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ABSTRACT 

 

Construction industry is considered as one of the largest contributors to fuel 

consumption and greenhouse gases (GHGs) emissions globally. Fuel use and emissions 

of construction equipment are normally estimated through simulation or conducting 

dynamometer tests in the laboratory which may not represent the real-world situations. 

In such models, fuel use and emissions rate are mainly estimated at macro scale, while 

the effect of operational conditions cannot be measured. There is also a lack of 

quantitative operational level fuel use and emissions reduction schemes in the 

construction industry despite the potential of significant cost saving by applying such 

strategies.  

 

This thesis presents an integrated data acquisition framework including instrumentation 

and experimentation procedures to monitor operations of construction equipment. It 

develops operational level models to estimate fuel use and emissions rate of on-road 

construction equipment through investigating the effect of operational and 

environmental variables. Using an automated data sensing system, this study also 

develops a comprehensive model to predict the weight of on-road construction vehicles 

and their carried payload as crucial parameter affecting fuel use and emissions rate. 

Three types of devices, including portable emission measurement system (PEMS), 

GPS-aided inertial navigation system (GPS-INS) and engine data logger, were 

employed to collect emissions rates, operational parameters and engine data of on-road 

construction vehicles. Models are developed through performing statistical regression 

and artificial neural network (ANN) analysis on the filtered data. The proposed models 



xi 
 

consider the engine specifications, operational factors and environmental parameters for 

estimating fuel use, emissions rate and weight of on-road construction vehicles.  

 

Based on the developed models, this study designs different schemes to improve fuel 

efficiency of construction equipment. As the main operational level strategy, optimal 

driving speed is proposed over other operational and environmental variables. Other 

factors, such as traffic conditions, effect of idling and equipment stop on fuel use and 

emissions production of equipment are also investigated. At equipment level, this thesis 

evaluates the impact of different engine tiers on fuel use and emissions rate through 

applying the models developed in the research. It is found that adoption of high-tier 

engines would lead to considerable savings on the operation costs of equipment. 
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Chapter 1: Introduction 

Introduction 

 
The growth of global population and industrialization in all sectors has boosted the 

demands for different sources of energies, particularly conventional fossil fuels. Today, 

over one billion vehicles in operation around the world consume over five trillion litres 

of fossil fuels per year (Dargay et al. 2007). Considering the diminishing sources of 

fossil fuels, such a rate of fuel consumption deems to be extremely unsustainable (Khan 

et al. 2014). However, due to increasing demands for vehicles in both business and 

private sectors, it is predicted that the number of global on-road vehicles and machinery 

reaches two billions by 2050 (Sperling and Gordon 2014). On the other hand, fossil 

fuels are considered to be the main source of air pollutants like carbon dioxide (CO2), 

carbon monoxide (CO), hydrocarbons (HC), nitrogen oxides (NOx = NO1 + NO2) and 

particulate matters (PM) (Gonzalez and Echaveguran 2012). According to USA 

Environmental Protection Agency (EPA) report, 76% of the total CO2 emission is 

produced from the fuels used by vehicles and machinery globally (EPA 2009). These 

contaminants present a serious risk to human health, ecosystem and environment (IPCC 

2007). Around 200,000 deaths per year in USA alone are caused by irreversible health 

problems due to air pollutants, such as respiratory and cancer diseases (Lewis et al. 

2009; Caiazzo et al. 2013). The studies conducted by EPA also showed that the 

contaminants exhausted from vehicles are the main cause of environmental problems 

such as ecosystem degradation, ozone depletion and global warming (EPA 2008).   
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The increasing concern on the non-compensable effect of fossil fuels consumption on 

climate change and public health has led to the development towards fuel measurement 

systems, regulations and guidelines of fuel reduction (Hasan et al. 2013). According to 

the United Nations Framework Convention on Climate Change (UNFCCC), all sectors 

in industrialized countries should follow regulations to reduce fossil fuel use and 

resultant pollutions (Kim et al. 2012). EPA and European Union (EU) have developed 

various standards to restrict the pollutions produced by on-road vehicles and off-road 

equipment involved in all industrial sectors (Barati and Shen 2015). Also, many 

restrictions have been imposed by the Intergovernmental Panel on Climate Change 

(IPCC) (2007) to minimize carbon footprints through reducing activities consuming 

large amount of energy resources including fossil fuels.  

 

The construction sector plays a significant role in fossil fuels consumption so as to the 

production of greenhouse gas (GHG) pollutants. According to EPA (2009), construction 

sector accounts for 1.7% of total GHGs production and 6.8% of all industrial-related 

emissions which is ranked as the third largest GHG emitter after oil and gas, and 

chemical manufacturing industries (Azzi et al. 2015; Truitt 2009).  In addition, it is 

estimated that construction industry produces more than 100 million tons of CO2 

annually, and contributes to around 5% of global CO2 emissions which is ranked as the 

third CO2 emitter per used unit of energy after cement and steel production sectors 

(Avetisyan et al. 2012). According to UNFCCC, GHG emissions from construction 

operations account for around 6.8% of total emissions produced by all industrial sectors.  

 

The majority of energy consumption and emissions production in construction sector is 

related to equipment operations. Around 45-48% of total vehicular consumed fuel and 
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emitted pollutions of all industries are associated with construction equipment (Lewis 

2009). These construction machineries are mainly involved in numerous earthmoving 

operations in which their emitted pollutions are much more than other commercial 

vehicles. For example, the pollution production of a middle-sized loader is nearly 500 

times more than that of a private car (Kaboli and Carmichael 2012). Based on the report 

prepared by EPA’s Clean Air Act Advisory Committee (CAAAC) (2006), construction 

sector accounts for 6% of light-duty vehicles (LDVs) and 17% of heavy-duty vehicles 

(HDVs) while producing 32% of NOx and 37% of PM of all mobile source emissions. In 

construction projects, equipment operations and material transportation account for the 

majority of energy consumption and consequently emissions production. Previous 

studies have demonstrated that the type, age and size of engine, and fuel kind are the 

most significant parameters affecting emission rate of equipment.  

 

Developing reduction strategies for construction equipment can have significant effect 

on decreasing the total amount of emitted pollutions. For example, if the idling time of 

construction equipment reduces by 10%, the emission of CO2 decreases for around 0.8 

million tons per year (Truitt 2009). EPA estimates that if the fuel consumed by 

construction equipment decreases by 10%, around 5% of entire energy used in the 

construction sector will be saved resulting a reduction of 6,700 tons CO2 production 

(EPA 2009). The Australian Clean Energy Regulator Agency (CERA) predicts that by 

decreasing the fuel consumed by on-road equipment involved in all industry sectors 

including construction, over 3 billion litres fuel can be saved and approximately 8 

million tones CO2 emission is reduced in Australia only (Klein et al. 2016). In addition, 

equipment compatibility and efficiency are two crucial parameters having considerable 

effect on produced emissions per unit of conducted work (Ahn and Lee 2013). Large 
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construction projects normally involve a variety of type and number of equipment, and 

therefore hold flexibility in selecting equipment to work on a given activity. 

 

1.1. Problem Statement  

 

Construction industry is one of the main contributors to global fuel consumption and 

GHG emission production mainly due to the large number of heavy equipment 

involved. This issue shows the essentiality of having accurate models to predict fuel 

consumption and pollutants production of construction equipment at different level. 

Previous studies have indicated that total weight of vehicles has an important effect on 

their fuel consumption and emissions production. Therefore, it is desirable to devise a 

precise and efficient method to estimate the weight of equipment, and then investigate 

its impact on vehicles’ fuel use and pollutants production. In addition, fuel reduction 

schemes and strategies are expected to improve fuel efficiency significantly, which  can 

be used as a guideline by operators and managers to lower fuel use and emissions 

production of equipment.  

 

There is a lack of accurate models and methods in construction sector to predict fuel 

consumption and emissions production of vehicles especially at operation level. Current 

models mainly focus on predicting fuel use and emissions production of vehicles at 

macro level, such as per nation, state, or project. For example, NONROAD model 

developed by EPA and OFFROAD model devised by California Air research Board 

(CARB) are applied for having rough estimation of fuel consumption and emissions rate 

of different construction equipment groups at national and state levels. On the other 
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hand, numerous operational and environmental parameters influencing fuel use and 

emissions rate of construction vehicles have not been fully investigated yet. Also, 

engine specifications are the other factors having major impact on fuel efficiency of 

equipment which require further and comprehensive investigations.    

 

Further, there are no comprehensive and quantitative operational level strategies and 

schemes in practice to reduce fuel used and emissions produced by construction 

equipment in spite of their significant impact on saving costs in construction operations. 

The current reduction strategies mainly focus on engine attributes and fuel types which 

can be applied to new construction vehicles only, while failing to cater for existing 

machinery globally. On the other hand, weight of equipment is a main factor impacting 

fuel use and emissions production requiring an accurate and fast model to predict the 

weight of vehicles and to investigate the effect of weight on fuel use and emissions rate. 

The current weighting systems in construction are time consuming or error prone, which 

typically come with high initial cost. As the most applicable technique, weighbridges 

are widely used on the construction sites which require high installation and operation 

costs. The weight measurement time in traditional methods has considerable impact on 

the production rate of the equipment and the cost of project execution. Despite high 

speed of new volumetric measurement methods, these systems may not yield sufficient 

accuracy due to volume to weight conversion analysis.  
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1.2. Research Objectives 

 

Considering the problems and gaps identified in the field of fuel use and emissions 

estimation of construction equipment, this study aims to develop a comprehensive 

framework to predict instantaneous fuel use and emissions rate of construction vehicles 

at operation level. According to the report published by EPA (2009), dump trucks are 

the major source of energy consumption and consequently emissions production in the 

construction industry. Therefore, this study focuses on modeling fuel use and emissions 

production of on-road construction vehicles including dump trucks through 

investigating the effect of operational, environmental and engine variables. For 

emissions modeling, this research focuses on four pollutants as the main GHGs, namely 

CO2, CO, HC and NOx.  

 

The weight of equipment is a crucial parameter impacting fuel use and emissions rate. It 

is required to have a system to easily measure this operational parameter in practice. 

This study purposes an integrated framework to predict the weight of on-road 

construction equipment including their payload considering operational, environmental 

and engine variables. Developed weight estimation model will be finally validated and 

verified, and can be used in practice for weight modeling of on-road construction 

vehicles.  

 

After developing research framework, and fuel use, emissions rate and weight 

estimation models, this research also devises different fuel and emission reduction 

strategies and schemes to deliver greater fuel efficiency to construction vehicles and 

lower their emission production. The devised schemes predict optimal driving patterns 
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and trailer configurations taking into consideration the effect of investigated operational 

and environmental parameters. The research methodology developed in this study 

would have many other applications in construction industry such as monitoring and 

tracking resources, predicting equipment’s production and managing machinery.   

 

1.3.Research Framework  

 

This section presents the framework and methodology developed in this study. As 

mentioned above, this research concentrates on operational level fuel use and emissions 

modeling of on-road construction vehicles. This study is divided into three separated 

layers, as shown in Figure 1.1. As the main contribution of this research, an automated 

data sensing framework is developed to monitor field operations in layer one. State-of-

the-art instrumentation system is employed to automatically collect required real-world 

field data from construction equipment through preliminary and field experimentation. 

The data sensing system can be used in different construction fields.  
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Figure 1.1. Different layers of the integrated research framework developed in this study 

 

In the second layer,  this study models fuel use, emissions rate and weight of on-road 

construction vehicles by applying the developed data monitoring method.  This 

procedure is conducted through synchronizing and analyzing the data collected from 

field experimentation. Developed models have the capability of predicting the 

instantaneous fuel use and emissions rate based on the operational and environmental 

parameters. Those models are then validated through comparing the predicted results 

with the ground-truth values of fuel use, emissions rate and weight measured by 

independent instruments.  

 

The estimation models on fuel use, emissions rate and weight are expected to have 

broad applications in the construction industry. By employing devised models in layer 

2, the third layer of this study is focused to develop different reduction strategies and 

schemes to deliver greater efficiency to construction vehicles.  

 

Layer 1

Layer 2

Layer 3

Automated Data Sensing for Monitoring Field Operation

Fuel Use Modelling Emissions Modelling Mass Modelling

Fuel Use and Emissions Reduction Strategies 
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1.4.Thesis Structure  

 

The thesis structure is illustrated in Figure 1.2. Chapter 1 introduces the topic of the 

thesis and justifies the significance and necessity of this study. This section also defines 

the current problems in modeling fuel use and emissions of equipment in construction 

sector, followed by research objectives of the study.  

 

Chapter 2 reviews the previous studies in the field of fuel use, emissions rate and weight 

modeling in construction sector. Different models and techniques which are currently 

used in practice for measuring fuel use, emissions and weight of the vehicles are also 

investigated.   

 

Chapter 3 develops an integrated data monitoring system as the primary research 

methodology of this study for developing models and strategies. Affecting parameters 

on fuel use and emissions rate of construction equipment are investigated. Suitable 

instruments for gathering real-world data from field experimentation are also evaluated. 

Data filtrating procedure is developed in this chapter for detecting and correcting 

potential errors.  
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Figure 1.2. Structure of the thesis 

 

Chapter 4 develops the operational level fuel use and emissions rate models for on-road 

construction equipment through conducting analysis on the filtered raw data. The 

emissions rate of CO2, CO, HC and NOx GHG pollutants are modelled. Validation 

process is finally performed on the developed models through comparing the predicted 

results with the ground truth data measured in the experimentations.  

Chapter 1

Introduction

Chapter 2

Literature Review
Emissions Rate Estimation

Fuel Use Estimation

Fuel Use and Emissions Reduction

Mass and Weight Estimation

Chapter 3

Monitoring field Operations

Chapter 5

Mass and Weight Modelling

Identification of Affecting Parameters 

Chapter 6

Fuel Use and Emissions Reduction Schemes

Chapter 4

Fuel Use and Emissions Modelling

Data Collection

Data Synchronization

Equipment Selection 

Instrumentation 

Model Development Model Validation Model Development Model Validation 

Engine UpgradingOptimal Driving Pattern Trailer Configuration

Chapter 7

Summary and Conclusion 
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In Chapter 5, this study continues with devising a model to estimate the weight of 

equipment and their carried payload based on modeling the operational and 

environmental parameters, and engine attributes. ANNs are adopted for analyzing and 

configuring the model. Having the real weight of equipment and their carried payload 

using the weighbridges on the sites, weight estimation model is finally validated.  

 

Applying fuel use and emissions rate models devised in this study, Chapter 6 develops 

several strategies to deliver greater fuel efficiency to construction vehicles and to reduce 

the emissions produced from construction operations. As the main scheme, optimal 

driving pattern is designed to predict the ideal driving speed based on monitoring the 

operational, environmental and engine variables. This chapter continues with 

considering the effect of engine tier and trailer configuration on fuel use and emissions 

production per transferred unit of weight. The effect of idling time and equipment stop 

on additional fuel use and pollutants production is finally modelled in this chapter.  

 

Chapter 7 concludes the main findings of the thesis, discusses limitations of the study 

and provides suggestions for future research.  
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Chapter 2: Literature Review 

Literature Review 

 

2.1. Introduction  

 

This chapter provides a comprehensive review of previous research that is relevant to 

this study. This research focuses on three main areas on construction equipment 

operations, namely (1) modeling fuel use and emissions, (2) developing schemes and 

strategies to reduce fuel use and emissions, and (3) estimating the total weight of 

equipment based on monitoring operational parameters. Accordingly, this chapter is 

divided into three sections to cover the background related to those research fields. At 

first, existing models and approaches for fuel use and emissions estimation of 

construction equipment are reviewed. Different fuel consumption and emissions 

reduction schemes applied in the construction industry are then investigated. Finally, 

current weight and payload measurement tools and techniques for weighing 

construction equipment are introduced.  

 

2.2. Fuel Use and Emissions Modeling  

 

This section reviews the background and previous studies in the field of fuel use and 

emission modeling of construction equipment. The current standards and regulations 

imposed by local governments and international agencies are found to be the key 

incentive and motivation to restrict fuel use and emissions of construction equipment. 
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The studies and efforts conducted by both academic scholars and professional sectors in 

the field of construction fuel use and emissions estimation are also summarized. This 

section continues with reviewing the modeling techniques and methodologies utilized 

for fuel use monitoring and emissions prediction of construction vehicles. The models 

commonly adopted for estimating fuel use and emissions of both on-road and non-road 

vehicles are then introduced and evaluated. Finally, the approaches and strategies which 

could be applied in reducing fuel use and emissions in the proposed study are reviewed.  

 

2.2.1. Standards and Regulations  

 

Regulations and standards are the main incentives and requirements for reducing fuel 

use and emissions rate of construction equipment. Current regulations can be classified 

into two broad categories of technological and air quality standards. The aim of the 

former is to restrict engine fuel use and emissions production, while the latter restricts 

the level of pollutants emitted into the atmosphere. These regulations impose 

restrictions on fuel use and emissions by focusing on the specifications of engines, fuel 

types and the combustion process (Lewis et al., 2009).  

 

There are two main types of on-road and non-road emission standards. On-road 

regulations are applied for vehicles that can be driven on normal roads, which are 

significantly more stringent. The best known on-road standards were introduced by the 

European Union (EU) in the early 1970s and over the years, the EU standards have 

become more stringent. Currently, most countries around the world adopt and 

implement the EU in their own regulations (European Union, 2016). Table 2.1 
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summarizes the EU standards that have been implemented globally to restrict emission 

rate of four main pollutants for on-road heavy duty trucks and buses.  

 

Table 2.1. EU emission standards of on-road diesel engines  

  Emission standards (g/kWh) 

Tier Model CO HC NOx PM 

Euro I 

1992, < 85 kW 4.5 1.1 8 0.612 

1992, > 85 kW 4.5 1.1 8 0.36 

Euro II 
1996 4 1.1 7 0.25 

1998 4 1.1 7 0.15 

Euro III 

1999  1 0.25 2 0.02 

2000 2.1 0.66 5 
0.1 

0.13* 

Euro IV 2005 1.5 0.46 3.5 0.02 

Euro V 2008 1.5 0.46 2 0.02 

Euro VI 2014 1.5 0.13 0.4 0.01 

 

The first non-road emission regulation was introduced in 1994 by the EPA. This was 

implemented in 1998 as a Tier 1 regulation to restrict the emissions of main GHGs from 

engines with power lager than 37 kW. The power and model year of the engine were 

taken into consideration when making the tier classification for specific piece of 

construction equipment. In 2001 and 2006, the EPA implemented two more, and more 

stringent, regulations Tiers 2 and 3. The most stringent regulation so far, Tier 4, was 

released since 2008 from transitional (Tier 4t) to final phases (Tier 4f). Table 2.2 lists 

the standards that have been developed by EPA to restrict emissions of non-road diesel 

construction equipment over the last two decades.  

https://en.wikipedia.org/wiki/European_emission_standards#cite_note-21
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Table 2.2. EPA emission standards of non-road diesel engines  

 Emission standards (g/kWh) 

Engine power Tier Model  CO HC NMHC + 

NOx 

NOx PM 

37 ≤ kW < 56 

Tier 1 1998-2003 - - - 9.2 - 

Tier 2 2004-2007 5.0  - 7.5  - 0.4  

Tier 3 2008-2012 5.0  - 4.7 - 0.3 

Tier 4t 2008-2012 5.0 - 4.7 - 0.3 

Tier 4f 2013+ 5.0 - 4.7 - 0.0

3 

56 ≤ kW < 75 

Tier 1 1998-2003 - - - 9.2 - 

Tier 2 2004-2007 5.0  - 7.5 - 0.4

0 

Tier 3 2008-2011 5.0  - 4.7 - 0.4

0 

Tier 4t 2012-2013 5.0 0.19 - 0.40 0.0

1 

Tier 4f 2014+ 5.0 0.19 - 0.40 0.0

1 

75 ≤ kW < 

130 

 

Tier 1 1997-2002 - - - 9.2 - 

Tier 2 2003-2006 5.0  - 6.6  - 0.3  

Tier 3 2007-2011 5.0  - 4.0  - 0.3 

Tier 4t 2012-2013 5.0 0.19 - 0.40 0.0

1 

Tier 4f 2014+ 5.0 0.19 - 0.40 0.0

1 

130 ≤ kW < 

225 

 

Tier 1 1996-2002 11.4  1.3  - 9.2 0.5

4  

Tier 2 2003-2005 3.5 - 6.6  - 0.2  

Tier 3 2006-2010 3.5 - 4.0  - 0.2 

Tier 4t 2011-2013 3.5 0.19 - 0.40 0.0
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1 

Tier 4f 2014+ 3.5 0.19 - 0.40 0.0

1 

225 ≤ kW < 

450 

 

Tier 1 1996-2000 11.4 1.3  - 9.2 0.5

4  

Tier 2 2001-2005 3.5 - 6.4  - 0.2  

Tier 3 2006-2010 3.5 - 4.0  - 0.2 

Tier 4t 2011-2013 3.5 0.19 - 0.40 0.0

1 

Tier 4f 2014+ 3.5 0.19 - 0.40 0.0

1 

450 ≤ kW < 

560 

 

Tier 1 1996-2001 11.4 1.3  - 9.2 0.5

4  

Tier 2 2002-2005 3.5 - 6.4  - 0.2  

Tier 3 2006-2010 3.5  - 4.0  - 0.2 

Tier 4t 2011-2013 3.5 0.19 - 0.40 0.0

1 

Tier 4f 2014+ 3.5 0.19 - 0.40 0.0

1 

kW ≥ 560 

 

Tier 1 2000-2005 11.4  1.3  - 9.2  0.5

4  

Tier 2 2006-2010 3.5  - 6.4  - 0.2  

Tier 4t 2011-2014 3.5 0.4 - 3.5 0.1 

Tier 4f 2015+ 3.5 0.19 - 3.5 0.0

4 

 

In regard to air quality standards, the EPA established the National Ambient Air Quality 

Standard (NAAQS) to control the concentration of GHGs in the atmosphere and their 

effects on human health and the environment. The NAAQS is reviewed periodically and 

is becoming more stringent over time. The NAAQS includes primary and secondary 
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emission regulations. The primary standards are more stringent, and focus on public 

health, including people with respiratory problems (EPA, 2006). The secondary 

standards limit pollutant concentrations to protect public welfare and prevent damage to 

the environment. As shown in Table 2.3, the EPA imposes restrictions on CO, NOx, 

PM, SO2, Ozone (O3) and lead pollutants, which are known as criteria pollutants. 

