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Abstract 

Resource constrained project scheduling problems (RCPSPs) are well-known NP hard 

combinatorial problems. Due to the drawbacks of existing solution approaches, many 

researchers have proposed different evolutionary algorithms (EAs) for solving them. 

Although EAs are able to achieve near-optimal solutions, they cannot guarantee optimality 

and, in fact, no single EA has consistently been able to solve all types of problems. This has 

led to the emergence of hybrid methods which have shown good performances but their 

search capabilities for solving RCPSPs have not yet been fully explored. 

In this thesis, to efficiently solve RCPSPs, an algorithmic framework involving multiple 

methodologies is introduced. Firstly, a memetic algorithm (MA) consisting of a new 

heuristic for converting infeasible solutions to feasible ones in the initial population and 

multiple local search (MLS) strategies for increasing the exploitation capability of the 

algorithm is proposed. Secondly, an improved differential evolution (DE) algorithm 

containing new search operators that can guarantee the generation of feasible solutions, 

even from infeasible ones, is introduced. Finally, motivated by the encouraging 

performances of the proposed MA and DE, a bi-evolutionary algorithm (bi-EA) that utilizes 

the good search features of both these algorithms by automatically switching between them 

according to their performance, which implies placing more emphasis on the best-

performing one during the evolutionary process, is proposed. In addition, two heuristic 

approaches developed to guide the solutions in both the initial population and every 

generation towards feasibility are adopted. 

All the algorithms proposed in this thesis are tested on a set of well-known project 

scheduling problems taken from the PSPLIB, with the results for instances of 30, 60, 90 

and 120 activities compared with both each other and state-of-the-art algorithms. It is found 

that: (1) the heuristic method improves the performance of the traditional GA by 80.66% in 

terms of quality of solutions; (2) the use of MLS techniques leads to much better solutions 

(11.83%) and saves 20.21% of the GA’s computational time; (3) adopting the heuristic 

method in DE improves the quality of solutions by 28.96% and saves 10.62% of CPU time; 
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(4) the improved DE operators provide much better solutions and greater savings in 

computational time than a traditional one; (5) bi-EA outperforms both MA and DE in terms 

of solution quality, especially for large-scale problems as, on average, it obtains 4.33% and 

3.5% higher-quality solutions than MA and DE, respectively, and also provides competitive 

solutions compared with those from state-of-the-art-algorithms.  
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Chapter 1                                                      

Introduction                                                                                                 

This chapter provides a brief background to the research conducted for this thesis. The 

problem definition and its practical importance are discussed and then the objectives and 

scientific contributions of this study are presented. Finally, the organization of this thesis is 

discussed. 

1.1 Background 

Scheduling is a decision making process used regularly in many manufacturing and 

service industrials. It deals with allocation of resources, such as machines, airport runways, 

crews at a construction site, to tasks, which may be production operations, landings and 

take offs at an airport, over given time periods and its aim is to optimize one or more 

objective (Pinedo, 2012).  

Scheduling is not a new subject! It has a long and active history dating back almost to 

the 1950s when the first scheduling strategies were proposed and analyzed. The use of 

projects and applications of project management continues to increase in our society and 

organizations which aim to achieve significant outcomes with limited resources and critical 

time constraints; for example, almost every activity undertaken, such as advertising and 

political campaigns, voter registration drives, a family’s annual vacation and even seminars 

on the topic of scheduling, are organized as projects (Meredith and Mantel Jr, 2011). 

Scheduling plays an important role in many industrial and production systems and in most 

of information processing environments. It also has a significant role in service industrials,  

such as transportation and distribution settings (Pinedo, 2012). In fact, it has emerged in our 

society due to the exponential growth of human knowledge and the increasing demand for 
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complex and sophisticated projects, goods and services, the development of which can be 

accomplished by the expanding amount of knowledge provided by various academic 

disciplines. The use of science/knowledge for these developments requires high levels of 

coordination and collaboration among individuals and groups, with a powerful tool needed 

to control and manage relationships among them (Burke, 2013, Meredith and Mantel Jr, 

2011) 

During the last few decades, scheduling or project management has provided 

organizations with powerful tools that improve their capability to design, organize, 

implement and control their activities and discover the best ways of using their resources. 

For instance, the United Sates Navy’s Polaris program and NASA’s Apollo space program 

were able to successfully accomplish their tasks by applying scheduling approaches 

(Meredith and Mantel Jr, 2011). 

The main purpose of creating a project is to achieve some objectives/goals. Based on 

actual experiences, most organizations indicate that using scheduling can help them obtain 

better control and client relations because it allows managers to be responsive to customers 

by expecting, identifying and solving problems at an early stage. Moreover, many users 

report numerous advantages of scheduling, such as (1) achieving goals with lower costs and 

higher quality, (2) providing reliable results with higher profit margins and (3) requiring 

shorter development times (Meredith and Mantel Jr, 2011, Munns and Bjeirmi, 1996). 

On the other hand, some organizations have reported that using scheduling may lead to 

increasing organizational complexity and higher costs. Therefore, in practice, a proper 

appreciation of the difficulty of a problem and the extent of the need for scheduling is very 

important for achieving an appropriate balance between the advantages and disadvantages 

of using project management/scheduling for that problem (Meredith and Mantel Jr, 2011, 

Baccarini, 1996). 

A wide variety of exact, heuristic and meta-heuristic strategies for comprehending 

scheduling problems has been proposed. Many simple models based on exact methods for 

solving RCPSPs have been proposed and were able to find optimal solutions; however, in 

most cases, they are time consuming, particularly when solving large problems 

(Demeulemeester and Herroelen, 1992, Jalilvand et al., 2005). Heuristics were initially 
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based on experts’ knowledge and experience and aimed to explore the search space in a 

particularly convenient way (problem-dependent techniques) (Gavrilas, 2010). On the other 

hand, meta-heuristics are problem-independent techniques, which do not take advantage of 

any specificity of the problem and, therefore, can be used as black boxes (Beheshti and 

Shamsuddin, 2013). Both heuristic and meta-heuristic approaches are powerful and flexible 

search mechanisms that have successfully solved complex problems. Their algorithms aim 

to obtain good-quality solutions in reasonable computational times and are suitable for 

practical problems which often have large dimensions and very complex constraints (Das 

and Acharyya, 2011a, Kolisch and Hartmann, 1999).  

Evolutionary algorithms (EAs) are well-known meta-heuristic methods and it contains a 

number of algorithms that have been used to solve scheduling problems, such as the genetic 

algorithm (GA) (Toklu, 2002) and differential evolution (DE) (Damak et al., 2009), and 

swarm intelligent algorithms such as ant-colony optimization (ACO) (Dorigo, 1992) and 

particle swarm optimization (PSO) (Kennedy, 2010). 

1.2 Problem statement 

Resource-constrained project scheduling problems (RCPSPs) are well-known scheduling 

problems. It is also a challenging research topic because of its significance in real life and 

its emerging in numerous fields. In classical RCPSPs, a project comprises of set of 

activities, where each activity must be executed just once in a single mode and each activity 

has its own pre-known resource requirement and execution time. RCPSP aims to schedule 

the project activities in such a way that minimizes the total duration (makespan) of the 

project subject to resource availability and precedence constraints that must be strictly 

satisfied. Precedence constraints (or predecessors-successors relationships) guarantee a 

logical process of the project activities (i.e. each activity cannot be scheduled until all its 

predecessor activities are scheduled). Resources in RCPSP can be categorized as renewable 

and non-renewable. Renewable are available with their full capacity in every time period 

and periodically renewed, but their quantity may differ from one period to the next. For 

instances: machines, manpower, equipment, and energy. In contract, non-renewable 
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resources are limited for the entire project, not for each time period, such as raw materials 

and budget. In this thesis, solving single-mode RCPSPs with different resource types are 

the main focus. 

Although the simplicity of its definition, the RCPSP was proven to be one of the NP-

hard optimization problems (Garey and Johnson, 1979) and the  most  intractable classical 

problems in reality. Due to the significance of RCPSP in our daily life, its essential role in 

the growth of activities in many fields and its industrial relevance, solving the RCPSP has 

become a prosperous research subject.  

Despite the fact that obtaining the optimal schedule is a very difficult task because of the 

highly constrained nature of scheduling problems, particularly for large ones, and the lack 

of algorithms that either have the capability to solve or is suitable for a wide range of them, 

over time, many scientific research studies have proposed methods for solving increasingly 

complex RCPSPs. However, some were only applicable for solving small problems and 

others were able to achieve near-optimal solutions, but there was no guarantee that they 

could achieve the optimal solutions.  

1.3 Motivations and scope of research 

As mentioned above, due to the high complexity of RCPSPs (as explained in Chapter 2), 

many exact, heuristic and hybrid algorithms have been used for optimally solving them in 

reasonable computational times. However, exact methods are only applicable for solving 

small project instances (Demeulemeester and Herroelen, 1992, Jalilvand et al., 2005) as 

they are not computationally practical for large ones. Heuristic methods can find near-

optimal solutions at an acceptable computational cost. However, they do not guarantee 

optimal results (Abdolshah, 2014). Meta-heuristics are an appealing choice for 

implementation in general-purpose software as they can be easily adapted to a particular 

problem (Ólafsson, 2006). However, as they have many drawbacks, improving the 

performances of existing ones or developing new ones appears to be necessary. Of all 

methods, the hybrid algorithms show a very promising performance while dealing with 

RCPSPs; however, their actual capabilities have not yet been fully explored.  
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Moreover, many GAs and DE have been introduced for solving RCPSPs. However, GA 

was able to achieve good results, it had a tendency to converge towards local optima or 

even arbitrary points rather than the global optimum of the problem. Also, the performance 

of DE deteriorated as the dimensionality of the search space increased (Das et al., 2009) 

and although DE was good at exploring the search space, it was slow at exploiting the 

solution (Noman and Iba, 2008). 

Furthermore, no single algorithm has been yet able to solve a wide range of optimization 

problems with consistent quality (Elsayed, 2012). Although the idea of multi-method has 

been emerged to tackle this drawback, it has not been adopted to solve RCPSPs. This 

indeed needs further work to carefully and efficiently design a multi-method framework. 

Similar ideas, such as hybrid approaches, have been proposed to deal with this drawback, 

but they still need further research, as their performance is still not good enough.  

Therefore, all of these issues encourage the development of more efficient algorithms for 

solving RCPSPs. 

1.4 Objectives of this thesis 

As the above are significant gaps in the literature, the development of new algorithms 

that could solve a wide range of test problems in a reasonable time with good-quality 

solutions would be valuable. 

This research investigates the use of GA and DE to solve RCPSPs. Its overall objective 

is to study, construct and apply an improved GA and DE to obtain solutions of high quality 

in a reasonable time for RCPSPs, and then develop an appropriate ensemble of them for 

solving RCPSPs with good quality solutions and less computational time. 

  In order to accomplish this primary objective, several sub-objectives are to:  

 Carry out literature review in project scheduling in general and RCPSPs 

specifically in order to comprehend the difficulties of these problems, and to 

review relevant methodologies that researchers have developed to handle them 

(Chapter 2);  

http://en.wikipedia.org/wiki/Local_optimum
http://en.wikipedia.org/wiki/Global_optimum
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 develop a heuristic repairing method for improving the feasibility of individuals 

in the initial population for a RCPSP and study its effect on the performances of 

GA and DE (Chapter 3);  

 improve the performance of GA by designing a new memetic algorithm (MA) 

(Chapter 3); 

 enhance the performance of existing DE algorithms by proposing a new DE 

algorithm by enhancing its mutation and crossover operators (Chapter 4); 

 develop a bi-evolutionary algorithm (bi-EA) that incorporates the heuristic 

repairing method with GA and DE (Chapter 5);  

 analyze the effects of the different parameters used in the proposed algorithms 

(Chapter 5); 

 carry out a systematic experimental study of MA, DE and bi-EA for RCPSPs;  

 validate the performances of the proposed algorithms by comparing them with 

those of each other and state-of-the-art algorithms. 

1.5 Contribution to scientific knowledge 

Most of the exploratory investigation in this research is conducted using well-known 

benchmark RCPSP instances, based on which the performances of different algorithms, 

including the MA, DE and bi-EA developed in this study, are examined. 

The following are the scientific contributions from this research. 

 An experimental analysis of the suitability of a GA for RCPSPs is conducted. From 

its results, it can be concluded that a traditional GA with simple crossover and 

mutation operators and without any local search (LS) strategies is able to produce 

good solutions for small scale instances, but its performance is not that good when 

the size of the instances is increased. A new multiple LS strategy included in GA 

helps to improve the solutions with reasonable computational expenses.  

 

 A new repairing method proposed for GA is basically a heuristic strategy that 

enhances the probability of individuals in the initial population being feasible. 
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 A MA that integrates the multi-LS and heuristic repairing technique with a standard 

GA is proposed. It is capable of generating some of the best-quality solutions for the 

benchmark RCPSPs used in the experimental study.  

 

 An enhanced DE algorithm that incorporates improved DE operators and the 

proposed repairing method is presented. It has proved to generate good solutions 

across all standard benchmark instances. 

 

 A new algorithm that utilizes the power of two EAs (GA and DE) is developed. An 

adaptive mechanism is used to emphasize the best-performing EAs, and heuristic 

repairing methods proposed to enhance individuals’ feasibility in both the initial 

population and generated population in each iteration. This new algorithm improves 

solutions for RCPSPs in terms of both solution quality and computational time.   

1.6 Organization of thesis 

 This thesis consists of the following six chapters. 

 Chapter 1: Introduction 

 Chapter 2: Literature Review 

 Chapter 3: Genetic Algorithm for RCPSP 

 Chapter 4: Differential Evolution for RCPSP 

 Chapter 5: Bi-evolutionary Algorithm for RCPSP  

 Chapter 6: Conclusions and Future Research Directions 

 

In Chapter 1, an introduction to this research, which includes the background, 

motivation, objectives and highlights some of its scientific contributions, is presented.  

Chapter 2 provides a review and analysis of the basic fundamentals of the topics covered 

in this thesis. Firstly, it introduces project scheduling and RCPSPs. Then, a survey and 

analysis of the different methodologies proposed in the literature for RCPSPs are discussed. 
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Finally, reviews of some exact, heuristic and meta-heuristic techniques, such as particle 

swarm optimization (PSO), GAs, DE, evolution strategy (ES) and evolutionary 

programming (EP), are presented. 

 In Chapter 3, descriptions of the PSPLIB benchmark problems, and the general 

framework of the proposed MA and its different components used in this study are 

provided. Detailed results obtained from the MA are then presented, along with 

comparisons of its performance with those of the branch and bound technique and state-of-

the-art algorithms. The effects of its different components on its performance are also 

discussed.  

Chapter 4 provides the general framework of the improved DE algorithm and its 

different components. The experimental results obtained by solving different sets of 

RCPSPs are reported and analyzed and then compared with those from the proposed MA 

and some state-of-the-art algorithms. The effects of different components on the 

performance of the proposed algorithm are also studied.  

In Chapter 5, the general framework of bi-EA, that is, the ensemble of the proposed MA 

and DE is shown and its different components are explained. Then, the proposed algorithm 

is conducted and analyzed by using it to solve all sets of RCPSPs in the PSPLIB. The 

effects of its components are discussed and a comparison of its performance with those of 

proposed MA, DE and other state-of-the-art algorithms is provided. 

Finally, Chapter 6 concludes the research of this thesis by summarizing its significant 

technical contributions in the domain of RCPSP research produced during this study and 

the major conclusions that can be drawn from the experiments conducted. Also, some 

conceivable directions for further research are also suggested.  
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Chapter 2                                                           

Literature Review 

This chapter provides an overview of the basic fundamentals of the topics covered in 

this thesis. It begins with a brief description of project scheduling and its importance in 

real-world applications. Then, resource-constrained project scheduling problems (RCPSPs) 

are introduced and the efforts spent to solve them are reviewed. Also, descriptions of 

different exact, heuristic and meta-heuristic techniques are provided, followed by a detailed 

description of the genetic algorithm (GA) and differential evolution (DE) algorithm. 

Finally, a review of different hybrid algorithms applied to solve RCPSPs is presented. 

2.1 Project Scheduling 

   Scheduling is one of the most common optimization problems which can be characterized 

as the allocation of resources to a set of activities restricted by a set of pre-defined 

constraints. In our daily life, the scheduling or allocation of activities is often complex and 

becomes extremely challenging when resources, such as time, budget and/or manpower, are 

limited. Effective scheduling is significant for different real-world problems and essential 

for the growth of activities in several fields, such as: 

 production and project scheduling (De Carvalho and Haddad, 2012, Giffler and 

Thompson, 1960, Bierwirth and Mattfeld, 1999); 

 robotic cell scheduling (Hall et al., 1998, Dawande et al., 2005); 

 computer processor scheduling (Shan and Murphy, 1994, Błażewicz et al., 2013); 

 timetabling (course and classroom scheduling) (Fang, 1994, Salman and 

Hamdan, 2012); 
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 personnel scheduling for assembly lines (Sabar et al., 2012, Brucker et al., 2011); 

and 

 railway scheduling (Tian and Demeulemeester, 2013, Espinosa-Aranda et al., 

2015).  

However, constructing the optimal schedule is a very difficult task due to the highly 

constrained nature of scheduling problems. Moreover, due to the nature of problems, 

certain special constraints may be required in one particular instance and differ in another. 

Therefore, a general algorithm may not be suitable for all problems. 

As RCPSPs are an important topic in both academic and practical fields, they are our 

focus in this thesis and described in more detail below.  

2.2 Resource-constrained Project Scheduling 

In a RCPSP, activities are characterized by their durations, resource utilization and 

relationships among their successor and predecessor activities (De Nijs, 2013).  

In a typical RCPSP, the objective is to schedule all the activities in a project to minimize 

the total duration of the project (makespan) while satisfying the activities’ precedence 

relationships and resource availability constraints. For a single project, let 𝑛 be the number 

of activities to be scheduled, 𝑅𝑘 the number of available resources of type k to be allocated, 

𝑑𝑗 the duration of the 𝑗 activity and 𝑟𝑗𝑘 the number of resources (𝑘) required by that 

activity.  

In general, the activities in a project are represented by the set 𝑃 = {𝑎0, 𝑎1, … , 𝑎𝑛, 𝑎𝑛+1}, 

where activities 𝑎0 and 𝑎𝑛+1 are dummy ones used to indicate only the start and end of the 

project, respectively. Dummy activities have special values for their durations and resource 

usage, i.e., 𝑑0 = 𝑑𝑛+1 = 0 and 𝑟0,𝑘  =  𝑟𝑛+1,𝑘  =  0, ∀ 𝑘 ∈ 𝐾. The set of non-dummy 

activities (actual activities) is represented by 𝐴 = {𝑎1, … , 𝑎𝑛}, the set of resources by 

0,1, … , 𝑟 and 𝑃𝑅𝐸𝑗  denotes the set of predecessor activities of any activity (𝑗).  

Generally, two types of resources are used by the activities in any project: renewable 

resources, such as manpower and machines, which are available at their full capacity in 
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every period of time and can be used repeatedly as they are free for use again once an 

activity is finished; and non-renewable resources, such as a project’s budget which, in 

contrast, have limited capacities and are available for use at only one time (Hartmann and 

Briskorn, 2010). 

 

In traditional RCPSPs, the following assumptions are made (Krichen and Chaouachi, 

2015):  

 

 a single project consists of a number of activities with known durations; 

 the precedence relationships among the activities are known; 

 the starting time of an activity depends on the completion times of its preceding 

activities;  

 renewable resources are available in limited quantities;  

 the activities in progress cannot be interrupted and there is only one execution mode 

for each activity; and 

 the objective is to minimize the project’s duration.  

 

In a RCPSP, a candidate solution is defined as feasible if it satisfies the following two 

main constraints. 

 

1) Precedence constraints or predecessor-successor relationships: these are used to 

prevent each activity (𝑗) from starting before the completion of its predecessors 

(𝑃𝑅𝐸𝑗). 

2) Resource limitations: the total resources allocated to all activities in a certain period 

of time must not exceed the limit for that period. 
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2.2.1 Mathematical Model of RCPSP  

The mathematical model of a RCPSP is (Christofides et al., 1987, Kolisch and 

Hartmann, 1999): 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒    𝐹𝑛 (2.1) 

Subject to:  

𝐹𝑗  ≤  𝐹𝑗+1  − 𝑑𝑗+1,           𝑗 = 1, … , 𝑛 (2.2) 

∑ 𝑟𝑗.𝑘  ≤  𝑅𝑘 ,                  𝑘 ∈ 𝐾 ; 𝑡 ≥ 0

𝑗∈𝐴(𝑡)

 
(2.3) 

𝐹𝑗   ≥  0,                              𝑗 = 1, … , 𝑛 (2.4) 

In equation (2.1), the objective function, which aims to minimize the completion time of 

the entire project by reducing the finishing time of the last activity (𝐹𝑛), is presented. The 

first constraint (2.2) ensures that none of the precedence constraints are violated and the 

second (2.3) that the amount of non-renewable resources (𝑘) used by all activities does not 

exceed its availability (𝑅𝑘) at any time (𝑡), with 𝐴(𝑡) a set of ongoing activities at 𝑡. The 

last constraint ensures that the finishing times of all activities are non-negative.  

 

An example of a RCPSP with 13 activities, including 11 executable ones, and their 

durations (𝑑𝑗  ∀ 𝑗 = 0,1, … ,12 ) and resource requirements (𝑟𝑗,𝑘) is illustrated in Table 2.1.  

 

𝑃𝑗 𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7 𝑎8 𝑎9 𝑎10 𝑎11 𝑎12 

𝑑𝑗 0 1 4 2 4 2 4 1 1 3 1 1 0 

𝑟𝑗,𝑘 0 5 4 1 3 2 4 1 1 4 1 5 0 

 

Table 2.1: Example of project with 13 activities 
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Considering one resource (k = 1) with 𝑅𝑘 = 5, the predecessor-successor relationships 

between activities in the project are presented as an activity-on-node graph in Figure 2.1. In 

Figure 2.2, the optimal schedule of the problem, that is, the best order of activities for 

minimizing the makespan of the project subject to the given constraints, is presented. In it, 

the x-axis represents the time, the 𝑦-axis the amount of resources utilized at any time and 

the number inside each box the activity number. 

 

Figure 2.1: Activity-on-node graph 

 

 

Figure 2.2: Optimal schedule of activities  

2.2.2 Complexity of RCPSP 

Many algorithms for solving scheduling problems have been introduced. Some have 

been capable of solving instances with thousands of activities/jobs; for example, the 

shortest processing time (SPT) priority rule is used to reduce the mean flow time, which is 

the total time required for a job to be finished, in a single-machine scheduling problem. 

However, small scheduling problems, such as coping with a few jobs and, sometimes, 
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medium-sized ones, can only be solved using the best existing algorithms (Herroelen and 

Demeulemeester, 1994). Indeed, developing an applicable and profitable scheduling of 

activities can be an extremely difficult task for the following reasons.  

Firstly, in terms of computational complexity, most scheduling problems can be placed 

in the class of computationally NP-hard problems which implies that there is an unknown 

general deterministic polynomial algorithm for solving them (Blazewicz et al., 1983). 

Moreover, a RCPSP is considered an intractable combinatorial problem according to the 

computational complexity theory (Garey and Johnson, 1979) which states that an 

optimization problem is NP-hard in a strong sense if its decision version is NP-complete. 

The decision variant of a RCPSP with a single resource and no precedence constraints have 

been proven to be NP-complete in strong cases by (Garey and Johnson, 1975).  

Secondly, in real terms, every project has its own arrangement of scheduling constraints 

that need to be imposed. Also, it has its own interpretation of what is a feasible (applicable) 

and workable schedule which implies that an algorithm which is thought to be effective for 

one specific occurrence of a scheduling problem may not be suitable for others.   

Due to the complexity of RCPSPs, the classical optimization-based approaches, such as 

integer programming with branch and bound (B&B) algorithms, are unable to solve large 

problems within a reasonable computational time. Therefore, heuristic algorithms have 

been essential for solving them. Although heuristic and meta-heuristic techniques produce 

solutions within a reasonable time limit, further research is required to improve their 

effectiveness and efficiency (Michalewicz, 1996, Widmer et al., 2010). 

2.2.3 Solution approaches 

As previously mentioned, RCPSPs belong to the class of NP-hard problems. Therefore, 

as a manual-based solution technique is inadequate for them, by all accounts, modified 

programming approaches are appealing alternatives.  

A wide variety of strategies for comprehending RCPSPs has been proposed dating from 

1959 when the first scheduling problem was introduced (Kelley Jr and Walker, 1959). 

There is no definitive means of sorting these strategies as, in the literature, the same 
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technique is categorized in different groups. This thesis surveys the three classifications of 

strategies which deal with RCPSP problems, exact, heuristic and meta-heuristic methods.  

Many exact methods for solving RCPSPs have been proposed. However, it can be 

concluded from the literature that they are applicable for only small project instances 

(Demeulemeester and Herroelen, 1992, Jalilvand et al., 2005). Since 1963, when serial and 

parallel schedule generation schemes (SGSs) were introduced (Kelley, 1963), a large 

number of heuristic approaches has been developed. Also, several meta-heuristic 

procedures, which are the last generation of heuristic methods, have been introduced during 

the last 20 years. 

Traditional exact methods (i.e., linear and integer programming, B&B algorithms and 

dynamic programming) enable the finding of optimal solutions. However, in most cases, 

they are time consuming, particularly when solving large problems, such as ones with 

numerous dimensions, complicated constraints, multiple modes or uncertainty 

(Demeulemeester and Herroelen, 1992, Jalilvand et al., 2005, Patterson, 1984a). 

Heuristic and meta-heuristic approaches are powerful and flexible search mechanisms 

that have successfully solved complex problems. Their algorithms aim to obtain good-

quality solutions in reasonable computational times and are suitable for practical problems 

which often have large dimensions and very complex constraints (Das and Acharyya, 

2011a, Kolisch and Hartmann, 1999). 

In the following sections, an overview of exact methods for RCPSPs and a brief survey 

of heuristic ones, starting with SGSs which are basically used to construct feasible 

solutions, are discussed. Finally, detailed explanations of some meta-heuristic approaches, 

such as GAs and DE, which are the core of this research, are provided. 

2.3 Exact Methods 

Initially, simple models with exact methods that are guaranteed to find optimal solutions 

for small-scale problems were used to solve RCPSPs. However, as their computational 

complexity increased significantly, they typically became impractical for problems of 
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significant sizes or with large sets of constraints. Some of these methods are described 

below. 

2.3.1 CPM and PERT 

The critical path method (CPM) (Kelley Jr and Walker, 1959) and program evaluation 

and review technique (PERT) (Malcolm et al., 1959) are considered two of the most 

effective and widely used techniques for solving scheduling problems. The main 

differences between them are discussed in the following.  

The CPM is used in projects with expectable activities, such as construction ones and, 

when a trade-off is required, it allows project managers to choose which aspect of the 

project to reduce or increase. Moreover, it is a deterministic tool which provides estimates 

of the cost and time required to complete the project. 

On the other hand, the PERT is used in projects that have activities of uncertain 

durations such as research/development ones. It employs three estimates of both the cost 

and time required to complete the project: the optimistic value (O), pessimistic value (P) 

and most likely value (M). It is a probabilistic tool that utilizes several estimates to 

determine the completion time of a project and manage the activities involved in order to 

complete them in a faster time and at a lower cost. 

In general, the CPM is suitable for conventional projects with specific durations of 

activities while, for projects that require long periods of time to be completed and for which 

it is difficult to estimate the durations of their activities, such as research, the PERT is 

appropriate. 

Both the CPM and PERT are committed to minimizing the makespan of a scheduled 

project based on two critical assumptions. The first is that the required resources are 

accessible in sufficient amounts and the second that the precedence constraints between any 

pair of activities, such as  𝑎𝑚 and 𝑎𝑛, denote that activity 𝑎𝑚 must be finished before 

activity 𝑎𝑛 can start. Therefore, as the CPM and PERT provide only a resource-

unconstrained schedule for a set of precedence-constrained activities with deterministic 

durations and give the shortest possible critical path time assuming that the resources are 
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infinite, they provide only an approximate estimate of the difficulty of executing a 

schedule.  

Over the years, the assumption of sufficiently accessible resources and particularly the 

strict precedence assumption of the CPM and PERT have been relaxed, with many research 

efforts coordinated towards project scheduling with explicit consideration of resource 

requirements and precedence constraints. Therefore, dynamic variations (Blazewicz et al., 

1983) and stochastic variations (Neumann, 1990) have also been developed in an attempt to 

make the CPM and PERT inclusive/natural of assumptions similar to reality, with strategies 

incorporating probabilistic evaluations of activity durations. 

2.3.2 Integer and linear programming-based methods 

Integer programming and linear programming (IP/LP) are complete mathematical 

methods which are mainly used separately without including other approaches (Garfinkel 

and Nemhauser, 1972). Using the traditional IP/LP structure, early research concentrated 

mainly on formulating scheduling problems and solving them as mathematical, mostly 0–1 

IP/LP, problems.  

IP/LP-based methods which use the IP formulation originally proposed by Pritsker et al. 

(1969) have also been used by Og̃Uz and Bala (1994). Patterson (1984b) presented an 

overview of optimal solution methods for project scheduling and Berthold et al. (Berthold 

et al., 2010, Koné et al., 2013, Damay et al., 2007) the generalization of two existing 

mixed-integer LP models for the classical RCPSP as well as a novel formulation based on 

the concept of an event.  

Although there are many different models for IP/LP, they are conceptually similar. In 

them, a large number of binary variables is necessary, with this number growing very 

quickly for large problems which renders them impractical for those of realistic sizes. 

In general, exact methods rely on attributes of the objective function and specific 

constraint formulations. As Davis (1991) noted, many of the constraints commonly found 

in real scheduling problems do not lend themselves well to traditional operations research 
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or mathematical programming techniques. Also, as LP formulations typically do not scale 

well, they can be used for only specific instances or small problems. 

In the dynamic programming approach described by Held and Karp (1962), an optimal 

schedule is progressively developed by constructing one for any two tasks and then 

extending it by adding tasks until all the tasks are scheduled. 

2.3.3 Branch and bound (B&B) algorithms 

B&B algorithms are used to explore the search space by constructing a search tree in 

which each node is either a branch or leaf. When a leaf node is reached, feasible solutions 

may be found and this node cannot be partitioned or expanded. The search space of a 

branch node is divided into subsets according to calculations of its lower and upper bounds, 

and sometimes time-bound adjustments, which is called branching. B&B representations of 

tree and search spaces are illustrated in Figures 2.3 and 2.4, respectively. 

 

Figure  2.3: Representation of B&B tree space 
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Figure  2.4: Representation of B&B search space 

The B&B-based algorithms introduced in Demeulemeester and Herroelen (1992) and 

Jalilvand et al. (2005) were able to find optimal solutions but their computational 

complexity increased significantly with increasing numbers of activities. Conversely, there 

are algorithms that can find good solutions for a problem in a reasonable time, such as 

priority scheduling (Li et al., 1997) and greedy-based (Lupetti and Zagorodnov, 2006) 

algorithms, but their shortcoming is their inability to satisfy all constraints. Cheng and Wu 

(2006) constructed a project scheduling model which includes a time constraint and 

presented a hybrid algorithm combining a B&B procedure and heuristic. Their simulation 

results demonstrated that the optimization effect of this algorithm was better than those of 

other algorithms. 

2.4 Heuristics  

The term heuristic is used for methods which find solutions from among all possible 

ones (Gigerenzer and Gaissmaier, 2011) but offer no guarantee of finding the optimal 

solution. Usually, as heuristics are capable of providing a near-optimal solution, they can be 
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considered approximate algorithms. Typically, they are computationally efficient and 

require much less time and, in many cases, less space than exact methods.  

There are the following two broad categories of search-based heuristics. 

1. Constructive heuristics (single-pass): in such methods, priorities are assigned to the 

activities or tasks which are ordered and then scheduled sequentially. These priority 

values can be assigned statically prior to scheduling or adjusted dynamically during 

the scheduling procedure (Palpant et al., 2004). Also, different heuristics can be 

combined in the hope of achieving better performances. 

 

2. Improvement heuristics (multi-pass): in these techniques, a heuristic is applied 

repeatedly until no further improvement is possible. Improvement algorithms are 

heuristics that generally start with a feasible solution and repeatedly try to achieve a 

better one (Agarwal et al., 2006). 

In order to construct a feasible solution,  Kelley (1963) proposed a SGS which 

encouraged several research efforts to introduce many heuristics.    

2.4.1 Schedule generation scheme (SGS) 

Both serial and parallel SGSs are used to generate a feasible schedule by expanding a 

partial schedule (one with a subset of activities assigned a finishing time). In each stage, 

the generation scheme forms all activities into two sets, those to be scheduled (a decision 

set) and those already scheduled (a scheduled set). Subsequently, one or more activities are 

chosen from the decision set to be scheduled. Both these schemes for project scheduling 

with minimum time lags have been discussed by Kolisch (1996b) and Brucker et al. (1999). 

They reported that the serial method has been shown to be better than the parallel one in 

terms of performance. Both serial and parallel SGS are briefly described below. 

2.4.1.1 Serial schedule generation (SSG) 

SSG was proposed by Kelley (1963), as cited by Kolisch (1996b). It consists of 𝑒 =

1, … , 𝑌 stages with one activity selected and scheduled in each stage in which there are two 

separate sets, the scheduled set (𝑆𝑒) and decision set (𝐷𝑒). The former set contains the 
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activities already scheduled and, thus, belonging to the partial schedule, and the latter the 

unscheduled activities with every predecessor in the scheduled set. In each stage, one 

activity from the decision set is selected and scheduled at its earliest precedence and 

resource-feasible starting time. Then, it is placed in the scheduled set (𝑆𝑒) and removed 

from the decision set (𝐷𝑒). It is also possible that a number of activities move in parallel 

from the 𝐷𝑒 to 𝑆𝑒 set since all their predecessors are now scheduled. The algorithm 

terminates after the final stage equal 𝑌, when all the activities are in the scheduled set (𝑆𝑒). 

2.4.1.2 Parallel schedule generation (PSG) 

A PSG scheme iterates over the scheduled time (𝑡𝑒) of a project instead of selecting 

activities one-by-one and scheduling them as soon as possible. In each iteration, the 

activities eligible to be scheduled are added to the scheduled activities set providing 

sufficient resources are available. For clarification, at each time point (𝑡𝑒), this scheme 

selects activities which are eligible to be scheduled and, then according to the priority list, it 

assigns them scheduling sequences. Then, if there is no resource conflict, the selected 

activities are scheduled with starting times equal to the first time point (𝑡1). At the next time 

point (𝑡2), which is equal to the earliest finishing time of all the currently active activities, 

the activities not eligible to be scheduled due to a resource conflict at 𝑡1 become eligible 

and the process is repeated till all activities are scheduled.  

2.4.2 Priority rule-based scheduling methods 

The first heuristic methods for scheduling were based on priority rules (Kelley, 1963, 

Brucker et al., 1999), several of which have been introduced, experimentally tested and 

compared in terms of their effectiveness relative to one another and an optimal solution 

(Boctor, 1990, Davis and Patterson, 1975, Patterson, 1976, Thesen, 1976). Because of their 

easy implementation and low time complexity, in practice, priority-based heuristics are the 

most widely applied for solving scheduling problems. However, the main problem is 

finding an efficient priority rule. The common basis of all priority rule-based heuristics can 

be gathered from the algorithms of (Giffler and Thompson, 1960) and (Storer et al., 1992). 
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An overall discussion and summary of priority-dispatching rules are provided in Panwalkar 

and Iskander (1977), Blackstone et al. (1982) and Haupt (1989). 

In order to construct a priority rule-based algorithm, a combination of priority rules and 

SGSs is required. The resultant heuristic method one of two types, that is, single or multiple 

pass. 

Single pass: this method generates a single schedule and, during this process, employs 

one SGS and one priority rule to produce a single feasible solution. Several examples of 

such methods can be found in (Thesen, 1976, Whitehouse and Brown, 1979, Lawrence, 

1985). 

Multiple pass: these techniques generate more than one schedule, with combinations of 

priority rules and SGSs possibly occurring in several scenarios. The most common are the 

multi-priority rule, forward-backward scheduling and sampling.  

In the multi-priority rule, a SGS is used many times with different priority rules each 

time. Kurtulus and Narula (1985) applied 10 different scheduling rules in order to measure 

their performances. Kolisch (1996a) introduced an improved RSM (resource scheduling 

method) priority rule and developed two new priority rules which extended the precedence-

based minimum slack priority rule (MSLK) to precedence- and resource-based slack 

priority rules. Also, Boctor (1990) employed seven different scheduling rules in his 

suggested multi-heuristic procedures using both parallel and serial rules. 

   Forward-backward scheduling is an iterative scheduling technique aimed at minimizing 

the project duration by reducing the project resources, an idea introduced by Li and Willis 

(1992). In it, one SGS is applied iteratively to schedule the project by switching between 

forward and backward scheduling. Applications of such methods can be found in  Özdamar 

and Ulusoy (1996). 

The sampling approach employs one SGS and one priority rule is selected randomly 

according to a computed selection probability, with the bias in the selection of the priority 

rules generating different schedules. Kolisch (1996b) distinguished among random 

sampling, biased random sampling and regret-based biased random sampling based on the 

method used to compute the selection probability.     
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2.4.3 Neighborhood search (NS) 

NS or local search algorithms belong to a broad class of improvement algorithms. The 

NS is a technique aimed at finding a good or near-optimal solution starting from an initial 

given point in the solution space. It repeatedly tries to improve the current point by looking 

for better ones within the neighborhood points of the current solution/point. Once a better 

solution is found, it is used as the new starting point, with this process repeated until no 

better solution than the current one can be found. Then, the current solution/point is 

adopted as the best solution (Fleszar and Hindi, 2004). 

  The large-scale NS is an algorithm for use in large spaces that include more 

neighborhoods. In their survey, Ahuja et al. (2002) reported that, although the quality of the 

locally optimal solutions and accuracy of the final solutions were improved by using a 

larger-sized neighborhood, it took longer to search such a neighborhood in each generation. 

2.5 Meta-heuristic Methods 

Meta-heuristic methods commonly begin with random solutions and no assumptions 

about the problem being optimized, and can search very large spaces of candidate solutions.  

Blum and Roli (2003) summarized the basic characteristic of meta-heuristics as 

strategies that guide the search process with the aim of efficiently exploring it to find 

optimal or near-optimal solutions. Meta-heuristic-based algorithms range from simple local 

search methods to complex learning processes and may integrate procedures to avoid 

becoming trapped in local solutions in the search space. 

As meta-heuristics can be easily adapted to a particular problem or problem class with 

much less effort than heuristics, they are an appealing choice for implementation in 

general-purpose software (Ólafsson, 2006). Also, a good meta-heuristic design is likely to 

obtain near-optimal solutions in reasonable computation times (Ólafsson, 2006). 

However, the many drawbacks of using meta-heuristics can be summarized as (Beheshti 

and Shamsuddin, 2013):  
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- becoming trapping in local optima; 

- requiring long computational times; 

- having slow convergence speeds; 

- needing to tune multiple search parameters; 

- consisting of difficult encoding schemes; and 

- providing no guarantee that the best solution found will be the optimal one. 

Therefore, improving the performances of existing meta-heuristics or even proposing 

new ones seems to be an important research task. 

According to (Blum and Roli, 2003), meta-heuristics can be divided into trajectory and 

population-based methods. Examples of trajectory methods are simulated annealing (SA) 

(Cho and Kim, 1997, Das and Acharyya, 2011b) and the tabu search (TS) (Lee and Kim, 

1996), and of population-based ones, evolutionary algorithms (EA) such as a GA (Toklu, 

2002) and DE (Damak et al., 2009), and swarm intelligent algorithms such as ant-colony 

optimization (ACO) (Dorigo, 1992) and particle swarm optimization (PSO) (Kennedy, 

2010). In the following sub-sections, the above mentioned algorithms are described. 

2.5.1 Trajectory methods 

The term trajectory is used for methods that work on a single solution at any time (not 

a population of solutions) and adopt local search-based meta-heuristics. In such an 

approach, the algorithm starts from an initial point/solution and, as the search process it 

follows can be described by a trajectory in the search space (Blum and Roli, 2003), the next 

better solution may or may not be one of the current solution neighborhoods. 

2.5.1.1 Simulated annealing (SA) 

The SA algorithm was initially inspired by annealing in the minerals industry which 

encompasses two processes: heating a metal to modify its physical properties by changing 

its internal structure; and cooling it to fix its new structure. In SA, the heating process is 

simulated by a variable temperature (𝑡) initially set to be high and then progressively 

reduced. As, in reality, when 𝑡 is high, the algorithm can accept any new solution even if it 

is worse than the current one (change the physical properties), hence its early trapping in 
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any local optimum is avoided and then as it runs, both 𝑡 and the chances of accepting worse 

solutions are reduced. Using this mechanism, the algorithm begins with large capabilities to 

explore the entire search space and then focuses on the exploitation process in the final 

phases, with the aim of effectively finding optimal or near-optimal solutions, especially 

when dealing with large instances (Aerts and Heuvelink, 2002). 

Boctor (1996) solved non-pre-emptive RCPSPs using a new adaptation of SA in which 

the initial solution was obtained using a heuristic scheduling technique. Then, SA was 

applied with reheating and a variable cooling rate which protected the algorithm from 

becoming stuck in a local optimum solution by intensifying the search process in the 

neighborhood of this optimum. This algorithm was able to handle single- and multi-modal 

instances and optimize multiple objective functions. Cho and Kim (1997) proposed a SA 

using priority rules in which a solution was represented by a vector of numbers called a 

priority list with each number denoting the priority of each activity to be scheduled. Then, a 

priority scheduling method was applied to construct a schedule using the given priority list. 

This algorithm allowed some activities to be delayed with the aim of extending the search 

space so that solutions could be further improved. The results demonstrated that it achieved 

good performances compared with those of some other heuristic techniques.  

Józefowska et al. (2001) used a SA approach to solve multi-modal RCPSPs. Their 

algorithm was implemented based on a precedence-feasible list of activities and modal 

assignment. They considered SA with and without a penalty function and three different 

neighborhood generation mechanisms applied to both versions. According to their results, 

the version of SA with the penalty function performed better and, moreover, the proposed 

algorithm showed an improved performance for large problems.  

2.5.1.2 Tabu search (TS) 

Classical local search methods set a candidate solution for a problem and begin to 

explore its neighbors to find better ones and, in most cases, become trapped in a local 

optimum solution. The idea of the TS was initiated by (Glover, 1989, Glover, 1990a) as a 

technique for solving combinatorial optimization problems (Icmeli and Erenguc, 1994) 

which could improve the performances of local search methods by directing the search 
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away from local optima through accepting worse solutions if no improved ones were 

available.  

A TS starts with an initial solution which may be feasible or infeasible. Then, its 

neighboring points are explored using a suitable local search that aims to find a better 

solution, after which the previously best solution moves from the current solution to its 

better neighbor solution. The movement from one point/solution to another is retained in 

some sort of tabu status and, if no improvement is achieved, which means that the search is 

stuck in a local solution, TS does not allow movement back to the visited points for a 

certain number of iterations. Therefore, it avoids cycling but, if a better solution is found, 

the best solution will move to such a point regardless of its tabu status. This cycle 

continuing until some pre-defined stopping criteria are satisfied (Glover, 1990b). Thomas 

and Salhi (1998) introduced an enhanced TS technique that uses well-defined move 

strategies and a structured neighborhood search while defining a suitable tabu status.  

2.5.2 Population-based methods 

Population-based or evolutionary computation (EC) methods have been utilized to solve 

complex optimization problems. In them, a population of solutions rather than a single 

vector of decision variables is used. As they are direct search methods which have no 

assumptions about the problem being optimized and can search very large spaces of 

candidate solutions, they appear to be effective tools for the optimization of management 

schedules (Pukkala, 2009). 

2.5.2.1 Swarm intelligence (SI) algorithms 

The expression SI was introduced by Beni and Wang (1993) in the context of cellular 

robotic systems. It can be described as the collective behavior emerging from the processes 

of social insects acting subject to very few rules, with self-organization the main feature for 

agents interacting within limitations (Kennedy et al., 2001). In other words, a SI system 

consists of a population of agents interacting locally with one another and their 

environment. Several examples of SI were inspired by the world of animals, such as flocks 

of birds, schools of fish and colonies of ants. Since more information is gathered from the 

https://en.wikipedia.org/wiki/Intelligent_agent
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whole swarm by social interactions among the agents, the environment or search space can 

be explored more efficiently. Ant colony optimization (ACO) and PSO, which are 

examples of IS algorithms, are discussed in the following sub-sections. 

A. Ant colony optimization (ACO) 

ACO was introduced by Dorigo (1992) and Dorigo et al. (1996) as a novel nature-

inspired meta-heuristic for solving hard combinatorial optimization problems. As it is an 

approximate algorithm used to obtain good solutions to complicated optimization problems 

in a reasonable amount of computational time, it is included in the class of meta-heuristics 

(Blum and Roli, 2003).    

ACO simulates the behavior of ants in the search for sustenance exhibited when they 

attempt to find the shortest paths between their nests and food sources (Deneubourg et al., 

1990). Initially, they walk randomly along different paths looking for good food sources 

(solutions) and a special substance called pheromone produced by the explorer ant is 

deposited on the paths explored to guide others. The concentration of pheromone indicates 

the direction to be taken; the stronger the concentration, the higher the probability that the 

ants will follow this path. The framework of a basic ACO algorithm is given in (Dorigo 

and Blum, 2005). 

ACO is an iterative distributed algorithm. In each generation, a set of artificial ants/agents 

constructs solutions by walking from vertex to vertex, with each agent not allowed to 

revisit any vertex during its walk. An ant selects an initial solution (𝑖) and then chooses the 

successor vertex (𝑣) to be visited according to a stochastic technique built on the basis of 

the pheromone. If 𝑣 has not been visited before, the probability of selecting 𝑣 depends on 

the pheromone associated with edge (𝑖,𝑣) which is the path between 𝑖 and 𝑣. To improve 

the quality of solutions produced by ACO over iterations, at the end of each iteration, the 

pheromone values are altered based on the quality of solutions constructed so far to bias the 

ants towards constructing similar solutions to the best ones previously constructed in future 

iterations (Dorigo et al., 1999, Yaseen and Al-Slamy, 2008). 

An ACO-based methodology for solving a multi-modal RCPSP (MRCPSP) was 

introduced by Zhang (2011). They proposed two levels of pheromones for each ant in terms 
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of the sequence and modal selection of activities for directing the algorithm’s search 

process. Based on their conclusions, this algorithm was an effective alternative 

methodology for solving a MRCPSP.  

B. Particle swarm optimization (PSO) 

PSO was inspired by the natural movements of a flock of birds and school of fish. It is 

widely used to solve optimization problems because of its easy implementation and good 

progress towards optimality (Bai, 2010). 

A PSO algorithm starts with a population of candidate solutions called particles. Each 

particle evaluates the objective function at its current location in the search space and 

searches for better solutions. The movement of each particle in the swarm through the 

search space is determined according to its best position (the history of its own current 

and best locations) or the swarm’s best position. The next iteration takes place after all 

particles have been moved. Eventually, the swarm as a whole, like a flock of birds 

collectively foraging for food, is likely to move close to an optimum value of the fitness 

function (Bai, 2010, Poli et al., 2007). 

Chen et al. (2010) proposed two rules called the ‘delay local search rule’ and 

‘bidirectional scheduling rule’ for PSO to solve scheduling problems. The former enables 

some activities to be delayed by altering the previously determined start of the processing 

time and is also capable of escaping from local solutions. The latter combines forward and 

backward scheduling to expand the search area in the solution space to obtain a potential 

optimal solution. To speed up the production of the feasible solution, in that study, a critical 

path was adopted and, based on the results obtained, the algorithm was efficient. 

2.5.2.2 Evolutionary Algorithms (EAs) 

EAs were inspired by the biological model of evolution and natural selection initiated by 

Darwin (1859) and have a long history of successfully solving RCPSPs. In the next sub-

sections, EAs, such as GAs and DE which are later used as basic techniques in this thesis, 

are discussed. 
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The basic outlines of all EAs are broadly similar in that they iteratively evolve a 

population of candidate solutions over several generations, but have some variations in the 

order of their evolutionary operations and ways of generating an initial population of 

individuals. Many encoding types, such as real-value, integer and string, can be used to 

represent each solution. Each individual is evaluated by a pre-defined fitness function 

which determines how close it is to the desired value (fitness value), with the selection 

strategy always favoring solutions with higher fitness values. Then, the concept of natural 

selection in biology is mimicked by allowing some individuals to survive from generation 

to generation according to their fitness values. New candidates (offspring) are reproduced 

by performing recombination (crossover) and/or mutation operations. In a recombination 

operator, two or more selected parents produce one or more offspring. In contrast, a 

mutation operator is applied to one individual by changing a single element in order to 

generate a modified one in the hope of maintaining diversity. Over time, the quality of the 

solutions/individuals in the population should be improved. Finally, the evolution can be 

terminated once the algorithm has found a solution that is sufficiently good. 

