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Abstract 

Land subsidence is an environmental, geological phenomenon that often refers to 

gradual settling or rapid sinking of the ground surface as a result of subsurface 

movement of earth materials. Satellite-based interferometric synthetic aperture radar 

(InSAR) has been proved to be an excellent technique for monitoring the subsidence 

at various temporal and spatial scales.  

 

Differential Interferometric Synthetic Aperture Radar (DInSAR) method has been 

used to observe such events over the past three decades. However, its result can be 

affected by spatial/temporal decorrelation and atmospheric disturbance. In recent 

decade, Time Series InSAR (TS-InSAR) was proposed to minimise these biases by 

taking advantage of the principle of temporal and spatial statistical analysis. 

Nevertheless, TS-InSAR has issues due to the tropospheric stratification in high 

elevation regions and insufficient measurement pixels over rapid subsiding zones.  

 

This dissertation mainly focused on optimisation of the TSInSAR-based technique 

for land subsidence measuring induced by the extraction of natural resources, such as 

coal, coalbed methane (CBM) and groundwater. Firstly, TS-InSAR has the problem 

dealing with the rapid surface subsidence and consequently gaps would appear in 

such areas. A new method has been proposed to fill these gaps by integrating 

DInSAR and TS-InSAR. Secondly, ALOS-1 PALSAR and ENVISAT ASAR based 

TS-InSAR has been conducted to monitor the subsidence over underground mining 

regions. Nevertheless, the result of the counterpart ENVISAT failed to produce 

reasonable outcome due to the underground mining effect. An approach has been 

developed and implemented to address this issue through an IDW (Inverse Distance 

Weighted)-based integration method. Thirdly, TS-InSAR was being exploited to 

monitor groundwater and CBM extraction induced subsidence in Beijing 

Municipality and Liulin County, respectively, by taking both tropospheric 

stratification and turbulence into consideration. Good correlations were observed 

between InSAR and levelling derived measurements. Indeed, by applying several 

established TS-InSAR techniques to different areas, and these significant findings 



 
 

ii 

 

from the TS-InSAR analysis have led to new insights into the processes causing the 

deformation. 
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Chapter 1  

Introduction  

Land subsidence has gradually become a global issue and researchers from all across 

the world are investigating to identify the causes of deformation and its further 

influences. From the perspective of common causes of land subsidence, it can be 

segregated into two categories: 1) anthropogenic involved subsidence and 2) non-

human related subsidence. While the reason behind anthropogenic involved 

subsidence is the collapse of the geological structure beneath the land surface, 

typically induced by a variety of human-involved operations like underground 

mining activities, natural resources extraction, and underground tunnel construction, 

the non-human related subsidence includes earthquake deformation and volcano 

eruption. On the other hand, the level of land subsidence can be categorised into 

three groups − rapid, moderate and slow changes, if one only considers the potential 

effects of subsidence. 

 

It should also be noticed that the impact of land subsidence can be seen in two forms, 

including structural damage to infrastructures and its effect on the serviceability of 

environmental assets. More specifically, land subsidence may:  

o Damage the buildings, houses, sewers and buried pipes; 

o Reduce the stability of structure of buildings and towers; 

o Affect the serviceability of railways and roads due to distortion of rail foundation 

and road surface; 
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o Increase the exposure to flooding in regions near the coast;  

o Affect the storage and effectiveness of drainage channels and dams;  

o Lead to loss of surface water drainage to deeper strata;  

o Shear the groundwater supply wells.  

 

These above mentioned hazards can not only threaten an individual’s everyday life 

and properties, but also lead to massive impacts on the national economy in a big 

way. In Bandung Basin, Indonesia, acceleration of ground subsidence has been 

reported by many researchers due to excessive groundwater extraction and the 

largest subsidence reached to as much as –24 cm yr
-1 

(Ge et al., 2014). Moreover, 

during the processing of hard rock and underground coal mining, many miners die 

every year all across the world as a direct result of long-term accumulated 

subsidence (Zhao and Jiang, 2015). Nevertheless, these catastrophic events are often 

predictable to some extent since they often follow a natural cycle. Timely 

displacement information, which can provide strong indicators of these future 

disasters, is often used to identify the severely affected area. A recent example is UC 

Berkeley’s ShakeAlert System, which detected the South Napa Earthquake ten 

seconds earlier by using p-wave for monitoring displacement of earth surface 

(Lindsey, 2014). Therefore, having the ability to measure the earth surface 

deformation over an extended period of time can enable us to have a better 

understanding of natural hazards. Eventually, this can also help the local government 

or associated councils to minimise the impacts and make better decisions. 
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1.1 Objective and contributions 

This dissertation aims to identify ways to overcome the drawbacks of the TS-InSAR 

method for dealing with the moderate and rapid ground subsidence, as well as to 

investigate the potential cause of the subsidence by applying several established TS-

InSAR techniques to different areas. 

 

The key contributions of this thesis is summarised as follows: 

o The problem with TS-InSAR technique is that some rapid surface subsidence 

within a short period of time can lead to loss of InSAR coherence and 

consequently gaps would appear in such areas. A new way to integrate TS-

InSAR with DInSAR over mining regions in Ordos, China has been suggested.  

 

o A modified single-master-based TS-InSAR approach was invented by selecting 

less reliable Measurement Scatterer (MS) pixels through an IDW-based 

integration module. The generic term MS is the total sum of Persistent Scatterer 

(PS) and Distributed Scatterer (DS). The proposed method was being used to 

monitor the underground mining induced land subsidence in Appin & West Cliff 

Colliery, Australia. 

 

o Several established TS-InSAR techniques have been applied to different areas, 

and these significant findings from the TS-InSAR analysis have led to new 

insights into the processes causing the deformation. 
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1.2 Thesis outline  

There are in total nine chapters in this dissertation.  

 

The objective and contribution are given in Chapter 1.  

 

Chapter 2 gives a brief history of the background of SAR imaging and InSAR 

mapping methods.  

 

Chapter 3 provides a brief overview of the fundamental principles of DInSAR. The 

detailed processing strategies for both single- and multi-master based TS-InSAR 

methods are described.   

 

Chapter 4 and 5 demonstrates the performance of global atmospheric model and TS-

InSAR method in correcting both tropospheric stratification and turbulence. This 

chapter is drafted based on materials published in International Journal of Digital 

Earth (Du et al., 2017a) and International Journal of Digital Earth (Du et al., 2017b). 

 

Chapter 6 and 7 illustrates the feasibility of using both DInSAR and TS-InSAR for 

monitoring the subsidence phenomenon over underground mining regions. This 

chapter is drafted based on materials published in Remote Sensing (Du et al., 2016a), 

Remote Sensing Letters (Du et al., 2016b) and International Journal of Remote 

Sensing (Du et al., 2018). 
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Chapter 8 demonstrates the potential usage of GRACE-derived measurement and 

TS-InSAR outcome.  

 

Chapter 9 presents the concluding remarks of this dissertation and recommendations 

for the future work. 
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Chapter 2  

Background 

This chapter starts with an overview of Interferometric Synthetic Aperture Radar 

(InSAR), as well as the Differential Interferometric SAR (DInSAR) and Time series 

SAR Interferometry (TS-InSAR) techniques, which are the extension of InSAR 

methods.  

2.1 Traditional surface deformation mapping methods 

Conventionally, mapping of earth surface deformation is achieved by using field 

survey techniques, such as digital levels, total stations and Global Positioning 

Systems (GPS) in Real Time Kinematic (RTK) and static surveys. Both total stations 

and digital levels can achieve 0.1 mm accuracy in the vertical direction, while static 

GPS can deliver 5 mm height change resolution and RTK with the corresponding 

accuracy of 20 to 30 mm (Ge et al., 2007). However, these ground survey methods 

have limitations. 1) It could be extremely labour-intensive and time-consuming once 

the measurement regions become large as well as the revisit time is short, and 2) 

these techniques are based on a point-to-point measurement, which means it is tough 

to obtain a reasonable interpretable topographic surface deformation over the whole 

region (Zhang et al., 2011). For example, the GEONET (GPS Earth Observation 

Network) is the largest and best instrumented continuous GPS (CGPS) network in 

the world, which consists of about 1, 200 GPS static stations, and the equivalent 

spatial resolution is approximate ~20 km. Nevertheless, a CGPS network with such 
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density is still not good enough to perform accurate monitoring of the dynamic 

ground changes over wide area (Ge et al., 2000).  

2.2 Recent advancement in mapping technique 

Interferometric Synthetic Aperture Radar (InSAR) is a relatively new imaging 

method that has been widely used over the past three decades to measure large-scale 

land surface subsidence, earth fissures, as well as faults caused by natural and 

anthropogenic activities (Rosen et al., 2000), and it has a wide range of benefits 

compared to traditional field survey methods. First of all, InSAR is fully capable of 

monitoring the wide-area continuous ground movement with the accuracy of 

centimetre to millimetre (Massonnet and Feigl, 1998), for example, a standard 

InSAR scene covers an area of ~ 10, 000 km
2
 at a pixel spatial resolution of 1 ~ 30 

meters. Secondly, SAR is an all-weather electronic system, which can be operated 24 

hours a day since it mainly depends on the coherent active microwave (Graham, 

1974). Thirdly, it has the quickest access to any sites, especially those flooded 

regions or earthquake zones. The detailed literature review of InSAR related 

information is given in section 2.2.1 to 2.2.4. 

2.2.1 The basic principle of Synthetic Aperture Radar 

A Synthetic Aperture Radar (SAR) system operates in a side-looking imaging 

geometry with its antenna pointing towards the earth surface perpendicular to the 

movement direction of the antenna. The flight track is known as the “along-track” or 

“azimuth” direction, while the distance between the sensor and target on the surface 

in the pointing direction is called the “cross-track” or “range” direction (Bamler and 

Hartl, 1998) (Figure 2.1). The SAR system is based on a pulsed radar structure. As 

the radar system moves along the platform trajectory, it sequentially transmits high 
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power electromagnetic pulses, e.g. chirp signals, into the so-called “antenna’s 

illumination footprint”, and then receives the echoes of the backscattered signals at a 

rate of PRF (pulse repetition frequency), where PRF is the reciprocal of the pulse 

repetition interval PRI, that is PRF = 1/PRI. By taking advantage of the Doppler 

effects inherent, the stream of echoes received from multiple positions can be 

recombined to form a virtual synthesised aperture (maintain physical integrity and 

size limits), which is extremely large compared to the physical antenna length, and 

hence a higher resolution can be achieved.  Since both the times and positons of the 

echoes scattered from the ground have been recorded, the array of echoes can be 

considered as a two-dimensional raw data matrix with two coordinates: 1) echo delay 

time, which is associated with the distance from the sensor to the target on the 

ground in range direction, and 2) pulse number, which represents the various 

positions along the azimuth direction. In other words, the raw data matrix can also be 

treated as a raw image, and the range resolution is limited to the length of the 

transmitted pulse while the azimuth resolution is given by the size of the antenna 

footprint. The pulse compression and synthetic aperture concepts are further applied 

to improve the spatial resolution of the raw image, and hence the typical Level-1 

SAR image is formed. However, it is worth noting that these techniques are related 

to the SAR focusing steps, which is beyond the scope of this thesis, and readers are 

referred to Moreira et al. (2013) for more information.  
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Figure 2.1 The side-looking geometry of synthetic aperture radar system 

SAR systems have been utilised extensively for the past decades to map the earth’s 

surface and capture information about its physical properties, e.g. morphology, 

roughness and topography of the backscattering layer (Bamler and Hartl, 1998). The 

NASA SEASAT satellite, launched by NASA’s Jet Propulsion Laboratory in June 

1978, was the first civilian earth-orbiting satellite designed for ocean studies and had 

the very first space-borne SAR on board. European remote sensing satellite-1 (ERS-

1), the first SAR system of the European Space Agency (ESA), was then launched in 
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July 1991. Several more SAR satellites were operated in the 1990s, including the 

Canadian Space Agency (CSA)’s Radarsat-1, National Space Development Agency 

of Japan (NASDA)’s JERS-1, the Soviet Union’s Almaz-1 and ESA’s ERS-2. Of 

which, Radarsat-1 was the first commercial SAR satellite. The early 2000s was a 

boosting period for SAR satellite development, in total seven satellites were 

launched during these time, namely, ESA’S ENVISAT, Japan Aerospace 

Exploration Agency (JAXA)’s ALOS-1, CSA’s RADARSAT-2, German Aerospace 

Center (DLR)’s TerraSAR-X, Italian Space Agency (ASI)’s COSMO-SkyMed-1/4, 

JAXA’s ALOS-2 and ESA’s Sentinel-1A/B. Until now, more than 15 spaceborne 

SAR systems are being released all over the world, and another 15 new SAR 

platforms will be launched within the next ten years (Moreira et al., 2013). The 

detailed information concerning the selected SAR satellites is given in Table 2-1.  
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Table 2-1 Overview of the most commonly used space-borne platforms for InSAR (modified from (Moreira et al., 2013)) 

SATELLITE/ 

SENSOR 

OPERATION BAND 

FREQUENCY  

ORGANIZATION 

COUNTRY 

ORBIT  

HEIGHT (km) 

INCIDENCE  

ANGLE (°) 

REPEAT  

CYCLE (d)  

 RESOLUTION 

(m) / MODE 

INCLINATION 

(°) 

SEASAT Jun. − Oct.  

1978 

L (HH) NASA/JPL,  

USA 

800 22  ~ 25 108 

ERS-1/2/AMI 1991 − 2000 

1995 − 2011 

C (VV) ESA, Europe 785 20 – 26 35 ~ 25 98.5 

JERS-1 1992 − 1998 L (HH) NASDA, Japan 568 32 – 38 44 ~ 18 97.7 

Radarsat-1 1995 −  2013 C (HH) CSA, Canada 798 20 – 49 24 ~ 25/Standard 98.6 

ENVISAT/ASAR 2002 − 2012 C (dual) ESA, Europe 790 15 – 45 35 ~ 30/IMS 98.4 

ALOS/PALSAR 2006 − 2011 L (quad) JAXA, Japan 692 8 – 60 46 ~ 10/FBS/FBD 98 

TerraSAR-X 2007 – present X (quad) DLR/Astrium, 

Germany 

515 15 – 60 11 ~ 3/ Stripmap 97.44 

Radarsat-2 2007 – present C (quad) CSA, Canada 798 30 – 50 24 ~ 10/Fine 98.6 

COSMO-

SkyMed-1/4 

2007 … 2010 

– present 

X (dual) ASI/MiD, Italy 619 20 – 60 1 – 15 ~ 3/ Stripmap 97.9 

ALOS-2 2014 – present L (quad) JAXA, Japan 628 8 – 70 14 ~ 10/FBS/FBD 97.9 

Sentinel-1A/1B 2014 … 2016 

– present 

C (dual) ESA, Europe 693 18.3 – 46.8 6, 12 ~ 20/IWS 98.18 
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2.2.2 Synthetic Aperture Radar Interferometry 

A conventional SAR system can only be used to measure the location of targets (two 

dimensional), while InSAR is the synthetic combination of conventional SAR 

technique and the concept of phase interferometry, with the ability to measure the 

three-dimensional position of objectives. The very first InSAR application was 

proposed by Graham (Graham, 1974; Rosen et al., 2000), and he designed an 

imaging interferometer by augmenting an additional physical antenna to the 

conventional SAR platform. This method strongly proved the status of InSAR as a 

tool for high-resolution topographic mapping.  However, the main drawback was 

that the topographic contours were not identical due to the relative phase changes. 

Zebker and Goldstein (Zebker and Goldstein, 1986) developed an InSAR system to 

solve the relative phases ambiguity by recording both the complex amplitude and 

phase information for each antenna. An 11 km x 10 km region around the San 

Francisco Bay Area was exploited to conduct the experiment, and the obtained 

topographic map proved to be 10 m accuracy. Later in 1988, crossed orbit 

interferometry was invented by Gabriel to reduce the limitations of parallel orbits 

(Gabriel and Goldstein, 1988). Li and Goldstein (Li and Goldstein, 1990) assessed 

the performance of InSAR system by capturing SAR data at various baseline 

separations and signal to noise ratio, and eventually came up with a model for phase 

residual errors analysis. Rodriguez optimised some parameters of Li’s model and 

improved the accuracy of the derived topographic map (Rodriguez and Martin, 1992). 

Indeed, InSAR technique was initially being used for the topographic mapping. 

Nevertheless, the ground deformation mapping has become the primary application 

of InSAR technique since 1993 (Ng, 2010; Massonnet et al., 1993). 
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2.2.3 Differential Synthetic Aperture Radar Interferometry 

Differential Interferometric SAR (DInSAR) is an evolution of the conventional 

InSAR technique which is used for measuring earth surface deformation, and the 

typical two-pass DInSAR approach is carried out by utilising an external provided 

Digital Elevation Model (DEM) to remove the topographic information from the IFG 

and capture the ground surface changes. The concept of DInSAR was first 

mentioned by Gabriel (Gabriel et al., 1989). However, it was until four years later 

that Massonnet demonstrated the first DInSAR result for the 1992 earthquake in 

Landers, California using the two-pass procedure. The accuracy was proved in the 

order of centimetre, which was extremely competitive to conventional field survey 

techniques (Massonnet et al., 1993; Massonnet et al., 1994; Zebker et al., 1994). 

Zebker then proposed the three-pass DInSAR technique in 1994, and the main idea 

was to calculate the topographic phase signal by taking advantage of an extra InSAR 

pair with very short temporal baseline (Zebker et al., 1994). Since then, DInSAR has 

been applied to many applications with great successes. Notable examples are glacier 

motion monitoring (Gray et al., 1998; Joughin et al., 2004), volcanic activities 

observing (Massonnet et al., 1996; Lanari et al., 1998; Hu et al., 2009; Hooper et al., 

2012), earthquake deformations measuring (Massonnet et al., 1993; Massonnet et al., 

1994; Zebker et al., 1994; Suga et al., 2001; Ge et al., 2008; Hensley et al., 2009; 

Lindsey, 2014), underground mining detection (Ge et al., 2001; Ge et al., 2007; Hu 

et al., 2013), and underground water extraction monitoring (Chang et al., 2004; Ge et 

al., 2014).  
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Essentially, DInSAR technique can measure topographic surface displacement with a 

greater likelihood of high accuracies when the time gap between two image 

acquisitions is relatively small. Therefore, the temporal baseline is reduced and a 

dense grid of pixels can be applied. However, there are certainly some limitations 

which restrict the effectiveness in some applications (Ferretti et al., 2001).  

 

The main restrictions for DInSAR are de-correlation in the spatial and temporal 

domain, e.g. when monitoring low-velocity subsidence within a long term, the 

differential IFGs are focused to have large temporal and spatial baseline, and 

consequently degrading the IFG phase and only highly coherent area can be used to 

extract useful information. Additionally, signal phase delay due to Atmospheric 

Phase Screen (APS) could also degrade the quality of deformation estimation. It is 

worth noting that the changes in troposphere and ionosphere from one day to another 

could form different time delays similar to the deformation signals (Ding et al., 

2008). Furthermore, the phase distortion induced by orbit error, which shares the 

similar characteristics with the long-wavelength phase in the spatial domain, can also 

lead to the estimation inaccuracy. A commonly accepted method to deal with this 

matter is by applying a lower-order polynomial fitting algorithm. Nevertheless, given 

the fact that the most significant difference between long-wavelength and orbital 

artefacts is that the former one is correlated in the temporal domain, the application 

of the lower-order polynomial fitting method can be considered more efficient if the 

temporally correlated components are being removed beforehand.    
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2.2.4 Time series Synthetic Aperture Radar Interferometry 

To enhance the performance of DInSAR for land deformation mapping purpose 

through minimising atmospheric propagation effects and temporal/spatial 

decorrelation, Time-series InSAR (TS-InSAR), in which jointly analysed multi-SAR 

images acquired on different dates, was invented in the late 1990s (Ferretti et al., 

2000). The phase gradient approach was the first attempt to increase the phase clarity 

and decrease the errors caused by atmospheric artefacts by averaging the differential 

IFGs, since atmospheric contribution is highly correlated in the spatial domain, but 

not correlated in temporal domain (Sandwell and Price, 1998). To further minimise 

DEM inaccuracy and spatial decorrelation, some works with small baseline IFG 

were carried out. However, an issue related to the subsets of differential IFGs may 

occur due to the multi-master strategy. Singular Decomposition Method (SVD) was 

applied by Berardino et al. (2002) to solve the subset problem by utilising minimum-

norm criteria to estimate the deformation velocity for only coherent pixels.  

 

Persistent Scatterer InSAR (PSInSAR
TM

) technique was proposed by Ferretti et al. 

(2001) to monitor local deformation phenomena over the highly coherent structures, 

such as buildings, rail tracks and bridges (Ferretti et al., 2001; Kampes, 2006). By 

selecting a stack of acquisitions (generally >= 20 images) (Colesanti et al., 2003a), 

all the slave images are co-registered to only one master image. Pixels corresponding 

to one or two dominant scatterers are then selected from the prominent natural 

features, the precise location of each scatterer can be recorded after comparing to 

non-prominent features, thus making it possible to track the motion of each dominant 

scatterer and later solve for the ground deformation (Lanari et al., 2007). Such pixels 
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that contain dominant scatterers are so-called Persistent Scatterer (PS) pixels, and the 

principle behind is that PS pixels are normally caused by dihedral and trihedral 

reflection. Therefore, the phase varying little due to temporal decorrelation, and the 

variation is also small even with different viewing angle and squint angle (hence 

large spatial baselines). It is worth mentioning that the accuracy could reach up to 

sub-millimetre level depends on the quality and number of image stacks (Colesanti et 

al., 2003a). 

 

Since then many TS-InSAR techniques have been developed, which can more or less 

be segregated into three categories. (1) In the first category are techniques that make 

use of only one single master image to generate stacks of IFGs. These approaches 

estimate the ground deformation at the PS pixels, whose scattering characteristics 

remain stable even over long time intervals and large baseline separation, e.g., 

PSInSAR
TM

 (Ferretti et al., 2001), Stanford method for Persistent Scatterers 

(StaMPS) (Hooper et al., 2004), the Spatio-Temporal Unwrapping Network (STUN) 

(Kampes, 2006), Stable Points Network (SPN) (Crosetto et al., 2008; Kuehn et al., 

2010) and the GEOS-PSI method (Ng et al., 2012b). These techniques have the 

advantage of associating the deformation with a particular scatterer, rather than a 

multi-looked resolution cell. This allows displacement maps to be generated with 

high resolution and the achievable accuracy could be 1 mm·yr
−1

 or better where the 

subsidence over the study region is linear in time (Adam et al., 2009).  
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(2) The second category involves the usage of multi-master IFGs, and only the so-

called Coherent  Scatterer (CS) pixels were selected for further analysis. Unlike PS 

pixels whose scattering characteristics are insensitive to spatial and temporal 

baselines, CS pixels can only maintain their scattering characteristics with limited 

spatial and temporal baselines, and multi-look operation is always needed to enhance 

the signal-to-noise-ratio (SNR) of CS pixels, e.g., the Stacking Analysis method 

(Sandwell, 1998), the Small Baseline Subset (SBAS) method (Berardino et al., 2002; 

Lanari et al., 2004), the Coherent pixel technique (CPT) (Mora et al., 2003), Poly-

Interferogram Rate And Time-series Estimator (π-RATE) (Biggs et al., 2007; Wang 

et al., 2012), the Temporally Coherent Point InSAR (TCPInSAR) (Zhang et al., 

2011), the Intermittent SBAS (ISBAS) (Bateson et al., 2015).  

 

(3) In the third category, single- and multi-master IFGs are combined to form the 

time series analysis (Hooper et al., 2012), e.g. full-resolution SBAS approach (Lanari 

et al., 2004), modified-StaMPS (Hooper, 2008), SqueeSAR method (Ferretti et al., 

2011) and the GEOS-ATSA (Ge et al., 2014). These different TS-InSAR techniques 

have been applied to measure mean velocities and cumulative deformation in various 

applications that include groundwater extraction-induced land subsidence, landslide 

and volcanic deformation, and city urbanisation and expansion-induced deformation. 

However, it is worth mentioning that none of the error sources can be completely 

eliminated even with the TS-InSAR method, and researchers working on these 

techniques are trying to minimise the unfavourable phase components according to 

different geological situations. 
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Chapter 3  

Technical Highlights of Differential SAR 

Interferometry and Time series SAR 

Interferometry 

3.1 The principle of DInSAR 

DInSAR interferometry is characterised by single-pass or repeat-pass interferometry 

according to the number of platforms pass over the same scene (Ahmed et al., 2011). 

Typically, repeat pass interferometry is operated using only one antenna to capture 

the same area twice at different times, and the time difference is called the revisit 

time. The basic geometry of the SAR system is illustrated in Figure 3.1, where SM 

represents the master image while the slave image is denoted as SS. λ is the carrier 

wavelength of radar pulses, θ and 𝜃0 are the incidence angle to the image pixel on 

the topographic surface and reference surface, respectively. 𝑅𝑀 and 𝑅𝑆 are the range 

distances between antenna positions and topography target, 𝛼 is the angle between 

the baseline and horizontal direction, D is the displacement of the image pixel along 

LOS direction, B is the length of baseline whilst B
 is the perpendicular vector of 

the baseline.  
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Figure 3.1 Geometry of repeat-pass InSAR System 

 

The observed phase value ∅M (.) and ∅S (.) of the SAR images with respect to a 

resolution cell is determined by the length of the range, wavelength as well as the 

backscattering phase, and the associated equation can be expressed as: 

,

,

4
(.)

4
(.)

M M scat M

S S scat S

R

R


 




 




  


   


                     (3.1) 

where ,scat M and ,scat S  are the backscattering phase of both master and slave images. 

For two SAR images acquired under very similar condition, the backscattering phase 

∅M (.) and ∅S (.) can be considered as identical to each other. The interferometric 
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phase ∅ (.), therefore, is more sensitive to the range phase difference and can be 

rewritten as (Rosen et al., 1996): 

4
(.) (.) (.) ( )M S M SR R


  


                                      (3.2) 

 

Additionally, (.) can also be written as equation (3.3) when assuming 𝑅M, 𝑅S (500 

~ 800 km) are >> B (< ~1 km). 

4
(.) sin( )B


  


                         (3.3) 

The earth ellipsoid phase need to be simulated based on orbit parameters, which is 

also well known as the flat earth effect. The flat earth phase can be denoted as the 

following equation when assuming that the topography is absent from the reference 

surface: 

0

4
sin( )Flat B


  


                                             (3.4) 

where Flat  is referred to flat earth phase. By removing this phase component from

(.) , the resulted differential phase Diff is given: 

0

4
(.) cos( )Diff Flat B


     


                               (3.5) 

The relationship between 𝛿θ and height of the target h is given under the assumption 

that there is no ground displacement between two acquisition times (Rosen et al., 

1996): 
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0sinM

h

R



                                                        (3.6) 

where 𝜃0 is also known as the local incidence angle, h is the topography target height 

referring to the reference surface, 𝛿𝜃 is the difference between 𝜃 and 𝜃0.  

 

It is worth mentioning that the above equation is purely based on geometric 

structure. In reality, several other phases may contaminate the differential phase and 

should be considered as well. Therefore, the new equation becomes: 

 

Diff Topo Defo Orbit Atm Noise                          (3.7) 

 

These five denoted phases are contributed by topography, deformation, orbital, 

atmosphere artefacts, and noise, respectively. Among them, topographic phase Topo  

is typically removed by importing an external data contains terrain information. As a 

result, such component can be simulated from this external data, e.g. a one arc-

second (approx. 30m resolution) Shuttle Radar Topography Mission (SRTM) Digital 

Elevation Model (DEM) or an external InSAR pair with relative short temporal 

baseline. However, due to the inaccuracy of the DEM, the residual topographic 

phase noise may remain in Diff  and we assume this part is included inside the Noise . 

