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SYNOPSIS

This thesis addresses primarily the issue of restrained-distortional buckling (RDB) in
both half-through girder bridges and composite tee-beams in hogging bending regions.
RDB is fundamentally different to the more commonly studied distortional buckling of
laterally unrestrained beams and can have a profound influence on the buckling of
beams with a continuous restraint.

Buckling of continuous composite beams and half-through girder bridges is usually
modelled in design codes using the so-called U-frame method. The U-frame approach
is simplistic, and finite element calibrations have shown it to be inaccurate.
Furthermore, significant differences exist between the buckling behaviour of composite
tee-beams and reasonably well-researched steel I-beams in the negative-moment
regions. Local, lateral and distortional instabilities of the steel section occur in the
hogging-moment regions of continuous composite tee-beams and these forms of
buckling have been recognised to be highly interactive.

Following a concise review of the available literature, the elastic buckling modes in
continuous composite beams are investigated. In this study, an in-plane analysis of a
two-span continuous composite beam and a rational model for the out-of-plane buckling
are combined, so as to study the elastic restrained distortional buckling of composite
beams cast unpropped and propped over one internal support. The main focus of this
investigation are restraint conditions at the internal support, the effects of bracing in the
hogging bending region, the ratio of the axial and bending actions in the bottom flange
along the length of the beam, the destabilising nature of the compressive actions in the
hogging moment region and the dependence of the elastic buckling load factor of a
continuous composite beam caused by shrinkage and creep for a multiplicity of
geometric and loading configurations.

A rational model is then developed to investigate the elastic RDB of I-section members,
under moment gradient and varying axial force, restrained fully against translation and
lateral rotation and elastically against twist rotation at one flange. This method of
analysis has its application in the buckling analysis of through girders under moment
gradient and continuous composite beams in which both varying axial force and
moment gradient are present. The generic model selected has identified a unique
distortional buckling parameter that quantifies the effect of cross-sectional distortion,
and which allows the high multiplicity of buckling curves in the design space associated
with distortional instability to be reduced to only a few.

The above method is then modified to account for the inelastic range of structural
response, as the strength of steel members of low to intermediate slenderness is
generally reduced below the elastic buckling value due to premature yielding as a result
of the combined effects of the stresses caused by the applied loads and of the residual
stresses which are developed during the cooling of a welded/hot-rolled steel member.
This analysis is concerned primarily with welded sections as these are normally used in
half-through bridge girders. The usual idealised stress-strain relationship is used for the
analysis, while the ‘tendon force concept’ of residual strains is assumed for the flanges
and web.
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The conventional semi-analytical finite strip method for elastic local buckling has then
been modified and augmented with so-called bubble functions in the form of Legendre
polynomials for the transverse buckling displacements. The results show that the use of
bubble functions significantly improves the efficiency of the finite strip method in terms
of strip subdivision. It is found that only one bubble strip for each flat was needed to
model the topology, compared with conventional finite strips, in order to achieve
comparable accuracy. It is also shown that augmentation of bubble terms, in modelling
plate assemblies where membrane actions are significant, such as I and T-beam
sections, does not improve the efficiency of the finite strip method in terms of
discretisation. Similarly, there was no significant improvement in convergence for
members where lateral buckling precedes local buckling.

A bubble based spline finite strip method of analysis is then formulated. A simple
technique for replacing the specification of amended splines, used conventionally to
model the variety of end conditions and internal restraints that may occur (clamped,
simply supported, sliding or free), is developed so that freedoms may be assigned in the
same manner as is usually employed in the finite element method. The method is then
employed to study the interactive nature of local and distortional buckling of different
plate assemblies, and it is applied specifically to the RDB of beams that is addressed in
this thesis. The difference in the buckling behaviour of plates and plate assemblies in
elastic and inelastic range of structural response is assessed.



v

PREFACE

This thesis is submitted for the degree of Doctor of Philosophy at the University of New

South Wales, Australia. Some of the work described in this thesis has already been

published in journals or presented at conferences. These supporting papers are:

1.

Vreelj, Z., Bradford, M.A. and Uy, B. (1999). Elastic buckling modes in
unpropped continuous composite tee-beams, ACMSM16, Dec. 8-10, Sydney,
325-331.

Vreelj, Z. and Bradford, M.A. (2001). A rational model for the elastic restrained
distortional buckling of half-through girder bridges, Third International
Conference on Thin-Walled Structures, Jun. 5-7, Cracow, 153-160.

Vrcelj, Z., Bradford, M.A. and Ronagh, H. (2001). Elastic stability of half-
through girder bridges, ISEC-01, Jan. 24-27, Hawaii, 687-692.

Bradford, M.A. and Vrcelj, Z. (2001). Instabilities in continuous composite
beams induced by quasi-viscoelastic slab behaviour, ISEC-01, Jan. 24-27,
Hawaii, 937-941.

Vreelj, Z., Bradford, M.A., Uy, B. and Wright, H.D. (2002). Buckling of the
steel component of a composite member caused by shrinkage and creep of the
concrete component, Progress in Structural Engineering and Materials, 4(2),

186-192.

Vrceelj, Z. and Bradford, M.A. (2002). Inelastic restrained distortional buckling
of half-through girder bridges under transverse loading, Sixth Int. Conf. on Short
& Medium Span Bridges, Vancouver, Canada, 161-168.

Vreelj, Z. and Bradford, M.A. (2002). Elastic restrained distortional buckling
modes in continuous composite T-beams, Sixth Int. Conf. on Short & Medium

Span Bridges, Vancouver, Canada, 169-176.



10.

11.

12.

13.

Vrceelj, Z. and Bradford, M.A. (2004). An efficient bubble-based spline finite
strip method of buckling analysis, Communications in Numerical Methods in

Engineering (accepted for publication).

Vreelj, Z. and Bradford, M.A. (2004). Elastic buckling modes of two-span

continuous composite beams (submitted for publication).

Vrcelj, Z. and Bradford, M.A. (2004). Inelastic buckling modes of two-span

continuous composite beams (submitted for publication).

Vreelj, Z. and Bradford, M.A. (2004). Restrained distortional buckling of half-
through girder bridges (submitted for publication).

Vrcelj, Z. and Bradford, M.A. (2004). Inelastic restrained distortional buckling
of monosymmetric I-sections subjected to moment gradient (submitted for

publication).

Vrcelj, Z. and Bradford, M.A. (2004). Restrained distortional buckling strength
of I-section beam-columns subjected to moment gradient (submitted for

publication).



vi

ACKNOWLEDGEMENTS

I am indebted to a number of people for their help in the preparation of this thesis.

Without them this thesis would never have come into realisation.

First at all, I would like to express my profound gratitude to my supervisor, Professor
Mark Bradford, for his outstanding guidance and support during my PhD studies. Mark
is a brilliant researcher and a fascinating teacher, and I benefited greatly from working
under his guidance. He is also an attentive mentor and his encouragement and
friendship have been invaluable throughout my studies at UNSW. Mark’s academic
excellence continues to be a source of inspiration, but beyond that I am especially

grateful for his limitless patience and fatherly support during trying times.

Special thanks are due to Professor Brian Uy who co-supervised the work in this thesis
and who also supervised my undergraduate thesis. I owe much of my insight and
interest in structural engineering research and teaching to his inspiring lectures and
exceptional guidance during my undergraduate studies. Brian’s unfailing support,

friendship and encouragement throughout the years are greatly appreciated.

My sincere thanks are due to Professor lan Gilbert, the Head of School, who has been
most accommodating and caring over last few years. I would also like to thank all the
rest of the academic and general staff in the School for their help with the preparation of
this thesis. Further thanks must also be warmly extended to my students here at UNSW

for making this whole experience such an enjoyable one.

I am very grateful to the Faculty of Engineering for providing a scholarship that enabled

me to join the School.

For all the good time during the PhD years, I am thankful to my family, colleagues and
friends from UNSW and around the world. But above all, I would like to express my
loving appreciation to my parents, who are never-ending source of love, support and

inspiration.



TABLE OF CONTENTS

Synopsis

Preface
Acknowledgments
Table of Contents

Notation

VOLUME |

Chapter 1 Introduction

1.1 STATEMENT OF THE PROBLEM

1.2 AIM AND SCOPE OF THE THESIS

Chapter 2 Literature Review

2.1 INTRODUCTION

2.2 LATERAL-TORSIONAL BUCKLING

2.3 UNRESTRAINED LATERAL-DISTORTIONAL BUCKLING
2.3.1 General
2.3.2 Elastic Distortional Buckling
2.3.3 Inelastic Distortional Buckling

2.4 RESTRAINED LATERAL-DISTORTIONAL BUCKLING
2.4.1 General
2.4.2 Elastic Distortional Buckling

2.4.3 Inelastic Distortional Buckling

vii

Vi

vii

16

18

19
20
23
25
25
25
30



2.4.4 Experimental Investigations
2.5 LOCAL BUCKLING

2.5.1 General
2.5.2 Local Buckling in Continuous Composite Beams
2.5.3 Nonlinear Buckling
2.6 SPLINE FINITE STRIP APPROACH
2.6.1 General
2.6.2 Finite Strip Method of Analysis
2.6.3 Spline Finite Strip Method

2.7 SUMMARY

Chapter 3 Elastic Buckling Modes in Continuous
Composite Tee Beams

3.1 INTRODUCTION
3.2 CONTINUOUS COMPOSITE BEAMS
3.3 DESIGN METHODS FOR DISTORTIONAL BUCKLING
3.4 THEORY
3.4.1 General
3.4.2 In-Plane Analysis
3.4.3 Out-of-Plane Analysis
3.5 NUMERICAL INVESTIGATIONS

3.56.1 General
3.5.2 In-Plane Behaviour
3.5.2.1 Effects of the Steel Cross-Sectional Area Parameter
3.5.2.2 Effects of the Concrete Slab Cross-Sectional Area Parameter

3.5.2.3 Effects of the Steel Reinforcement Area Parameter

viii

33
35
35
36
39
41
41
42
43
46

49
51
54
57
57
57
58
59
59
59
60

61
61



3.6.2.4 Effects of the Concrete Compressive Strength Parameter
3.5.3 Out-of-Plane Behaviour

3.5.3.1 Model Verification

3.5.3.2 Buckling Behaviour

3.5.3.3 Buckling Modes

3.5.3.4 Bracing Effects

3.6 QUASI-VISCOELASTIC SLAB BEHAVIOUR

3.6.1 General
3.6.2 Numerical Results

3.7 SUMMARY

Chapter 4 Elastic Restrained Distortional Buckling of
I-section Members

4.1 INTRODUCTION

4.2 BUCKLING MODEL

4.3 VERIFICATION OF MODEL
4.3.1 Convergence studies
4.3.2 Model verification

4.4 PROPOSED DIMENSIONLESS PARAMETER, y

4.5 NUMERICAL INVESTIGATIONS

4.5.1 General

4.5.2 Continuously restrained I-beam
4.5.2.1 Doubly symmetric I-section
4.5.2.2 Design Example
4.5.2.3 Monosymmetric |-section

4.5.3 Continuously restrained beam-column

4.5.3.1 General

ix

61
61
62
63
63

64
65
65
67
69

99

102
109
109
110

111

111
111
112
112
113
115
119

119



4.5.3.2 Second-Order Non-Linear Elastic Analysis
4.5.3.3 Verification of solution

4.5.3.4 Buckling Analysis
4.6 SUMMARY
4.7 APPENDICES
4.7.1 Flange Stiffness Matrix
4.7.2 Flange Stability Matrix
4.7.3 Restraint Stiffness Matrix
4.7.4 Web Stiffness (Kernel) Matrix

4.7.5 Web Stability (Kernel) Matrix

Chapter 5 Inelastic Restrained Distortional Buckling of

I-section Members

5.1 INTRODUCTION
5.2 RESIDUAL STRESSES
5.3 THEORY
5.3.1 General
5.3.2 In-plane analysis
5.3.3 Out-of-plane-analysis
5.3.4 Work done during buckling
5.4 METHOD OF SOLUTION
5.6 ACCURACY OF SOLUTION
5.5.1 Convergence studies
5.5.2 Model verification

5.6 BUCKLING STUDY

5.6.1 Buckling strength of |-section beams

120
122

123

126
128
128
128
129
129
130

165
167
170
170
171

173
179
182
183
183
183
186

186



5.6.1.1 General
5.6.1.2 Doubly symmetric I-beams
5.6.1.3 Monosymmetric [-beams
5.6.2 Buckling strength of I-section beam-columns
5.6.2.1 General

5.6.2.2 Numerical studies

5.7 SUMMARY

VOLUME II

xi

186
186
190
193
193

196

197

Chapter 6 Bubble Augmented Harmonic Semi-Analytical

Finite Strip Method

6.1 INTRODUCTION
6.2 THEORY
6.2.1 General
'6.2.2 Displacements
6.2.3 Strains
6.2.4 Stresses
6.2.5 Stiffness and Stability Matrices for a Strip
6.2.6 Buckling Solution
6.3 NUMERICAL ANALYSES
6.3.1 General
6.3.2 Plates
6.3.3 Plate Assemblies

6.4 SUMMARY
6.5 APPENDICES

6.5.1 Displacement Matrices

258
260
260
260
263
264
264
266
267
267
267
268
269
271

271



xii

6.5.2 Nonlinear Strain Matrix 273
6.5.3 Orthotropic Property Matrix 274

6.5.4 Transformation Matrix 275

Chapter 7 Elastic Bubble Based Spline Finite Strip Method

7.1 INTRODUCTION 292
7.2 SPLINE FINITE STRIP METHOD OF ANALYSIS299 293
7.3 METHOD OF ANALYSIS 294
7.3.1 General 294
7.3.2 Bs;-Spline Function 295
7.3.3 Bubble Functions 296
7.4 DISPLACEMENTS 297
7.4.1 Flexural Displacements 297
7.4.2 Membrane Displacements 298
7.4.3 Modification for Boundary and Interior Supports 299
7.4.4 Flexural Stiffness and Stability Matrices 301
7.4.5 Membrane Stiffness and Stability Matrices 304
7.5 TRANSFORMATION TO GLOBAL COORDINATES 306
7.6 SOLUTION OF BUCKLING EQUATION 307
7.7 CONVERGENCE AND ACCURACY OF SOLUTION 308
7.7.1 General 308
7.7.2 Square and Rectangular Plates 308
7.7.3 Stiffened Plates 309
7.7.4 Rectangular Plates with Internal Supports 311
7.7.5 Plate Assemblies 312

7.8 NUMERICAL STUDIES 312



7.8.1 Plates

7.8.2 Composite T-section beams

7.8.3 Composite T-section Beams with Longitudinal Stiffener
7.9 SUMMARY
7.10 APPENDICES

7.10.1 Flexural Stiffness Matrix
7.10.2 Flexural Stability Matrix
7.10.3 Membrane Stiffness Matrix

7.10.4 Membrane Stability Matrix

Chapter 8 Inelastic Bubble Based Spline Finite Strip
Method

8.1 INTRODUCTION
8.2 THEORY
8.3 IN-PLANE ANALYSIS
8.3.1 General
8.3.2 In-plane cross-sectional analysis
8.4 OUT-OF-PLANE ANALYSIS
8.5 SOLUTION OF BUCKLING EQUATION
8.6 ACCURACY OF THE METHOD
8.7 INELASTIC NUMERICAL STUDIES

8.7.1 General
8.7.2 Simply supported I-section members
8.7.3 Continuous |-section members

8.8 SUMMARY

8.9 APPENDICES

xiii

312
314
317
319
321

321
322
323

325

421
423
424
424
425
427
428
429
430

430
430
432

433

434



8.9.1 The force method of analysis

8.9.2 Property matrices

Chapter 9 Concluding Remarks

9.1 CONCLUSIONS

9.2 FURTHER RESEARCH

REFERENCES

APPENDIX

Xiv

434

437

458
463



NOTATION

Cross-sectional area;

Bubble polynomial coefficients;

Concrete cross-sectional area;
Reinforcement cross-sectional area;
Cross-sectional area of the joist;

Area of the added weld metal;
K(1)-G(a);

Welding process constant (8,000 N/mm?);
Strain matrix;

Flange strain matrix;
Web strain matrix;

Coefficients matrix;
Plate properties;
Plate properties;

Elasticity matrix;
Flange elastic property matrix;
Web elastic property matrix;

Young’s modulus of elasticity;

Young’s modulus of elasticity for steel and concrete respectively;
Tangent modulus;

Young’s modulus in x and y direction respectively;

Flexural rigidity of the flange about an axis through the web;
Warping rigidity;

Plate properties;

Tendon force;

Compliance function;

Shear modulus;

Inelastic shear modulus;

Top and bottom flange Saint-Venant’s torsional rigidity;

Stability and stiffness matrix of folded plate system;

XV
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Ir Second moment of inertia of flange = (1/12) b/,

I, Warping constant;

I, I, Second moment of inertia of cross section about x and y-axis

respectively;

J Torsional constant;

Jr, Jp Top and bottom flange Saint-Venant’s torsional constant;

K Dimensionless beam parameter;

K Monosymmetric I-beam parameter;

L Beam length; Length of a strip;

M Bending moment;

M, Applied bending moment;

Mg Elastic critical buckling moment, distortional buckling;

M, Reference value of M(£), numerically greatest bending value; First order
bending moment; Primary structure bending moment;

Mo Elastic critical buckling moment, classical solution;

My, Elastic critical buckling moment, distortional buckling;

M., Elastic critical buckling moment;

M., Inelastic critical buckling moment;

Mp Plastic moment;

Ms Bending moment in the joist;

My Bending strength of the steel in the absence of compression;

M, M,, M,, Bending moments about x and y axis and twisting moment;

My First yield moment;

M Flexural and membrane displacements equations matrix;

N Axial load;

N, Applied axial load;

N, Elastic critical buckling load;

N, Reference value of N(£), numerically greatest axial value;
Noa Elastic critical buckling load, distortional buckling;

Ny Euler buckling load;

Ns Axial force in the joist;

N Compressive strength of the steel in the absence of bending;

Ny Section capacity in compression;



Ur, Uy

Membrane (linear) interpolation polynomials;
Flexural (cubic) interpolation polynomials;
Bubble function polynomial,

Applied point load;

Ultimate point load;

Support reaction;

Transformation to global coordinates matrix;
Vector of incremental actions;

Plate properties;

Tangent stiffness matrix;

Transformation matrix for boundary and interior supports;
Total strain energy stored during buckling;

Flange and web contributions to U,

Flexural strain energy;

Membrane strain energy;

Restraint contribution to U,

Total work done during buckling; Shear force;

Applied shear Force;

Flange and web contributions to V;

Flexural contribution to total work done during buckling;
Membrane contribution to total work done during buckling;
Bubble polynomial;

Redundant unknown reaction;

Elastic section modulus = L,/y;

Elastic section modulus of the joist;

Coefficients in the expression M(&) = M, (a; + ax¢ + a3§2 + a4¢53 );
Strip width;

Flange width;

Stiffener width;

Constant;

The half-width of the residual tensile stress block;
Moment gradient caused by unequal end moments;

Longitudinal stiffener position;

xvii



xviii

e Eccentricity;
ey er End eccentricities;
fe Concrete compressive strength (28 days);
Si Flexibility coefficient;
fi Flexural tensile strength of concrete;
5 Yield stress;
2.k Strip stability and stiffness matrix respectively;
g..k, Kernel strip stability and stiffness matrix respectively;
gr 8y Strip stability flexural and membrane matrix, respectively;
h Section width; Web depth;
hy Web depth;
k Local buckling coefficient;
k. Column effective length factor;
k; Continuous translational restraint;
k, Continuous twist rotation stiffness;
k Member stiffness matrix;
l?F K, Flange and web stiffness matrix, respectively;
k:.k,, Strip stiffness flexural and membrane matrix, respectively;
ke Restraint stiffness matrix;
m Number of sections; Bending moment due to unit value of the redundant
action;
n Number of nodal lines; Number of terms in the Fourier expansion;

Number of buckling half wavelengths over the length L of the strip

ns Number of strips;

Ty Radius of gyration about x-axis;

r Vector of generalised incremental displacements;

5 Member stability matrix;

S, Sy Flange and web stability matrices, respectively;

sgn Sign (+ve or —ve);

q Maximum values of buckling deformations; Vector of buckling

displacements, eigenvector;

q1 92 93 Buckling degrees of freedom;
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t Strip thickness; Time in days;

tr Flange thickness;

ts Stiffener thickness;

tw Web thickness;

uv,w Strip deflections in x, y, z direction respectively;

u’p In-plane lateral rotation of the bottom flange;

ur, upg Top and bottom flange lateral deformations;

U, Up Top and bottom flange lateral deformations;

U Flange strut buckling deformation;

Uy, Uy Support displacements;

7} Buckling deformations vector;

w Uniformly distributed load in z-direction;

Wg Bubble degree of freedom;

w, Ultimate uniformly distributed load;

XYz Cartesian axes aligned with strip;

A4 Web flexibility per unit length in U-frame model;

A Vector of buckling displacements, eigenvector;

A, Vector of buckling displacements in global direction;
I1 Total potential energy;

o Dimensionless twist restraint parameter; Stress gradient;

a, 5,7, 6, ® Displacement coefficients;

o Critical buckling moment coefficient;

a Stiffness in Winkler type tensionless foundation;

Oy Brace location parameter;

a Vector of coefficients;

Jij Orientation of a strip; Ratio of the smaller to the larger end moment;
EFN2(1-V);

pr. Ps Ratios of the inelastic to total areas of the full top and bottom flanges
respectively;

yis Monosymmetry section constant;

o First variation; Beam-column deflection;

S Approximate factor for amplifying the first order moments;
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Eoi

Fourier series coefficients;

Beam-column slope;

Beam-column curvature;

Vector of buckling displacements in local coordinate system;
Applied strain;

Strain-hardening strain;

Linear and non-linear component of strain in strip, respectively;

Strain at the top of cross-section;
Residual strain;

Residual compressive strain;
Shrinkage strain;

Shrinkage strain final value;
Yield strain;

Generalised flange strain vector;
Linear strain vector;

Non-linear strain vector;

Generalised web strain vector;

Creep coefficient;

Creep coefficient final value;

Top and bottom flange twist;

Top and bottom flange twist;
Proposed restrained-distortional buckling parameter;
Web distortion parameter;

Vector of local degrees of freedom;
yib;

Curvature;

Load factor;

Critical buckling load factor;

Long term buckling load factor;

Modified slenderness 4, =M, /M, ;

XX
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Reference buckling load factor;

Short term buckling load factor;

Poisson’s ratio;

Poisson’s ratio in x and y direction respectively;
3.1415927;

Monosymmetry parameter;

Curvature in the x and y directions and shear strain, respectively;
Rotation about z-axis of edge of strip;

Buckling stress = M(&)/Z;

Axial stress;

Bending stress;

Critical buckling stress;

Lateral-torsional critical buckling stress;

Residual stress;

Residual compressive stress;

Total buckling stresses;

Longitudinal and transverse stresses, respectively;
Yield stress;

Longitudinal compressive stress at nodal lines 1,2 respectively of a strip;
Shear stresses;

z/L;

Local Bs-spline function;

Bubble degree of freedom,;

Matrix;

Determinant of matrix;
Diagonal matrix;

Row vector;

Column vector.
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1.1 STATEMENT OF THE PROBLEM

Instability is probably the most common cause of failure of a steel member, and may be
instigated by various buckling phenomena. From a fundamental point of view, these
buckling phenomena can be divided into three main categories, namely local, global and
distortional. Local buckling is a characteristic form of instability in members composed
of slender plate elements in which the member element is considered to buckle by
locally distorting over a short length of the member with a half-wavelength of the order
of the member width, as shown in Fig. 1.1a. Global or lateral instability (Fig. 1.1b)
occurs when a laterally unbraced member, which is bent about its stiffer plane, buckles
out of the plane of loading by deflecting laterally and twisting with a half-wavelength of
the order of the member length without any distortion of the cross-section. On the other
hand, lateral- distortional buckling is basically an interaction mode between lateral-
torsional and local buckling. This buckling mode takes place at longer half-
wavelengths than local buckling and is characterised by simultaneous lateral deflections
and cross-sectional distortion (Fig. 1.1c). The usual buckling assumption in overall
buckling that no distortion of the cross-section occurs during buckling (Vlasov 1961)
does not apply to this buckling mode. These instability modes are all bifurcative, which
has proven to be a convenient way to study the phenomenon, in that they occur at a
point of bifurcation from a stable primary straight unbuckled configuration to a stable or

neutral secondary buckled configuration.

Distortional buckling of unrestrained beams of practical configuration usually takes
place at a load that is not significantly less than that for lateral buckling. Restrained-
distortional buckling (RDB), however, is fundamentally different to the more commonly
studied distortional buckling of laterally unrestrained beams and can have a profound
influence on the buckling behaviour of beams with continuous restraint at the level of
the tension flange (Bradford 1998a; Ronagh & Bradford 1998; Lee 2001). The overall
mode of buckling in composite steel-concrete tee-beams in regions of negative bending
(Fig 1.2) and in half-through girder bridges (Fig. 1.3) is what is herein termed
restrained-distortional buckling. Many other structural elements, such as roof and wall
cladding, which are intended primarily for other purposes, also provide restraints

against buckling, as illustrated in Fig. 1.4, and advantage is taken of this in design. For



example, rafters in industrial buildings are usually restrained against buckling by purlins
attached to one flange, and which when spaced reasonably close enough can be
considered as continuous since the purlin/cladding system provides diaphragm and

flexural restraint.

The buckling aspects involved in continuously restrained members are far more
complex, and much less understood, than those involved in lateral or local buckling of
bare steel beams. Distortional buckling analyses are invariably more complex than
either local or lateral buckling analyses alone, since each cross-section of a member is
free to both distort and displace. The distortional nature of this buckling mode, with its
inherent additional complexities, means that no tangible closed form solution has yet
been developed for this type of buckling. While research findings that deal with
restrained beams are fairly plentiful, most have incorrectly ignored the effects of cross-

sectional distortion.

One of the most difficult beam buckling problems to analyse accurately is the buckling
of a steel joist in a continuous composite beam, and despite many investigations, the
mechanics of this problem has not yet been correctly or comprehensively quantified.
These difficulties arise because the buckling mode is lateral-distortional rather than
lateral-torsional, because the joist is subjected to combined bending moments and axial
forces that vary along the length of the span, as shown in Fig. 1.5, and because there is
no evidence that the conversion of the elastic buckling load factor to a strength load
factor that incorporates yielding is the same for lateral-distortional buckling as it is for
lateral buckling. In negative bending the slab restrains the tension region of the steel
and the neutral axis is not located at the mid-height of the web. The neutral axis is
shifted towards the top flange, and in negative bending the steel region is subjected to
predominantly compressive loading. The steel joist in such a composite beam is not
only subjected to varying bending moments, but also to varying axial actions that can be
compressive at the internal support and tensile near the simply supported end.
Unbalanced axial force in the joist arises from maintaining equilibrium of the
monosymmetric steel/concrete cross-section at the level of the shear connection, and
varies along the length of the joist in accordance with the gradient of the bending
moment. Few studies, if any, have addressed the problem of the buckling of a steel

beam-column with both continuously varying axial force and bending moment. In



addition, the web usually carries proportionally higher shear loads than in ordinary steel
beams (Climenhaga & Johnson 1972). The lateral-distortional buckling resistance of
the steel portion in continuous composite beams is therefore dependent on the extent to
which the web can provide a restraining action to the unstable compression flange. This
form of buckling is usually prevented in bridge girders by the cross bracing as
illustrated in Fig. 1.6, and the common view amongst engineers is that such bracing is

excessive and uneconomical.

The utilisation of half-through girders in bridge construction is most usually a result of
constraints on headroom. They find very frequent use in railway bridges over
roadways, where the flat grade of the railway is predetermined and it is difficult to
provide a substructure to support the bridge deck. Half-though girder bridges provide a
load path from the bridge deck to the bearing supports by means of bottom flange
loading of parallel steel I-section beams. Because of this, the I-section beams of simply
supported half-through girders experience compression in their top flanges and tension
in their bottom flanges. At the level of the bottom (tension) flange, the deck restrains
the flange against lateral and minor axis rotational deformations during buckling, and
depending on the stiffness of the deck in flexure transverse to the longitudinal axis of
the bridge, it provides some theoretically quantifiable degree of twist rotational
restraint. At the level of the top (compression) flange of the I-section, restraint of this
critical flange against buckling is provided only by the flexural stiffness of the web in
the plane of its cross-section, or by the flexural stiffness of the web/stiffener
contribution. The major consideration in the design of half-through girders is that of
instability of the steel beams, and this mode of instability must necessarily be that of

RDB (Bradford 1997a; Ronagh & Bradford 1998), as shown in Fig. 1.3.

The most common model for considering RDB in design is the so-called U-frame
method (Oehlers & Bradford 1995, 1999), in which the top compression flange of the I-
section is considered as a strut compressed uniformly along its length by the maximum
bending stress that is induced in it, and which is restrained by a continuous Winkler
spring whose stiffness is that of the web in the plane of its cross-section acting as a
cantilever, as illustrated in Fig. 1.7. This simplistic model appears in some national

bridge codes. In reality, half-through girder bridges and continuous composite beams



are generally used in situations in which there is considerable moment gradient, and so

the U-frame approach tends to be conservative, excessively so in most cases.

Local and distortional instabilities of the steel beam occur in the hogging-moment
region in a continuous composite beam and these forms of buckling have been
recognised to be highly interactive (Dekker ef al. 1995). Existing studies (Bradford &
Kemp 2000) have indicated that significant differences exist between the behaviour of
composite and steel beams, and their study identifies that further research is required to

understand the implications of these differences, specifically:

(1) the influence of distortional restraint provided by the slab and the shear
connection to combined global and local buckling of the compression flange
and adjacent web, and the interactive nature of this buckling;

(i)  the area of longitudinal slab reinforcement at internal supports relative to the
area of the steel section;

(iii))  the difference in the buckling behaviour of elastic, inelastic and plastic

members.

Although buckling of plain steel beams in both the elastic and inelastic ranges of
structural response has been studied extensively and a great deal of research work has
been devoted to the understanding of their buckling modes, and codes of practice for
the design of structural steelwork contain relevant clauses that presently are considered
to be quite accurate, buckling of the steel component in composite beams still
represents a grey area in structural engineering research and is much less well
documented. Whilst buckling of the steel component in a continuous composite beam
and a half-through girder bridge is of major practical significance, and significant
research has been devoted into its prediction, the development of even moderately
accurate design rules suitable for practising structural engineers has not been achieved
to date. Designers need simpler and less conservative methods of checking the

resistance to buckling of such commonplace structural configurations.

This thesis thus addresses comprehensively the issue of restrained-distortional buckling
in both half-through girder bridges and composite tee-beams in hogging bending

regions.



1.2 AIM AND SCOPE OF THE THESIS

The aim of this thesis is to study theoretically the behaviour of continuously restrained
structural systems, such as continuous composite beams and half-through girder
bridges, and to provide some practical guidance pertaining to their design. This aim is
achieved by developing theoretical models for studying the RDB of half-through girder
bridges and continuous composite beams under transverse loading and moment
gradient. These numerical models have been programmed for a digital computer, and
the results have been compared with independent theoretical solutions and published
test results where possible. Furthermore, a bubble based spline finite strip method of
analysis has been formulated in order to investigate the interactive nature of local and
distortional buckling, as well as the difference in the buckling behaviour of plates and

plate assemblies in the elastic and inelastic range of structural response.

In Chapter 2, the existing work reported in the published literature on the buckling
modes of I-section beams, columns and beam-columns is reviewed. A review of the
classical local, lateral and lateral-distortional modes of buckling, and their interaction is
presented and this is followed by a chronological development of the spline finite strip

method of analysis for buckling problems.

Chapter 3 presents the results of a numerical buckling analysis of a two-span composite
tee-beam that is cast unpropped, as would normally be the case for highway overpass
bridges. The elastic solutions presented indicate the effect of restraint conditions over
the interior support and of bracing of the bottom flange of the composite beam, the
ratios between axial and bending stresses in the steel joist for both propped and
unpropped construction and the influence of the time effects of shrinkage and creep of

the slab on the erosion of the buckling load factor.

The elastic buckling of simply supported I-section members is considered in Chapter 4.
By invoking a Ritz-based procedure, a simple generic model is developed that may be
used for studying the elastic RDB of I-members restrained completely and continuously
against lateral translation and lateral rotation at one flange level, but elastically against

twist rotation at this flange level, when subjected to moment gradient. This situation is



encountered in half-through girder bridges. A unique dimensionless parameter that
quantifies the influence of a number of material and geometric factors on the restrained-
distortional buckling solutions is identified in the model, and is used to provide useful
design graphs. Some guidance pertaining to the design of half-through girders is

provided, and this is illustrated with an example.

The analysis developed in Chapter 4 is extended in Chapter 5 to include inelasticity as
well as residual stresses, so that predictions of buckling strengths may be made.
Inelasticity is of particular significance in fabricated I-section members, such as welded
plate girders, because the welding process results in levels of residual stresses that are
typically higher than those in hot-rolled beams. The variations of the residual stresses
across the flanges are nearly uniform in welded beams, and once flange yielding is
initiated, it spreads quickly through the flange with little increase in moment. This
causes large reductions in the inelastic buckling moments of members. The energy
method is employed to study the relationship between elastic RDB and yielding for an I-
section member restrained by concrete medium at the tension flange level and some
results are reported that address the influence of geometry, residual stresses, member

length and restraint stiffness for the inelastic RDB.

In Chapter 6, the traditional harmonic based finite strip method is augmented by so-
called bubble functions in the form of orthogonal Legendre polynomials in order to
evaluate their efficiency in calculating the elastic buckling capacities of isolated plates

and their assemblies, which may buckle locally, laterally or in a distortional mode.

In Chapter 7 a bubble-augmented elastic spline finite strip method of analysis is
developed. The finite strips admits both flexural and membrane buckling deformations.
The method allows for consideration of structures with intermediate supports and a
variety of conditions that may be prescribed at the ends of a plate or plate assembly.
The method is deployed to study parametrically elastic behaviour of plates and plate

assembilies.

Chapter 8 then modifies the bubble augmented spline finite strip method to account for

inelastic behaviour, so that buckling strengths may be predicted. The numerical studies



of this chapter focus on buckling characteristics of single span and two-span composite

T-section beams in the inelastic range of structural response.

Finally, Chapter 9 summarises some of the most important conclusions, which have
resulted from the work presented in this thesis. Also included in this chapter is an
outline of future research, which would extend and augment the numerical studies

presented in this thesis by suggesting possible avenues for further research.
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Figure 1.6 Cross-bracing
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2.1 INTRODUCTION

In a composite steel-concrete tee-beam subjected to negative or hogging bending and in
a simply supported I-section half-through girder bridge, instability of the steel web and
compression flange becomes a design problem. The most important modes of failure
occurring in continuous composite beams and simply supported half-through girder
bridges are local flange, local web and lateral-distortional buckling, and these forms of
buckling have been identified as being highly interactive in the hogging moment region
of continuous composite beams. If these buckling modes are prevented, large rotational
capacities can be achieved beyond the plastic moment of resistance and advantageous
plastic design is possible. Consequently, significant economies can be achieved in
continuously restrained I-beams that are designed using rigid-plastic principles (Oehlers
& Bradford 1999), and the moment redistribution that is possible due to the ductility of

such beams is desirable prior to failure.

Whilst cross-sectional proportioning to achieve the necessary moment redistribution in
the hogging region has been quantified fairly accurately (Bradford & Kemp 2000), the
problem of overall or global member buckling has received much less attention.
Although the lateral-distortional buckling of isolated beams has been studied quite
extensively (Bradford 1992a; Lee 2001), there appears to have been very little research
undertaken on the distortional buckling of continuous beams (Svensson 1985; Johnson

& Fan 1991; Bradford & Ge 1997; Lee 2001).

The distortion of the web during buckling could be significant in a variety of problems,
and if not considered may lead to erroneous results. Essa and Kennedy (1994, 1995),
who investigated a collapsed roof structure in Vancouver, have shown that the
reductions of the lateral-torsional buckling load due to web distortion for restrained I-
section members are substantial. Because lateral-distortional buckling is basically an
interaction mode between lateral-torsional buckling and local buckling (Hancock et al.
1980), there are many factors influencing the phenomenon, and the derivation of general
solutions is not straightforward even for an unrestrained section. The amount of

distortion depends on various parameters such as the degree of flange restraint, torsional
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stiffness of flanges, web/flange thickness ratio, member slenderness, boundary
conditions at the supports and the moment distribution along the beam. Although an
approximate closed-formed solution for the case of uniform bending has been derived
(Hancock et al. 1980), its use is cumbersome and the general lateral-distortional
buckling solution for the case of moment gradient and with the incorporation of
restraints requires a computer program, which is generally only a research tool, and was
unavailable until the last few decades which have seen the development of high-speed
digital computers and ‘advanced’ commercial software packages. Design codes of
practice attempt to approximate this behaviour, but when applied particularly to

distortional buckling their accuracy is at best questionable.

Thin-walled structures, especially columns and beams, are able to sustain load after
local buckling; the determination of their load carrying capacity requires consideration
of the interaction of buckling modes and imperfections in the non-linear analysis of
stability. Due to inevitable imperfections, the actual buckling behaviour of a beam is
different from that of the idealised one. It is well known that under certain conditions
of geometry and loading, linear analysis of structures leads to unacceptable and
inaccurate results. Thus numerous methods have been developed for nonlinear
analysis, which usually permit simultaneous analysis for bifurcative buckling in the
form of a linear eigenproblem. However, to ensure safe, reliable structures, accurate
deterministic numerical methods for nonlinear analysis (along with probabilistic

methods) are needed.

This thesis therefore addresses the issue of restrained-distortional buckling (RDB) in
both half-through girder bridges and composite tee-beams with hogging bending
regions, and considers the most important buckling modes and their interactions that are
typical in such structural systems. This chapter reviews the phenomenon of lateral-
torsional and lateral-distortional (unrestrained and restrained) buckling, considering
elastic and inelastic behaviour separately. Experimental and theoretical results and
design implications are considered. Subsequently, the local buckling phenomenon and
recent research into elastic postbuckling behaviour and nonlinear interaction of
buckling modes are presented. Azhari (1993) reviewed the literature on the elastic,

inelastic and post-local buckling behaviour of plates and plate assemblies extensively
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prior to 1993, as well as the literature on their methods of analysis. Since an extensive
review of local buckling in plates and plate assemblies has already been given by a
number of authors (Timoshenko & Gere 1970; Allen & Bulson 1980), the review of
work on local buckling behaviour is limited in this chapter primarily to local buckling
in restrained I-sections. Finally, the finite strip method of analysis, with main emphasis
on spline finite strip method for buckling analysis, is reviewed at the end of this

chapter.

2.2 LATERAL-TORSIONAL BUCKLING

This form of buckling is also called flexural-torsional buckling and is significant for
slender I-section members whose resistances to lateral bending and torsion are low. The
elastic flexural critical load of a centrally loaded prismatic column was first derived by
Euler in 1744 (Euler 1759). At this load, buckling occurs in a principal plane without
rotation of the cross-section. However, for some thin-walled open sections, such as an
I-section, torsional buckling may occur, and indeed does occur for many cross-sections

such as cruciform shapes.