A. Genetic algorithms (GAs) 

A GA was first introduced by Holland (1975) and Goldberg et al. (1989) developed it as 

a computational approach for solving hard problems. It mimics the principles of biological 

evolution such that a population of candidate solutions (called individuals or phenotypes) to 

an optimization problem is evolved towards better solutions by its set of properties or genes 

(its chromosomes or genotype) being mutated and altered. As the search for better solutions 

in a GA-based approach is largely independent of context, it can be readily applied across a 

variety of situations. 

http://en.wikipedia.org/wiki/Population
http://en.wikipedia.org/wiki/Candidate_solution
http://en.wikipedia.org/wiki/Phenotype
http://en.wikipedia.org/wiki/Chromosome
http://en.wikipedia.org/wiki/Genotype
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Generate_initial_population 

Evaluate_Population() 

While not (terminating condition) do 

      Selection_population() 

      Cross_population() 

      Mutate_population() 

      Evaluate_population() 

End While 

 

Figure 2.5: General procedure for GA  

An implementation of this algorithm (Figure 2.5) begins with a random population of 

chromosomes, each of which represents a possible solution, from which a selection 

operator chooses two or more from a generation by comparing their fitness values. A 

crossover operator replaces the subsequence before a pre-determined position (usually 

selected randomly) by that after the crossover point between two parent chromosomes to 

produce the offspring depending on the value of the crossover probability (𝑝𝑐). Then, a 

mutation operator selects a random position of this chromosome and randomly modifies its 

value to a new one depending on the value of the mutation probability (𝑝𝑚) which helps to 

avoid local minima as it tries to enable new regions in the search space to be explored. 

In this section, a description of different representations of solutions, and crossover and 

mutation operators for a GA are given. 

i. Genetic representations 

To solve a problem using a GA, candidate solutions must be encoded in an appropriate 

form and, traditionally, are represented by a binary array of bits called ‘chromosomes’. 

Arrays of other types and structures can be utilized in the same way as different types of 

problems require different genetic representations/encoding, such as binary, permutation 

and real-value encodings introduced to represent individuals by Ronald (1997).   

In binary representation, every chromosome is a string of bits of 0 or 1. This encoding 

offers many possible solutions/chromosomes and has been found to be an efficient search 
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technique which avoids local optimum solutions (Haupt and Haupt, 2004). However, it is 

often not suitable for many problems, sometimes corrections must be made after crossover 

and/or mutation and also its computational cost is usually higher than those of deterministic 

optimization techniques (Haupt and Haupt, 2004); for example, Whitley et al. (1989) 

confirmed that binary representation was not considered very suitable for the traveling 

salesman problem (TSP). 

In permutation representation, every chromosome is a string of numbers representing 

numbers in a sequence. Although its encoding may be the most natural way of representing 

activity/task sequences, not all permutations of tasks in a project represent feasible 

schedules because of the existence of precedence constraints among the tasks (Golmakani 

and Namazi, 2012). It is only useful for ordering problems, such as the TSP or task 

ordering (Mohebifar, 2006). 

In real-value representation, every chromosome is represented as a string of some real 

values and it is usually used for problems in continuous domains. Haupt and Haupt (1998) 

mentioned that real-number representation in a GA is more convenient with other 

optimization algorithms so that they can be easily hybridized or combined. 

ii. Selection 

As a GA can explore a large search space, which is containing feasible solutions, strong 

individuals within the population are selected to survive longer than weak ones. The 

strength of an individual (strong/weak) is determined according to its fitness value which is 

calculated using a pre-defined fitness function. Based on this, weak individuals are 

excluded and the fittest selected to reproduce themselves by using crossover and mutation 

operators. Several selection methods/operators, such as tournament, roulette wheel, rank 

selection and elitism, are considered (Chudasama et al., 2011, Sarker et al., 2003). 

In tournament selection, an individual is selected from the population by running several 

‘competitions’ among a few individuals randomly chosen from the population, as the 

individuals with the best fitness values (the winners of each competition) selected 

for crossover (Blickle and Thiele, 1995b). In this method, the selection pressure can easily 

http://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
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be adjusted by changing the tournament size (𝑇𝑆𝑖𝑧𝑒) (i.e., if 𝑇𝑆𝑖𝑧𝑒 is large, weak 

individuals have fewer chances of being selected) (Miller et al., 1995). 

In roulette wheel selection, also called fitness proportionate selection, individuals are 

selected according to their fitness values and, as in nature, strong ones have more 

opportunities to survive than weak ones. This process is repeated until the desired number 

of individuals is obtained in a so-called mating population (Baker, 1987). 

In rank selection, individuals are sorted based on their fitness values, with 1 assigned to 

the worst and 𝑀 to the best individuals, and selection probabilities assigned to them 

according to their rankings which, in linear ranking selection, are linearly assigned (Blickle 

and Thiele, 1995a). 

In elitism, a small proportion of the fittest candidates is copied, without any changes, 

into the next generation. Using this method, a GA does not waste time re-searching 

previously explored partial solutions which, in turn, would affect its performance. 

Candidate solutions that are kept unchanged for the next generation can be selected as 

parents to produce offspring through the reproduction operators in the next generation (Ahn 

and Ramakrishna, 2003, Chudasama et al., 2011). 

iii. Crossover 

Crossover is considered the key alteration operator in a GA’s evolutionary process. It 

merges the genetic information of two individuals previously selected as parents to create 

new offspring. Several crossover operators have been proposed during the last few decades, 

with single-point, two-point (multi-point) and uniform (Michalewicz, 1992, Magalhães-

Mendes, 2013) more appropriate for discrete problems and heuristic (Wright, 1991), flat 

(Radcliffe, 1991), simulated binary (SBX) (Agrawal et al., 1995), simplex (SPX) (Tsutsui 

et al., 1999), parent-centric (PCX) (Deb et al., 2002) and triangular crossovers (Elfeky et 

al., 2008) for continuous problems. Each operator has its advantages and disadvantages 

when applied to evolutionary problems.  

In single-point crossover, two individuals are randomly selected as parents, a crossover 

point chosen uniformly at random between 1 and the chromosome length, and two new 

chromosomes created for the two parents. This crossover point divides each individual into 
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two sub-schedules (left and right) and then the right (or left) sub-schedules of the two 

individuals are swapped; for example, considering two parents (𝑃1 and 𝑃2), 𝑂𝑆1 and 𝑂𝑆2 

are the offspring produced and the crossover point occurs after the sixth bit as shown in 

Figure 2.6.  

In two-point crossover, a swapping process similar to that of single-point crossover 

occurs except that two crossover points (𝐶𝑃1 and 𝐶𝑃2) instead of one are randomly 

selected (Figure 2.7).  

 

          Crossover point  

𝑃1   =   0 0 1 1 0 0 1 1 0 0 1 1 
 

 

𝑃2   =    1 0 1 0 1 0 1 0 1 0 1 0 
 

 

𝑂𝑆1 =  0 0 1 1 0 0 1 0 1 0 1 0 
 

 

𝑂𝑆2 =  1 0 1 0 1 0 1 1 0 0 1 1 

 

Figure  2.6: Single-point crossover  

 

 

                                                              𝐶𝑃1                     𝐶𝑃2 

𝑃1    =  0 0 1 1 0 0 1 1 0 0 1 1 
 

 

𝑃2    =  1 0 1 0 1 0 1 0 1 0 1 0 
 

 

 

𝑂𝑆1 =  0 0 1 1 1 0 1 0 1 0 1 1 
 

 

𝑂𝑆2 =  1 0 1 0 0 0 1 1 0 0 1 0 

 

Figure  2.7: Two-point crossover  
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In uniform crossover, a vector of random numbers is generated and each bit/gene value 

of the first parent (𝑃1) assigned to the first offspring (𝑂𝑆1) if the corresponding random 

number of each gene (𝑅𝑛) is less than the crossover probability (𝑝𝑐) or otherwise to the 

second offspring (𝑂𝑆2). In the following example, 𝑝𝑐 is equal to 0.4. 

 

𝑷𝟏   0 0 1 1 0 0 1 1 0 0 1 1 
 

𝑷𝟐   1 0 1 0 1 0 1 0 1 0 1 0 
 

 

𝑹𝒏    0.2 0.7 0.3 0.5 0.9 0.8 0.1 0.3 0.2 0.6 0.1 0.7 
 

 

𝑶𝑺𝟏 0 0 1 0 1 0 1 1 0 0 1 0 
 

 

𝑶𝑺𝟐 1 0 1 1 0 0 1 0 1 0 1 1 

 

Figure  2.8: Uniform crossover 

iv. Mutation 

Mutation is considered a key operator that increases the diversity of the population and 

enables GAs to explore promising areas of the search space (Korejo et al., 2010). As it is a 

genetic operator, it alters a few random bits of a chromosome/individual and maintains 

genetic diversity, i.e., variations in a population’s gene pool from one generation to another, 

with the aim of preventing convergence towards a local optimum. Normally, after offspring 

are produced by recombination/crossover, mutation is applied to their variables according 

to a low probability called the mutation rate. Several types of mutation, such as flip bit, 

boundary, uniform and non-uniform, have been introduced. 

In flip bit mutation, randomly selected bits are changed (or flipped). Considering a 

modified parent (produced from crossover), the flipping of a bit involves inverting 0 to 1 

and 1 to 0 (Sivanandam and Deepa, 2007), a bit string mutation commonly used in binary 

encoding. 
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In boundary mutation, randomly selected bits are replaced by either their lower or upper 

(randomly chosen) bounds, a mutation that can be used for floating and integer bits. 

In uniform mutation, the value of the selected bit is replaced by a uniform random value 

between its upper and lower bounds pre-assigned for that bit or gene. It is used for integer 

and floating bits.  

Non-uniform mutation was proposed by Michalewicz (1996)  with the aim of reducing 

the disadvantages of random mutation in a real-coded GA. By applying a non-uniform 

mutation operator, the probability that the amount of mutation will be close to 0 in the next 

generation is increased. It performs well for problems for which a solution only needs to be 

refined during the later stages of an algorithm’s execution. 

B. Differential evolution (DE) 

Storn and Price (1997) proposed DE. In EC,  DE is a method that optimizes a problem 

by iteratively trying to improve a candidate solution. The quality of which can be measured 

by a given fitness function. DE is a stochastic population-based search technique which 

uses mutation, crossover and selection operators to guide the search to find (near-) optimal 

solutions and, among existing EAs, is considered a powerful tool for solving optimization 

problems. In it, an initial population with a pre-determined size (𝑃𝑆) is generated and then 

each individual (�⃗�𝑖), which consists of 𝑛 variables, is evolved using the three evolutionary 

operators. 

The three major operations used in the iteration phase, mutation, crossover and selection, 

are discussed in the following paragraphs. 

i. Mutation operation 

For each target vector (𝑥𝑖,𝑔), a mutant vector is generated which, in its simplest form 

(Storn and Price, 1995) is calculated as:  

�⃗�𝑖,𝑔+1 =  �⃗�𝑟1,𝑔 + 𝐹 × (�⃗�𝑟2,𝑔 −  �⃗�𝑟3,𝑔)     , 𝑟1 ≠  𝑟2 ≠  𝑟3 ≠ 𝑖 (2.5) 

 

http://en.wikipedia.org/wiki/Optimization_(mathematics)
http://en.wikipedia.org/wiki/Iterative_method
http://en.wikipedia.org/wiki/Candidate_solution
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where 𝐹 is the mutation parameter, or weighting factor, that controls the amplification of 

the differential variation (�⃗�𝑟2,𝑔 − �⃗�𝑟3,𝑔) and generally lies within the range of [0, 2] 

(Chandra and Chattopadhyay, 2012), and �⃗�𝑟1,𝑔,  �⃗�𝑟2,𝑔 , �⃗�𝑟3,𝑔 three randomly chosen vectors 

which are not equal to each other or the target vector (�⃗�𝑖,𝑔). 

This operation enables DE to explore the search space and maintain diversity. 

Depending on the way in which the mutant vectors are generated from the target ones, there 

may be different variations of DE mutation strategies. 

The mutant vector of any generation can be produced by incorporating the best target 

vector of that generation. This DE mutation scheme can be applied through DE/best/1 and 

DE/best/2 strategies, the only difference between which is the number of target vectors 

used to generate the mutant vector, as shown in equations (2.6) and (2.7), respectively (Das 

and Suganthan, 2011, Storn, 1996). 

�⃗�𝑖,𝑔+1 = �⃗�𝑏𝑒𝑠𝑡,𝑔 + 𝐹 × (�⃗�𝑟1,𝑔 −  �⃗�𝑟2,𝑔) (2.6) 

�⃗�𝑖,𝑔+1 = �⃗�𝑏𝑒𝑠𝑡,𝑔 + 𝐹 × (�⃗�𝑟1,𝑔 −  �⃗�𝑟2,𝑔) +  𝐹 × (�⃗�𝑟3,𝑔 −  �⃗�𝑟4,𝑔) (2.7) 

where �⃗�𝑏𝑒𝑠𝑡,𝑔 is the best individual vector in generation 𝑔. 

The DE/current-to-best/1 scheme involves another control parameter (𝜆) in addition to 

the weighting factor and includes the best target vector of the current generation as well as 

two different target vectors and the current one (�⃗�𝑖,𝑔) with the aim of generating a mutant 

vector for the next generation (�⃗�𝑖,𝑔+1) according to (Das et al., 2008): 

�⃗�𝑖,𝑔+1 = �⃗�𝑖,𝑔 + 𝜆 × (�⃗�𝑏𝑒𝑠𝑡,𝑔 − �⃗�𝑖,𝑔) + 𝐹 × (�⃗�𝑟1,𝑔 − �⃗�𝑟2,𝑔) (2.8) 

In DE/rand-to-best/1 (Price et al., 2005), the best and current vectors as well as two 

randomly selected target vectors are used to generate the mutant vector according to: 

�⃗�𝑖,𝑔+1 = �⃗�𝑟1,𝑔 + 𝐹 × (�⃗�𝑏𝑒𝑠𝑡,𝑔 − �⃗�𝑖,𝑔) + 𝐹 × (�⃗�𝑟1,𝑔 − �⃗�𝑟2,𝑔) (2.9)   
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ii. Crossover operation 

In a crossover operation, trail vectors are generated by combining the target and mutant 

vectors (offspring) according to a pre-defined possibility. Binomial and exponential 

crossovers are the two most well-known types of crossover in the literature.  

In a binomial crossover operation, the trial vectors are generated according to: 

𝑢𝑖,𝑔+1
𝑗

=  {
𝑣𝑖,𝑔+1

𝑗
     𝑟𝑎𝑛𝑑(𝑗) ≤ 𝐶𝑅 𝑜𝑟 𝑗 = 𝑎𝑗

𝑥𝑖,𝑔
𝑗

                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2.10) 

where 𝑗 = 1,2, … , 𝑛;   𝑖 = 1,2, … , 𝑃𝑆; 𝐶𝑅 is the crossover possibility in the range of [0,1], 

𝑟𝑎𝑛𝑑(𝑗) the 𝑗th evaluation of a uniform random number generator within [0,1] and 𝑎𝑗 a 

randomly selected dimension to ensure that at least one element of 𝑢𝑖,𝑔+1 is chosen from 

the mutant vectors (Storn and Price, 1997, Price et al., 2006). 

An exponential crossover operation acts like a two-point crossover in which the first 

(𝐶𝑃1) and second (𝐶𝑃2) cut points randomly selected from {1, … , 𝑛} and {1, … , 𝐿}, 

respectively, where 𝐿 denote the number of consecutive components (counted in a circular 

manner) taken from the mutant vector. In this strategy, trial vectors are generated according 

to:  

𝑢𝑖,𝑔+1
𝑗

=  {
𝑣𝑖,𝑔+1

𝑗
   𝑗 = 𝑚𝑜𝑑(𝐶𝑃1 − 𝐶𝑃2 + 1, 𝑛)

𝑥𝑖,𝑔
𝑗

                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2.11) 

iii. Selection operation 

In a selection operation, a comparison of each trial vector and its corresponding target 

vector is used to determine whether either the trail or target vectors can survive into the 

next generation (𝑔 + 1) by adopting the greedy selection strategy, the formula for which is: 

𝑥𝑖,𝑔+1 =  {
𝑢𝑖,𝑔+1,    𝑓(𝑢𝑖,𝑔+1) < 𝑓(𝑥𝑖,𝑔)

𝑥𝑖,𝑔,                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (2.12) 
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As the processes of the evolutionary operations (i.e., mutation, crossover and selection) 

continue as long as the averaged cost function is more than a pre-defined cost value, 

termination of the DE technique can be determined by the maximum allowable value of the 

averaged cost function (the desired value).   

C. Evolutionary strategy 

The evolutionary strategy (ES) was initiated by Rechenberg (1984) and Schwefel (1993) 

as an optimization technique. Similar to all EAs (e.g., GAs), it tries to evolve better 

solutions through crossover (recombination), mutation and survival of the fittest. It encodes 

solutions/parameters as floating point numbers and uses arithmetic operators to modify 

them whereas a GAs encodes parameters as bit strings and uses logical operators to 

manipulate them. Therefore, ES is considered an effective tool for optimizing continuous 

functions while, in contrast, GAs are more appropriate for combinatorial optimization 

(Zhang et al., 2005a, Dianati et al., 2002).  

In the process of ES, the algorithm begins with a population of 𝑃𝑆 vectors as parents, 

with an offspring (or child) population of λ vectors, where λ ≥ 𝑃𝑆, produced by 

recombining randomly selected parent vectors. According to Bäck et al. (1997), there are 

two types of recombination: (1) discrete, in which some offspring genes are from one 

parent and the rest from the other; and (2) intermediate, which is the average of the genes of 

both parents. After applying the recombination process to the parents, the individuals 

produced are then mutated by altering a randomly chosen single bit/gene. After all λ 

offspring are mutated and evaluated, a greedy selection to determine the individuals to 

survive to the next generation can be performed in two ways: (1) in (𝑃𝑆, λ)-ES, the best 𝑃𝑆 

children are selected to be parents in the next generation; and (2) in (𝑃𝑆 + λ)-ES, the best 

𝑃𝑆 children selected are chosen from a combination of the parent and offspring 

populations.  

Beyer and Schwefel (2002) developed two general rules for designing and evaluating ES 

experiments. Firstly, performing slight modifications to all variables at one time randomly 

which sounds similar to mutation. Secondly, preserving the offspring produced as the new 

set of variables/solutions after the evolutionary process, in case the quality of solutions is 
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improved or at least remains the same, or otherwise returning these variables to their old 

status which is typically applied in ES as survival of the fittest.  

D. Evolutionary programming (EP) 

EP is a stochastic optimization strategy originally initiated by Fogel et al. (1966), with 

its motivation to generate an alternative approach to artificial intelligence (Fogel and Fogel, 

1996). EP, ES and GA techniques are broadly similar as each generates a population of 

candidate solutions which are evolved subject to random modifications and compete to 

survive to the next generation.  

In an EP process, an initial population of candidate solutions is randomly generated. 

Then, new individuals (offspring) are reproduced by applying a mutation strategy to each 

individual/solution in the population according to the distribution of mutation types. The 

severity of a mutation is judged according to the functional change imposed on the parents. 

In order to evaluate each offspring solution, its fitness is computed and then a stochastic 

tournament selection used to choose the fittest solutions to be retained to construct the new 

population of solutions. 

Although EP has several applications in different areas, such as artificial neural 

networks (Yao and Liu, 1997) and real continuous function optimization (Xin et al., 1999), 

it has slow convergence to good near-optimal solutions when solving some multi-modal 

optimization problems (Yao et al., 1999). Moreover, because of the low diversity in the 

population, its performance progressively decreases (Ji and Wang, 2008). 

E. Genetic Programming (GP) 

Over a number of decades, automatic programming has been considered a tractable point 

of study to many researchers aiming at getting computers to automatically solve a problem. 

Among all artificial intelligence (AI) techniques, which are software technologies that 

make computers, or robots, have similar, or better, performance to the human 

computational ability in speed, accuracy and capacity (Mccarthy, 1989), genetic 

programming (GP) is considered the most potential way for automatically writing computer 

programs (Walker, 2001). 

http://dictionary.reference.com/browse/stochastic
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As GP is one of evolutionary algorithms, it can be paraphrased as “survival of the 

fittest”. In GP, a population of computer programs to solve a problem, as individuals or 

artificial chromosomes, is iteratively transformed into a new generation of programs by 

applying the genetic operations which include crossover (sexual recombination), mutation, 

reproduction, gene duplication, and gene deletion. Over time, the best individuals survive 

and eventually evolve to tackle the given problem (Walker, 2001). 

Although, GP is an extension of the GA (Holland, 1975), GA encodes candidate 

solutions to a problem in the population, but, in GP, the execution of several programs are 

the candidate solutions to the problem (Koza and Poli, 2005). Programs are presented in GP 

as syntax trees instead of lines of code and each tree contains nodes/points and links. The 

nodes show the instructions of execution while the links indicate the parameters/arguments 

for each instruction (Koza and Poli, 2005) . 

Generally, for any problem domain, GP could be used to evolve computer program 

solutions, if, and only if, individual solutions can be compared and ranked. However, GP 

requires massive computing resources before solving any real-world problem (Walker, 

2001). 

2.6 Approaches for Representation of RCPSPs 

For EC problems, Ashlock (2006) defined chromosome representation as the choice of 

the data structure that represents a solution and the variation operators that act on that 

structure. Choosing a good representation for a difficult problem can have a great impact on 

an EA’s performance. Although there could have been many rewards obtained from 

searching various representations, the author mentioned many reasons for not doing this, 

such as the substantial cost of implementing and running well-designed experiments for 

each representation and then determining an approach for comparing solutions. 

The following are the two basic approaches for chromosome representation. 

 Direct approach: a solution is encoded as a vector of numbers, where each number 

represents an activity or gene, and it is the most straightforward technique.  
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 Indirect approach: each chromosome is represented by a sequence of rules for task 

assignments, which is not the original schedule (solution), and then the 

chromosomes are evolved by an EA to determine a better sequence of rules 

(Robbins, 2008) which is then used to construct a schedule.  

 

Over the years, many schedule representation schemes have been introduced, such as 

natural data variables, list SGS, set-based and resource flow network (Artigues et al., 2013), 

and activity-list, random-key, priority rule, shift vector and schedule scheme 

representations (Kolisch and Hartmann, 1999). Brief descriptions of some of these 

representations are given in the following sub-sections. 

2.6.1 Natural data variables representation 

In this representation, a RCPSP selects variables to represent either the starting or 

finishing/completion times of activities. It is the simplest formulation of a RCPSP since 

the makespan criterion is considered to be in a non-pre-emptive environment (Artigues 

et al., 2013).  

2.6.2 List SGS representation 

Since selecting a solution among alternatives is a heuristic process, the priority list can 

be used to organize the scheduling process. A combination of a schedule generator 

(heuristic) and priority list (as a decision-maker) can be considered to provide a solution for 

RCPSPs as the list produced from a heuristic is considered an encoding of the solution. 

Also, this representation is the basic encoding of a solution applied by numerous greedy 

heuristics, such as serial and parallel SGSs (Artigues et al., 2013). 

2.6.3 Activity list representation 

An activity list (AL) representation of a schedule/solution for a RCPSP is a precedence-

feasible list of activities (i.e., a permutation vector of activities in which each activity 
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satisfies the precedence constraints) as each activity scheduled after all its predecessors in 

the list. A SGS is applied to decode the AL to obtain the corresponding schedule by 

selecting the activities according to their order in the list and scheduling them at their 

earliest starting times. For clarification, any list in which all activities satisfy the 

precedence constraints is called an activity list representation of the schedule and vice 

versa; for instance, considering the RCPSP example presented in Figure 2.1, the vector h = 

(1, 3, 2, 5, 4, 7, 6, 8, 10, 9, 11) is an activity list representation of the schedule while hˋ = 

(1, 3, 4, 2, 5, 7, 6, 8, 10, 9, 11) cannot be one as it does not satisfy the precedence 

constraints (i.e., activity 2 must be listed after activity 4).  

An AL representation has been widely used in many research works (Alcaraz and 

Maroto, 2001, Nonobe and Ibaraki, 2002, Bouleimen and Lecocq, 2003, Valls et al., 2008) 

because: (1) it is decoded easily and rapidly; (2) it always produces a feasible 

schedule/solution; (3) the form of its list can be easily modified and manipulated which 

increases the number of opportunities for finding an optimal solution (Moumene and 

Ferland, 2009).  

2.6.4 Random key representation 

The random key (or priority value) representation was first proposed by Bean (1994) and 

then Norman and Bean (1995) and Norman (1995) generalized it to solve the job 

scheduling problem (JSP). It encodes a solution as a vector of 𝑛 (real-valued) numbers 

which assigns a number to each activity (𝑗), where the 𝑗𝑡ℎ number relates to the 

corresponding  𝑗. Initially, the random keys are generated either randomly (Lee and Kim, 

1996) or according to some priority rules (Leon and Balakrishnan, 1995) and then the array 

of them is transformed into a schedule using a serial or parallel SGS which schedules the 

activity with the highest random key of the eligible activities which satisfy all the 

constraints. Therefore, it can be said that random keys play the role of priority values 

(Kolisch and Hartmann, 1999).  

For clarification, considering the RCPSP example in Figure 2.1, the optimal schedule in 

Figure 2.2 can be produced by applying either the serial or parallel SGS from the following 

random key array for 11 actual activities. 
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 (0.9, 0.85, 0.72, 0.69, 0.61, 0.58, 0.55, 0.51, 0.4, 0.45, 0.1) 

Random key representations are used to encode solutions for RCPSPs in many research 

works (Mendes et al., 2009, Sebt and Alipouri, 2012, Zhang et al., 2006) and also applied 

to represent chromosomes for multi-modal RCPSPs (Gonçalves et al., 2008). 

The significant advantage of random keys is that all the offspring created by crossover 

are feasible which is achieved by moving much of the feasibility feature into the objective 

function evaluation, that is, any crossover vector will be feasible if any random key 

array/vector is considered a feasible solution (Mendes et al., 2009). 

2.6.5 Priority rule representation 

Priority rule-based representations, in which chromosomes are encoded as sequences of 

dispatching rules that are then evaluated by any EA to detect those with better sequences, 

have been proposed (Dorndorf and Pesch, 1995). However, the main problem is finding an 

efficient priority rule. 

The common basis of all priority rule-based heuristics is discussed in the work of Giffler 

and Thompson (1960) and Storer et al. (1992) and more details are provided in (Panwalkar 

and Iskander, 1977), (Blackstone et al., 1982) and (Haupt, 1989). 

Because of their easy implementation and low time complexity, priority dispatching 

rules are very popular for solving optimization problems. 

 

2.6.6 Shift vector representation 

Shift vector representations for RCPSPs, which are arrays of non-negative integer values 

used to represent solutions, were initiated by Sampson and Weiss (1993). An extension of 

the traditional forward recursion is used for decoding in which the starting time of an 

activity (𝑗) is computed as the sum of the maximum finishing time of its predecessors and 

the 𝑗th shift value. In other words, the shift non-negative value in a certain position 
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determines how many periods the corresponding activity will be shifted to be scheduled 

after its early starting time.  

However, as resource constraints are not considered in the initial representation, which 

means that the shift vector may be an infeasible solution, a penalty function or any 

constraint-handling mechanism can be included to handle them (Demeulemeester and 

Herroelen, 2002). 

2.6.7 Schedule scheme representation 

Schedule scheme representation, which is based on the binary version of the schedule 

scheme approach for a B&B algorithm, was initiated by Brucker and Knust (1999). In it, 

the relationship between each pair of activities (e.g., (𝑖, 𝑗)) is described by one of four 

disjoint relationships defined as a schedule scheme (𝐶, 𝐷, 𝑁, 𝐹) (Demeulemeester and 

Herroelen, 2002) as follows. 

1) (𝑖, 𝑗) ∈ 𝐶 denotes that a conjunctive relationship exists between 𝑖 and 𝑗, with 𝑖 

required to be finished before 𝑗 starts, and is symbolized by ‘𝑖 ≺ 𝑗’. 

2) (𝑖, 𝑗) ∈ 𝐷 denotes that a disjunctive relationship is assigned between 𝑖 and 𝑗, which 

cannot be processed in parallel (not overlap), and is symbolized by ‘𝑖 − 𝑗’. 

3) (𝑖, 𝑗) ∈ 𝑁 denotes that a parallelity relationship is assigned between 𝑖 and 𝑗, which 

are required to be processed in parallel, and is symbolized by ‘𝑖 ∥ 𝑗’. 

4) (𝑖, 𝑗) ∈ 𝐹 denotes that none of the above relationships is allocated between 𝑖 and 𝑗 

(flexibility relationship). 

The schedule scheme then represents a schedule in a way that satisfies the corresponding 

relationships. However, as this schedule may not be feasible (Demeulemeester and 

Herroelen, 2002), Baar et al. (1999) proposed a heuristic for converting it to a feasible one. 

2.6.8 Solution representations in EAs for RCPSPs 

In a RCPSP, it is necessary to encode a chromosome to simplify the crossover and 

mutation operators for a specific problem. Ozdamar (1999) represented a chromosome 

using indirect encoding. Storer et al. (1992) and Uckun et al. (1993) represented it by a 



    

Chapter 2. Literature Review 

 

45 

 

serious of priority rules used in an iterative scheduling to produce a solution from the 

chromosome. In it, each chromosome is represented by a number of genes equal to twice 

the number of activities in the project, with two genes in each position. The first gene 

determines the execution mode and the second specifies the priority rule for selecting the 

candidate activities to be scheduled. In (Ozdamar, 1999), there are 12 activities, each with 

from one to three execution modes and their corresponding durations as well as renewable 

and non-renewable resources. In the author’s study, he selected nine priority rules based on 

the results reported in previous articles (Alvarez-Valdes and Tamarit, 1989, Ulusoy and 

Özdamar, 1989, Ulusoy and Özdamar, 1994). 

A valid chromosome for this problem is represented as:  

Mode Assignment:       (1, 1, 3, 1, 1, 2, 2, 1, 3, 1, 3, 1) 

Priority Assignment:      (1, 3, 2, 5, 9, 6, 2, 7, 7, 9, 6, 8) 

The first set of genes represents the modes assigned to 1, 2,…, 𝑛 activities, where 𝑛 is 

the number of activities in the project. The second set can be read as the first scheduling 

decision should be carried out by sorting the schedulable activities according to a specific 

priority rule and selecting the highest priority activity, and the second be directed by 

another priority rule; and so on. 

Cho and Kim (1997) modified the SA approach proposed by (Lee and Kim, 1996) by 

extending the random key representation to allow some activities to be delayed, with the 

aim of extending the search space. (Baar et al., 1999) introduced two versions of the TS 

algorithm. The first uses an activity list for solution representation and a serial SGS as a 

decoding procedure, and the second is based on a schedule scheme representation, where 

the neighbors are investigated by either placing the activities in parallel or deleting the 

parallelity relationship.  

Hartmann and Kolisch (2000) compared the experimental results of existing heuristic 

methods, such as single-pass heuristics, with serial and parallel SGS, random and adaptive 

sampling approaches and some meta-heuristic methods such as GA and TS. They 

concluded that, generally, techniques which utilize activity list representations produce 

superior results to other representations for RCPSPs. Having several different 
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representations for a single schedule is the main reason that a random key representation 

has inferior performance (Debels et al., 2006).  

Hartmann (1998) developed a GA which utilizes an activity list for solution 

representation and compared it with two other GAs, one using a random key representation 

and the other a priority rule one. The serial SGS and two-point crossover are employed for 

the three algorithms according to the representation scheme used in each. In the proposed 

activity list-based GA, the initial population is determined using a random sampling 

method and the author reported that, based on a computational study, it outperforms the 

other two GAs as well as seven state-of-the-art heuristic approaches.  

Afshar-Nadjafi et al. (2015) proposed a DE for solving RCPSPs. In it, a priority value 

representation is utilized to encode a project schedule and a serial SGS to obtain the 

schedule. Their proposed DE combines a local search and learning module in order to 

improve its quality. Then, its performance is evaluated by statistically comparing the 

solutions it obtains for various test problems in terms of the objective function (makespan) 

and computational times. 

2.7 Existing Approaches for RCPSPs 

As a RCPSP has been proven to be NP-hard, especially for large-scale scheduling 

problems (Blazewicz et al., 1983), many exact methods have been proposed for solving it. 

B&B-based algorithms are introduced in (Demeulemeester and Herroelen, 1992, Jalilvand 

et al., 2005), with their results showing their capability to find optimal solutions. However, 

their computational complexity significantly increases with increasing numbers of 

activities. Although there are fast algorithms, such as priority scheduling (Li et al., 1997) 

and greedy-based (Lupetti and Zagorodnov, 2006) ones, they may not satisfy all 

constraints. Cheng and Wu (2006) constructed a project scheduling model which includes a 

time constraint and presented a hybrid algorithm that combines B&B and heuristic 

algorithms. Their simulation results show that their proposed algorithm is better than the 

others.  
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Kolisch and Drexl (1996) proposed a new heuristic technique, which is a hybrid of 

priority rule and random search techniques, that employs two types of adaptations in order 

to determine the solution space. The results from their evaluations, which compare it with 

other proposed heuristics showed that it could be usefully applied to solve different hard 

problems in the project scheduling field. 

As previously mentioned, several meta-heuristic algorithms have been proposed for 

solving RCPSPs, such as SA (Cho and Kim, 1997), TS (Lee and Kim, 1996), DE (Damak 

et al., 2009) and GA (Toklu, 2002). Bouleimen and Lecocq (2003) presented new SA 

algorithms for a RCPSP and its multi-modal version in which the objective function 

minimizes the makespan by replacing a traditional SA search scheme with a new design 

that considers the specificity and characteristics of the solution space of a project 

scheduling problem.  

Merkle et al. (2002) proposed several new features for an ACO algorithm by combining 

two pheromone evaluation methods of ants to find new solutions. Their results show that, 

on average, the algorithm performs better than several other heuristics for RCPSPs. In 

several works (Zhang et al., 2006, Zhang et al., 2005b, Chen, 2011), PSO has been used to 

solve RCPSPs, with the authors concluding that a PSO-based approach could provide an 

efficient and easy-to-implement alternative for analyzing and solving RCPSPs. Kochetov 

and Stolyar (2003) introduced an EA based on a path re-linking strategy and a TS with a 

variable neighborhood. Nonobe and Ibaraki (2002) extended the definition of a RCPSP 

further to include various complicated constraints and objective functions and then 

developed a TS-based heuristic algorithm containing elaborations in terms of representing 

solutions and constructing a neighborhood. 

Hartmann (1998) and Hartmann (2002) proposed two GA variants, the first a 

permutation-based GA in which SA, TS and GAs are used and the second a self-adaptive 

GA for constructing scheduling with or without constraints. Bettemir and Sonmez (2015) 

integrated the capabilities of the parallel search in GAs and fine tuning of the SA technique 

to propose a hybrid strategy, with the aim of producing an efficient algorithm for RCPSPs. 

Valls et al. (2008) presented a hybrid GA (HGA) involving several changes in the GA 

paradigm, in which a new crossover, a local improvement operator, a new way of selecting 
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the parents to be combined and a two-phase strategy to re-start the evolution, are used. Its 

results show that it is fast and produces high-quality solutions better than those of state-of-

the-art algorithms.  

Zamani (2013) used a GA to solve a problem. He developed a magnet-based crossover 

operator that can preserve up to two contiguous parts from the receiver and one from the 

donor genotype, with the results showing better performances than the classical two-point 

crossover. Gonçalves et al. (2008) and Mendes et al. (2009) proposed a solution method 

that constructs schedules using a heuristic which builds parameterized active schedules 

based on priorities, delay times and release dates, respectively. They represented the 

solution using random keys and a GA as a search method, with the results demonstrating 

the effectiveness of the proposed algorithm. Agarwal et al. (2011) proposed a neurogenetic 

(NG) approach which is a hybrid of GA and neural network (NN) approaches and is proven 

to be independently superior to both NN and GA. 

Debels et al. (2006) proposed a new meta-heuristic combining elements from a scatter 

search (SS), generic population-based search method and optimization heuristic, called 

electromagnetism (EM), for the optimization of unconstrained continuous functions based 

on an analogy with the electromagnetism theory. It is able to provide near-optimal solutions 

for relatively large RCPSP instances. Also, Debels and Vanhoucke (2007) extended a GA 

procedure by a so-called decomposition-based GA (DBGA) that iteratively solves sub-parts 

of a RCPSP’s project. Chen and Shahandashti (2009) proposed a hybrid algorithm of a GA 

and SA (GA-SA) to produce a generic search method and compared its performance with 

that of a modified SA method (MSA) and several heuristic rules-based techniques, with the 

results showing that it performs better than all the other approaches. 

Damak et al. (2009) proposed a DE algorithm for solving RCPSPs in a reasonable time, 

obtaining better results than those from other algorithms in the literature. In order to 

achieve a higher computational efficiency for RCPSPs, Yan et al. (2014) proposed a 

modified DE that uses two parallel mutation operations to improve its search capability, 

with the best individuals chosen from one target vector and two trail vectors by the 

selection operation. Although their modified DE performs better than GA and SA, there is 

no indication of its computational time. 
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Chen et al. (2010) combined a local search strategy, ACO and SS in an iterative process 

to produce an efficient hybrid algorithm (ACOSS) for solving RCPSPs, with the results 

showing that it produces good solutions for small instances and slightly better ones for 

large instances. Fang and Wang (2012) proposed a heuristic based on the framework of the 

shuffled frog-leaping algorithm (SFLA) for solving RCPSPs by combining a permutation-

based local search (PBLS) and forward–backward improvement (FBI) procedure to 

enhance its exploitation capability. Although the results show that the SFLA performs well 

for solving large instances, it obtains high values of deviation from the optimal solution for 

small ones. Fahmy et al. (2014) defined the justification technique as “a simple technique 

which was presented for improving the quality of schedules generated with algorithms for 

solving RCPSPs”, implemented it with meta-heuristics and showed that embedding it with 

meta-heuristics improved performance. 

2.8 Brief Discussion of Existing Approaches 

Based on the literature reviewed in this chapter, it was noted that enumeration or exact 

methods, such as mathematical programming or B&B, are only applicable for solving small 

project instances (Demeulemeester and Herroelen, 1992, Jalilvand et al., 2005) as they are 

not computationally practical for large ones. Consequently, heuristics emerged.  

Heuristic methods can find near-optimal solutions at an acceptable computational cost as 

they usually require less time and memory than exact approaches and, moreover, can be 

applied to a wide range of problems. However, they do not guarantee optimal results 

(Abdolshah, 2014) and also perform poorly with respect to the average deviation from the 

optimal objective function value (Brucker et al., 1999). 

Meta-heuristics are used to develop a specific heuristic method as they can be easily 

adapted to a particular problem or problem class with much less effort than heuristics which 

makes them an appealing choice for implementation in general-purpose software (Ólafsson, 

2006). However, as they have many drawbacks, as previously discussed, improving the 

performances of existing ones or developing new ones appears to be necessary, and their 
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limitations motivated the emergence of hybrid methods in which several components, such 

as EAs and a local search or EAs and a heuristic are incorporated.  

Of all the approaches discussed in this chapter, hybrid methods are almost the best meta-

heuristics for a set of RCPSP instances. However, conducting comparisons among meta-

heuristic algorithms in order to determine the best is a challenging issue for two reasons: 

(1) fine tuning of all the parameters of all the algorithms is required; and (2) the quality of a 

solution obtained by a metaheuristic depends on the available computing time. Also, 

focusing on individual aspects and components of heuristic and meta-heuristic methods is 

necessary to provide a better understanding of the performance of each of their 

components. 

As there is no one algorithm capable of consistently solving a wide range of test 

problems or suitable for all problem classes, the concept of using multi-method and multi-

operator algorithms for solving RCPSPs will be beneficial. 

2.9 Chapter Summary 

In this chapter, the importance of project scheduling in real-life applications was 

described and a very well-known model of it, a RCPSP’s conceptual model and its 

complexity, discussed. Also, different exact, heuristic and meta-heuristic techniques which 

endeavor to achieve the optimality of RCPSPs were presented.  

Based on the literature reviewed in this chapter, it is clear that hybrid algorithms offer 

promising potential for real-life problems as no single algorithm has been proven to be 

superior to any other over a wide range of test problems. Therefore, suggestions of hybrid 

heuristics and multiple approaches have recently been raised. However, a procedure for 

selecting the algorithms that should be used to design them has not been well studied. 

Based on this motivation, experimental analyses of different hybrid approaches, such as a 

GA and local search, DE and heuristic, and multi-EAs and heuristic are introduced in 

Chapters 3, 4 and 5, respectively. 
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Chapter 3                                                               

Genetic Algorithms for solving RCPSPs 

The main aim of this chapter is to introduce a new GA for solving RCPSPs. Firstly, its 

components are described and then it is implemented to solve a number of test problems of 

different sizes. The experimental results for different RCPSPs are elaborated and the effects 

of the algorithm’s components on its performance discussed. Finally, comparisons with 

state-of-art-algorithms are presented.  

3.1 Introduction 

In classical RCPSPs, a project consists of a set of activities, each of which has a known 

deterministic duration and is allowed to be executed only once. These activities have to be 

scheduled in a way that minimizes the makespan of the project, that is, its total duration. As 

discussed in Chapter 2, such optimization problems are considered NP-hard ones. 

Over the years, many exact, heuristic and meta-heuristic algorithms for solving RCPSPs 

have been introduced. In exact ones, such as integer programming, dynamic programming 

and the branch and bound (B&B) algorithm, the search for an optimal solution in specific 

real-world applications can be complex for many reasons, such as the problem being large, 

the data and parameters dynamic or too complex to express mathematically and the 

existence of contradictory objectives. Due to such complexity, an exact approach is much 

slower than a heuristic one and, therefore, its computational costs are higher (Widmer et al., 

2010).  

On the other hand, heuristic methods can be easily amended or combined with other 

techniques to construct hybrid algorithms, a flexibility that allows them to be applied in a 

wide range of problems. However, they are still not sufficiently good in terms of their 



 

Chapter 3. Genetic Algorithm for solving RCPSPs 

 

52 

 

average deviations from the optimal objective function value (Brucker et al., 1999). Several 

meta-heuristic methods for solving RCPSPs, such as simulated annealing (SA) (Cho and 

Kim, 1997), a tabu search (TS) (Lee and Kim, 1996), differential evolution (DE) (Damak et 

al., 2009) and a genetic algorithm (GA) (Toklu, 2002), have been introduced. Although 

they have constantly been among the most popular for handling combinatorial optimization 

problems, they are much more expensive in terms of computational time and further 

research is required to improve their effectiveness (Widmer et al., 2010).  

Also, a few number of memetic algorithms (MAs) which belong to the class of stochastic 

global search heuristics in which evolutionary algorithm-based approaches are combined 

with problem-specific solvers, such as local search heuristic techniques and approximation 

algorithms (Neri and Cotta, 2012) have been introduced for solving RCPSP. A MA method 

is based on a population of agents and has proven to be successful in a variety of problem 

domains, in particular, for obtaining approximate solutions to NP-hard optimization 

problems (Moscato and Cotta, 2010). However, a good definition and analyzes of the 

different components of such algorithms is required.  

Motivated by the research gaps mentioned above, in this chapter, a new MA consisting 

of a GA and multiple local search techniques is proposed. A new repairing heuristic 

procedure for generating feasible solutions in the initial population is also introduced. 

These solutions, including the repaired ones are then evolved using GA operators and, to 

increase the convergence speed, an ensemble of two local search methods is adopted. 

The algorithm is tested by solving 60 standard benchmark problems chosen from the 

well-known test set, the project scheduling problems library (PSPLIB) created by Kolisch 

et al. (1999). The effect of the algorithm’s components, such as its: (1) validation rate, 

which is the number of solutions repaired to be feasible in the initial population; (2) local 

search rate; (3) mutation rate; and (4) population size, are discussed. The final variant of the 

proposed algorithm is compared with: (1) variants of the classical GA with different 

mutation rates; (3) other state-of-the-art algorithms. 

The rest of this chapter is organized as follows. In section 3.2, the methodology of the 

proposed MA and its components are explained. The experimental study and analyses of its 
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different components are discussed in section 3.3. Finally, section 3.4 provides a summary 

of this chapter. 

3.2 Methodology 

In this section, the framework and components of the proposed MA are discussed. In its 

process, an initial population is randomly generated and then some infeasible individuals 

are selected to undergo the repairing process to convert them to feasible ones, the best of 

which are sorted according to their fitness values and constraint violations. A tournament 

selection is used to select the best individuals to participate as parents, a crossover applied 

to generate a new offspring and a mutation with an adaptive rate applied to alter the 

offspring.  

 

Figure 3.1: General framework of proposed algorithm 



 

Chapter 3. Genetic Algorithm for solving RCPSPs 

 

54 

 

As it is very common for a RCPSP to become stuck in a local optimum, involving more 

variation operators helps an algorithm to avoid this situation and move to a more promising 

search region. This is achieved in the proposed MA by adopting two local search 

techniques, one of which, based on a probability of 0.5, is used to enable more exploitation 

(the refinement of existing solutions) to the best solution found so far in the hope of 

accelerating the convergence rate and another to explore more solutions. Finally, an elitism 

strategy is applied which, in the context of a GA, means that the best solution found so far 

during the search constantly survives to the next generation. The operations of the proposed 

MA continue until the pre-defined stopping conditions are met.  

Figure 3.1 shows a flowchart of the process and each of the algorithm’s components is 

discussed in the following sub-sections.  

3.2.1 Representation 

Every solution in the population is represented by a vector/chromosome, the length of 

which is equal to the number of activities in the project, with integer values used to 

represent the activities as:  

 

0 3 4 2 … 𝑛 𝑛 + 1 

 

 

Figure  3.2: Chromosome representation 

As, in RCPSPs, an activity cannot start unless all its predecessors have been finished, it is 

necessary to identify the precedence relationships among all the activities. In this algorithm, 

an incidence (binary) matrix is generated to represent the predecessor-successor 

relationship for each activity in the project; for instance, that in Figure 3.3 shows the 

precedence constraints among four activities, where Figure 3.3 (a) shows a network graph 

that indicates the dependency constraints. In Figure 3.3 (b), each row represents the 

predecessor activities of (the row number)
th

 activity and each column the successor 

activities of (the column number)
th

 activity; for example, activity 1 does not depend on any 

Dummy activity Dummy activity Actual activities 
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activity as it is the start node, activities 2 and 3 depend on activity 1 while activity 4 

depends on both activities 2 and 3 and, as it is the last node, has no successor activities.  

 

 
               Predecessors 

 

S
u
cc

es
so

rs
 

  1 2 3 4 

1 0 0 0 0 

2 1 0 0 0 

3 1 0 0 0 

4 0 1 1 0 
 

 

(a)                                                                                             (b) 

Figure  3.3: Representation of predecessor-successor relationship 

 

3.2.2 Fitness evaluations 

In the beginning, a number of chromosomes, equal to the population size (𝑃𝑆), is 

randomly generated to form the initial population and, generally, the fitness value 

(makespan) and/or constraint violations are used to evaluate the acceptability of any 

solution. 

For each schedule, an improved serial SGS (described in Chapter 2) is applied to 

construct solutions. In it, each activity in a schedule is processed under the restriction of the 

resource availability constraints as the activities of a candidate solution are scheduled by 

their appearances in the generated schedule and each activity can be processed if, and only 

if, its required number of resources does not exceed the available amount of resources at a 

specific time. Therefore, the schedule produced is guaranteed to satisfy the resource 

availability constraints. 

As the resource availability and precedence relationships are the two main constraints 

that must be satisfied in RCPSPs and, given that the algorithm produces a resource 

constraint-satisfied schedule as described above, the violation of the precedence constraint 

is considered a measure of solution feasibility. As the violation value of each solution can 

be determined by calculating the number of violations of the precedence constraint for 



 

Chapter 3. Genetic Algorithm for solving RCPSPs 

 

56 

 

every activity within that schedule, any solution can be considered feasible if its violation 

value is less than 1.  

The fitness value is determined by calculating the total duration of a project to 

completion and a schedule is constructed by adding one activity after another. After each 

new activity is inserted, its finishing time is set as the makespan.  

3.2.3 New repairing method 

It is noted that, as RCPSPs are complex optimization problems, the lack of feasible 

solutions in the initial population affects the quality of the evolutionary process. Therefore, 

a repairing heuristic method for obtaining feasible solutions in this population is proposed.  

In this process, some infeasible solutions are selected from the initial population and 

then modified by reordering the positions of each of their activities by satisfying their 

predecessor and successor constraints. The steps in the proposed repairing and violation 

calculation method are shown in Figure 3.4. 

It is worth mentioning that, to maintain diversity, the repairing method is applied to a 

certain percentage (𝑅𝑚) of the population size (𝑃𝑆). 

1: Set 𝑖 = 1;  𝑓𝑒𝑎𝑠𝑐𝑜𝑢𝑛𝑡 = 1;  𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛(𝑆𝑖) = 0; 
2: While 𝑖 <  𝑃𝑆 do 

3: Generate a random solution 𝑆𝑖 

4: While 𝑓𝑒𝑎𝑠𝑐𝑜𝑢𝑛𝑡 < 𝑅𝑚 do 

5: Find 𝑃𝑟𝑒𝑗 of each gene 𝑗 in 𝑆𝑖 

6: If all (𝑃𝑟𝑒𝑗) is already scheduled, then 

7: 𝑗 is feasible 

8: Else 

9: 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛(𝑆𝑖)  =  𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛(𝑆𝑖) +1 

10: Rearrange activities positions in 𝑃𝑟𝑒𝑗  

11: Add activity 𝑗 to the schedule 

12: 𝑓𝑒𝑎𝑠𝑐𝑜𝑢𝑛𝑡 =  𝑓𝑒𝑎𝑠𝑐𝑜𝑢𝑛𝑡 +1 
13: End if 

14: End while 

15: 𝑖 = 𝑖 + 1 
16: End while 

Figure  3.4: Proposed repairing method 
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3.2.4 Selection 

In this phase, the individuals in the population are sorted according to their fitness and 

violation values, with the best having the minimum fitness value (makespan) and a zero or 

minimum violation. Then, a tournament method is applied to select individuals as parents 

to generate offspring for the next generation by running several ‘competitions’ among a 

few individuals chosen randomly from the population. As solutions are either feasible or 

infeasible, three rules can be used to manage this selection process: (1) of two feasible 

solutions, the better one (according to their fitness values) is selected; (2) a feasible solution 

is always better than an infeasible one; and (3) of two infeasible solutions, the one with the 

smaller sum of constraint violations (or lowest violation value) is chosen. 