The phase component Orbit  consists of both linear-component dominant phase and 

nonlinear phase. The linear phase trend can be eliminated if ground control points 

are available, e.g. static GPS measurements. An alternative way is to measure the 

frequency of the signal with maximum power in both the azimuth and range 

direction by applying a Fast Fourier Transform (FFT) function to transfer the 
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interferometric signals into the frequency domain, which is also referred to as linear 

phase gradient coefficients (Zhang et al., 2009; Ng et al., 2012b). The derived phase 

component is denoted as FFT :  

( , ) 2 ( )FFT x yx y x g y g                                                     (3.8) 

where ,x y  are the coordinates in slant-range radar coordinate system while the 

gradient coefficients along the range and azimuth directions are expressed as 
xg and 

yg .   is a constant value.  

 

Nevertheless, the nonlinear phase caused by orbital error is difficult to remove and 

therefore considered to be included in Noise . The atmospheric phase component Atm  

is composed of tropospheric phase and ionospheric phase, whilst tropospheric phase 

is made up of both stratified phase and turbulent phase (Jolivet et al., 2014). Global 

Atmospheric Model (GAM) is capable of eliminating the atmospheric phase to some 

extent and the detailed discussion can be found in Section 4. The last component

Noise , which is correlated in the spatial domain, can be eliminated following a low 

pass adaptive filtering operation. 

 

Eventually, an optimised differential IFG mainly composed of deformation phase 

can be obtained. Since the differential interferometric phase is expressed in modulo 

2π radians, the conversion process to resolve the 2π ambiguities is necessary, which 

is also known as the Phase Unwrapping (PU) operation. The relationship between 

the unwrapped differential phase and displacement value D is presented in equation 
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3.9 (Fornaro et al., 2009). The processing flowchart of DInSAR technique can be 

found in Figure 3.2.   

   ,

4
unwrapped Diff D





                                               (3.9) 

 

Figure 3.2 Processing flowchart of DInSAR technique 
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3.2 Time series InSAR Interferometry  

3.2.1 SAR images co-registration and interferogram generation  

Suppose there are N + 1 input SAR images available and one of them is selected as 

the reference image, the rest N scenes are co-registered and re-sampled to the same 

grid as the selected image using the Six Point Cubic Convolution (CC6P) kernel (Ng, 

2010; Hanssen, 2001). Then the conventional two-pass DInSAR method is applied to 

estimate the IFG by conjugate multiplication between two scenes within the image 

stack, and the total number of possible IFG combination is M, which is given in 

equation 3.10. 

( 1) / 2N M N N                                                   (3.10) 

The topographic phase is estimated using the one arc-second DEM (30 m posting) 

acquired from the SRTM (Farr et al., 2007) and removed from the IFGs. 

 

3.2.1.1 Single-master stacking strategy  

Under the single-master strategy, in order to achieve the TS-InSAR result with the 

best quality, an appropriate master image needs to be selected to maximise the stack 

coherence of the interferometric pairs (Hooper, 2006; Kampes, 2006; Ng, 2010). The 

stack coherence with respect to the master m can be simply modelled as:  

, ,

1

1
( , ) ( , )

N
m n m n

total temporal spatial C C

n

f B B f T T
N

where   



                               (3.11) 
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
                                                 (3.12) 
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,m nB
and ,m nT are the perpendicular spatial baseline and temporal baseline, 

respectively. The divisor c is referred to as the critical value for CB and CT , and an 

IFG exhibits complete decorrelation with either parameter beyond this value. It is 

worth noting that these critical values are dependent on wavelength, look angle and 

bandwidth of SAR images, and the typical value for ALOS-1 PALSAR fine-beam 

single polarization (FBS−HH) in particular are CT = 5 years (given the fact that the 

life time for this satellite is five years plus four months), and CB  = 13.1 km 

(Sandwell et al., 2008).  

 

As the master image is selected which could give the largest stack coherence, an 

empirical SAR calibration is carried out for these re-sampled scenes (Cassee, 2004; 

Ge et al., 2014), whose amplitude value acquired at different time may vary due to 

the changes in characteristics of sensor as well as viewing geometry. The two-step 

calibration operation is: 1) the calibration constant nC  provided in the SAR 

parameter file of each SLC data is used to conduct the pre-calibration (equation 3.13), 

and 2) since the provided calibration constant may be poorly defined due to some 

systematic biases, another calibration factor nK is introduced to ensure that the 

images are comparable by taking advantage of the mean value of these pre-calibrated 

SAR images (equation 3.14) (Ng, 2010). 

       
_

( , ) ( , )
pre cal

n nm
orig

n

C
A l p A l p

C
                           (3.13) 

where 
_

( , )
pre cal

nA l p and ( , )n

origA l p are the pre-calibrated and original amplitude value, 

respectively, with respect to the pixel at (l, p) and image acquisition n = 1, 2, 3 … 
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N+1. mC and nC are the calibration constant for the master image and the acquisition 

n image, respectively.  

,
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


             (3.14) 

where ( , )
cal

nA l p  is the final calibrated amplitude value with respect to the pixel at (l, 

p)  while mK and nK are mean amplitude values of the pre-calibrated SAR image m 

and n, respectively.  

 

3.2.1.2 Multi-master stacking strategy 

For traditional SBAS technique (Berardino et al., 2002), M multi-looked 

interferograms (IFGs) and corresponding coherence maps are generated with both 

spatial baseline and temporal baseline smaller than a pre-defined threshold. After 

that, pixels with low-phase dispersion are selected for the subsequent process, and 

these pixels are also referred to as Coherent Scatterer (CS) pixels. To determine 

whether a multi-looked unit is a CS pixel, the temporal coherence magnitude |𝛾|, a 

maximum likelihood estimator, is exploited to evaluate the phase dispersion. |𝛾| can 

be affected by many factors, such as the impact of volume scattering, geometric 

decorrelation, temporal decorrelation, as well as Doppler centroid difference 

between two images acquisitions (Zhang et al., 2013). CS pixels are selected with 

temporal mean value |𝛾| higher than a pre-defined threshold (equation 3.15).  

1

1
| ( ,| | ) |

M

m

m

l p
M




                                  (3.15) 
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where ( , )m l p represents the coherence magnitude at ( , )l p of mth IFGs, and the 

detailed definition of ( , )m l p can be found in Section 3.2.3.  

 

3.2.1.3 Modified Multi-master stacking strategy 

It is worth mentioning that the traditional SBAS technique only takes the magnitude 

of spatial and temporal baselines as decorrelation indicators, and the selection of 

possible IFG combinations is achieved by setting a pre-defined threshold for spatial 

and temporal baselines (Berardino et al., 2002). However, there are certainly other 

factors that might degrade the correlation of IFG, e.g., the orbital error and 

atmospheric phase screen disturbance (Zhang et al., 2013). Therefore, the global 

gross coherence (GGC) can be exploited to evaluate the de-correlation level with 

respect to each IFG (modified from LGC mentioned in (Zhang et al., 2013)). The 

GGC for the Mth IFG is given as follow: 

,

1, 1

| | ( , )M
L P

M

GGC

l p

l p 
 

                                                            (3.16) 

where L, P are the line number and pixel number with respect to the Mth IFG, 

respectively, |𝛾|
M

 (l, p) is coherence value of the pixel at (l, p) while 𝛾𝐺𝐺𝐶
𝑀  is the 

overall coherence value for the Mth IFG. 

After obtaining all these GGC values and sorting them into ascending order, the 

bottom “ 𝑝̂ ” percentage IFGs are selected as the optimal combination for the 

subsequent process. Generally, the value of “𝑝̂” needs to satisfy two requirements: 

(1) includes all the image acquisitions, and (2) cannot be too large, otherwise, would 

degrade the coherence selection.  
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3.2.1.4 Estimate the maximum annual subsidence rate 

Indeed, before conducting the TS-InSAR analysis, it is always necessary to estimate 

the achievable maximum subsidence with the current dataset. The simplest model is 

given in equation 3.17. 

 max

max

365

4
D

T


  


                                                      (3.17) 

where maxT is the maximum temporal baseline of all IFGs,  is the wavelength of 

the sensor, while maxD is the maximum annual subsidence which can be estimated. 

3.2.2 Measurement scatterer pixel selection 

For all the TS-InSAR methods, the phase ambiguity is actually resolved over the so-

called MS pixels, which could remain the low-phase dispersion in the temporal 

domain. The following are the most commonly used techniques for selecting MS 

pixels under different conditions.    
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Figure 3.3 Reflected signals received from PS, DS, CS, refined DS and Incoherent 

Scatterers pixels. 

 

3.2.2.1 Persistent scatterer pixel selection 

Suppose that N input slave SAR images have been co-registered to a common master 

image and N IFGs have generated accordingly. Since the interferometric phase 

detected by the SAR sensor is modulo 2π and can be affected by various factors, 

such as deformation and DEM error, it is very difficult to assess the interferometric 

phase stability along the image stack for individual pixels.  Ferretti et al. (2000)  

noted that the phase dispersion of a pixel exhibits to be small with little variation if 

the corresponding amplitude value along the image stack is relatively large. This 

suggests that the time series amplitude values of each pixel can be analysed to 

evaluate the phase stability. The amplitude dispersion method invented by Ferretti et 
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al. (2001) can be exploited to select PS pixels based on their amplitude stability 

along the image stacks. 

A
A

A

D 





                                                                     (3.18) 

where A is the mean value,  and A  are the phase and amplitude standard 

deviation value with respect to the pixel along image stacks, respectively. 
AD  is the 

amplitude dispersion index.  

 

A numerical simulation carried out by Ferretti et al. (2001) and Kampes (2006) 

shows that Equation 3.18 can be considered as a good estimation of the phase 

dispersion when 0.25AD  (Figure 3.6) while the correlation between AD and  is 

getting weaker once the value goes beyond 0.25. Ferretti et al. (2001) pointed out 

that the theoretical limit of (4 ) / 0.52  can be approached for AD  under 

Rayleigh distribution. Nevertheless, AD has been exploited by the majority of the 

single-master based TS-InSAR methods and the typical threshold is between 0.25 

and 0.4. It is worth mentioning that the amplitude dispersion method for selecting PS 

pixels is applied over full resolution pixel (where one or two dominant scatterers 

may exist) without considering the neighboring pixels. Due to the distinctive 

characteristics of this method, these dominant scatterers are often man-made 

structures, such as buildings, bridges, metallic objects, pylons, etc., which mostly 

located in urban regions. As a result of it, the density of PS pixel is usually very high 

(> 100 PS km
-2

) in urban areas while the counterpart density is typically very low (< 

10 PS km
-2

) over rough terrain and non-urban areas which are characterized by 

surface or volume scattering phenomena, or reflectivity inhomogeneous scatterers.  
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Figure 3.4 Amplitude dispersion simulation result modified from (Ferretti et al., 

2001; Ng, 2010).  

where signal model: k kz g n  (k =1, 2, …, K, where K is the number of simulated 

images used and is set to 34), the value of g is fixed to 1, while the noise standard 

deviation with respect to both the real and imaginary part of kn  is gradually 

increased from 0.05 to 0.8. In total 5000 estimates of the mean phase standard 

deviation 𝝈∅ (blue line) and the average amplitude dispersion index 𝑫𝑨 (black line) 

is carried out for the simulation. The x-axel represents the noise standard deviation 

while the y-axel is the mean value of the amplitude dispersion index and the phase 

standard deviation, respectively. 
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3.2.2.2 Distributed scatterer pixel selection 

To overcome the issue of low density of PS pixels over non-urban regions, the 

concept of Distributed Scatterer (DS) pixels was first introduced by Ferretti et al. 

(2011), which typically can be detected from homogeneous field, such as debris 

flow, desert regions, scattered outcrops etc. (the magnitude difference of DS and PS 

pixels can be referred to Figure 3.5). Unlike PS pixel, DS pixel is a group of 

homogeneous scatterers within a specified search window which share similar 

homogenous behaviours (Goodman, 1976) and is often modelled by a complex 

circular Gaussian return (Bamler and Hartl, 1998). Distributed scatterer mechanism 

is trying to find these statistical homogenous (SH) small scatterers within a kernel 

box centred at the distributed point, whose SNR can be significantly improved 

through an adaptive filtering operation.  

 

The most commonly used method for DS pixel selection is Kolmogorov-Smirno 

(KS) test (Ferretti et al., 2011) and the equation is given as: 

, ,{ , }

ˆ ˆ( ) ( )max
m i n i

KS m n
x x x

D F x F x


                                                        (3.19) 

where m is the targeted pixel, n is the pixel within a specified search window centred 

at m, i = 1,…, N+1, ˆ ( )mF x  and ˆ ( )nF x are the empirical cumulative distribution 

functions (ECDFs) of amplitude with respect to the pixels at m and n, respectively. 

The null hypothesis will be accepted with level 𝛼 if the equation 3.20 is satisfied. In 

other words, pixels m and n can be considered as homogeneous candidates under this 

circumstance. 

   2

1
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
                                                                 (3.20) 
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where N+1 is the number of image stacks, aK is the Kolmogorov distribution at the 𝛼 

percentile level, and the values of the most common aK  are given in Table 3-2.  

 

Table 3-1 The value of aK for the most common levels of 𝜶 

𝛼 0.10 0.05 0.025 0.01 0.005 0.001 

aK  1.22 1.36 1.48 1.63 1.73 1.95 

 

An alternative nonparametric test used for DS identification is Anderson-Darling 

(AD) test other than KS test (Parizzi and Brcic, 2011). AD test considered to be 

more powerful for testing normality because KS test can lead to blurry features over 

low contrast areas once the difference among homogeneous targets is small. The 

equation for selecting DS pixels using AD test is given in equation 3.21.  

, ,

2

{ , }

( ( ) ( ))1

2 ( )(1 ( ))
m i n i

m n

x x x mn mn

F x F xN
A

F x F x





                                 (3.21) 

where ( )mnF x is the ECDF of the pooled distribution by integrating two independent 

datasets, ,m ix  and , , 1,2,..., 1n ix i N  , into a compound one. The null hypothesis 

will be rejected with the AD statistic value A less than a threshold value.  
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Figure 3.5 Comparison of the (a) individual ALOS-1 Intensity image, (b) after 

temporal mean filtering, (c) after the SH filtering (20 × 10), and (d) after the spatial 

mean filtering (20 × 10) 

 

In addition, during the SH pixels selection, the dimension of the spatial widow for 

the search of neighbouring SH pixels is based on the actual line & pixel number 

multiplying a proper coefficient (e.g. the typical search window size for ALOS-1 

PALSAR FBS, ENVISAT ASAR and Sentinel-1 Interferometric Wide Swath (IWS) 

are 20 × 10, 31 × 6 and 10 × 20, respectively) and image pixels are considered as 

DS candidates with SH pixels higher than a certain threshold 20 (at which level PS 

pixels can be least affected). Following Ferretti et al. (2011), a maximum likelihood 
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(ML) estimator is then exploited to estimate the optimal phase based on the 

coherence matrix by using all possible interferometric phase combinations and the 

equation can be expressed as: 

1

arg min{ ( ) }H C





                                                          (3.22) 

where 
H
 and °  stand for the conjugate transpose and Hadamard operator, 

respectively. The N+1 unknown phase observations with respect to each InSAR 

image are given as 1 2 1[ , , , ]T

N     .  is the complex counterpart of 𝜆  and is 

expressed as exp( )j  . To decrease the complexity of the solution space, the first 

unknown 𝜃1 generally can be fixed to zero (Zhang et al., 2016). Γ and C are the 

coherence and covariance matrix, respectively. The relationship between them is as 

follows: 

  ( )HC                                                            (3.23) 

where the vector 1 2 1[ , , , ]T

N     represents the data standard deviations. To 

solve equation 3.23, normally a quasi-Newton based LBFGS (Limited memory 

Broyden-Fletcher-Goldfarb-Shannon) algorithm would be adopted, which is 

basically designed for unconstrained nonlinear optimization issues. At last, the good-

of-fitness value P  is used to assess the quality of the optimized phase of DS 

candidates. 
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where 𝜑mn is the spatially filtered phase; 𝜃m and 𝜃n are the optimized phases with 

respect to images m and n, respectively. The null hypothesis will be accepted if P  is 

higher than a certain threshold, and DS candidates thus can be considered as DS 

pixels.   

 

3.2.2.3 Coherent scatterer pixel selection 

InSAR coherence is commonly used to assess the quality of the local IFG, which is 

also being used to select the Coherent Scatterer (CS) candidates when the multi-

master stacking strategy, e.g. SBAS approach, is applied. The basic estimation is 

conducted over a pre-defined window M × N and the coherence value is obtained by 

estimating the correlation values within the search window:  

,
, , *

1, 1

, ,
, 2 , 2

1, 1 1, 1

| |

| | | |
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M S

m n
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m n m n

y y

y y


 

   





 
                                    (3.25) 

where ,m n

My and ,m n

Sy are the complex values with respect to the master and slave 

image at the position m and n within the search window (the full size is M × N), * is 

the complex conjugate operator. It can be seen from the equation 3.25 that the 

maximum value of 1 for | | can only be achieved when both ,m n

My and ,m n

Sy are 

identical. Any changes that make these two values different will result in decreasing 

the coherence value.   
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Figure 3.7 (c) and (d) demonstrate the efficiency of using both the SH filtering and 

the spatial mean filter over the intensity image stacks. The kernel box for both 

analyses is 20 × 10, which is dependent on the ratio value between the line number 

and pixel number of the real single-polarized ALOS-1 dataset. It is clear that SH 

filtering is entirely capable of preserving high-quality information compare to the 

counterpart spatial mean filtering.  

 

3.2.2.4 Maximum likelihood scatterer selection 

The Maximum Likelihood Estimation (MLE) approach is first suggested by Shanker 

and Zebker (2007) to identify coherent points for their TS-InSAR processor, and the 

basic model is a function of the signal-to-clutter ratio 𝛾, which is given in equation 

3.26.  
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                               (3.26) 

Given a total number of N IFGs, the value of 𝛾  is achieved by maximizing

1 2
( | , ,..., )

Nn n nP     , where 1 2, ,..., Nn n n  are the differential interferometric phase 

value at pixel n in N IFGs. ( | )P R Q  is the conditional probability of  R for event Q. 

According to Bayers’ rule, the following equation is derived:  
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                                   (3.27) 
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Within equation 3.27, since the term 1 2( , ,..., )n n nNP    is independent of  , the 

equation can be solved by maximizing the numerator with respect to each value of  . 

Under the assumption that ( )P  is constant for all  , equation 3.27 can be resolved 

by maximizing the following component.  

1 2
.... ,

Nn n nP P P                                          (3.28) 

The estimated maximum likelihood value  is then compared to the pre-defined 

threshold value threshold which is also dependent on various situations, and the MS 

candidates with  exceeding the threshold can be accepted as the MS pixels.  

 

3.2.2.5 Offset deviation estimation 

Given the fact that the majority of the TS-InSAR analyses are human-involved 

approaches and many parameters, e.g. the patch size and critical threshold values, are 

highly dependent on individual’s experience, it is challenging to balance the phase 

quality and the proper spatial density of the MS pixels without a priori knowledge. 

Based on the fact that the offsets estimated from strong scatterers are less sensitive to 

the oversampling factor and the window size compared to those incoherent scatterers 

(Bamler and Hartl, 1998), Zhang et al. (2011) proposed an amplitude based method 

to select the MS candidates by taking advantage of the standard deviation of the 

estimated co-registration offsets. The detailed algorithm contains two steps: 1) for 

each individual SAR image, the co-registration function is applied to estimate an 

offset vector at pixel i by changing the window size gradually from small patches to 

large patches (from 8 × 8 to 64 × 64 indicating ti1 to ti4) and the associated equation 

is as equation 3.29 and 2) the standard deviation value of the vector iOT is estimated 
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and individual pixel can be selected as MS pixel only if the corresponding ( )istd OT  

is smaller than thresholdstd , which is an experience-based value. 

 1 2, ,...,

( )

i i i iN

i threshold

OT ot ot ot

std OT std




                                                  (3.29) 

 

where otij , j = 1, 2, 3…, N represents the iteration times at the ith pixel. 

 

3.2.3 Parameters estimation  

3.2.3.1 Parameters solved over points 

Least squares (LS) approach is the basic model adopted by the SBAS method to 

solve the unknown parameters mean velocity ( )xv and DEM error ( )xh  since an 

increasing number of deformation parameters would decrease the stability of the 

estimation process (Van Leijen and Hanssen, 2007). ,

N

unwrapped x  is the unwrapped 

observation phases at the multi-looked xth CS pixel, and can be modelled as in the 

equation 3.30: 

,

, , , ,

4
( )

sin

N

xN N N N N N

unwrapped x x x x Atm x Orbit x Noise x

x x

B
v T d h

R


   

 


              (3.30) 

where NT is the time difference between two acquisitions, 𝑣x is the mean velocity, 

𝐵⊥,x
N , 𝜃x are the local perpendicular baseline and local incidence angle, respectively; 

and ℎx is the DEM error at pixel x. The last three parts are phase contributions from 

atmospheric artefacts, orbit error and random noise. Considering a set of unwrapped 

differential IFGs, equation 3.30 can be rewritten as:  
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 ,unwrapped x x x

h
A

v


 
   

 
                        (3.31)  

where 
,unwrapped x represents the input observations, which are unwrapped at CS 

pixels, xA is a the constant term whose elements include 𝐵⊥,x
N , 𝜃x , 𝑇N , Rx, and 𝜆 

while x represents the remaining components, which are contributed by nonlinear 

deformation, atmospheric artefacts, orbital error and noise. These two parameters 

can be estimated through a LS approach: 

  
1

,

T T

unwrapped x

h
A A A

v

 
  

 
                     (3.32) 

 

3.2.3.2 Parameters solved over arcs 

For single-master based TS-InSAR methods, the phase expression Δ𝜑x
N  in 

differential IFG N at pixel x can be denoted as: 

,

, , , ,

4
( )

sin

N

xN N N N N N

wrapped x x x x Atm x Orbit x Noise x

x x

B
v T d h

R


   

 


                         (3.33) 

where ,

N

wrapped x is ambiguous and denoted as the wrapped interferometric phase at 

single-looked xth MS pixel.  

Since the phase observation of each MS pixel is wrapped, sparse phase unwrapping 

algorithm proposed by Costantini and Rosen (1999) can be applied to solve the 

phase ambiguity over these sparse MS pixels. The successful application of this 

algorithm requires the phase difference between adjacent pixels within the interval 

 ,   (Chen and Zebker, 2002). However, this situation can hardly be met, 

especially for 1) IFGs with large temporal baseline, and 2) SAR data acquired in 
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short wavelength, e.g., C-band and X-band, resulting in the unwrapped phase 

difference larger than  . To solve this problem, triangluar irregulation network 

(TIN), which is constructed based on a nearly optimal and unique triangulation – 

Delaunary triangulation, was introduced to link all these MS pixels and estimate the 

phase difference between nearby pixels, e.g. x, y. Each pair of nearby pixels is 

referred to as arc in this context. Under the assumption that atmospheric and noise 

artefacts are spatially correlated, the double-difference phases are estimated over 

arcs in order to reduce the effect of atmospheric and noise effects that may invalidate 

the velocity/DEM-error model. Thus, the phase difference between two adjacent 

pixels can be obtained as: 

  
, ,

, , , , , ,

, ,

4
( )

sin

N

x yN N N

wrapped x y x y x y sum x y

x y x y

B
v T h

R


 

 


                              (3.34) 

where Δ𝑣x,y  is the velocity difference; 𝐵⊥,x,y
K  and 𝜃x,y  are the mean local 

perpendicular baseline and local incidence angle, respectively; and Δℎx,y  is the 

average DEM error corresponding to pixels x and y. The last term , ,

N

sum x y  is the 

residual phase contributed by un-modelled nonlinear displacement component, 

atmospheric error, orbit error and noise error.  

 

Indeed, most of the TS-InSAR method, e.g.  PSInSAR
TM

 and Spatio-Temporal 

Unwrapping Network (STUN) methods (Kampes, 2006; Ferretti et al., 2001), 

estimate the two unknown values ( )xv and ( )xh at the xth single-looked MS pixel 

over the arcs of TIN. Alternatively, Liu et al. (2009a) proposed a freely connected 

network (FCN) to connect all nearby pixels whose distances are less than a pre-
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defined length. This method is fully capable of generating 30 times more 

observations compare to the TIN based cases, and can be considered useful when 

dealing with small stacks of MS pixels as there are more redundant observations to 

enhance the reliability of the measurements. However, the computational load will 

significantly increase once dealing with larger stacks of MS pixels, e,g., more than 

20, 000, 000 points (Ge et al., 2014) and FCN based analysis is not suited anymore. 

At this stage, the first two parameters Δℎx,y and Δ𝑣x,y with respect to each arc can be 

estimated from the IFG stacks by solving a minimization problem: 
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                  (3.35) 

where 1j   , Δ𝜑wrapped,x,y
N  is the observed phase while 

mod , ,el x y

N  is the phase 

generated from the deformation model. Since the above equation represents the 

phase differences between two adjacent pixels within one IFG, and the observed 

phase value is modulo 2π, the phase model along the IFG stack can be considered as 

a linear system. 

 

3.2.3.2.1 Two-dimensional Search Solution  

The two-dimensional search solution was proposed by Ferretti et al. (2001) to solve 

the minimization problem. Based on a priori knowledge, appropriate variation ranges 

(h1, h2 & v1, v2) with small sampling intervals (s1 & s2) can be set for Δℎx,y and ,x yv , 

respectively. The whole searching area can be considered within a window size of 
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1 2 1 1 2 2( ) / ( ) /h h s v v s   and the searching process will not stop until the 

appropriate Δℎx,y and 𝑣x,y is found that could maximise equation 3.35. It is worth 

noting that the search solution can only be successfully performed under the 

assumption that , ,

N

sum x y < 𝜋, which is true in most cases.   

 

3.2.3.2.2 Integer Least-Squares approach 

Alternatively, an integer least-squares (ILS) estimator, AMBiguity Decorrelation 

Adjustment (LAMBDA) was exploited by Kampes (2006) to estimate ,x yv and 

,x yh . LAMBDA was originally developed by Teunissen (1995) for fast GPS 

double difference integer ambiguity estimation. Kampes and Hanssen (2004a) then 

adopted this estimator for the time-series InSAR analysis to unwrap the phase in 

time. The modelled system of observation equation can be written as equation 3.36 

considering the 2𝜋 integer.  
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 (3.36) 

where [Δ𝜑x,y
1 , … , Δ𝜑x,y

N ]
T
are N observed phase difference between pixel x and pixel y 

along IFG stack, while [𝑛x,y
1 , … , 𝑛x,y

N ]T  are N integer phase components of the 

observed phase, 𝜎  is the combination of the residual phase component. For 
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simplicity, equation 3.36 can be considered as a linear system of equation and thus 

rewritten as: 

An Bp                               (3.37) 

where  is the matrix of the double-difference phase observation between pixel x 

and pixel y, A and B are constant terms, n  and p are the vector of integer-valued and 

real-valued unknown ambiguities, respectively.  

