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2 CHAPTER 1. INTRODUCTION

Point patterns are data representing the location of events within a domain of in-

terest. In this thesis, we assume a spatial point pattern. Modelling such data with

spatial predictors is useful in a variety of fields for insight into the relationship

between occurrence of point events and the observed environment or other charac-

teristics of the domain. This is also useful in predicting where and how abundant

these events might be. In application, point events assume a variety of roles as

diverse as, for example, earthquakes (Ogata, 1988), financial market transactions

(Bowsher, 2007), crime (Mohler et al., 2011), conflicts in war (Zammit-Mangion

et al., 2012) and species locations (Renner et al., 2015).

We will focus on spatial point patterns in ecology, where the point events are

recorded locations of a species (or evidence of their behaviour) — called presence-

only data. These are used to produce species distribution models (SDMs), widely

used in the ecological literature to relate the spatial distribution of species to their

environment. In turn, these models are used to: guide conservation efforts through

environmental planning; identify risk factors to vulnerable populations and; under-

take stock assessments for commercial collection/hunting efforts (Elith and Leath-

wick, 2009). Presence-only data can be found historically in museum records and,

for plant species, within herbaria around the globe (Pearce and Boyce, 2006). More

recently, online stores such as the Global Biodiversity Information Facility, iNat-

uralist, e-Bird, Pl@ntNet, and others, have led to an increase in the volume of

presence-only data available to researchers — in many instances collected by people

without training in ecology, in what is termed “citizen science” (Chandler et al.,

2017). A common trait shared by both recent and historic sources of these data

is that their collection is often ad hoc or opportunistic, which introduces bias that

must be accounted for when modelling.

Point processes provide a framework that is a natural approach to modelling presence-

only data as it avoids the problem of a lack of true absences, and hence vagueness

in selecting pseudo-absences to perform, say, binary regression (Warton and Shep-

herd, 2010; Chakraborty et al., 2011). Likewise avoided is the information loss that

occurs when binning data into grids to be treated as independent Poisson random

variables. Point process models have been used in ecology to model presence-only
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data for some time (see Renner et al., 2015, for a comprehensive review). Most

commonly, these models take the form of an inhomogeneous Poisson process (IPP)

which considers the point pattern to be the Poisson realisation of a spatially varying

intensity/rate, characterised by some log-linear combination of predictor variables.

Renner and Warton (2013) and Hastie and Fithian (2013) showed that this is equiv-

alent to MAXENT, one of the more popular procedures used in the ecological liter-

ature for modelling presence-only data. For example, the original paper describing

the MAXENT procedure has been cited over 14, 000 times (Phillips et al., 2006),

and is currently accumulating about 600 additional citations each year.

Implicit in the IPP framework is the assumption that each unique point event (or

collections of point events within non-overlapping regions) is independent, arising

from their shared intensity function which is, in turn, conditional on the model

predictors. Reframed, this assumes that the predictors in the model account for

all of the clustering or repulsion found in the resulting point pattern. In many

practical applications however, presence-only data will exhibit additional clustering

(or repulsion) due to some unobserved or unmeasured covariates. Cox, Neyman-

Scott, Hawkes, and Gibbs processes are all examples of point process frameworks

that can involve additional clustering or spatial correlation; or can induce it through

point interactions (Daley and Vere-Jones, 2007). Of these, Cox processes are better

equipped to model point patterns arising from environmental phenomena compared

to those driven by point interactions (Diggle et al., 2013). Cox processes have a

stochastic, spatially varying intensity which can be used to provide the model a

hierarchy to include additional correlation structures. This is particularly true of

the log-Gaussian Cox process (LGCP) of Møller et al. (1998) where the log-intensity

of the process is a Gaussian random field (GRF), the correlation structure of which

provides the additional spatial correlation. The GRF can be modelled such that it

plays the role of missing predictors.

Despite the appealing features of LGCP in modelling presence-only data in ecology,

model complexity and long computation times are a barrier to their widespread

use. Much existing software adopts Markov Chain Monte Carlo (MCMC) sampling

procedures to model the GRF precisely (see e.g. Taylor et al., 2013; Diggle et al.,
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2013) which can be computationally costly, and scales poorly with sample size.

Rue et al. (2009) introduced a framework for approximately fitting latent Gaussian

models — a class into which LGCP models can be non-trivially coerced following the

likes of Illian et al. (2012) or Bachl et al. (2019). In either case, modelling tends to

be approached from a Bayesian standpoint, for which full posterior distributions on

model parameters are required — this too can contribute to lengthy computations.

The aim of this thesis is to develop fast, maximum likelihood-based, approximation

methods for fitting LGCPs to point patterns, and illustrate how this framework can

be used to model ecological presence-only data in a variety of ways. Additionally, the

thesis introduces software written in R (R Core Team, 2020) that implements these

advances, with the goal of making LGCP models faster and simpler to implement

— providing researchers better access to tools that can fit these spatial models.

In Chapter 2 we propose novel methodology for fitting LGCP to point pattern data

that uses a combination of variational approximation (VA), reduced rank “kriging”

(a term used in spatial statistics for interpolation, see Cressie, 1993) and automatic

differentiation (AD). We approach this in a frequentist, maximum likelihood setting

— something not common in the LGCP literature. We examine simulations to

test how fast and accurately our proposed model performs against a widely used,

approximate, Bayesian approach to fitting LGCP models: Integrated Nested Laplace

Approximations (INLA; Rue et al., 2009). We further highlight contrasts between

the methods when applied to an ecological dataset.

Chapter 3 focuses on data integration in ecology — the process of combining presence-

only data with presence/absence data from rigorous scientific surveys — to improve

SDMs. We adopt elements of the methodology proposed in Chapter 2 to extend an

existing data integration framework (as in Fithian et al., 2015) to account for spatial

dependence between the two datasets that may arise due to missing or unaccounted-

for covariates. We use simulations to assess the performance of our method, compar-

ing it to modelling the data separately as well as the original integration framework

(Fithian et al., 2015). We analyse several examples of real-world data to further

illustrate our proposed method.
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In Chapter 4 we introduce an R software package, scampr, that implements the ad-

vances of the previous two chapters, providing a user-friendly interface. We demon-

strate the code and functionality through examples. The thesis is concluded with

final remarks in Chapter 5.

We intend to submit the body of work presented in this thesis to peer-reviewed

journals in the near future. We envisage three manuscripts arising from the various

chapters. First, Chapter 2 will form a methodological paper presenting our novel

approach to fitting LGCP models. Second, we intend Chapter 3 to form a paper

submitted to an ecological modelling journal, where there is an existing body of

literature on data integration techniques. Finally, we hope to publish Chapter 4 as

a software paper.

We conclude this chapter by introducing the motivating datasets and notation used

throughout this thesis.

1.1 Example Datasets

We will use several example datasets as both motivation for, and illustration of,

the methodologies proposed in this thesis. These comprise presence-only data —

presence locations of the events of interest — along with various predictor variables

representing characteristics of the domain in which they occur. Throughout the

thesis we will denote the domain by D which is continually indexed by spatial

parameter s. We can then write the n presence records as Sn = {si} for i =

1, . . . , n. In our examples s is vector of coordinates and D ⊆ R2, however the

methods presented apply more generally. Other variables or processes are assumed

to be likewise continually indexed over the domain. We use X (s) to represent p

predictor variables at location s, forming a row vector. For brevity we write X to

mean an n× p matrix representing the predictors at each of the n locations (these

should be clear given the context). We refer to an entire predictor “field” using

X (D), however in practice the data will often be a geo-referenced grid of values. In

the subsequent sections of this chapter we perform exploratory analysis on datasets

to highlight the need for a LGCP framework to model them.
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1.1.1 Gorilla Nesting Data

The first dataset we use contains the locations of gorilla nesting sites in Kagwene

Gorilla Sanctuary in Cameroon as provided within the R package inlabru (Bachl

et al., 2019) and spatstat (Turner and Baddeley, 2005). The data consists of 640

(non-duplicate) nesting sites — defined as a location containing one to six nests

(Funwi-Gabga and Mateu, 2012). These are located in an irregularly shaped, two

dimensional domain reflecting the Kagwene Gorilla Sanctuary |D| ≈ 20km2 in size.

The region and corresponding nesting locations are shown in Figure 1.1a. Also

included are predictors comprising two covariates and one factor. These are elevation

above sea level (m); distance to fresh water source (m) and; average temperature

category — Coolest, Moderate and Warmest. See Figure 1.1b-d respectively. These

come discretised into a fine grid of 25,380 squares each approximately 800m2.

Figure 1.1: a) Nesting locations for gorillas in the Cameroon sanctuary. b) Spatial covari-
ate describing elevation in meters above sea level. c) Spatial covariate describing distance
in meters to nearest water source. d) Factor describing heat category: 1 = Coolest, 2 =
Moderate, 3 = Warmest.

While LGCPs offer a flexible framework for modelling a point pattern like the gorilla
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nesting data presented here, it would be far simpler to fit an inhomogeneous Poisson

process (IPP) and be done with it. Hence we need to determine whether an IPP

is adequate for the modelling task at hand. One way to check this is using the

inhomogeneous K function (Kinhom; Baddeley et al., 2000) — a generalisation of

Ripley’s K function for stationary point processes, also known as the reduced second

order moment function. This can be loosely interpreted as counting the number of

points within certain distances from one another in the point pattern (weighted by

the localised intensity and perhaps with edge correction). Hence Kinhom can be used

to examine if clustering is present within a point pattern beyond that accounted

for given a spatially varying intensity surface. That is, if the intensity surface is

parameterised by predictor variables — as is the case when we use the fitted intensity

from an IPP — we can identify when additional spatial clustering exists, perhaps

due to missing or unaccounted-for covariates. This can be done by comparing the

observed Kinhom for our point pattern against those calculated on point patterns

simulated from the fitted IPP intensity. Here we compare the observed Kinhom to a

simulation envelope constructed from 1000 point patterns simulated in this way.

We want to construct a simulation envelope in a way that controls for the functional

nature of Kinhom, such that the envelope provides global control of Type I error,

rather than pointwise control. This is non-trivial but can be achieved using the

methods described in Myllymäki et al. (2017), and available on CRAN in the GET

package (Myllymäki and Mrkvička, 2019).

The results for the gorilla nesting data example can be found in Figure 1.2, for

both an IPP and LGCP model (top and bottom panel respectively) that regresses

the locations against all the available predictors. As we can see, there is evidence

(α = 0.05) of violation of the Poisson assumption (top panel), with additional spatial

clustering at all inter-point distances less than a kilometre. The LGCP model seems

to adequately account for this additional clustering. The confidence bounds in the

IPP case (top panel) seem strikingly narrow, which arises because the fitted intensity

for this IPP is particularly flat (as seen later in Section 2.5).



8 CHAPTER 1. INTRODUCTION

Figure 1.2: The inhomogeneous K functions for the gorilla nesting data under an IPP
model (top panel) and LGCP model (bottom panel) — both use the three fixed effect
predictors. All K functions use a border correction as in Baddeley and Turner (2000).
Shaded regions are global 95% confidence bounds based on 1000 simulated point patterns
from the fitted intensity, and the central dashed line shows the equation K(d) = πd2 that
represents the theoretical K function for the fitted IPP. There is evidence of additional
spatial clustering to that accounted for by the IPP model, not so in the LGCP where
the latent field seems to adequately account for the clustering. Note that the observed
function far exceeds the 95% global simulation bounds in the IPP case. Models fit here
are found in Chapter 2.

1.1.2 Flora Presence Locations

The other datasets used in this thesis are presence-only data for four species of flora

within the Greater Blue Mountains World Heritage Area (GBMWHA) in NSW,

Australia (Figure 1.3). These data are useful to our current aims as we additionally

have presence/absence data for these species — meaning we can study methods that

integrate these two data types within a single model. Presence/absence data com-

prise of a vector of zero or one responses, y of length nsurvey, logically representing

whether or not the species was present at each site,
{
sPAi
}nsurvey

i=1
∈ D, from detailed

scientific surveys. In the flora survey described here we have nsurvey = 8, 223.
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Figure 1.3: The domain of interest for the flora datasets, the Greater Blue Mountains
World Heritage Area (GBMWHA) in N.S.W, Australia.

The species are Corymbia eximia, Eucalyptus sparsifolia, Eucalyptus canaliculata

and Homoranthus cernuus. The first three species are large trees while H. cernuus

is a small shrub, and they were chosen as species highly endemic to this study

region that differ in their spatial distribution and range. E. canaliculata and H.

cernuus are species with a very restricted range, only found in a small subregion

of the GBMWHA. The locations of both the presence-only and presence/absence

data for each species is found in Figure 1.4. Table 1.1 shows the relative numbers

of presences found in each dataset. As may be expected, the two species with

restricted distributions are the least frequently observed. In these data, we find all

species except H. cernuus to be more prevalent within the survey data than in the

presence-only records.

Table 1.1: Number of presences of each species in the presence/absence data (also referred
to as survey data; PA, top row) and presence-only data (PO, bottom row).

C. eximia E. canaliculata H. cernuus E. sparsifolia
PA 324 78 9 618
PO 242 38 11 194

We have several predictor variables measured throughout the GBMWHA as a geo-
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Figure 1.4: Locations of both presence records (presence-only, left column) and survey
sites (presence/absence, right column) in the GBMWHA for each of the four species. a)
Corymbia eximia. b) Eucalyptus canaliculata. c) Homoranthus cernuus. d) Eucalyptus
sparsifolia.

referenced regular grid, at a spatial resolution of 1km2 which we can use to interpo-

late values to the presence/absence and presence-only datasets. Predictors include

two environmental variables — average annual minimum (MNT) and maximum

(MXT) temperatures (oC) — and two variables that may affect how the presence-

only data were collected, we call these biasing predictors — distances (km) to main

road (D.Main) and urban areas (D.Urb). These are displayed in Figure 1.5a-d re-

spectively. As in the previous data example, we can fit the IPP model and compare

the observed Kinhom to that of simulated point patterns from the fitted intensity. In

Figure 1.6 we see there is evidence (α = 0.05) of additional clustering in three of the

four species presented here. The species that lacked evidence of spatial clustering

was one of the range-restricted species with a small number of presence records.
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Figure 1.5: Predictor variables used in the analysis of the flora datasets. a) Minimum aver-
age annual temperature (oC). b) Maximum average annual temperature (oC). c) Distance
from a main road (km). d) Distance from urban area (km).
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Figure 1.6: The inhomogeneous K functions for each species of flora locations within the
presence-only datasets. a) Corymbia eximia. b) Eucalyptus canaliculata. c) Homoranthus
cernuus. d) Eucalyptus sparsifolia. Each uses IPP models as found in Section 3.5 and K
functions and confidence bounds constructed as in Figure 1.2 (top panel).
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2.1 Introduction

Point patterns in ecology often exhibit additional spatial clustering to that accounted

for by environmental predictors that are available to a researcher. This is exemplified

in the previous chapter for the gorilla nesting data in Figure 1.2 (top panel) and

three of the four species of flora in Figure 1.6. These plots of inhomogeneous K

functions provide evidence that the underlying inhomogeneous Poisson process (IPP)

framework is inadequate at modelling the drivers of these point patterns. The

log-Gaussian Cox Process (LGCP; Møller et al., 1998) offers a way to incorporate

such additional spatial clustering into point process models. This is achieved by

including a Gaussian random field (GRF) to induce additional spatial correlation

between observations — effectively acting as a spatially correlated error term in

the model. LGCP models are particularly appropriate in instances where clustering

arises from missing or unmeasured environmental processes/phenomena, as opposed

to those in which clustering/dispersal is due to interactions between the point events

themselves. Distinguishing between these processes empirically can be difficult or

impossible (Diggle et al., 2013). So while we can test for the presence of clustering

with the inhomogeneous K function as described in Chapter 1, deciding on the

appropriate modelling mechanism will more likely come from a priori research or

hypotheses. In either case, more accurate modelling of the underlying drivers of

point patterns enables researchers to make more accurate inference and predictions

about them.

Fitting LGCP models often takes a long time. In previous literature, model fits

were typically performed in a Bayesian context where full posterior distributions

on parameters are estimated. This accounts for some of the long computation. In

particular, MCMC sampling scales poorly as the size of the point pattern increases.

Even one of the fastest approximation methods, Integrated Nested Laplace Approx-

imations (INLA; Rue et al., 2009), can take a prohibitive time to fit the model

— particularly when making predictions at many locations, one of the main moti-

vations for using a model with spatially correlated errors. A maximum likelihood

approach to LGCP has the potential to speed up analysis, with a focus on point es-
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timation and access to the likelihood-based statistical toolkit; including the various

information criteria and likelihood ratio testing.

In this chapter we propose a fast, novel maximum likelihood approach to fitting

LGCP to point pattern data, involving three innovations. First, variational approxi-

mation (VA) permits a closed form approximation to the marginalised log-likelihood.

Second, we use a rank reduced approximation to the large spatial variance-covariance

matrices that arise and are otherwise very computationally demanding. Finally, au-

tomatic differentiation is used to quickly obtain gradient information for efficient

optimisation and inference. Performance in fitting LGCP is also examined, trialled

against a leading alternative (INLA) in a simulation study. For motivation and il-

lustration we analyse locations of gorilla nesting sites in a sanctuary in Cameroon

(Section 1.1.1)

2.2 Existing Methods

The target of inference for point process models is their spatially varying intensity

function λ(s), which describes the limiting number of point events per unit area in

some infinitesimally small region around the point s. We assume the log-intensity

is a linear combination of predictor variables, X (s) and corresponding effects, β.

For conciseness, we include any intercept term in β with its corresponding indicator

variable in X (s). Cox processes are an example of this broader class, characterised

by the stochastic nature of their intensity function. As a specific example of these,

Møller et al. (1998) introduced the log-Gaussian Cox Process (LGCP), for which the

(log-)intensity function inherits stochasticity from a Gaussian process, ξ (s), often

called a Gaussian random field (GRF). Note this model assumes that there are two

stochastic outcomes to the observed point pattern SN=n, i.e. the realisation of the

Gaussian field and the realisation of the Poisson process. The zero mean GRF may

be characterised by some covariance function, fξ, in turn governed by parameters

θξ. The LGCP intensity is given by

lnλ (s) = X (s)β + ξ (s) . (2.1)
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This highlights a key aspect of the LGCP, that conditional on ξ, the process is an

IPP with fixed mean,
∫
D λ (t) dt.

It can be shown that the point pattern has (conditional) probability density function

π (Sn|ξ) =

{
n∏
i=1

exp{X (si)β + ξ (si)}

}
exp

{
|D| −

∫
D
λ (t) dt

}

∝

{
n∏
i=1

exp{X (si)β + ξ (si)}

}
exp

{
−
∫
D
λ (t) dt

}
(2.2)

with respect to a unit rate Poisson process, see Daley and Vere-Jones (2007) for

details. Note that we wrote the probability density as π (Sn|ξ) – we will use π (·)

throughout this thesis to denote the probability density function of a random vari-

able (or stochastic process) in general. Different variables will have different proba-

bility density functions and these are distinguished by the arguments of π(·).

The spatial integral that describes the mean,
∫
D λ (t) dt, can be approximated using

numerical quadrature, i.e. discretising D into q regions represented by points Sq =

{si}n+qi=n+1, so that each j = 1, . . . , q quadrat has area wj ≡ |sj| such that |D| =∑q
j=1wj. This gives us the quadrature approximation

∫
D

λ (t) dt ≈
q∑
j=1

wj exp {X (sj)β + ξ (sj)} . (2.3)

As the discretisation becomes fine enough, the approximation converges to the true

value of the integral (Davis and Rabinowitz, 2007). This numerical quadrature

approach is commonly used to fit IPP to point patterns (as in Berman and Turner,

1992).

The quadrature approximation means that the GRF has an n + q dimensional re-

alisation, i.e. ξ = {ξ (si)}n+qi=1 . As such, model fitting procedures will involve the

corresponding (n+ q)-variate normal distribution, π (ξ) ∼ N (0,C), where C is the

variance-covariance matrix induced by the covariance function, fξ. For likelihood-

based fitting in a frequentist paradigm this occurs within the marginal log-likelihood
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of the point pattern, given by

` (β) = log

∫
π (Sn|ξ)π (ξ) dξ. (2.4)

Computations and storage involving the resulting variance-covariance matrix from

π (ξ) is a major source of computational burden — a common problem in spatial

statistics. This is particularly true for MCMC methods, which require the high

dimension GRF at each sampling iteration. Taylor et al. (2013) provide an R package

that fits a LGCP via MCMC methods. There are many other examples of sampling

routines, including Metropolis-Hastings algorithms via Gibbs samplers (Taylor et al.,

2015) and the Metropolis-adjusted Langevin algorithm (Møller et al., 1998; Brix

and Diggle, 2001; Diggle et al., 2013). These strategies take a long time to fit;

scale poorly as the size of point patterns increases, and require thorough tuning and

careful checking of mixing and convergence properties (Diggle et al., 2013). The

efficiency of many of these MCMC routines rely upon the power of computation at

the time. We note there may be improvement found in advances in machine usage.

For example, the advances of the GRETA package of Golding (2019) could provide

faster ways of implementing the methods described above via Google’s TensorFlow,

however this is not explored here.

INLA (Rue et al., 2009) is an approximate Bayesian inference scheme that uses

a Gaussian Markov random field in place of any latent Gaussian process compo-

nent of a regression-type model. This results in a sparse precision matrix that

assists in avoiding the problematic computations involving the variance-covariance

matrix. Additionally, Laplace approximations are used for posterior densities of hy-

perparamters of the model. Taylor and Diggle (2014) performed a simulation study

into the comparable speeds and efficacy of INLA and MCMC routines to fitting

LGCP and found INLA to be generally less accurate but much faster. Illian et al.