The early investigations on lateral-torsional buckling of I-section members date back to
the beginning of the last century (Prandtl 1899; Michell 1899; Timoshenko 1910, 1913)
when the closed form solutions for beams under equal and opposite end moments were
first launched. The work by the Australian engineer Michell (1899) is usually
acknowledged to be the foundation study. Timoshenko and Gere (1970) studied the
buckling behaviour of transversely loaded I-beams and cantilevers, and reported many
previous studies. Lateral-torsional buckling of beams, columns, beam-columns and
frames has been a subject of widespread research since the early twentieth century and
general design methods have been proposed by Timoshenko (1924), De Vries (1947),
Salvadori (1955), Kerensky et al. (1956), Clark and Hill (1960), Trahair (1966),
Nethercot and Rockey (1971), Nethercot and Trahair (1975, 1976), Cuk (1984), SSRC
(1988), Trahair (1993) and Trahair and Bradford (1998). The effects of monosymmetry
were addressed by Kitipornchai and Trahair (1980), Kitipornchai er al. (1986),
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Kitipornchai and Wang (1988a, 1988b) and Bradford and Cuk (1988). The first
comprehensive studies on tapered I-steel beams appear to be those of Kitipornchai and
Trahair (1972, 1975) followed by investigations carried out by Lee ef al. (1972),
Nethercot (1973b), Bradford and Cuk (1988), Bradford (1988c), Bradford (1989a) and
Bradford and Ronagh (1997b).

The elastic lateral-torsional buckling of I-sections is well understood and full treatments
are given in standard texts (Bleich 1952; Vlasov 1961; Timoshenko & Gere 1970; Allen
& Bulson 1980; Trahair & Bradford 1998; Trahair et al. 2001), with a highly
comprehensive treatment being given by Trahair (1993). Although the studies of elastic
lateral-torsional buckling of I-sections appear plentiful, a somewhat more limited
amount of research is available on inelastic lateral-torsional buckling of steel I-sections.
The main reason for this deficiency is the need for a complex buckling theory that
incorporates the effects of monosymmetry in the cross-section and non-uniformity

effects along the beam that follow the commencement of yielding.

2.3 UNRESTRAINED LATERAL-DISTORTIONAL

BUCKLING

2.3.1 General

The first reported study of distortional buckling appears to be that of Nylander (1943),
although it appears the topic had been researched a little earlier. Nylander investigated
the effect of web distortion on the lateral buckling of I-beams. Later Okumura (1950)
and Naka and Kato (1961) extended these studies into the buckling of I-shaped girders.
Scheer (1959) considered the web plate as an assembly of longitudinal strips subjected
to pure compression. Suzuki and Okumura (1961) investigated the influence of cross-
sectional distortion on the flexural-torsional buckling using a closely related folded
plate method of analysis. A more refined folded plate analysis, which accounted for the

plate torsion actions in the web, was developed later by Kollbrunner and Hajdin (1968).
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Goldberg et al. (1964) presented a set of eight coupled first order differential equations
for the distortional buckling analysis of members of arbitrary cross-section. The
differential equations were formed by coupling the membrane and plate bending
equations. Baar (1968) also derived a set of four differential equations connecting the
displacements and twists of the flanges of an I-section member. His model could

account for the presence of elastic translational restraint of one of the flanges.

Kristek and Studnicka (1975) presented a matrix method for analysing stability
problems in thin-walled structures based on their so-called elasticity theory of folded
plates. The method covered the distortional buckling of thin-walled members of
deformable cross-section. The analytical technique was based on the static solution of
folded plates using a harmonic technique. Studies into lateral-distortional buckling
based on energy methods were pioneered by Protte (1961), Schmied (1967) and Fischer
(1967). Early attempts at applying an accurate analysis appear to be that of Goldberg et
al. (1964), followed by studies of Rajasekaran and Murray (1973), Bartels and Bos
(1973) and Johnson and Will (1974).

Although ground-breaking studies into distortional buckling date back to the 1930’s,
and this concept was presented in Bleich (1952), studies into this buckling mode have
been limited to the last thirty years or so, while many lateral-torsional and local buckling
problems were solved earlier this century. The numerical methods used to determine
accurately the buckling loads of structures have changed significantly, particularly with

the advent of high speed computers.

2.3.2 Elastic Distortional Buckling

Elastic unrestrained distortional buckling is characteristic for intermediate length
members with thin webs (Bradford 1992a). Distortional buckling analyses are
invariably more complex than either local or lateral buckling analyses alone, since each
cross-section of a member is free to both distort and displace. Extensive studies of
elastic distortional buckling (Hancock et al. 1980; Bradford 1983; Lee 2001) have
indicated that distortional buckling will occur at a lower load than elastic lateral

buckling for short beams with slender webs, but often the disparity in these buckling
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loads for unrestrained beams is not great. The majority of the systematic studies
available in the published literature on elastic lateral-distortional buckling have only
been attempted in the last two decades or so, originating mainly from the work of

Australian researchers (Bradford 1992a).

Rajasekaran and Murray (1973) developed a finite element analysis approach of
coupled local and lateral buckling for the wide flange beam-columns. Their analysis
used one dimensional beam elements for North American flanges and flexural plate
elements for the web. A total of eleven degrees of freedom were required at each
longitudinal node. Johnson and Will (1974) later developed a three dimensional
assemblage of thin plate elements having both membrane and bending stiffnesses,
which was a more powerful method than the method of Rajasekaran and Murray. Plate
elements were used for the web and flanges, and therefore the cross-section was
allowed to distort freely. The procedure was advantageous in that it could simulate
complex structures, although its merits were outweighed by computational effort due to
considerable number of degrees of freedom and the restricted capabilities of the
computers at the time. Akay ef al. (1977) then refined this rather complex procedure
into a two-dimensional analysis taking advantage of symmetry about the mid-surface of
the web for the I-sections. Hancock er al. (1980) presented an energy method of
analysis for distortional buckling, which was amenable to simply-supported doubly
symmetric I-beams. Their method made use of a sinusoidal shape function and arrived
at a fourth-order eigenproblem. With some simplification, this eigenproblem was

reduced to a closed form equation.

Some notable studies of the distortional buckling of beams using the finite strip method
belong to Plank (1973), Plank and Wittrick (1974), Hancock (1978, 1980), Sangakkara
(1978), Lau and Hancock (1986) and Bradford (1989b). Conventional rectangular
finite elements with a plane stress-bending formulation result in an extremely
inefficient modelling of the distortional buckling problem. This inefficiency was
successfully overcome by Bradford and Trahair (1981), who developed a beam or line-
type element that incorporated six nodal degrees of buckling freedom. Cubic
polynomials are adopted to model the lateral displacements of the flanges and the web

distortion. Using this method, Bradford and Trahair (1983) investigated the stability of
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beams on seats. Bradford (1985b, 1990a, 1990b) investigated the distortional buckling
of monosymmetric I-beams and T-section beams and Bradford (1990c¢) provided design
formulae for beams with partial end restraints. This element was extended
subsequently to handle flanges of arbitrary shape by Bradford and Trahair (1982), and
this extension was applied to analyse continuous composite bridge girders by Johnson
and Bradford (1983). Subsequent analyses using the method were reported, in which
presence of elastic restraints (Bradford 1988a) and the inclusion of axial force
(Bradford 1990c) were considered. The method, too, provided considerable insight into
the distortional buckling phenomenon for composite tee-beams. Bradford and Gao
(1992) employed the same beam element in an elastic study, which motivated Williams
et al. (1993) to investigate the composite beam buckling problem using their

transcendental buckling formulation.

Bradford (1990b) investigated the stability of monosymmetric beam-columns with thin
webs. Wang et al. (1991) presented a parametric study of the elastic distortional
buckling of simply supported monosymmetric I-section members under a uniform
moment and an axial force. Based on their investigations, a simple empirical buckling
formula was proposed for predicting the moment distortion factor for monosymmetric
beam-columns having equal flange thicknesses. Van Erp and Menken (1991) studied
the buckling behaviour of simply supported T-beams subjected to a central concentrated
load. The spline finite strip method was adopted with Koiter’s initial post-buckling

analysis.

Ronagh and Bradford (1994a) considered the lateral-distortional buckling of tapered
doubly symmetric I-section beam-columns. The finite element method used in their
study is similar to that used by Bradford and Trahair (1981), but they argued their
approach was approximate as the flanges contain in-plane moments (that are akin to a
bimoment) but which are not orthogonal to the shear centre. ‘Ronagh and Bradford
(1994b) considered the parameters affecting distortional buckling of tapered I-section
members and the finite element method developed by the same authors (1994a) was
modified to include the effects of off-shear centre loading and was augmented to
include elastic restraints. Ronagh and Bradford (1994c) made some observations that

are relevant to the finite element method of analysis of lateral buckling from the two
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previous studies of elastic lateral-distortional buckling tapered beams. They discovered
that a boundary term was absent in a very commonly cited formulation, which can
produce erroneous results in some cases. Ronagh and Bradford (1996) presented a two-
dimensional consistent structural idealisation of the finite element method for linear
elastic distortional buckling of tapered I-section members. The flanges were modelled
as beam type elements and the web by serendipity plate elements. The effectiveness of
the method was demonstrated by considering the distortional buckling of a gable frame.

This formulation is not approximate, but may be somewhat inefficient.

Ma and Hughes (1996) developed the energy method to investigate the distortional
buckling of monosymmetric I-beams under distributed vertical load. They employed a
fifth order polynomial for the web displacement and non-linear elastic theory to attain

the external work due to buckling.

Pi and Trahair (1999) investigated the elastic lateral-distortional buckling behaviour of
simply supported beams subjected to uniform bending. Their study showed that cross-
sectional distortion and unequal twist of the flange decreased the torsional rigidities of
the cross-section. A simple approximation for the elastic lateral-distortional buckling
of the beam was proposed by replacing the effective torsional and warping rigidities in

the flexural-torsional buckling equations.

2.3.3 Inelastic Distortional Buckling

While studies of elastic lateral-distortional buckling of I-sections have received quite a
deal of attention in the literature, a very limited amount of research has been reported
on inelastic lateral-distortional buckling of steel I-sections. The main reason for this
dearth of literature is the complexity added to the buckling theory due to the
monosymmetry and non-uniformity in the cross-section and along the member caused
by yielding, in addition to the complexities associated with cross-sectional distortion

and that of the relevant plasticity theory.

The first rational analysis of inelastic lateral-distortional buckling appears to be that of

Bradford (1986a). Bradford (1986a) developed a plate-type element to study the
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inelastic buckling of hot-rolled beams. A parametric study was undertaken to explore
the effect of web distortion on beams subjected to uniform bending and moment
gradient. The study demonstrated that the effect of the web distortion on inelastic
lateral-torsional buckling was minimal for longer span beams, which are governed by

the lateral-torsional buckling.

Bradford (1988b) investigated the inelastic lateral-distortional buckling of welded
- monosymmetric I-beams under uniform bending. The energy-based method developed
for elastic distortional buckling by Bradford and Waters (1988) was modified to
incorporate inelasticity and to take account of the effects of monosymmetry caused by
the yielding of the cross-section. The ‘tendon force model’ of the residual stresses,
developed by the Cambridge group, was utilised. The flanges were modelled as beam
elements, and the minor axis flexural rigidity and torsional rigidity of the flanges as
determined as by Trahair and Kitipornchai (1972). A plate theory was used for the web,
and isotropic and orthotropic plate theory based on the flow theory of plasticity was
deployed for elastic and inelastic regions respectively. The results of Bradford’s study
demonstrated a similarity between the inelastic lateral-torsional and lateral-distortional

buckling loads excluding the case of extremely short beams.

Dekker and Kemp (1998) have shown using a spring model how the elastic warping
coefficient, second moment of area in lateral buckling and the Saint Venant torsion
constant should be adapted to allow for distortional buckling and inelastic behaviour.
The loss in moment resistance caused by cross-sectional distortion was confirmed as

being small.

It is worth pointing out that these studies of inelastic buckling are really ‘quasi-elastic’
since they reduce the cross-section to an effective section whose properties are
determined by the extent of yielding using an appropriate constitutive relationship for
these regions. The buckling solution then reduces to an eigenproblem, albeit that is
generally nonlinear, to define a bifurcation of the equilibrium path. Correct modelling
of inelastic buckling would assume a yield surface (such as von Mises’ yield criterion)
with an associated plasticity rule (such as the flow rule) and hardening. This requires

the finite post-buckling deformations to be monitored whereas the studies cited above
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assume implicitly that these deformations are infinitesimal. It is worth noting too that a
number of ‘advanced’ software packages (ABAQUS 1998) have become available over
the past few years. These differ from the specialist numerical treatments of many
researchers in structural instability, in that they do not, a priory, address the issue of a

generic modelling that identifies the significant parameters in the design space.

2.4 RESTRAINED LATERAL-DISTORTIONAL

BUCKLING

2.4.1 General

RDB is fundamentally different to the more commonly studied and familiar lateral-
distortional buckling of unrestrained beams, and it can have a profound influence on the
buckling behaviour of beams with continuous restraint at the level of the non-critical
flange (Bradford 1998a, 1998b; Ronagh & Bradford 1998). Despite RDB being the
governing buckling mode for many engineering structures that are commonly designed,
such as continuous composite beams and half-through girder bridges, its accurate
prediction is still a grey area in structural mechanics. Even for elastic buckling, the
problem is complex, and recourse needs to be made to a suitable numerical procedure to

handle each individual case.

2.4 .2 Elastic Distortional Buckling

The first study of distortional buckling in composite beams appears to be that carried
out by Hamada and Longworth (1974) using the finite element method. Hancock
(1978) extended his finite strip method to beams subjected to lateral displacements and
continuous torsional elastic restraint applied at the level of the tension flange. Hancock
(1978), Hancock et al. (1980) and Robers and Jhita (1983) showed that during
buckling, laterally unsupported hot-rolled I-beams that are restrained laterally and
torsionally at the supports only remain almost rigid in cross-section. The situation may

be different, however, when a member is fabricated with a slender web, and indeed is
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substantially different when one of the flanges (the non-critical flange) is restrained
against rigid cross-sectional movement. In these cases the member may buckle with the
web distorting, where the deflection and twisting are accompanied by a change in the

shape of the cross-section due to this distortion.

Bradford (1988a) augmented the energy-based method developed by Bradford and
Waters (1988) to include continuous elastic restraints, and investigated the elastic
lateral-distortional buckling of monosymmetric I-beams under uniform bending.
Bradford and Trahair (1981) considered the effects of different end conditions on the
elastic distortional buckling of I-beams under uniform bending using their finite
element method with 6 degrees of freedom at each node. The end conditions
considered in their study ranged from complete restraint to the bottom flange being
restrained against displacement and twist as would occur on a seat support. The effects
of web distortion are increased for short and intermediate length beams where end
displacement or rotations are allowed. Recently, Pi and Trahair (1999) considered the
elastic warping stiffness caused by beam end support conditions and based on their
findings, proposed an approximation for the elastic lateral-distortional buckling of
beams under uniform bending with end warping restraints. Bradford and Trahair
(1983) and Bradford (1989c) studied the lateral-distortional buckling of beams on seat
supports using the beam-element method of analysis developed by Bradford and Trahair
(1981). Bradford and Trahair (1983) proposed a simple design method for beams under

uniform bending with an unrestrained top flange that buckles symmetrically.

Several studies of the distortional buckling of composite beams also appear in the
literature. Johnson and Bradford (1983) and Bradford and Johnson (1987) used the
model of Bradford and Trahair (1982) to conduct a finite element parametric study of
distortional buckling in laterally unstiffened fixed-ended composite bridge girders.
Each beam was modelled as an inverted T-section, which consisted of only the web and
the bottom flange, with the top flange being fully prevented from lateral and rotational
movements. Based on their study, they proposed a design formula against the
attainment of distortional buckling, which was based on a modified slenderness

parameter related to the web depth to thickness ratio.
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The most common model for considering RDB in design, although overconservative, is
the so-called U-frame method (Oehlers & Bradford 1995, 1999), in which the top
compression flange of the I-section is considered as a strut compressed uniformly along
its length by the maximum bending stress that is induced in it, and which is restrained
by a continuous Winkler spring whose stiffness is that of the web in the plane of its
cross-section acting as a cantilever (Fig. 1.7). This produces a simple closed form
solution for the buckling load. A very useful modification of the U-frame model was
developed by Svensson (1985), in which account was taken of the variation of the
bending stress in the strut model, but which retained the tensionless Winkler concept of
restraint by the web. Williams and Jemah (1987) argued that the Winkler model did not
account for torsional restraint, and based on numerical studies suggested that the flange-
strut should be considered as a tee-section with the flange section as its table, and 15%
of the web depth as its stem. This suggestion is empirical, and does not produce exact
results for the elastic critical stress in the flange. Svensson (1985) also presented a
useful modification of the U-frame model to estimate the elastic distortional buckling
stress of composite beams. The method takes into account the variation of the bending
stress in the strut model, by treating the unsupported flange as a column on an elastic
foundation (tensionless Winkler concept) representing the web. Svensson’s method
neglected the contribution of the Saint Venant torsion. Later Goltermann and Svensson
(1987) modified Svensson’s model by allowing for arbitrary continuous rotational
restraint of the upper flange, representing its attachment to the concrete slab. They also
included the contribution of Saint Venant torsion. Williams et al. (1993) further refined
this method by making an allowance for different end conditions and cracking of the
concrete in the tension region. Design curves were presented for the distortional
buckling of a wide range of composite steel-concrete beam sections with the bottom
flange having clamped, simply supported, or free boundary conditions for buckling in

its own plane.

Bradford (1991) presented charts for the prestressing force required to cause elastic
distortional buckling of externally prestressed slender plate girders by using the
analytical method developed by him (Bradford 1990c). Bradford and Gao (1992)
presented a simple method for analysing fixed-ended composite steel-concrete beams

taking into account the difference between its sagging and hogging bending rigidities,
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due to the concrete cracking in tension. Their composite beam was subjected to a
uniformly distributed load and was continuous over an internal support. Using the
virtual work theorem, they were able to determine the moments, shears and axial forces
that are present in the steel joist. These forces were then used in a distortional buckling
analysis to determine the moment at the support, which causes instability of the joist. A
comprehensive range of section properties was analysed, and based on the results a
design proposal to convert the elastic buckling moments into strengths was given.
Williams et al. (1993) followed the simple idea of Bradford and Gao (1992) and
provided design curves for any combination of clamped, simply-supported and free in-
plane end conditions. Their model varied from the method of Bradford and Gao (1992)
in that it compared areas under the curvature diagram of the beam, rather than using the

virtual work approach.

Ronagh and Bradford (1994a) considered the effects of different end conditions on the
distortional buckling of tapered I-beams under uniform bending. The reduction in
buckling stress due to the web distortion was emphasized as the degree of the end
restraint increased. Ronagh and Bradford (1994b) considered restrained tapered I-
section members by augmenting elastic continuous and discrete restraints to the finite
element method developed by the same authors (1994a). The amount of distortion
increases as the restraint is increased, and the presence of these restraints may increase
the unrestrained buckling load. Later Ronagh and Bradford (1996) modified a finite
element method of analysis, previously used by the authors to investigate the elastic
distortional buckling of doubly symmetric tapered I-section beam-columns, to consider
the effects of off-shear centre loading and discrete elastic restraints applied anywhere in

the cross-section or along the length of the beam-column.

Bradford (1997a) developed a rational model for predicting the elastic buckling load of
thin-walled I-section columns, restrained fully against translation and elastically against
twist at one flange and subjected to a uniformly distributed axial force. This study
showed that when the assumption of a rigid cross-section is relaxed, the restrained
column will buckle in a lateral-distortional buckling mode, in which the web of the
column distorts in the plane of its cross-section. In addition, an energy method was

employed to develop an equation for the critical load of an elastically restrained flange
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in the so-called U-frame model (Fig. 1.7). The study has confirmed that the buckling
mode with twist restraint is lateral-distortional, with the free flange, restrained only by
the stiffness of the web, displacing and twisting and the web distorting in the plane of

its cross-section.

Bradford and Ronagh (1997a) concluded that the 12 degree of freedom line element
developed by Bradford and Trahair (1981) is not able to predict the distortional
buckling of restrained I-section members accurately, and as a result extended the
number of degrees of freedom to 16 to investigate the elastic distortional buckling

behaviour of restrained I-section beam-columns by considering a half-through girder.

Bradford and Ronagh (1997b) considered the elastic lateral-distortional buckling of
composite cantilevers, whose steel portion is tapered, under moment gradient. The
finite element method developed by Ronagh and Bradford (1996) was employed in this
study. This study illustrated the effects of the web distortion that occurs in the hogging
region and the differences between the cantilever representation and the continuous
beam were highlighted. This study has shown that the buckling moment of resistance
may be improved significantly by using a vertical stiffener in the region where the

lateral movement of the bottom flange is greatest.

Bradford (1998b) included continuous elastic restraint and discrete flange and web
restraint in the finite element method developed by Bradford and Ronagh (1997a) to
study the elastic distortional buckling behaviour of a cantilever subjected to a tip load.
The buckling loads obtained for translational restraint applied at the top and bottom
flange are not equal to the equivalent minor axis rotational restraint applied at the top
and bottom flange, which is in contrast to Trahair’s (1979) solution based on Vlasov
theoy. There is a discrepancy between his study and AS4100 (1998) for cantilevers
subjected to full continuous restraint at the top flange, but with nodal twist restraint
applied at the nodes, in that the elastic buckling load of a restrained cantilever was
much lower than AS4100 and the prediction of Woolcock er al. (1999). The
distortional buckling load was increased when translational nodal web restraint was

applied at the top flange but little increase was evident when the bottom flange was
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restrained, and the elastic buckling load was not increased when restraint was applied at

the cantilever tip.

Kina and Hanswille (1996) described the basic mechanical models of the design
method in Eurocode 4 for lateral tosional buckling and compared the design rules of
Eurocode 4 with test data (Johnson & Molenstra 1990; Johnson & Fan 1991). The
comparisons of design rules with available test data demonstrated good agreement

between both.

Lindner (1998) studied a steel-concrete composite section consisting of a steel I-section
beam and a concrete slab seated on the top of the beam. Two different solutions
(simplified and more general solution), based on the buckling curves of the Eurocode,
were presented to investigate the minimum coefficient of torsional restraint that causes
web distortion. Hanswille (2000) described a method to determine the elastic critical
moment based on the analogy between the differential equilibrium equations of the
compression member on an elastic foundation and the lateral-torsional buckling
problem. The method was then compared with Eurocode 4 design guidance and it was
found that the method given in Eurocode 4 can lead to unsafe results in the case of

members with unequal end moments and for the end spans of continuous beams.

Bradford’s (1999) study of T-beams was extended to include a rigid brace on the flange
that was assumed to inhibit lateral displacement and twist on the top of the stem. The
presence of a brace increased the buckling load substantially for the more stocky

webbed tees, but had little effect when the web or stem was slender.

2.4.3 Inelastic Distortional Buckling

For plastic design, it is important to ensure that attainment of a plastic mechanism with
its associated redistribution of bending moment will precede inelastic distortional
buckling. The transition from elastic to plastic behaviour in a continuous composite
beam under increasing load involves redistribution of longitudinal bending moments, to
an extent that is greater in a composite beam than in a steel beam. The method reported

by Nethercot and Trahair (1976) established a relationship between the plastic moment
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at which inelastic buckling will occur and the elastic buckling moment, so that this
study forms the basis of the lateral buckling strength curves in a number of national
steel standards. However, it appears that the relationship between the full plastic
moment and the elastic buckling moment at which lateral buckling occurs is different
from that at which distortional buckling occurs (Bradford 1989b), especially if the beam
has a continuous restraint. The beam or line type element method of analysis, originally
developed by Bradford and Trahair (1981), was modified by Bradford (1986a) to
account for inelastic buckling by using the flow theory of plasticity with Lay’s (1965)
shear modulus. It was shown that there was a significant reduction of the elastic
distortional buckling load due to the effects of inelasticity when the tension flange was
completely restrained. Bradford and Johnson (1987) applied the same method to
composite bridge girders and suggested a design rule which was somewhat different to,
and an improvement on that published in 1983 by the same authors. Bradford’s study
in 1989 has reported that the existing design provisions, particularly the Australian

AS4100 Steel Standard and British Bridge Code, are conservative for composite beams.

Bradford (1989b, 1990d) further extended the finite element method developed in 1986
to consider the inelastic distortional buckling behaviour of restrained I-section members.
Bradford (1989b) considered the inelastic distortional buckling behaviour of I-beams
with completely restrained top flanges of a composite girder under moment gradient.
Design curves were proposed based on a parametric study carried out by the author.
Bradford (1989c¢) studied the inelastic distortional buckling of hot-rolled beams with
seat supports under moment gradient and this was verified experimentally by Bradford

and Wee (1994).

An energy-based method developed earlier by Bradford (1988a) was augmented to
include continuous elastic restraint to investigate the inelastic distortional buckling of a
restrained beam by Bradford (1990a). The inelastic lateral-distortional buckling
moments were almost identical for translational and minor axis rotational restraint
applied at the level of the tension flange. The buckling of monosymmetric beams
subjected to torsional restraint exhibits similar behaviour to that of beams subjected to

translational and minor axis rotational restraint, except for long beams which exhibited
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almost constant distortional buckling moment when highly restrained in a similar

fashion to local buckling with a large number of half-wavelengths.

Bradford (1990d) studied the elastic and inelastic buckling of hot-rolled I-beams
restrained laterally at the tension flange level by purlins and subjected to unequal end
moments. The cross-sectional distortion in the elastic buckling range was very small.
The inelastic distortional buckling curves of a restrained beam were different from those
of the inelastic lateral-torsional buckling curves of unrestrained beams. A design
method was proposed to calculate the buckling strength of portal frames, and which was
conservative to allow for the effects of geometric imperfection that were not included in

the buckling study.

Johnson and Fan (1991) compared the distortional buckling capacities in two Class 2 U-
frame tests in negative bending with the theoretical approaches of Bradford and Johnson
(1987), Weston et al. (1991) and the Eurocode (1981). This comparison showed that
the Eurocode method is the most versatile of the four methods. In all these tests a
complex interaction between local and distortional buckling that takes place at or near

the maximum load was observed.

Weston et al. (1991) presented an inelastic distortional buckling method for composite
beams in which they used a nonlinear non-bifurcative finite element method for plastic
analysis developed elsewhere. These results were considered to be accurate, although
computationally very inefficient. In 1997, Gioncu and Peteu deployed a major
extension of Climenhaga and Johnson’s (1972) yield line approach, which includes both

local and distortional buckling and the assessment of available rotation capacity.

Essa and Kennedy (1994, 1995) investigated the cause of the collapse of part of the roof
structure of a newly constructed supermarket in Vancouver, Canada using the finite
element method. This work presented a simple design procedure for a cantilever-
suspended span subjected to a multiplicity of loading and restraint conditions based on
the distortional buckling model. The design method accounts for the effects of lateral
and torsional restraints provided to the beam open-web steel joist it supports. The beam

stability was enhanced by the torsional restraint.
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Dekker ef al. (1995) investigated the factors influencing the strength of composite
beams in negative bending and developed a theoretical model by introducing an
equivalent spring system to account for the effect of the web distortion. They
concluded that for the case of inelastic buckling, the flexural resistance of the steel
beam is determined by lateral-distortional buckling, while for the case of plastic
buckling the flexural resistance is controlled by a combination of local flange/web and
lateral-distortional buckling. Kemp et al. (1995) studied two-span continuous beams
subjected to uniformly distributed loads. The required inelastic rotation capacity of the
composite beam prior to strain weakening is larger than that of equivalent steel I-
sections. This results from the negative moment region being short and the elastic

rotation of the composite beam being small.

Bradford and Ronagh’s (1997b) study into tapered composite beams has demonstrated
that the buckling moment may be enhanced significantly by using a vertical stiffener in
the region where the lateral movement of the bottom flange is greatest, and the stiffener
is most effective when placed at the point corresponding to the largest lateral movement

in the eigenmode.

Bradford (1998a) extended the energy method (Bradford 1988b) to study the inelastic
distortional buckling of welded columns fully restrained against translation and with
elastic twist restraint at the level of one flange. The numerical results were compared
with the U-frame model often used in bridge design and it was again demonstrated that

the U-frame model is conservative.

Recently, Bradford (2000) investigated the inelastic distortional buckling behaviour of
compact beams subjected to moment gradient and which were partially restrained. This
study demonstrated that the prediction of lateral buckling strength using conventional or

Vlasov theory might overestimate the buckling strength, overly so in many cases.

2.4 4 Experimental Investigations

Experimental studies of distortional buckling of composite beams are very rare and

elastic distortional buckling experiments on I-section beams have received very little
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treatment (Woods & Watson 1977) in comparison to other section profiles (Zhao et al.

1995).

Bartels and Bos (1973) performed some tests to investigate the effect of boundary
conditions on the buckling of both simply-supported and continuous beams. Their tests
were performed in two series. The first comprised three tests on 1:5 scale model beams
of an IPE 270 (Dutch) section, and the second comprised eight tests on 1:10 scale
models of an IPE 600 section. The loading consisted of several equally spaced loads
applied to the top flange. The support conditions were: (i) ‘forked bearings’, in which
lateral deflections and twists of both flanges were prevented: (ii) ‘semi-forked bearings’,
in which lateral deflections of both flanges as well as twisting of bottom flange were
prevented: and (ii) ‘bottom flange restraint’, in which only the bottom flange was
laterally and torsionally restrained. The experimental studies were compared with

theoretical results and it was found that they were in good agreement.

Hamada and Longworth (1974) tested a series of composite beams of 8-ft span under a
concentrated load at midspan. The beams were tested “upside down” to create the
conditions of negative bending. Hamada and Longworth (1974) reported that the
buckling configuration for a composite beam in negative bending indicated that only the
inverted T-section needs to be considered in a lateral buckling analysis. They concluded
that the ratio of the lateral buckling moment to the simple plastic moment decreases
significantly with increase in the span length and is slightly affected by the amount of
longitudinal slab reinforcement and the size of the cover plate on the compression

flange.

Johnson and Fan (1991) conducted an experimental study on lateral-distortional
buckling of continuous composite beams. They tested at realistic scale composite T-
sections and inverted U sections of double-cantilever with unstiffened webs. The results
showed that interaction between local and lateral-distortional buckling governs the
ultimate strength of the test specimens and is strongly influenced by initial
imperfections. It was concluded that local buckling initiated lateral buckling and
buckling did not begin until the bottom flange was fully yielded adjacent to the central

support. Johnson and Chen (1993) conducted an experiment on continuous composite
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beams by considering a centrally supported pair of double-cantilever plate girders. The
configuration of the experiment can be interpreted as inverted U sections. The slender
cross-section of the composite beams had either stiffened or unstiffened web. The

results were similar to those of Johnson and Fan (1991).

Albert et al. (1992) conducted an experimental study consisting of 33 full-scale tests to
investigate the stability of steel beams in cantilever-span structures. The number of
beam specimens comprised of seven W360x39 and four W310x39 sections. The
experiments were conducted with the three different top flange restraint conditions of no
restraint, lateral restraint only and lateral and torsional restraint, while the restraint
conditions at the column were lateral and torsional restraint at the bottom flange. The
results of this experimental study demonstrated that a beam subjected to torsional

restraint buckles in lateral-distortional mode.

Bradford and Wee (1994) reported experimental tests on eight light full-scale hot-rolled
universal beams (180UB18.1) supported on seats. The length of three beam specimens
was 2770 mm and they were placed under a central concentrated load. Another three
beam specimens were subjected to a third point loading with the same length as the
previous specimens. Finally, two beam specimens were 1500 mm long and were placed
under a central concentrated load. The experimental results were compared with the
finite element method of analysis that incorporates distortional buckling developed by

Bradford (1986a) and overall, the computer solutions agreed well with the test results.

Kemp et al. (1995) studied the difference in behaviour between steel and composite

beams experimentally by testing steel I-sections of the same size.

2.5 LOCAL BUCKLING

2.5.1 General

Local buckling is a major cause of failure in thin steel plates and in plate assemblies.

Local buckling of thin plate assemblies is characterized by localized distortions of the
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cross-section of the member, with the line junctions between intersecting plates
remaining straight. This differs from lateral buckling where buckling is of an overall
mode and the cross-section does not distort, and from distortional buckling where local

and overall buckles interact.

The thin plate analysis is based on the use of classical plate theory. It is recognised
widely (Allen & Bulson 1980; Timoshenko & Gere 1970; Azahri 1993) that exact
analytical solutions for buckling loads are possible only for rectangular plates under
certain boundary and loading conditions. For the instability analysis of plates of
arbitrary shape, numerical methods such as the finite difference method, finite element
method or finite strip method are usually applied to the problem, while some non-
discretisation techniques such as the Galerkin method are being revisited (Saddatpour et
al. 1998; Azhari et al. 2004). Elastic local buckling experiments on plates with various
boundary and loading conditions have been reported extensively in the literature
(Donald 1990), and have formed a means of validating a number of theoretical studies.
In some cases, it is also necessary to understand the ensuing behaviour after buckling.
Thus, the determination of the critical load and the clarification of the postbuckling
behaviour under various loads are some of the most important problems for the

development of lightweight structures, particularly with aerospace applications.

2.5.2 Local Buckling in Continuous Composite Beams

Continuous composite beams can only be designed by simple plastic theory if the
hinges at the supports have adequate rotation capacity. This is often controlled by local
buckling of the webs and flanges. The adverse effect that local buckling has on the
rotation capacity of steel I-beams is well known. In design by plastic theory, limits are
placed on the slenderness ratios of the flanges and webs of members required to

participate in a collapse mechanism.

One of the first studies into local buckling in composite beams appears to be that of
Climenhaga and Johnson (1972) who studied both elastic and inelastic local buckling
when the slab restrained the top flange of the steel I-section. The underlying

assumption in this yield line analysis of local buckling is that longitudinal line junctions
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between intersecting plates remain straight, and this occurs at short wavelengths. These
line junctions move sideways with longer length distortional buckling, which was only
considered subsequently to this study. The same study has shown that apart from the
restraint of the top flange, the main parameters that affect local buckling are the width

to thickness ratio of the web and free flange outstand.

Research on local flange buckling of steel beams has resulted in the establishment of
flange proportions that guarantee that local flange buckling does not occur prior to the
onset of strain hardening (Hamada & Longworth 1974). While the local buckling
characteristics of composite steel-concrete and plain steel beams are similar, it is still
not apparent that the design rules that exist for plain steel beams are appropriate for

continuous composite beams.

Dawe and Kulak (1984a) considered a pseudo-strip method for handling inelastic local
buckling, and compared the solutions with tests on North American WF sections in the
inelastic range of structural response. Bradford (1986b) independently developed an
inelastic finite strip method of analysis based on the flow theory of plasticity. Bradford
and Johnson (1987) employed the same method to study inelastic local buckling of
composite beams. Because of the limiting assumptions of the harmonic-based semi-
analytical method, the solution was approximate. The inelastic finite strip method,
originally developed by Bradford (1986b), was also employed to calibrate the width to
thickness limits in the British BS5950 Steel Standard (1990).

Bradford (1986b) developed a finite strip method of analysis to study the local buckling
behaviour of composite beams in negative bending. Inelastic material behaviour and
residual stresses were included in the analysis. The method was in a good agreement
with independent test results on hot-rolled composite beams, reported by Ansourian

(1981, 1982).

It was shown that the development of longitudinal stiffeners improves significantly the
buckling capacity of the web in bending. Based on the position of the neutral axis, the
optimum position of the longitudinal stiffener varies between 0.255 and 0.375 times the

depth of the web above the bottom flange (Azhari & Bradford 1993).



38

Aribert (1994) showed that for continuous composite beams subjected to increasing
loads up to collapse, a very large extent of bending moment redistribution may appear
in spite of the occurrence of local buckling with a possible interaction of global

buckling of a web panel in shear.

From the experimental studies carried out by Dekker et al. (1995), Johnson and Fan
(1991), Hamada and Longworth (1974), Climenhaga and Johnson (1972) and Johnson
et al. (1967) it is evident that interactive lateral-distortional and local buckling results in
lower rotation capacity than local flange and/or local web buckling. These studies
further indicate that large areas of longitudinal reinforcement relative to the area of the
steel section produce lower rotation capacities due to the larger web depth in
compression and the reduced curvature at which the critical strain occurs in the flange.
In addition, the studies have reported that web stiffeners can improve local buckling

behaviour.

The technique of stiffening a plate by stiffeners is rather common as it gives higher
values of strength to weight ratio of the structure. This makes the structure
economically more attractive in practice, in spite of fabrication costs. Srinivasan and
Ramachandran (1977) considered linear and nonlinear analysis of stiffened plates.
Carlsen (1980) presented a parametric study of collapse of stiffened plates in
compression. Bedair and Sherburne (1995) investigated the influence of the geometric
interaction on the local stability of stiffened plates and the influence of the
plate/stiffener geometric proportion on the overall stability of stiffened plates under
uniform compression. Bedair (1997a, 1997b) studied the influence of stiffener location
on the stability of stiffened plates under compression and in-plane bending and
presented an approach for optimum location of the stiffener. Gronding et al. (1999)
considered the stability of plates stiffened with tee-shape stiffeners using a finite
element method. The model developed by the authors was verified using the results of
tests on full-size stiffened plate specimens and was subsequently used to perform the
study of various parameters. Koko and Olson (1991) performed a nonlinear analyis of
stiffened plates using superelements. Investigations on the behaviour of stiffened plates
have been carried out for a long time (Satsangi & Mukhopadhyay 1989), but most of

these works are confined to linear analysis only.
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2.5.3 Nonlinear Buckling

The nonlinear interaction mode takes place when the lateral buckle at a long
wavelength interacts with local buckling at a short wavelength. The phenomenon of
nonlinear buckling has over last few decades inspired a large amount of attention in the
literature. This is largely due to the fact that the post-critical behaviour of structural
members is strongly influenced by the occurrence of simultaneous or nearly
simultaneous buckling modes. In fact, in such situations, structures are highly
susceptible to initial imperfections and exhibit limit loads that are often well below the

bifurcation load.

Nonlinear analysis of thin-walled structures is an important tool to investigate their
post-buckling behaviour and ultimate strength. Thin-walled sections may buckle in a
local, a distortional or an overall mode before yielding (Hancock 1978; Desmond et al.
1981; Sridharan 1982). However, these modes usually have a post-buckling strength
reserve depending on the buckling mode. For example, in the post-locally buckled
domain, the buckled form of the plates is stable owing to the membrane actions.
Because of this, plate assemblies usually have a significant reserve of strength prior to
collapse, which is instigated by plasticity. For such thin-walled structures, the
evaluation of the post-local buckling response is of great interest and significant weight
savings can be achieved by considering the postbuckling behaviour of plate structures.
This fact influences the design of advanced technology structures for which it is

permitted to use allowable design loads greater than their critical buckling loads.

A rapid growth of theoretical studies began in the 1970s. This problem was first
studied by Koiter (1976) and subsequently investigated by numerous authors for thin-

walled members by using numerical analysis based on the finite strip method.

The interaction behaviour of thin-walled structural elements loaded in compression has
received a great deal of attention. The first detailed investigations of the interaction
between global and local buckling of a column are due to Graves-Smith (1968) and Van
der Neut (1969). Van der Neut created a simple mechanical model of a column, whose

two plate flanges were capable of independent local buckling. This model exhibited a
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rather strong interaction with overall buckling, resulting in a marked sensitivity to
imperfections. Graves-Smith (1968) studied a square tube and the interaction appeared
to be of minor importance. Several other authors, notably Koiter and Kuiken (1971),
Tvergaard (1973), Pignataro et al. (1985), Sridharan (1983) and Hancock (1984)

contributed to the further study of compressed members.

Research into interaction buckling of members loaded in bending and/or shear has so
far received little attention. Cherry (1960) presented a simple analytical model and test
results for beams in uniform bending, whose compression flanges had prematurely
buckled locally. Similar studies were made by Reis and Roorda (1977), Wang et al.
(1977) and Bradford and Hancock (1984).

There are basically two strategies for studying interaction buckling:
@) The stiffness of the locally buckled member is calculated first, and then this
stiffness is used to evaluate the overall buckling;
(ii)  The analysis of the interaction is performed on the basis of the general
Koiter theory (Koiter 1945).
The studies of interaction buckling under bending by Cherry, Reis and Roorda, Wang et
al. and Bradford and Hancock, belong to the first category. In all these cases the
concept of the effective width was used to account for the postbuckling stiffness of the
locally buckled plate component. Koiter (1969), Tvergaard (1973), Sridharan (1983)
Benito (1983) and Pignataro ef al. (1985) used the second approach.

