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Abstract 

Hyperspectral image (HSI) classification plays an important role in a variety of 

applications such as land-use classification, mineral identification, climate change 

detection, and urban planning. Many classifiers have been developed in recent decades; 

however, the extraction of efficient features is still a challenging issue because of some 

problems, such as Hughes phenomenon and limited training samples. This thesis 

investigates several effective techniques for HSI classification that take advantage of 

both spectral and spatial information to overcome the limitations of traditional 

classifiers. 

Firstly, this thesis presents a HSI classification framework that integrates two promising 

techniques, a joint sparsity model and a discontinuity preserving relaxation algorithm. 

The joint sparse model is firstly applied to obtain a posteriori probability distribution of 

pixels and then the discontinuity preserving relaxation method is used to further 

improve the classification results. The joint sparsity model ensures the classification 

accuracy in most homogenous areas, while the relaxation method smooths the result 

without blurring the class boundaries by estimating discontinuities in the original image. 

Experiments reveal that this integrated approach can take advantage of both methods to 

improve the classification of hyperspectral data sets. 

Secondly, a novel technique based on a multi-level joint sparsity model is constructed to 

fully exploit spectral-spatial information for HSI classification. An adaptive local 

neighbour selection strategy is developed, which computes weights based on the 

spectral distances between pixels and uses the labels of the training data as a priori 

information. Structural similarity between the central pixel and its neighbours can be 

exploited in a sensible way by considering the different contributions of each spectral 

band. The selected parameters can be used to generate multiple joint sparse matrices at 

different levels and the efficient performance of multi-level joint sparse optimization 

improves the classification results. This study shows that extracting spatial information 

at multiple levels can produce more useful information for HSI classification. 
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Thirdly, a new classifier is developed, based on a multi-scale conservative smoothing 

scheme and adaptive sparse representation, to enable efficient spectral-spatial HSI 

classification. A multi-scale conservative smoothing algorithm is proposed to reduce 

noise and extract spatial structure information from coarse to fine levels. Over-

smoothing is automatically prevented by imposing a weighting scheme on the 

neighbouring pixels used for smoothing, where the contributions of dissimilar 

neighbours are suppressed. Subsequently, an adaptive sparse representation is 

introduced to integrate the characteristics of different perspectives from the series of 

enhanced HSIs. From this representation, the sparse coefficients of a given unknown 

pixel can be obtained and used for classification. Extensive experiments conducted on 

three well-known data sets demonstrate that the proposed approach can achieve superior 

performance in terms of classification accuracy.  

Fourthly, this study proposes a novel HSI classification framework based on a multiple 

feature learning convolutional neural network (CNN). We built a novel CNN 

architecture that uses various features extracted from raw imagery. The network 

generates the corresponding relevant feature maps, and those maps are fed into a 

concatenating layer to form a joint feature map. The obtained joint feature map is then 

fed to subsequent layers to predict the final label for each hyperspectral pixel. 

Experimental results show that this CNN-based multi-feature learning framework has 

significantly improved classification accuracy. 

The proposed four methods use both spectral and spatial information to improve HSI 

classification performance. The studies demonstrate that exploiting spatial information 

from multiple perspectives can boost the classification accuracies of single perspective-

based methods. The first approach integrates different methods, the second constructs a 

multi-level sparsity matrix for the test pixel, the third applies a multi-scale conservative 

smoothing scheme on the HSIs and the fourth extracts multiple features prior to the 

classification. Experimental results show that the techniques developed in this thesis can 

classify HSIs efficiently and effectively, and overcome the limitations of conventional 

algorithms.   
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Chapter 1 Introduction 

1.1 Introduction of Optical Remote Sensing Imaging  

Remote sensing refers to the acquisition of information concerning targets on Earth’s 

surface through the use of satellite- or aircraft-based sensors [1]. Broadly, there are two 

types of remote sensing systems: active and passive. Active remote sensing systems 

emit energy to scan objects, measuring the radiation reflected or back-scattered by the 

target. Examples of active remote sensing applications are Light Detection and Ranging 

(LiDAR) and Radio Detection and Ranging (RADAR). In passive remote sensing, also 

called optical remote sensing, instruments detect natural energy that is reflected or 

emitted from the observed scene. Generally, solar radiation is the most common energy 

reflected by passive instruments (see Fig. 1.1), and optical remote sensors can measure 

the solar reflectance in a wide optical wavelength ranging from 400 nm to 2500 nm [2]. 

Objects can be recognized by their spectral reflectance signatures; different materials 

have different absorption characteristics at different wavelengths. Each wavelength 

range has its own contribution to a measurement.  

Remote sensing systems have been undergoing a technology revolution, and high-

resolution sensors have been available since the late 1980s. The resolution of imagery 

provides different potential details, and in the context of high-resolution images, 

resolution can have different meanings [3]. Spatial resolution is the size of the smallest 

features that can be detected by an imaging system, and is usually measured in terms of 

the so-called pixel. Spectral resolution represents the ability of optical sensors to resolve 

features in specific wavelengths of the electromagnetic spectrum; as spectral resolution 

becomes finer, the bandwidth becomes narrower. The resolutions of different optical 

sensors are designed differently based on the types of intended tasks. For example, high 

spectral resolution remote sensors are needed for generating panchromatic, multispectral, 

and hyperspectral images (Fig. 1.2). 

Panchromatic images are acquired by satellites such as Landsat and SPOT 6/7; they use 

a single spectral channel and usually have a wavelength range in the visible band. A 

single intensity value is rendered for each pixel, which can be visualized in a greyscale 
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image. Commonly, this value records combined information from the red, green, and 

blue visible bands.  

Multispectral images can be acquired by satellites such as Landsat, SPOT, HRV-XS, 

Wordview-2, and Worldview-3. Multispectral images have more than three spectral 

bands and contain multiple spectral signatures for targets. Their wavelength ranges can 

cover both the visible and infrared bands of the electromagnetic spectrum. . 

Multispectral sensors typically provide images with less than 15 bands.  

Hyperspectral imaging systems have been widely applied in the remote sensing 

community since the technology became available in the late 1980s. These sensors (e.g. 

Hyperion on the EO1 satellite) are able to capture data from numerous and narrower 

spectral channels. They can include wavelengths from the visible to the near-infrared 

bands of the electromagnetic spectrum. Hyperspectral images usually have more than 

100 bands, and this rich spectral information presents the possibility of identifying 

targets and increasing understanding of the Earth’s surface. Each pixel in a 

hyperspectral image can be represented as a discrete spectrum that contains the reflected 

solar radiance of objects in a given region. The representation of a hyperspectral data set 

is similar to that of multispectral data, with the spectral response of a pixel being 

expressed as a function of spectral bands in the spectral space representation (Fig. 1.3) 

[1]. This thesis focuses on hyperspectral image analysis. 

Image Data

Processing 
Station Target

Sun
Sensor

 

Fig. 1.1. An overview of optical remote sensing system. 
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Fig. 1.2. Three types of high spectral resolution remote sensing images. 
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Fig. 1.3. An illustration of hyperspectral data set, and its spectral and feature 

representations. Illustrations adapted from [4]. 

1.2 Hyperspectral Image Classification 

Advanced hyperspectral imaging systems are able to provide hyperspectral data with 

high spectral resolution. The abundant and subtle information provided by hyperspectral 

data makes it possible to distinguish and identify various materials in an image. This 

capability has led to the wide use of hyperspectral imagery in remote sensing society for 

applications such as land-cover classification, urban planning, mineral mapping, climate 

change detection, military surveillance, and species monitoring [5]. A quantitative 

analysis of hyperspectral images is required to extract the information about the scenes 

accurately, and the classification of hyperspectral images can be performed on the basis 

of the quantitative analysis. 

The classification of hyperspectral images is essential for analysing and interpreting the 

contained data. The term classification denotes the process that labels each pixel with a 
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set of classes according to its spectral characteristics. Unsupervised classification 

groups spectrally similar pixels into a cluster without using prior knowledge, while 

supervised classification assigns unknown pixels based on the characteristics of training 

samples selected from each class prior to the experiment; supervised classification is 

vitally important for analysing hyperspectral data [6, 7]. This thesis focuses mainly on 

the supervised classification of hyperspectral data. 

The first attempts at supervised classification of hyperspectral data used techniques 

designed for panchromatic and multispectral images. However, the results were not 

satisfactory due to the problems including the high dimensionality and redundancy of 

data, spatial distortions, and limited numbers of training samples. 

1.3 Difficulties in Hyperspectral Image Classification 

The special properties of hyperspectral data present many opportunities as well as 

challenges to develop reliable, high performance classification techniques. This section 

introduces some of the difficulties in processing hyperspectral images. 

1.3.1 Limited Training Samples 

An adequate number of training samples is essential for image classification. However, 

training samples for hyperspectral data are usually collected and labelled manually 

based on fine spatial resolution satellite images or field measurements, which is 

extremely expensive and/or time consuming. Moreover, the selection and labelling of 

training samples becomes more difficult as the study area is more complex and 

heterogeneous. The presence of mixed pixels in images with coarse spatial resolution 

also makes classification more challenging.  

Furthermore, hyperspectral images feature inherently nonlinear relations between the 

acquired data and the corresponding materials. These nonlinear relations can be caused 

by several factors such as interfering scattering from other materials, atmospheric 

distortions and intraclass variations among similar classes. When nonlinear relations are 

present, the class patterns learned from limited training samples may not be reliable, and 

therefore the resultant classification accuracy may be not acceptable.  
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From the perspective of mathematical statistics and pattern recognition, the combination 

of limited training samples and a large number of bands impairs the reliability of 

conventional classification methods, especially when the calculation of a transformation 

matrix is involved. Sufficient quantity of training samples is essential for machine 

learning algorithms to learn highly reliable class patterns. 

Therefore, limitations in the availability of training samples make the processing of 

hyperspectral images an extreme challenge. 

1.3.2 Hughes Phenomenon 

Hughes phenomenon which is also known as the “curse of dimensionality”, and tends to 

occur when the number of training samples is too small compared to the dimensionality 

of data features [8, 9]. The feature space increases very rapidly with the increasing 

feature dimensionality, and the resultant sparsity is problematic for statistical methods. 

To achieve high accuracy, the amount of reference data should grow exponentially with 

the dimensionality. However, when classifying hyperspectral data, the number of 

available training samples is usually limited while the dimensionality of data features 

(i.e. spectral bands) is inherently high. Therefore, the performance of conventional 

classification methods may be limited by the Hughes phenomenon.  

1.3.3 Feature Reduction 

There are two aspects of feature reduction relevant to hyperspectral image analysis, 

feature extraction and feature reduction. 

Each pixel of a hyperspectral image can be denoted as a vector, and the length of this 

vector is the number of spectral bands. Each band is seen as a feature of this pixel vector. 

As discussed in Section 1.3.2, the use of too many features in combination with a 

limited number of training samples may decrease classification accuracy. In addition, 

the narrowness of spectral bands creates redundancy. Therefore, it is important to select 

only the features that are most useful for separating different classes. This selection is 

referred to as feature extraction, and many approaches [10, 11] have been implemented 

for and successfully applied to hyperspectral image classification. Feature extraction 
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can enhance the separability of classes in a lower dimensionality feature space due to 

the different capabilities in classes. 

Feature selection is used to identify an optimal subset of features from the original 

spectral bands, and is a very important step in hyperspectral image analysis. Feature 

selection is usually applied as a preprocessing step, and is dependent on the properties 

of classifiers. In the last decade, a variety of promising methods have been applied to 

feature selection, most of which can be categorized into three types: filters, wrappers, 

and embedded approaches [12]. All of these approaches define a criterion by which to 

evaluate the discriminating power of the selected features. Different subsets may be 

selected as suitable for different classifiers.  

As described above, feature reduction can prevent the Hughes phenomenon and feature 

selection can be used to enhance class separability. However, both of these processes 

are time consuming, and class statistics cannot be estimated properly when given 

limited training samples. In addition, feature selection may not be optimal when biased 

class statistics render the separability measure unreliable. 

1.4 Classification Techniques 

Hyperspectral images have many unique properties. The wavelengths covered range 

from 400 to 2,000 nm and include hundreds of spectral channels at a very narrow 

spectral resolution (i.e. 10 nm). The extremely rich spectral attributes of hyperspectral 

data provide the potential for discriminating many classes in detail. Supervised 

classification aims to assign each pixel to a set of classes based upon patterns defined 

using prior selected training samples. Key problems involved in supervised 

classification are processing the huge amount of available hyperspectral data and 

classifying it with a high degree of accuracy. A considerable array of classification 

techniques has been developed; in general, they can be grouped into spectral-based or 

spectral-spatial classification methods. 
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1.4.1 Spectral-Based Classification 

Traditional classifiers typically classify images based on the rich spectral information 

provided by the numerous bands. These methods only distinguish pixels by their 

spectral profiles, and thus can be referred to as “spectral-based” classifiers. Examples of 

such classifiers that have been developed for and applied to hyperspectral image 

classification are: support vector machines [13], maximum likelihood classifiers [14], 

multinomial logistic regression [15], neural networks [14, 16], and Fisher discrimination 

classifiers [17]. Spectral-based classifiers are easy to implement and their learning is not 

complicated. Moreover, their computational complexity is relatively low. Fig. 1.4 shows 

an example classification of the AVIRIS Indian Pines data set using a support vector 

machine. 

                       

(a)                                                   (b) 

 

Fig. 1.4. An example of spectral-based classification of AVIRIS Indian Pines data using 

support vector machine: (a) The false colour image; (b) Classification results. Illustration 

taken from [18]. 

Although spectral-based classifiers make full use of the spectral information in 

hyperspectral data, there are some concerns with their application.  

The first concern is the presence of different types of noise and uncertainty during 

classification. Noise and scattering from other objects is inherent in the acquisition of 

hyperspectral data, and can result in spectral profiles for objects of the same type being 
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very different while those of different types may not be distinguishable from each other. 

Intra-class variability can also lead to distinct differences in the spectral characteristics 

of similar classes. These uncertainties will result in a low performance classification.  

Meanwhile, neighbourhood pixels in hyperspectral images are highly correlated, with 

the contextual and textural structures being more evident in high-resolution images. 

Considering the interactions between pixels that are spatial neighbours can reduce 

uncertainties in labelling, improve the discrimination power of classification methods, 

and help alleviate the “salt and pepper” appearance of the classification maps. 

1.4.2 Spectral-Spatial Classification 

To counter the inherent difficulties in spectral-based classification of hyperspectral data 

and boost classification accuracy, spatial and contextual information can be exploited. 

Various techniques have been designed to incorporate spatial and contextual 

information during classification; these approaches are referred as “spectral-spatial” 

classifiers. In this thesis, we categorize these techniques into three groups: fixed-size 

neighbourhood-based approaches, the adaptive neighbourhood-based approaches, and 

combinations of different systems [19]. 

Methodologies using a fixed-size neighbourhood system extract spatial and contextual 

information within a neighbourhood with given size. In recent years, a number of such 

techniques have been developed. Markov random fields [20] and conditional random 

fields [21] calculate the spatial interactions within a local neighbourhood region. Joint 

sparse models [22] incorporate spatial information using a predefined local region size. 

The latest 2-dimensional convolutional neural networks [23] use as input subsets of 

neighbouring pixels with the main pixel of interest located in the centre. Fig. 1.5 

illustrates an example of classification of AVIRIS Indian Pines data with a joint sparse 

model. 
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(a)                                                                (b) 

 

Fig. 1.5. An example of spectral-spatial classification of AVIRIS Indian Pines data using a 

joint sparse model: (a) The false colour image; (b) Classification results. Illustration taken 

from [18]. 

                              

(a)                                                         (b) 

 

Fig. 1.6. An example of spectral-spatial classification of ROSIS University of Pavia data 

using a mathematical morphology-based method: (a) The false colour image; (b) 

Classification results. Illustration taken from [18]. 
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Adaptive neighbourhood approaches extract spatial and contextual information within 

adaptively changed spatial regions. Mathematical morphology-based methods, such as 

morphological profiles [24], attribute profiles [25], and extinction profiles [26] extract 

the structural features of images based on a set of criteria or filters. Segmentation-based 

methods [27, 28] partition an image into multiple segments, with the pixels in any one 

segment being assigned to the same label on the assumption that they share similar 

characteristics. Such segmentation methods usually locate a set of contours (i.e. 

boundaries) which are used to partition the whole image. Fig. 1.6 illustrates an example 

of classification of ROSIS University of Pavia data with a mathematical morphology-

based method. 

There are also some methodological methods which combine multiple systems. For 

example, morphological features can be extracted and then classified by a joint sparse 

model or convolutional neural network. Markov random fields can also be used in post-

processing to refine segmentation results.  

Spatial resolution determines the level of observed spatial detail, and while high levels 

of detail are desirable, they also bring challenges for spectral-spatial classification. 

Higher resolution makes the acquisition of training samples much more expensive and 

time consuming. In images with fine spatial resolution, the shadow problem may 

compromise classification accuracy, and intra-spectral variation may become more of a 

challenge [29]. The combination of spectral and spatial information is very valuable for 

understanding and interpreting ground cover; however, how to make full use of and 

select suitable classification algorithms for spectral-spatial information given limited 

training samples remains an active area of research. 

1.5 Classification Accuracy Assessment 

Selecting the most suitable classification method requires assessments of classification 

accuracy. In general, for supervised classification, it is assumed that the difference 

between classification results and the reference data (also known as groundtruth) is 

caused by classification error. In other words, classification error is the discrepancy 

between groundtruth and the thematic map generated by a classification method. 
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Currently, the most widely used accuracy assessment for hyperspectral data 

classification is the confusion matrix [30]. This matrix provides a cross-tabulation of the 

obtained labels at specific locations against corresponding realities. Many assessment 

metrics can be derived from a confusion matrix, including overall accuracy (OA), 

average accuracy (AA), and the kappa coefficient. Overall accuracy is the percentage of 

pixels correctly classified for the whole data set, which can be interpreted easily. 

Average accuracy focuses on individual classes, and is computed by averaging the 

accuracies for each class (i.e. mean class-wise accuracy).  Cohen’s kappa coefficient has 

also been used as a standard assessment measure of classification accuracy since 1999 

[31]. It measures the agreement between two evaluators who (each) classify items 

into mutually exclusive categories. Table 1.1 shows a confusion matrix, and Equation 

(1.1) shows the OA, AA, and kappa coefficient derived from it.  

In this thesis, OA, AA, and the kappa coefficient will be used as the metrics for 

assessing classification accuracy. 

Table 1.1 The Confusion Matrix with 𝒒𝒒 = 𝟒𝟒 Classes. 

 𝐴𝐴 𝐵𝐵 𝐶𝐶 𝐷𝐷 ∑ 

𝐴𝐴 𝑛𝑛𝐴𝐴𝐴𝐴 𝑛𝑛𝐴𝐴𝐴𝐴 𝑛𝑛𝐴𝐴𝐴𝐴  𝑛𝑛𝐴𝐴𝐴𝐴 𝑛𝑛𝐴𝐴+ 

𝐵𝐵 𝑛𝑛𝐴𝐴𝐴𝐴 𝑛𝑛𝐴𝐴𝐴𝐴 𝑛𝑛𝐴𝐴𝐴𝐴  𝑛𝑛𝐴𝐴𝐴𝐴 𝑛𝑛𝐴𝐴+ 

𝐶𝐶 𝑛𝑛𝐴𝐴𝐴𝐴 𝑛𝑛𝐴𝐴𝐴𝐴 𝑛𝑛𝐴𝐴𝐴𝐴  𝑛𝑛𝐴𝐴𝐴𝐴 𝑛𝑛𝐴𝐴+ 

𝐷𝐷 𝑛𝑛𝐴𝐴𝐴𝐴 𝑛𝑛𝐴𝐴𝐴𝐴 𝑛𝑛𝐴𝐴𝐴𝐴 𝑛𝑛𝐴𝐴𝐴𝐴 𝑛𝑛𝐴𝐴+ 

∑ 𝑛𝑛+𝐴𝐴 𝑛𝑛+𝐴𝐴 𝑛𝑛+𝐴𝐴 𝑛𝑛+𝐴𝐴 𝑛𝑛 
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1.6 Research Objectives  

As discussed in Section 1.4.2, recently developed methodological approaches to 

classifying hyperspectral data tend to incorporate spatial and contextual information in 

order to improve classification accuracy. However, they still have a few limitations. 

Firstly, fixed-size neighbourhood-based techniques, such as joint sparse models and 2-

dimensional convolutional neural networks, are sensitive to the selected region scale. If 

an oversized neighbourhood area is selected for a specific test pixel, the accuracy tends 

to decrease, while when the selected area is too small, sufficient contextual properties 

cannot be included. Hence, choosing an optimal region scale is critical, but also difficult. 

In Bayesian image analysis, Markov random fields and conditional random fields have 

been widely used as probabilistic graphical models to provide spatial-contextual models 

for prior distribution. These methods should be in conjunction with suitable soft 

classification methods that can produce the reliable posterior probabilistic results for 

each pixel. 

Adaptive neighbourhood systems are also faced with some limitations. For example, 

mathematical morphology-based methods use shallow handcrafted features to 

characterize spatial and contextual information at the feature extraction stage. This 

requires the adjustment of a number of threshold values, which is complicated. In 

segmentation based methods, it is difficult to select the most meaningful objects by 

which to segment. Both over-segmentation and under-segmentation lead to 

compromised classification accuracy, and insufficient training samples further limit the 

performance of this type of object-oriented classification method. 

The main objective of this thesis is to develop efficient and feasible methods for fully 

exploiting spectral and spatial information in hyperspectral data classification, and 

thereby overcome the limitations of conventional algorithms.  

1.7 Thesis Structure 

This thesis is organized into nine chapters. A brief overview of the thesis structure as 

follows: 
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Chapter 1 presents an introduction of hyperspectral imagery and the difficulties related 

to hyperspectral image classification. A detailed literature review on the latest advances 

in hyperspectral image classification is presented in Chapter 2. Chapter 3 briefly 

introduces data sets used in this thesis. The contributions of this thesis are detailed from 

Chapter 4 to Chapter 7.  

Chapter 4 introduces a framework that integrates a joint sparse model and a 

discontinuity preserving relaxation algorithm. The joint sparse model is firstly used in a 

probabilistic sense, to obtain the probability scores of each pixel. The resulting 

probabilistic distribution map is refined by the discontinuity preserving relaxation 

scheme. This two-step framework leverages spatial information in both steps, and 

classification accuracy in most homogenous areas is guaranteed. The method is 

evaluated on two famous data sets and compared with several well-known classifiers. 

In Chapter 5, a novel technique for the hyperspectral image classification based on a 

multi-level joint sparsity model is constructed to fully exploit spectral-spatial 

information. An adaptive local neighbour selection strategy is developed that computes 

weights based on the distances between pixels and uses the labels of training data as a 

priori information. Structural similarity between the central pixel and its neighbours is 

exploited in a sensible way by considering the different contributions of each spectral 

band. Multiple joint sparse matrices can be generated on different levels based on the 

selected parameters, and multi-level joint sparse optimization can be performed 

efficiently to improve the classification results. The proposed method is compared with 

some baseline approaches using real hyperspectral data sets. 

In Chapter 6, a new classifier based on a multi-scale conservative smoothing scheme 

and adaptive sparse representation is developed for efficient spectral-spatial HSI 

classification. A multi-scale conservative smoothing algorithm is proposed to reduce 

noise and extract spatial structure information across coarse and fine levels. Over-

smoothing is automatically prevented through imposing a weighting scheme on the 

neighbouring pixels used for smoothing, where the contributions from dissimilar 

neighbours are suppressed. Finally, an adaptive sparse representation is introduced to 

integrate the characteristics of different perspectives from a series of enhanced 
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hyperspectral images. From this representation, sparse coefficients can be obtained for a 

given unknown pixel and used for classification. 

Chapter 7 introduces a novel HSI classification framework based on a multiple feature 

learning convolutional neural network. We built a convolutional neural network with 

novel architecture that uses various features extracted from raw imagery as its input. 

From this input, the network generates the corresponding relevant feature maps, which 

are fed into a concatenating layer to form a joint feature map. The joint map is then fed 

to subsequent layers in order to predict the final labels for each hyperspectral pixel. 

Experiments conducted on three well-known data sets show that this framework 

significantly improves classification accuracy. 

Finally, Chapter 8 presents some discussions of the proposed methods. Chapter 9 draws 

together the conclusions of this thesis and suggests some directions for future research.
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Chapter 2 Latest Advances in Hyperspectral Image 

Classification  

As discussed in Chapter 1, there are several types of methodological approaches for 

extracting spatial information and contextual information from hyperspectral data. As 

hyperspectral classification techniques have developed rapidly over recent years, this 

thesis attempts to systematically review the latest advances specifically with respect to 

spectral-spatial hyperspectral image (HSI) classification. They are reviewed in five 

branches: mathematical morphological-based approaches, probabilistic graphical 

methods, segmentation methods, SR models, and deep learning-based techniques. 