(2012) provide a detailed overview of fitting complex spatial point patterns with

INLA using LGCPs, additionally demonstrating the ability to include pointwise in-

teractions. This approach uses a regular lattice of cells containing point counts to

approximate the LGCP with the resulting collection of Poisson variables. A fine
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spatial scale of the lattice is required for the approximation to converge as shown by

Waagepetersen (2004). However, the advances of Simpson et al. (2016) exploiting

the equivalence of the Gaussian Markov random field and the solution to a stochastic

partial differential equation highlighted by Lindgren et al. (2011) permits a reduced

dimension approximation to integrate the field rather than relying on the fine scale

lattice. Shirota and Gelfand (2017a) developed a similar approximate Bayesian

method that incorporates a pseudo-marginal MCMC routine and does not have the

limitation on the number of hyperparameters found within the INLA scheme. More

recently, Bachl et al. (2019) have created a wrapper-package for INLA (inlabru)

to improve the usability and lower the bar-of-entry to non-specialist users of LGCP

models. We use INLA as a benchmark for the methodology proposed here. Others

combine some rank reduction techniques within MCMC routines to try and improve

computation speed, such as Chakraborty et al. (2011), using the predictive process

of Banerjee et al. (2008).

The GMRF approach of Lindgren et al. (2011) can also be used outside the INLA soft-

ware framework to incorporate GRFs into spatial models in a frequentist paradigm.

The R package, VAST (Thorson, 2019) provides such a framework for a variety of

ecological models (excluding LGCP models that are the focus of this thesis). The

software uses INLA to construct the GMRF mesh structure that is then passed to

more general statistical computing routines for model fitting. Applications of VAST

(or its precursor software) include: Thorson et al. (2015) who analyse ground fish

abundance using delta generalised linear mixed models; Thorson et al. (2016) for

fitting joint species distribution models that have one or more latent GMRFs. In

the latter example the authors report that models including one to six latent GRF

can be fitted in a matter of hours.

In this thesis we are proposing a novel methodology that applies a combination

of modern techniques and software tools to the problem of fitting LGCP models

efficiently. In the remainder of this section we we broadly introduce and review

some of these tools.

Variational Approximation (VA) is a method for approximating intractable inte-

grals arising, for example, from marginalising random (latent) components of a joint
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probability density function. Simply put, this is done by substituting the unknown

probability density of the latent effects with a candidate class of (variational) den-

sity functions that permit a closed form solution to the intractable integral. This

closed form solution is then optimised with respect to the candidate variational

densities - motivated by the notion of minimising the Kullback-Leibler divergence

— Appendix A.1 further elucidates this. Ormerod and Wand (2010) provide a de-

tailed summary of VA, defining a range of candidate variational density classes. The

most commonly used class are termed product density VA which effectively assumes

independence between random components permitting the unknown density to be

factorised by some product of simpler density functions. Another popular class is

termed by Ormerod and Wand (2010) as parametric density VA as this involves as-

suming the unknown density belongs to a particular parametric family whose density

function yields a closed form solution to the particular problem at hand.

VA has been around in the fields of physics for some time (Cooper et al., 1986)

and more recently machine learning (Opper and Archambeau, 2009), but is still

relatively under-utilised in the statistical literature. This is particularly true of

the parametric version, specifically in a frequentist context (Ormerod and Wand,

2010). Hence there is, at this stage, a somewhat case-by-case understanding of the

asymptotics of VA estimators. Bickel et al. (2013) show asymptotic normality of

estimators arising from a product density transform-type variational approximation

to stochastic blockmodels and more recently Wang and Blei (2019) show consistency

for frequentist estimators again using the product density version of VA. Hall et al.

(2011) develop asymptotic theory for Gaussian VA for Poisson Mixed models. Hui

et al. (2019) show consistency and asymptotic normality of Gaussian VA estimates

for fitting semi-parametric models involving several of the exponential family of dis-

tributions. This is particularly relevant to the method proposed here as there are

many similarities between the approximate marginal likelihoods of the Poisson gen-

eralised additive model (GAM) and that of the approximate LGCP we propose here

— i.e. we approximate the latent field in our LGCP using what could be considered

as a 2D penalised smoother in the GAMs terminology (Hastie and Tibshirani, 1993).

Another key technique used in this thesis is basis function approaches to approxi-
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mating Gaussian processes (or fields). Including latent Gaussian random fields is a

common practice in spatial analysis, to represent unobserved processes that are im-

portant to models with a variety of target responses. It is also common to encounter

a need to address the computational burden caused by the latent field having a pro-

hibitively large dimension. There are a variety of potential strategies to address

this, including: low-rank approximations; enforcing sparsity in the resulting covari-

ance matrices; and exploiting parallel computing. Heaton et al. (2019) provides a

good illustration and comparison of methods that are used to compute (directly

observed) Gaussian processes, pitted against one another for predictive accuracy.

Due to the latency of the process we are trying to characterise in modelling point

pattern data, we focus on low-rank approximations that do not prioritise the precise

estimation of the field’s characteristics. Specifically, we look towards basis function

approximations, as commonly used in spatial (and kernel) smoothing. Examples

of these include fixed rank kriging (Cressie and Johannesson, 2008), predictive pro-

cesses (Banerjee et al., 2008) and GAMs (Hastie and Tibshirani, 1993). It should

be noted that other approaches like nearest-neighbour Gaussian processes (Datta

et al., 2016) show promise in approximating non-latent spatial processes (Heaton

et al., 2019). The previously mentioned GMRF approach of Lindgren et al. (2011)

is another example that is widely used. A key element that improves computation

for this method of modelling ξ is that it yields sparse precision matrices. However,

we note that the range parameter that informs the sparsity must be estimated, at

some computational cost.

2.3 Proposed Methodology

Our proposed strategy is to maximise an approximation to the likelihood (Equa-

tion 2.4), designed for fast computation, at minimal cost in terms of accuracy. This

approach requires addressing several challenges that we outline below.
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2.3.1 Approximate Marginalisation

The first major problem to be overcome in our proposed approach is that the in-

tegral in the marginal likelihood, Equation (2.4), is intractable. We examine two

approaches to approximate it.

2.3.1.1 Variational approximation

The first is to use Gaussian variational approximation (VA), a parametric den-

sity transform (Ormerod and Wand, 2010) which we implement in a frequentist

paradigm. Specifically, we replace the conditional or “posterior” density of the

latent field, π (ξ|Sn), with some multivariate Gaussian density function, πVA (ξ).

The integral in Equation (2.4) then has a closed form solution. We denote the

mean of this posterior as mVA and the variance-covariance matrix as CVA, i.e.

πVA (ξ) ∼ N (mVA,CVA). While the Gaussian posterior assumption might not be

exactly satisfied, it is a plausible approximation since the “prior” on the random

field is Gaussian, π (ξ) ∼ N (0,C).

To optimise the approximation we minimise the Kullback-Leibler divergence between

πVA (ξ) and π (ξ|Sn). This is achieved by simply estimating the variational param-

eters mVA and CVA that maximise the variational approximation to the marginal

log-likelihood of the point pattern, given by

`VA (β) =

∫
πVA(ξ) log

[
π (Sn|ξ) π (ξ)

πVA(ξ)

]
dξ (2.5)

so that the parameter estimates are

{
β̂, m̂VA, ĈVA, Ĉ

}
= arg max
{β,mVA,CVA,C}

`VA

That is, we find estimates that simultaneously maximise `VA for the fixed effects,

β, as well as the variational parameters, mVA and CVA, and the prior variance-

covariance matrix of ξ, C. The integral in Equation (2.5) is simply an expectation

with respect to the variational density. We show later, for log-Gaussian Cox pro-

cess likelihoods, that if πVA(ξ) is Gaussian, the integral will have a closed form,
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considerably simplifying parameter estimation.

2.3.1.2 Laplace approximation

The second approach we use to approximate the intractable marginalisation, as an

alternative to VA, is using Laplace approximation. This uses the Laplace formula

for which software and literature abounds — see for example Wolfinger (1993) and

Kristensen et al. (2016). Laplace approximations of high dimensional integrals can

be poor (Shun and McCullagh, 1995) and so within our model the dimension of

ξ (i.e. n + q) can be problematic since q is often large, as can be the size of the

point pattern, n. However, in Section 2.3.2 we propose a rank reduction approach

where we effectively restrict this dimension to k � n + q which will, provided k is

kept small, largely mitigate this issue. If we re-express the marginal likelihood in

Equation (2.4) as

` (β) = log

[
const. ·

∫
exp {f (ξ)} dξ

]

then its Laplace approximation is given by

`Laplace (β) ≈ log

[
const. · (2π)

k
2

|−Hf (ξ0)|
1
2

exp {f (ξ0)}

]
(2.6)

where Hf is the Hessian matrix of f . The approximation is centred at ξ0 which

maximises f and so in this case is the mode of the joint distribution, π (Sn, ξ|β).

In summary, Laplace approximation assumes that the integrand is Gaussian and

centres the approximation about the mode of the joint probability distribution,

while Gaussian VA assumes the posterior distribution of the latent field (given the

point pattern) is Gaussian, with the approximation centred about the mean.

2.3.2 Rank Reduction

The second major challenge of fitting a LGCP is that the number of points at which

the latent field ξ is represented often needs to be large, and a curse of dimensionality

applies. Specifically, large ξ leads to large variance-covariance matrices C and CVA
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in Equation (2.5) and a large Hessian matrix H (ξ) in Equation (2.6). To compute

a likelihood approximation, we are required to invert these matrices and/or com-

pute their determinant, which are computationally prohibitive operations when the

dimension is large.

We have already mentioned that this type of issue is common in spatial statistics,

but is particularly problematic here because the dimension of ξ is not just a function

of the number of point events n, but also the number of quadrature points q used

to approximate the spatial integral in Equation (2.3). The number of quadrature

points needed is necessarily large when the intensity surface is not expected to be

smooth, irrespective of the number of presence points n. Note for example that the

predictors used in the flora analyses vary considerably over fine spatial scales (see

Figure 1.5), so considerable fine-scale variation in intensity can be expected, and

values of q of at least 10,000 are commonly recommended (Renner et al., 2015).

In this thesis we will use fixed rank kriging (FRK; Cressie and Johannesson, 2008)

as an approximation to large spatial processes — the term “kriging” comes from

the geostatistical sciences and essentially means the predictive interpolation of a

process (Cressie, 1993). Some k � n+ q basis functions Z(s) = (Z1(s), . . . , Zk(s))

are chosen to capture spatial dependence so that at any location, the latent field’s

value is a linear combination of the basis functions with random coefficients u =

(u1, . . . , uk)
T, so the approximation is given by

ξ (s) ≈ Z (s)u (2.7)

This reduces the dimension of the marginalising integral from n + q to k, i.e. we

integrate out the u rather than the latent field — effectively assuming that all

stochasticity in the LGCP intensity is attributed to these random coefficients. We

assume ur ∼ N
(
0, σ2

prior

)
for basis function r = 1, . . . , k. Cressie and Johannesson

(2008) suggest using basis functions set at multiple spatial resolutions, to better

capture a range of scales of dependence. In this case, we let l denote the spatial

resolution and assume url ∼ N
(
0, σ2

prior;l

)
for basis function rk = 1, . . . , kl, typically

at two (l = 1, 2) or three (l = 1, 2, 3) different spatial resolutions.
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A range of basis functions can be used in FRK, with Cressie and Johannesson

(2008) noting they need not be orthogonal. Further, the specific form of the basis

functions only really effects computation time rather than the approximation itself

— provided, of course, that they are sufficient in number and coverage to reflect

the smoothness (or irregularity) of the surface they approximate. Nychka et al.

(2002) look at wavelet functions while Tzeng and Huang (2018) examine thin plate

splines, which are both dense and orthogonal, as a means of automatic selection of

FRK basis functions. For simplicity and computational speed we use local bi-square

functions of the form

Z (d) =


[
1−

(
d
ϕ

)2]2
|d| ≤ ϕ

0 |d| > ϕ

(2.8)

where ϕ is the function radius and d = d (s, s′) is the distance between s and

the function location (sometimes called a node or knot) s′ ∈ D. The choice of

ϕ enforces zero values in the basis functions for all points, s, at distances beyond

ϕ and is hence a boon to decreasing the computational burden since the resulting

(n+ q)× k basis function matrix will be sparse. Implicit in this formulation is that

the Gaussian process is isotropic which we believe is a reasonable assumption for the

latent field. An anisotropic correlation structure could be induced by non-spherical

basis functions but this is not explored here. Hence we need only choose both k and

ϕ. While ϕ could be chosen via the data we take a more practical approach, setting

the radius of effect to ensure a regular grid of basis functions forms a complete cover

of the domain, following the defaults of Zammit-Mangion and Cressie (2017) per

single resolution of basis functions. This means we need to choose only k which can

be done quickly and easily — this is illustrated in Section 2.5. Multiple resolutions

can be implemented by choosing kl with corresponding radius ϕl for each level l. A

toy, two-dimensional example of the basis functions described here can be found in

Figure 2.1.

We examined the use of various basis functions for the reduced rank approximation,

before preferring the local bi-square functions in Equation (2.8). Particularly ap-

pealing were those that use the data to select their form (or parameters that control
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Figure 2.1: Local bi-square basis functions on a one-dimensional domain, [0, 100], used to
approximate the latent Gaussian effect. a) A single function with radius ϕ. b) Locations
of basis functions, s′ (also called knots or nodes). c) Each r = 1, . . . , k basis function
has a corresponding random coefficient, ur (which we will estimate from the data). d)
Combining the basis functions and random coefficients provides the approximation to the
latent Gaussian effect.

their form) as this removes ambiguity around these choices. Predictive processes

(Banerjee et al., 2008) fit this category and have some optimal properties in regards

to interpolating large, directly observed spatial processes. In fact, these can be

thought of as a special case of FRK. However, the basis functions are themselves a

function of the covariance parameters we are trying to estimate, which complicates

optimisation such that it can be slow and quite unstable. Alternatively, using thin

plate splines (as in Tzeng and Huang, 2018) requires no estimable parameters but

the denseness of these basis functions (i.e. the large number of non-zero values these

take throughout domain) also push computation beyond anything of practical use

for this application. We find that computational speed depends mostly on whether
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basis functions have only local support or span the domain of interest, as well as

the number of parameters (or more loosely features) that must be chosen — either

arbitrarily or via the data. Hence the appeal of the functions in Equation (2.8) —

these have only local support (and so form a sparse matrix) determined by their

radius which, on a regular grid, can be fixed by the choice of k.

Rank Reduced Variational Approximation to the log-Likelihood

Putting both variational and rank-reduced approximations together in the context of

a LGCP we arrive at a simplified model formulation. The rank-reduced approxima-

tion of the GRF means the linear predictor of the LGCP is similar to a generalised

linear mixed model, called a spatial random effects model by Cressie and Johannes-

son (2008). While we developed purpose-written code for the LGCP context, the

FRK package (Zammit-Mangion and Cressie, 2017) (at time of writing) has in-built

functions to apply this technique to spatially correlated responses that are binomial,

Poisson, negative binomial or inverse Gaussian, as well as Gaussian responses.

In place of Equation (2.1) we now have

lnλ (s) = X (s)β +Z (s)u (2.9)

where we are interested in modelling the fixed effects, β, while the random ef-

fects u (together with the basis functions, Z), capture additional spatial cluster-

ing. Here the stochasticity in the point process intensity is entirely inherited by

the r = 1, . . . , k random coefficients, ur ∼ N
(
0, σ2

prior

)
. When using VA, we

approximate the “posterior” probability density for these coefficients (conditional

on the observed point pattern, Sn) with the variational density, πVA (u), so that

ur | Sn
VA∼ N (µr, σ

2
r) =⇒ u | Sn

VA∼ Nk (µ,Σ). We assume that Σ is diagonal,

i.e. the basis functions are able to reflect all spatial correlation in the theoretical

finite dimensional realisation of the Gaussian process they are approximating. This

means Σ = I · σ2, where σ2 = {σ2
1, . . . , σ

2
k}

T
and I is the identity matrix. This as-

sumption greatly improves the speed by which we can compute parameter estimates

but means there is no spatially structured covariance to the random coefficients —
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again differing from the Laplace approach which permits this via the Hessian ma-

trix, H (ξ). The closed form (approximate, marginal) log-likelihood given by our

VA method here is

`VA
(
β,µ,σ2, σ−2prior

)
=

n∑
i=1

X (si)β +Z (si)µ

−
m∑
j=1

wj exp

{
X (sj)β +Z (sj)µ+

1

2

k∑
r=1

σ2
rZr (sj)

2

}

− 1

2

[
σ−2prior

(
k∑
r=1

µ2
r + σ2

r

)
+ k ln

(
σ−2prior

)
+

(
k∑
r=1

ln
(
σ2
r

))
− k

]
(2.10)

Derivation of this can be found in Appendix A.1. Profiling the above with respect to

the inverse of the prior variance, σ−2prior, can further simplify this objective function.

This estimate depends only on the variational parameters at σ̂2
prior = 1

k

∑k
r (µ2

r + σ2
r).

A similar result is found when we decide to include multiple resolutions of basis

functions, in this case the prior variances are profiled by σ̂2
prior;l = 1

kl

∑kl
r (µ2

r + σ2
r)

within each resolution level l. In fact any form of prior variance-covariance (including

unstructured) can be profiled under a Gaussian VA, meaning it has a closed form

estimate depending only on the variational parameters.

This further highlights the similarity with VA GAMs as formulated by Hui et al.

(2019). The inverse of the prior variance plays exactly the role of smoothing pa-

rameter since we can consider the Gaussian VA likelihood as a penalised likelihood

— as we show in Appendix A.1. The approximate marginal log-likelihood is the

expected log-likelihood (with respect to πVA) of the point pattern, which is then pe-

nalised by how “far” our variational density diverges from its zero-mean multivariate

normal prior. Hui et al. (2019) highlights it as a critical aspect of inference since

the VA likelihood simultaneously provides estimates for, and controls the degree of

penalisation to, the smoothing coefficients (in our case, the random u).
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2.3.3 Automatic Differentiation

The final component that permits our novel methodology for fitting LGCP models

involves the technical advance of automatic differentiation (AD).

AD is the automatic calculation of the derivative of a programmed function. The

technique was developed in the late 1980s (see Griewank, 1989). When programming

a function in a low-level language, the accumulative nature of the elementary op-

erations permits calculation of the chain rule with little additional computing cost.

This can be exploited to give exact derivatives of the function quickly, irrespective

of the number of parameters.

AD is particularly attractive for maximum likelihood frameworks since we can pro-

gram complicated log-likelihoods involving large numbers of parameters and auto-

matically obtain its gradient information. The benefit of this is threefold. First,

including gradient information in our optimisation to fit parameters can speed up

the numerical search of the likelihood surface (for example, Shanno, 1970). Next, we

can automatically obtain the likelihood’s second derivative so that we can estimate

Fisher’s information for standard errors to our point estimates. Finally, approxi-

mating intractable integrals using the Laplace approximation becomes trivial if we

are able to program the integrand — as per the ingredients of Equation (2.6).

We program the approximation to the marginal log-likelihood as in Equation (2.10)

for our variational model. For our Laplace-based model we program the integrand of

Equation (2.4). Both are scripted in C++ within the Template Model Builder (TMB)

package in R (Kristensen et al., 2016). In addition, TMB provides built in Laplace

approximations — again computationally efficient due to AD — that we use to

arrive at Equation (2.6) for our Laplace-based model. Other examples of software

providing a programmatic framework for AD include AD Model Builder (Fournier

et al., 2012) and the julia programming language (Bezanson et al., 2017).
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2.4 Simulation Study

We looked to simulations to answer the questions of how quickly and well our pro-

posed methodology fits point patterns — particularly in comparison to INLA, the

leading R package for fitting a spatial LGCP regression model.

Our data were simulated over a square domain with sides of length 100, D =

{[0, 100], [0, 100]}, as a Poisson point process. The intensity function was a log-

linear function of a single, deterministic covariate X, and a zero-mean GRF (ξ)

with an isotropic Gaussian covariance function:

lnλ (s) = β0 + β1X (s) + ξ (s) .

We treated ξ as an unmeasured/unobserved covariate, and hence this formed a

LGCP.

Spatial statistics work differently at different scales and so we wanted this reflected

in our simulation design. Hence we examined the interplay between the spatial scale

of the covariate X and the latent random field ξ. We used a 2×2 simulation design,

where each of X and ξ was either chosen to be wiggly (W ) , with a correlation

range of ≈ 5, or smooth (S), with a correlation range of ≈ 30 (Figure 2.2). We

expect models to more accurately estimate the true data simulation process when

the spatial scales of X and ξ do not coincide.

We used the spatstat package in R (Turner and Baddeley, 2005) to simulate 1000

point patterns from this LGCP within each scenario — hence, we replicated the

procedure of fitting the competing models to a point pattern a total of 4000 times.

We controlled the size of point patterns simulated through β0 to examine our sim-

ulation scenarios with expected number of points E [N (D)] = 200, 500, 1000. We

standardised the covariate and set the marginal variance of the latent field to 1 so

that the magnitudes of model components were roughly equal, to assist convergence

in optimisation. We fixed the single covariate effect (β1 = 1.25) as preliminary in-

vestigation revealed no change in relative performance of the competing models for

a varied fixed effect size. To ensure an adequately fine quadrature approximation
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Figure 2.2: The 2 × 2 simulation design showing the scenarios examined. Deterministic
functions are used for the covariate (X (s)) while particular examples of the latent field
(ξ (s)) are shown here. “Smooth” means a range of effect ≈ 30 while “wiggly” means a
range of effect ≈ 5.

(Equation 2.3) we used a regular 101× 101 grid of quadrature points.