Usami (1982) considered the postbuckling behaviour of plates in compression and
bending. Bradford and Hancock (1984) employed finite strip method to investigate the
elastic interaction of local and lateral buckling in beams, while Bradford (1985a)
studied the postubuckling of box-section beams. Using the finite strip method, the
postbuckling behaviour of I-beams in uniform bending was studied by Hancock (1985).
Bradford (1989d) employed the finite strip method to study the postbuckling of
longitudinally stiffened plates in bending and compression. Galkiewicz (1990) studied
post-buckling behaviour and load carrying capacity of thin-walled plate girders. Van
Erp and Menken (1991) studied the initial postbuckling behaviour of thin-walled beams

loaded by a concentrated force using spline finite strip method.
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The tests by Kwon and Hancock (1993) have shown that a significant postbuckling
reserve of strength exists beyond the elastic distortional buckling stress in a similar
manner to that which normally occurs for local buckling. The post-buckling reserve
can be considered in the design of thin-walled sections to improve the design strength.
Kwon and Hancock (1993) presented a nonlinear elastic spline finite strip method for
predicting the post-local buckling behaviour of thin-walled sections to study the
influence of the interaction between local and distortional buckling modes for channel
columns. Their results are particularly important for very thin-walled cold formed
members. Guo and Lindner (1993) developed a material and geometric nonlinear
spline finite strip method to carry out a theoretical study on the elastic-plastic
interaction buckling of imperfect longitudinally stiffened panels under axial loads.
Ronagh et al. (1997) described a formulation for linear, nonlinear, buckling and
postbuckling analysis of tapered symmetric beam-columns. Recently, Pi and Bradford
(2001) considered elastic lateral-torsional buckling and postbuckling of arches

subjected to a central concentrated load.

2.6 SPLINE FINITE STRIP APPROACH

2.6.1 General

The well-known finite element method is regarded as the most powerful and versatile
numerical tool for complex structural and other problems. Theoretically, the finite
element method can be applied to the analysis of most structures. However, in practice
its application is even today very often limited because of high expense in terms of
computer time, particularly where fine discretization of the problem is required or
where the problem is nonlinear. In addition, it is not always clear what parameters

affect the solution in a more generic fashion.

The earliest general stiffness method for stability problems to be programmed employed
finite elements. This method of analysis was used by Kapur and Hartz (1966),
Gallagher et al. (1967), Navaranta et al. (1968), Gallagher and Yang (1969) and many

others to analyse local buckling of structural sections under uniform compression. The
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finite element method is computationally inefficient, and has not been applied notably
to the analysis of buckling modes and their interactions for plates and plate assemblies.
In view of this, and also of the fact that the topology of many types of commonly used
structures is quite regular, a simple and economical approach, known as the finite strip
method, was successfully developed some thirty years ago (Wittrick & Williams 1974;
Cheung 1976). In many cases this now well-known method provides a significant
reduction of the degrees of freedom of a strip as only one set of cross-sectional degrees
of freedom are required. The method essentially transforms a three-dimensional

problem to a two dimensional one.

2.6.2 Finite Strip Method of Analysis

There are a number of different types of the finite strip method and these are
distinguishable principally by the type of displacement functions used to describe
longitudinal variation of displacements. The ‘exact’ finite strip method has its origin in
work presented by Wittrick and his colleagues (1968, 1971 & 1973). The main
advantage of this method is that it is not necessary to subdivide the component plates
into finite strips and the buckling stresses can be calculated at any wavelength.
However, this method does have some disadvantages in solving the ordinary differential
equations, especially when the longitudinal stress varies across the width of the plate

and this method has been deployed only on rare occasions since 1970 (Bradford 1992a).

The conventional finite strip method (hereafter called the semi-analytical finite strip
method), in which plates and plate assemblies are discretized into longitudinal strips, is
an alternative and attractive method of numerical analysis. This method differs from
the finite element method in that the displacements are represented by Fourier terms in
the longitudinal direction, which satisfy the end conditions of a strip a priori, and by
simple polynomial functions in the transverse direction (Cheung 1976). By using
polynomial interpolating functions, the differential equations that are produced by the
‘exact’ finite strip method do not need to be solved, so that in this sense the semi-
analytical method is a classical stiffness type finite element method as presented by

Zienkiewicz and Taylor (2000).
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The advantage of this method is that the coefficients in the overall stiffness matrix are
linear functions of the load factors and that the matrix is often highly banded, and
standard eigenvalue routines can be used to extract the critical or buckling load factors
A. Nevertheless, the semi-analytical finite strip experiences difficulties in dealing with
concentrated forces, multiple spans, discrete supports at strip ends etc. In the semi-
analytical form presented by Przemieniecki (1973), Cheung (1976), Hancock (1978)
and others, the method is unable to model supports other than simple, nor loading
which varies in the longitudinal direction, since the longitudinal variation of buckling
displacements is represented by single sine curves. The latter restriction was overcome
by Plank and Wittrick (1974), who utilised complex arithmetic to impose phase change
between the sinusoidal varying displacements to handle shear in long plates, in a similar
way to the handling of capacitance and inductance in electrical engineering (Bradford &
Kemp 2000). Azhari and Bradford (1993) modified Plank and Wittrick’s analysis, and
undertook an elastic buckling study of a composite beam that included a longitudinal
stiffener, which Climenhaga and Johnson (1972) found delayed significantly the onset
of local buckling. This implies that the method, when shear is present, is only
applicable if the overall length of the structure is significantly greater than the half-

wavelength of the mode. Their plates, though, were assumed to have infinite length.

2.6.3 Spline Finite Strip Method

To overcome these difficulties and to retain the advantages of the finite strip method, a
mathematical tool called a ‘spline’ function has been used as displacement functions to
form spline finite strips. A spline was originally the name of a small flexible wooden
strip used by draughtsmen as a tool for drawing a continuous smooth curve segment by
segment and became a mathematical tool only after the work of Schoenberg (1946). It
was further developed by Ahlberg et al. (1967), Greville (1969), Schultz (1973),
Birkhoff (1965) and de Boor (1978) and others, but unfortunately has attracted little
attention from engineering analysts as highlighted by Prenter (1975).

The last two decades have seen a re-emergence of the use of spline functions as tools
for research in numerical structural analysis for a wide range of engineering problems.

Polynomials are historically the most popular tools of approximation, since they are
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easy to implement in numerical schemes. Spline functions, which are piecewise
polynomials, are very convenient for interpolation and approximation. This is
especially true of the practically important and often used family of B-splines, which

have variation-diminishing properties.

The most notable stiffness approach using spline functions is the spline finite strip
method developed by Cheung er al. (1982). In this method, the longitudinal
trigonometric series functions, used previously in the semi-analytical finite strip

method, were replaced by cubic Bs-spline functions.

The use of spline functions has enjoyed continuous development chronologically, and
they have been applied to the solution of a broad range of linear and nonlinear
engineering problems. For example, Fan and Cheung (1983a, 1983b) studied right box
girder bridges and shallow shell structures by applying the spline finite strip method of
analysis. Lau and Hancock (1986) utilised spline functions to depict the longitudinal
variation of buckling displacements. This method was an extension of the stiffness
analysis of Fan and Cheung (1983a). Rong (1983) reported an application of uniform
B-splines to approximate the variables in plate bending analysis. Liu and Zheng (1987)
and Wang et al. (1994) employed the same concept for foundation plates and rotating
discs of variable thickness respectively. Shen and Wang (1987a, 1987b) studied the
static and vibration responses of flat shells using B; and Bs spline functions and beam
functions, while Zhu and Cheung (1996) utilised the spline finite strip method to
conduct a postbuckling analysis of shells. Van Erp and Menken (1990) also employed
this method of analysis to study the buckling of prismatic thin-walled structural
members under arbitrary loading, and Tham and Szeto (1990) applied the B;-spline
finite strip method to the buckling analysis of arbitrarily shaped plates. A numerical
method, that combines Koiter’s (1976) initial postbuckling theory with the spline finite
strip method to carry out the initial postbuckling analysis of folded plate structures, was
presented by Van Erp and Menken (1991). The postbuckling behaviour of circular
cylindrical shells of finite length, under the combined action of external pressure and
axial compression, was studied by Zhu and Cheung (1996) using the spline finite strip
method of analysis. By utilising the same method, Guo and Lindner (1993) presented a

theoretical study of the elastic-plastic interaction buckling of imperfect longitudinally
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stiffened panels under axial loads. A material and geometric nonlinear spline finite
strip method was developed in this study to analyse such interaction problems, with
initial geometric imperfections and residual stresses due to welding being included in
the analysis. Kwon and Hancock (1993) also presented a method for predicting the
postbuckling behaviour of thin-walled sections based on spline finite strip method of
analysis. Wang and Dawe (1999) employed the spline finite strip method for the
prediction of the geometrically non-linear response of rectangular, composite shear-

deformable rectangular laminated plates to progressive in-plane loading.

Nevertheless, the spline finite strip method requires many more degrees of freedom than
the conventionally harmonic-based finite strip method, and this has detracted from its
popularity. However, Azhari et al. (2000) have included so-called bubble functions,
which represent nodeless but additional strip degrees of freedom in the form of higher
order orthogonal polynomials, into the expressions for the transverse buckling
displacements, and have demonstrated great computational savings in this configuration

of spline finite strip method.

Lawther (1990) and Stefani and Lawther (1990) also showed that using bubble
functions in the buckling analysis of framed structures produced very good accuracy for
a coarse mesh subdivision. In their study, they employed two types of symmetric and
antisymmetric bubble functions in order to investigate frame stability. Studies by Szabo
and Babuska (1991) and by Kasagi and Sridharan (1992) have also demonstrated the

power of bubble functions in dealing with stability problems.

Bradford and Azhari (1993) included bubble functions into the expressions for the
transverse buckling displacements and have demonstrated great computational saving in
this augmentation of the finite strip method based on complex arithmetic. Hitherto,
these serendipity type bubble strips have only been used for buckling modes that

involve plate flexure such as local buckling.

Bradford and Azhari (1995) used a finite strip method of analysis using complex
arithmetic that incorporated inelasticity, augmented by bubble functions. The analytical

procedure was then used to study the inelastic local buckling of plates in compression
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and shear, stiffened plates in compression and I-section beams in shear. It was shown
that by implementing bubble functions in the inelastic complex finite strip analysis, it is
possible to obtain results that are very close to the exact solution by subdividing the
plates into only one or two strips, which is a significant saving of computational time
and storage. The method was also used by Azhari and Bradford (1995) for the
nonlinear (postbuckling) analysis of plate structures, and they again demonstrated
computational savings by a coarser discretization and more rapid convergence of the

nonlinear tangent stiffness equations.

Della Croce and Scapolla (2000) included the bubble function concept into a hierarchic
finite element method for thin and thick plates analysis, and showed that the cost of the
increase of the number of degrees of freedom is negligible compared with the
improvement of the result with coarser discretization. All these studies have illustrated
the power of the bubble function based method for studying the elastic and inelastic

bifurcative stability of plates and plate assemblies.

All these studies have illustrated the power of the bubble function based method for
studying the elastic and inelastic stability of plates and plate assemblies. As mentioned
earlier, the work by Azhari et al. (2000) appear to be the first such study to augment the
bubble functions to the spline finite strip method. It is worthwhile noting that this study
deals with plain and stiffened plates only, and does not consider plate assemblies such

as I-sections and the like.

2.7 SUMMARY

This chapter has presented a literature review on theoretical and experimental studies
related to lateral-torsional, lateral-distortional (unrestrained and restrained), local and
interactive local and distortional buckling in the negative bending moment region in
continuous composite beams and simply supported half-through bridge girders. The

development of theoretical modelling and numerical studies of lateral-distortional
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buckling of I-sections has also been reviewed with major emphasis on the spline finite

strip method of analysis.

Although buckling of plain steel beams in both the elastic and inelastic ranges of
response has been studied extensively, and is now considered to be fairly well
understood and quantified, buckling in continuously restrained beams is much less
researched and understood. Further directions in research and its interpretation have
been noted to illustrate the necessity for additional research to obtain a global method
for modelling the behaviour that will lead to accurate and uniform design rules. This
thesis addresses this deficiency by presenting a detailed study of lateral-distortional and
local buckling, and their interactive nature for restrained I-section beams in elastic and

inelastic range of structural response.
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3.1 INTRODUCTION

This chapter investigates the elastic restrained-distortional buckling (RDB) of two-span
continuous composite steel-concrete tee-beams. In a composite tee-beam subjected to
negative or hogging bending, instability of the steel web and compression flange
becomes a design problem. Because of the rigidity provided by the concrete slab,
although cracked, and because of the significant flexibility of the thin web, the overall
buckling mode is not of a lateral-torsional type, but rather it is lateral-distortional
(Johnson & Bradford 1983; Bradford & Johnson 1987), as illustrated in Fig. 3.1.
Significant economies can be achieved in composite beams with compact joists that are
designed using rigid-plastic principles (Oehlers & Bradford 1995, 1999), and while
cross-sectional propdrtioning to achieve the necessary moment redistribution in the
hogging region has been quantified fairly accurately (Bradford & Kemp 2000), the
problem of overall member buckling has still to be addressed properly. Plastic design
of continuous composite beams is advantageous, but this can only be achieved if

buckling is prevented.

Whilst the distortional buckling of isolated beams has been studied quite extensively,
there appears to have been somewhat less research undertaken and reported on the
distortional buckling of continuous composite beams. Only a few experimental results
are available for composite beams in hogging bending where all the parameters are
documented in the test reports. Johnson and Fan (1990) reported four tests on rolled
steel sections. Additional tests were carried out by ARBED Recherches (Schaumann
1991). In general, the buckling resistance of a continuous beam is affected by the
interaction between adjacent segments of the beam. The interaction, and hence the
buckling load, depend on such aspects as the loading pattern, restraint conditions, span
ratios, section geometry and beam slenderness (Trahair 1993). The interaction between
the parameters that influence the distortional buckling of isolated composite beams is
difficult enough in itself to quantify, and incorporating the restraining or destabilizing
effects of an adjacent span only adds another dimension of difficulty to the problem.
Even for elastic buckling, the problem is complex, and recourse needs to be made to a

suitable numerical procedure to handle each individual case.
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In this chapter, an in-plane analysis of a two-span continuous composite beam and a
rational model for out-of-plane distortional buckling are combined to study the elastic
restrained distortional buckling of composite beams. The results of the in-plane
analysis are used in the finite-element based out-of-plane analysis to determine the load
factor against out-of-plane (restrained-distortional) buckling. The ratio between axial
and bending actions in the bottom flange along the beam length and the destabilizing
nature of the compressive actions in the hogging moment region are investigated for a
variety of geometrical, loading and bracing configurations, as well as incorporating
propped and unpropped construction. The method is then used to give some indication
of the accuracy of existing design procedures and earlier studies based on less accurate
assumptions. The study is of significance, as contemporary design techniques tend to
be on the conservative side, and with the motivation for more economic and efficient

design it is most important to identify the factors that may lead to premature buckling.

This chapter then describes the rational in-plane analysis of continuous composite
beams subjected to creep and shrinkage of the slab, coupled with the out-of-plane
analysis of the buckling of the steel joist. This problem is a generalisation of a more
generic situation where quasi-viscoelastic rheology in one component is coupled with
instability in the other component of a bi-material composite. Although the quasi-
elastic shrinkage and creep behaviour in concrete are conventionally associated with
serviceability limit states, it is shown that this rheology can in theory reduce the load
factor against buckling in the steel, which is a strength limit state. This situation has
hitherto not been a design consideration, nor thought to be important in conventional
practice, as contemporary design techniques are quite conservative. The ramifications
of this erosion of the buckling load factor are illustrated quantitatively and discussed, in
the light of seeking more accurate solutions for the buckling of continuous composite

beams.
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3.2 CONTINUOUS COMPOSITE BEAMS

Steel and concrete provide an ideal combination of strength, with concrete efficient in
compression and steel in tension. Steel provides fast erection, lightweight construction
and increased span capability, whilst concrete is the most economical material when
used in compression, as it provides compressive capacity, mass, stiffness and damping.
Concrete provides corrosion and fire resistance and prevents slender steel sections from
buckling. Continuous composite beams are a common form of composite construction
in multi-storey buildings and bridges. Continuity in construction is a desirable feature,
and substantial benefits can be attained by providing continuity in composite beams,
particularly if the member possesses the necessary ductility to develop the plastic
moment resistances at both the internal supports and mid-span regions. However,
continuous composite beams consist of positive moment regions, in which the slab is
subjected to compression and the steel component mainly to tension, and negative
moment regions at the internal support, in which the concrete has cracked but still able
to provide restraint to the steel and the reinforcement carries the tensile force, with the
steel component subjected to a combination of negative bending and compression
(Bradford & Kemp 2000). Thus, the ideal combination of these two construction
materials is unavoidably violated in the negative moment region where the steel
component is subjected to potential buckling, and the capacity of the concrete to resist
tensile stresses is usually ignored as it is generally assumed that in the hogging region
the concrete cannot transfer tensile stress, but the longitudinal slab reinforcement is

effective in tension (Oehlers & Bradford 1995).

Continuous composite beams are widely used in multi-storey buildings, where they are
continuous at the column connection, and in bridges. For the purpose of flexural
strength calculations, such beams may be divided lengthwise into two distinct regions,
namely regions of negative and regions of positive bending. The flexural strength of
composite beams in positive bending is governed by the strength of the concrete and the
steel beam and simple calculations based upon fully plastic stress blocks provide
acceptable accuracy in predicting ultimate bending moment capacities, provided that the
cracking of the concrete produces a ductile positive hinge (Ansourian 1982). In regions

of negative bending moments, however, local and lateral instabilities of the steel section
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and cracking of the concrete influence not only the ultimate bending strength of the
composite section, but also the ability of the section to redistribute bending moment by
absorbing inelastic rotations. The ductility of composite beams in negative bending is
affected by considerations of the stability of the steel component (Bradford 1986b).
Local, lateral and distortional instabilities of the steel beam occur in the hogging-
moment region and these forms of buckling have been recognised to be highly
interactive. Furthermore, basic beam buckling theory (Vlasov 1961) that assumes no
distortion of the section during buckling, does not apply to the hogging moment region

of continuous beams.

The buckling in composite beams is even more special, as in negative bending the slab
restrains the tension region of the steel and the neutral axis is not located at the mid-
height of the web. In these regions the neutral axis is shifted towards the top flange, and
in negative bending the steel part is subjected mainly to compressive strains. It is
important to recognise that the compression zone of the beam in the negative moment
region is not directly restrained by the concrete slab, as in the case of the sagging-
moment region of a continuous composite beam. In addition, the web usually carries
proportionally higher shear loads than in ordinary steel beams (Climenhaga & Johnson
1972). The hogging moment resistance of composite beams is determined by the
magnitude of the tensile force in the reinforcing steel in the concrete slab, the
compressive force in a portion of the steel beam (namely the bottom flange and the
portion of the web) and the distance between these stress resultants (Oehlers & Bradford

1995).

The most important buckling modes of failure occurring in composite beams are local
flange, local web and lateral-distortional buckling (Fig 1.2). If these are prevented,
large rotational capacities can be achieved beyond the plastic moment of resistance,
with the negative hinge being classified as “strain hardening” (Barnard & Johnson
1965). Because lateral-distortional buckling is basically an interaction mode between
lateral-torsional buckling and local buckling (Hancock et al. 1980), there are many
factors influencing the phenomenon, and the derivation of general solutions is not
straightforward. Although a closed-formed solution for the case of uniform bending has

been derived (Hancock et al. 1980), the general lateral-distortional buckling solution for
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the case of moment gradient and with the incorporation of restraints requires a specialist

computer program, which is generally only a research tool.

The factors influencing the strength of continuous composite beams in negative bending

may be summarised as follows:

(a) Amount of steel reinforcement in the slab. The depth of the web in compression is
controlled by the amount of reinforcement in the slab. Local buckling of the web
and compression flange limits the amount of active reinforcement in the slab. The
rebar content in turn determines the magnitude of the negative moment.

(b) Lateral-distortional buckling of the steel section. Significant restraint, both lateral
and torsional, is provided by the concrete slab to the tension flange of the steel
section. The lateral-torsional buckling resistance of the steel beam is therefore
dependent on the web’s ability to convey this restraining action to the unrestrained

compression flange.

In the following study of this distortional mode of lateral buckling, it is assumed that the
shear connection between the steel flange and the restraining slab has sufficient
strength, and that its flexibility in the transverse plane is negligible. These assumptions
can be shown to be valid when the steel web is unstiffened, except at supports, because
the transverse flexibility of webs is high. They may not be valid where there are
vertical web stiffeners, because the transverse stiffness of the resulting cruciform or tee
section far exceeds that of the web alone, so that the transverse restraining moments

applied by the slab are concentrated at the stiffened cross-sections of the beams.
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3.3 DESIGN METHODS FOR DISTORTIONAL
BUCKLING

Design for lateral-distortional buckling is generally based on procedures for steel
structures in which an elastic analysis is carried out to determine the actions in the steel
portion or steel component of a cross-section subjected to negative bending. One of the
impediments of this analysis is that the steel component is subjected to combined
compression and negative moments, where the compression force equilibrates the
tensile force in the reinforcement, and that the axial compression varies along the beam.
The buckling strength of the steel component is then calculated, and this is used in
determining the strength of the composite cross-section. The combination of both
bending and axial actions in the steel component appears to have been overlooked by

many.

In the method of ‘design by buckling analysis’ (Trahair & Bradford 1998), the elastic
buckling moment M,; and the elastic buckling load N,; for the steel component are
converted into strengths using relevant prescriptive strength curves in national standards
which account for the complex interaction between buckling and non-linear material
behaviour in steel columns in a simplified way. Therefore in the failure envelope for
the steel beam-columns, these curves relate the pure flexural strength and pure axial

strength with both elastic buckling and the rigid plastic strengths.

The rationale of ‘design by buckling analysis’ requires the slendernesses to have been
determined using the elastic distortional buckling moment M,; and load N,4, so that the
bending strength of the steel in the absence of compression M;; and the compressive
strength of the steel in the absence of bending N;; may be determined from design
equations in codes. It must be noted that these prescriptive equations were developed
for lateral-torsional beam buckling and flexural column buckling. Their use for lateral-
distortional buckling is questionable (Lee 2001), but they are considered to be
conservative. Finally, the bending strength must be reduced for the effects of axial
compression if an ‘accurate’ analysis is being performed by treating the steel component
as a beam-column. It is obvious that the calculation of the lateral-distortional buckling

moment and load are based on very approximate design methods in lieu of complex
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finite element modelling, and that the member strengths that are based on combined
elastic buckling and yielding are derived from lateral buckling results, and so their
applicability to lateral-distortional member strengths is questionable. This issue has

been addressed recently by Lee (2001).

The ‘inverted U-frame approach’ is based on the design philosophy for half-through
girder bridges. For this, compression flange is modelled as a uniformly compressed
strut restrained elastically against flexural buckling by the stiffness of the web, which
represents a continuous Winkler foundation. The web is treated as a cantilever, and its

stiffness may be determined by applying a fictitious unit horizontal force.

Fig. 1.7 shows the strut buckling model, in which the flange strut is subjected to an
elastic Winkler restraint of stiffness a; per unit length that produces a distributed
restoring force of a; u, per unit length, where u, is the buckling deformation which is
assumed to be a sine curve. The elastic critical value of the force in the strut to cause

buckling N,, is

n’El, o
o = )
L T

3. 1)

where I is the second moment of area of the flange about the weak axis of the I-section.
The relationship between N, and L is of a garland shape, and the minimum value of N,

may be determined by setting dN,,/dL to zero. Therefore,

(Ncr )min =2 V ESlFal (3 2)

This design approach has been explained and criticised in detail (Johnson & Buckby
1986), and has been shown by numerical analyses (Bradford & Johnson 1987; Weston
et al. 1991) to be very conservative. The main reasons for this conservatism are:
(a) the effective length of the bottom flange is based on the model of a restrained
strut with constant axial compression, thus neglecting the benefit of the moment
gradient;

(b) the torsional and warping stiffnesses of the strut are neglected.
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Svensson (1985) suggested that the lateral-torsional critical buckling stress o, for a
beam with one flange elastically restrained along its entire length could be obtained by
solving the approximately equivalent buckling load problem obtained by treating the
free flange as an elastically supported column and dividing the buckling load by the
flange area. Williams and Jemah (1987) suggested that it would be safer to add 15% of
the web area to the flange area when finding o), on the basis of a comparison with
accurate lateral-torsional critical buckling stresses which the exact thin plate theory
computer program VIPASA produced for pure bending of four representatively chosen
beam cross-sections. Goltermann and Svensson (1987) presented a method that allows
for the rotational restraint at the tension flange to be quantified. Bradford and Gao
(1992) presented a very interesting method of analysing fixed-ended composite steel-
concrete beams, by using the principle of virtual work and taking into account the
difference between the beam sagging and hogging bending rigidities. Williams et al.
(1993) extended their previous investigations by developing a model with an additional
spring having arbitrary stiffness to restrain in-plane rotation at each end, which can
become infinite, and allows for difference between sagging and hogging bending
rigidities along the member, using an approach of comparing areas under the curvature
diagram of the beam. These authors presented a parametric study, covering a wide
range of beam sections. Hanswille (2000) showed in his study that the method in
Eurocode 4 (1996) leads to unsafe results in the case of members with unequal end
moments and for the end spans of continuous beams. Although some design guidance
and research into buckling behaviour of continuous composite beams are in existence, it
is evident that designers need simpler and less conservative methods of checking
resistance to buckling. More detailed critiques of the issue have been published by
Ronagh (2001) and Ronagh and Bradford (2002).



57

3.4 THEORY

3.4.1 General

Conventionally, design against the limit state of lateral-torsional buckling is usually
based on the results of an in-plane elastic (second order) analysis, or a plastic analysis.
The rationale of an elastic analysis is conservative, and applicable to bare steel members
for which elastic analysis is appropriate. The extension of an ‘elastic’ analysis to
composite tee-beams could be open to debate, since in the negative region of a
composite beam the slab is invariably cracked and so an elastic analysis (using

transformed area principles) is invalid.

Nevertheless, in this study an ‘elastic-cracked’ analysis of a two-span continuous
composite beam is undertaken first in order to determine the stress resultants that act in
the steel joist. A rational beam-type finite element analysis is then invoked using these
stress resultants as input to perform an elastic distortional buckling analysis, so as to
determine the load factor against distortional buckling. Since the in-plane and out-of-
plane analyses are well documented, they are described very briefly in the following

two sub-sections.

3.4.2 In-Plane Analysis

A flexibility method of analysis developed by Bradford et al. (2002) has been used in
this study to determine the short-term moments and axial actions in a two-span
continuous composite beam, whose spans may have different lengths and with
concentrated loads placed at specified positions within each span. This method allows
for propped and unpropped construction. The method is in essence ‘linear elastic’, but
accounts for cracking of the slab (of flexural tensile strength, f;) in the negative moment
regions, so that it resembles a close to non-uniform stepped beam, as shown in Fig. 3.2.
The position of the step where the rigidities change is at the point of contraflexure (if for
simplicity in the argument the tensile strength of the concrete is ignored), but this
position is not known a priori and so an iterative scheme must be invoked to converge
on its position and hence on the final bending moment distribution in the composite

beam. While the entire composite cross-section is not subjected to axial actions under



58

pure bending, these are present in the slab and in the joist, with equilibrium being
maintained between these two components by means of the shear connection. Thus
under a given geometry and loading, the in-plane analysis is able to generate the
bending moment diagram and shear force diagram for the steel joist. It is assumed here

that the shear connection is infinitely stiff.

3.4.3 Out-of-Plane Analysis

The beam or line-type finite element method for elastic distortional buckling analysis of
I-sections developed by Bradford and Ronagh (1997a) is used for the out-of-plane
analysis, that is mathematically uncoupled from the in-plane analysis. In their program
FEDBA16 each end of the line element has eight buckling degrees of freedom,
corresponding to the lateral displacements and twists of the top and bottom flanges, and
their respective rates of change with respect to the beam longitudinal axis, as illustrated
in Fig. 3.3. The web is allowed to distort as a cubic curve during buckling, with its
flexural displacements being related to the flange buckling freedoms by imposing
displacement and slope compatibility at the top and bottom of the web. All freedoms
relating to buckling deformations of the top flange of the joist were suppressed in the
present analysis, owing to the rigid restraint assumed to be provided by the slab and the

shear connection.

Because of the linearity of the in-plane analysis, the geometric stiffness matrix S is
assembled from the moments and axial forces in the joist due to a set of initially applied
loads. These loads are then scaled by a buckling load factor A4, which is the eigenvalue

of the well-known buckling problem
{K-13}A=0 (3.3)

in which K and A are the elastic stiffness matrix and vector of buckling displacements

respectively.
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3.5 NUMERICAL INVESTIGATIONS

3.5.1 General

Distortional buckling loads are dependent on a multiplicity of geometric and material
properties, which when coupled with the in-plane analysis prohibit general solutions.
Hence four different illustrative steel I-beam sections (J1,...,J4) have been chosen for
this study, these being two universal and two welded doubly symmetric steel I-sections
supporting a slab (S1, S2 and S3) cast propped and unpropped with 0.6, 1.8 and 3.6%
(R1, R2 and R3) reinforcement throughout positioned 50 mm from the top of the slab.
The concrete compressive strengths were taken as 25, 32, 40 and 50 MPa with tensile
strengths of 3.0, 3.4, 3.8 and 4.2 MPa respectively. The span lengths considered in this
study range from 10 to 40 metres. A wide range of loading configurations has been
considered and these are illustrated in Fig. 3.4 (Cases 1-11). The steel section
dimensions, slab geometry, reinforcement ratios, concrete strengths and beam span

lengths, with the notation adopted in this chapter, are summarised in Table 3.1.

3.5.2 In-Plane Behaviour

In regions of negative bending, the joist of a composite beam is not only subjected to
longitudinally varying bending moments, but also to varying axial actions that can be
compressive at the internal support and tensile near the simply supported end support.
Unbalanced compression in the joist of a composite beam arises from the geometric and
material asymmetry of the total cross-section, so that in composite beam joists the axial
forces vary in accordance with the moment gradient. Resulting errors in predicting
buckling loads are on the safe side, however, if conditions at the point of maximum

moment are considered.

While elastic distortional buckling of members subjected to pure bending has received a
good deal of attention (Bradford 1992a), the effects of combined actions on the
distortional buckling of isolated members has received very little attention (Bradford
1990b), and even studies of lateral-torsional buckling under combined actions when the

axial force varies along the member appear to be very rare (Trahair 1993).
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In order to illustrate the effects of the axial (N) and bending (M) actions, the ratio of the
axial to bending stresses o4/op in the bottom flange along the beam length has been

determined, where

Ny
=—= 3.4
o, A, 3.4
and
M;
o, =—> 3.5
557 (3.5)

with Ns and Msbeing the axial force and moment respectively in the joist at a particular
section obtained from the in-plane analysis, and with 4s and Zg being its respective area

and elastic section modulus, and in which

sgn(o,/o,)=sgn(o, +0y) (3.6)

so that the portions of the beam in sagging and hogging may be identified. For the

graphical illustration compressive stresses are taken as positive.

3.5.2.1 Effects of the Steel Cross-Sectional Area Parameter

Figure 3.5 shows the lengthwise variation of the stress ratio for four different steel
sections (J1,..., J4) when self-weight is ignored, while Fig. 3.6 plots this ratio when
self-weight is included. The influence of self-weight is important in unpropped
construction, as it generates bending stress only in the joist and no axial stress. In the
absence of self-weight, the beam acts as if propped, and in Fig. 3.5 it can be seen that
the axial stress is twice the bending stress for the 180UB (J4) section over most of the
beam. However, as the cross-section dimensions increase the ratio between the stresses
reduces and for the 1200WB (J1) section this ratio is as low as 0.39. On the other hand,
the ratio in Fig. 3.6 is below 0.1 for the entire range of sections considered in this study,
as the inclusion of self-weight increases the bending stress but not the axial stress as
composite action is not achieved under self-weight. Furthermore, this ratio remains
unaffected by different beam lengths (ie. L1,..., L7) and different loading
configurations (ie. loading cases 1-5, 8-11) as illustrated in Figs. 3.7-3.10. The effects
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of the steel cross-sectional area parameter on the stress ratio for the entire range of
sections and loading configurations considered in this study are presented in Figs.

Al.1-A1.28 (Appendix).

3.5.2.2 Effects of the Concrete Slab Cross-Sectional Area Parameter

Three different concrete slab areas were considered in this study (ie. S1, S2 and S3) and
it can be seen from Figs. 3.11 and 3.12, which represent propped and unpropped
construction respectively, that the magnitude of the stress ratio increases with the
increase of the cross-sectional area of the slab. However, this ratio is not excessively
significant and becomes negligible as the size of the steel section decreases. Broader

illustrations of this effect are presented in Appendix, Figs. A1.29-A1.34.

3.5.2.3 Effects of the Steel Reinforcement Area Parameter

A similar investigation has been carried out to quantify the influence of three different
steel reinforcement areas (ie. R1, R2 and R3) on the longitudinal variation of the
axial/bending stress ratio for propped and unpropped construction as illustrated in Figs.
3.13 and 3.14 respectively. It is evident that the effects of the reinforcement are of no
consequence. Further evidence of this effect is included in Appendix, Figs. Al.35-
Al.42.

3.5.2.4 Effects of the Concrete Compressive Strength Parameter

Four different concrete compressive strengths were investigated in this study (ie. F25,
F32, F40 and F50). The results shown in Figs. 3.15 and 3.16 for propped and
unpropped construction respectively indicate that the axial/bending stress ratio increases
with an increase in the concrete compressive capacity. Nevertheless, this increase is
inconsequential. The effects of this parameter have been considered in association with
some other parameters such as steel sectional area, concrete slab cross-sectional area,
loading configuration, different reinforcement ratio and the results are documented in

Appendix, Figs. A1.43-A.1.50.

3.5.3 Out-of-Plane Behaviour

The steel section of an unpropped composite steel-concrete beam may experience

overall member buckling under two loading conditions. First, the construction loading
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of the wet concrete may induce lateral-torsional buckling in regions of positive bending
before the beam becomes composite. The second buckling condition occurs during live
loading in regions of negative bending over an internal support after composite action is
achieved, where the compressive stress in the bottom flange and lower portion of the
web of the joist may induce lateral-distortional buckling. The first type of instability
may be prevented by routine application of the lateral-torsional buckling provisions in
the modern limit-state codes of practice. The use of these rules by designers is
straightforward, and are usually quite accurate. This type of instability is not considered

any further in this thesis.

The stress resultants obtained from the in-plane analysis have been used to assemble the
stability matrix S in Eqn. 3.3 so that the eigenvalue or buckling load factor A may be

found. The eigenvector A in Eqn. 3.3 represents the buckled shape, and this has also
been calculated. Although many buckling models do not include the effects of self-
weight, this clearly is important for composite beams if the buckling load factor is low.
The out-of-plane analysis undertaken for an unpropped continuous beam includes self-

weight in the finite element modelling of FEDBA16. For the purpose of this study, the

self-weight is included in Eqn. 3.3 by the addition of a constant stability matrix — S

Sw

that is built-up using the self-weight stress resultants. Hence,

{K-3,-5A=0 (3. 6)
The solution of both Eqn. 3.3 and Eqn. 3.7 using FEDBA16 is extremely rapid on a

contemporary personal computer.

3.5.3.1 Model Verification

Table 3.2 compares the critical buckling stresses derived by the method adopted in this
study, the ‘inverted U-frame’ design method and design suggestions given by Williams
and Jemah (1987) and Williams et al. (1993). The cross-sections used, X1-X4 with
three values of the span length for each, are the same as those employed by Williams et
al. (1987, 1993). Table 3.2 shows a relatively large difference between results derived
by the analysis presented here, those derived by the ‘inverted U-frame approach’ and
the methods suggested by Williams et al. (1987, 1993). The latter two techniques did
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not account for the cracking of the concrete adequately (as the solutions are based on a
buckling model for a steel section and do not consider the in-plane analysis
appropriately), and interestingly the earlier (1987) recommendations of Williams and
Jemah compare best until those of the current study. The results in Table 3.2 reinforce
the disparity between the solutions to the problem given by various researchers and the

need for further investigations of the phenomenon.

3.5.3.2 Buckling Behaviour

Figures 3.17 to 3.24 show some buckling characteristics for a number of continuous
composite beams, built either propped or unpropped, both symmetric and asymmetric
and with different geometries of the steel joist. The ratio of the buckling load factor for
the loading cases 1-11 is normalised with the buckling load factor of loading case 2 and
plotted as a function of the beam span length considered. It can be seen from the figures
that the buckling load factors for the equal span beams with various loading
configurations (ie. Cases 1-3 and Cases 8-11) are almost identical to that of L2, whilst
the figures indicate that this difference in buckling behaviour is more pronounced for
the asymmetric beams (ie. Cases 4-7). It is worthwhile noting that in the case of
unequal span beams this ratio is quite substantial for the sections J3 and J4, and ranges

between 10-30 for propped, and between 30-120 for unpropped construction.

The elastic distortional buckling resistance of two-span continuous beams decreases
when the concentrated loads within each span are located toward the centre of each
span, since the bending moment distribution is more uniform. When the ratio of span
lengths is high, the buckling behaviour of the longer span dominates, and so cross-
sectional distortion becomes less significant because of the increased length of the

longer span.

3.5.3.3 Buckling Modes

In modelling the buckling restraints for a continuous beam, it is assumed that the top
flange is completely restrained by the slab, and at the simple end supports that bottom
flange displacement and twist (but not their rates of change) are also fixed. At the
interior support, the bearing support would restrain the lateral displacement and twist of

the bottom flange, but there may be some elastic restraint provided against the in-plane
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lateral rotation (#’p) of the bottom flange. Figures 3.25-3.26 show the normalised
buckling mode shapes for two identical spans with central concentrated loads when u
is completely fixed or restrained, whilst Figs. 3.27-3.28 plot the normalised buckling
modes for the same beam when u’; is unrestrained. It can be seen that the bottom flange

buckling deformations are almost identical for the two cases.

Bracing of the bottom flange can have ramifications on the buckling loads and modes
and is quite common in practice. Figures 3.25-3.32 show the bottom flange translation
buckling mode (up) and bottom flange twist buckling mode (gp) for loading
arrangements shown in Fig. 3.4 (case 1 and case 4) for unpropped and propped
construction. In the figures the internal supports provide complete restraint against
buckling deformations. Figures A1.51-A1.62, included in Appendix, show the buckling
modes for loading configurations different to cases 1 and 4, as shown in Fig. 3.4. The
plots of normalised buckling modes clearly indicate the critical points (the points equal
to unity) along the span length subjected to the destabilising lateral-distortional buckling

that need to be designed against and accordingly provided with bracing.

It is worth noting that in both cases the ‘stabilising’ influence of the sagging region of
the span against buckling (where the bending stresses in the bottom flange are tensile) is
enhanced somewhat by tensile stresses that equilibrate with compression in the slab. On
the other hand, the compressive axial actions in the hogging region act with the hogging

moment to destabilise that region against buckling.

3.5.3.4 Bracing Effects

The influence of the brace position and the load position has been investigated in this
chapter for both symmetric and asymmetric two-span beams. For this, the brace is
positioned oL from the internal support and the concentrated load is positioned, as
shown in Fig. 3.4, some distance from the internal support, with the brace providing
complete restraint against lateral deflection and twist. Such bracing may be typical of
conventional cross bracing. The reference buckling load factor, 4,.; has been taken to

be that when the brace is not provided for the loading configuration considered.
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Figures 3.33 to 3.35 show the effects of a single brace positioned within the

span0 <, <0.5 for both symmetric and asymmetric unpropped two span beams.