3.2.5 Crossover  

Crossover is considered the key operator in a GA. In the proposed algorithm, it is 

applied according to a crossover search parameter with a probability (𝑝𝑐). As suggested by 

Hartmann (1998), a one-point crossover, which has the advantage that, if the parents are 

feasible, it guarantees that the offspring produced are also feasible, is used.  In this process, 

two individuals are randomly selected as parents (say, 𝑃1 and 𝑃2), as described in section 

3.2.4. A random integer (𝑞) is chosen as the crossover point, where 1 ≤ 𝑞 ≤ 𝑛 and 𝑛 is the 

last actual activity in the schedule. The offspring (𝑂𝑆) is generated by inheriting the 

activities in positions 1 to 𝑞 from 𝑃1, that is, 𝑂𝑆𝑗 = 𝑃1𝑗
 ∀ 𝑗 ≤ 𝑞, and the remaining 

positions (𝑞 + 1, … , 𝑛) taken from 𝑃2, with the activities taken from 𝑃1 not considered 

again. Considering the project illustrated in Figure 2.1 in Chapter 2 as a simple example, in 

Figure 3.5, two individuals are selected as parents (𝑃1 and 𝑃2) and 𝑞 set to 5.  

𝑃1 1 3 2 6 9 5 4 7 8 10 11 
 

𝑃2 1 2 3 5 4 6 8 10 7 9 11 

 

𝑂𝑆 1 3 2 6 9 5 4 8 10 7 11 
 

Figure  3.5: One-point crossover 
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In Figure 3.5, the activities from 1 to 𝑞 are copied from 𝑃1 to 𝑂𝑆 while those from 𝑞 + 1 

to 𝑛 in 𝑂𝑆 are taken from 𝑃2 after the absence of any redundancy in 𝑂𝑆 is confirmed. 

Therefore, as the first three activities as well as 6 and 9 in 𝑃2 cannot be copied to 𝑂𝑆 

because they are already listed, activities 4, 5, 7, 8, 10 and 11 are taken. From this figure, it 

is clear that, as both 𝑃1 and 𝑃2 satisfy the precedence constraint, the offspring produced is 

also feasible. The pseudo-code of the one-point crossover is presented in Figure 3.6. 

1: Generate random number (𝑟𝑎𝑛𝑑) within the rang [0, 1] 

2: If 𝑟𝑎𝑛𝑑 ≤ 𝑝𝑐 then 

3: Select 𝑃1 and 𝑃2 as parents using the tournament selection scheme (section 3.2.4) 

4: Select 𝑞 ← [1, 𝑛] 
5: For 𝑗=1 to 𝑞 do 

6: 𝑂𝑆(𝑗) ← 𝑃1(𝑗) 
7: End for 

8: 𝑡 ← 𝑞 + 1  
9: For 𝑠=1 to 𝑛 do 

10: If 𝑃2(𝑠) not exist in 𝑂𝑆 [1: 𝑞] then 

11: 𝑂𝑆(𝑡) ←  𝑃2(𝑠) 

12: 𝑡 ← 𝑡 + 1; 
13: End if 

14: End for 

15: End if 

Figure  3.6: One-point crossover scheme 

3.2.6 Mutation  

In a GA, a mutation operator is used to increase the diversity of the population by 

making a small change which enables the GA to explore promising areas of the search 

space (Korejo et al., 2010). In this algorithm, a random number is generated within the 

range of [0, 1] and, if it is less than or equal to the mutation rate (𝑝𝑚), the chromosome is 

modified by choosing one of the activities at random and swapping it with its adjacent gene 

after ensuring that there are no precedence relationships between them.  

Based on the example in Figure 2.1, Chapter 2, in the chromosome presented in Figure 

3.7, activities 6 and 8 are swapped to produce a new feasible offspring. 
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Offspring       1 3 2 5 4 8 6 7 9 10 11 
 

Figure  3.7: Example of mutation 

3.2.7 Local search 

After obtaining a new set of individuals from the different GA processes, one of two 

different local search procedures is applied according to a pre-defined probability (𝑃𝐿𝑆). 

The first is applied to the best 10% of the current population with the purpose of obtaining 

near-optimal solutions and the second to the best solution obtained so far in the current 

population in a bid to achieve the optimal solution. The use of multiple local searches 

provides more variation than mutation as it probes a more promising region of the search 

space in the hope of improving the promising current best solutions by refining them. 

1: Generate a random number 𝑟𝑎𝑛𝑑 ∈ [0 − 1] 

2: If 𝑟𝑎𝑛𝑑 ≤  𝑃𝐿𝑆, then 

3: Generate 𝑢 ∈ [0 − 1] 
4: If 𝑢 ≤ 0.5, then  

5: Apply the first local search; else 

6: Apply the second local search 

7: End if 

8: End if 
Figure  3.8: Mechanism for selection of two local searches 

In its selection mechanism (Figure 3.8), a random number (rand) is generated and, if it is 

less than 0.5, the first local search is applied; otherwise the second one is used 

The first local search is applied to the best individual in the entire population and begins 

by changing a single gene of the chromosome through swapping two consecutive activities. 

This process is similar to that of the mutation operator except that the feasibility status of 

the solution is checked before any movement (swapping) is conducted. If the swapping 

does not cause a violation of the precedence constraint, the movement is committed and the 

fitness value of the new individual calculated. If this value is better than the old one, the 

new individual is accepted as the best solution; otherwise the same process is applied to 

Chromosome 1 3 2 5 4 6 8 7 9 10 11 
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𝑓𝑠𝑢𝑐𝑐 𝑙 

two other randomly chosen consecutive activities. The pseudo-code of the first local search 

is shown in Figure 3.9. 

1: 𝑏𝑒𝑠𝑡𝑖𝑛𝑑 ← the best individual in the current population 

2: 𝑜𝑙𝑑𝑓𝑖𝑡  ← the fitness value of the 𝑏𝑒𝑠𝑡𝑖𝑛𝑑 

3: For 𝑗 = 1 to 𝑛 do 

4: If 𝑗 does not exist in the predecessors of 𝑗 + 1 then 

5: 𝑠𝑤𝑎𝑝(𝑗, 𝑗 + 1) 

6: 𝑛𝑒𝑤𝑓𝑖𝑡  ← the fitness value of the 𝑏𝑒𝑠𝑡𝑖𝑛𝑑 after swapping activities 

7: If 𝑛𝑒𝑤𝑓𝑖𝑡 < 𝑜𝑙𝑑𝑓𝑖𝑡 then 

8: The best individual in the current population ← 𝑏𝑒𝑠𝑡𝑖𝑛𝑑 

9: End if 

10: End if 

11: End for 

Figure  3.9: First local search 

The second local search is applied to the first 𝜆 individuals, where 𝜆 ∈ [1 − 𝑃𝑆]. In it, a 

random activity (𝑙) in the schedule is selected and its predecessor and successor activities 

are identified. Then, 𝑙 is swapped with another random activity (𝑙2) within a specified range 

by a circular displacement (Bouleimen and Lecocq, 2003). This range is determined by two 

bounds, the last predecessor (𝑙𝑝𝑟𝑒𝑑) and first successor (𝑓𝑠𝑢𝑐𝑐) activities of 𝑙,. Two ranges 

can be defined by these bounders, a range from 𝑙𝑝𝑟𝑒𝑑 to 𝑙 and another from 𝑙 to 𝑓𝑠𝑢𝑐𝑐. 𝑙2 is 

randomly selected according to the one that contains more activities or has the largest 

difference from 𝑙. In order to fulfil the predecessor-successor relationships, it is checked 

that the activities in the range between 𝑙 and 𝑙2 are not located in the predecessor or 

successor activities of 𝑙2. The pseudo-code of the second local search is shown in Figure 

3.12. 

As a further illustration, the project in Figure 2.1 in Chapter 2 is again considered and the 

following individual chosen to be altered by the second local search as: 

 

 

1 3 2 5 4 6 8 7 9 10 11 

 

 

Figure  3.10: Individual before local search 

𝑙𝑝𝑟𝑒𝑑 

𝑙2 
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𝑙 

As the difference between 𝑙 and 𝑙𝑝𝑟𝑒𝑑 is more than that of the other side, l2 is randomly 

selected from the range of [𝑙𝑝𝑟𝑒𝑑, 𝑙] (Figure 3.10) and then all activities in the range 

between 𝑙 and 𝑙2 are checked to ensure that they are not in the successor activities of 𝑙2. 

Thereafter, 𝑙 takes the place of 𝑙2 and a circular displacement is performed to produce the 

new individual, as shown in Figure 3.11. 

 

1 3 2 6 5 4 8 7 9 10 11 

 

Figure  3.11: New individual after local search 

 

Again, the fitness value is calculated for the generated individual and compared with that 

of the old one, with the better one is selected.  

1: For each individual (𝑖𝑛𝑑) in the first 𝛾 individuals do 

2: 𝑜𝑙𝑑𝑓𝑖𝑡  ← the fitness value of the 𝑖𝑛𝑑 

3: For each activity (𝑗) do 

4: 𝑙𝑎𝑠𝑡_𝑝𝑟𝑒𝑑 ← the last predecessor activity of 𝑗 

5: 𝑓𝑖𝑟𝑠𝑡_𝑠𝑢𝑐𝑐 ← the first successor activity of 𝑗 

6: 𝑝𝑟𝑒𝑑𝑑𝑖𝑠𝑡 ← 𝑗 − 𝑙𝑎𝑠𝑡_𝑝𝑟𝑒𝑑 

7: 𝑠𝑢𝑐𝑐𝑑𝑖𝑠𝑡 ←  𝑓𝑖𝑟𝑠𝑡_𝑠𝑢𝑐𝑐 − 𝑗 

8: If 𝑝𝑟𝑒𝑑𝑑𝑖𝑠𝑡 ≤ 𝑠𝑢𝑐𝑐𝑑𝑖𝑠𝑡  then 

9: 𝑟𝑎𝑛𝑑𝑔 ← select random number within the range [𝑙𝑎𝑠𝑡_𝑝𝑟𝑒𝑑, 𝑗], else 

10: 𝑟𝑎𝑛𝑑𝑔 ← select random number within the range [𝑗, 𝑓𝑖𝑟𝑠𝑡_𝑠𝑢𝑐𝑐]; End if 

11: If 𝑟𝑎𝑛𝑑𝑔 does not exist in the predecessors, or the successors, of 𝑗 then 

12: Update the position of 𝑗 to be at the position of 𝑟𝑎𝑛𝑑𝑔 

13: Update the position of 𝑟𝑎𝑛𝑑𝑔 to be at the position of 𝑟𝑎𝑛𝑑𝑔 + 1, and so on 

in a circular displacement 

14: 𝑛𝑒𝑤𝑓𝑖𝑡 ← the new fitness value of 𝑖𝑛𝑑  

15: If 𝑛𝑒𝑤𝑓𝑖𝑡  <  𝑜𝑙𝑑𝑓𝑖𝑡 then 

16: Replace individual of 𝑜𝑙𝑑𝑓𝑖𝑡 with individual of 𝑛𝑒𝑤𝑓𝑖𝑡 

17: End if 

18: End if 

19: End for 

20: End for 
Figure  3.12: Second local search 

𝑙2 
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3.2.8 Elitism 

At the end of each generation, the newly generated individuals are moved to the next 

generation. In the traditional random immigrant method which transfers individuals through 

generations, some random individuals are injected to replace some from the new 

population. Using this method, the population diversity level may be increased and, as a 

consequence, the GA’s performance improved in uncertain/dynamic environments (Jourdan 

et al., 2001). However, randomly displacing individuals in the next generation may produce 

solutions which are worse than the existing ones. Also, if the population has either not, or 

only slightly, changed, the random immigrants may distract the optimization ability of the 

GA.  

Therefore, in the MA, the best two or three individuals are randomly selected to be 

moved directly to the next generation in order to maintain good solutions through 

generations. 

3.3 Experimental Study 

In this section, a brief description of the benchmark problem is provided, the results 

obtained by the proposed MA reported, some parametric analyses of the proposed 

algorithm conducted and, finally, comparisons with some state-of-the-art algorithms 

discussed. 

3.3.1 Benchmark problems 

Standard benchmark problem sets from the PSPLIB created by (Kolisch et al., 1999, 

Kolisch and Sprecher, 1997) are used. The investigated algorithms have been applied on 

the single mode data sets cases consisting of four sets of J30 (30 activities), J60 (60 

activities), J90 (90 activities) and J120 (120 activities), each of which had four resource 

types. Based on three complexity factors, the J30, J60 and J90 instances were grouped into 

48 instances and J120 into 60, with each instance containing 10 different problems. The 
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three complexity factors are defined as the resource factor (𝑅𝐹), network complexity (𝑁𝐶) 

and resource strength (𝑅𝑆) (Kolisch and Sprecher, 1997).  

The 𝑅𝐹, which was scaled in the range of [0, 1], defines the average proportion of 

resources required for each task; for instance, if 𝑅𝐹=1, each job required the use of all 

resources whereas, if 𝑅𝐹=0, no resources were required by any job. The 𝑁𝐶 reflects the 

average number of non-redundant precedence relationships for each activity, including 

dummy ones. The RS scales the proportion of resource usage and availability and was also 

selected from the interval [0, 1], where 𝑅𝑆=0 means that the problem was highly resource 

constrained and 𝑅𝑆=1 that it was resource unconstrained. 

For the J30, J60 and J90 instances, the parameter levels were set as 𝑁𝐶 ∈ {1.5, 1.8, 2.1}, 

𝑅𝐹 ∈ {0.25, 0.5, 0.75, 1} and 𝑅𝑆 ∈ {0.2, 0.5, 0.7, 1} and, for the J120 ones, 𝑁𝐶 ∈ {1.5, 

1.8, 2.1}, 𝑅𝐹 ∈ {0.25, 0.5, 0.75, 1} and 𝑅𝑆 ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. 

In order to show how the different values of the three complexity factors determine the 

complexity of each instance, Figure 3.13 is introduced. In it, the x-axis represents the 

instance number of J30 and the y-axis represents the complexity level of each instance 

which can be calculated according to: 

𝐶𝑖𝑛𝑠 =  
(𝑁𝐶𝑚𝑎𝑥 − 𝑁𝐶𝑖𝑛𝑠) + 𝑅𝐹𝑖𝑛𝑠 + (1 − 𝑅𝑆𝑖𝑛𝑠)

3
 ( 3.1) 

where 𝐶 is the complexity level of each instance (𝑖𝑛𝑠) and 𝑁𝐶𝑚𝑎𝑥 is the maximum value 

of 𝑁𝐶 complexity factor. 

 

Figure 3.13: The complexity levels of 48 instances of J30 
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In this chapter, in an initial step to evaluate the proposed MA, 16 problems of J30 

instance and 15 from each of J60, J90 and J120 ones, that is, a total of 61 problems, were 

randomly selected from three different instances for testing MA in different complexity 

levels. The test problems had the same values of both 𝑁𝐶 and 𝑅𝐹 but three different ones 

of 𝑅𝑆, that is, 𝑅𝑆= {0.20, 0.50, 0.70} respectively. According to Kolisch et al. (1995), the 

complexity of a RCPSP increases with an increasing 𝑅𝐹 value and decreasing 𝑁𝐶 and 𝑅𝑆 

values. Therefore, the data set can be gathered into three groups: (1) problems with 

𝑅𝑆=0.20 which are then the most difficult group followed by (2) those with 𝑅𝑆=0.50 while 

(3) those with 𝑅𝑆=0.70 are the easiest. 

3.3.2 Parameter settings 

The proposed MA was coded using Matlab and implemented on a PC with a 3.4 GHz 

processor, 16G RAM and Windows 7. To judge its performance, the average percentage 

deviations (𝐴𝑣𝑔𝐷𝑒𝑣(%)) from optimal solutions for J30 instances or from the critical path 

lower bounds for J60, J90 and J120 as reported by Stinson et al. (1978) were used, where 

the average deviation can be calculated according to: 

𝐴𝑣𝐷𝑒𝑣(%) = (
1

𝑆
∑

𝐵𝑆𝑠 − 𝐿𝐵𝑠

𝐿𝐵𝑠

𝑆

𝑠=1

) × 100 

   

( 3.2) 

where  𝑆 is the total number of instances used, 𝐵𝑆𝑆 the best solution achieved by an 

algorithm for 𝑆 instances and 𝐿𝐵𝑆  the pre-known lower bound of a 𝑠 instance. 

The parameters were set as PS = 100, 𝑝𝑐 = 1 and 𝑝𝑚 adaptively calculated according to: 

𝑝𝑚 = 𝑀𝑎𝑥 (𝜕𝑚𝑖𝑛 , 𝜕𝑚𝑎𝑥 − (𝜕𝑚𝑎𝑥 −  𝜕𝑚𝑖𝑛) × (
𝑐𝑓𝑒

𝐹𝑖𝑡𝑚𝑎𝑥
)) (3.3) 

where 𝜕 is the lower limit of the mutation rate, 𝜕𝑚𝑎𝑥 the initial value of the mutation rate, 

𝑐𝑓𝑒 the number of fitness evaluations and 𝐹𝑖𝑡𝑚𝑎𝑥 the maximum number of 𝑐𝑓𝑒, with 

𝜕𝑚𝑖𝑛=0.05 and 𝜕𝑚𝑎𝑥=0.2.  
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The local search parameter (𝑃𝐿𝑆) was set to 0.2 and the tournament pool size randomly 

selected as 2 or 3, with the number of individuals (𝑅𝑚) in the initial population that must be 

feasible set to 25% of 𝑃𝑆. Justifications of a selection of thesis parameters are described in 

Section 3.3.4. 

3.3.3 Computational results 

For each test instance, 30 independent runs were executed. There were two stopping 

criteria: (1) run the algorithm for up to 𝐹𝑖𝑡𝑀𝑎𝑥 = 𝑛 ×10,000 fitness evaluations; or (2) run 

it until no improvement in the fitness value during 150 consecutive generations was found. 

In Table 3.1, the 𝐴𝑣𝑔𝐷𝑒𝑣(%) from the optimal solutions (𝐴𝐷%) for J30 instances and 

from the critical path lower bound for the J60, J90 and J120 ones, and their average CPU 

times in seconds (𝑡) for the three groups defined in Section 3.3.1 are presented.  

From Table 3.1, it has been observed that the quality of the obtained solutions increases 

and the average computational time of MA reduces with increasing 𝑅𝑆 values from 0.20 to 

0.70. The results show also that the proposed MA has achieved the optimal solutions for all 

J30 test problems with deviation values from the optimal solution equal to zero. For J60, 

the proposed algorithm obtained the optimal solutions for 54% of test problems and 67% of 

J90. Finally, although, no optimal solution achieved for test problems of J120, the 

algorithm showed a very low average deviation values. 

Group 𝑹𝑺 
J30 J60 J90 J120 

𝐴𝐷% 𝑡 𝐴𝐷% 𝑡 𝐴𝐷% 𝑡 𝐴𝐷% 𝑡 

1 0.20 0 3.09 7.84 16.46 17.34 23.29 51.50 32.05 

2 0.50 0 1.48 0.64 14.05 0.00 13.06 35.30 30.25 

3 0.70 0 0.13 0.59 13.818 0.00 9.69 12.01 24.17 

Average 0.00 1.48 3.02 14.77 5.78 12.68 32.94 28.82 
 

Table 3.1: Results from proposed MA with different 𝑹𝑺 values 

To provide an indication of the influence of 𝑅𝑆 values in the convergence of the 

proposed MA, a few plots of some J60 instances with different 𝑅𝑆 values are shown in 

Figure 3.14. 
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In this figure, it can be noted that the MA converged quickly towards the optimal 

solution for problems with 𝑅𝑆=0.70 (J60.3-3) and took some time to converge for others 

with 𝑅𝑆=0.50 (J60.2-3), while it was taking longer time to solve problems with 𝑅𝑆=0.20 

(J60.1-1). Therefore, it is clear that this discrepancy was due to variations in the 𝑅𝑆 

complexity factor discussed in section 3.3.1 that managed the degree of difficulty of each 

problem. 

 

Figure 3.14: Convergence plots of MA for some problems of J60 

3.3.4 Parametric analysis 

In this section, five sets of experiments designed to analyze the effects of: 1) 𝑅𝑚, 

number of repaired solutions; 2) 𝑃𝐿𝑆; 3) 𝑝𝑚; 4) 𝑃𝑆; and (5) using more than one local 

search; with 15 test instances of J60 are discussed. However, to investigate the influence of 

each parameter, one problem from each of three instances with complexity values [𝑁𝐶, 𝑅𝐹, 

𝑅𝑆] = [1.50, 0.25, 0.2-0.7] was used. Convergence plots of the three problems, J60.1-1, 

J60.2-4 and J60.3-5, are given for each parameter. In all the experiments, the MA was run 

up to 25 times with 5000 generations. 
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Note that, the selection of the parameters is done in a sequential manner in which the 

best parameter found in an experiment is fixed in the subsequent ones. 

3.3.4.1 Effect of 𝑹𝒎 

The MA was run with different values of 𝑅𝑚 of (1) 𝑅𝑚= 0% of 𝑃𝑆, (2) 𝑅𝑚= 25% of 𝑃𝑆, 

(3) 𝑅𝑚= 50% of 𝑃𝑆 and (4) 𝑅𝑚= 100% of 𝑃𝑆. All the other parameters were the same as 

those described in section 3.3.2. 

 

Figure  3.15: Convergence plots of J60.1-1 with different 𝑹𝒎 values 
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Figure  3.16: Convergence plots of J60.2-4 with different 𝑹𝒎 values 

 

Figure  3.17: Convergence plots of J60.3-5 with different 𝑹𝒎 values 
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Figures 3.15, 3.16 and 3.17 show the convergence plots of the J60.1-1, J60.2-4 and 

J60.3-5 problems, respectively, produced from the first experiment. It is clear that applying 

the repairing method had a significant effect on the performance of the algorithm. 

However, when 𝑅𝑚 was further increased from 25% to either 50% or 100%, its 

performance might have degraded, as shown in Figure 3.16, which may have been due to 

the lack of diversity in the initial population.  

In Table 3.2, the 𝐴𝑣𝑔𝐷𝑒𝑣(%) and computational times of the solved problems are 

shown. Although the computational times of 𝑅𝑚=50% and 𝑅𝑚=100% were greater than 

those of both 𝑅𝑚=0% and 𝑅𝑚=25%, it is clear that the quality of solutions slightly 

increased with an increasing 𝑅𝑚 value. In order to achieve a good balance between the 

solution quality and time cost, these figures suggest that 𝑅𝑚 should be 25%. 

𝑹𝒎 0% 25% 50% 100% 

𝑨𝒗𝒈𝑫𝒆𝒗(%) 17.37 3.43 3.45 3.36 

CPU time 2.72 3.16 3.22 3.27 
 

Table  3.2: Average deviations and CPU times of variants of 𝑹_𝒎 

3.3.4.2 Effect of 𝑷𝑳𝑺 

In this experiment, the effect of the local search was studied by running the MA using 

different values of 𝑃𝐿𝑆: (1) 𝑃𝐿𝑆=0, where the local search was switched off; (2) 𝑃𝐿𝑆= 0.2; 

and (3) 𝑃𝐿𝑆= 0.5 with the best variant found in the previous subsection. 

Again, convergence plots of the J60.1-1, J60.2-4 and J60.3-5 problems are shown in 

Figures 3.18, 3.19 and 3.20, respectively. When the local search was switched off, the 

algorithm was not able to converge quickly in the complex J60.1-1 problem. Also, by 

increasing the probability of using the local search, the convergence of the algorithm might 

have degraded because of more emphasis being placed on refining existing solutions to 

improve their quality rather than exploring new ones (Garg and Mittal, 2014). 

Table 3.3 shows the 𝐴𝑣𝑔𝐷𝑒𝑣(%) and computational times using the local search with 0, 

0.2, and 0.5 in which it can be seen that 𝑃𝐿𝑆 with 0.5 outperformed the other two values in 

terms of 𝐴𝑣𝑔𝐷𝑒𝑣(%) but took more computational time than both of them.  
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Figures 3.18, 3.19 and 3.20 and Table 3.4 suggest that applying a 25% multiple local 

search was effective. 

 

𝑷𝑳𝑺 0 0.2 0.5 

𝑨𝒗𝒈𝑫𝒆𝒗(%) 5.27 3.43 3.40 

CPU time 2.82 2.25 3.29 
 

Table 3.3: Average deviations and CPU times of variants of 𝑷𝑳𝑺 

 

 

Figure  3.18: Convergence plots of J60.1-1 with different 𝑷𝑳𝑺 values 
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Figure  3.19: Convergence plots of J60.2-4 with different 𝑷𝑳𝑺 values 

 

Figure  3.20: Convergence plots of J60.3-5 with different 𝑷𝑳𝑺 values 
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3.3.4.3 Effect of 𝒑𝒎 

 

To further analyze the influence of the mutation rate on the performance of the proposed 

MA, the same set of test problems was solved using different values of 𝑝𝑚: (1) 𝑝𝑚=0.05 

(MA𝑝𝑚=0.05
 ); (2) 𝑝𝑚=0.2 (MA𝑝𝑚=0.2

); and (3) 𝑝𝑚 adaptively calculated in the range of 

[0.05, 0.2] (MA𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 𝑝𝑚
). 

 

Figures 3.21, 3.22 and 3.23 demonstrate that MA𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 𝑝𝑚
 achieved better performance 

than the variants with 𝑝𝑚 = 0.05 and 0.2; for example, in Figure 3.22, it obtained the 

optimal solution for problem J60.2-4 which the others could not. 

Table 3.4 shows the 𝐴𝑣𝑔𝐷𝑒𝑣(%) and CPU times for all variants which reveals that 

MA𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 𝑝𝑚
 achieved both the best average deviation and best CPU time.  

 

 𝐌𝐀𝒑𝒎=𝟎.𝟎𝟓
 𝐌𝐀𝒑𝒎=𝟎.𝟐

 𝐌𝐀𝒂𝒅𝒂𝒑𝒕𝒊𝒗𝒆 𝒑𝒎
 

𝑨𝒗𝒈𝑫𝒆𝒗(%) 4.25 3.94 3.43 

CPU time 2.94 3.13 2.25 

 

Table  3.4: Average deviations from best solutions and average CPU times of proposed algorithm with 

different mutation rates 
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Figure  3.21: Convergence plots of J60.1-1 with different 𝒑𝒎 values 

 

Figure  3.22: Convergence plots of J60.2-4 with different 𝒑𝒎 values 
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Figure  3.23: Convergence plots of J60.3-5 with different 𝒑𝒎 values 

3.3.4.4 Effect of 𝑷𝑺 

The MA was run using different values of 𝑃𝑆 of 50, 100 and 200, with Figures 3.24, 

3.25 and 3.26 showing its convergence values for the three test problems. While it can be 

seen that the 𝑃𝑆 value of 100 outperformed the others in terms of the convergence rate, 

Table 3.5 shows that it was more expensive in terms of computational time. 

 

𝑷𝑺 50 100 200 

𝑨𝒗𝒈𝑫𝒆𝒗(%) 4.73 3.43 5.71 

CPU time 2.48 3 1.95 
 

Table  3.5: Average deviations and CPU times of variants of 𝑷𝑺 

 

As a consequence, setting 𝑃𝑆 to a value of 100 was considered a good choice for 

obtaining better solutions quality. 
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Figure  3.24: Convergence plots of J60.1-1 with different 𝑷𝑺 values 

 

Figure  3.25: Convergence plots of J60.2-4 with different 𝑷𝑺 values 
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Figure  3.26: Convergence plots of J60.3-5 with different 𝑷𝑺 values 

3.3.4.5 Single vs multiple local search  

 

In this experiment, the algorithm was run with (1) the first LS, (2) second LS and (3) 

both LS procedures in a single framework; and (4) no LS. Figures 3.27, 3.28 and 3.29 

indicate the effect of LS on the algorithm’s performance. 

It can be seen that the MA performed similarly for all cases but, as expected, using 

multiple local searches produced superior results to those of the other variants, as shown in 

Table 3.6.  

 

LS types Without LS 1
st
 LS 2

nd
 LS Multi-LS 

𝑨𝒗𝒈𝑫𝒆𝒗(%) 3.89 3.48 3.62 3.43 

CPU time 2.82 3.08 2.97 2.25 
 

Table  3.6: Average deviations and CPU times of variants with and without LS 
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Figure  3.27: Convergence plots of J60.1-1 with single, multiple and no local searches  

 

Figure  3.28: Convergence plots of J60.2-4 with single, multiple and no local searches  
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Figure  3.29: Convergence plots of J60.3-5 with single, multiple and no local searches 

3.3.5 Comparison with other algorithms 

In this section, a comparative study of variants of the traditional GA which were 

executed on the same computer configuration for the same test problems with (1) 0.2, (2) 

0.05 and (3) adaptive mutation rates is discussed. Note that these variants did not use the 

proposed local search.  

In Table 3.7, the average deviations from the critical path lower bounds are presented 

and it is clear that the proposed MA achieved better results for J30, J60, J90 and J120 

instances than other variants of classical GAs.  

Prob. 𝐆𝐀𝒑𝒎=𝟎.𝟐
 𝐆𝐀𝒑𝒎=𝟎.𝟎𝟓

 𝐆𝐀𝒂𝒅𝒂𝒑𝒕𝒊𝒗𝒆 𝒑𝒎
 MA 

J30 0.0088 0.0119 0.0106 0.00 

J60 4.53 3.84 3.61 3.02 

J90 - - 6.35 5.78 

J120 34.97 33.86 33.21 32.94 
 

Table  3.7: Average deviation from best solutions for benchmark instances with 30, 60 and 120 activities 
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As the complexity of the problems are based on 𝑁𝐶, 𝑅𝐹 and 𝑅𝑆 values, the three groups, 

defined in Section 3.3.1, of the test problems were used to compare the performance of MA 

in each group with four other algorithms (B&B, GA, Lagrange relaxation based GA 

(GA_LR) and branch and cut (B&C)) proposed by Chakrabortty et al. (2015) using the 

same set of J30 problems. In B&B, authors applied the default exact B&B technique and 

solved all problems using a commercial optimization software LINGO v10.0 and then 

solved same instances by employing the built-in GA toolbox of Matlab (R2012b). For 

GA_LR, they relaxed all the equality constraints and used them as a penalty function in the 

objective values. Finally, authors proposed a specialized B&C approach using coin-branch 

& cut (CBC) solver adopted from OPTI toolbox. 

Group 𝑹𝑺 
MA B&B GA GA_LR B&C 

𝐴𝐷% 𝑡 𝐴𝐷% 𝑡 𝐴𝐷% 𝑡 𝐴𝐷% 𝑡 𝐴𝐷% 𝑡 

1 0.20 0 3.09 0 14.8 1.53 830 1.11 145.9 0 68.43 

2 0.50 0 1.48 0 1.0 0 913 0 74.8 0 5.27 

3 0.70 0 0.13 0 20.8 0.76 1000 0.20 460.3 0 2.77 

Average 0.00 1.57 0.00 12.20 0.76 914.33 0.44 227.00 0.00 25.49 
 

Table 3.8: Average deviation and CPU times of MA and other algorithms with different values of 𝑹𝑺 

 

From Table 3.8, it can be noticed that the proposed MA outperformed all other 

algorithms in terms of the average values of both average deviation from the optimal 

solution and the computational time. In addition, comparing the MA with both GA and 

GA_LR proves the effectiveness of the proposed repairing method and multiple local 

search techniques for improving the performance of GA in terms of quality of solution and 

CPU time as MA is faster than both GA and GA_LR (on average, 582 and 145 times, 

respectively). 



 

Chapter 3. Genetic Algorithm for solving RCPSPs 

 

80 

 

3.4 Chapter Summary 

During the last few decades, many exact, heuristic and meta-heuristic algorithms for 

solving RCPSPs have been introduced. Exact ones were found to be applicable for solving 

only small project instances.  Whereas, heuristic methods can find near-optimal solutions at 

an acceptable computational cost but cannot guarantee optimal ones. Although meta-

heuristic techniques are the most popular for handling combinatorial optimization problems 

and have consistently shown good performances, they are much more expensive than other 

approaches in terms of computational time.  

Motivated by the mentioned gaps, this chapter presented a MA for solving RCPSP 

which combined GA with a heuristic repairing method and two local search techniques 

seeking to obtain good-quality solutions within low computational time.  

The proposed MA was used to solve J30, J60, J90 and J120 instances from the PSPLIB 

and its results compared with those from variants of the traditional GA and some state-of-

art algorithms. It was demonstrated that the MA had superior performance to all other 

variants of GAs when solving 61 problems with 30, 60, 90 and 120 activities, and could 

achieve optimal solutions for all the projects in the J30 instances and most of those in the 

J60, J90 and achieve low average deviation values for J120. Also, it was proven that the 

proposed heuristic repairing method had a great impact on the algorithm’s performance. 

Based on the results obtained for the J30 test problems, MA demonstrated its 

competitive performance against four state-of-the-art algorithms in terms of the 

computational time and quality of solutions, which provided motivation for testing the 

adaptation of the heuristic repairing method for other evolutionary algorithms, i.e., DE, 

which is introduced in the next chapter. 
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Chapter 4                                                         

Differential Evolution for solving RCPSP 

In chapter 3, the hybridization of a genetic algorithm (GA) with the proposed heuristic 

repairing technique has been discussed and experimented. In this chapter, the same concept 

is considered with differential evolution (DE) algorithm. Firstly, the algorithm framework 

is discussed and then its components are introduced and experimental details are presented. 

The influence of each component on its performance is also investigated. Finally, the 

results are compared with those obtained from some state-of-the-art algorithms. 

4.1 Introduction 

In the previous chapter, a memetic algorithm based on GA and multiple local searches 

for solving a resource constrained project scheduling problems (RCPSPs) was introduced. 

Although GA was able to obtain good results for many problems in comparison with those 

of other algorithms, it had a tendency to converge towards local optima or even arbitrary 

points rather than the global optimum of the problem. DE is a well-known population-based 

stochastic search technique that proved to be effective approach for solving global 

optimization problems (Vesterstrøm and Thomsen, 2004). Motivated by these facts, in this 

chapter, a hybrid technique which combines the search capabilities of DE and heuristic 

repairing method (as discussed in Chapter 3) for solving a RCPSP is introduced. 

The proposed hybrid DE was tested by solving 60 standard benchmark problems, 15 with 

30 activities and 15 each with 60, 90 and 120 activities. As in the previous chapter, these 

problems were chosen from the well-known test set library, the project scheduling 

problems library (PSPLIB) initiated by (Kolisch et al., 1999). The effects of the proposed 

DE algorithm’s components, such as (1) the repairing rate, which is the number of 
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individuals/solutions repaired by the proposed heuristic method to be feasible ones (𝑅𝑚), 

(2) crossover rate, (3) mutation rate and (4) population size, on its performance are 

discussed. Then, the results obtained from its final variant are compared with those from 

different state-of-the-art algorithms. 

The rest of this chapter is organized as follows. In section 4.2, the methodology of the 

proposed algorithm and its components are described. In section 4.3, the experimental 

study and analyses of the different control parameters of the proposed DE are discussed. 

Finally, a summary of the chapter is provided in section 4.4. 

4.2 Methodology 

In this chapter, a DE-based approach for solving RCPSPs, in which an initial population 

is generated randomly and then the repairing method applied to selected individuals to 

convert them from infeasible to feasible solutions, is proposed. All individuals are sorted 

according to their fitness and violation values and then a tournament selection is used to 

choose the best ones to act as parents for the next generation. Thereafter, improved 

mutation and crossover operators are applied with the aim of maintaining feasibility for the 

generated individuals. These processes are continued until pre-defined stopping conditions 

are met.  

The framework of the algorithm is presented in Figure 4.1 and its components briefly 

discussed in this section. 
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Figure 4.1: General framework of proposed DE 

 

4.2.1 Chromosome representation 

As described in Chapter 3, in the proposed DE algorithm, each individual is represented 

by a vector of integer values, the length of which equals the number of activities in the 

project (𝑛). An example of the representation of an individual (chromosome) and the 

representations of the precedence constraints can be found in Section 3.2.1. 

As DE was originally proposed to deal with the continuous space, the following 

representation is proposed to make it suitable for the discrete nature of RCPSPs. In it, 𝑛 

random vectors of continuous numbers are generated in the range of [0, 1], so that each 
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integer value has a corresponding continuous value that determines its appearance in the 

schedule. Figure 4.2 presents an example of this representation. 

 

Chromosome 0 1 2 4 3 … 𝑛 𝑛 + 1 

Sequence 0 0.02 0.1 0.14 0.25 … 0.95 1 

 

Figure 4.2: Randomly generated sequence for one individual 

In Figure 4.2, two vectors had been generated with integer and continuous values where 

the Chromosome/integer vector represents the numbers of activities and the 

Sequence/continuous one represents the execution order of each activity in the project.   

4.2.2 Fitness evaluations  

As in Chapter 3, the fitness value and/or constraint violations are used to evaluate a 

solution. The fitness value is calculated based on time required to complete all activates not 

violating the resource availability constraint. In this mechanism, the activities of candidate 

solutions are scheduled by their order (sequences) in the generated schedule. Each activity 

can be processed if, and only if, its required number of resources does not exceed the 

available amount of resources at a specific time so that the schedule produced is guaranteed 

to satisfy the resource availability constraint. On the other hand, the violation value of each 

solution is determined by calculating the number of violations of the dependency constraint 

by each activity in the schedule. 

4.2.3 Repairing method 

The heuristic repairing method already described in Chapter 3 is used to reduce the 

violation values of some selected individuals to zero; in other words, it is applied to 

enhance the feasibility of these individuals to make them feasible solutions. In its 

mechanism, each activity in an individual satisfies its precedence relationships. From our 

observations, it is noted that providing feasible solutions in the initial population may 

significantly increase the convergence rate of the proposed algorithm.   
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4.2.4 Improved DE operators 

After calculating the fitness and constraint violations of each individual in the initial 

population, the DE begins to iteratively apply its different operators (mutation, crossover 

and selection) to the generated individuals to evolve them. The proposed mutation and 

crossover operators guarantee the feasibility of any newly generated individual as follows. 

4.2.4.1 Mutation 

In the improved DE/best/1 mutation, the mutant vectors (�⃗�𝑖) are produced using the 

individuals according to: 

�⃗�𝑖,𝑔+1  =  �⃗�𝜆,𝑔  +  𝐹 ×  (�⃗�𝑟1,𝑔– �⃗�𝑟2,𝑔) (4.1) 

which is the same as that in equation (2.6) in Chapter 2 except that �⃗�𝜆 is selected from the 

top 10% of solutions in the current population (𝑔), 𝑟1, 𝑟2 ∈  [1, 𝑃𝑆] are randomly selected 

integer numbers which are not equal to either one another or the target individual (𝑖) and 𝐹 

is the mutation scale factor. These mutant vectors are guaranteed to produce a feasible 

solution by applying a proposed approach aiming at changing the sequence of each activity 

in an individual to satisfy the conditions of its predecessors’ and successors’ activities. The 

proposed approach is described using the pseudo-code in Figure 4.3 

For j = 1 to 𝑛 do 

 Find 𝑃𝑟𝑒𝑗; the predecessors of current gene (𝑗) 

 Calc. 𝑛𝑒𝑤𝑠𝑒𝑞(𝑗); the new sequence value of 𝑗 

 If all(𝑃𝑟𝑒𝑗) are already scheduled, then 

  𝑠𝑒𝑞𝑗 (the current sequence value of 𝑗) ←  𝑛𝑒𝑤𝑠𝑒𝑞(𝑗) 

 Else 

  For 𝑖 = 1 to end of 𝑃𝑟𝑒𝑗 do 

   If 𝑠𝑒𝑞(𝑃𝑟𝑒𝑗) >=  𝑛𝑒𝑤𝑠𝑒𝑞(𝑗), then 

    Swap 𝑠𝑒𝑞(𝑃𝑟𝑒𝑗)  with  𝑛𝑒𝑤𝑠𝑒𝑞(𝑗) 

   End if 

  End for 

 End if 

End for 
 

Figure 4.3: Proposed approach for obtaining feasible solutions from mutation and crossover 
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4.2.4.2 Crossover 

Then, the binomial crossover is used to produce trail vectors (𝑢𝑖,𝑔+1
𝑗

) according to: 

𝑢𝑖,𝑔+1
𝑗

=  {
𝑣𝑖,𝑔+1

𝑗
 ;     𝑟𝑎𝑛𝑑(𝑗) ≤ 𝐶𝑅 𝑜𝑟 𝑗 = 𝑎𝑗

𝑥𝑖,𝑔
𝑗

;                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4.2) 

where 𝑖 = 1,2, … , 𝑃𝑆;  𝑗 = 1,2, … , 𝑛; 𝑛 the number of activities in the project; 𝐶𝑅 is the 

crossover possibility in the range of [0,1], 𝑟𝑎𝑛𝑑(𝑗) the 𝑗th evaluation of a uniform random 

number generator within [0,1] and 𝑎𝑗 a randomly selected dimension to ensure that at least 

one element of 𝑢𝑖,𝑔+1
𝑗

 is chosen from the mutant vectors. 

Also, the sequence of each activity is re-arranged to satisfy the constraints of the 

predecessors’ and successors’ activities according to Figure 4.3. 

4.2.4.3 Selection 

Finally, for the selection process, the greedy selection strategy is adapted to the 

individuals to decide which from the trial vectors can survive to the next generation based 

on both their fitness and violation values according to: 

�⃗�𝑖,𝑔+1 =  {
�⃗⃗�𝑖,𝑔+1,    𝑓(�⃗⃗�𝑖,𝑔+1) < 𝑓(�⃗�𝑖,𝑔)

�⃗�𝑖,𝑔,                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (4.3) 

where 𝑖 = 1,2, … , 𝑃𝑆 and �⃗⃗�𝑖,𝑔+1 the 𝑖 mutant vector in the new generation (𝑔+1). 

4.3 Experimental study 

The proposed DE algorithm was coded using Matlab R2013b and implemented on a PC 

with a 3.4 GHz CPU and Windows 7. 

In this section, the computational results for 16 problems of J30 instance and 15 from 

each of J60, J90 and J120 ones, that is, a total of 61 problems, randomly selected from three 
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different instances from the well-known standard benchmark test set library PSPLIB for 

testing DE in different complexity levels, with four types of resources used in each are 

discussed. Also, in order to judge the performance of the proposed algorithm, comparisons 

with state-of-art algorithms are also conducted. The benchmark problems and their 

complexity factors are explained in Chapter 3 (Section 3.3.1). 

Usually, the average percentage deviations (𝐴𝑣𝑔𝐷𝑒𝑣(%)) from optimal solutions for 

J30 instances or from the critical path lower bounds for J60, J90 and J120 as reported by 

Stinson et al. (1978) are considered as a performance metric for comparison. Generally, the 

lower value of 𝐴𝑣𝑔𝐷𝑒𝑣(%), which can be calculated by equation (4.4), means obtaining 

higher quality solution.  

𝐴𝑣𝑔𝐷𝑒𝑣(%) =
1

𝑆
× ∑

𝐵𝑆𝑠–  𝐿𝐵𝑠

𝐿𝐵𝑠

𝑆

𝑠=1

 × 100 (4.4) 

where  𝑆 is the total number of instances used, 𝐵𝑆𝑆 the best solution achieved by an 

algorithm for 𝑆 instances and 𝐿𝐵𝑆  the pre-known lower bound of a 𝑠 instance. 

4.3.1 Parameter settings 

The parameters of the proposed algorithm were set as follows: 𝐹𝑖𝑡𝑀𝑎𝑥, the maximum 

number of calls of the fitness function evaluation (𝑐𝑓𝑒), to values of 5000 and 50,000;  𝑅𝑚, 

the number of individuals to be repaired to be feasible using the proposed repairing method 

(Chapter 3, Section 3.2.3), to a value of 25% of 𝑃𝑆; 𝑃𝑆  to 100; and F to 0.1. 

𝐶𝑅 was calculated adaptively using equation (4.5), where 𝐶𝑅𝐿𝐵 =0.1 and 𝐶𝑅𝑈𝐵 =0.9, to 

obtain a balance between a good initial value and the speed of convergence. 

𝐶𝑅 =  𝐶𝑅𝐿𝐵  +  𝐶𝑅𝑈𝐵  ×  
𝑐𝑓𝑒

𝐹𝑖𝑡𝑀𝑎𝑥
 (4.5) 

Justifications of a selection of these parameters are discussed in the Section 4.3.3 by 

providing analysis of each parameter with different values. 
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4.3.2 Computational results 

For each test problem, 30 independent runs were executed, with two stopping criteria, 

that is, (1) 𝐹𝑖𝑡𝑀𝑎𝑥 was reached  or (2) no improvement in the fitness value was achieved for 

150 consecutive generations and same parameter settings mentioned in Section 4.3.1. 

The 𝐴𝑣𝑔𝐷𝑒𝑣(%) from the optimal solutions for the J30 instances and lower bounds for 

the J60, J90 and J120 ones (𝐴𝐷%), as well as its standard deviation (STD) and the average 

CPU times in seconds (𝑡), are given for 5,000, 50,000 and 𝑛 ×10,000 maximum numbers of 

generations in Table 4.1.  

 

No. of 

generations 

J30 J60 J90 J120 

𝐴𝐷% STD 𝑡 𝐴𝐷% STD 𝑡 𝐴𝐷% STD 𝑡 𝐴𝐷% STD 𝑡 

5,000 0 0.16 16.13 6.19 1.08 41.86 7.17 1.81 72.12 50.88 3.00 106.71 

50,000 0 0.09 24.18 3.34 0.70 192.26 6.88 0.83 306.89 35.46 0 485.66 

𝒏 ×10,000 0 0 37.81 2.99 0 269.45 5.72 0 890.47 32.61 0 2636.9 
 

Table 4.1: Results of proposed DE for J30, J60, J90 and J120 instances with 5,000, 50,000 and 

𝒏 ×10,000 max generations 

 

From Table 4.1, it is clear that the performance of the proposed DE, in terms of 

solutions-quality and the standard deviation values for all instances, improved and the 

computational time significantly increased with increasing the number of generations.    

4.3.3 Parametric analysis 

Four sets of experiments were designed to analyze the effect of A) 𝑅𝑚, number of 

solutions repaired to be feasible, B) 𝐶𝑅, C) 𝐹 and D) 𝑃𝑆 on the performance of the 

proposed DE using the same data set with 15 test problems from the J60 instances used in 

the analysis in Chapter 3. Also, one problem was selected from three different instances 

with different complexity factors (Chapter 3) to study the effect of each parameter in 

various complexity environments. The results for the three chosen problems, ‘J60.1-1, 

J60.2-4 and J60.3-5’ are shown in this section with the convergence plots of each parameter 
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given. For all the experiments, the proposed DE was executed for up to 25 runs with 5000 

generations. 

The selection of the parameters is done in a sequential manner in which the best 

parameter found in an experiment is fixed in the subsequent ones. 

4.3.3.1 Effect of 𝑹𝒎 

In the first experiment, the effect of the repairing method introduced in Chapter 3 on the 

performance of the proposed DE was investigated. In it, DE was run with different values 

of 𝑅𝑚 of (1) 𝑅𝑚= 0% of 𝑃𝑆, (2) 𝑅𝑚= 25% of 𝑃𝑆, (3) 𝑅𝑚= 50% of 𝑃𝑆, and (4) 𝑅𝑚= 100% 

of 𝑃𝑆, with all other parameters fixed, as previously described in Section 4.3.1. 

To provide an indication of the effect of 𝑅𝑚, the convergence plots of the J60.1-1, J60.2-

4 and J60.3-5 problems are shown in Figures 4.4, 4.5 and 4.6, respectively. It is clear that 

using a repairing method in the initial population improved the performance of the 

algorithm in terms of convergence towards optimal or near-optimal solutions and thereby 

reduced the computational time, as shown in Table 4.2. However, it can be noted that, 

while applying the repairing method to a small percentage of the whole population, such as 

25%, could significantly improve the solution quality, by increasing the value of 𝑅𝑚 to 

50% or 100%, the performance of the proposed DE might be degraded because repairing a 

large number of individuals may cause the algorithm to be confined in a local optimum.  

The 𝐴𝑣𝑔𝐷𝑒𝑣(%) and CPU times of the test problems are presented in Table 4.2 which 

shows that 𝑅𝑚=25% was not the best in terms of CPU time but produced better-quality 

solutions than the others. Therefore, 𝑅𝑚 was set to 25%. 

 

𝑹𝒎 0% 25% 50% 100% 

𝑨𝒗𝒈𝑫𝒆𝒗(%) 6.25 4.44 4.91 5.82 

CPU time 72.69 71.90 67.06 64.97 
 

Table 4.2: Average deviations and CPU times of variants of 𝑹𝒎 
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Figure 4.4: Convergence plots of J60.1-1 with different 𝑹𝒎 values 

 

 

Figure 4.5: Convergence plots of J60.2-4 with different 𝑹𝒎 values 
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Figure 4.6: Convergence plots of J60.3-5 with different 𝑹𝒎 values  

4.3.3.2 Effect of 𝑪𝑹 

In Storn and Price (1997), it was mentioned that CR=0.1 was a good initial choice for 

the crossover rate while 𝐶𝑅=0.9 or 1.0 could be used to try to increase the convergence 

speed. Therefore, the second experiment studied the effect of the crossover operator by 

running the proposed DE using different values of 𝐶𝑅 of (1) 𝐶𝑅=0.1, (2) 𝐶𝑅= 0.9 and (3) 

𝐶𝑅 adaptively reduced from 0.9 to 0.1, with the best variant found in the previous 

subsection. 

