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Climate change is predicted to have far reaching physical, social, environmental and economic 

impacts (e.g., Houser et al., 2015; IPCC, 2014; Melillo et al., 2014; Neumann et al., 2015; 

Watkiss, 2011). The capacity for mankind to adapt will (in part) be governed by the pace at 

which impacts will manifest and the success of global adaptation endeavours which might 

offset (or delay) the inevitability of impacts from longer term climate change commitments 

associated with radiative forcings, such as sea level rise. 

 

Sea level rise is one of the more insidious (or irreversible) of the postulated climate change 

impacts. This is due to the fact that thermal expansion and ice sheet response (as key elements 

of the sea level rise budget) will continue for centuries after stabilization of radiative forcing 

owing to the thermal inertia and long response time scale of the deep ocean (Zickfeld et al., 

2013) and ice sheets (Levermann et al., 2013). For example, Gillett et al. (2011) demonstrated 

in zero-emission commitment simulations with complex Earth System Models, that thermo-

steric sea level rise continued for some 900 years after the cessation of emissions. 

 

The continued trend for coastal global population migration (Neumann et al., 2015) fuels the 

increasing projected risks associated with sea level rise. In July 2015, the world’s population 

reached 7.3 billion. The world has added one billion people since 2003 and two billion since 

1990 with the global population projected to increase somewhere between 9.5 and 13.3 billion 

by 2100 at the 95% confidence level (United Nations, 2015). In 2000, the global coastal 

population residing within the low elevation coastal zone (commonly defined as the 

contiguous and hydrologically connected zone of land along the coast and below 10 m of 

elevation (Lichter et al., 2011; McGranahan et al., 2007)) was estimated at around 625 million 

(Neumann et al., 2015). 

 

Flood exposure is increasing in coastal cities owing to growing populations and assets, the 

changing climate, and land subsidence (Hallegatte et al., 2013). Similarly environmentally 

sensitive delta regions, which are extremely vulnerable to storm surges and sea level rise 

account for only 1% of the global land area, but, accommodate approximately 7% of the global 

population (Ericson et al., 2006). The threat of sea level rise in these margins is exacerbated by 

the propensity of the founding fluvial sediments to readily compact, leading to enhanced land 

subsidence (Szabo et al., 2016). 
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The prominence of the climate change issue has placed more emphasis on examination of the 

extensive global repository of relative mean sea level records (Holgate et al., 2012), which 

along with temperature and carbon dioxide, remain the key proxy data sets used to monitor 

and quantify changes in the global climate system (Watson, 2016e). In particular, considerable 

research effort has been invested over the past decade in detecting evidence of a measurable 

acceleration in mean sea level commensurate with forecast projections associated with 

climate change. However, these research endeavours fit within a broader, integrated 

framework of sea level science designed to understand sea level change and its implications 

both present and future (e.g. Intergovernmental Panel on Climate Change; World Climate 

Research Programme, etc). 

 

Climate models are key tools in assisting to understand and plan for the predicted impacts of a 

changing climate system, forming central elements of the Assessment Reports of the 

Intergovernmental Panel on Climate Change (IPCC, 2007, 2013a) with great reliance placed on 

projection outputs to facilitate appropriate policy, adaptation and mitigation responses. By 

coordinating the design and distribution of global climate model simulations of the past, 

present, and future climate, the Coupled Model Intercomparison Project (CMIP) has become 

one of the foundation elements of climate science (Eyring et al., 2016), providing an ensemble 

of climate models to support the IPCC’s Fifth Assessment Report (AR5) (Church et al., 2013a). 

 

Various Representative Concentration Pathway (or RCP) experiments were modelled in AR5 

providing future projections of sea level based on changes to radiative (or external) forcing 

(Moss et al., 2010). Global mean sea level projection model outputs from AR5 for each of the 

RCP experiments are provided in Figure 1.1 (Figure 13.11, Church et al., 2013a). Church et al. 

(2013a) observes that in all the projections, the rate of rise initially increases. More specifically, 

in RCP2.6 it becomes roughly constant (central projection 4.5 mm/yr) before the middle of the 

century, and subsequently declines slightly. The rate of rise becomes roughly constant in 

RCP4.5 and RCP6.0 by the end of the century, whereas acceleration continues throughout the 

century in RCP8.5, reaching 11 [8 to 16] mm/yr by 2100. Figure 1.2 directly compares the 

global rate of rise in the central projection for each RCP experiment, highlighting key 

differences between the respective simulated model projections over time. 
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Figure 1.1: Projections from process-based models of (a) global mean sea level (GMSL) rise 

relative to 1986–2005 and (b) the rate of GMSL rise and its contributions as a function of time 

for the four RCP scenarios and scenario SRES A1B. 

 
Notes: 
 
The lines show the median projections For GMSL rise and the thermal expansion contribution, the likely range is 
shown as a shaded band. The contributions from ice sheets include the contributions from ice-sheet rapid 
dynamical change, which are also shown separately. The rates in (b) are calculated as linear trends in overlapping 5-
year periods. Only the collapse of the marine-based sectors of the Antarctic ice sheet, if initiated, could cause GMSL 
to rise substantially above the likely range during the 21st century. This potential additional contribution cannot be 
precisely quantified but there is medium confidence that it would not exceed several tenths of a metre of sea level 
rise. Source: Figure 13.11 (Church et al., 2013a).  
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Figure 1.2: Rate of GMSL rise from AR5 RCP central projections. 

 

 
Notes: 
 

The rate of global mean sea level rise from each of the RCP central projections depicted above are derived directly 
from panel (b) of Figure 1.1 using data made available by the IPCC (Church et al., 2013b). 
 

From the start of the projection models (2007) to around the mid -2030s, the rate of rise in the 

central estimate for each of the RCP experiments (with the exception of RCP8.5) is relatively 

consistent from 3.7 mm/yr to ≈ 4.5 mm/yr (refer panel (b) of Figure 1.1 and Figure 1.2), 

commensurate with a sustained, though relatively low rate of acceleration. By comparison, at 

this time the rate of rise in the central sea level projection for the RCP8.5 experiment is almost 

1 mm/yr higher than for the other RCP experiments (at ≈ 5.5 mm/yr) and continuing to diverge 

further over the remainder of the century. The influence of the radiative forcing built into each 

RCP experiment only really starts to diverge significantly over the latter half of the 21st century. 

The aforementioned temporal characteristics of the projected rate of global rise in the central 

projections, provide a coarse reference frame against which long tide gauge and other records 

(such as satellite altimetry) can be compared to augment scientific understanding and adaptive 

planning endeavours. 

 

Fasullo et al. (2016) note that among the major unanswered questions associated with climate 

change is why Global Mean Sea Level (GMSL) acceleration has not yet been detected in the 
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altimeter record, given the increasing rates at which glacial and ice sheet melt are estimated to 

have occurred (Hanna et al., 2013; Shepherd et al., 2012) and as greenhouse gas 

concentrations have risen (Haigh et al., 2014). Various theories have been proposed to account 

for the lack of acceleration in GMSL over the altimetry period (post 1992) including the 

masking influence associated with the Mt Pinatubo volcanic eruption in 1991 (Fasullo et al., 

2016) and the identification of a significant non-zero systematic drift (satellite-specific), most 

notably affecting the first 6 years of the GMSL record (Watson et al., 2015).  

 

Numerous studies and their conclusions regarding the prospect of whether there is a 

measurable acceleration in ocean water level records have spawned energetic scientific 

debate in the recent literature (e.g., Baart et al., 2012a; Donoghue and Parkinson, 2011; 

Houston and Dean, 2011a, 2011b; Rahmstorf and Vermeer, 2011; Visser et al., 2015; Watson, 

2011). In particular, the published works of Watson (2011) and Houston and Dean (2011a) 

generated extensive political, social, and media debate around the issue (e.g., ABC-TV, 2011; 

Australia, 2011; Rintoul, 2011; Tamino, 2011). 

 

In addition to discussion on physical process drivers (such as Fasullo et al., 2016), much of the 

professional debate has centred on the manner in which acceleration is estimated. Almost 

exclusively, estimates of acceleration in global or basin scale mean sea level studies have been 

derived from the fitting of comparatively simple second order polynomial (or quadratic 

function of the form Ax2 + Bx + C). With these simple functions, the acceleration can be 

conveniently and directly calculated by doubling the quadratic coefficient (i.e., 2A). These 

approaches are extremely limited because they inherently assume a constant rate of 

acceleration applying over the course of the record (Watson, 2016c,e), which is not the case in 

reality with sea level records (refer Watson, 2016e,f; Woodworth et al., 2009). 

 

As a result, trends determined via simple linear regression and acceleration determined 

through simple quadratic fits are likely to be unduly influenced by the particular time slice 

chosen (Rahmstorf and Vemeer, 2011). These comparatively simple approaches work well at a 

coarse scale where real-time changes in the kinematic properties of the mean sea level signal 

are unimportant. Given the prominence of mean sea level acceleration and its intrinsic 

linkages to climate change science, the key aim of the research program is to develop 

improved techniques (and associated tools) for estimating mean sea level and associated real-
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time velocity and acceleration from long individual ocean water level time series to augment 

climate change research. Thesis chapters have been designed as essentially standalone bodies 

of work that sequentially build on the findings of each other in order to achieve the objective 

of the research program as summarised briefly below. Specific literature reviews are included 

within each chapter: 

 

Chapter 2: Development of a detailed synthetic ocean water level data set to test time series 

analysis techniques for their utility in isolating mean sea level with improved 

temporal accuracy; 
 

Chapter 3: Detailed testing of time series analysis techniques for their utility in isolating 

mean sea level with improved temporal accuracy; 
 

Chapter 4: Development of a methodology to improve estimates of velocity and acceleration 

in the mean sea level signal incorporated into the build of an analytical software 

package; 
 

Chapter 5: Apply the analytical software package developed on the data rich margins of 

continental USA to improve knowledge of real-time acceleration for regional sea 

level and climate change research; 
 

Chapter 6: Apply the analytical software package developed on the data rich margins of 

Europe to improve knowledge of real-time acceleration for regional sea level and 

climate change research; and 
 

Chapter 7: Conclusions.  
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Chapter 2 
 
 

Development of Synthetic Ocean 
Water Level Data Set 

 
 
 
 

Synopsis: An authoritative, effective and transparent process by which to identify the most 
accurate analytical technique for isolating the mean sea level signal is to test such 
approaches against “synthetic” (or custom built) data sets with a known mean sea level 
signal. In order to be effective, the synthetic data set developed for this research has been 
specifically designed to mimic key physical characteristics of real-world data, comprising a 
range of known components added to a nonlinear, non-stationary time series of mean sea 
level. The key components embedded within conventional ocean water level data sets have 
been established from the extensive literature available and via direct consultation with 
some of the world’s leading oceanographers, sea level researchers and subject matter 
experts relevant to various components of the proposed synthetic data set. 

 
 
 

 
Publication I 
 
Watson, P.J., 2015. Development of a unique synthetic data set to improve sea-level 
research and understanding. Journal of Coastal Research, 31(3), 758–770. Coconut Creek 
(Florida), ISSN 0749-0208. 
 
Declaration 
 
I certify that this publication was a direct result of my research towards this PhD, and 
that reproduction in this thesis does not breach copyright regulations. 
 
 
Phil J. Watson [Candidate] 
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2.1 Background 
The complexity of the influences embedded within conventional monthly and annual average 

ocean water level data sets has led sea level research toward successively more sophisticated 

time series analytical techniques. The key prerogative for sea level researchers remains 

isolating the comparatively small, non-stationary, non-linear mean sea level signal from the 

significant and substantial dynamic inter-decadal (and other) influences and noise. 

 

Without an absolute knowledge of the mean sea level signal, the extracted signal (or trend) 

will only ever be an estimate of the true signal. The veracity of the extracted mean sea level 

signal has universally been inferred from the assumed sophistication of the underpinning 

analytical approach applied to ocean water level data sets. In effect, comparison from one 

estimate of mean sea level to another, in part, has become an indirect qualitative view of the 

merit of the analytical approach applied. 

 

An authoritative, effective and transparent process by which to identify the most appropriate 

analytical technique for isolating the mean sea level signal is to test such approaches against 

“synthetic” (or custom built) data sets with a known mean sea level signal.  

 

2.2 Key philosophies underpinning the design approach 
In order to be effective, the synthetic data set developed for this research has been designed 

to be as generically applicable as possible (i.e. reflective of the environmental attributes and 

signals captured by a tide gauge located anywhere worldwide) and thus mimic the key physical 

characteristics embedded within real-world ocean water-level data. The key components of 

the synthetic data set have been established from the extensive literature available and via 

direct consultation with some of the world’s leading oceanographers, sea level researchers and 

subject matter experts (refer Section 2.7). A schematic representation of the elements 

comprising the core synthetic data set is depicted at Figure 2.1. 

 

This data set has been designed as a monthly average time series spanning a 160-year period 

from 1850–2010. This time period has been selected to reflect the predominant date range for 

the longer Permanent Service for Mean Sea Level (PSMSL) data holdings. The core data set can 

then be aggregated to annual data and separately divided into 2 X 80 year and 4 X 40 year 

subsets to further examine not only the capacity of the respective analytical methods to 
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extract the embedded mean sea level signal, but, also any issues associated with record length, 

end effects as well as monthly versus annual data.  

 

Figure 2.1: Schematic representation of components of the core synthetic data set. 

 

 
 

Details concerning the construction of the fixed mean sea level signal are detailed in Section 

2.3. Details concerning the cyclical dynamic components and how they have been used to 

construct the data set are detailed in Section 2.4.  

 

In order for the core synthetic data set to be as globally representative as possible, each of the 

key dynamic influences are represented by a bin of monthly time series spanning the full 160-

year period, reflecting the range of real-world measured influences for each particular 

component. The synthetic data set contains 20,000 separate time series, with each time series 

generated by successively adding a randomly sampled signal from within each of the dynamic 

components to the fixed mean sea-level signal. 

 

The selection of 20,000 randomly generated time series represents a reasonable balance 

between optimising the widest possible set of complex combinations of real-world signals and 

the extensive computing time required to analyse the synthetic data set. Further, the 20,000 

generated trend outputs from each analysis applied to the data set provides a robust means of 

statistically identifying the better performing techniques for extracting the trend (Chapter 3). 
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In addition to the published literature, the data from 43 selected PSMSL sites have been 

analysed and decomposed to estimate genuine seasonal signals and noise components using 

the respective methods detailed in the following sections pertaining to these components. The 

selected sites (refer Appendix A) were based on maximising a range of factors including global 

spatial coverage, length and quality of records, and range of environmental influencing factors. 

The other dynamic components and the fixed mean sea-level signal have been specifically 

based on the scientific literature, and the methods used to generate the bins of real-world 

signals are detailed in the following sections dedicated to each component. 

 
2.3 Mean Sea Level 
Mean sea level has been created as a smoothed, non-linear time series signal reflective of the 

global trend of mean sea level (Bindoff et al., 2007) and key “inflexion” points evident in the 

majority of long ocean water level data sets (Woodworth et al., 2009). This monthly time 

series signal (refer Figure 2.2) is the key fixed signal embedded within each time series of the 

core synthetic data set. 

 

Figure 2.2: Generated Monthly Time Series Signal of Mean Sea Level (MSL). 

 

 
 

It is important to note that the intention here is not to seek to have the “perfect” 

representation of mean sea level over the period in question as there are numerous and 

differing representations of assumed global mean sea level (e.g., Church and White, 2011; 

Hamlington et al., 2011; Hay et al., 2015; Jevrejeva et al., 2006; Jevrejeva et al., 2014; 

Meyssignac et al., 2012a; Ray and Douglas, 2011; Wenzel and Schröter, 2014). Rather, this 

embedded feature is designed to represent the type of signatures and characteristics 

anticipated of this feature against which one can critically test (Chapter 3). 
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2.4 Cyclical Dynamic Influences 
The key cyclical dynamic influences embedded within ocean water level data sets can be 

generally classified within one of five key areas which include seasonal signals, long-period 

tidal harmonic responses, pole tides, climate modes (global and regional) and noise (as 

indicated in Figure 2.1). 

 

In addition to the published literature and consultation with key international oceanographers 

and sea level researchers, the data from 43 selected PSMSL sites have been analysed and 

decomposed to estimate the seasonal influence and noise components. The selected sites 

(refer Appendix A for details) were based on maximising a range of factors including global 

spatial coverage, length and quality of records and range of environmental influencing factors. 

2.4.1 Seasonal Influences 

The seasonal signal is highly variable in nature and one of the larger components of sea level 

time series. Gauge records located near river mouths in glaciological or monsoonal regions will 

also be embedded with seasonal influences attributed to large river outflows at certain times 

of the year. The 43 PSMSL gauge sites used for seasonal decomposition (refer Appendix A) 

provide a broad mix of locations which encompass significant monsoonal and glaciological 

cycles as well. The seasonal signal has been extracted from each of the gauge records using 

three (3) separate established methodologies (refer Figure 2.3), including: 

 

 Method 1: locally weighted polynomial regression smoothing (or “loess”) of the 

seasonal sub-series (ie. the series of all January, February, March values, etc). This 

approach has been undertaken using the “stl decomposition” function in the R analytical 

software package (Cleveland et al., 1990; R Core Team, 2013). This methodology 

produces a repetitive seasonal cycle throughout the data record; 

 Method 2: spectral analysis using a de-seasonalising band stop filter available in the 

IDEOLOG software package (Pollock, 2008). Similar to the loess smoothing approach, the 

frequency domain filtering approach produces a repetitive seasonal cycle throughout 

the data record; and  

 Method 3: fitting an autoregressive integrated moving average (or ARIMA) model to the 

data. This approach has been undertaken using the X-12-ARIMA seasonal adjustment 

software package developed by the US Census Bureau (US Census Bureau, 2009) run 

within the GRETL analytical software package (GRETL, 2013). X-12-ARIMA automatically 
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selects the optimum “additive” or “multiplicative” seasonal model based on the 

parameters of the data set. Unlike the afore-mentioned techniques, the X-12-ARIMA 

model outputs produce a time varying seasonal signal. The software limits the input 

data to 70 years. Where the available tide gauge data record exceeded this limit, only 

the latter 70 years of the record were used to extract the seasonal signal. Outputted 

seasonal signals were then looped ‘top to tail’ backwards over time to estimate the 

seasonal signal corresponding to the complete time period (1850 to 2010). 

 

The seasonal signals extracted via Methods 1 and 2 produced remarkably similar results for the 

respective monthly amplitude at each station. To avoid unnecessary duplication of results, only 

the Method 1 and Method 3 outputs from the analysis of the 43 PSMSL stations have been 

used to compose the seasonal time series components in the synthetic data set.  

 

Figure 2.3: Schematic Representation of Seasonal Component. 

 

 
 

From the analysis, the phase and amplitude of the seasonal signals varied significantly ranging 

from the smallest amplitude signal (-24 to +3 mm) recorded at the Argentine Islands gauge 

(Antarctica) to the largest amplitude signal (-630 to +1220 mm) recorded at the Trois-Rivières 

gauge (Quebec, Canada) situated at the confluence of the Saint-Maurice and Saint Lawrence 

Rivers and significantly affected by snow accumulation and melting cycles. 
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Based upon the above-mentioned analysis, a total of 82 time series have been generated to 

represent the range of seasonal influences expected within ocean water level data sets. 

2.4.2 Long Period Tidal Harmonic Influence 

Cherniawsky et al. (2009) advises that modern harmonic analysis of tidal heights (Foreman, 

1977; Godin, 1972) can be expressed broadly as a linear superposition of six astronomical 

forcing harmonics, including: 

 

 mean rates of change of lunar time (with a mean period of 24.84 hours); 

 longitudes of the moon (27.3 days); 

 sun (365.24 days); 

 lunar perigee (8.85 years); 

 moon’s ascending node (18.61 years); and 

 solar perigee (20392 years). 

 

Other than the nodal tide (governed by the moon’s ascending node), all other above-

mentioned forcings have little direct relevance as separate components for inclusion within 

the synthetic data set. The high frequency daily harmonic signals are largely removed through 

monthly averaging and therefore not relevant. The monthly and annual harmonic signals are 

relatively small compared to the seasonal signal operating in the same frequency band and 

thus can be similarly ignored. The lunar perigee with an 8.85 year harmonic cycle has relevancy 

for consideration of extremes, but, is a relatively small signal that cancels out in the 

consideration of mean sea levels and has also not been considered further (Haigh ID 2013, 

pers. comm., 22 October; Woodworth PL 2013, pers. comm., 8 October). Similarly, the 

influence of the long period solar perigee over such a comparatively short period of the 

harmonic cycle (160 years of 20392 year period or 0.8% of cycle) deems that the influence of 

this signal is insignificant and can be ignored in this context. 

 

However, the 18.61 year nodal harmonic cycle has relevancy for the construction of the core 

synthetic data set. The nodal influence at a particular location, in accordance with equilibrium 

theory, is based on latitude and angle relative to the moon’s position (Pugh, 1987) with the 

theoretical signal amplitude ranging from zero at latitudes of around 35.3˚N and S to a 

maximum of approximately 12 mm at the poles (Woodworth, 2012). The phase angle of the 

nodal signal varies over the 18.6 year cycle in accordance with equilibrium theory but is 
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considered to be latitude dependent (Pugh, 1987). The phase of the cycle at higher latitudes is 

anti-phased to those at the tropics (Woodworth PL 2013, pers. comm., 22 October). 

 

Woodworth (2012) notes however, that loading and self-attraction and mass conservation 

processes modify the simple spatial dependence of any long-period tide that would otherwise 

“follow the equilibrium law”. Woodworth (2012) further advises that these processes are likely 

to enhance the nodal amplitude at higher latitudes by as much as 25% above that proposed by 

equilibrium theory. However, within tropical areas, the nodal signal is within 5-10% of the 

classical theory. 

 

Discussion around the amplitude of the nodal tide has taken on particular prominence in 

recent years as researchers attempt to improve sea level trend and acceleration estimates by 

accounting for this longer period phenomenon (Baart et al., 2012b; Cherniawsky et al., 2009; 

Houston and Dean, 2011c; Iz, 2006; Woodworth, 2012). 

 

An extensive study by Trupin and Wahr (1990) concluded the aggregate nodal signal to be 

consistent with equilibrium theory. Woodworth (2012) advises that further unpublished work 

conducted by the Permanent Service for Mean Sea Level (PSMSL) using a data set twice as 

large as that analysed by Trupin and Wahr (1990) obtained similar findings. Woodworth (2012) 

notes that some situations can be envisaged in which significant non-equilibrium nodal signals 

might occur in sea level records, in particular, shelf areas where shallow water dynamics 

somehow generate nodal aliases (Loder and Garrett, 1978). Similarly, Cherniawsky et al. (2009) 

notes local effects, such as friction in shallow water, or tidal resonance, also affect the 

observed nodal ratios, thus making them different from their astronomical values. 

 

Iz (2006) reported on the unpublished findings of analysis of the complete PSMSL data set 

indicating nodal amplitudes substantially exceeding that described by equilibrium theory (Pugh 

1987). From consideration of Figure 5 in Iz (2006), approximately 170 station records have 

estimated nodal amplitudes exceeding 25 mm with some 80 records exceeding 40 mm. Recent 

unpublished further research concerning 27 long globally distributed station records indicated 

an average nodal amplitude of 9.1 ± 0.3 mm with a maximum of 20 ± 4.2 mm (HB Iz 2013, pers. 

comm., 8 October). 
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Cherniawsky et al. (2009) harmonically analysed 16 years of satellite altimetry data which 

indicated measured amplitudes at nodal frequencies in the range of 15 – 35 mm, substantially 

larger than suggested by equilibrium theory. Cherniawsky et al. (2009) concluded that the 

discrepancy with theoretical amplitudes was likely of non-tidal origin, due to broad-band 

ocean variability with non-stationary phases at nodal frequencies. Baart et al. (2012b) analysed 

all records in the PSMSL exceeding 57 years (or 3 nodal cycles) concluding that measured 

amplitudes of signals at the nodal frequency exceeded those based purely on equilibrium 

theory (such as described in Pugh (1987, 1996)). Baart et al. (2012b) also observed clear 

differences between the phase determined from the analyses and equilibrium theory 

consistent with findings in Cherniawsky et al. (2009). 

 

In consideration of the above-mentioned literature, the component of the synthetic data set 

representative of the lunar nodal tide signal will be randomly sampled from a bin of sinusoidal 

curves with an 18.61 year period, amplitudes ranging from zero to 30 mm (in 0.5 mm 

increments) and phase angles ranging from zero to 180˚ (in 10˚ increments) as described in 

Figure 2.4. Based upon this analysis, a total of 1141 time series (including a zero time series) 

have been generated to represent the range of nodal tide influences expected with ocean 

water level data sets. 

 

 

Figure 2.4: Schematic Representation of Nodal Tide Component. 
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2.4.3 Pole Tide Influence 

The pole tide is an interesting phenomena which results from variations in the axis of the 

Earth’s rotation rather than tidal forcing (Woodworth, 2012). In order to conserve angular 

momentum, a freely rotating body will wobble about its spin axis when the mass distribution 

deviates from spherical symmetry (Miller, 1973). Although polar motions are driven by a range 

of processes described in Gross (2000), Desai (2002) observes that the polar motion of the 

earth is almost predominantly described by two key harmonic variations, namely an elliptical 

motion at an annual (365 day) period and an almost circular motion at a period of 14 months 

(433 days), otherwise known as the “Chandler wobble”. 

 

The annual elliptical polar motion has near constant amplitude of about 100 milliarcseconds 

(Gross, 2000) and is forced by the seasonal displacement of air and water masses, beating with 

each other to give a characteristic pulsating shape to the motion (IERS, 2013). Unlike the 

annual motion, the circular polar motion at the Chandler period (433 days) is a free oscillation 

having variable amplitude ranging between about 100 to 200 milliarcseconds (Gross, 2000). 

Gross (2000) demonstrated that the Chandler wobble was excited by a combination of 

atmospheric and oceanic processes, with the dominant excitation mechanism being ocean-

bottom pressure fluctuations. 

 

Desai (2002) observes that the incremental centrifugal potential associated with these polar 

motions are referred to as the pole tide potential, with the resulting deformations referred to 

as the pole tide (Munk and Macdonald, 1960). The displacement of the oceans caused by the 

pole tide potential is dependent on the inherent dynamics of the oceans (Desai, 2002).  

 

Numerous studies searching for the pole tide in long sea surface records have generally proven 

inconclusive owing to the relatively small amplitude of the tide (typically 10 mm, Carton and 

Wahr, 1986) and problems associated with high background noise levels of comparative scale 

(Xie and Dickman, 1996). Pugh (1987) notes that even with careful analysis the theoretical 

maximum amplitude of the pole tide, is so small that very broad confidence limits are 

inevitable. The latitudinal dependence of the pole tide differs from that of the nodal tide, 

instead maintaining the same dependence as the equilibrium diurnal tides. Spatially, diurnal 

tides exhibit maximum amplitudes at latitudes of 45˚N and S with zero amplitude at the 
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equator and the poles with variations north and south of the equator in opposite phase (Pugh, 

1987). 

 

Desai (2002) analysed almost nine years of data from the TOPEX/Poseidon satellite altimetry 

mission to observe the geocentric pole tide deformations of the sea surface. The analysis 

indicated the maximum amplitude of the pole tide at the Chandler period exhibited time 

varying characteristics ranging from 8 – 18 mm (corresponding to polar motions ranging from 

120 – 260 milliarcseconds) over the period from 1993 to 2001. Over the longer term, Malkin 

and Miller (2010) have estimated the amplitude of polar motion around the Chandler period 

varied between about 20 and 280 milliarcseconds over the period from 1846 to 2009. 

Although Desai (2002) notes the altimetric record used only spanned some eight cycles of the 

Chandler wobble and that results might be contaminated with oceanographic noise, the work 

demonstrated the pole tide could be reasonably modelled from knowledge of polar motion 

using an equilibrium assumption for the ocean response. 

 

The literature contains considerable discussion on both the existence and rationale for the 

anomalously high pole tide amplitudes observed in the North and Baltic Seas which are several 

times larger than the equilibrium pole tide (e.g., Chao et al., 2001; Currie, 1975; Ekman and 

Stigebrandt, 1990; Haubrich and Munk, 1959; Jessen, 1964; Maksimov and Karklin, 1965; 

Medvedev et al., 2017; Miller and Wunsch, 1973; O’Connor, 1986; O’Connor et al., 2000; Plag, 

1988; Tsimplis et al., 1994; Wunsch, 1974, 1986, 2001; Xie and Dickman, 1995, 1996). 

Analysing records from Northern Europe spanning the period from 1900 to 1964, Miller and 

Wunsch (1973) confirmed amplitudes of the pole tide at the Chandler period rose markedly as 

one progressed from the North Sea into the Baltic and the Gulf of Bothnia, with the exception 

of the values in the constricted waters of the Kattegat. In this region, pole tide amplitudes of 

up to 37 mm were evident. Unfortunately, due to the shortness of the record and the level of 

background noise, the altimetric records analysed by Desai (2002) were not able to observe 

short-wavelength departures from equilibrium in the North Sea area that might provide some 

temporal context to previously measured values in this region. 

