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Abstract

Transport and mixing in dynamical systems are important properties for many

physical, chemical, biological, and engineering processes. The detection of transport

barriers for dynamics with general time dependence is a difficult, but important

problem, because such barriers control how rapidly different parts of phase space

(which might correspond to different chemical or biological agents) interact. The key

factor is the growth of interfaces that partition phase space into separate regions. In

a recent paper, Froyland introduced the notion of dynamic isoperimetry: the study of

sets with persistently small boundary size (the interface) relative to enclosed volume,

when evolved by the dynamics. Sets with this minimal boundary size to volume

ratio were identified as level sets of dominant eigenfunctions of a dynamic Laplace

operator. In this dissertation, we develop a data-driven approach for transport

barrier detection, by extending and generalising dynamic isoperimetry to graphs

and weighted Riemannian manifolds.

First we model trajectory data as dynamics of graphs. We use minimium dis-

connecting cuts to search for coherent structure in dynamic graphs, where the graph

dynamic arises from a general sequence of vertex permutations. We develop a dy-

namic spectral partitioning method via a new dynamic Laplacian matrix. We prove

a dynamic Cheeger inequality for graphs, and demonstrate the effectiveness of this

dynamic spectral partitioning method on both structured and unstructured graphs.

We then generalise the dynamic isoperimetric problem on manifolds to situations

where the dynamics (i) is not necessarily volume-preserving, (ii) acts on initial agent

concentrations different from uniform concentrations, and (iii) occurs on a possibly

curved phase space. Our main results include generalised versions of the dynamic

isoperimetric problem, the dynamic Laplacian, the dynamic Cheeger’s inequality,

and the Federer-Fleming theorem. We illustrate the computational approach with

some simple numerical examples.

Finally, we form a connection between the weighted graph version of our dy-

namic Laplacian matrix and the manifold dynamic Laplace operator. We then

form a dynamic Laplacian-based manifold learning algorithm, which is designed to

approximate solutions of our generalised dynamic isoperimetric problem from tra-

jectory data. We highlight the robustness of our dynamic manifold learning method

through numerical experiments.
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Chapter 1

Introduction

The classical isoperimetric problem on a plane can be stated as follows: among all

simple 2-dimensional closed curves C of fixed length L, find the set of curves for

which the enclosed area A is maximum. The intricate geometry of this question has

attracted substantial interest from many mathematicians, with the earliest work on

the problem dated as far back as antiquity. The ancient Greeks proposed that the

unique solution to the isoperimetric problem is a circle, when Zenodorus attempted

to proof that a circle has greater enclosed area than any polygon of the same perime-

ter. Due to Zenodorus’s work, the isoperimetric problem has often been expressed

as the isoperimetric inequality [95]: for any curve in C show that

L2 ≥ 4πA, (1.1)

with equality if and only if the curve is a circle. The proof1 of the isoperimetric

inequality arrived in the 19th century by Steiner [115], solving the isoperimetric

problem on a plane.

Inspired by the elegance of the inequality (1.1), many generalisations and exten-

sions of the isoperimetric problem have been formulated in areas such as differential

geometry [23], mathematical physics [18] and dynamical systems [49], as well as

non-geometric analogies in partial differential equation [97] and graph theory [25].

The purpose of this thesis is the development of a dynamic isoperimetric problem

in two settings: graphs and weighted Riemannian manifolds. The motives, formu-

lations, previous works and connections of the two dynamic isoperimetric problems

are elaborated in Sections 1.1, 1.2 and 1.3.

1This proof was incomplete as it did not show the existence of the solution. The more vigorous

treatment using Steiners techniques were developed in [19].
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Chapter 1

1.1 Dynamic isoperimetric problem on graphs

Many spatio-temporal systems arising from physical processes can be modelled as

dynamics on graphs, or dynamics of graphs (see [33] for a discussion of the distinc-

tion). The motivation for a dynamic isoperimetry problem on a graph is an attempt

to understand the complex combination of dynamics and graph structure in terms

of graph connectivity. The strength of graph connectivity concerns the number of

edges that needs to be removed in order to disconnect the graph, and is a fundamen-

tal characteriser of graph structure. Efficient algorithms for graph partitioning and

the detection of community structures have led to applications in image segmenta-

tion [110, 64], parallel computing [72],social graph analysis [108], dynamical systems

[50], image and video synthesis [81], nonlinear fluid flow [58], and route planning

[30] (see [16] for a recent review on several numerical algorithms and applications).

1.1.1 Cheeger inequality on static graphs

In order to quantitatively measure how interconnected a graph is, we make use of

the well-known graph Cheeger ratio [25, 64, 8]: denote a simple, connected graph

by G = G(V,E), where V = {v1, v2, . . . , vk} is the vertex set and E ∈ V × V

is the set of (undirected) edges. We define a disconnection G′ = G′(V,E ′) of G

by partitioning V = V1 ∪ V2 into two disjoint vertex sets V1, V2 and forming the

reduced edge set E ′ = E \ {[vi, vj] ∈ E : vi ∈ V1, vj ∈ V2}, where [vi, vj] ∈ E is

an undirected edge. The balanced graph bisection problem for a connected graph

G(V,E) asks for a disconnection G′(V,E ′), where the set of removed edges E \ E ′

is minimised, while maintaining a similar number of vertices (counting multiplicity

of degree) between V1 and V2. We define the partition boundary C(V1, V2) between

the partitions V1 and V2 as the set of edges removed to disconnect G; that is,

C(V1, V2) = {[vi, vj] ∈ E : vi ∈ V1, vj ∈ V2}. The total degree of the vertex set

V ′ ⊆ V is denoted by D(V ′) :=
∑

vi∈V ′ d(vi), where d(vi) is the degree2 of the

vertex vi. For any nontrivial partition V = V1 ∪ V2, the graph Cheeger ratio for G

is defined by the number

HG(V1, V2) =
|C(V1, V2)|

min{D(V1), D(V2)}
. (1.2)

A partition {V1, V2} that achieves a low graph Cheeger ratio HG(V1, V2) has high

internal connectivity within each component corresponding to vertices Vi, i = 1, 2,

and low connectivity between the two components. Moreover, neither component is

small in terms of total degree.

2The degree of the vertex vi is defined as the cardinality of the set {vj ∈ V : [vi, vj ] ∈ E}.

2



Chapter 1

Example 1.1.1. In Figure 1.1, setting V1 = {v4, v5}, V2 = {v1, v2, v3}, we have

|C(V1, V2)| = |{[v2, v4]}| = 1, D(V1) = 2 + 1 = 3, D(V2) = 1 + 3 + 1 = 5. Thus,

HG(V1, V2) = 1/min{3, 5} = 1/3.

Figure 1.1: Graph with 5 vertices, coloured vertices = V1, coloured edges = E \ E ′

and HG(V1, V2) = 1/3.

1.1.2 Vertex permutation dynamics of graphs

The connective structure on an evolving graph can be transformed as time pro-

gresses. Examples of graph dynamics include transmission of diseases in popu-

lations [83], transmission of happiness in social graphs [46], and synchronisation

of community structures [83]. We consider the situation where the vertex labels

of G are subjected to permutation; dynamics of graphs. Abstractly, we have a

permutation πv : V → V , which induces an action πe : E → Ê on edges via

πe([vi, vj]) = [πv(vi), πv(vj)], [vi, vj] ∈ E. In this way, the entire graph G is trans-

formed by π : G → Ĝ, where π
(
G(V,E)

)
= G

(
πv(V ), πe(E)

)
. The transformation

π is a graph isomorphism: clearly edges πe([vi, vj]), πe([vj, vl]) are adjacent in Ĝ if

edges [vi, vj], [vj, vl] edges are adjacent in G.

Example 1.1.2. For example, in Figure 1.2, we see the image of the graph of

Figure 1.1 under the cyclic permutation πv(vi) = vi+1 (mod 5), i = 1, 2, 3, 4, 5. One

has Hπ(G)(V1, V2) = 1.

Figure 1.2: The graph of Figure 1.2 under cyclic permutation.

One can ask the very natural question: how well does a fixed partition {V1, V2}
represent a minimal disconnection of both G and π(G), according to the edge sets

E and πe(E), respectively; that is, we ask for a nontrivial partition V = V1 ∪ V2, so

that the graph Cheeger ratios HG(V1, V2) for G and Hπ(G)(V1, V2) for π(G) are both

3



Chapter 1

small. Persistently highly interconnected subregions on a dynamic vertex-labelled

graph can highlight important physical properties of the underlying process, such as

the stability of subprocesses and community structures over time. Partitions that

are robust to specific vertex permutations offer a method to add extra pressure to

keep the permuted vertices in the same community, and are required in situations

in which there is uncertainty about a graph such as vertex identity. Persistently

interconnected regions in a network of human contacts throughout the day could

arise from individual’s professional and social status, and are vital for modelling

disease spread in human population. Similarly, the transmission of happiness in a

social network could be dependent on the history of friendships.

It is well-known that the complexity of graph partition problems are NP-complete

(see [59]), however, the importance of these problems have generated an extensive

collection of heuristic algorithms that can produce good solutions [45, 16]. A very

popular graph partition method for studying graph connective structures is known

as spectral graph partition. This approach was initiated by Fiedler [43] (also [5]),

and has been developed by several authors (e.g. [3, 91]). The essence of spectral

graph partition is the Cheeger inequality [25], which we now review.

1.1.3 Cheeger inequality for graphs

Recall that the graph Cheeger ratio (1.2) measures the connectedness of a graph. To

generate minimum-cut balanced partitions of a vertex-labelled graphs, one considers

the graph Cheeger constant defined by

HG = min
V1,V2 partition V

HG(V1, V2). (1.3)

Introducing the graph Laplacian [25] for G(V,E). Define the adjacency matrix A

by

Aij =

{
1 if [vi, vj] ∈ E, i 6= j

0 otherwise
, (1.4)

and the degree matrix D by a k × k diagonal matrix with entries Dii = d(vi), for

1 ≤ i, j ≤ k. The graph Laplacian is defined by

L = A−D. (1.5)

The normalised graph Laplacian is defined by L = D−1/2LD−1/2; i.e. L is the k×k
symmetric matrix

Lij =


1√

d(vi)d(vj)
if [vi, vj] ∈ E, i 6= j

−1 if i = j

0 otherwise

. (1.6)

4



Chapter 1

Standard results concerning L are: (i) the eigenvalues λ1 ≥ λ2 ≥ · · · of L are

non-positive and real, and (ii) the eigenvalue λ1 = 0 and has unit multiplicity (so

that λ2 < 0) [44, 5]. The eigenvector corresponding to λ2 is commonly used to

construct a balanced bisection V1, V2 of G with a small number of edges connecting

V1 to V2. One computes g2, the eigenvector of L corresponding to λ2, and sets

f = D−1/2g2. For each β ∈ {fi}k−1
i=1 , one defines the sets V β

1 = {vi ∈ V : fi ≤ β}
and V β

2 = {vi ∈ V : fi > β}. The sets V β
1 , V β

2 partition V and there are at most

k − 1 nontrivial partitions of this form. One evaluates HG(V β
1 , V

β
2 ) for these at

most k− 1 distinct partitions and selects the partition that minimises HG(V β
1 , V

β
2 ).

This approach was described in [38]; see [64] for a modern treatment. To create

partitions of more than two components, further eigenvectors g3, g4, . . . can be used

in an analogous way to existing algorithms in the static case; see [67, 21, 4, 110] for

the use of multiple eigenvectors to partition static graphs. One has the celebrated

Cheeger inequality [25]:

HG ≤
√
−2λ2 ≤ 2

√
HG, (1.7)

where λ2 is the smallest nonzero eigenvalue of L. Moreover, the optimal partition

{V β
1 , V

β
2 } that minimises HG(V β

1 , V
β

2 ) over β ∈ {fi}k−1
=1 , satisfies HG(V β

1 , V
β

2 ) ≤
√
−2λ2.

1.1.4 Original contributions of Chapter 2

The classical graph Cheeger inequality is limited to application on G or π(G), and

in general cannot be used to find a graph partition that represents a minimal dis-

connection on both G and π(G). In Chapter 2, we consider a dynamic minimum-cut

balanced partition on dynamics of graphs. In particular, we generalise (1.7) to a

dynamic graph Cheeger inequality (see Theorem 2.2.3), and formulate an efficient

algorithm designed to find good solutions to the dynamic isoperimetric problem on

graphs (see Algorithm 2.1); the contents of Chapter 2 are published in [53].

1.2 Dynamic isoperimetry problem on weighted

Riemannian manifolds

The mathematics of transport in nonlinear dynamical systems has received consid-

erable attention for more than two decades, driven in part by applications in fluid

dynamics, atmospheric and ocean dynamics, molecular dynamics, granular flow and

other areas. We refer the reader to [96, 102, 89, 6, 123] for reviews of transport
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and transport-related phenomena. Many transport processes can be modelled as

dynamics on weighted Riemannian manifolds [66], because each of these manifolds

is equipped with a measure to track the mass distribution of the physical quantity

being transported (e.g. chemical concentrations in fluids, air mass in the atmosphere,

salt in the ocean). We attempt to characterise transport barriers by identifying sub-

sets of a weighted Riemannian manifold that have persistently small boundary size

to enclosed mass ratio as the domain is transformed by a general dynamical sys-

tem. Thus we introduce a dynamic isoperimetric problem on weighted Riemannian

manifolds.

1.2.1 Cheeger ratio for weighted Riemannian manifolds

To provide a mathematical description of our dynamic isoperimetry problem on

a weighted Riemannian manifold, we develop a weighted version of the well-known

Cheeger ratio [24]: letM denote a compact, connected r-dimensional C∞-Riemannian

manifold, and Γ denote a piecewise C∞-hypersurface that disconnects M into full

dimensional submanifolds M1,M2; that is {M1,M2,Γ} is a partition of M .

Example 1.2.1. For example, in Figure 1.3 the manifold M is a 2-dimensional

cylinder [0, 4)/ ∼ ×[0, 1], where ∼ is identification at interval endpoints; that is, M

is periodic in the first coordinate with period 4. A piecewise C∞-curve in M can

either be a curve Γ from boundary points to boundary points as in Figure 1.3a, or a

closed curve Γ′ as in Figure 1.3b.

(a) Γ

(b) Γ′

Figure 1.3: Disconnecting curves Γ and Γ′ on a 2-dimensional cylinder.

Let µr denote the measure equipped on M , and assume µr is absolutely contin-

uous. The size of a set M1 ⊂ M is given by µr(M1) and by a process of inducing

6
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explained in Chapter 3, we develop a measure µr−1 to determine the size of (r− 1)-

dimensional objects such as Γ. In order to track the transport of non-uniformly

distributed passive tracers, we require the measure µr to represents the initial dis-

tribution to be tracked. Similarly, in order to estimate the amount of material

that would be ejected through the boundary at any given time by small amplitude

isotropic diffusion, we require the measure µr−1 to compute initial boundary size.

To find subsets of M with small boundary to interior size ratios with respect to the

measure µr−1 and µr, we define the weighted Cheeger ratio by

HM(Γ) :=
µr−1(Γ)

min{µr(M1), µr(M2)}
. (1.8)

The numerator of (1.8) quantifies the boundary size of Γ, while denominator of

(1.8) is a standard normalisation condition in isoperimetry problems to avoid trivial

solutions and ensure that both M1 and M2 are of macroscopic size [23].

Example 1.2.2. Suppose the 2-dimensional cylinder in Figure 1.3 is equipped with

the Lebesgue measure µ2 = `2, then the induced co-dimension 1 measure µ1 is given

by 1-dimensional Lebesgue `1. Therefore in Figure 1.3a, the size of the disconnecting

curve Γ is `1(Γ) = 2 and size of the interiors M1,M2 are `2(M1) = `2(M2) = 2.

Hence HM(Γ) = 2/2 = 1. By similar calculations, HM(Γ′) = 2 for the disconnection

curve Γ′ in Figure 1.3b.

1.2.2 Dynamics on Manifolds

Let N denote another compact, connected r-dimensional C∞-Riemannian manifold,

and suppose that the dynamics over a finite time duration is given by T : M →
N . The manifold N is equipped with a Riemannian metric n, and an absolutely

continuous measure νr. For many applications we may not want n to be related to

the metric tensor m on M , however conservation of mass enforces νr := µr ◦ T−1;

i.e. n need not be the pushforward of m but νr must be the pushforward of µr.

Importantly, the µr−1-size of a hypersurface can be drastically different compared

to the νr−1-size of its the image under dynamics of T .

Example 1.2.3. Returning to Example 1.2.2. Figure 1.4 shows the images of the

disconnecting curves Γ and Γ′ in Figure 1.3a and 1.3b under linear shear T (x, y) =(
(x+y mod 4), y

)
. Clearly, the disconnecting curve Γ′ is invariant under the action

of T as shown in Figure 1.4b. However, in Figure 1.4b the size of the new discon-

necting curve TΓ of N have increased by a factor of
√

2. By volume preservation

of T , one has `2(Mi) = `2(TMi) = 2, for i = 1, 2, where M1, M2 are the partition

7
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elements of M separated by either Γ or Γ′. Therefore, computing the Cheeger ratio

on N , one has HN(TΓ) =
√

2 and HN(TΓ′) = 2.

(a) Γ

(b) Γ′

Figure 1.4: Disconnecting curves Γ and Γ′ in Figure 1.3 transformed by a linear

shear.

To identify transport barriers under a single iteration of T , we search over all

piecewise C∞-disconnecting hypersurfaces of M , and find a hypersurface Γ that rep-

resents a balanced minimal disconnection on M according to the µr−1-size of Γ and

the νr−1-size of TΓ; that is, we attempt to find a fixed disconnecting hypersurface

Γ such that HM(Γ) and HN(TΓ) are both small. In situations where T is a con-

catenation of several maps over several discrete time steps, or the flow map for a

time-dependent vector field over some duration τ , we measure the weighted Cheeger

ratio on the disconnecting curve at each discrete time step, or we continuously check

the boundary size under continuous time dynamics (see Section 3.2.1).

We have seen previously in Section 1.1.3, that the analytical inequality (1.7)

formed a link between the linear operator L (1.6) and the connectedness (1.2) of

the associated graph. On a Riemannian manifold, the analogous operator is the

Laplace-Beltrami operator. The Laplace-Beltrami operator has deep connections to

the geometry of the Riemannian manifold on which it is defined [22, 13]. The two

well-known classic results are: the Cheeger inequality on a Riemanian manifold [24]

and the Federer-Fleming theorem [41]. We now give a brief review on these results.

8
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1.2.3 Cheeger inequality for unweighted Riemannian mani-

folds

To partition a Riemannian manifold into {M1,M2,Γ}, such that the µr−1-size of Γ

is minimal, while maintaining a balanced µr-size between M1 and M2, one considers

the Cheeger constant defined by

HM := inf
Γ
HM(Γ), (1.9)

where HM is as in (1.8). Suppose the measure µr equipped on the Riemannian

manifold M is the full-dimensional volume measure3. The following spectral prop-

erties of the Laplace-Beltrami operator 4m on M are well-known: (i) eigenvalues

λ1 ≥ λ2 ≥ . . . of 4m are non-positive and real, and (ii) the eigenvalue λ1 = 0 and

has unit multiplicity (so that λ2 > 0) [22]. One has the dynamic Cheeger inequality

HM ≤ 2
√
−λ2, (1.10)

where λ2 is the first non-trivial eigenvalue of4m. In addition to the inequality (1.10),

one has the classical Federer-Fleming theorem (see e.g. p.131 [23]), which equates

the geometric constant HM to the Sobolev constant (a functional representation of

HM , where the disconnecting hypersurface Γ is generated by level surfaces of smooth

functions).

To find a disconnecting hypersurface with small Cheeger constant HM , we sug-

gest a spectral manifold partitioning algorithm analogous to the graph partitioning

method outlined in Section 1.1.3: let φ2 be the first nontrivial eigenvector of 4m.

One searches over the level surfaces Γβ = {x ∈ M : φ2(x) = β} to minimise the ra-

tio HM(Γβ), rather than all piecewise smooth C∞-disconnecting hypersfaces Γ that

partitions M into {M1,M2}.

1.2.4 Original contributions in Chapter 3

The notion of combining dynamics and isoperimetry was first introduced by Froy-

land [49], whereby the optimisation problem (1.9) was modified to take into account

of evolving size of the disconnecting curve Γ in a time-averaged sense under general

time-dependent nonlinear dynamics. In particular, a dynamic generalisation of the

Federer-Fleming theorem and Cheeger inequality in the setting of a flat, unweighted

Riemannian manifold under volume-preserving dynamics was formulated in [49].

Moreover, Froyland [49] formed a link between his purely geometric approach of

3The volume measure is defined by the the nowhere-vanishing top-dimensional form associated

with the metric tensor m on M , see Appendix B.2.1.
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dynamic isoperimetry for finding transport barriers to the purely probabilistic con-

structions for finding almost invariant sets [48]. In Chapter 3, We extend the results

of [49] in three ways: (1) to dynamics that is not volume preserving, (2) to tracking

the transport of non-uniformly distributed tracers, and (3) to dynamics operating on

curved manifolds ; the contents of Chapter 3 are published in [54].

1.3 Manifold learning for dynamic isoperimetric

problems

Manifold learning is a method in nonlinear dimensionality reduction, used for ap-

proximating low-dimensional features of a manifold from point-cloud data belonging

to a high dimensional space [14, 10, 29]. Applications of manifold learning include

data representation [11], pattern recognition [70] and image processing [122]. Man-

ifold learning methods have also been used in dynamical systems for discovering

slow manifolds [2, 93, 121]. The motivation of this work is the approximation of

transport barriers from sparse trajectory data. In particular, following the geomet-

ric characterisation of transport barriers in Section 1.2, we attempt to approximate

solutions to the dynamic isoperimetric problem on weighted Riemannian manifolds

from non-uniformly distributed trajectory data.

1.3.1 Point-cloud data as weighted graph

The evolving structure of trajectory data can be modelled as dynamics of graphs.

First we capture the local geometry of the initial points of the trajectory data via

a weighted graph. Let M and N be compact, connected r-dimensional Riemannian

manifolds, which are embedded in a possibly higher dimensional Euclidean space

Rd; d ≥ r. On M we place a Riemannian metric m and an absolutely continuous

measure µr; the measure µr describes the mass distribution of the physical quantity

being transported by dynamics as in Section 1.2. Let Sk = {x1, x2, . . . , xk} be a finite

set of points randomly drawn from M in independently and identically distributed

(i.i.d) fashion.

Example 1.3.1. Suppose M is a 2-dimensional torus M := [0, 4) × [0, 1)\ ∼. In

Figure 1.5a, the set Sk is 1000 data points randomly sampled from M according to

a uniform probability distribution. In Figure 1.5b, the set Sk is 1000 data points

randomly sampled from M according to a nonuniform probability distribution.

For fixed ε > 0, one forms a weighted graph from Sk by taking x1, x2, . . . , xk as

vertices, and defining wµ,εij as the weight of the edge between the vertex pair xi, xj for

10
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(a) (b)

Figure 1.5: Random samples drawn from a 2-dimensional torus.

each 1 ≤ i, j ≤ k. The edges wµ,εij are designed to capture the µr-weighted geometry

between the data points xi and xj via a process to be elaborated in Chapter 4,

and the scalar ε is a standard parameter in Laplacian-based manifold learning [10].

We denote the set of all edge weights by W µ,ε = {wµ,εij }ki,j=1, and use the notation

G(Sk,W µ,ε) for the weighted graph formed from Sk and W µ,ε as above.

1.3.2 Trajectory data as dynamics of graphs

Recall that N is another compact, connected r-dimensional Riemannian manifold

embedded in Rd; d ≥ r. Suppose the dynamics over a finite time interval is given

by T : M → N . Under a single iteration of T , the measure µr on M is pushed

forward to the measure νr := µr ◦ T−1 on N , and the point-cloud data Sk is trans-

formed into Ŝk = {Tx1, Tx2, . . . , Txk}, forming the trajectory data {xi, Txi} for

i = 1, 2, . . . , k. Similar to Section 1.3.1, one forms another weighted graph from

Ŝk by taking Tx1, Tx2, . . . , Txk as vertices, and setting wν,εij as the edge weights be-

tween the vertex pairs Txi, Txj for each 1 ≤ i, j ≤ k. We denote the weighted graph

formed from Ŝk by G(Ŝk,W ν,ε), where W ν,ε = {wν,εij }ki,j=1. In situations where the

dynamics is over τ time steps, by obvious modifications to the domain of Qρ,ε, one

can form a sequence of τ weighted graphs from the input trajectory data of length

τ (see Section 4.2.2).

By construction the transformation T : M → N induces the graph transfor-

mation TG : G(Sk,W µ,ε) → G(Ŝk,W ν,ε). Now as a dynamic extension of manifold

learning, we ask for the recovery of low-dimensional features from an unknown dy-

namical system, by studying the evolving connective structures of G(Sk,W µ,ε) under

TG. In particular, we search for a low-dimensional embedding map ϕdyn : Sk → Rs

(s � k) using the connective structures of both G(Sk,W µ,ε) and G(Ŝk,W ν,ε), such

that low dimensional dynamical features of T : M → N can be extract from the

collection of points ϕdyn(Sk) ∈ Rs. Moreover, point-cloud clusters of limk→∞ ϕdynS
k

correspond to submanifolds of M that have persistently small boundary size relative

11
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to enclosed volume, when the geometry of M is evolved by T .

Our approach for finding ϕdyn builds on the idea of the Laplacian eigenmaps

[10, 11] for static manifold learning, which we now review.

1.3.3 Laplacian-based manifold learning

Laplacian-based manifold learning is a popular method for dimensionality reduction,

that utilises the spectral properties of the graph Laplacian to approximate low-

dimensional geometric structures on M (see also [28] for the closely related diffusion

maps). The spectral graph partitioning method outlined in Section 1.1.3 laid the

groundwork for Laplacian-based manifold learning, where the second eigenvector g2

of the normalised graph Laplacian L (1.6) offered a 1-dimensional representation of

a connective structure of an unweighted graph G(V,E); components of D−1/2g2 rank

the vertex set V by magnitude. More generally, the first s nontrivial eigenvectors

g2, g3, . . . , gs+1 of L (1.5) provide an s-dimensional embedding of V , which are

used to gain insight into the connective structures of G(V,E) [112]. Analogously,

in [10, 11] the Laplacian eigenmaps are formed as follows: let ‖ · ‖Rd denote the

d-dimensional Euclidean norm on Rd. Set the edge weights of G(Sk,W µ,ε) as

wµ,εij = wεij :=

 exp
(
−
‖xi−xj‖2Rd

ε

)
if i 6= j

0 if i = j
,

for each 1 ≤ i, j ≤ k. Define the degree of the vertex xi ∈ Sk by dε(xi) :=
∑k

j=1w
ε
ij,

and adjacency matrix Aε by the k×k matrix with entries Aε
ij = wεij. Then analogous

to (1.5), the graph Laplacian associated with G(Sk,W µ,ε) (see e.g. Chapter 2 in [15])

is given by Lε := Aε −Dε, where Dε is diagonal with entries Dε
ii = dε(xi); that is,

the matrix Lε has entries

Lεij :=

{
wεij if i 6= j

−
∑k

l=1w
ε
il if i = j

.

In addition, analogous to (1.6) the normalised graph Laplacian for G(Sk,W µ,ε) is

defined by

Lε := (Dε)−
1
2Lε(Dε)−

1
2 , (1.11)

The crux of Laplacian eigenmaps is to use the first s nontrivial eigenvectors

g2, g3, . . . , gs+1 of 1
ε
Lε, to construct an s-dimensional embedding map ϕ(xi) :=

{(Dε)−
1
2g2(xi), (D

ε)−
1
2g3(xi), . . . , (D

ε)−
1
2gs+1(xi)}, 1 ≤ i ≤ k that preserves cer-

tain low-dimensional geometric structures on M ; i.e. Low dimensional features of

an unknown manifold is ‘learned’ from the new representation of ϕ(Sk) in Rs.

12
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Example 1.3.2. For example, applying the classical Laplacian eigenmaps to the

random samples in Example 1.3.1. Figure 1.6a and Figure 1.6b are the images of

Figure 1.5a and Figure 1.5b under the embedding map ϕ = {(Dε)−
1
2g2, (D

ε)−
1
2g3},

where g2, g3 are the first 2 nontrivial eigenvectors of Lε.

(a) (b)

Figure 1.6: Laplacian eigenmap on the random samples in Figure 1.5.

We note that the standard Laplacian-based manifold learning method [10, 11] is

designed for analysis on uniformly distributed data. In Figure 1.6a the symmetrical

structure of the 2-dimensional torus [0, 4)\ ∼ ×[0, 1)\ ∼ was recovered from a

uniformly distributed sample. On the other hand, the nonuniform distribution of

the random sample in Figure 1.5b is incorrectly captured as a geometric feature of

[0, 4)\ ∼ ×[0, 1)\ ∼ by the standard Laplacian eigenmap ϕ; as shown in Figure 1.6b.

1.3.4 Original contributions of Chapter 4

Since the Laplacian eigenmap ϕ does not depend on the density hµ of µr, it is clear

that the standard Laplacian-based manifold learning method described in Section

1.3.3 does not account for the measure µr on M . Moreover, according to Theorem

5.2 in [12], the Laplacian eigenmap ϕ is dependent on the probability distribution

of the random sample Sk. In particular, the Laplacian-based manifold learning

method in [10, 11] is limited to applications on uniformly distributed random sam-

ples, and it is also limited to approximating the features of unweighted manifolds.

In Chapter 4, we extend the work of [10, 11] in three ways: (1) application on in-

put samples with nonuniform probability distributions, (2) approximating features of

weighted Riemannian manifolds, and (3) a dynamic manifold learning method for

approximating transport barriers from trajectory data.

13



Chapter 1

14



Chapter 2

Partitions of graphs that are

robust to vertex permutation

dynamics

Spectral graph partitioning algorithms such as the method described in Section 1.1.3

are highly successful for finding highly interconnected subregions of static graphs.

Prior work to extend spectral methods to application on dynamics of graphs includes

the temporal network approach [42, 92], which encodes the additional dimension of

time by making a copy of the graph at each time instance. A common technique for

analysing evolving community structures on a temporal network is to reverse the

time-extension by projecting the multiple temporal copies of the graph back to a

single graph. However, such a technique involves making decisions on how to col-

lapse vertices across time between one or more slices of a temporal network, which

can produce an associated loss of temporal information. Extensive work has been

done to improve the time-projection approach, e.g. [74] designed a dynamic qual-

ity function for community detection based on a time-projected temporal network.

Changes in graph structures have also been considered by treating the changing

graph as a series of static ones and evaluating the connective structures in each

step (see [27, 39] for applications in image processing and social graphs, respec-

tively). However, considering a series of static connectivity problems can only be

use to find graph subregions that are community structures at a particular moment

in time, rather than graph subregions that are persistently highly interconnected as

the graph evolves.

In this chapter, we consider a dynamic balanced graph bisection problem de-

signed for finding persistently highly interconnected subgraphs of dynamic graphs.
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In particular, let G = G(V,E) be a connected graph1 with V = {v1, v2, . . . , vk}, and

E = {[vi, vj]}ki,j=1. Let π = (πv, πe) be a graph isomorphism on G, where πv : V → V

is a vertex label permuation and πe : E → Ê satisfies πe(vi, vj) = [πv(vi), πv(vj)] for

all [vi, vj] ∈ E. Under a single iteration of vertex permutation dynamics πv : V → V

that transforms G into π(G), we consider the dynamic optimisation problem:

Hdyn
G := min

V1,V2 partition V
Hdyn
G (V1, V2), (2.1)

where

Hdyn
G (V1, V2) =

|C(V1, V2)|+ |C
(
π−1
v (V1), π−1

v (V2)
)
|

min{D(V1), D(V2)}+ min{D
(
π−1
v (V1)

)
, D
(
π−1
v (V2)

)
}
, (2.2)

where C(V1, V2) denotes the set of edges removed to disconnect G, and D(V1) is the

degree sum of all vertices in V1. We show later in Section 2.1, that the quantities

|C
(
π−1
v (V1), π−1

v (V2)
)
|, D

(
π−1
v (V1)

)
and D

(
π−1
v (V2)

)
} appearing on the RHS of (2.2),

are in fact related to the graph Cheeger ratio Hπ(G)(V1, V2) (1.2) on the graph π(G).

Alternatives to (2.2) are: (1) minimising the sum of the Cheeger ratios of a fixed

partition {V1, V2} on G and π(G); that is, find {V1, V2} such that HG(V1, V2) +

Hπ(G)(V1, V2) is minimal, or (2) minimising the Cheeger ratio on the graph formed

by “averaging” the edges of G and π(G); see (2.11) for details. To produce a

good solution to (2.1), we develop a spectral method for dynamic graphs in Section

2.2; the proofs of the stated theorems are deferred to Section A of the appendix.

A multiple time-step version of the dynamic balanced graph bisection problem is

considered in Section 2.3. In Section 2.4, a numerical algorithm for dynamic spectral

partitioning is applied to both structured and unstructured graphs, and the strength

of the evolving community structures of the partitioned graphs are investigated.

2.1 A graph Cheeger constant for dynamic graphs

Note that the set of edges removed to disconnect G via the partition {V1, V2} is

C(V1, V2) := {[vi, vj] ∈ E : vi ∈ V1, vj ∈ V2}. To describe the disconnection of

the graph π(G) induced by {V1, V2}, we denote the reduced set of edges πe(E)′ =

πe(E) \ {[vi, vj] ∈ πe(E) : vi ∈ V1, vj ∈ V2}. Let Cπ denote the set of edges removed

to disconnect π(G); that is

Cπ(V1, V2) := {[vi, vj] ∈ πe(E) : vi ∈ V1, vj ∈ V2}; (2.3)

1For simplicity we assume there are no self-loops or multiple edges on G; although the method

we describe could be extended to cover these cases
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in words, fix V1 and V2 and compare edges in π(G). Equivalently,

|Cπ(V1, V2)| =
∣∣{[π−1

v (vi), π
−1
v (vj)] ∈ E : vi ∈ V1, vj ∈ V2}

∣∣
=
∣∣{[vi, vj] ∈ E : vi ∈ π−1

v (V1), vj ∈ π−1
v (V2)}

∣∣ ; (2.4)

that is, pullback the vertex sets V1, V2 with πv and compare edges in G. Thus,

|Cπ(V1, V2)| = |C
(
π−1
v (V1), π−1

v (V2)
)
|. (2.5)

We now consider the computation of vertex degree in π(G). For V ′ ⊂ V , define

Dπ(V ′) :=
∑

i∈V ′
dπ(vi), where dπ(vi) is the degree of vi computed in the graph

π(G):

dπ(vi) := |{vj ∈ V : [vi, vj] ∈ πe(E)}|. (2.6)

Let d(vi) denote the degree of the vertex vi of the graph G. One can also do this

degree computation in the original graph G by noticing that

|{vj ∈ V : [vi, vj] ∈ πe(E)}| = |{vj ∈ V : [π−1
v (vi), π

−1
v (vj)] ∈ E}|

= d(π−1
v (vi)). (2.7)

Thus,

Dπ(V ′) = D(π−1
v (V ′)). (2.8)

Example 2.1.1. In Figure 2.1, setting V1 = {v3, v5}, V2 = {v1, v2, v4} and applying

the cyclic permutation πv(vi) = vi+1, i = 1, 2, 3, 4, 5 as in Example 1.1.2. We have:

|Cπ(V1, V2)| = |{[v3, v2], [v3, v4], [v5, v1]}| = 3 and |C
(
π−1
v (V1), π−1

v (V2)
)
| = |{[v2, v1],

[v2, v3], [v4, v5]}| = 3 (using π−1
v (V1) = {v2, v4}, π−1

v (V2) = {v5, v1, v3}). Also,

Dπ(V1) = 5 = D
(
π−1
v (V1)

)
and Dπ(V2) = 3 = D

(
π−1
v (V2)

)
.

(a) G (b) π(G)

Figure 2.1: Cyclic permutation on a graph with 5 vertices, colored vertices = V1,

colored edges = E \ E ′.

Due to (2.5) and (2.8), the graph Cheeger ratio Hπ(G) (1.2) on the partition

{V1, V2} for π(G) can be expressed as

Hπ(G)(V1, V2) :=
|Cπ(V1, V2)|

min{Dπ(V1), Dπ(V2)}
=

|C
(
π−1
v (V1), π−1

v (V2)
)
|

min{D
(
π−1
v (V1)

)
, D
(
π−1
v (V2)

)
}
. (2.9)
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Moreover, (2.2) can be written as

Hdyn
G (V1, V2) =

|C(V1, V2)|+ |Cπ(V1, V2)|
min{D(V1), D(V2)}+ min{Dπ(V1), Dπ(V2)}

. (2.10)

Thus, the optimisation problem (2.1) is linked to the magnitudes of HG(V1, V2) and

Hπ(G)(V1, V2) on a fixed partition {V1, V2}.

Example 2.1.2. Returning to Example 2.1.1, we compute

Hdyn
G (V1, V2) =

2 + 3

min{2, 6}+ min{5, 3}
= 1.

If choose V ′1 = {v1, v4, v5}, V ′2 = {v2, v3}, we find

Hdyn
G (V ′1 , V

′
2) =

2 + 2

min{1 + 2 + 1, 3 + 1}+ min{1 + 1 + 2, 1 + 3}
=

1

2
;

in fact, this is the unique partition achieving this minimal value Hdyn
G .

Remark 2.1.3. One could alternatively define a dynamic balanced graph bisection

problem:

Ĥdyn
G := min

V1,V2 partition V
Ĥdyn
G (V1, V2), (2.11)

where

Ĥdyn
G (V1, V2) =

|C(V1, V2)|+ |Cπ(V1, V2)|
min{D(V1) +Dπ(V1), D(V2) +Dπ(V2)}

. (2.12)

Such a definition places less emphasis on producing a balanced partition both before

and after the application of π because low degrees sums can be “averaged away”.

Clearly, Ĥdyn
G ≤ Hdyn

G , however, in general, one cannot conclude that the connectivity

of a partition optimizing (2.12) is greater or less than a partition optimizing (2.1).

Thus, in our numerical experiments we report results for both quantities.

Example 2.1.4. Returning to Example 2.1.1, we compute

Ĥdyn
G (V1, V2) =

2 + 3

min{2 + 5, 6 + 3}
=

5

7
.

Because the partition V = V1∪V2 is highly unbalanced in vertex degrees on both G and

π(G), but |D(V1)−Dπ(V2)| = 1 and |D(V2)−Dπ(V1)| = 1. The ratio Hdyn
G (V1, V2) =

1 incurs a larger penalty compare to Ĥdyn
G (V1, V2) due to degree unbalance.

2.2 A spectral method for dynamic graphs

We now introduce a dynamic graph Laplacian to provide good solutions to the

dynamic balanced graph bisection problem (2.1). Define the square permutation

matrix

Pij :=

{
1 if πv(vi) = vj

0 otherwise
. (2.13)
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Note that the matrix P is obtained by permuting the rows of the identity matrix,

hence P is invertible. Motivated by the properties (2.5) and (2.8), we define the

dynamic graph Laplacian

Ldyn :=
L + P−1LP

2
, (2.14)

where L is as in (1.5). The first term in (2.14) acts on G, while the second term

transforms from G to π(G) using P , then applies L to π(G), and finally pulls the

result back to G with P−1. If one defines Lπ to be the Laplacian matrix for the

graph π(G), then by (2.7),

Lπ
ij :=


d
(
π−1
v (vi)

)
if i = j

−1 if [π−1
v (vi), π

−1
v (vj)] ∈ E, i 6= j

0 otherwise

(2.15)

= Lπ−1
p (i)π−1

p (j), (2.16)

where πp is the vertex label permutation associated with πv; i.e. vπp(i) = πv(vi).

From the definition of P , it is straightforward to show that Lπ = P−1LP . Let D

be k × k diagonal with entries

Dii = d(vi). (2.17)

We apply a degree normalisation to Ldyn and define the normalised dynamic graph

Laplacian by

Ldyn := D−1/2LdynD−1/2 =
L + Lπ

2
, (2.18)

where Lπ = D−1/2LπD−1/2.

Remark 2.2.1. The connection between the above normalised dynamic graph Lapla-

cian Ldyn and the directed graph Laplacian studied in [26] is as follows: On a directed

graph, the dynamics of vertex transformation is captured by directed edges as a tran-

sition probability matrix. Therefore, the static isoperimetry problem on a directed

graph concerns clusters of vertices that are more likely to be transfered within a

cluster than between clusters. While Chung [26] can only see almost-invariant struc-

tures, there is no true time-dependence in [26], in contrast the dynamic Laplacian

allows the coherent structures to be time-dependent.

Theorem 2.2.2. Let G = G(V,E) be a simple, connected graph with |V | = k. Let

π = (πv, πe) be a graph isomorphism as in Section 1.1, and denote by πp the vertex

label permutation associated with πv as above. Define P and Ldyn as in (2.13) and

(2.18), respectively. One has

1. The eigenvalues λ1 ≥ λ2 ≥ · · · of Ldyn are nonpositive and real.
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2. The eigenvalue λ1 = 0, and is of unit multiplicity.

3. Let D be the degree matrix of G given by (2.17), and g1 an eigenvector cor-

responding to λ1. Then D−1/2g1 is constant on a connected component2 of

G.

4. Let 1 ∈ Rk be a constant vector with unit components, and let 〈·, ·〉 be the

inner-product on Rk. Denote by
∑

i∼j the ordered summation over all pairs of

vertices such that [vi, vj] ∈ E. One has

λ2 = − min
f∈Rk:〈f ,D·1〉=0

∑
i∼j(fi − fj)2 + (fπp(i) − fπp(j))

2∑k
i=1 d(vi)f 2

i

. (2.19)

The minimum of (2.19) is attained when f = D−1/2g2, where g2 is the eigen-

vector of Ldyn corresponding to λ2.

Proof. See Appendix A.

The connection between Ldyn and Hdyn
G is given by the following theorem.

Theorem 2.2.3 (Dynamic graph Cheeger inequality). Let G = G(V,E) be a

simple, connected graph, and Ldyn, Hdyn
G , Ĥdyn

G be defined by (2.18), (2.1), (2.11)

respectively. If λ2 is the second smallest eigenvalue (by magnitude) of Ldyn, then

1.

Ĥdyn
G ≤

√
−2λ2. (2.20)

2. If in addition, d(vi) ≤ D(V )/4 for each i, then

Hdyn
G ≤ 2

√
−λ2. (2.21)

Proof. The proof of part 1 is simple to deduce from (1.7) by noting that Ldyn is the

normalised Laplacian matrix for the edge-weighted graph G
(
V,E ∪ πe(E)

)
, where

each edge contributes 1/2 in the partition boundaries C(V1, V2) and Cπ(V1, V2). The

stronger degree balancing in the definition of Hdyn
G (part 2) requires a more detailed

proof, which is elaborated in Appendix A.

Remark 2.2.4. The additional condition for Theorem 2.2.3(2) can be made more

precise, and only requires two particular vertices to have degree less than or equal

to D(V )/4. Specifically, let g2 = D1/2f be the eigenfunction of Ldyn corresponding

to λ2, and order the vertices of G according to f by fi ≤ fi+1. Define Si =

2If V ′ is a connected component of G, then either
(
D−1/2g1

)
i

= 1 or
(
D−1/2g1

)
i

= 0 for all

vi ∈ V ′.
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{v1, v2, ..., vi}, and let r and q denote the largest integer such that D
(
π−1
v (Sr−1)

)
<

D(V )/2 and D
(
π−1
v (Sq)

)
< D(V )/2. It is sufficient for the degree of vr−1 and vq to

have degree less than or equal to D(V )/4.

The Laplacian matrix for a given graph is constructed from the graph’s adjacency

matrix; all information regarding the graph’s connectivity is encoded within the

graph’s Laplacian. Since our new dynamic graph Laplacian was constructed from

both the Laplacian for G and π(G), it is possible that the complex interactions

between dynamics and graph connectivity are contained within the dynamic graph

Laplacian. Indeed, Theorem 2.2.3 tell us that the subregions on a dynamic graph

that are persistently highly interconnected are closely related to the second smallest

magnitude eigenvalue of Ldyn. In fact, in the proof of Theorem 2.2.3(1), it is shown

that the eigenvector corresponding to λ2 indicates how the graph of interest should

be partitioned. In particular, if the vertices of G are ordered according to the

magnitude of each component of the degree normalised eigenvector of λ2, then there

exists a threshold in which the partition elements yielded would have a dynamic

graph Cheeger constant that satisfies the inequality (2.21).

Although, vertex permutation dynamics on a graph is equivalent to a specific se-

quence of edge addition/deletion on a temporal network (for example, Figure 2.1 (a)

and (b) can be represented in a manner similar to Figure 1 in [92]), there is a key dif-

ference between the temporal network approach of [42, 92] and the current dynamic

spectral method for community structure detection on time-dependent graphs: The

multislice extension of (6) in [82] by (1) in [92] does not follow the scheme of pushing

forward, evolving, then pulling back of our normalised dynamic graph Laplacian in

(2.18), because time-dependence of (1) in [92] is invoked by the coupling constants

Cjrs.

One could also use the results Theory 2.2.3 to formulate a surrogate network

generation algorithm. In particular, since the size of the second smallest magnitude

eigenvalue of Ldyn is an indication of the strength of evolving community structure

of the dynamic graphs, a process based of the dynamic graph Laplacian can be used

to generate random graphs of a fixed size with prescribed community structures (see

[79, 111] for details of random graph generation).

2.3 Dynamics over τ time steps

If one has τ − 1 permutations π1, . . . , πτ−1, which are applied in sequence to the

graph, then one can naturally extend (2.1)-(2.10) to form dynamic graph Cheeger

constants Hτ
G and Ĥτ

G over τ time steps. Denote π(0) = Id, π(t) = πt ◦ · · · ◦ π2 ◦ π1,
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t = 1, . . . , τ − 1, and define

Hτ
G := min

V1,V2 partition V
Hτ
G(V1, V2), (2.22)

where

Hτ
G(V1, V2) =

∑τ−1
t=0 |Cπ(t)(V1, V2)|∑τ−1

t=0 min{Dπ(t)(V1), Dπ(t)(V2)}
. (2.23)

Similarly, define

Ĥτ
G := min

V1,V2 partition V
Ĥτ
G(V1, V2), (2.24)

where

Ĥτ
G(V1, V2) =

∑τ−1
t=0 |Cπ(t)(V1, V2)|

min{
∑τ−1

t=0 Dπ(t)(V1),
∑τ−1

t=0 Dπ(t)(V2)}
(2.25)

To construct the τ -time step dynamic Laplacian, denote by Pt the permutation

matrix for πt (according to (2.13)) with P0 = Id, and define

Lτ =

∑τ−1
t=0 (Pt · · ·P2P1)−1L(Pt · · ·P2P1)

τ
. (2.26)

The τ -time step normalised dynamic Laplacian can be found by

Lτ = D−1/2LτD−1/2, (2.27)

where D is the degree matrix for the initial graph G(V,E). One has the following

trivial extension of Theorem 2.2.3(1):

Theorem 2.3.1. Let G = G(V,E) be a simple, connected graph. Define Ĥτ
G and

Lτ as in (2.24) and (2.27), respectively. If λ2 is the second largest (by magnitude)

eigenvalue of Lτ , then

Ĥτ
G ≤

√
−2λ2. (2.28)

The results of Theorem 2.2.2 (see appendix) also hold in this τ -step situation,

however, we do not present a τ -time step version of Theorem 2.2.3(2).

Remark 2.3.2. The expressions (2.24) and (2.25) calculate the quality of the cut on

π(t)(G) after each permutation π(t). If one is interested in a sequence of permutations

π1, . . . , πτ−1 but only cares about the quality of the cut at time 0 and at time τ − 1,

then one would instead consider π(τ−1) as a single permutation and use (2.1)-(2.10)

or (2.11)-(2.12) instead.

2.4 Numerical method and experiments

We can use the new Laplacian matrix Ldyn to construct bisections of G that are

robust to a single (resp. multiple) permutations. The algorithm to partition G
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Algorithm 2.1: Dynamic spectral partition for graphs

1 Let G be a connected graph, and π a graph isomorphism on G. Form the

matrix Ldyn according to (2.18).

2 Solve the matrix eigenvalue problem Ldyng2 = λ2g2, where λ2 is the first

non-trivial eigenvalue of Ldyn, with corresponding eigenvector g2.

3 Let f = D−1/2g2, where D is the degree matrix of G. Then for each

β ∈ {fi}ki=1, partition the vertex set V of G into V β
1 = {vi ∈ V : fi ≤ β} and

V β
2 = {vi ∈ V : fi > β}; there are at most k − 1 nontrivial partition of this

form.

