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Abstract

Metric entropy is a good invariant for a useful class of measure preserving
dynamical systems. This is due to metric entropy’s computability and in-
variance under isomorphism. Many have tried to generalise metric entropy
to the larger class of dynamical systems that are null-measure preserv-
ing. The problem with these proposed definitions is that they are difficult
to compute. In this thesis we take one such entropy, the critical dimen-
sion, and show that with certain assumptions it is preserved under the
induced transformation. This has far reaching consequences as many trans-
formations between null-measure preserving dynamical systems are induced
transformations. Hence many familiar transformations preserve the critical
dimension. This allows us to compute the critical dimension for a larger
range of dynamical systems, including some ITPFI factors of bounded type.
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Chapter 1

Introduction

A dynamical system consists of a measure space (X,B, µ) together with a

transformation T : X 7→ X, where T represents the discrete iteration of one

unit of time. If ∀A ∈ B, µ(TA) = µ(A) then the dynamical system is called

measure preserving. If T is null-measure preserving then the dynamical

system is called nonsingular.

The problem of deciding if two measure preserving dynamical systems

are isomorphic was first studied by Kolomogorv [25, 26], who showed that

a notion called metric entropy could be used to distinguish between non-

isomorphic measure preserving dynamical systems. The converse true only

for special cases, such as the class of Bernoulli shifts [38]. In this case en-

tropy is a complete invariant: two Bernoulli shifts are metrically isomorphic

iff they have the same entropy.

1



2 CHAPTER 1. INTRODUCTION

Metric entropy is regarded as the “most successful invariant so far” [45,

Chapter 4, p. 75]. Many authors have extended the definition of entropy

into the realm of nonsingular dynamical systems, such as the Krengel en-

tropy [28], Parry entropy [39], Silvia and Thieullen’s entropy [43], and the

critical dimension [35]. Unfortunately “these invariants are less informa-

tive than their classical counterparts and they are more difficult to com-

pute” [6, Section 9].

Indeed, computation of the critical dimension is difficult. Under certain

conditions, the critical dimension is equal to the Average Co-ordinate (AC)

entropy for product odometers [13], and Markov odometers [7, 8, 12]. The

significance of this result being that AC entropy is easily computed. This

is re-proven in chapter 2 with a small improvement on the conditions.

The critical dimension is also more useful than previously thought. In

chapter 3 an extension of orbit equivalence is explored, called Hurewicz

equivalence. Some common orbit equivalences are shown to be Hurewicz

equivalence. In particular, chapter 4 gives a sufficient condition for the

induced odometer of type III0 Markov odometers to be Hurewicz equiva-

lence.

The importance of this result is that a large class of Markov odometers

(called product-type odometers) are orbit equivalent to product odometers

[5,17,19]. Under some assumptions, we can compute the critical dimension
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of product odometers. Under the same assumptions, the orbit equivalence

preserves the critical dimension. This allows us to compute the critical

dimension of the original Markov odometer.

There exist Markov odometers which are not of product type [30], such

an odometer was constructed by [9]. Nevertheless, we can say something

similar. Any Markov odometer is orbit equivalent to a full Markov odometer

[10]. Under some assumptions, we can compute the critical dimension of a

full Markov odometer. Under the same assumptions, the orbit equivalence

preserves the critical dimension. This allows us to compute the critical

dimension of the original (non product-type) Markov odometer.

1.1 Background from Measure Preserving

Systems

For the purposes of providing context, we begin with a brief mathematical

history of entropy for measure preserving dynamical systems based on [41].

Given a measure space (X,B, µ) and a transformation T : X 7→ X which

is measure preserving in the sense that for any measurable subset A ∈ B

then µ(TA) = µ(A). We define the join of two partition α = {Ai}ni=1 and
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β = {Bj}mj=1 as

α ∨ β = {Ai ∩Bj : 1 ≤ i ≤ n, 1 ≤ j ≤ m}

and the entropy of a partition α as

H(α) = −
n∑
i=1

µ(Ai) log(µ(Ai))

and the entropy of a partition with respect to T as

h(T, α) = lim
n 7→∞

1

n
H
(
∨n−1i=0 T

−iα
)

The entropy, or what we shall call metric entropy to distinguish it from

other definitions of entropy, is the supremum of h(T, α) over all partitions

h(T ) = sup
α
h(T, α)

The supremum over all partitions makes this quantity difficult to calculate.

However the same result holds if we restrict our attention to partitions that

generate the σ-algebra B in the sense that B is the minimal σ-algebra that

contains the all the sets T iα for i ∈ Z.

Example 1.1.1 (Bernoulli shifts). For I = [0, 1, · · · , k − 1] ⊂ N, let µj

be a probability measure on I where
∑

i∈I µj(i) = 1. Define the infinite

product space X =
∏

j∈Z I, infinite product measure µ = ⊗j∈Zµj, let B

be σ-algebra generated by cylinders, and T : X 7→ X be the “left shift”
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defined by (T (x))n = xn+1 for n ∈ Z. The dynamical systems (X,B, µ, T )

is called the Bernoulli shift. The entropy of the Bernoulli shift is

h(T ) =
k−1∑
i=0

µ(i) log(µ(i))

Two measure preserving dynamical systems (X,B, µ, T ) and (X ′,B′, µ′, T ′)

are isomorphic when there exists a bi-measurable bijection φ : X 7→ X ′ such

that φ(T (x)) = S(φ(x)) for µ-almost every x ∈ X. The claim that entropy

is a good invariant is justified by

Theorem 1.1.2. If the measure preserving dynamical systems (X,B, µ, T )

and (X ′,B′, µ′, T ′) are isomorphic, then

h(T ) = h(S)

The claim that entropy is a complete invariant for Bernoulli shifts is

justified by

Theorem 1.1.3 ( [38]). Two Bernoulli shifts with the same entropy are

isomorphic

There are three other theorems which are included for comparison

Theorem 1.1.4 (Birkohff ergodic theorem). Given a measure preserving

dynamical systems (X,B, µ, T ) and an integrable function f , then

lim
n7→∞

1

n

n−1∑
i=0

f(T ix) =

∫
X

f(x)dµ
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Theorem 1.1.5 (Kaç’s theorem). Given a measure preserving dynamical

systems (X,B, µ, T ) with µ(X) = 1 and A ∈ B be a set of positive measure.

Let nA(x) be the return time to A. Then

∫
A

nA(x)dµ = 1

Theorem 1.1.6 (Abramov’s formula). Given a measure preserving dynam-

ical systems (X,B, µ, T ) with µ(X) = 1 and A ∈ B with µ(X −∪∞i=1T
iA) =

0, the induced dynamical system (A,BA, µA, T A) has entropy

h(T A) =
1

µ(A)
h(T )

Abramov’s formula shows that metric entropy is not preserved for the

induced dynamical system. This should be contrasted with the earlier claim

that the critical dimension is preserved for the induced odometer. As we

shall see later, the critical dimension is always 1 for measure preserving

dynamical systems: including (X,B, µ, T ) and (A,BA, µA, T A) regardless

of their metric entropy.

This ends our brief summary of metric entropy as an invariant, and mea-

sure preserving dynamical systems in general. The beauty of nonsingular

dynamical systems is that these theorems often have their own nonsingular

analogy.
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1.2 Terminology and Theorems

This section follows [18, Chapter 1]. Common use makes definitions into

terminology; we revise some popular definitions and defer numbering our

definitions until such practice becomes practical.

Two σ-finite measures µ, µ′ on (X,B) are equivalent when for A ∈ B,

µ(A) = 0 iff µ′(A) = 0. Given (X,B, µ), (X ′,B′, µ′) and an invertible, mea-

surable mapping φ : X 7→ X ′, the mapping φ is called an isomorphism. In

the special case of X = X ′, the isomorphism is called an automorphism.

When µ′ ∼ µ◦φ then φ is called nonsingular. A countable group of nonsin-

gular automorphisms is denoted G, the elements can be enumerated gi for

i ∈ N. The full group of G, is denoted [G] and consists of all automorphisms

that can be written piecewise as functions of G: that is to say that f ∈ [G]

when for some partition Ai of X

f(x) = gi(x)∀x ∈ Ai

We consider the case where gi = T i, i ∈ Z, for some automorphism T . The

nonsingular transformation g ∈ G is said to have a periodic point when

gix = x for some x ∈ X, i ∈ N, and G is called aperiodic when no g ∈ G

has a periodic point. It is called conservative if for every A ∈ B,

µ(A− ∪∞g∈GgA) = 0



8 CHAPTER 1. INTRODUCTION

The set A ∈ B is called G-invariant when gA = A for some 1 6= g ∈ G.

If the only G-invariant sets are ∅ and X then G is called ergodic. This is

equivalent to saying that the only g-invariant functions are the constant

functions.

We make the standing assumptions that the group action ofG is amenable,

aperiodic, conservative and ergodic. A measure µ is assumed to non-atomic

(∀x ∈ X,µ(x) = 0), σ-finite and µ(X) <∞ unless otherwise stated.

The orbit of a point x ∈ X under the transformation T is OrbT (x) =

{T ix : i ∈ Z}. The forward orbit is Orb+
T (x) = {T ix : i > 0}. The forward

orbit can be considered as an ordered sequence by using the natural ordering

on i from T i.

Theorem 1.2.1. Given two nonsingular transformations (X,B, µ, T ) and

(Y, C, ν, S) the following are equivalent:

1. They are orbit equivalent. Or sometimes called weakly equivalent.

2. There exists a null-measure preserving isomorphism φ such that

[S] = φ[T ]φ−1.

3. The T -orbits of x are mapped to the S-orbits of φ(x):

OrbS(φ(x)) = φ(OrbT (x))
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4. For some cocycle σ : N×X 7→ N

φT σ(n,x)x = Snφx

In the special case where φT nx = Snφx, (when σ(n, x) = n) then the

transformations are said to be isomorphic or strongly equivalent.

Given a nonsingular ergodic transformation T and n ∈ N, the measure

µ◦T n is equivalent to µ by definition. Hence the Radon-Nikodym derivative

exists, which we denote by ωn(x) = dµ◦Tn
dµ

(x). Note that the cocycle relation

ωi+j(x) = ωi(x)ωj(T
ix) holds.

When there is more than one nonsingular transformation in our context,

we distinguish between the derivatives of (X,B, µ, T ) and (Y, C, ν, S) by

decorating ωn with the transformation, as ωSn (x) = dν◦Sn
dν

.

We are now in a position to cite the nonsingular analogy of Birkhoff’s

ergodic theorem [23].

Theorems

Theorem 1.2.2 (Hurewicz Ergodic Theorem). Let T be a ergodic and non-

singular transformation of (X,B, µ). If f is an integrable function then

lim
n7→∞

∑n−1
i=0 f(T ix)ωi(x)∑n−1

i=0 ωi(x)
=

∫
X

fdµ

Given a conservative nonsingular transformation T , and A ∈ B of posi-

tive measure. Then for x ∈ A define the return time nA(x) as the smallest
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power k of T such that T kx ∈ A. The transformation T A(x) = T nA(x)(x) is

an automorphism of the restricted measure space (A,BA, µ) and is called

the induced transformation or induced odometer when (X,B, µ, T ) is an

odometer. This definition is repeated as 4.1.1. We shall abbreviate the

m’th return time as nmA (x). Return time also obeys the cocycle relation

nmA (x) = nA(T n
m−1
A x) + nm−1A (x) where n1

A(x) = nA(x).

Theorem 1.2.3 (Nonsingular Kaç’s Theorem ). When µ(X) = 1 and T is

conservative and ergodic nonsingular transformation of (X,B, µ). If A ∈ B

has positive measure then

∫
A

nA(x)−1∑
i=0

ωi(x)dµ(x) = 1

Proof. We give a different proof to that in [42, Section 5.2].

Since T is conservative, the function nA(x) is finite for µ-almost ev-

ery x ∈ A. Define f(x) =
∑nA(x)−1

i=0 ωi(x) for x ∈ A and f(x) = 0

otherwise. This function is measurable since for every n ∈ N, fn(x) =∑min{n,nA(x)−1}
i=0 ωi(x) is measurable and f(x) is the pointwise limit of these

functions [27, Theorem 2, Section 28]. If n is the m’th time T ix returns to

A for i ≤ n, written m = k(n, x) =
∣∣∑n−1

k=0 1A(T ix)
∣∣, then
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n−1∑
i=0

ωi(x) =

nA(x)−1∑
i=0

ωi(x) +

n2
A(x)−1∑
i=nA(x)

ωi(x) + · · ·+
nmA (x)−1∑
i=nm−1

A (x)

ωi(x)

= f(x) + ωnA(x)(x)f(T nA(x)) + · · ·+ ωnm−1
A (x)(x)f(T n

m−1
A (x))

=
n−1∑
i=0

1A(T ix)f(T ix)ωi(x)

By theorem 1.2.2

1 = lim
n7→∞

∑n−1
i=0 ωi(x)∑n−1
i=0 ωi(x)

= lim
n7→∞

∑n−1
i=0 1A(T ix)f(T ix)ωi(x)∑n−1

i=0 ωi(x)

=

∫
X

1A(x)f(x)dµ =

∫
A

f(x)dµ

The nonsingular Kaç’s theorem can also be proven (again, differently

to [42, Section 5.2]) by constructing the Kakutani tower with base sets

Bi = n−1A (i) and using the fact that, because of conservation, the tower
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covers the whole space X

1 =µ(X)

=
∑
i≥0

i∑
j=0

µ(T jBi)

=
∑
i≥0

∫
Bi

i∑
j=0

ωj(x)dµ

=

∫
A

nA(x)∑
j=0

ωj(x)

While the latter proof is shorter, the former proof is preferred as this is

the style proof is used in later chapters.

Lemma 1.2.4 (Borel-Cantelli Lemma). Let (X,B, µ) be a measure space,

and Cn ∈ B be a sequence of sets. If
∑∞

n=1 µ(Cn) < ∞ then for almost

every x ∈ X there exists an Nx such that for all n > Nx, x /∈ Cn.

Theorem 1.2.5 ( [34, Lemma 2.2] ). For any p ∈ N

lim
n7→∞

n+p∑
i=n

ωi(x)

n−1∑
i=0

ωi(x)

= 0

Proof. Our proof is different to that of [34]. Instead we appeal to the

Hurewicz ergodic theorem 1.2.2
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1 = µ(X) = µ(T pX)

=

∫
X

ωp(x)dµ

= lim
n7→∞

n−1∑
i=0

ωp(T
ix)ωi(x)

n−1∑
i=0

ωi(x)

= lim
n7→∞

n+p−1∑
i=p

ωi(x)

n−1∑
i=0

ωi(x)

= lim
n7→∞

n−1∑
i=p

ωi(x)

n−1∑
i=0

ωi(x)

+

n+p−1∑
i=n

ωi(x)

n−1∑
i=0

ωi(x)

= 1 + lim
n7→∞

n+p−1∑
i=n

ωi(x)

n−1∑
i=0

ωi(x)

from which the conclusion follows.

