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Abstract

Simulation has been used to model combat for a long time. Recently, it has been
accepted that combat is a complex adaptive system (CAS). Multi-agent systems
(MAS) are also considered as a powerful modelling and development environment
to simulate combat. Agent-based distillations (ABD) - proposed by the US Marine
Corp - are a type of MAS used mainly by the military for exploring large scenario
spaces. ABDs that facilitated the analysis and understanding of combat include:
ISAAC, EINSTein, MANA, CROCADILE and BactoWars. With new concepts
such as networked forces, previous ABDs can implicitly simulate a networked force.
However, the architectures of these systems limit the potential advantages gained
from the use of networks.

In this thesis, a novel network centric multi-agent architecture (NCMAA) is pro-
posed, based purely on network theory and CAS. In NCMAA, each relationship
and interaction is modelled as a network, with the entities or agents as the nodes.
NCMAA offers the following advantages:

1. An explicit model of interactions/relationships: it facilitates the analysis of
the role of interactions/relationships in simulations;

2. A mechanism to capture the interaction or influence between networks;

3. A formal real-time reasoning framework at the network level in ABDs: it
interprets the emergent behaviours online.

For a long time, it has been believed that it is hard in CAS to reason about emerging
phenomena. In this thesis, I show that despite being almost impossible to reason
about the behaviour of the system by looking at the components alone because of
high nonlinearity, it is possible to reason about emerging phenomena by looking at
the network level. This is undertaken through analysing network dynamics, where
I provide an English-like reasoning log to explain the simulation.

Two implementations of a new land-combat system called the Warfare Intelligent
System for Dynamic Optimization of Missions (WISDOM) are presented. WISDOM-
I is built based on the same principles as those in existing ABDs while WISDOM-II
is built based on NCMAA. The unique features of WISDOM-II include:

1. A real-time network analysis toolbox: it captures patterns while interaction is
evolving during the simulation;

2. Flexible C3 (command, control and communication) models;
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3. Integration of tactics with strategies: the tactical decisions are guided by the
strategic planning;

4. A model of recovery: it allows users to study the role of recovery capability
and resources;

5. Real-time visualization of all possible information: it allows users to intervene
during the simulation to steer it differently in human-in-the-loop simulations.

A comparison between the fitness landscapes of WISDOM-I and II reveals similar-
ities and differences, which emphasise the importance and role of the networked
architecture and the addition of strategic planning.

Lastly but not least, WISDOM-II is used in an experiment with two setups, with and
without strategic planning in different urban terrains. When the strategic planning
was removed, conclusions were similar to traditional ABDs but were very different
when the system ran with strategic planning. As such, I show that results obtained
from traditional ABDs - where rational group planning is not considered - can be
misleading.

Finally, the thesis tests and demonstrates the role of communication in urban ter-
rains. As future warfighting concepts tend to focus on asymmetric warfare in urban
environments, it was vital to test the role of networked forces in these environments.
I demonstrate that there is a phase transition in a number of situations where highly
dense urban terrains may lead to similar outcomes as open terrains, while medium
to light dense urban terrains have different dynamics.
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Chapter 1

Introduction

1.1 Background

Decision makers are usually faced with a large number of threats and ultimately try

to make decisions in such a way that vulnerabilities are mitigated before the imple-

mentation and execution of these decisions. Vulnerabilities are holes in a security

system, tactic, operation or plan. Red teaming (Mateski 2004; Sandoz 2001; DOD

2003) is a connotation for playing the devil; trying to penetrate the mind of the

enemy or competitor to imitate their behaviours; understanding risk in the eyes of

the opponent and mitigating vulnerabilities before it is too late.

Defence organizations (DOD 2003) have identified red teaming as a valuable activity

to mitigate risk and challenge plans and tactics. It is common to say “we need to

avoid risks”. Red teaming is a risk assessment activity which answers questions such

as: what are these risks and what are their natures? how do these risks come to exist

in the first instance? who can create them to be able to understand and avoid them?

how can we defend ourselves against these risks? what are their consequences? etc.

Exploiting vulnerabilities to mitigate risk can be done by human-based red teaming,

where a force is divided into two teams; one simulating the enemy (red team) while
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the other simulating friends (blue team). Defence uses this approach in its operation

exercises. However, this approach is extremely expensive (Yang et al. 2004) and

does not enable defence analysts to explore all aspects of a situation. Computer

simulations of multi-agent systems (MAS), among others, are used for software-

based red teaming. These simulations explore abstract higher level scenarios of

different vulnerabilities in a plan or operation. Once the weaknesses in the system

are identified and a risk analysis is conducted, human-based red teaming can be

used in a more focused way to increase the fidelity of the analysis.

Traditionally, defence analysts adopted what are known as Lanchester Equations to

model and theorize about combat attrition (Ilachinski 1997; Ilachinski 2000). Lanch-

ester Equations were introduced by F. W. Lanchester in 1916 (Lanchester 1916) as

a set of linear dynamic equations that treat attrition as a continuous function over

time. The set of equations is intuitive and easy to apply. However, such models,

which are based on mathematical equations and detailed physical description of

combat, can only provide an ideal model of military operations that is too abstract

and far from realistic. The shortcomings of Lanchester equations have been listed

and analyzed in the literature (Ilachinski 2000; Barlow and Easton 2002; Ilachinski

1999; Lauren 2000). The main drawbacks of Lanchester equations are: they are un-

able to deal with the dynamics of nonlinear interaction between the combating sides;

they are incapable of accommodating spatial variations of forces; the nonlinearity

of warfare entails that small changes in certain critical conditions can profoundly

change the outcomes; in Lanchester equations, there is no link between movement

and attrition; the participants have to interact with hostile or neutral forces and

respond to their actions, where the environment changes its state and causes new

responses from both sides; and Lanchester equations cannot integrate human fac-

tors into combat, such as emotions, aggressiveness, fear, anger, team cohesion and

trust. This makes it difficult to anticipate the behaviours of individuals by using

Lanchester equations. Moreover, the nature of terrain is usually neglected and it is

not possible to model the suppressive effects of weapons.
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With the advent of complex systems theory and its applications in warfare studies

(Barlow and Easton 2002; Ilachinski 2000; Ilachinski 1999; Lauren 2000), researchers

have realized that models based on complex systems theory, particularly the set of

agent based simulation tools, may address the above shortcomings of traditional

equation based models of warfare. A combat can be modelled as a complex adaptive

system (CAS), which adapts, evolves and co-evolves with its environment (Schmitt

1997; Lauren 2000). A complex system can be thought of, generally speaking, as

a dynamical system composed of many nonlinearly interacting parts and its overall

behaviours stems from some basic set of underlying principles. Agent based simu-

lations are based on the idea that the global behaviour of a CAS derives from the

low-level interactions among its constituent agents. By modelling an individual con-

stituent of a CAS as an agent, one may simulate a real world system by an artificial

world populated by interacting processes. It is particularly effective to represent real

world systems which are composed of a number of nonlinear interacting parts that

have a large space of complex decisions and/or behaviours to choose from (Ilachinski

1997). Thus, these new promising methodologies, agent based simulations, provide

an opportunity to analyze combat by focusing on the behaviours of and interactions

between the participating entities instead of the performance of specific weapons or

sensors.

1.2 Motivation, hypothesis and objective

In October 1995, Project Albert was launched in the United States Marine Corps

Combat Development Command in Quantico. They attempted to use modern infor-

mation technologies to explore “what if” questions in military operations. Project

Albert tried to capture the emergent behaviour in synthetic environments by looking

at the system as a whole rather than decomposing the system into parts. Project

Albert directly led to the emergence of two agent based distillation systems (ABDs)

for warfare: ISAAC (Irreducible Semi-Autonomous Adaptive Combat) (Ilachinski

1997; Ilachinski 2000) and EINSTein (Enhanced ISAAC Neural Simulation Toolkit)
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(Ilachinski 2000; Ilachinski 2004). They created a new era for warfare analysis. They

were the first two systems which modelled warfare as a CAS. Almost all later ABDs

for warfare were inspired by these two systems. The meta-technique called data

farming was also first introduced and used to explore the problem space with huge

amounts of data generated from thousands or millions of distillations.

With the success of Project Albert, several ABDs for warfare have been developed

and employed in military analysis. MANA (Map Aware Non-uniform Automata)

(Lauren 2000; Lauren and Stephen 2002b; Galligan and Lauren 2003; Galligan 2004)

was developed by the Defence Technology Agency, New Zealand. MANA first in-

troduced the concept of way-points, internal situational awareness (SA) map and

event-driven personality changes. These new features largely improved the adapt-

ability of the agents to a changing battlefield. The version released at the end of 2004

concentrated on network centric communication, including different parameters of a

communication network, such as reliability, accuracy, capacity and latency. Bacto-

Wars (White 2004) from the Defence Science and Technology Organisation (DSTO),

Australia, focused on problem representation and attempted to provide a simple

framework which allows analysts to model real world problems more adaptively and

flexibly. CROCADILE (Comprehensive, Research Oriented, Combat Agent Distilla-

tion Implemented in the Littoral Environment) (Barlow and Easton 2002) from the

University of New South Wales (UNSW) at the Australian Defence Force Academy

(ADFA) was the first system to use a 3D continuous environment with a higher

fidelity than that of ISAAC, EINSTein and MANA.

These systems have facilitated the analysis and understanding of combat. For ex-

ample, MANA has been used to explore factors for success in conflict (Boswell et al.

2003). They offer an opportunity to analyse the behaviours that we would intu-

itively expect in the battlefield. Through the use of these systems, defence analysts

are able to gain understanding of the overall shape of a battle and those factors

which are playing key roles in determining the outcome of a battle. However, the

drawbacks are also obvious:
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• It is hard to capture the underlying structural interaction between agents.

Although existing ABDs embed the structural interaction between agents,

there is no explicit model for such interactions. Therefore, it is hard for defence

analysts to identify the roles of these interactions during the simulation, which

is a crucial point of a CAS.

• There is no connection between tactics and strategies. Existing ABDs are

developed mainly based on the reactive agent architecture (Wooldridge and

Jennings 1995; Nwana 1996; Sycara 1998; Wooldridge 1999) which focuses on

tactics. There is almost no interaction between tactics and strategies being

modelled by existing ABDs.

• There is no reasoning on emerging behaviours during the simulation. Due to

the high degree of nonlinear interaction between agents, it is impossible to

reason at the agent level, which makes it hard to understand the emerging

behaviours exhibited by the simulation.

• It is hard to validate and verify the system. System behaviours emerge from

simple low level rules in any CAS. In current ABDs, agents are programmed

without an underlying theoretically sound software architecture. Therefore, it

is very difficult to validate and verify them.

• It can be a computationally expensive exercise in some systems. This can be

because of a bad design, unnecessary fidelity, or fancy tools without proper

modelling.

• Current ABDs are based on conventional military tactics and tend not to be

approached from an overarching systems view. Concepts such as network cen-

tric warfare (NCW) (Alberts et al. 1999; Alberts and Garstka 2001; Wilson

2004), with its inherent complexity and interdependency, present challenges

to identifying correct inputs at the entity level. Thus, techniques addressing

higher level manipulations must be employed. The concept of NCW advocates

that information, knowledge and understanding can be efficiently shared by
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force elements if sensor, engagement, and the command and control system are

effectively and securely connected through a series of networks. Such enhanced

situation awareness will allow force elements to access the right information

at the right time. It is anticipated that it would produce information superi-

ority in battle field operations. In turn, information superiority dramatically

increases the power of combat by speeding up the efficiency of command and

making better decisions.

These drawbacks limit the ability of existing ABDs to study real world problems

with high nonlinear interactions, e.g. NCW. The hypotheses of this thesis are:

Hypothesis 1: Results obtained from ABDs where there is no strategic

planning or no coordination among agents can be misleading and cannot

be generalized.

Hypothesis 2: Network analysis and interaction are suitable for rea-

soning at the group level (explaining emergence) in complex systems.

In this thesis, the following objectives are achieved to address above drawbacks.

1. Establish an understanding of combat as a CAS.

2. Identify theoretical causes of the drawbacks in existing ABDs for combat, and

propose an innovative framework or agent architecture to overcome them.

3. Develop a theoretically sound ABD with strategic planning and characterize

the solution space in military operations.

4. Conduct scenario based military analysis on military operations in the urban

terrain (MOUT) to test our hypotheses.
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1.3 Organisation of the thesis

The thesis is composed of nine chapters. The first chapter presents a brief back-

ground of the research topic, followed by the motivation and objectives of this thesis.

Then the outline of the thesis is described. The chapter concludes with the major

contributions of this thesis.

In chapter 2, a comprehensive literature review is undertaken in modelling and

simulation of combat. The review consists of three aspects: traditional models

and simulations, current agent based models and simulations, and emergence. This

achieves part of objective 1 and 2.

In chapter 3, WISDOM-I is proposed. The features and characteristics of this system

are described in detail. This achieves part of objective 1 and 2.

In chapter 4, a fitness landscape analysis is conducted based on WISDOM-I. Such

an analysis is used to identify the degree of difficulty to search for optimal solutions

in military operations. This achieves part of objective 1 and 2.

In chapter 5, the essential characteristics of a MAS for CAS is first investigated.

Then NCMAA is proposed and its implementation is discussed by combining net-

work theory and CAS. The system development cycle is presented at the end of the

chapter. This achieves part of objective 2.

In chapter 6, WISDOM-I is re-designed and re-developed as WISDOM-II. A number

of unique features are proposed and discussed in detail. At the end, a simple scenario

analysis is conducted to exemplify the usage of WISDOM-II. This achieves part of

objective 3.

In chapter 7, the fitness landscape is analysed to characterize the solution space of

certain military operations based on WISDOM-II. The results are compared with

those based on WISDOM-I from chapter 4 to show the difference between the two

versions. This achieves part of objective 3.
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In chapter 8, a series of military analyses is conducted on MOUT. A set of scenarios

and urban terrains are built. Then the effect of force size, firepower and commu-

nication on the outcomes of combat are investigated and analysed. A number of

interesting findings are discussed. This achieves objective 4.

Chapter 9 is the last chapter of the thesis. It concludes the thesis with a discussion

of possible directions for future research.

1.4 Major contributions

The major contributions of the thesis fall into three classes:

1.4.1 MAS for CAS

A novel multi-agent architecture “NCMAA” is proposed in the thesis (Chapter 5).

NCMAA is based purely on social network analysis and CAS principles. The system

is designed on the concept of networks, where each operational entity in the system

is either a network or a part of a network. The engine of the simulation is also

designed around the concept of networks. While many MASs can be considered as

operating on the concept of networks, designing and implementing the system on the

concept of network is a more powerful approach because it provides the foundations

for a new type of reasoning in these systems.

Existing network analysis focuses on the dynamics within one single network. How-

ever the interaction between networks has little been explored. This is a drawback

in network analysis which we try to address in this thesis. The interaction between

networks is the key to understand the system’s behaviour.

The most important advantages of NCMAA are concluded as follows:

• It easily analyses the interaction between agents. MAS consists of a large
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number of interacting agents. Existing architectures, e.g. BDI or reactive

agents pay more attention on how to model an individual agent. Some efforts

have been made to model agents at the group level, such as Agent-Group-Role

structure (Ferber and Gutknecht 1998) and YAMAN (Savall et al. 2001).

However, there is no explicit structural presentation for interactions among

agents. The new architecture is built on network theory. Each type of in-

teraction or relationship among agents forms a network. Conducting network

analysis will allow analysts to gain insight of these interactions and therefore

gain better understanding of the whole system.

• It provides a chance to capture the interaction or influence between interac-

tions. Based on a real-time network centric reasoning for the reciprocal inter-

action of networks, policy analysts, decision makers or any other users may

capture the influence of one relationship on another relationship easily. Com-

bining this with the previous point, NCMAA may help analysts to capture,

analyse and understand the dynamics or patterns within a CAS.

• It establishes for the first time a formal framework for reasoning at the group

level in ABDs. There is no reasoning in the reactive agent architecture while

the reasoning is conducted at the individual level which leads to quite low

scalability of the system in the cognitive agent architecture. No evidence

prevents reasoning at the group level. A reasoning engine which conducts

reasoning at the group (network) level is proposed. Such a reasoning engine

conducts real time reasoning to allow analysts to understand the results during

the simulation.

1.4.2 Military analysis

A new ABD for combat “WISDOM-II” is proposed in the thesis, which is the first

simulation system purely inspired by both network theory and CAS (Chapter 6).

With NCMAA, WISDOM-II facilitates the analysis and understanding of warfare.
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WISDOM-II is the first ABD for combat with built-in network analysis tools. Based

on network theory, WISDOM-II conducts network analysis automatically for each

type of interaction within the system. Therefore during the simulation, it is easy

to analyse the dynamics and capture the patterns of such interactions as they are

evolving.

WISDOM-II is the first ABD for combat that is able to provide group-level real-time

reasoning during the simulation. Based on a pre-defined causal model, reasoning is

done through a sequential bi-variate time-series auto-correlation with path analysis

and root cause analysis. Based on this real-time reasoning, emerging behaviours can

then be interpreted in natural language and presented to defence analysts. Even

without any knowledge of information technology, the defence analyst may still

understand what is going on during the simulation.

WISDOM-II is the first ABD for combat which connects tactics and strategies. Any

military operation involves different decision making mechanisms at different levels.

The interaction between decision making mechanisms at different levels directly

influences the outcome of military operations. WISDOM-II provides a platform

for defence analysts to identify the role of decision making mechanisms in military

operations.

WISDOM-II is the first ABD for combat with an explicit model of recovery in mili-

tary operations. The recovery capability plays a crucial role in military operations.

However it has not been addressed by existing ABDs. A model of artificial hospital

is proposed and implemented in WISDOM-II. With this model, defence analysts can

study the interaction between resource requirements and recovery capabilities.

WISDOM-II is the first ABD for combat which can employ heterogenous agents at

the squad level. Although it increases the complexity of the system, it is more close

to reality and the dynamics can be analysed easily through the above advantages of

the new architecture. WISDOM-II supports various levels of command and control

(C2) networks. It allows defence analysts to investigate the effect of C2 structure
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on the performance of a force with the aid of NCMAA.

Communication plays a crucial role in modern warfare. A comprehensive model

of communication network is proposed and developed in WISDOM-II. The model

includes a set of parameters, such as range, loss probability, latency, noise, etc.

With such a model of communication network, various communication types can be

modelled and simulated in WISDOM-II, such as point to point communication and

broadcast communication, and direct communication and indirect communication.

Initializing the communication network with different types of networks, e.g. small

world network or scale free network, allows defence analysts to study the role of

communication network topology in combat.

Global urbanization causes the focus of military operations to shift from open terrain

to urban terrain. The features of urban terrain largely influence various aspects of

military operations. However, the challenges in MOUT have little been explored in

the literature. In the thesis, a set of stylised urban terrains is created, on which a

series of scenarios are simulated by using WISDOM-II. The results are then analysed,

based on which a number of findings are summarized (Chapter 8).

1.4.3 Evolutionary computation

Evolutionary computation (EC) techniques have widely been used in searching for

optimal solutions for a problem. However, their value has not been fully recognized

in the military domain. In the thesis, EC techniques are adopted through a fitness

landscape analysis (Chapter 4 and 7).

Genetic algorithm (GA) and the fitness landscape have been adopted in ISAAC

(Ilachinski 1997) and EINSTein (Ilachinski 1999) to search for optimal solutions for

a predefined scenario. However, the characteristics of the solution space in combat

simulations have not been studied. It is essential to understand the underlying

nature of the solution space to gain insight of the problem difficulties. The fitness

landscape analysis conducted in the thesis presents the characteristics of solution
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space associated with warfare simulations by both WISDOM-I and WISDOM-II. It

helps analysts to gain better understanding of the nature of warfare, the difficulty of

these problems, and gain insights into possible performances of different solutions.



Chapter 2

Multi-Agent Systems and Combat

2.1 Introduction

Thousands of years ago, human beings had already started to study warfare. The

most famous book is called The Art of War (Griffith 1963) written by Sun Tzu,

the Chinese strategist, in about 500 B.C. With economic and social developments,

war has continuously been evolving. Since it is undesirable to provoke a real war

to test a strategy, red teaming (Mateski 2004; Sandoz 2001; DOD 2003) has widely

been adopted in military analysis. Almost all countries conduct military exercises to

test force capabilities, new concepts and technologies. However, high fidelity human

based red teaming is extremely expensive in terms of money and time. Recently low

fidelity computer-based red teaming has been recognized as a very valuable tool in

military analysis (Ilachinski 2004).

This chapter begins with a brief overview of red teaming in combat. Then conven-

tional combat models and simulation systems are reviewed followed by a detailed

survey of agent based combat systems. Finally, the concept of emergence is re-

viewed. Figure 2.1 presents a structural overview of modelling and simulation of

combat and Table 2.1 is a summary of the literature review in this chapter.
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Figure 2.1: Overview of modelling and simulation of combat

2.2 Red teaming in combat

Red teams and red teaming processes have long been used as tools by various or-

ganizations such as government, defence and commercial organizations, to study a

problem, a system, a plan, the way of thinking or a concept by anticipating adver-

sary behaviours. Their purpose is to mitigate an organization’s risk and increase

its opportunities. Usually there are two sides in the red teaming process: “BLUE”
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Table 2.1: Summary of literature review

Topic Year Authors
Red Teaming 2001 Sandoz
in Combat 2003 DoD

2004 Mateski
Lanchester 1916 Lanchester
Equations 1964 Dolansky

1984 Battilega and Grauge
1987 Athans

Lepingwell
1995 Hartley
1998 Fricker
2001 Aragon

Chen and Chu
2002 Sheldon
2003 Lucas and Turkes

Conventional 1994 Ceranowicz
Combat 1995 Bennington
Models Caldwell and Wood

1997 Larkin
1998 Sawyers
2000 Maxwell
2001 Stone and McIntyre

Wittman and Harrison
2002 Fields
2003 Simlote
2004 Bates and McIntyre
2005 MSRR
2006 CACI International Inc (a)

CACI International Inc (b)
CACI International Inc (c)

Multi-Agent 1986 Brooks
Based 1987 Chapman
Models Georgeff and Lansky

Reynolds
1990 Brooks
1991 Kaelbling

Maes
Brooks (a)
Brooks (b)

1995 Rao and Georgeff
Wooldridge and Jennings
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Topic Year Authors
1996 Nwana
1997 Bonasso, Firby, Gat, Kortenkamp, Miller, and Slack

d’Inverno, Kinny, Luck, and Wooldridge
1998 Sycara

Huhns and Singh
1999 Ferber

Wooldridge
2000 Bryson
2002 Dastani and Torre

Nolfi
Multi-Agent 1995 DIAS
Toolkits 1996 Minar, Burkhart, Langton, and Askenazi

1998 Campbell and Hummel
1999 Wilensky and Stroup
2002 Gilbert and Bankes

Inchiosa and Parker
Kota
Serenko and Detlor

2003 Collier, Howe and North
2004 Luke, Cioffi-Revilla, Panait, and Sullivan

Tisue and Wilensky
Tobias and Hofmann

2005 Agent Oriented Software Pty. Ltd. (JACK)
2006 North, Collier and Vos

Multi-Agent 1992 Beyerchen
Combat 1997 Ilachinski
Models Schmitt

1998 Holland
1999 Beckerman

Goldstein
Ilachinski

2000 Brown
Ilachinski
Lauren

2001 Grieger and Gill
Lauren (a)
Lauren (b)
Lauren (c)
Parunak and Brueckner

2002 Barlow and Easton
Cioppa
Epstein
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Topic Year Authors
Grieger
Lauren and Stephen
Lauren
Parunak, Brueckner and Sauter
Odell

2003 Bar-Yam
Barlow
Galligan and Lauren
Galligan, Anderson, and Lauren
Ilachinski

2004 Bar-Yam
Galligan
Ilachinski
Parunak and Brueckner
White

2005 De Wolf and Holvoet
Wheeler

2006 Perry

and “RED”. The common role is that the “BLUE” side attempts to find the risk

through the eyes of an adversary or competitor, the “RED” side. Mateski proposed

a broad definition of red teaming (Mateski 2004).

“Red teaming involves any activity - implicit or explicit - in which one

actor (“BLUE”) attempts to understand, challenge, or test a friendly

system, plan, or perspective through the eyes of an adversary or com-

petitor (“RED”)”

Red teaming is a connotation for playing the devil; trying to penetrate the mind of

the enemy or competitor and simulate their behaviours; understanding risk in the

eyes of the opponent and mitigating vulnerabilities before it is too late. Red teams,

in this context, are specially selected groups designed to anticipate and simulate the

decision-making and behaviours of potential adversaries. Red teaming has already

been recognized as an especially important tool by defence organizations (DOD

2003). It can deepen and widen understanding of options and behaviours of adaptive

adversaries which help us find risk and vulnerabilities in existing strategies, postures,
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plans, programs, and concepts, challenge the people which adhere to old theory and

doctrine that previously led to success, and train warfighters to be veteran. Defence

organizations realized that red teaming can also be applied into all levels of military

activities (Sandoz 2001; DOD 2003):

• Strategic level: challenge strategy assumptions and visions;

• Operational level: challenge force intelligence, organization and operation

plan;

• Tactical level: challenge military training and system vulnerabilities.

Perceptions influence decision-making at all strategic, operational and tactical levels.

Each side seeks to capture the other’s intent and courses of action, and to maintain

an advantage that will lead to the fulfilment of its own strategy and objectives. Due

to the difference between societies, cultures and values, war has an inherently asym-

metric nature proved through military history. Red teaming provides the means

to simulate possible opponents by creating an environment where both sides try to

adapt to their opponent’s action. In such an environment the military can test,

improve and substantialize new concepts, e.g. NCW, by refining strategic, oper-

ational and tactical issues, e.g. doctrine, organization, training, material, leader

development, personnel and facilities issues (Sandoz 2001).

There are two types of red teaming: human-based red teaming and software-based

red teaming. In human-based red teaming, a real force is divided into two teams;

one simulating the enemy (red team) while the other simulating friends (blue team).

Defence uses this approach in their operations’ exercises. However, this approach is

extremely expensive and does not enable analysts to explore all aspects of a prob-

lem. Computer simulations of multi-agent systems are used for software-based red

teaming. These simulations explore abstract higher level scenarios of different vul-

nerabilities in a plan or operation. Once the weaknesses in the system are identified

and a risk analysis is conducted, human-based red teaming can be used in a more

focused way to increase the fidelity of the analysis.
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In order to conduct red teaming, a number of combat models and simulation systems

have been developed. Some of these models and simulations are reviewed later in

this chapter.

2.3 Conventional combat models

2.3.1 Lanchester equations

Traditionally, defence analysts adopted what is known as Lanchester Equations

(LEs) to model and theorize about combat attrition (Dolansky 1964; Lepingwell

1987; Chen and Chu 2001; Sheldon 2002; Lucas and Turkes 2003). LEs were intro-

duced by F. W. Lanchester in 1916 (Lanchester 1916) as a set of linear differential

equations that treat attrition as a continuous function over time and assume the

attrition is proportional to the force size in combat.

Suppose that there are two forces, the blue and the red. Bs(t) and Rs(t) are the

force size of the blue and red respectively, and αb and αr are the attrition coefficient

for the blue and red force respectively. The attrition coefficient is the amount of

attrition of one side caused by one unit of the other side. The LE linear law is

defined by Equation 2.1, which is used to model “indirect fire” between the two

forces. Both the blue attrition and the red attrition are proportional to the product

of the blue force size and the red force size.





dBs

dt
= − αbBs(t)Rs(t)

dRs

dt
= − αrBs(t)Rs(t)

(2.1)

The “direct fire” model of attrition is given by Equation 2.2, which is called the LE

square law. In this case, the blue attrition is proportional to the red force size while



CHAPTER 2. MULTI-AGENT SYSTEMS AND COMBAT 20

the red attrition is proportional to the blue force size.





dBs

dt
= − αrRs(t)

dRs

dt
= − αbBs(t)

(2.2)

Equation 2.3 is the LE mix law, which is used to model the situation that the blue

is killed through “direct fire” by the red team and the red is killed through “indirect

fire” by the blue team.





dBs

dt
= − αbRs(t)

dRs

dt
= − αrBs(t)Rs(t)

(2.3)

The LE logarithmic law is defined by Equation 2.4, which is used to model non-

combat losses (Sheldon 2002). The attrition of each force is proportional to its own

force size. It implies that the damage is caused by its own force.





dBs

dt
= − αbBs(t)

dRs

dt
= − αrRs(t)

(2.4)

LEs are very intuitive and therefore easy to apply. However they can only provide

an ideal model of military operations that is too abstract and far from realistic as

discussed in the previous chapter. Research on historical battles also shows that

LEs cannot accurately match historical attrition data (Battilega and Grauge 1984;

Hartley 1995; Fricker 1998; Lucas and Turkes 2003). However, because of their

simplicity, LEs are still widely used in military analysis.

2.3.2 Conventional combat simulations

2.3.2.1 ModSAF

ModSAF (Modular Semi-Automated Forces) (Ceranowicz 1994) is an interactive,

high resolution simulation system at entity level. It can simulate combined arms tac-
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tical operations up to the battalion level. It provides SAF (Semi-Automated Forces)

simulation capabilities in an open architecture with a set of software modules and

Computer Generated Forces (CGF) applications. These modules and applications

are used to model the battlefield including physical, behavioral and environmental

elements. ModSAF is a fully distributed system and allows unit simulation running

over many computers while allowing one operator to control the entire unit. This

open architecture allows it to scale up to the simulation of larger units while increas-

ing simulation realism. ModSAF consists of three components: the SAFstation, the

SAFsim, and the SAF-logger. The SAFstation (SAF workstation) provides the

graphical user interface for the user. The SAFsim (SAF simulator) simulates all the

entities, units, and environmental processes. Seven systems can be modelled in Mod-

SAF: air defence, intelligence, mobility and survivability, combat service support,

command and control, and fire support system. The SAF-logger records necessary

information during the course of the simulation. However, all human behaviours are

predefined and hard-wired in the source code in ModSAF. Therefore it is hard to

use it as an exploratory analytical combat engine in military analysis.

2.3.2.2 JANUS

Janus (Caldwell and Wood 1995) is an event-driven, multi-sided, ground and air-

ground simulation with conventional and chemical weapon systems. The computer-

generated forces (CGF) are simultaneously directed and controlled by a set of play-

ers for each side who only have limited knowledge of enemy units. It is played on

a computer-generated digitized terrain map. The terrain features include: eleva-

tion (i.e. contour lines), roads, rivers, vegetation, buildings, etc. All these features

are differentiated visually by different colours. The weapon system is modelled

through a series of detailed properties and the outcome of engagement is totally

based on predefined probability distributions. The operational functionality of vari-

ous kinds of systems in manoeuvre and artillery operations, such as direct fire, crew-

served, ground weapon system, artillery system and so on, can be easily simulated



CHAPTER 2. MULTI-AGENT SYSTEMS AND COMBAT 22

in Janus. The interactions of these subsystems and the impact of the environment,

e.g. weather, time of day and terrain features, on acquisition and engagement are

modelled at a high level of fidelity.

2.3.2.3 ELAN

ELAN (Extended LANchester model) (Sawyers 1998) is a simple land combat sim-

ulation for joint operations, developed by the U.S. Army Training and Doctrine

Command Analysis Center. It is a combat model at a medium level of resolution

and focuses on terrain and tactics. The maximum size of tactical terrain is two

kilometers. It is very fast and has a set of online analysis tools which allow users

to easily analyze the simulation outputs. ELAN can output detailed information

about killers and victims, both from unit on unit and weapon system on weapon

system perspectives.

2.3.2.4 OneSAF

OneSAF (Wittman and Harrison 2001; Fields 2002) is a real-time distributed in-

teractive simulation developed by the U.S Army Simulation, Training and Instru-

mentation Command. It can be used to model operations, systems and processes

from the individual combatant, such as soldiers, tanks, and helicopters, through

aggregate units to the Brigade level. The simulation can be run in a fully auto-

mated mode or under the control of human participants. The composibility of the

simulated entities, units, behaviours and the synthetic environment makes it very

flexible to develop various scenarios to explore the problem space. This flexibility

also allows the analysts to test and verify new concepts by creating new equipment

and behaviour combinations.
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2.3.2.5 CASTFOREM

The Combined Arms and Support Task Force Evaluation Model (CASTFOREM)

(MSRR 2005) is designed for evaluation of weapon systems and tactics in Brigade

and smaller combined arms conflicts. It is a two-sided, closed-form, event-sequenced,

high resolution simulation system for conventional and directed energy weapon sys-

tems with resolution to the item system level. Closed-form means it is not an

interactive simulation, like Janus. It does not require human participation. In

CASTFOREM, all events are stochastically modelled, e.g. probability of detection,

probability of hit, and probability of kill while line of sight is deterministic. It is

primarily used to model intense battle at Brigade or Battalion level up to one and

one half hours in length. It can be used to model a range of operations including

ammunition resupply, close combat, combat service support, logistics, fire support,

intelligence and electronic warfare, etc. However, since it is a high resolution simu-

lation system, designing a single scenario requires a very long time. Therefore, it is

not suitable for exploratory analysis (Ilachinski 2004).

2.3.2.6 Other simulation models

In addition to the above models, there also exist many other simulation systems,

such as JWARS (CACI 2006b; Maxwell 2000; Stone and McIntyre 2001; Simlote

2003), JMASS (CACI 2006a; Larkin 1997), and JSIMS (CACI 2006c; Bennington

1995). All these simulation systems are very useful and widely employed for various

purposes, such as training and defence operation analysis. However, the shortcom-

ings are also well documented. As discussed by Ilachinski (Ilachinski 2004), and

Bates and McIntyre (Bates and McIntyre 2004), most of these systems are very

complex, high resolution, usually hard-codes features in source code or hardware,

are hard to interface with, have limited data collection and analysis facilities, un-

able to model information operations, require real-time run times, etc. High fidelity

and real-time mode make these simulation systems very difficult to be used as ex-
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ploratory analysis tools for defence (Ilachinski 2004). Exploratory analysis requires

the development of smaller, low fidelity, abstract combat simulation systems which

may help defence analysts to develop and verify concepts and principles, and answer

“what-if” questions in military operations.

2.4 Agent architectures and simulation toolkits

Agent-based simulation is a very popular exploratory tool for the study of CAS.

The key idea of CAS is that the global behaviours of a real system emerge from

simple, low-level interaction among the system constructive components. Therefore

analyzing the interaction among agents, the dynamics and emergent behaviours

through simulations may help analysts to gain insight into the real system which is

modelled as a MAS.

The fundamental building block of most CAS models is the adaptive, autonomous,

intelligent agent. The way to design and build agents is called agent architecture,

which specifies how to define the constructive component modules of the agent, the

interactions between these modules, the way to build knowledge, the actions taken

by the agent and the control mechanism (Maes 1991; Kaelbling 1991; Ferber 1999).

When building a MAS for a real system, the system developer has to answer such

questions as (Ferber 1999): how can the various parts of an agent be integrated so

that it may behave as what the designer expects?, does the agent have a symbolic or

logic representation of its environment?, what kind of decision mechanisms does the

agent use to respond to its environment?, etc. There are two schools at the opposite

ends of agent architectures: cognitive and reactive agent (Wooldridge and Jennings

1995; Sycara 1998; Huhns and Singh 1998; Ferber 1999; Wooldridge 1999; Bryson

2000; Dastani and Torre 2002).
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2.4.1 Cognitive agents

The cognitive agent can be seen as a knowledge based system, which includes all

the necessary data and knowledge to make plans, to collect necessary resources,

to respond to its environment and to interact with other agents by cooperating,

communicating and negotiating in order to achieve its goals. Usually the cognitive

agent is intentional, which means all actions are taken in order to achieve its goals; is

rational, which means the actions it takes always maximise its own utility; and has

a representation, usually a logical representation of its environment, which is used

to conduct reasoning. With its internal representation and reasoning mechanisms,

the cognitive agent may function independently of other agents and fulfil relatively

complicated tasks individually. These features make it more flexible in terms of its

behaviour. Since it conducts reasoning based on its internal representation of the

world, the cognitive agent is able to memorize and analyze the situations it encoun-

ters. Therefore the cognitive agent may predict the possible outcomes of its actions

and then make plans for achieving its goals (Ferber 1999). A typical example of

the cognitive agent architecture is BDI (Belief-Desire-Intention) (Rao and Georgeff

1995; Wooldridge and Jennings 1995; Nwana 1996; Sycara 1998; Wooldridge 1999).

The BDI architecture is established on the concept of practical reasoning, which

includes two processes: deciding on what the agent needs to achieve and deciding

on how to achieve it. Each agent has three key internal models: belief, desire and

intention. The belief of an agent represents its knowledge of its environment and

itself. As the environment changes, the agent attempts to accumulate experiences,

checks the consistency of its beliefs with the accumulated experiences, and modifies

its beliefs accordingly. Based on its current beliefs, the agent generates a number of

options and selects one of them as its goal or desire. The agent then chooses one of

the many possible paths to reach its goal or satisfy its desire. The path chosen by

an agent represents its intention.

The Procedural Reasoning System (PRS) (Georgeff and Lansky 1987; d′Inverno

et al. 1997) is developed on the BDI architecture. PRS consists of four components
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connected by an interpreter which directs the process of acting, sensing and rea-

soning. The first component is the database of beliefs or facts about the world. It

consists of the knowledge of the environment and the internal states of the agent.

The second component is a set of desires, goals or tasks. It is represented as a series

of behaviours the system might execute. The third component is a set of plans.

They are pre-defined procedures to express the actions and test to achieve the goals

or to react to stimulations. These procedures also define the way to manipulate the

belief database to generate the next action or perhaps to produce new knowledge.

The last component is a sequence of intentions. It specifies the current operating

procedures and the series of procedures that will be operated one after another.

Through such architecture, PRS could conduct meta-level reasoning, e.g. how to

select procedures from a set of procedures.

BDI provides human-like reasoning processes. First it decides what to achieve, then

selects a way from possible options and finally takes an action to achieve it. It is

intuitive and easy to understand. However, to obtain a logical representation of

a problem, two main issues arise (Wooldridge and Jennings 1995; Bryson 2000):

how to transfer a real world problem to a logical description and how to represent

information of real world entities and processes in a logical format. Since any action

is selected through a series of reasoning on the sophisticated representation about the

world, scalability is an issue when working with BDI. In addition, Ramamohanarao

(Ramamohanarao et al. 2001) argued that current BDI models lack concurrent

control, recoverability, and exception handling mechanisms. Some efforts have been

made to address these issues. Minsky (1986) proposed an alternate solution to

formal logic-based systems. He viewed the human mind as a society of numbers of

connected mindless agents. Minds rise from the organisation of interactions between

agents instead of from a unified and coherent reasoning. In order to formalise social

functions, Castelfranchi (2001) proposed a learning-without-understanding process

as non-intentional mental processes. The intentional and rational system of the

agent is supersedes by the a metalevel controller.
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2.4.2 Reactive agents

The reactive school advocates that exhibiting intelligent behaviours in a system

does not require each agent within the system to be intelligent individually, i.e to

have a representation about the world and a reasoning mechanism (Ferber 1999;

Nolfi 2002). Intelligence can be generated by the interactions between agents, and

between agents and their environment where they are situated. The intelligent

behaviours may emerge from a set of simple local rules (Brooks 1990; Brooks 1991a;

Brooks 1991b). The reactive agent is directed either by its internal drives, such as the

motivation mechanism which forces it to accomplish some tasks (e.g. maintaining its

energy level), or external stimulations based on which set of rules the agent uses to

make decisions. Unlike BDI agents, reactive agents do not have any representation

of their environment or any reasoning mechanism. Instead they take actions based

on the stimulus received from the environment or other agents. Reactive agents

do not make any plans, they make decisions according to the limited information

available to each of them and the current status of their environment. Although each

individual reactive agent is not intelligent when compared to a cognitive agent, the

power of reactive agents comes from their capacity to form a group and the capacity

for adaption and evolution which emerges from their interactions. The intelligence

in the reactive agent architecture is exhibited at the group level rather than the

individual level, e.g. swarm intelligence of an ant colony.

The reactive agent architecture is simple, economic, and robust, and can scale up

well because there is no representation about the world and reasoning engine. The

intelligence comes from a population of agents which allow the reactive agent ar-

chitecture to exhibit a high level of fault tolerance. In addition, since its actions

are selected purely based on sensing, the reactive agent reacts fast to changes in

the environment. This feature makes the system agile. Furthermore, any action is

taken based on current information because there is no need to store information.

Thus, there is no problem associated with knowledge fusion.

However, several weakness have been identified. The lack of memory may make
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it very hard to improve performance over time of reactive agents (Sycara 1998;

Wooldridge 1999). Without planning and inference mechanisms, the reactive agent

does not necessarily reason about its actions and it is hard to understand the

relationship among local behaviours, environment and global emerged behaviours

(Wooldridge 1999). Because they act upon the local information accessible to each

of them, they may act unpredictably and sometimes the system can exhibit unstable

behaviours (Sycara 1998). Finally, the mechanism of selecting actions in the reactive

agent architecture is predesigned by the developer. This limits the complexity of

the problems which can be addressed by these systems (Bryson 2000).

