (e.g.,

process instances) and abstractions (e.g., process models) which can be stored in

path nodes for further analysis. The query language, FPSPARQL, defined as an

extension of SPARQL to manipulate and query entities, and folder and path nodes.

We have developed an efficient and scalable implementation of FPSPARQL. We

provided a front-end tool for the exploration and visualization of results in order

to enable users to examine the event relationships and the potential for discovering

process instances and process models. To evaluate the viability and efficiency of

FPSPARQL, we have conducted experiments over large event logs. The evaluation

shows that the approach is performing well.

Chapter 4

Analyzing Cross-cutting Aspects

in Ad-hoc Processes

4.1 Introduction

Ad-hoc processes have flexible underlying process definition. The semistructured

nature of ad-hoc process data requires organizing process entities, people and ar-

tifacts, and relationships among them in graphs. The structure of process graphs,

describing how the graph is wired, helps in understanding, predicting and optimizing

the behavior of dynamic processes. In many cases, however, process artifacts evolve

over time, as they pass through the business’s operations. Consequently, identify-

ing the interactions among people and artifacts becomes challenging and requires

analyzing the cross-cutting [204] aspects of process artifacts.

A cross-cutting concern defined as a “universal program behavior, one that is

potentially needed in many disparate parts of a program, but is often developed and

modeled separately” [127]. In particular, aspect-oriented programming (AOP) [204]

paradigm can be applied to the process artifacts in BP execution data, where AOP

is used to add support for cross-cutting aspects (e.g., object versioning, event log-

ging, and memory management) to existing code without directly modifying that

code [127]. In particular, process artifacts, like code, has cross-cutting aspects such

as versioning (what are the various versions of an artifact, during its lifecycle, and

88

4.1. Introduction 89

how they are related), provenance [93] (what manipulations were performed on the

artifact to get it to this point), security (who has access to the artifact over time),

and privacy (what actions were performed to protect or release artifact information

over time). In this chapter we focus on cross-cutting aspects which are related to

the evolution of business process artifacts over time, i.e., versioning and provenance.

Analyzing these aspects will expose many hidden interactions among entities in

process graphs.

As an example, knowledge-intensive processes, e.g., those in domains such as

healthcare and governance, involve human judgements in the selection of activities

that are performed. This lead to dynamic and ad-hoc changes of process execution

paths in different process instantiations. Activities of knowledge workers in knowl-

edge intensive processes involve directly working on and manipulating artifacts to

the extent that these activities can be considered artifact-centric activities. Such

processes, almost always involves the collection and presentation of a diverse set of

artifacts, where artifacts are developed and changed gradually over a long period of

time. Case management [314], also known as case handling, is a common approach

to support knowledge-intensive processes.

In order to represent cross-cutting aspects in ad-hoc processes, there is a need to

collect meta-data about entities (e.g., artifacts, activities on top of artifacts, and re-

lated actors) and relationship among them from various systems/departments over

time, where there is no central system to capture such activities at different sys-

tems/departments. This is challenging, as artifacts can be accessed/modified by

different actors over time, various versions of artifacts can be generated in different

sysems/departments, and each artifact version can be derived from various sources.

To address these challenges, we present a framework, simple abstractions and a

language for analyzing cross-cutting aspects in ad-hoc processes. The unique con-

tributions of the paper are as follows:

• We propose a temporal graph model for representing cross-cutting aspects in

ad-hoc processes. This model enables supporting timed queries and weav-

ing cross-cutting aspects, e.g., versioning and provenance, around business

artifacts to imbues the artifacts with additional semantics that must be ob-

4.2. Preliminaries 90

served in constraint and querying ad-hoc processes. In particular, the model

allows: (i) representing artifacts (and their evolution), actors, and interac-

tions between them through activity relationships; (ii) identifying derivation

of artifacts over periods of time; and (iii) discovering timeseries of actors and

artifacts in process graphs.

• We introduce two concepts of timed-folders to represent evolution of artifacts

over time, and activity-paths to represent the process which led to artifacts.

• We extend FPSPARQL [53], a graph query language for analyzing processes

execution, for explorative querying and understanding of cross-cutting aspects

in ad-hoc processes. We introduce simple templates for querying evolution,

derivation, and timeseries of artifacts. We present the evaluation results on

the performance and the quality of the results using a number of process

event logs.

• We provide a front-end tool for assisting users to create queries in an easy way

and visualizing proposed graph model and query results.

The remainder of this paper is organized as follows: We fix some preliminaries

in Section 4.2. Section 4.3 presents an example scenario in case management ap-

plications. In Section 4.4 we introduce a data model for representing cross-cutting

aspects in ad-hoc processes. In Section 4.5 we propose a query language for querying

the proposed model. In Section 4.7 we describe the query engine implementation

and evaluation experiments. Finally, we discuss related work in Section 4.8, before

concluding the paper in Section 4.9.

4.2 Preliminaries

Definition 1. [‘Artifact’] An artifact is defined as a digital representation of some-

thing, i.e., data object, that exists separately as a single and complete unit and has a

unique identity. An artifact is a mutable object, i.e., its attributes (and their values)

are able or likely to change over periods of time. An artifact Ar is represented by a

4.2. Preliminaries 91

set of attributes {a1, a2, ..., ak}, where k represents the number of attributes.

Definition 2. [‘Artifact Version’] An artifact may appear in many versions. A

version v is an immutable deep copy of an artifact at a certain point in time. An

artifact Ar can be represented by a set of versions {v1, v2, ..., vn}, where n represents

the number of versions. An artifact can capture its current state as a version and can

restore its state by loading it. Each version vi is represented as a data object that

exists separately and has a unique identity. Each version vi consists of a snapshot,

a list of its parent versions, and meta-data, such as commit message, author, owner,

or time of creation. In order to represent the history of an artifact, it is important

to create archives containing all previous states of an artifact. The archive allows

us to easily answer certain temporal queries such as retrieval of any specific version

from the archive and finding the history of an artifact. Archives can be managed

using temporal databases [243].

Definition 3. [‘Activity’] An activity is defined as an action performed on or

caused by an artifact version. For example, an action can be used to create, read,

update, or delete an artifact version. We assume that each distinct activity does

not have a temporal duration. A timestamp τ can be assigned to an activity.

Definition 4. [‘Process’] A process is defined as a group of related activities per-

formed on or caused by artifacts. A starting timestamp τ and a time interval d can

be assigned to a process.

Definition 5. [‘Actor’] An actor is defined as an entity acting as a catalyst of

an activity, e.g., a person or a piece of software that acts for a user or other pro-

grams. A process may have more than one actor enabling, facilitating, controlling,

affecting its execution.

Definition 6. [‘Artifact Evolution’] In ad-hoc processes, artifacts develop and

change gradually over time as they pass through the business’s operations. Conse-

quently, artifact evolution can be defined as the series of related activities on top of

4.2. Preliminaries 92

an artifact over different periods of time. These activities can take place in different

organizations/departments/systems and various actors may act as the catalyst of

activities. Documentation of these activities will generate meta-data about actors,

artifacts, and activity relationships among them over time.

Definition 7. [‘Provenance’] Provenance refers to the documented history of an

immutable object which tracks the steps by which the object was derived [93]. This

documentation (often represented as graphs) should include all the information nec-

essary to reproduce a certain piece of data or the process that led to that data [248].

Definition 8. [‘Cross-cutting Aspects’] Aspect-Oriented Programming [204] (AOP),

has been proposed as a technique in computing for improving separation of concerns

in software. In AOP, a concern is a particular set of behaviors needed by a computer

program, is modeled as an aspect, and can be as general as database interaction or

as specific as performing a calculation. In this context, cross-cutting concerns are as-

pects of a program which affect other concerns, e.g., object versioning, event logging,

and memory management. Process artifacts, like code [127], also has cross-cutting

aspects such as versioning, provenance, security (who has access to the artifact over

time), and privacy (what actions were performed to protect or release artifact in-

formation over time). In this chapter we focus on cross-cutting aspects which are

related to the evolution of business process artifacts over time, i.e., versioning and

provenance. Analyzing these aspects will expose many hidden interactions among

entities in process graphs.

Definition 9. [‘Case Management’ and ‘Case’] Most important processes for organi-

zations today involve knowledge work. An example of this is the case of government

agencies, banks, big legal firms and insurance providers where complex customer

and service interactions need to be handled. Case Management, also known as

case handling [314], can be defined as a common approach to support knowledge

intensive processes. When a customer initiates a request for some services, the set

of interactions among people (e.g., customer and other relevant participants) and

artifacts from initiation to completion is known as the ‘case’. Understanding such

4.3. Example Scenario: Case Management 93

v1 v2

artifact-version: v3
version-ID: PH-V3
creation_timestamp: Tm

WDF

WDF

WDF

(C)
(B)

BCSC Result

WDF

WDF : Was Derived From

v3

(D)

v2

Patient
GP Clinic Breast Cancer

Clinic (BCC)
refer

Breast Cancer
Specialist Clinic (BCSC)

Radiology
Clinic (RC)

Pathology
Clinic (PC)

refer

refer

refer

Multi-disiplinary
Team (MDT)

result

result

result

Next?

-Yes:
* Surgery, Radiotherapy,...

-No:
* reassure patient, ...

-Details-needed:
* consider core/surgical

biopsy, MDT review, ...

BCSC Result

RC Result

PC Result GP Notes
Patient
History

BCC Report

MDT Report
WDF

WDF

WDF

v3
WDF

WDF

WDF
BCSC ResultBCSC Result

PC Result GP Notes

BCC Report

MDT Report
WDF

WDF

WDF

Patient
History

Patient
History Patient

History

transfer

Set-Of-Activities
create

Result transfer

Set-Of-Activities
create

Result

Set-Of-Activities
create

Result

transfer

transfer

agent: BCC Admin
timestamp: Tm

agent: BCSC Admin
timestamp: Tn

transfer

transfer

Organization: BCSC

Organization: RC

RC Result

Organization: PC

Create

MDT
Report

store

(A)

WDF

Patient
History

Patient
History

Patient
History

Patient
History

update

TIME

Results

Organization: MDT

Figure 4.1: Example case scenario for breast cancer treatment including a case
instance (A), parent artifacts, i.e. ancestors, for patient history document (B) and
its versions (C), and set of activities which shows how version v2 of patient history
document develops and changes gradually over time and evolves into version v3 (D).

ad-hoc processes entails identifying the interactions, among people and artifacts,

where artifacts are developed and changed gradually over a long period of time.

4.3 Example Scenario: Case Management

To understand the problem, we present an example scenario in the domain of case

management. This scenario is based on breast cancer treatment cases in Velindre

hospital [314]. Figure 4.1-A represents a case instance, in this scenario, where a

General Practitioner (GP) suspecting a patient has cancer, updates patient history,

and referring the patient to a Breast Cancer Clinic (BCC). BCC checks the patients

history and requests assessments such as an examination, imaging, fine needle as-

piration, and core biopsy. Therefore, BCC administrator refers patient to Breast

4.4. Representing Cross-cutting Aspects 94

Cancer Specialist Clinic (BCSC), Radiology Clinic (RC), and Pathology Clinic (PC),

where these departments apply medical examinations and send the results to Multi-

Disciplinary Team (MDT). The results are gathered by the MDT coordinator and

discussed at the MDT team meeting involving a surgeon oncologist, radiologist,

pathologist, clinical and medical oncologist, and a nurse.

Analyzing the results and the patient history, MDT will decide for next steps,

e.g., in case of positive findings, non-surgical (Radiotherapy, Chemotherapy, En-

docrine therapy, Biological therapy, or Bisphosphonates) and/or surgical options

will be considered. During interaction among different systems, organizations and

care team professionals, a set of artifacts will be generated. Figure 4.1-B represents

parent artifacts, i.e., ancestors, for patient history document, and Figure 4.1-C rep-

resents parent artifacts for its versions. Figure 4.1-D represents a set of activities

which shows how version v2 of patient history document develops and changes grad-

ually over time and evolves into version v3.

4.4 Representing Cross-cutting Aspects

4.4.1 Time and Provenance

Provenance refers to the documented history of an immutable object and often

represented as graphs. The ability to analyze provenance graphs is important as it

offers the means to verify data products, to infer their quality, and to decide whether

they can be trusted [247]. In a dynamic world, as data changes, it is important to

be able to get a piece of data as it was, and its provenance graph, at a certain

point in time. Under this perspective, the provenance queries may provide different

results for queries looking at different points in time. Enabling time-aware querying

of provenance information is challenging and requires: (i) explicitly representing the

time information in the provenance graphs, and (ii) providing timed abstractions

and efficient mechanisms for time-aware querying of provenance graphs over an ever

increasing volume of data.

The existing provenance models, e.g., the open provenance model (OPM) [216,

4.4. Representing Cross-cutting Aspects 95

248], treat time as a second class citizen (i.e., as an optional annotation of the data)

which will result in loosing semantics of time and makes querying and analyzing

provenance data for a particular point in time inefficient and sometimes inaccessi-

ble. For example, annotations assigned to an artifact (e.g., a file or Web resource)

today may no longer be relevant to the future representation of that entity, as en-

tity attributes are very likely to have different states over time and the temporal

annotations may or may not apply to these evolving states.

Due to the implicit treatment of time, abovementioned approaches do not enable

explicit representation of the evolution of relevant subgraphs (i.e., group of inter-

related objects such as versions of artifacts) and paths (i.e., discovering historical

paths through provenance graphs forms the basis of many provenance queries [90,

182, 201]) over time. For example, the shortest path from a business artifact to its

origin may change over time [285] as provenance metadata forms a large, dynamic,

and time-evolving graph. In particular, versioning and provenance are important

cross-cutting aspects of business artifacts and should be considered in modeling the

evolution of artifacts over time.

4.4.2 AEM Data Model and Timed Abstractions

We propose an artifact-centric activity model for ad-hoc processes to represent the

interaction between actors and artifacts over time. This graph data model (i.e.,

AEM: Artifact Evolution Model) can be used to represent the cross-cutting aspects

in ad-hoc processes and analyze the evolution of artifacts over periods of time. We

use and extend the data model proposed in Chapter 3 to represent AEM graphs.

In particular, AEM data model supports: (i) uniform representation of nodes and

edges; (ii) structured and unstructured entities; and (iii) folder nodes, which enable

grouping related entities, and path nodes, which help in analyzing the history of

artifacts.

In this chapter, we introduce two concepts of timed folders and timed paths,

which help in analyzing AEM graphs. Timed folder and path nodes can show their

evolution for the time period that they represent. In AEM, we assume that the

4.4. Representing Cross-cutting Aspects 96

interaction among actors and artifacts is represented by a directed acyclic graph

G(τ1,τ2) = (V(τ1,τ2), E(τ1,τ2)), where V(τ1,τ2) is a set of nodes representing instances of

artifacts in time, and E(τ1,τ2) is a set of directed edges representing activity relation-

ships among artifacts. It is possible to capture the evolution of AEM graphs G(τ1,τ2)

between timestamps τ1 and τ2.

AEM Entities

An entity is an object that exists independently and has a unique identity. AEM

consists of two types of entities: artifact versions and timed folder nodes. Folder

nodes represent evolution of artifacts over time.

Artifact Version: Artifacts are represented by a set of instances each for a

given point in time. For example, artifact Ar is represented by the set of instances

{Art1 , Art2 , Art3 , ...} where {t1, t2, t3, ...} indicates the activity timestamps at distinct

points in time. Artifact instances considered as data objects that exist separately

and have a unique identity. An artifact instance can be stored as a new version:

different instances of an entity for different points in time/departments/systems,

may have different attribute values. An artifact version can be used over time,

annotated by activity timestamps τactivity, and considered as a graph node whose

identity will be the version unique ID and timestamps τactivity.

Timed Folder Node: We proposed the notion of folder node in Chapter 3.

A timed folder is defined as a timed container for a set of related entities, e.g., to

represent artifacts evolution (Definition 6). Timed folders, document the evolution of

folder node by adapting a monitoring code snippet (see Section 4.6). New members

can be added to timed folders over time. Entities and relationships in a timed folder

node are represented as a subgraph F(τ1,τ2) = (V(τ1,τ2), E(τ1,τ2)), where V(τ1,τ2) is a

set of related nodes representing instances of entities in time added to the folder F

between timestamps τ1 and τ2, and E(τ1,τ2) is a set of directed edges representing

relationships among these related nodes. It is possible to capture the evolution of

the folder F(τ1,τ2) between timestamps τ1 and τ2.

4.4. Representing Cross-cutting Aspects 97

AEM Relationships

A relationship is a directed link between a pair of entities, which is associated with

a predicate defined on the attributes of entities that characterizes the relationship.

AEM consists of two types of relationships: activity and activity-path. Activity-

paths can be used for efficient graph analysis and can be modeled using timed

path nodes.

Activity Relationships: An activity is an explicit relationship that directly

links two entities in the AEM graph, and is defined as an action performed on or

caused by an artifact version. Activity relationships can be described by a set of

attributes:

• What (i.e., type) and How (i.e., action), two types of activity relationships can

be considered in AEM: (i) lifecycle activities, include actions such as creation,

transformation, use, or deletion of an AEM entity; and (ii) archiving activities,

include actions such as storage and transfer of an AEM entity.

• When, to indicate the timestamp in which the activity has occurred.

• Who, to indicate an actor that enables, facilitates, controls, or affects the

activity execution.

• Where, to indicated the organization/department where the activity happened.

• Which, to indicate the system which hosts the activity.

• Why, to indicate the goal behind the activity, e.g., fulfilment of a specific phase

or experiment.

These attributes, e.g., actors and organizations, can be stored as individual ob-

jects and used for annotating activity edges in the graph.

Activity-Path: Defined as an implicit relationship that is a container for a set

of related activities which are connected through a path, where a path is a transitive

relationship between two entities showing the sequence of edges from the starting

entity to the end. Recall from Chapter 3, that the relationship can be codified using

4.4. Representing Cross-cutting Aspects 98

regular expressions in which alphabets are the nodes and edges from the graph. We

define an activity-path for each query which results in a set of paths between two

nodes. Activity-paths can be used for efficient graph analysis and can be modeled

using timed path nodes.

A timed path node is defined as a timed container for a set of related entities

which are connected through transitive relationships. We define a timed path node

for each change-aware query which results in a set of paths. The change-aware

query, documents the evolution of path node by adapting a monitoring code snippet

(see Section 4.6). New paths can be added to timed path nodes over time. Entities

and relationships in a timed path node are represented as a subgraph P(τ1,τ2) =

(V(τ1,τ2), E(τ1,τ2)), where V(τ1,τ2) is a set of related nodes representing instances of

entities in time which added to the path node P between a time period of τ1 and

τ2, and E(τ1,τ2) is a set of directed edges representing transitive relationships among

these related nodes. It is possible to capture the evolution of the path node P(τ1,τ2)

between a time period of τ1 and τ2.

For example, Figure 4.2-A represents a set of activities showing how version v2

of patient history develops and changes gradually over time and evolves into version

v3. A query which results in a set of paths, can be used to discover all/specific

path(s) between v2 and v3, and group them under an activity path (Figure 4.2-B).

Merging activities using activity-paths will not lose information, as activities that

are important to the user will be visible after the merger. Figure 4.2-C illustrates

the attributes for the constructed activity path and its storage and representation.

As discussed in Chapter 3, we use triple tables to store objects (object-store) and

relationships among them (link-store) in graphs.

Notice that the AEM graph model supports the uniform representation of nodes

and edges: path nodes have unique identities and considered as first class abstrac-

tions. In this chapter we use path nodes to represent activity paths. As illustrated in

Figure 4.2-C, activity paths have set of mandatory attributes, e.g., id, type, starting

node, and ending node, and also descriptive attributes.

4.5. Querying Cross-cutting Aspects 99

v3

(A)

v2

Patient
History

Patient
History

transfer

transfer

transfer
update

archive

TIME

update

update
use generate

use generate

use

Patient History

T10 T12 T13
T14

generate

use use
T1

T3

T4

T5

T5

T6 T7

T8

T9

T11

v3

(B)

v2
transfer

transfer

transfer update

archiveupdate

updateuse generate

use generate

use

T10 T12 T13

T14

generate

use use

T1 T3

T4

T5

T5

T6 T7

T8

T9

T11

v2
T1

v2
T1

T12 T13
use

v3
T14

v3
T14

archive

T13 archive

Pa
th

 #
1

Pa
th

 #
2

Pa
th

 #
3

Ti
m

ed
 P

at
h

N
od

e
(in

cl
ud

es
 3

 p
at

hs
)

(C)
id: tpn1

object: timed-path-node
Type: Activity-Path
Label: ancestor-of
Starting-Node: v2
Ending-Node: v3
Regular Expression: *
...

At
tr

ib
ut

es

v3v2

Patient
History

Patient
History

ancestor-of

T1 T14

subject
(node-from)

predicate
(edge)

object
(node-to)

v2

link-store

tpn1 v3
...

Storage

Representation

subject
(object)

predicate
(attribute)

object
(value)

tpn1

object-store

object timed-pa
tpn1 type Activity-p
tpn1 label ancestor-

...

Figure 4.2: Implicit and explicit relationships between versions v2 and v3 of pa-
tient history document including: (A) activity edges; (B) constructed activity-path
stored as a timed (path node) abstraction; and (C) representation and storage of
the activity path.

4.5 Querying Cross-cutting Aspects

Querying AEM graphs needs a graph query language that not only supports prim-

itive graph queries but also is capable of: (i) constructing timed folders and group

related activities (paths). In general, the output of every query can be stored as

folder/path and used for further querying; (ii) applying further queries to con-

structed folders/paths, e.g., to analyze their evolution or understand the merged

activities over time; and (iii) applying external tools and algorithms (e.g., to dis-

cover shortest path and frequent patterns) to AEM graphs for further analysis.

Recall from Chapter 3, that FPSPARQL, a Folder-, Path-enabled extension of

4.5. Querying Cross-cutting Aspects 100

SPARQL, is a graph query processing engine which supports primitive graph queries,

constructing folders/paths, applying further queries to constructed folder/path nodes,

and applying external tools and algorithms to graphs. In this chapter we extend

FPSPARQL to support querying cross-cutting aspects in ad-hoc processes. More-

over, we propose simple query templates for discovering derivation, evolution, and

timeseries of artifacts over periods of time

4.5.1 Formalizing AEM Queries

Artifact-centric process queries require traversal of AEM graphs. In order to repre-

sent AEM graphs and formalize path queries, we model our prototype based on an

RDF like data representation. Our representation, supports uniform representation

of nodes and edges: edges are treated as first class citizens where any edge can be

described by an arbitrary set of attributes. However, that is not the case in the RDF

data model where it is not supported that edges can be described by any attribute

information. In our model, a triple (Subject, Predicate, Object) can be defined as

an element of (υ∪β)×υ× τ , where τ represents RDF terminology, υ represents set

of URI references, and β represents set of blanks. Subjects, predicates and objects,

can be either a variable or a literal. As discussed in Chapter 3, we use the ‘@’ symbol

for representing attribute edges and distinguishing them from the relationship edges

between graph nodes. In particular, an RDF graph is a finite set of triples [76].

Considering ` as set of literals, υ∪` will represent the vocabulary ν. Let ν be the

set of names appearing in AEM graph and νedge ⊆ ν be a set of names on the arcs in

the graph. The label on each e ∈ νedge defines a relationship between the entities in

the graph and also allows us to navigate across the different nodes by a single hop.

Consequently, an activity path, in AEM graph, is a sequence of triples, where the

object of each triple in the sequence coincides with the subject of its successor triple

in the sequence, and the predicate is an activity relationship having the following

mandatory attributes: what, how, when, who, where, and which.

4.5. Querying Cross-cutting Aspects 101

4.5.2 Simplifying Path Queries

Discovering activity paths through AEM graphs forms the basis of many AEM

queries. In order to discover paths and apply further operations to discovered paths,

we use pconstruct and apply commands proposed in Chapter 3. In FPSPARQL,

writing path queries and generating regular expression can be complex and re-

quires being familiar with FPSPARQL/SPARQL syntax. In this chapter, we ex-

tend FPSPARQL with discover statement which enables process analysts to extract

information about facts and the relationship among them in an easy way. This

statement has the following syntax:

discover.[evolutionOf(artifact1,artifact2) |

derivationOf(artifact) |

timeseriesOf(artifact|actor)];

filter(what(type),

how(action),

who(actor),

where(location),

which(system),

when(t1,t2,t3,t4));

where{

#define variables such as artifact, actor, and location.

}

This statement can be used for discovering evolution of artifacts (using evolu-

tionOf construct), derivation of artifacts (using derivationOf construct), and time-

series of artifacts/actors (using timeseriesOf construct). The filter statement re-

strict the result to those activities for which the filter expression evaluates to true.

Variables such as artifact (e.g., artifact version), type (e.g., lifecycle or archiving),

action (e.g., creation, use, or storage), actor, and location (e.g., organization) will

be defined in where statement.

In order to support temporal aspects of the queries, we adapted the time seman-

tics proposed in [345]. We introduce the special construct, ‘timesemantic(fact, [t1,

4.5. Querying Cross-cutting Aspects 102

t2, t3, t4])’ in FPSPARQL, which is used to represent the fact to be in a specific

time interval [t1, t2, t3, t4]. A fact may have no temporal duration (e.g., a distinct

activity) or may have temporal duration (e.g., series of activities such as process

instances). Table 4.1 represents the time-semantics that we support in FPSPARQL

queries. The when construct, i.e., when(t1, t2, t3, t4) proposed in the above exten-

sion, will be automatically translated to timesemantic construct in FPSPARQL.

Following we will introduce derivation, evolution, and timeseries queries.

4.5.3 Evolution Queries

In order to query the evolution of an artifact, case analysts should be able to dis-

cover activity paths among entities in AEM graphs. In particular, for querying the

evolution of an AEM entity En, all activity-paths on top of En ancestors should

be discovered. For example, considering the motivating scenario, Adam, a process

analyst, is interested to see how version v3 of patient history evolved from version

v2 (see Figure 4.1-D). Following is the sample FPSPARQL query for this example.

1 discover.evolutionOf(?artifact1,?artifact2);

2 where{

3 ?artifact1 @id v2. ?artifact2 @id v3.

4 #Path node attributes

5 ?pathAbstraction @id tpn1.

6 ?pathAbstraction @label ‘ancestor-of’.

7 ?pathAbstraction @description ‘version evolution’.

8 }

Table 4.1: FPSPQARL time semantics.

Time Semantic Time Range

in, on, at, during [t,t,t,t]
since [t,t,?,?]
after [t,?,?,?]

before [?,?,?,t]
till, until, by [?,?,t,t]

between [t,?,?,t]

4.5. Querying Cross-cutting Aspects 103

In this example, the evolutionOf statement is used to represent the evolution

of version v3 (i.e., variable ‘?artifact2’) from version v2 (i.e., variable ‘?artifact1’).

The variable ‘?pathAbstraction’ is reserved to identify the attributes for the path

node to be constructed. Notice that, by specifying the ‘label’ attribute (line 6), the

implicit relationship, with ID ‘tpn1’, between versions v2 and v3 will be added to

the graph (see the query translation). Also, if Adam would be interested to see the

whole evolution of version v3, he does not need to specify the first parameter, e.g., in

“evolutionOf(,?artifact2)”. In the above example, attributes of variables ‘?artifact1’

and ‘?artifact2’ can be defined in the where clause. Considering Figure 4.2-B, the

result of this query will be a set of paths between versions v2 and v3, and can

be stored in an activity-path. This query will automatically be translated to the

following path construction query proposed in Chapter 3:

1 pconstruct tpn1 as ?evolution (?startNode,?endNode, *)

2 where {

3 ?startNode @id v2.

4 ?endNode @id v3.

5 #defining the path node attributes

6 ?evolution @timed true. #timed path node

7 ?evolution @type Activity-Path.

8 ?evolution @Starting-Node v2.

9 ?evolution @Ending-Node v3.

10 ?evolution @type Activity-Path.

11 ?evolution @label ‘ancestor-of’.

12 ?evolution @description ‘version evolution’.

13 #add the activity-path to the graph

14 ?evolution @addToLinkStore ‘triple(v2,tpn1,v3)’.

15 }

In Chapter 3, we introduced the PCONSTRUCT command to construct a path

node. This command is used to discover transitive relationships between two entities

and store it under a path node name. In this chapter we extend this command with

4.5. Querying Cross-cutting Aspects 104

two attributes: (i) ‘@timed’: setting the value of attribute ‘@timed’ to true for the

path node, will assign a monitoring code snippet to this path node (line 6). The code

snippet is responsible for updating the path node content over periods of time: new

paths can be added to timed path nodes over time; and (ii) ‘@addToLinkStore’: this

attribute is used to add the activity-path to the original graph, using a simple triple

format (line 14). In this example the value ‘triple(v2,tpn1,v3)’ for this attribute, will

generate the link between versions v2 and v3 represented in Figure 4.2-C. Attribute

‘label’ (line 11) shows the label of this implicit edge in the graph. The value ‘*’ for

the regular expression (line 1) will discover all the paths between the starting node,

v2, and the ending node, v3. Variable ‘?evolution’ represents the activity-path to be

constructed, i.e., ‘tpn1’ (lines 6 to 12). As mentioned earlier, activity paths have

set of mandatory attributes, e.g., id, type, starting node, and ending node, and also

descriptive attributes, e.g., description (line 12).

Query Filters. Adam can use the filter statement to answer to specific evolu-

tion questions: (i) when queries : what happens to the artifact during the first three

weeks that they are received?; (ii) where queries : what happens to the artifact in

radiology clinic?; (iii) who queries : who (which roles) work on the artifact?; and

(iv) which queries : what happens to the artifact in the Wiki system? For exam-

ple, Adam is interested to see the patient history evolution, for the patient having

the id ‘X14’, during November 2012 in radiology clinic. Following is the sample

FPSPARQL query for this example.

1 discover.evolutionOf(,?artifact);

2 filter(where(?location),

3 when(?t1,?,?,?t2));

4 where{

5 ?artifact @patient-ID ‘X14’.

6 ?location @name ‘radiology’.

7 ?t1 @timestamp ‘11/1/2011 @ 0:0:0’.

8 ?t2 @timestamp ‘12/1/2011 @ 0:0:0’.

9 #timestamp: M/D/Y @ h:m:s

4.5. Querying Cross-cutting Aspects 105

10 #Path node descriptive attributes

11 ?pathAbstraction @id ‘tpn2’.