Engines from construction equipment are the main contributors of CO, NOx, PM 

pollutants that are considered in this research. Hexane is also considered as a major 

source of HC emitted from equipment contributing to O3 formation. 

 

Table 2.3. NAAQS air quality standard developed by EPA 

Pollutant 

 

Primary/ 

Secondary 

Averaging 

Time 
Level Form 

(CO)  Primary 
8 hours 9 ppm Not to be exceeded more 

than once per year 1 hour 35 ppm 

Lead  

Primary 

and 

secondary 

Rolling 3 

months 

average 

0.15 μg/m
3
 Not to be exceeded 

Nitrogen Dioxide 

(NO2) 

Primary 1 hour 100 ppb 

98th percentile of 1-hour 

daily maximum 

concentrations, averaged 

over 3 years 

Primary 

and 

secondary 

1 year 53 ppb Annual Mean 

Ozone (O3) 

Primary 

and 

secondary 

8 hours 0.070 ppm 

Annual fourth-highest 

daily maximum 8-hour 

concentration, averaged 

over 3 years 

Particle 

Pollution 

(PM) 

PM2.5 

Primary 1 year 12.0 μg/m
3
 

Annual mean, averaged 

over 3 years 

Secondary 1 year 15.0 μg/m
3
 

Annual mean, averaged 

over 3 years 

Primary 

and 

secondary 

24 hours 35 μg/m
3
 

98th percentile, averaged 

over 3 years 

PM10 

Primary 

and 

secondary 

24 hours 150 μg/m
3
 

Not to be exceeded more 

than once per year on 

average over 3 years 

https://www.epa.gov/co-pollution/table-historical-carbon-monoxide-co-national-ambient-air-quality-standards-naaqs
https://www.epa.gov/lead-air-pollution/table-historical-lead-pb-national-ambient-air-quality-standards-naaqs
https://www.epa.gov/no2-pollution/table-historical-nitrogen-dioxide-national-ambient-air-quality-standards-naaqs
https://www.epa.gov/no2-pollution/table-historical-nitrogen-dioxide-national-ambient-air-quality-standards-naaqs
https://www.epa.gov/ozone-pollution/table-historical-ozone-national-ambient-air-quality-standards-naaqs
https://www.epa.gov/pm-pollution/table-historical-particulate-matter-pm-national-ambient-air-quality-standards-naaqs
https://www.epa.gov/pm-pollution/table-historical-particulate-matter-pm-national-ambient-air-quality-standards-naaqs
https://www.epa.gov/pm-pollution/table-historical-particulate-matter-pm-national-ambient-air-quality-standards-naaqs
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Sulfur Dioxide 

(SO2) 

Primary 1 hour 75 ppb 

99th percentile of 1-hour 

daily maximum 

concentrations, averaged 

over 3 years 

Secondary 3 hours 0.5 ppm 
Not to be exceeded more 

than once per year 

 

2.2.2. Previous Studies 

 

Many studies have been conducted by international agencies and academic scholars in 

the field of construction equipment’s fuel use and emissions rate measurement. These 

studies include field experimentations to measure real data of in-use equipment for 

investigating the relationship between activity duty cycles and fuel consumption and 

emissions rate. Abolhasani et al. (2008) estimated fuel consumption and emission rate 

of excavators working in real operation condition. In this study, field operational data 

were collected from three different excavators through using a fuel and emission 

analyzer. Six operation modes of excavators were recorded, including idling, digging, 

loading, swing, dumping and moving. Fuel use and emissions rate under different 

operation modes of excavators were predicted after analyzing the data collected in the 

field. The results showed that excavators consume the highest rate of fuel in moving and 

using buckets modes, and consequently produce the highest amount of emissions in 

these two operation modes. Similarly, based on the field data collected from 34 pieces 

of non-road equipment, Lewis et al. (2012) quantitatively evaluated the effect of idling 

on fuel use and CO2 emission rate of diesel vehicles. The total amount of used fuel and 

emitted CO2 was calculated by considering the operational efficiency of equipment and 

the ratio of idling to non-idling mode.  

 

https://www.epa.gov/so2-pollution/table-historical-sulfur-dioxide-national-ambient-air-quality-standards-naaqs
https://www.epa.gov/so2-pollution/table-historical-sulfur-dioxide-national-ambient-air-quality-standards-naaqs
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Frey et al. (2008) conducted a comprehensive evaluation on the effect of different fuels 

including petroleum diesel and B20 biodiesel on emissions production on common 

construction equipment. Field experimentation was carried out on five backhoes, six 

graders and four front-end loaders. The analyzed results indicated that using B20 fuel 

instead of petroleum diesel decreases the opacity, HC and CO emission rates by 18%, 

26% and 25%, respectively, but increases NOx emission rate by around 2%. Guggemos 

and Horvath (2006) designed a Construction Environmental Decision Support Tool 

(CEDST) to evaluate the impacts of construction projects on the environment. The 

energy sources such as diesel and electricity, as well as produced emission and waste 

from construction phase were considered in CEDST. The total amount of used energy, 

fuel and produced emissions can be estimated at project level. It was found from this 

study that the use of equipment accounts for at least 50% of fuel used and pollution 

emitted in the execution of construction projects.  

 

Avetisyan et al. (2012) proposed an optimization-based model for construction 

companies to evaluate their needs for equipment considering emissions and costs. 

Weighting technique was applied to investigate the effect of working conditions, 

equipment compatibility and availability, and regulatory constraints in minimizing 

project cost and emissions. The model developed in the study considered the effect of 

multiple variables such as site elevation, soil condition and geographic location on the 

operation and productivity of equipment. Kaboli and Carmichael (2012) investigated 

optimum fleet size of earthmoving equipment in order to achieve minimum unit cost 

and minimum unit emission in earthmoving operations. The impact of equipment 

heterogeneity, cycle time, truck size and payload was considered on emissions and costs 

of equipment (Kaboli et al., 2014; Kaboli and Carmichael, 2016). In this study, queuing 
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theory was applied to theoretically calculate the production rate of earthmoving 

operations. The results verified that optimal fleet size coincides with minimum unit cost 

and minimum unit emission, while being independent of operational parameters 

(Carmichael et al., 2013; Kaboli and Carmichael, 2014).  

 

Ahn and Lee (2013) developed operating equipment efficiency (OEE) criteria to control 

the operations of construction equipment. OEE was defined as the ratio of valuable 

operation time to total operation time. Emissions produced by equipment were then 

formulated by linking emission factors and generalized ratio of idling to operating 

emission rate. Case studies proved that by maximizing the OEE of equipment involved 

on the site, the emissions and operation cost will be minimized. Ahn et al. (2013) 

introduced different techniques and approaches to predict fuel use and emissions of 

equipment on construction sites. 

 

2.2.3. Techniques for Estimating Fuel Use and Emissions  

 

Several tools and techniques have been applied to estimate fuel use or emissions of 

equipment by monitoring site activities and operations. The commonly used methods 

and techniques are reviewed as below.  

 

 Statistical Analysis  

 

Statistical analysis is one of the most common techniques used to analyze statistical and 

stochastic data collected from field operations. Ordinary least square (OLS) and 
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multilinear linear regression (MLR) methods are the two main statistical methods that 

have been used in different studies. In such analysis, correlation coefficient or 

coefficient of determination (R
2
) show the closeness of the data to the fitted correlation 

line, and are defined as the percentage of the response variable variation that can be 

explained by the model. Lewis and Hajji (2012) presented a model to estimate the total 

fuel use, unit cost, activity duration, production rate and emissions of earthwork 

activities. Using MLR method, the impact of different affecting parameters including 

soil type and hauling distance was modelled on production rate and unit cost in the 

project. Abolhasani and Frey (2013) applied the OLS technique to develop a modal 

model and estimate the exhaust flow and normalized CO2 and NOx emissions in 

different modes of equipment operations. 

 

 Discrete-Event Simulation  

 

Discrete-event simulation (DES) is an effective technique for predicting different 

parameters related to construction operations and jobsite conditions without having 

access to real data. DES tool can model the operation as the discrete sequence of events. 

To have better accuracy, it is essential to develop DES to assess the impact of potential 

affecting variables (Ahn et al., 2013). Ahn and Lee (2013) developed a DES model to 

predict the operation efficiency of construction equipment through breaking down the 

resource’s task to lower level. The operation efficiency was then used to estimate the 

amount of fuel use and emissions of each piece of equipment. This simulation technique 

was also applied in the pre-planning phase of tunnelling construction to estimate the 

carbon footprints produced during execution processes (Ahn et al., 2010).  
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 Visual Computing Techniques  

 

Numerous researchers have applied visual computing techniques for monitoring and 

documenting construction operations, as well as affecting environmental parameters 

(Memarzadeh et al., 2013; Heydarian et al. 2012). The processes of tracking and 

localization of equipment, and activity recognition are required to estimate the fuel 

consumption and emission rate using predefined factors (Ahn et al., 2013). Memarzadeh 

et al. (2013) developed an algorithm to detect and localize the excavators, trucks and 

standing workers from video streams on the jobsites. They applied the Histograms of 

Oriented Gradients and Colours (HOG + C) to speed up the detecting process. The 

performance of this model was validated on around 8,000 video data sets containing 

equipment and vehicles with a wide range of scale, background, illumination and 

occlusion. Heydarian et al. (2012) presented a different visual method to automatically 

recognize actions of construction equipment from different camera viewpoints. Most of 

the recent works in this field focus on activity mode recognition within the dynamic 

construction environments (Golparvar-Fard and Niebles, 2013). 

 

 

 Mechanical Tools   

 

Electromechanical devices have been used in the construction industry for measuring 

different site and operational parameters. For example, accelerometer is a 

microelectromechanical systems (MEMS) based instrument that can be installed on the 

equipment and measure its three dimensional accelerate rate and force. Physical 

activities of the vehicles can be tracked through analyzing the data collected by the 



23 
 

accelerometers. Ahn et al. (2013) determined the operation efficiency of the equipment 

involved in the construction operations through analyzing the acceleration data. The 

emission rate of vehicles was then estimated by predefining an emission value for idling 

mode. Ahn et al. (2012) investigated the feasibility of using MEMS device to identify 

the operation modes of construction equipment. They developed a method to monitor 

the operation status and efficiency through analyzing vibration information. The 

accuracy of the mechanical-based monitoring systems was found to be further improved 

by considering the features of MEMS devices (Ahn et al., 2013). 

 

2.2.4. Approaches to Modeling Fuel Use and Emissions 

 

Approaches in fuel use and emissions modeling can be classified into four main 

categories, namely aggregated, parametrized, modal and simulation-based studies, as 

shown in Figure 2.1. In the aggregated approach, the model is developed at the simplest 

level and emissions are estimated roughly based on the general specifications of the 

vehicle (Boulter el al. 2007). The NONROAD, OFFROAD and the national 

atmospheric emissions inventory (NAEI) models are examples of this approach. These 

approaches are mainly used by governments or international organizations to have a 

rough estimation of fuel consumption or pollution production at national or state level. 

Parametrized approaches, like MODEM and digitized graz (DGV), estimate emissions 

more accurately through considering driving patterns. These models are used mostly for 

estimating the fuel use rate and emissions of light duty vehicles in the urban areas 

(Barlow et al. 2001, Joumard et al. 1995). They are capable of distinguishing the effect 

of different fuel types and engine technologies on emissions production. So the effect of 
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driving pattern and environmental parameters on the rate of fuel use and emissions can 

be investigated.  

 

 

Figure 2.1. Fuel consumption and emissions modeling approaches 

 

Modal models focus on predicting fuel consumption and emissions of vehicles in 

different operational modes. These models are relatively detailed and take into account 

the effects of engine size and engine power on energy consumption and exhaust 

emission rates. For instance, the model developed by Lewis (2009) in NCSU and 

CMEM estimates fuel use and emission rates of different equipment in idling, moving, 

dumping and scooping modes (Lewis et al. 2009, Boulter et al. 2007). These models 

consider the effect of operation features such as off-cycle driving and starting 

conditions. Simulation-based models such as the MOVES and the advanced vehicle 

simulator (ADVISOR) map different parameters, including emission rates and fuel 

consumption of vehicles according to driving pattern, fuel type and general engine 

specifications (Ahn and Lee 2013, Baulter et al. 2007). Two sets of data including 

vehicle definition and driving pattern are required for such models to simulate the fuel 
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use and emissions rate. Considering different types of conventional, hybrid and electric 

engine technologies, these models have capability of estimating fuel economy and 

optimizing gear ratio to maximize the performance of the vehicle.  

 

2.2.5. Selected Fuel Use and Emission Models  

 

Numerous models have been developed by different international agencies and 

organizations to predict the fuel use and emissions rate of equipment involved in 

construction sites. In general, those models can be classified into two main categories of 

on-road and non-road models. On-road models are used to estimate fuel use and 

emission rates of construction vehicles that can be driven on normal roads, such as 

trucks, haulers and mobile cranes. By contrast, non-road models can only be applicable 

of off-road construction and earthmoving equipment such as loaders and bulldozers, 

which cannot be driven on the main roads.  

 

Figure 2.2 shows typical fuel use and emissions models for both on-road and off-road 

equipment. The application of those on-road models is to estimate the GHG emission 

rates at vehicle, state and national levels by considering influencing variables, such as 

road conditions, fuel type and driving patterns. Off-road models can be used to roughly 

estimate the emissions at equipment, project and national level by factoring the engine 

power, average activity hours and equipment category and population. In the following 

sections, five commonly used on-road and off-road models are introduced, as shown in 

Figure 2.2.  
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Figure 2.2. Classification of fuel use and emissions models 

 

1) Motor Vehicle Emission Measurement Simulator Model 

 

A motor vehicle emission measurement simulator (MOVES) model was developed by 

EPA in 2004 to estimate fuel use and different emissions (CO, NOx, PM, CO2, NH3 and 

SO2) of a variety of on-road motor vehicles (TRL, 2007). This model considers 

numerous parameters such as vehicle operation mode (idling, acceleration, cruising) and 

vehicle specific power (VSP), and derives second-by-second data from different 

programs such as US I/M240 and MOBILE6 (EPA, 2009). The MOVES model 

investigates the effect of different types of fuels on emissions, such as gasoline, diesel, 

CNG, LPG and also electricity. It is also adaptable to all engine technologies including 

internal combustion and hybrid electric engines. This simulator models the traffic 
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condition and driving cycles in three ways of average speed, speed profile and 

distribution of operation mode (Oduro, 2016).  

 

2) Comprehensive Modal Emission Model  

 

A comprehensive modal emission model (CMEM) was developed by the cooperation of 

the University of California-riverside and the University of Michigan with the 

sponsorship of the National Cooperative Highway Research Program (NCHRP) in 

1995. The main objective of designing this model is to estimate fuel use and emissions 

rate associated with operation modes of light-duty vehicles (Scora and Barth, 2006). 

CMEM simulates fuel use rate taking into consideration different readily-available 

parameters such as operating modes and specific vehicle factors, and calibrated 

parameters including fuel specifications and catalyst variables (Tate, Bell and Liu 2005, 

TRL 2007). As shown in Equation (2.1), the tailpipe emissions rate can be predicted by 

multiplying fuel consumption rate (FR), engine-out emission index (gemission/gfuel) and 

catalyst pass friction (CPF) (Bapat and Gao 2010).   

 

Tailpipe Emissions = FR * (gemission/gfuel) * CPF                                (2.1) 

 

As the main limitation, this simulation-based approach is data intensive, and numerous 

parameters must be collected or simulated for different vehicle categories and engine 

technologies. Experimentation results showed that this model cannot be readily applied 

to the vehicle fleets in European countries prior to making some adjustments.  
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3) NONROAD Model 

 

EPA (2005) developed NONROAD model to estimate the average fuel use and 

emission rate of different pollutants (CO2, NOx, SO2, HC and PM) for more than 260 

equipment pieces considering average engine power and equipment type (Lewis, 2009). 

NONROAD model takes into account the effect of four main parameters of equipment 

features i.e. load factor, engine power, average equipment activity hour and 

deterioration parameters on fuel consumption and emission rates (Rasdorf et al., 2012). 

Load factor is determined based on the operation conditions and equipment type, and 

presents the ratio of average used power relative to the rated power of engine. This 

parameter has been estimated to be 0.21 for backhoes and 0.59 for the majority of 

construction equipment including trucks and loaders (Caterpillar, 2015). In this model, 

brake-specific fuel consumption (BSFC) coefficient shows the fuel use of equipment 

operating at full power. BSFC varies from 0.198 to 0.22 L/hp.hr depending on engine 

power (EPA, 2010). Using Equation (2.2), this model estimates the emissions rate of 

different pollutants at state and national levels (ICCT, 2016).  

 

Emissions = ∑ AHP * EF * ACT * LF * POP                           (2.2) 

 

Where, AHP and LF are the average maximum rated horsepower and load factor of 

engine, respectively. EF is emission factor that is calculated based on deterioration or 

new standards. ACT and POP are the average activity hours and population of each 

equipment category. Table 2.4 ranks the contribution of non-road construction 

equipment types to GHG emissions in terms of three main pollutants of NOx, CO and 

PM10 using NONROAD model.  
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Table 2.4. EPA construction equipment ranking and contribution of NOx, CO, PM10 

Equipment 
NOx CO PM10 

Contribution Ranking Contribution Ranking Contribution Ranking 

Front-end 

loaders 
14.5% 1 11.5% 3 11.2% 3 

Bulldozers 12.5% 2 9.3% 4 9.1% 4 

Excavators 11.4% 3 7.4% 5 8.6% 5 

Trucks 11.0% 4 7.3% 6 6.6% 6 

Backhoes 9.2% 5 16% 1 15.1% 1 

Skid-steer 

loaders 
6.2% 6 14.5% 2 13.6% 2 

Generators 4.7% 7 5.1% 7 6.0% 7 

Forklifts  3.9% 8 4.9% 8 4.6% 8 

Scrapers  3.4% 9 2.7% 11 2.3% 12 

Cranes  3.2% 10 1.5% 15 1.9% 14 

 

 

4) OFFROAD Model  

 

The California Air Research board (CARB) developed OFFROAD model to estimate 

emissions produced by non-road equipment at California state (OFFROAD 2007). Like 

NONROAD model, this model takes into consideration annual activity hours, BSFC, 

fuel type and engine load factors. It can predict emissions rate of 94 non-road 

equipment pieces in 17 classes of industry categories (CARB 2007, Lewis 2009). The 

OFFROAD model also considers the effects on emissions of such parameters as 

technology type, regulations, seasonal and temporal conditions, which were not 

considered in the NONROAD model (Lewis, Leming and Rasdorf, 2012). OFFROAD 

and NONROAD models have the similar basis and methodology in fuel use and 
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emissions estimation. But the emission factors were developed based on dynamometer 

laboratory emission tests rather than field experiments, and therefore the results may not 

reflect the episodic nature of emissions in real-world working cycles (Barati and Shen 

2015, Marshall et al. 2012).  

 

5) North Carolina State University Model  

 

Lewis (2009) developed a modal model to estimate fuel consumption and emissions of 

non-road construction equipment. The experimented equipment comprised loaders, 

bulldozers, backhoes, excavators, graders and off-road trucks with the engine power 

ranging from 70 to 306 hp. A manifold absolute pressure (MAP) parameter was 

developed in this model as the surrogate of engine load to investigate the effect of used 

power of engine on fuel consumption and emissions. Lewis (2009) divided MAP into 

10 different modes and estimated average fuel consumption and emissions of CO, HC, 

NOx and PM pollutants in each engine mode (Abolhasani et al. 2008). The fuel-based 

emission factors were developed for all investigated pollutants to estimate emissions 

rate based on used fuel. This model is capable of calculating the weighted-average fuel 

use and emissions rate factoring the fraction of time that equipment spends in each 

mode and engine power. 

 

2.3. Fuel Use and Emissions Reduction Schemes 

 

This section reviews the current strategies and schemes which have been employed in 

the construction sector to reduce the fuel use and emissions production of involved 
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equipment. The previous studies in this field are first summarized. This section 

continues with classifying the current approaches in developing fuel use and emissions 

reduction strategies. 