The typical example of the reactive agent architecture is the subsumption agent

architecture proposed by Brooks (1986). The subsumption architecture breaks an

agent into vertical modules, each of which is responsible for a limited type of be-

haviours. Each module is computationally simple and independent, and consists

only of finite state machines. A finite state machine explicitly specifies the states

the module can be in and also defines the output states that can be reached from

a given state and the input to the machine. The modules function in parallel. The

interactions between the modules are predefined, fixed and effected through a dom-

inance relationship. If two modules are in conflict, the result from the dominated

module will be ignored. Although they are extremely simple without any explicit

reasoning, the resulting systems still exhibit the intelligence and ability to accom-

plish complicated tasks.

Another example of the reactive agent architecture is Reynolds’s Boids model (Reynolds

1987), a very famous artificial life model, which attempts to model flocking behaviour

in nature. There are only three very simple “steering rules” to control the behaviours

of the agent (called boids) in the Boids model:

• Separation: maintain certain distance with other local boids;

• Alignment: move towards the centre position of local boids;

• Cohesion: try to match velocity with local boids.



CHAPTER 2. MULTI-AGENT SYSTEMS AND COMBAT 29

Although these three rules are very simple, the interactions between simple be-

haviours of individuals do produce complex organized group behaviour, a believable

flocking behaviour. The model also demonstrates the unique property of complex

systems that a complex system behaviour can emerge from a set of local simple

rules.

2.4.3 Hybrid agents

Due to the limitations of both architectures, for most real world problems neither

purely cognitive architecture nor purely reactive agent architecture is appropriate.

Therefore, many researchers have been trying to develop a hybrid strategy, where a

reactive system is designed with a cognitive planner. Usually, a hybrid architecture

consists of two components: a cognitive part, containing a symbolic world model

and reasoning engine, which develops plans and makes decisions; and a reactive

part, which is able to react to stimulations from the environment (Wooldridge and

Jennings 1995).

Typically, hybrid systems are implemented with two or three layers in a hierarchy

(Wooldridge and Jennings 1995; Bryson 2000). The top layer is a traditional con-

structive planner and deals with the information at a high level of abstraction. It

manipulates or generates a representation about the world, makes long term plans

or deals with issues, such as cooperation, coordination and negotiation. It does not

act directly on behaviour primitives. The bottom layer is a reactive actuator, which

makes decisions directly based on its raw sensor inputs and a set of predefined rules.

The middle layer has a kind of implicit knowledge and predefined plan fragments. It

selects plans based on the current situation rather than make plans (Bryson 2000).

An example of a hybrid architecture is the 3T system (Bonasso et al. 1997), which

includes three layers from bottom to top: skill manager, sequencer and planner. The

bottom layer of skill managers is the reactive layer in the system, which includes a

set of situated skills. Each skill is specified by the input, output, and when and how
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it functions. The role of the reactive layer is to control real-time behaviour. The task

of the sequencer is to coordinate the skills and configure the skills for the current

situation. The role of the sequencer is to control the order of real-time behaviours.

The planner is the cognitive layer in the system, which makes plans at the highest

level of abstraction. It searches a space of predefined plans and tries to decompose a

highly abstract goal into more detailed sub-goals by using preconditions and effects.

Although planning based on searching has been proven to be an unrealistic model

of intelligence (Chapman 1987), 3T has been successfully used on numerous robots

from an academic mobile robot to robotic arms that deal with hazardous substances

(Bryson 2000).

The multi-layer architecture has shown its capability for dealing with complex prob-

lems in real environments (Bryson 2000). However it still has some problems such

as how to optimize the planning mechanism for the top layer, and how to handle

the interaction between layers, e.g. how to manipulate and exchange information

between layers.

2.4.4 Multi-agent based simulation toolkits

To build a MAS is a complex task and requires both domain knowledge and a high

level knowledge of information technology, e.g. programming language. Therefore,

a number of multi-agent based simulation toolkits have been developed to facilitate

the development process and reduce the workload by introducing libraries. The

following are four famous examples of MAS simulation toolkits.

2.4.4.1 SWARM

SWARM (Minar et al. 1996) is one of the first reactive agent-based modelling soft-

ware libraries and was originally proposed by the Santa Fe Institute. SWARM is

centred on the concept of swarm and implemented in an Object-Oriented Program-

ming language. Each object in SWARM has three attributes: name, data and rules.
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Name is the identification of this object. Data includes all information the object

obtains. The rules define the way that the object sends messages to other objects.

Sending messages is the only way to communicate between objects. There is no com-

plex data exchange in SWARM. The basic building block of SWARM is a swarm, a

collection of agents with a sequence of actions. There are two types of swarm: model

swarm and observer swarm. The model swarm is used to model the characteristics

of the real system. The observer swarm is acting as an environment of model swarms

and provides inputs to the model swarm and takes outputs from the model swarm.

It is also responsible for data analysis and providing a user interface. In SWARM,

swarms can themselves be agents while an agent can also be a swarm. So SWARM

supports hierarchical structures. Through such a hierarchical structure, users may

easily build multi-level models. The modularity and composability of swarms makes

SWARM very flexible.

2.4.4.2 RePast

The Recursive Porous Agent Simulation Toolkit (RePast) 1 is an open source, agent-

based simulation toolkit created by Social Science Research Computing at the Uni-

versity of Chicago (Collier et al. 2003; North et al. 2006). RePast is composed

of a set of software libraries for building, running, visualizing, and collecting data

from an agent-based simulation, and implemented in three programming languages:

JAVA, Python and Microsoft .NET. It borrows a lot of concepts and design ideas

from SWARM. The main differences from SWARM are enhanced adaptive features,

such as a generic algorithm and regression, and an enhanced visualization compo-

nent. RePast may visualize information with a series of charts, e.g. histograms and

sequence graphs, and can also take snapshots of running simulations and show them

in a 2D QuickTime movie format. The key features of RePast are as follows:

• Repast is a discrete event simulation platform with a fully concurrent scheduler

which supports both sequential and parallel discrete event operations.

1http://repast.sourceforge.net/index.html
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• The stochastic processes in RePast are modelled based on the Monte Carlo

technique.

• Users can access and modify agent properties, agent behavioural equations,

and model properties during the simulation.

• Genetic algorithms, neural networks and some specialized mathematics are

implemented as software libraries in RePast.

• Since Repast is initially developed for social science research, it includes a

“network library” which can be used to create social networks and calculate

some network measures.

• Repast is able to inter-operate with Geographical Information Systems (GIS).

2.4.4.3 JACK

JACK Intelligent Agents (Kota 2002; JACK 2005) is a commercial agent oriented

development environment from Agent Oriented Software 2. JACK is composed of

six components: agents, capabilities, belief sets, views, events and plans.

• Agents – the basic entities that conduct reasoning in JACK and are defined

by what kind of capabilities they have, what type of messages and events they

may respond to and which plans they will use to achieve their goals.

• Capabilities – the way to implement a function through other components.

they can include events, plans, belief sets or even other capabilities.

• Belief sets – a collection of beliefs/data representing the status of other agents

and the environment. A belief set looks like a database in which beliefs are

represented in a “first order, tuple-based relational model”.

• Views – the tool to integrate any data and present in a way that is easily

manipulated by JACK.

2http://www.agentoriented.com/
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• Events – which specify the actions and corresponding messages.

• Plans – which define context dependent responses to event occurrences. A

plan is a list of procedural descriptions of what actions an agent will take to

handle a given event. All the actions that an agent takes are prescribed and

described by the agent’s plans.

JACK is built on the BDI agent architecture. The beliefs of agents are represented

by the belief set and can be modified during the course of simulations. Desires of

agents are modelled by the goals or events that they are trying to reach or handle.

The intentions of agents are defined by the plans that they use to achieve the goals

or to handle the events. A JACK agent may have multiple plans to achieve a single

goal. Therefore if one plan fails, the agent may use other plans to achieve the goal.

2.4.4.4 DIAS

The Dynamic Information Architecture System (DIAS) 3 is a flexible, extensible,

object-oriented framework for building complex multidisciplinary simulations (DIAS

1995; Campbell and Hummel 1998). The main components of DIAS are software

objects (entity objects) representing real-world entities, and simulation models and

other applications specifying the dynamic behaviours of the domain entities. DIAS

separates the “WHAT” from the “HOW”. The object class only contains abstract

descriptions of the various aspects of the object’s behaviour (the WHAT), but no im-

plementation details (the HOW). The models/applications implement all behaviours

of objects (the HOW) and can be linked to appropriate domain objects “on the fly”

to meet specific needs of a given problem domain. In DIAS new or legacy-type

models or objects and application tools can be integrated through a Registration

Process. This makes DIAS very flexible and extensible.

In DIAS, models/applications communicate only with domain (Entity) objects,

never directly with each other. Thus, it is easy to add models, or swap alterna-

3http://www.dis.anl.gov/DIAS/
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tive models in and out without re-coding. This allows DIAS to be able to scale very

well to deal with complex problems.

DIAS’s GUI system adopts a GeoViewer module to display outcomes spatially at

user-selectable levels of resolution. Through GeoViewer, the data can be manipu-

lated, queried, and analyzed. The results can also be visualized in a photorealistic

manner.

2.4.5 Other simulation toolkits

Besides the above agent modelling frameworks, there exists a number of other agent

toolkits, such as Ascape (Inchiosa and Parker 2002), NetLogo (Wilensky and Stroup

1999; Tisue and Wilensky 2004), MASON (Luke et al. 2004), AnyLogic 4 (Borshchev

et al. 2002), etc. For reviews of the above agent frameworks and other agent-

modelling toolkits, refer to the surveys done by Serenko and Detlor (2002), Gilbert

and Bankes (2002) and Tobias and Hofmann (2004). These agent toolkits have

been used extensively in various research fields from social science, to economics

and defence applications. They largely increase the reliability and efficiency of the

systems and reduce the development workload. However, they each have limitations.

All these agent toolkits require the modellers to have a good working knowledge of

certain programming language, e.g. JAVA for RePast (Gilbert and Bankes 2002).

It is hard to clearly and fully understand the built-in assumptions and limitations

of the modelling options, and even harder to find ways to create models based on

them (Gilbert and Bankes 2002; Tobias and Hofmann 2004). Finally the capabilities

of agents are embedded and based on the design of these agent toolkits. It is very

difficult to extend agents’ capabilities. For example, both SWARM and RePast are

constructed on the reactive agent architecture. It is almost impossible to conduct

human-like reasoning as BDI agents do unless users add their own JAVA class to

the program. This requires users not only to understand the structure of the agent

framework, but also to dig inside the source code. However, this is sometimes

4http://www.xjtek.com/anylogic/
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impossible because the agent toolkit is not open source, e.g. JACK.

2.5 Multi-agent combat models

2.5.1 Combat as a complex adaptive system

The limitation of conventional combat models as discussed in section 2.3 have at-

tracted many researchers and defence analysts’ attention. The nonlinearity of com-

bat has recently been recognized (Beyerchen 1992; Ilachinski 1997; Beckerman 1999;

Ilachinski 2000; Lauren 2000). Ilachinski (Ilachinski 1997) was among the first to

argue that land combat is a CAS. He identified the following match between the

characteristics of a CAS and land combat:

Nonlinear interaction: Combat forces consist of a significant number of compo-

nents interacting with each others nonlinearly.

Hierarchical structure: By its nature, forces are usually organized in a command

and control hierarchy. This command and control structure is a complex

system in its own right (Cooper 1993).

Decentralized control: In operations, each combatant is an autonomous agent

that acts reactively based on its sensor information within the overall objective

or plan.

Self-organization: While local actions of a combatant may appear chaotic, when

seen over time, long-range order emerges.

Nonequilibrium order: By its very nature, equilibrium is not a characteristic of

military conflicts.

Adaptation: It is not possible for combat forces to succeed in their designated

missions without being able to adapt to changes in the environment.
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Collectivist dynamics: The hierarchical structure of forces dictates a command

chain, where low-level combatants and high-level command structures contin-

uously communicate and feed back their states and actions.

2.5.2 Emergence

The concept of Emergence is widely used in complex adaptive systems literature,

especially in computer sciences and related fields (multi-agent systems, artificial in-

telligence...). Emergence is the process which creates new patterns or properties

of the system from interactions among system constructive components which are

guided by a set of simple rules. Emergence rises from the macro level of some pat-

terns, structures and properties of a complex adaptive system that is not contained

in the property of its parts. Interactions between parts of a dynamic system are

the source of both complex dynamics and emergence. Emergence is usually led by

two types of causal relations: intricate causal relations across different scales and

feedback (Bar-Yam 2004; De Wolf and Holvoet 2005). For a behaviour to be termed

emergent, it should arise from simple low-level rules. The emergent behaviour or

properties are not a property of any single low-level entity, nor can they easily be pre-

dicted or deduced from behaviour in the lower-level entities. They are irreducible,

unpredictable and unprecedented (Holland 1998; Odell 2002; Bar-Yam 2003; De

Wolf and Holvoet 2005). At the same time the emergent behaviour feeds back to

influence the behaviour of the individuals that produce it. For example swarm in-

telligence is produced by a swarm of ants. Each ant does not know the optimal path

to reach the food. However the optimal path is generated by interaction among ants

and then all ants will follow this optimal path.

Holland (1998) in his book “Emergence: from chaos to order” defined the concept

of emergence as follows:

• The hallmark of emergence is a sense of “much coming from little”;

• Emergence involves “getting more out of a machine than you put in”;
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• “A small set of well-chosen building blocks, constrained by simple rules, can

generate unbounded streams of complex patterns”.

Holland applies the above idea to computers as an example. A computer is the

medium where we can most effectively create models of real-world emergence. The

computer program is fully reducible to the rules (instructions) that define it, so

nothing remains hidden; yet the behaviours generated are not easily anticipated from

an inspection of those rules. The program is capable of surprising its programmer.

Emergence involves the creation of a program that has clearly identifiable rules, the

application of which results in unanticipated behaviours. Further, he concludes:

“A small number of rules or laws can generate systems of surprising

complexity. The systems are animated-dynamic; they change over time.

Though the laws are invariant, the things they govern change. The rules

or laws generate the complexity, and the ever-changing flux of patterns

that follows leads to perpetual novelty and emergence.”

A number of other definitions of emergence from different perspectives can also be

found in literature. Eight important characteristics of emergence are extensively

addressed by them (Holland 1998; Goldstein 1999; Parunak and Brueckner 2001;

Odell 2002; Parunak et al. 2002; Bar-Yam 2003; Parunak and Brueckner 2004; De

Wolf and Holvoet 2005) as follows:

1. Micro-macro effect: which is the most important property and is extensively

explained in literature. A micro-macro effect means that global properties,

behaviours, structures, or patterns at a higher macro-level arises from the

(inter)actions at the lower micro-level of the system;

2. Novelty: The global behaviour is novel and cannot be exhibited by a single

individual at the micro-level. For example, the individuals at the micro-level

have no explicit representation of the global behaviour.
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3. Coherence: There exists a logical and consistent correlation among individuals

which integrates the separate low level individuals into a high level unity;

4. Interacting parts: The system components need to interact with each other.

Without interaction, the interesting high level behaviours will not arise;

5. Dynamical: The global behaviour emerges at a certain point as the system is

evolving in time.

6. Decentralised control: There is no central control to direct the low level indi-

vidual behaviours. The actions of individuals are controlled by a set of simple

rules. The whole is not directly controllable.

7. Feedback loop: Normally there is a bidirectional influence between the high-

level and the low-level. The emergent properties, behaviours or patterns at

the high-level arise from the interaction among individuals at the low level.

At same time, the emergent properties influence its individuals’ behaviour.

Higher level properties have causal effects on the lower level. For example, the

emergent optimal path influences the movement of each ant.

8. Robustness and flexibility: Since there is no centralized control and no single

individual can represent the whole system, the failure or replacement of a

single entity will not cause a complete failure of the whole system.

A formal definition of emergence is given by Baas (1994). Given Si(i ∈ J) is a

set of structures. Int is a set of interactions over Si. And Obs is an observa-

tional mechanism. Let S2 be a new higher-level structure, where S1
i1
, i1 ∈ J1, S

2 =

R(S1
i1
, Obs1, Int1), where R is the construction relationship. P is an emergent prop-

erty of S2 iff P ∈ Obs2(S2), but P 3 Obs2(S1
i1
)
∨

i1. Therefore two types of emer-

gence can be specified:

• Deducible, or computable, emergence: there is a deductive or computational

process or theory D such that P ∈ Obs2(S62) can be determined by D from

(S1
i1
, Obs1, Int1) such as thermodynamic systems;
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• Observational emergence occurs when P cannot be deduced as in the previous

case such as Gdels incompleteness theorem. For some formal systems there can

be true statements that cannot be deduced from the system of existing (known)

true statements, and the semantic compositionality in languages (i.e., where

the semantics of a word can be computationally derived from the semantics of

the symbols constituting it).

Other types of emergence can also be found in literature, for example “nominal”,

“weak” and “strong” emergence (Bedau 1997; Bedau 2002), or “weak”, “ontologi-

cal”, and “strong” emergence for (Gillett 2002b; Gillett 2002a).

In multi-agent systems, emergence is a key property of dynamic systems based on

interacting autonomous agents. The knowledge of agents’ attributes and rules is not

sufficient to predict the behavior of the whole system. Such a phenomenon results

from a specific structure of interaction among agents. Therefore, a better knowledge

of the generic properties of the interaction structures would make it easier to have

better knowledge of the emergence process. From this point of view, to denote a

phenomenon as “emergent” does not mean that it is impossible to be explained

(Emmeche et al. 1997). Thanks should be given to social network theory, which

characterizes the structure or the pattern of the relationships, structural or relational

processes among social actors via a number of network measures (Wasserman and

Faust 1994; Albert and Barabási 2002; Newman 2003; Dorogovtsev and Mendes

2002). In this thesis, a novel multi-agent architecture, NCMAA which is based

purely on network theory, is proposed where emergent behaviours is interpreted

by using social network analysis techniques. An new combat simulation system,

WISDOM (version II) is developed based on NCMAA and used to demonstrate

that emergence can be explained.
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2.5.3 ABDs for combat

The view of combat as a CAS opened a recent stream of research to use agent-based

simulations to gain insight into military operations. The field is usually known as

ABD. ABD emphasizes the concept of embodiment (Brooks 1991a) of agents in the

environment. It enables defence analysts to study emergent behaviours in warfare.

Simulation is used to glean insight of the dynamics and behaviours that may emerge

from the system; thus providing defence analysts with a useful tool for assisting them

in making recommendations to decision makers.

MAS is a natural platform for studying CAS. The combatants are modelled as

agents, usually with a set of pre-defined characteristics. These agents adapt, evolve

and co-evolve with their environment (Schmitt 1997; Lauren 2000). By modelling

an individual constituent of a CAS as an agent, we are able to simulate a real world

system by an artificial world populated by interacting processes. It is particularly

effective to represent real world systems which are composed of a number of nonlinear

interacting parts that have a large space of complex decisions and/or behaviours to

choose from such as those situations in combat (Ilachinski 2003).

A number of MAS designed specifically for combat has been developed in the lit-

erature. These include ISAAC (Ilachinski 1997; Ilachinski 2000) and EINSTein

(Ilachinski 1999; Ilachinski 2003; Ilachinski 2004) from the US Marine Corps Com-

bat Development Command, MANA (Lauren 2000; Lauren and Stephen 2002b;

Galligan and Lauren 2003; Galligan 2004) from New Zealand’s Defence Technology

Agency, BactoWars (White 2004) from the Defence Science and Technology Organ-

isation (DSTO), Australia, and CROCADILE (Barlow and Easton 2002; Barlow

2003) from UNSW at ADFA.

2.5.3.1 ISAAC

ISAAC (Ilachinski 1997; Ilachinski 2000) is a skeletal agent-based model of land com-

bat from the US Marine Corps. The goal of ISAAC is to become a fully developed
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complex system for analyzing nonlinear dynamics in land combat by identifying,

exploring, and possibly exploiting emergent collective patterns of behaviours on the

battlefield.

ISAAC is working in DOS with no user interface at all. Two forces play against

each other in a two-dimensional lattice. Each force has its own flag and attempts

to capture the enemy’s flag or destroy enemies. The basic element of ISAAC is

ISAAC agents (ISAACA), each of which presents an entity on the battlefield, such

as an infantryman or a tank. Agents have a set of attributes and personalities,

based on which agents take actions. After a simulation, a set of data is automati-

cally generated, based on what defence analysts may need to conduct the military

analysis.

Characteristics of agents There are seven attributes for each agent, which guide

it to sense, communicate, move and shoot.

• Sensor range (S-range): the maximum range at which an agent can sense other

agents in its vicinity.

• Fire range (F-range): the maximum range at which an agent can fire upon an

enemy agent.

• Movement range (M-range): the maximum number of grid squares an agent

can move in any single time step.

• Communication range (C-range): the maximum distance over which an agent

can communicate (share information) with other friendly agents.

• Threshold range (T-range): the maximum range within which the number of

friendly agents is above a user-defined threshold, the meta-personality will be

activated.

• Probability of Hit (p-shot): the probability that an agent will hit an enemy

agent that is within the firing range.
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• Maximum targets (MAX TGT): the maximum number of targets that an agent

can engage in any single time step.

Personality of agents The personality of an agent presents the tendency to move

close to or away from particular agents (friends or enemies). With some certain

penalty function, these personalities govern the agents movements. In ISAAC, there

are six basic personality weights:

• Weight towards alive red (AR);

• Weight towards injured red (IR);

• Weight towards alive blue (AB);

• Weight towards injured blue (IB);

• Weight towards red goal (RG);

• Weight towards blue goal (BG).

The positive value of these weights means that the agent tends to move close to that

type of agents while the negative value means that the agent tends to move away

from that type of agents. These personalities can be dynamically changed depending

on its situation awareness and following meta-personalities during the course of the

simulation.

• Advance meta-personality (ADV): the threshold number of friendly agents

within an agent’s threshold range in order for that agent to advance toward

the enemy flag. That is, the agent won’t advance to the goal unless there is a

certain level of support. This is achieved by negating the personality weight

of moving towards the enemy flag, whenever the threshold is exceeded.

• Cluster meta-personality (CLS): the threshold number of surrounding friendly

agents in order for that agent not to move close to its friend. This is achieved by

negating the personality weights to friends whenever the threshold is exceeded.
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• Combat meta-personality (CBT): the threshold number of surrounding friendly

forces over enemy forces in order for that agent to move away from the enemy.

This is achieved by negating the weight to enemies whenever the threshold is

not exceeded.

Terrain feature The only form of terrain supported in ISAAC is impassable ob-

jects. Agents cannot see, shoot or travel through an impassable terrain. Terrain

blocks can be defined at the end of the input file by specifying each block’s coordi-

nates and the corresponding length and width.

C2 structure A three-level C2 structure is modelled in ISAAC. The levels are:

1. Elementary combatants: which are defined by basic parameters as described

above and two additional weights: the propensity to stay close to their com-

mander and the propensity to obey commands. Each elementary combatant

should be assigned to a local commander.

2. Local commanders: which coordinate information flow among local groups of

elementary combatants. Each local commander determines local goals within

its commander area and can order its subordinates to move towards these

goals. The movement of a local commander is based on its own personalities

along with a propensity to help other local commanders and a propensity to

obey orders issued by the global commander.

3. Global commander: which has a global view of the battlefield and coordinates

the actions of local commanders.

Movement algorithm For each time step, an agent may move to any of the cells

within its movement range or remain still. A penalty is calculated for each of the

potential new locations based on its situation awareness and personalities. The cell
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with the lowest penalty is chosen as the new location. The penalty function is as

follows (Ilachinski 1997):

Znew = Zagent + Zflag (2.5)

Zagent = (
WE

E ∗Rs

√
2

E∑
i=1

DEi, new) + (
WA

A ∗Rs

√
2

A∑
i=1

DAi, new) (2.6)

Zflag = WEF (
DEF, new

DEF, old

) + WOF (
DOF, new

DOF, old

) (2.7)

where:

Rs: Sensor range of an agent that is deciding to move;

E: Number of enemy entities within sensor range;

A: Number of friendly entities within sensor range;

WE: Weighting towards enemy agents;

WA: Weighting towards friendly agents;

DEi, new: Distance to the ith enemy from the new location;

DAi, new: Distance to the ith friend from the new location;

WEF : Weighting towards the enemy flag;

WOF : Weighting towards own flag;

DEF, new: Distance to the enemy flag from the new location;

DEF, old: Distance to the enemy flag from the current (old) location;

DOF, new: Distance to own flag from the new location;

DOF, old: Distance to own flag from the current (old) location.
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If communication is taken into account, the penalty function will be:

Znew = Zs, new + WcZc, new (2.8)

where Zs, new means penalty from sensor; Wc means communication weight; Zc, new

means penalty from communication.

Run mode There are three run modes in ISAAC: interactive run mode, multiple

time series run mode and genetic algorithm (GA) run mode. In the interactive mode,

the user can interact with the simulation and change the value of all parameters on

the fly. It allows the user to see the combat dynamics, what is exactly happening,

and how a particular side is winning.

In the multiple time series or data-collection mode, multiple trials of the same com-

bat with different initial configurations of combatants are simulated. The system

then automatically generates statistical data files for each single run. The informa-

tion generated includes:

1. Force strengths - such as the number of alive red, alive blue, injured red,

injured blue, total red and total blue forces;

2. Interpoint distance - averages and distributions of the distances between pairs

of agents or between an agent and the flag;

3. Number of neighbour agents - averages and distributions of the number of

neighbours, such as red, blue and all (either red or blue) agents near red

agents, red, blue and all (either red or blue) agents near blue agents, and red

and blue agents near both red and blue flags;

4. Interpoint distance of enemy flag - averages and distributions of the distances

between red or blue agents and their enemy flags, such as between red agents

and the blue flag, and blue agents and the red flag;
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5. the size of cluster - averages and distributions of the sizes of clusters of agents;

6. Centre-of-mass positions - keeping track of the coordinates of the centre-of-

mass position of the red, blue and total force;

7. Spatial entropy - the spatial entropy of the red, blue and total force. Spatial

entropy is intended to measure the degree of disorder of a battlefield state.

The last mode is the GA or “Evolver” mode, which is used to search for optimal

solutions for a predefined scenario. In this mode, each force can only have one group

with homogeneous personalities. While fixing the personality of the red force, the

personality of the blue force is evolved to search for the optimal personality.

2.5.3.2 EINSTein

EINSTein (Ilachinski 1999; Ilachinski 2003; Ilachinski 2004) builds on and extends

the DOS-based combat simulator ISAAC from the US Marines Corps. EINSTein

provides a user friendly GUI for the system. This makes it easier for a user to set

up scenarios, view what is happening during the simulations, and thus lets the user

gains a better understanding of embedded dynamics of a combat scenario. The main

features of EINSTein include (Ilachinski 2003):

• A windows GUI front-end;

• Integrated natural terrain maps and a terrain dependent decision making

mechanism;

• Context-based and user-defined agent behavioural rules;

• Multiple squads for each force;

• Squad based communication;

• Three level C2 structure: global commander, local commander and basic com-

batant;
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• GA toolkit to search for optimal solutions for a certain scenario;

• Data collection and farming functionality;

• Multiple multi-dimensional visualization tools.

Agent Model Like in ISAAC, an agent in EINSTein represents a primitive combat

unit, such as an infantryman, a tank, a transport vehicle, etc. Each agent has the

following characteristics:

• Doctrine: a set of local rules, which are used to guide the agent’s behaviour;

• Mission: each agent has a user-defined goal;

• Situational Awareness: sensors collect information and generate a representa-

tion of the agent’s local environment;

• Adaptability: a meta-personality based mechanism to alter behaviour and/or

rules.

Agents can be in one of three states: alive, injured or killed. Agents in different states

may have different characteristics or personalities predefined by users. For example,

an aggressive agent may become defensive when it is injured. Each force may have

several squads with different sizes and different characteristics. However, no more

than ten squads can be defined for a single scenario. The communication is squad

based. This means that communication only occurs between squads, not between

agents. Agents in EINSTein are also associated with a set of ranges, e.g. C-range,

S-range and F-range. The agents collect information from their local environment

and act upon it.

EINSTein adopts the same movement algorithm (penalty function) as that in ISAAC

to guide agents’ movement. Each agent has the same types of personality and meta-

personality as those in ISAAC. In addition, several new meta-personalities have been

introduced in EINSTein:
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• hold - hold current position if more than a threshold number of friendly agents

are within the user-specified threshold range;

• Pursuit I - temporarily ignore enemy agents if fewer than a threshold number

of enemy agents are nearby;

• Pursuit II - temporarily ignore friendly agents and its own flag, and try to

move towards and attack enemy agents if fewer than a threshold number of

enemy agents are nearby;

• Retreat - retreat back to its own flag if no more than a threshold number of

friendly agents are surrounding its own flag;

• Support I - temporarily ignore all other personalities and try to move towards

injured friendly agents to provide help if more than a threshold number of

injured friendly agents are nearby;

• Support II - temporarily ignore all other personalities and try to move towards

alive friendly agents to seek their help if more than a threshold number of

enemy agents are nearby.

Terrain feature Compared with ISAAC, the terrain features of EINSTein are

improved. Two types of terrains are defined by the system: passable and impassable.

As well, the system allows users to create up to three of their own types of terrain.

When creating a new terrain, the user needs to define the effect of the terrain on

the characteristics of agents when they are on the terrain block. The characteristics

may include sensor, fire, threshold, movement and communication ranges, defence

strength, probability of hit, etc. This feature largely enhances the adaptability of

EINSTein. In this way, the user may easily simulate a number of terrain types in

the real world, such as roads, woods, rivers, etc.

Run mode Five modes have been implemented in EINSTein (Ilachinski 1999):
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• Interactive Run Mode - This mode is similar to that in ISAAC.

• Play Back Run Mode - the user may record the simulation and play back at a

higher speed.

• Multiple Time-Series Run Mode - the simulation can be run multiple times

with different starting configurations and data collected for analysis.

• 2-Parameter Fitness Landscape Mode - Two parameters are selected to vary.

Based on the outputs of multiple runs, a 3D mission fitness landscape is gen-

erated.

• One Sided Genetic Algorithm Run Mode - with this mode the user may search

for an optimal force to perform a user-defined “mission” against a fixed oppo-

nent. It is similar to ISAAC but it is much easier to set up the mission and

the GA within a window interface.

Two additional features Two features have been introduced in EINSTein: Inter-

Squad Matrix and weapons parameters. Inter-Squad Matrix defines the relationship

between two squads within one force. This feature allows the user to model coop-

eration or coordination between squads. EINSTein also introduces the weapon of

grenade by specifying a minimum and maximum throwing range and the accuracy

of the grenade is a function of the distance.

2.5.3.3 MANA

MANA is inspired by ISAAC and EINSTein and was developed by New Zealand’s

Defence Technology Agency using the same underlying agent paradigm and design

(Lauren and Stephen 2002b). The MANA model is designed to study some impor-

tant real-world factors of combat such as (Galligan et al. 2003):

• Change of plans while the battle is evolving;
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• The effect of situational awareness on agent behaviour;

• The importance of acquisition information.

Like EINSTein, MANA has a user interface which allows a user to set up and

run simulations quite easily. While MANA has similar parameters as ISAAC and

EINSTein, several new concepts or models are introduced: a situation awareness

(SA) map, a communication model, a terrain map and way-points.

Squad MANA is a squad based combat simulator. Each side may be made up of

several squads, each of which consists of a number of homogeneous agents; that is all

agents within a single squad have the same properties (behavioural and capability

parameters), same SA map of enemy contacts and same way-points. However, when

certain event happens, the state of agents can be changed individually or as a group.

Situation awareness Each squad has its own “memory” of the location of agents

perceived by the squad, which is shared by all agents in this squad. Two types of

SA maps are implemented in MANA: the squad SA map, which holds the informa-

tion directly collected by their sensors, and the inorganic SA map, which holds the

information received from by other squads through communication.

Communication model The latest version of MANA (version 3.0.37) has a com-

prehensive squad based communication model. Since all squad members share the

same SA, the information can only be exchanged between two squads. The infor-

mation received through communication links is stored in the inorganic SA map.

MANA adopts a first-in-first-out queuing algorithm to send off messages. Each

communication link is modelled by several parameters, as follows:

• Range: the maximum distance between the centroid of two squads;

• Capacity: the maximum number of messages that can be sent out per time

step;
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• Buffer: the maximum queue size. Once the queue is full, the oldest messages

will be removed to make room for new messages;

• Latency: the number of time steps taken for each message to be received by a

squad;

• Reliability: the probability that a message can be successfully received by a

squad per try;

• Accuracy: the probability that a contact is passed as “unknown”.

• Max Age: the maximum time steps the message remains in the queue;

• Trust: the level of confidence that the sender has that the receiver will receive

the information;

• Include: the contact types can be sent out;

• Delivery: two types of delivery are supported in MANA - Guaranteed Delivery,

which queues messages when out of communication range, and Fire-N-Forget,

which ignores messages when out of communication range.

Terrain feature The default battlefield in MANA is a 200 x 200 grid of cells, each

of which can be occupied by a single live agent. Several terrain types are modelled

in MANA:

• Billiard Table: the plain terrain;

• Easy Going: representing a road or other region that is designed for moving;

• Wall: representing obstacles. No agent may occupy a wall (obstacle) cell.

Agents can see through wall only when the option of “Line of Sight” is turned

off;

• Light Bush/Dense Bush: Differing density provides different impact on the

movement of the agents. It can also be used for concealment;
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• Hilltop: modelling a high level of concealment.

MANA can load any standard Windows bitmap file as a terrain map. The terrain

types are differentiated visually by colours.

Way-point In MANA, the user may define a number of way-points to guide the

agents to reach their ultimate goal. The way-points are predefined and can be

changed during a simulation. An agent’s personality settings can be used to attract

or repel it from way-points.

Event-driven personality changes This feature allows agents to change their

personalities when a certain event occurs. These events may include being shot at,

taking a shot, reaching a way-point, making enemy contact, etc. Personality changes

can occur individually or as a whole squad. The changes may last for only a certain

time, after which the personality will be recovered to the previous setting.

Fuel Fuel is a particular concept introduced in MANA and is not modelled for

any particular purpose. The aim of this parameter is to give some degree of freedom

to the user and allow the user to be able to model any quantifiable concepts. For

example, it can be used to represent concepts such as courage or fatigue, the number

of interactions with other agents, the logistics of supply of some commodity, etc.

Each agent has a fuel tank with an initial allocation of fuel. The amount of fuel in

the tank can increase, decrease or remain static during the simulation. An agent

can be refuelled by any other agent. The process of refuelling can be used to model

the interaction between agents or used as a trigger to change the agent’s personality.

Movement algorithm The movement algorithm in MANA consists of the fol-

lowing steps:
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• Consider all possible moves within the movement range, including the current

location;

• Discard moves entering into cells which contains other agents or terrain fea-

tures;

• Consider all the agents in the Situational Awareness map, the way-points and

terrain based on the agent personality;

• Consider all constraints, such as minimum distance to others, cluster con-

straints, and so on;

• Select the location with lowest penalty as the new location. If a number of

moves are nearly equal, then randomly choose a move from the set.

Like ISAAC and EINSTein, MANA also adopts an attraction-repulsion weighting

system to determine the penalty. The penalty for moving to any grid location is the

sum of the 27 penalty calculations. For the details of the 27 weighting factors in

MANA, refer to Galligan et al. (2003). The algorithm used to calculate the penalty

is presented as in Equation 2.9 (Galligan et al. 2003):

Penalty = 1 +

∑M
m=1(DN(m)−DO(m))DW (m)

100
∑M

i=1 DW (i)
(2.9)

where M is the number of agents within the distance used in the weighting equation;

DN and DO are the new and old distance from the agent to each entity respectively;

and DW is a weighting factor determined by Equation 2.10:

DW = Round(BDL−DO) (2.10)

where BDL is the length of the main diagonal of the battlefield, which is used to

remove the effect of the scale of each scenario when calculating the penalty. DW is

used to increase the influence of closer entities.
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Run mode There are only two run modes in MANA: an interactive run mode

and the multiple time series run mode. These two modes are similar to those in

EINSTein. When running in the latter mode, the information stored in the output

file includes: the version of MANA, the start time, then for each run the seed number

used, the number of casualties for each side, whether or not one side reaches its final

goal, the total number of time steps, the casualties for each squad, and the end time.

The average casualties and time step are also given at the end of the results.

2.5.3.4 CROCADILE

CROCADILE (Barlow and Easton 2002; Barlow 2003) is a multi-agent-based com-

bat distillation, which is designed to improve the limitation on generality and fidelity

in ISAAC, EINSTein and MANA. The key features in CROCADILE are as follows:

• The environment: CROCADILE implements a 3D environment where the

agents interact;

• Probabilistic or Projectile-Physics combat resolution: CROCADILE not only

supports the traditional probabilistic model for hit resolution, but also incor-

porates a projectile-physics model that includes factors such as target size,

speed, and distance away and the terrain itself;

• Movement by land, air and water: the agents can move on the land, in the air

or sea;

• User extensible agent behaviours: there is an interface in CROCADILE which

allows the user to define characteristics for each agent;

• Sophisticated Command, Mission, and Communication structures: the hierar-

chies of command and communication can be established between groups of

agents. Missions may include destruction of enemy agents, reaching a goal or

destroying a static feature;
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• Higher fidelity combat resolution: this is achieved by incorporating blast ef-

fects, round penetration, rates of fire, and line-of-sight;

• Database of world objects: terrain, agents, agent groups, agent behaviours,

weapons, movement capabilities, sensors, command structures, and commu-

nication structures can be saved in XML format individually and reused in

subsequent scenario building;

• Comprehensive simulation event logging: the results of each run are output to

a set of log files which include information about the state of the scenario at

each time frame. With these log files, the user may visualize and analyse the

data;

• Multi-team structure: the agents in CROCADILE are organized in teams.

The relationship between teams may be friend, neutral or enemy.

Capability of agents Five types of capabilities are modelled for each agent in

CROCADILE: firepower, mobility, sensing, communication and command.

Firepower is implemented by defining different types of weapons possessed by agents.

The weapon can be direct or indirect weapon and can fire kinetic or explosive rounds.

Each weapon is modelled by its maximum range, rate of fire, damage, penetration,

number of rounds, calibre, muzzle velocity and the blast radius of its ammunition if

it fires explosive rounds.

The capability of sensing is defined by three parameters: the maximum scan range,

the level of detailed threshold range and the maximum scan angle.

The movement capability allows agents to move over ground, water or air. There is

a maximum speed for each medium.

The communication capability allows agents to broadcast to all other agents within

its communication range. Only broadcast communication is supported in CRO-

CADILE.
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The command capability allows agents to send orders to their subordinates. Three

types of missions are supported: attack mission, avoid mission and advance mission.

Trigger CROCADILE attempts to separate agents’ behaviours from their capa-

bilities. The actions an agent takes are triggered by activating the proper triggers.

There are six personality triggers implemented within the instinctual agent control

paradigm.

1. Hit trigger: it is activated when an agent is hit by a munition. That means

the behaviour template used by this agent will be changed for a fixed number

of time steps. After that, the behaviour template of this agent will revert to

its previous one;

2. Health trigger: When it is activated, the agent health will be updated;

3. Force-ratio trigger: it is fired when the force ratio is more extreme than the

value specified by the user;

4. Mission trigger: it contains an array of mission references and a corresponding

array of behaviours. When an agent completes a mission, the corresponding

behaviour will be executed;

5. Time trigger: similar to the mission trigger, it consists of an array of times

and associated behaviours. If the current time matches one in the time array,

the relevant behaviour is assigned as the current behaviour;

6. Command trigger: it consists of a set of commands and a set of corresponding

behaviours. When receiving a command, the associated behaviour is assigned

as the current behaviour for the agent.

Terrain feature A 3D environment is implemented and a digital terrain map

from the real-world can be integrated into the system. This is the key improvement

when compared with other existing ABDs. All physical objects such as agents and
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munitions are located in a 3D space. Three types of terrains are supported: land,

air and water, each of which may have a shape and location predefined. This kind

of 3D landscape may affect movement, line-of-sight issues such as sensor detection,

and hit resolution - the flight of projectiles and blast effects.

Movement algorithm CROCADILE also adopts an attraction-repulsion weight-

ing system to guide the agent’s movement. There are nine major weighting factors.

1. Enemy: specifies how an agent will position itself with respect to enemy agents.

2. Neutral: specifies how an agent will position itself with respect to neutral

agents.

3. Friend: specifies how an agent will position itself with respect to friendly

agents.

4. Commander: specifies how an agent will position itself with respect to its

commanders.

5. Mission: specifies how an agent will allow its missions to affect its movement.

6. Feature: specifies how an agent will position itself with respect to environment

features, such as water, land or obstacles.

7. Terrain: specifies how an agent will use the terrain to affect its movement.

8. Message: specifies how an agent reacts to the message it receives.

9. Exploration: specifies how willing an agent is to explore the environment.

For each weighting factor, the user may specify an attenuation function (Equation

2.11 and 2.12) governing how each weight varies as a function of distance. Either

equation 2.11 or 2.12 can be used:

W = w0 × r
d
D (2.11)
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W = w0 × r
D−d

D (2.12)

where W is final weight after attenuating, w0 is the initial weight without atten-

uating, r is the minimum ratio of the full strength of a weight that a weight can

attenuate to, D is the distance over which the weight attenuates to that level and

d is the current distance between the agent and the object that it is generating

the weight with. When increasing the distance, the weight may decrease by using

equation 2.11 while the weight may increase by using equation 2.12.