2.1 Mathematical Morphological-Based Classifiers 

Mathematical morphology (MM) was firstly introduced in the report of [28], and can be 

applied to many image processing problems such as image segmentation and image 

enhancement. A morphological transformation-based technique, namely morphological 

profiles (MPs), has been extensively used for image analysis since it was firstly 

introduced in [28]; this method mainly focuses on extracting structural information from 

images. MPs are constructed by applying a set of opening and closing operations with 

structuring elements (SEs) of increasing sizes to a single-band image/panchromatic 

image. This method was then generalized as extended MPs (EMPs) in [32], and has 

been successfully used to extract contextual information for hyperspectral data [24, 33] 

in a multivariate manner. In [34], multiple SEs are used to generate EMPs, and are then 

integrated with a multiple kernel learning method to present spectral-spatial information 

from hyperspectral images. EMPs have been used in the classification of hyperspectral 

data, for which some promising results can be found in [32]. 

Although MPs and their extensions have achieved some remarkable performance in 

hyperspectral image classification, they have some limitations. For instance, SE size is 

fixed, and information can only be extracted for existing objects. Other characteristics 

of regions should also be considered when analysing hyperspectral data.  
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Morphological attribute profiles (APs) [35] were proposed to overcome the 

shortcomings of MPs. APs are a generalization of MPs that use a series of attribute 

filters (AFs) for the multilevel extraction of information. AFs are more general than 

operators by reconstruction due to their capacity to transform images based on attributes 

other than the shape and size of the SE used in MP construction. APs offered more 

flexible and informative solutions for image representation, and were subsequently 

generalized to extended multi-APs (EMAP) and extended APs (EAPs) [36] by 

sequencing the APs with different types of attributes. 

 In [25, 37], independent component analysis (ICA) was first applied to hyperspectral 

images to generate feature maps, and different attributes were applied to each feature 

map, producing EMAPs. The authors proposed an automatic procedure for determining 

the values of EMAP filter parameters, and tuning of these parameters was achieved with 

a genetic algorithm [38]. Similar work was done in [39], which presented an efficient 

means of automatically building an EAP from the standard deviation attribute based on 

class-specific statistics. In [40], EMAPs were based on hyperspectral features derived 

from both supervised and unsupervised feature reduction techniques, and a random field 

(RF) and support vector machine (SVM) were used to classify the EMAPS. In [41], 

EMAPs were integrated with a novel composite kernel that exhibits great flexibility in 

combining spectral and spatial information for hyperspectral image classification. In 

[42], random subspace ensemble techniques were applied to EMAPs features to reduce 

the impact of the curse of dimensionality and improve classification accuracy. In the 

report of [43], the authors proposed a Bayesian maximum a posterior formulation to 

compute class-specific probability scores based on EMAPs as the prior to a Markov 

random field. AP-based techniques provide very efficient tools for the presentation of 

spatial and contextual information in the classification of hyperspectral data, and we 

refer to [44-46] for a detailed survey about APs and their extensions with applications to 

hyperspectral image classification. 

Very recently, another successful variation of MPs, extinction profiles (EPs), were 

proposed in [47]. In addition, generalizations of EPs, e.g. extended EPs (EEPs) and 

extended multi-EPs (EMEPs) [26], have been introduced and utilized for the efficient 

extraction of hyperspectral features. EMEPs have been integrated with several 
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classifiers to perform spectral-spatial hyperspectral classification. In [48], EMEPs are 

firstly extracted and then classified using a random forest. In [49], EPs were extracted 

from three independent components of a hyperspectral image, three groups of EPs were 

constructed, and a composite kernel was applied within each EP to explore spatial 

information. In [50, 51], EPs containing different attributes were derived from both 

hyperspectral and LiDAR data, and then the features were fused to provide the input for 

a deep learning-based classifier. In the report of [52], EMEPs were extracted from 

images associated with the first component extracted through ICA, and then classified 

by a random forest ensemble-based classifier. All of these EP-based techniques have 

achieved very competitive results for classifying various real hyperspectral data sets.  

2.2 Probabilistic Graphical Models 

Probabilistic relaxation is considered an efficient way to incorporate spatial information 

in image processing. It characterizes neighbourhood information based on the class-

wise probabilistic scores of each pixel, obtained using other probabilistic classifiers. 

The most popular relaxation methodology for considering neighbouring information in 

the classification stage is the probabilistic graphical model. These models treat each 

pixel as a graphical node, and use graphical edges to describe the connections between 

each pair of neighbouring pixels. This topological description allows spatial 

dependencies within an image to be captured in a probabilistic sense. Each node has a 

function describing the potential of it belonging to each class, and each edge has a 

function describing the relationship between the neighbouring pixels is connects. 

Various graphical models that rely on neighbouring systems have been applied for 

remote sensing image classification. The most frequently used systems are the four 

neighbourhood system and eight neighbourhood system; larger neighbourhood systems 

bring exponentially increase of computational complexity.  

Markov Random Fields (MRFs) are perhaps the most popular and widely used 

probabilistic graphical models for hyperspectral image classification.  MRFs 

characterize spatial and contextual information for prior distribution in a Bayesian rule. 

Let iX = {x }be the observed data from an image where ix is the −i th pixel of the image, 
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and let yiY = { } be the class labels corresponding to the pixels. According to Bayesian 

theory, the posterior probabilities of each class for a pixel can be expressed as a function 

of class prior probabilities and class likelihood [53]: 

( | ) ( , ) ( | ) ( ).P P P P∝ =Y X X Y X Y Y                                           (2.1) 

Based on the Hammersley-Clifford theorem and given the assumption that the observed 

data is conditionally independent, the posterior distribution ( | )P Y X can be defined as a 

Gibbs distribution proportional to exp[ ( | )]−U Y X , where U is an energy function. For 

image classification, the MRF can be conducted as a functional form of energy [54]: 

( | ) .
n n

i i i ij i j
i=1 i=1 j N(i)

U D ( , y )+ λ V (y , y )
∈

=∑ ∑ ∑Y X x                                   (2.2) 

where ( )i i iD , yx is a spectral energy term observed from the data, ij i jV (y , y ) is a spatial 

term associated with the spatial relationship between the i - th and j - th pixels; N(i)  is the 

neighbourhood system for the i - th pixel used in the model, for example the four 

neighbourhood system with i - th  pixel centred; and λ is a parameter for adjusting the 

relative contributions of the two terms. ( )i i iD , yx and ij i jV (y , y ) are also known as unary 

and pairwise potentials, respectively. For hyperspectral image classification, given 

hyperspectral data X , the minimization of energy ( | )U Y X with respect to Y is equal to 

the Bayesian function established by Equation (2.1). 

In general, unary potentials can be modelled as the negative class-conditional log-

likelihood of observations from the original data, and the spatial term determines the 

form of the MRF model. There are different ways to efficiently conduct the modelling; 

for example, in [55], a Potts model was used to explore the spatial relationships between 

neighbouring pixels, and the abundance vectors obtained by an unmixing method were 

used to model the spectral energy term. In [20], an MRF was implemented in a 

maximum a posterior manner to model the local spatial correlations of neighbouring 

pixels, and optimization was achieved using a min-cut-based algorithm. In [56], an 

MRF in a Bayesian framework was applied for the pixel-wise classification of 
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hyperspectral imagery based on the conditional probabilities derived from a sparse 

representation model, and this model was optimized using a graph-cut-based 

α - expansion algorithm. An adaptive MRF was proposed to characterize spatial 

information for the classification of hyperspectral imagery in [57], and a relative 

homogeneity index for each pixel was adopted to determine the tradeoff between the 

two contributions in Equation (2.2). In [58], the authors analysed the relationship 

between a MRF decision rule and a SVM-kernel expansion, and established an 

integration model for hyperspectral image classification. When using a MRF model, the 

acquisition of class-conditional log-likelihood can be grouped into two categories: 

parametric [55, 57, 59-61] and non-parametric [20, 62, 63]. Spatial behaviours can be 

constructed as favouring edge-preserving, smoothing, isotropic, or anisotropic [19, 61, 

62]. Some advanced MRFs have been integrated in multiscale [62], multiresolution [64], 

segmentation [65, 66], and hierarchical structures [65] for spectral-spatial hyperspectral 

image classification.  

The optimization of MRF models often relies on energy-minimization algorithms; for 

example, the graph-cut-based [54, 67, 68] and belief propagation-based [69, 70] 

methods have been very popular in the literature. MRFs model the contextual 

information of pixels in the labelling stage under the assumption that the observed data 

is conditionally independent. However, this assumption neglects contextual information 

in the observed data of a given class. This problem has been addressed through the 

application of conditional random fields (CRFs) to integrate contextual information for 

image classification. CRFs directly model posterior probabilities as a Gibbs distribution 

and avoid explicating the modelling of likelihood.  

CRFs have been used as a probabilistic graphical model for the spectral-spatial 

classification of hyperspectral images in conjunction with many approaches. In [71], 

multinomial logistic regression (MLR) was used to define pixel-wise (unary) potentials, 

and employed a CRF to capture the underlying patterns in both labels and observed data. 

In [72], a multiclass boosted rotation forest method was adopted to provide the posterior 

probabilities that served as unary potentials for an eight-connected CRF, and an 

α - expansion algorithm was used to solve the optimization problem. In [73], the outputs 



Chapter 2 Latest Advances in Hyperspectral Image Classification 

20 

 

of a superpixel-based sparse representation and a patch-based sparse representation 

were combined to provide the unary potentials for a hierarchical CRF; this method was 

able to simultaneously consider information from a variety of neighbouring pixels and 

detect boundary areas. In [74], Gaussian processes were applied to obtain the unary 

potential of each spectral vector, and used CRFs to incorporate spatial neighbourhood 

information from the observed data.  

MRFs and CRFs are distinct from conventional classifiers in that they model non-

identically distributed pixels in a Bayesian framework, which allows the output to 

exhibit dependency structures. They have been widely used to integrate spatial and 

contextual information in the classification of hyperspectral images, and in some cases 

have achieved state-of-the-art performance.  

2.3 Segmentation Based Classification 

Segmentation is another important method for spectral-spatial classification of 

hyperspectral data. Segmentation-based methodology partitions an image into several 

segments, each of which is treated as a superpixel and classified. Some methods carry 

out segmentation of an image according to criteria such as intensity values or textual 

properties. After segmentation, classification is performed. Object-based classification 

approaches are often applied in this context. For each region in a segmentation map, all 

pixels will be assigned to the most frequent classes based on some pixel-wise 

classification results. This procedure is known as plurality voting or majority voting.  

A number of different segmentation techniques have been proposed for the 

classification of hyperspectral imagery. Among the most representative methods are 

watershed segmentation, expectation maximization (EM)-based segmentation, and 

hierarchical segmentation (HSeg).  

Watershed segmentation is a morphological transformation which partitions an image 

into several regions in a topographic manner [7]. One single-band image can be divided 

into several catchment basins according to watershed lines, and each basin is related to 

one minimum in the image. The application of watershed segmentation to hyperspectral 
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image classification is not straightforward. Usually, the watershed algorithm is applied 

to a gradient function, and only one band gradient is computed for a multiband image. 

Then, each watershed pixel is assigned to the region that has the “closest” median [75]. 

Watershed segmentation was first extended to hyperspectral image classification by 

Tarabalka et al. in [76], with a pixel-wise SVM used to classify regions and majority 

voting applied within regions. 

EM-based segmentation is a partitional clustering approach that groups pixels into 

different clusters based on spectral similarities. This method does not consider spatial 

locations or neighbour relationships. In this method, an initial number of clusters should 

be defined, which is usually set as the number of classes. Then each pixel is modelled 

by a Gaussian probability density function [7]: 

1
( ) = ( ; , )ω φ

=
∑

C

c c c c
c

p x x u Σ                                                   (2.3) 

where C denotes the number of clusters, ωc represents the weight parameter of the c - th

cluster, and ( , )φ µ Σ  is a Gaussian density function  with mean µ  and covariance matrix

Σ . The partitioning of C clusters can be obtained by optimizing this function, and 

adjacent pixels can be assigned to either the neighbouring regions or the disjoint regions. 

Partitional clustering was applied for segmentation-based hyperspectral image 

classification in [77, 78]. 

The HSeg method considers both spectral similarities and the spatial adjacency of pixels. 

Its segmentation process combines region growing with unsupervised classification; 

region growing produces spatially connected regions, while unsupervised classification 

groups similar regions that are not spatially connected. The main steps of typical HSeg 

methods can be summarized as [7]: 1) Compute the dissimilarity criterion for all pairs 

of adjacent regions. This can be done by different methods, such as spectra angel 

mapper (SAM), which can be applied to calculate the spectral similarity between two 

vectors; 2) Merge spatially adjacent regions according to the smallest criterion 

calculated in step 1; 3) Merge spatially nonadjacent regions according to a weight 

parameter set prior to implementation; and 4) Repeat all steps until convergence is 
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obtained. However, a particular object in this pipeline can be represented by several 

regions or can be merged with other objects in one region based on different criteria. 

Therefore, manual selection of segmentation levels is important for HSeg algorithms. 

The import of hierarchical segmentation for segmentation-based hyperspectral image 

classification can be seen in [65, 79-82]. 

Although the abovementioned segmentation methods have successfully integrated 

spectral and spatial information for hyperspectral image classification, they remain 

limited in some respects. Most segmentation methods are dependent on the parameters 

selected and on the degree of region homogeneity. Automatic segmentation is a topic 

that has attracted a lot of attention. In [83], an automatic marker-based segmentation 

method was proposed for the classification of hyperspectral data. Markers were defined 

as the most representative pixels for spatial objects, and chosen from the probabilistic 

classification results based on some pixel-wise classification results. Then a region 

growing method was applied to derive a classification map. A constrained marker-

controlled segmentation method for classifying hyperspectral imagery was also 

proposed in [82]. In that approach, markers were automatically selected using 

probabilistic classification distributions, and then a constrained HSeg method was used 

to compute the classification results.  

Automatic segmentation has also been performed by exploiting region-based image 

representations. These approaches can provide a hierarchical structure for regions at 

different scales. One such model is a binary partition tree (BPT), which can be 

interpreted as a hierarchical partition of an image: the nodes represent image regions 

while branches denote the relationships among regions. The root node is the entire 

image, and each of the following levels partitions the image into two progressively 

smaller non-overlapping regions.  A BPT is constructed in a bottom-up manner, and it 

iteratively groups similar pairs of regions. Once the tree is constructed, image 

segmentation can be performed through cutting horizontally across the branches.  

In [84], a BPT was proposed for defining a hierarchical representation of a given 

hyperspectral image. At first, the authors constructed a BPT to iteratively clusterobjects 

of interest as nodes, and used a SVM to classify those nodes. The classification map 
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was generated by pruning the tree in a bottom-up sequence. In [85], the results of linear 

spectral unmixing were used to minimize reconstruction error, and then a BPT was 

implemented for the segmentation. BPT models have been also applied in a multi-object 

manner in [86, 87] for the segmentation of remote sensing images.  

A MRF-based graph cut method can also be used as a segmentation method for 

classification. In [66, 88], a MLR algorithm was applied for computing the posterior 

probability distributions of pixels as the MRF prior, and a maximum a posterior 

segmentation was implemented for deriving the classification results. 

2.4 Sparsity Representation Classification 

Sparse representation (SR) is a promising tool for solving many image processing 

problems such as denoising [89], fusion [90] and image compression [91]. SR assumes 

that a natural signal can be linearly expressed using a few coefficients from a so-called 

dictionary [92]. SR has been extended to the classification of hyperspectral images 

based on the assumption that, despite their high-dimensional characteristics, the pixels 

of a given class usually lie in a low-dimensional subspace[93]. This enables a test pixel 

with an unknown label to be linearly represented by a few elements, and for the label to 

be determined after the coefficient vectors are recovered from a training dictionary.  

2.4.1 Introduction of Sparse Representation Classification 

For the sparse representation classification (SRC) model, assume that there are 

𝑁𝑁 training pixels belonging to 𝐶𝐶 classes, and 𝐱𝐱 is a 𝐿𝐿 dimensional pixel. Let 𝐃𝐃 be the 

dictionary learnt by training samples, and 𝐱𝐱 can be linearly represented by the dictionary 

𝐃𝐃: 
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where ×∈ cL N
c D  ( 1 ... ...+ + + =c CN N N N ) is the sub-dictionary for the c-th class and 

1×∈ cN
cr   is the set of sparse coefficients corresponding to cD . In an ideal situation, if 

x belongs to the c-th class, then 0=jr , 1... ,∀ = ≠j C j c .The label of x  can be directly 

determined from the recovered sparse coefficients and reconstruction error. The class 

label of test sample x  can be obtained according to the minimum residual between the 

pixel and the reconstruction vector: 

1,2...
2

( ) arg min .
c C

c cClass r
=

= −x x D                                          (2.5) 

2.4.2 Introduction of the Joint Sparse Model 

As spatial information is very important for hyperspectral image classification, it is 

essential to also embed spatial contextual information into the SR model. Chen et al. [22] 

proposed using a joint sparse model (JSM) to exploit the correlations between 

neighbouring pixels and a center pixel. Given a patch of ×W W pixels whereW is a 

square number, let 1 2[ , ... ]= WX x x x  be the joint signal matrix consisting of all the 

neighbouring pixels in this patch. In other words, the test pixel is located at the centre of 

the selected region and the remaining pixels in X are its neighbours. According to the 

principles in [22], X can be expressed as: 

 1 2
1 2

1 2

[ , ... ] [ , ... ]

[ , ... ]

W
W

W

= =

= =

X x x x Dr Dr Dr
D r r r DR.

 (2.6) 

where 1 2[ , ... ]W N W×= ∈R r r r   is the sparsity matrix, and the selected atoms in 

dictionary Dare determined by the nonzero coefficients in R . Therefore, the common 

sparsity pattern for pixels can be recognized by enforcing the indices of nonzero atoms 

in the sparsity coefficient matrix. The label of x can be directly determined from the 

recovered sparse coefficients and reconstruction error: 
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where cR represents the reconstruction residual corresponding to the c-th class. 

Compared to a pixel-based SRC, JSM can achieve a better classification result by 

incorporating the contextual information of neighbouring pixels. However, different 

areas need different region scales, and even though neighbouring pixels tend to have 

similar spectral signatures, there are some less correlated pixels may exist in one local 

patch due to the spectrally heterogeneous features in hyperspectral scenes.  

2.4.3 Overview of JSM in Hyperspectral Image Classification 

Recently, better performance has been achieved with JSM compared to pixel-wise SR 

methods [94]. A number of spectral-spatial classifiers based on JSM have been 

successfully applied for the classification of hyperspectral data. Several methods have 

been attempted for obtaining the more reliable joint matrix. A k -nearest neighbour 

selection method was applied prior to the JSM in [95, 96] to determine the importance 

of each neighbouring pixel in a given neighbourhood, and a Gaussian weighted function 

was used as the selection criterion. Similar work was done in [97], where reliable 

neighbours were chosen for the test pixels and a sub-dictionary extracted from the 

original dictionary based on spectral similarities between the test pixel and dictionary 

atoms.  In [98], a shape-adaptive region was constructed for each test pixel based on the 

first principal component extracted from a PCA, and a shape adaptive region was used 

in JSM to obtain the final classification results for each pixel. Chen et al. [99] proposed 

to project samples into a high-dimensional feature space to improve class-wise 

separability, and JSM was used to classify features from that new dimensional space.  

Very recently, proposals have been put forth to incorporate different types of features 

into the sparse models. In [100], JSM was used to classify AP features extracted from 

hyperspectral images. In [101], several features (e.g. spatial features, Gabor textures, 

local binary patterns, and MPs) were extracted and transformed nonlinearly into a low-

dimensional kernel space before being classified by a SRC. In [102], both spectral 

features and prior extracted spatial features (e.g. shape and texture) were fed into JSM 

to acquire the respective representation vectors, and then a joint sparsity 0 norm was 

applied on the coefficients to impose a common sparsity upon them.  
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Other classification techniques have also been integrated with sparse models to obtain 

more accurate classification results. SR was used to produce probabilistic results in [73], 

and as prior to a CRF for the classification of hyperspectral images. Li et al. [103] 

proposed a superpixel-based JSM for hyperspectral image classification. In this method, 

superpixels were obtained based on some shape and structure criteria, and the 

superpixel containing the test pixel was classified rather than constructing a joint matrix 

based on a fixed-sized window. Similar work was performed in [104]. In [105], a 

segmentation method was used to partition an image into several homogenous regions; 

for each region, all pixels within the region were simultaneously coded in a SRC model 

to enforce the same sparsity on them. In [106], an extreme learning machine (ELM) was 

trained and used to determine whether pixels were classified or not based on a criterion. 

Pixels that were not classified by the ELM were subsequently processed by a SRC using 

a sub-dictionary extracted by the ELM. In [107], correlation coefficients and a joint 

sparse model were fused to achieve better performance over the model alone. In this 

method, correlation coefficients were first calculated between training and test samples, 

and a JSM was used to compute the residuals. Finally, the correlation coefficients and 

the residuals were fused to perform the final classification. 

Multi-feature learning has attracted a lot of attention in the area of image processing, 

and it has very recently been extended to hyperspectral image classification. In [93], the 

authors proposed to extract complementary features in a multiscale fashion, and those 

multiscale features were classified by a JSM with an adaptive norm applied. This work 

was also extended to create a multi-feature learning adaptive sparse representation for 

the classification of hyperspectral data in [98]. In [103], class-level sparsity was 

exploited for multi-feature fusion prior to sparse learning, and the correlation and 

discrimination among different classes were considered during the dictionary learning 

procedure.  

All of the abovementioned approaches have achieved state-of-the-art performance; 

however, how best to extract complementary information for a JSM is still an open 

question. Given this, we establish three novel frameworks based on JSM for the 

classification of hyperspectral images. These frameworks are presented in Chapters 4-6. 
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2.5 Deep Learning-Based Classifiers 

Deep learning, which exploits non-linear transformation of data via several layers, has 

attracted a lot of attentions in the field of machine learning. In the context of feature 

extraction, deep learning automatically extracts invariant and discriminative features 

from a hierarchy of hidden layers. Deep learning-based methods have been adapted to 

hyperspectral image classification and recently shown to outperform many conventional 

approaches. Commonly, given a proper architecture and sufficient training samples, a 

deeper network can extract more abstract and robust features than shallow ones. 

In the case of hyperspectral image classification, deep learning-based methods—e.g. 

autoencoders (AEs), stacked autoencoders (SAEs), deep belief networks (DBNs), 

recurrent neural networks (RNNs), and convolutional neural networks (CNNs)—have 

been demonstrated to be very efficient in extracting robust and invariant features. The 

input of a deep learning model can be a single spectrum or a neighbourhood region for 

the selected pixel. Spatial information can be incorporated by involving the 

neighbouring pixels of the pixel to be classified. However, a large number of parameters 

(i.e. weights) needed to be tuned during the training process, which means that models 

given an insufficient number of training samples may face the “overfitting” problem. In 

the development of deep learning models for hyperspectral data, several attempts have 

been made to improve classification performance. 

AE has been conventionally applied as an unsupervised pixel-wise approach for 

extracting features and reducing the dimensionality of images. In the context of 

hyperspectral image classification, AE and its extension SAE are used in both 

unsupervised and supervised manners. In [108], a marginal SAE was applied to extract 

discriminant features from samples in homogenous regions that were partitioned by a 

segmentation method prior to the training stage. In [109], the authors proposed to use a 

set of SAEs to extract features from different segments of the spectrum, and then those 

reduced features were concatenated into a single feature that was used for the final 

classification. Segmented SAEs help reduce computational complexity without 

compromising accuracy. In [110], a stacked denoise autoencoder (SDAE) was used to 

train a robust and discriminative network for the high performance classification of 
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hyperspectral data. In [111], a single-layer AE and a multi-layer SAE were applied to 

extract shallow and deep features respectively and then the two kinds of features were 

combined for classification. In [112], AE was used to extract deep features from 

hyperspectral data, which were then classified by a SVM. Other work based on AEs and 

SAEs can be found in [113, 114]. 

DBNs have also been extended to hyperspectral image classification. For example, a 

three layer DBN was used in [115] to extract deep features from the original spectrum 

and their neighbours, and then the features were classified using a logistic regression 

classifier. Similar work has been done in [116, 117]. To deal with the problem of 

limited training samples, the authors of [118] proposed using a diversified DBN to 

regularize the pretraining and fine-tuning procedures; this regularization was achieved 

by introducing several latent factors obtained through a recursive greedy method. In 

[119, 120], DBNs have also been applied for the classification of hyperspectral images.  