Corollary 1.2.6.

lim
n7→∞

log(
n∑
i=0

ωi(x))

log(n+ 1)
−

log(
n−1∑
i=0

ωi(x))

log(n)
= 0

Proof. By theorem 1.2.5

lim
n7→∞

n∑
i=0

ωi(x)

n−1∑
i=0

ωi(x)

= lim
n7→∞

ωn(x)
n−1∑
i=0

ωi(x)

+ 1 = 1
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taking log

lim
n7→∞

log(
n∑
i=0

ωi(x)))− log(
n−1∑
i=0

ωi(x))) = 0

and using the fact that limn7→∞ log(n+ 1)/ log(n) = 1

= lim
n7→∞

log(
n∑
i=0

ωi(x))

log(n+ 1)
−

log(
n−1∑
i=0

ωi(x))

log(n)

= lim
n7→∞

log(
n∑
i=0

ωi(x))

log(n)
−

log(
n−1∑
i=0

ωi(x))

log(n)

= lim
n7→∞

log(
n∑
i=0

ωi(x))− log(
n−1∑
i=0

ωi(x))

log(n)

= 0

There are two theorems from infinite ergodic theory that are relevant

for the purpose of comparison

Theorem 1.2.7. Suppose (X,B, µ, T ) is a conservative, ergodic, measure

preserving transformation, with µ(X) =∞, for every f ∈ L1(µ)

lim
n7→∞

1

n

n−1∑
i=0

f(T ix) = 0

Furthermore, any attempt to re-normalise this limit by replacing n with

some sequence an will result in either being asymptotically too small, or

too large, for every function f ∈ L1(µ)
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Theorem 1.2.8 (Aaronson’s Theorem [1, Theorem 2.4.2] ). Suppose (X,B, µ, T )

is a conservative, ergodic, measure preserving transformation, with µ(X) =

∞ and let an > 0, then either

1. lim inf
n7→∞

∑n−1
i=0 f(T

ix)

an
= 0 for all f ∈ L1(µ), or

2. lim sup
n7→∞

∑n−1
i=0 f(T

ix)

an
=∞ for all f ∈ L1(µ)

The Three Types

An nonsingular ergodic transformation T on measure space (X,B, µ) is of

Type I if the measure µ is atomic.

Type II if there exists T -invariant σ-finite measure ν equivalent to µ.

Type III if no equivalent σ-finite measure is T -invariant.

Given a type II nonsingular transformation, any T -invariant measures

ν, ν ′ equivalent to µ are necessarily different by a constant. Assume ν, ν ′ ∼

µ, since ν(TA) =
∫
A
dν◦T
dν

dν = ν(A) then dν ◦ T/dν = 1 (similarly with ν ′)

and the function

dν ◦ T
dν ′ ◦ T

=
dν ◦ T
dν

dν

dν ′
dν ′

dν ′ ◦ T
=
dν

dν ′

is a T -invariant function, hence constant by ergodicity. If ν(X) < ∞ then

so is every T -invariant measure equivalent to µ. So for a type II system,

the T -invariant measures are either all finite (II1) or infinite (II∞).
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The existence of type III odometers was foretold by [16] and the first

example was given by [37].

Lemma 1.2.9 (The first type III mesaure). Define An = {0, · · · , n} and

define a measure νn on An by

νn(i) =


1
2

if i = 0

1
2n

if 0 < i ≤ n

For the measure µ = ⊗∞i=0 on the space X =
∏∞

i=0A(i). There exists no

equivalent σ-finite measure.

Proof. Define xmax as the element of X such that ∀i ∈ N, (xmax)i = i . For

any x ∈ X, x 6= xmax, let n1(x) be the index of the first non-maximal digit

n1(x) = min {i : xi < i} , n1(xmax) =∞

An automorphism T : X 7→ X can be defined pointwise as

(Tx)i =


0 if i < n1(x)

xi + 1 if i = n1(x)

xi if i > n1(x)

and T (xmax) = (0)i. This style of automorphism is called the odometer

action. This is a nonsingular transformation since

dµ ◦ T
dµ

(x) =

n1(x)∏
n=0

νn((Tx)n)

νn(xn)
=


(n1(x)− 1)!/n1(x), if xn1(x) = 0

(n1(x)− 1)!, if xn1(x) 6= 0
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Suppose, by way of contradiction, that there exists a T invariant mea-

sure ν equivalent to µ and define φ(x) = dµ
dν

(x). By T -invariance ωµi (x) =

φ(T ix)/φ(x) and 0 < φ(x) < ∞. For a fixed C > 1 let EC = φ−1[C−1, C]

be a set of positive measure. We can approximate this set by cylinders:

choose n so large that for some cylinder [a0, · · · , an] with measure µ(EC ∩

[a0, · · · an]) > 0.9µ([a0, · · · , an]). Then

µ(EC ∩ [a0, · · · an]) >
9

10

(
µ
(

[a0, · · · , an, 0]
⋃

(∪ni=1[a0, · · · , an, i])
))

=
9

10
(µ ([a0, · · · , an, 0]) + µ (∪ni=1[a0, · · · , an, i]))

=
9

10

(
µ ([a0, · · · , an, 0]) +

1

2n

n∑
i=1

µ ([a0, · · · , an])

)

=
9

10

(
µ ([a0, · · · , an, 0]) +

1

2
µ (∪ni=1[a0, · · · , an])

)
=

9

10
(µ ([a0, · · · , an, 0]) + µ (∪ni=1[a0, · · · , an, 0]))

=
18

10
(µ ([a0, · · · , an, 0]))

and
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µ(EC ∩ [a0, · · · an]) = µ (EC ∩ [a0, · · · an, 0]) + µ (EC ∩ (∪ni=1[a0, · · · an, i]))

≤ µ (EC ∩ [a0, · · · an, 0]) + µ ((∪ni=1[a0, · · · an, i]))

= µ (EC ∩ [a0, · · · an, 0]) + µ (([a0, · · · an, 0]))

Combining the above equations

µ (EC ∩ [a0, · · · an, 0]) ≥ 8

10
(µ ([a0, · · · , an, 0])) (1.1)

Similarly

n∑
i=1

µ (EC ∩ [a0, · · · an, i]) ≥
8

10

(
n∑
i=1

µ ([a0, · · · , an, i])

)

So for at least one i ∈ [1, · · · , n]

µ (EC ∩ [a0, · · · an, i]) ≥
8

10
(µ ([a0, · · · , an, i]))

Let Nn > 0 be the smallest odometer power which maps [a0, · · · , an, 0]

to [a0, · · · , an, i]. For all x ∈ [a0, · · · , an, 0],
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dµ ◦ TN

dµ
(x) = ωµNn(x)

=
∞∏
j=1

νj((T
Nnx)j)

νj(xj)

=
νn+1(i)

νn+1(0)
=

1

n+ 1
(1.2)

Let B ⊂ EC ∩ [a0, · · · , an, 0] be the elements of EC not returned to EC

by TNn : TNnB 6⊆ EC∩ [a0, · · · , an, i]. So TNnB ⊆ X−(EC ∩ [a0, · · · , an, i])

which has measure

µ(TNnB) ≤ 2

10
µ([a0, · · · , an, i]) =

2

10
µ(TNn [a0, · · · , an, 0])

since ωµNn(x) = 1
Nn+1

is constant on both [a0, · · · , an, 0] andB ⊆ [a0, · · · , an, 0],

then by equation 1.2.

1

n+ 1
µ(B) = µ(TNnB)

≤ 2

10
µ(TNn [a0, · · · , an, 0])

=
2

10
µ([a0, · · · , an, 0])

1

n+ 1

consequently

µ(B) ≤ 2

10
µ([a0, · · · , an, 0]) (1.3)
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Together, equations 1.1 and 1.3 imply that the subset E0 = EC∩[a0, · · · , an, 0]−

B has positive measure.

µ(EC ∩ [a0, · · · , an])− µ(B) ≥ 6

10
µ([a0, · · · , an, 0])

For all x ∈ E0, both x, TNnx ∈ EC , hence

1

n+ 1
= ωµNn(x) = φ(x)φ(TNnx) ≥ C−2

since n was arbitrary, this is a contradiction.

In the case where µ is a product measure on the space of infinite binary

strings, Moore’s criteria [32] gives a less demanding method of determining

the type according to the properties of the measure.

Theorem 1.2.10 (Moore’s Criteria). An nonsingular ergodic transforma-

tion T on measure space (X,B, µ), where µ = ⊗∞i=0µi, and X =
∏∞

i=0 Z2,

and

µi(0) =
1− ai

2
, µi(1) =

1 + ai
2

where ai ∈ (0, 1).

Then µ is

1. type I iff
∑∞

i=0(1− ai) <∞

2. type II1 iff
∑∞

i=0 a
2
i <∞

3. type III iff
∑∞

i=0

(
(1− ai)

(
min

(
2ai
1−ai , 1

)))
=∞
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4. type II∞ otherwise.

Example 1.2.11 (Type II∞ measure). Take X =
∏∞

n=0 Z2, and A ⊂

N of asymptotic density d < 1. Then define a product measure µ(x) =

∞∏
n=0

µn(xn), where

µn(0) =


1
2

if n ∈ A

λj

1+λj
if n /∈ A, j = n− |A(n)|

where j = n− |A(n)| means that n is the j’th element not in A. Since this

is a binary odometer µn(1) = 1− µn(0).

Moore’s criteria tells us that this measure is type II∞.

Types II1 and II∞ are invariant under orbit equivalence [14], and they

are the only orbit equivalence classes of type II. There are uncountably

many orbit equivalence classes of type III, subclasses of type III are distin-

guished according to the ratio set and associated flow. The ratio set R(T )

is a closed multiplicative subgroup of [0,∞] [29]. Defined by r ∈ R(T ) iff

for every B ∈ B and ε > 0, there exists k ∈ Z+ and C ⊂ B of positive

measure such that T kC ⊂ B and for all x ∈ C, |ω−k(x)− r| < ε. The ratio

set allows us to subdivide type III systems because

Lemma 1.2.12. The ratio set is an invariant of orbit equivalence
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Proof. Given ε > 0 and B ∈ B, take a subset of C ⊆ B on which dµ
dν

(x) is

close to some non-zero constant a:

exp (−ε/3) <

∣∣∣∣dµdν (x)/a

∣∣∣∣ < exp (ε/3)

Let 0 6= r ∈ R(T, µ), we show that r ∈ R(T, ν). By definition there

exists some k 6= 0 and a subset C ′ of C such that T−kC ′ ⊂ C and e−ε/3 <

ωµ−k(x)/r < e−ε/3 for all x ∈ C ′ ⊂ C.

Since both x, T kx ∈ C

exp (−ε/3) <
dµ

dν
(x)/a < exp (ε/3)

exp (−ε/3) <
dµ

dν
(T kx)/a < exp (ε/3)

so

exp (−ε) <
dν
dµ

(T kx)

a

a
dν
dµ

(x)

ωµ−k(x)

r
< exp (ε)

Where the quantity in the middle is equal to
ων−k(x)

r
. Hence r ∈ R(T, ν).

So the ratio set depends only on the equivalence class of µ rather than µ

itself. The case for r = 0 is similar.

All transformations in an orbit equivalence class share the same ratio set.

The converse (transformations with the same ratio set are orbit equivalent)

is true when R(T ) = {1} , {0, λn : nZ,∞} and [0,∞]; called type II∞, IIIλ

and III1 respectively. But not when R(T ) = {0, 1,∞}; called type III0.
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The ratio set builds upon Moore’s criteria, and allows us to further

identify orbit equivalence classes within type III.

Example 1.2.13 (Type IIIλ measure). Take X =
∏∞

n=0 Z2, and A ⊂ N

of asymptotic density d < 1. For λ ∈ (0, 1) define a product measure µ as

µ(x) =
∞∏
n=0

µn(xn), where

µn(0) =


1
2

if n ∈ A

λ
1+λ

if n /∈ A

and µn(1) = 1− µn(0).

By Moore’s criteria 1.2.10, this is a type III product measure. Since

the Radon-Nikodym derivatives are all of the form λi, i ∈ Z, this is a type

IIIλ measure.

ITPFI transformations

A nonsingular transformation (X,B, µ, T ) is said to be an Infinite Tensor

Product of Factors of type I (or just ITPFI ) if it is orbit equivalent to a

product odometer (Y, C, ν, S) where Y =
∏∞

i=0[0, · · · , li−1] and ν = ⊗∞i=0νi

is a product measure. If the li < M for some constant M then T is IPTFI

of bounded type, and IPTFI2 when M = 2.

Given a type III0 nonsingular transformation (X,B, µ, T ), define a new

measure ν on the space X×R given by dν(x, y) = dµ(x)eydy. Define a new
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transformation

T (x, y) = (Tx, y − log(ωi(x)))

Since T is conservative, T is also conservative and commutes with the flow

St(x, y) = (x, y + t). However T is not always ergodic, so we restrict our

attention to the space Z of T -ergodic components. The nonsingular action

(Z,B × RZ , ν, St) is called the associated flow. As with Moore’s criteria, it

is possible to classify T according to its associated flow

Proposition 1.2.14 ( [15]). T is of type

1. II iff the associated flow is x 7→ x+ t, t ∈ R.

2. IIIλ iff the associated flow is x 7→ x+ t (mod (− log(λ))).

3. III1 iff T is ergodic.

4. III0 iff St is not transitive.

For T to be IPTFI, there is a necessary and sufficient condition on the

associated flow, called approximately transitive flow or AT-flow. This was

first proven in the context of von Neumann algebras by [5], and a measure

theoretic proof was given later by [17, 19]. In particular [17, Prop. 6] con-

structs a subset H ∈ B of positive measure such that the induced odometer

(H,BH , ν, TH) is isomorphic to a product odometer.
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Without the AT-flow assumption, the same construction can be per-

formed [10]. What is lost is that the induced odometer (H,BH , ν, TH) is

no longer isomorphic to a product odometer, but is instead isomorphic to

the more general Markov odometer.

We can compute the critical dimension of a product odometer (Y, C, ν, S)

where Y =
∏∞

i=0[0, · · · , li−1] where each li < M for some constant M , and

if the orbit equivalence preserves the critical dimension, can we equate the

computed critical dimensions with the critical dimension of any type III0

IPTFI factor of bounded type.

Similarly we could compute the critical dimension of some non-IPTFI

nonsingular transformations.

Sums of Radon-Nikodym derivatives

Notice that in both examples 1.2.11 and 1.2.13, the type was independent

of the asymptotic density d. Changing d does not effect the type, but it

does effect how quickly the Radon-Nikodym derivatives grow: as d 7→ 1,

more Radon-Nikodym derivatives are equal to 1 and the sum of derivatives

grows in proportion to n.

Analysis of the asymptotic growth rates of the Radon-Nikodym deriva-

tives belongs in the same mathematical toolbox as Moore’s criteria and the
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ratio set. We begin by replicating Moore’s criteria.

A nonsingular transformation (X,B, µ, T ) is said to have an equivalent

T -invariant measure ν if ν ∼ µ and ν(TE) = ν(E) for all E ∈ B. According

to [16, p. 571] a equivalent T -invariant measure ν exists iff there exists a

measurable function f such that f(T nx)ωn(x) = f(x) and 0 < f(x) < ∞.

Indeed the measure ν can be constructed as

ν(E) =

∫
E

f(x)dµ

Which is T -invariant because

ν(E) =

∫
E

f(x)dµ =

∫
E

f(T nx)ωn(x)dµ =

∫
TnE

f(x)dµ = ν(T nE)

It is clear that f plays the role of the Radon-Nikodym derivative dµ/dν.

By the Hurewicz ergodic theorem 1.2.2
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ν(B) =

∫
B

f(x)µ

= lim
n7→∞

n−1∑
i=0

1B(T ix)f(T ix)ωi(x)

n−1∑
i=0

ωi(x)

= lim
n7→∞

n−1∑
i=0

1B(T ix)f(x)

n−1∑
i=0

ωi(x)

= f(x) lim
n7→∞

n−1∑
i=0

1B(T ix)

n−1∑
i=0

ωi(x)

Where the B ∈ B is necessary to handle the type II∞ case. We rearrange

the above equation to

0 < f(x) = ν(B) lim
n7→∞

n−1∑
i=0

ωi(x)

n−1∑
i=0

1B(T ix)

<∞

Notice that this equation is not within the jurisdiction of Aaronson’s

Theorem 1.2.8, as the normalising factor is a function of both n and x; not

x alone. In this case the return time to B grows at the same rate as the

sum of derivatives.