After attenuating all weights, the sum of them is calculated. The agent will choose

the direction with the highest weight. Based on the moving speed, the new location

of the agent is determined.

Run mode Similar to ISAAC, EINSTein and MANA, both interactive run mode

and multiple time series run mode are supported in CROCADILE.

2.5.3.5 BactoWars

Bactowars (Grieger 2002; White 2004) is an ABD being developed at Land Opera-

tions Division, DSTO, Australia. BactoWars focuses on problem representation and

attempts to provide a simple framework which allows analysts to model real world

problems more adaptively and flexibly.

BactoWars adopts modern artificial intelligence techniques, such as semantic net-

works and frame theory, and software engineering techniques, e.g. the strategy

design pattern, to allow the modeller to reuse the pre-developed agents and con-

textually build agents for specific problems by dynamically recombining behaviours

for the agents, and to allow for adaptation at the individual level by dynamically

choosing behaviours based on their perception of their environment. Typically there

are four components in BactoWars (White 2004):
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• Lexical components: the building block of the system, which include agents,

behaviours, triggers, parameters, BactoMaps, scenarios and simulations. One

can create these building blocks to represent the real world entities.

• Structure components: the way to hierarchically organize these building blocks.

In BactoWars, simulations consist of scenarios which contain BactoMaps and

agents with a set of behaviours. Simulations, scenarios and agents are typi-

cally defined by a set of parameters, which are specified by triggers, variance,

logged values and an understanding of context.

• Procedural components: the controller to control the simulation process and

the order of behaviours.

• Semantic components: the understanding of how the things are represented

and what they mean.

There are two types of agents in Bactowars (Grieger 2002), one is a physical agent

and the other is called a marker (or meme) agent. The meme represents how the

physical agents interact with each other. The physical agents are actuators in the

simulation. They have the same general properties as those in ISAAC, such as sen-

sor range, firing range, movement range, etc. BactoWars also has stealth and fuel

parameters similar to those in MANA. The qualitative analysis via interactive sim-

ulation is the only function supported in Bactowars for data collection and analysis

(Grieger 2002). BactoWars can use a bitmap file as terrain map and the terrain type

can be defined with different colours. BactoWar is written in JAVA and suffers from

the same problems as other JAVA program with regard to slow run times (White

2004).

In summary, BactoWar attempts to provide a simple tool which may be used to

represent real world adaptive systems, which may or may not be complex. The

crucial drawback is how to develop customized algorithms to properly represent the

research problem (Grieger 2002).
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2.5.4 Comparison of ABDs

These agent based combat systems have been widely used by defence analysts and

facilitated military analysis (Brown 2000; Lauren and Stephen 2000; Grieger and Gill

2001; Lauren 2001c; Lauren 2001a; Lauren 2001b; Cioppa 2002; Epstein 2002; Gill

et al. 2002; Lauren 2002; Wheeler 2005; Perry 2006). They offer an opportunity to

exhibit the behaviours that we would intuitively expect on the battlefield. Through

the use of these systems defence analysts are able to gain understanding of the overall

shape of a battle and what factors are more important than others in determining

the outcome of a battle. They all build on the same understanding that combat

can be modelled as a CAS and global behaviours emerge from a set of local rules.

However these systems have different features. Table 2.2 summarises the features of

these ABDs discussed above.
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2.6 Summary

In this chapter, a comprehensive literature review is undertaken in modelling and

simulation of combat. Historically, conventional combat models or simulations, such

as ELAN, JANUS, CASTFORME, ModSAF and OneSAF were used in military

analysis, However, many aspects, e.g. human emotions and politics, have not been

modelled in conventional combat models or simulations. Recently the idea that

combat can be modelled as a CAS has widely been accepted in military analysis

based on the matched characteristics between combat and CAS.

MAS is a natural platform to study CAS. Typically there are two agent architectures:

cognitive agents and reactive agents. Cognitive agents conduct human like reasoning

in order to achieve their goals. They are intentional, rational and flexible. However,

it is quite hard to represent a real world problem in a symbolic format in order to

conduct reasoning. Reactive agents respond to their environment purely based on

redefined simple rules. They are simple, economic, and robust, and can scale up well.

However, without reasoning and planning, reactive agents may exhibit unexpected

and weird behaviours and it is very hard to connect the local rules to the emerging

behaviours. To overcome the limitations of both architectures, a hybrid architecture

is developed by simple mixing cognitive and reactive agents within a single system.

However connecting the cognitive agent layer with the reactive agent layer is also

not a simple task.

In order to facilitate the developing process of MAS, a number of multi-agent simu-

lation toolkits are developed, such as SWARM, RePast, JACK, DIAS and so forth.

They largely increase the reliability and efficiency of the systems and reduce the

development workload. However, their limitations are also very obvious. For ex-

ample, all these agent toolkits require modellers to have an essential good working

knowledge of certain programming languages, e.g. JAVA for RePast. It is hard to

clearly and fully understand the built-in assumption and limitations of modelling

options, and even harder to find ways to create models based on them.
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Mainly based on the reactive agent architecture, several ABDs are proposed for

defence operations, which includes ISAAC, EINSTein, MANA, CROCADILE and

BactoWars. ISAAC and EINSTein created a new era for warfare analysis. They were

the first two systems which modelled warfare as a CAS. Almost all later ABDs were

inspired by them. MANA first introduced the concept of way-points and internal

situational awareness (SA) map. These new features largely improve the adapt-

ability of the agents to a changing battlefield. The version released at the end of

2004 concentrated on the model of network centric communication, including differ-

ent parameters of a communication network, such as reliability, accuracy, capacity

and latency. BactoWars focused on problem representation and attempted to pro-

vide a simple framework which allows analysts to model real world problems more

adaptively and flexibly. CROCADILE was the first system to use a 3D continuous

environment with a higher fidelity than that of ISAAC, EINSTein and MANA. The

detailed differences among these systems are listed in Table 2.2.

In the next chapter, a new agent-based combat simulation system, WISDOM - A

Warfare Intelligent System for Dynamic Optimization of Missions - is developed and

used to establish an understanding of combat as a CAS and to help us to identify

theoretical causes of the drawbacks in existing ABDs.
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WISDOM - A Warfare Intelligent

System for Dynamic Optimization

of Missions 1

3.1 Introduction

In this chapter, version I of a warfare intelligent system for dynamic optimization of

missions (WISDOM-I) is proposed to study the theory of CAS and MAS, and how

to apply them in military analysis. WISDOM-I is inspired by existing multi-agent

combat models, such as ISAAC, EINSTein, MANA and CROCADILE. Similar to

these systems, WISDOM-I employs a low-resolution abstract model in which the

detailed physics of combat are ignored while only essential characteristics of com-

batants, defence operations or behaviours are modelled. Combatants in WISDOM-I

are modelled as agents defined by a set of characteristics. These agents inhabit a

two-dimensional discrete space. Their behaviours are guided by a set of simple rules

of local interaction with other agents. The status of agents vary as agents evolve

over time. WISDOM-I can help defence analysts to explore the decision space, study

1This chapter is based on the publications of Yang et al. (2005d) and Yang et al. (2004a).
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how the behaviours of individual combatants influence the outcome of the battle,

capture the common patterns of a combat, etc.

The main features of WISDOM-I include:

• Development in the object-oriented programming language Java, which makes

WISDOM-I platform independent;

• A GUI allowing users to create scenarios and run simulations quite easily;

• 2D environment using a natural terrain map and terrain features differentiated

by colours;

• Scenario dependent and user defined rules of agent interactions;

• Adopting an agent based communication and attraction-repulsion movement

algorithm;

• Tactical decisions made based on agent situation awareness and agent person-

alities;

• Heterogeneous multi-group structure;

• Embedded evolutionary computation toolkit to evolve agent local rules for

desired group-level behaviour;

• Using a relational database - MySql - to store data and facilitate post-analysis.

3.2 System design

The agent in WISDOM-I is living in a territory which consists of physical and social

environments. With the system evolving, the status of a territory keeps changing.

The physical environment includes road, water, tree, mountain, etc. The social

environment includes surrounding agents no matter of whether they are in the same
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team. The status of the physical environment is normally fixed while that of the

social environment is dynamically changing during the simulation.

3.2.1 The agent model

Each agent has five characteristics: perception, capability, execution, reasoning and

a decision making mechanism. It also includes some other attributes (see Figure

3.1).

Agent

Capability

Perception

Execution
Decison
Making

Goal

Touch

VisionLaser

Hearing

firing

Moving

Move

Shoot

Communication

Health Rank

Rules

Position

Communication

Figure 3.1: The agent design framework

• Perception: the internal representation of the agent’s environment through its

sensors. The sensors may include touch, hearing, vision, laser scanner, etc (see

Figure 3.2(a)).

• Capability: what the agent is able to do. It may include the ability of speaking,

moving, firing or communicating (see Figure 3.2(b), 3.2(c) and 3.2(d)).

• Decision making mechanism: the way to determine which action the agent

should take under certain circumstances. The decision should be based on its

objective, perception, capability and a set of predefined rules.
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• Execution: the agent executes the selected action. The agent may shoot its

enemy, move to a new place, exchange messages with its friends, buy or sell

goods, etc. Four modes of mobility are available: leg walking, wheel move-

ments, swimming, and flying (see Figure3.2(c)). They are differentiated by

both the speed or the terrain type the agent can go through.

• Attribute: an agent may have attributes such as how good the agent is, what

its physical position is, what its social position is, etc.

(a) Sensor (b) Capability

(c) Movement (d) Communication

Figure 3.2: Screen dump for agent characteristics

At each simulation step, agents build their perceptions of their environment through

their sensors and then make decisions based on their perception, goal and capability.

Finally they take actions to influence the system. The changed status of the system

will in turn lead to new perceptions of agents in the next simulation step.
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3.2.2 Agent interaction

The interaction between agents is embedded in the agent model. Agents may com-

municate with each other, fire at their enemy or move close to or far from other

agents. After interacting with other agents, the status of all interacting agents may

be changed.

3.2.3 Decision making mechanism

A rule based decision making mechanism is employed in WISDOM-I. The user may

specify the rules for each type of agents to make decisions. Regarding the decision

of movement, an attraction-repulsion weighting algorithm is adopted. This type of

algorithm is widely used in existing combat ABD models, e.g. ISAAC, EINSTein

and MANA. The basic idea is that each agent is assigned a set of personalities, which

define the preference of moving close to or far from certain type of agents or its goal.

At every simulation time step, the penalty or the weight of each possible place, as

a function of the agent’s personality, is calculated based on its situation awareness.

The agent always moves to the place with the lowest penalty or the highest weight.

3.2.4 Data storage, collection and analysis

As an exploration tool, WISDOM-I should be able to run multiple times for defence

analysts to investigate the problem space and then help them to make decisions. It

then generates a large amount of data for analysis. Storing the data into a database

(see Figure 3.3) can largely facilitate the data analysis process.

3.2.5 Terrain feature

The terrain feature largely influences the outcome of combat. It not only affects

the movement of agents, but also influences their perception and firing activities.
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Figure 3.3: Database configuration

WISDOM-I may integrate with a natural terrain map and use colour to differentiate

the terrain types. The terrain types may include urban land, water, pasture and

rough terrain (see Figure 3.4).

Figure 3.4: Terrain features
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3.3 System implementation

In order to be platform independent, the pure object-oriented programming language

Java is used to implement the system of WISDOM-I. The interface and simulation

engine are completely separated. It makes WISDOM-I highly extendable, flexible

and reusable.

3.3.1 Agent characteristics

An agent in WISDOM-I is characterized by: sensors, capabilities, movements, com-

munications, health and rank. Three types of sensors are programmed with their as-

sociated ranges; these are: touch, vision and laser scanner sensors. Since WISDOM-I

is a low-resolution model, these sensors are distinguished by its range. The range

of touch is short while the range of laser scanner is long. The range of vision is in

between.

The capabilities implemented in WISDOM-I include firing and mobility. Only a

direct fire weapon is supported in WISDOM-I. The “Probability to hit” is a measure

of the agent’s firing skills.

Agents can communicate with their friends when they are within the communication

range of each other. The structure of the communication network (who is allowed

to communicate to whom, how, when, and where) is defined using a graph.

The health parameter defines the level of energy for an agent. Initially all agents

start with a maximum level of energy defined by the user for different agent types.

When an agent gets fired, the degradation of its health depends on the strength

of the firing weapon. Based on the user predefined threshold, the level of health

determines the status of agents: healthy, injured or dead.

The rank defines the position of the agent in the C2 hierarchy.
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3.3.2 Decision making mechanism

At each simulation time step, an agent can move, fire, and/or communicate with

other agents. Seven simple rules are employed to make decisions. They are:

1. If alive, the agent scans its environment;

2. If there are friendly agents within the agent’s communication range, the agent

communicates with them;

3. If there are hostile agents within its fire range, the agent fires at the closest

hostile agent;

4. If there is more than one enemy with the same shortest distance, the agent

selects one enemy to shoot at random;

5. If there is no collision between agents, the agent moves to the cell within its

movement range with the highest weight (lowest penalty);

6. If there are multiple cells with the same highest weight, the agent selects one

cell to move to at random;

7. If collision occurs, a collision resolution mechanism is activated to solve it.

3.3.2.1 Agent personality

Similar to other existing combat ABD models, agents have a number of parameters

defining their personalities in WISDOM-I. Figure 3.5(a) and 3.5(b) are the screen

dumps of the interface used to define the personalities of agents for a scenario. The

movement of each agent is driven by five different categories of weights. These are

the desire to move towards:

1. a healthy friend;

2. an injured friend;
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(a) Personality 1

(b) Personality 2

Figure 3.5: Interface for agent personality

3. a healthy enemy;

4. an injured enemy;

5. the goal.

The first four categories each have two weights associated with information gleaned

from vision and communication respectively. Overall, we have nine personality

weights for each agent.
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The value of each personality is a continuous number between −1 and +1. A

positive weight implies the level of desire to move in the direction associated with

the characteristic, while a negative weight implies the level of desire to avoid this

direction. For example, a very aggressive agent can be modelled by assigning high

value to the personalities related to the enemy and a very defensive agent can be

modelled by assigning high value to the personalities related to the friend.

3.3.2.2 Movement algorithm

Movements of agents in WISDOM-I are determined by an attraction-repulsion weight-

ing system based on agents’ personalities. A penalty function as in Equation 3.1 is

constructed using the weights and an agent moves in the direction of the highest

weight. Both calculations and moves are done synchronously with collisions resolved

as described below. This process is repeated for each time step in the simulation.

Wnew =
n∑

i=1

P v
i

Di
new

+
m∑

j=1

(
P c

j

Dj
new

) +
P t

new

Dt
new

(3.1)

where:

Wnew denotes the weight for each possible new location that is available for the agent

to move to;

P v
i denotes the personality weight for an agent in the vision range;

Di
new denotes the distance between the new location that is available for the agent

to move to and agent i;

P c
j denotes the personality weight for an agent in the communication range;

Dj
new denotes the distance between the new location that is available for the agent

to move to and agent j;

P t
new denotes the desire weight to move towards the target (flag);



CHAPTER 3. WISDOM-I 74

Dt
new denotes the distance between the new location to the target (flag);

n denotes the number of agents within the vision range;

m denotes the number of agents within the communication range.

The rationality of this attraction-repulsion weighting system is as follows: let us

assume that the weight for moving towards an enemy is positive. Using this penalty

function, the desire to move to an enemy decays with distance. Agents are encour-

aged to move to a close-by enemy rather than to a far enemy. During the calcu-

lations, we remove duplicates when the sensor and communication ranges overlap.

For example, a friend agent in cell (i, j) can see an enemy agent in cell (i+2, j) while

simultaneously receiving information from another friend about that same enemy

agent. In this case, the system does not duplicate the calculations for the weights.

The agent will always move to the cell with maximum weight. If there is a tie, the

agent selects a cell, among the cells in tie, at random.

The penalty function used in WISDOM-I is different from that in ISAAC, EINSTein

and MANA version 2.0. Gill argued that the movement algorithm may generate

strange behaviours in ISAAC, EINSTein and MANA version 2.0 (Gill 2004). To

avoid these behaviours, each weight is normalized with its distance in WISDOM-I.

In this way, the influence of closer agents is stronger than that of the agents far

away.

3.3.2.3 Collision resolution mechanism

In WISDOM-I, each cell can only accommodate one alive agent. If more than one

agent would like to move to the same cell, a collision occurs; then the collision

resolution mechanism is used to remove it. The collision resolution mechanism is

defined by a set of rules:

• The agent occupying this cell at the previous time step has the highest priority
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to stay in this cell;

• The agent with higher rank has the second highest priority to move to this

cell;

• The injured agent has the third highest priority to move to this cell;

• If multiple agents with the same priority wish to occupy the cell, one is ran-

domly chosen to move and the others stay in their original cells.

3.3.3 Terrain feature

Several formats of graphic files can be loaded and used as terrain map, such as jpg,

gif and png file. However only the plain terrain is supported in WISDOM-I.

3.3.4 Interactive simulation

Interactive simulation in WISDOM-I (see Figure 3.6) is similar to existing combat

ABDs. This mode enables users to interactively control the simulation. The user

may pause, resume and restart each simulation, and track each agent’s status. Due

to the use of different icons for different teams and different status of agents, it is

easy for users to see what is happening on the battlefield.

3.3.5 Embedded EC engine

WISDOM-I embeds an EC engine (see Figure 3.7 and 3.8) which can call the simula-

tion engine to evaluate potential configurations. The differential evolution algorithm

(Abbass and Sarker 2002) is adopted to search for optimal combinations of person-

alities under a certain predefined scenario. It can be run under windows or unix

environments from an input file in text format. Under the windows environment,

some statistical graphs are automatically generated after the end of evolution (see
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Figure 3.6: Interface for simulation

Figure 3.9). Under the unix environment, analysts need to provide an input file

which contains all necessary information required by the simulation engine. At the

end of the evolution, an output file is generated automatically, which contains some

statistics, such as the fitness value in each run, genotypes in each run and alive

agents in each team. Then statistical analysis can be conducted; and the fitness

landscape or any other statistic graphics can be visualized with this output file by

using a third party graphics program.

3.3.6 Data farming

One of the critical differences from existing ABDs is that WISDOM-I uses the Mysql

database engine (see Figure 3.3) to store information. This allows users to record as

much data as they want and makes the system more efficient, and easier to maintain.

With this database engine, the system can easily run in different places with the

same configurations. Other advantages of the database engine are that analysts can

play back any simulation previously run and any statistical information can easily

be extracted and presented in graphics. The schema of the database engine is shown

in Figure 3.10.
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Figure 3.7: Evolutionary computation configuration

Figure 3.8: Evolutionary computation mode

3.3.7 Program flow

There are two levels of processes in WISDOM-I: user level (Figure 3.11) and system

level (Figure 3.14). At the user level, the user needs to follow five basic steps:

1. Customize the system. This step includes activities of selecting the run mode

(see Figure 3.12), creating combat teams (see Figure 3.13) and environment
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Figure 3.9: Example of statistic graphics
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Figure 3.10: HERM diagram for database
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(see Figure 3.4), and configuring the database (see Figure 3.3);

2. Start the simulation based on the scenario that has just been created or se-

lected.

3. Pause simulation. During the simulation, the user may pause it to collect the

information or change agent status.

4. Resume simulation.

5. Terminate simulation.

Create Scenario

Start simulation

System evolution Resume simulation

Retrieve information
/ change agent status

Terminate simulation

Interact ?

Finish ?

Yes

Yes

No

No

Figure 3.11: System process – user level

A typical sequence of steps during a simulation consists of multiple loops (Figure

3.14) that include the following basic steps:

• Initialize agents, battlefield and time-step counter;

• Go through each agent of each combat team;
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Figure 3.12: Select run mode Figure 3.13: Create combating team

Initialize battlefield, combating
teams and time-step counter

Check each agent team

Check each agent
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firing and movement

Last agent?

Last team?

Collision?Execute actions

Update status of environment
agents and time-step counter

Remove it

No

No

No

Yes

Yes

Yes

Figure 3.14: System process – system level

• Each agent builds its perception by scanning its environment and communi-

cating with its friends;
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• Based on its perception and goal, each agent makes decisions;

• If there is collision from proposed movement decisions, a rule based collision

resolution mechanism is adopted to remove it;

• When decisions determined for all agents, they execute the actions;

• Update status of agents, e.g. update their health, position and time-step

counter.

3.4 Summary

In this chapter, version I of WISDOM (WISDOM-I) is proposed, which is built on the

idea that combat is a CAS. Similar to ISAAC, EINSTein, MANA and CROCADILE,

WISDOM-I is a low-resolution abstract model for combat. The detailed physics of

combat are ignored while only essential characteristics of the combatant, defence

operation or behaviors are modelled.

Each agent in WISDOM-I has six characteristics: perception, capability, execution,

reasoning or decision making mechanism, health and rank. Agents may communi-

cate with each other, fire at their enemy or move close to or far from other agents.

Rule based decision making mechanism is employed in WISDOM-I. The user may

specify the rules for each type of agents to make decisions. An attraction-repulsion

weighting algorithm is adopted to decide where the agent should move to. This type

of algorithm is widely used in existing ABDs, e.g. ISAAC, EINSTEin and MANA.

Every simulation time step, the penalty or the weight of each possible place is cal-

culated based on its situation awareness. The agent always move to the place with

lowest penalty or highest weight.

Two running modes are supported in WISDOM-I: interactive simulation and offline

batch mode. Interactive simulation enables users to interactively control the simula-

tion. The simulation can be paused, resumed and restarted, and each agent’s status
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can be tracked. In the offline batch mode, the optimal solutions can be searched for

predefined scenarios with a build-in evolutionary computation engine.

One of the major differences from existing ABDs is that WISDOM-I uses Mysql

database engine to store information. This makes the system more efficient and

easier to maintain. The system can be easily run on different place with same

configuration. Analysts can easily play back any simulation set up and run. Any

statistic information can easily be extracted and presented as graphs.

The main improvements of WISDOM-I are:

1. Using agent based communication instead of squad based communication in

existing ABDs, which increases the complexity of the system and makes the

system more realistic;

2. Using a relational database (MySql) to store information. This facilitates

post-analysis;

3. Improving the movement algorithm to avoid strange behaviors, which may be

exhibited in other existing ABDs;

4. Embedding EC engine (single objective or multiple objectives) to search for

optimal capability of a force for certain predefined scenarios.

In the next chapter, WISDOM-I is used as a simulation platform, based on which

a fitness landscape analysis is conduced to characterize the search space and the

problem difficulty of combat simulations.



Chapter 4

Fitness Landscape Analysis 1

In 1859 Charles Darwin proposed the theory of evolution in the Origin of Species,

which is the central mechanism of development of natural living systems. Currently

many scientists or researchers borrow this idea and apply it into various research

areas, especially artificial life. GA has been thought of as an ideal computational

model of Darwinian evolution based on the theory of genetic variation and natural

selection. It has been largely employed in many artificial life systems through evolv-

ing artificial organisms, simulating ecologies and modelling population evolution.

One of the main tasks of evolutionary computation is to search for a good solution

(high fitness value) within a certain fitness landscape (Mitchell et al. 1992).

The structure and property of the fitness landscape play a major role in determin-

ing the success of the search method and the degree of problem difficulty (Horn

and Goldberg 1999; Kallel et al. 2001; Mitchell et al. 1992; Teo and Abbass 2003;

Vassilev and Miller 2000; Stadler 2002). Smith et al. (Smith et al. 2001), and Teo

and Abbass (Teo and Abbass 2004b) used fitness landscape analysis to characterize

problem difficulties in robotics and artificial organisms. The analysis was useful in

designing efficient EC methods (Teo and Abbass 2004a). When EC methods are

used to optimize problems where the objective is evaluated through multi-agent

1This chapter is based on the publications of Yang et al. (2006b) and Yang et al. (2004a).
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simulations, it is essential to understand the underlying nature of the search space

and gain insight of the problem difficulties. Although GA and fitness landscape have

been adopted in ISAAC (Ilachinski 1997) and EINSTein (Ilachinski 1999) to search

for the optimal capability of a force for a predefined scenario, the characteristics

of the search space associated with multi-agent combat simulations have not been

touched yet. In this chapter, the structure and property of the fitness landscape as-

sociated with WISDOM–I is analysed by comparing the search spaces and analyzing

the fitness landscapes in six scenarios. First, the basic concepts and methodologies

of fitness landscape analysis are described in the next section. Then a series of

experiments is created. Finally, the results of the experiments are analysed.

4.1 Introduction

The concept of fitness landscape was first introduced by Wright (1932) (Wright

1932) in biology to represent adaptive evolution as the population navigates on a

mountainous surface where the height of a point specifies how well the corresponding

organism is adapted to its environment. It is a powerful tool for visualizing the

relationship between genotypes (or phenotypes) and reproductive success (fitness

value)(Stadler 1995; Stadler 1996). The landscape is usually perceived as mountains

with a number of local peaks, valleys, and flat areas representing solutions with equal

fitness values. The fitness landscape is rugged when there are many local peaks

surrounded by deep valleys. A fitness landscape is characterized by the following

three components (Hordijk 1996; Merz and Freisleben 1999; Vassilev and Miller

2000; Stadler 2002):

• A set of genotypes;

• A fitness function that maps each genotype to a scalar; and

• A topological neighbourhood structure that denotes the proximity of genotypes

in the search space.
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Formally, a fitness landscape for a given problem can be defined as a tuple Γ =

(S, f, d) and consists of a set of points (solutions) S, a fitness function f : S → <,

which assigns a real valued fitness to each of the points in S and a distance metric

d : S × S → <, for which it is required that:

d(s, t) ≥ 0, d(s, t) = 0 ⇔ s = t, d(s, t) ≤ d(s, u) + d(u, t) ∀s, t, u ∈ S.

Furthermore, dmin ≤ d(s, t) ≤ dmax ∀s, t ∈ S ∧ s 6= t. The fitness landscape

can be interpreted as a graph GΓ = (V,E) with vertex set V = S and edge set

E = (s, s′) ∈ S × S|d(s, s′) = dmin. The diameter of the landscape is the maximum

distance between two points in the graph and is denoted diamGΓ, thus dmax =

diamGΓ. The vertices are points in a search space of possible inputs and outputs

for the specific operator that is being considered. Each vertex is labelled with a

fitness value that is evaluated by the fitness function. An arc from point a to point b

is labelled with the probability that point a is transformed to point b by the specific

operator (for example mutation). A vertex in such a graph does not necessary match

a single genotype. The crossover operator, for example, may take two genotypes as

its input, and produce two genotypes as output. In this case, a vertex in the graph

is a pair of genotypes.

Unfortunately, there exists no comprehensive theory that formalizes sufficient mea-

sures to characterize the difficulty of problems. However, there are some guidelines

which have been suggested by a number of researchers that can help with this char-

acterization. Merz and Freisleben (1999) suggested four properties that influence

the search space difficulties; these are:

• the fitness differences between neighbouring points in the landscape;

• the number of peaks (modality);

• the distribution of the peaks in the search space;

• the topology of the basins of attraction of the peaks.
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Other properties include epistasis or linkage, which represents how dependent genes

are on each others. The more epistatic the problem is, the harder it is to find its

optimum (Smith et al. 2002; Teo and Abbass 2004b; Kallel et al. 2001; Merz and

Freisleben 1999; Goldberg 2002). Two main approaches were used in the literature to

analyze the fitness landscape; these are: statistical analysis and information analysis.

The former approach usually uses autocorrelation while the latter approach depends

on information theory.

4.1.1 Statistical analysis

The most famous technique in statistical measure category is correlation analysis.

Correlation analysis is a set of techniques that are intended to characterize the

difficulty of a search problem for a genetic algorithm (or any other search technique)

by exploiting the fitnesses between neighbouring search points and the correlation

of the fitnesses between parents and their offspring. The autocorrelation function of

a fitness landscape and the fitness distance correlation are two important measures

in correlation analysis.

4.1.1.1 Autocorrelation function

As a measure for characterizing a fitness landscape the autocorrelation function was

first introduced by Weinberger (1990). A time series of fitness values is generated

through a random walk on the landscape via neighbouring points. Given a fitness

landscape (s, f, d), select a random start point s0 and select a random neighbour s1,

i.e. d(s0, s1) = 1, repeat this process N times, and collect the fitnesses f(si) of the

encountered search point si i = 0, ....N . This way a time series

F = (f(s0), f(s1), ..., f(si−1), f(si), f(si+1), ..., f(sN))

is obtained in which the pairs si−1, si and si, si+1 for i = 0, ....N−1, are neighbouring

search points.
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So the autocorrelation function ρ of the time series for lag i is defined as:

ρ(i) =
E[f(st)f(st+i)]− E[f(st)]E[f(st+i)]

V [f(si)]
(4.1)

where E[f(st)] is the expected value of f(st) and V [f(si)] is the variance of f(st). It

always holds that −1 ≤ ρ(i) ≤ +1. If |ρ(i)| is close to one, that means there is high

correlation between two neighbouring points. If it is close to zero, it means there

is hardly any correlation. So higher |ρ(i)| indicates a smooth landscape while lower

|ρ(i)| indicates a rugged landscape.

Based on the autocorrelation function, the correlation length τ can be calculated as:

τ = − 1

ln(ρ(1))
(4.2)

In a statistical sense, the correlation length gives an indication of the largest “dis-

tance” between two points at which the value of one point still can provide some

information about the expected value of the other point. In other words, the cor-

relation length τ is the distance beyond which the two fitness points become un-

correlated. Therefore, the higher the correlation length, the smoother the fitness

landscape and hence the easier the search for an algorithm based on the underly-

ing neighbourhood of the landscape, since the neighbouring points have a higher

correlation.

4.1.1.2 Fitness distance correlation

The fitness distance correlation (FDC) coefficient was proposed by Jones and Forrest

(1995) as a measure for the problem difficulty for EC. The FDC measures the corre-

lation between the fitnesses of search points and the distances of these points to the

(nearest) global optimum. Suppose we have n number of fitnesses F = {f1, f2, ..., fn}
and n corresponding distances to the (nearest) global optimum D = {d1, d2, ..., dn},
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then FDC coefficient r can be calculated as:

r =
CFD

SF SD

(4.3)

where:

CFD =
1

n

n∑
i=1

(fi − f)(di − d) (4.4)

is the covariance of the series F and D, and SF , SD, f and d are the standard

deviations and the means of F and D, respectively. It can be shown that −1 ≤ r ≤
+1. The maximal correlation corresponds to r = −1 since the search points at short

distances are highly correlated in fitness. Using the FDC coefficient r, three classes

of problem difficulty can be defined (Jones and Forrest 1995):

• easy: r ≤ −0.15;

• difficult: −0.15 < r < +0.15;

• misleading: r ≥ +0.15

4.1.2 Information analysis

The second category of fitness landscape analysis is information analysis. This ap-

proach is inspired by classical information theory (Shannon 1948) and algorithmic

information theory (Chaitin 1987) and built on the assumption that a fitness land-

scape can be seen as a set of basic objects each of which is represented by a point

and the possible outcomes that may be produced by the corresponding evolution-

ary operator at that point. Four measures (Vassilev et al. 2000) were proposed

for characterizing the structure of a fitness landscape L through analyzing the time

series of fitness values {ft}n
t=1, which are real numbers taken from the interval I and
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obtained by a random walk on this fitness landscape : Information content, Partial

information content, Information stability and density-basin information.

4.1.2.1 Information content

Information content (H(ε)) approximates the variety of shapes in the fitness land-

scape, thus it evaluates the ruggedness of the landscape path with respect to the

flat area in the path. It is defined as:

H(ε) = −
∑

p6=q

P[pq] log6 P[pq] (4.5)

where H(ε) is the entropy of the system and is also referred to as the information

content. The probabilities P[pq] present the frequencies of the possible blocks pq of

elements from the set {1, 0, 1}. They are given by:

P[pq] =
n[pq]

n
(4.6)

where n[pq] is the number of occurrences of pq in the string S(ε) = s1s2s3...sn,

si ∈ {1, 0, 1}. The string S(ε) is calculated by:

S(ε) = Ψft(i, ε) (4.7)

where

Ψft(i, ε) =





1 if fi − fi−1 < −ε

0 if |fi − fi−1| ≤ ε

1 if fi − fi−1 > ε

(4.8)

for any given value of the parameter ε, which is a real number selected from the

range [0, lI ] where lI is the maximum fitness distance in the sequence of {ft}n
t=1.
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When ε is zero, Ψft is most sensitive to the fitness difference and S(ε) will be

presented as a string of 1’s. Thus it provides as much information of the landscape

as possible. If ε is lI , Ψft is least sensitive to the fitness difference and S(ε) will be

presented as a string of 0’s. Thus it provides the least detailed information of the

landscape. ε determines the accuracy of S(ε), therefore it determines the reliability

of the information analysis.

4.1.2.2 Partial information content

The modality encountered during a random walk on a fitness landscape can be

characterized by partial information content which may be obtained by removing

non-essential parts from S(ε). It is defined as:

M(ε) =
µ

n
(4.9)

where n presents the length of the string S(ε) and µ is the length of new string

S ′(ε) which is obtained by removing non-essential parts from S(ε). The value of

µ is evaluated as Φs(1, 0, 0). The function Φs(i, j, k) is defined below to count the

slops of the optima that are involved in the string S(ε):

Φs(i, j, k) =





k if i > n

Φs(i + 1, i, k + 1) if j = 0 and si 6= 0

Φs(i + 1, i, k + 1) if j > 0, si 6= 0 and si 6= xj

Φs(i + 1, j, k) otherwise

(4.10)

When the partial information content M(ε) is zero, that means no slop is in the path

and the landscape is flat. If the partial information content M(ε) is one, that means

the landscape path is maximally multi-modal. Based on the partial information

content, the number of optima during the random walk on the landscape can be

calculated as bnM(ε)
2
c.
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4.1.2.3 Information stability

The information stability (ε∗) is defined as the smallest value of ε for which the

fitness landscape becomes flat. That mean S(ε∗) is a string of 0’s. The higher the

information stability, the more flat the fitness landscape.

4.1.2.4 Density-basin information

The density-basin information (h(ε)) evaluates the density and the isolation of the

peaks in the landscape. Thus it is an indication of the variety of flat and smooth

areas of the fitness landscape. It can be calculated by:

h(ε) = −
∑

p∈{1,0,1}
P[pp] log3 P[pp] (4.11)

where pp are sub-blocks of 00, 11, and 11, and P[pp] are the frequencies of the sub-

blocks pp. Higher density-basin information means a number of peaks are within a

small area while lower density-basin information means an isolated optimum. There-

fore it is easier for an evolutionary search process on a fitness landscape with high

density-basin information and harder for that with low density-basin information.

4.1.2.5 Summary

In summary, information analysis provides a new approach for fitness landscape

analysis. Information content and partial information content measure the amount

of information of the landscape. Information stability is a result of filtering out

the estimated information content. Density-basin information measures the density

of the local optimum. With these four indications information analysis presents

comprehensive details of the fitness landscape. Higher information content, partial

information content and information stability means higher degree of epistasis and

modality which leads to a rugged landscape that is hard to search. Vassilev argued
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that the correlation analysis only give us a vague notion of the structure of fitness

landscape of a given problem (Vassilev et al. 2000). Therefore information analysis

approach is adopted to characterize the fitness landscape in this study.

4.2 Experimental setup

The aims of these experiments are twofold. First, the effect of the personality char-

acteristics of the red team on the fitness landscape for evolving best personality

characteristics for the blue team is studied. Second, the findings by applying a

straightforward (1 + 1) evolutionary strategy (ES) to evolve the personality char-

acteristics for the blue team are compared with the findings of the previous fitness

landscape analysis.

Six different scenarios are created for the red team; these scenarios are listed in Table

4.1. In the Balanced scenario (BAL), the team members tend to group together,

attack the enemy and reach the goal (flag). In the Goal Oriented scenario (GOL),

team members are neutral about grouping together or attacking the enemy; however,

they are determined to get to the flag. In the next four scenarios, the members are

neutral about getting to the flag and the emphasis is more on their relationship

with the enemy and themselves. In the Very aggressive scenario (VAG), the team

members tend not to cluster and being focused more on attacking the enemy. In the

aggressive scenario (AGG), the members tend to be more rational than those in the

VAG scenario by being neutral about clustering together while attacking the enemy.

In the Defensive scenario (DEF), the members tend to cluster together while being

neutral about following the enemy. In the Coward scenario (COW), they are neutral

about clustering together but they run away from the enemy.

In all six scenarios, the “probability of hit” of the red team is fixed to the maxi-

mum of 1. The decision variables are represented with a vector of 10 real numbers

representing different characteristics of personalities for the blue team as follows:
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Table 4.1: Different strategies for the red team used in the experiments
Scenario Friend Enemy Goal
Balanced (BAL) Cluster Attack Target
Goal Oriented (GOL) Neutral Neutral Target
Very Aggressive (VAG) Avoid Attack Neutral
Aggressive (AGG) Neutral Attack Neutral
Defensive (DEF) Cluster Neutral Neutral
Coward (COW) Neutral Avoid Neutral

1. P1 − P4: attraction/repulsion towards a healthy or an injured enemy in the

communication range or in the vision range.

2. P5 − P8: attraction/repulsion towards a healthy friend or an injured friend in

the communication range or in the vision range.

3. P9: probability of hit.

4. P10: attraction/repulsion towards the flag.

All personalities (decision variables) are real numbers in the range of [−1, 1]. The

environment is a 50x50 grid and the flag is located at the middle cell of the bottom

row. Each red and blue team has 20 agents initialized at random in a 7x7 square area.

Both teams are initialized starting from the top to the seventh top row. The red

team is initialized two columns away from the middle column in the right direction

while the blue team is initialized two columns away from the middle column in the

left direction. The initial board is depicted graphically in Figure 4.1. The evaluation

of the game involves repeating the simulation 100 times, each for 500 time steps.

The objective of a scenario can be simplified to the following question: “if we are

faced with a red team with specific characteristics in an operation, what should be

the characteristics of the blue team to achieve maximum damage to the red team

and minimum loss to the blue team?”. The objective function is chosen to maximize

the differential advantage of blue over health; that is, the larger the gap between

the damage in the blue team and the damage in the red team, the more likely that
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Figure 4.1: A graphical representation of the initial setup of agents in the environ-

ment

the team with this differential advantage wins. Formally, the objective is defined as

follows. Let

Nb, Nr denotes the number of agents in blue team and red team respectively.

hb
i , h

r
i denotes the health of blue agent i and the health of red agent i at the end of

the simulation respectively.

Hb
i , H

r
i denotes the health of blue agent i and the health of red agent i at the start

of the simulation respectively.

⇑ objective = (
Nr∑
i=1

Hr
i −

Nr∑
i=1

hr
i )− (

Nb∑
i=1

Hb
i −

Nb∑
i=1

hb
i) (4.12)
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Due to the fact that
∑Nb

i=1 Hb
i and

∑Nr

i=1 Hr
i are constants because all agents have

the same initial health, the objective function can be reduced to Equation 4.13:

⇑ objective =

Nb∑
i=1

hb
i −

Nr∑
i=1

hr
i (4.13)

With this objective function, many situations can arise. Three extreme situations

are identified:

1. The lower bound in Equation 4.13 that will occur when the blue team does not

shoot at the red team (i.e. the probability of hit is -1) is equal to −∑Nr

i=1 Hr
i .

In this case, the red team will eliminate all members of the blue team while

maintaining their health value to maximum.

2. The upper bound in Equation 4.13 that will occur when the blue team achieves

maximum damage to the red team is equal to
∑Nb

i=1 Hb
i . Since the probability

of hit is fixed for the red team to a positive value, the only possibility here is

that the blue team has manoeuvred efficiently to achieve this result or the red

was running away from the blue team while the blue team was shooting at the

red team.

3. The situation with the objective value of zero will take place when the loss of

both teams is the same, or the loss of both teams is zero (the teams did not

engage and were simply running away from each other).

Two different fitness measures are used in this study. To shift the negative values and

ensure that all values are non-negative,
∑Nr

i=1 Hr
i is added to the objective function

and average its value over the 100 different simulation repeats as the first fitness

function (see Equation 4.14). The second (see Equation 4.15) is the normalized

average which is the average fitness normalized by the standard deviation. The

first fitness will promote individuals with high average regardless of the stability or

consistency of the weight vector in achieving the same results, while the latter will
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penalize solutions based on their standard deviations. In other words, a fitness value

of 300 is better than 400 if the former has a standard deviation of 2 while the latter

has a standard deviation of 20.

F1 =

∑100(
∑Nb

i=1 hb
i +

∑Nr

i=1 Hr
i −

∑Nr

i=1 hr
i )

100
(4.14)

F2 =
F1

1 + standard deviation
(4.15)

1 is added to the standard deviation to avoid division by 0 and to bound the fitness

between the actual average fitness (when the standard deviation is 0) and 0 (when

the standard deviation is very large). Thus 0 < F2 ≤ F1. This equation has a strong

bias for stable solutions.