4 Output the partitions V = V β
1 ∪ V

β
2 that minimises Hdyn

G (V β
1 , V

β
2 ) or

Ĥdyn
G (V β

1 , V
β

2 ).

under a single iteration of dynamics is a minor modification of the construction of

bisections of a static graph in Section 1.1.3, which we outline in Algorithm (2.1)

For dynamic spectral partition over τ -time steps, one applies the following mod-

ifications to Algorithm 2.1

1. In step 1 and 2 of Algorithm 2.1, replace Ldyn with Lτ (2.27).

2. In step 4 of Algorithm 2.1, replace Hdyn
G (V β

1 , V
β

2 ) and Ĥdyn
G (V β

1 , V
β

2 ) with

Hτ
G(V β

1 , V
β

2 ) (2.23) and Ĥτ
G(V β

1 , V
β

2 ) (2.25), respectively.

To illustrate our method, we apply vertex permutation dynamics to two graphs

with very different connective structures. Firstly, a graph with obvious static com-

munity structures, where we apply dynamics to disrupt these community structures.

Secondly, we consider dynamics to a large randomly generated graph, where there

are no clear static community structures, nor dynamic community structures. In

both cases, we search for community structures that are robust to the given vertex

permutation dynamics. We note that Algorithm 2.1 can be applied to large graphs

with thousands of vertices, because only the first nontrivial eigenvector of Ldyn is

required to generate the partitions {V β
1 , V

β
2 } for some β ∈ R, and at most k − 2

comparisons are made between the partitions {V β
1 , V

β
2 } to find a β that minises

HG(V β
1 , V

β
2 ).

2.4.1 Example 1: A structured graph

Let G be the 3-regular Ellingham-Horton 54-graph; see Figure 2.2.
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(a)

(b)

Figure 2.2: Ellingham-Horton 54-graph. Obvious static community structures are

labelled “A”, “B”, “C”. Shown is the result of the spectral bisection method de-

scribed in Section 1.1.3 using L. The resulting partition is shown as V1 (colored

vertices), V2 (non-colored vertices) and the partition boundary (red edges). (a)

G: |C(V1, V2)| = 4, D(V1) = 54, D(V2) = 108. (b) π(G): |Cπ(V1, V2)| = 30,

Dπ(V1) = 54, Dπ(V2) = 108.

The standard (static) spectral bisection method

We first attempt to solve the static balanced bisection problem using the second

eigenvector g2 of the Laplacian matrix L as described in Section 1.1.3. The vector

f = D−1/2g2 (shown in Figure 2.3a) orders the vertices and produces at most k− 1

distinct partitions of the form {V β
1 , V

β
2 }; we select the partition with the lowest value

of HG(V β
1 , V

β
2 ) given by (1.2). The results are shown in Figure 2.2a, with the vertices

corresponding to V1 colored green and those in V2 uncolored. The edges that connect

V1 and V2 are colored red. The corresponding numerical quantities are in the “L”

column of Table 2.1. The degree counts of V1 and V2 are relatively unbalanced; this
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is because the graph consists of three main clusters of approximately equal degree

sum, and it is natural to statically partition the graph by grouping two clusters

together. In practice, many graphs may not have a natural community structure.

For example, consider a complete graph G of any degrees. There can be at most

k − 1 unique values of HG(V1, V2) for any {V1, V2} that partitions G, with each

unique value of HG(V1, V2) corresponding to |V1| = 1, 2, . . . , k − 1. Moreover, since

|V β
1 | = 1, 2, . . . , k − 1 for some β ∈ Rk, the partition {V β

1 , V
β

2 } is optimal for HG

some β ∈ Rk.

(a) L (b) Lτ

Figure 2.3: Plots of f = D−1/2g2, where g2 is the second eigenvector of either L or

Ldyn on the Ellingham-Horton 54-graph. (a) f from the static Laplacian L. (b) f

from the dynamic Laplacian Ldyn. The letters “A”, “B”, “C” and the vertical red

lines refer to the static community structures labelled in Figure 2.2. The horizontal

green line indicates the optimal value of β used for selecting V1, V2.

We now introduce a vertex permutation πv : V → V , which will disrupt the

cluster structure. The particular permutation we apply to the vertex labels is the

cyclic permutation (18, 36, 18 + 2, 36 + 2, 18 + 4, 36 + 4, 18 + 6, 36 + 6, . . . , 18 +

16, 36 + 16). The vertex collections V1 and V2 in π(G) are shown in Figure 2.2b,

colored green and white, respectively. The edges in πe(E) that connect V1 and V2

are colored red, and one now sees a large increase in the number of these edges.

Thus, the partition V1, V2, which nicely captured the cluster structure of the static

graph, is not robust under the permutation π; in other words, V1, V2 do not capture

community structures for both G and π(G). The relevant numerical quantities are

listed in the “L” column of Table 2.1. One sees a large increase in Hπ(G)(V1, V2)

compared to the value of HG(V1, V2).
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New dynamic spectral bisection method

We now seek to determine community structures that are robust under the permu-

tation π. To do this, we form the matrix Lτ and compute the second eigenvector g2.

The vector f = D−1/2g2 (shown in Figure 2.3b) orders the vertices and produces at

most n − 1 distinct partitions of the form {V β
1 , V

β
2 } as described earlier in Section

2.2; we select the partition with the lowest value of Hdyn
G (V β

1 , V
β

2 ) given by (2.10).

Because the degree of each vertex is 3, one has Hdyn
G (V β

1 , V
β

2 ) = Ĥdyn
G (V β

1 , V
β

2 ) for

all partitions V β
1 , V

β
2 , thus we report only the former quantity.

The results are shown in Figure 2.4a and Figure 2.4b with the vertices corre-

sponding to V1 colored green and those in V2 uncolored. The edges that connect V1

and V2 are colored red. In contrast to the partition in Figure 2.2, there are relatively

few red edges in both Figure 2.4a and Figure 2.4b. The corresponding numerical

quantities are in the “Ldyn” column of Table 2.1.

Quantity L Ldyn

|C(V1, V2)| 4 4

|Cπ(V1, V2)| 30 4

D(V1), D(V2) 54, 108 114, 48

Dπ(V1), Dπ(V2) 54, 108 114, 48

HG(V1, V2) 0.0741 0.0833

Hπ(G)(V1, V2) 0.3148 0.0833

Table 2.1: Results of spectral bisection using the second eigenvectors of L and Ldyn

for the Ellingham-Horton 54 graph. The column headed “L” contains evaluations

using the partition {V1, V2} that minimises HG(V β
1 , V

β
2 ). The column headed “Ldyn”

contains evaluations using the partition {V1, V2} that minimises Hdyn
G (V β

1 , V
β

2 ). The

partitions V1, V2 are obtained using the methods described in Section 1.1.3 and

Algorithm 2.1.

The value of HG(V1, V2) produced via Ldyn is slightly larger than that produced

by L (0.0833 vs. 0.0741), as the latter is tailored to minimising Hdyn
G , however, the

value of Hπ(G)(V1, V2) produced by Ldyn is much lower than that via L (0.0833 vs.

0.3148). Note that the partition found by the degree normalised eigenvector f in

Figure 2.3a cannot be found as a partition from f in Figure 2.3b because f arising

from the latter vector assigns extreme negative and positive values to the clusters B

and C in Figure 2.2. Thus, the static Laplacian L will not group together clusters

B and C and prefers to adjoin cluster A to cluster B or C.
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(a)

(b)

Figure 2.4: Ellingham-Horton 54-graph. Shown is the result of the spectral bisection

method described in Section 2.3 using Lτ . The resulting partition is shown as V1

(colored vertices), V2 (non-colored vertices) and the partition boundary (red edges).

(a) G: |C(V1, V2)| = 4, D(V1) = 114, D(V2) = 488. (b) π(G): |Cπ(V1, V2)| = 4,

Dπ(V1) = 114, Dπ(V2) = 48.

Dynamic spectral bisection with multiple permutations

We now demonstrate the dynamic spectral bisection of G over 10 time steps. We

have a set of 9 graph isomorphisms πt, t = 1, 2, . . . , 9 applied in sequence to G. This

set of transformations is designed to disrupt the cluster structure corresponding to

the subregions B and C in Figure 2.4 via vertex interchange between the subregions

B ∪ C and A. In particular, when t is an even integer, the permutation on vertex

labels corresponding to πt is the concatenation of the eight disjoint transpositions:

(18 + 2i, 36 + 2i), for i = 0, 1, . . . , 8. When t is an odd integer the vertex label

permutation πt,p corresponding to πt is given by πt,p
(
(t+ 1)/2

)
= (t+ 1)/2 + 17.

The sequence of graph isomorphisms πt, t = 1, . . . , 9 produces a total of 10
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graphs, each corresponding to the state of the graph at time t; i.e. the set of graphs

π(t)(G) where π(t) = πt◦. . .◦π2◦π1, t = 1, . . . , 9 and π(0) = Id. We seek to determine

a cluster structure that remains intact in each of these 10 graphs. To do this, we

form the matrix Lτ using (2.27) and compute the second eigenvector g2. The vector

f = D−1/2g2 orders the vertices and produces at most k − 1 distinct partitions of

the form {V β
1 , V

β
2 } as described earlier in Section 2.2; we select the partition with

the lowest value of Hτ
G(V β

1 , V
β

2 ) given by (2.23).

(a) t=2

(b) t=7

Figure 2.5: Ellingham-Horton 54-graph. Shown is the result of the spectral bisection

method described in Section 2.3 using the 10 permutations π0, . . . , π9 to create Lτ

as defined in (2.27). The resulting partitions shown are V1 (colored vertices), V2

(non-colored vertices) and the partition boundary (red edges) at times t = 2 and

t = 7. (a) π(2)(G): |Cπ(2)(V1, V2)| = 15, Dπ(2)(V1) = 81, Dπ(2)(V2) = 81. (b) π(7)(G):

|Cπ(7)(V1, V2)| = 15, Dπ(7)(V1) = 54, Dπ(7)(V2) = 81.

The results are shown in Figure 2.5a and Figure 2.5b for the time steps t = 2

and t = 7 respectively. The vertices corresponding to V1 are colored green and

those in V2 uncolored. The edges that connects V1 and V2 are colored red. Note
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that the community structures at the two different times t = 2 and t = 7 are

exactly the same; in fact our computed partition displays the same community

structure across each time step including the initial time with the corresponding

graph G. The numerical quantities for π(t)(G), t = 0, . . . 9 are |C(t)
π (V1, V2)| = 15

and D
(t)
π (V1) = D

(t)
π (V2) = 81 for each t; the partitions V1 and V2 are perfectly

balanced in terms of degree. Finally one computes H10
G (V1, V2) = 0.1852 using

(2.23). We note again that Ĥ10
G (V1, V2) = H10

G (V1, V2) as all vertices have degree 3.

Detailed information on each of the graphs π(t)(G), t = 0, . . . , 9 is provided in Table

2.2.

Quantity |C(t)
π (V1, V2)| D

(t)
π (V1) D

(t)
π (V1) HG(V1, V2) Hτ

G(V1, V2)

t 0 1 1 3 4 5 6 7 8 9 1, . . . , 9 1, . . . , 9 - -

L 4 30 30 4 10 32 32 10 16 34 54 108 0.0741 0.3741

Lτ 15 15 15 15 15 15 15 15 15 15 81 81 0.1852 0.1852

Table 2.2: Results of spectral bisection of the Ellingham-Horton 54 graph, using the

second eigenvectors of L and Lτ to minimise HG and H10
G , respectively. The parti-

tions V1, V2 are obtained using the method described in Section 1.1.3 and Algorithm

2.1.

Recall that in addition to the large disruption of the clusters B and C by the

vertex permutations, just over half of the 10 permutations induce vertex exchange

between the cluster A and B ∪C. The dynamic community structure of the regions

A and B∪C is therefore weakened. Thus we see in Figure 2.5 a preference to group

some vertices from A with those in B ∪ C, and vice-versa.

2.4.2 Example 2: Randomly generated graph.

We now illustrate our method on a large random graph. We randomly generated a

connected graph G on k = 1000 vertices, with average degree approximately eight, as

follows. Create a 4000-vector x filled with uniformly randomly distributed integers

sampled from {1, 2, . . . , 1000}. Create a second vector y by sorting x in ascending

order. Produce 4000 edges of the form [xi, yi], i = 1, . . . , 4000, and remove all self-

loops and duplicate edges. We arrive at a graph with 3985 edges (and a total degree

sum of 7970).

The permutation πv : V → V is given by πv(vi) = vi+300 (mod 1000), i =

1, . . . , 1000. We computed the second eigenvector of both L (resp. Ldyn) for this

graph and from these eigenvectors we created the corresponding partitions that

minimise HG(V1, V2) (resp. Hdyn
G (V1, V2), Ĥdyn

G (V1, V2)). The numerical results are

summarised in Table 2.3.
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L Ldyn Ldyn

Quantity minimising HG(V1, V2) minimising Hd
G(V1, V2) minimising Ĥdyn

G (V1, V2)

|C(V1, V2)| 1122 1438 1445

|Cπ(V1, V2)| 2035 1550 1557

D(V1), D(V2) 3986, 3984 3776, 4194 3845, 4125

Dπ(V1), Dπ(V2) 3975, 3995 4006, 3964 4131, 3839

HG(V1, V2) 0.2816 0.3808 0.3758

Hdyn
G (V1, V2) 0.3967 0.3860 0.3907

Ĥdyn
G (V1, V2) 0.3966 0.3840 0.3769

Table 2.3: Results of spectral bisection using the second eigenvectors of L and Ldyn

to find low values for HG(V1, V2), Hdyn
G (V1, V2), and Ĥdyn

G (V1, V2), for a randomly gen-

erated graph of 1000 vertices. The partitions V1, V2 are obtained using the method

described in Section 1.1.3 and Algorithm 2.1.

Referring first to the solution obtained from L, Table 2.3 shows that the number

of edges cut to disconnect the graph and minimise HG is just over one-quarter of

all edges (1122 edges), indicating that there is no strong clustering in the random

graph. Moreover, the bisections are almost perfectly balanced in terms of total

degree counts. When subjected to the permutation dynamics π, the number of edges

cut in π(G) almost doubles to 2035 edges. This is because there is no particular

relation between the structure of G and the permutation π, so the bisection induced

on π(G) is effectively random, and cuts about half of the total number of edges.

Considering the bisection obtained from Ldyn, attempting to minimiseHdyn
G (V1, V2),

we see that this bisection cuts slightly more edges (1438 edges) than the bisection

from L (1122 edges) on G. However, when the dynamics of π is applied to the

graph, the number of edges traversing V1 and V2 in π(G) increases only a little (to

1550 edges). Thus, one pays a little extra to bisect the initial graph, but this reaps

large benefits when the dynamics are applied. The bisection obtained from Ldyn,

attempting to minimise Ĥdyn
G (V1, V2), cuts a slightly larger number of edges and is

slightly less well degree-balanced in this example.

2.5 Conclusion to the chapter

Classical isoperimetry theory on graphs studies the connective structures of static

graphs. In this chapter, we considered a dynamic extension of classical graph

isoperimetry theory, whereby the graph connective structures are evolving due to

vertex permutation dynamics. We search for community structures that are robust
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to permutation dynamics, by introducing a dynamic balanced graph bisection prob-

lem designed for finding persistently highly interconnected subregions of dynamic

graphs.

To find good solution to our balanced graph bisection problem, we constructed

a dynamic graph Laplacian, and show that the spectrum of our dynamic graph

Laplacian is characterised by a dynamically modified version of the Rayleigh quo-

tient. Furthermore, we proved a dynamic graph Cheeger inequality, and proposed

a natural extension of the Laplacian matrix-based spectral method of graph par-

titioning. Finally, we numerically demonstrated that eigenvectors of our dynamic

graph Laplacian efficiently separate the graph into components that retain their

community structure under dynamics.

The discrete dynamic isoperimetry problem on graphs naturally leads to the con-

tinuous dynamic isoperimetry problem on manifolds considered in [49]. The result

of dynamic graph Cheeger inequality in this chapter, as well as the known connec-

tion between the normalised graph Laplacian and the Laplace-Beltrami operator

(see e.g. [12]) shows promise for forming a theoretical connection between dynamic

isoperimetry on graphs and dynamic isoperimetry on manifolds. Many prior works

that relates graph partitioning problems and dynamical systems used Ulam-Galerkin

method to approximate the Perron-Frobenius operator; e.g. [31, 107].
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A dynamic Laplacian for

identifying Lagrangian coherent

structures on weighted

Riemannian manifolds.

Early attempts to characterise transport barriers in fluid dynamics include time-

dependent invariant manifolds (such as lobe-dynamics [102]) and finite-time Lya-

punov exponents [98, 99, 37, 68, 109]. More recently, in two-dimensional area-

preserving flows, [69] proposed finding closed curves whose time-averaged length is

stationary under small perturbations; this aim is closest in spirit1 to the predecessor

work of this chapter [49], though the latter theory applies in arbitrary finite dimen-

sions and the curves need not be closed. In parallel to these efforts, the notion of

almost-invariant sets [32] in autonomous systems spurred the development of prob-

abilistic methods to transport based around the transfer operator. In relation to

transport barriers, numerical observations [56] indicated connections between the

boundaries of almost-invariant sets and invariant manifolds of low-period points.

Transfer operator techniques were later extended to dynamical systems with gen-

eral time dependence, with the introduction of coherent sets as the time-dependent

analogues of almost-invariant sets [58, 48]. Topological approaches to phase space

mixing have also been developed [63], including connections with almost-invariant

sets [100]. A differential geometric perspective of shape coherence in transport was

1The extension [94] of [69] to three dimensions is less aligned with [49], as [94] asks for uniform

expansion in all directions in the two-dimensional tangent space to potential Lagrangian coherent

structures surfaces, whereas the approach of [49] in three-dimensions is simply concerned with

surface growth without a uniform expansion restriction.
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studied in [85, 86].

In [49], Froyland considered the identification of Lagragian coherent structures by

searching for subsets of a manifold whose boundary size to enclosed volume is min-

imised in a time-averaged sense under general time-dependent nonlinear dynamics.

Solutions to this dynamic minimisation problem were constructed from eigenvectors

of a dynamic Laplace operator, a time-average of pullbacks of Laplace operators un-

der the dynamics. It was shown in [49] that the dynamic Laplace operator arises as

a zero-diffusion limit of the transfer operator constructions for finite-time coherent

sets in [48]. This result demonstrated that finite-time coherent sets (those sets that

maximally resist mixing over a finite time interval), also had the persistently small

boundary length to enclosed volume ratio property; intuitively this is reasonable be-

cause diffusive mixing between sets can only occur through their boundaries. Thus,

finite-time coherent sets have dual minimising properties: slow mixing (probabilis-

tic) and low boundary growth (geometric). The theory in [49] was restricted to the

situation where the advective dynamics was volume-preserving, and to tracking the

transport of a uniformly distributed tracer in Euclidean space.

In the current setting of weighted Riemannian manifolds, whereby the manifolds

M and N are equipped with the full dimensional measures µr and νr, respectively.

The generalisation of the above dynamic minimisation problem for a single iteration

of transformation T : M → N is

Hdyn
M (Γ) :=

µr−1(Γ) + νr−1(TΓ)

2 min{µr(M1), µr(M2)}
, (3.1)

where M1 and M2 are connected components of M disconnected by Γ. Comparing

(3.1) to the classical Cheeger ratio (1.8), the numerator of (3.1) not only measures

the initial µr−1-size of Γ, but also measures the νr−1-size of image TΓ. We elaborate

on the importance of the formulation (3.1) later in Section 3.2, for now we point

out that (3.1) is the natural non-volume-preserving generalisation of Equation (1)

in [49].

Beyond the generalised dynamic isoperimetric problem, our main contributions

are firstly the formulation of a dynamic Sobolev constant (a dynamic version of the

classical Sobolev constant given by Definition 2 on p. 96 in [22]) in our general

setting and a corresponding proof of a dynamic version of the celebrated Federer-

Fleming theorem (see Theorem 3.2 in [49] for the dynamic statement in the volume-

preserving, uniform density, flat manifold setting), which equates the geometric

Cheeger constant with the functional dynamic Sobolev constant. Secondly, we define

a generalised version of the dynamic Laplace operator constructed by equation (4)
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in [49]. In our general setting (see Section 3.3.1 for details), this operator is

4dyn :=
1

2
(4µ +H∗4νH) , (3.2)

where 4µ,4ν are weighted Laplace-Beltrami operators, weighted by µr, νr respec-

tively. The operator H : L2(M,m, µr) → L2(N, n, νr) is defined by normalising

the transfer operator P : L1(M,Vm) → L1(N, Vn) via Hf = P(f · hµ)/hν (previ-

ously defined in Section 4.1 of [48] in the flat, weighted manifold setting), where

hµ, hν are the densities of µr, νr with respect to the volume forms dVm, dVn, and

H∗ is the adjoint of H. We will see later that H is simply composition with T−1

and H∗ is composition with T . See Section 3.3.2 for continuous time versions of

4dyn. A related construction is considered in [9] from the point of view of heat flow,

where they search for a single metric for a Laplace-Beltrami operator, rather than

solving an isoperimetric-type problem, and follow ideas of [117] to consider flow in

Lagrangian coordinates and make connections to almost-invariant sets subjected to

time-dependent diffusion.

We prove a dynamic version of the well-known Cheeger inequality in our gen-

eralised setting (see [24] for the classic (static) Cheeger inequality and [49] for the

dynamic Cheeger inequality in the volume-preserving, uniform density, flat manifold

setting), which bounds the Cheeger constant above in terms of the dominant non-

trivial eigenvalue of 4dynf = λf (with natural Neumann-like boundary conditions).

Finally, we prove that

lim
ε→0

(H∗εHε − Id)f

ε2
= c · 4dynf, (3.3)

where Id is the identity,Hε is an ε-mollified version ofH (see (3.43)), used to compute

finite-time coherent sets in [48] and c is an explicit constant. Because singular vectors

of Hε (eigenvectors of H∗εHε) are used in [48], and eigenvectors of 4dyn are used in

the present work, this result shows that in the small perturbation limit, the purely

probabilistic constructions of [48] coincide with the purely geometric constructions

of 3.2.

This chapter is arranged as follows. In Section 3.1 we provide relevant back-

ground material from differential geometry. Section 3.2 describes the dynamic

isoperimetric problem on weighted Riemannian manifolds and states the dynamic

Federer-Fleming theorem. Section 3.3 details the dynamic Laplace operator on

weighted manifolds and states the dynamic Cheeger inequality. In Section 3.4, we

state the convergence result (3.3). Section 3.5 contains illustrative numerical ex-

periments and most of the proofs are deferred to Appendix B. In comparison with

[49], Theorem 3.2.4, 3.3.3, 3.3.4 and 3.4.1 in this chapter generalise, respectively

Theorems 3.1, 4.1, 3.2 and 5.1 in [49].
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3.1 Primer on differential geometry

Let M be a compact, connected r-dimensional C∞ Riemannian manifold. We denote

the boundary of M by ∂M . If ∂M is non-empty, then we assume that ∂M is C∞.

We are interested in tracking the masses of the r and r − 1 dimensional subsets of

M as this manifold is transformed by a general smooth dynamical system. We now

give a brief introduction of the key tools in differential geometry for performing the

above task; additional details are provided in Appendix B.2.

Recall that to compute the r-dimensional volume of the objects in M , one consid-

ers a metric tensor on the tangent space TxM at the point x ∈M . In particular, the

Riemannian metric m on M associates each point x ∈M with a symmetric bilinear

form m(·, ·)x : TxM × TxM → R, yielding a volume form ωrm on M (see Appendix

B.2.1 for more details). The differential r-form ωrm defines an r-dimensional volume

measure on any measurable subset U ⊂ M by Vm(U) :=
∫
U
ωrm. To describe the

mass distribution of the objects in M , we consider a weighted Riemannian manifold

(M,m, µr), where µr is an absolutely continuous probability measure with respect

to Vm; that is, there exist hµ ∈ L1(M,Vm) such that

µr(U) =

∫
U

dµr =

∫
U

hµ · ωrm,

for all measurable U ⊂M , and µr(M) = 1. Since any subset of M with µr measure

zero has no physical impact, without loss of generality we assume that the density

hµ is uniformly bounded away from zero.

Let (N, n, νr) be another weighted Riemannian manifold, where N is a compact,

connected r-dimensional C∞ Riemannian manifold, n the Riemannian metric on N ,

and νr an absolutely continuous probability measure with respect to Vn. As before,

we shall assume that the density hν of νr is uniformly bounded away from zero.

Consider a general dynamical system T : M → N that acts as a C∞-diffeomorphism

from M onto N . For the purpose of modeling physical processes, we assume that no

mass is lost under transport; that is, the measure µr on M is transformed under the

action of T to νr := µr ◦ T−1. Because the densities hµ, hν are uniformly bounded

away from zero, νr = µr ◦ T−1, and T is a diffeomorphism, the nondegeneracy of

the metrics n,m implies that the Jacobian associated with T must be uniformly

bounded above and away from zero (see Appendix B.2.3). We emphasise that n is

not necessarily the pushforward of m, and that T is not an isometry from (M,m)

to (N, n) in general.

Let TM denote the tangent bundle of M ; that is, TM := ∪x∈M{x} × TxM . A

vector field V on M is a section of the bundle TM ; that is the image of x ∈ M

under V is the tangent vector Vx ∈ TxM . For k ≥ 1, we denote the space of k-times
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continuously differentiable vector fields on M by Fk(M). For a pair V ,W ∈ Fk(M),

one can view m(V ,W) : M → R as a Ck function on M given by m(V ,W)(x) =

m(Vx,Wx)x for all x ∈ M . Denote by T ∗M the dual bundle of TM ; that is the

cotangent bundle T ∗M : ∪x∈M{x} × T ∗xM , where T ∗xM is the vector dual of TxM .

The covector fields on N are sections of the bundle T ∗M .

It is practical to associate the diffeomorphism T : M → N with the linear tangent

map T∗ that takes vector fields on M to vector fields on N , which we now define. Let

σx : (−ε, ε) → M be a family of parameterised curves in M , with σx(0) = x ∈ M .

Suppose for each x ∈M that Vx ∈ TxM is tangent to the curve σx at x. The action

of Vx on a differentiable function f at each point x ∈M is defined to be the number

Vxf
∣∣
x

:=
∂(f ◦ σx)

∂t

∣∣∣∣
t=0

; (3.4)

that is Vxf
∣∣
x

measures the initial rate of change of f along a curve with tangent Vx
at the point x. The local pushforward map (T∗)x0 : Tx0M → TTx0N is defined at a

fixed point x0 ∈M as

[(T∗)x0Vx0 ]g
∣∣
Tx0

:= Vx0(g ◦ T )
∣∣
x0
,

for all g ∈ Ck(N,R). The collection of local pushforward maps define a linear

tangent map T∗ : Fk(M)→ Fk(N) via

[(T∗V)g](Tx) := [(T∗)xVx]g
∣∣
Tx
, (3.5)

for all x ∈M , and g ∈ Ck(N,R).

Next, we define the linear cotangent map T ∗ that takes covector fields on N to

covector fields on M as follows. Given a vector field V on M , the action of V on a

differentiable function f on M is a function Vf : M → R given by Vf(x) := Vxf
∣∣
x
.

By the duality of the tangent and cotangent spaces, the cotangent vector fields are

differential 1-forms df that map vector fields on M to functions on M via df(V) :=

Vf . The cotangent mapping on differential 1-forms is defined by

[T ∗(dg)]V := dg(T∗V) = V(g ◦ T ) = (T∗V)g, (3.6)

for all V ∈ Fk(M) and g ∈ Ck(N,R). One can associate the cotangent mapping T ∗

with an exterior product of p-forms, 1 ≤ p ≤ r (see Appendix B.2.1). In particular,

since the metric tensor n is a symmetric 2-form on Fk(N), one defines the pullback

metric of n by

T ∗n(V1,V2)(x) := n(T∗V1, T∗V2)(Tx), (3.7)

for all vector fields V1,V2 on M , and each point x ∈M ; that is, the pullback metric

T ∗n is defined in such a way that T is an isometry from (M,T ∗n) to (N, n).
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To compute the co-dimension 1 volume of r−1 dimensional subsets of (M,m, µr)

and (N, n, νr), one uses the induced Riemannian metric. Suppose Γ is a compact

C∞ co-dimension 1 subset of M . The embedding Φ : Γ ↪→M induces a Riemannian

metric on Γ via the pullback metric associated with Φ; that is Φ∗m is the induced

metric on Γ. Let ωr−1
m denote the (r − 1)-dimensional volume form corresponding

to the induced metric Φ∗m (i.e. ωr−1
m = ωrΦ∗m). To describe the distribution of mass

on Γ, we define the (r − 1)-dimensional measure µr−1 on M by

µr−1(Γ) :=

∫
Γ

hµ · ωr−1
m , (3.8)

where hµ is the density of µr; the measure µr−1 captures the mass distribution on Γ

via hµ. Similarly, the co-dimension 1 mass distribution on a C∞, compact subset of

N is captured by the r−1 dimensional measure νr−1 via the density hν of νr. We now

provide an example to demonstrate that the µr−1 measure on certain hypersurfaces

can be significantly increased under the action of a transformation T .

3.1.1 Shear on a two-dimensional cylinder

Let M = [0, 4)/ ∼ ×[0, 1] be a 2-dimensional cylinder in R2, where ∼ is identification

at interval endpoints; that is, M is periodic in the first coordinate with period 4. The

Riemannian metric e on M is given by the Kronecker delta δij, so that the volume

form ω2
e on M is ω2

m = dx1dx2. To form a weighted Riemannian manifold (M, e, µ2),

we set the density hµ of µ2 to be a positive and periodic function hµ(x1, x2) =
1
8

(
sin(πx1) + 2

)
.

Consider the hypersurface Γ = {x ∈ M : x1 = 1.5, 3.5}; we choose this surface

because it is the solution of the classical “static” isoperimetric problem defined

by minimising (3.9) without the second term in the numerator. The curve Γ is

two vertical lines on M that pass over regions with minimal density hµ as shown

in Figure 3.1a. One can compute µ1(Γ) analytically by noting that the induced

Riemannian metric on Γ is given by dx2; thus

µ1(Γ) =

∫ 1

0

hµ(1.5, x2) dx2 +

∫ 1

0

hµ(3.5, x2) dx2 = 0.25.

Let us now apply the following transformation to M ,

T (x1, x2) =

(
x1 +

cosh (2x2)− 1

2
, x2

)
,

where the first coordinate is computed modulo 4. The map T is a nonlinear horizon-

tal shear. The hypersurface Γ is transformed to TΓ under the action of T as shown
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(a)

(b)

Figure 3.1: Deformation of 2-dimensional cylinder under nonlinear shear T . (a)

Colours are values of hµ, and black lines are the hypersurface Γ. (b) Values of

hµ ◦ T−1, and TΓ.

in Figure 3.1b. The shearing magnitude
(

cosh(2x2) − 1
)
/2 is chosen to simplify

the analytical computation of ν1(TΓ). It is easy to verify that T is area-preserving.

Since T is area-preserving and ν2 = µ2 ◦ T−1, one has∫
TM

hν dx1dx2 =

∫
M

hµ dx1dx2 =

∫
TM

hµ ◦ T dx1dx2,

which implies hν = hµ ◦ T in this example.

To compute the ν1 measure on TΓ, we parametrise the curve TΓ by TΓ =(
σc(s), s

)
for s ∈ [0, 1], where σc(s) = c + cosh (2s)−1

2
, for c = 1.5, 3.5. Furthermore,

by using the fact that hν = hµ ◦ T , one has

hν
(
σc(s), s

)
= hµ(c, s) =

sin(πc) + 2

8

∣∣∣∣
c=1.5,3.5

=
1

8
,

for all t ∈ [0, 1]. Therefore

ν1(TΓ)

=

∫ 1

0

√
1 +

∣∣∣∣∂σ1.5

∂s
(s)

∣∣∣∣2 · hν(σ1.5(s), s
)
ds+

∫ 1

0

√
1 +

∣∣∣∣∂σ3.5

∂s
(s)

∣∣∣∣2 · hν(σ3.5(s), s
)
ds

=
2

8

∫ 1

0

√
1 +

∣∣∣∣∂σ1.5

∂s

∣∣∣∣2 ds
=

2

8

∫ 1

0

√
1 + sinh2(2s) ds = 0.4534.
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Thus the ν1 measure of TΓ is almost double that of the µ1 measure of Γ. Cor-

respondingly, the numerator in (3.9) will be undesirably large. In Section 3.5 we

show how to use our new machinery to find an improved choice for Γ that takes into

account both the weight hµ and the dynamics of T .

3.2 A dynamic isoperimetric problem on weighted

manifolds

Our goal is to detect Lagrangian coherent structures on the weighted Riemannian

manifold (M,m, µr); i.e. subsets of M that resist mixing with the surrounding phase

space by having persistently small boundary size to internal size. Following [49], we

introduce a version of the dynamic isoperimetric problem, generalised to the situa-

tion where the dynamics need not be volume preserving, and occurs on a possibly

weighted, possibly curved manifold.

Let Γ be a compact C∞-hypersurface in M that disconnects M into two disjoint

open subsets M1 and M2 with M1 ∪ Γ ∪M2 = M . To begin with, we model the

dynamics as a single iterate of T . The subsets M1 and M2 are transformed into

N1 := TM1 and N2 := TM2, with TΓ the disconnecting surface separating N1 and

N2 in N . Consider the following optimisation problem:

Definition 3.2.1. Define the dynamic Cheeger ratio Hdyn
M by

Hdyn
M (Γ) =

µr−1(Γ) + νr−1(TΓ)

2 min{µr(M1), µr(M2)}
. (3.9)

The dynamic isoperimetric problem is defined by the optimisation problem

Hdyn
M = inf

Γ
{Hdyn

M (Γ)}, (3.10)

where Γ varies over all C∞-hypersurfaces in M that partition M into M = M1 ∪
Γ ∪M2. The number Hdyn

M is called the dynamic Cheeger constant.

Note that by the definition of νr, one has µr(M1) = νr(N1) and µr(M2) = νr(N2).

Importantly, one does not have µr−1(Γ) = νr−1(TΓ) in general, because n is not

necessary the pushforward of m (see also the direct computation in Section 3.1.1).

Thus, one could rewrite (3.9) as

Hdyn
M (Γ) =

µr−1(Γ)

2 min{µr(M1), µr(M2)}
+

νr−1(TΓ)

2 min{νr(TM1), νr(TM2)}
. (3.11)

By searching over all C∞-hypersurfaces Γ in M to minimise Hdyn
M (Γ), the first ratio

term of (3.11) attempts to minimise mixing between the subsets M1 and M2 across
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the boundary Γ, through the mechanism of small co-dimensional 1 mass µr−1(Γ)

at the initial time, and small co-dimensional 1 mass νr−1(TΓ) at the final time.

Having a persistently small boundary is consistent with slow mixing in the presence

of small magnitude diffusion, and is also consistent with measures of mixing adapted

to purely advective dynamics such as the mix-norm [87] and negative index Sobolev

space norms [118]. The reason for the constraint min{µr(M1), µr(M2)} is to ensure

that M1 and M2 found, both have macroscopic r-dimensional mass to avoid trivial

solutions. Thus, the optimal solution for (3.10) is a C∞-hypersurface that represents

an excellent candidate for a Lagrangian coherent structure, in the sense that the

corresponding subsets M1 and M2 are able to retain their resistance to mixing in

the presence of the prescribed dynamics T .

To see why this problem is a truly dynamic problem, consider the 2-dimensional

flat cylinder [0, 4)/ ∼ ×[0, 1] described in Section 3.1.1. The hypersurface Γ = {x ∈
M : x1 = 1.5, 3.5} partitions M into two disjoint subsets M1 = (1.5, 3.5)× [0, 1] and

M2 = [0, 1.5)× [0, 1]∪ (3.5, 4)× [0, 1], forming the partition M = M1 ∪Γ∪M2. It is

straightforward to calculate µ2(M1) = µ2(M2) = 0.5. We note that Γ is optimally

minimising for the first ratio term of (3.11); thus mixing is minimised between M1

and M2. However, under the action of T , the ν1 measure on TΓ is almost doubled

(from 0.25 to 0.4534). Thus, the sets M1 and M2 are not able to maintain their

resistance to mixing, and therefore are poor candidates for Lagrangian coherent

structures (LCSs).

3.2.1 Multiple discrete time steps and continuous time

The “single iterate” problem described above can easily be extended to multiple

discrete time steps or continuous time. Let {(M t,mt, µtr)}τt=1 be τ , r-dimensional

weighted Riemannian manifolds, where each M1,M2, . . . ,M τ is C∞, compact, and

connected. For each 1 ≤ t ≤ τ , define co-dimension 1 measures µtr−1 on M t via

the densities htµ of each µtr analogous to (3.8). Let us now consider a composition

of several maps T1, T2, . . . , Tτ−1, such that Tt(M
t) = M t+1 and µtr = µt+1

r ◦ Tt for

t = 1, 2, . . . τ − 1. Denoting T (t) = Tt ◦ · · · ◦ T2 ◦ T1, t = 1, . . . , τ − 1 and with

T (0) the identity map. These maps might arise, for example, as τ -time maps of a

time-dependent flow. If we wish to track the evolution of a coherent set under these

maps, penalising the boundary of the evolved set T (t)(Γ) after the application of

each Ti, then we can define

Hτ
M(Γ) :=

1
τ

∑τ−1
t=0 µ

t+1
r−1(T (t)Γ)

min{µ1
r(M

1
1 ), µ1

r(M
1
2 )}

, (3.12)
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and consider the time-discrete dynamic optimisation problem

Hτ
M := inf

Γ
Hτ
M(Γ), (3.13)

as a natural generalisation of Hdyn
M .

In continuous time, we consider an evolving Riemannian manifold M(t), t ∈ [0, τ ]

under a (possibly time-dependent) ODE ẋ = F (x, t), where F (x, t) is C∞ at each

x ∈M(t); i.e. the initial manifold M(0) is transformed under the smooth flow maps

T (t) : M(0) → M(t) arising from F for each t ∈ [0, τ ]. We denote the Riemannian

metric on M(t) by mt, and define absolutely continuous probability measures µtr

on M(t) for each t ∈ [0, τ ]; one has an evolving weighted Riemannian manifold(
M(t),mt, µtr

)
. Note that the metrics mt need not be related for different t. For all

t ∈ [0, τ ], we assume µ0
r = µtr ◦ T (t) on M(t). Define

H
[0,τ ]
M (Γ) :=

1
τ

∫ τ
0
µtr−1(T (t)Γ) dt

min{µ0
r

(
M1(0)

)
, µ0

r

(
M2(0)

)
}
, (3.14)

and

H
[0,τ ]
M := inf

Γ
H

[0,τ ]
M (Γ), (3.15)

as a time-continuous generalisation of Hdyn
M .

3.2.2 Dynamic Federer-Fleming theorem on weighted man-

ifolds

Our first result on dynamic isoperimetry is the dynamic version of the Federer-

Fleming theorem, which links Hdyn
M with a function-based optimisation problem.

The gradient of f ∈ C1(M,R) denoted by ∇mf is a vector field satisfying

m(∇mf,V) = Vf, (3.16)

for all V ∈ Fk(M). To track the transformation of a function in L1(M,Vm) under

T , the standard tool in dynamical systems is the Perron-Frobenius operator P :

L1(M,Vm)→ L1(N, Vn) given by∫
U

Ph · ωrn =

∫
T−1U

h · ωrm, (3.17)

for all measurable U ⊂ N . For a point-wise definition of P , see (B.22) in the

appendix. Recalling hν ∈ L1(N, Vn) is the density of νr with respect to ωrm, and the

fact that νr = µr ◦ T−1, one has∫
U

Phµ · ωrn =

∫
T−1U

hµ · ωrm = µr(T
−1U) = νr(U) =

∫
U

hν · ωrn, (3.18)
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for all measurable U in N . Therefore, hν = Phµ. We define the pushforward

operator H : L2(M,m, µr)→ L2(N, n, νr) (from [48]) by

Hf :=
P(f · hµ)

hν
. (3.19)

Lemma 3.2.2. The operator H : L2(M,m, µr)→ L2(N, n, νr) is well defined, may

be expressed as Hf = f ◦ T−1, and has adjoint H∗g = g ◦ T .

The proof of this result is given in the Appendix B (see Lemma B.2.4). Following

[49], we define the dynamic Sobolev constant :

Definition 3.2.3. Define the dynamic Sobolev constant sdyn by

sdyn = inf
f

∫
M
|∇mf |m dµr +

∫
N
|∇nHf |n dνr

2 infα∈R
∫
M
|f − α|m dµr

, (3.20)

where f : M → R varies over all C∞ functions on M , and H is given by (3.19).

The dynamic Sobolev constant sdyn defined above admits the following geometric

interpretation: consider the numerator of sdyn, one can show (by Lemma B.2.1 in

the appendix) that ∫
M

|∇mf |m dµr =

∫ ∞
−∞

µr−1({f = β}) dt,

and, ∫
N

|∇nHf |n dνr =

∫ ∞
−∞

νr−1({Hf = β}) dβ.

=

∫ ∞
−∞

νr−1(T{f = β}) dβ,

where the final equality is due to Lemma 3.2.2. Furthermore, there is a deep con-

nection between sdyn and the dynamic Cheeger constant Hdyn
M . One has

Theorem 3.2.4 (Dynamic Federer-Fleming theorem). Let (M,m, µr) and

(N, n, νr) be weighted Riemannian manifolds, where M and N are C∞, compact and

connected. Let T : M → N be a C∞ diffeomorphism, with νr = µr ◦ T−1. Assume

the density of µr is C∞ and uniformly bounded away from zero. Define Hdyn
M and

sdyn by (3.9) and (3.20) respectively. Then

sdyn = Hdyn
M . (3.21)

Proof. The inequality sdyn ≥ Hdyn
M is a straightforward modification of the corre-

sponding result in [49]. The other direction is deferred to the appendix.
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Furthermore, in the notation of Section 3.2.1 one can define the continuous time-

step dynamic Sobolev constant for continuous-time dynamics by

s[0,τ ] = inf
f

1
τ

∫ τ
0

(∫
M(t)
|∇mtf |mt dµtr

)
dt

infα
∫
M(0)
|f − α|m0 dµ0

r

. (3.22)

Again by the linearity of our construction, it is straightforward to obtain a dynamic

Federer-Fleming theorem for continuous-time dynamics; that is

s[0,τ ] = H
[0,τ ]
M . (3.23)

The proof is obtained by a straightforward modification of the proof of Theorem

3.2.4 analogous to the continuous-time modification in the proof of Corollary 3.3 in

[49].

3.3 The dynamic Laplace operator on weighted

manifolds

In this section, we further develop the theory of dynamic isoperimetry established

for Rr in [49], to obtain results that hold on weighted, non-flat Riemannian mani-

folds (M,m, µr) for non-volume-preserving dynamics. More precisely, we define the

dynamic Laplace operator and state and prove dynamic versions of Cheeger’s in-

equality. The dynamic Laplace operator will be the key object in the computation

of solutions of the dynamic isoperimetric problem.

3.3.1 The dynamic Laplace-Beltrami operator

Classical isoperimetric theory has deep connections with the Laplace-Beltrami oper-

ator (see [17, 22, 80, 90]). It is well known that one can recover certain geometrical

information about a manifold M from the spectrum of Laplace-Beltrami operator

[101, 105]. In this work, our domain of interest is a weighted Riemannian manifold

(M,m, µr). The dynamics T maps M onto N = T (M). The geometric properties of

N can be drastically different to M , and we are motivated to construct an operator

on (M,m, µr) whose spectrum reveals important geometric structures on both M

and N .

For an unweighted Riemannian manifold M , the standard Laplace-Beltrami op-

erator is defined as the composition of the divergence with the gradient [22]. Let

U ⊆ M be open, with C∞ boundary ∂U and unit normal bundle n along ∂U ; i.e.
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for W ∈ Fk(∂U), m(W ,n)(x) = 0 for all x ∈ ∂U . The divergence of V ∈ F1(M),

denoted by divmV is a function satisfying∫
U

divmV · ωrm :=

∫
∂U

m(V ,n) · ωr−1
m , (3.24)

for all open U ⊆ M . The Laplace-Beltrami operator acting on a function f ∈
C2(M,R) is defined by 4mf := divm(∇mf), where ∇m is as in (3.16).

Recall that in the setting of a weighted Riemannian manifold (M,m, µr), if hµ is

the density of µr, then when computing weighted volumes, the volume form ωrm is

scaled by hµ at each point in M . According to the definition (3.16), the gradient does

not depend on the weight hµ, because the metric m is independent of hµ. However,

the divergence given by (3.24) does depend on hµ because it is defined in terms of

ωrm. We define the weighted divergence divµ of a V ∈ F1(M) for (M,m, µr) by

divµV :=
1

hµ
divm(hµV), (3.25)

where the density hµ of µr is assumed to be C1(M,R). Note that by (3.24)∫
U

(divµV)·hµωrm =

∫
U

divm(hµV)·ωrm =

∫
∂U

m(hµV ,n)·ωr−1
m =

∫
∂U

m(V ,n)·hµωr−1
m .

(3.26)

Hence, the definition (3.25) for weighted divergence is analogous to the unweighted

version (3.24).

Now as a consequence of (3.25) and the well-known fact that divm(hµV) =

divm(V) + m(∇mhµ,V) (see e.g equation (13) p.3 in [22]), one has the following

definition for the weighted Laplacian on a weighted Riemannian manifold (M,m, µr):

4µf := divµ(∇mf) =
1

hµ
divm(hµ∇mf) = 4mf +

m(∇mhµ,∇mf)

hµ
, (3.27)

for all f ∈ C2(M,R). Analogous to (3.27), one forms the weighted Laplacian 4ν

on N with respect to the metric n and density hν for the weighted Riemannian

manifold (N, n, νr).

We now describe the construction of the dynamic version of 4µ, where we push

forward and pull back functions between L2(M,m, µr) and L2(N, n, νr) by using H
(3.19) and its adjoint H∗.

Definition 3.3.1. Assume the density of µr is C1(M,R). Define the dynamic Lapla-

cian 4dyn : C2(M,R)→ C0(M,R) by

4dyn :=
1

2
(4µ +H∗4νH), (3.28)

where the weighted Laplacians 4µ,4ν are given by (3.27), and H is as in (3.19).
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The first term in the RHS of (3.28) is the weighted Laplacian 4µ on f ∈
C2(M,R). The second term pushes f forward by H to the function Hf . This

is then followed by the application of the weighted Laplacian 4ν to the function

Hf . The weighted Laplacian 4ν provides geometric information on the weighted

manifold (N, n, νr). The result is finally pulled back to a continuous function on

M via H∗. For example, consider the familiar setting of (M, e, `), where M is an

open subset of Rr, with ` the Lebesgue measure on M and e the standard Euclidean

metric (i.e. on each point in M , eij = δij for all 1 ≤ i, j ≤ r). If T : M → N is

volume preserving, then in the standard Euclidean coordinates {xi}ri=1 for M , and

{yi}ri=1 for N , one has

4dynf =
1

2

r∑
i=1

(
∂2f

∂x2
i

+
∂2(f ◦ T−1)

∂y2
i

◦ T
)
,

for all f ∈ C2(M,R); i.e. 4dyn is precisely the definition of the dynamic Laplacian

in [49] (where it is denoted by 4̂).

Corollary B.2.7 in the appendix provides an alternate representation of 4dyn:

4dynf =
1

2
(4m +H∗4nH) f +

1

2

(
m(∇mhµ,∇mf)

hµ
+
n(∇nhν ,∇nHf) ◦ T

hν ◦ T

)
.

(3.29)

The effect of the densities hµ, hν is completely captured by the terms in the second

parentheses of (3.29). Finally and importantly, we have

Proposition 3.3.2. The operator 4dyn may be represented as

4dyn =
1

2
(4µ +4µ̃)f, (3.30)

where 4µ̃ is the weighted Laplace-Beltrami operator on M defined by (3.27) with

respect to the metric T ∗n and density H∗hν = hν ◦ T .

For the proof, see Corollary B.2.8 in the appendix. We briefly discuss some

special cases of Proposition 3.3.2. If (M,m) = (N, n), then 4µ̃ in (3.30) is the

weighted Laplace-Beltrami operator on M with respect to the metric T ∗m and

density H∗hν = hµ
|det JT |

, where JT is the Jacobian matrix associated with T (see

(B.7)). If N = T (M) ⊂ Rd, m = n = e, and T is volume preserving, then 4µ̃

is the Laplace-Beltrami operator on M with respect to the metric T ∗e and density

H∗hν = hµ. Finally, if hµ ≡ 1 (uniform density) and T is volume preserving, one is

in the setting of [49], and 4µ̃ in (3.28) is the unweighted Laplace-Beltrami operator

with respect to the metric T ∗e.