In the type II1 case (B = X, ν(X) <∞ ), this equation can be simplified

to

f(x) = ν(X) lim
n7→∞

n−1∑
i=0

ωi(x)

n
(1.4)
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As noted by [31], while the type II1 Radon-Nikodym derivatives aver-

age nicely, great care must be taken while averaging the derivatives type

II∞. Nevertheless, collecting these results gives us a Moore’s-criteria style

theorem.

Theorem 1.2.15. Given a nonsingular ergodic transformation T on the

measure space (X,B, µ).

1. if µ is an atomic measure, then µ is type I.

2. Define

fn(x) =

n−1∑
i=0

ωi(x)

n

if limn7→∞ fn(x) = f(x) exists, f(x) ∈ L1(µ) and 0 < f(x) < ∞

µ-almost everywhere, the µ is type II1

3. if for some subset B ∈ B,

fn(x) =

n−1∑
i=0

ωi(x)

n−1∑
i=0

1B(T ix)

if limn7→∞ fn(x) = f(x) exists, f(x) ∈ L1(µ) and 0 < f(x) < ∞

µ-almost everywhere, then µ is type II∞

4. type III otherwise
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It is doubtful that this theorem gives any advantage over existing meth-

ods for classifying measures according to types I, II and III. But it does

serve to motivate our analysis
∑n−1

i=0 ωi(x) as an object of interest.



Chapter 2

Average Co-Ordinate Entropy

and the Critical Dimension

The critical dimension, loosely speaking, is the order of growth rate of the

sum
n−1∑
i=0

ωi(x). The previous chapter established this as an object of interest,

and we were able to replicate a Moore’s criteria style classification using this

quantity.

Unfortunately, there no known method for computing the critical di-

mension directly. It was shown by [35], that under certain conditions it is

equal the easily computable AC entropy.

In this section we re-prove the connection between AC entropy and the

critical dimension, with a small improvement on the conditions under which

these quantities are equal. This will be used in chapter 4, where the critical

30
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dimension is computed for a larger class of dynamical systems.

2.1 The Critical Dimension

We reiterate the standing assumptions that T is a nonsingular transforma-

tion on the σ-finite probability space (X,B, µ). The transformation T is

ergodic and conservative. We follow [13] and define

Definition 2.1.1 (The Lower Critical Dimension). The set

Xα′ =

{
x ∈ X

∣∣∣∣∣lim inf
n7→∞

1

nα′

n−1∑
i=0

ωi(x) > 0

}
.

Is T -invariant, and hence has measure 0 or 1. Define the lower critical

dimension α as

α = sup {α′ : µ(Xα′) = 1} .

Definition 2.1.2 (The Upper Critical Dimension). The set

Xβ′ =

{
x ∈ X

∣∣∣∣∣lim sup
n7→∞

1

nβ′

n−1∑
i=0

ωi(x) = 0

}
.

Is T -invariant. Define the upper critical dimension β as

β = inf {β′ : µ(Xβ′) = 1}

As a direct consequence of these definitions
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f
ρ
(x) = lim inf

n7→∞

1

nρ

n−1∑
i=0

ωi(x) =


0 when ρ > α

∞ when ρ < α

Similarly for limsup:

fρ(x) = lim sup
n7→∞

1

nρ

n−1∑
i=0

ωi(x) =


0 when ρ > β

∞ when ρ < β

The definitions do not specify what happens when ρ = α or β. As

[31] has shown, for a type II1 odometer α = β = 1 and 0 < f 1(x) =

f
1
(x) = f(x) < ∞. We can also say something about this value for type

III measures. Since

f
α
(Tx)ω1(x) = lim inf

n7→∞

1

nα

n−1∑
i=0

ωi(Tx)ω1(x)

= lim inf
n7→∞

1

nα

n−1∑
i=0

ωi+1(x)

= lim inf
n7→∞

1

n+ 1α

n∑
i=0

ωi(x)− ω0(x)

nα

= f
α
(x)

For a type III measure, the function f
α
(x) must be either zero or infinity

µ-almost everywhere, otherwise by theorem 1.2.15 this is a type II measure.

Similarly the function fα(x) must be either zero or infinity. Hence we

have a result similar to Aaronson’s Theorem 1.2.8: that for all ρ either
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f
ρ
(x) = 0 or fρ(x) = ∞. The value ρ at which this change occurs is the

lower (for f
ρ
) and upper (for fρ) critical dimension.

The critical dimensions can also be expressed in the language of Dirichlet

series. For an, s ∈ C, the ordinary Dirichlet series

∞∑
i=0

ai
is

The abscissa of convergence is defined as

σc = lim sup
n7→∞

log
(∑n−1

i=0 ai
)

log(n)

If an = ωn(x), then

σc = lim sup
n7→∞

log

(
n−1∑
i=0

ωi(x)

)
/ log(n) = β.

Similarly,

α = lim inf
n7→∞

log

(
n−1∑
i=0

ωi(x)

)
/ log(n)

This relationship means that the machinery of Dirichlet series may be

brought to bear on the critical dimension. This relationship could provide

an alternative method for computing the critical dimension directly.

Markov odometers

So far our examples have all been product odometers. We shall work in the

more general setting of Markov odometers. The realm of Markov odometers
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is genuinely different from that of product odometers, and there exists type

III0 measures which are not even orbit equivalent to a product odometer

[5, 30].

We begin with the usual definition of a Bratteli-Vershik system. This is

adapted from [20], and is included here to establish notation.

Let V = ∪i≥0V i be a vertex set, where each V (i) is considered disjoint

and V (0) = {v0} contains a single element. Let E = ∪i≥1E(i) be a directed

set of edges, where (uv) ∈ E(i) implies u ∈ V (i−1), v ∈ V (i). Multiple edges

are permitted. Note that the graph (V (i) ∪ V (i−1), E(i)) is bipartite. Define

the source and range maps

sn : E(n) 7→ V (n−1), rn : E(n) 7→ V (n)

which can also act on x ∈ X by

sn : X 7→ V (n−1) : sn(x) = sn(xn)

rn : X 7→ V (n) : rn(x) = rn(xn)

Two edges e, e′ ∈ E(n) × E(n+1) are connected iff rn(e) = sn+1(e
′). Define

for v ∈ V (n) let E(n)(v) be the set of all edges e ∈ E(n) with common

range rn(e) = v. If E is equipped with a partial order ≥ so that two edges

e, e′ ∈ E(n) are comparable iff they share a common range rn(e) = rn(e′)

(i.e. the edges E(n)(v) are totally ordered), then (V,E) is called an ordered
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Bratteli-Vershik diagram. Define the Bratteli compactum X as set of all

infinite paths starting from v0. The maximal and minimal paths are

xmax =
(
ei : ∀e ∈ E(i), ri(ei) = ri(e) =⇒ ei ≥ e

)
xmin =

(
ei : ∀e ∈ E(i), ri(ei) = ri(e) =⇒ ei ≤ e

)
The Bratteli compactum X is called essentially simple when there is a

unique infinite maximal and minimal path. Denote the set of all paths

from V (m) to V (n) by P n
m, and call any such path [em, · · · , en] ∈ P n

m, ei ∈

E(i),m ≤ i ≤ n a cylinder. Let B be the σ-algebra generated by these

cylinders.

For any x ∈ X, we define the number of cylinders from v0 of length n

by s(n).

Given a sequence of stochastic matrices
{
P (n)

}
n
, where the entries of

P (n) are indexed by (v, e) ∈ V (n−1) × E(n) and:

1. P
(n)
(v,e) > 0 when v = sn(e), and

2. for all v ∈ V (n−1),
∑sn(e)=v

e∈E(n) P
(n)
v,e = 1

so the edges leaving a vertex have weights summing to 1; whereas the edges

entering a vertex are totally ordered. Define a Markov measure µ on X by

µ([em, · · · , en]) =
n∏

i=m

P i
(si(ei),ei)
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This measure is ergodic, conservative, non-atomic, and reduces to a

product measure when the columns of the stochastic matrix P (n) are iden-

tical.

We define the Vershik Transformation T : X 7→ X as the odometer

action on the path space. That is Txmax = xmin, and otherwise Tx is

the next element in the lexicographic (partial) ordering of X as defined in

lemma 1.2.9.

The essentially simple Bratteli compactum X, σ-algebra B, Markov

measure µ and Vershik transformation T is called a Markov odometer and

will be denoted by (X,B, µ, T ). When µ is a product measure this is called

a product odometer.

Example 2.1.3 (The Full Product Odometer [10, Example 2.1]). Let each

V (n) = {vn} be singleton. Denote the edges E(n) by the numbers 1, · · · , ln,

where every edge e ∈ E(n) has the same source and range: for all i ∈ E(n),

sn(i) = vn−1, rn(i) = vn. Then the Bratteli compactum is the product space

X =
∏∞

i=1 Zln . Together with the Vershik transformation T and Markov

measure µ, call (X,B, µ, T ) the full product odometer.

Example 2.1.3 is easily seen to be a product odometer as there is only one

v to index the stochastic matricies P
(n)
(v,e), so all (one) columns are trivially

identical.
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Example 2.1.4 (The Full Markov Odometer [10, Example 2.2]). Let each

V (n) consist of ln ∈ N, ln ≥ 2 vertices. Endow this graph with the full range

of possible edges E(n) = V (n−1) × V (n) so that every vertex at level n− 1 is

connected to every vertex at level n (this property will later be called BV1).

Order all edges with common range according to the integer value of their

source vertex. Then the Bratteli compactum is again the product space

X =
∏∞

i=1 Zln . Together with the Vershik transformation T and Markov

measure µ, call (X,B, µ, T ) the full Markov odometer.

Example 2.1.4 can still reduce to a product odometer if on our choice of

P
(n)
(v,e) is independent of v.

Not every type III Markov odometers is orbit equivalent to a product

odometer [30]. But, as was shown by [10] that every type III Markov

odometer is orbit equivalent to a full Markov odometer, as in example 2.1.4.

To be precise, it was proven that every type III Markov odometer there

exists a set of positive measure A such that the induced odometer on A is

orbit equivalent to the full odometer. The use of the induced odometer will

become important in chapter 4.
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Computing AC entropy of a Markov odometer

In this section, we show how to compute the AC entropy of a Markov

odometer, we follow [8] and make some assumption on the connectivity

between V (n−1) and V (n), and another assumption on the number of edges

in E(n).

BV1 There exists some constant K such that for each i, j ∈ N, if |i− j| ≥

K then every vertex in V i is connected to every vertex in V j by at

least one path.

BV2 The number of edges at each level grows sub-exponentially:
∣∣E(n)

∣∣ ≤
an where limn7→∞

log(an)
n

= 0

Assumption BV1 is the same as that of [8, 13] in the case when K = 1,

our BV2 assumption is weaker than that of [8], in as much as some growth

is permitted. For example polynomial growth is permitted by BV2; but

exponential growth, such as an = 2n, is not permitted.

Since s(n) is the number of cylinders of length n, the assumption BV1

also gives the following lower bound:

1

K
=

n

nK
=

log
(
2
n
K

)
n

≤ log(s(n))

n
(2.1)

Choosing an to be bound by some constant enables us further say that



2.1. THE CRITICAL DIMENSION 39

log(s(n)))

n
≤
∑n−1

i=0 n log(N)

n
= log(N) <∞

Under these assumptions, the quantity log(s(n)))
n

is not bound from above.

If we allow linear growth an of with n: say for example an = n. By Stirling’s

approximation

∑n−1
i=0 log(ai)

n
∼ (n− 1) log(n− 1)− (n− 1) +O(log(n))

n
→∞.

So unlike [8, 35] we can only say that 1
K log(s(n)))

≤ 1
n
.

Definition 2.1.5 (Entropy of a Partition). Let Pn be a partition of X by

cylinders of length n. Then the entropy of this partition is

H(Pn) =
∑
C∈Pn

−µ(C) log(µ(C))

Definition 2.1.6 (Vertex Measure). The push-forward measure νn : V (n) 7→

[0, 1] is

νn(v) = µ({(xi)i≥0 ∈ X : rn(x) = v})

Definition 2.1.7 (Co-ordinate entropy). For a given Bratelli-Vershik dia-

gram, the entropy of the i’th co-ordinate is

H i
µ(x) = H

({
[e]i+1 : where e ∈ E(i+1), ri(x) = si+1(e)

})
= −

∑
e∈E(i+1)

ri(x)=si+1(e)

P i+1
si+1(e),e

log(P i+1
si+1(e),e

)
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For example, H i
µ(x) from figure 2.1 is

H i
µ(x) = −P i+1

ri(x),e1
log(P i+1

ri(x),e1
)−P i+1

ri(x),xi+1
log(P i+1

ri(x),xi+1
)−P i+1

ri(x),e2
log(P i+1

ri(x),e2
).

Because we have a Markov measure, the entropy of the i’th co-ordinate

depends the vertex: ri(x).

Lemma 2.1.8.

H(Pn) =
n−1∑
i=0

E(H i
µ(x))

Proof. This proof sums over the paths in Pn in two ways. First, from the

definition of νi(v)

νi(v)P (i+1)
v,e = µ({x ∈ X : xi+1 = e})

so for any e ∈ E(i+1)

− νi(v)P i+1
si+1(e),e

log(P i+1
si+1(e),e

) = − log(P i+1
si+1(e),e

)µ({x ∈ X : xi+1 = e})

(2.2)

For i from 0 to n − 1, sum the left hand side of equation 2.2 over all V (i),

grouped by v ∈ V (i)

n−1∑
i=0

∑
v∈V (i)

νi(v)

si+1(e)=v∑
e∈E(i+1)

−P i+1
v,e log(P i+1

v,e )

 =
n−1∑
i=0

E(H i
µ(x))

Rewrite the right hand side of 2.2 as

− log(P i+1
si+1(e),e

)µ({x ∈ X : xi+1 = e}) = − log(P i+1
si+1(e),e

)

ei+1=e∑
[e1,··· ,en]∈Pn

µ([e1, · · · , en])
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v
(i−1)
0

v
(i−1)
1

v
(i−1)
2

v
(i)
0

v
(i)
1

v
(i)
2

v
(i+1)
0

v
(i+1)
1

v
(i+1)
2

xi xi+1

e1

e2

Figure 2.1: The middle path x follows edges xi, xi+1. Edges in e1, e2 ∈ E(i+1)

share the same source as xi+1

If this quantity is summed over paths [e1, · · · , en] of length n

∑
[e1,··· ,en]∈Pn

−µ([e1, · · · , en])

(
n∑
i=1

log(P
(i)
si+1(ei),ei

)

)

=
∑

[e1,··· ,en]∈Pn

−µ([e1, · · · , en])

(
log(

n∏
i=1

P
(i)
si+1(ei),ei

)

)

= H(Pn)

While the order of summation is different, these two quantities represent

the same object, hence, they must be equal.