 

Since there are a total number of N + 2 unknown variables within the N equations in 

equation 3.37, two pseudo-observations for each unknown parameters are added 

based on a priori information to the system of equations to give the design matrix 

full rank. Followed by a three-step procedure to resolve the system of equations: 1) 

the “float solution” for the integer parameter, n , can be computed using the 

corresponding variance-covariance matrix (VC-matrix) nQ , 2) the “fixed solution”, 

n ,can be determined from n  and nQ  using LAMBDA, and 3) the “fixed solution” 

for the real-valued parameter, p , can be estimated through a least-squares estimator: 

 
1

1( )T Tp B Q B B Q An




   , where Q is the VC-matrix of the observed phase 

difference   and is used to weight the contribution of each SLC image. It is worth 

mentioning that the correctly constructed VC-matrix could result in more accurate 

estimation (Kampes and Hanssen, 2004b). 
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According to Kampes (2006), the stochastic model of a SAR interferometric phase 

can be considered due to only the noise effect, whilst the variation of the atmosphere 

is neglected given the fact that all estimation are performed between points and the 

distances between them are small. Q  is given as: 

2

,

0

2 0

2 1,...,

N
N

Noise n n n T
n n n

E if n
Q Q where Q

i i if n N





  


        (3.38) 

where 2

,Noise n is the phase variance of the estimated noise within image acquisition n, 

and 2

Noise  of (20°)
2 

and (30°)
2 

are normally given to master and slave images, 

respectively (Kampes, 2006), NE is a N×N matrix of ones, while T

n ni i  is a N×N 

matrix with a single one at position (n, n). In other words, the whole estimation 

process can be considered as a two-step empirical method. Firstly, a weighted ILS 

estimator is applied to estimate the unknown two parameters and the weighting 

matrix is known as a priori VC-matrix, which is calculated based on a stochastic 

model (3.38). Secondly, the phase residuals with respect to arcs within each IFG can 

be estimated using an ordinary Least Squares estimation. Later, the derived 

estimation will be used to determine the variance component of each SAR scene. 

 

Assume that all the Δℎx,y  and Δ𝑣x,y  values have been estimated over arcs of the 

network. The ensemble phase coherence (EPC) also known as ( , )x y  is then 

introduced to assess the reliability of the corresponding arc, which is first mentioned 

by Ferretti et al. (2001). As the value of EPC ranges from 0 to 1, and higher value of 

EPC represents more accurate estimation, arcs with EPC less than a certain threshold 

are assumed to be unreliable and would be removed from further analysis. 
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Afterwards, isolated MS pixels as a result of stability assessment shall be deleted as 

well (Ng et al., 2012b). 

, mod , ,
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

                                             (3.39) 

 

3.2.4 Parameters integration  

After that, the absolute value ( )x yv v  and ( )x yh h  with respect to each MS pixel need to 

be recovered from ,x yv  and ,x yh , and the basic function for the absolute inversion 

(take ( )x yv v  as an example) is shown in Equation 3.40. Since 𝑣x,y  is actually the 

velocity difference between pixels x & y and the absolute velocity with respect to 

each MS pixel can be calculated once the reference MS pixel was selected with 

deformation value assumed to be 0. 
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  (3.40) 

where s is the number of measurement points, 𝜀 is the residual value, the vector on 

the left hand side is the estimated velocity differences at the arcs, the design matrix 

on the right hand side relates to the estimated arcs, while the vector on the right hand 
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side is the absolute velocity value corresponds to each individual MS pixel in LOS 

direction.  

 

3.2.4.1 Ordinary Least Squares 

Ordinary Least Squares (OLS) method is a standard approach to solve the 

overdetermined systems under the assumption that there is constant variance in the 

errors, and the ‘LS’ typically means to minimise the sum of the squares of the 

residuals with respect to every single equation. Therefore, the ordinary least squares 

solution can be applied to solve Equation 3.40 and is given as (P is the number of 

arcs): 

*2 1

1

arg min ( )

1,2, ,

P
T T

OLS p
V

p

V A A A V

where p P

 


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


           (3.41) 

                         

Figure 3.6 The Ordinary Least-Squares fit is more influenced by the outlier than the 

Robust Regression fit 

 



 
 

49 

 

3.2.4.2 Robust Regression 

It is worth mentioning that biased estimation on some arcs may degrade the accuracy 

of the estimated absolute velocity value (Figure 3.8). Therefore, a maximum 

likelihood regression-based M-estimator is introduced (Huber, 1964; Zhang et al., 

2013). M stands for maximum likelihood.  

Suppose there is a data set of P available such that;  

( ) ,

1,2, ,

p p p p p pV A V V V A V

p P

       


              (3.42) 

M-estimator attempts to minimise the sum of a chosen function 𝛽(.), which is related 

to the likelihood function for a suitable assumed residual distribution. M-estimator is 

formally given by:  

1

arg min ( ( ))

1,2, ,

P

M p
V

p

V V

p P

 







                    (3.43) 

Minimization of Equation 3.43 is achieved primarily by the following two steps: 1) a 

set of P nonlinear equations can be derived by setting 
𝜕𝛽

𝜕𝑉𝑖
 = 0 for each i = 0, 1, …., P 

– 1.  

 
1

( ) 0,
P

p

p

V 


                         (3.44) 

where    ' ,    and    is known as the influence function.  
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2) the weighted least squares can be iteratively estimated using iteratively 

reweighted least squares (IRLS) method until a stopping criterion is met, and the 

optimised V is obtained following Equation 3.45. 

( ) ( )
( 1) 1 1 1( ) 1,2,

t t
t T TV A W A A W V t                      (3.45) 

where 
( )

1 ( )

1( ,..., )
t

t t

PW diag w w    and t is the iteration numbers.  

 

Given the fact that Huber’s method (Huber, 1964) is the most commonly chosen 

function in the M-estimation, the associated parameters can be expressed as: 
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       (3.46) 

 

3.2.5 Including less reliable measurement points 

Over the years, many times when processing real data, choosing the right trade-off 

between the selection of highly coherent pixels and the grid sparsity is a challenging 

task. Increasing thresholds allow selecting high coherent pixels, but the higher 

sparseness of the pixel grid may lead to unwrapping failures. On the other hand, the 

introduction of too noisy pixels can also lead to further unwrapping failures as well 

as integration uncertainty. To adequately address these issues, GEOS-ATSA 
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(Advanced Time Series Analysis) proposed by Ge et al. (2014) used a three-step 

processing to solve the phase ambiguity over MS candidates. 1) At the first stage, all 

these candidates are divided into two sub-groups based on the pre-defined threshold, 

which is an experience-based value, e.g., pixels satisfy either AD <0.25 or P >0.75 

can be considered within high-quality group (hereafter referring to reliable 

candidates) while pixels met either 0.25≤ AD <0.4 or 0.75≤ P <0.4 can be divided 

into medium-low group (known as less reliable candidates), 2) only reliable 

candidates are selected to construct the initial traditional triangular irregular network 

(TIN) and the motion/height-error model is solved over these candidates, and 3) Less 

reliable pixels are added into the TIN network iteratively based on a gradually 

increased searching box and the motion/height-error parameters are computed for 

these new candidates.  

 

3.2.6 Removal of orbit and topography-dependent atmospheric error 

In the following context, symbols , ,   have been used to represent the phase 

component; therefore, the differences among them should be first outlined here. 1) 

 stands for the phase vector in the spatial domain, 2)  represents the phase vector 

in the temporal domain, and 3)   is the individual phase value.  

The time-series residual phase of each MS pixel can be estimated after removing the 

modelled absolute DEM error, and linear velocity from the single-difference phase 

observation and the referred equation now reads: 

,

mod

1 1 1

wrapped N N N

residual wrapped el

P P P

  

  
                                         (3.47) 
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where P is the number of MS pixels, N

residual is the residual phase over MS pixels at 

Nth IFG and mainly consists of atmsophere (mainly tropospheric turbulence and 

tropospheric stratification) and orbital artefacts, nonlinear motion as well as noise 

component. A sparse Minimum Cost Flow (MCF) method is applied to the wrapped 

residual phase 
,wrapped N

residual  to derive the unwrapped residual phase stack 
,unwrapped N

residual  

(Ng et al., 2012a; Zhang et al., 2013; Ge et al., 2014). 

 

Since topography plays a significant role in producing atmospheric artifact due to 

changes in humidity, pressure, temperature as well as the water vapour content 

between two SAR image acquisitions, this component can be considered as vertically 

stratified phase delay. According to Hanssen (2001), in most cases, a simple linear 

model can be used to model this part using the height and unwrapped phase values at 

the position ( , )p l :  

unwrap k H b                                                         (3.48) 

where ,1 ,2 ,, ...,
T

unwrap unwrap unwrap unwrap p       , 1 2, ...,
T

pH h h h    , p is the total 

of MS pixels, k and b are constant terms, respectively. However, purely based on this 

method may confound with other types of phases, such as tropospheric turbulent, 

inaccurate satellite orbit, etc.  

 

In addition, a lower-order polynomial fitting method is always being used to remove 

the phase distortion induced by orbit error (Liu et al., 2014; Rosen et al., 1996; Doin 

et al., 2009), which is commonly used in the InSAR processing. The coefficients of 
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the polynomial can be determined either under the assumption that there is no 

deformation occurred in some region of the IFG or by the ground control points 

(GCPs). In other words, whether the orbital error can be accurately removed is 

largely dependent on the validity of no-deformation assumption and the precision of 

GCPs. Nevertheless, it is worth noting that the characteristics of orbital errors is 

similar to long-wavelength artefacts induced by the inaccurate determination of the 

sensor position vector, which can hardly be removed from an unwrapped IFG by 

fitting a low-order polynomial to the long-wavelength signal (Lu and Dzurisin, 

2014). Long-wavelength phase can be observed in some cases whilst it also can be 

obscured by other phase components in other cases. Since the most significant 

difference between long-wavelength and orbital artefacts is that the latter one is not 

correlated in temporal domain, the orbital phase error is estimated based on the 

unwrapped residual phase since the majority of the temporal correlated components 

have been removed (height information is also included since the vertically stratified 

phase also has very weak temporal correlation).     

, 2 2

0 1 2 3 4 5 6 ( , )unwrapped N

residual a a r a c a rc a r a c a h r c                            (3.49) 

where ,unwrapped N

residual is the unwrapped residual phase stacks at the interfergram N; r and 

c are the row number of column number, respectively; ( , )h r c  is the topographic 

height at (r, c) while 0a , …, 6a  are modelled parameters.  

 

3.2.7 Temporal-spatial filtering operation  

After removing the phase components contributed by the tropospheric and orbital 

effects, the remaining components are given as:  
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 , , 2 2

0 1 2 3 4 5 6 ( , )refined N unwrapped N

residual residual a a r a c a rc a r a c a h r c                    (3.50)     

where the terms 0a , …, 6a  are the best fitting coefficients derived from equation 3.49  

 

while ,

,1 ,2 ,, ,..., 1,2,...,
T

refined N N N N

residual residual residual residual p p P        is the refined residual 

phase contributed by tropospheric turbulence, nonlinear motion and noise. Of which, 

the tropospheric turbulence phase 𝜑turb is considered to be correlated in space and 

not correlated in time, noise phase 𝜑noise  has very weak correlation in both temporal 

and spatial domain while nonlinear motion is correlated in both time and space. A 

temporal-spatial filtering, proposed by Ferretti et al. (2001), is carried out to estimate 

the un-favoured phase components ( 𝜑 turb + 𝜑 noise) based on their specific 

characteristics. More specifically, the three-step processing is introduced to 

determine the tropospheric turbulence, and the refined phase over pixel p can be 

written as Equation 3.51.  

1 2

, , , ,, ,...,
T

N

residual p residual p residual p residual p                                               (3.51) 

 

1) First of all, the temporal mean residual phase ,residual p needs to be removed from 

,residual p ,  

, , ,residual p residual p residual p                                            (3.52) 

where  1,1,...,1
T

   is a N × 1vector of ones.  

 

2) A temporal high-pass filter with a defined triangular window, e.g., 360 days, is 

applied to remove the temporal correlated component, and the resulted phase is 
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denoted as _ ,residual HP p . After this step, the temporally correlated nonlinear motion is 

removed.  

 

3) A spatial low-pass filter with pre-defined window size, e.g., 2 km × 2 km, is 

exploited to remove the spatial non-correlated component ,noise p  for ,residual p and 

_ ,residual HP p and resulting in _ ,residual LP p and _ _ ,residual HP LP p . The estimated 

tropospheric turbulence phase delay ,turb p  at MS pixel p is derived by combining 

these two components together.  

, _ , _ ,turb p residual HP p residual LP p                                         (3.53) 

 

Finally, the nonlinear phase at pixel p can be estimated by subtracting both ,turb p and 

,noise p from ,residual p and the equation 3.54 is given as follows: 

 , , ,_nonlinear p residual p turb pLP spatial                            (3.54) 

where _LP spatial  is the low pass operator. The nonlinear motion is obtained by 

multiplying the nonlinear phase component with −
𝜆

4𝜋
. 

 

 

 

 

3.3 Tropospheric turbulence and stratified phase delay 

As all the current SAR satellites are operated at an altitude of 500 – 800 km (Table 

2-1), the electromagnetic wave transmitted from these platforms must go through the 
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atmosphere twice and can be easily affected by the small variation in the index of 

refraction in the line-of-sight (LOS) propagation (Zebker et al., 1997b). Differences 

in water vapour content, atmospheric temperature and pressure at two different 

observations will result in variations of phase values, which will remain in the 

observed IFG (Ding et al., 2008). 

 

Essentially, the atmospheric phase is caused by electromagnetic wave 

delay/acceleration when travelling through the troposphere/ionosphere. The detailed 

information of these two layers is provided in Figure 3.9. Zebker et al. (1997a) 

reported that particularly for the SIR-C/X-SAR, a variation of 20% in the relative 

humidity of troposphere could lead to an error of 10 cm to ground subsidence and 80 

− 290 m to DEM measurements for baselines ranging from 100 − 400 m when 

using favourable baseline geometry (Ding et al., 2008; Zebker et al., 1997a). 

Tropospheric and ionospheric artefacts can be characterised as spatially correlated 

and temporally uncorrelated due to the fluctuated medium as most atmosphere filters 

are designed on the basis of these characteristics. 
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Figure 3.7 Representation of atmospheric layers 

 

More specifically, tropospheric artefact mainly consists of tropospheric turbulence 

and tropospheric stratification (Jolivet et al., 2011), of which, localised water vapour 

is considered as the dominant factor to the tropospheric turbulence induced artefact 

(Li et al., 2006a). Water vapour is generally contained in the near-ground surface 

troposphere layer, basically up to 2 km from the ground with intense turbulent 

mixing phenomena. This can affect both flat and mountainous regions and can be 

eliminated by using statistical estimation method in both spatial and temporal 

domain (Ferretti et al., 2001; Ng et al., 2012a). The other tropospheric component is 

the tropospheric stratification, which has a significant impact on the changes in 

vertical direction. As the part is similar to orbital ramps and DEM errors, it is 

challenging to distinguish from linear orbit error, especially for longer wavelengths 
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SAR (Agram and Simons, 2015). It is worth noting that regions with strong 

topography changes can lead to more severe tropospheric delay as compared to 

humidity variation. Therefore, the two tropospheric components need to be carefully 

treated for precise subsidence measurement (Jolivet et al., 2011; Jolivet et al., 2014; 

Doin et al., 2009). 

 

Also, ionospheric artefact behaves significantly distinct in comparison to 

tropospheric component as it tends to accelerate the phase of the electromagnetic 

wave. Theoretically, the ionospheric artefact is proportional to the total electron 

content (TEC) in the ionosphere layer. For example, a TEC of 1 × 10
16 

m
-2

 causes an 

acceleration of about half a cycle for C-band signal. The dispersive ionosphere can 

also affect the radio signal, which is inversely proportional to the square of the 

carrier frequency. For instance, if the ionosphere causes 17 m range errors to the L-

band signals, it will only cause about 1 m range error to the C-band signals with the 

same atmospheric conditions and imaging geometry. In addition, ‘azimuth streaks” is 

caused by an equivalent Doppler shift when going through the ionosphere and 

consequently lead to azimuth pixel shift within the IFGs (Chen and Zebker, 2012). 

Most studies have shown that the C-band sensors (ENVISAT ASAR, Radarsat-1/2 

and Sentinel-1A) usually minimally influenced by the ionospheric delay, in the 

contrary, L-band sensors, e.g., ALOS-1/ALOS-2, often suffered from the 

ionospheric disturbance. In general, the local sun time of both ALOS-1 and ALOS-2 

sensors is 10:30 am and 10:30 pm, and the ALOS-1/PALSAR observation is 

assigned to night-time orbit because of the optical sensor availability under the 

sunlight. Researches show that the amount of TEC at around 10:30 pm could be 
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almost the half of the noon and moreover is unstable due to the TEC decay as the 

daily behaviour (Mannucci et al., 1998). Nevertheless, as the study of ionosphere is 

beyond the scope of this research, the ionosphere disturbance is not considered in 

this thesis. 

 

Experiments have been conducted over the past two decades by many researchers to 

understand better and mitigate the atmospheric phase delay. Li et al. (2007) used 

both the Jarque-Bera and the Hinich methods to test the atmospheric signal in four 

SAR IFGs over Shanghai, and found that the atmospheric signals in all IFGs are 

non-Gaussian distribution. Onn and Zebker (2006) exploited the “frozen-flow” 

hypothesis first proposed by Taylor (1938) to correct the atmospheric bias, and 

proved that additional improvement could be obtained when both prior- and after- 

GPS measurements of each SAR acquisition are available. Ferretti et al. (2001) 

exploited the spectral characteristics in designing filters to model and remove 

atmospheric artefacts from nonlinear deformation.  

 

Many other researchers use external data, namely, meteorological model, GPS, 

AQUA/TERRA Moderate-Resolution Imaging Spectroradiometer (MODIS) and 

ENVISAT Medium Resolution Imaging Spectrometer (MERIS) to mitigate these 

effects (Li et al., 2006b; Li et al., 2006c; Li et al., 2009). Li et al. (2006a) used the 

concept of power law nature of the atmospheric effects in designing algorithms to 

mitigate the atmospheric spectrum with meteorological and GPS data. Mathew et al. 

(2014) proposed a method to correct both tropospheric and ionospheric phase delay 

using MODIS and TEC data, the final result agrees well with GPS measurement. 



 
 

60 

 

Indeed, these methods were mainly based on external data to mitigate the 

atmospheric effect, and most of them can reduce the effect by about 20 −  40 

percentages (Ding et al., 2008). Nevertheless, the majority of the methods heavily 

rely on the atmospheric conditions (e.g. cloud coverage) and availability of other 

external datasets. Recently, many researchers tried to use Global Atmospheric Model 

(GAM) to predict the tropospheric stratified phase delays at the SAR image 

acquisition time (Jolivet et al., 2011; Jolivet et al., 2014; Li et al., 2009). Doin et al. 

(2009) quantitatively validated the potential of three GAMs: 1) ERA-Interim from 

ECMWF (European Centre for Medium-Range Weather Forecasts), 2) NARR (the 

North American Regional Reanalysis), and 3) MERRA (NASA’s Modern Era-

Retrospective Analysis for Research and Applications) by comparing with empirical 

corrections. Jolivet et al. (2014) further extended Doin’s work and demonstrated the 

feasibility to predict the tropospheric stratified delay from GAM (~ 50 km). 

However, Due to the very coarse spatial resolution of the GAM datasets, only the 

tropospheric effect experiencing with large spatial wavelength can be effectively 

eliminated, while the counterpart effect with a short wavelength can hardly be 

influenced, e.g. tropospheric turbulence phase delay.  
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3.4 InSAR tropospheric stratification correction with 

GAMs 

It is well known that the atmospheric phase delay is caused by air refractivity N 

between the satellite and the ground surface. The refractivity coefficient of air can be 

written as follows (Smith and Weintraub, 1953; Baby et al., 1988; Doin et al., 2009; 

Jolivet et al., 2014):  

6

1 2 3 4 52 2
( 1) 10 d

cl

P e e ne
N n k k k k W k

T T T f
                         (3.55)                            

where T is the temperature in °K, 𝑃𝑑 is the partial pressure of dry air in Pa, e is the 

partial pressure of water vapour in Pa, and n is the refraction index of air, Wcl is the 

cloud content in kg/m
3
. ne is the electron density within the ionosphere layer while f 

is the frequency of the electromagnetic wave. 𝑘1 = 0.776 K Pa−1, 𝑘2 = 0.716 K Pa−1, 

𝑘3 = 3.75× 103  K2Pa−1, 𝑘4 = 1.45× 103 m2kg−1 and 𝑘5 = −4.03× 107 S
-2

 m3 are 

constant parameters determined by (Smith and Weintraub, 1953). The first three 

components are due to the effect of both dry and wet air on air refractivity; the fourth 

term corresponds to the water content of clouds and is assumed to be included inside 

the turbulent delay; the fifth term is related to the dispersive effect of ionosphere, 

which is neglected as we discussed in section 3.3 (all the datasets used in the thesis 

are in C-band and L-band). Therefore, the modified Equation 4.2 now reads:  

1 2 3 2

dP e e
N k k k

T T T
                                               (3.56) 

The expression of the excess path length ( )L h is estimated by calculating the 

refractivity N between the ground elevation h and a reference elevation ℎref (the air 
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refractivity N above which is neglected), which consists of both dry and wet delays, 

and the equation can be expressed as:  

6

1 2 1 3 2

( ) ( ) ( )
( ) 10 ( )

( ) ( ) ( )

refh

h

P h e h e h
L h k k k k dh

T h T h T h

  
    

 
               (3.57) 

where the total pressure of moist air is denoted as dP P e  , according to Baby et al. 

(1988), Equation 3.57 can be rearranged as:  

6 1
0 2 1 3 2

( ) ( )
( ) 10 ( ) 1 ( )

( ) ( )

m
ref

d

g
h

R
d d

m s vh

k R R e h e h
L h P h h k k k dh

g T R T h T h



 
    

        
    

 



             (3.58) 

where the specific gas constant for dry air and water vapour 𝑅d and 𝑅v  are 287.05 J 

𝑘𝑔−1  𝐾−1  and 461.495 J 𝑘𝑔−1  𝐾−1 , respectively. 𝑔𝑚  = 9.8 m 𝑠−2 , 0( )P h  is the 

surface pressure at zero elevation, sT is the surface temperature while  is the 

temperature lapse rate. 

 

Thus, for a pixel at elevation h with the incidence angle of 𝜃 at a given time t, the 

LOS tropospheric phase delay  ,total

LoS h t , is given as a function of the excess path 

length L:  

 
4 ( , )

,
cos

total

LoS

L h t
h t




 


                                                  (3.59) 

Based on auxiliary datasets like global meteorological records, GAMs is fully 

capable of estimating the atmospheric elements, such as water vapour pressure, 

geopotential height of pressure levels and temperature on a global or local grid at 
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two individual acquisition times 𝑡1  and 𝑡2 . The predicted absolute tropospheric 

stratified phase delay (TSPD) thus can be derived as: 

     1 2,

1 2, ,
t t total total

LoS LoS LoSh h t h t                                          (3.60) 

In the following experiments two GAMs, namely, ECMWF’s ERA-Interim and 

NASA’s MERRA will be exploited to estimate the tropospheric phase delay. One 

advantage of GAMs over external data such as MERIS or MODIS is that it will not 

be affected by cloudy region or problematic reflectance values. A python module 

PyAPS is exploited to estimate TSPD for correcting the SAR IFGs (Jolivet et al., 

2011; Jolivet et al., 2014). 
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Chapter 4  

Tropospheric turbulent phase correction with 

TS-InSAR 

Beijing Metropolitan, the capital city of China, has suffered from groundwater-

induced subsidence since the late 1930s and the over-exploration of groundwater 

could lead to subsidence as much as −12.0 cm yr
−1

. Since the study areas were all 

plain regions and the elevation changes in the eastern Beijing were not significant 

(20 – 60 meters), the height related TSPD was not considered in this section. In other 

words, TSPD was not needed to be estimated by using either GAM based script 

PyAPS (Jolivet et al., 2014) or other height-related linear regression models (Ng et 

al., 2012b; Rosen et al., 1996; Liu et al., 2014). Apart from the tropospheric stratified 

component, the tropospheric turbulent phase delay was estimated by using the 

traditional temporal-spatial filtering operation (Ferretti et al., 2001), which was 

conducted by applying a low-pass and high-pass filtering operation in the spatial 

domain and temporal domain, respectively. The section is based on the material 

published in International Journal of Digital Earth (Du et al., 2017a). 

4.1 Groundwater induced subsidence in Beijing City 

Beijing municipality has suffered from groundwater-induced subsidence for decades, 

and the first record of groundwater level change was documented in the 1950s (Ng et 

al., 2012b; Gao et al., 2016). According to reports from the China Geological Survey 

(CGS), the groundwater level over the whole plain has dropped rapidly since the 

1970s due to the large demands of the growing population and industrial 
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development. Furthermore, the groundwater recharge rate experienced a severe 

reduction period between 1999 and 2009 due to consecutive years of drought. 

Eventually, the groundwater level had dropped up to 15 − 20 m from 1998 to 2005. 

Since the Beijing Plain is a typical Piedmont alluvial-pluvial plain, which consists 

mainly of coarse sandy gravel carried by Wenyu, Chaobai and Yongding rivers, local 

subsidence induced by the reduction of the groundwater level is to be expected (Ng 

et al., 2012b). 

 

Many TS-InSAR methods have been applied to monitor the groundwater extraction 

induced gradual changes in Beijing City over the last decade. Ng et al. (2012b) 

exploited GEOS-PSI method to map the land subsidence in Beijing City with 44 

ENVISAT and 24 ALOS images from 2003 to 2009, whereas the cross-validated 

results between these measurements agreed well. Then the three-dimensional 

analyses were carried out to discriminate the vertical and east-western deformation 

components, and the outcome confirmed that subsidence was mainly in the vertical 

direction ranging from −115 to 6 mm yr
−1

. Gao et al. (2016) utilised the SBAS 

method to measure the ground deformation at Capital International Airport, Beijing 

between 2003 and 2013 with ENVISAT and TerraSAR-X SAR images. The study 

pointed out that the local subsidence rates were between −66.2 to 6 mm yr
−1

. Later 

the authors verified these measurements with ground-levelling surveys and 

concluded that apart from excessive groundwater extraction, active faults and 

quaternary compressible layers might also have contributed to the land subsidence. 

Chen et al. (2017) then reported that the changes of groundwater level in the 
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confined aquifer between 100 – 180 m contributed the most to the ground 

deformation by analysing the ENVISAT dataset from 2003 to 2010.  

 

It is worth mentioning that previous studies on the field deformation at Beijing City 

mainly focused on the period before the year of 2014. Furthermore, there was a lack 

of detailed analyses relating the evolution of ground subsidence over particular 

trouble spots. According to Guardian (2016), the Beijing government inaugurated a 

mega-engineering project on 12 December 2014 to reduce the water shortage by 

constructing a 2,400 kilometres stretch of tunnels and canals, which was able to 

divert 44.8 billion m
3 

of water annually to the capital. In addition, the Chaoyang 

district government declared it would phase out more than 360 water wells, which in 

turn reduced the annual consumption of groundwater by about 10 million m
3
 

(Guardian, 2015). Therefore, it is expected that the groundwater related subsidence 

should be reduced as a result of a reduction in groundwater extraction.  