46



Chapter 3

3.3.2 Continuous time

We now describe a time-continuous2 version of (3.28). Let
(
M(t),mt, µtr

)
be an

evolving weighted Riemannian manifold as in Section 3.2.1, with flow maps T (t) :

M(0) → M(t) arising from a (possible time-dependent) ODE ẋ = F (x, t), where

F (x, t) is C∞ at each x ∈ M(t). We define a time-continuous Perron-Frobenius

operator P(t) : L1(M(0), µ0
r) → L1(M(t), µtr) by

∫
M(t)
P(t)f · ωrmt =

∫
M(0)

f · ωrm0

for all t ∈ [0, τ ]. One now has the time-continuous pushforward operator H(t) :

L2(M(0),m0, µ0
r)→ L2

(
M(t),mt, µtr

)
given by

H(t)f :=
P(t)(f · h)

P(t)h
, (3.31)

for all t ∈ [0, τ ], where h is the density of the initial measure µ0
r.

Define the time-continuous generalisation of 4dyn as

4[0,τ ]f :=
1

τ

∫ τ

0

(
H(t)

)∗4µ,tH(t)f dt, (3.32)

where 4µ,t is the weighted Laplacian given by (3.27), with respect to the metric mt

and measure µtr for each t ∈ [0, τ ]. Furthermore, by a straightforward modification

of Corollary B.2.8 in Appendix B, one has(
H(t)

)∗4µ,tH(t) = 4µ̃,t,

for each t ∈ [0, τ ], where 4µ̃,t is a weighted Laplacian on M defined by (3.27) with

respect to the metric
(
T (t)
)∗

(mt) and density P(t)h ◦ T (t). Hence, one may express

(3.32) as

4[0,τ ]f =
1

τ

∫ τ

0

4µ̃,tf dt. (3.33)

3.3.3 Spectral theory and a dynamic Cheeger inequality on

weighted manifolds

In standard isoperimetric theory for a compact, connected Riemannian manifold M ,

one may use the spectrum of the Laplace-Beltrami operator 4m to reveal geometric

information about M . Variational properties characterise the spectrum of 4m (see

e.g. p.13 in [22] or p.210 in [88]). Extensions of these variational properties, which

carry dynamic information, can be developed for dynamic Laplacian on a compact

subset of Rr, under volume-preserving dynamics as in Theorem 3.2 in [49]. Here, we

generalise Theorem 3.2 in [49] to weighted, non-flat Riemannian manifolds, subjected

to non-volume-preserving dynamics.

2The time-discrete version of (3.28) is constructed similarly compared to the time-continuous

version.
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Theorem 3.3.3. Let (M,m, µr) and (N, n, νr) be weighted Riemannian manifolds,

where M and N are C∞, compact and connected. Let T : M → N be a C∞-

diffeomorphism such that νr = µr ◦ T−1. Define 4dyn and T ∗n by (3.28) and (3.7)

respectively. Consider the eigenvalue problem

4dynφ = λφ, (3.34)

with initial Neumann-type boundary condition

m([∇m +∇T ∗n]φ,n)x = 0, ∀x ∈ ∂M, (3.35)

where n is the normal bundle along ∂M . Assume the density of µr is C∞ and

uniformly bounded away from zero.

1. The eigenvalues of 4dyn are nonpositive, real, and form a decreasing sequence

0 = λ1 ≥ λ2 ≥ λ3 ≥ . . . with λk → −∞, as k →∞.

2. The corresponding eigenfunctions φ1, φ2, . . . are in C∞(M,R), the eigenfunc-

tion φ1 is constant, and eigenfunctions corresponding to distinct eigenvalues

are pairwise orthogonal in L2(M,m, µr).

3. Let 〈·, ·〉µ denote the inner-product on L2(M,m, µr), and | · |m =
√
m(·, ·)

the norm on tangent spaces induced by the metric tensor m. Define F 0 =

L2(M,m, µr) and F k := {f ∈ L2(M,m, µr) : 〈f, φi〉µ = 0 for i = 1, . . . , k}, for

k = 1, 2, . . ., then

λk = − inf
f∈Fk−1

∫
M
|∇mf |2m dµr +

∫
N
|∇nHf |2n dνr

2
∫
M
f 2 dµr

(3.36)

= − inf
f∈Fk−1

∫
M

(|∇mf |2m + |∇T ∗nf |2T ∗n) dµr

2
∫
M
f 2 dµr

, (3.37)

where H is given by (3.19). Moreover, the infimum of (3.36) is attained by

f = φk.

Proof. See Appendix B.

Equation (3.34) shows that the eigenvalues of4dyn take on larger negative values

when |∇mf |m is large with respect to µr and |∇nHf |n is large with respect to νr. To

obtain λk close to zero, one needs f and Hf to have low gradient, and particularly

in regions of high µr and νr mass, respectively. Compare this to (3.20), (3.22)

and (3.23), which make connections with level sets of f and the pushforward Hf .

Another way to state that λk is close to zero is to say that one needs the level

sets of f and Hf to be not large with respect to µr−1 and νr−1, respectively. This
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probably means a combination of not being large according to ωr−1
m and ωr−1

n (e.g.

if M is two-dimensional, the level sets are generally a small number of short curves

produced by an f which is not very oscillatory), and avoiding high density areas of

(M,m, µr) and (N, n, νr).

The following theorem provides an upper bound on how bad (how large) the

average size of an evolving boundary Γ can be; it bounds above the geometric

quantity Hdyn
M in terms of λ2, the first nontrivial eigenvalue of 4dyn. The classical

“static” version of this result, due to Cheeger [24], can be intuitively described in

terms of heat flow. Consider heat flow (generated by the Laplace operator) on a

solid dumbbell in two dimensions with a narrow neck. By initialising “positive heat”

on one side of the dumbbell and “negative heat” on the other side, the rate at which

the heat flow equilibriates will be slow because of the narrow neck. The eigenvalue

λ2 will be close to zero because of this slow equilibriation. Of course, the narrow

neck means that it is possible to very cheaply partition the dumbbell M into two

pieces M1, M2, with Γ cutting across the neck. Cheeger showed that a small λ2

implied a small Hdyn
M (a cheap way of disconnecting M). Theorem 3.3.4 injects

general nonlinear dynamics into these ideas, and extends Theorem 3.2 of [49] to

weighted manifolds and non-volume-preserving dynamics. In terms of heat flow, we

are effectively averaging the heat flow geometry across the time duration over which

our dynamics acts.

Theorem 3.3.4 (Dynamic Cheeger inequality). Let (M,m, µr) and (N, n, νr)

be weighted Riemannian manifolds, where M and N are C∞, compact and connected.

Let 4dyn and Hdyn
M be defined by (3.28) and (3.9) respectively. Assume the density

of µr is C∞ and uniformly bounded away from zero. If λ2 is the smallest magnitude

nonzero eigenvalue of the eigenproblem (3.34)-(3.35) with eigenfunction φ2, then

Hdyn
M ≤ inf

β∈(−∞,∞)
Hdyn
M ({φ2 = β}) ≤ 2

√
−λ2. (3.38)

Proof. See Appendix B.

By the linearity of our construction with respect to time, it is straightforward

to use variational properties to characterise the spectrum of 4[0,τ ] (see (3.33)) as in

Theorem 3.3.3. Moreover, by a modification (see Appendix B.6.1 for details), one

can obtain a continuous-time dynamic Cheeger inequality

H
[0,τ ]
M ≤ 2

√
−λ[0,τ ]

2 ,

where λ
[0,τ ]
2 is the second eigenvalue of 4[0,τ ] defined in (3.33). Consequently, one

can find good solutions to the continuous-time optimisation problem (3.15) by a

process identical to that outlined in Algorithm 3.1 below.
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Theorem 3.3.3 and Theorem 3.3.4 suggest the following dynamic spectral par-

titioning strategy: Let (M,m, µr) be a weighted Riemannian manifold. Suppose

one wishes to find a C∞ co-dimension 1 surface Γ in M , such that Γ partitions

M = M1∪Γ∪M2 and the dynamic Cheeger ratio Hdyn
M (Γ) given by (3.9), (3.12), or

(3.14) is small. Instead of searching over all possible smooth co-dimension 1 surfaces

in M to find the optimal solution for (3.10), one can consider a significantly smaller

collection of C∞ co-dimension 1 surfaces generated by the eigenfunction φ2, and

still find a good solution to (3.10). This is the content of Algorithm 3.1, which is

standard in manifold learning and graph partitioning, and is also used in [49, 51].

Algorithm 3.1: Dynamic spectral partitioning

1 Given a weighted Riemannian manifold (M,m, µr) and a single iteration of

transformation T on M , form the weighted Laplacian 4µ are as in (3.32)

2 Solve the eigenvalue problem 4dynφ2 = λ2φ2, where λ2 is the first non-trivial

eigenvalue of 4dyn, with corresponding C∞(M) eigenfunction φ2.

3 For each β ∈ [minφ2,maxφ2], partition M into M = Mβ
1 ∪ Γβ ∪Mβ

2 via

Mβ
1 = {x ∈M : φ2(x) < β}, Mβ

2 = {x ∈M : φ2(x) > β}, and the C∞

hypersurface Γβ = {x ∈M : φ2(x) = β}.
4 Compute Hdyn

M (Γβ) for each β ∈ [minφ2,maxφ2] and extract the optimal β0;

the hypersurface Γβ0 is an approximate solution to the dynamic isoperimetric

problem (3.9).

Remark 3.3.5. Algorithm 3.1 can be extended to multi-element partitions if one is

searching for multiple coherent objects. Early transfer operator based methods (e.g.

[32, 34]) proposed the use of a numerical spectral gap as a heuristic for determining

the number of almost-invariant sets; that is, a gap between λk and λk+1 indicates

that k is a natural number3 of almost-invariant sets to search for. This idea is

commonly used in the transfer operator community and is equally applicable to

finite-time coherent sets [48] (where one would look for a gap in the singular value

spectrum) and to the dynamic Laplace operator [51]. Such a heuristic has also been

used for eigenvalues of (static) Laplace-Beltrami operators and their discrete graph-

based counterparts in manifold learning (see e.g. the review [84]), where it is called

the eigengap heuristic. Once an estimate of a natural number k ≥ 1 of coherent

objects has been determined in this way, one embeds the eigenfunctions φ2, . . . , φk+1

3In settings where there is a good functional analytic setup for the transfer operator P, one

defines the number of almost-invariant (resp. coherent) sets as the number of eigenvalues (resp.

Lyapunov exponents) outside the essential spectrum [31] (resp. [55]).
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in k-dimensional Euclidean space, as per e.g. [110]). One can then employ standard

clustering methods to identify k + 1 distinct coherent objects M1, . . . ,Mk+1. In the

case of weighted manifolds, the balancing of the µr measures of the sets M1, . . . ,Mk

is important. This could be achieved by, for example, weighted fuzzy clustering,

analogous to the algorithm in [47].

3.4 Geometry and probability: linking finite-time

coherent sets with dynamic isoperimetry

We demonstrate that the probabilistic approach for identifying coherent structures

in [48] is tightly connected to the dynamic Laplacian given by (3.28), extending

Theorem 5.1 of [49] to the non-volume-preserving, weighted manifold setting. Let

(M, e, µr) and (N, e, νr) be weighted Riemannian manifolds, where µr, νr are abso-

lutely continuous probability measures with respect to the Lebesgue measure `r, e

the Euclidean metric, and M a compact, r-dimensional subset of Rr. In [48] (see

(3.40)-(3.43) below for the corresponding treatment in (M,m, µr)), one applies lo-

cal diffusion on M , by locally averaging the functions in L1(M, `) via the operator

DX,ε : L1(X, `r) → L1(Xε, `r), where X ⊂ Xε ⊆ Rr. By composing DX,ε with the

Perron-Frobenius operator P , one obtains an operator Pε that applies local diffusion

to X before and after the application of dynamics. Furthermore, it was shown in

[48], that by normalising Pε, one obtains an operator Hε : L2(X,µr) → L2(X ′ε, νr),

where X and X ′ε are subsets of Rr; the operator Hε applies diffusion and advection

to the weighted space (M, e, µr), where e is the Euclidean metric on Rr. Finally, it

was shown in [48] that the leading sub-dominant singular vectors of the operator Hε

correspond to finite-time coherent sets.

Theorem 5.1 in [49] states that if T is volume preserving and `r = µr = νr, then

lim
ε→0

(H∗εHε − Id)f

ε2
(x) =

1

2
(4e + P∗4eP)f(x), (3.39)

for all x ∈ M ⊂ Rr, where P∗ is the adjoint of the Perron-Frobenius operator

P with respect to the standard inner-product 〈·, ·〉e; namely composition with T

(the Koopman operator), and H∗ε is the adjoint of Hε with respect to a weighted

inner-product (see (3.44) below).

In the following, we first generalise the above constructions to a weighted Rie-

mannian manifold setting. We then improve the point-wise convergence (3.39) to a

uniform convergence over all f ∈ C3(M,R). Let Eρ(x) denote the Euclidean ball,

centered at x with radius ρ. Define q : R+ → R with support in the open interval
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(0, 1), such that for any vector v = v − 0 = (v1, v2, . . . , vr) ∈ Rr∫
E1(0)

vivjq(|v|2) d`(v) =

{
0 if i 6= j

c if i = j
, (3.40)

for some fixed constant c, and the integral is over all unit vectors in Rr centered

at the origin. For ε > 0, let Qm,ε(x, z) := ε−r/2q(distm(x, z)/
√
ε) be a family of

functions, where distm is the Riemannian distance function on M with respect to

the metric m. For open subsets X ⊂ Xε ⊆ M and each ε > 0, define the diffusion

operator DX,ε : L1(X, Vm)→ L1(Xε, Vm) by

DX,εf(x) =

∫
X

Qm,ε(x, y)f(y) · ωrm(y), (3.41)

for all x ∈M . If necessary we rescale q so that for ε sufficiently small DX,εIX = IXε ,
where IX : M → {0, 1} is the characteristic function. In particular, we assume

limε→0

∫ 1

0
q(v) dv = 1. One can interpret DX,ε as a mollifier on f , that averages f

at the point x ∈ X over the ε-neighbourhood of x according to the distribution q.

Similarly for Y ′ε ⊂ Yε ⊆ N we define a local diffusion operator DY ′ε ,ε : L1(Y ′ε , Vn) →
L1(Yε, Vn) by DY ′ε ,εf(x) :=

∫
Y ′ε
Qn,ε(x, y)f(y) · ωrn(y).

Recall the definition of the Perron-Frobenius operator P given by (3.17). Set

Y ′ε = TXε, one has an advection-diffusion process between L1(X, Vm) and L1(Yε, Vn),

given by the following diagram:

L1(X, Vm)
DX,ε−→ L1(Xε, Vm)

P−→ L1(Y ′ε , Vn)
DY ′ε ,ε−→ L1(Yε, Vn). (3.42)

We form Pε : L1(X, Vm) → L1(Yε, Vn) according to (3.42) via the composition

Pεf := DY ′ε ,ε ◦ P ◦ DX,εf . Normalising Pε yields the operator

Hεf(y) :=
Pε(f · hµ)

Pεhµ

∣∣∣∣
y

=

∫
X

κε(x, y)f(x) dµr(x), (3.43)

where

κε(x, y) :=

∫
Xε
Qn,ε(y, Tz)Qm,ε(z, x) · ωrm(z)∫

X

(∫
Xε
Qn,ε(y, Tz)Qm,ε(z, x) · ωrm(z)

)
dµr(x)

.

Let hνε = Pεhµ, and define νr,ε := dhνε/dVn. If κε(x, y) ∈ L2(X × Yε, µr × νr,ε) then

Hε : L2(X,µr)→ L2(Yε, νr,ε) is compact (by Lemma 1 in [48]).

By obvious modification of the arguments in [48], one can verify that the adjoint

operator H∗ε : L2(Yε, νε,r)→ L2(X,µr) is given by the composition

H∗εg = D∗X,ε ◦ H∗ ◦ D∗Y ′ε ,εg. (3.44)

Note that for small ε, HεIX = IYε and H∗εIYε = IX , the leading singular values Hε

approaches 1 as ε → 0, with corresponding left and right singular vectors IX and

IYε (by Proposition 2 in [48]).
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By construction, with a suitable choice for q the leading singular value of Hε is

always 1, and the second leading singular vector of Hε is used to partition X ⊂ M

into finite-time coherent sets in [48]. The operator Hε applies local diffusion on

X ⊂M , before and after X is transformed into Yε under the action T . Similarly, the

operator H∗ε applies local diffusion on Yε, before and after Yε ⊂ N is pulled-back to

X ⊂M under T . Therefore, if X contains finite-time coherent sets (and Yε contains

their images), then there will be a tendency for the boundaries of these coherent sets

to be small both before and after advection in order to minimise diffusive mixing

through their boundaries. The reason for adding diffusion is to give compactness

of Hε acting on L2, ensuring the singular values of Hε close to 1 are isolated, and

to detect subsets of X and Yε that have small boundary both before and after the

application of T ; see Section 4 in [48] for details.

An interesting question is “what happens in the limit ε→ 0?” The composition

H∗εHε is approximately the identity for small ε, which appears to provide no dynam-

ical information. However, by subtracting the identify and rescaling by ε, one can

extract the next term in an ε-expansion of H∗εHε. The following result generalises

Theorem 5.1 in [49] for Rr to the case of non-flat weighted Riemannian manifolds;

subjected to non-volume-preserving dynamics.

Theorem 3.4.1. Let (M,m, µr) and (N, n, νr) be weighted Riemannian manifolds,

where M and N are C∞, compact and connected. Let T : M → N be a C∞

diffeomorphism. Assume νr = µr ◦ T−1, and the density of µr is C3. Define 4dyn

by (3.28), and Hε and its adjoint H∗ε by (3.43) and (3.44) respectively. There exists

a constant c such that

lim
ε→0

(
sup

‖f‖C3(M,R)≤1

∥∥∥∥(H∗εHε − Id)f

ε
− c · 4dynf

∥∥∥∥
C0(M,R)

)
= 0, (3.45)

where the constant c is as in (3.40).

Proof. See Appendix B.

As in the analogous result for small magnitude diffusion presented in Theorem

5.1 [49], one now has a geometric interpretation of finite-time coherent sets con-

sidered in [48]. Due to Theorem 3.4.1, given ε sufficiently small, the action of the

operator H∗εHε − I is approximated by the action of the dynamic Laplacian 4dyn.

Thus, one has a dual interpretation of finite-time coherent sets as defined proba-

bilistically in [48] to minimise global mixing (including now in the weighted, non-

volume-preserving situation), and as defined geometrically in [49] and the present

chapter using the notion of dynamical isoperimetry to force small boundary size
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under nonlinear dynamics. A similar result has also been proven in [9] for a slightly

differently defined 4dyn.

3.5 Numerical experiments

In this section we use Theorems 3.3.3 and 3.3.4 to compute solutions to the dy-

namic isoperimetric problem (3.9). Our examples will showcase Lagrangian coher-

ent structures on weighted domains with non-volume-preserving dynamics. To keep

the numeric simple, we do not explicitly model curvature and limit the dimension

in the examples to 2. However, numerical examples in 3 dimensions are complete

feasible. We consider 2-dimensional weighted, flat Riemannian manifolds (M, e, µ2)

and (N, e, ν2), where M and N are 2-dimensional compact subsets of R2, and e is

the Euclidean metric. We consider measures µ2 with smooth densities hµ that are

uniformly bounded away from zero, and nonlinear dynamics T : M → N such that

ν2 = µ2 ◦ T−1. Before we give the specific details on the 2-dimensional weighted

Riemannian manifolds (M, e, µ2), (N, e, ν2) and the transformations T , we outline

the numerical discretisation of the weighted Laplacian 4dyn defined by (3.28) and

the operator H. We have employed a very simple low-order method, but in principle

any standard operator approximation method can be used instead.

3.5.1 Numerical approximation for H and H∗

To obtain a numerical approximation forH, we start with tracking the time evolution

of the density hµ under T . To achieve this, we numerically estimate the Perron-

Frobenius operator P using Ulam’s method [120]. We follow the construction of [58]:

partition M and N into the collections of small boxes {B1, . . . , BI} and {C1, . . . , CJ}
respectively, and let T be the transition matrix of volume transport between the

boxes in M and boxes in N under the action of T . Let zi,k, k = 1, . . . , Ki be Ki

uniformly distributed test points in the box Bi. We numerically estimate the entries

of T by computing

Tij =
#{zi,q ∈ Bi : T (zi,q) ∈ Cj}

Ki

. (3.46)

The matrix T is a row-stochastic matrix, where the (i, j)th entry estimates the

conditional probability of a randomly chosen point in Bi entering Cj under the ap-

plication of T . The connection between the matrix T and the operator P is as

follows. Denote by πI : L1(M, e, Vm) → span{IB1 , . . . , IBI} and θJ : L1(N, e, νr) →
span{IC1 , . . . , ICJ} the orthogonal Ulam projections formed by taking expectations

on partition elements. Define PI,J := θJ ◦ P . One has PI,J : span{IB1 , . . . , IBI} →
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span{IC1 , . . . , ICJ}, so that T is the matrix representation of PI,J under left multi-

plication.

We discretise the density hµ of µr to a column vector u of length I, by setting

ui = µr(Bi). If some sets Bi have zero µr-measure, then we remove them from our

collection as there is no mass to be transported. We therefore assume that ui > 0 for

all i = 1, . . . I. To approximate the density hν of νr, we use the fact that hν = Phµ
(by (3.18)). Thus v = T>u is the numerical approximation of hν . We assume

vj > 0 (if vj = 0, then we remove the corresponding sets Cj because they represent

νr(Cj) = 0).

To numerically estimate H given by (3.19), we use the matrix T and the vectors

u and v. In particular, the components of θJ(Hf) are approximated by

[Hf ]j ≈
I∑
i=1

Tji(fiui)

vj
, (3.47)

where fi are the components of the vector f := πIf . Define the I × J matrix T̃ by

T̃ij := Tijui/vj. (3.48)

Then (3.47) is equivalent to θJ(Hf) ≈ T̃>f ; that is the matrix T̃ under left

multiplication is the numerical approximation of H. To numerically estimate H∗

from H, we note by definition 〈Hf, g〉µ = 〈f,H∗g〉ν , for all f ∈ L2(M,m, µr) and

g ∈ L2(N, n, νr). Hence,

I∑
i=1

fi · [H∗g]i ·ui ≈ 〈f,H∗g〉µ = 〈Hf, g〉ν ≈
I∑
i=1

J∑
j=1

T̃ijfi ·gj ·vj =
I∑
i=1

fi ·
J∑
j=1

Tijgj ·ui,

where [H∗g]i and gj are the components of the vectors πI(Hf) and θJg respectively.

Therefore, we have

[H∗g]i ≈
J∑
j=1

Tijgj. (3.49)

The operator H∗ is numerically estimated by the matrix T under right multiplica-

tion.

3.5.2 Finite-difference estimate for 4dyn

To numerically solve the eigenvalue problem 4µf = λf on (M, e, µr), we discretise

4µ using the second equality of (3.27); that is

4µf =
1

hµ
dive(hµ∇ef). (3.50)
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In preparation for the numerical approximations for our 2-dimensional examples,

which will be a rectangle, cylinder or torus, we construct a K by L grid system

for M . Let (x1, x2) be Euclidean coordinates on M . We cover M with I grid

boxes {Bi}Ii=1 of uniform size bx1 × bx2 (one can easily consider the more general

case of nonuniform box sizes), and re-index the boxes {Bi}Ii=1 to {Bk,l}1≤k≤K,1≤l≤L,

indexing the x1-direction with k, and the x2-direction with l; clearly K × L = I.

The re-indexing of the grid boxes Bk,l induces a re-index of f via

f := (f1,1, f2,1, . . . , fK,1, f1,2, f2,2 . . . , f1,L, f2,L . . . , fK,L), (3.51)

and similar re-index of u and v.

We employ standard finite-difference schemes to obtain numerical approxima-

tions for the RHS of (3.50). Starting with the approximation of hµ∇ef , one has

in Euclidean coordinates (x1, x2), the vector hµ∇ef = hµ(∂f/∂x1, ∂f/∂x2). To

compute the derivatives ∂f/∂x1 and ∂f/∂x2 numerically, we apply the standard

central-difference technique to obtain on the grid box Bk,l,

∂f

∂x1

≈ fk+1,l − fk−1,l

2bx1
and

∂f

∂x2

≈ fk,l+1 − fk,l−1

2bx2
,

thus on the grid box Bk,l

hµ∇ef ≈
(
uk,l

fk+1,l − fk−1,l

2bx1
, uk,l

fk,l+1 − fk,l−1

2bx2

)
. (3.52)

Next, we numerically solve the divergence dive applied to the RHS of (3.52). By

central-difference approximations, one has on the grid box Bk,l

4µf =
1

hµ
(dive(hµ∇ef)) ≈ 1

uk,l

[
uk+1,l

fk+2,l − fk,l
4b2
x1

− uk−1,l
fk−2,l − fk,l

4b2
x1

+uk,l+1
fk,l+2 − fk,l

4b2
x2

− uk,l−1
fk,l − fk,l−2

4b2
x2

]
.

(3.53)

Denote the resulting finite-difference approximation of 4µ by the I × I matrix ∆µ.

Rearranging (3.53), then ∆µ applied to f is a vector of length I with components

[∆µf ]k+K(l−1) =
1

4b2
x1

uk+1,l

uk,l
fk+2,l +

1

4b2
x1

uk−1,l

uk,l
fk−2,l +

1

4b2
x2

uk,l+1

uk,l
fk,l+2

+
1

4b2
x2

uk,l−1

uk,l
fk,l−2 −

(
1

4b2
x1

uk+1,l + uk−1,l

uk,l
+

1

4b2
x2

uk,l+1 + uk,l−1

uk,l

)
fk,l,

(3.54)

for 1 ≤ k ≤ K, 1 ≤ l ≤ L. Note that if uk,l is constant for all 1 ≤ k ≤ K and

1 ≤ l ≤ L, then the expression (3.54) becomes the standard 5-point stencil Laplace

matrix. Moreover, as in the standard 5-point stencil approximations, the error of

the approximate (3.53) is max{O(b4
x1

),O(b4
x2

)}.
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To treat the numerical approximation of 4µ at the boundary of M , we apply

the usual Neumann boundary condition e(∇eϕ,n)x = 0 for all x ∈ ∂M (where n is

unit normal to ∂M). This Neumann boundary condition is imposed by symmetric

reflection [116] in the above modified finite-difference scheme as follows: Consider

the grid boxes B1,l for 1 ≤ l ≤ L; one has a boundary on the left side edge of each

of these grid boxes. By construction, the unit normal n along the left side edge

of the grid boxes {B1,l}Ll=1 is given by (−1, 0). Therefore, the boundary condition

e(∇eϕ,n)x = 0 is satisfied by reflecting the artificial f0,l = f2,l, f−1,l = f1,l and

u0,l = u2,l for all 1 ≤ l ≤ L. One applies similar symmetric reflections to all Bk,l at

the boundary of M .

By definition (3.28), and the numerical approximations we obtained for 4µ, 4ν ,

H and H∗, one has the finite-difference approximation for the weighted dynamic

Laplacian ∆dyn given by

∆dyn = ∆µ + T∆νT̃
>, (3.55)

where the matrices T and T̃ are given by (3.46) and (3.48) respectively, and ∆µ, ∆ν

by (3.54). We note that the matrices ∆µ,∆ν ,T and T̃ are sparse and consequently

∆dyn is sparse. One can numerically solve the finite dimensional eigenvalue problem

∆dynf = λf for small eigenvalues λ, and in particular λ2 and corresponding eigen-

function φ2. To find a good solution Γ to the dynamic isoperimetric problem (3.9),

one can use the level sets of φ2 as candidates for Γ as in Algorithm 3.1.

3.5.3 Case study 1: dynamics on a cylinder

We now demonstrate our technique on a weighted 2-dimensional cylinder (M, e, µ2),

where M = [0, 4)/ ∼ ×[0, 1] and hµ(x1, x2) = 1
8

(
sin(πx1) + 2

)
as in Section 3.1.1.

We set our computational resolution for M to be K × L = 256 × 64 square grid

boxes Bk,l of side length b = 1/64, and select the number of test points in each grid

box to be Q = 4004. We consider two different types of nonlinear transformations

T1 and T2 acting on M :

T1(x1, x2) =

(
x1 +

cosh (2x2)− 1

2
, x2

)
, (3.56)

T2(x1, x2) =
(
x1 + x2, x2 + 0.1x2 sin(2πx2)

)
, (3.57)

where the first coordinate is computed modulo 4 in both cases. The map T1 is

the area-preserving, nonlinear horizontal shear from the example considered in Sec-

tion 3.1.1. The map T2 is a linear horizontal shear, composed with vertical area-

4One can also use as few as 25 points per box and still obtain good results.
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distortion; i.e.

T2(x1, x2) = T̂2(x1 + x2, x2),

where

T̂2(x1, x2) =
(
x1, x2 + 0.1x2 sin(2πx2)

)
,

compresses the mass distribution of M in towards the horizontal line x2 = 0.5.

The transformation T1 on M

We optimally partition M using Algorithm 3.1 to find a good solution Γ to the

dynamic isoperimetric problem (3.9). First, we consider the dynamic Laplacian for

T1 acting on M . In step 1 of Algorithm 3.1, we construct the matrix ∆dyn given

by (3.55) as the numerical approximation of 4dyn via the finite-difference scheme

outlined in Section 3.5.2, and numerically solve the finite-dimensional eigenproblem

∆dynφ = λφ. The leading numerical eigenvalues λ1, λ2, . . . λ7 of ∆dyn are 0, −0.6046,

−1.3739, −2.3221, −3.2886, −3.4091, −3.7056 . . .. The components of the numerical

eigenvector φ2 corresponding to λ2 takes on at most 256×64 unique values; at most

one value on each of the grid box. Step 2 of Algorithm 3.1, generates partitions of

M = Mβ
1 ∪Γβ∪Mβ

2 from level sets of φ2. Finally, one computes Hdyn
M (Γβ) for each t,

and finds the optimal Γβ0 as a solution to the dynamic optimisation problem (3.9);

the results are shown in Figure 3.2.

It was found that the hypersurface Γβ0 is Hdyn
M minimising for β0 = −1.211 ×

10−5; see figures 3.2a and 3.2c. Note that the densities hµ form a region of low

µ1-mass in M about the lines {x ∈ M : x1 = 1.5, 3.5}. Thus, to minimise the

µ1-mass of the hypersurface Γβ0 in M , it is advantageous to have Γβ0 as short

curves in close proximity to the vertical lines {x ∈ M : x1 = 1.5, 3.5}. Moreover,

to effectively counter the shearing imposed by T1 so that the size of ν1-mass of

T1Γβ0 stays persistently small in TM , the curve Γβ0 bends horizontally towards

the left progressively more as x2 approaches 1 from 0. The µ1-mass of Γβ0 and its

image under T1 are µ1(Γβ0) = 0.3088 and ν1(T1Γβ0) = 0.3815; the level surface Γβ0

experiences significantly reduced deformation under the action of T1, compared to

the results of Section 3.1.1 shown by Figure 3.1b. Moreover, the partition M =

Mβ0
1 ∪ Γβ0 ∪Mβ0

2 has a perfectly balanced µ2-mass distribution between Mβ0
1 and

Mβ0
2 . One has Hdyn

M (Γβ0) = 0.6903, and this solution is a suitable candidate for

LCSs on (M, e, µ2).
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(a)

(b)

(c)

(d)

Figure 3.2: Partition of M using the eigenvector φ2 of 4dyn under nonlinear shear

T1 given by (3.56). (a) Colours are values of hµ, and black lines are the level surface

Γβ0 = {φ2 = −1.211×10−5}. (b) The level surfaces of φ2. (c) Colours are the values

of hν , and black lines are the level surface T1Γβ0 . (d) The level surfaces of Hφ2.

The transformation T2 on M

We repeat the above numerical experiment on the 2-cylinder, replacing the trans-

formation T1 with T2, and setting the initial mass density hµ to be uniformly

distributed on M . The leading numerical eigenvalues λ1, λ2, . . . λ6 of ∆dyn are

0,−0.7747± 0.0092i,−3.0900± 0.0199i, 3.8702,−4.5674± 0.0250i. In this example,

although ∆µ and ∆ν have real eigenvalues to numerical precision, when combined to

form ∆dyn, one obtains small imaginary parts. The eigenvalues λ2, λ3 should be real

and equal (i.e. λ2 has multiplicity 2), because of the symmetry obtained by trans-
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lating all objects in the x-coordinate direction. As before, we apply Algorithm 3.1

to partition M using the level surfaces of the second eigenfunction φ2 corresponding

to λ2 = −0.7747; the results are shown in Figure 3.3.

(a)

(b)

(c)

(d)

Figure 3.3: Partition of M using the eigenvector φ2 of 4dyn for the nonlinear shear

T2 given by (3.57). (a) Colours are values of hµ, and black lines are the level surface

Γβ0 = {φ2 = −3.4232 × 10−5}. (b) The level surfaces of φ2. (c) Colours are the

values of hν , and black lines are the level surface T2Γβ0 . (d) The level surfaces of

Hφ2.

It was found that the hypersurface Γβ0 is Hdyn
M minimising for β0 = −3.4232 ×

10−5; see figures 3.3a and 3.3c. The co-dimension 1 mass of Γβ0 and its image under

T2 are µ1(Γβ0) = 0.5682 and ν1(T2Γβ0) = 0.5435, respectively. Recall that the action

of T2 on M has the effect of compressing the mass distribution towards the horizontal
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line x2 = 0.5. To avoid a large ν1-mass of T2Γβ0 on T2M , one makes appropriate

compromises on the µ1-mass of Γβ0 in M . For example, in Figure 3.3c as the black

curves approach the dark green, high density region, they become more vertical

so as to traverse this high density region using a shorter curve length and reducing

their ν1-mass. This necessitates Γβ0 being slightly curved and having slightly greater

µ1-mass. Once again the partition M = Mβ0
1 ∪ Γβ0 ∪Mβ0

2 has a perfectly balanced

µ2-mass distribution of Mβ0
1 and Mβ0

2 . One has Hdyn
M (Γβ0) = 1.1117.

3.5.4 Case study 2: dynamics on a torus

Next we demonstrate our technique on a weighted 2-dimensional torus (T2, e, µ2),

where T2 = 2π(R/Z)×2π(R/Z) and hµ(x1, x2) = 1
8π2 (sin(x2−π/2)+2). We set our

computational resolution for M = T2, to be K × L = 128 × 128 square grid boxes

Bk,l of side length b = 1/64, and select the number of test points in each grid box

to be Q = 400. We consider the transformation T := T4 ◦ T3 acting on M , where

T3(x1, x2) =
(
x1 + 0.3 cos(2x1), x2

)
, (3.58)

T4(x1, x2) =
(
x1 + x2, x2 + 8 sin(x1 + x2)

)
, (3.59)

computed modulo 2π. The map T3 distorts the area of T2 in the horizontal direction,

and T4 is the “standard map”.

We optimally partition M using Algorithm 3.1. The leading numerical eigen-

values λ1, λ2, . . . λ7 of ∆dyn are 0, −0.3584, −0.3751, −1.0750, −1.1349, −1.4358,

−1.4966. We generate partitions of M using the level surfaces of the second eigen-

function φ2 corresponding to λ2 = −0.3584; the results are shown in Figure 3.4.

It was found that the hypersurface Γβ0 is Hdyn
M minimising for β0 = −4.5492 ×

10−5; see figures 3.4a and 3.4c. The µ1-mass on Γβ0 and the ν1-mass of its image

under T are µ1(Γβ0) = 0.4584 and ν1(TΓβ0) = 0.2375, respectively. Similar to

the results of the previous case study of T2 acting on M , one makes appropriate

compromises on the µ1-mass of Γβ0 in T2, to ensure that the ν1-mass of TΓβ0 in

T2 remains small. For example, in Figure 3.4c the black (almost straight) curves

attempt to follow the yellow, low density regions, but when they have to cross the

dark green, high density regions, the curves briefly turn to cross these high density

regions at a sharper angle. While slightly increasing the curve length, this behaviour

reduces the ν1-mass of the curves.

The partition T2 = Mβ0
1 ∪Γβ0∪Mβ0

2 is almost perfectly balanced, with µ2(M1) =

0.49994 and µ2(M2) = 0.5006. One has Hdyn
M (Γβ0) = 0.6968. Despite the highly non-

linear nature of T , evident in the distribution of hν , shown in Figure 3.4c, one can
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(a) (b)

(c) (d)

Figure 3.4: Partition of T2 using the eigenvector φ2 of 4dyn under T = T4 ◦T3 given

by (3.58) and (3.59). (a) Colours are values of hµ, and black lines are the level

surface Γβ0 = {φ2 = −4.5492× 10−5}. (b) The level surfaces of φ2. (c) Colours are

the values of hν , and black lines are the level surface TΓβ0 . (d) The level surfaces

of Hφ2.

find curves that are rather short according to ν1, both before and after the applica-

tion of T . Therefore this solution is a suitable candidate for LCSs on (T2, e, µ2), for

the finite-time (single) application of T .

We remark that the curves Γβ0 and TΓβ0 in Figure 3.4 are qualitatively similar to

those found in [49], where an analogous computation was performed on the original

volume-preserving standard map with µ2 = `2. In the current setting, these curves

are additionally optimised to take into account the nonuniform µ2 and non-volume

preserving nature of T .
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3.6 Conclusions to the chapter

The dynamic isoperimetric theory initiated in [49] was concerned with identifying

subsets of Rr with persistently least boundary size to volume ratio under general

nonlinear volume-preserving dynamics. The motivation for this theory was that the

boundaries of such sets have optimality properties desired in Lagrangian coherent

structures. In the present work we have extended the constructions and theoretical

results of [49] to weighted, non-flat Riemannian manifolds and to possibly non-

volume preserving dynamics. This entailed developing a nontrivial generalisation

of the dynamic isoperimetric problem to weighted manifolds and allowing for non-

volume preserving dynamics. We proved a new dynamic version of the classical

Federer-Fleming theorem in this setting, which very tightly links the (geometric)

dynamic isoperimetric problem with a (functional) minimisation of a new dynamic

Sobolev constant.

We then constructed a weighted dynamic Laplacian, and showed that under

a natural Neumann-type boundary condition, the spectrum of this weighted dy-

namic Laplacian can be completely characterised using variational principles tied to

the finite-time dynamics of T and the geometry of the manifold. We additionally

proved that a dynamic Cheeger inequality holds on weighted Riemannian manifolds,

extending a result from [49] for flat, unweighted manifolds, and volume-preserving

dynamics. We demonstrated numerically that the eigenfunctions of the weighted

dynamic Laplacian are able to identify sets with small boundaries that remain small

when transformed by general dynamics. Such persistently minimal surfaces are ex-

cellent candidates for LCSs as diffusion across their short boundaries is minimised

over a finite-time duration.

Finally, we further developed the connection between two very different meth-

ods for detecting transport barriers in dynamical systems, namely the relationship

between finite-time coherent sets and LCSs as defined using isoperimetic notions.

The connection between these sets, explored in [49] in the flat manifold, volume-

preserving dynamics setting, is that in the limit of small diffusion, regions in phase

space that minimally mix (a purely probabilistic notion) are linked with sets that

have persistently least boundary size (a purely geometric notion). We further en-

hanced this link by extending and strengthening the result of [49] to the more gen-

eral setting of weighted, curved Riemannian manifolds with possibly non-volume

preserving dynamics.
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A dynamic manifold learning

method for approximating

Lagrangian coherent structures.

Standard Laplacian-based manifold learning method [10, 11] is designed for approx-

imating structures of unweighted manifolds, from uniformly distributed point-cloud

data (see Theorem 5.2 in [12] or Theorem 2 in [28]). Dynamic extensions of the

standard Laplacian-based manifold learning method were formulated in [9, 40, 60],

which have enabled the analysis of trajectory datasets arising from dynamical sys-

tems. However, the dynamic manifold learning methods in [9, 40, 60] are designed

for approximating dynamical features of evolving unweighted manifolds, from tra-

jectories that are formed by volume-preserving dynamics with uniform initial dis-

tribution. Recently, improved manifold learning methods have emerged to study

unweighted manifolds from non-uniformly distributed point-cloud data. In [77], a

local normalisation was applied to the relative distance between the data points of

the input sample, before proceeding with the standard Laplacian-based manifold

learning method [10, 11]. In [75], a robust neighourhood selection process was used

to account for the nonuniform distribution of the input sample. The dynamic mani-

fold learning methods in [40, 60, 9] can readily incorporate the improvements of [75]

or [77], thus extending their application to trajectory data with nonuniform initial

distribution. However, a dynamic manifold learning method is currently missing for

approximating dynamic structures of weighted manifolds, from trajectories formed

by non-volume-preserving transformations.

In this chapter, we first develop an improved Laplacian-based manifold learning

method for weighted Riemannian manifolds, which is designed to be robust to the

probability distribution of the input point-cloud data. In particular, let (M,m, µr)
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be a weighted Riemannian manifold as in Section 3.1, and let Sk be a random

sample drawn from (M,m, µr) according to some possibly nonuniform probability

distribution in i.i.d fashion. In Section 4.1, we form a weighted graph G(Sk,W µ,ε)

from Sk with edge weight set W µ,ε, and prove that there exists a constant Cρ and a

sequence of scalars {εk}k≥1 such that for every x ∈M and f ∈ C3(M,R)

lim
k→∞

1

εkCρ
Lµ,k,εkf(x) = 4µf(x), (4.1)

where Lµ,k,ε is the continuous extension of the graph Laplacian on G(Sk,W µ,ε) (see

(4.15)), and 4µ is the weighted Laplacian on (M,m, µr) as in (3.27). The novelty

of our approach for manifold learning is the introduction of a set of scaling factors

for the edge weight set W µ,ε, which makes G(Sk,W µ,ε) independent of the proba-

bility distribution of the sample Sk for sufficiently large k. More importantly, the

weighted geometry of (M,m, µr) is incorporated into the graph G(Sk,W µ,ε). As an

improvement over the robust manifold learning methods in [75] and [77], our mani-

fold learning method is designed for approximating features of weighted Riemannian

manifolds.

Next, we extend the above improved Laplacian-based manifold learning method

to a dynamic manifold learning method, designed for approximating solutions of

the dynamic isoperimetric problem on weighted Riemannian manifolds from sparse

trajectory data. Let (N, n, νr) be another weighted Riemannian manifold, where N

is the image of M under a general transformation T : M → N and νr = µr ◦ T−1.

The initial point-cloud data Sk ∈ M is mapped to Ŝk ∈ N under T , and we

form another weighted graph G(Ŝk,W ν,ε) from Ŝk with edge weight set W ν,ε. The

dynamic generalisation of the operator Lµ,k,ε is given by

Ldyn,k,ε :=
1

2

(
Lµ,k,ε + Lν,k,ε

)
,

where Lν,k,ε is the continuous extension of the graph Laplacian on G(Ŝk,W ν,ε). The

dynamic version of (4.1) is

lim
k→∞

1

εkCρ
Ldyn,k,εkf(x) = 4dynf(x), (4.2)

where 4dyn is the dynamic Laplacian as in Definition 3.3.1. For situations where

the trajectory dataset arises from a system with multiple time-step dynamics, the

suitable version of (4.2) is given by (4.38).

In addition to the statement of the convergence result (4.1), in Section 4.1 we

outline the numerical algorithm associated with our robust Laplacian-based man-

ifold learning method, and conduct numerical experiments to test this algorithm
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on random samples with very different probability distributions, as well as approxi-

mating the weighted geometry of domains equipped with general measures. Section

4.2 contains statement of the convergence result (4.2), an outline of the numerical

algorithm for our robust dynamic manifold learning method, and numerical experi-

ments for testing our robust dynamic manifold learning method on both artificially

generated and real-world trajectory data. The proofs of this chapter are deferred to

Appendix C.

4.1 A robust Laplacian-based manifold learning

method for weighted Riemannian manifolds

Let M be a compact, connected r-dimensional Riemannian manifold, which is em-

bedded in a possibly higher dimensional Euclidean space Rd; d ≥ r. On M we

have the absolutely continuous measure µr and the metric tensor m, forming the

weighted Riemannian manifold (M,m, µr) as in Section 3.2. On Rd we have the

d-dimensional Euclidean norm ‖ · ‖Rd . As in Section 3.1, we assume that the density

hµ of the measure µr is bounded above and uniformly away from zero.

For ρ > 0, define qρ : R+ ∪ {0} → R+ ∪ {0} by

qρ(x) := cρ exp(−x2)Ix≤ρ, (4.3)

where I : R+ ∪ {0} → {0, 1} is the characteristic function, and the constant cρ

is chosen so that
∫
qρ(x)dx = 1. For ε > 0, we construct a family of kernels

Qρ,ε : M ×M → R+ ∪ {0} by

Qρ,ε(x, y) := ε−r/2qρ

(
‖Φ(x)− Φ(y)‖Rd√

ε

)
, (4.4)

where Φ : M → Rd is an isometric embedding. The kernels Qρ,ε are symmetric for

all ε > 0, and almost-stochastic in the sense that limε→0Qρ,ε is stochastic [9]; that

is, for all x ∈M , limε→0

∫
M
Qρ,ε(x, y)ωrm(y) = 1, where ωrm is the volume form on M

as in Section 3.1. The kernel Qρ,ε is a modified version of the kernel used in [10, 11]

for standard Laplacian-based manifold learning (here in (4.3), we have adapted the

normalisation factor cρ and the cutoff Ix≤ρ from [9]).

Remark 4.1.1. Alternatively, if one has access to the metric tensor m of the unknown

manifoldM , then the expression ‖Φ(x)−Φ(y)‖Rd on the RHS of (4.4) can be replaced

by m(x, y); see [28].
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4.1.1 Graph Laplacian for scalar weighted graphs

Let Sk = {xi}ki=1 be a random sample drawn from M according to a C5 probability

density p in i.i.d fashion. The regularity condition for p is to ensure that p and the

second order partial derivatives of p are well approximated by point-cloud data Sk;

see (4.7) and (C.8). In practice, any real probability distribution will be sufficiently

smooth. However, extremely small sample size or poor sampling strategy will lead

to reductions in the accuracy our manifold learning methods. In order to formulate

a manifold learning method that is robust to the probability distribution of Sk, we

first discuss how the kernel Qρ,ε provides an approximation to p (In practice p may

be unknown). For ε > 0, define

pk,ε(x) :=
1

k

k∑
i=1

Qρ,ε(x, xi). (4.5)

Since Sk is an i.i.d random sample drawn from M according to the probability

density p, one has by an application of the law of large numbers [73]

lim
k→∞

pk,ε(x) = lim
k→∞

1

k

k∑
i=1

Qρ,ε(x, xi) =

∫
M

Qρ,ε(x, y)p(y)ωrm(y), (4.6)

for all x ∈ M , where ωrm is the volume form on M as in (B.10). Moreover, due

to the assumption p ∈ C3(M,R) and the properties of the kernel Qρ,ε (namely

almost stochastic, rotational invariance and bounded support), by a straightforward

modification of Lemma B.7.3 one has∫
M

Qρ,ε(x, y)p(y)ωrm(y) = p(x) +
εaρ
2
4mp(x) +R(x, ε3/2), R(x, ε3/2) ∈ O(ε3/2),

(4.7)

where aρ > 0 depends on the second moment of qρ, and O(ε3/2) denotes the class of

polynomials a1ε
3/2 + a2ε

4/2 + a3ε
5/2 + . . .. Therefore, if we set ε := εk as a sequence

of scalars, such that limk→∞ εk = 0, then by (4.7) the expression pk,εk converges

pointwise to p as k →∞.

We now introduce the key modification we have made to the standard Laplacian-

based manifold learning method [10, 11]: we set

wµ,εij :=


Qρ,ε(xi,xj)

pk,ε(xj)

√
hµ(xj)

hµ(xi)
if i 6= j

0 if i = j
, (4.8)

for each 1 ≤ i, j ≤ k. As in Section 1.3, we construct a weighted graph from Sk

by setting wµ,εij as the edge weight between the vertex pair xi and xj. We denote

the weighted graph formed above by G(Sk,W µ,ε), where W µ,ε = {wµ,εij }ki,j=1. The
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purpose of the term
√
hµ(xj)/hµ(xi) in (4.8) is to incorporate the density hµ into

the edge weight wµ,εij of the graph G(Sk,W µ,ε). For technical reasons of establishing

Theorem 4.1.4 below, we have scaled Qρ,ε by
√
hµ(xj)/hµ(xi) instead of just hµ(xj)

(This technical step serves the same purpose as the normalisation (1.11) in standard

Laplacian-based manifold learning; see Theorem 5.1 and Theorem 5.2 in [12]).