  

2.3.1. Previous Studies 

 

Numerous efforts have been devoted by scholars and agencies to developing emission 

reduction schemes for the construction industry. Lewis et al. (2009) emphasized on 

mitigating GHGs emissions from construction activities due to resulting health 

problems and environmental damages. As the main incentive and requirement, they 

introduced emission taxes and governmental regulations for mandating such reductions. 

Many international agencies such as EPA have established technological and air quality 

standards to implement restrictions on the amount of emissions of non-road equipment. 

The technological standards impose limitations on emissions produced by equipment 

and engage manufacturers to build engine with higher performance level (Lewis et al. 

2012, Ahn and Lee 2013). Air quality regulations are set to control the concentration of 

harmful pollutants in the atmosphere (Lewis et al. 2009, Kim et al, 2012).  

 

A number of studies have sought for various means of emission reduction schemes, 

such as fuel changes, equipment upgrading and operator training. Frey et al. (2008) 

compared the emissions resulting from construction equipment running regular diesel 

and biodiesel fuels. Data from motor graders, loaders and backhoes performing real-

world duty cycles and activities were collected in the comparative study. EPA and 

California Air Research Board (CARB) introduced ultra-low sulfur diesel (ULSD), and 
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B5 and B20 biodiesels as main alternative fuels for construction equipment. These fuels 

are the blend of renewable fuels made from crops with petroleum diesel which contains 

much lower amount of sulfur. Although these fuels may cost more up to 5%, they have 

contributed to a significant reduction in the emission rate of CO, HC and PM pollutants. 

It has been proved that the oil change interval of equipment using such biodiesel can be 

extended approximately 35% longer than that required for vehicles consuming normal 

diesel (EPA 2007).  

 

Avetisyan et al. (2012) developed a decision model to reduce fuel use and GHG 

emissions from transportation construction projects. Using mixed integer programming 

(MIP), the optimization-based technique minimizes the emissions produced by the 

equipment by considering numerous parameters, e.g. machinery availability, project 

time, compatibility among equipment pieces and operation conditions. Kaboli and 

Carmichael (2014) explored the relationship between the operation cost and produced 

emission in the earthmoving activities using queueing technique. They concluded that 

by reducing emissions produced by machinery, the operation cost will decrease as well. 

It was also found that the minimal unit cost of emission and project cost are coincident, 

and this result is not dependent on operation conditions and equipment type 

(Carmichael et al. 2013). 

 

EPA (2007) introduced different methods and techniques for decreasing fuel use and 

emissions of vehicles involved in the construction operations. In this report, the costs 

and benefits of implementing each strategy were evaluated in detail, and a guideline was 

provided to the construction firms. The case studies demonstrated that up to 45% of 

emissions can be decreased using the developed strategies. EPA (2008) published the 
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results of a survey conducted by associated general contractors (AGC) on clean diesel 

strategies. As seen in Figure 2.3, around half of the 234 companies attended in the 

survey applied at least one reduction scheme on their equipment. Among those 

strategies employed, reducing idling time of equipment was the most common one due 

to not requiring any initial investment and not increasing operation cost and time.  

 

Figure 2.3. Reduction schemes applied by construction companies 

 

2.3.2. Fuel Use and Emission Reduction Approaches  

 

As shown in Figure 2.4, the current approaches employed in the construction industry to 

reduce the fuel use and emissions of equipment can be classified to four main categories 

of operation, engine, planning and fuel. As shown in Table 2.4, operation approaches 

mainly concentrate on operation and maintenance of equipment, including operator 

training, following optimal operation pattern, idling time reduction and regular 

maintenance to enhance operation efficiency and performance of equipment. These 
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schemes rely on the skill level and experience of the operator, and noticeably decrease 

fuel consumption and lower emissions of machinery (Du et al. 2016). For example, by 

reducing one hour idling time of a middle-size construction equipment piece, 

approximately 3.8 litres diesel can be saved which could produce around 6.85 kg CO2. 

The analysis of field experimentations conducted in real construction site indicated that 

around 15% of construction equipment’s operation time is in idling mode (Hasan et al. 

2013). Reducing idling time of equipment also leads to a significant reduction in 

maintenance costs and an increased engine life. Regular maintenance of machinery is 

another operational reduction strategy which systematically detects and corrects the 

potential problems of the engine. Although regular maintenance may incur some 

administrative costs, this strategy prolongs the equipment life and prevents engine 

major repairs in addition to reduced fuel use and emissions. Operator training 

considerably enhances the operation efficiency of equipment and reduces fuel use and 

emitted pollution for a specific job (EPA 2007).   

  

 

Figure 2.4. Classification of the fuel use reduction approaches in construction industry 
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Table 2.4. Operation strategies employed in construction sector 

Strategy  Description 

Idling time 

reduction 

 Causes significant reduction in fuel consumption and emissions. 

Increases engine life and decreases maintenance cost.  

Engine regular 

maintenance 

 Reduces PM, NOx, CO, and HC emissions and lower fuel 

consumption. Increases equipment life and prevents high cost 

engine failure. 

Operator 

training 

 Improves operation efficiency and reduces emissions and fuel 

consumption significantly.  

 

Engine strategies consider engine replacing and upgrading schemes to reduce fuel use of 

equipment. These approaches improve the longevity and performance of engines, but 

normally need significant initial investment costs for engine modifications. These 

schemes include exhaust gas treatment, engine upgrading and electrification. Exhaust 

gas treatment devices such as diesel oxidation catalysts (DOC) and diesel particulate 

filters (DPF) are attached to the engine of equipment to improve the internal combustion 

and performance of engine (national clean diesel campaign 2007). Previous studies 

demonstrated that using DOCs can reduce the emissions of PM, HC and CO pollutants 

by 30%, 50% and 20%, respectively (EPA 2007). It is noteworthy that engine treatment 

technologies are applicable for all types of engines and fuels. Engine upgrading and 

replacement are the other strategies to repower the engines or replace older engines with 

more fuel-efficient ones having higher tiers (Diesel Technology Forum 2006). 

Electrification is another engine-related approach that employs hybrid or electric 

engines and uses electrical fuel cells to supply the required energy of the equipment 
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instead of fossil fuel (Lin et al. 2010, Li et al. 2016). Also, supplying electricity from 

grid powers for stationary equipment like generators is a sound solution for reducing 

fuel consumption at construction sites (EPA 2007, Hampton 2007). In addition to 

substantial reduction in energy consumption, using electric engine makes site works less 

noisy. Table 2.5 summarizes the engine strategies used in the construction industry. 

 

Table 2.5. Engine strategies employed in construction sector 

Strategy  Description 

Treatment 

Technologies 

 Physically traps diesel particulates and prevents their release 

into the atmosphere and can reduce PM emissions, but the total 

NOx emissions remain unchanged for diesel oxidation 

catalysts. 

Engine 

upgrading and 

replacement 

 Reduces PM, NOx, CO, and HC emissions and lower fuel 

consumption. Improves engine reliability and lower 

maintenance costs. 

Electrification  Reduces huge amount of PM, Nox, CO, and HC emissions. 

Hybrid electric vehicles have substantially lower energy use. 

 

Planning strategies concentrate on management of resources and machinery so as to 

reduce total fuel consumed in construction projects, as listed in Table 2.6. Compatibility 

in the size and number of equipment involved on sites is one of the main areas of 

planning that has substantial effects on operation and fuel efficiency of equipment (Ahn 

and Lee 2013). The result analysis on case studies conducted in earthmoving operations 

indicated that the unit cost and unit fuel and emission are coincidently minimal at 
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optimal fleet size of equipment involved in the construction sites (Kaboli and 

Carmichael 2014, Carmichael et al. 2013). Optimal selection of equipment considering 

the workload, job conditions and regulation restrictions is a primary planning scheme 

that considerably influences the fuel use, emissions and cost of the project (Avetisyan et 

al. 2012). This approach is a decision-making process to select the optimum size and 

number of equipment from the available machinery for a given construction project.  

 

Table 2.6. Planning strategies employed in construction sector 

Strategy  Description 

Compatibility 

between 

equipment pieces 

 Increases the operation efficiency of equipment by decreasing 

idling time, and reduces emissions and fuel consumption. Less 

equipment pieces are needed for doing specific task.    

Optimal 

equipment 

selection 

 Reduces the fuel use, emissions and costs of construction 

operations by selecting equipment pieces with higher engine 

tiers and increasing compatibility between involved equipment.  

 

Fuel strategies also have considerable impact on reducing energy consumption and 

emitted pollutants of construction equipment without incurring any major investment. 

Changing fuel blends and alternative fuels are two most common practices for 

emissions reduction. Diesel fuel can be blended with components like Puri NOx and 

Biodiesel rather than hydrocarbons to increase fuel performance. Biodiesels are the 

most common fuel blends that are made from renewable and biotic materials like 

cottonseeds and cooking grease. Natural gas, propane and hydrogen compressed natural 

gas (HCNG) are the alternative fuels can be used by construction equipment to reduce 
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the amount of pollutants. Based on the research conducted in this field, using these 

types of fuels can dramatically decrease energy consumption and emission rates without 

incurring any significant extra cost (EPA 2007).   

 

Table 2.7. Fuel strategies employed in construction sector 

Strategy  Description 

Biodiesel  Derived from renewable sources such as vegetable oil, animal fat, 

and cooking oil. Reduces HC, PM, and CO emissions but 

produces more Nox emissions. Compatible for use with high-

efficiency catalytic emissions–reduction technology. 

Ultra-low 

sulfur diesel 

 Reduces PM emissions and engine wear, corrosion and deposits. 

Enables the use of advanced technologies to reduce emissions.  

Fuel additive  Can reduce Nox, HC, PM, and CO emissions and improve fuel 

economy. Some additives might increase one or more pollutant 

emissions while reducing other pollutant emissions and increasing 

fuel efficiency 

 

2.4. Weight Estimation of Construction Equipment  

 

Construction sector is one of the main industries requiring a large number of different 

construction vehicles. Majority of construction activities associated with earthmoving 

operations involve cut and fill activities and commonly employ heavy-duty vehicles 

(HDVs) for materials transportation. Since those activities are planned and paid based 



39 
 

on the amount of materials moved, measurement of the payload and volume of 

materials carried by vehicles as payload is a necessary process. As the main concern of 

contractors and equipment operators, a cost-effective, automated method is essential to 

be developed to accurately estimate vehicles’ payload.  

 

Measurement of gross vehicle weight (GVW) is a crucial issue in the field of 

transportation. Overloading and increasing equivalent single axle load (ESAL) result 

difficulties in vehicle’s maneuverability, heavy traffic accident and short vehicle life 

(Yang et al. 2008). ESAL is determined based on pavement condition and its failure 

mode, which is one of the main parameters causing distress and damage of pavements 

and bridges (Haidar and Harichandran 2007). Overweighting also causes serious 

damages to pavement conditions and increases the risk of overloading and failure of the 

bridges (Ojio et al. 2016). Three main parameters of annual average daily truck traffic 

(AADTT), percentage of trucks and ESAL are taken into consideration in designing and 

constructing pavements and bridges (Faruk et al. 2016). According to National 

Cooperative Highway Research Program (NCHRP), the distribution of weight over 

different axles is also a key factor in road and pavement design (NCHRP 2006). 

Therefore, the accurate and efficient weight estimation to minimize heavy vehicles’ 

overweighting is essential in order to reduce the potential damages to infrastructures.  

 

Previous studies found that HDVs account for 79% of damages to roadway pavement 

(Faruk et al. 2016, Refai et al. 2014). Many international agencies such as American 

Association of State Highway and Transportation Officials (AASHTO) and Federal 

Highway Administrations (FHWA) have implemented restrictions and regulations to 

reduce the ESAL of HDV vehicles (Vaziri et al. 2013, Fiorillo and Ghosn 2014). 

https://www.google.com.au/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=0ahUKEwjluuvl_9fRAhVBH5QKHVdQC0IQFggcMAA&url=http%3A%2F%2Fwww.dictionary.com%2Fbrowse%2Fmaneuverability&usg=AFQjCNHlOxfaqBzLGQl24cf08DeBFUDS0w&bvm=bv.144686652,d.dGo
https://www.google.com.au/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=0ahUKEwjNrZSq1NXRAhUDnpQKHR3qDiAQFggZMAA&url=http%3A%2F%2Fwww.transportation.org%2F&usg=AFQjCNGfqMTzjoazHoDMpoXcGulOtS0q1w&bvm=bv.144686652,d.dGo
https://www.google.com.au/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=0ahUKEwjNrZSq1NXRAhUDnpQKHR3qDiAQFggZMAA&url=http%3A%2F%2Fwww.transportation.org%2F&usg=AFQjCNGfqMTzjoazHoDMpoXcGulOtS0q1w&bvm=bv.144686652,d.dGo
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Different guidelines have also been developed based on the bridge design formulas by 

several organizations, like American Transportation Research Board (TRB) and 

National Association of Australian State Road Authorities (NAASRA), to control the 

GVW and internal axle weight distributions of HDVs in order to prohibit overstressing 

of bridges (Moshiri and Montufar 2016).  

 

However, despite the high demands for accurate and fast weight measurement methods, 

the current weighting systems used in construction sector are time consuming, error 

prone and typically associated with high initial and operational cost. As the most 

common practice, weighbridges are widely used in the construction sites which require 

high installation and operation costs. The time required for weight measurement  would 

affect the production rate of the equipment and the cost of project execution.  The state-

of-the-art volumetric measurement methods provide fast measurement but  fall short of 

accuracy due to conversion from volume to weight. 

 

In this section, studies conducted in the field of weight and payload measurement of 

construction equipment have been comprehensively reviewed. The regulations and 

standards are also introduced as the main motivation and incentive for restricting the 

weight of on-road heavy duty vehicles. The previous investigations for measuring the 

vehicle weight are reviewed and evaluated. This section continues with introducing all 

techniques and methods currently used for estimating the weight of heavy machinery.  
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2.4.1. Weight Regulations  

 

Governmental and international weight regulations are the main incentives for 

measuring and controlling the weight and size of construction equipment. Different 

countries may develop their own guidelines and standards based on their restrictiveness 

level to prevent highway infrastructures from excessive damages and to improve 

transportation productivity and safety (Moshiri and Montufar 2016, OECD 2011). The 

key parameters concerned by those regulations include GVW, ESAL, vehicle length, 

number of axles and spacing between axles. As shown in Table 2.8, based on axle 

configuration (single, tandem, tridem and quad) and number of trailers, FHWA 

categorized heavy vehicles into 9 different classes (Federal Highway Administration 

2001). HDVs not fitting in those classes can be grouped in an additional Class 14. On 

the whole, FHWA categorizes all vehicles to 13 groups with classes’ 1-4 for light 

vehicles. Based on the class, operators must follow gross vehicle weight rating 

(GVWR) which is the total vehicle weight plus payload and fuel weight. Also, 

considering axle configuration and spacing among axles, the ESAL should not exceed a 

certain amount in each class. Similarly, Austroads (2006) grouped HDVs into 10 

categories based on the length and axle configuration parameters.  

 

Bridge formulas are the other performance-based standard protecting bridges and 

pavements by calculating the maximum allowable weight of different axle series in 

order to limit the imposed stress and moment. Configuration of truck, axle series type, 

design load, maximum load rating and bridge design method are the criteria taken into 

account in the development of bridge formulas. Currently, six countries have 

implemented limitations on trucks’ weight based on the bridge formulas, including 
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Australia, Canada, Mexico, New Zealand, South Africa and the United States (Moshiri 

and Montufar 2016). The devised formulas are different due to restrictiveness level of 

countries and type of vehicles, and can only be used for single-span bridges that need to 

be modified for the application in multi-span ones.  

 

Table 2.8. List of FHWA classes for heavy vehicles 

Class Description Vehicle Profile 

5 Two-Axle, Six-Tire, Single-Unit Trucks 

 

6 Three-Axle Single-Unit Trucks 
 

7 Four or More Axle Single-Unit Trucks 

 

8 Four or Fewer Axle Single-Trailer Trucks 

    

9 Five-Axle Single-Trailer Trucks 

   

10 Six or More Axle Single-Trailer Trucks 

    

11 Five or Fewer Axle Multi-Trailer Trucks 

 

12 Six-Axle Multi-Trailer Trucks 
  

 

13 Seven or More Axle Multi-Trailer Trucks 
 

 

 

For the first time, U.S. Bridge Formula B was implemented in 1974 with the maximum 

allowable weight of 36.4 tons considering the number of axles and distance between 

them (Federal Highway Administration 2015). This formula received much criticism 

since introduction and has been revised and amended for several times. In 1994, 

Austroads proposed a bridge formula considering the overstressing limit imposed by the 
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Bridge Engineering Committee of the National Association of Australian State Road 

Authorities (NAASRA). The objectives of the formula were to optimize the distribution 

of longitudinal loads and to improve the design and operation of vehicles through 

limiting the internal weight, which considered length and class of vehicle, axle spacing, 

type of route and bridge.  

 

2.4.2. Weight Measurement Techniques  

 

Currently, several techniques and tools are employed in construction industry to 

measure the weight and payload of equipment and vehicles. These methods can be 

classified into metric and volumetric measurement systems.  

 

Metric measurement systems are commonly used in construction industry, which 

directly weigh the payload or total weight of equipment using various instruments and 

sensors. Weighbridges are mostly used to measure the total weight including the vehicle 

weight and the payload. Despite the high accuracy in weight measurement, this method 

incurs high initial, operation and maintenance costs and is also time consuming. Axle 

hydraulic and pneumatic pressure controlling is another system for automatically 

weighing the payload of HDVs using pressure sensors (Faruk et al. 2016). Pressure 

modulation valves are needed for adjusting auxiliary axle pressures based on load 

distribution. The measured data are transferred from sensing devices to signal 

processing system for weight analysis. 
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Volumetric techniques measure the volume of the materials inside the tray or bucket of 

vehicles through automatically scanning and comparing the empty and loaded 

equipment. Volumetric methods are non-contact and cost effective with relatively low 

initial and maintenance cost, but may not be accurate enough in weight measurement of 

bulk material (Ojio et al. 2016). In this process, vehicles need to move slowly under the 

load volume scanners (LVS) installed on the construction sites before and after loading 

(Load Management Solutions 2017). Figure 2.5 illustrates the working process of load 

volume scanners. By having swelling factor and density of the loaded material, the 

weight and in-situ volume of the materials can be estimated.  

 

 

Figure 2.5.Working procedure of load volume scanner (LoadScan, 2017) 

 

On-board pressure sensors are also extensively used to accurately measure the weight 

carried in the truck tray. This apparatus is embedded between the truck frames and haul 

bed. Proportional to the implemented pressure by the load, the electro-magnetic sensors 

generate electrical signals which can be processed to determine the load (Haider and 

Harichandran 2007, NCHRP 2006). As another metric technique, strain gauges can be 
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pasted on the leaves of springs to measure suspension strain caused by the payloads 

(Refai et al. 2014). The weigh is then estimated through summing up the received 

voltage signals output by the strain gauges. Despite the applicability of the method for 

all types of vehicles, installation of the strain gauges and sensing system to existing 

vehicles can be inconvenient and costly.  

 

2.4.3. Recent Studies and Development  

 

Some new techniques and tools have been devised by scholars and researchers to 

measure the GVW and payload of construction equipment in recent years. Normann and 

Hopkins developed a weight-in-motion (WIM) technology using reinforced concrete 

slabs and strain-gauge load cells (Vaziri et al. 2013). According to the American 

Society for Testing and Materials (ASTM) (Fiorillo and Ghosn 2014, ASTM 2009), 

WIM system is a set of sensors and instruments which are capable of measuring 

dynamic tire force, axle spacing, speed, time and wheelbase, and process the data 

without interrupting the regular traffic flow. The sensors and transducers can be 

attached to road surface as portable measures or permanently embedded within the 

pavement (Stergioulas and Ceban 2000). Currently, WIM systems are equipped with 

automatic vehicle identification (AVI) technology helping to identify overweight 

vehicles (Cambridge Systematic 2009, Huang and Chan 2012). Ojio et al. (2016) 

developed a contactless bridge WIM (CBWIM) system to weigh the vehicles without 

needing any instrumentation on the bridges. Two cameras and a telescope were applied 

to measure the deflection of bridge and monitor traffic flow and axle spacing. As the 
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main advantages of this approach, the CBWIM system is portable and can be quickly 

implemented to a new bridge.  

 

Strain gauges and wireless vehicle weight measurement systems (WVWMS) are the 

other techniques available for automatic vehicle weight estimation.. Yang et al. (2008) 

attached the strain gauges to the leaf springs of vehicle suspensions and calculated the 

payload of vehicle based on output voltages of circuits. As the main limitation, the 

resulting errors are quite large because the leaf springs may not fully recover to the 

original position before loading again. Xiao et al. (2006) instrumented the longitudinal 

ribs of a box-girder orthotropic bridge using strain gauges to estimate the ESAL of 

trucks. The weight of different axles was calculated by developing influence line of 

flexural stress and moment at two mid spans and supports in the length of bridge. Using 

WVWMS, Andrzejczak et al. (2014) designed a measurement board (DAW100) and 

truck recognition system (TRS) to be embedded on the pavement surface. Srinivas et al. 