In RNNs, the network is a graph in a temporal sequence. In the context of hyperspectral 

image classification, RNNs are usually used to characterize sequential information of 

the spectrum and in a band-to-band fashion. In [121], the authors processed 

hyperspectral pixels with a RNN in a sequence to capture the sequential properties of 

the data, and also applied a new activation function to speed the training process.   

Notably, the classification accuracy of deeper networks tends to decrease with the 

limited training samples available for hyperspectral imagery. This problem is more 

serious for fully connected models such as AEs and DBNs [19]. In CNNs, the number 

of parameters is reduced by the properties of shared weights and local connections, 

which makes it feasible to obtain high classification accuracy for hyperspectral data 

even when limited training samples are available. Given this, we would like to highlight 

CNNs as a promising and powerful technique for the classification of hyperspectral 

image; this thesis mainly focuses on CNNs.  

2.5.1 Introduction of CNN 

A complete CNN contains many layers, including convolutional layers, down-sampling 

layers, and some activation layers. An end-to-end CNN maps the input pixel vectors to 
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the labels or at least the respective potentials of the inputs belonging to each of the 

classes (i.e. probabilistic distribution).  

CNNs are widely initialized using batch normalization, which imposes the zero means 

and unit variance on the inputs. In this thesis, batch normalization is used for all CNNs 

constructed.  

Suppose x is a vector of pixels of the input image X for a layer, and an individual neuron 

performs an operation on x to produce an outputa . The neuron function can be defined 

as follows: 

( ).fσ= +a x b                                                          (2.8) 

where f is a weight filter, b  is a bias, and ( )σ  is an activation function, usually a 

nonlinear function. Each neuron is typically associated with a specific spatial location (

,i j ) and a dimension d . This means that the convolutional block is implemented on all 

locations throughout the spectral dimensionality.  

For each layer, at least one activation function is applied; the most frequently used 

activation functions are the sigmoid function and the rectified linear unit (ReLU) [122]. 

ReLU is applied throughout this thesis; it retains positive inputs while returning 0 for 

negative inputs: 

( ) max(0, ).σ =x x                                                     (2.9) 

It is common to stack the outputs of the previous layer and feed them to the next layer. 

A typical CNN has a hierarchical structure with multiple convolutional layers stacked 

sequentially. In addition to the convolutional layers, some down-sampling/pooling 

functions are usually applied on the layers to increase the receptive field of the neurons. 

Typical pooling functions adopted in CNNs are max-pooling and mean-pooling, which 

returns the maximum values and mean values of the inputs, respectively.   

In order to reduce feature dimensionality and prevent overfitting, dropout is sometimes 

used in CNNs, particularly those with deep architecture. A dropout function randomly 
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drops some hidden neurons based on a predefined threshold through setting their values 

to zero. By doing so, the dropped neurons do not contribute to the next layer and are 

used in the back-propagation optimization.  

The main role of CNNs in image classification is to predict the class labels of test pixels 

by minimizing a loss function  ℒ . A commonly used log-loss function is applied 

throughout this thesis: 

( , ) logc = −x x.                                                    (2.10) 

where cx  denotes the true label values. In this chapter, a softmax function is applied to 

the top layer to produce the output with a probability distribution i.e. 

( ), 1,...,= =k p k k Cx . Once ℒ is applied, weights and biases are determined by 

minimizing loss. Optimization is performed by a gradient descent algorithm.  

2.5.2 Overview of CNNs in Hyperspectral Image Classification 

CNN inputs can be 1-dimensional, 2-dimensional, and 3-dimensional. CNNs with 1-

dimensional inputs directly classify the images in the spectral domain; those with 2-

dimensional inputs extract features from neighbouring pixels and use the neighbours of 

the pixel to be classified as input; and CNNs with 3-dimensional inputs extract complex 

features from both spectral and spatial domains. CNNs that consider spatial information 

can achieve better performance in terms of classification accuracy. In [123], 

hyperspectral  image features were extracted by a five-layer CNN, and convolutional 

kernels were applied in a 1-dimensional manner. In [23], an end-to-end network was 

proposed for hyperspectral image classification that optimized the parameters of CNN 

layers to alleviate overfitting. In [124], the authors argued that effective joint 

exploitation of spectral and spatial information can be realized by a contextual CNN 

designed to accept a multi-scale input and to use a fully convolutional structure for the 

classification task. In [125],  a 3-dimensional CNN model was proposed to balance the 

insufficient number of training samples with high data dimensionality, and a ℓ2 

regularization was employed to avoid overfitting. The authors of [126] proposed a 

multi-feature learning-based CNN to fully leverage spectral-spatial information through 
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inputting different types of features. In [127], a 3-dimensional CNN was extended to a 

deformable CNN, and the network allowed the sampling locations to be adaptively 

changed based on different spatial contexts. In [128], a convolutional subnetwork was 

used to extract abstract features from the raw data, and a deconvolutional subnetwork to 

encode them. The final learning was realized by a residual learning method. It should be 

noted that in this framework, the CNNs were used as an unsupervised learning 

technique. Some other promising work based on CNNs can be found in [129-132]. 

CNNs can also be integrated with other techniques to further boost classification 

accuracy. In [50], a high classification accuracy was obtained by prior extraction of the 

extinction features and using them as the inputs for a deep CNN. In [133], Gabor 

filtering was applied to extract spatial information and a CNN was adopted for further 

processing of the extracted features. In [134], features extracted by a deep CNN were 

used as the initial dictionary of a SR model. In [135], the superpixel segmentation 

method was integrated with a CNN, and in [136], a transferring technique was applied 

prior to a CNN. Finally, active learning was combined with CNNs to avoid overfitting 

and the curse of dimensionality for high performance hyperspectral data classification in 

[137].  

CNNs have attracted a lot attention of researchers in image processing due to their 

superior performance over other fully connected networks. As discussed above, CNNs 

have been used in classification of hyperspectral images and achieved some competitive 

results. However, the application of CNNs to hyperspectral image classification is still 

in early stages, and CNNs embrace a wide range of structures. In this thesis, we have 

developed a simple but effective framework based on a CNN and multiple feature 

learning to achieve high accuracy of hyperspectral image classification. The details of 

the proposed approach are explained in Chapter 7. 

2.6 Summary 

In this chapter, recent advances in five branches of spectral-spatial classification of 

hyperspectral images have been reviewed: mathematical morphological-based 
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approaches, probabilistic graphical methods (i.e. MRFs and CRFs), segmentation 

methods, SR models, and deep learning-based techniques. 

Mathematical morphological approaches are used in the feature extraction stage, and 

classification in these approaches should be fulfilled by a classifier such as MLR, SVM, 

or Random Filed (RF). APs and EPs can provide discriminative and variant features for 

classification in an unsupervised manner, but the definition of parameters is of great 

importance. APs and EPs can provide very accurate classification results when 

integrated with a competitive classifier, for example a CNN. 

MRFs and CRFs have been demonstrated great promise for the characterization of 

spatial and contextual information from hyperspectral data. Furthermore, they have been 

proven to be more powerful when integrated with kernel classifiers (e.g. SVMs) and 

energy minimization approaches. The probabilistic graphical models should be 

extended to increase their flexibility, and their integration with recent CNNs may allow 

more flexible and robust characterization of spatial information. 

Segmentation methods extract information based on homogeneous regions that are 

partitioned by some criterion, e.g. shape, size, or texture. The greatest potential of 

segmentation methods is in integrating them with other classifiers. Since CNNs have 

been proven to be one of the most powerful classification tools, the integration of CNNs 

and segmentation methods may be a forthcoming hot topic in hyperspectral image 

classification. 

SR-based methods are an important branch of hyperspectral image classification, and 

their most important aspect is the incorporation of spatial information. Models based on 

JSM have achieved competitive results. JSM can be designed as an end-to-end 

framework that maps the raw spectral vectors to labels via dictionary learning. JSM 

belongs to the fixed-size neighbourhood system, and its variations focus on extracting 

representative and robust spectral-spatial features from a fixed-size region. In particular, 

the extraction of multilevel features in the region is one of the greatest JSM successes to 

date. The feature extraction prior to sparse learning can help further improve 

classification accuracy and solve the curse of dimensionality.  
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Although the advent of deep learning has led to a paradigm shift in image processing, 

its application to hyperspectral image classification remains in the early stage. In 

addition, the various forms of deep learning bring challenges in constructing effective 

deep models when provided with limited training samples. The design of a generative 

and robust network is an active topic of development for hyperspectral image 

classification. Notably, deep learning models can be combined with other techniques to 

obtain better classification results. 

By following this review of the latest advances in hyperspectral image classification, the 

work presented in the remainder of the thesis is guided by the above remarks and 

considerations. 
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Chapter 3 Data Sets 

In this chapter, we briefly introduce several data sets used to experimentally evaluate 

methods. In this thesis, four benchmark data sets1 are used to examine the proposed 

methods and comparative approaches. Three are well-known and frequently used for 

evaluating HSI classification performance. The fourth is a recent data set released for 

the 2013 Data Fusion Contest of the IEEE Geoscience and Remote Sensing Society 

(GRSS) [138]. These data sets have different characteristics and contexts in terms of 

spatial and spectral resolution.  

The first data set is the well-known airborne visible/infrared imaging spectrometer 

(AVIRIS) Indian Pines scene. It was collected over northwestern Indiana, United States 

in Jun 1992. The scene was captured over an agricultural site, includes 145×145 pixels, 

and its spatial resolution is 20 metres per pixel. A total of 220 spectral channels were 

included in the original data set; however, 20 of those (104-108, 150-163, and 220) are 

water absorption bands that are usually removed prior to experiments. The image 

contains 16 mutually exclusive classes. This data set is frequently used in the 

hyperspectral analysis community because its many mixed pixels and unbalanced 

number of samples per class constitute a challenging classification problem. Fig. 3.1 

shows a false colour composite of the image and the 16 groundtruth classes of interest.  

The second data set was acquired by the reflective optics spectrographic imaging system 

(ROSIS) instrument over the urban area of the University of Pavia, Pavia, Italy. The 

flight was operated by the Deutschen Zentrum for Luftund Raumfahrt (DLR, the 

German Aerospace Agency) in the framework of the Hysens project, which was 

managed and sponsored by the European Commission. The scene has a high spatial 

resolution of 1.3 metres per pixel, and it contains 610 × 340 pixels. With water 

                                                 

1 We would like to thank Prof. D. Landgrebe from Purdue University for providing the free downloads of the hyperspectral 

AVIRIS data set, Prof. Paolo Gamba from the Telecommunications and Remote Sensing Laboratory for providing the Pavia 

University data set, the California Institute of Technology for providing the Salinas data set, the Hyperspectral Image Analysis 

group and the NSF Funded Center for Airborne Laser Mapping (NCALM) at the University of Houston for providing the Houston 

data set, and the IEEE GRSS Data Fusion Technical Committee for organizing the 2013 Data Fusion Contest. 
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absorption bands removed, 103 bands are used in the thesis. The wavelengths range 

from 0.43 to 0.86 𝜇𝜇m. This data set has nine classes including urban, vegetation, and 

soil features. Fig. 3.2 shows a false colour composite of the image and the nine 

groundtruth classes of interest.  

The third image used in this thesis is the AVIRIS Salinas image, acquired over the 

Valley of Salinas, southern California, United States. The image is of 512×217 pixels 

with 224 spectral bands. Twenty water absorption bands (108-112, 154-167, and 224) 

are removed prior to analysis. Salinas has a 3.7 metres per pixel spatial resolution and 

16 mutually exclusive classes. This scene includes vegetables, bare soil, and vineyard 

fields. Due to the presence of spectral similarity in the available classes, this data set has 

been widely used as a benchmark for HSI classification. Fig. 3.3 shows a false colour 

composite of the image and the groundtruth. 

The fourth data set, named grss_dfc_2013 [138], was captured by the Compact 

Airborne Spectrographic Imager (CASI) over the test site of the University of Houston, 

Texas, United States in June 2012. The image is of 349×1905 pixels with a spatial 

resolution of 2.5 metres per pixel. It consists of 144 spectral channels ranging from 0.38 

to 1.05 𝜇𝜇m. It has 15 classes, and is a mostly urban scene. Fig. 3.4 shows a false colour 

composite of the image and the groundtruth. 

 

(a)                                    (b) 

 

Fig. 3.1. AVIRIS Indian Pines data set: (a) False colour composition. (b) Groundtruth.  
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(a)                                (b) 

 

Fig. 3.2. ROSIS University of Pavia data set: (a) False colour composition. (b) 

Groundtruth.  

 

(a)                      (b) 

 

Fig. 3.3. AVIRIS Salinas data set: (a) False colour composition. (b) Groundtruth.  
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(a) 

 

(b) 

 

Fig. 3.4. CASI Houston University data set: (a) False colour composition. (b) Groundtruth.  
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Chapter 4 HSI Classification Using JSM and DPR 

4.1 Introduction 

As discussed in Chapter 2, in the past few years, the concept of signal sparsity has been 

applied to HSI analysis. The basic assumption is that a linear representation of natural 

signals in terms of a few atoms can carry the most important information [139]. For HSI, 

pixels from the same class would be placed in a low-dimensional feature subspace. 

According to SR, they can be represented by a subset of atoms in a dictionary. 

Therefore, SR-based methods have been proposed for HSI classification to highlight the 

differences between pixels from different classes. One of the well-known characteristics 

of HSI is that the neighbouring pixels tend to have similar contextual properties and are 

likely to belong to the same class [140]. JSM has also been proposed [22] to exploit the 

spatial information. JSM assumes that the classification result would be improved by 

incorporating the neighbouring information of the test pixel. However, this method 

assigns the equal weight to each neighbouring pixel of the test pixel, which is 

inappropriate for the heterogeneous areas, especially around class boundaries [93]. In 

other words, JSM can perform very well for the homogeneous areas but overestimate 

the contributions of pixels around the class boundaries. Some strategies that use 

different weights of neighbouring pixels have been presented to resolve this problem 

[97]; however, it is very difficult to determine the optimal neighbourhood size for a test 

pixel.  

Another category of strategies to use the neighbouring information for HSI is 

relaxation-based approaches. They use the morphological filters or comprise relaxation 

approaches to integrate the spatial context of neighbouring pixels. These methods can 

remove the noise and enhance the quality of classification by correcting both spectral 

and spatial distortions. They can be used as pre-processing methods prior to 

classification process to reduce the noisy level of images. In [141], a diffusion algorithm 

was adopted to reduce the variability of the image, while preserving the boundary of 

HSI object. Also, the methods can be utilized to detect the spatial properties before a 

classification. The set of relaxation methods can also be implemented as a post-
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processing step after a probabilistic pixel-wise classification of the original HSIs [142]. 

Continuous relaxation (CR) and probabilistic relaxation (PR) methods are widely used 

in such a way. Actually, MRF is one kind of PR strategies, and many methods have 

been proposed based on this [143, 144]. However, in contrast to the improvement in 

preserving the edges, the classification accuracy tends to decrease in some homogenous 

areas [145] due to the oversmoothing effect of images.  

In [146], a relaxation approach was proposed to accurately preserve the boundaries 

among different classes, and this method relies on the discontinuity characteristics of 

the HSI cube. In the report, a MLR based approach was applied to obtain a pixel-wise 

probability, and the proposed relaxation scheme was applied to learn the final result.  

In this chapter, we propose a novel framework, namely, joint sparsity-based 

discontinuity preserving relaxation (JSDPR) which takes the spectral and spatial 

information into account in every step of classification by integrating a JSM and 

discontinuity preserving relaxation (DPR). The discontinuity preserving method 

incorporates the contextual information into the probability distribution obtained by the 

JSM to further improve the accuracy. This probability relaxation-based approach 

consists of two steps: (1) JSM is implemented to obtain a posteriori probability 

distribution and (2) the DPR is used to compute the final class-wise probability and 

derive the class labels for test pixels. The main contribution of this method is the 

integration of the JSM and the DPR where the JSM can ensure the classification 

accuracy in most homogenous areas and the DPR smooths the result without blurring 

the boundaries by estimating the discontinuities of the original image, which can further 

improve the performance. For illustrative purposes, Fig. 4.1 shows the framework of the 

proposed method.  
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Fig. 4.1. The outline of the proposed method. 

Section 4.2 provides a description of the SR and JSM, and also the estimation of the 

probabilistic distribution of test pixels from JSM model. The principle of DPR is also 

introduced in Section 4.2. In Section 4.3, the experimental results of the proposed 

framework on two data sets are delivered. Section 4.4 concludes this chapter. The work 

of this chapter has been published in IEEE Geoscience and Remote Sensing Letters 

[147]. 

4.2 Proposed Framework 

4.2.1 Sparsity Representation Classification Model 

For the SRC model, assume that there are 𝑁𝑁 training pixels belonging to 𝐶𝐶  classes, 

and 𝐱𝐱 is a 𝐿𝐿 dimensional pixel. Let 𝐃𝐃 be the dictionary learnt by training samples, and 𝐱𝐱 

can be linearly represented by the combination of 𝐃𝐃: 

1

2
1 2[ , ... ]C

C

r
r

r

=

=

 
 
 
 
 

x D D D

Dr.

                                                      (4.1) 

where ×∈ cL N
c D  ( 1 ... ...c CN N N N+ + + = ) is the sub-dictionary for the c-th class, 
1×∈ cN

cr   is the sparse coefficients corresponding to cD . In an ideal situation, if x

belongs to the c-th class, then 0=jr , 1... ,∀ = ≠j C j c . Given the dictionary D , 

coefficient vectors can be recovered by solving the optimization problem: 
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0
ˆ argmin

subject to .

=

=
r

r r

Dr x
                                                     (4.2) 

Considering empirical error tolerance , Equation (4.2) can be relaxed with the 

following inequality: 

0

2

arg min

subject to .σ

=

− ≤
r

r r

Dr x



                                             (4.3) 

Equation (4.3) can also be replaced by a sparse objective function: 

2

0

ˆ argmin

subject to .P

= −

≤
r

r x Dr

r
                                                     (4.4) 

where P is a predefined sparsity parameter corresponding to the number of zero entries 

in r . This nondeterministic polynomial-time hard (NP-hard) problem can be optimized 

by greedy pursuit algorithms. Orthogonal Matching Pursuit (OMP) [148] is a typical 

algorithm that solves this NP-hard problem, in which the residual is always orthogonal 

to the span of the already selected atoms, and r  is updated by the residual in each 

iteration. This problem can also be relaxed to a basis pursuit problem by replacing the

0 norm with other forms of regularization as follows: 

2
.ˆ argmin qλ= − +

r
r x Dr r                                              (4.5) 

where λ  is a regularization parameter, and the norm is 1l  and 2l  when 1=q  and 2=q  

respectively. Normally, 1  norm is more effective in solving the convex optimization 

problems than 0 norm is, and 2 norm can avoid the overfitting issue. The detailed 

procedure to solve this convex problem can be found in [149]. 

The label of x  can be directly determined by the recovered sparse coefficients and 

reconstruction error. Let e  represent the residual error between the test sample and the 

reconstruction term by sparse representation: 

σ
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2
ˆ 1,2... .c c ce c C= − =x D r                                                  (4.6) 

where cr  represents the residual computed by dictionary and an optimal sparse 

coefficient for the c-th class. Then the class label of test sample x  can be obtained 

according to the minimum residual: 

1,2...
( ) arg min .

c C
cClass e

=

=x                                                (4.7) 

4.2.2 Joint Sparse Model 

In this section, we will briefly introduce the JSM and the estimation of probabilistic 

distribution from JSM.  

Because neighbouring pixels tend to have similar contextual properties in HSI, a JSM 

uses the neighbouring information of test pixels and reduce the negative impact of 

common SR-based classifiers. Let 1L
i

×∈x   be a test pixel with L denoting the number 

of spectral bands. Assume that the test pixel is located at the center of a neighbourhood 

defined by a window size of W W× , where W is a square number. Let  

1 2
[ , ... ]

Wi =X x x x  be the pixels with similar contextual properties within the specified 

neighbourhood. Then, iX can be expressed as: 

1 2

1 2

[ , ... ]

[ , ... ] .

W

W

i

i

=

= =

X Dr Dr Dr
D r r r DR

                                                 (4.8) 

where D is the dictionary and 1 2[ , ... ]W n W
i

×= ∈R r r r   with n  being the number of atoms 

in the dictionary, represents a set of sparsity coefficient vectors.  

Given the dictionary D , iR can be optimized by solving the following objective function: 

,0i

arg min ,

subject to .
F

row

i ii

K

= −

≤

X DR

R

R


                                           (4.9) 
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where 
F

⋅  is the Frobenius norm, and 
,0rowiR  represents the number of nonzero rows in 

iR  with K  being the upper bound of the sparsity level. Equation (4.9) is an NP-hard 

problem. It can be solved by simultaneous greedy algorithms or polynomial time 

methods. The Simultaneous Orthogonal Matching Pursuit (SOMP) [22] is a generalized 

OMP algorithm in which the elements in the dictionary are sequentially selected, and 

the residual is sequentially updated. In this chapter, we use the SOMP to solve the 

optimization model of Equation (4.9). 

If the sparse coefficient matrix iR  is known, the probability distribution associated with 

each label can be computed with respect to residuals. We define ,1 , ,[ , ..., , ..., ]i i i c i Ce e e=E  

as the residuals corresponding to each class for the test pixel ix : 

                                              , 2
1, 2... .ˆi c i c c c Ce = − =x D r                                           (4.10) 

where cD  and cr  are the dictionary and coefficient vector of the c-th class, respectively. 

Considering the residual, the test pixel can be assigned to the class corresponding to the 

smallest value in the JSM. This is because the class corresponding to the least residual 

is most likely to be labeled than the others. According to the principle that the 

probability can be defined as inversely proportional to the residual [150]: 

                                                            ,
,

1 .i c
i c

p
e σ

=                                                           (4.11) 

where ,i cp  refers to as a posteriori probability to assign class c  for the test pixel ix , we 

define ,1 , ,[ , ..., , ..., ]T

i i i c i Cp p p=p  as the probability set for labeling the test pixel ix . σ  is a 

constant for the normalization of the probability.  

4.2.3 Discontinuity Preserving Relaxation   

To further improve the classification accuracy, a discontinuity preserving relaxation 

(DPR) [146] method is used to make the final decision in this chapter. The DPR method 

aims to find a balance between the adjustment of noisy classification and smoothness of 
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classification, which is realized by imposing a weight parameter on two different terms 

that are corresponding to noise and smoothness, respectively.   

Let 1[ ,...., ,...., ]
×

= ∈
C N

i N p p p p  (where N is the number of samples) be the C -

dimensional vectors for all the samples, ,1 , ,[ , ..., , ..., ]= T

i i i c i Cθ θ θ θ  be the final vector of 

probability computed from the DPR method, and 1[ , ..., , ..., ] ×= ∈ C N

i N θ θ θ θ  be the 

probability matrix for all the samples. The DPR method can be realized by solving the 

following optimization function: 

                                      

22
min(1 )

subject to : 0 1 1.

,
i

j j i
i j S

T
i i

θ
λ λ δ

∈

− − + −

≥ =

∑∑pθ θ θ

θ θ
                                   (4.12) 

where 0 1λ≤ ≤  denotes the weight value that controls the different impacts of the two 

terms in Equation (4.12), and iS  is the neighbourhood of the test pixel ix . It should be 

noted that λ  measures the misfit and smoothness level of the data. In other words, if λ  

is large, no discontinuities exist among the chosen pixels. δ j  is the value at location 

ij S∈  which is obtained by a Sobel filter: 

                                            ( )

1
exp ( ) .

L
i

i
sobelδ

=

 = − 
 
∑ I                                            (4.13) 

where ()sobel  is the Sobel operator that produces an output of 0 or 1, and I  is the 

original image cube. 

The first term of Equation (4.12) measures the data misfit, and the second term 

promotes smoothness according to the weight of jδ , which also means that it 

specifically models the pixels around the class boundaries. The DPR can be applied to 

the spatially homogenous areas by exploiting the correlation between the neighbouring 

pixels. The class boundaries in the original image are firstly detected by the Sobel filter, 

and then the DPR smooths the homogenous areas without crossing the boundaries so 

that it can help preserve the discontinuities in the original image. The objective function 
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of Equation (4.12) is convex, and the projected iterative Gauss-Seidel is applied to solve 

this problem. After ,1 , ,[ , ..., , ..., ]= T

i i i c i Cθ θ θ θ  is recovered, ix can be assigned to the class 

that has the maximum probability: 

                                               
1,2...

,arg max .( )
c C

i i cClass
=

=x θ                                            (4.14) 

4.3 Experimental Results and Discussion 

The effectiveness of the proposed method (referred to as JSDPR) is verified with Indian 

Pines and University of Pavia data sets. JSM [22] (based on SOMP), the extended 

sparse representation model in the study of Li et al. [150] (referred to as ESRM), and a 

nonlocal weighted joint sparse representation model (NLW-JSRC) [97] are tested for 

comparison purpose in this section.  