Denote by Lµ,ε the graph Laplacian for G(Sk,W µ,ε) as in 1.3.3; i.e. Lµ,ε has

entries

Lµ,ε
ij :=

{
wµ,εij if i 6= j

−
∑k

l=1w
µ,ε
il if i = j

, (4.9)

for 1 ≤ i, j ≤ k. We note that wµ,εij is not symmetric, hence Lµ,ε is not self-adjoint

with respect to the standard inner product on Rk. However, we can define a weighted

inner product 〈·, ·〉µ : Rk × Rk → R by

〈g,f〉µ :=
k∑
i=1

gifi
hµ(xi)

pk,ε(xi)
, (4.10)

with respect to which Lµ,ε is self-adjoint; see Corollary 4.1.3 below. We define the

weighted eigenproblem of Lµ,ε with respect to the weighted inner product (4.10) by

〈f ,Lµ,εf〉µ = λ〈f ,f〉. (4.11)

Let Bµ,ε be the k × k matrix with entries

Bµ,ε
ij =

hµ(xi)

pk,ε(xi)
Lµ,ε
ij . (4.12)

Solution pairs (λ,f) to the standard matrix eigenproblem Bµ,εf = λf are also

solutions to (4.11), since

〈f ,Lµ,εf〉µ =
k∑
i=1

fi ·
hµ(xi)

pk,ε(xi)
· (Lµ,εf)i by (4.14)

=
k∑
i=1

fi ·
hµ(xi)

pk,ε(xi)
·

k∑
j=1

Lµ,ε
ij fj

=
k∑
i=1

fi ·
k∑
j=1

Bµ,ε
ij fj by (4.12)

= 〈f ,Bµ,εf〉

= λ〈f ,f〉. (4.13)

The matrix Bµ,ε has the following spectral properties:

Theorem 4.1.2. Let G(Sk,W µ,ε) be a weighted graph, where W µ,ε = {wµ,εij }ki,j=1

with wµ,εij as in (4.8). Define Bµ,ε as in (4.12). One has
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1. The matrix Bµ,ε is self-adjoint with respect to the standard inner product on

Rk.

2. The eigenvalues 0 = λ1 ≥ λ2 ≥ . . . ≥ λk of Bµ,ε are nonpositive and real.

3. If G(Sk,W µ,ε) is connected, then λ1 is unit multiplicity and the eigenvector

corresponding to λ1 is 1.

Proof. See Appendix C.

Corollary 4.1.3. Let Lµ,ε be as in Theorem 4.1.2, and let 〈·, ·〉µ be the weighted

inner product as in (4.11). The matrix Lµ,ε is self-adjoint with respect to 〈·, ·〉µ; that

is, 〈g,Lµ,εf〉µ = 〈Lµ,εg,f〉µ for all g,f ∈ Rk.

Proof. This follows immediately by part 1. in Theorem 4.1.2 and a straightforward

modification of (4.13).

4.1.2 From graph Laplacian to Laplace-Beltrami operator

Denote by 4µ the weighted Laplacian on (M,m, µr) as in (3.27). The connection

between Lµ,ε and 4µ is as follows: Let f ∈ C∞(M,R). Denote fi = f(xi) for each

1 ≤ i ≤ k, and set f = {f1, f2, . . . , fk}. Since

(Lµ,εf)i =
k∑
j=1

Lµ,ε
ij fj =

k∑
j=1
j 6=i

wµ,εij fj −
k∑
l=1

wµ,εil fi =
k∑
j=1

wµ,εij (fj − fi), (4.14)

for each 1 ≤ i ≤ k, one extends the linear action Lµ,ε : Rk → Rk to Lµ,k,ε :

C∞(M,R)→ C∞(M,R) by defining

Lµ,k,εf(x) :=
1

k

k∑
j=1

Qρ,ε(x, xj)

pk,ε(xj)

√
hµ(xj)

hµ(x)

(
f(xj)− f(x)

)
, (4.15)

for all x ∈M . We have

Theorem 4.1.4. Let Sk be a random sample drawn from the weighted Riemannian

manifold (M,m, µr) according to some C5 probability density. Assume the density

hµ of µr is in C3, bounded above and uniformly away from zero. Define Lµ,k,ε and

4µ as in (4.15) and (3.27), respectively. If 0 < ρ ≤ SM , where SM is the scalar

curvature1 of M , then there exists a constant Cρ > 0 and a sequence of scalars

{εk}k≥1 with limk→∞ εk = 0 such that

lim
k→∞

(
sup

‖f‖C3(M,R)≤1

∥∥∥∥ 1

εkCρ
Lµ,k,εkf(x)−4µf(x)

∥∥∥∥
C0(M,R)

)
= 0, (4.16)

1The scalar curvature is defined as the trace of the Ricci curvature tensor; for more details see

e.g. p.117 in [7].
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for all x ∈M and f ∈ C∞(M,R).

Proof. See Appendix C.

The spectral properties of4µ were studied in Chapter 3: By setting the dynamics

acting on M as the identity map in Theorem 3.3.4, one has

inf
β∈(−∞,∞)

HM

(
{φ2 = β}

)
≤ 2
√
λ2, (4.17)

where HM is the weighted version of the classical Cheeger ratio (see (1.8)), and λ2

is the first nontrivial eigenvalue of 4µ with corresponding eigenvector φ2. Hence,

among the level surfaces of φ2, there exists a level surface Γ0 in M that yields a small

Cheeger ratio HM(Γ0). Let {M1,M2} be full dimensional, connected components of

M , which are separated by the interface Γ0. Using Theorem 4.1.4 and (4.17), we

can attempt to approximate {M1,M2} using the first nontrivial eigenvector f2 of

Lµ,ε with respect to (4.11); that is, we use the components f2,i of f2, to search for

β ∈ R such that sets Sk1 = {xi ∈ Sk : f2,i < β} and Sk2 = {xi ∈ Sk : f2,i > β} are

good representation of {M1,M2}. Our Laplacian-based manifold learning method is

a heuristic that builds on this idea (see also [10] for the classical treatment), which

we now discuss.

4.1.3 Algorithm for weighted Laplacian eigenmap

Let Sk be an i.i.d random sample drawn from M ⊆ Rd according to a C5 probability

density p, and recall the induced co-dimension 1 measure µr−1 on (M,m, µr) given

by (3.8). Let Γ be a piecewise continuous hypersurface in M , that partitions M into

full dimensional submanifolds M1,M2, . . . ,MK . Suppose we are given the following

information: (1) The Rd-coordinates of each xi ∈ Sk, and (2) the value of the density

hµ(xi) for each 1 ≤ i ≤ k. The aim of our weighted Laplacian-based manifold

learning method, is to find a coordinate map ϕµ : Sk → Rs independent of p with

s� k, such that certain low-dimensional structures of (M,m, µr) are encapsulated

by the set ϕµ(Sk) ∈ Rs. In particular, geometrically close clusters {Sk1 , Sk2 , . . . , SkK}
of Sk with respect to Rs-distances of ϕµ(Sk), represent full dimensional submanifolds

{M1,M2, . . . ,MK}, which partitions M so that the ratio

HM,K(Γ) :=

∑K−1
i=1 µr−1 (Γ)

min{µr(M1), µr(M2), . . . , µr(MK)}
, (4.18)

is small; we call the coordinate map ϕµ the weighted Laplacian eigenmap.

We now present the algorithmic procedure for forming the weighted Laplacian

eigenmap ϕµ. This algorithm is an extension of the standard Laplacian eigenmaps
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algorithm in [20], and we have incorporated the computational processes for setting

ε and ρ in [9] for the kernel Qρ,ε.

Algorithm 4.1: Weighted Laplacian eigenmap

1 Let Sk = {xi}ki=1 and {hµ(xi)}ki=1 be input data, and wµ,εij be as in (4.8).

Define εmin to be the smallest real number such that the graph G(Sk,W µ,ε) is

connected, and define εmax to be the smallest real number such that

wµ,εmax

ij 6= 0 for each 1 ≤ i, j ≤ k.

2 Fix 0 < ρ < SM , where is SM is the scalar curvature of M . For a sequence of

εl ∈ [εmin, εmax], construct the k × k matrix Bµ,εl according to (4.12).

3 Solve the eigenproblem 1
ε
Bµ,εlf = λεlf for each εl ∈ [εmin, εmax], and find εL

amongst the sequence of εl such that |λεl2 − λ
εl+1

2 | is minimal, where λεl2

denotes the first nontrivial eigenvalue of 1
ε
Bµ,εl .

4 Denote the eigenvalues of 1
ε
Bµ,εL by λ1 ≤ λ2 ≤ . . .. Find the smallest integer

1 ≤ s� k, such that the magnitude of |λs+2 − λs+1| is comparable to

2|λ2 − λ1|. If no such s exists, return s = 1.

5 Let f2,f3, . . . be the eigenvectors corresponding to λ2, λ3, . . .. Define

ϕµ(xi) := {f2(xi),f3(xi), . . . ,fs+1(xi)} for each 1 ≤ i ≤ k.

6 Return ϕµ.

Remark 4.1.5. In step 2 of Algorithm 4.1, the parameter ρ was bounded above

by the scalar curvature SM of M . In situations where SM is unknown (a common

occurrence in many situations), we set ρ =
√

2 to ensures that the point of inflection

of the function qρ (4.4) is at the midpoint of [0, ρ], so that the corresponding graph

G(Sk,W µ,ε) has edge weights that are most capable at discriminating distances

between any pairs of data points xi 6= xj that are in the support of Qρ,ε (see also

[9]).

Remark 4.1.6. In practice, one can save computational resources by reducing the

range of εl ∈ [εmin, εmax]. We suggest setting εmax at 30% sparsity2 of Bµ,εmax , which

should adequately capture the pointwise geometric structures of Sk.

4.1.4 Numerical experiments for weighted Laplacian eigen-

map

We detail numerical examples of Algorithm 4.1 for weighted Riemannian manifold

learning. To highlight the advantages of our weighted Laplacian eigenmap ϕµ formed

by Algorithm 4.1 compared to the the standard Laplacian eigenmap ϕ described in

Section 1.3.3, we apply both manifold learning methods to random samples that are

2The sparsity of a matrix is number of nonzero entries divided by the total number of entries.
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distributed very differently. We then attempt to capture the geometry of weighted

Riemannian manifolds from random samples using ϕµ.

Let S2 := [0, 4)× [0, 1)\ ∼ be a two dimensional torus, where ∼ denotes identi-

fication at interval ends. The manifold S2 is embedded in R3, and the metric tensor

e on S2 is given by the Kronecker delta; that is, the components of e satisfies eij = 1

for i = j and eij = 0 for i 6= j. If a random sample Sk = {xi}ki=1 is drawn from

S2 according to the C5 probability density p : S2 → R+, then for all measurable

U ⊆ S2, the probability that xi ∈ U is
∫
U
p dxdy. We form a weighted 2-dimensional

torus (S2, e, µ2), where µ2 is an absolutely continuous measure on S2.

Randomness of input data

To demonstrate how the eigenmap φµ is robust to the randomness of the input data,

we fix the density hµ of µ2 to be 1 on all of S2, and artificially generate a few random

samples of the form Sk = {(xi, yi)}ki=1 from S2, with each sample having a different

probability density. Although, one can calculate the scalar curvature of S2 to bound

the parameter ρ in step 2 of Algorithm 3.1, we simulate the situation where nothing

is known about S2. Thus we set ρ =
√

2 in Qρ,ε in accordance to Remark 4.1.5.

To maintain some predictability of the randomness of our input data, we ma-

nipulate the probability density of each sample as follows. Partition S2 into two

half-toruses S2
1 := [0, 2) × [0, 1)\ ∼ and S2

2 := [2, 4) × [0, 1)\ ∼, then draw a fixed

number of data points from each of S2
1 and S2

2 uniformly in i.i.d fashion. One has

control over the ratio of the number of data points between the regions S2
1 and S2

2.

For our numerical experiments, we fixed k = 1000 and set the ratios of points be-

tween S2
1 and S2

2 to be 1 : 1 , 1 : 4 and 1 : 9; we denote these sets by Sk1:1, Sk1:4 and

Sk1:9, respectively. The distributions of Sk1:1, Sk1:4 and Sk1:9 embedded in R3 are shown

by the first column of Figure 4.1.

We start with the formulation of the unweighted Laplacian eigenmap ϕ, formed

by applying Algorithm 4.1 with the following modifications:

1. In steps 2 - 4 of Algorithm 4.1, replace Bµ,ε with Lε (1.11).

2. Let Dε be as Section 1.3.3. In steps 5 and 6 of Algorithm 4.1, replace ϕµ with

ϕ(xi) = {(Dε)−
1
2f2(xi), (D

ε)−
1
2f3(xi), . . . , (D

ε)−
1
2fs+1(xi)}.

The key difference between the use of Lε for standard Laplacian-based manifold

learning [10, 11] and the use of Bµ,ε in Algorithm 4.1, is the application of the

scaling factors

1

pk,ε(xj)

√
hµ(xi)

hµ(xj)
(4.19)
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in (4.8) to the diffusion kernel Qρ,ε; the purpose of this scaling factor (4.19) was

discussed in Section 4.1.1. To form the standard Laplacian-eigenmap ϕ, the reason

for the left multiplication of f2, f3, . . . ,fs+1 by
(
Dε
)− 1

2 , is that Lε is the normalised

graph Laplacian (see step 3 of Algorithm 2.1 where this multiplication was applied

for spectral graph partition).

Denote by Lε
1:1,Lε

1:4 and Lε
1:9 the normalised graph Laplacians formed from

Sk1:1, S
k
1:4 and Sk1:9, respectively. First we choose the parameter ε in Lε

1:1,Lε
1:4 and

Lε
1:9 using steps 1 - 3 of Algorithm 4.1. For the set Sk1:1 we have ε = 0.055 with

the first 7 eigenvalues of 1
ε
Lε

1:1 given by 0, −0.1994, −0.2371, −0.7754, −0.9354,

−1.7633 and −1.8310. For the set Sk1:4, we have ε = 0.065 with the first 7 eigenvalues

of 1
ε
Lε

1:4 given by 0, −0.2139, −0.2281, −0.9267, −1.0257, −1.5606 and −2.0103.

Finally, for the set Sk1:9, we have ε = 0.065 with the first 7 eigenvalues of 1
ε
Lε

1:9

given by 0, −0.2431, −0.2704, −0.6847, −0.9671, −1.9913 and −2.2876. For each

operator Lε
1:1, Lε

1:4 and Lε
1:9, there is a gap in the spectrum between the 3rd and

4th eigenvalues. Thus, by steps 4 and 5 of Algorithm 4.1, the eigenmap ϕ for

each of the random sample Sk1:1, Sk1:4 and Sk1:9 is the 2-dimensional embedding given

by ϕ = {g2, g3} = {(Dε)−
1
2f2, (D

ε)−
1
2f3}, where f2,f3 are the first 2 nontrivial

eigenvalues of the corresponding Lε
1:1, Lε

1:4 or Lε
1:9; the images Sk1:1, Sk1:4 and Sk1:9

under their eigenmap are shown in the second column of Figure 4.1.

The most notable feature of the 2-torus is its translational symmetries. There-

fore, to assess the quality of th eigenmap ϕ for capturing the geometry of S2, we

search for symmetries of the point-cloud data Sk1:1, Sk1:4 and Sk1:9 embedded in R2 via

ϕ. For the set Sk1:k, the eigenmap ϕ embeds Sk1:1 into a circular point-cloud loop in

R2; as shown in the first plot in the second column of Figure 4.1. We note that the

symmetrical structures of the circular point-cloud loop ϕ(Sk1:1) reflect the symme-

tries of S2. Therefore, we were able to use the standard Laplacian eigenmap [10, 11]

to gain insight into the symmetrical structures of S2 from a uniformly distributed

point-cloud dataset. On the other hand, we note that the point-cloud geometries of

ϕ(Sk1:4) and ϕ(Sk1:9) in R2 do not reveal the symmetrical structures of S2, because

the shapes of ϕ(Sk1:4) and ϕ(Sk1:9) can broadly be described as cones; as shown in the

second and third plots in the second column of Figure 4.1. We speculate that these

cones ϕ(Sk1:4) and ϕ(Sk1:9) are formed as elongated circles of the circular point-cloud

loop ϕ(Sk1:1). The elongation of ϕ(Sk1:4) and ϕ(Sk1:9) can be explained by the point

distributions of Sk1:4 and Sk1:9, the unbalanced number of data points between the

half toruses [0, 2) × [0, 1)\ ∼ and [2, 4) × [0, 1)\ ∼ of Sk1:4 and Sk1:9, are treated as

a geometrical features by the eigenmap ϕ (with the cone ϕ(Sk1:9) being significantly

more elongated due to the distribution of the set Sk1:9 being more unbalanced).
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Figure 4.1: Comparison between standard and weighted Laplacian eigenmaps. Rows

represent different input data, ordered from top to bottom Sk1:1, Sk1:4 and Sk1:9. First

column is the point-cloud data embedded in R3. Second and third columns are the

eigenmaps ϕ and ϕµ, respectively.

Next, we repeat the above numerical experiments conducted on the input data

Sk1:1, Sk1:4 and Sk1:9, but using Algorithm 4.1 without modifications. Let Bµ,ε
1:1 , Bµ,ε

1:4

and Bµ,ε
1:9 denote the matrix formed from step 2 of Algorithm 4.1 from the data sets

Sk1:1,Sk1:4 and Sk1:9 , respectively. We set the parameter ε in Bµ,ε
1:1 , Bµ,ε

1:4 and Bµ,ε
1:9 using

steps 1 - 3 of Algorithm 4.1. For the set Sk1:1 we have ε = 0.085 with the first 7

eigenvalues of 1
ε
Bµ,ε

1:1 given by 0, −0.3262, −0.3462, −1.2654, −1.3492, 2.7474 and

−2.8294. For the set Sk1:4, we have ε = 0.085 with the first 7 eigenvalues of 1
ε
Bµ,ε

1:4

given by 0, −0.2950, −0.4286, −1.2398, −1.5413, −2.8071 and −3.0029. Finally

for the set Sk1:9, we have ε = 0.085 with the first 7 eigenvalues of 1
ε
Bµ,ε

1:9 given by

0, −0.2646, −0.5286, −1.1575, −1.7126, −2.9238 and −3.3729. Again, there is a

gap in the spectrum between the 3rd and 4th eigenvalues of Bµ,ε
1:1 , Bµ,ε

1:4 and Bµ,ε
1:9 .

Thus, by steps 4 and 5 of Algorithm 4.1, the eigenmap for each Sk1:1,Sk1:4 and Sk1:9 a

2-dimensional embedding given by ϕµ = {f2,f3}, where f2,f3 are the dominant 2

eigenvectors of the corresponding Bµ,ε
1:1 , Bµ,ε

1:4 or Bµ,ε
1:9 ; the images of Sk1:1, Sk1:4 and Sk1:9

under their eigenmap are shown in the third column of Figure 4.1. Comparing the
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Figure 4.2: The spectra of the first 7 eigenvalues of 4m, 1
εCρ

Bµ,ε
1:j and 1

2εCρ
Lε

1:j, for

j = 1, 4, 9. Left: colours represent eigenvalues for 1
εCρ

Bµ,ε
1:j for j = 1, 4, 9, and crosses

represents the eigenvalues of 4m. Right: colours represent eigenvalues of 4m and
1

2εCρ
Lε

1:j for j = 1, 4, 9, and crosses represents the eigenvalues of 4m.

eigenmaps ϕµ and ϕ on each of Sk1:1,Sk1:4 and Sk1:9, we observe that ϕµ is significantly

more robust to the distribution the input sample compare to ϕ.

One can calculate the eigenvalues of 4m on S2 = [0, 4) × [0, 1)\ ∼ analytically:

the eigenfunctions φ of 4m are given by

φ(x) = sin
(
(ax+ by)π

)
+ cos

(
(ax+ by)π

)
, (4.20)

with corresponding eigenvalues −(a2 + b2)π2. Periodicity of S2 enforces a = 0, ±1
4
,

±2
4
, ±3

4
, . . . and b = 0, ±1, ±2, ±3, . . .. Thus the first 7 eigenvalues of 4m are

0,−0.6169,−0.6169,−2.4674, −2.4674, −5.5517 and −5.5517. To compare the first

7 eigenvalues of 4m to those of Bµ,ε
1:1 , Bµ,ε

1:4 and Bµ,ε
1:9 , we calculate the constant Cρ

in (4.16) by numerically integrating

Cρ =
1

2

2∑
i,j=1

∫
vivjqρ(|v|) d`(v)

=
cρ
2

∫ √2

0

∫ √2

0

(x2 + 2xy + y2) exp(x2 + y2) dxdy by (4.3)

≈ 0.5482,

where the first equality is due to technical calculations done in (C.12) and (B.139)

of the appendix, and the cρ = 0.8459 was numerically calculated from

cρ

(∫ √2

0

exp(−x2)dx

)
= 1.
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To provide numerical verification of Theorem 4.1.4, we plot the spectra of the first

7 eigenvalues of 4m, 1
εCρ

Bµ,ε
1:1 , 1

εCρ
Bµ,ε

1:4 and 1
εCρ

Bµ,ε
1:9 onto a single plot; as shown in

the left side Figure 4.2. Similarly, we compare the first 7 eigenvalues of 1
2εCρ

Lε
1:1,

1
2εCρ

Lε
1:4 and 1

2εCρ
Lε

1:9 to those of 4m; the results are shown in the right side plot of

Figure 4.2. For j = 1, 4 and 9, we note the first 3 eigenvalues of 1
εCρ

Lε
1:j and the first

5 eigenvalues of 1
εCρ

Bµ,ε
1:j all approximate well the corresponding eigenvalues of 4m,

see Figure 4.2. However, the higher order eigenvalues of both 1
εCρ

Bµ,ε
1:j and 1

εCρ
Lε

1:j

are much poorer at approximating the higher order eigenvalues of 4m, because the

construction of both Bµ,ε
1:j and Lε

1:j are designed to optimise the stability of λ2 in

step 3 of Algorithm 4.1.

Weighted domains

For our second numerical experiment, we test the ability of the eigenmap ϕµ pro-

duced by Algorithm 4.1 for learning the weighted geometry of a weighted manifold.

Let (S2, e, µ2) and (S2, e, µ̂2) be weighted Riemannian manifolds, where µ2 and µ̂2

are absolutely continuous measures. Respectively, the densities hµ, hµ̂ of µ2, µ̂2 are

given by

hµ(x, y) = sin(πx) + 1.2, (4.21)

and

hµ̂(x, y) = sin(2πx) + 1.2. (4.22)

Let HM,K be as in (4.18). Due to the periodicity of hµ along the x-direction, one

could analytically find a co-dimensional 1 surface Γµ that yields a minimal ratio

HM,K(Γµ) for K = 2; that is, the the vertical lines at x = 1.5 and x = 3.5. Similar,

due to the periodicity of hµ̂ along the x-direction, one could find a co-dimensional

1 surface Γµ̂ that yields a minimal ratio HM,K(Γµ̂) for K = 4; that is, the vertical

lines at x = 3/4, x = 7/4, x = 11/4 and x = 15/4.

Our objective is to use the eigenmap to approximate the above HM,K-minimising

surface Γµ (resp. Γµ̂) from point-cloud data. To initiate these numerical experi-

ments, we draw a fixed random sample Sk from S2 uniformly in i.i.d fashion, then

extract the values of hµ(xi) and hµ̂(xi) for each xi ∈ Sk; the random sample Sk and

the heat maps of hµ and hµ̂ are shown by the first column of Figure 4.3

We apply algorithm 4.1 to the point-cloud data Sk with input measurements

hµ(Sk). By steps 1 - 3 of Algorithm 4.1, we set the parameter ε = 0.055, with

the first 7 eigenvalues of 1
ε
Bµ,ε given by 0, −0.1448, −0.7383, −1.4026, −1.6984,

−2.9513 and −3.4292. There is a gap in the spectrum of Bµ,ε between the 2nd

and 3rd eigenvalues. Hence by step 4 of Algorithm 4.1, we set the eigenmap ϕµ to
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be the 1-dimensional embedding ϕµ = f2, where f2 is the dominant eigenvector of

Bµ,ε. To provide a meaningful display of the eigenmap ϕµ, we relabel the dataset

Sk according to the value of ϕµ(Sk) in increasing order, and plot (xi, ϕµ(xi)) for

1 ≤ i ≤ k; the result is shown by top-right plot of Figure 4.3.

Next we apply algorithm 4.1 to the point-cloud data Sk with input measurements

hµ̂(Sk). By steps 1 - 3 of Algorithm 4.1, we set the parameter ε = 0.055, with the

first 7 eigenvalues of 1
kε
Bk,µ̂,ε given by 0, −0.2476, −0.2591, −0.6166, −2.7948,

−3.6149 and −3.6187. There is a gap in the spectrum of Bµ̂,ε between the 4th and

5th eigenvalues. Hence by step 4 of Algorithm 4.1, we set the eigenmap ϕµ̂ to be the

3-dimensional embedding ϕµ̂ = {f2,f3,f4}, where f2, f3 and f4 are the dominant

3 eigenvectors of Bk,µ̂,ε. The image of Sk under ϕµ̂ is shown in bottom-right plot of

Figure 4.3.

Figure 4.3: Laplacian-based manifold learning on the weighted Riemannian mani-

folds: First row shows Sk in (S2, e, µ2) on left and {f2(Sk),f3(Sk)} in R2 on right,

colours denote the clusters of ϕµ(Sk). Second row shows Sk in (S2, e, µ̂2) on left and

eigenmap ϕµ̂(Sk) in R2 on right, colours denote the clusters of ϕµ̂(Sk).

First we illustrate how the eigenmap ϕµ = f2 can be used to approximate the

hypersurface Γµ to minimiseHM,K(Γµ). We search for clusters of ϕµ(Sk) on R1, using

the xi vs ϕµ plot in the top-left of Figure 4.3: Recall that the indices of Sk = {xi}ki=1

is arranged in increasing order in terms of ϕµ(Sk). Hence, a small gradient on the

xi vs ϕµ plot between a set of consecutive points from xl to xL, L > l ≥ 1 shows

that the set {xi}Li=l is a cluster in ϕµ(Sk); one has K = 2 distinctive clusters given
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by the sets Sk1 = {xi ∈ Sk : f2(xi) ≤ 0} and Sk2 = {xi ∈ Sk : f2(xi) > 0}. To

extract Γµ from Sk1 and Sk2 , we colour coordinate the clusters Sk1 and Sk2 and plot

their positions on (S2,m, µ2), as shown in the top-right of Figure 4.3. One can see by

the colour coordination that the partition Sk1 and Sk2 are good representation of the

submanifolds {M1,M2} separated by the interface Γµ (vertical lines at x = 1.5 and

x = 3.5). Similar, the eigenmap ϕµ̂ = {f2,f3,f4} can be used to approximate the

hypersurface Γµ̂ to minimise HM,K(Γµ̂). The set ϕµ̂(Sk) in R3 forms a 3-dimensional

point-cloud loop; as shown in the bottom-left of Figure 4.3. We note that the 4

turning points of this point-cloud loop ϕµ̂(Sk) contains a higher concentration of

data points compared to the rest of the loop. Hence, there are K = 4 distinctive

clusters of ϕµ̂(Sk). Again, to extract Γµ̂ from the 4 clusters of ϕµ̂(Sk), we colour

coordinate the clusters and plot them on (S2,m, µ̂2); as show in the bottom-right of

Figure 4.3. We see that the 4 clusters of ϕµ̂(Sk) provides a good representation of

the submanifolds {M1,M2,M3,M4} separated by the interface Γµ̂ (vertical lines at

x = 3/4, x = 7/4, x = 11/4 and x = 15/4).

4.2 A Dynamical manifold learning for dynamics

on weighted Riemannian manifolds

The weighted Laplacian eigenmap for manifold learning discussed in Section 4.1

provides the foundation for the core objective of this chapter: the formulation

of a robust dynamic manifold learning method for transport barrier detection on

weighted Riemannian manifolds. First we develop our dynamic manifold learning

method for systems formed by a single iteration of dynamics; we then extend our

techniques to situations where the dynamics arise from multiple time-step trans-

formations. As in Section 3.1, let (M,m, µr) be a weighted Riemannian manifold,

and let T : M → N be a possibly nonlinear and/or non-volume-preserving trans-

formation acting on M , where N is another Riemannian manifold. On N we have

the metric tensor n and the absolutely continuous measure νr := µr ◦ T−1, forming

another weighted Riemannian manifold (N, n, νr). We assume M ∪ N ⊂ Rd, thus

we have an isometric embedding map Φ : (M ∪N)→ Rd. By using the embedding

map Φ : (M ∪N)→ Rd, one readily extends the domain of the kernel Qρ,ε given by

(4.4) to Qρ,ε : (M ∪N)× (M ∪N)→ R+.

Let Sk be a random sample drawn from (M,m, µr) according to the probability

density p in i.i.d fashion. The transformation T : M → N maps Sk into Ŝk =

{T (xi)}ki=1. As in Section 4.1, from Sk, hµ and Qρ,ε we form the weighted graph

G(Sk,W µ,ε), where W µ,ε = {wµ,εij }ki,j=1 with wµ,εij is as in (4.8). Similarly, we form a
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weighted graph from Ŝk, hν , and Qρ,ε as follows: Since Qρ,ε : (M ∪N)× (M ∪N)→
R+, analogous to (4.5) we define p̂k,ε : N → R by

p̂k,ε(y) :=
1

k

k∑
i=1

Qρ,ε(y, Txi). (4.23)

Let p̂ be the probability density of the random sample Ŝk. Then analogous to (4.6)

and (4.7), there exists a sequence of scalars {εk}k≥1 with limk→∞ εk → 0 such that

lim
k→∞

p̂k,εk(y) = lim
k→∞

1

k

k∑
i=1

Qρ,ε(y, yi)

= lim
ε→∞

∫
N

Qρ,ε(y, z)p̂(z)ωrn(z)

= = p̂(y), (4.24)

for every y ∈ N . Thus, analogous to (4.8) we define

wν,εij :=


Qρ,ε(Txi,Txj)

p̂k,ε(Txj)

√
hν(Txj)

hν(Txi)
if i 6= j

0 if i = j
, (4.25)

as the edge weights between the vertex pair T (xi) and T (xj). One has the weighted

graph G(Ŝk,W ν,ε), where W ν,ε = {wν,εij }ki,j=1. In this way, the transformation T :

M → N induces a dynamics of the graph TG : G(Sk,W µ,ε)→ G(Ŝk,W ν,ε).

Let Lν,ε be the graph Laplacian on G(Ŝk,W ν,ε). We define the dynamic graph

Laplacian for the dynamics of graphs TG : G(Sk,W µ,ε)→ G(Ŝk,W ν,ε) by averaging

Lµ,ε and Lν,ε; that is

Ldyn,ε :=
1

2
(Lµ,ε + Lν,ε) . (4.26)

As in Section 4.1, the matrix Ldyn,ε is not symmetric, hence not self-adjoint with

respect to the standard inner product on Rk. Thus, similar to (4.12) we define the

k × k matrix Bν,ε with entries

Bν,ε
ij =

hν(Txi)

p̂k,ε(Txi)
Lν,ε
ij , (4.27)

and then form

Bdyn,ε =
1

2
(Bµ,ε + Bν,ε) , (4.28)

where Bµ,ε is as in (4.12).

The matrix Bdyn,ε has the following spectral properties:

Theorem 4.2.1. Let G(Sk,W µ,ε) and G(Ŝk,W ν,ε) be weighted graphs, where W µ,ε =

{wµ,εij }ki,j=1 with wµ,εij as in (4.8) and W ν,ε = {wν,εij }ki,j=1 with wν,εij as in (4.25). Define

Bdyn,ε as in (4.28). One has
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1. The matrix Bdyn,ε is self-adjoint with respect to the standard inner product on

Rk.

2. The eigenvalues 0 = λ1 ≥ λ2 ≥ . . . ≥ λk of Bdyn,ε are nonpositive and real.

3. If each row of Bdyn,ε contains at least one nonzero entry, then λ1 is unit

multiplicity. The eigenvector corresponding to λ1 is 1.

Proof. Due to the linearity of the construction 4.28, the above listed spectral prop-

erties for Bdyn,ε follows immediately from the spectral properties of Bµ,ε and Bν.ε

in Theorem 4.1.2.

In Theorem 4.1.4, we have formed a connection between the graph Laplacian

Lµ,ε for G(Sk,W µ,ε) and the weighted Laplacian 4µ for (M,m, µr). In the dynamic

setting, the analogous connection is between the dynamic graph Laplacian Ldyn,ε

and the dynamic Laplacian on weighted Riemannian manifolds.

4.2.1 From dynamic graph Laplacian to dynamic Laplacian

Let4dyn : C2(M,R)→ C0(M,R) be the dynamic Laplacian as in (3.28). Analogous

to (4.14)-(4.15), we extend the linear operator Ldyn,ε : Rk → Rk to an operator

Ldyn,k,ε : C∞(M,R)→ C∞(M,R) as follows: Let f ∈ C∞(M,R). Denote fi = f(xi)

for each 1 ≤ i ≤ k, then set f = {f1, f2, . . . , fk}. One has

(Ldyn,εf)i =
1

2

k∑
j=1
j 6=i

(
wµ,ε + wν,ε

)(
f(xj)− f(xi)

)

=
1

2

k∑
j=1
j 6=i

(
Qρ,ε(xi, xj)

pk,ε(xj)

√
hµ(xj)

hµ(xi)
+
Qρ,ε(Txi, Txj)

p̂k,ε(Txj)

√
hν(Txj)

hν(Txi)

)(
f(xj)− f(xi)

)
,

(4.29)

for each 1 ≤ i ≤ k. Due to (4.29), we define the continuous extension of Ldyn,ε by

Ldyn,k,εf(x) :=
1

2k

k∑
j=1

(
Qρ,ε(x, xj)

pk,ε(xj)

√
hµ(xj)

hµ(x)

+
Qρ,ε(Tx, Txj)

p̂k,ε(Txj)

√
hν(Txj)

hν(Tx)

)(
f(xj)− f(x)

)
, (4.30)

for all x ∈M .

Theorem 4.2.2. Let Sk be an i.i.d random sample drawn from the weighted Rie-

mannian manifold (M,m, µr) according to some C5 probability density, and let

81



Chapter 4

T : M → N be a C∞ diffeomorphism. Assume the density hµ of µr is in C3,

bounded above and uniformly away from zero. Define qρ, L
dyn,k,ε and 4dyn as in

(4.3), (4.30) and (3.28), respectively. If 0 < ρ < min{SM ,SN}, where SM and SN
are scalar curvatures of M and N , then there exists a sequence of scalars {εk}k≥1

with limk→∞ εk = 0 such that

lim
k→∞

(
sup

‖f‖C3(M,R)≤1

∥∥∥∥ 1

εkCρ
Ldyn,k,εkf −4dynf

∥∥∥∥
C0(M,R)

)
= 0, (4.31)

where the constant Cρ depends on the second moment of qρ.

Proof. See Appendix C.

4.2.2 Trajectory data from multiple time step dynamics

The above dynamic Laplacian construction for trajectory data formed from a single

transformation, can easily be extended to situations where the trajectory data arises

from multiple time-discrete transformations. Let (M1,m1, µ1
r) be a weighted Rie-

mannian manifold, and suppose we have a sequence of diffeomorphisms Tt : M t →
M t+1 for 1 ≤ t ≤ τ − 1, where M2,M3, . . . ,M τ are full dimensional images of M1

under sequential applications of Tt. On each M t, we have the metric mt and the

absolute continuous measure µtr := µt+1
r ◦ Tt, forming a sequence of weighted Rie-

mannian manifolds {M t,mt, µtr}τt=1. Moreover, we assume all M t is embedded in a

single, possibly higher dimensional Euclidean space Rd; d ≥ r. Denote the density

of µtr by htµ, and let 4µ,t be the weighted Laplacian on (M t,mt, µtr) as in (3.27). We

define the time-discrete dynamic Laplacian 4[1,τ ] : C2(M,R)→ C0(M,R) by

4[1,τ ]f :=
1

τ

τ∑
t=1

(
H(t)

)∗4µ,tH(t)f, (4.32)

where H(t) : L2(M1,m1, µ1
r)→ L2(M t,mt, µtr) is as in (3.31), with adjoint

(
H(t)

)∗
.

Let T (t) = Tt ◦ Tt−1 ◦ . . . ◦ T1 with T (0) = Id. Given an i.i.d random sample

S1,k = {x1, x2, . . . , xk} drawn from (M1,m1, µ1
r) according to some C5 probability

density, the sequence of transformations Tt generates τ − 1 point-cloud data from

S1,k of the form St+1,k := {T (t)(x1), T (t)(x2), . . . , T (t)(xk)} ∈M t+1 for 1 ≤ t ≤ τ − 1.

Denote the trajectory data formed from T1, T2, . . . , Tτ−1 acting on S1,k by S[1,τ ],k.

To capture the evolving pointwise geometry of S[1,τ ],k, we model the trajectory data

S[1,τ ],k as dynamics of graphs: Due to the assumption ∪τt=1M
t ⊂ Rd, we have an

isometric embedding map Φ : ∪τt=1M
t → Rd. Hence, one can extend the domain of

the kernel (4.4) to Qρ,ε : (∪τt=1M
t)∪(∪τt=1M

t)→ R+. Therefore, analogous to (4.23)
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we define a sequence of pt,k,ε : M t → R by

pt,k,ε(x) :=
1

k

k∑
i=1

Qρ,ε(x, T
(t−1)xi), (4.33)

for t ∈ [1, τ ]. Let xti = T (t−1)(xi) for each 1 ≤ i ≤ k and 1 ≤ τ . Analogous to (4.25),

we set

wt,εij :=


Qρ,ε(xti,x

t
j)

pt,k,ε(xtj)

√
htµ(xtj)

htµ(xti)
if i 6= j

0 if i = j

, (4.34)

as the edge weight between the vertex xti and xtj for each 1 ≤ i, j ≤ k. From (4.34),

we form a sequence of weighted graphs {G(St,k,W t,ε)}τt=1, where W t,ε = {wt,εij }ki,j=1.

Therefore, associate with the transformations Tt : M t → M t+1 is the dynamics of

graphs Tt,G : G(St,k,W t,ε)→ G(St+1,k,W t+1,ε), for 1 ≤ t ≤ τ − 1.

For 1 ≤ t ≤ τ , denote by Lt,ε the graph Laplacian for G(St,k,W t,ε) as in (4.9)

with wµ,εij replaced by wt,εij . The multiple time-step generalisation of Ldyn,ε (4.26) is

given by

L[1,τ ],ε :=
1

τ

τ∑
t=1

Lt,ε. (4.35)

As in (4.27), we define a k × k matrix Bt,ε with entries

Bt,ε
ij =

htµ(xti)

pt,k,ε(xti)
Lt,ε
ij , (4.36)

and then as in (4.28), we form

B[1,τ ],ε =
1

τ

τ∑
t=1

Bt,ε. (4.37)

Due to the linearity of B[1,τ ],ε, the spectral properties listed in Theorem 4.2.1 are

valid for B[1,τ ],ε as well. Moreover, extending the linear operator L[1,τ ],ε : Rk → Rk

to the operator L[1,τ ],k,ε : C∞(M1,R) → C∞(M1,R) as in (4.30), then again by

the linearity of L[1,τ ],ε and 4[1,τ ], a multiple time-discrete version of Theorem 4.1.4

holds; that is, if 0 < ρ ≤ min1≤t≤τ{SMt} where SMt is the scalar curvature of M t,

then there exists Cρ > 0 and a sequence of scalars {εk}k≥1 with limk→∞ εk → 0 such

that

lim
k→∞

(
sup

‖f‖C3(M1,R)≤1

∥∥∥∥ 1

εkCρ
L[1,τ ],k,εkf −4[1,τ ]f

∥∥∥∥
C0(M1,R)

)
. (4.38)

The weighted Laplacian eigenmap in Section 4.1.3 for manifold learning is a

heuristic formed from a weighted version of the classical Cheeger inequality and

Theorem 4.1.4. Similarly, by using the multiple time-step dynamic Cheeger inequal-

ity in Theorem 3.3.4 and (4.38), we develop a dynamic Laplacian eigenmap as a

heuristic for dynamic manifold learning. We now elaborate on the computational

aspect of this dynamic Laplacian eigenmap.
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4.2.3 Algorithm for dynamic Laplacian eigenmap

Let S[1,τ ],k be trajectory data generated by Tt : M t → M t+1 for 1 ≤ t ≤ τ − 1,

where the initial points of the trajectories S1,k = {xi}ki=1 are drawn from M1 ⊆ Rd

according to some C5 probability density in i.i.d fashion. Let µ1
r, µ

2
r, . . . , µ

τ
r be

absolutely continuous measures on M1,M2, . . . ,M t respectively, which tracks the

mass distribution of the objects being transported. For each 1 ≤ t ≤ τ , let µtr−1

be the induced co-dimension 1 measure on (M t,mt, µtr) as in (3.8) with hµ replaced

by htµ, and let Γ be a piece-wise continuous hypersurface in M1, that partitions M1

into full dimensional submanifolds M1
1 ,M

1
2 , . . . ,M

1
K .

Suppose one can track: (1) The Rd-coordinates of each trajectory {T (t)xi}τ−1
t=0 and

(2) the mass density {htµ(T (t)xi)}τt=1, for each 1 ≤ i ≤ k. The aim of our dynamic

manifold learning method is to formulate a coordinate map ϕdyn : S1,k → Rs,

1 ≤ s � k independent of p, such that certain dynamical structures are encode

by ϕdyn. In particular, clusters S1,k
1 , S1,k

2 , . . . , S1,k
K of S1,k with respect to the Rd-

distances of ϕdyn(S1,k), represents full dimensional submanifolds M1
1 ,M

1
2 , . . . ,M

1
K ,

that partition M1 so that the ratio

H
[1,τ ]
M,K(Γ) =

1

τ

∑τ−1
t=0 µ

t
r−1

(
T (t)Γ

)
min{µ1

r(M
1
1 ), µ1

r(M
1
2 ), . . . , µ1

r(M
1
K)}

, (4.39)

is small; we call the coordinate map ϕdyn the dynamic Laplacian eigenmap.

The algorithm for dynamic Laplacian eigenmap construction is a straightforward

modification of Algorithm 4.1, with the following adjustments.

1. In step 1 of Algorithm 4.1, replace wt,εmin
ij with

∑τ
t=1w

t,εmin
ij , and replace wt,εmax

ij

with
∑τ

t=1w
t,εmax

ij .

2. In steps 2 - 4 of Algorithm 4.1, replace Bµ,εl with B[1,τ ],εl .

3. In steps 4 and 5 of Algorithm 4.1, Replace ϕµ with ϕdyn.

Missing data : In many real-world applications, failures of equipment and/or

errors in recording measurements may lead to the instantaneous coordinates T (t)(xi)

of some trajectories to be missing or corrupted. To handle this situation, we modify

the matrix B[1,τ ],ε used in the above dynamic manifold learning algorithm as follows:

Suppose at the time instant t, we have a set of missing data points xti := T (t)(xi),

for each i ∈ I in the index set I; that is, there are |I| data points are missing from

the set St,k. Then for each i ∈ I, set the ith row of the matrix Bt,ε to be zero so that

the data points xti for each i ∈ I have no contribution to the matrix B[1,τ ],ε. Similar

approaches for treating missing data as above were employed in [57, 9]. Also, a

triangulation technique was used to treat missing data in [52].
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4.2.4 Numerical experiments for dynamic Laplacian eigen-

map

Weak standard map on torus

For our first numerical experiment on dynamic manifold learning, we compare our

new dynamic Laplacian eigenmap algorithm in Section 4.2.3 to the existing space-

time diffusion map algorithm in [9]. The space-time diffusion map is created by

applying the following modifications to Algorithm 4.1:

1. Let Q[1,τ ],ε be the k × k space-time diffusion matrix as in equation (3.15) in

[9]. In step 1 of Algorithm 4.1, replace wµ,εij with Q
[1,τ ],ε
ij .

2. In steps 3 and 4 of Algorithm 4.1, replace 1
εl
Bµ,εl with 1

εl
Q[1,τ ],εl .

3. In steps 4 and 5 of Algorithm 4.1, replace the eigenmap ϕµ with the space-time

diffusion map ϕ̂.

The key differences between the space-time diffusion matrix Q[1,τ ],ε in [9] and the

matrix B[1,τ ],ε (4.37) used in our dynamic Laplacian eigenmap are: (1) we have

scaled the diffusion kernel Qρ,ε(x
t
i, x

t
j) in (4.34) by the factor

1

pt,k,ε(xtj)

√
htµ(xti)

htµ(xti)
, (4.40)

for each 1 ≤ i, j ≤ k and 1 ≤ t ≤ τ , and (2) the matrix Q[1,τ ],ε in [9] is modelled

on a ‘double diffusion’ process based on the forward-backward transfer operator

in [48]. The scaling factors (4.40) are dynamic extensions of (4.19). Importantly,

as improvements over the space-time diffusion map in [9], our dynamic Laplacian

eigenmap is designed to be robust to the distribution of the input trajectory data,

and it is designed for learning dynamics acting on weighted Riemannian manifold. In

the following, we illustrate the robustness of our dynamic Laplacian-based manifold

learning algorithm on artificially generated trajectory data.

Let T2 be a 2π × 2π torus, with metric tensor e on T2 given by the Kronecker

delta. Consider the ‘weak standard’ map T : T2 → T2 given by

T (x, y) = (x+ y + α sinx, y + α sinx), (4.41)

computed modulo 2π, where the parameter α = 0.971635 is chosen so that a promi-

nent KAM curve is destroyed, and T2 exhibits both regular and chaotic motions

under T ; see [51].

We consider the analysis of trajectory data that are formed by 2 applications

of T . Fix k = 2000, and τ = 3. Let S1,k
a be a random sample drawn from T2
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uniformly in i.i.d fashion, and let S1,k
b be a random sample drawn from T2 according

to a nonuniform distribution in i.i.d fashion, such that 40% of data points in S1,k
b

are concentrated in the horizontal strip [0, 2π) × [8π
5
, 2π]\ ∼ in T2. We map the

initial data S1,k
a and S1,k

b forward by T and T 2, forming the trajectory data S
[1,τ ],k
a

and S
[1,τ ],k
b ; time slices of the trajectory data S

[1,τ ]
b are shown in Figure 4.4 (Since T

is volume preserving, all time slices of the trajectory data S
[1,τ ],k
a shows a uniformly

distributed point-cloud data and we do not plot this).

(a) t=1 (b) t=2 (c) t=3

Figure 4.4: Time slices of the trajectory data S
[1,τ ],k
b , k = 2000 and τ = 3.

First we form the space-time diffusion map in [9] for the trajectory data S
[1,τ ],k
a

and S
[1,τ ],k
b . Let Q

[1,τ ],ε
a (resp. Q

[1,τ ],ε
b ) be the space-time diffusion matrix formed

from the trajectory data S
[1,τ ],k
a (resp. S

[1,τ ],k
b ). We set the parameter ε in Q

[1,τ ],ε
a

and Q
[1,τ ],ε
b using step 1 - 3 of Algorithm 4.1. For the set S

[1,τ ],k
a , we have ε =

0.35 with the first 7 eigenvalues of B
[1,τ ],ε
a given by 0, −0.2114, −0.2561, −0.2742,

−0.2942, −0.4752 and −0.5310. For the set S
[1,τ ],k
b , we have ε = 0.55 with the first

7 eigenvalues of Q
[1,τ ],ε
b given by 0, −0.1970, −0.2058, −0.2591, −0.2927, −0.4139

and −0.4821. Let g2,a (resp. g2,b) be the first nontrivial eigenfunction of Q
[1,τ ],ε
a

(resp. Q
[1,τ ],ε
b ). For 1 ≤ s ≤ 5 � k, there are no gaps in the spectral of the first

s + 2 eigenvalues of Q
[1,τ ],ε
a and Q

[1,τ ],ε
b . Thus, by step 4 of Algorithm 4.1, we set

the space-time diffusion map ϕ̂ to be the 1-dimensional embedding ϕ̂ = g2,a for

the input trajectory S
[1,τ ],k
a , and ϕ̂ = gb,2 for the input S

[1,τ ],k
b . To meaningfully

display the space-time diffusion map ϕ̂, we numerically interpolate the unit norm

eigenfunctions g2,a/‖g2,a‖2 and g2,b/‖g2,b‖2 to g2,a : T2 → R and g2,b : T2 → R,

respectively; the level surfaces of g2,a, g2,b and their images under the pushforward

operator H(t) (3.31) for t = 0, 1, 2 are shown in Figure 4.5.