 

In consideration of the above-mentioned literature, the amplitude of the annual pole tide 

harmonic (less than ≈ 5 mm) is relatively small compared to that of the seasonal signal (refer 

Section 2.4.1) at the same frequency, and thus has not been considered further for addition to 



PhD Thesis – Phil J. Watson 
 

  
 
 

 

19 
 

the synthetic data set. However, in order to represent the component of the pole tide at the 

Chandler frequency, sinusoidal curves with a period of 433 days have been developed with 

time varying amplitudes. The maximum amplitude of 18 mm in early 1993 determined by 

Desai (2002) from satellite altimetry data, has been fitted to the time varying time series of 

polar motions determined by Malkin and Miller (2010) spanning the period from 1850 to 2010. 

To accommodate the range of amplitudes of this signal that can vary from zero to the peak, 

the maximum time varying time series has been factored from zero to unity in 50 equal 

increments. These sinusoids have been determined both for phase angles of zero and 180˚ to 

represent the diurnal characteristics of the signal. 

 

Using a factor of unity, the maximum amplitude of the time varying signal (refer Figure 2.5) is 

approximately 22 mm in 1952. Therefore in order to represent the larger amplitude signals 

experienced in the North Sea region, 5 additional time series have been generated with factors 

[1.08, 1.26, 1.44, 1.62 and 1.8] corresponding to maximum time varying amplitudes of 24, 28, 

32, 36 and 40 mm with zero phase. Figure 2.6 provides a pictorial representation of the pole 

tide component derived for the synthetic data set. Based upon this  analysis, a total of 106 

time series (including a zero time series) have been generated to represent the range of pole 

tide influences expected with ocean water level data sets. 

 

Figure 2.5: Temporal Variability of Polar Tide Influence at Chandler Period. 

 

 
Notes: 
 
1. Polar motion described relates to the portion corresponding to the Chandler period (433 days). The left-hand 

axis corresponds to the polar motion described by the SSA analysis in Malkin and Miller (2010). Data kindly 
supplied by Dr Zinovy Malkin; and 

 
2. The right hand axis is an approximation for the associated maximum amplitude of the pole tide based on the 

work of Desai (2002) fitted to the time-series of Malkin and Miller (2010). 
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Figure 2.6: Schematic Representation of Pole Tide Component. 

 

 
 

2.4.4 Climate Mode Influences 

The global atmospheric circulation has a number of preferred patterns of variability, all of 

which have expressions in surface climate. Many teleconnections have been identified, but 

combinations of only a small number of patterns can account for much of the inter-annual 

variability in the circulation and surface climate (Trenberth et al., 2007). Trenberth et al. (2005) 

analysed global atmospheric mass and found four key rotated Empirical Orthogonal Function 

(EOF) patterns: the two annular modes (Southern Annular Mode (SAM) and Northern Annular 

Mode (NAM)), a global El Niño-Southern Oscillation (ENSO) related pattern and a fourth closely 

related to the North Pacific Index and the Pacific Decadal Oscillation (PDO), which in turn is 

closely related to ENSO and the Pacific-North American (PNA) pattern (Trenberth et al., 2007).  

 

Numerous studies have identified significant relationships between the various climate mode 

indices and mean sea level at both a regional and global scale. Although the PDO has been 

identified as a strong signal with multi-decadal cycles predominantly influencing the North 

Pacific, considerable debate exists concerning whether this mode can be confidently treated as 

independent to ENSO (Deser et al., 2010; Schneider and Cornuelle, 2005; Trenberth et al., 

2007).  
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ENSO events are known to occur on cycles generally ranging from 3-7 years (Trenberth et al., 

2007) whereas the PDO exhibits key cycles that play an important role in the climate 

phenomenon over the North Pacific on bidecadal and pentadecadal scales (Minobe, 1999). 

Whilst numerous regional studies have demonstrated clear correlations to sea level anomalies 

and the PDO (Merrifield et al., 2012; Meyssignac et al., 2012b; Senjyu, 2006; Zhang and 

Church, 2012), Hamlington et al., (2013) provide evidence of the relationship between PDO 

and global averaged mean sea level. 

 

Zhang and Church (2012) note the PDO and ENSO are highly correlated in the low (decadal) 

frequency band (Newman et al., 2003; Power and Coleman, 2006). Through detailed wavelet 

analysis, Newman et al. (2003) determined the PDO to be dependent upon ENSO on all 

timescales with the PDO (at least to first order) considered the “reddened” response to both 

atmospheric noise and ENSO, resulting in more decadal variability than either. Merrifield et al. 

(2012) undertook detailed regression analysis of regional sea levels across the western pacific 

in which substitution of either the PDO or Southern Oscillation Index (SOI) produced very 

similar results, providing credence to interpretations of Newman et al. (2003). 

 

For the purposes of constructing a synthetic data set to mimic “real-world” climate mode 

influences, it is proposed to construct each time series by separately sampling a contribution 

from both a “global” and “regional” signature climate mode influence. ENSO is the dominant, 

global signal with power in the inter-annual to decadal frequency band, with varying localised 

influence. Although closely correlated to ENSO with key influence in the north and western 

pacific region, the PDO has also been shown to have a global influence on mean sea level at bi-

decadal and longer frequencies.  

 

In order to encompass the widest possible range of climate mode influences likely to be 

embedded within ocean water level data sets, the “global” climate mode influence will be a 

composite of signals reflective of both ENSO and PDO influences. In addition to the “global” 

signal, there commonly exist climate mode signals with a strong “regional” influence such as 

SAM, NAM, which are also well described in the literature. A schematic representation of the 

construction of the climate mode influence within the synthetic data set is described in Figure 

2.7. 
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Figure 2.7: Schematic Representation of Climate Mode Component. 

 

 
 

2.4.4.1 El Niño-Southern Oscillation 

Analysis of satellite altimetry data spanning the period post 1993 provide clear evidence that 

ENSO events are the most statistically significant source of inter-annual variations in global 

mean sea level (Nerem et al., 2010). Nerem et al. (1999) observed a direct correlation between 

the 20 mm rise and fall in the time series of global averaged mean sea level and the significant 

ENSO event in 1997-1998. Similarly, a drop in global mean sea level of about 7 mm has been 

attributed to the exceptionally strong La Niña event in 2011 (Fasullo et al., 2013). 

 

Zhang and Church (2012) analysed satellite altimeter data spanning the period from 1993 to 

2009 in order to isolate inter-annual and decadal climate variability associated with ENSO. This 

analysis found that only 20% of the observed variance was described by simple single variable 

linear regression analysis. However, multiple variable linear regression including filtered 

indices of the El Niño-Southern Oscillation and the Pacific Decadal Oscillation accounted for 

almost 60% of the observed variance. Zhang and Church (2012) determined an Inter-annual 

Climate Index (ICI) and Decadal Climate Index (DCI) based on high-pass filtering of the 

Multivariate ENSO Index (MEI) and low-pass filtering of the Pacific Decadal Oscillation (PDO), 

respectively. 
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Zhang and Church (2012) identified the inter-annual sea level fingerprint to have a higher 

signal in the eastern and western extremities of the tropical Pacific, with maximum amplitudes 

of +70 mm per unit Inter-annual Climate Index (ICI) change in the east and -70 mm in the west. 

The peak ICI determined during the analysis period was 2.14 (associated with the 1997/98 El 

Niño event) equating to an amplitude of approximately ± 150 mm. 

 

The ICI (Zhang and Church, 2012) and a smoothed monthly SOI (BoM, 2013) provide a strong 

temporal correlation (refer Figure 2.8). Fitting the maximum amplitude (150mm) to the peak 

of the smoothed SOI during the 1997/98 El Niño enables a time series of peak amplitude 

representative of the ENSO signal to be extended back to 1876 (refer Figure 2.9). A portion of 

this smoothed time series has been recycled to extend an “ENSO-like” signal over the full 

width of the synthetic data set (1850-2010). 

 

To construct the ENSO induced signal in the synthetic data set, the maximum amplitude time 

series signal (refer Figure 2.9) has been factored between ± 1 at 0.02 increments, creating 101 

time series data sets (including a zero time series). 

 

Figure 2.8: Comparison of SOI and ICI. 

 
Notes: 
 
1. Monthly SOI values from BoM (2013). SOI(2) has been smoothed using a modified Daniell kernel with variable 

weighting 4 months either side; and 
 
2. Inter-annual Climate Index (ICI) based on Zhang and Church (2012). 
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Figure 2.9: Maximum Monthly Sea-Surface Anomaly Attributable to ENSO. 

 
Notes: 
 
1. Monthly SOI (1876-2013) from BoM (2013) smoothed using a convoluted modified Daniell kernel with variable 

weighting 4 months either side; 
 
2. Smoothed SOI extended back to 1850 by replicating a section of the record (1923-1950) to match the 1876 start 

point; and 
 
3. Maximum anomaly equates to the maximum inter-annual water surface influence of ENSO based on Zhang and 

Church (2012). 
 

2.4.4.2 Pacific Decadal Oscillation (PDO) 

By integrating satellite altimetry (post 1993) with long record length tide gauge records, 

Hamlington et al. (2013) examined long (decadal and longer) time scale climate signals to 

quantify their contribution to sea level trends at a regional and global scale. This study 

quantified the significance of the PDO on decadal sea level trends at both the regional and 

global scale, in particular defining the extent to which the PDO has induced acceleration and 

deceleration in global averaged mean sea level over the period from 1950-2010. 

 

The Decadal Climate Index (DCI) determined by Zhang and Church (2012) low-pass filtering of 

the Pacific Decadal Oscillation (PDO), determined a maximum positive sea level variation in the 

central and eastern tropical pacific of 80 mm per unit DCI analysing global satellite altimetry 

data spanning the period 1993-2009. Similarly, this analysis determined maximum negative 

sea level responses in a narrow western tropical region of the order of -150 mm per unit DCI. 

 

The peak positive DCI determined during the analysis period (February 1997) of 0.77 equates 

to a maximum amplitude of approximately +62 mm. The DCI (Zhang and Church, 2012) and a 

smoothed monthly PDO (JISAO, 2014) provide a strong temporal correlation (refer Figure 

2.10). By fitting the maximum amplitude (62mm) to the corresponding peak of the smoothed  
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Figure 2.10: Comparison of PDO and DCI. 

 

 
Notes: 
 
1. Monthly PDO values from JISAO (2014). PDO(2) has been smoothed using a modified Daniell kernel with 

variable weighting 16 months either side; and 
 
2. Decadal Climate Index (DCI) based on Zhang and Church (2012). 
 

 

Figure 2.11: Maximum Monthly Sea-Surface Anomaly Attributable to PDO. 

 

 
Notes: 
 
1. Monthly PDO (1900-2013) from JISAO (2014) smoothed using a convoluted modified Daniell kernel with variable 

weighting 16 months either side; 
 
2. Smoothed PDO extended back to 1850 by replicating the latter section of the record to match the 1900 start 

point; and 
 
3. Maximum anomaly equates to the maximum positive water surface influence of PDO based on Zhang and 

Church (2012). 
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PDO enables a time series of peak positive sea surface anomaly representative of the PDO 

signal to be extended back to 1900 (refer Figure 2.11). A portion of this smoothed time series 

has been recycled to extend a “PDO-like” signal over the full width of the synthetic data set 

(1850-2010). To construct the PDO induced signal in the synthetic data set reflective of the 

range between peak positive and negative sea surface anomalies determined by Zhang and 

Church (2012), the maximum positive amplitude time series signal (refer Figure 2.11) has been 

factored between + 1 and – 1.9 at 0.05 increments, creating 59 time series data sets (including 

a zero time series). 

2.4.4.3 Northern Annular Mode (NAM) and North Atlantic Oscillation (NAO) 

Woolf et al. (2003) notes the atmosphere in the northern-hemisphere winter features five 

large-scale perturbations in lower-level pressure fields or ‘‘Centers of Action’’ (Rossby, 1939). 

The Icelandic Low and the Azores High are the most significant Centres for the Atlantic/Europe 

region. These features dictate the mean zonal flow in the region and strongly affect surface 

fluxes. Whilst not fixed in intensity or position, these features exhibit significant inter-annual 

and inter-decadal variability. One important feature is a significant tendency of pressure in the 

Icelandic Low and Azores High to vary in anti-phase, a see-saw known as the North Atlantic 

Oscillation (NAO). The NAO is closely related to the NAM, which has similar structure over the 

Atlantic but is more zonally symmetric (Trenberth et al., 2007). 

 

The NAO is considered to be a singular major atmospheric, basin scale pattern, which affects 

sea-level around Europe and further afield (Tsimplis and Josey, 2001; Tsimplis et al., 2006; 

Wakelin et al., 2003; Woolf et al., 2003; Yan et al., 2004).The NAO index, defined as the 

difference of normalised mean sea level pressure anomalies between Lisbon, Portugal and 

Stykkisholmur, Iceland has become the most widely used NAO index and extends back in time 

to 1864 (Hurrell, 1995), and further back in time to 1821 if Reykjavik is used instead of 

Stykkisholmur and Gibraltar instead of Lisbon (Jones et al., 1997).  

 

Woolf et al. (2003) analysed Topex/Poseidon (T/P) satellite data for the period 1993–2001, 

determining that a linear relationship between the winter sea-level anomalies and the NAO 

Index (December – March) can be used to explain the majority of the variability in the North 

Sea, the Mediterranean and the eastern parts of the North Atlantic (Tsimplis et al., 2006). 

Woolf et al. (2003) confirmed that the correlation between the NAO and sea level is not 
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uniform but positive only for the northern part of Europe and negative for the south. The zone 

with negative correlation extended from the subtropics up to southwest England. 

 

Yan et al. (2004) notes that the linear relationship between sea-level anomalies and the winter 

averaged NAO index in northwest Europe ranged from about 100 to +200 mm per NAO unit 

(Wakelin et al., 2003; Woolf et al., 2003). The peak winter (December – March) averaged NAO 

index (2.44) during the period of analysis of Woolf et al. (2003) equates to a maximum sea-

level anomaly attributable to the NAO of approximately +450 mm.By fitting the maximum 

anomaly (450 mm) to the peak of the smoothed NAO index (CRU, 2013; Jones et al., 1997) 

between 1993 and 2001 enables a time series of peak sea surface anomaly attributable to the 

NAO signal to be estimated from 1850 to present (refer Figure 2.12). 

 

Woolf et al. (2003) also noted the significant negative correlation to the NAO index around 

areas of the North Atlantic (subtropics to southwest England) producing a maximum sea 

surface anomaly half that of the positively correlated maximum influence. Therefore, in order 

to construct a component that mimics the NAO induced signal in the synthetic data set, the 

maximum amplitude time series signal (refer Figure 2.12) has been factored between -0.5 and 

+1 at 0.02 increments, creating 76 time series data sets (including a zero time series). 

 

Figure 2.12: Maximum Monthly Sea-Surface Anomaly Attributable to NAO. 

 

 
Notes: 
 
1. Monthly NAO index (CRU, 2013; Jones et al., 1997) smoothed using a convoluted modified Daniell kernel with 

variable weighting 4 months either side; 
 
2. Maximum anomaly equates to the maximum average winter water surface influence of NAO between 

September 1992 and August 2001 (Woolf et al., 2003) fitted to the smoothed monthly NAO index time series. 
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2.4.4.4 Southern Annular Mode (SAM) and Antarctic Oscillation (AAO) 

The principal mode of variability of the atmospheric circulation in the southern-hemisphere 

extra-tropics is now known as the Southern Annular Mode (Trenberth et al., 2007). Variously 

known as the Antarctic Oscillation (AAO) or the Southern Annular Mode (SAM) (Thompson and 

Wallace, 2000), this climate mode consists of an oscillation of sea level atmospheric pressure 

between polar and subtropical latitudes, associated with oscillations in circumpolar winds in 

the troposphere and stratosphere, including at the sea surface (Hughes et al., 2003). 

 

Trenberth et al. (2007) noted the imprint of SAM variability on the Southern Ocean system is 

observed as a coherent sea level response around Antarctica (Aoki, 2002; Hughes et al., 2003) 

and by its regulation of Antarctic Circumpolar Current flow through the Drake Passage 

(Meredith et al., 2004). Trenberth et al. (2007) describe the SAM Index as a measure of either 

the difference in average MSLP between southern-hemisphere middle and high latitudes 

(usually 45°S and 65°S), from gridded or station data (Gong and Wang, 1999; Marshall, 2003), 

or the amplitude of the leading empirical orthogonal function of monthly mean southern-

hemisphere 850 hPa height poleward of 20°S (Thompson and Wallace, 2000). This index was 

formerly known as the Antarctic Oscillation (AAO) Index or High Latitude Mode (HLM) Index. 

 

Aoki (2002) analysed available hourly tide gauge data from five stations around Antarctica 

(Vernadsky, Syowa, Mawson, Davis and Casey) for the period January 1993 to December 1999, 

determining a high negative correlation in the linear relationship between the sea level 

variations and the daily AAO Index. Linear regressions of the high-passed AAO signal explained 

17–25% of the sea level variance with variations of approximately -25 mm corresponding to 

each unit of AAO Index (Aoki, 2002). Analysis of the Vernadsky (Faraday) record indicates a 

regression coefficient of -9.2 mm per unit of AAO Index (up to 4 years) but, with considerable 

frequency dependence in the relationship (Hughes CW 2013, pers. comm., 19 December). 

 

For the period of analysis of Aoki (2002), the daily AAO Index (NWS, 2013) ranged from +4.009 

to -4.855 equating to a maximum sea level anomaly attributable to the AAO of approximately -

101 mm to +122 mm. By fitting these maximum amplitudes to the respective positive and 

negative peaks of the smoothed monthly SAM Index (BAS, 2013) over the corresponding 

timeframe, enables a time series of peak amplitude representative of the SAM signal to be 

extended back to 1957 (refer Figure 2.13). The major portion of this smoothed time series has 
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been recycled to pad the record over the full width of the synthetic data set (1850-2010). To 

construct the SAM induced signal in the synthetic data set, the maximum amplitude time 

series signal (refer Figure 2.13) has been factored from zero to 1 at 0.02 increments, creating 

51 time series data sets (including a zero time series). 

 

Figure 2.13: Maximum Monthly Sea-Surface Anomaly Attributable to SAM. 

 

 
Notes: 
 
1. Monthly SAM Index (1957-2013) from NWS (2013) smoothed using a convoluted modified Daniell kernel with 

variable weighting 4 months either side; 
 
2. Smoothed SAM Index extended back to 1850 by replicating the actual record (1957-2013); and 
 
3. Maximum anomaly attributable to SAM based on fitting the results of Aoki (2002) to monthly SAM Index (NWS, 

2013). 
 

2.4.5 Noise 

Ocean water levels measured at tide gauges are a composite of numerous complex 

oceanographic and meteorological phenomena with global, ocean basin and local scale 

process origins. 

 

Environmental time series data records are inherently embedded with considerable noise. This 

is particularly the case with monthly ocean water level records. Following the removal of the 

underlying trend, dominant cyclical dynamic influences (refer Sections 2.4.1 to 2.4.4) and serial 

correlation between successive measurements, the residual is characterised generally as 

stationary, normally distributed, random white noise (Grieser et al., 2002). 
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The 43 PSMSL gauge sites selected for this analysis (refer Appendix A) provide good global 

coverage with considerable local variability from which to extract estimates of the likely range 

of noise attributes within conventional monthly averaged ocean water level data sets. The 

following process has been applied to each of these monthly average water level time series to 

estimate the white noise component embedded within the records: 

 

 isolate and remove seasonal influences from monthly average water level data sets 

using “stl decomposition” function in the R analytical software package (Cleveland et al., 

1990; R Core Team, 2013)(refer Method 1, Section 2.4.1); 

 fit generalised least squares (GLS) linear regression model to “de-seasonalised” monthly 

time series data to extract residuals using “nlme” package in R (Pinheiro et al., 2013); 

and  

 fit an autoregressive (AR) model to the residuals from the fitted GLS regression model to 

remove the serial correlation using R (R Core Team, 2013). Analysis of the correlogram 

of the Partial Autocorrelation Function (PACF) has then been used to determine the 

optimum lagged AR model to remove serial correlation from the residuals (to represent 

white noise). 

 

Only 5 sites (Arrecife, Canary Islands; Churchill, Canada; Jolo, Philippines; Mossel Bay, South 

Africa; Visakhapatnam, India) proved unsuitable for extraction of noise via the process 

adopted, largely due to either significance of gaps in the available data record or significance 

of the deviation from linear of the assumed underlying trend. 

 

Visual inspection of the histogram of uncorrelated residuals from each station record (refer 

Appendix B) indicates close resemblance to optimum Gaussian normal distribution, in turn 

exhibiting properties of white noise. From the above-mentioned analysis, the standard 

deviation of the residuals ranged from a low of 23 mm (Magueyes Island, Puerto Rico) to a 

high of 290 mm (Trois-Rivieres, Canada), the latter affected by significant variations in 

glaciological discharges. The next highest standard deviations recorded were 144 mm (Helsinki, 

Finland) and 143 mm (Cuxhaven, Germany). 

 

In order to generate a white noise component reflective of real-world attributes, a Gaussian 

(normal) distributed set of residuals of length 1920 months will be randomly sampled for each 
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time series in the synthetic data set. The scale of each set of normally distributed white noise 

residuals will be determined by randomly sampling from a bin of standard deviations ranging 

from 20 to 300 mm (between 20 and 150 in single increments plus 200, 250 and 300; 134 

standard deviations in total) to reflect the results from analysis of the gauge records sampled. 

 

2.5 Other Considerations 
In addition to the range of cyclical influences, noise and mean sea level components 

mentioned in this chapter, ocean water level data sets measured at land based tide gauges are 

also comprised of datum shifts and other vertical land motion processes. In particular, small (< 

10 mm) vertical step jumps (positive and negative) are likely in lengthy tide gauge records due 

to absolute levelling errors at specific junctures in the record associated with the installation of 

improved measuring technologies and/or relocation of the recording instrument. 

 

Hannah and Bell (2012) note a 20 mm datum shift in the long Wellington, New Zealand record, 

associated with the installation of a new tide gauge facility in 1944. Similarly, Breaker and 

Ruzmaikin (2013) identified an increase in the average mean sea level record at San Francisco 

between 1877 and 1897, which in part was attributable to moving the tide gauge from Fort 

Point to Sausalito in San Francisco Bay. Examination of tidal records within San Francisco Bay 

indicate a positive gradient in the mean tidal elevation between these two locations resulting 

from complex geographic and bathymetric influences (Conomos, 1979) estimated at 

approximately 20 mm (Breaker and Ruzmaikin, 2013). 

 

Douglas (2008) noted the possibility of a previously unrecognised vertical offset between the 

long Brest (France) and Newlyn (UK) gauge records of approximately 23 mm for the common 

period between records prior to 1945. Wöppelmann et al. (2006) notes the Brest tide gauge 

was destroyed during bombing at the end of World War II and though the gauge recording 

facility was reconstructed during the 1950s, the quality of the observations deteriorated.  

 

The above-mentioned examples are postulated to be relatively commonplace artefacts within 

lengthy time series tide gauge records. Similarly, vertical datum shifts are routine for tide 

gauge records in regions experiencing tectonic or geological instability. Such datum shifts can 

be quite significant as evidenced in the tide gauge record at Hanasaki on the north shore of 

Hokkaido Island, Japan. This gauge was the closest Japanese station to the great Kurile Islands 
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earthquake on 4 October 1994 (Katsumata et al., 1995). Inspection of the monthly average 

ocean water level records at the Hanasaki II gauge (PSMSL, 2014) indicate a distinct vertical 

offset of approximately 200 mm in the record either side of the earthquake event indicative of 

significant subsidence of the land mass in the vicinity of the tide gauge (refer Figure 2.14). 

 

Figure 2.14: Datum Shift in Tide Gauge Record at Hanasaki, Japan. 

 

 
Notes: 
 
1. Monthly average ocean water level for Hanasaki II station, Hokkaido Island, Japan obtained from PSMSL (2014); 

and 
 
2. Sharp discontinuity in record of the order of 200 mm evident around the timing of the earthquake and 

associated tsunami which occurred in the Kuril Islands on 4 October 1994. 
 

 

The above-mentioned circumstances give rise to positive and negative vertical offsets (or step 

functions) in tide gauge records of varying magnitude. Although recognised, it is not proposed 

to include a separate component within the synthetic data set to accommodate such 

influences. Unlike the other components comprising the synthetic data set, there is very little 

published information within the scientific literature sufficient to rigorously estimate the scale, 

timing and global scope of such datum shift influences.  

 

The data repositories of the PSMSL are quality controlled and where possible, reduced to a 

common datum, known as the Revised Local Reference (RLR) ensuring they are suitable for use 

in research quality time series analysis. Metadata for each station provides information on 

known datum shifts with associated quality assurance warning flags. 
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2.6 Summary 
The core synthetic data set comprises 20,000 generated monthly average water level time 

series spanning the period from January 1850 to December 2009 (160 years). Each time series 

comprises separately randomly sampled components of seasonal influence, nodal tide, pole 

tide, global and regional climate mode influences and white noise added to a fixed mean sea 

level as summarised in Table 2.1.  

 

In addition to examining the utility of various analytical methodologies to isolate the mean sea 

level signal, the core data set will also be used to investigate any issues associated with record 

length and end effects as well as monthly versus annual data. Core synthetic monthly and 

annual average water level data sets for analysis are summarised in Table 2.2. 

 

Appendix C provides a visual comparison of selected long monthly average ocean water level 

data sets with randomly generated time series from the synthetic data set.  

 

Table 2.1: Summary of Core Synthetic Data Set. 

Component 
Sampling 

Details 
Type Sampling 

Bins 
Mean Sea Level Fixed 1 Section 2.3 
Seasonal Influence Random 82 Section 2.4.1 
Nodal Tide Random 1141 Section 2.4.2 
Pole Tide Random 106 Section 2.4.3 
Global Climate Mode: 
 

ENSO 
 

PDO 

 
 

Random(Note 1) 

 

Random(Note 1) 

 
 

101 
 

59 

 
 

Section 2.4.4.1 
 

Section 2.4.4.2 
Regional Climate Modes: 
 

NAM/NAO 
 

SAM/AAO 

 
 

Random(Note 2) 

 

Random(Note 2) 

 
 

76 

 

51 

 
 

Section 2.4.4.3 
 

Section 2.4.4.4 
White Noise Random (Note 3) Section 2.4.5 

 
Notes: 
 
1. Only one global climate mode component will be randomly sampled per time series; 
 
2. Only one regional climate mode component will be randomly sampled per time series; and 
 
3. White noise residuals are generated by randomly sampling within the defined standard deviation range to 

create a normal distribution (refer Section 2.4.5). The generated normal distribution is then randomly sampled 
to derive the white noise component for each respective time series. 
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Table 2.2: Generated Monthly and Annual Average Data Sets for Analysis. 

Ref No. 
(M=Monthly, A=Annual) 

Time Span 

Months Years 
M1, A1 Jan 1850 - Dec 2009 160 
M2A, A2A Jan 1850 - Dec 1929 80 
M2B, A2B Jan 1930 - Dec 2009 80 
M3A, A3A Jan 1850 - Dec 1889 40 
M3B, A3B Jan 1890 - Dec 1929 40 
M3C, A3C Jan 1930 - Dec 1969 40 
M3D, A3D Jan 1970 - Dec 2009 40 

 
Notes: 
 
1. All time-series have been generated from the core monthly synthetic data set (M1). M2* and M3* datasets 

have been subsetted from data set M1 using R (R Core Team, 2013); and 
 
2. A* datasets generated through aggregating associated M* dataset using R (R Core Team, 2013). 
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Chapter 3 
 
 

Testing to identify the optimum 
performing analytic for isolating mean 

sea level with improved temporal 
accuracy 

 
Synopsis: A broad range of analytical techniques were tested against the synthetic data set 
(Chapter 2) for their utility to isolate the trend with improved temporal accuracy from 
conventional, long, individual ocean water level data sets. Time series techniques 
considered included linear and polynomial regression, LOESS smoothing, smoothing splines, 
moving averages, structural models, digital filters, singular spectrum analysis (SSA), 
empirical mode decomposition, wavelets and the respective derivatives of these 
techniques. Sensitivity testing around key parametrization was undertaken to optimize 
performance of each of the analytics specifically for application with conventional ocean 
water level data. In total, some 1462 separate analyses were applied to the synthetic data 
set, resulting in over 29 million individual time series analyses. This work is likely the largest 
undertaking of its type for time series analysis. Key findings were that enhanced accuracy in 
resolving the temporal resolution of the trend were achieved through the use of longer, 
annual average data, coupled with the use of so called “data adaptive” analytics, in 
particular, SSA and multi-resolution wavelet decomposition. SSA is more instructive and 
convenient for the process at hand given the technique’s enhanced capability to separate 
key harmonic components of the time series. 
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3.1 Background 
Monthly and annual average ocean water level records used by sea level researchers are a 

complex composite of numerous dynamic influences of largely oceanographic, atmospheric or 

gravitational origins operating on differing temporal and spatial scales, superimposed on a 

comparatively low amplitude signal of sea level rise driven by climate change influences (see 

Chapter 2 for more detail).  

 

The mean sea level (or trend) signal results directly from a change in volume of the ocean 

attributable principally to melting of snow and ice reserves bounded above sea level (directly 

adding water), and thermal expansion of the ocean water mass. This low amplitude, non-

linear, non-stationary signal is quite distinct from all other known dynamic processes that 

influence the ocean water surface which are considered to be stationary; that is, they cause 

the water surface to respond on differing scales and frequencies, but do not change the 

volume of the water mass. 