In the experiments, the sparsity level for JSM and JSDPR is set as between 5 and 80 

empirically, and the window size is chosen from 3 3×  to 19 19× . The optimal values are 

chosen in this article. λ  is set as 0.85, and iS  is set as a neighbourhood of eight. OA, 

AA, and kappa coefficient (𝑘𝑘) are calculated to validate the quality of the results. Each 

result in this section is an average performance over 10 rounds of experiments.  

4.3.1 AVIRIS Indian Pines Data Set 

The class information and classification results are shown in Table 4.1. Classification 

maps are presented in Fig. 4.2. All the tested methods using the spatial information 

perform well on the data set. As shown in Table 4.1 that the proposed JSDPR achieves 

the best result. The result of NLW-JSRC confirms the effectiveness of the strategy that 

assigns different weights to the neighbouring pixels.  

From Fig. 4.2, one can conclude that JSDPR performs better than the other methods in 

leading to more homogeneous areas in the classification maps. In Fig. 4.2, JSDPR 

exhibits better performance in the task of preserving class boundaries (e.g., alfalfa, 

woods, and buildings-grass-trees) than the other algorithms. For classes such as alfalfa, 

grass/pasture-owed and oats which have small training data sets, the proposed method 
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(JSDPR) produces 92.60%, 100%, and 100% accuracies, respectively. Especially for 

grass/pasture-owed and oats classes, the improvements are 23.08% and 10% higher than 

JSM, respectively. This is remarkable, and the same conclusion can be made after 

comparing JSDPR with the other methods. On the other hand, it should be noted that 

ESRM preserves the class boundaries better than NLW-JSRC; however, it misclassifies 

more labels. Because of the smoothness effect by both JSM and DPR, some areas may 

be oversmoothed, which can be observed from the classification maps 

4.3.2 ROSIS Urban Data Set: University of Pavia  

Class information of the University of Pavia image and the quantitative results obtained 

by various different classifiers are described in Table 4.2. The classification maps are 

displayed in Fig. 4.3. It can be seen that the proposed JSDPR yields the best accuracy 

for most classes for the University of Pavia image. From Fig. 4.3, one can conclude that 

the proposed JSDPR obviously smooths the homogeneous areas and preserves the 

discontinuities.  

Table 4.1. Class Information and Classification Accuracies (%) for the Indian Pines Image. 

Class Class Name Train Test JSM ESRM NLW-JSRC JSDPR 
1 Alfalfa 6 40 85.19 93.48 88.89 92.60 
2 Corn-no till 129 1299 93.65 88.39 90.66 94.63 
3 Corn-min till 83 747 94.36 91.25 90.53 99.88 
4 Corn 24 213 94.44 94.35 96.15 96.15 
5 Grass/trees 48 435 93.16 95.44 96.78 93.36 
6 Grass/pasture 73 657 93.98 97.51 97.99 97.99 
7 Grass/pasture-mowed 5 23 76.92 100.00 84.62 100.00 
8 Hay-windrowed 48 430 99.80 98.34 100.00 99.80 
9 Oats 4 16 90.00 65.00 90.00 100.00 

10 Soybeans-no till 97 875 93.60 92.02 95.35 97.83 
11 Soybeans-min till 196 2259 95.87 88.83 95.71 97.41 
12 Soybeans-clean till 59 534 91.53 92.94 96.42 91.37 
13 Wheat 21 184 92.92 99.02 92.45 99.53 
14 Woods 114 1151 99.61 95.25 99.92 100.00 
15 Buildings-grass-trees 39 347 94.21 92.76 91.58 98.95 
16 Stone-steel towers 12 81 80.00 100.00 90.53 90.53 

OA 94.98 92.25 95.22 97.18 
AA 91.83 92.79 93.60 96.88 
𝑘𝑘 94.25 91.20 94.55 96.79 
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Table 4.2. Class information and Classification Accuracies (%) for the University of Pavia 
Image. 

Class Class Name Train Test JSM ESRM NLW-JSRC JSDPR 
1 Asphalt 250 6381 86.83 76.61 91.36 89.64 
2 Meadows 250 18399 96.72 96.63 97.31 99.02 
3 Gravel 250 1849 97.95 99.33 99.24 99.81 
4 Trees 250 2814 93.64 95.59 93.41 93.60 
5 Meta sheets 250 1095 97.40 99.93 99.48 99.93 
6 Bare soil 250 4779 99.86 93.22 99.52 100.00 
7 Bitumen 250 1080 99.40 100.00 97.22 100.00 
8 Bricks 250 3432 96.47 94.05 96.50 97.99 
9 Shadows 250 697 81.10 78.67 67.90 77.61 

OA 95.14 92.77 95.81 96.83 
AA 94.37 92.67 93.55 95.29 
𝑘𝑘 93.61 90.48 94.48 95.81 

 

 

Fig. 4.2. Classification maps of the Indian Pines data set: (a) JSM; (b) ESRM; (c) NLW-
JSRC; (d) JSDPR. 
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Fig. 4.3.  Classification maps of the University of Pavia data set: (a) JSM; (b) ESRM; (c) 
NLW-JSRC; (d) JSDPR. 

  

Fig. 4.4. The effect of window sizes on accuracies obtained by JSM and JSDPR for two 
different data sets: (a) Indian Pines; (b) University of Pavia. 
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4.3.3 Parameter Analysis 

We also demonstrate the effect of window sizes on the accuracies obtained by JSDPR 

and JSM. In this experiment, the training and test data sets are chosen as the same as the 

previous experiments and the window size varies from 3 3×  to 19 19× .  

It can be observed from Fig. 4.4 that both JSM and JSDPR produce the best accuracy 

when the window size is selected as 7 7× for the Indian Pines data set, and 11 11×  for 

the University of Pavia data set, respectively. Because the number of neighbours in the 

DPR procedure is fixed, the accuracies of JSM and JSDPR show similar trends to each 

other as the window size increases. As can be seen in Fig. 4.4, JSDPR performs better 

than JSM in all cases. Because of the different spatial resolution and the number of 

pixels in the homogeneous area, the optimal window size varies from image to image. 

Because the Indian Pines image has a low resolution, a smaller window size is 

appropriate for the JSM process. A larger window size is found optimal for the ROSIS 

image because of its high spatial resolution. The accuracy decreases if the window size 

increases further than the optimal size because more uncorrelated pixels can be included 

in the process. 

Finally, Table 4.3 shows the run time averaged over ten repeated experiments of the 

adopted classifiers and the proposed methods for the classification of the two data sets.  

Table 4.3. Run Time (Minutes) of All the Classifiers for the Classification of Two Data Sets. 

 JSM ESRM NLW-JSRC JSDPR 
Indian Pines 1.5 4.7 2.7 3.5 
University of  Pavia 10.8 13.6 11.2 11.8 

 

4.4 Summary  

In this chapter, we introduced a novel framework based on a JSM and a DPR method. 

Based on the assumption that the neighbouring pixels tend to have similar contextual 

properties, the main steps of the proposed framework were developed as follows: (1) 

distribute posterior probabilities to the test pixels by the JSM that considers the 

structural similarities between neighbouring pixels and the test pixels, and 2) apply the 
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DPR method that can help locally smooth the classification maps and preserve the class 

boundaries. The proposed method is proven to preserve the class boundaries while 

smoothing the homogenous areas. The experiments indicate that the proposed 

framework can produce a competitive accuracy when compared with known state-of-

the-art classification methods.  

The proposed method has some limitations. Firstly, JSM and the adopted relaxation 

method both rely on the neighbourhood system predefined, which cannot easily capture 

the distinct characterises and contexts within the window. In addition, the proposed 

framework may provide an oversmoothed classification map due to the selection of 

neighbourhood system. This analysis motivates us to investigate new directions to 

prevent the oversmoothing effect. In Chapter 5 and Chapter 6, new models will be 

presented to well exploit the spectral-spatial information as well as reduce the 

oversmoothing effect.  
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Chapter 5 A Novel Neighbour Selection Strategy for 

HSI Classification 

5.1 Introduction 

As discussed in Chapter 2 and Chapter 4, JSM is sensitive to the selected region scale 

because near-edge areas require a small region scale and homogenous areas need a large 

region scale. Some experiments have shown that, if an oversized area is selected for a 

specific test pixel, the accuracy tends to decrease [151]. If the scale is too small, then 

insufficient contextual properties are included; hence it is difficult to choose an optimal 

region scale for JSM.  

Chapter 4 proposed to integrate JSM with DPR to improve HSI classification 

performance; however, the homogeneous areas tend to be over-smoothed due to the 

large neighbourhood selected for JSM and DPR. This chapter is also an improvement of 

JSM, and aims to exploit sufficient spatial information in a given neighbourhood 

without causing oversmoothing effect. 

For a given specific area, distinct structures and characteristics as well as some 

irrelevant information will exhibit, however, some pixels with different spectral 

structures of the test pixel also exist in this region. If a strategy aims to find the most 

similar pixels to the test pixel and reject the dissimilar neighbouring pixels, information 

of correlated spatial context should be more representative for classification. Hence, we 

propose an adaptive neighbour selection strategy which computes the weights based on 

distances between pixels, with the labels of training data as a priori information. The 

structural similarity between the central pixel and its neighbours can be exploited in a 

more sensible way by considering the different contribution of each spectral band. 

Based on this, a novel joint sparse model-based classification approach, namely 

‘adaptive weighted joint sparse model’ (AJSM) is proposed in this chapter. Moreover, 

we propose a novel classification method namely ‘multi-level joint sparse 

representation model’ (MLSR), in order to take advantage of the correlations among 

neighbouring pixels in a region. The procedures of MLSR are summarized as: 1) Local 
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matrices are obtained by the proposed adaptive neighbour selection strategy. Different 

thresholds distances can result in different local matrices corresponding to different 

levels; therefore 2) Different joint sparse representations of the test pixel from different 

levels can be constructed. Since the pixels with similar distances can be simultaneously 

sparsely represented by the features in the same subspace, MLSR is designed to learn 

the dictionary for each joint sparse model separately; 3) A simultaneous orthogonal 

matching pursuit (SOMP) algorithm is employed to learn the multi-level classification 

task.  

The weight matrix for AJSM and MLSR is constructed by the ratio of the between-class 

and within-class distances with the consideration of a priori label information. This 

alleviates the negative impact when we classify the mixed pixels and similar pixels. In 

addition, the proposed MLSR performs on one region scale with different levels, and 

the sparse coding procedures at different levels are independent with each other. To sum 

up the main advantage of the proposed multi-level method, various parameter values 

can generate multiple sparse models to represent the different inner contextual 

structures among pixels, thereby improve the HSI classification accuracy.  

The remainder of this chapter is organized as follows. Section 5.2 describes the 

proposed methods in detail for HSI classification. Experimental results on three 

benchmark data sets are presented in Section 5.3. Finally, a conclusion is provided in 

Section 5.4. The work of this chapter has been published in Remote Sensing [18]. 

5.2 Proposed Methods 

We introduce an adaptive weight joint sparse model (AJSM) and a multi-level joint 

sparse representation model (MLSR) for HSI classification in this section. Multiple 

local signal matrices are constructed using different parameters to realize the similarity 

learning in MLSR. In fact, AJSM is a simple form of MLSR. The proposed AJSM is 

expected to improve the classification accuracy in these areas by not taking all the 

neighbouring pixels to construct the joint sparse matrix. And MLSR improves the 

classification results by selecting the neighbour pixels from various levels using the 

proposed adaptive neighbour selection strategy. 
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To better understand the procedure of the proposed method, a flowchart is shown in Fig. 

5.1 where each component of the method is explained in detail in the following sections. 

 

Fig. 5.1. Flowchart of the proposed AJSM and MLSR methods. 

5.2.1 Adaptive Local Signal Matrix 

In order to select reasonable neighbours to construct the joint matrix, the weighted 

Euclidean distances between the test pixel and its neighbours are used. We first select a 

region with a window size ×W W , which is centered at the test pixel ix . Different 

weights are given to each spectral band according to their contribution to the whole 

spectral characteristics. The weighting strategy is described as follows: 
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where ,< >i jA x x is the weight distance between pixels ix and jx , lw  is the weight for 

the l-th feature, and lw  is determined by training samples from different classes. α is a 

positive parameter that controls the influence of a class-specific distance lI . If 0α = , 

the distance between two pixels decreases to the equal weight Euclidean distance. If α  
is large enough, the change will be reflected on I . ( )⋅In denotes an indicator function 

which takes between-class and within-class distances into account. clx  is the average of 

the c-th class of the l-th feature, and lx  represents the average of all training samples of 

the l-th feature; iy  represents the label of pixel ix . 

The pixels with a predefined distance can be selected as similar neighbours according to 

this method. In other words, this adaptive neighbour selection strategy can identify the 

samples with similar characteristics to form a group. The superiority of this weight 

strategy over other weighting schemes is that it considers the spectral similarities at a 

pixel level, and the discriminative information among different groups can be obtained 

from training samples. 

5.2.2 Adaptive Weight Joint Sparse Model 

The goal of Equation (5.1) is to find the optimal samples to reconstruct the central pixel. 

Once the appropriate weights are assigned to each spectral band, the weight distances 

between the test pixel and its neighbouring pixels can be evaluated. Based on the top N-

nearest strategy, N nearest neighbouring pixels can be chosen as the adaptive weight 

joint sparse matrix to relax the joint sparse model as described in Chapter 4. Here we 

define NS as the weight matrix chosen from the original joint sparse matrix

1 2[ , ... ]= WX x x x . In other words, N nearest pixels are selected from the W pixels based on 

the previous adaptive weight scheme.  The adaptive weight joint sparse model can be 

expressed as: 

,0

arg min

subject to .
F

row
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R S DR
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                                                 (5.2) 
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The label of central pixel can be identified by minimizing the class residual: 

1,2...
( ) arg min .

F
c C

c cNClass
=

= −x S D R                                             (5.3) 

The procedure of AJSM is summarized below in Algorithm 5.1. 

Algorithm 5.1. The implementation of AJSM. 
Input: training data sets belonging to the c-th class: cX , region scale: W , top number of nearest 

neighbours: N , test data sets TX . 

Initialization: initialize dictionary D with training samples, and normalize the columns of D to 
have unit 2 norm. 

1. Compute the lw for each spectral band according to Equation (5.1); 

2. For each test pixel in ∈i Tx X : 

    Construct the weight matrix NS according to Equation (5.1);and normalize the columns of NS  

to have a unit 2 norm; 

    Calculate the sparse coefficient matrix R and dictionary D from Equation (5.2) using SOMP; 

    Determine the class label ty for each test pixel ∈i Tx X  by Equation (5.3). 

Output: 2- dimensional classification map. 
 

It has been identified that neighbouring pixels consist of different types of materials in 

the heterogeneous areas in HSI. JSM cannot perform well on such areas due to its 

definition of neighbouring pixels which tend to have similar labels. The proposed AJSM 

is expected to improve the classification accuracy in these areas by not taking all the 

neighbouring pixels to construct the joint sparse matrix. 

5.2.3 Multi-level Weighted Joint Sparse Model 

The neighbour pixels selected from a fixed scale using single level criteria as seen in 

JSM and AJSM may not contain the complementary and accurate information, and the 

neighbouring pixels selected from different levels of criteria can help represent the data 
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wholly. Herewith we propose a multi-level weighted joint sparse model to fully 

integrate the neighbour information as well as to avoid the outliers dominating in sparse 

coding. For a test pixel, its neighbour pixels are selected by the proposed adaptive 

neighbour selection strategy with different levels of distance thresholds . Then the 

multiple joint sparse matrices are constructed by the corresponding neighbour pixels 

with different distance threshold level values. The details of this method are described 

as follows. 

Assume that ,i kS  is the k-th joint sparse matrix constructed for pixel ix . Here we define 

, ,1 ,1 , , , ,[ , , ..., , , ..., , ]ϖ ϖ ϖ= < > < > < >i k i i i i i j i j i i W i WS x x x x x x x x x  , where ,,ϖ < >i i jx x  is a 

function that determines if pixel ,i jx  can be preserved to reconstruct ix , ,i jx  is the j-th 

sample in the given region which is restricted by the scale ×W W . In Equation (5.1), 

,,< >i i jA x x  is a monotonously increasing function of the weighted distances. Although 

there are many ways to define ,,ϖ < >i i jx x , we define it as a piecewise constant to 

simplify the selection of different joint sparse matrices as follows: 
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x x                                            (5.4) 

where ε  is a threshold controlling the value of the corresponding element in ,i kS . 

According to Equation (5.4), when a pixel in ,i kS  has the corresponding weighted 

distance with the test pixel ix : ,, ε< >>i i jA x x , it will not be selected in the joint sparse 

model. Otherwise, if ,, ε< >≤i i jA x x , the corresponding term will be selected to 

reconstruct the test pixel. In other words, ,i kS is constructed by the terms that have the 

weighted distances less than ε  between itself and the test pixel ix . 

By using the proposed scheme, we can generate different patches with various values of 

ε : 
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• 0ε = : This is an independent set. In this situation, only the central pixel itself is 
selected. This means that the joint sparse model becomes a pixel-wise sparse 
representation model. 

• 1ε ≥ : Because ,, 1< >≤i i jA x x  in this situation, all the neighbours of the test 

pixel in the given area are selected. 
• 0 1ε< < : The sparsity representation of ,i jx  is satisfied. A smaller number of 

pixels are selected for the reconstruction of ix . 

As described above, for each test pixel ix , when different parameters of { }1, ..., , ...,ε ε εk K  
are applied, 𝐾𝐾 different patches can be generated to represent this pixel with the inner 

contextual information involved. Our next task is to construct the multi-level joint 

sparse representation model for the test pixel. 

5.2.4 Multi-level Joint Sparse Representation 

Herein we extend JSM to a multi-level version for the classification task. After 𝐾𝐾 

different patches are constructed for each pixel, the patches for the test pixel can be 

arranged as a feature matrix: ,1 , ,[ ,..., ,..., ]=i i i k i KS S S S ( 1, 2,...,=k K ), where ,i kS be the 

k-th joint sparsity matrix constructed for the test pixel ix . 

In this chapter, let 1{ ,..., , ... }= k KD D D D  be a set of dictionary which can be learnt from 

all the training data for 𝐾𝐾 patches, and kD  is the dictionary learnt for the k-th level. Each 

dictionary kD  is composed of all the sub-dictionaries for each labelled class as

1[ ,..., , ..., ]=k k k k
c CD D D D , where k

cD  denotes the sub-dictionary of the c-th labelled class.  

The sparse representation of the test pixel ix  with its k-th patch can be described as: 

,min .
k

k k
i k F
−

Q
S D Q                                                      (5.5) 

where kQ  is the sparse representation coefficients for the specific patch ,i kS . Equation 

(5.5) expresses how to sparsely represent each of the 𝐾𝐾  patches when the sparse 

coefficient vector is given.  Considering all the 𝐾𝐾  patches, Equation (5.5) can be 

rewritten as: 
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( ),
1

min .
K

k k
i k

k
F

=

−∑
Q

S D Q                                                  (5.6) 

where 1[ ,..., , ... ]= k KQ Q Q Q  is composed of 𝐾𝐾 columns of the coefficient vectors. Each 

column of the matrix is the sparse representation coefficients corresponding to a 

dictionary over a specific patch.  

Since the pixels belonging to the same class should have the dictionary in the same 

subspace spanned by the training samples, the class-specific level joint representation 

optimization problem can be written as: 

( )
, 1

,, arg minˆˆ .
K

k

k k
i k F

=

= −∑
D Q

D Q S D Q                                        (5.7) 

This problem can be decomposed into 𝐾𝐾 sub-problems. In this chapter, the SOMP is 

used to solve the optimization function (5.7) and it can efficiently solve this problem in 

several iterations. Algorithm 5.2 introduces the implementation of the proposed 

framework.  

After the sparsity coefficients are obtained, for a given test pixel ix , it would be 

assigned to the class which gives the smallest reconstruction residual: 
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where ( )c iE x is the reconstruction residual of ix , k
cD  is the dictionary for the c-th class 

over the k-th patch , and k
cQ  denotes the sparse coefficient matrix corresponding to k

cD . 

where 
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Algorithm 5.2. The implementation of the proposed algorithm. 
Input: training data sets belonging to the c-th class: cX , region scale: W , number of levels: 𝐾𝐾, 

distance threshold controlling parameter: ε , test data sets TX  

Initialization: initialize dictionary =c cD X , and normalize the columns of dictionary to have 

unit 2  

1. Compute ( 1, 2,..., )=l Llw according to Equation (5.1) using the training data sets cX and the 
corresponding labels 

2. For each test pixel ∈i Tx X  

  Compute adaptive weight distances between the test pixel and all the pixels in the selected 
neighbour region to construct ,< >i jA x x  based on Equation  (5.1) 

3. Compute ,i kS  based on Equation (5.2). 

4. For 𝑘𝑘 = 1:𝐾𝐾 

    Compute kQ for each level for each class using SOMP. 

5. Compute the class label iy  for test pixel based on Equations (5.8). 

Output: 2- dimensional classification map. 
 

5.3 Experimental Results and Discussion 

To validate the proposed methods, three benchmark data sets are used in the 

experiments. They are AVIRIS Indian Pines, ROSIS University of Pavia and AVIRIS 

Salinas data sets. 

5.3.1 Experimental Settings 

In this chapter, the proposed AJSM and MLSR are compared with several benchmark 

classifiers: pixel-wise SVM (referred to as SVM), EMP with SVM (referred to as EMP), 

pixel-wise SRC (referred to as SRC), JSM with a greedy pursuit algorithm [22]. Pixel-

wise SVM and pixel-wise SRC classify the images with only spectral information, 
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while JSM, AJSM and MLSR are sparse representation based classifiers with spatial 

information utilized.  

During the experiments, the range of parameters is empirically determined and the 

optimal values are determined by cross-validation. The parameters for pixel-wise SVM 

are set as the default ones in [152] and implemented using the SVM library with 

Gaussian kernels [153]. Parameters for EMP and pixel-wise SRC are set up by 

following the instructions in [24] and [22], respectively. The selected regions for JSM, 

AJSM and MLSR are set as 3×3, 5×5, 7×7, 9×9, 11×11, 13×13 and 15×15, and the 

best result is described in this chapter. For AJSM, the number of pixels selected in the 

given region is set as: 7, 20, 40, 50, 50, 50, and 50 for the abovementioned scales, 

respectively. For the proposed MLSR, the number of threshold parameter ε is set as 

seven, and threshold values are:  {0.1,0.2,0.3,0.4,0.5,0.7,1} . The predefined sparsity 

level is set as 3 for each data set. 

Quantitative analysis metrics, OA, AA and kappa coefficient (𝑘𝑘) are adopted to validate 

the proposed method. All the experiments in this chapter are repeatedly implemented 

ten times and the mean accuracy is presented. 

5.3.2 Experimental Results 

The first experiment was performed on the Indian Pines image. We randomly selected 

10% samples from each class as training data and the remaining as a test data set. The 

optimal parameters in this experiment are set as: α =0.2, 13 13= ×W . The numbers of 

training and test data for each class are described in Table 5.1. Classification results are 

listed in Table 5.2, and the classification maps are shown in Fig. 5.2. One can observe 

that the classification maps obtained by pixel-wise SVM and pixel-wise SRC have a 

more noisy appearance than other classifiers, which confirms that the contextual 

information is important for hyperspectral image classification. Considering the spatial 

information, JSM gives a smoother result; however, it still fails to classify some near-

edge areas. EMP, AJSM, and the proposed MLSR deliver better results, and MLSR 

shows the highest classification accuracy. From Fig. 5.2, one can see that MLSR further 

provides a smoother classification result and preserves more useful information for HSI.  
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Table 5.1. Class Information for Indian Pines Data Set  

Class  Class Name Training  Test 

1 Alfalfa 5 41 
2 Corn-no till 143 1285 
3 Corn-min till 83 747 
4 Corn 24 213 
5 Grass/trees 49 434 
6 Grass/pasture 73 657 
7 Grass/pasture-mowed 3 25 
8 Hay-windrowed 48 430 
9 Oats 2 18 
10 Soybeans-no till 97 875 
11 Soybeans-min till 246 2209 
12 Soybeans-clean till 60 533 
13 Wheat 21 184 
14 Woods 127 1138 
15 Buildings-grass-trees 39 347 
16 Stone-steel towers 9 84 

Total 1029 9220 
 

Table 5.2. Classification Accuracies (%) for Indian Pines Image.  