The level surface plots of ga,2 and its images H(1)ga,2, H(2)ga,2 in the first row

of Figure 4.5, highlight coherent structures of the dynamical system that generated

S
[1,τ ],k
a ; one has reflective symmetry about the horizontal line y = π. In contract,
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(a) t=1 (b) t=2 (c) t=3

(d) t=1 (e) t=2 (f) t=3

Figure 4.5: Level surfaces of the interpolated first nontrivial eigenfunctions g2,a and

g2,b of Q
[1,τ ],ε
a and Q

[1,τ ],ε
b , respectively. (a) Level surfaces of g2,a. (b) Level surfaces

of H(1)g2,a. (c) Level surfaces of H(2)g2,a (d) Level surfaces of g2,b. (e) Level surfaces

of H(1)g2,b. (f) Level surfaces of H(2)g2,b

this important symmetrical feature was not present in the level surface plots of gb,2

and its images H(1)gb,2, H(2)gb,2; as shown in the second row of Figure 4.5. The

discrepancy between ga,2 and gb,2 comes purely from the variation in distribution of

the input trajectory datasets S
[1,τ ],k
a and S

[1,τ ],k
b . By construction, the trajectories of

S
[1,τ ],k
a are uniformly distributed initially and remains uniformly distributed under

T , whereas trajectories of S
[1,τ ],k
b are persistently more densely concentrated in the

region [0, 2π)× [π, 2π) compare to [0, 2π)× [0, π); as shown by time slices of S
[1,τ ],k
b in

Figure 4.4. Quantitatively, we compare the eigenfunctions ga,2 and gb,2 by computing

‖ga,2 − gb,2‖2 = 0.7967.

We repeat the above numerical experiments conducted on S
[1,τ ],k
a and S

[1,τ ],k
b using

our dynamic Laplacian eigenmap described in Section 4.2.3. Denote by B
[1,τ ],ε
a (resp.

B
[1,τ ],ε
b ) the matrix formed from the trajectory data S

[1,τ ],k
a (resp. S

[1,τ ],k
b ) in step 2

of Algorithm 4.1. We set the parameter ε in B
[1,τ ],ε
a and B

[1,τ ],ε
b using steps 1 - 3

of Algorithm 4.1. For the set S
[1,τ ],k
b , we have ε = 0.55 with the first 7 eigenvalues

of B
[1,τ ],ε
b given by 0, −3.3861, −4.0110, −4.2742, −4.3276, −7.2880 and −7.6287.

For the set S
[1,τ ],k
b , we have ε = 0.65 with the first 7 eigenvalues of B

[1,τ ],ε
b given by
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(a) t=1 (b) t=2 (c) t=3

(d) t=1 (e) t=2 (f) t=3

Figure 4.6: Level surfaces of the interpolate first nontrivial eigenfunctions f2,a and

f2,b of B
[1,τ ],ε
a and B

[1,τ ],ε
b , respectively. (a) Level surfaces of f2,a. (b) Level surfaces

ofH(1)f2,a. (c) Level surfaces ofH(2)f2,a. (d) Level surfaces of f2,b. (e) Level surfaces

of H(1)f2,b. (f) Level surfaces of H(2)f2,b.

0, −3.0032, −3.1241, −4.3756, −4.9048, −6.6646 and −8.9010. Let f2,a (resp. f2,b)

be the first nontrivial eigenfunction of B
[1,τ ],ε
a (resp. B

[1,τ ],ε
b ). For 1 ≤ s ≤ 5 � k,

there are no gaps in the spectrum of in the first s + 2 eigenvalues of B
[1,τ ],ε
a and

B
[1,τ ],ε
b . Thus, by step 4 of Algorithm 4.1, we set the dynamic Laplacian eigenmap

ϕdyn to be a 1-dimensional embedding ϕdyn = f2,a for the input trajectory S
[1,τ ],k
a ,

or ϕ̂ = fb,2 for the input S
[1,τ ],k
b . To meaningfully display the dynamic Laplacian

eigenmap ϕdyn, we numerically interpolate the unit norm eigenfunctions f2,a/‖f2,a‖2

(resp. f2,b/‖f2,b‖2) to f2,a : T2 → R (resp. f2,b : T2 → R); the level surfaces of the

eigenfunctions f2,a, f2,b and their images under the pushforward operator H(t) (3.31)

are shown in Figure 4.5.

The level surface plots of fa,2 and its images H(1)fa,2, H(2)fa,2 shown in the

first row of Figure 4.6, are consistent with the corresponding level surface plots of

the space-time diffusion matrix in Figure 4.5. Moreover, despite the nonuniform

distribution of the trajectory data S
[1,τ ],k
b , the level surface plots of fb,2 and its

images H(1)fb,2, H(2)fb,2, still highlight coherent structures of the dynamical system

that generated S
[1,τ ],k
b ; as shown in the second row of Figure 4.5. Quantitatively, we
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compare the eigenfunctions fa,2 and fb,2 by computing ‖fa,2− fb,2‖2 = 0.4895. Since

‖ga,2 − gb,2‖2 = 0.7967 for the space-time diffusion maps ga,2 and gb,2, we conclude

that the current dynamic Laplacian eigenmap is more robust to the distribution of

the trajectory data compared to the dynamic manifold learning method [9].

Standard map on weighted torus

Next, we test the ability of our dynamic Laplacian eigenmap to approximate dy-

namical structures of non-volume-preserving transformations on weighted Rieman-

nian manifolds. Let M = N = T2 be a 2π × 2π torus as in the last numerical

example. We equip M with the absolutely continuous measure µ2 with density

hµ(x, y) = 1
8π2

(
sin(y − π/2) + 2

)
, then form the weighted Riemannian manifold

(M, e, µ2). We consider the transformation T = T4 ◦ T3 acting on M , where

T3(x, y) =
(
x+ 0.3x cos(2x), y

)
,

T4(x, y) =
(
x+ y, y + 8 sin(x+ y)

)
,

both computed modulo 2π. The weighted Riemannian manifold (M, e, µ2) is trans-

formed into (N, e, ν2) under T , where ν2 = µ2 ◦ T−1. The nonlinear, non-volume-

preserving transformation T on (M, e, µ2) was studied in Section 3.5.4: the dynamic

spectral method introduced in Chapter 3 finds a partition {M1,M2} of M with small

ratio H
[1,τ ]
M,K (4.39) for K = 2; as shown in Figure 4.7, (a) and (c). The interface Γ

that separates M1 and M2 is given by the level surface φ2 = −9.276 × 10−4, where

φ2 is the unit norm, first nontrivial eigenfunction of the dynamic Laplacian 4dyn

(3.28).

We now consider the situation where both the manifold M and the dynamics T

are unknown; that is, the dynamic spectral method introduced in Chapter 3 cannot

be applied to find the partition {M1,M2}. Suppose we have a set of trajectory data

initial sampled from M , and suppose we can track the measurements hµ and hν at

the trajectories locations. We illustrate how our dynamic manifold learning method

can be used to approximate the partition {M1,M2} from the given information. To

initiate this numerical experiment, we start by generating a set of 2000 trajectories,

by drawing 2000 initial data points S1,k from (T2, e, µ2) uniformly in i.i.d fashion

(Importantly, the distribution of S1,k does not depend on µ2). We then map each

point in S1,k forward by T . Denote by S2,k the image of S1,k under T , and denote

the trajectory data formed from S1,k and S2,k by S[1,τ ],k; τ = 2, k = 2000.

We form the dynamic Laplacian eigenmap ϕdyn from the above trajectory data

using Algorithm 4.1 together with the modifications stated in Section 4.2.3. By steps

1 - 3 of Algorithm 4.1, we have ε = 0.5 with first 7 eigenvalues of 1
ε
B[1,τ ],ε given by
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(a) M1,M2 (b) S1,k
0.0277, S

1,k
0.0277

(c) TM1, TM2 (d) S2,k
0.0277, S

2,k
0.0277

Figure 4.7: Approximation of {M1,M2} from the trajectory data S[1,τ ],k using dy-

namic Laplacian eigenmap. (a) Colors represent partition elements M1 and M2 of

M . (b) Colors represent the partition elements S1,k
β and S

1,k

β of S1,k, with β = 0.0277.

(c) The image of (a) under T . (d) Image of (b) under T .

0, −0.0768, −0.0832, −0.1529, −0.1984, −0.2414 and −0.2717. For 1 ≤ s ≤ 5� k,

there are no gaps in the spectrum of the first s+2 eigenvalues of B[1.τ ],ε. Thus, we set

s = 1 in accordance with step 4 of Algorithm 4.1. Therefore by step 5 of Algorithm

4.1, the dynamic Laplacian eigenmap is given by a 1-dimensional embedding map

ϕdyn := f2, where f2 is the first nontrivial eigenvector of B[1,τ ],ε.

Since the dynamic Laplacian eigenmap ϕdyn = f2 is 1-dimensional, for some

β ∈ R the subsets S1,k
β := {xi ∈ S1,k : f2(xi) ≤ β} and S

1,k

β := {xi ∈ S1,k : f2(xi) >

β}, are clusters of S1,k with respect to the R1-distances of ϕdyn(S1,k). To find

β ∈ R such that {S1,k
β , S

1,k

β } is a good representation of {M1,M2}, we interpolate

the eigenfunction f2/‖f2‖2 to f2 : M → R, and numerically determine the level

surface f2 = β that minimises H
[1,τ ]
M,2 ({f2 = β}); there are at most k − 1 clusters of

the form {S1,k
β , S

1,k

β }. We found optimally β = 0.0227; the level surfaces (with the

level surface f2 = 0.0277 in black) of f2 and their images underH are shown in Figure

4.8, (a) and (c). To evaluate the accuracy of our dynamic Laplacian eigenmap f2 for
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(a) f2 (b) φ2

(c) Hf2 (d) Hφ2

Figure 4.8: Approximation of the dominant eigenfunction φ2 of 4dyn from the in-

terpolate first nontrivial eigenfunction f2 of B[1,τ ],ε. (a) Coloured lines are level

surfaces of f2, with black line as the level surface f2 = 0.0277. (b) Coloured lines

are level surfaces of φ2, with black line as the level surface φ2 = −9.276× 10−4. (c)

Image of (a) under H (d) Image of (b) under H.

approximating the eigenfunction φ2, we compute the L2-error ‖φ2 − f2‖2 = 0.4208,

and display the level surfaces (with the level surface φ2 = −9.276 × 10−4 in black)

of φ2 in Figure 4.8, (b) and (d).

Ocean drifters

For the last numerical example, we study geophysical fluid dynamics using our

new dynamic manifold learning method on real-world data. In particular, we con-

sider the trajectory data from the Global Ocean Drifter Program available from

AOML/NOAA Drifter Data Assembly Center (http://www.aoml.noaa.gov/envids/

gld/). We focus on the years 2005 − 2009 and restrict to those drifters that have

a minimum lifetime of one year within this five-year time span; there are a total

of 2267 trajectories that satisfies these conditions. We output the position of these

2267 trajectories (in longitude, latitude coordinates) every month, i.e. the length
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of our trajectories is 60 months. Denote the ocean drifter data by S[1,τ ],k, τ = 60,

k = 2267. The set S[1,τ ],k was studied by [57] and [9].

We apply our new dynamic manifold learning method to S[1,τ ],k, with the ob-

jective of identifying transport barriers under ocean dynamics. In particular, we

partition S[1,τ ],k into bundles of trajectories, such that initial points of these K-

clusters represent submanifolds M1
1 ,M

1
2 , . . . ,M

1
K of the ocean surface with small

ratio (4.39). We note that typical drifters do not operate over the whole five years,

and there are also gaps in observations when there is a failure in recording the drifter

location (see Figure 17 in [57] for statistics of the drifters). Thus, we are dealing

with highly incomplete trajectory data. Therefore, we apply the missing data treat-

ment discussed at the end of Section 4.2.3. We also note that the distribution of the

drifter locations are nonuniform; as shown by plots of the ocean drifter locations in

Figure 4.10.

We form the dynamic Laplacian eigenmap ϕdyn from the trajectory data S[1,τ ],k

using Algorithm 4.1 together with the modifications stated in Section 4.2.3. By

steps 1 - 3 of Algorithm 4.1 we have ε = 0.105, with first 7 eigenvalues of 1
ε
B[1,τ ],ε

given by 0, −0.2317, −0.6777, −1.4946, −2.1596, −2.9291 and −3.3550. There is a

gap in the spectrum between the 3rd and 4th eigenvalues of B[1,τ ],ε. Hence by steps

4 and 5 of Algorithm 4.1, the dynamic Laplacian eigenmap ϕdyn is given by a 2-

dimensional embedding ϕdyn := {f2,f3}, where f2 and f3 are the first two nontrivial

eigenfunction of B[1,τ ],ε, respectively. Let S1,k denote the initial point-cloud of the

trajectory data S[1,τ ],k. The image of S1,k under the dynamic Laplacian eigenmap

ϕdyn is shown in Figure 4.9. To cluster the trajectory data S[1,τ ],k into K = 5 parts

(we choose K = 5 for comparison with [57] and [9]), we partition the initial point-

cloud S1,k by applying K-mean partitioning algorithm to ϕdyn(S1,k). We colour

the partition elements of ϕdyn(S1,k), and display all drifter locations on the ocean

surface at certain months as in [57] (In addition to [57], we have chosen to show the

ocean drifter location for September 2008 to highlight drifters in the Arctic ocean);

as shown in Figure 4.10.

In each plot of Figure 4.10, by the geographical locations of drifters that are

grouped together, the 5 clusters we found can roughly be described as Northern

Pacific (red), Southern Pacific (yellow), Northern Atlantic (green), Southern At-

lantic/Indian Ocean (blue) and Arctic Ocean (purple). From the colour coordina-

tions in Figure 4.10, one can see that a significant number of drifters have moved

between Southern Atlantic/Indian Ocean and Southern Pacific over the 60 months

time period we have tracked. The large quantity of drifter mixing between Southern

Atlantic/Indian Ocean and Southern Pacific, is an indication that the strength of
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Figure 4.9: Dynamic Laplacian eigenmap ϕdyn on ocean drifter data. Colours rep-

resent partition elements produced by K-mean algorithm with K = 5.

(a) January 2005 (b) July 2007

(c) September 2008 (d) December 2009

Figure 4.10: Partition of ocean drifter data using dynamic Laplacian eigenmap ϕdyn,

colours represent drifters that are grouped together. Shown are location of all ocean

drifters overlap in periods of 15 months. Shown are 4 time slices of the ocean drifters.

transport barrier that separates these oceans is weak. The strength of the transport

barrier between Southern Atlantic/Indian Ocean and Southern Pacific is reflected

by the dynamic Laplacian eigenmap in Figure 4.9; the blue and yellow dots are not

well separated in terms of the coordinate {f2,f3}. In contrast, the blue and green
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dots in Figure 4.9 are well separated, as they are concentrated at the extreme ends

of the coordinate f2. Correspondingly, there are only a few drifters that have flowed

between the Southern Atlantic/Indian Ocean (blue) and Northern Atlantic (green);

as shown in the plots of Figure 4.10. In a similar manner, we can make speculation

on the strength of transport barriers between between any oceans by studying the

dynamic Laplacian eigenmap in Figure 4.9.

4.3 Conclusion to the chapter

In this chapter, we had considered the problem of approximating transport barri-

ers for non-volume-preserving dynamics, from trajectory data that are randomly

distributed on weighted Riemanian manifolds. We have extended the standard

Laplace-based manifold learning method [10, 11], concerned with the approxima-

tion of low-dimensional feature of manifolds from uniformly distributed point-cloud

data, to a situation where the manifolds are weighted, and the point-cloud data are

randomly distributed (Importantly, the distribution of the point-cloud data need not

coincide with the density of the manifold). We constructed a scalar weighted graph

from randomly distributed point-cloud data, and show that the Laplacian of this

graph converges to the weighted manifold Laplacian operator. We demonstrated

numerically that the eigenfunctions of the scalar weighted graph Laplacian are (1)

robust to the distributions of the point-cloud data, and (2) encode the weighted

geometry of weighted Riemannian manifolds.

We then considered a dynamic extension of our robust Laplacian-based manifold

learning method. We modelled trajectory data as dynamics of graphs, and con-

structed a dynamic Laplacian matrix for dynamics of graphs. We show that this

dynamic Laplacian matrix on dynamic graphs converges to the dynamic Laplacian

on weighted Riemannian manifolds (Importantly, the weights on these Riemannian

manifolds need not be related to the evolving distributions of the trajectory data).

We demonstrated numerically that the eigenfunctions of our dynamic Laplacian ma-

trix are (1) robust to the distribution of the trajectory data, and (2) can be used to

approximate solutions to the dynamic isoperimetric problem considered in Chapter

3.
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Let G = G(V,E) be a simple, connected graph, where V = {v1, v2, . . . , vk} is the

vertex set and E ∈ V × V the edge set. On G, let d(vi) denote the degree of the

vertex vi ∈ V , D(V ′) the total degree of the collection of all vertices in V ′ ⊆ V and

C(V1, V2) the partition boundary between V1, V2 ⊆ V as in Section 1.1. Define the

k × k diagonal matrix Dii = d(vi), and the graph Laplacian L by (1.5).

Let π be a graph transformation on G, induced by the vertex permutation πv

on V and edge permutation πe on E as in 1.1. Let Hd
G be the ratio given by (2.10),

and let the matrices Lπ, Ldyn be as in (2.15), (2.18) respectively. Define the vertex

label permutation πp associated with πv by πv(vi) = vπp(i).

A.1 The proof of Theorem 2.2.2

To obtain the desire spectral properties for Ldyn, we compute the Rayleigh quotient

for Ldyn. Let g be a vector in Rk, and 〈·, ·〉 the inner product on Rk. Denote by∑
i∼j the summation over the set of all pairs of vertices such that [vi, vj] ∈ E. One

has

(Lf)i =
k∑
j=1

Lijfj =
∑
i∼j

(fj − fi) , (A.1)

for each 1 ≤ i ≤ k. Hence

〈f ,Lf〉 =
∑
i∼j

fi (fj − fi)

=
∑
i∼j
i<j

fi (fj − fi) +
∑
i∼j
i>j

fi (fj − fi)

=
∑
i∼j
i<j

fi (fj − fi) +
∑
j∼i
j>i

fj (fi − fj)

= −
∑
i∼j
i<j

(fi − fj)2 .
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For the remainder of Appendix A, we write
∑

i∼j
i<j

as
∑

i∼j unless otherwise stated.

Note that (Pf)i = fπp(i); thus

〈f ,Lπf〉 = 〈Pf ,LPf〉 =
∑
i∼j

(
fπp(i) − fπp(j)

)2
. (A.2)

Let g = D1/2f . By (A.1) and (A.2), the Rayleigh quotient for Ldyn is given by

〈g,Ldyng〉
〈g, g〉

=
〈f , (L + Lπ)f〉

2〈D1/2f ,D1/2f〉
=

∑
i∼j (fi − fj)2 +

(
fπp(i) − fπp(j)

)2

2
∑k

i=1 d(vi)f 2
i

=: R(f).

(A.3)

Due to the characterisation (A.3), the proof of Theorem 2.2.2 proceeds as in the

static graph situation. Parts 1, 2and 3 follow from Theorem 1 in [5] (the ∆ in [5] is

our L, so the obvious modifications are applied to treat L = D−1/2LD−1/2), and

part 4 follows from the Courant-Fischer theorem (see e.g. Theorem 4.2.11 [76]).

A.2 The proof of Theorem 2.2.3(2)

We define the sub-vertex sets Si = {v1, v2, v3, . . . , vi} and Si = {vi+1, . . . vk}, with

the set extensions S0 = Sk = ∅; {Si, Si} partitions G for each i = 0, 1, . . . k. We use

the abbreviations C(Si) = C(Si, Si) and D̂(Si) = min{D(Si), D(Si)}. The ordered

cut value α is defined by

α := min
1≤i≤k

|C(Si)|+ |C
(
π−1
v (Si)

)
|

D̂(Si) + D̂
(
π−1
v (Si)

) . (A.4)

The following Lemma forms the crucial link between the cardinality of the partition

boundary C
(
π−1
v (Si)

)
and a vector f ∈ Rk.

Lemma A.2.1. Let G = G(V,E) be a simple, connected graph with |V | = k, and

π = (πv, πe) a graph isomorphism. Let πp be the vertex label permutation associated

with πv. If f ∈ Rk satisfies fi ≤ fi+1 for all i = 1, . . . , k − 1, then

∑
i∼j

|fπp(i) − fπp(j)| =
k−1∑
i=1

|fi − fi+1|.|C
(
π−1
v (Si)

)
|. (A.5)

Proof. We perform induction on the number of vertices of G. For k = 2, V = {v1, v2}
and E = [v1, v2], the vertex permutation πv either fixes both vertices or interchanges

them. In both cases of πv, the LHS of (A.5) is∑
i∼j

|fπp(i) − fπp(j)| = |f1 − f2|,
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while on the RHS of (A.5), the partition boundary C
(
π−1
v (S1)

)
contains the single

edge [v1, v2], so that

2−1∑
i=1

|fi − fi+1|.|C(π−1
v (Si))| = |f1 − f2|.

Thus (A.5) holds for a graph with two vertices. We proceed to show that the

statement (A.5) is still valid for any finite number of vertices, by adding the addition

vertex vk+1 to G, and counting the increase in both sides of (A.5).

Let K = d(vk+1), then define V ′ = {vk1 , vk2 , . . . , vkL} to be the sub-vertex set

of V , such that each vertex in V ′ is adjacent to vk+1 in G and πp(k1) ≤ πp(k2) ≤
. . . ≤ πp(kL). Set a = πp(k + 1), and suppose 1 ≤ πp(kb−1) < a ≤ πp(kb) ≤ k + 1,

for some 1 < b ≤ L (in the following arguments the situations where a > πp(kL) or

a ≤ πp(k1) can be treated in a similar fashion).

a. LHS With the addition of the vertex vk+1 and its associated edges to G, the

LHS of (A.5) is increased by an amount of |fπp(kl)− fπp(k+1)| for each l = 1, 2, . . . , L

so the total increase to the LHS of (A.5) is given by

L∑
l=1

|fπp(kl) − fπp(k+1)| =
L∑
l=1

|fπp(kl) − fa|. (A.6)

We expand the summands of (A.6) using the assumption that fi ≤ fi+1 for each

i = 1, 2, . . . , k, and the fact that πp(k1) ≤ πp(k2) ≤ . . . ≤ πp(kL). There are two

cases to consider, when l < b and when l ≥ b. First the case l < b, for l = 1 < b,

|fπp(k1) − fa|

= |fπp(k1) − fπp(k1)+1|+ |fπp(k1)+1 − fπp(k1)+2|+ . . .+ |fπp(k2)−1 − fπp(k2)−2|

+ |fπp(k2) − fπp(k2)+1|+ |fπp(k2)+1 − fπp(k2)+2|+ . . .+ |fπp(k3)−1 − fπp(k3)−2|
...

...
...

+ |fπp(kb−1) − fπp(kb−1)+1|+ |fπp(kb−1)+1 − fπp(kb−1)+2|+ . . .+ |fa−1 − fa|,

and for l = 2 < b,

|fπp(k2) − fa|

= |fπp(k2) − fπp(k2)+1|+ |fπp(k2)+1 − fπp(k2)+2|+ . . .+ |fπp(k3)−1 − fπp(k3)−2|
...

...
...

+ |fπp(kb−1) − fπp(kb−1)+1|+ |fπp(kb−1)+1 − fπp(kb−1)+2|+ . . .+ |fa−1 − fa|.
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Repeating the above expansion for each 1 ≤ l < b and adding them together, then

we have an expression for the summation of (A.6) over the indices l ∈ [1, b− 1]:

b−1∑
l=1

|fπp(kl) − fa| (A.7)

= |fπp(k1) − fπp(k1)+1|+ |fπp(k1)+1 − fπp(k1)+2|+ . . .+ |fπp(k2)−1 − fπp(k2)−2|

+ 2
(
|fπp(k2) − fπp(k2)+1|+ |fπp(k2)+1 − fπp(k2)+2|+ . . .+ |fπp(k3)−1 − fπp(k3)−2|

)
...

...
...

+ (b− 1)
(
|fπp(kb−1) − fπp(kb−1)+1|+ |fπp(kb−1)+1 − fπp(kb−1)+2|+ . . .+ |fa−1 − fa|

)
.

Next we expand the summand of (A.6) when l ≥ b. For l = b

|fπp(kb) − fa| = |fa − fa+1|+ |fa+1 − fa+2|+ . . .+ |fπp(kb)−1 − fπp(kb)|,

and for l = b+ 1,

|fπp(kb+1) − fa|

= |fa − fa+1|+ |fa+1 − fa+2|+ . . .+ |fπp(kb)−1 − fπp(kb)|

+ |fπp(kb) − fπp(kb)+1|+ |fπp(kb)+1 − fπp(kb)+2|+ · · ·+ |fπp(kb+1)−1 − fπp(kb+1)|.

Repeating this expansion for each b ≤ l ≤ L and adding them together, then we

have an expression for the summation of (A.6) over the indices l ∈ [b, L]:

L∑
l=b

|fπp(kl) − fa| (A.8)

= (L− b+ 1)
(
|fa − fa+1|+ |fa+1 − fa+2|+ . . .+ |fπp(kb)−1 − fπp(kb)|

)
+(L− b)

(
|fπp(kb) − fπp(kb)+1|+ |fπp(kb)+1 − fπp(kb)+2|+ . . .+ |fπp(kb+1)−1 − fπp(kb+1)|

)
...

...
...

+|fπp(kL−1) − fπp(kL−1)+1|+ |fπp(kL−1)+1 − fπp(kL−1)+2|+ . . .+ |fπp(kL)−1 − fπp(kL)|.

The total increase in the LHS of (A.5) is accounted for by the sum of (A.7) and

(A.8).

b. RHS Next we consider the increase in the RHS of (A.5) due to the additional

vertex vk+1 to G (or va to π(G)) and the associated edges. We note that

C
(
π−1
v (Si)

)
= {[vr, vs] ∈ E : vr ∈ π−1

v (Si), vs ∈ π−1
v (Si)}

= {[vr, vs] ∈ E : πv(vr) ∈ Si, πv(vs) ∈ Si}

= {[vr, vs] ∈ E : πp(r) ≤ i < πp(s)}.
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In words, due to the additional vertex vk+1. For any i < a = πp(k+1), the cardinality

of the partition boundary |C
(
π−1
v (Si)

)
| increases by 1 for each vertex vr ∈ V with

label πp(r) ≤ i connected to vk+1. Otherwise for any i ≥ a, the cardinality of the

partition boundary |C
(
π−1
v (Si)

)
| again increases by 1 for each vertex vs ∈ V with

label πp(s) > i connected to vk+1. Since {vk1 , vk2 , . . . , vkL} are the set of all vertices

connected to vk+1, we can account for the total increase in the RHS of (A.5) by

consider the set of all C
(
π−1
v (Si)

)
, 1 ≤ i ≤ k that contains the edge [vkl , vk+1] for

each l = 1, 2, . . . , L. We consider two cases by splitting the summation on the RHS

of (A.5) over the indices i < a and i ≥ a.

Recall that 1 ≤ πp(kb−1) < a ≤ πp(kb) ≤ k + 1 for some 1 < b ≤ L and

πp(k1) ≤ πp(k2) ≤ . . . ≤ πp(kL). First we consider the case i < a. For l = 1, the

partition boundaries C
(
π−1
v (Si)

)
contains [vk1 , vk+1] for each πp(k1) ≤ i < a. Thus,

due to the edge [vk1 , vk+1] the total increase in the RHS of (A.5) over the index

1 ≤ i < a is

|fπp(k1) − fπp(k1)+1|+ |fπp(k1)+1 − fπp(k1)+2|+ . . .+ |fπp(k2)−1 − fπp(k2)|

+ |fπp(k2) − fπp(k2)+1|+ |fπp(k2)+1 − fπp(k2)+2|+ . . .+ |fπp(k3)−1 − fπp(k3)|
...

...
...

+ |fπp(kb−1) − fπp(kb−1)+1|+ |fπp(kb−1)+1 − fπp(kb−1)+2|+ . . .+ |fa−1 − fa|.

Similarly, when l = 2, the edge [vk2 , vk+1] is contained in C
(
π−1
p (Si)

)
for all πp(k2) ≤

i < a, and contributes to the total increase over the index 1 ≤ i < a by

|fπp(k2) − fπp(k2)+1|+ |fπp(k2)+1 − fπp(k2)+2|+ . . .+ |fπp(k3)−1 − fπp(k3)|
...

...
...

+ |fπp(kb−1) − fπp(kb−1)+1|+ |fπp(kb−1)+1 − fπp(kb−1)+2|+ . . .+ |fa−1 − fa|.

Repeating this for all 1 ≤ l ≤ L, then we see that the total increase in the RHS of

(A.5) over the index 1 ≤ i < a is given by

|fπp(k1) − fπp(k1)+1|+ |fπp(k1)+1 − fπp(k1)+2|+ . . .+ |fπp(k2)−1 − fπp(k2)|)

+ 2(|fπp(k2) − fπp(k2)+1|+ |fπp(k2)+1 − fπp(k2)+2|+ . . .+ |fπp(k3)−1 − fπp(k3)|)
...

...
...

+ (b− 1)(|fπp(kb−1) − fπp(kb−1)+1|+ |fπp(kb−1)+1 − fπp(kb−1)+2|+ . . .+ |fa−1 − fa|).
(A.9)

Next we calculate the total increase to the RHS of (A.5) over the indices i ≥ a.

For this case, we need to consider the set of partition boundaries C
(
π−1
p (Si)

)
, for

i ≥ a that contains the edge [vkl , vk+1] ∈ E for l = 1, 2, . . . , L. Since i ≥ a, we
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note that the edge [vkl , vk+1] ∈ E is not in C
(
π−1
p (Si)

)
for any πp(kl) ≤ i. Thus for

this case, we start with the index l = b, which corresponds to the smallest index l

such that [vkb , vk+1] ∈ E and πp(kl) ≥ a. The edge [vkb , vk+1] ∈ E is contained in

C
(
π−1
p (Si)

)
for all i < πp(kb), hence contributes to the total increase of the RHS of

(A.5) over the indices a ≤ i ≤ k by an amount of

|fa − fa+1|+ |fa+1 − fa+2|+ . . .+ |fπp(kb)−1 − fπp(kb)|

Similarly, for l = b+ 1, the edge [vkb+1
, vk+1] ∈ E is contained in C

(
π−1
p (Si)

)
for all

i < πp(b+ 1), thus contributes to the total increase over the indices a ≤ i ≤ k by

|fa − fa+1|+ |fa+1 − fa+2|+ . . .+ |fπp(kb−1 − fπp(kb|

+ |fπp(kb) − fπp(kb)+1|+ |fπp(kb)+1 − fπp(kb)+2|+ . . .+ |fπp(kb+1)−1 − fπp(kb+1)|.

Repeating this for all l = b+ 2, . . . , L, we see that the total increase in the RHS of

(A.5) over the indices a ≤ i ≤ k is given by

(L− b+ 1)
(
|fa+1 − fa|+ |fa+2 − fa+1|+ . . .+ |fπp(kb)−1 − fπp(kb)|

)
+ (L− b)

(
|fπp(kb) − fπp(kb)+1|+ |fπp(kb)+1 − fπp(kb)+2|+ . . .+ |fπp(kb+1)−1 − fπp(kb+1)|

)
...

...
...

+ |fπp(kL−1) − fπp(kL−1)+1|+ |fπp(kL−1)+1 − fπp(kL−1)+2|+ . . .+ |fπp(kL)−1 − fπp(kL)|
(A.10)

Comparing the expression (A.7) to (A.9), and (A.8) to (A.10), we see that with the

addition of the vertex k + 1 to G, the increase to both sides of (A.5) are equal.

If we set πp to be the identity permutation in Lemma A.2.1 then we obtain

Corollary A.2.2. Let G(V,E) be a simple, connected graph with |V | = k. If a

vector f ∈ Rk satisfies fi ≤ fi+1 for each i = 1, . . . k − 1, then

∑
i∼j

|fi − fj| =
k−1∑
i=1

|fi − fi+1|.|C(Si)| (A.11)

Lemma A.2.3. Let G = (V,E) be a simple, connected graph with |V | = k, and

π = (πv, πe) a graph isomorphism. Let f ∈ Rk be a nonnegative vector, such that

fi is increasing for each i ≥ r, for some 1 ≤ r < k. If the vertex vr satisfies

d(π−1
v vr) ≤

∑k
i=r+1 d(π−1

v vi), then

(
k∑
i=1

d(vi)f
2
i

)(
k∑
i=1

d(vi)f
2
i + d(π−1

v vi)f
2
i

)
≤

 k∑
i=1

d(vi)f
2
i +

k∑
i=1
i 6=r

d(π−1
v vi)f

2
i


2

.
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Proof. Since d(π−1
v vr) ≤

∑k
i=r+1 d(π−1

v vi) and fi is positive with fi ≤ fi+1 for each

i ≥ r, we have

d(π−1
v r)f 2

r ≤
k∑

i=r+1

d(π−1
v vi)f

2
i ≤

k∑
i=1
i 6=r

d(π−1
v vi)f

2
i . (A.12)

Therefore(
k∑
i=1

d(vi)f
2
i

)(
k∑
i=1

d(vi)f
2
i + d(π−1

v vi)f
2
i

)

=

(
k∑
i=1

d(vi)f
2
i

) k∑
i=1

d(vi)f
2
i +

k∑
i=1
i 6=r

d(π−1
v vi)f

2
i

+

(
k∑
i=1

d(vi)f
2
i

)
d(π−1

v vr)(fr)
2

=

 k∑
i=1

d(vi)f
2
i +

k∑
i=1
i 6=r

d(π−1
v vi)f

2
i


2

+

(
k∑
i=1

d(vi)f
2
i

)
d(π−1

v r)(fr)
2

−

 k∑
i=1
i 6=r

d(π−1
v vi)f

2
i

( k∑
i=1

d(vi)f
2
i

)
+

 k∑
i=1
i 6=r

d(π−1
v vi)f

2
i


2

≤

 k∑
i=1

d(vi)f
2
i +

k∑
i=1
i 6=r

d(π−1
v vi)(fi)

2


2

−

 k∑
i=1
i 6=r

d(π−1
v vi)f

2
i


2

≤

 k∑
i=1

d(vi)f
2
i +

k∑
i=1
i 6=r

d(π−1
v vi)f

2
i


2

,

where (A.12) has been used to obtain the inequality on the penultimate line.

Observe that if the nonnegative vector f in the statement of Lemma A.2.3, is

such that fi is decreasing for each i ≤ r, for some 1 < r ≤ k. Then given that

the vertex vr satisfies d(π−1
v vr) ≤

∑r−1
i=1 d(π−1

v vi), we have the following analogue for

(A.12)

d(π−1
v r)f 2

r ≤
r−1∑
i=1

d(π−1
v vi)f

2
i ≤

k∑
i=1
i 6=r

d(π−1
v vi)f

2
i .

Consequently, by performing exactly the same calculations as in Lemma A.2.3, we

obtain

Corollary A.2.4. Let G = (V,E) be a simple, connected graph with |V | = k, and

πv : V → V be a graph isomorphism. Let f ∈ Rk be a nonnegative, such that
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fi is decreasing for each i ≤ r, for some 1 < r ≤ k. If the vertex vr satisfies

d(π−1
v vr) ≤

∑r−1
i=1 d(π−1

v vi), then

(
k∑
i=1

d(vi)f
2
i

)(
k∑
i=1

d(vi)f
2
i + d(π−1

v vi)f
2
i

)
≤

 k∑
i=1

d(vi)f
2
i +

k∑
i=1
i 6=r

d(π−1
v vi)f

2
i


2

.

Lemma A.2.5. Let G(V,E) be a simple, connected graph with |V | = k, and π =

(πv, πe) a graph isomorphism. Let πp be the vertex label permutation associated with

the vertex permutation πv, and R : Rk → R be defined as in (A.3). One has for all

f ∈ Rk

2
√
R(f) ≥

∑
i∼j |f 2

i − f 2
j |+ |f 2

πp(i) − f 2
πp(j)|√(∑k

i=1 d(vi)f 2
i

)(∑k
i=1 d(vi)f 2

i + d(vi)f 2
πp(i)

) . (A.13)

Proof. For each 1 ≤ i ≤ k,∑
i∼j

(fi + fj)
2 ≤

∑
i∼j

(fi + fj)
2 + (fi − fj)2

= 2
∑
i∼j

f 2
i + f 2

j

= 2
k∑
i=1

d(vi)f
2
i . (A.14)

Similarly

∑
i∼j

(
fπp(i) + fπp(j)

)2 ≤ 2
k∑
i=1

d(vi)f
2
πp(i). (A.15)

By adding (A.14) to (A.15) then rearranging, we arrive at the inequality∑
i∼j(fi + fj)

2 + (fπp(i) + fπp(j))
2

2
(∑k

i=1 d(vi)f 2
i + d(vi)f 2

πp(i)

) ≤ 1. (A.16)

Therefore

R(f) =

∑
i∼j(fi − fj)2 + (fπp(i) − fπp(j))

2

2
∑k

i=1 d(vi)f 2
i

≥
∑

i∼j(fi − fj)2 + (fπp(i) − fπp(j))
2

2
∑k

i=1 d(vi)f 2
i

× LHS of (A.16)

=
(a2 + b2)(â2 + b̂2)

4
(∑k

i=1 d(vi)f 2
i

)(∑k
i=1 d(vi)f 2

i + d(vi)f 2
πp(i)

) (A.17)
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where

a =

(∑
i∼j

(fi − fj)2

) 1
2

b =

(∑
i∼j

(fπp(i) − fπp(j))
2

) 1
2

â =

(∑
i∼j

(fi + fj)
2

) 1
2

b̂ =

(∑
i∼j

(fπp(i) + fπp(j))
2

) 1
2

.

Observe that each of the term a, b, â and b̂ are positive and real, so that

(a2 + b2)(â2 + b̂2) ≥ (aâ+ bb̂)2.

Furthermore, application of the Cauchy-Schwartz inequality on the expressions aâ

and bb̂ yields

aâ =

(∑
i∼j

(fi − fj)2

) 1
2
(∑

i∼j

(fi + fj)
2

) 1
2

≥
∑
i∼j

|f 2
i − f 2

j |

and

bb̂ =

(∑
i∼j

(fπp(i) − fπp(j))
2

) 1
2
(∑

i∼j

(fπp(i) + fπp(j))
2

) 1
2

≥
∑
i∼j

|f 2
πp(i) − f 2

πp(j)|.

Thus,

R(f) ≥ (A.17) ≥

(∑
i∼j |f 2

i − f 2
j |+ |f 2

πp(i) − f 2
πp(j)|

)2

4
(∑k

i=1 d(vi)f 2
i

)(∑k
i=1 d(vi)f 2

i + d(vi)f 2
πp(i)

) , (A.18)

by taking square root on both sides of (A.18), we arrive at the required result.

The proof of Theorem 2.2.3(2): Assume G(V,E) is simple and connected with

|V | = k. Let g2 = D1/2f be the eigenvector of Ldyn corresponding to λ2 and

1 ∈ Rk be the vector with each element equal to 1. We order the vertices of G

according to f by fi ≤ fi+1, and let r and q denote the largest integers such that

D(Sr−1) < D(V )/2, and D(π−1
v (Sq)) < D(V )/2. We first consider the situation of

r ≤ q, and define the positive and negative parts of fi by

f−i =

{
|fi − fr| if fi < fr

0 otherwise

and

f+
i =

{
fi − fr if fi ≥ fr

0 otherwise
;
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i.e. fi = f+
i − f−i + fr, then form the vector f+ and f−. First we show that

R(f) ≥ min{R(f+), R(f−)}. Due to Theorem 2.2.2,
∑k

i=1 d(vi)fi = 〈f ,D1〉 = 0.

Thus

k∑
i=1

d(vi)f
2
i (A.19)

=
r−1∑
i=1

d(vi)f
2
i +

k∑
i=r

d(vi)f
2
i

≤
r−1∑
i=1

d(vi)(f
2
i + f 2

r ) +
k∑
i=r

d(vi)(f
2
i + f 2

r )

=
r−1∑
i=1

d(vi)(f
2
i + f 2

r )− 2fr

r−1∑
i=1

d(vi)fi − 2fr

k∑
i=r

d(vi)fi +
k∑
i=r

d(vi)(f
2
i + f 2

r )

=
k∑
i=1

d(vi)(f
+
i )2 + d(vi)(f

−
i )2. (A.20)

Furthermore, by the definitions of f−i and f+
i , f+

i f
−
j = 0 and fi− fj = (f+

i − f+
j ) +

(f−i − f−j ). Therefore

(fi − fj)2 = ((f+
i − f+

j ) + (f−i − f−j ))2

= (f+
i − f+

j )2 + (f+
i f
−
i − f+

i f
−
j − f−i f+

j + f+
j f
−
j ) + (f−i − f−j )2

= (f+
i − f+

j )2 + (f−i − f−j )2. (A.21)

Note that i, j can be replaced with πp(i), πp(j) in (A.21) to obtain analogous results

for (fπp(i)−fπp(j))
2. Applying (A.21) and (A.19) to the numerator and denominator

of R(f) respectively, then

R(f) =

∑
i∼j(fi − fj)2 + (fπp(i) − fπp(j))

2

2
∑k

i=1 d(vi)f 2
i

≥
∑

i∼j(f
+
i − f+

j )2 + (f+
πp(i) − f

+
πp(j))

2 + (f−i − f−j )2 + (f−πp(i) − f
−
πp(j))

2

2
∑k

i=1 d(vi)(f
+
i )2 + d(vi)(f

−
i )2

≥ min{R(f+), R(f−)} (A.22)

where we have used the fact that for any positive real numbers a, b, c and d

a+ b

c+ d
≥ min

{
a

c
,
b

d

}
.

Now by Theorem 2.2.2(4), one has λ2 = −R(f). So if min{R(f+), R(f−)} =

R(f+), then (A.22) becomes λ2 ≥ −R(f+). Thus, by Lemma A.2.5

2
√
−λ2 ≥

∑
i∼j |(f

+
i )2 − (f+

j )2|+ |(f+
πp(i))

2 − f+
πp(j))

2|√(∑k
i=1 d(vi)(f

+
i )2
)(∑k

i=1 d(vi)(f
+
i )2 + d(vi)(f

+
πp(i))

2
) , (A.23)
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In the following, we consider the expression on the numerator of (A.23). By the

application of Lemma A.2.1 and Corollary A.2.2

∑
i∼j

|(f+
i )2 − (f+

j )2|+ |(f+
πp(i))

2 − (f+
πp(j))

2|

=
k−1∑
i=1

|(f+
i+1)2 − (f+

i )2|.
(
|C(Si)|+ |C

(
π−1
v (Si)

)
|
)
. (A.24)

On substituting the ordered cut value

α = min
1≤i≤k

|C(Si)|+ |C
(
π−1
v (Si)

)
|

D̂(Si) + D̂
(
π−1
v (Si)

) . (A.25)

into (A.24), where D̂(S) = min{D(S), D(S)} for S ⊂ V . Then using the fact that

D̂(Sk) = D̂(S0) = D̂
(
π−1
v (Sk)

)
= D̂

(
π−1
v (S0)

)
= 0, we have

(A.24) ≥ α
k−1∑
i=1

|(f+
i+1)2 − (f+

i )2|.(D̂(Si) + D̂
(
π−1
v (Si)

)
= α

k∑
i=1

(f+
i )2.(|D̂(Si−1)− D̂(Si)|+ |D̂

(
π−1
v (Si−1)

)
− D̂

(
π−1
v (Si)

)
|). (A.26)

Observe by the definition of f+
i and the assumption that fi ≤ fi+1, one has f+

i = 0

for i ≤ r. Therefore, we only need to consider the summation of (A.26) over the

indices r < i. Furthermore, for each i > r, D̂(Si−1) = D
(
Si−1

)
because r is the

largest integer such that D(Sr−1) < D(V )/2. So that for i > r

D̂(Si−1)− D̂(Si) =
∑
j≥i

d(vj)−
∑
j≥i+1

d(vj) = d(vi). (A.27)

Now for the expression D̂
(
π−1
v (Si−1)

)
− D̂

(
π−1
v (Si)

)
, when i < q, D

(
π−1
v (Si−1)

)
≤

D
(
π−1
v (Si)

)
< D(V )/2. So that for i < q

D̂
(
π−1
v (Si−1)

)
− D̂

(
π−1
v (Si)

)
=
∑
j≤i−1

d(π−1
v vj)−

∑
j≤i

d(π−1
v vj) = −d(π−1

v vi). (A.28)

In addition, when i > q, D
(
π−1
v (Si)

)
≥ D

(
π−1
v (Si−1)

)
> D(V )/2. So that for i > q

D̂
(
π−1
v (Si−1)

)
− D̂

(
π−1
v (Si)

)
=
∑
j≥i

d(π−1
v vj)−

∑
j≥i+1

d(π−1
v vj) = d(π−1

v vi). (A.29)

Combining (A.28) and (A.29), we conclude that |D̂
(
π−1
v (Si−1)

)
− D̂

(
π−1
v (Si)

)
| =
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d(π−1
v vi) when i 6= q. Therefore,∑

r<i≤k

(f+
i )2|D̂

(
π−1
v (Si−1)

)
− D̂

(
π−1
v (Si)

)
|

=

∑
r<i≤k
i 6=q

(f+
i )2d(π−1

v vi)

+ (f+
q )2|D̂

(
π−1
v (Sq)

)
− D̂

(
π−1
v (Sq)

)
|

≥
∑
r<i≤k
i 6=q

(f+
i )2d(π−1

v vi). (A.30)

Inserting equation (A.30) and (A.27) in (A.26) gives

(A.24) ≥ α

∑
r<i≤k

(f+
i )2d(vi) +

∑
r<i≤k
i 6=q

(f+
i )2d(π−1

v vi)

 . (A.31)

Next we treat the denominator of (A.23). Recall the theorem hypothesis

d(π−1
v vq) ≤ D(V )/4, this implies d(π−1

v vq) ≤
∑k

i=q+1 d(π−1
v vi), because if otherwise

D(π−1
v (Sq)) = D(V )−D

(
π−1
v (Sq)

)
= D(V )− d(π−1

v vq)−
k∑

i=q+1

d(π−1
v vi)

≥ D(V )− 2d(π−1
v vq) ≥ D(V )/2,

which contradicts the fact that q is the largest index satisfying D
(
π−1
v (Sq)

)
<

D(V )/2. Furthermore, f+
i is positive and increasing for i ≥ q, and q 6= k because

D
(
π−1
v (Sk−1)

)
≥ D(V )/2. Hence by Lemma A.2.3√√√√( k∑

i=1

d(vi)(f
+
i )2

)(
k∑
i=1

d(vi)(f
+
i )2 + d(vi)(f

+
πp(i))

2

)

=

√√√√( k∑
i=1

d(vi)(f
+
i )2

)(
k∑
i=1

d(vi)(f
+
i )2 + d(π−1

p vi)(f
+
i )2

)

≤
k∑
i=1

d(vi)(f
+
i )2 +

k∑
i=1
i 6=q

d(π−1
v vi)(f

+
i )2

=
∑
r<i≤k

d(vi)(f
+
i )2 +

∑
r<i≤k
i 6=q

d(π−1
v vi)(f

+
i )2. (A.32)

By substituting (A.31) and (A.32) into the numerator and denominator of (A.23)
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respectively, one has

2
√
−λ2 ≥ α

∑r<i≤k d(vi)(f
+
i )2 +

∑
r<i≤k
i 6=q

d(π−1
v vi)(f

+
i )2∑

r<i≤k d(vi)(f
+
i )2 +

∑
r<i≤k
i 6=q

d(π−1
v vi)(f

+
i )2


= α. (A.33)

By comparing the definition of the ordered cut value α (A.25) to the constant

Hdyn
G given by (2.1), we immediately see that α ≥ Hdyn

G , so the required inequality

follows from (A.33). If instead min{R(f+), R(f−)} = R(f−), then one can obtain

(A.33) by following similar arguments from equation (A.23) and onwards, with the

following alterations:

1. Replace f+ with f−,

2. The summation in (A.26) only needs to be considered over the indices i > r,

3. (A.27) is replaced by

D̂(Si−1)− D̂(Si) =
∑
j≤i−1

d(vj)−
∑
j≤i

d(vj) = −d(vi), (A.34)

while (A.28) and (A.29) are replaced by

D̂
(
π−1
v (Si−1)

)
− D̂

(
π−1
v (Si)

)
=
∑
j≤i−1

d(π−1
v vj)−

∑
j≤i

d(π−1
v vj) = −d(π−1

v vi).