4.3 Results and Analysis

4.3.1 Random walk

To undertake the fitness landscape analysis, ten different random walks are taken,

each of length 10,000 solutions using both fitness functions. Each stochastic neigh-

bourhood in the search space was obtained by adding a random number drawn from

a Gaussian distribution with zero mean and 0.1 standard deviation to each variable

in the genotype. If the value of any personality is out of the range [−1, 1], the value

is truncated. Table 4.2 presents some statistics of the best solutions encountered in

the ten random walks.

According to the average fitness in Table 4.2, the best solution expresses some

interesting behaviours as the fitness values demonstrate real engagements between

the forces and the superior performance of the blue force. It is astonishing to look

at the average fitness and compare it to the corresponding characteristics of the red
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Table 4.2: Statistics of the best solution found using each fitness function over the
10 runs in the random walk experiment

Average Fitness (F1) Normalized Fitness (F2)
Max Mean±Stdev Max Mean±Stdev

BAL 229.80 219.78 ± 7.74 200.00 200.00 ± 0.00
GOL 229.20 204.45 ± 9.03 200.00 200.00 ± 0.00
VAG 270.32 268.46 ± 1.11 22.22 19.47 ± 1.20
AGG 288.94 285.52 ± 1.60 25.68 19.20 ± 2.75
DEF 232.64 220.07 ± 6.84 200.00 200.00 ± 0.00
COW 208.38 205.61 ± 1.87 200.00 200.00 ± 0.00

team. The best wins for blue occur when red is either VAG or AGG. These two

scenarios share the same tendency of the red team members to attack their enemies.

The worst win occurred when the red team is either GOL or COW. In the VAG

mode, the red agents tend to run after any blue in their vision or communication

ranges and avoid grouping with their friends. Therefore, without cooperation among

the red team members, the red may be completely damaged although blue may be

damaged as well to some degree. In the COW mode, despite that blue can run

after red, red is running away from blue and cluster with their friends. Therefore,

it may minimize its own damage and annihilate blue invaders effectively. In the

GOL scenario, the red team members were also neutral about grouping but their

common tendency to get to the flag imposed an implicit tendency to group together.

These findings are very interesting as they support the recent development in defence

theory and the work on swarm attacks.

However, the best solutions, based on using the average fitness as the objective func-

tion, are not stable as can be seen when compared to the runs using the normalized

average fitness as the objective function. In the latter case, the search algorithm

is biased to more stable solutions. Interestingly, the normalized average fitness is

giving a different side of the same story. Table 4.2 shows that the normalized aver-

age fitness value in BAL, GOL, DEF and COW scenario converged to the attractor

with the average fitness of 200 and zero standard deviation. This attractor covers

two cases: (1) there is no engagement taking place between blue and red; and (2)

the loss in blue is equal to the loss in red. After a closer look at the runs, the first
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option is dismissed. Therefore, in these four scenarios, both teams had the same

amount of loss. The much lower value of normalized average fitness implied that

stochasticity plays an important role in the VAG and AGG scenarios; that is, all

solutions encountered were unstable.

Figures 4.2 depicts a representative time series for each experiment being generated

by random walk. The figures reveal that the landscape is indeed rugged. However,

the landscape for the BAL, GOL, DEF and COW strategies contains many flat

areas. In particular, it is clear as shown in the right column of Figure 4.2 that the

landscapes for BAL, GOL, DEF, and COW are filled with solutions that lead to

tit-for-tat strategies (Axelrod 1984); resulting in an equal red and blue loss, while

the landscapes for VAG and AGG are void of solutions leading to tit-for-tat. The

reason that this tit-for-tat is common is because the game is symmetric. Researches

(Axelrod 1984; Milinski 1987; Nowak and Sigmund 1992) has shown that tit-for-tat

is a very common and successful strategy in symmetric games such as Prisoner’s

Dilemma (IPD) game while the player usually cannot mimic the behaviour of its

opponent (tit-for-tat) since different players have different strategies in asymmetric

game.

The fitness signal is usually defined in the literature as the difference between the

fitness of the best solution and second best. We call this signal as signal-best. A

more generic definition used in this analysis is to define the signal as the difference

between the best and worst fitness values encountered during the search. We call

this signal as signal-worst. The concept of signal-worst provides a simple mechanism

to understand the range of fitness values in a landscape. Accordingly, in term of

average fitness, one can see that the value of signal-worst with the BAL, GOL, DEF

and COW scenarios is lower than that with the VAG and AGG strategies. The good

solutions (those with fitness values over 200) in BAL and DEF scenarios seem to

be more isolated and surrounded with low fitness values. There is almost no good

solution found in the GOL and COW scenarios.

However, the previous findings do not continue to hold when looking at the nor-
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Figure 4.2: Fitness value over time for random walk using average fitness(left col-
umn) and normalized average fitness (right column). The order from top down is:
Balanced, Goal Oriented, Very Aggressive, Aggressive, Defensive, Coward, respec-
tively

malized fitness time series. One can see that the minimum signal-worst occurs with

the VAG and AGG strategies while the BAL, GOL, DEF and COW strategies have
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Table 4.3: The information theoretic measures over six strategies using both fitness
functions

ε∗ H(ε) M(ε) Exp. # of Opt.
BAL 129.90 ± 14.59 0.43 ± 0.01 0.39 ± 0.02 1966.20 ± 115.57
GOL 177.30 ± 17.66 0.45 ± 0.01 0.42 ± 0.03 2104.90 ± 128.82

Average VAG 140.60 ± 7.37 0.44 ± 0.01 0.52 ± 0.01 2608.20 ± 41.13
Fitness AGG 182.30 ± 7.66 0.41 ± 0.00 0.54 ± 0.01 2684.70 ± 39.69

DEF 143.40 ± 21.44 0.43 ± 0.01 0.39 ± 0.04 1948.00 ± 195.39
COW 123.30 ± 13.70 0.46 ± 0.01 0.42 ± 0.03 2079.50 ± 160.72
BAL 199.00 ± 0.47 0.43 ± 0.01 0.43 ± 0.02 2127.00 ± 112.07
GOL 199.00 ± 0.94 0.45 ± 0.01 0.47 ± 0.03 2336.20 ± 135.86

Normalized VAG 8.80 ± 0.79 0.45 ± 0.01 0.59 ± 0.01 2959.70 ± 31.00
Average AGG 9.60 ± 1.35 0.41 ± 0.00 0.60 ± 0.01 2988.30 ± 40.68
Fitness DEF 199.00 ± 0.67 0.43 ± 0.01 0.42 ± 0.04 2106.50 ± 217.28

COW 197.20 ± 1.32 0.44 ± 0.01 0.45 ± 0.03 2238.30 ± 164.48

almost the same value of signal-worst. It is also clear that the landscape is very

rugged using the VAG and AGG strategies while it contains a number of flat regions

when using the other four strategies.

Table 4.3 lists the results of the fitness landscape analysis by using information

content approach. It is clear that the findings between the two fitness values are

consistent with the previous discussion. It is also apparent that both landscapes are

similar except for the value of ε∗ in the VAG and AGG scenarios using normalized

average fitness, where they have the highest number of peaks. The partial informa-

tion content has the highest value with these two scenarios. This implies that the

fitness landscape of these two scenarios under the normalized average fitness func-

tion is highly multi-modal. Referring to the information content, the similar values

occurred in all scenarios suggest that the degree of ruggedness is similar between

the landscapes of all scenarios regardless of which fitness function is used.

Interestingly the VAG and AGG scenario have similar information stability when

using the average fitness as the objective function, but have much lower value when

using the normalized average fitness. What is intriguing here is that the fitness

landscapes for both fitness functions have very similar characteristics despite the

differences in the distribution of fitness values embedded in these spaces.

In terms of information stability, one can see that it requires high value of ε∗ except
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for the normalized average fitness in the VAG and AGG scenarios. The high value

of ε∗ is almost 50% of the upper bound on the fitness function. This entails that the

highest difference between two solutions in the neighbourhood is less than or equal

to 50% of the upper bound on the fitness value.

By scrutinizing Figures 4.3, one can see that despite the similarities between the

fitness landscapes of the two fitness functions in BAL, GOL, DEF and COW sce-

narios, there are small peaks between zero and 20 in terms of normalized average

fitness. This implies that there are a number of local optima appearing at the fitness

value between zero and 20 in the landscape of both fitness functions. The big peak

at 200 tells us that most optimal solutions are occurring at the fitness value of 200

and also suggests that many of the strategies are tit-for-tat. For the VAG and AGG

scenarios, the frequencies for encountering solutions is very similar, but the likeli-

hood for the blue team to find a good solution with fitness value above 250 is higher

when using the average fitness as the objective function. In terms of normalized

average fitness, all the solutions are clustered between 0 and 20. This suggests that

solutions in the VAG and AGG scenarios are very unstable (the standard deviation

is high).

4.3.2 (1 + 1) Evolution strategy

A (1+1) evolution strategy ((1+1)ES) can be seen as a special case of evolutionary

methods with a population size of one. Similar to random walk, a solution is a vector

of ten real value numbers. To test the findings of the fitness landscape analysis,

a straightforward (1 + 1)ES is adopted. In order to maintain the same fitness

landscape, the same neighbouring mechanism is used; therefore, the step adopted in

the (1 + 1)ES is fixed and is not adaptive. This setup is certainly not the best to

achieve good results for our problem. However, the aim of these experiments is to

compare the effect of the bias generated from the use of the fitness to guide solutions

in the search space on the quality of solutions obtained.
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Figure 4.3: Fitness histogram for random walk using average fitness (left column)
and normalized average fitness (right column). The order from top down is: Bal-
anced, Goal Oriented, Very Aggressive, Aggressive, Defensive, Coward, respectively
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The (1 + 1)ES adopted starts by generating a solution at random. The initial

solution is considered as the best solution found so far. The new solution is obtained

by adding a random number drawn from a Gaussian distribution with zero mean

and 0.1 standard deviation to each personality of the best solution found so far. If

the new solution is better than or equal to the best solution found so far, the former

replaces the latter. If not, a new solution is generated and the process continues

until the maximum number of objective evaluations allowed is reached; after which,

the algorithm terminates. This simple and straightforward (1+1)ES can be seen as

a stochastic hill climber which also allows movements on plateaus in the landscape.

Therefore neutral mutations are accepted to help escaping flat areas and possibly

jump from shallow areas; thanks to the role of the stochastic neighbourhood.

Similar to random walk, the experiments are repeated ten times and in each, the run

is stopped after a total of 10,000 solutions are generated. This setup is equivalent

to 106 objective evaluations (calls to the simulators) after taking into account the

100 evaluations per solution. The experiments are performed for both fitness func-

tions: the average fitness (called ESAvg) and the average normalized fitness (called

ESNorm).

Table 4.4 lists the best solution found using ESAvg and ESNorm for each scenario

over all runs respectively. Figure 4.4 also shows the progression of the best solution

over time for each of the ten runs. The best solution found by ESAvg is similar

to that encountered by random walks. Similar to the results of random walk using

normalized average fitness, ESNorm got stuck in the attractor with the normalized

fitness value of 200 except in the case of VAG and AGG scenario despite that from

the fitness landscape analysis, the VAG and AGG scenario had a higher number of

peaks when compared to the other scenarios.

The best overall fitness is achieved with the VAG and AGG scenarios in terms of

average fitness; that is, when the enemy does not care about its own safety and only

care about attacking blue agents. Due to the stochasticity, the fitness value of the

best solution is pretty low in terms of normalized average fitness for the VAG and
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Figure 4.4: The average fitness of the best solution found over time for ESAvg (left
column) and ESNorm (right column). The order from top down is: Balanced, Goal
Oriented, Very Aggressive, Aggressive, Defensive, Coward, respectively
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Table 4.4: Best solution found for (1 + 1)ES using both fitness functions over 10
independent runs

Average Fitness Normalized Average Fitness
Max Mean±Stdev Max Mean±Stdev

BAL 270.56 227.50 ± 28.42 200.00 181.53 ± 58.41
GOL 202.60 200.97 ± 0.61 200.00 161.96 ± 80.20
VAG 273.38 272.15 ± 1.14 24.55 19.95 ± 2.73
AGG 291.56 288.41 ± 2.53 29.10 19.32 ± 6.06
DEF 271.78 235.97 ± 30.91 200.00 181.51 ± 58.48
COW 211.70 206.98 ± 3.19 200.00 200.00 ± 0.00

AGG scenarios. These results are consistent with the findings based on the earlier

fitness landscape analysis.

By looking at the fitness histograms encountered by the evolutionary strategies as

shown in Figure 4.5, one can certainly find clear differences as the attractor with a

fitness value of 200 did not dominate the frequencies as much as with the random

walk. Since there is a large amount of the points in the fitness landscape having

fitness value of 200, the highly explorative search, such as random walk, will very

likely obtain the fitness of that level. However, a more exploitive search, such as

(1+1)ES, is able to make use of neighbouring information thus would obtain better

solutions.

In the remaining analysis of this section, the behavioral characteristics of agents

corresponding to the best solutions found by the evolutionary strategy using the

average fitness is studied. Figure 4.6 shows the amount of damage caused to blue

and red according to each scenario. Despite that the highest level of fitness occurred

with the AGG then the VAG scenarios, the highest level of damage to the red team

occurred with the DEF scenario followed by the BAL then the AGG. Same as red

team, the highest level of damage to the blue team occurred with the DEF scenario

followed by the BAL scenario. However, the third highest level of damage in the blue

team occurred with the GOL scenario followed by the COW scenario then VAG and

AGG. The best ratio of damage between red and blue occurs when the red follows

an AGG scenario. The worst ratio of damage occurs when the red follows the GOL
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Figure 4.5: Fitness histogram for (1 + 1)ES using average fitness (left column) and
normalized average fitness (right column). The order from top down is: Balanced,
Goal Oriented, Very Aggressive, Aggressive, Defensive, Coward, respectively
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Figure 4.6: The level of damage achieved to each team according to the best so-
lution found for each scenario. BAL: Balanced, GOL: Goal Oriented, VAG: Very
Aggressive, AGG: Aggressive, DEF: Defensive, COW: Coward

scenario. Recalling the results in Table 4.4, they are consistent with the ratio of

damage.

The second type of analysis looks at the personalities evolved by the blue team

corresponding to the best solution found for each scenario. Table 4.5 provides the

personality weights.

Table 4.5: The characteristics of the personalities corresponding to the best evolved
solution for each scenario. ‘H’ denotes healthy, ‘E’ denotes enemy, ‘C’ denotes
communication, ‘V’ denotes vision, ‘I’ denotes injured, and ‘F’ denotes friend

BAL GOL VAG AGG DEF COW
HEV -0.50 0.89 -0.18 0.28 -0.66 -0.16
HEC 0.85 0.72 0.79 0.90 0.82 0.95
IEV 0.02 -0.63 0.48 -0.63 -0.63 -0.86
IEC 0.57 0.32 -0.64 0.44 0.95 0.91
HFV -0.01 0.00 -0.06 -0.05 -0.01 -0.07
HFC 0.01 0.00 0.80 0.30 0.00 0.00
IFV 0.22 1.00 0.20 0.35 0.64 -0.06
IFC 0.37 0.07 1.00 0.87 -0.02 -0.12
Prob. of hit 1.00 1.00 1.00 0.91 1.00 1.00
Desire Flag -1.00 -0.59 0.26 0.54 -1.00 0.73

Interestingly, there is a general trend in the behaviour of the blue to be neutral

or attracted to friends, especially to injured friend. There is also a general trend

of being attracted to enemy within communication range except in the case when
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red is VAG, the attraction to injured enemy within communication range becomes

negative. In most cases the blue agent tends to escape from the enemy within vision

range except when the red team took the GOL and AGG strategy, the blue agents

prefer to be closes to healthy enemy within the vision range. When the red team

follow VAG and BAL scenario, the blue agents prefer to be closes to injured enemies

within the vision range. In any case, the blue agents always fire at the enemy.

Overall, it seems that the general strategy achieved by the blue in all experiments

is to defend injured friends, and hit and cause maximum damage to enemies within

communication range. This strategy makes sense. Defending injured friends helps

to reduce death in the blue force. In addition, because the communication range is

larger than the vision range, attacking the enemy within communication range leads

also to destroying close-by enemies.

After these experiments, a critical question for defence analysts is how sensitive

WISDOM–I is to the personality parameters used in the simulations. The following

section describes the sensitivity test used to analyse this issue.

4.3.3 Sensitivity test

In order to test the sensitivity of the model, some experiments are conducted based

on the VAG scenario using random walk after slight changes in the personality

weights for the red agents. Three scenarios are created by perturbing the weights

with a small step of 0.05 around the original values of some parameters while main-

taining the rest fixed. The three scenarios correspond to changes in the weights for

friendly agents (FRD), enemy (EMY), and probability to hit (SHT).

It is found that almost no difference in the fitness landscape when the parameters

are perturbed. The plots for the histogram are not presented because they are

very similar to the original plots shown before. The information theoretic measures

confirm the findings as shown in Table 4.6.

Up to now, a fitness landscape analysis is conducted by using single fitness function.
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Table 4.6: The information theoretic measures over four testing scenarios using both
fitness functions

ε∗ H(ε) M(ε) Exp. # of Opt.
VAG 140.60 ± 7.37 0.44 ± 0.01 0.52 ± 0.01 2608.20 ± 41.13

Average EMY 140.70 ± 7.78 0.44 ± 0.01 0.52 ± 0.00 2602.70 ± 24.93
Fitness FRD 135.30 ± 8.41 0.44 ± 0.01 0.52 ± 0.00 2591.90 ± 19.60

SHT 148.00 ± 4.42 0.44 ± 0.00 0.52 ± 0.00 2612.90 ± 21.70
VAG 8.80 ± 0.79 0.45 ± 0.01 0.59 ± 0.01 2959.70 ± 31.00

Normalized EMY 8.50 ± 1.35 0.45 ± 0.01 0.59 ± 0.01 2959.50 ± 37.33
Average FRD 7.80 ± 1.23 0.45 ± 0.01 0.59 ± 0.01 2941.30 ± 35.06
Fitness SHT 8.00 ± 0.82 0.45 ± 0.00 0.59 ± 0.00 2968.60 ± 20.34

When looking at Figure 4.6, one may notice that higher fitness values do not always

mean higher damage to the red team and also do not always mean lower damage

to the blue team. But the desired objective is to minimize the damage of the blue

team and maximize the damage of the red team during capturing the flag. Although

the integration of these two objectives into a single fitness function simplifies the

mathematics, mixing the health of the blue and red teams hides information during

the search for a good strategy. Two solutions can exhibit the same fitness value with

very different characteristics. One suggestion is to use the ratio of damage as the

fitness instead of the health. Still, the ratio of damage hides the amount of damage.

For example a ratio of damage of 1:2 does not tell us much about how much the red

or blue team lost.

To overcome this problem, a further analysis is performed in the next section by

using a Pareto-based multi-objective evolutionary approach.

4.3.4 Multi-objective analysis

An evolutionary multi-objective optimization (EMO) approach attempts to search

for optimal solutions to a problem with multiple conflicting objectives by means of

evolutionary computation techniques (Zitzler 1999; Deb 2001; Coello et al. 2002;

Abbass and Sarker 2002). In the last decade, EMO has been a hot research field

for solving both theoretical and practical problems. One may find a large number
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of practical applications of EMO to real-life problems in the books by (Deb 2001;

Coello et al. 2002). There are two key concepts in EMO: dominance and the Pareto-

optimal set (Deb 2001; Coello et al. 2002). If solution A is not worse than solution

B in all objectives and is better than solution B in at least one objective, solution

A is said to dominate solution B. If A is better than B in one objective and worse

than B in another objective, then A and B are non-dominated solutions. The set

of all non-dominant solutions in the feasible region of the search space is called the

Pareto-optimal set.

The experiments with the same settings as before are conducted for both random

walk and (1 + 1)ES with two objectives: minimizing the damage of the blue team

(Equation 4.16) and maximizing the damage of the red team (minimizing the health

of the red team) (Equation 4.17).

⇓ objective1 =

Nb∑
i=1

Hb
i −

Nb∑
i=1

hb
i (4.16)

⇑ objective2 =
Nr∑
i=1

Hr
i −

Nr∑
i=1

hr
i (4.17)

The left column of Figure 4.7 depicts the scatter and Pareto-optimal diagram for

all solutions by using random walk. For the GOL and COW scenarios, the Pareto-

optimal set is almost the diagonal, which means both blue and red have equal

damage. The reason why the low maximum damage of the red team occurs with

the COW scenario is that the red agents were running away, therefore there is no

engagement between blue and red. The Pareto-optimal set in the BAL and DEF

scenarios leans towards the blue team, which implies that in these two scenarios the

blue team may cause proportionally more damage to the red team. The VAG and

AGG scenarios have similar Pareto-optimal solutions. In both scenarios, the blue

team may cause around 75% damage in the red team.

The density of the scatter diagram tells us that solutions found in the BAL, GOL,
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Figure 4.7: Scatter and Pareto-optimal diagram for all scenarios by using random
walk (left column) and (1 + 1)ES (right column)
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DEF and COW scenarios frequently appear in the upper left triangle area. Therefore

in most cases the blue team finds it hard to find a good solution. However, in the

VAG and AGG scenarios, the solution found appear more frequently in the lower

left area, which means the the blue finds good solutions easily.

The right column of Figure 4.7 presents the scatter and Pareto-optimal diagram for

all solutions by using (1 + 1)ES. When comparing with the left column of Figure

4.7, one may find that both are similar to each other. But it is slightly better

in (1 + 1)ES than that in random walk in terms of the Pareto-optimal set. The

density of the scatter diagram reveals that most solutions found by (1 + 1)ES are

quite close to the Pareto-optimal, especially for the VAG and AGG scenarios. In

the GOL, VAG and AGG scenarios, solutions can be found where full damage can

be achieved to the red team.

4.4 Summary

The results of the experiments were intriguing. The fitness landscape is rugged and

multi-modal for all scenarios. The degree of difficulty in finding the right combina-

tion of personalities for the blue team is largely dependent on the strategy of the

red team. Each strategy changes the fitness landscape of the problem. But the

fitness landscapes of the VAG and AGG scenarios are much different from those of

the other four strategies. When revisiting the above analysis carefully, one may find

that the fitness landscape of BAL is quite similar to that of DEF while the fitness

landscape of GOL is quite similar to that of COW. So the six scenarios can be clas-

sified into three classes: VAG and AGG, BAL and DEF, and GOL and COW, which

are ordered from the lowest degree of difficulty to highest degree of difficulty. If the

red team follows the first class of strategies, the blue team may find a good solution

relatively easy while if the third class of strategies was taken, the blue team finds

it hard to discover a good solution. The second class of strategies is in the middle.

By examining the definition of these six scenarios (Table 4.1), one can see that the
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tendency of clustering with friends or attacking the opponent influenced the fitness

landscape more than that of neutrality or evasion. Also, the weights associated with

friends have stronger effect on the fitness landscape than those referring to enemies.

Although the results from (1 + 1)ES is similar to those from random walk, it shows

that it is easier to find a good solution in (1 + 1)ES than in random walk. This

implies that exploitative search is better than exploration search in the model of

WISDOM-I.

The search for a stable strategy can be misleading in this type of problem. Stability

is what the analysts would look for but defining it is challenging. One possibility

is to bound the variance; therefore solutions falling in certain interval of minimum

and maximum variance are considered to posses the same level of stability.

The results from the multi-objective analysis shows that the composed single fitness

function hides many information during the search for a good solution.

During developing and using WISDOM–I, we realized that the limitations are very

obvious but critical to the study of CAS. In the next chapter, these limitations

are analysed and a new network centric multi-agent architecture is proposed, called

NCMAA which may highly improve existing agent architectures.



Chapter 5

NCMAA: a Network Centric

Multi-Agent Architecture 1

5.1 Introduction

The theory of complex adaptive systems (CAS) is the study of many nonlinearly

interacting components, where the interaction is governed by simple rules while the

overall behavior of the system exhibits a certain level of complexity. The research

area of complex system theory encompasses many sub-fields such as adaptation: the

study of how systems respond to changes in the environment (Holland 1992; Holland

1996; Flake 1998; Levin 1998); network theory: the study of how the network topol-

ogy and properties influence the behaviour that the network exhibits (Wasserman

and Faust 1994; Albert and Barabási 2002; Newman 2003; Dorogovtsev and Mendes

2002); and emergence: the study of how global phenomena arise from the lower level

interaction of the components (Waldrop 1992; Holland 1998; Johnson 2001; Stro-

gatz 2003). All the discoveries in complex system theory are finding their ways to

practitioners and real life applications. For example, existing ABDs have already

been applied in a number of areas (i.e. education, policy analysis) by a number of

1This chapter is based on the publications of Yang et al. (2006a) and Yang et al. (2005a).
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organizations (i.e. universities, defence departments, consulting companies) (Lauren

and Stephen 2002a; Galligan and Lauren 2003; Ilachinski 2004).

Due to the difficulty faced by analytical methods in analyzing the high degree of

nonlinear interactions between components within a CAS, agent based modelling has

been widely adopted to model, simulate and study CAS. However some limitations

of existing multi-agent simulations have recently been discovered, as follows.

• It is hard to validate these systems because they are representation free (Yang

et al. 2005b).

• Reasoning during the simulation becomes difficult with increasing numbers of

entities (Yang et al. 2005b). Cognitive agent systems (Barringer et al. 1989;

Rao and Georgeff 1991; Fisher 1994; Rao 1996; Lesperance et al. 1996) are able

to reason about the actions taken by each entity in the system but unable to

scale up to include many agents or account for the high degree of nonlinearity

that is featured in most real life problems. On the other hand, pure reactive

agent systems (Wooldridge and Jennings 1995; Nwana 1996; Sycara 1998) can

scale up well but it is hard to understand the behaviour exhibited by the

system or validate it because there is no reasoning.

• Inability to find a common ground between agent-centric or organizational-

centric (Vázquez-Salceda et al. 2005) methods. Existing multi-agent systems

(MAS) either focus on the model of individual agents with limited support

on the interactions between agents such as GAIA (Wooldridge et al. 2000),

or concentrate on the model of the agent society by limiting the autonomous

behaviours of a single agent, such as SODA (Omicini 2001) and ISLANDER

(Esteva et al. 2002).

• Lack of an explicit and auditable model of interaction. Existing systems always

combine the entities (agents) and their interactions (relationships) in a single

model. There is no distinction between the social value of an entity generated

by its interactions with other entities, and the individual value generated by its
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own properties and capabilities (Vázquez-Salceda et al. 2005). It is important

to have an explicit model of interaction to understand the group behaviours

of agents.

In order to address these limitations, a novel Network Centric Multi-Agent Archi-

tecture (NCMAA) is proposed. It maps perceived reality to high resolution in the

simulation while still able to reason about the actions and the emergent behaviours

in the system. NCMAA provides a powerful real time reasoning engine, which is

built on network theory and causal models. It helps users to understand the dy-

namics and outcomes of the simulation by conducting inductive reasoning during

the simulation. The method is based on sequential construction of the different

elements into a useable model.

The rest of the chapter is organized as follows. The following section is a discussion

on what kind of properties of a MAS are essentially required to model and study

CAS, based on which a comparison among existing agent based models and NC-

MAA is presented. After that, NCMAA is described in detail, which includes three

sections: the description of the NCMAA, the embedded real time reasoning engine

and its developing procedure.

5.2 Multi-agent systems for CAS

MAS is the natural platform for studying CAS. The constituent parts are modelled

as agents with a set of pre-defined characteristics. These agents adapt, evolve and

co-evolve with their environment (Schmitt 1997; Lauren 2000). By modelling an

individual constituent of a CAS as an agent, we are able to simulate a real world

system by an artificial world populated by interacting processes. It is a particularly

effective way to represent real world systems which are composed of a number of

nonlinear interacting parts that have a large space of complex decisions and/or

behaviours to choose from such as those situations in combat (Ilachinski 2000).
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Therefore a good MAS should be able to model each property of a CAS, and should

at least have the following characteristics:

1. High scalability: a CAS usually consists of hundreds or thousands of agents

interacting with each other. For example, colonies are made of ants and brains

are made of neurons. This normally requires agents to be designed on simple

principles.

2. Heterogeneity: obviously a CAS is composed of a number of heterogeneous

constituent, e.g. ecosystems. The diversity is essential to maintain an ecosys-

tem.

3. Explicit model of interaction: within a CAS, the constituent parts interact

with each other nonlinearly. The global behaviours emerge from these interac-

tions. An explicit model of interaction could help us to study the role of each

type of interactions within a CAS.

4. Reasoning on emergent behaviours: the aim of studying a CAS is to under-

stand when, why and how the emergent behaviours occur, and how they link

to the simple local rules applied to each individual agent.

5. Reasoning on individual agent: decisions of each individual agent should be

based on certain mechanisms in order to take reasonable actions.

6. Rationality: the agent needs to take actions rationally in order to achieve its

goals. It may help to avoid exhibit weird behaviours.

7. Adaptivity: the system should be able to improve its performance over time.

For example, for a living organism, it may learn from experience and alter its

behaviour based on its perception of its environment.

8. Sociality: the overall pattern of a CAS is based on interactions among a group

of agents. Therefore an organisation model is required to understand the group

behaviour.
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Table 5.1: Comparison of agent architectures
Essential characteristics Cognitive Reactive Hybrid NCMAA
Scalability low high medium high
Heterogeneity yes yes yes yes
Explicit model of interaction no no no yes
Reasoning on emergent behaviours no no no yes
Reasoning on individual agent yes no yes no
Rationality yes no yes yes
Adaptivity yes yes yes yes
Sociality no no no yes
Credibility yes yes yes yes

9. Credibility: the overall MAS should be transparent in its construction and

demonstrably “fit for purpose” in its applicability to understanding and design

of a CAS.

Table 5.1 is a comparison among existing agent architectures and the proposed

requirements for NCMAA based on the essential characteristics of a good MAS for

CAS. All three existing agent architectures have a limited capability to study the

role of each interaction and to understand emergent behaviours and patterns. As

discussed in chapter 2, existing agent architectures focus on modelling individual

agent. Interaction among agents is embedded in this individual agent model. They

do not have an explicit model of interaction to facilitate the study of the role of

interactions in a system. Since they focus on the model of single agent, it is hard

to use them to capture the sociality of agents. As well, reactive agents do not have

any reasoning while cognitive agents only reason their actions. Both of them do not

have any reasoning mechanism to interpret emergent behaviours of the system. The

proposed multi-agent architecture, NCMAA, attempts to address these drawbacks.

The architecture capitalizes on the large literature existing in the area of network

theory.
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5.3 NCMAA: a network centric multi-agent ar-

chitecture

The proposed NCMAA architecture is mainly based on network theory. The system

is designed on the concept of networks, where each operational entity in the system is

either a network or a part of a network. The engine of the simulation is also designed

around the concept of networks. Figure 5.1 depicts a coarse-grained view of the

system. Each type of relationship between the agents forms a network. Two types of

network are defined: the static network, where the topology does not change during

the course of the simulation, and the dynamic network, where the topology changes

over time. As an example, the former can be the network of families, while the latter

can be the communication network. It is important to emphasize that the definition

of static or dynamic may vary from one application to another. The decisions of

which actions should be taken by the agents are completely constrained by the state

of networks and environment. The actions taken by the agents may trigger a change

in agents’ states, environmental states, or simply the simulation clock advances.

These triggers affect the dynamic relationships and the cycle continues.
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Figure 5.1: A coarse-grained view of NCMAA

One needs to go through two stages to design a system based on NCMAA: developing

a causal network among concepts, and designing the finite state machine which will
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control the simulation oracle.

In NCMAA, a concept means a type of relationship between agents. The causal

network is a directed graph of concepts defining the interdependency of concepts

in the concept space. It provides the basis for establishing a meta-level reasoning

system. A causal network usually has sources and sinks (showing the boundaries

of the system being analyzed). The finite state machine is a collection of states,

each representing the state of a network in the system. The finite state machine

represents the sequence of executing each network in the system and the control of

the system clock.

The overall architecture of the NCMMA is a two–layer architecture (see Figure 5.2).

In the top conceptual layer, the causal network defines the different types of rela-

tionships among agents in the system and how one type of relationship influences

other types. The bottom implementation layer defines the instances of each concept

defined in the causal network. For example, communication may appear as a node

in the causal network. At the lower level, there can be many instances of communi-

cation such as P2P, broadcasting, etc. An agent can use both P2P and broadcasting

to communicate with other agents. So each agent may participate in the different

networks and play several different roles in the system.

Each agent in NCMAA is modelled by a series of states, triggers, actions and con-

sequence. An agent state is defined by a series of properties which are problem

specific. If an agent is in a certain state, the trigger is activated and an action

is taken by the agent. It may lead to its own state changed, other agents’ states

changed or environmental states changed. Different actions may result in different

consequences. Figure 5.3 shows a generic finite state machine for a network. Each

network state includes agents’ states and environmental states and is the constraint

for agents to take actions. At time t, an agent selects and executes an action which

causes a transition from one or more of the network states to another.

The simulation engine in NCMAA is depicted in Figure 5.4. First the system is
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Figure 5.2: The two-layer architecture in NCMAA

initialized and the clock is set to zero. The initialization triggers formation of some

networks, agents sense their environment, recognize their internal states, and based

on networks’ state and internal motivations, take actions which may cause a change

in the system. The simulation cycles continue till termination occurs. The system

terminates if either the maximum number of simulation time steps is reached or a

pre-specified condition is satisfied.

5.4 Causal model and network based reasoning

5.4.1 Causal model

Causal knowledge is widely used to predict future events, to interpret the occurrence

of present events, and to achieve objectives by taking actions. To obtain correct

causal knowledge is not an easy task, e.g. how to distinguish the causal relations

from spurious relations. Recent researches (Waldmann 2000; Waldmann 2001) show
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that causal-model theory (Pearl 2000) is a very complete approach to deal with this

kind of problem. Causality is characterized by its structure and strength (Lagnado

et al. 2006). A causal structure concerns the qualitative causal relationships between

two events while causal strength concerns the quantitative aspect of the causal

relations. Conceptually the structure is more basic than the strength. One must

know the existence of a link before estimating the strength of it. Otherwise, one

may make wrong predictions, understandings and decisions. This is the reason why

NCMAA requires one to build a causal structure (causal network) first based on

prior domain knowledge about the causal status of relationships, which forms the

direction of the causal arrow within causal models and then a series of covariation

information is collected to estimate the strength of each causal relation (Waldmann

1996). The way covariation measures are computed and interpreted is totally based
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on the causal structure.

Formally a causal structure (Pearl 2000) of a set of variables V is a directed acyclic

graph (DAG) where each vertex corresponds to a distinct variable in V , and each

link represents a direct functional relationship between two variables. It can also be

represented by a set of structure equations:

Ii = fi(Pi, εi), i = 1, ..., n, (5.1)

where Pi stands for the set of interactions judged to be immediate causes of Ii and
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the εi represent errors due to some omitted factors. Equation 5.1 is a nonlinear

formation of the linear structural equation models (SEM), a dominant tool used for

causal analysis in economics and social sciences (Pearl 2000).

A causal model is defined as a pair < D, ΦD > where D is a causal structure in

the model and ΦD is a set of parameters compatible with D. The parameters ΦD

develop a function of the equations defined in Equation 5.1 to each Ii ∈ V and a

probability measure P (εi) to each εi.

In NCMAA, the causal network representing the causal structure is a DAG of a

set of interactions (relationships) between agents. Each node in the causal network

represents a type of interaction while each link represents how a type of interaction

is influenced by other types of interactions. After having the causal network which

forms the top layer in NCMAA, a series of statistical analyses could be conducted

to collect covariation information from the bottom layer in NCMAA to estimate the

strength of each causal relationship.

5.4.2 Network theory

Since each node in the causal network is a type of interaction between agents which

is represented as a network or a set of networks at the bottom layer in NCMAA,

these networks at the bottom layer can be analysed by means of network theory

to characterize or qualify each node. Network analysis techniques have been widely

adopted to capture the dynamics, mechanism and patterns of complex systems across

many disciplines of social science, economics, defence, biology and ecology. Network

theory focuses on the relationships, structural or relational processes among social

actors. It provides a number of network measures to characterize the structure or

the pattern of complex networks (Wasserman and Faust 1994; Albert and Barabási

2002; Newman 2003; Dorogovtsev and Mendes 2002).
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5.4.2.1 Size of the network

1. The number of agents in the network (n)

2. The number of edges in the network (E)

5.4.2.2 Average path length

Average path length (Mean Geodesic Distance) (l) means the average shortest dis-

tance between two agent in the network.

l−1 =
1

1
2
n(n + 1)

∑
i≥j

d−1
ij (5.2)

where dij denotes the shortest distance between agent i and agent j. The distance

between two unconnected agents is infinite. Average path length offers a measure

of a network’s overall navigability. The largest path length is called diameter of the

network.

5.4.2.3 Degree (connectivity) and Degree distributions

The degree ki means how many agents connect to agent i. The average degree of

the network (k) is:

k =
1

n

∑
i

ki (5.3)

pk is the fraction of agents in the network that have degree k:

pk =
Nk

n
(5.4)
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where Nk is the number of agents with k degree. It is also the probability that

an agent chosen uniformly at random has degree k. The degree distribution of the

network is the histogram of the degree of agent.

In order to clearly see the distribution, we may use cumulative distribution function:

Pk =
∞∑

k′=k

pk′ (5.5)

which is the probability that the degree is greater than or equal to k.

In a directed network the degree is usually divided into the in-degree and the out-

degree. The in-degree of an agent A is the number of edges with A as their terminal

vertex while the out-degree of an agent A is the number of edges with A as their

initial vertex.

5.4.2.4 Transitivity or Clustering

Clustering coefficient (C) measures the density of triangles in a network. It is also

called network density. The clustering coefficient of agent i is:

Ci =
2Ei

ki(ki − 1)
(5.6)

where Ei is the number of edges between agents which are connected to agent i and

ki is the degree of agent i.

The clustering coefficient for the network is defined as:

C =
1

n

∑
i

Ci (5.7)

which characterizes the overall tendency of agents to form clusters or groups.

An important measure of the network’s structure is the function C(k), which is
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defined as the average clustering coefficient of all agents with k degree, which is an

indication of a network’s hierarchical character:

C(k) =
1

n

∑
i

2Ek
i

k(k − 1)
(5.8)

where Ek
i is the number of edges between agents connected to agent i which has k

degree.

Based on network theory and the knowledge of the causal relationship among the

concepts from the causal mode, a real-time networked based reasoning can easily be

established.

5.4.3 Real-time network based reasoning

Dynamics and patterns of a complex network determine many features of complex

systems. Analysis of network measures may help analysts to understand how global

organization and behaviour emerges from local interactions, and then to plan or

manipulate the behaviours emerging from the networks. There are various statistical

or other types of analyses which can be applied to these network measures, such

as time series analysis. The reasoning engine in NCMAA operates on this latter

analysis.

The state xi of a system is often defined as follows (Shalizi 2004):

xi+1 ≡ F (xi, i, µi) (5.9)

where the function F depends on the time index i and a sequence of independent

random variables µi. Under most circumstances, the evolution of x is Markovian

(Shalizi 2004), i.e the future state is totally dependent on the current state and the

earlier states are irrelevant. However, normally it is almost impossible to directly
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observe the state x. Instead what can be observed is a measure y, which is generally

a noisy, nonlinear function of the state x (Shalizi 2004):

yi = f(xi, φi) (5.10)

where φi is a sequence of measurement of noise. Unfortunately we usually do not

know the observation function f and the state-dynamics function F . The goal of

time series analysis is to make a reasonable guess about these functions so as to

predict and better understand the evolution process of the state. Since raw time

series data (y) often contain noise and other obscuring factors, a common approach

adopted to gain better understanding of the dynamics involved in the raw time series

data is to extract features which fall into two categories: the time-domain which

capture temporal properties and the frequency domain which capture the spectral

properties (Shalizi 2004). Typically no single measure can fully describes a time-

series. Therefore a set of measures is usually adopted, such as mean, median, mode,

variance, correlation coefficient, linear distance and auto-correlation distance. In

order to conduct real-time analysis and reasoning during the simulation, the data

of network measures, performance measures or any other effect measures have to be

streamed and fed into a windowing engine which in turn produces a series of data

frames with different window sizes. A number of analyses can then be done within

a single data frame or between data frames, such as Granger causality test, path

analysis and root cause analysis.

5.4.3.1 Granger causality

Granger causality was introduced by Granger (1969). It is a technique for deter-

mining causal relationships between variables and built on the assumption that the

information for the prediction of the value of a variable is embedded only in the time

series of the causal variables and itself. A time series xt Granger-causes another time

series yt if the future values of yt can be predicted by the values of xt. The idea is
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that the cause must appear before the effect is materialized. Thus if xt causes yt,

then the values of xt must be helpful for forecasting the values of yt. Formally, let xt

and yt be two stationary processes, and E(yt+1|Φt) be the optimal (minimal mean

squared error) predictor of the process yt. Then xt Granger-causes yt if

E(yt+1|(xt ∪ yt)) 6= E(yt+1|xt)

and xt Granger-causes yt instantaneously if

E(yt+1|(xt+1 ∪ yt)) 6= E(yt+1|xt+1)

In practice, if the prediction error of the values of yt is reduced by including measure-

ments of xt in the regression model, then xt is said to be able to causally influence yt.