12 }

In this example, filter statement (lines 2 and 3) is used to restrict the result

to those activities, happened during November 2011 (lines 7 and 8) in radiology

clinic (line 6). As Adam is interested to see the whole evolution of patient history

document, he didn’t specify the first parameter in the evolutionOf construct, i.e.,

“evolutionOf(,?artifact2)” (line 1). This query will automatically be translated to

the following path construction query:

1 pconstruct tpn2 as ?patientHisroty

2 (?startNode,?endNode, ?edge (?node ?edge)*)

3 where {

4 #regular expression

5 ?startNode @isA entityNode.

6 ?startNode @id ?stID. ?startNode @patient-ID X14.

7 ?endNode @isA entityNode.

8 ?endNode @id ?stID. ?endNode @patient-ID X14.

9 ?node @isA entityNode. ?node @patient-ID X14.

10 ?edge @isA edge.

11 ?edge @where ‘radiology’.

12 ?edge @timestampe ?ts.

13 filter(timesemantic(?ts,[t1,?,?,t2])).

14 ?t1 @timestamp ‘11/1/2011 @ 0:0:0’.

15 ?t2 @timestamp ‘12/1/2011 @ 0:0:0’.

16 #defining the path node attributes

17 ?patientHisroty @timed true.

18 ?patientHisroty @type Activity-Path.

19 ?patientHisroty @Starting-Node ?stID.

20 ?patientHisroty @Ending-Node ‘X14-med-doc’.

21 }

4.5. Querying Cross-cutting Aspects 106

In this example variables ‘?startNode’ and ‘?endNode’ denotes any artifact re-

lated to the patient having the ID ‘X14’ which being used between timestamps

‘?t1’ and ‘?t2’ (lines 14 and 15). Respectively, variables ‘?edge’ and ‘?node’ denotes

any edges and nodes in the transitive relationship between starting and ending

nodes in the regular expression (lines 9 to 12). To discover the activities applied

to artifacts in radiology clinic, the attribute ‘where’ for the activity relationship

‘?edge’ is set to the value ‘radiology’ (line 11). The variable ‘?patientHisroty’ is

used to define path node attributes (lines 17 to 20). The when statement (i.e.

when(t1, ?, ?, t2)) in the evolution query have been translated to the special construct

timesemantic(?ts, [t1, ?, ?, t2]) in FPSPARQL (line 13) which is used to represent

the activity timestamps ‘?ts’, to be in a specific time interval [t1, ?, ?, t2]. Recall from

previous example, that this implicit relationship will not be added to the original

graph as the attribute ‘label’ have not been specified in the evolution query.

4.5.4 Derivation Queries

In AEM graphs, derivation of an entity En can be defined as all entities which En

found to have been derived from them. In particular, if entity Enb is reachable from

entity Ena in the graph, we say that Ena is an ancestor of Enb. The result of a

derivation query for an AEM entity will be a set of AEM entities, i.e., its ancestors.

For example, considering the motivating scenario, Adam is interested to query the

derivation of version v3 of the patient history (see Figure 4.1-C). Following is the

sample FPSPARQL query for this example.

1 discover.derivationOf(?artifact);

2 where{

3 ?artifact @id v3.

4 }

In this example, derivationOf statement is used to represent the derivation(s)

of version v3 of patient history. Attributes of variable ‘?artifact’ can be defined in

the where clause. Considering Figure 4.1-C, the result for this query will be the set

4.5. Querying Cross-cutting Aspects 107

“{MDT-report, BCSC-result, RC-result, PC-result}”. This query will automatically

be translated to the following path construction query:

1 select ?startNode from

2 pconstruct derivation_v3

3 (?startNode, ?endNode, ‘?edge (?node ?edge)*’)

4 where {

5 ?startNode @isA entityNode.

6 ?endNode @isA entityNode.

7 ?endNode @type artifactVersion.

8 ?endNode @id v3.

9 ?node @isA entityNode.

10 ?edge @isA edge.

11 }

In Chapter 3, we used pconstruct statement to discover paths: i) between two

nodes; ii) starting from a specific node and ending to a set of nodes; and iii) starting

from a set of nodes and ending to a specific node. In this example, we use pconstruct

statement to discover paths between set of starting nodes (ancestors) to a specific

ending node (version v3 of patient history). The result of this query will be set of ar-

tifacts/versions reachable from version v3 of patient history document. For the sake

of simplicity we enabled applying further operations to the constructed path node

using select statement (line 1), e.g., the variable ‘?startNode’ in select statement will

return the ancestors of version v3 of patient history. Recall from Chapter 3, that it

is possible to use apply statement for applying further operations to the constructed

path nodes. Moreover, the query in this example can be timed, i.e., using ‘@timed’

attribute.

Query Filters. Adam can use the filter statement to answer specific derivation

questions. For example, he can find specific artifacts which v2 was derived from

them: (i) in radiology clinic (using where statement); (ii) between the time periods

τ1 and τ2 (using the ‘when(τ1,?,?,τ2)’ statement); or (iii) in a specific system (using

4.5. Querying Cross-cutting Aspects 108

which statement). For example, Adam is interested to find all ancestors of version

v3 of patient history (see Figure 4.1-C) generated in radiology clinic before March

2011. Following is the sample FPSPARQL query for this example.

1 discover.derivationOf(?artifact);

2 filter(where(?location),

3 when(?,?,?,?t1));

4 where{

5 ?artifact @id v3.

6 ?location @name ’radiology’.

7 ?t1 @timestamp ‘3/1/2011 @ 0:0:0’.

8 }

In this example, filter statement is used to restrict the result to those activities,

happened before March 2011 in radiology clinic.

4.5.5 Timeseries Queries

In analyzing AEM graphs, it is important to understand the timeseries, i.e., a se-

quence of data points spaced at uniform time intervals, of artifacts and actors over

periods of time. To achieve this, we introduce timeseriesOf statement. The result of

artifact/actor timeseries queries will be a set of artifact/actor over time, where each

artifact/actor connected through a ‘happened-before’ edge. For example, Adam is

interested in Eli’s activities on the patient history document between timestamps τ1

and τ5. Following is the sample FPSPARQL query for this example.

1 discover.timeseriesOf(?actor);

2 filter(when("T1",?,?,"T5"));

3 where{

4 ?actor @id Eli-id.

5 }

4.5. Querying Cross-cutting Aspects 109

v3

(A)

v2

Patient
History

Patient
History

transfer

transfer

transfer
update

archive

TIME

update v3

(B)

v2

Patient
History

Patient
History

Was derived from

TIME

HB HB HB HB

Eli Eli Eli

HB HB

TIME

T1 T2 T3 T4 T5

TIME

T1 T2 T5

update
use generate

use generate

use

Patient History

T10 T12 T13
T14

generate

(A) (B)

use use
T1

T3

T4

T5

T5

T6 T7

T8

T9

T11

T1 T14

HB: Happened-Before HB: Happened-Before

Figure 4.3: Sample timeseries for: (A) patient history document between τ1 and τ5;
and (B) Eli, an actor, acting on patient history between τ1 and τ5.

In this example, timeseriesOf statement (line 1) is used to represent the time-

series of Eli, i.e., the variable ‘?actor’. Attributes of variable ?actor can be defined in

the where clause (line 4). Figure 4.3-B represents the timeseries of Eli for activities

she did on top of patient history document. Figure 4.3-A represents time series of

patient history document between τ1 and τ5. Similar to evolution and derivation

queries, timeseriesOf statement can be timed and may contain filter statement,

where filter statement can be used to answer specific timeseries questions.

4.5.6 Constructing Timed Folders

In Section 4.5.3 we discussed how we extend path construction queries to support

time aware querying. In this section, we discuss how to construct timed folder nodes.

In particular, to construct a timed folder node, we use FPSPARQL’s fconstruct

statement proposed in Chapter 3. We extend this statement with ‘@timed’ attribute.

Setting the value of attribute timed to true for the folder, will assign a monitoring

code snippet to this folder. The code snippet is responsible for updating the folder

content over periods of time: new members can be added to timed folders over time.

The syntax for a basic construction query of a timed folder node is given as follows:

fconstruct <Folder_Node Name> as ?folder

[select ?var1 ?var2 ... | (Folder1, Folder2,...)]

where {

?folder @timed true.

#other patterns

}

4.5. Querying Cross-cutting Aspects 110

For example, considering Figure 4.1-C, a timed folder can be constructed to

represent a patient history document which may contain various versions of this

artifact. New versions (and activities on top of it) can be added to this folder over

time. Following is a sample FPSPARQL query for this example.

1 fconstruct X14-patient-history as ?med-doc

2 select ?version

3 where {

4 #defining the path node attributes

5 ?med-doc @timed true.

6 ?med-doc @type artifact.

7 ?med-doc @description ‘history for patient #X14’.

8 #specifying nodes to be added to the folder

9 ?version @isA entityNode.

10 ?version @patient-ID X14.

11 }

In this example, variable ‘?med-doc’ represents the folder node to be constructed,

i.e., ‘X14-patient-history’ (line 1). This folder is of type ‘artifact’ (line 6). Setting

the attribute timed to true (line 5) will force new artifacts having the patient ID

‘X14’ (line 10) to be added to this folder over time. The attribute ‘description’

used to describe the folder (line 7). The variable ‘?version’ is an AEM entity and

represents the patient history versions to be collected (line 9). Attribute ‘patient-

ID’ (line 10) indicate that the version is related to the patient history of the patient

having the id ‘X14’.

As another example, it is possible to construct a timed folder to monitor the

artifacts touched (created, transformed, used, deleted, stored, or transferred) by

Eli. As the result of this query, all the artifacts touched by Eli will be added to the

constructed timed folder. Moreover, new artifacts can be added to this folder over

time. Following is a sample FPSPARQL query for this example.

4.5. Querying Cross-cutting Aspects 111

1 fconstruct Eli_artifacts as ?Eli_art

2 select ?artifact1

3 where {

4 ?Eli_art @timed true.

5 ?Eli_art @type artifact.

6 ?Eli_art @description ‘artifacts generated by Eli’.

7 #

8 ?artifact1 ?activity ?artifact2.

9 ?artifact1 @isA entityNode.

10 ?artifact2 @isA entityNode.

11 ?activity @isA edge.

12 ?activity @who Eli_id.

13 }

In this example, variable ?Eli art represents the folder node to be constructed,

i.e., ‘Eli artifacts’ (line 1). This folder is of type ‘artifact’ (line 5). Setting the

attribute timed to true (line 4) will force new artifacts touched by Eli to be added to

this folder over time. The pattern ‘?artifact1 ?activity ?artifact2’ (line 8) illustrates

an activity relationship between two artifacts, ‘?artifact1’ and ‘?artifact2’. The

activity relationship ‘?activity’ (line 11) has a set of mandatory attributes discussed

in Section 4.4.2. To discover the artifacts touched by Eli, i.e., ‘?artifact1’, the

attribute ‘who’ for the activity relationship ‘?activity’ is set to Eli’s identification

(line 12). More activity relationship attributes can be used, e.g., to discover the

artifacts generated, deleted, or stored by an actor.

Querying Timed Folder Nodes. In Chapter 3, we introduced the apply state-

ment to apply further operations to constructed folder nodes. For example, consider

a user who is interested to retrieve information about patient history folder, e.g.,

folder ‘X14-patient-history’ constructed in previous examples, between timestamps

τ2 and τ7. Following is the FPSPARQL query for this example.

4.6. Architecture and Implementation: Temporal Extension 112

1 (X14-patient-history)

2 apply (

3 select ?a

4 where {

5 ?a @isA entityNode.

6 ?a @timestamp ?ts.

7 filter(timesemantic(?ts,[t2,?,?,t7])).

8 }

9)

In this example the query applied to the constructed timed folder node ‘X14-

patient-history’. Variable ‘?a’ represents the members (i.e., artifact versions) of the

folder node whose (creation) timestamp ‘?ts’ (line 6) falls between time τ2 and τ7

(line 7). The ‘timesemantic’ construct is used to filter the requested timestamps.

4.6 Architecture and Implementation: Temporal

Extension

4.6.1 Architecture

In Chapters 3, we introduced FPSPARQL graph processing architecture, where the

architecture consists of the following components: Graph Loader, Data Mapping

Layer, Time-aware Controller, Query Mapping Layer, Regular Expression Proces-

sor, External Algorithm/Tool Controller, and Query Optimizer. In this chapter, we

instrument the Time-aware Controller to support the execution of FPSPARQL tem-

poral queries. In particular, Time-aware Controller will be responsible for creating

a monitoring code snippet and allocate it to a timed folder/path node in order to

monitor its evolution and update its content.

Time-aware Controller enables users to set an AEM query as a: (i) pull query,

where a time-tracker will be assigned to this query. Time-tracker will trigger the

4.6. Architecture and Implementation: Temporal Extension 113

Graph Loader

Data Mapping

Regular Expression Processor

FPSPARQL Query Engine

Ti
m

e-
aw

ar
e

C
on

tro
lle

r

External (mining) algorithm/tool Controller

Relational RDF
(Storage and Indexing)

FP
S

PA
R

Q
L Q

uery

R
D

F/N
3/X

M
L (G

raph)

Graph Processing
Architecture

SPARQL Queries

Folder/Path QueriesQ
ue

ry
O

pt
im

iz
erSc

he
du

le
r

(FPSPARQL-To-SQL Translation and Processing)

Query Mapping

(FPSPARQL-to-PigLatin Translation and Processing)
Hadoop File System

Figure 4.4: FPSPARQL graph processing architecture: analytics extension.

start of the querying process at specific user-defined intervals. The interval attribute

can be set manually in the query engine; or (ii) push query, where a database

trigger will be assigned to the entities in the query result. Future changes applied

to these entities and their relationships will result in re-executing the query. Users

can initialize an intelligent agent in order to allocate it to a timed folder/path node

and set its time interval or assign it to a database trigger.

Moreover, as discussed in Chapter 3, Time-aware Controller is responsible for

data changes and incremental graph loading: RDF databases are not static and

changes may apply to graph entities (i.e. nodes, edges, and folder/path nodes)

over time. Updates are mostly insertions of new triples into the object store and

link store. At the current version of FPSPARQL query engine, updates cannot be

performed concurrently with queries: there may be the need for full-fledged ACID

transactions. Figure 4.4 illustrates FPSPARQL graph processing architecture.

Figure 4.5 illustrates an overview of Time-aware Controller architecture. The

controller uses numerical priorities, priorities take values from the set of real numbers

R, to express precedence constraints over the set of executing code snippets. The

priority of code snippet ci at time τ is given by pi(τ). For two code snippets ci and

cj and a time point τ , ci will execute in preference to cj if and only if pi(τ) > pi(τ).

4.6. Architecture and Implementation: Temporal Extension 114

Priority Functions

Time-aware Structure

Timer Events Collector

Trigger Events Collector

Event Queue

Scheduler

Figure 4.5: Overview of Time-aware Controller architecture.

The Time-aware Controller is composed of the following components:

• Priority Functions: are functions of priority with respect to relative time. They

detail how a code snippets priority varies relative to a deadline.

• Time-aware Structure: is a data structure that describes how relative priorities

for all agents vary as a function of time. It gives the relative priority ordering

of all code snippets possibly executing at time τ .

• Timer Events Collector: is responsible to monitor and manage timer events,

i.e., pull queries.

• Trigger Events Collector: is responsible to monitor and manage trigger events,

i.e., push queries.

• Event Queue: is a mechanism of dealing with asynchronous events in a syn-

chronous manner. In particular, every time there is a change in the relative

precedence of executing code snippets, a timer/trigger event is generated by

Time-aware Structure and placed into the Event Queue.

• Scheduler: is responsible for executing timer/trigger events queued in the

Event Queue and in the scheduled time.

4.6. Architecture and Implementation: Temporal Extension 115
Paper2
id=p2

Author3
id=a3

SIGMOD
id=v2

Paper4
id=p4

Author2
id=a2

Paper3
id=p3

editedid=e5

cit
ed

id=e9

ci
te

d
id

=e
8

citedid=e3

author-of
id=e1

author-of
id=e11

published-in
id=e7

au
th

or
-o

f
id

=e
4

published-in
id=e12

pu
bl

is
he

d-
in

id
=e

2

author (table)

name other attributes

a1 author1 ...

...

…
Other Nodes

id

t1

t2

t3

t4

t5

t6

t7

t8

t9

...

type-id

t1

...

id type-id s
(no

f1 t8

f1 t8

... ...

Entity-Nodes

Edges

id

name other attributes

p1 paper1 ...

...

type-id

t2

...

id

paper (table)

name other attributes

e1 author-of ...

...

type-id

t4

...

id

author-of (table)

name other attributes

e2 publishe
d-in ...

type-id

t5

id

published-in (table)

Folder-Nodes

Path-Nodes

(a)

Medical-doc1
Id=v1

Medical-doc1
Id=v1

Medical-doc1
Id=v1

Activity
id=e1

timestamp=Tx
type=archiving
action=transfer

...

Activity
id=e2

timestamp=Ty
type=lifecycle
action=update

...

name

v1 medical-doc1

v2 medical-doc1

id

v3 medical-doc1
... ...

Artifact Versions
(node)

creation
timestamp

Tm

Tn

Tp
...

author

alex

adam

eli
...

owner

bob

bob

rex
...

parent
version

nil

v1

v2
...

What
(edge attribute)

type

a1 lifecycle activity

a2 archiving activity

id

... ...

How
(edge attribute)

action

a1 update

a2 transfer

id

... ...

When
(edge attribute)

activity-timestamp

a1 Tx

a2 Ty

id

... ...

Who [AGENT]
(edge attribute)

ag-name

a1 alex

a2 bob

id

... ...

ag-type

people

people

...

ag-role

GP

admin

...

...

...

...

...

where
(edge attribute)

a1

a2

id

...

organization

radiology

radiology

...

...

...

...

...

which
(edge attribute)

a1

a2

id

...

system

Wiki

Wiki

...

...

...

...

...

label

a1 transfer

a2 update

id

Activity
(edge)

why
(edge attribute)

a1

a2

id

...

goal

RC Report

RC Report

...

...

...

...

...

phase

experiment

experiment

...

subject
(object)

predicate
(attribute)

object
(value)

v1 @name medical-doc1

...

a1 @type lifecycle acti...

entity-store (view)

...

subject
(node-from)

predicate
(edge)

object
(node-to)

v1(Tm) e1 v1(Tx)

v1(Tx) e2 v1(Ty)

v1(Ty) e3 v2(Tn)

graph-store (table)

...

Medical-doc1
Id=v2

Activity
id=e3

timestamp=Tn
type=archiving
action=storage

...a2 storage
... ...

subject
(node-from)

predicate
(edge)

object
(node-to)

v1(Tm) e1 v1(Tx)

v1(Tx) e2 v1(Ty)

...

folder-store (table)

... ...

TIME

folder-id

med-doc1

med-doc1

RC-report

... ...

subject
(node-from)

predicate
(edge)

object
(node-to)

v1(Tm) e1 v1(Tx)

v1(Tx) e2 v1(Ty)

v1(Ty) e3 v2(Tn)

Path-store (table)

... ...

Path-id

v1-v2

v1-v2

v1-v2

... ...

Paths
include

#1

#1

#1

...

Figure 4.6: Physical layer for storing a sample AEM graph and tables to store AEM
entities and relationships.

4.6.2 Implementation

Details about FPSPARQL query engine implementation is presented in Chapter 3.

In this Chapter, we instrument the query engine with Time-aware Controller. We

model graphs based on a RDF like data representation. Figure 4.6 represents a

sample AEM graph and tables to store the graph including: (a) artifact versions,

to store AEM entities; (b) activity, to store the relationships among entities. Rela-

tionship’s attributes can be stored in what, how, when, who, where, which, and why

tables; (c) entity store, which is a view on top of graph entities and relationships.

This triplestore, stores the node/edge ID in the subject column, node/edge attribute

in the predicate column, and node/edge value in the object column; (d) graph store,

which contains directed links between graph entities. This triple store, stores the

starting node ID in the subject column, edge ID in the predicate column, and ending

node ID in the object column; (e) timed folder store, which stores related entities

and relationships among them in a triplestore. The ‘folder-id’ column is added to

this triplestore for identifying folders; and (f) timed path store, which stores activity

edges between two entities in the graph. The ‘path-include’ column identifies each

path, and the ‘path-id’ column identifies set of paths considered as an activity-path.

Moreover, we have implemented a front-end tool to assist process analysts in two

steps:

4.6. Architecture and Implementation: Temporal Extension 116

Figure 4.7: Screenshots of front end tool: (A) Query assistant tool; and (B) graph
visualization tool: to visualize AEM graphs.

Step1: [Query Assistant] We provided users with a query assistant tool to generate

AEM queries in an easy way. Users can easily drag entities (i.e., artifacts and actors)

in the activity panel. Then they can drag the operations (i.e., evolution, derivation,

or timeseries) on top of selected entity. The proposed templates (e.g., for evolution,

derivation, and timeseries queries) will be automatically generated. Moreover it is

possible to generate the FPSPARQL query by clicking on “Translate to FPSPARQL”

button. Also, users can use the tool to generate the regular expressions and other

path queries they are interested in. Figure 4.7-A illustrates a screenshot of this tool

while generating the derivation query in Section 4.5.2.

4.7. Experiments 117

Step2: [Visualizing] We provided users with a graph visualization tool for the explo-

ration of graphs and query results. For the AEM graph exploration, we provide users

with a timeline like graph visualization with facilities such as zooming in and out.

Figure 4.7-B illustrates a screenshot of this tool while generating an evolution query.

4.7 Experiments

4.7.1 Datasets

We carried out the experiments on three time-sensitive datasets: (i) The real life

log of a Dutch academic hospital1, originally intended for use in the first Business

Process Intelligence Contest (BPIC 2011); (ii) e-Enterprise Course, this scenario is

built on our experience on managing an online project-based course2; and (iii) Supply

Chain Management log.

Dutch Academic Hospital

The real-life event log, taken from a Dutch Academic Hospital, contains events

related to a heterogeneous mix of patients diagnosed with cancer (at different stages

of malignancy) pertaining to the cervix, vulva, uterus and ovary. The event log

contains 1143 cases and 150291 events referring to 624 distinct activities. Details

about this event log can be found in [69]. Given the heterogeneous nature of these

cases, we first applied a preprocessing phase to adapt this dataset to artifact-centric

case scenarios. For example, we created more homogeneous subsets of cases, e.g.,

patients having a particular type of cancer. Then we assigned each case in the event

log to a patient document history. Afterward, we generated versions for document

histories according to event timestamps: the event log contains rich information

stored as attributes both at the event level and at the case level. Finally we generated

AEM graph model out of preprocesses log, where the generated graph includes

artifacts and activity relationships among them.

1http://data.3tu.nl/repository/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54
2http://www.cse.unsw.edu.au/∼cs9323

4.7. Experiments 118

Students and Project Mentors

Ad-hoc\Collaborative Environment

Event
Log

Data
Objects

Wiki System

Event
Log

Data
Objects

File System

Event
Log

Data
Objects

SVN Repository

Event
Log

Data
Objects

Issue Tracker

Event
Log

Data
Objects

...

Figure 4.8: e-Enterprise course scenario.

e-Enterprise Course

This scenario, is built on our experience on managing an online project-based course

“e-Enterprise Projects”. In this scenario, each project can be considered as a case

process, where various case workers (e.g. students, mentors and lecturers) are in-

volved. As an example, in the 2nd semester of 2009 we had 66 people (60 students +

5 project mentors + 1 lecturer) involved in course activities. During this semester,

fifteen projects (i.e., case instances) were defined, where each case handled by group

of four students and one mentor. Each mentor supervised 3 projects. The de-

velopment process of each project went through a sequence of pre-defined phases:

brainstorming, requirements analysis, design phase, prototype implementation, test-

ing, and final product delivery. For each phase various artifacts can be created, e.g.,

brainstorming documents and records, and each artifact version can be derived from

various sources, e.g., IEEE or other templates, and can be accessed/modified by dif-

ferent case workers over periods of time.

In order to document the evolution of artifacts, the activities of each project

have been documented through a Web-based project management system which was

equipped with many back-end modules such as: (a) Message board: to exchange

message and open discussion topics between the project members; (b) Wiki system:

4.7. Experiments 119

which is used to collaboratively edit documents related to the activities of projects;

(c) Blogging system: where each user has their own blog to edit their own posts;

(d) File sharing system: where project members can share access to different files

and documents; and (e) SVN repository: to synchronize the editing of the projects

source codes. This dataset contains 104,050 events. Figure 5.1 depicts an illustration

of this scenario.

Supply Chain Management

This dataset is the interaction log of a supply chain service, developed based on the

supply chain management scenario provided by WS-I (the Web Service Interoperabil-

ity organization). SCM dataset contains 4,050 events. We applied a preprocessing

phase to adapt this dataset to a case scenario. Details about this dataset can be

found in Chapter 3.

4.7.2 Evaluation

We have compared our approach with that of querying open provenance model

(OPM) [216, 248]. OPM, a proposal for a standard graph data model and vocabulary

for provenance, presents graph nodes as data artifacts, processes, and agents. Five

causal relationships are defined in OPM: a process ‘used’ an artifact, an artifact

‘was-Generated-By’ a process, a process ‘was-Triggered-By’ a process, an artifact

‘was-Derived-From’ an artifact, and a process ‘was-Controlled-By’ an agent.

We generated two types of graph models, i.e., AEM and OPM, from proposed

datasets. The AEM graphs generated based on the proposed model in Section 4.4.2.

The OPM graphs generated based on open provenance model specification [216, 248].

Figure 4.9, represents a sample AEM graph (Figure 4.9-A) for the hospital log, a

sample OPM graph generated from a part of AEM graph (Figure 4.9-B), and open

provenance model entities and relationships (Figure 4.9-C). Both AEM and OPM

graphs for each datasets loaded into FPSPARQL query engine. We evaluated the

performance and the query results quality using the proposed graphs.

4.7. Experiments 120

v3

(A)

v2

Patient
History

Patient
History

transfer

transfer

transfer
update

archive

TIME

update

update
use generate

use generate

use

Patient History

T10 T12 T13
T14

generate

use use
T1

T3

T4

T5

T5

T6 T7

T8

T9

T11

Brainstorming
Development Proces

Brainstorming.doc

wasGeneratedBy

Amin

wasControlledBy

wa

wasControlled

usedBy

Transfer

Used (T4)

GP

wasControlledBy
(T3,T4,T5))

Used (T3)Used (T5)

Update

Adam

wasControlledBy
(T8)

EliAlex

wasControlledBy
(T6)

wasControlledBy
(T5)

v2

Used (T6)

Used (T8)

Used (T5)

(Who:GP)

(Who:GP)

(Who:GP)

(Who:Alex)

(Who:Eli)

(Who:Adam)

A P
Used (R)

P A
wasGeneratedBy (R)

Ag P
wasControlledBy (R)

PP
wasTriggeredBy

AA
wasDerivedFrom

Process

Artifact

Agent

R: Role

(B) (C)

Figure 4.9: A sample AEM graph for the hospital log (A), a sample OPM graph
generated from a part of AEM graph (B), and open provenance model entities and
relationships (C).

Performance. We evaluated the performance of evolution, derivation, and time-

series queries using execution time metric. To evaluate the performance of queries,

we provided 10 evolution queries, 10 derivation queries, and 10 timeseries queries.

These queries were generated by domain experts who were familiar with the pro-

posed datasets. For each query, we generated an equivalent query to be applied to

the AEM graphs as well as the OPM graphs for each dataset. As a result, a set of

historical paths for each query were discovered. Figure 4.10 shows the average exe-

cution time for applying these queries to the AEM graph and the equivalent OPM

graph generated from each dataset. As illustrated in Figure 4.10 we divided each

dataset into regular number of events, then generated AEM and OPM graph for

different sizes of datasets, and finally ran the experiment for different sizes of AEM

and OPM graphs. We sampled different sizes of the graphs very carefully and based

on related cases (patients in the log hospital, projects in the e-Enterprise project,

and products in the SCM log) to guarantee the attributes of generated graphs. The

evaluation shows the viability and efficiency of our approach.

4.7. Experiments 121

Events OPM AEM #Nodes in TPM #Nodes in OPM
26K 2061 12 48k 271k
52K 3078 8.5 139k 516k
78K 4709 11 153k 562k

104K 6755 32 261k 853k

#Events OPM AEM #Nodes in TPM #Nodes in OPM
1K 270 3.5 3k 17k
2K 297 4 5k 21k
3K 612 26 7k 42k
4K 1891 11 10k 48k

#Events OPM AEM #Nodes in TPM #Nodes in OPM
37.5K 663 21 18k 34k
75K 1743 34 51k 117k

112.5K 2343 81 57k 160k
150K 3841 238 83k 181k

4709
150K 6755
112K 4709
75K
37K

SCM

Dutch academic hospital

e‐Enterprise Course

2061

3078

4709

6755

12 8.5 11 32
0

1000

2000

3000

4000

5000

6000

7000

8000

26K 52K 78K 104K

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Number of Events in dataset

Average Execution Time for Queries Applied to
e‐EnterpriseCourse Dataset (in seconds)

OPM

AEM

270 297

612

1891

3.5 4 26 11
0

200
400
600
800

1000
1200
1400
1600
1800
2000

1K 2K 3K 4K

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Number of Events in dataset

Average Execution Time for Queries Applied to
SCM Dataset (in seconds)

OPM

AEM

663

1743

2343

3841

21 34 81 238
0

500

1000

1500

2000

2500

3000

3500

4000

4500

37.5K 75K 112.5K 150K

Average Execution Time for Queries Applied to
Dutch Academic Hospital Dataset (in seconds)

OPM

AEM

Number of Events in dataset

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

(A)

(B)

(C)

Figure 4.10: The query performance evaluation results, illustrating the average ex-
ecution time for applying evolution, derivation, and timeseries queries on AEM and
OPM graphs generated from: (A) Dutch academic hospital dataset; (B) e-Enterprise
course dataset; and (C) SCM dataset.

4.7. Experiments 122

Quality. The quality of results is assessed using classical precision metric which

is defined as the percentage of discovered results that are actually interesting. For

evaluating the interestingness of the result, we asked domain experts who had the

most accurate knowledge about the datasets and the related processes to analyze

discovered paths and identify what they considered relevant and interesting. We

evaluated the number of discovered paths for all the queries (in performance eval-

uation) and the number of relevant paths chosen by domain experts. As a result

of applying queries to AEM graphs generated from all the datasets, 125 paths were

discovered and examined by domain experts, and 122 paths (precision=97.6%) con-

sidered relevant. And as a result of applying queries to OPM graphs generated from

all the datasets, 297 paths discovered, examined by domain experts, and 108 paths

(precision=36.4%) considered relevant.