(A.35)

To complete the proof, suppose we have the other situation of q < r. Then

one defines the positive and negative parts of fi as before, and follow from equation

(A.19)-(A.22) to obtain R(f) ≥ min{R(f+), R(f−)}. Now if min{R(f+), R(f−)} =

R(f−), then by making the appropriate alterations from (A.23)-(A.31), one has

2
√
−λ2 ≥ α


∑

1≤i<r(f
−
i )2d(vi) +

∑
1≤i<r
i 6=q

(f−i )2d(π−1
v vi)√(∑k

i=1 d(vi)(f
−
i )2
)(∑k

i=1 d(vi)(f
−
i )2 + d(vi)(f

−
πvi

)2
)
 . (A.36)

To treat the denominator of (A.36), note that the theorem hypothesis d(π−1
v k) ≤

D(V )/4 also implies d(π−1
v vq) ≤

∑q−1
i=1 d(π−1

v vi) as before. Furthermore, f−i is posi-

tive and decreasing for i ≤ q, and q 6= 1 because D
(
π−1
v (S1)

)
≤ D(V )/4 < D(V )/2

(contradicts q−1 being the largest index satisfying this condition). Thus, by Corol-

lary A.2.4 √√√√( k∑
i=1

d(vi)(f
−
i )2

)(
k∑
i=1

d(vi)(f
−
i )2 + d(vi)(f

−
πp(i))

2

)
≤
∑

1≤i<r

d(vi)(f
−
i )2 +

∑
1≤i<r
i 6=q

d(π−1
v vi)(f

−
i )2. (A.37)
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Hence, by (A.36) and (A.37) we have 2
√
−λ2 ≥ α and the result follows. The case of

min{R(f+), R(f−)} = R(f+) is a straight forward modification to the r ≤ q case,

thus the details are omitted.
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Let (M,m) and (N, n) be compact, connected r-dimensional C∞ Riemannian man-

ifolds, where m,n are the Riemannian metric tensors on M and N respectively. Let

T be a C∞-diffeomorphism of M onto N , and Vm the volume measure on M . Let

(M,m, µr) and (N, n, νr) be weighted Riemannian manifolds, where µr is absolutely

continuous probability measures with respect to Vm, and νr = µr ◦ T−1. Denote by

hµ and hν the densities of the measures µr and νr respectively.

B.1 Muckenhoupt weights Ap

For a measurable function f on M , the essential supremum of f is the number

ess supf := {a ∈ R : Vm
(
f−1(a,∞)

)
= 0}.

Recall from Section 3.1 that the volume form ωrm on M is given in terms of the

volume measure Vm on M via Vm(U) =
∫
U
ωrm for any measurable subset U ⊆ M .

Define the class of Ap weights [119]:

Definition B.1.1. Let Bρ(x) ⊂ M denote the metric ball centered at x ∈ M with

radius ρ > 0. The density hµ of the measure µr is said to be an Ap weight of

(M,m, µr), if there exists a constant Cµ such that for every x and ρ, hµ satisfies(
1

Vm
(
Bρ(x)

) ∫
Bρ(x)

hµ · ωrm

)(
1

Vm
(
Bρ(x)

) ∫
Bρ(x)

h
− 1
p−1

µ · ωrm

)p−1

≤ Cµ, (B.1)

for 1 < p <∞, or(
1

Vm
(
Bρ(x)

) ∫
Bρ(x)

hµ · ωrm

)(
ess sup
z∈Bρ(x)

1

hµ(z)

)
≤ Cµ, (B.2)

for p = 1. We call Cµ the Ap constant of hµ.

Proposition B.1.2. Suppose the density hµ of the measure µr is Lipschitz and

uniformly bounded away from zero. Then hµ is an Ap weight for all 1 ≤ p <∞.
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Proof. Let Bρ(x) ⊂ M , and denote by distm be the Riemannian distance function

with respect to the metric m. Since hµ is Lipschitz and nonnegative, for every

x, z ∈ M one has hµ(z) ≤ hµ(x) + Kdistm(x, z) for some K <∞. Hence, for every

x ∈M and ρ > 0

1

Vm
(
Bρ(x)

) ∫
Bρ(x)

hµ(z) · ωrm(z) ≤ hµ(x) +Kρ

Vm
(
Bρ(x)

) ∫
Bρ(x)

ωrm(z)

= hµ(x) +Kρ. (B.3)

Since M is compact and Bρ(x) ⊂M , one has ρ <∞. Also, since hµ is Lipschitz, it is

bounded on M . Hence, the RHS of (B.3) is bounded above by supx∈M
(
hµ(x)+Kρ

)
.

In addition, since hµ is uniformly bounded away from zero, h−1
µ and h

−1/(p−1)
µ are

bounded for 1 < p <∞. Hence, there exist constants γp and γ1 such that

1

Vm
(
Bρ(x)

) ∫
Bρ(x)

h
− 1
p−1

µ · ωrm ≤ γp, (B.4)

1 < p <∞, and (
ess sup
z∈Bρ(x)

1

hµ(z)

)
≤ γ1, (B.5)

Hence, by (B.3), (B.4) there are constants Cµ = γ
1/(p−1)
p · supx∈M(hµ(x) + Kρ),

such that (B.1) is satisfied for 1 < p < ∞. Similarly, there is a constant Cµ =

γ1 · supx∈M(Kρ + hµ(x)), such that (B.2) is satisfied for p = 1. Hence, hµ is an Ap

weight.

Let L1
loc(M,Vm) denote the space of locally integrable functions; that is, if f ∈

L1
loc(M,Vm) then

∫
Bρ(x)

f · ωrm <∞ for every x ∈M and ρ ∈ R+. Given a weighted

Riemannian manifold (M,m, µr), we wish to determine the condition on the density

hµ so that Lp(M,µr) ⊂ L1
loc(M,Vm).

Proposition B.1.3. Let Bρ(x) ⊂M denote the metric ball centered at x ∈M with

radius ρ > 0. If h
−1/(p−1)
µ is in L1

loc(M,Vm) for p ∈ (0,∞), or if for every x and ρ

ess sup
z∈Bρ(x)

1

hµ(z)
<∞,

for p = 1. Then Lp(M,m, µr) ⊂ L1
loc(M,Vm).

Proof. This result appeared in [119] for the case M = Rr; the arguments for the

present version is identical, thus are omitted.
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B.2 Additional notes on differential geometry

By a local chart on M , we meant a pair (U,ϕ) such that U is an open subset of

M and ϕ : U → Rr a local C∞-diffeomorphism. The countable collection of local

charts (Ui, ϕi)i∈I such that ∪i∈IUi forms an open cover for M is called an atlas. For

a fixed k ∈ I, one can define a set of local coordinates (x1, x2, . . . , xr) on Uk as the

set of smooth projections of the image of ϕk onto the jth coordinate, 1 ≤ j ≤ r;

that is xj : Uk → R is a homeomorphism for each 1 ≤ j ≤ r. Moreover, the atlas

on M defines a local coordinate system for each point x ∈M . In local coordinates,

it is possible to carry out the operation of partial differentiation on a differentiable

function f at the point x ∈ Uk, k ∈ I as[
∂

∂xj

]
x

f :=
∂
(
f ◦ ϕ−1

k

)
∂xj

(ϕk(x)), (B.6)

for each 1 ≤ j ≤ r. It is well known (see e.g p.7 in [36]) that the above oper-

ation is independent on the choice of ϕk, and therefore we use the abbreviation

[∂/∂xj]x f = ∂f/∂xj(x) = ∂jf(x) whenever there is no confusion on whether the

partial differential is carried out on Rr or M . It is straightforward to verify that the

set {∂i}ri=1 forms a basis for the vector fields on M . Hence, one can write the metric

tensor m in coordinates as mij(x) = m(∂i, ∂j)(x).

Given a diffeomorphism T : M → N , and local charts (U,ϕ), (TU, ϑ) on M , N

respectively. Observe that ϑ ◦ T : M → Rr is smooth. Therefore, it is possible to

carry out the operation of partial differentiation on T at the point x ∈ U as[
∂

∂xj

]
x

T :=
∂(ϑ ◦ T ◦ ϕ−1)

∂xj

(
ϕ(x)

)
. (B.7)

One can construct the Jacobian matrix JT in local coordinates via (B.7), as a r× r
matrix with entries (JT )ij := ∂jTi, where Ti is the smooth projection of the image of

ϑ ◦ T onto the ith coordinate, and the abbreviation ∂jTi(x) = ∂Ti/∂xj(x) had been

applied.

B.2.1 Differential forms

Let (x1, x2, . . . , xr) be local coordinates on M . Denote by dxi the differential 1-

forms dual to the tangent basis ∂i, for each 1 ≤ i ≤ r. For p ≤ r, one can express a

differentiable p-form η in coordinates via the exterior product of 1-forms

η =
∑

j1<j2<...<jp

aj1...jpdxj1 ∧ dxj2 ∧ . . . ∧ dxjp , (B.8)

where aj1...jp are real-valued functions on M .
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The exterior derivative on a differentiable f : M → R is a 1-form given by

df =
∑r

i=1 ∂ifdxi, and the exterior derivative on the p-form η defined by (B.8) is a

(p+ 1)-form satisfying

dη =
∑

j1<j2<...<jp

d(aj1...jp) ∧ dxj1 ∧ dxj2 ∧ . . . ∧ dxjp .

The interior derivative i(V) on a p-form η with respect to a vector field V on M , is

a (p− 1)-form satisfying

[i(V)η](V1,V2, . . . ,Vp−1) = η(V ,V1,V2, . . . ,Vp−1),

for all vector fields V1,V2, . . . ,Vp−1 on M .

Recall the definition of the tangent and cotangent mappings T∗ and T ∗ associated

with T , given by (3.5) and (3.6) respectively. For the differential p-form η given by

(B.8), one has

(T ∗η)(V1,V2, . . . ,Vp)(x) = η(T∗V1, T∗V2, . . . , T∗Vp)(Tx),

for all vector fields V1,V2, . . .Vp on M . Therefore, in coordinates

T ∗η = T ∗

 ∑
j1<j2<...<jp

aj1...jpdxj1 ∧ dxj2 ∧ . . . ∧ dxjp


=

∑
j1<j2<...<jp

aj1...jp ◦ T · T ∗dxj1 ∧ T ∗dxj1 ∧ T ∗dxj2 ∧ . . . ∧ T ∗dxjp

=
∑

j1<j2<...<jp

aj1...jp ◦ T · d(xj1 ◦ T ) ∧ d(xj1 ◦ T ) ∧ d(xj2 ◦ T ) ∧ . . . ∧ d(xjp ◦ T ),

(B.9)

where the last line is due to the fact that [T ∗(df)]V = V(f ◦ T ) = [d(f ◦ T )]V , for

all f ∈ C∞(M,R) and vector fields V on M .

Let Gm(x) be a r × r matrix with components mij(x) at the point x ∈M . The

volume form ωrm in the local coordinates {xi}ri=1 is defined by

ωrm(x) :=
√

detGm(x) · dx1 ∧ dx2 . . . ∧ dxr, (B.10)

for each point x ∈ M . Let Γ be a C∞ co-dimension 1 subset of M . Recall from

Section 3.1 that the embedding Φ : Γ → M induces a Riemannian metric on Γ via

the pullback metric Φ∗m; that is ωr−1
m = Φ∗ωrm. The following is a classical result in

geometric measure theory (see Theorem I.3.1 in [23]):

Lemma B.2.1 (co-area formula). Let f ∈ C1(M,R). For an open, connected U ⊆
M with compact closure, and any function h : M → R+ in L1(M,Vm), one has∫

U

|∇mf |mh · ωrm =

∫
R

(∫
f−1{β}

h · ωr−1
m

)
dβ, (B.11)
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where | · |2m = m(·, ·) and ∇mf is the gradient of f with respective to the metric m;

defined by (3.16).

The co-area formula connects the spatial integral over the gradient of a function

to the co-dimension one measure on the level sets generated by that function. If the

density hµ of the absolutely continuous probability measure µr is a positive function

in L1(M,Vm), then one can apply the co-area formula (B.11) with h = hµ to obtain∫
U

|∇mf |m · hµωrm =

∫
U

|∇mf |mhµ · ωrm =

∫
R
µr−1(f−1{β}) dβ,

for all measurable U ⊆M .

B.2.2 Differential operators on weighted manifolds

Recall the definitions of the gradient ∇m, divergence divm and weighted divergence

divµ given by (3.16), (3.24) and (3.25) respectively. One can express ∇mf in local

coordinates {x1, . . . , xr} on M as,

∇mf =
r∑

i,j=1

mij∂if∂j, (B.12)

for all f ∈ Ck(M,R), and where mij is the components r × r matrix G−1
m (see p.4,

equation (22) [22]). As a consequence of Stokes’ theorem (see p.124, [113]), the

divergence given by (3.24) can be written as,

divmV · ωrm = d[i(V)ωrm], (B.13)

for all V ∈ Fk(M). Since {∂i}ri=1 forms a basis for the vector fields on M , one can

express the vector field V on M as V =
∑r

i=1 V i∂i. Then (B.13) in local coordinates

is (see equation (32) on p.5 in [22]),

divmV =
1√

detGm

r∑
i=1

∂i

(√
detGmV i

)
. (B.14)

Hence, the Laplace-Beltrami operator is given in local coordinates by

4mf =
1√

detGm

r∑
i,j=1

∂i

(
mij
√

detGm∂jf
)
. (B.15)

Let f : M → R be differentiable, and V1, V2 vector fields on M . The standard

divergence properties (see equation (12) and (13) on p.3, [22]) holds analogously for

the weighted divergence (3.25); that is, for hµ ∈ C1(M,R)

divµ(V1 + V2) =
1

hµ
div(hµV1 + hµV2)

=
1

hµ
div(hµV1) +

1

hµ
div(hµV2)

= divµV1 + divµV2, (B.16)
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and

divµ(fV1) =
1

hµ
div(hµfV1)

=
f

hµ
div(hµV1) +

1

hµ
m(∇mf, hµV1)

= fdivµV1 +m(∇mf,V1). (B.17)

B.2.3 Properties of T∗ and T ∗

Let g : N → R be differentiable. One can express the tangent mapping T∗ given by

(3.5) in local coordinates {x1, . . . , xr} as

(T∗V)g = V(g ◦ T ) =
r∑
i=1

V i∂(g ◦ T )

∂xi
,

where V =
∑r

i=1 V i∂i ∈ TM . The following result computes coordinate representa-

tions of the pullback metric T ∗n.

Lemma B.2.2. Let nij be the local coordinates representation of the metric tensor

n. Denote by Gn the r × r matrix with components nij and JT the Jacobian matrix

of T . We have at the each point x ∈M

(GT ∗n)ij =
(
J>T ·Gn ◦ T · JT

)
ij
, (B.18)

where T ∗n is the pullback metric of n given by (3.7).

Proof. Let (U,ϕm) be a local chart on M , containing the point x0 ∈ U with cor-

responding coordinates {xi}ri=1. Then the local chart (TU, ϕn) on N contains the

point Tx0 ∈ N . Let {yi}ri=1 denote the local coordinates on TU . Due to (3.5) and

(B.6), one has for all differentiable g on N[
T∗

∂

∂xi

]
Tx0

g =

[
∂

∂xi

]
x0

(g ◦ T )

=
∂(g ◦ T ◦ ϕ−1

m )

∂xi

(
ϕm(x0)

)
=
∂(g ◦ ϕ−1

n ◦ ϕn ◦ T ◦ ϕ−1
m )

∂xi

(
ϕm(x0)

)
=

r∑
k=1

∂(ϕn ◦ Tk ◦ ϕ−1
m )

∂xi

(
ϕm(x0)

)∂(g ◦ ϕ−1
n )

∂yk

(
ϕn(Tx0)

)
=

r∑
k=1

[
∂

∂xi

]
x0

Tk ·
[
∂

∂yk

]
Tx0

g,
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where the last equality is due to (B.7). Therefore,

T∗
∂

∂xi
=

r∑
k=1

(JT )ki ◦ T−1 · ∂

∂yk
, (B.19)

at the point Tx0; that is T∗(∂/∂xi) is a tangent vector in TTx0(N) with components(
T∗(∂/∂xi)

)k
= (JT )ki ◦ T−1, 1 ≤ k ≤ r. To obtain (B.18) at the point x0, we

compute

(GT ∗n)ij(x0) = T ∗n

(
∂

∂xi
,
∂

∂xj

)
(x0)

= n

(
T∗

∂

∂xi
, T∗

∂

∂xj

)
(Tx0)

= n

( r∑
k=1

(
T∗

∂

∂xi

)k
∂

∂yk
,

r∑
l=1

(
T∗

∂

∂xj

)l
∂

∂yl

)
(Tx0)

=
r∑

k,l=1

(
nkl ·

(
T∗

∂

∂xi

)k
·
(
T∗

∂

∂xj

)l)∣∣∣∣∣
Tx0

=
r∑

k,l=1

(
JT (x0)

)
ki
· nkl(Tx0) ·

(
JT (x0)

)
lj

by (B.19)

=

(
J>T ·Gn ◦ T · JT

)
ij

(x0).

Since x0 ∈ U is arbitrary and (U,ϕm) is a chart for M , we conclude that the above

calculations hold for all points in M .

Corollary B.2.3. Let n be the metric tensor of N , with volume form ωrn given by

(B.10). Define the co-tangent mapping T ∗ as in (3.6). One has T ∗ωrn = ωrT ∗n.

Proof. Let {xi}ri=1 and {yi}ri=1 be local coordinates on M and N respectively. Then

by (B.9), one has for each 1 ≤ i ≤ r,

T ∗(dyi) = d(yi ◦ T ) =
r∑
j=1

∂(yi ◦ T )

∂xj
dxj =

r∑
j,k=1

∂Tk
∂xj

∂yi
∂yk
◦ T · dxj =

r∑
j,k=1

∂Tk
∂xj

δik · dxj,

where δik is the kronecker delta. Therefore, T ∗(dyi) =
∑r

j=1 ∂Ti/∂xj ·dxj. It follows

that

T ∗(dy1∧dy2∧ . . .∧dyr) = T ∗dy1∧T ∗dy2∧ . . .∧T ∗dyr = | det JT | ·dx1∧dx2∧ . . .∧dxr.
(B.20)

Let Gn, GT ∗n to be the r × r matrices with entries nij, (T ∗n)ij in coordinates

{yi}ri=1, {xi}ri=1 respectively. Then by Lemma B.2.2, one has det (GT ∗n) = | det(JT )|2·
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det (Gn) ◦ T , which implies

T ∗(ωrn) =
√

detGn ◦ T · T ∗(dy1 ∧ . . . ∧ dyr) by (B.9)

=
√

detGn ◦ T · | det JT | · dx1 ∧ . . . ∧ dxr by (B.20)

=
√

detGT ∗n · dx1 ∧ . . . ∧ dxr = ωrT ∗n.

Recall that T is an isometry from (M,T ∗n) to (N, n). Due to Corollary B.2.3

one has ∫
T (U)

ωrn =

∫
U

ωrT ∗n =

∫
U

T ∗(ωrn), (B.21)

for all measurable U ⊆ M . Hence, by the definition of P given by (3.17), one has

for all f ∈ L1(M,Vm)∫
U

f · ωrm =

∫
T (U)

Pf · ωrn

=

∫
U

Pf ◦ T · ωrT ∗n by (B.21)

=

∫
U

Pf ◦ T ·
√

detGT ∗n · dx1 ∧ . . . ∧ dxr

=

∫
U

Pf ◦ T · | det JT | ·
√

detGn ◦ T · dx1 ∧ . . . ∧ dxr,

where the last line is due to Lemma B.2.2. Hence, since T is a diffeomorphism and

ωrm =
√

detGm · dx1 ∧ . . . ∧ dxr by (B.10), one has

Pf =
f ◦ T−1

| det JT ◦ T−1|
·
√

detGm ◦ T−1

√
detGn

= f ◦ T−1 · | det JT−1 | ·
√

detGm ◦ T−1

√
detGn

, (B.22)

where we have applied the inverse function theorem to obtain the last line. Moreover,

setting f = hµ in (B.22) and using the fact that Phµ = hν (by (3.17)) yields

hµ = hν ◦ T · | det JT | ·
√

detGn ◦ T√
detGm

. (B.23)

Now by assumption, T is a diffeomorphism and the densities hµ and hν are uniformly

bounded away from zero. Therefore, by (B.23) and the nondegeneracy of the metrics

m and n, the Jacobian | det JT | is bounded above and uniformly away from zero.

Let IV denote the characteristic function on a measurable subset V ⊆ N . One

has for all f ∈ L1(M,Vm)∫
N

Pf · IV · ωrn =

∫
V

Pf · ωrn =

∫
T−1V

f · ωrm =

∫
M

f · IV ◦ T · ωrm. (B.24)
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Hence, the Koopman operator K adjoint to P is given by Kf = f ◦ T .

Recall the pushforward operator H : L2(M,m, µr) → L2(N, n, νr) is defined as

in (3.19), with L2(M,m, µr) adjoint H∗.

Lemma B.2.4. The operator H : L2(M,m, µr)→ L2(N, n, νr) is well defined, may

be expressed as Hf = f ◦ T−1, and has adjoint H∗g = g ◦ T .

Proof. Let f ∈ L2(M,m, µr). Due to (B.22) and the fact that hµ > 0, one has

|P(f · hµ)|2 = |(f · hµ) ◦ T−1|2 · |det JT−1|2 ·
∣∣∣∣√detGm ◦ T−1

√
detGn

∣∣∣∣2
=

∣∣∣∣(f 2 · hµ) ◦ T−1 · |det JT−1| ·
√

detGm ◦ T−1

√
detGn

∣∣∣∣
×
∣∣∣∣hµ ◦ T−1 · |det JT−1| ·

√
detGm ◦ T−1

√
detGn

∣∣∣∣
= |P(f 2 · hµ)| · |Phµ|

= P(f 2 · hµ) · hν . (B.25)

Therefore ∫
N

|Hf |2 dνr =

∫
N

∣∣∣∣P(f · hµ)

hν

∣∣∣∣2 · hνωrn
=

∫
N

|P(f · hµ)|2

hν
· ωrn since hν > 0

=

∫
N

P(f 2 · hµ) · ωrn

=

∫
M

(f 2 · hµ) · ωrm

=

∫
M

f 2 dµr, (B.26)

where the second last line is due to (3.17). Thus, since f ∈ L2(M,m, µr) the RHS

of (B.26) is bounded and H is well defined.

To show that Hf = f ◦ T−1, we use (B.25) (without the squares) to compute

P(f · hµ), and (B.22) to compute hν = Phµ, and note that all terms in the quotient

H = P(f · hµ)/hν not involving f cancel to leave H = f ◦ T−1.

For all measurable U ⊆M ,∫
T (U)

Hf · hνωrn =

∫
T (U)

P(f · hµ) · ωrn =

∫
U

f · hµωrm. (B.27)

Let U ⊆ M be measurable. Since Phµ = hν , one has P(IU · hµ) = IT (U) · hν .
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Therefore, ∫
T (U)

g dνr =

∫
N

IT (U) · hν
hν

· g dνr

=

∫
N

P(IU · hµ)

hν
· g dνr

=

∫
N

H(IU) · g dνr

=

∫
M

IU · H∗g dµr by definition of H∗

=

∫
U

H∗g dµr, (B.28)

for all g ∈ L2(N, n, νr). Therefore, using the fact that νr = µr ◦ T−1, one has for

any measurable V ⊂ N∫
M

H∗IV dµr =

∫
N

IV dνr =

∫
M

IT−1V dµr =

∫
M

IV ◦ T dµr. (B.29)

Thus, H∗g = g ◦ T for all g ∈ L2(N, n, νr).

Proposition B.2.5. Let H : L2(M,m, µr) → L2(N, n, νr) be as in (3.19), with

adjoint H∗. For any f ∈ C1(M,R) ∩ L2(M,m, µr), one has

T{x ∈M : f(x) = β} = {y ∈ N : Hf(y) = β}.

Proof. This follows immediately from Lemma B.2.4

Lemma B.2.6. Let H : L2(M,m, µr) → L2(N, n, νr) be as in (3.19), with adjoint

H∗. One has

1. ∇n = T∗∇T ∗nH∗,

2. H∗divnT∗ = divT ∗n,

3. H∗4nHf = 4T ∗n.

Proof. 1. Let g ∈ C1(N,R) ∩ L2(N, n, µr) and V ∈ F1(M). One has by (3.7)

n(T∗∇T ∗nH∗g, T∗V)(Tx) = T ∗n(∇T ∗nH∗g,V)(x)

= V(H∗g)
∣∣
x

by (3.16) with respect to T ∗n

= V(g ◦ T )
∣∣
x

by (B.29)

= (T∗V)g
∣∣
Tx

= n(∇ng, T∗V)(Tx),

for all x ∈M .
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2. Let V ,V1,V2, . . . ,Vr−1 be r vector fields in F1(M). One has at each point

x ∈M

[i(T∗V)ωrn](T∗V1, T∗V2, . . . , T∗Vr−1)(Tx)

= ωrn(T∗V , T∗V1, T∗V2, . . . , T
∗Vr−1)(Tx)

= (T ∗ωrn)(V ,V1,V2, . . . ,Vr−1)(x)

= [i(V)ωrT ∗n](V1,V2, . . . ,Vr−1)(x),

where we have applied the identity T ∗ωrn = ωrT ∗n in Corollary B.2.3 on the last

line. Hence, by the duality of T∗ and T ∗, one has at each point x ∈M

T ∗d[i(T∗V)ωrn] = d[i(V)ωrT ∗n]. (B.30)

Therefore,∫
U

H∗divn(T∗V) · ωrT ∗n =

∫
U

divn(T∗V) ◦ T · ωrT ∗n

=

∫
TU

divn(T∗V) · ωrn by (B.21)

=

∫
TU

d[i(T∗V)ωrn] by (B.13) with respect to n

=

∫
U

T ∗d[i(T∗V)ωrn]

=

∫
U

d[i(V)ωrT ∗n] by (B.30)

=

∫
U

divT ∗n(V) · ωrT ∗n.

3. Due to 1. and 2. and the fact that H∗H is the identity by B.2.4, one

has H∗4nHf = H∗divn(∇nHf) = H∗divn(T∗∇T ∗nH∗Hf) = divT ∗n∇T ∗nf =

4T ∗nf , for all f ∈ C2(M,R) ∩ L2(M,m, µr).

Corollary B.2.7. Let H : L2(M,m, µr)→ L2(N, n, νr) be as in (3.19), with adjoint

H∗. One has

4dynf =
1

2
(4m +H∗4nH) f +

1

2

(
m(∇mhµ,∇mf)

hµ
+
n(∇nhν ,∇nHf) ◦ T

hν ◦ T

)
,

(B.31)

for all f ∈ C2(M,R) ∩ L2(M,m, µr).

Proof. By definition

4dyn = 4µ +H∗4νH. (B.32)
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Substituting a straightforward modification of (3.27) into the second term on the

RHS of (B.32), one has for all x ∈M and f ∈ C2(M,R) ∩ L2(M,m, µr),

H∗4νHf(x) = 4ν(Hf)(Tx)

= 4n(Hf)(Tx) +
n(∇nhν ,∇nHf)(Tx)

hν(Tx)

= H∗4nHf(x) +
n(∇nhν ,∇nHf)(Tx)

hν ◦ T (x)
.

Similarly, one can expand the first term of (B.32) using (3.27) to obtain the required

result.

Corollary B.2.8. Let 4dyn and 4µ be defined by (3.28) and (3.27) respectively.

One has

4dyn =
1

2
(4µ +4µ̃)f, (B.33)

where 4µ̃ is given by (3.27) with respect to the metric T ∗n and density hν ◦ T .

Proof. Due to Lemma B.2.6, one has ∇n = T∗∇T ∗nH∗. Therefore, by the definition

of the gradient (3.16) with respect to the metric n, one has for all x ∈M

n(∇nhν ,∇nHf)Tx = (∇nHf)hν
∣∣
Tx

= (T∗∇T ∗nf)hν
∣∣
Tx

by Lemma B.2.4

= (∇T ∗nf)(hν ◦ T )
∣∣
x

= T ∗n
(
∇T ∗n(hν ◦ T ),∇T ∗nf

)
x
, (B.34)

where the equality on the last line is due to (3.16) with respect to the metric T ∗n.

Moreover, by Lemma B.2.6, one has the identity H∗4nH = 4T ∗n. Thus, by substi-

tuting (B.34) into the fourth term on the RHS of (B.31), one has

4dynf =
1

2
(4m +H∗4nH)f +

1

2

(
m(∇mhµ,∇mf)

hµ
+
T ∗n

(
∇T ∗n(hν ◦ T ),∇T ∗nf

)
hν ◦ T

)
=

1

2
(4µ +4µ̃)f, (B.35)

where the second equality is due to the definition of weighted Laplacians (3.27).

B.2.4 Local properties of charts

An important analytical tool for reducing a global calculation on M to local calcu-

lations on each chart of an atlas on M is the partition of unity.

Definition B.2.9. Let (Ui, ϕi)i∈I be an atlas onM . A partition of unity subordinate

to the covering {Ui}i∈I , is the collection of smooth functions σi ∈ C∞(M,R) such

that:
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1. supp(σi) ⊂ Ui.

2. Any point x ∈M has a neighbourhood Ox such that Ox∩ supp(σi) = ∅ except

for a finite set of σi.

3. 0 ≤ σi ≤ 1 and
∑

i∈I σi = 1.

It is well known that the partition of unity exist for paracompact manifolds (see

e.g. Theorem 1.12 [7]). Since every compact manifold is paracompact, a partition

of unity exist for M .

Furthermore, for each point x in a compact Riemannian manifold M , there exist

coordinates on a neighbourhood about x, and a constant c > 1 (depending on the

injective radius of x, and the dimension of the sectional curvature of M), such that

1

c
δij ≤ mij ≤ cδij, 1 ≤ i, j ≤ r, (B.36)

where δij is the Kronecker delta (see e.g p.507 in [78], or Chapter 1 of [71]). The

following lemmas are consequences of (B.36).

Lemma B.2.10. Let (U,ϕ) be a chart on (M,m), set Ω = ϕ(U), and denote by d`

the density with respect the Lebesgue measure. One has

c−r/2
∫
U

|f |p dµr ≤
∫

Ω

|f ◦ ϕ−1|p · (hµ ◦ ϕ−1) d` ≤ cr/2
∫
U

|f |p dµr, (B.37)

for some real number c > 1 and all f ∈ Lp(U,m, µr), p ∈ [1,∞).

Proof. Let δij denote the Kronecker delta, and pick local coordinates on U such that

the components of the metric tensor m satisfy 1
c
δij ≤ mij(x) ≤ cδij for all x ∈ U and

1 ≤ i, j ≤ r. Due to the inequality mij ≤ 1
c
δij, one has

√
detGm(x) ≤ cr/2 for all x ∈

U . Furthermore, the Riemannian volume form is given by ωrm =
√

detGm ·dx1∧dx2∧
. . .∧ dxr on U , and the Lebesgue density satisfies d` = (ϕ−1)∗(dx1 ∧ dx2 ∧ . . .∧ dxr)
on Ω. Hence by the change of variable formula (B.21)

c−r/2
∫
U

|f |p dµr = c−r/2
∫
U

|f |p · hµ
√

detGm · dx1 ∧ dx2 ∧ . . . ∧ dxr

≤
∫
ϕ−1(Ω)

|f |p · hµ · dx1 ∧ dx2 ∧ . . . ∧ dxr

=

∫
Ω

|f ◦ ϕ−1|p · (hµ ◦ ϕ−1) d`,

where the equality is due to (B.21). The inequality
∫

Ω
|f ◦ ϕ−1|p · (hµ ◦ ϕ−1) d` ≤

cr/2
∫
U
|f |p dµr is obtained analogously using 1

c
δij ≤ mij.
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Lemma B.2.11. Let (U,ϕ) be a chart on (M,m), set Ω = ϕ(U), and denote by e

the Euclidean metric on Ω with respect to the Lebesgue density d`. One has

c−(r/2+1)

∫
U

|∇mf |pm dµr ≤
∫

Ω

|∇e(f ◦ϕ−1)|pe · (hµ ◦ϕ−1) d` ≤ c(r/2+1)

∫
U

|∇mf |pm dµr

for some real number c > 1 and all ∇mf ∈ Lp(U,m, µr), p ∈ [1,∞).

Proof. We start with the case p = 2. Let δij denote the Kronecker delta, and pick

local coordinates on U such that the components of the metric tensor m satisfy
1
c
δij ≤ mij(x) ≤ cδij for all x ∈ U and 1 ≤ i, j ≤ r. Denote by mij the components

of the inverse matrix G−1
m . One has the contraction

∑
km

ikmkj = δij, so that
1
c
δij ≤ mij(x) ≤ cδij. Moreover, due to Lemma B.2.10, the inequality (B.37) is valid

with constant c. Hence, by writing ∇mf in the given local coordinates via (B.12),

one has

c−(r/2+1)

∫
U

|∇mf |2m dµr

≤ c−1

∫
Ω

(|∇mf |2m · hµ) ◦ ϕ−1 d`

= c−1

∫
Ω

m(∇mf,∇mf)ϕ−1(x) · hµ ◦ ϕ−1(x) d`(x)

= c−1

∫
Ω

r∑
i,j=1

mij

(
r∑

k=1

mki∂(f ◦ ϕ−1)

∂xk

)(
r∑
l=1

mlj ∂(f ◦ ϕ−1)

∂xl

)
· (hµ ◦ ϕ−1) d`

= c−1

∫
Ω

r∑
j=1

(
∂(f ◦ ϕ−1)

∂xj

)( r∑
l=1

mlj ∂(f ◦ ϕ−1)

∂xl

)
· (hµ ◦ ϕ−1) d`, (B.38)

where we have contracted the index i to obtain the last line. Furthermore, using

the fact that mlj ≤ cδlj, one has

RHS of (B.38) ≤
∫

Ω

r∑
j=1

(
∂(f ◦ ϕ−1)

∂xj

)2

· (hµ ◦ ϕ−1) d` since mlj ≤ cδlj

=

∫
Ω

|∇e(f ◦ ϕ−1)|2e · (hµ ◦ ϕ−1) d`. (B.39)

The inequality
∫

Ω
|∇e(f ◦ ϕ−1)|2e · (hµ ◦ ϕ−1) d` ≤ c(r/2+1)

∫
U
|∇mf |2m dµr is obtained

analogously using 1
c
δij ≤ mij.

The general case p ∈ [1,∞) is a straightforward modification of the calculation

done to obtain (B.38) and (B.39).

B.3 Weighted Sobolev spaces

Let C∞0 (Ω,R) be the space of smooth real-valued functions with compact support

on Ω ⊂ Rr, and ` the Lebesgue measure on Rr. For locally integrable functions
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f, f̃ ∈ L1
loc(Ω, `), we say that f̃ is the first order weak derivative of f if

∫
Ω
f ·∂ig d` =

−
∫

Ω
f̃ · g d` for all g ∈ C∞0 (Ω,R), and each 1 ≤ i ≤ r (see p.21 in [1]). We write

f̃ = ∂̃if , and note that ∂̃if is uniquely determined up to sets of measure zero.

Definition B.3.1. Let (U,ϕ) be a chart on M with corresponding local coordinates

(x1, x2, . . . , xr). Define the first order weak gradient of f ∈ L1
loc(M,Vm) at the point

x ∈M by

∇̃mf(x) =
r∑

i,j=1

mij(x) · ∂̃i(f ◦ ϕ−1)
∣∣∣
ϕ(x)

∂j, (B.40)

where the partial derivatives appearing on the RHS exist in the weak sense.

It is straightforward to extend the operation T∗ on weak gradients, and verify that

Lemma B.2.6 and B.2.11 hold for weak gradients. In addition, if the density of µr is

an Ap weight, then by Proposition B.1.3, any f ∈ Lp(M,m, µr) is also in L1
loc(M,Vm).

Thus, one can define weak gradients on Lp(M,m, µr) via the Definition B.3.1. The

following proposition provides the key motivation behind the construction of the

weak gradient given above.

Proposition B.3.2. Let f ∈ L2(M,m, µr), where the density of µr is an A2 weight.

Assume the first order weak gradient of f defined by (B.40) exists. One has∫
U

f · 4µg dµr = −
∫
U

m(∇̃mf,∇mg) dµr, (B.41)

for all measurable U ⊂M and g ∈ C∞0 (M,Rr).

Proof. Let (Uk, ϕk)k∈K be an atlas on M , with corresponding local coordinates

(x1, x2, . . . , xr). Due to (B.10), one has dµr = hµ
√

detGmdx1 ∧ dx2 ∧ . . . ∧ dxr.
Additionally d` = (ϕ−1

k )∗(dx1 ∧ dx2 ∧ . . . ∧ dxr). Hence, for each k ∈ K and any

measurable Ωk ⊂ ϕk(Uk), one has by the coordinate representation of 4m given by

(B.15), for each k ∈ K∫
ϕ−1
k (Ωk)

f · 4µg dµr =

∫
ϕ−1
k (Ωk)

f ·
r∑

i,j=1

∂i(m
ijhµ

√
detGm)∂jg · dx1 ∧ dx2 ∧ . . . ∧ dxr

=
r∑

i,j=1

∫
Ωk

f ◦ ϕ−1
k · ∂i[(m

ijhµ
√

detGm) ◦ ϕ−1
k · (∂jg) ◦ ϕ−1

k ] d`

=
r∑

i,j=1

∫
Ωk

∂̃i(f ◦ ϕ−1
k ) · [(mijhµ

√
detGm) ◦ ϕ−1

k · (∂jg) ◦ ϕ−1
k ] d`

=

∫
ϕ−1
k (Ωk)

m(∇̃mf,∇mg) dµr, (B.42)

where the last line is due to m(∇̃mf,∇mg) = (∇̃mf)g =
∑r

i,j=1 m
ij∂if∂jg and

Definition B.3.1.
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Now since M is compact, there exists a smooth partition of unity σk subordinate

to the covering {Uk}k∈K (see Definition B.2.9). Moreover, since ϕk is a diffeomor-

phism, for any measurable U ⊆ M , there exist K ′ ⊆ K and countable collection of

measurable Ωk ⊂ ϕk(Uk), such that U = ∪k∈K′(ϕ−1
k (Ωk)). Hence, applying (B.42)

to each k ∈ K ′, one has by setting
∑

k∈K′ σk = 1∫
U

f · 4µg dµr =
∑
k∈K′

∫
ϕ−1
k (Ωk)

σkf · 4µg dµr

=
∑
k∈K′

∫
ϕ−1
k (Ωk)

m
(
∇̃m(σkf),∇mg

)
dµr

=

∫
U

m

(
∇̃m

(∑
k∈K′

σkf

)
,∇mg

)
dµr

=

∫
U

m(∇̃mf,∇mg) dµr,

where we have used the linearity of ∇̃m and the fact that supp(σk) ⊂ Uk to obtain

the penultimate line.

We introduce the weighted Sobolev space W 1,2(M,m, µr) of L2(M,m, µr) inte-

grable functions, whose first order weak gradient exists in L2(M,m, µr). We equip

W 1,2(M,m, µr) with the inner product 〈f, g〉W 1,2(M,m,µr) :=
∫
M

(m(∇̃mf, ∇̃mg) +

fg) dµr for all f, g ∈ W 1,2(M,m, µr), with the norm associated with 〈·, ·〉W 1,2(M,m,µr)

denoted by ‖ · ‖W 1,2(M,m,µr).

There exist embedding theorems and the completeness property for weighted

Sobolev spaces on Rr, and for the unweighted Sobolev spaces on Riemannian mani-

folds (see [119] and [71] respectively). We develop the corresponding results for the

weighted Sobolev space W 1,2(M,m, µr) defined as above. Let (U,ϕ) be a chart on

M . In the following, we first obtain the results of the desired properties in a local

setting; i.e. the weighted Sobolev space W 1,2(U,m, µr). One can then use the fact

that M is compact, and apply the standard partition of unity arguments to extend

these local outcomes to global ones for W 1,2(M,m, µr).

Given a chart (U,ϕ) on M . Set Ω = ϕ(U), and let `µ be an absolutely continuous

measure with density hµ ◦ ϕ−1 with respect to `, where ` is the Lebesgue measure

on Rr. One has the weighted Sobolev space W 1,2(Ω, `µ) for the open subset Ω ⊂ Rr;

that is, the space W 1,2(Ω, `µ) is equipped with the norm

‖f ◦ ϕ−1‖2
W 1,2(Ω,`µ) =

∫
Ω

(
|f ◦ ϕ−1|2 + |∇̃e(f ◦ ϕ−1)|2e

)
· (hµ ◦ ϕ−1) d`, (B.43)

for all f ∈ L2(U, µr), and where ∇̃e is the first order weak gradient with respect

to the Euclidean metric e. Suppose the density hµ of µr is an A2 weight (i.e. hµ
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satisfies (B.1) when p = 2). Clearly, hµ is an A2 weight restricted to the sub-domain

U . Moreover, since U has compact closure and ϕ is a diffeomorphism, it is easy

to verify that the density hµ ◦ ϕ−1 of `µ is also an A2 weight. Since the density of

`µ is an A2 weight, the weighted Sobolev space W 1,2(Ω, `µ) is a Hilbert space and

C∞(Ω,R) is dense in W 1,2(Ω, `µ) (see Theorem 1 in [62]). We show by the following

lemma that if f ∈ W 1,2(U,m, µr), then f ◦ ϕ−1 ∈ W 1,2(Ω, `µ).

Lemma B.3.3. Let (U,ϕ) be a chart on M , and set Ω = ϕ(U). Denote by ‖ ·
‖W 1,2(Ω,`µ) and ‖ · ‖W 1,2(U,m,µr) the norms on the weighted Sobolev spaces W 1,2(Ω, `µ)

and W 1,2(U,m, µr) respectively. Then ‖f ◦ ϕ−1‖W 1,2(Ω,`µ) and ‖f‖W 1,2(U,m,µr) are

equivalent for all f ∈ W 1,2(U,m, µr)

Proof. This follows immediately from Lemma B.2.10 and B.2.11.

Due to Lemma B.3.3, one now has global completeness for W 1,2(M,m, µr).

Proposition B.3.4. Assume the density of µr is an A2 weight. The weighted

Sobolev space W 1,2(M,m, µr) is complete.

Proof. First we show that the Sobolev spaces on any charts on M are complete. Let

(U,ϕ) be a chart on M , and fj a Cauchy sequence in W 1,2(U,m, µr). Then fj ◦ϕ−1 is

Cauchy in W 1,2(Ω, `µ) due to Lemma B.3.3, so by the completeness of W 1,2(Ω, `µ),

the Cauchy sequence fj ◦ ϕ−1 convergences to an element f ◦ ϕ−1 ∈ W 1,2(Ω, `µ).

Hence, the Cauchy sequence fj converges to f in W 1,2(U,m, µr).

Now, let gj be a Cauchy sequence in W 1,2(M,m, µr), and (Ui, ϕi)i∈I an atlas

on M . Since M is compact, {Ui}i∈I is a finite cover for M . Hence, there exist

a fixed s ∈ I such that W 1,2(Us,m, µr) contains infinitely many terms of the se-

quence gj. Let gjk be a subsequence of gj contained entirely in W 1,2(Us,m, µr),

then gjk is Cauchy in W 1,2(Us,m, µr), so that gjk converges to an element g ∈
W 1,2(Us,m, µr) by completeness. In particular, the Cauchy sequence gj converges

to g in W 1,2(M,m, µr).

We proceed to demonstrate that the space W 1,2(M,m, µr) is approximated by

smooth functions in C∞(M,R)∩W 1,2(M,m, µr). The key idea is to locally subject

the functions in W 1,2(M,m, µr) to mollification.

Definition B.3.5. Let Ω be an open subset of Rr, and q ∈ C∞0 (Rr,R) be nonneg-

ative such that supp (q) ⊂ E1(0) and
∫

Ω
q d` = 1, where E1(0) is the open unit ball

centered at the origin in Rr. We define a mollifier by the function qε := ε−rq(x/ε).

For all f ∈ Lp(Ω, `), p ∈ [1,∞), we call the convolution

qε ? f(x) :=

∫
Ω

qε(x− z)f(z) d`(z), (B.44)
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the mollification of f by qε.

One has the following weighted version of the well known result ∇̃e(qε ? f) =

qε ? ∇̃ef , and density theorem (Lemma 7.3 and Theorem 7.9 in [61] respectively).

Theorem B.3.6 (Theorem 2.1.4. [119]). Let Ω be an open subset of Rr, and f ∈
Lp(Ω, `w), where `w is an absolutely continuous measure with respect to Lebesgue.

Define fε := qε ? f , where the mollifier qε and ? are as in Definition B.3.5. For

p ∈ [1,∞), if the density of `w is an Ap weight, then fε ∈ C∞(Ω,R) ∩ Lp(Ω, `w),

∇̃efε = qε ? ∇̃ef , and as ε→ 0, fε → f in Lp(Ω, `w).

Corollary B.3.7. Let W 1,2(M,m, µr) be a weighted Sobolev space. Assume the

density of µr is an A2 weight. The space C∞(M,R) ∩W 1,2(M,m, µr) is dense in

W 1,2(M,m, µr).

Proof. Let f ∈ W 1,2(M,m, µr) and choose some γ > 0. We will show that there is a

g ∈ C∞(M,R)∩W 1,2(M,m, µr), such that ‖f−g‖2
W 1,2(M,m,µr)

< γ. Let (Ui, ϕi)i∈I be

an atlas on M , then pick local coordinates on M , such that the components of the

metric tensor satisfy 1
c
δjk ≤ mjk(x) ≤ cδjk for some 1 < c < ∞, and each x ∈ Ui,

1 ≤ j, k ≤ r (such coordinate exist due to the compactness of M , see (B.36)).

For each 1 ≤ i ≤ r, let `µ,i be an absolutely continuous measure with density

hµ ◦ ϕ−1
i with respect to `. Since M is compact, there exists a smooth partition of

unity {σi}i∈I subordinate to the finite covering {Ui}i∈I ; i.e. σi is given by definition

B.2.9. Therefore, σif and its first order weak gradient vanishes outside of Ui, hence

σif ∈ W 1,2(Ui,m, µr). Set Ωi = ϕi(Ui) for each i ∈ I, then due to Lemma B.3.3, the

fact that σif ∈ W 1,2(Ui,m, µr) implies (σif) ◦ ϕ−1
i ∈ W 1,2(Ωi, `µ,i). Consequently,

both (σif) ◦ϕ−1
i and ∇̃e

(
(σif) ◦ ϕ−1

i

)
are in L2(Ωi, `µ,i) for each i ∈ I. Let qε and ?

be as in definition B.3.5, then by Theorem B.3.6 applied to (σif)◦ϕ−1
i ∈ L2(Ωi, `µ,i)

with p = 2 and `w = `µ,i for each i ∈ I,

∇̃e

(
qε ?

(
(σif) ◦ ϕ−1

i

))
= qε ?

(
∇̃e

(
(σif) ◦ ϕ−1

i

))
, (B.45)

and there exist ε1 > 0 such that∥∥qε ? ((σif) ◦ ϕ−1
i

)
− (σif) ◦ ϕ−1

i

∥∥
L2(Ωi,`µ,i)

<
γ

2cr/4 · |I|2
. (B.46)

for all i ∈ I. In addition, applying Theorem B.3.6 to ∇̃e

(
(σif) ◦ ϕ−1

i

)
∈ L2(Ωi, `µ,i)

with p = 2 and `µ = `µ,i, one has ε2 > 0 such that∥∥∥∇̃e

(
qε ?

(
(σif) ◦ ϕ−1

i

))
− ∇̃e

(
(σif) ◦ ϕ−1

i

)∥∥∥
L2(Ωi,`µ,i)

=
∥∥∥qε ? (∇̃e

(
(σif) ◦ ϕ−1

i

))
− ∇̃e

(
(σif) ◦ ϕ−1

i

)∥∥∥
L2(Ωi,`µ,i)

by (B.45)

<
γ

2cr/4+2 · |I|2
, (B.47)

128



Appendix B

for all i ∈ I.

Let distm denote the distance function admitted by the metric m. Set

ε = min
{
ε1, ε2, distm

(
supp[qε ?

(
(σif) ◦ ϕ−1

i

)
], ∂Ωi

) }
, (B.48)

and let fε,i := qε ?
(
(σif) ◦ ϕ−1

i

)
◦ϕi. Since ε satisfies (B.48), the function fε,i and its

first order weak gradient ∇̃mfε,i vanish outside of Ui for all i ∈ I. Moreover, since

|I| is finite, fε :=
∑

i∈I fε,i ∈ C∞(M,R) ∩W 1,2(M,m, µr).

Set g = fε, then by Lemma B.2.10 and the inequality (B.46)

‖g − f‖2,m,µ =

∥∥∥∥∥∑
i∈I

fε,i − σif

∥∥∥∥∥
2,m,µ

≤
∑
i∈I

(∫
M

|fε,i − σif |2 dµr
) 1

2

by triangle inequality

=
∑
i∈I

(∫
Ui

|fε,i − σif |2 dµr
) 1

2

≤
∑
i∈I

cr/4
(∫

Ωi

∣∣qε ? ((σif) ◦ ϕ−1
i

)
− (σif) ◦ ϕ−1

i

∣∣2 · (hµ ◦ ϕ−1
i ) d`

) 1
2

<
√
γ/2. (B.49)

Similarly, by Lemma B.2.11, and the inequality (B.47)

‖∇̃mg − ∇̃mf‖2,m,µ (B.50)

=

∥∥∥∥∥∑
i∈I

∇̃mfε − σif

∥∥∥∥∥
2,m,µ

≤
∑
i∈I

(∫
Ui

|∇̃mfε,i − ∇̃m(σif)|2m dµr
) 1

2

≤
∑
i∈I

cr/4+1/2

(∫
Ωi

∣∣∣∇̃e

(
qε ?