We fitted point process regression models to the data, assuming intensity was a

log-linear function of X and unobserved ξ, using four different procedures:

INLA via the package INLA, as the most common approach currently used to fit a

LGCP regression model. The GRF was approximated using a stochastic par-

tial differential equation approach (Simpson et al., 2016). This uses a GMRF

comprising piecewise linear basis functions (Lindgren et al., 2011) generated

via the function INLA::inla.mesh.2d(). We use this under default settings

given the observed point pattern, which typically produces hundreds of basis

functions

VA the proposed methodology of Section 2.3, using a variational approximation to
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the likelihood as in Equation (2.10), using FRK with either a sparse grid of

basis functions (7× 7) or a dense grid (14× 14) as in Equation (2.8).

Lp the proposed methodology of Section 2.3, using a Laplace approximation to the

likelihood as in Equation (2.6), using FRK with either a sparse grid of basis

functions (7× 7) or a dense grid (14× 14) as in Equation (2.8).

IPP an inhomogeneous Poisson process, i.e. with ξ omitted, to study the implica-

tions of failing to account for the missing covariate when fitting the model

We expect Lp and VA to perform better when the spatial scale of the basis functions

matches the scale of ξ, that is, using a set of basis functions set along a regular 7×7

grid should perform better when ξ is smooth (W,S or S,S in Figure 2.2), whereas

using basis functions set along a 14×14 grid should perform better when ξ is wiggly

(S,W or W,W). As mentioned previously, we also anticipate difficulties teasing apart

effects of X and ξ when they operate at similar spatial scales (S,S or W,W).

We defined how well a method fits by: root mean square error in point estimates,

(RMSE β̂1); if inference about β1 is accurate (coverage probability and width of

Wald confidence intervals on β̂1); and finally, how accurately it can approximate

the process’s underlying intensity for the purpose of prediction (Kullback-Leibler

divergence between the fitted and true λ (D)). This has the form:

∫
D
λ (s) ln

[
λ (s)

λ̂ (s)

]
ds ≈

q∑
i=1

wjλ (sj) ln

[
λ (sj)

λ̂ (sj)

]
−

q∑
i=1

wj

[
λ (sj)− λ̂ (sj)

]
(2.11)

Results summarising the various scenarios under investigation can be found in Fig-

ures 2.3-2.5. The full and detailed results tables can be found in Appendix A.2.

2.4.1 Simulation Results

In simulations, our methods of fitting a LGCP model were up to 1500 times faster

than INLA, converting computation times in some cases from almost an hour to a

few seconds (Figure 2.3). IPP was faster again, found to fit nearly instantly, but

does not incorporate spatially correlated errors, which comes at considerable costs

to performance, as seen below. The expected number of points did not seem to affect
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speed of the LGCP models (VA and Lp) when fitting a sparse grid of basis functions

(7×7). When the dense grid (14×14) was used in our proposed methods, on average,

model fitting takes slightly longer for small point patterns (E [N (D)] = 200) than

for the larger ones (E [N (D)] = 500, 1000) — this is a consequence of trying to fit

more basis functions than there are data. In the remaining results we restrict our

focus on large point patterns, i.e. E [N (D)] = 1000.

Figure 2.3: Average computation times (including calculating fitted values for the entire
domain) over small, medium and large point patterns (E [N (D)] = 200, 500, 1000).
Models include IPP, INLA and our proposed method using variational (VA) and Laplace
(Lp) approximations. The latter two models were fitted both using a coarse regular grid
of basis functions, 7 × 7 (filled symbol) and a fine regular grid, 14 × 14. For small point
patterns our methods were at least 36 times faster than INLA on average. For large point
patterns they were as much as 1565 times faster than INLA on average.

Figure 2.4 compares point estimates across fitting techniques. It was typically easier

to estimate the parameters when the covariate and latent fields were more distinct,

i.e. acting at different spatial scales, as we found RMSE to be larger in W,W com-

pared to W,S and S,S compared to S,W. Likewise with confidence intervals (Fig-

ure 2.5), all models had poor coverage when the spatial scales of the covariate and

latent fields were similar.
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Figure 2.4: Performance of point estimators of the covariate effect (β1) and intensity (λ),
for simulation scenarios using either a wiggly (W) or a smooth (S) covariate and latent
field (labelled with the covariate first, e.g. “W,S” means the covariate is wiggly and the
latent field smooth). The first column shows root mean squared error estimating the slope
coefficient β1. The second column shows the Kullback-Leibler divergence from the true
intensity field λ (D) to that fitted by the model. We found that our proposed methods
performed comparably to INLA in point estimation of β1, and for Lp, also in estimation
of intensity, provided we choose the most appropriate basis function configuration for the
scenario. But note that even at the appropriate basis function configuration, Kullback-
Leibler divergence was noticeably larger for VA than for INLA in all simulation scenarios.
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Table 2.1: Model selection results for choosing the basis function configuration in sim-
ulations. The table reports the number of times, out of 1000 simulated datasets, where
each basis function configuration (either 7 × 7 or 14 × 14) had the higher (approximate)
marginal log-likelihood, for each of Laplace and Variational model fits, and for each sim-
ulation scenario. Note also that occasionally a Laplace fit failed to converge (Fit Fail) or
the spatstat simulation failed to produced a point pattern (Sim. Fail).

Laplace Variational
Scenario 14×14 7×7 Fit Fail 14×14 7×7 Fit Fail Sim. Fail
S,S 19 927 51 0 997 0 3
S,W 954 0 46 789 211 0 0
W,S 16 974 9 0 999 0 1
W,W 1000 0 0 219 781 0 0

It does appear important that we select an appropriate number of basis functions

for the type of latent field we are approximating — we needed many basis functions

(14 × 14) when the latent field was wiggly (S,W or W,W) and fewer (7 × 7) when

the latent field was smooth (S,S or W,S). Further, the cost of using too few basis

functions (7 × 7 for S,W or W,W), is more than the cost of using more than are

needed (14×14 for S,S or W,S), as expected, since bias tends to be more costly than

overfitting. Our methods did as well at point estimation of β1 as INLA’s maximum

a posteriori estimate, and the VA approach seemed slightly more accurate in this

regard than the Lp approach. The opposite is true when comparing confidence

intervals, where VA did more poorly than Lp on coverage — seemingly because of

narrower confidence intervals (Figure 2.5, all panels). INLA was good at fitting

the true intensity field but was matched by Lp, again, provided the basis function

choice was appropriate. The VA approach seemed to generally do poorer than the

corresponding Lp version at fitting λ, this was particularly the case when these

methods were using many basis functions (14× 14).

While choice of the number of basis functions (k) is key, the data could be used

to guide this decision, as is typically done using standard information criteria like

AIC (Akaike, 1973). But here we can simply select k to maximise the likelihood,

since k is the dimension of a random effect and it doesn’t affect the penalty term

in common information criteria. We looked at how often this strategy would choose

the more appropriate basis function configuration, in each simulation scenario.

Table 2.1 shows that, for the most part, we found a higher likelihood for the ba-
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Figure 2.5: Performance of interval estimators for β1, for simulation scenarios using either a
wiggly (W) or a smooth (S) covariate and latent field (labelled with the covariate first, e.g.
“W,S” means the covariate is wiggly and the latent field smooth). The first column shows
coverage probabilities of 95% Wald intervals for the slope estimate, β̂1. The dashed blue
line indicates a coverage probability of 95%. The second column shows the average widths
of these confidence intervals. We found that, provided we choose the most appropriate
basis function configuration for the scenario, the Lp version of our proposed method to
be comparable to INLA in coverage, although its intervals tended to be wider. The VA
version of our method tended to produce more narrow confidence intervals.
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sis configuration that better suited the scenario, i.e. there tended to be a higher

likelihood for a model with more basis functions when the latent field was wiggly

(S,W and W,W). Conversely, there tended to be a higher likelihood when using less

basis functions when the latent field was smooth (S,S and W,S). The exception to

this is for the VA approach, where we had both a wiggly covariate and latent field.

Note however that VA 7× 7 seems to better estimate the intensity than VA 14× 14

in this scenario anyway (Figure 2.4, right column, top panel) so there seems to be

little cost to this behaviour. We also note that the Lp approach is far more sensitive

to non-convergence as we found approximately a 5% fit failure rate for large point

patterns — we discuss this further in Section 2.6.

2.5 Application: Gorilla Nesting Locations

We illustrate our proposed method by analysing the gorilla nesting dataset described

in Section 1.1.1. Recall that we wish to model intensity of gorilla nests as a log-linear

function of elevation above sea level (X1); distance to nearest water source (X2);

and average temperature (X3, as a three level ordinal factor). These are found in

Figure 1.5b-d and are parameterised with β1, β2 and β3 respectively. The model also

includes an intercept term, β0.

2.5.1 Methods

Here we aim to perform a model assessment exercise - namely a hold-one-out, four-

fold cross-validation (CV) that predicts the likelihood in held out test areas of the

domain. Figure 2.6a shows the spatially blocked CV folds used — call each fold

Dh for h = 1, 2, 3, 4 so that D = ∪4h=1Dh. We compared model fits using predicted

conditional log-likelihood, summed over each fold since Dh∩Dh′ = ∅ for any h 6= h′.

That is

4∑
h=1

lnπ
(
S(h)|β̂\h, ξ̂\h

)
=

4∑
h=1

[
nh∑
i=1

X
(
s
(h)
i

)
β̂\h + ξ̂\h

(
s
(h)
i

)
−

nh+qh∑
i=nh+1

w
(h)
i exp

{
X
(
s
(h)
i

)
β̂\h + ξ̂\h

(
s
(h)
i

)}]
(2.12)
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Figure 2.6: a) The partitioning of the domain for a four-fold cross validation. b) Mesh
used for INLA is a fine scale Dirichlet tessellation of 1479 vertices.

where S(h) denotes the sets of presence points,
{
s
(h)
i

}nh

i=1
, and quadrature points,{

s
(h)
i

}nh+qh

i=nh+1
, in fold h. w

(h)
i denotes the size/weight at the ith point in h, so that for

i = nh + 1, . . . , nh + qh these are quadrat sizes. β̂\h are the fixed effect parameters

estimated from the data excluding fold h. ξ̂\h is likewise the estimated latent field

from the training data without fold h — the form this takes depends on how it

is estimated within each fitting method we compare. For our proposed methods

ξ̂ (s) = Z (s) µ̂, for INLA this is the maximum a posteriori estimate on the log-

linear scale.

As in the previous section, we modelled the gorilla nesting point pattern using four

methods for comparison — an IPP using standard software, as well as an LGCP

using the INLA package (again we subsequently refer to this as INLA) and two

versions of our proposed methodology, i.e. using the variational (VA) and Laplace

(Lp) approximation for the marginalised likelihood. Each method used all available

predictors (Figure 1.1b-d) for fixed effects in addition to an intercept term. We saw

in Figure 1.2 (top panel) that there was strong evidence that an IPP is not a valid

assumption for this point pattern, so did not expect it to be competitive with the

corresponding LGCPs. The more appropriate LGCP model was fitted with INLA,

VA, and Lp, each of which include a latent GRF approximated using different means

— INLA used the stochastic partial differential equation approach of Simpson et al.

(2016), while our methods used FRK (Cressie and Johannesson, 2008).

The LGCP models examined here required us to choose an appropriate structure
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for the GRF approximation. For INLA, decisions needed to be made concerning the

mesh to evaluate the intensity at, and distributions to put on priors of parameters.

This dataset has previously been analysed using the INLA framework in Bachl et al.

(2019), with detailed accompanying code that includes a mesh built off a Dirichlet

tessellation of the sanctuary shown in Figure 2.6b. We used this mesh for our

analyses.

To implement our proposed reduced rank method, we needed to choose a basis

functions configuration, which was informed by the data. We used a regular grid of k

local bi-square basis functions (as in Section 2.3.2) and chose k to maximise either the

likelihood (as in Table 2.1) or the predictive conditional likelihood (Equation 2.12).

As the provided INLA mesh comprises 1479 vertices (effectively basis functions), we

examined FRK basis function configurations ranging from k = 0 (i.e. an IPP) to

k < 1500.

2.5.2 Results

Our main result is that our proposed method reduced the computation time required

for a single model fit from minutes to seconds, with negligible loss of predictive

performance. Specifically, our four-fold cross-validation procedure took over eight

hours to complete on INLA using vanilla code following Illian et al. (2012) and

mesh from Bachl et al. (2019), whereas the same procedure, using a variational

approximation with the appropriate number of basis functions, took just 10 seconds

(Table 2.2) and had slightly higher predictive conditional likelihood. To give a sense

for the extent to which this speed up is due to the number of basis functions, we

refitted our method using as many basis functions as INLA, and it slowed down

somewhat (six minutes) but was still clearly much faster than INLA. Our method

became inaccurate with this number of basis functions because of overfitting —

recall that there are only 640 presence points in this dataset, and we would expect a

sensible choice of the number of basis functions to be less than this number. Finally,

as expected, IPP was much faster to fit than other methods, but clearly sub-optimal,

with a very low predictive conditional likelihood.

We arrived at the decision to use k = 63 basis functions using Figure 2.7. The
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Table 2.2: Four-fold cross-validated predicted conditional log-likelihoods of the various
models and corresponding computation times. We see that our proposed methods (LP
and VA) achieved higher predicted conditional log-likelihoods in under a minute compared
to INLA that took over 8 hours. With a similar number of basis functions to INLA our
method did poorly at prediction but computed the four-fold CV in ≈ 6 minutes.

IPP INLA LP (k = 63) VA (k = 63) VA (k = 1470)
Predicted ` (β|ξ) 1727.5 2243 2299.8 2301.4 1653.4

Comp. Time 0.72 sec 8.56 hrs 50.82 sec 10.67 sec 5.98 mins

variational likelihood was maximised at k = 63, whereas the Laplace likelihood was

Figure 2.7: a) The approximate marginal log-likelihood of the proposed methodology as
a function of increasingly dense regular grids of local bi-square basis functions. b) The
predicted log-likelihood (conditional on the latent field, estimated using four-fold CV), as
a function of increasingly dense regular grids of local bi-square basis functions. Vertical
lines denote the basis functions at which the maximum is found for the variational (purple,
dashed) and Laplace (blue, dotted) methods. From the fitted likelihood signal we would
choose a configuration of 63 basis functions for the VA method and nearly double, 120,
for the Laplace method. However, for predictive performance we found both methods did
best with the 63 basis function configuration.
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maximised at a slightly larger number of basis functions. For predictive conditional

likelihood (Figure 2.7b), both approximation methods suggested k = 63.

While fitting a single LGCP can be done very quickly using proposed methods,

computation time will be considerably longer if we need to fit multiple models in

order to find the desired basis function configuration. For Figure 2.7, we fitted

many LGCP models with different numbers of basis functions, and additionally

in Figure 2.7b we used cross-validation as a tool for model selection. The total

computation time for VA results was 20 minutes in Figure 2.7a and 80 minutes in

Figure 2.7b. These times were exaggerated by the decision to try to fit models with

approximately as many basis functions as INLA (for which k = 1479), when more

than 200 clearly led to overfitting. The Laplace method scaled poorly with number of

basis functions, with total computation times of 7.5 hours and 28 hours respectively

for Figure 2.7a and Figure 2.7b. No attempt was made to explore different basis

function configurations for INLA, given that a single fit took over 8 hours.

Further examination of the differences in these LGCP fits can be found in their

fitted (log-)intensities and fixed effect estimates. Figure 2.8 shows the intensities

and reveals that INLA produced a far more detailed intensity surface (Figure 2.8b)

to that produced by our methods (Figure 2.8c-d) in regions to the central-south of

the domain where very few data are present. This is probably because a much larger

number of basis functions were used in estimating the intensity surface in the INLA

fit (1479 compared to 63). We wonder if this large number led to overfitting in this

region. Conversely, in the upper left corner of the domain INLA appears to estimate

high nest density along the boundary where presence points are lacking and where

our methods predict a decreasing intensity accordingly. As the upper left corner is

the only domain boundary with nearby point events, we suspect this is due to the

wide boundary-extension given to the mesh (Figure 2.6b), which is smoothing the

intensity surface into the exterior of the observation window. We note that INLA

did not have better predictive performance.

Results generally appear similar to our previous simulations involving a long corre-

lation range on the latent field (i.e. a smooth latent field as in S,S and W,S scenarios

in Section 2.4) where a coarse basis function configuration on our methods was able
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Figure 2.8: Fitted log-intensities for each of the models being compared: a) IPP b) INLA
c) Lp d) VA. We see that INLA produced a far more detailed intensity surface than VA
and Lp. This also shows the comparatively flat intensity surface estimated by the IPP
model.

to better fit the true intensity of the LGCP than INLA. Indeed, the maximum a

posteriori estimate for the correlation range parameter for the GRF as estimated by

INLA is ≈ 1.6km, likewise, our optimal basis configuration in Figure 2.7b has radii

of ≈ 1km. The length of the spatial domain is about 5.5km, so the estimated latent

effect is very smooth.

We also constructed point and interval estimates of the fixed effects parameters in all

models (Figure 2.9). The most conspicuous difference was that the effect of elevation

(β1) was estimated to be larger for IPP, with an unrealistically small standard error,

which can be attributed to undue confidence in parameter estimates due to lack of

a random field to account for spatial clustering. Amongst the LGCP fits, parameter

estimates were generally similar, although confidence limits were longer for INLA
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Figure 2.9: Estimated fixed effects 95% Wald confidence intervals for the various models
being compared. a) Elevation effect. b) Distance to water effect. c) Heat category —
contrast effect of Moderate to Coolest. d) Heat category — contrast effect of Warmest
to Coolest. We see little difference in the estimated fixed effects for the LGCP models
(INLA, VA, Lp), so much of the differences in predictive performance came down to the
way the latent effect was modelled (or was not modelled for the IPP).

than Lp or VA, especially for elevation. Note that elevation was the covariate that

was smoothest spatially (Figure 1.1b), varying at a comparable spatial scale to our

basis functions, so spatial confounding appears to be an issue here (analogous to S,S

in simulations). This was our worst case scenario from simulations (Figure 2.5) and

we should not put a lot of weight in inferences about the elevation effect using any of

the methods considered. As in Figure 2.4, even under this scenario we found both

INLA and our method (using an appropraite number of basis functions) to most

reliably estimate the fitted intensity. That is, we do not accurately untangle the

contributions of the fixed effect and latent field but can nonetheless quite accurately

model the resulting intensity.
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Table 2.3: The computation time and likelihood for a single model fit for our proposed
model for which we toggled on/off key components — a variational approximation for
the marginalisation (VA, vs Laplace approximation, Lp); automatic differentiation (AD);
sparse basis approximation for the latent field (Sparse / Dense Z); and large number of
basis functions (Large k). INLA is also included for comparison.

Method Sparse/Dense Z AD Large k Comp. Time (sec) ` (β)
VA Sparse X 4.30 2323.78
Lp Sparse X 16.10 2333.62
VA Dense X 41.80 2271.96
VA Sparse 93.60 2323.78
VA Sparse X X 96.19 2187.01

INLA X 718.87 2336.70

Finally, we want to get a sense of which components of our novel methodology con-

tributed most to the substantial improvements in the speed with which models can

be fit. We compared the fit times of the gorilla nesting model used in this section

when using our method and leaving out each component — i.e. variational approx-

imation for the marginalisation; sparse basis functions for the latent approximation

(as described in Section 2.3.2); and automatic differentiation for gradient informa-

tion in optimisation. Table 2.3 shows the computation times involved in fitting

a single model when systematically excluding each component. Additionally, for

comparison we include information for our model using the same number of basis

functions as INLA. When fitting a “Dense” Z we used a thin plate spline basis (as in

Tzeng and Huang, 2018) instead of the “Sparse” local bi-square basis (Equation 2.8).

As an alternative to AD, we programmed and fitted in R using an optimiser without

gradient information. When we examine the various component models we see that

each contributes substantial relative gains in computation speed. The largest speed

gains appear to be due to use of AD and use of a small number of basis functions,

relative to INLA. The variational approximation yielded the most modest speed

gain here, but it still offered an almost four-fold improvement in computation time

compared to using a Laplace approximation.
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2.6 Discussion

Our motivation for this chapter was to provide a fast method for fitting LGCPs

to point patterns, to make the practice more accessible to researchers. In ecology,

researchers currently use only an IPP in most instances — i.e. assuming there is no

clustering in the pattern beyond that accounted for by predictors — despite this of-

ten being an unreasonable assumption. Our proposed methodology for fitting LGCP

to point patterns proved to be orders-of-magnitude faster than existing methods in

the literature.

We were able to achieve this considerable computational speed-up using three key

components — as seen in Table 2.3 it is in combination that these permit such fast

fitting. The larger speed advantages seem to come from AD and coding key steps

in C++, as well as being able to use a small number of basis functions (for little loss

in terms of fitted likelihood). We also found considerable computational savings

from using a sparse FRK (Cressie and Johannesson, 2008) to approximate the la-

tent GRF. Finally, VA provides an approximate closed form solution to the marginal

likelihood that can be fit more quickly than using the more common Laplace ap-

proximation. The VA approach scales far better with number of basis functions,

k, than the Laplace approach (Section 2.5). Using these advances and working in

a maximum likelihood framework allows researchers to fit LGCP models in ways

that have previously been computationally prohibitive and perform inference using

likelihood-based statistical tools.

There are some key choices to be made about the number and nature of basis

functions used for the rank reduction when implementing our method. Cressie

and Johannesson (2008) suggest that the specification of basis functions and their

locations is not particularly important. In the current context we would agree —

considering the process we intend to approximate is not directly observed at all.

Since our method fits very quickly we are able to fit and compare different basis

configurations easily as we showed in Section 2.5. Similarly, we can combine the

choice of number and range of basis functions as described in Section 2.3.2 and then

use the signal within the changing likelihood to select an appropriate configuration,
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as in Table 2.1 and Figure 2.7. Exploring different basis function configurations

erodes some of the computational gains of our method, with an exhaustive basis

search to choose k, along the lines of Figures 2.7b, taking over an hour on VA. To

do a basis search efficiently we would recommend: that VA be used as it scales

better with large k, and that Lp (if desired) only be applied once a k has been

chosen; that the total number of basis functions considered be kept less than the

number of presence points (e.g. k ≤ n
2
). Finally, we note that choice of basis function

configuration might be important to performance of INLA as well, but exploring this

issue would be computationally prohibitive on INLA in most applications.