 

This section will focus on the subsidence monitoring in eastern Beijing City (Figure 

4.1 (a)) and map the changes of the spatial deformation pattern among three temporal 

periods with respect to three different sensors: January 2007 – January 2011, 

September 2014 – February 2017 and June 2015 – November 2016 (the coverage of 

these three datasets is shown in Figure 4.1). Since eastern Beijing City and its 

surrounding areas are the area of interest (ROI), to examine the land-use types within 

the study region (approximate 30 km ×  30 km), a maximum-likelihood based 

supervised classification method was exploited to classify the optical image acquired 

from Sentinel-2A with the resolution of 20 m, which has the similar coverage of 
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ALOS-1/2 image. Figure 4.1 (b) shows that the total area size of the urban and rural 

regions account for 527 km
2
 and 419 km

2
, respectively, which indicates that 

approximately 56 % of the processed area is covered by rural land-use type, of which 

the main uses are farmland and grasslands while the remaining 44% are urban 

regions covered with houses and buildings. In light of this, to achieve the best detail 

over both urban/non-urban areas, a DS pixels based TS-InSAR is implemented to 

conduct the time series analysis on Sentinel-1 and ALOS-1 datasets, which is 

initially modified from GEOS-ATSA (Ge et al., 2014; Du et al., 2016a). ALOS-2 

dataset is processed using the CS pixels based TS-InSAR method since there are 

only nine images available (Zhang et al., 2013). 

 

4.2 Geological settings and data description 

Beijing City is located in the north-western portion of the North China Plain, with 

the north latitude ranging from 39°28' to 41°05' and the east longitude between 

115°25' to 117°30' (Figure 4.1 (a)). The total coverage is about 16, 807 km
2
 while 

the plain region accounts for 6, 390 km
2
. The northern and western parts of Beijing 

are dominated by the Jundu Mountains and the Taihang Mountains, respectively. To 

the southeast direction, Beijing lies within alluvial-pluvial plains among five rivers, 

the Yongding, Ju, Juma, Wenyu and Chaobai. Beijing’s climate belongs to the semi-

humid continental type, with an annual average temperature of about 10°C. In 

addition, the terrain in the northwest region is generally higher than the southeast 

part and the elevation ranging from 20 – 80 meters above sea level (m.a.s.l) (Chen et 

al., 2016).  
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Nineteen ALOS-1 PALSAR images captured from 17 January 2007 to 28 January 

2011, 24 Sentinel-1A/B scenes in interferometric wide swath (IWS) mode acquired 

between 17 June 2015 and 08 November 2016, as well as 9 ALOS-2 PALSAR 

scenes within 18 September 2014 and 2 February 2017 were utilised to map the 

ground deformation over eastern Beijing City, China. The ALOS-1 images (Track 

447, Frame 790) were captured in ascending mode with mean incidence angle of 

38.7°, the Sentinel-1 images (relative orbit 47) were acquired in descending orbit 

with a mean incidence angle of 33.9° (swath 1), while the ALOS-2 acquisitions 

(Track 137, Frame 790) were captured in ascending with a mean incidence angle of 

31.4°. All the Sentinel-1 images were acquired in VV single polarisation with the 

azimuth and range pixel spacing of 13.96 m and 2.33 m, respectively, whereas all the 

dual-polarisation pairs (HH) for ALOS-1/2 were oversampled twice in the range 

direction with the final line and pixel spacing of 3.19 m and 4.68 m, respectively. 

 

Figure 4.1 (a) The coverage of ALOS-1 (blue), ALOS-2 (yellow) and Sentinel-1 A/B 

(red) image stacks. The white pink cross represents the reference point. (b) Land 

cover classification result with respect to the coverage study region. 
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4.3 Result and analysis  

4.3.1 Mapping land subsidence with ALOS-1/2 and Sentinel  

Firstly, GEOS-DInSAR (Du et al., 2016b) and GMT5SAR (Sandwell et al., 2011) 

were used to process the 24 Sentinel-1, 19 ALOS-1 and 9 ALOS-2 datasets from 

single look complex (SLC) products to differential IFGs. The subsequent time series 

analysis was based on the in-house C++ scripts. The one arc-second DEM (30 

meters) acquired from SRTM (Farr et al., 2007) were exploited to remove the 

topographic phase and geocode the TS-InSAR result from slant-range radar 

coordinate system to World Geodetic System (WGS) 1984 datum afterwards. 

 

Images acquired on 06 September 2009 (ALOS-1), 12 February 2016 (Sentinel-1) 

and 17 September 2015 (ALOS-2) were picked as master images for the three image 

stacks to minimise the temporal and perpendicular baseline. The ALOS-1, Sentinel-1 

and ALOS-2 InSAR-derived mean velocity maps in ALOS-1’s LOS direction were 

given in Figure 4.2 (a), (b) and (c). The reference point was selected over a relatively 

stable region within the third east ring of Beijing, China and the mean displacement 

rate for the other MS pixels were relative to the reference point. The total number of 

MS pixels within the study region (marked with the black dash-line rectangle box) 

was about 2,310,200; 2,735,778 and 580,912 derived from the ALOS-1, Sentinel-1 

and ALOS-2 TS-InSAR analyses, respectively. In other words, the corresponding 

densities of MS pixels obtained were 2567, 3040 and 645 MS km
-2

, respectively. In 

addition, all these results were resampled onto 100 m ×100 m grid in order to 

achieve a reasonable comparison. It was clear that the highest subsidence rate from 

2007 to 2011 exceeded –12.0 cm yr
−1 

in LOS direction, which correlated well with 

the measurements from Ng et al. (2012b) while the largest annual displacement from 
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2015 to 2016 was greater than –12.0 cm yr
−1

 as well. The distribution of the 

estimated linear deformation rate within the ROI for ALOS-1, Sentinel-1 and ALOS-

2 can be seen in Figure 4.3(a), (b) and (c), respectively, while it was clear that the 

majority of the subsidence rates were between –2.0 to 0 cm yr
−1

.  

 

Figure 4.2 Three InSAR-derived subsidence rate maps over the eastern Beijing 

region on three-time spans were generated from SAR images acquired by: (a) 

ALOS-1 (January 2007 – January 2011), (b) Sentinel-1 (September 2014 – 

February 2017), and (c) ALOS-2 (June 2015 – November 2016) satellites. The 

blue circle represents the Tongzhou District, which is located in the eastern part 

of Beijing City. The resolution is 100 m × 100 m for all sub-maps. 
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Figure 4.3 Histogram of the measured mean velocity maps in ALOS-1’s LOS 

direction generated from (a) ALOS-1, (b) Sentinel-1 and (c) ALOS-2 dataset, 

respectively, over the ROI region. 
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Figure 4.4 (a) Four levelling points (black triangles) superimposed onto ALOS-1 TS-

InSAR derived velocity map (b) comparison of the land subsidence rate in ALOS-1’s 

LOS direction between levelling and TS-InSAR measurements. 

 

4.3.2 InSAR data validation   

To evaluate the quality of the InSAR-derived mean velocity map from ALOS-1 

image stacks, a comparison was conducted with the ground survey of levelling 

method. A total of four levelling points surveyed from April 2008 to June 2010 were 

exploited as checkpoints, which was originally used in Guo et al. (2016). The linear 

subsidence rates of these levelling points were estimated and later converted into 

ALOS-1’s LOS direction. It is worth noting that since the resolutions of these two 

methods were different, the InSAR-derived land subsidence rate map was resampled 

onto a 100 m × 100 m grid, and the location of both levelling and InSAR 

measurement points were assigned. The InSAR measurements with respect to the 

corresponding levelling points were then identified and selected. Figure 4.4 

demonstrates the scatter plot of levelling-InSAR solution over four levelling points. 

A strong correlation between the InSAR and levelling measurements were observed 

and the Root-mean-square-error (RMSE) was about 4.8 mm yr
−1

, which suggests the 

reliability of ALOS-1 InSAR-derived subsidence rates. Nevertheless, Sentinel-1 

derived InSAR measurements were verified with the TS-InSAR result from ALOS-2 

datasets under the assumption that no displacement occurred at the reference point 

during the 2.5 year period.  
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4.3.3 Spatial-temporal analysis of land subsidence   

Figure 4.5(a) demonstrates the correlation between Sentinel-1 and ALOS-1 mean 

velocity maps. Since the image acquisition times for these two datasets were not the 

same, the derived RMSE was about 1.8 cm yr
−1

, and the value of R
2 

is equal to 0.6. 

 

 

Figure 4.5 Pixel-by-pixel comparison between (a) Sentinel-1 and ALOS-1, and (b) 

Sentinel-1 and ALOS-2 mean velocity maps both in the ALOS-1’s LOS direction, 

mean velocity differences of (c) Sentinel-1 – ALOS-1, and (d) Sentinel-1 – ALOS-2 
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R-squared (R
2
) is the coefficient of determination in general regression analysis, 

which describes how well the velocity maps derived from both TS-InSAR analyses 

can be correlated with each other. Even with a medium value of R
2
, we could still 

observe a linear trend from Figure 4.5 (a), as well as some additional information. 

For example, regions covered with a black circle indicate areas with rapidly 

increasing subsidence, whilst the range of the subsidence has changed from –60 – 0 

cm yr
−1 

before 2011 to –120 – –60 cm yr
−1 

after 2015. Additionally, regions marked 

with green circle indicate that the previously rapidly subsiding areas were 

experiencing a reduced subsiding rate. In other words, these inconsistencies illustrate 

that the large subsidence rates over some regions were decelerating. The possible 

explanation for this was due to some government actions, for example, the reduction 

of groundwater extraction or the acceleration of the groundwater flow system has 

made some progress. On the contrary, as the temporal coverage between Sentinel-1 

and ALOS-2 products are partially overlapped, Figure 4.5(b) illustrated a positive 

relationship between these two mean velocity maps with the RMSE value account 

for 0.9 cm yr
−1 

and R
2
 > 0.9, which proved the reliability of both measurements. 

Figure 4.5 (c) and (d) are the mean velocity differences of (c) Sentinel-1 – ALOS-1 

and (d) Sentinel-1 – ALOS-2, and regions covered with a red/blue colour indicates 

the subsidence accelerating/decelerating areas.    

 

It can be seen from Figure 4.2 (a) and (b) that the spatial deformation patterns for 

both Sentinel-1 and ALOS-1 maps have the similar distribution from the first 

glimpse, which was mainly around the Tongzhou District. To have a clearer view of 

the subsiding regions within Tongzhou District, Beijing, the whole subsiding zone, 
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has therefore been divided into four targeted zones, which were numbered Zones I, II, 

III and IV (Figure 4.6 (a)).  

 

Figure 4.6 Four subsiding zones were marked with rectangle boxes I, II, III and IV, 

respectively (a) The relative locations with respect to these township centres, (b) 

ALOS-1 LOS displacement rate map, (c) Sentinel-1 displacement rate map and (d) 

ALOS-2 displacement rate map. Both (c) and (d) were converted into the ALOS-1’s 

LOS direction. 

 

As can be seen from Zone I to IV in Figure 4.6 (b), (c) and (d), the spatial coverages 

of the four deforming areas have all increased from the period of 2007 – 2011 to 

2014 – 2017. More specifically, it was quite clear from Zone I that the most 

subsiding areas were around Dougezhuang township and Liyuan township, 

respectively, during the two temporal-period while the largest subsidence rate 

decreased from over –12.0 cm yr
−1

 to just above –10.0 cm yr
−1

, which occurred in 
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the centre of Dougezhuang township (located in the right corner of Zone I). The 

reason for the subsidence reduction was possibly due to the inauguration of the 

mega-engineering project, which was designed to bring water from the southern 

region of the country to the relatively arid northern part, including Beijing City. 

Moreover, the coverage of the subsiding regions has extended a lot, and it was quite 

obvious that the subsidence expanding trend was still going on towards the 

southwest direction centred at these two townships. Additionally, the land 

subsidence affecting regions within Zone II has become much more severe, 

especially near the two townships: Cuigezhuang and Jinzhan, where the largest 

subsidence rate was approximately –12.0 cm yr
−1 

from the year 2007 to 2011, whilst 

after 4 years of urban expansion and population growth, the largest subsidence 

exceeded –14.0 cm yr
−1 

in particular spots. What was more, the spatial pattern of the 

subsidence in the eastern part of Jinzhan township has experienced a booming 

growth towards the easterly direction, and eventually, Zone II and Zone III linked up 

together.  

 

Besides, it is worth mentioning that some previously moderate subsidence regions 

within Zone I and Zone II became trouble spots (the subsidence rate over which 

position is reasonably large) at rates as high as –10.0 to –12.0 cm a year while in 

contrast, some other trouble spots experienced a decreasing period. Significant 

subsidence changes were observed along two subsidence funnels. Two profile lines 

a-a’ and b-b’ were chosen to illustrate the spatial characteristics of land subsidence, 

which can be found in Figure 4.7. The profile map in Figure 4.8 (a) shows the 

evolution of the displacement rate along the profile line a-a’ with the maximum 
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displacement rate almost reaching –12.0 mm yr
−1

. Moreover, at a distance between 

2500 to 4500 m, the Sentinel-1 measurements were lower than the ALOS-1 

counterpart, which agreed well with our previous conclusion. On the contrary, the 

subsidence along profile b-b’ within Figure 4.8 (b) exhibits a significantly increasing 

trend with the maximum subsidence rate of –12.5 cm yr
−1

.    

 

Furthermore, the subsidence rate over the gap region between Zone II and Zone III 

has increased from ~ –3 to ~ –8 cm yr
−1

,
 
and the growth ratio was more than 200%. 

Songzhuan township was within Zone III, and the local subsidence spatial pattern 

was moving from south to north with the maximum subsidence of –8.2 cm yr
−1

. 

More specifically, the northern part of Songzhuan shows a relatively stable 

displacement rate of around –3.0 cm yr
−1 

within 2007 – 2011, but currently, the 

whole zone has been affected by the ground deformation. Last but not least, the most 

noticeable subsidence changes have been observed in Zone IV, where the largest 

displacement range changed from –2.9 to –6.0 cm yr
−1

. Yanjiao township was within 

this zone, and the largest subsiding region occurred near the town centre (centre of 

Zone IV). 
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Figure 4.7 Five measurement points within each zone and two profile lines a-a’ and 

b-b’ crossing the targeted subsiding regions. 

 

Figure 4.8 Subsidence profile: (a) along the profile line a-a’ within Zone 1, and (b) 

along the profile line b-b’ within Zone 2. 
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In order to map the subsidence time series, five MS pixels have been selected within 

each zone, and the position with respect to each of them can be found in Figure 4.7. 

Figure 4.9 shows the time series subsidence obtained by ALOS-1/2 and Sentinel-1 

dataset at the five measurement points. It is worth mentioning that since the line and 

pixel spacing for both L-band and C-band sensors were different, each common 

pixel exploited was indeed a group of pixels within a 100 m × 100 m square box 

centred at the referred pixel. All the pixels within this window were utilised and their 

averaged value was estimated as well. Furthermore, since there was a big temporal 

gap between these three processing periods, the three time series measurements were 

not aligned together in the same graph, but separated into two sub-graphs. From 

Figure 4.9, the time series results from ALOS-2 and Sentinel-1 agreed well with 

each other, except over MS-2, where the difference of the mean velocity is account 

for 1.6 cm yr
-1

, and this could be due to the nine-month temporal difference 

(September 2014 to June 2015). The following comparison was conducted between 

ALOS-1 and Sentinel-1 measurements. It can be seen that MS-1A and MS-3 selected 

from Zone I and Zone III have similar deformation value, and the subsidence rates 

did not change that much. The differences between them were 0.3 and 0.4 cm yr
−1

, 

respectively. MS-1B, which was located in the centre of Douge Zhuang township, 

decreased from –10.3 to –8.6 cm yr
−1

. For those two chosen points from Zone II and 

Zone IV, it was quite clear that the subsidence rate has increased a lot, from –5.8 and 

–2.9 cm yr
−1

 to –12.4 and –6.2 cm yr
−1

, respectively. In other words, the increased 

rate was more than 100% during the four-year gap period.  
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Figure 4.9 Time series deformation over the five measurement points; (left) ALOS-1 

based measures; (b) ALOS-2 and Sentinel-1 based measures. 

 

4.4 Discussion and conclusion 

It needs to be pointed out that the subsidence trends over several townships within 

Tongzhou District, Beijing were still going on, namely, Cuigezhuan, Jinzhan, Liyuan, 

Songzhuang and Yanjiao, and the largest subsidence rates could easily reach to –8.0 

cm yr
−1

, except for Yanjiao, where the subsidence rate changed from less than –3.0 

cm yr
-1

 (2007 to 2011) to over –6.0 cm yr
-1

 (2015 to 2016). Nevertheless, the largest 

changing ratio of land subsidence also occurred in the centre of Yanjiao township 

despite the moderate magnitude, which accounted for more than 100%.  Given the 

fact that the Beijing Capital International Airport was about 6 km from Jinzhan 
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township in the southeast direction, the affected region may extend to the airport 

sooner or later if the subsiding trend goes on. Therefore, particular attention should 

be paid to these townships in order to avoid further economic loss due to land 

subsidence induced hazards. The reason for these accelerating phenomena could be 

many, and according to the National Bureau of Statistics of China (NBSC) (NBSC, 

2017a), the population of Beijing City has risen from 16.95 million in 2008 to 21.73 

million in 2016, which was an increase of about 30%. Besides, it can be seen from 

NBSC (2017b) that the average per capita living space in Beijing rose from 20.5 m
2
 

in 2008 to 31.7 m
2
 in 2016 as well. In other words, the total area of buildings almost 

doubled compared to eight years ago. Due to an increase in population as well as the 

skyscrapers, ring-roads and other development in Beijing City, the supporting 

infrastructures, e.g., water pipelines, gas-pipelines, and telecommunications cables 

beneath the man-made structures, may increase to meet this demand. All of these 

constructions could potentially cause the land subsidence in a major way. If this kind 

of sinking continues, the 20 million people in Beijing City will face severe safety 

threats. For instance, the city’s train operations will be massively affected. 

 

On the contrary, many places are experiencing a decreasing trend in subsidence. For 

example, the subsidence rate at the town centre of Dougezhuang township changed 

from over –12 mm yr
-1 

to just above –10 mm yr
-1

. Similar findings have not been 

reported to the best of the authors’ knowledge; a possible explanation is the mega-

engineering project launched by the Chinese government in December 2012 to 

reduce the water shortage, and to recharge the groundwater. As is well known, it is a 

slow process for the groundwater system to recover: it may take years for subsidence 
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to slow down due to the long delays for recharge to reach the groundwater (Yang et 

al., 1999). Therefore, further continuous monitoring, e.g., in-situ, ground survey or 

InSAR measurements from November 2016 to the near future, are still needed to 

have a close study of the land subsidence over Dougezhuang township.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

83 

 

Chapter 5  

Tropospheric stratified and turbulent phase 

correction for TS-InSAR 

5.1 Tropospheric stratified phase correction with DInSAR 

ERA-Interim is a global reanalysis of ECMWF, which can provide a global 0.7° 

grid’s estimation of water vapour partial pressure, temperature and geopotential 

elevation along 37 pressure levels every 6 h daily (start at 0:00 UTC). MERRA is 

also a global atmospheric reanalysis, which can be utilised to estimate the same 

variables during the same period. The only difference is that MERRA is along 42 

pressure levels on a global grid (0.5° ×  0.75° along longitude and latitude, 

respectively). The detailed description of ERA-Interim and MERRA can be found in 

Dee et al. (2011) and Rienecker et al. (2011), respectively.  

 

Table 5-1 Detailed information of the interferometric pairs 

Site Satellite Track/Frame Date 

(dd/mm/yyyy) 

Incidence 

Angle (°) 

A/D 𝐵⊥ 
 (m) 

Qinghai ALOS-1 477/714  13/06/2009-

29/07/2009 

 38.7 A* 112.5 

North 

China Plain 

ALOS-1 447/750, 

760,770 

25/01/2010-

12/03/2010 

38.7 D**  

602.9 

Ordos ENVISAT 176/2805 04/12/2011- 

02/02/2012 

23 D 110.7 

Note: 𝐵⊥ is the perpendicular spatial baseline 

*A indicates ascending 

**D indicates descending 
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In this section, the experiments were conducted over the Qinghai Mountains, North 

China Plain and Ordos Basin, China, respectively, with three SAR pairs acquired 

from L-band ALOS-1 PALSAR and C-band ENVISAT ASAR (Table 5-1). Since 

the acquisition time for ALOS-1 and ENVISAT were 2:00 p.m. UTC and 3:00 a.m. 

UTC, respectively, the TSPD (both derived from GAMs) for ALOS were estimated 

at 12:00 p.m. UTC while the TSPD for ENVISAT were estimated at 6:00 a.m. UTC.  

 

Figure 5.1 (a) DEM over Qinghai Mount; (b) The primary differential IFG; (c) The 

de-ramped differential IFG without denoising; (d) The de-ramped differential IFG; (e) 

TSPD derived from MERRA; (f) Differential IFG after TSPD correction. The de-

ramped IFG is generated from the ALOS-1 pair of 13 June 2009 and 29 July 2009. 

 

Figure 5.1 demonstrates a 46-day IFG covering an area in the Qinghai Mountains, 

extending from Guoyaming Zhen in the southwest to the Riyue Shan in the north. 

The elevation change is from 2189 to 4860 m and 𝐵⊥ is about 112.5 m. Due to the 
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relatively short temporal baseline, the deformation signal is considered to be 

negligible. An example of linear orbit error overspreading of the tropospheric 

stratified signal is shown in Figure 5.1 (b) and (c). The TSPD prediction derived 

from MERRA (Figure 5.1 (e)), reproduces the refined de-ramped differential IFG 

reasonably well (after low-pass filtering operation) (Figure 5.1 (d)). It is evident that 

most blue fringes near Riyue Shan, Guomaying Zhen and Meilong Si are correlated 

with elevation, which is related to the atmospheric stratified phase delay. However, 

some of the predicted patterns are not seen in Figure 5.1 (d), e.g. the northeastern 

phase delay marked with a black rectangular box. Figure 5.1 (f) is the differential 

IFG after the TSPD correction. At this stage, most elevation related atmospheric 

fringes have been removed. Also, phase unwrapping process can be applied to Figure 

5.1 (f).  
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Figure 5.2 (a) DEM over Ordos Basin (b) The de-ramped differential IFG (c) TSPD 

derived from MERRA (d) Differential IFG after TSPD correction. The de-ramped 

IFG is generated from ENVISAT pairs of 4 December 2011 and 2 February 2012. 

 

Figure 5.2 depicts a 60-day IFG over Ordos Basin. The elevation change is ranging 

from 1197 to 1580 m, which is not significant (Figure 5.2 (a)), while the spatial 

perpendicular baseline 𝐵⊥ is approximately 110.7 m. Figure 5.2 (b) is the de-ramped 

IFG. The blue fringes of the IFG from the west to the middle part, which are 

correlated with elevation to a certain extent have been removed from Figure 5.2 (d). 

However, no clear correlation is visible in the northeast parts marked with a red 

rectangular box. Besides, the TSPD, predicted from the outputs of MERRA (Figure 
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5.2 (c)), effectively reproduces the observed phase in the de-ramped differential IFG 

with a reduction of the standard deviation of 31.5% in Figure 5.2 (d). It is worth 

noting that some tropospheric stratified signals are not well modelled, especially 

over the northeast parts, which are in low-elevation terrains. In this case, MERRA 

produces a poor correlation between phase and elevation on low-elevation terrains.  

 

Figure 5.3 (a) DEM over North China Plain; (b) TSPD derived from ERA-Interim; 

(c) The de-ramped differential IFG; (d) Differential IFG after TSPD correction. The 

de-ramped IFG is generated from ALOS-1 pair of 9 August 2009 and 9 February 

2010. 

 

Figure 5.3 (a) shows the DEM information over North China Plain and the range of 

the elevation is from 0 to 67 m. Figure 5.3 (b) is the predicted TSPD from ERA-

Interim reanalysis. The image contains some noises due to the large perpendicular 

baseline of 602.9 m. Figure 5.3 (c) is the de-ramped differential IFG, while Figure 

5.3 (d) is the refined differential IFG after the TSPD correction. It is evident that 
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ERA-Interim fails to predict the atmospheric phase delay. A possible explanation is 

that the entire study region is located within low-elevation terrains with the elevation 

change of 67 m. Therefore, tropospheric turbulence phase delay should be the 

dominant factor. In addition, some anthropogenic activities marked by the blue 

rectangular box could also cause the phase difference.  

 

To summarise, SAR images acquired from two satellite radar sensors − ALOS-1 

PALSAR and ENVISAT ASAR were utilised in this section in order to generate the 

differential IFGs over three test sites with different topographic conditions − North 

China Plain, Ordos Basin and Qinghai Mountains. MERRA and ERA-Interim were 

exploited for estimating the atmospheric stratified phase delay. Both of them provide 

reasonable results; for instance, a reduction of standard deviation accounting for 31.5% 

was estimated in Ordos Basin. However, there are still some residual tropospheric 

phases that are not well modelled by these two GAMs for three plausible reasons, 1) 

certain anthropogenic activities over these regions; 2) parts of the study area are 

within low-elevation terrains, where tropospheric turbulence is the dominant factor, 

and 3) The estimation time for TSPD is different from SAR image acquisition time. 

GEO-ATSA (Ng et al., 2014) has been modified by adding a TSPD correction module. 

 

From the next sub-section, the tropospheric stratified phase delay and the linear 

orbital error were taken into consideration and eliminated subsequently during the 

processing of an application of TS-InSAR at a coalbed methane site. The 

tropospheric turbulent phase delay was eliminated followed by a spatial-temporal 
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operation. This section is based on the material published in International Journal of 

Digital Earth (Du et al., 2017b).  

5.2 Introduction  

Coalbed methane (CBM) exploration refers to a technique that extracts natural gas 

from coal beds. The world first CBM project began in the early 1980s, when a three-

well research program was funded by the American Public Gas Association to 

produce CBM at Pleasant Grove, Alabama, USA with the aim to recover gas for the 

commercial usage. Later on, the CBM-producing areas extended to other countries, 

such as Australia, Canada, United Kingdom, India and so on (IESC, 2014). CBM 

exploration and development began in China in the early 1990s when the Deep CBM 

Exploration project was conducted by the North China Petroleum Bureau (Li et al., 

2015). The application of CBM has experienced significant growth during the past 

two decades. Previous CBM production mainly focused on the southern Qinshui 

Basin, which has an abundance of high-rank coals reservoirs (Su et al., 2005; Meng 

et al., 2014). It is worth mentioning that the rank of coal is primarily determined by 

the temperature as well as the depth of burial and the increase in coal rank is 

normally achieved by increasing the amount of moisture in the coal, for example, the 

moisture content for high-rank, medium-rank and low-rank coal are > 75%, 8−75% 

and < 8%, respectively. However, latter research studies pointed out that medium-

rank coal resources are also cost-efficient for CBM development (Murray, 1996; 

Palmer, 2010). China has abundant medium-rank coal reservoirs, especially within 

Ordos Basin and North China Basin (Li and Zhang, 2013; Meng et al., 2014). Liulin 

area is within the Lishi-Liulin mining area and lies in the middle part of Hedong 

Coalfield in eastern Ordos Basin. It is a typical medium-rank CBM exploration site 
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and has gained a lot of attention in terms of the extraction sustainability and safety 

concerns from all over the country. 

 

Indeed, Liulin region was one of the selected target areas in 1991, and seven CBM 

wells were drilled after hydraulic fracturing (Su et al., 2003). The total local 

recoverable CBM resources within Liulin district is about 210.83 × 108 m
3 

within 

72.2 km
2
 region (Li et al., 2015). However, the CBM extraction process stagnated 

for almost a decade until the China United CBM Co. Ltd started their project in this 

region in the early 2000s. By 2013, more than 80 coal wells and 100 CBM wells 

were fully constructed and operational by China United Coalbed Methane 

Corporation, Fortune Liulin Gas Company and Coal Geological Bureau of Shanxi 

Province (Meng et al., 2014). Previous studies of CBM in Liulin mainly focused on 

the coal geological background or some improvement related to CBM technique. 