 

In reality, improved real-time knowledge of velocity and acceleration rests entirely with 

improving the temporal resolution of the mean sea level signal by isolating and removing the 

“contaminating” dynamic signals from the time series record. In theory, this sounds 

straightforward, but the tools available to undertake such a task, in part rely on our ability to 

accurately understand and quantify the relative contributions of all influences embedded 

within ocean water level data. Much of the contemporary science around elements of the sea 

level “equation” continues to evolve at global and ocean basin scales and remains highly 

contested in the literature. Some key recent examples include: 

 

 influence of and potential slowing of the Atlantic Meridional Overturning Circulation 

(Buckley and Marshall, 2016); 

 contribution of the 1991 Mt Pinatubo volcanic eruption to masking GMSL acceleration 

(Fasullo et al., 2016);  

 possible reversal in the long held theory pertaining to the surface mass balance of the 

Antarctica ice sheet (Zwally et al., 2015);  

 potential bias in the drift of the first 6 years of satellite altimetry missions (Watson et al., 

2015); and 
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 temporal characteristics of longer scale oceanographic and meteorological artefacts that 

might have cycles exceeding many decades to a century (Chambers et al., 2012; Minobe, 

1999) 

 

The simple examples listed above serve merely to highlight the complex nature of sea level rise 

and the many processes which can affect the water level recorded at a particular place and 

point in time and the evolving nature of the science pertaining to same. With so much critical 

reliance on accurate estimates of these physical parameters to understand climate change and 

improve future projections, there is a heightened urgency in identifying the better performing 

analytics for defining the temporal characteristics of mean sea level (including associated 

velocity and acceleration) from available long monthly and annual average water level data 

sets. 

 

To date, the wide range of techniques employed to detect mean sea level (and associated 

velocities and accelerations) have proven difficult to compare directly, particularly when some 

of the more widely used techniques (such as linear and quadratic approaches) provide 

erroneous or misleading estimates due to the insensitivity of the technique or inherent 

method bias or “trends” increasingly corrupted by inter-decadal influences (in particular) as 

the time base of the available data record shortens. As a result, the key debate around 

detecting critical changes in the long-term rate of sea level rise has been unwittingly side-

tracked by the application of inadequate analytical techniques and debate over the limitations 

and intuitive application of more sophisticated spectral analytics applied to ocean water level 

records.  

 

Over recent decades, the emergence and rapid improvement of data adaptive approaches to 

isolate trends from nonlinear, non-stationary and comparatively noisy environmental data sets 

such as Empirical Mode Decomposition (EMD) (Huang et al., 1998, Wu and Huang, 2009), 

Singular Spectrum Analysis (SSA) (Broomhead and King, 1986; Golyandina et al., 2001; Vautard 

and Ghil, 1989) and Wavelet analysis (Daubechies, 1992; Grossmann and Morlet, 1984; 

Grossmann et al., 1989) are theoretically encouraging for the task at hand. The continued 

development of data adaptive and other spectral techniques (Tary et al., 2014) have given rise 

to recent variants such as Complete Ensemble EMD (Han and van der Baan, 2013; Torres et al., 
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2011) and Synchrosqueezed Wavelet Transform (SWT) (Daubechies et al., 2011; Thakur et al., 

2013). 

 

The utility of the application of various techniques to isolate the mean sea level signal from 

conventional long, ocean water level time series has largely been left to the assumed 

sophistication of the analytic, based on the attendant literature. This chapter provides a 

summary of the detailed time series analysis testing regime employed to identify the most 

efficient method(s) for estimating/isolating the mean sea level (trend) from conventional 

monthly and annual average time series data used extensively in sea level research (such as 

the global data repositories of the PSMSL).  

 

The synthetic data set developed as part of this research program (Chapter 2) provides the 

ideal platform against which to test a wide range of analytical approaches for their utility to 

isolate the fixed mean sea level signal embedded within each of the 20,000 time series of the 

data set. Refer Figure 3.1 for example synthetic time series. 

 

3.2 Testing Methodology 
The method to determine the most robust time series method for isolating mean sea level 

with improved temporal accuracy is relatively straightforward and has been based on 3 key 

steps, namely: 

 

Step 1: development of synthetic data sets to test (refer Chapter 2); 

 

Step 2: application of a broad range of analytical methods to isolate the mean sea level trend 

from the synthetic data set; and 

 

Step 3:  comparative assessment of the performance of each analytical method using a multi-

criteria analysis (MCA) based on some key metrics and a range of additional 

qualitative criteria relevant to its applicability for broad, general use on conventional 

ocean water level data worldwide. 
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Figure 3.1: Indicative monthly average ocean water level time series from synthetic data set. 

 

 
 
Notes: 
 
The scale of signals highlighted in Panels [B] to [G] are indicative only and vary in amplitude based on global position 
and local influencing factors. Panel [H] is the composite time series of all contributory signals denoted with the 
mean sea level signal highlighted in red. For specific detail on the nature of signals embedded within the synthetic 
ocean water level data set, refer Chapter 2.  
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3.2.1 Application of analysis methods to extract trend from synthetic data sets 

The time series analysis methods that have been applied to the synthetic data set to estimate 

the trend are summarised in Table 3.1. This research has not been designed to consider every 

time series analysis tool available. Rather, the testing regime is aimed at appraising the wide 

range of tools currently used for mean sea level trend detection of individual records, with a 

view to improving generalised tools that can be customized (or optimized) for sea level 

researchers.  

 

Some additional, more recently developed data adaptive methods such as CEEMD (Torres et 

al., 2011) and SWT (Daubechies et al., 2011; Thakur et al., 2013) have also been included in the 

analysis to consider their utility for sea level research. It is acknowledged that various methods 

permit a wide range of parameterisation that can critically affect trend estimation. In these 

circumstances, broad sensitivity testing has been undertaken to identify the better performing 

combination and range of parameters for a particular method when applied specifically to 

ocean water level records (as represented by the synthetic data sets). 

 

In some cases the sensitivity testing of a particular method might involve several sub-methods 

in combination with a range of additional conditions, which are also detailed in Table 3.1. 

Every combination of sub-method and additional condition has been tested on the complete 

synthetic data set (refer Chapter 2, Table 2.2). 

 

With methods such as SSA and SWT, it has been necessary to develop auto detection routines 

to isolate specific elements of decomposed time series with characteristics that resemble low 

frequency trends. Direct consultation with leading time series analysts and developers of 

method specific analysis tools has assisted to optimise sensitivity testing (refer Section 3.6). 

 

The R open source language for statistical computing and graphics (R Core Team, 2014) has 

been used as the framework for undertaking the extensive computing tasks required to 

undertake the time series analysis. Where possible, relevant extension packages in R have 

been used to facilitate method specific analysis as indicated in Table 3.1. Owing to the size of 

the core synthetic data set (20,000 time series) and the sheer computational expense of some 

of the algorithms tested (e.g., EEMD and CEEMD) it has been necessary to undertake large 

portions of the analysis in combination with cluster computing systems made available by  
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Table 3.1: Summary of Analysis Techniques Applied to Synthetic Data Set. 

 
METHOD SUB-METHOD ADDITIONAL 

CONDITION 
SOFTWARE PACKAGE/ 

ADDITIONAL COMMENT 
Linear Regression n/a n/a n/a 
Polynomial 
Regression 

Second order n/a n/a 

LOESS Smoothing n/a n/a  = 0.75, order = 2, weighted least 
squares 

Smoothing Splines Cubic smoothing; 
Thin plate PRS; and 
B-Spline 

λ based on both 
GCV and REML 

“mgcv” package in R (Eilers and Marx, 
1996; O’Sullivan, 1986, 1988; Wood, 
2006). 

Moving average (1) 10-40 year smooth 
(10 yr increment) 

Single, triple and 
quad averaging. 

“zoo” package in R (Zeileis and 
Grothendieck, 2005). 

Structural models 
(2) 

Seasonal decomposition 
& basic structural model 

Based on LOESS and 
ARIMA 

Stl decomposition in R (Cleveland et al., 
1990). StructTS in R (Durbin and 
Koopman, 2012). 

Butterworth filter 
(3) 

10-80 yr cycles removed 
(10 yr increment) 

n/a GRETL (2013) 

SSA (4,6) 1d and Toeplitz variants Win: 10-80 yr 
(10 yr increment) 

“Rssa” package in R (Golyandina and 
Korobeynikov, 2014). 

EMD Envelope: 
Interpolation; 
Spline smoothing; 
Locfit smoothing; 
Sifting by interpolation 
and spline smoothing. 

Boundary 
condition: None; 
Symmetric; 
Wave; 
Periodic. 

“EMD” package in R (Huang et al., 1998; 
Kim and Oh, 2009; Kim et al., 2012). 

EEMD (5) Noise amplitude: 
20, 50, 100, 200 mm 

Trials:  
20, 100, 200 

“hht” package in R (Wu and Huang, 2009; 
Bowman and Lees, 2013). 

CEEMD (5) Noise amplitude: 
20, 50, 100, 200 mm 

Trials:  
20, 100, 200 

“hht” package in R (Torres et al., 2011; 
Bowman and Lees, 2013). 

Wavelet Analysis Multi-resolution 
decomposition using 
MODWT.  

Daubechies filters: 
Symmlet (S2, S4, S6, 
S8, S10) 

“wmtsa” package in R (Daubechies, 1988, 
1992; Percival and Walden, 2006). 

Synchrosqueezed  
Wavelet Transform 
(SWT) (6) 

Wavelet filters: 
“Bump” (mu=1, s=0.2); 
“CMHat” (mu=1, s=5); 
“Morlet” (mu=0.05PI); 
“Gauss” (mu=2, s=.083.) 

Gen parameter: 
100 
1000 
10,000 
100,000 

“SynchWave” package in R (Daubechies 
et al., 2011; Thakur, 2013). 

 
Notes:  
 
The above-mentioned table provides a general summary of the analytical techniques applied to the 14 synthetic 
data sets (refer Table 2.2 and Table 3.2) in order to test the utility of extracting the embedded mean sea level 
(trend) component. The “Sub-Method” and “Additional Condition” provide details on the sensitivity analysis 
pertaining to the respective methodologies. Where possible, relevant analytical software from the R open source 
suite of packages have been used (R Core Team, 2014). 
 
(1) Moving (or rolling) averages are centred on the data point in question and therefore the determined trend is 

restricted to half the averaging window inside both ends of the data set; 
(2) Structural models are only relevant for monthly average data sets; 
(3) For the respective 40 year monthly and annual synthetic data sets, only cycles up to and including 40 years have 

been removed by the digital filter; 
(4) For the respective 40 year data sets, only window lengths from 10 - 30 years have been considered. Similarly, 

for the respective 80 year data sets, only window lengths from 10 - 70 years have been considered; 
(5) The noise amplitude for the annual data sets includes the full range, but, for the monthly data sets only ranges 

from 50 - 200 mm; and 
(6) Auto-detection routines have been specifically written to isolate decomposed elements of the time series with 

low frequency trend characteristics.  
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Table 3.2: Summary of Number of Analyses Applied to Each Data Set. 

 
METHOD 

SYNTHETIC DATASETS 
SUM M1 M2 M3 M4 M5 M6 M7 A1 A2 A3 A4 A5 A6 A7 

Linear Regression 1 1 1 1 1 1 1 1 1 1 1 1 1 1 14 
Polynomial 
Regression 1 1 1 1 1 1 1 1 1 1 1 1 1 1 14 

LOESS Smoothing 1 1 1 1 1 1 1 1 1 1 1 1 1 1 14 
Smoothing Splines 6 6 6 6 6 6 6 6 6 6 6 6 6 6 84 
Moving average 12 11 11 6 6 6 6 12 11 11 6 6 6 6 116 
Structural models 2 2 2 2 2 2 2 - - - - - - - 14 
Butterworth filter 8 8 8 4 4 4 4 8 8 8 4 4 4 4 80 
SSA 32 28 28 12 12 12 12 32 28 28 12 12 12 12 272 
EMD 16 16 16 16 16 16 16 16 16 16 16 16 16 16 224 
EEMD 12 12 12 12 12 12 12 12 12 12 12 12 12 12 168 
CEEMD 12 12 12 12 12 12 12 12 12 12 12 12 12 12 168 
Wavelet Analysis 5 5 5 5 5 5 5 5 5 5 5 5 5 5 70 
Synchrosqueezed  
Wavelet Transform 
(SWT) 

16 16 16 16 16 16 16 16 16 16 16 16 16 16 224 

SUM 124 119 119 94 94 94 94 122 117 117 92 92 92 92 1462 
 
Notes:  
 
The above-mentioned table provides a general summary of the number of analyses applied to each of the 14 
synthetic data sets (refer Table 2.2). Refer Table 3.1 for details of the parametrisation relevant to each method. 
Each dataset contains 20,000 individual time series. 
 

University of New South Wales Faculty of Engineering (Leonardi System) and Water Research 

Laboratory (Manning System). All scripting code to facilitate data preparation, analysis, remote 

UNIX batching and post analysis statistical processing have all been developed by the 

candidate as part of the research program. 

3.2.2. Multi-criteria assessment of analytical methods for isolating mean sea level 

In addition to identifying the analytic that provides the greatest temporal precision in resolving 

the trend, the intention is to further optimize this analytic (where possible) to underpin the 

development of tools for wide applicability by sea level researchers. Comparison of techniques 

identified in Table 3.1, have been assessed across a relevant range of quantitative and 

qualitative criteria, including: 

 

 Measured accuracy (Criteria A1). This criteria is based upon the cumulative sum of the 

squared differences between the fixed mean sea level signal and the trend derived from 

a particular analytic for each time series in the synthetic data set. This metric has then 

been normalised per data point for direct comparison between the different length 

synthetic data sets (40, 80 and 160 year of the 14 identified in Table 2.2) as follows: 
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 1   ,
                                            1  

 

Where:   represents the fixed mean sea level signal embedded within each time series;   represents the trend derived from the analysis of the synthetic data set using a 

particular analytical approach; and 

 represents the number of data points within each of the respective synthetic data 

sets (or lesser outputs in the case of moving averages). 

 

It is imperative to note that particular combinations of key parameters used as part of 

the sensitivity testing regime for particular methods (refer Table 3.1), resulted in no (or 

limited) outputs for various time series analysed. This occurred either due to the analytic 

not resolving a signal within the limitations established for a trend (particularly for auto 

detection routines necessary for SSA and SWT) or where internal thresholds and/or 

convergence protocols were not met for a particular algorithm and the analysis 

terminated. Where such circumstances occurred, the determined A1 metric was 

prorated to equate to 20,000 time series for direct comparison across methods. Where 

the outputs of an analysis resolved a trend signal in less than 75% (or 15,000 time series) 

of a particular synthetic data set, the result was not included in the comparative 

analysis. 

 

 Maximum standard deviation (Criteria A2). This straightforward statistical measure is 

based on the outputted trends from the application of a particular analytical method to 

the synthetic data sets, providing a measure of the scale of the spread of outputted 

trend estimates. Intuitively, the better performing analytic will minimise both criterions 

A1 and A2. 

 

 Computational expense (Criteria A3). This criterion provides a comparative assessment 

of the average processing time to isolate the trend from the longest synthetic data set 

(160 year, datasets A1 and M1). This metric provides an intuitive appraisal of the value 

of some of the more computationally demanding analytical approaches when weighed 

against, in particular, the measured accuracy (criteria A1). 
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 Consistency across differing length datasets (Criteria A4). This criteria is based on a 

qualitative assessment of the consistency in the performance of the respective method 

across the 3 key length data sets (40, 80 and 160 years) which cover the contemporary 

length of global data used by sea level researchers. It is important to gain an 

understanding of how the relative accuracy changes in the extraction of the trend (if at 

all) from shorter to longer length data sets. A simple tick indicates a general consistency 

in the level of accuracy across all datasets. A cross indicates that the analytic may not 

have been able to consistently isolate a signal with “trend-like” characteristics across all 

length datasets within the limits established through the sensitivity testing regime. 

 

 Capacity to improve temporal resolution of trend characteristics (Criteria A5). This 

criteria is similarly based on a qualitative assessment of the capacity for the isolated 

trend to inform changes to associated real-time velocity and accelerations, which are of 

great contemporary importance to sea level and climate change researchers. 

 

 Resolution of trend over full data record (Criteria A6). This criteria relates to the ability 

of a particular analytic to resolve the trend over the full length of the data record. It has 

become increasingly important for sea level researchers to gain a real-time 

understanding of any temporal changes in the characteristics of the mean sea level (or 

trend) signal in the latter portion of the record. 

 

 Ease of application by non-expert practitioners (Criteria A7). Several analytical 

approaches considered require extensive expert judgement to optimise performance. 

Despite the sensitivity analyses undertaken to broadly identify the optimal settings of a 

specific analytic in relation to the signals within the synthetic data sets, the sensitivity of 

key parameters can be quite high. Where limited (or no) specific knowledge of the 

analytic is required to optimise its performance, the analytic has been denoted with a 

tick. 

 

3.3 Results 
In total, 1462 separate analyses have been undertaken as part of the testing regime, 

translating to precisely 29.24 million individual time series analyses. Figure 3.2 provides a 

pictorial summary of the complete analysis of all monthly and annual data sets (40, 80 and 160 
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year synthetic data sets) plotted against the key metric, criteria A1. Equivalent scales for each 

panel provide direct visual and quantitative comparison between monthly and annual and 

differing length data sets. For the sake of completeness, it is worth noting a further 36 monthly 

analysis results lie beyond the limit of the scale chosen and therefore are not depicted on the 

chart. Where analysis resolves a trend signal across more than 75% (or 15,000 time series) of a 

synthetic data set, the output is used for comparative purposes and depicted on Figure 3.2 as 

“complete”. 

 

From Figure 3.2, it is evident that the cumulative errors of the estimated trend (criteria A1) are 

appreciably lower for the annual datasets when considered across the totality of the analysis 

undertaken. For example, of the 579 “complete” monthly outputs, 408 (or 71%) fall below an 

A1 level of 30 x 106 mm2 (where notionally the optimum methods reside). By comparison, of 

the 632 “complete” annual outputs, 566 (or 90%) are below this A1 level. 

 

The key reason for this is that the annualised data sets not only provide a natural low 

frequency smooth (through averaging calendar year monthlies), but, the seasonal influence (at 

monthly frequency) is largely removed, noting the bin of seasonal signals sampled to create 

the synthetic data set also contains numerous time varying seasonal signals derived using 

ARIMA. 

 

Based on visual inspection of Figure 3.2 alone, it is difficult to distinguish the influence of 

record length on capacity to isolate the trend component. However, detailed examination of 

the “complete” monthly outputs indicates that 77% of the 160 year dataset are contained 

below the A1 threshold level of 30 x 106 mm2, falling to 62% for the 40 year datasets. Similarly 

for the “complete” annual outputs, 98% of the 160 year dataset are contained below this 

threshold, falling to 85% for the 40 year datasets. The above-mentioned results provide strong 

evidence that estimates of mean sea level are enhanced generally through the use of longer, 

annual average ocean water level data. 

 

Based upon the appreciably reduced error in the estimate of the trend by using annual over 

monthly average ocean water level data, the multi-criteria assessment of the various 

methodologies advised in Table 3.1, have been limited to analysis outputs based solely on the 

annual synthetic data sets. Table 3.3 provides a summary of the multi-criteria assessment of 
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the better performing methods, based on optimisation of relevant parameters for each 

specific analytic. From this assessment, and within the limits of the analysis framework, multi-

resolution decomposition using short maximal overlap discrete wavelet transform (MODWT) 

and short length wavelets has proven generally to be the optimal analytic over the broad 

range of criteria outlined in section 3.2.3, whereby limited expert judgment is required to 

optimise performance. 

 
 

Figure 3.2: Analysis overview based on Criteria A1. 

 

 
Notes:  
 
This chart provides a summary of all analysis undertaken (refer Table 3.1). Scales for both axes are equivalent for 
direct comparison between respective analyses conducted on the Monthly (top panel) and Annual (bottom panel) 
synthetic data sets. The vertical dashed lines demarcate the results of each method on the 160, 80 and 40 year 
length data sets in moving from left to right across each panel. Where the analysis permitted the resolution of a 
trend signal across a minimum of 75% (or 15,000 time series) of a synthetic data set, this has been represented as 
“complete”. Those analyses resolving trends over less than 75% of a synthetic data set are represented as 
“incomplete”. 
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In addition to the results discussed above, there are some other interesting observations to be 

gleaned from the weight of analysis undertaken as part of this work. Of all methods considered 

in Table 3.1, the comparatively simple structural models applied to the monthly data sets 

provided the least utility in extracting the mean sea level trend component. This is not 

unexpected given that the range of complex signals within the synthetic data set are forced to 

be resolved into trend, seasonal and noise components only by these general models. 

 

Similarly, methods such as EMD with inherent limitations associated with mode mixing and 

splitting, aliasing, and end effects (Mandic et al., 2013), performed comparatively poorly across 

the range of synthetic data sets and across the range of parameters varied to optimise 

performance. The EEMD variant (Wu and Huang, 2009) which effectively combines EMD with 

noise stabilisation to offset the propensity for mode mixing and aliasing (Tary et al., 2014), 

exhibited substantially enhanced performance compared to EMD. Across all 14 monthly and 

annual average synthetic data sets, EEMD exhibited more stable and consistent results across 

all sensitivity tests with the best performing EEMD on average reducing the squared error by 

15% compared to the best performing EMD combination.  

 

A further advancement in the form of CEEMD (Torres et al., 2011) was developed to overcome 

a nuance of EEMD in which the sum of the intrinsic mode functions determined by the 

algorithm does not necessarily reconstruct the original signal (Tary et al., 2014). When similarly 

averaged across all synthetic data sets, the best performing combination of CEEMD 

parameterisation only reduced the squared error by less than 5% compared to the best 

performing EMD combination. Further, it should be noted the CEEMD algorithm was not able 

to resolve a trend for every time series where internal thresholds/convergence protocols were 

not met. 

 

Based on the testing regime performed on the synthetic data sets, EEMD outperformed 

CEEMD. Both variants of the ensemble EMD, using the sensitivity analysis advised, proved the 

most computationally expensive of all the algorithms tested. Both of these EMD variants were 

substantially outperformed by the MODWT and SSA, but importantly, processing times were of 

the order of 3000 - 4000 times that of these better performing analytics.  
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Table 3.3: Multi-Criteria Assessment by Method Across Annual Synthetic Data Sets. 

 

METHOD CRITERIA 
 

A1 
(mm2 x 106) 

(note 1) 

A2 
(mm) 

(note 1) 

A3 
(seconds) 
(note 2) 

A4 A5 A6 A7 

Single MA (30YR) 26.0 81 < 0.01     
SWT (Wavelet: CMH, 
generalization param 105) 

37.1 89 0.36     
Linear Regression 37.2 71 < 0.01     
Multi-resolution Wavelet 
Decomposition (MODWT) 
(Wavelet: s2) 

37.8 65 < 0.01     
SSA (1-D Toeplitz, auto select, 
window = 30YR) 

39.3 63 0.01     
EEMD (Noise = 100mm, trials 
= 200) 

40.9 94 24.06     
2nd Order Polynomial 43.7 102 < 0.01     
Butterworth Digital Filter 
(removal up to 40YR cycles) 

45.5 115 < 0.01     
CEEMD (Noise = 100mm, 
trials = 100) 

49.3 106 26.80     
LOESS Smoothing 49.7 139 < 0.01     
B-Spline Smoothing 
(λ based on REML) 

50.8 122 0.01     
EMD (Spline smooth sifting, 
symmetric end, λ based on 
golden search) 

51.0 125 20.57     
 

Notes:  
 
The above-mentioned table provide a summary of the better performing methods based on optimisation of 
relevant parameters for each specific analytic (refer Table 3.1 for full range of sensitivity analyses). Only methods 
which resolved a trend component for a minimum of 75% of each of the respective annual datasets (160, 2 x 80 and 
4 x 40 year) have been considered. The multi-resolution wavelet decomposition highlighted, demonstrates optimal 
performance across all criterions considered. Only the top 12 methods are indicated based on criteria A1 ranking. 
 
(1) Criteria A1 and A2 are based on the sum of the metrics for the 160 year data set added to the respective 

averages for the 2 x 80 year and 4 x 40 year data sets.  
(2) Criteria A3 represents the average time in seconds to analyse a single time series from the 160 year annual 

average synthetic data set.  
 

 

Clearly for these particularly complex ocean water level time series, the excessive 

computational expense of these algorithms has not proven beneficial. One of the more 

inconsistent performers proved to be the SWT. This algorithm proved highly sensitive to the 

combination of wavelet filter and generalisation parameter. Certain combinations of 
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parameters provided exceptional performance on individual synthetic datasets but proved less 

capable of consistently resolving low frequency “trend-like” signals across differing length 

datasets. Of the analytics tested, this algorithm proved the most complex to optimise in order 

to isolate and reconstruct trends from the ridge extracted components. Auto detection 

routines were specifically developed to test and isolate the low frequency components based 

on first differences. However, a significant portion of the sensitivity analyses for SWT had 

difficulty isolating the low frequency signals across the majority of the datasets tested. 

 

SSA has also been demonstrated to be a superior analytical tool for trend extraction across the 

range of synthetic data sets. For example, from Table 3.3, the A1 parameter is only 4% higher 

than the MODWT, whilst having the lowest A2 parameter of all the methods. However, like the 

SWT, SSA requires an elevated level of expertise to select appropriate parameters and internal 

methods to optimise performance. Auto detection routines were also developed to isolate the 

key SSA eigentriple groupings with low frequency “trend-like” characteristics, based on first 

differences. With this approach, not all time series could be resolved to isolate a trend within 

the limits established. Auto detection routines based on frequency contribution (Alexandrov 

and Golyandina, 2005) were also provided by Associate Professor Nina Golyandina (St 

Petersburg State University, Russia) to test, proving comparable to the first differences 

technique. 

 

3.4 Discussion and limitation of analysis and testing framework 
With so much reliance on improving the temporal resolution of the mean sea level signal due 

to its association as a key climate change indicator, it is imperative to maximise the 

information possible from the extensive global data holdings of the PSMSL. Numerous 

techniques have been applied to these data sets to extract trends and infer accelerations 

based on local, basin or global scale studies. Ocean water level data sets, like any 

environmental time series, are complex amalgams of physical processes and influences 

operating on different spatial scales and frequencies. Further, these data sets will invariably 

also contain influences and signals that might not yet be well understood (if at all).  

 

With so many competing and sometimes controversial findings in the scientific literature 

concerning trends and more particularly, accelerations in mean sea level (refer Chapter 1), it is 

difficult to definitively separate sound conclusions from those that might unwittingly be 
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influenced by the analytical methodology applied (and to what extent). This research has been 

specifically designed as a necessary starting point to alleviate some of this uncertainty and 

improve knowledge of the better performing trend extraction methods for individual long 

ocean water level data. Identification of the better performing methods enables the temporal 

resolution of mean sea level to be improved, enhancing the knowledge that can be gleaned 

from long records which includes associated real time velocities and accelerations. In turn, key 

physically driven changes can be identified with improved precision and confidence, which is 

critical not only to sea level research, but climate change more generally at increasingly finer 

(or localised) scales. 

 

The importance of resolving trends from complex environmental and climatic records has led 

to the application of increasingly sophisticated, so called “data adaptive” spectral and 

empirical techniques (Ghil et al., 2002; Moore et al., 2005; Tary et al., 2014; Wu and Huang, 

2009) over comparatively recent times. In this regard, it is readily acknowledged that whilst 

the testing undertaken within this research has indeed been extensive, not every time series 

method for trend extraction has been examined. The methods tested are principally those 

applied to individual ocean water level data sets within the literature to estimate the trend of 

mean sea level. 

 

Therefore spatial trend coherence and multiple time series decomposition techniques such as 

Principal Component Analysis (PCA)/Empirical Orthogonal Functions (EOF), Singular Value 

Decomposition (SVD), Monte Carlo SSA (MC-SSA), Multichannel SSA (M-SSA), Cross Wavelet 

Transform (XWT), some of which are used in various regional and global scale sea level studies 

(Church et al., 2004; Church and White, 2006, 2011; Domingues et al., 2008; Hendricks et al., 

1996; Jevrejeva et al., 2008; Meyssignac et al., 2012a) are beyond the scope of this work and 

have not been considered. In any case, the synthetic data sets developed for this work have 

not been configured with spatially dependent patterns to facilitate rigorous testing of these 

methods. In developing the synthetic data sets to test for this research, Watson (2015) noted 

specifically that a natural extension (or refinement) of the work might be to attempt to fine 

tune the core synthetic data set to reflect the more regionally specific signatures of combined 

dynamic components. 
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Other key factors for consideration include identifying the method(s) that prove robust over 

the differing length time series available whilst resolving trends efficiently, with little pre-

conditioning or site specificity. Whilst recognising that various studies investigating mean sea 

level trends at long gauge sites have utilised the construction of comparatively detailed site 

specific general additive models, these models have little direct applicability or transferability 

to other sites and have not been considered further for this work. 