Definition 2.1.9 (The lower average co-ordinate entropy). Denote the

lower average co-ordinate (AC) entropy by

hAC(µ) = lim inf
n7→∞

− H(Pn)

log(s(n))
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Definition 2.1.10 (The upper average co-ordinate entropy). Denote the

upper average co-ordinate (AC) entropy by

hAC(µ) = lim sup
n 7→∞

− H(Pn)

log(s(n))

Definition 2.1.11 (The average co-ordinate entropy). If hAC(µ) = hAC(µ),

say the average co-ordinate (AC) entropy exists. Denoted by

hAC(µ) = lim
n 7→∞

− H(Pn)

log(s(n))

Our aim for the next two sections is to examine the conditions for which

the AC entropy can be computed

hAC(µ) = lim inf
n7→∞

−
∑n

i=1 log(P i
si(xi),xi

)

log(s(n))

and when it is equal to the critical dimension

α = lim inf
n7→∞

−
∑n

i=1 log(P i
si(xi),xi

)

log(s(n))

this is summarised in theorem 2.1.26

Computing AC entropy

In this section we compute the AC entropy. Recall lemma 2.1.8,

H(Pn) =
n−1∑
i=0

E(H i
µ(x))

To prove

hAC(µ) = lim inf
n7→∞

−
∑n

i=1 log(P i
si(xi),xi

)

log(s(n))
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it is sufficient to prove

lim
n7→∞

−
∑n

i=1 log(P i
si(xi),xi

)−
∑n

i=1E(H i
µ)

log(s(n))
= 0

because

hAC(µ) = lim inf
n 7→∞

H(Pn)

log(s(n))

= lim inf
n 7→∞

∑n−1
i=0 E(H i

µ)

log(s(n))

= lim inf
n 7→∞

−
∑n

i=1 log(P i
si(xi),xi

)−
∑n

i=1 log(P i
si(xi),xi

) +
∑n

i=1E(H i
µ)

log(s(n))

= lim inf
n 7→∞

−
∑n

i=1 log(P i
si(xi),xi

)

log(s(n))
+ lim

n7→∞
−
∑n

i=1 log(P i
si(xi),xi

)−
∑n

i=1E(H i
µ)

log(s(n))

= lim inf
n 7→∞

−
∑n

i=1 log(P i
si(xi),xi

)

log(s(n))

Two approaches have been taken to prove 2.1.18. Both invoke, as may be

expected, the law of large numbers. The first approach [13] assumed µ was

a product odometer, and hence the random variables Xi = log(P i
si(xi),xi

) are

independent because the quantity (P i
si(xi),xi

) does not depend on the source

vertex s(xi).

The second approach [8] assumed:

1. the probabilities in the stochastic matricies P i
v,e were bound below by

some constant, and

2. the number of vertices at every level is bound by a constant.

then the law of large numbers applies due to theorems of [40] and [46].
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One of the purposes of this thesis is to relax these assumptions, while

still being able to compute the critical dimension. In this section we define

a condition on Markov measures, which gives a sufficient criteria for the

law of large numbers to hold. Loosely speaking, we require the Markov

odometer to be a product odometer at regular intervals.

Define the random variable Xi = − log(P
(i)
si(e),e

), where e ∈ E(i) is chosen

with probability P i
si(e),e

. Notice that in the general Markov measure setting,

the random variable Xi is dependent on Xi−1. As in figure 2.1, choosing

edge xi ∈ E(i) limits the possible choices of edge at E(i+1) to e1, xi+1 and

e2. Even with the connectivity assumption BV1, the stochastic matricies

P
(i)
v,e can be chosen in such a way as to make E(Xk)E(Xl) 6= E(XkXl)

The claim that the random variables Xl, Xk are (weakly) independent

was first made by [10]. Here we do not claim that they are always indepen-

dent, but instead give a sufficient condition for independence .

Definition 2.1.12. A Markov Odometer has a bow at level n if the stochas-

tic matrix P n has all columns identical, and each entry non-zero.

The intuition behind a bow at level n is that edge choices at level i <

n are independent of edge choices at level j > n. That each entry in

the stochastic matrix is nonzero requires each vertex at level n − 1 to be

connected to each vertex at level n.
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Lemma 2.1.13. A product odometer has a bow at every level.

Proof. This is the definition of a product measure, since the (single) columns

of P (n) are always identical.

The reason for definition 2.1.12 is the following lemma about of Radon

derivatives.

Lemma 2.1.14. Suppose (X,B, µ, T ) is a Markov odometer with a bow

at level n. Let Emin be the unique infinite minimal path in the Bratteli

compactum X. Let C = [Emin]n−10 , and r = r(x) = nC(x) be the return

time to C. Then for i < r

ωi(T
rx)

ωi(x)
=
ωr(T

ix)

ωr(x)
= 1

Proof. Denote the edges in E(n)(v) by integers 0, 1, · · · , ln− 1. By the bow

assumption for each v, u ∈ V (n−1), and e ∈ {0, 1, · · · , ln − 1}

P n
v,e = P n

u,e

Define

y = T ix

z = T rx

w = T iz = T r+ix
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In general, the return time to a cylinder is not constant. However by

the bow assumption the return time r = r(x) =
∣∣P n−1

0

∣∣ is the number of

cylinders of length n− 1. Hence the abbreviation r is justified.

By assumption, every vertex at level n− 1 is connected to every vertex

at level n. So i < r means that T ix can only change the first n edges; but

rn(T ix) is fixed. So the edges of T ix and x agree for all edges after n. So

too do the edges T iz and z agree

∀k > n, (y)k = (x)k, (z)k = (w)k

The edges of x and T rx agree for all k < n since they are both members

of the same cylinder C. So too are y and T ry both members of T iC and

hence the edges are equal

∀k < n, (z)k = (x)k, (y)k = (w)k

Denote by u, v ∈ V (n−1) the common source vertex of sn(x) = u = sn(z)

and sn(w) = v = sn(y), and let

mi(x) = max
{
k : xk 6= (T ix)k

}
<∞.

be the index of the largest edge changed by T ix. As already noted this

must be less than n, furthermore
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v0

u

v

E(n)

Figure 2.2: The paths x transitions from low to high at level n; y = T ix
transitions from high to high; z = T rx transitions from low to low, and
w = T r+ix transitions from high to low on the odometer

ωi(x) =

mi(x)∏
k=0

P k
v,yk

P k
u,xk

=
n∏
k=0

P k
v,yk

P k
u,xk

=
P n
v,yn

P n
u,xn

n−1∏
k=0

P k
v,wk

P k
u,zk

=
P n
v,yn

P n
u,xn

P n
u,zn

P n
v,wn

n∏
k=0

P k
v,wk

P k
u,zk

=
P n
v,yn

P n
u,xn

P n
u,zn

P n
v,wn

ωi(T
rx)

While the edges xn, yn have different source, they have the same integer

value xn = yn ∈ {0, 1, · · · , ln − 1} and zn = wn = xn + 1 (mod ln), we now

use the fact that the columns of the stochastic matrix are independent of

u, v
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ωi(x) =
P n
v,xn

P n
u,xn

P n
u,zn

P n
v,zn

ωi(T
rx)

= ωi(T
rx)

Hence ωi(x) = ωi(T
rx). Using this equation and the cocycle relation

ωi+r(x) = ωi(x)ωr(T
ix)

= ωi(T
rx)ωr(x)

= ωi(x)ωr(x)

Hence ωr(T
ix) = ωr(x).

The same can be said for multiples of r

Corollary 2.1.15. Let m ∈ N, and given a Markov odometer with a bow

at level n, for µ-almost every x ∈ X. If i < r then

ωi(T
mrx)

ωi(x)
=
ωmr(T

ix)

ωmr(x)
= 1
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Proof. This is m applications of lemma 2.1.14

ωi(T
mrx)

ωi(x)
=

m∏
j=1

ωi(T
jrx)

ωi(T (j−1)rx)

=
m∏
j=1

1 = 1

Lemma 2.1.16. For k < n < l if a Markov odometer has a bow at level n,

and Xk, Xl : X 7→ R functions that depend only on the k, l’th co-ordinate

of x ∈ X respectively.

E(XkXl) = E(Xk)E(Xl)

Proof. For any m ∈ N, collect the results of corollary 2.1.15, and the as-

sumption that Xk depends only on co-ordinate k < n, and Xl is independent

of co-ordinates 0, . . . , n− 1. Again define C = [Emin]
(n−1)
0 and nC(x) = r is

the constant return time to C.

ωmr(T
ix) = ωr(x)

ωi(x) = ωi(T
mrx)

Xk(T
ix) = Xk(T

i+mrx)

Xl(T
ix) = Xl(x)

These are our tools. For x ∈ C
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mr−1∑
i=0

ωi(x) =
m−1∑
j=0

r∑
i=0

ωi+jr(x)

=
m−1∑
j=0

r∑
i=0

ωi(T
jrx)ωjr(x)

=
m−1∑
j=0

r∑
i=0

ωi(x)ωjr(x)

=
m−1∑
j=0

(
r∑
i=0

ωi(x)

)
ωjr(x)

=

(
r∑
i=0

ωi(x)

)(
m−1∑
j=0

ωjr(x)

)

and

mr−1∑
i=0

Xk(T
ix)ωi(x) =

m−1∑
j=0

r∑
i=0

Xk(T
i+jrx)ωi+jr(x)

=
m−1∑
j=0

r∑
i=0

Xk(T
ix)ωi(T

jrx)ωjr(x)

=
m−1∑
j=0

r∑
i=0

Xk(T
ix)ωi(x)ωjr(x)

=
m−1∑
j=0

(
r∑
i=0

Xk(T
ix)ωi(x)

)
ωjr(x)

=

(
r∑
i=0

Xk(T
ix)ωi(x)

)(
m−1∑
j=0

ωjr(x)

)

similarly

mr−1∑
i=0

Xl(T
ix)ωi(x) =

(
r∑
i=0

ωi(x)

)(
m−1∑
j=0

Xl(T
jrx)ωjr(x)

)
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and combine the previous three equations into

mr−1∑
i=0

Xk(T
ix)Xl(T

ix)ωi(x)

=
m−1∑
j=0

r∑
i=0

Xk(T
i+jrx)Xl(T

i+jrx)ωi+jr(x)

=
m−1∑
j=0

r∑
i=0

Xk(T
ix)Xl(T

jrx)ωi(T
jrx)ωjr(x)

=
m−1∑
j=0

r∑
i=0

Xk(T
ix)Xl(T

jrx)ωi(x)ωjr(x)

=
m−1∑
j=0

(
r∑
i=0

Xk(T
ix)ωi(x)

)
Xl(T

jrx)ωjr(x)

=

(
r∑
i=0

Xk(T
ix)ωi(x)

)(
m−1∑
j=0

Xl(T
jrx)ωjr(x)

)

=

(
mr−1∑
i=0

Xk(T
ix)ωi(x)

)(
mr−1∑
i=0

Xl(T
ix)ωi(x)

)
(
∑r

i=0 ωi(x))
(∑m−1

j=0 ωjr(x)
)

=

(
mr−1∑
i=0

Xk(T
ix)ωi(x)

)(
mr−1∑
i=0

Xl(T
ix)ωi(x)

)
∑mr−1

i=0 ωi(x)

So, thanks to the bow, we have been able to separate
∑
Xl(T

ix)ωi(x)

from
∑
Xk(T

ix)ωi(x). By the Hurewicz ergodic theorem 1.2.2, for all x ∈
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C = [xmin]n−10 (a set of positive measure)

E(XkXl) = lim
m7→∞

mr−1∑
i=0

Xk(T
ix)Xl(T

ix)ωi(x)

mr−1∑
i=0

ωi(x)

= lim
m7→∞

mr−1∑
i=0

Xk(T
ix)ωi(x)

mr−1∑
i=0

Xl(T
ix)ωi(x)(∑mr−1

i=0 ωi(x)
)2

= lim
m7→∞


mr−1∑
i=0

Xk(T
ix)ωi(x)∑mr−1

i=0 ωi(x)




mr−1∑
i=0

Xl(T
ix)ωi(x)∑mr−1

i=0 ωi(x)


= E(Xk)E(Xl)

Hence E(XkXl) = E(Xk)E(Xl) and the random variables Xl, Xk are inde-

pendent.

This lemma allows us to apply the law of large numbers to a Markov

odometer that contains a bows at regular intervals.

Lemma 2.1.17. If (X,B, µ, T ) is a Markov odometer with Bratteli-Vershik

diagram (V,E), and Xi : X 7→ R a sequence of integrable functions that

depend only on the i’th co-ordinate of x ∈ X. If for some k ∈ N the

odometer has a bow at level jk for all j ∈ N, then

lim
n7→∞

∣∣∣∣∣ 1n
(
n−1∑
i=0

Xi − E(Xi)

)∣∣∣∣∣ = 0

Proof. Split the sequence Yi = Xi − E(Xi) into k subsequences: define

Y
(m)
j = Yi for i = jk + m,m, j ∈ N. Then for fixed m ∈ [0, k − 1] the
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random variables
{
Y

(m)
j

}∞
j=0

are independent (by the bow assumption and

lemma 2.1.16) and identically distributed (E(Yi) = 0) then by the law of

large numbers, the sample average converges to the expected value almost

surely:

lim
n7→∞

∑n
j=0 Y

(m)
j

n
= 0

In the ergodic setting, almost sure convergence implies convergence almost

everywhere1. We now recombine these sequences: for any ε > 0 and for

each of the k sequences, there exists an Ni,ε such that for all n > Ni,ε∣∣∣∣∣
∑n

j=0 Y
(m)
j

n

∣∣∣∣∣ < ε/k

Choose Nε = maxi∈[0,k−1]Ni,ε. Then∣∣∣∣∣
∑n

j=0 Yn

n

∣∣∣∣∣ ≤
k−1∑
m=0

∣∣∣∣∣
∑n

j=0 Y
(m)
j

n

∣∣∣∣∣ < ε

Hence the law of large numbers applies to the full sequence Xn.

lim
n 7→∞

∑n−1
i=0 Xi(x)− E(Xi(x))

n
= 0 (2.3)

Corollary 2.1.18. If (X,B, µ, T ) is a Markov odometer with bows at every

k’th level, and P n is a sequence of stochastic matricies,

lim
n7→∞

1

n

(
n∑
i=1

− log(P i
si(xi),xi

)−H(Pn)

)
= 0

1which is not always the case, as shown by Riesz [21, Theorem (11.26)]



54
CHAPTER 2. AVERAGE CO-ORDINATE ENTROPY AND THE

CRITICAL DIMENSION

Proof. Let fi(x) = − log(P i
si(xi),xi

), apply 2.1.17 to the functions fi = Xi,

where the expected value is

E(fi(x)) = −
∑
v∈V i

∑
e∈Ei+1

si+1(e)=v

µ({x : xi+1 = e}) log(P i
v,e)

= −
∑
v∈V i

∑
e∈Ei+1

si+1(e)=v

µ({x : r(xi) = v})P i
v,e log(P i

v,e)

= E(H i
µ(x))

By linearity of expectation, E(
∑n

i=1 fi(x)) =
∑n

i=1E(fi(x)) =
∑n

i=1H
i
µ(x) =

H(Pn). The result follows by application of lemma 2.1.17

Corollary 2.1.19.

lim
n7→∞

1

log(s(n))

(
n∑
i=1

− log(P i
si(xi),xi

)−H(Pn)

)
= 0

Proof. By 2.1, 1
K log(s(n))

≤ 1
n

1

K
lim
n7→∞

1

log(s(n))

(
n∑
i=1

− log(P i
si(xi),xi

)−H(Pn)

)

≤ lim
n7→∞

1

n

(
n∑
i=1

− log(P i
si(xi),xi

)−H(Pn)

)
= 0

In summary, the equation

hAC(µ) = lim inf
n7→∞

−
∑n

i=1 log(P i
si(xi),xi

)

log(s(n))
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is true if any of the following sufficient conditions hold

Corollary 2.1.20. For the Markov odometer (X,B, µ, T ), the upper and

lower AC entropy can be computed when

1. µ is a product measure [35], or

2. the stochastic matricies are bound below by a constant, and there are

finitely many vertices at each level of the Bratteli-Vershik diagram [8],

or

3. the Bratteli-Vershik diagram contains a bow at every k’th level for

some fixed constant k by corollary 2.1.19. This generalises the case

for product measures.