However, it is possible that these extraction activities might cause some impact on 

the local ground surface, for example, underground mining operations (Du et al., 

2016b; Du et al., 2016a) and multi-discipline research is still needed in Liulin area.  

 

It is well known that land subsidence occurs when the coal seam compact due to 

pressure changes in the ground. CBM production normally involves the withdrawal 

of groundwater to depressurise the target coal seam and liberate the gas. At the same 

time, the reduction in pressure and liberation of gaps results in compaction of the 

geological structures beneath the land surface. Using InSAR method, a study 

conducted by Grigg and Katzenstein (2013) showed that up to 4.7 cm of subsidence 

from 3 July 1997 to 27 July 2000 was observed near the CBM pumping well in 
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Wyoming’s Powder River Basin, and the primary reason being that the aquifer 

compacted during groundwater removal. In contrast, the modelling results by Case et 

al. (2000) suggested that the largest subsidence was less than 13 mm, the reason 

being that not every aspect of the compaction was taken into consideration. Indeed, 

ground subsidence is dependent on a number of factors, such as the magnitude, 

direction and depth-interval of the compaction, as well as the geotechnical 

characteristics of the geological structure throughout the depth profile (IESC, 2014). 

 

Figure 5.4 The coverage of Liulin County superimposed on SRTM DEM map 

 

5.3 Geological setting and dataset 

Liulin County is located in the western part of Shanxi Province, China and about 200 

km away from the capital of Shanxi Province, Taiyuan City. The study region in 

general can be considered as a sloped zone since the topographical slopes over these 
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areas range between 10° and 30°. The elevation of the eastern part of Liulin is higher 

than the western part (Figure 5.4), and the ground surface elevation change is from 

the north-eastern Wife Mountain (1522 m) to the south-western Sanjiao Town (607 

m). The local annual precipitation is about 456 mm with about 65% of the total 

precipitation falling during the summer period. 

 

Liulin County was one of the top-ranked counties in gross domestic product (GDP) 

in China and the storage of Permo-Carboniferous coal and CBM resources are 

abundant. The main cola-bearing stratum occurs in the upper Pennsylvanian Taiyuan 

Formation and the lower Permian Shanxi Formation, respectively. Of which, the 

Shanxi Formation was deposited in a fluvial-deltaic environment with a total 

thickness of 43−80 m and five coal seams while the Taiyuan Formation was 

deposited in a tidal flat and sandbar depositional environment with a combined 

thickness of 81−116 m and seven coal seams (Zhang et al., 2010). According to 

Figure 5.5, the main coal seams in the Shanxi formation are No. 3, 4 and 5 seams 

whilst those in Taiyuan Formation are No. 8, 9 and 10 seams (Li et al., 2015). 

Twenty CBM wells exploited in this study are within No. 4 coal seam (Meng et al., 

2014).  

 

The dataset covering the CBM site consists of 21 ALOS-1 PALSAR (L-band) scenes 

captured from 22
 
December 2006 to 2 January 2011 as well as 14 ENVISAT ASAR 

(C-band) images between 29 October 2003 and 07 November 2007. All the L-band 

acquisitions (Track 459 Frame 740) were acquired in ascending orbit with the mean 
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incidence angle of 38.7 ° while all the C-band dataset (Track 118 Frame 2853) were 

captured in descending orbit with the average incidence angle of 28.8°. 

 

Figure 5.5 Stratigraphic column of the coal-bearing sequences in Liulin area 

(modified from (Meng et al., 2014)) 
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5.4 Methodology flowchart  

An overview of the core steps of the TS-InSAR method for estimating subsidence in 

Liulin County, China is shown in Figure 5.6 in this study.   

 

 

Figure 5.6 The flowchart of Time series InSAR approach used in this study 
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Figure 5.7 (a) Time-baseline plot of the 21 ALOS PALSAR scenes, the red dash 

lines represent the consecutive interferometric pair combinations out of 67. (b) Time-

baseline plot of the 14 ENVISAT ASAR images, the red dash lines represent the 

consecutive interferometric pair combinations out of 36. 
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Figure 5.8 Three selected interferometric pairs in radar coordinates for L-band 

ALOS-1: (a) 25 December 2007 and 26 March 2008; (b) 2 July 2010 and 17 

November 2010; and (c) 2 October 2010 and 17 November 2010 from the 

preliminary differential IFG, corrected for TSPD, corrected for TSPD and LOPD. 
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Table 5-2 Standard deviations of phase value for coherent points (𝜸>0.7 with respect 

to each IFG) with various phase correction, the detailed information about these 

three IFG can be found in Figure 5.8. 

IFG Raw (rad) After TSPD 

correction (rad) 

After TSPD+LOPD 

correction (rad) 

Improvement 

(%) 

Figure 5.8 (a) 2.18 1.80 1.16 46.8 

Figure 5.8 (b) 1.53 1.13 1.10 28.1 

Figure 5.8 (c) 1.95 0.98 0.89 54.4 

 

5.5 Experimental results and discussion 

The images acquired on 27 December 2008 and 13 October 2004 were utilised as the 

reference image to co-register the other 20 L-band images and 13 C-band 

counterparts, respectively. The possible IFGs which can be formed were 210 and 91 

in total, respectively, and eventually 67 and 36 multi-looked interferometric pair 

combinations and corresponded coherent maps were selected for further analysis, as 

their GGC values were relatively small (p = .32/.40). The time-baseline plot of the 

21 ALOS PALSAR scenes and 14 ENVISAT ASAR acquisitions are demonstrated 

in Figure 5.7 (a) and (b). The three arc-second DEM derived from SRTM (Farr et al., 

2007) was exploited to remove the topographic phase. To have a better 

representation of the TSPD, ECMWF’s ERA-Interim (Dee et al., 2011) was utilised 

as the GAM to calculate TSPD maps. It can provide the estimation of all those 

atmospheric elements on a 37 pressure level every 6 h daily (Start at 0:00 UTC). In 

this work, all the TSPD products were acquired at 18:00 p.m. UTC (L-band) and 

6:00 a.m. UTC (C-band) because these images were captured at around either 15:30 

p.m. or 3:00 a.m. UTC, and individual relative TSPD map corresponding to each 

IFG was then subtracted from it through a conjugated multiplication operator. In 
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addition, the linear orbital error estimated using Equation (5) was also excluded. To 

demonstrate the efficiency of both TSPD and linear orbital phase delay (LOPD) 

correction, L-band IFGs were served as an example in this study. Figure 5.8 shows 

three selected interferometric combinations without any correction (raw), with TSPD 

correction and with both TSPD and LOPD correction, respectively. The Figure 

illustrated that TSPD and LOPD correction reduced the atmospheric gradient by 

46.8 %, 28.1% and 54.4%, respectively (Figure 5.8 third column compared to the 

first column) and demonstrated the importance of this correction for InSAR IFGs. 

 

Figure 5.9 InSAR-derived linear deformation rate map with respect to coherent 

targets. (a) L-band ALOS PALSAR (b) C-band ENVISAT ASAR. Three regions 

with noticeable subsidence are marked with blue, red and black dash line rectangular 

boxes, respectively. 
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To select the multi-looked CUs, the threshold of the temporal mean |𝛾| was set to 0.7 

and 0.75 for L-band and C-band analysis, respectively, and the total number of 90, 

728 and 40, 742 units were identified as candidates accordingly. Delaunay TIN 

networks were constructed with each node represented by a candidate CU. The 

maximum length for the nearby CU was set to 2.0 km, and only the largest network 

was subsequently selected. Candidate CUs outside of the network were removed 

from further analysis and resulting in 88, 814 (35, 526) CUs and 245, 506 (60, 911) 

arcs. Then the absolute linear deformation rate and DEM error with respect to each 

CU were obtained using the LAMBDA and robust linear regression method 

described in the network integration section. It is worth noting that all these 

deformation values were with respect to the reference point in the central Liulin 

County (see the black cross in Figure 5.9), which was selected over a relatively 

stable region. To achieve full resolution accuracy, the absolute linear deformation 

rate and DEM error corresponding to each single-looked CT was estimated using the 

three nearest CUs and resulting in the total number of 1, 100, 096 (245, 386) CTs. 

The InSAR-derived linear deformation rate maps for both L-band and C-band are 

shown in Figure 5.9 (a) and (b). 
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Figure 5.10 Three InSAR products derived from L-band ALOS-1 dataset (a) 

DInSAR IFG generated with two images acquired on 9 February 2008 and 26 March 

2008 (b) InSAR-derived linear deformation rate map around AOI 1, AOI 2 and AOI 

3 within Figure 5.11 and (c) DInSAR IFG generated with two images acquired on 30 

December 2009 and 14 February 2010, Black cross represents the reference point. 

 

5.5.1 L-band InSAR result interpretation 

First and foremost, the deformation velocity map derived from L-band TS-InSAR 

analysis was illustrated in Figure 5.9 (a). It was clear that the deformation magnitude 
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of this map, especially in the central part, was much larger compared to the 

counterpart C-band result (Figure 5.9 (b)), and the local deformation ranging from 

15.0 to −40.0 mm yr
-1

 was identified. Besides, the south-western and north-eastern 

parts of Liulin region were quite stable during this four-year period while there were 

several areas within eastern and north-western parts suffering from land subsidence, 

which has been marked with blue, red and black dash line rectangles, respectively 

(Figure 5.9 (a) and (b)). These regions include Haojiapocun, Zhaizeshangcun, 

Gaomingcun, Guantoucun, Shuangzaogetacun and Kangzhecun (Figure 5.10 (b)), 

where the deformation rates were mainly between −20.0 and −40.0 mm · yr
-1

. 

Furthermore, the largest deformation of −40.8 and −29.9 mm yr
-1

 has been detected 

in Shuangzaogetacun and Haojiapocun, respectively. To explain the potential causes 

of the subsidence, traditional two-pass DInSAR result was generated with the master 

image acquired on 9 February 2008 and the slave image on 26 March 2008. It can be 

seen from Figure 5.10 (a) that many typical mining-induced sinking zones have been 

identified, for example, near Haojiapocun, Gaomingcun, Guantoucun, Kangzhecun 

and Shuangzaogetacun, whereas the subsidence pattern was not clear in the InSAR-

derived mean deformation rate map (some rapid subsidence may seriously degrade 

the temporal mean coherence).  

 

In addition, the mining-induced subsidence pattern was not found over 

Zhaizeshangcun in Figure 5.10 (a), whilst medium subsidence rates ranging from 

−10 to −20 mm yr
-1 

near Zhaizeshangcun were detected in the mean velocity map in 

Figure 5.10 (b), which was the zoomed in result of Figure 5.9 (a). The possible 

explanation was that: either the mining site was (1) not operating, or (2) was still 
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active, but there was no underground mining activity between 9 February 2008 and 

26 March 2008. Therefore, to prove the statement above, another IFG was formed 

with two SAR scenes acquired on 30 December 2009 and 14 February 2010, 

respectively (the result is shown in Figure 5.10 (c)). It is evident to us that the 

subsidence signal over Zhaizeshangcun region, which was not shown in the previous 

DInSAR result, has been confirmed at this stage. In addition, we could conclude that 

the mining activity over Zhaizeshangcun commenced sometime between 26 March 

2008 and 14 February 2010. Last but not least, four coal mining sites have been 

observed from © Google Earth that were geologically close to these sinking regions 

(Figure 5.11), indicating that human-involved mining activities are the dominant 

factor that caused these local deformations. However, to further prove this argument, 

ground surveying measurements are still needed to verify this result. 

5.5.2 Compare L-band result with C-band result over CBM sites 

To match up the C-band time series outcome with the L-band counterpart, C-band 

result is projected into L-band LOS direction by multiplying a conversion factor cos 

𝜃𝐿/cos 𝜃𝐶  with the assumption that the East-West deformation movements are really 

small and are neglected in this circumstance. It is worth noting that 𝜃𝐿 and 𝜃𝐶  are the 

incidence angles of L-band and C-band image stacks, respectively. More specifically, 

the exact values for 𝜃𝐿  and 𝜃𝐶  are 38.7° and 28.8°, which result in the final 

conversion factor of 0.88. 



 
 

103 

 

 

Figure 5.11 Coal mining sites identified on the optical images acquired from Google 

Earth (© Google Earth) near (a) Haojiapocun and Zhaizeshangcun (b) Gaomingcun, 

(c) Guantoucun and (d) Shuangzaogetacun and Kangzhecun. 

 

By sharp contrast, the subsidence magnitude of C-band time series result was 

relatively small, and no clear subsidence patterns have been detected around the 

previous detected underground mining sites. A possible explanation was that the 

mining activities were not significant from 2003 to 2007. To measure the potential 

subsidence caused by the extraction operation of CBM, the following experiment 

was conducted over 20 CBM wells selected within this study according to Zhang et 

al. (2010) (Figure 5.12). All these CBM wells were constructed in the western part of 

Liulin Country (see Table 5-2). It is worth mentioning that the CBM well sites and 
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the InSAR CTs were not likely to be located at the same locations due to the 

following reasons: (1) the natural distribution of InSAR scatterers, (2) the resolutions 

of both maps are different, and (3) uncertainty in geocoding process. To derive the 

ideal subsidence rate with respect to each CBM well, a 100 m × 100 m search 

window was used to identify CTs centred at CBM well site under the assumption 

that the displacements of all these nearby single-looked CTs were spatially 

correlated and had universal deformation signals. Given the fact that the resolution 

for C-band and L-band images is about 30 and 10 m, respectively, the corresponding 

maximum CTs that can be selected within the search window, are 10 and 100, 

respectively. After that, the average displacement values of CBM wells were 

calculated by averaging all these selected CTs. Nevertheless, only 14 and 13 out of 

20 were covered with C-band and L-band InSAR measurements, respectively. In 

addition, only 8 CBMs out of 20 had the continuous measurements from 2003 to 

2011, including CBM6, CBM7, CBM8, CBM9, CBM15, CBM17, CBM18 and 

CBM20, respectively (see Table 5-3 and Table 5-4), and would be exploited to 

conduct the time series analysis.  
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Figure 5.12 Twenty CBM sites superimposed on InSAR-derived linear deformation 

rate map (a) L-band outcome (b) C-band outcome. 
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Figure 5.13 Time series measurements over eight selected CBM sites 

 

The average deformation rates derived from L-band TS-InSAR analysis with respect 

to the 13 corresponding CBM sites were from 3.9 mm yr
-1

 (at CBM1) to −6.5 mm yr
-

1
 (at CBM12), while the counterpart values from C-band product were between 5.6 

mm yr
-1

 (at CBM14) to −7.3 mm yr
-1 

(at CBM15). Then the Mean Value (MV) and 
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Standard Deviation Value (SDV) with respect to these multi-CBMs were calculated 

based on three different circumstances (Table 5-5): 1) when considering the mere C-

band result, MV of −0.3 mm yr
-1 

and SDV of 3.6 mm yr
-1 

were demonstrated, 2) For 

L-band outcome, MV and SDV were account for −0.9 and − 3.0 mm yr
-1

, 

respectively, and 3) It was clear that only 8 CBMs out of 20 continuously had InSAR 

measurement from 2003 to 2011 when combining C-band and L-band measurements 

together, and MV and SDV over this long-time span were −3.0 and 2.6 mm yr
-1

,
 

respectively. Thus, it was worth noting that the ground deformations induced by 

these CBMs were not that significant in terms of the magnitude in any cases.  

Table 5-2 Average subsidence derived from L-band InSAR over CBM sites (Unit 

mm year
-1

) 

CBM1 3.9 CBM2 None CBM3 None CBM4 None 

CBM5 None CBM6 −1.6 CBM7 1.5 CBM8 1.4 

CBM9 1.0 CBM10 None CBM11 None CBM12 −6.0 

CBM13 0.3 CBM14 None CBM15 −4.7 CBM16 0.8 

CBM17 0.8 CBM18 −3.0 CBM19 −6.0 CBM20 −0.5 

 

Table 5-3 Average subsidence derived from C-band InSAR over CBM sites (Unit 

mm year
-1

) 

CBM1 None CBM2 -1.9 CBM3 -6.0 CBM4 -5.6 

CBM5 1.3 CBM6 -1.2 CBM7 2.0 CBM8 1.1 

CBM9 2.5 CBM10 None CBM11 3.0 CBM12 None 

CBM13 None CBM14 5.6 CBM15 -7.3 CBM16 None 

CBM17 0.1 CBM18 1.6 CBM19 None CBM20 0.9 
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Table 5-4 Mean and SDV derived from InSAR over CBM sites (Unit mm year
-1

) 

 Time period Number  of 

CBMs 

Mean value Standard 

deviation 

C-band 2003/10/29 – 2007/11/07 14 -0.3 3.6 

L-band 2006/12/22 –2011/01/02 13 -0.9 3.0 

C-band + 

L-band 

2003/10/29 –2011/01/02 8 -0.3 2.6 

 

The time series accumulated subsidence of eight common CBMs are displayed in 

Figure 5.13. It can be seen that the majority of them had experienced a linear 

deformation period in either towards satellite or against satellite direction with the 

average subsidence rate ranging from −6.0 to 1.9 mm yr
-1

, while CBM18 and 

CBM20 did not illustrate linear deformation trend, but the magnitudes of the 

displacement over these two CBMs were quite small (< 5 mm yr
-1

). All these 

measurements above demonstrated the fact that there was no clear deformation being 

identified with both C-band and L-band TS-InSAR products, suggesting that the 

basic structure of these CBM extraction sites were quite stable from October 2003 to 

January 2011, and the local subsidence within Liulin district was mainly caused by 

underground mining activities, which has been confirmed with DInSAR analysis in 

the previous stage. 
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5.5.3 Errors respect to TS-InSAR measurement 

It is well known that the L-band sensor is less sensitive to the ground deformation as 

compared to C-band, and the accuracy of the TS-InSAR-estimated LOS deformation 

rate depends on three main components: the phase stability of MP pixel, temporal 

baseline distribution, and sensor wavelength. The equation to estimate the standard 

deviation of error for TS-InSAR-derived LOS deformation rate can be expressed as 

Equation 5.1.  

𝜎v = 
𝜆𝜎φ

4𝜋√𝑁𝜎T
2                                                      (5.1) 

where N is the number of images in the stacks; 𝜎v is the standard deviation of the 

estimated LoS displacement rate; 𝜆  is the wavelength of the sensor; 𝜎φ  is the 

standard deviation of phase residuals; and 𝜎T  is the standard deviation of the 

temporal baseline. Under the assumption that 𝜎T
2 and 𝜎φare constant, the precision of 

the measured deformation of the C-band dataset is about four times better than 

equivalence for the L-band dataset. In other words, the TS-InSAR measurement 

derived from the ENVISAT dataset was expected to achieve more precise results 

than the counterpart from the ALOS dataset.  

 

On the other hand, InSAR can only be utilised to measure the ground subsidence in 

the LOS direction because of its side-looking system, which consists of vertical, 

easting and northing displacement components. The equation can be expressed as 

Equation 5.2.  

[cos sin cos sin sin ]

V

LoS E

N

D

D D

D

    

 
 
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  

                   (5.2)   
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within this equation, 𝜃 is the incidence angle while 𝛼 is the heading angle (clockwise 

from north), 𝐷V is the vertical displacement, 𝐷E is the displacement in the eastern 

direction, while 𝐷N  is the displacement in northern direction. DLoS is the 

displacement in the LOS direction.  

 

As the LOS displacement vector is insensitive to the deformation in the north–south 

direction with current satellite viewing geometries, the northing displacements were 

assumed negligible. For ENVISAT descending pairs, the heading angle and mean 

incidence angle are 255° and 28.8°, respectively, resulting in the coefficients of 0.88 

and 0.12 for vertical and eastern displacements. For ALOS-1 ascending pairs, the 

heading angle is −10°, while the mean incidence angle is 38.7°, which means the 

coefficients are 0.78 and −0.62, respectively. As the eastern movements are assumed 

to be neglected in this paper, in other words, an easting displacement of −5 mm yr
-1 

would cause an error of −0.6 and 3.1 mm yr
-1 

for C-band and L-band in the final 

product. 
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5.6 Concluding remarks 

To conclude, the development of CBM in Liulin, China was started in the early 

1990s and most associated research studies have mainly focused on the coal 

geological background or purely CBM techniques. This work presents the long term 

displacements in Liulin district using TS-InSAR technique to explore the potential 

land deformation induced by CBM extraction from 2003 to 2011. In total 21 ALOS-

1 PALSAR images acquired from 22 December 2006 to 2 January 2011 and 14 

ENVISAT ASAR scenes captured between 29 October 2003 and 7 November 2007 

were used to measure the time series subsidence in Liulin District, China, with the 

tropospheric stratification phase delay and the linear orbital error being taken into 

consideration during the processing. An annual deformation rate ranging from 15 to 

−40 mm yr
-1

 was detected over the study region. Several locations were experiencing 

land subsidence − including Haojiapocun, Zhaizeshangcun, Gaomingcun, 

Guantoucun, Shuangzaogetacun and Kangzhecun − and the potential causes of these 

deformations were mainly due to mining activities. In addition, optical images 

captured from Google Earth were exploited to support the previous argument. Then 

the time series deformation evolutions were analysed over 8 CBM sites out of 20 and 

the subsidence rates were between 1.9 and −6.5 mm yr
-1

 from 2003 to 2011. In 

addition, the average subsidence rate and standard deviation among these eight 

measurements were −3.0 and 2.6 mm yr
-1

, respectively, which means that these 

CBM extraction sites were quite stable and no apparent subsidence had been 

observed during this eight-year period. Further investigation and potential 

improvement in the future is necessary by comparing the TS-InSAR outcome with 

surveying measurements, e.g. static GPS and digital levels. 
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Chapter 6  

C-band and L-band based TS-InSAR method 

over coalmine 

This section reports the findings from TS-InSAR results over the Southern Coalfield, 

Australia using both ALOS-1 PALSAR and ENVISAT ASAR datasets. TS-InSAR 

has been applied to both rural and urban areas with great success, but very few of 

them have been applied to regions affected by underground mining activities. It is 

accepted that PSInSAR
TM

, STUN and GEOS-PSI techniques are very compelling in 

city areas with many man-made structures where the density of PS pixels can be high 

enough (Ng et al., 2012b; Kampes, 2006). SqueeSAR and GEOS-ATSA can be 

applied to non-urban regions with good results because they select not only PS 

pixels, but also DS pixels (Ferretti et al., 2011; Ge et al., 2014). The TS-InSAR 

method utilised in this research is based on SqueeSAR and GEOS-ATSA (Ge et al., 

2014). The Wollongong city area, Appin underground mining site and Tahmoor 

town region are our areas of interest. Appin and Tahmoor are mostly in rural areas 

where low density of PS pixels is expected. MS pixels are thus selected according to 

the different geophysical information. More specifically, since the DS pixels 

selection process is time-consuming, PS pixels are selected over the entire study 

region while DS pixels are selected around the Appin underground mining site and 

Tahmoor town region in order to achieve the best details. The section is based on the 

material published in Remote Sensing (Du et al., 2016a).  
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6.1 Study regions within southern coalfield and dataset 

Australia is a country with many land subsidence issues, and most of them are 

related to anthropogenic activities including the extraction of natural resources, such 

as coal, natural gas and iron ore (Ng et al., 2010; Ng et al., 2014). The Sydney-

Gunnedah Basin, which is 500 km long and 150 km wide, has the largest coal 

resource storage in New South Wales (NSW). There are five major coalfields inside 

the basin: Newcastle, Western, Hunter, Southern and Gunnedah. It covers an area 

south of Berrima and Sutton Forest to the north of Campbelltown, west of Tahmoor 

town and east of Wollongong, and has the only source of hard coking coals in NSW, 

which is favourable for steel production (Ng et al., 2010). Many previous InSAR 

studies were conducted over the Southern Coalfield (Ng et al., 2009; Ng et al., 2010; 

Ng et al., 2011). More specifically, both DInSAR and small stacks of InSAR 

methods were exploited to study the local subsidence mainly near Appin, Tahmoor 

and West Cliff collieries in the Southern Coalfield of NSW. Single-master-based TS-

InSAR technique was not used for these earlier analyses due to two major reasons: (1) 

The number of ALOS PALSAR images were limited (10 acquisitions) while 

normally much larger image stacks (more than 20) are required by these TS-InSAR 

methods to achieve precise deformation measurement, and (2) most of these 

collieries in the Southern Coalfield are located within rural areas where very few PS 

pixels were expected by using these methods. 

Regarding the geological settings, all three regions of interest are within the 

Southern Coalfield (Figure 6.1). Wollongong city area is in the Illawarra region of 

New South Wales, Australia, and is situated adjacent to the Tasman Sea and the 

South Coast railway line (orange rectangular box in Figure 6.2). Appin is a town in 

the Macarthur Region of New South Wales, Australia and it is situated about 35 
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kilometres Northwest of Wollongong. The underground coal mining site Appin 

Colliery is located about 25 kilometres Northwest of Wollongong (blue rectangular 

box in Figure 6.2). Tahmoor town is located in the Macarthur Region of New South 

Wales and to the southwest of Appin coal mining site. The Tahmoor Colliery, 

located to the south of North Bargo, is the primary source of its regional economy 

growth (purple rectangular box in Figure 6.2). The topographical slopes over these 

three sites are ranging between 0° and 3°, which indicates that the study regions are 

relatively flat (Figure 6.2 (c)).   

 

Figure 6.1 The coverage of ALOS-1 PALSAR image stacks (1) and ENVISAT 

ASAR image pairs (2). 

In order to map the land displacement over the Southern Coalfield, Australia, 

twenty-three L-band ALOS-1 PALSAR scenes acquired between 29 June 2007 and 7 

January 2011 and twenty-four C-band ASAR images acquired between 8 July 2007 

and 5 September 2010, are analysed. All the ALOS-1 images (Track 370, Frame 649) 
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were captured in ascending orbit with the average incidence angle of 38.7° while all 

the ASAR images (Track 381, Frame 6492) were acquired in ascending orbit with 

the incidence angle of 28.8°, which means both ALOS and ENVISAT sensors are 

only sensitive to LOS displacement (Figure 6.2 (a) and Figure 6.2 (b)). Eleven 

ALOS-1 images were acquired in HH and HV dual-polarisation while the other 

twelve were acquired in HH single polarisation. The dual-polarisation data (HH) 

were oversampled by a factor of two in range direction (Ng et al., 2012b) and the 

final pixel spacing in azimuth and range were 4.82 m and 5.55 m, respectively. All 

the ASAR images were acquired in VV single polarisation with the azimuth and 

range pixel spacing of 7.80 m and 4.06 m, respectively.  

Table 6-1 ALOS and ENVISAT dataset. 