Performance Comparison Between RDBMS and Hadoop Execution Plans.

As mentioned earlier, FPSPARQL queries can be run on two types of storage back-

end: RDBMS and Hadoop. In this part we compare the performance of query plans

on relational triplestores and Hadoop file system. All experiments in this part were

conducted on a virtual machine, having 32 cores and 192GB RAM. Figure 4.11 illus-

trates the performance analysis between RDBMS and Hadoop for queries (average

execution time) in Figure 4.10-A applied to Dutch academic hospital dataset. Fig-

ure 4.11 shows an almost linear scalability between the response time of FPSPARQL

queries applied to Hadoop file system and the number of events in the log.

Discussion. Evaluation shows that path queries applied to OPM graphs resulted

in many irrelevant paths. Moreover, we discovered many cycles in the results of

path queries applied to OPM graphs. To eliminate these cycles, we applied the cy-

cle elimination techniques proposed in [19]. To increase the performance of queries,

we implemented an interface to support various graph reachability algorithms [19]

such as all-pairs shortest path, transitive closure, GRIPP, tree cover, chain cover,

path-tree cover, and Sketch. As discussed in Chapter 3, there are two types of graph

reachability algorithms: algorithms traversing from starting vertex to ending vertex

using breadth-first or depth-first search over the graph, and algorithms checking

4.8. Related Work 123

21
34

81

238

12 17 21 29

0

50

100

150

200

250

37.5K 75K 112.5K 150K

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Number of Events in the Dutch Academic Hospital Log.

Average Execution Time for Queries Applied to
Dutch Academic Hospital Log (in seconds)

FPSPARQL (RDBMS)

FPSPARQL (Pig)

Figure 4.11: The evaluation results, illustrating the performance analysis between
RDBMS and Hadoop applied to Dutch academic hospital dataset.

whether the connection between two nodes exists in the edge transitive closure of

the graph. In both cases, path queries applied to OPM graphs maximized the con-

sumption of memory and processor and resulted in many irrelevant paths and cycles

in the query result.

4.8 Related Work

We study the related work into three main areas: artifact-centric processes, prove-

nance, and modeling/querying temporal graphs:

4.8.1 Artifact-centric Processes

Knowledge-intensive processes almost always involves the collection and presentation

of a diverse set of artifacts, and capturing human activities around artifacts. This,

emphasizes the artifact-centric nature of such processes where time becomes an

important part of the equation. Many approaches [186, 142, 62, 99, 63] used business

artifacts, that combine data and process in a holistic manner, as the basic building

block. Some of these works [186, 142, 99] used a variant of finite state machines to

specify lifecycles. Some theoretical works [63, 62] explored declarative approaches

to specifying the artifact lifecycles following an event oriented style.

4.8. Related Work 124

Another line of work in this category, focused on modeling and querying artifact-

centric processes [213, 325, 122]. In [213, 325], a document-driven framework, pro-

posed to model business process management systems through monitoring the life-

cycle of a document. Dorn et.al. [122], presented a self-learning mechanism for

determining document types in people-driven ad-hoc processes through combining

process information and document alignment. In these approaches, the document

structure is predefined or they presume that the execution of the business processes

is achieved through a business process management system (e.g., BPEL) or a work-

flow process.

Another related line of work is artifact-centric workflows [62] where the pro-

cess model is defined in terms of the lifecycle of the documents. Some other

works [16, 284, 119, 120, 300], focused on modeling and querying techniques for

knowledge-intensive tasks. Some of existing approaches [16, 284] for modeling ad-

hoc processes focused on supporting ad-hoc workflows through user guidance. Some

other approaches [119, 120, 300] focused on intelligent user assistance to guide end

users during ad-hoc process execution by giving recommendations on possible next

steps. All these approaches focused on user activities and guide users based on

analyzing past process executions.

In our model, actors, activities, artifacts, and artifact versions are first class

citizens, and the evolution of the activities on artifacts over time is the main focus.

The AEM model supports timed queries and enables weaving cross-cutting aspects,

e.g., versioning and provenance, around business artifacts to imbues the artifacts

with additional semantics that must be observed in constraint and querying ad-hoc

processes.

4.8.2 Provenance

Many provenance models [93, 136, 248, 303] have been presented in a number of

domains (e.g., databases, scientific workflows and the Semantic Web), motivated

by notions such as influence, dependence, and causality. The existing provenance

models, e.g., the open provenance model (OPM) [248], treat time as a second class

4.8. Related Work 125

citizen (i.e., as an optional annotation of the data) which will result in loosing

semantics of time and makes querying and analyzing provenance data for a particular

point in time inefficient and sometimes inaccessible.

Discovering historical paths through provenance graphs forms the basis of many

provenance query languages [201, 182, 351, 90, 242]. In ProQL [201], a query takes

a provenance graph as an input, matches parts of the input graph according to

path expression and returns a set of paths as the result of the query. PQL [182] pro-

posed to use a semistructured data model for handling provenance and extended the

Lorel query language for traversing and querying provenance graph. NetTrails [351]

proposed a declarative platform for interactively querying network provenance in a

distributed system in which query execution performs a traversal of the provenance

graph. RDFProv [90] is an optimized framework for scientific workflow provenance

querying and management. Missie et al. [242] presented a provenance model and

query language for collection-oriented workflow systems. They emphasize on query-

ing the provenance of collection of activities. The proposed framework, do not

support modeling, querying and analyzing the evolution of group of related entities

over time.

4.8.3 Modeling/Querying Temporal Graphs

In recent years, a plethora of work [184, 211, 285] has focused on temporal graphs

to model evolving, time-varying, and dynamic networks of data. They capture a

snapshot for various states of the graph over time. For example, Ren et al. [285] pro-

posed a historical graph-structure to maintain analytical processing on such evolving

graphs. Moreover, authors in [211, 285] proposed approaches to transform an ex-

isting graph into a similar temporal graph to discover and describe the relationship

between the internal object states. In our approach, we propose a temporal ar-

tifact evolution model to capture the evolution of time-sensitive data where this

data can be modeled as temporal graph. We also provide abstractions and efficient

mechanisms for time-aware querying of AEM graphs.

Approaches for querying graphs (e.g., [30, 149, 271, 315]) provide temporal ex-

4.9. Summary 126

tensions of existing graph models and languages. Tappolet et al. [315] provided tem-

poral semantics for RDF graphs. They proposed τ -SPARQL for querying temporal

graphs. Grandi [149] presented another temporal extension for SPARQL, i.e. T-

SPARQL, aimed at embedding several features of TSQL2 [243] (temporal extension

of SQL). SPARQL-ST [271] and EP-SPARQL [30] are extensions of SPARQL sup-

porting real time detection of temporal complex patterns in stream reasoning. Our

work differs from these approaches as we enable registering time-sensitive queries,

propose timed abstractions to store the result of such queries, and enable analyz-

ing the evolution of such timed abstractions over time. Moreover, we extended

FPSPARQL [53], our previous work, to support temporal queries and monitor the

result of such queries over time.

4.9 Summary

In this chapter, we have presented an artifact-centric activity model (AEM: Ar-

tifact Evolution Model) for ad-hoc processes. This model supports timed queries

and enables weaving cross-cutting aspects, e.g., versioning and provenance, around

business artifacts to imbues the artifacts with additional semantics that must be

observed in constraint and querying ad-hoc processes. Two concepts of timed fold-

ers and activity-paths have been introduced, which help in analyzing AEM graphs.

Folders enabled grouping related entities and paths helped in analyzing the history

of entities in time. Timed folders and activity-paths show their evolution for the

time period they represent. We have extended FPSPARQL, a query language for

analyzing business processes execution, to query and analyze AEM graphs.

To evaluate the viability and efficiency of the proposed framework, we have

compared our approach with that of querying OPM models where time is considered

as annotation. We have conducted experiments over real-world datasets. The results

of evaluation showed the viability and efficiency of our approach. A front-end tool

has been provided to facilitate the exploration and visualization of AEM graphs and

assisting users with generating evolution, derivation, and timeseries queries.

Chapter 5

Analytics over Ad-hoc Process

Data

5.1 Introduction

In modern enterprises, businesses accumulate massive amounts of data from a vari-

ety of sources. In order to understand businesses one needs to perform considerable

analytics over process execution data: data analysis is at the heart of decision mak-

ing in all business applications. Analytics, i.e., the discovery and communication of

meaningful patterns in data, can help in understanding the business data with an

eye to predicting and improving business performance in the future. In particular,

business process analytics can facilitate the analysis of process graphs in a detailed

and intelligent way through describing the applications of analysis, data, and sys-

tematic reasoning [241, 35, 210, 74, 171]. Consequently, an analyst can gather more

complete insights using techniques such as modeling, summarizing, and filtering.

Applications of business analytics extend to nearly all managerial functions in

organizations. For example, considering financial services, applying business ana-

lytics on customer dossiers and financial reports can specify the performance of the

company over periods of time. As another example, consider the collaborative rela-

tionship between researchers, affiliated with various organizations, in the process of

writing scientific papers, where it would be interesting to analyze the collaboration

127

5.1. Introduction 128

patterns (e.g., frequency of collaboration, degree of collaboration, mutual impact,

and degree of contribution) among authors or analyze the reputation of a book,

an author, or a publisher in a specific year. Such operations, requires supporting

n-dimensional computations on process graphs, providing multiple views at differ-

ent granularities, and analyzing set of dimensions coming from the entities and the

relationship among them in process graphs.

In traditional databases (e.g., relational DBs), data warehouses and OLAP (On-

Line Analytical Processing) technologies [15, 88] were conceived to support deci-

sion making and multidimensional analysis within organizations. To achieve this,

a plethora of OLAP algorithms and tools have been proposed for integrating data,

extracting relevant knowledge, and fast analysis of shared business information from

a multidimensional point of view. Moreover, several approaches have been presented

to support the multidimensional design of a data warehouse. Cubes defined as set

of partitions, organized to provide a multi-dimensional and multi-level view, where

partitions considered as the unit of granularity. Dimensions defined as perspectives

used for looking at the data within constructed partitions. Furthermore, OLAP

operations have been presented for describing computations on cells, i.e. data rows.

While existing analytics solutions, e.g., OLAP techniques and tools, do a great

job in collecting data and providing answers on known questions, key business in-

sights remain hidden in the interactions among objects and data: most objects and

data in the process graphs are interconnected, forming complex, heterogeneous but

often semi-structured networks. Traditional OLAP technologies were conceived to

support multidimensional analysis, however, they cannot recognize patterns among

process graph entities and analyzing multidimensional graph data, from multiple

perspectives and granularities, may become complex and cumbersome.

Existing approaches [169, 317, 92, 349, 278, 208, 198, 131], in on-line analyti-

cal processing on graphs, took the first step by supporting multi-dimensional and

multi-level queries on graphs, however, much work needs to be done to make OLAP

heterogeneous networks a reality [168]. The major challenges here are: (i) how to

extend decision support on multidimensional networks, e.g., process graphs, con-

sidering both data objects and the relationships among them; and (ii) providing

5.1. Introduction 129

multiple views at different granularities is subjective: depends on the perspective of

OLAP analysts how to partition graphs and apply further operations on top of them.

To address these challenges, we provide users with an explorative method to

analyze process data from multiple perspectives and granularities. The key contri-

butions of this chapter are:

• Proposing a graph data model, GOLAP, for online analytical processing on

process graphs. This data model enables extending decision support on mul-

tidimensional networks considering both data objects and the relationships

among them. We use the notions of folder and path to support multi-dimensional

and multi-level views over large process graphs. We redefine OLAP data ele-

ments (e.g., dimensions, measures, and cubes) by considering the relationships

among graph entities as first class objects.

• Extending SPARQL to support n-dimensional computations on process graphs.

The extension supports partitioning graphs (using folder and path nodes) and

allows evaluation of OLAP-style operations on graphs independently for each

partition, providing a natural parallelization of execution. We propose two

types of OLAP operations: assignments, to apply operations on entity at-

tributes, and functions, to apply operations on network structures among en-

tities. GOLAP operations support UPDATE and UPSERT [333] semantics.

We describe optimizations and execution strategies possible with the proposed

extensions. We provide a front-end tool for assisting users to create GOLAP

queries in an easy way.

The remainder of this chapter is organized as follows: Section 5.2 presents an

example scenario. In Section 5.3 we present a graph data model for online analytical

processing on graphs and we redefine OLAP data elements for graphs. In Section 5.4

we propose a query language for applying OLAP operations on graphs. In Section 5.5

we describe the query engine implementation and architecture. Section 5.6 reports

the evaluation results of the query engine extension. Finally, we discuss related work

in Section 5.7, before concluding the chapter in Section 5.8.

5.2. Example Scenario: Collaborative Case Management 130

5.2 Example Scenario: Collaborative Case Man-

agement

To understand the problem, we present an example scenario in the domain of collab-

orative case management. This scenario is based on the collaborative relationship

between researchers, affiliated with various organizations, for the process of writ-

ing scientific papers. Leveraging the recent advances of Web 2.0 and social media

facilitated the collaboration between researchers: collections of Web technologies

such as blogs (e.g., ScienceBlogs1), online repositories (e.g., arXiv2), share scientific

workflows (e.g., MyExperiment3), and online file sharing (e.g., Box4) can be used

to collaboratively generate scientific papers. Projects such as Liquid-Journals [36]

can be used to collect interesting links among scientific contributions. Furthermore,

libraries and other cultural heritage institutions5 have been collecting, describing

and presenting scientific publications for a long time.

While these approaches do a great job in collecting and managing scientific

knowledge, key business insights remain hidden in the interactions among scientific

entities, e.g., publications and authors. For example, a user may be interested in

understanding collaboration patterns among authors or analyzing the reputation of

a book, author, or publisher in a specific year. Figure 5.1 illustrates a simplified

graph to represent the network among scientific entities. The graph contains set of

nodes (e.g., authors, papers, venues, and affiliations) and the relationships among

them (e.g., author-of, published-in, affiliated-with, cited, and published-in), where

any node/edge can be described by an arbitrary set of attributes (see Figure 5.1).

The discovery and communication of meaningful patterns in scientific data, i.e.,

analytics, can help in calculating hidden attributes of scientific entities (e.g., number

of publications or citations of an author, reputation of a book or an author, or even

calculating the G-index [128] and H-index [180] of an author) or understanding the

1http://scienceblogs.com/
2http://arxiv.org/
3http://www.myexperiment.org/
4https://www.box.com/
5Organization such as International Federation of Library Associations and Institutions (IFLA))

initiated processes to collect and organize literature and information (http://www.ifla.org/).

5.2. Example Scenario: Collaborative Case Management 131

Paper

Author

Venue

Paper3 ICDE’12

SIGMOD’11

VLDB’10Paper1

Paper2

Alex

Sara

Adam

Eli

published-in

published-in

published-in

Affiliation

affiliated-with

University of
New South

Wales (UNSW)

HP Labs

affiliated-with

affiliated-with

affiliated-with

author-of

author-of

author-of
author-of

author-of

author-of

author-of

author-of

collaboration

collaboration

cited
cited

object: edge
type: author-of
author-order: 1
...

object: entity-node
type: author
ID: Alex
publications:16
citations:112
G-Index:0
H-Index:0
interests: database.
collaborated-with:12
...

object: edge
type: collaboration
collaboration-frequency: 1
collaboration-degree: 1
contribution-degree: 1
...

attributes

attributes

attributesNode Types

Figure 5.1: Motivating Scenario in on-line analytical processing on process graphs.

hidden relationships among scientific entities, e.g., collaboration patterns, where

collaboration can be defined as a directed link between every two authors having at

least one co-authored paper, and may have the following attributes:

• frequency of collaboration: showing how often the authors have collaborated

in a given period of time, e.g., in a year.

• degree of collaboration: as a pairwise metric showing how the authors have

collaborated in the time, e.g., the number of the papers they have co-authored

divide by all the papers every one has.

• mutual impact : depicting how the authors have had impact on each other’s

publications.

• degree of contribution: depicting what portion of community contributions,

e.g., papers, are generated by this author.

We use this example scenario to demonstrate how various users can use the GO-

LAP framework, for supporting decision making based on multidimensional analysis

of graphs. For example, we will show how an analyst can: (i) partition scientific

data into disjoint subsets, i.e., folder/path nodes; (ii) identify dimensions within

each partition; and (iii) identify measures, with different grains (e.g., number of

papers accepted in all venues or a specific conference) and types (e.g., additive and

non/semi-additive measures which can be added across any/non/some dimensions).

5.3. Representing Analytics over Ad-hoc Process Data 132

5.3 Representing Analytics over Ad-hoc Process

Data

5.3.1 GOLAP Data Model

We consider extending decision support on process graphs by introducing a model,

i.e., GOLAP, for graph exploration and summarization. We use the data model

proposed in Chapter 3 to represent online analytical processing on process graphs.

In particular, GOLAP data model supports: (i) uniform representation of nodes

and edges; (ii) structured and unstructured entities; and (iii) folder and path nodes,

which can represent a network snapshot, i.e. a subgraph, from multiple perspectives

and granularities. The set of (related) entities in a folder/path node is the result

of a given query that requires grouping graph entities based on set of dimensions

coming from the attributes of graph entities or the network structures, i.e., patterns

among graph entities.

5.3.2 GOLAP Data Elements

Basic logical model for OLAP, presents data elements such as cubes, partitions, and

dimensions to easily understand and analyze data from a multidimensional point of

view. In this section, we redefine OLAP data elements, for graphs, by considering

the relationships among graph entities as first class objects.

Cubes

A cube enables effective analysis of the graph data from different perspectives and

with multiple granularities. We reuse and extend the definition for graph-cube pro-

posed in [349]. In particular, given a multidimensional network N , the graph cube

is obtained by restructuring N in all possible aggregations of set of node/edge at-

tributes A, where for each aggregation A′ of A, the measure is an aggregate network

G′ w.r.t. A′. In order to consider both multidimensional attributes and network

structures, patterns among entities, into one integrated framework, we define pos-

5.3. Representing Analytics over Ad-hoc Process Data 133

sible aggregations upon multidimensional networks using partitions. In particular,

Q = {q1, q2, ..., qn} is a set of n cubes, where each qi is a cube, a placeholder for

set of partitions, and can be modeled using folder nodes. A partition can be con-

sidered as the unit of granularity, supports multi-dimensional and multi-level views

over graphs, and allows evaluation of (OLAP) operations providing a natural par-

allelization of execution. Three types of partitions are recognized: CC-, PC-, and

Path-Partitions.

Example 1. [CC-Partitions] Recall from Chapter 3 that a correlation condition ψ

is a binary predicate defined on the attributes of data objects that allows to identify

whether two or more entities (in a given graph) are potentially related. We use

correlation conditions (CC) to partition graphs (i.e., referred in this chapter as CC-

Partitions) based on set of dimensions coming from the attributes of node entities.

Folder nodes can be used to represent CC-Partitions. For example, Adam, an OLAP

analyst, is interested in partitioning the graph in the example scenario into a set of

related entities having the same type. The correlation condition ψ(nodex, nodey) :

nodex.type = nodey.type can be defined over the attribute type of two node entities

nodex and nodey in the graph. This predicate is true when nodex and nodey have the

same type value and false otherwise. Related node entities will be stored in folders,

where each folder can conform to an entity type and described by a set of attributes.

Figure 5.2-A represents the result of this example.

SIGMOD

Paper1

Alex Sara

other partitions

HP Labs UNSW ...

...

Paper2 ...

VLDB ...EliN
od

e
T

yp
es

Affiliation

Venue

Author

Paper

Alex

object: folder-node
Correlation-condition: node.type
type: affiliation
...

attributes
object: folder-node
path-condition: author (authorOf) paper (publishedIn) venue
venue: VLDB
year: 2010
...

attributes

Eli ... Alex Sara ...

Alex Adam ...

other
partitions

object: folder-node
path-condition: ...
venue: SIGMOD
...

attributes

object: folder-node
path-condition:...
venue: EDBT
...attrib

utes

(A) (B)

Figure 5.2: Examples of folder partitions: (A) result of Example 1; and (B) result
of Example 2.

5.3. Representing Analytics over Ad-hoc Process Data 134

Example 2. [PC-Partitions] A path condition (PC) can be used to group related

entities in a process graph based on set of dimensions coming from the attributes of

network structures. We define a path condition φ as a binary predicate defined on the

attributes of a path that allows to identify whether two or more entities (in a given

process graph) are potentially related through that path. Recall from Chapter 3 that

the (transitive) relationship, in a path, can be codified using regular expressions in

which alphabets are the nodes and edges from the process graph. Path conditions can

be used to partition process graphs (i.e., referred in this chapter as PC-Partitions)

based on set of dimensions coming from the attributes of node and edge entities. For

example, Adam is interested in partitioning the graph in the example scenario into a

set of related authors having at least one paper published in a specific venue. In other

words, Adam is interested in: (i) creating partitions for a set of related authors; and

(ii) adding authors to related partitions if: there exists the path ‘author
(authorOf)−−−−−−→

paper
(publishedIn)−−−−−−−→ venue’ between the author and the venue. In this case, correlation

conditions cannot be used to partition the graph as we need to apply conditions

not only on graph entities but also on the relationships among them. The path

condition φ(nodestart, nodeend, RE) can be defined on the existence of the path codified

by the regular expression RE:[author(authorOf)paper(publishedIn)venue] between

starting node, nodestart, and ending node, nodeend. This predicate is true if the path

exists, and false otherwise. Related authors satisfying the path condition, will be

added to partitions. Folder nodes can be used to represent PC-Partitions. Figure 5.2-

B represents the result of this example.

Example 3. [Path-Partitions] There are cases where OLAP analysts may be

interested in partitioning the graph into set of related paths. For example, Adam

is interested in partitioning the graph in the example scenario into a set of related

paths having the pattern ‘RE: author(authorOf)paper(publishedIn)venue’, to cal-

culate quality metrics for venues by analyzing related papers and/or authors quality

metrics. Set of related paths in a path node can be grouped, for example, by au-

thors (Figure 5.3-A) or by venues (Figure 5.3-B). Regular expressions can be used

to discover paths. Path nodes, a placeholder for a set of related paths, can be used

to represent Path-Partitions.

5.3. Representing Analytics over Ad-hoc Process Data 135

published-inauthor-ofAlex paper1 VLDB'10

published-inauthor-ofEli paper1 VLDB'10

published-inauthor-ofAlex paper2 SIGMOD'11

published-inauthor-ofSara paper2 SIGMOD'11

published-inauthor-ofAdam paper2 SIGMOD'11

published-inauthor-ofAlex paper3 ICDE’12

published-inauthor-ofAdam paper3 ICDE’12

published-inauthor-ofEli paper3 ICDE’12

published-inauthor-ofAlex paper1 VLDB'10

published-inauthor-ofAlex paper2 SIGMOD'11

published-inauthor-ofAlex paper3 ICDE'12

published-inauthor-ofSara paper2 SIGMOD'11

published-inauthor-ofAdam paper2 SIGMOD'11

published-inauthor-ofAdam paper3 ICDE'12

published-inauthor-ofEli paper1 VLDB'10

published-inauthor-ofEli paper3 ICDE'12

Figure 5.3: Result of Example 3 grouped by: (A) authors; and (B) venues.

Dimensions

Dimensions can be defined as perspectives used for looking at the data. In particular,

D = {d1, d2, ..., dn} is a set of n dimensions, where each di is a dimension name. Each

dimension di is represented by a set of elements (E) where elements are the nodes and

edges of the graph. In particular, E = {e1, e2, ..., em} is a set of m elements, where

each ei is an element name. Each element ei is represented by a set of attributes

(A), where A = {a1, a2, ..., ap} is a set of p attributes for element ei, and each ai is

an attribute name. A dimension di can be considered as a given query that require

grouping graph entities in a certain way. Correlation conditions and path conditions

can be used to define such queries. The result of this query can be stored in folder

and path nodes.

Cells

A dimension uniquely identify a subgraph within each partition, which we call a

cell. In particular, C = {c1, c2, ..., cn} is a set of n cells, where each ci is a cell name.

Each cell can be constructed using GOLAP operations (see operations definition).

For example, considering the motivating scenario, we may be interested in a set of

dimensions coming from: (i) the attributes of graph nodes, e.g. authors with specific

5.3. Representing Analytics over Ad-hoc Process Data 136

g-index or h-index; or (ii) the attributes of graph nodes and edges, e.g. authors

who published in specific venues or authors affiliated with universities in Australia

during a specific time period. In order to identify cells, dimensions may have levels

used for drilling down/up, where levels enable visiting the general/detailed view of

dimensions. For example, it is important to see if the number of publications for a

specific author (or group of related authors) are higher in a particular year, or drill

down to see if they were higher in a particular part of the year.

Measures

Dimensions can be used as an index in order to analyze measures. A measure can

be considered as numerical and computational attributes of dimensions’ elements.

In particular, M = {m1,m2, ...,mn} is a set of n measures, where each mi is a

measure name. For example, in the motivating scenario, number-of-publications

can be considered as a measure for the element ‘author’ (which is a node entity) in a

specific dimension. As another example, collaboration-frequency can be considered

as a measure for the element ‘collaboration’ (which is an edge entity) in a specific

dimension. Measures can be calculated by applying operations to multidimensional

graph data, where operations can support UPSERT and UPDATE semantics (see

operations definition). Three types of measures can be recognized:

• object attributes, are attributes of nodes and edges in the graph. The attribute

for existing graph nodes, i.e., entities/folders/paths, can be considered as mea-

sure mi. The value for existing attributes can be updated or new attributes

can be added to nodes as the result of a GOLAP operation. For example,

the value for the attribute ‘citations’ of an author can be updated/inserted

during a GOLAP operation. Also, the attribute for existing graph edges can

be considered as measure mj. The value for existing attributes can be updated

or new attributes can be added to edges as the result of a GOLAP operation.

For example, the value for the attribute ‘collaboration-frequency’ of a collab-

oration edge between two authors can be updated/inserted during a GOLAP

operation.

5.3. Representing Analytics over Ad-hoc Process Data 137

• aggregated nodes, are subgraphs including set of related nodes and relationships

among them which can be considered as measure mi. For example, considering

Figure 5.1, OLAP analysts may be interested in the collaborative relationship

between researchers affiliated with HP Labs and the University of New South

Wales (UNSW), e.g., see Example 7. Folder and path nodes are examples of

aggregated nodes, can be added to graphs during a GOLAP operation.

• inferred edges, are new edges which can be added between two nodes in the

graph as a result of a GOLAP operation. For example, collaboration between

two authors can be calculated and can be added as an attributed edge between

two authors in the graph.

Operations

Typical operations on data cubes are: (i) roll-up: to aggregate data by moving up

along one or more dimensions; (ii) drill-down: to disaggregate data by moving down

dimensions; and (iii) slice-and-dice: to perform selection and projection on snap-

shots. Such operations are supported to explore different multidimensional views

and allow interactive querying and analysis of the underlying data. Consequently,

operations can be used for describing a computation on cells and can be ordered

based on the dependencies between cells. In particular, O = {o1, o2, ..., on} is a set

of n operations, where each oi is an operation name. Operations support UPSERT

and UPDATE semantics. In order to provide a natural parallelization of execution,

each operation should be evaluated independently for each partition. In GOLAP,

operations can be divided into two categories:

• assignments : are defined to apply operations on entity attributes. Assign-

ments support correlation between the left side (which designates target cells)

and right side (which contains expressions involving cells or ranges of cells

within the partition), i.e., to simulate the effect of multiple joins and UNIONs

using a single access structure. For example, it is possible to apply operations

on number of publications (for different group) of authors in order to rank

each author, e.g., see Example 4.

5.4. Querying Analytics over Ad-hoc Process Data 138

• functions : are defined to apply set of related operations on network struc-

tures among entities. A function can be considered as a portion of SPARQL

patterns (see Section 5.4) used to apply operations on the constructed parti-

tions. For example, functions can be used to aggregate/disaggregate authors,

to calculate measures such as G-index, H-index, and number-of-publication of

authors, and to calculate collaboration-frequency between two authors, e.g.,

see Examples 5 to 8.

5.4 Querying Analytics over Ad-hoc Process Data

In Chapter 3, we discussed the shortcomings of SPARQL and introduced FPSPARQL

to address some of them. In this section we extend FPSPARQL to support n-

dimensional computations on graphs. In particular, on-line analytical processing

on graphs requires dividing objects and relationship among them into partitions,

dimensions, and measures. To model that, we extend FPSPARQL by introducing

the ‘GOLAP’ clause. This command is used to identify partitions, dimensions, and

measures on graphs. A basic GOLAP query looks like this:

Select <measures>

Where{

<existing parts of a query block>

GOLAP{

?analytic [@CC|@PC|@Path-Partition] <identify partitions>.

?analytic @dimension <identify dimensions>.

?analytic @measure <identify measures>.

<operation>; <operation>; ... <operation>;

}

}

The GOLAP command is evaluated after aggregations but before ORDER BY

clause. The variable ?ANALYTIC is defined to specify partitions, dimensions, and

measures, where:

5.4. Querying Analytics over Ad-hoc Process Data 139

• Partitions : can be considered as: (i) CC-Partition: folder nodes which are con-

structed according to a correlation condition; (ii) PC-Partition: folder nodes

which are constructed according to a path condition; and (iii) PATH-Partition:

path nodes which are constructed according to a regular expression.

• Dimensions : can be defined on the attributes of set of: (i) node elements, and

can be used in assignments; or (ii) node and edge elements, and can be used

in functions.

• Measures : can be defined to identify expressions computed by GOLAP clause.

GOLAP operations can be defined using assignments, to apply operations on the

attributes of node elements, and functions, to apply operations on edge attributes,

aggregated nodes, and inferred edges measures. By default, the evaluation of op-

erations occurs in the order of their dependencies. However, there are scenarios in

which sequential ordering of evaluation is desired. We provide an explicit processing

option, i.e. SEQUENTIAL, for that as in: SEQUENTIAL(... < operation > ...).

Following we explain the extension for online analytical processing on graphs through

examples.