Computing the Critical Dimension

In this section we look at a sufficient condition to compute the critical

dimension as the quantity

α = lim inf
n 7→∞

−
∑n

i=1 log(P i
si(xi),xi

)

log(s(n))

Let np(x) be the index of the pth non-maximal edge of x, and Ip(x) be

the integer k such that each (T kx)j is maximal for 1 ≤ j ≤ np. The link

between the sum of derivatives and co-ordinate measures is given by
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Ip(x)∑
i=Ip−1(x)+1

ωi(x) =
∑

e∈E(np)

xnp<e

µ([e]
(np)
np )

µ([x]
(np)
1 )

(2.4)

As observed by [8,13], this allows us to compute the sum of derivatives∑n−1
i=0 ωi(x) whenever n− 1 = Ip(x) for some p ∈ Z+.

Lemma 2.1.21 ( [11, Lemma 5.3(i)]).

α ≤ lim inf
p 7→∞

−

np∑
i=1

log(µ([x]i1))

log(s(np−1))

Proof. by equation 2.4

Ip∑
i=I1

ωi(x) =

p∑
j=1

∑
e∈E(nj)

xnj<e

µ([e]
(nj)
nj )

µ([x]
(nj)
1 )

≤
p∑
j=1

1

µ([x]
(nj)
1 )

≤ p
1

µ([x]
(np)
1 )

taking logs

log

(
Ip∑
i=I1

ωi(x)

)
= log(p)−

np∑
i=1

log(µ([x]i1))

and using the identity s(np−1) ≤ Ip(x)
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α = lim inf
n 7→∞

log

(
n−1∑
i=0

ωi(x)

)
log(n)

≤ lim inf
p 7→∞

log

(
Ip∑
i=0

ωi(x)

)
log(Ip))

= lim inf
p 7→∞

log

(
Ip∑
i=I1

ωi(x)

)
log(s(np−1))

≤ lim inf
p 7→∞

log(p)

log(s(np−1))
−

np∑
i=1

log(µ([x]ii))

log(s(np−1))

= lim inf
p 7→∞

−

np∑
i=1

log(µ([x]ii))

log(s(np−1))

Lemma 2.1.22 ( [8, Lemma 5.2]). For µ-almost every x ∈ X

lim
i 7→∞
− log(νi(r(xi)))

i
= 0

Proof. Given ε > 0, define Ai = {x ∈ X : − log(νi(r(xi)))/i > ε}. Then

µ(Ai) ≤ Ni2
−εi, where Ni is the number of distinct edges in E(i) that share

a common range with some x ∈ Ai. There are at most
∣∣E(i)

∣∣ ≤ ai such

edges.

µ(Ai) ≤ ai2
−εi

By assumption BV2, for the same ε > 0 there exists some Nε such that for

all n > Nε
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log(an)

n
< ε

Then

µ(An) ≤ an2−εn = 2−n(ε+log(an)/n) ≤ 2−n(ε+ε) ≤ 2−2εn

Which is summable. Hence the series µ(An) is summable. By the Borel-

Cantelli lemma (1.2.4) log(νn(r(xn)))/i > ε can only occur for finitely many

i. Hence the limit exists and is equal to zero

lim
i 7→∞
− log(νi(r(xi)))

i
= 0

Lemma 2.1.23. For µ-almost every x ∈ X

lim
n 7→∞

−

log

 ∑
e∈E(n)

xn<e

µ([e]nn)


n

= 0

Proof. Let bi be a summable sequence
∑∞

i=0 bi < µ(X) for which log(bi)/i 7→

0, we first show that

1

νn(r(xn))

∑
e∈E(n)

xn<e

µ([e](n)n ) < bn (2.5)

holds for all but finitely many n.
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For v ∈ V (n−1), define emax as the largest element in the total ordering

E(n)(v), and f : V (n−1) 7→ E(n) as the smallest edge e′ such that

∑
e′<e≤emax

µ([e]nn) < bn

notice that f(v) = emax when
∑

e′<e≤emax

µ([e]
(n)
n ) ≥ bn for all e′ ∈ E(n)(v)

Define the set

E(n) =
⋃

v∈V (n−1)

⋃
f(v)<e≤emax

[e]nn

this set has measure

µ(E(n)) =
∑
v∈V (n)

∑
f(v)<e≤emax

µ([e]nn)

=
∑
v∈V (n)

νn(v)
∑

f(v)<e≤emax

µ([e]nn)

νn(v)

≤
∑
v∈V (n)

νn(v)bn

= bn

which is summable by assumption. Equation 2.5 follows as a conse-

quence of the Borel-Cantelli lemma.

Rewrite the sum

∑
e∈E(n)

xn<e

µ([e]nn) =
1

νn(r(xn))

∑
e∈E(n)

xn<e

µ([e]nn)νn(r(xn))

≤ bnν
n(r(xn))
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then, using lemma 2.1.22, equation 2.5 and our assumption about bn

lim
n7→∞

−

log

 ∑
e∈E(n)

xn<e

µ
(

[e]
(n)
n

)
n

= lim
n7→∞

− log(νn(sn(xn)))

n
− log(bn)

n

= 0 + 0 = 0

The purpose of these lemmas is to prove

Lemma 2.1.24 ( [11, Lemma 5.3(ii)]).

α ≥ lim inf
p 7→∞

−

np−1∑
i=1

log(µ([x]i1))

log(s(np))

Proof. For any n there exists a p such that Ip−1 < n < Ip ≤ s(n). Then

n∑
i=0

ωi(x) ≥
Ip−1∑

i=Ip−2+1

ωi(x)

=
∑

e∈E(np−1)

xnp−1<e

µ([e]
(np−1)
np−1 )

µ([x]
(np−1)
1 )

taking logs,

log(
n∑
i=0

ωi(x))

log(n)
≥

log

 ∑
e∈E(np−1)

xnp−1<e

µ([e]
(np−1)
np−1 )


log(s(np))

−

np−1∑
i=1

log(µ([x]ii))

log(s(np))
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and using lemma 2.1.23

α = lim inf
n7→∞

n∑
i=0

ωi(x)

≥ lim inf
n7→∞

−

np−1∑
i=1

log(µ([x]ii))

log(s(np))

So far lemmas 2.1.21 and 2.1.24 have proven that

lim inf
n7→∞

−

np−1∑
i=1

log(µ([x]ii))

log(s(np))
≤ α ≤ lim inf

p 7→∞
−

np∑
i=1

log(µ([x]ii))

log(s(np−1))

We are now in a position to prove

Theorem 2.1.25 ( [8, proof of Theorem 5.1]).

α = lim inf
n7→∞

−
∑n

i=1 log([x]ii)

log(s(n))

Proof. The remainder of this proof is largely identical to that of [8, Theo-

rem 5.1] and [13, Theorem 3.2]. By lemmas 2.1.21 and 2.1.24

lim inf
n7→∞

−

np−1∑
i=1

log(µ([x]ii))

log(s(np))
≤ α ≤ lim inf

p7→∞
−

np∑
i=1

log(µ([x]
np
1 ))

log(s(np))

All that needs to be done is to show that

lim
n 7→∞

np∑
i=np−1

log(P i
si(xi),xi

)

log(s(n))
= 0 (2.6)
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Given any ε > 0, define Du,v as the set of all x ∈ X such that xi is

maximal in the total edge ordering of E(i)(xi), and

−

u+v∑
i=u

log(P i
si(xi),xi

)

u+ v
> ε > 0

Here u plays the role of np−1, and v is the distance to the next non-maximal

edge. Now µ(Dv,u) ≤ 2−ε(u+v), and summing over all v gives

µ(Du) ≤ 2−εu
∞∑
v=1

2−εv

= 2−εu
2ε

1− 2ε

which is itself a summable sequence. By the Borel-Cantelli lemma 1.2.4.

Equation 2.6 is greater than ε for only finitely many values of u. The limit

must be zero.

Recall that definition of cylinder sets: µ[x]ii = P i
si(xi),xi

, and assumptions

BV1 and BV2 were required to hold. Theorem 2.1.25 and corollary 2.1.20

can be summarised as

Theorem 2.1.26. If the Markov odometer (X,B, µ, T ) satisfies BV1 and

BV2, then the lower critical dimension is given by the formula

α = lim inf
n7→∞

−
∑n

i=1 log(P i
si(xi),xi

)

log(s(n))

If, in addition, the Markov odometer satisfies any of the equivalent condi-

tions of 2.1.20 then this quantity can be computed, as it is equal to the lower
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AC entropy

α = lim inf
n 7→∞

−
∑n

i=1 log(P i
si(xi),xi

)

log(s(n))
= hAC(µ)

2.2 Katok’s Lemma

For measure preserving transformations, Katok’s lemma gives a connection

between the number of balls of size δ required to cover all but 1 − δ of

the space [24]. An analogous result was proven for product odometers

by [13, Corollary 3.1], and their proof ports seamlessly to the more general

context of Markov odometers. We present a different proof to that of [13].

Definition 2.2.1 (n-covering number). Given a measure space (X,B, µ)

and a set A ∈ B of positive measure, the n-covering number is the smallest

number of cylinders of length n required to cover A

cn(A) = min

{
k : x(i) ⊂ X,A ⊂

k−1⋃
i=1

[x(i)]n−11

}

Recall that in the setting of Markov odometers if x
(i)
j = ej, 1 ≤ j ≤ n−1

log(µ([x(i)]n−11 ) = log(µ([e1e2 · · · en−1]n−11 ) =
n−1∑
j=1

log(P j
sj(ej),ej

)

Proposition 2.2.2. Given a Markov odometer (X,B, µ, T )

1. If

α = lim inf
n7→∞

− log(µ[x]n−11 )

log(s(n))
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then for µ-almost every x ∈ X

α ≤ lim inf
n7→∞

1

log(s(n))
log

(
inf

µ(A)>1−δ
cn(A)

)

for all δ ∈ (0, 1)

2. If

β = lim sup
n7→∞

− log(µ[x]n−11 )

log(s(n))

then for µ-almost every x ∈ X

β ≥ lim sup
n7→∞

1

log(s(n))
log

(
inf

µ(A)>1−δ
cn(A)

)

for all δ ∈ (0, 1)

Proof. Given δ ∈ (0, 1) choose any set A of measure 1 − δ ≤ µ(A) ≤ 1.

Then suppose for each n that A can be covered by cn(A) cylinders

A ⊆
cn(A)⋃
i=0

C
(n)
i

Because cn(A) is the minimal number of cylinders required to cover A, the

cylinders C
(n)
i are pairwise disjoint and

cn(A)−2∑
i=0

µ(C
(n)
i ) < µ(A) ≤

cn(A)−1∑
i=0

µ(C
(n)
i )

At least one of these cylinders C
(n)
i , 0 ≤ i < cn(A)− 1 has measure less

than or equal to µ(A)/(cn(A)− 1), otherwise
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∀i < cn(A)− 1, µ(C
(n)
i ) >

µ(A)

cn(A)− 1
and

cn(A)−2∑
i=0

µ(C
(n)
i ) > µ(A)

and at least one cylinder has measure greater than or equal to µ(A)/cn(A),

otherwise

∀i < cn(A), µ(C
(n)
i ) <

µ(A)

cn(A)
and

cn(A)−1∑
i=0

µ(C
(n)
i ) < µ(A)

Call these cylinders C
(n)
min and C

(n)
max:

µ(C
(n)
min) ≤ µ(A)

cn(A)− 1
and

µ(A)

cn(A)
≤ µ(C(n)

max)

then

log(µ(C
(n)
min)) ≤ log(µ(A))− log(cn(A)− 1)

log(µ(A))− log(cn(A)) ≤ log(µ(C(n)
max))

dividing through by log(s(n)), and using the fact that lim
n7→∞

log(µ(A))/ log(s(n)) =

0

lim inf
n7→∞

− log(µ(C
(n)
max))

log(s(n))
≤ lim inf

n7→∞

log(cn(A))

log(s(n))

lim sup
n 7→∞

− log(µ(C
(n)
min))

log(s(n))
≥ lim sup

n7→∞

log(cn(A)− 1)

log(s(n))
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by theorem 2.1.26

α = lim inf
n7→∞

− log(µ([x]ni=1))

log(s(n))

≤ lim inf
n7→∞

− log(µ(C
(n)
max))

log(s(n))

≤ lim inf
n7→∞

log(cn(A))

log(s(n))

and

β = lim sup
n7→∞

− log(µ([x]ni=1))

log(s(n))

≥ lim sup
n7→∞

− log(µ(C
(n)
min))

log(s(n))

≥ lim sup
n7→∞

log(cn(A)− 1)

log(s(n))

= lim sup
n7→∞

log(cn(A))

log(s(n))

since this is true for any set A of measure µ(A) > 1 − δ, we have the

result.



Chapter 3

Entropy Preserving

Transformations

In the previous chapter we (re)introduced the notion of AC entropy, the

critical dimension, and how they can be computed. In this chapter we

look at transformations which preserve the critical dimension. The original

motivation was [33, Prop 2.6.3(a)], which invited us to consider the class

of permutations of a product measure which preserved AC entropy. The

construction is then repeated for the more general Markov measures, and a

notion of equivalence is explored in section 3.3.

67
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3.1 The Lévy Group

Our study of transformations which preserve entropy begins with the study

of asymptotic density. Particularly, transformations that preserve asymp-

totic density. The term “Lévy Group” appears after work on the critical

dimension by [31, 33], where the latter uses this idea all but in name [33,

Proposition 2.5.2]. Much has been said about the Lévy Group and invariant

measures on the integers [3, 4, 44], which we highlight now.

Definition 3.1.1 (Lévy Group). The Lévy Group G is the group of all

permutations π of N such that

lim
n7→∞

|k : k ≤ n < π(k)|
n

= 0

For A ⊆ N, let A(n) = A ∩ (1, · · · , n). Then the Lévy group can also

be characterised as the set of all permutations such that

lim
n7→∞

A(n)4πA(n)

n
= 0

for every A ⊆ N

Definition 3.1.2 (asymptotic density). The asymptotic density of a set

A ⊆ N is defined as

d(A) = lim
n7→∞

A(n)

n

The set of all sets for which d is defined is denoted by D.
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Definition 3.1.3 (density measure). A density measure is a finitely addi-

tive measure on N which extends asymptotic density. That is, for some set

P D ⊆ P ⊆ P (N) and λ : P 7→ [0, 1] such that

1. λ(N) = 1;

2. λ(A ∪B) = λ(A) + λ(B) for all disjoint A,B ⊆ N;

3. λ |D = d. Which is to say λ coincides with d whenever d is defined.

We shall cite two theorems about the Lévy Group.

Theorem 3.1.4 ( [36, Theorem 2]). For any injective function f : N 7→

N which preserves the existence of asymptotic density, i.e. A ∈ D =⇒

f(A) ∈ D, then d(f(A)) = λd(A) where λ = d(f(N)).

This says that constant multiples of asymptotic density are the only

functions which preserve the existence of asymptotic density.

In our case the functions are permutations and d(f(N)) = λ = 1. So

the permutations which preserve the existence of asymptotic density must

preserve the actual value of the asymptotic density as well. A permutation

which preserves the existence of asymptotic density must also preserve its

value.