When the loads are placed in the positive region up to mid-span, the destabilising
hogging moments and the associated hogging region result in an elastic buckling load
factor ratio that increases only up to about 20% for equal and about 50% for unequal
span beams. On the other hand, as the point load is placed closer to the internal support
the hogging moment increases at the internal support (which of course is restrained
from buckling), the extent of the hogging region decreases, and the larger sagging
moment region (whose bottom flange tensile bending stress is enhanced by the axial
tension in equilibrium with the slab compression) is very significant in restraining the
beam against elastic buckling. Consequently, the buckling load factor for the braced
continuous beam has increased two to three fold over that when the point load is placed
closer to the mid-span for which providing a brace in this region will increase the
buckling load factor, as can be seen in Figs. 3.33-3.35 for the brace positioned at a,, =
0.4. Braces further away from the internal support than this are in the sagging region,

and have negligible effect on increasing the buckling load factor.

Similar behaviour has been observed for propped construction, as shown in Figs. 3.36-
3.38, with the exception that the elastic buckling load factor ratio for the braced
continuous beam increases three to four fold when the point load is placed closer to the
internal support over that when the point load is placed closer to the mid-span. It is also
worth noting that if the internal bearing is unable to provide lateral rotational restraint,

the counterparts to Figs. 3.33-3.38 are almost identical to the latter figures.

3.6 QUASI-VISCOELASTIC SLAB BEHAVIOUR

3.6.1 General

Because the structural performance of a composite beam makes use of its extensive
concrete component, it is subjected to the time-varying effects of creep and shrinkage.
Conventionally, the quasi-viscoelastic rheology of reinforced concrete that induces
shrinkage and creep deformations is associated with the serviceability limit state in

engineering structures. The associated service load responses are usually those of time-
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dependent deflections and cracking and sometimes thermal straining, and provisions to
control these are included in most national design codes of practice. The ramifications
of these effects on the deformations of simply supported beams are quite well
researched, with recent bibliographies being given by Dezi et al. (1998) and Ranzi
(2004). Controlling deformations under service loading is a serviceability limit state
problem, and although serviceability analyses are usually based on linear-elastic
assumptions, the analysis of composite beams is non-linear owing to the cracking, creep
and shrinkage of the slab (Bradford & Gilbert 1989). However, it has been shown that
quasi-viscoelastic deformations in concrete and composite steel-concrete structures can
lead to geometric instability or buckling, which is usually considered to be a strength

limit state.

The so-called creep buckling behaviour of slender, eccentrically loaded concrete
columns is fairly well known and documented (Gilbert 1988; Gilbert & Bradford 1990;
Bradford 1997b, 1997¢c & 1998c). Less well-known is the instability which may occur
in thin steel sheeting that is juxtaposed with concrete that undergoes quasi-viscoelastic
deformation, and which acts compositely with the concrete. This behaviour has been
observed in tests and quantified in composite profiled beams (Uy & Bradford 1995) and
quantified theoretfcally in thin-walled concrete-filled tubes (Bradford 1998c; Uy & Das
1998) and composite profiled walls (Bradford et al. 1998). The purpose of the study in
this chapter is to quantify the instability that may arise in the steel joist of a continuous
composite beam due to quasi-viscoelastic creep and shrinkage deformations, which

occur in the concrete slab.

Gilbert and Bradford (1995) presented a flexibility based approach for determining the
response of a shored composite propped-cantilever beam which undergoes deformations
due to creep and shrinkage, and showed that the bending moment redistribution that
takes place predominantly due to shrinkage is substantial. Of particular significance is
the increase in both the magnitude and extent of negative or hogging bending that
occurs near the fixed support, and this was examined in the light of the serviceability
limit states of deflection and concrete cracking. Bradford e al. (2002) extended the
flexibility-based approach to consider two-span beams with point loads placed
arbitrarily in within the spans, and which could model both propped and unpropped

construction, and this modelling was used in section 3.4 of this chapter, albeit without
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the inclusion of time-dependence. While the time-dependent increase in the negative
bending region was again quantified, the ramifications that this may have on instability

of the joist were not alluded to in the work of Bradford et al. (2002).

Because the in-plane analysis including quasi-viscoelastic deformations developed by
Bradford et al. (2002) is able to determine the varying stress resultants in the steel joist
in the time domain, these stress resultants may be used as input for the out-of-plane
method that uses the line-type finite element FEDBA16 developed by Bradford and
Ronagh (1997a), and which was used in section 3.4. This study therefore makes
recourse to the numerical uncoupled in-plane (quasi-viscoelastic) and out-of-plane
(FEDBA16) methods of analysis to investigate erosion of the elastic buckling load
factor, due mainly to shrinkage in unpropped continuous composite beams that would
be typical of bridge girders. It is shown in this section that the elastic buckling load
factor is indeed eroded quite significantly in the time domain in this theoretical
treatment. With the fairly well-accepted knowledge that contemporary design of
composite T-beams against buckling is very conservative, such an erosion of the elastic
buckling load factor would not be considered to be of concern in existing beams.
However, since more rational and accurate methods of predicting distortional buckling
and which remove the conservatism of existing techniques are evolving and indeed
extensively developed in this thesis, the consideration of quasi-viscoelastically induced

buckling must be borne in mind in these more accurate buckling models.

3.6.2 Numerical Results

The in-plane quasi-viscoelastic analysis has been applied to an unpropped two-span
composite beam subjected to a sustained uniformly distributed load of 1 kN/m. The
slab has widths of 1500, 2500 and 3500 mm and a depth of 130 mm, and full interaction
between the concrete slab and steel joist at the interface was assumed. Figures 3.39 to
3.43 show some results for different geometries of the steel joist, different span lengths,
different concrete compressive strengths, different steel reinforcement ratios, symmetric
and asymmetric spans constructed either unpropped or propped, in which the ratio of the
long-term buckling load factor to its short-term counterpart, A;/As is plotted as a

function of time. In modelling the creep and shrinkage, the aging coefficient was taken
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as 0.8, and the creep coefficient ¢ and shrinkage strain &y were assumed to be given by

the same compliance function F{(¢) as

( ¢ J: F(t{¢: ] 3.7
€, Ep

where Terrey et al. (1994) defined the compliance function, F(¢) as

t0.7
Fit)= 3.8

in which ¢ is in days, and the values at  — o are ¢"=3.5 and £ ¢, = 1000 x 10°°.

It can be seen from Figs. 3.39 to 3.43 that the elastic buckling load factor can be eroded
due to the effects of creep and, particularly, shrinkage. With the combination of the
final values ¢ and & g, and the compliance function F(¢), the short-term elastic buckling

load factor is eroded in the long-term, up to about 80% in some cases.

The magnitude of the erosion of the load factor up to times of around 100 days is
exaggerated, since significant shrinkage takes place during curing when the composite
action has not mobilised. Nevertheless, the effects are seen to be quite severe,
particularly for the span lengths ranging between 10 to 20 metres. This effect appears to
amplify with the increased size of the steel cross-section and increased concrete
compressive capacity. An increase in the slab cross-sectional area and reinforcement
ratio does not contribute significantly to the reduction of the buckling load capacity due
to the time effects. Further illustrations of the creep and shrinkage effects on the

erosion of the buckling load factor are included in Figs. A1.63-A1.69.

It is also worth noting that the final buckling factor that determines the buckling
strength of the beam is derived from both the elastic buckling load and the plastic
moment of the cross-section, as noted in Oehlers and Bradford (1995). This effect

reduces the severity of the time-dependent erosion of the load factor.
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3.7 SUMMARY

This study has made recourse to two methods of analysis, a rational in-plane analysis of
a two-span continuous beam, which may have different span lengths with arbitrary
positions of the loads, married with a rational out-of-plane beam-type finite element
procedure to determine the elastic buckling load factors under short-term loading and to
address the interesting issue of the dependence of the elastic buckling load factor of a
continuous composite beam on the effects of shrinkage and creep. Extensive numerical
investigations have been carried out and various parameters such as the area of the steel
section, beam slenderness, area of the concrete slab section, area of the secondary steel
reinforcement, concrete compressive strength, propped and unpropped construction,
symmetrical and asymmetrical beam configurations and different loading configurations
were the subject of this analysis. The effects of these parameters on the in-plane
behaviour, together with the effects of bracing and some buckling characteristics, are
documented in Figs. 3.5 to 3.43, whilst more comprehensive investigations are included

in Appendix.

The in-plane analysis accounts for the variation of both bending and axial actions in the
steel joist, the latter of which seems to have been ignored by many investigators, and
not previously quantified. The analysis also shows that there is a disparity between the
results of this rational buckling analysis, which includes the effect of concrete cracking,
and other techniques which do not include this effect or which are overly simplistic.
However, converting the elastic buckling loads into design strengths is another problem,
which requires recourse to inelastic distortional buckling solutions that are calibrated

against test results, and this has been considered in Chapters 5 and 8 of this thesis.

Finally, a quasi-viscoelastic model has been used to determine the redistribution of
bending moment and axial force within the steel joist in the time domain. The results of
this in-plane analysis were then used as input data for a finite element method for
analysing elastic distortional buckling. It was shown that the buckling load factor in the
long term decreased somewhat from its short-term value owing to the quasi-viscoelastic

rheology of the concrete slab.
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This issue has hitherto been ignored in design, but the perceived conservatism of past
and contemporary design methods, combined with the dependence of the strength load
factor on both the elastic buckling load factor and on the plastic moment in the method
of ‘design by buckling analysis’, would suggest that the propensity of existing bridge
girders to buckle is remote. However, with the impetus of evolving advanced and
rational design procedures, the possibility of quasi-viscoelastic induced instabilities, as
have been observed in other steel/concrete composite applications, is at least a potential
and interesting issue in structural mechanics that requires further investigation. The
design of continuous composite beams is significantly influenced by lateral distortional

buckling, yet research into its prediction is far from complete.
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Table 3.1 Notation: a) steel section; b) slab cross-sectional area; c) reinforcement ratio;
d) concrete compressive strength; e) span length

a)
Steel Section | Notation by i h,, ty
(mm) (mm) (mm) (mm)
1200WB J1 500.0 40.0 1160.0 16.0
900WB J2 400.0 32.0 892.0 12.0
250UB J3 146.0 10.9 245.1 6.4
180UB J4 90.0 10.0 169.0 6.0
b) e)
Slab dimensions Notation Length | Notation
1500%130 S1 (m)
2500%130 S2 }(5) i;
3500%130 S3 20 I3
25 L4
30 L5
c) 35 L6
Reinforcement ratio Notation 40 L7
AdA: (%)
0.6 R1
1.8 R2
3.6 R3
d)
Concrete Strength Notation
fc (MPa)
25 F25
32 F32
40 F40
50 F50




Table 3.2 Model verification

Section ty h L br L This study | U-frame Ref. 279 Ref. 280 ((1)/(2)|(1)/(3)|(1)/(4)
1) @ 3) 4)
[MPa] [MPa] [MPa] [MPa]
X1 18.5f 935 35 300 7396 2063 442 1904 1527| 4.67) 1.08] 135
X1 18.5| 935 35 300 12333 1751 475 1533 1229 3.69| 1.14] 142
X1 18.5] 935 35 300 30827 701 545 769 617| 129| 091 114
X2 15.6| 7442} 254 268 6013 2110 483 2299 1830 436 092 1.15
X2 15.6| 7442 254 268| 10017 1916 511 1855 1477| 3.75| 1.03; 130
X2 15.6| 7442} 254 268| 25042 916 570 930 740 161 099 1.24
X3 10.7| 446.2| 18.9 133.4 3324 2277 615 2468 1979 3.70f 0.92| 1.15
X3 10.7) 446.2y 189 133.4 5537 2157 643 1991 1597| 3.35| 1.08] 1.35
X3 10.7| 446.2| 189 1334} 13841 1611 700 998 801| 230 1.61| 2.01
X4 58| 1954 7.8 1334 2042 2808 1249 4939 4245| 225 0571 0.66
X4 58| 1954 7.8 133.4 3404 2293 1266 3979 3420 1.81| 0.58| 0.67
X4 58] 1954 7.8 133.4 8510 2025 1302 1995 1715 156 1.01| 1.18

L
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Figure 3.15 Stress ratio excluding self-weight (CASE 1, R1, S1)
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Figure 3.16 Stress ratio including self-weight (CASE 1, R1, S1)
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Figure 3.17 Buckling behaviour (R1, S1, propped construction)
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Figure 3.18 Buckling behaviour (R1, S1, propped construction)
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Figure 3.19 Buckling behaviour (R1, S1, propped construction)
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Figure 3.23 Buckling behaviour (R1, S1, unpropped construction)
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Figure 3.35 Bottom flange bracing (R1, S1, unpropped construction)
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Chapter 4

ELASTIC RESTRAINED DISTORTIONAL
BUCKLING OF I-SECTION MEMBERS
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4.1 INTRODUCTION

The purpose of this chapter is to present a simple generic model that may be used for
studying the elastic restrained-distortional buckling (RDB) of I-section members
restrained completely and continuously against lateral translation and lateral rotation at
one flange level, but elastically against twist rotation at this flange level, when subjected
to moment and axial force gradient. This situation is typically encountered in half-

through girder bridges and in a composite steel-concrete tee-beam subjected to negative

or hogging bending.

In a half-through girder bridge and in a composite steel-concrete tee-beam subjected to
negative or hogging bending, instability of the steel section becomes a design problem.
The overall mode of buckling in those two structural configurations must necessarily be
restrained-distortional (Bradford 1997a), since continuous restraint exists at the tension
flange level of the I-section girder and which inhibits buckling deformations at this
position. The RDB takes place at longer half-wavelengths than local buckling, and is
characterised by simultaneous lateral deflections and cross-sectional distortion at the
bifurcation of equilibrium, as shown in Fig. 1.2a. Distortion during the buckling arises
since the cross-section is physically unable to remain undeformed as would be predicted

in the commonly adopted Vlasov (1961) thin-walled theory.

RDB is fundamentally different to the more commonly studied distortional buckling of
laterally unrestrained beams (Ronagh & Bradford 1998), and can have a profound
influence on the buckling of beams with a continuous restraint. The RDB resistance of
the steel I-section component of a half-through girder and a composite steel-concrete
tee-beam subjected to negative or hogging bending is dependent on the extent to which
the usually slender web is able to transmit the restraining action, provided by the deck at
the level of the tension flange, to the unstable compression flange. Conventionally I-

sections have stockier flanges than webs.

Half-through girder bridges are in general comprised of two parallel I-section beams
joined by a concrete deck at the bottom/tension flange level as illustrated in Fig. 4.1.

The compression flange of the I-section is restrained only by the stiffness of the usually
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flexible web and the tension flange is provided with continuous torsional restraint
through its connection to the concrete deck. An arrangement analogous to this one is
that of a heavily loaded beam supported on seats and shown in Fig. 4.2. The utilisation
of half-through girders in bridge construction is most usually a result of constraints on
headroom. They find frequent use in railway bridges over roadways, where the grade of
the railway is predetermined and it is difficult to provide a substructure to support the
bridge deck. When the superstructure is in the form of I-section girders, the top flange
of the girder is subjected to compression and cannot be easily braced laterally, except by
the provision of transverse web stiffeners which may be used to design against buckling
in shear. Conservatively, the girder may be designed against lateral buckling without
bracing of the compression flange. However, this conservatism can be highly
excessive, and advantage must be taken of the restraint provided at the tension flange

level by the bridge deck.

A similar buckling mode to a half-through girder bridge occurs in the overall buckling
of continuous composite tee-beams in regions of negative bending (Hamada &
Longworth 1974; Johnson & Bradford 1983; Weston ef al. 1991; Bradford & Gao 1992;
Williams et al. 1993; Lindner 1998). Many other structural elements, such as roof and
wall cladding, which are intended primarily for other purposes, also provide restraints
against buckling. For example, rafters in industrial buildings are usually restrained
against buckling by purlins attached to one flange, and which when spaced reasonably
close enough can be considered as continuous since the purlin/cladding system provides

diaphragm and flexural restraint.

As discussed in Chapter 3 (section 3.3) buckling of half-through girder bridges is
usually and simplistically modelled in design codes using the so-called U-frame
method, in which the top compression flange of the I-section girder is considered as a
strut compressed uniformly along its length by the bending stresses induced in it, and
which is restrained elastically and continuously in the transverse direction along its
length by the web. This model is attractive, since a closed form solution exists for the
elastic critical load of such a strut, and it is easy to determine the flexural stiffness of a
web plate. However, half-through girder bridges are generally used in situations where

there is considerable moment gradient and for that reason the U-frame approach is
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overly conservative since it ignores the effect of moment gradient, and does not include

any instability effects that may also occur in the web.

Despite RDB being the governing buckling mode for many engineering structures that
are commonly designed, such as a half-through girder bridge and composite steel-
concrete tee-beam subjected to negative or hogging bending, its accurate prediction is
still a grey area in structural mechanics. Even for elastic buckling, the problem is
complex, and recourse needs to be made to a suitable numerical procedure to handle
each individual case. Existing research into lateral-distortional buckling of restrained
beams has been generally limited to a uniform bending, which cannot represent the

realistic loading condition experienced in most composite steel-concrete structures.

This chapter, therefore, addresses the issue of the buckling of half-through girders by
developing a generic approach to the problem using a Ritz-based procedure. The bridge
girder is assumed to be of doubly-symmetric I-section, simply supported at its ends, and
without web stiffeners that would be deployed for stiffening for shearing actions. The
bottom flange of the girder is restrained at the deck level fully against translational and
lateral rotational buckling deformations, but is restrained elastically against twist
rotation by the flexibility of the deck between adjacent girders. The method is then
modified to address tl{e distortional buckling of continuously restrained monosymmetric
beams and beam-columns under transverse load. In plain steel beams, most transverse
loads are not applied directly at mid-height but instead are applied above or below this
location. However, the height of transverse loading is only important if the point of load
application can twist and this is clearly not the case for a half-through bridge girder or

for a continuous composite beam.

While the results in this chapter provide useful additions to research findings, the main
motivation is to develop an energy method that can be modified to handle the
monosymmetry caused by residual stresses in the inelastic buckling analysis developed

in subsequent chapters of this thesis.
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4.2 BUCKLING MODEL

The method used in this study is a simple Ritz-based energy procedure. This energy
approach requires assumptions for the deformations of the beam-column as it departs its
(trivial) primary equilibrium path at bifurcation, and that the prebuckling deformations
are not coupled with the buckling deformations. The deformations of the cross-section
shown in Fig. 4.3 are defined as the lateral deformation ur and twist ¢r of the top flange,
and twist @gp of the bottom flange as shown. If the assumption verified elsewhere
(Bradford 1992a) that the stocky flanges do not deform during buckling, but that the

web deforms in its cross-section as a cubic curve, then the buckling deformation

i = (ur.gr05) @1

defines the buckled configuration of the cross-section at any position z from the origin

of the beam of length L.

It is assumed that the web is unstiffened, except for load bearing stiffeners at the ends,
which provide simple support to the member against out-of-plane buckling. The

buckling deformations consistent with the kinematic boundary conditions are taken as
Uu=q) sininé 4.2)

in which g =<q1,q2,q3>T are the maximum values of the deformations

<uT,¢,,¢B>Trespectively, and £=z/L. The cubic deformation of the web during

buckling is written as

u, = hw(a, +a,n+a.n’ +a4773)Zsini7r§ 4.3)
i=]

and invoking the conditions of displacement and slope compatibility of the flanges and

web at the two flange-web junctions (Bradford 1997a) allows the polynomial

coefficients in Eqn. 4.3 to be expressed as
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a=Cg 4. 4)

o) [1/2n, -1/8 1/8

a| |3/2n, 14 ua ||T “s)
o | 0 w2 12| '
a,| |-2im, -1 -1 |\P

Equations 4.3, 4.4 and 4.5 thus define the web displacements in terms of the buckling

degrees of freedom, g, ¢> and gs.
The energy approach requires the calculation of the total change in potential

O=U-V (4.6)

where U = the strain energy stored during buckling and V = the work done by the
applied actions. The strain energy U is composed of three components; viz. the strain
energy stored in the top flange due to lateral deformation and twist rotation and the
strain energy stored in the bottom flange due to twist rotation U, the strain energy
stored in the web due to flexure Uy and the strain energy stored in the continuous
bottom flange restraint during twist rotation Uz. The work done, V, during buckling is
associated with fibre shortening during buckling under a stress cr(y, z). In calculating
the strain energy, the flange components are based on simple beam theory, while the

web component is based on isotropic plate theory (Bradford 1997a). Hence,

L
U = [{EL i, + (g}, 485 4.7
0
he
L 7
Uy, =%,BJ J.uﬁ,,yy + Uy, - 2(1—v)(uw,yy uW,W—uﬁ,,yz)}iydz 4.8)
0-h,/2

1%
Up=5 [k.p3dz (4.9)
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where commas denote partial differentiation, v = Poisson’s ratio, k, = the continuous
twist rotation stiffness at the bottom flange, E/r = flexural rigidity of the flange about an
axis through the web, GJ = the Saint Venant torsional rigidity of the flange, and

Et?

ﬂ=a1-_”—vz). (4. 10)

The strain energy Ur stored in the flanges during buckling can be written as

L
Up == [£:Dp&pdz (4.11)
0

1
2

where D, is the appropriate flange property matrix given by

El, 0 0
D,=| 0 GJ, 0 | (4.12)
0 0 GJ,

The elastic shear modulus G is used to calculate the torsional strain energy stored during

buckling of the flanges, where

E
G_2(1+v)' (4. 13)

By making the assumption that the flanges deflect and twist as rigid bodies, the

generalized strain vector is

- T
B =(Upsses Bpoes Bpoc) - (4. 14)
The vector £, can be obtained by suitable differentiation of Eqn. 4.2 so that

Er = B(d,,0,0:) - . 15)

Thus by substituting Eqns. 4.12 and 4.14 into Eqn. 4.11, the increase in strain energy

due to lateral deflection and twist during buckling can be formulated as
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g keq (4. 16)

as
L—
jB;D B.dz 4.17)
0

The strain energy Uy stored during buckling of the flexible plate web may be obtained

from

L h
=1 j gwﬁwawdydz (4.18)

2O—h 12

where the generalized web strain vector, £, , since the web is modelled as a ‘plate’, is

given by

g, = <uW,zz, ty .= 2uW’yz>T 4. 19)

which may be obtained by suitable differentiation of Eqn. 4.3 as

=B_ <‘haqz’%> =B, (q. (4.20)

The web property matrix in Eqn. 4.18, applicable to isotropic plate buckling, may be

written as
t3 Dll D12 O
D, = 5 D, D, 0. (4.21)
0 0 D

33

For isotropic elastic buckling (ie. in regions of the web where the applied strain, g, is

less than yield strain, g), the well-known rigidities given by Timoshenko and Gere
(1970) are used, so that
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D, =Dy, =E/1-v?)
Dy, =Dy =vDy, . 4. 22)
Dy, =G

Thus by substituting Eqns. 4.19 and 4.21 into Eqn. 4.18, the strain energy stored in the

web can be expressed as

Uy == ky§ (4.23)

N | —

where the web stiffness matrix k,, is given by

L h,/2
k, =ET[ | jE;EWEWdydz]E : (4. 24)

0-h, /2

The integrals in the above equation are calculated by Gaussian quadrature and the pre-

and post-multiplication by C” and C is facilitated by computer.

If k, is the continuous twist restraint of the restrained flange per unit length, then the

strain energy is

Up ==G kg (4.25)

1

2

where k. » 1S the restraint stiffness matrix given by

_ L

kR=kz_[¢-¢dz. (4.26)
0

The matrix k, may be readily determined by hand manipulation.

Finally, the total strain energy stored during buckling can be expressed as

kg (4.27)

N -
K



107

where the stiffness matrix & is given by

k=k,+k, +kg (4. 28)

and each of the matrices are given in Appendix 4.7. The order of these matrices

depends on the number of Fourier terms » used in Eqn. 4.2 and is 3nx 3n.

During buckling the stresses o(y,z) caused by the axial force N,,(£) and the moment

M., (£) do work

V=V.+V,. 4.29)

Vr is the work associated with the flange deformations and twists and ¥y is the work

associated with the web flexural deflections, and these are defined respectively as

NI'—‘

== o Lj {02, 2,4V, Jdzdd 4. 30)
A 0

L
—%J’ [ty u ,}{G Z]{uw,z u, , " dzdd @.31)
A0

where 4 = the area of the cross-section, and owing to the assumed rigidity of the

flanges,

Vr = X@r;Vp =XPp. (4.32)

In the present application, the axial force N, (£ ) is assumed without loss of generality

to vary lengthwise as a cubic polynomial, and £is defined as z/L, so that

N, (&)= AN, (a, +a¢ + 0,8 +a,&°) (4.33)

where N, = a predetermined reference value, A = the buckling load factor, and ay,...,a;

are predetermined constants specifying the given axial force distribution.
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The bending moment M, (f ) is assumed to vary lengthwise as a cubic polynomial, so

that

M (&)= AM, (B, +b,& +b,E +b,8°) (4.34)

where M, = a predetermined reference value, A = the buckling load factor, and b,,...,b4
are predetermined constants specifying the given bending moment distribution. The

stress o in Eqn. 4.29 is then simply

o= NC}‘ (g) + MC" (f)y
A I

X

(4. 35)

where I, = major axis second moment of area of the I-section girder.

It is assumed that the average shear stress, 7is carried by the web only and is defined as

_r()
vy (4. 36)
in which
V()= amg) (4.37)

Again, substituting Eqns. 4.2 and 4.3 into Eqns. 4.29, 4.30 and 4.31 allows the work

done during buckling to be expressed conveniently in matrix form as

- %ﬂz}"fc? 4. 38)

in which ¥ is the stability matrix given by

]|
Il
.l
e
+
il
=

(4. 39)

and each of the matrices are given in Appendix 4.7.
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If now the contributions in Eqns. 4.28 and 4.39 are substituted into Eqn. 4.6, the change

in total potential I takes the familiar form

M=—g"(k-45). (4. 40)

1
2

Neutral equilibrium is defined by JI1 =0 for any arbitrary variation &g, so that

oM=065"(k-i5)5=0 (4. 41)

and if the neutral equilibrium is at the point of bifurcation from the primary path ((7 = 5)
to the secondary path (cj # 6), then the standard buckling eigenproblem in Eqn. 4.41

becomes

[k - 45 =0. 4. 42)

The eigenproblem in Eqns. 4.41 and 4.42 is of order 3», and amenable to standard

eigensolvers (Garbow et al. 1977).

4.3 VERIFICATION OF MODEL

4.3.1 Convergence studies

Convergence studies have been conducted to determine the number of terms of the
trigonometric series, n, required for accurate solutions. The number of terms required to
achieve a sufficiently accurate solution will depend on the loading. Comparisons with
the finite element program FEDBA16 (Bradford & Ronagh 1997a) for loading cases
different from uniform bending have indicated that only nine to twelve terms in Fourier
series are sufficient for critical buckling factor, 4, to converge. It was in general found
that solutions for » = 9 and » = 12 where within 0.2%. Figure 4.4 shows the
convergence characteristics for some considered bending distributions. For the sake of

brevity, the results of the convergence study have been restricted to a selected few.
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Since relatively few Fourier terms are required the solution of the eigenproblem is

extremely rapid.

4.3.2 Model verification

Since experimental or closed form solutions are unavailable for elastic RDB of beams
under moment gradient, the validity of the buckling analysis developed in this chapter
was tested by comparing the critical moments with established finite element solutions.
The accuracy of the theoretical model for the case of a column in uniform compression
has been verified by comparisons with the results presented by Bradford (1997a) and
good agreement has been demonstrated, as illustrated in Fig. 4.5. The model
verification was then extended and the results were compared with the results which the
finite element program FEDBA16 (Bradford & Ronagh 1997a) and ABAQUS gave for
different loading configurations for four representatively chosen beam cross-sections
with different @, yand K values, as summarised in Table 4.1. The parameters «, ¥ and
K are defined subsequently in Eqns. 4.44, 4.45 and 4.47.

In order to compare the current numerical model with the existing solutions for plain
steel beams, either doubly-symmetric, monosymmetric or steel beam-columns, an
additional degree of freedom was introduced and this amendment allowed for the
tension/bottom flange to displace laterally as well. Distortion of the web in this
amended analysis was suppressed by expressing the strain energy due to out-of-plane

plate flexure of the web as

1 L h, /2
Uy =57, [ [Dyuy,, dydz (4. 43)
0—~h, /2

and allowing % to approach infinity; where Dy is the relevant web rigidity applicable to
elastic-plastic buckling. Thus, the elastic critical buckling moment values calculated for
the plain steel sections (ie. translational restraint, k, = 0, rotational restraint, £, = 0 at the
tension flange level) are elastic lateral-torsional buckling resistances and these values
were compared to those calculated according to AS4100 (1998) as shown in Table 4.1b.

Generally, these solutions agree with the present method within a tolerance of 2%.
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4.4 PROPOSED DIMENSIONLESS PARAMETER, y

The parameters that control the distortional buckling of isolated beams are numerous
and their relationship is difficult to quantify, and consequently difficult to present in a
systematic and concise manner. The buckling load depends on such aspects as the
loading pattern, cross-section geometry, beam slenderness and restraint conditions. The
relationship between the parameters that influence distortional buckling is difficult
enough in itself to quantify, and incorporating the restraining effects adds another

dimension of complexity to the problem.

To understand the relation between the most influential parameters that control the RDB
phenomenon Eqns. 4.17, 4.24 and 4.39 were expanded and the significant relevance of
such parameters with respect to each other was examined. The loading regime, L/h,,
ratio and moment parameter f were recognised as the most dominant parameters. To
take into account the torsional rigidity and to satisfy dimensional homogeneity the

proposed dimensionless parameter, y, takes the following form

y=LL (4. 44)

GJh

w

4.5 NUMERICAL INVESTIGATIONS

4.5.1 General

The proposed parameter has been employed to carry out numerical analyses. Various
dimensionless parameters such as L/h,, hu/ty, byt; and torsional restraint parameter, a,

given by

k

@=—i 4.45
m2GJ/ [? (*4.45)

were covered in this parametric study. The results of this study are shown in Figs. 4.6-

4.28. In the figures, M., is the elastic critical moment obtained from the RDB analysis
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and described in section 4.2, while M,; is the elastic critical moment for the plain steel
I-beam subjected to uniform bending moment, assuming rigidity of the cross section
and defined by

3, 2
M(,,,=\[[”L2 y](GJ+7L]fIWJ. (4. 46)

The ratio of M_,/M,, is plotted as a function of the dimensionless beam parameter, K, as

generally deployed in plain steel sections (AS4100 1998), and given by

K ”ZEIy 4.47)
Norr’ '
the proposed parameter, y, and the torsional restraint parameter, e, for some typical

loading configurations.

4.5.2 Continuously restrained I-beam

4.5.2.1 Doubly symmetric |-section

M../M,,, ratios were computed for y values of 5, 10, 20, 30, 40 and 50 for a wide range
of loading configurations. The predicted RDB loads of simply supported beams are
shown in Figs. 4.6-4.8. Analyses were made for varying amounts of rotational restraint
k., herein expressed in terms of a dimensionless torsional restraint parameter, . The
rotational restraint parameter, o, was varied from 0 (no restraint) to 1000 (or o, rigid
restraint). It can be seen that for o = 0, where there is only translational restraint the
beam buckles in a lateral-torsional mode. In general, the reductions in buckling
resistance caused by distortion are moderate for medium spans, and increase as the span
decreases. However, as the twist restraint, o, increases, the effect of web distortion
increases and the buckling mode is lateral-distortional. The figures demonstrate that the
elastic critical moment of beams with elastic torsional restraint of the tension flange
asymptotes to a maximum value as the stiffness of the torsional restraint increases. It is
further shown that the effects of the web distortion are the most severe for the case
when a reaches 1000, and that the compression flange twists significantly. A plot of the

normalised buckling mode, which is the eigenvector in Eqn. 4.41 is shown in Fig. 4.9.
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The parametric studies undertaken have shown that the proposed parameter, y, is useful
in defining a unique value of critical buckling moment for any particular ratio of L/h,,
W/t,, and bst, and value of K. The results have demonstrated that the implementation of
the proposed parameter, y, together with the well-known beam parameter, K, results in
curves that are much more comprehensive, principally because these curves fully cover
member geometrical and elastic material properties for a particular loading pattern. It
has been further observed that plotting the range of different y values, as shown in Figs.
4.6-4.8, as a function of K, «, and a loading regime, intermediate values of the
parameter ¥ may be easily interpolated. These curves may be used to estimate the
elastic RDB moments of any general I-beam since the parameters K and y proved to be

very effective in defining a wide range of general I-beam dimensions.

4.5.2.2 Design Example

The application of the design graphs in Figs. 4.6-4.8 is best illustrated by an example.
For the steel section of a half-through girder bridge simply supported over a span of 10
m and subjected to uniformly distributed load, determine the elastic critical buckling
load.

It is assumed that the torsional restraint parameter, e, is 1000. It is further assumed that
the relatively thin web has longitudinal stiffeners, which prevent local buckling without

preventing the web distortion.

by =300 mm
tr =30 mm
hy = 1000 mm
ty =10 mm
E =200 GPa
v=03

The procedure is as follows:

1. Determine I, 1, J, G and S
2. Calculate ¥
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3. Calculate X

4, By using yand K determine M,,/M,; by referring to Fig. 4.7
5. Calculate M,

6. Determine elastic buckling load

Solution:

1. Properties of the steel section:

300°x30 1000x10°
Iy =2x T +

=1.358x10° mm*

- Lk’ 1.358x10° x1000?

T4 4

=3.396x10" mm®

J = %Zbﬂ = %(2x300x303 +1000x10°)=5.733x10° mm*

E 200,000

G= = =76923.1 MP
2(1+v) 2(1+0.3) :

E*200,000x10°

= 7
12(1—1/2)— 12(1_0.32) =1.831x10"Nmm

B =
2. The proposed dimensionless parameter:

B 1.831x107 x10,000

}/: = 3 =415
GJh, 76,923.1x5.733x10° x1000

3. K-beam parameter:

2 2 13
=\/7r EI, =\/ 7 x200,000x3.396x10° .

GJI? 76,923.1x 5.733 x10°® x10,000>

4. Therefore, with K = 1.233 and y=4.15 it is found from Fig. 4.7 that M_,/M,, = 1.35.

5. The elastic buckling moment
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L2

2 2
M, = \/[” El, }(GJ + f‘f‘zlij =1718.6 kNm, and the critical buckling moment

M, =1718.6 x 1.35=2320.1 kNm

6. Hence, the uniformly distributed load w = M, =185.6 kN/m.

L2

4.5.2.3 Monosymmetric I-section

Monosymmetric I-sections are in general more efficient in resisting loads, provided the
compressive bending stresses are taken by the larger flange, as shown in Figure 4.10.
Contemporary and inexpensive fabrication techniques allow flanges of different widths
and thicknesses to be welded to a slender web to maximise the buckling resistance of
the resulting I-beam, while minimising the amount of material used. It has been shown
in section 4.5.2.1 that the buckling modes of equal flange I-beams (called RDB in this
thesis) may combine general lateral deflection and twist with general changes in the

cross-sectional shape which arise from web distortion.

The analysis of the structural stability of continuously restrained or unrestrained
monosymmetric beams has been generally lateral-torsional (Trahair 1993) which is
based on the Vlasov assumption that the cross-sections do not distort. When this
assumption is relaxed, the buckling of the I-section is lateral-distortional rather than
lateral-torsional. Although research into the lateral-torsional buckling of unrestrained
doubly and monosymmetric beams is bountiful, few studies have been conducted on the
elastic lateral-torsional and lateral-distortional buckling of continuously restrained
monosymmetric beams (Lee 2001). The closed form solution for monosymmetric
beam-columns subjected to uniform bending with elastic torsional and translational
restraints was presented by Vlasov (1961). Pincus and Fisher (1966) verified Vlasov’s
study by considering the effects of continuous diaphragms acting at the compression
flange of a doubly-symmetric I-section. Trahair (1979) developed an accurate closed
form solution for continuous elastically restrained monosymmetric beam-columns
subjected to uniform bending. The continuous elastic restraints considered in that study
were minor axis rotational and torsional restraint as produced by a continuous
diaphragm restraint. Hancock and Trahair (1978) developed a line-type finite element

with 8 degrees of freedom to study the elastic lateral-torsional buckling of restrained
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monosymmetric beams. The line element method developed by Hancock and Trahair
was extended to study the elastic lateral-torsional buckling of simply supported doubly
symmetric beams subjected to a uniformly distributed load with minor axis rotational
restraints applied at the level of load application (Hancock & Trahair 1979). Bradford
and Cuk (1988) developed a line-element based on an arbitrary axis system to eliminate
the complications that arise when the shear centre and centroid of the cross-section are
not parallel. The method was extended to the elastic lateral-torsional buckling of
restrained doubly and monosymmetric beams subjected to uniform bending to verify the
method (Cuk 1984), but parametric studies where not undertaken. As mentioned
earlier, lateral-distortional buckling is profound for a beam subjected to torsional
restraint, and this was demonstrated by Bradford (1988a, 1988b) who studied the elastic
lateral-distortional buckling of restrained monosymmetric beams under uniform
bending. In that study, he also found that the effect of web distortion is not significant
for translational and minor axis rotational restraint. Nevertheless, research into lateral-
distortional buckling of restrained beams has been generally limited to uniform bending,

which cannot represent the realistic loading condition experienced in most structures.

The model described in section 4.2 is used here to study the effects of web distortion on
the elastic distortional buckling of continuously restrained monosymmetric I-beams of
practical geometry under transverse loading. The loading regimes considered in this
study are concentrated and uniformly distributed loads with translational and minor axis
rotational restraints at the bottom/tension flange. The method forms the kernel for

inelastic buckling studies by the energy method in subsequent chapters.

The results derived in this study are shown in Figs. 4.11 to 4.14. The variation of the
elastic critical buckling moment, M., normalised with respect to the elastic critical
mbment, M, for the plain monosymmetric steel I-beam, subjected to uniform bending
moment and assuming rigidity of the cross-section, is plotted for a range of beam
monosymmetry parameter, p (o= 0 to 1). The degree of beam monosymmetry is given

as (Kitipornchai et al. 1986)

I . I .

y(compress on ) y(compres.\'mn )
= = 4. 48
P=7 ;i (4.48)

y{compression) +1 yltension) y
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in which I, compression)> 1y (tension) and 1, are the second moments of area about the section y-
axis of the top/compression flange, the bottom/tension flange, and the whole section,
respectively.  Although steel cross-sections with values of beam monosymmetry
parameter of 0 and 1.0 were used in this study, the cross-sections are not authentic T-
sections but have some minor top and bottom flanges respectively. Thus the values of 0

and 1.0 are to a certain extent approximate values (ie. 0.02% tolerance).

The elastic critical moment, M,; for a plain monosymmetric steel I-beam subjected to

uniform bending moment and assuming rigidity of the cross-section is defined by

n*El 2EI 2 p?El n*El

M,,,,=\/ e B (B Ty B T (4. 49)
L L 4 L 2 L

in which the monosymmetry section constant, £, is given by (Kitipornachi & Trahair

1975)

)
B, =0.8h, {—————y(“’}"”’“‘"’") - 1} . 4. 50)

y

The solutions are plotted for the beam parameter, X ranging from 0.5 to 2, and for the

monosymmetric I-section defined as

_  |7’ELh}
K= —2, (4.51)
4GJL

The values of K for practical beams are in the range of 0.5 and 2.5, with low values of

the K beam parameter representing long beams and/or compact cross-sections, and

high values corresponding to short beams and/or slender cross-sections. As shown in

Figs. 4.11-4.14 the M,,/M,, values, for a particular monosymmetry parameter, p curve,

converge to a constant after K >1.5.

The results (Figs. 4.11 — 4.14) show the favourable effects of elastic translational and
minor axis rotational restraints (o= 0, 10, 100 and 1000) applied at the bottom flange of
a simply supported beam, as normally employed in half-through girder bridges. The
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increase in the buckling capacity is most pronounced for low values of the beam
parameter, K . A considerable increase in buckling capacity is demonstrated for beams
with p= 0.1 to 1.0 and the slightest increase being for the case of a monosymmetric I-
beam with p = 0 (ie. very narrow compression flange). It can be further observed from
Figs. 4.11-4.14 that the increase in the degree of rotational restraint, @ does not have an

effect on the increase in the buckling capacity for the beams with p= 0.