Class SVM EMP SRC JSM AJSM MLSR 
1 42.40 70.49 32.48 74.07 84.09 92.60 
2 75.06 91.55 73.31 94.97 92.16 94.63 
3 59.91 85.63 58.12 91.82 95.16 99.88 
4 50.98 79.49 47.53 87.15 93.67 96.15 
5 86.97 95.83 82.04 96.63 96.67 93.36 
6 93.84 98.19 89.33 98.88 98.63 97.99 
7 89.66 96.30 39.68 94.15 99.98 100.00 
8 99.57 100.00 93.22 99.79 99.16 99.80 
9 66.67 92.86 32.73 78.57 50.00 82.00 
10 62.49 85.96 60.96 91.16 93.30 97.83 
11 83.31 94.39 82.61 95.61 92.71 97.41 
12 72.17 88.96 70.00 92.05 95.43 91.37 
13 90.04 98.07 78.74 99.50 96.10 99.53 
14 96.93 98.77 94.83 99.03 97.78 100.00 
15 52.82 83.57 49.90 89.88 95.84 98.95 
16 82.61 90.82 60.40 94.57 98.91 90.53 
OA 75.41 90.77 65.82 92.52 94.74 97.08 
AA 75.34 90.68 65.37 92.73 92.48 95.75 
𝑘𝑘 73.71 91.20 69.90 94.25 94.02 96.79 
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Fig. 5.2. Classification maps of Indian Pines: (a) SVM; (b) EMP; (c) SRC; (d) JSM; (e) 
AJSM; (f) MLSR. 

The proposed AJSM improves the classification capability of JSM by exploring the 

different contributions of the neighbouring pixels in the selected region. This confirms 

the effectiveness of the adaptive weight matrix scheme. However, one can see that 

AJSM produces a relatively lower accuracy for Oats, which has limited training samples. 

The improvement of MLSR-based classification of Alfalfa and Oats which have been 

considered as small classes indicates that the proposed method can perform well on 

classes with less training samples. In addition, the adaptive local matrix imposes the 

local constraint on the sparsity which would improve the performance. As can be 

observed from the classification maps, our proposed method has a better capability to 

identify the near-edge areas and it benefits from the selection of most similar pixels to 

reconstruct the test pixel. The accuracies for MLSR are very high, which indicates that 

JSM can be significantly improved by multiple feature extraction approaches.   
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The second experiment is conducted on the Pavia University image, and Table 5.3 

shows the class information. We randomly selected 250 samples as the training data, 

and the rest as test data. The optimal parameters in this experiment are set as: α =0.2, 

15 15= ×W . Classification results and maps are illustrated in Table 5.4 and Fig. 5.3, 

respectively. It is obvious that the multi-level information can indeed improve the 

results of classification of the Pavia University image compared to other SRC based 

methods and the popular SVMs. The improvement of MLSR compared to JSM suggests 

that the local adaptive matrix can preserve the most useful information and reduce the 

redundant information. The result is consistent with the previous experiment on the 

Indian Pines image where the edge pixels are predicted more precisely.  

Table 5.3.  Class Information for University of Pavia Image 

Class 
No. 

Class 
Name 

Training  Test 

1 Asphalt 250 6381 
2 Meadows 250 18399 
3 Gravel 250 1849 
4 Trees 250 2814 
5 Meta sheets 250 1095 
6 Bare soil 250 4779 
7 Bitumen 250 1080 
8 Bricks 250 3432 
9 Shadows 250 697 

Total 2250 40526 
 

Table 5.4. Classification Accuracies (%) for University of Pavia Image. 

Class SVM EMP SRC JSM AJSM MLSR 
1 77.42 84.38 73.46 86.84 99.41 96.32 
2 96.34 97.81 95.35 98.07 92.59 99.38 
3 84.03 91.44 79.53 91.47 87.09 99.90 
4 72.41 81.58 68.07 83.23 98.50 97.68 
5 99.92 99.93 99.92 99.11 99.11 100.00 
6 82.67 88.81 78.52 90.19 90.16 100.00 
7 95.07 96.65 93.64 97.27 95.19 99.92 
8 92.39 95.97 89.74 96.46 84.87 99.65 
9 99.89 99.54 97.65 86.54 100.00 95.04 

OA 88.90 92.90 86.21 92.13 93.30 98.85 
AA 88.92 92.95 86.47 93.73 94.10 98.65 
𝑘𝑘 84.38 90.22 80.76 91.51 91.21 98.47 
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Fig. 5.3. Classification maps of University of Pavia: (a) SVM; (b) EMP; (c) SRC; (d) JSM; 
(e) AJSM; (f) MLSR. 

The third experiment is conducted on the Salinas imagery. For each class, 1.5% samples 

are selected as the training data, and remaining as the test data set. The optimal 

parameters in this experiment are set as: α =0.2, 15 15= ×W . The class information and 

classification results are given in Tables 5.5 and 5.6, respectively. The results are also 

visualized in classification maps as shown in Fig. 5.4. One can observe that the 

proposed MLSR yields the best accuracy for most of the classes, especially for Classes 

13 and 14. Furthermore, the proposed MLSR identified the edge areas best. 

 

 

 



Spectral-Spatial Classification Techniques for Hyperspectral Imagery 
 

65 

 

Table 5.5. Class Information for Salinas Image 

Class No. Class Name Training  Test 

1 Weeds_1 30 1979 
2 Weeds_2 56 3670 
3 Fallow 30 1946 
4 Fallow plow 21 1373 
5 Fallow smooth 40 2638 
6 Stubble 60 3899 
7 Celery 54 3525 
8 Grapes 169 11102 
9 Soil 93 6110 
10 Corn 49 3229 
11 Lettuce 4 week 16 1052 
12 Lettuce 5 week 29 1898 
13 Lettuce 6 week 14 902 
14 Lettuce 7 week 16 1054 
15 Vineyard untrained 110 7158 
16 Vineyard trellis 27 1780 

Total 814 53315 

 

Table 5. 6. Classification Accuracies (%) for Salinas Image. 

Class SVM EMP SRC JSM AJSM MLSR 
1 98.62 99.50 98.67 99.31 99.75 97.83 
2 99.65 99.76 99.65 99.70 99.58 97.97 
3 95.44 97.95 95.63 97.02 98.73 100.00 
4 97.25 98.43 97.39 97.94 98.92 98.85 
5 97.73 98.30 97.76 98.18 98.62 99.51 
6 100.00 99.90 100.00 99.92 99.77 99.92 
7 98.11 99.42 98.16 99.11 99.86 99.72 
8 78.87 90.74 79.91 86.79 80.18 89.77 
9 99.56 99.77 99.61 99.76 98.90 99.48 

10 90.60 96.03 91.13 94.12 93.72 98.96 
11 89.01 95.75 89.79 93.07 99.44 100.00 
12 96.05 98.45 96.40 97.55 99.07 100.00 
13 94.77 96.67 94.87 95.62 97.60 99.13 
14 87.11 94.25 87.56 91.44 96.17 98.13 
15 59.09 79.50 60.62 71.87 82.44 97.41 
16 98.28 99.17 98.39 99.16 98.78 98.56 
OA 87.64 94.31 88.20 91.98 92.58 97.25 
AA 92.51 96.47 92.85 95.04 96.33 98.77 
𝑘𝑘 86.29 93.68 86.91 91.09 92.00 96.94 
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Fig. 5.4. Classification maps of Salinas Scene: (a) SVM; (b) EMP; (c) SRC; (d) JSM; (e) 
AJSM; (f) MLSR. 

5.3.3 Parameter Analysis 

This section focuses on the effects of the parameters settings on the classification 

performance. We first varied the value of positive parameter α that controls the 

influence of the ratio of the between-class and within-class distances, and the value was 

varied from 0 to 1 at an interval of 0.2. The experiments were conducted with AJSM on 

three data sets and the window sizes were fixed as the corresponding optimal values. In 

Fig. 5.5, the overall accuracies for three data sets fluctuate in a small range, and the best 

performances were obtained when α was set as 0.2 for all three data sets though the 
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trends for them were different. As α only controls the influence of each feature band, it 

is reasonable to apply the same value for MLSR in the experiments. 

 

Fig. 5.5. The effect of controlling parameterα on classification resutls for three data sets. 

The effect of region scales for JSM, AJSM, and MLSR has also been analyzed in the 

experiments. In order to simply show the trends, the numbers of training and test data 

sets are selected to be the same as in the previous experiments. OA is shown in Fig. 5.6. 

For JSM, AJSM and MLSR, the region scales ranging from 3×3 to 29×29 at 2×2 

intervals. As shown in Fig. 5.6, the best OA is achieved for JSM when the scale is set as 

7×7, 11×11, and 15×15 for Indian Pines, Pavia University and Salinas, respectively. If 

the scale increases, the accuracy decreases dramatically. In most situations, AJSM 

performs better than JSM because the most useful information is preserved and the 

redundant information is rejected by the selection strategy. The accuracy for MLSR 

becomes stable when a larger region is selected. More specifically, the proposed MLSR 

performs better than other joint sparsity based models in most of regions. This result 

actually benefits from its mechanism of discarding outliers in the specific area, which 

provides a more reliable dictionary. 
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                (a)                                                   

 

           (b) 

 

        (c) 

Fig. 5.6. The effects of region scales on JSM, AJSM and MLSR: (a) Indian Pines (b) Pavia 
University (c) Salinas Scene. 
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Another consideration is that the number of patches should be tested i.e. is having more 

patches better? To evaluate this, the adaptive framework is used to generate more 

patches. Specially, with ε  set to {0.1,0.2,0.3, 0.4,0.5,0.6,0.7,0.8,0.9,1}, we can define 

11 patches. In each experiment, we randomly selected a patch subset with the number of 

{ }1, 2,3, 4,5,6,7,8,9,10,11∈K  from these 11 patches and evaluated the performance of 

the method on three data sets. For each value of K , the experiment procedure is 

repeated 10 times with different subset selection. Fig. 5.7 shows the average OA result 

of the 10 iterations. As K  increases, the performance of the framework also increases 

when 7≤K ; however, it slightly decreases when 8≥K . This trend shows that a certain 

number of patches are necessary for the improvement of the performance of the 

proposed method. However, too many patches can also result in a slight decrease in 

performance. In the experiment, we fixed five values {0.1,0.2,0.3,0.4,0.5}and the last 

two values is determined from the remaining five values{0.6,0.7,0.8,0.9,1.0} by cross-

validation. 

 

Fig. 5.7. The effect of number of patches of MLSR on three data sets. 

We also conducted the experiments to evaluate the impact of the number of training 

samples per class for pixel-wise SVM, pixel-wise SRC, EMP with SVM, single scale 

JSM and the proposed MLSR. AJSM is not considered in this experiment as they 

exhibit a similar trend with JSM. Training samples are randomly chosen, and the rest as 

test samples. For the Indian Pines data sets, the number of training data ranges from 5% 

to 40% of the whole pixel counts at 5% intervals; For the Pavia University dataset, the 
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number of training samples per class ranges from 150 to 500 at 50 intervals; For the 

Salinas data sets, the number of training samples per class ranges from 50 to 400 at 50 

intervals. Fig. 5.8 illustrates the classification results (OA) for these three data sets. As 

can be observed, less than 5% samples are needed for each class to obtain an OA over 

90% for the Indian Pines data sets using the proposed MLSR. This is very promising 

because it is often difficult to collect a large training data sets in practice. For the Pavia 

University data sets, only 150 training samples are needed to obtain an OA of 95%. In 

fact, this accuracy is 3% higher than that by JSM and 4.5% higher than that by EMP 

with SVM. This is due to the fact that the local information included by the proposed 

MLSR outperforms others. The same trend can be concluded for the Salinas data set. In 

addition, the proposed MLSR produces very high accuracy and show the robustness 

with an increase of the number of training samples, and it can be observed that MLSR 

performs very well when training samples are limited. 
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(c) 

Fig. 5.8. The effect of numbers of training data on five different methods: (a) Indian Pines; 
(b) University of Pavia; (c) Salinas Scene. 

Finally, Table 5.7 shows the run time averaged over ten repeated experiments of the 

adopted classifiers and the proposed methods for the classification of the three data sets. 

As can be observed, the proposed MLSR takes more time, but its speed can be 

significantly accelerated by optimizing the codes with other programming languages 

and GPU.  

Table 5.7. Run Time (Minutes) of All the Classifiers for the Classification of Three Data 
Sets. 

 SVM EMP SRC JSM AJSM MLSR 
Indian Pines 3.3 3.7 0.7 1.5 1.8 2.5 
University of  Pavia 4.5 4.6 1.2 10.8 11.3 13.7 
Salinas 3.4 4.2 0.8 5.6 5.7 8.9 

 

5.4 Summary 

In this chapter, we have introduced two novel sparse representation based hyperspectral 

classification methods. These proposed methods employ an adaptive weight matrix 

scheme as the neighbour selection strategy for the joint sparse matrix construction. The 

adaptive weight joint sparse model outperforms the traditional joint sparse models, 

however, it is designed for simple cases rather than complicated situations where the 

number of labeled training samples is not sufficient. This was overcome by introducing 

the second model i.e. the multi-level joint sparse model that can solve the complex 
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classification problem in a more effective way. The multi-level joint sparse model 

consists of two main parts: adaptive locality patches and a multi-level joint sparse 

representation model. This model is introduced to fully explore the spatial context 

within a given region for the test pixel. The proposed methods locally smooth the 

classification maps and preserve the relevant information for most labelled classes. 

Compared with other spatial-spectral methods and sparse representation based 

approaches, the proposed methods can provide a better performance on real 

hyperspectral scenes. This is consistent with the observation from the classification 

maps. Moreover, the experiments on the impact of the number of training samples also 

indicate that the proposed multi-level sparse approach leads to a more reliable result 

when only a limited number of training samples are available.  



Spectral-Spatial Classification Techniques for Hyperspectral Imagery 
 

73 

 

Chapter 6 A Multi-scale Conservative Smoothing 

Scheme and Adaptive Sparse Representation 

6.1 Introduction 

Chapter 5 presented a multi-level algorithm MLSR to exploit spatial information in a 

large neighbourhood of the pixel to be test. It preserves the most useful information and 

reduces redundant information based on an adaptive neighbour selection strategy; 

however, it may also discard some useful spatial information. In addition, MLSR does 

not exploit correlations among joint matrices from different levels. This chapter is an 

extension of Chapter 5, and this study aims to address the following questions: (1) How 

to exploit spatial and contextual information from multiple perspectives without 

discarding relevant information? (2) How to exploit the correlations among different 

perspectives?  

In order to exploit the local relationship among the neighbouring pixels from the data 

with random noise, spatial smoothing has been applied to the preprocessing or 

postprocessing stage in HSI classification. In [154], a morphology-based filter was used 

for the noise reduction in the preprocessing stage prior to the classification. In [141], the 

authors adopted an anisotropic diffusion and a morphology algorithm to reduce the 

variability of the original image in both spatial and spectral dimensions. Most spatial 

smoothing techniques were used during the course of classification, and were applied to 

the probabilistic results obtained by other probabilistic classifiers. Li et al. [146] 

adopted a discontinuity preserving relaxation algorithm to process the probabilistic 

results obtained from MLR. MRFs exploit the continuity of the classification maps in a 

probabilistic sense [57, 66]. In [155], the authors applied a hierarchical guidance 

filtering which is an extension of rolling guidance filter (RGF) to generate the spectral-

spatial features for HSI classification. A discriminative low-rank Gabor filtering method 

was used in [156] to extract suitable features based on the properties of HSIs, and 

spatial smoothness is achieved and class separability is enhanced. Spatial smoothing is 

also a technique to emphasize the main features after suppressing the undesired 

variation within a homogenous region. In this context, spatial structures and geometrical 
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features of HSIs can be enhanced and revealed after filtering, especially for the edges. 

However, the spatial properties can be present at various spatial scales instead of a 

single fixed scale, hence it is difficult to identify a single filter parameter (e.g. the region 

scale in spatial smoothing) suitable for capturing all of them simultaneously. Multilevel 

analysis can be applied to address this issue. Based on the aforementioned spatial 

smoothing theory, we propose a multiscale conservative smoothing algorithm to reveal 

the spatial characteristics at several levels.  

Furthermore, inspired by the trend of multiple feature learning in the remote sensing 

image processing field [157, 158], various multiple feature learning-based SRC models 

have been proposed for the HSI classification. Zhang et al. [102] proposed a multi-

feature joint sparse representation classification (MF-JSRC) for the fast classification of 

HSIs, and a row,0 -norm penalty was applied across various features. In [103], the 

authors improved the HSI classification performance by constructing a multi-task JSM 

at a super-pixel level. A shape adaptive window [98, 159] was selected for each pixel in 

a JSM and multi-feature SRC respectively so that the similarities and diversities of 

multiple features can be exploited more effectively. In this study, we propose a 

multiscale conservative smoothing algorithm and an adaptive sparse representation to 

integrate the characteristics of the series of filtered HSIs. Once different representations 

for a given unknown pixel are constructed by the proposed adaptive sparse 

representation method, the sparse coefficients of the pixel will be obtained and then be 

used for classification.  

The proposed conservative smoothing algorithm considers adaptive weights for 

different neighbouring pixels around the central pixel, and the weight is measured by 

the spectral similarity between the neighbouring pixel and the central pixel.  Therefore, 

it can reveal the spatial textural information and avoid oversmoothing. The multiscale-

based strategy can handle complementary information carried by different HSIs from 

various scales used in the conservative smoothing algorithm. It should be noted that the 

proposed classification algorithm is also a kind of multiple feature learning-based 

classifiers, and the proposed conservative smoothing algorithm generates the features 

from different perspectives with different scales. For this proposed method, there is no 
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need to predefine the specific categories of features. In this chapter, the proposed HSI 

classification framework is named as multi-scale conservative smoothing scheme and 

adaptive sparse representation (MCSSR). 

The rest of this chapter is organized as follows: Section 6.2 introduces the proposed 

conservative smoothing algorithm and the adaptive sparse representation in detail. 

Experimental results are presented in Section 6.3. Finally, conclusions and future works 

are provided in Section 6.4.  

6.2 Proposed Framework 

6.2.1 Conservative Smoothing 

It has been acknowledged that an effective exploitation of the spectral-spatial 

information can improve the performance of the HSI classification [7]. In this chapter, a 

conservative smoothing algorithm is proposed to enforce the spatial consistency for the 

neighbouring pixels in the original HSI cube for noise removal and spatial structure 

enhancement.  

Inspired by the edge preserving problem in [141, 146], for a test pixel ix , we propose 

conservative smoothing of the original image cube by solving the following 

optimization problem: 

2

1
min ,

subject to 0, 1.

i
i

L

ij jl il
l j S

T
il i

w
= ∈

−

> =

∑∑x
x x

x 1 x
                                      (6.1) 

where the pixel vector ix  should be normalized before the optimization. 1, 2,...,=l L

denotes the spectral dimensionality of the pixel vectors, 1  denotes a vector column of L  

1s. iS denotes a local region of the neighbourhood of ix , and ijw represents the  weight 

controlling the influence of the neighbouring pixel jx  to ix . It should be noted that the 

spatial consistency is implemented within each spectral dimension in Equation (6.1). In 
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this chapter, the Euclidean distance is considered to evaluate the spectral similarity 

between jx  and ix , and the weight is computed as:  

   2

1

1 / ( ) .
L

il jl
l

ijw
=

= −∑ x x                                               (6.2)         

The weight is the inverse distance between two spectral vectors in the spectral domain, 

and this is consistent with the principle that a bigger weight should be assigned to the 

neighbouring pixel which has higher similarity with the test pixel i.e. a smaller distance 

in the spectral domain. Equation (6.2) is strictly convex, and the unique solution can be 

obtained by minimizing the objective function with respect to the variable ilx  at each 

iteration. The implementation of the algorithm can be found in Algorithm 6.1.  

Algorithm 6.1. The pseudocode of the proposed conservative smoothing algorithm. 

Input: Original image cube I , maximum iteration number t , error parameter err , convergence 

controlling parameterτ . 

Initialization: initialize the error parameter 1 =err I , and normalize each pixel vector to have 

unit 2 norm. 

For each pixel ix  in the image cube I  

       For 1:=l L  

              iter=1 

             1 1=lerr err  

             While 1 τ+ − ≤iter iter
l lerr err , or ≤iter t  

                      
1 1

/

/
∈ ∈

=
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              End while 

         End for 

End for 

Output: The processed image cube I  

 

From the smoothing filter’s perspective, the proposed algorithm is more reliable than 

the commonly used low pass (LP) filter and the medium filter for the HSI image 

classification in terms of reducing the undesirable intensity variability and enhancing 

the contrast of the edges. The LP filter replaces the value of the central pixel with the 

average of the values within the window, and the medium filter replaces the central 

pixel value with the medium value within the window. Both filters can be sensitive to 

the dissimilar values within the window, especially the LP filter is more sensitive. The 

proposed method can overcome this problem.  

The proposed smoothing algorithm can be applied to correct the spatial distortions by 

considering the local relationship among neighbouring pixels. It can help reduce noise 

and enhance spatial textural information, however, the smoothing over a single local 

region may provide limited structures and contextual information. Therefore we apply 

this smoothing algorithm at several scales.  With M window sizes, i.e., local regions iS , 

i=1, …M, it will result in M HSIs. In other words, the proposed algorithm can be used 

to generate multiscale spatial features. Figure 6.1 shows an example of the results 

obtained by the proposed conservative smoothing algorithm with different scales 

applied, and it can be observed that different characterizes are displayed. 
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(a) (c)(b) (d)
 

Fig. 6.1. The false colour images of proposed conservative smoothing scheme on Indian 
Pines data set (band: 50, 27, 17): (a) original image; (b) Scale = 3×3; (c) Scale = 15×5; (d) 
Scale = 7×7. 

6.2.2 Adaptive Sparse Representation 

In this chapter, an adaptive sparse representation method is introduced to deal with the 

different properties from the series of previously obtained HSIs. Let mI ( 1,...,=m M ) 

denote the m - th HSI, where M  is the number of window sizes applied in Section 6.2.1. 

With M different window sizes applied, there will geneate M filtered HSIs. According 

to the JSRC theory, a joint matrix can be constructed for the test pixel ix within a 

defined window, and in this chapter, a shape adaptive [98, 159] window is used instead 

of a fixed-size window. Let m
iX denote the constructed matrix associated with mI for the 

given test pixel ix , where 1 2[ , ,..., ]=m m m m
i i i iΓX x x x . The optimization function of the sparse 

representation model for the m - th  image can be expressed as follows: 

,0

arg min ,

subject to

m

m m m m
i F

m

row
K.

= −

≤
R

R X D R

R



                                         (6.3) 

where mR is the coefficient matrix corresponding to a dictionary over m
iX . Given M

different HSIs, different matrix sets for the test pixel can be obtained, and the objective 

function of the sparse representation model can be defined as: 



Spectral-Spatial Classification Techniques for Hyperspectral Imagery 
 

79 

 

1

,0

ˆ arg min ,

subject to

M
m m m
i F

m

row
K.

=

= −

≤

∑
R

R X D R

R
                                       (6.4)                   

where 1[ ,..., ,..., ]= m MR R R R is the sparse coefficient matrix. The Equation (6.4) can be 

solved by the SOMP algorithm jointly. In order to consider the correlation among 

different matrices sets, we adopt the adaptive joint sparse constraint [93] for the 

classification task: 

1

,0

ˆ arg min ,

subject to

M
m m m
i F

m
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K.

=

= −
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∑
R

R X D R

R
                                      (6.5) 

The implementation of the optimization of Equation (6.5) is shown in Algorithm 6.2. 

Similar to the multiscale adaptive sparse representation (MASR) [93] algorithm, the 

proposed algorithm can be iteratively optimized until the termination criterion is 

satisfied. The best representation atoms for different matrices sets and different classes 

are selected, and then the adaptive set is determined by recording the indexes for the 

atoms across each set and each class at each iteration. 

After the sparse coefficient is obtained, the test pixel should be labeled as the class that 

has the minimum reconstruction residual: 

1,..., 1
( ) arg min .

M
m m m
i c c Fc C m

class
= =

= −∑x X D R                                  (6.6)                                   

where m
cD is the dictionary corresponding to the m - th image for the c - th class. The 

illustration of the adaptive sparse representation is shown in Fig. 6.2. The outline of the 

whole framework is displayed in Fig. 6.3. 
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Fig. 6.2. The illustration of the adaptive sparse representation strategy. 

 

Algorithm 6.2. The pseudocode of adaptive sparse representation. 

Input: multiple adaptive sparse matrices for test pixel ix associated to the processed imagery mI :

m
iX ( 1,...,=m M ), dictionaries: mD ( 1,...,=m M ), predefined sparsity level K , number of 

processed imageries M , training data set for each image ( 1,..., )=m
T m MI . 

Initialization: initialize dictionary =m m
TD I , and normalize the columns of each dictionary to 

have unit 2 norm, initialize the residual matrix for each HSI 1 =m m
iSAE X , the iteration number

1=iter , and adaptive index matrix 1 =∅I . 