Further investigation could be made into using multiple resolutions of basis func-

tions, as recommended in Cressie and Johannesson (2008). In Section 2.4 our simu-

lated truth only ever had a latent influence coming from a single field with constant

range of effect, so multiple resolutions added nothing to the model performance

except potential problems with over-parameterisation. In real data cases where a

researcher may be missing various influential covariates/phenomena multiple resolu-

tions may capture this. In our simulations we found point estimation and inference

to be difficult when the scale of the single covariate and latent field coincided (sce-

narios S,S and W,W) and so multiple resolutions of basis functions may only increase

the chance of such spatial confounding (Hodges and Reich, 2010). The merits of in-

cluding more latent spatial effects in the model seems to depend whether the main

aim of the research is to accurately predict the density of point events at certain

locations, or to understand their relationship to particular measured phenomena.

VA provides a fast alternative to the Laplace approximation for the marginal like-

lihood we seek to fit. However, we saw in Section 2.4 that the VA version of our

proposed method tended to underestimate error in point estimates, even in scenarios

where the latent field was varying over a different spatial range to the spatial covari-

ate. Underestimation of errors was also noticed in Hui et al. (2019), who suggest

using the method of Louis (1982) to obtain a more robust estimator of the observed

information matrix. The Louis (1982) method was designed for missing data anal-

ysis, so by using this method in this context, we are arguing that the variational

parameters represent missing data. Given that the variational parameters are used
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to estimate an unobserved random effect, this is somewhat defensible. The Laplace

version of our method tended to do better at estimating standard errors but is not

without issue. As we saw in Table 2.1 and Figure 2.7, it is prone to convergence fail-

ures in optimisation, often due to computational singularity in the Hessian. Similar

problems have been found in Brooks et al. (2017) where scaling of predictors is a

recommended solution. This is no help here, however we find providing warm starts

within the parameter space can reduce failure rates. This includes providing a warm

start for the prior variance(s) on the random effects, which could come from our VA

version. A good practice might be to start with an exploratory VA version, as this

is quicker and more robust, then use warm starts for parameters in the Laplace fit,

and examine changes in Wald confidence intervals between the two.

Our proposed approach to fitting LGCPs offers speed gains so large that we can

consider using LGCPs in different ways to how they have been used previously. We

have already exploited this speed gain to perform model selection to choose the

number of basis functions, by refitting our model on different basis function con-

figurations (Figure 2.7). This would not be computationally feasible using INLA,

where our cross-validation analysis took over eight hours to complete for a single ba-

sis function configuration. In addition, it would seem feasible to extend our model

to handle more complex data structures. In ecology, there is interest in combin-

ing data sources (for example, Dorazio, 2014; Miller et al., 2019), including presence

records of species which form spatial point patterns. Similarly, joint species distribu-

tion models are frequently constructed (for example, Pollock et al., 2014; Wilkinson

et al., 2019; Hogg et al., 2021) in ecology and it would seem possible to fit these

using presence records for multiple species. In both of these cases, some previous

work has been done in the presence-only context, but under the assumption that

the point patterns arise from an IPP (Fithian et al., 2015; Koshkina et al., 2017;

Fletcher Jr et al., 2019). The main idea behind fitting models that integrate different

data types, or multiple species, is to share information about measured predictors

to improve model accuracy. An LGCP framework could be used to also share in-

formation about unmeasured predictors via shared latent fields. In Chapter 3 we

will extend the methods presented here to combine presence/absence records with
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presence-only records.
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3.1 Introduction

Information on where a species has been found can come in a number of different

forms. Previously we have discussed presence-only data, presence locations forming

a point pattern, a data source becoming increasingly accessible with the rise of citizen

science programmes and naturalist community platforms (Botella et al., 2021). Such

data often are biased due to the uncontrolled nature of its collection, e.g. due to

location accessibility. Another commonly available data type is presence/absence

data, sometimes called site occupancy or survey data, the result of systematically

sampling pre-determined areas and recording whether a species is present or absent.

The binary response is modelled using a regression that is conditional on the sites

that were sampled, which removes bias due to site selection (provided that sites were

selected based on characteristics not directly related to the response variable, species

presence/absence). However, presence/absence data may generally be less available

as they come at a greater cost (in both time and funding). Further, transects

are often selected to be representative of different environments and geographies,

rather than specifically in search of a particular species, so presences may be very

infrequently recorded, especially for rare species. One way to overcome the potential

shortcomings of presence-only data and presence/absence data is by analysing both

datasets using a single model. This is an example of what is often referred to as

data integration or fusion. Miller et al. (2019) provide a review of some of the many

forms this takes in the ecological literature.

A large subset of data integration methods are based on joint likelihood approaches

which allow parameters to be shared across the data sources being combined. A

key paper in this area was written by Fithian et al. (2015), who combine presence-

only and presence/absence data and show that doing so can improve predictive

performance when also pooling information across species. Dorazio (2014) likewise

provided an early framework for integrating data from both planned and oppor-

tunistic surveys, with a focus on incorporating detection probability directly into

the model. More recent examples include Koshkina et al. (2017) and Fletcher Jr et al.

(2019). All these examples, however, implicitly assume both spatial independence
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between observations within each dataset and independence between datasets, after

conditioning on model predictors. We saw in Chapter 2 that the first assumption

is often unrealistic. Measuring every covariate that drives the spatial distribution

of a species is near impossible, let alone including them correctly in the model.

Importantly, this form of model misspecification will affect both presence-only and

presence/absence models in the same way, so it will induce dependence between data

sources. Until recently there has been limited research that addresses dependence

in integrated models, and it tends to only address dependence within rather than

across datasets. Renner et al. (2019) addresses the issue of additional clustering

in the presence-only data by using an area interaction model when combining data

describing the distribution of Eurasian lynx. However, independence was assumed

between the presence-only and presence/absence data sources.

Pacifici et al. (2017) combined presence/absence survey data and count data aris-

ing from a large scale citizen-science project with (measured) variable-effort. This

data integration approach included spatially correlated random effects across data

sources in a multivariate conditional auto-regressive model. This research is analo-

gous to what we propose here except that our focus is on presence-only data arising

from point processes over a continuous spatial domain, while Pacifici et al. (2017)

conditioned on spatial locations where data where collected. A paper in pre-print

(Watson et al., 2019) examines integrating various presence/absence datasets de-

scribing sightings of southern resident killer whales. Separate sets of covariates

are proposed to model detection probability and observer effort that, along with a

LGCP model, fully describe the true intensity process of the observed presences.

All the presence/absence data are considered a point pattern and absences are only

used to inform parameters that control the detection probability and observer bias.

While the LGCP component permits shared clustering due to potentially missing

covariates, as well as the sharing of effort and detectability parameters, Watson

et al. (2019) acknowledge that properly estimating these wide range of sources of

dependence can become problematic. Their model is implemented in INLA which

we saw in Chapter 2 can be computationally burdensome.

In this chapter we propose a new methodology that extends the work of Fithian
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et al. (2015), as applied to a single species, by assuming each data source shares a

latent field (along with a common response to environmental influences) that can

account for dependencies across data sources that may be the result of missing envi-

ronmental predictors. Our method assumes that clustering and biases unique to the

presence-only data can be adequately modelled with the inclusion of biasing covari-

ates. The framework and methodology is outlined in Section 3.3 and builds on the

developments of Chapter 2 for LGCP regression models. We assess performance of

the method (relative to separately modelling the data sources) through simulations

in Section 3.4. In Section 3.5 we analyse real data examples of flora in the Greater

Blue Mountain World Heritage Area. The chapter is concluded with discussion in

Section 3.6.

During write-up for the current work, we became aware of the work of Simmonds

et al. (2020) that proposes extending the data integration method of Fithian et al.

(2015) in a very similar way to that proposed here. Both bodies of work use a LGCP

framework to share a latent field between data sources with the goal of accounting

for dependence structures otherwise ignored. Both examine simulations in a variety

of scenarios to determine when data integration leads to improved model perfor-

mance. A key difference is that in simulations, we permit the same realised latent

field across both datasets — playing the role of constant and missing environmental

drivers of the species distribution. Simmonds et al. (2020), on the other hand, allow

each dataset to have a separate realisation of the latent field — while having sim-

ilar ranges of effect — to account for the data sources being collected at different

times. However, if the latent field represents missing environmental variables, we

would argue that the same environmental variables are missing from the model for

each data source, hence the same latent field realisation is needed in the integrated

data model. In this sense, the role of latent field is somewhat different to that we

assume here. Other key differences are that we approximate the latent field using

spatial random effects (“FRK”, as in Chapter 2) while Simmonds et al. (2020) use

the SPDE approximation within INLA, leading to substantial differences in com-

putation time, and constraining their capacity to perform extensive simulations.

Whereas Simmonds et al. (2020) evaluate their methodology using simulation only,
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we apply the proposed methodology to real datasets as well as studying properties

of our method via simulation. Another relevant paper is Conn et al. (2017), where

abundance in aerial transects was modelled jointly with a point process model for

where transects were established, in order to correct for bias that arises from “pref-

erential sampling”, i.e. sampling in locations where you expect to find the target

species.

3.2 Existing Method

To integrate presence-only and presence/absence datasets, we follow the formulation

of Fithian et al. (2015), for the case of a single species. The datasets comprise the

presence-only data that forms a point pattern, Sn, in addition to a binary vector,

y = y1, . . . , ynsurvey , that represents whether a species was recorded as present or

absent at each site. Strictly speaking these sites are regions rather than points, and

for simplicity we will assume they all have constant area c and will identify them

via the point location of their centre, denoted sPAi ∈ D for i = 1, . . . , nsurvey. Let

A (s) be the observed species abundance of a site of size c centered at s, indexed

continuously over D. Then A
(
sPAi
)

describes the number of species observed at

each survey site, and y arises from a collection of Bernoulli random variables:

Y
(
sPAi
)

=

 1 A
(
sPAi
)
≥ 1

0 A
(
sPAi
)

= 0.

Note that in the current work we focus on presence/absence data Y
(
sPAi
)
, and

assume the site abundance A
(
sPAi
)

is unobserved. We will also ignore the issue

of imperfect detection, an issue which would only qualitatively affect our models if

detection rates are different in different environments — see Guillera-Arroita (2017).

Presence/absence data are commonly modelled using binary regression (McCullagh

and Nelder, 2019). Fithian et al. (2015) assume presences follow an inhomogeneous

Poisson process with intensity proportional to exp {X (s)β}, hence abundances

A (s) come from a Poisson distribution with mean µA (s) = c exp {X (s)β}, where

as previouslyX is a set of environmental variables that can be measured throughout
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D. Without loss of generality, we set c = 1. We can then derive a relation between

probability of presence, µY (s), and the linear predictor X (s)β:

µY (s) = Pr (Y (s) = 1) = 1− Pr (A (s) = 0)

= 1− exp {−µA (s)}

= 1− exp {− exp {X (s)β}} (3.1)

This well-known classical result (Fisher, 1922) allows presence/absence data to be

modelled using a generalised linear model with a complementary log-log link func-

tion. Most importantly, this permits the β to be incorporated into the model in

a format that can be also be interpreted in the context of the presence-only data.

Fithian et al. (2015) link the presence/absence and presence-only datasets by as-

suming that the intensity λ (s) of the presence-only data is a thinned form of the

mean abundance rate, where the thinning process T (s) is assumed to be a linear

combination of measured bias covariates B (s):

λ (s) = exp {T (s)}µA (s)

= exp {X (s)β +B (s) τ} . (3.2)

The bias covariates B(s) aim to describe site availability and visitation rates, e.g.

distance from a sealed road, as proposed in Warton et al. (2013) and Fithian and

Hastie (2013).

Fithian et al. (2015) further assume that presence/absence data Y (sPAi ) are inde-

pendent of presence-only data Sn, conditional on the environmental predictors X.

So in summary the model is:

Y (sPAi ) ∼ Bernoulli
(
µY (sPAi )

)
Sn ∼ IPP (λ(s))

Y (sPAi ) | X(sPAi ) ⊥⊥ Sn |X(s)

where µY (sPAi ) and λ(s) are given by Equations (3.1) and (3.2), respectively.
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The integrated data model is fitted by estimating parameters (β and τ ) from a

separable joint log-likelihood:

`(β, τ |y, Sn,X,B) = ln πIPP(Sn|X,B) + ln πbinomial(y|X)

The benefit of integrating the data sources is that a researcher can reduce sam-

pling uncertainty in estimation of β by drawing inference from a larger pool of

information. Fithian et al. (2015) go further and propose an extension to simultane-

ously model multiple (similar) species jointly, assuming that the bias coefficients are

shared between species to likewise assist estimation. The validity of bias coefficients

being constant across species depends on both how similar the species are, and on

the exact nature of how the presence-only data was collected. For example, the

accessibility of a location (a potential bias covariate) may have a greater influence

on whether a shrub is observed than that for a larger, more easily observed tree. In

this chapter we will consider the single-species case only, and leave a multiple-species

case for future work.

Implicit in the Fithian et al. (2015) formulation are two independence assumptions:

independence within datasets, meaning all spatial clustering in presence-only and

spatial autocorrelation in presence/absence data has been accounted for by X and

B; and independence across datasets, meaning that all coincident spatial patterns

between presence-only and presence/absence data are captured by X. The within-

dataset independence assumption was discussed in the previous chapter, and as

discussed there, it is prone to the criticism of being unrealistic in an ecological

setting (Pacifici et al., 2017). But also note that if a key, shared environmental

driver of the species is missing from the model, its effects will still be present in the

form of unaccounted-for dependence between the datasets.

3.3 Proposed Extension

In the previous chapter we relaxed the conditional independence assumption by

adding a latent Gaussian random field to the linear predictor. Here we assume
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a latent Gaussian random field that is shared between data sources, to relax the

conditional independence assumptions made within and between data sources.

To ease computational burden we again approximate the latent field as a linear

combination of k spatial basis functions Z (s), with corresponding random coeffi-

cients u ∼ Nk (0, σ2I) (“fixed rank kriging”, Cressie and Johannesson, 2008, see

Section 2.3.2). This avoids the high dimensional realisation of the latent field in

both datasets. Hence we can make the intensity and presence probability stochastic

by adding the approximate Gaussian field, Zu, i.e.

lnλ (s) = X (s)β +Z (s)u+B (s) τ

ln (− ln [1− µY (s)]) = X (s)β +Z (s)u
(3.3)

We can then assume that the data are independent conditional on both X and u

and fit the model by maximising the marginalised joint likelihood

`
(
β, τ , σ2

)
=

∫
ln π (y | u) + ln π (Sn | u) + ln π (u) du

where π (u) is the product of the k Gaussian probability densities, since we are again

assuming no correlation between the u, and conditional on u, ln π (y | u) is the

Bernoulli log-likelihood for y and ln π (Sn | u) is the Poisson process log-likelihood

for Sn:

ln π (y | u) =

nsurvey∑
i=1

yi ln
(
1− exp

{
− exp

(
X
(
sPAi
)
β +Z

(
sPAi
)
u
)})

− (1− yi) exp
{
X
(
sPAi
)
β +Z

(
sPAi
)
u
}

ln π (Sn | u) = |D| −
∫
D

exp {X (t)β +B (t) τ +Z (t)u} dt

+
n∑
i=1

X (si)β +B (si) τ +Z (si)u

As in the previous chapter we have to approximate both a spatial integral and

an integral over the random coefficients u. The former we achieve with numerical

quadrature as in the previous chapter (Equation 2.3), the latter we will approach us-

ing a Laplace approximation, facilitated by automatic differentiation software within
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TMB (Kristensen et al., 2016). In Chapter 2 we also explored the use of a variational

approximation but this is not a trivial extension for the presence/absence likelihood

component — see the discussion in Section 3.6 for further detail.

3.4 Simulation Study

We turn to simulation to look at if, and in what scenarios, we are able to improve

models by jointly modelling the presence-only and presence/absence datasets.

In a similar set-up to Section 2.4, datasets were simulated over a square domain

with sides of length 100, D = {[1, 100], [1, 100]}. The presence-only data were again

simulated from a Poisson point process, conditional on an observed Gaussian ran-

dom field ξ. The presence/absence data comprised Bernoulli random variables from

1000 randomly sampled locations (survey sites) throughout D. The probability of

each site recording a presence was calculated from the mean abundance rate as in

Equation (3.1). The mean abundance rate, µA was a log-linear function of three ran-

domly generated spatial covariates, two observed, X1 and X2, and one unobserved,

ξ:

lnµA = β0 + β1X1 (s) + β2X2 (s) + ξ (s) .

This was thinned by two randomly generated, spatial, biasing covariates, B1 and B2

to create the intensity function for the presence-only data:

lnλ (s) = β0 + β1X1 (s) + β2X2 (s) + τ0 + τ1B1 (s) + τ2B2 (s) + ξ (s)

As in Chapter 2, presence-only data were simulated using the spatstat package in

R (Turner and Baddeley, 2005). For the presence/absence data, standard R software

was used to simulate Bernoulli variables at spatial locations sampled uniformly over

D. The spatial covariates were zero-mean GRFs with isotropic Gaussian covariance

function with a variety of correlation ranges.

We saw in Section 2.4 that the relative spatial scales of predictors and the latent

field played an important role in our ability to model presence-only data accurately
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as a LGCP — we found that it is typically easier to estimate model parameters

when these spatial scales are more distinct. Although spatial confounding is of

practical concern, it is outside our current scope and so we chose correlation ranges

of the covariates to reflect different spatial scales. We generated X1, X2, B1, B2 and

ξ using the RandomFields package in R (Schlather et al., 2015), with correlation

ranges set to 20, 10, 20, 10 and 30 respectively. The variance of each field was fixed

at one so that all model components were effectively standardised. An example of

each component of a single simulation is given in Figure 3.1. The environmental

and bias parameters (including intercepts) were fixed at β = (1.75,−1.2, 0.75) and

τ = (−2, 1.3,−0.8), reflecting a range of positive and negative effects on species’

prevalence/inhibition across the domain in each dataset. These values also yielded

E [Npresence-only] = 2000, i.e. the presence-only data were expected to be twice as

numerous as the simulated survey data.

As in the previous chapter, we studied the ability of the latent field to act as a

surrogate for missing predictors. We emphasise that it is not realistic to assume

that species distribution depends only on predictors included by a researcher within

their model, and missing predictors should be considered the norm. For these reasons

we looked at four simulation scenarios that reflect a variety of model specifications.

These were:

1. All predictors were correctly included in the model (Correctly Specified)

2. An environmental predictor (X1) was missing (Missing Env. Covariate)

3. A biasing predictor (B1) was missing (Missing Bias Covariate)

4. One of each of an environmental and biasing predictor (X2 and B1) were

missing (Missing Env. + Bias)

The presence-only and presence/absence datasets were fitted jointly or separately,

using a variety of models for comparison. These included:

POPA Our proposed integrated data model sharing a latent field across datasets

PA A spatial random effect GLM with binary response, i.e. we dropped the presence-

only data from the model proposed in Section 3.3, but kept the latent field,
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and trained it on the presence/absence data only

PO A LGCP regression model, trained only on the presence-only data, i.e. we

dropped the presence/absence data but kept the latent field

IPP POPA The integrated data model of Fithian et al. (2015), i.e. the latent field

was dropped altogether, but the model was trained on both datasets

IPP PA A binary GLM with complementary log-log link function, trained only

on the presence/absence data, i.e. we dropped both the latent field and the

presence-only data

IPP PO An IPP regression model, trained only on the presence-only data, i.e. we

dropped both the latent field and the presence/absence data

We anticipate that models including a latent field (POPA, PA and PO) will per-

form better than the corresponding procedures without a latent field due to greater

flexibly to account for the various simulation scenarios. All procedures involving a

latent field were approximating it via a regular grid of 100 bi-square basis functions

(see Equation (2.8) for details).

We assessed the performance of a model by its predictive ability, as well as its ability

to recover true covariate coefficients. For predictive ability, we performed a four-fold,

hold-one-out, cross validation using spatial blocks constructed similarly to those of

Section 2.5. As part of the data generation process we had the true underlying

rates of interest: µA (D) ≈ {µA (sj)}10000j=1 and λ (D) ≈ {λ (sj)}10000j=1 . For each fitted

model we predicted {µ̂A (sj)}10000j=1 and
{
λ̂ (sj)

}10000

j=1
then compared these to the

truth as measured by Kullback-Leibler divergence (KL Div.) between the fields (as

in Equation 2.11). For coefficient recovery we computed root mean square error

(RMSE) in parameter estimates (β̂, τ̂ ).

3.4.1 Simulation Results

Throughout this section the main focus is on comparing the performance of our pro-

posed model (POPA; Section 3.3) against models individually fitted to the datasets

that include a latent field (PA and PO). Comparisons of our method with the model
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of Fithian et al. (2015) (IPP POPA; Section 3.2) are also highlighted as this shows

the advances our novel extension provides. Results for all models can be found in

Figures 3.2 and 3.3.

Table 3.1: Average predictive accuracy (Kullback-Leibler divergence from the true field,
µA (D)) for the integrated data model (POPA) versus the presence/absence data model
(PA). We see that only in scenarios in which we correctly specified the bias covariates (first
two rows) did we find any utility in using an integrated data model. Otherwise, combining
data could be very detrimental to predictive performance.

Sim. Scenario
Avg. KL Div. µA||µ̂A
POPA PA

Correctly Specified 417.27 1015.43
Missing Env. Covariate 648.83 2171.44
Missing Bias Covariate 4230.08 1014.59
Missing Env. + Bias 4941.73 2261.93

In all simulations scenarios where the bias terms in the presence-only model were

correctly specified, our proposed integrated data model (POPA) tended to perform

substantially better at predicting presence/absence data than if it were modelled

on its own (Table 3.1, Figure 3.2 top). We found the field estimated by pres-

ence/absence data only (PA) to be over twice as far from the truth (in KL Div.)

as that estimated by POPA, on average, when we were able to correctly specify the

fixed effects involved in both models, and further when an environmental covariate

was missing. Conversely, in the two scenarios in which we failed to specify one of

the bias covariates, we found predictive performance to be substantially worse for

POPA than if the presence/absence data were analysed on their own.