(
(σif) ◦ ϕ−1

i

))
− ∇̃e

(
(σif) ◦ ϕ−1

i

)∣∣∣2
e
· (hµ ◦ ϕ−1

i ) d`

) 1
2

<
√
γ/2. (B.51)

Thus, ‖g − f‖2
W 1,2(M,m,µr)

< γ.

As before, let `µ be an absolutely continuous measure with respect to `. The

Hardy-Littlewood maximal operator M is a non-linear operator on locally integrable

functions f ∈ L1
loc(Rr, `) defined by

Mf(x) = sup
ρ>0

1

`
(
Eρ(x)

) ∫
Eρ(x)

|f(y)| d`(y), (B.52)
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where Eρ(x) is the Euclidean ball centered at x with radius ρ. If the density of the

measure `µ is an Ap weight, then M is bounded as an operator from Lp(Rr, `w) to

Lp(Rr, `w) for 1 < p <∞ (see Theorem 1, p.201 in [114], or Theorem 1.2.3 in [119]).

This property of Ap weights on the operator M forms an essential argument for

Theorem B.3.6, and leads to the following result:

Lemma B.3.8. Let K ⊂ Ω ⊂ Rr, where K is compact and Ω is open and bounded.

Let W 1,2(Ω, `w) be a weighted Sobolev space. Assume the density `w is an A2 weight.

Suppose fi is a sequence in W 1,2(Ω, `w) with support K. Then there exists a subse-

quence fij , and some f ∈ L2(Ω, `w), such that∫
K

(fij − f)2 d`w → 0, (B.53)

as j →∞.

Proof. Let fε,i = qε ?fi, where qε and ? are as in Definition B.3.5. Denote by ‖ · ‖2,`w

the L2-norm associated with L2(K, `w). First we show that

‖fε,i − fi‖2,`w → 0, (B.54)

uniformly with respect to i. Due to Theorem B.3.6, it is sufficient to proof (B.54)

for fi ∈ C∞(Ω,R) ∩W 1,2(Ω, `w). By a change of variable y = (x − z)/ε and using

the facts
∫
Rr q d` = 1, supp(q) ⊂ E1(0), one has

fε,i(x)− fi(x) =

∫
Rr
qε(x− z)fi(z) d`(z)− fi(x)

= ε−r
∫
Eε(x)

q

(
x− z
ε

)
fi(z) d`(z)−

∫
|y|<1

q(y)fi(x) d`(y)

=

∫
|y|<1

q(y)[fi(x− εy)− fi(x)] d`(y)

≤ ‖q‖∞ ·
∫
|y|<1

[fi(x− εy)− fi(x)] d`(y) by Hölder’s inequality

= ‖q‖∞ · εr
∫
Eε(x)

[fi(z)− fi(z + εy)] d`(z). (B.55)

As a consequence of (B.55), one has

‖fε,i − fi‖2
2,`w ≤ ‖q‖

2
∞ ·
∫
K

∣∣∣∣εr ∫
Eε(x)

|fi(z)− fi(z + εy)| d`(z)

∣∣∣∣2 d`w(x)

≤ ‖q‖2
∞ ·
∫
Rr

∣∣∣∣εr [`(Eε(x))] · H
(
fi(x)− fi(x+ εy)

)∣∣∣∣2 d`w(x)

=‖q‖2
∞ · π2 ·

∫
Rr

∣∣∣∣H(fi(x)− fi(x+ εy)
)∣∣∣∣2 d`w(x), (B.56)
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where H is defined as in (B.52). Furthermore, by using the fact that the density

of `w is an Ap weight, the operator H : L2(Rr, `w) → L2(Rr, `w) is bounded. This

implies

RHS of (B.56) ≤ ‖q‖2
∞ · π2 ·

∫
Rr

∣∣H(fi(x)− fi(x+ εy
)∣∣2 d`w(x)

≤ ‖q‖2
∞ · π2 · C

∫
Rr
|fi(x)− fi(x+ εy)|2 d`w(x), (B.57)

where the constant C depends only on r, p and the Ap constant of w; the constant C

is uniform with respect to i. Since fi is continuous independent of i, by (B.56)-(B.57)

one has the convergence fε,i → fi in L2(Ω, `w) uniformly with respect to i.

Due to (B.54), we can now pick a subsequence of fi, so that for any fixed γ > 0,

there exists an ε sufficiently small such that

‖fε,ij − fij‖2,`w ≤ γ/2, (B.58)

for all ij ≥ 1. Furthermore, since the density of `w is an A2 weight, by a straight-

forward modification of Lemma B.1.3, one has L2(Ω, `w) ⊂ L1
loc(Ω, `). Hence the

sequence fi belongs to L1
loc(Ω, `), therefore∫

Ω

|fi| d` =

∫
K

|fi| d` <∞,

which implies

sup
x∈Ω
|fε,i(x)| = sup

x∈Ω
|qε ? fi(x)|

= sup
x∈Ω

∣∣∣∣∫
Ω

qε(x− z) · fi(z) d`(z)

∣∣∣∣
≤ ‖qε‖∞ ·

∫
Ω

|fi| d` <∞,

so that fε,i is uniformly bounded on Ω. Similarly, by using Leibniz’s rule for differ-

entiating under integral sign, one has

sup
x∈Ω
|∇efε,i(x)|e = sup

x∈Ω
|∇eqε ? fi(x)|e

= sup
x∈Ω

∣∣∣∣∇e

(∫
Ω

qε(x− z) · fi(z) d`(z)

)∣∣∣∣
e

≤ sup
x∈Ω

∫
Ω

|∇eqε(x− z)|e · |fi(z)| d`(z)

≤ ‖∇eqε‖∞ ·
∫

Ω

|fi| d` <∞,

which implies fε,i is equicontinuous on Ω. Therefore, by the Arzela-Ascoli theorem

(Theorem 11.28 in [104]), there exist a subsequence fε,ij that convergences uniformly
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on every compact subset of Ω. In particular, there is an fε such that

lim
j,k→∞

‖fij − fik‖2
2,`w

≤ lim
i,k→∞

{
‖fij − fε,ij‖2

2,`w + ‖fε,ij − fε‖2
2,`w + ‖fε − fε,ik‖2

2,`w + ‖fε,ik − fik‖2
2,`w

}
≤ γ/2 + 0 + 0 + γ/2 = γ, (B.59)

where the convergence of the first and last term on the RHS was handled by (B.58).

Hence fij is a Cauchy sequence in L2(K, `µ). Therefore, by the completeness of L2

spaces, the Cauchy sequence fij convergences to some f in L2(K, `w).

One now has the weighted version of the well known Sobolev compactness em-

bedding theorem for Rr, which applies to W 1,2(M,m, µr).

Theorem B.3.9 (Rellich Compactness). Let W 1,2(M,m, µr) be a weighted Sobolev

space. If the density of µr is an A2 weight, then the embedding W 1,2(M,m, µr) ↪→
L2(M,m, µr) is compact.

Proof. Let fj be a sequence in W 1,2(M,m, µr), and (Ui, ϕi)i∈I an atlas on M . As in

the proof of Corollary B.3.7, pick local coordinates on M such that the components

of the metric tensor satisfy 1
c
δsp ≤ msp(x) ≤ cδsp for some 1 < c < ∞, and all

x ∈ Ui, i ∈ I, 1 ≤ s, p ≤ r. Furthermore, let {σi}i∈I be a partition of unity

subordinate to the finite covering {Ui}i∈I . For each i ∈ I, set Ωi = ϕi(Ui). One

has σifj ∈ W 1,2(Ui,m, µr), so by Lemma B.3.3 the sequence (σifj) ◦ ϕ−1
i belongs to

W 1,2(Ωi, `µ,i), where `µ,i is an absolutely continuous measure with density hµ ◦ ϕ−1
i

with respect to `. Moreover, the compactness of the closure of M implies (σifj)◦ϕ−1
i

has compact support Ci ⊂ Ωi. Therefore, for each i ∈ I one can apply Lemma B.3.8

with `w = `µ,i to obtain a subsequence (σifjk)◦ϕ−1
i , and a function gi in L2(Ωi, `µ,i),

such that for any γ > 0, there exist a K(γ) ∈ N with

(∫
Ci

∣∣(σifjk) ◦ ϕ−1
i − gi

∣∣2 d`µ,i) 1
2

<
γ

cr/4 · |I|2
, (B.60)

for all k ≥ K(γ).

Since each ϕi is a diffeomorphism and gi ∈ L2(Ωi, `µ,i), each gi ◦ ϕi belongs to

L2(Ui,m, µr). Extend gi ◦ ϕi to g̃i ∈ L2(M,m, µr), by setting

g̃i(x) :=

{
gi ◦ ϕi(x) x ∈ Ui
0 x ∈M \ Ui

,
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for each i ∈ I. Then by a similar argument as in (B.49)∥∥∥∥∥fjk −∑
i∈I

g̃i

∥∥∥∥∥
2,m,µ

≤
∑
i∈I

(
cr/2

∫
Ωi

|σifjk − g̃i|
2 ◦ ϕ−1

i d`µ,i

) 1
2

=
∑
i∈I

cr/4
(∫

Ci

∣∣(σifjk) ◦ ϕ−1
i − gi

∣∣2 d`µ,i) 1
2

< γ,

where the inequality on the last line is due to (B.60). Since g̃i ∈ L2(Ui,m, µr)

and |I| is finite, we have
∑

i∈I g̃i ∈ L2(M,m, µr); this completes the proof of the

theorem.

Lemma B.3.10 (Poincaré inequality). Let W 1,2(M,m, µr) be a weighted Sobolev

space, and denote by α(f) the weighted mean of f ; i.e. α(f) =
∫
M
f ·hµωrm. Assume

the density of µr is an A2 weight. There is a constant K depending on r and M

such that

‖f − α(f)‖2,m,µ ≤ K‖∇̃mf‖2,m,µ, (B.61)

for all f ∈ W 1,2(M,m, µr).

Proof. We follow a standard argument as in corollary of Theorem 5 on p.194, [88].

Suppose the inequality (B.61) is false, then due to Corollary B.3.7, there exists

a sequence in fk ∈ C∞(M,R) ∩ W 1,2(M,m, µr), such that ‖fk − α(fk)‖2,m,µ >

k‖∇mfk‖2,m,µ for k = 1, 2, . . .. Define

gk =
fk − α(fk)

‖fk − α(fk)‖2,m,µ

,

then ‖gk‖2,m,µ = 1, α(gk) = 0 and ‖∇mgk‖2,m,µ ≤ 1/k. In particular, gk is a bounded

sequence in W 1,2(M,m, µr). Hence, by Theorem B.3.9 there exists a subsequence

gkj ∈ W 1,2(M,m, µr), which converges to some g in L2(M,m, µr). One has

‖g‖2,m,µ = 1, (B.62)

and

α(g) =

∫
M

g · hµωrm = lim
j→∞

∫
M

gkj · hµωrm = lim
j→∞

α(gkj) = 0 (B.63)

and limj→∞ ‖∇mgkj‖2,m,µ = 0.
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Now, for any ψ ∈ C∞0 (M,R), the weak gradient of g satisfies∫
M

m(∇̃mg,∇mψ) dµr = −
∫
M

g4µψ dµr

= − lim
j→∞

∫
M

gkj4µψ dµr

= lim
j→∞

∫
M

m(∇mgkj ,∇mψ) dµr

≤ lim
j→∞
‖∇mgkj‖2,m,µ · ‖∇mψ‖2,m,µ

=

(
lim
j→∞

1

kj

)
‖∇mψ‖2,m,µ = 0.

Therefore

∇̃mg = 0. (B.64)

But since M is connected, (B.63) and (B.64) implies g is the zero function, which

contradicts (B.62).

B.4 The proof of Theorem 3.2.4

To obtain the inequality sdyn ≤ Hdyn
M , let Γ be a compact, connected C∞ hyper-

surface in M that disconnects M into two open disjoint subsets M1 and M2. Let

distm(x1, x2) denote the Riemannian distance function with respect to the met-

ric tensor m between the points x1 and x2 in M , then define Uε := {x ∈ M :

distm(x,Γ) < ε} for ε > 0.

Consider the set of functions

fε(x) :=


1, x ∈M1 \ Uε
−1, x ∈M2 \ Uε
(1/ε)distm(x,Γ), x ∈M1 ∩ Uε
−(1/ε)distm(x,Γ), x ∈M2 ∩ Uε

. (B.65)

In the following, we obtain an upper bound for sdyn by locally approximating func-

tions in C∞(M,R) by fε.

Lemma B.4.1. Let H, sdyn and fε be defined by (3.19), (3.20) and (B.65) respec-

tively. If the density of µr is C1, then for ε > 0 sufficiently small, one has

sdyn ≤ ‖∇mfε‖1,m,µ + ‖∇nHfε‖1,n,ν

2 infβ ‖fε − α‖1,m,µ

. (B.66)

Proof. We claim the existence of g ∈ C∞(M,R), such that the terms ∇mfε and

fε − β are approximated by ∇mg and g − α respectively in the norm ‖ · ‖1,m,µ, and
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the term ∇mHf is approximated by ∇nHg in the norm ‖ · ‖1,n,ν . In particular, due

to these smooth approximations and the definition of sdyn, one immediately obtains

the required inequality (B.66).

Let (Ui, ϕi)i∈I be an atlas of M , and set Ωi = ϕi(Ui) for each i ∈ I. For each

i ∈ I, let `µ,i be an absolutely continuous measure with density hµ◦ϕ−1
i with respect

to Lebesgue measure `. Since M is compact, there exist a smooth partition of unity

{σi}i∈I subordinate to the finite covering {Ui}i∈I . Moreover, one can verify that

fε is a Lipschitz function in L1(M,m, µr). Therefore (σifε) ◦ ϕ−1
i is Lipschitz in

L1(Ωi, `µ,i) for each i ∈ I. It follows that the restriction of (σifε) ◦ ϕ−1
i to any line

in Ωi is absolutely continuous, which implies all partial derivatives of (σifε) ◦ ϕ−1
i

exist almost everywhere on Ωi (see Theorem 7.20 in [104]). Therefore, the Euclidean

gradient ∇e

(
(σifε) ◦ ϕ−1

i

)
∈ L1(Ωi, `µ,i) for each i ∈ I.

Set fδ,ε := qδ?fε, where qδ and ? is as in Definition B.3.5. Then by straightforward

modifications to the arguments used in Corollary B.3.7 to obtain (B.49) and (B.50).

One can obtain for any γ > 0, a δ > 0 chosen analogously to (B.48) such that

fδ,ε ∈ C∞(M,R),

‖∇mfδ,ε −∇mfε‖1,m,µ < γ (B.67)

and

‖(fδ,ε − α)− (fε − α)‖1,m,µ = ‖fδ,ε − fε‖1,m,µ < γ.

Finally, since T is a diffeomorphism and hµ is C1, Hfε is Lipschitz in L1(N, n, νr).

Thus, the approximation of ∇nHfε by ∇nHfδ,ε in the norm ‖ ·‖1,n,ν can be obtained

analogous to (B.67). Thus, setting g = fδ,ε proofs the claim.

To complete the proof of Theorem 3.2.4, we show that the RHS of (B.66) is

bounded above by Hdyn
M as ε → 0. In order to show such convergence holds, we

require additional results concerning the connection between µr(Uε) and µr−1(Γ).

Suppose ε is smaller than the injectivity radius of each point x ∈ Γ, and recall

that Uε := {x ∈ M : distm(x,Γ) < ε} are open subsets of M . Since M is compact,

the closure of Uε is a compact subset of M . Due to the compactness of Uε and the

size of ε, by the Hopf-Rinow theorem Uε is geodesically complete [35]. This implies

that the signed distance function f : Uε → R defined by

f(x) :=


distm(x,Γ) x ∈M1

−distm(x,Γ) x ∈M2

0 x ∈ Γ

, (B.68)

is smooth and |∇mf |m = 1 on Uε \ Γ (Proposition 2.1 [106]).

The following concerns the regularity of the co-dimensional one measure µr−1 on

the level surfaces of Uε.
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Lemma B.4.2. Let Γ be a C∞ hypersurface in M that disconnects M into two

disjoint open subsets M1 and M2. Define Γβ := {x ∈ M : distm(x,Γ) = β}, and fix

ε to be smaller than the injectivity radius of each point x ∈ Γ. If the density of µr

is continuous, then the real valued function A given by

A(β) := µr−1(Γβ),

is continuous on the intervals [−ε, 0] and [0, ε].

Proof. Let f : M → R be the signed distance function as in (B.68), and let Ut :=

{x ∈ M : distm(x,Γ) < β}. Fix β0 ∈ (0, ε), then Γβ0 is in Uε \ Γ. Hence f is

C∞ restricted to Γβ0 , and df(x) 6= 0 for each x ∈ Γβ0 . Therefore, by the implicit

function theorem there exist open neighborhoods Ox about each point x ∈ Γβ0 , and

local coordinates (x1, x2, . . . , xr−1) for Γβ0 , such that (x1, x2, . . . , xr−1, f) are local

coordinates on Ox. Let Gm be the r × r matrix with entries mij in the coordinates

(x1, x2, . . . , xr−1, f). Then the volume form on Ox is given by

ωrm =
√

det(Gm) · dx1 ∧ dx2 . . . ∧ dxr−1 ∧ df.

Moreover, by a combination of the Stokes’ and divergence theorem (see p.122, [113]

and p.7, equation (38) [22] respectively), one has∫
Γβ0

ωr−1
m =

∫
Γβ0

m(n,n) · ωr−1
m =

∫
Uβ0

divmn · ωrm =

∫
Uβ0

d
(
i(n)ωrm

)
=

∫
Γβ0

i(n)ωrm,

where n is the unit normal bundle along Γβ0 . Hence ωr−1
m = i(n)ωrm for all x ∈ Γβ0 .

Now, since f = β0 along Γβ0 , the vector ∇mf is normal to the hypersurface Γβ0 ;

which implies n = ∇mf/|∇mf |m, and dxi(∇mf) = 0 for i = 1, . . . r − 1. Therefore

ωr−1
m

∣∣
Γβ0

= i(n)ωrm
∣∣
Γβ0

=
√

detGm · i(n)(dx1 ∧ dx2 . . . ∧ dxr−1 ∧ df)
∣∣∣
Γβ0

= (−1)r
√

detGm ·
df(∇mf)

|∇mf |m
· dx1 ∧ dx2 . . . ∧ dxr−1

∣∣∣∣
Γβ0

= (−1)r
√

detGm · |∇mf |m · dx1 ∧ dx2 . . . ∧ dxr−1

∣∣∣
Γβ0
, (B.69)

where the penultimate equality is due to Leibniz rule on interior product, and the

fact that dxi(∇mf) = 0 for i = 1, . . . , r − 1.

To complete the proof, we note that |∇mf | = 1 on the Uε \ Γ because f is the

signed distance function, hµ is continuous by assumption, and Gm is smooth since

m is smooth. Hence hµω
r−1
m

∣∣
Γβ

is a continuous density for all β ∈ (−ε, 0) ∪ (0, ε).

Therefore A(β) = µr−1(Γβ) =
∫

Γβ
hµω

r−1
m is continuous on [−ε, 0] and [0, ε].
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Lemma B.4.3. Let Γ be a compact, connected C∞ hypersurface in M . Define

Uε := {x ∈ M : distm(x,Γ) < ε} for some ε > 0. Assume the density of µr is

continuous. One has

lim
ε→0

1

ε
µr(Uε) = 2µr−1(Γ). (B.70)

Proof. Let f be the signed distance function as in (B.68), and Γβ = {x ∈ M :

distm(x,Γ) = β}. Then |∇mf |m = 1, and f is C∞ on Uε \ Γ. Hence, by the co-area

formula (B.11)

lim
ε→0

1

ε
µr(Uε) = lim

ε→0

1

ε

∫
Uε

|∇mf |m · hµωrm

= lim
ε→0

1

ε

∫ ε

−ε

(∫
f−1{β}

hµ · ωr−1
m

)
dβ

= lim
ε→0

1

ε

∫ ε

0

(∫
Γβ
hµ · ωr−1

m

)
dβ + lim

ε→0

1

ε

∫ 0

−ε

(∫
Γβ
hµ · ωr−1

m

)
dβ

= lim
ε→0

1

ε

∫ ε

β0

µr−1(Γβ) dβ + lim
ε→0

1

ε

∫ 0

−ε
µr−1(Γβ) dβ. (B.71)

Take ε to be smaller than the injectivity radius of each x ∈ Γ. Since hµ is continuous,

by Lemma B.4.2 the function A(β) := µr−1(Γβ) is continuous on the intervals [−ε, 0]

and [0, ε]. Thus, one can apply the fundamental theorem of calculus to both terms

on the last line of (B.71) to obtain

RHS of (B.71) = lim
ε→0

a(ε)− a(0)

ε
+ lim

ε→0

a(0)− a(−ε)
ε

= 2A(0) = 2µr−1(Γ),

where a(β) is the anti-derivative of A(β).

Now, to obtain the inequality sdyn ≤ Hdyn
M via Lemma B.4.1, we start with the

term ‖∇mfε‖1,m,µ on the numerator of (B.66). Note that fε is constant on M \ Uε,
which implies ∇mfε(x) = 0 for all x ∈ M \ Uε. But if x ∈ Uε, then |∇mfε|m =
1
ε
|∇m(distm(x,Γ))|m = 1

ε
for ε smaller than as in Lemma B.4.2. Therefore, by

Lemma B.4.3 one has

lim
ε→0
‖∇mfε‖1,m,µ = lim

ε→0

1

ε

∫
Uε

dµr = lim
ε→0

µr(Uε)

ε
= 2µr−1(Γ). (B.72)

Next, we consider the term ‖∇nHfε‖1,n,ν on the numerator of (B.66). Observe that

at each point x ∈M \ Uε,

|∇nHf(Tx)|2n = n(∇nHf,∇nHf)Tx

= n(T∗∇T ∗nf, T∗∇T ∗nf)Tx by Lemma B.2.6

= T ∗n(∇T ∗nf,∇T ∗nf)x by (3.7)

= m(∇mf,∇T ∗nf)x = 0,
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where we have used (3.16) and the fact that ∇mf(x) = 0 for all x ∈ M \ Uε to

obtain the last line. Hence, the integral
∫
N\TΩε

|∇nHfε|n dνr vanishes. Set f to be

the signed distance function defined by (B.68), then f(x) = ε · fε(x) for all x ∈ Uε.
Thus Hf = ε · Hfε on TUε. Let Γβ be the level surfaces of the signed distance

function f ; that is Γβ = {x ∈ M : f(x) = β}. Then TΓβ are generated by the level

surfaces of Hf ; that is TΓβ = {y ∈ N : Hf(y) = β}. Therefore, by the co-area

formula (B.11) one has,

‖∇nHfε‖1,n,ν =

∫
TUε

|∇nHfε|n dνr

=
1

ε

∫
TUε

|∇nHf |n · hνω
r
n

=
1

ε

∫ ε

−ε

(∫
(Hf)−1{t}

hν · ωr−1
n

)
dβ

=
2

ε

∫ ε

0

(∫
TΓβ

hν · ωr−1
n

)
dβ

=
2

ε

∫ ε

0

νr−1(TΓβ) dβ. (B.73)

By a straightforward modification of Lemma B.4.2, the expression νr−1(TΓβ) ap-

pearing on the RHS of (B.73) is continuous as a function of β on the interval [0, ε].

Thus by taking the limit of ε→ 0 on both sides of (B.73) and using the fundamental

theorem of calculus (see a similar argument used in Lemma B.4.3), one arrives at

lim
ε→0
‖∇nHfε‖1,n,ν = 2νr−1(TΓ). (B.74)

Finally, for the denominator term of (B.66), we may without loss of generality

assume that µr(M1) ≤ µr(M2). Then

‖fε − α‖1,m,µ ≥
∫
M\Uε

|fε − α| dµr

= |1− α| · (µr(M1)− µr(Uε)) + |1 + α| · (µr(M2)− µr(Uε))

≥ 2(µr(M1)− µr(Uε)), (B.75)

for each ε > 0. Hence, by taking the limit of ε → 0 on (B.75) one has infα ‖fε −
α‖1,m,µ ≥ 2µr(M1) = 2 min{(µr(M1), µr(M2)}. Combining this inequality with

(B.66), (B.72) and (B.74), we conclude that sdyn ≤ Hdyn
M .

B.5 The proof of Theorem 3.3.3

In this proof we follow the work of [49] and [88], and consider a weak formulation

of the eigenvalue problem for the weighted dynamic Laplacian 4dyn. One can find
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a set of weak solution pairs (φi, λi) ∈ L2(M,m, µr)× R to the weak formulation of

4dyn that satisfies the conclusions of Theorem 3.3.3. Moreover, we show that the

operator 4dyn has the smooth uniformly elliptic property. That is, 4dyn can be

expressed in local coordinates as 4dyn =
∑r

i,j=1 aij∂i∂j + bi∂i + c, where aij, bi and

c are bounded and smooth functions on M , and there exists a constant γ > 0 such

that
∑r

i,j=1 aijεiεj ≥ γ|ε|2 for all x ∈M and ε ∈ Rr. The elliptic regularity theorem

(see Theorem 8.14 in [61]) gives the additional regularity of the eigenfunctions φi on

M . Thus, the weak solution pairs (φi, λi) solve the eigenproblem

4dynφi = λiφi, (B.76)

for each i.

B.5.1 Weak formulation of the 4dyn eigenproblem

Let f, g ∈ C∞(M,R), and note that the smoothness assumption on the density hµ

implies f, g ∈ L2(M,m, µr). Consider the integral
∫
M
g · 4dynf · hµωrm. Recall by

(3.26) that the weighted divergence divµ satisfies∫
∂U

m(V ,n) · hµωr−1
m =

∫
U

divµV · hµωrm, (B.77)

for all open U ⊆ M and continuously differentiable vector fields V ∈ F1(M), and

where n is the unit normal bundle along ∂U . Since f, g ∈ C∞(M,R), the vector

g · ∇mf ∈ F∞(M). Consequently, by taking U = M and V = g · ∇mf in (B.77),

follow by applying the expansion rule (B.17) for the weighted divergence divµ, one

has the following weighted Green’s identity:∫
∂M

g ·m(∇mf,n) · hµωr−1
m =

∫
M

divµ(g · ∇mf) · hµωrm

=

∫
M

g · 4µf · hµωrm +

∫
M

m(∇mg,∇mf) · hµωrm.

(B.78)

Rearranging (B.78) gives∫
M

g ·4µf ·hµωrm = −
∫
M

m(∇mg,∇mf)·hµωrm+

∫
∂M

g ·m(∇mf,n)·hµωr−1
m . (B.79)

Since H is the adjoint of H∗∫
M

g · H∗4νHf dµr =

∫
N

Hg · 4νHf dνr.

Therefore, one has analogous to (B.79)∫
M

g ·H∗4νHf ·hµωrm = −
∫
N

n(∇nHg,∇nHf)·hνωrn+

∫
∂N

Hg ·n(∇nHf, n̂)·hνωr−1
n ,

(B.80)
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where n̂ is the unit normal bundle along ∂N . Combining (B.79) and (B.80), we

arrive at

2

∫
M

g · 4dynf · hµωrm

=

∫
M

g · (4µf +H∗4νHf) · hµωrm

=
−
∫
M

m(∇mf,∇mg) · hµωrm −
∫
N

n(∇nHg,∇nHf) · hνωrn

+ P1(f, g, ∂M) + P2(f, g, ∂N),

(B.81)

where

P1(f, g, ∂M) =

∫
∂M

g ·m(∇mf,n) · hµωr−1
m , (B.82)

and

P2(f, g, ∂N) =

∫
∂N

Hg · n(∇nHf, n̂) · hνωr−1
n . (B.83)

Next, we demonstrate that if the boundary condition (3.35) in the hypothesis of

Theorem 3.3.3 is satisfied for f , then the boundary term P1(f, g, ∂M)+P2(f, g, ∂N)

of (B.81) vanishes for all g ∈ C∞(M,R).

Proposition B.5.1. Let f, g ∈ C∞(M,R), and define P1(f, g, ∂M) and P2(f, g, ∂N)

by (B.82) and (B.83), , where ∂M and ∂N are the boundary of M and N respec-

tively. If the boundary condition

m([∇m +∇T ∗n]f,n)(x) = 0,

holds for all x ∈ ∂M , then

P1(f, g, ∂M) + P2(f, g, ∂N) = 0. (B.84)

Proof. Let the hypersurface ∂M be generated by the zero level set of ψ ∈ C∞(M,R);

i.e. ∂M = {x ∈ M : ψ(x) = 0}. Due to Proposition B.2.5, the surface ∂N is

generated by the zero level set of Hψ. Now by Lemma B.2.6 and the fact that H∗H
is the identity,

n(∇nHf,∇nHψ)Tx = n(T∗∇T ∗nf, T∗∇T ∗nψ)Tx

= T ∗n(∇T ∗nf,∇T ∗nψ)x by (3.7)

= (∇T ∗nf)ψ
∣∣
x

by (3.16)

= m(∇T ∗nf,∇mψ)x. (B.85)
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Hence, ∫ ∞
−∞

∫
Hψ=β

Hg · n(∇nHf,∇nHψ)

|∇nHψ|n
· hνωr−1

n dβ

=

∫
N

Hg · n(∇nHf,∇nHψ) · hνωrn by the co-area formula (B.11)

=

∫
M

g · n(∇nHf,∇nHψ) ◦ T · hµωrm by (B.27)

=

∫
M

g ·m(∇T ∗nf,∇mψ) · hµωrm by (B.85)

=

∫ ∞
−∞

∫
ψ=β

g · m(∇T ∗nf,∇mψ)

|∇mψ|m
· hµωr−1

m dβ, (B.86)

where the last line is due to the application of the co-area formula (B.11). Differen-

tiating both sides of (B.86) with respect to β, then at β = 0∫
Hψ=β

Hg · n(∇nHf,∇nHψ)

|∇nHψ|n
· hνωr−1

n =

∫
ψ=β

g · m(∇T ∗nf,∇mψ)

|∇mψ|m
· hµωr−1

m . (B.87)

Additionally, the vector ∇mψ is normal to the level surfaces of ψ. Therefore n =

∇mψ/|∇mψ|m, and similarly n̂ = ∇nHψ/|∇nHψ|n. Hence,

P2(f, g, ∂N) =

∫
∂N

Hg · n(∇nHf, n̂) · hνωr−1
n

=

∫
Hψ=0

Hg · n(∇nHf,∇nHψ)

|∇nHψ|n
· hνωr−1

n

=

∫
ψ=0

g · m(∇T ∗nf,∇mψ)

|∇mψ|m
· hµωr−1

m by (B.87)

=

∫
∂M

g ·m(∇T ∗nf,n) · hµωr−1
m .

We conclude that

P1(f, g, ∂M) + P2(f, g, ∂N) =

∫
∂M

g ·m([∇m +∇T ∗n]f,n) · hµωr−1
m ,

which vanishes due to the theorem hypothesis of m([∇m +∇T ∗n]f,n)(x) = 0 for all

x ∈ ∂M .

Due to Proposition B.5.1 and (B.81), one has∫
M

g · 4dynf dµr = −
∫
M

m(∇mf,∇mg) dµr −
∫
N

n(∇nHg,∇nHf) dµr, (B.88)

for all f, g ∈ C∞(M,R). Note that (B.88) is symmetric in f and g, hence the

operator 4dyn is self-adjoint in L2(M,m, µr).

Suppose the solution (φ, λ) ∈ C∞(M,R) × R exists for the eigenvalue problem

(B.76). Then under the boundary condition (3.35), one has by (B.81) and Proposi-

tion B.5.1 the following formulation for the eigenvalue problem 4dynφ = λφ:∫
M

m(∇mg,∇mφ) dµr +

∫
N

n(∇nHg,∇nHφ) dνr = −2λ

∫
M

gφ dµr. (B.89)
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for all g ∈ C∞(M,R). Equivalently,∫
M

[m(∇mg,∇mφ) + T ∗n(∇T ∗ng,∇T ∗nφ)] dµr = −2λ

∫
M

gφ dµr. (B.90)

for all g ∈ C∞(M,R).

B.5.2 Existence of weak solution and variational character-

isation of eigenvalues

Let S be a weighted Sobolev space W 1,2(M,m, µr), where the density of µr is hµ.

Recall from Section B.3 that the weak gradient with respect to the metric m is

denoted by ∇̃m. Due to (B.89), the the weak formulation for the eigenproblem

(B.76) is given by∫
M

m(∇̃mg, ∇̃mφ) dµr +

∫
N

n(∇̃nHg, ∇̃nHφ) dνr = −2λ

∫
M

gφ dµr. (B.91)

We show existence of solutions (φi, λi) ∈ S × R for the above weak formulation

(B.91), for all g ∈ S. We call such pairs (φi, λi) weak solutions1 for the eigenvalue

problem (B.76).

Our approach to finding the weak solutions for4dyn is based on the construction

of functionals F and G, and using the method of Lagrange multipliers. For f ∈ S,

we define G(f) = 1 −
∫
M
f 2 dµr and F (f) = (1/2)

(
F1(f) + F2(f)

)
, where F1(f) =∫

M
|∇̃mf |2m dµr and F2(f) =

∫
N
|∇̃nHf |2n dνr. First we list some useful properties of

the functionals F1, F2 and G.

Lemma B.5.2. Let f ∈ S, and denote the linear dual of S as S∗. Define the

functional F2 as above.

(i) The functional F2 : S → R is well-defined,

(ii) The derivative F ′2(f) is linear and bounded (hence F ′2(f) ∈ S∗),

(iii) F2 is Fréchet-differentiable,

(iv) f → F ′2(f) is continuous as a map from S to S∗.

Proof. (i) Let (Uk, ϕk)k∈K be an atlas of M . Then due to the fact that T is a C∞-

diffeomorphism, there exists a set of finite constants Ck
ij such that (T ∗n)ij =

Ck
ijm

ij on Uk for each 1 ≤ i, j ≤ r and k ∈ K. Hence, by writing ∇̃T ∗n in

1The weak solution pairs (φi, λi) does not necessarily solve the eigenvalue problem 4dynφi =

λiφi, because φi may lack sufficient regularity on M , see p.210 in [88] for a discussion.
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coordinates form via (B.12) (with respect to weak partial derivatives ∂̃), one

has on all points in Uk

∇̃T ∗nf =
∑
ij

(T ∗n)ij(∂̃if)∂j =
∑
ij

Ck
ijm

ij(∂̂if)∂j ≤ Ck · ∇̃mf, (B.92)

for all k ∈ K, where Ck = maxij C
k
ij. Furthermore, since M is compact, there

exists a partition of unity σk subordinate to the covering ∪k∈KUk (Lemma

B.2.9). Therefore,

F2(f) =

∫
N

|∇̃nHf |2n dνr

=

∫
N

n(∇̃nHf, ∇̃nHf) dνr

=

∫
N

n(T∗∇̃T ∗nf, T∗∇̃T ∗nf) dνr by Lemma B.2.6

=

∫
N

T ∗n(∇̃T ∗nf, ∇̃T ∗nf) ◦ T−1 dνr by (3.7)

=

∫
M

T ∗n(∇̃T ∗nf, ∇̃T ∗nf) dµr by (B.28)

=

∫
M

m(∇̃T ∗nf, ∇̃mf) dµr by (3.16)

=
∑
k∈K

∫
Uk

σk ·m(∇̃T ∗nf, ∇̃mf) dµr

≤
∑
k∈K

Ck

∫
Uk

σk ·m(∇̃mf, ∇̃mf) dµr by (B.92)

≤ C ·
∫
M

|∇̃mf |2m dµr = C · F1(f), (B.93)

where C = maxk∈K Ck. Since f ∈ S, ∇̃mf ∈ L2(M,m, µr). It follows that

F2 : S → R is well defined.

(ii) For all f, g ∈ S

F ′2(f)g

= lim
ε→0

F2(f + εg)− F2(f)

ε

= lim
ε→0

∫
N
|∇̃nH(f + εg)|2n dνr −

∫
N
|∇̃nHf |2n dνr

ε

= lim
ε→0

∫
N

(
|∇̃nHf |2n + 2ε · n(∇̃nHf, ∇̃nHg) + ε2 · |∇̃nHg|2n − |∇̃nHf |2n

)
dνr

ε

= 2

∫
N

n(∇̃nHg, ∇̃nHf) dνr, (B.94)

where to obtain the last line, we have used the fact that the coefficient of the

ε2 term on the penultimate line is finite from part (i). Clearly F ′2(f) is linear.
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Furthermore, by the Cauchy-Schwarz inequality, one has

RHS of (B.94) ≤ 2‖∇nHf‖2,n,ν · ‖∇̃nHg‖2,n,ν

≤ 2C ·
(∫

M

|∇̃mf |2m dµr
) 1

2

·
(∫

M

|∇̃mg|2m dµr
) 1

2

by (B.93)

≤ 2C ·
(∫

M

|∇̃mf |2m dµr
) 1

2

· ‖g‖S,

where C is the same constant that appeared in part (i). Therefore, F ′2(f) is

bounded.

By using the results of part (i) and (ii), the proof of (iii) and (iv) is similar to

the corresponding results of Lemma C.1 in [49].

Remark B.5.3. One may obtain analogous results of Lemma B.5.2 for F1 by setting T

as the identity map in F2, while the corresponding results for G is a straightforward

modification with

G′(f)g = −2

∫
M

fg dµr. (B.95)

An important concept associated with linear functionals is the weak convergence.

Let fi be a sequence in S. We say that fi ⇀ f weakly in S, if H(fi) → H(f) for

all H ∈ S∗ (where S∗ is the linear dual of S). Moreover, since S is a Hilbert space

(Proposition B.3.4), by the Riez representation theorem, if fi ⇀ f weakly in S then

〈g, fi〉S = 〈g, f〉S, for all g ∈ S. One has the following standard result (see p.174,

[88])

Lemma B.5.4. Every bounded sequence in a Hilbert space contains a weakly con-

vergent subsequence.

Recall from Section B.3 that the Ap condition on the density hµ has important

consequences for the weighted Sobolev space W 1,2(M,m, µr). By assumption, the

density hµ is smooth and uniformly bounded away from zero. Hence, by Proposition

B.1.2, the density hµ is an A2 weight on the the space S.

Lemma B.5.5. F attains its minimum on the constraint set C = {f ∈ S : G(f) =

0}.

Proof. Define the inner product 〈h, g〉S′ =
∫
N

(n(∇̃nHg, ∇̃nHh) +H(gh)) dνr for all

g, h ∈ S, and denote the norm associated with 〈., .〉S′ by ‖.‖S′ . Set I = inf{F (g) :

g ∈ C} ≥ 0, and select a sequence fi ∈ C such that F (fi)→ I and F (fi) ≤ I + 1.
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First, we show that the sequence fi is bounded in both S and S ′. Due to Lemma

B.3.10, there exists a constant K (independent of fi) such that ‖fi − α(fi)‖2,µ ≤
K‖∇̃mfi‖2,µ for each i. Hence,

‖fi‖2
S = ‖fi‖2

2,m,µ + ‖∇̃mfi‖2
2,m,µ

≤ ‖fi − α(fi)‖2
2,m,µ + |α(fi)|+ ‖∇̃mfi‖2

2,m,µ by triangle’s inequality

≤ (1 +K2)‖∇̃mfi‖2
2,m,µ + |α(fi)|.

Moreover, by Cauchy-Schwarz

|α(fi)|2 =

∣∣∣∣∫
M

fi dµr

∣∣∣∣2 ≤ (∫
M

f 2
i dµr

)
= 1−G(fi) = 1.

Hence

‖fi‖S ≤ (1 +K2)‖∇mfi‖2,m,µ + 1 = (1 +K2)F1(fi) + 1 ≤ (1 +K2)(I + 1) + 1,

so that fi is a bounded sequence in S. By applying similar arguments as (B.93) in

the proof of Lemma B.5.2(i), one can verify that fi is also a bounded sequence in

S ′.

Since fi is a bounded sequence in S, and S a Hilbert space (due to Proposition

B.3.4), by Lemma B.5.4, there exists a subsequence fil such that fil ⇀ f weakly in S.

Moreover, due to Lemma B.3.9, the embedding S ↪→ L2(M,m, µr) is compact, which

implies the existence of a subsequence fik of fil , such that fik → f in L2(M,m, µr).

The strong convergence fik → f in L2(M,m, µr) implies Hfik → Hf in L2(N, n, νr),

because by the change of variable (B.27)

‖fik − f‖2
2,m,µ =

∫
M

|fik − f |2 dµr =

∫
N

|Hfik −Hf |2 dνr = ‖Hfik −Hf‖2
2,n,ν .

Next, we use the fact that the subsequence fik is bounded in S ′ together with

the weak convergence of fik in S, to show that fik convergences weakly in S ′. Due to

lemma (B.5.2) and Remark B.5.3, one has F ′2(g) ∈ S∗ and G′(g) ∈ S∗ for all g ∈ S.

Therefore

lim
ik→∞

〈fik , g〉S′ = lim
ik→∞

∫
N

n(∇̃nHfik , ∇̃nHg) dνr + lim
ik→∞

∫
N

H(fikg) dνr

=
1

2
lim
ik→∞

F ′2(g)fik + lim
ik→∞

∫
M

fikg dµr by (B.94) and (B.27)

=
1

2
lim
ik→∞

F ′2(g)fik +
1

2
lim
ik→∞

G′(g)fik by (B.95)

=
1

2

(
F ′2(g)f +G′(g)f

)
= 〈f, g〉S′ ,
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where the penultimate line is due to the weak convergence of fik ⇀ f in S.

Now, the weak convergence of fik in S ′ implies

‖f‖2
S′ = 〈f, f〉S′ = lim

ik→∞
〈fik , f〉S′

= lim
ik→∞

{
〈∇̃nHfik , ∇̃nHf〉ν + 〈Hfik ,Hf〉ν

}
≤ lim

ik→∞

{
‖∇̃nHfik‖2,n,ν · ‖∇̃nHf‖2,n,ν + ‖Hfik‖2,ν · ‖Hf‖2,n,ν

}
, (B.96)

where the inequality on the last line is due to Cauchy-Schwarz. In (B.96), set

a1 = ‖∇̃nHfik‖2,n,ν , b1 = ‖∇̃nHf‖2,n,ν , a2 = ‖Hfik‖2,n,ν and b2 = ‖Hf‖2,n,ν , and

consider the inequality

a1b1 + a2b2 =
√
a2

1b
2
1 + a2

2b
2
2 + 2a1b2a2b1

≤
√
a2

1b
2
1 + a2

2b
2
2 + a2

1b
2
2 + a2

2b
2
1 since 2cd ≤ c2 + d2,∀c, d ∈ R

=
√

(a2
1 + a2

2)(b2
1 + b2

2). (B.97)

As a consequence of (B.97), one has

RHS of (B.96)

≤ lim
ik→∞

{√(
‖∇̃nHfik‖2

2,n,ν + ‖Hfik‖2
2,n,ν

)
·
(
‖∇̃nHf‖2

2,n,ν + ‖Hf‖2
2,n,ν

)}
= ‖f‖S′ × lim

ik→∞
‖fik‖S′ .

Thus, ‖f‖S′ ≤ limik→∞ ‖fik‖S′ . Furthermore, the subsequence fik is bounded in S ′,

and lim infik→∞ ‖fik‖S′ is the largest number smaller than limik→∞ ‖fik‖S′ . Thus,

‖f‖S′ ≤ lim
ik→∞

‖fik‖S′ =⇒ ‖f‖S′ ≤ lim inf
ik→∞

‖fik‖S′ . (B.98)

Similarly, the weak convergence of the bounded subsequence fik in S gives

‖f‖S ≤ lim
ik→∞

‖fik‖S =⇒ ‖f‖S ≤ lim inf
ik→∞

‖fik‖S. (B.99)

Finally, due to (B.98) and (B.99)

2F (f) =

∫
M

|∇̃mf |2m dµr +

∫
N

|∇̃nHf |2n dνr

= ‖f‖2
S − ‖f‖2

2,m,µ + ‖f‖2
S′ − ‖Hf‖2

2,n,ν

≤ lim inf
ik→∞

‖fik‖2
S − ‖f‖2

2,m,µ + lim inf
ik→∞

‖fik‖2
S′ − ‖Hf‖2

2,n,ν

= lim inf
ik→∞

{‖fik‖2
S − ‖f‖2

2,m,µ}+ lim inf
ik→∞

{‖fik‖2
S′ − ‖Hf‖2

2,n,ν}. (B.100)
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By the strong convergence of fik → f in L2(M,m, µr), and the strong convergence

of Hfik → Hf in L2(N, n, νr), one has

RHS of (B.100) = lim inf
ik→∞

{‖fik‖2
S − ‖fik‖2

2,m,µ}+ lim inf
ik→∞

{‖fik‖2
S′ − ‖Hfik‖2

2,n,ν}

≤ lim inf
ik→∞

{
‖fik‖2

S − ‖fik‖2
2,m,µ + ‖fik‖2

S′ − ‖Hfik‖2
2,n,ν

}
= lim inf

ik→∞
{‖∇mfik‖2

2,m,µ + ‖∇nHfik‖2
2,n,ν}

= 2 lim inf
ik→∞

F (fik) = 2I. (B.101)

From (B.100) and (B.101), we conclude that F (f) ≤ I = inf{F (g) : g ∈ C}; thus

the minimum of F is attained by f . To complete the proof the theorem, it remains

to show that f ∈ C; that is G(f) = 0. One has

G(f) = 1−
∫
M

f 2 dµr

= 1− ‖f‖2
2,m,µ

= 1− lim
ik→∞

‖fik‖2
2,m,µ

= lim
ik→∞

G(fik) = 0,

since fik ∈ C.

Due to Lemma B.5.2, the functionals F and G are continuously differentiable. In

addition, by Lemma B.5.5 there exists a function f̄ ∈ S which minimises F over the

constraint set C. Therefore, using the method of Lagrange multipliers, one has the

equation F ′(f̄)g = λG′(f̄)g for some λ ∈ R and all g ∈ S. Expanding this equation

with (B.94) and (B.95) yields∫
M

m(∇̃mg, ∇̃mf̄) dµr +

∫
N

n(∇̃nHg, ∇̃nHf̄) dνr = −2λ

∫
M

gf̄ dµr, (B.102)

for all g ∈ S, f̄ ∈ {f ∈ S : G(f) = 0} and some λ ∈ R. By comparing (B.91) and

(B.102), one sees immediately that (f̄ , λ) ∈ {f ∈ S : G(f) = 0} × R is a solution

pair for the weak formulation (B.91).

If we fix g to be f̄ in (B.102), then

2F (f̄) =

∫
M

|∇̃mf̄ |2m dµr +

∫
N

|∇̃nHf̄ |2n dνr

= − 2λ

∫
M

f̄ 2 dµr

= − 2λ(G(f̄) + 1). (B.103)
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Moreover, as a consequence of Lemma B.5.5, f̄ is minimising for F . Thus rearranging

(B.103) yields

λ = − inf
f∈S

F (f)

G(f) + 1

= − inf
f∈S

∫
M
|∇̃mf |2m dµr +

∫
N
|∇̃nHf |2n dνr

2
∫
M
f 2 dµr

. (B.104)

Let the solution (f̄ , λ) to (B.91) be denoted by (φ2, λ2). To find other solution pairs

to (B.91) of the form (φi, λi), one follows the standard induction arguments pre-

sented in [49] and p.212 in [88]: One constructs a sequence of decreasing, closed and

L2(M,m, µr)-orthogonal subspaces of S; that is for k ≥ 1, a sequence of subspaces

of S of the form Sk = {f ∈ S :
∫
M
fφi dµr = 0, for i = 1, 2, . . . , k}, where φ1 is

constant. One then uses the fact that the solutions φi and φj are L2(M,m, µr)-

orthogonal for λi 6= λj (this follows immediately from Lemma C.3. in [49]), and

the fact that each Sk is complete (closed subspace of a Hilbert space), to apply the

variational method on Sk−1 to obtain

λk = − inf
f∈Sk−1

∫
M
|∇̃mf |2m dµr +

∫
N
|∇̃nHf |2n dνr

2
∫
M
f 2 dµr

, (B.105)

for k = 2, 3, . . .. Note that (φ1, 0) is a solution pair to (B.91), thus λ1 = 0. Addi-

tionally, the sequence λi is monotone decreasing and tends to −∞, with the solution

space finite for each i (Lemma C.4. in [49]).