Example 4. [nodes attributes] Adam is interested in partitioning the graph in

the example scenario into a set of authors having same interests, where interest

is an enumerated type consisting of a set of named values such as database and

business process. Adam is interested in applying following operations on constructed

partitions:

1. Update the value for the ‘rank’ attribute (i.e., the value for this attribute is

a real number in a fixed range [0,M] where M means the highest rank) of the

authors who has:

• more than 200 publications to ‘6’;

• more than 200 publications and more than 1000 citations to 50% higher

than the authors having same number of publications but less than 1000

citations;

5.4. Querying Analytics over Ad-hoc Process Data 140

• between 100 and 200 publications to ‘4’;

• between 50 and 100 to ‘2’;

• less than 50 to ‘1’;

2. Insert a new attribute, ‘contribution-degree’, for authors within each partition.

For each partition, this attribute will be calculated from division of number of

publications for an authors into the sum of publications of all authors.

In this example, all the measures come from the attributes of nodes in the graph.

Following is the FPSPARQL query for this example.

1 Select ?ar, ?cd

2 Where

3 {

4 GOLAP{

5 ?analytic @CC-Partition ‘node[type="author"].interest’.

6 ?analytic @dimension ‘publications as ?ap, citations as ?ac’.

7 ?analytic @measure ‘rank as ?ar, contribution-degree as ?cd’.

8 #operation 1

9 update ?ar[?ap >= 200]= 6;

10 update ?ar[?ap >= 200 AND ?ac >= 1000] =

11 ?ar[?ap > 200 AND ?ac < 1000]*1.5;

12 update ?ar[200 > ?ap >= 100]= 4;

13 update ?ar[100 > ?ap >= 50]= 2;

14 update ?ar[?ap < 50]= 1;

15 #operation 2

16 upsert ?cd[*] = ?ap / ?sum_publications;

17 }

18 AGGREGATE { (?sum_publications, SUM, {?ap}) }

19 }

In this example, the variable ?ANALYTIC (lines 5 to 7) is used to define par-

titions, dimensions, and measures. The predicate @CC-PARTITION (line 5) parti-

5.4. Querying Analytics over Ad-hoc Process Data 141

tions the graph into a set of related nodes, i.e., set of authors having same interests

where constructed partitions will be stored in a set of folder nodes. The NODE key-

word (line 5) helps in partitioning the graph by filtering graph nodes through set of

nodes attributes and their values in the bracket, e.g., in “node[type=‘author’]”, and

selecting an attribute for partitioning the graph, e.g., in “node[type=‘author’].interest”.

In particular, line 5, will partition the graph into set of authors having same interest.

The predicate @DIMENSION (line 6) used to define dimensions to apply further

operations on constructed partitions. The predicate @MEASURE (line 7) used to

define measures to be updated/upserted. In order to write operations in a simple

way we support aliases (using AS statement) for dimensions and measures, e.g., ?ap

in ‘publications as ?ap’.

The Keyword UPDATE/UPSERT used to update/upsert a measure in an opera-

tion. Evaluation of operations will apply independently for each partition providing

a natural parallelization of execution. An assignment can designate a single object

reference (e.g., ‘[author-id = 2]’ which designates an author whose ID is 2) or set

of objects (e.g., ‘[publications >= 200]’ which designates set of authors who has

more than 200 publications). Assignments support the correlation between the left

side and right side of assignments, e.g., in lines 10 and 11. Notice that to remove

unnecessary computations, assignments whose results are not referenced in outer

blocks will be removed automatically.

To calculate contribution-degree for each author we use aggregate functions. In

order to support aggregation functions in FPSPARQL, we implemented the aggre-

gation extension proposed in C-SPARQL [40]. Aggregation clause will be added at

the end of the query, and have the following syntax:

AggregateClause -->

(‘AGGREGATE { (’ var ‘,’ Function ‘,’ Group ‘)’ [Filter] ‘}’)*

Function -->

‘COUNT’ | ‘SUM’ | ‘AVG’ | ‘MIN’ | ‘MAX’

Group -->

var | ‘{’ var (‘,’ var)* ‘}’

5.4. Querying Analytics over Ad-hoc Process Data 142

Using AGGREGATE statement we calculate sum of publications of all authors

in the partition and assign this value to the variable ‘?sum publications’ (line 18).

Notice that all aggregates are computed before evaluation of operations so they are

available for the operations. Then we calculate contribution-degree, ‘?cd’, and add

it as a new attribute for all author, ‘?cd[*]’ (line 16).

Example 5. [inferred edges] Adam is interested in partitioning the graph in the

example scenario into a set of related authors collaborating on (specific) papers. To

achieve this, set of dimensions coming from the attributes of authors, papers and

the relationship among them should be analyzed. Similar to Example 2, a path-

condition can be used to partition authors. After partitioning, Adam is interested

to establish a pairwise ‘collaboration’ edge between authors in each partition. This

edge may have some attributes, where attributes can be calculated in an operation.

For example, considering Figure 5.1, authors (e.g., Alex and Sara) collaborating

on a paper will be correlated with a collaboration edge having attributes such as

collaboration-frequency, collaboration-degree, and contribution-degree. These at-

tributes are defined in the motivating scenario.

This example represents, how the query language is able to establish an edge

between two members of a partition as a result of a GOLAP operation. As future

work, we will show that how this feature can be used for enriching crowd computing

graphs [24, 25],e.g., establishing weighted edges between requesters and workers in

a crowdsourcing [114] graph. Following is the FPSPARQL query for this example.

1 Select ?m, ?edge, ?n

2 Where{

3 # defining path condition

4 ?path-condition @regular-expression ‘?author (?authorOf) ?paper’.

5 ?path-condition @groupBy ?paper.

6 ?path-condition @partition-item ‘distinct ?author’.

7 #

8 # defining @regular-expression variables

9 ?author @isA entityNode. ?author @type author.

5.4. Querying Analytics over Ad-hoc Process Data 143

10 ?authorOf @isA edge. ?authorOf @type author-of.

11 ?paper @isA entityNode. ?paper @type paper.

12 #

13 GOLAP{

14 ?analytic @PC-Partition ?path-condition.

15 ?analytic @dimension ‘?m, ?n’.

16 #dimensions(s) are defined in the function!

17 ?analytic @measure ‘?edge’.

18 #measure(s) are defined in the function!

19 #

20 function.F1;

21 }

22 }

23

24 functions{

25 F1{

26 ?m @isA entityNode. ?m @type author. ?m @name ?m_name.

27 ?n @isA entityNode. ?n @type author. ?n @name ?n_name.

28 correlate{

29 (?m,?n,?edge,FILTER(?m_name <> ?n_name))

30 ?edge @isA edge. ?edge @type ‘collaboration’.

31 ?edge @collaboration-frequency ‘0’.

32 ?edge @collaboration-degree ‘0’.

33 ?edge @contribution-degree ‘0’.

34 }

35 }

36 }

In this example, the predicate @PC-PARTITION (line 14) is used to parti-

tion the graph into a set of related authors, where each partition contains authors

of a specific paper. This condition is generated through the regular expression

5.4. Querying Analytics over Ad-hoc Process Data 144

‘author(authorOf)paper’ (line 4), where variable ?path − condition is used to de-

fine the path-condition attributes. Also set of predicates used to define the reg-

ular expression (@REGULAR-EXPRESSION in line 4), grouping selected paths

(@GROUPBY in line 5), and defining the items to be added to constructed parti-

tions (@PARTITION-ITEM in line 6). Moreover, The DISTINCT keyword can be

used to add distinct (different) values to the partition. The second block of codes

in this example (lines 9 to 11), defines the elements of regular expression such as

?author, ?authorOf , and ?paper.

To construct an attributed edge between two nodes in partitions we use functions.

The FUNCTIONS keyword (line 24) is used to define a block of functions. Each

function defined by a name (e.g., function F1) and a block of SPARQL patterns.

Defined functions can be called using FUNCTION keyword (line 20) following by

a full stop and function name (e.g., ‘function.F1’). In this example, function F1

defined to establish a collaboration edge among authors. In Chapter 3, we introduced

CORRELATE statement to establish a directed edge between two nodes in a graph.

As a reminder, a basic correlation condition query looks like this:

correlate {

(entity1, entity2, edge1, condition)

pattern1.

pattern2.

...

}

As a result, entity1 will be correlated to entity2 through a directed edge edge1

if the condition evaluates to true. Patterns can be used for specifying the edge

attributes. In function F1 (lines 25 to 35), variables ?m and ?n represent authors.

The condition in correlate statement (i.e., ‘?mname <>?nname’) makes sure that

only two different authors will be connected. For simplicity reason, in this example

we assign a constant value for collaboration edge attributes. Next example shows

how attributes of the collaboration edge can be calculated dynamically.

5.4. Querying Analytics over Ad-hoc Process Data 145

Example 6. [edges attributes] Adam is interested in calculating the degree of

collaboration in Example 5. In section 5.2, degree of collaboration defined as a

pairwise metric showing how the authors has collaborated in time, e.g., the number

of papers they have coauthored divided by all the papers every one has. Notice that

this attribute may have different values over time. Following, we revise function F1

in Example 5, in order to calculate the collaboration degree between authors.

1 F1{

2 ?m @isA entityNode. ?m @type author. ?m @name ?m_name.

3 ?n @isA entityNode. ?n @type author. ?n @name ?n_name.

4 ?m @publications ?pubs.

5 #

6 ?edge @isA edge. ?edge @type ‘collaboration’.

7 ?edge @numOfCoauthoredPapers ?numCoPapers.

8 ?edge @collaboration-degree ?clbDegree.

9 #

10 optional{

11 BIND (?numCoPapers+1 AS ?numCoPapers).

12 BIND (?numCoPapers/?pubs AS ?clbDegree)

13 } FILTER EXISTS { ?m ?edge ?n }

14 #

15 optional{

16 correlate{

17 (?m,?n,?edge,FILTER(?m_name <> ?n_name))

18 BIND (1 AS ?numCoPapers). #BIND assign a value to a variable

19 BIND (?numCoPapers/?pubs AS ?clbDegree)

20 }

21 } FILTER NOT EXISTS { ?m ?edge ?n }

22 }

In this example, partitions will be constructed similar to Example 5, where each

partition contains authors of a specific paper. Considering that the operations are

5.4. Querying Analytics over Ad-hoc Process Data 146

evaluated for one partition at a time, to calculate the number of coauthored papers

between two authors it will be enough to follow two steps: (a) if the collaboration

edge exists, increase the value for coauthored-papers attribute by 1; and (b) if the

collaboration edge does not exist between authors, construct the edge and set the

coauthored-papers attribute to 1. Variables ?m and ?n represent authors in the

partitions and defined in lines 2 to 4, and variable ?pubs represents the number

of publications for author ?m. The collaboration edge, i.e., ?edge, is defined in

lines 6 to 8, where variable ?numCoPapers represents number of coauthored pa-

pers between authors ?m and ?n. The variable ?clbDegree (line 8) represents the

collaboration degree between authors ?m and ?n and will be calculated by ‘?num-

CoPapers/?pubs’, i.e., number of papers they have coauthored divided by all the

papers every one has.

There are two optional statements used in this function. The first optional

statement (lines 10 to 13) used to updated the number of coauthored papers and

recalculating the collaboration degree if the edge exists between authors ?m and ?n.

Notice that in SPARQL, the EXISTS and NOT EXISTS statements are used based

on testing whether a pattern exists/not-exists in the graph. Moreover, in SPARQL,

the BIND statement allows a value to be assigned to a variable in a group graph

pattern. The second one (lines 15 to 21) used to construct the collaboration edge

?edge between authors ?m and ?n if the edge does not exists between them. In this

case, the edge will be constructed (line 17), the number of coauthored papers will

be set to 1 (line 18), and the collaboration degree will be calculated (line 19).

Example 7. [aggregated nodes] Adam is interested in the collaborative relation-

ship between researchers affiliated with affiliations, e.g., HP Labs and UNSW. To

achieve this, he partitioned the graph in the example scenario into a set of related

authors affiliated with specific affiliations by setting the regular expression to ‘author

(affiliated-with) affiliation’. Then he set the group-by attribute to ‘affiliation’ and put

related authors in partitions. This example shows how partitions can be stored (e.g.,

as a folder node in this example) and added to the graph as a result of a GOLAP

query. Notice that such aggregated nodes can have set of descriptive attributes. This

5.4. Querying Analytics over Ad-hoc Process Data 147

way Adam will be enable to construct relationships (e.g., ‘collaboration’ edge) among

aggregated nodes in the graph. Following is the FPSPARQL query for this example.

1 Select ?aff_title

2 Where{

3 # defining path condition

4 ?path-condition @regular-expression

5 ‘?author (?affiliated-with) ?affiliation’.

6 ?path-condition @groupBy ?affiliation.

7 ?path-condition @partition-item ‘distinct ?author’.

8 #

9 # defining @regular-expression variables

10 ?author @isA entityNode. ?author @type author.

11 ?affiliated-with @isA edge.

12 ?affiliated-with @type affiliated-with.

13 ?affiliation @isA entityNode. ?affiliation @type affiliation.

14 ?affiliation @title ?aff_title. #e.g., UNSW or HP Labs.

15 #

16 GOLAP{

17 ?analytic @PC-Partition ?path-condition.

18 ?analytic @dimension ‘?author, ?aff_title’.

19 #dimensions(s) are defined in the function!

20 ?analytic @measure ‘?folderNode’.

21 #measure(s) are defined in the function!

22

23 function.F1;

24 }

25 }

26

27 functions{

28 F1{

29 BIND (?folderNode as ?aff_title) #?aff_title defined in Line14

5.4. Querying Analytics over Ad-hoc Process Data 148

30 fconstruct ?folderNode

31 select * where {

32 ?folderNode @description ’set of ...’.

33 ?folderNode @numberOfAuthors ?authorsCount.

34 # other patterns.

35 }

36 AGGREGATE { (?authorsCount, COUNT, {?author}) }

37 }

38 }

In this example, the predicate @PC-PARTITION (line 17) is used to partitions

the graph into a set of related authors affiliated with specific affiliations. This condi-

tion is generated through the regular expression ‘author (affiliated-with) affiliation’

(lines 4 and 5). The variable ?path-condition is used to define the path-condition

attributes, i.e., @REGULAR-EXPRESSION, @GROUPBY, and @PARTITION-

ITEM. The second block of codes (lines 9 to 14), defines the elements of regular

expression such as ?author, ?affiliated-with, and ?affiliation. Then the GOLAP

statement will partition the graph. Finally the function F1 will apply on all parti-

tions. As a result, each partition will be stored in a folder node and will be added

to the graph as an aggregated node.

In Chapter 3 we introduced the FCONSTRUCT command which is used to group

a set of related entities or folders. As a reminder, a basic folder node construction

query looks like this:

fconstruct <Folder_Node Name>

[select ?var1 ?var2 ... | (Folder_Node1 Name, Folder_Node2 Name,...)]

where {

pattern1.

pattern2.

...

}

mailto:@PARTITION-ITEM.The
mailto:@PARTITION-ITEM.The
mailto:@PARTITION-ITEM.The

5.4. Querying Analytics over Ad-hoc Process Data 149

In this example we use FCONSTRUCT command, in function F1, in order to

store each partition as a folder node and add them to the graph. We set the name

of the folder node (?folderNode) as the affiliation title (?aff title) by binding its

value to the folder to be constructed. For example, if function F1 apply on the

partition which contains set of authors affiliated with UNSW, then the variable

?aff title will contain ‘UNSW’ (line 14), and consequently the name of the folder

to be constructed will be ‘UNSW’. Notice that the folder node can have set of

descriptive attributes, e.g., description and number of authors (lines 32 to 34). The

value for these attributes can be calculated dynamically, e.g., number of authors.

Next, Adam can use a function, similar to Example 5, to construct relationships

(e.g., ‘collaboration’ edge with attributes such as collaboration-frequency, collaboration-

degree, and contribution-degree) between aggregated nodes. Recall from Chapter 3

that we introduced the PCONSTRUCT command to construct path nodes. In par-

ticular, in scenarios similar to Example 7, FCONSTRUCT can be used to store

CC-Partitions and PC-Partitions in folder nodes and PCONSTRUCT can be used

to store Path-Partitions in path nodes.

Example 8. [path partitions] Adam is interested in partitioning the graph in

the example scenario into a set of related paths having the pattern ‘RE: author (au-

thorOf) paper (publishedIn) venue’, and group by authors. Figure 5.3-A illustrates

such partitions. As next step, Adam is interested in:

• Update the number of publications for each author. This query can be done by

counting papers in each partition.

• Update the number of citations for each author. This can be done by calculating

the summation of all papers’ citations.

• Calculate ERA (Excellence in Research for Australia) rank for each author.

For example, consider that in ERA ranking, papers published in venues ranked:

(i) ‘A*’ have 4 points; (ii) ‘A’ have 1 point; (iii) ‘B’ have 0 point; and (iv) ‘C’

have -1 point.

Following is the FPSPARQL query for this example.

5.4. Querying Analytics over Ad-hoc Process Data 150

1 Select ?pub, ?paperCitation, ?authorCitation, ?ERA

2 Where{

3 # defining path condition

4 ?path-node @regular-expression

5 ‘?author (?authorOf) ?paper (?publishedIn) ?venue’.

6 ?path-node @groupBy ?author.

7 #

8 # defining variables used in the regular expression

9 ?author @isA entityNode. ?author @type author.

10 ?authorOf @isA edge. ?authorOf @type author-of.

11 ?paper @isA entityNode. ?paper @type paper.

12 ?publishedIn @isA edge. ?publishedIn @type published-in.

13 ?venue @isA entityNode. ?venue @type venue.

14 ?paper @citations ?paperCitation

15 ?author @publication ?pub.

16 ?author @citation ?authorCitation.

17 ?author @ERA_Ranking ?ERA.

18 ?venue @isA entityNode. ?venue @type venue.

19 #

20 GOLAP{

21 ?analytic @Path-Partition ?path-condition.

22 ?analytic @dimension ‘?author, ?paper, ?venue’.

23 #dimensions are defined in lines 9 to 18!

24 ?analytic @measure ‘?pub,?paperCitation,?authorCitation,?ERA’.

25 #measures are defined in lines 9 to 18!

26

27 function.F1;

28 function.ERA;

29 }

30 }

31

5.4. Querying Analytics over Ad-hoc Process Data 151

32 functions{

33 F1{

34 #1-update number of publications for each author.

35 update ?pub[*] = ?numberOfPapers;

36

37 #2-update number of citations for each author.

38 update ?authorCitation[*] = ?allCitations;

39

40 AGGREGATE { (?numberOfPapers, COUNT, {?paper}) }

41 AGGREGATE { (?allCitations, SUM, {?paperCitation}) }

42 }

43

44 ERA{

45 #4-calculating ERA ranking

46 update ?ERA[*] = (?numOfTopA * 4)+(?numOfA * 1)-(?numOfC * 1);

47

48 AGGREGATE { (?numOfTopA, COUNT, {?paper})

49 FILTER (?paper published-in ?venue. ?venue @Rank = ‘A*’) }

50 AGGREGATE { (?numOfA, COUNT, {?paper})

51 FILTER (?paper published-in ?venue. ?venue @Rank = ‘A’) }

52 AGGREGATE { (?numOfC, COUNT, {?paper})

53 FILTER (?paper published-in ?venue. ?venue @Rank = ‘C’) }

54 }

55 }

In this example, parameter @PATH-PARTITION (line 21) is used to partition

the graph into set of path nodes. The regular expression for path nodes is defined in

the parameter @REGULAR-EXPRESSION (line 4 and 5). Predicate @GROUPBY

is used to group discovered paths by authors (line 6). The second block of code

(lines 8 to 18) defines the variables used in the regular expression. The GOLAP

statement (lines 20 to 29) defines dimensions and measures to be used in functions

5.5. Architecture and Implementation: Analytics Extension 152

F1 and ERA. In function F1, aggregates used to calculate the number of papers (line

40) and sum of citations (line 41) for the authors. The assignment in line 35 will

update the number of publications, ?pub, for all authors, ?pub[∗]. The assignment

in line 38 will update the number of citations, ?authorCitation, for all authors,

?authorCitation[∗]. In function ERA, aggregates used to calculated number of

papers published in venues ranked ‘A*’, ‘A’, and ‘C’. Note that, venues ranked as

B will not be calculated as they have zero points. The assignment in line 46 will

update the ERA ranking, ?ERA, for all authors, ?pub, for all authors, ?ERA[∗].

5.5 Architecture and Implementation: Analytics

Extension

5.5.1 Architecture

In Chapters 3 and 4, we introduced FPSPARQL graph processing architecture,

where the architecture consists of the following components: Graph Loader, Data

Mapping Layer, Query Mapping Layer, Regular Expression Processor, External Al-

gorithm/Tool Controller, Time-aware Controller, and Query Optimizer. In this

chapter, we instrument the Query Optimizer component, to support the better per-

formance of analytics queries, and add a new component, i.e., GOLAP Controller,

to support the execution of FPSPARQL analytics queries. In particular, GOLAP

Controller is responsible for partitioning graphs and allows evaluation of OLAP oper-

ations on graphs independently for each partition, providing a natural parallelization

of execution. Figure 5.4 illustrates FPSPARQL graph processing architecture. In

next section we describe the GOLAP Controller and the optimization techniques

applied to analytics queries.

5.5.2 Analytics Queries Execution and Optimization

Figure 5.5 illustrates the GOLAP Controller, classifies the evaluation order and

dependency analysis of analytics queries, and identifies the execution algorithm. In

5.5. Architecture and Implementation: Analytics Extension 153

Graph Loader

Data Mapping

Regular Expression Processor

FPSPARQL Query Engine

Ti
m

e-
aw

ar
e

C
on

tro
lle

r

External (mining) algorithm/tool Controller

Relational RDF
(Storage and Indexing)

FPS
P

AR
Q

L Q
uery

R
D

F/N
3/XM

L (G
raph)

Graph Processing
Architecture

SPARQL Queries

Folder/Path Queries

GOLAP Queries

Q
ue

ry
O

pt
im

iz
er

G
O

LA
P

 C
on

tro
lle

r

(FPSPARQL-To-SQL Translation and Processing)

Query Mapping

(FPSPARQL-to-PigLatin Translation and Processing)
Hadoop File System

Figure 5.4: FPSPARQL graph processing architecture: analytics extension.

particular, the analytics query will be evaluated using query mapping layer. This

layer is consist of a FPSPARQL parser for parsing FPSPARQL queries based upon

the syntax of FPSPARQL. Next step is to analyze the partitions. The partitioning

of the graph provides an obvious way to parallelize OLAP operations on graph

partitions and provide scalability. For CC-Partitions, dimensions will be specified

and query filters will be generated to partition the graph based on entity attributes.

For PC-Partitions and Path-Partitions, in order to convert path queries, regular

expressions will be analyzed and path-based indexing will be applied to the graph.

We use an existing path-based indexing approach (i.e., gIndex [337]) for partitioning

the graph, based on patterns among graph entities. We use gIndex to build path

indices, in order to help processing path conditions and constructing path partitions.

Moreover, to eliminate cycles, we applied the cycle elimination technique proposed

in [158, 353].

As discussed in Chapter 3, FPSPARQL supports aggregate queries and keyword

search queries. To help users conduct partitioning on graphs and to enhance the

capability of the keyword search technique on triple tables, we develop the aggregate

keyword search method which finds aggregate groups of entities jointly matching a

set of query keywords, i.e., both for folder and path nodes. Moreover, for efficient

access to single cells we built a partition level hash access structure. In particular,

5.5. Architecture and Implementation: Analytics Extension 154

CC-Partition

Generate Select
Sparql for partition Convert SPARQL Generate Select Sparql

For dimension

Generate Dimension View on
Partition View (Filter Columns)

FPSPARQL
Analytical Query

Analyze Operations

Generate Dependency Graph

PC-Partition Path-Partition

Generate
Path query

Correlate Convertor Aggregate

Generate
Partition View

Is PC-partition Or
Path-Partition

Yes

Apply
Path-based Indexing

Include
Correlate

condition?

Yes

No

Which Physical
Layer?

HadoopRDBMS

Include aggregate
functions?

Yes

include
Assignment or Math

operation?

Generate Variables
and Assign Values

yes

Analyze Measures

include
Folder-/path-

Construct?

Convert
fConstruct/pConstruct

Yes

Analyze Partitions

Generate update/upsert Command

Analyze
Regular Expression

Generate SQL
Stored-procedure

Generat PigLatin
execution plan

Query Mapping

GOLAP Controller

Figure 5.5: Execution plan for FPSPARQL analytics queries.

5.5. Architecture and Implementation: Analytics Extension 155

data is hash partitioned on ‘@CC-PARTITION’, ‘@PC-PARTITION’, and ‘@PATH-

PARTITION’ parameters. Moreover, for CC-Partitions and PC-Partitions, a hash

table will be built on the dimensions. For Path-Partitions, two hash tables will

be built, one for nodes in path partitions and the other for relationship edges.

Consequently, we avoid spilling to disk for evaluating the operations: the partitions

will be kept in memory and the operations will evaluated for one partition at a time.

After analyzing dimensions and constructing partitions, operations and measures

need to be evaluated. For example, for functions, it will be checked if they contain

aggregation nodes (folder/path construction), correlate statement, and aggregate

functions. All the aggregates at any level needs to be computed before evaluation

of operations at that level. This requires a scan of entities in the partition for each

level. Moreover, with each operation we store a list of aggregates dependent on the

cell being upserted (or updated) by it. Next step is to analyze measures, generate

update/upsert commands, and determine the order of evaluation of operations. In

order to apply operations, the order of evaluation of operations is determined from

their dependency graph. The dependency graph is a weighted, directed graph where

each vertex corresponds to one operation and each edge of the graph has a weight

eij representing the strength of the dependency between vertex i and vertex j. Edge

weights {eij} are real numbers: the larger the eij is, the stronger the dependency

is between vertex i and vertex j. To construct the dependency graph, a pairwise

dependency metric [342] is calculated for each pair of vertexes.

In particular, given a set of operations O and a transitive relation R = O ×
Owith(a, b) ∈ R modeling a dependency “a needs b evaluated first”, the dependency

graph will be the graph G = (O, T) with T ⊆ R and R being the transitive closure

of T . For example, given a several assignments like “i-Index = sum(publications)*c-

measure; c-measure = avg(citations)”, then ‘i-Index’ depends on ‘c-measure’ which

should be calculated before ‘i-Index’. We derive an evaluation order, or the absence

of an evaluation order, that respects the given dependencies from the constructed

dependency graph. Moreover, we use the dependency graph to identify the opera-

tions that can be pruned, e.g., the evaluation of an assignment becomes unnecessary

when the cells it updates are not used in the evaluation of other assignments.

5.5. Architecture and Implementation: Analytics Extension 156

Load

Split

S P O
S1 @citations 15
S2 @citations 12
… … …

S P O
S1 @class entitynode
S2 @class entitynode
… … …

S P O
S1 @interest DataBase
S2 @interest AI
… … …

S P O
S1 @publications 10
S2 @publications 8
… … …

Filter

S P O
S1 @class entitynode
S1 @type author
S1 @publications 8
S1 @citations 15
S1 @name Adam
… … …

Graph

S P O
S1 @type author
S2 @type author
… … …

Type_author

citations

class

publications

interest
FOREACH

(Apply operations on partitions)
(Group by)

STORE

Figure 5.6: Execution plan for the query in Example 4.

After parsing the query, two execution plans will be available: RDBMS and

Hadoop. As discussed in Chapter 3, two types of storage back-end are supported

in FPSPARQL: Relational Database System and Hadoop File System. In order to

support RDBMS execution plan, the output for the execution plan in Figure 5.5 will

be a SQL stored procedure. Recall from Chapter 3 that Apache Pig is a language

for querying large semi-structured datasets using Hadoop and the MapReduce Plat-

form, and consists of a textual language called Pig-Latin which supports ease of

programming, optimization opportunities, and extensibility. For the Hadoop execu-

tion plan, the output will be a set of Pig-Latin scripts: a script in Pig often follows

a specific format in which data is read from the Hadoop file system, a number of

operations (e.g., LOAD, SPLIT, JOIN, FILTER, and STORE) are performed on

the data, and then the resulting relation is written back to the file system.

As an example, we discuss the Hadoop query plan for the Example 4. Process-

ing this query using Pig Latins query algebra results in the query plan shown in

Figure 5.6. The logical plan can be described as follows: (1) load the input dataset

5.5. Architecture and Implementation: Analytics Extension 157

using the LOAD operator; (2) split the dataset, based on the partitioning condition,

and create triple tables for related predicates. Next step is to filter the dataset into

related authors, where the ‘interest’ triplestore will be needed for the partitioning

phase and ‘publications’ and ‘citations’ triplestores will be needed to apply OLAP

style operations on partitions; (3) filter the graph using the result of previous step,

i.e., to support the triple syntax and weave the predicates to related partitions. No-

tice that, in the case of using JOIN operator in this step, the triple syntax will be

no longer available; (4) group by the interest table on the object column to remove

redundant values, e.g., in cases where two or more authors, different subjects, hav-

ing same interests; (5) evaluation of OLAP operations on graphs independently for

each partition, providing a natural parallelization of execution; and (6) store the

final result on Hadoop cluster using the STORE operator.

5.5.3 Implementation

Details about FPSPARQL query engine implementation is presented in Chapter 3.

In this Chapter, we instrument the query engine with GOLAP Controller, which

is responsible to support n-dimensional computations on graphs. Moreover, we

have implemented a front-end tool for assisting users to create GOLAP queries, by

providing an easy way to create partitions, select dimensions, and define measures.

To create CC-partitions, we provide list of graph objects (i.e., nodes and edges) and

their attributes. To create PC/Path-Partitions, we provide an interface to easily

create regular expressions to be used in path conditions. Figure 5.7-B illustrates

how we created the regular expression and the path condition for the Example 5. We

use frequent pattern discovery approaches to provide users with frequent patterns,

which can help in identifying groups of related paths. We have created an interface

to assist users writing and debugging operations. Figure 5.7-A illustrates how we

use the tool to write functions for the Example 8. Finally, we provided users with a

graph visualization tool for the exploration of partitions and query results.

5.6. Experiments 158

Figure 5.7: Screenshots of front-end tool for: (a) writing functions in Example 8;
and (b) creating the regular expression and the path condition in Example 5.

5.6 Experiments

5.6.1 Datasets

We carried out the experiments on two graph datasets: DBLP6 and Amazon Online

Rating System7.