The results also indicate that the effects of web distortion are significant when elastic
translational and minor axis rotational restraints are applied at the tension flange level.
Besides this, it is evident that the reduction of the elastic lateral buckling load due to
web distortion increases as the stiffness of the restraint increases. In all cases, the
effects of web distortion can be very pronounced, more so than for doubly symmetric

beams.

For a beam whose tension flange is the smaller flange, the reductions in the elastic
critical moment buckling capacity due to web distortion decrease as the degree of
monosymmetry of the beam increases. On the other hand, when the smaller flange is
the compression flange, the reductions in the buckling capacity increase as the degree of
monosymmetry increases. This is because the buckling resistance is provided by
smaller flange, and it has been shown that the distortion which reduces the buckling
resistance of the member is most pronounced for beams with narrow stocky flanges

(Bradford 1985b).

Figures 4.15 to 4.17 show the longitudinal distribution of normalised buckling mode
shapes of the lateral displacements, ur and the angle of twist, gr for the compression/top
flange and the angle of twist, gg for the tension/bottom flange. These curves were
derived from the energy method presented in section 4.2 (using » = 18) by solving for
the eigenvectors in the determinantal equation 4.38 after A had been found. It can be
seen that as the value of p decreases from 1.0 to 0, and therefore the compression flange
becomes stockier, the deflected shape changes from a half-sine wave to a full-sine wave
and a two full-sine waves. Therefore, as the value of p approaches 0, the u and ¢
buckled shapes are more complicated functions and require at least two terms in the

Fourier series to describe them closely.
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4.5.3 Continuously restrained beam-column

4.5.3.1 General

The buckling behaviour of steel beam-columns has been the subject of considerable
research (Trahair 1993; Trahair & Bradford 1998; Chen & Lui 1991). The interaction
of bending moment and axial compressive loading has been investigated by a large
number of researchers, and a wide variety of different interaction equations have been
derived to take account of the complexities which arise when beam-columns of various
cross-sections, with varying degrees of compactness, are subjected to combinations of
axial load and moments which may vary to any specified degree along the length of the
member. Numerical solutions and approximate buckling formulae for such members

under a variety of loading and restraint conditions are available in standard texts.

Beam-columns may act as if isolated, or they may be continuous members that form
part of a rigid frame. The analysis of a beam-column involves the features of both a
deflection problem as a beam and a stability problem as a column. All members deflect
under loading, but in the case of beams the effect of this upon the actions can usually be
ignored for a buckling analysis. In the case of columns, however, the deflections may
be such as to add a significant additional or secondary moment. This is the main reason
that beam-column analysis is complicated compared with column analysis, which is a

pure linear eigenvalue problem.

Most research work on the elastic buckling of I-section beam-columns has focused on
unrestrained steel sections. Although for short span steel members the critical load is
often less than the elastic value because the effective stifnesses are reduced by yielding
within the member, the ultimate strength of a slender steel beam-column which is
laterally unsupported is influenced by buckling by combined twist and lateral
(sideways) bending of the cross-section. This well-known phenomenon is known as

lateral-torsional buckling.

When a continuously restrained beam-column (Fig. 4.18) does not have a braced top
(compressive) flange, its buckling mode must necessarily be distortional (Bradford
1992a), since the web must distort in the plane of its cross-section as it restrains the

compressive flange during buckling. Further, because of the restraint provided at the



120

tension flange level, cross-sectional distortion is more profound, and so this buckling

mode is referred to as restrained distortional buckling (RDB).

The problem is compounded by the many effects, which have significant influence,
including those of force and moment distribution, member and cross-section
slenderness, continuity, restraints, and two- or three-dimensional behaviour of the

beam-column.

4.5.3.2 Second-Order Non-Linear Elastic Analysis

An approximate solution for the maximum moment in a member with unequal end

eccentricities is given in AS4100 (1998) as

N
M=—ln . 52)

where e is the largest end eccentricity (e, or e;) and c,, is a factor to account for the

moment gradient caused by unequal end moments and is given by

¢, =0.6-048<1.0 4. 53)

in which £ is the ratio of the smaller to the larger end moment, as illustrated in Fig.

4.18, taken as negative if the member is bent into single curvature.

The geometric non-linearity is accounted for by amplifying the first order moments A,

(Ne) by the approximate factor & given by

c
5, =—m 4. 54
* 1-N_IN, (.54

where N,, is the applied axial load and N, is the Euler buckling load.

While having a closed form solution when elastic (Bradford 1997a), the investigations
carried out in this study implement the following numerical procedure so that yielding

may be introduced and for use in the out-of-plane analysis described subsequently.
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Once loaded, the beam-column will deform & (z) from its original undeformed position.
The problem is non-linear, and 6 depends on the end moments My and M,

respectively and magnitude of the load N. The appropriate boundary conditions at z = 0

and L are
5(0)=0 s(L)=0

; ; . (4. 55)
EIs'(0)=-M, EIS'(L)=-M,
An assumed function for the curvature that satisfies the boundary conditions is
8" =cy+cz+).6, sininz/L. (4. 56)

i=1
Therefore, on integrating,
2 3 2

coZ° ¢z L' &6,

6=+t z+c,—— Y —Zsinimz/L. 4,57
2 6 U7 g 21: i* .37
Substituting the boundary conditions in Eqns. 4.56 and 4.57 produces
-M
¢, = )
EI
oMo —My
‘ EIL
M M
e, =L[2o Mu (4. 58)
EIy 3 6

¢, =0

The analysis is elastic, and the geometric non-linearity is accounted for by the Fourier
terms in Eqn. 4.56. The iterative technique proceeds as follows. The beam-column is
divided into n + 1 segments containing » internal nodes. At each station, the moment is

M; + N§;, and this is related to the curvature in Eqn. 4.56 by
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M + NG, d
%i=—(co +c,z+z5mi sini7zz/L). 4.59)
i=]

Equation 4.59 may be solved for the n unknown Fourier coefficients &,; provided that
the left hand side is known. Firstly, é}(o) is set as zero, and Eqn. 4.59 is solved for .
The values of &, " may then be substituted into Eqn. 4.57 to obtain b}(l) at each of the j
stations corresponding to z =z, The values of &'" may then be substituted in Eqn. 4.59
to obtain » equations in 5,,,,(1). The procedure is thus continued, by solving the n

equations for S at each k-th step, until convergence of the displacements J; occurs.

4.5.3.3 Verification of solution

The elastic second order behaviour of beam-columns is well-known in steel design. The
deflected shape of an elastic beam-column J(z) acted on by axial forces N and end
moments M and M, where £ can have any value between —1 (single curvature bending)

and +1 (double curvature bending) as shown in Fig. 4.18, is given by

5(2) = yj%[cos,uz —(pcos ec(,uL)+ cot ul)sin pz -1+ (1 + ,B)%] (4. 60)

in which £ is the same ratio of end moments as M/M) in Eqn. 4.53 and where

7 | N

== 4.61
H=7 N (4.61)
in which

_7r2EI 4 62
No/—P—L; (4. 62)

and k, is the effective length factor which for a simply supported beam-column is equal

to unity.

Figure 4.19 shows a plot of §(z) for f# = -1, 0 and 1 for a beam-column with yx =
1.33x10™ to 1.74x10™ and 1= 1.70x10™ to 2.06x10™, with »=5 and K = 0.7 using the

above numerical procedure with » = 9 segments. The solutions were obtained very
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rapidly on a personal computer, and are identical to those of the analytical solution,

even for large non-linearities when N/N,; approaches unity.

The maximum deflection of an elastic beam-column &(z) with transverse loads (Fig.

4.20) can be obtained by using

_7al=7,NIN,)
(1_7nN/Nol)

(4. 63)

and values of y,, 7 and y, are given for beam-columns with central concentrated load as
1.0, 1.0 and 0.18 and for beam-columns with uniformly distributed loads, w as 1.0, 1.0
and —0.03 (Trahair & Bradford 1998).

Figure 4.21 illustrates a plot of J(z) for a beam-column with central concentrated load
and uniformly distributed load, w and K = 0.65 and 1.23, using the above numerical

procedures.

4.5.3.4 Buckling Analysis

The buckling analysis assumes that in cross-section the flanges remain straight, that the
web flexes as a cubic curve, and that all deflections and twists vary as a cubic
polynomial function along the member, as described in section 4.2. The bottom flange
of the beam-column is restrained fully against translation and lateral rotational buckling
deformations, but is restrained elastically against twist. The ends of the beam-column
are assumed to be simply supported and free to warp but end twist rotations and lateral
deformation are prevented. Furthermore, since the cross-section of the beam-column

has two axes of symmetry the shear centre and centroid coincide.

For beam-columns, simple beam theory provides a good model for stress distribution

and therefore is used in the study. The total buckling stresses ojrare

AO i =A,0,, 12,0, (4. 64)

a™ jA

where
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k
P /R _ W8 +M )y
a~ Aj A a~ B I

(4. 65)

x

in which A, is the applied moment; N, is the applied axial force; 4, is the applied load
factor; gjp is the bending stress and o4 is the axial stress; &' is the converged
deformation as calculated in section 4.5.3.2 at each of the j stations due to applied N;
and M;; A is the cross-sectional area; and I is the second moment of area about the

major axis.

The total potential energy I1 is the sum of the strain energy U (contributed to by the
strain energies stored in flanges, web and elastic torsional restraint) and the potential

energy of the applied load, V' (containing flange and web potential energies)

M=U,+U, +Uy -V, -V, (4. 66)

which can be written as

==§"k(1)g (4. 67)

1
2
where k is the stiffness matrix that depends non-linearly on A owing to the term é}k in
Eqn. 4.65. Using the variational form of the neutral equilibrium at buckling, that JI1 = 0

for any arbitrary variation of the buckling displacements 64, leads to the familiar

buckling condition

k(2)g =0. (4. 68)

Equation 4.68 represents a routine linear eigenproblem that may be solved by standard
numerical algorithms for the buckling load factor A as well as the buckled shape that is

defined by the normalized eigenvector § as illustrated in Fig. 4.9. Because the problem

is actually nonlinear, Eqn. 4.68 must be solved sequentially until A = A,. The iterative

eigenproblem scheme thus linearises the nonlinear solution.

The numerical method has been used to study a simply supported continuously

restrained I-section beam-column. For consistency with the numerical model, the
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continuous restraint provided at the bottom flange is assumed to restrain this tension
flange fully against lateral deflection and minor axis rotation, but to provide partial

restraint against twist rotations with the dimensionless stiffness « given in Eqn. 4.45.

In Figs. 4.22-4.27 the load factor is plotted in terms of the dimensionless ratios M,,/M,,,
and N_/Noy. M,y is the lateral-distortional buckling moment for a beam member
restrained fully against lateral deformation and minor axis rotation at the tension flange
level, but which is free to twist during buckling, as calculated in section 4.5.2.1 for
doubly-symmetric I-beams. This buckling mode involves cross-sectional distortion.
Similarly N, is the lateral-distortional buckling load for a column with the same

restraining arrangement and which also accounts for cross-sectional distortion.

The loading configurations considered in this study are uniform bending, uniformly
distributed load and a concentrated load acting at the mid-span. The buckling load
factor is plotted as a function of the restraint parameter, ¢, the proposed distortional
parameter, y and the beam parameter, K, as described in section 4.5.2.1. Different
degrees of lateral-torsional restraint, & are considered, ranging from 0 to 1000. The

proposed distortional parameter, y varies from 5 to 50.

The numerical results shown in Figs. 4.22-4.24 demonstrate that for a particular loading
configuration M,,/M,; and N,/N,s are close to unique values for a range of  a and K
values. Hence for particular stress distribution defined in Eqn. 4.64 the buckling load

factor 4 may be determined as a function of K, a and .

In Figs. 4.25-4.27 the interaction between axial and bending capacities is plotted for
three different loading configurations considered in this study. In these figures the ratio
between reference bending moment and axial load M,/N, is varied from 0 to 1 in order
to plot the buckling envelope. The figures address the entire range of « and yvalues
considered in Figs. 4.22-4.24. The trends shown in Figs. 4.25-4.27 are very similar and

can be simplified to the linear interaction equation given as

My (No 1o, (4. 69)
M
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Figure 4.28 plots some typical longitudinal distribution of normalised buckling mode
shapes of the lateral displacements, ur and the angle of twist, ¢r for the compression/top
flange and the angle of twist, gz for the tension/bottom flange for the beam-columns

considered in this study.

4.6 SUMMARY

The Rayleigh-Ritz energy based method of analysis has been developed for the study of
the restrained-distortional buckling (RDB) of half-through girder bridges. The
developed model is used to predict the elastic buckling moments of I-beams where the
compression flange is restrained by the stiffness of the web only, and the tension flange
is provided with continuous torsional restraint. This analysis is applicable to members

under various conditions of loading and degree of continuous restraint.

The results of the energy method have been used to develop a design procedure. The
proposed design curves produce accurate estimates of the elastic RDB capacity over a
practical range of cross-sectional geometry. The design curves for individual loading
cases are applicable to the entire range (0 to 1000) of the torsional restraint parameter,
a. The I-section properties required in the determination of the elastic RDB moment for
a particular loading configuration may be grouped into three basic parameters: 1. ¥ —
distortion parameter (proposed in this study); 2. K- beam parameter; and 3. a — torsional
restraint parameter. Some guidance pertaining to the design of half-through girders was

provided, and this was illustrated with an example.

A parametric study was then undertaken to investigate the factors influencing the
lateral-distortional buckling behaviour of simply supported continuously restrained
monosymmetric I-beams.  The solutions, which are valid for any general
monosymmetric I-beam with degree of twist restraint, « varying from 0 to 1000 (rigid
restraint), were presented in design graphs in terms of the easily evaluated design
parameters p and K. The results have demonstrated the beneficial effect of twist

restraint and that the effect of web distortion can be significant. This is caused by the



127

combination of the degree of monosymmetry and distortion of the web imposed by the

restraint at the tension flange level.

The developed method was then further modified to account for geometric nonlinearity
and was used to investigate the effects of combined uniform axial force and moment
gradient on the critical buckling load of simply supported isolated beam-columns. The
results obtained in this study demonstrated that a linear interaction equation is suitable
in determining the out-of-plane buckling capacity of beam-columns. It was confirmed
that the stability criteria for beam-columns under moment gradient are greatly
influenced by the beam parameter, K, torsional restraint parameter, «, distortional

buckling parameter, y and the loading configuration.

Thus, the presented model identifies a distortional buckling parameter that may be used
to reduce the proliferation of design graphs normally associated with distortional
buckling to comparatively few. The buckling parameter also identifies the relative
importance of many geometric dimensions, as well as their interactions on this
distortional mode of buckling. It is concluded that the design method developed in the
present chapter, due to its generality and simplicity, provides an accurate and quick

method for solving complex RDB problems of half-through girder bridges.
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4.7 APPENDICES

4.7.1 Flange Stiffness Matrix

For ij=1,2,...n, (n = number of Fourier terms) and i =

.2 1 L ELy
ke (i )= 57 =)
kF(n+i,n+j)=%7r2—G%T—ij (4.70)
kF(2n+i,2n+j)=%7r2 %ij
while for i # j
ky(i.n,j.n)=0 (4.71)

4.7.2 Flange Stability Matrix

For ij=1,2,...n, (n = number of Fourier terms) and i =

ijﬂ'z(O'N + hw;“ )ABF
L2

gF(i:j)‘_’

ijﬂ'z(O'N + ﬁ‘%M—)(tfb; )T

1217

ge(n+in+j)= 4.72)

ij”{“lv + hw;-M )(tfb;)a

2 1,2 )=
g-(2n+i2n+ j) 7
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[2]

, while for i # j
gr(in, j.n)=0 4.73)

4.7.3 Restraint Stiffness Matrix

For ij=1,2,...n, (n = number of Fourier terms) and i =

(4. 74)

z

kR(n+i,n+j)=%Lk

while for i # j

kyp(i.n, j.n)=0 (4.75)

4.7.4 Web Stiffness (Kernel) Matrix

For ij=1,2,...n, (n = number of Fourier terms) and i =
oo ] iy

k6 j)= b G AL

ky (2n+ )= (— hijn’v + %hﬁ(z‘j)zn“jm

ky(n+in+j)= (21—4hw2(ij)2774 +ij772(1—v))ﬁLhw

ki (n+1.3m+ j) = [i—éahwz(ij)zn“ — iy +§ijn2)mhw (4.76)

2

oo [2 v n*h’ 7
kW(2n+1,2n+])= -I;-—T'FW’F'? ,BLhw

w



3
16 2h

W

k,(3n+i3n+ j)= {-_—inzhwv+—+

while for i # j

k, (i.n, j.n)=0

4.7.5 Web Stability (Kernel) Matrix

For ij = 1,2,...n, (n = number of Fourier terms)

. 3 2

i h o
gy(i2n+j)=24 L

0, i#]

0, i=j

e 3 2

§j horo ..
gyn+in+j)=324a" ¢ '/

0, i#]J

0 i=j

gyn+i2n+j)= (VPR
—9 w s J
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4.77)

(4. 78)
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. 3 9
i h/m’o

g (n+ijn+j)=4160 L
0, i#]

i h'w i=
g, (2n+i2n+j)=:160 L ’

0, i=j
y (2n+i3n+j)= -1) .

g,Bn+idn+ j)=1896 L

0, i#j

where oand rare defined in Eqns. 4.35 and 4.36 respectively.



Table 4.1 Comparisons: a) continuously restrained steel beam;
b) bare steel section (lateral torsional buckling)

132

a)
Loading K y o Model | FEDBA16 | ABAQUS | (2)/(1) | (3)/(1)
Configuration 1) (2) 3)
Uniformly 055| 5 0| 1098.1 1087. 1 1080.3 0.99 0.98
distributed 0.73 | 20 10 | 1342.9 1302.6 1298.1 0.97 0.97
load 0.83] 40| 100| 950.2 915.0 913.4 0.96 0.96
1.29 | 50] 1000 | 851.9 817.8 815.2 0.96 0.96
Pointloadat | 0.55| 5 0]1292.3 1266.5 1263.6 0.98 0.98
0.5L 0.73 | 20 10 | 1902.0 1844.9 1840.2 0.97 0.97
083 | 40| 100 | 1042.7 1001.0 999.6 0.96 0.96
1.29| 50| 1000 | 893.4 857.7 856.2 0.96 0.96
Pointloadat | 0.55| § 0]1518.5 1503.3 1499.8 0.99 0.99
0.1L 0.73 | 20 10 | 2000.3 1940.3 1938.6 0.97 0.97
083]40| 100| 909.9 882.6 879.2 0.97 0.97
1.29 | 50| 1000 | 852.3 818.2 817.3 0.96 0.96
2 pointloads | 0.55| 5 0| 662.8 636.3 634.1 0.96 0.96
at 0.25L from | 0.73 | 20 10 | 1504.7 1444.5 1442.2 0.96 0.96
support 083 | 40| 100| 780.0 741.0 738.6 0.95 0.95
1.29 | 50 | 1000 | 705.3 670.0 669.2 0.95 0.95
2 point loads | 0.55] 5 0]1132.2 1098.2 1095.5 0.97 0.97
at 0.4L from | 0.73 | 20 10 | 1693.0 1642.2 1638.7 0.97 0.97
support 083] 40| 100| 956.7 918.4 916.2 0.96 0.96
1.29 | 50 | 1000 | 814.2 781.6 778.9 0.96 0.96
b)
Loading K Model | AS4100 | (2)/(1)
Configuration Yty | 1998)
2)
Uniformly 041 51 902.9 8982 0.99
distributed 0511 20| 5584 5543 | 0.99
load 0.60 | 40| 568.9 279.1 0.99
1.02 | 50| 281.9 1073.0 | 0.99
Pointloadat | 0.41| 5| 1106.2 1073.0 | 0.97
0.5L 0.51| 20| 689.8 6622 | 0.96
0.60| 40| 701.9 673.8| 0.96
1.02 | 50| 343.7 3334 | 0.97
2 pointloads | 0.41| 5| 882.0 8644 | 0.98
at 0.25L from | 0.51 | 20| 549.9 5334 0.97
support 0.60| 40| 5539 542.8 0.98
1.02 | 50| 276.9 268.6| 0.97
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Figure 4.1 Simply supported half-through girder bridge
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Figure 4.2 Beam on seat support
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Figure 4.3 Buckling model
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% absolute difference = |[Fourier - FEDBA16|/FEDBA16x100
20 -

—— uniform bending
—=a— uniformly distributed load
15 - —— point load at mid-span, L = 16 m
: —x— point load at 0.1L, L =16 m
. —e— point load at mid-span, L =8 m
10 ; —+— pointloadat0.1L,L=8m
L double curvature, =1
— - — double curvature, f#= 0.5
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n —number of Fourier terms

Figure 4.4 Convergence of the model
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Figure 4.5 Buckling of doubly symmetric column with A,/t = 100
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Figure 4.6 Buckling curves for moment gradient, f=-1to |
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Figure 4.7 Buckling curves for transverse loads
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Figure 4.8 Buckling curves for transverse loads (two point concentrated load)
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Figure 4.9 Buckling modes
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Figure 4.10 Monosymmetric simply supported continuously restrained I-beam
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Figure 4.11 Elastic critical moments of restrained monosymmetric I-beams
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Figure 4.12 Elastic critical moments of restrained monosymmetric I-beams
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Figure 4.13 Elastic critical moments of restrained monosymmetric I-beams

under central point load
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—e— - uniform bending
~—-- - uniformly distributed load
""""" 4 _ concentrated load at mid-span

Figure 4.15 Normalised buckling mode shapes of restrained monosymmetric I-beams
with =0 and a = 1000; compression flange lateral displacement
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—¢— - uniform bending
-—m—- - uniformly distributed load
""""" A _ concentrated load at mid-span

Figure 4.16 Normalised buckling mode shapes of restrained monosymmetric I-beams
with &= 0 and a = 1000; compression flange twist
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Figure 4.17 Normalised buckling mode shapes of restrained monosymmetric I-beams
with =0 and o= 1000; tension flange twist



Figure 4.18 In-plane bending moment distribution in a beam-column
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Figure 4.19 In-plane deformations
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Figure 4.20 In-plane deformations and bending moment distribution in a beam-column
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Figure 4.21 In-plane deformations
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Figure 4.22 Buckling curves for beam-columns under uniform bending
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Figure 4.23 Buckling curves for beam-columns under uniformly distributed load
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K — beam parameter

Figure 4.24 Buckling curves for beam-columns under central point load
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Figure 4.25 Interaction curves for uniform bending
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Figure 4.28 Normalised buckling modes: a) — ¢) compression flange lateral
displacement, ur; d) — f) and compression flange twist, ¢r
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5.1 INTRODUCTION

The inelastic lateral-distortional buckling of continuously restrained doubly symmetric
and monosymmetric welded I-section beams and beam-columns subjected to uniform
bending, compression and transverse loading is considered in this chapter. The
numerical procedure adopted is an energy-based method that leads to the incremental
and iterative solution of a third-order eigenproblem, with very rapid solutions being
obtained. The basic features of the analysis were introduced in Chapter 4, in which the
Rayleigh-Ritz method of analysis was applied to elastic restrained distortional buckling

(RDB) of I-section members.

As was described in Chapter 4, there are number of variables that affect the elastic
distortional buckling load of unrestrained I-section members, and this increases
dramatically when elastic restraints and inelasticity are included in the problem.
Although the elastic lateral-distortional buckling of simply supported unrestrained
beams under various loading provisions is well documented, as discussed in Chapters 2
and 4, research investigations into both elastic and inelastic RDB are rather limited and

still far from complete.

The scenario of continuous restraint, which prevents complete lateral displacement and
rotation, and provides quantifiable twist restraint, is often met in practice. Some
commonplace structural configurations such as a half-through girder bridge (Fig. 1.3,
Chapter 1), a rafter with a standing-seam sheeting system (Fig. 1.4), and a composite
bridge girder near an internal support (Fig. 1.5) or in a composite beam-to-column
connection are examples of such behaviour. Previous studies have shown that the
buckling mode of unrestrained doubly symmetric I-beams is essentially lateral-torsional
(Trahair & Bradford 1998), but this is not the case for continuously restrained I-section
members, especially with elastic torsional restraint (o > 0) applied at the level of tension
flange, as demonstrated in Chapter 4. The effects of elastic restraints, particularly
against twist rotation, can lead to buckling modes in which the effect of distortion is

quite severe.
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The strength of unrestrained I-section beams is usually reduced below the elastic
buckling value due to premature yielding as a result of combined effects of the stresses
caused by the applied load and of the residual stresses which are established during the
cooling of welded steel member. Since yielding occurs before the ultimate moment is
reached, significant portions of the beam are inelastic when buckling commences, the
effective moduli of the yielded and strain-hardened portions of the member are reduced
below their elastic values, with consequent reductions in the stiffness, which contribute
towards reducing the resistance to lateral buckling. Inelasticity is particularly
significant in fabricated I-section members because the welding process results in levels
of residual stresses that are typically higher than those in hot-rolled beams. It is
generally acknowledged that the influence of welding residual stresses on beam
buckling capacity is more severe that that of residual stresses induced by hot-rolled

procedures (Kitipornchai & Wong-Chung 1987).

When a beam has a more general loading than that of equal and opposite end moments,
the in-plane bending moment varies along the beam, and so when yielding occurs its
distribution also varies (Fig 5.1). The analysis of the inelastic buckling of beams under
transverse loading is more complicated than for beams under uniform bending due to
spatial non-uniformity of the elastic core of the beam as it is both monosymmetric and
tapered. Because of this, the beam acts as if non-uniform, and the equilibrium equations
become more complicated. However, the variations of the residual stresses across the
flanges are nearly uniform in welded beams, and so once flange yielding is initiated, it
spreads quickly through the flange with little increase in moment. This causes large
reductions in the inelastic buckling moments of stocky beams (Trahair & Bradford
1998).

Research work on inelastic lateral buckling of unrestrained I-sections has been
reasonably plentiful. The first such study by the finite element method that considered
cross-sectional distortion appears to be that of Bradford (1986a). While this model,
which was based on an earlier elastic formulation (Bradford & Trahair 1981) appears to
be valid for including distortion when the flanges are either free or fully fixed, it was
argued (Bradford & Ronagh 1997a) that the elastic 12 degree of freedom line element
used in Bradford and Trahair (1981) can not account accurately for elastic restraint

against twist rotation, and a 16 degree of freedom elastic model was proposed (Bradford
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& Ronagh 1997a). Recently Lee (2001) developed a beam-type line element with 16
degrees of freedom to study the inelastic lateral-distortional buckling of simply
supported unrestrained and restrained beams under transverse loading. However, Lee’s
investigation was limited to hot-rolled I-sections only. So far, no detailed study appears
to have been undertaken of the influences of the welding residual stresses on the
inelastic RDB of I-section beams and beam-columns under transverse loading and the

author has found no reported systematic study.

Thus, in the following sections the energy-based method of the elastic distortional
buckling of continuously restrained I-section members is extended into the inelastic
domain. The modified method accounts for residual stresses appropriate for welded I-
sections (Fig. 5.2), by adopting so called ‘tendon force concept’ model first developed
by Cambridge group (Dwight & Moxham 1969; Young & Schulz 1977, Dwight 1981).
Thus, the model developed in this chapter combines the effects of cross-sectional
distortion, and of inelasticity. The method is then validated by comparisons with
inelastic buckling results for both unrestrained and restrained I-section beams.
Following studies of the accuracy of the buckling solutions, the method is used to
demonstrate the interaction between distortion and yielding of I-section beams under a
variety of loading configurations. The energy method is then employed to study the
relationship between elastic distortional buckling and yielding for an I-section beam-
column restrained by concrete medium at the tension flange level and some results are
reported. Conclusions are drawn that address the influence of geometry, residual

stresses, member length and restraint stiffness for the inelastic RDB.

5.2 RESIDUAL STRESSES

The prediction of the inelastic buckling load depends on the beam cross-section, the
variation in yield stress, the assumptions made when calculating the moduli for the
various rigidities and on the magnitude and distribution of residual stresses. It is well
known that residual stresses are introduced in members as a result of welding and flame
cutting processes, and that these stresses may influence the load carrying capacity of

thin-walled members, particularly those that contain slender component plates
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(Kitiponchai & Wong-Chung 1987). The magnitudes and distributions of residual
stress in steel members vary considerably with the cooling and straightening process.
Due to the welding process, the residual stresses (and strains) at the flange-web
junctions are assumed to be at yield in tension. The shrinking after welding of the late
cooling regions of a member induces residual compressive stresses in the early cooling
regions, and these are balanced by equilibrating tensile stresses in the late cooling
regions. The flange-web junctions are least exposed to cooling influences, and so these
are regions of residual tensile stress. On the other hand, the exposed flange tips cool

more rapidly, hence these are regions of residual compressive stress.

By making use of the heat input incurred during the welding process, as well as
equilibrium of the unloaded section, it is possible to determine the distribution and
magnitude of the stresses around the section. The residual stresses caused by welding
have been studied extensively at Cambridge University (Dwight & Moxham 1969;
Young & Schulz 1977; Dwight 1981), and recommendations for their magnitude and
distribution have been given by Kitipornchai and Wong-Chung (1987). The residual
stress model for an I-section member, presented by Kitipornchai and Wong-Chung
(1987), is illustrated in Fig. 5.3. The model assumes that tension blocks stressed to
yield stress, f, occur at the cuts and welds, accompanied by adjacent compression blocks
such that the plate is in longitudinal equilibrium. The expressions for the size of these
blocks are empirical, and depend on the plate thickness, weld size and welding process
efficiency. The assumed residual stress pattern consists of a fully yielded tensile stress
block of width 2¢; in the flange at the weld, and a constant residual compressive stress,

Oy at the outer edges to maintain equilibrium. The half-width ¢, of the tensile stress

block is given by
F
c, = 5.1
d (O'y+0'wx2tF+tW) . 1)

in which the tendon force, F is expressed as a function of the area of the added weld

metal, 4,,, and the welding process constant, B from the equation

F=BA,. (5.2)

w
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For manual arc welding, a value of the constant B = 8,000 N/mm’ is generally
recommended (Dwight 1981). fr and ty are the thicknesses of the flange and web
plates, respectively. It is assumed that this zone of influence will extend by an equal

amount ¢y into the web.

In calculating the residual strains, tension blocks occurring at the welds, as shown in
Fig. 5.3, are assumed to be stressed to yield stress and the compressive residual stress,

Orc 1S given as

F

= 5.3
7 b (i, +0.50,) ©-3)

Because of the presence of residual stresses in the member, yielding will be initiated at
the most highly strained regions and then spread through the cross-section. At high
moments, the strain-hardening strain, &, will be exceeded, and so some regions will
have stresses greater than the yield stress, ;. The applied stress anywhere in the section,

o may then be found from

o(x,y)= [E,de, +Ez,(x.) (5.4)

where &, is the strain due to applied load, & is the residual strain, assumed herein to be
o/E, E is Young’s modulus and E is the tangent modulus. Of course, g, and & vary
around the cross-section. Hence a doubly symmetric I-section will behave as a
monosymmetric I-section because different parts of the section have different material
properties. High compressive residual stresses will result in early yielding at the
compressive flange tips with subsequent significant reductions in the minor axis flexural

and warping rigidities, and an increased destabilising effect of monosymmetry.
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5.3 THEORY

5.3.1 General

The energy method developed in Chapter 4 is modified herein to incorporate inelasticity
and residual stresses to analyse the inelastic buckling of simply supported beams and
beam-columns under transverse loading. The approach is to undertake an in-plane
analysis of a straight member under a monotonically increasing load factor, A and at the
given load factor to perform an out-of-plane buckling analysis. The load factor is then
increased until buckling occurs, with the stiffness and stability matrices in the out-of-
plane analysis being dependent nonlinearly on the value of A. Since the simply
supported member is statically determinate, the bending moment and shear force at a
cross-section can be determined from simple statics, but the extent of yielding over a
cross-section and along the member depends nonlinearly on A. In the buckling analysis,
yielding and strain hardening regions of the member are assigned a tangent modulus
equal to that of the strain-hardening modulus of the steel, which is consistent with the
dislocation model of yielding used in other studies (Bradford & Trahair 1985; Bradford
1986a). It should be pointed out that this study is concerned with bifurcation buckling,
and is not reliant explicitly on a plasticity model that allows for unloading. The ensuing
realisation of a ‘nonlinear elastic’ modelling of inelastic buckling has its basis on the
infinitesimal buckling deformations that depart from an initially straight and unbuckled
primary equilibrium path at bifurcation, and which justifies the uncoupling of the in-

plane and out-of-plane analysis.

The first step in the in-plane analysis is to determine the relationship between the in-
plane bending moment and/or axial force acting at a section with the curvature and/or
strain of the beam/column, and then to find the positions in the cross-section of the
elastic, yielded and strain-hardened boundaries. This then allows the variations with
bending moment and axial force of the out-of-plane buckling section properties to be

determined.

The stress-strain curve assumed for the structural steel is a tri-linear idealisation, shown

in Fig. 5.4, with a plastic plateau and a constant tangent modulus E;, = E/33. For this,
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the yield stress, f, was taken to be 250 MPa with a yield strain, g, of 0.00125. The strain
hardening, &, was taken as 11g,. These are commonly accepted values. Compressive
stresses and deformations are taken as positive, and positive bending causes tensile

stresses in the bottom fibres of the composite section.

5.3.2 In-plane analysis

The energy method requires a calculation of the distribution of strains applied to the
member prior to invoking the bifurcation analysis. This involves use of the Cambridge
residual stress model for the welded beam, described in section 5.2, and application of
an initial strain and curvature consistent with externally applied load. The applied stress
anywhere in the section, o may then be found from Eqn. 5.4. By defining &, as the
strain at the top of the section and « as the curvature, as illustrated in Fig. 5.5, the strain

at any point y below the top surface of the section can be expressed as

E=¢g,+& —yK. (5. 5)

The axial force, N and moment, M at the given value of strain and curvature are then

obtained by numerical integration over the cross-section as shown in Eqns. 5.6 and 5.7

N= Ia(x, y)dA (5. 6)

M = [o(x,y)yd4 .7

A

where N = 0 satisfies pure bending condition. o (x,y) is the stress calculated at strain, £

and obtained from the relevant constitutive relationship as

Ee e<g,
o= @ay g, <lel<s, . 5. 8)
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The bending moment, axial and shear force distributions in the member are determined
at each Gauss point along the length of the member prior to the buckling analysis. The

loose form of the externally applied actions, M, N,and V, is

N,(z/L)= N, ¥ 0,/ L)

i=0

M.G/1)= M, 35, 11) 5.9
Vel D)= 257 T /L)

with [0, L] being a length domain, 4 is the buckling load factor, and the coefficients a; (i

=0,..,3) and b, (i = 0,..,3) define the axial, moment and shear field respectively.

The integrations in Eqns. 5.6 and 5.7 are carried out numerically by subdividing the
flanges and web into a number of rectangles that distinguish elastic, yielded and strain-
hardened regions around the section, as shown in Fig. 5.6, and using a trapezoidal

integration technique.

The value of y in Eqgn. 5.5 is adjusted iteratively by employing the Newton-Raphson
procedure, as described in Bradford (1997c) and shown graphically in Fig. 5.7. For the
purpose of this study, actions, M, and N,, are applied to the section and compared with
the internal stress resultants. The incremental versions of Eqns. 5.6 and 5.7 are written

as

oM = - [5o(c)y a4

4 5.10
&N = [60(s)dd 19
in which
o(e)=Ele)e (5. 11)

and E(¢) is the relevant elastic modulus (E, E or 0) from Eqn. 5.8.
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The incremental strain d¢ may be obtained from Eqn. 5.5, noting that &, is constant, as

0 =8¢, — yoK . (5.12)

Combining Eqns. 5.10 and 5.12 results in the matrix expression

oM\ | JEe)y'da - [Ele)ydd|(se
{éN }_ - jE(g)ydA JE(g)dA {56‘0,} (5.13)
R=T(e)r (5.14)

where SR is the vector of incremental actions; & is the vector of generalised

incremental displacements; and T (¢) is the tangent stiffness matrix.

The process is repeated » times until the normalised Euclidean norm

|one ™)/ M, 6N 1 N| < c (5. 15)

between two successive values of externally applied actions is less than some
predetermined accuracy, ¢ and the final strains are determined from the values

S )]
80'. - 801‘

5.16
o (5. 16)

K=K
Arrays relating curvature, x and strain, £ to applied bending moment, M, and axial
force, N, respectively are thus obtained at each Gaussian station along the beam length.
Thus at any value of moment in the beam corresponding to A, values of x and ¢ are

obtained. This strain distribution is used for the ensuing buckling calculations.

5.3.3 Out-of-plane-analysis

The method of analysis that is deployed in the present study for inelastic restrained

lateral-distortional buckling is a modification of that presented in Chapter 4. In a same
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manner, the energy-based buckling analysis assumes that the deformations of the cross-
section are the lateral deformation and twist rotations of the top flange ur and ¢r
respectively, and the twist rotation @z of the bottom flange. These buckling freedoms,
which deflect and twist as Fourier sine series with » harmonics, are consistent with the
restraint conditions assumed for the half-through girder (Fig. 4.3, Chapter 4). The
flanges are assumed to be rigid bars whose minor axis flexural and torsional rigidities
are based on tangent modulus theory (Trahair & Bradford 1998). The web on the other
hand is treated as a plate whose orthotropic property matrix is assembled from Haaijer’s
inelastic model (1957). The torsion constants of the flanges, which combine the elastic
and inelastic values, are adopted as suggested in Bradford (1990d). These models have
been shown to predict inelastic beam buckling (Bradford 1987) and inelastic plate
buckling (Dawe & Kulak 1984) accurately. Furthermore, it is assumed that the beam is
simply supported and that the web is unstiffened, except at its ends where load-bearing

stiffeners are assumed to provide simple support with respect to out-of-plane buckling.
The strain energy Ur stored in the flanges during buckling can then be written as

L
U, = % [&1D,2,dz (.17)
0

E, 0 0
D.=| 0 GJ, 0 (5. 18)
0 0 GJ,

For elastic-yielded-strain hardened buckling, the property matrix at each Gauss point
along the beam length is a function of the applied strain £in Eqn. 5.5. Since the flanges
are treated as rectangular ‘beams’, tangent modulus theory is used with the shear
modulus being that derived by Lay (1965). Two quasi-elastic flange sections are
engendered‘based on the value of the applied strain, £ (Eqn. 5.5) which depends on the
applied curvature, x and on the residual strain, &. When the value of ¢ at a particular
point in the cross-section is less than the yield strain g, the full thickness #7 or #5 is used
to generate the quasi-elastic flange sections. However, the points where ¢ exceeds g,

the thickness of the quasi-elastic sections are based on the strain-hardening modular
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ratio as t7 /h or tg/h and property matrix appropriate for inelastic buckling must be
used. The use of the strain-hardening modular ratio 4 to generate the quasi-elastic
sections has been used by a few researchers (Nethercot 1973a; Trahair 1993; Bradford
1987) who have shown that it produces accurate predictions of inelastic lateral buckling.

This has its basis in the dislocation theory of yielding.

The top and bottom flange minor axis flexural rigidities used to calculate the membrane

strain energy stored during buckling of the flanges can be obtained numerically as

b,12

El, =2E [x’d4, (5.19)
0

by /2

El, =2E [x’d4, (5. 20)
0

noting that the differential areas d4r and d4z depend on the applied curvature, x and the

residual strain, &,.