 

Of the analysis methods considered, the comparatively simple 30 year moving (or rolling) 

average filter proved the optimal performer against the key A1 criterion when averaged across 

all length data sets. Although not isolating and removing high amplitude signals or 

contaminating noise, the sheer width of the averaging window proves to be very efficient in 

dampening their influence for ocean water level time series. However, the resulting mean sea 

level trend finishes 15 years inside either end of each data set, providing no temporal 

understanding of the signal for the most important part of the record – the recent history, 

which is keenly desired to better inform the trajectory of the climate related signal. Although 

well performing on a range of criteria, this facet is a critical shortcoming of this approach. 

Whilst triple and quadruple moving averages were demonstrated to marginally lower the A1 

criteria, respectively, compared to the equivalent single moving average, the loss of data from 

the ends of the record was further amplified by these methods. 

 

It is also noted that the simple linear regression analysis also performed exceptionally well 

against the A1 criteria when averaged across all data sets. Based on the comparatively limited 

amplitude and curvature of the mean sea level trend signal embedded within the synthetic 

data set it is perhaps not surprising that the linear regression performs well. But, like the 

moving average approach, its simplicity brings with it a profound shortcoming, in that it 

provides limited temporal instruction on the trend other than its general direction (increasing 

or decreasing). No information on how (or when) this signal might be accelerating is possible 

from this technique, which regrettably, is a facet of critical focus for contemporary sea level 

research. Further, it should also be noted that physics based projection models used by the 

IPCC (Church et al., 2013a) forecast mean sea level to increase at increasing rate over the 21st 

century (refer Chapter 1, Figures 1.1 and 1.2). In effect, the linear model will have increasingly 

less utility under these circumstances in accurately charting the subtleties of time varying 

velocity given the model assumes zero acceleration at all times. 
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It has been noted that unfortunately, many studies using wavelet analysis have suffered from 

an apparent lack of quantitative results. The wavelet transform has been regarded by many as 

an interesting diversion that produces colourful pictures, yet purely qualitative results 

(Torrance and Compo, 1998). The initial use of this particular multi-resolution decomposition 

technique (MODWT) for application to a long ocean water level record can be found in the 

work of Percival and Mofjeld (1997). From the techniques applied that satisfied all qualitative 

criteria (A4 to A7, refer Table 3.3), MODWT produced the best measurable qualitative 

performance overall (criteria A1 to A3, refer Table 3.3), providing evidence of its strong utility 

for isolating mean sea level from long individual records. 

 

Importantly, it is worth noting that the sensitivity testing and MCA used to differentiate the 

utility of the various methods, unduly disadvantages the SSA method. In reality the SSA 

method performs optimally with a window length varying between L/4 and L/2 (where L is the 

length of the time series). Varying the window length permits necessary optimisation of the 

separability between the trend, oscillatory and noise components (Hassani et al., 2011). 

However, for the sensitivity analysis around SSA, only fixed window lengths were compared 

across all data sets. Although SSA (with a fixed 30 year window) performed comparably for the 

key A1 criteria with MODWT (refer Table 3.3), a method that optimizes the window length 

parameter would, in all likelihood have further improved this result.  

 

Only a modest improvement of less than 4% would be required to put SSA on parity with the 

accuracy of MODWT. In addition, auto-detection routines designed to select “trend-like” SSA 

components are unlikely to perform as well as the interactive visual inspection techniques 

commonly employed by experienced practitioners decomposing individual time series (Ghil et 

al., 2002). Clearly visual inspection techniques were not an option for the testing regime 

described herein, which involved processing 14 separate data sets (Table 2.2) each containing 

20,000 time series. 

 

It is important that both the intent and the limitations of the research work presented here are 

clearly understood. The process of creating a detailed synthetic ocean water level data set, 

embedded with a fixed non-linear, non-stationary mean sea level signal to test the utility of 

trend extraction methods is unique for sea level research. Despite broad sensitivity testing 

designed herein, this work should be viewed as a starting point rather than a fait accompli in 
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providing a transparent appraisal of the utility of currently used techniques for isolating the 

mean sea level trend from individual ocean water level time series. 

 

3.5 Conclusion 
The monthly and annual average ocean water level data sets used to estimate mean sea level 

are like any environmental or climatic time series data, ubiquitously “contaminated” by 

numerous complex dynamic processes operating across differing spatial and frequency scales, 

often with very high noise to signal ratio. Whilst the primary physical processes and their scale 

of influence are known generally (Watson, 2015), not all processes in nature are fully 

understood and the quantitative attribution of these associated influences will always have a 

degree of imprecision, despite improvements in the sophistication of time series analyses 

methods (Moore et al., 2005). In an ideal world with all contributory factors implicitly known 

and accommodated, the extraction of a trend signal would be straightforward. 

 

In recent years, the controversy surrounding the conclusions of various published works, 

particularly concerning measured accelerations from long, individual ocean water level records 

necessitate a more transparent, qualitative discussion around the utility of various analytical 

methods to isolate the mean sea level signal with improved accuracy. The synthetic data set 

developed in Chapter 2 was specifically designed for long individual records, providing a robust 

and unique framework within which to test a range of time series methods to augment sea 

level research (Watson, 2015). 

 

The testing and analysis framework summarised in this research is extensive, involving 1462 

separate analyses across monthly and annual data sets of length 40, 80 and 160 years. In total, 

over 29 million individual time series were analysed, which represents the largest body of time 

series analysis testing undertaken to date for mean sea level research. From this work, there 

are some broad general conclusions to be drawn concerning the extraction of the mean sea 

level signal from individual ocean water level records with improved temporal accuracy: 

 

 Precision is enhanced by the use of the longer, annual average data sets; 

 The technique resulting in the best measured accuracy (Criteria A1) across all length 

annual data sets was the simple 30 year moving average filter. However, the outputted 

trend finishes half the width of the averaging filter inside either end of the data record, 
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providing no temporal understanding of the trend signal for the most important part of 

the record – the recent history; 

 The technique requiring minimum expert judgment and parameterisation to optimise 

performance was multi-resolution decomposition using maximal overlap discrete 

wavelet transform (MODWT); and 

 The optimum performing technique is most likely to be Singular Spectrum Analysis (SSA) 

whereby interactive visual inspection techniques are used by experienced practitioners 

to optimise window length and component seperability. 

 

The testing and analysis framework for this work provides a very strong argument for the 

utility of Singular Spectrum Analysis (SSA) and multi-resolution decomposition using maximal 

overlap discrete wavelet transform (MODWT) techniques to isolate mean sea level with 

improved temporal resolution from long individual ocean water level data using a unique, 

robust, measurable approach. Notwithstanding, there remains scope to improve the utility of 

several of the data adaptive approaches using more extensive tuning of alternative parameters 

to optimise their performance to enhance mean sea level research. Of the two approaches, it 

is considered that SSA provides a superior capability to separate the key harmonic components 

of the time series and a wider scope to further optimize key internal parameters through 

testing by decomposing a wide range of long records in the Permanent Service for Mean Sea 

Level (Chapter 4). 
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Chapter 4 
 

Methodology to Improve Estimates of 
Velocity and Acceleration in the Mean 

Sea Level Signal 
 
 

Synopsis: The extensive testing of time series analytics (Chapter 3) identified Singular 
Spectrum Analysis (SSA) as an optimal tool to improve the isolation of mean sea level with 
improved temporal resolution from long, individual ocean water level data sets. This 
chapter details further testing and optimisation of SSA to enhance isolation of the mean sea 
level signal along with methods to improve estimates of the associated real-time velocity 
and acceleration over the length of the time series. This chapter also details the 
consolidation and integration of these facets into an open source analytical software 
package titled “msltrend” within the R Project for Statistical Computing (R Core Team, 
2016). 
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4.1 Introduction 
The time series analysis testing regime summarized in Chapter 3, highlighted the utility and 

efficiency of Singular Spectrum Analysis (SSA) and multi-resolution decomposition using 

maximal overlap discrete wavelet transform (MODWT) for isolating the trend component from 

the contaminating dynamic influences and noise embedded within long ocean water level data 

sets. Isolating the trend with improved temporal resolution is the key to refining the 

associated kinematic properties of mean sea level, in particular velocity and acceleration. 

 

From the conclusions of Chapter 3, SSA has been selected as the data adaptive tool of choice 

for furthering this research program in developing a customized analytical software package 

(“msltrend”) to augment sea level (and climate change) research. This chapter summarises the 

process by which SSA has been specifically optimized to enhance resolution of the mean sea 

level trend from long ocean water level time series and the development of “msltrend”. 

 

4.2 What is SSA and how does it work? 
SSA is a powerful data adaptive technique capable of decomposing the observed time series 

into the sum of interpretable components with no a priori information about the time series 

structure (Alexandrov et al., 2012; Ghil et al., 2002; Golyandina and Zhigljavsky, 2013; Unal and 

Ghil, 1995; Vautard and Ghil, 1989).  

 

SSA amplifies signal-to-noise ratio by separating the original time series into low-frequency 

trends and narrow-band quasi-periodic signals, with the rest (assumed to be noise) distributed 

among the filters (Moore et al., 2005). Golyandina and Shlemov (2014) note the separability of 

respective components is closely related to the properties of the singular value decomposition 

(SVD), which is the essential part of many statistical and signal processing methods: principal 

component analysis (Jolliffe, 2002), low-rank approximations (Markovsky, 2012), several 

subspace-based methods (Van Der Veen et al., 1993) including singular spectrum analysis 

among many others. 

 

Through use of an embedding dimension, the original time series is projected via a series of 

lagged copies of the original time series into the form of what is referred to as a trajectory 

matrix (Golyandina et al., 2001). SVD functions can then be performed on the matrix to resolve 
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individual components in order of rank of contribution to the time series from trend and 

oscillatory signals all the way down to dimensionless noise. 

 

Since SSA uses data-adaptive basis functions, rather than the predetermined sines and cosines 

of classical spectral analysis, it can detect weak, non-harmonic oscillations in short, noisy time 

series (Unal and Ghil, 1995). A significant advantage of SSA is that it can detect a nonlinear, 

anharmonic oscillation by only two empirical orthogonal functions (EOFs), while in applying 

conventional Fourier analysis, one would require a large number of sine and cosine pairs to 

represent the same oscillation (Unal and Ghil, 1995). The method has significant advantages 

over, e.g., low-pass filtering or fitting by polynomial functions in that as the fit is data adaptive, 

no preconceived functions are forced on the data; the errors associated with the trend are 

then usually much smaller than individual measurement errors (Moore et al., 2005). 

 

Despite the improved capacity of these functions, a crucial problem remains selection of an 

appropriate embedding dimension (Unal and Ghil, 1995) which in effect is a quasi-smoothing 

parameter defining the number of lagged copies of the time series to be considered. Maximum 

recommended embedding dimensions range from one-quarter to one-half of the length of the 

data record (Moore et al., 2005; Unal and Ghil, 1995), reflecting a trade-off between spectral 

resolution and optimal noise reduction. Moore et al. (2005) notes the smaller the embedding 

dimension, the shorter the length of the window over which the resolved components are 

calculated, and the less resolved is each component. On the other hand it is noted that the 

longer the window, the greater the frequency resolution of each component, but the greater 

the chance that noise is mistaken for signal and that a greater proportion of the time series is 

affected by the data boundaries. The trend is considered to be the collection of reconstructed 

components that have a periodicity longer than about twice the length of the embedding 

dimension (Moore et al., 2005). 

 

4.3 Optimising SSA for mean sea level analysis 
A combination of lessons learned from the time series testing (Chapter 3) and parameter 

optimisation targeted specifically at mean sea level data has greatly enhanced the capacity of 

SSA for the task at hand in the following key areas: 

 

 minimum length annual average time series; 
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 embedding dimension; 

 automatic identification of “trend-like” components; and 

 gap-filling routines. 

 

4.3.1 Minimum length annual average time series 

This is a critical consideration to improving the robustness of trend, velocity and acceleration 

estimates derived from long, individual ocean water level records. For example, Douglas (2001) 

advised minimum length data sets of 50-60 years to measure acceleration in order to lower 

the likelihood of key contamination from the influences of decadal to multi-decadal variability 

which ostensibly result from winds driven by climate modes (refer Qiu and Chen, 2012; Sturges 

and Douglas, 2011). Through further detailed analysis, Houston and Dean (2013) advised that, 

because of decadal variations, record lengths of at least 75 years should be used to determine 

acceleration, and even longer records should be used to determine trend differences. 

 

Importantly, Chambers et al., 2012 identified the existence of a significant oscillation with a 

period around 60 years in the majority of the tide gauges examined during the 20th Century, 

and that it appears in every ocean basin, with amplitudes exceeding 20 mm in several long 

records. Chambers et al. (2012) and Calafat and Chambers (2013) advise that estimates of 

global and regional acceleration must account for these multi-decadal fluctuations.  

 

The times series analysis testing (Chapter 3) highlighted generally that precision in resolving 

the trend is enhanced by the use of the longer, annual average data sets. By recommending 

the use of annual time series of minimum length 80 years, ensures the trend signal (or in this 

case mean sea level) is optimally separable from the contaminating dynamic cyclical signals 

(including the quasi 60-year ocean oscillation proposed by Chambers et al. (2012)) and noise. 

 

4.3.2 Embedding Dimension 

The embedding dimension (or “window” as it is also commonly referred to) is a critical SSA 

parameter which establishes the number of lagged copies of the time series in the form of 

what is known as a trajectory matrix (Golyandina et al., 2001). Ghil et al. (2002) describes this 

as equivalent to representing the behaviour of the system by a succession of overlapping 
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“views” of the series through a sliding M-point window, where “M” is known as the 

embedding dimension. 

 

The embedding dimension is recommended in the range of one-quarter to one-half the length 

of the time series with one-half the maximum possible (Moore et al., 2005; Unal and Ghil, 

1995). Selecting the maximum range ensures optimal possible separability between the 

resolved components of the time series. In effect, small (or shorter) embedding dimensions act 

like smoothing linear filters of width 2M – 1 (Moore et al., 2005), risking suboptimal 

separability and potential mixing of signals across components, where the singular values of 

the decomposition are close. Alternatively, by using a small embedding dimensions, risks 

retaining contaminating power bands (albeit smoothed), spread across a smaller number of 

components, distinct from their isolation and removal.  

 

As the exercise at hand is to isolate the trend with improved temporal resolution, it is strongly 

recommended to use the maximum embedding dimension (half the time series length) 

afforded by the data record so as to optimise the separability of resolved components and 

minimise mixing across signals. Although SSA performed extremely well in the time series 

testing (Chapter 3), each SSA test was based on a fixed embedding dimension (e.g., 10, 20, 30, 

40 years) compared across all 14 data sets (Table 2.2). Had the testing protocols automatically 

set the embedding dimension to half the time series length (by default), separability between 

key components (and trend extraction) would have been improved. 

 

4.3.3 Automatic identification of “trend-like” components 

One of the strengths of SSA is the efficient decomposition of the original time series into 

individual components that can be visually examined and diagnostically tested using extension 

packages like Rssa (Golyandina and Korobeynikov, 2014). The visual diagnostic element 

enables trained analysts to readily confirm separability and components of specific interest. 

However, the extent of expert knowledge required to optimise SSA’s performance was 

identified as an impediment for using the technique to underpin the building of an analytical 

software tool for broad general use by sea level (and climate change) practitioners (see Table 

3.3, Criteria A7). 
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Automatic identification of specific types of components from an SSA decomposition has been 

an active area of scientific interest. Of primary consideration in setting an automatic 

identification threshold, is that one needs to be able to process every time series from a 

prescribed class with appropriate quality and consistent outcomes (Alexandrov and 

Golyandina, 2005).  

 

The sheer scale of the time series testing regime undertaken in Chapter 3 negated use of visual 

inspection techniques but, necessitated the instigation of comparatively crude techniques to 

automatically detect “trend-like” components based on presupposing the maximum limit of 

first differences. At a coarse level this worked reasonably within the tolerance of the testing 

regime. However, such applications would not be sufficiently robust to underpin the 

development of a general purpose software tool for broad scale use by non (time series 

analysis) experts to produce reliable, consistent, high quality results. 

 

In order to robustly establish an automatic identification regime for the isolation of 

components with intrinsically “trend-like” characteristics, it has been necessary to consult with 

SSA experts (refer Section 4.7) and undertake further testing using the data repositories of the 

PSMSL to establish what the key “characteristics” of “trend-like” components actually are. In 

particular, frequency thresholding based on Alexandrov and Golyandina (2005) has been 

trialled via application to the longest records in the PSMSL to isolate and diagnostically 

examine the characteristics of trend components from the SSA decomposition. Only annual 

average records in the PSMSL which meet the following notional criteria have been tested: 

 

 minimum of 100 years in length; and 

 maximum limit of 15% missing data from the complete time series.  

 

Some 63 records which met the abovementioned criteria (refer Table 4.1 for summary details) 

have been tested. In order to decompose records using SSA the time series must be complete 

so the initial step involves filling gaps using simple linear interpolation. With gaps filled, 

univariate time series have been decomposed using 1 dimensional SSA via the Rssa extension 

package (Golyandina and Korobeynikov, 2014) in R (R Core Team, 2015). 
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Table 4.1: PSMSL Records tested to optimise performance of Singular Spectrum Analysis. 

 
Station Name/Location Reference 

Station ID 
PSMSL 

(ID) 
Length 
(Years) 

Gaps 
(Years) 

Brest, France 1 1 209 23 
Swinoujscie, Poland 2 2 189 8 
Cuxhaven, Germany 3 7 168 0 
Wismar, Germany 4 8 167 1 
Maassluis, Netherlands 5 9 168 0 
San Francisco, USA 6 10 162 1 
Warnemunde, Germany 7 11 160 1 
New York, USA 8 12 161 18 
Travemunde, Germany 9 13 160 8 
Helsinki, Finland 10 14 137 0 
Vlissingen, Netherlands 11 20 154 0 
Aberdeen, UK 12 21 104 1 
Hoek van Holland, Netherlands 13 22 152 0 
Den Helder, Netherlands 14 23 151 0 
Delfzijl, Netherlands 15 24 151 0 
Harlingen, Netherlands 16 25 151 0 
Nedre Sodertalje, Sweden 17 31 102 0 
Ijmuiden, Netherlands 18 32 144 0 
Poti, Georgia 19 41 142 9 
Mumbai, India 20 43 133 15 
Batumi, Georgia 21 51 134 18 
Cascais, Portugal 22 52 112 11 
Vaasa, Finland 23 57 132 11 
Bergen, Norway 24 58 100 8 
Marseille, France 25 61 131 7 
Fort Denison, Australia 26 65 108 0 
Landsort, Sweden 27 68 119 0 
Olands Norra Udde, Sweden 28 69 129 0 
Kungsholmsfort, Sweden 29 70 129 0 
Hanko, Finland 30 71 127 24 
Aarhus, Denmark 31 76 124 8 
Stockholm, Sweden 32 78 127 0 
Oulu, Finland 33 79 127 18 
Esbjerg, Denmark 34 80 124 3 
Fredericia, Denmark 35 81 123 3 
Kobenhavn, Denmark 36 82 124 4 
Ratan, Sweden 37 88 124 1 
Hirtshalls, Denmark 38 89 121 10 
Frederikshavn, Denmark 39 91 119 8 
North Shields, UK 40 95 120 12 
Slipshavn, Denmark 41 98 117 10 
Fremantle, Australia 42 111 119 13 
Fernandina Beach, USA 43 112 119 21 
Korsor, Denmark 44 113 116 6 
Klaipeda, Lithuania 45 118 114 11 
Hornbaek, Denmark 46 119 122 4 

 
Table continued over page. 
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Table 4.1 (continued). 
 

Station Name/Location Reference 
Station ID 

PSMSL 
(ID) 

Length 
(Years) 

Gaps 
(Years) 

Gedser, Denmark 47 120 121 2 
Seattle, USA 48 127 118 0 
Philadelphia, USA 49 135 116 5 
Baltimore, USA 50 148 114 1 
Trieste, Italy 51 154 141 22 
Honolulu, USA 52 155 112 0 
San Diego, USA 53 158 111 3 
Galveston, USA 54 161 108 1 
Balboa, Panama 55 163 108 1 
Victoria, Canada 56 166 106 2 
Mantyluoto, Finland 57 172 105 4 
Smogen, Sweden 58 179 105 0 
Atlantic City, USA 59 180 105 13 
Portland, USA 60 183 105 1 
Key West, USA 61 188 104 1 
Pietarsaari, Finland 62 194 101 5 
Fort Denison(II), Australia 63 196 101 3 

 
Notes:  
 
These are the longest annual average time series records in the PSMSL exceeding 100 years with a maximum 
amount of missing data limited to 15% of the time series. The “Station ID” has been notionally assigned for 
presentation of graphical outputs. 
 
 

Moore et al., (2005) advises that the trend is considered to be the collection of reconstructed 

components that have a periodicity longer than about twice the length of the embedding 

dimension. Based on the records tested this means that the trend components have a 

minimum periodicity of at least 100 years. Alternatively, for annual time series, the trend 

components will be quarantined within the lowest frequency band [0 to 0.01] using a 

spectrogram analysis. 

 

Each of the records summarised in Table 4.1 have been decomposed with the 10 leading 

components visually inspected and diagnostically analysed using a spectrogram to understand 

the spectral characteristics of the trend components. The spectrogram analysis has been 

undertaken by setting frequency bins at 0.01 and considering the contribution of each 

component that is contained within the lowest frequency bin [0 to 0.01]. The results for the 3 

leading components are summarised in Figure 4.1.  
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Figure 4.1: Spectral characteristics of leading SSA components from long PSMSL records. 

 

 
Notes:  
 
This chart summarises the spectral analysis of the 3 leading components of the SSA decomposition of each record in 
Table 4.1 (refer to Station ID for details of specific records). The relative contribution (left hand axis) indicates the 
proportion of the component contained within the lowest frequency band [0 to 0.01] from the spectrogram analysis 
and is denoted on the chart by a grey dot. The periodicity corresponding to the peak spectral energy in each of the 
respective components (right hand axis) is denoted on the chart by a red dot. The red horizontal line highlights the 
100 year periodicity which provides a clear visual point of demarcating trend-like components. 
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Table 4.2: Station records with significant component 2 contribution in the low frequency 

band [0 – 0.01]. 

 
Station 

ID 
Station Location Component 2  

Contribution 
1 Brest, France 0.80 
6 San Francisco, USA 0.76 

10 Helsinki, Finland 0.69 
17 Nedre Sodertaljie, Sweden 0.84 
21 Batumi, Georgia 0.98 
24 Bergen, Norway 0.16 
26 Sydney, Australia 0.79 
30 Hanko, Finland 0.77 
36 Kobenhavn, Denmark 0.30 
45 Klaipeda, Lithuania 0.96 
46 Hornbaek, Denmark 0.57 
60 Portland, USA 0.84 

Notes:  
 
The table summarises the records for which the component 2 has a peak spectral period matching component 1 

(refer middle panel Figure 4.1). The leading 2 components of these records are visually depicted in Appendix D. 

 

The results of the visual and spectral analysis of the leading 10 components of the SSA 

decomposition of all records in table 4.1 can be summarised in the following: 

 

 Component 1 is a pure trend for all records analysed, with the relative contribution 

contained within the lowest frequency bin [0 to 0.01] exceeding 0.999; 

 Components 3 and below contain no signals that could be considered as characteristic of 

a trend; 

 12 station records exhibit a component 2 which has a peak spectral period matching 

that of its associated component 1, meaning that it exhibits similar trend-like 

characteristics but the contribution in the lowest frequency bin [0 to 0.01] is diminished. 

This infers other (minor) frequency bands (and or noise) are also partially embedded 

within this component; and 

 Visual examination of these 12 stations records (refer appendix D) highlights that 

genuine trend characteristics are retained by component 2 when the relative 

contribution in the lowest frequency bin [0 to 0.01] is set above a threshold of ≈ 0.75 

(refer Table 4.2). The addition of these component 2 contributions matches known 

inflexions that have been keenly observed in long mean sea level records by others (e.g., 

Woodworth et al., 2009). Relative contributions below this notional threshold appear to 
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be increasingly contaminated by other oscillatory signals and possibly noise and depart 

from the shape of mean sea level curves over the relevant period as understood from 

the body of the literature available (e.g., Church and White, 2011; Jevrejeva et al., 2014). 

 

4.3.4 Gap filling of time series 

Mean sea level time series, like numerous geophysical and climate related data, are 

synonymous with missing data (Kondrashov and Ghil, 2006) owing to a wide variety of causes. 

For example, of the longest time series tested in the PSMSL in section 4.3.3 (Table 4.1), only 18 

of the 63 time series were complete. 

 

Given SSA can only be performed on complete time series, it is necessary to look at the 

potential optimisation of gap filling routines to improve the retention of key geophysical 

signals in the record (where possible). Douglas (1992) noted the importance of gaps in mean 

sea level records due to the presence of low-frequency sea-level variations. There are of 

course numerous, quite sophisticated gap filling techniques available reliant in part, on spatio-

temporal covariance (e.g., Beckers and Rixon, 2003; Johns et al., 2003; Kaplan et al., 1997; 

Reynolds and Smith, 1994; Sherwood, 2001; Schneider, 2001; Smith et al., 1996). 

 

However, these techniques utilize spatial correlations only (Kondrashov and Ghil, 2006) 

deeming they are reliant on near neighbour correlations and sufficient spatial data density 

over both the gap and regional area of interest. In addition to the data requirements not being 

available, it also might not be practical to go to this level of endeavour to fill relatively small 

gaps in individual time series analysis. In many circumstances where small gaps are required to 

be filled in annual average time series, it might be entirely appropriate to fill the gaps using 

comparatively unsophisticated techniques that might include for example, linear interpolation, 

spline interpolation, Stineman’s interpolation (Stineman, 1980) and weighted moving average, 

amongst numerous others. Within the SSA literature, a variety of gap filling options have been 

developed including: 

 

 iterative approach proposed by Kondrashov and Ghil (2006); 

 sequential method of forecasting complete portions of the time series onto incomplete 

sections (Golyandina and Osipov, 2007); and 



PhD Thesis – Phil J. Watson 
 

  
 
 

 

68 
 

 simultaneous method involving projections of the time series onto the signal subspace 

(Golyandina and Osipov, 2007). 

 

Perceived advantages of using the available SSA gap filling routines are that one has the 

theoretical ability to preserve the principal spectral structures of the complete portions of the 

original data set in filling the gaps. Intuitively this would be an advantage. Irrespective, it 

should always be remembered that gap-filling is a synthetic process and where required, it is 

strongly recommended to sensitivity test using the different filling options available and most 

importantly, visually inspect the filled time series to provide a necessary sanity check on the 

synthetic data sections generated. 

 

The less reliance one has on synthetically filling data gaps, the lower the likelihood that the 

gap-filling procedures will affect the underlying integrity of records and by consequence affect 

trend determination. One way of limiting such a circumstance is to restrict the scale of missing 

data permissible prior to trend analysis. From manual inspection of the PSMSL records 

considered in Table 4.1 and sensitivity testing the error of different gap filling procedures, it is 

recommended to limit maximum total and continuous gaps to 15% and 5% respectively, of the 

length of the record. 

 

4.4 Additional considerations to enhance velocity and acceleration 

estimates 
Mean sea level trends determined from an SSA decomposition are not governed by a priori 

parametric form or model constraints. As such the trend components are comparatively free 

form elements. By convention, associated velocity and accelerations are readily determined 

from the first and second differences of the mean sea level time series. Although this works 

well with smooth and naturally curvilinear trends, the isolated trend components from the SSA 

decomposition are portions of linearly additive components that reconstruct the original time 

series and thus are not precisely smooth or curvilinear at point to point scale.  

 

Therefore in estimating comparatively low time varying velocity and accelerations, the first 

and second differences from the SSA derived trend components can induce unwanted and 

misleading kinematic properties owing to the “sawtooth” characteristic associated with point 

to point discontinuities. This is particularly evident in the second differences when the actual 
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time varying accelerations are generally low and principally confined in the range of ± 0.04 

mm/yr2 (Watson 2016e, 2017). 

 

An alternative approach to estimating the time varying velocity and acceleration is to 

determine the first and second derivatives, respectively, of a fitted cubic smoothing spline. 

This approach provides a more realistic representation of a smoothly varying trend so long as 

the cubic smoothing spline model fit can accurately describe the reconstructed trend-like 

components of the SSA decomposition. 

 

Sensitivity testing on a wide variety of long records in Table 4.1 indicates that by fitting a cubic 

smoothing spline with approximately 1 degree of freedom per every 8 years of record length, 

the fit is optimised whilst removing the extraneous effects of the sawtoothing. Figure 4.2 

highlights the relevant differences discussed above using the long Cuxhaven (Germany) record.  

For the numerous records tested, the coefficient of determination (R2) of the fitted spline to 

the sea level trend exceeds 0.99 in all cases, providing a high degree of confidence in this form 

of model to estimate the associated time varying velocities and accelerations.  

 

Notwithstanding, care is required in fitting smoothing splines and deriving second derivatives 

near the end of the time series. The reason for caution here is that the knots at the end of a 

fitted cubic smoothing spline are fixed in order to be differentiable, resulting in a second 

derivative at the ends which must converge to zero, which is purely an a priori artefact of the 

model fit, not the characteristics of the data. For this reason, the first and last 3 derived 

acceleration points for each time series using a fitted cubic spline will likely have reduced 

accuracy and should be ignored in any prospective analysis. 

 

4.5 Summary of key findings 
Table 4.3 summarises the key learnings from the body of testing and further optimisation of 

SSA to be incorporated into an analytical software package to enhance mean sea level (and 

climate change) research. 
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Figure 4.2: Differencing vs smoothing spline for kinematic properties of Cuxhaven trend. 