(2006) simulated and modeled multivariate ESAL of common vehicle types based on 

copula approach which took into consideration the axle spacing and vehicle 

configuration.    

 

2.5. Conclusion  

 

In this chapter, a comprehensive review on studies and efforts relevant to this research 

has been presented. It starts with reviewing the fuel use and emissions regulations, 

monitoring techniques and estimation methodologies. The models applicable for 

estimating fuel use and emissions of different on-road and non-road vehicles were 
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introduced. This chapter continued with categorizing different approaches in modeling 

fuel use and emissions. Current techniques and schemes used by construction firms to 

reduce fuel use and emissions were then introduced extensively.  

 

The last section of the chapter reviews different methods and techniques employed for 

measuring or estimating payload and equipment’s weight. The current regulations and 

restriction imposed by the local governments were also introduced, followed by a 

critical review on various volumetric and metric weight estimation techniques. Finally, 

recent development in modeling the weight of equipment has been covered.  

 

Limitations in the field of modeling fuel use and emissions rate of construction 

equipment have been identified after conducting the comprehensive literature review. 

The current models mainly focus on estimating fuel use and emissions at macro level, 

which fail to  measure the fuel use and emissions at micro level or equipment level. As 

the other disadvantage of current models, they have low accuracy in measuring fuel use 

and emission production which may not be acceptable in construction applications.  

 

There is also a lack of comprehensive schemes and strategies that can be used to reduce 

fuel use and emission production of construction vehicles at operation level. It is also 

found some qualitative guidelines developed so far are not sufficient for construction 

applications..  

 

On the other hand, automatic weight measurement is still a challenging issue in 

earthmoving operations which needs further investigation. Currently, weighbridges are 

commonly used in construction sites which are considered to be time consuming and 
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costly. They would  slow down the production rate and increase operational cost of 

construction projects. The volumetric methods are available for weight estimation. 

Unfortunately, those solutions fall short of accuracy due to conversion of volume to 

weight by factoring average density of loose construction materials.  
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Chapter 3: Monitoring Equipment Operations through Instrumentation 

Monitoring Equipment Operations through 

Instrumentation 

 

3.1. Introduction  

 

This chapter presents a comprehensive framework that has been devised in this study to 

monitor field operations of construction equipment through instrumentation. The 

methodology will be applied to model fuel consumption and emissions rate of on-road 

construction equipment at operation level. It is also used to develop an integrated model 

to estimate the weight of on-road construction trucks and haulers considering 

operational parameters. The proposed data monitoring system further facilitates 

developing operational level strategies to reduce fuel use and emissions of construction 

vehicles.  

 

Figure 3.1 presents the proposed framework in this research. The experimental studies 

consist of two principal steps of real-world data collection and statistical data analysis. 

The operational and environmental parameters, and engine attributes affecting fuel use 

rate and emissions are first identified. Construction vehicles selected for 

experimentation are then described. This chapter continues with introduction to the 

instrumentation system that has been implemented to collect field data as required for 

the study. Data collection process is then explained followed by a discussion on the 
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problems encountered in the field data collection. Data quality assurance is finally 

developed to validate the quality of gathered raw data and remove potential errors. The 

processed data are used in the next chapters to develop the fuel use, emissions and 

weight estimation models for on-road construction equipment.  

 

 

Figure 3.1. Developed data monitoring system for modeling fuel consumption, 

emissions and weight of construction vehicles 

 

3.2. Identification of Parameters Affecting Fuel Use and Emissions 

 

There are numerous parameters influencing fuel consumption of construction 

equipment. Lewis (2009) introduced engine parameters including size, load, age and tier 

of engine as the major affecting factors on fuel consumption and emissions. Oduro et al. 

(2015), through conducting extensive laboratory chassis dynamometer tests, determined 

acceleration, engine power, and ambient temperature as factors influencing fuel use and 

Identification of  Parameter Affecting Fuel Use and Emissions

Data Collection

Data Quality Assurance 

Equipment Selection Instrumentation 
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emissions rate of light duty vehicles. EPA (2005) considered the effect of average load 

factor, engine power and fuel type in the NONROAD model to estimate fuel use and 

emissions rate of different machinery types at equipment level. Similar to NONROAD 

model, CARB (2007) took into consideration the effect of fuel type, BSFC, annual 

activity hours and engine technology in OFFROAD model to estimate the emissions 

produced by 94 types of non-road equipment in the California state of the USA.  

 

As illustrated in Figure 3.2, this study classifies the parameters investigated in the study 

into four main categories of operational parameters, engine attributes, environmental 

factors and fuel type. Each category of affecting factors is described in the following 

sections.  

 

  

Figure 3.2. Classification of parameters considered in the process of monitoring field 

equipment operations 
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3.2.1. Operational Parameters 

 

Acceleration rate, speed and vehicle’s weight have been identified as operational 

parameters influencing fuel use and emissions rate of construction equipment. By 

accelerating the vehicle, more power of engine is used thus increasing the fuel 

consumption and consequently emissions production. The analysis indicated that 

compared to other operational parameters, acceleration rate has the highest influence. 

Instantaneous travel speed of vehicle is another operational variable having direct effect 

on fuel use and emissions rate.  

 

The weight of vehicle was investigated as the other operational parameter impacting 

used power of engine and fuel consumption. Analysis on the field collected data 

demonstrated that this parameter does not have direct relationship with imposed load on 

engine and fuel use rate, but it indirectly impacts the effect of other investigated 

parameters on engine load and fuel use. In this study, weight of equipment is defined as 

total weight including the weight of vehicle itself plus the weight of payload and 

trailer(s).  

 

3.2.2. Environmental Factors 

 

Numerous environmental factors were identified to have impacts to fuel use and 

emissions rate of construction equipment. Slope of the road was considered as the main 

environmental variable in this study that affects the power of engine output 

significantly. The slope of roads varies in the flat areas between -5 and 5 degrees, but in 
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mountainous regions, it can rise to over 15 degrees. The effect of road slope can be 

interpreted as gravitational force resisting or assisting the movement of vehicle.  

 

Atmospheric pressure and ambient temperature are the other two environmental 

variables affecting fuel use rate of vehicles. The initial analysis on the data collected 

from construction sites in Australia and Iran with different ambient pressure and 

temperature indicated that the two parameters have negligible effect on fuel use rate 

which therefore were not considered in this study.  

 

3.2.3. Engine Attributes 

 

In this study, engine specifications were identified as the major parameters affecting 

fuel use and emissions of vehicles. The three main attributes of engine including load, 

size and tier of engine were investigated, with their effects on consumed fuel modelled. 

Engine load is the percentage of used power of engine and is defined as the ratio of the 

used power over the maximum available power of engine. Construction equipment 

rarely works at full engine load. Average engine load of equipment for most activities is 

between 25% and 75% (Nichols and Day 2005). Typically, the engine load for 

construction machinery varies from approximately 15% in idling mode to around 95% 

for most demanding activities.  

 

Tier classification is defined based on the size and model year of the engine. Engines 

with higher tier should provide better performance thanks to the more stringent 

standards imposed. European Union has developed the EU I to VI standards for heavy 
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duty on-road diesel engines which are also commonly adopted globally. The EU I 

standard was implemented in 1992, and all engines manufactured after this year must 

obey the specific emissions restriction. The EU VI, the latest tier for on-road vehicles 

was issued in 2014, but currently is imposed within European Union countries only. As 

was mentioned before, all non-road equipment including off road construction 

machinery should follow engine Tiers 1 to 4 developed by EPA.  

 

Engine size is one of the main attributes that has significant effect on fuel consumption 

and consequently emissions rate. The size of engine is normally measured in horse 

power (hp) or kilowatts (kW) (1 hp = 0.7457 kW). kW has been selected as the standard 

unit of engine size in this study. The engine size of on-road construction vehicles 

typically ranges from 170 - 450 kW.  

 

Engine age can be considered as another engine attribute affecting fuel use. As engines 

become older, they get more deteriorated with decreased efficiency. Therefore, old 

engines use more fuel to produce required force (Nichols and Day 2005; Lewis 2009). 

The experimental studies have shown that engine age does not have significant 

influence on fuel use. In this study, due to negligible effect of this parameter on fuel 

use, engine age was not investigated.  

 

3.2.4. Fuel Type 

 

As was discussed in the previous chapter, a variety of fuels can be used by construction 

vehicles. Based on the type of the fuel and its ingredients and additives, fuel use rate 
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will be different. The emissions produced from burning the fuels are also different. For 

example, in comparison with diesel, biodiesel fuels produce less CO2, CO and HC, but 

produce significantly more NOx pollutant. Construction equipment mainly uses diesel 

fuel in their lifetime with minor changes made in the ingredient. Therefore, this research 

has focused on diesel fuel for experimentation and modeling development.  

 

Figure 3.3 summarizes the groups of parameters investigated in this study in modeling 

fuel use, emissions rate and weight of construction equipment. Three engine attributes 

including load, size and tier were also taken into consideration in modeling fuel use and 

emissions of on-road construction vehicles. It is noteworthy that this study only 

investigates the effect of diesel fuel in developing the models, but the proposed research 

framework can be readily applicable for other fuel types in future studies. 
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Figure 3.3. Parameters investigated in modeling fuel use, emissions rate and weight of 

on-road construction equipment 

 

3.3. Equipment Selection  

 

Earthmoving operations including transporting construction materials are one of the 

main sources of fuel consumption and emissions production in the construction 

industry. Due to the primary role of on-road vehicles in such operations, this study has 

focused on developing operational level fuel use model and fuel reduction schemes for 

on-road equipment. The report published by EPA shows that trucks are one of the major 

contributors to pollutants production in construction sector due to high use of energy 

and their high applicability on sites (EPA 2005). Based on classification performed by 

the FHWA, on-road vehicles can be categorized into 13 classes including all light-duty 

and heavy-duty vehicles (Maricopa Association of Governments 2007). As construction 
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equipment is typically considered as heavy-duty vehicles, wide range of vehicles in 

different classes of 5, 6, 12 and 13 have been selected to be experimented in this study, 

as listed in Table 3.1.   

 

Table 3.1. Class and description of vehicles used for experimentation 

Class  Description  Vehicle Profile 

5 
 

Two-axle truck  
 

 

6 
 

Three-axle truck  

 

 

12 
 

Six-axle truck with a trailer 

 

 

13 
 

Seven-axle truck with a trailer 

 

 

 

Currently, the engines of nearly all of the construction vehicles can be classified in three 

main tiers of Euro III, IV and V. A variety of construction equipment has been selected 

for the experimental studies which covers engines with all of the three different tiers. 

The equipment was also chosen from different model years from 2005 to 2013 

considering different levels of equipment deterioration. Figure 3.4 and Table 3.2 present 

sample photos and specifications of the experimented equipment including tier, size and 

model of engine, and empty weight.  
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(a)                                         (b)                                             (c)  

Figure 3.4. Vehicles selected for experimentation, (a) three-axle truck without trailer 

(Class 6), (b) six-axle truck with a trailer (Class 12), and (c) seven-axle truck with a 

trailer (Class 13) 

 

Table 3.2. Specifications of equipment used for experimentation 

Vehicle  Tier  Engine Size 

(kW) 

 Model 

(year) 

 Empty Weight 

(ton) 

Two-axle Benz   III  180  2005  6.5 

Three-axle Granite   IV  345  2010  9.5 

Three-axle Trident  V  400  2013  11 

Six-axle Granite  IV  345  2010  14.5 

Six-axle Trident  V  400  2014  17.7 

Six-axle Vision  III  350  2005  17.6 

Seven-axle Granite  IV  345  2010  16.6 

Seven-axle Trident  V  400  2013  18.8 
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3.4. Instrumentation  

 

In the previous sections, different operational parameters and engine attributes were 

identified as affecting factors on fuel consumption and emissions rate. A wide range of 

equipment was also selected for the experimental studies. Different instruments are 

needed to collect required data of identified parameters from selected construction 

equipment. After reviewing state-of-the-art technologies available in the market, four 

instruments were developed in this study to collect real-world operational, engine and 

fuel use data from on-road construction vehicles.  

 

As shown in Figure 3.5, portable emission measurement system (PEMS) is the main 

instrument used in this study. PEMS measured live emission rates of CO2, CO, HC and 

NOx pollutants from equipment. PEMS was installed inside the cabin of the equipment 

and measured pollutant emission rates using a sampling probe inserted into the exhaust. 

The sampling probe is connected to the main unit through the tube. 

 

                

(a)                                                               (b)                       

Figure 3.5. The PEMS used to collect emissions data from equipment: (a) the main unit 

of instrument, and (b) sampling probe inserted into the exhaust 
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The PEMS utilized in this research is MEXA-584L automotive emission analyzer 

manufactured by HORIBA Ltd. This instrument has the capability of simultaneously 

measuring non-dispersive infrared (NDIR) gases and showing results in the LCD 

display. As the main advantage, this devise was compact, lightweight (approximately 4 

kilograms), and efficient for all working conditions. PEMS provides different options to 

measure the engine speed, O2 and oil temperature as well. To supply the required power 

(220 volt), an inverter was used to amplify the electricity of cigarette plug within the 

vehicle’s cabin. Before conducting experimentation on the vehicles, the PEMS needed 5 

minutes for warming up, and after each testing, the system should be calibrated and all 

filters need to be replaced.  

 

GPS-aided inertial navigation system (GPS-INS) was the main instrument adopted in 

this research to collect operational and environmental parameters. This device is an 

attitude and heading reference system (AHRS) that provided accurate position, speed, 

acceleration and orientation under the most demanding conditions using accelerometers, 

gyroscopes and magnetometers. GPS-INS collected real-time data of three operational 

parameters of acceleration rate, speed and road slope. The GPS-INS employed in this 

study was SPATIAL-EK manufactured by the Advanced Navigation Pty Ltd. The 

accuracy of the utilized GPS-INS in position, speed and slope measurement is 2 m, 0.05 

m/s and 0.2 degree, respectively. Figure 3.6 shows the GPS-INS instrument used in this 

study. 
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(a)                                                                       (b) 

Figure 3.6. GPS-INS instrument used in this study, (a) main unit, and (b) GPS antenna 

 

This GPS-INS instrument is installed inside the cabin of equipment on a levelled 

surface. In order to increase the accuracy of measurement, the GPS-INS should be fixed 

on a surface with minimum vibration and without any lateral movement. GPS-INS 

measures the orientation of the vehicle in three different directions which are also 

known as Euler angles. The rotations around axes X, Y and Z are named as roll, pitch 

and heading, respectively. The GPS-INS instrument was installed in a way that X axis 

points to the direction of vehicle’s movement, and pitch measured the slope of road.  

 

The GPS antenna of the instrument is connected to the main unit via wire. For having 

better accuracy and satellite signal reception, the antenna was mounted on the roof of 

cabin. During experimentation, the data collected from inside the tunnels of city center 

areas were removed due to low performance of the GPS-INS instrument and potential 

measurement errors.  

 

Engine data logger is an on-board diagnostics (OBD) instrument used in this study to 

collect real-time data of engine attributes, fuel use rate and air flow rate of exhaust, as 
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shown in Figure 3.7. It was plugged into the J1939 port of the equipment's engine 

control unit (ECU) under the steering wheel and measured engine load and fuel use rate 

data on a second-by-second basis. This devise has the capability of measuring more 

than 30 variables related to engine attributes and operation modes. It is noteworthy that 

only two parameters of engine load and instantaneous fuel use rate have been used in 

this study. The engine data logger used in the research is Bluefire Data Adaptor 9 pin 

which was connected to the diagnostic plug of vehicle and sends equipment’s computer 

information to mobile phone or laptop via Bluetooth. Since majority of construction 

vehicles are equipped with the J1939 port, the engine data logger would be a suitable 

device for collecting engine data.  

 

 

  Figure 3.7. Engine data logger utilized for collecting engine and fuel data 

 

An industrial tablet PC (shown in Figure 3.8) was used to store, synchronize and 

analyze the data collected by the other instruments. Using Microsoft Excel software, the 

data collected from different instruments were stored and compiled in the database at 

the same time. The model of utilized tough pad is Panasonic FZ-G1 running Windows 8 

Operation System. This device was light, portable and rugged with long battery life 

which made it an appropriate PC for field experimentations.  
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Figure 3.8. Industrial tough pad used to store measured data 

 

The data collected by PEMS were transmitted to the touch pad through the RS232 port. 

The tough pad was also used to activate, monitor and control the PEMS device. The 

MEXA communication software installed on the tough pad imported measured data as a 

CSV format file. The live data measured by GPS-INS instrument were transmitted 

through the universal serial bus (USB) data communication port to the tough pad. 

Spatial Manager V4.5 was installed on the tough pad to control the functionality of the 

GPS-INS, and convert the recoded raw data into CSV format file. The recorded data of 

the Bluefire engine data logger were transmitted to the tough pad through Bluetooth in 

each second. BlueFire for Truck Global Edition App was installed on the tough pad to 

communicate with the engine data logger and import the measured data. Figure 3.9 

demonstrates the integration among different instruments and their communication 

types. The variables measured by each instrument were also indicated in Figure 3.9.  
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Figure 3.9. The integration and communication among various instruments  

 

3.5. Data Collection 

 

This section presents the procedures of data collection adopted in this study. This phase 

includes several steps of site observation, instrumentation, experimentation and vehicle 

data collection. It took around 30 minutes for system installation in each testing. The 

ECU port was first checked and the engine data logger was then plugged in the ECU 

port. In this step, all instruments were also set up and connected to the tough pad to 

collect, monitor and store the raw measurement data. Due to security concerns, the 

process of installation and data collection for one specific test were conducted in one 

day, and all instruments were decommissioned at the end of the day after experiments.  
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The procedures of site observation and experimentation were conducted at the same 

time. The equipment specifications including size, tier and model of engine and the 

empty weight were obtained from the vehicle’s catalogue. A video camera was also 

used to record the operation patterns, modes of experimented equipment and site 

conditions. In this study, the experimentation process was carried out in two stages of 

preliminary testing and field experimentation as explained below.   

 

3.5.1. Preliminary Testing 

 

Preliminary tests were carried out on selected light-duty construction trucks to verify 

the performance of instruments and to develop the methodology and framework of the 

study. Using the data collected from the testing, an integrated mechanism was 

developed for data processing and synchronization procedures. The results indicated 

that data measured by PEMS were delayed by around 8 seconds to engine data retrieved 

from the engine data logger. This could be caused by having a 5 m long sampling tube 

and the time required for gas analysis in PEMS. The data obtained from the preliminary 

experiments were also analyzed to develop the initial fuel use, emissions rate and 

weight models.  

 

The preliminary field testing was conducted on in-use equipment involved in the 

construction sites to represent the real working conditions. Eight preliminary 

experiments were conducted on five construction trucks for collecting preliminary data. 

The model of vehicles varied from 2001 to 2012, and their engine size ranged between 
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134 kW for Nissan Z24 and 240 kW for six-wheel Mercedes-Benz 1924 truck. On the 

whole, preliminary experiments took around ten hours and approximately 20,000 data 

points were collected. Table 3.3 presents the specifications of vehicles used for the 

preliminary experimentation. 

 

Table 3.3. Vehicles used for preliminary experimentation 

Truck Model 

Engine 

Size (kW) 

Model 

Year 

Engine 

Tier 

Empty 

Weight (ton) 

Payload 

(ton) 

Holden LX  147 2012 EU V 2.9 1.1 

Nissan Z24 134 2008 EU V 1.75 2.1 

Mercedes-Benz 808 147 2000 EU III 3.7 4.2 

Mercedes-Benz 1513  166 2004 EU III 5.7 8.4 

Mercedes-Benz 1924  240 2005 EU IV 6.8 11.5 

 

3.5.2. Field Experimentation  

 

Seven on-road heavy-duty construction trucks were experimented for field studies. As 

given in Table 3.4, the models of used equipment varied from 2005 to 2014 with the 

engine sizes ranging between 345 kW and 400 kW. The field experiments took around 

35 hours with approximate 95,000 raw data points collected. For getting realistic data, 

trucks were drove at different speed, acceleration and slope during the experiments. On-

road trucks were also tested with different payloads for determining the effect of 

payload on engine load. Figure 3.10 illustrates sample photos of instrumentation and 
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experimental setup used in the field study. The payload of equipment was measured 

using an industrial weighbridge during the experiment.  

 

             

                                    (a)                                                                                      (b)     

          

                              (c)                                                                     (d) 

Figure 3.10. Sample photos of field experimentation process: (a) engine data logger 

plugged in the J1939 port, (b) antenna of GPS-INS unit mounted on the roof of the 

cabin, (c) weighbridge used for weighing equipment, and (d) PEMS sampling probe 

inserted in the exhaust of vehicle 
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3.5.3. Challenges in Instrument Installation and Equipment Monitoring 

 

Several practical issues were encountered during instrumentations and equipment 

monitoring procedures, mainly due to the uncertainties and difficulties in construction 

environments. The main challenges faced in the field study include finding equipment 

and scheduling, data collection and unsuitable weather.  

 

Finding suitable equipment and scheduling experimentation were the primary 

challenges encountered in this research. Many construction companies were contacted 

in Australia to get permission for experimentation and research cooperation in this 

study. After around three months since first contact, MOITS Geo-Civil Firm accepted to 

collaborate with this research and allowed the researchers to enter to the site for 

experimentation. The scheduling of equipment for experimentation was another issue. 