Furthermore, using the identity ∇̃n = T∗∇̃T ∗nH∗ from Lemma B.2.6,∫
N

|∇̃nHf |2n dνr =

∫
N

n(T∗∇̃T ∗nf, T∗∇̃T ∗nf) dνr

=

∫
M

T ∗n(∇̃T ∗nf, ∇̃T ∗nf) dµr =

∫
M

|∇̃T ∗nf |2T ∗n dµr,

where the second equality is due to (3.7) and (B.28). Hence, one can write (B.105)

as an integral of M as

λk = − inf
f∈Sk−1

∫
M

(
|∇̃mf |2m + |∇̃T ∗nf |2T ∗n

)
dµr

2
∫
M
f 2 dµr

. (B.106)

B.5.3 Ellipticity and global regularity of weak solutions

To complete the proof of Theorem 3.3.3, it remains to verify that the eigenfunctions

φi of 4dyn are smooth and unique for each i. For then, the smoothness of φi

on M implies that the weak solution pairs (φi, λi) which solves (B.91) are also

solution to (B.89). Moreover, the uniqueness of (φi, λi) implies that the solutions

of the eigenvalue problem (B.76) are given by (B.105) or (B.106) (with the weak
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gradients replaced with standard version due to the additional smoothness of φi).

To determine the regularity and uniqueness of φi on M , we utilise the elliptical

regularity theorem (see Theorem 8.14 in [61]).

We say that an operator L of the form

L =
r∑

i,j=1

aij
∂2

∂xi∂xj
+ bi

∂

∂xi
+ c, (B.107)

is strictly uniformly elliptic if aij, bi and c are bounded, real-valued functions on M ,

and there exists a constant γ > 0 such that

r∑
i,j=1

aijεiεj ≥ γ|ε|2, (B.108)

where ε ∈ Rr is non-zero.

As a consequence of the Elliptical Regularity theorem, if ∂M is smooth, and

4dyn is a strictly uniformly elliptic operator with aij, bi, c ∈ C∞(M,R) and c ≤ 0 in

M , then there exist unique solutions in C∞(M,R) for the eigenproblem (B.76).

Lemma B.5.6. Let T : M → N be a C∞-diffeomorphism, and assume hµ is smooth

and uniformly bounded away from zero. The weighted Laplacian 4dyn is a strictly

uniformly elliptic operator of the form (B.107), with aij, bi, c in C∞(M,R) and c ≤ 0

on M .

Proof. For this proof, we say that an operator has property E, if it is a strictly

uniformly elliptic, with coefficients aij, bi, c in C∞(M,R) and c ≤ 0 on M . By

Lemma B.2.7

24dynf = 4mf +H∗4nHf +
m(∇mhµ,∇mf)

hµ
+
n(∇nhν ,∇nHf) ◦ T

hν ◦ T
. (B.109)

Clearly the sum of operators with property E is an operator with property E.

Additionally, if the second and fourth terms of (B.109) has property E, then by

setting T as the identity, one immediately see that the first and third terms of

(B.110) also has property E. Thus, it is sufficient to show that the second and fourth

terms of (B.109) has property E. To show that second term H∗4nH of (B.109) has

property E, we note by Corollary B.2.6 that H∗4nH = 4T ∗n. Therefore in local

coordinates at any point in M ,

H∗4nHf = 4T ∗nf =
1√

detGT ∗n

r∑
i,j=1

∂j

(√
detGT ∗n(T ∗n)ij∂if

)
, (B.110)

for all f ∈ C∞(M,R). Using Jacobi’s formula for differentiating the determinant of

a matrix A; that is ∂k(detA)(x) = (detA)(x)
∑

ij(A
−1)ij(x)∂kAij(x) for all x ∈ M ,
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one has

∂j(
√

detGT ∗n) =
1

2

1√
detGT ∗n

∂j(detGT ∗n)

=
1

2

detGT ∗n√
detGT ∗n

r∑
k,l=1

(G−1
T ∗n)kl∂j(GT ∗n)kl

=
1

2

√
detGT ∗n

r∑
k,l=1

(T ∗n)kl∂j(T
∗n)kl. (B.111)

Therefore, by using the product rule to expand the partial derivative in the sum-

mation on the RHS of (B.110), and then applying (B.111) to the first term one

has

RHS of (B.110)

=

1√
detGT ∗n

( r∑
i,j=1

(T ∗n)ij∂j(
√

detGT ∗n)∂if +
√

detGT ∗n∂j(T
∗n)ij∂if

+
√

detGT ∗n(T ∗n)ij∂j∂if

)
=

r∑
i,j=1

1

2

(
r∑

k,l=1

(T ∗n)kl∂j(T
∗n)kl

)
(T ∗n)ij∂if + ∂j(T

∗n)ij∂if + (T ∗n)ij∂j∂if

=
r∑

i,j=1

[
1

2

(
r∑

k,l=1

(T ∗n)kl∂j(T
∗n)kl

)
(T ∗n)ij + ∂j(T

∗n)ij

]
∂if + (T ∗n)ij∂j∂if.

(B.112)

Now the Riemannian metric n is a C∞ bilinear symmetric form and positive-definite

for every y ∈ N . Moreover, the mapping T is a C∞-diffeomorphism. Hence, the

components (T ∗n)ij and ∂i(T
∗n)ij are both bounded and smooth for each 1 ≤ i, j ≤

r. Therefore, the coefficients bi =
∑

j
1
2
(T ∗n)ij∂j(T

∗n)kl + ∂j(T
∗n)ij and aij =

(T ∗n)ij in (B.112) are both bounded and smooth. Additionally, due to Lemma

B.2.2 we have at the point x ∈M ,

r∑
i,j=1

aijεiεj =
r∑

i,j=1

(T ∗n)ijεiεj

=
∑
i,j=1

(J>T ·Gn ◦ T · JT )ijεiεj

=
∑
i,j=1

(J−1
T ·G

−1
n ◦ T · (J>T )−1)ijεiεj

=
∑

i,j,k,l=1

(J−1
T )ik · (G−1

n ◦ T )kl · (J−1
T )jlεiεj

=
r∑

i,j,k,l=1

(JT−1 ◦ T )ik · (G−1
n ◦ T )kl · (JT−1 ◦ T )jlεiεj, (B.113)
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where the last line is due to the inverse function theorem. Therefore

RHS of (B.113) =
r∑

k,l=1

(JT−1 ◦ T · ε)k · (G
−1
n ◦ T )kl · (JT−1 ◦ T · ε)l > 0,

where we have used the fact that the matrix G−1
n is positive definitive at every Tx ∈

N to obtain the last inequality. Hence, there is a γ > 0 such that
∑r

i,j=1 aij(x)εiεj ≥
γ|ε|2 for all x ∈ M . Thus aij satisfies the condition (B.108), so by (B.110)-(B.112)

the term H∗4nH has property E.

To show that the fourth term n(∇nhν ,∇nHf)/H∗hν of (B.109) has property E,

we consider the numerator term. One has at each point Tx ∈ N ,

n(∇nhν ,∇nHf) = n(∇nhν , T∗∇T ∗nf) by Lemma B.2.6

= (T∗∇T ∗nf)hν

= ∇T ∗nf(hν ◦ T ) ◦ T−1 by (3.5)

= m
(
∇m(hν ◦ T ),∇T ∗nf

)
◦ T−1. (B.114)

Writing the RHS of (B.114) in local coordinates, one has at any point x ∈M

RHS of (B.114) =
r∑

i,j=1

mij

(
r∑

k=1

mki∂k(hν ◦ T )

)(
r∑
l=1

(T ∗n)jl∂lf

)

=
r∑
j=1

∂j(hν ◦ T )

(
r∑
l=1

(T ∗n)jl∂lf

)
on contracting the index i

=
r∑

j,l=1

∂j(hν ◦ T )(T ∗n)jl∂lf.

Therefore, at each x ∈M

n(∇nhν ,∇nHf) ◦ T
hν ◦ T

=

∑r
j,l=1 ∂j(hν ◦ T )(T ∗n)jl∂lf

hν ◦ T

=
r∑

j,l=1

∂j(ln
(
hν ◦ T )

)
(T ∗n)jl∂lf

As before, due to the properties of the metric m, the smoothness of hµ, and the

fact that T is a diffeomorphism, the coefficient bl =
∑

j ∂j
(

ln (hν ◦ T )
)
(T ∗n)jl is

bounded and smooth, and so the fourth term of (B.109) has property E.

B.6 The proof of Theorem 3.3.4

This proof is a straightforward modification of Theorem 3.2 in [49]. Let g : M → R+

be nonnegative and smooth. Since∫
N

Hg dνr =

∫
M

g dµr,
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by (B.27), and densities hµ, hν are both positive and smooth, the function Hg is

also nonnegative and smooth. Denote by Γβ the level surfaces generated by g; that

is {x ∈ M : g(x) = β}. Then the level surfaces of TΓβ are generated by Hg. Now,

due to the co-area formula given by Lemma B.2.1, one has∫
M

|∇mg|m · hµωrm +

∫
N

|∇nHg|n · hνωrn

=

∫ ∞
0

(∫
Γβ
hµω

r−1
m +

∫
TΓβ

hνω
r−1
n

)
dβ

=

∫ ∞
0

(
µr−1(Γβ) + νr−1(TΓβ)

)
dβ

≥ 2 inf
t∈(0,∞)

Hdyn({g = β})
∫ ∞

0

min{µr(g > β), µr(g < β)} dβ. (B.115)

Let f : M → R be smooth, and σ the median of f with respect to µr; i.e. µr(f ≥
σ) ≥ 1/2 and µr(f ≤ σ) ≥ 1/2. Set f+ = max{f−σ, 0} and f− = −min{f−σ, 0}, so

that f−σ = f+−f−. Observe that for each point x ∈M , either |f(x)−σ| = f+(x),

|f(x)− σ| = f−(x) or |f(x)− σ| = f+(x) = f−(x) = 0. Therefore

inf
β∈R

Hdyn({f = β}) = min

{
inf

t∈(0,∞)
Hdyn({f 2

− = β}), inf
t∈(0,∞)

Hdyn({f 2
+ = β})

}
.

(B.116)

In addition, if f+ is positive then f > σ, and if f− is positive then f < σ. Hence,

by using the fact that σ is the median of f , one has

µr(f
2
+ > β) ≤ 1

2
and µr(f

2
− > β) ≤ 1

2
, (B.117)

for all β ≥ 0. Moreover, if f+ 6= 0 then f− = 0, and if f− 6= 0 then f+ = 0. Hence,

(f − σ)2 = f 2
+ + f 2

−, (B.118)

and

|∇m(f 2
+ + f 2

−)|2m = m(∇m(f 2
+ + f 2

−),∇m(f 2
+ + f 2

−))

= |∇m(f 2
+)|2m + 2m(∇m(f 2

+),∇m(f 2
−)) + |∇m(f 2

−)|2m
= |∇m(f 2

+)|2m + |∇m(f 2
−)|2m

= |∇m(f 2
+)|2m + 2 · |∇m(f 2

+)|m · |∇m(f 2
−)|m + |∇m(f 2

−)|2m
=
(
|∇m(f 2

+)|m + |∇m(f 2
−)|m

)2
. (B.119)

Finally, by definition Hf+ = max{Hf − σ, 0} and Hf− = −min{Hf − σ, 0}. Hence

analogous to (B.118)

(Hf − σ)2 = Hf 2
+ +Hf 2

− (B.120)
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and analogous to (B.119)

|∇n(Hf 2
+ +Hf 2

−)|2n = (|∇n(Hf 2
+) +∇n(Hf 2

−)|n)2. (B.121)

Due to (B.118)-(B.121), one has∫
M

∣∣∇m[(f − σ)2]
∣∣
m
dµr +

∫
M

∣∣∇n[(Hf − σ)2]
∣∣
n
dνr

=

∫
M

∣∣∇m(f 2
+ + f 2

−)
∣∣
m
dµr +

∫
N

∣∣∇n(Hf 2
+ +Hf 2

−)
∣∣
n
dνr by (B.118) and (B.119)

=

∫
M

(
|∇m(f 2

+)|m + |∇m(f 2
−)|m

)
dµr +

∫
N

(
|∇n(Hf 2

+)|n + |∇n(Hf 2
−)|n

)
dνr,

(B.122)

where the last line is due to (B.119) and (B.121).

Now, consider the RHS of (B.122). Since f 2
+ and f 2

− are nonnegative and smooth

almost everywhere, one can set g = f 2
+ and g = f 2

− independently in (B.115), and

then apply (B.116) to the result to obtain

RHS of (B.122)

≥
2 inf
β∈R

Hdyn({f = β})
∫ ∞

0

(
min{µr(f 2

+ > t), µr(f
2
+ < β)}

+ min{µr(f 2
− > t), µr(f

2
− < β)}

)
dβ

= 2 inf
β∈R

Hdyn({f = β})
∫ ∞

0

µr(f
2
+ > β) + µr(f

2
− > β) dβ, (B.123)

where the equality on the last line is due to (B.117). Applying the Cavalieri’s

principle (Proposition I.3.3 in [23]) to the RHS of (B.123) yields

RHS of (B.123) = 2 inf
β∈R

Hdyn({f = β})
∫
M

(f 2
+ + f 2

−) dµr

= 2 inf
β∈R

Hdyn({f = β})
∫
M

(f − σ)2 dµr. (B.124)

Next, we consider the LHS of (B.122). In local coordinates, one has by (B.12)

∇m[(f − σ)2] =
r∑

i,j=1

mij∂i(f − σ)2∂j

= 2
r∑

i,j=1

mij(f − σ)∂if∂j

= 2(f − σ)∇mf.

Therefore, by Cauchy-Schwarz∫
M

∣∣∇m[(f − σ)2]
∣∣
m
dµr = 2

∫
M

|f − σ| ·
∣∣∇mf

∣∣
m
dµr

≤ 2‖f − σ‖2,m,µ · ‖∇mf‖2,m,µ. (B.125)
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Also, analogous to (B.125)∫
N

∣∣∇n[(Hf − σ)2]
∣∣
n
dνr ≤ 2‖Hf − σ‖2,n,ν · ‖∇nHf‖2,n,ν

= 2

(∫
N

(Hf − σ)2 dνr

)
· ‖∇nHf‖2,n,ν

= 2

(∫
M

(f − σ)2 dµr

)
· ‖∇nHf‖2,n,ν by (B.27)

= 2‖f − σ‖2,m,µ · ‖∇nHf‖2,n,ν . (B.126)

Therefore, by (B.122)-(B.126) one has

inf
β∈R

Hdyn({f = β})
∫
M

(f − σ)2 dµr ≤ ‖f − σ‖2,m,µ · (‖∇mf‖2,m,µ + ‖∇nHf‖2,n,ν)

=⇒ inf
β∈R

Hdyn({f = β}) ≤ ‖∇mf‖2,m,µ + ‖∇nHf‖2,n,ν(∫
M

(f − σ)2 dµr
)1/2

. (B.127)

Let α(f) be the mean of f with respect to µr; that is α(f) =
∫
M
f dµr. Then∫

M
(f−c)2 dµr as a function of c ∈ R is minimum when c = α(f). Hence, by squaring

both sides of (B.127), one has(
inf
β∈R

Hdyn({f = β})
)2

≤ (‖∇mf‖2,m,µ + ‖∇nHf‖2,n,ν)
2∫

M
(f − α(f))2 dµr

≤ 2

∫
M
|∇mf |2m dµr +

∫
N
|∇nHf |2n dνr∫

M
(f − α(f))2 dµr

, (B.128)

for all f ∈ C∞(M,R), where we have used the fact that (a + b)2 ≤ 2(a2 + b2) for

a, b ∈ R to obtain the inequality on the last line. Furthermore, if λ2 is the smallest

magnitude nonzero eigenvalue of 4dyn with corresponding eigenfunction φ2, then by

Theorem 3.3.3, one has φ2 ∈ C∞(M,R), α(φ2) =
∫
M
φ2 dµr = 0, and for k = 2 the

infimum of (3.34) is attained by φ2. Thus, by setting f = φ2 in (B.128),(
inf
β∈R

Hdyn({φ2 = β})
)2

≤ 2

∫
M
|∇mφ2|2m dµr +

∫
N
|∇nHφ2|2n dνr∫

M
|φ2 − α(φ2)|2 dµr

= − 4λ2.

This concludes the proof of the theorem.

B.6.1 Time-discrete and time-continuous case

To generalise Theorem 3.3.4 to the time-continuous dynamic Cheeger inequality,

we note that apart from (B.128) all arguments are applied linearly with respect to

time. Hence, the results up to (B.128) are immediate via the constructions outlined
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in Sections 3.2.1 and 3.3.2. To modify the argument (a + b)2 ≤ 2(a2 + b2) used to

obtain (B.128), we apply Cauchy-Schwarz to obtain(∫ τ

0

at dt

)2

=

(∫ τ

0

at · 1 dt
)2

≤
(∫ τ

0

a2
t dt

)
·
(∫ τ

0

12 dt

)
= τ ·

∫ τ

0

a2
t dt.

For the time-discrete case, one applies Cauchy-Schwarz analogously.

B.7 The proof of Theorem 3.4.1

Recall the definition of the diffusion operator DX,ε given by (3.41). Given f ∈
C3(M,R), we wish to evaluate the ε→ 0 limit of the image of f under the operator

H∗εHε, where by (3.43) and (3.44),

H∗εHεf = D∗Xε,ε ◦ H
∗ ◦ D∗Y ′ε ,ε

(
Pε(fhµ)

Pεhµ

)
, (B.129)

with Pε = DY ′ε ,ε ◦ P ◦DX,ε. Let (U,ϕ) be a chart on M containing the point x ∈M .

Recall normal coordinates at the point x, are the local coordinates on (U,ϕ) such

that the metric tensor satisfies mij(x) = δij and ∂imjk(x) = 0 for all 1 ≤ i, j, k ≤ r.

Introducing standard multi-index notation for α; i.e. α = (α1, α2, . . . , αr) such

that
|α| = α1 + . . .+ αr

α! = α1!α2! . . . αr!

Dα = ∂α1
1 ∂α2

2 . . . ∂αrr

vα = vα1
1 vα2

2 . . . vαrr ,

(B.130)

for a vector v = (v1, . . . , vr). The following lemmas are well known results regarding

normal coordinates

Lemma B.7.1. Let (U,ϕ) be a chart of M containing the point x0 ∈ M , with

corresponding normal coordinates {x1, x2, . . . , xr}. The Laplace-Beltrami operator

satisfies

4mf(x0) =
r∑
i=1

∂2(f ◦ ϕ−1)

∂x2
i

(ϕ(x0)).

Proof. See p.90 in [103].

Lemma B.7.2. Let (U,ϕ) be a chart of M containing the point x0 ∈ M with

corresponding coordinates {x1, x2, . . . , xr}. The asymptotic expansion of
√

detGm

about Bε(x0) ⊆ U , centered at x0 is given by

√
detGm(x0) = 1 +

∞∑
|α|=2

CR,|α|(x0) ·
(
ϕ(x0)

)α
,
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where CR,|α|(x0) depend only on the Riemannian curvature tensor R and covariant

derivatives of R at the point x0. Moreover, if R is bounded on Bε(x0), then

∞∑
|α|=2

|CR,|α|(x0)| <∞ (B.131)

Proof. See Corollary 2.10 in [65].

The following lemma generalises Lemma D.1 [49] for flat manifolds to the case

of general Riemannian manifolds.

Lemma B.7.3. Let DX,ε be defined as in (3.41). There exist a constant c, such that

lim
ε→0

sup
‖f‖C3(M,R)≤K

∥∥∥∥DX,εf − fε2
− (c/2)4mf

∥∥∥∥
C0(M,R)

= 0,

for each K <∞.

Proof. Let f ∈ C3(M,R) with ‖f‖C3(M,R) ≤ K, fix x0 ∈ X and set ε > 0 to be

smaller than the injectivity radius of the point x0 ∈ M . It is well known that the

exponential map expx0 at the point x0 is a diffeomorphism of a neighbourhood of

0 ∈ Rr onto the metric ball Bε(x0) (see Theorem 5.11, [7]). Moreover, there exist

normal coordinates on the chart
(
Bε(x0), exp−1

x0

)
; that is the components of the

metric tensor m satisfy mij = δij, and ∂kmij = 0 at the point x0 for all 1 ≤ i, j, k ≤ r

(see Corollary 5.12, [7]).

Recall the definitions of q and Qm,ε from Section 3.4. By the Gauss lemma for

Riemannian manifolds, the exponential map expx0 is a radial isometry from the

Euclidean ball Eε(0) to Bε(x0) (see Lemma 3.5, p.69 in [36]). Thus,

Qm,ε(x0, z) = ε−rq

(
distm(x0, z)

ε

)
= ε−rq

( | exp−1
x0
x0 − exp−1

x0
z|

ε

)
= ε−rq

( | exp−1
x0
z|

ε

)
, (B.132)

for all z ∈ Bε(x0) ⊂M . Moreover, due to the fact that supp q ⊂ E1(0), the function

Qm,ε vanishes for all z ∈M \Bε(x0).

Let {x1, . . . , xr} denote normal coordinates on (Bε(x0), exp−1
x0

). Recall that the

volume form on M is given by ωrm =
√

detGm · dx1 ∧ dx2 ∧ . . .∧ dxr, where Gm is a

r × r matrix with entries mij. Hence (expx0)
∗ωrm =

√
detGm ◦ expx0 d`, where ` is

the Lebesgue measure on Rr. Moreover, since supp Qm,ε(x0, ·) ⊂ Bε(x0), one has

DX,εf(x0) =

∫
Bε(x0)

Qm,ε(x0, z)f(z) · ωrm(z)

= ε−r
∫
Eε(0)

q

(
|u|
ε

)(
f ·
√

detGm

)
◦ expx0(u) · d`(u), (B.133)
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where the last line is due to (B.132). An application of the change of variable

v = u/ε to the RHS of (B.133) yields

RHS of (B.133) =

∫
E1(0)

q (v)
(
f ·
√

detGm

)
◦ expx0(εv) d`(v). (B.134)

To complete the proof of the lemma from (B.133), we follow the proof of Lemma

D.1 [49]. We apply Taylor’s theorem to the real-valued function f̄ := f ◦ expx on

E1(0), centered at 0 to obtain

f̄(εv) =
2∑
|α|=0

(εv)α
Dαf̄(0)

α!
+
∑
|α|=3

(εv)αRα(εv)

where the remainder term Rα(εv) is given by

Rα(εv) =
3

α!

∫ 1

0

(1− γ)2Dαf(γεv) dγ. (B.135)

Due to the above Taylor expansion of f̄ , the RHS of (B.134) becomes

∫
E1(0)

q(|v|)

 2∑
|α|=0

ε|α|vα
Dαf̄(0)

α!
+
∑
|α|=3

ε3vαR3(εv)

 · detGm(εv) d`(v), (B.136)

where detGm =
(√

detGm

)
◦ expx0 . We evaluate the above integral term by term.

For the |α| = 0 term, one has∫
E1(0)

q(|v|) · f̄(0)

0!
· detGm(εv) d`(v)

=

∫
E1(0)

q(|v|) · f(x0) · detGm(εv) d`(v)

= f(x0)

∫
Bε(x0)

Qm,ε(x0, z) · ωrm(z) = f(x0). (B.137)

For the |α| = 1 term, we note that the real-valued function q(|v|) is symmetric.

Hence, viq(|v|) are odd functions of v for 1 ≤ i ≤ r. Therefore,∫
E1(0)

q(|v|) · ε1
r∑
i=1

v1
i

∂if̄(0)

1!
· detGm(εv) d`(v)

=
r∑
i=1

∂if̄(0)

∫
E1(0)

viq(|v|) · ε

1 +
∞∑
|β|=2

CR,|β|(x0)ε|β|vβ

 d`(v)


=

r∑
i=1

∂if(x0) ·

0 +

∫
E1(0)

q(|v|) ·
∞∑
|β|=2

CR,|β|(x0)viv
βε|β|+1 d`(v)

 , (B.138)
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where we have applied Lemma B.7.2 to obtain the second equality, with constants

CR,|β|(x0) <∞ depend only on the Riemannian curvature tensor R, and the covari-

ant derivatives of R at the point x0. We return to this term later in the proof, but

for now we proceed to the |α| = 2 term.

For the |α| = 2 term, due to the property (3.40) for q and the approximation of
√
Gm by Lemma B.7.2, one has∫

E1(0)

q(|v|) ·

(
ε2

r∑
i,j=1

vivj
∂i∂j f̄(0)

2!

)
·

1 +
∞∑
|β|=2

CR,|β|(x0)ε|β|vβ

 d`(v)

=
r∑

i,j=1

∂i∂j f̄(0)

2!
·

∫
E1(0)

q(|v|) ·

vivjε2 +
∞∑
|β|=2

CR,|β|(x0)vivjv
βε|β|+2

 d`(v)


=
cε2

2

r∑
i=1

∂2
i f̄(0) +

r∑
i,j=1

∂i∂j f̄(0)

2
·

∫
E1(0)

q(|v|) ·
∞∑
|β|=2

CR,|β|(x0)vivjv
βε|β|+2 d`(v)


=
cε2

2
4mf(x0) +

r∑
i,j=1

∂i∂jf(x0)

2
·

∫
E1(0)

q(|v|) ·
∞∑
|β|=2

CR,|β|(x0)vivjv
βε|β|+2 d`(v)

 ,

(B.139)

where we have applied Lemma B.7.1 to obtain the last line.

Now set ε ≤ min{ρ, 1}, where ρ is smaller than the injectivity radius for every

x ∈ M , then the approximations (B.133)-(B.139) are valid for every point x ∈ M .

Moreover, since M is compact R is bounded on M . Therefore, by (B.131), if v ∈
E1(0) then there exists a constant C1 such that

∞∑
|β|=2

∣∣CR,|β|(x)viv
βε|β|+1

∣∣ ≤ ε3

 ∞∑
|β|=2

∣∣CR,|β|(x)
∣∣ =

C1∫
E1(0)

q(|v|) d`(v)
ε3, (B.140)

for each i ≥ 1 and all x ∈ M . Similarly, if v ∈ E1(0) then there exists a constant

C2 such that

∞∑
|β|=2

∣∣CR,|β|(x)vivjv
βε|β|+2

∣∣ ≤ ε4

 ∞∑
|β|=2

∣∣CR,|β|(x)
∣∣ =

C2∫
E1(0)

q(|v|) d`(v)
ε4, (B.141)

for each i, j ≥ 1 and all x ∈M . Due to (B.133)-(B.141), one has∣∣∣∣DX,εf(x)− f(x)− cε2

2
4mf(x)

∣∣∣∣

≤

∣∣∣∣∣
(

r∑
i=1

∂if(x)

)
· C1ε

3

∣∣∣∣∣+

∣∣∣∣∣
(

r∑
i,j=1

∂i∂jf(x)

)
· C2ε

4

∣∣∣∣∣
+

∣∣∣∣∣∣
∫
E1(0)

q(|v|) ·
∑
|α|=3

ε3vαRα(εv) · detGm(εv) d`(v)

∣∣∣∣∣∣ .
(B.142)
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for all x ∈M . Consider the term on the second line of (B.142), one has

sup
‖f‖C3(M,R)≤K

∥∥∥∥∥∥
∫
E1(0)

q(|v|) ·
∑
|α|=3

ε3vαRα(εv) · detGm(εv) d`(v)

∥∥∥∥∥∥
C0(M,R)

≤ sup
‖f‖C3(M,R)≤K
|α|=3,u∈Eε(0)

‖Rα(u)‖C0(M,R) · ε3
∫
E1(0)

q(|v|) ·
∑
|α|=3

vαdetGm(εv) d`(v)

= sup
‖f‖C3(M,R)≤K
|α|=3,u∈Eε(0)

‖Rα(u)‖C0(M,R) · C3ε
3,

for some constant C3. Therefore, rearranging (B.142) yields

sup
‖f‖C3(M,R)≤K

∥∥∥∥(DX,ε − Id)f

ε2
− (c/2)4mf

∥∥∥∥
C0(M,R)

≤

sup
‖f‖C3(M,R)≤K

∥∥∥∥∥
(

r∑
i=1

∂if

)∥∥∥∥∥
C0(M,R)

· C1ε
3 +

∥∥∥∥∥
(

r∑
i,j=1

∂i∂jf

)∥∥∥∥∥
C0(M,R)

· C2ε
4

+ sup
‖f‖C3(M,R)≤K
|α|=3,u∈Eε(0)

‖Rα(u)‖C0(M,R) · C3ε
1.

(B.143)

Since the first and second order derivatives of f are bounded for by K, the first

two terms on the RHS of (B.143) converge to 0 as ε→∞. Hence, to complete the

proof of the theorem it suffices to show that

Rα(u) =
3

α!

∫ 1

0

(1− γ)2Dα(f ◦ expx)(γu) dγ,

is uniformly bounded on Eε(0) for |α| = 3 and every f ∈ C3(M,R) with ‖f‖C3(M,R) ≤
K.

Let u ∈ Eε(0) and |α| = 3. Since ε is less than the injectivity radius of x, the

exponential map exp−1
x is a C∞-diffeomorphism from Bε(x) onto Eε(0). Thus, if

‖f‖C3(M,R) ≤ K, then all derivatives of f ◦ expx up to order 3 are bounded above

by K ′ for some K ′ < ∞ on Eε(0). Now since u ∈ Eε(0), one has γu ∈ Eε(0) for

all 0 ≤ γ ≤ 1. Hence, the term Dα(f ◦ expx)(γu) is uniformly bounded in u for

0 ≤ γ ≤ 1, and all ‖f‖C3(M,R) ≤ K. It follows that the remainder Rα is uniformly

bounded on Eε(0), for |α| = 3 and every ‖f‖C3(M,R) ≤ K.

Proof of Theorem 3.4.1. Let ‖f‖C3(M,R) ≤ 1, and set ε > 0 to be smaller than

the injectivity radius of each point in M . We start with the asymptotic expansions

of Pε(fhµ). Since ‖f‖C3(M,R) ≤ 1 and hµ is bounded in the C3-norm, one has

‖fhµ‖C3(M,R) ≤ K, for some constant K. Consider fhµ such that ‖fhµ‖C3(M,R) ≤ K.
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Lemma B.7.3 yields DX,ε(fhµ) = fhµ + cε2

2
4m(fhµ) + O(ε3), where O(ε3) denotes

the class of polynomials a3ε
3 + a4ε

4 + . . ., with all coefficients a3, a4, . . . bounded on

M and independent of f . Combining the expansion of DX,ε(fhµ) with the linearity

of P , then PDX,ε(fhµ) = P(fhµ) + cε2

2
P4m(fhµ) +O(ε3). Now, since P is given by

(B.22) and T is a C∞-diffeomorphism, one has PDX,ε(fhµ) ∈ F 3(N,R). Therefore,

by a straightforward modification of Lemma B.7.3, we have uniformly on N

Pε(fhµ) = DY ′ε ,εPDX,ε(fhµ)

= P(fhµ) +
cε2

2
P4m(fhµ) +

cε2

2

[
4nP(fhµ) +O(ε2)

]
+O(ε3)

= P(fhµ) +
cε2

2
[P4m(fhµ) +4nP(fhµ)] +O(ε3), (B.144)

where c is the same constant as in Lemma B.7.3 (since the constant c comes from the

property (3.40) of Q, independent of f). Therefore, using the fact that Phµ = hν

Hεf =
Pε(fhµ)

Pεhµ
=
P(fhµ) + cε2

2
[P4m(fhµ) +4nP(fhµ)] +O(ε3)

hν + cε2

2
[P4mhµ +4nhν ] +O(ε3)

, (B.145)

uniformly on N . Next we apply H∗ε to Hεf . According to (B.129), the first step is

the application of the dual diffusion operator D∗Y ′ε ,ε to (B.145). In preparation for

this, we consider a general polynomial quotient of the form

a+ bε2 + cε3

d+ eε2 + fε3

where a, b, . . . , f are a set of known coefficients. By polynomial long division and

truncating at ε3, one has

a+ bε2 + cε3

d+ eε2 + fε3
=
a

d
+
bd− ae
d2

ε2 +O(ε3). (B.146)

Applying (B.146) to (B.145), and noting that Hf = P(f · hµ)/hν (see (3.19)) yields

Hεf =
P(fhµ)

hν
+
cε2

2

[
P4m(fhµ)

hν
+
4nP(fhµ)

hν
− P(fhµ) · P4mhµ

h2
ν

−P(fhµ) · 4nhν
h2
ν

]
+O(ε3)

= Hf +
cε2

2

[
P4m(fhµ)

hν
+
4nP(fhµ)

hν
− Hf · P4mhµ

hν
− Hf · 4nhν

hν

]
+O(ε3)

uniformly on N . Since hν is uniformly bounded away from zero, one can check that

Hεf ∈ F 3(N,R). Hence, it is now straightforward to compute D∗Y ′ε ,εHεf via Lemma

B.7.3 to obtain

D∗Y ′ε ,εHεf = Hf +
cε2

2

[
P4m(fhµ)

hν
+
4nP(fhµ)

hν
− Hf · P4mhµ

hν
− Hf · 4nhν

hν

]
+
cε2

2
4nHf +O(ε3), (B.147)
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uniformly on N . We write

P(4m(fhµ))

hν
= H

(
4m(fhµ)

hµ

)
= H

(
f · 4mhµ + hµ · 4mf + 2m(∇mhµ,∇mf)

hµ

)
= H

(
f · 4mhµ

hµ

)
+H

(
4mf +

2m(∇mhµ,∇mf)

hµ

)
=
Hf · P4mhµ

hν
+H

(
4mf +

2m(∇mhµ,∇mf)

hµ

)
,

where we have used the linearity of H to obtain the penultimate line, and the fact

that Hf = f ◦ T−1 to obtain the last line. Thus, the 2nd and 4th terms of (B.147)

can be combined to form

cε2

2

(
P4m(fhµ)

hν
− Hf · P4mhµ

hν

)
= cε2H

(
4mf

2
+
m(∇mhµ,∇mf)

hµ

)
. (B.148)

Also,

4nP(fhµ)

hν
=
4n(Hf · hν)

hν
=
hν · 4nHf +Hf · 4nhν + 2n(∇nhν ,∇nHf)

hν

= 4nHf +
Hf · 4nhν

hν
+

2n(∇nhν ,∇nHf)

hν
.

Thus, the 3rd, 5th and 6th terms of (B.147) can be combined to form

cε2

2

[
4nP(fhµ)

hν
− Hf · 4nhν

hν

]
+
cε2

2
4nHf

=
cε2

2
4nHf + cε2

n(∇nhν ,∇nHf)

hν
+
cε2

2
4nHf

= cε2
(
4nf +

n(∇nhν ,∇nHf)

hν

)
= cε2(4νHf), (B.149)

where the last line is due to (3.27). Substituting (B.148) and (B.149) into the RHS

of (B.147) yields,

D∗Y ′ε ,εHεf = Hf + cε2
(
H
(
4mf

2
+
m(∇mhµ,∇mf)

hµ

)
+4νHf

)
+O(ε3), (B.150)

uniformly on N . It is straightforward to apply D∗Xε,εH
∗ to the RHS of (B.150)via

Lemma B.7.3, which yields

H∗εHεf = f +
cε2

2
4mf + cε2

((
4mf

2
+
m(∇mhµ,∇mf)

hµ

)
+H∗4νHf

)
+O(ε3)

= f +
cε2

2
(4µf +H∗4νHf) +O(ε3), (B.151)
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uniformly on M , where we have used (B.31) to obtain the last line. Since the

coefficients of theO(ε3) are uniform on M and independent of f , rearranging (B.151)

gives

lim
ε→0

sup
‖f‖C3(M,R)

∥∥∥∥(H∗εH− I)f

ε2
− c · 4dynf

∥∥∥∥
C0(M,R)

= 0.
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C.1 The proof of Theorem 4.1.2

Let Lµ,ε be as in (4.9), where wµ,εij are given by (4.8) for 1 ≤ i, j ≤ k. Due to (4.14),

we have for all f ∈ Rk

(
Lk,µ,εf

)
i

=
k∑
j=1

wµ,εij (fj − fi). (C.1)

Let g ∈ Rk. By (4.10) and (C.1), one has

〈g,Lk,µ,εf〉µ =
k∑

i,j=1

wµ,εij (fj − fi)gi
hµ(xi)

pk,ε(xi)

=
k∑

i,j=1

Qρ,ε(xi, xj)

√
hµ(xj)

pk,ε(xj)

√
hµ(xi)

pk,ε(xi)
(fj − fi)gi

=
k∑

i,j=1

Uij(fj − fi)gi, (C.2)

where

Uij := Qρ,ε(xi, xj)

√
hµ(xj)

pk,ε(xj)

√
hµ(xi)

pk,ε(xi)
.

We note that Uij is symmetric due to the symmetry of Qρ,ε, and positive since each

hµ, Qρ,ε and pk,ε are positive. Therefore, by (C.2), the conclusions of Theorem 4.1.2

follows by a straightforward modification of the arguments in Section 1.4 [25].

C.2 The proof of Theorem 4.1.4

We adapt the arguments of Section 5.1 in [12]. Let Sk = {xi}ki=1 be an i.i.d random

sample drawn from M according to the C5 probability density p, and Lµ,k,ε be as in

(4.15). Fix f ∈ C3(M,R) and x0 ∈M . Define

Lµ,εf(x0) :=

∫
M

Qρ,ε(x0, y)

√
hµ(y)

hµ(x)

(
f(x0)− f(y)

)
ωrm(y), (C.3)
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where Qρ,ε : M → R is as in (4.4). First, we show that there is a sequence of scalars

{εk}k≥1 with limk→∞ εk = 0, such that

lim
k→∞

∣∣∣∣ 1

εk
Lµ,k,εkf(x0)− 1

εk
Lµ,εkf(x0)

∣∣∣∣ = 0. (C.4)

Since Sk is an i.i.d random sample with probability density p, hµ > 0 is bounded,

and pk,ε(xj) = 1
k

∑k
l=1Qρ,ε(xj, xl) > 0 the random variables

Xj =
Qρ,ε(x0, xj)

pk,ε(xj)

√
hµ(xj)

hµ(x0)

(
f(x0)− f(xj)

)
,

are strictly bounded on the interval [ai, bi] for every j ∈ [1, k]. Therefore by (4.15)

and the Hoeffding inequality [73], one has with high probability

lim
k→∞

Lµ,k,εf(x0) = lim
k→∞

1

k

k∑
j=1

Qρ,ε(x0, xj)

pk,ε(xj)

√
hµ(xj)

hµ(x0)

(
f(xj)− f(x0)

)
= lim

k→∞

∫
M

Qρ,ε(x0, y)

pk,ε(y)

√
hµ(y)

hµ(x0)

(
f(y)− f(x0)

)
p(y)ωrm(y). (C.5)

In addition, since p ∈ C5(M,R) is bounded away from zero on M , by (4.6) and (4.7)

there exists a constant aρ such that

lim
k→∞

(
1

p(y)
− 1

pk,ε(y)

)
= lim

k→∞

εaρ4mp(y) +R1(y, ε3/2)

pk,ε(y)p(y)
, R1(y, ε3/2) ∈ O(ε3/2),

(C.6)

Therefore, by combining (C.5) and (C.6)

lim
k→∞

1

ε

(
1

k
Lk,µ,εf(x0)− Lµ,εf(x0)

)
= lim

k→∞

1

ε

∫
M

Qρ,ε(x0, y)

(
1

pk,εk(y)
− 1

p(y)

)
p(y)

√
hµ(y)

hµ(x0)

(
f(y)− f(x0)

)
ωrm(y)

= lim
k→∞

1

ε

∫
M

Qρ,ε(x0, y)

(
εaρ4mp(y) +R1(y, ε3/2)

pk,ε(y)

)√
hµ(y)

hµ(x0)

(
f(y)− f(x0)

)
ωrm(y).

(C.7)

Since p ∈ C5(M,R), hµ > 0 is bounded above, and pk,ε(y) > 0 for all k, there exists

a sequence of bounded functions gk in C3(M,R) such that

RHS of (C.7) = lim
k→∞

∫
M

Qρ,ε(x0, y)

(
gk(y)− R1(y, ε3/2)

pk,ε(y)

)√
hµ(y)

hµ(x0)

(
f(y)− f(x0)

)
ωrm(y)

= lim
k→∞

∫
M

Qρ,ε(x0, y)gk(y)

√
hµ(y)

hµ(x0)

(
f(y)− f(x0)

)
ωrm(y) +R2(x0, ε

1/2),

(C.8)
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where R2(x0, ε
1/2) ∈ O(ε1/2). Moreover, since gk, hµ ∈ C3(M,R) and ρ < SM , by

applying Lemma B.7.3 to the functions gk ·
√
hµ · f ∈ C3(M,R) and gk ·

√
hµ ∈

C3(M,R), one has

RHS of (C.8) = lim
k→∞

εbρ√
hµ(x0)

[
4m

(
gk ·

√
hµ · f

)
(x0)− f(x0)4m

(
gk ·

√
hµ

)
(x0)

]
+R3(x0, ε

3/2) +R2(x0, ε
1/2), (C.9)

where R3(x0, ε
3/2) ∈ O(ε3/2), and bρ > 0 depends on the second moment of qρ. Note

that by the assumptions on hµ the fact that gk ∈ C3(M,R) for every k, the RHS of

(C.9) vanishes as ε → 0. Thus, by substituting ε = εk in (C.7)-(C.9) and using the

fact that limk→∞ εk = 0, we arrive at the result (C.4).

Since f ∈ C3(M,R) and x0 ∈ M were choose arbitrarily, one can easily extend

(C.4) to

lim
k→∞

(
sup

‖f‖C3(M,R)≤1

∥∥∥∥Lµ,k,εk − Lµ,εkεk

∥∥∥∥
C0(M,R)

)
= 0. (C.10)

Therefore, to complete the proof of Theorem 4.2.2, it remains to show that there

is a constant Cρ > 0 such that 1
εCρ

limε→0 L
µ,εf(x) = 4µf(x) for all x ∈ M and

f ∈ C∞(M,R), because then by (C.10) one has

lim
k→∞

1

εkCρ
Lµ,k,εkf(x) = lim

k→∞

1

εkCρ
Lµ,εkf(x) = lim

ε→0

1

εCρ
Lµ,εf(x) = 4µf(x), (C.11)

for every f ∈ C3(M,R) and x ∈M , and the desired conclusion follows. Since hµ > 0

is in C3, by a similar argument as in (C.9) one has Cρ > 0 such that

lim
ε→0

1

εCρ
Lµ,εf(x)

= lim
ε→0

1

εCρ

∫
M

Qρ,ε(x, y)

√
hµ(y)

hµ(x)

(
f(y)− f(x)

)
ωrm(y) by (C.3)

=
4m

(√
hµ · f

)
(x)√

hµ(x)
−
f(x)4m

(√
hµ
)

(x)√
hµ(x)

by Lemma B.7.3

=
f(x)4m

(√
hµ
)

(x)√
hµ(x)

+4mf(x) +
2m
(
∇m(

√
hµ),∇mf

)
x√

hµ(x)
−
f(x)4m

(√
hµ
)

(x)√
hµ(x)

= 4mf(x) +
m(∇mhµ,∇mf)x

hµ(x)
= 4µf(x), (C.12)

where we had applied to the chain rule of differentiation on ∇m(
√
hµ) to obtain the

penultimate equality.
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C.3 The proof of Theorem 4.2.2

Recall from Section 4.2, since M ∪ N ⊂ Rd, by a straightforward modification of

(4.4) one has Qρ,ε : (M ∪N)× (M ∪N)→ R+. Also, recall that the random sample

Ŝk = {Txi}ki=1 is drawn from N according to the C5 probability density p̂. Finally,

recall the Definition 3.3.1

4dyn :=
1

2
(4µ +H∗4νH), (C.13)

where H : L2(M,m, µr)→ L2(M,n, νr) is as in (3.19), with adjoint H∗. Define

Lν,k,εf(x) :=
k∑
j=1

Qρ,ε(Tx, Txj)

p̂k,ε(Txj)

√
hν(Txj)

hν(Tx)

(
f(x)− f(xj)

)
, (C.14)

where p̂k,ε is as in (4.23). By (4.30) and (C.14), one has

Ldyn,k,ε =
1

2

(
Lµ,k,ε + Lν,k,ε

)
. (C.15)

Furthermore, by Theorem 4.1.4, there exists a constant Cρ and a sequence of scalars

{ε̂k}k≥1 with limk→∞ εk → 0, such that

lim
k→0

(
sup

‖f‖C3(M,R)≤1

∥∥∥∥ 1

εkCp
Lµ,k,ε̂kf −4µf

∥∥∥∥
C3(M,R)≤1

)
, (C.16)

for all x ∈ M and f ∈ C3(M,R). Therefore, to obtain the conclusion of Theorem

4.2.2, by the linearity of (C.13) and (C.15), and the convergence (C.16), it is suffi-

cient to show that there exists a sequence of scalars {εk}k≥1 containing {ε̂k}k≥1 and

with limk→∞ ε̂k = 0 such that

lim
k→∞

(
sup

‖f‖C3(M,R)≤1

∥∥∥∥ 1

ε̂kCρ
Lν,k,εkf −H∗4νHf

∥∥∥∥
C3(M,R)≤1

)
, (C.17)

were Cρ is as in (C.16).

To show that (C.17) is valid, we follow the proof of Theorem 4.1.4 outlined in

Section C.2. Define analogous to (C.3)

Lν,εf(x) :=

∫
N

Qρ,ε(Tx, y)

√
hν(y)

hν(Tx)

(
f(T−1y)− f(x)

)
ωrn(y), (C.18)

for all x ∈ M and f ∈ C∞(M,R). Fix x0 ∈ M and f ∈ C3(M,R). Since Ŝk :=

{Tx1, Tx2, . . . , Txk} is an i.i.d random sample drawn from (N, n, νr) according to

the C5 probability density p̂ : N → R+. Therefore, analogous to (C.5), one has with

high probability

lim
k→∞

1

k
Lν,k,εf(x0) = lim

k→∞

∫
N

Qρ,ε(Tx0, y)

p̂k,ε(y)

√
hν(y)

hν(Tx0)

(
f(T−1y)− f(x0)

)
p̂(y)ωrn(y).

(C.19)
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Moreover, analogous to (C.6) one has for all y ∈ N ,

lim
k→∞

(
1

p̂(y)
− 1

p̂k,ε(y)

)
= lim

k→∞

εâρ4np̂(y) + R̂1(y, ε3/2)

p̂k,ε(y)p̂(y)
, (C.20)

where R̂1(y, ε3/2) ∈ O(ε3/2). Hence, since hν ∈ C3(N,R) is bounded above and

uniformly away from zero, by applying similar augments as in (C.7)-(C.9), one has

analogous to (C.11)

lim
k→∞

(
sup

‖f‖C3(M,R)≤1

∥∥∥∥Lν,k,εkf − Lν,εkfεk

∥∥∥∥
C0(M,R)

)
= 0. (C.21)

Now analogous to (C.12), there is a constant Cρ > 0 such that for all x ∈M and

f ∈ C3(M,R)

lim
ε→0

1

εCρ
Lν,εf(x)

= lim
ε→0

1

εCρ

∫
N

Qρ,ε(Tx, y)

√
hν(y)

hν(Tx)

(
f(T−1y)− f(x)

)
ωrn(y) by (C.18)

=
4n

(√
hν · f ◦ T−1

)
(Tx)√

hν(Tx)
−
f(x)4n

(√
hν
)

(Tx)√
hν(Tx)

by Lemma B.7.3

= 4n(f ◦ T−1)(Tx) +
2n
(
∇n(
√
hν),∇n(f ◦ T−1)

)
Tx√

hν(Tx)

= 4n(f ◦ T−1)(Tx) +
n(∇nhν ,∇n(f ◦ T−1)Tx

hν(Tx)

= 4nHf(Tx) +
n(∇nhν ,∇n(Hf)Tx

hν(Tx)

= H∗4νHf(x),

where we have applied Lemma (3.2.2) to obtain the last two equality. Therefore

lim
k→∞

(
sup

‖f‖C3(M,R)≤1≤1

∥∥∥∥ 1

εkCρ
Lν,k,εkf −H∗4νHf

∥∥∥∥
C0(M,R)

)

≤ lim
k→∞

(
sup

‖f‖C3(M,R)≤1≤1

∥∥∥∥ 1

εkCρ
Lν,εkf −H∗4νHf

∥∥∥∥
C0(M,R)

)
by (C.21)

= lim
ε→0

(
sup

‖f‖C3(M,R)≤1≤1

∥∥∥∥ 1

εkCρ
Lν,εkf −H∗4νHf

∥∥∥∥
C0(M,R)

)
= 0.
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Normale Supérieure, 15(2):213–230, 1982.

[18] L. Capogna, D. Donatella, S. D. Pals, and J. Tyson. An introduction to the

Heisenberg group and the sub-Riemannian isoperimetric problem, volume 259.

Springer Science & Business Media, 2007.
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