The next theorem characterises members of the Lévy Group as those

permutations which preserve asymptotic density for all sets.
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Theorem 3.1.5 ( [3, Lemma 2]). The following are equivalent

1. π ∈ G

2. For any f ∈ `∞(N) (bounded real functions on N)

lim
n7→∞

1

n

n−1∑
i=0

(f(i)− f(π(i))) = 0

3. ∀A ⊂ N,

lim
n 7→∞

A(n)− (πA)(n)

n
= 0

Let f(i) = H(µi) ≤ 1, then item 2 of theorem 3.1.5 connects the AC

entropy with the Lévy group. Hence we can say

Corollary 3.1.6. Suppose (X,B, µ, T ) is a product odometer with AC en-

tropy hAC(µ) = hAC(µ). A permutation π : N 7→ N preserves AC entropy

for every product odometer iff π ∈ G

This says that if a permutation π preserves AC entropy for a product

odometer - regardless of the co-ordinate measures - then π is a member

of the Lévy group and vice versa. Theorem 3.1.4 can be used to extend

this result, and say that no permutation can preserves the existence of AC

entropy and change the value of AC entropy. As opposed to the previous

similar statement for the density of integers.

We shall see later that π ∈ G preserves the upper and lower AC entropies

too; but the converse is false by proposition 3.2.7.
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There are also permutations, not in the Lévy group, that preserve AC

entropy for a particular product measure µ - as opposed to every µ. For

example, the permutations which are trivial in the sense that they only

permute co-ordinates with the same co-ordinate measure: µi = µπi. Hence

to include such permutations in our analysis, we must look beyond the Lévy

group, and regard the actual value of the measure µ.

3.2 Permutations of a Product Measure

The following proposition proves, in a different way to corollary 3.1.6, that

AC entropy is invariant under members of the Lévy Group. Unlike 3.1.6,

it does not show that these are the only such permutations.

Proposition 3.2.1 (adapted from [33, Prop. 2.5.2]). Suppose µ = ⊗∞i=1µi

and let ν be the permuted measure ν = ⊗∞i=1µπ(i) for some permutation π.

If π ∈ G, then hAC(ν) = hAC(µ) and hAC(ν) = hAC(µ)

Proof. Since π is a member of the Lévy group, for any ε > 0, we can find

Nε such that for all n > Nε

∣∣(1, · · · , n)4π−1(1, · · · , n)
∣∣ < εn
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define A(n) = (1, · · · , n)4π−1(1, · · · , n). For any n > Nε∣∣∣∣∣ 1n
(

n∑
i=1

H(µi)−H(νi)

)∣∣∣∣∣ =

∣∣∣∣∣∣ 1n
 ∑
i∈A(n)

H(µi)−H(νi)

∣∣∣∣∣∣
≤ |A(n)|

n
(max (H(µi)−H(νi)))

≤ |A(n)|
n
≤ ε

So

lim
n7→∞

∣∣∣∣∣ 1n
(

n∑
i=1

H(µi)−H(νi)

)∣∣∣∣∣ = 0 (3.1)

Because this limit exists, equation 3.1 can be separated from the lim inf

hAC(µ) = lim inf
n7→∞

1

n
H(µi)

= lim inf
n7→∞

1

n
H(νi) +

1

n

(
n∑
i=1

H(µi)−H(νi)

)

= lim inf
n7→∞

1

n
H(νi) + lim

n7→∞

1

n

(
n∑
i=1

H(µi)−H(νi)

)

= hAC(ν) + 0

similarly the upper AC entropies are equal.

Equation 3.1 can be seen as a weighted version of the definition of Lévy

group 3.1.1. Indeed, equation 3.1 is sufficient to ensure equal entropy. We

can extend this to a sufficient condition on permutations to preserve AC

entropy.

Example 3.2.2. Let X =
∏∞

n=0 Z2. Given some set A ⊆ N with lower and

upper asymptotic density d and d respectively. Let µ be a product measure
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µ =
∏∞

n=0 µn, where H(µn) = 1 when n ∈ A and H(µn) = 1
2

for n 6∈ A. For

any n,

1

n

n−1∑
i=0

H(µi) =
|A(n)|
n

1 +

(
1− |A(n)|

n

)
1

2
(3.2)

=
|A(n)|
n

1

2
+

1

2

Hence

hAC(µ) = lim inf
n7→∞

|A(n)|
n

1

2
+

1

2
= d

1

2
+

1

2

hAC(µ) = lim inf
n7→∞

|A(n)|
n

1

2
+

1

2
= d

1

2
+

1

2

Equation 3.2 shows that for any permutation, the upper and lower AC

entropies must be a convex combination of the co-ordinate entropies.

Proposition 3.2.3 ( [35, Proposition 4.4]). For any λ ∈ (0, 1] and c ∈ [0, 1]

there exists a type IIIλ binary product odometer (X,B, µ, T ) with hAC(µ) =

c

Corollary 3.2.4. For any λ ∈ (0, 1] and α, β ∈ [0, 1], α ≤ β there exists

a type IIIλ binary product odometer (X,B, µ, T ) with hAC(µ) = α and

hAC(µ) = β
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Proof. From proposition 3.2.3 there exist type IIIλ product odometers with

AC entropies α and β. Call them (X,B, µα, T ) and (X,B, µβ, T )

Now take any set of integers A with lower asymptotic density 0 and

upper asymptotic density 1. Construct a new measure µ on X by µi = µαj

for i ∈ A where j = |A(i)| (i is the j’th member of A), and µi = µβj for

i 6∈ A where j = i− |A(i)|.

1

n

n−1∑
i=0

H(µi) =

(
1

n

n−1∑
i=0

1A(i)H(µi)

)
+

(
1

n

n−1∑
i=0

1N−A(i)H(µi)

)

=

(
|A(n)|
n

) 1

|A(n)|

|A(n)|∑
i=0

H(µαi )


+

(
1− |A(n)|

n

) 1

n− |A(n)|

n−|A(n)|∑
i=0

H(µβi )


So the AC entropy is a convex combination of α and β. The ex-

treme points of this interval are achieved. Take the sequence nk such that

lim
k 7→∞

|A(nk)|
nk

= 1, then

lim
k 7→∞

1

nk

nk−1∑
i=0

H(µi) = lim
k 7→∞

 1

|A(nk)|

|A(nk)|∑
i=0

H(µαi )

 = α

The lim sup of β is similarly achieved.

Proposition 3.2.5. Suppose µ = ⊗∞i=1µi and permuted measure ν = ⊗∞i=1µπ(i)
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for some permutation π. If

lim
n7→∞

∣∣∣∣∣ 1n
(

n∑
i=1

H(µi)−H(νi)

)∣∣∣∣∣ = 0

then hAC(ν) = hAC(µ) and hAC(ν) = hAC(µ)

Proof. The proof is the same as the proof of proposition 3.2.1 from equation

3.1 onward.

hAC(µ) = lim inf
n7→∞

1

n
H(µi)

= lim inf
n7→∞

1

n
H(νi) +

1

n

(
n∑
i=1

H(µi)−H(νi)

)

= lim inf
n7→∞

1

n
H(νi) + lim

n7→∞

1

n

(
n∑
i=1

H(µi)−H(νi)

)

= hAC(ν) + 0

There is a partial converse to proposition 3.2.5, however it requires that

the upper and lower AC entropies to be equal.

Proposition 3.2.6. Suppose µ = ⊗∞i=1µi and permuted measure ν = ⊗∞i=1µπ(i)

for some permutation π. If

hAC(µ) = hAC(µ) = hAC(ν) = hAC(ν)

then

lim
n7→∞

∣∣∣∣∣ 1n
(

n∑
i=1

H(µi)−H(νi)

)∣∣∣∣∣ = 0
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Proof. By assumption, the limits

lim
n7→∞

1

n

n∑
i=1

H(µi) = lim
n7→∞

1

n

n∑
i=1

H(νi)

exist and are equal. By linearity of limits,

lim
n 7→∞

∣∣∣∣∣ 1n
(

n∑
i=1

H(µi)−H(νi)

)∣∣∣∣∣ = 0

The next result shows that the condition that the AC entropies are equal

cannot be omitted.

Proposition 3.2.7. There are permutations which preserve the upper and

lower AC entropies, but do not satisfy equation 3.1.

Proof. We construct an example. Consider the measure in example 3.2.2,

and choose A ⊂ N such that

lim inf
n7→∞

|A(n)|
n

= 0, lim sup
n7→∞

|A(n)|
n

= 1

hence the measure µ has upper and lower AC entropies of 1 and 1
2

respec-

tively.

Construct a new measure ν, again as in example 3.2.2, however using

A′ = N−A instead of A. This new measure clearly has the same upper and

lower AC entropies. However equation 3.1 does not hold. By assumption
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lim supn7→∞
A(n)
n

= 1, so ∀ε > 0 there exists some sequence {nk}k∈N such

that for all k ∈ N

A(nk)

nk
> 1− ε

1

nk

nk∑
i=1

H(µi) =
A(nk)

nk

1

2
+

1

2
> 1− ε

2

for that same sequence {nk}k∈N

A′(nk)

nk
= 1− A(nk)

nk
< ε

1

nk

nk∑
i=1

H(νi) =
A′(nk)

nk

1

2
+

1

2
<

1

2
+
ε

2

so

1

nk

nk∑
i=1

H(µi)−H(νi) > 1− ε

2
− 1

2
− ε

2

=
1

2
− ε

Hence the limit of this sequence, if it exists, cannot be zero. Finally,

since A and A′ are both countable, there exists a bijection φ : A 7→ A′.

Define a permutation π : N 7→ N by π(i) = φ(i) when i ∈ A and π(i) =

φ−1(i) when i ∈ A′ = N− A. This proves that the product measure ν is a

permutation of µ.
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This example emphasises the fact that for two measures ν, µ the values

of
∑n
i=1H(µi)

n
and

∑n
i=1H(νi)

n
may not grow together - even when the lim sup

and lim inf are the same. This is important because it highlights the need

to look not just at the values that are achieved by the sequence
∑n
i=1H(µi)

n
,

but also consider when they achieve them.

AC entropy of a randomly generated measure

We finish this section with one final example, which is an extension of

example 3.2.2 with a finite number of distinct measures at each co-ordinate.

Example 3.2.8. Let X =
∏∞

n=0 Z2 and let {Hk}k∈K , K ⊆ N, |K| < ∞

be the set of possible co-ordinate entropies for the product measure µ =∏∞
n=0 µn. Define

Ak = {n : H(µn) = Hk}

then

1

n

n−1∑
i=0

H(µi) =
∑
k∈K

Ak(n)

n
Hk

and

lim inf
n 7→∞

∑
k∈K

Ak(n)

n
Hk = hAC(µ) ≤ hAC(µ) = lim sup

n 7→∞

∑
k∈K

Ak(n)

n
Hk (3.3)
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If the elements of Ak ⊆ N are chosen independently and at random with

i ∈ Ak with probability p, then by the law of large numbers lim
n 7→∞

|Ak(n)|
n

= pk

and Ak has an asymptotic density: Ak ∈ D.

Given a sequence {pk}k∈K , K ⊆ N of positive real numbers such that∑
k∈K pk = 1, independently allocate each integer to the set Ak with prob-

ability pk. Then by the law of large numbers each set Ak has asymptotic

density pk. So equation 3.3 from example 3.2.8 becomes

hAC(µ) = lim inf
n 7→∞

∑
k∈K

Ak(n)

n
Hk

= lim
n7→∞

∑
k∈K

pkHk

= lim sup
n7→∞

∑
k∈K

Ak(n)

n
Hk

= hAC(µ)

from which we conclude

Lemma 3.2.9. A product measure µ constructed by choosing co-ordinate

measures {µk}k∈K independently and at random according to some fixed

probability distribution {pk}k∈K has AC entropy

hAC(µ) =
∑
k∈K

pkH(µk)
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3.3 Hurewicz Equivalence

In the previous section we saw that for product odometers, there exists

a sub-class of permutations which preserve AC entropy. In this chapter

we use the more general Markov odometers, and show that there exist a

sub-class of orbit equivalence relations that preserve the critical dimension.

Loosely speaking, for large values of n the quantity

fXn (x) = log(
n−1∑
i=0

ωXi (x))/ log(n)

moves between α and β. The manner in which this is done is arbitrary. Two

odometers (X,B, µ, T ) and (Y, C, ν, S) with the same critical dimensions

lim inf
n 7→∞

fXn (x) = lim inf
n7→∞

fYn (x) = α

lim sup
n 7→∞

fXn (x) = lim sup
n7→∞

fYn (x) = β

may move between α and β in completely different ways. We define k(n, x)

as a scaling factor to bring one close to the other, so that lim
n 7→∞

fXn (x) −

fYk(n,x)(x) = 0.

Definition 3.3.1. Hurewicz less than: ≤H

An orbit equivalence φ : X 7→ Y between Markov odometers (X,B, µ, T )

and (Y, C, ν, S), is “Hurewicz less than” denoted X ≤H Y , if for all x ∈ X

there exists a function k(n, x) such that limn7→∞ k(n, x) =∞ and

lim
n7→∞

log(
∑n−1

i=0 ω
X
i (x))

log(n)
− log(

∑k(n,x)−1
i=0 ωYi (φ(x)))

log(k(n, x))
= 0
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Proposition 3.3.2. Hurewicz less-than is reflexive and transitive.

Proof. That (X,B, µ, T ) ≤H (X,B, µ, T ) is obvious, since φ(x) = x and

k(n, x) = n satisfy the definition. Furthermore, if (X,B, µ, T ) ≤H (Y, C, ν, S)

and (Y, C, ν, S) ≤H (Z,D, ρ, U) then there exist orbit equivalences φ1 : X 7→

Y, φ2 : Y 7→ Z and non-decreasing functions k1(n, x), k2(n, y) such that

lim
n7→∞

log(
∑n−1

i=0 ω
X
i (x))

log(n)
− log(

∑k1(n,x)−1
i=0 ωYi (φ1(x)))

log(k1(n, x))
= 0

lim
n7→∞

log(
∑n−1

i=0 ω
Y
i (y))

log(n)
− log(

∑k2(n,y)−1
i=0 ωZi (φ2(y)))

log(k2(n, y))
= 0

Define the orbit equivalence φ = φ2 ◦ φ1 : X 7→ Z and k(n, x) =

k2(k1(n, x), x), this satisfies the definition of ≤H since

lim
n 7→∞

log(
∑n−1

i=0 ω
X
i (x))

log(n)
− log(

∑k2(k1(n,x),x)−1
i=0 ωZi (φ2(φ1(x)))

log(k2(k1(n, x), x))

≤ lim
n7→∞

log(
∑n−1

i=0 ω
X
i (x))

log(n)
− log(

∑k1(n,x)−1
i=0 ωYi (φ1(x)))

log(k1(n, x))

+ lim
n7→∞

log(
∑k1(n,x)−1

i=0 ωYi (φ1(x)))

log(k1(n, x))
− log(

∑k2(k1(n,x),x)−1
i=0 ωZi (φ2(φ1(x))))

log(k2(k1(n, x), y))

= 0 + 0 = 0

The purpose of defining ≤H is made clear by the following lemma



82 CHAPTER 3. ENTROPY PRESERVING TRANSFORMATIONS

Proposition 3.3.3. Given two orbit equivalent Markov odometers (X,B, µ, T )

and (Y, C, ν, S). If X ≤H Y then αY ≤ αX ≤ βX ≤ βY .