Figures 4.7, 4.8 and 4.9 present the convergence plots of the J60.1-1, J60.2-4 and J60.3-

5 problems, respectively, in order to illustrate the effect of 𝐶𝑅 on DE’s performance. It can 

be noted that the algorithm with 𝐶𝑅=0.9 could easily become stuck in a local optimum 

solution even if the problem was not complex, as in Figure 4.9. On the other hand, when 

𝐶𝑅 was calculated adaptively between 0.9 and 0.1, it outperformed both 𝐶𝑅=0.1 and 0.9 in 

terms of solution quality. 
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Figure 4.7: Convergence plots of J60.1-1 with different 𝑪𝑹 values  

 

Figure 4.8: Convergence plots of J60.2-4 with different 𝑪𝑹 values  
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Figure 4.9: Convergence plots of J60.3-5 with different CR values 

 

Table 4.3 shows the 𝐴𝑣𝑔𝐷𝑒𝑣(%) and computational times using different values of 𝐶𝑅 

which clearly demonstrates that the adaptive 𝐶𝑅 outperformed all other variants in terms of 

both parameters. 

𝑪𝑹 0.1 0.9 Adaptive [0.1-0.9] 

𝑨𝒗𝒈𝑫𝒆𝒗(%) 11.01 15.59 4.44 

CPU time 116.13 122.47 70.18 
 

Table 4.3: Average deviations and CPU times of variants of 𝑪𝑹 

4.3.3.3 Effect of 𝑭 

To further study the effect of the 𝐹 on the performance of the proposed DE algorithm, the 

data set was solved using different values of 𝐹 of (1) 𝐹=0.1, (2) 𝐹=0.5, (3) 𝐹=0.9 and (3) 𝐹 

adaptively reduced from 0.9 to 0.1 and best variant of parameters found in the previous 

subsection. 
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Figure 4.10: Convergence plots of J60.1-1 with different 𝑭 values 

 

Figure 4.11: Convergence plots of J60.2-4 with different 𝑭 values 
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Figure 4.12: Convergence plots of J60.3-5 with different 𝑭 values 

Figures 4.10, 4.11 and 4.12 show that the performance of the proposed DE was improved 

by reducing the value of 𝐹; for instance, for the most complex problem (Figure 4.10), only 

𝐹 =0.1 and 0.5 achieved optimal solutions. 

Table 4.4 demonstrates that 𝐹=0.1 had the best 𝐴𝑣𝑔𝐷𝑒𝑣(%) and CPU times of all the 𝐹 

values.  

𝑭 0.1 0.5 0.9 Adaptive [0.1-0.9] 

𝑨𝒗𝒈𝑫𝒆𝒗(%) 4.44 5.45 7.71 4.94 

CPU time 70.18 70.61 81.56 88.09 
 

Table 4.4: Average deviations from best solutions and average CPU times of proposed DE with 

different mutation scale factor values 

 

4.3.3.4 Effect of 𝑷𝑺 

In the final experiment, the population size (𝑃𝑆) parameter was analyzed to study its 

effect on the performance of the proposed DE.  
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Figure 4.13: Convergence plots of J60.1-1 with different 𝑷𝑺 values 

 

 

Figure 4.14: Convergence plots of J60.2-4 with different 𝑷𝑺 values 
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Figure 4.15: Convergence plots of J60.3-5 with different 𝑷𝑺 values 

The algorithm was run using different values of 𝑃𝑆= 50, 𝑃𝑆=100 and 𝑃𝑆=200. Figures 

4.13, 4.14 and 4.15 show the convergences of DE for the selected data set from which it is 

clear that 𝑃𝑆 with a value of 100 outperformed the other 𝑃𝑆 values in terms of the 

convergence rate. Also, Table 4.5 demonstrates that 𝑃𝑆=100 was much faster in terms of 

computational time.  

 

𝑷𝑺 50 100 200 

𝑨𝒗𝒈𝑫𝒆𝒗(%) 6.36 4.44 5.54 

CPU time 71.55 70.18 77.11 
 

Table 4.5: Average deviations and CPU times of variants of 𝑷𝑺 

 

Therefore, 𝑃𝑆 was set to 100 as it produced good results in terms of both computational 

time and solution quality. 
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4.3.4 Comparison with other algorithms 

In this section, a comparative study of, firstly, four algorithms introduced by 

Chakrabortty et al. (2015) , and secondly,  three variants of the traditional GA with (1) 0.2, 

(2) 0.05 and (3) adaptive mutation rates, traditional DE and the proposed MA (discussed in 

Chapter 3) which were executed on the same computer configuration for the same dataset 

of problems is conducted in Tables 4.6 and 4.7, respectively. 

Grouped by the values of the resource strength (𝑅𝑆) complexity factor (discussed in 

Chapter 3), Table 4.6 shows the computational times (𝑡) and the average deviation from 

optimal solutions for test problems of three different instances randomly selected from J30 

with three different values of 𝑅𝑆 complexity factor: 0.20, 0.50 and 0.70 and same values of 

both network complexity (𝑁𝐶) and resource factor (𝑅𝐹) with values 1.50 and 0.25. 

 

Group 𝑹𝑺 

Improved 

DE 
MA B&B GA GA_LR B&C 

𝐴𝐷% 𝑡 𝐴𝐷% 𝑡 𝐴𝐷% 𝑡 𝐴𝐷% 𝑡 𝐴𝐷% 𝑡 𝐴𝐷% 𝑡 

1 0.20 0 49.90 0 3.09 0 14.8 1.53 830 1.11 145.9 0 68.43 

2 0.50 0 55.02 0 1.48 0 1.0 0 913 0 74.8 0 5.27 

3 0.70 0 15.36 0 0.13 0 20.8 0.76 1000 0.20 460.3 0 2.77 

Average 0 37.81 0 1.57 0 12.20 0.76 914.33 0.44 227.00 0 25.49 

 

Table 4.6: Average deviations and CPU times of proposed DE and other algorithms for J30 with 

different values of 𝑹𝑺 

From this table, it is clear that the improved DE achieved the optimal solutions for all 

solved instances. Although, it was slower than some algorithms such as MA and B&B, it 

steadily converged towards the optimal solutions with standard deviations equal zero, 

which means that the optimal solutions were obtained in each run of the algorithm for all 

problems, while the standard deviations of MA was 0.6. 

For more judging on the performance of the proposed DE, its results compared with 

those obtained from different variants of classical GA and DE. In Table 4.7, the 

𝐴𝑣𝑔𝐷𝑒𝑣(%) values from optimal solutions for J30 instance and the lower bound calculated 

by critical path method (CPM) for J60, J90 and J120 ones of all the comparative algorithms 
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are listed. From this table, it is clear that, the proposed algorithm was able to obtain the best 

quality of solutions among all classical ones. The results demonstrate the effectiveness of 

the improved DE as it enhanced the performance of the traditional DE, which can be 

calculated using equation 4.6, by 20.77%, on average, and obtained better quality solutions 

than both classical variants of GA and MA by decreasing the 𝐴𝑣𝑔𝐷𝑒𝑣(%) values by 7.23% 

and 0.76%, respectively. 

𝑅𝑎𝑡𝑒 =  ∑ (
𝐴𝐷%𝑤 − 𝐴𝐷%𝑞

𝐴𝐷%𝑤
) × 100

4

𝑦=1

 (4.6) 

where 𝑦 = {J30, J60, J90, J120}, 𝐴𝐷%𝑞 is the 𝐴𝑣𝑔𝐷𝑒𝑣(%) of the proposed algorithm, 

improved DE, and 𝐴𝐷%𝑤 is the 𝐴𝑣𝑔𝐷𝑒𝑣(%) obtained by other algorithms or variants. 

 

Prob. 𝐆𝐀𝒑𝒎=𝟎.𝟐
 𝐆𝐀𝒑𝒎=𝟎.𝟎𝟓

 𝐆𝐀𝒂𝒅𝒂𝒑𝒕𝒊𝒗𝒆 𝒑𝒎
 DE MA Improved DE 

J30 0.0088 0.0119 0.0106 0.43 0.00 0.00 

J60 4.53 3.84 3.61 6.25 3.02 2.99 

J90 - - 6.35 7.09 5.78 5.72 

J120 34.97 33.86 33.21 36.71 32.94 32.61 
 

Table 4.7: Average deviations of proposed DE and state-of-the-art algorithms 

In order to study the difference between any two stochastic algorithms, a statistical 

significant testing is performed by applying the Wilcoxon Signed Rank Test (Corder and 

Foreman, 2009) which can be used to judge the difference between paired scores as an 

alternative to the paired-samples 𝑡-test, when the population cannot be assumed to be 

normally distributed. 

It is assumed that there is no significant difference between the best and/or mean values 

of two samples as a null hypothesis, the number of test problems N=16 for J30 and 15 for 

each J60, J90 and J120, and 90% confidence level. Based on the test results, three signs (+, 

−, and ≈) are assigned for the comparison of any two algorithms where “+” sign means the 

first algorithm is significantly better than the second, “−”sign means that the first algorithm 

significantly worse, and “≈”sign means that there is no significant difference between the 
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two algorithms (Elsayed et al., 2011b). The results based on the average deviation from the 

critical path values (𝐿𝐵𝐶𝑃) and from the known optimal solutions (𝐿𝐵𝑂𝑃) are presented in 

Table 4.8. 

 

Algorithms Instance Criteria p- Value Decision 

Improved_DE  - to -  MA J30 𝐿𝐵𝐶𝑃 1.000 ≈ 

𝐿𝐵𝑂𝑃 1.000 ≈ 

J60 𝐿𝐵𝐶𝑃 1.000 ≈ 

𝐿𝐵𝑂𝑃 1.000 ≈ 

J90 𝐿𝐵𝐶𝑃 0.463 ≈ 

𝐿𝐵𝑂𝑃 0.012 − 

J120 𝐿𝐵𝐶𝑃 0.975 ≈ 

𝐿𝐵𝑂𝑃 0.950 ≈ 
 

Table  4.8: Wilcoxon Signed Rank Test for MA and Improved DE 

From Table 4.8 and according to the p-values, it is clear that there is no significant 

difference between the MA and the improved DE, except for J90 as the 𝑝-value indicates 

that DE performed worse than MA in regarding to 𝐿𝐵𝑂𝑃.  

4.4 Chapter Summary 

In this chapter, a new strategy for improving the performance of DE was presented. It 

incorporated the proposed validation procedure (Chapter 3), which provided feasible 

solutions in the initial population, and improved DE operators which forced the direction of 

DE’s search towards feasibility. 

The main contributions in this chapter can be summarized as: (1) proposing a 

chromosome representation for dealing with the discrete nature of a problem through a 

continuous space; and (2) improving DE’s mutation and crossover operators to produce 

feasible mutant and trail vectors which guarantee the feasibility of any individual they 

generate.  

The numerical experiments on a well-known benchmark data set with 30, 60, 90 and 120 

activities showed that the proposed algorithm was able to achieve optimal solutions for all 

the J30 instances and very low average deviation values for the J60, J90 and J120 ones. 
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Despite the well-known advantages of DE, its several drawbacks, including not 

guaranteeing convergence to the global optimum (Jia et al., 2011). Moreover, because of 

the existence of its inherent operations, such as its encoding scheme used to represent 

permutations as vectors and its process of redefining those vectors as solutions, the 

experimental study demonstrated that the degree of computational complexity of 

combinatorial problems for a DE algorithm was greater than that for a GA. Therefore, the 

computational time required by DE to converge towards the optimal solution significantly 

increased when the problem size increased. 

Motivated by these conclusions, a bi-evolutionary algorithm which combines the 

proposed heuristic repairing method and good features of both MA and DE based on the 

experimental results shown in Chapters 3 and 4 is introduced and discussed in the next 

chapter. 
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Chapter 5                                                                        

Bi-evolutionary Algorithm for solving RCPSPs 

In this chapter, for solving resource-constrained project scheduling problems (RCPSPs), 

a bi-evolutionary algorithm (bi-EA) that combines two population-based algorithms GA 

and DE in one algorithmic framework is introduced. The effects of control parameters on 

the performance of the algorithm are examined through a parametric analysis. Finally, the 

experimental results are compared with those from the proposed MA and DE techniques, 

discussed in previous chapters, and state-of-the-art algorithms are provided.  

5.1 Introduction 

In the previous two chapters, two population-based algorithms for solving RCPSPs, MA 

and DE, integrated with a new heuristic repairing method were proposed. Despite their 

good results, experimental studies showed that they had the following drawbacks. 

- In many problems, although MA was able to obtain good results, in comparison 

with other algorithms, it had a tendency to converge towards local optima or even 

arbitrary points rather than the global optimum of the problem. 

- DE’s performance deteriorated as the dimensionality of the search space increased 

(Das et al., 2009). 

- Although DE was good at exploring the search space, it was slow at exploiting the 

solution (Noman and Iba, 2008). 

- The computational time of DE significantly increased with larger problem sizes due 

to its inherent operations, such as encoding permutations into vectors and redefining 

those vectors into solutions, as described in Chapter 4. 

http://en.wikipedia.org/wiki/Local_optimum
http://en.wikipedia.org/wiki/Global_optimum
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In order to overcome these shortcomings, an algorithm for solving RCPSPs by 

combining the search capabilities of MA and DE in one framework is proposed. This new 

bi-evolutionary algorithm  begins by dividing the initial population into two sub-

populations, one of which deals with the integer search space with MA and another the 

continuous search space with DE. The repairing method discussed in Chapter 3 is also 

applied to the individuals in both sub-populations in order to enhance their feasibility.  

The algorithm is tested on a set of instances with 30, 60, 90 and 120 activities taken 

from the well-known project scheduling problems library (PSPLIB) (Kolisch et al., 1999).  

The rest of this chapter is organized as follows. In section 5.2, the methodology of the 

bi-EA and its components are described. Section 5.3 provides the experimental study of bi-

EA, analyzes its different control parameters and compares its results with those from the 

proposed memetic algorithm (MA) and DE (Chapter 3 and 4, respectively) and state-of-the-

art algorithms. Finally, a summary of this chapter is presented in section 5.4. 

5.2 Methodology 

The general framework of the proposed bi-EA is illustrated in Figure 5.1. 

Firstly, the initial population (𝑃𝑆) is divided into two sub-populations, each of which is 

processed by either MA or DE in parallel. In order to increase the exploration in the early 

stages of the search process and the exploitation capability later, each sub-population size is 

adaptively reduced according to: 

𝑛𝑒𝑤𝑃𝑆𝑙
= (

𝑙𝑜𝑤𝑒𝑟𝑃𝑆𝑙
− 𝑢𝑝𝑝𝑒𝑟𝑃𝑆𝑙

𝐹𝑖𝑡𝑀𝑎𝑥
× 𝑐𝑓𝑒) + 𝑢𝑝𝑝𝑒𝑟𝑃𝑆𝑙

 (5.1) 

where 𝑙 = {𝑀𝐴, 𝐷𝐸}, 𝑐𝑓𝑒 is the number of fitness evaluations, 𝐹𝑖𝑡𝑀𝑎𝑥 the maximum 

number of 𝑐𝑓𝑒 and 𝑙𝑜𝑤𝑒𝑟𝑃𝑆𝑙
  and  𝑢𝑝𝑝𝑒𝑟𝑃𝑆𝑙

 the minimum and maximum population sizes 

of the two sub-populations, respectively. 

At the end of each generation, the success rates (𝑆𝑢𝑐𝑐𝑟𝑎𝑡𝑒) of MA and DE are calculated 

separately according to: 
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𝑆𝑢𝑐𝑐𝑟𝑎𝑡𝑒𝑙,𝑔
=  

𝑠𝑖𝑙,𝑔

𝑃𝑆𝑙,𝑔
 ,          ∀𝑙 = MA 𝑜𝑟 DE (5.2) 

where 𝑠𝑖𝑙  is the total number of individuals successfully improved by each 𝑙, 𝑙 either MA 

or DE, and 𝑃𝑆𝑙 the sub-population size assigned to each 𝑙 in the current generation (𝑔). 

 

Figure 5.1: General framework of proposed bi-EA 
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Bi-EA utilizes the good search features of MA and DE by automatically switching 

between them according to their performances or 𝑆𝑢𝑐𝑐𝑟𝑎𝑡𝑒 which means that more 

emphasis is placed on the best performing algorithm during the evolutionary process. 

A brief description of each component of bi-EA is provided in the following sub-

sections. 

5.2.1 Chromosome representation and initial population 

As described in Chapter 3, every chromosome from the proposed MA is represented by 

a vector, the length of which equals the number of activities in the project represented as 

integer values. 

For DE, in the initial population, an additional random continuous vector is generated 

for each individual as a random sequence (i.e., the order of scheduling/execution each gene 

in the individual), as stated in Chapter 4. 

In bi-EA, the predecessor-successor relationships among activities in a project are 

represented by an incidence matrix which makes it easy to check the precedence constraints 

which are represented in the same way as in Chapters 3 and 4.  

For the initial population, 𝑃𝑆 individuals are randomly generated. Then, this population 

is divided into two sub-populations of size 𝑃𝑆/2, where one is a discrete space and evolved 

by MA and the other a real-value space processed by DE.  

5.2.2 Fitness calculation and proposed repairing method 

For fitness calculations, the activities of the candidate solutions are scheduled according 

to their appearances in the schedule generated by MA and their corresponding values 

(order) in the sequences vector in DE. In bi-EA, each activity can be scheduled if, and only 

if, its required amount of resources does not exceed the pre-defined resource limitation (or 

resource availability) at a specific time. Consequently, the order of activities within the 

generated schedule is modified, if needed, to satisfy the resource availability constraint. To 

compute the total makespan (project duration) of a candidate solution, as the solution in bi-
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EA is scheduled activity by activity, each time a new activity is added, the makespan of the 

project is updated to equal the finish time of the new activity. 

As described in previous chapters, RCPSPs are complex optimization problems for 

which the evolutionary process takes too long to converge if there are no feasible solutions 

in the initial population. As a solution is considered feasible if no constraints are violated, 

in Chapter 3, a repairing method for converting an infeasible solution to a feasible one to 

ensure feasibility in the initial population and speed up the convergence rate of the 

algorithm is proposed. In this technique, the activities in an individual are re-ordered to 

satisfy the predecessor-successor relationships among them and, to ensure diversity in the 

population, this is applied to a certain percentage of the population size (𝑅𝑚). 

5.2.3 MA and DE 

Bi-EA incorporates the same MA and DE processes as in Chapters 3 and 4, respectively. 

From these chapters, it is found that GA was a standout amongst the most well-known 

heuristic algorithms to deal with optimization problems and they addressed an intense and 

powerful methodology for large scale RCPSPs. One more point of interest of utilizing GA 

is that awful individuals in the initial population don’t altogether influence the final 

solution negatively, as in every generation the fitter individuals only will be survived for 

the next generation. Moreover, DE had mainly demonstrated great convergence properties 

and is principally straightforward and more reliable. 

5.2.4 Local search 

Although local search may bring less attractive solutions or get stuck at local optima, it 

leads to better solutions at times. In bi-EA, a local search is applied to the best solution 

found in both sup-populations for finding out the possibility of reducing the fitness value by 

rescheduling some of activities so as not to violate the feasibility constraints. 

In it, the last predecessor and the first successor activities of each activity (𝑗) in the 

individual are determined. If the finish time +1 of 𝑗’s last predecessor equal to the start time 

of 𝑗 and the 𝑗’s finish time +1 equal to start time of its first successor, then no gap existed 
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among them. Otherwise, the resource availability is checked at this specific time zone (the 

gab) and the activity is relocated by changing its start and finish time without violating 

resource availability or precedence constraints. Rescheduling activities by reducing their 

start and finish times to fit with their predecessor and successor activities in an individual 

leads to reduce the total duration of the project and hence obtaining solution better than the 

original one. The pseudo-code of the proposed local search is given in Figure 5.2. 

1: For j = 1 to 𝑛 do 

2: Find 𝑙_𝑃𝑟𝑒𝑗; the last predecessor of current gene (𝑗) 

3: Find 𝑓_𝑠𝑢𝑐𝑐𝑗; the first successor of current gene (𝑗) 

4: If Finish_time(𝑙_𝑃𝑟𝑒𝑗)+1≠Start_time(𝑗) or Finish_time(𝑗)≠Start_time(𝑓_𝑠𝑢𝑐𝑐𝑗)+1 

//check resource availability after adding resources required by 𝑗 to those occupied by the 

ongoing activities at 𝑡 (𝐴(𝑡)). 

5: If resource(𝐴(𝑡)) + resource(𝑗)≤ max_resource_availability,  

6: Start_time (𝑗)  ←Finish_time (𝑙_𝑃𝑟𝑒𝑗)+1 

7: Finish_time (𝑗) ←Start_time (𝑓_𝑠𝑢𝑐𝑐𝑗)+1 

8: End if 

9: End if 

10: End for 
Figure 5.2: Pseudo-code of the local search 

In order to show the influence of applying the proposed local search on an individual, an 

example is provided with problem J30.13_5 from PSPLIB with makespan of 87.  

 

Schedule= [1, 2, 3, 6, 11, 4, 10, 5, 7, 14, 12, 8, 20, 16, 15, 9, 19, 22, 17, 13, 21, 18, 23, 25, 

26, 28, 24, 27, 31, 29, 30, 32] 

 

After relocating its activities using the proposed local search, the following feasible 

individual was produced with makespan 80.  

 

Schedule= [1, 2, 3, 6, 10, 11, 4, 7, 5, 14, 12, 8, 20, 16, 15, 9, 19, 28, 17, 13, 22, 18, 21, 23, 

24, 25, 26, 27, 29, 31, 30, 32] 
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The start and finish time of each activity before and after applying the proposed local 

search to the individual are shown in Figures 5.3 and 5.4, respectively.  

 

Figure 5.3: Start and finish times of each activity in individual before applying proposed local search 

 

Figure 5.4: Start and finish times of each activity in individual after applying proposed local search 

5.2.5 Switching between MA and DE 

Initially, the two sub-populations are evolved in parallel for a cycle which is defined as a 

given number of generations, at the end of which the performances of both algorithms are 

determined by calculating their average success rates (𝑆𝑢𝑐𝑐𝑟𝑎𝑡𝑒) over this cycle (𝐶𝑆). For 
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the next cycle, one sub-population is chosen to be evolved with either MA or DE according 

to the best average 𝑆𝑢𝑐𝑐𝑟𝑎𝑡𝑒. However, the best few individuals from the non-selected sub-

population are shared in the evolutionary process of the selected one. Then, in the following 

cycle, both algorithms are re-run in parallel, each with its own sub-population, after sharing 

the current best individuals each one obtained during its search. 

This information-sharing process is very important as both algorithms are continually 

updated with the latest improvements in the population so that either one or both start to 

explore new regions of the search space instead of rediscovering the same ones. The 

process of running a ‘single sub-population’ and ‘both sub-populations’ or a ‘single-EA’ 

and ‘bi-EA’ continues in alternate cycles until one of the stopping criteria is met, a process 

shown in Figure 5.5. 

 

 

Figure 5.5: Trade-off between MA and DE for every cycle 

 

5.3 Experimental Results 

Bi-EA was coded using Matlab R2013b and implemented on a PC with a 3.4 GHz CPU 

and Windows 7, with a standard benchmark set of problems from the PSPLIB used to 

analyze its performance.  



 

Chapter 5. Bi-evolutionary Algorithm for solving RCPSPs 

 

110 

 

In bi-EA, the same data set as in the previous chapters was used with an extended 

number of test problems, that is, 2040 with different dimensions, 480 of each of the J30, 

J60 and J90 instances and 600 of the J120 ones from the PSPLIB.  

In this section, a brief parametric analysis of bi-EA is discussed and then the 

computational results from its final version presented. Finally, comparisons of the proposed 

MA, DE and bi-EA are conducted and the bi-EA compared with some state-of-the-art 

algorithms. 

To do this, results such as the average percentage deviation from the optimal for the J30 

instances and deviations from the lower bound generated by the critical path method 

(CPM), as reported in Stinson et al. (1978), for the J60, J90 and J120 were used. The 

average deviation can be calculated by: 

𝐴𝑣𝑔𝐷𝑒𝑣(%) = (
1

𝑆
∑

𝐵𝑆𝑠 − 𝐿𝐵𝑠

𝐿𝐵𝑠

𝑆

𝑠=1

) × 100 (5.3) 

Where 𝑆 is the total number of instances used, 𝐵𝑆𝑆 the best solution achieved by the 

algorithm for 𝑆 instances and 𝐿𝐵𝑆  the pre-known lower bound of a 𝑠 instance. 

5.3.1 Parameter settings 

For each test problem, 30 independent runs were executed, with the two stopping 

criteria: (i) run for up to 𝐹𝑖𝑡𝑀𝑎𝑥 fitness evaluations; or (ii) no improvement in the fitness 

value during 150 consecutive generations, where  𝐹𝑖𝑡𝑀𝑎𝑥 was set to values of 1000, 5000 

and 50,000. 

For MA, based on the parametric analyses conducted in Chapter 3, the tournament pool 

size (𝑇𝑆) was randomly selected as 2 or 3, the crossover operator (𝑝𝑐) set to 1 and the 

mutation rate (𝑝𝑚) adaptively calculated as: 

𝑝𝑚 = 𝑀𝑎𝑥 (𝜕𝑚𝑖𝑛 , 𝜕𝑚𝑎𝑥 − (𝜕𝑚𝑎𝑥 − 𝜕𝑚𝑖𝑛) × (
𝑐𝑓𝑒

𝐹𝑖𝑡𝑀𝑎𝑥
)) (5.4) 



 

Chapter 5. Bi-evolutionary Algorithm for solving RCPSPs 

 

111 

 

where  𝜕 is the lower limit of the mutation rate, 𝜕𝑚𝑎𝑥 the initial value of the mutation rate 

and 𝑐𝑓𝑒 the number of fitness evaluations, with 𝜕𝑚𝑖𝑛=0.05 and 𝜕𝑚𝑎𝑥=0.2. 

For DE, based on the parametric analyses in Chapter 4, the mutation factor (𝐹) was set 

to 0.1 with mutation probability (𝑝𝑚) equal 1. Crossover rate (𝐶𝑅) was calculated 

adaptively using equation (4.4) in Chapter 4, where 𝐶𝑅𝐿𝐵= 0.1 and 𝐶𝑅𝑈𝐵= 0.9 for creating 

a balance between a good initial value and the convergence speed. 

In general, 𝑅𝑚, which is the number of individuals repaired to be feasible using the 

proposed repairing method explained in Chapters 3 and 4, was set to 25% of each sub-

population size which calculated adaptively from 100 to 30. Finally, 𝐶𝑆 set to 50 

generations. Table 5.1 summaries the parameter settings of bi-EA. 

General MA DE 

𝑃𝑆 is adaptively reduced 

from 100 to 30 for each 

sub-population. 

Tournament selection size 

(TS) = random between 2 and 

3 

𝐶𝑅 is calculated adaptively 

from 0.1 to 0.8 

𝑅𝑚 = 25% 𝐶𝑅 = 1 Mutation rate = 1, 𝐹=0.9  

𝐶𝑆 (Cycle size) = 50 𝑝𝑚 adaptive from 0.2 to 0.05 

The greedy selection strategy 

to choose the best solution is 

adopted. 

𝑀𝑎𝑥𝐹𝑖𝑡= 1,000, 5,000 

and 50,000 
  

 

Table 5.1: Summary of parameter settings of bi-EA 

 

Also, Section 5.3.3 describes justifications of a selection of the general parameters by 

studying those using different values. 

5.3.2 Computational results 

In this sub-section, the results from the final variant of the proposed bi-EA are 

presented.   
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Tables 5.2 and 5.3 show a summary of the results for the J30, J60, J90 and J120 

instances and the success rates (%), respectively of bi-EA up to three different numbers of 

schedules of 1000, 5000 and 50,000. 

In table 5.2, the average deviation (𝐴𝐷%) from the optimal solutions for J30 and the 

critical path lower bound ones for J60, J90 and J120 from PSPLIB, the standard deviation 

of  𝐴𝐷% and the computational time (𝑡) of all instances are shown. 

No. of 

generations 

J30 J60 J90 J120 

𝑨𝑫% STD 𝒕 𝑨𝑫% STD 𝒕 𝑨𝑫% STD 𝒕 𝑨𝑫% STD 𝒕 

1,000 0.37 0.75 3.37 13.36 1.11 9.46 14.09 1.01 15.56 42.87 2.78 31.27 

5,000 0.22 0.63 14.35 12.51 1.02 40.74 13.15 0.96 48.63 40.46 2.25 165.91 

50,000 0.1 0.47 32.37 12.1 0.80 97.11 13.09 0.86 145.78 38.89 2.17 684.50 
 

Table 5.2: Summary results of all J30, J60, J90 and J120 instances with 1,000, 5,000 and 50,000 

generations 

 

In Table 5.3, the percentage of the success rate of bi-EA which can be calculated 

according to (5.5) is shown. 

𝑆𝑢𝑐𝑐𝑒𝑠𝑠 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑠 𝑜𝑝𝑡𝑖𝑚𝑎𝑙𝑙𝑦 𝑠𝑜𝑙𝑣𝑒𝑑

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑠 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒
 × 100 (5.5) 

 

No. of generations J30 J60 J90 J120 

1,000 83.33 59.38 63.96 16.33 

5,000 90 59.79 64.85 17.67 

50,000 94 60.21 64.79 19.5 
 

Table 5.3: Success rates (%) of bi-EA for J30, J60, J90 and J120 with 1,000, 5,000 and 50,000 

generations 

 

From these tables, it can be noticed that the performance of the proposed bi-EA 

increased with increasing the maximum number of generations as, for example, the 

improvement in solution-quality (𝐴𝐷%) for J30, which can be calculated using equation 

4.6, increased with increasing number of generations from 1,000 to 50,000 by 11.35% and 

from 5,000 to 50,000 by 4.26%, and for J120, by 16.26% and 9.39%, respectively. 
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In order to show the influence of the complexity factors (discussed in Chapter 3) on the 

performance of bi-EA, Tables 5.4 provides the 𝐴𝑣𝑔𝐷𝑒𝑣(%) from the critical path lower 

bound solution (𝐴𝐷%) and the average computational time (𝑡) for 48 instances of each J30, 

J60 and J90, and 60 instances of J120, where each instance contains 10 different problems, 

running with 5,000 generations for 30 independent runs grouped into 12 groups based on 

the values of the three complexity factors: resource factor (𝑅𝐹), network complexity (𝑁𝐶) and 

resource strength (𝑅𝑆). Based on this classification, each group contains four instances (40 

problems) and has same values of 𝑁𝐶 and 𝑅𝐹 and 𝑅𝑆 ranges from 0.2 to 1 for J30, J60 and 

J90. For J120, each group contains five instances (50 problems) with same 𝑁𝑆 and 𝑅𝐹 

values and 𝑅𝑆 ranges from 0.1 to 0.5. 

Group 
Complexity factors J30 J60 J90  J120 

𝑵𝑪 𝑹𝑭 𝑹𝑺 𝑨𝑫% 𝒕 𝑨𝑫% 𝒕 𝑨𝑫% 𝒕 𝑹𝑺 𝑨𝑫% 𝒕 

1 1.50 0.25 0.20-1 0.00 5.52 3.80 21.85 3.89 37.62 
0.1-

0.5 
11.94 181.58 

2 1.50 0.50 0.20-1 0.15 17.57 9.58 44.84 10.75 58.11 
0.1-

0.5 
35.30 252.62 

3 1.50 0.75 0.20-1 0.36 16.32 13.10 41.68 16.91 54.42 
0.1-

0.5 
49.45 197.47 

4 1.50 1.00 0.20-1 0.59 14.50 20.14 47.09 19.33 55.72 
0.1-

0.5 
60.77 155.59 

5 1.80 0.25 0.20-1 0.00 2.89 3.22 24.26 3.12 34.28 
0.1-

0.5 
10.17 105.71 

6 1.80 0.50 0.20-1 0.13 13.52 10.68 41.92 11.01 38.22 
0.1-

0.5 
33.46 150.25 

7 1.80 0.75 0.20-1 0.45 17.03 15.23 42.54 17.34 51.14 
0.1-

0.5 
49.96 163.30 

8 1.80 1.00 0.20-1 0.55 24.88 21.16 51.67 19.32 53.70 
0.1-

0.5 
59.69 168.66 

9 2.10 0.25 0.20-1 0.00 3.60 3.75 22.62 2.67 31.58 
0.1-

0.5 
11.26 122.71 

10 2.10 0.50 0.20-1 0.03 12.06 10.55 43.36 11.70 53.03 
0.1-

0.5 
36.95 155.59 

11 2.10 0.75 0.20-1 0.24 21.88 16.79 51.05 18.56 56.37 
0.1-

0.5 
57.49 166.33 

12 2.10 1.00 0.20-1 0.18 22.43 22.16 73.16 23.13 63.58 
0.1-

0.5 
69.10 171.14 

Average  0.22 14.35 12.51 42.17 13.14 48.98  40.46 165.91 
 

Table 5.4: Average deviations and computational times of all instances of J30, J60, J90 and J120 

grouped by values of complexity factors 
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According to Kolisch et al. (1995), the complexity of a RCPSP increases with an 

increasing 𝑅𝐹 value and decreasing both 𝑁𝐶 and 𝑅𝑆 values. From this table, it can be 

noticed that the quality of the solutions obtained by bi-EA for J30 is decreased by 

increasing 𝑅𝐹 value as from group 1 to 4, and the 𝑡 is increased as from group 5 to 8. 

However, for the hardest group, i.e. group 4 (as it has the lowest NC and the highest RF 

values), bi-EA obtained best solution in less computational time as its design prevents it to 

be trapped in a local solution while dealing with complex problems. For some other groups, 

such as 2, 5 and 9 of J90 and J120, bi-EA achieved less 𝐴𝐷% values because of the 

exploitation capability added to bi-EA by applying the proposed LS, as it performs a depth 

search to the best solutions to obtain better ones. Contrariwise, for some cases, bi-EA took 

some time to obtain the best solution because of the lack of diversity that may be happened 

due to producing individuals with fitness values similar to their parents, which is usually 

seen in problems with small number of activities.  

5.3.3 Parametric analysis 

Two parameters, 𝑃𝑆 and 𝐶𝑆, were analyzed to investigate their effects on the 

performance of bi-EA, with the  𝐴𝑣𝑔𝐷𝑒𝑣(%) of the solutions calculated using different  𝑃𝑆 

values of 30 (𝑃𝑆30), 100 (𝑃𝑆100), 200 (𝑃𝑆200), 300 (𝑃𝑆300) and adaptive from 100 to 30 for 

each sub-population (𝑠𝑢𝑏𝑎𝑑𝑎𝑝𝑡𝑃𝑆100~30 
) while using different values of 𝐶𝑆 of 10, 30, 50, 70 

and 100, with all other parameters fixed as described in Section 5.3.1. 

In the following sub-sections, the best parameter found in an experiment is fixed in the 

subsequent ones, as the selection of the parameters is done in a sequential manner. 

5.3.3.1 Effect of 𝑷𝑺 

As the number of populations is a very significant parameter in meta-heuristic 

algorithms, it is very important to define an appropriate population size to help the 

algorithm achieve the optimal solution. While a low one may cause an incomplete 

convergence and prevent global optimum solutions being obtained, on the other hand, a 

large one may require a great deal of computational time before the best solution is 
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obtained as in Figure 5.6 where 𝑃𝑆 with 300 began to achieve better 𝐴𝑣𝑔𝐷𝑒𝑣(%) than both 

100 and 200 for J120; however, it took 5.6% time more than the adaptive one. Therefore, to 

achieve a good balance between the computational time and solution quality, each sub-

population’s size was adaptively reduced according to equation (5.1). According to Figure 

5.6, the algorithm showed almost similar performance for small instances such as J30 and 

J60; however, for larger ones, J90 and J120, the figure shows that 𝑠𝑢𝑏𝑎𝑑𝑎𝑝𝑡𝑃𝑆100~30
 

obtained better results than other 𝑃𝑆 values in terms of the quality of solutions by achieving 

the lowest 𝐴𝑣𝑔𝐷𝑒𝑣(%).  

 

Figure 5.6: Trends of 𝑨𝒗𝒈𝑫𝒆𝒗(%) using different 𝑷𝑺 values 

 

5.3.3.2 Effect of 𝑪𝑺 

The 𝐶𝑆 is also a very important parameter in bi-EA as it controls the duration of either 

MA or DE by determining the number of iterations the selected EA should accomplish 

before the next performance measurement which computes both algorithms’ average 

success rates. The algorithm with the highest success rate was selected to evolve the 
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population up to the next 𝐶𝑆. In this analysis, performance measurements of both MA and 

DE were taken at the end of every 𝐶𝑆, where 𝐶𝑆 = 10, 30, 50, 70 and 100 iterations. 

Figure 5.7 shows that a 𝐶𝑆 of 50 outperformed other values in terms of 𝐴𝑣𝑔𝐷𝑒𝑣(%) as 

for J120, 𝐶𝑆 with 50 improved the quality of the obtained solutions by 7.3% than 10 and by 

2.97% than 100. This may have been because it provided a good balance by allowing 

sufficient time for the algorithm to obtain good solutions, unlike 𝐶𝑆=10 and 30, and 

prevented the algorithm from becoming trapped in a local optimum solution for a long 

time, as may have happened for 𝐶𝑆=70 and 100. 

       

Figure 5.7: Trends of 𝑨𝒗𝒈𝑫𝒆𝒗(%) using different 𝑪𝑺 values 

 

5.3.4 Comparisons with other algorithms  

To judge the performance of the proposed bi-EA, comparisons of its results with those 

obtained from previously proposed MA and DE (Chapters 3 and 4, respectively) and some 

well-known state-of-the-art-algorithms are discussed in the following sub-sections. 
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5.3.4.1 Comparison of Bi-EA and proposed MA and DE 

In order to demonstrate the benefit of bi-EA, the same data set used in previous chapters, 

which contained 16 problems from different instances of J30 and 15 from each J60, J90 and 

J120, was used, with each algorithm run for up to 𝑛 ×10,000 generations for every 30 

independent runs, where 𝑛 is the number of activities in each instance. The average 

deviations from critical path lower bound (𝐴𝑣𝑔𝐷𝑒𝑣(%)), average CPU times per run and 

numbers of optimal solutions achieved (No. of opt.) of MA, DE and bi-EA are shown in 

Table 5.5. 

From this table, it is clear that MA was the fastest but not had the best deviation values 

or solution quality. Although, DE was computationally expensive, it could achieve better 

average deviation value than MA for J60, J90 and J120 because of its capability to explore 

a wide range of the search space. Bi-EA was able to produce high-quality solutions with 

minimum deviation values than MA in large-sized instances and achieve optimal solutions 

for more test problems than both MA and DE in lower computational time than DE.  

Alg.  J30 J60 J90 J120 

MA AvgDev(%) 0.00 3.02 5.78 32.94 

Avg. CPU time 1.48 14.77 12.68 28.82 

No. of opt. 16/16 8/15 10/15 0/15 

 

DE AvgDev(%) 0.00 2.99 5.72 32.61 

Avg. CPU time 37.81 269.45 890.47 2636.90 

No. of opt. 16/16 8/15 7/15 0/15 

 

Bi-EA AvgDev(%) 0.00 2.92 5.59 30.69 

Avg. CPU time 22.51 173.545 364.46 1013.067 

No. of opt. 16/16 8/15 10/15 1/15 
 

Table 5.5: Comparisons of MA, DE and bi-EA 

To indicate the numbers of 𝐹𝑖𝑡𝑀𝑎𝑥 each algorithm used before obtaining the best 

solution, Figure 5.8 shows those of MA, DE and bi-EA used for solving 16 randomly 

selected problems of the J30 instance. It can be seen that bi-EA could reach the optimal 

solution with a much lower 𝐹𝑖𝑡𝑀𝑎𝑥  value than both MA and DE and, therefore, obtained 

good-quality solutions in less computational time. Also, DE used a high value of 𝐹𝑖𝑡𝑀𝑎𝑥 for 

solving J30.1-2, while MA and bi-EA solved same problem in much lower value and this 
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indicates that DE can effectively explores the search space. However, its exploitation 

capability of a certain solution is very slow.   

 
Figure 5.8: 𝑭𝒊𝒕𝑴𝒂𝒙 for each problem using GA/MA and bi-EA 

 

For studying the differences among the performance of MA, DE and Bi-EA in more 

meaningful way, a statistical significant testing using Wilcoxon Signed Rank Test (Corder 

and Foreman, 2009) with 10% significance level (shown in Chapter 4) and based on the 

average deviation from the critical path values (𝐿𝐵𝐶𝑃) and from the known optimal 

solutions (𝐿𝐵𝑂𝑃) is performed. 

From Table 5.6, it can be seen that there is no significant difference between the 

performances of MA, DE and Bi-EA for small instances such as J30 and J60. However, for 

large-sized instances, the table shows that Bi-EA is significantly better than both MA for 

J120 and DE for J90 in regarding to the 𝐿𝐵𝑂𝑃. Also, it is clear that there is a significant 

difference between Bi-EA and DE for J120 in regarding to 𝐿𝐵𝐶𝑃. 
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Algorithms Instance Criteria 𝑷- Value Decision 

Bi-EA  - to -  MA J30 𝑳𝑩𝑪𝑷 1.000 ≈ 
𝑳𝑩𝑶𝑷 1.000 ≈ 

J60 𝑳𝑩𝑪𝑷 0.317 ≈ 
𝑳𝑩𝑶𝑷 0.317 ≈ 

J90 𝑳𝑩𝑪𝑷 0.593 ≈ 
𝑳𝑩𝑶𝑷 0.593 ≈ 

J120 𝑳𝑩𝑪𝑷 0.100 ≈ 
𝑳𝑩𝑶𝑷 0.088 + 

Bi-EA  - to -  DE J30 𝑳𝑩𝑪𝑷 1.000 ≈ 
𝑳𝑩𝑶𝑷 1.000 ≈ 

J60 𝑳𝑩𝑪𝑷 1.000 ≈ 
𝑳𝑩𝑶𝑷 1.000 ≈ 

J90 𝑳𝑩𝑪𝑷 0.753 ≈ 
𝑳𝑩𝑶𝑷 0.069 + 

J120 𝑳𝑩𝑪𝑷 0.087 + 
𝑳𝑩𝑶𝑷 0.133 ≈ 

 

Table 5.6: Wilcoxon Signed Rank Test for MA, DE and Bi-EA 

In order to clarify the performance of bi-EA in terms of the complexity factors, the 

average deviation (𝐴𝐷%) from the critical path lower bound, the standard deviation (STD) 

of 𝐴𝐷% and the computational time (𝑡) of the four algorithms: branch and bound (B&B), 

GA, Lagrange relaxation based GA (GA_LR) and branch and cut (B&C) introduced by 

Chakrabortty et al. (2015), and described in Chapter 3, the proposed MA (discussed in 

Chapter 3) and the improved DE (discussed in Chapter 4) on the same data set (15 

problems from three different instances from J30) are shown in Table 5.6.  

In this table, groups 1, 2 and 3 have same values of both 𝑁𝐶 and 𝑅𝐹 with values 1.50 

and 0.25, respectively and three different values of 𝑅𝑆=0.20, 0.50 and 0.70, respectively. 

From this table, it can be observed that the three proposed algorithms (MA, DE and bi-

EA) had the best quality of solutions and MA was faster than others. However, DE had the 

lowest standard deviation value (STD) which demonstrates its reliability for achieving the 

optimal solutions. Consequently, bi-EA had lower computational times than DE and higher 

reliability than MA.  
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Group 1 2 3 
Average 

𝑹𝑺 0.20 0.50 0.70 

Algorithms 𝐴𝐷% 𝑡 STD 𝐴𝐷% 𝑡 STD 𝐴𝐷% 𝑡 STD 𝐴𝐷% 𝑡 STD 

Bi-EA 0 40.71 0.42 0 20.94 0.19 0 8.29 0 0 23.31 0.20 

Improved 

DE 
0 49.90 0.34 0 55.02 0.12 0 15.36 0 0 39.45 0.16 

MA 0 3.09 1.61 0 1.48 0.20 0 0.13 0 0 1.57 0.60 

B&B 0 14.8 - 0 1.0 - 0 20.8 - 0 12.20 - 

GA 1.53 830 - 0 913 - 0.67 1000 - 0.76 914.33 - 

GA_LR 1.11 145.9 - 0 74.8 - 0.20 460 - 0.44 227.00 - 

B&C 0 68.43 - 0 5.27 - 0 2.77 - 0 25.49 - 
 

Table 5.7: Average deviations and CPU times of proposed bi-EA and other algorithms for J30 with 

different values of 𝑹𝑺 

The above comparisons demonstrate the effectiveness of the use of multiple algorithm 

strategy for solving RCPSPs as the proposed bi-EA uses the good search features of both 

MA and DE. Therefore, it was able to achieve good quality solutions for some problems 

than GA (feature from DE) in lower computational times than DE (feature from GA). As a 

consequence, bi-EA achieved very low average deviations in lower 𝐹𝑖𝑡𝑀𝑎𝑥 than both MA 

and DE with different complexity levels. 

5.3.4.2 Comparisons of Bi-EA and state-of-the-art algorithms 

To compare bi-EA and other algorithms from the literature, the performance of bi-EA 

was tested by setting the maximum number of generated schedules to 1000, 5000 and 

50,000 and, for each, running the algorithm independently using 2040 test problems for 30 

runs.  

In this sub-section, comparisons of bi-EA and 18 algorithms selected from the literature 

based on their published average deviations from the optimal solution for J30 and the 

critical path lower bound for J60 and J120 are discussed. The 𝐴𝑣𝑔𝐷𝑒𝑣(%) is calculated 

using equation (5.3). In Tables 5.7 to 5.9, the 𝐴𝑣𝑔𝐷𝑒𝑣(%) values of all the comparative 

algorithms for the J30, J60 and J120 instances, respectively, with different maximum 

number of generations are listed.  
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Algorithm Reference Maximum number of schedules 

  1,000 5,000 50,000 

Bi-EA This study 0.37 0.22 0.1 

Multi-agent optimization 

algorithm 
(Zheng and Wang, 2015) 0.17 0.06 0.01 

PSO (Fahmy et al., 2014) 0.22 0.05 0.02 

Magnet-based GA (Zamani, 2013) 0.14 0.04 0.00 

Shuffled frog-leaping (Fang and Wang, 2012) - 0.21 0.18 

Neurogenetic approach (Agarwal et al., 2011) 0.13 0.10 - 

ABC (Ziarati et al., 2011) 0.98 0.57 0.20 

BSO (Ziarati et al., 2011) 0.65 0.36 0.17 

BA (Ziarati et al., 2011) 0.63 0.33 0.16 

ABC-FBI (Ziarati et al., 2011) 0.47 0.28 0.09 

BSO-FBI (Ziarati et al., 2011) 0.45 0.22 0.07 

BA-FBI (Ziarati et al., 2011) 0.42 - - 

ACOSS (Chen et al., 2010) 0.14 0.06 0.01 

Random key-based GA (Mendes et al., 2009) 0.06 0.02 0.01 

GA- random key (Hartmann, 1998) 1.03 0.56 0.23 

Sampling-LFT (Kolisch, 1996b) 1.40 1.29 1.13 

Sampling-Adaptive (Kolisch and Drexl, 1996) 0.74 0.52 - 

Sampling-random using 

parallel SGS 
 (Kolisch, 1995)    1.77 1.48 1.22 

GA- problem space (Leon and Balakrishnan, 1995) 2.08 1.59 - 
 

Table 5.8: 𝑨𝒗𝒈𝑫𝒆𝒗(%) for J30 instances 

 

 

 

 

Table 5.9: 𝑨𝒗𝒈𝑫𝒆𝒗(%) for J60 instances 

Algorithm Reference Maximum number of schedules 

  1,000 5,000 50,000 

Bi-EA This study 13.36 12.51 12.1 

Multi-agent optimization 

algorithm 
(Zheng and Wang, 2015) 11.67 10.84 10.64 

PSO (Fahmy et al., 2014) 11.86 11.19 10.85 

Magnet-based GA (Zamani, 2013) 11.33 10.94 10.65 

Shuffled frog-leaping (Fang and Wang, 2012) - 10.87 10.66 

Neurogenetic approach (Agarwal et al., 2011) 11.51 11.29 – 

ABC (Ziarati et al., 2011)   14.57  13.12 12.53 

BSO (Ziarati et al., 2011)   13.67  12.70 12.45 

BA (Ziarati et al., 2011)   13.35  12.83 12.41 

ABC-FBI (Ziarati et al., 2011)   12.61  12.24 11.23 

BSO-FBI (Ziarati et al., 2011)   12.58  12.29 11.21 

BA-FBI (Ziarati et al., 2011)   12.55  12.04 11.16 

ACOSS (Chen et al., 2010) 11.35 10.98 10.67 

Random key-based GA (Mendes et al., 2009) 11.72 11.04 10.67 

GA- random key (Hartmann, 1998) 14.68 13.32 12.25 

Sampling-LFT (Kolisch, 1996b) 13.59 13.23 12.85 

Sampling-Adaptive (Kolisch and Drexl, 1996) - 11.17 10.74 

Sampling-random using 

parallel SGS 
(Kolisch, 1995) 15.94 15.17 14.22 

GA- problem space (Leon and Balakrishnan, 1995) 14.33 13.49 - 
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Algorithm Reference 
Maximum number of 

schedules 

  1,000 5,000 50,000 

Bi-EA This study 42.87 40.46 38.89 

Multi-agent optimization 

algorithm 
(Zheng and Wang, 2015) 33.87 32.64 31.02 

PSO (Fahmy et al., 2014) 35.60 33.78 32.4 

Magnet-based GA (Zamani, 2013) 34.02 32.89 31.30 

Shuffled frog-leaping (Fang and Wang, 2012) - 33.2 31.11 

Neurogenetic approach (Agarwal et al., 2011) 34.65 34.15 - 

ABC (Ziarati et al., 2011) 43.24 39.87 37.36 

BSO (Ziarati et al., 2011) 41.18 37.86 35.70 

BA (Ziarati et al., 2011) 40.38 38.12 36.12 

ABC-FBI (Ziarati et al., 2011) 37.85 36.82 35.02 

BSO-FBI (Ziarati et al., 2011) 37.84 36.51 34.86 

BA-FBI (Ziarati et al., 2011) 37.72 36.76 34.55 

ACOSS (Chen et al., 2010) 35.19 32.48 30.56 

Random key based GA (Mendes et al., 2009) 35.87 33.03 31.44 

GA- Random key (Hartmann, 1998) 45.82 42.25 38.83 

Sampling-LFT (Kolisch, 1996b) 42.84 41.84 40.63 

Sampling-random using 

parallel SGS 
(Kolisch, 1995) 44.46 43.05 41.44 

Sampling-random using 

serial SGS 
(Kolisch, 1995) 49.25 47.61 45.60 

GA- problem space (Leon and Balakrishnan, 1995) 42.91 40.69 - 
 

Table 5.10: 𝑨𝒗𝒈𝑫𝒆𝒗(%) for J120 instances 

Table 5.7 summarizes the average percentage deviation from the optimal solution for 

J30 instances. From it, bi-EA obtains the optimal solutions for 452 out of 480 problems, i.e. 

for 94% of the instances using a very low number of fitness evaluations (=1,189 𝑐𝑓𝑒). 