The experiments had to be scheduled in a way not affecting the site production and 

operation of equipment. For scheduling any experimentation, it was needed to get 

permission from the site managers and to check the loading and dumping locations, as 

well as closely collaborate with the equipment operators. We also tried to select 

different models of equipment for experimentation so as to acquire a wide range of field 

data which made experiment scheduling and field coordination even more difficult.  

 

During equipment monitoring procedure, the research team had to stop experimentation 

and change the filters of PEMS once every half hour. This slowed down the progress of 

field data collection and potentially caused measurement errors in data collection. The 

other challenge in experimentation was the low accuracy of GPS-INS instrument in 
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urban areas when measuring acceleration rate and speed. The engine data logger used in 

the research was found to function well in the field data collection process.  

 

Adverse weather condition was the other critical issue which has caused significant 

delay and difficulties in the experimentation. During experimentation, three scheduled 

experiment days had to be cancelled and rescheduled due to adverse or rainy weather. 

 

3.6. Data Processing and Synchronization  

 

The affecting parameters for fuel use and emissions have been identified in the previous 

sections. The instruments were also employed to monitor and track selected equipment 

pieces involved in the construction operations. The process of data collection was 

designed to gather raw data of operational, engine and emissions parameters through 

preliminary and full-scale  field experimentations. As discussed, the recoded data of 

each device were stored in a separate Excel file, and each experiment lasted for half an 

hour due to restrictions of PEMS operations. A data processing and synchronization 

procedure was needed to create a centralized database of all raw data gathered from 

separate instrument. Figure 3.11 demonstrates the framework developed in this study 

for data processing and synchronization.  
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Figure 3.11. Developed framework for processing and synchronizing raw data 

 

Several database files were first created for storing data collected from each piece of 

equipment. Data validation was then carried out to identify and correct potential errors 

in the raw data. In the next step, the data gathered by GPS-INS and engine data logger 

were synchronized. Since these two instruments did not have much delay in recording 

data, the simultaneous speed of vehicle measured by the both devices was used as a 

reference for data synchronization. The PEMS data were further processed to match 

with the data obtained from the other two instruments. One centralized database was 

then created with all field data of investigated parameters synchronized. The invalid 
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the corresponding data from other instruments. The field experiments were conducted 

on a total of 12 vehicles in this study, but only the data from seven on-road heavy-duty 

trucks were processed and synchronized, and the data of other 5 light-duty trucks were 

used for developing general research framework and distinguishing relationship among 

investigated parameters. Table 3.5 shows the total points of data collected from each 

vehicle as well as the percentage of validity after data processing.  

 

Table 3.5. Results of data processing and synchronization procedure conducted on field 

data 

Vehicle  Total data points  Valid data points 
 

 

Validity (%) 

Three-axle Granite 
 12,662  10,517  83% 

Three-axle Trident 
 10,067  8,247  82% 

Six-axle Trident 
 9,215  7,456  81% 

Six-axle Granite 
 21,186  16,108  76% 

Six-axle Vision 
 16,148  12,751  79% 

Seven-axle Granite 
 12,147  10,452  86% 

Seven-axle Trident 
 13,365  10,285  77% 

Sum 
 94,790  75,816  80% 
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A total of 12 parameters were identified to be measured and post-processed in this 

study. Three of these were operational parameters recorded by the GPS-INS instrument. 

Engine data logger measured three engine-based variables of engine load, fuel rate and 

air flow rate (AFR) in each second. Emission rate of four main CO, CO2, HC and NOx 

pollutants were measured by the PEMS. Weight of equipment in each operation cycle 

was obtained through weighing vehicles by an industrial weighbridge on the site. 

Engine tier as one of the principal parameters was found in the document and catalogue 

of equipment. Figures 3.12, 3.13 and 3.14 show samples of synchronized data of 

investigated parameters for a three-axle Trident truck in the field experiments.  
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Figure 3.12. Samples of operational parameters data collected by GPS-INS instrument 
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Figure 3.13. Samples of engine parameters data collected by the engine data logger 

instrument 
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Figure 3.14. Samples of emissions data collected by the PEMS instrument 
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3.7. Conclusion 

 

This chapter presented the methodology on monitoring field operations developed in 

this study. Twelve parameters on operation, engine and emissions were identified with 

their relationships investigated. The off-the-shelf instrumentation systems including 

GPS-INS, engine data logger and PEMS devices were employed and integrated to 

record field data and monitor field operations. Seven on-road construction vehicles were 

selected to be experimented for obtaining field data as required for the study.  

 

The process of data collection was conducted through performing preliminary testing 

and full-scale field experimentation. Preliminary tests were carried out on eight light-

duty construction trucks to verify the performance of the instruments and to develop the 

research framework. Extensive field experimentation took seven days with 

approximately 95,000 data points collected from seven in-use heavy-duty construction 

trucks. Several challenges including finding industrial partner, experimentation 

scheduling and adverse weather were encountered and overcame during the field study. 

 

The field raw data recorded by three instruments were validated and synchronized to 

correct or remove potential errors occurred during data collection process. An integrated 

framework was finally developed in this chapter to create a centralized database for 

each experimented vehicle with all data synchronized and validated. The processed data 

are further analyzed in the next chapters to develop fuel use, emissions, and weight 

estimation models.  
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Chapter 4: Fuel Use and Emissions Modeling of Construction Equipment 

Fuel Use and Emissions Modeling of 

Construction Equipment 

 

4.1. Introduction  

 

The growth of global population and industrialization in all sectors has boosted the 

demands for different sources of energies particularly for conventional fossil fuels. 

Today, over one billion vehicles in operation all around the world consume over five 

trillion litres of fossil fuels per year (Dargay et al. 2007). Considering the diminishing 

sources of fossil fuels, such a rate of fuel consumption deems to be extremely 

unsustainable (Khan et al. 2014). However, due to increasing demands for vehicles in 

both business and private sectors, it is predicted that the number of global on-road 

vehicles and machinery reaches two billions by 2050 (Sperling and Gordon 2014). On 

the other hand, fossil fuels are considered to be the main source of air pollutants 

including CO2, CO, HC, NOx (NO1 + NO2) and PMs (Gonzalez and Echaveguran 2012). 

According to EPA (2009) report, 76% of the total CO2 emission is produced from the 

fuels used by vehicles and machinery globally. These contaminants present a serious 

risk to human health, ecosystem and environment (IPCC 2007). Around 200,000 deaths 

per year in USA alone are caused by irreversible health problems due to air pollutants, 

such as respiratory and cancer diseases (Caiazzo et al. 2013). The studies conducted by 

EPA also showed that those contaminants exhausted from vehicles are the main cause 
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of environmental problems such as ecosystem degradation, ozone depletion and global 

warming (EPA 2008).   

 

The construction sector plays a significant role in fossil fuels consumption as well as the 

production of GHGs pollutants. The sector is also ranked as the third highest 

contributing industry in energy consumption and emission production just behind the oil 

and gas, and chemical manufacturing industries (EPA 2008; Azzi et al. 2015). In 

particular, construction equipment accounts for 45% to 48% of total vehicular 

consumed fuel and emitted pollutions of all industries (Lewis 2009). Based on EPA’s 

report, the fuel used by construction equipment produces over 100 million tons of CO2 

annually. EPA estimates if the fuel consumed by construction equipment decreases by 

10%, around 5% of entire energy used in the construction sector will be saved, resulting 

in a reduction of 6,700 tons CO2 production (EPA 2009). The Australian Clean Energy 

Regulator Agency (CERA) predicts that by decreasing the fuel consumed by on-road 

equipment involved in all industry sectors including construction, over 3 billion litres 

fuel can be saved and approximately 8 million tones CO2 is emitted less in Australia 

only (Klein et al. 2016).  

 

There is a lack of fuel use and emissions estimation models at operational level despite 

their considerable importance and their various applications. The fuel use and emissions 

prediction models currently applied in construction sector mainly focus on fuel use and 

emission production at macro level, such as per nation, state, project, or individual piece 

of equipment. As the most commonly used model, NONROAD developed by EPA is 

applied to roughly estimate fuel consumption and emissions rate of a group of 

construction equipment at both national and state levels. On the other hand, numerous 
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operational and engine parameters effecting fuel consumption and emissions rate have 

not been fully investigated yet. As one of the main applications of operational level fuel 

use and emissions models, reduction schemes can be developed to be used by 

construction managers and equipment operators to lower fuel use and emission 

production. The current reduction strategies mainly focus on engine attributes and fuel 

types which are applicable to new construction equipment while failing to cater for 

existing machinery.  

 

This chapter aims to model fuel use and emissions rate of on-road construction 

equipment by analyzing operational parameters. An integrated field operation 

monitoring framework was developed in the previous chapter to track construction 

vehicles and to collect field data of every parameter as required. State-of-the-art 

instrumentation system was also devised and the procedures of data collection and 

synchronization were developed. As one of the main applications of the research 

framework developed in the study, this chapter estimates fuel use and emission rate of 

four main pollutants from construction vehicles, including CO, CO2, HC and NOx. To 

do so, the following steps were taken in this chapter.  

1. Creating a centralized database storing all validated data from each vehicle;  

2. Investigating the relationship among operational parameters, environmental factors, 

engine attributes, fuel use and emissions;  

3. Modeling the effect of operational and environmental variables on the used power of 

engine;  

4. Quantifying the effect of engine attributes on fuel use rate;  
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5. Modeling emission rate of four pollutants of CO, CO2, HC and NOx considering 

engine attributes;  

6. Validating the developed models through comparing the predicted results against 

real field data measured by instruments.  

 

4.2. Database Creation  

 

Having real-world data is the main necessity of such experimental studies. In the 

previous chapter, the data collection procedure was extensively explained, and an 

integrated framework was devised for processing the raw data to correct or remove 

potential errors. As the first step of data analysis, all collected data from each 

experimented equipment piece must be synchronized and entered into one Excel file to 

create a centralized database. This process was performed for seven vehicles 

experimented in field data collection process, and more than 75,000 validated data 

points were obtained to be analyzed. Table 4.1 shows sample data stored in the database 

for a seven-axle Trident truck used in the experiment.  

  



82 
 

 

 

T
ab

le
 4

.1
. 
S

am
p
le

 o
f 

cr
ea

te
d
 d

at
ab

as
e 

co
v

er
in

g
 a

ll
 f

ie
ld

 d
at

a 
co

ll
ec

te
d
 b

y
 i

n
st

ru
m

en
ts

 

D
at

e 

(D
D

/M
M

/Y
Y

) 

T
im

e
 

(H
:M

:S
) 

 
G

P
S

-I
N

S
 

 
E

n
g
in

e 
D

at
a 

L
o

g
g
er

  
 

P
E

M
S

 

 
A

cc
el

er
at

io
n

 

(m
/s

2
) 

S
p

ee
d

 

(m
/s

) 

R
o

ad
 

S
lo

p
e 

(d
eg

re
e)

 

W
ei

g
h
t 

(t
o

n
) 

 
E

n
g
in

e 
L

o
ad

 

(%
) 

F
u
el

 

U
se

 

(g
/s

) 

A
F

R
 

(g
/s

) 

 
C

O
 

(%
) 

H
C

  

(p
p

m
) 

C
O

2
 

(%
) 

N
O

x
 

(p
p

m
) 

1
8
/0

9
/1

6
 

1
2
:5

6
:5

2
 

 
0
.5

0
 

3
.9

5
 

1
.6

3
 

4
8
 

 
1
5
 

1
1
.9

2
 

1
0
 

 
0
.0

2
 

0
 

1
4
.6

 
7
8
 

1
8
/0

9
/1

6
 

1
2
:5

6
:5

3
 

 
0
.6

8
 

4
.6

4
 

2
.0

4
 

4
8
 

 
2
1
 

1
4
.2

8
 

1
5
 

 
0
.0

3
 

1
 

1
3
.9

 
9
2
 

1
8
/0

9
/1

6
 

1
2
:5

6
:5

4
 

 
0
.8

7
 

5
.5

1
 

2
.3

1
 

4
8
 

 
2
3
 

2
6
.4

9
 

1
6
 

 
0
.0

3
 

2
 

1
3
.6

 
1
0
1
 

1
8
/0

9
/1

6
 

1
2
:5

6
:5

5
 

 
0
.1

7
 

5
.4

4
 

2
.5

2
 

4
8
 

 
2
1
 

6
3
.6

6
 

1
3
 

 
0
.0

3
 

3
 

1
3
.7

 
1
0
5
 

1
8
/0

9
/1

6
 

1
2
:5

6
:5

6
 

 
0
.2

0
 

5
.2

8
 

2
.6

9
 

4
8
 

 
1
8
 

6
9
.0

3
 

1
5
 

 
0
.0

4
 

4
 

1
3
.9

 
7
2
 

1
8
/0

9
/1

6
 

1
2
:5

6
:5

7
 

 
0
.2

4
 

5
.4

9
 

2
.8

1
 

4
8
 

 
1
5
 

4
3
.7

2
 

1
3
 

 
0
.0

1
 

2
 

1
4
.2

 
8
0
 

1
8
/0

9
/1

6
 

1
2
:5

6
:5

8
 

 
0
.3

7
 

5
.8

8
 

2
.8

7
 

4
8
 

 
1
9
 

4
1
.1

2
 

1
4
 

 
0
.0

4
 

3
 

1
6
.2

 
8
7
 

1
8
/0

9
/1

6
 

1
2
:5

6
:5

9
 

 
0
.3

7
 

6
.2

7
 

2
.9

9
 

4
8
 

 
1
6
 

3
2
.0

4
 

1
2
 

 
0
.0

2
 

5
 

1
3
.5

 
1
0
6
 

1
8
/0

9
/1

6
 

1
3
:0

0
:0

0
 

 
0
.3

9
 

6
.7

0
 

2
.9

9
 

4
8
 

 
1
7
 

1
0
.0

3
 

1
3
 

 
0
.0

2
 

4
 

1
5
.8

 
9
2
 

1
8

/0
9
/2

0
1
6

 
1
3
:0

0
:0

1
 

 
0
.2

7
 

6
.9

8
 

2
.5

4
 

4
8
 

 
1
9
 

1
1
.2

7
 

1
2
 

 
0
.0

3
 

2
 

1
7
.2

 
8
1
 

1
8

/0
9
/2

0
1
6

 
1
3
:0

0
:0

2
 

 
0
.1

7
 

6
.8

4
 

2
.5

0
 

4
8
 

 
1
5
 

1
2
.1

0
 

1
4
 

 
0
.0

2
 

2
 

1
5
.2

 
7
5
 



83 
 

4.3. Relationships among Parameters  

 

As discussed in the previous chapter, numerous parameters were identified, and 

required field data were collected. As the first step of data analysis process, the 

relationships among these parameters should be investigated. Identified parameters were 

divided into five categories of operational, environmental, engine, fuel type, and fuel 

use and emissions production parameters as given below. 

 Operational category: acceleration, speed, and equipment’s weight 

 Environmental category: road slope 

 Engine category: engine size, engine load and engine tier  

 Fuel type category: diesel 

 Fuel use and emissions production category: fuel use, CO, CO2, HC and NOx 

emissions 

 

To determine the relationships amongst these parameters, initial data analysis was 

conducted on the data collected in preliminary testing process. The results showed that 

by increasing the acceleration rate, speed and weight of equipment, the used power of 

engine rises. The slope of road as an environmental factor has direct relationship with 

engine power use. The analysis also demonstrated that there is no direct relationship 

between weight of vehicle and used power of engine, but by increasing the equipment’s 

weight, the effect of other operational and environmental parameters on engine power 

use is raised. In other words, the equipment weight affects the influence of other 

parameters on used power of engine. Developed relationship is shown in Figure 4.1.  
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Figure 4.1. Parameters affecting fuel use and emissions rate of on-road construction 

equipment 

 

Measurement of used power of engine in each second was essential in this study. In the 

initial data analysis phase, different engine parameters including engine speed, MAP 

and engine load were investigated as a surrogate for engine power use. The results 

achieved from preliminary testing on five light-duty construction trucks showed that in 

comparison with other aforementioned parameters, engine load value measured by 

engine data logger instrument has much more correlation and consistency with the real 

amount of engine power use in practice. Thus, the engine load parameter was selected in 

this study as the indicator of engine power use.  
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Considering engine load as used power of engine, three parameters of engine i.e. size, 

load and tier were investigated as engine category. Conducted analysis on the 

synchronized raw data indicated that there is highly-correlated linear relationship 

between size of engine, and fuel use and emissions rate. Thus, in this study, the fuel use 

and emissions of different pollutants are estimated for the unit of engine size (kW). The 

main advantage of this approach is that the developed models can be easily used to 

predict fuel use and emissions rate of equipment with different engine sizes.  

 

Initial data analysis results demonstrated that engine load is one of the main variables 

influencing fuel use and emissions of construction equipment. This relationship is 

quantitatively modelled in the next sections. A comparison on the experiment results 

was conducted on equipment with three different engine tiers of Euro III, Euro IV and 

Euro V. It was found engines with higher tier use less fuel and consequently emit less 

pollution. Due to different ingredients, fuel type could be an important parameter 

affecting fuel consumption and emissions. Since construction equipment mainly uses 

diesel fuel in their lifetime, all analysis in this study are performed on diesel fuel data 

only. The relationships among different investigated parameters to model fuel use and 

emissions rate of on-road construction vehicles are summarized in Figure 4.1.  

 

4.4. Models Development  

 

This section aims to quantitatively investigate the relationships among parameters 

identified in the previous sections. As discussed, the initial analysis on the experimental 
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data showed a strong relationship among operational parameters, engine load, fuel use 

and pollutants emission rate. The main source of data used to model the relationships is 

the database created from seven experimented construction vehicles. 

 

The regression statistical method was applied to analyze the raw data and develop the 

fuel use and emissions estimation models. Regression analysis method has much more 

flexibility in comparison with other data analysis techniques. Using this statistical 

approach, it is simple to add or remove some data after conducting initial analysis. As 

one of the main advantages, this technique can distinguish the errors of data collection 

process which may have not removed from created database. Regression analysis 

method would make it much easier to find the differences among the developed 

relationships, and compare the results achieved from analyzing the data of different 

equipment pieces. There are some other advantages of using regression technique, such 

as level of familiarity, assumption, and use of multiple variables.  

 

The initial data analysis demonstrated that there is highly-correlated linear relationship 

among engine factors, and fuel use and emission rate of different pollutants. It was also 

proven that the engine load can be linearly modeled based on the operational and 

environmental variables. The OLS and MLR analysis methods were used in this study 

to develop the fuel use and emissions models. IBM SPSS Statistics V22 and Microsoft 

Excel software were employed for conducting statistical analysis. In this research, the 

process of fuel use and emissions rate estimation is conducted in three steps: (1) engine 

load modeling with operational parameters (2) fuel use modeling based on engine 

attributes, and (3) emissions production modeling considering engine parameters.  
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4.4.1. Engine Load Estimation 

 

This section investigates how the operational parameters affect the engine load of on-

road construction equipment. As mentioned before, engine load is a function of 

acceleration rate, speed, road slope and equipment weight variables. In order to estimate 

engine load, all created databases for vehicles were analyzed using SPSS V22 and 

Microsoft Excel software. The highest recorded speed during the experiments was 120 

km/h. Acceleration varied from -1.5 km/h.s to +1.2 km/h.s. The road slope measured in 

the experiments was between -12
o
 and +13

o
 (-13.3% to 14.3%). The WF parameter was 

varied from 2.75 ton/100kW for an empty truck without trailer to 14.5 ton/100kW for a 

fully-loaded truck with a four-axle trailer. 

 

Equation (4.1) predicts the engine load based on acceleration rate, road slope and speed 

under a certain WF. The parameter WF is defined as the combined weight of equipment 

(ton) carried per 100 kW of engine size. Combined weight refers to total weight of 

vehicle including equipment, trailers and payloads. The achieved results demonstrated 

that the developed model has a high accuracy (R
2
 > 0.85) in estimating engine load of 

on-road construction vehicles. The coefficients of parameters in the developed engine 

load model are given in Table 4.2. Figure 4.2 presents the OLS analysis results, 

showing relationships of WF with acceleration, speed and road slope variables in the 

proposed engine load estimation model.   

 

EL = (CAC*AC) + (CSL*SL) + (CSP*SP) + C                                   (4.1) 

Where:  

EL: Engine load of equipment (%) 
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AC: Acceleration of equipment (km/h.s) 

SL: Slope of road (degree) 

SP: Speed of equipment (km/h) 

C: Engine load of equipment in idle mode which is around 20%.  

 

Table 4.2. The coefficients of parameters in the engine load estimation model 

  WF 

Coefficients  2.75  4.5  6.5  13  14.5 

CAC  20.3  24.8  29.6  41.7  46.3 

CSP  0.20  0.25  0.31  0.42  0.47 

CSL  1.8  2.6  3.6  5.1  5.6 

 

 

  
(a) 

y = 2.119x + 15.056 
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(b) 

 

  
(c) 

 

Figure 4.2. The influence of WF on the coefficients of a) acceleration rate, b) road 

slope, and c) speed parameters in the engine load estimation model 
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(WF = 2.75) is 20.3, which means that by accelerating such an on-road vehicle for 

1km/h.s, engine load increases by about 20.3%. The acceleration coefficient has direct 

relationship with WF, reaching 46.3 for a fully-loaded vehicle with trailer (WF = 14.5). 