A different trend was seen when evaluating how well POPA predicted presence-only

intensity, compared to analysing presence-only data on its own (Table 3.2, Figure 3.2

bottom). Differences in Kullback-Leibler divergence were less than approximately

15%, but in all cases the integrated data model performed better that analysing

presence-only data alone.

Figure 3.2 shows the predictive accuracy for each simulation scenario, for each of the

six models compared. We found that the top performing models for predicting the

mean abundance rate (µ̂A (s); top row) were POPA and PA, and when predicting

intensity (λ̂ (s); bottom row), the top performing models were POPA and PO. The
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Table 3.2: Average predictive accuracy (Kullback-Leibler divergence from the true
presence-only intensity field, λ (D)) for the integrated data model (POPA) versus the
presence-only data model (PO). We see only marginal improvement, on average, for the
integrated data model in all scenarios.

Sim. Scenario
Avg. KL Div. λ||λ̂
POPA PO

Correctly Specified 185.98 218.78
Missing Env. Covariate 194.77 229.75
Missing Bias Covariate 283.79 317.83
Missing Env. + Bias 443.84 475.41

equivalent models that did not include a latent GRF (i.e. IPP POPA, IPP PA and

IPP PO) were all outperformed by their LGCP-based counterparts in estimating the

appropriate rate. PA tended to achieve lower KL Div. from the truth than IPP PA,

as seen in the top row of panels (estimating µ̂A). Likewise, PO tended to achieve

lower KL Div. than IPP PO, as seen in the bottom row of panels (estimating λ̂).

Our proposed method achieved a smaller KL Div. than the single species version

proposed by Fithian et al. (2015) (here labelled IPP POPA) in all scenarios except

those in which we misspecified the bias model and were predicting µA (top row of

panels, first and second from the right).

Similar trends were found when looking at the RMSE in estimating coefficients in

the linear predictor (Figure 3.3). Specifically, POPA achieved the lowest RMSE

for all parameters when the model was correctly specified (Figure 3.3, top row) or

missing just an environmental covariate (Figure 3.3, second row), but separately

modelling datasets (PA or PO) performed better when a bias covariate was missing

(Figure 3.3, bottom two rows). The one exception to this rule was estimation of β2

when missing a bias covariate, in which case POPA slightly outperformed PO.

The reason for the difference in performance across simulation scenarios is that miss-

ing bias predictors will bias predictions from the integrated model (POPA). Use of a

shared latent field in the integrated data model gives robustness to missing environ-

mental predictors, and integration of the two data types provides more information

that can be used to estimate and account for a missing environmental predictor

(as in Figure 3.2, second column). However, when a bias covariate is missing, the

latent field tries to account for this but in so doing it seems to bias predictions in
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the presence/absence dataset (Table 3.1). Presumably predictions of presence-only

intensity (λ̂) were also biased by this missing predictor, but seemingly less so for

the integrated data model, which was informed by a second data source free of this

bias.

3.5 Application: Flora in the Greater Blue Moun-

tains

To illustrate our proposed integrated data model on some real data examples, we

examined the spatial distributions of the four plant species outlined in Section 1.1.2.

Having both detailed survey data and supplementary presence-only records allowed

us to test our approach against models fitted to the two datasets separately.

3.5.1 Methods

We assessed whether the integrated data model improved upon the out-of-sample

prediction of models fitted to the datasets individually. As in the previous section we

measured this with a four fold, hold-one-out, cross validation (CV), set up in spatial

blocks, such that D = ∪nfolds
h=1 Dh and Dh ∩ Dh′ = ∅ for any h 6= h′ — see Figure 3.4

(left plot). We used this to calculate out-of-sample, predicted log-likelihoods on

the presence-only and presence/absence data (both are conditional on the random

effects). For the presence-only data component this is similar to that of Section 2.5,

given by

nfolds∑
h=1

lnπ
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)
=

nfolds∑
h=1

[
nh∑
i=1

X
(
s
(h)
i

)
β̂\h +B

(
s
(h)
i

)
τ̂ \h +Z

(
s
(h)
i

)
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(3.4)

where each of the h = 1, . . . , nfolds was held out in the training of β̂\h, τ̂ \h and û\h.

S(h) =
{
s
(h)
i

}nh+qh

i=1
denotes the point pattern (and quadrature) within fold h and

w
(h)
i denotes the size/weight of the ith quadrat within fold h (here equal to zero for

i = 1, . . . , nh). The predicted conditional log-likelihood for the presence/absence
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data component is given by

nfolds∑
h=1

lnπ
(
y(h)|β̂\h, û\h

)
=

nfolds∑
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[
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y
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(3.5)

where y(h) denotes the binary response at survey sites
{
sh;PAi

}
for i = 1, . . . , nh;survey

within fold h. Again, each of the h = 1, . . . , nfolds was held out in the training of

β̂\h and û\h.

Each predictor variable was measured throughout the Greater Blue Mountain World

Heritage Area (GBMWHA), and in a 100km buffer around this area, at a spatial

resolution of 1km2. This means that presence locations closer than this will be

largely indistinguishable with respect to the predictors (though not so in the basis

functions). Figure 3.5 displays the number of presence locations in either dataset

within 1km of each other — as there are very few points within this distance, we

assumed the 1km2 resolution will be sufficiently fine for modelling all species. This

also shows us that the two datasets are distinct, i.e. all distances between presence

locations are non-zero.

We modelled the mean abundance rate, µA as a log-linear function of average annual

minimum (MNT) and maximum (MXT) temperatures, and for all species (excluding

H. cernuus which lacks the sufficient number of presences) we also included an

interaction and quadratic terms for these. This was done because plant species will

typically have an optimal range for temperature rather than responding to it linearly.

We likewise modelled the presence-only intensity, additionally thinned by potential

biasing predictors: distances to main road (D.Main) and urban areas (D.Urb) as in

Equation (3.2). Due to the rarity and restricted distribution of H. cernuus presences,

we performed a two-fold CV for this species — as in Figure 3.4 (right plot).

We performed the CV multiple times on increasingly dense, regular grids of locally

compact bi-square functions in a similar way to that of Section 2.5. This allowed

us to compare the integrated data model against the individual data models across
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a range of basis functions — we were able to look at which approach achieves the

highest predicted log-likelihood for any of the basis configurations trialled, including

a model with no approximate latent field (k = 0, an IPP-based model). This ap-

proach would not be computationally feasible with other currently available software

and was enabled by the fast model-fitting procedures developed in this thesis. We

calculated the predicted log-likelihoods up to the largest number of basis functions

that could be arranged on a regular grid and would not exceed the observed number

of presences in either dataset, min {n, nsurvey}. This permitted valid comparison of

the integrated and separate models without overfitting.

3.5.2 Results

The results for predictive performance can be found in Figure 3.6 for each of the

four species, full details can be found in Appendix B.1. We found that the inte-

grated model only improved predictive performance for one of the four species, C.

eximia (Figure 3.6 top left). That is, there was an improvement for this species

when comparing the joint predicted likelihood (Equations 3.4 and 3.5 summed) for

the integrated data model (purple) and separate models (blue and red). The maxi-

mum predicted joint likelihood was −2065.4 when using 204 basis functions for the

integrated data model, and −2201.5 when using just two broad basis functions when

modelling the data separately. However, we saw large variability in the likelihood for

the integrated data model, for basis configurations close to the number of presence-

only data for this species (242) — Figure 3.6 top left panel, purple line beyond 150

basis functions. Hence there were a number of basis function configurations where

the integrated data model did not have higher predictive likelihood. We can see

similar instability in the integrated data model when the number of basis functions

approaches min {n, nsurvey} for E. sparsifolia and H. cernuus (Figure 3.6 bottom two

panels). The remaining results were in line with those in Section 3.4 for scenarios

where we have misspecified the bias predictors for the presence-only component of

the model. We also found that for all species except H. cernuus, including a latent

random field in the model improved upon assuming independence of data sources as

in Fithian et al. (2015). This is seen in Figure 3.6, where the predicted likelihoods at
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k = 0 were exceeded by at least one of the subsequent data points plotted (k > 0),

except in the case of H. cernuus (bottom left). This too is consistent with results

from Section 3.4.

3.6 Discussion

In this chapter, we extended the methodology of Fithian et al. (2015) to integrate

presence-only and presence/absence data by jointly modelling the species response

to environmental effects, in the case of a single species. Our contribution is to

introduce a shared latent field that can account for additional spatial correlation

in presences observed in either data source. Such additional correlation can arise

from missing predictors that are important to the distribution of the target species

— when omitted from the model, they induce dependence across datasets that

is otherwise unaccounted for. Our simulation results in Section 3.4 showed that

in certain scenarios, combining the data in this way can improve both predictive

accuracy and coefficient estimation. However, when we applied the methodology

to multiple species of flora in the GBMWHA in Section 3.5, we found little benefit

in combining the datasets. We suspect that this is due to misspecification of the

biasing predictors, a problem identified earlier in our simulation results.

There are a few possible explanations for the poor performance on the real data

examples that cannot be ruled out, and serve to highlight the challenges involved

with integrated data modelling. First, it is possible that in our example the pres-

ence/absence data are a sufficiently high quality dataset that it cannot be improved

upon by presence-only data, which come with biases. There were 8223 survey sites,

recording more presences than were found in the entire presence-only dataset (ex-

cept for the rare species, H. cernuus). We found the only example of improvement

in predictive performance was with the species with the largest number of presences

(Figure 3.6). Perhaps a similarly large number of presence records is needed for a

presence-only dataset to be informative in this sort of situation, we would need to

repeat analyses on many more species however before making such a generalisation.

Second, our models were far from perfect, and we cannot rule out missing predictors.
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Environmental variables known to usually be important include soil type and rain-

fall (Hager and Benson, 2010). There is also the potential for measurement error in

predictors (Stoklosa et al., 2015) and in identifying the spatial location of presence

events (Hefley et al., 2014). We elected to fit a simple model for illustratory pur-

poses, particularly important for our rarer species where there was little capacity to

fit a more complex model anyway. But we notice that in simulations our model was

robust to missing environmental predictors (Figure 3.2 two left-most columns and

Figure 3.3 top two rows) so we are not sure that inclusion of additional predictors

would have had much of an effect on results.

Our main finding, that misspecified bias in the presence-only data component can

render integrated models somewhat useless, was also an outcome from the sim-

ulation study of Simmonds et al. (2020), who examined similar integrated data

(LGCP-based) models. Specifically, the researcher’s primary conclusion is: “. . . [in-

tegrated data models] outperformed single dataset models in some cases, but if bias

in [presence-only] data was ignored then [integrated data models] did not provide any

benefits over modelling [presence/absence] data alone.”. Both the work of this chap-

ter and Simmonds et al. (2020) attempted to account for bias in the presence-only

component by incorporating covariates designed to quantify this bias (e.g. variables

associated with accessibility). If the efficacy of integrated data models relies on get-

ting this bias model right then this is a major limitation, given that as previously,

our working assumption should always be that there are missing predictors.

What is needed is a term to account for missing predictors in the bias model —

meaning that we need to include a second latent random field in the model, that

applies to the presence-only component solely. That is, as previously we could model

presence/absence data as:

ln (− ln [1− µY (s)]) = β0 + β1X1 (s) + β2X2 (s) + ξ (s)

but we could now model intensity of presence-only data as:

lnλ (s) = β0 + β1X1 (s) + β2X2 (s) + τ0 + τ1B1 (s) + τ2B2 (s) + ξ (s) + ψ (s)
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where ψ (s) is a second Gaussian random field that applies to the presence-only data

only. A model similar to this has considered previously (Simmonds et al., 2020),

although they assumed different realisations of ξ for the different datasets. This

model could be expected to have robustness to missing bias predictors. A challenge

however is reliably fitting this model — we have noticed some instability when

fitting an integrated data model with one latent field (e.g. Figure 3.6, all panels,

except top right) and would expect the potential for considerable instability when

estimating a second random field as well. Simmonds et al. (2020) seemed to address

these stability issues by applying their model to simulated data only, where data

were simulated with a rather unrealistically large number of presence points (usually

thousands per dataset), and we did similarly in simulations with a single latent field,

using 2000 expected presences to minimise convergence issues. One way forward, to

improve computational stability, would be to model multiple species simultaneously,

assuming a common latent bias field ψ(s) across species, to be discussed further in

Chapter 5. Bias covariates can often be assumed to affect multiple species in the

same way, so one could expect a stronger signal from missing bias covariates when

it is estimated jointly across multiple species (Fithian et al., 2015).

The instability in our integrated data model can arise due to the use of a Laplace

approximation, when using a large number of basis functions (Figure 3.6 particularly

top left and bottom right). The issue seems to be that the Hessian matrix, needed in

the Laplace approximation (Equation 2.6), can be near singular when there are many

basis functions — seen also in Table 2.1 and Figure 2.7. This problem only arose

when the number of basis functions was close to the number of presence events, so

it could be interpreted as a sign of overfitting. However efforts to improve stability

could involve developing a variational approximation for this model, which was

shown in the LGCP case to be more stable in this sort of situation (Figure 2.7).

Developing a variational approximation for the presence/absence component of the

model would be non-trivial, but Hui et al. (2019) suggest a way forward for Bernoulli

models, in the context of variational GAMs.

The flora datasets (Section 1.1.2) were quite large and difficult to fit, as we had

over 8, 000 presence/absence data points and we used ≈ 86, 000 quadrature points
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in our presence-only fit. This large number of quadrature points was used due to the

spatial roughness of our covariates hence our intensity surface (as in Renner et al.,

2015). Fitting our integrated data model to a dataset of this size would have been

computationally prohibitive without the advances in Chapter 2, yet we were able to

fit multiple models, in order to do a basis search along the lines of Figure 2.7 in just

a few hours. Simmonds et al. (2020) fitted similar models to simulated data using

INLA, but used at most 500 presence/absence points, and chose parameters for

simulation carefully, to ensure computational feasibility. There are many possible

extensions of our model, such as the multiple species extension, which are now

feasible due to our rapid algorithm.
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Figure 3.1: An example of the simulation process. Squares represent measured/observed
variables or data, circles represent unmeasured/unobserved processes. We simulated a
broad scale latent field, as well as two environmental covariates and two bias covariates
— one of each with long and short correlation ranges

. We combined the latent field and environmental covariates to obtain the true
species abundance rate (µA), but we additionally needed the bias covariates to
obtain the presence-only intensity (λ). The presence/absence dataset was then

simulated from µ and the presence-only dataset was simulated to have intensity λ.
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Figure 3.2: Accuracy of predictions measured by Kullback-Leibler divergence (KL Div.)
from the true abundance rate (µA; top row) and true intensity rate (λ; bottom row) to
that predicted by each model. Results of all 1000 simulations are shown as boxplots.
Purple represents integrated data models, blue represents presence/absence data models
and red represents presence-only data models. A model prefix of “IPP” indicates the model
does not include a latent field. Only in the first two scenarios (“Correctly Specified” and
“Missing Env. Covariate”) did we find the integrated data model (POPA) more often
achieved the lowest divergence.



3.6. DISCUSSION 71

Figure 3.3: Accuracy in the ability of each model to recover the true parameter values as
measured by root mean squared error (RMSE) across each scenario. Simulation scenarios
are labelled on the left axis, models fitted are shown on the right axis. Each column
represents one of four parameters being estimated. POPA indicates a model jointly fitted
to the presence-only and presence/absence datasets. PA indicates a model fitted to the
presence/absence data only. PO indicates a model fitted to the presence-only data solely.
A model prefix of “IPP” indicates the model does not include a latent field. We see
that our proposed model (POPA) achieved the smallest RMSE for each parameter in the
first two rows (scenarios where biasing covariates are correctly specified). In the bottom
two rows (scenarios where biasing covariates are misspecified), the PA model achieved
the smallest RMSE for environmental parameters (two left-most columns) while the PO
model achieved the smallest RMSE for bias parameters (two right-most columns). Panels
missing information are scenarios in which the parameter corresponded to a covariate that
is missing from the fitted model.
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Figure 3.4: Graphical representation of the cross validation folds constructed through
spatial blocks. Left panel: four-fold CV is used for C. eximia, E. sparsifolia and E.
canaliculata. Right panel: two-fold CV is used for the rare species, H. cernuus.
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Figure 3.5: Box plots showing the range of the distances between presence locations in
the presence/absence (PA) and presence-only (PO) data. Red line indicates a distance of
1km between point locations. Very few points were within 1km for each species.
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Figure 3.6: Out-of-sample, predicted, conditional combined log-likelihoods for both the
presence-only and presence/absence data components (Equations 3.4 and 3.5 summed).
Each panel shows the likelihoods over increasingly dense grids of basis functions, for each
species. Red and blue points and lines represent results for when the data are modelled
separately. Purple indicates the results of our proposed integrated data model. Integrating
data sources improved predictive performance for only one of the four species (C. eximia).
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4.1 Introduction

As discussed in Chapter 2 and elsewhere (Illian et al., 2012; Renner et al., 2015),

it is important to account for missing covariates and potential bias in opportunistic

collection of presence-only data, which can be achieved by fitting a log-Gaussian

Cox process. Nevertheless, an inhomogeneous Poisson process (IPP) remains the

more popular approach for modelling these data in ecology, even though is assumes

no clustering due to missing predictors, an assumption that is often unrealistic.

As previously mentioned, an IPP is most commonly fitted to data using MAXENT

software (Phillips and Dud́ık, 2008), but also sometimes using the spatstat package

(Turner and Baddeley, 2005) in R or user-written code (Renner et al., 2015).

R software packages are available to model presence-only data under a log-Gaussian

Cox process (LGCP) framework but user uptake appears to be limited by long com-

putation times; complicated user interfaces; or both. Taylor et al. (2013) developed

one of the earliest tools, the lgcp package. This software uses MCMC samplers to

estimate a LGCP model, which take a long time to fit to a single dataset — in the

magnitude of hours. The INLA package (Rue et al., 2009) provides a general and

faster framework for fitting latent Gaussian field models, including LGCP models.

However, the generality of INLA means the interface was not designed specifically to

fit point process models and it can be difficult to use. Bachl et al. (2019) attempts

to make the INLA framework more accessible to those fitting a LGCP through the

function lgcp() in the inlabru package. This provides a simpler user interface

for INLA, but computation times are still prohibitive, especially when the analysis,

such as cross-validation, requires many model fits.

In Chapter 2 we showed that presence-only data can be modelled with spatially cor-

related errors effectively and quickly using a combination of: closed form likelihood

approximations; rank reduction; and automatic differentiation (AD). Using these

advances we reduced computation time in some instances from hours to seconds,

as compared to INLA, which is already known to be faster than other Bayesian

competitors (Taylor and Diggle, 2014). In Chapter 3 we further showed the ability

of this same framework to integrate presence-only data with survey data (pres-
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ence/absence). This chapter describes scampr, an R package that implements these

advances in modelling LGCP models and provides a simple interface for regression

modelling of point event data. All of the common S3 functions familiar to users

(such as summary, plot, simulate, predict,. . .) have also been written for scampr

models. The package is built upon the advances of TMB (Kristensen et al., 2016)

which enables us to code the likelihoods derived in Section 2.3.1 in C++, as well

as providing automatic differentiation for easy access to gradient information —

permitting fast optimisation, automated Laplace approximation, and automated es-

timation of the variance-covariance matrix of parameter estimates in scampr models.

In this sense, the package is built upon similar foundations to the more widely-used

glmmTMB package (Brooks et al., 2017).

The package name scampr stands for Spatially Correlated, Approximate Modelling

of Presences in R however, the verb “scamper” — to run with quick, light steps

— perfectly captures the motivation of this package: to give researchers access to

complex spatial models that fit quickly and require only a light touch.

4.2 Fitting the LGCP Model

As in Chapter 1, the data comprises the n point events as Sn = {si}ni=1, where s

denotes the coordinates in some domain, D. We assume these arise from a Poisson

process with spatially varying intensity that is a log-linear function of predictors X

and an unobserved Gaussian random field (GRF) ξ (s):

λ (s) = exp{X (s)β + ξ (s)}

≈ exp{X (s)β +Z (s)u} (4.1)

Because ξ (s) is unobserved, this forms a LGCP. The latent field ξ is included to

account for missing predictors that would otherwise be responsible for spatial clus-

tering that is not captured by the Poisson assumption.

A LGCP model is fitted in scampr using the function scampr() — in fact the

full suite of models offered by this package are fit using this function — using a
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likelihood based approach to estimate parameters of the LGCP. The scampr model

approximates the latent field using a linear combination of k basis functions (Z (s)

above) and random normal coefficients (u above), hence the model has the form

of a (spatial) random effects model (Cressie and Johannesson, 2008). If we were to

drop the GRF, ξ (s), from the model then we would have an inhomogeneous Poisson

process (IPP). So in a way, a scampr is to an IPP what lmer() is to lm().

We will use a simple example to illustrate fitting point process models within scampr

— regressing the point pattern representing gorilla nesting locations (Figure 1.1a)

against a single covariate, elevation (Figure 1.1b) that has been centered and scaled.