 

 
Notes:  
 
This chart shows the kinematic properties of the mean sea level trend from the Cuxhaven record determined 

separately from 1st and 2nd differences and also from the 1st and 2nd derivatives of a fitted cubic smoothing spline 

with 1 degree of freedom per every 8 years of record length. Decomposed mean sea level trend provided by 

Watson (2017). 

 

4.6 Development of analytical software package 
Key research findings (Section 4.5, Table 4.3) have been consolidated into a purpose-built 

analytical software package titled “msltrend” and published as an extension package within 

the open source R Project for Statistical Computing (R Core Team, 2016). R is the world’s most 

popular programming language for statistical computing and predictive analytics; used by 

more than 2 million people worldwide (Sirosh, 2015). A key feature of R is the capacity for the 

user to custom build innovative diagnostic tools to augment research and analysis problems 

through access to an extensive range of contributed objects, functions and customised 

packages already available.  
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Table 4.3: Key features necessary to optimise the temporal resolution of mean sea level and 

associated kinematic properties. 

 
Feature Recommended Optimisation 
Type of time series Annual average  
Length of time series Minimum length 80 years 
Analytic to isolate mean sea level 1 dimensional Singular Spectrum Analysis (SSA) thereafter 

fitted with a cubic smoothing spline using 1 degree of 
freedom per 8 years of record length 

Embedding dimension (SSA) Maximum width (half length of time series) 
Selection of trend components Isolated automatically by aggregating components in which 

the relative contribution of the lowest frequency bin [0-
0.01] exceeds 75% 

Total missing data 15 % of record length 
Maximum continuous data gap 5% of record length 
Gap filling Irrespective of what method is used, visual inspection of 

filled time series is recommended as a first order sanity 
check 

Gap filling method SSA techniques which use the broad spectral characteristics 
of the time series to fill the data gaps (Golyandina and 
Osipov, 2007; Kondrashov and Ghil, 2006) 

Velocity 1st derivative of a cubic smoothing spline fitted to the SSA 
derived trend using 1 degree of freedom per 8 years of 
record length 

Acceleration 2nd derivative of a cubic smoothing spline fitted to the SSA 
derived trend using 1 degree of freedom per 8 years of 
record length. Remove 1st and last 3 acceleration estimates 
due to reduced accuracy at end of time series  

 

The “msltrend” package has been built to provide improved trend estimates based on Singular 

Spectrum Analysis methods. Various gap-filling options are included to accommodate 

incomplete time series records. Another central feature of the package is the inclusion of a 

forecasting module to consider the implication of user defined quantum of sea level rise 

between the end of the available historical record and the year 2100. A wide range of screen 

and pdf plotting options are included in the package along with a detailed User Manual to 

guide the analyst in the application of the software (refer Appendix E). 

 

Published packages such as “msltrend” are required to satisfy extensive third party testing 

protocols on multiple operating system platforms before being accepted within the 

Comprehensive R Archive Network (CRAN) and available for download worldwide, including all 

the original code (Watson, 2016b). The following sections provide an insight into some of the 

basic elements that underpin the package, along with a discussion on some of the key 

functions and outputted products. 
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4.6.1 Input Data 

Input data files must be annual average time series data (in *.csv format), which are publicly 

accessible from the global data repository of the Permanent Service for Mean Sea Level 

(PSMSL, 2016). Critical additional conditions have been imposed on the input time series 

regarding length of record and extent of data gaps (where relevant) to ensure the robustness 

and integrity of the estimated trends derived (refer Table 4.3). Where the specified conditions 

are not met, the function terminates with appropriate warnings to instruct the analyst about 

the cause of the problem. 

4.6.2 Estimation of Errors 

The estimation of errors in the trend and associated instantaneous velocity and accelerations 

is one of the more significant features of the package and is based on bootstrapping 

techniques. This process initially involves fitting an autoregressive time series model to remove 

the serial correlation in the residuals between the SSA derived trend and the original (or gap-

filled) time series input data (refer Foster and Brown, 2015). This process is undertaken by 

importing the auto.arima function from the “forecast” package (Hyndman and Khandakar, 

2008). The uncorrelated residuals are then tested to identify change points in the statistical 

variance along the time series by importing the cpt.var function in the “changepoint” package 

(Killick and Eckley, 2014), using a minimum segment length of 15 years. 

 

Where a change point is detected in the variance, bootstrapping processes to randomly 

sample uncorrelated residuals are quarantined between identified variance change points 

(otherwise known as “block” bootstrapping). The randomly sampled uncorrelated residuals are 

then added to the SSA derived trend and the process repeated 10,000 times (default). From 

the extensive pool of outputted trends, associated velocities and accelerations, standard 

deviations are readily calculated to derive robust confidence intervals. The analyst is given the 

option of selecting the number of iterations for bootstrapping between 500 and 10,000. It is 

strongly recommended to use the lower bound figure for preliminary analysis, trialling 

different gap-filling methods, etc, in order to limit processing time associated with 

bootstrapping procedures. However, the default value (10,000) is recommended for final 

analysis. 95% confidence intervals are generated as defaults throughout, though other 

confidence intervals can be selected by the analyst. 
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4.6.3. Key Functions 

The msl.trend function is the key entry point within the package. This function deconstructs 

annual average time series data into a trend and associated real-time velocities and 

accelerations, whilst filling necessary internal structures to facilitate all other functions in the 

package. 

 

The outputted msl.trend object contains summary information in the form of a data frame 

incorporating the original data, gap-filled time series (where necessary), trend, velocity, 

acceleration, associated standard deviations and uncorrelated residuals. The outputted object 

also retains various meta-data including relevant details about the input arguments, input data 

set, peak velocities and accelerations and the time at which they occur. A full description of 

the msl.trend object and relevant examples are also provided in the “msltrend” User Manual 

(see Appendix E). 

 

The package is underpinned by the most extensive testing (Chapter 3) and optimisation regime 

(Sections 4.1 - 4.5) undertaken for long individual ocean water level records. Thus, key 

functions and settings have been specifically optimised and “hard-wired” into the scripting 

code to ensure unsuspecting, inexperienced or untrained analysts using ocean water level 

data, would not inadvertently produce misleading results by tampering with internal settings. 

 

The msl.forecast function is the other key element of the package, directly integrating the 

historical record with a user defined quantum of sea level rise to the year 2100, providing an 

invaluable tool to augment coastal adaptation planning endeavours. All internal parameters 

captured in the msl.trend function are parsed directly to msl.forecast with outputted 

velocities, accelerations and associated error margins extended to 2100. 

 

The permissible user defined quantum of sea level rise ranges from 200 to 1500 mm with 800 

mm set as the default. Simple equations of motion are used, based on constant acceleration, 

to project the defined quantum of sea level rise from the end of the historical trend to the year 

2100. The instantaneous velocity at the end of the historical record is parsed directly from the 

msl.trend object and used as the initial velocity in the motion equations. This technique 

accords with contemporary methods of projecting sea level rise forward into the future. 

 



PhD Thesis – Phil J. Watson 
 

  
 
 

 

74 
 

Instantaneous velocities and accelerations are determined in the same manner detailed for the 

historical record, but with one small difference. The projection curve naturally permits 

extending the trend beyond 2100. In doing so, real estimates of acceleration are able to be 

determined at 2100 as they are not encumbered by the issue of a fixed knot at the end of the 

smoothing spline which affects the decomposition of the historical record (refer Section 4.4). 

 

The estimation of errors in the trend and associated instantaneous velocity and accelerations 

is undertaken in a similar, though not identical manner, to that advised for the historical 

record. Despite any apparent change points in the variance of the random residuals in the 

historical portion of the record, bootstrapping procedures randomly resample (with 

replacement) from the whole pool of uncorrelated residuals to accommodate the projected 

portion of the time series out to 2100. The number of iterations used in the bootstrapping 

process to generate confidence intervals is automatically parsed forward from the msl.trend 

object to maintain consistency. 

 

The outputted msl.forecast object is near identical in format to the msl.trend object, with the 

exception that associated summary and meta-data information extend up to 2100, 

incorporating the defined sea level rise. A full description of the msl.forecast object and 

relevant examples are provided in the “msltrend” User Manual (see Appendix E). 
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Chapter 5 
 

Application of “msltrend” Analytical 
Software Package to the Data Rich 

Margins of the USA 
 
 

Synopsis: The analytical software package “msltrend” (Section 4.6) has been applied to the 
data rich margins of continental USA to enhance estimates of trend, real-time velocity and 
acceleration in the relative mean sea level signal. This research presents a fresh approach in 
the literature to considering acceleration that overcomes the limitations of other applied 
methodologies (refer Section 5.5) that have largely proven inadequate in charting the 
subtle temporal changes in the characteristics of mean sea level. The techniques employed 
within form an integral part of the evolutionary process by which to measure accelerations 
in mean sea level with improving robustness and consistency. Key findings are that at the 
95% confidence level, there is no consistent or substantial evidence (yet) that recent rates 
of rise are higher or abnormal in the context of the historical records available for the USA, 
nor is there any evidence that geocentric rates of rise are above the global average. It is 
likely a further 20 years of data will identify whether recent increases east of Galveston and 
along the east coast are evidence of the onset of climate change induced acceleration. 
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5.1 Introduction 
Neumann et al. (2011) estimated the global population living within areas deemed at threat 

from a 1-in-100 year storm surge event, coupled with 210 mm of projected sea level rise, to be 

of the order of 315 to 410 million people. Within this estimate, some 6.5 to 8 million people 

are located within the Northern American region. 

 

Whilst the scale of these projected statistics are indeed confronting from an overall global 

adaptation perspective, the domestic economic threat posed by sea level rise is also daunting. 

The Third National Climate Assessment report provides a detailed examination of the range of 

climate impacts affecting the USA (Melillo et al., 2014). This assessment advised that in 2010, 

economic activity in shoreline counties around the USA accounted for approximately 66 million 

jobs and USD 3.4 trillion in wages (NOAA, 2012) through diverse industries and commerce. In 

many instances, economic activity is fundamentally dependent on the physical and ecological 

characteristics of the coast. 

 

Moser et al. (2014) estimated more than 15,000 km2 and more than USD 1 trillion of property 

and structures are at risk of inundation from sea level rise of approximately 600 mm (or two 

feet) above current sea level around coastal USA.  In addition, coastal recreation and tourism 

comprises the largest and fastest-growing sector of the U.S. service industry, accounting for 

85% of the USD 700 billion annual tourism-related revenues, making this sector especially 

vulnerable to increased impacts from climate change (Moser et al., 2014). 

 

Whilst the afore-mentioned assessments predominantly deal with projections and estimates, it 

is worth noting that 2015 experienced the highest number of global natural catastrophes 

(198), the highest ever recorded in one year (Swiss Re, 2016) on a steadily upward trending 

trajectory. Of the total economic losses caused by disasters in 2015 (USD 92 billion), some 75% 

were due to natural catastrophes, of which storms and floods comprised around 90%. Further, 

of the 40 most costly global disasters since 1970, nearly 50% are directly or partially related to 

floods (Swiss Re, 2016). Flooding more generally will of course be substantially exacerbated by 

forecast sea level rise into the future, foreboding an increasingly ominous threat from natural 

disasters. 

 



PhD Thesis – Phil J. Watson 
 

  
 
 

 

77 
 

Improved understanding of how and when climate change impacts will occur and evolve over 

time will be critical to developing robust strategies to adapt and minimise risks (Watson, 

2016c).  

 

This chapter provides an updated appraisal of acceleration in mean sea level records around 

continental USA through use of ‘msltrend’ (Watson, 2016b) within the R Project for Statistical 

Computing (R Core Team, 2016). The ‘msltrend’ package has been specifically designed to 

substantially enhance estimates of trend, real-time velocity and acceleration in relative mean 

sea level derived from contemporary ocean water level data sets, based on unprecedented 

time series research, development, testing and analysis (refer Chapters 3 and 4). 

 

The outputs of this research tool provide a more consistent, transparent appraisal of 

acceleration in mean sea level records around continental USA; overcoming many of the 

evident shortcomings from the wide body of scientific literature on this topic (refer Section 

5.5). 

 

5.2 Data 
The ‘msltrend’ package was specifically developed for application to annual average time 

series data available from the PSMSL, with a minimum record length of 80 years (refer Section 

4.3.1). In addition, the time series data must also conform to protocols concerning missing 

data, including maximum missing data and maximum continuous gaps limited to 15% and 5%, 

respectively, of the length of the time series (refer Section 4.3.4). Only Revised Local Reference 

(RLR) datasets from the PSMSL have been used as they are commensurate with quality control 

procedures and complete tide gauge datum histories provided by the supplying national 

authority (PSMSL, 2016). 

 

In addition, Hogarth (2014) explores the potential for extending tide gauge time series from 

the PSMSL using historical documents, PSMSL ancillary data, and by developing additional 

composite time series using near neighbour tide gauges. Several long US records have been 

further extended by Hogarth (2014), including Honolulu, Ketchikan, San Francisco, New York 

and Boston. The complete portions of these extended time series have been used in this study. 

Annual average time series were available from the PSMSL for the study area up to and 

including 2014. 
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All data records used in this study have notionally been assigned a ‘Station ID’ (refer Table 5.1) 

commencing with Honolulu (1) in the Central Pacific, progressing north to south along the west 

coast (2-12), west to east along the Gulf coast (13, 14) and south to north up the east coast 

(15-29). By graphically representing characteristics associated with records based on the 

Station ID, spatially dominant patterns are more readily apparent. A total of 29 annual average 

time series records from the PSMSL fit the above-mentioned criteria and have been analysed 

within this study (refer Figure 5.1, Table 5.1). 

 

Table 5.1: Summary of data used in USA analysis. 

 
Tide Gauge Data GNSS (GPS) Data (3) 
Station 
ID (1) 

Location PSMSL 
ID 

Start 
(yr) 

End 
(yr) 

Length 
(yrs) 

Gaps 
(yrs) 

SONEL 
Station 

Length 
(yrs) 

Distance 
to tide 
gauge (m) 

VLM 
(mm/yr) 

1 Honolulu (2) 155 1891 2014 124 - HNLC 16.04  1 -0.22  0.18 
2 Ketchikan 225 1919 2014 96 2 - - - - 
3 Friday Harbour 384 1934 2014 81 3 SC02 12.13  359 0.26  0.24 
4 Victoria 166 1910 2014 105 2 ALBH 18.99  12,000 0.72  0.14 
5 Neah Bay 385 1935 2014 80 4 NEAH 17.56  7,776 3.28  0.28 
6 Seattle 127 1899 2014 116 - SEAT 16.69  5,900 -0.97  0.22 
7 Astoria 265 1925 2014 90 2 TPW2 13.74  2 0.38  0.15 
8 Crescent City 378 1933 2014 82 4 PTSG 11.48  7,195 3.23  0.17 
9 San Francisco (2) 10 1855 2014 160 - TIBB 18.99  9,551 0.08  0.14 
10 Los Angeles 245 1924 2014 91 2 VTIS 15.05  2,168 -0.03  0.15 
11 La Jolla 256 1925 2014 90 8 SIO3 17.18  671 0.77  0.38 
12 San Diego 158 1906 2014 109 3 PLO5 7.56  8,400 -2.60  0.20 
13 Galveston (4) 161 1909 2014 106 1 TXGA 8.81  2,856 -3.42  0.79 
14 Pensacola 246 1924 2014 91 4 PCLA 9.71  7,500 -0.43  0.36 
15 Key West 188 1913 2014 102 1 KYW5 6.21  15,946 -1.78  0.42 
16 Charleston 234 1922 2014 93 - SCHA 4.97  200 -1.84  0.64 
17 Sewells Point 299 1928 2014 87 - - - - - 
18 Washington 360 1931 2014 84 2 USNO 16.53  6,380 -0.12  0.20 
19 Annapolis 311 1929 2014 86 5 ANP5 6.24  11,577 -2.48  0.37 
20 Baltimore 148 1903 2014 112 1 SA15 9.19  11,287 -1.22  0.26 
21 Atlantic City 180 1912 2014 103 13 NJGT 4.85  16,342 -1.62  0.67 
22 Philadelphia 135 1901 2014 114 5 PAPH 6.17  9,390 -0.55  0.38 
23 Sandy Hook 366 1933 2014 82 4 SHK5 7.66  553 -2.68  0.27 
24 New York (2) 12 1853 2014 162 - NYBP 4.68  49 -2.09  0.62 
25 Newport 351 1931 2014 84 2 NPRI 8.14  500 0.17  0.23 
26 Woods Hole 367 1933 2014 82 8 - - - - 
27 Boston (2) 235 1902 2014 113 10 - - - - 
28 Portland 183 1912 2014 103 1 - - - - 
29 Eastport 332 1930 2014 85 11 EPRT 13.26  853 0.24  0.25 

 
Notes:  
 
 (1) The ‘Station ID’ is a local referencing protocol used throughout this study, particularly the graphical outputs; 
(2) Extended data sets advised in Hogarth (2014) have been used for this study; and 
(3) All GPS data kindly provided by SONEL using updated ULR6a solutions (Santamaría-Gómez et al., 2012) with 1 

sigma error estimates advised. 
(4) The Galveston site is known to be affected by accelerated relative subsidence resulting from the removal of 

groundwater and hydrocarbons (Emery and Aubrey, 1991). 
 

Systeme d’Observation Du Niveau Des Eaux Littorales (SONEL, 2016) vertical land movement 

data have been used to correct relative rates of sea level rise at each site to estimate 

geocentric rates. SONEL serves as the Global Navigation Satellite System (GNSS) data assembly 
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centre for the Global Sea Level Observing System (GLOSS). SONEL recently updated vertical 

land velocities for GNSS sites within approximately 15 km of long tide gauge records used in 

this study. In situations where several alternative SONEL stations were available to choose 

from, selection was based upon the Global Positioning System (GPS) site located closest to the 

tide gauge, where the GPS antennae is still active (refer Table 5.1). 

 

Figure 5.1: Location of tide gauge records analysed. 

 

 
Notes:  
 
Each record is denoted by a Station ID with further details provided in Table 5.1. 
 

 

5.3 Methodology 
The methodology applied to the records in Table 5.1 to extract mean sea level and estimate 

associated velocities and accelerations are built into the ‘msltrend’ package (refer Section 4.6), 

but, can be broadly summarised in the following 4 key steps: 

 

 Step 1 - Gap Filling. Msltrend is underpinned by SSA and thus times series must be 

complete in order to be decomposed. The iterative gap filling using SSA (Kondrashov and 

Ghil, 2006) option has been preferred given the gap is reconstructed from SSA 

components in which the peak spectral frequency is ≤ 0.2 (alternatively, corresponding 
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to peak periods ≥ 5 years), thus utilising the principal spectral structures evident in the 

complete parts of the record. Each gap filling procedure has been visually inspected as a 

sanity check and where filling via SSA proves sub-optimal, alternative options of linear 

and spline interpolation, respectively have been employed. 

 

 Step 2 - Isolating Trend Using SSA. Once gap filling has been completed, ‘msltrend’ 

decomposes the time series using 1D-SSA whereby the trend can be isolated by 

reconstructing only the components that possess distinctly “trend-like” characteristics. 

Trend components are automatically detected and reconstructed within ‘msltrend’ 

based on having a contribution threshold ≥ 75% contained within frequency bins ≤ 0.01 

(refer Section 4.3.3). 

 

 Step 3 - Estimating Velocity and Acceleration. Readily estimated from the first and 

second derivatives, respectively of a cubic smoothing spline fitted to the trend 

determined via the SSA decomposition in Step 2 (refer Section 4.4). 

 

 Step 4 - Estimation of Errors. Block bootstrapping techniques are used to randomly 

sample uncorrelated residuals which are added to the SSA derived trend and steps 2 and 

3 repeated 10,000 times. Standard deviations are readily calculated from the extensive 

pool of outputted trends, velocities and accelerations (refer Section 4.6.2). All error 

margins in the analysis herein are estimated at the 95% confidence level (unless 

specified otherwise). 

 

In addition to the above-mentioned, SONEL vertical land movement data (refer Table 5.1) have 

been applied to the time series of relative rates of sea-level rise in order to estimate geocentric 

rates. 

 

An important aspect of the analysis is to determine whether more recent peak velocities and 

accelerations associated with mean sea level are statistically different (higher) than rates 

measured elsewhere over the course of the historical record. To do this, the statistical 

significance tests advised by Wolfe and Hanley (2002) have been applied at the 95% 

confidence level. 
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5.4 Results 
The analysis and outputs provide the means to examine real-time (or instantaneous) velocities 

and accelerations in greater detail than has been possible to date for the many long US tide 

gauge records. Figure 5.2 provides an example output from the analysis of four separate 

station records located around the margins of continental USA that are largely reflective of the 

regional temporal signatures of velocity and accelerations in relative mean sea level. It is clear 

that these velocities and accelerations are varying continuously over time. 

 

In particular, the west coast records (Seattle and San Francisco) show evidence of the velocity 

peaking around 1980, then moderating gradually to present (2014). These distinctive features 

are consistent with the 1976 - 77 regime (or climate) shift over the Pacific Ocean (Miller et al., 

1994). Both records show similar temporal characteristics in the associated accelerations over 

the common period with no evidence of mean sea level acceleration. Another prominent 

feature evident in the very long San Francisco record is the levelling off (and slight fall) in mean 

sea level between 1878 and 1906. However, some caution is recommended in explicitly 

interpreting such temporal signatures owing to the location of this feature within the very 

early and somewhat problematic portion of the historical record (Breaker and Ruzmaikin, 

2011; Hogarth, 2014), coupled with the fact there are no other Pacific Ocean ‘buddy’ stations 

to compare such signatures during this time horizon.  

 

On the east coast, the relative signatures are starkly contrasting, with velocities continuing to 

rise over the course of the historical record to present, providing some evidence of an 

accelerating trend. The complete analysis of all the records in this manner provides the means 

to inspect spatial temporal patterns in greater detail than previously available. 

 

Figure 5.3 provides a breakdown of the peak velocities and accelerations for each record and 

the time at which they occur. It is relevant to consider these charts simultaneously as velocity 

and acceleration are intrinsically linked as kinematic properties. For example, acceleration is 

required to increase velocity and conversely negative acceleration (or deceleration) is required 

to reduce velocity. 
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Figure 5.2: Temporal characteristics of mean sea level at selected sites (Seattle, San Francisco, 

New York, and Key West). 

 

 
Notes:  
 
Each site is depicted by a three-panel plot of mean sea level, velocity, and acceleration. The respective scales are 
identical for all stations for direct comparative purposes. 
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Figure 5.3: Peak estimates of velocity and acceleration for all stations. 

 

 
Notes:  
 
Peak metrics are denoted as filled boxes, while secondary peaks are denoted by clear boxes. The centre panels 
indicate the year in which the respective peaks occurred. A vertical dashed line corresponding to Station 12 (San 
Diego) denotes the spatial limit of the Central Pacific and west coast records. The bottom panel provides an 
indication as to whether or not the peak metric is statistically different (in this case higher) than all others in the 
context of the historical record at the 95% confidence level. Station ID references are summarised in Table 5.1. 
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From inspection of Figure 5.3, the following observations are apparent, including: 

 

 lowest peak relative rates of velocity are distinctly confined to the Central Pacific and 

west coast margins; 

 primary and secondary velocity peaks within the Central Pacific and west coast region 

are not dissimilar, with no clear temporal pattern to their timing (refer middle left 

panel); 

 from Pensacola (ID=13) to Boston (ID=27), the primary peak in velocity is on average 

13% higher than the secondary peaks observed. Further, moving east from Pensacola, 

there are clear temporal patterns to the timing of the peaks with the peak velocities 

occurring predominantly post 2006 and secondary peaks clustered in a band centred 

around 1930. Significant upward inflexions in sea level records are noted in Woodworth 

et al. (2009) coinciding with the period from 1920–1930 which was one of the main 

periods of sustained rise in global air and sea surface temperatures in the 20th century 

(Jones et al., 2001); 

 four station records have the maximum relative velocity occurring in 2014, at the end of 

the data record (Astoria, Los Angeles, Key West and Boston); 

 mean maximum acceleration measured across all records is approximately 0.075 ± 0.041 

mm/yr2 (1σ) with no particular spatial patterns evident; 

 timing of the respective primary and secondary acceleration peaks follow similar 

temporal signatures to the associated velocities (as expected). Peak accelerations in the 

Central Pacific and west coast margins predominantly occur between about 1920 and 

1940, but along the east coast these peaks are generally confined to the period post 

2000; and 

 significantly, from an analysis of the peak velocities and accelerations for all records 

considered in this study, only the peak velocity observed at New York (which occurs near 

the end of the record) is statistically different (or higher) than peaks observed over the 

historical record (95% confidence level). 

 

Another option for investigating subtleties of acceleration when the metrics are comparatively 

low is to consider the extent and temporal distribution of positive acceleration statistically 

different to zero (Figure 5.4). This analysis highlights the absence of acceleration along the 

west coast and the reasonably limited extent of sustained acceleration evident along the east 
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coast. Interestingly, for the stations analysed within the so-called ‘hotspot of acceleration’ 

north of Cape Hatteras (Sallenger Jr et al., 2012), less than 21% of the data years from 1990 

exhibit any positive acceleration that is statistically different to zero at the 95% confidence 

level. 

 

Figure 5.4: Periods of positive acceleration (95% CI). 

 

 
 

Figure 5.5 provides an appraisal of the current (2014) rate of geocentric sea level rise across 

the tide gauge network by correcting the relative velocity with GPS derived vertical land 

movement rates from SONEL (refer Table 5.1), noting that five records do not have an 

associated SONEL station. There are a number of key spatial features evident from this 

graphical analysis, including that the mean of the current (2014) geocentric velocity falls into 

three general bandings around the USA:  

 

 2.7 to 3.3 mm/yr (predominantly north-east);  

 1.5 to 2.2 mm/yr (predominantly east coast); and 

 Less than 1.5 mm/yr (predominantly confined to the Central Pacific and north-west). 
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The spatial signature of current geocentric sea level rise around the USA is also clearly 

highlighted by the fact the average rate for the Central Pacific and west coast stations is 1.20 ± 

0.45 mm/yr compared to the Gulf of Mexico and along the east coast where the average rate 

is some 80% higher at 2.19 ± 0.58 mm/yr (95% CI). 

 

Figure 5.5: Estimates of Geocentric Rate of Sea-Level Rise (95% CI). 

 

 
Notes:  
 
Estimates based on real-time relative velocity derived from msltrend decomposition at the end of 2014 corrected by 
vertical land movement velocities provided by SONEL. Clear boxes in the bottom panel represent stations in which 
there is evident relative sea-level fall over the course of the record. Data sources and station ID references are 
summarised in Table 5.1. 
 

 

Of particular interest, none of the geocentric velocities determined at the end of 2014 exceed 

the global average of 3.3 ± 0.4 mm/yr (Nerem et al., 2010: University of Colorado, 2016) at the 

95% confidence level. Further, some 8 of the 12 stations in the Central Pacific and west coast 

region and a further 4 stations along the east coast (Key West, Annapolis, Sandy Hook and 

Eastport) are lower than the global average (95% CI).  
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The bottom panel of Figure 5.5 is similarly quite instructive, highlighting that for the majority 

of records west of Galveston (ID=13), the current instantaneous velocity has been exceeded by 

60% or more of the historical record, providing no genuine evidence of acceleration in mean 

sea level at these stations. However, from Pensacola (ID=14) heading east, near all records 

exhibit a current velocity exceeded by less than 16% of the historical record. This indicates the 

latter portions of these records are within the upper bracket of velocities recorded over the 

historical record, providing tangible evidence of recent acceleration in mean sea level in this 

region. 

 

5.5 Discussion 
Although extensive research has been undertaken into sea level rise, there remains 

considerable conjecture and scientific debate about the temporal changes in mean sea level 

and the climatic and associated physical forcings responsible for them (Watson, 2016c). One of 

the reasons for this is that ocean water level time series data from tide gauge stations are a 

complex amalgam of key physical contributors which include: 

 

 Factor 1: land movement at the tide gauge site; 

 Factor 2: dynamic influences of largely oceanographic, atmospheric or gravitational 

origins operating on differing temporal and spatial scales; and 

 Factor 3: low amplitude signal of mean sea level rise driven by climate change influences 

(principally melting of snow and ice reserves bounded above sea level (directly adding 

water), and thermal expansion of the ocean water mass). 

 

For completeness, it is worth noting that long relative sea level records from tide gauges might 

also contain inevitable datum shifts that have resulted from poor quality control or inadequate 

datum transfer in updating or relocating instrumentation. Whilst these issues can be very 

difficult to isolate, data archaeology, careful checking and reconstruction of long and suspect 

portions of records, are critical facets for improving mean sea level time series (e.g., Breaker 

and Ruzmaikin, 2011; Hogarth, 2014; Talke and Jay, 2013). The use of ‘RLR’ datasets from the 

PSMSL are custom designed for time series analysis purposes and provide the best insurance 

against these inadvertent complications. 
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5.5.1 Accounting for vertical land motions at tide gauge sites 

Land motions embedded within tide gauge records are difficult contributions to resolve and 

isolate, in part because the general scale of vertical land motions (see Ostanciaux et al., 2012) 

and sea level rise trends due to climate change influences (factor 3 above) observed over the 

20th and early 21st Centuries, are often of similar scale (although the sign may differ). In 

attempting to convert ‘relative’ to ‘eustatic’ estimates of sea level rise, the majority of 

contemporary studies make some allowance for land movements via the application of site 

specific estimates of long timescale Glacial Isostatic Adjustment (GIA) from the various models 

available (e.g., Lambeck et al., 1998; Peltier, 2004; Tushingham and Peltier, 1991). 