Comparing with most of comparative algorithms, the proposed bi-EA shows more 

consistency for solving J30 instances with competitive average deviation values.  

Tables 5.8 and 5.9 summarize the average percentage deviation from the critical path-

based lower bound for J60 and J120 instances, respectively reported by Stinson et al. 

(1978). Bi-EA showed a competitive performance against some state-of-the-art-algorithms 

with less consumption of fitness evaluations. For J60, bi-EA used number of fitness 

evaluations = 3,790 𝑐𝑓𝑒 and for J120, = 9,925 𝑐𝑓𝑒 which demonstrate that bi-EA used a 

very low fitness evaluations which in turn saves more CPU times. 

Although bi-EA shows low average deviation values for solving RCPSPs with different 

numbers of activity such as J30, J60, J90 and J120, it doesn’t achieve the best performance 

among all and the reasons for this drawback might be that GA and DE used are not 
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powerful enough and/or not complementary to each another. Also, they might not maintain 

sufficient diversity that could help them escape from local solutions. 

5.4 Chapter Summary 

As a matter of fact, no single evolutionary algorithm (EA) is consistently able to solve 

all types of problems. In this chapter, a multiple algorithms strategy which combines the 

good search features of two well-known EAs: MA based on GA and DE is proposed. 

Performances of each algorithm were improved through the previous chapters of this thesis 

where MA and DE were discussed in Chapters 3 and 4, respectively.  

In bi-EA, to overcome the shortcomings of each MA and DE, the search capabilities of 

GA, which solves complex problems with multiple solutions and DE, which has 

demonstrated great convergence properties and its execution is relatively straightforward 

are integrated with the proposed heuristic repairing procedure (discussed in Chapter 3), 

which provides feasible solutions in the initial population. 

The algorithm is tested on a set of 2040 well-known project scheduling problems taken 

from PSPLIB, with instances of 30, 60, 90 and 120 activities and its results compared with 

those obtained by MA (Chapter 3), DE (Chapter 4) and 18 other state-of-the-art algorithms. 

The results show the capability of the proposed bi-EA to attain good quality solutions, and 

therefore validate its effectiveness for solving RCPSPs. 
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Chapter 6                                                         

Conclusions and Future Research Directions 

This chapter concludes research of this thesis by summarizing the significant technical 

contributions in the domain of resource-constrained project scheduling problems (RCPSPs) 

provided by this study and the major conclusions that can be drawn from the experiments 

conducted. Also, some conceivable directions for further research are suggested. 

6.1 Summary of Research Conducted 

In Chapter 2, several recent methods and ideas for RCPSPs in the literature were 

discussed. Of them, although hybrid methods have performed best in solving such 

problems, their actual capabilities have not yet been fully explored. As focusing on their 

individual components was necessary to provide a better understanding of their 

performances, before discussing the design aspects of the proposed bi-evolutionary 

algorithm (bi-EA), its components were investigated and improved through Chapters 3 and 

4.  

All the algorithms proposed in this thesis were tested and analyzed using two sets of 

benchmark problems taken from the well-known project scheduling library (PSPLIB) 

initiated by Kolisch et al. (1999), as demonstrated in Chapter 3. The first set, which 

contains small numbers of problems from different instances and complexity levels, was 

used as to initially test the algorithms’ performances and the second set, which contains all 

the benchmark problems for all instances in the PSPLIB, to prove the effectiveness of the 

final variant of bi-EA. 

In Chapter 3, a memetic algorithm (MA) based on the genetic algorithm (GA) was 

introduced and investigated as one component of the bi-EA. Its general framework, which 
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used a proposed heuristic repairing method for providing feasible solutions in the initial 

population and multiple local search (MLS) strategies for increasing the exploitation 

capability of the algorithm, was discussed. Also, in order to determine the best selection of 

the MA’s parameters, it was tested on the first set of test problems with different 

experiments run to analyze the effects of these parameters. The experimental results 

obtained from the final MA variant were presented and compared with those from three 

variants of the traditional GA executed on the same computer configuration and four other 

state-of-the-art algorithms for the same test problems. This comparative study validated the 

effectiveness of the MA.  

The second component of the bi-EA was the differential evolution (DE) algorithm, the 

performance of which was improved in Chapter 4 by integrating the proposed heuristic 

repairing method (discussed in Chapter 3) and amending the DE operators to be able to deal 

with the discrete nature of RCPSPs and produce new feasible solutions, even from 

infeasible ones. The improved DE was also tested on the first set of test problems in order 

to choose the best parameters. Different experiments were conducted and the performance 

of the improved DE compared with those of the MA and other state-of-the-art algorithms. 

The results demonstrated that DE obtained optimal solutions for more problems than the 

MA and performed reliably but was more expensive in terms of computational time. 

Motivated by the above results, the bi-EA, which combined the search capabilities of the 

proposed MA and DE in one algorithmic framework, was introduced in Chapter 5. The 

general framework design included: (1) sharing information between the two algorithms; 

(2) automatically switching between the algorithms according to their performances to 

place more emphasis on the best-performing EA during the evolutionary process; and (3) 

applying a proposed local search to the best solution in a bid to obtain the optimal solution. 

The bi-EA was tested using both the first and second sets of test problems in order to 

compare its performance with those of the proposed MA and DE, and best state-of-the-art 

algorithms, respectively. The results proved its effectiveness for solving complex RCPSPs 

and showed that it performed better than both the MA and DE as bi-EA was able to obtain 

optimal solutions for more test problems than the MA and required less computational time 

than DE. 
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6.2 Conclusions 

The proposed framework of the bi-EA involved multiple methodologies which were 

improved through the chapters of this thesis, examined using PSPLIB benchmark problems 

and showed to have the benefits of not only improving the quality of solutions but also 

reducing computational times. 

In the following sub-sections, the conclusions drawn concerning each algorithm are 

discussed. 

6.2.1 Genetic Algorithm (GA) 

In Chapter 3, an experimental study of a GA for RCPSPs was conducted using three 

variants of a traditional GA with mutation rates of 0.2, 0.05 and adaptively reduced from 

0.2 to 0.05, and four different algorithms selected from the literature. From the results, it 

could be concluded that a traditional GA with simple crossover and mutation operators and 

without any local search technique behaved in quite different ways for different problem 

sizes of RCPSP; for example, it was capable of producing good solutions for small problem 

instances such as J30 but, for medium (J60) and large ones (J90 and J120), performed less 

satisfactorily. Moreover, it was noted that its evolutionary process took too long to 

converge because of the lack of feasible solutions in the initial populations.  

A novel heuristic repairing method for converting some infeasible solutions in the initial 

populations to feasible ones was proposed. A new MLS strategy was included in the GA for 

solving RCPSPs, with the purpose of avoiding the algorithm being trapped in local optima 

through moving its search to more promising areas instead of rediscovering the same area 

of the search space. Comparing the proposed MA with other classical GA variants proved 

the effectiveness of the proposed repairing method as it improved the performance of the 

GA, which can be calculated using equation 4.6, by 80.66% in terms of the quality of 

solutions obtained while the MLS technique had 11.83% and used 20.21% less CPU time 

than the classical GA. 
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6.2.2 Differential Evolution (DE) Algorithm 

In Chapter 4, DE with improved crossover and mutation operators was integrated with 

the proposed heuristic repairing method and tested on the first dataset discussed in Section 

6.1. The results obtained from DE with and without the proposed repairing method and 

those from four other algorithms from the literature, branch and bound (B&B), GA, 

Lagrange relaxation-based GA (GA_LR), branch and cut (B&C) and classical variants of 

GA and DE, were compared.  

From this comparative study, it could be concluded that adopting the repairing method 

increased the percentage of quality solutions obtained by 28.96% and saved 10.62% of 

CPU time. Moreover, the improved DE saved 95% and 83% more CPU time than GA and 

GA_LR, respectively. 

Comparing the improved DE with classical variants of GA and DE showed that the 

improved DE achieved 1.06%, 17.18%, 9.92% and 1.81% better quality of solutions for 

J30, J60, J90 and J120, respectively than GA and achieved 43%, 52.16%, 19.32% and 

11.17% for J30, J60, J90 and J120, respectively better than DE. All improvement rates 

were calculated using equation 4.6 in Chapter 4. 

6.2.3 Bi-evolutionary Algorithm (Bi-EA) 

In Chapter 5, based on the results from Chapters 3 and 4, a new algorithm that utilized 

the power of multiple EAs (GA and DE) was developed. In it, an adaptive mechanism paid 

more attention to the best-performing EAs while heuristic methods were used to maintain 

the feasibility of the solutions in both initial population and new generated ones in each 

iteration. Bi-EA was tested using both the datasets described in Section 6.1 and compared 

with the previously proposed MA and DE, the four other algorithms mentioned in Section 

6.2.2 and 18 other state-of-the-art algorithms.  

This comparative study showed that bi-EA, MA and DE had same performance while 

dealing with small instances, such as J30. For larger ones, bi-EA outperformed both MA 

and DE in terms of solution quality, as the results of J60, J90 and J120 instances showed 

that bi-EA achieved better solutions-quality by 3.31%, 3.29% and 6.83% than MA, and 
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2.34%, 2.27% and 5.88% than DE, respectively. Moreover, the results demonstrated the 

effectiveness of the use of multiple algorithm strategy in solving RCPSPs as the proposed 

bi-EA was able to gather the good search features of both MA and DE. So, it was able to 

achieve better quality of solutions, 4.48 % on average, than GA (feature from DE) in lower 

computational times, 49.18 % on average, than DE (feature from GA). Consequently, bi-

EA achieved very low average deviations in lower 𝐹𝑖𝑡𝑀𝑎𝑥 than both MA and DE for 

problems in different complexity levels. All improvement rates were calculated using 

equation 4.6 in Chapter 4. 

Also, bi-EA showed competitive results against those from other state-of-the-art 

algorithms and achieved a very low average deviation from the best known solutions. 

However, it does not achieve the best performance among all. The reasons for this 

drawback might be that GA and DE used are not powerful enough. In addition, they are not 

complementary to each another. They cannot maintain sufficient diversity that could help 

them escape from local solutions. 

6.3 Future Research Directions 

The algorithms performed in this thesis could be extended in some of the following 

ways. 

 The proposed bi-EA could be extended to solve multi-mode RCPSPs (MRCPSPs) 

which are more realistic and more complex than single-mode ones.  

 The performance of the bi-EA for solving RCPSPs with uncertainty, where the 

durations of activities and their resource requirements are rarely definitively known, 

could be studied.  

 The bi-EA could be further improved using multi-operator techniques such as multi-

parent crossover (Elsayed et al., 2011a). 

 More effective MLS strategies based on a single or multiple EAs could be 

developed. 

 Some diversity techniques for maintaining the diversity of all the proposed 

algorithms, such as fitness sharing and clustering methods, could be adopted. 
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 The proposed algorithms could be extended to solve increased-demand multi-

objective optimization problems. 
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Appendices 

In this section, the detailed results from all proposed algorithms including the best, 

median, mean, worst, standard deviation (STD), average CPU time (𝑡) per run in seconds, 

average deviation of the best solution obtained by the proposed algorithms from the optimal 

solutions (𝐿𝐵𝑂𝑃) and from the critical path lower bound solution (𝐿𝐵𝐶𝑃) are presented in 

four appendices. 

1. Appendix A: computational results of 16 problems from J30 instance and 15 

from each of J60, J90 and J120 ones obtained by the proposed MA discussed in 

Chapter 3. 

2. Appendix B: computational results of 16 problems from J30 instance and 15 

from each of J60, J90 and J120 ones obtained by the improved DE discussed in 

Chapter 4. 

3. Appendix C: computational results of 16 problems from J30 instance and 15 

from each of J60, J90 and J120 ones obtained by the proposed bi-evolutionary 

(bi-EA) algorithm discussed in Chapter 5. 

4. Appendix D: computational results of 480 problems from each of J30, J60 and 

J90, and 600 problems of J120 with a total of 2040 problems obtained by the 

proposed bi-evolutionary (bi-EA) algorithm. 
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Appendix A 

 

Table 1                                                                                                                                 

The detailed results of 16 problems of J30 obtained by MA 

The results are obtained from 30 runs with up to 𝑛 × 10,000 fitness evaluations for each, 

where 𝑛=30. 

 

 

 

 

 

 

 

 

 

Prob. No Best Median Mean Worst STD 𝒕 𝑳𝑩𝑶𝑷 𝑳𝑩𝑪𝑷 

J30, 1-1 43 49 47.57 53 4.27 5.28 0 0 

J30, 1-2 47 48 47.93 54 1.28 3.11 0 0 

J30, 1-3 47 47 48.20 51 1.86 3.81 0 0 

J30, 1-4 62 62 62.10 64 0.40 0.21 0 0 

J30, 1-5 39 40 39.93 40 0.25 3.04 0 0 

J30, 2-1 38 38 38 38 0 6.02 0 0 

J30, 2-2 51 51 51.93 53 1.01 0.73 0 0 

J30, 2-3 43 43 43 43 0 0.22 0 0 

J30, 2-4 43 43 43 43 0 0.11 0 0 

J30, 2-5 51 51 51 51 0 0.31 0 0 

J30, 3-1 72 72 72 72 0 0.20 0 0 

J30, 3-2 40 40 40 40 0 0.14 0 0 

J30, 3-3 57 57 57 57 0 0.10 0 0 

J30, 3-4 98 98 98 98 0 0.07 0 0 

J30, 3-5 53 53 53 53 0 0.16 0 0 

J30, 4-1 49 49 49 49 0 0.18 0 0 

Total Average  0.57 1.48 0 0 
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Table 2                                                                                                                                 

The detailed results of 15 problems of J60 obtained by MA 

The results are obtained from 30 runs with up to 𝑛 × 10,000 fitness evaluations for each, 

where 𝑛=60. 

 

Table 3                                                                                                                                 

The detailed results of 15 problems of J90 obtained by MA 

The results are obtained from 30 runs with up to 𝑛 × 10,000 fitness evaluations for each, 

where 𝑛=90. 

Prob. No Best Median Mean Worst STD 𝒕 𝑳𝑩𝑶𝑷 𝑳𝑩𝑪𝑷 

J60, 1-1 77 82 80.57 90 3 22.89 0 0.00 

J60, 1-2 70 75 75.5 88 3.43 27.55 2.94 7.69 

J60, 1-3 70 76 74.88 78 2.07 7.99 2.94 4.48 

J60, 1-4 91 93 93.68 100 1.95 8.06 0 15.19 

J60, 1-5 76 81 80.67 83 1.67 15.81 4.11 11.76 

J60, 2-1 65 65 65.77 69 1.43 11.99 0 0.00 

J60, 2-2 82 82 82 82 0 16.1 0 0.00 

J60, 2-3 78 78 78 78 0 5.67 0 1.30 

J60, 2-4 78 78 78 78 0 3.92 0 0.00 

J60, 2-5 54 54 54.57 59 1.14 32.55 0 1.89 

J60, 3-1 60 60.5 61.4 68 1.87 16.57 0 0.00 

J60, 3-2 69 69 69 69 0 3.33 0 0.00 

J60, 3-3 105 105 105 105 0 39.55 0 2.94 

J60, 3-4 81 81 81 81 0 6.13 0 0.00 

J60, 3-5 83 83 83 83 0 3.51 0 0.00 

Total Average  1.10 14.77 0.67 3.02 

Prob. No Best Median Mean Worst STD 𝒕 𝑳𝑩𝑶𝑷 𝑳𝑩𝑪𝑷 

J90, 1-1 85 91 91.1 98 3.59 20.68 16.44 26.87 

J90, 1-2 99 105 104.7 113 3.75 21.15 7.61 12.5 

J90, 1-3 71 79 77.93 84 3.23 12.99 7.58 20.34 

J90, 1-4 92 98 97.6 104 2.9 26.31 6.98 21.05 

J90, 1-5 89 97.5 96.67 107 5.18 14.19 2.3 5.95 

J90, 2-1 96 96 96 96 0 3.19 0 0 

J90, 2-2 114 114 114 114 0 2.08 0 0 

J90, 2-3 75 75 75.57 77 0.68 13.71 0 0 

J90, 2-4 70 70 70.13 73 0.57 9.61 0 0 

J90, 2-5 100 101 101.2 105 1.52 18.61 0 0 

J90, 3-1 81 81 81 81 0 3.29 0 0 

J90, 3-2 84 84 84 84 0 1.21 0 0 

J90, 3-3 71 72 72.03 75 1.13 22.62 0 0 

J90, 3-4 104 104 104 104 0 1.03 0 0 

J90, 3-5 75 77 77.7 83 1.7 19.49 0 0 

Total Average  1.62 12.68 2.73 5.78 
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Table 4                                                                                                                                 

The detailed results of 15 problems of J120 obtained by MA 

The results are obtained from 30 runs with up to 𝑛 × 10,000 fitness evaluations for each, 

where 𝑛=120. 

 

 

 

 

 

 

 

 

 

 

 

Prob. No Best Median Mean Worst STD 𝒕 𝑳𝑩𝑶𝑷 𝑳𝑩𝑪𝑷 

J120, 1-1 129 135.5 137.07 152 5.19 44.51 22.86 30.30 

J120, 1-2 135 141 142.67 157 5.29 27.58 23.85 56.98 

J120, 1-3 142 151 151.13 163 5.90 25.14 13.6 73.17 

J120, 1-4 117 124.5 124.53 135 3.75 35.75 20.62 48.10 

J120, 1-5 140 147 147.97 165 5.19 27.27 25 48.94 

J120, 2-1 99 105.5 105.10 111 3.03 33.94 13.79 41.43 

J120, 2-2 88 94 95.50 105 4.34 39.12 17.33 20.55 

J120, 2-3 116 120 120.43 128 2.67 28.53 26.09 48.72 

J120, 2-4 114 122 122.13 132 4.88 18.52 20 29.55 

J120, 2-5 124 133 132.17 139 4.09 31.12 20.39 36.26 

J120, 3-1 96 101.5 101.63 110 3.70 16.77 20 21.52 

J120, 3-2 93 99.5 99.67 107 3.31 14.26 5.68 5.68 

J120, 3-3 105 112 111.37 117 3.07 26.64 5 5.00 

J120, 3-4 82 87 86.87 92 2.64 23.38 15.49 15.49 

J120, 3-5 91 95 95.03 106 3.24 39.79 8.33 12.35 

Total Average  4.02 28.82 17.20 32.94 
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Table 5                                                                                                                                 

The detailed results of 16 problems of J30 obtained by improved DE 

The results are obtained from 30 runs with up to 𝑛 × 10,000 fitness evaluations for each, 

where 𝑛=30. 

 

 

 

 

 

 

 

 

Prob. No Best Median Mean Worst STD 𝒕 𝑳𝑩𝑶𝑷 𝑳𝑩𝑪𝑷 

J30, 1-1 43 43 43 43 0 90.5654 0 0 

J30, 1-2 47 47 47 47 0 29.2564 0 0 

J30, 1-3 47 47 47 47 0 26.8152 0 0 

J30, 1-4 62 62 62 62 0 40.0727 0 0 

J30, 1-5 39 39 39 39 0 62.7958 0 0 

J30, 2-1 38 38 38 38 0 12.778 0 0 

J30, 2-2 51 51 51 51 0 203.8402 0 0 

J30, 2-3 43 43 43 43 0 23.7015 0 0 

J30, 2-4 43 43 43 43 0 10.9883 0 0 

J30, 2-5 51 51 51 51 0 23.7808 0 0 

J30, 3-1 72 72 72 72 0 25.6995 0 0 

J30, 3-2 40 40 40 40 0 18.9279 0 0 

J30, 3-3 57 57 57 57 0 12.9811 0 0 

J30, 3-4 98 98 98 98 0 9.115 0 0 

J30, 3-5 53 53 53 53 0 10.0562 0 0 

J30, 4-1 83 83 83 83 0 3.507305 0 0 

Total Average  0 37.81 0 0 
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Table 6                                                                                                                                 

The detailed results of 15 problems of J60 obtained by improved DE 

The results are obtained from 30 runs with up to 𝑛 × 10,000 fitness evaluations for each, 

where 𝑛=60. 

Table 7                                                                                                                                 

The detailed results of 15 problems of J90 obtained by improved DE 

The results are obtained from 30 runs with up to 𝑛 × 10,000 fitness evaluations for each, 

where 𝑛=90. 

Prob. No Best Median Mean Worst STD 𝒕 𝑳𝑩𝑶𝑷 𝑳𝑩𝑪𝑷 

J60, 1-1 77 77 77 77 0 179.6 0 0 

J60, 1-2 70 70 70 70 0 891.05 2.94 7.69 

J60, 1-3 71 71 71 71 0 785.1 4.41 5.97 

J60, 1-4 93 93 93 93 0 375.94 2.2 17.72 

J60, 1-5 73 73 73 73 0 389.18 0 7.35 

J60, 2-1 65 65 65 65 0 136.79 0 0 

J60, 2-2 82 82 82 82 0 164.07 0 0 

J60, 2-3 78 78 78 78 0 120.22 0 1.3 

J60, 2-4 78 78 78 78 0 130.37 0 0 

J60, 2-5 54 54 54 54 0 219.72 0 1.89 

J60, 3-1 60 60 60 60 0 316.16 0 0 

J60, 3-2 69 69 69 69 0 104.78 0 0 

J60, 3-3 105 105 105 105 0 36.7 0 2.94 

J60, 3-4 81 81 81 81 0 92.21 0 0 

J60, 3-5 83 83 83 83 0 99.85 0 0 

Total Average  0 269.45 0.64 2.99 

Prob. No Best Median Mean Worst STD 𝒕 𝑳𝑩𝑶𝑷 𝑳𝑩𝑪𝑷 

J90, 1-1 80 80 80 80 0.00 1815.03 17.81 19.40299 

J90, 1-2 92 92 92 92 0.00 1923.39 8.70 4.545455 

J90, 1-3 70 70 70 70 0.00 1668.02 10.61 18.64407 

J90, 1-4 105 105 105 105 0.00 1553.28 8.14 38.15789 

J90, 1-5 87 87 87 87 0.00 1273.52 3.45 3.571429 

J90, 2-1 96 96 96 96 0.00 184.00 0.00 0 

J90, 2-2 114 114 114 114 0.00 409.28 0.00 0 

J90, 2-3 75 75 75 75 0.00 290.51 0.00 0 

J90, 2-4 70 70 70 70 0.00 402.14 0.00 0 

J90, 2-5 100 100 100 100 0.00 1002.71 1.00 0 

J90, 3-1 81 81 81 81 0.00 216.75 0.00 0 

J90, 3-2 84 84 84 84 0.00 257.95 0.00 0 

J90, 3-3 72 72 72 72 0.00 1159.55 5.63 1.408451 

J90, 3-4 104 104 104 104 0.00 132.90 0.00 0 

J90, 3-5 75 75 75 75 0.00 1067.98 1.33 0 

Total Average  0.00 890.47 3.78 5.72 
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Table 8                                                                                                                                 

The detailed results of 15 problems of J120 obtained by improved DE 

The results are obtained from 30 runs with up to 𝑛 × 10,000 fitness evaluations for each, 

where 𝑛=60. 

 

 

 

 

 

 

 

 

 

 

Prob. No Best Median Mean Worst STD 𝒕 𝑳𝑩𝑶𝑷 𝑳𝑩𝑪𝑷 

J120, 1-1 129 129 129 129 0 4249.45 22.86 30.3 

J120, 1-2 142 142 142 142 0 3697.89 30.28 65.12 

J120, 1-3 137 137 137 137 0 2732.47 9.6 67.07 

J120, 1-4 121 121 121 121 0 2313.81 24.74 53.16 

J120, 1-5 127 127 127 127 0 4131.49 13.39 35.11 

J120, 2-1 100 100 100 100 0 2233.82 14.94 42.86 

J120, 2-2 91 91 91 91 0 2470.03 21.33 24.66 

J120, 2-3 110 110 110 110 0 3205.18 19.57 41.03 

J120, 2-4 109 109 109 109 0 2950.46 14.74 23.86 

J120, 2-5 132 132 132 132 0 1646.67 28.16 45.05 

J120, 3-1 95 95 95 95 0 1964.78 18.75 20.25 

J120, 3-2 91 91 91 91 0 2175.33 3.41 3.41 

J120, 3-3 106 106 106 106 0 2119.1 6 6 

J120, 3-4 80 80 80 80 0 2287.51 12.68 12.68 

J120, 3-5 96 96 96 96 0 1375.52 14.29 18.52 

Total Average  0 2636.90 16.98 32.61 
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Table 9                                                                                                                                 

The detailed results of 16 problems of J30 obtained by bi-EA 

The results are obtained from 30 runs with up to 𝑛 × 10,000 fitness evaluations for each, 

where 𝑛=30. 

 

 

 

 

 

 

 

Prob. No Best Median Mean Worst STD 𝒕 𝑳𝑩𝑶𝑷 𝑳𝑩𝑪𝑷 

J30, 1-1 43 43 43 43 0 49.83 0 0 

J30, 1-2 47 48 47.67 49 0.55 40.88 0 0 

J30, 1-3 47 47 47 47 0 20.21 0 0 

J30, 1-4 62 62 62.53 64 0.63 46.93 0 0 

J30, 1-5 39 40 40.17 44 0.91 45.69 0 0 

J30, 2-1 38 38 38 38 0 25.35 0 0 

J30, 2-2 51 53 52.23 53 0.97 35.58 0 0 

J30, 2-3 43 43 43 43 0 21.89 0 0 

J30, 2-4 43 43 43 43 0 9.57 0 0 

J30, 2-5 51 51 51 51 0 12.33 0 0 

J30, 3-1 72 72 72 72 0 10.7 0 0 

J30, 3-2 40 40 40 40 0 12.32 0 0 

J30, 3-3 57 57 57 57 0 6.67 0 0 

J30, 3-4 98 98 98 98 0 4.16 0 0 

J30, 3-5 53 53 53 53 0 7.6 0 0 

J30, 4-1 83 83 83 83 0 10.42 0 0 

Total Average  0.19 22.51 0 0 
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Table 10                                                                                                                                 

The detailed results of 15 problems of J60 obtained by bi-EA 

The results are obtained from 30 runs with up to 𝑛 × 10,000 fitness evaluations for each, 

where 𝑛=60. 

Table 11                                                                                                                                 

The detailed results of 15 problems of J90 obtained by bi-EA 

The results are obtained from 30 runs with up to 𝑛 × 10,000 fitness evaluations for each, 

where 𝑛=90. 

Prob. No Best Median Mean Worst STD 𝒕 𝑳𝑩𝑶𝑷 𝑳𝑩𝑪𝑷 

J60, 1-1 77 80 80.27 86 2.8 251.58 0 0.00 

J60, 1-2 70 70 70 70 0 332.1 2.94 7.69 

J60, 1-3 70 73 73.27 78 2.53 261.3 2.94 4.48 

J60, 1-4 91 93 92.8 95 0.96 219.7 0 15.19 

J60, 1-5 75 78 78.27 84 2.41 294.15 2.74 10.29 

J60, 2-1 65 65 65 65 0 158.63 0 0.00 

J60, 2-2 82 82 82 82 0 87.8 0 0.00 

J60, 2-3 78 79 79.07 83 1.23 140.23 0 1.30 

J60, 2-4 78 78 78 78 0 86.96 0 0.00 

J60, 2-5 54 55 55.47 60 1.33 251.77 0 1.89 

J60, 3-1 60 62 62.37 67 1.61 256.47 0 0.00 

J60, 3-2 69 69 69 69 0 59.2 0 0.00 

J60, 3-3 105 105 105 105 0 36.66 0 2.94 

J60, 3-4 81 81 81 81 0 92.36 0 0.00 

J60, 3-5 83 83 83 83 0 74.25 0 0.00 

Total Average  0.86 173.54 0.57 2.92 

Prob. No Best Median Mean Worst STD 𝒕 𝑳𝑩𝑶𝑷 𝑳𝑩𝑪𝑷 

J90, 1-1 85 92.5 92.47 105 4.28 516.38 16.44 26.87 

J90, 1-2 93 103 103.27 118 4.9 523.95 1.09 5.68 

J90, 1-3 74 80 80.73 92 4.11 470.71 12.12 25.42 

J90, 1-4 92 100.5 101.1 111 4.43 350.76 6.98 21.05 

J90, 1-5 88 95 95.7 106 4.65 519.88 1.15 4.76 

J90, 2-1 96 96 96 96 0 153.11 0 0 

J90, 2-2 114 114 114.13 116 0.43 197.41 0 0 

J90, 2-3 75 78.5 79 86 3.28 309.06 0 0 

J90, 2-4 70 71.5 71.9 75 1.79 430.59 0 0 

J90, 2-5 100 103 103.13 110 2.96 506.29 0 0 

J90, 3-1 81 81 81 81 0 177.34 0 0 

J90, 3-2 84 84 84 84 0 171.75 0 0 

J90, 3-3 71 75 75.27 82 2.73 302.74 0 0 

J90, 3-4 104 104 104 104 0 106.72 0 0 

J90, 3-5 75 77 77.13 83 1.87 730.31 0 0 

Total Average  2.36 364.47 2.52 5.59 
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Table 12                                                                                                                                 

The detailed results of 15 problems of J120 obtained by bi-EA 

The results are obtained from 30 runs with up to 𝑛 × 10,000 fitness evaluations for each, 

where 𝑛=120. 

 

 

 

 

 

 

 

 

 

 

 

Prob. No Best Median Mean Worst STD 𝒕 𝑳𝑩𝑶𝑷 𝑳𝑩𝑪𝑷 

J120, 1-1 133 147.5 146.5 166 7.9 892.9 26.67 34.34 

J120, 1-2 137 150 150.3 168 8 836.3 25.69 59.30 

J120, 1-3 134 149 149 169 9.2 1255 7.20 63.41 

J120, 1-4 121 133.5 134 148 6.6 1307.2 24.74 53.16 

J120, 1-5 132 150 149.7 164 7.9 840.7 17.86 40.43 

J120, 2-1 96 104 105 121 6.1 1013.3 10.34 37.14 

J120, 2-2 87 93 95.1 115 6.2 681.7 16.00 19.18 

J120, 2-3 111 124 124.1 136 7.4 1165 20.65 42.31 

J120, 2-4 112 124 124.2 141 7.5 1249.8 17.89 27.27 

J120, 2-5 125 138.5 139 153 7.6 1105.5 21.36 37.36 

J120, 3-1 95 100 100.4 113 4.5 683.3 18.75 20.25 

J120, 3-2 96 100 102.9 118 6 855.6 9.09 9.09 

J120, 3-3 100 106 106.8 114 3.3 1058.9 0.00 0.00 

J120, 3-4 77 85.5 85.5 92 4.2 1120.6 8.45 8.45 

J120, 3-5 88 97 97.6 110 5.3 1130.2 4.76 8.64 

Total Average  6.50 1013.06 15.30 30.69 
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In the following tables, the number of fitness evaluations (𝐹𝐸) used by bi-EA for solving 

each problem is also given.  

 

Table 13                                                                                                                                 

The detailed results of 480 problems of J30 obtained by bi-EA 

The results are obtained from 30 runs with up to 50,000 fitness evaluations for each. 

 

Prob. No Best Median Mean Worst STD 𝒕 𝑭𝑬 𝑳𝑩𝑶𝑷 𝑳𝑩𝑪𝑷 

J30,1-1 43 43 43 43 0 2.81 200 0 0 

J30,1-2 47 47 47 47 0 1.83 199 0 0 

J30,1-3 47 47 47 47 0 1.52 199 0 0 

J30,1-4 62 63 62.53 63 0.51 67.72 133 0 0 

J30,1-5 39 39 39.23 40 0.43 35.55 137 0 0 

J30,1-6 48 49 48.63 49 0.49 81.28 139 0 0 

J30,1-7 60 60 60 60 0 1.11 133 0 0 

J30,1-8 53 53 53.1 56 0.55 19.46 133 0 0 

J30,1-9 49 49 49.47 52 0.82 43.42 209 0 0 

J30,1-10 45 45 45.1 46 0.31 15.06 134 0 0 

J30,2-1 38 38 38 38 0 1.24 133 0 0 

J30,2-2 51 51 51 51 0 3.47 135 0 0 

J30,2-3 43 43 43 43 0 2.55 134 0 0 

J30,2-4 43 43 43 43 0 0.99 132 0 0 

J30,2-5 51 51 51 51 0 1.02 133 0 0 

J30,2-6 47 47 47 47 0 1 133 0 0 

J30,2-7 47 47 47 47 0 1.03 133 0 0 

J30,2-8 54 54 54 54 0 1.03 133 0 0 

J30,2-9 54 54 54 54 0 1.14 133 0 0 

J30,2-10 43 43 43 43 0 5.35 133 0 0 

J30,3-1 72 72 72 72 0 0.98 133 0 0 

J30,3-2 40 40 40 40 0 0.95 133 0 0 

J30,3-3 57 57 57 57 0 1.05 133 0 0 

J30,3-4 98 98 98 98 0 0.99 133 0 0 

J30,3-5 53 53 53 53 0 1.04 132 0 0 

J30,3-6 54 54 54 54 0 0.98 133 0 0 

J30,3-7 48 48 48 48 0 0.96 132 0 0 

J30,3-8 54 54 54 54 0 1.01 132 0 0 

J30,3-9 65 65 65 65 0 1.07 133 0 0 
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J30,3-10 59 59 59 59 0 1.03 132 0 0 

J30,4-1 49 49 49 49 0 0.96 132 0 0 

J30,4-2 60 60 60 60 0 1.02 133 0 0 

J30,4-3 47 47 47 47 0 1.02 133 0 0 

J30,4-4 57 57 57 57 0 0.97 132 0 0 

J30,4-5 59 59 59 59 0 1.02 132 0 0 

J30,4-6 45 45 45 45 0 0.96 133 0 0 

J30,4-7 56 56 56 56 0 0.96 132 0 0 

J30,4-8 55 55 55 55 0 0.99 133 0 0 

J30,4-9 38 38 38 38 0 1.03 133 0 0 

J30,4-10 48 48 48 48 0 1.07 133 0 0 

J30,5-1 53 53 53.77 58 1.55 58.35 783 0 0 

J30,5-2 82 83 83.2 85 1.1 101.1 200 0 0 

J30,5-3 76 82 80.5 83 2.47 108.49 1635 0 0 

J30,5-4 63 65 64.97 69 1.75 72 542 0 0 

J30,5-5 76 79 77.77 81 1.61 44.46 77 0 0 

J30,5-6 64 66.5 66.7 72 2.2 84.9 1066 0 0 

J30,5-7 76 81 80.3 85 2.28 99.77 11477 0 0 

J30,5-8 67 67 69.33 75 2.83 49.81 349 0 0 

J30,5-9 49 50 50.3 53 0.84 90.56 2895 0 0 

J30,5-10 70 72 71.77 79 1.96 49.19 346 0 0 

J30,6-1 59 60 59.7 61 0.65 49.64 420 0 0 

J30,6-2 51 53 52.77 57 1.19 60.21 387 0 0 

J30,6-3 48 49 49 50 0.95 45.09 499 0 0 

J30,6-4 42 42 42.67 45 0.88 38.38 78 0 0 

J30,6-5 67 67 67 67 0 1.71 80 0 0 

J30,6-6 37 37 37.3 39 0.6 20.62 77 0 0 

J30,6-7 46 46 46 46 0 3.93 77 0 0 

J30,6-8 39 41 40.83 43 1.29 58.07 496 0 0 

J30,6-9 51 51 51 51 0 4.28 76 0 0 

J30,6-10 61 61 61.97 66 1.52 42.26 229 0 0 

J30,7-1 55 55 55 55 0 0.56 76 0 0 

J30,7-2 42 42 42 42 0 1.13 76 0 0 

J30,7-3 42 42 42 42 0 0.72 76 0 0 

J30,7-4 44 44 44.47 45 0.51 30.47 77 0 0 

J30,7-5 44 44 44.33 45 0.48 27.1 191 0 0 

J30,7-6 35 35 35 35 0 0.57 76 0 0 

J30,7-7 50 50 50.7 53 1.29 16.95 77 0 0 

J30,7-8 44 44 44 44 0 0.89 76 0 0 

J30,7-9 60 60 60 60 0 0.68 77 0 0 

J30,7-10 49 49 49.27 51 0.69 9.72 77 0 0 

J30,8-1 44 44 44 44 0 0.57 76 0 0 

J30,8-2 51 51 51 51 0 0.51 76 0 0 

J30,8-3 53 53 53 53 0 0.52 76 0 0 

J30,8-4 48 48 48 48 0 0.55 76 0 0 

J30,8-5 58 58 58 58 0 0.57 76 0 0 

J30,8-6 47 47 47 47 0 0.54 76 0 0 

J30,8-7 41 41 41 41 0 0.53 76 0 0 

J30,8-8 51 51 51 51 0 0.55 76 0 0 

J30,8-9 39 39 39 39 0 0.52 76 0 0 

J30,8-10 67 67 67 67 0 0.51 76 0 0 

J30,9-1 83 83 83.27 88 0.94 15.39 233 0 0 

J30,9-2 92 94 95.97 103 3.07 66.32 268 0 0 
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J30,9-3 70 73 73.07 78 2.16 94.65 11862 2.94 2.94 

J30,9-4 72 74 73.83 77 1.34 88.18 11781 1.41 1.41 

J30,9-5 70 72 72.07 78 2.33 41.62 124 0 0 

J30,9-6 59 63 63 67 2.15 84 1179 0 0 

J30,9-7 65 68 67.6 72 1.81 94.4 11935 3.17 3.17 

J30,9-8 91 92 91.97 93 0.41 68.49 2172 0 0 

J30,9-9 64 65 65.57 69 1.45 89.16 11976 1.59 1.59 

J30,9-10 88 90 89.6 91 0.89 68.23 647 0 0 

J30,10-1 42 42 42.03 43 0.18 8.67 83 0 0 

J30,10-2 56 57 56.9 58 0.48 72.32 1447 0 0 

J30,10-3 62 63.5 63.47 64 0.57 94.51 5207 0 0 

J30,10-4 58 59 59.07 63 1.2 80.83 652 0 0 

J30,10-5 41 42 41.63 43 0.61 73.31 274 0 0 

J30,10-6 44 45 45.17 47 0.75 93.06 690 0 0 

J30,10-7 49 49 49.13 50 0.35 25.31 159 0 0 

J30,10-8 54 54 54.6 58 0.93 46.39 115 0 0 

J30,10-9 49 49 49 49 0 0.8 76 0 0 

J30,10-10 41 42 42.03 44 0.49 94.29 3962 0 0 

J30,11-1 54 55 54.6 56 0.56 58.06 611 0 0 

J30,11-2 56 56 56.43 58 0.82 31.92 77 0 0 

J30,11-3 81 81 81 81 0 0.8 76 0 0 

J30,11-4 63 63 63.03 64 0.18 5.34 77 0 0 

J30,11-5 49 50 49.87 52 0.86 63.65 420 0 0 

J30,11-6 44 44 44 44 0 7.02 77 0 0 

J30,11-7 36 36 36.17 37 0.38 29.72 275 0 0 

J30,11-8 62 62 62 62 0 1.98 77 0 0 

J30,11-9 67 67 67 67 0 0.8 76 0 0 

J30,11-10 38 38 38 38 0 2.54 81 0 0 

J30,12-1 47 47 47 47 0 0.74 76 0 0 

J30,12-2 46 46 46 46 0 0.76 76 0 0 

J30,12-3 37 37 37 37 0 0.71 76 0 0 

J30,12-4 63 63 63 63 0 0.73 76 0 0 

J30,12-5 47 47 47 47 0 0.7 76 0 0 

J30,12-6 53 53 53 53 0 0.76 76 0 0 

J30,12-7 55 55 55 55 0 0.72 76 0 0 

J30,12-8 35 35 35 35 0 0.68 76 0 0 

J30,12-9 52 52 52 52 0 0.77 76 0 0 

J30,12-10 57 57 57 57 0 0.7 76 0 0 

J30,13-1 60 62 61.77 64 0.86 127.94 11788 3.45 3.45 

J30,13-2 62 64 64.27 68 1.2 126.07 5778 0 0 

J30,13-3 76 80 80.2 85 2.14 131.66 3422 0 0 

J30,13-4 73 75 74.87 77 1.04 120.86 11783 1.39 1.39 

J30,13-5 68 70 70.47 73 1.53 132.94 11706 1.49 1.49 

J30,13-6 65 66 66.53 69 1.11 126.63 11784 1.56 1.56 

J30,13-7 78 82 81.9 86 1.56 117.3 11676 1.3 1.3 

J30,13-8 107 113 111.97 118 2.99 102.93 11667 0.94 0.94 

J30,13-9 72 74.5 74.4 78 2.28 123.42 11934 1.41 1.41 

J30,13-10 64 65 66.17 73 2.41 110.73 2585 0 0 

J30,14-1 50 50.5 50.63 53 0.76 59.98 82 0 0 

J30,14-2 53 54 54.07 56 0.78 98.76 1940 0 0 

J30,14-3 58 60 59.8 61 0.96 115.39 7488 0 0 

J30,14-4 50 51 51.17 54 0.91 88.01 1027 0 0 

J30,14-5 52 54 53.8 56 1.03 105.86 7715 0 0 
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J30,14-6 35 35 35.6 38 0.77 70.52 652 0 0 

J30,14-7 50 51 51.27 54 1.05 97.46 1530 0 0 

J30,14-8 54 54 54 54 0 1.44 76 0 0 

J30,14-9 47 48 47.7 50 0.65 102.39 11478 2.17 2.17 

J30,14-10 61 61 61.33 63 0.76 28.88 153 0 0 

J30,15-1 46 46 46 46 0 0.89 76 0 0 

J30,15-2 47 47 47 47 0 0.8 76 0 0 

J30,15-3 48 48 48 48 0 0.91 76 0 0 

J30,15-4 48 48 48 48 0 0.77 76 0 0 

J30,15-5 58 59 59.33 61 0.76 106.9 5588 0 0 

J30,15-6 67 67 67 67 0 0.85 76 0 0 

J30,15-7 47 47 47 47 0 1.42 76 0 0 

J30,15-8 50 50 50 50 0 1.66 77 0 0 

J30,15-9 54 54 54 54 0 0.88 76 0 0 

J30,15-10 65 65 65 65 0 0.92 76 0 0 

J30,16-1 51 51 51 51 0 0.83 76 0 0 

J30,16-2 48 48 48 48 0 0.78 76 0 0 

J30,16-3 36 36 36 36 0 0.79 76 0 0 

J30,16-4 47 47 47 47 0 0.74 76 0 0 

J30,16-5 51 51 51 51 0 0.76 76 0 0 

J30,16-6 51 51 51 51 0 0.72 76 0 0 

J30,16-7 34 34 34 34 0 0.73 76 0 0 

J30,16-8 44 44 44 44 0 0.72 76 0 0 

J30,16-9 44 44 44 44 0 0.77 76 0 0 

J30,16-10 51 51 51 51 0 0.78 76 0 0 

J30,17-1 64 64 64.87 66 1.01 37.17 153 0 0 

J30,17-2 68 68 68 68 0 0.99 77 0 0 

J30,17-3 60 60 60 60 0 0.66 76 0 0 

J30,17-4 49 50 50.3 54 1.53 64.98 77 0 0 

J30,17-5 47 48 47.93 50 0.98 55.79 79 0 0 

J30,17-6 63 63 63 63 0 0.72 76 0 0 

J30,17-7 57 57 57.2 59 0.55 9.35 77 0 0 

J30,17-8 61 61 61 61 0 3.22 77 0 0 

J30,17-9 48 48 48.13 50 0.43 9.52 76 0 0 

J30,17-10 66 66 66.3 75 1.64 3.45 76 0 0 

J30,18-1 53 53 53 53 0 0.76 76 0 0 

J30,18-2 55 55 55 55 0 0.67 76 0 0 

J30,18-3 56 56 56.7 59 1.29 18.35 76 0 0 

J30,18-4 70 70 70 70 0 0.67 76 0 0 

J30,18-5 52 52 52 52 0 0.89 77 0 0 

J30,18-6 62 62 63.4 65 1.52 34.75 78 0 0 

J30,18-7 48 48 48 48 0 0.7 76 0 0 

J30,18-8 52 52 52 52 0 0.71 76 0 0 

J30,18-9 47 47 47 47 0 1.69 76 0 0 

J30,18-10 49 49 49.1 50 0.31 9.85 76 0 0 

J30,19-1 40 40 40 40 0 0.78 76 0 0 

J30,19-2 58 58 58 58 0 0.68 76 0 0 

J30,19-3 83 83 83 83 0 0.68 76 0 0 

J30,19-4 39 39 39 39 0 1.24 77 0 0 

J30,19-5 48 48 48 48 0 0.97 77 0 0 

J30,19-6 49 49 49 49 0 0.83 77 0 0 

J30,19-7 57 57 57 57 0 0.78 76 0 0 

J30,19-8 55 55 55 55 0 0.7 76 0 0 
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J30,19-9 38 38 38 38 0 1.37 77 0 0 

J30,19-10 47 47 47 47 0 0.81 77 0 0 

J30,20-1 57 57 57 57 0 0.67 76 0 0 

J30,20-2 70 70 70 70 0 0.67 76 0 0 

J30,20-3 49 49 49 49 0 0.64 76 0 0 

J30,20-4 43 43 43 43 0 0.65 76 0 0 

J30,20-5 61 61 61 61 0 0.68 76 0 0 

J30,20-6 51 51 51 51 0 0.66 76 0 0 

J30,20-7 42 42 42 42 0 0.67 76 0 0 

J30,20-8 51 51 51 51 0 0.67 76 0 0 

J30,20-9 41 41 41 41 0 0.6 76 0 0 

J30,20-10 37 37 37 37 0 0.61 76 0 0 

J30,21-1 84 89 87.13 93 2.49 66.11 458 0 0 

J30,21-2 59 61 61.03 64 1.16 79.76 230 0 0 

J30,21-3 76 76 77.23 83 1.65 43.09 308 0 0 

J30,21-4 70 71.5 71.5 75 1.33 72.97 81 0 0 

J30,21-5 55 57 56.97 62 1.9 72.94 880 0 0 

J30,21-6 76 77 77.27 80 1.31 60.96 78 0 0 

J30,21-7 65 68 67.83 74 2.39 68.17 880 0 0 

J30,21-8 62 64 64.6 70 1.96 89.22 2666 0 0 

J30,21-9 69 69 70.43 76 2.57 40.41 382 0 0 

J30,21-10 69 73 72.3 77 2.38 76.84 656 0 0 

J30,22-1 42 42 42.1 44 0.4 14.07 80 0 0 

J30,22-2 45 45 45 45 0 5.29 77 0 0 

J30,22-3 63 63 63 63 0 0.78 76 0 0 

J30,22-4 42 42 42 42 0 8.24 192 0 0 

J30,22-5 52 54 53.6 54 0.81 69.39 80 0 0 

J30,22-6 52 53 52.9 54 0.76 64.84 191 0 0 

J30,22-7 60 60 60.37 62 0.67 29.88 155 0 0 

J30,22-8 55 56 56.33 59 1.15 73.64 346 0 0 

J30,22-9 76 76 76 76 0 1 77 0 0 

J30,22-10 55 55 55.6 58 1.04 29.93 80 0 0 

J30,23-1 63 63 63 63 0 0.75 76 0 0 

J30,23-2 53 53 53 53 0 0.75 76 0 0 

J30,23-3 46 46 46 46 0 1.09 76 0 0 

J30,23-4 65 65 65.07 66 0.25 13.2 81 0 0 

J30,23-5 52 52 52 52 0 1.95 77 0 0 

J30,23-6 48 48 48.13 50 0.51 8.65 77 0 0 

J30,23-7 60 60 60 60 0 1.1 77 0 0 

J30,23-8 48 48 48 48 0 2.48 78 0 0 

J30,23-9 63 63 63 63 0 0.79 77 0 0 

J30,23-10 61 61 61 61 0 0.72 77 0 0 

J30,24-1 53 53 53 53 0 0.71 76 0 0 

J30,24-2 58 58 58 58 0 0.7 76 0 0 

J30,24-3 69 69 69 69 0 0.7 76 0 0 

J30,24-4 53 53 53 53 0 0.7 76 0 0 

J30,24-5 51 51 51 51 0 0.72 76 0 0 

J30,24-6 56 56 56 56 0 0.71 76 0 0 

J30,24-7 44 44 44 44 0 0.71 76 0 0 

J30,24-8 38 38 38 38 0 0.68 76 0 0 

J30,24-9 43 43 43 43 0 0.72 76 0 0 

J30,24-10 53 53 53 53 0 0.7 76 0 0 

J30,25-1 93 95 94.97 98 1.22 106.38 3164 0 0 
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J30,25-2 75 78 77.4 81 1.35 83.02 1034 0 0 