In addition, every one degree up or down in road slope changes the engine load of on-

road equipment with WF of 2.75 by 1.8. The road slope coefficient for equipment with 

a full payload (WF = 14.5) increases to around 5.6. Of all the parameters considered, 

speed seemed to have a moderate effect on engine load with the coefficient being 0.20 

for a vehicle with WF of 2.75 and 0.47 for a vehicle with WF of 14.5. The constant 

value can be explained as the amount of used power of the engine in idling mode, which 

is around 15% for on-road construction equipment.  

 

4.4.2. Fuel Use Modeling 

 

As mentioned before, load, tier and size of engine were identified as engine attributes 

affecting fuel use of construction vehicles. The engines of the majority of current on-

road vehicles involved in the construction industry are categorized in Euro III, IV and V 

tiers which were manufactured in the period of 2000 to 2014. Normally, as estimated in 

the previous section, engine load of heavy construction equipment varies between 10% 

and 20% in idling mode, and is about 100% for the most demanding activities. 

Similarly, the fuel use is around 0.02 l/kWh in idling mode while reaching to 

approximately 0.12 l/kWh when engine is fully loaded. The conducted OLS statistical 

analysis showed there is a direct linear relationship between engine load and fuel use for 

all engine tiers. As shown in Figure 4.3, fuel use is highly correlated (R
2 

> 90%) with 

engine load for all engine tiers.  
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(c) 

Figure 4.3. The OLS regression between engine load and fuel use for (a) Euro III 

engines, (b) Euro IV engines and (c) Euro V engines 

 

As demonstrated in Figure 4.3, engines with higher tiers use less fuel. The comparison 

among Figures 4.3a, 4.3b and 4.3c shows there is big saving in fuel cost of equipment 

by using high tier engines. As an example, the fuel uses of engines with 400 kW in three 

different tiers of Euro III, Euro IV and Euro V when operating in 60% engine load are 

53.36 l/h, 51.36 l/h and 50.68 l/h, respectively.   

 

To validate the developed model, the estimated fuel use values are compared with the 

field data measured by engine data logger instrument. As shown in Figure 4.4, this 

process is performed by plotting estimated fuel use values versus the real field data. It is 

found there is high correlation and consistency between estimated and real values of 

fuel use for all considered engine tiers. The developed model has more than 90% 

 

 y = 0.0021x + 0.0006 

R² = 0.911 

0

0.05

0.1

0.15

0.2

0.25

0.3

0 20 40 60 80 100

F
u
el

 U
se

 (
l/

k
w

h
) 

Engine Load (%) 



93 
 

accuracy in fuel use estimation of on-road construction equipment which is one of the 

great achievements of this study.  

 

Various sources of errors affecting the accuracy of the model were identified as well. As 

the main cause of error, engine data logger did not function very well sometimes during 

measurement. Around 20% of the collected engine data were corrected or removed as 

outlier in data filtration process. The skill level of the operators is another factor 

influencing the accuracy of engine load estimation based on operational parameters 

collected. Using automatic transmission equipment could potentially decrease the effect 

of operator inaptitude on the accuracy of the model.   
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(b) 

 

 

(c) 

Figure 4.4. Validation of the fuel use model by comparing the estimated fuel use of the 

model with the actual fuel use for (a) Euro III engines, (b) Euro IV engines and (c) Euro 

V engines 
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4.4.3. Emissions Estimation Model 

 

To quantify the relationship between emissions and engine load, exhaust air flow rate 

(AFR) is first investigated. The regression analysis on the field data of all vehicles 

shows a linear relationship with a high correlation coefficient (R
2 

= 0.94) between 

engine load and AFR. As mentioned before, depending on the status of the engine when 

running, engine load value varies from around 15% to maximum 100%. At the same 

time, AFR is around 80 g/kWh in idle mode and reached about 1,200 g/kWh when the 

engine is running at full capacity. As shown in Figure 4.5, emission rates of CO2, CO, 

HC and NOx are found to be directly related to the changes in engine load. Equation 

(4.2) estimates the total emission rate of pollutants based on engine load, AFR and 

pollutants relative volume. 

 

            Pij = 3600 * AFRj * (1/PW) * (1/Da) * Vij * Di                           (4.2) 

Where: 

Pij: Amount of pollutant I in engine load j (g/kWh) 

AFRj: Air flow rate in engine load j (g/s) 

PW: Power of equipment (kW) 

Vij: Volumetric percentage of pollutant i in engine load j 

Da, Di: Density of air and density of pollutant i in normal temperature and pressure 

(NTP) condition. 

 

Figure 4.5 demonstrates total CO2, CO, HC and NOx emission rates based on engine 

load. The OLS regression method was used for statistical data analysis. As indicated in 

Figure 4.5a, CO2 emission varied between 30 g/Kwh in idling mode to around 200 
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g/Kwh in full engine load mode. These results proved the high correlation of collected 

data while the R
2
 value was around 0.918 for linear function. CO emission was 

minimum around 0.08 g/Kwh in idle mode, while increasing to 0.20 g/Kwh in fully-

load engine mode (see Figure 4.5b). A linear relationship between CO emission and 

engine load was defined with the highest correlation coefficient being R
2
 = 0.921. HC 

emissions increased from 0.05 g/Kwh to 0.20 g/Kwh when the engine load increased 

from 15% to 100%. As shown in Figure 4.5c, the R
2
 value of the linear relationship 

between HC emissions and engine load was 0.904. Similarly, the linear relationship 

between the NOx emission rate and engine load had the highest correlation coefficient, 

0.954 (see Figure 4.5d). 
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(b) 

 

 

(c) 

 

y = 0.0012x + 0.063 

R² = 0.921 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 20 40 60 80 100

C
O

 E
m

is
si

o
n
 (

g
/k

W
h
) 

Engine Load (%) 

y = 0.002x + 0.008 

R² = 0.904 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 20 40 60 80 100

H
C

 E
m

is
si

o
n
 (

g
/k

W
h
) 

Engine Load (%) 



98 
 

 
(d) 

Figure 4.5. The OLS regression relationship among engine load and (a) CO2 emission 

rate, (b) CO emission rate, (c) HC emission rate and (d) NOx emission rate 

 

Similar to fuel use validation process, to prove and validate the developed emissions 

estimation model, the estimated emissions rate were compared with the field data 

measured data by the PEMS. This process was conducted by plotting the predicted 

values produced by emission model versus the directly measured values of the 

emissions. As can been seen in Figure 4.6, for four investigated pollutants of CO2, CO, 

HC and NOx, there is high correlation (R
2
> 0.90) between the estimated emissions and 

their corresponding actual values. This means that the accuracy of the developed model 

in estimating emissions of real-world operations is more than 90%. Based on some 

studies conducted to compare current emission models, the accuracy of the NONROAD 

and OFFROAD models is less than 70% at equipment-level or state-level emissions 

estimation (Abolhassani et al. 2008; Heidari and Marr 2015). So obtaining a level of 

accuracy over 90% in estimating emissions is considered to be one of the main 

achievements of this study.  
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There are various sources of error affecting the accuracy of the developed model. The 

main cause of error was the accuracy of the PEMS, which had at least 1.7% error in 

measuring emissions rate. The performance and internal combustion of the engine were 

other parameters affecting measurement accuracy of engine load and emission rates. 

The synchronization and filtering of the data collected from the different instruments 

were other factors that must be considered as possible sources of error in data analysis.  
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(c) 

 
(d) 

Figure 4.6. Validation of the developed emission model by comparing the estimated 

emissions rate of the model with the actual emissions for (a) CO2, (b) CO, (c) HC, and 

(d) NOx pollutants 
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and engine variables on fuel use and emissions rate were also investigated. As the main 

applications of the developed models, they can be used in the construction industry to 

improve the fuel efficiency of equipment and reduce their produced emissions. This can 

be done through quantitatively developing the optimal driving patterns considering the 

effects of investigated operational and environmental parameters. Using these devised 

models, the additional fuel use and emissions production due to equipment’s stop and 

idling time can be predicted. These strategies and models can be used by construction 

managers and machinery operators to significantly reduce the fuel use and consequently 

emissions production of the equipment operated on the construction sites.  

 

4.6. Conclusion  

 

Construction industry is regarded as one of the main consumers of fossil fuels, and also 

has an important role in air pollutants production globally. In the construction sector, 

equipment and vehicles are the major contributors of fuel and energy consumption, and 

account for around 50% of total vehicular used diesel fuel of all industries. This study 

developed operational level fuel use and emissions estimation models for on-road 

vehicles involved in construction industry. Developed models have various applications 

in construction sector for devising practical strategies to improve the efficiency of fuel 

used by equipment including optimal driving speed, vehicle selection and trailer 

configuration. 

 

The effects of acceleration rate, speed, slope and weight were investigated as 

operational and environmental parameters affecting fuel use and emissions rate. Engine 
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load was identified as an intermediate parameter mapping the effect of operational 

parameters on fuel use and emissions rate. The data collected from all seven 

experimented heavy-duty trucks were used to develop the fuel use and emissions 

models. Through conducting statistical analysis on the filtered raw data, the effect of 

engine attributes was modeled on fuel use and emissions rate. It is found there is a 

highly-correlated linear relationship amongst engine tier, engine size, engine tier, and 

fuel use and emissions rate of vehicles. The effects of operational and environmental 

variables were also investigated on engine load through performing MLR regression 

analysis. The developed models were validated at the end through comparing the 

predicted results with the real value of the fuel use and emissions measured by 

instruments.  

 

The results showed that the acceleration rate has the highest impact on used power of 

engine and this parameter was identified as the most crucial operational parameter. 

Also, it was proven that driving speed has a moderate influence on engine load. On the 

other hand, it was verified that there is a high consistency between engine load and fuel 

use and emissions (R
2
> 90%). The sources of errors were also discussed for improving 

the accuracy of the devised models in the future. In the next chapters, these developed 

models were employed to develop operational level strategies and schemes to reduce 

fuel use and emission production of construction vehicles.  
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Chapter 5: Weight Modeling and Estimation of Construction Equipment 

Weight Modeling and Estimation of Construction 

Equipment  

 

5.1. Introduction   

 

Construction sector is one of the main industries requiring a huge number of 

construction vehicles. Majority of construction activities associated with earthmoving 

operations including cut and fill activities employ on-road HDVs for materials 

transportation. Such kind of activities are planned and paid based on the amount of 

materials transported. The precise measurement of the payload and volume of 

construction materials carried by vehicles as payload is necessary. As a main concern of 

construction contractors and equipment operators, a cost-effective automated method is 

essential to accurately estimate the payload carried by vehicles.  

 

Measurement of total vehicle weight is vital in transportation field. Overloading and 

increasing ESAL result in difficulties of vehicle’s maneuverability, traffic accident and 

short vehicle life (Yang et al. 2008). ESAL is determined based on pavement condition 

and its failure mode, and is one of the main parameters causing distress and damage of 

pavements and bridges (Haider and Harichandran 2007). Overweighting also causes 

serious damages to pavement conditions and increases the risk of overloading and 

failure of the bridges (Ojio et al. 2016). Annual average daily truck traffic, percentage 

https://www.google.com.au/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=0ahUKEwjluuvl_9fRAhVBH5QKHVdQC0IQFggcMAA&url=http%3A%2F%2Fwww.dictionary.com%2Fbrowse%2Fmaneuverability&usg=AFQjCNHlOxfaqBzLGQl24cf08DeBFUDS0w&bvm=bv.144686652,d.dGo


104 
 

of trucks and ESAL are the major parameters took into consideration in designing and 

constructing pavements and bridges (Faruk et al. 2016). According to NCHRP (2006), 

the distribution of weight on different axles is a key factor in road and pavement design. 

Therefore, the accurate and efficient weight estimation to minimize heavy vehicles’ 

overweighting is essential to reduce the potential damages to infrastructures. Conducted 

studies indicated that HDVs account for 79% of roadway pavement damages (Faruk et 

al. 2016; Refai et al 2014). So, numerous international agencies such as AASHTO and 

FHWA have implemented restrictions and regulations to reduce the ESAL of HDVs 

(Vaziri et al. 2013; Fiorillo and Ghosn 2014). Different guiding principals have also 

been developed based on the bridge design formulas by several organizations like TRB 

and NAASRA to control the total vehicle weight and internal axle weight distributions 

of HDVs in order to prohibit overstressing of bridges (Moshiri and Montufar 2014).  

 

However, despite the necessity of an accurate and fast weight measurement method, the 

current weighting systems used in construction sector are time consuming and error 

prone with high cost. As the most commonly used method, weighbridges are widely 

used in the construction sites which require high installation and operation costs. The 

weight measurement time would affect the production rate of the equipment and the 

cost of project execution. Also, in spite of high speed of volumetric measurement 

methods available in the market, these systems may fall short of accuracy due to volume 

to weight conversion analysis.  

 

This chapter aims to develop a novel approach to accurately model and estimate the 

weight of on-road HDVs by analyzing operational parameters and engine attributes. To 

do so, the relationships among operational variables and engine factors are first 
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investigated. Data analysis is then carried out on the raw data collected through 

experimentation to devise the models to estimate the total weight of HDVs. ANN 

analysis method was applied using MATLAB R2016b, IBM SPSS Statistics V22 and 

Microsoft Excel software. Developed framework holds various applications in 

construction and mining sectors, such as estimating the carried payload of trucks and 

haulers without stopping or requiring any specific site mobilization.  

 

This model can also be employed in the transportation field to estimate the total weight 

of vehicles using operational and engine data. As the main advantage, using this weight 

estimation model requires minimal initial and operation cost. The weight can be 

estimated in real-time during normal site operation which leads to significant saving in 

project cost and considerable improvement in the production rate of equipment.  

 

This chapter first starts with the introduction to the model framework developed in the 

study. The relationship between operational and environmental parameters including the 

equipment weight and engine attributes is quantitatively investigated. The weight 

estimation model is then devised through developing artificial neural network (ANN) 

methods and performing analysis on the processed raw data. In the end, validation 

process is conducted by comparing the predicted results of the model against the real 

weight measured by weighbridges on the construction site.  
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5.2. Model Framework 

 

This research develops a new approach to estimate the weight of equipment (including 

its carried payload) based on the operational and environmental parameters. Four 

parameters of equipment weight, acceleration rate, speed and road slope were identified 

as operational and environmental variables affecting the engine load. The real-world 

data of all these parameters were measured in each second using GPS-INS and engine 

data logger instruments. Initial data analysis was performed to investigate the 

relationships among the considered factors, as shown in Figure 5.1. It is also found the 

equipment weight variable would affect the impacts of other investigated parameters on 

the engine load, like acceleration rate, speed and road slope.  

 

 

Figure 5.1. The relationship amongst equipment weight, operational parameters and 

engine load 
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Acceleration Rate

Engine LoadSpeed
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This chapter focuses on estimating the value of weight which is interpreted as WF based 

on the operational and engine variables. As mentioned in previous chapters, the real 

operational and engine data can be readily measured through instrumentation. Weight of 

equipment is estimated based on monitoring live values of other operational and engine 

parameters.  

 

5.3. Model Development  

 

The processed field experiment data were analyzed in this section to develop weight 

estimation models. As discussed, four operational and environmental variables of 

acceleration rate, speed, road slope and vehicle weight affect engine load. The weight 

and consequently payload carried by equipment are predicted by monitoring the values 

of other parameters.  

 

5.3.1. ANN Method for Data Analysis 

 

ANN method was selected to analyze the collected data. ANN is a common analysis 

tool utilized to quantify and model the relationships between different parameters. ANN 

has many advantages compared to conventional methods. This tool is self-driven, self-

adaptive, and has the ability of learning by itself to respond to incomplete and unknown 

data (Patel and Jha 2015). ANN is also capable of determining complicated 

relationships in data sets (Heravi and Eslamdoost 2015). It automatically adjusts the 

neuron weights after comparing the predicted output with the target to minimize errors, 

and consequently achieve accurate and reliable results (Boussabaine 1996; Wang and 
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Gibson 2010). On the whole, ANN method acts as human beings and can get experience 

from the trainings to improve its performance and adjust itself to changing situations 

(El-Gohary et al. 2017). 

 

In this study, multilayered feedforward neural network trained with back propagation 

learning algorithm was selected as the architecture of the ANN. This design is efficient 

to conduct multivariable linear and nonlinear analysis, and can continue computation to 

acquire desired accuracy (Demuth 2000; Patel and Jha 2015). Multilayer feedforward 

neural network includes neurons sorted in outputs and hidden internal layers. Neurons 

are connected to each other in the network with different weights. In each layer, there is 

another neuron with the name of bias that is summed with other neurons to estimate 

output (Haykin 1999; Heravi and Eslamdoost 2015). According to Demuth et al. (2009), 

it is recommended to develop a two-layer network (one hidden layer) for the 

experimentation studies, as shown in Figure 5.2.  
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Figure 5.2. Design of the developed neural network model  

 

The layers of ANN can be increased to three if the results of two layers were not 

satisfactory. Back propagation algorithm was then used to train the feedforward process. 

Back propagation technique repeats two cycles of propagation and weight update for 

several times which is known as epoch. The inputs are first fed forward layer by layer in 

the network to estimate the output. Through comparing the output with the target, the 

error is then calculated and propagated backward from output to inputs. This algorithm 

measures the gradient of function loss considering the weights in the network. The 

calculated gradient is then used to update the weights (Sarle 1995). Figure 5.3 shows the 

flowchart of the neural network algorithm developed in this study.  
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Figure 5.3. The algorithm of developed artificial neural network for training, testing and 

prediction processes 

 

In the developed ANN network, 70% of the raw data were used for training, while 15% 

of the data were allocated to the validation process and 15% of data were employed for 
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good fit between output and target for all three processes of training, validation and 

testing. Also, the combination of all datasets yields the best fitting results.   

 

 

Figure 5.4. Sample results achieved by conducting analysis and validation on one of the 

developed networks 

 

As mentioned before, ANN method is an iterative process to find the final answer 

through calculating the optimal weights for inputs and bias values, and reducing the 

sum of the square errors (SSE) to an acceptable level. Depending on the number of 
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parameters, consistency of the relationships and acceptable error, the number of 

iterations (epoch) differs. In each epoch, the performance of the network is measured 

through calculating the SSE. Figure 5.5 shows a sample graph indicating the 

performance of a developed network and total number of epochs to acquire the best 

performance.  

 

 

Figure 5.5. The performance plot of one developed networks showing the best 

validation performance is at epoch 12 

 

As discussed in the previous sections, the total weight of equipment affects the 

influence of other parameters i.e. acceleration rate, speed and road slope on engine load. 

As the weight of equipment increases, more power of engine is used to accelerate 

vehicles or drive them in uphill roads. WF variable (combined weight of equipment 
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carried per 100 kW of engine size) normally varies from 2.5 for empty vehicles without 

any trailer attached to around 15 for fully-loaded vehicle with a trailer. During seven 

days of field experimentations on the construction site, vehicles were tested in different 

WFs of 2.75, 4.5, 6.5, 13 and 14.5. As one of the major limitations of experimentation 

procedure, testing data were collected from five constant values of WF only due to 

loading conditions and vehicle configurations adopted in the experimental construction 

projects. WF values of 2.75 and 4.5 were collected from empty vehicles without and 

with a trailer respectively. WF of 6.5 is related to experimentation of fully-loaded truck 

without trailer, and 13 and 14.5 WF data were obtained from experimentation on fully-

load equipment with three-axle and four-axle trailers, respectively.  

 

As one of the main restrictions of weight modeling, ANN can have only one layer of 

input, as indicated in Figure 5.2. Three operational parameters of acceleration rate, 

speed and road slope could be entered to the network as inputs. To deal with this issue, 

ANN was developed for five times to consider the effect of five different values of WF 

on other operational parameters and engine load. In each developed network with a 

specific WF, the impact of the other three operational parameters was modeled on 

engine load through conducting sensitivity analysis. Then, by comparing the achieved 

results from the networks, the effect of the WF on the influence of the operational 

parameters on engine load can be determined.  

 

 

 

 



114 
 

5.3.2. Sensitivity Analysis 

 

Sensitivity analysis investigates the effects on output of the developed model through 

varying the inputs, and determines the amount of an input contributing to the output. 

Interpreting the results achieved by ANN may not be easy to explain in all situations 

(Patel and Jha 2015). It can be mentioned that sensitivity analysis determines the cause-

and-effect relations of inputs and output of the developed model. According to Sonmez 

and Rowings (1998), this analysis can be conducted by varying the value of an input 

and fixing the other inputs at their mean values. 

 

In this research, sensitivity analysis was conducted on each of the investigated 

operational variables to determine their effects on engine load parameter, as shown in 

Tables 6.1 to 6.5. To do so, the mean (µ) and standard deviation (σ) of the collected data 

of the three parameters of acceleration rate, speed and road slope were identified for 

different investigated WFs. To investigate the effect of each operation parameter, we 

varied one specific parameter at a time, while other variables being fixed at their 

respective mean values. The varied data were then supplied to the developed network to 

analyze the effect of change in each unit of input to output.  