The standard Granger causality test usually involves a regression test as in Equation

5.11:

yt =
k∑

i=1

αiyt−i +
k∑

j=1

βjxt−j + ut (5.11)

Equation 5.11 suggests that the value of y at time t is a function of the past values

of yt itself as well as of xt. Generally, if xt Granger causes yt, then any changes

happening in yt should be after some changes occurring in xt. Therefore, if the

prediction of yt can be significantly improved through a regression of yt on other

variables, including its own past values and the past or lagged values of yt, then

we can say that xt Granger causes yt. The tests of Granger-causality can also

be based on a vector autoregressive model, a multivariate MA (Moving Average)

representation or a regression of yt on xt ∪ yt (see Hamilton (1994) for a review of

such tests).

Since it is based on correlation rather than causation, Granger causality can be led to

a spurious correlation. However in NCMAA, time series and correlation analysis are
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not conducted in an ad hoc manner. Instead, such kind of analysis is totally based on

a pre-developed causal network. Therefore it may easily avoid spurious correlations

and find the real causal relationships between variables. The Granger causality test

has been widely used in different research fields, such as defence (Dunne and Vougas

1999; Dunne et al. 2001; Kollias et al. 2004) and economics (Hiemstra and Jones

1994).

5.4.3.2 Path analysis

Path analysis (Harris 2001) is an extension of the regression model, used to vali-

date the causal relationships between two or more variables. The model is usually

presented as a graph where arrows indicate causal relations pointing from cause to

effect. A regression is conducted between each dependent variable and its causes

in the model. That is, the regression is done between every pair of variables which

are connected by an arrow. The regression weights or path coefficient indicates the

degree of the effect of a variable assumed to be a cause on another variable assumed

to be an effect. Normally there are four steps for path analysis:

1. Build a causal model (hypothesis) that all variables are causally connected.

Variables that have no explicit causes are called exogenous variables while vari-

ables caused by other variables are called endogenous variables in the model.

2. Select measures of these variables and translate the causal relationships to a

series of structured equations.

3. Calculate statistics, e.g. the path coefficient, to show the strength of rela-

tionship between each pair of causal variable and effect variable in the causal

model.

4. Interpret statistics to see if they support or repute the assumption in the causal

model.
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The path coefficient used in the path analysis is a standardized regression coefficient,

which represents the direct effect of an exogenous variable on an endogenous variable

in the path model. Thus when there are two or more endogenous variables in the

path model, the path coefficients are partial regression coefficients which measure

the extent of effect of one variable on another in the path model. If in a path model,

a variable is dependent only on a single exogenous variable, the path coefficient in

this special case is a zero-order correlation coefficient.

5.4.3.3 Root cause analysis

Root cause analysis (RCA) (Nelms 2003; Rooney and Heuvel 2004) is a methodol-

ogy for discovering the underlying important reasons for performance problems. It

is designed to help identify what, how and why an event occurred. Only when the

underlying reasons why an event or failure happened are determined, the workable

corrective countermeasures can then be established to prevent that event or failure

from occurring again. RCA attempts to dig below the symptoms, and investigates

the fundamental, underlying reasons (root causes) leading to the undesired conse-

quences while troubleshooting and problem solving try to find immediate solutions

to resolve the user visible symptoms. RCA traces the cause and effect trail from the

end effect back to the root causes. To solve a problem, the best option is to kill its

causes at the root. Rooney and Heuvel (2004) proposed four steps to conduct RCA:

1. Data collection: all necessary data describing the failure or event has to be

collected.

2. Causal factor charting: it is a sequence diagram showing all direct and indirect

events leading to an occurrence of the failure and can be represented as a causal

model discussed above.

3. Root cause identification: this is the key process in RCA. Based on the causal

model or the causal factor charting, some analysis techniques, such as a deci-
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sion diagram called the Root Cause Map, Granger causality test and correla-

tion analysis, can be employed to identify the root causes.

4. Recommendation generation and implementation: the countermeasures are

produced to prevent the failure from occurring again. Normally the root cause

analysts do not implement these recommendations.

Although it is often used to identify the causes of a problem or failure, it by no

means can not be used to find the underlying reasons of an event if the event is seen

as an undesired behaviour. RCA provides critical information on what to change

and how to change it. Therefore RCA may help improve the system performance

and also may help attack the system. Currently it is widely used in manufacturing,

construction, healthcare, transportation, chemical industry, networking, software

engineering and power generation (DOE 1992; Tuli and Apostolakis 1996; Fernandes

et al. 15; Handley 2000; Leszak et al. 2000; Rex et al. 2000; Boyer 2001; Burroughs

et al. 2000; Thornhill et al. 2001; Carlson and Söderberg 2003; Julisch 2003; Zhang

et al. 2004; Siekkinen et al. 2005).

5.5 System developing procedure

In practice, of course, NCMAA is an architecture that allows and indeed encourages

flexibility in the way in which the system is modelled and implemented. Implicit in

this is the notion that any system description should balance, or at least acknowl-

edge, the competing paradigms of “correctness” and “usefulness”. “Correctness” -

based on an ontological premise of “the system is” is likely to produce overly compli-

cated descriptions of systems that are not properly understood. This will especially

be the case where humans are involved as in the military example given in this

thesis. The usual adage of the Operations Researcher (OR) then comes into play -

we need “usefulness” through reasonable epistemological abstraction of how we see

the system. A four phase, 12 step (see Figure 5.5) procedure is proposed to achieve
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this. After each phase or step, the developer may need to review the current design

and perhaps go back to a previous step again.

System analysis phase

Step 3: Analyze entity and process
Step 4: Identify causal relationship

System design and modelling phase

Step 5: Build causal network
Step 6: Model agents and environment
Step 7: Develop finite state machine
Step 8: Identify interaction between networks
Step 9: Develop network based analysis and reasoning engine
Step 10: Design other features required, e.g. visualization

System implementation and testing phase

Step 11: System implementation
Step 12: Component and system testing

System planning and specification phase

Step 1: Determine requirements, goals and abstraction level
Step 2: Specify system scope

Figure 5.5: Generic procedures for developing a new application based on NCMAA

5.5.1 System planning and specification phase (step 1 – 2)

In the first phase the developer needs to establish a high-level view of the intended

system which includes the goals, the level of abstraction and the requirements of the

end-user. Then the developer needs to specify what kind of problem the system will

deal with and the boundary of the problem. This is very much a creative phase and

as such needs to be transparent to show the reasoning behind the formulation of the

issues. In Operations Research (OR) terms, this phase relates to the formulation

aspects of Ackoff “problems” or “messes” (Ackoff 1979a; Ackoff 1979b). Unlike

“puzzles” that are usually unambiguous with clear objective functions, “problems”

and “messes” tend to have degrees of freedom in how they are approached. Thus
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the emphasis is on agreement with potential stakeholders on the validity of the

model. There is a range of problem structuring methodologies that could be used

in this phase (Curtis et al. 2005), and these are sometimes referred to as “soft

OR” given that there are usually degrees of freedom available in how any problem

may be tackled. As a simple list this formulation phase should include the context,

an understanding of the processes involved in the system under study, the dynamic

interactions, auditable option identification and viable measures (Curtis et al. 2005).

Success in this phase requires both domain expertise in the processes involved and

in the methods of formulation of the issues.

5.5.2 System analysis phase (step 3 – 4)

In this phase, the developer examines the system under study to derive an analytic

formulation of the constituent processes. Thus models of the sequences of actions in

the various processes are discovered, the entities involved and the data that describe

their operation, the “concepts” (do P, by means of Q to achieve R (Dortmans et al.

2005)) of each action and the cause-and-effect relationship between the processes.

Again domain expertise and skills in soft OR need to be involved in this phase.

A critical step to include is the notion that the analytical description still retains

enough credibility as a system when the different processes are linked in a synthetic

manner.

5.5.3 System design and modelling phase (step 5 – 10)

The next phase involves putting flesh on the abstract ideas determined in the pre-

vious two phases. This is very much an engineering activity and comprises an agent

model, an environment model, a network model and a reasoning model for each

process and the overall interactions. A first cut verification examination needs to be

done at this phase - does the coding adequately represent what occurs in the system
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(Caughlin 2000)? If difficulties in representation occur, then it might be appropriate

to return to phase 2 to determine what can be investigated.

5.5.4 System implementation and testing phase (step 11 –

12)

At this phase, the developer adopts a proper programming language and software

engineering techniques to implement the system. Although an object-orientation

language is not required, it is preferable by its nature. According to the results from

the design, the developer needs to identify classes including attributes, methods,

events and exception handling, components and subsystems. Three major aspects

are very crucial and needed to be well addressed: control structure, algorithm and

data structure (Pfleeger 1998).

Another important task in this phase is to test the system. The testing procedure

includes validation and a detailed verification process. Verification is the process

of determining whether a model is accurately implemented according to the sys-

tem description and specifications (Caughlin 2000). Validation is the process of

determining whether the model is accurately representing the real world from the

perspective of the end-user of the model (Caughlin 2000). There exists a number

of models for validation and verification (Balci 1994; Sargent 1999; Caughlin 2000;

Coylea and Exelby 2000; Walton et al. 2001). One example is the model proposed by

Sargent (Sargent 1999). Sargent’s approach consists of four components (see Figure

5.6): conceptual model validity, which is integrated into the system planning and

specification phase, system analysis phase and system design and modelling phase,

computerized model verification, which is integrated into the system implementa-

tion step, operational validity, which is integrated into the system testing step, and

data validity, which is used for all phases.
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Figure 5.6: Sargent’s validation and verification approach

5.6 Summary

MAS is a popular tool adopted to model, simulate and study CAS. Eight essential

characteristics are proposed in order to be a good MAS for CAS: high scalabil-

ity, heterogeneity, explicit model of interaction, reasoning on emergent behaviors,

rationality, adaptivity, sociality and credibility.

By examining these essential characteristics, limitations are found in existing agent

architectures. To address these problems, NCMAA is proposed, which is based

largely on network theory. The system is designed on the concept of networks, where

each operational entity in the system is either a network or a part of a network. Each

type of relationship between the agents forms a network. The decisions of which

actions should be taken by the agents are completely constrained by the state of

networks and environment.

A two–layer architecture is adopted in NCMAA. In the top conceptual layer, the

causal network defines the different types of relationships among agents in the sys-

tem and how one type of relationship influences other types. It provides the basis

for establishing a meta-level reasoning system. The bottom implementation layer
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defines the instances of each concept (relationship) defined in the causal network.

NCMAA provides a powerful real-time reasoning engine, which is built on network

theory, causal models and various statistical analysis. It helps users to understand

the dynamics and outcomes of the simulation by conducting inductive reasoning dur-

ing the simulation. The method is based on sequential construction of the different

elements into a useable model. In order to conduct real-time analysis and reasoning

during the simulation, the data of network measures, performance measures or any

other effect measures have to be streamed and fed into a windowing engine which

in turn produces a series of data frames with different window sizes. A number of

analysis can then be done within a single data frame or between data frames, such

as Granger causality test, path analysis and root cause analysis.

In practice, a four phase, 12 step developing procedure is proposed to help user to

build systems based on NCMAA. After each phase or step, the developer may need

to review current design and perhaps go back to a previous step again.

Despite that many agent systems can be imagined as being operating on the concept

of networks, designing and implementing the system on the concept of network is a

more powerful approach.

The proposed agent architecture NCMAA provides for the first time a new type of

reasoning in CAS. The network based architecture facilitates structural reasoning,

creates a new angle to gain insight into a complex system and easily overcome the

limitations associated with current agent based simulations. In the next chapter,

version II of WISDOM is developed based on NCMAA and used to study warfare

simulations.
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WISDOM version II 1

6.1 Introduction

Based on interpreting warfare as a CAS (Ilachinski 1997; Ilachinski 2000; Lauren

2000; Scherrer 2003; Ilachinski 2004), a number of reactive agent based distilla-

tion systems have been developed and facilitated the analysis and understanding

of combat. From an analysts point of view these systems allow rapid examination

of a very large environmental space leading to identification of high and low points

and areas of instability. However, all these combat systems are based on the reac-

tive agent architecture and lack reasoning. Accordingly, the version II of WISDOM

(WISDOM-II) is developed on the NCMAA.

WISDOM-II not only introduces a number of new features, but also provides a

powerful real-time reasoning engine which allow the analysts easily to capture what

is going on, why it is happening and how it is happening during the simulation, and

a series of visualization tools which make it possible to easily verify and validate the

system itself.

1This chapter is based on the publications of Yang et al. (2006c), Yang et al. (2006d), Yang et

al. (2005a), Yang et al. (2005b), Yang et al. (2005c) and Yang et al. (2005e).
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In this chapter, WISDOM-II is described through each step in the development

procedures of NCMAA discussed in the previous chapter.

6.2 System development

6.2.1 Determine system goals, requirements and abstrac-

tion level

6.2.1.1 The goals

WISDOM-II attempts to be a decision making aid for defence analysts to explore

a large parameter space, to conduct scenario analysis and planning, and to answer

“what if” questions that allow investigation of concepts and development of capabil-

ity options in a short period of time. Like other existing combat distillation systems,

WISDOM-II is a complement to the very high-detailed simulation systems, which

do not allow for the examination of a very large mount of possibilities and outcomes

because of their very high fidelity.

6.2.1.2 The requirements

In order to achieve its goals, WISDOM-II should:

• represent the system under study in a credible and useful manner;

• be able to rapidly modify entity characteristics and behaviors: this may allow

defence analysts to study the effect of the characteristics of entities on the

force performance and allow different options to be examined;

• be able to capture emergent behaviors: the process in combat should be driven

by a set of simple rules and some “surprises” may come out from them. Then

defence analysts may backtrack to see how these new behaviors emerge;
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• be able to interpret the simulation outcomes;

• be able to generate data based on meaningful metrics for military analysis;

• be amenable to rapid, repeatable concept exploration;

• be simple to use; and

• be extendable to a range of scenarios.

6.2.1.3 The level of abstraction

Since WISDOM-II is an exploration tool for concepts, doctrine, and capability re-

quirements in military operations, it has to be a high abstract conceptual model of

combat. Like existing ABDs, WISDOM-II is a low fidelity, effect-based simulation

system, which only models the essential conceptual entities and processes without

touching on any detailed physics of combat. The outcomes of the simulations may

guide further analysis with other high fidelity models.

6.2.2 Specify system scope

There are three levels of military operations: strategic, operational and tactical

(DOD 2005):

• Strategic level: Activities at this level usually include the development of na-

tional and multinational military objectives, and development of global plans

or theater war plans to achieve these objectives.

• Operational level: Activities at this level connect tactics and strategy by de-

veloping operational objectives needed to accomplish the strategic objectives.

The logistic and administrative support are at this level.

• Tactical level: Activities at this level attempt to win a small-scale conflict by

focusing on the ordered arrangement and maneuver of combat elements.
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WISDOM-II mainly explores the problem space at the tactical level. Each simulated

team/force in the system has a predefined goal and tries to achieve it. WISDOM-II

is designed for land combat because of its complex environment, although abstract

aircrafts and maritime vessels can be modelled in the system. Since it is a conceptual

model, there is no physics modelled in the system and use 2-D environment without

elevation input.

6.2.3 Analyze entity and process

In traditional analysis of combat, normally there are two forces playing against each

other. In our model of the system for each side there is a dominant command and

control (C2) structure that uses vision and communication networks that create

a situation awareness network, that may in turn direct the engagement network.

Figure 6.1 depicts the C2 hierarchy in WISDOM-II. Each force may have several

teams, each of which may include several groups. Each group may have a number

of agents with different characteristics. Heterogeneous agents at the group level is

first introduced in WISDOM-II. Each team has a mission to achieve. The high level

commander may send commands to a low level combatant based on its situation

awareness and the mission of that combatant. Each agent will follow the OODA

(Observe-Orient-Decide-Act) loop model introduced by Boyd (Coram 2002):

• Observe: Scan the environment and collect information from it, including

communicating with other agents. In WISDOM-II, each agent has sensors

and communication channels it can use. At each time step, the agent scans

the environment and communicates with other agents from the same team.

The details of the sensor and communication model will be discussed later.

• Orient: Build up its situation awareness based on information collected. As

more information is collected, the agent modifies its situation awareness. This

is the process to transfer data into information and then into knowledge. In

WISDOM-II at each time step, each agent fuses the information via sensor
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............

Commander

Team Leader

Swarm Leader

Combatant

Figure 6.1: The C2 hierarchy in WISDOM-II

and communication with the old situation awareness and construct its new

situation awareness. WISDOM-II firstly introduces the situation awareness at

the agent level.

• Decide: Consider options and select actions. For a combatant, it needs to

decide whether it needs to fire at its enemy, which enemy it will fire at and

which direction it will move to. For a commander, it needs to make plans to

achieve the mission and send commands to the low level agents. WISDOM-

II adopts a heuristic model to make firing decisions. The enemy with short

distance has high probability to be fired at. Two decision making mechanisms

(Yang et al. 2005b) are used in WISDOM-II to make plans for commanders

and movement decisions for combatants.

• Act: Execute the chosen actions. The position of agents and status of networks

are updated to reflect the results of actions.

The simulation runs as depicted in Figure 6.2. The system first initializes agents,

networks and environment based on the scenario definition XML input file. Then

the agents scan their environment and the system updates the vision network. Based

on the vision network and C2 network, the agents communicate with all possible



CHAPTER 6. WISDOM-II 143

Initializing agents, networks
and environment

Agent scanning environment

Updating vision network
Agent communicating

with friends
Updating the

communication Network

Firing?

Finish?

Updating agent health

Updating agent position

Agent die?

Remove dead agents

Updating the command &
Control network

Updating the s ituation
Awareness Network

Moving?

Collision?Remove collision

END.

Start

Has hospital? Wounded?

Go to Hospital

Yes

Yes

Back to field

Recovered?

Treated in Hospital

Yes

Yes

Yes

Yes

Yes

No No

No

No

No

No

No

No

Figure 6.2: The simulation process
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friends and the communication networks are updated. The updated vision and

communication network then construct the new situation awareness network. After

that, the agents make decisions, e.g. fire at their enemy, move to new place or stay

at current place, according to their missions and situation awareness. Finally the

system updates the C2 network since the agent may die.

Of course in modern conflict there may well be other players present. For instance

civilians or aid agencies (that may be termed “white”) may be involved. Addition-

ally, coalition forces may become prevalent with different shades of “blue” present

in the play-box.

6.2.4 Identify causal relationships

Obviously the C2 process is the core in any combat. It is perhaps pertinent to

note that this may not be the same as formal structure (“wiring diagram”) but the

process model is the preferred approach. It determines which agents can and do

communicate with each other. In WISDOM-II two agents from the same team can

communicate if there is a connection between them in the C2 network and they

are within the communication range. Both vision and communication construct

the situation awareness. Based on their situation awareness and the objective of

their missions, the agents decide on what to do in terms of movement, information

collection, resupply or engagement.

6.2.4.1 The C2 network

It defines the command and control hierarchy within one force. Since the commands

can only be sent from the agents at the higher level to the agents at the lower level,

the C2 network is a directed graph.
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6.2.4.2 The vision network

If agent A can see agent B, then there is a link from Agent A to Agent B. The

vision network is also a directed graph.

6.2.4.3 The communication network

These communication networks could carry two types of information: situation in-

formation and commands.

In a traditional force, the situation information typically flows from an agent to

other agents in the communication channel, from the swarm leader to the team

leader and from the team leader to the commander. In a networked force, the

situation information flows directly from the agent to its commander. In both the

traditional force and the networked force, a common operating picture (COP) is

developed at the headquarter based on a fusion of the collected information. In a

traditional force, based on the COP the commander makes decisions for each group

in the battlefield and sends commands to the team leader, then the team leader

sends commands to the swarm leaders. However, in a networked force, all agents in

the battlefield can access the COP through the communication channel. Therefore

each agent has a global view of the battlefield while in a traditional force, each agent

only has its own local view of the battlefield.

Since a network is employed to model communication, it is easy for WISDOM-II to

support various types of communications: Point to Point directly (P2Pdirect), Point

to Point indirectly (P2Pindirect) and Broadcast (BC). Because the information flows

from source to sink, the communication network is obviously a directed graph.

6.2.4.4 The situation awareness network

This defines current knowledge about friends and enemies through vision and com-

munication. The information collected by vision and communication is fused and
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then this network is developed. Since both vision and communication are direction

dependent, the situation awareness network is a directed graph too.

6.2.4.5 The engagement network

It defines the agents being fired at based on the firing agent’s current knowledge

about its enemies and friends. This network is also a directed graph. Agents may die

through firing, therefore the engagement network cause changes in the C2 network

in the next time step.

6.2.5 Build causal network

From the above analysis, five concepts (relationships) have been extracted: com-

mand and control, vision, communication, situation awareness and engagement.

Based on their causal relationships, the causal network, the top layer in the NCMAA

is depicted in Figure 6.3.

Situation Awareness Network

Vision Network Communication Network

Engagement Network

Command & Control Network

One
Time Step

Delay

Figure 6.3: The causal network in WISDOM-II
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6.2.6 Model agents and environment

6.2.6.1 Agent characteristics

Four types of agents are supported in WISDOM-II: combatant agent, swarm leader,

team leader and commander. Both team leader and commander are virtual agents

which exist in the force headquarters. They only have one capability: communi-

cation. Basically each combatant agent and swarm leader has five characteristic

groups: health, vision, communication, movement and engagement.

The health defines the level of energy for an agent. With a user defined wounded

threshold and immobile threshold, each agent may be in one of four health states:

healthy, wounded, immobile, and dead (Figure 6.4). If an agent is wounded, it can

go back to its team’s hospital for treatment. This feature is first introduced in

WISDOM-II to model recovery or limited resources, which will be described in the

Section 6.2.10.

Full energyDead

(Immobile] (Wounded] (Healthy]

Immobile threshold Wounded threshold

Figure 6.4: Agent health status

Each combatant agent has its own sensor which is defined by the sensor range and

detection. The detection defines what kind of agents can be detected by using this

sensor. If the detection of agent A is equal to or larger than the invisibility of agent

B and Agent B is within Agent A’s sensor range, then agent A will detect agent B.

The value of detection should be between (0, 1], with 1 representing the ability to

detect all.

Combatant agents can communicate with other agents linked directly to them

through the communication network. This communication occurs through a com-

munication channel, which is modeled by the noise level, reliability, latency and

communication range. The agent may only communicate with the agents within the

range of that communication channel. A probabilistic model is adopted to imple-
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ment the noise level and reliability of a communication channel. At each time step

the message can only be transferred from one agent to another agent. The message

will permanently be lost if it is older than a number of time steps predefined by the

user. If there is a latency associated with a communication channel, any message

through this channel has to wait a predefined number of time steps in order to be

sent out.

The movement of an agent is determined by its speed and personality. WISDOM-

II supports four kinds of speeds: still, low speed, medium speed and high speed.

Agents with high speed can move one cell per time step. The low speed is one third

of the high speed while the medium speed is half of the high speed. The movement

algorithm is based on the tactical decision making and strategic decision making

mechanism. The strategic decision making mechanism provides a guide to each

group at the macro level while the tactical decision making mechanism is based on

the agent personality to determine which location the agent should move to. The

details of the movement algorithm are described in the Section 6.2.6.3 about the

tactical decision making mechanism.

Engagement in WISDOM-II is determined by what kind of weapon the agent uses.

The weapon is defined by the weapon power, fire range and damage radius. Based

on the damage radius, two types of weapons are supported in WISDOM: point

weapon, the damage radius of which is one, and explosive weapon, the damage

radius of which is larger than one. WISDOM-II also supports direct and indirect

fire. The indirect fire can fly over obstacles.

Status of each combatant agent and swarm leader are defined by their health level

and position. There are four actions available to each combatant and swarm leader:

1. scanning the environment, which may change the status of vision, communi-

cation and situation awareness network;

2. communicating, which may change the status of the communication and situ-

ation awareness network;
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3. movement, which may change the status of the vision network, the commu-

nication network, the situation awareness network, and the position status of

agents;

4. firing, which may change the status of the engagement network, the C2 net-

work, and the health status of agents.

6.2.6.2 Personalities of agents

Existing ABDs use the personality to define the tendency of an agent to move close

to or far from certain types of agents while WISDOM-II uses it to define the influence

of other agents on this agent. The influence of other agents may attract the agent

to move closer to them or repulse the agent far from them. The personality in

WISDOM-II is a vector quantity specified by its magnitude and its direction. The

magnitude is the strength of the influence which is between 0 (no influence) and 1

(strongest influence). The direction defines at which direction the influence occurs.

There are eight directions, defined by a value between 0 and 1 (figure 6.5).

45o

(0.0625, 0.1875]

(0.1875, 0.3125]

(0.3125, 0.4375]

(0.4375, 0.5625]

(0.5625, 0.6875]

(0.6875, 0.8025]

(0.8025, 0.9275]

(0.9275, 1] and (0, 0.0625]

Figure 6.5: Force directions

The influence of agent A on agent B may be different from that of agent B on

agent A. This difference can be reflected in either the value of the influence or the

direction of the influence or both. Similar to existing ABDs, the personality is used

to determine the new location the agent should move to.
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For an agent, its movement is influenced by all the agents which it can detect or

communicate with. The algorithm to aggregate and resolve movement is described

later. The personalities for each type of movement influence are:

1. Influence vector of healthy friend agent via sensor;

2. Influence vector of wounded friend agent via sensor;

3. Influence vector of immobile friend agent via sensor;

4. Influence vector of healthy hostile agent via sensor;

5. Influence vector of wounded hostile agent via sensor;

6. Influence vector of immobile hostile agent via sensor;

7. Influence vector of healthy friend agent via communication;

8. Influence vector of wounded friend agent via communication;

9. Influence vector of immobile friend agent via communication;

10. Influence vector of healthy hostile agent via communication;

11. Influence vector of wounded hostile agent via communication;

12. Influence vector of immobile hostile agent via communication;

13. Influence vector of target flag.

The team leader and commander do not have personalities since they are virtual

agents and do not move.

6.2.6.3 Decision making mechanism

There are two decision making mechanisms in WISDOM-II: tactical and strategic.

The former is used by each agent to determine where it should move to and it is
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based on the agent’s current knowledge and personalities while the later is used

by each commander to determine the way point for each swarm and it is based on

the swarm’s mission type and the distribution of the firepower of each force in the

battlefield.

Tactical decision making mechanism The movement of each agent is deter-

mined by its knowledge and personality. Only a healthy or wounded agent in the

battlefield can move to a new location. In each time step, the agent can only move

to its neighbor cell at the direction of the overall influence of all influencing agents.

A movement function as in Equation 6.1 is constructed on the influence vectors

and an agent moves in the direction of the resultant influence vector. The sum of

the influence vector in the equation is a vector summation. Calculations are done

synchronously with the moves. This process is repeated for each time step in the

simulation. This movement algorithm is totally different from that implemented in

any other ABDs:

RFk =
n∑
i

−→
F v

i

Dki

+
m∑
j

−→
F c

j

Dkj

+

−→
F t

Dkt

(6.1)

where:

RF denotes the resultant influence of an evaluated agent k;

n denotes the total number of agents perceived by agent k through vision in the

information fusion network;

−→
F v

i denotes the influence vector from agent i, who is perceived by agent k through

vision in the information fusion network;

m denotes the total number of agents perceived by agent k through communication

in the information fusion network;

−→
F c

j denotes the influence vector from agent j, who is perceived by agent k through
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communication in the information fusion network;

−→
F t denotes the influence vector from agent k’s target. If the evaluated agent is a

combatant agent, then the target is its swarm leader. If the evaluated agent is the

swarm leader, then the target is the swarm way point.

Dki, Dkj and Dkt denotes the distance between agent k and the influencing agent

i, j and target/waypoint.

In WISDOM-II, each cell can only accommodate one alive agent. If more than

one agent would like to move to the same cell, a collision occurs, then the collision

resolution mechanism is used to remove it. The collision resolution mechanism is

defined by a set of rules.

• The agent which occupied this cell in the previous time step has the highest

priority to stay in this cell;

• The swarm leader has the second highest priority to move to this cell;

• The wounded agent has the third highest priority to move to this cell, the

wounded agent normally goes back to its hospital for recovery.

• If multiple agents with the same priority wish to occupy the cell, one is uni-

formly randomly chosen to move and the others stay in their original cells.

Strategic decision making mechanism A strategic decision is made for each

swarm by the commander of each force based on the COP, which is the global view

of the battlefield for that force, and the mission type. Each team is assigned one

mission in the scenario definition input XML file by the user. Then all the swarms

in that team have the same mission as the team mission. Four types of missions

are supported in WISDOM-II: defend, occupy, attack, surveillance. The mission of

defend means the swarm is trying to protect a certain area; the mission of occupy

means the swarm is trying to occupy certain area; the mission of surveillance means

the swarm is trying to collect all possible information about the battlefield; the
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mission of attack means that the swarm is trying to attack its enemy if its enemy

can be detected. Otherwise the swarm approaches to its goal.

Three type of decisions can be made for each swarm: advance, defend and withdraw.

The command of advance means the swarm need to go forward; the command of

defend means the swarm need to protect the current location; the command of

withdraw means the swarm need to escape from the current location. After making

decisions, the high level commanders send the decision/command/intention to the

lower level agents. To simplify the implementation of the command, the command

sent to the swarm leader is the location of the way point.

The commander abstracts the whole environment into n×n (n is predefined by the

user) hyper cells and calculates the total fire power of the hostile and own force for

each hyper cell. The total fire power is a function of individual agent weapon power,

fire range, damage radius and health level (see Equation 6.2).

P =
n∑
i

(fP
i ∗ fR

i ∗ ri ∗ hi) (6.2)

where:

P denotes the total fire power of one force in this hyper cell;

n denotes the total number of agents of one force in this hyper cell;

fP
i denotes the weapon power of agent i in this hyper cell;

fR
i denotes the fire range of agent i in this hyper cell;

ri denotes the damage radius of agent i in this hyper cell;

hi denotes the health of agent i in this hyper cell.

For each swarm with the mission of occupy, the commander calculates the force
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power ratio defined in Equation 6.3 for each of the surrounding hyper cells.

Rp =
Ph

Po

(6.3)

where Rp is the fire power ratio, Po is the total fire power of own force in that hyper

cell and Ph is the total fire power of hostile force in that hyper cell. The way point

for each swarm is generated based on Equation 6.4.

WP =





Ci, if ∃ Ri
p ≤ θa, Ci ∈ Cb;

C0, else if ∀ Ri
p > θa, Ri

p ≤ θd, Ci ∈ Cb;

Cj, else ∀ Ck ∈ Cs, Rj
p = min(Rk

p).

(6.4)

where:

θa is the advance threshold while θd is the defend threshold. Both of them are

defined by the user in the input configuration XML file;

Cb is the set of hyper cells which is between the swarm and its goal. For example,

if the center of the swarm is in the cell of G in Figure 6.6, the set of hyper cells for

various placement of the goal is defined in Table 6.1. The maximum number of the

hyper cells in this set is three;

Cs is the set of hyper cells which is surrounding the hyper cell of that swarm. The

maximum number of the hyper cells in this set is eight;

C0 is the hyper cell which is occupied by that swarm;

Ci is a hyper cell in Cb;

Cj is a hyper cell in CS;

Ri
p, Rj

p, Rk
p is the force power ratio in the hyper cell i, j or k respectively.

If the firepower ratio of one hyper cell in Cb is less than or equal to the advance

threshold θa, the center of this hyper cell will be assigned to the swarm as the way
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T1 T2 T3

C1 C2 C3

T8 C8 G C4 T4

C7 C6 C5

T7 T6 T5

Figure 6.6: Hyper cells in between

Table 6.1: The set of hyper cells in between
Relative position of goal Hyper cells in between (Cb)
top-left, e.g. T1 C1, C2 and C8
top, e.g. T2 C1, C2 and C3
top-right, e.g. T3 C2, C3 and C4
right, e.g. T4 C3, C4 and C5
bottom-right, e.g. T5 C4, C5 and C6
bottom, e.g. T6 C5, C6 and C7
bottom-left, e.g. T7 C6, C7 and C8
left, e.g. T8 C7, C8 and C1

(a) θa = 1.3 (b) θa = 0.7, θd = 1.3 (c) θd = 1.3

Figure 6.7: Example of waypoint for mission of occupy. The value in the square is
the force power ratio. The shadow cells are the set of hyper cells in-between. The
flag is the goal of the swarm.
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point (see Figure 6.7(a)). If the firepower ratios of all hyper cells in Cb are between

the advance threshold θa and the defend threshold θd, the swarm will stay in the

original hyper cell (see Figure 6.7(b)). Otherwise the commander selects the center

of the hyper cell which has the minimal firepower ratio among all surrounding hyper

cells as the way point for the swarm (see Figure 6.7(c)).

If more than one hyper cell meet the condition, the commander will randomly select

one. When the command is sent to the swarm, the swarm leader may misunderstand

it. Such misunderstanding is modelled by the probability of misunderstanding and

the variance of misunderstanding. The variance defines the degree of a received way

point deviating from its correct location. After receiving the command, the swarm

leader may or may not follow it based on the probability of following the command.

For a swarm with the mission of attack, the waypoint is the centre of the surrounding

hyper cell with highest firepower of the hostile force (see Figure 6.8(a)). If there is

no enemy detected in the surrounding hyper cells, the way-point is the centre of the

hyper cell randomly chosen from the hyper cells between the swarm and its goal.

For a swarm with the mission of surveillance, the way point is the hyper cell with

highest hostile force power (see Figure 6.8(b)). In order to maximize the information

collected, no more than one swarm will be assigned to the same hyper cell.

2.1 0 0 1.0 0

0.4 1.5 0.8 0.5 0.2

0.4 0.7 G 1.2 0.8

0.1 0.4 0.8 1.1 2.5

0 0.4 0.2 1.1 0

(a) Mission of attack

2.1 0 0 1.0 0

0.4 1.5 0.8 0.5 0.2

0.4 0.7 G 1.2 0.8

0.1 0.4 0.8 1.1 2.5

0 0.4 0.2 1.1 0

(b) Mission of surveillance

Figure 6.8: Example of waypoint for mission of attack and surveillance. The value
in the square is the force power ratio.

Since the area the team needs to defend is predefined by the user in the scenario
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definition input XML file, no command will be sent to the swarm with the mission

of defend.

The frequency of the commander sending the command is also defined by user in

the scenario definition input XML file.

6.2.6.4 Recovery

One of the most important aspects in military operations is the logistics, where the

medical treatment system is one of the key components. The model of the artificial

hospital is first introduced in WISDOM-II. Each team may have a hospital in the

team base, which is defined by the number of doctors and the recovery rate. If the

team has a hospital, the wounded agent will move back to the hospital for treatment.

Each doctor can treat only one wounded soldier at each time step and the health of

that treated soldier will be increased by the recovery rate at each time step. If all

doctors are already treating, the wounded soldier will be put in the queue to wait

for treatment. When the agent is fully recovered, it will move back to the battlefield

nearby its swarm leader. If its swarm leader is in the hospital or it is the swarm

leader, it will be positioned in the cell around the team base.

The waiting queue and the number of doctors in the hospital are used to model the

limited resource available and the recovery capability for a force. The capability

to make the wounded soldier fully recovered is a key issue in warfare. With such

kind of recovery model the analysts may search for the minimal resource needed for

maintaining a minimal level of the recovery capability for a force.

6.2.6.5 Terrain feature

WISDOM-II adopts 2-dimension environment and supports impassable objects. Agents

cannot see or travel through impassable blocks. With the indirect weapon, the agent

can shoot its enemies over them.
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6.2.7 Develop finite state machine

Each of the conceptual networks may have one or more instances defined for the blue

and/or red agents. There are seven instances of networks defined in WISDOM-II (see

Figure 6.9). Since different forces have different C2 structures and communication

can only occur within the same force, there are two instances of the C2 network and

two instances of the communication network, one for the blue force and one for the

red force, while there is only one instance for each other network in WISDOM-II.

Situation Awareness Network

Vision Network

Engagement Network

Red C2 NetworkBlue C2 Network

Blue Communication Network Red Communication Network

Figure 6.9: The bottom layer of the NCMAA in WISDOM-II

The state of each network is determine by the state of agents within the network

and the network structure. The structure of both the blue and red C2 network

is changed only when some agents die and are removed from the network. The

movement action may influence the state of vision and communication network. In

turn it will change the state of the situation awareness network. Obviously, the

firing action influences the state of the engagement network.

6.2.8 Identify interaction between networks

Based on the causal network, these instance networks with their interactions make

up the bottom layer of the NCMAA (Figure 6.9). This is the basis of Granger

causality for conducting the network based causal reasoning using path analysis and

root cause analysis in WISDOM-II.
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6.2.9 Develop network based analysis and reasoning engine

Recently defence analysts have realized that network analysis (Dekker 2005a; Dekker

2005b; Xu and Chen 2005b) and causal model (influence diagram) (Curtis and Dort-

mans 2004) are two valuable tools in military analysis. The properties of the net-

works, such as communication networks, and command and control networks, may

largely affect the outcome of military operations. For example, Dekker analysed the

effect of network topology on the military performance (Dekker 2005a), classified the

architecture of network centric warfare based on network measures (Dekker 2005c)

and evaluated the robustness of military critical infrastructure networks (Dekker

2005b). Xu (Xu and Chen 2005b; Xu and Chen 2005a) applied network theory

into analysis of terrorism. The real-time reasoning engine in WISDOM-II is based

on the properties of the networks in military operations, through a series of causal

reasoning, time series analysis on these network and military performance measures

to allow defence analysts to understand the dynamics and capture the embedded

patterns during the simulation.

The architecture of the NCMAA facilitates real-time reasoning during the simulation

as follows:

• The first step is to establish a causal network as the basis for cause-and-effect

relationships. This causal network (see Figure 6.3) is established by domain

experts.

• Second, some performance measures, such as casualty or loss exchange ratio,

and all meaningful network measures which can be interpreted in the mili-

tary domain, e.g. the average shortest path length of the C2 network can

be interpreted as a measure of the speed of command, are calculated at each

simulation time step, and streamed and fed into a set of moving windows with

different user predefined size.

• Third, correlation analysis among these windowed time series data are con-

ducted based on the causal network.
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• Finally a natural language processing centre interprets these results and presents

them in a natural language format which may be easily understood by the user.

If we imagine that the simulation is at time step t, a window of length w is established

to extract the time series between t − w and t. The network and performance

measures are calculated. Examples of these measures include: the damage (casualty)

of the blue and red force, and average degree, average shortest path length and the

clustering coefficient of each C2 network, communication network, vision network

and engagement network, over time. Within a window W , the correlation coefficient

is calculated between all possible influenced time series according to the cause-and-

effect relationships defined by the causal network (Figure 6.3), e.g. calculate the

correlation coefficient between the average degree of the communication network and

the force casualty. The information is then filtered using a thresholding mechanism.

Those measures above a certain threshold predefined by the user are sent to the

natural language engine. The natural language engine is responsible for forming

sentences written in plain English to explain the dynamics of the simulation to the

user.

Figures 6.10 and 6.11 are two examples of the correlation analysis between the force

damage and the structure of the network. Figure 6.10 is the correlation coefficient

between the red damage and the blue communication network measures over time

while Figure 6.11 is the correlation coefficient between the blue damage and the

red communication network measures. Both examples use the window size of 5 and

the threshold of 0.5. At points above 0.5, we may think that the communication

activity is probably the key reason leading to the damage of their enemy during the

last 5 time steps. Therefore based on the correlation coefficient, the nature language

processing center may present its interpretation to the user as: “The damage of

the red force during time steps 53 to 58 is probably caused by the communication

activities within the blue team”.

Following are the templates used in the system:
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Figure 6.10: The correlation coefficient
between the red damage and the blue
communication network measures
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Figure 6.11: The correlation coefficient
between the blue damage and the red
communication network measures

1. The ? (blue/red) team caused more damage to the ? (blue/red) team. The

damage ratio is ? .

2. Without any damage, the ? (blue/red) team causes damage of ? health

points to the ? (blue/red) force.

3. An order has been sent to the leader of group ? in the ? (blue/red) team

to move toward ? .

4. The group ? in the ? (blue/red) team is ? (advancing to/defending in/withdrawing

to) ? .

5. The situation awareness of the ? (blue/red) team is gained mainly through

? (vision/communication).

6. The agents in the ? (blue/red) team are coordinating their firing to achieve

maximum damage in the ? (blue/red) team. Or the agents in the ? (blue/red)

team are maximizing their fire range to achieve maximum damage in the ?

(blue/red) team. Or the agents in the ? (blue/red) team are spreading their

fire to achieve maximum damage in the ? (blue/red) team.

7. An average damage of ? occurred in the ? (blue/red) team over the last

? time steps is properly caused by the activities in the ? network of the ?
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(blue/red) team.

8. An average damage of ? occurred in the ? (blue/red) team over the last ?

time steps is properly caused by the situation awareness of the ? (blue/red)

team on ? (agent/force) level.

9. An average damage of ? occurred in the ? (blue/red) team over the last ?

time steps is properly caused by the degree of order in the ? (blue/red) team.

The first two templates explain what is happening on the battlefield. For example

the reasoning interface may show that “The red team caused more damage to the

blue team. The damage ratio is 1:2”, or “Without any damage, the blue team causes

damage of 16 health points to the red team”.