6http://dblp.uni-trier.de/db/
7http://snap.stanford.edu/data/amazon-meta.html

5.6. Experiments 159

DBLP

DBLP (Digital Bibliography and Library Project) dataset, is a computer science bib-

liography database which listed more than 1.8 million publications (in May 2012)

and tracked most of journals and conference proceedings. We use DBLP to generate

graph models containing set of nodes (e.g., paper, author, venue, and affiliation)

and edges (e.g., author-of, published-in, and affiliated-with). In order to enrich the

DBLP graph, and generate the graph introduced in the example scenario, we added

attributes to graph nodes and edges. For example, we enriched nodes typed as ‘au-

thor’ with attributes such as type and number of publications and citations. As

another example, we enriched edges typed as ‘author-of’ with attributes such as or-

der of author in the paper and temporal attributes. Moreover, we used FPSPARQL

to construct edges among nodes of the DBLP graph. For example, we added edges

typed as ‘collaboration’ between pair of authors. This edge and its attributes (e.g.,

frequency of collaboration, degree of collaboration, mutual impact, and degree of

contribution) have been introduced in the example scenario. The generated graph

from DBLP dataset contains over 1,670,000 nodes (i.e. authors, papers, venues, and

affiliations) and over 2,810,000 edges (i.e., author-of, published-in, affiliated-with,

cited, and published-in).

Amazon Online Rating System

Amazon is one of the most popular online rating systems. One application of crowd-

sourcing [114] systems is evaluating and rating products on the Web which refereed

as Online Rating Systems. In an online rating system: (i) producers or sellers adver-

tise their products; (ii) customers rate them based on their interests and experiences;

and (iii) the rating system aggregates scores received from customers to calculate

a general rating score for every product. In this experiment, we use the rating log

of Amazon online rating system that are collected by Leskovec et al. [220] (i.e., re-

ferred in the following as AMZLog) for analyzing dynamics of viral Marketing by

applying online analytical processing on this graph dataset. Online rating graphs

may contain some types of nodes (i.e., product, reviewer, category) and edges (e.g.,

5.6. Experiments 160

Adam

Product (p1)

Product (p2)

Product (p3)

Rated

Rated

Rated

Rated

Rated

Rated Bob

Blinda

object: entity-node
type: product
category: book
product-id: p1
...

object: edge
type: rated
rate:4
timestamp: 2005/5/3
...

object: entity-node
type: people
Name: Adam
id: FNUHV
...

Figure 5.8: A sample of data stored in AMZLog.

hasRated in ‘aleks hasRated book1’). Figure 5.8 illustrates a sample of data stored

in AMZLog and the dataset statistics. We enriched Amazon graph by Adding at-

tributes to nodes. For example, we enriched nodes typed as ‘product’ with (i) rank

in category, to show how popular is the product in a particular category, e.g., a

book among all available books; and (ii) overall rank, to show the overall rank of

a product in the system. We also enrich the ‘reviewers’ by adding: (i) degree of

interest, to show in what extent a reviewer is interested in a particular category of

products, e.g., books, movies or albums; and (ii) degree of expertise, to show how

dependable are the ratings that a reviewer has given to a particular product.

5.6.2 Evaluation

We report the evaluation results of the query engine extension, GOLAP, in terms

of: (i) performance: we report performance in terms of running time of queries

in seconds; (ii) scalability : we report scalability by characterizing how the perfor-

mance of each query changes as the size of the graph increases; and (iii) quality of

results : the quality of the results is assessed using classical precision metric which

defined as the percentage of discovered results that are actually interesting. More-

over, we compare the performance of queries with and without query optimization

techniques discussed in Section 5.5.2. Notice that, the performance and effectiveness

of FPSPARQL query engine have been represented in Chapter 3. To the best of our

knowledge, we couldn’t find any open source system that support similar function-

alities of FPSPARQL, analytics extension, to compare with.

5.6. Experiments 161

0

50

100

150

200

250

Query in Example 4 Query in Example 5 Query in Example 6 Query in Example 7 Query in Example 8

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

(A) Performance Analysis (for Examples 4 to 8) on DBLP graph.

~0.1 million nodes

~0.5 million nodes

~0.9 million nodes

~1.3 million nodes

~1.7 million nodes

0

50

100

150

200

250

300

350

~0.1 million
nodes

~0.5 million
nodes

~0.9 million
nodes

~1.3 million
nodes

~1.7 million
nodes

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

(B) Average Execution Time for Queries
Applied to DBLP Dataset.

CC‐partition

PC‐partition

Path‐partition

0

20

40
60

80
100

120

140
160

180
200

~0.1 million
nodes

~0.5 million
nodes

~0.9 million
nodes

~1.3 million
nodes

~1.7 million
nodes

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

(C) Average Execution Time for Queries
Applied to AMZLog Dataset.

CC‐partition

PC‐partition

Path‐partition

0

10

20

30

40

50

60

70

80

90

2 4 6 8 10 12 14 16 18 20

U
ni

ts
 o

f T
im

e

Number of Assignment Operations

(D) Scalability With Number of Assignments
Applied to DBLP Dataset.

0

20

40

60

80

100

120

140

160

180

2 4 6 8 10 12 14 16 18 20

U
ni

ts
 o

f T
im

e

Number of Function Operations

(E) Scalability With Number of Functions
Applied to DBLP Dataset.

0

5

10

15

20

25

30

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

U
ni

ts
 o

f T
im

e

% memory vs size largest GOLAP‐Folder partition

(F) Scalability With Size of Physical Memory
(GOLAP‐Folder Partitions)

0
5

10
15
20
25
30
35
40
45
50

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

U
ni

ts
 o

f T
im

e

% memory vs size largest GOLAP‐Path partition

(G) Scalability With Size of Physical Memory
(GOLAP‐Path Partitions)

Figure 5.9: The evaluation results, illustrating: (A) performance analysis (for queries
in Examples 4 to 8) applied to the DBLP graph; (B) average execution time for 10
CC-Partition (blue line), 10 PC-Partition (red line), and 10 Path-Partition (green
line) queries applied to different sizes of DBLP graph dataset; (C) average execu-
tion time for 10 CC-Partition (blue line), 10 PC-Partition (red line), and 10 Path-
Partition (green line) queries applied to different sizes of AMZlog graph dataset;
(D) scalability with number of assignment operations for 10 queries applied to DBLP
dataset; (E) scalability with number of function operations for 10 queries applied to
DBLP dataset; (F) scalability with size of physical memory for CC-Partitions and
PC-Partitions; and (G) scalability with size of physical memory for Path-Partitions.

5.6. Experiments 162

Performance. We report performance in terms of running time in seconds. We

applied optimization techniques (see Section 5.5.2) on DBLP and AMZLog datasets.

The optimization took 62 minutes for DBLP graph dataset and 41 minutes for AM-

ZLog graph dataset. In the first step, we executed queries in Examples 4 to 8 on

DBLP graph dataset. Figure 5.9-A illustrates the execution times for these queries.

As illustrated in this figure, we divided each dataset into regular number of graph

nodes (e.g., 0.1, 0.5, 0.9, 1.3, and 1.7 million nodes) and ran the experiment for dif-

ferent sizes of DBLP graph dataset. We sampled DBLP graph according to venues

and AMZlog graph according to products, to guarantee the properties of the sampled

graphs. The evaluation shows a polynomial (nearly linear) increase in the execution

time of the queries in respect with the dataset size. Recall from Section 5.5.2 that

the partitions will be kept in memory and the operations will evaluated for one

partition at a time.

In the second step, we provided 10 CC-Partition, 10 PC-Partition, and 10 Path-

Partition queries (each having one operation) for DBLP dataset. We provided simi-

lar queries for AMZLog dataset. These queries were generated by our colleagues who

are expert in these domains and familiar with the proposed datasets. Figures 5.9-

B and -C show the average execution time for applying the queries to DBLP and

AMZLog datasets respectively. As illustrated in this figure, we divided each log

into regular number of graph nodes (same sizes for both DBLP and AMZlog graph)

and ran the experiment for different sizes of graph datasets. In particular, the

performance for applying queries on AMZlog is better, as SPARQL graph pattern

matching is dominated by several join operations, and is unlikely to be efficiently

processed when the type of nodes and edges in the graph increased, i.e., AMZlog

dataset contains two types of nodes and one type of relationships and DBLP dataset

contains four types of nodes and five types of relationships. Finally, in Figures 5.10

we compare the performance of queries applied to DBLP dataset (i.e., CC/PC/Path-

Partition queries in Figure 5.9-A) with and without query optimization.

Scalability. Another key measure of effectiveness of a query is its scalability. In our

case, the key question to ask is how does each of the queries perform when the size

5.6. Experiments 163

0

100

200

300

400

500

600

700

800

900

1000

~0.1M nodes ~0.5M nodes ~0.9M nodes ~1.3M nodes ~1.7M nodes

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

with optimization

without optimization

M=Million

(A) Optimization Comparison for CC‐Partition Queries
Applied to DBLP Dataset.

0

500

1000

1500

2000

2500

3000

3500

4000

~0.1M nodes ~0.5M nodes ~0.9M nodes ~1.3M nodes ~1.7M nodes

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

with optimization

without optimization

M=Million

(B) Optimization Comparison for PC‐Partition Queries
Applied to DBLP Dataset.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

~0.1M nodes ~0.5M nodes ~0.9M nodes ~1.3M nodes ~1.7M nodes

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

with optimization

without optimization

M=Million

(C) Optimization Comparison for Path‐Partition Queries
Applied to DBLP Dataset.

Figure 5.10: The query optimization results, illustrating optimization comparison
for CC-Partition (A), PC-Partition (B), and Path-Partition (C) queries applied to
DBLP dataset.

of the graph increases? As mentioned earlier, we divided each dataset into regular

number of graph nodes and sampled the graphs carefully to guarantee the properties

of the samples. Figures 5.9-A, -B, and -C shows an almost linear scalability between

the response time of queries and the number of nodes in the graph. As another

scalability metric we increased the number of assignment operations for 10 queries

applied to DBLP dataset. Figure 5.9-D shows an almost linear scalability between

the average response time of queries and the number of assignment operations.

Moreover, we increased the number of function operations for 10 queries applied to

DBLP dataset. Figure 5.9-E shows an almost linear scalability between the average

response time of queries and the number of function operations.

5.6. Experiments 164

Figures 5.9-F and -G show the performance of our access structure as a function

of available memory for folder-node partitions (CC-Partitions and PC-Partitions)

and path-node partitions (Path-Partitions) respectively. The memory size is ex-

pressed as a percentage of the size required to fit the largest partition of data in the

hash access structure in physical memory. Recall from Section 5.5.2 that for efficient

access to single cells we built a partition level hash access structure where the parti-

tions will be kept in memory and the operations will evaluated for one partition at a

time. In the experiment for folder-node partitions, we execute a single assignment,

“update?ar[?ap >= 200AND?ac >= 1000] =?ar[?ap > 200AND?ac < 1000]∗1.5;”,

from the query in Example 4. In the experiment for path-node partitions, we execute

a single function, ERA, from the query in Example 8. In particular, if a partition

does not fit in memory we incur an I/O if a referenced cell is not cached. In the case

of folder-node partition (Figures 5.9-F), this occurs when the available memory is

less than 40% of the largest partition, and for the path-node partition (Figures 5.9-

G) this occurs when the available memory is less than 20% of the largest partition.

Quality. The quality of the results is assessed using classical precision metric

which defined as the percentage of discovered results that are actually interesting.

For evaluating the interestingness of the result, we asked domain experts who have

the most accurate knowledge about the dataset to construct GOLAP queries on

graphs. For each query they codified their knowledge to use correlation/path condi-

tions, construct regular expressions that describe paths through the nodes and edges

in the graph, and describe dimensions and measures. They used the front-end tool

to construct GOLAP queries, visualize the content of constructed partitions, ana-

lyze discovered paths (using path conditions), and identify the query results to see

what they consider relevant from an OLAP perspective. The quality evaluation ap-

plied to both DBLP and AMZLog datasets, where 18 queries constructed. For each

dataset 9 queries constructed: three CC-Partition, three PC-Partition, and three

Path-Partition queries, in which three queries applied to entity attributes, three

queries applied to aggregated nodes, and three queries applied to inferred edges

measures. As a result, all partitions and query results (e.g., updated/upserted mea-

sures) examined by domain experts and all considered relevant.

5.6. Experiments 165

Performance Comparison Between RDBMS and Hadoop Execution Plans.

As mentioned earlier, FPSPARQL queries can be run on two types of storage back-

end: RDBMS and Hadoop. In this part we compare the performance of query plans

on relational triplestores and Hadoop file system. All experiments in this part were

conducted on a virtual machine, having 32 cores and 192GB RAM. Figure 5.11-A

illustrates the performance analysis between RDBMS and Hadoop for queries in

Examples 4 to 8 applied to the DBLP graph. Figure 5.11-B illustrates the perfor-

mance analysis, for the average execution time, between RDBMS and Hadoop for

the 10 CC-Partition, 10 PC-Partition, and 10 Path-Partition queries (these queries

are discussed earlier in this section) applied to the DBLP graph. Figure 5.11-C il-

lustrates the performance analysis, for the average execution time, between RDBMS

and Hadoop for the 10 CC-Partition, 10 PC-Partition, and 10 Path-Partition queries

(these queries are discussed earlier in this section) applied to the AMZlog graph.

Discussion. As illustrated in Figure 5.9 we divide each dataset into regular number

of nodes and ran the experiment for different sizes of datasets. The evaluation shows

a polynomial (nearly linear) increase in the execution time of the queries in respect

with the dataset size. Based on the lesson learned, we believe the quality of dis-

covered paths is highly related to the regular expressions generated to find patterns

in the log, i.e., generating regular expressions by domain experts will guarantee the

quality of discovered patterns. Moreover, the performance of partitioning the graph

using path-conditions (e.g., in PC-Partitions and Path-Partitions) is highly related

to the reachability algorithms used for discovering paths among entities.

As illustrated in Figure 5.11, the performance for CC-Partitions is much better

in Hadoop execution plans. But comparing Figures 5.11-B and -C, it will be noticed

that, although the performance for PC- and Path-Partitions are better in Hadoop

execution plans, but this performance is much better in AMZLog dataset comparing

to DBLP dataset. In particular, SPARQL graph pattern matching is dominated by

several join operations, and is unlikely to be efficiently processed when the type of

nodes and edges in the graph increased. Currently, Hadoop supports only partition

parallelism in which a single operator executes on different partitions of data across

5.6. Experiments 166

DBLP
CC‐partition PC‐partition Path‐partition

FPSPARQL (RDBMS) 66.4 171.4 221.5
FPSPARQL (Apache Pig) 23.7 154.5 169

AMZLog
CC‐partition PC‐partition Path‐partition

FPSPARQL (RDBMS) 52.2 108.7 167.3
FPSPARQL (Apache Pig) 21 52.4 63

Example 4 Example 5 Example 6 Example 7 Example 8
FPSPARQL (RDBMS) 49.3 95.7 101.2 39.5 156.8

FPSPARQL (Apache Pig) 17.5 29.3 25 37.1 127.9

Examples 4 to 8

0

50

100

150

200

250

CC‐partition PC‐partition Path‐partition

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Number of Nodes: 1.7M

(B) Average Execution Time for Queries Applied
to DBLP Dataset.

FPSPARQL (RDBMS)

FPSPARQL (Apache Pig)

0

50

100

150

200

CC‐partition PC‐partition Path‐partition

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Number of Nodes: 1.7M

(C) Average Execution Time for Queries Applied to
AMZLog Dataset.

FPSPARQL (RDBMS)

FPSPARQL (Apache Pig)

0

50

100

150

200

Example 4 Example 5 Example 6 Example 7 Example 8

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Number of Nodes: 1.7M

(A) Performance Analysis (for Examples 4 to 8) on
DBLP graph.

FPSPARQL (RDBMS)

FPSPARQL (Apache Pig)

Figure 5.11: The evaluation results, illustrating the performance analysis between
RDBMS and Hadoop for: (A) queries in Examples 4 to 8 applied to the DBLP graph;
(B) the average execution time, between RDBMS and Hadoop for the CC-, PC-,
and Path-Partition queries applied to the DBLP graph; (C) the average execution
time, between RDBMS and Hadoop for the CC-, PC-, and Path-Partition queries
applied to the AMZlog graph.

the nodes, and the multi-join query plans will be translated into a linear execution

plan. This significantly increases the overall communication and I/O overhead in-

volved in RDF graph processing on MapReduce platforms. Consequently, this cost

is prohibitive for DBLP graph as it contains four types of nodes and five types of

relationships, comparing to AMZlog graph where there are two types of nodes and

one type of relationships.

5.7. Related Work 167

5.7 Related Work

5.7.1 OLAP (On-Line Analytical Processing)

OLAP (On-Line Analytical Processing) [15, 88] is part of the broader category of

business intelligence and were conceived to support information analysis using data

warehouses in order to extract relevant knowledge of organizations. OLAP applica-

tions typically access large (traditional) databases using heavy-weight read-intensive

queries. OLAP encompasses data decision support (focusing on interactively ana-

lyzing multidimensional data from multiple perspectives) and data mining (focusing

on computational complexity problems). There have been a lot of works, discussed

in a recent survey [288] and a book [316], dealing with multidimensional modeling

methodologies for OLAP systems. Multidimensional conceptual views allow OLAP

analysts to easily understand and analyze data in terms of facts (the subjects of

analysis) and dimensions showing the different points of view where a subject can

be analyzed from. These line of works, propose OLAP data elements such as par-

titions, dimensions, and measures and their classification, e.g., classifying OLAP

measures into distributive, algebraic and holistic. They discuss that one fact and

several dimensions to analyze it give rise to what is known as the data cube.

There are many works, e.g., [167, 343, 336, 147], dealing with the efficient compu-

tation of OLAP data cubes. Han et al. [167], studied efficient methods for computing

iceberg-cubes8 with some popularly used measures, such as average, and developed

a methodology that adopts a condition for testing and pruning search space. Yuan

et al. [343], proposed two algorithms to efficiently compute multiple related skyline9

results, by sharing as much computation as possible. They proposed to adapt the

data cube concept into the skyline computation problem and propose the concept

of the Skycube. Xin et al. [336], proposed an aggregation-based approach, named

C-Cubing, to compute closed iceberg-cubes more efficiently. Gmez et al. [147] pro-

posed an algebra that operates over data cubes, independently of the underlying

8An Iceberg-Cube contains only those cells of the data cube that meet an aggregate condition.
It is called an Iceberg-Cube because it contains only some of the cells of the full cube [60].

9Skyline [67] has been proposed as an important operator for multi-criteria decision making,
data mining and visualization, and user preference queries.

5.7. Related Work 168

data types and physical data representation. They used the proposed framework to

analyze discrete and continuous spatiotemporal data and OLAP cubes together.

Many other works, e.g., [21, 227, 139], deal with clustering and partitioning

of large databases, as OLAP queries are typically heavy-weight and ad-hoc thus

requiring high processing power. Akal et al. [21], provided a classification of OLAP

queries, which is used to decide, whether and how a query should be parallelized.

They investigated the number of cluster nodes which should be used to evaluate

an OLAP query in parallel. Lima et al. [227], proposed an efficient solution, called

adaptive virtual partitioning (AVP), for parallel query processing in a database

cluster. The proposed adaptive algorithm, dynamically adjusts the partition sizes

during query execution. Moreover, the authors proposed a solution in [139], to

combine the physical and virtual partitioning to define table subsets in order to

provide flexibility in intra-query parallelism.

Another line of works, e.g., [333, 38], focused on querying multidimensional mod-

els, to analyze independent data tuples that mathematically form a set, i.e. con-

ventional spreadsheet data. Witkowski et al. [333], extended SQL with a computa-

tional clause to facilitate treating a relation as a multi-dimensional array and specify

a set of formulas over it. The formulas replace multiple joins and UNION opera-

tions which must be performed for equivalent computation with current ANSI SQL.

Balmin et al. [38], proposed a system, Sesame, which leverages both spreadsheets

and ad-hoc OLAP tools to assess the effects of hypothetical scenarios. The proposed

system, models a hypothetical scenario as a list of hypothetical modifications on the

warehouse views and fact data.

5.7.2 On-Line Analytical Processing on Graphs

In recent years, a new stream of work [92, 278, 317, 349, 198, 208, 131, 168, 169] has

focused on online analytical processing of information networks10. Chen and Qu et

al. [92, 278] proposed a conceptual framework for data cubes on graphs and classify

10An information-network [168] is a network where each node represents an entity (which may
have attributes, labels, and weights) and each link (which may have rich semantic information)
represents a relationship between two entities.

5.7. Related Work 169

their framework into informational (dimensions coming from node attributes) and

topological (dimensions coming from node and edge attributes) OLAP. They cat-

egorized aggregated graphs based on the difficulty to compute them in an OLAP

context, and suggest two properties: localization and attenuation. They proposed

techniques in a constraint-pushing framework, to achieve efficient query processing

and cube materialization. Tian et al. [317] proposed operations to produce a sum-

mary graph (by grouping nodes) and controlling the resolutions of summaries. They

proposed operations to group nodes based on user-selected node attributes and re-

lationships. These operations enable users to control the resolutions of summaries

and provides the OLAP-style drill-down and roll-up to navigate through summaries

with different resolutions.

Zhao et al. [349] introduced a new data warehousing model, Graph-Cube, that

supports OLAP queries on graphs. They considered both attribute aggregation and

structure summarization of the networks. Besides traditional cuboid queries, they

introduced a new class of OLAP queries, crossboid, that is uniquely useful in multi-

dimensional networks. We use and extend proposed Graph-Cube to provide multiple

views at different granularities. Kämpgen et al. [198] presented a mapping from sta-

tistical Linked Data that conforms to the RDF Data Cube vocabulary. They used

an extract-transform-load (ETL) pipeline to convert statistical Linked Data into a

format suitable for loading into an OLAP system. Moreover, the authors presented

an approach in [208] to interact with statistical Linked Data using common OLAP

operations. Etcheverry et al. [131] introduced Open Cubes, an RDFS vocabulary for

the specification and publication of multidimensional cubes on the Semantic Web.

They also presented a general algorithm for creating the SPARQL queries that im-

plement the Roll-up operation. Although these line of works took the first step to

put graphs in a rigid multi-dimensional and multi-level framework, much work needs

to be done to make OLAP heterogeneous networks a reality [168].

Another line of related work [310, 19, 277, 311, 312, 195] focused on clustering

and classification of networks by studying systematically the methods for mining

information networks. In particular, graph clustering algorithms, e.g. [310, 19, 277],

are of two types: node clustering, in which algorithms determine dense regions of

5.7. Related Work 170

the graph based on edge behavior, and structural clustering, in which algorithms

attempt to cluster different graphs based on overall structural behavior. There

are some works in clustering, e.g. [311, 312], developed a ranking-based clustering

approach that generates interesting results for both clustering and ranking tech-

niques [168]. Classification techniques [19, 195] classify graphs into a certain number

of categories by similarity. These line of works classify networks based on the fact

that nodes that are close to similar objects via similar links are likely to be similar.

All these works provide some kind of (network) summaries incorporates OLAP-style

functionalities.

Other works [278, 123, 138, 276, 31, 209, 53] focused on mining and querying

information networks. Qu et al. [278], proposed techniques for query processing and

cube materialization on informational networks. Their method compute measures

for the newly generated networks and handle user queries with varied constraints.

Some of existing approach for querying and modeling graphs [123, 138] focused on

defining constraints on nodes and edges simultaneously on the entire object of inter-

est, not in an iterative one-node-at-a-time manner. Therefore, they do not support

querying nodes at higher levels of abstraction. SPARQL [276] query language and

some of its extensions, e.g., PSPARQL [31] and SPARQLeR [209], have been dis-

cussed in Chapter 3. FPSPARQL [53], Folder-, Path-enabled extension of SPARQL,

supports folder and path nodes as first class entities that can be defined at several

levels of abstractions and queried. In this work, we extend FPSPARQL to pro-

vide users with an explorative method to analyze multidimensional graph data from

multiple perspectives and granularities.

5.7.3 Analytics over Process Data

Organizations today create vast amounts of transactional data. Converting pro-

cess execution data into knowledge to support the decision making process is the

focus of business analytics [241, 35, 210]. To achieve this, a family of methods

and tools can be used for developing new insights and understanding of business

performance based on collection, organization, analysis, interpretation, and presen-

5.7. Related Work 171

tation of process data. In order to collect and organize process data, businesses

are using data warehousing, data integration, and Extract-Transform-Load (ETL)

solutions [280, 322].

Various methods and techniques have been proposed for analysis and interpreta-

tion of process data. The focus of these techniques is on the behavior of completed

processes, evaluate currently running process instances, and predicting the behavior

of process instances in the future. Some of these techniques [2, 8, 48, 246, 274] are

purely syntax oriented, focusing on filtering, translating, interpreting, and modify-

ing event logs given a particular question. Other methods [239, 70, 81, 176] focused

on the semantics of process data and tried to propose techniques to understand

the hidden relationships among process artifacts. In particular, existing works on

business analytics focused more on exploration of new knowledge and investigative

analysis using broad range of analysis capabilities, including: trend analysis, what-if

analysis, and advanced analysis.

The focus in trend analysis is to explore data and track business developments

with capabilities for tracking patterns. Business processes leave trails in a variety

of data sources. Process mining [2, 8, 251] techniques and tools (e.g., ProM11 [7])

are able to extract knowledge from such traces. Aalst et al. [5] focused on applying

process mining techniques to Web services, i.e., services leave trails in so-called

event logs and recent breakthroughs in process mining research make it possible to

discover, analyze, and improve business processes based on such logs. Another line of

work [48, 246, 274], in this category, use techniques to monitor the status of running

processes and trace the progress of execution. Some other techniques [105, 323, 261]

focused on process optimization. These approaches depends on manual analytics and

the ability of business analytics to spot the right designs and areas of improvement.

Also, some techniques [239, 70, 81, 176] focused on enabling semantic process mining

in order to track business patterns. They introduced an intelligent process data

warehouse, in which taxonomies are used to add semantics to process execution

data and, therefore, support more business-like analysis for the provided reports.

Some of these techniques, e.g., [239] and [70], implemented as plugins in the ProM

11ProM is the world-leading process mining toolkit. It is an extensible framework that supports
a wide variety of process mining techniques in the form of plug-ins.

5.7. Related Work 172

framework tool. Some other related works [74, 240] focused on information needs

for software development analytics. They presented data and analysis needs of

professional software engineers, and discussed project management issues to analyze

the work of designers, developers and testers.

In what-if analysis, scenarios with capabilities for reorganizing, reshaping and

recalculating data is of high interest. In this category, business process data can

be used to forecast the future behavior of the organization through techniques such

as scenario planning and simulation [89]. Koutsoukis et al. [212] explored the rela-

tionships between what-if analysis and multidimensional modeling. They illustrated

the natural coupling, which exists between data modeling, symbolic modeling and

what-if analysis phases of a decision support systems. They discussed how OLAP-

style operations can translate into aggregation and disaggregation of the underlying

decision models. Golfarelli et al. [146] described what-if analysis as a data inten-

sive simulation whose goal is to inspect the behavior of a complex system under

some given hypotheses. Wynn et al. [335] discussed the possibilities opened by

operational process simulation, in terms of being able to perform what-if analysis,

by investigating the requirements for a process simulation environment. Papaste-

fanatos et al. [267, 266] focused on what-if analysis for changes that occur in the

schema/structure of the data warehouse sources. They modeled queries and rela-

tions as a graph that is annotated with policies for the management of evolution

events. In particular, their approach detects the parts of the graph that are affected

by a given change and highlights the way they are tuned to respond to it.

Advanced analysis techniques, provide techniques to uncover patterns in busi-

nesses and discover relationships among important elements in an organization’s

environment. Linking between entities across repositories has been the focus of a

large number of works. For example, the idea of Linked-Data12 has recently at-

tracted a lot of attention in information systems. Hassanzadeh et al. [171] presented

a framework for discovery of semantic links from data based on declarative specifi-

cation of linkage requirements by a user. Moreover, in [172], the authors proposed

light-weight data linking techniques that could link semantically related records

12Linked Data is a method of publishing data on the web based on principles that significantly
enhance the adaptability and usability of data, either by humans or machines [65].

5.8. Summary 173

across internal and external data sources using the power of external knowledge

bases available on the Web. Motahari-Nezhad et al. [252] investigated the problem

of event correlation for business processes. They identified various ways in which

process-related events could be correlated. Rozsnyai et al. [290] proposed techniques

to automatically detect correlation identifiers from arbitrary data sources in order

to determine relationships between business data. Kurniawan et al. [214] presented

a rigorous approach to discover inter-process relationships in a process repository.

Moreover, a new stream of work [236, 71, 148, 244, 313] has focused on weaving

social technologies to business process management. They aim to consolidate the

opportunities for integrating social technologies into the different stages of the busi-

ness process lifecycle, in order to discover the hidden relationships among process

artifacts.

In our approach, we focus on providing users with an explorative method to ana-

lyze process data from multiple perspectives and granularities. We use FPSPARQL,

a query language for analyzing business processes execution [53], to provide network

summaries and to support multidimensional and multi-level views over graphs. We

extend FPSPARQL to query and analyze online analytical processing on process

graphs in an explorative manner.

5.8 Summary

In this chapter, we have presented concepts, a model, and a language, for online

analytical processing on process graphs. Proposed graph data model, GOLAP, en-

ables extending decision support on process data considering both data objects and

the relationships among them. We redefined OLAP data elements by considering

the relationships among graph entities as first class objects. GOLAP data mode

uses folder and path nodes to support multi-dimensional and multi-level views over

process graphs.

We extended FPSPARQL to support n-dimensional computations on process

graphs. The extension supports partitioning graphs and allows evaluation of OLAP-

style operations on graphs, where operations support UPSERT and UPDATE se-

5.8. Summary 174

mantics. We described optimizations and execution strategies possible with the

proposed extensions. To evaluate the viability and efficiency of FPSPARQL ex-

tension, we have conducted experiments over real-world datasets. The evaluation

showed that the approach is performing well.

Chapter 6

Conclusions and Future Work

In this chapter, we summarize the contributions of this dissertation and discuss some

future research directions to build on this work.