Date 

 (ALOS) 

Bperp 

 (m) 

Btemp 

 (days) 

Date 

(ENVISAT) 
Bperp (m) 

 Btemp 

(days) 

29/06/2007 −2102.1 552 08/07/2007 244.5 −560 

14/08/2007 −2067.8 −506 12/08/2007 274.8 −525 

29/09/2007 −2572.8 −460 16/09/2007 −166.8 −490 

14/11/2007 −2688.5 −414 21/10/2007 300.5 −455 

30/12/2007 −3429.9 −368 25/11/2007 73.7 −420 

14/02/2008 −3417.3 −322 30/12/2007 457 −385 

31/03/2008 −4058.8 −276 03/02/2008 103.2 −350 

16/05/2008 −4025.9 −230 09/03/2008 341.5 −315 

01/07/2008 −1120.5 −184 13/04/2008 −70 −280 

01/10/2008 740.6 −92 18/05/2008 185.6 −245 

16/11/2008 680.2 −46 31/08/2008 78.3 −140 

01/01/2009 0 0 05/10/2008 188.5 −105 

16/02/2009 −303.4 46 09/11/2008 186.9 −70 

04/07/2009 −872.4 184 14/12/2008 397.2 −35 

04/10/2009 −1343.6 276 18/01/2009 0 0 

19/11/2009 −1654.6 322 22/02/2009 129.8 35 

04/01/2010 −2174.1 368 29/03/2009 −396.2 70 
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6.2 Experimental results and analyses 

Images acquired on 1 January 2009 (ALOS-1 PALSAR images) and 18 January 

2009 (ENVISAT ASAR scenes) are picked as master images for the two image 

stacks to minimise the temporal and perpendicular baselines. Figure 6.2 (a) & (b) 

presents the TS-InSAR results using the ALOS-1 PALSAR and ENVISAT ASAR 

datasets, respectively, and both of them are resampled onto a grid with a resolution 

of 100 m × 100 m for further comparison. Regions marked with red, blue and purple 

rectangular boxes are the Wollongong city area, Appin underground mining site and 

Tahmoor town region. The measured displacements are with respect to the reference 

point (pink point in Figure 6.2) centred at 34˚ 22' 04'' S and 150˚ 55' 25'' E. The total 

number of MS pixels obtained from ALOS-1 dataset is 1,652,180, of which 88,003 

are PS pixels. There are 403,857 MS pixels estimated from ENVISAT dataset, and 

83,304 of them are PS pixels. The reason for this is because the wavelengths of the 

two sensors are different. L-band PALSAR sensor with longer wavelength has less 

decorrelation than C-band under the same baseline condition, therefore, it offers a 

much higher density of DS pixels (the density of PS pixels are similar). The total 

number of refined arcs is 4,921,872 and 1,184,997 for PALSAR and ASAR datasets, 

respectively. Therefore, the density of MS pixels at the three sites are 355, 8004, 

6686 MS km
-2 

and 398, 423, 1557 MS km
-2 

for ALOS-1 and ENVISAT, respectively 

22/05/2010 −3149.4 506 29/11/2009 128.6 315 

07/07/2010 −3164.7 552 14/03/2010 231.9 420 

22/08/2010 −3262.4 598 18/04/2010 −57.3 455 

07/10/2010 −3564.2 644 23/05/2010 143.6 490 

22/11/2010 −4138.7 690 27/06/2010 122.5 525 

07/01/2011 −4518.7 736 01/08/2010 419.1 560 

   05/09/2010 142.2 595 
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(only PS pixels are selected in Wollongong city area while both PS pixels and DS 

pixels are selected in the Appin underground mining site and Tahmoor town region). 

To compare the time series performances between C-band and L-band products, both 

time series displacements in LOS direction (Figure 2 (a) & (b)) are converted into 

the vertical direction by dividing the cosine of its incidence angle.  
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Figure 6.2 (a) ALOS-1 PALSAR mean velocity result in LOS direction. (b) 

ENVISAT ASAR mean velocity result in LOS direction. The pink star represents the 

reference point while regions marked with red, blue and purple rectangular boxes are 

Wollongong city area, Appin mining sites and Tahmoor town region, respectively. 

The displacement results are resampled onto a grid of 100 m × 100 m resolution. (c) 

Slope Map generated from SRTM DEM. 

 

6.2.1 Deformation over Wollongong City  

The ground cover in Wollongong City is mainly made up of low vegetation and 

man-made structures, where a large number of PS pixels are expected because high 

coherence in the IFGs can be preserved over these regions. Figures 6.2 (a) to (c) 

show the displacement rate distribution between ALOS and ENVISAT time series 

measurements in Wollongong City. It is worth noting that the resolution of both 

displacement maps is resampled onto 100 m × 100 m and only common MS pixels 

have been taken into consideration. Figure 6.3 shows the time series measurement 

over one MS pixel marked by a red cross where a similar subsidence trend has been 

observed from both C-band and L-band results. Figure 6.4 illustrates good agreement 

between these two datasets. A root-mean-square-error (RMSE) (equation 6.1) of 

3.11 mm·yr
−1 

has been obtained, showing that the L-band and C-band time series 

subsidence is comparable over Wollongong. During the estimation, the unmatched 

MS pixels are not included in the calculation of RMSE. In addition, the majority of 

subsidence in the city is between −10 to 10 mm·yr
−1

, which suggests that the local 

subsidence rate is quite stable. The difference between observations could be due to 

three reasons: (1) The different measurement precision is due to different sensors, (2) 
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the horizontal movement is neglected, and (3) there is a mis-match in geolocation 

between individual MS pixels.  

RMSE = √
1

𝑃
 ∑ (𝐷𝑝

𝑀  −  𝐷𝑝
𝑆)2𝑃

𝑝=1                                               (6.1) 

where P is the total number of common MS pixels within the region for RMSE 

estimation, 𝐷 𝑝
𝑀  and

 𝐷 𝑝
𝑆  

are the pth pixels within master and slave images, 

respectively. 

 

Figure 6.3 L-band (a) and C-band (b) measurement over Wollongong city region in 

the vertical direction (c) time series evolution over one MS pixel marked with the red 

cross. 
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Figure 6.4 Comparison over Wollongong between L-band and C-band TS-InSAR 

results. 
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Figure 6.5 (a) L-band and (b) C-band measurements over Tahmoor region, the 

resolution of each pixel is 30 m × 30 m (c) Google map over Tahmoor town (© 

Google Earth) (d) the profile line through Tahmoor town. 

 

6.2.2 Deformation over Tahmoor  

Figure 6.5 (a) & (b) illustrate the vertical time series measurements in the Tahmoor 

town region with ALOS-1 and ENVISAT, respectively. It can be observed in both 

figures that vast areas around Tahmoor’s centre are suffering from significant fall in 

ground elevation. In addition, L-band result indicates the western parts of Tahmoor 

town have experienced large subsidence with the maximum subsidence higher than –

10 cm·yr
−1

 in the vertical direction, whereas it is not found in the C-band result. A 2 

km profile line is drawn through the entire Tahmoor town (Figure 6.5 (c)). Figure 6.5 

(d) shows the time series subsidence on this profile line for both datasets. The largest 

subsidence of –8.5 cm·yr
−1

 and –5.8 cm·yr
-1

 has been detected, respectively. It is 

clear that the left and right parts agree with each other well. However, there is a huge 

difference in the middle of the profile from 600 m to 1300 m, with the largest 

difference reaching –4.5 cm·yr
−1

 at 1000 m.  

 

The difference is mainly caused by several reasons: (1) Signal saturation issue 

should be the most significant reason since the maximum detectable subsidence is 

different for both sensors (the detailed analysis can be found in Section 5.3) (2) A 

searching window with the same size of 100 m × 100 m is applied to find the point 

targets closet to the profile line for comparison, which means each value within the 

profile line does not reflect the subsidence of one single MS pixel, but a group of MS 



 
 

124 

 

pixels. In addition, the numbers of MS pixels are different for both sensors within a 

searching window due to the threshold difference for “ensemble phase coherence” 

and we hold the assumption that L-band could preserve a higher coherence compared 

to C-band. (3) The middle part may suffer from some rapid changes during the 4-

year period. However, compared to the L-band sensor, pixels with large 

displacement rate are less likely to be considered as MS pixels for a C-band sensor. 

In other words, within the searching window, L-band TS-InSAR result contains MS 

pixels with larger deformation that C-band TS-InSAR cannot capture. (4) According 

to the eastern part of Figure 6.6 (a-f), the loss of coherence in the high-gradient 

region in C-band dataset which resulted in underestimation of the mean velocity.  

 

Figure 6.6 Three selected IFGs within the study region of Figure 6.5 (a–c) 

interferometric phase after the interferometric phase optimization; (d–f) unwrapped 
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phase from deformation; (a, d) 3 February 2008 and 18 January 2009; (b, e) 9 

November 2008 and 18 January 2009; (c, f) 18 January 2009 and 1 August 2010. 

 

6.2.3 Deformation over Appin underground mining site  

One of the limitations of TS-InSAR techniques is related to resolving the phase 

ambiguity in regions suffering from rapid subsidence (Colesanti et al., 2002), for 

example, underground mining-induced subsidence. In other words, the deformation 

signal may not be correctly estimated if the subsidence of the MS pixel between any 

two image acquisitions within the image stack is larger than one-half cycle (5.9 

cm/46 days for L-band satellite while 1.4 cm/35 days for C-band satellite). In this 

circumstance, the TS-InSAR technique can only be used to identify the occurrence 

time and location with respect to each MS pixel, but it may not be able to calculate 

the correct subsidence value. The above problem can be solved if a-priori 

knowledge is available (Colesanti et al., 2003b), which is significantly limited or 

even unavailable in most TS-InSAR analysis cases.  

 

Land subsidence in the Appin mine site is mostly related to underground mining 

activities. Figure 6.7 (a) & (b) show the time series displacement of L-band and C-

band measurements at the Appin site and the resolution is resampled onto 30 m × 30 

m from original datasets, respectively. In general, the deformation patterns observed 

from the two measurements are not the same. In Figure 6.7 (a), several clear oval 

deformation patterns were found in the middle and right parts of the image, which is 

due to underground mining activity. However, there is no such subsidence pattern 

observed in Figure 6.7 (b), where the MS pixels are identified at the roads and 
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residential areas and are reasonably stable. A possible explanation is that the 

deformation gradient is too large and highly nonlinear over the subsidence area. 

According to Ng et al. (2010), the mining-induced subsidence in the Southern 

Coalfield could reach up to 20 to 60 cm within the first 1 – 2 months and up to 80 – 

100 cm in a one-year period. Therefore, no MS pixels can be obtained over the areas 

that were experiencing significant subsidence from C-band TS-InSAR product.  

 

 

Figure 6.7 Comparison over Appin mining site between (a) L-band and (b) C-band, 

the resolution of each pixel is 30 m × 30 m. 

Figure 6.8 (a) shows the typical fringe patterns caused by mine subsidence derived 

from DInSAR IFGs with two obvious characteristics: (1) The earth surface where 

underground mining occurs will sink as the colour of the deformation pattern 

changes from yellow to blue (from the centre to the edge), and (2) the subsidence 

magnitude increases from the edge to the centre, therefore forming an oval or round 

shape (Hu et al., 2013). Figure 6.8 (b) illustrates the underground mining subsidence 

pattern from the TS-InSAR velocity map. Regions suffering from rapid changes 

within a short period of time will de-correlate and therefore form gaps in the 

subsidence zones. Two characters are described in this chapter to identify 

underground mining-induced subsidence regions: (1) The subsidence zones are 
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commonly rectangularly or quadrilaterally shaped (related to the shape of longwall 

mining sites), and (2) the magnitude of subsidence rate over the subsidence zone 

edges is relatively large (the actual subsidence in the center is much larger than the 

counterparts at the edges, nevertheless, the subsidence in the center experiences a 

nonlinear trend and cannot be captured with TS-InSAR method). By using the 

methodology described above, four mine subsidence bowls have been detected 

within Figure 6.7 (a) with a maximum subsidence rate in excess of −10 cm yr
−1

. 

 

 

Figure 6.8 Typical patterns of underground mining subsidence in (a) DInSAR 

differential IFG. (b) TS-InSAR velocity map (Du et al., 2016b). 

6.2.4 Conclusion remarks  

In this section, the land surface stability over three test sites with different geological 

settings within the Southern Coalfield region was investigated using TS-InSAR 

technique. These three regions are: (1) Wollongong City, which is a relatively stable 

area, (2) Tahmoor Town, a small town affected by underground mining activities and 

(3) Appin underground mining site, a region with many underground mining 
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operations. Both C- and L-band derived measurements are compared over these three 

sites. Within the process, a first-order linear function is utilised to remove the linear 

phase “ramp” induced by residual orbital error. From the experiment result, we could 

see that the performance of both C- and L-band is equally good over Wollongong 

City, where the dynamic range of subsidence is not significant, and the subsidence 

rate is mostly between −10 to 10 mm·yr
−1

. However, over Tahmoor and the Appin 

mine, their performances differ. Since the maximum displacement gradients that can 

be detected are different for L- and C-band-based TS-InSAR, some rapid changes in 

land surface could cause the TS-InSAR to fail to estimate the correct displacements. 

It is well known that the L-band can perform better especially in underground 

mining regions and mining-affected regions where the deformation rate is much 

higher than city areas. L-band datasets are able to provide better results and achieve 

detailed deformation signals about the spatial distribution of the ground surface 

subsidence phenomenon. The traditional DInSAR subsidence pattern is then 

compared with the TS-InSAR subsidence pattern induced by underground mining 

activities. The comparison shows a promising way to identify illegal mining sites 

using TS-InSAR techniques. For example, DIMDS proposed by Hu et al. (2013) 

could be exploited to detect still-active illegal underground mining sites between two 

image acquisitions, while both still-active and ceased-illegal underground mining 

sites could be identified with the TS-InSAR subsidence pattern described in this 

research.  

 

TS-InSAR results derived from an L-band dataset can indeed be used to measure the 

subsidence around underground mining zones; possible future research is therefore 

to form the three-dimensional analyses and observe the time series horizontal 
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subsidence around underground mine sites with both descending and ascending L-

band image stacks. ALOS-2, the successor of ALOS-1 launched on 24 May 2014, 

could be utilised to conduct TS-InSAR analysis over underground mining areas. In 

addition, it is possible that both L- and C-band datasets can be used together to detect 

the horizontal movement at certain locations, where good InSAR coherence can be 

preserved for C-band datasets, e.g., Sentinel-1A satellite, which has a short revisit 

time.   
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Chapter 7  

DInSAR and TS-InSAR for mining subsidence 

detection 

7.1 Integration of DInSAR with TS-InSAR 

The aim of this section is to investigate ground deformation in Ordos, China by 

applying both DInSAR and TS-InSAR algorithms for images computational 

processing. TS-InSAR has been successfully used to monitor long term earth surface 

deformation in either urbanised or non-urban areas for a decade, such as Las Vegas, 

Beijing or Bandung (Kampes, 2006; Ng, 2010; Ge et al., 2014). The problem with 

TS-InSAR was that some rapid surface subsidence happening in a relatively short 

period lead to loss of InSAR coherence, and therefore gaps would appear in such 

areas because no scatters could be selected (chapter 6). A new method is proposed 

here to fill these gaps by exploiting DInSAR integration with the TS-InSAR. The 

subchapter is based on the material published in Remote Sensing Letters (Du et al., 

2016b). 

 

However, there is a problem with DInSAR measurement accuracy. It was related to 

its atmospheric phase screen (APS). Although the APS can be estimated via using 

data from Medium-Resolution Imaging Spectrometer (MERIS) or Moderate 

Resolution Imaging Spectroradiometer (MODIS), and the reduction of atmospheric 

effect could be 20 −  40%, these methods often depend on the atmospheric 
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conditions (Ding et al., 2008). Recently, many researchers have tried to use Global 

Atmospheric models (GAM) to predict the tropospheric stratified phase delays at the 

SAR image acquisition time (Li et al., 2006c; Jolivet et al., 2014). Doin et al. (2009) 

have quantitatively validated the potential of a number of GAMs by comparing with 

empirical corrections. Jolivet et al. (2014) further extended Doin’s work and 

demonstrated the feasibility of predicting the tropospheric stratified delay from 

GAM. DInSAR result was exploited after removing the tropospheric stratified phase 

delay using Jolivet’s method and later integrated with TS-InSAR outcome to form a 

new product. 

 

7.1.1 Geological settings and dataset 

Ordos is located along the boundary between Inner Mongolia and Shaanxi Province, 

China (Figure 7.1 (a)), with coal mining and coal-to-liquids (CTL) industries playing 

an important role in regional economic growth in recent decade. However, it has 

been reported recently that this region is suffering from a significant drop in earth 

surface elevation. In April 2014, the Ordos government forced Shenhua Company, 

the world’s biggest coal producer, to stop their CTL project from pumping 

groundwater in Ordos (Damian, 2014). Zhao et al. (2013) reported that from 2006 to 

2011, the maximum vertical subsidence over the mining sites of Ordos reached 4.5 

m with the image offset tracking method. However, such method can lead to bias in 

terms of its accuracy (0.2 m in slant range direction).  
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Figure 7.1 (a) Ordos region superimposed with DEM (b) Deformation maps over 

Ordos using GEOS-PSI with DA < 0.4. The blue rectangle indicates the region with 

Advance Time Series Analysis (GEOS-ATSA) analysis. The red rectangle indicates 

the relatively stable region, which will be used for further analysis. 

 

Twenty L-band ALOS-1 PALSAR images acquired between 8 January 2007 and 19 

January 2011, were processed and analysed in this study. All these acquisitions 

(Track 460, Frame 78) were captured in ascending orbit with the same incidence 

angle of 38.7°. Eleven of them were acquired in HH and HV dual polarisation while 

the other nine were acquired in HH single polarisation. The dual polarisation data 

were oversampled by a factor of two in range direction (Ng, 2010), and the final 

azimuth and range resolutions were 4.82 m and 5.55 m, respectively.   
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7.1.2 Tropospheric stratified phase mitigation for DInSAR 

The DInSAR technique has demonstrated its potential as a land subsidence 

monitoring tool with millimetre accuracy in the last twenty years (Ge et al., 2014). 

However, DInSAR mapping result is affected by tropospheric stratified and 

tropospheric turbulence delay (Jolivet et al., 2014), which is spatially correlated and 

temporally uncorrelated due to the fluctuated medium. ERA-Interim (one type of 

GAM) from European Center for Medium-Range Weather Forecasts (hereafter 

ECMWF) was used to calculate TSPD (Doin et al., 2009). Figure 7.2 (a) is IFG after 

removing the linear orbit error using a FFT based approach (Ng, 2010), while Figure 

7.2 (b) is a TSPD example derived from ERA-Interim in Ordos. Figure 7.2 (c) is the 

result after TSPD correction; however, the tropospheric phase removal is not obvious. 

This pattern seems to be the phase variation due to the ionospheric disturbance, 

especially related to the Medium Travelling Ionospheric Disturbance (MTID), which 

is the slowly moving ionospheric layer in north direction.  
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Figure 7.2 (a) The de-ramped differential IFGs, (b) TSPD obtained from the ERA-

Interim, and (c) After TSPD correction. The de-ramped differential IFGs of (a) is 

generated from SAR pair of 16 July 2009 and 31 August 2009. 

7.1.3 Result and analysis 

The image acquired on 16 October 2009 was selected as the master image to 

minimise the temporal and spatial perpendicular baseline. The TS-InSAR results 

(Figure 7.1 (b) and Figure 7.3) were generated based on GEOS-PSI and GEOS-

ATSA, respectively (Ge et al., 2014). In total 190 differential IFGs were generated 

using a DInSAR processing system named Automatic DInSAR Processing System 

(ADPS) developed by the GEOS group and six pairs with good coherence were 

picked to form the successive time series DInSAR displacement maps (Figure 7.4 (b-

g)) near Qu Jia Liang coalmine (Box B in Figure 7.4 (a)).  
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Figure 7.3 Deformation mapping result with the GEOS-ATSA for Ordos over the 

blue rectangle region in Figure 7.1 (b). 

 

 

The TS-InSAR measurement showed that several locations in the eastern Ordos 

experiencing substantial land subsidence were identified including Huo Luo Wan 

coalmine and Qu Jia Liang coalmine. The subsidence rates ranging from −30 mm 

year
-1

 to 30 mm year
-1

 in LOS direction were detected. The comparison between TS-

InSAR and DInSAR measurements, although showing good agreement in general 

pattern over mining regions, revealed gaps in TS-InSAR map near Qu Jia Liang 

coalmine (region A within Figure 7.4 (a)). Figure 7.5 (a) demonstrated the time 

series deformation for points ‘a’ and ‘b’, which were located within the Qu Jia Liang 

coalmine. Nonlinear subsidence from 2008 to 2010 has been observed. The average 

subsidence rates for them were 175 and 88 mm yr
-1

, respectively. However, it was 
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clear that both points ‘a’ and ‘b’ experienced a rapid change during the image taking. 

The highest vertical displacement rate for points ‘a’ and ‘b’ were 793 and 525 mm 

yr
-1

 within February 2009 −  July 2009 and February 2008 −  April 2008, 

respectively, which has exceeded the maximum deformation rate TS-InSAR 

technique can detect (Ng, 2010). Therefore, many gaps occurred in the TS-InSAR 

output.   

 

Figure 7.4 (a) GEOS-PSI time series deformation map for Ordos (A) Huo Luo Wan 

coalmine (B) Qu Jia Liang coalmine (b-g) Accumulated DInSAR subsidence map 

for Qu Jia Liang coalmine within Ordos where no signal detected by TS-InSAR from 

February 2008 to (b) April 2008 (c) July 2008 (d) February 2009 (e) July 2009 (f) 

January 2010 (g) July 2010 The two black stars are selected points ‘a’ and ‘b’. 

 

The results derived from accumulative deformation time-series over profile A-A and 

B-B were illustrated in Figure 7.5 (b) and (c). Figure 7.5 (b) demonstrated the 

deformation between February 2008 and April 2008 along profile A-A, the length of 

the deformation region was around 5.5 km, and the maximum deformation was 
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0.045 m, which was close to point ‘a’. The subsidence pattern can be correctly fitted 

by a parabolic curve (Zhao et al., 2013), a generally accepted mining curve, which 

has been widely utilised to predict mining subsidence. Besides, the regularity cross 

long wall pattern has been observed along profile B-B (Figure 7.5 (c)). The length 

of the profile was about 4.8 km and the maximum deformation was around 0.30 m.  

 

Figure 7.5 (a) Ground deformation at points ‘a’ and ‘b’ within Qu Jia Liang 

coalmine with no signal detected by TS-InSAR between 26 February 2008 and 19 

July 2010. (b) and (c) Deformation results along two profiles denoted in Figure 7.4 

(b-g): (b) Profile A-A along one of the long wall over Qu Jia Liang coalmine. (c) 

Profile B-B perpendicular to the long wall direction. The solid black lines indicate 

the deformation over these two profiles. 

 

Figure 7.6 (b) was the refined DInSAR result after removing the TSPD component 

(Figure 7.2 (b)). Since the temporal baseline and spatial perpendicular baseline were 

46 days and 112.5 m, respectively, spatial/temporal de-correlation induced phase 
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errors were negligible. The remaining subsidence was mainly due to tropospheric 

turbulent effect, which was generally mitigated with numerous acquisitions. 

However, in this study, turbulent troposphere cannot be removed over gap regions 

due to the loss of InSAR coherence. Over the relatively stable region identified with 

TS-InSAR analysis (Region covered with red rectangular box in Figure 7.1 (b) with 

mean LOS velocity of −0.4 cm year
-1

), the mean velocity value of the stable region 

within Figure 7.6 (c) was −1.5 cm year
-1 

while it was −1.2 cm year
-1

 for the 

counterpart of Figure 7.6 (b) after the TSPD correction. In other words, the 

improvement of the LOS deformation was 0.3 cm, which was equivalent to the total 

reduction of the atmospheric effect of about 21%. This result was competitive to the 

result generated from MODIS or MERIS (Ding et al., 2008).   

 

Figure 7.6 DInSAR results (a) Original (b) After TSPD correction are generated 

from SAR pairs of 13 June 2009 and 29 July 2009. The red rectangular boxes are 

stable region identified by GEO-PSI (Figure 7.1). 
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7.1.4 Integration of DInSAR and TS-InSAR 

At last, DInSAR technique was exploited to fill in the gaps identified by TS-InSAR 

analysis. Take the refined DInSAR output between 26 February 2008 and 12 April 

2008 as an example (Figure 7.4 (b)). First of all, the DInSAR measurement was 

converted from deformation value to deformation rate pixel by pixel by applying 

Equation 7.1, and then an oversampling factor was implemented in both the azimuth 

and range directions to match up with the pixel size of TS-InSAR measurements. 

After that, TS-InSAR result was superimposed onto DInSAR output to form the final 

product. Thus, the gaps within TS-InSAR are filled with DInSAR values (Figure 7.7 

(b)). Figure 7.7 (c) shows that the deformation rate difference at 95% of the 

measurement points is between -10 mm/year to 10 mm/year, suggesting that the 

accuracy between these two methods are comparable.  

 

Figure 7.7 (a) GEOS-ATSA deformation map for Ordos (February 2007 ~ February 

2011) near Qu Jia Liang coalmine (b) GEOS-ATSA deformation map for Ordos 

incorporating information from DInSAR output (February 2008 ~ April 2008) 

365
vel defoV D
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
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                                                  (7.1) 
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Where ∆T is the time difference between two consecutive acquisitions, 𝐷defo is the 

deformation value for each pixel, and 𝑉vel is the velocity value obtained. 

To sum up, DInSAR and TS-InSAR technique are both interferometry methods for 

monitoring land subsidence with fine accuracy. DInSAR is suitable for short term 

measurement, while TS-InSAR uses phase information to map surface subsidence 

and requires SAR image acquisitions maintain high coherence, and hence is mainly 

applicable to slow changes. Given the fact that some rapidly changing surface 

subsidence can lead to the loss of InSAR coherence, and no signal can be detected in 

such a region, such gaps in TS-InSAR result can be resolved by combining refined 

DInSAR and TS-InSAR measurements. 

7.2 Modified TS-InSAR method for C-band SAR images 

The section is based on the material submitted to International Journal of Remote 

Sensing. Longwall mining technique is the most widely implemented underground 

mining method in Australia due to its productivity and safety considerations. The 

mining-induced subsidence could commonly reach –20 to –60 cm within the first 1–2 

months after the fall down of the roof of the longwall panels (Ge et al., 2004; Ng et 

al., 2017), and over –80 cm in 12 months after mining has ceased. It is worth 

mentioning that when it comes to the stability evaluation and safety control for the 

longwall mining activities, two of the most concerning parameters for the mining 

industry and government are: 1) the maximum subsidence at the centre of the 

subsiding funnel and 2) the total affected region of the ground surface. The former 

can be estimated using DInSAR method while Ng et al. (2017) suggested that 

Sentinel-1A/B constellation with stripmap (SM) mode and ALOS-2 (any modes) are 

the ideal datasets for the rapid deformation mapping. On the contrary, the latter can 
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be achieved with TS-InSAR technique over the far field of the subsidence funnel, 

which is considered as slow deforming area (Sowter et al., 2013; Bateson et al., 

2015; Gama et al., 2015).   