The template 3 shows the command sent by the force commander to the swarm.

For example, it may be “An order has been sent to the leader of group 2 in the blue

team to move toward (35, 25)”. The template 4 presents what the group is doing.

For example, it may be “The group 2 in the blue team is advancing to (35, 25)”.

Based on the template 3 and 4, the user may predict the system behaviour during

the simulation.

The template 5 and 6 gives explanation on how it happens. The template 5 presents

how a team gains its situation awareness. If more than half situation awareness of the

blue team is from communication, the reasoning interface shows that “the situation

awareness of the blue team is gained mainly through communication”. Regarding the

template 6, every time step the system calculates the variance of the in-degree for

each team in the firing network. If the variance of the in-degree of one team is high,

it means the agents in the other spread their fire to different enemies. Therefore the

damage of that team is high. If so many agents in one team fire at same enemy, the

maximum damage is the total health of one single agent. So when the variance of the

in-degree of the red team exceeds the threshold defined in the XML configuration

file, the system explains this situation to the user that “the agents in the blue team

are coordinating their firing to achieve maximum damage in the red team”.
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The template 7, 8 and 9 present why it happens. Within the window size, the system

calculates the correlation coefficient between network measures, such as the average

shortest path length, average degree and clustering coefficient, and the damages of

each team. If the correlation coefficient exceeds the threshold defined in the XML

configuration file, the reasoning interface will show that, for example, “an average

damage of 4 occurred in the red team over the last 5 time steps is properly caused

by the activities in the communication network of the blue team”. The system also

calculates the correlation coefficient between the accuracy of the situation awareness

and the damage of each team. The accuracy of the situation awareness is measured

by the percentage of the correct information collected. The accuracy of the situation

awareness on agent level is the average percentage of the correct information of

all combatants while the accuracy of the situation awareness on force level is the

percentage of the correct information in COP. If the correlation coefficient exceeds

the threshold defined in the XML configuration file, then the template 8 is used as,

for example, “An average damage of 4 occurred in the red team over the last 5 time

steps is properly caused by the situation awareness of the blue team”. Regarding the

template 9, if the correlation coefficient between the spatial entropy and the damage

exceeds the threshold defined in the XML configuration file, the reasoning interface

shows that, for example, ”An average damage of 4 occurred in the red team over the

last 5 time steps is properly caused by the degree of order in the blue team”.

6.2.10 Design other features required in WISDOM-II

6.2.10.1 Visualization

One drawback of existing agent based warfare simulation systems is that they only

provide limited information to the analysts during the simulations (Yang et al.

2005b). WISDOM-II fills this gap. Beside visualizing the information of each single

agent, WISDOM-II also visualizes each network and all possible network measures

spatially and temporally. By spatially visualizing each network, WISDOM-II pro-
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vides a graphic view for each type of interactions between agents. It offers a window

for the user to know what kind of interaction occurs between agents and to identify

the role of each interaction during the simulations. By temporally visualizing the

network measures, WISDOM-II presents a time series dynamics of each interaction

with the system. It may help analysts to predict and analyze the outcome of the

simulated war.

Temporally and spatially visualizing each network and its measures makes it easier

to validate and verify the system itself. If something happens, it will immediately

be reflected on the visualization. The developer or the user can then identify and

capture it quickly. Figure 6.12 presents two examples of spatial visualization of the

communication and vision network. Assume the communication network is initial-

ized as a complete network, i.e. every agent connects to each of the others. If there is

no link between some agents, the user may easily identify there is something wrong.

Figure 6.13 are some examples of temporal visualizations of network measures, force

performance measures and the spatial entropy, which is a measure of the degree of

clustering of a force on the battlefield (Ilachinski 1999). With these graphs, the an-

alysts may easily capture the dynamics of the communication and vision network,

and the force performance during the simulation. Before the time step of 43, the

changing trend of both blue and red communication network is similar. The chang-

ing trend of the force damage for both teams is also similar. However, the average

degree of the blue communication network is higher than that of the red communi-

cation network. It may be the reason that the red damage is slightly higher than

the blue damage. After that, the average degree of the red communication network

decreases faster than that of the blue communication network while the red damage

increases faster than the blue damage. Combining with the dynamics of the vision

network, one may conclude that the high damage of the red force is because of no

effective communication. With the average degree of the vision network decreas-

ing, the blue team takes advantage of its communication network to retrieve more

information about its environment and enemy. Consequently it has low damage.

If inspecting the time series of the spatial entropy, one may find that the spatial
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entropy of the blue team is higher than that of the red team from time step 18. It

suggests that spreading a force is better than clustering it in this scenario. Table

6.2 presents all the information temporally and spatially visualized in WISDOM-II.

Figure 6.12: Examples of spatial visualizations

Figure 6.13: Examples of temporal visualizations

Combat entropy (Ec) can be used as a predictor of combat outcomes (Ilachinski

1999). It is defined by:

Ec =
c

Na

log
c

Na
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Table 6.2: Visualized information in WISDOM-II
Force damage
Fraction of remaining healthy agents for each force
Fraction of remaining wounded agents for each force
Fraction of remaining immobile agents for each force
Fraction of treating agents for each force
Fraction of remaining alive agents for each force
Fraction of dead agents for each force
Combat entropy (Ec)
Spatial entropy (Es(b))
Average shortest path length of C2 network

Temporal Average shortest path length of vision network
Visualization Average shortest path length of communication network

Average shortest path length of engagement network
Average degree of C2 network
Average degree of vision network
Average degree of communication network
Average degree of engagement network
Clustering coefficient of C2 network
Clustering coefficient of vision network
Clustering coefficient of communication network
Clustering coefficient of engagement network
Common operation picture for each force
C2 network

Spatial Vision network
Visualization Communication network for each force

Situation awareness network
Engagement network

where c represents the casualty (in absolute numbers) and Na represents the force

strength of the adversary (either red or blue).

Spatial entropy provides a measure of the degree of disorder of a battlefield state

(Ilachinski 1999). It is defined by:

Es(b) = (2 log b)−1

b2∑
i=1

pi(b) log pi(b)

pi(b) =
Ni(b)

N
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where b is the size of the sub-block of the (D/b)-by-(D/b) array of sub-blocks into

which the battlefield is partitioned, and D is the dimension of the battlefield. N is

the number of agents on the battlefield, pi(b) represents the probability of finding

an agent in the ith sub-block. log is the logarithm base-2, b2 is the total number of

sub-blocks on the battlefield, and (2 log b)−1 is a normalization constant.

Finally combining with the real-time reasoning component, the analysts may gain

deeper understanding of what happens in each time step during the simulation and

how the simulation is progressing.

6.2.11 System implementation and testing

WISDOM-II is implemented in C++ with two run modes: command line and win-

dow version.

6.2.11.1 Validation

The validation and verification approach proposed by Sargent (Sargent 1999) was fol-

lowed and integrated it to the whole development procedure. The following are some

examples of validation and verification techniques (Sargent 1999) used in WISDOM-

II:

• Animation: Through the visualization component, the system operational be-

haviors is graphically displayed over time, e.g. the structure of networks and

the position of agents (Figure 6.12). It may help us to verify that the pro-

gramming is correct and the system does what is expected.

• Comparison to other models: a comparison study is conducted between WISDOM-

II and MANA. Table 6.3 shows the loss exchange ratio over 500 runs between

MANA and WISDOM-II in two simple scenarios, coded in a similar way (Yang

et al. 2005a). Through comparison, it appears that the model is consistent

with an other model.
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Table 6.3: The LER over 500 runs between MANA and WISDOM-II
Traditional Force Networked Force

MANA WISDOM-II MANA WISDOM-II
0.95± 0.33 1.07± 0.47 0.93± 0.30 1.07± 0.40

• Event validity: Compare occurrences of events between simulation system and

real system. Following are examples used for WISDOM-II:

– Health status: a number of scenarios were created where there are three

agents with three different status: immobile, wounded and healthy. It

shows that the healthy agent always move to its flag, the wounded agent

always move back to its hospital and the immobile agent always stay

where it is. Another set of scenarios were created where there is a healthy

agent, a wounded agent and immobile agent, but there is no hospital.

The simulations show that the healthy and wounded agent always move

to their flag while the immobile agent stays where it is.

– Vision: a number of scenarios were created where agent A is within agent

C’s vision range while agent B is beyond agent C’s vision range. The

results show agent C can always detect agent A and never detects agent

B.

– Communication: a number of scenarios were created where agent A is

within agent B’s communication range while agent B is outside agent A’s

communication range. The results show that the information is always

transferred from agent B to agent A and no information is transferred

from agent A to agent B.

– Firing: a number of scenarios were created where agent A is within its

enemy agent B’s firing range while agent B is outside its enemy agent A’s

fire range. The simulated results show that agent B can always fire at

agent A while agent A cannot fire at agent B.

– Movement: to test the movement algorithm, a number of scenarios were

created with agents with different personality: tend to move close friend
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or enemy, and avoid moving close to friend or enemy. The simulations

show that the movement of agents are exactly what are expected. An-

other set of scenarios are created where one agent is set with high speed,

one agent with medium speed and another one with low speed. The re-

sults show that the agent with the speed moves fastest, the agent with

low speed moves slowest, and the agent with the medium speed is in

between.

– Environment: a set of scenarios were created where agent B is within

agent A’s vision range and agent B is behind a impassible block. The

simulation results show that agent A cannot detect agent B because of

the block although it is with its vision range. Another set of scenarios

are created where agent B is with agent A’s firing range and agent A is

equipped with either a direct weapon or indirect weapon. The results

show that the direct weapon can never shoot enemies behind an impass-

able block while the indirect weapon can.

• Extreme condition tests: The system should be able to deal with any extreme

and unlikely combination of levels of factors in the system. The followings are

examples for WISDOM-II:

– Vision: a set of scenarios were created where some agents are invisi-

ble. The results show that these agents cannot be detected by any other

agents.

– Communication: a set of scenarios were created where the communication

range of some agents is zero. The results show that there is no link

between these agents with other agents in the communication network.

That means no communication occurs between these agents and other

agents.

– Firing: a set of scenarios were created where the firing range of some

agents is zero. The results show that these agents can never shoot their

enemy.
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– Movement: a set of scenarios were created where there are some agents

with speed of zero. The results show that agents with speed of zero always

stay in the original place.

– Environment: a set of scenarios were created where one agent is sur-

rounded by an impassible block. The results show that the situation

awareness is empty if the communication range of its friendly agents

is zero. This is because it cannot get information about other agents

through both vision and communication. Therefore it cannot fire its en-

emy even if it has an indirect weapon with a long firing range. If the

communication range of its friends is not zero, its friend can then send a

message to it through communication. It can fire at its enemy with its

firing range only if it is equipped with an indirect weapon.

• Operational graphics: Graphically display the values of various performance

measures during the simulation, e.g. the spatial entropy, force damage and

casualty (Figure 6.13).

6.3 Summary

WISDOM-II is re-designed and re-developed on the new architecture of NCMAA. It

is much different from other existing ABDs in the sense of architecture, functionality

and capability. It has a number of unique features. WISDOM-II is

• The first system to have a built-in network analysis tool;

• The first system that is able to provide group-level real-time reasoning and

interpret the outcomes in a natural language during the simulation;

• The first system that combines the flexibility and scalability of agent-based

distillation (tactical level) and the rationality of cognitive agents (strategic

level);
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• The first system to introduce the concept of artificial hospital for recovery and

modelling simple resource technical constraints;

• Flexible to switch between different force structures to investigate future con-

cepts;

• Flexible to test different command, control, and communication (C3) struc-

tures;

• Flexible to test different communication problems such as network structure,

noise, latency, etc;

• Having a four level C2 structure and heterogeneous agent at the swarm (group)

level;

• Using modern visualization techniques to capture the dynamics and patterns

during the simulation.

Since it is developed on the NCMAA architecture, it can overcome limitations of

existing ABDs to some degree. With help of the network measures, WISDOM-

II may easily verify and validate the underlying structure. If a certain network

collapses, the user can immediately detect it through the network measures and vi-

sualizations. WISDOM-II conducts the real-time reasoning at the network (group)

level. Such reasoning captures the domain specific interaction between networks

(interactions) and an interface provides a real-time interpretation of the simulation

process in nature language for the analyst. This may overcome the limitations of

the reasoning at the individual agent level. This feature allows WISDOM-II to be

able to deal with problems with high complexity. Since everything in WISDOM-II

is a network or a part of a network, the new concept, e.g. NCW, can be easily

modelled, analyzed and verified by using WISDOM-II. The use of a network as the

representation unit in WISDOM-II also facilitates efficient parallelism based on net-

work structure, and grounded modelling. In WISDOM-II, a rule based algorithm is

used to make strategic decisions, which guides a semi-reactive agent to make tac-

tical decisions. Therefore, the interaction between tactics and strategies is easily
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captured and studied. Concepts such as information misunderstanding, communi-

cation, level of information fusion, etc can now be studied in a unified framework.

Overall, WISDOM-II is a promising ABD system which creates a new approach for

analysts to understand the dynamics of and gain insight into warfare.



Chapter 7

Fitness Landscape Analysis with

WISDOM-II

7.1 Introduction

Chapter 4 characterizes the fitness landscape based on WISDOM-I by using the

information analysis approach. In this chapter, the fitness landscape generated by

WISDOM-II is analysed using the same approach as in chapter 4 and is compared

with that from WISDOM-I.

7.2 Experimental setup

In chapter 4, six scenarios (strategies) are defined, analysed, and can be classified

into three classes: GOL and BAL, DEF and COW, and AGG and VAG based on

the characteristics of the fitness landscape. In this chapter, three strategies, one

from each group, (see Table 7.1) are chosen for the red team while the strategy (a

vector of personalities) of the blue team is allowed to vary.

In order to facilitate the comparison of the fitness landscapes generated by WISDOM-
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Table 7.1: Different strategies for the red team used in the experiments
Scenario Friend Enemy Goal
Goal Oriented (GOL) Neutral Neutral Target
Aggressive (AGG) Neutral Attack Neutral
Defensive (DEF) Cluster Neutral Neutral

I and WISDOM-II, most unique features of WISDOM-II are turned off except two

decision making mechanisms: strategic which guides the movement of the whole

group, and tactical which guides the movement of each individual. WISDOM-I does

not have a strategic decision making mechanism. Further, the tactical decision mak-

ing mechanism is different between WISDOM-I and WISDOM-II. In WISDOM-II,

the decision variables are represented with a vector of 18 real numbers representing

different characteristics of personalities as follows:

1. P1 − P2: influence (including magnitude and direction) of a healthy friend

within the vision range;

2. P3 − P4: influence (including magnitude and direction) of a healthy friend

within the communication range;

3. P5 − P6: influence (including magnitude and direction) of an injured friend

within the vision range;

4. P7 − P8: influence (including magnitude and direction) of an injured friend

within the communication range;

5. P9 − P10: influence (including magnitude and direction) of a healthy enemy

within the vision range;

6. P11 − P12: influence (including magnitude and direction) of a healthy enemy

within the communication range;

7. P13 − P14: influence (including magnitude and direction) of an injured enemy

within the vision range;
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8. P15 − P16: influence (including magnitude and direction) of an injured enemy

within the communication range;

9. P17 − P18: influence (including magnitude and direction) of the target (way-

point/flag).

All personalities (decision variables) are real numbers in the range of [−1, 1]. The

corresponding direction is defined by Figure 6.5 in chapter 6. The configurations

of the environment, initial position and the number of agents are the same as in

chapter 4 (see Figure 4.1). A single evaluation of the game involves repeating the

simulation 100 repeats, each for 500 time steps.

The same objective function and fitness function are adopted as in chapter 4 (see

Equations 4.14 and 4.15).

7.3 Random walk

As in chapter 4, ten different random walks are taken, each of length 10,000 solutions

using two fitness functions (average and normalized). Each stochastic neighbour-

hood in the search space was obtained by adding a random number drawn from a

Gaussian distribution with zero mean and 0.1 standard deviation to each variable

in the genotype. If the value of any personality is out of the range [−1, 1], the value

is truncated.

Figure 7.1 depicts the time series of the best solution found so far for random walk

by using the average fitness and the normalized average fitness. According to the

average fitness, one may see that the best solution found in the AGG scenario is

higher than that in the GOL scenario or DEF scenario. As discussed in chapter

4, in the scenario when the red team would always like to attack its enemy, it

may lose coordination among the red agents, for example, in the AGG scenario.

Therefore the blue team may easily damage the red team. However, the result
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from WISDOM-II shows the normalized average fitness value of the best solution

found in the DEF scenario is the highest among these three scenarios. The very low

value of the normalized average fitness in the GOL and AGG scenario suggests that

the searching process in both scenarios involves a large amount of variations. The

stochasticity plays a critical role in both GOL and AGG scenarios.

Figure 7.1 also shows that the improvement mostly occurs at the start of the search

stage for both average fitness and normalized average fitness. The improvement

almost stops for both AGG and GOL scenarios after 2000 steps. However better

solutions can still be found in the DEF scenario after 2000 steps, especially when

using the normalized average fitness.

When compared with Table 4.2 in chapter 4, similar patterns can be observed except

that the normalized average fitness is lower in WISDOM-II than in WISDOM-I for

the GOL scenario. This implies that the influence of the stochasticity is higher in

WISDOM-II than in WISDOM-I.

Figure 7.2 presents some representative examples of the time series of fitness value

for random walk. Obviously the fitness landscape is quite rugged for both average

fitness and normalized average fitness. In this chapter, a good solution is defined

as that the blue damage is less than the red damage. That is, the fitness value of

the average fitness is larger than 200. It is very hard to find a good solution for

both GOL and DEF scenario. Only few good solutions can be found and are highly

separated by a number of bad solutions. For the AGG scenario, lots of solutions

found are good solutions.

The low fitness value of the normalized average fitness in all three scenarios in Figure

7.2 suggests that all the solutions found in all three scenarios, especially in the GOL

and DEF scenario, are unstable. This is consistent with the above findings about

the role of the stochasticity.

When compared with Figure 4.2 in chapter 4, one may easily see the difference.

The signal-worst solutions, as defined in chapter 4, are lower (and therefore bet-
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Figure 7.1: The best solution found over time by using the average fitness (on left)
and normalized fitness (on right) for random walk. The order for top to bottom is:
GOL, AGG, and DEF

ter) in both average fitness and normalized average fitness for all three scenarios in

WISDOM-II than in WISDOM-I. This is because WISDOM-II has a strategic deci-

sion making mechanism to coordinate the behaviours of the agents. Since WISDOM-

I does not have this kind of coordination mechanism, the fitness value of the worst

solution searched is higher in WISDOM-II than in WISDOM-I.
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Figure 7.2: The fitness value over time for random walk using average fitness (on
left) and normalized average fitness (on right). The order from top down is: GOL,
AGG, DEF, respectively

The tit-for-tat situation also does not appear in WISDOM-II. As discussed in chapter

4, the tit-for-tat behaviour is common when the game is symmetric. However, the

game is no longer symmetric in these scenarios. The red team can not take advantage

of the strategic decision making mechanism while the blue team can.
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Figure 7.3 is the histogram of the fitness value by two fitness functions for the random

walk. In order to facilitate the comparison between WISDOM-I and WISDOM-II,

the figures use the same scale as in chapter 4.
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Figure 7.3: Histogram for random walk by using the average fitness (on left) and
normalized fitness (on right). The order for top to bottom is: GOL, AGG, and DEF

For the average fitness function, the fitness value of most solutions found in the GOL

scenario is between 100 and 200, in the DEF scenario it is between 120 and 200,
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and in the AGG scenario it is between 170 and 245. Only few solutions are GOOD

solutions in either GOL or DEF scenario. For the GOL and DEF scenario, peaks

around the point with the fitness value of 200 shows that there is a high probability

to find a solution with the fitness value of 200. However in the AGG scenario, there

are two small peaks with the fitness value of 190 and 240 respectively and with

similar height. It suggests that it is more likely to find a solution with the fitness

value of either 190 or 240 than any other values in the AGG scenario.

For the normalized average fitness function, the fitness value of most solutions found

in all three scenarios is less than 20. In the GOL scenario, there is a big peak at the

point with the fitness value of 10 and a small peak around the point with the fitness

value of 20. It suggests that the fitness value of the solution found in the GOL

scenario is more likely to be around 10. In the AGG scenario, almost all solutions

fall into the fitness range of 10 to 20. That means it is almost impossible to find a

solution with fitness value above 20. However for the DEF scenario, although there

is a big peak between 10 and 20, there are a lot of solutions found between 20 and

40. There are two peaks in both GOL and AGG scenarios while there is only one

peak in the DEF scenario. This implies that the effect of stochasticity is higher in

both GOL and AGG scenario than that in the DEF scenario.

When compared with Figure 4.3 in chapter 4, one can see that only in the AGG

scenario can a good solution be easily found for both WISDOM-I and WISDOM-II.

For both GOL and DEF scenarios, there is an attractor at the point with the fitness

value of 200 in WISDOM-I while there is no such attractor in WISDOM-II.

Looking at the normalized average fitness, for both WISDOM-I and WISDOM-II,

there are many solutions found with fitness value less than 20. This implies that

the solutions in all scenarios are very unstable for both systems.

Table 7.2 lists the results of the fitness landscape analysis using the information

content approach. It is clear that the landscapes using both average fitness and

normalized average fitness are very similar, and the landscapes of all three scenarios
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are also very similar in terms of information content (H(ε = 0)), partial information

content (M(ε = 0)) and expected number of optima. This means the degree of

ruggedness and modality of the landscape in these three landscapes is almost the

same.

Table 7.2: The information theoretic measures using both fitness functions for ran-
dom walk

ε∗ H(ε = 0) M(ε = 0) Exp. # of Optima
Average GOL 105.00 ± 5.27 0.41 ± 0.00 0.59 ± 0.00 2969.40 ± 13.44
Fitness AGG 80.00 ± 0.00 0.41 ± 0.00 0.58 ± 0.01 2887.00 ± 29.40

DEF 89.00 ± 9.94 0.42 ± 0.00 0.59 ± 0.01 2949.60 ± 27.10
Normalized GOL 23.70 ± 1.49 0.41 ± 0.00 0.61 ± 0.01 3048.00 ± 32.19

Average AGG 16.80 ± 1.32 0.41 ± 0.00 0.62 ± 0.00 3081.30 ± 18.99
Fitness DEF 73.00 ± 3.50 0.40 ± 0.00 0.60 ± 0.00 3012.10 ± 15.27

However, in terms of information stability (ε∗), the landscapes are different. The

highest information stability is obtained in the GOL scenario when using average

fitness while the highest information stability is observed in the DEF scenario when

using normalized average fitness. That is, the highest difference between two neigh-

bouring peaks is observed in the GOL scenario using average fitness while the highest

difference between two neighbour peaks is observed in the DEF scenario using nor-

malized average fitness. One may also notice that the information stability is similar

between the landscapes using average fitness and normalized fitness in the DEF sce-

nario. This suggests that there are higher peaks in the DEF scenario than that in

the GOL and AGG scenario.

When compared with the table 4.3 in chapter 4, the information content is simi-

lar between WISDOM-I and WISDOM-II while the partial information content is

slightly higher in WISDOM-II than that in WISDOM-I. That is, the ruggedness is

similar while the modality is higher in WISDOM-II. It can also be reflected by the

number of expected optima.

The information stability in WISDOM-I is much higher than that in WISDOM-II

according to the average fitness. This is caused by the same reason as the lower value

of the fitness signal-worst in WISDOM-II. Since the fitness value of the worst solution

found is higher in WISDOM-II than that in WISDOM-I, the difference between two
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neighbour solutions is obviously lower in WISDOM-II than in WISDOM-I. In terms

of the normalized average fitness, it is consistent with the previous finding that there

is no attractor in the GOL and DEF scenarios in WISDOM-II.

7.4 (1 + 1) Evolution strategy

(1 + 1) Evolution strategy (ES) adopts the same setup as in chapter 4. Firstly, it

generates a solution at random which is considered the best solution found so far.

The new solution is obtained by adding a random number drawn from a Gaussian

distribution with zero mean and 0.1 standard deviation to each personality of the

best solution found so far. If the new solution is better than or equal to the best

solution found so far, the former replaces the latter. If not, a new solution is gener-

ated and the process continues until the maximum number of objective evaluations

allowed is reached; after which, the algorithm terminates. The experiments are re-

peated ten times and each run is stopped after a total of 10,000 solutions have been

generated. The experiments are performed for both fitness functions: the average

fitness and the normalized average fitness.

Figure 7.4 shows the progression of the best solution found over time for each of the

ten runs. The similar patterns can be observed in (1 + 1)ES as in random walk.

According to the average fitness, the overall best solution is found in the AGG

scenario while it is found in the DEF scenario in terms of the normalized average

fitness. The stochasticity is very critical in both GOL and AGG scenario since the

fitness value of the normalized average fitness is pretty low in both scenarios. The

improvement occurs only at the beginning stage in both GOL and AGG scenario

while the improvement can still occur at the middle of the searching process in the

DEF scenario. These findings are consistent with the findings based on the above

fitness landscape analysis by random walk.

The fitness values of the overall best solutions found in all three scenarios using

(1+1)ES are almost the same as those using random walk. This implies the highly
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Figure 7.4: Best solution found over time by using the average fitness (on left) and
normalized fitness (on right) for (1 + 1)ES. The order for top to bottom is: GOL,
AGG, and DEF

exploitative search, such as (1 + 1)ES, does not improve the overall performance of

the search. Note that as (1 + 1)ES only keeps the best solution found so far, the

histogram for (1 + 1)ES (Figure 7.5) is not equivalent to that in random walk.

This finding is not consistent with that for WISDOM-I. In WISDOM-I, the fitness
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Figure 7.5: Histogram for (1 + 1)ES by using the average fitness (on left) and
normalized fitness (on right). The order for top to bottom is: GOL, AGG, and DEF

value of the overall best solution found in (1 + 1)ES is higher than that in random

walk. It seems (1 + 1)ES can take advantage of the neighbouring information

in WISDOM-I while it cannot in WISDOM-II. This implies that the peaks are

clustered in WISDOM-I while they are not in WISDOM-II under the definition of

the neighbourhood in this study. When looking at the normalized average fitness,
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the attractor at the value of 200 in the GOL and DEF scenario in WISDOM-I does

not appear in WISDOM-II.

7.5 Multi-objective analysis

As discussed in chapter 4, one single fitness function, e.g. the average fitness or

the normalized average fitness, could hide much information during the search for

a good solution. A Pareto-based multi-objective evolutionary approach is adopted

for further analysis as in chapter 4.

The experiments with similar settings as before are conducted for both random walk

and (1+1)ES with two objectives: minimizing the damage of the blue team (Equa-

tion 4.16) and maximizing the damage of the red team (minimizing the remaining

health of red team) (Equation 4.17).

Figure 7.6 is the scatter diagram and pareto-dominance diagram for all three scenar-

ios. The left column is drawn from random walk. The pareto-optimal is far below

the diagonal in the AGG scenario for both random walk and (1+1)ES. This means

that blue may cause more damage to red in this scenario. However, in the GOL

scenario, almost all pareto-optimal solutions found are above the diagonal. That is,

it is almost unlikely for blue to find a solution to win the game, which means the red

damage is larger than the blue damage. In the DEF scenario, most pareto optimal

solutions found are around the diagonal and some are below the diagonal.

If drawing the diagonal line to split all the solutions found in each scenario, one can

see that there are more than half of the solutions found in the AGG scenario where

blue can win the game. In the GOL scenario, blue almost cannot find a solution

to win the game while in the DEF scenario, although it is hard, blue can still find

solutions to win the game.

The figures at the right side are based on (1 + 1)ES. In order to faciliate analysis,

the solution space has been partitioned into six areas (Figure 7.7). When compared



CHAPTER 7. FITNESS LANDSCAPE ANALYSIS WITH WISDOM-II 186

0 50 100 150 200
0

50

100

150

200

R
ed

 H
ea

lt
h

Blue Damage

Random Walk: golressive

0 50 100 150 200
200

150

100

50

0

0 50 100 150 200
200

150

100

50

0

R
ed

 D
am

ag
e

0 50 100 150 200
0

50

100

150

200

R
ed

 H
ea

lt
h

Blue Damage

(1+1)ES: Goal Oriented

0 50 100 150 200
200

150

100

50

0

0 50 100 150 200
200

150

100

50

0

R
ed

 D
am

ag
e

0 50 100 150 200
0

50

100

150

200

R
ed

 H
ea

lt
h

Blue Damage

(1+1)ES: Aggressive

0 50 100 150 200
200

150

100

50

0

0 50 100 150 200
200

150

100

50

0

R
ed

 D
am

ag
e

0 50 100 150 200
0

50

100

150

200

R
ed

 H
ea

lt
h

Blue Damage

(1+1)ES: Defensive

0 50 100 150 200
200

150

100

50

0

0 50 100 150 200
200

150

100

50

0

R
ed

 D
am

ag
e

Figure 7.6: Scatter and Pareto-front diagram for random walk (on left) and (1+1)ES
(on right). The order for top to bottom is: GOL, AGG, and DEF

with the left figures, one may find that they are very similar. Thus, the highly

exploitative search, (1 + 1)ES, does not show any advantages over the highly ex-

plorative search, random walk. This is consistent with the findings in section 7.4.

One can also see that only in the AGG scenario, can blue damage all of the red for

both random walk and (1 + 1)ES. This finding is the same as that in WISDOM-I.

However, in WISDOM-I, the performance of (1 + 1)ES is slightly better than that
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Figure 7.7: Topology of solution space

of random walk. The main difference between WISDOM-I and WISDOM-II is that,

in WISDOM-II for all three scenarios, the explored solution space is a strip zone

around the diagonal where the damage of blue and red team is very similar. How-

ever in WISDOM-I, for the GOL and DEF scenario, the explored space is the area

of UL, UR and R, and more solutions are fallen into the area of UL according to

the density. For the AGG scenario, most solutions are fallen into the area of LL,

LR and R for random walk while the solutions cover the area of L, LL, LR and R

for (1 + 1)ES. It shows that in WISDOM-I, for both random walk and (1 + 1)ES

the blue may be completely damaged with a very little damage of the red, or even

no damage of the red. However in WISDOM-II, such situations do not appear. The

worst case in WISDOM-II happens in the GOL scenario that the blue is totally

damaged by the red while the red is at least damaged half. It confirms the previous

finding that the signal-worst in WISDOM-II is smaller than that in WISDOM-I.

When comparing the pareto-optimal sets between two systems, one may see that

the pareto-optimal set from WISDOM-I for all three scenarios are better than those

from WISDOM-II. This may be because the modality of the fitness landscape of

WISDOM-II is higher than that of WISDOM-I. The density of the solutions found

within the solution space can be considered as a measure of effectiveness of search.

Combining with above analysis of solution topology, it seems that not very bad and

also not very good solutions can be easily and effectively found by using WISDOM-II

while both very bad and very good solutions may be found by using WISDOM-I.
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7.6 Summary

In this chapter, a fitness landscape based on WISDOM-II is analysed by using

same approach as in the chapter 4. Three scenarios (strategies) are chosen for the

red team: Goal-oriented (GOL), Aggressive (AGG) and Defensive (DEF) while the

strategy (a vector of personalities) of the blue team is evolved.

In order to facilitate the comparison of the fitness landscapes generated by WISDOM-

I and WISDOM-II, most unique features of WISDOM-II are turned off except both

tactical and strategic decision making mechanisms. In WISDOM-II, the decision

variables are represented with a vector of 18 real numbers representing different

characteristics of personalities. Same objective function and the fitness function are

adopted as in the chapter 4. Each configuration is evaluated 100 times, each for 500

time steps.

Table 7.3: Comparison of the fitness landscape generated by WISDOM-I and
WISDOM-II

WISDOM-I WISDOM-II
Influence of stochasticity high
Signal-worst high low
Tit-for-Tat common not common
Attractor at the fitness of 200 No
Information content similar in both systems
Partial information content low high
Information stability high low
# of expected optima low high
Performance of search algorithm exploitation is better similar
Progress of search most improvements occurs at the beginning
Solution clustering yes no

UL for GOL above main-diagonal for GOL
Topology of solution space LL, LR, R for AGG centred on main-diagonal for AGG

UL for DEF above main-diagonal for DEF

For all three scenarios, the fitness landscapes are rugged and multi-modal. The diffi-

culty of the blue team in finding a good solution (a combination of the personalities

for the blue agents) to win the game is largely dependent on the strategy the red

team takes. The characteristics of the fitness landscape change when the strategy

of the red team changes. The degree of difficulty for the blue team to find a good

solution increases in the order of: AGG, DEF and GOL. All these findings are con-
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sistent with those in WISDOM-I. However, there are also many differences between

the fitness landscapes generated by WISDOM-I and WISDOM-II (see Table 7.3).

As discussed above, the strategic decision making mechanism has been identified as

the major cause leading to some differences between landscapes.

In the next chapter, some military analyses are conducted to exemplify the usage of

WISDOM-II.



Chapter 8

Analysis of Military Operations in

Urban Terrains

8.1 Introduction

One of the most significant changes in the last century is the urbanization of the

world’s population. Such global urbanization has largely influenced military oper-

ations and led to shifting from operations in open country to operations in urban

centres. The urban environment represents a set of unique challenges to soldiers and

leaders (Aragon 2001; Phillips et al. 2001).

First, urban environments, e.g. streets and buildings, provide a three-dimensional

ground threat which does not appear in the traditional open country conflict. In an

urban conflict, to control an area means to control a volume instead of controlling

the surface of the ground in an open terrain conflict. Multi-level buildings, sewer

and subway systems, all provide the third dimension.

Second, the technological advantage of the weapon system may be mitigated. One

common advantage of a weapon system is its capability to have a long target range

including both minimum and maximum target distance. However in an urban war-
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fare, the military force may not have sufficient distance between itself and its enemy

to take advantage of these long-range weapons.

Third, the close-quarter conditions of urban warfare may increase vulnerabilities.

The close-quarter may reduce the ability of a force to disperse itself. When area-

target weapons, such as grenades and mortar rounds, are used, they may lead to

high casualty rates.

Fourth, civilians are intermixed with hostile units. This makes urban warfare quite

different from traditional battles (Grau and Kipp 1999). A military force needs to

be able to distinguish between civilians and hostile units and then to destroy them.

Finally, the tactics of a military unit may be affected by hazardous materials, such as

power lines and generators, natural gas lines and stations, chemicals, etc. Research

on real wars shows that MOUT exhibits different behaviours from operations in a

non-urban environment (Desch 2001). All these differences require one to develop

new and innovative tactics and strategies for MOUT.

Recent research shows that simulation, especially agent-based simulation, is a robust

and valuable tool to study MOUT (Aragon 2001; Brown et al. 2003). However,

through the study of current simulation model capabilities in six aspects: direct

fire, indirect fire, mobility, search and target acquisition, tactical communications

and wide area surveillance, Crino (2001) argued that the current simulation models

are inadequate to fully investigate MOUT and that all these six aspects need to be

enhanced.

In this chapter, the impacts of force size, firepower (direct fire), communication and

strategic planning on attrition in a series of simulated urban combats are investigated

and analysed through a parametric study using WISDOM-II. First, a set of baseline

scenarios are developed to study the effect of force size and firepower on attrition

and are compared with the findings of Davies et al. (2004) which used EISTein to

see if similar patterns can be captured by WISDOM-II and EINSTEin. After that,

three sets of extended scenarios are created where the capability of the blue force
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is enhanced with communication, a strategic planning mechanism, or both. Finally,

a single simulation is used to exemplify how to understand the simulation through

the reasoning log.

8.2 Scenario configuration

8.2.1 Baseline scenarios

In order to study the role of force size, firepower (direct fire), communication and

strategic planning, a set of baseline scenarios is created where all unique features

in WISDOM-II are turned off, such as the artificial hospital and strategic decision

making mechanism (strategic planning). Both blue and red forces are made up of

homogenous agents which are only equipped with a point-to-point direct weapon

system. There is no communication for either blue and red forces. The behaviour of

agents are completely based on their personalities. This configuration is consistent

with that in Davies et al. (2004).

8.2.1.1 Force size and firepower

For a Lanchester equation based combat model with direct weapon only as discussed

in chapter 2, the attrition should follow the coupled differential equations known as

the Lanchester Square Law (LSL):





dBs

dt
= − αrRs(t)

dRs

dt
= − αbBs(t)

(8.1)

where B(t) and R(t) represent the force size of the blue and red respectively, and αb

and αr are analogous to the firepower for the blue and red force respectively. The

firepower is represented by the single shot kill probability Pkill in this chapter as in
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the study of Davies et al. (2004). The solution to Equation 8.1 should satisfy:

∫
αrR(t)dR =

∫
αbB(t)dB (8.2)

and one may see that:

αbB(t)2 − αrR(t)2 = k (8.3)

where k is a constant. When k = 0, it can be said that the two forces are evenly

matched (Davies et al. 2004). In this study, five evenly matched forces are defined

as shown in Table 8.1. The role of firepower and force size can then be studied by

comparing the experimental results with those expected from the LSL.

Table 8.1: Configurations of the force size ratio and Pkill

Blue force size (Bs(0)) Blue Pkill (αb) Red force size (Rs(0)) Red Pkill (αr)
50 0.01 50 0.01
100 0.01 50 0.04
150 0.01 50 0.09
200 0.01 50 0.16
250 0.01 50 0.25

8.2.1.2 Movement direction

Davies et al. (2004) found that some force units modelled in EINSTein cannot nav-

igate around obstacles when the movement direction is orthogonal to obstacle faces

(Figure 8.1(a)), and diagonal simulation may mitigate this side effect. Therefore,

diagonal simulation is adopted in this study as shown in Figure 8.1(b). The results

for orthogonal simulation are attached in Appendix A.
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(a) Orthogonal simulation

(b) Diagonal simulation

Figure 8.1: Initial starting position and direction of force movement

8.2.1.3 Terrain

To avoid undesired terrain advantages for both blue and red teams, the urban terrain

is designed symmetrically. The density of building blocks is varied in the environ-

ment by varying the size of each building block, while the coordinates of the centre

of each block remained unchanged. The distance between neighbouring building

blocks decreases when the size of the building block increases. To avoid long line

of sight at the beginning of the simulation, blocks are staggered. The resultant

corridors are where the mini-battle is likely to occur. The width of the corridors,

which is the number of agents able to stand abreast cross the corridor, is used as an

indicator of the size of the battlefield and the type of the urban environments.

Six types of urban environments are developed as shown in Figure 8.2 and Table

8.2. In order to make the environment symmetric, the size of environment is 99×99

in both Gap3 and Gap1.
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Figure 8.2: Urban terrains used in the study. From left to right, the corridor width:
8, 4, 3, 2 and 1.

Table 8.2: Configurations of terrains used in the study
Terrain Size of Env. Block size Corridor width Urban coverage
Open 100× 100 - - 0
Gap8 100× 100 10 8 26.82%
Gap4 100× 100 14 4 54.06%
Gap3 99× 99 15 3 65.04%
Gap2 100× 100 16 2 70.72%
Gap1 99× 99 17 1 79.92%

8.2.1.4 Agent characteristics

Both blue and red force have the same type of agents except the single shot kill

probability (Pkill), which is defined with the force ratio in Table 8.1. Four types of

agents are developed as shown in Table 8.3. All types of agents try to attack their

enemy and reach their goal. Agents can either avoid (dispersed) or ignore (non-

dispersed) their own force. The vision and firing range of agents can be short (30)

or long (99). All agents behaviour is completely determined by their personalities.

Table 8.3: Agent characteristics for each force size configuration and terrain
Type Vision and firing range Preference to own force
Non-dispersed short range 30 Neutral
Non-dispersed long range 99 Neutral
Dispersed short range 30 Avoid
Dispersed long range 99 Avoid

To ensure that forces become engaged approximately in the middle of the battlefield,

the agents are set to always try to reach the goal, which is the headquarter of the

opposite force. The agents also try to attack their enemy if any enemy is visible

within their vision range. These settings ensure that engagement does not occur at

the edge of the urban environment (Davies et al. 2004). Therefore, discontinuities
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of the urban terrain are unlikely to influence the outcome of the simulation.

8.2.2 Extended scenarios

With future warfighting concepts tending to focus on asymmetric warfare in urban

environments, it was vital to test the role of networked forces and strategic planning

in these environments. Based on the baseline scenarios, three sets of extended

scenarios are created to study the role of communication and strategic planning.

All configurations in the baseline scenario are maintained except the capability of

the blue force. For each of these three sets of scenarios, the capability of the blue

force is supplemented with communication and/or strategic planning as depicted in

Table 8.4.

Table 8.4: Extended scenarios
Extended scenario Features

A Baseline scenarios + communication in the blue force
B Baseline scenarios + strategic planning in the blue force
C Baseline scenarios + communication and strategic

planning in the blue force

The strategic planning mechanism used in this study is defined by five parameters:

mission type, resolution of the battlefield, frequency to send out commands, advance

threshold and defend threshold. The mission type for both forces in all scenarios is

“occupy”, which means the force tries to occupy the goal predefined in the scenario.