 

It has been recommended to compute the correlation output network for three steps 

above and below the mean of each input in the interval of µ-σ and µ+σ (Patel and Jha 

2015). In this study, the output was computed in respect to the variation of inputs for 

seven values of µ-σ, µ-0.67σ, µ-0.33σ, µ, µ+0.33σ, µ+0.67σ, and µ+σ. As illustrated in 

Table 5.1 to 5.5, this process was performed for 15 times to calculate the effect of all 

three operational parameters on engine load for all considered WFs. 
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Table 5.1. Result of the sensitivity analysis on the model for WF of 2.75 

Parameters 

Inputs Variation  Output Variation  

Coefficient Min Max Swing  Min Max Swing  

Acceleration 0.03 0.48 0.45  28.21 37.36 9.15  20.33 

Speed 20.89 77.90 57.01  29.03 38.90 9.87  0.21 

Road Slope -1.09 1.35 2.44  34.61 39.13 4.51  1.85 

 

Table 5.2. Result of the sensitivity analysis on the model for WF of 4.5 

Parameters 

Inputs Variation  Output Variation  

Coefficient Min Max Swing  Min Max Swing  

Acceleration 0.08 0.42 0.34  32.58 41.12 8.54  25.12 

Speed 18.42 75.30 56.88  28.63 42.28 13.65  0.24 

Road Slope -0.89 1.15 2.04  38.36 43.52 5.16  2.53 

 

Table 5.3. Result of the sensitivity analysis on the model for WF of 6.5 

Parameters 

Inputs Variation  Output Variation  

Coefficient Min Max Swing  Min Max Swing  

Acceleration -0.01 0.35 0.36  34.02 44.78 10.75  29.9 

Speed 16.10 72.49 56.39  27.88 46.49 18.61  0.33 

Road Slope -1.05 1.21 2.26  36.69 44.56 7.86  3.48 
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Table 5.4. Result of the sensitivity analysis on the model for WF of 13 

Parameters 

Inputs Variation  Output Variation  

Coefficient Min Max Swing  Min Max Swing  

Acceleration -0.02 0.29 0.31  35.67 48.36 12.69  40.95 

Speed 13.25 65.15 51.9  30.45 49.65 19.20  0.42 

Road Slope -1.12 1.08 2.20  36.06 47.62 11.53  5.24 

 

Table 5.5. Result of the sensitivity analysis on the model for WF of 14.5 

Parameters 

Inputs Variation  Output Variation  

Coefficient Min Max Swing  Min Max Swing  

Acceleration -0.05 0.27 0.32  44.60 55.23 10.63  46.23 

Speed 11.23 64.12 52.89  31.63 57.02 25.38  0.48 

Road Slope -0.75 1.11 1.86  44.71 55.35 10.64  5.72 

 

The last columns in Tables 5.1 to 5.5 present the results of sensitivity analysis 

conducted on the developed networks. These coefficients were obtained through 

dividing the variations of the engine load as output to the variations of each investigated 

input. As discussed before, the effect of WF on engine load can be regarded as the 

variation in the coefficients of the other three operational parameters. The comparison 

of results in all five tables indicates that the WF has the highest impact on acceleration 

parameter by varying from 20.33 for WF of 2.75 ton/100kW to 46.23 for WF of 14.5 

ton/100kW. WF parameter also has significant influence on the coefficient of road slope 

variable. As shown in Tables 5.1 and 5.5, for an empty vehicle (WF = 2.75 ton/100kW), 
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the engine load increases by 1.85% for addition of each degree of road slope, but this 

value reaches the peak of 5.72% in the WF of 14.5 ton/100kW. It is also found that the 

WF has moderate effect on the driving speed coefficient, which varies from 0.21 for 

empty vehicle without trailer to 0.48 for fully-loaded vehicle with a large trailer.  

 

5.3.3. Weight Modeling 

 

The sensitivity analysis conducted on the developed networks indicates a linear 

relationship with high correlation (R
2
> 90%) between the operational and engine load 

parameters for all WF values. As devised in the previous chapters, Equation (5.1) 

models the linear relationship between investigated factors and engine load.  

 

Engine Load (%) = (CAC * AC) + (CSP * SP) + (CSL* SL) + C                    (5.1) 

 

Where, CAC, CSP and CSL are the coefficients of acceleration rate, speed and road slope, 

respectively. These coefficients were calculated as given in the last column of Tables 

5.1 to 5.5. The parameters of acceleration rate, speed and road slope were measured 

with the units of km/h.s, km/h and degree in the experiments.. Engine load variable does 

not have any unit, and is measured as a percentage of the used power over the maximum 

power of engine. Through comparing the engine load value estimated by Equation (5.1) 

with the outputs predicted by ANN method, the value of C was measured for all data 

points. The value of C is relatively constant around 15 for all estimations which can be 

interpreted as the bias neuron with a fix value that can be added to the inputs in the 
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hidden layer of ANN. In practice, the engine load in idling mode of construction 

vehicles is around 15%.  

 

The comparison of results achieved by neural network analysis also confirms a highly-

correlated linear relation among WF parameter and coefficients of the other operational 

and environmental variables. Equation (5.2) presents the results obtained by conducting 

regression analysis on data presented in Tables 5.1 to 5.5.   

 

CAC = 1.860 * WF + 17.48, R
2
 = 0.94                                             (5.2a) 

CSP = 0.019 * WF + 0.17, R
2
 = 0.92                                              (5.2b) 

CSL = 0.441 * WF + 1.79, R
2
 = 0.92                                             (5.2c) 

 

WF parameter can be modeled by combining the Equations (5.1) and (5.2), as presented 

in Equation (5.3). WF is a function of operational parameters and engine load. 

Therefore, by having the real-world data of acceleration rate, speed and road slope 

parameters and engine load variable, WF parameter for on-road construction vehicles 

can be predicted using Equation (5.3).  

 

WF =
(EL – C – (17.48∗AC + 0.17∗SP + 1.79∗SL))

(1.86∗AC + 0.019∗SP + 0.441∗SL)
                                        (5.3) 

 

GPS-INS and engine data logger instruments have been employed in this study to 

record operational and engine data on a second by second basis. Therefore, a value for 

WF can be estimated by Equation (5.3) once a second, As shown in Figure 5.6, 

according to the conducted analysis, the resulted WFs are relatively the same with not 
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much variation. The small variation in the value of WF is due to many factors including 

operator skill, engine condition and road type. It is also found the distributions of the 

estimated WFs in each operation cycle with a specific loading condition follow a 

normal statistical function. The mean of WFs determined by Equation (5.3) over a 

certain time period can be calculated as the final estimation of the vehicle weight. The 

mean and standard deviation of WF are calculated using Equation (5.4). 

 

M =
1

𝑛
∗ ∑ WF𝑖

𝑛
𝑖=1                                                (5.4a) 

𝜎 = √∑ (𝑊𝐹𝑖 − 𝑀)𝑛
𝑖=1

2
                                          (5.4b) 

Where: 

M: Mean of the calculated WFs 

σ: Standard deviation of the calculated WFs 
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(b) 

Figure 5.6. (a) and (b) The distribution of calculated WFs using Equation (5.3) 

 

Using M as the final WF, total weight of HDVs can be calculated by Equation (5.5a). 

As defined before, WF is the amount of combined weight which is carried per 100 kW 

of engine. Having the weight of equipment itself and the weight of trailers, the payload 

can be calculated using Equation (5.5b).  

 

TW = M* PW/100                                                    (5.5a) 

PL = TW – EW                                                      (5.5b) 

Where:  

TW: Total weight of equipment (ton) 

PW: Engine power (kW)  

PL: Payload carried by equipment (ton) 

EW: Empty weight of equipment (ton) 
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5.4. Model Validation  

 

In this section, the applicability of proposed weight estimation model is validated using 

field data collected during the seven-day experimentation. The estimated weights 

calculated by Equation (5.5) were compared with the real weight of vehicle measured 

by an industrial weighbridge employed on the site. A total of 14 different loading 

conditions of experimented trucks were considered for model development, while eight 

specific WFs were incorporated in the validation analysis. Figure 5.7 presents the 

predicted weight results versus the equipment’s weight measured by the weighbridge. 

There is a high correlation and consistency amongst predicted and measured weight data 

with R
2
 being 0.9843.  

 

 

Figure 5.7. Validation of the developed weight estimation model by comparing the 

estimated and real equipment’s weight 
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The accuracy of the developed weight estimation model was further investigated 

through dividing the predicted weight to the weight measured by the weighbridge. As 

shown in Figure 5.8, the accuracy of the model in estimating the weight of equipment in 

all eight case studies is more than 90%. For having higher accuracy, it is recommended 

to devise the model for each piece of equipment based on the developed methodology 

and calibrate its coefficients based on the performance and specifications of the engine.  

 

 

Figure 5.8. The accuracy of the developed model in predicting the weight of equipment 
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normally overestimated. The engine performance and its internal combustion also 

affected the accuracy of the collected data. In this study, the quality of the analyzed data 

was assured through conducting data filtering and processing procedure.  

 

5.5. Conclusion  

 

Earthmoving operations as one of the major construction activities employ a large 

number of HDVs for material transportation. The planning and payment arrangements 

of such projects are normally based on the amount of transported construction materials. 

Different metric and volumetric methods and techniques have been employed to 

estimate the quantity of materials transported by haulers in each operation cycle on the 

construction sites. In spite of high accuracy of some current techniques in weight 

measurement, they are costly, time consuming and labor intensive which affect the 

production rate and cost in construction projects.  

 

This chapter developed a comprehensive methodology to estimate the weight of on-road 

HDVs through quantifying the relations among operational parameters and engine load 

variable. To do so, the database was first created including all operational, 

environmental and engine raw data collected from field experimentations. ANN method 

was then devised to model engine load based on the four operational variables of 

vehicle weight, acceleration rate, speed and road slope. As one of the main limitations 

of this study, we could only have access to five WFs of 2.75, 4.5, 6.5, 13 and 14.5 due 

to the vehicle configurations and loading conditions. Through conducting sensitivity 

analysis on the developed networks, the effects of operational variables were computed 
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on the engine load. The achieved results showed there is a linear relation with high 

correlation and consistency between operational parameters and engine load. WF, as the 

surrogate of equipment’s weight, was then modelled based on the engine load variable 

and the other considered operational factors. Developed model was finally validated 

through comparing the predicted vehicle’s weight with the weight measured using 

weighbridge. Validation process reveals the high accuracy (more than 90%) of the 

developed model in weight estimation which is considered to be one the great 

achievements of this study.  

 

This model has numerous applications in practice to automatically estimate the weight 

of different on-road vehicles without requiring a full stop for measurement, which is 

also referred to as weigh-in-motion. In comparison with current weight measurement 

methods, this technique minimizes initial and operation costs, and can be realized 

automatically and in real time, leading to significant savings in operation time and cost 

in future applications.  
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Chapter 6: Fuel Use and Emissions Reduction Strategies 

Fuel Use and Emissions Reduction Strategies 

 

6.1. Introduction  

 

The growth of population and industrialization has heightened demands on different 

sources of energies globally, which has increased the emissions of GHGs to the 

atmosphere. These contaminants have drawn serious concerns on human health, 

ecosystem and environment, which are also considered as potential causes of respiratory 

and cancer diseases (Klein et al. 2016). The awareness of the non-compensable effect of 

anthropogenic GHGs emissions on climate change and public health has brought global 

attention towards developing emission reduction regulations and guidelines. According 

to the UNFCCC, all sectors in industrialized countries should follow regulations to 

decrease GHGs emissions (Kim et al. 2012). EPA and EU have developed emission 

standards to restrict the GHGs emitted from on-road vehicles and non-road diesel 

equipment (Barati and Shen 2015). Also, many limitations have been imposed by the 

Intergovernmental Panel on Climate Change (IPCC) (2006) to minimize carbon 

footprints through reducing activities having produced large amount of emissions.  

 

Construction industry is considered as one of the main contributors to energy 

consumption and GHGs production globally. According to EPA (2009), construction 

sector accounts for 1.7% of total GHGs production and 6.8% of all industrial-related 

emissions which is ranked as the third largest GHG emitter after oil and gas, and 
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chemical manufacturing industries (Azzi et al. 2015; Thuitt 2009). Based on the report 

prepared by EPA CAAAC (2006), construction sector accounts for 6% of LDVs and 

17% of HDVs while producing 32% of NOx and 37% of PMs of all mobile source 

emissions. In addition, it is estimated that this industry produces more than 100 million 

tons of CO2 annually, the most abundant GHG, which is around 7% of total CO2 emitted 

across the world. The construction sector has also been ranked as the third highest CO2 

emitter per used unit of energy after cement and steel production industries (EIA 2009). 

The emissions on construction sites are mainly produced from on-site equipment 

operations. Developing reduction strategies for such equipment can have significant 

effect on total amount of emitted pollutions (Avetisyan et al. 2012). For example, if the 

idling time of construction equipment is reduced by 10%, the emission of CO2 

decreases for around 0.8 million tons per year (Truitt 2009). Furthermore, it is 

predicated if the fuel consumption of equipment involved in construction sites decreases 

by 10%, the corresponding CO2 reduction in each year would be approximately 6.7 

thousand tons (Lewis et al. 2012). In addition, equipment compatibility and efficiency 

are two crucial parameters having considerable effect on produced emissions per unit of 

conducted work (Ahn and Lee 2013). Large construction projects normally involve a 

variety of types and numbers of equipment, and therefore hold flexibility in selecting 

equipment to work on a given activity.  

 

There is a lack of comprehensive strategy to reduce energy consumption and emissions 

resulting from the operations of equipment in construction projects. The current 

reduction schemes have mainly focused on engine and fuel attributes, and mechanical 

practices to decrease total amount of emitted pollutions. As a general guideline for 

construction firms, EPA (2007) introduced engine upgrading and retrofitting 
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technologies to reduce emissions which could be costly and not readily applicable for 

the existing fleet of construction equipment. Cleaner and renewable fuels have been 

introduced as an alternative source of energy over traditional diesel which may not be 

economically feasible due to the high cost and power loss of equipment. 

 

This chapter aims to develop different fuel use and emissions reduction schemes for on-

road construction equipment using the models developed in the previous chapters. As 

the main strategy, this study devises an optimal driving pattern to reduce the fuel use 

and emissions through determining the optimum driving speed. At equipment level, this 

research also compares the fuel consumption and emissions rate of engines with 

different tiers. Several case studies were conducted to estimate the reduction in fuel use 

and emitted pollution using the proposed research framework. In next step, this study 

focuses on equipment selection and trailer configuration as a planning scheme to 

increase the fuel and emissions efficiency of construction vehicles. Finally, the effect of 

traffic condition on fuel use and emissions of on-road construction vehicles is 

investigated. The additional fuel use and emissions production due to vehicle stops 

happened in hauling and returning modes are estimated. The developed fuel use and 

emissions reduction schemes can be used as a guideline by construction managers and 

equipment operators under certain project settings. 

 

6.2. Optimal Driving Pattern 

 

As one of the main applications of developed fuel use and emissions models, optimal 

driving pattern can be devised to reduce fuel use and emissions of construction 
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equipment. This scheme takes into consideration the effect of investigated operational 

and engine parameters, and can be used as a guideline by operators to increase fuel 

efficiency of heavy-duty construction equipment. In this operational level scheme, 

optimal driving speed can be determined based on weight of equipment and slope of 

road.  

 

This operational level fuel use and emissions reduction scheme for on-road construction 

equipment is developed through analyzing the experimental data and using devised 

models in the previous chapters. The field collected data are classified into four main 

operational, environmental, engine, and fuel use and emissions categories. The results 

are achieved through conducting multivariable linear analysis on the operational, 

environmental and engine load parameters. OLS analysis is also performed to link 

engine attributes to the fuel use and emissions rate.  

 

6.2.1. Effect of Weight on Optimal Speed 

 

Like previous chapters, WF parameter is considered as an indicator of total equipment 

weight including equipment itself plus the payload and trailer. This parameter is defined 

as the amount of equipment’s weight carried per 100kW of engine size. Due to 

restrictions in loading conditions and trailer configurations in the experimentation, the 

field data were collected on four WFs of 2.75, 4.5, 6.5, 13 and 14.5 only. The gathered 

field data showed that at limited time of operation, construction equipment is driven in 

acceleration or deceleration mode, resulting in much less speed changes when compared 

with passenger cars driven in urban areas. In spite of the effect of acceleration 
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parameter on instantaneous fuel use and emissions rate, its influence on total used fuel 

and produced emissions in a trip can be negligible. Therefore, the effect of acceleration 

parameter has been ignored in developing optimal driving pattern. The engine load and 

engine size are the two main engine parameters considered in this study. As mentioned, 

engine load acts as an intermediate parameter bridging investigated operational and 

environmental parameters to fuel use and emissions rate.  

 

Since CO2 is the main GHG produced by construction equipment, the focus of this 

study is on the reduction of CO2 emission. As the first step of data analysis, the effect of 

speed and WF parameters is concurrently investigated on fuel use and emissions rate. In 

this part, it is assumed that the equipment pieces are driven on a levelled route which 

slope parameter does not have any effect on engine load and fuel use. As shown in 

Figure 6.1, based on different WF values, on-road construction equipment can be driven 

at optimal driving speed to use minimum fuel and emit minimum emissions per 

travelled distance. As can be seen in Figures 6.1 to 6.5, by increasing the WF, the 

optimal driving speed decreases, but fuel consumption and CO2 emission rate per 

travelled distance increase significantly. For example, for WF of 2.75 (empty vehicle), 

optimal driving speed and its corresponding fuel use and CO2 emission rate are around 

81 km/h, 6.5 l/100kW.100km, and 16.1 kg/100kW.100km respectively (Figure 6.1), 

while, these numbers are approximately 65 km/h,14.2 l/100kW.100km, and 38 

kg/100kW.100km for WF of 14.5 (fully-loaded vehicle, see Figure 6.5). As shown in 

Figure 6.6, based on the experimentations conducted on five different WFs, there is a 

highly-correlated linear relationship among WF, optimal fuel use and minimal CO2 

emission. 
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As demonstrated in Figures 6.1 to 6.5, the minimum fuel use and minimum CO2 

emission rate coincide with each other. In other words, by driving at optimal speed, both 

fuel use and CO2 emission can be minimized. The developed methodology and 

framework can be readily applied to estimate the optimal driving speed for the minimal 

emission rate of other pollutants, like CO, HC and NOx.  
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Figure 6.1. Fuel use and CO2 emission rate of on-road construction equipment driven at 

a levelled road with WF of 2.75 (empty three-axle truck) 
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Figure 6.2. Fuel use and CO2 emission rate of on-road construction equipment driven at 

a levelled road with WF of 4.5 (empty three-axle truck with a trailer) 
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Figure 6.3. Fuel use and CO2 emission rate of on-road construction equipment driven at 

a levelled road with WF of 6.5 (fully-loaded three-axle truck without trailer) 
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Figure 6.4. Fuel use and CO2 emission rate of on-road construction equipment driven at 

a levelled road with WF of 13 (fully-loaded six-axle truck with trailer) 
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Figure 6.5. Fuel use and CO2 emission rate of on-road construction equipment driven at 

a levelled road with WF of 14.5 (fully-loaded seven-axle truck with trailer) 

 

y = 0.0069x2 - 0.9173x + 44.576 

R² = 0.9265 

0

5

10

15

20

25

30

35

40
F

u
el

 U
se

 (
l/

1
0
0
k
W

.1
0
0
k
m

) 

y = 0.0059x2 - 0.7838x + 64.075 

R² = 0.9 

0

10

20

30

40

50

60

0 20 40 60 80 100 120C
O

2
 E

m
is

si
o
n
 R

at
e 

(k
g
/1

0
0
k
W

.1
0
0
k
m

) 

Speed (km/h) 



136 
 

 

 

 

Figure 6.6. The minimal fuel use and CO2 emission rate for different investigated WFs 
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6.2.2. Effect of Road Slope on Optimal Speed 

 

Slope of road is a main environmental parameter affecting optimal driving speed, fuel 

consumption and emissions production of construction equipment. To investigate the 

effect of road slope on the optimal driving speed, the raw data collected from equipment 

pieces driven on the normal roads with different slopes were analyzed using the fuel use 

and emissions rate models developed in the previous chapters. Data from all 

experimented equipment pieces with different WFs were used in modeling the effect of 

road slope on optimal speed and its corresponding fuel use and emissions production.  

 

Figures 6.7 to 6.10 demonstrate the effect of road slope on fuel use and CO2 emission 

rate of equipment pieces driven with different speeds. It is found for different WF 

values, by increasing the slope of road, the optimal driving speed decreases, but there is 

significant increase in fuel use and CO2 emission rate. For example, a piece of 

equipment with WF of 6.5 driven on a road with 4 degrees slope uses 14.4 

l/100kW.100km fuel and produces 38 kg/100kW.100km CO2 emission at optimal speed 

of 67 km/h and. If the slope of road increases to 8 degrees, the optimal speed, minimal 

fuel use and CO2 emission for the same equipment would be 57 km/h, 20.8 

l/100kW.100km, and 55 kg/100kW.100km, respectively.  
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Figure 6.7. The optimal speed and it corresponding fuel use and CO2 production for 

equipment with different WFs driven on a levelled road 
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Figure 6.8. The optimal speed and it corresponding fuel use and CO2 production for 

equipment with different WFs driven on a four-degree-slope road 
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Figure 6.9. The optimal speed and it corresponding fuel use and CO2 production for 

equipment with different WFs driven on an eight-degree-slope road 
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Figure 6.10. The optimal speed and it corresponding fuel use and CO2 production for 

equipment with different WFs driven on a twelve-degree-slope road 
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As discussed, WF and road slope parameters are two main factors should be taken into 

consideration in developing optimal driving pattern. Figures 6.11 and 6.12 summarize 

the developed driving pattern in this section. As shown in Figure 6.11, there is a highly-

correlated linear relationship between road slope and optimal driving speed for all five 

investigated WF values. Also, as Figure 6.12 indicates, by increasing the slope of road 

and WF parameters, fuel consumption and CO2 emission of construction vehicles rise 

almost linearly.  