# fit the LGCP model

lgcp_scampr <- scampr(pres ~ elev.std, data=gorillas.df)

In line with much of the regression modelling syntax in R, the model is described

using formulae, written in compact symbolic form (see Chambers and Hastie, 1992)

where the response (pres above) and fixed effects (elev.std above) are found within

the data provided (gorillas.df above). Note that this syntax will automatically

include an intercept term in the model. The data object should be a data.frame

containing all terms in the formula, also spatial locations stored as x and y, and

quadrat sizes stored as quad.size. For example:

head(gorillas.df)

x y elevation quad.size pres

1 582.5184 676.8862 2008 0.0000000000 1

2 581.8230 677.4227 1699 0.0000000000 1

3 582.1310 676.9379 1872 0.0000000000 1

2275 582.2161 674.1754 1353 0.0007917668 0

2276 582.2437 674.1754 1353 0.0007917668 0

2277 582.2713 674.1754 1338 0.0007917668 0

While most of this should be familiar to R users, the model response and quadrat

sizes (quad.size above) require some explanation. Unique to scampr is that the

“response” variable must be a binary variable that identifies which rows are points
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within the point pattern (pres == 1 in this example) and those that are quadrature

points, used to estimate a spatial integral over the study region using numerical

quadrature. Specifically, we wish to maximise the likelihood:

` (Sn|β, ξ) =

{
n∑
i=1

X (si)β + ξ (si)

}
−
∫
D
λ (t) dt (4.2)

where we approximate the spatial integral using an additional set of background or

quadrature points {si}n+qi=n+1, as:

∫
D

λ (t) dt ≈
n+q∑
i=n+1

wi exp {X (si)β + ξ (si)} . (4.3)

All rows of data identified as the q quadrature points (e.g. by pres == 0) are used to

approximate this spatial integral, with sizes wj stored in quad.size (which addition-

ally contains wi = 0 at the presence locations by convention, but these are currently

not used). Hence the data.frame provided to scampr point process models have

n+q rows. Quadrature points and their selection/setup are covered in more detail in

Appendix C. The package spatstat contains the function quad.scheme() that can

sample quadrature points and assign them sizes. Alternatively, the simplest way to

create a quadrature scheme would be to randomly sample q points from the domain

and set the sizes to |D|
q

for quadrature points and to zero for presence points. This

can be understood as a simple Monte Carlo approximation to the spatial integral.

In addition to formula and data, we can provide scampr() with additional argu-

ments for further customisation. The names of the coordinate columns can be cus-

tomised via the argument coord.names, as can the name of the quadrat size column,

via the argument quad.weights.name. Default names are as given in gorillas.df.

Other details, such as choice of the basis function configuration used to approximate

the latent GRF, can be customised as seen later in Section 4.5.1. We can also fit an

IPP model by setting the argument model.type to "ipp".

Preliminary information about a scampr model fit can be obtained using summary()

and plot():

summary(lgcp_scampr)
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Model Type: LGCP with Variational Approx.

Formula: pres ~ elev.std

AIC: -4679.974 approx. marginal logLik: 2343.987

Basis functions per res. 12 99

Fixed Effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.63457 0.54456 1.1653 0.1219

elev.std 0.20246 0.23698 0.8543 0.1965

...

Figure 4.1: Plots available to scampr model fits are equivalent to those provided by
spatstat. These display the residuals and fitted log-intensity across the quadrature of
the domain for our example model fit: scampr(pres∼elev.std, gorillas.df). Plotting
the model will produce both the residuals and fitted intensity. Individual plots may be
selected using the argument which. Residuals are discussed in Section 4.4.

We find a small, positive fixed effect of elevation on gorilla nesting location — per-

haps unsurprisingly, we might infer that gorillas tend to prefer to nest at higher ele-

vations (though the effect is not significant, p = 0.2). Figure 4.1 by default presents a

smoothed plot of residuals over the model quadrature points (as quadrats of≈ 800m2
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in the gorilla data example) along the lines of that produced in the spatstat pack-

age (Turner and Baddeley, 2005), and a map of predicted (log-)intensity. Residuals

are computed in each quadrat by comparing the observed number of presences to

the number expected within it, then spatially smoothed, to look for regions where

there are substantially more or less presence points than expected. In Figure 4.1

(left panel) we can see a clustering of positive residuals just off center, toward the

right of the region, suggesting we see slightly more presence points here than the fit-

ted intensity would suggest. However, we note that the magnitude of these (indeed

all residuals for this model) are very small indicating that the estimated intensity is

closely fitted to the data.

The scampr function interfaces with the likelihood-based toolkit with S3 generic

functions logLik(), AIC() and confint(), as well as, residuals(), coef() and

vcov(). Given it only takes seconds to fit, there is also scope for bootstrap methods

via simulate(). S3 is the most commonly used object oriented system in R (Wick-

ham, 2019), and is used in many common regression-style functions and packages.

This aims to make it easier for users to employ similar methods to different models,

because the same function can be called irrespective of the type of model object it

is being applied to.

Fitting the IPP to the gorilla dataset, we find that AIC is substantially larger than

for the LGCP model:

# additionally fit an IPP to the data

ipp_scampr <- scampr(pres ~ elev.std, data=gorillas.df,

model.type="ipp")

# compare the AIC for each model

AIC(ipp_scampr, lgcp_scampr)

model AIC

1 ipp_scampr -3535.194

2 lgcp_scampr -4679.974

This suggests lack-of-fit for the Poisson model, which was expected given other
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diagnostics checked previously (Figure 1.2).

4.3 Integrated Data Models

In ecology, when constructing a species distribution model, sometimes data are

available from multiple sources and it is of interest to combine them to construct

a single joint model, in order to better estimate the environmental response of the

target species. The scampr package can fit such models in the case where we have

presence/absence data as well as a point pattern, and the two data sources are

assumed independent conditional on a shared latent field, as in Chapter 3.

As well as observing the point process Sn as previously, we now additionally observe

binary responses y1, . . . , ynsurvey , where each yi is observed at spatial location sPAi

and comes from a Bernoulli random variables with mean µ(sPAi ).

As in Chapter 3, the joint model being fitted is

log λ (s) = X (s)β +Z (s)u+B (s) τ

log [− log (1− µ (s))] = X (s)β +Z (s)u
(4.4)

where λ is the intensity that generates the presence-only data and µ(s) is the proba-

bility of presence if we were to sample presence/absence data at location s. That is,

we model both data sources as the same function of environmental variables X(s)

and missing covariates Z(s)u, but we assume bias in the presence-only pattern that

is a log-linear function of measured bias predictors B(s). This model extends the

work of Fithian et al. (2015) to include a shared latent field to account for ad-

ditional spatial dependence between data sources that is induced by, say, missing

environmental covariates. See also, Simmonds et al. (2020) for a similarly derived

model.

To fit the integrated data model using presence-only and presence/absence data,

we can use scampr() but need to specify two additional arguments: the pres-

ence/absence dataset (pa.data) and a formula for the presence/absence model

(pa.formula). We illustrate using one of several species of flora found in the Greater
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Blue Mountains World Heritage Area, available in the scampr package as a list object

labelled flora.

# get the presence-only data for species "sp2"

po_data <- rbind(flora$po$sp2, flora$quad)

# get the presence/absence data

pa_data <- flora$pa[ , c("sp2","x","y","MNT","MXT")]

head(pa_data)

sp2 x y MNT MXT

176 0 294.225 6472.975 -0.1581680 1.1590720

3652 0 244.898 6261.929 -0.4829140 -0.6964201

3653 0 245.485 6249.000 -0.3205410 0.4374917

3654 0 246.440 6254.260 -0.5370383 -0.9541274

8199 0 246.510 6129.448 0.8701941 -0.4902544

8200 0 246.820 6129.407 0.8701941 -0.4902544

# set up a simple basis to approx. the GRF,

# with 11 nodes along longest edge of domain

bfs <- simple_basis(11, po_data)

# fit the combined data model

combined_mod <- scampr(pres ~ MNT*MXT + I(MXT^2) + I(MNT^2) +

D.Urb + D.Main, po_data,

pa.formula = sp2 ~ MNT*MXT + I(MXT^2) + I(MNT^2),

pa.data = pa_data, basis.functions = bfs)

In the above, we model the distribution of a particular species (sp2) against a

second order polynomial of average annual minimum (MNT) and maximum (MXT)

temperatures — these are the shared X in Equation (4.4). For the presence-only

biasing terms (B in Equation 4.4) we include distances to main road (D.Main) and
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urban areas (D.Urb). The presence/quadrature identifier is again pres, and it is

stored in the presence-only dataset, po_data. The binary response is given by sp2,

and it is stored in the presence/absence dataset pa_data. All of the predictors found

in pa.formula must also be found in the original presence-only formula. This is

because the integrated data model assumes that the datasets arise from the same

process, except the presence-only data is thinned by B (s) τ . The models fitted

and compared above do not use defaults for the basis functions, instead these are

supplied by the object bfs — this will be covered in Section 4.5.1.

Below we compare the output from this integrated data model to what we would

get from modelling the presence-only data only:

# fit the presence-only data LGCP

po_mod <- scampr(pres ~ MNT*MXT + I(MXT^2) + I(MNT^2) +D.Urb + D.Main,

po_data, basis.functions=bfs)

summary(po_mod)

Model Type: Log-Gaussian Cox process - Variational Approx.

Formula: pres ~ MNT * MXT + I(MXT^2) + I(MNT^2) + D.Urb + D.Main

AIC: 816.2181 approx. marginal logLik: -399.109

Basis functions per res. 88

Fixed Effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 14.62357 8.61428 1.6976 0.0447920 *

MNT 13.02200 6.24574 2.0849 0.0185373 *

MXT -4.25134 5.96853 -0.7123 0.2381421

I(MXT^2) -6.10353 2.22273 -2.7460 0.0030167 **

I(MNT^2) -8.89611 2.76458 -3.2179 0.0006457 ***

D.Urb 1.22839 0.79160 1.5518 0.0603567 .

D.Main 0.03878 0.75167 0.0516 0.4794272

MNT:MXT 9.55775 4.71357 2.0277 0.0212950 *

---
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Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

---

Spatial Random Effects:

Posterior Means per Spatial Resolution(s):

Min. 1st Qu. Median Mean 3rd Qu. Max.

1 -290 -216 -153 -130 -35 66

Prior Variance(s):

res. 1

3.1e+04

#compare to integrated data model:

summary(combined_mod)

Model Type: Combined data model

w. spatially correlated errors - Laplace approx.

Formula: pres ~ MNT + MXT + D.Urb + D.Main

|&| sp2 ~ MNT + MXT

AIC: 977.8951 approx. marginal logLik: -477.9476

Basis functions per res. 88

Fixed Effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.11457 1.49327 -4.0947 2.113e-05 ***

MNT 4.46402 1.68201 2.6540 0.003977 **

MXT -2.17235 1.31521 -1.6517 0.049297 *

I(MXT^2) -2.27112 0.55188 -4.1152 1.934e-05 ***

I(MNT^2) -2.98853 0.87492 -3.4158 0.000318 ***

MNT:MXT 3.39893 1.17089 2.9029 0.001849 **

(Bias Intercept) -3.82164 0.31067 -12.3013 < 2.2e-16 ***

D.Urb -0.67781 0.45309 -1.4960 0.067330 .

D.Main 0.46430 0.33126 1.4016 0.080517 .

---
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Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

---

Spatial Random Effects:

Posterior Means per Spatial Resolution(s):

Min. 1st Qu. Median Mean 3rd Qu. Max.

1 -7.3 -0.51 -0.0098 -0.088 -8.5e-07 7.5

Prior Variance(s):

res. 1

19

In the integrated data model, all coefficients for temperature are estimated jointly

across the presence/absence data and the presence-only data, which has led to

smaller standard errors on these terms as compared to fitting a model to the

presence-only data alone (po.mod). But even in the integrated data model, the

bias predictors (D.Urb and D.Main) are still estimated from just the presence-only

data, so for these coefficients there is less change in estimates of uncertainty across

model fits.

The marginal likelihood of the integrated data model is estimated using a Laplace ap-

proximation (model.type="laplace"). At this stage, "variational" model types

are not permitted for models involving presence/absence data (see Section 3.6). We

could also fit an integrated data model without latent effects (here equivalent to the

model of Fithian et al., 2015, for a single species) by setting model.type = "ipp".

Users can also fit a model to just the presence/absence data, in the form of a binary

regression with a complementary log-log link function (with or without spatial latent

effects) by omitting the original formula and data arguments from the function.

This is done in the example below to create pa_mod. Most functionality described

earlier for scampr point process models are also available for integrated data models,

with additional residuals and fitted values available for the presence/absence data

component.

# fit the presence/absence data binary regression

pa_mod <- scampr(pa.formula = sp2 ~ MNT*MXT + I(MXT^2) + I(MNT^2),
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pa.data=pa_data, basis.functions=bfs)

# compare the likelihoods:

cbind(Separate = logLik(po_mod) + logLik(pa_mod),

Combined = logLik(combined_mod))

Separate Combined

[1,] -633.7554 -477.9476

In the example above we find the combined data model achieves a higher fitted

likelihood than that achieved modelling the datasets separately. However, this is

not always the case. As we saw in Section 3.5, properly accounting for presence-

only bias is challenging, but failure to adequately do so can mean integrated data

models actually perform worse than individual data models.

4.4 Model Diagnostics and Inference

Formal model diagnostics for point process models are somewhat limited (see for

example Baddeley et al., 2011). Models fitted in spatstat include residuals as

described in Baddeley et al. (2005) and subsequently Baddeley et al. (2013). We have

written code to also compute these residuals for point process models fitted using

scampr, accessible via the generic function residuals(). Options include: raw,

inverse and pearson. Raw residuals are unity at presence points and at quadrature

points they are −λ̂ (si)wi where as previously wi is the quadrat size. Inverse and

Pearson residuals then scale these according to the fitted intensity and square-root

of the fitted intensity respectively. These definitions of residuals are derived from

signal processing and survival analysis (i.e. one dimensional point processes in time)

and exploit the idea of observed minus fitted from the raw residual process: N (D)−∫
D λ̂ (t) dt (Baddeley et al., 2005). To plot residuals, we then compute a quadrat-level

residual by summing all residuals that fall within it (for its quadrature point, plus

any presence points in the quadrat). We then smooth the resulting residual surface

using image.smooth() from the fields package (Nychka et al., 2017) — see, e.g.

Figure 4.1 (left panel) for raw residuals. For the presence/absence component of an
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integrated data model, the raw residuals are simply yi− µ̂i at each of the sPAi survey

sites for i = 1, . . . , nsurvey and are accessed by setting the argument data.type ==

"pa" within residuals().

Perhaps the most commonly used summary statistic for point process models is

Ripley’s K function (Ripley, 1977) as well as its inhomogeneous extension (Baddeley

et al., 2000). The inhomogeneous K function can be used to diagnose clustering or

inhibition between points (Baddeley et al., 2011). This is done by simulating point

patterns from a model’s fitted intensity and comparing the simulated and observed K

functions. Näıve simulation envelopes, constructed by calculating critical quantiles

in a pointwise fashion, are difficult to interpret because they only offer pointwise

control of Type I error. A better solution is to construct global confidence bands

that account for the functional nature of the data (Myllymäki et al., 2017), to ensure

for example that if model assumptions are satisfied, then 95% of the time, sample K

functions will fall entirely within their 95% confidence bands. In the scampr package,

the function kfunc_envelopes() is used to construct global simulation envelopes

around an inhomogeneous K function of a scampr model fit. Global envelopes are

constructed using the GET package (Myllymäki and Mrkvička, 2019).

Examples of this, testing the IPP and LGCP model fits to the gorilla nesting

data, are shown in Figure 4.2. An individual inhomogenous K function is calcu-

lated for a scampr model via the function kfunc() which acts as a wrapper for

spatstat::Kinhom(). kfunc_envelopes() uses this and the generic simulate()

which simulates point patterns from any fitted scampr point process model. Note

however that simulation requires knowledge of the values of predictors all over the

spatial domain D. Hence quadrature points need to be sufficiently dense that they

adequately characterise the domain to simulate from, or an additional argument

domain.data is needed — a data frame containing a dense set of coordinates and

formula terms over the entire domain of interest. The simulate() function in turn

employs the generic predict() which predicts a scampr model’s (log-)intensity at

locations provided in the argument newdata.

As a scampr model is fitted using maximum (albeit approximate) likelihood, we

can employ likelihood ratio testing and information criteria. Components for these
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Figure 4.2: These are the resulting global envelope tests of inhomogeneous K functions
from kfunc_envelope(ipp_scampr) (top panel) and kfunc_envelope(lgcp_simple)

(bottom panel). There is strong evidence to suggest that there is additional clustering
present beyond that which the IPP model can account for, since the observed K function
exceeds the simulated bounds (top panel) by a considerable margin. There is no such
evidence for the LGCP model (bottom panel).

are accessed with generic functions logLik() and AIC() respectively. We can use

this to, for example, examine changes in likelihood across various configurations of

basis functions to assess the adequacy of the approximated latent field structure

— this is explored further in Section 4.5.1. Additionally, to estimate the variance-

covariance matrix of the parameter estimators, scampr uses the Hessian matrix

from the (approximate) marginal likelihood. With automatic differentiation provid-

ing exact derivatives, these are fast and easy to compute. Confidence intervals on

parameters of a model can be computed using generic function confint(), which

constructs Wald intervals.

confint(lgcp_scampr)
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Table 4.1: The defaults for arguments in the scampr model function, including reasoning.
For basis.functions the default is NULL, in which case scampr uses the default basis
functions assigned by FRK::auto_basis() with max.basis equal to one quarter of the
number of observations in the data (unless basis functions are not needed, i.e. when
model.type = "ipp").

Argument Default Reasoning
formula

data

pa.formula

pa.data

coord.names c("x", "y") NA
quad.weights.name "quad.size" NA

basis.functions NULL see caption
model.type "variational" fast/stable model for LGCP

sparse TRUE exploits sparse matrix operations
se TRUE calculates standard errors

starting.pars NULL parameters (θ) start at 0 (or 1, ∀θ > 0)
subset NULL includes entire dataset

2.5 % 97.5 %

(Intercept) -4.327365e-01 1.701884421

elev.std -2.620211e-01 0.666937194

VA Posterior Mean (bf 1.1) -1.799269e-03 0.001793999

VA Posterior Mean (bf 1.2) -1.778747e-03 0.001780693

VA Posterior Mean (bf 1.3) -1.779502e-03 0.001781753

VA Posterior Mean (bf 1.4) -1.776949e-03 0.001777337

VA Posterior Mean (bf 1.5) -1.777244e-03 0.001776950

VA Posterior Mean (bf 1.6) -1.795568e-03 0.001801060

VA Posterior Mean (bf 1.7) -1.779544e-03 0.001781810

VA Posterior Mean (bf 1.8) -1.799065e-03 0.001805023

...

4.5 Fine Tuning scampr()

In this section we go into the details on the key step of choosing the basis function

configuration for the latent field, and advice on improving computation speed.
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4.5.1 Basis Functions

To enable fast, likelihood-based fitting of LGCP, scampr models approximate the

GRF with a linear combination of basis functions (Z (s) in Equations 4.1 and 4.4)

within the framework of Cressie and Johannesson (2008), called fixed rank krig-

ing (FRK). This framework is available in R as a package of the same name, FRK

(Zammit-Mangion and Cressie, 2017). The scampr function is designed to interface

with FRK by using the suite of basis functions available to FRK::auto_basis(), de-

faulting to a maximum number of basis functions (max.basis) equal to one quarter

of the number of presence locations in the model. Rather than using this default con-

figuration, any other set of basis functions could be constructed using the FRK pack-

age (of class "Basis") and used in scampr() via the argument basis.functions.

All available options for basis functions within the FRK package are shown in Fig-

ure 4.3. These functions can be calculated over different topologies including a line,

a 2D plane or a spherical manifold, see Zammit-Mangion and Cressie (2017) for

details.

In Chapter 2, we found that the best choices of basis function configuration had

few or no estimable parameters, and only local support such that Z is sparse. Such

basis function configurations were fast to fit with little detriment to statistical effi-

ciency (see Sections 2.3.2 and 2.5). For this reason we recommend the use of locally

supported, bi-square basis functions (Equation 2.8). Even though the FRK package

offers this as an option, we have found some of the defaults to be less useful in the

context of scampr LGCP models, perhaps because fitting a LGCP is not the primary

intended use case for the FRK package. In particular, the defaults seem to choose

more basis functions, at more spatial resolutions, than is optimal for our models.

For example, when fitting the integrated data model to flora data in Section 4.3, the

default FRK basis functions selected so many basis functions that the Hessian of the

model fit was singular. The issue is that the number of basis functions chosen by FRK

is informed by the number of quadrature points (which was large, q ≈ 86, 000, for

the flora data) as well as based on the number of presence points. Instead, in Sec-

tion 4.3 we used a purpose written simple basis option for basis function selection,

which uses a regular grid of locally supported, bi-squared basis functions.
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Figure 4.3: Basis functions available to scampr via the FRK package. These are (from top to
bottom) local bi-square, Gaussian, Exponential and Matern (with smoothness parameter
3/2) — each using FRK default values for range parameters. Bi-square basis functions
facilitate sparse matrices that lead to the fastest computation times.

Simple basis functions are supplied to the scampr() model function via the argu-

ment basis.functions = simple_basis(). This creates a data.frame (of class

"bf.df") that describes a single resolution of regularly spaced, local bi-square func-

tions. At this stage these are only compatible within 2D Euclidean geometry. The

argument nodes.on.long.edge gives the number of nodes to place along the widest

axis of the data provided — compared to FRK::auto_basis() this offers greater con-

trol over the number of basis functions used. The default radius of the functions is

set to the diagonal distance between nodes to ensure there are no gaps in coverage

of the domain. This also ties the choice of the number of basis functions, k, to their

radius and effectively means that choosing k is a proxy for choosing the range of

effect of the latent field — see Section 2.3.2.

The scampr package does not permit users to supply a custom-built matrix describ-

ing the basis functions at both the presence points and quadrature points because
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some of the functions we may want to apply to scampr objects in the package (such

as simulate()) will require calculation of basis function values at new locations in

the domain. Instead, users must provide details of the basis functions themselves

— currently via either FRK::auto_basis() or simple_basis().