For regions of the quasi-elastic sections where there is no reduction in the thickness due
to inelasticity, the elastic shear modulus, G is used to calculate the torsional strain

energy stored during buckling of the flanges, where

(5.21)

However, the shear modulus used in the inelastic zones of the quasi-elastic flange

sections is based on the inelastic value Gy derived by Lay (1965) as

_ AEE,
“4E (1+v)+E’

(5.22)

Combining the elastic and inelastic values, the torsion constants of the flanges can be

obtained from the approximation of Booker and Kitipornchai (1971) so that

GJ; =[G- B, (G-G, )V, (5.23)
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and

GJy =[G-B,(G-G, ), (5. 24)

where fr and fp are ratios of the inelastic to total areas of the full top and bottom

flanges respectively, and Jr and Jp are the torsion constants of each flange.

The generalized strain vector in Eqn. 5.17, given as

T

Er = <uT’zz s Prozs ¢B’z> , (5.25)

can be obtained by suitable differentiation of the Fourier sine series function, which
defines the lateral deformation ur and twist ¢r of the top flange, and twist ¢ of the

bottom flange, given as

u=q) sininz/L. (5. 26)

In Eqn. 5.26, § represents the vector of the maximum amplitudes of the buckling
displacements, and » is a positive integer representing the number of harmonics into

which the beam buckles. The vector £, then takes the following form

£r = Bo(q,,9,.95) - (5.27)

Thus by substituting equations 5.18 and 5.25 into Eqn. 5.17, the increase in strain

energy due to lateral deflection and twist during buckling can be formulated as
§'k.g (5.28)

where g =(q,,9, ,q3>T and the flange stiffness matrix, k, can be written in matrix form

as

L
k. = [BID,Bdz. (5.29)
0
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The strain energy, Uy stored during buckling of the flexible plate web may be obtained

from

S
-\ |&,Dy &, ,dydz 5.30
2 J-hjn wW=w Ly ( )
where the generalized web strain vector, £,, since the web is modelled as a ‘plate’, is
given by
- T
By =(Uy s Uy o =20, ) (5.31)
The generalised web strain vector, £, in Eqn 5.31 may be obtained by suitable

differentiation of the cubic curve function that describes the web deformation during

buckling, given as

u,=h {a +a,(y/h, )+ a,(y/h,) +a,(y/h,) }Zsmmz/L (5.32)

The coefficients ay,...; may be obtained by imposing displacement and twist
compatibility of the flanges and web at the flange-web junctions as it was shown in

Chapter 4. The generalised web strain vector, £, can then be written as

£, =B,(a,.a,.a,a,) =B,Cq (5.33)

w

where

1/2h, -1/8 1/8
= 3/2h, 1/4 1/4 5. 34
10 1/2 -1/2| '

~2/h, -1 -1

The web property matrix in Eqn. 5.30, applicable to isotropic plate buckling, may be

written as
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¢ 3 Dl] D12 0
Dy =2=|Dy Dy O | (5. 35)
0 0 D

33

For isotropic elastic buckling (ie. in regions of the web where the applied strain, ¢is less
than g), the rigidities given by Timoshenko and Woinowsky-Krieger (1959) are used,
so that

D, =Dy, =E/{l-v?)
Dy, = D, =vDy . (5.36)
D, =G

However, when ¢ exceeds g, property matrices appropriate for inelastic buckling must
be used. For inelastic buckling (ie. in regions of the web where ¢ exceeds g), rigidities
based on plasticity theory must be used. In this study, the rigidities employed by
Bradford (1988b) have been used. These approximate rigidities, which are based on a

derivation from the flow theory of plasticity given by Haaijer (1957), are given as

D, =E, /(1 “Vlvz)
D,, =4EE, /[(3Est + E)(l -, )]

2E,
D, =D, = {35 " E}{(zv —1E, + E}(1-v,v,). (5.37)
D33 = Gsl
s, - {2r=E, + E}
EQGE, +E)

Thus by substituting equations 5.33 and 5.35 into Eqn. 5.30, the strain energy stored in

the web can be expressed as

G'k,q (5. 38)

where the web stiffness matrix k, is given as

L h,12
k, = c‘”( | jE;EWEWdydzJE . (5. 39)

0-h, 12
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The integrals in the above equation are calculated by Gaussian quadrature and pre- and

post-multiplication by C” and C is facilitated by computer. Finally, the total strain

energy, U stored during buckling can be expressed as

U==G"K§ (5. 40)

N | =

where the stiffness matrix K is given by

K=k, +k,. (5.41)

Note that X is not a matrix of constants (as predicted by linear elastic theories), since it

depends on the applied curvature, x and residual strain, &,.

5.3.4 Work done during buckling

The reference bending moment and axial force distribution within each element are
determined prior to the buckling analysis and this enables the reference moments and
axial forces at each Gauss point along the length of the element to be specified. The
reference bending moment, M, and axial force, N, given in Eqn. 5.9 are scaled
proportionally by a load factor, A until buckling occurs. For a given moment gradient
loading configuration, and in the absence of axial loading, this increase is proportional,
irrespective of the extent of plasticity developed within the beam. However, the same
does not hold true for the beam-column analysis, where this increase is not proportional,
since for every given constant value of the axial force a beam buckling curve can be

plotted.

During buckling, the stresses applied in the beam, which depend on the strain ¢,

undergo displacements which result in work V being done. This work may be written as

V=V, +V, (5. 42)

where Vr is the work done by the stresses in the flanges and Vy is the work done by the

stresses in the web.
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The contribution V' in the flanges may be written as
L
v, = % fo(e) bz, +v2, +v3, Jazad 5. 43)
A 0

where 4 is the area of the flanges, o(g) is the stress in the flange obtained from Eqn.

5.11, and where the vertical displacements vy and vp of the straight flanges are given by

v, = X, (5.44)
and
vy =X@p. (5.45)

The terms in Eqn. 5.39 may be calculated by appropriate differentiation of Eqn. 5.24 so

that the former equation can be written in matrix format as

1t rar (g ~ 1 _r_
V. =5,}[5[ TBFTa(s)Bquszzaqupq (5. 46)

L
5r = [ [Blo{e)B; dzdd (5.47)
A0
The contribution V,, to Eqn. 5.42 from the web may be written as

L o(e) () ;
V=3 Aj a[ fu. . qu(g) . {,.u,, Y dzda (5. 48)
where A is the area of the web, and o(¢) and 7(¢) are applied normal and shear stresses

respectively in the web, which depend on the strain, & defined in Eqn. 5.5. Upon
differentiation of Eqn. 5.31, work done during buckling in the web plate may be

expressed as
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504 (5. 49)

EY

I
N | —

QY

where the web stability matrix, §, is
— L — Ju— —
5, = c’( [f B,;a'(g)BWdsz)c (5. 50)
A0

and

()= {a(g) T(g)] . 5. 51)

rle) 0

Finally, the total work done during buckling can be written as

V==g"Sg (5. 52)

N =

where the stability matrix, S can be written as
S=5,+5,. (5.53)

As with the stiffness matrix, K the stability matrix, S depends nonlinearly on the strain

g, owing to the nonlinearity introduced in Eqn. 5.8.

The method also allows for an elastic restraint matrix, R to be included. This matrix is

constant, and the assembly procedure has been shown in Chapter 4. However, the
stability matrix, S as well as the stiffness matrix, K developed as above from tangent

modulus and isotropic plate theory, are functions of the strain & The familiar

eigenproblem then takes the following form:

[K(e)+R-25(e)A=0 (5. 54)

where A is the vector of buckling degrees of freedom.



182

The integrations in the equations for the element stiffness and stability matrices KX, R

and S respectively for out-of-plane buckling, are determined by Gaussian quadrature.
The integrations with respect to z along the element length, L are carried out using

twenty-point Gaussian quadrature.

5.4 METHOD OF SOLUTION

For the inelastic RDB analysis, K and S in Eqn. 5.54 must be recalculated at
incremented values of the load factor, 4 because of changes in the inelastic properties
and stresses. Because the member is determinate, this increase is proportional,
irrespective of the extent of plasticity developed within the beam. The load factor, A is
increased monotonically, and the stiffness and stability matrices in Eqn. 5.54 are
calculated at the value of A by numerical integration over the cross-section as described
in the previous section. The load factor increments are kept reasonably small so that the

lowest critical load factor is not missed. Thus the determinant
K(e)+ R - AS(e) =|d(2) =0 (5. 55)

is calculated, and if it is non-zero, then an increment in A 1is applied and the
determinant recalculated, until the determinant changes sign. In this model, which is
based on the approach adopted by Pifko and Isakson (1969) and Smith et al. (2000), the
matrix A (/1) is reduced to upper triangular form by Gaussian elimination without row
interchanges. The determinant, which must necessarily vanish at buckling, is calculated
by multiplying the diagonal elements of the reduced matrix, and the number of
eigenvalues less than the trial loading level A4 is equal to the number of negative
diagonal elements in this reduced matrix. The range in which the loading level A
produces only one eigenvalue is then sought, and once this has been bracketed, the
method of bisections is used to converge on the critical load factor, A, for which the
determinant vanishes. The load factor increments are kept reasonably small so that the
lowest critical load factor is not missed. The critical moment and axial force are then

determined from Eqns. 5.6 and 5.7. When the critical moment and axial force are
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found, a standard eigenvector routine (Garbow et al. 1977) is invoked to calculate the
buckled shape. Since the matrices are of order 3n, the solution process is rapid. The

flow chart diagram that summarises the procedure described above is shown in Fig. 5.8.

5.5 ACCURACY OF SOLUTION

5.5.1 Convergence studies

Convergence studies have been carried out to determine the number of terms in the
Fourier sine series function, employed in this study to describe the buckling
displacements of deformed I-section, and required for accurate solutions. It has been
shown in Chapter 4 that the number of terms required to achieve amply accurate
solution depends on the loading. The convergence study is expanded in this chapter to
assess the influences of the material imperfections, such as yielding and residual

stresses.

The convergence of the energy method solution for a doubly symmetric I-beam under
variety of loading conditions and with a different degree of tension flange twist restraint
(ie. =0 and = 1000) is demonstrated in Fig. 5.9. Figure 5.9a illustrates convergence
characteristics for a stressed relived section, whilst Fig. 5.9b includes residual stresses.
Since tabulated or closed form solutions are unavailable for inelastic RDB for I-section
beams under moment gradient, the results plotted in Fig. 5.9 are compared with those
derived when a large number of Fourier sine series terms, » is used (ie. n = 20). This
large value of n was selected once the converged solution was identified (ie. zero
percentage relative difference between successive terms). It is evident form Fig. 5.9

that solutions for n > 9 where within 0.1% for both stress relieved and welded I-beams.

5.5.2 Model verification

RDB solutions for I-section beams under moment gradient are unavailable in the
literature, so the energy method developed herein was first verified by comparisons with
inelastic lateral (non-distortional) buckling solutions for a simply supported,

unrestrained, stress relieved beam subjected to transverse loading as given by
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Kitipornchai and Trahair (1975). To account for the welded residual stresses the energy
method for inelastic buckling is further verified with the inelastic lateral (non-
distortional) buckling solutions obtained independently by Kitipornchai and Wong-
Chung (1987) and Bradford (1988b), for welded monosymmetric beams.

The method developed in this chapter is lateral-distortional and therefore it is necessary
to suppress the web distortion so that the lateral-distortional buckling mode becomes a
lateral-torsional one. In order to model rigid web behaviour, distortion of the web in the
energy method of this chapter was suppressed by expressing the strain energy due to

out-of-plane plate flexure of the web, u,,,, as

1 L b2
U =<7, | [Dy ul,, dvdz (5. 56)

0 -h, /2

and allowing y to approach infinity; where D, is the relevant web rigidity applicable to

elastic-plastic buckling and defined in 5.35. For the purpose of these comparisons, the
tension flange was also allowed to displace laterally and to twist. Thus, the section

modelled is a bare steel section.

Figure 5.10 shows the comparison between the model presented herein and the results
of Kitipornchai and Trahair (1975). The geometries and material properties for the
beams are also given in Fig. 5.10. It can be seen that the results are in a very good
agreement for the stressed relieved 10UB29 section. Because the energy solution and
the method by Kitipornchai and Trahair (1975) treat the inelasticity in a different way,
the agreement indicates that the energy method would be expected to produce accurate

prediction of inelastic buckling.

The results of the buckling study, where they are compared with the corresponding
results reported by Kitipornchai and Wong-Chung (1987) and Bradford (1988b), are
shown in Figs. 5.11 and 5.12. The geometries and material properties for the beams are
also given in Figs. 5.11 and 5.12. Figure 5.11 compares the dimensionless inelastic

lateral buckling moments M;,/Mp as a function of the modified slenderness

A, =M,/M, for the three widths of the flange residual stress block, where M,y is
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the elastic lateral buckling moment, and Mp is the full plastic moment. The comparison
between M., /Mp and A, given in Fig. 5.12 is for beams with two different degrees of
monosymmetry. The comparison between the three models of lateral buckling is

reasonably close, as is evident from Figs. 5.11 and 5.12.

The developed method for predicting the inelastic RDB load is also compared herein
with results for welded continuously restrained doubly symmetric I-beams obtained by
Bradford (1998a). The numerical investigations presented by Bradford (1998a) were
limited to only one beam cross-section subjected to uniform bending and with the
magnitude of the elastic twist restraint, « varying from 0 to 1000. The stiffness of the

torsional restraint per unit length, &, has been expressed in the non-dimensional form as

kL
GJ

(5.57)

where GJ is the Saint Venant torsional rigidity. The geometry of the simply supported
beam studied is given in Fig. 5.13. In this study (Bradford 1998a) the dimensionless
inelastic RDB moment is plotted as a function of the dimensionless length L/A, for o =
0 (no twist restraint), 10 and 1000. The trend of the bucking curves is similar to that of
local buckling, where even for zero twist restraint the inelastic buckling moment tends
to asymptote, rather than decrease sharply as would occur for lateral-torsional buckling.
For a= 10 there are two harmonics represented, while three harmonics are exhibited for
a =1000. It can be seen that there is a good agreement between the two solutions over
the range of dimensionless beam lengths L/h, for which the calculations were
performed. This provides verification of the inelastic RDB energy method. Figure 5.13
also illustrates the comparison of the present model with over-conservative U-frame

method solutions. A detailed description of the U-frame method is given in Chapter 3.
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5.6 BUCKLING STUDY

5.6.1 Buckling strength of |-section beams

5.6.1.1 General

Conventionally, the buckling of plain steel beams is usually represented by so-called
‘beam-curves’, in which the relationship between the length of the member and its
critical load is plotted on a Cartesian coordinate system. A typical length versus critical
moment curve is shown in Fig. 5.14 for a simply supported unrestrained steel beam
subjected to uniform bending (# = -1). The curve consists of three main parts: a)
classical elastic buckling; b) buckling in the inelastic range and; c¢) the buckling
behaviour of a very short member for which it is assumed that all fibres have been
strained into the strain-hardening range. The strain hardening and the elastic curves are
hyperbolas, which do not intersect. The curve for inelastic bucking provides a transition
between these two extreme idealizations. A number of studies available in the literature
have indicated that the critical buckling moment for an unrestrained I-beam has a
profound dependence on the model of the residual stresses, thus altering the shape of the
conventional ‘beam-curve’ shown in Fig. 5.14. This influence of the residual stresses
results from their dependence on the geometric proportions of the beam cross-section
(Trahair & Bradford 1998). Inelasticity is particularly significant in fabricated beams
(Bradford 1988b) because the welding process results in levels of residual stresses that

are considerably higher than those in hot-rolled beams.

So far, no detailed study has been made of the influences of the welding residual
stresses on the I-section steel beams under transverse loading and restrained
continuously against lateral displacement and minor axis twist at its tension flange.
Thus this section seeks to examine the influence of the residual stress pattern and

continuous elastic twist restraint on the behaviour of such structural configurations.

5.6.1.2 Doubly symmetric I-beams

The effects of continuous elastic restraint on the inelastic RDB of I-section beams have
been investigated. In this study, the cross-sections with welded model of residual

stresses were adopted, with the beam subjected to continuous translational, minor axis
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rotational and twist rotational (torsional) restraint applied at the tension flange. The
stiffness of the torsional restraint, k., has been expressed in the non-dimensional form, as

shown in Eqn. 5.57.

Bradford (1998a) showed that the modified method of ‘design by buckling analysis’
(Trahair & Bradford 1998) may be used in accordance with the AS4100 (1998) to
calculate the inelastic bending capacity, M., for the limit state of RDB. For a beam
subjected to uniform bending, this strength was determined by Bradford (1998a) from
the modified AS4100 design equation given as

Mlcr = asMP (5‘ 58)
where
MY M
a, =08 [ ”J +3—( ”J (5.59)
ME ME

in which the multiplier 0.8 replaces AS4100 value of 0.6, as shown above. In this
equation, Mp represents the plastic section moment and Mg is the elastic RDB moment
derived as discussed in Chapter 4. Figure 5.15 shows the comparison between the
model developed in this chapter and the results of Bradford (1998a) for I-section beams
in uniform bending for different values of the elastic twist restraint, ¢ (ie. @ =0, 10,
100 and 1000). Figure 5.15 plots the dimensionless inelastic lateral buckling moments
M,./Mp as a function of the beam slenderness, L/h,. It can be seen that the results are in
a good agreement for the welded residual stress pattern with ¢;= 20 mm. This study has
been extended to evaluate the effectiveness of the modified AS4100 approach, given by
Eqgns. 5.58 and 5.59, when moment gradient is included. Figures 5.16-5.20 show the
comparison of the energy method developed in this study and the AS4100 ‘design by
buckling analysis’ method, both conventional and modified. The geometry and material
properties of the simply supported beams studied are same as those used by Bradford
(1998a) and given in Fig. 5.14. In part a) of each of Figs. 5.16-5.20 the energy method
results are compared with the conventional AS4100 approach (ie. multiplier in Eqn.
5.59 is 0.6), whilst part b) plots the results of the energy method versus modified
AS4100 method, given in Eqns. 5.58 and 5.59. It can be seen from Figs. 5.16-5.20 that
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the results, for the two methods considered, are almost in complete agreement, slightly

less so for very short beams.

The results of the buckling study are further shown in Figs. 5.21-5.30, where the effects
of different widths of the flange tensile residual stress block, 2¢y are investigated. The

inelastic buckling moment Mj,/Mp is plotted against the modified slenderness
A, =M, /M for ¢;= 0 (no residual stress), 20, 40 and 60. It can be seen that the

magnitude and shape of the residual stress pattern have marked influences on the
inelastic buckling moments due to their effects on the geometry of the yielded zones in
the cross section. The reductions in the buckling moment due to inelastic behaviour are
severe. For stress-relieved beams with no residual stresses (c¢; = 0), the inelastic
buckling capacities reduce sharply when the compression flange is fully yielded. The
reductions in buckling strength from the ¢, = 0 case are of the order of 20%, 40% and
40-60% of the section’s fully plastic moment, Mp for ¢; = 20, 40 and 60 mm

respectively.

The presence of welding residual stresses results in premature yielding of the tension
flange and some stress relief in the compression flange at the early loading stages.
However, as soon as the compression flange yields, stiffnesses reduce rapidly, causing a
sudden drop in the inelastic buckling moment. The inelastic buckling of a beam is
governed primarily by the stiffness of the compression flange. Theoretical results
indicate that a welded beam buckles inelastically when the regions of compressive
residual stress in the compression flange become fully yielded (Kitipornchai & Wong-
Chung 1987). The remaining elastic core in the tensile stress block contributes little to

beam stability.

In following study, in the modelling of the beam the geometry is embodied in a
knowledge of the distortional restraint parameter, », proposed in Chapter 4, and the
beam parameter K. Figures 5.31-5.35 illustrate plots of the inelastic distortional
buckling moment, M, normalized with elastic lateral-torsional (non-distortional)
buckling moment, M,;, generally deployed for plain steel sections (AS4100 1998) in

uniform bending, and defined as
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n’El n2El
M, =\/{ - yJ(GJ+ - WJ (5. 60)

where EI, and EI, represent minor axis flexural rigidity and warping rigidity

respectively. The inelastic RDB moment values are derived from the numerical model
as a function of the dimensionless twist restraint & = 0 (no twist restraint), 10, 100 and
1000 (or ) for the dimensionless beam parameter, X defined by AS4100 (1998) for
doubly symmetric I-sections as

K 7 El, 5. 61
“Nourr (5. 61)

The values of the beam parameter, K range from 0.3 to 3.0. Low values of K represent
slender members with stocky sections, while high values describe the beams with short
span and stocky cross section. Figures 5.31-5.35 show the variation of the
dimensionless buckling moment M;,/M,;, with the beam parameter, K for different
loading configurations. The welding residual stress patterns are calculated based on
Kitiponchai and Wong-Chung’s (1987) suggestions presented in section 5.2. The trends
in curves shown for different loading configurations are very similar and in some way
comparable to those exhibited by local buckling and elastic RDB presented in Chapter
4. As would be expected, the buckling mode of the beam is lateral-torsional when beam
is subjected to translational restraint only (ie. = 0). When the dimensionless torsional
parameter, « is greater than 10 the buckling mode becomes a lateral-distortional one.
The severity of the web distortion is emphasized when « is very high (a¢ = 1000 or ).
The illustration of the cross-sectional deformation due to variation in magnitude of « is

shown in Fig. 4.9 (Chapter 4).

Figures 5.36-5.44 plot the longitudinal distribution of normalised buckling mode shapes
of the lateral displacements, ur and the flange twist, ¢r for the compression/top flange
and the angle twist, ¢ for the tension/bottom flange. These curves are derived from the
energy method presented in section 5.6 by solving for the eigenvectors in the Eqn. 5.54
after converged critical buckling value, A, has been identified. The beam slenderness,

L/h,, values were varied between 3 and 120 and the widths adopted for the tensile
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residual stress block, ¢, were 0, 20, 40 and 60. In Fig. 5.36, in which the longitudinal
distribution of lateral displacements, ur for uniformly distributed load is plotted, only
one harmonic is needed for beams with « = 0, while for & = 1000 two harmonics are
needed. In the case where the longitudinal distribution of the compression flange twist,
¢ris plotted for both o= 0 and &= 1000, as shown in Fig. 5.37, at least three harmonics
are required. This figure also illustrates significant variation in the shape of the
buckling modes for different values of ¢; when o = 1000, while greater consistency for
a given weld size, ¢s can be observed for @ = 0. In Fig. 5.38 the tension flange twist
restraint, gp is obviously shown only for & = 0, and it can be observed that at least three
sine half-waves are describing this buckling mode. Similar behaviour is observed for
loading cases different to that of uniform bending, as evident from Figs. 5.39-5.44,
especially so for symmetrical transverse loading. Plots of buckling mode shapes for
asymmetrical point loading, such as a point load at the quarter span, show a larger
number of harmonics is needed to represent the longitudinal distribution for u7, when a
= 1000 and for ¢r when @ = 0 or 1000. The same holds true for the angle twist, ¢z for

the tension/bottom flange when a= 0.

5.6.1.3 Monosymmetric |-beams

Kitipornchai and Wong-Chung (1987) studied the inelastic lateral buckling of
unrestrained monosymmetric I-beams in uniform bending and demonstrated that the
assumed magnitude of the residual stresses greatly affects the buckling strength.
Bradford (1988a) studied the inelastic buckling of unrestrained fabricated
monosymmetric I-beams in uniform bending for which the slender web is free to distort.
Inelastic lateral buckling of unrestrained fabricated monosymmetric I-beams under
moment gradient was also studied using the Cambridge residual stress model by
Bradford (1988b). Those studies showed that the relationship between the inelastic
critical moment and slenderness was the same for lateral and distortional buckling,
except for extremely stocky beams. It was also demonstrated that this relationship can

be used to predict the inelastic distortional buckling moment.

The energy method described in the theory (section 5.3) has been employed herein to
study the inelastic RDB of monosymmetric beams with its larger flange in compression

or tension. In this subsection, the beam is fully restrained against lateral translation and
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elastically restrained against torsion applied at the level of the tension/bottom flange, as
depicted in Fig. 4.3 (Chapter 4). The torsional/twist restraint, k; has been represented as
the dimensionless parameter,  as shown in Eqn. 5.57. The loading configurations
considered in this chapter are uniform bending and transverse uniformly distributed and
concentrated loads. The material properties of the cross-section used are same as in the
previous subsection.  Residual stresses were determined in accordance with
Kitipornchai and Wong-Chung’s (1987) recommendations, presented in section 5.2. It
was shown by Kitipornchai and Wong-Chung (1987) that there is little variation in the
flange tension block half-width, ¢, when the flange width is reduced, but this is not so
when the flange thickness is reduced.

Varying degrees of the beam monosymmetry parameter, p are obtained by arbitrarily
reducing either the thickness or the width of the flanges, while keeping the web

dimensions unchanged. The degree of beam monosymmetry, pis defined as

I _ 1 -
p= ylcompression) - y{compression) , (5 62)
1 B2t )t 1 1

compression Yltension) y

where Lcompression)s Lyensiony and I, are the second moments of area about the y-axis of the
top flange, the bottom flange, and the whole section respectively. In this study, values
of p for steel I-sections are varied between 0 and 1. However, the cross-sections with p
value of 0 and 1 are not typical T-sections, but two-flanged sections with very narrow
compression and tension flanges respectively. Thus, 0 and 1 represent rounded figures

within a tolerance of 0.2%.

The results for the inelastic RDB of simply supported beams in uniform bending, under
transverse uniformly distributed and concentrated loads, and with varying degree of
welded residual stresses, are shown in Figs. 5.45-5.47. The values of the dimensioniess
torsional (twist) parameter, & considered herein are 0 and 1000. In these figures, the
critical buckling moment (either elastic, Mz and M,,; or inelastic, M}.) is normalised

with respect to the plastic moment Mp, as a function of dimensionless slenderness
JM, /M, , where M, is the conventional elastic critical moment for a plain

monosymmetric steel I-beam in uniform bending and assuming rigidity of the cross-
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section, as defined in Eqn 4.49 (Chapter 4). Values of parameter c¢;, defined in section
5.2, were 0 (no residual stresses), 15 and 20 mm, and two different magnitudes of
dimensionless twist restraint parameter, @ were investigated (ie. 0 and 1000). In
addition to the inelastic buckling curves, the elastic buckling curves for restrained I-
beams (ie. & = 0 and 1000) and for bare steel sections with both rigid and flexible webs
are also plotted in these figures. In Figs. 5.45-5.47 part a) illustrates buckling curves for
the monosymmetry parameter p = 0.7 and part b) for p = 0.3. These figures clearly
demonstrate that the inelastic buckling behaviour of I-section members is dependent on
the topology of the residual stresses. The reduction of the buckling moment due to
yielding of the cross-section is much higher for larger values of the tension stress block,
¢r. For instance, the reductions in buckling strength from the ¢;= 0 case are of the order
of 5% and 10% of the section’s fully plastic moment, Mp for ¢y = 15 and 20 mm
respectively. It is also evident that the capacity of I-beams with a smaller compression
flange (p = 0.3) is well reduced when compared to those with larger flange in
compression (o = 0.7), especially so for uniform bending. In addition, Figs. 5.45-5.47
illustrate a significant increase in buckling capacity when the twist restraint parameter,

a 1s increased to 1000.

In Figs. 5.53-5.55 the inelastic RDB moment, M,., normalised with respect to the elastic
critical moment, M,; for the plain monosymmetric steel I-beam as defined in Eqn. 4.49
(Chapter 4), is shown for a range of the beam monosymmetry parameter, p (ie. p=0to
1). The results are plotted for the dimensionless beam parameter, K defined in AS4100

(1998) for simply supported monosymmetric steel I-sections as

_  |n*EI R
K=ot (5. 63)
4GJL

The results (Figs. 5.53-5.55) also show the favourable effects of the elastic translational
and minor axis rotational restraints (ie. = 0, 10, 100, 1000) applied at the tension
flange of a simply supported beam, as normally employed in half-through girder
bridges. The increase in the buckling capacity is most evident for low values of the
beam parameter, K , which define very long beams with a stocky cross-section, and

especially so for large values of & (ie. 100 and 1000). Lesser increase in buckling
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capacity due to the continuous twist restraint, « are evident for large values of K,
which define short beams with slender cross-sections. It was anticipated that yielding,
as already verified in Figs. 5.45-5.47, significantly influences the buckling capacity of
such beams. Furthermore, very little increase in the buckling capacity is observed for I-
beams with the degree of monosymmetry, o of 0, which represents I-sections with very
narrow compression flange. The rigid restraint (ie. @ = 1000) does not cause any

increase in capacity for such beams.

As would be expected, under a condition of restraint in which only translational and
lateral rotation of the bottom flange are prevented, but for which twist rotation is free to
occur during buckling (ie. & = 0), the RDB buckling is not accompanied by cross-
sectional distortion and the distortional and lateral-torsional buckling moments are
identical. As the dimensionless torsional (twist) restraint parameter, « increases, the
effects of distortion are more evident and the inelastic RDB moment is less than the

corresponding inelastic lateral-torsional buckling moment.

Figures 5.53-5.55 show the longitudinal distribution of the normalised buckling mode
shapes for the lateral displacement, ur and the angle of twist, ¢r for the compression/top
flange and the angle of twist, ¢p for the tension/bottom flange. It is evident that as the
values of p decrease from 1 to 0, and therefore the compression flange becomes
stockier, the deflected shape changes from a half-sine wave to a full-sine wave and a
two full-sine waves. Therefore, as the value of p approaches 0, the # and ¢ buckled
shapes are more complicated functions and require more terms, » in the Fourier series to

describe them closely.

5.6.2 Buckling strength of I-section beam-columns

56.2.1 General

The ultimate strength of a slender, laterally unsupported, stress-relieved beam-column is
usually governed by elastic lateral (flexural)-torsional buckling, while the strength of a
stocky beam-column is generally reduced below the elastic buckling value due to
yielding. However, the strength of a welded beam-column with continuous lateral

support is dependent on the combined effects of the stresses caused by the applied loads
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and the residual stresses which are established during the fabrication procedures. Thus,
the effective moduli of the yielded and strain-hardened portions of the member are
reduced below its elastic value with consequent reductions in the stiffnesses, which
contribute towards the resistance to buckling. In addition, because of the restraint
provided at the tension flange level, cross-sectional distortion is more pronounced and
this buckling mode is classified as RDB. The complexity of the problem is attributed to
numerous parameters, such as member slenderness, cross-sectional properties,
restraints, residual stress pattern, continuity, and two- or three-dimensional behaviour of

the beam-column.

In this study, a modified version of the energy method of analysis presented in section
5.3 has been employed to study the inelastic RDB of simply supported doubly
symmetric I-section beam-columns. For the purpose of this investigation, beam-
columns are assumed to be provided with lateral restraints such as a full lateral
translational restraint and elastic twist (torsional) restraint applied at the level of the
tension flange, as illustrated in Fig. 4.20 (Chapter 4). Loading configurations include
uniform axial load combined with uniform bending and transverse uniformly distributed
and point loads. The idealised residual stress pattern consists of a fully yielded tensile
stress block of width 2¢ in the flange at the weld (Eqn. 5.1), and a constant residual
compressive stress o, at the outer edges to maintain equilibrium. Tensile stress block

of width csextends into the web away from the weld.

The in-plane analysis of a beam-column is somewhat different to the in-plane analysis
of a beam subjected to moment gradient, described in section 5.3, because of additional
moment caused by the axial force (P-J effect). The numerical procedure, adopted in
this study, which takes into account the non-linearity due to P-§ effect, is described in
detail in section 4.5.4.2 (Chapter 4) and for the sake of brevity is not repeated herein.
However, the inelastic behaviour adds another dimension of non-linearity to the
problem since the major axis flexural rigidity, EI, is not constant due to yielding of the
cross-section caused by the combined effects of residual stresses and applied load. The
inelastic in-plane analysis of the beam-column to determine stress resultants is therefore

more complicated than an elastic in-plane analysis of a beam.
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The details of the buckling analysis are those given in sections 5.3.3 and 5.34. It is
worthwhile noting that although this procedure assumes a proportional increase in both
bending and axial stresses, the same cannot be applied to the inelastic buckling analysis
of beam-columns. Thus, in the analyses of this section the reference bending moment,
M, given in Eqn. 5.9, is scaled proportionally by a load factor, A until buckling occurs,
for a given constant value of the axial force. The modified energy method has then
been employed to investigate the effects of residual stresses and continuous lateral

restraint on the inelastic RDB of beam-columns under variety of loading regimes.

5.6.2.2 Numerical studies

Figures 5.57 and 5.58 show the inelastic critical buckling moment, M, of a simply
supported beam-column, normalised with the elastic buckling load, A,; and the first
yield moment, My respectively, plotted versus the beam slenderness, L/r,. Two different
loading configurations are compared; uniform bending and uniformly distributed load.
The cross-sectional geometry is shown in the same figures and the residual stress
pattern used herein is based on the recommendations given in section 5.2. In part a) of
each of Figs. 5.57 and 5.58 the buckling moment, M, is plotted for a constant axial
load N = 0.1Ny, where Ny is the section capacity in compression, and in part b) is plotted
for N = 0.2Ny. Although the axial load in b) is only slightly higher that the load in a), it
is worthwhile noting that the reductions in buckling capacity for short beams are rather
significant (=20%). Also, the trends exhibited in these graphs are somewhat analogous
to those for local buckling, especially so for the twist restraint parameter, a = 1000. For
both loading conditions the inelastic buckling moment tends to asymptote, rather than

decrease sharply as would occur for lateral-torsional buckling.

The inelastic load-moment interaction diagrams obtained from the energy method are
shown in Figs. 5.58-5.60. In these, the inelastic RDB moment, My, for a given beam-
column, is normalised with the inelastic RDB moment, M,; for a beam, and plotted
versus the inelastic RDB axial load, Ny, for the beam-column, normalised in a similar
manner with the inelastic RDB axial load, N,y for a column. The interaction curves are
plotted for a wide range of the dimensionless distortional parameter, y, proposed in
Chapter 4 (ie. y =5 to 50). It was shown in Chapter 4 that for a particular loading

configuration the interaction curves are identical for a range of 7, & and K values. Thus,
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it was suggested in Chapter 4 that the similar trend exhibited in the buckling curves can

be simplified to the linear interaction equation given as

N
cr t o 1‘0. 5- 64

Loading configurations considered herein are uniform bending (Fig. 5.58), uniformly
distributed load (Fig. 5.59) and a concentrated point load at the mid-span (Fig 5.60).
Varying degrees of the twist restraint parameter, « are also included, and each of the
values (0, 10, 100 & 1000) are considered in separate graphs (a-d). The geometry of the
member was selected in order for the dimensionless beam parameter, K to approach 1
(ie. within a tolerance of 0.1%) for each of the y values. Figures 5.61-5.63 plot the same
interaction curves as a function of the dimensionless twist restraint parameter, « for a

single value of the distortional parameter, ¥

It is evident from Figs. 5.56-5.61 that the inelastic buckling characteristics of
continuously restrained beam-columns are somewhat different from those presented in
Chapter 4. When the critical buckling load and moment are plotted in this way, it can
be seen that there are very minor discrepancies between the elastic solutions and
inelastic solutions for « > 10. Therefore, the use of the linear elastic load-moment
interaction Eqn. 5.64 may lead to satisfactory approximations for the inelastic RDB of
beam-columns in uniform bending and when subjected to uniformly distributed load,
provided the elastic quantities M./M,; and N./N,q are replaced with their inelastic
equivalents Mj,/Moq and Ni,/N,a. For a = 0 the inelastic curves are a little higher than

the elastic values and with the shape of parabola.

However, the inelastic solutions for a concentrated point load at the mid-span are a little
lower when compared with their elastic counterparts for > 10. The greatest reductions
below the elastic curves, for this loading case, occur when y = 50. Furthermore, it is
worthwhile emphasising that these solutions are derived for the beam parameter K = 1
and are not applicable to the entire range of the beam parameter as was the case in

Chapter 4 with the elastic curves.



197

5.7 SUMMARY

An energy method of solution has been presented for the study of inelastic RDB of I-
section members under uniform bending, transverse loading and compression. The
method incorporates the residual stresses induced by the process of fabrication,
described by the so-called Cambridge residual stress model, to include the effects of
inelasticity. The literature review has indicated that welded beams are more susceptible
to buckling than their hot-rolled section counterparts. When restraint against twist
rotation is applied to the cross-section along the beam length, the member is not free to
twist during buckling and cross-sectional distortion must necessarily accompany the
buckling deformation. This effect is difficult to quantify, and depends on such factors
as the topology of the cross-sectional profile, the level of residual stress, the beam

length and the stiffness of the torsional restraint.

Thus the Ritz-based energy method has been developed in this chapter for determining
the inelastic RDB buckling loads for simply supported I-section members without
transverse stiffeners along the span, subjected to transverse loading, and which includes
cross-sectional distortion during the bifurcation of equilibrium. The solution 1s obtained
efficiently, since the stiffness matrices are only of order 3sn. Generally, very few
Fourier terms were required to obtain accurate solutions, indicating the accuracy and
economy of the numerical procedure presented. By a simple modification of the
buckling model, the results have been validated against results reported for inelastic
lateral-torsional buckling that does not involve distortion of the cross-section during
buckling nor continuous elastic restraint against lateral displacement and twist.
Comparison studies were also undertaken for inelastic RDB of a continuously restrained
I-beam in uniform bending. The solutions were found to be in close agreement with the

independent predictions.

The application of the model was demonstrated for the inelastic RDB of doubly
symmetric beams, monosymmetric beams and beam-columns. The nominal buckling
load obtained from the modified ‘design by buckling analysis’ in AS4100 has been
compared with inelastic RDB solutions obtained from the current model. Overall, the

energy method has demonstrated an excellent agreement with the proposed method.
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There are a number of variables that affect the elastic RDB load, and this increases
considerably when elastic restraints and inelasticity are incorporated. However, the
distortional buckling parameter, y identified in Chapter 4 allows the high multiplicity of
buckling curves associated with inelastic distortional instability to be reduced to only
few. Provided that the designer can make some assessment of the level of welding
residual stress present in the member, the inelastic buckling moment may be calculated
to acceptable accuracy from a simple design curve that depends on the inelastic RDB
moment and the elastic critical (non-distortional) buckling moment for unrestrained I-

beam, the latter being obtained from solutions presented in design codes.

The influences of the degree of beam monosymmetry, p, torsional twist restraint, & and
the width of the tensile stress block in the flange, 2c/have been examined. It was shown
that the inelastic buckling capacities decrease by reducing p and with increasing c;
values. The numerical studies have also demonstrated the favourable effects of the
elastic translational and minor axis rotational restraints applied at the tension flange of a

simply supported beam, as normally employed in half-through girder bridges.

The energy method was then employed to study the inelastic lateral buckling of isolated
beam-columns under different loading configurations, and demonstrated that the
inelastic RDB load-moment interaction curves are a little variable when compared with
corresponding elastic curves. It was concluded that the linear elastic load-moment
interaction equation may lead to satisfactory approximations for the inelastic RDB of
beam-columns in uniform bending and when subjected to uniformly distributed load, for
a > 10 provided the elastic quantities M,/M,; and N,/N,; are replaced with their
inelastic equivalents M;.,/M,qs and Njc,/Nog.

It was found that the effects of the residual stresses cause significant variations in the
inelastic RDB strength. The changes in the residual stress system lead to variations in
the yielded regions in the cross-section, and resulting variations in the section rigidities.
These variations cause quite considerable changes in the inelastic critical buckling
moments. It may thus be concluded that the process of fabrication of I-section members

may have an adverse effect on their strength for the limit state of RDB. As residual
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stresses exist in all welded steel I-sections, it is concluded that these should be carefully

quantified and designed for.
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Figure 5.2 Strain distribution in a steel beam-column
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Figure 5.3 Residual strain distribution
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Figure 5.12 Comparison study for different monosymmetric beams
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Figure 5.17 Inelastic buckling moment versus beam length for a doubly symmetric
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b) modified a;
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b) modified a;
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Figure 5.24 Inelastic buckling moments of I-section beam
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Figure 5.29 Inelastic buckling moments of I-section beam
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Figure 5.44 Normalised buckling mode shapes of restrained doubly symmetric I-
section beams under transverse loading (point load at quarter span)
with a= 0; tension flange twist
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Figure 5.57 Inelastic buckling of beam-columns
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6.1 INTRODUCTION

Over the last three decades considerable progress has been made in the applications of
numerical procedures for the analysis of basic structural elements, as well as highly
refined structures in different disciplines of engineering. For instance, the efficient
analysis of plate structures is of essential importance in many branches of engineering,
and continues to be an area of active research. Moreover, an understanding of elastic
buckling (ie. stresses and buckling modes) is vital to understanding the behaviour and

design of thin-walled structures.