 

The developed optimal driving pattern can be used as an operation guideline for 

construction contractors and equipment operators to achieve minimal fuel consumption 

and emissions per travelled distance by maintaining the optimal driving speed.  

 

 

Figure 6.11. Optimal driving speed of construction vehicles based on the road slope and 

WF parameters 
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Figure 6.12. Developed relationship between road slope, minimal fuel use and 

minimalCO2 emission of construction vehicles with different WF values 
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6.3. Engine Selection and Upgrading  

 

As discussed in the previous chapters, engine specifications including tier, size and load 

are of the main parameters affecting fuel use and emissions production of equipment. In 

this research, the effects of engine load and engine size on fuel use and emissions rate 

were modeled in Chapter 4. The results showed that the fuel use and emissions 

production have a highly correlated linear relationship (R
2
 > 0.90) with the load and size 

of engine.  

 

Engine tier was also found to have significant influence on fuel use and emissions rate 

of construction equipment. As mentioned in Chapter 3, seven construction vehicles with 

different engine tiers were experimented. The analysis on the collected raw data was 

performed using the methodology developed in Chapter 4. Figure 6.13 shows the linear 

relationship among fuel use, CO2 emissions and engine load for three investigated 

engine tiers. Also, Figure 6.14 compares fuel use and emissions with engine tiers of 

Euro III, Euro IV and Euro V.  

 

In comparison with Euro IV engines which currently are the most common ones in 

construction industry, Euro III engines use fuel and emit CO2 5% more, while the fuel 

consumption and CO2 production of Euro V engines are 7% less. As the fuel cost is the 

main operational cost of construction equipment, engine tire can be considered as one of 

major criteria by machinery management teams for equipment selection or engine 

upgrading. The great saving in the operational cost of vehicles due to reduction in fuel 

use would be the main incentive for contractors to invest in or hire the equipment with 

higher engine tiers. 
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Figure 6.13. The effect of engine tier on fuel use and CO2 emission of construction 

equipment 
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(a)  

  

 

(b)  

Figure 6.14. The comparison of (a) fuel efficiency and (b) CO2 pollutant production of 

engines with different tiers 
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6.4. Equipment Selection and Trailer Configuration 

 

Selecting equipment and configuring the trailers in an optimal way are planning-level 

approaches that should be taken into consideration by machinery managers to maximize 

the efficiency of fuel and minimize pollutants emission rates. Based on the type of load 

and road features such as slope, the optimal hauler and its trailer configuration can be 

recommended. Trucks are normally designed and manufactured in a way to have the 

capability of operation in all geographic and loading conditions. In order to increase the 

fuel efficiency, it is recommended to use extra trailers for light payloads, or to use high 

capacity of engine power when driving in relatively flat areas. According to the 

performance handbooks published by the equipment manufacturers, the average used 

power of engine is around 70% in the optimal operation conditions (Caterpillar 2015).  

 

In this research, the effects of the operational and environmental parameters were 

modeled on engine load for different WFs. The effects of the road slope and WF 

variables have been considered in trailer configuration. As the road slope increases, the 

WF should be lowered. Assuming the road is levelled, the fuel use (l/ton.100km) and 

CO2 emission (kg/ton.100km) are calculated for trucks with different trailer 

configurations driven at optimal speed. Figure 6.15 compares the fuel use and CO2 

production for three different trailer configurations experimented in this study. To 

compare the effect of different trailer configurations, it is assumed that all vehicles are 

driven at optimal speed. As shown in Figure 6.15, by employing trailers to transfer more 

payloads in each operation cycle, the fuel consumption and CO2 production per unit of 

transferred weight decrease dramatically. Also, using large trailers to increase WF 

values can have significant influence on fuel use and CO2 emission reduction.  
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(a) 

 

(b) 

Figure 6.15. Comparison of fuel use and CO2 production for different trailer 

configurations 

 

 

0 1 2 3

Three-axle truck without trailer

(WF=6.5)

Three-axle truck with a three-axle

trailer (WF=13)

Three-axle truck with a four-axle

trailer (WF=14.5)

Fuel Use (l/ton.100km) 

0 2 4 6 8

Three-axle truck without trailer

(WF=6.5)

Three-axle truck with a three-axle

trailer (WF=13)

Three-axle truck with a four-axle

trailer (WF=14.5)

CO2 Emission Rate (kg/ton.100km) 



149 
 

6.5. Equipment Idling and Stop 

 

A large amount of operation time of construction equipment is spent in idling mode. 

The equipment idling can be caused by traffic conditions, poor planning and low 

compatibility among different types of equipment involved in the construction projects. 

Reducing idling time of vehicles has considerable influence on their fuel consumption 

and emissions production. It was estimated if idling time of construction equipment 

involved in construction sites decreases by 10%, CO2 emission reduces approximately 

800 million tons per year (EPA 2009). In this section, the fuel use and CO2 emission 

production in idling mode of construction equipment are first estimated using the 

models developed in Chapter 4. Then, the additional fuel use and emissions production 

due to stop of on-road construction vehicles caused by traffic conditions are calculated.  

 

Figure 6.16 shows the fuel use and CO2 emission rate of on-road construction vehicles 

in different operation modes. In comparison with other modes, vehicles consume much 

more fuel and produce much higher emission rate in hauling mode due to using more 

power of engine. The fuel use and CO2 emission rate of construction vehicles in idling 

mode are 0.027 l/kWh and 0.073 kg/kWh, respectively. This proves the high 

significance of lowering vehicles’ idling time to reduce fuel use and emissions 

production. For example, by reducing the idling time of an equipment piece with the 

engine size of 400 kW for one hour, 10.8 litres of fuel will be saved while resulting 

around 29 kg reduction in CO2 production.  
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Figure 6.16. Comparison of fuel use and CO2 emission rate of on-road construction 

vehicles in different operation modes 
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Figure 6.17 illustrates the average percentage of used fuel and produced CO2 emission 

in different operation modes of on-road construction vehicles. These results were 

achieved through analyzing collected raw data and using fuel use and emissions models 

developed in Chapter 4. It is found approximately 9% of used fuel and produced 

emissions of construction vehicles is in idling mode. It is expected by having a better 

project planning, tasks scheduling and machinery managing, the fuel cost and emissions 

production can be reduced up to 9%.  

 

 

Figure 6.17. The average percentage of fuel use and CO2 emission production in 

different operation modes of on-road construction vehicles 

 

Stop of on-road construction vehicles due to traffic conditions would have a 

considerable influence on the fuel use and emissions production. In this step, it is 

focused to investigate the effect of equipment stop on the fuel consumption and CO2 

production of on-road construction vehicles. Figure 6.18 shows the additional fuel use 

and CO2 emission due to a full stop of different construction vehicles.  
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Figure 6.18. The additional fuel use and CO2 emission due to stop of equipment with 

different WF values 
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The data analysis was conducted on all experimented equipment pieces. The effect of 

WF parameter was also taken into consideration in the process. It was assumed that 

during deceleration step to stop, gas pedal is not pressed while the engine load being 

around 15% (like idling mode). Also, vehicles have three minutes stop, and then start 

moving with the acceleration rate of 0.5 km/h.s until reaching the previous speed. These 

assumptions have been made based on conducted observations, and it has been tried to 

simulate normal stop conditions of construction vehicles. Changes in the assumptions 

such as stop time would result in slightly different results.  

 

Equipment’s speed and WF are the two main parameters influencing the additional fuel 

use and emissions production due to stop. As shown in Figure 6/18, there is a highly-

correlated direct linear relationship among vehicles’ speed, WF and fuel use and 

emissions production. The additional fuel consumption and CO2 emission due to stop 

varies from 0.13 l/100kWh and 0.35 kg/100kWh for the vehicles with the speed of 25 

km/h and WF of 2.75 to 0.66 l/100kWh and 1.75 kg/100kWh for equipment with the 

WF of 14.5 driven at 100km/h speed. It shows the significant effect of vehicles’ stop 

that must be considered by equipment’s operators as a reduction scheme to lower fuel 

use and emissions at operation level.  

 

6.6. Conclusion 

 

Construction industry is regarded as one of the main contributors to global energy 

consumption and GHGs emissions. There is a lack of comprehensive guideline to be 

used by construction managers and equipment operators to reduce the used fuel and 
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emitted pollutions of construction vehicles. This chapter developed fuel use and 

emissions reduction schemes for on-road construction equipment by analyzing collected 

field data and using fuel use and emission models devised in Chapter 4. As the main 

reduction strategy, an optimal driving pattern can be followed by equipment operators 

to improve the fuel efficiency. The conducted analysis shows that the developed 

strategy has a high accuracy (R
2
 > 0.9) in estimating optimal driving speed based on 

given operation conditions. The effect of road slope and WF operational parameters to 

the optimal driving speed was also investigated. In spite of the considerable effect of 

acceleration on instantaneous fuel use and emissions rate, this parameter was not 

considered in optimal driving pattern strategy as the percentage of time that construction 

equipment pieces are operated in acceleration mode is negligible.  

 

As an equipment-level strategy, this chapter investigated the effect of engine tier on the 

fuel use and CO2 production by analyzing the obtained raw data from engines with 

different tiers. The result demonstrated that by using engines with higher tiers such as 

Euro V in comparison with older engine with Euro III tiers, a reduction of 13% fuel 

consumption and emission production can be achieved. At project planning level, truck 

selection and trailer configuration were studied. It is found that the fuel efficiency can 

be increased up to approximately 50% by using large trailers to transport more 

construction materials in each operation cycle.  

 

The fuel use and CO2 emission production of vehicles in idling operation mode were 

also estimated using devised models. The analysis of raw data indicated that around 9% 

of used fuel and consequently produced emissions of construction vehicles is in idling 

mode. Lowering idling time of equipment was suggested as an operational level 
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reduction scheme. Finally, the impact of stop of on-road construction vehicles on 

additional fuel use and CO2 emission production was investigated. The achieved results 

confirmed that by trying to have fewer stops during moving and hauling operation 

modes, up to 0.66 l/100kW fuel can be saved and 1.7 kg/100kW CO2 pollutant is 

produced less per stop.  
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Chapter 7 

Conclusion and Recommendations 

 

Construction industry is regarded as one of the major consumers of energy consumption 

(mainly fossil fuels), and has produced significant amount of air pollutants globally. As 

this sector is one of the main industries requiring a large number of heavy machinery, 

construction equipment is the major contributor to fuel and energy consumption, and 

accounts for around 50% of total vehicular used diesel fuel of all industries. Majority of 

construction activities associated with earthmoving operations including cut and fill 

activities require on-road heavy-duty vehicles for materials transportation. Such kind of 

activities are normally planned and paid based on the amount of materials transferred. 

The measurement of the mass carried by vehicles as payload is a necessary process.  

 

In practice, there is a lack of models in construction sector to predict fuel consumption 

and emissions production of vehicles at operation level. The models currently applied in 

the construction field mainly focus on estimating fuel use and emissions production at 

macro level. NONROAD model developed by EPA and OFFROAD model devised by 

CARB are applied to roughly estimate fuel consumption and emissions rate of different 

construction equipment groups at both national and state levels. In addition, numerous 

operational and environmental parameters effecting fuel use and emissions rate have not 

been fully investigated yet.  
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Also, there is no comprehensive and quantitative scheme to reduce fuel use and 

emissions of equipment involved in the construction industry despite the considerable 

cost saving by applying such schemes. The current reduction strategies mainly focus on 

engine attributes and fuel types which are applicable to new construction equipment 

while failing to cater for existing machinery globally. On the other hand, weight of 

equipment is a major factor influencing fuel use and emissions production necessitating 

an accurate and fast weight measurement method. The traditional weighting systems 

available in the construction sector are time consuming, error prone and costly. As the 

most commonly used method in construction, weighbridges require high installation and 

operation costs. The time for weight measurement would affect the production rate of 

equipment as well as the cost of project execution. Meanwhile, alternative volumetric 

measurement methods may not have sufficient accuracy due to volume to weight 

conversion analysis.  

 

7.1. Conclusion  

 

This thesis was set to estimate the fuel use, emissions production and weight of on-road 

construction vehicles through monitoring field operations. Comprehensive methodology 

has been developed in the study to collect field data for mathematical model 

development. Three main instruments of GPS-INS, engine data logger and PEMS were 

employed to collect real-world data of investigated parameters. Seven heavy on-road 

vehicles were experimented, and for each vehicle, a database was created with all 

obtained raw data stored. The data synchronization process indicated that there were 

errors in the data measured by instruments due to technical problems during 
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experimentation and engine malfunctions. A total of 94,790 data points were collected 

during seven days of experimentation in which 78,816 data points or around 80% of 

total data were validated in the data synchronization procedure.  

 

The initial data analysis on the processed raw data demonstrated relationships amongst 

operational and environmental parameters, engine attributes, and fuel use and emissions 

rate. As one of the main contributions of this study, engine load was identified as an 

intermediate variable bridging the operational and environmental inputs to fuel use and 

emissions rate outputs. Different factors including MAP, engine load and engine speed 

were initially identified as the surrogate of used power of engine, but conducted 

analysis showed that engine load has the highest-correlated relationship with both 

operational parameters and fuel use and emissions rate outputs.  

 

Regression statistical analysis including OLS and MLR were applied to develop the fuel 

use and emissions rate models using IBM SPSS Statistics V22 and Microsoft Excel 

software. It is found that there is high correlation and consistency (R
2
> 85%) between 

engine load factor and four variables of acceleration rate, speed, road slope and WF. On 

the other hand, based on the achieved results, there is highly-correlated linear 

relationship (R
2
> 90%) between engine load and fuel use and emissions rate. The 

operational level fuel use and emissions rate models were then developed through 

investigating the quantitative relationships among operational input parameters, engine 

attributes and fuel use and emissions rate outputs.  

 

The engine load estimation with operational parameters showed that acceleration rate 

has the highest coefficient, and was therefore identified as the most critical factor. The 
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impact of road slope and speed parameters was far less on used power of engine. Also, 

based on the devised fuel use model, fuel use of construction equipment varies from 

0.03 l/kWh for idling mode (Engine Load  15%) to 0.25 l/kWh for most demanding 

activities (Engine load  100%). The emissions rates of CO2, CO, HC and NOx 

pollutants have direct linear relationship with engine load values. The developed fuel 

use and emissions rate models were finally validated through comparing the predicted 

fuel use and emissions rate values with the field data measured by engine data logger 

and PEMS devices. The models were found to have more than 90% accuracy in fuel use 

and emissions rate modeling of on-road construction vehicles at operation level.  

 

WF parameter has indirect effect on the used power of engine, and influences the 

impact of other operational and environmental parameters on engine load value. Having 

access to real-world data of all investigated parameters, WF was modeled through 

developing neural networks among all variables. As one of the main limitations of 

modeling process, neural networks can have only one input layer. So, five networks 

were developed covering all five WF values of 2.75, 4.5, 6.5, 13 and 14.5. Through 

quantifying the effect of WF on the impact of other parameters on engine load and using 

developed engine load estimation model, WF was modeled as a function of operational 

and engine load variables. Having the weight of empty equipment, the total weight of 

equipment and carried payload were then predicted. To verify and validate the 

developed model, eight case studies were conducted. This process was performed 

through comparing the predicted weight to the real weight measured by weighbridge. It 

is found the accuracy of the model in predicting the total weight of vehicle is over 91%.  

 



160 
 

As one of the main applications of the developed fuel use and emissions rate models, 

different strategies and schemes were devised at operation and planning level to 

improve the fuel efficiency of equipment. As the major scheme, optimal driving speed 

was modeled based on two variables of WF and road slope. It was indicated that by 

increasing these two parameters, the optimal driving speed decreases significantly but 

fuel use and emissions rate per travelled distance and transferred weight increase 

considerably. The optimal speed and corresponding fuel use and CO2 emission rate for a 

vehicle with WF of 2.75 driven on a levelled route are 82 km/h, 6.5 l/100kW.100km 

and 17 kg/100kW.100km, while these numbers would be 39 km/h, 42.9 

l/100kW.100km and 113 kg/100kW.100km for a vehicle with WF of 14.5 driven on a 

route with slope of 12 degree. Engine tier was also recognized as one of the engine 

features affecting fuel use and emissions production. It was proven that in comparison 

with Euro IV engines which currently are most commonly used in the construction 

industry, Euro III engines use fuel and emit CO2 5% more, while the fuel consumption 

and CO2 production of Euro V engines are 7% less. It was also shown that selecting 

optimal trailer configuration based on the type of the road and geographical conditions, 

the fuel efficiency of equipment can be improved up to 50%. Finally, the effect of idling 

time and equipment stop was modeled on fuel use and CO2 emission rate. It is found by 

trying to have fewer stops during moving and hauling operation modes, up to 0.66 

l/100kWh fuel can be saved and 1.7 kg/100kWh CO2 pollutant is produced less per 

stop.  
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7.2. Limitations and Suggestions  

 

In the area of monitoring field operations, it is suggested to extend the experimentations 

to cover a wider range of on-road construction vehicles from numerous manufacturers 

with different engine capacities from 150 kW (light-duty vehicles) to 500 kW (heavy-

duty vehicles). Also, as one of the limitations of the current study, only five WF 

parameter values were considered due to the types of the experimented vehicles and 

their trailer configurations. The obtained results can be improved by selecting various 

trailer configurations to collect real-world data from more values of WF variable. The 

accuracy of the used instruments was not high in some experimentation cases causing 

errors in the raw collected data. Although the data synchronization and filtering 

procedures were conducted on gathered raw data, it is highly recommended to employ 

more precise devices to improve the quality of data collected. For instance, the PEMS 

used in the study had at least 1.7% error in measuring emission rates.  

 

The engine performance was identified as one of the main parameters affecting the 

accuracy of measured engine load and emission rates variables. To tackle with this 

issue, the functionality and performance of the engine should be checked before 

conducting experimentation. The skill level of the operators was recognized as another 

factor influencing the validity of engine load values. For example, , the engine load was 

normally overestimated for aggressive operators. It is recommended construction 

vehicles are driven by experienced operators in a conservative manner during 

experimentation. Automatic transmission vehicles can also be experimented to lower 

the effect of operator inaptitude on the accuracy of the models.  
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This thesis developed general fuel use, emissions rate and weight models to be used for 

all on-road construction vehicles. To have higher accuracy, these models can be devised 

for each specific vehicle separately following the developed methodology. The 

coefficients of investigated parameters can be calibrated based on the performance and 

specifications of each vehicle’s engine. On the other hand, validation procedure can be 

extended by testing the developed models and strategies on more vehicles.  

 

7.3. Recommendations on Future Research 

 

This section discusses different directions for future studies in the field of energy and 

emissions modeling of construction equipment. This study focused on developing a 

comprehensive methodology to monitor construction operations and track involved 

equipment. As the application of the developed framework, the fuel use, emissions rate 

and weight of on-road construction vehicles were modeled. This integrated data-sensing 

methodology can be employed by scholars to model the energy consumption of all other 

off-road equipment on the construction sites. Devised framework can be used for many 

other applications in the construction field such as productivity measurement and 

equipment maintenance.  

 

This research took into consideration the effect of four operational and environmental 

parameters of acceleration rate, driving speed, road slope and equipment weight as 

affecting variables on the engine load of equipment. It does not mean that there is no 

other factors affecting engine load value. The initial data analysis showed the other 

parameters do not have significant impact on the used power of engine, and can be 
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ignored considering the desired accuracy of the models. This study can be extended by 

investigating the effect of more operational and environmental variables including 

atmospheric temperature, ambient pressure and road type on the used power of engine. 

Criteria can be developed as well to consider the skill level of the operator on average 

engine load value in a specific operation cycle. This study found that engine load value 

is normally overestimated for aggressive operators. The age of equipment can be 

another factor to be considered. In comparison with new engines, older ones are less 

efficient and consume more energy for delivering the same power.  

 

In practice, brief guidelines can be prepared for training equipment operators to drive 

vehicles at optimal pattern to achieve greater fuel efficiency. Also, using devised 

frameworks and models, more practical reduction schemes and strategies can be 

developed to minimize fuel use and emissions of vehicles. Practical issues in using the 

weight model should be addressed, and engineering software can be developed for 

applying the weight model in real world. 

 

As a new field of research, it is proposed to compare the efficiency of construction 

equipment using different sources of energy, including diesel, ULSD and electricity 

using the devised framework and models. Currently, some construction firms and 

equipment manufacturers have started developing or adopting new sources of energy 

which requires comprehensive studies from sustainability, productivity and financial 

perspectives.   
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