 

However, GIA models provide only the broadest scale resolution of vertical land motions (VLM) 

at local scales. Local processes associated with tectonics, volcanism, sediment compaction, and 

subsurface mineral and water extraction are often of significance and generally not accounted 

for in the GIA models (Zervas et al., 2013). Tide gauges situated on highly urbanised and 

densely populated shorelines are becoming increasingly affected by a wide range of 

anthropogenic processes that predominantly result in localised subsidence (Ostanciaux et al., 

2012). The advent of the GNSS has provided the opportunity to continuously measure the total 

contributions of all land movement processes where GPS recording instruments have been 

installed enabling estimates of ‘geocentric’ mean sea level (to a fixed reference point). The 

drawback of the comparatively recent development of these measuring technologies is that 

maximum record lengths are only around 20 years. 

 

Whilst updated vertical velocities advised by SONEL (ULR6a solutions) are based on a linear 

regression of the GNSS time series (Santamaría-Gómez et al., 2012), it is evident from 

inspection that these time series are not necessarily linear. Over time as the length of these 

valuable records increase, there might be scope to enhance the resolution of the non-linear 

trend of the GPS derived vertical velocities to improve real-time (say annual resolutions) that 

will further enhance the accuracy of locally derived corrections for ‘geocentric’ mean sea level.  

 

Another factor highlighted previously by Wöppelmann and Marcos (2012), relates to the 

common situation where the geodetic connection between the GPS antennae and tide gauge 

is absent. Under these circumstances it is simply assumed that vertical land movement sensed 

by the GPS antenna corresponds to the actual land movement affecting the tide gauge record 
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when the GPS antenna is distant from the tide gauge (e.g., Bevis et al., 2002). This is a 

ubiquitous problem highlighted in the current study whereby only 4 SONEL GPS records are 

within 200 m of the tide gauge of interest. A further 16 SONEL GPS records are located in 

excess of 6 km from the tide gauge, diminishing the inferred representativeness of land motion 

factors directly at the tide gauge. It is hoped that over time, the long and valuable tide gauge 

records examined in this study will be better augmented with co-located GPS antennae to 

more accurately measure localised vertical land motions directly at the tide gauge. 

 

For sea level studies, it is commonly assumed that vertical land motions are generally small 

and occur in near linear fashion, in which case estimates of acceleration remain unaffected. 

Whilst geological time scale influences such as GIA will be approximately linear over the 

timescale of an available tide gauge record, the anthropogenic influences contributing to 

subsidence in heavily developed coastal margins might not necessarily perpetuate in a linear 

manner. The latter circumstance, if not properly accounted for, will contaminate real-time 

estimates of acceleration in the relative mean sea level signal. This facet heightens the 

necessity of continuing to improve the resolution of GNSS records which are slowly increasing 

in length to become more useful for time series analysis of mean sea level. 

 

5.5.2 Accounting for dynamic influences contained within tide gauge time series 

Assuming that vertical land motions are resolvable and constant, the next step to improving 

acceleration lies in improving separation of the low amplitude signal of mean sea level rise 

from the contaminating dynamic influences (factor 2 above) and other residual, unaccounted 

for artefacts embedded within the time series data (otherwise referred to as noise). It is critical 

to remove these dynamic influences because these are considered to be ostensibly stationary; 

that is, they cause the water surface to respond on differing scales and frequencies within 

generally defined limits, but do not change the volume of the water mass, which is the key 

signal of interest for mean sea level researchers (Watson 2016a). The resolved signal of mean 

sea level rising over time is of itself, a complex artefact of the changing physics and mass of the 

ocean water body. 

 

These contaminating influences which persist on inter-annual to decadal (and longer) 

timescales ostensibly result from winds driven by climate modes (refer Section 2.4.4) and are 

often orders of magnitude larger in scale than the low amplitude signal of mean sea level rise, 
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which is the key artefact of interest. The necessity to remove these influences from the data to 

enhance acceleration estimates is well noted in the literature (Calafat and Chambers, 2013; 

Chambers et al., 2012; Douglas, 1992). A key facet of the ‘msltrend’ package used to 

decompose the records within this study, is the capability of the underpinning singular 

spectrum analysis algorithm to separate out these complex oscillatory signals with time-

varying amplitudes and noise from the low amplitude and low frequency signal of mean sea 

level rising over time.  

 

5.5.3 Measuring mean sea level acceleration 

Since the key published works on mean sea level acceleration in the early 1990’s (Douglas, 

1992; Woodworth, 1990), there has been almost universal application of the quadratic model 

fit to estimate acceleration from individual, regional and global ocean water level records (e.g., 

Boon, 2012; Boon and Mitchell, 2015; Church and White, 2006, 2011; Douglas, 1997; Haigh et 

al., 2014; Hannah, 1990, 2004; Hay et al., 2015; Houston and Dean, 2011a, 2013; Jevrejeva et 

al. 2006, 2008, 2014; Maul and Martin, 1993; Spada et al., 2014; Wahl et al., 2013; Watson, 

2011; Woodworth et al., 2014; Wöppelmann et al., 2006).  

 

The simple quadratic model is based on a linear term coupled with an acceleration term, in 

which the acceleration is constant resulting in a linearly increasing rate of rise over time. The 

simplicity of its application to sea level records, coupled with the direct single measure of 

acceleration (double the quadratic term) have resulted in its widespread application, despite 

the evident limitations or suitability of such a model fit to the task at hand. 

 

What is clear from this study is that all real-time velocity time series associated with mean sea 

level at each site, are distinctly non-linear, in turn reflective of associated acceleration varying 

over time, directly at odds with the quadratic model assumptions. The same can also be said of 

the various global mean sea level reconstructions proposed within the literature and 

commonly used by sea level researchers (e.g., Church and White, 2011; Hamlington et al., 

2011; Hay et al., 2015; Jevrejeva et al., 2006, 2014; Meyssignac et al., 2012a; Ray and Douglas, 

2011; Wenzel and Schröter, 2014). 

 

Long records and global mean sea level reconstructions contain well recognized signatures of 

positive and negative ‘inflexions’ (Woodworth et al., 2009) as well as key influences driven 
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ostensibly by climate modes (Cazenave et al., 2012; Fasullo et al., 2013; Hamlington et al., 

2013). As a result, acceleration determined through simple quadratic fits will be unduly 

influenced by the particular time slice chosen (Rahmstorf and Vermeer, 2011). The 

considerable vulnerability of the quadratic method to the time period selected is further 

highlighted in Houston (2016). Much of the considerable scientific debate concerning the 

existence (or otherwise) of a measurable acceleration in mean sea level records (for details 

refer Visser et al., 2015; Watson, 2016a) rests almost entirely with the over-use of the unduly 

simple and ill-suited quadratic model to estimate accelerations in mean sea level records. 

 

Alternative approaches to inferring acceleration such as changes in the average velocity 

between differing time slices (e.g., Bindoff et al., 2007; Calafat and Chambers, 2013; Hansen et 

al., 2012; Kemp et al., 2009; Merrifield et al., 2009; Sallenger Jr et al., 2012) are also extremely 

limited given they are unable to capture the necessary temporal changes evident in the mean 

sea level velocity and acceleration time series. 

 

The real-time mean sea level velocity and acceleration time series associated with the 

respective tide gauge records provide a more transparent and robust basis upon which to 

investigate accelerations. 

 

5.5.4 Recent literature concerning MSL acceleration around the USA 

Over recent years there have been a range of published papers relating to acceleration 

determined from tide gauge records around mainland USA, in particular Houston and Dean 

(2011a), Bromirski et al. (2011), Boon (2012); Boon and Mitchell, 2015 and Sallenger Jr et al. 

(2012). Numerous additional papers have been dedicated to the specific role that 

oceanographic processes and climate mode influences might be playing on measured sea level 

trends and accelerations (e.g., Bingham and Hughes, 2009; Di Lorenzo et al., 2008; Ezer et al., 

2013; Higginson et al., 2015; Kopp, 2013; Park and Sweet, 2015; Piecuch et al., 2016; Qiu, 

2002; Sallenger Jr et al., 2012; Woodworth et al., 2014; Yin and Goddard, 2013). 

 

Across the Central Pacific and west coast USA, observations suggest a lower than global 

average rise in mean sea level post the well documented 1976-77 regime (or climate) shift 

over the Pacific Ocean (Miller et al., 1994). Bromirski et al. (2011) suggests the suppression in 

mean sea level across this region results from a dynamical steric response of North Pacific 
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eastern boundary ocean circulation to a dramatic change in wind stress curl evident after the 

regime shift. Bromirski et al. (2011) also suggests that if a recent change in wind stress 

patterns (evident since 2008) persists, an associated regime shift to the Pacific Decadal 

Oscillation cold phase may result with a concomitant resumption of relative sea level rise along 

the west coast approaching or exceeding the global mean sea level rise rate. Figure 5.6 

indicates that the majority of station records analysed in the Central Pacific and west coast 

region show continued lowering of the relative velocity in mean sea level to the end of 2014 

post the 1976-77 regime shift. The ‘imminent’ acceleration foreshadowed by Bromirski et al. 

(2011) has not materialised in the records at this point in time. Boon and Mitchell (2015) 

observe a similar finding. 

 

Figure 5.6: Relative velocity time series for Central Pacific and west coast U.S. station records. 

 

 
Notes:  
 
A vertical dashed line denotes the commencement of the Pacific regime shift (Miller et al., 1994). Grey time series 
denote those indicating a noticeable increase in velocity post 2000 (Neah Bay, Washington; Astoria; and Los 
Angeles). Numbers beside the time series denote the Station “ID” (Refer Table 5.1 for details). 
 

By contrast on the east coast, much gravitas has been given to the so-called ‘hotspot’ of 

acceleration in the mid-Atlantic region, north of Cape Hatteras. Sallenger Jr et al. (2012) 

suggested evidence of recently accelerated SLR in a unique 1,000-km-long ‘hotspot’ on the 
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highly populated North American Atlantic coast north of Cape Hatteras and show that it is 

consistent with a modelled fingerprint of dynamic SLR with rate increases of the order of 3 – 4 

times higher than the global average. 

 

Attention has centred on the underpinning oceanographic processes driving this recent 

pronounced sea level acceleration. The Gulf Stream (GS) system drives the ocean surface 

circulation on the Western North Atlantic (Higginson et al., 2015), resulting in a distinct ocean 

surface level ‘tilt’ which persists along the inshore edge of the GS downward from Florida to 

Cape Hatteras estimated at 2.0 ± 0.4 cm/degree of latitude (Sturges, 1974). It has been 

generally proposed that a weakening Atlantic Meridional Overturing Circulation (AMOC) 

driving a slowing in the GS system is producing the accelerated sea level rise north of Cape 

Hatteras over the past 20 years (Bingham and Hughes, 2009; Ezer et al., 2013; Goddard et al., 

2015; Yin and Goddard, 2013). 

 

Higginson et al. (2015) note other recent studies (Andres et al., 2013; Rossby et al., 2014) that 

cast doubt on this theory with in-situ measurements showing no change to the strength of the 

GS downstream of Cape Hatteras over the noted period of sea level acceleration. Woodworth 

et al. (2014) finds that nearshore wind forcing on the shelf dominate the inter-annual sea level 

variability along the east coast of the USA, with winds in particular, capable of producing low 

frequency accelerations in mean sea level comparable to those observed by the tide gauge 

network. Woodworth et al. (2014) question the AMOC fingerprint (Boon, 2012; Sallenger Jr et 

al., 2012) driving such accelerations, noting that levels have declined again since 2010 at many 

locations, as can be seen from the latest data on the PSMSL website. Piecuch et al. (2016) 

highlight the limitations and skill levels of various approaches to reconciling the contributory 

processes associated with recent sea level rises north and south of Cape Hatteras, 

acknowledging considerable work remains to be done. 

 

Kopp (2013) provides discussion on contributory factors along the mid-Atlantic coast that 

would result in regional and local sea levels differing from the mean global sea level. This work 

notes that East of the Fall Line, which passes close to New York City and Washington, bedrock 

is overlain by the Mesozoic and Cenozoic sediments of the Coastal Plain, which can subside 

due to natural compaction and therefore experience a faster long-term rate of SLR. From a 

comparison of sea-level records with climatic and oceanographic indices, Kopp (2013) 
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concluded that observed changes may at least be partially accounted for by known sources of 

variability, suggesting that neither the magnitude of the phenomenon, nor its rate of change, 

nor its acceleration appear to be beyond the bounds of 20th-century variability. 

 

From a longer-term perspective, a range of detailed paleo examinations centred on the US 

east coast have attempted to reconcile recent rates of relative sea level rise over the 

instrumental era with rates approximated over the past couple of millennia. Analysis of 

geological data at Connecticut (Kemp et al., 2015), New Jersey (Kemp et al., 2013), North 

Carolina (Kemp et al., 2011) and Florida (Kemp et al., 2014), conclude that historic rates of rise 

commenced around 1850 - 1890 and that it is virtually certain the rate of 20th century relative 

sea level rise is faster than any of the preceding 20+ centuries. Similar conclusions have 

recently been observed on a global basis (Kopp et al., 2016). 

 

5.5.5 Reconciling historical and future projected MSL accelerations 

Whilst the 20th century rise in relative mean sea level appears unprecedented along the US 

east coast over the past couple of millennia (Kemp et al., 2015), the scale of velocities and 

accelerations measured within this analysis (e.g., Figure 5.2) remain lower than those 

associated with forecasts from physics-based climate models over the course of the 21st 

century and beyond (Church et al., 2013a; IPCC, 2013b). Under forecasts of high simulated 

radiative (or external) forcing (RCP8.5 scenario), the current rate of global averaged sea level 

rise of 3.3 ± 0.4 mm/yr (Nerem et al., 2010; University of Colorado, 2016) is expected to 

increase to rates of the order of 8 - 16 mm/yr by 2100 (refer Chapter 1, Figures 1.1 and 1.2). 

 

Figure 5.7 provides a visual comparative analysis of how the velocity and acceleration time 

series might change at San Francisco and New York, based on a mean sea level rise of 800 mm 

from present (2014) to 2100. Under such a scenario, which assumes simple equations of 

motion and uniform acceleration, the necessary and significant changes in velocities and 

accelerations compared to those measured over the historical record, are likely to be readily 

apparent well within the next 20 years. For example, velocities and accelerations at San 

Francisco will become statistically different (at the 95% confidence level) from the rest of the 

historical record at approximately 2021 and 2024, respectively. For the New York record, these 

timeframes reduce to 2017 and 2019, respectively. 
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Figure 5.7: Indicative implications of projected sea-level rise of 800 mm at San Francisco and 

New York from end of 2014 to 2100. 

 

 
Notes:  
 
Projections based on simple equations of motion with uniform acceleration. Error margins noted are 95% 

confidence levels.  
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One should caution these forecasts are highly idealistic and preliminary. However, they do 

provide a sense of perspective regarding the timing of necessary changes to the kinematic 

properties of mean sea level at these locations, in order to give effect to such projections. 

 

5.6 Conclusions 
The implications of sea level rise, particularly the much larger projected rates of rise under 

future climate change modelled scenarios (IPCC, 2013b) are profound with far reaching social, 

economic and environmental implications (amongst others) foreshadowed over the course of 

the 21st century and beyond. These are well described for the US context in Melillo et al. 

(2014) and Houser et al. (2015). 

 

Mean sea level records are pivotal data sources as they provide one of the key proxies by 

which to measure the impact of a changing climate system. With the very ethos of the climate 

change science and projection modelling underpinned by accelerations in mean sea level (refer 

Chapter 1), numerous works in the scientific literature have been dedicated to measuring 

accelerations that might provide improved instruction on the extent to which external (climate 

change) forcings are manifesting to assist strategic planning, adaptive responses and policy 

development in readiness for the challenges ahead. 

 

Douglas (1992) provided the initial attempt at considering whether acceleration in ocean 

water levels aligned with the primitive sea level forecast models available at the time, 

concluding ‘there is no evidence of an acceleration effect in sea level in the historical record 

that is in any way comparable to that associated with most global warming predictions for the 

future.’ The ubiquitously simple quadratic approach to estimate sea level acceleration used in 

the early studies of Woodworth (1990) and Douglas (1992) has been substantially overused by 

a following generation of researchers despite the inherent limitations of this simple 

mathematical model approach. The ‘msltrend’ package and associated methods applied in this 

study to enhance estimates of trend, real-time velocity and acceleration in the relative mean 

sea level signal are long overdue, but welcome advancements for improving sea level research. 

 

This study presents a fresh approach to considering acceleration that overcomes the 

limitations of other applied methodologies (refer Section 5.5.3) that have largely proven 

inadequate in charting the subtle temporal changes in the characteristics of mean sea level. 
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The comparatively low time varying velocities and associated accelerations evident over the 

period of historical records deem that acceleration is unwisely measured as a simple metric. 

Until such time as the apparent real-time velocities and accelerations in the MSL signal are 

sufficiently large not to be obscured by complex influences inducing decadal to multi-decadal 

variability and other background noise, the search for accelerations in these records require 

more intuitive, diagnostic considerations. 

 

For example, the search for acceleration is perhaps more practically inferred by considering 

whether or not peaks in the instantaneous velocity and acceleration time series are increasing, 

becoming more sustained or statistically abnormal (or different) over time in the context of 

the historical record (Watson, 2016a). This type of approach will continue to be important until 

the extent of sea level rise (due to climate change) is sufficient to be statistically differentiated 

from the remnant historical record with widespread spatial coherence. 

 

From the detailed analysis undertaken herein, there are a number of key findings including: 

 

 although sea level has risen around continental USA over the period of available tide 

gauge records (1853 - 2014), clear and differing spatial signatures in sea level rise have 

emerged between the Central Pacific and west coast compared to those within the Gulf 

of Mexico and along the east coast; 

 no evidence of acceleration in mean sea level across the Central Pacific and along the 

west coast of the USA to the end of 2014; 

 subtle evidence of a more recent acceleration in mean sea level within the Gulf of 

Mexico and along the east coast of the USA which could be inferred from a range of 

differing diagnostic approaches espoused within this research, including that peak 

instantaneous velocities within these margins have tended to occur post 2006. However, 

there is no evidence (at the 95% confidence level) of instantaneous velocity and 

acceleration peaks post 2000 that are abnormal or higher than secondary peaks 

occurring elsewhere over the length of the historical records available (with the sole 

exception of the peak instantaneous velocity at New York near the end of the record); 

 of the 2913 station years of records analysed, less than 9% exhibited a positive 

acceleration statistically different to zero (95% CI). Of the stations analysed within the 



PhD Thesis – Phil J. Watson 
 

  
 
 

 

98 
 

so-called ‘hotspot of acceleration’ north of Cape Hatteras, less than 21% of the data 

years from 1990 exhibit a positive acceleration statistically different to zero (95% CI); 

 none of the geocentric velocities determined at the end of 2014 exceed the global 

average rate of 3.3 ± 0.4 mm/yr (Nerem et al., 2010; University of Colorado, 2016) at the 

95% confidence level. Some 8 of the 12 stations in the Central Pacific and west coast 

region and a further 4 stations along the east coast (Key West, Annapolis, Sandy Hook 

and Eastport) are lower than the global average (95% CI); and 

 current (2014) geocentric sea level rise around the USA highlights the spatial fingerprint 

of the sea level rise phenomena. The average rate for the Central Pacific and west coast 

stations is 1.20 ± 0.45 mm/yr compared to the Gulf of Mexico and along the east coast 

where the average rate is some 80% higher at 2.19 ± 0.58 mm/yr (95% CI). 

 

These findings are particularly poignant given the various recent published works alluding to a 

so-called ‘hotspot’ of accelerated sea level rise, particularly along the east coast margin north 

of Cape Hatteras. Clearly considerable contentions exist concerning the underpinning 

mechanics responsible for driving recent increases in the rate of mean sea level that have been 

measured along this stretch of coastline (e.g., Higginson et al., 2015; Kopp, 2013). It might be 

probable that the contributory influences have derivations with oceanographic, geological and 

climate change induced origins. However, nothing in the analysis contained herein hints at 

recent increases in velocities or accelerations within this region that are outside the natural 

range of these characteristics measured from the tide gauge time series available (at the 95% 

confidence level). 

 

It is possible that the recent increase in instantaneous velocities and accelerations within the 

Gulf of Mexico and along the east coast of the USA might signal the onset of large projected 

sea level rises due to climate change forecasts over the course of the 21st century (and 

beyond). For example, 4 of the 29 station records analysed indicate the peak instantaneous 

relative velocities occurring in 2014, at the end of the available data record (Astoria, Los 

Angeles, Key West and Boston). However, whilst the accelerated climate change influence is 

not yet statistically evident in these records, depending on the climate change trajectory, it is 

highly likely that such changes will take at least 15 - 20 years to manifest in the network of tide 

gauge records examined within this analysis. 
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When investigating temporal characteristics of mean sea level it is imperative to make use of 

the longest, quality controlled records available. This analysis has benefitted from the use of 

recently extended data sets for the USA (Hogarth, 2014; Talke and Jay, 2013). The techniques 

employed within this research form an integral part of the evolutionary process by which to 

measure accelerations in mean sea level with improving robustness and consistency. 
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Chapter 6 
 
 

Application of “msltrend” Analytical 
Software Package to the Data Rich 

Margins of Europe 
 
 

Synopsis: This chapter supplements the detailed analysis of the long USA records (Chapter 
5) using the same analytical framework and methodology but, applied to the extensive 
network of European tide gauge records which encompass a range of complex geophysical 
and oceanographic settings. This work has significant regional and global implications given 
that some 28 of the 30 longest records in the Permanent Service for Mean Sea-level 
(PSMSL) global data holdings are European, extending as far back as 1807 (Brest, France). 
Key findings are that at the 95% confidence level, there is no consistent or compelling 
evidence (yet) that recent rates of rise are higher or abnormal in the context of the 
historical records available across Europe nor is there any evidence that geocentric rates of 
rise are above the global average. It is likely a further 20 years of data will distinguish 
whether recent increases are evidence of the onset of climate change induced acceleration. 
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6.1 Introduction 
Global analysis suggests that coastal population growth and urbanisation rates are outstripping 

the demographic development of the hinterland, driven by rapid economic growth and 

coastward migration (McGranahan et al., 2007; Neumann et al., 2015; Smith, 2011). Based on 

population assessments in 2000, it was estimated that the global population living within the 

Low Elevation Coastal Zone (LECZ, below 10m above mean sea level) was of the order of 625 

million, of which 50 million were estimated to reside in Europe (Neumann et al., 2015). 

 

The ClimateCost Project undertaken for the European Union (Watkiss, 2011) provides a 

sobering economic appraisal of the threat from sea level rise and the costs and benefits of 

adaptation over the course of the 21st century. For example, assuming no adaptation, it is 

estimated that under a medium to high greenhouse gas emission scenario (A1B: Meehl et al., 

2007) that flooding along with other impacts of sea-level rise (e.g., shoreline recession) will 

lead to annual damage costs across Europe of up to €11 billion for the 2050s, rising to €25 

billion by the 2080s (Brown et al., 2011). Flooding more generally will of course be 

substantially exacerbated by forecast sea-level rise into the future, foreboding an increasingly 

ominous threat from natural disasters (Watson, 2016e). 

 

Some 28 of the 30 longest records in the PSMSL global data holdings are European, extending 

as far back as 1807 (Brest, France). Such records provide the world’s best time series data with 

which to examine how kinematic properties of the trend might be changing over time. This 

chapter supplements the detailed analysis of the long USA records (Chapter 5) using the same 

analytical framework and methodology but, applied to the extensive network of European tide 

gauge records. 

 

This chapter provides an updated appraisal of acceleration in mean sea level records around 

Europe through use of ‘msltrend’ (Watson, 2016b, refer Section 4.6) within the R Project for 

Statistical Computing (R Core Team, 2016). The outputs of this research tool provide a more 

consistent, transparent appraisal of acceleration in mean sea level records around Europe; 

overcoming many of the evident shortcomings from the wide body of scientific literature on 

this topic (refer Section 5.5). 
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6.2 Physical Setting 
Whilst the extensive quantum of quality European relative mean sea-level time series data sets 

are invaluable for sea-level research, one must also have an understanding of the complex 

geophysical (and other factors) embedded within the data. The study area (refer Figure 6.1, 6.2 

and 6.3) encompasses coastlines on major water bodies including: 

 

 The North Atlantic Ocean between the Strait of Gibraltar, Spain along the open coast to 

Murmansk Oblast in the Barents Sea. This area includes the adjacent water bodies of the 

Gulf of Cadiz, Bay of Biscay, English Channel, Celtic Sea, Irish Sea, North Sea, Kattegat 

and Norwegian Sea; 

 The Mediterranean Sea is a semi-enclosed water body of approximately 2.5 million km2 

connected to the Atlantic Ocean via the Strait of Gibraltar which narrows to a mere 13 

km. Owing to this constriction, the tides are low compared to that of the Atlantic (Pugh, 

1996). The Mediterranean Sea is divided into two large basins separated by the Sicilian 

Channel and the Messina Strait, with both basins extending to depths of more than 4 km 

in places (Arabelos et al., 2011). The Mediterranean is connected to the Black Sea via the 

Strait of Bosporus and artificially to the Red Sea via the Suez Canal. Some of Europe’s 

largest rivers drain directly or indirectly into the Mediterranean including the Nile 

(Egypt), Po (Italy), Ebro (Spain) and Rhône (France); 

 The Black Sea is the world's largest inland sea covering an area of 436,000 km2 

exchanging water with the Mediterranean Sea via the Bosporus and Dardanelles Straits 

(Avsar et al., 2016), and the Sea of Azov through the Kerch Strait (Stanev, 2005). At any 

given time, the level of the Black Sea is principally governed by complex 

interrelationships between the local water budget (precipitation vs evaporation), 

eustatic sea-level variations and water exchange through the straits and continental 

discharges onto the northern coast via the Danube, Dniper and Don Rivers which drain 

almost one third of the entire land area of continental Europe (Bakan and Büyükgüngör, 

2000). A permanent feature is an upper layer circulation driving the Rim Current, 

encircling the entire Black Sea and forming a large-scale cyclonic gyre (Korotaev et al., 

2003). This circulation induces a rise of sea level toward the coast where velocities 

increase and conversely sea level decreases in the deeper margins of the Black Sea 

(Kubryakov and Stanichnyi, 2013). The amplitude of sea level variation in space depends 

on seasonal influences, ranging from 25 to 40 cm (Korotaev et al., 2003). Volkov and 
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Landerer (2015) note that non-seasonal sea level time series in the Black and Aegean 

Seas (eastern Mediterranean) are significantly correlated, with the Black Sea lagging by 

around 1 month; and 

 The Baltic Sea is another semi-enclosed water body of approximately 350,000 km2 

connected to the North Sea through the Kattegat and via the three Danish Straits 

(Øresund, Great Belt and Little Belt) between Sweden and Denmark. The Gulf of Bothnia 

defines the northernmost extent the Baltic Sea, whilst the Gulf of Finland defines the 

easternmost extremity, extending all the way to Saint Petersburg, Russia. Based on the 

limited exchange with the open ocean, the Baltic Sea is virtually tideless but receives 

considerable freshwater inflows from over 200 river systems (Leithe-Eriksen, 1992). The 

mean depth of the Baltic is around 50 m, however, the Gulfs of Bothnia and the central 

Baltic can be up to 500 m deep (Leppäranta and Myrberg, 2009). Ice typically covers the 

sea in winter months in the Gulfs of Bothnia, Finland and Riga, and in sheltered bays and 

lagoons (Kullenberg, 1981). 

 

Whilst these water bodies exhibit quite different physical characteristics, the associated land 

masses around Europe embody distinctive vertical land motions which are embedded within 

relative sea level records recorded at tide gauges. The most prominent of which are the high 

rates of post-glacial rebound experienced within the Fennoscandian Region of northern 

Europe (comprising Sweden, Finland, Norway and parts of Russia) which are amongst the 

highest rates globally predicted by the ICE-6G(VM5a) model (Argus et al., 2014; Peltier et al., 

2015). Land uplift rates around the Baltic Sea margins range from zero in the south to 9 mm/yr 

in the north (Leppäranta and Myrberg, 2009). Elsewhere across Europe, areas are known to be 

subsiding such as the eastern margins of the Black Sea and around the southern English, Dutch 

and German coastlines (Bungenstock and Schäfer, 2009; Minshull et al., 2005, Shennan and 

Woodworth, 1992; Wahl et al., 2013).  

 

The Mediterranean and Black Sea regions exhibit a complex range of concomitant land 

movement processes including glacial isostatic adjustment, subsidence due to sediment 

compaction in key river delta areas such as the Po, Rhône, Ebro and Danube (Ericson et al., 

2006; Panin and Jipa, 2002) and tectonic processes whereby collisions between the African, 

Eurasian and Arabic plates have produced very complex tectonic regimes of microplates that 

are far from resolved, especially with respect to vertical motions (Garcia et al., 2007). 
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Figure 6.1: Location of tide gauge records analysed. 