6.1 Concluding Remarks

The continuous demand for the business process improvement and excellence has

prompted the need for business process analysis in the enterprise. Recently, business

world is getting increasingly dynamic as various technologies such as Internet and

email have made dynamic processes more prevalent. Following this, the problem of

understanding ad-hoc business process execution has become a priority in medium

and large companies. In particular, querying ad-hoc business processes execution is

a crucial requirement for many end-users in order to monitor, analyze, understand

and improve their business.

In this dissertation, we focused on the problem of explorative querying and un-

derstanding of ad-hoc business processes execution. The first contribution of this

dissertation is the characterization of this problem in terms of facilitating the analy-

sis of process execution data. Our study shows that only part of interactions related

to the process executions are covered by process-aware systems as BPs are real-

ized over a mix of workflows, IT systems, Web services and direct collaborations of

people. In order to fulfill the requirements, we have proposed a framework for orga-

175

6.1. Concluding Remarks 176

nizing, indexing, and querying ad-hoc process data. In this framework, we proposed

novel abstractions, folder and path, and a language, FPSPARQL, for the explorative

querying and understanding of BP execution from various user perspectives. Below,

we summarize the most significant contributions of this dissertation:

• A framework for analyzing ad-hoc process data (Chapter 3). We proposed a

graph data model that supports typed and untyped events, and introduced

folder and path nodes as first class abstractions. A folder node contains a col-

lection of related events, and a path node represent the results of a query that

consists of one or more paths in the process graph based on a given correla-

tion condition. We presented a process event query language and graph-based

querying processing engine called FPSPARQL [53, 52, 51], which is a Folder-,

Path-enabled extension of SPARQL [276]. We used FPSPARQL to query and

analyze events, folder and path nodes in order to analyze business process exe-

cution data. We provided a front-end tool for the exploration and visualization

of the results in order to enable users to examine the event relationships and

the potential for discovering process instances and process models.

• A framework for analyzing cross-cutting aspects in ad-hoc processes (Chap-

ter 4). We proposed a temporal graph model for representing cross-cutting

aspects in ad-hoc processes. This model enables supporting timed queries

and weaving cross-cutting aspects, e.g., versioning and provenance, around

business artifacts to imbues the artifacts with additional semantics that must

be observed in constraint and querying ad-hoc processes. In particular, the

model allows: (i) representing artifacts (and their evolution), actors, and inter-

actions between them through activity relationships; (ii) identifying derivation

of artifacts over periods of time; and (iii) discovering timeseries of actors and

artifacts in process graphs. Moreover, we introduced two concepts of timed-

folders to represent evolution of artifacts over time, and activity-paths to rep-

resent the process which led to artifacts. We extended FPSPARQL query

language for explorative querying and understanding of cross-cutting aspects

in ad-hoc processes. A front-end tool has been provided for assisting users to

create historical queries in an easy way.

6.1. Concluding Remarks 177

• A framework for applying analytics to ad-hoc process data (Chapter 5). We

proposed a graph data model, GOLAP, for online analytical processing on

process graphs. This data model enabled extending decision support on mul-

tidimensional networks considering both data objects and the relationships

among them. We used the notions of folder and path nodes to support multi-

dimensional and multi-level views over large process graphs. We redefined

OLAP data elements (e.g., dimensions, measures, and cubes) by consider-

ing the relationships among graph entities as first class objects. Moreover,

we extended FPSPARQL to support n-dimensional computations on process

graphs. The proposed extension supports partitioning graphs (using folder

and path nodes) and allows evaluation of OLAP-style operations on graphs

independently for each partition, providing a natural parallelization of exe-

cution. We proposed two types of OLAP operations: assignments, to apply

operations on entity attributes, and functions, to apply operations on network

structures among entities. We provided a front-end tool for assisting users to

create GOLAP queries in an easy way.

The lessons learned from the experiments and case studies include: (i) the qual-

ity of discovered paths is highly related to the regular expressions generated to find

patterns in the log, i.e., generating regular expressions by domain experts will guar-

antee the quality of discovered patterns; (ii) various graph reachability algorithms

can be used in process graph analysis (see Appendix A). In general, there are two

types of graph reachability algorithms [19]: algorithms traversing from starting ver-

tex to ending vertex using breadth-first or depth-first search over the graph, and

algorithms checking whether the connection between two nodes exists in the edge

transitive closure of the graph. Considering G as a directed graph that has n nodes

and m edges, the first approach incurs high cost as O(n+m) time which requires too

much time in querying. The second approach results in high storage consumption

in O(n2) which requires too much space; (iii) the coupling of graph-based querying

and native graph-based databases produces interesting possibilities from the point

of view of expressiveness and implementation techniques; (iv) adopting techniques

such as substructure search and feature based graph indexing methods are inevitable

6.2. Future Directions 178

for fast graph retrieval; and (v) parallel processing, e.g., using MapReduce frame-

work, can be used to handle large graph analysis, however, many graph algorithms

are very difficult to be parallelized.

6.2 Future Directions

In this dissertation, we have investigated the problem of explorative querying and

understanding of ad-hoc business processes execution.. We believe that this is an

important research area, which will attract a lot of attention in the research com-

munity. In the following, we summarize significant research directions in this area.

Organizing and Analyzing Large Process Graphs. The scale of business

processes execution data poses challenges to their efficient management and process-

ing. The proposed framework may need extension before being applied to generic

process execution data from heterogeneous data sources such as emails, Word docu-

ments, text documents, etc. This consists of identifying a methodology, automated

approach and tools for pre-processing enterprise data. For efficient processing of pro-

cess graphs, the heterogeneous business data can be organized using MapReduce, a

framework which is introduced by Google. In general, graph algorithms (e.g., Page

Rank, Pattern Matching, Clustering) can be written as a series of chained MapRe-

duce invocations that requires passing the entire state of the graph from one stage

to the next. However, this approach is ill-suited for graph processing and can lead

to substantial suboptimal performance due to the much more communication and

associated serialization overhead in addition to the need of coordinating the steps of

a chained MapReduce. A possible research direction is to use recent computational

model, e.g., Pregel [234] (recently introduced by Google), for efficient, scalable and

fault-tolerant implementation and analysis of graphs on the cloud.

Social Media and Web 2.0 technologies. In modern enterprises, collab-

oration and communication among business users fall outside of the BPM suite

container. For example, email communication about a process, instant messaging

to get a response to a process related question, allowing business users to generate

6.2. Future Directions 179

processes, and allowing front-line workers to update process knowledge (using new

technologies such as process Wikis) emphasis the social media’s impact on busi-

ness process management. Possible research directions discussed in [313] to extend:

(i) process discovery and design to include interactive real-time involvement of busi-

ness stakeholders, e.g., users, customers, and partners; (ii) process development

methodology and tools to support collaboration between business and IT roles; and

(iii) process design to provide real-time guidance for completing a particular activity

based on real-time business analytics and social network analysis using crowdsourc-

ing [114] techniques.

Visualization and Storytelling. Current state-of-the-art in supporting users

with respect to query formulation have focused on graphical or visual techniques,

i.e., to depict the domain of interest and express related queries. A possible research

direction is to design a visual query interface to support users in expressing their

queries over the conceptual representation of the process graph in an easy way.

Moreover, using interactive graph exploration and visualization techniques (e.g.,

storytelling systems [295]) can help users to quickly identify the interesting parts of

process graphs or understand the result of business analytics.

Graph Database as a Service. Many users increasingly require iterative and

ad-hoc analysis over graph structures but cannot individually invest in the compu-

tational and intellectual infrastructure required for state-of-the-art solutions. In this

context, modern Web applications necessitate a flexible and easy-to-use platform to

expose their functionality and make it available through standard Web technologies.

Moreover, using the underlying concept of Software as a Service (SaaS) enables an

economic advantage, where application and system environments only need to be

provided once but can be used by thousands of users.

In this context, a possible future work is to extend FPSPARQL to propose

a graph query processing engine as a service. We plan to expose the function-

ality of FPSPARQL query engine in the form of set of REST Web services, i.e.,

the REST API uses HTTP and JSON, so that it can be used from many lan-

guages and platforms. In particular we will provide three categories of services to:

create (e.g., to start the server and load the graph), manipulate (e.g., to create

6.2. Future Directions 180

a node/relationship or adding properties to nodes/relationships), and query (e.g.,

primitive graph queries, constructing folder/path nodes, applying further queries to

constructed folder/path nodes, and applying on-line analytical processing) graphs.

Bibliography

[1] W.M.P.V.D. Aalst. Process-aware information systems: Design, enactment,

and analysis. In Wiley Encyclopedia of Computer Science and Engineering.

2008.

[2] W.M.P.V.D. Aalst. Process Mining: Discovery, Conformance and Enhance-

ment of Business Processes. Springer, 2011.

[3] W.M.P.V.D. Aalst. Process mining. Commun. ACM, 55(8):76–83, 2012.

[4] W.M.P.V.D. Aalst. Process mining: Overview and opportunities. ACM Trans.

Management Inf. Syst., 3(2):7, 2012.

[5] W.M.P.V.D. Aalst. Service mining: Using process mining to discover, check,

and improve service behavior. IEEE Transactions on Services Computing,

99(PrePrints):1, 2012.

[6] W.M.P.V.D. Aalst, A. Adriansyah, A.K.A. Medeiros, F. Arcieri, T. Baier,

T. Blickle, R.P.J.C. Bose, P.V.D. Brand, R. Brandtjen, J.C.A.M. Buijs,

A. Burattin, J. Carmona, M. Castellanos, J. Claes, J. Cook, N. Costantini,

F. Curbera, E. Damiani, M.D. Leoni, P. Delias, B.F.V. Dongen, M. Dumas,

S. Dustdar, D. Fahland, D.R. Ferreira, W. Gaaloul, F.V. Geffen, S. Goel,

C.W. Günther, A. Guzzo, P. Harmon, A.H.M. Hofstede, J. Hoogland, J. Es-

pen Ingvaldsen, K. Kato, R. Kuhn, A. Kumar, M. Rosa, F. Maria Maggi,

D. Malerba, R.S. Mans, A. Manuel, M. McCreesh, P. Mello, J. Mendling,

M. Montali, H.R. Motahari-Nezhad, M.Z. Muehlen, J. Muñoz-Gama, L. Pon-

tieri, J. Ribeiro, A. Rozinat, H.S. Pérez, R.S. Pérez, M. Sepúlveda, J. Sinur,

P. Soffer, M. Song, A. Sperduti, G. Stilo, C. Stoel, K.D. Swenson, M. Talamo,

181

BIBLIOGRAPHY 182

W. Tan, C. Turner, J. Vanthienen, G. Varvaressos, E. Verbeek, M. Verdonk,

R. Vigo, J. Wang, B. Weber, M. Weidlich, T. Weijters, L. Wen, M. West-

ergaard, and M.T. Wynn. Process mining manifesto. In Business Process

Management Workshops (1), pages 169–194, 2011.

[7] W.M.P.V.D. Aalst, B.F.V. Dongen, C.W. Günther, A. Rozinat, E. Verbeek,

and T. Weijters. ProM: The process mining toolkit. In BPM, 2009.

[8] W.M.P.V.D. Aalst, B.F.V. Dongen, J. Herbst, L. Maruster, G. Schimm, and

A.J.M.M. Weijters. Workflow mining: a survey of issues and approaches. Data

Knowl. Eng., 47:237–267, November 2003.

[9] W.M.P.V.D. Aalst and K.M.V. Hee. Workflow Management: Models, Meth-

ods, and Systems. MIT Press, 2002.

[10] W.M.P.V.D. Aalst, A.H.M.T. Hofstede, and M. Weske. Business process man-

agement: A survey. In Business Process Management, pages 1–12, 2003.

[11] W.M.P.V.D. Aalst and A.J.M.M. Weijters. Process mining: A research

agenda. Comput. Ind., 53(3):231–244, 2004.

[12] W.M.P.V.D. Aalst, T. Weijters, and L. Maruster. Workflow mining: Dis-

covering process models from event logs. IEEE Trans. Knowl. Data Eng.,

16(9):1128–1142, 2004.

[13] W.M.P.V.D. Aalst, M. Weske, and D. Grünbauer. Case handling: a new

paradigm for business process support. Data Knowl. Eng., 53(2):129–162,

2005.

[14] D.J. Abadi, A. Marcus, S. Madden, and K. Hollenbach. SW-Store: a vertically

partitioned DBMS for semantic web data management. VLDB J., 18(2):385–

406, 2009.

[15] A. Abelló and O. Romero. On-line analytical processing. In Encyclopedia of

Database Systems, pages 1949–1954. Springer US, 2009.

BIBLIOGRAPHY 183

[16] M. Adams, A.H.M.T. Hofstede, D. Edmond, and W.M.P.V.D. Aalst. Facilitat-

ing flexibility and dynamic exception handling in workflows through worklets.

In CAiSE, 2005.

[17] A. Adriansyah, B.F.V. Dongen, and W.M.P.V.D. Aalst. Conformance check-

ing using cost-based fitness analysis. In EDOC, pages 55–64, 2011.

[18] C.C. Aggarwal and H. Wang. Graph data management and mining: A survey

of algorithms and applications. In Managing and Mining Graph Data, pages

13–68. 2010.

[19] C.C. Aggarwal and H. Wang. Managing and Mining Graph Data. Springer

Publishing Company, Incorporated, 2010.

[20] R. Agrawal, D. Gunopulos, and F. Leymann. Mining process models from

workflow logs. In Proceedings of the 6th International Conference on Extending

Database Technology: Advances in Database Technology, EDBT ’98, pages

469–483, London, UK, UK, 1998. Springer-Verlag.

[21] F. Akal, K. Bhm, and H.J. Schek. OLAP query evaluation in a database

cluster: A performance study on intra-query parallelism. In ADBIS, pages

218–231, 2002.

[22] S. Alexaki, V. Christophides, G. Karvounarakis, D. Plexousakis, and K. Tolle.

The ICS-FORTH RDFSuite: Managing voluminous RDF description bases.

In SemWeb, 2001.

[23] F. Alkhateeb, J.F. Baget, and J. Euzenat. Extending SPARQL with regular

expression patterns (for querying RDF). J. Web Sem., 7(2):57–73, 2009.

[24] M. Allahbakhsh, A. Ignjatovic, B. Benatallah, S.M.R. Beheshti, E. Bertino,

and N. Foo. Reputation management in crowdsourcing systems. In Collabo-

rateCom, pages 664–671, 2012.

[25] M. Allahbakhsh, A. Ignjatovic, B. Benatallah, S.M.R. Beheshti, E. Bertino,

and N. Foo. Collusion detection in online rating systems. In Proceedings of

The 15th Asia-Pacific Web Conference, APWeb 2013, pages 196–207, 2013.

BIBLIOGRAPHY 184

[26] M. Allahbakhsh, A. Ignjatovic, B. Benatallah, S.M.R. Beheshti, N. Foo, and

E. Bertino. An analytic approach to people evaluation in crowdsourcing sys-

tems. arXiv preprint arXiv:1211.3200, 2012.

[27] M. Allahbakhsh, A. Ignjatovic, B. Benatallah, S.M.R. Beheshti, N. Foo, and

E. Bertino. Detecting, representing and querying collusion in online rating

systems. arXiv preprint arXiv:1211.0963, 2012.

[28] G. Alonso, F. Casati, H.A. Kuno, and V. Machiraju. Web Services - Con-

cepts, Architectures and Applications. Data-Centric Systems and Applications.

Springer, 2004.

[29] R. Angles and C. Gutierrez. Survey of graph database models. ACM Comput.

Surv., 40:1:1–1:39, February 2008.

[30] D. Anicic, P. Fodor, S. Rudolph, and N. Stojanovic. EP-SPARQL: a unified

language for event processing and stream reasoning. In WWW, 2011.

[31] K. Anyanwu, A. Maduko, and A. Sheth. SPARQ2L: towards support for

subgraph extraction queries in RDF databases. WWW’07, pages 797–806,

New York, NY, USA, 2007. ACM.

[32] L. Ardissono, R. Furnari, A. Goy, G. Petrone, and M. Segnan. Fault tolerant

web service orchestration by means of diagnosis. In EWSA, pages 2–16, 2006.

[33] A. Awad. BPMN-Q: A language to query business processes. In EMISA, 2007.

[34] A. Awad, A. Polyvyanyy, and M. Weske. Semantic querying of business process

models. In EDOC, pages 85–94, 2008.

[35] B. Azvine, D. Nauck, and C. Ho. Intelligent business analytics - a tool to build

decision-support systems for ebusinesses. BT Technology Journal, 21(4):65–71,

October 2003.

[36] M. Báez, A. Mussi, F. Casati, A. Birukou, and M. Marchese. Liquid journals:

scientific journals in the Web 2.0 era. In JCDL, pages 395–396, 2010.

BIBLIOGRAPHY 185

[37] P. Bailey, N. Craswell, I. Soboroff, and A.P.D. Vries. The CSIRO enterprise

search test collection. SIGIR Forum, 41(2):42–45, 2007.

[38] A. Balmin, T. Papadimitriou, and Y. Papakonstantinou. Hypothetical queries

in an OLAP environment. In VLDB, pages 220–231, 2000.

[39] R. Barber, P. Bendel, M. Czech, O. Draese, F. Ho, N. Hrle, S. Idreos, M. Kim,

O. Koeth, J. Lee, T.T. Li, G.M. Lohman, K. Morfonios, R. Müller, K. Murthy,

I. Pandis, L. Qiao, V. Raman, R. Sidle, K. Stolze, and S. Szabo. Business

analytics in (a) blink. IEEE Data Eng. Bull., 35(1):9–14, 2012.

[40] D.F. Barbieri, D. Braga, S. Ceri, E.D. Valle, and M. Grossniklaus. C-SPARQL:

SPARQL for continuous querying. In WWW, pages 1061–1062, 2009.

[41] F. Barbon, P. Traverso, M. Pistore, and M. Trainotti. Run-Time monitoring of

the execution of plans for Web service composition. In ICAPS, pages 346–349,

2006.

[42] L. Baresi, C. Ghezzi, and S. Guinea. Smart monitors for composed services.

In ICSOC, pages 193–202, 2004.

[43] L. Baresi and S. Guinea. Towards dynamic monitoring of WS-BPEL processes.

In ICSOC, pages 269–282, 2005.

[44] L. Baresi, S. Guinea, R. Kazhamiakin, and M. Pistore. An integrated approach

for the run-time monitoring of BPEL orchestrations. In ServiceWave, pages

1–12, 2008.

[45] A. Barker and J.I.V. Hemert. Scientific workflow: A survey and research

directions. In PPAM, pages 746–753, 2007.

[46] A.P. Barros, G. Decker, M. Dumas, and F. Weber. Correlation patterns in

service-oriented architectures. volume 4422, pages 245–259, 2007.

[47] C. Beeri, A. Eyal, S. Kamenkovich, and T. Milo. Querying business processes

with BP-QL. Inf. Syst., 33(6), 2008.

BIBLIOGRAPHY 186

[48] C. Beeri, A. Eyal, T. Milo, and A. Pilberg. Monitoring business processes with

queries. In VLDB, 2007.

[49] C. Beeri, A. Eyal, T. Milo, and A. Pilberg. BP-Mon: query-based monitoring

of BPEL business processes. SIGMOD Record, 37(1):21–24, 2008.

[50] A. Begel, Y. Phang Khoo, and T. Zimmermann. Codebook: discovering and

exploiting relationships in software repositories. ICSE’10, pages 125–134, 2010.

[51] S.M.R. Beheshti, B. Benatallah, and H.R. Motahari-Nezhad. Enabling the

analysis of cross-cutting aspects in ad-hoc processes. In 25th International

Conference on Advanced Information Systems Engineering (CAiSE’13), Va-

lencia, Spain, 2013.

[52] S.M.R. Beheshti, B. Benatallah, H.R. Motahari-Nezhad, and M. Allahbakhsh.

A framework and a language for on-line analytical processing on graphs. In

Web Information System Engineering (WISE), 13th International Conference,

Paphos, Cyprus, 2012.

[53] S.M.R. Beheshti, B. Benatallah, H.R. Motahari-Nezhad, and S. Sakr. A query

language for analyzing business processes execution. In Business Process Man-

agement (BPM), 9th International Conference, Clermont-Ferrand, France,

pages 281–297, 2011.

[54] S.M.R. Beheshti, H.R. Motahari-Nezhad, and B. Benatallah. Temporal

provenance model (tpm): Model and query language. arXiv preprint

arXiv:1211.5009, 2012.

[55] S.M.R. Beheshti, S. Sakr, B. Benatallah, and H.R. Motahari-Nezhad. Ex-

tending SPARQL to support entity grouping and path queries. arXiv preprint

arXiv:1211.5817, 2012.

[56] V. Bellotti, N. Ducheneaut, M. Howard, and I. Smith. Taking email to task:

the design and evaluation of a task management centered email tool. In CHI,

pages 345–352, 2003.

BIBLIOGRAPHY 187

[57] B. Benatallah, F. Casati, D. Grigori, H.R. Motahari Nezhad, and F. Toumani.

Developing adapters for web services integration. In CAiSE, pages 415–429,

2005.

[58] A. Bernstein. How can cooperative work tools support dynamic group process?

bridging the specificity frontier. In CSCW, pages 279–288, 2000.

[59] A. Bernstein and M. Klein. Towards high-precision service retrieval. In Inter-

national Semantic Web Conference, pages 84–101, 2002.

[60] K.S. Beyer and R. Ramakrishnan. Bottom-up computation of sparse and ice-

berg CUBEs. In SIGMOD 1999, Proceedings ACM SIGMOD International

Conference on Management of Data, June 1-3, 1999, Philadelphia, Pennsyl-

vania, USA, pages 359–370. ACM Press, 1999.

[61] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan. Keyword

searching and browsing in databases using BANKS. In ICDE, pages 431–440,

2002.

[62] K. Bhattacharya, C. Evren Gerede, R. Hull, R. Liu, and J. Su. Towards formal

analysis of artifact-centric business process models. In BPM, pages 288–304,

2007.

[63] K. Bhattacharya, R. Hull, and J. Su. A data-centric design methodology for

business processes. In Handbook of Research on Business Process Modeling,

chapter 23, pages 503–531, 2009.

[64] D. Bianculli and C. Ghezzi. Monitoring conversational web services. In IW-

SOSWE, pages 15–21, 2007.

[65] C. Bizer, T. Heath, and T. Berners-Lee. Linked data - the story so far. Int.

J. Semantic Web Inf. Syst., 5(3):1–22, 2009.

[66] C. Bizer, P.N. Mendes, and A. Jentzsch. Topology of the web of data semantic

search over the Web. In Semantic Search over the Web, Data-Centric Systems

and Applications, chapter 1, pages 3–29. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2012.

BIBLIOGRAPHY 188

[67] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline operator. In ICDE,

pages 421–430, 2001.

[68] R. Bose and W.M.P.V.D. Aalst. Context aware trace clustering: Towards

improving process mining results. In SDM, 2009.

[69] R.P. Jagadeesh Chandra Bose and W.M.P.V.D. Aalst. Analysis of Patient

Treatment Procedures: The BPI Challenge Case Study. Technical Report

BPM-11-18, BPMCenter.org, 2011.

[70] R.P. Jagadeesh Chandra Bose, H.M.W. Verbeek, and W.M.P.V.D. Aalst. Dis-

covering hierarchical process models using ProM. In CAiSE Forum, pages

33–40, 2011.

[71] M. Brambilla, P. Fraternali, and C. Vaca. BPMN and design patterns for

engineering social BPM solutions. In Business Process Management Work-

shops, volume 99 of Lecture Notes in Business Information Processing, pages

219–230. Springer Berlin Heidelberg, 2012.

[72] A.Z. Broder and A.C. Ciccolo. Towards the next generation of enterprise

search technology. IBM Systems Journal, 43(3):451–454, 2004.

[73] J. Broekstra, A. Kampman, and F.V. Harmelen. Sesame: An architecture

for storin gand querying RDF data and schema information. In Spinning the

Semantic Web, pages 197–222, 2003.

[74] R.P.L. Buse and T. Zimmermann. Information needs for software development

analytics. In ICSE, pages 987–996, 2012.

[75] C. Bussler. B2B Integration: Concepts and Architecture. Springer, 2003.

[76] T. Cadenhead, V. Khadilkar, M. Kantarcioglu, and B.M. Thuraisingham. A

language for provenance access control. In CODASPY, pages 133–144, 2011.

[77] Y. Cai, X.L. Dong, A.Y. Halevy, J.M. Liu, and J. Madhavan. Personal infor-

mation management with SEMEX. In SIGMOD Conference, pages 921–923,

2005.

BIBLIOGRAPHY 189

[78] T. Calders, C.W. Günther, M. Pechenizkiy, and A. Rozinat. Using minimum

description length for process mining. In SAC, pages 1451–1455, 2009.

[79] M.J. Carey. SOA what? IEEE Computer, 41(3):92–94, 2008.

[80] M.J. Carey, N. Onose, and M. Petropoulos. Data services. Commun. ACM,

55(6):86–97, 2012.

[81] F. Casati and M.C. Shan. Semantic analysis of business process executions.

In EDBT, pages 287–296, 2002.

[82] F. Casati and A. Wombacher. Introduction. Service Oriented Computing and

Applications, 1(3):155, 2007.

[83] M. Castellanos, F. Casati, U. Dayal, and M.C. Shan. A comprehensive and

automated approach to intelligent business processes execution analysis. Dis-

tributed and Parallel Databases, 16(3):239–273, 2004.

[84] R. Cattell. Scalable SQL and NoSQL data stores. SIGMOD Record, 39(4):12–

27, 2010.

[85] R. Chaiken, B. Jenkins, P. Larson, B. Ramsey, D. Shakib, S. Weaver, and

J. Zhou. SCOPE: easy and efficient parallel processing of massive data sets.

PVLDB, 1(2):1265–1276, 2008.

[86] C.Y. Chan, M.N. Garofalakis, and R. Rastogi. RE-tree: an efficient index

structure for regular expressions. VLDB J., 12(2):102–119, 2003.

[87] F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wallach, M. Burrows,

T. Chandra, A. Fikes, and R.E. Gruber. Bigtable: A distributed storage

system for structured data. ACM Trans. Comput. Syst., 26(2), 2008.

[88] S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP

technology. SIGMOD Record, 26(1):65–74, 1997.

[89] S. Chaudhuri, U. Dayal, and V. Narasayya. An overview of business intelli-

gence technology. Commun. ACM, 54(8):88–98, August 2011.

BIBLIOGRAPHY 190

[90] A. Chebotko, S. Lu, X. Fei, and F. Fotouhi. RDFProv: A relational RDF

store for querying and managing scientific workflow provenance. Data Knowl.

Eng., 69(8):836–865, 2010.

[91] A. Chebotko, S. Lu, and F. Fotouhi. Semantics preserving SPARQL-to-SQL

translation. Data Knowl. Eng., 68(10):973–1000, 2009.

[92] C. Chen, X. Yan, F. Zhu, J. Han, and P.S. Yu. Graph OLAP: Towards online

analytical processing on graphs. In ICDM, pages 103–112, 2008.

[93] J. Cheney, L. Chiticariu, and W.C. Tan. Provenance in databases: Why, how,

and where. Found. Trends databases, 1:379–474, April 2009.

[94] J. Cheng and J.X. Yu. On-line exact shortest distance query processing. In

EDBT, pages 481–492, 2009.

[95] E.I. Chong, S. Das, G. Eadon, and J. Srinivasan. An efficient SQL-based RDF

querying scheme. In VLDB, pages 1216–1227, 2005.

[96] W. M. Coalition. Terminology and Glossary. Document Number WFMCTC-

1011, www.wfmc.org/standards/docs/TC-1011 term glossary v3.pdf, Feb.

1999.

[97] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick. Reachability and distance

queries via 2-Hop labels. SIAM J. Comput., 32(5):1338–1355, 2003.

[98] J. Cohen. Graph twiddling in a MapReduce world. Computing in Science and

Engineering, 11(4):29–41, 2009.

[99] D. Cohn and R. Hull. Business artifacts: A data-centric approach to modeling

business operations and processes. IEEE Data Eng. Bull., 32(3):3–9, 2009.

[100] J.E. Cook and A.L. Wolf. Discovering models of software processes from event-

based data. ACM Trans. Softw. Eng. Methodol., 7(3):215–249, July 1998.

[101] B.F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon,

H.A. Jacobsen, N. Puz, D Weaver, and R. Yerneni. PNUTS: Yahoo!’s hosted

data serving platform. PVLDB, 1(2):1277–1288, 2008.

http://www.wfmc.org/standards/docs/TC-1011

BIBLIOGRAPHY 191

[102] J. Carlos Corrales, D. Grigori, and M. Bouzeghoub. BPEL processes match-

making for service discovery. In OTM Conferences (1), pages 237–254, 2006.

[103] R. Cyganiak. A relational algebra for SPARQL. Technical report, hpl-2005-

170, HP-Labs, 2005.

[104] A. Datta. Automating the discovery of AS-IS business process models: Proba-

bilistic and algorithmic approaches. Information Systems Research, 9(3):275–

301, 1998.

[105] U. Dayal. Business process optimization. In On the Move to Meaningful

Internet Systems 2004: CoopIS, DOA, and ODBASE, volume 3290 of Lecture

Notes in Computer Science, pages 2–2. Springer Berlin / Heidelberg, 2004.

[106] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large

clusters. Commun. ACM, 51(1):107–113, 2008.

[107] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,

A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: ama-

zon’s highly available key-value store. In SOSP, pages 205–220, 2007.

[108] R. Delbru, S. Campinas, and G. Tummarello. Searching web data: An entity

retrieval and high-performance indexing model. J. Web Sem., 10:33–58, 2012.

[109] R. Delbru, N. Toupikov, M. Catasta, and G. Tummarello. A node indexing

scheme for Web entity retrieval. In ESWC (2), pages 240–256, 2010.

[110] G. Demartini. Leveraging semantic technologies for enterprise search. In

PIKM, pages 25–32, 2007.

[111] A.J. Demers, J. Gehrke, B. Panda, M. Riedewald, V. Sharma, and W.M.

White. Cayuga: A general purpose event monitoring system. In CIDR, pages

412–422, 2007.

[112] R.M. Dijkman, M. Dumas, and L. Garćıa-Bañuelos. Graph matching algo-

rithms for business process model similarity search. In BPM, pages 48–63,

2009.