Proof. Since {k(n, x) : n ∈ N} ⊆ N

αX = lim inf
n7→∞

log(
∑n−1

i=0 ω
X
i (x))

log(n)

= lim inf
n7→∞

log(
∑k(n,x)−1

i=0 ωYi (φ(x)))

log(k(n, x))

≥ lim inf
n7→∞

log(
∑n−1

i=0 ω
Y
i (φ(x)))

log(n)

= αY

the proof that βX ≤ βY is similar, and αX ≤ βX is true by definition.

The converse is also true, although the construction of k(n, x) is not

useful beyond this proof.

Proposition 3.3.4. Given orbit equivalent Markov odometers (X,B, µ, T )

and (Y, C, ν, S). If αY ≤ αX ≤ βX ≤ βY , then X ≤H Y

Proof. Define the sum

fXn (x) =
log(

∑n−1
i=0 ω

X
i (x))

log(n)

Given the orbit equivalence φ : X 7→ Y , and αY ≤ αX ≤ βX ≤ βY . We are

required to define k(n, x) such that

lim
n 7→∞

fXn (x)− fYk(n,x)(φ(x)) = 0
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y

n

1
n

∑n−1
i=0 ω

X
i (x)

1
n

∑n−1
i=0 ω

Y
i (x)

k(n, x)n

Figure 3.1: For each n, a corresponding k(n, x) can be found. Note that in
this picture (Y, C, ν, S) 6≤H (X,B, µ, T ).

Take a non-increasing sequence εi > 0 such that limi 7→∞ εi = 0. For

each i ∈ N and µ-almost every x ∈ X there exists some Nεi,x such that

∀n > Nεi,x

αY − εi ≤ fYn (φ(x)) ≤ βY + εi

and by corollary 1.2.6

∣∣fYn (φ(x))− fYn+1(φ(x))
∣∣ ≤ εi (3.4)

Choose

ni = min
{
n > Nεi,x :

∣∣fYn (φ(x))− αY
∣∣ < εi

}
mi = min

{
n > ni > Nεi,x :

∣∣fYn (φ(x))− βY
∣∣ < εi

}
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so fYni(φ(x)) is close to αY , and fYmi(φ(x)) is close to βY and ni < mi. We

can divide the interval (α− εi, β + εi) into Mi subintervals of length at most

εi:

(α− εi, β + εi) = ∪Mi−1
j=0 I

(i)
j

where I
(i)
j = (α + (j − 1)εi, α + jεi] if 0 ≤ j < Mi − 1, and I

(i)
Mi−1 =

(α + (Mi − 2)εi, β + εi). Every interval contains at least one fYn (φ(x)) by

3.4 for some n ∈ [ni,mi].

Define the function k(i, x) as

k(i, x) =


k where fXi (x), fYk (φ(x)) ∈ I(i)j for some k ∈ [ni,mi]

ni if fXi (x) < αY − εi

mi if fXi (x) > βY + εi

It remains to be seen that this definition of k(i, x) meets our require-

ments.

Given any ε > 0 there exists an Nε,x such that for all i > Nε,x, εi < ε/2,

and using the fact that αX , βX are the critical dimensions

αY − ε/2 ≤ αX − ε/2 < fXi (x) < βX + ε/2 ≤ βY + ε/2

For each such i

1. either both fXi (x), fYk(i,x) ∈ I
(i)
j belong to the same interval of length

εi < ε/2 < ε, or
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2. k(i, x) = ni and αY − ε/2 < fXi (x) ≤ αY − εi, so

∣∣fXi (x)− fYk(i,x)(φ(x))
∣∣ ≤ ∣∣fXi (x)− α

∣∣+
∣∣α− fYni(φ(x))

∣∣
≤ ε/2 + εi

≤ ε

or

3. k(i, x) = mi and βY + εi ≤ fXi (x) < βY + ε/2, so

∣∣fXi (x)− fYk(i,x)(φ(x))
∣∣ ≤ ∣∣fXi (x)− β

∣∣+
∣∣β − fYmi(φ(x))

∣∣
≤ ε/2 + εi

≤ ε

Hence for all i > Nε,x

∣∣fXi (x)− fYk(i,x)(φ(x))
∣∣ < ε

Definition 3.3.5. Hurewicz equivalence

If (X,B, µ, T ) ≤H (Y, C, ν, S) and (Y, C, ν, S) ≤H (X,B, µ, T ) then say

the Markov odometers are Hurewicz equivalent

Proposition 3.3.6. Hurewicz equivalence is an equivalence relation.
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Proof. Since ≤H is a preorder (reflexive and transitive), the definition of

Hurewicz equivalence makes this an equivalence relation.

Theorem 3.3.7. The Markov odometers (X,B, µ, T ) , (Y, C, ν, S) are Hurewicz

equivalent iff they are orbit equivalent and have the same upper and lower

critical dimensions.

Proof. This is a consequence of definition 3.3.5, proposition 3.3.3 and its

converse 3.3.4.

The definition of Hurewicz equivalence emphasises when two odometers

are similar. In the case where αX = βX = αY = βy it is easy to construct the

required k(n, x), as k(n, x) = n will do. In some special cases this choosing

k(n, x) = n will also do when the critical dimensions are unequal. How-

ever this case is the exception, generally when the critical dimensions are

unequal, k(n, x) must be chosen different from n. Proposition 3.3.4 demon-

strated that this can be done in theory, and theorem 4.2.1 demonstrates

that this can sometimes be done in practice too. Indeed, the remainder of

this thesis aims to demonstrate that definition 3.3.5 is a useful notion of

equivalence through examples.
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Metric Isomorphism

If (X,B, µ, T ) and (Y, C, ν, S) are metrically isomorphic, then there exists

a bi-measurable null-measure preserving map φ : X 7→ Y such that for all

i ∈ N and µ-almost every x ∈ X

φ(T i(x)) = Siφ(x)

Hence

dν ◦ φ
dµ

(T ix)ωXi (x) = ωYi (φ(x))
dν ◦ φ
dµ

(x)

and

ν(φ(X)) = E(
dν ◦ φ
dµ

)

= lim
n7→∞

n−1∑
i=0

dν◦φ
dµ

(T ix)ωXi (x)

n−1∑
i=0

ωXi (x)

= lim
n7→∞

dν◦φ
dµ

(x)
n−1∑
i=0

ωYi (φ(x))

n−1∑
i=0

ωXi (x)

Taking logs, and dividing through by log(n), gives

lim
n7→∞

1

log(n)

(
log

(
n−1∑
i=0

ωYi (φ(x))

)
− log

(
n−1∑
i=0

ωXi (x)

))

= lim
n7→∞

log(ν(φ(X)))

log(n)
−

dν◦φ
dµ

(x)

log(n)
= 0

Choosing k(n, x) = n shows that this is Hurewicz equivalence. This includes

the case of Initial Co-ordinate Equivalence proposed in [33, Section 2.7].
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Original Hurewicz Equivalence

Definition 3.3.5 originated from notion of equivalence proposed by [8], which

stated that two orbit equivalent Markov odometers (X,B, µ, T ) , (Y, C, ν, S)

are Original Hurewicz Equivalent1 iff for some c, C ∈ R

0 < c ≤ lim inf
n7→∞

n−1∑
i=0

ωXi (x)

n−1∑
i=0

ωYi (φ(x))

≤ lim sup
n7→∞

n−1∑
i=0

ωXi (x)

n−1∑
i=0

ωYi (φ(x))

≤ C <∞

It was shown in [8] that two Original Hurewicz Equivalent Markov

odometers have the same critical dimension. If orbit equivalent odometers

have the same upper and lower critical dimensions, they are not necessar-

ily Original Hurewicz Equivalent, which is a consequence of proposition

3.2.7. So Hurewicz Equivalence is genuinely different to Original Hurewicz

Equivalence.

If (X,B, µ, T ) , (Y, C, ν, S) are Original Hurewicz Equivalent, then set-

ting k(n, x) = n yields, for sufficiently large n

0 < log(c) ≤ log(
n−1∑
i=0

ωXi (x))− log(
n−1∑
i=0

ωYi (φ(x))) ≤ log(C) <∞

Dividing this equation through by log(n) shows that Original Hurewicz

Equivalence is also Hurewicz Equivalent according to definition 3.3.5 with
1In this thesis we have have hijacked the name Hurewicz equivalence from [8], and

refer to their definition as Original Hurewicz Equivalence
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k(n, x) = n. Hence this definition generalises and extends Original Hurewicz

Equivalence proposed by [8].

Canonical type IIIλ odometer with critical

dimensions α, β

We have seen in example 3.2.4 that the critical dimension is independent of

the ratio set. That for each λ ∈ (0, 1] there exists a odometer with arbitrary

upper and lower critical dimension.

Definition 3.3.8 (The type IIIλ,α,β odometer). Given λ, α, β such that

λ ∈ (0, 1] and 0 ≤ α ≤ β ≤ 1, the product odometer constructed in example

3.2.4 with these parameters is type IIIλ and has lower and upper critical

dimensions α and β. Call this the canonical IIIλ,α,β odometer.

The canonical IIIλ,α,β odometer is unique in the sense that

Proposition 3.3.9. Any type IIIλ odometer with critical dimensions α, β,

is Hurewicz equivalent to the canonical type IIIλ,α,β odometer.

Proof. The odometers are orbit equivalent since they are of type IIIλ. Since

they have the same critical dimensions they are Hurewicz equivalent.

By itself, this is an unexciting proposition. For any IIIλ odometer, the

critical dimensions cannot always be computed. All that has been shown
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so far is that the given odometer is Hurewicz equivalent to a non-specific

canonical IIIλ,α,β odometer. If the critical dimension can be computed,

then this proposition becomes useful. Computing the critical dimension on

a larger class of odometers is the purpose of the next chapter.



Chapter 4

The Induced Odometer

Perhaps the most important example of a Hurewicz equivalence is the in-

duced odometer. It’s importance stems from the role it plays in generating

orbit equivalence of type III0 odometers.

4.1 Orbit Equivalence and the Induced

Odometer

Definition 4.1.1 (Induced Odometer). The induced odometer of a Markov

odometer (X,B, µ, T ) is the odometer (A,BA, ν, S), where A ⊆ X is a set of

positive measure, φ : X 7→ A is a bi-measurable map, BA = {A ∩B : B ∈ B}

are measurable sets, the measure ν : A 7→ [0, 1] has derivative 0 < c ≤

dν◦φ
dµ

(x) ≤ C <∞ for some constants c, C and S is the induced transforma-

91
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tion S(x) = T nA(x)(x).

For a type III Markov odometer (X,B, µ, T ) and for any set A ∈

B, µ(A) > 0 there exists a map φ : X 7→ A which establishes an orbit

equivalence between T and the induced transformation of T on A. Fur-

thermore φ ∈ [{T i}i≥1]. This often used property is seldom proved. In this

section we re-prove this result, and in the following section extend the result

to show that the orbit equivalence is in fact a Hurewicz equivalence.

The following is based on from [18] where it is presented in the more

general context of a countable group of automorphisms G = {gi}i∈N. Recall

[G] = [{T i}i∈N], or g ∈ [G] if there exists a countable partition Ai of X such

that ∀x ∈ Ai, g(x) = T ix. In this section we specialise the results of [18] to

fit these standing assumptions.

Subsets A,B ∈ B are said to be mutually G-equivalent if there exists

an isomorphism g : A 7→ B such that gx = T ix for all x ∈ Ai for some

countable partition Ai of A. The map g is called a G-map from A onto B.

Notice that any G-map is a member of the full group [{T i}i∈N]. Define a

order relation ≤ on B by A ≤ B if there exists a G-map from A onto a

subset of B. This relation is anti-symmetric since if A ≤ B and B ≤ A

then let f map A into B, and g map B into A. Define h : A 7→ B by
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A B

f(x)

g(y)

Figure 4.1: The Bernstien’s map: the left shaded area represents
(
⋃∞
i=0 {(gf)iA− g(fg)iB}) ∪ (

⋂
i=0(gf)i(x)) and the enclosed white area

represents
⋃∞
i=0 {g(fg)iB − (gf)iA}

h(x) =


f(x) if x ∈

⋃∞
i=0 {(gf)iA− g(fg)iB}

f(x) if x ∈
⋂
i=0(gf)i(x)

g−1(x) if x ∈
⋃∞
i=0 {g(fg)iB − (gf)iA}

Then h is a G-map and an isomorphism from A to B. Hence A and B

are mutually G-equivalent. This construction is known as the Bernstein’s

map constructed by f and g. Since this relation is obviously reflexive and

transitive, G-equivalence is an equivalence relation.

Any set A ⊂ X is called G-infinite if it is G-equivalent to a proper subset

of itself A′ ⊂ A and µ(A− A′) > 0. Otherwise A is said to be G-finite.

Lemma 4.1.2 ( [18, Lemma 8]). all G-infinite subsets, if they exist, are
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equivalent.

Proof. Suffice to prove that a G-infinite subset is equivalent to the space

X. Let g be a G-map from A onto a proper subset of A. By definition

B = A − gA has positive measure. By conservation ∪i≥1T iB = X and we

take the disjointification of these sets{
T nB −

n−1⋃
i=0

T iB

}

as a partition of X. Define f(x) = gnT−nx for x ∈
{
T nB −

n−1⋃
i=0

T iB

}
.

Then f : X 7→ A is a G-map from X into A. The Bernstien’s map con-

structed from f and the identity map 1 : A 7→ X gives a G-map from X

onto A.

Given a subset A of positive measure, the induced full group [{T i}i∈N]A

is the set of transformations g : A 7→ A such that g is a G-map from A to

A.

Lemma 4.1.3 ( [18, Lemma 9]). For an ergodic nonsingular transforma-

tion T on measure space (X,B, µ). If A ⊂ X has positive measure and

is G-infinite, then there exists an orbit equivalence φ : X 7→ A between

(X,B, µ, T ) and (A,BA, µ ◦ φ−1, T A), where the orbit equivalence φ ∈ [T ].

Proof. By lemma 4.1.2, there is a G-map φ from X onto A. Let Ai be the

partition of X such that φ(x) = T ix for all x ∈ Ai. Then ∪i≥1T iAi = A.
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For µ-almost every x ∈ X, there exists some k ∈ N such that x ∈ Ak. Then

φ(OrbT (x)) = φ
({

(T jx)) : j ∈ Z
})

=
∞⋃
i=1

(
φ
({
T j(x) : j ∈ Z

}
∩ Ai

))
=
∞⋃
i=1

({
T j+i(x) : j ∈ Z

}
∩ T i(Ai)

)
=
∞⋃
i=1

({
T j+i−k(φ(x)) : j ∈ Z

}
∩ T i(Ai)

)
=
∞⋃
i=1

({
T j(φ(x)) : j ∈ Z

}
∩ T i(Ai)

)
=
∞⋃
i=1

({
T j
T iAi

(φ(x)) : j ∈ Z
})

=
{
T j
A(φ(x)) : j ∈ Z

}
= OrbTA(φ(x))

It only remains to be said that φ is a null measure preserving isomor-

phism. That φ is an isomorphism is by definition of G-map. Suppose

µ(B) = 0, then µ(T k(B ∩Ai)) = 0 for all k and µ(φ(B)) =
∑∞

i=1 µ(T i(B ∩

Ai)) =
∑∞

i=1 µ(B ∩ Ai) = µ(B) = 0. The proof that µ(φ(B)) = 0 implies

µ(B) = 0 is similar.

Notice that because we chose the push-forward measure for the induced

odometer, the derivatives dν◦φ
dµ

(x) = 1. However we only require the deriva-

tive to be bound away from zero and infinity.
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The next theorem was proven by [16, 22]. Cited below is the version

provided by [18].