 

 
Notes:  
 
Each record is denoted by a ‘‘Station ID’’ with further details provided in Table 6.1. Refer to Figures 6.2 and 6.3 for 
insets A and B, respectively. 
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Figure 6.2: North Sea tide gauge records analysed. 

 

 
Notes:  
 
Refer to Figure 6.1 (inset A) and Table 6.1 for further details. 
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Figure 6.3: Baltic Sea tide gauge records analysed. 

 

 
Notes:  
 
Refer to Figure 6.1 (inset B) and Table 6.1 for further details. 
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6.3 Methodology 
The methodology applied to the records in Table 6.1 is identical to that undertaken for the USA 

records in Chapter 5 (refer Section 5.3). 

 

6.4 Data 
Within the study area (refer Figures 6.1, 6.2 and 6.3), some 83 annual average time series 

records are available for analysis which meet the length and data gap admissibility protocols of 

the msltrend package (advised in Sections 4.3.1, 4.5). Only Revised Local Reference (RLR) 

datasets from the PSMSL have been used as they are commensurate with quality control 

procedures and complete tide gauge datum histories provided by the supplying national 

authority (PSMSL, 2016). 

 

Within these records, the spatial density is highest along the northern and central European 

mainland bordering the North Sea and for margins around the Baltic Sea, contrasting sharply 

to the scarcity of comparable records within the Mediterranean and Black Sea. Records used in 

this study comprise 8,505 station years from the PSMSL plus a further 2,436 station years 

added through the extensive data archaeology work of Hogarth (2014). The work of Hogarth 

(2014) extends tide gauge time series from the PSMSL using historical documents, PSMSL 

ancillary data, and by developing additional composite time series using near neighbour tide 

gauges (Watson, 2016e). A total of 54 station records used in this study have been extended 

by Hogarth (2014), with only the complete portions of these extended time series used. 

Further, only records finishing within the last decade (post 2006) have been considered as the 

focus of the study is to reconcile recent temporal changes in mean sea level with the historical 

record available. 

 

All data records used have notionally been assigned a ‘Station ID’ (refer Table 6.1) based on 

differentiating key European coastlines including: 

 

 North Atlantic commencing in the south at Lagos, Portugal (ID=1) heading north around 

the British Isles, along the North, Norwegian and Barents Seas to Polyarniy, Russian 

Federation (ID=39)(see Figures 6.1 and 6.2); 
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 Baltic Sea beyond the entrance at the Great Belt commencing at Gedser, Denmark 

(ID=40) moving in a clockwise direction around the Gulf of Bothnia, Gulf of Finland and 

Gulf of Riga to Wismar, Germany (ID=76) (see Figure 6.3); and 

 Mediterranean and Black Seas beyond the Strait of Gibraltar commencing at Alicante, 

Spain (ID=77) moving in a clockwise direction around the Balearic, Tyrrhenian, Ionian, 

Adriatic and Aegean Seas, to Poti, Georgia (ID=83) on the eastern foreshore of the Black 

Sea (see Figure 6.1). 

 

By graphically representing characteristics associated with records based on the Station ID, 

spatially dominant patterns are more readily apparent. 

 

Table 6.1: Summary of data used in European analysis. 

 
Tide Gauge Data GNSS (GPS) Data (3) 
Station 
ID (1) 

Location PSMSL 
ID 

Start 
(yr) 

End 
(yr) 

Length 
(yrs) 

Gaps 
(yrs) 

SONEL 
Station 

Length 
(yrs) 

Distance 
to tide 
gauge (m) 

VLM 
(mm/yr) 

NORTH ATLANTIC OCEAN (including NORTH SEA, NORWEIGAN SEA and BARENTS SEA) 
1 Lagos(2) 162 1909 2012 104 14 LAGO 13.72  134 -0.52  0.15 
2 Cascais(2) 52 1882 2012 131 14 CASC 15.63  275 -0.08  0.18 
3 Leixoes(2) 791 1928 2008 81 12 GAIA NA  12,677  
4 St Jean De Luz(2) 469 1889 2013 125 15 SCOA 8.01  2 -2.70  0.28 
5 Brest 1 1807 2014 208 23 BRST 15.16  293 -0.02  0.11 
6 Newlyn 202 1916 2014 99 2 NEWL 15.24  5 -0.21  0.13 
7 Aberdeen(2) 21 1862 2014 153 11 ABER 15.28  1 0.90  0.22 
8 North Shields(2) 95 1895 2014 120 2 NSLG 3.94  495 1.37  0.67 
9 Sheerness(2) 3 1870 2008 139 1 SHEE 16.57  2 1.09  0.20 
10 Oostende(2) 413 1927 2012 86 6 OOST 10.65  966 -0.35  0.28 
11 Vlissingen 20 1862 2014 153 - VLIS 7.1  2 0.28  0.51 
12 Terneuzen(2) - 1862 2008 147 - - - - - 
13 Hansweert(2) - 1862 2008 147 - - - - - 
14 Hoek Van 

Holland 22 1864 2014 151 - - - - - 
15 Maassluis 9 1848 2014 167 - - - - - 
16 Amsterdam(2) - 1766 2011 246 - - - - - 
17 IJmuiden(2) 32 1872 2014 143 - IJMU 9 2 -0.53  0.34 
18 Den Helder(2) 23 1832 2014 183 - - - - - 
19 Harlingen(2) 25 1865 2014 150 - - - - - 
20 West-

Terschelling 236 1921 2014 94 - TERS 17.16  10 
-0.20  0.22 

21 Delfzijl(2) 24 1827 2014 188 1 - - - - 
22 Cuxhaven(2) 7 1843 2013 171 - TGCU 5.02  1 0.01  0.86 
23 Esbjerg 80 1889 2012 124 3 ESBH 9.13  5 -1.18  0.48 
24 Hirtshals 89 1892 2012 121 10 HIRS 9.13  512 2.75  0.45 
25 Frederikshavn 91 1894 2012 119 8 - - - - 
26 Aarhus 76 1889 2012 124 8 - - - - 
27 Frederika 81 1890 2012 123 3 - - - - 
28 Slipshavn 98 1896 2012 117 10 - - - - 
29 Korsor 113 1897 2012 116 6 - - - - 
30 Hornbaek(2) 119 1891 2013 123 4 - - - - 
31 Varberg(2) 73 1887 2012 126 - - - - - 
32 Goteborg-

Ringon(2) 2133 1887 2012 126 1 - - - - 
33 Smogen(2) 179 1895 2014 120 - - - - - 
34 Oslo(2) 62 1914 2014 101 - OSLS 13.16  28,041 5.31  1.12 
35 Tregde 302 1928 2014 87 5 TGDE 9.78  5 1.64  0.41 
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Table 6.1 (cont) 
 

Tide Gauge Data GNSS (GPS) Data (3) 
Station 
ID (1) 

Location PSMSL 
ID 

Start 
(yr) 

End 
(yr) 

Length 
(yrs) 

Gaps 
(yrs) 

SONEL 
Station 

Length 
(yrs) 

Distance 
to tide 
gauge 
(m) 

VLM (mm/yr) 

36 Bergen(2) 58 1915 2014 100 4 - - - - 
37 Heimsjo 313 1928 2014 87 11 - - - - 
38 Kabelvag(2) 45 1928 2014 87 4 - - - - 
39 Polyarniy(2) 2027 1926 2012 87 6 - - - - 
BALTIC SEA REGION 
40 Gedser(2) 120 1882 2012 131 2 GESR 9.17 200 0.61  0.66 
41 Kobenhavn 82 1889 2012 124 4 BUDP 10.99 8,817 1.99  0.51 
42 Klagshamn 330 1930 2014 85 - - - - - 
43 Ystad(2) 72 1887 2012 126 - - - - - 
44 Kungsholmsfort 70 1887 2014 128 - - - - - 
45 Olands Norra 

Udde(2) 69 1887 2014 128 - - - - - 
46 Visby 2105 1916 2014 99 1 VIS0 14.83 5,195 3.31  0.56 
47 Mem(2) 75 1864 2013 150 - - - - - 
48 Landsort(2) 68 1887 2012 127 - - - - - 
49 Nedre 

Sodertalje(2) 31 1869 2014 146 - - - - - 
50 Stockholm(2) 78 1801 2014 214 - - - - - 
51 Bjorn(2) 90 1892 2013 122 - - - - - 
52 Nedre Gavle(2) 99 1896 2013 118 - MAR6 14.83 11,000 7.86  0.65 
53 Draghallan(2) 122 1898 2013 116 1 SUN6 NA 16,017  
54 Ratan 88 1892 2014 123 1 - - - - 
55 Furuogrund(2) 203 1892 2014 123 2 SKEO 8.99 9,530 10.43  0.20 
56 Kemi 229 1920 2014 95 9 - - - - 
57 Oulu 79 1889 2014 126 18 - - - - 
58 Pietarsaari(2) 194 1889 2014 126 5 - - - - 
59 Vaasa(2) 57 1867 2014 148 11 VAAS 14.83 20,000 9.13  0.13 
60 Kaskinen 285 1927 2014 88 6 - - - - 
61 Mantyluoto(2) 172 1889 2014 126 4 - - - - 
62 Rauma 376 1933 2014 82 2 - - - - 
63 Lyokki(2) 16 1858 2013 156 1 - - - - 
64 Lypyrtti(2) 17 1858 2013 156 1 - - - - 
65 Foglo(2) 249 1866 2014 149 8 - - - - 
66 Turku 239 1922 2014 93 3 - - - - 
67 Jungfrusund(2) 18 1858 2011 154 17 - - - - 
68 Hanko(2) 71 1866 2014 149 17 - - - - 
69 Helsinki 14 1879 2014 136 - METS 18.99 31,729 4.48  0.84 
70 Soderskar(2) 29 1866 2014 149 - - - - - 
71 Hamina(2) 315 1889 2014 126 4 - - - - 
72 Kronstadt(2) - 1835 2011 177 - - - - - 
73 Gdansk(2) 64 1886 2011 126 5 - - - - 
74 Swinoujscie(2) 2 1811 2012 202 2 - - - - 
75 Warnemunde(2) 11 1855 2014 160 1 WARN 10.87 126 0.65  0.59 
76 Wismar 8 1849 2014 166 1 - - - - 
MEDITERRANEAN SEA (including BLACK SEA) 
77 Alicante(2) 208 1874 2010 137 11 ALAC 14.4 1 0.33  0.19 
78 Marseille(2) 61 1885 2014 130 1 MARS 15.45 5 -0.24  0.18 
79 Genova(2) 59 1884 2013 130 16 GENO 15.43 1,000 -0.22  0.27 
80 Venezia(2) 168 1872 2012 141 7 VEN1 4.18 5,825 -1.21  0.67 
81 Trieste(2) 154 1875 2015 141 2 TRIE 10.89 6,707 0.30  0.27 
82 Tuapse 215 1917 2014 98 2 TUAP NA 95 - 
83 Poti 41 1874 2013 140 9 - - - - 

Abbreviations: VLM = vertical land movements; NA = not available 
 
Notes: 
 
 (1) The ‘Station ID’ is a local referencing protocol used throughout this study, particularly the graphical outputs; 
(2) Extended data sets advised in Hogarth (2014) have been used for this study; and 
(3) All GPS data kindly provided by SONEL using updated ULR6a solutions (Santamaría-Gómez et al., 2012) with 1 

sigma error estimates advised. 
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6.5 Results 
Figure 6.4 provides an example output from the analysis of the four longest records available 

within the study area (Amsterdam, Netherlands – 246 years; Stockholm, Sweden – 214 years; 

Brest, France – 208 years; and Swinoujscie, Poland – 202 years), reflective of the broader 

regional temporal signatures of velocity and accelerations in relative mean sea-level. It is clear 

that these velocities and accelerations are varying over time. It is also evident from these long 

records that relative velocity is steadily increasing over time, peaking at or near the recent end 

of the time series record, driven by low and continually changing rates of acceleration. For 

each of the long records depicted in Figure 6.4, the acceleration is predominantly confined to a 

narrow band within ± 0.05 mm/yr2 and not statistically different to zero at the 95% confidence 

level for most of the records, despite evidence that relative velocities are continuing to 

increase. The complete analysis of all the records in this manner provides the means to inspect 

spatial temporal patterns in greater detail than previously available. 

 

Figure 6.5 provides a breakdown of the peak velocities and accelerations for each record and 

the time they occur. It is relevant to consider these charts simultaneously as velocity and 

acceleration are intrinsically linked as kinematic properties. For example, acceleration is 

required to increase velocity and conversely negative acceleration (or deceleration) is required 

to reduce velocity. From inspection of Figure 6.5, a range of key observations are apparent, 

including: 

 

 The spatial signature of peak relative velocity is strongly reflective of the signatures of 

vertical land movements within the study area. Those areas experiencing high rates of 

post-glacial rebound are clearly evident moving northward around the Baltic Sea 

margins with peak relative velocities below -4 mm/yr. Conversely, only 19 stations 

measure a peak relative velocity throughout the historical record exceeding 2 mm/yr. 

Principally these high rates correspond with areas that exhibit known subsidence 

(eastern Black Sea, southern English, Dutch and German coastlines); 

 primary and secondary velocity peaks measured across all European records are quite 

similar in magnitude; 
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Figure 6.4: Temporal characteristics of mean sea level for the longest records within the study 

area (Amsterdam, Stockholm, Brest and Swinoujscie). 

 

 
Notes:  
 
Each site is depicted by a three-panel plot of mean sea level, velocity, and acceleration. The respective scales are 
identical for all stations for direct comparative purposes.  
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Figure 6.5: Peak estimates of velocity and acceleration for all stations. 

 

 
Notes:  
 
Peak metrics are denoted as filled boxes, whilst secondary peaks are denoted by clear boxes. The centre panels 
indicate the year in which the respective peaks occurred. A vertical dashed line corresponding to station 40 (Gedser, 
Denmark) and station 77 (Alicante, Spain) denote the commencement of the Baltic Sea stations and Mediterranean 
Sea and Black Sea stations, respectively. Horizontal lines are provided as visual markers correlating to relevant 
discussions in the text. The bottom panel provides an indication as to whether the peak metric is statistically 
different (in this case higher) than all others in the context of the historical record at the 95% confidence level based 
on the significance testing protocol advised in Wolfe and Hanley (2002). Station ID references are summarised in 
Table 6.1.  
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 Some 52 of the 83 records (63%) have the peak relative velocity occurring on or after 

2000 though within this figure there are some interesting spatial features. In particular, 

this figure rises to 80% of the stations in the semi-enclosed seas (Baltic, Mediterranean 

and Black Seas), contrasting to only 44% of the stations positioned along the North 

Atlantic coastline. Some 10 of these peaks coincide with the most recent data point in 

the time series (Brest, France [ID=5]; Bergen, Norway [ID=36]; Heimsjo, Norway [ID=37]; 

Mem, Sweden [ID=47]; Swinoujscie, Poland [ID=74]; Alicante, Spain [ID=77]; Marseille, 

France [ID=78]; Genova, Italy [ID=79]; Trieste, Italy [ID=81]; and Tuapse, Russian 

Federation [ID=82]); 

 Mean maximum acceleration measured across all records is approximately 0.074 ± 0.042 

mm/yr2 (1σ) with no particular spatial patterns evident; 

 There is however strong spatial coherence around the timing of the primary and 

secondary peaks in mean sea level acceleration (middle right panel) with nearly 34% of 

the peak acceleration focussed within a band between 1994 and 2000. Other bands of 

acceleration are clearly evident centred around 1940 and 1976; and 

 Most significantly, from an analysis of the peak velocities and accelerations for all 

records considered within the study area, only 5 peak velocities (Hornbaek, Denmark 

[ID=30]; Smögen, Sweden [ID=33]; København, Denmark [ID=41]; Furuögrund, Sweden 

[ID=55]; and Genova, Italy [ID=79]) and 3 peak accelerations (Vlissingen, Netherlands 

[ID=11]; IJmuiden, Netherlands [ID=17]; and Marseille, France [ID=78]) are statistically 

different (or higher) than other peaks observed elsewhere over the historical record 

(95% confidence level). Of these 8 statistically significant peaks, all except the peak 

accelerations measured at Vlissingen and Ijmuiden occur after 1990. 

 

Figure 6.6 provides an assessment of the extent and temporal distribution of positive 

acceleration in all records (i.e. statistically different to zero). Such analyses provide an 

alternative form of assessment for investigating subtleties of acceleration when the metrics 

are comparatively low. A mere 7.4% of the 10,941 station years of records available exhibit a 

positive acceleration different to zero at the 95% confidence level. However, there is some 

evidence of a more sustained period of positive acceleration between ≈1880 and 1910 from 

the longer records available for the southern portion of the North Atlantic coastline. 
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Figure 6.6: Periods of positive acceleration (95% CI). 

 

 
 

Elsewhere the temporal signatures mirror the peak accelerations discussed previously 

concerning Figure 6.5. Results displayed in Figure 6.6 also highlight a difference within the 

Baltic Sea compared to the rest of the study area. Specifically, only 2.6% of station years 

exhibit a positive acceleration different to zero with some 54% of the Baltic records indicating 

no positive acceleration throughout the time series (95% CI). 

 

Figure 6.7 provides an appraisal of the current rate of geocentric sea-level rise across the tide 

gauge network by correcting the relative velocity at the recent end of the record with GPS 

derived vertical land movement rates from SONEL (refer Table 6.1), noting that only 30 records 

(or 36%) have an associated SONEL station available with updated ULR6a solutions 

(Santamaría-Gómez et al., 2012; SONEL, 2016). There are a number of key features evident 

from this graphical analysis, including no evident spatial trend across Europe from the current 

geocentric velocities. Further, none of the geocentric velocities determined exceed the global 

average of 3.4 ± 0.4 mm/yr (Nerem et al., 2010; University of Colorado, 2016) at the 95% 

confidence level. Though, some 10 stations are lower than the global average (95% CI), of 
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which 8 are located along the North Atlantic coastline between Lagos, Portugal (ID=1) and 

Esbjerg, Denmark (ID=23). 

 

Figure 6.7: Estimates of Current Geocentric Rate of Sea-Level Rise (95% CI). 

 

 
Notes:  
 
‘‘Current’’ refers to the last date in the respective data time series. Estimates based on real-time relative velocity 
derived from msltrend decomposition corrected by vertical land movement velocities provided by SONEL. The 
vertical dashed lines demarcate the three respective spatial subregions analysed (North Atlantic Ocean, Baltic Sea, 
and Mediterranean Sea; refer to Table 6.1). Clear boxes in the bottom panel represent stations in which relative 
sea-level fall is evident over the course of the record. Data sources and station ID references are summarised in 
Table 6.1. 
 

The bottom panel of Figure 6.7, although highlighting no particular spatial pattern across 

Europe, indicates that only 25 of 83 stations (or 30%) exhibit a current velocity exceeded by 

less than 10% of the historical record. For these stations, this indicates the latter portions of 

these records are within the upper bracket of velocities recorded over the historical record, 

providing tangible (albeit limited) evidence of recent acceleration in mean sea-level across the 

European region. 
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6.6 Discussion 
As advised in Chapter 5 (Section 5.5), ocean water level time series data from tide gauge 

stations are a complex amalgam of key physical contributors which include: 

 

 Factor 1: land movement at the tide gauge site; 

 Factor 2: dynamic influences of largely oceanographic, atmospheric or gravitational 

origins operating on differing temporal and spatial scales; and 

 Factor 3: low amplitude signal of mean sea level rise driven by climate change influences 

(principally melting of snow and ice reserves bounded above sea level (directly adding 

water), and thermal expansion of the ocean water mass). 

 

Specifically within the European context, factors 1 and 2 are particularly complex. The study 

area encompasses sites ranging from those that exhibit high rates of vertical land motion due 

to post-glacial rebound (e.g., Baltic Sea) to areas where significant ongoing subsidence is 

prevalent (e.g., eastern margins of the Black Sea). In addition to this, the semi-enclosed 

margins of the Black, Mediterranean and Baltic Seas drain annual continental water discharges 

from large tracts of Europe. 

 

Deshayes and Frankignoul (2008) note the North Atlantic Ocean is a key element of the earth’s 

climate. In particular, the cyclonic circulation at depth along the boundaries, the deep western 

boundary current, is the deep limb of the Atlantic meridional overturning circulation (AMOC) 

that contributes substantially to the energy balance of the earth. The state of the North 

Atlantic Oscillation (NAO) imposes a strong constraint on the circulation of the North Atlantic 

(Getzlaff et al., 2005) and is considered to be a singular major atmospheric, basin scale pattern 

that affects sea level around Europe and further afield (Tsimplis et al., 2006; Wakelin et al., 

2003; Woolf et al., 2003). 

 

In addition to the afore-mentioned studies, numerous published works have been dedicated to 

examining linkages between dominant NAO drivers and sea level anomalies throughout the 

study area (e.g., Calafat et al., 2012; Dangendorf et al., 2012; Gomis et al., 2006, 2008, 

Jevrejeva, et al., 2005; Lehmann et al., 2011; Tsimplis et al., 2008; Tsimplis and Shaw, 2008; 

Vigo et al., 2005). 
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The necessity to remove these influences from the data to enhance acceleration estimates is 

well noted in the literature (e.g., Calafat et al., 2012; Calafat and Chambers, 2013; Chambers et 

al., 2012; Dangendorf et al., 2014; Douglas, 1992; Haigh et al., 2014). 

 

The NAO was one of the key dynamic features embedded within the synthetic data set 

(Watson, 2015) used to test time series analysis techniques for their utility in isolating relative 

mean sea level from conventional ocean water level data sets with improved accuracy 

(Watson, 2016a). From this testing, SSA (which underpins the msltrend package used to 

decompose records in this study), proved an optimal technique to separate out these complex 

oscillatory signals with time-varying amplitudes and noise from the low amplitude and low 

frequency signal of mean sea-level rising over time. In particular, the estimation of mean sea 

level via selection of ‘trend-like’ components in which a contribution threshold ≥ 75% is 

contained within frequency bins ≤ 0.01 (refer Section 5.3, Step 2) provides a necessary 

assurance that these dynamic contaminating influences are removed. 

 

The detailed analysis undertaken highlights that velocity time series associated with relative 

mean sea-level at each site, are distinctly non-linear, in turn reflective of associated 

acceleration continually varying over time. With relatively small kinematic properties evident 

over the course of the lengthy records available (see Figure 6.4), different diagnostic 

approaches are proving necessary to infer an acceleration in mean sea level records or to 

detect change points in records that might be reflective of an altered climate-related forcing. 

The relative mean sea-level velocity and acceleration time series enable subtle changes to be 

more readily or intuitively detected, moving beyond the encumbrances and inherent 

limitations of the overly-used linear regression and quadratic techniques to estimate velocity 

and acceleration, respectively (refer Section 5.5.3). 

 

6.6.1. Reconciling historical and future projected MSL accelerations 

As indicated above, the scale of velocities and accelerations measured within this study (e.g., 

Figure 6.4) remain lower than those associated with forecasts from physics-based climate 

models over the course of the 21st century and beyond (Church et al., 2013a; IPCC, 2013b). 

Under forecasts of high simulated radiative (or external) forcing (RCP8.5 scenario), the current 

rate of global averaged sea-level rise of 3.4 ± 0.4 mm/yr (Nerem et al., 2010; University of 
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Colorado, 2016) is expected to increase to rates of the order of 8 - 16 mm/yr by 2100 (refer 

Chapter 1, Figures 1.1 and 1.2). 

 

Figure 6.8 provides a visual comparative analysis of how the velocity and acceleration time 

series might change at Cuxhaven, Germany and Kronstadt, Russian Federation, based on a 

relative mean sea-level rise of 800 mm from present to 2100. Under such a scenario, which 

assumes simple equations of motion and uniform acceleration, the necessary and significant 

changes in velocities and accelerations compared to those measured over the historical record, 

are likely to be readily apparent well within the next 20 years. For example, accelerations at 

both stations will, under such a scenario, have to rise to ≈ 0.18 mm/yr2 within the next 10 

years and be sustained to 2100. By contrast, only one European record (Mem, Sweden) has 

experienced a measured acceleration of this order from the 10,941 station years analysed 

(Figure 6.5) and from all of these records, a mere 7.4% exhibit a positive acceleration different 

to zero at the 95% confidence level (Figure 6.6). 

 

One should caution these forecasts are highly idealistic and preliminary. They are advised in 

order to provide a sense of perspective regarding the timing of necessary changes to the 

kinematic properties of mean sea-level at these locations, in order to give effect to such 

projections.  

 

It is recognised that the atmosphere is regarded as having a very short memory while the 

oceans and ice sheets, due to their enormous thermal inertia, provide much longer memory 

for climate variations (Dangendorf et al., 2015; Levermann et al., 2013; Marcos et al., 2017; 

Trenberth and Hurrell, 1994). This inertia and long term memory relate to the ability and time 

for the ocean to store and transport heat and temperature anomalies throughout the water 

mass to great depth (Goosse et al., 2004; Goosse and Renssen, 2005). Whilst these facets are 

built into coupled ocean–atmosphere general circulation models (OAGCMs) to study the 

characteristics of the large-scale ocean circulation and its climatic impacts, the trajectory of 

the oceanic response remains uncertain with potential lags not yet fully understood. From this 

perspective it is imperative to appreciate the importance of ongoing efforts to identify, with 

improved accuracy, critical change points in the long time series of mean sea level records 

available.   
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Figure 6.8. Indicative implications of projected sea-level rise of 800 mm at Cuxhaven, 

Germany, and Kronstadt, Russian Federation, from 2015 to 2100. 

 

 
Notes:  
 
Projections based on simple equations of motion with uniform acceleration. Error margins noted are 95% 

confidence levels.  
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Whilst the techniques espoused in this research represent a concerted effort to test and 

specifically identify enhanced techniques to isolate mean sea level with improved temporal 

accuracy (Watson, 2015, 2016a,c,e) this work should be considered a staging point for ongoing 

improvements in such critical areas, in particular the identification of statistically robust 

change points in the record. 

 

6.6.2. Selected Literature concerning MSL acceleration around Europe 

Woodworth (1990) remains one of the seminal papers in the literature concerning mean sea 

level accelerations focusing on the extensive network of European time series records. This 

work concluded that European tide gauge records since 1870 showed little evidence for 

significant accelerations, either positive or negative, in regional mean sea levels, with on 

average a weak deceleration observed. This study however, based estimates of acceleration on 

simple quadratic coefficients, which (from a more contemporary understanding) have 

significant limitations (refer Section 5.5.3). 

 

No comparable studies of this scale regarding mean sea level acceleration across Europe have 

been undertaken since Woodworth (1990). Though considerable attention has been given to 

investigations on smaller scales such as the North Sea (e.g., Shennan and Woodworth, 1992; 

Wahl et al., 2013), English Channel, UK (e.g., Haigh et al., 2009), German Bight (e.g., Wahl et 

al., 2010; Wahl et al., 2011) and Baltic Sea (e.g., Donner et al., 2012; Hünicke and Zorita, 2016; 

Spada et al., 2014). Shennan and Woodworth (1992) analysed records from the UK and North 

Sea, developing a de-trended ‘Regional Sea-Level Index’, confirming the previous results of 

Woodworth (1990) with no evidence in the region for an acceleration of sea-level trends in 

recent decades (that is up to 1992). 

 

Haigh et al. (2009) provide a detailed appraisal of available records around the English 

Channel. Acceleration in mean sea level was observed by considering overlapping 10, 25 and 

50-year periods, for the four longest and most complete records. The analysis concluded that 

recent high rates of change in mean sea level were not unusual compared to those that had 

occurred at other times during the 20th century, with no evidence as yet (at 2009) for any 

acceleration in sea level rise over the 20th century around the English Channel. 
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Wahl et al. (2011) provides a detailed assessment of 13 tide gauge records covering the entire 

German North Sea coastline with particular consideration given to the investigation of non-

linear (acceleration) behaviour. One method involves the establishment of a ‘virtual’ station 

time series smoothed using SSA (with an embedding dimension of 15 years) in combination 

with Monte-Carlo-Autoregressive Padding (used previously in Wahl et al., 2010) in a novel 

approach designed to limit the ubiquity of end effects associated with filtering of time series. 

Rates of change are then considered via first differences. This work concluded that an 

acceleration of sea level rise commenced at the end of the nineteenth century with another 

distinct period of acceleration starting in the 1970s and intensifying from the 1990s, but the 

high rates of sea level rise during this period are comparable with rates at other times during 

the last 166 years.  

 

Similar periods of key acceleration are confirmed in the current study, though Wahl et al. 

(2011) do not find evidence of acceleration around 1940 that is clearly evident in the current 

study and that of others (e.g., Woodworth et al., 2009). Of particular interest Wahl et al. 

(2011) also conclude recent (that is post 1990) rates of rise from non-linear smoothing in the 

order of 4 – 6 mm/yr for the southern part of the German Bight and 7 – 8 mm/yr for the 

eastern part. Although the current study finds high recent (post 1990) rates of relative sea 

level rise for records around the German Bight, the maximum rates determined are only of the 

order of ≈ 2 mm/yr. 