In the gorilla nesting data example, looking at the output we see that there may be

an opportunity to improve upon the default method of basis function selection:

summary(lgcp_scampr)

...

Spatial Random Effects:

Posterior Means per Spatial Resolution(s):

Min. 1st Qu. Median Mean 3rd Qu. Max.

1 -3.5e-06 1.1e-07 1.1e-06 1.0e-06 3e-06 3.2e-06

2 -1.9e+00 -5.7e-01 -3.0e-01 -4.3e-02 3e-01 2.9e+00

Prior Variance(s):

res. 1 res. 2

7.4e-07 1.6

The object lgcp_scampr, fitted using FRK::auto_basis() under default settings,

has fitted basis functions at two resolutions, called res. 1 and res. 2 in the

summary() output. Note however that there is evidence that including basis func-

tions at the first spatial resolution are unnecessary, since its variance component is

nearly computationally zero. Further inspection of the original output in Section 4.2

shows there were 12 basis functions in this first resolution, and 99 in the second.

These are attempting to capture difference spatial scales of latent effect. The sec-

ond resolution of basis functions has a variance component of 1.6, meaning that this

finer scale configuration is making the bulk contribution to the estimated intensity

surface. We can instead set up a simple basis, and do so by placing nine evenly

spaced functions across the widest axis of the data as in the code below. We see an

improved AIC when using this basis configuration:

# set up the basis functions
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Figure 4.4: The results from simple_basis_search(ipp_scampr) for the gorilla nesting
point process model example. These show the fitted log-likelihood and AIC over increas-
ingly dense regular grids of basis functions, used to approximate the latent field in the
LGCP. Over this range of basis function configurations we found the likelihood does not
significantly change (Likelihood Ratio < 10, or similar for AIC) once we used 60−80 basis
functions.

bfs <- simple_basis(nodes.on.long.edge=9, data=gorillas.df)

lgcp_simple <- scampr(pres ~ elev.std, data=gorillas.df,

basis.functions = bfs)

AIC(lgcp_scampr, lgcp_simple)

model AIC

1 lgcp_scampr -4679.974

2 lgcp_simple -4699.697

Choosing an appropriate number of basis functions to approximate the latent ran-

dom field can be challenging, however the computational speed of scampr mod-

els that use simple_basis() allows us to fit many configurations and compare a
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likelihood-based metric. The function simple_basis_search() allows the user to

fit increasingly dense regular grids of local bi-square basis functions as created by

simple_basis(). Fitting this many models would be computationally burdensome

using previous software, but is feasible here given our rapid model fits.

As an example, we illustrated that the dual resolution of basis functions from the FRK

default may not have been suitable for the gorilla nesting LGCP model. We arrived

at the basis configuration used in lgcp_simple (i.e. nodes.on.long.edge=9) by

performing such a simple basis search. The results are found in Figure 4.4 and

suggest that far fewer basis functions (60-80) achieve the highest likelihood and

lowest AIC.

# model fits on increasing # basis fns

lls <- simple_basis_search(ipp_scampr, max.basis.functions=100)

[1] "Completed fit with 0 basis functions (IPP)"

[1] "Completed fit with 2 basis functions"

[1] "Completed fit with 6 basis functions"

[1] "Completed fit with 12 basis functions"

[1] "Completed fit with 20 basis functions"

[1] "Completed fit with 30 basis functions"

[1] "Completed fit with 42 basis functions"

[1] "Completed fit with 48 basis functions"

[1] "Completed fit with 63 basis functions"

[1] "Completed fit with 80 basis functions"

[1] "Completed fit with 99 basis functions"

lls

nodes.on.long.edge bf loglik aic

1 1 0 1769.597 -3535.194

2 2 2 2040.920 -4073.841

3 3 6 2279.875 -4551.749

4 4 12 2319.031 -4630.061

5 5 20 2340.060 -4672.120

6 6 30 2344.037 -4680.074
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7 7 42 2350.533 -4693.067

8 8 48 2341.700 -4675.401

9 9 63 2362.718 -4717.437

10 10 80 2363.460 -4718.920

11 11 99 2351.468 -4694.937

Users can also perform spatial cross-validation, calculating out-of-sample predicted

likelihoods (Equations 3.4 and 3.5), by adding to their simple_basis_search call

the argument po.fold.id (and also pa.fold.id for integrated data models) — this

could be used to do analyses along the lines of Figure 2.7b and Figure 3.6. These

arguments are required as integer or factor vectors, and must be the same length as

the data, describing the CV fold into which each location falls.

4.5.2 Speed Control

A key advantage of scampr is fast computation time, but there are a number of

decisions that can be made in model-fitting that can have considerable implications

for computational efficiency.

The first decision to make that has speed implications is choice of number and

type of basis functions, discussed above. Computation speed slows down as the

number of basis functions increases, and in cases of extreme overfitting, can become

unstable. As previously, using choices of basis functions that encourage sparseness

also encourages computational efficiency.

The second decision with speed implications is how to approximate the marginal

likelihood, which can be controlled via the argument model.type. As previously

demonstrated, when this is set to "ipp", scampr() fits a model without latent

effects. The IPP is by far the fastest model to fit, because the model involves

no random effects and its likelihood does not involve an intractable marginalising

integral, but it often fails to account for clustering in point patterns (as seen in

Chapters 2 and 3). The other two options are "laplace" or "variational" —

these are covered in detail in Section 2.3.1. The default (for LGCP models) is to

use a variational approximation as this tends to be more stable and much faster to
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calculate. Models using a Laplace approximation can fail due to overfitting (e.g.

Table 2.1 and Figure 2.7), but in some instances can yield more accurate inferences

(see Figures 2.4 and 2.5). As mentioned in Section 4.3, at this stage, the only option

for implementing spatial random effects for an integrated data model is via the

"laplace" option.

The third decision to make with speed implications is whether or not to store basis

functions as a sparse matrix. This is specified via the argument sparse, which de-

faults to TRUE. Using sparse matrices is appropriate when using local bi-square basis

functions, however in some other instances, e.g. Gaussian kernels with a long enough

correlation range, storing these in sparse matrices actually slows down computation

time.

The final decision that can have speed implications is choice of starting values for

parameters. If good starting values are given, the journey to the maximum likelihood

estimate will be much faster, and often, more likely to avoid problematic areas of the

parameter space. This can be controlled via the argument starting.pars which

will accept a named list of parameter values or another scampr model. We find

the latter particularly useful, e.g. a user can quickly fit an IPP and then pass this

model to the LGCP as starting values. Similarly, a user might initially fit a LGCP

using VA but then use this solution as starting values for a fit using the Laplace

approximation, to overcome potential Laplace issues with slowness and instability,

for large models.

In the following we demonstrate some of the computational speed differences de-

scribed in this section:

# fit a scampr model using dense matrix operations

lgcp_simple_dense <- scampr(pres ~ elev.std, gorillas.df,

basis.functions=bfs, sparse=F)

# fit a Laplace version of the model

lgcp_simple_laplace <- scampr(pres ~ elev.std, gorillas.df,

model.type="laplace", basis.functions=bfs)

# fit a Laplace version of the model w. starting parameters
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lgcp_simple_laplace_warm_start_pars <- scampr(pres ~ elev.std,

gorillas.df, model.type="laplace", starting.pars=lgcp_simple,

basis.functions=bfs)

# compare the timing for all the models (in seconds)

ipp_scampr$cpu

user system elapsed

0.04 0.00 0.06

lgcp_scampr$cpu

user system elapsed

13.59 1.39 15.11

lgcp_simple$cpu

user system elapsed

2.67 0.31 2.99

lgcp_simple_dense$cpu

user system elapsed

3.04 0.44 3.49

lgcp_simple_laplace$cpu

user system elapsed

6.90 0.42 7.34

lgcp_simple_laplace_warm_start_pars$cpu

user system elapsed

4.58 0.34 4.92

4.6 Discussion

This chapter has introduced and illustrated the use of scampr — an R package

that can be used to quickly fit a variety of latent effect models involving presence-

only data (or more generally point patterns) based on LGCP. While other software

exists to fit LGCP regression models, many involve long computation times and are

not easy to use. Further, by using a maximum likelihood framework, we are able

to access standard tools for likelihood-based inference and model selection. The
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scampr package was also designed to maintain syntactic simplicity, similar in form

to other popular regression modelling software. The speed advantages enable the

use of diagnostic tools, exploratory fitting and cross validation procedures that were

previously computationally prohibitive. In addition, it becomes computationally

feasible to fit more complex models, such as incorporating presence/absence data

into joint models capable of sharing latent effects.

There are plans to extend some of the functionality of scampr beyond that available

at the time of writing. Models can accommodate data on a plane, line or sphere via

the use of basis functions from FRK (Zammit-Mangion and Cressie, 2017). However,

models using simple_basis() do not share this functionality and are currently

limited to 2D Euclidean geometry. So too are the plotting functions: plot() and

image(). Diagnosing model validity is also an area that could be improved for

point process models (Baddeley et al., 2011). Beyond the residuals available to

scampr models (as per Turner and Baddeley, 2005), randomised quantile residuals

(Dunn and Smyth, 1996) would be an appropriate extension given the discrete nature

of point patterns, and could be computed (conditionally on a point estimate of

the latent field) directly from the Poisson cumulative distribution function. The

R package DHARMa (Hartig, 2017, unpublished) uses simulation to estimate these

residuals, and could be used if it were of interest to compute residuals that accounted

for uncertainty in estimates of ξ(s). While these extensions would provide useful

functionality to the scampr package, in its current form the package should assist

researchers in fitting complex spatial models to their data quickly and easily. We

hope this encourages greater uptake of spatial models that include latent fields to

guard against model misspecification.
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5.1 Summary

Log-Gaussian Cox processes are a useful framework for modelling point patterns,

as the latent Gaussian random field provides a way to induce spatial correlation

beyond that accounted for by predictor variables included in the model. This ad-

ditional spatial correlation is important because presence-only data often exhibit

further clustering (e.g. see Figures 1.2 and 1.6) to that explained by environmental

predictors, largely due to model misspecification. In particular, some key phenom-

ena driving the species’ spatial distribution are not routinely included in models,

such as fine-scale environmental variation, dispersal and biotic effects (Elith and

Leathwick, 2009; McInerny and Purves, 2011; Wisz et al., 2013). LGCP models

have sometimes been used in the ecological literature (e.g. using methods proposed

by Taylor et al., 2013; Simpson et al., 2016; Bachl et al., 2019), but computation

times have previously been lengthy and a barrier to more widespread use. In this

thesis we have proposed a novel methodology for approximate fitting of LGCP, or-

ders of magnitude faster than existing methods (specifically comparing to INLA, as

in Rue et al., 2009).

The methodology proposed in this thesis enables the use of procedures important

to the model-fitting process that were previously inaccessible, including diagnostics

tools, model selection and validation. For example, because we have fast tools to

fit a LGCP, simulation envelopes (as in Figures 1.2 and 1.6) can be used in model

checking, which would be computationally prohibitive using other model-fitting algo-

rithms. We were able to fit many models with different numbers (Figures 2.7 and 3.6)

and types (Table 2.3 and Figure 4.3) of basis functions to guide decisions made in

tuning our model. Additionally, the methodology proposed in this thesis uses a

maximum likelihood framework, giving access to likelihood-based statistical tools

such as information criteria (Section 4.5.1), or likelihood ratio testing for inference

from models (Figure 4.4).

The fast computation times for our methodology open up the potential for LGCP to

be used in more complex settings, such as for data integration in species distribution

modelling. Data integration is a popular technique in the ecological literature for
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combining sources of data (Dorazio, 2014; Fithian et al., 2015; Koshkina et al.,

2017; Fletcher Jr et al., 2019). However, little attention has been given to spatial

dependence between the data sources, again arising from missing or unmeasured

predictors. We show that a latent field shared across data sources can account for

this — in a LGCP-style extension of the work of Fithian et al. (2015). However,

we found that if bias in presence-only data is not properly accounted for using

measured predictors, data integration can actually be detrimental to SDMs — a

similar finding to Simmonds et al. (2020). In our application to real data, we

tended to find no improvement to SDMs when integrating presence-only data into a

model for systematically collected data. We note that beyond the simulation setting

(e.g. Dorazio, 2014; Fithian et al., 2015; Simmonds et al., 2020) it is not common

to see evidence of improvement in the literature for real data applications (although

see Koshkina et al., 2017). Conn et al. (2017), exploring the related problem of

preferential sampling, had a similar experience. We suspect that the issue here is

that models for the bias in presence-only data tend to be inadequate.

The final contribution of the thesis is the scampr package, freely available software

in R (https://github.com/ElliotDovers/scampr), to fit LGCP regression modelling

on point patterns and integrated data models that combine point patterns with

presence/absence data. This builds upon the functionality of Turner and Baddeley

(2005) in the spatstat package for point process models, permitting novel use of

LGCP models due to fast computation times. This is facilitated by access to fast

optimisation tools via the TMB package (Kristensen et al., 2016) and reduced rank

estimation of spatial covariance via the FRK package (Zammit-Mangion and Cressie,

2017).

5.2 Future Research

We see several key, open questions that have been raised during the completion of

this thesis which we highlight here.

We previously discussed the delicacy with which spatial confounding must be treated

when adding spatial latent effects in Chapter 2. In particular, we found in simula-
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tions that recovering the true model coefficients is most difficult when the latent field

and covariates are acting at similar spatial scales. Likewise, when we set up basis

functions to approximate the latent field, correlation between these and covariates

in the model can also hinder coefficient recovery. Although our fast-fitting method

makes exploratory analysis of models with different latent specifications less of a

computational challenge, problematic spatial confounding can still arise. Hodges

and Reich (2010) demonstrate this applies generally for linear models with spatially

correlated errors, and propose so-called restricted spatial regression. This addresses

collinearity by transforming variables relative to each other, such that the set of

model predictors is orthogonal. A similar approach could be adopted in setting up

basis functions to approximate the latent field of a LGCP model here. We found in

Section 2.4 that while spatial confounding tended to make inference on, and esti-

mation of, fixed environmental effects difficult, it had little effect on the predictive

power of the model. Hence we suggest that the issue of how spatial confounding is

handled should come down to the purpose of the analysis. If inference about the

relationship of the point pattern to the environment is the primary aim then care

must be taken. However, if the goal is prediction then a researcher need not worry

because there is no need to tease apart contributions from fixed effects vs the latent

field.

We have seen that a key consideration when modelling presence-only data is handling

bias, and that when this is not appropriately accounted for, integrated data models

can actually perform worse than if presence-only data was omitted (Section 3.5).

One opportunity to improve our bias modelling is to estimate the bias in presence-

only data simultaneously for multiple species using a joint species distribution model

(JSDM).

Jointly modelling multiple species in the form of JSDMs allow researchers to estimate

the distributions of species simultaneously and account for their co-occurrence, in

addition to environmental response (Pollock et al., 2014) — a popular approach in

the ecological literature. In our current context, if we are able to assume that biases

found in presence-only data are constant across different taxa, it may be possible

to untangle the two sources of additional clustering mentioned above and, in turn,
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address the shortcomings of data integration identified here. Indeed Fithian et al.

(2015) do this but in an inhomogeneous Poisson process setting, without a latent field

to account for additional clustering or spatial dependence between data sources. A

logical extension to the current body of work would be to fit a multi-species model

with a common latent Gaussian field, shared across species, to capture missing

predictors in the model for observer bias. Such a model assumes observer bias is

not a function of species, which is reasonable in many instances – observer bias is

primarily a property of the observer (e.g. accessibility) rather than being a property

of the species being modelled. Consider the following extension of Equation (3.3)

where for species j = 1, . . . , nspecies the intensities for the presence-only data (λ) and

the mean for the presence/absence data (µ) are given by

log λj (s) = X (s)βj +Z1 (s)uj +Z2 (s) τ

log [− log (1− µj (s))] = X (s)βj +Z1 (s)uj.

where Z1 (s)uj approximates the latent field that handles the spatial dependence

between data sources for species j and Z2 (s) τ approximates the latent field han-

dling the presence-only bias, assumed to be constant across species. Further, we

could induce correlation across species by assuming {ur,j}nspecies

j=1 ∼ N (0,Σspecies) for

the rth spatial random effect. This model could be particularly useful in modelling

rare species, for which there is little information with which to estimate observer

bias effects, but borrowing strength from more abundant species (Ovaskainen and

Soininen, 2011; Pollock et al., 2014) in a joint model could allow us to appropriately

account for this bias.

A model along the lines of the above has not been fitted before – integrated species

distribution models are already computationally challenging, a multi-species version

very much more so. Introducing correlation across species via correlated uj is the

main difficulty. But the computational advances in LGCP modelling in this thesis,

combined with recent innovations in fitting JSDMs (Niku et al., 2019) make a com-

bined data JSDM computationally feasible. In the multi-species setting there are

also questions to consider around how modelling aims inform performance metrics
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(Wilkinson et al., 2021), and the issue of imperfect detection (Tobler et al., 2019)

which could be quantified using multiple site visits.

Finally, we believe there are some functional extensions to the methodologies de-

scribed in this thesis that may be important to future research.

Currently we have assumed all data used is static in time, however, spatio-temporal

models would seem important to understanding species response in a changing en-

vironment, and are a relatively straight-forward extension. Climate change is a

necessary consideration in monitoring and managing populations of species into the

future (Parmesan, 2006) so treating data as temporally static when fitting a SDM

may not yield answers to important research questions. Likewise, assuming that

species’ response to the environment is static in time may not be reasonable. In the

current context, whether a temporal aspect is introduced into the model discretely

or as a continuous process would depend on how the dataset is structured. For ex-

ample, Zammit-Mangion et al. (2012) modelled conflict data using a discrete-time

series of continuous-space LGCPs, because conflict data is often logged discretely,

as the day of event rather than precise timing. In contrast, Shirota and Gelfand

(2017b) analysed crime events by considering time-of-day as continuous and cyclical.

Another functional extension, particular to the scampr package introduced in this

thesis, is to allow models to handle a spherical topology. This would permit use

for global datasets and should be a straight-forward extension. The FRK package

(Zammit-Mangion and Cressie, 2017) already permits this for the spatial basis func-

tions used by scampr. A secondary challenge would arise in adopting spherical

geometry for the elements of the package that are built upon the Euclidean func-

tionality within spatstat (Turner and Baddeley, 2005). This requires adopting to

the spherical domain procedures for interpolation, domain definition, and boundary

handling.

In providing a novel approach to quickly fitting LGCPs to point patterns; demon-

strating how this can be exploited for integrated data models in ecology; and sup-

plying software for researchers to easily implement these advances; we have set a

platform that can be built upon in numerous ways. We are excited to see where
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this goes and what can now be achieved with presence-only data in future ecological

research.
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Appendix A

Additional results for Chapter 2

A.1 Variational approximation to the proposed

rank-reduced, marginal, log-likelihood for a

LGCP Model

Consider point pattern Sn = {s1, . . . , sn} driven by LGCP with lnλ (s) = X (s)β+

Z (s)u (s), with the columns of X being the p predictors (along with corresponding

fixed effect coefficients β, for conciseness this may include an intercept, β0 with

X0 (s) = 1). The linear combination of k basis functions and random coefficients,

Z (s)u, approximates a latent Gaussian process so that the intensity of the LGCP is

stochastic, inheriting the randomness from u ∼ Nk (0,Σprior). To fit the LGCP in a

frequentist setting we wish to optimise the marginalised joint density (i.e. marginal

log-likelihood) given by

` (β) = log

∫
π (Sn,u) du

= log

∫
π (Sn|u) π (u) du

with respect to the fixed effects, β. Here we are using π as a transferable density

function, individual instances of which are distinguished by the function arguments.

We can get around intractability of the integral within these equations via variational

109
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approximation. The following is a derivation of the variational lower bound.

By definition

` (β) ≡ ln π (Sn)

Now we introduce the variational density over the k dimensional random vector u.

Call the density πVA and so we have that
∫
πVA (u) du = 1 and hence we can write

the log-likelihood as

` (β) = ln π (Sn) ·
∫
πVA (u) du

=

∫
πVA (u) lnπ (Sn) du

Now consider the conditional density of the random vector u, given the point pat-

tern, Sn and note that π(u|Sn)
π(u|Sn)

= 1. This allows us to write

∫
πVA (u) lnπ (Sn) du =

∫
πVA (u) ln

[
π (u|Sn)

π (u|Sn)
· π (Sn)

]
du

Next, since π (u|Sn) · π (Sn) = π (Sn,u) and noting that πVA(u)
πVA(u)

= 1, we can write

` (β) =

∫
πVA (u) ln

[
π (Sn,u)

π (u|Sn)
· πVA (u)

πVA (u)

]
du

=

∫
πVA (u) ln

(
π (Sn,u)

πVA (u)

)
+ πVA (u) ln

(
πVA (u)

π (u|Sn)

)
du

= `VA (β) +DKL [πVA (u) ||π (u|Sn)]

`VA (β) is the variational lower bound in Equation (2.5) as DKL [πVA (u) ||π (u|Sn)]

is the non-negative Kullback-Leibler (KL) divergence from the true (and unknown)

“posterior” distribution of u to the variational density πVA (u). This second term

will be close to zero provided πVA is close (in divergence) to the true posterior. The

first term is used as an approximate likelihood and is a lower bound for the full

likelihood. This we term the variational approximation to the (log-)likelihood or,

more concisely the VA likelihood.



A.1. VARIATIONAL APPROXIMATION FOR A LGCP MODEL 111

There are a variety of types of variational approximation, we use a parametric ap-

proach (Ormerod and Wand, 2010) and assume that u|Sn
πVA(·)∼ Nk (µ,Σ) and choose

parameters µ and Σ that simultaneously (with β) maximise `VA. Maximising `VA

with respect to variational parameters µ and Σ minimises the KL divergence be-

tween πVA (u) and π (u|Sn,β), that is, it finds parameters that make the variational

approximation πVA (u) as close as possible to the true posterior density of u (in KL

divergence).