The commander develops the strategic plan based on a low resolution view of the

battlefield. In this study, the overall battlefield is abstracted into 5 by 5 hyper cells,

based on which the commander makes plans. The frequency to send out commands

is set to 5. This means the commander sends out commands to the groups every 5

time steps. The advance threshold is set to 1 while the defend threshold is set to

1.2. For the details of how the strategic planning mechanism works, refer to section

6.2.6.3.
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8.3 Experimental setup

According to the above configuration, there are 120 individual simulations in total

for both baseline and extended scenarios, which are: 6 terrain types x 4 agent types

x 5 force size ratios. For each simulation, 200 runs are conducted, each of which

consists of 200 time steps. The outcome of combat is measured by the normalized

loss exchange ratio (NLER) as shown in equation 8.4.

NLER =

BlueCasualty
RedCasualty

Bs(0)
Rs(0)

(8.4)

From the perspective of the blue team, the lower, the better.

8.4 Results and analysis

8.4.1 Baseline scenarios

Figures 8.3 and 8.4 are the outcomes for both dispersed and non-dispersed force in

the baseline scenarios for the short and long vision and firing range respectively.

All figures show that the experimental outcomes are very different from what is

expected from LSL. According to LSL, the NLER should be unity for a combat

of two evenly matched forces. However the results suggest that a small force with

higher Pkill is better than a large force with low Pkill, as shown in Figures 8.3(c)

and 8.4(c). The difference between large force size configuration and the smallest

force size configuration is increased as the coverage of blocks increases except in

the cases when the force has a range of 30 in the open terrain and the dispersed

force with the range of 99 in the terrain of Gap8 (see Figures 8.3(a) and 8.4(a)).

One interpretation is that since the larger force has low Pkill, it needs to highly

coordinate the behaviours of its combatants in order to maximize the casualty of its

enemy. In general, even in an open terrain, it is very hard for a force to be fully
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coordinated. Therefore, as the coverage of blocks increases, blocks could largely

hinder the coordination in the larger force. The performance of that force in turn

decreases.
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(a) NLER for different urban terrains and different force size configurations
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(b) Average NLER across different force size configurations for different urban terrains
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(c) Average NLER accross different urban terrains for different force size configurations

Figure 8.3: Outcomes for both non-dispersed (left) and dispersed force (right) with
a short range (30) vision and firing in the baseline scenarios
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(a) NLER for different terrains and different force size configurations
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(b) Average NLER across different force size configurations for different terrains
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(c) Average NLER across different terrains for different force size configurations

Figure 8.4: Outcomes for both non-dispersed (left) and dispersed force (right) with
a long range (99) vision and firing in the baseline scenarios

However, this interpretation is not supported by the results (Figures 8.3(a) and

8.3(b)). The performance of the larger force is even worse in an open terrain than

that in an urban terrain. This may be because of the firing algorithm adopted in
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WISDOM-II, where the agents always try to fire at their closest enemy. If more

than one enemy exists in a close proximity, the agents will choose one to shoot

at random. And if an agent shoots its enemy, then it will not move at this time

step. Therefore engagement actually occurs between the agents at the front of each

force. For example, for the case of 250 blue agents against 50 red agents, the NLER

is above 3.5 regardless of whether the force is dispersed or not. For the diagonal

simulation, the initial position of the blue force is within the upper-left square as

shown in Figure 8.1(b). When both forces approach their goals, the force ratio

between agents at the front line of the blue force and the red force is less than

5 : 1. However, the firepower ratio between blue and red team still keeps at 1 : 5.

Therefore, it leads to that the NLER is larger than 1, which is expected by LSL. This

is also the reason why the NLER is a little bit less for a dispersed force than that for

a non-dispersed force. For a dispersed force, the right graph in Figure 8.3(a) shows

that the NLER is higher for Gap8 than that for Gap4. The wider the corridor, the

more agents being accommodated in the corridor. The more visible the blue agents

are, the more dispersed the blue force. Therefore the ratio of the agents at the front

line between the blue force and the red force is less for Gap8 than that for Gap4.

When inspecting Figure 8.4(a) more closely, one may find that the outcome of the

simulation is different from that predicted by LSL even in an open terrain with long

range vision and firing, which means that an agent may see everywhere and fire

at anyone. LSL requires fire to be uniformly distributed over the surviving units

(Przemieniecki 2000). However, agents in WISDOM-II always fire at the closest

enemy. To investigate what causes the difference, a number of experiments are

conducted by modifying the firing algorithm so that agents uniformly choose among

the visible enemies to shoot at instead of firing at the closest enemy. The results

with the modified firing algorithm is presented in Table 8.5. It shows that with the

modified firing algorithm, the NLER is around 1 which is as expected by LSL. With

the firing algorithm adopted by WISDOM-II, the NLER varies from 0.72 to 1.06.

However, we will continue with the original firing algorithm of WISDOM-II since

it is more logical. The rationality behind the firing algorithm in WISDOM-II is as
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follows:

1. The closer the enemy, the more threat from it;

2. It is not reasonable to shoot an enemy that is just behind another enemy using

a direct weapon.

Table 8.5: The NLER of different force size configuration by different firing algo-
rithms with long firing range (99)

Firing algorithm 50 vs 50 100 vs 50 150 vs 50 200 vs 50 250 vs 50
Modified 0.98 1.03 1.05 1.03 1.02
Original 1.06 0.95 0.93 0.78 0.72

8.4.2 Extended scenario A - the blue force with strategic

planning and without communication

In the extended scenario A, the blue force adopts a strategic planning mechanism to

guide the behaviours of its agents. All other configurations are maintained similar

to the baseline scenario.

Figure 8.5 represents the outcomes of the non-dispersed force for both short range

(left) and long range (right) vision and firing in the extended scenario A. When

comparing Figures 8.5(a) and 8.5(b) with the corresponding graphs in the left side

of Figures 8.3(a), 8.3(b), 8.4(a) and 8.4(b), one may find that the performance of the

blue force is largely improved with the strategic planning mechanism for all urban

terrains except for the open terrain. The blue force wins the game for all urban

terrains (NLER is less than 1) while it was defeated by the red force in the baseline

scenarios. This implies that high coordination between a large number of agents

may overcome the disadvantages of low firepower.

For the open terrain, agents can detect and fire at any agent in the battlefield when

the range is long (99). Coordination is not crucial to the outcome of combat in this

scenario. Therefore, there is not much difference between the cases with and without
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(a) NLER for different terrains and force size configurations
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(b) Average NLER across different force size configurations for different urban terrains
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(c) Average NLER across different terrains for different force size configurations

Figure 8.5: Outcomes of the non-dispersed force for both short range (left) and long
range (right) vision and firing in the extended scenario A.

a strategic planning mechanism. For the case of short range (30), the performance

of the blue force with the strategic planning is even worse in open terrain. This is

because the more highly clustered the blue agents are, the less the number of agents
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at the front line, which can be engaged with the red agents. Figure 8.6 is two screen

dumps of the simulation where the blue force uses (left) or does not use (right) the

strategic planning mechanism in the extended scenario A. The blue force is at the

upper-left corner while the red force is at the bottom-right corner. It is clear that

the blue force without the strategic planning (right) is more scattered than that

with the strategic planning (left). Therefore, the number of blue agents at the front

line in the left side graph is less than that in the right side graph. This suggests

that this type of strategic planning, which may be suitable when agents posses long

range vision, may not be suitable for when agents posses short range vision.

Figure 8.6: Two screen dumps of the simulation for the force with (left) and without
(right) the strategic planning in the extended scenario A. The blue force is at the
upper-left corner while the red force is at the bottom-right corner.

When comparing Figure 8.5(b) with Figures 8.3(b) and 8.4(b) correspondingly, one

may note that the difference between highly dense terrain and light dense terrain

is much less when the blue force adopts the strategic planning mechanism than

that in the baseline scenarios. This implies that the scattering effect of blocks is

offset by the clustering effect of a strategic plan. Figure 8.5 also shows that the

NLER is almost constant when the range is long (99). The longer the range, the

more information about the battlefield is obtained. Based on this global view of the

battlefield, the strategic plan can effectively and efficiently coordinate the behaviours

of the blue agents even if there is a large number of agents. Therefore, there is not

much difference among different urban terrains.
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Figure 8.7 represents the outcomes of the dispersed force for both short range (left)

and long range (right) vision and firing in the extended scenario A. When com-

pared with Figure 8.3 and 8.4 respectively, one may find that they share similar

patterns and the corresponding NLER is only a little bit less with the strategic

planning mechanism than that without a strategic planning mechanism. The rea-

son why the performance of the blue force is not largely improved as observed for

the non-dispersed force above is because the clustering effect of the strategic plan-

ning mechanism is largely offset by the dispersed personality of the agents in this

scenario.

8.4.3 Extended scenario B - the blue force with communi-

cation and without strategic planning

In the extended scenario B, there is no strategic planning mechanism for the blue

force. But, the blue agents may or may not communicate with other blue agents

while there is no communication within the red force. The communication range

varies from 0 to 20. In order to study the effect of communication on the outcome of

combat, for both blue and red forces, the vision range is fixed to 30 while the firing

range is fixed to 99. Other settings are similar to those in the baseline scenario.

Figure 8.8 depicts the average NLER of both non-dispersed (left) and dispersed force

(right) in the extended scenario B for different terrains, force size configurations and

communication ranges. One may observe the same trends as in the baseline scenario

and the extended scenario A. The performance of the small size force is better than

that of the large size force. The performance decreases when the urban coverage of

blocks increases.

It is also not surprising that the NLER decreases when the communication range

increases. In this scenario, the longer the communication range, the better.

When comparing the results between dispersed and non-dispersed forces, one may
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(a) NLER for different terrains and force size configurations
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(b) Average NLER across different force size configurations for different urban terrains
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(c) Average NLER across different terrains for different force size configurations

Figure 8.7: Outcomes of the dispersed force for both short range (left) and long
range (right) vision and firing in the extended scenario A.

find that the NLER is always higher for the dispersed force than that for the non-

dispersed force. This is because the density of the agents is lower for a dispersed

force than that for a non-dispersed force. Therefore, the total number of agents able
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Figure 8.8: Average NLER of both non-dispersed (left) and dispersed force (right)
in the extended scenario B for different terrains, force size configurations and com-
munication ranges from top to bottom respectively.

to communicate within a certain communication range is lower in a dispersed force

than that in a non-dispersed force. In turn, the NLER is higher.

Figure 8.9 presents the average NLER across different force size configurations of

both non-dispersed (left) and dispersed (right) forces for different terrains and com-

munication ranges. For both non-dispersed and dispersed blue forces, the perfor-
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mance is improved when the communication range increases for all terrains.
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Figure 8.9: Average NLER across different force size configurations of both non-
dispersed (left) and dispersed (right) forces for different terrains and communication
ranges

Figure 8.10 represents the improvement made by communication (the NLER differ-

ence between the case with communication and the case without communication) for

both non-dispersed and dispersed forces for different terrains. For the non-dispersed

force (the left graph of Figure 8.10), the largest improvement occurs in the open

terrain. The improvement then decreases in Gap8, increases again in Gap4 and

then keeps almost constant to Gap2. Finally it decreases again in Gap1. This pat-

tern appears for all communication ranges. In the open terrain, the lack of blocks

facilitates coordination among the blue agents. Therefore the blue force may fully

take advantages of communication and the NLER then largely decreases. When the

terrain changes from no obstacles to Gap8, there are two effects of the blocks. One

is to prevent the agent from shooting at its enemy if the enemy is behind a block.

The other is to spread the agents in the terrain. Therefore, the number of agents

within the communication range decreases. That is, the degree of coordination de-

creases. With these two effects, the improvement decreases from the open terrain to

Gap8. Another reason might be that the NLER is already low in Gap8 when there

is no communication (see the left graph in Figure 8.9). It is very hard to improve

the performance of the force further, which may already be taking full advantage

of its capability. This is also the reason why the improvement in Gap4 is larger

than that in Gap8. If agent A sends information about its enemy to agent B and



CHAPTER 8. MILITARY ANALYSIS 208

agent B can fire at that enemy, we call it “effective communication”. From Gap4

to Gap2, although the size of the block increases, the effective communication may

not be reduced. It leads to that the improvement within these three environments

are similar. The reason why the improvement decreases in Gap1 is because there

is no space to accommodate more agents in the corridor in Gap1 even if the agents

can communicate with many of their friends.
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Figure 8.10: Improvement made by communication of both non-dispersed (left)
and dispersed (right) forces for different terrains and communication ranges in the
extended scenario B

One may also find that the improvement made by each unit of communication

range decreases when the communication range increases from 0 to 20. Even when

the communication range is 20, there is no improvement when compared to that

in the communication range of 15. This is because the effective communication

does not increase when the communication range increases above a certain point,

e.g. 15 in this scenario. For a non-dispersed force, the big jump occurs between

communication range of 1 and 5 since the agents are closer to each other within a

limited space, e.g. a corridor, as all agents try to move to their goal and enemy.

Therefore, the number of agents within the communication range suddenly increases

when the communication range increases from 1 to 5.

For the dispersed force (the right graph of Figure 8.10), the largest improvement

occurs when the communication range increases from 5 to 10. Since a dispersed force

is spread over the battlefield, the diameter of the force cluster is larger than that of

a non-dispersed force. Therefore, a big jump happens between the communication
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ranges of 5 and 10.

Figure 8.10 also shows the improvement decreases for the dispersed force as the

terrain moves from open terrain to Gap4, which is different from that for the non-

dispersed force. When the urban coverage of blocks is not too high, the effective

communication largely reduces when the coverage of blocks increase. Therefore

the improvement decreases. However, when the coverage of the blocks continues

to increase, e.g. from Gap4 to Gap1, the effectiveness of communication does not

change. This makes the improvement unchanged across these urban terrains.

Figure 8.11 depicts the average NLER across different terrains of both non-dispersed

(left) and dispersed (right) forces for different force size configurations and commu-

nication ranges in the extended scenario B. For both non-dispersed and dispersed

forces, the performance becomes worse when the force size increases or the commu-

nication range decreases. This is consistent with our previous findings.
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Figure 8.11: Average NLER across different terrains of both non-dispersed (left)
and dispersed (right) forces for different force size configurations and communication
ranges in the extended scenario B

Figures 8.12 represent the improvement made by communication of both non-dispersed

(left) and dispersed (right) forces for different force size configurations and commu-

nication ranges in the extended scenario B. For the same communication range, the

improvement increases when the force size increases. This is because the number of

agents within the communication range increases as the force size increases.

For the same force size, the improvement made by each unit of communication
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Figure 8.12: Improvement made by communication of both non-dispersed (left) and
dispersed (right) forces for different force size configurations and communication
ranges in the extended scenario B

range decreases when the communication range increases. The reason is that with

the spreading effect of the blocks, the number of agents able to communicate does

not increase at a constant rate when the communication range increases. Therefore,

the improvement made by each unit of communication range decreases when the

communication range is already long.

For the dispersed force (the right graph in Figure 8.12), the improvement made by

communication is linear to the force size. This is because for a dispersed force, the

agents approximately uniformly spread over the battlefield. Therefore, as the force

size increases from 50 to 250, the number of agents within the communication range

linearly increases.

8.4.4 Extended scenario C - the blue force with communi-

cation and strategic planning

In the extended scenario C, the blue force adopts a strategic planning mechanism

(defined in subsection 8.2.2) to guide the behaviours of the blue agents. All other

configurations is maintained similar to the extended scenario B.

Figure 8.13 depicts the average NLER of both non-dispersed (left) and dispersed

(right) forces for different terrains, force size configurations and communication
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ranges in the extended scenario C. When compared to Figure 8.8, the performance

of the non-dispersed blue force is even worse with a strategic planning than that

without it in the open terrain. This is because of the same reason as discussed in

subsection 8.4.2.
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Figure 8.13: Average NLER of both non-dispersed (left) and dispersed (right) forces
in the extended scenario C for different terrains, force size configurations and com-
munication ranges from top to bottom respectively

The improvement (difference of NLER between the extended scenario C and B)
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increases when the size of the non-dispersed force increases while it is almost constant

for the dispersed force. For a dispersed force, the more the agents know each other,

the more scattered the force. For a larger size force, this spreading effect is stronger

than a smaller size force. Therefore, the clustering effect of the strategic planning

is largely offset by the spreading effect for a larger size dispersed force. For a non-

dispersed force, this spreading effect does not occur. The larger the force, the more

effective the strategic planning.

The improvement decreases when the communication range increases for both non-

dispersed and dispersed forces. The strategic planning and communication are two

forms of coordination. If the performance of the blue force is already improved

through communication, it might be very hard to improve it further through another

means of coordination, e.g. strategic planning.

Figure 8.14 represents the average NLER across different force size configurations of

the non-dispersed force for different terrains while Figure 8.15 represents the aver-

age NLER across different terrains of the non-dispersed force for different force size

configurations in the extended scenario C. When comparing Figure 8.14 with the

left side of Figure 8.9 and Figure 8.15 with the left side of Figure 8.11 correspond-

ingly, one may find that the performance difference between short range and long

range communication becomes less when the blue force adopts a strategic planning

mechanism for all terrains and force size configurations. For the short range commu-

nication, strategic planning may largely increase the degree of coordination among

agents. However, for the long range communication, the degree of coordination is

already very high. It is very difficult to improve it further by strategic planning.

Therefore the performance difference decreases.

Figures 8.14 and 8.15 also show that the performance of the blue force is similar for

different terrains (except open terrain) and force size configurations. It implies that

the higher coordination, the less influence of terrain and force size configuration on

the outcome of combat.
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Figure 8.14: Average NLER across
different force size configurations of
the non-dispersed force for different
terrains in the extended scenario C
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Figure 8.15: Average NLER across
different terrains of the non-dispersed
force for different force size configura-
tions in the extended scenario C

Similar patterns can be observed when comparing Figure 8.14 with the left side of

Figure 8.9 and Figure 8.15 with the left side of Figure 8.11. The force performance

is improved when strategic planning is adopted for all cases except the cases without

communication or with a short range communication in the open terrain. This is

caused by the same reason as discussed in subsection 8.4.2.

Figure 8.16 represents the average NLER across different force size configurations

of the dispersed force for different terrains while Figure 8.17 represents the average

NLER across different terrains of the dispersed force for different force size con-

figurations in the extended scenario C. When compared with Figure 8.9 and 8.11

correspondingly, one may note that the improvement is smaller for the dispersed

force than that for the non-dispersed force. This is because the spreading effect of

dispersed personality of the agents offsets the clustering effect of strategic planning.

8.4.5 Analysis on the reasoning log

A single simulation run is used to demonstrate how WISDOM-II interprets the

simulation through the reasoning log. In this scenario, the vision range and firing

range for both forces is 30 and 99 respectively. The second force size configuration
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Figure 8.16: Average NLER across
different force size configurations of
the dispersed force for different ter-
rains in the extended scenario C

 50vs50 100vs50 150vs50 200vs50 250vs50
0

0.5

1

1.5

2

2.5

3

3.5

4

N
o

rm
al

iz
ed

 L
E

R

 

 
No Comm
CommR=1
CommR=5
CommR=10
CommR=15
CommR=20

Figure 8.17: Average NLER across
different terrains of the dispersed
force for different force size configu-
rations in the extended scenario C

in Table 8.1 is selected. The blue force has 100 agents with the Pkill of 0.01 while

the red force has 50 agents with the Pkill of 0.04. The communication range of the

blue force is 10 and the strategic planning defined in subsection 8.2.2 is adopted by

the blue force while there is no communication and strategic planning mechanism

in the red force.

The reasoning log is attached in Appendix B. From the reasoning log, one may see

that there are three stages in combat. The first stage is the pre-engagement stage

for both forces up to the time step 37. Normally in this stage, each force organizes

its agents and approaches the goal. So the reasoning log shows how both blue and

red forces approach their goals. For example, the statement that “19: The group 2

in the red team is advancing to the flag. The group 1 in the blue team is advancing

to the flag.” in the reasoning log shows that both blue group 1 and red group 2

approach to its goal at the time step 19. Since only blue force adopts a strategic

planning mechanism, there is no order sent out to the red force. It only occurs for

the blue force. For example, in the reasoning log there is a statement that “20: An

order has been sent to the leader of group 1 in the blue team to move toward (30,

50)” at the time step 20. With the strategic planning mechanism, the blue force

commander makes plans for all groups in the blue force and guide them to reach
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their goal. At the time step 20, for example, the commander asks the group 1 to

move to the position of (30, 50). From Figure 8.18, one may see that the average

degree of the blue communication increases and the average shortest path length of

the blue communication network decreases at the first stage. The commands and

information can then be quickly sent to the agents. This implies that after the first

stage the blue force is ready to fight against the red force.
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Figure 8.18: Average degree (left) and average shortest path length (right) of the
blue communication network

The second stage is the engagement stage. This stage is the main course of combat

from the time step 38 to 64. In this stage, the forces fire at each other. The combat

is explained to the user in the reasoning log through three aspects as follows:

• What is happening? The user may know what is happening at each time step

through the reason log. For example, “38: The engagement starts”, “50: An

order has been sent to the leader of group 1 in the blue team to move toward

(50, 50)” and “51: Without any loss, the red team causes damage of 10 to the

blue force”.

• How does it happen? The reasoning log can interpret how it happens. For

example, ”46: The agents in the red team are spreading their fire to achieve

maximum damage in the blue team”, “47: The situation awareness of blue

team is gained mainly through its sensor component. The situation awareness
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of red team is gained mainly through its sensor component”, and “52: The

agents in the blue team are spreading their fire to achieve maximum damage

in the red team”. To have the statement at the time step 46 and 52, the

standard deviation of the in-degree of the the blue or red agents in the firing

network must be less than the predefined threshold, e.g. 0.5, in the scenario

(Figure 8.19).
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Figure 8.19: The standard deviation of the in-degree of blue agents (left) and red
agents (right) in the engagement network

• Why does it happen? Based on the real-time reasoning engine, the system

presents the reason why it happens to the user. For example, “55: An average

damage of 4.00 occurred in the blue team over the last 5 timesteps is probably

caused by the red force’s situation awareness of friend on force level” and “55:

An average damage of 10.00 occurred in the red team over the last 5 timesteps

is probably caused by the activities in the communication network of the blue

team”. From Figures 8.18, 8.20 and 8.21, one may see that the damage of red

force increases while the average degree of the blue communication network

increases and the average shortest path length decreases for the time step 50

to 55.

The last stage is the epilogue of combat. Since at the end of the second stage one

force normally has totally controlled the whole battlefield, the controlling force keeps

attacking the remaining opposing agents with very small damage to its own (Figures
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Figure 8.20: Force damage in each
time step
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Figure 8.21: Total force damage over
time

8.20 and 8.21). During this stage, one may note that the average degree of the blue

communication network keeps at a high level and the average shortest path length

at a low level ( Figure 8.18), while the red damage keeps at a high level (Figures 8.20

and 8.21). It seems the damage of the red force is mainly because of communication

in the blue force, which can be confirmed by the reasoning log. In this stage, the

reasoning log is full of such statements as “An average damage of 4 occurred in

the red team over the last 5 timesteps is probably caused by the activities in the

communication network of the blue team” at the time step 68, 69, 70, 72, 77, 78,

79, 82, 83, 84, 85, 87, 88, 89, 92, 93, 94, 98 and 103. In this stage, the reasoning

log still interprets the simulation through three aspects: what is happening, how it

happens, and why it happens.

8.5 Summary

In this chapter, a series of experiments were conducted to investigate the effect

of force size, firepower (direct fire), communication, strategic planning and terrain

characteristics in urban warfare. A number of findings have been obtained. The

urban terrain seems to favour the force with high firepower. The skill of the com-

batants is more important than the force size. Based on LSL, this should not happen
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between two evenly matched forces. It is because the blocks in the urban terrain

largely reduce the ability of a large force to coordinate its fire while the engagement

occurring within a narrow corridor allow the small size force to fully take advantages

of its high firepower. However, sometimes the numerically superior force still shows

its advantages, especially with communication. In summary the overall impact of

the block in the urban terrain is a combination of two effects. One is that the block

may fragment the force and reduce the degree of coordination of the force. The

other is that the block may protect the agents from being shot.

With communication, the agents may have more information about their own force

and enemy. For a non-dispersed force, the information about its own force does

not have much effect on the outcome because the agents are neutral to their own

force. However, the more information about the enemy, the more agents move to

and fire at their enemy. Therefore in general the longer the communication range,

the better. For a dispersed force, the more information about its own force, the

more dispersed the force, and the harder to coordinate agents’ behaviours. The

overall effect of communication for a dispersed force is a combination of both effects

of information about own force and enemy. Therefore a long communication range

is not always good for a dispersed force. Moreover, the effect of communication is

also influenced by the terrain type. The block not only makes the force scattered,

but also prevents the agents from firing at their enemy. With the direct weapon, the

effective communication may not increase when the communication range increases

above a certain level. This is the reason why no improvement occurs in some terrains

when the communication range increases.

With strategic planning, the force may largely improve its performance in most

cases. However, in some cases the performance is worse than without a strategic

planning mechanism. It suggests that different terrain types or force configurations

require different strategic planning mechanisms. Since the agents try to move far

from its own force members for a dispersed force, this dispersing effect largely offsets

the clustering effect of a strategic planning. Therefore, the improvement made by
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a non-dispersed force is larger than that by a dispersed force. Communication

and strategic planning are two means of coordination. Therefore, if a high degree of

coordination has been achieved by using either communication or strategic planning,

it is hard to make further improvement by adopting another one.

The patterns captured in the scenarios without coordination are consistent with

those by traditional ABD (Davies et al. 2004). The large force almost cannot beat

the small force. And the higher the density of the urban terrain, the worst the

performance of the large force. However, if highly coordinating agents’ behaviours,

the large force can beat the small force in many cases. And a phase transition

can be observed where highly dense urban terrains may lead to similar outcomes as

open terrains, while medium to light dense urban terrains have different dynamics.

Therefore the results obtained from the ABDs without rational strategic planning

or coordination among agents can be misleading and might not be generalized.

At the end of this chapter, a single simulation was analysed to demonstrate how to

understand the simulation through the reasoning log in WISDOM-II. Normally there

are three stages in combat: pre-engagement stage, engagement stage and epilogue

of combat. In the first stage, the reasoning log mainly shows what is going on in the

battlefield and how the forces prepare for the battle. For the other two stages, the

reasoning log interprets the simulation through three aspects: what is happening,

how it happens, and why it happens.



Chapter 9

Conclusions and Future Work

9.1 Conclusions

Simulation has been used to study combat for a very long time with both human-

based and computer-based systems. In this thesis, a comprehensive literature review

is first undertaken in models and simulations of combat. Although human-based

simulation is more realistic, it is extremely expensive and does not allow defence

analysts to investigate all aspects of combat. Most traditional computer-based sim-

ulations, such as such as ELAN, JANUS, CASTFORME, ModSAF and OneSAF,

are built on equation based models, especially the Landchester Equations, which can

be adequate for studying the role of weapon systems in combat. However, human

factors and other aspects have not been included in the models. Therefore it is hard

to study them by traditional computer-based models and simulations. Recently,

CAS and MAS have widely been accepted as two valuable tools in military analysis.

The idea that combat can be modelled as a CAS has widely been accepted and

adopted in the field.

By its nature, MAS is a promising tool to study CAS. Current agent architecture

includes reactive agent architecture, cognitive agent architecture and hybrid agent

architecture. All of them have some advantages while facing some disadvantages.
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Mainly based on reactive agent architecture, several ABDs have been developed and

used to simulate comabt gain insight into it, such as ISAAC, EINSTein, MANA,

CROCADILE and BactoWars. ISAAC and EINSTein are the first to ABDs which

modelled combat as a CAS and used the theory of CAS to analyse combat. All

latter ABDs were inspired by them. These systems are low resolution abstract

models. However, the low fidelity in these models does not necessarily reduce their

value when capturing and analysing the dynamics of combat. Any model is an

abstraction of the real system to some degree. Adding more details to a model

does not necessarily improve its ability to reproduce reality because details may

complicate the model unnecessarily. Understanding the physics of each individual

component does not always improve our understanding of the system as a whole.

The key issue is that a good model should include and appropriately represent the

factors which influence the behaviour of the real system. Validity of a model is

not based on whether the model captures the detailed “mechanics” of each entity,

instead it is based on whether the model can reproduce the behaviour (i.e. the

statistical patterns) observed in the real system. Based on the research done by

Ilachinski (1997, 1999, 2000), Barlow and Easton (2002) concluded that there is

no doubt that existing agent-based simulation combat models can exhibit similar

behavioural patterns that we would intuitively expect in a real battlefield.

Researchers (Nicholls and Tagarev 1994; Tailby et al. 2001; Perla and Loughran

2003; Bowley et al. 2003) also show that such low fidelity ABS/ABD may not only

help people to better understand warfare, but also to guide the implementation of

warfare models with higher fidelity. The applicability of ABS/ABD combat models

is discussed in detail by Ilachinski (Ilachinski 2004). These ABS/ABDs have already

been applied in a number of areas (i.e. education, policy analysis) by a number of

organizations (i.e. universities, defence departments, consulting companies) (Lauren

and Stephen 2002a; Galligan and Lauren 2003; Ilachinski 2004).

Using a similar architecture, WISDOM-I was developed and used as a simulation

platform to establish an understanding of combat as a CAS. The main improvements
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of WISDOM-I are as follows:

1. Using agent based communication instead of squad based communication in

existing ABDs, which increases the complexity of the system and makes the

system more realistic;

2. Using a relational database (MySql) to store information. This facilitates

post-analysis;

3. Improving the movement algorithm to avoid strange behaviours arising from

lack of near/far discrimination;

4. Embedding an EC engine (single objective or multiple objectives) to search

for optimal capability of a force for certain predefined scenarios.

Most of these ABDs, including WISDOM-I, are mainly built on reactive agent archi-

tecture. Its shortcomings limits the ability of these ABDs to answer such questions

as: “which interaction plays a key role in combat?”, “how does one relationship

between agents affect others?”, “how are these interaction evolving during simula-

tion?”, etc. Therefore, a novel agent architecture called NCMAA is proposed, which

is based on network theory and CAS. NCMAA models each type of interaction as

a network and agents as the nodes of one or more networks. Through such an ex-

plicit model of interactions within the system, the role of interactions can easily be

identified and analysed. The emerging behaviours can then be interpreted through a

powerful real-time reasoning engine, which is built on network theory, causal models

and various analyses, such as Granger causality test, path analysis and root cause

analysis. It helps users to understand the dynamics and outcomes of the simula-

tion by conducting inductive reasoning during the simulation. Such reasoning at

the group (network) level not only creates a new way to gain insight into a CAS,

but also overcomes some problems, e.g. low scalability, arising from reasoning at

the individual level in some agent architecture, e.g. BDI. The major advantages of

NCMAA are concluded as follows:
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• It is easy for users to analyse interactions between agents through a networked

based model of interaction.

• It provides a chance to identify how one interaction influences another through

a real-time network centric reasoning engine;

• It establishes for the first time a formal framework for reasoning at the group

level in ABDs, which allows analysts to understand the results during the

simulation.

This contribution provides supportive evidence for hypothesis 2.

Based on NCMAA, WISDOM-II is proposed and implemented in this thesis. With a

real-time networked based reasoning engine, WISDOM-II is the first ABD be able to

interpret the emerging behaviours online and present the interpretation in natural

language to the users. Major unique features of WISDOM-II are summarized as

follows:

• Built-in network analysis tool to conduct structural reasoning.

• Complex C3 (command, control and communication) model: WISDOM-II

supports up to four level C2 hierarchy - commander, team leader, swarm leader

and combatant. It is the first ABD which supports heterogeneous agents at

the squad level.

• Integration of tactics with strategies: WISDOM-II supports decision making

at two different levels: tactical and strategic. Almost all ABDs for combat

have only tactical decision making mechanisms. This situation not only may

lead to misunderstanding the process or dynamics of combat, but also may

limit such ABDs to study combat at a high level. This contribution provides

supportive evidence for hypothesis 1.

• Model of recovery: An explicit model of artificial hospital is first introduced

in WISDOM-II. Each team may have a hospital defined by the number of
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doctors and the recovery rate. A waiting list is used to queue the wounded

combatant for treatment when all doctors are already treating. With such a

model of recovery, defence analysts can easily and quickly study the dynamics

of combat under limited resources and the relationship between the outcome

of combat and the capability of recovery.

Because of global urbanization, the focus of military operations is shifting from open

terrain to urban terrain. In this thesis, simulations are conducted on scenarios of

MOUT. The results show the features of urban terrain largely influence the out-

comes of combat. Recalling from chapter 8, the urban terrain seems to favour the

small force with high firepower over the large force with low firepower. The skill of

combatants is more important than the force size. Communication may compen-

sate the disadvantages of the large force with low firepower to a certain degree. The

force performance can be largely improved by adopting strategic planning. However,

in some cases the performance is worse than without a strategic planning mecha-

nism. It suggests that different terrain types or force configurations require different

strategic planning mechanisms.

EC techniques have seldom been used in military analysis although they are very

popular in optimization. In this thesis they are first adopted to conduct fitness

landscape analysis, to characterise the solution space of combat simulations and to

identify the degree of difficulty in searching for optimal solutions. The landscapes

from both WISDOM-I and WISDOM-II are rugged and highly multimodal. The

characteristics of the solution space largely depend on the strategy used by the

red team. Multi-objective optimization seems a very promising tool in military

analysis since the objective of each force in combat usually requires success in several

conflicting aspects.
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9.2 Future work

Several research directions for further investigation arise from this thesis. To facili-

tate the discussion, they are discussed in three categories:

9.2.1 Model of interaction

NCMAA takes the first step to explicitly model the interaction among the com-

ponents within a CAS. With the aid of network theory, the interaction can be

characterized with a number of network measures. The effect of one interaction on

another is qualitatively analysed through time series analysis, correlation analysis,

path analysis, etc.

How to quantify the influence of one interaction on another is still an open research

question. This would involve identifying relationships between network measures

(such as average degree and average path length) with behaviour. Some preliminary

work has been undertaking using the Penetration Coefficient (PC), which combines

four measures concerning the level of overlap between networks.

9.2.2 ABD for combat

Several ABDs for combat have been developed to simulate and study combat since

Project Albert launched in 1991. Although these ABDs have been widely used

and have let defence analysts study and understand combat, they still need to be

enhanced in following aspects:

• Movement. Most existing ABDs adopt an attraction/replusion weighting

system to make decisions for agents on the battlefield about which position

they should move to. In the study of the movement algorithms used in ISAAC,

EINSTein and MANA version 2, Gill and Grieger (Gill and Grieger 2003)

argued that such a movement algorithm may lead to unexpected and weird
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behaviours under certain extreme situations. Based on their recommendations,

later ABDs or versions improved their movement algorithms. However it is

still hard to match them to reality. In reality, the combatants usually assess

the risks for current position and all potential positions and then balance

their own preference, the goal (order from commander) and the risk. Finally

they make decisions. A better way is required to measure the risk instead of

using personality based attraction/replusion weighting system, and a decision

mechanism is also required that combines the risk, goal and own preference.

WISDOM-II implements part of this (strategic decision making mechanism).

But further extension should be made, e.g. applying risk assessment into

tactical decision making.

• Recovery. Although WISDOM-II already has a model for recovery, it is very

simple and not flexible enough for defence analyst to fully investigate the role

of recovery in combat. Extensions could include modelling recovery on site

and triage of different conditions.

• Logistics. No ABD has a model for logistics, a very important factor in

combat.

• Learning. There is no learning mechanism for them to learn from their ex-

perience for most of current ABDs in combat.

• Coordination. At present communication is the only way to coordinate

among agents in most existing ABDs. How about other types? For example,

how to form an advantageous shape based on the shape of its opponent? How

to adjust moving speed based on the speed of whole group in order to maintain

certain shape of whole group? All these need to be modelled in the future.

9.2.3 EC techniques

In this thesis, EC techniques are used to study the characteristics of the solution

space. Other EC techniques could also be employed in military analysis. In combat,
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usually two forces play against each other. Either force may adjust its strategy or

tactics based on its opponent’s tactics and strategy. Therefore co-evolution can be

adopted to study the dynamics of combat when both forces are changing during the

simulation. Within the same framework, cooperative co-evolution could be employed

to study coordination among agents within the same force.