For ≤iter K  

       1. For 1:=m M  

                   Compute the corresponding residual correlation matrix. 

                   For 1:=c C  
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                           (1): find the corresponding residual correlation matrix for each class;  

                           (2): find the best representation atoms’ indexes and the corresponding 

coefficient values for each class and each matrix set. 

                   End for 

             End for 

       2.  Sum the coefficients values across M matrix sets for each class. 

       3.  Find the maximum value’s index for each class. 

       4.  Combine the atom’s indexes for each class. 

       5.  Compute the adaptive set. 

       6.  Update the adaptive index set. 

       7. For 1:=m M  

                 (1): Find the corresponding adaptive index set for each set; 

                 (2): Estimate the sparse representation coefficients for each set; 

                 (3): Update the residual matrix for each set. 

            End for 

      8. 1= +iter iter . 

End for 

Output: sparse coefficient matrix for each set mR ( 1,...,=m M ). 
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Fig. 6.3. The pipeline of the proposed framework. 

Table 6.1. Classification Accuracies for Indian Pines Image Obtained by the Proposed 
Method with Single Scale. 

Class 1×1 3×3 5×5 7×7 9×9 11×11 MCSSR 
Alfalfa 92.31 97.44 94.87 97.44 100.00 94.87 100.00 
Corn-no till 81.58 86.49 90.46 90.53 85.33 81.94 94.70 
Corn-min till 91.71 92.98 91.58 75.77 89.67 82.27 98.08 
Corn 96.74 97.28 96.74 85.87 98.91 73.37 99.15 
Grass/pasture 93.96 96.20 93.29 94.63 91.50 92.62 98.59 
Grass/trees 97.56 95.55 93.40 94.69 97.13 92.11 96.92 
Grass/pasture-mowed 100.00 100.00 100.00 100.00 100.00 90.91 100.00 
Hay-windrowed 99.54 98.63 100.00 100.00 99.54 100.00 99.59 
Oats 100.00 100.00 80.00 100.00 100.00 100.00 100.00 
Soybeans-no till 90.63 93.90 85.40 87.80 86.49 86.06 96.28 
Soybeans-min till 80.44 81.14 87.72 90.74 79.74 85.44 96.23 
Soybeans-clean till 88.83 90.07 82.98 82.27 86.35 67.38 98.21 
Wheat 98.77 100.00 99.38 94.44 100.00 94.44 99.53 
Woods 93.89 94.77 98.55 98.07 94.45 98.55 99.69 
Buildings-grass-trees 75.76 99.09 75.45 90.61 99.09 89.09 99.74 
Stone-steel towers 95.56 97.78 97.78 95.56 100.00 100.00 100.00 
OA (%) 88.04 90.29 90.58 90.58 88.53 87.01 97.38 
AA (%) 92.33 95.08 91.73 92.40 94.26 89.32 98.54 
𝑘𝑘 0.87 0.89 0.89 0.89 0.87 0.85 0.97 



Spectral-Spatial Classification Techniques for Hyperspectral Imagery 
 

83 

 

Table 6.2. Class Information and Classification Accuracies for Indian Pines Image Obtained by Different Classifiers. 

Class Train/Test SVM SRC JSRC MF-SRC MF-JSRC MNFL MASR MFASR MCSSR 
Alfalfa 15/32 87.04 89.13 100.00 98.15 100.00 97.83 97.83 100.00 100.00 
Corn-no till 50/1379 68.13 43.49 77.45 81.24 83.12 82.49 92.79 93.14 94.70 
Corn-min till 50/781 64.15 55.42 88.43 90.05 90.84 90.12 91.93 98.85 98.08 
Corn 50/187 88.46 75.11 97.05 100.00 100.00 99.58 100.00 98.91 99.15 
Grass/pasture 50/434 89.74 83.64 95.86 96.18 96.27 98.34 98.14 97.32 98.59 
Grass/trees 50/682 91.97 87.40 98.08 98.53 100.00 100.00 99.86 96.27 96.92 
Grass/pasture-mowed 15/13 96.15 92.86 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
Hay-windrowed 50/429 97.96 91.42 98.74 100.00 99.58 100.00 99.79 99.32 99.59 
Oats 15/5 85.00 95.00 100.00 100.00 100.00 85.00 100.00 100.00 100.00 
Soybeans-no till 50/921 72.42 63.58 97.12 91.32 97.84 92.70 94.34 94.77 96.28 
Soybeans-min till 50/2406 68.88 49.37 76.78 84.00 84.36 82.93 93.81 95.62 96.23 
Soybeans-clean till 50/545 78.99 52.45 87.18 94.46 93.25 94.77 96.63 98.23 98.21 
Wheat 50/156 100.00 94.15 100.00 99.53 100.00 100.00 100.00 99.38 99.53 
Woods 50/1218 88.10 75.65 93.52 93.43 98.10 97.00 99.68 99.92 99.69 
Buildings-grass-trees 50/335 74.47 56.99 95.34 97.63 97.67 93.78 100.00 98.48 99.74 
Stone-steel towers 15/78 100.00 97.85 98.92 100.00 100.00 100.00 100.00 97.78 100.00 
OA (%) 77.52 62.70 87.90 90.44 92.05 90.95 95.97 96.70 97.38 
AA (%) 84.47 75.22 94.03 95.28 96.32 94.66 97.80 98.00 98.54 
𝑘𝑘 0.75 0.58 0.86 0.89 0.91 0.90 0.95 0.96 0.97 
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Table 6.3. Class Information and Classification Accuracies for University of Pavia Image Obtained by Different Classifiers. 

Class Train/Test SVM SRC JSRC MF-SRC MF-JSRC MNFL MASR MFASR MCSSR 
Asphalt  66/6565 95.32 74.18 58.23 90.70 95.34 99.26 80.29 98.10 98.89 
Meadows 186/18463 96.31 56.82 98.69 92.09 83.48 91.59 98.92 99.99 99.68 
Gravel 21/2078 55.26 66.36 82.28 93.14 87.57 85.99 75.27 93.12 98.08 
Trees 31/3033 82.83 94.19 82.21 95.92 85.54 98.60 81.07 90.37 93.50 
Meta sheets 13/1332 98.88 98.22 97.25 99.26 99.70 99.63 99.85 100.00 99.85 
Bare soil 50/4979 77.95 92.23 81.94 83.46 98.71 88.84 85.68 99.12 99.16 
Bitumen 13/1317 2.56 72.86 93.98 90.60 99.92 95.41 91.05 99.54 99.85 
Bricks 37/3645 79.60 80.47 90.17 50.84 98.10 83.51 96.66 97.64 97.78 
Shadows 9/938 99.47 99.68 25.13 100.00 99.89 100.00 40.55 88.26 85.81 
OA (%) 86.82 71.61 85.91 87.99 90.10 92.54 90.34 98.09 98.51 
AA (%) 76.47 81.67 78.88 88.44 94.25 93.65 83.26 96.24 96.95 
𝑘𝑘 0.82 0.65 0.81 0.84 0.87 0.90 0.87 0.97 0.98 
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Table 6.4. Class Information and Classification Accuracies for University of Houston Obtained by Different Classifiers. 

Class Train/Test SVM SRC JSRC MF-SRC MF-JSRC MNFL MASR MFASR MCSSR 
Grass-Healthy 99/1152 98.32 99.12 98.48 98.16 100.00 97.76 99.28 96.88 97.52 
Grass-Stressed 95/1159 98.48 97.45 97.37 92.19 96.33 98.09 91.23 96.57 99.20 
Grass-Synthetic 96/601 99.86 99.71 97.42 98.71 99.57 99.86 100.00 100.00 100.00 
Tree 94/1150 95.90 94.86 98.79 94.61 98.47 98.31 99.52 96.95 97.27 
Soil 93/1149 98.07 98.47 100.00 100.00 100.00 99.68 99.92 100.00 100.00 
Water 91/234 99.38 98.77 97.85 90.46 99.38 100.00 99.08 97.85 99.38 
Residential 98/1170 86.67 83.99 78.55 71.29 84.94 82.81 95.50 95.98 92.43 
Commercial 95/1149 82.32 89.95 92.28 93.97 92.60 94.29 89.47 95.02 96.78 
Road 96/1156 89.86 79.71 92.65 94.25 90.89 94.09 93.53 94.73 98.80 
Highway 95/1132 91.85 91.04 93.64 98.21 94.38 96.66 100.00 99.02 100.00 
Railway 90/1145 91.98 78.95 93.60 96.60 93.93 93.28 98.22 98.14 99.19 
Parking Lot 1 96/1137 85.97 81.43 91.32 97.89 95.38 91.48 98.38 98.22 98.95 
Parking Lot 2 92/387 76.33 56.72 88.27 99.57 92.11 85.29 97.65 98.08 97.01 
Tennis Court 90/338 99.77 100.00 100.00 100.00 96.96 98.36 100.00 100.00 100.00 
Running Track 93/567 99.09 100.00 100.00 94.09 100.00 100.00 100.00 100.00 100.00 
OA (%) 92.52 89.91 94.20 94.21 95.22 95.04 97.00 97.52 98.24 
AA (%) 92.92 90.01 94.68 94.67 95.66 95.33 97.45 97.83 98.44 
𝑘𝑘 0.92 0.89 0.94 0.94 0.95 0.95 0.97 0.97 0.98 
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6.3 Experimental Results and Discussion 

In this section, three widely used benchmark data sets are utilized to evaluate the 

proposed HSI classification framework in different scenarios. Detailed analysis on the 

impacts of parameters influential to the experimental results is also performed. All the 

experiments were conducted by Matlab 2013b in an environment of Intel (R) Core (TM) 

i7-4790 CPU 3.6GHz and 16 GB of RAM. 

6.3.1 Data Sets 

For the comparison with other similar methods in the literature, the effectiveness of the 

proposed method is conducted on three data sets, i.e. the AVIRIS Indian Pines data set, 

the ROSIS University of Pavia data set and the CASI University of Houston data set 

grss_dfc_2013. 

6.3.2 Experimental Setting 

The proposed MCSSR method is compared with several classifiers in this chapter to 

validate the performance. Pixel-wise SVM (referred to as SVM hereafter) [152], pixel-

wise SRC (referred to as SRC hereafter) [22], JSRC [22], multi-feature-based SRC 

(MF-SRC) [102], multi-feature-based JSRC (MF-JSRC) [102], the extended multi-

attribute profiles-based multiple nonlinear feature learning classifier (MNFL) [158], 

MASR [93], multiple feature learning adaptive sparse representation (MFASR) [159] 

are used as benchmarks. SVM and SRC classify the images with only spectral 

information, while JSRC, MF-SRC, MF-JSRC, MNFL, MASR, MFASR and the 

proposed MCSSR are the classifiers that utilize both spectral and spatial information.  

During the experiments, SVM was implemented using the SVM library with the 

Gaussian kernel  [152]. The sparsity level is set as 3 for all sparse representation-based 

methods (e.g. JSRC, MASR, MF-SRC, MF-JSRC and MCSSR) as suggested in [22]. 

Based on trial and error, the local region was determined from 3×3 to 19×19 for JSRC, 

MASR, and MF-JSRC; the number of patches M is set as 6 for the proposed algorithm 

MCSSR; and the local region size was set as 1×1 (the original data set), 3×3, 5×5, 7×7, 
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9×9 and 11×11, respectively. Three quantitative metrics, OA, AA and kappa coefficient 

(𝑘𝑘) are selected for the quantitative validation in this chapter.  

6.3.3 Experimental Results 

The first experiment is conducted on the Indian Pines data set, and in this experiment, 

the results obtained by the introduced adaptive sparse representation with the proposed 

MCSSR are compared with the ones obtained by the single-scale smoothing strategy 

with the adaptive sparse representation. Table 6.1 shows the quantitative results. It can 

be observed that the proposed framework outperforms the method that was conducted 

on the single scales separately, and the results demonstrate the effectiveness of the 

proposed multi-scale smoothing based adaptive sparse representation strategy. The 

performance enhancement of the proposed MCSSR compared to the single-scale based 

algorithm is achieved by combining the various features generated by the multi-scale 

filter in an adaptive strategy. For those single-scale-generated HSIs, the one processed 

by the proposed smoothing algorithm with local region set as 5×5 carries more 

distinctive classification information, and obtained the best OA. 

The second experiment is also conducted on the Indian Pines data set, and the proposed 

method is compared with the SVM, SRC, JSRC, MF-SRC, MF-JSRC, MASR, and 

MFASR. The experimental results are tabulated in Table 6.2, and the classification 

maps are illustrated in Fig. 6.4. As can be observed from the resultant table, all the 

spectral-spatial classifiers performed better than spectral feature-based approaches (i.e. 

SVM and SRC), which demonstrates the importance of taking the contextual 

information into account. In addition, the proposed MCSSR achieved an OA of 97.38%, 

which is superior to all the other comparative classifiers, especially MCSSR gained a 

higher accuracy when compared with other multi-task learning based algorithms (e.g. 

MF-SRC, MF-JSRC, MNFL, MASR and MFASR). Compared to the single-scale JSRC, 

MASR achieved a higher accuracy with a relative OA of 8.07%. MASR and the 

proposed MCSSR both exploit the contextual information in a multiscale way. However, 

MCSSR preserved more discriminative information for classification than MASR, 

which can be observed from the results. From the classification maps, one can observe 

how the proposed framework produces the classification results. SVM, SRC and JSRC 
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produced a more “noisy” look with more scatter points shown on the maps. In contrast, 

the multi-task learning based methods (i.e. MASR, MF-SRC, MF-JSRC, MFASR and 

MCSSR) generated smoother maps, and the proposed method yielded the best 

performance. Moreover, for the classes (e.g. Alfalfa, and Oats) that have limited 

training samples, the proposed algorithm obtained the best classification results. The 

proposed MCSSR also shows a better capability in classifying the similar pixels, such 

as classes Grass/tress, Grass/pasture, and Grass/pasture-mowed.  

The classification results for University of Pavia image are shown in Table 6.3, and the 

illustrative results are displayed in Fig. 6.5. As can be observed, the proposed method 

still outperformed all the comparative classifiers. Specifically, from the resultant table, 

it can be seen that multi-feature learning methods (i.e. MF-SRC, MF-JSRC, MNFL and 

MFASR) performed better than the single feature learning methods (i.e. SVM, SRC and 

JSRC); however, the performance is inferior to those obtained by the proposed method, 

which demonstrates the ability of the proposed HSI classification framework that 

combines different spatial contextual information in a flexible way. From the 

classification maps, it can be seen that the proposed algorithm generated a better 

appearance than the other classifiers, especially in those areas with more mixed samples. 

It should be also noted that the accuracies for MF-SRC, MF-JSRC, MASR, MFASR 

and the proposed MCSSR are higher than JSRC, which indicates that the sparse 

representation based methods can be improved by adopting a multi-task learning 

strategy.  

The accuracies obtained by various classification methods are reported in Table 6.4 for 

the University of Houston image. As can be observed from the resultant table, the 

proposed multi-scale smoothing-based method shows more improvements over the 

spectral-spatial approach, JSRC, for this imagery in comparison with other spectral-

spatial classifiers. The classification maps shown in Fig. 6.6 are consistent with 

previous two image sets, where the proposed method obtains the best visual quality.  
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Fig. 6.4. Classification maps for the Indian Pines image. (a) Groundtruth map; (b) SVM; 
(C) SRC; (d) JSRC; (e) MF-SRC; (f) MF-JSRC; (g) MNFL; (h) MASR; (i) MFASR; (j) 
MCSSR. 

 

Fig. 6.5. Classification maps for University of Pavia image. (a) Groundtruth map; (b) SVM; 
(C) SRC; (d) JSRC; (e) MF-SRC; (f) MF-JSRC; (g) MNFL; (h) MASR; (i) MFASR; (j) 
MCSSR. 
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Fig. 6.6. Classification maps for University of Houston image. (a) Groundtruth map; (b) 
SVM; (C) SRC; (d) JSRC; (e) MF-SRC; (f) MF-JSRC; (g) MNFL; (h) MASR; (i) MFASR; 
(j) MCSSR. 

 

     (a)                                                                         (b) 

Fig. 6.7. Effect of the number of local regions adopted in the proposed conservative 
smoothing algorithm on the classification performance for three data sets: (a) Overall 
Accuracy; (b) Average Accuracy. 
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(a)                                                                          

 
 (b) 

 
(c) 

Fig. 6.8. Effect of the number of training samples on the accuracies for different spectral-
spatial classifiers for three data sets: (a) Indian Pines; (b) University of Pavia; (c) 
University of Houston. 

1 5 10 15 20 25 30

Percentage (%) of Training Samples

70

75

80

85

90

95

100

O
ve

ra
ll 

A
cc

ua
rc

y 
(%

)

JSRC
MF-SRC
MF-JSRC
MNFL
MASR
MFASR
MCSSR

0.1 0.2 0.5 0.8 1 1.5 2

Percentage (%) of Training Samples

65

70

75

80

85

90

95

100

O
ve

ra
ll 

A
cc

ur
ac

y 
(%

)

1 2 3 4 5 10 20

Percentage (%) of Training Samples

75

80

85

90

95

100

O
ve

ra
ll 

A
cc

ur
ac

y 
(%

)



Chapter 6 A Multi-scale Conservative Smoothing Scheme and Adaptive Sparse Representation 

92 

 

Table 6.5. Run Time (Minutes) of All the Classifiers for the Classification of Three Data 
Sets. 

 SVM SRC JSRC MF-
SRC 

MF-
JSRC MNFL MASR MFASR MCSSR 

Indian 
Pines 3.3 0.7 1.5 1.4 10.2 18.9 7.8 7.6 8.2 

University 
of  Pavia 4.5 1.2 10.8 9.7 30.2 38.9 40.2 34.6 40.7 

University 
of  Houston 3.4 0.9 5.6 6.5 20.2 24.2 19.8 26.4 30.5 

6.3.4 Parameter Analysis 

In this section, the effects of different parameters on the classification performance of 

the proposed framework are analyzed. The number of local regions for the proposed 

conservative smoothing algorithm is validated firstly in the experiments, and M ranging 

from 2 to 11 with the local region varying from 3×3 to 21×21. Each scale represents 

the smoothing algorithm applied on the current scale and its smaller scales. The OAs 

and AAs for the three data sets with different numbers of local regions are illustrated in 

Fig. 6.7. As can be observed from the figure, MCSSR achieved the best accuracies 

when the number of local region is set as 6 for the Indian Pines and the Pavia data sets, 

and 7 for the Houston image. When the number of patches increases, the accuracy will 

deteriorate. This is due to the fact that the redundancy among too many patches 

compromises the accuracy gain, and the irrelevant information would be likely chosen 

with a large local region size, which misleads the final classification. 

The impact of the number of training samples on different spectral-spatial classifiers 

JSRC, MF-SRC, MF-JSRC, MNFL, MASR, MFASR and the proposed MCSSR are 

also evaluated in this section for the three data sets, respectively. Different percentages 

(from 1% to 30%) of the samples were randomly chosen as the training sets for the 

Indian Pines image, and the remaining as the test sets. For the University of Pavia data 

set, different percentages (0.1 to 2%) were randomly selected as the training samples, 

and the remaining as the test set. For the Houston data set, different percentages (1% to 

20%) were randomly selected as training samples. Fig. 6.8 shows the overall 

classification accuracies for different techniques under the condition of different number 

of training samples. As shown in the figures, the performances of most classifiers were 
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improved with the increase of the number of training samples, and the accuracies tend 

to be stable when the number of training samples further increases. The proposed 

MCSSR consistently outperformed the other classifiers in most cases, especially with a 

small number of training samples.  

The sparsity level K is also influential to the classification results. Fig. 6.9 shows the 

effect of the sparsity level on the OAs of the proposed MCSSR method for three data 

sets. The sparsity level varies from 1 to 20 in the experiment.  As can be observed from 

the figure, the classification performance was improved for all the three data sets with 

the sparsity level up to 4 for the Indian Pines data set and University of Houston data set, 

and 5 for the University of Pavia data set, and it will deteriorate with a larger sparsity 

level. This may be due to the incorrect dictionary atoms from other classes when the 

sparsity level is large.  

 

Fig. 6.9. Effect of the sparsity level on the classification accuracies of MCSSR for three 
data sets. 
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( log( ))O pkAB AB , where p is the dimension of the candidate length vector and k

represents the number of directions in the shape adaptive algorithm. For the SOMP used 

to optimize the JSRC algorithm, the most time-consuming step is the basic scalar 

multiplication. For each adaptive joint matrix, the computational complexity is 
2 3( ) 2− + + +∑ i

nL T i i L i iLn , where 1,2,...,=i K is the sparsity level, n is the number 

of vectors in the joint matrix, and T denotes the number of atoms in the dictionary. The 

maximum time complexity for the SOMP for HSI is 3 2( ( 2 ))+ +O AB KLnT K L K Ln , and 

the sparsity level is usually set small (e.g. 3 in this chapter) in the algorithm. The 

maximum complexity for SOMP of M HSIs is 3 2( ( 2 ))+ +O MAB KLnT K L K Ln .  

Overall, the proposed MCSSR would take more computational time than JSRC, MASR 

and MFASR due to the computation of conservative smoothing, but the main 

computational cost is the inner product for the dictionary learning procedure. The 

computational time can be significantly reduced by optimizing the algorithm with other 

programming language and adopting graphics processing units (GPU). 

Finally, Table 6.5 shows the run time averaged over ten repeated experiments of the 

adopted classifiers and the proposed MCSSR for the classification of the three data sets. 

As can be observed, the proposed MCSSR takes more time, but its speed can be 

significantly accelerated by optimizing the codes with other programming languages 

and GPU.  

 

6.4 Summary 

In this chapter, a conservative smoothing algorithm is proposed for the HSI 

classification, which utilizes the spatial consistency in the neighbouring pixels in the 

original image cube. The proposed method utilizes the spectral similarities between 

pixels to assign the weights for different neighbouring pixels in a defined local region to 

avoid over-smoothing automatically. In this scenario, the spatial contextual information 

can be revealed. Because the spatial characteristics are different when the local region is 

set differently, the original image is processed by the proposed smoothing algorithm 
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with multiscales. Then an adaptive sparse representation model is constructed, in which 

a shape adaptive window is adopted to fully utilize the spectral-spatial information of 

differently filtered HSIs. The proposed method is demonstrated to be superior to several 

benchmark classifiers in both quantitative and qualitative assessments on the three 

widely used data sets. In addition, the experiments also demonstrate that the proposed 

method can lead to a robust and reliable result with a limited number of training 

samples. All in all, the dictionary size for the multi-task learning-based method is 

proportional to the size of the data set, which may lead to a high computational cost for 

a large data set. An effective construction of the dictionary from the training samples 

would be useful in the future research. 
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Chapter 7 HSI Classification Using CNNs and Multiple 

Feature Learning 

7.1 Introduction 

Multiple feature learning aims to learn several types of features simultaneously in order 

to extract more representative features for image processing purposes. Multiple feature 

learning has been successfully applied to many computer vision-based fields, such as 

face detection [161], pedestrian detection [162] and multimedia search [163]. However, 

there is a lack of comprehensive studies on multiple feature learning for HSI 

classification.   

Chapter 5 and Chapter 6 generated multiple HSI features using different sets of 

parameters, and then the multiple features were further learnt and classified by sparsity-

based classifiers. However, it is difficult to find the optimal parameters for classification. 

Very recently, deep learning-based approaches, which can automatically extract and 

learn discriminative features, have been extended to HSI classification. As discussed in 

Chapter 2, CNN is one of the most promising branches in deep learning. Most CNN 

based methods consider the HSI classification as a task of extracting robust high-level 

deep features.  

In order to extract robust and effective features for HSI classification, it is reasonable to 

explore CNN models which can simultaneously extract the spatial and spectral 

information from multiple HSI features. In this chapter, an enhanced framework that 

combines a CNN and a multiple feature learning method is proposed. Considering that 

spatial information extracted by the proposed CNN is more about the neighbouring 

information, other forms of geometrical information should be also investigated to boost 

the performance of HSI classification. Therefore, firstly, initial geometrical feature 

maps are extracted by four widely used attribute filters. The initial feature maps can 

reveal various spatial characteristics and local spatial correlations in the original image. 