 

Nevertheless, Du et al. (2016a) reported that when using ATS-InSAR to map the 

ground displacement over the Appin underground mining regions, the density of MS 

pixels derived from C-band ENVISAT based ATS-InSAR method is much less in 

comparison to the counterpart result from L-band ALOS-1 dataset, even with the 

same thresholds settings. Indeed, working with either approach, one can get worse 

results with higher frequency data (e.g. C-band) in areas experiencing serious 

temporal decorrelation. The reason for that is C-band is more easily affected by 

temporal decorrelation, especially around the longwall mining sites, where short 

vegetation is dominant. Therefore, no clear subsidence pattern can be derived from 

the ATS-InSAR result (if not specified, ATS-InSAR hereafter refers to traditional 

ATS-InSAR). In other words, the problem lies with its higher sensitivity to 

vegetation regions instead of lower frequency data (e.g. L-band). In light of this, in 

order to offer the best detailed deformation information to associated councils and 

departments for risk management purpose regarding the ENVISAT ATS-InSAR 

analysis, this work introduces a modified MS pixel selection approach by including 

less reliable MS pixels through an IDW (Inverse Distance Weighted)-based 

integration method. Considering the fact that ENVISAT ceased communication with 

earth on 8 April 2012, the proposed method is also applied to C-band Sentinel-1 

stacks for testing purposes. It is worth noting that the proposed method has been 

incorporated with GEO-ATSA (Ng et al., 2014) as an independent module. 
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7.2.1 Dataset and study region 

A total number of 23 L-band ALOS-1 PALSAR scenes acquired between 29 June 

2007 and 7 January 2011 (Track 370, Frame 649), 24 C-band ENVISAT ASAR 

images (Track 381, Frame 6489 & 6492) acquired from 8 August 2007 to 5 

September 2010, and 22 C-band Sentinel-1A scenes (relative orbit 147) captured 

between 30 July 2015 to 6 June 2016 are utilized in this experiment (Table 7-1). The 

image stack of ENVISAT has been re-arranged compared to the dataset used in Du 

et al. (2016a) by including six scenes from Track 381 and Frame 6489, since the 

common spatial coverage between Frame 6489 and 6492 is > 90% with the same 

mean incidence angle. All the slave images are co-registered to the master image 

captured on 1 January 2009, 18 January 2009 and 14 January 2016 for ALOS-1, 

ENVISAT and Sentinel-1, respectively. The one arc-second DEM (30 meters) 

acquired from the Shuttle Radar Topography Mission (SRTM) is exploited to 

remove the topographic phase and later geocode the ATS-InSAR or modified ATS-

InSAR result from slant-range radar coordinate system to World Geodetic System 

(WGS) 1984 (Farr et al., 2007). In addition, all the mean velocity maps (MVMs) 

mentioned in this work is in the radar line-of-sight (LOS) direction. 

 

The study site, the Appin & West Cliff Colliery, is located in the southeastern corner 

of the Southern Coalfield, New South Wales (NSW), Australia (Figure 7.8). The 

colliery is about 50 kilometers southwest of Sydney City and 25 kilometers 

northwest of Wollongong City. In general, coal is extracted from the top coal seam 

layer of the Southern Coalfield and the direction of mining is from northwest to 

southeast, resulting in serious ground deformation. InSAR researches have been 

continuously conducted in this region to study the ground subsidence phenomena 
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over the past ten years (Ge et al., 2007; Ng, 2010; Ng et al., 2011; Du et al., 2016a). 

Since the spatial extent of these two active mining longwalls in this study is about 

two kilometres, the atmospheric artefact is assumed to be insignificant (Ng et al., 

2017). 

 

Figure 7.8 Geographical location of the Appin & West Cliff Colliery at Southern 

Coalfield in Australia overlaid on ©Google Map. Longwall panels highlighted with 

blue colour were mining active between June 2007 and January 2011 while panels 

marked with yellow colour were mining active between July 2015 and June 2016 

Table 7-1 ALOS-1, ENVISAT and Sentinel-1 dataset 

 ALOS-1 Bperp 

(m) 

Btemp 

(days) 

ENVISAT Bperp 

(m) 

Btemp 

(days) 

Sentinel-1 Bper

p (m) 

Btemp 

(days) 
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Note: 

* 

repres

ents 

the 

ENVI

SAT 

image

s 

acquir

ed 

from 

Frame 

6489 

while 

the 

rest in 

the 

same 

colum

n are 

captur

ed 

from 

Frame 

6492 

 

 

7.2.2 Add less reliable MS pixels 

The flowchart of the proposed method is shown as follows (Figure 7.9). 

29/06/2007 –2102.1 –552 12/08/2007 154.6 –560 30/07/2015 –34.2 –168 

14/08/2007 –2067.8 –506 21/10/2007 177 –490 11/08/2015 14.2 –156 

29/09/2007 –2572.8 –460 25/11/2007 –63.6 –455 23/08/2015 92.5 –144 

14/11/2007 –2688.5 –414 03/02/2008 –40.4 –385 10/10/2015 –28.1 –96 

30/12/2007 –3429.9 –368 09/03/2008 218.6 –350 03/11/2015 46.4 –72 

14/02/2008 –3417.3 –322 13/04/2008 199.5 –315 15/11/2015 37 –60 

31/03/2008 –4058.8 –276 18/05/2008 66.4 –280 27/11/2015 –46.7 –48 

16/05/2008 –4025.9 –230 22/06/2008* –127.5 –245 09/12/2015 –39.1 –36 

01/07/2008 –1120.5 –184 31/08/2008 –77.2 –175 21/12/2015 –41 –24 

01/10/2008 740.6 –92 05/10/2008 66.3 –140 14/01/2016 0 0 

16/11/2008 680.2 –46 09/11/2008 66.6 –105 26/01/2016 –92.6 12 

01/01/2009 0 0 14/12/2008 272.1 –70 07/02/2016 –58.1 24 

16/02/2009 –303.4 46 18/01/2009 –129.8 –35 19/02/2016 –12.9 36 

04/07/2009 –872.4 184 22/02/2009 0 0 02/03/2016 70.7 48 

04/10/2009 –1343.6 276 03/05/2009* 100.3 70 14/03/2016 53.9 60 

19/11/2009 –1654.6 322 07/06/2009* –194 105 26/03/2016 47.8 72 

04/01/2010 –2174.1 368 16/08/2009* 52.4 175 07/04/2016 39.2 84 

22/05/2010 –3149.4 506 25/10/2009* 63 245 19/04/2016 –19.1 96 

07/07/2010 –3164.7 552 29/11/2009 27.3 280 01/05/2016 32.2 108 

22/08/2010 –3262.4 598 03/01/2010* 90.6 315 13/05/2016 84.2 120 

07/10/2010 –3564.2 644 14/03/2010 107.2 385 25/05/2016 –28.9 132 

22/11/2010 –4138.7 690 18/04/2010 –186.8 420 06/06/2016 –26.4 144 

07/01/2011 –4518.7 736 23/05/2010 40.8 455    

   27/06/2010 –30.5 490    
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Figure 7.9 Flowchart of the proposed method 

As we stated in previous section, the density of MS pixels produced by ENVISAT 

based ATS-InSAR method is not sufficient enough over the underground mining site, 

and no clear subsidence pattern can be derived (Du et al., 2016a). Therefore, in this 

section, an IDW (Inverse Distance Weighted)-based technique is proposed by 

including less reliable MS pixels to deal with this matter. 

7.2.2.1 Add less reliable MS pixels 

As is known, Kriging and IDW are two of the most commonly used interpolation 

methods in geographic information science (GIS) discipline (O'Sullivan and Unwin, 

2014). According to Stein (2012), Kriging is one of the most complex interpolators, 

and it applies sophisticated statistical methods that consider the unique 

characteristics of datasets. However, many researchers have reported that IDW is 

more suitable for smaller dataset and is able to offer more accurate estimations 

compared to the Kriging method (Brusilovskiy, 2013; O'Sullivan and Unwin, 2014). 

More specifically, IDW takes the concept of spatial autocorrelation literally and is 

generally considered as a deterministic method for multivariate interpolation through 

a bunch of scattered set of known points. The third dimensional value of unknown 
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points is calculated with a weighted average value in some surrounding 

neighbourhood points. Also, weighting assigned to points usually varies with 

distance as a negative exponential or reciprocal. Considering a group of samples 

( ) 1,2,...,i ix for i N   , a general form of estimating an interpolated value 

 at a given point x using IDW now reads: 

1

1

( )

( )

( )

N

i i

i

N

i

i

w x

x

w x



 







                                                     (7.2) 

where ( ) 1/ ( , ) p

i iw x d x x  is a simple IDW weighting function; p is the exponent 

and the value of ‘p’ greater/lesser than 1.0 will decrease/increase the relative effect 

of distance points (O'Sullivan and Unwin, 2014). The concept of IDW will be 

exploited in the following context since the interpolation process can be considered 

within a small pitch (smaller dataset).  

7.2.2.2 Estimate the velocity over less reliable MS pixels 

As there are no redundancy pairs, it is necessary to squeeze out as much information 

as possible from every obtained IFG. Therefore, in order to achieve the best details 

over the mining-affected study area, less reliable MS pixels are also included for 

further analysis. Given the fact that one of the fundamental assumptions of TS-

InSAR method is that the ground subsidence is correlated in the spatial domain, at 

least within a small patch, in this work, it is assumed that a small group of nearby 

MS pixels have similar deformation signals. Let s = 1, 2, … , S and S denotes the 

number of reliable MS pixels (either PS or DS pixels), which are the closest 

neighbours to the less reliable pixel t. It is worth noting that this selection is not 
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based on any adaptive search windows centred on the targeted pixel, but relies on the 

actual Euclidean distance. Thus, for the Nth interferometric pair combination, the 

double-differenced observations among them can be expressed as Equation 7.3: 
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                                 , , , , , , ,t s Nonlinear t s Atmo t s Noise t s            

where   is the sensor wavelength, ,x yR is the distance between satellite and ground 

surface, NT  is the time difference between two acquisitions, 
, ,

N

x yB
 and ,x y  are the 

mean local perpendicular baseline and local incidence angle, respectively. ,x yv is 

the velocity difference and ,x yh is the DEM error difference of pixels x and y.

, ,Nonlinear t s , , ,Atmo t s  and , ,Noise t s  are phase errors due to nonlinear, atmosphere and 

noise components, respectively. The double difference phase between t and s, ,t s , 

is the difference between the original phase ,

N

t s  and the modelled phase  

, ,

, ,
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
. LS approach described in Section 3.2.3 

will be applied in the following section to estimate 𝑣s  and ℎs  by minimizing the 

value of ,t s ”. 
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148 

 

In addition, the weighting matrix is created following Equation 7.2 by setting the 

exponent ‘p’ to 1, which is given in Equation 7.5. 

   1 1

1 1

1 1 1 1
{ , , }, 1,2,...,

N N

s s

diag s S
d d d d

 P                      (7.5) 

where 1
N

sd
is the normalised reverse distance and the sum of all these distances is 

equal to 1, while P is a NS × NS weighting matrix (contain NS normalised reverse 

distances). 

 

 

Figure 7.10 Simple geometry of including less reliable MS pixels 

Furthermore, the way to add less reliable MS pixels into the initial TIN network is 

demonstrated in Figure 7.10 from Equations 7.6 to 7.8, the absolute linear velocity 

(ALV) 𝑣s  and DEM-error (DE) ℎs  with respect to each reliable MS pixel ‘s’ are 

known values, whilst the (2 + NS) unknown elements are ALV 𝑣t and DE ℎt respect 

to ‘t’, and the N × S integer values within matrix B. Also, LAMBDA algorithm is 

applied to solve Equation 7.6, which has been implemented in Section 3.2.3 (Ng et 

al., 2012a). 
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  P β Aβ B                                                                        (7.6) 
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where: 

o β  is a NS × 1 matrix,  

o A is a NS × 2 matrix, 

o B   is a NS × 1 matrix, containing the integer ambiguity values. 

 

The quality of the estimation is evaluated using Equation 7.9, and it is essential in 

estimating the quality of less reliable MS pixels. ‘t’ can be selected as the final MS 

pixel only if ( )t  is larger than a certain threshold.  
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7.2.3 Experimental result and discussion 

7.2.3.1 Performance of different sensors over rapidly subsiding region 

It is worth mentioning that solving the issue of the intrinsic ambiguity of the phase 

signal due to rapidly subsiding deformation is a significant step of InSAR 

applications. According to Kampes (2006), if the displacement of two adjacent 

pixels between any interferometric combinations (within image stack) is larger than 

a half of the wavelength, the corresponding interferometric phase may not be 

correctly unwrapped in temporal domain or no MS pixels would be selected in such 

an area. In this case, TS-InSAR method can be exploited to identify the extent of the 

land displacement, but cannot resolve the correct displacement value (Ng et al., 

2017).  

 

Indeed, before conducting the TS-InSAR analysis, it is vital to estimate the 

achievable maximum subsidence rate maxV  of the current dataset, especially when the 

study area contains rapid subsidence (Kampes, 2006; Ng et al., 2017). The simplest 

model for estimating maxV between two nearby points can be written as: 

  max

max

365

4
V

T


  


                                                          (7.10) 

where maxT is the maximum temporal baseline of all IFGs. 
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Figure 7.11 Correlation between the maximum detectable subsidence rate and 

maximum cycles within single-master stacks 

 

Table 7-2 SAR satellite characteristics relevant to the expected detected subsidence 

Satellite Mode Revisit time 

(days) 

Maximum temporal 

baseline (days) 
maxV  

(cm/yr) 

ALOS-1 FBS
a
 46 138 (3 cycles) 15.6 

ENVISAT IM
b
 35 70 (2 cycles) 7.4 

Sentinel-1 IWS
c
 12 48 (4 cycles) 10.6 

a
 Fine Beam Single;  

b
 Image Mode; 

c 
Interferometric Wide Swath 

 

Considering if an interferogram is available, under the assumption that the incidence 

angle is the same, the ideal performance for Sentinel-1A interferometric wide swath 

(IWS) mode is about four times better than the counterpart performance of 

ENVISAT image mode (IM) in terms of the maximum detectable subsidence per 

meter per day (Ng et al., 2017). This is given the fact that the spatial resolution and 

revisit time are 20 m & 14 days and 30 m & 35 days for Sentinel-1 and ENVISAT, 
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respectively. Figure 7.11 demonstrates the correlation between the maximum 

detectable subsidence rate and maximum cycles within single-master stacks for 

ALOS-1, ENVISAT and Sentinel-1. It is clear that under the situation of the same 

maximum cycles, the performances of Sentinel-1 and ALOS-1 are a lot better in 

comparison to the counterpart of ENVISAT. In this work, as the maximum temporal 

baseline of these three image stacks are 138, 70, and 48 days for ALOS-1, 

ENIVSAT and Sentinel-1, respectively, the values of 
maxV are 15.6, 7.4, and 10.6 cm 

yr
-1

 accordingly (Table 7-2). 

7.2.3.2 Performance of different sensors over rapidly subsiding region 

In order to demonstrate the effectiveness of ATS-InSAR method for estimating the 

mining-affected areas, 23 ALOS-1 images (Track 370, Frame 649) used in Du et al. 

(2016a) are exploited in this experiment (the exact threshold settings can refer to the 

article above). The difference is that this time ATS-InSAR method is conducted over 

the entire SAR coverage. Eventually, 29, 218, 317 MS pixels are selected with DA < 

0.25 or 𝛾𝑃 >0.75 and later resampled onto a grid with the resolution of 30 m × 30 m. 

All these measurements are relative values as regards to a stable point in 

Wollongong City (the same reference point is used for all the experiments 

afterwards). It can be seen clearly from Figure 7.12 that three regions marked with 

rectangular boxes are the highlighted trouble spots, and special attention should be 

paid to these regions. Nevertheless, it is impossible for ENVISAT based ATS-InSAR 

to detect such information even with the same thresholds (Du et al., 2016a). 
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Figure 7.12 The MVM derived from ALOS-1 based ATS-InSAR method 

superimposed onto a DEM layer. 

 

7.2.3.3 Modified ATS-InSAR method with ENVISAT and Sentinel-1 

Over the years, many times when processing real data, choosing the right trade-off 

between the selection of highly coherent pixels and the grid sparsity is a challenge 

(Hooper et al., 2004). Increasing the threshold allows the selection of highly 

coherent pixels, but the higher sparseness of the pixel grid may lead to unwrapping 

failures. On the other hand, the introduction of too noisy pixels can lead to 

unwrapping failures as well as integration uncertainty. In this sub-section, TS-InSAR 

analyses are conducted under several circumstances with different threshold settings 

(from Figure 7.13 to Figure 7.15).  
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First and foremost, only relatively reliable MS pixels (DA < 0.25 or 𝛾𝑃 > 0.55) are 

selected to conduct the ATS-InSAR analysis, resulting in the number of MS pixels 

and arcs of 851, 780 and 2,554,879, respectively. The final output MVM is shown in 

Figure 7.13 (a). In order to verify the reliability of the proposed method, the 

modified ATS-InSAR has been applied to monitor the ground deformation. Precisely, 

MS pixels with DA < 0.25 or 𝛾𝑃 > 0.6 are selected to construct the initial network 

while pixels with 0.6 ≥ 𝛾𝑃 > 0.55 are included afterwards using the IDW-based 

integration method and the outcome is demonstrated in Figure 7.13 (b). It is evident 

that these two results are comparable with each other with the root-mean-square-

error (RMSE) accounting for 2.4 mm yr
−1

 (Figure 7.13 (c)). Indeed, the above 

experiments are conducted with relatively reliable MS pixels and the performance of 

the modified ATS-InSAR method will be further tested by including less reliable MS 

pixels.  
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Figure 7.13 ENVISAT derived MVM using both traditional and modified ATS-

InSAR method over Southern Sydney with different threshold settings (a) DA < 0.25 

or 𝛾𝑃 > 0.55 (b) DA < 0.25 or 𝛾𝑃 >0.6 & 0.6 ≥ 𝛾𝑃 > 0.55, and (c) Correlation between 

(a) and (b). 

7.2.3.4 ATS-InSAR methods with less reliable MS pixels 

Figure 7.14 is the zoom-in result of the blue dash-line covered region (ROI1) in 

Figure 7.13. According to the report from BHP (2014), the mining proposal for 

Longwalls 702 – 704 was approved on 1 November 2006, while the operation period 

was from 27 October 2007 to 29 July 2012. It can be seen from Figure 7.13 that 

ROI1 is rather sparse in terms of the density of MS pixels. To acquire more detailed 

information about the ground deformation, the threshold for ATS-InSAR has been 

changed to DA < 0.25 or 𝛾𝑃 > 0.5 (Figure 7.14 (a)) and DA < 0.25 or 𝛾𝑃 >0.4 (Figure 
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7.14 (b)) for including more MS candidates to the initial TIN network. It is apparent 

that even the number of MS pixels has changed from 10, 051 (𝛾𝑃 > 0.55) to 14, 229 

(𝛾𝑃 > 0.5) and 63, 454 (𝛾𝑃 > 0.4), respectively, and the mining-induced subsidence 

pattern still cannot be clearly identified. As the initial TIN network is constructed 

using arcs and all these arcs have the same significance level, adding less reliable 

arcs directly into the initial TIN network can seriously degrade the accuracy of the 

integration processing and lead to incorrect estimation and integration uncertainty. 

The modified ATS-InSAR technique is applied by selecting not only reliable MS 

pixels (DA < 0.25 or 𝛾𝑃 > 0.4) to construct the initial TIN network, but also less 

reliable MS pixels (0.4 ≥ 𝛾𝑃 > 0.25), and the result is illustrated in Figure 7.14 (c). 

Overall, 103, 220 MS pixels have been selected with the corresponding value of 

( )t  larger than 0.25, which means the improvement of this proposed method is 

nearly 39% in terms of the density of total MS pixels as compared to the reliable 

case. In this circumstance, the number of MS pixels seem enough, and the general 

mining-induced pattern can be seen.  
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Figure 7.14 ENVISAT ATS-InSAR result over the longwall panel marked with blue 

colour with DA < 0.25 or a) 𝛾𝑃 > 0.5, b) 𝛾𝑃 >0.4, c) modified ATS-InSAR with 𝛾𝑃 > 

0.4 and 0.4 ≥𝛾𝑃 >0.25, and d) ALOS-1 with 𝛾𝑃 > 0.75. P1 is the selected hot-spot. 

 

Figure 7.14 (d) is the ALOS-1 based ATS-InSAR outcome with 𝛾𝑃 >0.75 and is 

primarily used for verification purpose. The black dash-line box within Figure 7.14 

(c) & (d) represents the mining-affected regions, and the two subsiding patterns 

cannot be perfectly matched as is evident from these two figures. The difference 

between the two outcomes could be due to two reasons: 1) the temporal coverage 

between these two datasets is not identical –– 2007.06 to 2011.01 (ALOS-1) vs 

2007.08 to 2010.06 (ENVISAT) and 2) The maximum detectable subsidence is 

different for ALOS-1 and ENVISAT in this work –– 15.6 vs 7.4 cm yr
-1

. As the 
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spatial resolution and revisit time are 10 m & 46 days and 30 m & 35 days for 

ALOS-1 and ENVISAT, respectively, the maximum detectable subsidence per meter 

per day is 34 × 10
-3

 and 7 × 10
-3 

mm m
-1 

day
-1

 accordingly. In other words, the 

capability of ALOS-1 for detecting mining-induced subsidence is nearly five times 

better than ENVISAT case.  

 

Sentinel-1 satellite (April 2014 –) is the successor of ENVISAT satellite (March 

2002 – April 2012) after the latter ceased communication with earth on 8 April 2012. 

The proposed method will be tested on the Sentinel-1 dataset in the following 

experiments. It is worth noting that since the operation periods for these two 

satellites are different, there is no way to conduct the experiment over LW702 – 704 

as the active mining period was between 27 October 2007 and 29 July 2012. 

Nevertheless, considering that the geological structure of Appin & West Cliff 

Colliery and the longwall mining technique remained the same over the years, the 

Sentinel-1 based ATS-InSAR analysis thus essentially focuses on the targeted zone 

II (panels marked yellow in Figure 1), which is about 6 kilometres to the east of 

LW702.  
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Figure 7.15 Sentinel TS-InSAR result over the longwall panel marked with yellow 

colour in Figure 1 with DA < 0.25 or a) 𝛾𝑃 > 0.7, b) 𝛾𝑃 > 0.6, c) 𝛾𝑃 > 0.5 and d) 

modified ATS-InSAR with 𝛾𝑃 > 0.5 and 0.5 ≥ 𝛾𝑃 > 0.4. P2 is the selected hot-spot. 

 

According to the report from BHP (2014), the operating time period for this longwall 

was between July 2015 and June 2016. Figure 7.15 (a) – (c) illustrate the Sentinel-1 

based ATS-InSAR outcomes with DA < 0.25 or 𝛾𝑃 >0.7, 𝛾𝑃 >0.6 and 𝛾𝑃 >0.5, 

respectively. The corresponding number of MS pixels are 13, 919; 41, 823; and 107, 

217, respectively. However, the exact outline of the eastern part is still not clear. 

Figure 7.15 (d) shows the modified ATS-InSAR result with DA < 0.25 or 𝛾𝑃 >0.5 & 
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0.5 ≥ 𝛾𝑃 >0.4. The total number of MS pixels is 171, 094, which is about 1.6 times 

more in comparison to the previous case (𝛾𝑃 >0.5), and the clear mining-induced 

subsiding pattern can be clearly observed in Figure 7.15 (d). Compared to ENVISAT 

based ATS-InSAR result in Figure 7.14 (c), the performance of Sentinel-1 is much 

better primarily due to two reasons: 1) Due to the relative short revisit time of 

Sentinel-1, even the maximum revisit cycle of Sentinel-1 data is 4 (48 days), 

however, it is still smaller than the two cycles of ENVISAT data (70 days), and 2) 

the extents of these two mining activities are not identical.   

 

To test whether the drop of the threshold of 𝛾𝑃 would degrade the stability of the 

Initial TIN network, time series analysis is conducted over two hot-spots P1 (Figure 

7.14 (a) and (b)) and P2 (Figure 7.15 (a) and (c)), respectively. As evident from 

Figure 7.16 (a), with the value of 𝛾𝑃 changing from 0.5 to 0.4 for ASAR datasets, the 

LOS displacement rate of P1 is consistent from August 2007 to June 2010, which is 

nearly –6.1 cm yr
-1

. Also, a similar comparable result is observed over P2 between 

July 2015 and June 2016 under two different situations; 1) 𝛾𝑃 > 0.7 and 2) 𝛾𝑃 > 0.5 

for Sentinel dataset, and the LOS subsidence rate is nearly –4.6 cm yr
-1

. In other 

words, the TIN network is intact with the value of 𝛾𝑃 set to 0.4 and 0.5 for ASAR 

and Sentinel, respectively.  
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Figure 7.16 Time series displacement over two hot-spots P1 (Figure 7.14 (a) and (b)) 

and P2 (Figure 7.15 (a) and (c)), respectively. 

 

7.2.4 ATS-InSAR methods with less reliable MS pixels 

Basically, it is true that when it comes to the underground mining activities, a 

nonlinear deformation model should be a better choice to model the deformation 

phenomena (the subsidence follows a nonlinear trend due to the effect of some 

sudden deformation within a short period of time). However, a nonlinear 

deformation model is only applied when a-prior information is available. As the 

underground mining progress in this work was unknown to the authors (e.g. the 

exact start and end date, the nonlinear displacement rate, and how the process was 

going), it is not possible to use such a model because of the absence of significant 

information. Additionally, this is also the reason why there is a deficiency of MS 

pixels over the centre of the longwall mining sites (large subsidence within a short 

period cannot be well modelled using linear deformation model). 
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Moreover, during the estimation, all the thresholds used in the analysis are empirical 

values. Considering that the general temporal baseline for Sentinel-1 is much shorter 

than the counterpart of ENVISAT, the ranges of the reliable 𝛾𝑃 for EVNISAT and 

Sentinel-1 are set to 0.4 and 0.5, respectively, for selecting sufficient MS pixels. As 

evident from Figures 7.14 (a) and 7.15 (a), the ENVISAT and Sentinel-1 based 

MVMs derived from ATS-InSAR method are superimposed onto the local mine plan. 

It is apparent from Figures 7.14 (c) and 7.15 (d) that the longwall mining panels 

match pretty well with the two subsiding zones, which means that the local 

deformation is essentially induced by the underground mining activities. Due to the 

use of longwall mining technique, the mining-affected regions are predominantly 

around the longwall panel and can hardly be extended to areas outside the panels.  

 

To produce reasonable contour maps with respect to the MVMs, a GIS-based 

interpolation method is introduced: 1) a good number of characteristic points are 

extracted from the original MVMs, 2) smoother mean velocity maps (SMVMs) are 

generated with these characteristic points, which are illustrated in Figure 7.17 (a) and 

(b), and 3) the 1-cm-interval contour maps are projected from SMVMs. After 

carefully calculating, the entire subsiding zone potentially affected (> 2.0 cm yr
-1

) by 

underground mining activities approximately accounts for 2.28 and 3.14 km
2
, 

respectively. Within the subsiding zone, a number of public facilities have been 

detected that are suffering from the ground deformation. These facilities include 

Hume Motorway and a railway-line in Figure 7.17 (c) as well as Wedderburn Airport 

in Figure 7.17 (d). As a result of the subsidence, the service ability of railways and 

roads may be affected by distortion of the rail foundation and road surface. Moreover, 
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the continuous sinking of the airport ground may threaten flight safety and human 

lives to a large extent. Hence, special attention should be given by the mining 

industry and government to deal with this matter.  

 

Figure 7.17 (a) – (b) 1-cm-interval contour maps superimposed on ENVISAT and 

Sentinel-1 based SMVMs, respectively. (c) – (d) 1-cm-interval contour maps 

superimposed on ©Google Map. 
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Chapter 8  

Comparison between GRACE and InSAR 

The Gravity Recovery and Climate Experiment (GRACE) twin satellite mission is a 

joint scientific project between NASA and DLR for providing precise, time-varying 

measurements of the Earth's gravitational field (JPL, 2016a). Recently, both 

GRACE-based technique and TS-InSAR method have been utilized for monitoring 

groundwater depletion phenomena and even groundwater induced subsidence (Ge et 

al., 2014; Chen et al., 2010; Rodell et al., 2009; Chaussard et al., 2013; Chaussard et 

al., 2014; Castellazzi et al., 2016). Ge et al. (2014) drew a conclusion that ground 

subsidence of 20 – 30 cm yr
-1

 in Bandung City is induced by a reduction in 

groundwater level of 100 cm yr
-1

 by exploiting the measurement from water wells 

and the TS-InSAR-derived ground deformation. Nevertheless, such result is only 

suited for local scale analysis because of the sparse density of utilized points. 