While the governing differential equations for particular modes of plate buckling
analysis are well-established (Allen & Bulson 1980), it is in general not possible to
obtain analytical solutions of the equations in closed form, except for simple
geometries. Hence, numerical solutions are required for practical problems. Amongst
these numerical procedures, by far the most popular method in use for plate analysis is
the finite element method (Zienkewicz & Taylor 2000). Its supremacy lies in its
generality and its ability to easily deal with complex geometries and loading
configurations. However, the full generality of the method is not required when the
geometry of the problem is regular, as is commonly the case for many practical
structures, for instance bridges and buildings. In such cases, the efficiency of the
analysis can be improved by adopting alternative approximation schemes that explicitly
account for the regularity of the structure. One simple and economical technique that is

suitable in such cases is the finite strip method, as shown in Fig. 6.1.

Finite strips have now been used for the analysis of plates and shells for some thirty
years. The finite strip method, developed by Cheung (1976), is a semi-analytical finite-
element method and involves longitudinal subdivision of a thin-walled member into a
series of strips of finite width (Fig. 6.2). In many cases this now well-known method
provides a significant reduction of the degrees of freedom of a strip as only one set of
cross-sectional degrees of freedom are required. The method in essence transforms a
three-dimensional problem to a two-dimensional one, and if only flexural buckling

deformations are considered it becomes a one-dimensional problem. The method is
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similar to the finite element method except that Fourier series terms are used to define

the displacement functions in the longitudinal direction.

The method was initially developed by analysing thin rectangular plates with two
opposite edges simply supported. In this case, the global equations uncouple into a
number of smaller systems of equations owing to certain orthogonality relationships
resulting from the selected displacement functions. This leads to a reduction in storage
requirements for the global equations and an increase in computational efficiency when
compared with the finite element method. Later research work enabled other boundary
conditions to be incorporated. However, in all other cases uncoupling of the equations
does not occur, and the method loses some of its efficiency. A more serious problem is
that the shape functions used in the finite strip method do not satisfy free edge boundary
conditions, which frequently arise in practice. Although the finite strip method is less
general than the finite-element method, it can significantly reduce the structural
discretization and can fully describe the space deformation configuration of plate

structures.

In the usual finite strip methods, stiffness and stability matrices operate conventionally
on nodal degrees of freedom, which are necessary for the assembly of the strips for a
given topology. Azhari and Bradford (1994b) included so-called bubble functions,
which represent nodeless but additional strip degrees of freedom in the form of higher
order orthogonal polynomials, into the expressions for the transverse buckling
displacements, and have demonstrated great computational saving in this augmentation
of the finite strip method based on complex arithmetic. These extra modes are
associated with internal or nodeless degrees of freedom. By their nature, bubble modes
have no effect on the displacements across the edges of a finite strip, and so the ‘bubble
strip’ is more involved than would otherwise be required. The method was employed
by Bradford and Azhari (1997) to investigate the local buckling behaviour of isotropic
plates with different boundary conditions along all edges under both axial and biaxial
compression, and the buckling of stiffened plates under compression. Hitherto, these
serendipity type bubble strips have only been used for buckling modes that involve plate
flexure such as local buckling. A more comprehensive survey of literature on the

bubble functions is included in Chapter 2.



260

The conventional semi-analytical finite strip method that uses a single Fourier term,
originally formulated by Hancock (1978) in a very simple and convenient fashion for
elastic unified buckling, has been modified herein and augmented with bubble functions
for the transverse buckling displacements. This chapter aims to explore an
improvement in the efficiency and efficacy of the semi-analytical finite strip method
through the use of bubble functions in the transverse buckling displacements in terms of
strip discretization. It therefore considers flexural as well as membrane terms in
bifurcative buckling. The developed numerical approach is applied to both plates and
their assemblies and buckling modes at different wavelengths are examined, which

include local, lateral-distortional and lateral-torsional modes.

6.2 THEORY

6.2.1 General

Finite strip analysis identifies three distinctive buckling modes: local, distortional and
lateral-torsional, as illustrated in Fig. 1.1. Local buckling occurs at wavelengths close
to or less than the width of the elements, whereas longer wavelengths indicate a
different mode of behaviour. In local buckling, nodes at fold lines rotate only, if they
are translating then the buckling mode is no longer local but either lateral-distortional or
lateral-torsional, as explained in Chapter 1. This chapter considers the issue of
improving computationally a unified buckling analysis for all of these three categories

using bubble functions.

6.2.2 Displacements

In order to generate the serendipity ‘bubble étrip’ for the semi-analytical finite strip
method for buckling problems, a new set of transverse functions will be adopted in
addition to the usual cubic function. Hence the particular functions describing the

flexural and membrane buckling displacements and shown in Fig. 6.3, are given by
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w= <1>77>7729773’XB>Nn<a1’a2’a3’a47a5>T
u=(Ln)N, 1k,(a;.4,) 6.1)

v=(Ln)N,{a;,a)

where X3 is bubble polynomial given as the Legendre polynomial:

X, =§A5"2—,.(1—n)” 6.2)
and

N, =sink,x

k, =nn/L 6.3)
n=y/b |

where » is the number of buckling half wavelengths over the length L of the strip, and
where primes denote differentiation with respect to x. The multiplier 4 in Eqn 6.2 is
arbitrary and may be taken as unity. The stiffness and stability matrices of a strip were
obtained herein by using the bubble function of order 10 (i = 5), written as

2 3 4 5
X, = A?—6(1 —nY+ 3’67—4(1 —nY + C5775—6(1 —n) + DTg—zz(l ~n). (6. 4)

The flexural and membrane displacement fields are shown in Fig. 6.3.

Equation 6.1 can be arranged more compactly in a standard matrix form to include both
the flexural and membrane displacements and the resulting set of equations can be

represented in matrix form by
i=Ma (6.5)

where

@ = (wu,v) , (6. 6)
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a=(dy,d,,d,) 6.7)

and the kernel freedoms are

a;)’ : 6. 8)

The kemnel freedom as is associated with the bubble displacement. By appropriate

differentiation and substitution for x and y in Eqn. 6.5, the assemblable vector & can be

related to the vector @ in the usual way to produce

§=Ca (6.9)
from which the vector of nodal displacements is represented by
i=MC™6. (6. 10)

The displacement matrices M and C ™' are given in the Appendix 6.1. The vector of

assemblable freedoms is then given by

§=(5:,6,.6,) 6. 11)

and contains the flexural and membrane nodal line displacements

85 = (w,0,,w,,0)" | (6.12)
and
8, =<u],v,,u2,v2>T (6. 13)

respectively, and bubble nodeless or internal displacement,

8y ={w,) . 6. 14)
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For a symmetric bubble, the bubble freedom is defined as

W = Xpiy2)- (6. 15)
6.2.3 Strains

The generalised linear strain vector £, can be obtained by appropriate differentiation of

Egn. 6.10, so that

0%/ ox? 0 0
0% /oy? 0 0
. r |-20%/6xdy O 0
gL=<px P, P, & &, axy> = 0 5/ 0 (w u v)T(6.16)
0 0 dloy
0 0/dy 0o/ox,
or
§, =BC™5. (6.17)
The nonlinear component
£, = Yllowsax) + (ous o)’ +(ov/ax) ] 6. 18)

of the longitudinal strain £, is used to calculate the geometric or stability matrix of a

strip. It can be obtained from Eqn. 6.10, so that

gv=WH"H (6.19)
where

A = (ow/ ox,0u/ ox,0v/ ox)"

M (6. 20)
-B'C$

The matrices B and B" are shown in the Appendices 6.2 and 6.3.
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6.2.4 Stresses

The generalised stresses (consisting of bending and torsional moments, and axial and
shear stresses) are related to the generalised strains through the elastic properties of the

strip. These material properties are contained in the property or elasticity matrix D , so
that

&=Dg, (6.21)
where

&={6:,6y) (6.22)
in which

&= (MM, M,) (6.23)
and

_ T

Gy =(0,,0,.7,) (6. 24)

are the flexural and membrane generalised stresses respectively.

In the present formulation, the property matrix is derived using the orthotropic plate
theory set out in Timoshenko and Woinowsky-Krieger (1959), and is given in the
Appendix 6.4.

6.2.5 Stiffness and Stability Matrices for a Strip

During buckling, the strip deflects and twists. The stiffness matrix k of a strip is

derived from the increase in strain energy due to buckling as

U=1/2|g, 6dV =1/28"k$ . , (6. 25)
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Substitution for £, and &, from Eqn. 6.17 and from Eqn. 6.21, and knowing that Eqn.

6.24 holds for all &, results in
k= 6*’[]}?’5}?&/}6“. (6. 26)
4

The potential energy resulting from the longitudinal in-plane forces can be calculated

using the following equation

v =1/2 [os,dV =1/25" & (6.27)
14

where

oc=0,+(c,-a. . (6.28)

Substitution for £, from Eqn. 6.18 and knowing that Eqn. 6.26 holds for all &, results

in
F= C_“TUE'TU—E'def'I. (6. 29)
vV

An explicit form for the stiffness matrix derived by the described analysis, but without a
bubble term, is given in Cheung (1976). The stability matrix for flexural displacements
appears to have been presented first by Przemieniecki (1973) and the stability matrix for

the membrane displacements appears to have been presented first by Plank and Wittrick

(1974). The kernel stiffness and stability matrices I?e and g, are given in the equations

=

k

(—j'-l
gC"

o
& (6. 30)

oQ

with pre and post-multiplication being effected by computer.
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6.2.6 Buckling Solution

The individual stiffness and stability matrices of a strip were computed with respect to
the local coordinate system (x, y, z). However, since all adjoining strips do not lie in the
same plane, as shown in Fig. 6.4, it is necessary to transform the stiffness and stability

matrices to the global coordinate system (X, Y and Z) as shown in the Appendix 6.5. A

transformation matrix R such that
5=RA 6.31)

can be used to relate the displacements of the nodal lines in the global directions A, to
the displacements of the nodal lines in the local directions 6. Hence, the global
stiffness and stability matrices X and G for a plate assembly can be simply assembled
from the transformed matrices k, and g, for each strip by the principle of

contragredience, where

k,=R"kR (6.32)
and
g, =R"ZR. (6. 33)

Following the usual procedure as set out in Zienkiewicz and Taylor (2000), the stiffness

and stability matrices for the finite strip are assembled in order to obtain the global

stiffness and stability matrices K and G respectively. Either the Timoshenko’s energy
method or the Rayleigh Ritz method may be invoked to solve the buckling equation,

which may be written in the familiar form

KA-AGA=0 (6. 34)

where A is the vector of buckling global degrees of freedom that include both flexural

and membrane terms. The buckling load factor A, as well as the buckling mode shape

A, may be extracted from Eqn. 6.33 by using standard eigenvalue routines.
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6.3 NUMERICAL ANALYSES

6.3.1 General

The numerical studies presented in this section are intended, in addition to ascertaining
the accuracy of the method, to investigate the discretization that is necessary when a
bubble term is included, and the ramifications on potential minimisation of the size (and

storage required) of the stiffness and stability matrices.

6.3.2 Plates

Simply supported plates with different transverse end conditions under uniform in-plane
compression and bending were analysed, as illustrated in Fig. 6.5. The accuracy and
convergence of the solutions with increasing the number of bubble strips is compared
with the results derived by the conventional finite strip method by suppression of the

bubble term, and some available exact solutions.

The familiar local buckling coefficient k, as defined by Allen and Bulson (1980), is

calculated as

2 2
k= (9) . 120-v?) 6. 35)

t m’E

where b and ¢ are the plate width and thickness respectively. The local buckling
coefficients of simply supported, clamped, clamped-free and simply supported-free
rectangular plates under uniaxial loads are compared with some available exact results
and results as derived by the conventional semi-analytical finite strip method in Table
6.1. The results clearly indicate that when one bubble strip is used, the error is less than

0.05% while for two bubble strips the error is in general less than 0.01%.

Simply supported and built-in flat plates under uniform in-plane bending were analysed,
and the accuracy and convergence of the solutions with an increasing number of strips is
shown in Table 6.2. The worst case for convergence is that of a plate in uniform
bending with built-in edges, but for which only three strips are needed to produce an

error of less that 0.1%.
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In order to show the effect of a bubble function of a higher order (ic. i > 4) on the
accuracy of the method, plates in uniform bending were studied with the coefficients B,
C, and D being different from 0. It can be seen in Table 6.2 (when B = 1) that although
there is some minor variation of the solution with B, the overall results are fairly
insensitive to this parameter. Because of this, B, C and D were taken as 0 in the

remaining studies.

The results show that by implementation of the bubble function in the semi-analytical
finite strip method, it is possible to obtain results very close to the exact solution by
subdividing the plates into one or two strips. This contrasts with the conventional finite
strip treatment, for which it is necessary to subdivide the plate into eight strips in some

cases in order to produce results of comparable accuracy to the bubble treatment.

6.3.3 Plate Assemblies

The extension of the finite strip analysis from a single flat plate to a prismatic member
has been investigated for plate assemblies such as I-sections, T-sections, channels,
square hollow sections (SHS) and cruciform sections. The section geometries are
shown in Figs. 6.6 and 6.7, and the results derived by bubble strip treatment have been
compared with the results obtained by the conventional semi-analytical finite strip

method of analysis.

For this study, square hollow sections and cruciform sections in uniform compression
were divided into 8 and 16 equal width longitudinal strips, as shown in Fig. 6.6. The
results for the SHS, summarised in Table 6.3, clearly show that improvement is
significant only for local buckling modes of thin-walled sections whose L/b ratio is less
than 7. Once this ratio is exceeded, and the buckling mode changes from one of local
buckling to one of flexural buckling, there is no significant improvement in terms of
computational savings. Similar behaviour was observed in case of a cruciform section
that buckles in a local, distortional and flexural torsional modes, where it is clear that
the computational savings are significant only for the L/h, ratio being less than 1, as

shown in Table 6.4.
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For the subject analysis, channel section and I and T-beam sections were subjected to
uniform bending stresses. The I-beams were divided into six strips (two equal width
strips in each flange and two in the web) and nine strips (four in the compression flange,
three in the web and two in the tension flange), as shown in Fig. 6.7. The T-section was
first divided into two equal width strips across the flange and two equal width strips
across the web, and then into four strips across the flange and three strips across the
web, as illustrated in Fig. 6.7. As shown in the same figure, the channel section was
subdivided first into five and then nine longitudinal strips (four in the compression

flange, two in the tension flange and three in the web).

For the channel section, similar behaviour to that observed in the analysis of SHS and
cruciform sections under in-plane compressive stresses is evident from the results given
in Table 6.5. From this table, it is clear that the improvement measured in terms of strip
discretization is significant only for very short members where the buckling mode is
local rather than overall buckling. The results summarised in Tables 6.6 and 6.7, for I
and T- sections respectively, where membrane deformations are predominant in the
overall buckling mode, clearly show that augmentation of bubble function does not lead

to significant improvement as gauged by strip discretization.

6.4 SUMMARY

A numerical model based on the harmonic-based semi-analytical finite strip method and
augmented with bubble functions has been described. The numerical analyses
undertaken have demonstrated the accuracy and versatility of the present approach for
predicting elastic local buckling loads for simply supported thin-walled plates with
different transverse end supports under in-plane compression and bending. The results
were compared with those published elsewhere, and significant improvement in terms
of discretization was observed. It was found that in some cases only one bubble strip
for each flat was needed to model the topology, compared with several needed with

conventional finite strips, in order to achieve comparable accuracy.
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It was also shown that augmentation of bubble terms, in modelling plate assemblies
where membrane actions are significant (such as I and T-beam sections), does not
improve the efficiency of the finite strip method when measured by the topological
discretization. Similarly, there was no significant improvement in convergence for

members where overall buckling precedes local buckling.
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6.4.1 Displacement Matrices

6.5 APPENDICES
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6.4.2 Linear Strain Matrix
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6.4.3 Nonlinear Strain Matrix
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6.4.4 Orthotropic Property Matrix

a) Flexural Stiffness
[ o*w 1
M, [p, b, o] &
M,|=\D, D, 0 ow
oy
M,| |0 0 D,| 5o
| Oxdy

D, =Ez 112(1-v,v,)
D, =E; 112(1-vv,)
D, =v,E 1 /12(1- vxvy)= v,E.t° /12(1- vxvy)

D, =G’ /12
b) Membrane Stiffness
_ ou T
o, E, E, 0] o
ov
o, |=|E, E, O —
oy
O'xy 0 0 G_ ou ov
__.+.—
oy Ox

E =E, /l-v,v,)
E,=E,/1-v,v,)
E, =v,E, [{l-v,v,)=v,E./[i-v.v,)
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6.4.5 Transformation Matrix
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Table 6.1 Convergence and comparison studies for rectangular plates

in uniform compression

Number Bubble
of Support LA FSM augmented
Strips | conditions FSM

1 42584720 | 4.0006595
2 . 4.0085293 | 4.0001552
4 s-S 1.0 4.0004449 | 4.0000000
8 4.0001341 |  4.0000000 | 4.0 (exact)
1 5403.68533 8.60578
2 ) 8.92522 8.60461
4 c-C 1.0 8.62514 8.60447
8 8.60571 8.60447
1 1.75160 1.65322
2 1.66097 1.65269
4 1.0 1.65318 1.65252
8 1.65256 1.65250
1 1.38783 1.31529
2 1.32057 131513
4 cf 14 1.31548 131509
8 1.31511 1.31508
1 1.35196 1.29279
2 1.29693 1.29265
4 1.8 1.29292 1.29263
8 1.29265 1.29263
1 1.41477 1.40298
2 1.40341 1.40166
4 1.0 1.40175 1.40166
8 1.40161 1.40166
1 0.92942 0.92248
2 . 0.92279 0.92200
4 s-f 1.4 0.92205 0.92199
8 0.92199 0.92199
1 0.73009 0.72550
2 0.72571 0.72527
4 1.8 0.72530 0.72526
8 0.72526 0.72526
o

*

Simply Supported; ¢ — Clamped End; f — Free End
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Table 6.2 Convergence and comparison studies for rectangular plates
in uniform bending

277

Number | Support L/ FSM Azhari Bubble Bubble

of Conditions (1993) | Augmented | Augmented

Strips FSM FSM

(A=1) (A=1,B=1

1 27.41166 27.29264 27.27258
2 s-s* 25.45224 23.94958 23.94649
4 0.665 | 23.96627 23.88388 23.88427
8 23.9 (exact) 23.88751 239 23.88267 23.88306
1 9789.2509 9789.67566 48.85403
2 c-c* 57.41010 40.21886 40.21626
4 0.470 | 40.36065 39.56880 39.57059
8 39.6 (exact) 39.61263 39.6 39.56192 39.56229

* s — Simply Supported; ¢ — Clamped End




Table 6.3 Square hollow section in uniform compression
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8 Strips 16 Strips
FSM Bubble FSM Bubble
Length | Cross-section augmented augmented
FSM FSM
610 859.20 847.21 847.61 846.84
1220 2854.36 2815.27 2815.09 2812.60
1830 4983.02 4955.40 4924.16 4923.05
3660 3605.39 3603.12 3591.30 3591.12
7320 SHS 3197.64 3196.32 3188.52 3188.48
9000 200%200x3 3018.16 3017.02 3009.77 3009.78
12000 2699.58 2698.77 2692.43 2692.43
15000 2407.67 2407.07 2401.46 2401.45
30000 1463.53 1463.39 1459.97 1460.00
610 3331.62 3286.36 3286.27 3283.18
1220 9313.88 9202.25 9190.16 9183.13
1830 7534.19 7526.50 7482.94 7482.39
3660 6363.14 6360.71 6342.69 6342.49
7320 SHS 4870.90 4869.69 4857.86 4857.88
9000 200%200x6 4300.61 4299.90 4289.61 4289.67
12000 3503.19 3502.70 3494.43 3494.47
15000 2926.56 2926.20 2919.43 2919.37
30000 1560.02 1560.04 1556.40 1556.44
610 11936.30 11785.60 11763.68 11701.70
1220 14020.81 14007.32 13900.29 12203.73
1830 12487.11 12481.56 12426.99 12022.87
3660 9658.38 9655.91 9629.97 9629.50
7320 SHS 5967.09 5966.81 5952.27 5952.45
9000 200%x200x%12 5001.97 5001.62 4989.69 4989.76
12000 3854.95 3854.71 3845.67 3845.68
15000 3124.39 3124.39 3117.14 3117.09
30000 1590.48 1590.49 1586.87 1586.81




Table 6.4 Cruciform section in uniform compression

L/h,, 8 Strips 16 Strips
FSM Bubble FSM Bubble
augmented augmented
FSM FSM
0.2 634.23 633.42 633.46 633.39
0.4 302.11 301.94 301.95 301.93
0.6 241.00 240.93 240.93 240.93
0.8 219.67 219.63 219.64 219.63
1.0 209.81 209.79 209.78 209.79
1.2 204.45 204.44 204.45 204.44
1.4 201.23 201.22 201.21 201.22
1.6 199.15 199.13 199.13 199.10
3.2 194.01 194.01 194.01 194.01
7.2 192.64 192.65 192.64 192.65
15.0 58.76 58.75 58.48 58.48
30.0 14.71 14.71 14.65 14.65
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Table 6.5 Channel section in uniform bending

280

by/h by L S Strips 9 Strips
FSM Bubble FSM Bubble
augmented augmented
FSM FSM

0.2 40.6 439.2976 426.0596 | 426.0015 425.3791
0.4 81.2 92.3002 92.2350 92.2271 92.2263
0.6 121.8 610 29.2400 29.2220 29.2221 29.2206
0.8 162.4 13.1986 13.1874 13.1880 13.1870
1.0 203.0 7.3975 7.3892 7.3895 7.3890
0.2 40.6 34.2706 34.2687 33.9818 33.9811
0.4 81.2 131.6604 131.6536 | 130.1891 130.1886
0.6 121.8 3660 | 222.9886 222.9627 | 220.5845 220.5780
0.8 162.4 157.1548 157.1158 | 156.1252 156.1172
1.0 203.0 90.9630 90.9312 90.5467 90.5474
0.2 40.6 8.1454 8.1455 8.1006 8.1006
0.4 81.2 247154 24.7158 24.4846 24.4838
0.6 121.8 9000 49.9584 49.9582 49.3982 49.3984
0.8 162.4 78.5539 78.5542 77.6234 77.6223
1.0 203.0 92.9877 92.9772 91.9441 91.9473
0.2 40.6 5.5740 5.5738 5.5480 5.5478
0.4 81.2 15.1743 15.1746 15.0472 15.0468
0.6 121.8 12000 29.5382 29.5377 29.2253 29.2248
0.8 162.4 47.5523 47.5508 46.9940 46.9941
1.0 203.0 64.3121 64.3079 63.5443 63.5440
0.2 40.6 4.2463 4.2462 4.2285 4.2286
0.4 81.2 10.6645 10.6649 10.5844 10.5842
0.6 121.8 15000 19.9326 19.9325 19.7346 19.7345
0.8 162.4 31.8339 31.8335 31.4727 31.4733
1.0 203.0 44.8359 44.8362 44.2979 44.2997




Table 6.6 I-section in uniform bending
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byby L/h,, 6 Strips 9 Strips
FSM Bubble FSM Bubble
augmented augmented
FSM FSM
0.25 969.98 967.00 896.19 895.70
0.5 537.92 537.44 495.56 495.43
1.0 408.58 406.20 385.56 385.40
0.1 2.0 167.19 167.08 163.76 163.74
by=100 4.0 51.15 51.14 50.41 50.40
8.0 18.54 18.54 18.34 18.34
16.0 8.14 8.14 8.08 8.08
32.0 3.92 3.92 3.89 3.89
0.25 695.26 690.39 685.76 685.14
0.5 448.91 447.17 441.01 440.86
1.0 457.86 454.17 442.61 442.40
0.3 2.0 794.64 787.73 764.51 764.00
by=300 4.0 589.77 589.51 577.15 577.13
8.0 160.20 160.20 157.40 157.40
16.0 46.06 46.06 45.36 45.36
32.0 16.08 16.08 15.90 15.90
0.25 393.00 387.35 381.70 380.92
0.5 182.12 180.52 178.66 178.46
1.0 151.48 150.78 150.57 150.50
0.6 2.0 226.71 226.01 226.05 225.99
br= 600 4.0 565.98 564.48 564.45 564.33
8.0 730.05 729.98 716.03 716.03
16.0 191.77 191.77 188.38 188.38
32.0 53.18 53.18 52.33 52.33




Table 6.7 T-section in Uniform Bending
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L/h,, 4 Strips 7 Strips
FSM Bubble FSM Bubble
augmented augmented
FSM FSM

0.1 6331.324 5874.616 3538.844 3267.616
0.2 2046.563 1979.780 1310.669 1248.462
0.3 1283.103 1272.453 875.158 847.562
0.4 1065.186 1064.565 745223 728239
0.5 1023.095 1020.702 722253 709.121
1.0 1599.430 1560.295 1153.271 1139.471
2.0 2682.745 2659.080 2639.276 2622.657
3.0 2405.250 2401.237 2088.082 2086.613
4.0 1449.999 1449.619 1236.574 1236.409
5.0 948.857 948.780 808.891 808.850
6.0 669.135 669.098 570.401 570.389
7.0 498.180 498.141 424.557 424.558
8.0 386.056 386.055 328.875 328.863
19600 308.461 308.443 262.546 262.545
' 252.357 252.347 214.581 214.579
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Figure 6.4 Strip orientation relative to global axes
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a) cruciform section

o

b) square hollow section

Figure 6.6 Finite strips subdivisions for members under pure compression
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a) I - section b) T - section

d) channel

Figure 6.7 Finite strips subdivisions for members under pure bending



Chapter 7

ELASTIC BUBBLE BASED SPLINE FINITE
STRIP METHOD OF ANALYSIS
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7.1 INTRODUCTION

This chapter presents the development of a bubble-augmented spline finite strip method
for the elastic buckling analysis of thin plates and assemblies of folded plates. The
method admits local, distortional and lateral buckling modes. The usual cubic
transverse variation of the buckling displacements is augmented with bubble terms that
comprise of symmetric Legendre polynomials, while B;-spline functions are used to
represent the longitudinal variation of the buckling displacements. A new and simple
method for the implementation of the longitudinal boundary conditions, including the
incorporation of internal supports, is developed. Because the procedure follows that of
standard displacement formulations, it is theoretically simple, and computer
implementation of the method is straightforward since it does not require any amended
schemes to handle the local splines that are needed near the boundaries or interior
supports to represent particular boundary conditions. The accuracy and validity of the
method are investigated through the analysis of a representative set of local and overall

buckling problems, and the high degree of efficacy of the method is demonstrated.

In the subsequent sections, the strip formulation is discussed in detail, and numerical
assessments of the method are carried out when applied to local, distortional and lateral
buckling. The investigations include convergence studies with varying convergence
criteria, strip subdivision of the structural topology and longitudinal subsections within
the strips, so as to determine reliable convergence criteria and required discretisation for
the elastic bubble augmented spline finite strip method. Following the convergence and
accuracy studies, the method is then employed to study the local buckling behaviour of
isolated plates with different boundary conditions and with the longitudinally applied
stress varying in both transverse and longitudinal direction. In addition to the
compression and bending, the plates are also subjected to equilibriating in-plane shear.
The elastic buckling modes of a single span and two-span continuous composite tee-

beam subjected to moment gradient are then investigated.
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7.2 SPLINE FINITE STRIP METHOD OF ANALYSIS

The spline finite strip method possesses some of the advantages of both the semi-
analytical finite strip method and the finite element method. It is similar to the semi-
analytical method as the topology of the structure is still discretised into longitudinal
strips and the rank of the problem is still reduced one-fold. However, the longitudinal
harmonic series is replaced by a linear combination of local Bs-splines while still
retaining the use of the transverse interpolation polynomials. Many undesirable features
of the conventional finite strip method (Cheung 1976), such as its deficiency in handling
concentrated loads, and its inability to allow for a variety of loading configurations
(especially shear) and boundary conditions that were discussed in Chapter 6, were

successfully overcome with the use of B;-splines.

The spline finite strip method developed by Cheung et al. (1982) possesses some
outstanding attributes. For example, the longitudinal variation of displacements in this
method uses a series of Bs-splines that are simple piecewise cubic polynomials with C;
continuity throughout, while for finite element interpolation, quintic polynomials are
required to establish the same order of continuity. The use of the lower order
polynomials in the spline interpolation simplifies the computation, reduces the risk of
unstable calculations in the numerical algorithms and improves the poor approximation
and loss of accuracy that sometimes occurs in higher order polynomial interpolation.
To achieve the same continuity conditions for the conventional finite element treatment,
it is necessary to have three times as many unknowns at the nodes (Zhu & Cheung
1989) and hence the number of freedoms in the finite element method may often be
excessive. The ramifications of the large number of degrees of freedom in nonlinear
finite element analysis can include both numerical instability and computational

inefficiency.

Spline functions have been applied to the solution of a broad range of linear and
nonlinear engineering problems. Notwithstanding the scope and efficiency of the spline
finite strip, the main difficulty in its solution of nonlinear and some linear problems is
even today the high computer cost, although the method is significantly superior to the
finite element method in its computational efficiency. In the context of the spline finite

strip method, the folded plate structure is discretised by using n strips along the x-axis
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and m sections along the y-axis, so that there are n x m subdomains and (m+3) x (n+1)
nodes to be included in the computation. Because of this, the spline finite strip method
requires many more degrees of freedom than the conventional harmonic based semi-
analytical finite strip method, and this has detracted from its popularity in some
applications. However, Azhari et al. (2000) included so-called bubble functions into the
expressions for the transverse buckling displacements, and confirmed significant
computational saving in this formulation of spline finite strip method could be achieved.
Nevertheless, their study deals with plain and stiffened plates only, and does not

consider plate assemblies such as I-sections and the like.

Another difficulty in the use of the spline finite strip method is the introduction of a
complex amended scheme of local splines in the vicinity of the boundary supports and
at any internal supports. Specifically, the incorporation of arbitrary boundary
conditions within the procedure lacks a general formulation. A new theoretical model
that is presented herein allows for node restraints to be defined and prescribed in much

the same way as in a conventional finite element formulation.

7.3 METHOD OF ANALYSIS

7.3.1 General

In the bubble-based spline finite strip analysis, each component flat of the plate
structure is treated as an assemblage of longitudinal strips subjected to membrane
stresses oy, 0, and 7, as shown in Fig. 7.1. These are increased monotonically by a
buckling load factor A for a proportional loading scheme. The standard finite element
techniques given in Zienkiewicz and Taylor (2000), which are based on the principle of

minimum total potential energy, have been followed in this analysis in order to obtain

flexural (F) and membrane (M) stiffness and stability matrices k.,g:.ky .8y

respectively, for the bubble based spline finite strip.

A thin walled folded-plate structural member is discretised transversely into a finite
number of strips using » nodal lines, which are further partitioned longitudinally into m

sections using m+3 section knots (Fig. 7.2), so that there are n x m subdomains. For a



295

local buckling analysis, each section knot has two out-of-plane displacements (a flexural
displacement and a rotation), two in-plane displacements (a transverse and a
longitudinal displacement) and a single flexural bubble displacement intermediate to
two section knots in the transverse direction. Consequently, the total number of degrees
of freedom for a plate assembly is (4n+ns) x (m+3), where n and ns are the total

number of nodal lines and finite strips, respectively, in a bubble based spline finite strip

analysis.

7.3.2 B;-Spline Function
The local buckling displacements are based on the summation of m+3 local Bs-splines by

f(x)= iail//i (x) 7. 1)

=a,y, (x)+ AW, (x)+ oy, (x)+ gy, (x)+ et XV (x)

where ,(x) represents a local Bs-spline and @, are undetermined coefficients (Fig.

7.3).

The basic B;-spline function is adopted here (Prenter 1975; de Boor 1978) because of its
localised nature and hence its ability to reduce the computing time by bandwidth
minimisation, which is illustrated schematically in Fig. 7.5. The length of the plate strip
L is divided into m sections of equal length. A typical local Bs-spline function of equal

length is defined as
0, x<x,,
(x X,_y )3 X, ,SXSX,
1 K +3n*(x—x,_ ) +3h(x-x, J-3(x-x_,) X, Sx<x,
l//l (x): ——3< (7 2)
6h +3h2(x1+1 x) +3h(‘xi+l —X) —3(xi+1 _x) X- SXSX.
(xz+2 )3 Xie1 <x< Xis
LO xi+2 <x

where h = (‘xi—l -2) (x )=( Xis —xi):( Xiv2 = :+1)

Each of the local spline functions y; has a non-zero value over four consecutive

sections, with its centre at a section knot located at x = x;. A linear combination of m+3
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local Bs-splines is required longitudinally to fully define displacement functions for the
strip (with m sections). The locations at x;,, x;;, x; etc. are termed section knots. Figure
7.3 shows a single local function, while Fig. 7.4 shows the combination of local
functions (with unit ;) contributing to the variation of f{x) in Eqn. 7.1. The values of
the spline function yi(x) and its first and second derivatives at the section knots are

well-known, and are given in Table 7.1.

7.3.3 Bubble Functions

In the usual finite strip methods, stiffness and stability matrices operate conventionally
on nodal degrees of freedom that are necessary for the assembly of the strips for a given
topology. A strip may have extra modes, that vanish on the boundaries, which represent
additional strip degrees of freedom. These extra modes are called bubble functions and
they are associated with internal or nodeless degrees of freedom, as shown in Fig. 7.6.
By their nature, bubble modes have no effect on the displacements along the edges of a

finite strip.

In order to generate the bubble augmentation of the conventional finite strip, a new set
of transverse functions has been adopted in addition to the usual cubic function. The
general polynomial bubble strip may contain symmetric and/or anti-symmetric bubble
shapes. Since the buckling modes are generally symmetric for local buckling, greater
accuracy is achieved by using symmetric bubble shapes. The general symmetric
polynomial bubble displacement that belongs to the family of Legendre polynomials,

Ns, can be expressed in terms of non-dimensional coordinates by

A
= 22n

N, n"(l-n) n=23,.. (7.3)
in which 7 = y/b and where b is the width of the strip. The multiplier 4 in Eqn. 7.3 is
arbitrary, since Ns is associated with a degree of freedom, and is taken here without loss

of generality to be unity.
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7.4 DISPLACEMENTS

7.4.1 Flexural Displacements

The flexural displacement function w over the domain Q for buckling displacements
normal to the plane of a spline strip can be represented as the product of the Bs-spline
functions with m+3 nodes in the x direction (the longitudinal direction) and

conventional cubic beam functions augmented by the bubble function in the y direction

(the transverse direction), that is

W= (N oy A Ny, + et Ny ),
+ N6+ N6, + ..+ Ny, 16, ),

(N
(N3W—17-1 + Ny, +°--+N3Wm+17m+1)j (7.4)
Ny 6, +Ny,8, +..+ Ny, i6,.1),

+
+

J
+

(
(NSW—ICU L TNw,0, +.+ Ny, 0, )B

or more concisely in matrix format as

w=\-<M3><M4><'M3><M4><M5>JF<7i 5". 71 gj a_jB>T (7‘5)

where (M,)=N, @, ,(M,)=N, @, and (M;)= N, ,in which the subscript F

denotes flexural displacements, N3;; and Ny;; are the transverse cubic functions of y

given by

N,, =1-3n% +27’
N, =nll-2n+7?)
N,, =3n" =2’
N4J = 77(772 —l)

(7. 6)

and where N is the bubble function defined in Eqn. 7.3. The subscripts i and j indicate
a freedom that is evaluated at nodal lines i and ;j respectively. The vectors

1/7”,1/7 51_,1/7”_,1/7 5 and ¥, are the Bs-spline representations for the displacement w and

rotation @ of nodal lines i and j respectively, and the bubble displacement w; is

evaluated mid-way between two strip nodal lines, as depicted in Fig. 7.8.
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In Eqn. 7.5, 7,,..8 , are vectors of displacement coefficients, and are defined as

_ T

7 < 1’710’711 ’7lm—2’71m l’ylm’y1m+l>

5 =<5, 51095 lm 2’51m 1’51m’51m+1>

] . 7.7
Y =<}/jl’7jo’}/_ll ’7!m Z’ylml’yjm’7/m+l>

3,- =<5 -15510’6 . 2’5/ "y 5Jm+1>T

and @ is the vector of displacement coefficients related to the bubble functions and is

given as

~ T
Wp = <w3—1’a)BO’a)B]""a)Bm—2’me-l’a)Bm’me+l> : (7.8)

Since the displacement field of the present strip is expressed in terms of kernel or
coefficient degrees of freedom, these degrees of freedom have to be transformed into
nodal degrees of freedom defined at the section knots, prior to the assembly of the

strips, in order to satisfy the compatibility and equilibrium conditions.

7.4.2 Membrane Displacements

The in-plane buckling displacement functions # and v of a spline strip are also expressed

as the product of the transverse polynomials and longitudinal Bs-splines as

= (N, + Ny,a, + ot N @, ),

(7.9)
+ (N2W-1a—| + N, + ot Nl 10y ),
=(N1‘//-n8-1 + N, B+t N i P )1 (7.10)
+ (NZW—lﬂ—l + N2WolBo +..t N2l//m+lﬂm+l )j
These displacements have the kernel coefficients
a, = <a (s 2PN s SRR 1 a o, o >T
i i1 ig YooY im-12""im? T im+l (7 11)

T
a! = <af"1’a10’a "’afm—2’afmﬂ’afm’a1m+1>
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and

P <ﬁi—l9ﬁi0’ﬂil“" ﬁim—z’ﬁim—]’ﬂzm9ﬂim+l>r

. 7.12
J <'Bj~1"Bjo"le""'Bf'm-z’ﬁfm—l’ﬂfm’ﬂf'm+1> ( !

B
B

respectively, so that there are 4(m+3) freedoms associated with defining » and v.

Equation 7.9 can be written more concisely in matrix format as

u=|(M).(M),] (@ a) (7.13)

and Eqn. 7.10 can be written similarly as

o<lipe), 00, (3 B ar

in which the subscript M denotes membrane displacements and where

<M>1 = <N1‘//-1aNl‘//oaN1W1a---,N1¢//m+l>

‘ (7.15)
<M>2 = <N2‘//_1aNzl//o,Nzl/ll,...,Nzl//m+l>

Ny = (1-n) and N, = 7 are the linear transverse interpolation polynomials which are the
same as those used in the semi-analytical finite strip method, and which do not include a

Legendre bubble polynomial. Each of the vectors ¥, ,p;,¥, %, and ¥, has m+3

local Bs-splines as defined in Eqn. 7.1, while &,,.., B , are the vectors of displacement

coefficients also corresponding to ¢; in Eqn. 7.1. The boundary conditions for the
membrane displacements of a strip are slightly different from those for the flexural

displacements, and they are specified in Table 7.2.

7.4.3 Modification for Boundary and Interior Supports

When the membrane displacement functions u and v are included with the flexural

deformations, the vector of strip displacement coefficients can be defined as

- T
As = <ai ﬂl }/i 5[ wB aj ﬂj 7_/‘ 51> (7 16)
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or as
B, =(B,3,4,). (7.17)

The vector A, contains freedoms that must necessarily lie outside of the ends of the

strip due to the specification of spline functions near these ends, but these freedoms can
be evaluated simply by specifying the buckling freedoms at each end of the strip only.