J30,25-3 76 80 80.23 85 1.96 115.85 1682 0 0 

J30,25-4 82 84 84.3 89 1.99 109.46 11748 1.23 1.23 

J30,25-5 72 73 72.67 74 0.66 62.43 769 0 0 

J30,25-6 59 61 61.53 65 1.43 114.95 11591 1.72 1.72 

J30,25-7 96 98 98.33 103 1.37 90.59 12088 1.05 1.05 

J30,25-8 71 72 72.77 75 1.25 90.47 11517 2.9 2.9 

J30,25-9 84 86 86.4 88 1.54 82.34 1711 0 0 

J30,25-10 58 60 60.23 62 1.1 85.85 11667 0 0 

J30,26-1 59 59 59.3 61 0.65 24.7 78 0 0 

J30,26-2 40 40 40 40 0 0.82 77 0 0 

J30,26-3 58 58 58 58 0 1.09 76 0 0 

J30,26-4 62 62 62 62 0 3.36 77 0 0 

J30,26-5 74 74 74 74 0 0.93 76 0 0 

J30,26-6 53 55 54.63 56 0.61 79.96 8476 0 0 

J30,26-7 56 57 56.8 58 0.76 61.07 647 0 0 

J30,26-8 66 66 66 66 0 0.92 77 0 0 

J30,26-9 44 44 44.37 47 0.67 97.39 11668 2.33 2.33 

J30,26-10 49 50 50.17 53 1.29 66.18 805 0 0 

J30,27-1 43 43 43.4 45 0.72 23.33 80 0 0 

J30,27-2 58 58 58 58 0 0.71 76 0 0 

J30,27-3 60 60 60 60 0 0.72 76 0 0 

J30,27-4 64 64 64.03 65 0.18 3.08 76 0 0 

J30,27-5 49 49 49.07 51 0.37 5.89 77 0 0 

J30,27-6 59 59 59.03 60 0.18 4.67 77 0 0 

J30,27-7 49 49 49 49 0 5.76 120 0 0 

J30,27-8 66 66 66 66 0 0.85 76 0 0 

J30,27-9 55 55 55 55 0 0.84 76 0 0 

J30,27-10 62 62 62 62 0 0.68 76 0 0 

J30,28-1 69 69 69 69 0 0.7 76 0 0 

J30,28-2 57 57 57 57 0 0.64 76 0 0 

J30,28-3 40 40 40 40 0 0.66 76 0 0 

J30,28-4 49 49 49 49 0 0.61 76 0 0 

J30,28-5 73 73 73 73 0 0.63 76 0 0 

J30,28-6 55 55 55 55 0 0.68 76 0 0 

J30,28-7 48 48 48 48 0 0.63 76 0 0 

J30,28-8 53 53 53 53 0 0.66 76 0 0 

J30,28-9 62 62 62 62 0 0.66 76 0 0 

J30,28-10 59 59 59 59 0 0.63 76 0 0 

J30,29-1 87 90 89.87 94 1.8 108.55 11668 2.35 2.35 

J30,29-2 91 93.5 94.07 101 2.13 114.41 11860 1.11 1.11 

J30,29-3 78 80 79.87 83 1.11 99.3 1678 0 0 

J30,29-4 104 104 104.83 112 1.66 92.25 11820 0.97 0.97 

J30,29-5 98 104 103.7 110 2.78 101.21 5930 0 0 

J30,29-6 92 94 93.7 96 1.12 92.79 2100 0 0 

J30,29-7 73 74 74.73 78 1.53 106.07 1679 0 0 

J30,29-8 81 84 83.93 90 1.86 133.12 12237 1.25 1.25 

J30,29-9 99 104 103.8 111 2.41 103.85 11594 2.06 2.06 

J30,29-10 77 78 78 80 1.08 85.89 11478 1.32 1.32 

J30,30-1 47 48 48.7 51 1.39 84.88 500 0 0 

J30,30-2 70 70 70.5 72 0.73 99.16 11556 2.94 2.94 

J30,30-3 55 56 55.8 58 0.85 60.64 495 0 0 

J30,30-4 53 54 54.4 55 0.56 89.77 9009 0 0 
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J30,30-5 54 55 55.07 56 0.58 100.13 2248 0 0 

J30,30-6 62 62 62.53 64 0.82 53.19 462 0 0 

J30,30-7 68 69 69.1 71 0.92 88.58 954 0 0 

J30,30-8 46 46 46.07 47 0.25 13.17 229 0 0 

J30,30-9 46 46 46.7 48 0.88 56.73 462 0 0 

J30,30-10 53 54 54.03 55 0.89 57.67 457 0 0 

J30,31-1 43 43 43 43 0 0.73 76 0 0 

J30,31-2 63 63 63 63 0 0.69 76 0 0 

J30,31-3 58 58 58 58 0 0.68 76 0 0 

J30,31-4 50 50 50 50 0 0.72 76 0 0 

J30,31-5 52 52 52.5 55 0.82 42.35 78 0 0 

J30,31-6 53 53 53 53 0 0.68 76 0 0 

J30,31-7 61 61 61.4 64 0.67 36.67 77 0 0 

J30,31-8 58 58 58 58 0 1.36 77 0 0 

J30,31-9 50 50 50.23 51 0.43 37.17 458 0 0 

J30,31-10 55 56 55.83 56 0.38 76.82 193 0 0 

J30,32-1 61 61 61 61 0 0.64 76 0 0 

J30,32-2 60 60 60 60 0 0.68 76 0 0 

J30,32-3 57 57 57 57 0 0.69 76 0 0 

J30,32-4 68 68 68 68 0 0.66 76 0 0 

J30,32-5 54 54 54 54 0 0.69 76 0 0 

J30,32-6 44 44 44 44 0 0.74 76 0 0 

J30,32-7 35 35 35 35 0 0.66 76 0 0 

J30,32-8 54 54 54 54 0 0.68 76 0 0 

J30,32-9 65 65 65 65 0 0.68 76 0 0 

J30,32-10 51 51 51 51 0 0.67 76 0 0 

J30,33-1 65 65 65 65 0 0.73 76 0 0 

J30,33-2 60 62 61.13 62 1.01 35.4 77 0 0 

J30,33-3 55 55 55.3 56 0.47 20.61 76 0 0 

J30,33-4 77 77 77.2 78 0.41 15.33 77 0 0 

J30,33-5 53 53 53.13 55 0.51 7.26 76 0 0 

J30,33-6 59 59 59 59 0 0.6 76 0 0 

J30,33-7 58 58 58 58 0 0.75 77 0 0 

J30,33-8 61 61 61.2 62 0.41 18.44 80 0 0 

J30,33-9 65 65 65.13 67 0.51 20.4 229 0 0 

J30,33-10 53 53 53 53 0 0.76 76 0 0 

J30,34-1 68 68 68 68 0 0.69 77 0 0 

J30,34-2 44 44 44 44 0 0.61 76 0 0 

J30,34-3 69 69 69 69 0 1.28 76 0 0 

J30,34-4 67 67 67 67 0 0.55 76 0 0 

J30,34-5 63 63 63 63 0 0.64 76 0 0 

J30,34-6 52 52 52 52 0 0.68 76 0 0 

J30,34-7 58 58 58 58 0 0.8 77 0 0 

J30,34-8 58 58 58 58 0 0.57 76 0 0 

J30,34-9 60 60 60 60 0 0.57 76 0 0 

J30,34-10 47 47 47 47 0 1.35 77 0 0 

J30,35-1 57 57 57 57 0 0.6 76 0 0 

J30,35-2 53 53 53 53 0 0.56 76 0 0 

J30,35-3 60 60 60 60 0 0.74 76 0 0 

J30,35-4 50 50 50 50 0 1.84 77 0 0 

J30,35-5 60 60 60 60 0 0.81 77 0 0 

J30,35-6 58 58 58.07 60 0.37 8.97 76 0 0 

J30,35-7 61 61 61 61 0 0.63 76 0 0 
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J30,35-8 63 63 63 63 0 0.55 76 0 0 

J30,35-9 59 59 59.2 62 0.76 7.97 77 0 0 

J30,35-10 59 59 59 59 0 0.58 76 0 0 

J30,36-1 66 66 66 66 0 0.53 76 0 0 

J30,36-2 44 44 44 44 0 0.54 76 0 0 

J30,36-3 61 61 61 61 0 0.57 76 0 0 

J30,36-4 59 59 59 59 0 0.55 76 0 0 

J30,36-5 64 64 64 64 0 0.54 76 0 0 

J30,36-6 46 46 46 46 0 0.57 76 0 0 

J30,36-7 56 56 56 56 0 0.54 76 0 0 

J30,36-8 63 63 63 63 0 0.53 76 0 0 

J30,36-9 59 59 59 59 0 0.56 76 0 0 

J30,36-10 59 59 59 59 0 0.54 76 0 0 

J30,37-1 80 80 80.6 82 0.77 77.28 11477 1.27 1.27 

J30,37-2 69 69 69 69 0 1.34 76 0 0 

J30,37-3 81 85 83.97 87 2.41 58.73 844 0 0 

J30,37-4 83 83 83.3 86 0.92 15.22 115 0 0 

J30,37-5 80 80 80.27 84 0.87 17.65 501 0 0 

J30,37-6 73 76 75.53 76 0.68 67.11 837 0 0 

J30,37-7 92 92 92.37 96 1.13 14.74 162 0 0 

J30,37-8 72 72 72.27 80 1.46 10.33 272 0 0 

J30,37-9 57 58 58.03 63 1.07 56.13 240 0 0 

J30,37-10 82 83 82.53 83 0.51 68.88 11477 1.23 1.23 

J30,38-1 48 48 48.2 49 0.41 20.28 153 0 0 

J30,38-2 54 54 54 54 0 7.46 79 0 0 

J30,38-3 59 60 59.77 61 0.57 55.1 194 0 0 

J30,38-4 59 59 59 59 0 1.44 77 0 0 

J30,38-5 71 71 71.17 72 0.38 34.28 272 0 0 

J30,38-6 63 63 63.1 66 0.55 12.68 270 0 0 

J30,38-7 65 66 66.07 68 1.11 54.53 153 0 0 

J30,38-8 61 61 61.07 63 0.37 5.74 78 0 0 

J30,38-9 63 63 63 63 0 2.42 77 0 0 

J30,38-10 60 60 60 60 0 1.18 76 0 0 

J30,39-1 55 55 55 55 0 0.94 76 0 0 

J30,39-2 54 54 54 54 0 0.69 76 0 0 

J30,39-3 54 54 54 54 0 2.69 76 0 0 

J30,39-4 53 53 53.17 54 0.38 13.5 77 0 0 

J30,39-5 55 55 55.53 57 0.9 27.14 77 0 0 

J30,39-6 69 69 69 69 0 1.55 76 0 0 

J30,39-7 56 56 56 56 0 0.7 77 0 0 

J30,39-8 67 67 67 67 0 0.62 76 0 0 

J30,39-9 64 64 64.03 65 0.18 12.19 120 0 0 

J30,39-10 60 60 60 60 0 0.67 76 0 0 

J30,40-1 51 51 51 51 0 2.11 203 0 0 

J30,40-2 56 56 56 56 0 2.03 203 0 0 

J30,40-3 57 57 57 57 0 2.04 203 0 0 

J30,40-4 57 57 57 57 0 1.99 203 0 0 

J30,40-5 65 65 65 65 0 2.05 203 0 0 

J30,40-6 60 60 60 60 0 2.05 203 0 0 

J30,40-7 46 46 46 46 0 1.92 203 0 0 

J30,40-8 57 57 57 57 0 2.04 203 0 0 

J30,40-9 64 64 64 64 0 2.11 203 0 0 

J30,40-10 51 51 51 51 0 2.13 203 0 0 
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J30,41-1 86 88 88.33 91 1.37 153.62 1674 0 0 

J30,41-2 89 89 89.83 93 1.18 71.33 658 0 0 

J30,41-3 85 85 85.33 86 0.48 73.28 555 0 0 

J30,41-4 78 78 79.13 82 1.46 100.91 1044 0 0 

J30,41-5 99 99 99.7 103 1.12 85.53 542 0 0 

J30,41-6 103 107 106.13 108 1.76 119.62 420 0 0 

J30,41-7 92 96.5 95.7 97 1.82 140.75 783 0 0 

J30,41-8 88 90 89.93 94 1.39 164.71 2032 0 0 

J30,41-9 92 95 95.67 102 2.72 163.3 6150 0 0 

J30,41-10 99 100 100.07 105 0.98 139.44 991 0 0 

J30,42-1 58 58 58.13 61 0.57 13.56 111 0 0 

J30,42-2 50 50 50.33 51 0.48 65.63 577 0 0 

J30,42-3 60 61.5 61.27 63 0.98 127.69 1880 0 0 

J30,42-4 49 50 49.7 51 0.65 105.43 888 0 0 

J30,42-5 52 52 52 52 0 2.18 104 0 0 

J30,42-6 67 67 67 67 0 149.28 15712 1.52 1.52 

J30,42-7 66 66 66 66 0 2.55 106 0 0 

J30,42-8 82 82 82 82 0 5.8 106 0 0 

J30,42-9 60 60 60.9 64 1.24 91.25 679 0 0 

J30,42-10 75 75 75 75 0 1.9 105 0 0 

J30,43-1 55 56 55.63 56 0.49 107.09 890 0 0 

J30,43-2 43 43 43 43 0 8.02 108 0 0 

J30,43-3 57 58 57.93 61 1.11 135.61 526 0 0 

J30,43-4 67 67 67 67 0 2.83 105 0 0 

J30,43-5 64 65 64.8 66 0.66 135.03 687 0 0 

J30,43-6 58 58 58 58 0 9.3 160 0 0 

J30,43-7 52 52 52 52 0 1.99 106 0 0 

J30,43-8 62 63 62.83 65 0.75 151.47 3754 0 0 

J30,43-9 57 57 57.33 58 0.48 69.89 109 0 0 

J30,43-10 60 60 60 60 0 5.41 105 0 0 

J30,44-1 50 50 50 50 0 1.28 104 0 0 

J30,44-2 54 54 54 54 0 1.19 104 0 0 

J30,44-3 51 51 51 51 0 1.09 104 0 0 

J30,44-4 57 57 57 57 0 1.25 104 0 0 

J30,44-5 55 55 55 55 0 1.15 104 0 0 

J30,44-6 56 56 56 56 0 1.14 104 0 0 

J30,44-7 42 42 42 42 0 1.16 104 0 0 

J30,44-8 49 49 49 49 0 1.23 104 0 0 

J30,44-9 64 64 64 64 0 1.18 104 0 0 

J30,44-10 63 63 63 63 0 1.16 104 0 0 

J30,45-1 82 84 83.8 87 1.24 157.76 1203 0 0 

J30,45-2 125 125 125.43 128 1.04 32.39 159 0 0 

J30,45-3 92 96 95.67 98 2.15 142.21 1043 0 0 

J30,45-4 84 85 85.07 91 1.36 156.59 1774 0 0 

J30,45-5 87 90 89.17 91 1.18 154.32 14791 1.16 1.16 

J30,45-6 129 129 129.7 134 1.32 82.8 1060 0 0 

J30,45-7 101 102 103.6 108 2.8 116.83 1828 0 0 

J30,45-8 94 96 95.6 97 0.89 117.42 964 0 0 

J30,45-9 82 87 86.5 90 2.35 192.78 12819 0 0 

J30,45-10 90 91 91.5 95 1.33 131.89 776 0 0 

J30,46-1 59 60 60.5 63 1.2 150.08 4372 0 0 

J30,46-2 67 67 67.2 68 0.41 48.96 248 0 0 

J30,46-3 65 66 66.5 68 0.86 153.95 914 0 0 
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J30,46-4 64 65 64.8 66 0.76 116.01 628 0 0 

J30,46-5 57 57 57.83 59 0.95 101.26 1022 0 0 

J30,46-6 59 60 59.8 60 0.41 137.94 1155 0 0 

J30,46-7 59 60 59.7 61 0.6 123.5 342 0 0 

J30,46-8 58 59 59.3 60 0.53 170.52 1880 0 0 

J30,46-9 49 49 49.5 51 0.57 106.42 481 0 0 

J30,46-10 55 55 55.1 56 0.31 30.66 148 0 0 

J30,47-1 58 58 58 58 0 4 97 0 0 

J30,47-2 59 59 59 59 0 1.76 96 0 0 

J30,47-3 55 55 55 55 0 2.35 97 0 0 

J30,47-4 49 49 49.43 50 0.5 78.52 626 0 0 

J30,47-5 47 47 47 47 0 4.73 99 0 0 

J30,47-6 53 53 53.57 55 0.68 95.93 821 0 0 

J30,47-7 66 66 66 66 0 2.61 96 0 0 

J30,47-8 48 48 48 48 0 1.25 96 0 0 

J30,47-9 65 65 65 65 0 1.27 96 0 0 

J30,47-10 60 60 60 60 0 12.31 198 0 0 

J30,48-1 63 63 63 63 0 1.09 96 0 0 

J30,48-2 54 54 54 54 0 1.16 96 0 0 

J30,48-3 50 50 50 50 0 1.05 96 0 0 

J30,48-4 57 57 57 57 0 1.14 96 0 0 

J30,48-5 58 58 58 58 0 1.17 96 0 0 

J30,48-6 58 58 58 58 0 1.15 96 0 0 

J30,48-7 55 55 55 55 0 1.15 96 0 0 

J30,48-8 44 44 44 44 0 1.14 96 0 0 

J30,48-9 59 59 59 59 0 1.17 96 0 0 

J30,48-10 54 54 54 54 0 1.13 96 0 0 

Total Average  0.47 32.37 1188.58 0.10 0.10 
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Table 14                                                                                                                                 

The detailed results of 480 problems of J60 obtained by bi-EA 

The results are obtained from 30 runs with up to 50,000 fitness evaluations for each. 

 

Prob. No Best Median Mean Worst STD 𝒕 𝑭𝑬 𝑳𝑩𝑶𝑷 𝑳𝑩𝑪𝑷 

 J60,1-1  77 77 77 77 0 4.39 201 0 4.62 

 J60,1-2  68 69 69.87 73 2.03 227.95 784 0 1.49 

 J60,1-3  68 71.5 71.27 76 1.7 319.85 6146 0 15.19 

 J60,1-4  91 91 91.07 93 0.37 14.5 111 0 8.82 

 J60,1-5  74 75 75.53 79 1.17 288.77 16611 1.37 26.92 

 J60,1-6  66 66 66.07 67 0.25 27.8 111 0 23.33 

 J60,1-7  74 76 76.33 82 1.73 334.28 16725 2.78 5.63 

 J60,1-8  75 78 78.1 82 1.69 307.4 5735 0 13.33 

 J60,1-9  85 85 85.6 92 1.59 55.38 110 0 5.26 

 J60,1-10  80 80 80 80 0 5.34 107 0 0 

 J60,2-1  65 65 65 65 0 2.48 106 0 0 

 J60,2-2  82 82 82 82 0 2.11 106 0 1.3 

 J60,2-3  78 78 78 78 0 2.44 106 0 0 

 J60,2-4  78 78 78 78 0 3.24 106 0 1.89 

 J60,2-5  54 54 54.03 55 0.18 31.03 107 0 4.92 

 J60,2-6  64 64 64 64 0 6.8 111 0 8.16 

 J60,2-7  53 53 53 53 0 4.55 108 0 0 

 J60,2-8  66 66 66 66 0 2.29 106 0 0 

 J60,2-9  65 65 65.53 69 1.22 62.66 108 0 7.81 

 J60,2-10  69 69 69.07 70 0.25 21.61 106 0 0 

 J60,3-1  60 60 60 60 0 3.95 106 0 0 

 J60,3-2  69 69 69 69 0 2.1 106 0 2.94 

 J60,3-3  105 105 105 105 0 2.11 107 0 0 

 J60,3-4  81 81 81 81 0 2.09 106 0 0 

 J60,3-5  83 83 83 83 0 2 106 0 0 

 J60,3-6  57 57 57.07 58 0.25 32.96 107 0 1.72 

 J60,3-7  59 59 59 59 0 2.2 106 0 5.77 

 J60,3-8  55 55 55.33 57 0.55 106.73 108 0 6.35 

 J60,3-9  67 67 67 67 0 6.33 108 0 2.99 

 J60,3-10  69 69 69.3 70 0.47 83.66 108 0 0 

 J60,4-1  84 84 84 84 0 1.99 106 0 0 

 J60,4-2  60 60 60 60 0 2.05 106 0 0 

 J60,4-3  58 58 58 58 0 2.04 106 0 0 

 J60,4-4  65 65 65 65 0 2.08 106 0 0 

 J60,4-5  75 75 75 75 0 2.11 106 0 0 

 J60,4-6  71 71 71 71 0 2.03 106 0 0 

 J60,4-7  67 67 67 67 0 2.01 106 0 0 

 J60,4-8  65 65 65 65 0 2.05 106 0 0 

 J60,4-9  75 75 75 75 0 2.04 106 0 0 

 J60,4-10  77 77 77 77 0 2.05 106 0 33.9 

 J60,5-1  79 84 84.17 89 2.32 368.68 14819 3.95 43.42 
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 J60,5-2  109 113 113.97 123 3.02 371.21 14491 2.83 42.37 

 J60,5-3  84 87 88 101 3.44 324.81 11133 5 41.51 

 J60,5-4  75 80 80.13 86 2.6 264.06 10607 4.17 40.51 

 J60,5-5  111 118 117.87 124 3.51 252.73 10644 2.78 23.44 

 J60,5-6  79 84 84.6 91 3.29 265.04 10646 6.76 60.78 

 J60,5-7  82 84.5 84.43 89 1.87 262.71 11132 9.33 26.15 

 J60,5-8  82 87 86.5 91 2.43 251.78 10891 5.13 7.32 

 J60,5-9  88 92 92.57 97 2.06 180.26 10572 6.02 25 

 J60,5-10  85 89 88.87 91 1.59 220.61 11416 4.94 0 

 J60,6-1  60 62 62.03 64 1.13 179.45 8933 0 4.55 

 J60,6-2  69 71 70.43 72 0.97 165.46 10572 2.99 0 

 J60,6-3  72 72 72.57 77 1.19 54.01 71 0 0 

 J60,6-4  67 69 69.2 72 1.61 151.75 879 0 0 

 J60,6-5  78 78 78 78 0 10.28 70 0 5.66 

 J60,6-6  56 60 59.3 62 1.53 170.24 10748 1.82 3.33 

 J60,6-7  62 63 63.6 66 0.89 155.14 10642 1.64 0 

 J60,6-8  72 74 73.67 76 1.49 99.27 73 0 0 

 J60,6-9  64 65 65.07 69 1.36 118.96 109 0 0 

 J60,6-10  74 74 74.03 75 0.18 7.82 70 0 0 

 J60,7-1  77 77 77 77 0 1.17 70 0 0 

 J60,7-2  85 85 85 85 0 1.19 70 0 0 

 J60,7-3  62 62 62 62 0 1.19 70 0 0 

 J60,7-4  63 63 63 63 0 5.87 70 0 0 

 J60,7-5  71 71 71 71 0 1.21 70 0 0 

 J60,7-6  65 65 65 65 0 3.46 70 0 0 

 J60,7-7  89 89 89 89 0 1.14 70 0 0 

 J60,7-8  66 66 66 66 0 1.13 70 0 0 

 J60,7-9  44 44 44.4 46 0.62 59.04 72 0 0 

 J60,7-10  82 82 82 82 0 1.07 70 0 0 

 J60,8-1  64 64 64 64 0 1.04 70 0 0 

 J60,8-2  61 61 61 61 0 1.07 70 0 0 

 J60,8-3  79 79 79 79 0 1.1 70 0 0 

 J60,8-4  64 64 64 64 0 1.07 70 0 0 

 J60,8-5  83 83 83 83 0 1.08 70 0 0 

 J60,8-6  56 56 56 56 0 1.04 70 0 0 

 J60,8-7  62 62 62 62 0 1.04 70 0 0 

 J60,8-8  66 66 66 66 0 1.09 70 0 0 

 J60,8-9  58 58 58 58 0 1.07 70 0 0 

 J60,8-10  97 97 97 97 0 1.06 70 0 57.63 

 J60,9-1  93 95.5 95.57 99 1.7 232.47 11097 6.9 23.94 

 J60,9-2  88 92.5 92.47 97 2.19 210.95 11066 7.32 66.15 

 J60,9-3  108 112 112.47 121 2.61 228.58 12990 8 41.54 

 J60,9-4  92 97.5 98.23 106 3.43 221.57 11099 5.75 76.92 

 J60,9-5  92 96 95.83 100 2.21 271.8 12149 8.24 30 

 J60,9-6  117 122 121.47 125 2.15 258.95 11976 5.41 58.11 

 J60,9-7  117 122 122.07 126 2.07 273.57 11206 7.34 56.92 

 J60,9-8  102 108 107.27 114 2.7 221.35 10994 6.25 33.75 

 J60,9-9  107 111 110.73 114 2.07 206.64 11131 8.08 55.38 

 J60,9-10  101 106 105.7 109 2.48 236.48 11308 8.6 0 

 J60,10-1  85 85 85.03 86 0.18 7.19 70 0 0 

 J60,10-2  62 65 64.87 68 1.55 156.32 841 0 0 

 J60,10-3  72 72 72.6 75 0.77 90.76 422 0 0 

 J60,10-4  80 80 80 80 0 2.22 70 0 0 
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 J60,10-5  79 79 79.17 83 0.75 18.45 72 0 0 

 J60,10-6  67 69 69.13 74 1.81 135.45 71 0 1.45 

 J60,10-7  70 72 72.53 75 1.46 182.63 10853 1.45 1.56 

 J60,10-8  65 68.5 68.93 72 2.07 162.49 5887 0 4.11 

 J60,10-9  76 78 78.27 81 1.6 169.81 10572 4.11 0 

 J60,10-10  73 73 73 73 0 1.7 70 0 0 

 J60,11-1  71 71 71 71 0 1.09 70 0 0 

 J60,11-2  61 61 61 61 0 1.04 70 0 0 

 J60,11-3  76 76 76 76 0 1.01 70 0 0 

 J60,11-4  69 69 69.07 70 0.25 24.95 71 0 0 

 J60,11-5  65 65 65 65 0 1.15 70 0 0 

 J60,11-6  70 70 70.07 72 0.37 16.6 70 0 0 

 J60,11-7  70 70 70 70 0 1.16 70 0 0 

 J60,11-8  69 69 69 69 0 1.12 70 0 0 

 J60,11-9  62 62 62 62 0 1.71 70 0 0 

 J60,11-10  58 58 58 58 0 1.31 70 0 0 

 J60,12-1  59 59 59 59 0 1.08 70 0 0 

 J60,12-2  58 58 58 58 0 1.19 70 0 0 

 J60,12-3  75 75 75 75 0 1.15 70 0 0 

 J60,12-4  69 69 69 69 0 1.16 70 0 0 

 J60,12-5  63 63 63 63 0 1.14 70 0 0 

 J60,12-6  54 54 54 54 0 1.11 70 0 0 

 J60,12-7  71 71 71 71 0 1.09 70 0 0 

 J60,12-8  60 60 60 60 0 1.09 70 0 0 

 J60,12-9  59 59 59 59 0 1.1 70 0 0 

 J60,12-10  79 79 79 79 0 1.08 70 0 73.91 

 J60,13-1  120 126 126.1 130 2.48 382.05 12310 7.14 71.21 

 J60,13-2  113 117 117.87 123 2.62 337.15 10235 6.6 61.4 

 J60,13-3  92 97 96.97 102 2.53 366.16 10630 4.55 77.42 

 J60,13-4  110 113 113.27 118 1.66 331.21 10402 6.8 98.11 

 J60,13-5  105 109 108.97 114 2.47 385.44 10200 8.25 63.93 

 J60,13-6  100 103 103.1 107 1.65 379.29 10761 6.38 72.22 

 J60,13-7  93 97 97.13 101 1.76 430.21 10562 6.9 86.96 

 J60,13-8  129 133 132.47 136 1.87 376.82 11817 7.5 59.7 

 J60,13-9  107 111 111.27 116 2.16 349.95 10695 4.9 98.41 

 J60,13-10  125 130 129.7 134 2.44 381.93 10600 6.84 6.78 

 J60,14-1  63 64 64.03 67 1.03 315.23 10203 3.28 0 

 J60,14-2  65 65 65.77 68 1.14 145.09 597 0 3.28 

 J60,14-3  63 65 64.87 66 0.86 274.76 10198 3.28 3.08 

 J60,14-4  67 69 68.73 70 0.87 294.76 10267 3.08 0 

 J60,14-5  59 61 60.83 63 1.05 250.53 728 0 0 

 J60,14-6  65 65 65.33 67 0.61 106.76 434 0 0 

 J60,14-7  69 70 69.9 73 1.03 196.91 993 0 0 

 J60,14-8  88 88 88 88 0 1.78 66 0 0 

 J60,14-9  61 62 62.87 66 1.38 258.46 1626 0 11.94 

 J60,14-10  75 77 76.87 80 1.25 292.45 10336 4.17 0 

 J60,15-1  84 84 84 84 0 1.64 66 0 0 

 J60,15-2  89 89 89 89 0 1.75 66 0 0 

 J60,15-3  72 72 72 72 0 1.61 66 0 0 

 J60,15-4  75 75 75 75 0 1.66 66 0 0 

 J60,15-5  70 70 70 70 0 1.74 66 0 0 

 J60,15-6  76 76 76 76 0 1.8 66 0 0 

 J60,15-7  64 64 64 64 0 2.64 66 0 0 
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 J60,15-8  79 79 79 79 0 1.66 66 0 0 

 J60,15-9  72 72 72 72 0 1.53 66 0 0 

 J60,15-10  61 61 61 61 0 1.93 66 0 0 

 J60,16-1  64 64 64 64 0 1.54 66 0 0 

 J60,16-2  64 64 64 64 0 1.48 66 0 0 

 J60,16-3  53 53 53 53 0 1.45 66 0 0 

 J60,16-4  60 60 60 60 0 1.55 66 0 0 

 J60,16-5  66 66 66 66 0 1.53 66 0 0 

 J60,16-6  66 66 66 66 0 1.56 66 0 0 

 J60,16-7  82 82 82 82 0 1.6 66 0 0 

 J60,16-8  68 68 68 68 0 1.5 66 0 0 

 J60,16-9  54 54 54 54 0 1.53 66 0 0 

 J60,16-10  68 68 68 68 0 1.58 66 0 13.16 

 J60,17-1  86 87.5 89.17 96 3.53 140.19 663 0 4.48 

 J60,17-2  70 73 73.5 78 2.01 193.28 9969 1.45 15.19 

 J60,17-3  91 92 93.1 99 2.01 175.95 9969 2.25 2.9 

 J60,17-4  71 71 71.27 78 1.28 42.48 67 0 15.38 

 J60,17-5  60 61 61.53 64 1.41 194.51 9973 1.69 2.99 

 J60,17-6  69 70 72 79 3.24 149.17 436 0 2.47 

 J60,17-7  83 86 85.7 92 2.2 161.97 696 0 28.79 

 J60,17-8  85 89 90.03 96 3.12 202.66 5750 0 8.57 

 J60,17-9  76 81 80.9 86 3.22 175.98 206 0 10.77 

 J60,17-10  72 73.5 74.6 79 2.57 152.72 464 0 1.25 

 J60,18-1  81 81 81 81 0 2.94 66 0 0 

 J60,18-2  69 69 69 69 0 1.69 66 0 0 

 J60,18-3  77 77 77 77 0 1.42 66 0 0 

 J60,18-4  71 71 71.47 78 1.48 39.94 70 0 0 

 J60,18-5  80 80 80 80 0 1.38 66 0 0 

 J60,18-6  61 61 61.17 65 0.75 14.97 67 0 6.9 

 J60,18-7  93 95 94.33 97 1.06 116.86 67 0 0 

 J60,18-8  78 78 78 78 0 1.47 66 0 0 

 J60,18-9  69 69 71.57 75 2.99 85.45 66 0 0 

 J60,18-10  97 97 97 97 0 1.37 66 0 0 

 J60,19-1  62 62 62.03 63 0.18 11.52 66 0 0 

 J60,19-2  83 83 83 83 0 1.42 66 0 2.47 

 J60,19-3  83 83 83 83 0 1.46 66 0 0 

 J60,19-4  67 67 67 67 0 1.34 66 0 0 

 J60,19-5  73 73 73 73 0 1.41 66 0 1.47 

 J60,19-6  69 69 69 69 0 3.54 66 0 0 

 J60,19-7  60 60 60 60 0 1.35 66 0 6.1 

 J60,19-8  87 87 87 87 0 1.32 66 0 2.99 

 J60,19-9  69 69 69.4 73 0.97 43.32 70 0 0 

 J60,19-10  78 78 78 78 0 1.39 66 0 0 

 J60,20-1  60 60 60 60 0 1.35 66 0 0 

 J60,20-2  78 78 78 78 0 1.34 66 0 0 

 J60,20-3  69 69 69 69 0 1.32 66 0 0 

 J60,20-4  86 86 86 86 0 1.35 66 0 0 

 J60,20-5  71 71 71 71 0 1.33 66 0 0 

 J60,20-6  97 97 97 97 0 1.31 66 0 0 

 J60,20-7  74 74 74 74 0 1.31 66 0 0 

 J60,20-8  65 65 65 65 0 1.38 66 0 0 

 J60,20-9  74 74 74 74 0 1.35 66 0 0 

 J60,20-10  70 70 70 70 0 1.34 66 0 36.84 
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 J60,21-1  104 109 109.37 113 2.24 255.02 10132 0.97 25 

 J60,21-2  115 119.5 120.7 132 4.2 261.9 9968 6.48 44.62 

 J60,21-3  94 97.5 98.67 107 3.68 264.88 10004 8.05 53.13 

 J60,21-4  98 104 104.53 112 3.42 260.86 10066 3.16 21.33 

 J60,21-5  91 95 95.27 103 2.35 252.16 10528 2.25 33.33 

 J60,21-6  84 92 92.1 102 3.49 240.1 5485 0 31.25 

 J60,21-7  105 108 108.6 116 2.77 245.16 10365 1.94 32.94 

 J60,21-8  113 121 120.73 129 3.84 202.69 10233 2.73 34.78 

 J60,21-9  93 97 96.9 103 2.41 259.55 10266 4.49 60.78 

 J60,21-10  82 86.5 88.07 100 4.25 241.36 10001 2.5 3.23 

 J60,22-1  64 65 64.8 67 0.85 268.06 690 0 0 

 J60,22-2  83 84 84.47 87 1.46 268.29 400 0 0 

 J60,22-3  70 71 71.37 73 0.93 291.84 186 0 15.63 

 J60,22-4  74 77 76.73 80 1.55 407.53 14943 1.37 0 

 J60,22-5  76 76 76 76 0 6.8 108 0 0 

 J60,22-6  79 79 79.5 83 0.82 152.72 112 0 0 

 J60,22-7  69 70 70.13 73 1.14 250.52 113 0 0 

 J60,22-8  59 59 59.8 62 1.03 249.51 1047 0 0 

 J60,22-9  65 65 65.43 68 0.73 124.72 110 0 1.45 

 J60,22-10  70 72 72.23 75 1.38 367.36 475 0 0 

 J60,23-1  75 75 75 75 0 2.5 108 0 0 

 J60,23-2  69 69 69 69 0 2.66 108 0 4 

 J60,23-3  78 78 78 78 0 2.47 108 0 0 

 J60,23-4  83 83 83 83 0 2.46 108 0 0 

 J60,23-5  72 72 72 72 0 2.5 108 0 0 

 J60,23-6  81 81 81 81 0 2.49 108 0 0 

 J60,23-7  60 60 60.1 61 0.31 37.04 108 0 0 

 J60,23-8  72 72 72 72 0 2.49 108 0 0 

 J60,23-9  64 64 64 64 0 2.67 108 0 0 

 J60,23-10  68 68 68 68 0 3.3 108 0 0 

 J60,24-1  65 65 65 65 0 2.46 108 0 0 

 J60,24-2  55 55 55 55 0 2.44 108 0 0 

 J60,24-3  67 67 67 67 0 2.44 108 0 0 

 J60,24-4  78 78 78 78 0 2.43 108 0 0 

 J60,24-5  76 76 76 76 0 2.38 108 0 0 

 J60,24-6  75 75 75 75 0 2.39 108 0 0 

 J60,24-7  68 68 68 68 0 2.47 108 0 0 

 J60,24-8  81 81 81 81 0 2.39 108 0 0 

 J60,24-9  80 80 80 80 0 2.5 108 0 0 

 J60,24-10  66 66 66 66 0 2.45 108 0 70.42 

 J60,25-1  121 126 125.9 134 3.03 506.83 18146 6.14 53.62 

 J60,25-2  106 110 110.27 115 2.42 521.04 15450 8.16 34.44 

 J60,25-3  121 126 126.2 133 2.51 481.49 15662 7.08 46.15 

 J60,25-4  114 119 119.13 124 2.21 522.6 15950 5.56 68.85 

 J60,25-5  103 106 105.6 109 1.73 457.45 16168 5.1 56 

 J60,25-6  117 124 123.47 130 2.47 553.27 16526 4.46 43.94 

 J60,25-7  95 99 98.63 102 1.67 494.67 17482 5.56 82.46 

 J60,25-8  104 110 110.8 117 3.09 527.96 13636 5.05 52.17 

 J60,25-9  105 108.5 108.27 111 1.64 473.13 14458 6.06 48.05 

 J60,25-10  114 119 118.33 124 2.37 467.5 14049 5.56 0 

 J60,26-1  80 80 80.23 82 0.57 94.56 104 0 6.35 

 J60,26-2  67 69 69.3 72 1.24 396.13 14519 1.52 8.45 

 J60,26-3  77 80 79.83 82 1.09 370.52 13637 1.32 4.62 
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 J60,26-4  68 69 69.3 73 1.18 410.59 14248 1.49 0 

 J60,26-5  61 61 61.6 64 0.97 157.43 102 0 4.11 

 J60,26-6  76 78 77.93 81 1.14 418.19 13648 2.7 0 

 J60,26-7  72 72 72 72 0 2.62 102 0 0 

 J60,26-8  89 89 89 89 0 22.99 102 0 6.45 

 J60,26-9  66 68 68.43 72 1.43 383.56 13845 1.54 0 

 J60,26-10  85 85 85.03 86 0.18 46.01 103 0 0 

 J60,27-1  96 96 96 96 0 2.53 102 0 0 

 J60,27-2  74 74 74 74 0 8.47 102 0 0 

 J60,27-3  76 76 76 76 0 5.04 102 0 0 

 J60,27-4  60 60 60 60 0 32.01 102 0 0 

 J60,27-5  78 78 78 78 0 2.51 102 0 0 

 J60,27-6  64 64 64 64 0 2.65 102 0 0 

 J60,27-7  83 83 83 83 0 2.47 102 0 0 

 J60,27-8  88 88 88 88 0 2.56 102 0 0 

 J60,27-9  76 76 76 76 0 2.48 102 0 0 

 J60,27-10  57 57 57 57 0 2.77 102 0 0 

 J60,28-1  92 92 92 92 0 2.38 102 0 0 

 J60,28-2  64 64 64 64 0 2.39 102 0 0 

 J60,28-3  72 72 72 72 0 2.47 102 0 0 

 J60,28-4  84 84 84 84 0 2.49 102 0 0 

 J60,28-5  71 71 71 71 0 2.35 102 0 0 

 J60,28-6  89 89 89 89 0 2.46 102 0 0 

 J60,28-7  75 75 75 75 0 2.35 102 0 0 

 J60,28-8  62 62 62 62 0 2.37 102 0 0 

 J60,28-9  74 74 74 74 0 2.4 102 0 0 

 J60,28-10  74 74 74 74 0 2.35 102 0 88.14 

 J60,29-1  111 115 114.53 119 2.37 262.19 15213 7.77 60.23 

 J60,29-2  141 145 145.07 150 2.15 235.37 13114 6.02 80.56 

 J60,29-3  130 134.5 134.3 138 1.91 260.5 12994 7.44 90.67 

 J60,29-4  143 147.5 147.9 153 2.73 243.25 13231 6.72 54.55 

 J60,29-5  119 123 123.53 129 2.29 240.84 15064 8.18 114.29 

 J60,29-6  165 170 170.03 175 2.59 253.97 14075 7.14 79.45 

 J60,29-7  131 134 134.3 140 2.38 211.89 14013 6.5 50 

 J60,29-8  108 110.5 110.7 114 1.51 224.39 13294 4.85 68.57 

 J60,29-9  118 124 123.9 129 2.98 226.55 12939 5.36 81.43 

 J60,29-10  127 132 131.83 137 2.42 260.81 15513 6.72 2.86 

 J60,30-1  72 73 73.53 78 1.59 209.07 12213 2.86 10.77 

 J60,30-2  72 75 74.73 77 1.2 201.08 13712 2.86 10 

 J60,30-3  88 89 89.23 92 1.43 207.25 12878 7.32 0 

 J60,30-4  76 76 76 76 0 1.39 90 0 8.33 

 J60,30-5  78 80 79.63 81 0.89 186.08 12632 2.63 0 

 J60,30-6  68 68 68.6 71 0.86 80.96 514 0 14.29 

 J60,30-7  88 90 89.6 92 1.04 201.59 14253 2.33 1.59 

 J60,30-8  64 66 65.93 68 1.11 162.85 12153 1.59 0 

 J60,30-9  98 98 98.43 100 0.63 89.27 153 0 11.11 

 J60,30-10  90 92 92.4 96 1.33 204.4 12934 4.65 0 

 J60,31-1  65 65 65 65 0 1.15 90 0 0 

 J60,31-2  74 74 74.33 76 0.55 58.41 571 0 0 

 J60,31-3  66 66 66 66 0 1.3 90 0 0 

 J60,31-4  68 68 68 68 0 1.3 90 0 0 

 J60,31-5  72 72 72 72 0 1.11 90 0 0 

 J60,31-6  72 72 72 72 0 1.1 90 0 0 
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 J60,31-7  76 76 76 76 0 1.26 90 0 0 

 J60,31-8  75 75 75.07 76 0.25 29.12 92 0 0 

 J60,31-9  86 86 86 86 0 1.13 90 0 0 

 J60,31-10  56 56 56.27 57 0.45 63.9 273 0 0 

 J60,32-1  69 69 69 69 0 1.06 90 0 0 

 J60,32-2  114 114 114 114 0 1.09 90 0 0 

 J60,32-3  85 85 85 85 0 1.04 90 0 0 

 J60,32-4  56 56 56 56 0 1.07 90 0 0 

 J60,32-5  77 77 77 77 0 1.1 90 0 0 

 J60,32-6  93 93 93 93 0 1.12 90 0 0 

 J60,32-7  76 76 76 76 0 1.09 90 0 0 

 J60,32-8  76 76 76 76 0 1.04 90 0 0 

 J60,32-9  74 74 74 74 0 1.1 90 0 0 

 J60,32-10  77 77 77 77 0 1.13 90 0 16.67 

 J60,33-1  105 105 105.9 109 1.67 41.64 213 0 0 

 J60,33-2  100 100 100.03 101 0.18 14.28 90 0 2.6 

 J60,33-3  79 80 79.83 82 0.83 90.37 214 0 8 

 J60,33-4  81 81 81.23 84 0.73 18.12 91 0 11.34 

 J60,33-5  108 114 112.27 114 2.29 102.36 518 0 15.38 

 J60,33-6  75 78.5 77.97 80 1.33 117.55 4440 0 18.18 

 J60,33-7  78 79 79.4 82 1.45 101.31 274 0 9.46 

 J60,33-8  81 83 83.03 87 1.47 131.01 12030 2.53 5.88 

 J60,33-9  108 108 108 108 0 5.82 91 0 21.74 

 J60,33-10  84 85 85.33 87 0.84 108.09 152 0 7.46 

 J60,34-1  72 72 72 72 0 2.72 91 0 4.62 

 J60,34-2  68 68 68.63 72 1.38 58.41 91 0 0 

 J60,34-3  61 62 62.2 65 0.85 119.56 573 0 0 

 J60,34-4  83 83 83 83 0 1 90 0 0 

 J60,34-5  80 80 80 80 0 1.03 90 0 5.19 

 J60,34-6  81 81 81 81 0 7.98 92 0 2.41 

 J60,34-7  85 85 85.13 86 0.35 16.37 90 0 3.28 

 J60,34-8  63 63 63.03 64 0.18 16.31 212 0 0 

 J60,34-9  77 77 77 77 0 1.03 90 0 0 

 J60,34-10  92 92 92.03 93 0.18 4.67 90 0 0 

 J60,35-1  78 78 78 78 0 6.14 90 0 0 

 J60,35-2  77 77 77 77 0 2.67 91 0 2.3 

 J60,35-3  89 89 89 89 0 2.43 90 0 0 

 J60,35-4  72 72 72 72 0 1.01 90 0 1.33 

 J60,35-5  76 76 76 76 0 1.71 90 0 0 

 J60,35-6  79 79 79 79 0 1.51 91 0 0 

 J60,35-7  73 73 73 73 0 2.73 90 0 4 

 J60,35-8  78 78 78 78 0 0.99 90 0 4.11 

 J60,35-9  76 76 76 76 0 1.36 90 0 1.43 

 J60,35-10  71 71 71 71 0 1.24 90 0 0 

 J60,36-1  61 61 61 61 0 0.99 90 0 0 

 J60,36-2  75 75 75 75 0 1 90 0 0 

 J60,36-3  81 81 81 81 0 1.02 90 0 0 

 J60,36-4  85 85 85 85 0 0.98 90 0 0 

 J60,36-5  57 57 57 57 0 1.03 90 0 0 

 J60,36-6  76 76 76 76 0 1 90 0 0 

 J60,36-7  71 71 71 71 0 1.01 90 0 0 

 J60,36-8  69 69 69 69 0 1 90 0 0 

 J60,36-9  86 86 86 86 0 1 90 0 0 
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 J60,36-10  77 77 77 77 0 1.01 90 0 41.43 

 J60,37-1  99 102 102.77 107 1.91 180.49 13651 2.06 44.12 

 J60,37-2  98 102 102.67 108 2.12 175.68 12573 3.16 46.39 

 J60,37-3  142 153 152.7 160 4.59 178.74 13651 2.16 36 

 J60,37-4  102 107 107.33 113 2.63 199.54 12339 0.99 26.25 

 J60,37-5  101 107 106.8 111 2.04 166.9 13056 3.06 67.74 

 J60,37-6  104 109 108.9 114 2.72 184 13112 1.96 49.33 

 J60,37-7  112 118.5 118.57 126 3.65 180.32 12931 1.82 22.78 

 J60,37-8  97 100 100.1 104 2.06 188.41 13658 4.3 27.27 

 J60,37-9  98 102.5 102.73 108 2.33 182.99 12691 2.08 12.79 

 J60,37-10  97 104 103.3 109 2.77 171.73 12273 1.04 0 

 J60,38-1  73 73 73.37 77 0.85 62.91 91 0 9.86 

 J60,38-2  78 80 79.9 83 1.35 179.18 12273 2.63 1.32 

 J60,38-3  77 79 79 82 1.23 124.17 1355 0 0 

 J60,38-4  58 60 59.8 63 1.37 136.09 576 0 0 

 J60,38-5  103 103 103 103 0 1.9 90 0 0 

 J60,38-6  86 86 86.13 88 0.51 29.69 90 0 1.35 

 J60,38-7  75 77 77.07 79 1.23 151.5 12031 1.35 5.88 

 J60,38-8  72 73.5 73.7 76 1.32 170.08 12331 1.41 0 

 J60,38-9  66 66 66.7 69 0.95 98.61 1234 0 6.35 

 J60,38-10  67 68 67.9 70 0.96 169.54 12154 1.52 0 

 J60,39-1  80 80 80 80 0 1.08 90 0 0 

 J60,39-2  84 84 84 84 0 1.15 90 0 0 

 J60,39-3  83 83 83 83 0 1.11 90 0 0 

 J60,39-4  92 92 92 92 0 10.09 91 0 0 

 J60,39-5  73 73 73 73 0 10.14 90 0 1.2 

 J60,39-6  84 84 84.07 85 0.25 17.47 92 0 0 

 J60,39-7  68 68 68 68 0 3.56 91 0 0 

 J60,39-8  77 77 77 77 0 1.08 90 0 0 

 J60,39-9  72 72 72 72 0 1.07 90 0 0 

 J60,39-10  74 74 74 74 0 1.09 90 0 0 

 J60,40-1  86 86 86 86 0 1.03 90 0 0 

 J60,40-2  81 81 81 81 0 1.04 90 0 0 

 J60,40-3  70 70 70 70 0 1.05 90 0 0 

 J60,40-4  87 87 87 87 0 1.08 90 0 0 

 J60,40-5  83 83 83 83 0 1.06 90 0 0 

 J60,40-6  69 69 69 69 0 1.09 90 0 0 

 J60,40-7  68 68 68 68 0 1.04 90 0 0 

 J60,40-8  80 80 80 80 0 1.06 90 0 0 

 J60,40-9  90 90 90 90 0 1.04 90 0 0 

 J60,40-10  73 73 73 73 0 1.04 90 0 41.76 

 J60,41-1  129 135 134.77 145 3.05 213.73 12754 5.74 46.91 

 J60,41-2  119 122 122.13 126 1.89 231.38 13112 5.31 79.31 

 J60,41-3  104 108 107.53 111 1.81 250.5 15033 6.12 36 

 J60,41-4  136 141 141.5 148 2.86 189.98 15121 2.26 83.58 

 J60,41-5  123 126 126.2 130 1.67 223.12 14071 6.96 70.73 

 J60,41-6  140 144 144.57 149 1.99 204.14 13714 4.48 77.22 

 J60,41-7  140 147.5 146.83 154 3.58 213.43 13112 6.06 43.16 

 J60,41-8  136 146 146.53 158 4.72 245.79 12697 0.74 75 

 J60,41-9  140 144.5 144.87 151 2.79 202.03 13059 6.87 60.56 

 J60,41-10  114 119 119.67 125 2.26 224.05 13234 2.7 0 

 J60,42-1  83 83 83.3 85 0.6 61.12 931 0 0 

 J60,42-2  68 68 68.23 71 0.63 62.12 273 0 9.59 
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 J60,42-3  80 83 83.27 86 1.41 194.5 13416 2.56 10.64 

 J60,42-4  104 108 107.73 111 1.64 173.7 12813 0.97 0 

 J60,42-5  73 74 73.97 77 1 125.9 878 0 0 

 J60,42-6  82 83.5 83.67 89 1.63 124.31 1172 0 9.09 

 J60,42-7  60 61.5 61.63 64 0.85 180.29 12754 1.69 6.41 

 J60,42-8  83 86 85.63 88 1.13 177.34 13231 1.22 2.86 

 J60,42-9  72 74 73.87 76 1.11 177.45 12571 1.41 0 

 J60,42-10  87 87 87.57 90 0.82 96.91 814 0 0 

 J60,43-1  108 108 108 108 0 1.11 90 0 0 

 J60,43-2  85 85 85 85 0 1.14 90 0 0 

 J60,43-3  74 74 74 74 0 1.11 90 0 2.7 

 J60,43-4  76 78 77.5 80 0.82 152.79 12032 1.33 0 

 J60,43-5  64 64 64 64 0 1.52 90 0 0 

 J60,43-6  84 84 84 84 0 1.08 90 0 0 

 J60,43-7  89 89 89 89 0 1.13 90 0 0 

 J60,43-8  69 69 69 69 0 1.04 90 0 0 

 J60,43-9  70 70 70.37 71 0.49 64.95 213 0 0 

 J60,43-10  78 78 78 78 0 1.09 90 0 0 

 J60,44-1  84 84 84 84 0 1.06 90 0 0 

 J60,44-2  68 68 68 68 0 1.03 90 0 0 

 J60,44-3  87 87 87 87 0 1.03 90 0 0 

 J60,44-4  77 77 77 77 0 1.08 90 0 0 

 J60,44-5  74 74 74 74 0 1.08 90 0 0 

 J60,44-6  81 81 81 81 0 1.06 90 0 0 

 J60,44-7  76 76 76 76 0 1.07 90 0 0 

 J60,44-8  83 83 83 83 0 1.04 90 0 0 

 J60,44-9  65 65 65 65 0 1.05 90 0 0 

 J60,44-10  65 65 65 65 0 1.07 90 0 40.85 

 J60,45-1  100 104.5 104.27 109 2.41 234.41 15302 4.17 93.59 

 J60,45-2  151 155 155.77 162 2.6 270.41 15992 4.86 79.07 

 J60,45-3  154 159.5 159.43 165 2.73 236.95 13173 7.69 91.67 

 J60,45-4  115 118 118.5 124 2.18 243.6 13234 6.48 85 

 J60,45-5  111 116 115.4 120 2.14 291.21 13234 4.72 87.5 

 J60,45-6  150 157 156.9 162 2.82 280.9 13535 4.17 70.27 

 J60,45-7  126 131.5 131.13 135 2.33 250.52 13293 3.28 73.42 

 J60,45-8  137 139 139.5 144 2.1 298.21 14945 6.2 66.67 

 J60,45-9  130 136 135.8 140 2.71 277.21 12697 5.69 100 

 J60,45-10  122 124 124.83 128 1.7 269.58 14974 7.02 3.85 

 J60,46-1  81 83 83.37 85 1.22 189.21 12515 2.53 0 

 J60,46-2  78 80 79.63 82 0.93 174.17 3873 0 2.53 

 J60,46-3  81 83 83.37 86 1.25 211.34 13170 2.53 8.45 

 J60,46-4  77 79 78.57 80 0.94 223.33 12873 4.05 14.63 

 J60,46-5  94 96 95.73 97 1.23 192.77 12391 3.3 5.75 

 J60,46-6  92 95 94.87 97 1.07 195.54 12391 2.22 8 

 J60,46-7  81 82 82.23 84 0.94 223 13350 3.85 6.94 

 J60,46-8  77 80 79.73 84 1.62 195.49 12459 2.67 16.67 

 J60,46-9  70 72 72.23 74 1.04 188.19 12458 1.45 13.92 

 J60,46-10  90 92 92.33 98 1.73 211.14 12571 2.27 0 

 J60,47-1  75 75 75 75 0 1.27 90 0 0 

 J60,47-2  66 66 66.3 68 0.53 75.69 932 0 0 

 J60,47-3  69 69 69.6 72 1.04 81.15 992 0 0 

 J60,47-4  76 76 76 76 0 1.71 90 0 0 

 J60,47-5  87 87 87.23 88 0.43 41.68 91 0 0 
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 J60,47-6  76 76 76 76 0 1.27 90 0 0 

 J60,47-7  68 68 68 68 0 4.83 91 0 0 

 J60,47-8  71 71 71.5 73 0.57 102.43 1172 0 0 

 J60,47-9  76 76 76 76 0 9.21 91 0 0 

 J60,47-10  66 67 66.9 69 0.76 145.4 573 0 0 

 J60,48-1  71 71 71 71 0 1.08 90 0 0 

 J60,48-2  87 87 87 87 0 1.16 90 0 0 

 J60,48-3  84 84 84 84 0 1.14 90 0 0 

 J60,48-4  62 62 62 62 0 1.12 90 0 0 

 J60,48-5  101 101 101 101 0 1.13 90 0 0 

 J60,48-6  66 66 66 66 0 1.12 90 0 0 

 J60,48-7  77 77 77 77 0 1.17 90 0 0 

 J60,48-8  88 88 88 88 0 1.19 90 0 0 

 J60,48-9  82 82 82 82 0 1.16 90 0 0 

 J60,48-10  70 70 70 70 0 1.24 90 0 0 

Total Average  0.80 96.96 3788.83 1.22 12.10 
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Table 15                                                                                                                                 

The detailed results of 480 problems of J90 obtained by bi-EA 

The results are obtained from 30 runs with up to 50,000 fitness evaluations for each. 