Theorem 4.1.4 ( [18, Theorem 11]). Given a nonsingular, conservative,

ergodic dynamical system (X,B, µ, T ), then µ is of type

1. II1 iff X is G-finite.

2. II∞ iff X is G-infinite, and contains a G-finite subset of positive

measure.

3. III iff every subset with positive measure is G-infinite.

The combination of lemma 4.1.3 and theorem 4.1.4 says that for any type

III nonsingular system (X,B, µ, T ), and any subset of positive measure A,

there is an orbit equivalence φ between (X,B, µ, T ) and (A,BA, µ◦φ−1, T A)

which is a member of the full group. None of this is new, except for the

emphasis on φ ∈ [G] = [{T i}i∈N].

Control of the orbit equivalence relation

Let ωXi denote the i’th Radon-Nikodym derivative of (X,B, µ, T ) and ωAi

denote the i’th Radon-Nikodym derivative of (A, C, ν, S). For a set Y ∈ B,

define nTY (x) as the first return time of x to Y under the automorphism T

(to distinguish it from the return time under S).
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Lemma 4.1.5. For a type III0 Markov odometer (X,B, µ, T ) and induced

odometer (A, C, ν, S) where φ : X 7→ A, φ ∈ [T ii∈N]. There exists a subset

Y ⊆ X of positive measure such that for µ-almost every x ∈ Y

Sn
S
φ(Y )

(φ(x))φ(x) = φT n
T
Y (x)(x) (4.1)

Proof. Since φ ∈
[
{T i}i∈N

]
, then X can be partitioned into sets Xi such

that ∀x ∈ Xi, φ(x) = T ix. At least one of these sets has positive measure,

say Xk. Take this Xk as Y .

For any y ∈ A ⊂ X

Orb+
S (y) =

{
Siy : i > 0

}
= A ∩

{
T iy : i > 0

}
= Orb+

TA
(y).

If we consider only those elements in φ(Y ) ⊆ A

Orb+
Sφ(Y )

(y) = Orb+
T φ(Y )

(y).

Equate the first elements these ordered sets

Sn
S
φ(Y )

(y)(y) = T n
T
φ(Y )

(y)(y)

or, written in terms of x ∈ Y .

Sn
S
φ(Y )

(φ(x))φ(x) = T n
T
φ(Y )

(φ(x))(φ(x))

The tricky part is to disentangle φ from x, which we can do because both
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x, T n
T
Y (x)(x) ∈ Y and we know how φ behaves on elements of Y .

Sn
S
φ(Y )

(φ(x))φ(x) = T n
T
φ(Y )

(φ(x))(φ(x))

= T n
T
Y (x)(φ(x))

= T n
T
Y (x)+k(x)

= T k+n
T
Y (x)(x)

= φ(T n
T
Y (x)(x))

Where the last equality again uses the fact that φ = T k for T n
T
Y (x)x ∈ Y

There is nothing sacred about the first return time, and this result can

be extended to equate the n’th return times.

The set Ak =
{
x : φ(x) = T kx

}
gave us a workable relation between the

derivatives, but we also need a relation between the number of derivatives.

Mean Sojurn Time

A consequence of the conservation assumption is that for any set A of

positive measure, µ-almost any x ∈ X will return to A after finitely many

steps. It is natural to ask, how often do the points {T ix}i∈N appear in the

set A.

To make this question more precise. Define the upper and lower means
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sojurn times as the limit superior and limit inferior of the sequence

an(x) =
1

n

n−1∑
k=0

1A(T kx)

a(x) = lim sup an(x)

a(x) = lim inf an(x)

In regards to the asymptotic behavior of these quantities, the following

is known.

• In the case of a measure preserving dynamical systems with µ(X) <

∞, these quantities coincide as a consequence of the famous Birkhoff

ergodic theorem (1.1.4). Furthermore they converge to the measure

of the set µ(A).

• In the case of a measure preserving dynamical system with µ(X) =∞,

these quantities coincide. Furthermore they converge to zero when

µ(A) <∞.

For the odometers considered in chapter 2, we have the following lemma

Lemma 4.1.6. If (X,B, µ, T ) is a Markov odometer satisfying assumption

BV1, then for any set A of positive measure

0 < lim inf
n7→∞

1

n

n−1∑
k=0

1A(T kx) ≤ lim sup
n7→∞

1

n

n−1∑
k=0

1A(T kx) < 1
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Proof. Since the σ-algebra B is generated by cylinders, there exists a cylin-

der C ⊂ A of positive measure. If C has length N then by assumption BV1

the return time to C is bound above by s(N +K). The average time that

T kx spends in A is larger than average time that T kx spends in C, and if

n = iS(N +K) + j, for some i ∈ N and j < S(N +K) then

1

n

n−1∑
k=0

1A(T kx) ≥ 1

n

n−1∑
k=0

1C(T kx)

≥ 1

(i+ 1)S(N +K)

iS(N+K)−1∑
k=0

1C(T kx)

≥ i

(i+ 1)S(N +K)

hence we have proven the left hand side inequality

0 <
1

S(N +K)
≤ lim inf

n7→∞

1

n

n−1∑
k=0

1C(T kx) ≤ lim inf
n7→∞

1

n

n−1∑
k=0

1A(T kx)

If we replace A with X − A, then this becomes

0 < lim inf
n7→∞

1

n

n−1∑
k=0

1X−A(T kx) = 1− lim sup
n7→∞

1

n

n−1∑
k=0

1A(T kx)

which is the right hand side inequality.
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In general, these bounds are not known to hold [11, p. 6]. Furthermore,

an extension of Rokhlin’s lemma 4.1.7 was proven by [2, Theorem 1], which

shows that there exist sets with unbounded return times provided the ex-

pected value of the return times is finite. Hence the assumption BV1 is a

non-trivial assumption.

Theorem 4.1.7. Given probability vector π = (π1, π2, · · · ) with the property

that the integers {k : πk > 0} are relatively prime and
∑∞

i=1 iπi < ∞, then

there exists a measurable set B, µ(B) > 0 such that πi = µ(x ∈ B : i =

nB(x))/µ(B).

While assumption BV1 is familiar from computation of the critical di-

mension, it would be of interest to know if the same computation can be

performed under the weaker assumption that the average sojurn time is

bound away from 0 and 1.

Corollary 4.1.8. Define k(n, x) =
n−1∑
k=0

1A(T kx)), where the set A has mea-

sure 0 < µ(A) < 1, If BV1 holds, then

lim
n7→∞

log(k(n, x))

log(n)
= 1

Proof. Since k(n, x) ≤ n, we have that log(k(n,x))
log(n)

≤ 1. By lemma 4.1.6 for
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some δ > 0 there exists an Nδ,x such that for all n > Nδ,x

0 < δ ≤ k(n, x)

n

log(δ) ≤ log(k(n, x))− log(n)

log(n) + log(δ) ≤ log(k(n, x))

1 +
log(δ)

log(n)
≤ log(k(n, x))

log(n)

Hence

1 = lim
n7→∞

1 +
log(δ)

log(n)
≤ lim

n7→∞

log(k(n, x))

log(n)
≤ 1

If we define K(m,x) as the odometer power such that TK(m,x)x ∈ A for

the m’th time. Then there is a useful relation between k(n, x) and K(m,x):

k(K(n, x), x) = n (4.2)

4.2 Orbit Equivalence as Hurewicz

Equivalence

Let us summarise what we have so far: (X,B, µ, T ) is a type III Markov

odometer satisfying assumption BV1 and BV2 (see section 2.1) and A ⊂ X

a set of positive measure, the induced odometer is (A,BA, ν, T A) is orbit
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equivalent to the Markov odometer X with orbit equivalence relation φ :

X 7→ A. As we saw in the previous section, φ ∈ [T ]. Denote Sx = T Ax =

T nA(x)x as the induced odometer, and there exists constants c, C such that

0 < c ≤ dν◦φ
dµ

(x) ≤ C <∞.

We also have some control over the orbit equivalence: for some set

Ak =
{
x : φ(x) = T kx

}
of positive measure

S
nS
φ(Ak)

(φ(x))
φ(x) = φT

nTAk
(x)

(x)

Theorem 4.2.1. If the Markov odometer (X,B, µ, T ) satisfies assump-

tion BV1, then it is Hurewicz Equivalent to the induced Markov odometer

(A, C, ν, S).

This proof is an application of the chain rule to equation 4.1, followed

by two applications of the Hurewicz ergodic theorem 1.2.2. Corollary 4.1.8

makes an appearance at the end.

Proof. Applying the chain rule to equation 4.1 gives
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ωSnS
φ(Ak)

(φ(x))(φ(x)) =
dν ◦ Sn

S
φ(Ak)

(φ(x))

dν
(φ(x))

=
dν ◦ Sn

S
φ(Ak)

(φ(x)) ◦ φ
dν ◦ φ

(x)

=
dν ◦ φT n

T
Ak

(x)

dν ◦ φ
(x)

=
dν ◦ φ
dµ

(T
nTAk

(x)
(x))

dµ ◦ T n
T
Ak

(x)

dµ
(x)

dµ

dν ◦ φ
(x)

Because c = dν◦φ
dµ

(x)

ωXnTAk (x)
(x) = ωAnS

φ(Ak)
(φ(x))(φ(x)) (4.3)

As remarked above, lemma 4.1.5 can be extended to equate the n’th

return times. Let k(n, x) be the number of times T i(x) returns to Ak for

i ≤ n. Then summing equation 4.3 over the first k(n, x) elements

c

C

n−1∑
i=0

1Ak(T
ix)ωXi (x) (4.4)

≤
k(n,x)−1∑
i=0

1φ(Ak)(S
iφ(x))ωAi (φ(x)) (4.5)

≤ C

c

n−1∑
i=0

1Ak(T
ix)ωXi (x) (4.6)

According to the Hurewicz ergodic theorem, equation 4.5 grows in pro-

portion to ν(φ(Ak))
k(n,x)−1∑
i=0

ωAi (φ(x)), and equations 4.4, 4.6 grow in propor-
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tion to µ(Ak)
n−1∑
i=0

ωXi (x). Hence they grow at the same rate as each other.

More formally

c

C
≤ lim inf

n7→∞

k(n,x)−1∑
i=0

1φ(Ak)(S
iφ(x))ωAi (φ(x))

n−1∑
i=0

1Ak(T
ix)ωXi (x)

=
ν(φ(Ak))

µ(Ak)
lim inf
n 7→∞

k(n,x)−1∑
i=0

ωAi (φ(x))

n−1∑
i=0

ωXi (x)

≤ ν(φ(Ak))

µ(Ak)
lim sup
n 7→∞

k(n,x)−1∑
i=0

ωAi (φ(x))

n−1∑
i=0

ωXi (x)

≤ lim sup
n 7→∞

k(n,x)−1∑
i=0

1φ(Ak)(S
iφ(x))ωAi (φ(x))

n−1∑
i=0

1Ak(T
ix)ωXi (x)

≤ C

c

Taking logs, and dividing through by log(n) shows that the limit

lim
n7→∞

log

(
n−1∑
i=0

ωXi (x)

)
− log

(
k(n,x)−1∑
i=0

ωAi (φ(x))

)
log(n)

= 0

exists and is equal to zero. By lemma 4.1.6

lim
n7→∞

log

(
n−1∑
i=0

ωXi (x)

)
log(n)

−
log

(
k(n,x)−1∑
i=0

ωAi (φ(x))

)
log(k(n, x))

= 0



106 CHAPTER 4. THE INDUCED ODOMETER

So X ≤H A. Choose n = K(m,x) to be the m’th return time to A, that is

to say the odometer power K such that |A ∩ {T ix : i < K}| = m. Then by

equation 4.2, k(K(n, x), x) = n and

lim
m7→∞

log

(
K(m,x)−1∑

i=0

ωTi (x)

)
log(K(m,x))

−
log

(
m−1∑
i=0

ωSi (φ(x))

)
log(m)

= 0

So A ≤H X. Hence the measures are Hurewicz equivalent.

Example 4.2.2 (Transformation induced on a cylinder). Continuing from

example 3.2.2, given a (full) binary odometer (X,B, µ, T ) withX =
∏∞

n=0 Z2

with product measure1 µ =
∏

i≥0 µi and AC entropies

hAC(µ) = lim inf
n7→∞

1

n

n−1∑
i=0

H(µi)

hAC(µ) = lim sup
n7→∞

1

n

n−1∑
i=0

H(µi)

If we take A to be a cylinder of length l and consider the induced odometer

(A,BC , ν, S) where S = T A and ν is the normalised push-forward measure

of µ. Then this measure has AC entropies

hAC(ν) = lim inf
n 7→∞

1

n

n−1∑
i=l

H(µi)

= lim inf
n 7→∞

1

n

n−1∑
i=0

H(µi)

= hAC(µ)

1Markov measure works equally well
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Similarly hAC(ν) = hAC(µ)

Example 4.2.3 (Kakutani equivalence). Two ergodic transformations (X,B, µ, T )

and (X ′,B′, µ′, T ′) are Kakutani Equivalent if there exists subsets A,B such

that T A and T ′B are isomorphic. This is also a Hurewicz Equivalence if

we assume that both X,X ′ satisfy BV1. By theorem 4.2.1 both µ and µ′

are Hurewicz equivalent to their induced odometers. Since isomorphism is

also a Hurewicz equivalence (see section 3.3) the odometers on the spaces

X,A,B,X ′ are all Hurewicz equivalent.

4.3 Applications

Theorem 4.2.1 allows us to say a great many things about odometers that

satisfy BV1

Corollary 4.3.1. Given a type III0 nonsingular measure (X,B, µ, T ). If

the odometer of the associated flow is conservative, aperiodic and approx-

imately transitive then it is orbit equivalent to a product odometer. If, in

addition, (X,B, µ, T ) satisfies BV1, then the orbit equivalence is a Hurewicz

equivalence.

Proof. The orbit equivalence between (X,B, µ, T ) and a induced odometer

has been shown to be a Hurewicz equivalence by theorem 4.2.1. The induced
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odometer is isomorphic to a a product odometer [17, Prop. 6] and therefore

(X,B, µ, T ) is Hurewicz equivalent to a product odometer.

If in addition the product odometer from corollary 4.3.1 satisfies BV2

(see section 2.1), then the critical dimension is equal to the AC entropy [13].

Notice that ITPFI2 factors trivially satisfy BV2. Because Hurewicz equiva-

lence preserves the critical dimension, this lemma allows us to compute the

critical dimensions of measures of product type. This is to be contrasted

with corollary 2.1.20 which permitted computation of AC entropy for prod-

uct odometers, and some Markov odometers. By corollary 4.3.1, we have

been able to extend this to include Markov odometers which satisfy BV1

and are ITPFI2.

Of the measures that are not of product type, we can say

Corollary 4.3.2. Every type III0 Markov odometer (X,B, µ, T ) is orbit

equivalent to the full Markov odometer (as in example 2.1.4). If, in ad-

dition, (X,B, µ, T ) satisfies BV1, then the orbit equivalence is a Hurewicz

equivalence.

Proof. It was shown in [10, Theorem 1.1] that every nonsingular measure

(X,B, µ, T ) is orbit equivalent to a full Markov odometer. Again this orbit

equivalence was born of an induced odometer [10, p. 121] which is the full
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Markov odometer. By theorem 4.2.1 the orbit equivalence is an Hurewicz

equivalence.

Again, we have from corollary 2.1.20 sufficient conditions for computing

the critical dimension of a Markov odometer. If the induced odometer

can be chosen to satisfy the conditions of corollary 4.3.1, then the critical

dimension can be computed for the induced odometer and is equal to the

critical dimensions of (X,B, µ, T ) by theorem 2.1.26.
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