BIBLIOGRAPHY 192

[113] L. Ding, V. Peristeras, and M. Hausenblas. Linked open government data

[guest editors’ introduction]. IEEE Intelligent Systems, 27(3):11–15, 2012.

[114] A. Doan, R. Ramakrishnan, and A.Y. Halevy. Crowdsourcing systems on the

World-Wide Web. Commun. ACM, 54(4):86–96, 2011.

[115] X. Dong and A.Y. Halevy. A platform for personal information management

and integration. In CIDR, pages 119–130, 2005.

[116] X. Dong and A.Y. Halevy. Indexing dataspaces. In SIGMOD Conference,

pages 43–54, 2007.

[117] B.F.V. Dongen, R.M. Dijkman, and J. Mendling. Measuring similarity be-

tween business process models. In CAiSE, pages 450–464, 2008.

[118] B.F.V. Dongen, J. Mendling, and W.M.P.V.D. Aalst. Structural patterns for

soundness of business process models. In EDOC, pages 116–128, 2006.

[119] C. Dorn, T. Burkhart, D. Werth, and S. Dustdar. Self-adjusting recommen-

dations for people-driven ad-hoc processes. In BPM, pages 327–342, 2010.

[120] C. Dorn and S. Dustdar. Supporting dynamic, people-driven processes through

self-learning of message flows. In CAiSE, pages 657–671, 2011.

[121] C. Dorn, C.A. Maŕın, N. Mehandjiev, and S. Dustdar. Self-learning predictor

aggregation for the evolution of people-driven ad-hoc processes. In BPM, pages

215–230, 2011.

[122] C. Dorn, C.A. Marn, N. Mehandjiev, and S. Dustdar. Self-learning predictor

aggregation for the evolution of people-driven ad-hoc processes. In BPM, pages

215–230, 2011.

[123] A. Dries, S. Nijssen, and L. De Raedt. A query language for analyzing net-

works. CIKM’09, pages 485–494, NY, USA, 2009. ACM.

[124] S. Dumais, E. Cutrell, J. Cadiz, G. Jancke, R. Sarin, and D.C. Robbins. Stuff

i’ve seen: a system for personal information retrieval and re-use. In Proceedings

of the 26th annual international ACM SIGIR conference on Research and

BIBLIOGRAPHY 193

development in informaion retrieval, SIGIR ’03, pages 72–79, New York, NY,

USA, 2003. ACM.

[125] M. Dumas, W.M.P.V.D. Aalst, and A.H.M.T. Hofstede. Process-Aware Infor-

mation Systems: Bridging People and Software Through Process Technology.

Wiley, 2005.

[126] S. Dustdar, T. Hoffmann, and W.M.P.V.D. Aalst. Mining of ad-hoc business

processes with teamlog. Data Knowl. Eng., 55(2):129–158, 2005.

[127] C.E. Dyreson. Aspect-oriented relational algebra. In EDBT, pages 377–388,

2011.

[128] L. Egghe. Theory and practise of the g-index. Scientometrics, 69(1):131–152,

2006.

[129] M. Ehrig, A. Koschmider, and A. Oberweis. Measuring similarity between

semantic business process models. In APCCM, pages 71–80, 2007.

[130] R. Eshuis and P. Grefen. Structural matching of BPEL processes. In ECOWS,

pages 171–180, 2007.

[131] L. Etcheverry and A.A. Vaisman. Enhancing OLAP analysis with Web cubes.

In ESWC, pages 469–483, 2012.

[132] O. Ezenwoye and S.M. Sadjadi. TRAP/BPEL: A framework for dynamic adap-

tation of composite services. In In Proceedings of the International Conference

on Web Information Systems and Technologies (WEBIST 2007, 2007.

[133] A. Fernández, Z. Cong, and A. Baltá. Bridging the gap between service

description models in service matchmaking. Multiagent and Grid Systems,

8(1):83–103, 2012.

[134] C. Francescomarino and P. Tonella. Crosscutting concern documentation by

visual query of business processes. In BPM Workshops, 2008.

[135] M.J. Franklin, A.Y. Halevy, and D. Maier. From databases to dataspaces: a

new abstraction for information management. SIGMOD Record, 34(4):27–33,

2005.

BIBLIOGRAPHY 194

[136] J. Freire, D. Koop, E. Santos, and C.T. Silva. Provenance for computational

tasks: A survey. Computing in Science and Engg., 10:11–21, May 2008.

[137] J.P. Friedenstab, C. Janiesch, M. Matzner, and O. Müller. Extending BPMN

for business activity monitoring. In HICSS, pages 4158–4167, 2012.

[138] T. Fritz and G.C. Murphy. Using information fragments to answer the ques-

tions developers ask. ICSE’10, pages 175–184, NY, USA, 2010. ACM.

[139] C. Furtado, A.A.B. Lima, E. Pacitti, P. Valduriez, and M. Mattoso. Physical

and virtual partitioning in OLAP database clusters. In SBAC-PAD, pages

143–150, 2005.

[140] Gartner. Business Activity Monitoring: Calm Before the Storm. ID Number:

LE-15-9727, http://www.gartner.com/resources/105500/105562/105562.pdf,

Apr. 2002.

[141] D. Georgakopoulos, M.F. Hornick, and A.P. Sheth. An overview of workflow

management: From process modeling to workflow automation infrastructure.

Distributed and Parallel Databases, 3(2):119–153, 1995.

[142] C.E. Gerede and J. Su. Specification and verification of artifact behaviors in

business process models. In ICSOC, pages 181–192, 2007.

[143] D. Gibbon and Z. Liu. Large scale content analysis engine. In Proceedings

of the First ACM workshop on Large-scale multimedia retrieval and mining,

LS-MMRM ’09, pages 97–104, New York, NY, USA, 2009. ACM.

[144] R. Giugno and D. Shasha. GraphGrep: A fast and universal method for

querying graphs. In ICPR (2), pages 112–115, 2002.

[145] A. Goderis, P. Li, and C.A. Goble. Workflow discovery: the problem, a case

study from e-science and a graph-based solution. In ICWS, pages 312–319,

2006.

[146] M. Golfarelli, S. Rizzi, and A. Proli. Designing what-if analysis: towards a

methodology. In DOLAP, pages 51–58, 2006.

http://www.gartner.com/resources/105500/105562/105562.pdf

BIBLIOGRAPHY 195

[147] L.I. Gómez, S.A. Gómez, and A.A. Vaisman. A generic data model and query

language for spatiotemporal OLAP cube analysis. In EDBT, pages 300–311,

2012.

[148] R. Gottanka and N. Meyer. ModelAsYouGo: (re-) design of S-BPM pro-

cess models during execution time. In S-BPM ONE Scientific Research, vol-

ume 104 of Lecture Notes in Business Information Processing, pages 91–105.

Springer Berlin Heidelberg, 2012.

[149] F. Grandi. T-SPARQL: a TSQL2-like temporal query language for RDF. In

International Workshop on Querying Graph Structured Data, pages 21–30,

2010.

[150] J. Gray, D.T. Liu, M.A. Nieto-Santisteban, A.S. Szalay, D.J. DeWitt, and

G. Heber. Scientific data management in the coming decade. SIGMOD Record,

34(4):34–41, 2005.

[151] O. Grebner, E. Ong, U.V. Riss, M. Brunzel, A. Bernardi, and T. Roth-

Berghofer. Task management model - nepomuk deliverable D3.1. Technical

report, 2006.

[152] G. Greco, A. Guzzo, L. Pontieri, and D. Saccà. Discovering expressive process

models by clustering log traces. IEEE Trans. Knowl. Data Eng., 18(8):1010–

1027, 2006.

[153] D. Grigori, J. Carlos Corrales, and M. Bouzeghoub. Behavioral matchmaking

for service retrieval: Application to conversation protocols. Inf. Syst., 33(7-

8):681–698, 2008.

[154] R.L. Grossman and Y. Gu. Data mining using high performance data clouds:

experimental studies using sector and sphere. In KDD, pages 920–927, 2008.

[155] Object Management Group. Business Process Modeling Notation Specification.

OMG Final Adopted Specification, February 2006.

BIBLIOGRAPHY 196

[156] D. Gruen, S.L. Rohall, S.O. Minassian, B. Kerr, P. Moody, B. Stachel, M. Wat-

tenberg, and E. Wilcox. Lessons from the reMail prototypes. In CSCW, pages

152–161, 2004.

[157] M. Grund, P. Cudré-Mauroux, and S. Madden. A demonstration of HYRISE

- a main memory hybrid storage engine. PVLDB, 4(12):1434–1437, 2011.

[158] A. Gubichev, S.J. Bedathur, and S. Seufert. Fast and accurate estimation of

shortest paths in large graphs. CIKM’10, pages 499–508, 2010.

[159] P.K. Gunda, L. Ravindranath, C.A. Thekkath, Y. Yu, and L. Zhuang. Nectar:

automatic management of data and computation in datacenters. In Proceed-

ings of the 9th USENIX conference on Operating systems design and imple-

mentation, OSDI’10, pages 1–8, Berkeley, CA, USA, 2010. USENIX Associa-

tion.

[160] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. XRANK: Ranked

keyword search over XML documents. In SIGMOD Conference, pages 16–27,

2003.

[161] R. Hartmut Güting. GraphDB: Modeling and querying graphs in databases. In

VLDB’94, Proceedings of 20th International Conference on Very Large Data

Bases, September 12-15, 1994, Santiago de Chile, Chile, pages 297–308. Mor-

gan Kaufmann, 1994.

[162] A. Guttman. R-Trees: A dynamic index structure for spatial searching. In

B. Yormark, editor, SIGMOD’84, Proceedings of Annual Meeting, Boston,

Massachusetts, June 18-21, 1984, pages 47–57. ACM Press, 1984.

[163] M. Gyssens, J. Paredaens, J.V.D. Bussche, and D.V. Gucht. A graph-oriented

object database model. IEEE Trans. Knowl. Data Eng., 6(4):572–586, 1994.

[164] H. Hacigümüs, S. Mehrotra, and B.R. Iyer. Providing database as a service.

In ICDE, pages 29–38, 2002.

[165] A.Y. Halevy. Answering queries using views: A survey. VLDB J., 10(4):270–

294, 2001.

BIBLIOGRAPHY 197

[166] A.Y. Halevy, M.J. Franklin, and D. Maier. Principles of dataspace systems.

In PODS, pages 1–9, 2006.

[167] J. Han, J. Pei, G. Dong, and K. Wang. Efficient computation of iceberg cubes

with complex measures. In SIGMOD Conference, pages 1–12, 2001.

[168] J. Han, Y. Sun, X. Yan, and P.S. Yu. Mining knowledge from data: An

information network analysis approach. In ICDE, 2012.

[169] J. Han, X. Yan, and P.S. Yu. Scalable OLAP and mining of information

networks. In EDBT, 2009.

[170] P. Harmon. Complex, Dynamic Processes. Bptrends, Volume 4, Number 1,

January 2011.

[171] O. Hassanzadeh, S. Duan, A. Fokoue, A. Kementsietsidis, K. Srinivas, and

M.J. Ward. Helix: online enterprise data analytics. In WWW (Companion

Volume), pages 225–228, 2011.

[172] O. Hassanzadeh, A. Kementsietsidis, L. Lim, R.J. Miller, and M. Wang. A

framework for semantic link discovery over relational data. In CIKM, pages

1027–1036, 2009.

[173] D. Hawking. Challenges in enterprise search. In ADC, pages 15–24, 2004.

[174] H. He. Querying and Mining Graph Databases. PhD thesis, UCSB, 2007.

[175] T. Heath and C. Bizer. Linked Data: Evolving the Web into a Global Data

Space. Synthesis Lectures on the Semantic Web. Morgan & Claypool Publish-

ers, 2011.

[176] M. Hepp, F. Leymann, J. Domingue, A. Wahler, and D. Fensel. Semantic

business process management: A vision towards using semantic web services

for business process management. In ICEBE, pages 535–540, 2005.

[177] J. Herbst. A machine learning approach to workflow management. In ECML,

pages 183–194, 2000.

BIBLIOGRAPHY 198

[178] M.A. Hernández and S.J. Stolfo. Real-world data is dirty: Data cleansing and

the merge/purge problem. Data Min. Knowl. Discov., 2(1):9–37, 1998.

[179] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F.B. Cetin, and S. Babu.

Starfish: A self-tuning system for big data analytics. In CIDR, pages 261–272,

2011.

[180] J.E. Hirsch. An index to quantify an individual’s scientific research output

that takes into account the effect of multiple coauthorship. Scientometrics,

85(3):741–754, 2010.

[181] D.A. Holl, U. Braun, D. Maclean, and K. Muniswamy-reddy. Choosing a data

model and query language for provenance. IPAW’08, 2008.

[182] D.A. Holland, U. Braun, D. Maclean, K.K. Muniswamy-Reddy, , and

M. Seltzer. Choosing a data model and query language for provenance. In

IPAW, 2008.

[183] D. Hollingsworthm. The Workflow Reference Model. Workflow Management

Coalition, http://www.wfmc.org/standards/docs/tc003v11.pdf, Jan. 1995.

[184] P. Holme and J. Saramki:. Temporal networks. CoRR, abs/1108.1780, 2011.

[185] H. Holz, O. Rostanin, A. Dengel, T. Suzuki, K. Maeda, and K. Kanasaki. Task-

based process know-how reuse and proactive information delivery in TaskNav-

igator. In CIKM, pages 522–531, 2006.

[186] R. Hull. Artifact-centric business process models: Brief survey of research

results and challenges. In OTM Conferences (2), pages 1152–1163, 2008.

[187] M.F. Husain, P. Doshi, L. Khan, and B.M. Thuraisingham. Storage and re-

trieval of large RDF graph using Hadoop and MapReduce. In CloudCom,

pages 680–686, 2009.

[188] M.F. Husain, L. Khan, M. Kantarcioglu, and B.M. Thuraisingham. Data

intensive query processing for large RDF graphs using cloud computing tools.

In IEEE CLOUD, pages 1–10, 2010.

http://www.wfmc.org/standards/docs/tc003v11.pdf

BIBLIOGRAPHY 199

[189] M. Indulska, J. Recker, M. Rosemann, and P.F. Green. Business process

modeling: Current issues and future challenges. In CAiSE, pages 501–514,

2009.

[190] B. Iordanov. HyperGraphDB: A generalized graph database. WAIM’10, pages

25–36, 2010.

[191] Z.G. Ives, N. Khandelwal, A. Kapur, and M. Cakir. ORCHESTRA: Rapid,

collaborative sharing of dynamic data. In CIDR, pages 107–118, 2005.

[192] E. Olding D. Plummer B. Rosser J. Hill, B. Lheureux and J. Sinur. Pre-

dicts 2010: Business Process Management Will Expand Beyond Traditional

Boundaries. Gartner Reports, 2009.

[193] C. Janiesch, M. Matzner, and O. Müller. A blueprint for event-driven business

activity management. In BPM, pages 17–28, 2011.

[194] S.R. Jeffery, M.J. Franklin, and A.Y. Halevy. Pay-as-you-go user feedback for

dataspace systems. In SIGMOD Conference, pages 847–860, 2008.

[195] M. Ji, Y. Sun, M. Danilevsky, J. Han, and J. Gao. Graph regularized transduc-

tive classification on heterogeneous information networks. In ECML/PKDD

(1), pages 570–586, 2010.

[196] R. Jin, Y. Xiang, N. Ruan, and D. Fuhry. 3-HOP: a high-compression indexing

scheme for reachability query. In SIGMOD Conference, pages 813–826, 2009.

[197] H.D. Jorgensen. Interactive Process Models. PhD thesis, Norwegian University

of Science and Technology, Trondheim, Norway, 2004.

[198] B. Kämpgen and A. Harth. Transforming statistical linked data for use in

OLAP systems. In I-SEMANTICS, pages 33–40, 2011.

[199] U. Kang, C.E. Tsourakakis, and C. Faloutsos. PEGASUS: mining peta-scale

graphs. Knowl. Inf. Syst., 27(2):303–325, 2011.

[200] D.R. Karger, K. Bakshi, D. Huynh, D. Quan, and V. Sinha. Haystack:

A general-purpose information management tool for end users based on

semistructured data. In CIDR, pages 13–26, 2005.

BIBLIOGRAPHY 200

[201] G. Karvounarakis, Z.G. Ives, and V. Tannen. Querying data provenance. In

SIGMOD. ACM, 2010.

[202] A. Kemper and T. Neumann. HyPer: A hybrid OLTP&OLAP main memory

database system based on virtual memory snapshots. In ICDE, pages 195–206,

2011.

[203] J.O. Kephart and D.M. Chess. The vision of autonomic computing. IEEE

Computer, 36(1):41–50, 2003.

[204] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.V. Lopes, J.M. Lo-

ingtier, and J. Irwin. Aspect-oriented programming. In ECOOP, pages 220–

242, 1997.

[205] C. Kiefer, A. Bernstein, H.J. Lee, M. Klein, and M. Stocker. Semantic process

retrieval with iSPARQL. In ESWC, pages 609–623, 2007.

[206] H. Kim, P. Ravindra, and K. Anyanwu. From SPARQL to MapReduce: The

journey using a nested triplegroup algebra. PVLDB, 4(12):1426–1429, 2011.

[207] M. Klusch, B. Fries, and K.P. Sycara. Automated semantic web service dis-

covery with OWLS-MX. In AAMAS, pages 915–922, 2006.

[208] B. Kmpgen, S. O’Riain, and A. Harth. Interacting with statistical linked data

via OLAP operations. In ILD-ESWC, 2012.

[209] K.J. Kochut and M. Janik. SPARQLeR: Extended SPARQL for semantic

association discovery. ESWC’07, pages 145–159, Berlin, Heidelberg, 2007.

Springer.

[210] R. Kohavi, N.J. Rothleder, and E. Simoudis. Emerging trends in business

analytics. Commun. ACM, 45(8):45–48, August 2002.

[211] V. Kostakos. Temporal graph. Physica A: Statistical Mechanics and its Ap-

plications, 388(6):1007–1023, 2009.

[212] N.S. Koutsoukis, G. Mitra, and C. Lucas. Adapting on-line analytical pro-

cessing for decision modelling: the interaction of information and decision

technologies. Decis. Support Syst., 26(1):1–30, July 1999.

BIBLIOGRAPHY 201

[213] J. Kuo. A document-driven agent-based approach for business processes man-

agement. Information and Software Technology, 46(6):373–382, 2004.

[214] T.A. Kurniawan, A.K. Ghose, L.S. L, and H.K. Dam. On formalizing inter-

process relationships. In Business Process Management Workshops, vol-

ume 100 of Lecture Notes in Business Information Processing, pages 75–86.

Springer Berlin Heidelberg, 2012.

[215] J.M. Küster, C. Gerth, A. Förster, and G. Engels. Detecting and resolving

process model differences in the absence of a change log. In BPM, pages

244–260, 2008.

[216] N. Kwasnikowska, L. Moreau, and J. Van Den Bussche. A formal account of

the open provenance model. submitted, pages 1–49, 2010.

[217] N. Leavitt. Are web services finally ready to deliver? IEEE Computer,

37(11):14–18, 2004.

[218] N. Leavitt. Will NoSQL databases live up to their promise? IEEE Computer,

43(2):12–14, 2010.

[219] J. Lee, M. Podlaseck, E. Schonberg, and R. Hoch. Visualization and analysis of

clickstream data of online stores for understanding Web merchandising. Data

Min. Knowl. Discov., 5(1-2):59–84, January 2001.

[220] J. Leskovec, L.A. Adamic, and B.A. Huberman. The dynamics of viral mar-

keting. TWEB, 1(1), 2007.

[221] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over time: densification

laws, shrinking diameters and possible explanations. In Proceedings of the

eleventh ACM SIGKDD international conference on Knowledge discovery in

data mining, KDD ’05, pages 177–187, New York, NY, USA, 2005. ACM.

[222] M. Levene and A. Poulovanssilis. An object-oriented data model formalised

through hypergraphs. Data Knowl. Eng., 6:205–224, May 1991.

BIBLIOGRAPHY 202

[223] M. Levene and A. Poulovassilis. The hypernode model and its associated query

language. JCIT, pages 520–530, CA, USA, 1990. IEEE Computer Society

Press.

[224] A.Y. Levy, A. Rajaraman, and J.J. Ordille. Querying heterogeneous infor-

mation sources using source descriptions. In VLDB’96, Proceedings of 22th

International Conference on Very Large Data Bases, September 3-6, 1996,

Mumbai (Bombay), India, pages 251–262. Morgan Kaufmann, 1996.

[225] F. Leymann and D. Roller. Production workflow - concepts and techniques.

Prentice Hall, 2000.

[226] L. Lim, H. Wang, and M. Wang. Semantic queries in databases: problems and

challenges. In CIKM, pages 1505–1508, 2009.

[227] A.A.B. Lima, M. Mattoso, and P. Valduriez. Adaptive virtual partitioning for

OLAP query processing in a database cluster. JIDM, 1(1):75–88, 2010.

[228] J. Lin and M. Schatz. Design patterns for efficient graph algorithms in MapRe-

duce. In Proceedings of the Eighth Workshop on Mining and Learning with

Graphs, MLG ’10, pages 78–85, New York, NY, USA, 2010. ACM.

[229] D.R. Liu and M. Shen. Workflow modeling for virtual processes: an order-

preserving process-view approach. Inf. Syst., 28(6):505–532, 2003.

[230] D.C. Luckham. The Power of Events: An Introduction to Complex Event

Processing in Distributed Enterprise Systems. Addison-Wesley Longman Pub-

lishing Co., Inc., Boston, MA, USA, 2001.

[231] C. Lynch. Big data: How do your data grow? Nature, 455(7209):28–29, 2008.

[232] L. Ma, Z. Su, Y. Pan, L. Zhang, and T. Liu. RStar: an RDF storage and

query system for enterprise resource management. In CIKM, pages 484–491,

2004.

[233] B. Mahleko and A. Wombacher. Indexing business processes based on anno-

tated finite state automata. In ICWS, pages 303–311, 2006.

BIBLIOGRAPHY 203

[234] G. Malewicz, M.H. Austern, A.J.C. Bik, J.C. Dehnert, I. Horn, N. Leiser, and

G. Czajkowski. Pregel: a system for large-scale graph processing. In SIGMOD

Conference, pages 135–146, 2010.

[235] F. Manola and E. Miller. RDF Primer. W3C, http://www.w3.org/TR/rdf-

primer/, 2004.

[236] P. Mathiesen, J. Watson, W. Bandara, and M. Rosemann. Applying social

technology to business process lifecycle management. In Business Process

Management Workshops, volume 99 of Lecture Notes in Business Information

Processing, pages 231–241. Springer Berlin Heidelberg, 2012.

[237] G. Mecca, P. Papotti, and S. Raunich. Core schema mappings: Scalable core

computations in data exchange. Inf. Syst., 37(7):677–711, 2012.

[238] A.K.A. Medeiros, W.M.P.V.D. Aalst, and A.J.M.M. Weijters. Quantifying

process equivalence based on observed behavior. Data Knowl. Eng., 64(1):55–

74, 2008.

[239] A.K.A.D. Medeiros, W.M.P.V.D. Aalst, and C. Pedrinaci. Semantic process

mining tools: Core building blocks. In ECIS, pages 1953–1964, 2008.

[240] T. Menzies and T. Zimmermann. Goldfish bowl panel: Software development

analytics. In ICSE, pages 1032–1033, 2012.

[241] M. Mhlen and R. Shapiro. Business process analytics. In Handbook on Busi-

ness Process Management 2, International Handbooks on Information Sys-

tems, pages 137–157. Springer Berlin Heidelberg, 2010.

[242] P. Missier, N.W. Paton, and K. Belhajjame. Fine-grained and efficient lineage

querying of collection-based workflow provenance. In EDBT, pages 299–310,

2010.

[243] T. Mitsa. Temporal Data Mining. Chapman & Hall/CRC, 1st edition, 2010.

[244] M. Molhanec. Enterprise systems meet social BPM. In Advanced Information

Systems Engineering Workshops, volume 112 of Lecture Notes in Business

Information Processing, pages 413–424. Springer Berlin Heidelberg, 2012.

http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-primer/

BIBLIOGRAPHY 204

[245] C. Momm, R. Malec, and S. Abeck. Towards a model-driven development

of monitored processes. In In 8 Internationale Tagung Wirtschaftsinformatik

(WI2007, 2007.

[246] M. Momotko and K. Subieta. Process query language: A way to make workflow

processes more flexible. In ADBIS, 2004.

[247] L. Moreau. Provenance-based reproducibility in the semantic Web. J. Web

Sem., 9(2):202–221, 2011.

[248] L. Moreau, J. Freire, J. Futrelle, R.E. Mcgrath, J. Myers, and P. Paulson.

The open provenance model: An overview. IPAW’08, pages 323–326, Berlin,

Heidelberg, 2008. Springer.

[249] H.R. Motahari-Nezhad and C. Bartolini. Next best step and expert recommen-

dation for collaborative processes in it service management. In BPM, pages

50–61, 2011.

[250] H.R. Motahari-Nezhad, B. Benatallah, R. Saint-Paul, F. Casati, and P. An-

dritsos. Process spaceship: discovering and exploring process views from event

logs in data spaces. PVLDB, 1(2):1412–1415, 2008.

[251] H.R. Motahari-Nezhad, R. Saint-Paul, B. Benatallah, and F. Casati. Deriving

protocol models from imperfect service conversation logs. IEEE Trans. on

Knowl. and Data Eng., 20:1683–1698, December 2008.

[252] H.R. Motahari-Nezhad, R. Saint-Paul, F. Casati, and B. Benatallah. Event

correlation for process discovery from web service interaction logs. VLDB J.,

20(3):417–444, 2011.

[253] M. Muehlen and M. Rosemann. Workflow-based process monitoring and con-

trolling - technical and organizational issues. In HICSS, 2000.

[254] M.Z. Muehlen. Workflow-based Process Controlling. Foundation, Design, and

Application of workflow-driven Process Information Systems. Logos, July

2004.

BIBLIOGRAPHY 205

[255] R. Mukherjee and J. Mao. Enterprise search: Tough stuff. ACM Queue,

2(2):36–46, 2004.

[256] J. Muñoz-Gama and J. Carmona. Enhancing precision in process conformance:

Stability, confidence and severity. In CIDM, pages 184–191, 2011.

[257] T. Murata. Petri Nets: Properties, analysis and applications. In Proceedings

of the IEEE, volume 77, number 4, pages 541–580, April 1989. NewsletterInfo:

33Published as Proceedings of the IEEE, volume 77, number 4.

[258] S. Nejati, M. Sabetzadeh, M. Chechik, S. M. Easterbrook, and P. Zave. Match-

ing and merging of statecharts specifications. In ICSE, pages 54–64, 2007.

[259] T. Neumann and G. Weikum. RDF3X: a riscstyle engine for RDF. In VLDB,

pages 647–659, 2008.

[260] M. Newman. Small Worlds: The Dynamics of Networks between Order and

Randomness. Oxford Univ. Press, 2010.

[261] F. Niedermann, S. Radeschtz, and B. Mitschang. Deep business optimization:

A platform for automated process optimization. In ISSS/BPSC, volume 177

of LNI, pages 168–180. GI, 2010.

[262] T. Nykiel, M. Potamias, C. Mishra, G. Kollios, and N. Koudas. MRShare:

Sharing across multiple queries in MapReduce. PVLDB, 3(1):494–505, 2010.

[263] B.C. Ooi, B. Yu, and G. Li. One table stores all: Enabling painless free-and-

easy data publishing and sharing. CIDR’07, pages 142–153, 2007.

[264] Oracle. Business Activity Monitoring. http://www.oracle.com/ technology/

products/ integration/ bam/ pdf/ oracle-bam-datasheet.pdf, 2006.

[265] C. Ouyang, M. Thandar Wynn, C. Fidge, A.H.M.T Hofstede, and J.C. Kuhr.

Modelling complex resource requirements in business process management sys-

tems. In 21st Australasian Conference on Information Systems : Defining and

Establishing a High Impact Discipline (ACIS 2010), Queensland University of

Technology, Brisbane, December 2010. ACIS.

http://www.oracle.com/

BIBLIOGRAPHY 206

[266] G. Papastefanatos, F. Anagnostou, Y. Vassiliou, and P. Vassiliadis. Hecataeus:

A what-if analysis tool for database schema evolution. In CSMR, pages 326–

328, 2008.

[267] G. Papastefanatos, P. Vassiliadis, A. Simitsis, and Y. Vassiliou. What-if anal-

ysis for data warehouse evolution. In DaWaK, pages 23–33, 2007.

[268] M.P. Papazoglou and W.J.V.D. Heuvel. Service oriented architectures: ap-

proaches, technologies and research issues. VLDB J., 16(3):389–415, 2007.

[269] M.P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. Service-oriented

computing: State of the art and research challenges. IEEE Computer,

40(11):38–45, 2007.

[270] C. Pedrinaci, J. Domingue, and A.K.A.D. Medeiros. A core ontology for

business process analysis. In ESWC, pages 49–64, 2008.

[271] M. Perry, P. Jain, and A.P. Sheth. SPARQL-ST: Extending SPARQL to

support spatiotemporal queries. In Geospatial Semantics and the Semantic

Web, pages 61–86, 2011.

[272] J.M. Petit, F. Toumani, J.F. Boulicaut, and J. Kouloumdjian. Towards the

reverse engineering of denormalized relational databases. In ICDE, pages 218–

227, 1996.

[273] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan. Interpreting the data:

Parallel analysis with sawzall. Scientific Programming, 13(4):277–298, 2005.

[274] M. Pistore, F. Barbon, P. Bertoli, D. Shaparau, and P. Traverso. Planning

and monitoring web service composition. In AIMSA, 2004.

[275] H. Plattner. A common database approach for OLTP and OLAP using an

in-memory column database. In Proceedings of the 2009 ACM SIGMOD In-

ternational Conference on Management of data, SIGMOD ’09, pages 1–2, New

York, NY, USA, 2009. ACM.

[276] E. Prud’hommeaux and A. Seaborne. SPARQL query language for RDF

(working draft). Technical report, W3C, March 2007.

BIBLIOGRAPHY 207

[277] T. Qian, Y. Yang, and S. Wang. Refining graph partitioning for social network

clustering. In WISE, pages 77–90, 2010.

[278] Q. Qu, F. Zhu, X. Yan, J. Han, P.S. Yu, and H. Li. Efficient topological OLAP

on information networks. In DASFAA, 2011.