Agents currently make decisions based on their personalities. It may be possible to

use neural network to make decisions for agents. Then the learning process can be

simulated through evolving the parameters of the neural network.
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Appendix A

Results of orthogonal simulations

Table A.1: NLER of the non-dispersed force with short range vision and firing (30)
in the baseline scenario

50 vs 50 100 vs 50 150 vs 50 200 vs 50 250 vs 50 Average
Open 1.04 2.03 3.56 4.65 5.62 3.38
Gap8 0.99 1.85 2.74 3.17 3.28 2.41
Gap4 0.99 1.32 1.47 1.75 1.90 1.49
Gap3 1.05 1.47 1.78 2.13 2.22 1.73
Gap2 0.99 1.54 2.15 2.68 2.49 1.97
Gap1 0.99 1.71 2.31 2.78 2.81 2.12
Average 1.01 1.65 2.34 2.86 3.05 –

Table A.2: NLER of the dispersed force with short range vision and firing (30) in
the baseline scenario

50 vs 50 100 vs 50 150 vs 50 200 vs 50 250 vs 50 Average
Open 1.01 1.46 2.16 3.04 3.59 2.25
Gap8 0.98 1.51 2.05 2.37 2.77 1.94
Gap4 0.97 1.61 2.06 2.53 2.91 2.02
Gap3 1.03 1.42 2.03 2.13 2.76 1.87
Gap2 0.98 1.47 1.84 2.45 2.86 1.92
Gap1 1.01 1.37 2.09 2.47 2.63 1.91
Average 1.00 1.47 2.04 2.50 2.92 –
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Table A.3: NLER of the non-dispersed force with long range vision and firing (99)
in the baseline scenario

50 vs 50 100 vs 50 150 vs 50 200 vs 50 250 vs 50 Average
Open 1.02 0.95 1.00 0.96 0.92 0.97
Gap8 0.94 1.21 1.42 1.50 1.44 1.30
Gap4 0.95 1.32 1.45 1.79 1.90 1.48
Gap3 0.97 1.48 1.82 2.19 2.35 1.76
Gap2 0.95 1.56 2.14 2.58 2.47 1.94
Gap1 1.04 1.66 2.33 2.74 3.09 2.17
Average 0.98 1.36 1.69 1.96 2.03 –

Table A.4: NLER of the dispersed force with long range vision and firing (99) in
the baseline scenario

50 vs 50 100 vs 50 150 vs 50 200 vs 50 250 vs 50 Average
Open 1.02 0.95 1.00 0.96 0.92 0.97
Gap8 1.00 1.30 1.56 1.85 1.93 1.53
Gap4 0.98 1.35 1.70 2.00 2.33 1.67
Gap3 1.03 1.35 1.63 1.89 2.24 1.63
Gap2 0.97 1.24 1.55 1.89 2.32 1.59
Gap1 1.13 1.28 1.50 1.96 2.19 1.61
Average 1.02 1.25 1.49 1.76 1.99 –

Table A.5: NLER of the non-dispersed force with short range vision and firing (30)
in the extended scenario A

50 vs 50 100 vs 50 150 vs 50 200 vs 50 250 vs 50 Average
Open 0.22 0.38 0.58 0.76 1.07 0.60
Gap8 0.68 1.08 1.46 1.85 2.05 1.42
Gap4 0.81 1.16 1.46 1.64 1.67 1.35
Gap3 0.84 1.28 1.51 1.56 1.91 1.42
Gap2 0.73 1.21 1.45 1.63 1.81 1.37
Gap1 0.75 1.21 1.43 2.08 1.89 1.47
Average 0.67 1.05 1.31 1.59 1.73 –
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Table A.6: NLER of the dispersed force with short range vision and firing (30) in
the extended scenario A

50 vs 50 100 vs 50 150 vs 50 200 vs 50 250 vs 50 Average
Open 0.95 1.57 2.14 2.85 3.59 2.22
Gap8 0.89 1.45 2.00 2.40 2.67 1.88
Gap4 0.77 1.24 1.75 2.24 2.58 1.72
Gap3 0.77 1.33 1.83 2.31 2.39 1.73
Gap2 0.74 1.33 1.87 2.24 2.70 1.78
Gap1 0.67 1.26 1.77 2.26 2.33 1.66
Average 0.80 1.36 1.89 2.38 2.71 –

Table A.7: NLER of the non-dispersed force with long range vision and firing (99)
in the extended scenario A

50 vs 50 100 vs 50 150 vs 50 200 vs 50 250 vs 50 Average
Open 1.06 1.01 0.97 0.95 0.90 0.98
Gap8 0.78 1.05 1.15 1.32 1.33 1.13
Gap4 0.84 1.22 1.40 1.62 1.73 1.36
Gap3 0.81 1.33 1.54 1.74 1.94 1.47
Gap2 0.75 1.12 1.40 1.73 1.64 1.33
Gap1 0.88 1.17 1.56 1.86 1.88 1.47
Average 0.85 1.15 1.34 1.54 1.57 –

Table A.8: NLER of the dispersed force with long range vision and firing (99) in
the extended scenario A

50 vs 50 100 vs 50 150 vs 50 200 vs 50 250 vs 50 Average
Open 1.06 1.01 0.97 0.95 0.90 0.98
Gap8 1.01 1.31 1.60 1.78 2.00 1.54
Gap4 0.74 1.24 1.66 1.60 2.04 1.45
Gap3 0.74 1.37 1.61 1.64 2.09 1.49
Gap2 0.69 1.30 1.88 2.12 2.34 1.67
Gap1 0.64 1.13 1.56 1.97 1.88 1.44
Average 0.81 1.23 1.55 1.68 1.87 –
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Table A.9: NLER of the non-dispersed force without communication in the extended
scenario B

50 vs 50 100 vs 50 150 vs 50 200 vs 50 250 vs 50 Average
Open 1.02 2.17 3.18 4.22 5.24 3.17
Gap8 0.98 1.75 2.79 3.40 3.27 2.44
Gap4 0.99 1.33 1.52 1.83 1.92 1.52
Gap3 0.98 1.50 1.93 2.16 2.29 1.78
Gap2 1.06 1.57 2.04 2.77 2.60 2.01
Gap1 1.00 1.65 2.41 2.83 2.89 2.15
Average 1.01 1.66 2.31 2.87 3.04 –

Table A.10: NLER of the non-dispersed force with communication range of 1 in the
extended scenario B

50 vs 50 100 vs 50 150 vs 50 200 vs 50 250 vs 50 Average
Open 0.79 1.22 1.73 2.31 2.52 1.71
Gap8 0.85 1.28 1.79 2.06 2.20 1.64
Gap4 1.02 1.29 1.37 1.64 1.88 1.44
Gap3 1.01 1.44 1.64 2.08 2.50 1.73
Gap2 0.98 1.57 1.86 2.48 2.59 1.90
Gap1 0.98 1.66 2.23 2.97 3.24 2.21
Average 0.94 1.41 1.77 2.26 2.49 –

Table A.11: NLER of the non-dispersed force with communication range of 5 in the
extended scenario B

50 vs 50 100 vs 50 150 vs 50 200 vs 50 250 vs 50 Average
Open 0.37 0.46 0.48 0.51 0.50 0.46
Gap8 0.60 0.83 1.01 1.18 1.32 0.99
Gap4 1.04 1.26 1.38 1.66 1.81 1.43
Gap3 1.02 1.45 1.70 2.17 2.56 1.78
Gap2 1.05 1.54 1.89 2.53 2.46 1.89
Gap1 0.99 1.69 2.31 2.99 3.18 2.23
Average 0.84 1.21 1.46 1.84 1.97 –
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Table A.12: NLER of the non-dispersed force with communication range of 10 in
the extended scenario B

50 vs 50 100 vs 50 150 vs 50 200 vs 50 250 vs 50 Average
Open 0.19 0.23 0.22 0.21 0.21 0.21
Gap8 0.52 0.71 0.85 0.93 1.01 0.80
Gap4 0.84 1.20 1.56 1.99 2.30 1.58
Gap3 0.76 1.16 1.56 2.11 2.52 1.62
Gap2 0.71 1.22 1.61 2.22 2.59 1.67
Gap1 0.99 1.86 2.51 2.74 3.03 2.23
Average 0.67 1.06 1.38 1.70 1.94 –

Table A.13: NLER of the non-dispersed force with communication range of 15 in
the extended scenario B

50 vs 50 100 vs 50 150 vs 50 200 vs 50 250 vs 50 Average
Open 0.13 0.15 0.16 0.15 0.15 0.15
Gap8 0.43 0.53 0.65 0.77 0.84 0.64
Gap4 0.80 1.33 1.77 2.11 2.42 1.68
Gap3 0.70 1.27 1.84 2.16 2.41 1.68
Gap2 0.70 1.23 1.77 2.05 1.96 1.54
Gap1 0.98 1.67 2.03 2.39 2.51 1.92
Average 0.62 1.03 1.37 1.61 1.71 –

Table A.14: NLER of the non-dispersed force with communication range of 20 in
the extended scenario B

50 vs 50 100 vs 50 150 vs 50 200 vs 50 250 vs 50 Average
Open 0.12 0.12 0.12 0.12 0.11 0.12
Gap8 0.38 0.48 0.54 0.64 0.73 0.56
Gap4 0.82 1.35 1.74 2.13 2.25 1.66
Gap3 0.77 1.22 1.85 2.08 2.18 1.62
Gap2 0.73 1.19 1.63 1.92 1.82 1.46
Gap1 0.89 1.61 2.08 2.08 2.35 1.80
Average 0.62 0.99 1.33 1.50 1.57 –
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Table A.15: NLER of the dispersed force without communication in the extended
scenario B

50 vs 50 100 vs 50 150 vs 50 200 vs 50 250 vs 50 Average
Open 1.00 1.56 2.12 3.00 3.69 2.28
Gap8 1.05 1.51 1.98 2.36 2.76 1.93
Gap4 0.98 1.58 1.91 2.51 3.19 2.03
Gap3 0.94 1.49 1.90 2.18 2.74 1.85
Gap2 1.01 1.40 1.86 2.30 2.78 1.87
Gap1 1.06 1.52 1.97 2.61 2.76 1.98
Average 1.01 1.51 1.96 2.49 2.99 –

Table A.16: NLER of the dispersed force with communication range of 1 in the
extended scenario B

50 vs 50 100 vs 50 150 vs 50 200 vs 50 250 vs 50 Average
Open 0.99 1.38 1.92 2.63 3.19 2.02
Gap8 0.98 1.56 1.96 2.30 2.73 1.91
Gap4 1.07 1.72 2.12 2.34 2.84 2.02
Gap3 1.01 1.56 2.09 2.35 2.73 1.95
Gap2 1.03 1.48 2.03 2.45 2.79 1.96
Gap1 0.99 1.30 1.89 2.56 2.65 1.88
Average 1.01 1.50 2.00 2.44 2.82 –

Table A.17: NLER of the dispersed force with communication range of 5 in the
extended scenario B

50 vs 50 100 vs 50 150 vs 50 200 vs 50 250 vs 50 Average
Open 0.78 0.86 1.06 1.20 1.28 1.03
Gap8 0.91 1.33 1.65 1.84 2.07 1.56
Gap4 0.99 1.66 2.00 2.35 2.59 1.92
Gap3 1.11 1.56 1.94 2.23 2.84 1.94
Gap2 1.05 1.59 2.01 2.74 3.05 2.09
Gap1 1.15 1.53 2.17 2.68 2.99 2.10
Average 1.00 1.42 1.81 2.17 2.47 –
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Table A.18: NLER of the dispersed force with communication range of 10 in the
extended scenario B

50 vs 50 100 vs 50 150 vs 50 200 vs 50 250 vs 50 Average
Open 0.52 0.52 0.51 0.56 0.57 0.54
Gap8 0.76 1.09 1.33 1.46 1.63 1.25
Gap4 1.03 1.71 2.15 2.49 2.59 1.99
Gap3 1.09 1.73 2.27 2.43 2.58 2.02
Gap2 1.32 2.00 2.21 2.61 3.03 2.23
Gap1 1.23 1.87 2.26 2.52 2.76 2.13
Average 0.99 1.49 1.79 2.01 2.19 –

Table A.19: NLER of the dispersed force with communication range of 15 in the
extended scenario B

50 vs 50 100 vs 50 150 vs 50 200 vs 50 250 vs 50 Average
Open 0.38 0.34 0.35 0.36 0.38 0.36
Gap8 0.69 0.94 1.10 1.29 1.43 1.09
Gap4 0.86 1.28 1.56 1.76 2.03 1.50
Gap3 0.86 1.35 1.64 1.71 1.82 1.48
Gap2 1.00 1.37 1.46 1.62 1.78 1.45
Gap1 1.05 1.43 1.53 1.72 1.84 1.51
Average 0.81 1.12 1.27 1.41 1.55 –

Table A.20: NLER of the dispersed force with communication range of 20 in the
extended scenario B

50 vs 50 100 vs 50 150 vs 50 200 vs 50 250 vs 50 Average
Open 0.27 0.26 0.26 0.27 0.28 0.27
Gap8 0.67 0.88 0.97 1.16 1.20 0.98
Gap4 0.76 1.04 1.43 1.60 1.82 1.33
Gap3 0.84 1.07 1.36 1.46 1.53 1.25
Gap2 0.79 1.14 1.33 1.46 1.43 1.23
Gap1 0.84 1.08 1.23 1.47 1.49 1.22
Average 0.69 0.91 1.10 1.24 1.29 –
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Table A.21: NLER of the non-dispersed force without communication in the ex-
tended scenario C

50 vs 50 100 vs 50 150 vs 50 200 vs 50 250 vs 50 Average
Open 0.25 0.39 0.61 0.72 1.03 0.60
Gap8 0.67 1.07 1.49 1.83 1.91 1.40
Gap4 0.87 1.16 1.36 1.50 1.75 1.33
Gap3 0.83 1.18 1.43 1.72 1.77 1.39
Gap2 0.71 1.19 1.42 1.61 1.73 1.33
Gap1 0.86 1.18 1.51 1.75 1.79 1.42
Average 0.70 1.03 1.30 1.52 1.66 –

Table A.22: NLER of the non-dispersed force with communication range of 1 in the
extended scenario C

50 vs 50 100 vs 50 150 vs 50 200 vs 50 250 vs 50 Average
Open 0.18 0.27 0.38 0.45 0.55 0.36
Gap8 0.58 0.91 1.20 1.42 1.54 1.13
Gap4 0.83 1.16 1.35 1.66 1.76 1.35
Gap3 0.78 1.18 1.43 1.71 1.90 1.40
Gap2 0.67 1.00 1.43 1.57 1.53 1.24
Gap1 0.85 1.01 1.51 1.90 1.88 1.43
Average 0.65 0.92 1.22 1.45 1.53 –

Table A.23: NLER of the non-dispersed force with communication range of 5 in the
extended scenario C

50 vs 50 100 vs 50 150 vs 50 200 vs 50 250 vs 50 Average
Open 0.14 0.17 0.17 0.20 0.22 0.18
Gap8 0.49 0.69 0.92 1.05 1.17 0.86
Gap4 0.90 1.19 1.40 1.54 1.81 1.37
Gap3 0.83 1.18 1.45 1.71 1.88 1.41
Gap2 0.66 1.08 1.40 1.49 1.69 1.26
Gap1 0.84 1.19 1.61 1.96 2.20 1.56
Average 0.64 0.92 1.16 1.32 1.50 –
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Table A.24: NLER of the non-dispersed force with communication range of 10 in
the extended scenario C

50 vs 50 100 vs 50 150 vs 50 200 vs 50 250 vs 50 Average
Open 0.12 0.11 0.12 0.13 0.13 0.12
Gap8 0.49 0.65 0.87 0.97 1.07 0.81
Gap4 0.85 1.27 1.43 1.62 1.79 1.39
Gap3 0.80 1.20 1.57 1.91 2.01 1.50
Gap2 0.66 1.13 1.49 1.82 1.91 1.40
Gap1 0.82 1.40 1.81 2.28 2.55 1.77
Average 0.62 0.96 1.21 1.46 1.58 –

Table A.25: NLER of the non-dispersed force with communication range of 15 in
the extended scenario C

50 vs 50 100 vs 50 150 vs 50 200 vs 50 250 vs 50 Average
Open 0.10 0.10 0.10 0.10 0.10 0.10
Gap8 0.48 0.60 0.77 0.90 1.00 0.75
Gap4 0.85 1.28 1.54 1.76 1.88 1.46
Gap3 0.77 1.18 1.57 1.84 1.93 1.46
Gap2 0.64 1.01 1.25 1.62 1.72 1.25
Gap1 0.79 1.21 1.48 1.85 2.18 1.50
Average 0.60 0.90 1.12 1.35 1.47 –

Table A.26: NLER of the non-dispersed force with communication range of 20 in
the extended scenario C

50 vs 50 100 vs 50 150 vs 50 200 vs 50 250 vs 50 Average
Open 0.10 0.09 0.09 0.09 0.09 0.09
Gap8 0.47 0.64 0.75 0.86 0.98 0.74
Gap4 0.79 1.30 1.66 1.75 1.92 1.48
Gap3 0.73 1.36 1.61 1.91 2.07 1.54
Gap2 0.64 1.06 1.39 1.81 1.95 1.37
Gap1 0.80 1.35 1.67 2.16 2.41 1.68
Average 0.59 0.97 1.19 1.43 1.57 –
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Table A.27: NLER of the dispersed force without communication in the extended
scenario C

50 vs 50 100 vs 50 150 vs 50 200 vs 50 250 vs 50 Average
Open 0.97 1.51 2.11 2.73 3.47 2.16
Gap8 0.87 1.42 1.94 2.30 2.69 1.84
Gap4 0.83 1.29 1.80 2.23 2.51 1.73
Gap3 0.76 1.21 1.76 2.05 2.55 1.67
Gap2 0.75 1.25 1.87 2.13 2.60 1.72
Gap1 0.73 1.29 1.68 2.24 2.30 1.65
Average 0.82 1.33 1.86 2.28 2.69 –

Table A.28: NLER of the dispersed force with communication range of 1 in the
extended scenario C

50 vs 50 100 vs 50 150 vs 50 200 vs 50 250 vs 50 Average
Open 1.00 1.36 1.83 2.58 3.15 1.99
Gap8 0.94 1.47 1.98 2.24 2.63 1.85
Gap4 0.84 1.31 1.79 2.24 2.65 1.77
Gap3 0.71 1.31 1.72 2.13 2.57 1.69
Gap2 0.72 1.22 1.71 2.31 2.69 1.73
Gap1 0.70 1.19 1.72 2.18 2.44 1.64
Average 0.82 1.31 1.79 2.28 2.69 –

Table A.29: NLER of the dispersed force with communication range of 5 in the
extended scenario C

50 vs 50 100 vs 50 150 vs 50 200 vs 50 250 vs 50 Average
Open 0.68 0.84 1.04 1.18 1.31 1.01
Gap8 0.81 1.18 1.61 1.79 2.07 1.49
Gap4 0.79 1.33 1.69 2.19 2.53 1.70
Gap3 0.75 1.29 1.77 2.19 2.69 1.74
Gap2 0.79 1.58 1.82 2.45 2.76 1.88
Gap1 0.80 1.56 2.04 2.56 2.81 1.96
Average 0.77 1.30 1.66 2.06 2.36 –
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Table A.30: NLER of the dispersed force with communication range of 10 in the
extended scenario C

50 vs 50 100 vs 50 150 vs 50 200 vs 50 250 vs 50 Average
Open 0.47 0.50 0.52 0.54 0.57 0.52
Gap8 0.75 0.98 1.23 1.43 1.65 1.21
Gap4 0.75 1.34 1.79 2.13 2.46 1.69
Gap3 0.74 1.37 1.78 2.15 2.32 1.67
Gap2 0.84 1.39 1.81 2.14 2.44 1.72
Gap1 0.89 1.26 1.79 2.18 2.37 1.70
Average 0.74 1.14 1.49 1.76 1.97 –

Table A.31: NLER of the dispersed force with communication range of 15 in the
extended scenario C

50 vs 50 100 vs 50 150 vs 50 200 vs 50 250 vs 50 Average
Open 0.37 0.35 0.34 0.35 0.38 0.36
Gap8 0.64 0.92 1.10 1.27 1.39 1.07
Gap4 0.77 1.21 1.59 1.84 2.03 1.49
Gap3 0.70 1.27 1.57 1.76 1.80 1.42
Gap2 0.66 1.17 1.33 1.54 1.76 1.29
Gap1 0.74 1.07 1.43 1.58 1.72 1.31
Average 0.65 1.00 1.23 1.39 1.52 –

Table A.32: NLER of the dispersed force with communication range of 20 in the
extended scenario C

50 vs 50 100 vs 50 150 vs 50 200 vs 50 250 vs 50 Average
Open 0.26 0.26 0.26 0.27 0.27 0.26
Gap8 0.61 0.87 0.97 1.09 1.20 0.95
Gap4 0.77 1.15 1.38 1.58 1.71 1.32
Gap3 0.76 1.05 1.37 1.41 1.52 1.22
Gap2 0.71 0.86 1.27 1.39 1.57 1.16
Gap1 0.77 1.13 1.29 1.40 1.52 1.22
Average 0.65 0.89 1.09 1.19 1.30 –
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Reasoning Log

• 1: The group 2 in the red team is advancing to the flag. The group
1 in the blue team is advancing to the flag.

• 2: The group 2 in the red team is advancing to the flag. The group 1 in the
blue team is advancing to the flag.

• 3: The group 2 in the red team is advancing to the flag. The group 1 in the
blue team is advancing to the flag.

• 4: The group 2 in the red team is advancing to the flag. The group 1 in the
blue team is advancing to the flag.

• 5: The group 2 in the red team is advancing to the flag. The group 1 in the
blue team is advancing to the flag.

• 6: The group 2 in the red team is advancing to the flag. The group 1 in the
blue team is advancing to the flag.

• 7: The group 2 in the red team is advancing to the flag. The group 1 in the
blue team is advancing to the flag.

• 8: The group 2 in the red team is advancing to the flag. The group 1 in the
blue team is advancing to the flag.

• 9: The group 2 in the red team is advancing to the flag. The group 1 in the
blue team is advancing to the flag.

• 10: An order has been sent to the leader of group 1 in the blue team
to move toward (30, 70).

• 10: The group 2 in the red team is advancing to the flag. The group 1 in the
blue team is advancing to the flag.
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• 11: The group 2 in the red team is advancing to the flag. The group 1 in the
blue team is advancing to the flag.

• 12: The group 2 in the red team is advancing to the flag. The group 1 in the
blue team is advancing to the flag.

• 13: The group 2 in the red team is advancing to the flag. The group 1 in the
blue team is advancing to the flag.

• 14: The group 2 in the red team is advancing to the flag. The group 1 in the
blue team is advancing to the flag.

• 15: The group 2 in the red team is advancing to the flag. The group 1 in the
blue team is advancing to the flag.

• 16: The group 2 in the red team is advancing to the flag. The group 1 in the
blue team is advancing to the flag.

• 17: The group 2 in the red team is advancing to the flag. The group 1 in the
blue team is advancing to the flag.

• 18: The group 2 in the red team is advancing to the flag.

• 19: The group 2 in the red team is advancing to the flag. The group 1 in the
blue team is advancing to the flag.

• 20: An order has been sent to the leader of group 1 in the blue team to move
toward (30, 50).

• 20: The group 2 in the red team is advancing to the flag. The group 1 in the
blue team is advancing to the flag.

• 21: The group 2 in the red team is advancing to the flag. The group 1 in the
blue team is advancing to the flag.

• 22: The group 1 in the blue team is advancing to the flag.

• 23: The group 2 in the red team is advancing to the flag. The group 1 in the
blue team is advancing to the flag.

• 24: The group 1 in the blue team is advancing to the flag.

• 25: The group 2 in the red team is advancing to the flag. The group 1 in the
blue team is advancing to the flag.

• 26: The group 1 in the blue team is advancing to the flag.

• 27: The group 2 in the red team is advancing to the flag. The group 1 in the
blue team is advancing to the flag.
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• 28: The group 2 in the red team is advancing to the flag. The group 1 in the
blue team is advancing to the flag.

• 29: The group 2 in the red team is advancing to the flag. The group 1 in the
blue team is advancing to the flag.

• 30: An order has been sent to the leader of group 1 in the blue team to move
toward (50, 70).

• 30: The group 2 in the red team is advancing to the flag. The group 1 in the
blue team is advancing to the flag.

• 31: The group 2 in the red team is advancing to the flag. The group 1 in the
blue team is advancing to the flag.

• 32: The group 1 in the blue team is advancing to the flag.

• 33: The group 2 in the red team is advancing to the flag. The group 1 in the
blue team is advancing to the flag.

• 34: The group 1 in the blue team is advancing to the flag.

• 35: The group 1 in the blue team is advancing to the flag.

• 36: The group 2 in the red team is advancing to the flag.

• 37: The group 2 in the red team is advancing to the flag.

• 38: The engagement starts.

• 38: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 38: The agents in the blue team are spreading their fire to achieve
maximum damage in the red team.

• 38: Without any damage, the blue team achieves damage of 10 to
the red force.

• 39: The situation awareness of blue team is gained mainly through its vision
component. The situation awareness of red team is gained mainly through its
vision component.

• 40: An order has been sent to the leader of group 1 in the blue team to move
toward (50, 70).

• 40: The situation awareness of blue team is gained mainly through its vision
component. The situation awareness of red team is gained mainly through its
vision component.
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• 40: The agents in the blue team are coordinating their firing to
achieve maximum damage in the red team.

• 40: Without any damage, the blue team causes damage of 10 to the red force.

• 41: The situation awareness of blue team is gained mainly through its vision
component. The situation awareness of red team is gained mainly through its
vision component.

• 42: The situation awareness of blue team is gained mainly through its vision
component. The situation awareness of red team is gained mainly through its
vision component.

• 42: The agents in the red team are maximizing their fire range to
achieve maximum damage in the blue team. The agents in the blue
team are spreading their fire to achieve maximum damage in the
red team.

• 43: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 44: The situation awareness of blue team is gained mainly through
its vision component.The situation awareness of red team is gained
mainly through its vision component.

• 44: The agents in the red team are maximizing their fire range to achieve
maximum damage in the blue team.

• 44: Without any damage, the red team causes damage of 10 to the blue force.

• 44: An average damage of 4.00 occurred in the blue team over the last 5
timesteps is probably caused by the red force’s situation awareness of enemy
on agent level.

• 44: An average damage of 4.00 occurred in the red team over the last 5
timesteps is probably caused by the activities in the communication network
of the blue team.

• 45: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 45: An average damage of 4.00 occurred in the blue team over the last 5
timesteps is probably caused by the red force’s situation awareness of enemy
on agent level.

• 45: An average damage of 2.00 occurred in the red team over the last 5
timesteps is probably caused by the activities in the communication network
of the blue team.
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• 46: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 46: The agents in the red team are spreading their fire to achieve maximum
damage in the blue team.

• 46: Without any damage, the red team achieves damage of 10 to the blue
force.

• 46: An average damage of 6.00 occurred in the blue team over the last 5
timesteps is probably caused by the red force’s situation awareness of enemy
on agent level.

• 46: An average damage of 2.00 occurred in the red team over the last 5
timesteps is probably caused by the activities in the communication network
of the blue team.

• 47: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 47: An average damage of 4.00 occurred in the blue team over the last 5
timesteps is probably caused by the red force’s situation awareness of enemy
on agent level.

• 48: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 48: The agents in the red team are maximizing their fire range to achieve
maximum damage in the blue team.The agents in the blue team are spreading
their fire to achieve maximum damage in the red team.

• 48: An average damage of 6.00 occurred in the blue team over the last
5 timesteps is probably caused by the red force’s situation awareness
of enemy on agent level.

• 48: An average damage of 2.00 occurred in the red team over the last
5 timesteps is probably caused by the activities in the communica-
tion network of the blue team, the blue force’s situation awareness
of friend on agent level, the blue force’s situation awareness of en-
emy on agent level, the blue force’s situation awareness of friend on
force level.

• 49: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.
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• 49: An average damage of 4.00 occurred in the blue team over the last 5
timesteps is probably caused by the red force’s situation awareness of enemy
on agent level.

• 49: An average damage of 2.00 occurred in the red team over the last 5
timesteps is probably caused by the blue force’s situation awareness of friend
on agent level, the blue force’s situation awareness of enemy on agent level,
the blue force’s situation awareness of friend on force level.

• 50: An order has been sent to the leader of group 1 in the blue team to move
toward (50, 50).

• 50: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 50: The agents in the red team are spreading their fire to achieve maximum
damage in the blue team.The agents in the blue team are spreading their fire
to achieve maximum damage in the red team.

• 50: An average damage of 6.00 occurred in the blue team over the last 5
timesteps is probably caused by the red force’s situation awareness of enemy
on agent level.

• 50: An average damage of 4.00 occurred in the red team over the last 5
timesteps is probably caused by the blue force’s situation awareness of enemy
on agent level, the blue force’s situation awareness of friend on force level.

• 51: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 51: The agents in the red team are spreading their fire to achieve maximum
damage in the blue team.

• 51: Without any damage, the red team causes damage of 10 to the blue force.

• 51: An average damage of 6.00 occurred in the blue team over the last 5
timesteps is probably caused by the red force’s situation awareness of enemy
on agent level.

• 51: An average damage of 4.00 occurred in the red team over the last 5
timesteps is probably caused by the activities in the communication network
of the blue team, the blue force’s situation awareness of enemy on agent level,
the blue force’s situation awareness of friend on force level.

• 52: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.
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• 52: The agents in the blue team are spreading their fire to achieve maximum
damage in the red team.

• 52: Without any damage, the blue team causes damage of 10 to the red force.

• 52: An average damage of 6.00 occurred in the blue team over the last 5
timesteps is probably caused by the red force’s situation awareness of enemy
on agent level, the red force’s situation awareness of friend on force level.

• 52: An average damage of 6.00 occurred in the red team over the last 5
timesteps is probably caused by the blue force’s situation awareness of friend
on force level.

• 53: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 53: The agents in the blue team are maximizing their fire range to achieve
maximum damage in the red team.

• 53: Without any damage, the blue team causes damage of 10 to the red force.

• 53: An average damage of 4.00 occurred in the blue team over the last 5
timesteps is probably caused by the red force’s situation awareness of friend
on force level.

• 53: An average damage of 6.00 occurred in the red team over the last 5
timesteps is probably caused by the activities in the communication network
of the blue team, the blue force’s situation awareness of enemy on agent level,
the blue force’s situation awareness of friend on force level.

• 54: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 54: The agents in the blue team are spreading their fire to achieve maximum
damage in the red team.

• 54: Without any damage, the blue team causes damage of 10 to the red force.

• 54: An average damage of 4.00 occurred in the blue team over the last 5
timesteps is probably caused by the red force’s situation awareness of friend
on force level.

• 55: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.
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• 55: The agents in the red team are spreading their fire to achieve
maximum damage in the blue team.The agents in the blue team
are coordinating their firing to achieve maximum damage in the red
team.

• 55: The blue team causes more damage to the red team. The damage
ratio is 2.00.

• 55: An average damage of 4.00 occurred in the blue team over the last 5
timesteps is probably caused by the red force’s situation awareness of friend
on force level.

• 55: An average damage of 10.00 occurred in the red team over the last 5
timesteps is probably caused by the activities in the communication network
of the blue team.

• 56: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 56: An average damage of 2.00 occurred in the blue team over the last 5
timesteps is probably caused by the red force’s situation awareness of friend
on force level.

• 56: An average damage of 10.00 occurred in the red team over the last 5
timesteps is probably caused by the blue force’s situation awareness of enemy
on agent level.

• 57: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 57: An average damage of 2.00 occurred in the blue team over the last 5
timesteps is probably caused by the red force’s situation awareness of friend
on force level.

• 57: An average damage of 8.00 occurred in the red team over the last 5
timesteps is probably caused by the activities in the communication network
of the blue team, the blue force’s situation awareness of enemy on agent level.

• 58: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 58: The agents in the red team are maximizing their fire range to achieve max-
imum damage in the blue team.The agents in the blue team are coordinating
their firing to achieve maximum damage in the red team.
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• 58: An average damage of 4.00 occurred in the blue team over the last 5
timesteps is probably caused by the red force’s situation awareness of enemy
on agent level, the red force’s situation awareness of friend on force level.

• 58: An average damage of 8.00 occurred in the red team over the last 5
timesteps is probably caused by the activities in the communication network
of the blue team, the blue force’s situation awareness of enemy on agent level.

• 59: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 59: The agents in the blue team are maximizing their fire range to achieve
maximum damage in the red team.

• 59: Without any damage, the blue team causes damage of 10 to the red force.

• 59: An average damage of 4.00 occurred in the blue team over the last 5
timesteps is probably caused by the red force’s situation awareness of enemy
on agent level, the red force’s situation awareness of friend on force level.

• 59: An average damage of 8.00 occurred in the red team over the last 5
timesteps is probably caused by the blue force’s situation awareness of en-
emy on agent level.

• 60: An order has been sent to the leader of group 1 in the blue team to move
toward (50, 70).

• 60: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 60: An average damage of 2.00 occurred in the blue team over the last 5
timesteps is probably caused by the red force’s situation awareness of enemy
on agent level.

• 60: An average damage of 4.00 occurred in the red team over the last 5
timesteps is probably caused by the activities in the communication network
of the blue team, the blue force’s situation awareness of enemy on agent level.

• 61: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 61: The agents in the red team are coordinating their firing to achieve max-
imum damage in the blue team.The agents in the blue team are maximizing
their fire range to achieve maximum damage in the red team.
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• 61: An average damage of 4.00 occurred in the blue team over the last 5
timesteps is probably caused by the red force’s situation awareness of enemy
on agent level.

• 61: An average damage of 6.00 occurred in the red team over the last 5
timesteps is probably caused by the activities in the communication network
of the blue team, the blue force’s situation awareness of enemy on agent level,
the blue force’s situation awareness of friend on force level.

• 62: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 62: The agents in the blue team are maximizing their fire range to achieve
maximum damage in the red team.

• 62: Without any damage, the blue team causes damage of 10 to the red force.

• 62: An average damage of 4.00 occurred in the blue team over the last 5
timesteps is probably caused by the red force’s situation awareness of enemy
on agent level.

• 63: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 63: The agents in the blue team are maximizing their fire range to achieve
maximum damage in the red team.

• 63: Without any damage, the blue team causes damage of 20 to the red force.

• 63: An average damage of 2.00 occurred in the blue team over the last 5
timesteps is probably caused by the red force’s situation awareness of enemy
on agent level.

• 63: An average damage of 10.00 occurred in the red team over the last 5
timesteps is probably caused by the activities in the communication network
of the blue team, the blue force’s situation awareness of enemy on agent level.

• 64: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 64: An average damage of 2.00 occurred in the blue team over the last 5
timesteps is probably caused by the red force’s situation awareness of enemy
on agent level.

• 64: An average damage of 8.00 occurred in the red team over the last 5
timesteps is probably caused by the activities in the communication network
of the blue team.
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• 65: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 65: The agents in the blue team are spreading their fire to achieve maximum
damage in the red team.

• 65: Without any damage, the blue team achieves damage of 20 to the red
force.

• 65: An average damage of 12.00 occurred in the red team over the last 5
timesteps is probably caused by the activities in the communication network
of the blue team.

• 66: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 66: The agents in the blue team are spreading their fire to achieve maximum
damage in the red team.

• 66: Without any damage, the blue team achieves damage of 10 to the red
force.

• 66: An average damage of 12.00 occurred in the red team over the last 5
timesteps is probably caused by the blue force’s situation awareness of enemy
on agent level.

• 67: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 67: The agents in the blue team are spreading their fire to achieve maximum
damage in the red team.

• 67: Without any damage, the blue team causes damage of 10 to the red force.

• 67: An average damage of 12.00 occurred in the red team over the last 5
timesteps is probably caused by the blue force’s situation awareness of enemy
on agent level.

• 68: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 68: An average damage of 8.00 occurred in the red team over the last 5
timesteps is probably caused by the activities in the communication network
of the blue team, the blue force’s situation awareness of enemy on agent level.
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• 69: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 69: The agents in the blue team are spreading their fire to achieve maximum
damage in the red team.

• 69: Without any damage, the blue team causes damage of 10 to the red force.

• 69: An average damage of 10.00 occurred in the red team over the last 5
timesteps is probably caused by the activities in the communication network
of the blue team, the blue force’s situation awareness of enemy on agent level,
the blue force’s situation awareness of friend on force level.

• 70: An order has been sent to the leader of group 1 in the blue team to move
toward (30, 50).

• 70: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 70: An average damage of 6.00 occurred in the red team over the last 5
timesteps is probably caused by the activities in the communication network
of the blue team, the blue force’s situation awareness of enemy on agent level.

• 71: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 71: The agents in the blue team are maximizing their fire range to achieve
maximum damage in the red team.

• 71: Without any damage, the blue team causes damage of 10 to the red force.

• 71: An average damage of 6.00 occurred in the red team over the last 5
timesteps is probably caused by the blue force’s situation awareness of enemy
on agent level, the blue force’s situation awareness of friend on force level.

• 72: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 72: The agents in the blue team are maximizing their fire range to achieve
maximum damage in the red team.

• 72: Without any damage, the blue team achieves damage of 30 to the red
force.
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• 72: An average damage of 10.00 occurred in the red team over the last 5
timesteps is probably caused by the activities in the communication network
of the blue team, the blue force’s situation awareness of friend on force level.

• 73: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 74: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 74: The agents in the blue team are maximizing their fire range to achieve
maximum damage in the red team.

• 74: Without any damage, the blue team achieves damage of 10 to the red
force.

• 75: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 75: The agents in the blue team are spreading their fire to achieve maximum
damage in the red team.

• 75: Without any damage, the blue team causes damage of 10 to the red force.

• 75: An average damage of 12.00 occurred in the red team over the last 5
timesteps is probably caused by the blue force’s situation awareness of enemy
on agent level.

• 76: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 76: The agents in the blue team are coordinating their firing to achieve maxi-
mum damage in the red team.

• 76: Without any damage, the blue team causes damage of 10 to the red force.

• 76: An average damage of 12.00 occurred in the red team over the last 5
timesteps is probably caused by the blue force’s situation awareness of enemy
on agent level.

• 77: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 77: The agents in the blue team are coordinating their firing to achieve maxi-
mum damage in the red team.
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• 77: Without any damage, the blue team achieves damage of 10 to the red
force.

• 77: An average damage of 8.00 occurred in the red team over the last 5
timesteps is probably caused by the activities in the communication network
of the blue team, the blue force’s situation awareness of enemy on agent level,
the blue force’s situation awareness of friend on force level.

• 78: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 78: An average damage of 8.00 occurred in the red team over the last 5
timesteps is probably caused by the activities in the communication network
of the blue team.

• 79: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 79: An average damage of 6.00 occurred in the red team over the last 5
timesteps is probably caused by the activities in the communication network
of the blue team, the blue force’s situation awareness of enemy on agent level.

• 80: An order has been sent to the leader of group 1 in the blue team to move
toward (50, 50).

• 80: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 80: The agents in the blue team are maximizing their fire range to achieve
maximum damage in the red team.

• 80: Without any damage, the blue team causes damage of 10 to the red force.

• 81: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 81: An average damage of 4.00 occurred in the red team over the last 5
timesteps is probably caused by the blue force’s situation awareness of friend
on force level.

• 82: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 82: The agents in the blue team are maximizing their fire range to achieve
maximum damage in the red team.
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• 82: Without any damage, the blue team causes damage of 10 to the red force.

• 82: An average damage of 4.00 occurred in the red team over the last 5
timesteps is probably caused by the activities in the communication network
of the blue team, the blue force’s situation awareness of enemy on agent level,
the blue force’s situation awareness of friend on force level.

• 83: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 83: The agents in the blue team are maximizing their fire range to achieve
maximum damage in the red team.

• 83: Without any damage, the blue team causes damage of 10 to the red force.

• 83: An average damage of 6.00 occurred in the red team over the last 5
timesteps is probably caused by the activities in the communication network
of the blue team, the blue force’s situation awareness of enemy on agent level,
the blue force’s situation awareness of friend on force level.

• 84: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 84: The agents in the blue team are coordinating their firing to achieve maxi-
mum damage in the red team.

• 84: Without any damage, the blue team causes damage of 10 to the red force.

• 84: An average damage of 8.00 occurred in the red team over the last 5
timesteps is probably caused by the activities in the communication network
of the blue team, the blue force’s situation awareness of enemy on agent level,
the blue force’s situation awareness of friend on force level.

• 85: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 85: The agents in the red team are spreading their fire to achieve maximum
damage in the blue team.The agents in the blue team are coordinating their
firing to achieve maximum damage in the red team.

• 85: An average damage of 8.00 occurred in the red team over the last 5
timesteps is probably caused by the activities in the communication network
of the blue team, the blue force’s situation awareness of enemy on agent level,
the blue force’s situation awareness of friend on force level.
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• 86: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 86: The agents in the blue team are maximizing their fire range to achieve
maximum damage in the red team.

• 86: Without any damage, the blue team achieves damage of 10 to the red
force.

• 87: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 87: The agents in the blue team are maximizing their fire range to achieve
maximum damage in the red team.

• 87: Without any damage, the blue team achieves damage of 20 to the red
force.

• 87: An average damage of 12.00 occurred in the red team over the last 5
timesteps is probably caused by the activities in the communication network
of the blue team, the blue force’s situation awareness of enemy on agent level.

• 88: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 88: An average damage of 10.00 occurred in the red team over the last 5
timesteps is probably caused by the activities in the communication network
of the blue team, the blue force’s situation awareness of enemy on agent level.

• 89: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 89: The agents in the blue team are spreading their fire to achieve maximum
damage in the red team.

• 89: Without any damage, the blue team causes damage of 20 to the red force.

• 89: An average damage of 12.00 occurred in the red team over the last 5
timesteps is probably caused by the activities in the communication network
of the blue team, the blue force’s situation awareness of enemy on agent level,
the blue force’s situation awareness of friend on force level.

• 90: An order has been sent to the leader of group 1 in the blue team to move
toward (30, 50).
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• 90: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 90: An average damage of 10.00 occurred in the red team over the last 5
timesteps is probably caused by the blue force’s situation awareness of friend
on force level.

• 91: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 91: The agents in the blue team are spreading their fire to achieve maximum
damage in the red team.

• 91: Without any damage, the blue team causes damage of 10 to the red force.

• 91: An average damage of 10.00 occurred in the red team over the last 5
timesteps is probably caused by the blue force’s situation awareness of friend
on force level.

• 92: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 92: The agents in the blue team are coordinating their firing to achieve maxi-
mum damage in the red team.

• 92: Without any damage, the blue team achieves damage of 20 to the red
force.

• 92: An average damage of 10.00 occurred in the red team over the last 5
timesteps is probably caused by the activities in the communication network
of the blue team, the blue force’s situation awareness of enemy on agent level.

• 93: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 93: An average damage of 10.00 occurred in the red team over the last 5
timesteps is probably caused by the activities in the communication network
of the blue team, the blue force’s situation awareness of enemy on agent level.

• 94: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 94: An average damage of 6.00 occurred in the red team over the last 5
timesteps is probably caused by the activities in the communication network
of the blue team.
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• 95: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 95: The agents in the blue team are spreading their fire to achieve maximum
damage in the red team.

• 95: Without any damage, the blue team achieves damage of 20 to the red
force.

• 95: An average damage of 10.00 occurred in the red team over the last 5
timesteps is probably caused by the blue force’s situation awareness of friend
on force level.

• 96: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 96: An average damage of 8.00 occurred in the red team over the last 5
timesteps is probably caused by the blue force’s situation awareness of enemy
on agent level, the blue force’s situation awareness of friend on force level.

• 97: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 97: The agents in the red team are coordinating their firing to achieve maxi-
mum damage in the blue team.

• 97: Without any damage, the red team achieves damage of 10 to the blue
force.

• 97: An average damage of 2.00 occurred in the blue team over the last 5
timesteps is probably caused by the red force’s situation awareness of enemy
on agent level.

• 98: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 98: Without any damage, the blue team achieves damage of 20 to the red
force.

• 98: An average damage of 2.00 occurred in the blue team over the last 5
timesteps is probably caused by the red force’s situation awareness of enemy
on agent level, the red force’s situation awareness of enemy on force level.

• 98: An average damage of 8.00 occurred in the red team over the last 5
timesteps is probably caused by the activities in the communication network
of the blue team, the blue force’s situation awareness of friend on force level.
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• 99: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 99: An average damage of 2.00 occurred in the blue team over the last 5
timesteps is probably caused by the red force’s situation awareness of enemy
on agent level, the red force’s situation awareness of enemy on force level.

• 99: An average damage of 8.00 occurred in the red team over the last 5
timesteps is probably caused by the blue force’s situation awareness of friend
on force level.

• 100: An order has been sent to the leader of group 1 in the blue team to move
toward (50, 70).

• 100: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 100: An average damage of 2.00 occurred in the blue team over the last 5
timesteps is probably caused by the red force’s situation awareness of enemy
on agent level, the red force’s situation awareness of enemy on force level.

• 100: An average damage of 4.00 occurred in the red team over the last 5
timesteps is probably caused by the blue force’s situation awareness of friend
on force level.

• 101: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 101: The agents in the blue team are maximizing their fire range to achieve
maximum damage in the red team.

• 101: Without any damage, the blue team causes damage of 10 to the red force.

• 101: An average damage of 2.00 occurred in the blue team over the last 5
timesteps is probably caused by the red force’s situation awareness of enemy
on force level.

• 101: An average damage of 6.00 occurred in the red team over the last 5
timesteps is probably caused by the blue force’s situation awareness of friend
on force level.

• 102: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.
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• 102: An average damage of 6.00 occurred in the red team over the last 5
timesteps is probably caused by the blue force’s situation awareness of friend
on force level.

• 103: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 103: Without any damage, the blue team causes damage of 20 to the red force.

• 103: An average damage of 6.00 occurred in the red team over the last 5
timesteps is probably caused by the activities in the communication network
of the blue team, the blue force’s situation awareness of enemy on agent level,
the blue force’s situation awareness of friend on force level.

• 104: The situation awareness of blue team is gained mainly through its vision
component.The situation awareness of red team is gained mainly through its
vision component.

• 104: An average damage of 6.00 occurred in the red team over the last 5
timesteps is probably caused by the blue force’s situation awareness of enemy
on agent level, the blue force’s situation awareness of friend on force level.
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