Subsequently, the initial feature maps along with the original image are fed into a CNN 

which has different inputs corresponding to the different initial features. The 
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representative features are extracted by several groups of subsequent layers and are used 

as the input to a concatenating layer to form a joint feature map which represents both 

spectral and contextual properties of an HSI. The final labels of HSI pixels are 

determined by the subsequent layers with the joint feature map as input. The proposed 

framework does not need any post-processing step. The designed CNN consists of four 

key components: proper convolutional layers, a pooling layer, a concatenating layer and 

a rectified linear unit (ReLU) function. Since HSI suffers with a limited number of 

training samples, a deeper and wider network without enough training samples may 

result in overfitting; hence the proposed network is a relatively shallow network but is 

an effective one. The pooling layer can provide spatial invariance, the concatenating 

layer is designed to exploit the rich information, and the ReLU function will accelerate 

the convergence. The main contributions of this chapter include: 1) the construction of a 

novel CNN architecture which benefits from the multiple inputs corresponding to 

various image features; 2) the concurrent exploitation of both spectral and spatial 

contextual information; and 3) the proposed network that is robust and efficient even if 

a small number of training samples are available. The proposed method is referred to as 

“MFL_CNN” in this thesis. 

The remainder of this chapter is organized as follows: Section 7.2 introduces the overall 

framework of the designed CNN. The proposed framework is also presented in detail in 

this section. The experimental results and discussions are provided in Section 7.3. The 

impact of several factors to the experimental results is also investigated in Section 7.3. 

Finally, the conclusions are drawn in Section 7.4 with some remarks. The work of this 

chapter has been present in Remote Sensing [126]. 

7.2 Proposed Framework 

Fig. 7.1 illustrates the structure of the proposed framework. The first step of this 

framework is the extraction of multiple HSI features followed by several CNN blocks. 

Given T sets of features, each individual CNN block will learn the corresponding 

representative feature map, and all the feature maps will be joined by a concatenating 

layer. The weight and bias for each block are fine-tuned in this network through back 

propagation. The output of the network for each pixel is a vector of class membership 
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probability with C units, corresponding toC classes defined in the hyperspectral data set. 

The main principles of the proposed framework are explained in detail in the following 

sections.  

 

Fig. 7.1. The structure of the proposed framework. 

7.2.1 Extraction of Attribute Profiles 

The characterization of spatial contextual information computed by MPs can represent 

the variability of the structures for images [25]. However, features extracted by a 

specific MP cannot be modelled as other geometrical features. In order to model various 

geometrical characteristics simultaneously for the feature extraction in HSI 

classification, the application of APs is firstly introduced in the work of [35]. APs 

showed interesting properties in HSI processing, which can be used to generate an EAP.  

APs are a generalized form of MPs, which can be obtained from an image by applying a 

criterion 𝑇𝑇. The construction of APs relies on the morphological AFs, and it can be 

obtained by applying a sequence of AFs to a scalar image [35]. AFs are defined as the 

connected operators which process the image by merging its connected components 

instead of pixels. After the operators are applied to the regions, the attribute results are 

compared to a pre-defined reference value. The region is determined to be preserved or 

removed from the image depending on whether the criterion is met or not (i.e. the 

attribute results are preserved if the value is larger than the pre-defined reference value). 

The values in the removed region will be set as the closest grayscale value of the 
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adjacent region. If the merged region is a lower (greater) gray level, then the thinning 

(thickening) operator is applied.  

Subsequently, an AP can be directly constructed by using a sequence of thinning and 

thickening AFs which are applied to the image with a set of given criteria. By using 𝑛𝑛 

morphological thickening (𝜑𝜑𝑇𝑇) and 𝑛𝑛 thinning (φT ) operators, an AP from an image f  

can be constructed as: 

1 1 1 1( ) { ( ), ( ), ..., ( ), , ( ), ..., ( ), ( )}.T T T T T T

n n n nAP ϕ ϕ ϕ φ φ φ
− −

=f f f f f f f f                      (7.1) 

Generally, there are some common criteria associated with the operators, such as area, 

volume, diagonal box, and standard deviation. According to the operators (thickening or 

thinning) used in the image processing, the image can be transformed to an extensive or 

anti-extensive one. In this chapter, since our goal is to measure the effectiveness of 

multiple feature learning by the proposed CNN, but not to achieve absolute performance 

maximization, only APs based on four different criterions (i.e. area, standard deviation, 

the moment of inertia, and length of the diagonal) are extracted as the different feature 

maps for classification tasks. And in this chapter, the different AP features are named by 

the corresponding criterions. One can find the details of various APs from [25].  

7.2.2 Convolutional Neural Networks 

CNNs aim to extract the representative features for different forms of data via multiple 

non-linear transformation architectures[122]. The features learned by a CNN are usually 

more reliable and effective than rules-based features. In this chapter, we consider HSI 

classification with the so-called directed acyclic graphs (DAG) where the layers are not 

limited to chaining one after another. For HSI classification, a neural network can 

realize the function of mapping the input HSI pixels to the output pixel labels. The 

function is composed of a sequence of simple blocks that are called layers. The basic 

layers in a CNN are as follows: 

Mathematically, an individual neuron is computed by taking a vector of inputs x  and 

applying an operator to it with a weight filter f and bias b : 
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( ).fσ= +a x b                                                      (7.2)                        

where ( )σ  is a nonlinear function named as an activation function. For a convolutional 

layer, every neuron is related to a spatial location ( ,i j ) with respect to the input image. 

The output ,i ja associated with the input can be defined as follows: 

, ,(( ) ).i j i ja Fσ= ⊗ +X b                                             (7.3)                                

where F is the kernel function with the learned weights, X is the input or the layer, and 

⊗  denotes the convolution operator. Usually at least one layer of the activation 

function is implemented in a network. The most frequently used activation functions are 

the sigmoid function and the ReLU function. The ReLU function has been considered to 

be more efficient than the sigmoid function in the convergence of the training procedure 

[122]. The ReLU function is defined as follows: 

                                      ( ) max(0, ).σ =x x                                                   (7.4)                

Another important type of layers is pooling which is implemented as a down-sampling 

function. The most common types of pooling are the max-pooling and mean-pooling. 

The pooling function partitions the input feature map into a set of rectangles and outputs 

the max/mean value for each sub-region. Hence, the computational complexity can be 

reduced.  

Typically, a softmax function is performed on the top layer so that a probability 

distribution as an output can be obtained with each unit representing a class membership 

probability. Based on the above principle, in this chapter, different features of the raw 

image are fed into each corresponding CNN block, and the network is fine-tuned 

through the back propagation.  

7.2.3 Architecture of Convolutional Neural Network 

A HSI contains several hundreds of spectral bands, and the input of a HSI classifier is 

usually the whole image. This is different from common classification problems. It has 

been acknowledged that spatial contextual information extraction is essential for HSI 
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classification. Based on such knowledge, we choose a three dimensional structure of the 

HSI pixel as input to the built CNN model. Given a HSI cube × ×∈ M N L
X , ×M N is the 

image size and L denotes the number of spectral channels. For a test pixel ix (where i is 

the index of the test pixel), a × ×K K B format structure of this pixel will be adopted as 

the input with ×K K being a fixed neighborhood size and B representing the dimension 

of the input features. For example, for the original image cube, B is equal to the number 

of the spectral channels L . In this chapter, after T attribute profile features (i.e. area, 

standard deviation, length of diagonal, and moment of inertia) are extracted, each 

attribute can be expressed as × ×∈t
M N Bt

A , 1, 2,...=t T . tA denotes the −t th attribute 

of X , tB denotes the number of spectral channels of tA .  For each pixel in tA , a 

× × tK K B neighborhood region patch will be chosen as the input to the corresponding 

model.  

Each convolutional layer has a four-dimensional convolution of × × ×W W B F , where

×W W is the kernel size of the convolutional layer, B is the dimension of input variable 

and F denotes the number of kernels in each convolutional layer. For example, for a 

2 2 200 50× × × convolutional layer with an input size of 5 5 200× × , the output in the 

DAG will be a format of 4 4 50× ×  which will be the input of the next layer.  

The three-dimensional format of the input in the proposed network makes the 

dimensionality around several hundreds ( × ×K K B ), which may lead to an overfitting 

problem during the training procedure. In order to handle this situation, ReLU is applied 

to the proposed network. The adopted ReLU in this chapter is a simple nonlinear 

function that produces 0 or 1 corresponding to the positive or negative input of a neuron. 

It has been confirmed that ReLU can boost the performance of networks in many 

cases[164]. 

To perform the classification with the learned representative features, a softmax 

operator is applied to the top layer of the proposed network. Softmax is one of the 

probabilistic-based classification models which measure the correlation between an 

output value and a reference value by a probability score. It should be noted that in the 
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CNN construction, softmax can be applied throughout the spectral channels for all 

spatial locations in a convolutional manner. For the given input of three dimension 

( × ×K K B ), the probability that the input belongs to class c is computed as follows: 

                              

1

( ) .
mnk

mnb
B

b

ep y c
e

=

= =

∑

x

x
                                                     (7.5) 

In order to obtain the essential probability distribution using the softmax operator, the 

number of kernels of the last layer should be set as the same as the number of classes 

defined in the HSI data set. The whole training procedure of the network can be treated 

as the optimization of parameters, which can minimize a loss function between the 

network outputs and ground truth values for the training data set. Let 1,..., ,...,=iy c C  

denote the target ground truth value corresponding to the text pixel ix , and ( )ip y be the 

output class membership distribution with i as the index of the test pixel. The multi-

class hinge loss used in this chapter is given by 

1 1
max(0,1 ( )).

N C

i
i c

L p y c
= =

= − =∑∑                                          (7.6) 

Finally, the predication label is decided by taking the argmin value of the loss function: 

ˆ arg min .i
c

y L=                                                       (7.7) 

7.3 Experimental Results and Discussion 

Section 7.3.1 below introduces the data sets and shows the class information. Section 

7.3.2 layouts the specific network architectures applied in this chapter and other relevant 

information regarding the experimental evaluation. Section 7.3.3 provides the 

experimental results for all the classifiers. Section 7.3.4 highlights some additional 

experiments influential to the classification results. In this thesis, the original features, 

as well as four attribute features extracted based on four attribute filters (i.e. area, 

moment of inertia, length of diagonal and standard deviation) are used as inputs to the 
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proposed network. The parameters for each AP criterion are set as default as the ones in 

[35]. 

In order to validate the effectiveness of the proposed mechanism, the proposed work is 

compared with the designed CNN with original images (referred to as O-CNN), and a 

CNN using all features (including the original images) stacked as input (referred to as 

E-CNN). As shown in Fig. 7.2, for fair comparison, these CNNs have architectures 

similar to the proposed network.  The attribute features extracted in this chapter have 

the parameters set as the ones in [25]. All the programs are executed in Matlab 2015b. 

The test is conducted on a computer with Intel (R) Core (TM) i7-4790 CPU 3.60 GHz 

and 16 GB Installed Memory. All the convolutional network models are implemented 

based on the publicly available matconvnet [165] with some modifications, and the 

optimization algorithms used in this chapter are implemented by the Statistics and 

Machine Learning Toolbox in Matlab.  

 

Fig. 7.2. The architecture of comparison classifiers: (a) O-CNN; (b) E-CNN. 

7.3.1 Data Description 

To verify the effectiveness of the proposed framework, three benchmark data sets are 

used in this chapter. They are AVIRIS Indian Pines data set, ROSIS University of Pavia 

data set and Salinas AVIRIS data set.  
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For each of the three data sets, the samples are split into two subsets, i.e. a training set 

and a test set. The details of the number of the subsets are listed in Tables 7.1-7.3. For 

training the architecture of each CNN block, 90% of the training pixels are used to learn 

the filter parameters for each CNN block and the remaining 10% are used as the 

validation set. The training set is used to adjust the weights on the neural network. The 

validation set is used to provide an unbiased evaluation of a model fit on the training 

data set, which means that this data set is predominately used to describe the evaluation 

of models when tuning hyper parameters. The test is used only to assess the 

performance of a fully-trained CNN model.  

Table 7.1. Class Information for Indian Pines Data Set 

No. Class Name Training Test 

1 Alfalfa 30 16 
2 Corn-no till 250 1178 
3 Corn-min till 250 580 
4 Corn 150 87 
5 Grass/trees 250 233 
6 Grass/pasture 250 480 
7 Grass/pasture-mowed 20 8 
8 Hay-windrowed 250 228 
9 Oats 15 5 

10 Soybeans-no till 250 722 
11 Soybeans-min till 250 2205 
12 Soybeans-clean till 250 343 
13 Wheat 150 55 
14 Woods 250 1015 
15 Buildings-grass-trees 50 336 
16 Stone-steel towers 50 43 

Total 2715 7534 
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Table 7.2. Class Information for University of Pavia Data Set 

No. Class Name Training  Test 

1 Asphalt 250 6381 
2 Meadows 250 18399 
3 Gravel 250 1849 
4 Trees 250 2814 
5 Meta sheets 250 1095 
6 Bare soil 250 4779 
7 Bitumen 250 1080 
8 Bricks 250 3432 
9 Shadows 250 697 

Total 2250 40526 

 

Table 7.3. Class Information for Salinas Data Set 

No. Class Name Training Test 

1 Weeds_1 300 1709 
2 Weeds_2 300 3426 
3 Fallow 300 1676 
4 Fallow plow 300 1094 
5 Fallow smooth 300 2378 
6 Stubble 300 3659 
7 Celery 300 3279 
8 Grapes 300 10971 
9 Soil 300 5903 
10 Corn 300 2978 
11 Lettuce 4 week 300 768 
12 Lettuce 5 week 300 1627 
13 Lettuce 6 week 300 616 
14 Lettuce 7 week 300 770 
15 Vineyard untrained 300 6968 
16 Vineyard trellis 300 1507 

Total 4800 49329 

 

7.3.2 Network design and experimental setup 

CNN blocks for different features were designed to have the same architecture. There 

are three convolutional layers, pooling layers, ReLU layers and concatenating layers. 

The details of the network structure are listed in Tables 7.4-7.6. The input images are 

initially normalized into [-1 1]. The number of kernels in each convolutional layer is set 
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as 200 empirically. The input neighbourhood of each feature is set as 5×5, 7×7 and 

9×9 for the Indian Pines data set, the University of Pavia data set and the Salinas data 

set, respectively. The learning rate for CNN models is set as 0.01; the number of epochs 

is set as 100 for the Indian Pines and the University of Pavia data sets, and 150 for the 

Salinas data set. The batch size is set as 10. To quantitatively validate the results of the 

proposed framework, OA, AA and the kappa coefficient (𝑘𝑘 ) are adopted as the 

performance metrics. Each result is shown as an average of ten times repeated 

experiments with the randomly chosen training samples.  

Table 7.4. Network Structure for Indian Pines Data Set. 

Input Features Layer No. Convolution ReLU Pooling 

Original image 
1 2×2×200×200 No 2×2 

2 (Transpose)2×2×200×200 Yes No 

AP (Area) 
1 2×2×125×200 No 2×2 

2 (Transpose)2×2×200×200 Yes No 

AP (Length of 

diagonal) 

1 2×2×175×200 No 2×2 

2 (Transpose)2×2×200×200 Yes No 

AP (Moment of 

inertia) 

1 2×2×75×200 No 2×2 

2 (Transpose)2×2×200×200 Yes No 

AP (Standard 

deviation) 

1 2×2×75×200 No 2×2 

2 (Transpose)2×2×200×200 Yes No 

 Concatenating Dim=2 (Horizontal)  

 Convolution 4×20 ×200×16   
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Table 7.5. Network Structure for University of Pavia Data Set. 

Input Features Layer No. Convolution ReLU Pooling 

Original image 
1 4×4×103×200 No 2×2 

2 (Transpose)2×2×200×200 Yes No 

AP (Area) 
1 4×4×20×200 No 2×2 

2 (Transpose)2×2×200×200 Yes No 

AP (Length of 

diagonal) 

1 4×4×103×200 No 2×2 

2 (Transpose)2×2×200×200 Yes No 

AP (Moment of 

inertia) 

1 4×4×12×200 No 2×2 

2 (Transpose)2×2×200×200 Yes No 

AP (Standard 

deviation) 

1 4×4×12×200 No 2×2 

2 (Transpose)2×2×200×200 Yes No 

 Concatenating Dim=2 (Horizontal)  

 Convolution 4×20 ×200×9   

 

Table 7.6. Network Structure for Salinas Data Set. 

Input Features Layer No. Convolution ReLU Pooling 

Original image 
1 6×6×224×200 No 2×2 

2 (Transpose)2×2×200×200 Yes No 

AP (Area) 
1 6×6×15×200 No 2×2 

2 (Transpose)2×2×200×200 Yes No 

AP (Length of 

diagonal) 

1 6×6×21×200 No 2×2 

2 (Transpose)2×2×200×200 Yes No 

AP (Moment of 

inertia) 

1 6×6×9×200 No 2×2 

2 (Transpose)2×2×200×200 Yes No 

AP (Standard 

deviation) 

1 6×6×9×200 No 2×2 

2 (Transpose)2×2×200×200 Yes No 

 Concatenating Dim=2 (Horizontal)  

 Convolution 4×20 ×200×16   
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7.3.3 Experimental Results  

Table 7.7 shows the classification results obtained by different classifiers for the Indian 

Pines data set, and the resultant maps are provided in Fig. 7.3. One can observe that all 

the CNN-based models achieve a good performance, and the proposed method provides 

the improved results on this data set. For O-CNN, the original image is set as the input 

for the network. In order to verify the effectiveness of the proposed mechanism, the 

spatial contextual features are extracted and stacked together to be fed into the network 

for E-CNN. E-CNN has achieved more accurate results than O-CNN, but failed to 

outperform the proposed method. The best performance achieved by the proposed 

framework is probably due to the joint exploitation of spatial-spectral information. One 

can conclude that the proposed method produces less “salt-and-pepper” noise on the 

classification maps. In comparison with O-CNN, OA, AA and kappa of the proposed 

method are improved by 8.43%, 3.69% and 9.5%. The same conclusion can be made 

when the proposed method is compared with E-CNN, especially the improvement is 

quite significant for the sets of similar class labels as can be observed from Table 7.7. 

For example, the accuracies obtained by the proposed method for the classes Soybeans-

no till, Soybeans-min till and Soybeans-clean till (class no. 10, 11, and 12) are 5.76%, 

7.82% and 5.74% higher than those obtained by the E-CNN. The same conclusion can 

be obtained when the individual class accuracies for the similar sets of Grass-tress, 

Grass-pasture and Grass-pasture mowed (class no. 5, 6, and 7) are inspected. The results 

show that the proposed algorithm has a very competitive ability in classifying the 

similar and mixed pixels. In addition, the proposed method has demonstrated the best 

performance in terms of preserving the discontinuities which can be observed from the 

classification maps. Moreover, CNN methods do not need predefined parameters 

whereas pixel-level extraction methods require them. 
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Table 7.7. Classification Results (%) of Indian Pines Data Set. 

Class No. O-CNN E-CNN MFL_CNN 
1 95.65 97.83 97.83 
2 87.96 95.52 94.82 
3 93.86 85.66 97.23 
4 98.73 100.00 99.58 
5 98.14 95.24 99.59 
6 97.53 95.48 99.59 
7 100.00 92.86 100.00 
8 98.12 100.00 100.00 
9 100.00 100.00 100.00 
10 90.02 88.17 93.93 
11 74.95 89.41 97.23 
12 91.40 93.25 98.99 
13 100.00 97.07 100.00 
14 94.62 96.84 99.76 
15 95.34 98.70 97.93 
16 100.00 94.62 98.92 
OA 89.14 93.04 97.57 
AA 94.77 95.04 98.46 

 87.73 92.11 97.23 
 

 

Fig. 7.3. Classification maps of Indian Pines data set: (a) O-CNN; (b) E-CNN; (c) 
MFL_CNN. 

The class-specific classification accuracies for the University of Pavia image and the 

representative classification maps are provided in Table 7.8 and Fig. 7.4, respectively. 

From the results, one can see that the proposed method outperforms the other 

algorithms in terms of OA, AA and kappa. The proposed method significantly improves 

the results with a very high accuracy when tested with the University of Pavia data set. 

From the illustrative results in classification maps, O-CNN and E-CNN show more 

noisy scattered points in the images. The proposed method can remove them and lead to 

smoother classification results without blurring the boundaries. 

 

k



Chapter 7 HSI Classification Using CNNs and Multiple Feature Learning 

110 

 

Table 7.8. Classification Results (%) of University of Pavia Data Set. 

Class No. O-CNN E-CNN MFL_CNN 
1 97.50 99.68 99.25 
2 94.38 99.93 99.74 
3 96.62 94.46 99.76 
4 97.58 97.35 99.64 
5 100.00 100.00 100.00 
6 93.52 97.82 99.96 
7 93.16 98.57 98.80 
8 93.10 98.38 99.48 
9 99.68 99.79 99.89 

OA 95.25 98.99 99.64 
AA 96.17 98.44 99.61 

 93.75 98.67 99.53 
 

 

Fig. 7.4. Classification maps of University of Pavia data set: (a) O-CNN; (b) E-CNN; (c) 
MFL_CNN. 

Table 7.9 shows the classification results for the Salinas data set with different 

classifiers, and the classification accuracies are illustrated in Fig. 7.5. The results are 

similar to the previous two data sets. Under the condition of the same training samples, 

the proposed method outperforms the other approaches in terms of OA, AA and kappa. 

Although E-CNN improved the classification results of O-CNN by stacking different 

features, the improvement is limited when compared to the proposed framework. The 

better performance of the proposed network proves the capacity and effectiveness of the 

built network for multiple feature learning.  

 

 

k
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Table 7.9. Classification Results (%) of Salinas Data Set. 

Class No. O-CNN E-CNN MFL_CNN 
1 100.00 100.00 100.00 
2 99.84 99.92 99.92 
3 99.60 99.70 99.65 
4 99.57 99.93 99.78 
5 99.93 99.78 99.07 
6 99.95 100.00 99.97 
7 99.30 99.92 99.75 
8 95.52 95.73 94.28 
9 99.45 100.00 99.97 
10 97.32 99.73 99.63 
11 99.53 100.00 99.91 
12 100.00 100.00 100.00 
13 100.00 100.00 100.00 
14 100.00 100.00 99.91 
15 66.29 81.65 97.40 
16 95.35 100.00 100.00 
OA 94.06 96.60 98.34 
AA 96.98 98.52 99.33 

 93.37 96.20 98.15 
 

 

Fig. 7.5. Classification maps of Salinas data set: (a) O-CNN; (b) E-CNN; (c) MFL_CNN. 

7.3.4 Parameter Analysis 

The number of training epochs is an important parameter for the CNN-based methods. 

Fig. 7.6 shows that the training error varies with the number of training epochs on all 

three data sets.  In the training process for a network, the back propagation is 

implemented by minimizing the training error “objective” which is computed by

k
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1
log( )

tN

ic
i

objective p
=

= −∑ . Here, the trend of the “error” item is computed by 

1
(arg max ~ )

tN

ic i
i

error p p c
=

= =∑  where tN denotes the number of training samples, icp

denotes the c th− prediction probability of the training pixel x which belongs to the 

c th− class. It is helpful and useful for assessment. From Fig. 7.6, one can observe that 

it converges faster for the training process of the Indian Pines image and the University 

of Pavia image, slower for the Salinas image. ReLU is an important factor which is 

influential to the training procedure; ReLU can accelerate the convergence of the 

network and improve the training efficiency [164]. 
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Fig. 7.6. Training error for the proposed framework of three data sets: (a) Indian Pines; (b) 
University of Pavia; (c) Salinas Scene. 

One critical factor to the training a CNN is the number of training samples. It is widely 

known that a CNN may not extract effective features unless abundant training samples 

are available. However, it is not common for HSI to have a large number of training 

samples, hence it is very important to build a network that is robust and efficient for the 

classification task.  

0 50 100 150

epoch

0

0.2

0.4

0.6

0.8
error

0 50 100 150

epoch

0

1

2

3
objective

0 20 40 60 80 100

epoch

0

1

2

3
objective

0 20 40 60 80 100

epoch

0

0.2

0.4

0.6
error

train

val

0 20 40 60 80 100

epoch

0

0.2

0.4

0.6
error

0 20 40 60 80 100

epoch

0

0.5

1

1.5

2
objective

(a)

(b)

(c)



Chapter 7 HSI Classification Using CNNs and Multiple Feature Learning 

114 

 

In this chapter, the impacts of the number of training samples on the accuracies of three 

data sets are also tested. For the Indian Pines scene, 5% to 50% of the samples are 

randomly selected as training pixels and the remaining pixels are used as the test set. 