Castellazzi et al. (2014) first combined both GRACE and DInSAR technique to 

study the relationship between groundwater depletion series and groundwater 

induced land displacement. However, their result is rather limited as DInSAR cannot 

provide time series measurements. Also, Chaussard et al. (2014) utilised more than 

600 ALOS-1 images between 2007 and 2011 in order to study the ground subsidence 

in Mexico covering over 200, 000 km
2 

with SBAS method, and the largest 

subsidence of up to 5~30 cm yr
-1 

has been reported. The authors later concluded that 

the subsidence is mostly due to groundwater pumping for urban or industrial 

activities as the other factors, like surface water drainage, artificial sediment loading 

and mining activities are unlikely to induce such subsidence. Castellazzi et al. (2016) 
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further examined the correlation among official water budgets, SBAS-based 

measurements acquired from Chaussard et al. (2014), as well as the groundwater 

depletion rate derived from GRACE. The comparison result indicates that GRACE 

failed to detect the entire groundwater losses as reported by the other two methods, 

and the authors interpreted the difference as returns of wastewater to groundwater 

recharging system. 

 

Nevertheless, mining activities are widespread in Mexico (Chaussard et al., 2014), 

and traditional SBAS does not have the ability to clearly identify the subsidence 

zone induced by underground mining (Du et al., 2017b). Therefore, this part, 

categorised as the localised subsidence, needs to be identified using other methods, 

e.g., ATS-InSAR (Du et al., 2016b) and further excluded before estimating the 

globally averaged value. Within this chapter, two significant facts that the previous 

research has neglected will be emphasised: 1) the impact of other human-involved 

activities, for example, underground mining, and 2) the way to integrate multi-path 

TS-InSAR results.  

8.1 Overview of the GRACE satellite mission 

The GRACE space gravity mission, which was launched in 2002, is a joint scientific 

satellite mission between NASA and DLR for providing precise, time-varying 

measurements of the Earth's gravitational field (JPL, 2016a). The spatial and 

temporal resolution of GRACE is approximately 160,000 km
2
 and monthly, 

respectively. GRACE mass variation estimates quantify changes in total water 

storage (TWS) also expressed as an Equivalent Water Height (EWH) (Tregoning et 

al., 2012). Researchers have found that it is capable of observing water storage 
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variations of all depths, including soil moisture, surface water, groundwater, snow 

and ice by exploiting either land-surface models or in situ observations (Rodell et al., 

2009; Rodell et al., 2007; van Dijk et al., 2014; Famiglietti et al., 2011), and the 

accuracy is better than 1 cm of EWH (Swenson and Wahr, 2002). Furthermore, TWS 

can generally be considered as an integrative measure and estimating groundwater 

storage (GWS) from GRACE EWH requires separating the TWS changes into the 

components of surface water, soil moisture, snow and ice (Richey et al., 2015; 

Rodell et al., 2007). Rodell et al. (2007) used soil moisture storage (SMS) and snow 

and ice storage (SIS) simulated from the Global Land Data Assimilation System 

(GLDAS) to estimate the GWS changes over four major sub-basins of the 

Mississippi River basin and concluded that this approach is more suitable for regions 

larger than 900,000 km
2
. Moreover, he pointed out that in regions such as the Middle 

East and China, where the rates of the extraction of GWS are unsustainable, this 

approach is invaluable. Rodell et al. (2009) further exploited external surface water 

storage (SWS) integrated with SMS and SIS to study the change of GWS in northwest 

India and found that the locally depleted GWS is about 4.0 ± 1.0 cm yr
-1

. van Dijk et 

al. (2014) studied the global GWS changes from 2003 to 2012 and reported that 

glacier mass loss and subsurface storage decline could be the major uncertainties that 

constrain the accuracy of the GRACE product. A proper estimation of the each 

component from ΔTWS allows one to estimate ΔGWS:  

 

 

 

( )GWS TWS SMS RWS LWS SIS                              (8.1)                 
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where GWS is the groundwater storage 

TWS is the GRACE – derived total water storage 

SWS is consists of surface river water storage (RWS) and lake water storage 

(LWS) 

SMS is the soil moisture storage 

SIS is the snow and ice storage 

∆ represents the difference between two time acquisitions 

8.2 Geological settings 

Ordos Basin (Figure 8.1), Inner Mongolia, is extremely rich in natural resources, 

with one sixth of China’s national coal reserves (Yearbook, 2012). As one of the 

large sedimentary groundwater basins in China (about 280, 000 km
2
), Ordos Basin 

mainly consists of three different aquifer systems: the Cretaceous Aquifer System, 

the Karst Aquifer System and the Carbonate-Jurassic and Quaternary Aquifer system 

(Hou et al., 2008). All these aquifer systems are superimposed with each other 

vertically. However, due to the effect of local arid and semi-arid climates, intense 

evapotranspiration and weak precipitation, Ordos Basin is suffering from a severe 

shortage of water resources (Hou et al., 2008). The study area (Figure 8.1) is located 

in the north part of the Ordos Basin. 

 

Ordos municipality, located in the central part of the study area, was one of the 

richest cities in China, and even ranked ahead of Beijing in 2011 with a nominal per-

capita GDP of US$ 25,239 (Yearbook, 2012). In recent decades, coal-to-liquids 

(CTL) industries are playing an important role in regional economic growth. CTL – a 
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process also referred to as coal liquefaction – allows coal to be utilised as an 

alternative to oil, which is highly suited to cities that heavily rely on oil imports and 

have large domestic reserves of coal. There are a number of CTL projects around the 

world at various stages of development (GreenToGoFuel, 2015). In 2003, the 

Shenhua Group Corporation, one of the world’s largest coal companies, began to 

construct the world’s first commercial direct coal liquefaction project at Majata, 

Inner Mongolia, China (Figure 8.1). Majata is a typical coal mining zone and the 

local water resources have been significantly damaged due to the collective 

excavation of coal resources. Since 2006, the water resources for coal liquefaction 

have been heavily dependent on the groundwater from Haolebaoji, Inner Mongolia 

(red dash line in Figure 8.1), a region about 100 kilometres away in the heart of the 

Mu Us Sandy land. Twenty-two wells over 300 meters deep were utilised to extract 

groundwater in Haolebaoji, with a maximum capacity of 58,000 m
3 

per day. In other 

words, the total annual extracted groundwater is about 14.4 million m
3
. Recently, a 

field investigation found that a surrounding region of about 400 km
2
 (red solid line 

in Figure 8.1) is suffering from a drop of ground surface level (Shenhua, 2013). 

More than 40% of the world's population lives in arid and semi-arid regions where 

groundwater is not only essential for the maintenance of ecosystem health, but also 

for human consumption (The Drum, 2015). Therefore, it is important to understand 

the relationship between groundwater change and surface subsidence. Previous 

researchers have utilised pixel offset method and TS-InSAR technique to study the 

underground mining related subsidence with ALOS-1 PALSAR dataset (Zhao et al., 

2013; Du et al., 2015). However, the subsidence of Ordos Basin is caused not only 

by underground mining activities, but also by groundwater extraction. In other words, 

It is difficult to tackle the complexity of earth surface deformation on an individual, 



 
 

170 

 

site-specific level or use a single technique or methodology. Rather, the problem 

needs to be approached by the integration of data taken with different techniques and 

the collaboration of researchers from multiple disciplines. 

 

In order to map the subsidence in Ordos Basin, 42 L-band ALOS-1 PALSAR images 

acquired between 8 January 2007 and 19 January 2011 were selected to conduct the 

TS-InSAR analysis. All these images were captured in ascending orbit with the same 

incidence angle of 38.7° (Track 460, Frame 780 & 790). 

 

Figure 8.1 The area covered by TS-InSAR analysis is indicated by the rectangle with 

black solid lines. The light green rectangle refers to the coverage of GRACE product. 

Regions covered with red solid-line is known as Haolebaoji. 
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8.3 The procedure to generate GRACE time series 

measurements 

In this study, since Ordos Basin is a semi-arid region, the error of GRACE product 

induced by glacier mass loss is considered to be negligible; we assume that the local 

TWS mainly consists of SMS, GWS, RWS and LWS. The GRACE monthly TWS data 

is pre-processed in order to eliminate the effect of atmosphere and ocean. To squeeze 

the systematic uncertainties associated with the data processing, recent studies found 

that the ensemble mean (simple arithmetic mean of JPL, CSR, GFZ fields after 

multiplying the scaling grid (JPL, 2016b)) was the most effective way of reducing 

the noise in the gravity field solutions within the available scatter of the solutions 

(Sakumura et al., 2014) (examples of these four components can be found in Figure 

8.2 (a) to (d)). Thus, an ensemble average TWS is calculated with products from 

three processing centres, namely GFZ (GeoforschungsZentrum Potsdam), CSR 

(Center for Space Research at University of Texas, Austin) and JPL (Jet Propulsion 

Laboratory, NASA), from September 2006 to June 2012. All of them are based on 

the RL05 spherical harmonics with the spatial resolution of 1° in both latitude and 

longitude (approx. 111 km at the equator). The correct TWS is obtained by 

subtracting a historical mean of the monthly GRACE data (2004 – 2009). It is worth 

mentioning that low-pass filtering (e.g. destriping, filtering and truncation) may lead 

to the loss of GRACE signal. In order to estimate the accurate quantification of 

GRACE observed TWS, a scaling factors obtained from the National Center For 

Atmospheric Research (NCAR)’s Community Land Model 4.0 (CLM 4.0) is applied 

to correct and restore the signal. 
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Figure 8.2 the TWS acquired on 16 June 2012 derived from (a) CSR, (b) GFZ, (c) 

JPL, and (d) CSR+GFZ+JPL, respectively. 

 

SMS can be solved with a number of land surface models from GLDAS, namely, 

Community Land Model (CLM) (10 layers), NOAH (four layers), MOSAIC (three 

layers) and Variable Infiltration Capacity (VIC) (three layers) (Liu et al., 2009b). 

GLDAS derived estimates are 3-hourly products with 0.25° spatial resolution (down-

sample to 1° spatial resolution in both latitude and longitude direction), while 

satellite based observations offer twice-daily instantaneous retrievals at similar 

spatial scales. The total SMS is extracted using the monthly output from the 

arithmetic mean of these four models while the rest components RWS and LWS are 

provided by Professor. van Dijk (van Dijk et al., 2014) (1° resolution and a 300 km 
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wide Gaussian filter is applied) (examples of RSW, LWS and SMS can be seen in 

Figure 8.3 (a) to (d)).  

 

Figure 8.3 components included in TWS acquired on 01 June 2012 derived from (a) 

RSW, (b) LWS, (c) SIS, and (d) SMS, respectively. 

 

To achieve a reasonable comparison among all these various layers, the data 

acquisition times for them should be exactly the same. However, given the fact that 

the temporal sampling rates for some of these layers are not consistent, the temporal 

gap refining method is carried out. More specifically, all these TWS products were 

acquired in the middle of months and several months were not recorded while for 

other layers, including SMS, LWS, and RWS, the dataset acquisition times were at the 

beginning of months and all months have been recorded (taking SMS as an example). 
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SMS is resampled in temporal domain to match up with the temporal sampling rate 

of TWS based on Equation 8.2. 

 

The interpolation operation in time series is carried out under the assumption that the 

EWH changes experience a linear trend within a short period (e.g. one month in this 

context).  
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                     (8.2) 

where t is the targeted time in TWS, while ti and ti+1 are two adjacent times in SMS, 

i+1 is the number of SMS stack, ( )f t , y(ti), y(ti+1) are the corresponding two-

dimensional values at time t, ti and ti+1.              

 

Finally, to compute the GSW time series, all types of datasets are first adjusted so 

that their values were relative to the first image in September 2006. The ΔSMS, 

ΔRWS and ΔLWS are then subtracted from ΔTWS to derive the groundwater storage 

variation. The time series variations for ΔSMS derived from four models are given in 

Figure 8.4 and eventually, the averaged SMS is used for the final estimation. The 

time series GWS is estimated by calculating the averaged value among 42 one-degree 

pixels (~420, 000 km
2
) covering the whole Ordos Basin (latitude ranges from 34.5⁰ 

to 40.5⁰ north while longitude ranges from 106.5⁰ to 111.5⁰ east, respectively) (light 

green rectangle region within Figure 8.1).  
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Figure 8.4 The 2003 – 2012 time series soil moisture variation over Ordos Basin 

estimated from four GLDAS models (including the averaged result) 

Since the InSAR-derived result and GRACE-based outcome have a vast difference 

in spatial resolution, i.e. GRACE (~ 300 km) vs. InSAR (~ a few 10s of meters), the 

two measurements are not comparable over the same region. For example, even 

several meters of groundwater loss over a small area spanning a few kilometres 

might not be detectable by GRACE, which senses only regional patterns. Instead 

 

Figure 8.5 (a) and (b) is the time series comparison among SMS, TWS and 

RSW+LWS layers over Ordos Basin between December 2016 and June 2012. It is 

clear that the change of RSW+LWS layer was not significant during this six-year 

period due to the fact that the study region lies within a semi-arid continental climate 

zone and the number of lakes and rivers taken into account are rather limited. 



 
 

176 

 

Furthermore, the trends of both SMS and TWS layers match up to each other to some 

extent, posing an apparent seasonal change. The monthly rainfall measurement over 

Ordos Basin is given in Figure 8.5 (c). Despite the differences in magnitude, it is 

worth noting that the general tendency between SMS and the monthly rainfall shows 

a relatively high consistency. The groundwater depletion series, also known as GWS, 

is estimated by subtracting SMS and RSW+LWS from TWS and the results indicate 

that groundwater induced subsidence rates in vertical direction is about −7.3 mm yr
-1

 

(Figure 8.3 (b)), which is equivalent to a complete loss of 2,044 million m
3
 water 

resources per year as the total size of Ordos basin is about 280,000 km
2
. In other 

words, within Ordos Basin, a total amount of 2.9 million m
3
 groundwater could be 

extracted from a 400 km
2 

region in general. However, according to Shenhua’s report 

(Shenhua, 2013), 14.4 million m
3 

groundwater was actually extracted from the 

Haolebaoji surrounding region (region covered with red solid-line in Figure 8.1 with 

the total size of approximate 400 km
2
), which is about five times the average annual 

depletion rate of the entire Ordos Basin, and this should serve as reliable evidence to 

explain the local ground subsidence. In conclusion, the experiment result agrees well 

with the fact that the region surrounding Haolebaoji is suffering from a drop of 

groundwater level after the groundwater extraction commenced in 2006 (Shenhua, 

2013).  
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Figure 8.5 (a) SMS, TWS and RSW+LWS time series measurements and (b) 

groundwater depletion rate form GRACE between Sep. 2006 and Jun. 2012 (c) the 

monthly rainfall over Ordos Basin. 

8.4 InSAR time series measurement 

The subsidence rate map generated from ALOS-1 PALSAR data (both Frame 780 

and Frame 790) between 08 January 2007 and 19 January 2011 is shown in Figure 

8.6. The reference point is selected over a relatively stable region outside of the 

underground mining zone marked with empty white star. The linear displacement 

rates derived from TS-InSAR analysis are relative values with respect to the 

reference point. To combine the TS-InSAR results from two frames together, first 
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and foremost, a common region is selected (marked with red rectangle dash-line box 

within Figure 8.6). The mean LOS velocities are estimated over the common region 

for both frames and the TS-InSAR result for Frame 780 is set as the reference layer. 

It is evident from Figure 8.7 (a) that the mean LOS velocity value estimated from 

Frame 780 is –5.4 mm yr
-1

, and thereafter the final combined TS-InSAR result can 

be achieved by shifting the mean velocity value of Frame 790 to –5.4 mm yr
-1

 as 

shown in Figure 8.7 (b).  

 

Figure 8.6 TS-InSAR mean velocity map in LOS direction superimposed on SRTM 

DEM map (SAR images acquired from 08 January 2007 to 19 January 2011) 
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Figure 8.7 The histogram of TS-InSAR velocity over the common region (a) Frame 

780; (b) Frame 790; marked with red rectangle dash-line box in Figure 8.6. 

After deleting all the common MS pixels, a total number of 2,055,859 pixels is 

obtained, which means the density of scatterers is about 286 MS km
-2 

(286 is quite a 

good number because less reliable MS pixels were added to increase the density of 

scatterers). The majority of the ALOS-1 LOS displacement is between –20 mm yr
-1 

to 20 mm yr
-1

,
 
and two areas have been selected to demonstrate the detailed 

subsidence; Figure 8.8 (a) shows ROI 1 superimposed onto the optical image (© 

Google Earth), which is a rapidly subsiding zone as previously shown in Figure 8.6 

covered with purple rectangle. It can be seen that the subsidence bowls are located 

over the rural regions, with the mean velocity of the subsidence region at –16 mm yr
-

1 
in LOS direction. Furthermore, a RADARSAT-2 pair is used to generate the 

differential interferometric map using the two-pass DInSAR technique (Massonnet et 

al., 1993), and the interferometric pattern from the outcome can be used to provide 

some useful information for the more recent land deformation evolution over the 

region. Four typical subsiding funnels induced by underground mining activities 

have been detected in Figure 8.8 (b), suggesting the land subsidence may have 

continued over the same subsidence region even after one-year period.  
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Figure 8.8 (a) (d) Subsidence rate map generated with ALOS-1 PALSAR data with 

optical image (© Google Earth) at the highlighted region AOI 1 and AOI 2 in Fig. 5. 

(b) represents the DInSAR IFG generated with two RADARSAT-2 images acquired 

on 13 February 2012 and 8 March 2012. (c) and (e) are optical image obtained from 

Google Earth. 

 

The InSAR-derived subsidence over ROI 2 is shown in Figure 8.8 (d) and the 

magnitude of subsidence over –30 mm yr
-1

 in LOS direction has been found in some 

areas. Two coal mining sites illustrated in Figure 8.8 (c) and (e) that have been 

observed using Google Earth are geologically close to two sinking regions, 
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indicating the local subsidence is also caused by mining related activities. According 

to (Du et al., 2016a), the typical fringe patterns caused by underground mining 

subsidence derived from DInSAR differential IFG with two obvious characteristics: 

1) The earth surface where underground mining occurs will sink as the colour of the 

defomation pattern is changing from yellow to blue (from the centre to the edge); 2) 

The subsidence magnitude increases from the edge to the centre, therefore resulting 

in an oval or a round shape (Hu et al., 2013), while the detailed description of the 

underground mining subsidence pattern from TS-InSAR velocity map can be found 

in (Du et al., 2016a). Regions suffering from rapid changes within a short period of 

time will lose their InSAR coherence and therefore will form gap zones (see section 

7.1).  

 

Figure 8.9 Twelve gap regions derived from TS-InSAR result 
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Figure 8.9 shows twelve gap regions derived from the TS-InSAR result (identified 

using the rules described in (Du et al., 2016a)). The total size of these areas is about 

190 km
2
, which only accounts for 2.6 % of the coverage of the TS-InSAR result 

(about 60 ×  120 km
2
). However, it is worth noting that the actual extent of 

underground mining induced land surface subsidence is larger than the extent of 

underground mining sites, and the affected regions are related to a number of factors, 

e.g. the angle of draw and the depth of longwall mining sites (Coal Mine, 2015). 

More importantly, this part of subsidence contributes a lot to the total velocity and 

should be excluded before estimating the final mean velocity (which accounts for –

3.8 mm yr
-1

 in LOS direction in this paper). Due to the lack of various viewing 

geometry, e.g. a descending pair covering the study region, the deformation is 

assumed to be mainly in the vertical direction and the horizontal movement is 

negligible. Finally, the mean vertical velocity of –4.9 mm yr
-1 

is obtained by dividing 

the cosine of the angle of incidence (Du et al., 2015). Furthermore, given the fact 

that the groundwater extraction site and its affected region (about 400 km
2
) are both 

outside of the coverage of ALOS measurement (Figure 8.1), it is still fairly difficult 

to conclude that the local subsidence is mainly induced by underground mining 

activities, unless no further impacts of groundwater changes on the surface 

subsidence were confirmed.  
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8.5 Further work 

In the future, to make a rational comparison between the InSAR derived mean 

velocity with GRACE-based groundwater depletion trend together, the following 

conditions need to be satisfied: 1) The coverage of InSAR measurement shall be 

larger than the spatial resolution of GRACE product, taking L-band ALOS PALSAR 

data as an example, the minimum nearby image pairs is at least 18. Additionally, 

Sentinel-1A IWS mode with its relatively short revisit time of 12 days and large 

spatial coverage of 250 km × 250 km can be exploited to study the relationship 

between ground surface deformation and groundwater changes, as two or three 

adjacent sentinel-1A images together are fully capable of covering the spatial 

resolution of GRACE. 2) Local subsidence induced by human involved activities, 

e.g. underground mining, shall be excluded before the final estimation of the mean 

velocity.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

184 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

185 

 

Chapter 9  

Concluding remarks 

The main objective of this dissertation was defined in Chapter 1 as:  

“This dissertation aims to identify ways to overcome the drawbacks of the TS-

InSAR method for dealing with the moderate and rapid ground subsidence, as well 

as to investigate the potential cause of the subsidence by applying several established 

TS-InSAR techniques to different areas.” 

9.1 Summary  

Land subsidence is an environmental, geological phenomenon that often refers to 

gradual settling or rapid sinking of the ground surface as a result of subsurface 

movement of earth materials. It is considered to be a global issue, and many cities of 

the world have been reported suffering from land subsidence to a large extent. The 

level of land subsidence can be simply categorised into three groups: rapid, moderate 

and slow changes, if one only takes the potential effects of the subsidence into 

consideration. Rapid land subsidence events, such as earthquake, are likely to cause 

serious problems. Moderate and slow ground surface subsidence may result in no 

evident consequence in a short time, but over a long period of time can lead to severe 

economic loss and shocking impact. 

 

Differential Interferometric Synthetic Aperture Radar (DInSAR) method has been 

used to monitor such events over the past three decades. However, its result can be 
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affected by spatial/temporal decorrelation and atmospheric disturbance. In recent 

decade, Time series InSAR (TS-InSAR) was proposed to minimise these biases by 

taking advantage of the principle of temporal and spatial statistical analysis. 

Nevertheless, TS-InSAR has issues due to the tropospheric stratification in high 

elevation regions and insufficient measurement pixels over rapid subsiding zones.  

 

This dissertation mainly focused on optimisation of the TSInSAR-based technique 

for land subsidence measuring induced by the extraction of natural resources, such as 

coal, coalbed methane (CBM) and groundwater. We believe that the application of 

time series SAR interferometry will broadened greatly with the help of these 

research outcomes.  

 

o DInSAR and TS-InSAR technique are both interferometry methods for 

monitoring land subsidence with fine accuracy. DInSAR is suitable for short 

term measurement, while TS-InSAR uses phase information to map surface 

subsidence and requires SAR image acquisitions to maintain high coherence, and 

hence is mainly applicable to slow changes. However, some rapidly changing 

surface subsidence can lead to the loss of InSAR coherence. Therefore, no signal 

can be detected in such a region. Such gaps in TS-InSAR result can be resolved 

by combining refined DInSAR and TS-InSAR measurements together. 

 

o Secondly, ALOS-1 PALSAR and ENVISAT ASAR based TS-InSAR has been 

conducted to monitor the subsidence over underground mining regions. Since the 

maximum displacement gradients that can be detected are different for L-band 

and C-band-based TS-InSAR, some rapid changes in land surface could cause 
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the TS-InSAR to fail to estimate the correct displacements. L-band datasets are 

able to provide better results and achieve detailed deformation signals about the 

spatial distribution of the ground surface subsidence phenomenon. Nevertheless, 

the result of the counterpart ENVISAT failed to produce reasonable outcome due 

to the underground mining effect. An approach has been developed and 

implemented to address this issue through an IDW (Inverse Distance Weighted)-

based integration method. In addition, the proposed method is also applied to C-

band Sentinel-1 image stacks for testing purpose, and the final result proved to be 

efficient to offer sufficient information to the mining industry and government 

for risk management purpose. 

 

o Thirdly, several established TS-InSAR techniques have been applied to different 

areas, and these significant findings from the TS-InSAR analysis have led to new 

insights into the processes causing the deformation. 

 

9.2 Future directions  

It should be noticed that Stripmap (SM) (e.g. ALOS-1, ALOS-2) and Terrain 

Observation with Progressive Scan SAR (TOPSAR) (e.g. Sentinel-1) are the most 

commonly used modes of both single- and multi-master based TS-InSAR analysis. 

Nevertheless, there is no such TS-InSAR experiment conducted using Scanning SAR 

(ScanSAR) mode dataset. In fact, ScanSAR mode provides a much wider 

observation area as compared to the counterpart coverage of SM mode. Taking 

ALOS-2 satellite as an example, the swath of the former (~350 km) is nearly five 

times wider than the latter (~ 70 km) (Table 9-1), making it possible to resolve the 
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continuous land subsidence covering a reasonably large area. Furthermore, it has 

been three years since the launch of ALOS-2 satellite on 24 May 2014. But until 

now, the maximum SM pairs with the same incidence angle over one particular site 

is less than 13 images whilst the counterpart pairs of ScanSAR is usually more than 

25 scenes. Last but not least, the derived ScanSAR based TS-InSAR can also be 

used to solve the coefficient of correlation between land subsidence and groundwater 

depletion rate (GRACE measurement).  

 

Table 9-1 ScanSAR Data information for the radar satellites that are still operating 

 Spatial Coverage (km × km) Spatial Resolution (m) 

TerraSAR-X 100 × 150 ~ 18.5  

COSMO-SkyMed 100 × 100 ~ 100 

ALOS-2 350 ~ 490 ~ 100  

Radarsat-2 300 × 300 ~ 100 

 

On the other hand, earlier SAR satellites from SEASAT-SAR to RADARSAT-1 

acquired images at single polarimetric channels, while the latest launched space-

borne SARs operated with dual-polarization or even quad-polarization. Navarro-

Sanchez et al. (2010) conducted the first dual-polarimetric based TS-InSAR using 

space-borne SAR based on Pipia et al. (2009) and showed that 60% more PS pixels 

were obtained as compared to single-pol data. Navarro-Sanchez and Lopez-Sanchez 

(2014) later reported that the quad-pol based TS-InSAR was fully capable of 

detecting 310% more PS pixels as compared to single-pol set over the urban area of 

Barcelona, Spain. Considering that the former pol- based TS-InSAR experiments 

were conducted over the metropolitan regions, this technique can be adopted into 
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ATS-InSAR and applied over non-urban areas for achieving more detailed 

observation. 

   

Furthermore, it is evident that the static GPS or Continuously Operating Reference 

Station (CORS) can provide very accurate measurement in North-South (N-S) and 

West-East (W-E) direction (< 5 mm) while levelling is fully capable of providing 

accurate detection in vertical direction (< 5 mm) (more close the Term Bench Mark 

(TBM), more accurate measurement can be achieved). Imagine that there is a 

network combining both CORS & TBM, and each GPS station has one or more 

nearby TBM (both measurements can later be resampled into monthly or yearly 

products); such a system can indeed be used to retrieve the 3D movements over 

individual GPS stations, and further cross validate/rectify the TS-InSAR outcomes.    
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