[279] A. Ryman R. Chinnici, J.-J. Moreau and S. Weerawarana. Web Ser-

vice Description Language (WSDL) Version 2.0. W3C Working Draft,

http://www.w3.org/TR/wsdl20, June 2007.

[280] E. Rahm and H. Hai Do. Data cleaning: Problems and current approaches.

IEEE Data Eng. Bull., 23(4):3–13, 2000.

[281] P. Ravindra, H. Kim, and K. Anyanwu. An intermediate algebra for optimizing

RDF graph pattern matching on MapReduce. In ESWC (2), pages 46–61,

2011.

[282] M. Reichert, S. Rechtenbach, A. Hallerbach, and T. Bauer. Extending a busi-

ness process modeling tool with process configuration facilities: The provop

demonstrator. In BPM (Demos), 2009.

[283] M. Reichert, S. Rinderle, and P. Dadam. ADEPT workflow management

system. In Business Process Management, pages 370–379, 2003.

[284] H.A. Reijers, J.H.M. Rigter, and W.M.P.V.D. Aalst. The case handling case.

Int. J. Cooperative Inf. Syst., 12(3):365–391, 2003.

[285] C. Ren, E. Lo, B. Kao, X. Zhu, and R. Cheng. On querying historical evolving

graph sequences. VLDB, 4(11):727–737, 2011.

[286] L. Resende. Handling heterogeneous data sources in a SOA environment with

service data objects (SDO). In SIGMOD Conference, pages 895–897, 2007.

[287] U. Riss, A. Rickayzen, H. Maus, and W.M.P.V.D. Aalst. Challenges for busi-

ness process and task management. Number 2, pages 77–100, 2005.

[288] O. Romero and A. Abelló. A survey of multidimensional modeling method-

ologies. IJDWM, 5(2):1–23, 2009.

http://www.w3.org/TR/wsdl20

BIBLIOGRAPHY 208

[289] A. Rozinat and W.M.P.V.D. Aalst. Conformance checking of processes based

on monitoring real behavior. Inf. Syst., 33(1):64–95, 2008.

[290] S. Rozsnyai, A. Slominski, and G.T. Lakshmanan. Automated correlation

discovery for semi-structured business processes. In ICDE Workshops, pages

261–266, 2011.

[291] S. Rozsnyai, A. Slominski, and G.T. Lakshmanan. Discovering event corre-

lation rules for semi-structured business processes. In DEBS, pages 75–86,

2011.

[292] S. Sakr and G. Al-Naymat. Relational processing of RDF queries: a survey.

SIGMOD Rec., 38(4):23–28, 2009.

[293] S. Sakr and A. Awad. A framework for querying graph-based business process

models. In WWW, 2010.

[294] A.D. Sarma, X.L. Dong, and A.Y. Halevy. Data modeling in dataspace support

platforms. In Conceptual Modeling: Foundations and Applications, pages 122–

138, 2009.

[295] A. Satish, R. Jain, and A. Gupta. Tolkien: an event based storytelling system.

Proc. VLDB Endow., 2:1630–1633, August 2009.

[296] S. Schaffert, C. Bauer, T. Kurz, F. Dorschel, D. Glachs, and M. Fernandez. The

linked media framework: integrating and interlinking enterprise media content

and data. In Proceedings of the 8th International Conference on Semantic

Systems, I-SEMANTICS ’12, pages 25–32, New York, NY, USA, 2012. ACM.

[297] A. Schätzle, M. Przyjaciel-Zablocki, and G. Lausen. PigSPARQL: mapping

SPARQL to Pig Latin. In Proceedings of the International Workshop on Se-

mantic Web Information Management, SWIM ’11, pages 4:1–4:8, New York,

NY, USA, 2011. ACM.

[298] A.W. Scheer and J. Klueckmann. BPM 3.0. In BPM, pages 15–27, 2009.

BIBLIOGRAPHY 209

[299] C.E. Scheidegger, H.T. Vo, D. Koop, J. Freire, and C.T. Silva. Querying

and creating visualizations by analogy. IEEE Trans. Vis. Comput. Graph.,

13(6):1560–1567, 2007.

[300] H. Schonenberg, B. Weber, B.F.V. Dongen, and W.M.P.V.D. Aalst. Support-

ing flexible processes through recommendations based on history. In BPM,

pages 51–66, 2008.

[301] R. Sharma, P. Reynolds, R. Scheepers, P.B. Seddon, and G.G. Shanks. Busi-

ness analytics and competitive advantage: A review and a research agenda. In

DSS, volume 212 of Frontiers in Artificial Intelligence and Applications, pages

187–198. IOS Press, 2010.

[302] A. Sharp and P. McDermott. Workflow Modeling: Tools for Process Improve-

ment and Applications Development. Artech House, 2009.

[303] J. Shen, E. Fitzhenry, and T.G. Dietterich. Discovering frequent work proce-

dures from resource connections. In IUI, pages 277–286, 2009.

[304] Z. Shen. Web service discovery based on behavior signatures. In In Proc. of

SCC 2005, pages 279–286. IEEE Computer Society, 2005.

[305] Y. Simmhan, B. Plale, and D. Gannon. A survey of data provenance in e-

science. SIGMOD Record, 34(3):31–36, 2005.

[306] N. Siu, L. Iverson, and A. Tang. Going with the flow: email awareness and

task management. In CSCW, pages 441–450, 2006.

[307] T. Stoitsev, S. Scheidl, and M. Spahn. A framework for light-weight compo-

sition and management of ad-hoc business processes. In TAMODIA, pages

213–226, 2007.

[308] M. Stonebraker. SQL databases v. NoSQL databases. Commun. ACM,

53(4):10–11, 2010.

[309] S. Subramanian, P. Thiran, N.C. Narendra, G.K. Mostéfaoui, and Z. Maamar.

On the enhancement of BPEL engines for self-healing composite Web services.

In SAINT, pages 33–39, 2008.

BIBLIOGRAPHY 210

[310] Y. Sun, C.C. Aggarwal, and J. Han. Relation strength-aware clustering of

heterogeneous information networks with incomplete attributes. PVLDB,

5(5):394–405, 2012.

[311] Y. Sun, J. Han, P. Zhao, Z. Yin, H. Cheng, and T. Wu. RankClus: integrating

clustering with ranking for heterogeneous information network analysis. In

EDBT, pages 565–576, 2009.

[312] Y. Sun, Y. Yu, and J. Han. Ranking-based clustering of heterogeneous infor-

mation networks with star network schema. In KDD, pages 797–806, 2009.

[313] K. Swenson, L. Fischer, S. Kemsley, N.L. Palmer, and C. Richardson. Social

BPM: Work, Planning and Collaboration Under the Impact of Social Technol-

ogy. Bpm and Workflow Handbook Series. CreateSpace, 2011.

[314] K.D. Swenson, N. Palmer, and B. Silver. Taming the Unpredictable Real World

Adaptive Case Management: Case Studies and Practical Guidance. Future

Strategies Inc, 2011.

[315] J. Tappolet and A. Bernstein. Applied temporal RDF: Efficient temporal

querying of RDF data with SPARQL. In ESWC, pages 308–322, 2009.

[316] E. Thomsen. OLAP Solutions: Building Multidimensional Information Sys-

tems. John Wiley & Sons, Inc., New York, NY, USA, 2nd edition, 2002.

[317] Y. Tian, R.A. Hankins, and J.M. Patel. Efficient aggregation for graph sum-

marization. In SIGMOD Conference, pages 567–580, 2008.

[318] S. TriBl and U. Leser. Fast and practical indexing and querying of very large

graphs. SIGMOD ’07, pages 845–856, NY, USA, 2007. ACM.

[319] P. Trkman, K. McCormack, M.P.V. de Oliveira, and M.B. Ladeira. The im-

pact of business analytics on supply chain performance. Decis. Support Syst.,

49(3):318–327, June 2010.

[320] H.L. Truong and S. Dustdar. On analyzing and specifying concerns for data

as a service. In APSCC, pages 87–94, 2009.

BIBLIOGRAPHY 211

[321] R. Vacuĺın and K.P. Sycara. Towards automatic mediation of OWL-S process

models. In ICWS, pages 1032–1039, 2007.

[322] P. Vassiliadis. A survey of extract-transform-load technology. In Integrations

of Data Warehousing, Data Mining and Database Technologies, pages 171–199.

2011.

[323] K. Vergidis, A. Tiwari, and B. Majeed. Business process analysis and opti-

mization: Beyond reengineering. IEEE Transactions on Systems, Man, and

Cybernetics, Part C, 38(1):69–82, 2008.

[324] H. Wang and C.C. Aggarwal. A survey of algorithms for keyword search on

graph data. In Managing and Mining Graph Data, pages 249–273. 2010.

[325] J. Wang and A. Kumar. A framework for document-driven workflow systems.

In BPM, pages 285–301, 2005.

[326] L. Wang, R. Ranjan, J. Chen, and B. Benatallah. Cloud Computing: Method-

ology, Systems, and Applications. CRC Press, Taylor and Francis Group, In

Print (anticipated hardcopy publication date), January 15 2012.

[327] D.J. Watts. Networks: An Introduction. Princeton University Press, 2003.

[328] F. Wei. TEDI: Efficient shortest path query answering on graphs. In Graph

Data Management, pages 214–238. 2011.

[329] L. Wen, J. Wang, W.M.P.V.D. Aalst, B. Huang, and J. Sun. A novel approach

for process mining based on event types. J. Intell. Inf. Syst., 32(2), 2009.

[330] T. White. Hadoop: The Definitive Guide. O’Reilly Media, original edition,

June 2009.

[331] J. Widom. Trio: A system for integrated management of data, accuracy, and

lineage. In CIDR, pages 262–276, 2005.

[332] K. Wilkinson, C. Sayers, H.A. Kuno, and D. Reynolds. Efficient RDF storage

and retrieval in Jena2. In SWDB, pages 131–150, 2003.

BIBLIOGRAPHY 212

[333] A. Witkowski, S. Bellamkonda, T. Bozkaya, G. Dorman, N. Folkert, A. Gupta,

L. Sheng, and S. Subramanian. Spreadsheets in RDBMS for OLAP. In SIG-

MOD Conference, pages 52–63, 2003.

[334] A. Wombacher, P. Fankhauser, B. Mahleko, and E.J. Neuhold. Matchmaking

for business processes based on choreographies. In EEE, pages 359–368, 2004.

[335] M.T. Wynn, M. Dumas, C.J. Fidge, A.H.M.T. Hofstede, and W.M.P.V.D.

Aalst. Business process simulation for operational decision support. In Busi-

ness Process Management Workshops, pages 66–77, 2007.

[336] D. Xin, Z. Shao, J. Han, and H. Liu. C-Cubing: Efficient computation of

closed cubes by aggregation-based checking. In ICDE, 2006.

[337] X. Yan, P.S. Yu, and J. Han. Graph indexing: A frequent structure-based

approach. In SIGMOD Conference, pages 335–346, 2004.

[338] X. Yan, P.S. Yu, and J. Han. Substructure similarity search in graph databases.

In SIGMOD Conference, pages 766–777, 2005.

[339] Z. Yan, R.M. Dijkman, and P.W.P.J. Grefen. Fast business process similarity

search with feature-based similarity estimation. In OTM Conferences (1),

pages 60–77, 2010.

[340] Z. Yan, R.M. Dijkman, and P.W.P.J. Grefen. Business process model reposi-

tories - framework and survey. Information & Software Technology, 54(4):380–

395, 2012.

[341] J. Yu, B. Benatallah, F. Casati, and F. Daniel. Understanding mashup devel-

opment. IEEE Internet Computing, 12(5):44–52, 2008.

[342] T.L. Yu and D.E. Goldberg. Dependency structure matrix analysis: Offline

utility of the dependency structure matrix genetic algorithm. In GECCO (2),

pages 355–366, 2004.

[343] Y. Yuan, X. Lin, Q. Liu, W. Wang, J.X. Yu, and Q. Zhang. Efficient compu-

tation of the skyline cube. In VLDB, pages 241–252, 2005.

BIBLIOGRAPHY 213

[344] J. Zhang, X. Long, and T. Suel. Performance of compressed inverted list

caching in search engines. WWW ’08, pages 387–396, USA, 2008.

[345] Q. Zhang, F.M. Suchanek, L. Yue, and G. Weikum. TOB: Timely ontologies

for business relations. In WebDB, 2008.

[346] S. Zhang, S. Li, and J. Yang. GADDI: distance index based subgraph matching

in biological networks. In EDBT, pages 192–203, 2009.

[347] S. Zhang, S. Li, and J. Yang. SUMMA: subgraph matching in massive graphs.

In CIKM, pages 1285–1288, 2010.

[348] P. Zhao and J. Han. On graph query optimization in large networks. PVLDB,

3(1):340–351, 2010.

[349] P. Zhao, X. Li, D. Xin, and J. Han. Graph cube: on warehousing and OLAP

multidimensional networks. In SIGMOD’11, pages 853–864, 2011.

[350] P. Zhao, J. Xu Yu, and P.S. Yu. Graph indexing: Tree + delta >= graph. In

VLDB, pages 938–949, 2007.

[351] W. Zhou, Q. Fei, S. Sun, T. Tao, A. Haeberlen, Z.G. Ives, B.T. Loo, and

M. Sherr. NetTrails: a declarative platform for maintaining and querying

provenance in distributed systems. In SIGMOD Conference, pages 1323–1326,

2011.

[352] L. Zou, L. Chen, M. Tamer Özsu, and D. Zhao. Answering pattern match

queries in large graph databases via graph embedding. VLDB J., 21(1):97–

120, 2012.

[353] L. Zou, P. Peng, and D. Zhao. Top-K possible shortest path query over a large

uncertain graph. In WISE, pages 72–86, 2011.

Appendix A

FPSPARQL Experimental

Evaluation

In this section we provide an experimental evaluation of FPSPARQL query engine.

We utilized IBM DB2 as a back-end database. All experiments were conducted on a

HP system with a 2.67Ghz Core2 Quad processor, 4 GBytes of memory, and running

a 64-bit Windows 7. We use the e-Enterprise course dataset introduced in Chapter 4

as an evaluation example. We compare our system with HyperGraphDB1 [190]

(an open-source graph database) and present query running time measurements in

Section A.0.1. We provide the ability to call external graph reachability algorithms

for path node queries. We discuss the quality of finding paths by different approaches

in Section A.0.2.

A.0.1 Query Execution Time

We evaluated the performance of the FPSPARQL query engine compared to one of

the well-known graph databases, the HyperGraphDB. There is no query language

for HyperGraphDB and querying is performed through special purpose APIs. These

APIs are based on conditional expressions that a user creates, submits to the query

system and receives a set of nodes as the result. We extracted and simulated over

one million events (about 25 million triples) out of e-Enterprise course database to

1http://www.hypergraphdb.org/

214

215

generate a large RDF file (1.9 GByte). It took 22.8 minutes to load the input RDF

file into FPSPARQL relational RDF store. HyperGraphDB manages storage as a

set of files in a directory. To create a database and load the same file as input into

HyperGraphDB, we have implemented a loader. The loader took 52.2 minutes to

load the input file. In the appendix we present FPSPARQL query samples that

were useful for our e-Enterprise course collaborators. For each query expressed in

English, we construct a FPSPARQL query and its equivalent SQL queries, generated

by FPSPARQL-to-SQL translation algorithm.

Figure A.1 illustrates the query execution time for each FPSPARQL query, its

SPARQL equivalent, and HyperGraphDB API. Query1 is a folder node construction

query. Query1 runs a bit faster on SPARQL, compared to FPSPARQL. The reason

could be a small overhead for storing the folder in FPSPARQL query. Both SPARQL

and FPSPARQL executed faster than HyperGraphDB. Query2 is a folder node

selection query. The execution time of FPSPARQL shows that applying queries on

folder nodes, improves the query processing time of many complex queries. The

equivalent SPARQL query should apply the condition on the whole graph which

takes longer to execute. The execution time of HyperGraphDB is much better

than SPARQL query, but not comparable to FPSPARQL query. Query3 is a folder

node selection query. In FPSPARQL, the query applied on the composition of

two constructed folder nodes. For HyperGraphDB we generate same folders as

hypergraphs and applied a query on the composition of them. Figure A.1 shows

the better +performance of FPSPARQL compared to its equivalent SPARQL query

and HyperGraphDB API.

Query4 is a path node construction query. FPSPARQL provides the ability to

call external graph reachability algorithms in path node queries (see Section A.0.2).

It took 15.7 minutes, for the FPSPARQL engine, to parse the regular expressions

and explore potential paths. As the result one path was discovered. HyperGraphDB

has APIs providing the traversal algorithm (breadth-first or depth-first). The per-

formance for these APIs depends on the incidence index and the efficient caching

of incidence sets. We applied efficient index and caching to run query4 on Hyper-

GraphDB. The query took 63.8 minutes to explore potential paths. As the result

216

one path was discovered. We stored the path (manually) as a hypergraph to use in

query5. Query 4 is not supported in SPARQL query language.

Query5 is a path node selection query. In FPSPARQL, the query applied on

the path node constructed in query4. In HyperGraphDB, the query applied on the

path generated in query4 which stored manually as a hypergraph. HyperGraphDB

does not support the automatic construction and selection of paths. Also it does not

provide the ability to call external traversal algorithms. Query 5 is not supported in

SPARQL query language. Figure A.1 illustrates the performance of these queries.

A.0.2 Graph Reachability Analysis

We developed an interface to support various graph reachability algorithms [19]

such as Transitive Closure, GRIPP, Tree Cover, Chain Cover, Path-Tree Cover,

and Shortest-Paths [158]. In general, there are two types of graph reachability

algorithms [19]: (1) algorithms traversing from starting vertex to ending vertex

using breadth-first or depth-first search over the graph, and (2) algorithms checking

whether the connection between two nodes exists in the edge transitive closure of

the graph. Considering G = (V,E) as a directed graph that has n nodes and m

edges, the first approach incurs high cost as O(n + m) time which requires too

much time in querying. The second approach results in high storage consumption in

O(n2) which requires too much space. In this experiment, we used the GRIPP [318]

algorithm which has the querying time complexity of O(m− n), index construction

time complexity of O(n+m), and index size complexity of O(n+m).

A.0.3 FPSPARQL Queries

In this section we present FPSPARQL query samples that were useful for our e-

Enterprise course collaborators. For each query expressed in English, we construct

a FPSPARQL query and its equivalent SQL query, generated by FPSPARQL-to-

SQL translation algorithm.

217not supported

Q1 Q2 Q3 Q4 Q5
SPARQL 31.7 41.86 59.51 0 0
FPSPARQL 32.93 7.12 8.2 942.7 4.62
HyperGraphDB 69.21 27.3 34.37 3828.1 8.7

Q1 Q2 Q3 Q4 Q5
SPARQL 31.7 41.86 59.51 0 0
FPSPARQL 32.93 7.12 8.2 942.7 4.62
HyperGraphDB 69.21 27.3 34.37 0 0

Q1 Q2 Q3 Q4 Q5
SPARQL 31.7 41.86 59.51 0 0
FPSPARQL 32.93 7.12 8.2 942.7 4.62
HyperGraphDB 69.21 27.3 34.37 3828.1 8.7

1

500

Q
ue

ry
 E

xe
cu

tio
n

Ti
m

e
(S

ec
on

d)

100

4000

Not Supported Not Supported

Figure A.1: Query Execution Times.

Query 1. [Folder Node Construction] Group all the events happened in the context

of brainstorming phase during ”semester 2, 2009”, in a folder named ”brainstorm-

ing09s2”. Brainstorming phase start time is ’19 July 2009’ and end time is ’8 August

2009’.

FPSPARQL:

1 fconstruct brainstorming09s2 as ?fn

2 select ?e

3 where{

4 ?fn @description ’related events...’.

5 ?e @type Event.

6 ?e @timestamp ?date.

7 FILTER (?date > "2009-07-19" ^^xsd:date &&

8 ?date > "2009-08-08" ^^xsd:date).

9 }

SQL:

1 @folderID <- generate a unique folderID

2 ...

3 insert into NULLID.EntityStore

218

4 (subject , predicate , object)

5 values

6 (@folderID , ’@Name’ , ’brainstorming09s2’);

7 insert into NULLID.FOLDERSTORE

8 (folderid , subject , predicate , object)

9 select @folderID as folderid ,

10 subject ,

11 predicate ,

12 object

13 from NULLID.GraphStore

14 where subject in

15 (SELECT r.e AS e

16 FROM (

17 Select es1.subject AS e, es2.object AS date

18 From NULLID.EntityStore es1, NULLID.EntityStore es2

19 Where es1.predicate = ’@type’ AND es1.object = ’Event’ AND

20 es2.predicate = ’@timestamp’ AND es1.subject = es2.subject AND

21 (DATE(SUBSTRING(es2.object,1,10,CODEUNITS32)) > DATE(2009-07-19)

22 AND

23 DATE(SUBSTRING(es2.object,1,10,CODEUNITS32)) > DATE(2009-08-08))

24) AS r);

Query 2. [Folder Node Selection] Return the list of artifacts that have been part

of update events which are triggered by a comment event in the context of brain-

storming phase during ”semester 2, 2009”, i.e. the folder we created in Query1.

FPSPARQL:

1 (brainstorming09S2) apply (

2 select ?a

3 where {

4 ?e @type ’Event’.

219

5 ?e @activityType ’update’.

6 ?e @ArtifactName ?a.

7 ?e wasTriggeredBy ?x.

8 ?x @type ’Event’.

9 ?x @activityType ’comment’.

10 })

SQL:

1 SELECT r.a AS a FROM (

2 Select es1.subject AS e, es3.object AS a, fs1.object AS x

3 From NULLID.EntityStore es1, NULLID.EntityStore es2,

4 NULLID.EntityStore es3, NULLID.FOLDERSTORE fs1,

5 NULLID.EntityStore es4, NULLID.EntityStore es5

6 Where es1.predicate = ’@type’ AND

7 es1.object = ’Event’ AND

8 es4.object = ’Event’ AND

9 es2.predicate = ’@activityType’ AND

10 es2.object = ’update’ AND

11 es3.predicate = ’@ArtifactName’ AND

12 fs1.predicate in (

13 select subject

14 from NULLID.EntityStore

15 where predicate = ’@Label’ AND object = ’wasTriggeredBy’) AND

16 fs1.FolderID in (

17 Select subject

18 from NULLID.EntityStore

19 where predicate = ’@Name’ AND

20 object = ’brainstorming09S2’) AND

21 es5.object = ’comment’ AND

22 es1.subject = es2.subject AND

220

23 es1.subject = es3.subject AND

24 es1.subject = fs1.subject AND

25 es1.object = es4.object AND

26 es4.subject = es5.subject AND

27 fs1.object = es4.subject AND

28 es1.predicate=es4.predicate AND

29 es2.predicate = es5.predicate) AS r

Query 3. [Folder Node Selection] Return the list of users who were involved in up-

dating an artifact during brainstorming and design phase of semester 1, 2010. We

construct two folders of all events that happened in the context of brainstorming

phase (brainstorming10s1), and design phase (design10s1) during ”semester 1 2010”.

FPSPARQL:

1 (brainstorming10s1 union design10s1) apply (

2 select ?u

3 where {

4 ?e @type ’Event’.

5 ?e @activityType ’update’.

6 ?e @UseName ?u.

7 }

8)

SQL:

1 SELECT r.u AS u FROM (

2 Select es1.subject AS e, es3.object AS u

3 From NULLID.EntityStore es1, NULLID.EntityStore es2,

4 NULLID.EntityStore es3

5 Where es1.predicate = ’@type’ AND

221

6 es1.object = ’Event’ AND

7 es2.predicate = ’@activityType’ AND

8 es2.object = ’update’ AND

9 es3.predicate = ’@UseName’ AND

10 es1.subject = es2.subject AND

11 es1.subject = es3.subject AND

12 es1.subject in (

13 select subject

14 from NULLID.FOLDERSTORE

15 where folderid in (

16 select subject

17 from NULLID.EntityStore

18 where predicate = ’@name’ AND

19 subject = ’brainstorming10s1’)

20 union

21 select subject

22 from NULLID.FOLDERSTORE

23 where folderId in (

24 select subject

25 from NULLID.EntityStore

26 where predicate = ’@name’ AND

27 subject = ’design10s1’))) AS r

Query 4. [Path Node Construction] Construct a path between the event that

generates brainstorming document (brainDoc.doc), and the event that generates

design document (designDoc.doc) which were rendered by project4 members during

semester 2, 2009. This path should contain the pattern of an event responding to a

bug report in the Wiki.

FPSPARQL:

1 pconstruct myPathNode

222

2 (?startNode,?endNode,(?e ?n)* ?e ?node ?e (?n ?e)*)

3 where {

4 ?startNode @type ’Event’.

5 ?startNode @activityType ’generate’.

6 ?startNode @artifactName ’brainDoc.doc’.

7 ?startNode @UserGroup ’project4’.

8 ?startNode @timestamp ?date.

9 ?endNode @type ’Event’.

10 ?endNode @activityType ’generate’.

11 ?endNode @artifactName ’designDoc.doc’.

12 ?endNode @UserGroup ’project4’.

13 ?endNode @timestamp ?date.

14 ?n @isA ’entityNode’.

15 ?n @type ’Event’.

16 ?n @timestamp ?date.

17 ?e @isA ’edge’.

18 ?node @type ’Event’.

19 ?node @activityType ’response’.

20 ?node @layer ’Wiki’.

21 ?node @layerPart ’bug’.

22 ?node @timestamp ?date.

23 FILTER (?date > "2009-07-19" ^^xsd:date &&

24 ?date > "2009-11-04" ^^xsd:date).

25 }

SQL: A graph reachability algorithm used (see Section A.0.2).

Query 5. [Path Node Selection] Return the list of artifacts that generated between

the path constructed in Query4.

223

FPSPARQL:

1 (myPathNode) apply (

2 select ?a

3 where {

4 ?e @type ’Event’.

5 ?e @activityType ’generate’.

6 ?e @ArtifactName ?a.

7 }

9)

SQL:

1 SELECT r.a AS a FROM (

2 Select es1.subject AS e, es3.object AS a

3 From NULLID.EntityStore es1, NULLID.EntityStore es2,

4 NULLID.EntityStore es3

5 Where es1.predicate = ’@type’ AND

6 es1.object = ’Event’ AND

7 es2.predicate = ’@activityType’ AND

8 es2.object = ’generate’ AND

9 es3.predicate=’@ArtifactName’ AND

10 es1.subject=es2.subject AND

11 es1.subject = es3.subject AND

12 es1.subject in (

13 SELECT subject

14 from NULLID.PathStore

15 Where PathId in (

16 SELECT subject

17 from NULLID.EntityStore

18 Where predicate = ’@name’ AND object=’myPathNode’))) AS r

	Title Page - Organizing, Querying, and Analyzing Ad-hoc Processes' Data
	Acknowledgements

	Abstract

	Publications

	Table of Contents
	List of Figures
	List of Tables

	Chapter 1 - Introduction
	Preliminaries
	Business Processes
	Ad-hoc Business Processes

	Key Research Issues
	Understanding Ad-hoc Process Data
	Cross-cutting Aspects in Ad-hoc Processes
	Business Process Analytics

	Contributions Overview
	Organizing, Indexing, and Querying Ad-hoc Process Data
	Representing Cross-cutting Aspects in Ad-hoc Processes
	Analytics Over Ad-hoc Process Data
	Software Prototype

	Dissertation Organization

	Chapter 2 - Background and State-of-the-Art
	Business Processes
	From Structured to Unstructured Processes

	Data Services
	Querying Business Processes Models and Instances
	Process Mining
	Observations
	Summary

	Chapter 3 - Organizing, Indexing, and Querying Ad-hoc Processes Data
	Introduction
	Process Log Analysis: Example Scenario
	Organizing and Indexing Ad-hoc Process Data
	Data Model
	Entities
	Relationships

	Representing and Organizing Ad-hoc Process Data
	Folder Nodes
	Path Nodes

	Querying Ad-hoc Process Data
	Entity-Level Queries
	Aggregation-level Queries
	Folder Node Construction
	Path Node Construction
	Folder Node Queries
	Path Analysis Queries

	Case Study
	Preprocessing of SCM Log
	Partitioning of SCM Log
	Discovering Process Models

	Architecture and Implementation: FPSPARQL
	FPSPARQL Architecture
	Physical Storage Layer
	Relational Database System
	Hadoop File System

	FPSPARQL Implementation

	Experiments
	Datasets
	SCM
	Robostrike
	PurchaseNode

	Evaluation

	Related Work
	NoSQL Databases
	RDF/SPARQL
	Querying Process Models and Instances
	Enterprise Search

	Summary

	Chapter 4 - Analyzing Cross-cutting Aspects in Ad-hoc Processes
	Introduction
	Preliminaries
	Example Scenario: Case Management
	Representing Cross-cutting Aspects
	Time and Provenance
	AEM Data Model and Timed Abstractions
	AEM Entities
	AEM Relationships

	Querying Cross-cutting Aspects
	Formalizing AEM Queries
	Simplifying Path Queries
	Evolution Queries
	Derivation Queries
	Timeseries Queries
	Constructing Timed Folders

	Architecture and Implementation: Temporal Extension
	Architecture
	Implementation

	Experiments
	Datasets
	Dutch Academic Hospital
	e-Enterprise Course
	Supply Chain Management

	Evaluation

	Related Work
	Artifact-centric Processes
	Provenance
	Modeling/Querying Temporal Graphs

	Summary

	Chapter 5 - Analytics over Ad-hoc Process Data
	Introduction
	Example Scenario: Collaborative Case Management
	Representing Analytics over Ad-hoc Process Data
	GOLAP Data Model
	GOLAP Data Elements
	Cubes
	Dimensions
	Cells
	Measures
	Operations

	Querying Analytics over Ad-hoc Process Data
	Architecture and Implementation: Analytics Extension
	Architecture
	Analytics Queries Execution and Optimization
	Implementation

	Experiments
	Datasets
	DBLP
	Amazon Online Rating System

	Evaluation

	Related Work
	OLAP (On-Line Analytical Processing)
	On-Line Analytical Processing on Graphs
	Analytics over Process Data

	Summary

	Chapter 6 - Conclusions and Future Work
	Concluding Remarks
	Future Directions

	Bibliography
	Appendix - FPSPARQL Experimental
Evaluation