 

Prob. No Best Median Mean Worst STD 𝒕 𝑭𝑬 𝑳𝑩𝑶𝑷 𝑳𝑩𝑪𝑷 

 J90,1-1  76 81 81.07 86 2.3 559.66 15461 4.11 19.4 

 J90,1-2  92 96 95.33 100 3.1 319.19 105 0 4.55 

 J90,1-3  68 71.5 71.93 76 1.89 544.24 15663 3.03 18.64 

 J90,1-4  87 91 91.57 97 2.53 527.32 15413 1.16 17.11 

 J90,1-5  90 90 91.23 94 1.59 440.82 15561 3.45 5.95 

 J90,1-6  78 81 81 86 2.15 506.21 15408 5.41 27.87 

 J90,1-7  93 97.5 97.03 100 1.88 463.94 15202 2.2 16.87 

 J90,1-8  98 104.5 104 109 3.02 488.55 15101 3.16 20 

 J90,1-9  76 77 77.97 82 1.65 485.44 15206 5.56 13.64 

 J90,1-10  94 98 98 104 2.2 520.42 15103 4.44 11.49 

 J90,2-1  96 96 96 96 0 3.3 101 0 0 

 J90,2-2  114 114 114 114 0 3.26 101 0 0 

 J90,2-3  75 75 75 75 0 3.65 101 0 0 

 J90,2-4  70 70 70 70 0 3.24 101 0 0 

 J90,2-5  100 100 100.1 103 0.55 16.67 101 0 0 

 J90,2-6  67 67 67 67 0 4.8 101 0 0 

 J90,2-7  92 92 92.03 93 0.18 17.62 101 0 0 

 J90,2-8  82 82 82 82 0 3.79 101 0 0 

 J90,2-9  79 79 79.47 81 0.86 142.13 104 0 0 

 J90,2-10  80 80 80 80 0 4.28 101 0 0 

 J90,3-1  81 81 81 81 0 3.31 101 0 0 

 J90,3-2  84 84 84 84 0 3.26 101 0 0 

 J90,3-3  71 71 71 71 0 3.21 101 0 0 

 J90,3-4  104 104 104 104 0 3.32 101 0 0 

 J90,3-5  75 75 75 75 0 3.91 101 0 0 

 J90,3-6  68 68 68 68 0 3.24 101 0 0 

 J90,3-7  87 87 87 87 0 3.86 101 0 0 

 J90,3-8  86 86 86 86 0 3.25 101 0 0 

 J90,3-9  61 61 61 61 0 3.29 101 0 0 

 J90,3-10  65 65 65.07 67 0.37 22.77 103 0 0 

 J90,4-1  93 93 93 93 0 3.16 101 0 0 

 J90,4-2  89 89 89 89 0 3.2 101 0 0 

 J90,4-3  67 67 67 67 0 3.15 101 0 0 

 J90,4-4  92 92 92 92 0 3.13 101 0 0 

 J90,4-5  88 88 88 88 0 3.21 101 0 0 

 J90,4-6  78 78 78 78 0 3.12 101 0 0 

 J90,4-7  80 80 80 80 0 3.14 101 0 0 

 J90,4-8  69 69 69 69 0 3.17 101 0 0 

 J90,4-9  79 79 79 79 0 3.22 101 0 0 

 J90,4-10  68 68 68 68 0 3.09 101 0 0 

 J90,5-1  86 90.5 90.8 95 2.55 599.39 15105 10.26 36.36 
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 J90,5-2  104 111 111.1 117 2.94 622.2 12991 11.83 17.78 

 J90,5-3  95 99 99.1 105 2.45 564.34 13295 9.2 59.68 

 J90,5-4  112 118.5 119 127 3.31 546.25 12989 8.74 26.67 

 J90,5-5  122 126.5 126.93 134 2.74 640.83 12995 9.91 60.76 

 J90,5-6  93 98 98.93 108 3.64 565.98 13293 8.14 29.33 

 J90,5-7  114 119 118.77 122 2.01 638.23 14021 6.54 48.1 

 J90,5-8  111 115 115.27 122 2.24 663.87 12953 8.82 52 

 J90,5-9  128 133 133.63 142 3.24 624.16 12331 11.3 42.55 

 J90,5-10  104 108 108.37 114 2.25 586.97 12679 8.33 39.74 

 J90,6-1  82 82 82.27 85 0.69 94.24 81 0 0 

 J90,6-2  86 86 86 86 0 3.04 78 0 0 

 J90,6-3  81 84 84.17 88 1.68 547.42 12564 5.19 8 

 J90,6-4  80 80 80 80 0 8.16 78 0 0 

 J90,6-5  71 73 72.5 74 1.01 411.97 2191 0 1.41 

 J90,6-6  98 98 98 98 0 6.71 78 0 0 

 J90,6-7  71 71 71.03 72 0.18 44.41 81 0 0 

 J90,6-8  71 74 73.97 79 1.79 491.56 12177 4.41 7.46 

 J90,6-9  68 68 68.57 71 0.82 195.47 393 0 0 

 J90,6-10  94 94 94.1 97 0.55 25.59 78 0 0 

 J90,7-1  88 88 88 88 0 2.78 78 0 0 

 J90,7-2  77 77 77 77 0 2.81 78 0 0 

 J90,7-3  80 80 80.07 82 0.37 21.1 78 0 0 

 J90,7-4  86 86 86 86 0 2.95 78 0 0 

 J90,7-5  79 79 79 79 0 2.95 78 0 0 

 J90,7-6  90 90 90 90 0 2.92 78 0 0 

 J90,7-7  90 90 90 90 0 2.88 78 0 0 

 J90,7-8  60 60 60.4 62 0.67 131.67 79 0 0 

 J90,7-9  83 83 83 83 0 3.41 79 0 0 

 J90,7-10  98 98 98 98 0 2.89 78 0 0 

 J90,8-1  96 96 96 96 0 2.75 78 0 0 

 J90,8-2  78 78 78 78 0 2.85 78 0 0 

 J90,8-3  70 70 70 70 0 2.65 78 0 0 

 J90,8-4  77 77 77 77 0 2.78 78 0 0 

 J90,8-5  63 63 63 63 0 2.73 78 0 0 

 J90,8-6  70 70 70 70 0 2.73 78 0 0 

 J90,8-7  77 77 77 77 0 2.7 78 0 0 

 J90,8-8  68 68 68 68 0 2.7 78 0 0 

 J90,8-9  97 97 97 97 0 2.76 78 0 0 

 J90,8-10  88 88 88 88 0 2.75 78 0 0 

 J90,9-1  116 121 120.73 126 2.77 518.02 16139 11.54 52.5 

 J90,9-2  139 144 144 150 2.45 457.38 15542 8.59 56.52 

 J90,9-3  113 116 116.3 120 2.05 439.53 15135 10.78 74.63 

 J90,9-4  139 143.5 144.27 152 3.4 479.45 16322 9.45 80.25 

 J90,9-5  154 160 160.2 166 3.01 451.58 12933 10 80.9 

 J90,9-6  130 134 134 140 2.42 416.67 14555 9.24 46.59 

 J90,9-7  120 124 123.87 128 2.22 486.87 14138 10.09 66.22 

 J90,9-8  128 133 133.37 138 2.19 423.05 13834 10.34 76 

 J90,9-9  127 131 131.6 137 2.71 445.59 12338 9.48 71.43 

 J90,9-10  122 124 125 131 2.12 435.01 14853 9.91 61.04 

 J90,10-1  78 81 80.8 84 1.71 307.27 12033 1.3 3.9 

 J90,10-2  95 95 95.2 97 0.48 105.69 333 0 0 

 J90,10-3  112 112 112 112 0 2.09 90 0 0 

 J90,10-4  94 94 94 94 0 2.05 90 0 0 
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 J90,10-5  78 78 78 78 0 2.63 90 0 0 

 J90,10-6  92 92 92 92 0 2.11 90 0 0 

 J90,10-7  83 83 83 83 0 12.27 90 0 0 

 J90,10-8  82 85 85.47 90 1.94 317.69 12152 1.23 3.7 

 J90,10-9  88 88 88 88 0 2.06 90 0 0 

 J90,10-10  77 79 78.57 82 1.1 334.25 12277 2.67 2.67 

 J90,11-1  86 86 86 86 0 2.04 90 0 0 

 J90,11-2  99 99 99.03 100 0.18 15.21 90 0 0 

 J90,11-3  69 69 69.03 70 0.18 27.83 90 0 0 

 J90,11-4  64 64 64 64 0 3.16 90 0 0 

 J90,11-5  81 81 81 81 0 2.05 90 0 0 

 J90,11-6  78 78 78 78 0 5.19 90 0 0 

 J90,11-7  95 95 95 95 0 2.02 90 0 0 

 J90,11-8  82 82 82 82 0 2.26 90 0 0 

 J90,11-9  81 81 81 81 0 2.02 90 0 0 

 J90,11-10  81 81 81 81 0 2.04 90 0 0 

 J90,12-1  71 71 71 71 0 2.05 90 0 0 

 J90,12-2  71 71 71 71 0 1.95 90 0 0 

 J90,12-3  93 93 93 93 0 1.95 90 0 0 

 J90,12-4  73 73 73 73 0 1.96 90 0 0 

 J90,12-5  83 83 83 83 0 1.93 90 0 0 

 J90,12-6  81 81 81 81 0 1.97 90 0 0 

 J90,12-7  77 77 77 77 0 1.98 90 0 0 

 J90,12-8  83 83 83 83 0 1.96 90 0 0 

 J90,12-9  77 77 77 77 0 1.93 90 0 0 

 J90,12-10  86 86 86 86 0 1.99 90 0 0 

 J90,13-1  150 154 154.03 158 2.16 527.89 14864 8.7 89.02 

 J90,13-2  140 143 143.13 146 1.91 535.85 14725 10.24 88.31 

 J90,13-3  119 124 123.4 128 2.27 425.42 14311 10.19 51.25 

 J90,13-4  122 126 125.63 130 2.09 428.61 13652 8.93 54.32 

 J90,13-5  127 134 133.13 138 3.17 439.02 13710 10.43 63.29 

 J90,13-6  135 139 139 145 2.35 428.76 14071 8.87 78.95 

 J90,13-7  137 141 140.8 150 2.94 419.74 12035 10.48 58.43 

 J90,13-8  125 129 129.5 135 2.13 455.9 13772 6.84 123.73 

 J90,13-9  136 140 140.13 144 2.22 423.74 12936 9.68 69.51 

 J90,13-10  129 132.5 132.83 138 2.1 444.17 14852 7.5 91.43 

 J90,14-1  89 90 90.13 94 1.28 198.92 90 0 0 

 J90,14-2  79 80 80.03 83 1.22 196.29 95 0 0 

 J90,14-3  94 94 94 94 0 1.99 90 0 0 

 J90,14-4  88 89 88.8 91 0.85 217.16 93 0 0 

 J90,14-5  84 84 84 84 0 2.18 90 0 0 

 J90,14-6  79 81 81.67 85 1.58 320.87 12521 3.95 3.95 

 J90,14-7  86 86 86 86 0 1.91 90 0 0 

 J90,14-8  80 80.5 81.13 84 1.31 226.91 91 0 0 

 J90,14-9  112 112 112 112 0 2.07 90 0 0 

 J90,14-10  85 87 87.53 92 1.55 320.26 2076 0 1.18 

 J90,15-1  76 76 76 76 0 1.97 90 0 0 

 J90,15-2  71 71 71 71 0 1.96 90 0 0 

 J90,15-3  82 82 82 82 0 1.96 90 0 0 

 J90,15-4  92 92 92 92 0 1.95 90 0 0 

 J90,15-5  93 93 93 93 0 2 90 0 0 

 J90,15-6  61 61 61.17 62 0.38 85.4 91 0 0 

 J90,15-7  82 82 82 82 0 1.94 90 0 0 
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 J90,15-8  82 82 82 82 0 9.71 90 0 0 

 J90,15-9  83 83 83 83 0 2.46 90 0 0 

 J90,15-10  78 78 78 78 0 1.92 90 0 0 

 J90,16-1  85 85 85 85 0 1.86 90 0 0 

 J90,16-2  71 71 71 71 0 1.83 90 0 0 

 J90,16-3  73 73 73 73 0 1.91 90 0 0 

 J90,16-4  69 69 69 69 0 1.84 90 0 0 

 J90,16-5  71 71 71 71 0 1.89 90 0 0 

 J90,16-6  74 74 74 74 0 1.8 90 0 0 

 J90,16-7  65 65 65 65 0 1.87 90 0 0 

 J90,16-8  71 71 71 71 0 1.82 90 0 0 

 J90,16-9  66 66 66 66 0 1.87 90 0 0 

 J90,16-10  71 71 71 71 0 1.85 90 0 0 

 J90,17-1  96 101 100.5 105 2.1 252.73 12094 4.35 25.64 

 J90,17-2  101 107 106.77 113 2.56 258.69 12819 1 18.39 

 J90,17-3  89 94 93.93 98 2.08 251.94 2135 0 5.81 

 J90,17-4  94 97 96.6 101 1.98 234.87 991 0 2.17 

 J90,17-5  113 113 113 113 0 2.85 90 0 3.67 

 J90,17-6  95 98 98.23 102 2.28 276.33 12033 1.06 8.79 

 J90,17-7  80 83 83.87 90 2.93 214.53 1595 0 10.96 

 J90,17-8  113 116 116.4 125 2.63 228.1 882 0 11.88 

 J90,17-9  97 101 100.73 104 2.35 247.78 12213 1.04 22.5 

 J90,17-10  91 94 94.4 99 1.79 258.7 12274 2.25 14.81 

 J90,18-1  101 101 101 101 0 1.84 90 0 0 

 J90,18-2  94 94 94 94 0 3.22 90 0 0 

 J90,18-3  83 83 83 83 0 1.83 90 0 0 

 J90,18-4  98 98 98 98 0 1.83 90 0 0 

 J90,18-5  90 90 90 90 0 9.43 90 0 0 

 J90,18-6  83 83 83.1 84 0.31 30.96 90 0 0 

 J90,18-7  73 73 73 73 0 5.48 90 0 0 

 J90,18-8  92 92 92 92 0 1.85 90 0 0 

 J90,18-9  79 79 79 79 0 1.8 90 0 0 

 J90,18-10  94 94 94 94 0 1.83 90 0 0 

 J90,19-1  98 98 98 98 0 1.8 90 0 0 

 J90,19-2  83 83 83 83 0 2.4 90 0 0 

 J90,19-3  89 89 89 89 0 1.82 90 0 0 

 J90,19-4  77 77 77 77 0 1.81 90 0 0 

 J90,19-5  66 66 66 66 0 1.8 90 0 0 

 J90,19-6  136 136 136 136 0 1.79 90 0 0 

 J90,19-7  66 66 66 66 0 1.94 90 0 0 

 J90,19-8  91 91 91 91 0 1.82 90 0 0 

 J90,19-9  121 121 121 121 0 1.81 90 0 0 

 J90,19-10  85 85 85 85 0 1.82 90 0 0 

 J90,20-1  85 85 85 85 0 1.78 90 0 0 

 J90,20-2  76 76 76 76 0 1.83 90 0 0 

 J90,20-3  86 86 86 86 0 1.81 90 0 0 

 J90,20-4  86 86 86 86 0 1.84 90 0 0 

 J90,20-5  88 88 88 88 0 1.82 90 0 0 

 J90,20-6  83 83 83 83 0 1.92 90 0 0 

 J90,20-7  82 82 82 82 0 1.83 90 0 0 

 J90,20-8  85 85 85 85 0 1.88 90 0 0 

 J90,20-9  76 76 76 76 0 1.85 90 0 0 

 J90,20-10  89 89 89 89 0 1.82 90 0 0 
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 J90,21-1  123 126.5 126.93 131 2.1 813.68 17246 11.82 61.84 

 J90,21-2  128 132 132.67 137 2.83 735.72 14438 10.34 37.63 

 J90,21-3  134 142 141.83 148 3.78 714.9 15003 8.06 32.67 

 J90,21-4  117 123 123.43 132 3.35 563.88 12572 10.38 30 

 J90,21-5  121 126.5 126.37 132 2.85 498.43 13053 8.04 51.25 

 J90,21-6  115 121 120.93 126 2.88 444.87 12274 8.49 32.18 

 J90,21-7  119 125.5 125.83 130 2.73 460.98 13952 9.17 30.77 

 J90,21-8  119 128 127.43 134 3.41 502.9 14258 7.21 40 

 J90,21-9  128 135 135.7 145 3.74 494.2 13114 5.79 40.66 

 J90,21-10  117 124 123.83 130 2.73 467.06 13352 7.34 44.44 

 J90,22-1  108 108 108 108 0 2.6 90 0 0 

 J90,22-2  85 85 85 85 0 15.65 90 0 0 

 J90,22-3  86 87 87.4 90 1.43 415.37 12154 3.61 3.61 

 J90,22-4  96 96 96.33 99 0.76 121.61 90 0 0 

 J90,22-5  96 96 96.17 98 0.53 53.64 91 0 0 

 J90,22-6  71 71 71.03 72 0.18 57.38 93 0 0 

 J90,22-7  90 90 90 90 0 10.52 90 0 0 

 J90,22-8  97 97 97 97 0 2.53 90 0 0 

 J90,22-9  104 108.5 108.33 113 2.45 416.69 12031 2.97 7.22 

 J90,22-10  78 81 80.83 84 1.6 396.33 12032 4 4 

 J90,23-1  90 90 90 90 0 2.6 90 0 0 

 J90,23-2  84 84 84 84 0 2.44 90 0 0 

 J90,23-3  116 116 116 116 0 2.53 90 0 0 

 J90,23-4  85 85 85 85 0 2.83 90 0 0 

 J90,23-5  95 95 95 95 0 2.49 90 0 0 

 J90,23-6  87 87 87 87 0 2.89 90 0 0 

 J90,23-7  77 77 77 77 0 2.52 90 0 0 

 J90,23-8  92 92 92 92 0 2.5 90 0 0 

 J90,23-9  126 126 126 126 0 2.56 90 0 0 

 J90,23-10  87 87 87 87 0 2.48 90 0 0 

 J90,24-1  84 84 84 84 0 2.44 90 0 0 

 J90,24-2  92 92 92 92 0 2.5 90 0 0 

 J90,24-3  69 69 69 69 0 2.39 90 0 0 

 J90,24-4  81 81 81 81 0 2.45 90 0 0 

 J90,24-5  85 85 85 85 0 2.45 90 0 0 

 J90,24-6  79 79 79 79 0 2.43 90 0 0 

 J90,24-7  87 87 87 87 0 2.41 90 0 0 

 J90,24-8  88 88 88 88 0 2.44 90 0 0 

 J90,24-9  80 80 80 80 0 2.49 90 0 0 

 J90,24-10  89 89 89 89 0 2.54 90 0 0 

 J90,25-1  134 140 140.07 146 2.9 401.06 14671 8.06 42.55 

 J90,25-2  143 148.5 148.4 155 2.79 379.14 14130 9.16 72.29 

 J90,25-3  137 143 142.77 149 2.74 374.84 14914 11.38 77.92 

 J90,25-4  148 154 153.3 158 2.73 423.99 16803 7.25 55.79 

 J90,25-5  126 129.5 129.7 135 2.26 351.61 13714 10.53 77.46 

 J90,25-6  134 137 137 143 2.3 375.54 13113 10.74 69.62 

 J90,25-7  143 148 147.67 156 3.09 385.48 13953 10 92.21 

 J90,25-8  159 163 163.93 171 3.2 438.51 15454 13.57 62.38 

 J90,25-9  115 119 119.2 122 2.02 349.92 13114 8.49 51.25 

 J90,25-10  142 147 147.9 155 2.95 389.41 14312 9.23 56.25 

 J90,26-1  90 90 90 90 0 30.43 92 0 0 

 J90,26-2  89 93 93.4 97 1.75 316.1 12512 4.71 9.41 

 J90,26-3  80 81 80.8 82 0.76 180.55 91 0 0 
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 J90,26-4  103 105.5 105.7 108 1.37 316.82 13051 6.19 10.42 

 J90,26-5  90 94 93.37 96 1.69 334.63 12931 5.88 12.2 

 J90,26-6  108 108 108.03 109 0.18 26.79 90 0 0 

 J90,26-7  85 87 87.03 89 1.19 271.34 12690 3.66 6.1 

 J90,26-8  87 89 89.33 91 0.99 294.85 12696 6.1 9.76 

 J90,26-9  88 92 92.53 96 2.11 316.76 12151 1.15 4.6 

 J90,26-10  92 92 92 92 0 1.91 90 0 0 

 J90,27-1  96 96 96 96 0 1.77 90 0 0 

 J90,27-2  81 81 81.03 82 0.18 12.55 90 0 0 

 J90,27-3  91 91 91 91 0 1.75 90 0 0 

 J90,27-4  79 79 79 79 0 2.91 90 0 0 

 J90,27-5  99 99 99 99 0 1.74 90 0 0 

 J90,27-6  87 87 87 87 0 1.76 90 0 0 

 J90,27-7  73 73 73.37 76 0.76 54.07 90 0 0 

 J90,27-8  72 72 72 72 0 1.76 90 0 0 

 J90,27-9  84 84 84.43 86 0.63 119.73 634 0 0 

 J90,27-10  97 97 97 97 0 1.78 90 0 0 

 J90,28-1  80 80 80 80 0 1.7 90 0 0 

 J90,28-2  76 76 76 76 0 1.65 90 0 0 

 J90,28-3  86 86 86 86 0 1.68 90 0 0 

 J90,28-4  78 78 78 78 0 1.74 90 0 0 

 J90,28-5  88 88 88 88 0 1.69 90 0 0 

 J90,28-6  102 102 102 102 0 1.69 90 0 0 

 J90,28-7  97 97 97 97 0 1.65 90 0 0 

 J90,28-8  110 110 110 110 0 1.71 90 0 0 

 J90,28-9  120 120 120 120 0 1.76 90 0 0 

 J90,28-10  68 68 68 68 0 1.72 90 0 0 

 J90,29-1  149 153.5 154 161 2.77 405.7 12158 10.37 61.46 

 J90,29-2  138 142 141.6 145 1.87 355.98 13353 9.52 86.84 

 J90,29-3  157 161 160.77 166 2.42 407.75 15933 9.03 85.06 

 J90,29-4  161 164.5 164.73 168 1.93 447.85 13772 8.05 94.25 

 J90,29-5  131 136.5 136.47 141 2.83 387.53 13833 8.26 42.71 

 J90,29-6  133 138 137.97 144 2.57 386.21 12452 7.26 81.82 

 J90,29-7  184 189.5 189.53 196 3.08 466.96 14082 8.24 85.44 

 J90,29-8  165 173 172.93 179 2.94 428.53 15030 7.14 88.17 

 J90,29-9  137 142 141.97 145 1.87 433.15 13533 7.87 77.78 

 J90,29-10  134 139 138.9 145 2.28 372.27 14013 7.2 76.54 

 J90,30-1  102 102 102 102 0 1.79 90 0 0 

 J90,30-2  76 79 78.7 82 1.53 280.43 93 0 2.63 

 J90,30-3  102 105 105.4 109 1.65 302.63 13113 0 2.94 

 J90,30-4  104 104 104.83 109 1.18 223.86 3032 0 0 

 J90,30-5  88 92 91.9 96 1.75 322.72 13594 6.02 13.25 

 J90,30-6  90 90 90 90 0 2.1 90 0 0 

 J90,30-7  89 92 92.7 96 1.64 285.64 12875 5.95 9.52 

 J90,30-8  83 86 86.07 90 1.48 281.91 12341 1.22 3.66 

 J90,30-9  100 103 102.87 107 1.43 331.19 13711 6.38 26.83 

 J90,30-10  90 93 93.37 97 1.61 326.35 12992 0 4.44 

 J90,31-1  79 79 79 79 0 1.8 90 0 0 

 J90,31-2  69 71 71.07 73 0.83 253.85 10805 0 2.9 

 J90,31-3  106 106 106 106 0 1.73 90 0 0 

 J90,31-4  79 79 79 79 0 1.73 90 0 0 

 J90,31-5  79 79 79 79 0 1.72 90 0 0 

 J90,31-6  80 80 80 80 0 3.52 90 0 0 
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 J90,31-7  97 97 97 97 0 1.7 90 0 0 

 J90,31-8  83 83 83 83 0 1.83 90 0 0 

 J90,31-9  72 72 72 72 0 1.74 90 0 0 

 J90,31-10  99 99 99 99 0 4.84 90 0 0 

 J90,32-1  78 78 78 78 0 1.61 90 0 0 

 J90,32-2  78 78 78 78 0 1.62 90 0 0 

 J90,32-3  89 89 89 89 0 1.65 90 0 0 

 J90,32-4  104 104 104 104 0 1.65 90 0 0 

 J90,32-5  93 93 93 93 0 1.66 90 0 0 

 J90,32-6  86 86 86 86 0 1.74 90 0 0 

 J90,32-7  87 87 87 87 0 1.7 90 0 0 

 J90,32-8  79 79 79 79 0 1.68 90 0 0 

 J90,32-9  95 95 95 95 0 1.71 90 0 0 

 J90,32-10  91 91 91 91 0 1.82 90 0 0 

 J90,33-1  99 105 104.4 109 2.36 218.98 5074 0 25.61 

 J90,33-2  112 113 112.53 113 0.51 135.46 92 0 4.67 

 J90,33-3  108 112.5 112.27 119 2.69 217.22 3422 0 3.81 

 J90,33-4  93 98 97.23 101 1.77 194.57 12032 1.09 11.76 

 J90,33-5  111 113 113.83 118 2.26 230.69 12031 1.83 5.66 

 J90,33-6  88 89 89.43 91 1.36 166.31 2617 0 6.02 

 J90,33-7  109 109 110.5 118 2.49 112.39 92 0 17.02 

 J90,33-8  110 111 111.5 114 1.22 189.33 454 0 11.11 

 J90,33-9  97 101.5 101.8 108 2.68 234.87 12031 2.11 12.79 

 J90,33-10  116 118 118.37 122 1.9 232.5 12036 1.75 2.65 

 J90,34-1  83 83 83 83 0 7.34 90 0 0 

 J90,34-2  89 89 89 89 0 1.69 90 0 0 

 J90,34-3  82 82 82 82 0 5.62 91 0 0 

 J90,34-4  81 83 82.67 85 1.12 172.5 156 0 6.58 

 J90,34-5  83 85 84.87 87 1.38 167.72 512 0 3.75 

 J90,34-6  89 89 89 89 0 1.6 90 0 0 

 J90,34-7  92 92 92 92 0 1.55 90 0 0 

 J90,34-8  81 82 81.73 84 0.78 134.91 813 0 3.85 

 J90,34-9  109 109 109 109 0 1.59 90 0 0 

 J90,34-10  101 101 101 101 0 2.05 90 0 0 

 J90,35-1  98 98 98 98 0 1.5 90 0 1.03 

 J90,35-2  92 92 92 92 0 1.58 90 0 0 

 J90,35-3  96 96 96 96 0 1.55 90 0 0 

 J90,35-4  86 86 86 86 0 1.54 90 0 0 

 J90,35-5  103 103 103 103 0 1.54 90 0 0 

 J90,35-6  72 72 72 72 0 4.07 90 0 0 

 J90,35-7  78 78 78 78 0 2.79 90 0 0 

 J90,35-8  85 85 85 85 0 1.54 90 0 0 

 J90,35-9  76 76 76 76 0 1.79 90 0 0 

 J90,35-10  82 82 82 82 0 1.53 90 0 0 

 J90,36-1  97 97 97 97 0 1.48 90 0 0 

 J90,36-2  114 114 114 114 0 1.61 90 0 0 

 J90,36-3  84 84 84 84 0 1.55 90 0 0 

 J90,36-4  79 79 79 79 0 1.53 90 0 0 

 J90,36-5  98 98 98 98 0 1.51 90 0 0 

 J90,36-6  99 99 99 99 0 1.52 90 0 0 

 J90,36-7  89 89 89 89 0 1.55 90 0 0 

 J90,36-8  84 84 84 84 0 1.53 90 0 0 

 J90,36-9  102 102 102 102 0 1.5 90 0 0 
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 J90,36-10  109 109 109 109 0 1.51 90 0 0 

 J90,37-1  117 123 122.73 126 2.36 292.83 13353 6.36 39.29 

 J90,37-2  122 128 128.2 134 2.91 356.06 13114 6.09 35.56 

 J90,37-3  139 147 147.03 155 3.52 313.08 12995 5.3 20.87 

 J90,37-4  132 140.5 140.43 149 3.52 335.87 13296 7.32 53.49 

 J90,37-5  136 142.5 141.8 147 3.22 321.96 13051 7.94 47.83 

 J90,37-6  141 145.5 145.87 151 2.69 323.18 14491 7.63 46.88 

 J90,37-7  130 136.5 135.9 143 3.21 293.54 13772 5.69 34.02 

 J90,37-8  130 134 134.2 139 2.38 354.49 14942 9.24 46.07 

 J90,37-9  133 140 141.03 147 3.21 291.95 14132 8.13 43.01 

 J90,37-10  133 139.5 139.53 147 3 311.72 13475 8.13 49.44 

 J90,38-1  87 88 88.5 93 1.28 244.69 12033 2.35 4.82 

 J90,38-2  78 82 81.37 85 1.38 222.88 10053 0 1.3 

 J90,38-3  90 93 93.43 97 1.38 267.1 12281 1.12 2.27 

 J90,38-4  89 89 89.5 92 0.82 119.5 92 0 0 

 J90,38-5  89 91.5 91.47 95 1.55 265.07 12455 3.49 5.95 

 J90,38-6  89 91 91.13 93 1.11 257.57 12035 1.14 1.14 

 J90,38-7  85 85 85.03 86 0.18 50.26 91 0 0 

 J90,38-8  92 97.5 97.07 100 2.26 245.01 12032 1.1 1.1 

 J90,38-9  96 99 99.27 104 2.08 265.93 12030 1.05 1.05 

 J90,38-10  108 108 108 108 0 4.65 90 0 0 

 J90,39-1  106 106 106 106 0 1.68 90 0 0 

 J90,39-2  119 119 119 119 0 1.93 90 0 0 

 J90,39-3  83 83 83 83 0 5.23 90 0 0 

 J90,39-4  81 81 81.4 84 0.77 93.05 91 0 0 

 J90,39-5  85 85 85.3 87 0.6 78.81 333 0 0 

 J90,39-6  102 102 102 102 0 4.57 90 0 0 

 J90,39-7  85 85 85 85 0 2.63 90 0 0 

 J90,39-8  81 81 81.13 85 0.73 21.69 90 0 0 

 J90,39-9  79 79 79 79 0 1.68 90 0 0 

 J90,39-10  100 100 100 100 0 1.71 90 0 0 

 J90,40-1  95 95 95 95 0 1.64 90 0 0 

 J90,40-2  91 91 91 91 0 1.63 90 0 0 

 J90,40-3  77 77 77 77 0 1.64 90 0 0 

 J90,40-4  106 106 106 106 0 1.65 90 0 0 

 J90,40-5  92 92 92 92 0 1.66 90 0 0 

 J90,40-6  86 86 86 86 0 1.63 90 0 0 

 J90,40-7  87 87 87 87 0 1.64 90 0 0 

 J90,40-8  79 79 79 79 0 1.6 90 0 0 

 J90,40-9  98 98 98 98 0 1.64 90 0 0 

 J90,40-10  86 86 86 86 0 1.68 90 0 0 

 J90,41-1  153 157 157.3 162 2.29 399.67 14130 7.75 50 

 J90,41-2  186 192 192.03 201 3.47 443.1 15662 10.71 72.22 

 J90,41-3  177 182 182.03 190 3.34 421.18 14133 9.94 66.98 

 J90,41-4  166 172.5 171.87 177 2.99 478.06 15480 7.79 95.29 

 J90,41-5  138 144 143.97 153 3.59 420.8 13176 8.66 55.06 

 J90,41-6  147 151 151 158 2.72 349.65 12572 8.89 70.93 

 J90,41-7  172 180 179.07 185 3.02 414.16 15003 9.55 63.81 

 J90,41-8  176 182.5 182.8 191 3.11 481.02 14558 7.98 62.96 

 J90,41-9  132 137 137 144 3.17 412.51 14945 10.92 71.43 

 J90,41-10  164 169 168.63 172 2.46 428.99 15305 9.33 56.19 

 J90,42-1  106 108.5 108.7 113 1.73 357.64 4997 0 0 

 J90,42-2  108 110 110.7 116 1.7 339.2 12039 5.88 17.39 
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 J90,42-3  95 98 97.9 101 1.35 268.45 12212 1.06 1.06 

 J90,42-4  102 102 102.37 105 0.72 86.49 91 0 0 

 J90,42-5  106 107 107.13 111 1.22 266.72 12034 0.95 0.95 

 J90,42-6  89 91 90.63 91 0.72 194.12 2555 0 0 

 J90,42-7  91 92 92.23 94 1.04 282.91 12393 4.6 9.64 

 J90,42-8  105 105 105 105 0 1.68 90 0 0 

 J90,42-9  87 89 89.47 93 1.36 298.55 13416 4.82 6.1 

 J90,42-10  96 98.5 98.6 105 2.01 285.03 12395 6.67 12.94 

 J90,43-1  99 99 99.33 104 0.99 90.79 93 0 0 

 J90,43-2  91 91 91 91 0 5.66 90 0 0 

 J90,43-3  102 102 102 102 0 1.66 90 0 0 

 J90,43-4  94 94 94 94 0 1.96 90 0 0 

 J90,43-5  98 98 98 98 0 1.65 90 0 0 

 J90,43-6  114 114 114 114 0 1.64 90 0 0 

 J90,43-7  88 88 88.1 89 0.31 49.94 91 0 0 

 J90,43-8  100 100 100 100 0 26.48 90 0 0 

 J90,43-9  88 88 88 88 0 1.72 90 0 0 

 J90,43-10  92 92 92.03 93 0.18 24.72 90 0 0 

 J90,44-1  100 100 100 100 0 1.61 90 0 0 

 J90,44-2  92 92 92 92 0 1.59 90 0 0 

 J90,44-3  110 110 110 110 0 1.62 90 0 0 

 J90,44-4  89 89 89 89 0 1.58 90 0 0 

 J90,44-5  84 84 84 84 0 1.6 90 0 0 

 J90,44-6  96 96 96 96 0 1.62 90 0 0 

 J90,44-7  93 93 93 93 0 1.59 90 0 0 

 J90,44-8  99 99 99 99 0 1.6 90 0 0 

 J90,44-9  96 96 96 96 0 1.62 90 0 0 

 J90,44-10  86 86 86 86 0 1.61 90 0 0 

 J90,45-1  157 162 162.13 169 2.78 430.81 13296 7.53 68.82 

 J90,45-2  159 164.5 164.57 173 3.17 480.86 13835 7.43 78.65 

 J90,45-3  169 174.5 174.23 182 3.32 446.18 14133 9.74 67.33 

 J90,45-4  145 150 150.5 155 2.62 411.41 13111 7.41 90.79 

 J90,45-5  192 196 196.43 204 2.93 491.26 15364 10.34 95.92 

 J90,45-6  190 197.5 196.9 206 4.27 450.49 15124 8.57 79.25 

 J90,45-7  148 153 153.43 157 1.92 406.25 14191 8.82 82.72 

 J90,45-8  172 179 178.87 185 3.37 440.6 14672 7.5 77.32 

 J90,45-9  168 174 173.8 180 2.81 502.29 14911 6.33 75 

 J90,45-10  179 184 184.47 190 2.74 496.61 15511 9.15 103.41 

 J90,46-1  110 112 112.13 115 1.57 330 12034 5.77 6.8 

 J90,46-2  98 101 100.87 104 1.74 285.11 4651 0 0 

 J90,46-3  115 118 117.77 119 1.1 276.52 12816 1.77 2.68 

 J90,46-4  99 102 102.13 106 1.96 304.86 12154 6.45 12.5 

 J90,46-5  91 95 95.47 98 1.72 288.56 10201 0 0 

 J90,46-6  86 88 88.07 91 1.14 281.08 12339 3.61 3.61 

 J90,46-7  92 96 95.8 99 1.45 311.38 12933 3.37 3.37 

 J90,46-8  102 104 103.9 107 1.32 359.42 14255 6.25 17.24 

 J90,46-9  92 94 94 96 0.98 310.15 12634 3.37 24.32 

 J90,46-10  114 114 114 114 0 2.84 90 0 0 

 J90,47-1  82 82 82 82 0 1.91 90 0 0 

 J90,47-2  90 90 90 90 0 1.74 90 0 0 

 J90,47-3  102 103 103.2 106 1.21 190.23 92 0 0 

 J90,47-4  93 93 93 93 0 10.01 90 0 0 

 J90,47-5  93 93 93 93 0 6.02 90 0 0 
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 J90,47-6  98 98 98 98 0 1.86 90 0 0 

 J90,47-7  94 94 94 94 0 5.56 90 0 0 

 J90,47-8  98 98 98 98 0 1.82 90 0 0 

 J90,47-9  86 86 86 86 0 2.63 90 0 0 

 J90,47-10  65 65.5 65.73 69 0.94 165.27 91 0 0 

 J90,48-1  83 83 83 83 0 1.66 90 0 0 

 J90,48-2  89 89 89 89 0 1.66 90 0 0 

 J90,48-3  86 86 86 86 0 1.65 90 0 0 

 J90,48-4  91 91 91 91 0 1.66 90 0 0 

 J90,48-5  75 75 75 75 0 1.65 90 0 0 

 J90,48-6  114 114 114 114 0 1.71 90 0 0 

 J90,48-7  103 103 103 103 0 1.65 90 0 0 

 J90,48-8  74 74 74 74 0 1.66 90 0 0 

 J90,48-9  89 89 89 89 0 1.68 90 0 0 

 J90,48-10  93 93 93 93 0 1.64 90 0 0 

Total Average  0.86 145.78 4400.43 2.06 13.09 
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Table 16                                                                                                                                 

The detailed results of 600 problems of J120 obtained by bi-EA 

The results are obtained from 30 runs with up to 50,000 fitness evaluations for each. 