 

The discrepancy in the rates between the studies might, in part, rest with the comparatively 

narrow embedding dimension (or window length [L]) of 15 years used for the SSA analysis in 

the Wahl et al. (2011) study. The selection of small window lengths risks sub-optimal 

separability and potential mixing of signals where the singular values of the decomposition are 

close. The smaller the embedding space, the shorter the length of the window over which the 

resolved components are calculated, and the less resolved is each component (Moore et al., 

2005). In effect, small SSA windows act like smoothing linear filters of width 2L−1, thereby 

retaining (albeit smoothed) contaminating power bands, as distinct from their isolation and 

removal. 

 

Hein et al. (2011) analysed similar German Bight data to Wahl et al. (2011) using a similar 

approach but further develop the method through use of the second derivative to predict 
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boundary values and calculate the white noise Monte Carlo simulation in the frequency space. 

By removing major frequency bands identified at approximately 35 and 75 years, Hein et al. 

(2011) concluded no long-term trend of acceleration evident in mean sea level around the 

German Bight. 

 

Wahl et al. (2013) provides a detailed analysis of the North Sea regional sea level records, 

updating the prior work of Shennan and Woodworth (1992) by considering 3 separate 

‘Regional Sea-Level Indices’ for the North Sea, Inner North Sea and English Channel. This body 

of work concluded that recent rates of sea level rise (i.e. over the last two to three decades) 

were high compared to the long-term average, but comparable to those observed at other 

times in the late 19th and 20th Century. This investigation considers non-linear (acceleration) 

behaviour using a similar technique to that espoused in Wahl et al. (2011). 

 

Donner et al. (2012) provides a detailed examination of Baltic Sea records, examining 

measures of acceleration through the application of a fitted AR[1] model and performing 

separate (two-sided) t-tests and Mann-Kendall tests for 1000 realisations of each model. This 

work observed that by comparing the empirical values of the test statistics with those 

obtained for AR[1] surrogates adjusted to the data, all accelerating trends in the 10% and 50% 

quantiles become insignificant with respect to both t and Mann-Kendall test. Whilst seasonal 

influences appear to have been accounted for, there appears no evident ability of this 

approach to remove the contaminating decadal and multi-decadal variability from the trends.  

 

Intuitively, this would increase the likelihood of statistically measured accelerations, but, in 

accordance with the approach and tests adopted, they were not realised. Despite differences 

in approaches, this analysis also highlights the substantial absence of any periods of positive 

acceleration in mean sea level at the 95% confidence level across the Baltic Sea margin (refer 

Figure 6.6). 

 

A detailed study of the Baltic mean sea level records by Spada et al. (2014) observed an 

anomaly in the long-term acceleration explained by classical post-glacial rebound theory and 

numerical modelling of glacial isostasy. This work however, is based upon the use of quadratic 

coefficients which have significant limitations for the purpose at hand (Watson, 2016c). As 
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previously advised, this analysis finds no measureable acceleration in mean sea level within 

the Baltic Sea. 

 

6.7 Conclusion 
Watson (2016e) notes the implications of sea-level rise, particularly the much larger projected 

rates of rise under future climate change modelled scenarios (e.g., Church et al., 2013a; 

Mengel et al., 2016) are profound with far reaching social, economic and environmental 

implications (amongst others) foreshadowed over the course of the 21st century and beyond. 

These are well described for the European context in the ClimateCost Project undertaken for 

the European Union (Brown et al., 2011; Watkiss, 2011). 

 

The impacts associated with relative mean sea level rise across Europe are quite varied, 

principally due to the associated vertical land motions which range from high rates of land 

uplift associated with post-glacial rebound experienced within the Fennoscandian Region (up 

to ≈ 9 mm/yr) to areas experiencing ongoing land subsidence (e.g., northern British Isles and 

the eastern portions of the Mediterranean and Black Seas). Areas experiencing land 

subsidence will be impacted upon more urgently and directly by rising global mean sea level. 

By contrast, depending on the trajectory of future sea level rise, the northern land margins of 

Fennoscandia might still be rising faster than global mean sea level for the larger part of the 

21st century, with no apparent issue for coastal dwelling communities until the rate of sea level 

rise begins to overwhelm the rate of uplift from post-glacial rebound.  

 

Mean sea level records are pivotal data sources as they provide one of the key proxies by 

which to measure the impact of a changing climate system. With the very ethos of the climate 

change science and projection modelling underpinned by accelerations in mean sea level (refer 

Chapter 1), numerous works in the scientific literature have been dedicated to measuring 

accelerations that might provide improved instruction on the extent to which external (climate 

change) forcings are manifesting to assist strategic planning, adaptive responses and policy 

development in readiness for the challenges ahead. 

 

Atlantic mean sea level records could be considered one of the key “canaries in the coal mine” 

for climate change research given the North Atlantic Ocean is a key element of the earth’s 

climate (Deshayes and Frankignoul, 2008) and in particular, the role of the AMOC as a key 
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means by which heat anomalies are sequestered into the ocean’s interior and thus modulate 

the trajectory of climate change (Buckley and Marshall, 2016). 

 

The analytical techniques espoused in this research improve estimates of mean sea level from 

conventional, long, annual time series by more efficiently removing decadal to inter-decadal 

(and longer) dynamic influences. By virtue, associated kinematic properties of the mean sea 

level signal (velocity, acceleration) are also enhanced. 

 

In addition to the use of improved analytical techniques, the search for accelerations in mean 

sea level records will require more intuitive, diagnostic considerations (such as those 

considered in this research) until such time as the mean sea level signal is sufficiently large not 

to be obscured by complex dynamic influences and other background noise. 

 

Although there has been a general tendency for velocity in mean sea level to increase over 

time, inferring an acceleration to do so, these kinematic properties of the mean sea level signal 

around Europe have continued to vary over the course of the historical records available at 

generally low measured rates. The analysis suggests key periods of acceleration centred in 

bands around ≈1880 to 1910, 1940, 1976 and a strong spatially coherent signal between 1994 

and 2000 consistent with the general findings of previous researchers using different 

techniques (e.g., Wahl et al., 2013; Woodworth et al., 2009). Significantly, only one record 

within the study area exhibits a peak acceleration occurring after 1990 (Marseille, France) that 

is statistically different (or higher) than other peaks observed elsewhere over the historical 

record (95% confidence level). 

 

Similarly only 5 of the 83 records analysed exhibited a peak velocity occurring after 1990 

statistically different (or higher) than other peaks observed elsewhere over the historical 

record (95% confidence level). The European-wide context of these findings accord with the 

prior findings of studies on the English Channel (Haigh et al., 2009) and North Sea (Dangendorf 

et al., 2014; Wahl et al., 2013). 

 

When relative mean sea level velocities are corrected for available vertical land motions, none 

of the geocentric velocities determined at the end of the available time series record exceed 
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the global average rate of 3.4 ± 0.4 mm/yr (Nerem et al., 2010; University of Colorado, 2016) 

at the 95% confidence level. 

 

The results and findings from this large study of European mean sea level records are broadly 

consistent with those for the complementary study of the mainland USA records (Watson, 

2016e). Whilst the accelerated climate change influence is not yet statistically evident in these 

records, depending on the climate change trajectory, it is highly likely that such changes will 

take at least 15 - 20 years to manifest in the network of tide gauge records examined within 

this analysis. 

 

6.8 Acknowledgements 
I would like to acknowledge the publicly available data archives of the PSMSL and the 

extended data sets kindly provided by Peter Hogarth that have been used for this study. 

Similarly, I would like to extend my appreciation to the SONEL data centre for kindly providing 

the updated ULR6a solutions used to estimate geocentric sea level rise and acknowledge Dr 

Sally Brown (Tyndall Centre for Climate Change Research, University of Southampton, UK) and 

Dr Sönke Dangendorf (Research Institute for Water and Environment, University of Siegen, 

Germany) for suggestions that improved this aspect of the study program and associated 

published paper (Watson, 2017). 

  



PhD Thesis – Phil J. Watson 
 

  
 
 

 

126 
 

 
 
 
 
 

 

Chapter 7 
 
 

Conclusions and Recommendations 
 
 
 
 
 
  



PhD Thesis – Phil J. Watson 
 

  
 
 

 

127 
 

The projected impacts of climate change over the course of the 21st Century and beyond are 

profound and far reaching. Sea level rise is but one of the inevitable side effects of a warming 

climate system, due principally to melting of land-based glaciers, ice sheets and ice shelves 

above sea level and thermal expansion of the ocean water mass. These impacts present 

formidable challenges in managing adaptation endeavours into the future because whilst 

higher sea level only directly affects coastal areas, these are the most densely populated and 

economically active land areas on Earth (McGranahan et al., 2007; Nicholls and Cazenave, 

2010; Sachs et al., 2001). The continued trend for coastal global population migration 

(Neumann et al., 2015) has fuelled increasing projected risks associated with sea level rise. 

 

The prominence of the climate change issue has placed more emphasis on examination of the 

extensive global repository of relative mean sea level records (Holgate et al., 2012), which 

along with temperature and carbon dioxide, remain the key proxy data sets used to monitor 

and quantify changes in the global climate system (refer Chapter 1).  

 

With the very ethos of the climate change science and projection modelling underpinned by 

accelerations in mean sea level, numerous works in the scientific literature have been 

dedicated to measuring accelerations that might provide improved instruction on the extent to 

which external (climate change) forcings are manifesting to assist strategic planning, adaptive 

responses and policy development in readiness for the challenges ahead (refer Chapter 1). 

However, these research endeavours fit within a broader, integrated framework of sea level 

science designed to understand sea level change and its implications both present and future 

(e.g. Intergovernmental Panel on Climate Change; World Climate Research Programme, etc). 

 

Improving knowledge of acceleration in mean sea level lies principally with improving the 

temporal resolution of the trend signal. This is no trivial task given contemporary ocean water 

level time series records are a complex composite of numerous dynamic influences operating 

on differing temporal and spatial scales, superimposed on a comparatively low amplitude 

trend of sea level rise driven by climate change influences (refer Chapter 3). 

 

This research program has been designed with careful attention to objectives (which are 

encapsulated in self-contained Chapters 2 to 6) in order to give effect to the key aim of 

developing improved techniques (and associated tools) for estimating mean sea level and 
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associated real-time velocity and acceleration from long individual ocean water level time 

series to augment climate change research. Numerous techniques have been applied in the 

literature to estimate acceleration in the trend of mean sea level (Visser et al., 2015), each 

providing varying (and at times controversial) results. Differentiating key, robust findings from 

those unwittingly contaminated by the limitations inherent with particular techniques 

(Rahmstorf and Vermeer, 2011) have not been vigorously prosecuted in the literature to date 

(Watson, 2016a). 

 

The msltrend package and associated methods developed via this research program to 

enhance estimates of trend, velocity and acceleration in relative mean sea level are long 

overdue, but welcome advancements for improving sea level research. The research program 

has given rise to a wide range of key learnings and insights (refer Section 7.1, Table 7.1) that 

will prove invaluable to sea level researchers. The techniques espoused in this research form 

an integral part of the evolutionary process by which to estimate mean sea level and 

associated velocity and acceleration with improving robustness and consistency (refer 

Chapters 4, 5 and 6).  

 

The findings and tools developed through this research program have profound implications 

for various science, climate modelling, engineering and coastal planning sectors. Improving the 

precision in estimating the mean sea level (or externally forced) signal from long tide gauge 

records will contribute to improved understanding of sea level change (and associated climate 

change influences) at increasingly more localised scales. Enhancing the precision of the mean 

sea level trend from long ocean water level time series also provides an improved reference 

frame in which to augment contemporary processes for the evaluation of climate models and 

associated sea level projections. 

 

Similarly, by improving the estimation of the mean sea level signal from long tide gauge 

records, coastal scientists and engineers will have the benefit of more precise trend analysis 

which in turn, will improve statistical analyses for extreme water level phenomena to better 

inform coastal design processes and coastal hazard and risk assessments where coastal sea 

level change has significant ramifications. Further, the earlier identification of key change 

points in these records will provide better instruction on the likely sea level projection 
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pathway committed, to enable more targeted coastal planning and adaptation endeavours 

into the foreseeable future. 

 

Nonetheless this work should be considered a staging point for ongoing improvements in the 

area of sea level research. A range of potential research projects that can build on the outputs 

of this thesis to further progress sea level (and climate change) research, are discussed in 

Section 7.2. 

 

7.1 Key Learnings and Insights from Research 
The development of the synthetic data (Chapter 2) and the extensive associated time series 

analysis testing (Chapter 3) provide a novel, landmark attempt to build a robust and unique 

framework within which to identify the optimal analytical methods for isolating the mean sea 

level trend with improved temporal accuracy (Visser et al., 2015). The scale of testing 

undertaken (over 29 million individual time series analyses) is unprecedented for sea level 

research purposes. 

 

Key findings from the testing included that enhanced accuracy in resolving the temporal 

resolution of the trend is achieved through using a combination of: 

 

 annual average mean sea level data; 

 minimum length data of ≈ 80 years; and 

 “data adaptive” analytics, in particular, Singular Spectrum Analysis (SSA) and multi-

resolution wavelet decomposition. 

 

In moving forward to develop a general purpose analysis tool to enhance sea level research, 

SSA is the more instructive and convenient given the technique provides a superior capability 

to separate key time varying harmonic components of the time series (refer Chapters 3 and 4). 

 

It is surprising that despite the evident utility of SSA for mean sea level analysis (Chapter 3), 

there have been comparatively limited examples of its application for this purpose in the 

literature (e.g., Hein et al., 2011; Holgate et al., 2007; Jevrejeva et al., 2006, 2008; Mather, 

2007; Unal and Ghil, 1995; Wahl et al., 2010, 2011, 2013). The parameterization of SSA applied 
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in the afore-mentioned studies differs considerably, ostensibly based on user intuition and 

experience, but, none have benefitted from specific optimisation or testing. 

 

Based upon detailed decomposition and analysis of more than 50 of the world’s longest 

records in the Permanent Service for Mean Sea Level (PSMSL) data holdings, the 

parameterization and performance of SSA has been specifically optimised through this 

research (Chapter 4) and integrated into an extension package titled msltrend (Section 4.6) 

within the R Project for Statistical Computing to isolate the mean sea level (or trend) signal 

from long ocean water level data sets with improved temporal resolution and accuracy.  

 

In particular, from the aforementioned analysis, the component(s) from the SSA 

decomposition which best represent the trend of mean sea level can be effectively isolated 

using spectral thresholding techniques that capture and reconstruct only components in which 

75% of the contribution for each component is confined within the low frequency band [0 - 

0.01]. The fitting of a cubic smoothing spline to the isolated trend enables velocity and 

acceleration (as the first and second derivatives) in mean sea level to be determined at each 

time step in the original time series with improved resolution. 

 

Key functions and settings within msltrend have been specifically optimised and “hard-wired” 

into the scripting code to prevent inexperienced or untrained sea level analysts from 

producing misleading results. With the inclusion of a range of output options and a forecasting 

module to consider the implication of user-defined quantum of sea level rise between the end 

of the available historical record and the year 2100, msltrend is a powerful, freely available, 

diagnostic research tool that enhances contemporary sea level research appreciably. 

 

The application of the msltrend package to the various GMSL reconstructions (Watson, 2016d) 

and data rich margins of continental USA (Chapter 5) and Europe (Chapter 6), highlight the 

value of improving the temporal accuracy of the mean sea level signal by removing the 

contaminating dynamic influences and noise. It is clear from these studies that mean sea level 

velocity time series are distinctly non-linear, in turn reflective of associated acceleration 

varying over time. These regional studies are the largest and most detailed works of their type 

undertaken across both margins, providing pivotal and more instructive knowledge and 
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conclusions on the nature of acceleration in mean sea level than previously possible (refer 

Table 7.1). 

 

These studies also highlight the comparatively low time varying velocities and associated 

accelerations evident over the period of historical records. Until such time as the velocities and 

accelerations in mean sea level are sufficiently large not to be obscured by complex influences 

inducing decadal to multi-decadal variability and other background noise, the search for 

accelerations in ocean water level records require more intuitive, diagnostic considerations 

(refer Chapters 4, 5 and 6). 

 

For example, the search for acceleration is perhaps more practically inferred by considering 

whether or not peaks in the instantaneous velocity and acceleration time series are increasing, 

becoming more sustained or statistically abnormal (or different) over time in the context of 

the historical record. These diagnostic approaches will continue to be important until the 

extent of sea level rise (due to climate change) is sufficient to be statistically differentiated 

from the remnant historical record with widespread spatial coherence (refer Chapters 5 and 

6). 

 
 
Table 7.1: Snapshot of Key Findings and Learnings. 

 
Key Finding Further Information 
Singular Spectrum Analysis (SSA) is an optimal analytic for isolating mean 
sea level with improved temporal resolution and accuracy from dynamic 
influences embedded within ocean water level time series 

Chapter 3 

Conditioning the input data and optimisation of the parameterisation of 
SSA (specific to ocean water level time series) enhances the accuracy of 
the estimate of mean sea level 

Chapter 4, Table 4.3 

Real-time measured velocity and acceleration provide an improved 
understanding of the time-varying properties of mean sea level 

Chapters 4, 5, 6 

The comparatively low time varying velocities and associated 
accelerations evident over the majority of historical records analysed, 
deem that acceleration is unwisely measured as a simple metric. Until 
such time as the apparent real-time velocities and accelerations in the 
mean sea level signal are sufficiently large not to be obscured by complex 
influences inducing decadal to multi-decadal variability and other 
background noise, the search for accelerations in these records require 
more intuitive, diagnostic considerations. 

Chapters 5, 6 

 
Table continued over page. 
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Table 7.1 (cont) 
 

For example, the search for acceleration is perhaps more practically 
inferred by considering whether or not peaks in the instantaneous 
velocity and acceleration time series are increasing, becoming more 
sustained or statistically abnormal (or different) over time in the context 
of the historical record. This type of approach will continue to be 
important until the extent of sea level rise (due to climate change) is 
sufficient to be statistically differentiated from the remnant historical 
record with widespread spatial coherence. 

Chapters 5, 6 

Although sea level has risen around continental USA over the period of 
available tide gauge records (1853 - 2014), clear and differing spatial 
signatures in sea level rise have emerged between the Central Pacific and 
west coast compared to those within the Gulf of Mexico and along the 
east coast. 

Chapter 5 

No evidence of acceleration in mean sea level across the Central Pacific 
and along the west coast of the USA to the end of 2014. 

Chapter 5 

Subtle evidence of a more recent acceleration in mean sea level within 
the Gulf of Mexico and along the east coast of the USA. It is possible that 
the recent increase in instantaneous velocities and accelerations within 
these margins might signal the onset of large projected sea level rises due 
to climate change forecasts over the course of the 21st century (and 
beyond). 

Chapter 5 

Current (2014) geocentric sea level rise around the USA highlights the 
spatial fingerprint of the sea level rise phenomena. The average rate for 
the Central Pacific and west coast stations is 1.20 ± 0.45 mm/yr compared 
to the Gulf of Mexico and along the east coast where the average rate is 
some 80% higher at 2.19 ± 0.58 mm/yr (95% CI). 

Chapter 5 

No evidence to support the various recent published works alluding to a 
so-called ‘hotspot’ of accelerated sea level rise, particularly along the US 
east coast margin north of Cape Hatteras. 

Chapter 5 

Although there has been a general tendency for velocity in mean sea level 
to increase over time, inferring an acceleration to do so, these kinematic 
properties of the mean sea level signal around Europe have continued to 
vary over the course of the historical records available at generally low 
measured rates. The analysis suggests key periods of acceleration centred 
in bands around ≈1880 to 1910, 1940, 1976 and a strong spatially 
coherent signal between 1994 and 2000 consistent with the general 
findings of previous researchers using different techniques. 

Chapter 6 

The results and findings from the large study of European mean sea level 
records are broadly consistent with those for the complementary study of 
the mainland USA records. Whilst the accelerated climate change 
influence is not yet statistically evident in these records, depending on 
the climate change trajectory, it is highly likely that such changes will take 
at least 15 - 20 years to manifest in the network of tide gauge records 
examined. 

Chapters 5, 6 

 
 
7.2 Future Research 
Moving forward, there are a range of potential research projects that can build on the outputs 

of this thesis to further progress sea level (and climate change) research, summarised in 

priority order in Table 7.2 (following page).  
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Table 7.2: Priority Research Projects. 

 
Priority Research Task 
1 Investigating the utility of long tide gauge records and the refined mean sea level signal 

derived from msltrend to augment existing protocols for evaluating sea surface height 
projections from climate models (Flato et al., 2013). Presently, global Archiving, 
Validation and Interpretation of Satellite Oceanographic (AVISO) data products currently 
used to evaluate Coupled Model Intercomparison Project (or CMIP) dynamic sea surface 
heights are only 20–25 years in length. Therefore, the longer decadal and multi-decadal 
influences are not readily isolated from these satellite data products at this point in time. 
The real-time velocities determined from long, quality tide gauge records might be useful 
in augmenting the much shorter global AVISO products at a finer localised scale. 

2 Improving estimates of vertical land motion at tide gauges via comparison between 
geocentric satellite altimetry products and relative tide gauge time series. Various 
techniques have been proposed in this space over recent years (e.g., Pfeffer and 
Allemand (2016); Ostanciaux et al. (2012)) to augment the network of direct collocated 
GPS measurements (Santamaría-Gómez et al., 2012; SONEL, 2016), but continued 
research and development in this area with lengthening altimetry records makes this a 
crucial imperative to improve estimates of geocentric mean sea level from valuable, 
long, tide gauge records. This research initiative might also consider investigating 
improved time series techniques to determine the non-linear characteristics of vertical 
land motion (VLM) measured at tide gauges (highlighted in Section 5.5.1) moving beyond 
the comparatively simple linear regression techniques commonly applied in this area. 

3 Continued data archaeology efforts to find and digitise long tide gauge records to fill 
spatial gaps, principally in the southern hemisphere to augment the data repository of 
the PSMSL. Watson et al. (2012) notes that only 2 of some 123 records held by the 
PSMSL that pre-date 1900 are located within the southern hemisphere, i.e. Fort Denison 
(1886) and Fremantle (1897). However, this work notes that several additional sites 
around Australia commenced tide gauge recording dating back to 1858. In addition to 
the southern hemisphere, the search for additional tide gauge data records of sufficient 
length (at least 75-80 years) should be focused around important margins including the 
southern coasts of the African continent and along the coastlines of China. Extensive 
work in this area has already begun (e.g., Hogarth, 2012; Talke and Jay, 2013) but needs 
to be further supported and expanded. 

4 Continued time series analysis research and development to provide the earliest 
identification of change points in recent portions of mean sea level records that are 
reflective of a fundamental change in the external (or radiative) forcings associated with 
climate change. 

5 rolling some of the above-mentioned elements into a more advanced version of the 
msltrend package. 
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Appendix A 
 
 

PSMSL Stations Used to Develop 
Core Synthetic Data Set 
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Figure A1: Location of PSMSL stations used to derive seasonal components. 
 

 
 

Data source: <https://mapsopensource.com> 
 

Table A1: Summary of PSMSL stations used to derive seasonal components. 
 

Ref No. PSMSL Station Location Ref No. PSMSL Station Location 
1 Honolulu (USA) 23 Swinoujscie (Poland) 
2 Yakutat (Canada) 24 Helsinki (Finland) 
3 Seattle (USA) 25 Murmansk (Russia) 
4 San Francisco (USA) 26 Poti (Georgia) 
5 Churchill (Canada) 27 Alexandria (Egypt) 
6 Trois-Rivieres (Canada) 28 Mumbai (India) 
7 New York (USA) 29 Cochin (India) 
8 Baltimore (USA) 30 Chennai (India) 
9 Bermuda (Bermuda) 31 Visakhapatnam (India) 

10 Key West (USA) 32 Diamond Harbour (India) 
11 Magueyes Island (Puerto Rico) 33 Dalian (China) 
12 Balboa (Republic of Panama) 34 Macau (Macau) 
13 Belem (South America) 35 Hondau (Vietnam) 
14 Antofagasta (South America) 36 Ko Taphao Noi (Thailand) 
15 Buenos Aries (South America) 37 Jolo (Philippines) 
16 Argentine Islands (Antarctica) 38 Sembawang (Singapore) 
17 Mossel Bay (South Africa) 39 Fremantle (Australia) 
18 Arrecife (Canary Islands, Spain) 40 Fort Denison (Australia) 
19 Brest (France) 41 Auckland (New Zealand) 
20 Newlyn (UK) 42 Petropavlovsk (Russia) 
21 Lerwick (UK) 43 Kotelnyi (Russia) 
22 Cuxhaven (Germany)   

 
 

Notes: Refer Figure A1 for station location. 
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Appendix B 
 
 

Extraction of Noise Component from 
PSMSL Stations Used to Develop 

Synthetic Data Set 
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Figure B1: Noise component of PSMSL station records used for synthetic data set. 
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Figure B1 (cont): Noise component of PSMSL station records used for synthetic data set. 
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Figure B1 (cont): Noise component of PSMSL station records used for synthetic data set. 
 
 

 
 

 
 

 

 

 
 

 
 

 
 

 
 
 
Notes: 
 
1. Histograms of monthly white noise anomalies (residuals) for each station record 

determined in accordance with the procedure espoused in Section 2.4.5; and 
 

2. Theoretical normal (Gaussian) distribution depicted on histograms (in red). 
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Appendix C 
 
 

Comparison of Real and Synthetic 
Data Set Mean Sea Level Time Series 
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Figure C1: Selected monthly average ocean water level data sets from PSMSL. 

 

 
 
Notes: 
 
Selected long monthly average ocean water level data sets obtained from Permanent Service 
for Mean Sea Level (PSMSL). 
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Figure C2: Selected monthly average ocean water level time series from synthetic data set. 

 

 
 
Notes: 
 
1. Time series depicted above (Panels [A] to [E]) are the first 5 randomly generated monthly 

average ocean water level time series within the synthetic data set (20,000 time series); 
 
2. Fixed Mean Sea Level indicated in red on each of the generated monthly time series; and 
 
3. Refer Chapter 2 for details on the construction of the synthetic data set (refer also Tables 

2.1 and 2.2). 
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Appendix D 
 
 

Comparison of Components 1 and 2 
to optimise and automate SSA 

decomposition 
 
 

 
 

The optimisation process involved Singular Spectrum Analysis decomposition of all records 
in the Permanent Service for Mean Sea Level exceeding 100 years in length (refer Section 
4.3.3). For the majority of these records, the trend was wholly contained within the leading 
component. However, some 12 records also indicated “trend-like” power in the 2nd 
component as well (i.e. dominant relative contribution in the lowest frequency bin [0 – 
0.01]). 
 
This appendix provides a visual inspection of the component 1 and 2 outputs for these 12 
records of interest to assist in determining an appropriate cut-off level for isolating 
distinctly “tend-like” components based on the relative contribution of the singular value in 
the lowest frequency bin [0 – 0.01]). 
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Figure D1: Leading 2 components of SSA decomposition for Brest and San Francisco mean sea 

level records. 

 

 
 
Notes: 
 
1. For further details on SSA decomposition, testing and parameterisations used, refer Section 

4.3.3, Table 4.1 and Figure 4.1; and 
 
2. The relative contribution of the singular value in the lowest frequency bin [0 – 0.01] is 

depicted in the lower left corner of each panel.  
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Figure D2: Leading 2 components of SSA decomposition for Helsinki and Nedre Sodertaljie 

mean sea level records. 

 

 
 
Notes: 
 
1. For further details on SSA decomposition, testing and parameterisations used, refer Section 

4.3.3, Table 4.1 and Figure 4.1; and 
 
2. The relative contribution of the singular value in the lowest frequency bin [0 – 0.01] is 

depicted in the lower left corner of each panel.  
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Figure D3: Leading 2 components of SSA decomposition for Batumi and Bergen mean sea level 

records. 

 

 
 
Notes: 
 
1. For further details on SSA decomposition, testing and parameterisations used, refer Section 

4.3.3, Table 4.1 and Figure 4.1; and 
 
2. The relative contribution of the singular value in the lowest frequency bin [0 – 0.01] is 

depicted in the lower left corner of each panel.  
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Figure D4: Leading 2 components of SSA decomposition for Sydney and Hanko mean sea level 

records. 

 

 
 
Notes: 
 
1. For further details on SSA decomposition, testing and parameterisations used, refer Section 

4.3.3, Table 4.1 and Figure 4.1; and 
 
2. The relative contribution of the singular value in the lowest frequency bin [0 – 0.01] is 

depicted in the lower left corner of each panel.  
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Figure D5: Leading 2 components of SSA decomposition for Kobenhavn and Klaipeda mean sea 

level records. 

 

 
 
Notes: 
 
1. For further details on SSA decomposition, testing and parameterisations used, refer Section 

4.3.3, Table 4.1 and Figure 4.1; and 
 
2. The relative contribution of the singular value in the lowest frequency bin [0 – 0.01] is 

depicted in the lower left corner of each panel.  
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Figure D6: Leading 2 components of SSA decomposition for Hornbaek and Portland mean sea 

level records. 

 

 
 
Notes: 
 
1. For further details on SSA decomposition, testing and parameterisations used, refer Section 

4.3.3, Table 4.1 and Figure 4.1; and 
 
2. The relative contribution of the singular value in the lowest frequency bin [0 – 0.01] is 

depicted in the lower left corner of each panel.  
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Appendix E 
 
 

“Msltrend” User Manual 
 
 

 
 

The “msltrend” package User Manual is available as a pdf document for download from the 

Comprehensive R Archive Network (CRAN) at the following URL:  

https://cran.r-project.org/web/packages/msltrend/index.html. 
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