Consider, for example the vector &,. The displacement u is defined from

ii=T'a, (7.18)
where
B3 =y gyt sy sy 2 ) (7.19)

in which a prime denotes differentiation with respect to x, and where T is the (m+3) X

(m+3) matrix given as

1oy L
2h 2h
1 2 1
- = = zero
6 3 6
r 21
—. 6 3 6
T = . (7. 20)
12 1
6 3 6
1 2 1
zero - = =
6 3 6
-1, L
L 2h 2h ]

Instead of defining cumbersomely the spline coefficients oy and @, at the ends of the
strip, and o) and @+ outside of the strip, the displacement and rotation freedoms can
be used at the ends, ie. u,, u, (x=0) and u, , u, (x=L). Within the strip, there are m-1
interior or kernel displacement coefficients that are also transformed in the vector of

nodal (knot) degrees of freedom, ie. ui, 2,...Um Um.. In this way displacement

coefficients are transformed into actual physical freedoms. These can be easily
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specified as in conventional finite element programs as either fixed or free, and
eliminated within the program appropriately. This can also be done in the same fashion

for the freedoms associated with v, w, @ and w;. Hence the transformation given by

K=\T" T T 7" T T T T TAh, (7.21)
or
A, =T'A (1.22)

may be effected, where the 9(m+3) by 1 column vector contains the freedoms specified
for both nodal lines (i and j) and for , v and w and 6 and their slopes with respect to x,
for each section knot. Consequently, Eqns. 7.5, 7.13 and 7.14 can be then combined

into matrix format as

i=(u v w) =@, (7.23)

where i is the interpolation polynomial matrix given as

y= (M), (M), . (1.29)

Eqn. 7.13 can thus be written concisely as

=yl A . (7.25)

The vector A’ contains the freedoms that may be prescribed as, say, O = fixed or 1 =
free accordingly, as in conventional finite element formulations. Constraint conditions

within the strip, as shown in Fig. 7.9, as well as at the ends can then be easily invoked.

7.4.4 Flexural Stiffness and Stability Matrices

The flexural strain energy of a plate strip resulting from buckling deformation U is

given by the familiar expression
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Uy = [ 6724V (7.26)

where V is the volume of the strip and &, and . are the vectors of the generalised

internal moments and infinitesimal buckling curvatures respectively. These are given

by the well-known expressions

T
Gr=(M,.M,M,) (7.27)
and
_ T
Er = (P Py Pyy) (7.28)
in which
P, =W, p, = w,iy s Py = -2w,iy. (7.29)

In Eqn. 7.27, M, M, and M,, are the bending moments and twisting moment per unit
width of the plate shown in Fig. 7.10, resulting from the plate flexural buckling

deformations. Upon differentiating Eqn. 7.4, £, may be written as

£ =B.5, (7.30)

where B, is a flexural strain matrix obtained by appropriate differentiation of Eqn. 7.4
using Eqn. 7.29, and &, is a vector of flexural strip degrees of freedom. The property

matrix D,, based on the orthotropic plate theory derived by Timoshenko and

Woinowsky-Krieger (1959), is represented by

&, =Dz, (7.31)
where
D D, 0O
D.,=|D, D, O (7.32)
0 0 D,
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vEt® Ef’ _ Gt

D =D, = , D,=D,= ., D, =21 7.33
T T 20— v?) 2T T 20 —v?) 12 (7.33)

in which E,v and G are the appropriate isotropic elastic material properties, and ¢ is the

thickness of the plate.

The total strain energy of the strip associated with flexural buckling can thus be

expressed in the form
8. kb, (7.34)
in which k, is the flexural stiffness matrix which may be obtained from

k, = J:EFTBFEFdV. (7.35)

The increase in potential energy of the in-plane stresses resulting from the flexural
buckling deformations is chosen to be the same as that employed by Plank and Wittrick
(1974), and is given by

Ve ==L 2o, 0, o, F 2o, e 0.3
00

where

0, =0, +(52_01)n (7.37)

is the linear stress variation across the strip ends and A is the buckling load factor under

proportional loading. Hence by appropriate substitution, the stability matrix may be

obtained by
V, = --lz-SFT,zgpa‘F (7.38)
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8r=8r +t8&8r2 t 8k (7. 39)
2= [ 7.5 o (N T)av
Ze: = (75, Jo, (N, 77 Jav (7. 40)
Zrs = [, e, T Jav

in which N, = <N1,...,N4,NX>T. The three components of the matrix g, in Eqn. 7.40

contain contributions from the longitudinal compressive stress, transverse compressive
stress and shear stress respectively. The elements of these matrices, before the

appropriate integration has been performed, are given in Appendix 7.10.

7.4.5 Membrane Stiffness and Stability Matrices

In the method presented by Azhari er al. (2000), linear interpolation polynomials are
assumed in the transverse direction, so that the membrane buckling displacements do
not need to utilise the bubble polynomial. Because of this, the membrane stiffness and
stability matrices for a spline strip are the same as those presented by Lau and Hancock
(1986). The derivation of the membrane stiffness and stability matrices is based on the
same principles as those applied for the flexural deformations described in the previous

paragraphs.

The membrane strain energy, Uy, of a plate strip resulting from the buckling

deformations is given by

b
[1 &, 1dydx (7. 41)
0

Gy=(o, o, 7,) (7.42)
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By = (s v, uy+v,) (7.43)

in which o, 0, and 7, are the infinitesimal buckling membrane stresses, as shown in
Fig. 7.11, resulting from in-plane buckling deformations. The vector &,, can be related

to the vector £,, by

S, S, 0
T T
(0, o, 75) =S5 S¢ 0 (u, v, u,+v,) (7. 44)
0 0 S
where
S, = E, S, = 5 S,=8,=v.S S, =G 7. 45
1 l—VxVy’ 4 l—VxVy > 2 T M3 T VM 9 ‘ ( )
Eqn. 7.44 can be expressed as
&, =D, &, (7. 46)

where D,, is the property matrix appropriate for membrane displacements.

The increase in the potential energy of the membrane forces resulting from in-plane

buckling deformations was derived by Plank and Wittrick (1974) to be

14 =—11ijja {(u Y + (v )2}tdydx (7. 47)
M 9 J x Moy sx . .

As stated by Plank and Wittrick, there appear to be no in-plane destabilising effects
resulting from the stresses o, and 7 and so they have been ignored in the above

equation.

The integrations in Eqns. 7.26, 7.36, 7.41 and 7.47 are carried out herein using four-
point Gaussian quadrature, and the elements of the membrane stiffness and stability

matrices prior to integration are given in Appendix 7.10.
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7.5 TRANSFORMATION TO GLOBAL COORDINATES

The stiffness and stability matrices described in the previous sections were derived in a
local coordinate system. Transformation to a global coordinate system is necessary
when two adjoining plate strips have different orientations. A plate strip inclined at an

angle S to the global axes is shown in Fig. 7.12.

The deformations in the local axis system & are related to those in the global axes A by

5§ =RA (7.48)
where

- L 2 \T

0= u, v, w i W U vJ v /> (7 49)

and where

)

R=| I (7. 50)

|

in which

|

Icosp  Isinf

- - (7.51)
-Isinf Icosf

~|
1

I

and 7 is an identity matrix of size m3xm3. The strip stiffness and stability matrices,
kand g respectively, can be transformed to the global coordinate system according to

the principle of contragredience by

K= R'kR (7. 52)
G =R’
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where K and G are the global stiffness and stability matrices, respectively.

7.6 SOLUTION OF BUCKLING EQUATION

The total potential energy of a deformed structure, I, under a conservative load system

is composed of the internal strain energy U and the potential energy V of the loads.
Thus

M=U+V (7. 53)
or

] orle  —1-
I'I=5AT[K—/1G]A. (7. 54)

The principle of minimum total potential energy requires that the first variation of the

total potential JI1 vanishes, that is

oIl .
Al=—0A=0 V A 7.55
oA (7. 53)

so that for any arbitrary variation A of the buckling deformations,

[K-iGlA=0. (7. 56)

Bifurcation from the primary equilibrium path occurs when

yl?-,1§|=o (7.57)

which is the familiar linear buckling eigenproblem. The buckling load is given by the
eigenvalue, A, while the buckling modes are described by the eigenvector A. Inlieu of
subroutines in software libraries, an algorithm based on the Sturm sequence property
(Garbow et al. 1977) and which has proved successful in computing eigenvalues and

eigenvectors for many structural problems, has been employed in this analysis.
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7.7 CONVERGENCE AND ACCURACY OF SOLUTION

7.7.1 General

In order to assess the performance and efficacy of the new spline finite strip
formulation, a number of numerical examples are presented here. These examples
consider local and overall buckling, and include the usual documented problem of
square and rectangular plates, and plate assemblies. The analysis of square plates is
fundamental to all plate compression/bending/shear finite strips. The analytical
solutions for a square plate subjected to various types of loading and with various
boundary conditions are readily available (Timoshenko & Gere 1970; Allen & Bulson
1980). Although the problems of square plates do not present any specific difficulty
with finite strips, the results obtained usually demonstrate the general accuracy and
convergence characteristics of the strip, and they also provide a basis of comparison
between different strips. Comparisons of the results with theoretical solutions and those
of other finite strip analyses have been made to demonstrate the efficiency and accuracy

of the present method.

In the present study, square plates with both simply supported and clamped edges and
combinations of these have been analysed. Examples of the accuracy of the method,
with increasing numbers of spline sections lengthwise, are presented for plates of finite
length subjected to compression, bending and shear. The method is also applied to a
square stiffened plate subjected to combined compression and shear, and to a
rectangular plate with internal supports. The accuracy of the numerical solutions is
governed by a number of factors including the number of strips in the transverse
direction and the number of subsections in the longitudinal direction. For the present
study, the values of Young’s modulus and Poisson’s ratio have been adopted as 200

GPa and 0.3 respectively.

7.7.2 Square and Rectangular Plates

Plates with simply supported edges subjected to uniform and biaxial compression,

bending and shear are shown in Fig. 7.13, while plates with simply supported, clamped
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and combined boundary conditions, are shown in Fig. 7.14. The local buckling

coefficients k given by (Allen & Bulson 1980)

k=o 1_2(1;%_)(2}2 (7. 58)

“ g'E \t

and computed using the spline finite strip buckling analysis are summarised in Tables
7.3-7.10, where they are compared with the theoretical values (Timoshenko & Gere
1970; Allen & Bulson 1980; Stroud & Anderson 1980; Tham & Szeto 1990; Azhari
1993; Saadatpour ez al. 1998; Bedair 1997a, Bedair 1997b; Azhari er al. 2000). The

aspect ratios of the plates studied are also included in the tables.

The plates were each subdivided into a number of longitudinal strips (1, 2 or 3 strips) of
equal width for the analysis. For the case of uniaxial compression, the errors are in
general less than 0.1% when four spline sections and two strips are used for the simply
supported plates, and less than 0.3% when four spline sections and two strips are used
for the clamped plate, as shown in Table 7.3. A similar trend is evident for the case of
biaxial compression, given in Table 7.4, where only four spline sections and two strips
are required to achieve an error less than 0.05%. For the case of shear, the convergence
~ is slower and three spline strips with ten sections are generally required to achieve an

error less than 0.5%, as shown in Tables 7.5 and 7.6.

Convergence studies of plates in longitudinal compression, with simply supported and
clamped edges, such that three local buckle half-waves formed along the length, showed
that five and eight spline sections respectively produced buckling loads with an error of
less than 1%. For a simply supported plate in shear with four local buckle half-waves,
ten spline sections longitudinally (and three strips) were required to achieve an error of

less than 1%.

7.7.3 Stiffened Plates

In many structural engineering applications, the plates are large and slender.
Longitudinal stiffeners are then provided primarily to carry part of the compressive

force proportional to its area and to reduce the effective width to thickness ratio of the
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thin plate element, thus increasing its buckling strength. Even in the ultimate limit state
design of stiffened plates, the information on the buckling coefficient as well as the
optimum rigidity of the stiffener (maximum buckling strength with the smallest stiffener

dimensions) is generally needed.

Figures 7.15 and 7.16 show the geometry of a square stiffened panel, simply supported
along four edges with one and two longitudinal stiffeners respectively. For the purpose
of this investigation the plates were subjected to uniaxial compressive stress, transverse
stress and combinations of these. Further, for the case where only one longitudinal
stiffener is used, two strips were employed to model the plate, while for the case shown
in Fig. 7.16, three strips were utilised. The longitudinal stiffener was modelled by
restraining the horizontal, transverse and vertical displacements for the specified nodal
line. In this way it is assumed that the stiffener is rigid enough to divide the plate into

two and three equal sub-plates respectively.

The solutions for such configurations are readily available (Timoshenko & Gere 1970;
Bedair 1997a), and the comparisons with the current method are shown in Table 7.9.
The relative percentage difference is calculated as the difference between the buckling
coefficient k derived by this method and the k factor given by specified researcher
which was nearest to the converged value obtained from the present method. Note that
in Table 7.6, this difference is provided for each k factor published elsewhere since only
one converged value derived by present analysis is tabulated. These comparisons
indicate that when six sections are used the error is less than 0.4% while with ten
sections the error is reduced below 0.1%. It is worthwhile nothing that the & factors
given by Bedair (1997a) and Timoshenko and Gere (1970) in Tables 7.9 and 7.10 are to
two decimal point figures and the comparisons with the & factors obtained by the present

method, which have been rounded to four significant figures, might not be precise.

Figure 7.17 illustrates the plate originally analysed by Stroud er al. (1980, 1981) using
the finite element program EAL and the VIPASA program, which is a smeared stiffener
approach. They discretised the plate into 1296 elements with approximately 8000
degrees of freedom, and concluded that the results of the EAL software are the most
satisfactory for the general situation. Lau and Hancock (1986), Bedair (1997a) and
Azhari et al. (2000) have also considered this example as a benchmark with which to
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verify their models. The numerical analyses carried out in this chapter produced good
agreement with the published results, as shown in Fig. 7.18. For the current analysis,
one bubble strip was used for the stiffened panel between the stiffeners, and one strip
for each stiffener. It was sufficient to use six to eight sections for the buckling load to
converge. Therefore, the number of degrees of freedom is approximately 10% of that

required by the finite element method.

7.7.4 Rectangular Plates with Internal Supports

The previous section dealt with stiffeners that are oriented longitudinally and their
inclusion is straightforward. Adding the stiffeners in the transverse direction in the
conventional spline finite strip method requires a complex amended scheme to be
introduced. However, the method developed in this study allows for transverse
stiffeners to be incorporated in the same way as for the longitudinal direction by simply
restraining the displacements of relevant section knots. In this chapter, the internal
support that represents the rigid transverse stiffener, was modelled as a simple line

support.

Figures 7.19 and 7.20 show a simply supported plate with internal supports that divide
the plate into two and three sub-plates respectively, while Fig. 7.21 shows the geometry
of a plate simply supported along four edges and stiffened in both the longitudinal and
transverse direction. The stiffeners and internal supports in this case divide the plate
into nine sub-plates, each with an aspect ratio of unity. The local buckling coefficients
k for these geometrical and loading configurations are compared in Table 7.10 with
those reported by Bedair (1997b) and Timoshenko and Gere (1970). For the case
depicted in Fig. 7.19 the k factor equals 16.0, which corresponds to that for a square
sub-plate of width 5/2 in Eqn. 7.58 and with a local buckling coefficient of 4.0. The
buckling coefficient & for the plate shown in Fig. 7.21 and subjected to uniaxial stress
only is obtained from that for a sub-plate of width 5/3 in Eqn. 7.58 and with a local
buckling coefficient of 4.0, so that the k factor is 4.0x3x3=36.0. Similarly, for the
case in Fig. 7.21 subjected to biaxial stresses (0x/o; = 1), the k factor is 18.0, which is
3x3 =9 times the k factor of 2.0 of the unstiffened plate, as shown in Tables 7.4 and
7.10.
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These numerical assessments have demonstrated that in general it is sufficient to use
two strips for the plate with one longitudinal stiffener and three strips for the case where
two stiffeners are utilised. It is evident from Table 7.10 that in general six sections

result in an error less of than 0.1%.

7.7.5 Plate Assemblies

The accuarcy of the method when applied to plate assemblies was demonstrated by
studying a T-section in uniform compression with different flange to thickness ratios.
In this example, the method is compared in Fig. 7.22 with the results produced by the
bubble augmented semi-analytical finite strip analysis, developed and verified
extensively in Chapter 6 of this thesis. The T-sections were subdivided in 4 strips, two
in the web and two in the flange. The first mode buckling solution of the semi-
analytical solution is given in Fig. 7.22, and the spline analysis represents the locus of
the lower bounds of the multiple harmonic solution. For clarity, only the first buckling
mode of the harmonic semi-analytical solution is shown in Fig. 7.22. The maximum

difference between the solutions obtained by the two methods is less than 0.1%.

7.8 NUMERICAL STUDIES

7.8.1 Plates

In circumstances where structures are subjected to combined compressive, bending and
shear stresses, there is a requirement in the design process to predict the critical level of
these stresses at which buckling will occur. In this study, the local buckling coefficient,
k is derived for isolated plates with various boundary conditions and with the end
compression (o) varying in the direction of loading (longitudinally) and equilibrated by
shear stress, r along the longitudinal edges. These sorts of stress condition are also
found in the skin of an aeroplane wing in bending, and a solution was first formulated
by Libove et al. (1949) for simply supported plates of uniform thickness. The variation
of the end stress, oy in the transverse direction is shown in Fig. 7.23, where the stress
gradient « varies between 0 and 0.8. The local buckling coefficient, & is plotted on a

logorithmic scale versus the plate aspect ratio, L/b for ten different loading
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configurations, tabulated in Fig. 7.24 as Cases 1-10, which define the stress gradient in

longitudinal direction.

Figures 7.25-7.28 show the local buckling coefficients of plates with the in-plane
boundary conditions in the sequence of left, bottom, right and top, simply represented as
‘s-f-s-s’, ‘s-f-s-¢’, ‘c-f-c-s’ and ‘c-f-c-c’. These types of boundary conditions simulate
the framing of the free flange outstand into the web, where one of the longitudinal edges
(bottom) is free, and the loaded edges (left and right) are either simply supported (Figs.
7.25-7.26) or clamped (Figs. 7.27-7.28). For the purpose of this study the plates are
subjected to uniform end compressive stress (o;), which is a typical state of stress in the
flange outstand of an I-section loaded either in compression, bending or a combination
of the two. The local buckling coefficient is plotted against the plate aspect ratio, L/b
for Cases 1-10. The aspect ratio was varied by changing the length of the plate. Figures
7.25-7.28 indicate that, in general, a decrease of plate aspect ratio increases the plate
capacity. Buckling modes for those loading configurations are shown in Figs. 7.29-

7.32.

Figures 7.33-7.35 show the variation of the local buckling coefficient versus aspect ratio
of plates with boundary conditions defined as ‘s-s-s-s’, ‘s-c-s-¢” and ‘c-c-c-¢’. These
types of boundary conditions simulate the framing of the web plate into the flanges. In
reality, the conditions of restraint imposed on the web by the flanges vary between
simply supported and clamped. Accordingly, the buckling coefficients for real I-section
beams are bounded by the simply-supported and clamped curves. Two different loading
combinations are considred herein: i) longitudinally varying end stress, o; (Cases 1-10)
equilibrated by shear stress, 7 along the longitudinal edges; and ii) uniform transverse
stress, o, in addition to longitudinally varying end stress, o, and equilibrium shear
along the longitudinal edges. Furthermore, in addition to the stress gradient in the
longitudinal direction, the end stress, o; is also varied in its transverse direction, as
shown in Fig. 7.23, where the stress gradient parameter o ranges from 0 to 0.8. Thus,
the results given in the figures need careful interpretation for loading configurations
where the positive bending moment changes into a negative bending moment (ie. Case 7
or 8) as this reverses the distribution of tensile and compressive stresses along the plate

width.  Figures 7.33-7.35 show that loaded edge’s boundary conditions affect
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significantly the local buckling coefficient, especially so when the uniform transverse
stress, o, is included. It is, however, important to note that the occurrence of elastic
local buckling does not represent a true strength limit state, since the webs of plate
girders exhibit a significant postbuckling reserve of strength (Trahair & Bradford 1998).
Buckling modes for selected loading configurations (Case 2, 6, 8 and 10) are plotted in
Figs. 7.36-7.43.

Figures 7.44 and 7.45 show the variation of the local buckling coefficient against the
aspect ratio of plates with boundary conditions given as ‘c-c-f-c’ and ‘c-s-f-s’ for the
loading configuration defined as Case 4, 6, 7 and 8. These types of boundary conditions
replicate the framing of the web plate into the flanges in cantilever beams with one
loaded edge free. The plotted curves are of similar trend for all loading configurations
considered with the minimum occuring at the aspect ratio of 0.5, except for the Case 7
in Fig. 7.45 where the minimum is at L/b of 1.0. Buckling modes for Cases 4 and 6 are

plotted in Figs. 7.46-7.49 respectively.

Figures 7.50 and 7.51 show the variation of the local buckling coefficient against the
aspect ratio of plates with boundary conditions given as ‘c-s-s-s” and ‘s-c-c-¢’ for the
loading configuration given as Cases 4, 7 and 8. The boundary conditions for this type
represent the framing of the web plate into the flanges in propped cantilever beams, in
which one of the loaded edges is clamped and another is free. As the figures show, for
plates with L/b less than 1.0, the boundary conditions for loaded edges have significant
effects on the buckling stress. However, for long plates the boundary conditions for the
loaded edges have a minor effect on the buckling stress. Buckling modes for Cases 7

and 8 are plotted in Figs. 7.52-7.55 respectively.

7.8.2 Composite T-section beams

Composite bridge girders with a fabricated joist are not always compact, due to the
difficulty in controlling the slenderness of a thin web when the neutral axis is positioned
reasonably close to the top/tension flange. Local buckling, which will occur prior to
attainment of the full plastic moment in hogging, will clearly be of importance for such
fabricated girders. There is both experimental evidence (Hope-Gill & Johnson 1976)
and theoretical evidence (Bradford & Johnson 1987) that local buckling will procede
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lateral-distortional buckling in many composite tee-beams subjected to negative
moment. Test results reported by Loh et al. (2004), and by others (Climenhaga &
Johnson 1972; Johnson & Fan 1991; Johnson & Chen 1993), also confirm that local
buckling of the bottom flange is important in semi-continuous composite joints in
building. When the component flats of plate assemblies are subjected to in-plane shear
in addition to compression and bending, the concept of a local buckling mode in which
the line junctions remain straight is still a valid one. However, with shear present, there
are no cross-sections that remain undistorted (Wittrick et al. 1968; Azhari 1993). There
are a number of instances of local instability under combined loading. When the shear
loading is combined with large bending moments, such as that which occurs at the
internal supports of beams, the strength of the web in shear will be reduced. This
reduction is normally represented by an interaction diagram which indicates the
combination of bending stresses and shear stresses. Azhari and Bradford (1993)
obtained the interaction buckling curves for bending and shear stress for different
positions of the neutral axis. Their study showed that the interaction between bending
and shear was close to circular, while that between compression and shear is close to

parabolic and was independent of the position of the longitudinal stiffener.

The bubble augmented spline finite strip buckling analysis, developed in this chapter,
has been applied to study the buckling modes of a single span and two span composite
T-section beams subjected to moment gradient. For this study, the beams were
subdivided into six strips (two in the web, two in the compression flange, and two in the
tension flange). For the analysis, it was assumed that the shear stresses are carried
entirely by the steel web and the distribution in the flange was determined from the

method set out in Trahair and Bradford (1998) based on thin-walled structural theory.

In practical cases, transformed section analysis incorporating slab reinforcement shows
that the neutral axis is positioned reasonably close to the top flange in the negative
bending moment region, as shown in Chapter 3 of this thesis, and local buckling is
likely to occur prior to the attainment of the yield stress when the web is slender. For
the study herein, it was assumed that the neutral axis is located at a height ah below the
tension flange, where the stress gradient parameter « is varyied between 0 and 0.8 as

shown in Fig. 7.23. Since the stress distribution is linear-elastic, the parameter « for a
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particular loading case may be determined from standard modular ratio theory (Hall
1986), which accounts for cracking of the concrete and for any reinforcing steel. For
the purpose of this study the depth of the neutral axis o is assumed constant throughout
the beam length. It was shown in Chapter 3 that the ratio between the longitudinally
varying axial force and bending moment in the steel joist of a composite T-beam is

constant for the majority of the beam length.

Figures 7.56-7.59 show the results for the loading configurations of single span I-
beams, either simply supported (Fig. 7.56) or fully fixed (Figs. 7.57-7.59) at the end
supports. The beams are fully restrained at the level of the tension flange, where the
tension flange corresponds to the positive bending moment as shown in Fig. 7.24, in
which different loading configurations are tabulated. The figures are plotted for the
values of flange width to web depth ratio, b/h, of 0.2, 0.4 and 0.6, web slenderness
ratio, h,/t,, of 100 and 200, and the ratio of flange thickness to web thickness, #/t, of 2
and 4. The critical buckling stress derived by this analysis, and taken as the maximum
compressive stress, is plotted versus the beam slenderness ratio, L/h,, for a number of
different neutral axis depths defined by the stress gradient parameter, a (=0, 0.2, 0.5
and 0.8).

The investigation was then extended to two span beams with an internal support (Figs.
7.60-7.63) for a number of different loading configurations. The curves for all loading
cases considered, for both single and two-span beams, exhibit the same characteristics.
As the beam length increases the curves rise to peak and away from the peak the
buckling stress decreases rapidly with increasing slenderness ratio L/h,. The curves
also show that increasing the web thickness substantially increases the critical buckling
stress. This is because local buckling, coupled with the cross-sectional distortion, first
occurs in the web, so that its thickness is a governing parameter. It is also shown in the
figures that an increase in the flange width to web depth ratio parameter, b/h, leads to
improved buckling capacity for the beams with large values of the slenderness ratio,
L/h,, and stockier webs (ie. h,/t,, = 100).

Figure 7.56 shows the results for a simply supported half through bridge girder with a
concentrated load at mid-span. It is evident that when the length of the beam decreases,

the cross-section starts to distort markedly near the concentrated load, with more
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pronounced distortion for b/h,, equal to 0.2. This local distortion produces something
that looks like a local buckle at mid-span, as illustrated in Fig. 7.64. A similar trend can
be observed in Figs. 7.58 and 7.59. These analyses demonstrate that cross-sectional
deformations may have a marked influence on the buckling behaviour of thin-walled
composite T-beams loaded by concentrated forces. A similar behaviour was observed

in plain thin-walled steel beams (Van Erp 1989).

Figures 7.64-7.66 show the buckling modes for I-section beams obtained from the
eigenvector at the critical buckling stress, as given in Eqn. 7.56, for selected loading
configurations (ie. Cases 3, 7 & 11). The flange width to web thickness ratios, b/h,,
considered herein are 0.2, 0.4 and 0.6 whilst the beam slenderness ratio, L/h,, is 10.
Figures 7.67-7.69 show the variation of the cross-sectional deformations along the beam
length for Cases 3, 7 and 11 and the beam slenderness ratios, L/h,, of 4, 10 and 16. Itis
evident from these figures that the RDB mode is a governing mode for I-sections with
one flange fully restrained. Figure 7.69 clearly indicates that the deformations can be
reasonably large in the vicinity of the internal support. For instance, in Fig. 7.69 the
plots display a combined flange-web buckle, coupled with the cross-sectional distortion,
and significant relative web deformations, especially so for the point D which is located

close to the internal support.

7.8.3 Composite T-section Beams with Longitudinal Stiffener

In many fabricated sections, such as I-section beams and composite T-beams, the web
slenderness is very large and the web plate may be subjected to local buckling before
the inception of RDB or plasticity of the member. The local buckling (and also post-
buckling) performace of a web plate in bending can be improved by the provision of
longitudinal stiffeners parallel to the direction of the longitudianl stress. Climenhaga
and Johnson (1972) also reported from experiments that the provision of a longitudianl
stiffener attached to the web improved the local buckling capacity of composite tee-
beams. This provision is allowed in many design codes of practice. The main function
of the longitudianl stiffeners, therefore, is to increase the local buckling capacity of the
web in bending. Azhari (1993) showed that the maximum slenderness required for

attainment of a yield stress o, of 250 MPa before buckling lies between 82 and 142.
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Since the values of h,/t, in fabricated composite beams are usually much greater than

these values, the slender web plates are stiffened by longitudinal stiffeners.

The local buckling of a composite T-section with a longitudinal stiffener under the
action of moment gradient and shear was studied using the bubble formulation
developed in this chapter. The flanges were subdivided into two bubble strips, the

stiffeners into one strip, while the web was subdivided into four bubble strips.

In Fig. 7.70, the critical buckling stress is plotted as a function of the longitudinal
stiffener position, d; along the web depth for a number of different stiffener widths, b;.
The figure shows the results for a constant flange and web thickness for two different
loading conﬁgurations, naimly, Case 3 and Case 7. The critical buckling stress is
plotted as a function of the longitudinal stiffener position, d; along the web depth for a
number of different stiffener widths, b; and for various depths of the neutral axis. The
figure indicates that the location of the neutral axis is not of significance for the loading
configuration shown in b). However it is important to note that where the positive
bending moment changes into a negative bending moment, as for the internal support of
the Case 7 in this figure, the distribution of tensile and compressive stresses along the

cross-sectional depth is reversed.

The critical buckling stress is then plotted in Fig. 7.71 as a function of the stiffener
location, d; for a number of different web slendernesses, ie. A,/t,, = 100, 150, 200, 300
and 400, and varying depths of the neutral axis. The optimum position to maximise the

stress was found to lie at around 0.54,,.

Figure 7.72 plots the critical buckling stress versus the stiffener location parameter, d;
for a number of different stiffener thicknesses (ie. t,/t, = 1, 2, 4 and 6) for three different
loading configurations and different positions of the neutral axis. A significant increase
in the buckling capacity is evident for the sections where a stockier stiffener is
employed. Similarly, these figures indicate that the optimum position of the stiffener is
at 0.5h.

The illustrations of the longitudinal and cross-sectional buckling modes for various

positions of the longitudinal stiffener are presented in Figs. 7.73 and 7.74 respectively.
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It can be seen from the figures that the location of the longitudinal stiffeners governs
whether web local buckling, in majority of instances coupled with the RDB, occurs in

the upper or lower portion of the web.

7.9 SUMMARY

This chapter has presented a new spline finite strip method suitable for the elastic
buckling analysis of general thin-plate structures. The strip is formulated routinely by
the displacement approach. Finite strip displacement functions were augmented with
bubble functions in order to calculate the elastic buckling stresses of plates and plate
assemblies. Numerical tests on the ability of the strip to model local buckles were
carried out through the analysis of a representative set of standard problems including
square and long plate structures. The applications presented demonstrate the good
convergence properties and numerical accuracy of the spline finite strip method in a
range of situations. The method is particularly attractive with regard to its versatility in
accommodating in proper fashion the full scope of conditions that may be prescribed at
the ends of a plate or plate assembly. The approach provides greater versatility than do
previous FSMs since this method has allowed for consideration of structures with

intermediate supports and with step changes of properties along their length.

The present method gives not only excellent results for the local buckling coefficient, £,
but the buckling coefficients computed also converge rapidly. In most cases, only a
coarse discretisation is required for a practical analysis, and hence the developed spline
finite strip method is accurate and efficient. Numerical examples for plates of various
boundary, internal support and loading conditions have demonstrated the accuracy and
versatility of the method. The simplicity of the semi-analytical fnite strip method is
preserved, while the problems of dealing with non-periodic buckling modes, shear and

non-simple support are eliminated.

The method was then used to study extensively elastic local and overall buckling modes
in I-beams under moment gradient. The study has confirmed that RDB mode is a

governing mode for steel I-sections with one flange fully restrained. It has been shown
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that the deformations can be reasonably large in the vicinity of the internal supports (in
the region of the negative bending moment) and near the concentrated forces. The
numerical investigations have also demonstrated that variations of the web slenderness
parameter, L/h,, have a most pronounced influence on the elastic buckling capacity of
composite T-section beams. The bubble augmented spline finite strip method was also
employed to study the elastic local buckling and RDB of single span and continuous
composite T-sections subjected to moment gradient containing a longitudinal stiffener

attached to the web.



7.10 APPENDICES

7.10.1 Flexural Stiffness Matrix

The terms in the symmetrical flexural stiffness matrix are as in the following:

ke | kr2 | kriz | kria | kris
kraa | kras | kraa | kra2s
_ Lb
k. = jj krssz | krsa | kr3s
00
symmetric kras | kras
krss

In the above table the symbols are defined as follows:

kr,, =N.N,ww;D + NNy D, +NNyy, D,

+N;Nyw D, +4N,N yy,D,

where

V1=V
Y=g
V=V,
Vi=Vy
Vs =Yys

and D,,..., Dy are defined in Eqn. 7.33.

dydx
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(7. 59)

(7. 60)



7.10.2 Flexural Stability Matrix
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The terms in the symmetrical flexural stability matrix are as in the following:

gril 8r12 | 8F13 gr14 | 8F15
8gF22 | 8F23 | 8F24 8F25
Lb
gr =t I j 8F33 | 8F34 | 8F35
00
symmetric 8Fa4 | 8F4s
8Fs5

8rij; = O-xNiNjV/;l//lj +O—yN;N;'Wi‘//J +2'TN;NJW1W‘/

where
W=V,
V), =V¥q4
W3 = ij
V, =Yy
WS = WWB
and

dydx

(7. 61)

(7. 62)

(7. 63)



7.10.3 Membrane Stiffness Matrix

The terms in the symmetrical membrane stiffness matrix are as in the following:

kv | kviz | kmis | kg

kvao | kmas| ks

symmetric kiss | kmsa

kyas

The subscript M denotes membrane displacements.

ki = NNy, S, + NNy, S,
ki = NNy, S; + NN,y S,
kv = NNy S, + NN,y .S,
Ky = NNy, S+ NNy S,

kM2,2 = N;N;(//1 ‘//jS4 + Nl N] W;W;S9
kMz,a = NI‘NZWI W'jS2 +N, lel//;‘//fS9

kM2,4 = NI'N;W:' v,S, + N, Nz‘//;‘//}SSJ

kuss = NoNoww S+ NNy, v S,
Krisa = NZNIZW;"//jSS + NNy, leS9

kysa=N,Nyw,w S, + N, Ny, S,

where

dydx
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(7. 64)
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Yy =V

V,=V¥,

Y, =Y, (7. 65)
Ve =V,

and Sy,..., Sy are defined in Eqn. 7.45.
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7.10.4 Membrane Stability Matrix

The terms in the symmetrical membrane stability matrix are as in the following:

M1, - gMm13 -

m gm22 - gm2.4
g =t|] dydx
00

symnltetric EM33 -

- EMad
Emiy =O-XNIN1W;W']
Eum3 =O-xN1N2l//;‘(//'j
Euman =O-XNIN1V/;W.] (7. 66)
Emaa = O'leNzl//,“‘//;'
Emzz = GXNZNZW;'W‘]
Emaa =O'xN2Nz‘//;‘//;
where
(//1 =‘//ui
‘//2 =(//vi
l//3 = l//uj (7 67)
Vy=V,
and

o, =0,+(c,~a ) (7. 68)



Table 7.1 Values of v, ; and y; at section knots
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X< X2 | xX=Xi2 | X= Xi1 X=X | X= X1 | X=Xiv2 | X> Xis2
wix) 0 0 1/6 2/3 1/6 0 0
W (%) 0 0 112k 0 -1/2h 0 0
W (%) 0 0 1/h -2/ 17K 0 0
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Table 7.2 Boundary conditions for strip flexural and membrane displacements

Strip Flexural Displacements | Membrane Displacements
Boundary
Conditions
w, 6, wg u v

Free End f(x)=0 f(x)=0 f(x)=0

- f(x)=0 fx)#0 | f(x)=0

Simply Supported End F(x)=0 f(x,)#0 f(x)=0

) —— f(x)#0 fx)=0 | f(x)#0

Clamped End f(x)=0 f(x)=0 f(x)=0

———— f)=0 fE)#0 | [ ()=

Sliding Clamped End f(x)#0 f(x)=0 f(x)#0

V——_ f(x)=0 )0 | f(x)=0




Table 7.3 Buckling load factors for square plates under uniaxial compression
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Support Reference This Study %
Conditions Number Number difference
k of strips  of sections k
Tham & Szeto 4.00
(1990) 1 4 4.0006 | 0.02
Timoshenko & 4.00
$-$-8-§ Gere (1961)
Azhari (1993) 4.00
Azhari et al. 4.00 2 8 4.0000 |  0.00
(2000)
Tham & Szeto 10.08
2 4 . 0.29
(1990) 10.1096
c-c-c-C Timoshenko & | 10.07
Gere (1961)
2 10 10.0871 0.07
Azhari et al. 10.10
(2000)
Tham & Szeto 7.70
2 4 7.7118 0.15
(1990)
c-S-C-§ Timoshenko & 7.69
Gere (1961) 2 10 7.7044 0.06
Azhari et al. 7.72
(2000)
. Azhari et al. 14.8 2 8 14.7506 0.33
c-S-C-§
(2000) 2 12 14.7254 0.50
et Azhari et al. 19.70 2 10 19.4375 133
(2000)

" - triangular stress distribution




Table 7.4 Buckling load factors for square plates under biaxial compression
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Support Reference This Study %
Conditions Number Number difference
k of strips | of sections k
Tham & Szeto 2.00
(1990) 1 4 2.0008| 0.04
Timoshenko & 2.00
§=-S-S-§ Gere (1961)
Azhari (1993) 2.00
Azhari et al. 2.00 2 8 2.0000 f 0.00
(2000)
Tham & Szeto 5.31 0.30
(1990) 2 6 5.3260
c-c-C-C Timoshenko & 5.61
Gere (1961) 3 6 53087 | 0.02
Azhari et al. 5.31
(2000)
Tham & Szeto 3.83
2 6 3.8419 0.31
(1990)
¢-S-C-§ Timoshenko & 3.83
Gere (1961) 3 4 3.8309| 0.05
Azhari et al. 3.83
(2000)




Table 7.5 Buckling load factors for square plates under shear load
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Support Reference This Study %
Conditions Number Number difference
k of strips  of sections k
Tham & Szeto 9.33
(1990) 2 10 93847 | 0.58
§-§-§-§ Timoshenko & 9.40
Gere (1961) 3 10 93323 | 0.02
Azhari ef al. 9.34
(2000)
Tham & Szeto | 14.66
c-c-c-¢ (1950) 3 8 14.6601 |  0.00
Timoshenko & | 14.58
Gere (1961)
Tham & Szeto | 12.58
2 10 12.5997 0.16
(1990)
c-S-C-S
Timoshenko & | 12.28 3 8 12.5802 |  0.00
Gere (1961)




Table 7.6 Buckling load factors for rectangular plates under shear load
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b Reference This Study o
Number  Number difference
k of strips  of sections k
Saadatpour ef al. (1998) 9.32 0.132
1 3 10

Allen & Bulson (1980) 9.34 9.3323 | 0.083
Azhari et al. (2000) 9.342 0.104

Saadatpour et al. (1998)

1.2 8.041 5 10 79808 0628
Allen & Bulson (1980) 3.00 0.128
Saadatpour et al. (1998)

1.4 7291 3 10 72030 004
Allen & Bulson (1980) 7.30 0.096
Saadatpour et al. (1998)

15 708 5 10  70752| 0068
Allen & Bulson (1980) 711 0.492
Saadatpour et al. (1998)

1.6 6.92| 3 10 69124| 0110
Allen & Bulson (1980) 6.91 0.035
Saadatpour et al. (1998)

18 6.70 | 4 10 6.693| 010
Allen & Bulson (1980) 6.80 1.599
Saadatpour et al. (1998) 6.57 0.295

2 | Allen&Bulson(1980) | (ol 3 10 6s507| 0753
Azhari et al. (2000) 6.345 3.140
Saadatpour et al. (1998)

25 6.08| 3 10 60384 008
Allen &