 

Prob. No Best Median Mean Worst STD 𝒕 𝑭𝑬 𝑳𝑩𝑶𝑷 𝑳𝑩𝑪𝑷 

 J120,1-1  113 118.5 118.17 124 2.6 855.74 15690 7.62 14.14 

 J120,1-2  119 125 124.67 130 2.68 736.43 14803 9.17 38.37 

 J120,1-3  132 135.5 136.1 143 3.17 793.13 14805 5.6 60.98 

 J120,1-4  104 107 107.5 112 2.37 722.27 14955 7.22 31.65 

 J120,1-5  119 123.5 124 131 2.98 705.42 15094 6.25 26.6 

 J120,1-6  87 92 91.7 97 2.25 717.05 15195 3.57 33.85 

 J120,1-7  122 126.5 127 133 2.98 738.91 13821 4.27 24.49 

 J120,1-8  114 119 119.17 126 3.14 618.18 13637 4.59 34.12 

 J120,1-9  122 129.5 129.83 144 4.82 704.64 13593 8.93 37.08 

 J120,1-10  113 123.5 123.8 134 5.64 765.46 13591 4.63 26.97 

 J120,2-1  91 96 95.47 99 2.58 664.26 13912 4.6 30 

 J120,2-2  79 81 81.5 85 1.66 735.88 13772 5.33 8.22 

 J120,2-3  100 105 104.83 109 2.56 690.49 13908 8.7 28.21 

 J120,2-4  97 105 104.37 113 3.51 692.79 13598 2.11 10.23 

 J120,2-5  111 113 113.53 121 2.37 701.8 13592 7.77 21.98 

 J120,2-6  96 101.5 101.63 106 2.94 607.66 13681 4.35 28 

 J120,2-7  95 100 100.03 105 2.61 705.03 13592 5.56 13.1 

 J120,2-8  88 93.5 93.77 99 3.1 659.27 13594 6.02 14.29 

 J120,2-9  100 102.5 103.13 108 2.3 664.31 13782 6.38 8.7 

 J120,2-10  104 111 111.03 119 3.61 730.42 13593 8.33 31.65 

 J120,3-1  84 87 87.37 93 1.99 682.57 13684 5 6.33 

 J120,3-2  88 88 88.23 90 0.5 121.6 91 0 0 

 J120,3-3  100 100 101.07 105 1.55 293.92 90 0 0 

 J120,3-4  75 79 78.7 84 2.22 718 13592 5.63 5.63 

 J120,3-5  86 90 89.8 93 1.94 650.1 13592 2.38 6.17 

 J120,3-6  102 102 102.23 103 0.43 151.35 91 0 0 

 J120,3-7  93 96 95.27 97 1.66 527.35 595 0 0 

 J120,3-8  78 82 82.77 90 2.84 734.66 13599 1.3 1.3 

 J120,3-9  86 86 86 86 0 4.59 90 0 0 

 J120,3-10  103 103 103 103 0 12.04 90 0 0 

 J120,4-1  74 75 76.17 80 2.21 465.07 138 0 5.71 

 J120,4-2  107 107 107 107 0 4.15 90 0 0 

 J120,4-3  95 95 95.07 97 0.37 66.64 92 0 4.4 

 J120,4-4  75 77 77.13 80 1.53 552.74 461 0 0 

 J120,4-5  74 76 76.1 80 1.84 519.35 1041 0 0 

 J120,4-6  90 90 90.8 96 1.54 207.02 92 0 5.88 

 J120,4-7  82 85 84.77 88 1.36 637.43 13594 1.23 1.23 

 J120,4-8  90 90 90 90 0 4.62 90 0 0 

 J120,4-9  79 79 79.4 83 0.89 155.96 91 0 0 

 J120,4-10  77 77 77 77 0 4.27 90 0 0 

 J120,5-1  92 92 92 92 0 4.1 90 0 0 
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 J120,5-2  80 80 80.1 81 0.31 83.07 90 0 0 

 J120,5-3  73 74 74.3 77 1.37 613.69 13599 1.39 1.39 

 J120,5-4  97 97 97 97 0 4.11 90 0 0 

 J120,5-5  77 77 77.53 84 1.55 118.19 90 0 0 

 J120,5-6  88 89 88.7 90 0.75 406.93 594 0 0 

 J120,5-7  84 84 84 84 0 5.3 91 0 0 

 J120,5-8  78 78 78.3 81 0.7 144.77 92 0 0 

 J120,5-9  106 106 106 106 0 20.19 92 0 0 

 J120,5-10  92 92 92 92 0 4.02 90 0 0 

 J120,6-1  166 174 173.2 181 3.46 1190.39 15141 15.28 121.33 

 J120,6-2  153 162 161.5 168 3.88 1011.45 14659 13.33 112.5 

 J120,6-3  153 161 160.27 166 3.5 1087.17 17038 13.33 80 

 J120,6-4  177 184 185.1 194 4.67 1019.88 17453 14.94 80.61 

 J120,6-5  142 148 147.47 152 2.61 1071.32 17647 13.6 97.22 

 J120,6-6  171 185 185.2 192 4.27 1028.31 15183 10.32 140.85 

 J120,6-7  191 199 198.83 207 4.04 1009.98 13892 13.69 70.54 

 J120,6-8  171 179 179.7 187 4.69 921.76 12035 16.33 66.02 

 J120,6-9  186 191 191.47 197 2.86 899.36 15181 15.53 113.79 

 J120,6-10  196 202.5 202.63 207 2.87 1187.49 14611 13.95 110.75 

 J120,7-1  114 120 119.7 124 2.51 872.48 13415 11.76 50 

 J120,7-2  131 135.5 135.53 142 2.65 867.01 12393 14.91 33.67 

 J120,7-3  113 117.5 117.63 121 2.46 896.75 13594 13 25.56 

 J120,7-4  122 129 128.57 133 2.73 988.43 13534 8.93 43.53 

 J120,7-5  148 154 153.83 161 3.32 1061.03 13654 12.98 70.11 

 J120,7-6  138 145 145.3 151 2.89 976.29 13593 11.29 43.75 

 J120,7-7  132 137 136.5 141 2.7 899.72 13951 11.86 41.94 

 J120,7-8  106 112 111.8 117 2.58 850.83 13294 9.28 63.08 

 J120,7-9  101 104 104.67 110 1.95 872.43 12035 13.48 27.85 

 J120,7-10  128 134 134.17 140 2.95 989.03 13353 8.47 52.38 

 J120,8-1  101 108 107.67 116 3.13 760.22 12034 6.32 6.32 

 J120,8-2  112 121.5 121.53 129 3.12 808.71 12035 8.74 24.44 

 J120,8-3  105 110 109.9 115 2.2 784.25 12933 10.53 19.32 

 J120,8-4  106 109.5 109.67 118 2.86 867.53 13174 12.77 19.1 

 J120,8-5  114 117.5 118.17 123 2.32 822.94 14135 9.62 25.27 

 J120,8-6  96 100 99.9 106 2.32 820.63 12879 12.94 17.07 

 J120,8-7  96 99.5 99.5 103 1.78 890.63 12990 10.34 10.34 

 J120,8-8  94 97 97.07 102 1.8 815.05 12031 8.05 8.05 

 J120,8-9  104 107 107.07 111 1.86 812.07 13114 10.64 25.3 

 J120,8-10  102 105 104.63 109 1.77 779.09 12759 9.68 22.89 

 J120,9-1  91 93 93.23 97 1.57 930.94 13033 3.41 3.41 

 J120,9-2  94 95 95.27 98 1.11 337.39 372 0 0 

 J120,9-3  88 90 90.8 94 1.54 526.79 11455 1.15 1.15 

 J120,9-4  93 96 95.97 100 1.94 535.65 11133 6.9 16.25 

 J120,9-5  114 114 114 114 0 4.84 156 0 0 

 J120,9-6  103 108 107.63 112 2.19 561.36 12715 5.1 5.1 

 J120,9-7  80 83 82.73 85 1.28 479.2 8017 0 0 

 J120,9-8  82 84.5 84.3 86 1.24 507.06 10511 2.5 2.5 

 J120,9-9  92 94 94.07 97 1.34 527.2 11456 5.75 5.75 

 J120,9-10  85 88 88.23 91 1.94 563.94 12173 1.19 1.19 

 J120,10-1  111 111 111 111 0 14.87 287 0 0 

 J120,10-2  91 91 91 91 0 10.02 287 0 0 

 J120,10-3  100 102 102.03 105 1.69 652.99 13414 1.01 1.01 

 J120,10-4  96 100 99.77 105 2.01 604.02 12843 1.05 1.05 
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 J120,10-5  97 97 97 97 0 20.81 96 0 0 

 J120,10-6  92 92 92 92 0 3.17 96 0 0 

 J120,10-7  81 83 83.2 86 1.52 561.91 14373 2.53 2.53 

 J120,10-8  114 116 116.07 120 1.8 428.39 1707 0 0 

 J120,10-9  77 77 77 77 0 45.56 97 0 0 

 J120,10-10  66 66 66.73 69 0.94 308.53 738 0 0 

 J120,11-1  194 199.5 199.27 205 3.34 1036.82 13890 12.14 115.56 

 J120,11-2  178 183.5 183.6 189 3.22 837.02 14194 12.66 128.21 

 J120,11-3  233 237 237.63 244 3.51 1004.93 13354 14.78 150.54 

 J120,11-4  224 233 232.4 240 4 996.39 13594 14.29 133.33 

 J120,11-5  242 249 249.33 258 4.42 829.05 12754 14.69 149.48 

 J120,11-6  239 249 249.6 256 3.8 845.72 12219 12.74 162.64 

 J120,11-7  185 190.5 190.13 198 3.35 915.22 13054 13.5 125.61 

 J120,11-8  182 188 187.63 192 2.28 854.68 14255 12.35 91.58 

 J120,11-9  194 201 200.73 210 3.77 855.87 16530 12.14 155.26 

 J120,11-10  205 211.5 212.53 220 3.89 1013.41 14258 13.26 127.78 

 J120,12-1  153 159 158.77 164 2.47 884.9 12031 10.87 62.77 

 J120,12-2  129 132 132.2 137 2.3 742.62 12574 10.26 79.17 

 J120,12-3  149 153 153.47 162 2.83 743.98 12817 9.56 77.38 

 J120,12-4  136 143 142.8 149 2.75 625.85 15005 8.8 44.68 

 J120,12-5  178 187.5 187.5 194 3.96 790.41 13893 9.88 81.63 

 J120,12-6  134 139.5 139.33 144 2.63 663.71 14075 10.74 63.41 

 J120,12-7  131 134.5 134.93 142 2.46 647.36 12333 9.17 57.83 

 J120,12-8  130 135 135.1 140 2.07 661.16 15571 9.24 80.56 

 J120,12-9  117 119.5 120.2 124 1.92 653.85 13950 11.43 51.95 

 J120,12-10  154 159 158.93 165 2.15 675.26 13118 7.69 83.33 

 J120,13-1  140 143 143.07 149 2.15 1158.57 15096 10.24 15.7 

 J120,13-2  94 96.5 96.73 99 1.36 891.47 14200 5.62 30.56 

 J120,13-3  131 136 136.67 142 2.54 930.08 13954 11.02 23.58 

 J120,13-4  120 126 125.4 130 2.55 955.2 14074 7.14 36.36 

 J120,13-5  100 103 103.03 107 1.63 854.57 12273 9.89 26.58 

 J120,13-6  111 113 113.57 120 2.1 969.62 13053 12.12 29.07 

 J120,13-7  119 124 123.9 128 2.51 994.28 13351 9.17 13.33 

 J120,13-8  101 104.5 104.83 114 2.87 1038.58 12035 7.45 16.09 

 J120,13-9  94 97 96.8 100 1.85 982.67 13414 10.59 22.08 

 J120,13-10  101 105 105.67 110 2.32 972.44 13655 9.78 29.49 

 J120,14-1  93 96 96.2 99 1.71 836.09 12033 9.41 14.81 

 J120,14-2  101 105 104.83 108 1.91 909.5 12754 8.6 17.44 

 J120,14-3  93 96 95.8 99 1.67 806.2 12092 5.68 5.68 

 J120,14-4  98 100 100.53 103 1.46 983.01 12035 11.36 15.29 

 J120,14-5  108 111 111.03 116 1.69 934.57 12879 11.34 20 

 J120,14-6  95 97 97.73 101 1.62 835.82 13175 4.4 4.4 

 J120,14-7  96 100.5 100.07 103 1.78 938.38 12753 5.49 7.87 

 J120,14-8  119 122 122.3 127 1.9 1075.99 13230 6.25 17.82 

 J120,14-9  102 105 104.8 107 1.19 910.25 13837 0.99 0.99 

 J120,14-10  87 89 88.97 92 1.27 912.28 14375 7.41 8.75 

 J120,15-1  81 81 81.47 84 0.9 318.06 90 0 0 

 J120,15-2  77 80.5 80.83 84 1.66 805.29 12454 2.67 2.67 

 J120,15-3  89 93 92.8 97 1.58 811.87 12871 2.3 2.3 

 J120,15-4  82 85 84.9 88 1.42 736.48 2140 0 0 

 J120,15-5  87 87 87 87 0 4.45 90 0 0 

 J120,15-6  97 97 97 97 0 7.03 91 0 0 

 J120,15-7  75 75 75 75 0 54.44 91 0 0 
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 J120,15-8  126 126 126 126 0 4.5 90 0 0 

 J120,15-9  109 109 109 109 0 4.48 90 0 0 

 J120,15-10  91 94 94.13 97 1.46 776.57 91 0 0 

 J120,16-1  214 223 223.47 235 4.63 1671.18 14945 9.18 201.41 

 J120,16-2  257 265.5 265.27 275 4.59 1597.08 14074 10.78 202.35 

 J120,16-3  262 269 269.2 278 4.14 1703 15665 11.97 170.1 

 J120,16-4  222 228 228.17 234 3.26 1489.28 15183 11 177.5 

 J120,16-5  223 229.5 229.37 236 2.94 1457.53 15187 11.5 142.39 

 J120,16-6  226 233 233.3 239 3.49 1557.52 14941 9.71 186.08 

 J120,16-7  203 211 210.87 216 2.73 1428.97 15574 9.14 125.56 

 J120,16-8  217 223 223.1 229 3.32 1639.89 15785 11.28 181.82 

 J120,16-9  227 235 234.97 246 4.44 1444.88 12633 10.73 157.95 

 J120,16-10  241 244.5 245.33 251 3.35 1621.28 16178 13.15 145.92 

 J120,17-1  153 156 156.6 160 1.85 1237.36 13175 9.29 75.86 

 J120,17-2  134 137 137.07 145 2.23 1095.21 12513 8.94 81.08 

 J120,17-3  117 120 119.93 122 1.08 980.13 13173 8.33 62.5 

 J120,17-4  130 134 134.57 139 2.33 1052.06 15098 8.33 42.86 

 J120,17-5  144 147.5 147.57 153 2.11 1172.55 15005 11.63 60 

 J120,17-6  146 149.5 149.5 153 1.74 1111.34 13897 7.35 114.71 

 J120,17-7  160 163 163.3 168 1.99 1258.69 15213 9.59 63.27 

 J120,17-8  138 142 142.1 145 1.81 1187.89 13233 8.66 89.04 

 J120,17-9  147 151 151.4 156 2.46 1294.58 12693 9.7 81.48 

 J120,17-10  145 148 148.5 153 1.81 1172.99 12511 8.21 64.77 

 J120,18-1  145 149 148.97 153 1.73 1299.98 17574 5.07 43.56 

 J120,18-2  126 131 130.8 136 2.77 1108.52 14013 8.62 13.51 

 J120,18-3  105 108 108.17 112 1.68 955.3 12753 3.96 45.83 

 J120,18-4  108 111 111.27 115 2.02 987.56 12695 6.93 40.26 

 J120,18-5  128 130 130.53 136 1.93 1022.23 13354 8.47 45.45 

 J120,18-6  145 149 149.13 154 2.24 1195.41 12039 8.21 34.26 

 J120,18-7  127 131 130.53 134 1.57 1020.32 13594 7.63 42.7 

 J120,18-8  113 117 116.8 120 1.67 1101.6 13830 6.6 28.41 

 J120,18-9  98 100 100.3 103 1.32 883.55 13175 7.69 28.95 

 J120,18-10  108 111 111.3 115 2.07 918.43 13534 10.2 28.57 

 J120,19-1  89 95 94.17 98 2 940.58 12993 1.14 1.14 

 J120,19-2  89 92 91.97 95 1.5 922.53 12093 7.23 9.88 

 J120,19-3  90 92 92.2 95 1.27 928.29 12514 5.88 25 

 J120,19-4  116 119 119.47 124 1.81 962.42 12213 9.43 26.09 

 J120,19-5  111 116 115.7 120 2.17 1013.32 14500 7.77 30.59 

 J120,19-6  97 100.5 100.5 104 2.19 841.47 12033 7.78 21.25 

 J120,19-7  96 100 100.17 105 2.09 852.34 12093 3.23 3.23 

 J120,19-8  100 104 103.97 108 1.94 852.11 12154 7.53 7.53 

 J120,19-9  94 96 96.13 99 1.31 953.15 12031 5.62 25.33 

 J120,19-10  90 93 92.6 95 1.19 936.58 13234 2.27 2.27 

 J120,20-1  95 99 98.53 102 1.68 737.71 10729 6.74 6.74 

 J120,20-2  99 101 101.03 104 1.27 530.89 289 0 0 

 J120,20-3  82 85 84.67 89 1.45 587.88 9473 6.49 10.81 

 J120,20-4  89 89 89 89 0 42.45 169 0 0 

 J120,20-5  71 74 74.07 77 1.36 516.1 8475 2.9 2.9 

 J120,20-6  80 80 80 80 0 8.21 169 0 0 

 J120,20-7  81 81 81 81 0 22.27 169 0 0 

 J120,20-8  113 115.5 115.67 119 1.47 615.95 9746 5.61 5.61 

 J120,20-9  80 80 80 80 0 44.16 169 0 0 

 J120,20-10  81 84 84.07 88 1.44 591.25 6672 0 0 
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 J120,21-1  121 128 127.97 133 2.7 562.38 9132 6.14 23.47 

 J120,21-2  122 127 126.73 131 2.32 479.84 8629 4.27 40.23 

 J120,21-3  146 153 153.27 159 2.56 556.26 9204 2.1 31.53 

 J120,21-4  141 146.5 145.83 150 2.35 444.91 8575 4.44 27.03 

 J120,21-5  114 121 120.5 127 3.27 535.45 8520 3.64 20 

 J120,21-6  119 123 123.53 129 2.32 497.81 8803 9.17 22.68 

 J120,21-7  118 122 122.13 127 2.13 561.15 9078 6.31 49.37 

 J120,21-8  135 142 141.7 151 3.29 456.6 8460 6.3 11.57 

 J120,21-9  109 113 113.43 119 2.66 533.17 8644 6.86 26.74 

 J120,21-10  109 114 113.8 120 2.55 573.48 8797 6.86 25.29 

 J120,22-1  105 111.5 111.37 116 2.74 528.06 8688 3.96 26.51 

 J120,22-2  110 115 114.5 120 2.29 522.37 8571 2.8 5.77 

 J120,22-3  102 105.5 105.67 110 1.9 551.55 8908 6.25 22.89 

 J120,22-4  92 95 95.2 99 1.75 498.38 8919 2.22 16.46 

 J120,22-5  97 100 100.37 104 1.88 560.75 8629 4.3 4.3 

 J120,22-6  107 111 110.63 114 1.99 574.82 8748 3.88 15.05 

 J120,22-7  133 133 133.07 134 0.25 56.32 169 0 7.26 

 J120,22-8  108 111 111.07 114 1.74 505.93 8635 4.85 16.13 

 J120,22-9  112 116 116.13 119 2.05 514.9 8855 2.75 23.08 

 J120,22-10  79 82 81.53 84 1.55 469.33 3425 0 11.27 

 J120,23-1  107 107 107 107 0 11.11 169 0 0 

 J120,23-2  116 116 116.2 119 0.66 63.76 169 0 0 

 J120,23-3  99 99 99 99 0 9.86 169 0 0 

 J120,23-4  106 106.5 107.4 112 1.96 326.89 1745 0 2.91 

 J120,23-5  100 100 100.5 103 0.82 423.22 8461 1.01 4.17 

 J120,23-6  108 110.5 110.5 114 1.72 456.53 8464 1.89 4.85 

 J120,23-7  104 104 104.8 107 1.03 229.64 170 0 0 

 J120,23-8  101 101 101 101 0 45.95 170 0 1 

 J120,23-9  107 110 110.27 114 1.64 453.8 3204 0 1.9 

 J120,23-10  100 100 100.03 101 0.18 118.16 171 0 0 

 J120,24-1  93 93 93.2 94 0.41 105.79 170 0 1.09 

 J120,24-2  91 94 93.77 97 1.61 398.46 3429 0 0 

 J120,24-3  89 89 89.2 91 0.48 150.15 285 0 0 

 J120,24-4  101 101 101.37 103 0.61 227.98 509 0 0 

 J120,24-5  86 86 86.6 89 1.07 190.15 620 0 0 

 J120,24-6  95 95 95.13 97 0.43 108.94 171 0 0 

 J120,24-7  112 112 112 112 0 38.19 169 0 2.75 

 J120,24-8  104 104 104.03 105 0.18 31.13 170 0 0 

 J120,24-9  82 83 83.07 85 0.87 330.49 734 0 7.89 

 J120,24-10  91 91 91.2 92 0.41 129.27 170 0 0 

 J120,25-1  82 85 84.4 86 1.07 437 846 0 0 

 J120,25-2  108 108 108 108 0 8.33 169 0 0 

 J120,25-3  100 100 100 100 0 7.8 169 0 0 

 J120,25-4  117 117 117 117 0 7.84 169 0 0 

 J120,25-5  100 100 100 100 0 7.91 169 0 0 

 J120,25-6  92 92 92.27 93 0.45 188.6 171 0 1.1 

 J120,25-7  92 95.5 94.93 97 1.41 405.81 1521 0 1.1 

 J120,25-8  81 83 83.37 86 1.47 467.22 8464 1.25 6.58 

 J120,25-9  94 94 94 94 0 7.87 169 0 0 

 J120,25-10  92 92 92 92 0 8.7 169 0 0 

 J120,26-1  194 204 203.5 210 4.13 747.69 9195 14.79 102.08 

 J120,26-2  193 199.5 200.13 209 4.11 730.68 7667 14.2 98.97 

 J120,26-3  190 197.5 197.5 203 3.5 664 7334 13.77 104.3 
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 J120,26-4  191 202.5 202.53 215 4.7 669.93 7534 11.05 76.85 

 J120,26-5  177 183.5 183.7 192 3.84 680.01 7241 15.69 118.52 

 J120,26-6  215 223.5 223.33 237 4.56 658.24 7200 14.97 76.23 

 J120,26-7  181 191 190.2 196 4.11 624.65 7245 15.29 118.07 

 J120,26-8  198 207 205.8 214 4.07 699.4 8801 12.5 88.57 

 J120,26-9  201 208 207.77 218 4.12 680.04 7196 16.86 62.1 

 J120,26-10  212 222 221.97 231 4.42 534.26 7113 15.85 73.77 

 J120,27-1  118 122 122.17 125 1.88 610.88 8699 9.26 53.25 

 J120,27-2  128 133 133.07 139 2.94 553.07 7439 11.3 47.13 

 J120,27-3  155 159 160 167 2.99 603.28 7574 7.64 58.16 

 J120,27-4  118 122 122.13 129 2.46 580.95 7994 9.26 38.82 

 J120,27-5  119 126 125.73 130 2.63 612.9 7431 7.21 33.71 

 J120,27-6  164 169 169.13 177 3.13 713.51 8424 13.1 69.07 

 J120,27-7  142 148 147.63 154 2.43 511.35 7101 13.6 42 

 J120,27-8  156 161 161.63 167 3.25 726.14 8326 11.43 44.44 

 J120,27-9  142 148 147.63 157 2.74 640.13 8088 10.94 49.47 

 J120,27-10  128 135.5 135.1 142 3.29 576.16 7099 11.3 21.9 

 J120,28-1  117 122 122.13 128 2.39 581.38 7104 8.33 19.39 

 J120,28-2  117 120 120.7 128 2.89 573.9 7427 6.36 6.36 

 J120,28-3  106 110 110.17 114 2.04 516.84 7710 4.95 4.95 

 J120,28-4  128 130 130.03 135 1.63 563.41 7431 14.29 24.27 

 J120,28-5  102 104 104.23 109 1.76 481.77 1553 0 0 

 J120,28-6  112 115.5 115.57 120 1.99 548.15 7109 8.74 8.74 

 J120,28-7  118 122 122.03 126 2.17 532.92 7335 8.26 21.65 

 J120,28-8  109 114 113.7 118 2.07 525.43 7573 10.1 25.29 

 J120,28-9  108 112 111.9 116 1.95 545.22 7621 10.2 16.13 

 J120,28-10  127 130 130.67 135 2.22 583.16 7666 9.48 16.51 

 J120,29-1  104 105 104.9 108 1.06 298.15 141 0 0 

 J120,29-2  91 93.5 93.53 96 1.33 436.4 1746 0 0 

 J120,29-3  104 106 106.17 109 1.34 541.2 8331 6.12 30 

 J120,29-4  86 89 88.83 92 1.49 448.92 7291 7.5 11.69 

 J120,29-5  106 109 109.3 114 2.02 539.43 8043 3.92 3.92 

 J120,29-6  96 100 99.8 103 1.58 577.12 7953 5.49 9.09 

 J120,29-7  97 97 97.33 102 0.99 161.04 141 0 0 

 J120,29-8  83 85.5 85.37 88 1.38 483.36 7995 3.75 3.75 

 J120,29-9  97 99 99.4 102 1.25 465.46 2033 0 0 

 J120,29-10  96 98 98.07 101 1.39 404.52 142 0 0 

 J120,30-1  102 105 104.8 109 2.19 561.46 938 0 0 

 J120,30-2  112 112 112 112 0 6.32 160 0 0 

 J120,30-3  108 108 108 108 0 11.82 160 0 0 

 J120,30-4  83 84 83.9 85 0.76 552.56 910 0 0 

 J120,30-5  89 93 92.77 96 1.79 732.35 14885 7.23 9.88 

 J120,30-6  79 81.5 81.3 84 1.56 485.58 848 0 0 

 J120,30-7  95 99 99.03 102 1.73 544.22 13258 2.15 2.15 

 J120,30-8  79 80.5 80.8 84 1.32 468.35 1111 0 0 

 J120,30-9  93 93 93.17 95 0.53 132.91 137 0 0 

 J120,30-10  86 87 87.83 91 1.51 509.11 3658 0 0 

 J120,31-1  225 231.5 231.8 239 4.3 941.05 15516 13.64 144.57 

 J120,31-2  219 225 225.87 235 4.05 961.61 14948 13.47 167.07 

 J120,31-3  199 206.5 207.53 216 3.38 842.09 13051 14.37 148.75 

 J120,31-4  251 259.5 260.57 273 5.14 907.13 12037 14.61 124.11 

 J120,31-5  230 239.5 239.13 247 4.86 902.1 13653 15 137.11 

 J120,31-6  209 219.5 219.8 231 5.35 984.34 12275 8.85 106.93 
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 J120,31-7  230 238 238.83 246 4.23 1009.69 14970 11.65 109.09 

 J120,31-8  217 227 226.7 234 3.84 874.1 13898 13.02 135.87 

 J120,31-9  215 220 220.8 233 4.57 956.15 12098 13.76 117.17 

 J120,31-10  261 274 272.8 284 5.54 886.82 15065 14.98 190 

 J120,32-1  160 164 164.2 168 1.94 812.23 16684 8.84 61.62 

 J120,32-2  147 151.5 151.13 155 2.33 665.31 14740 12.21 47 

 J120,32-3  159 167 167.17 176 3.84 780.31 15306 9.66 57.43 

 J120,32-4  148 155 154.6 161 3.21 708.96 12453 8.82 37.04 

 J120,32-5  153 158 158.17 163 2.15 722.82 15690 10.87 54.55 

 J120,32-6  141 145 145 150 2.48 756.58 15841 10.16 50 

 J120,32-7  135 139 139.17 145 2.36 688.43 14193 10.66 29.81 

 J120,32-8  148 153.5 153.47 157 2.54 740.54 15453 9.63 82.72 

 J120,32-9  137 141 141.53 147 2.42 730.36 14791 7.87 59.3 

 J120,32-10  144 149.5 148.93 153 2.29 814.36 14739 9.92 58.24 

 J120,33-1  120 124 123.93 128 2.3 608.57 13233 12.15 21.21 

 J120,33-2  124 127 126.9 130 1.63 605.93 13774 9.73 34.78 

 J120,33-3  117 122 122.03 126 2.25 685.49 13533 9.35 32.95 

 J120,33-4  122 127 127.07 132 2.41 748.18 13355 8.93 25.77 

 J120,33-5  161 164.5 164.73 170 2.15 806.4 13953 13.38 49.07 

 J120,33-6  126 129 128.97 134 2.09 659.75 15424 9.57 9.57 

 J120,33-7  136 140 140.5 145 2.26 622.08 13590 10.57 46.24 

 J120,33-8  122 125 125.73 130 2.02 803.37 13114 9.91 35.56 

 J120,33-9  124 127 127.37 131 1.9 729.66 14490 8.77 21.57 

 J120,33-10  116 120.5 120.73 127 2.48 623.06 14320 9.43 31.82 

 J120,34-1  86 89.5 89.7 93 1.93 546.58 12633 10.26 19.44 

 J120,34-2  115 117.5 117.8 120 1.49 626.37 13779 9.52 21.05 

 J120,34-3  107 112 111.77 117 2.01 661.62 12936 4.9 13.83 

 J120,34-4  103 108 107.63 113 2.58 580.32 12038 8.42 9.57 

 J120,34-5  111 114 114 118 1.93 705.58 13653 7.77 12.12 

 J120,34-6  110 113 113.4 120 2.06 540.27 12753 10 10 

 J120,34-7  112 116 115.8 123 2.4 595.2 12934 6.67 6.67 

 J120,34-8  97 102 101.97 106 2.06 619.47 14014 8.99 19.75 

 J120,34-9  101 105 105.07 108 1.93 705.52 14314 6.32 21.69 

 J120,34-10  104 108 108.2 113 2.16 602.63 12939 2.97 2.97 

 J120,35-1  87 87 87.03 88 0.18 30.76 91 0 0 

 J120,35-2  122 126 126.2 131 2.5 645.74 13653 9.91 9.91 

 J120,35-3  82 84 84.27 88 1.26 561.54 12698 6.49 6.49 

 J120,35-4  108 112 112 117 2.48 580.73 12036 6.93 6.93 

 J120,35-5  101 105 104.7 109 2.02 571.9 12033 8.6 9.78 

 J120,35-6  86 88 88.53 93 2.03 559 2554 0 0 

 J120,35-7  99 99 99.23 102 0.68 94.41 90 0 0 

 J120,35-8  103 105 105.33 108 1.58 543.02 12033 1.98 1.98 

 J120,35-9  96 97 97.73 101 1.36 581.83 12572 5.49 5.49 

 J120,35-10  86 88 88.27 92 1.48 509.41 399 0 0 

 J120,36-1  233 238.5 238.73 245 3.58 1125.04 16681 10.95 137.76 

 J120,36-2  253 258 257.9 265 2.78 946.37 15364 13.45 184.27 

 J120,36-3  258 263.5 263.57 270 3.29 990.66 15184 12.66 183.52 

 J120,36-4  265 270.5 270.97 277 3.41 1105.41 15007 12.29 176.04 

 J120,36-5  253 263 263.27 271 4.24 1035.13 17163 10.48 166.32 

 J120,36-6  255 263.5 263 272 4.31 911.89 12155 13.33 152.48 

 J120,36-7  230 238 238.3 246 4.15 936.35 13594 10.58 123.3 

 J120,36-8  191 196 196.37 205 3.45 999.65 13959 11.05 130.12 

 J120,36-9  248 257 257.4 266 4.33 984.24 12095 12.22 138.46 
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 J120,36-10  236 246 246.3 254 4.15 1109.34 16536 9.26 159.34 

 J120,37-1  159 165 164.27 170 2.69 819.54 13657 9.66 65.63 

 J120,37-2  156 160 160.03 164 1.92 828.86 14075 7.59 81.4 

 J120,37-3  155 158 158.23 165 2.46 969.63 13658 11.51 53.47 

 J120,37-4  178 182 182.03 185 2.17 977.06 12937 9.2 87.37 

 J120,37-5  226 231 231.73 239 3.1 893.95 15184 9.71 98.25 

 J120,37-6  182 186.5 186.4 191 2.51 861.08 13292 11.66 73.33 

 J120,37-7  175 182 181.73 188 2.88 990.76 13897 8.7 113.41 

 J120,37-8  196 203 202.97 210 2.83 1035.91 17526 10.11 68.97 

 J120,37-9  158 162 161.93 167 2.29 782.36 13834 11.27 92.68 

 J120,37-10  143 146 146.47 152 1.81 856.14 12873 8.33 78.75 

 J120,38-1  117 122 121.57 126 2.34 1069.22 13419 8.33 13.59 

 J120,38-2  136 139 139.13 143 1.61 1102.26 13174 9.68 47.83 

 J120,38-3  165 168.5 169 173 2.33 1128.99 12751 6.45 57.14 

 J120,38-4  152 156.5 156.43 162 2.64 1164.98 14070 8.57 31.03 

 J120,38-5  121 123 123.7 127 1.58 1061.86 12032 6.14 27.37 

 J120,38-6  131 136 135.63 140 1.9 1145.73 14314 7.38 37.89 

 J120,38-7  114 118 118.5 123 2.27 1029.08 12458 8.57 25.27 

 J120,38-8  136 139 138.73 141 1.41 1108.84 13474 8.8 38.78 

 J120,38-9  145 152 152.5 157 2.81 1131.65 12033 8.21 8.21 

 J120,38-10  151 153 153.1 156 1.42 1250.96 14611 7.86 57.29 

 J120,39-1  101 104.5 105.1 110 2.37 898.23 12158 6.32 6.32 

 J120,39-2  119 123 123.07 127 2.12 1117.64 12693 10.19 14.42 

 J120,39-3  121 125 124.57 128 1.72 947.37 13476 9.01 21 

 J120,39-4  104 107 106.83 109 1.23 1066.81 13418 6.12 36.84 

 J120,39-5  107 111 110.7 115 1.91 1001.45 12811 0.94 0.94 

 J120,39-6  100 103 102.93 106 1.64 916.9 12031 5.26 5.26 

 J120,39-7  110 112 112.5 116 1.61 1013.03 14015 5.77 17.02 

 J120,39-8  104 108 107.8 112 2.02 981.38 12156 8.33 11.83 

 J120,39-9  98 100 100.4 102 1 1020.79 12994 6.52 27.27 

 J120,39-10  120 123 123.63 129 2.16 999.61 13893 9.09 21.21 

 J120,40-1  85 87 87 89 1.08 910.11 12457 4.94 8.97 

 J120,40-2  95 98 97.73 99 1.11 878.54 12518 5.56 5.56 

 J120,40-3  93 96 95.73 100 2.02 864.33 12271 6.9 6.9 

 J120,40-4  112 112 112.17 116 0.75 189.88 91 0 0 

 J120,40-5  102 106 105.5 109 1.93 926.49 12331 0.99 0.99 

 J120,40-6  90 91 91 94 1.02 529.61 1595 0 0 

 J120,40-7  91 91 91.93 97 1.44 502.75 90 0 0 

 J120,40-8  98 99 99.43 103 1.17 847.06 12033 1.03 1.03 

 J120,40-9  117 120 119.63 122 1.07 890.42 13235 0 0 

 J120,40-10  96 96 96.03 97 0.18 52.3 90 0 0 

 J120,41-1  130 138.5 138.03 144 3.29 769.32 12693 2.36 26.21 

 J120,41-2  146 150 150.77 157 3.51 846.92 12635 3.55 47.47 

 J120,41-3  145 152 152.7 162 4.21 827.88 12691 2.84 21.85 

 J120,41-4  121 128 127.97 134 3.03 733.88 12573 4.31 39.08 

 J120,41-5  139 144 144.1 151 2.38 752.76 12213 0.72 20.87 

 J120,41-6  119 124 124.33 129 2.29 803 12033 5.31 30.77 

 J120,41-7  115 120.5 120.63 127 3.13 824.17 12931 5.5 26.37 

 J120,41-8  141 146.5 146.73 154 2.96 825.65 12153 2.17 28.18 

 J120,41-9  127 132 132.27 138 2.53 776.65 12393 4.96 33.68 

 J120,41-10  143 150 150.37 157 3.66 857.07 13113 5.15 18.18 

 J120,42-1  114 118 118.1 124 2.59 491.16 12484 5.56 25.27 

 J120,42-2  126 130 129.87 134 2.15 368.59 129 0 0 
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 J120,42-3  107 112 112.2 117 2.47 443.68 12090 0.94 7 

 J120,42-4  110 116 115.33 120 3.1 417.2 12211 5.77 7.84 

 J120,42-5  126 133 132.97 139 3.03 443.68 12007 5 16.67 

 J120,42-6  124 129 129.3 134 2.78 473.33 12329 4.2 40.91 

 J120,42-7  124 126 126.47 132 2.36 413.93 12284 0.81 5.08 

 J120,42-8  121 124 124.3 129 1.95 493 12366 7.08 19.8 

 J120,42-9  106 110 110.4 118 2.37 392.59 12369 1.92 10.42 

 J120,42-10  123 128 127.9 132 2.34 445.14 12045 4.24 20.59 

 J120,43-1  105 107 107.53 111 1.41 1083.05 12490 0 5 

 J120,43-2  120 120 121.2 126 1.73 633.5 148 0 4.35 

 J120,43-3  97 99 99.37 106 1.9 1093.98 18857 2.11 2.11 

 J120,43-4  107 111.5 111.8 117 2.72 762.63 12034 1.9 7 

 J120,43-5  107 111 111.3 115 1.74 714.1 12033 1.9 9.18 

 J120,43-6  102 105.5 105.57 114 2.74 752.17 12033 4.08 20 

 J120,43-7  123 128 128.87 135 3.4 771.89 12033 0.82 5.13 

 J120,43-8  115 115 115.43 119 0.97 210.56 91 0 0 

 J120,43-9  107 109 109.67 113 1.42 680.01 12033 1.9 5.94 

 J120,43-10  113 115 114.7 117 1.42 505.37 93 0 1.8 

 J120,44-1  100 100 100 100 0 21.81 90 0 0 

 J120,44-2  112 114 113.7 117 1.51 504.61 2199 0 9.8 

 J120,44-3  107 107 107 107 0 5.86 90 0 0 

 J120,44-4  96 98.5 98.47 101 1.61 669.81 12031 1.05 3.23 

 J120,44-5  99 100 100.23 103 1.04 645.23 12031 1.02 5.32 

 J120,44-6  106 106 106.43 108 0.68 338.37 94 0 0 

 J120,44-7  98 98 98.5 103 1.36 188.07 93 0 0 

 J120,44-8  109 114 113.53 116 2.24 671.69 12032 0.93 3.81 

 J120,44-9  91 92 91.93 94 0.98 384.62 94 0 0 

 J120,44-10  100 103 102.47 108 1.76 787.47 12034 2.04 2.04 

 J120,45-1  108 108 108 108 0 9.7 302 0 0 

 J120,45-2  91 91 91 91 0 54.41 250 0 0 

 J120,45-3  98 98 98 98 0 13.56 248 0 0 

 J120,45-4  103 103 103.13 104 0.35 161.13 185 0 0 

 J120,45-5  116 116 116 116 0 61.48 189 0 1.75 

 J120,45-6  125 125 125 125 0 6.5 185 0 0 

 J120,45-7  103 103 103 103 0 9.9 184 0 0 

 J120,45-8  103 103 103.53 106 0.86 347.88 173 0 0 

 J120,45-9  114 114 114 114 0 5.24 169 0 0 

 J120,45-10  99 99 99 99 0 10.16 170 0 0 

 J120,46-1  215 225 224.67 232 3.99 901.95 17404 14.36 80.67 

 J120,46-2  224 233 233.13 247 5.41 766.4 15128 13.13 91.45 

 J120,46-3  196 203.5 203.7 215 4.36 691.38 12870 12 88.46 

 J120,46-4  192 197.5 198.23 208 4.83 699.9 13893 12.94 113.33 

 J120,46-5  167 178 177.13 185 4.09 744.34 15782 12.08 72.16 

 J120,46-6  199 205.5 206.8 219 4.94 779.84 16596 11.8 105.15 

 J120,46-7  190 198.5 198.53 207 4.97 748.64 13114 11.76 79.25 

 J120,46-8  200 210 209.7 222 5.18 713.21 14614 12.99 108.33 

 J120,46-9  189 200 199.8 209 4.94 774.14 12753 13.86 98.95 

 J120,46-10  210 219 219.4 231 5.31 774.49 12511 11.7 100 

 J120,47-1  155 164 163.2 169 3.02 749.4 13293 13.14 44.86 

 J120,47-2  142 149.5 149.97 156 3.71 651.31 13651 7.58 32.71 

 J120,47-3  140 143 143.03 146 1.56 647.54 13355 12 41.41 

 J120,47-4  145 151 151.3 158 3.1 677.84 15301 9.85 36.79 

 J120,47-5  145 150 150.83 160 3.99 714.4 13895 14.17 36.79 
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 J120,47-6  154 160 159.97 166 2.53 692.02 14434 12.41 54 

 J120,47-7  133 137.5 138.2 144 2.72 724.49 15993 12.71 54.65 

 J120,47-8  151 157 157.6 166 3.93 722.8 13479 13.53 86.42 

 J120,47-9  159 166.5 165.77 171 3.62 694.66 13415 10.42 52.88 

 J120,47-10  149 153 153.07 158 2.15 649.44 13955 12.88 46.08 

 J120,48-1  112 116 116.43 121 2.37 606.13 12573 12 17.89 

 J120,48-2  120 124.5 124.27 128 2.02 636.93 13533 6.19 36.36 

 J120,48-3  124 128 128.13 134 2.65 680.71 14794 10.71 19.23 

 J120,48-4  138 143 142.97 148 2.67 698.09 13415 8.66 31.43 

 J120,48-5  118 121 121.67 126 2.01 617.12 12633 7.27 26.88 

 J120,48-6  115 118 117.57 120 1.38 543.88 12874 9.52 22.34 

 J120,48-7  118 121 120.9 124 1.77 629.54 14071 10.28 15.69 

 J120,48-8  123 125 125.4 131 2.33 654.13 13234 6.03 19.42 

 J120,48-9  122 127.5 127.83 135 3.1 665.14 13292 7.96 20.79 

 J120,48-10  121 124.5 124.83 129 2.35 656.75 14134 9.01 18.63 

 J120,49-1  98 100 99.83 103 1.34 655.04 13366 2.08 2.08 

 J120,49-2  116 120 120.57 126 2.31 737.67 14890 6.42 16 

 J120,49-3  103 107 106.67 109 1.63 618.39 13829 7.29 10.75 

 J120,49-4  103 105 105.6 110 1.75 631.98 13566 7.29 14.44 

 J120,49-5  95 97 97.07 100 1.64 678.35 14030 6.74 15.85 

 J120,49-6  128 128 128.17 129 0.38 169.45 99 0 0 

 J120,49-7  105 108 107.8 111 1.97 683.26 13564 6.06 8.25 

 J120,49-8  121 125 124.77 129 2.05 681.96 14488 7.08 8.04 

 J120,49-9  102 105 105.37 112 1.87 598.04 13235 5.15 5.15 

 J120,49-10  102 106 105.67 109 1.86 660.04 13233 5.15 17.24 

 J120,50-1  116 116 116.43 118 0.63 462.7 166 0 0 

 J120,50-2  117 119 119.57 124 1.57 892.29 15018 4.46 4.46 

 J120,50-3  111 112.5 112.87 116 1.43 534.7 1161 0 0 

 J120,50-4  104 108 107.73 111 1.53 576.48 14628 4 10.64 

 J120,50-5  105 106 106.47 109 1.04 596.47 15354 5 5 

 J120,50-6  102 102 102.63 105 0.89 308.53 697 0 0 

 J120,50-7  137 137 137 137 0 3.19 99 0 0 

 J120,50-8  112 112 112.03 113 0.18 54.13 99 0 0 

 J120,50-9  101 102.5 102.9 106 1.71 420.24 2150 0 0 

 J120,50-10  111 114 113.73 116 1.39 539.49 13502 7.77 7.77 

 J120,51-1  235 245 244.83 258 5.23 1482.6 14313 14.08 135 

 J120,51-2  249 259.5 258.33 268 4.51 1550.35 16718 12.67 170.65 

 J120,51-3  246 252.5 251.93 259 3.93 1795.69 13776 11.82 164.52 

 J120,51-4  244 253 252.27 259 3.77 1529.63 16474 15.09 168.13 

 J120,51-5  263 276 275.7 286 5.57 1434.27 15604 14.35 157.84 

 J120,51-6  248 257 256.73 265 4.83 1669 17224 15.35 138.46 

 J120,51-7  243 251 250.3 259 3.65 1387.52 13953 14.62 167.03 

 J120,51-8  239 247 246.83 256 4.02 1524.21 12635 16.02 181.18 

 J120,51-9  242 249 249.83 261 5.15 1512.21 16983 14.69 132.69 

 J120,51-10  262 272.5 271.93 282 5.11 1576.76 16293 15.42 142.59 

 J120,52-1  197 203 203.23 209 2.99 1517.92 15454 11.93 74.34 

 J120,52-2  202 207.5 207.67 212 2.52 1557.2 15335 10.38 81.98 

 J120,52-3  148 152 152.37 158 2.47 1294.72 15213 10.45 45.1 

 J120,52-4  187 193 192.93 202 3.38 1467.84 12340 10 65.49 

 J120,52-5  185 194 192.87 200 3.99 1308.68 12755 10.12 63.72 

 J120,52-6  219 227 226.57 237 4.07 1573.3 15153 11.73 85.59 

 J120,52-7  161 168 168.13 175 3.66 1340.78 14734 8.05 69.47 

 J120,52-8  174 181 181 189 3.61 1369.09 16323 10.13 52.63 
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 J120,52-9  165 171 170.77 178 3.11 1319.57 15454 10 87.5 

 J120,52-10  161 166 165.93 172 2.63 1347.17 13173 11.81 76.92 

 J120,53-1  159 164 164.2 169 2.63 1499.93 15611 10.42 29.27 

 J120,53-2  126 129 128.97 134 1.83 1280.45 15123 9.57 16.67 

 J120,53-3  121 126 125.9 131 2.11 1117.76 13114 8.04 17.48 

 J120,53-4  160 165 165.07 170 2.53 1138.83 12872 10.34 36.75 

 J120,53-5  121 127 126.9 131 2.4 1112.97 12995 7.08 26.04 

 J120,53-6  116 120 119.7 122 1.64 1156.61 12513 9.43 46.84 

 J120,53-7  127 132 131.97 138 3.02 1147.11 15033 6.72 9.48 

 J120,53-8  152 157 156.83 165 2.93 1225.3 13352 9.35 47.57 

 J120,53-9  188 194 195.3 204 3.87 1405.86 13594 13.94 44.62 

 J120,53-10  143 148 148.3 154 2.71 1148.23 14074 8.33 28.83 

 J120,54-1  113 117 116.63 121 1.85 1078.86 15395 7.62 15.31 

 J120,54-2  134 135 135.3 139 1.73 537.18 3100 0 0 

 J120,54-3  117 121.5 121.8 126 2.12 1024.39 12816 5.41 5.41 

 J120,54-4  127 134 133.8 138 2.22 1021.22 13593 5.83 6.72 

 J120,54-5  117 120 120.1 125 2.02 1033.27 12633 7.34 27.17 

 J120,54-6  117 121 120.67 124 1.71 923.38 12751 7.34 17 

 J120,54-7  123 126 126.73 130 2.05 940.21 13653 10.81 25.51 

 J120,54-8  110 113.5 113.83 118 2.21 1027.53 13834 7.84 23.6 

 J120,54-9  115 121 120.37 124 2.16 1092.61 14735 7.48 21.05 

 J120,54-10  115 118 118.47 123 1.85 994.48 13891 6.48 15 

 J120,55-1  108 110 110.1 114 1.6 635.85 12164 8 9.09 

 J120,55-2  83 84.5 84.67 87 1.18 416.78 1248 0 0 

 J120,55-3  126 126 126.17 128 0.46 130.84 122 0 0 

 J120,55-4  95 98 98.07 101 1.66 521.69 12328 5.56 5.56 

 J120,55-5  106 108 108.67 112 1.47 496.65 5691 0 0 

 J120,55-6  108 110 110.17 114 1.46 543.2 12486 8 10.2 

 J120,55-7  105 107 106.6 110 1.25 412.75 121 0 0 

 J120,55-8  107 109 109.23 113 1.63 614.75 13285 5.94 5.94 

 J120,55-9  97 99.5 99.67 103 1.45 528.06 12605 3.19 3.19 

 J120,55-10  101 103 103.8 108 1.52 472.21 12565 1 1 

 J120,56-1  261 273 272.5 279 4 707.48 10869 10.13 174.74 

 J120,56-2  231 238 238.03 247 3.44 645.94 10809 13.24 165.52 

 J120,56-3  270 276 276.97 289 4.16 651.4 9218 12.03 190.32 

 J120,56-4  249 255 255.23 262 3.04 681.27 10325 12.16 189.53 

 J120,56-5  314 323 323.83 339 5.86 779.33 10325 12.14 168.38 

 J120,56-6  238 249 247.5 256 4.67 688.07 9003 11.21 150.53 

 J120,56-7  309 324 323.13 334 4.98 796.48 11071 9.19 164.1 

 J120,56-8  324 334.5 332.47 345 5.42 773.3 9548 12.11 227.27 

 J120,56-9  318 331.5 332.3 344 6.1 749.86 9634 10.42 214.85 

 J120,56-10  294 300.5 301.2 310 4.48 675.18 10111 13.51 188.24 

 J120,57-1  203 210 210.43 217 3.32 743.89 10089 9.73 78.07 

 J120,57-2  176 181.5 181.27 189 2.9 707.87 9875 9.32 69.23 

 J120,57-3  200 209.5 209.33 218 3.5 680.71 9545 8.7 73.91 

 J120,57-4  214 225.5 224.8 231 3.78 713.92 10145 7 78.33 

 J120,57-5  195 201 201.37 208 2.93 682.77 9008 8.94 103.13 

 J120,57-6  205 213 212.8 220 3.84 711.85 10292 8.47 107.07 

 J120,57-7  182 190 189.23 193 3.06 624.52 10655 9.64 58.26 

 J120,57-8  178 183.5 182.77 188 3.14 594.3 9634 9.88 106.98 

 J120,57-9  184 191 190.63 196 3.01 706 9365 10.18 70.37 

 J120,57-10  184 188.5 188.7 194 2.61 583.25 10357 10.18 52.07 

 J120,58-1  155 159 158.77 162 2.24 528.62 9096 9.93 28.1 
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 J120,58-2  137 141 140.4 146 2.27 552.1 9841 8.73 29.25 

 J120,58-3  129 132 132.17 135 1.23 522.84 9331 7.5 41.76 

 J120,58-4  157 161.5 161.5 165 1.74 578.6 9485 8.28 60.2 

 J120,58-5  129 132.5 132.43 137 1.79 530.9 9787 7.5 27.72 

 J120,58-6  153 159 159.17 169 3.15 526.85 9695 9.29 48.54 

 J120,58-7  161 165.5 165.63 169 1.85 546.45 9840 9.52 41.23 

 J120,58-8  146 149 149.1 154 2.12 532.06 9331 10.61 47.47 

 J120,58-9  141 144 144 147 1.93 600.97 11074 8.46 53.26 

 J120,58-10  143 147.5 147.53 153 2.5 563.56 9753 9.16 45.92 

 J120,59-1  120 122 122.17 124 1.29 431.55 9907 5.26 17.65 

 J120,59-2  114 116 116.57 119 1.22 447.12 9363 7.55 26.67 

 J120,59-3  116 121 120.77 124 1.85 407.45 9008 7.41 7.41 

 J120,59-4  118 120 120.17 124 1.51 410.69 9602 9.26 10.28 

 J120,59-5  115 118 117.97 121 1.54 416.49 9361 8.49 18.56 

 J120,59-6  123 128 127.93 132 2.05 490.09 9514 6.96 19.42 

 J120,59-7  120 122.5 122.53 126 1.55 452.12 10141 7.14 33.33 

 J120,59-8  118 120.5 120.63 124 1.45 462.61 9365 7.27 20.41 

 J120,59-9  129 133 133.23 137 2.05 493.13 9756 8.4 15.18 

 J120,59-10  143 146 146.07 150 1.91 540.32 9961 8.33 34.91 

 J120,60-1  101 103 103.43 106 1.48 444.19 3004 0 0 

 J120,60-2  87 89 88.7 90 0.99 424.1 9332 4.82 7.41 

 J120,60-3  95 97 96.73 99 1.05 413.07 9273 6.74 17.28 

 J120,60-4  111 113.5 113.7 116 1.56 456.3 9515 7.77 9.9 

 J120,60-5  111 115 114.5 117 1.48 442.06 9664 5.71 15.63 

 J120,60-6  113 116.5 116.57 120 1.76 427.12 9513 2.73 2.73 

 J120,60-7  102 104 103.9 106 1.27 457.33 9905 7.37 21.43 

 J120,60-8  106 108 107.53 109 0.86 406.21 9333 4.95 4.95 

 J120,60-9  101 103 103.07 106 1.2 395.78 152 0 0 

 J120,60-10  94 96 96.4 99 1.07 523.06 9815 5.62 10.59 

Total Average  2.17 684.50 9925.06 6.53 38.89 
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