For both the University of Pavia and the Salinas images, 50 to 500 pixels per class are 

chosen randomly as the training samples with the remaining as the test set. Fig. 7.7 

illustrates the OA for various methods with different numbers of training pixels. From 

Fig. 7.7, one can see that all the methods perform better if the number of training 

samples increases for the Indian Pines data set, and the proposed method performs the 

best. Especially, the proposed method obtains an accuracy of higher than 95% with less 

than 10% training samples. The accuracies tend to become stabilized for these three 

methods if the number of training samples further increases. For the University of Pavia 

data set, the classification accuracies for these CNN-based methods show approximately 

100% as the number of training samples further increases, especially for the proposed 

method which has the accuracy more than 96% with 50 samples per class. For the 

Salinas data set, the performances for all approaches fluctuate in a range, and the 

proposed method performs the best in most cases. It should be noted that for all the 

three data sets, the CNN-based classifiers are more sensitive to the number of training 

samples and the accuracy increases as the number of training samples increases. In 

addition, the CNN-based approaches can achieve a competitive performance with a 

large number of training samples, and the proposed method shows more robustness with 

a variety of the number of training samples. 
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(b) 

 

(c) 

Fig. 7.7. The effects of training samples on accuracies of three data sets: (a) Indian Pines; 
(b) University of Pavia; (c) Salinas. 

The neighbourhood size ×K K of the input image is another important factor related to 

the classification results. Fig. 7.8 illustrates the network architectures with inputs of 

different neighbourhood sizes. The only difference for the three data sets is the number 

of kernels in the last layer, which is 16 for the Indian Pines and the Salinas data sets, 

and 9 for the University of Pavia data set. It should be noted that, in order to obtain the 

probability scores corresponding to different classes, the number of kernels in the last 

layer should be the number of labeled classes for each data set. In Fig. 7.8, we take the 

University of Pavia data set as an example. As shown in Tables 7.10-7.12, the 

performances decrease with the neighbourhoods up to 7×7, 9×9 and 11×11 for three 
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data sets, respectively. The performance degradation may be caused by the “over-

smoothing” effect across the boundaries as the neighborhood size increases. Hence, 5×5, 

7×7 and 9×9 are the optimal neighborhood sizes for the three data sets in the proposed 

network. 

 

Fig. 7.8. The network architecture with different inputs of different neighbourhood sizes.  

Table 7.10. Classification Results (%) of Indian Pines Data Set using Network with Inputs 
of Different Neighbourhood Sizes. 

 5×5 7×7 9×9 11×11 

OA 97.57 97.19 95.24 93.61 

AA 98.46 98.05 96.12 94.28 

𝑘𝑘 97.23 96.80 94.58 92.71 

 

Table 7.11. Classification Results (%) of University of Pavia Data Set using Network with 
Inputs of Different Neighbourhood Sizes. 

 5×5 7×7 9×9 11×11 

OA 99.19 99.64 99.60 99.49 

AA 99.38 99.74 99.63 99.61 

𝑘𝑘 98.92 99.53 99.33 99.47 
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Table 7.12. Classification Results (%) of Salinas Data Set using Network with Inputs of 
Different Neighbourhood Sizes. 

 5×5 7×7 9×9 11×11 

OA 95.97 97.38 98.34 97.82 

AA 98.42 98.90 99.33 99.16 

𝑘𝑘 95.53 97.09 98.15 97.58 

To verify the effectiveness of the multiple feature learning, the experimental results for 

the designed CNN (Fig. 7.2(a)) with individual features (i.e. area, moment of inertia, 

length of diagonal and standard deviation) are also shown in Tables 7.13-7.15 for the 

validation. From these tables, one can see that the designed CNN with features of length 

of diagonal performs better than other networks. Compared with the results in Tables 

7.7-7.9, it is obvious that E-CNN compromises the accuracy for the classification. This 

may be due to the data augmentation caused by the initial concatenation which is not 

proper for the spatial filter. The higher accuracy obtained by the proposed method 

benefits from the joint exploitation in the processing stage where the dimension has 

been cut off by the spatial filter. In addition, the concatenation of the various features at 

first step of E-CNN may lose the discriminative information during the training process. 

The various features possess different properties, learnt through the individual 

convolutional layers can help extract the better feature representations for the 

classification which leads to a superior performance. The proposed joint structure-based 

multi-feature learning can adaptively learning the heterogeneity of each feature, and 

eventually result in a better performance. It can be concluded that the comparison 

results with individual features reveal the effectiveness of the multiple feature learning 

technique of the proposed method.  

Table 7.13. Classification Results (%) for Individual AP Features of Indian Pines Data Set. 

Accuracy AP 
(Area) 

AP (Length of 
diagonal) 

AP (Moment of 
inertia) 

AP (Standard 
deviation) 

OA 94.43 95.58 94.96 92.77 
AA 96.85 96.60 96.83 95.66 
𝑘𝑘 93.67 94.18 94.26 91.78 
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Table 7.14. Classification Results (%) for Individual AP Features of University of Pavia 
Data Set. 

Accuracy AP 
(Area) 

AP (Length of 
diagonal) 

AP (Moment of 
inertia) 

AP (Standard 
deviation) 

OA 93.20 98.47 95.82 91.77 
AA 95.93 98.52 97.35 94.28 
𝑘𝑘 91.14 98.31 94.49 89.26 

 

Table 7.15. Classification Results (%) for Individual AP Features of Salinas Data Set. 

Accuracy AP 
(Area) 

AP (Length of 
diagonal) 

AP (Moment of 
inertia) 

AP (Standard 
deviation) 

OA 93.59 96.29 93.45 92.39 
AA 96.76 97.43 96.73 96.16 
𝑘𝑘 92.85 95.88 92.68 91.50 

The training and test time averaged over ten repeated experiments for the three data sets 

are given in Table 7.16. The training procedure for a CNN is time-consuming; however, 

another advantage of CNN algorithms is that they are fast for testing. In addition, the 

training time would take just a few seconds with GPU processing. 

Table 7.16. Training/Test Time (minutes) Averaged over Ten Time Repeatedly 
Experiments on Three Data sets for Different Classifiers. 

 O-CNN 

Training/Test 

E-CNN 

Training/Test 

MFL_CNN  

Training/Test 
Indian Pines 8.7/0.74 9.7/0.8 17.1/1.5 
University of Pavia 17.2/1.9 27.5/2.1 38.8/3.9 
Salinas 42.8/4.5 45.6/5.2 66.1/10.2 

 

7.4 Summary 

In order to prove the potential of CNNs for HSI classification, we presented a 

framework consisting of a novel CNN model. The framework was designed to have 

several individual CNN blocks with comprehensive features as input. To enhance the 

learning efficiency as well as to leverage both the spatial contextual and spectral 

information of the HSI, the output feature maps of each block are then concatenated and 

fed into subsequent convolutional layers to derive the pixel label vectors. By using the 

proper architecture, the built network is a shallow but efficient one, and it can 
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concurrently exploit the interactions of different spectral and spatial contextual 

information by using the concatenating layer. In comparison with the CNN-based single 

feature learning method, the classification results are improved significantly with 

multiple features involved. Moreover, in contrast to the traditional rule-based classifiers, 

the CNN-based framework can extract the deep features automatically and in a more 

efficient way. 

Moreover, the experiments suggest that a three-layer CNN is optimal for HSI 

classification, and the neighbourhood size between 2 × 2 to 6 × 6 can balance the 

efficiency and complexity of the network. The pooling layer with a size of 2×2 and 200 

kernels in each layer can provide an enough capacity for the network. Since the training 

samples are very limited in HSI classification, the multiple input feature maps and 

ReLU in the proposed network can help alleviate the overfitting phenomenon and 

accelerate convergence. The tests with three benchmark data sets showed superior 

performances of the proposed framework. As CNNs are gaining attention due to the 

strong ability in extracting the relevant features for image classification, the proposed 

method is expected to provide various improvements for the better feature 

representation purpose.  
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Chapter 8 Discussions 

In Chapters 4-7, we introduced several approaches for HSI classification. These were all 

evaluated under different scenarios in order to compare them with similar state-of-the-

art techniques. In this chapter, we validate the performance of all proposed methods (i.e. 

JSDPR from Chapter 4, AJSM and MLSR from Chapter 5, MCSSR from Chapter 6 and 

MFL_CNN from Chapter 7) under the same conditions. Three data sets (i.e. AVIRIS 

Indian Pines, ROSIS University of Pavia, and AVISRIS Salinas data sets) are used. As 

only limited training samples are available, small subsets of the given datasets were 

used for training. For the Indian Pines data set, 10% of samples are randomly selected 

as training samples, and the remaining used as test samples. For the University of Pavia 

data set, 1% of samples are randomly chosen as training samples and the remaining 99% 

samples used as the test set. For the Salinas image, 0.05% of samples are used as 

training samples and the remainder used to test the classifiers. Tables 8.1-8.3 show class 

information as well as the numbers of training and test samples used in this chapter. 

Tables 8.4-8.6 illustrate the classification results in terms of OA, AA, and kappa 

coefficient (𝑘𝑘). 

Table 8.1. Class Information for the Indian Pines Data Set. 

Class Class Name Train Test 
1 Alfalfa 5 41 
2 Corn-no till 129 1299 
3 Corn-min till 83 747 
4 Corn 24 213 
5 Grass/trees 48 435 
6 Grass/pasture 73 657 
7 Grass/pasture-mowed 5 23 
8 Hay-windrowed 48 430 
9 Oats 4 16 
10 Soybeans-no till 97 875 
11 Soybeans-min till 196 2259 
12 Soybeans-clean till 59 534 
13 Wheat 21 184 
14 Woods 114 1151 
15 Buildings-grass-trees 39 347 
16 Stone-steel towers 12 81 

Total 957 9292 
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Table 8.2. Class Information for the University of Pavia Data Set. 

Class No. Class Name Training  Test 
1 Asphalt  66   6565 
2 Meadows 186 18463 
3 Gravel 21 2078 
4 Trees 31 3033 
5 Meta sheets 13 1332 
6 Bare soil 50 4979 
7 Bitumen 13 1317 
8 Bricks 37 3645 
9 Shadows 9 938 

Total 426 42350 
 

Table 8.3. Class Information for the Salinas Data Set. 

Class No. Class Name Training  Test 

1 Weeds_1 30 1979 
2 Weeds_2 56 3670 
3 Fallow 30 1946 
4 Fallow plow 21 1373 
5 Fallow smooth 40 2638 
6 Stubble 60 3899 
7 Celery 54 3525 
8 Grapes 169 11102 
9 Soil 93 6110 

10 Corn 49 3229 
11 Lettuce 4 week 16 1052 
12 Lettuce 5 week 29 1898 
13 Lettuce 6 week 14 902 
14 Lettuce 7 week 16 1054 
15 Vineyard untrained 110 7158 
16 Vineyard trellis 27 1780 

Total 814 53315 
 

Table 8.4. Classification Results (%) of Indian Pines Data Sets Using Different Classifiers. 

 JSDPR AJSM MLSR MCSSR MFL_CNN 
OA 97.18 94.92 97.40 98.35 97.27 
AA 96.88 93.98 95.93 98.24 97.38 
𝑘𝑘 96.79 94.37 96.85 98.59 97.07 
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Table 8.5. Classification Results (%) of University of Pavia Data Sets Using Different 
Classifiers. 

 JSDPR AJSM MLSR MCSSR MFL_CNN 
OA 88.52 87.24 95.59 98.51 97.21 
AA 80.24 79.56 95.28 96.95 96.56 
𝑘𝑘 81.96 79.21 95.25 98.27 96.47 

 

Table 8.6. Classification Results (%) of Salinas Data Sets Using Different Classifiers. 

 JSDPR AJSM MLSR MCSSR MFL_CNN 
OA 93.98 92.58 97.25 98.02 95.85 
AA 95.65 96.33 98.77 97.98 95.24 
𝑘𝑘 92.47 92.00 96.94 98.21 95.06 

 

From Tables 8.4-8.6, it is clear that the classification accuracies are consistent for all 

three data sets. The MCSSR method introduced in Chapter 6 achieved the best 

performance; MLSR and MFL_CNN obtained similar results, while JSDPR and AJSM 

produced relatively lower accuracies when using the same limited training set.  

The better performance of JSDPR over AJSM for all three data sets may be due to 

JSDPR considering spatial information in both the probabilistic classification and 

refining stages, while AJSM loses some spatial information due to its top-N strategy. 

The better performance obtained by MLSR, MCSSR, and MFL-CNN is attributable to 

their common mechanism of extracting spatial information from different perspectives: 

MLSR discards outliers in a specific area and extracts information from different levels, 

MFL_CNN extracts information from various features, and MCSSR takes advantage of 

a multiscale conservative smoothing scheme to extract spatial and contextual 

information.  

MCSSR achieved higher accuracies than MLSR because it exploits multiscale 

information without discarding any information and discovers correlations among 

different joint matrices by applying an adaptive norm. MLSR preserves the most useful 

information and reduces redundant information based on an adaptive neighbour 

selection strategy; however, it may also discard some relevant information, especially 

for higher spatial resolution data sets. In addition, MLSR does not exploit correlations 



Spectral-Spatial Classification Techniques for Hyperspectral Imagery 
 

123 

 

among joint matrices from different levels. The MFL_CNN is a deep learning-based 

method which requires adequate training data in order to produce a reliable and robust 

model. Therefore, MFL_CNN obtained a relatively lower accuracy given the limitation 

on training samples employed in this chapter.  

Although MLSR and MFL_CNN produced similar results overall, MLSR performed 

better on the Indian Pines and Salinas data sets due to its superiority for images with 

considerable homogeneity. Moreover, the weight matrix for MLSR is constructed from 

the ratio of the between-class and within-class distances while considering a priori label 

information. This alleviates the negative impacts of classifying the mixed pixels and 

similar pixels that are present in the Indian Pines and Salinas data sets. In contrast, the 

Pavia image has a high spatial resolution and relatively small homogeneity, so MLSR 

may not perform as well.  

Overall, the efficient integration of different techniques may improve classification 

results, and the extraction of features from different perspectives (e.g. multilevel, 

multiscale, and multiple numbers as used in this thesis) can significantly improve the 

classification of HSIs, especially under the condition of limited training samples. 
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Chapter 9 Conclusions and Future Research 

The main aim of this work was to investigate effective spectral-spatial classification 

techniques for HSIs. The primary objective was to overcome the difficulties of 

classification, such as the insufficient extraction of spatial information and limited 

number of training samples. A number of recent advances for HSI classification have 

been reviewed in Chapter 2: mathematical morphological approaches, probabilistic 

graphical models, segmentation methods, sparsity representation-based techniques and 

deep learning-based methodology. A brief review of the data sets used in this work is 

presented in Chapter 3. The detailed studies of this thesis are reported in Chapters 4-8. 

This chapter summarizes the research conducted in this thesis and its main findings. 

Some remarks for future research are also given in this chapter. 

9.1 Summary of the Contributions and Limitations 

The methods introduced in Chapters 4-7 demonstrate that the exploitation of spatial 

information from multiple perspectives can boost the classification accuracy of single 

perspective-based methods. Chapter 4 integrates different methods, Chapter 5 constructs 

multi-level sparsity matrix for the test pixel, Chapter 6 applies a multiscale conservative 

smoothing scheme on the HSI and Chapter 7 extracts multiple features prior to the 

classification. As can be observed from the experimental results, the proposed 

approaches can obtain high accuracies given limited training samples and overcome the 

problems of conventional classifiers.  

9.1.1 The integration of JSM and DPR  

In this thesis, classification performance was addressed first by integrating two 

promising techniques. A JSM and a DPR algorithm were integrated in Chapter 4 for 

reliable and high precision HSI classification. This framework takes into account the 

spectral and spatial information at every step of classification. The proposed method 

works well for homogenous image areas without blurring the near-boundary areas. 
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In the study, JSM was firstly used to classify pixels in a probabilistic sense using their 

neighbourhood information. The sparse coefficients were used to compute the 

reconstruction error, leading to a probabilistic distribution for each pixel. Class-specific 

probabilities allow the presentation of the potential for each pixel to belong to each class. 

Then a DPR was applied to refine those possibilities and derive the final labels. 

Boundaries in the image were detected by a Sobel filter, then the homogenous areas 

smoothed without crossing those boundaries in order to help preserve the discontinuities 

in the original image.  The integration of these two methods was an improvement over 

the results of applying them separately. Experiments conducted on two real-world data 

sets showed that among all the approaches compared, this method achieved the best 

performance, and performed very well under the condition of limited training samples. 

This study presents the advancement of integrating different classifiers and also 

provides knowledge for the assessment of methods in different areas. 

The proposed method is not without limits. For example, it cannot refine the results for 

the edge areas detected by the Sobel filter. Once boundaries are detected, the results for 

the pixels in those areas are fixed by JSM. Additionally, homogeneous areas tend to be 

over-smoothed due to the large neighbourhood selected for JSM and DPR.  

9.1.2 Multi-level Adaptive Neighbour Selection Strategy for Joint Sparse 

Modelling 

In this study, we proposed a strategy for selecting the most representative pixels in the 

predefined region, thereby making the joint sparse matrix more reliable. In order to 

further improve classification performance, the neighbour selection strategy was used in 

a multi-level manner. 

Theoretically, a given specific area will exhibit distinct structures and characteristics as 

well as some irrelevant information. If a strategy aims to find the most similar 

neighbouring pixels to the test pixel and reject dissimilar pixels, information concerning 

the correlated spatial context should be more representative for classification. Based on 

this principle, an adaptive neighbour selection strategy was developed that computes 

weights based on the distances between pixels, with the labels of training data as a 
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priori information. Structural similarity between the central pixel and its neighbours can 

be sensibly exploited by considering the different contributions of each spectral band. 

The adaptive neighbour selection strategy was used in two different scenarios in this 

study. It was firstly applied to select the most representative neighbours for the test 

pixels using a top N-nearest method, and doing so was proven to efficiently improve the 

classification accuracy of a JSM. Considering that features from different levels do not 

share the same sparsity pattern, it is reasonable to construct 

feature models using multiple levels in order to wholly represent the data. We therefore 

proposed using a multi-level weighted joint sparse model to fully integrate neighbour 

information as well as to avoid outliers dominating the sparse coding.  Multiple local 

matrices were obtained using the proposed adaptive neighbor selection strategy with 

different distance thresholds applied.  

This multi-level approach was experimentally implemented on three benchmark 

hyperspectral data sets, and the results showed that the proposed framework can achieve 

superior performance with limited training samples. Furthermore, the proposed 

multilevel strategy can alleviate the over-smoothing effect of JSM. This method 

provides information from different levels for the designation of features with high 

reliability, thereby improving the HSI classification. 

However, the inner production computation for the multilevel sparse code learning 

incurs a high computational cost. Furthermore, parameter selection in this framework 

relies on human experience and requires manual operation. In the future, these methods 

will be improved by applying automated optimization approaches such as the swarm 

optimization.  

9.1.3 Multiscale Conservative Smoothing with Adaptive Sparse Representation 

Spatial information has been demonstrated to be useful for HSI classification. However, 

one challenge of utilizing spatial information is that spatial properties are often present 

at various scales rather than co-occurring on a single fixed scale.  Spatial smoothing is a 

technique for emphasizing main features after suppressing the undesired variation 

within a homogenous region. Spatial structures and geometrical features in HSIs can be 
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enhanced and revealed by filtering, especially around the edges. Accordingly, a multi-

scale conservative smoothing algorithm was proposed in Chapter 6 to reduce noise and 

extract spatial structure information from coarse and fine levels alike. 

Firstly, a conservative smoothing algorithm was developed that considered adaptive 

weights for different neighbouring pixels around the central pixel; these weights was 

determined from the spectral similarity between the neighbouring pixel and the central 

pixel.  This approach can reveal spatial textural information.  Over-smoothing was 

automatically prevented by imposing a weighting scheme on the neighbouring pixels 

used for smoothing, where contributions from dissimilar neighbors were suppressed. 

The proposed smoothing scheme was then used in a multiscale way, in which a series of 

different HSIs were obtained by applying various neighbourhood scales. Subsequently, 

an adaptive sparse representation was introduced to integrate different characteristics 

from the series of enhanced HSIs.  

Experiments were conducted on three challenging data sets, and the proposed 

methodology demonstrated superior classification performance when compared to 

several well-known classifiers. One can also conclude from the results that the spatial 

information extracted from multi-scale neighbourhoods provided more robust and 

efficient features for the classification task. Combining the various features generated 

by the multi-scale filter in an adaptive strategy enhanced the performance of the 

proposed method over a single-scale-based algorithm. Moreover, the adaptive norm 

applied in the sparse representation considered correlations (i.e. similarity and diversity) 

among different matrices sets, making the framework more robust.  

However, similar to the strategy described in Chapter 5, the parameter tuning of this 

method needs to be improved. Moreover, its computation costs are high, and parallel 

computing can be used to alleviate this problem. 

9.1.4 Multiple Feature Learning Using CNNs 

The strengths of CNNs as applied to HSI classification are their better feature 

representation and high performance, while multiple feature learning has shown its 

effectiveness in the area of computer vision. It is reasonable to combine these methods 
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by applying CNN models to simultaneously extract spatial and spectral information 

from multiple features in order to obtain robust and effective features for HSI 

classification. In Chapter 7, an enhanced framework that combined a CNN and a 

multiple feature learning method was proposed.  

We built a novel CNN architecture with various features extracted from the raw 

imagery as input. The network generated the corresponding relevant feature maps, and 

these maps were fed into a concatenating layer to form a joint feature map. The joint 

feature map was then input to subsequent layers to predict the final labels for each 

hyperspectral pixel. The proposed method not only takes advantage of the CNN 

capability for enhanced feature extraction, but also jointly exploits the spectral 

and spatial information.   

It is evident in the experimental results that CNNs with multiple features learning can 

improve classification accuracy significantly. In addition, the parameter analysis 

showed the proposed CNN with its multiple feature learning outperformed those that 

directly classified the stacked multiple features. The proposed network was relatively 

shallow as the limited availability of training samples is a perennial problem for HSI 

analysis, where applying a deeper and wider network may result in overfitting; yet 

although shallow, the network was still an effective one. This work supplements 

existing knowledge on constructing effective CNNs for HSI classification, and is 

expected to provide various improvements for the purpose of better feature 

representation.  

Since CNNs embrace a variety of architectures, how to design a CNN optimal for 

various HSIs is still an active subject of research. When using a CNN with multiple 

features, the features should be manually extracted with predefined parameters. Thus, 

one avenue for the future improvement of this method is implementing adaptive feature 

extraction for CNNs.  
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9.2 Future Work   

In this thesis, the dictionary used for sparse learning was directly constructed from all 

training samples. However, this approach can lead to some redundancy. A feasible 

alternative is to develop discriminative algorithms to construct a more representative 

dictionary. In addition, since signals from different classes may share some similar 

characteristics while pixels from the same class may present some differences, 

dictionary construction in future work should consider both “globality” and “locality.” 

For example, the adaptive neighbour selection strategy proposed in Chapter 5 can be 

applied to select optimal dictionary atoms, although such a pixel-wise selection scheme 

will result in a high computational burden.   

The process of classifying each pixel with dictionary learning may lead to high 

computational complexity. One alternative is to integrate superpixel–based 

segmentation with sparse representation models, as introduced very recently in the 

literature. By using an efficient segmentation approach, an image can be clustered into 

many superpixels, thus reducing the number to be classified. However, this technique is 

still at a very early stage, and published segmentation methods are generally based on 

conventional statistical algorithms. In order to make superpixels more representative, 

the segmentation approach should depend on spatial structures instead of conventional 

histograms or higher-order statistics. Segmentation results may be refined by applying 

the shape adaptive method applied in Chapter 6. Subsequently, a JSM or CNN can be 

applied to classify each superpixel instead of each pixel.  

Although multiple feature learning is a promising technique for resolving the curse of 

dimensionality and problems posed by limited numbers of training samples for the 

classification of hyperspectral data, its performance is influenced by the type and 

number of features. At present, there is a need to manually extract the features prior to 

classification. For example, in Chapter 5, the number of levels needed to be predefined 

empirically. In Chapter 6, the number of scales for the conservative smoothing scheme 

also needed to be tuned manually. Furthermore, the features in Chapter 7 were 

handcrafted features extracted prior to classification. Therefore, another direction for 

future research is to develop strategies for automatic feature selection. Such a strategy 
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should be adaptive for different objects in terms of shape and size. Another means for 

improving hyperspectral image classification is the nonlinear combination of multiple 

features, as hyperspectral pixels may not be linearly separable [166]. 

In order to exploit similarity and diversity among different features, Chapter 7 used the 

adaptive norm to allow pixels of each scale to be represented by an appropriate term. 

Chapter 8 built a concatenation layer to explore the correlations of various features. A 

future direction is suggested here, that the feature maps can initially be learnt by 

multiple nonlinear functions, then combined together as the input of an efficient 

classifier (e.g. a CNN) to discover more discriminative information for classification.  

The training procedure for any model is reliant on the training samples used, and a main 

concern for HSI classification is that sufficient training samples are not available in 

most cases. The utilization of other data sources (e.g. multi-temporal images) can be a 

potential direction for improving classification performance.  

Although deep learning-based methods have been applied to HSI classification, they are 

still in the early stage of development. Deep learning can be incorporated in tandem 

with other approaches, such as graphical models and segmentation methods, to achieve 

better classification performance. 
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