The VA likelihood can be reexpressed as

`VA (β) =

∫
πVA (u) ln

(
π (Sn,u)

πVA (u)

)
du

=

∫
πVA (u) ln

(
π (Sn|u) · π (u)

πVA (u)

)
du (A.1)

where π (Sn|u) is probability density function of an IPP as in Equation (2.2) and

π (u) is the “prior” probability density function of u — we stated earlier that this

follows a zero-mean multivariate normal distribution (i.e. u ∼ Nk (0,Σprior)).

Next let EπVA
[·] denote the expectation with respect to the variational distribution

πVA (u) and let | · | denote the matrix determinant. Also note that

E
[
(x− v)TA (x− v)

]
= Tr (AΣ) + (mx − v)TA (mx − v)

for x ∼ N (mx,Σx) and v ∈ Rdim(x), A ∈ Rdim(x)×dim(x).
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We now show derivation of the form solution to Equation A.1:

`VA (β) = EπVA
[ln π (Sn|u)] + EπVA

[ln π (u)]− EπVA
[lnπVA (u)]

= EπVA
[ln π (Sn|u)]

+ EπVA

[
−k

2
ln (2π) +

1

2
ln |Σ−1prior| −

1

2
(u− 0)T Σ−1prior (u− 0)

]
− EπVA

[
−k

2
ln (2π) +

1

2
ln |Σ−1| − 1

2
(u− µ)T Σ−1 (u− µ)

]
= EπVA

[lnπ (Sn|u)]

���
���

−k
2

ln (2π) +
1

2
ln |Σ−1prior| −

1

2
EπVA

[
uTΣ−1prioru

]
�
���

��

+
k

2
ln (2π) − 1

2
ln |Σ−1|+ 1

2
EπVA

[
(u− µ)T Σ−1 (u− µ)

]
= EπVA

[ln π (Sn|u)]

+
1

2
ln |Σ−1prior| −

1

2
Tr
(
Σ−1priorΣ

)
− 1

2
µTΣ−1priorµ

− 1

2
ln |Σ−1|+ 1

2
Tr
(
Σ−1Σ

)
= EπVA

[lnπ (Sn|u)]

+
1

2
ln |Σ−1prior| −

1

2
Tr
(
Σ−1priorΣ

)
− 1

2
µTΣ−1priorµ

− 1

2
ln |Σ−1|+ 1

2
Tr (I)

= EπVA
[ln π (Sn|u)]

+
1

2
ln |Σ−1prior| −

1

2
Tr
(
Σ−1priorΣ

)
− 1

2
µTΣ−1priorµ−

1

2
ln |Σ−1|+ 1

2
k

The first term in the above involves the expectation of an inhomogeneous Poisson

process likelihood as in Equation (2.2) and is further approximated with numerical

quadrature, as in Equation (2.3). i.e.

ln π (Sn|u) ≈

{
n∑
i=1

X (si)β +Z (si)u

}
−

{
n+q∑
i=n+1

wi exp {X (si)β +Z (si)u}

}
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Hence the VA likelihood becomes

`VA (β) = EπVA

[
n∑
i=1

X (si)β +Z (si)u

]

− EπVA

[
n+q∑
i=n+1

wi exp {X (si)β +Z (si)u}

]

+
1

2
ln |Σ−1prior| −

1

2
Tr
(
Σ−1priorΣ

)
− 1

2
µTΣ−1priorµ−

1

2
ln |Σ−1|+ 1

2
k

=

{
n∑
i=1

X (si)β +Z (si) EπVA
[u]

}

−

{
n+q∑
i=n+1

wi exp {X (si)β}EπVA
[exp {Z (si)u}]

}

− 1

2

[
Tr
(
Σ−1priorΣ

)
+ µTΣ−1priorµ− ln |Σ−1priorΣ| − k

]

Since u|Sn
πVA∼ Nk (µ,Σ), we have EπVA

[u] = µ and, noting the moment generating

function of a multivariate Gaussian vector, we have EπVA
[exp {Z (s)u}] = Z (s)µ+

1
2
Z (s) ΣZ (s)T. So the VA likelihood (i.e. the variational approximation to the

marginal log-likelihood) is given by

`VA (β) =
n∑
i=1

X (si)β +Z (si)µ

−
n+q∑
i=n+1

wi exp

{
X (si)β +Z (si)µ+

1

2
Z (si) ΣZ (si)

T

}
− 1

2

[
Tr
(
Σ−1priorΣ

)
+ µTΣ−1priorµ− ln |Σ−1priorΣ| − k

]
(A.2)

It can be noted here that the maximum (variational) likelihood estimate of the prior

variance-covariance matrix, Σprior (or parameters that comprise it, as explored in

next paragraph), depends only on the variational parameters, µ and Σ. Hence we

can further simplify our likelihood by profiling. This will be true for all Gaussian VA

for which the prior distribution on the marginalised random variables is zero-mean

Gaussian.
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A.1.1 Constrained VA likelihood

To further simplify the VA likelihood we can place constraints on variance-covariance

matrices in Equation (A.2). During this thesis we variously tried unconstrained, spa-

tially structured (i.e. we used a Gaussian kernel) and diagonal versions of Σ and

Σprior. We found little difference between model fits that permit correlation between

the random coefficients and those that assume they are independent. Additionally,

assuming independence (i.e. that Σ and Σprior are diagonal) allows for great compu-

tational savings by avoiding the intense calculations involved in the log-determinants

in Equation (A.2). So we further simplify our VA likelihood by constraining the prior

distribution on the random coefficients to be u ∼ Nk
(
0, σ2

priorI
)
. As we are using

the approximation of the latent Gaussian field, ξ (s) ≈ Z (s)u this constraint is

effectively assuming that all of the spatial correlation in ξ is derived from the basis

functions, Z (s) (Cressie and Johannesson, 2008). Likewise, we assume that the

random coefficients are independent within the variational density, but permit each

a separate variance estimated from the data. i.e. u|Sn
πVA(·)∼ Nk (µ, Iσ2) where

σ2 = (σ2
1, . . . , σ

2
k)

T
. Implementing these constraints, Equation (A.2) becomes

`VA (β) =
n∑
i=1

X (si)β +Z (si)µ

−
n+q∑
i=n+1

wi exp

{
X (si)β +Z (si)µ+

1

2

k∑
r=1

Zr (si)
2 σ2

r

}

− 1

2

[
σ−2prior

k∑
r=1

σ2
r + σ−2prior

k∑
r=1

µ2
r − ln

(
k∏
r=1

σ−2priorσ
2
r

)
− k

]

=
n∑
i=1

X (si)β +Z (si)µ

−
n+q∑
i=n+1

wi exp

{
X (si)β +Z (si)µ+

1

2

k∑
r=1

Zr (si)
2 σ2

r

}

− 1

2
σ−2prior

[
k∑
r=1

(
σ2
r + µ2

r

)]
− k

2
lnσ−2prior −

1

2

[
k∑
r=1

lnσ2
r

]
+
k

2
(A.3)

In Section 2.3.2 we describe the use of multiple resolutions of basis functions. The

VA likelihood is similarly derived and simplified to include this type of basis function
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configuration when we permit each resolution, l, to have a common variance σ2
l;prior.

A.1.2 Profiled VA log-likelihood

The VA likelihood can be profiled with respect to the parameter(s) that describe

the variance and correlation structure on the random coefficients in their “prior”

distribution. The profiled maximum will be a function of the variational parameters,

the structure of which will depend on how we have specified the prior and variational

distributions. Here we derive the profile likelihood for the constrained version from

the previous section, i.e. we profile Equation (A.3) with respect to the inverse of the

“prior” variance, σ−2prior. Taking the derivative and looking for the maximum gives

∂

∂σ−2prior

`VA (β) =
∂

∂σ−2prior

{
−1

2
σ−2prior

[
k∑
r=1

(
σ2
r + µ2

r

)]
+
k

2
ln
(
σ−2prior

)}

= −1

2

[
k∑
r=1

(
σ2
r + µ2

r

)]
+

1

2

k

σ−2prior

So that the maximum likelihood estimate is

σ̂−2prior =

(
1

k

k∑
r=1

(
σ2
r + µ2

r

))−1

σ̂2
prior =

1

k

k∑
r=1

(
σ2
r + µ2

r

)
provided it exists (σ2

r > 0,∀r = 1, . . . , k ensures this). We see it is a maximum by

∂2

∂σ−2prior∂σ
−2
prior

`VA (β) =
∂

∂σ−2prior

{
k

2

(
σ−2prior

)−1}
= −k

(
σ−2prior

)−2
< 0

It can likewise be shown that if we have l = 1, . . . , nres. resolutions of basis func-

tions, each permitted a common prior variance σ2
l;prior then the maximum likelihood
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estimates for each resolution are

σ̂2
l;prior =

1

kl

kl∑
rl=1

(
σ2
rl

+ µ2
rl

)

where rl takes values r = kl−1 + 1, . . . , kl.

Plugging the single resolution result back into Equation (A.3) gives us the simplified

approximate log-likelihood

`VA (β) =
n∑
i=1

X (si)β +Z (si)µ

−
n+q∑
i=n+1

wi exp

{
X (si)β +Z (si)µ+

1

2

k∑
r=1

Zr (si)
2 σ2

r

}

− 1

2

[
k ln

(
1

k

k∑
r=1

σ2
r + µ2

r

)
−

k∑
r=1

lnσ2
r

]

=
n∑
i=1

X (si)β +Z (si)µ

−
n+q∑
i=n+1

wi exp

{
X (si)β +Z (si)µ+

1

2

k∑
r=1

Zr (si)
2 σ2

r

}

− 1

2

[
k∑
r=1

ln
σ̂2
prior

σ2
r

]
(A.4)

This is the one of the likelihood approximations we maximise in Chapter 2.

A.1.3 VA as a penalised likelihood

The variational approximation to the marginal log-likelihood (`VA) can be considered

a penalised likelihood. We can re-write Equation (A.1) as

`VA (β) =

∫
u

πVA (u) lnπ (Sn|u,β) du−
∫
u

πVA (u) ln

[
πVA (u)

π (u)

]
du

= EπVA
[lnπ (Sn|u,β)]−DKL [πVA (u) ||π (u)] (A.5)
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The first term above is simply the conditional log-likelihood in Equation (2.2) eval-

uated taking the random effect expectation for the variational density. The second

term in the above is the strictly non-negative, Kullback-Leibler divergence from the

prior density (π (u)) to the variational density (πVA (u)). So when we fit this objec-

tive function we are maximising a conditional mean likelihood (first term) penalised

by how “far” the prior shifts to the variational density. Given the variational density

is approximating the posterior density on the random effects this can be understood

as a type of complexity penalty.

A.2 Complete Simulation Results

The following tables reveal the simulation result summaries for the various scenarios

examined in Chapter 2. Models compared include an Inhomogeneous Poisson Pro-

cess (IPP) and LGCP models fitted by Integrated Nested Laplace Approximations

(INLA), as well as our proposed method using a variational approximation (VA) and

Laplace approximation (Lp). The number of basis functions used in each model is

given by k. For INLA, k (n) means the number of mesh vertices provided as default

from INLA::inla.mesh.2d() when a user supplies the point pattern of size n. For

our methods (VA and Lp) Dual Res. means default number for two resolutions of

k from FRK::auto_basis() was used. Other basis configurations include regular

grids of 14 × 14, 10 × 10 or 7 × 7. Metrics include: root mean squared error in

the estimated slope coefficient (RMSE β1); average Kullback-Leibler divergence be-

tween the true and fitted log-intensity (KL Div. λ||λ̂); average coverage probability

for a 95% Wald confidence intervals for the slope parameter (95% Coverage Prob.

β̂1); average width of 95% Wald confidence intervals for the slope parameter (CI

β1 Width); average marginal fitted log-likelihood (` (β)) and; average computation

time in seconds (Comp. Time). Also included are the number of times the model

failed to fit entirely (Fit Failure); the number of times the model failed to estimate

standard errors (ŜE Failure); and the number of times the optimiser converged to a

nonsense result (Poor Convergence). Within each scenario we simulate 1000 small

(E [N ] = 200), medium (E [N ] = 500) or large (E [N ] = 1000) point patterns.
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Table A.1: Complete simulation result summaries for scenario S,S — i.e. both the covariate
and latent field range of effect are approximately 30 units.

E [N ] RMSE β1 KL Div. λ||λ̂ 95% Coverage Prob. β̂1 CI β1 Width ` (β) Comp. Time Model k Fit Failure ŜE Failure Poor Convergence
200 0.44 11.26 0.87 0.68 -1138.31 954.52 INLA k (n) 0 0 0
200 0.47 88.48 0.26 0.17 -1195.26 0.35 IPP 0 0 0 0
200 0.40 11.66 0.66 0.41 -1086.40 34.13 Lp 14x14 550 0 24
200 0.40 10.59 0.72 0.44 -1116.63 9.13 Lp 10x10 118 1 8
200 0.40 9.64 0.77 0.49 -1125.86 3.22 Lp 7x7 4 0 0
200 0.45 10.17 0.79 0.59 -1129.56 10.99 Lp Dual Res. 5 1 1
200 0.95 11.71 0.62 0.38 -1138.28 5.22 VA Dual Res. 0 76 0
200 3.07 21.01 0.52 0.39 -1143.55 16.58 VA 14x14 0 0 3
200 0.41 11.92 0.58 0.34 -1136.00 4.67 VA 10x10 0 0 0
200 0.40 10.26 0.69 0.42 -1131.47 1.55 VA 7x7 0 0 0
500 0.41 13.60 0.86 0.62 -2046.00 1302.15 INLA k (n) 0 0 0
500 0.46 207.14 0.16 0.11 -2210.18 0.35 IPP 0 0 0 0
500 0.37 16.05 0.62 0.33 -2120.09 19.19 Lp 14x14 193 0 5
500 0.37 13.95 0.68 0.37 -2048.55 5.91 Lp 10x10 68 0 3
500 0.37 12.61 0.75 0.42 -2034.00 2.92 Lp 7x7 1 0 0
500 0.43 12.79 0.78 0.53 -2032.63 11.19 Lp Dual Res. 1 0 0
500 0.40 14.39 0.58 0.32 -2065.78 4.96 VA Dual Res. 0 62 0
500 0.39 26.10 0.44 0.23 -2064.73 15.02 VA 14x14 0 0 0
500 0.38 15.17 0.52 0.29 -2050.41 3.99 VA 10x10 0 0 0
500 0.37 13.02 0.67 0.37 -2040.94 1.29 VA 7x7 0 0 0

1000 0.39 16.21 0.86 0.59 -2907.89 2094.72 INLA k (n) 0 0 0
1000 0.46 391.79 0.12 0.08 -3246.53 0.35 IPP 0 0 0 0
1000 0.35 19.29 0.59 0.31 -2925.06 15.47 Lp 14x14 50 0 6
1000 0.35 16.91 0.66 0.34 -2908.44 5.52 Lp 10x10 20 0 1
1000 0.35 15.32 0.73 0.38 -2894.79 2.79 Lp 7x7 0 0 0
1000 0.42 15.42 0.77 0.51 -2894.58 11.34 Lp Dual Res. 2 2 0
1000 0.39 16.86 0.58 0.30 -2943.59 5.03 VA Dual Res. 0 39 0
1000 0.37 38.70 0.40 0.20 -2946.26 14.74 VA 14x14 0 0 0
1000 0.36 17.79 0.51 0.26 -2919.17 3.90 VA 10x10 0 0 0
1000 0.35 15.60 0.66 0.34 -2904.49 1.25 VA 7x7 0 0 0

Table A.2: Complete simulation result summaries for scenario S,W — i.e. the range of
effects is approximately 30 units for the covariate and approximately 5 units for the latent
field.

E [N ] RMSE β1 KL Div. λ||λ̂ 95% Coverage Prob. β̂1 CI β1 Width ` (β) Comp. Time Model k Fit Failure ŜE Failure Poor Convergence
200 0.23 35.73 0.96 0.52 -1175.70 957.30 INLA k (n) 0 0 0
200 0.29 143.38 0.41 0.15 -1248.64 0.38 IPP 0 0 0 0
200 0.28 36.20 0.97 0.61 -1153.33 27.13 Lp 14x14 577 1 20
200 0.27 41.65 0.99 0.66 -1171.95 8.09 Lp 10x10 68 2 6
200 0.33 53.83 0.98 0.71 -1178.31 2.92 Lp 7x7 1 0 0
200 0.29 44.71 0.99 0.71 -1170.79 11.05 Lp Dual Res. 11 0 0
200 0.24 52.31 0.94 0.46 -1192.02 4.89 VA Dual Res. 0 83 0
200 0.22 46.66 0.86 0.34 -1185.88 17.84 VA 14x14 0 0 0
200 0.23 49.41 0.93 0.42 -1185.74 4.75 VA 10x10 0 0 0
200 0.29 56.86 0.96 0.57 -1186.78 1.55 VA 7x7 0 0 0
500 0.20 50.78 0.98 0.52 -2122.03 1305.66 INLA k (n) 0 0 0
500 0.28 356.94 0.27 0.10 -2370.41 0.33 IPP 0 0 0 0
500 0.22 55.30 1.00 0.61 -2124.84 13.47 Lp 14x14 241 0 10
500 0.29 67.87 0.99 0.77 -2128.19 5.54 Lp 10x10 24 0 2
500 0.50 107.30 0.96 0.79 -2158.62 2.76 Lp 7x7 1 0 0
500 0.43 75.16 0.99 0.88 -2134.32 10.07 Lp Dual Res. 2 0 0
500 0.27 88.28 0.97 0.55 -2175.35 4.87 VA Dual Res. 0 89 0
500 0.20 83.55 0.88 0.31 -2169.61 12.74 VA 14x14 0 0 0
500 0.22 81.77 0.96 0.46 -2162.58 3.16 VA 10x10 0 0 0
500 0.42 110.69 0.96 0.67 -2171.65 1.09 VA 7x7 0 0 0

1000 0.19 64.16 0.99 0.54 -3014.99 2253.57 INLA k (n) 0 0 0
1000 0.28 697.32 0.18 0.07 -3565.48 0.42 IPP 0 0 0 0
1000 0.22 72.81 1.00 0.69 -3017.55 12.19 Lp 14x14 45 0 3
1000 0.36 96.39 1.00 0.90 -3039.98 5.19 Lp 10x10 2 0 1
1000 0.91 184.60 0.85 0.87 -3110.61 2.65 Lp 7x7 0 0 0
1000 0.69 110.38 0.97 1.13 -3053.04 9.77 Lp Dual Res. 0 0 0
1000 0.42 124.71 0.97 0.72 -3103.20 4.31 VA Dual Res. 0 6 0
1000 0.18 115.30 0.90 0.32 -3106.05 13.06 VA 14x14 0 0 0
1000 0.25 113.56 0.99 0.58 -3093.61 3.21 VA 10x10 0 0 0
1000 0.81 187.90 0.86 0.78 -3128.18 1.15 VA 7x7 0 0 0
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Table A.3: Complete simulation result summaries for scenario W,S — i.e. the range of
effects is approximately 5 units for the covariate and approximately 30 units for the latent
field.

E [N ] RMSE β1 KL Div. λ||λ̂ 95% Coverage Prob. β̂1 CI β1 Width ` (β) Comp. Time Model k Fit Failure ŜE Failure Poor Convergence
200 0.23 35.73 0.96 0.52 -1175.70 957.30 INLA k (n) 0 0 0
200 0.29 143.38 0.41 0.15 -1248.64 0.38 IPP 0 0 0 0
200 0.28 36.20 0.97 0.61 -1153.33 27.13 Lp 14x14 577 1 20
200 0.27 41.65 0.99 0.66 -1171.95 8.09 Lp 10x10 68 2 6
200 0.33 53.83 0.98 0.71 -1178.31 2.92 Lp 7x7 1 0 0
200 0.29 44.71 0.99 0.71 -1170.79 11.05 Lp Dual Res. 11 0 0
200 0.24 52.31 0.94 0.46 -1192.02 4.89 VA Dual Res. 0 83 0
200 0.22 46.66 0.86 0.34 -1185.88 17.84 VA 14x14 0 0 0
200 0.23 49.41 0.93 0.42 -1185.74 4.75 VA 10x10 0 0 0
200 0.29 56.86 0.96 0.57 -1186.78 1.55 VA 7x7 0 0 0
500 0.20 50.78 0.98 0.52 -2122.03 1305.66 INLA k (n) 0 0 0
500 0.28 356.94 0.27 0.10 -2370.41 0.33 IPP 0 0 0 0
500 0.22 55.30 1.00 0.61 -2124.84 13.47 Lp 14x14 241 0 10
500 0.29 67.87 0.99 0.77 -2128.19 5.54 Lp 10x10 24 0 2
500 0.50 107.30 0.96 0.79 -2158.62 2.76 Lp 7x7 1 0 0
500 0.43 75.16 0.99 0.88 -2134.32 10.07 Lp Dual Res. 2 0 0
500 0.27 88.28 0.97 0.55 -2175.35 4.87 VA Dual Res. 0 89 0
500 0.20 83.55 0.88 0.31 -2169.61 12.74 VA 14x14 0 0 0
500 0.22 81.77 0.96 0.46 -2162.58 3.16 VA 10x10 0 0 0
500 0.42 110.69 0.96 0.67 -2171.65 1.09 VA 7x7 0 0 0

1000 0.19 64.16 0.99 0.54 -3014.99 2253.57 INLA k (n) 0 0 0
1000 0.28 697.32 0.18 0.07 -3565.48 0.42 IPP 0 0 0 0
1000 0.22 72.81 1.00 0.69 -3017.55 12.19 Lp 14x14 45 0 3
1000 0.36 96.39 1.00 0.90 -3039.98 5.19 Lp 10x10 2 0 1
1000 0.91 184.60 0.85 0.87 -3110.61 2.65 Lp 7x7 0 0 0
1000 0.69 110.38 0.97 1.13 -3053.04 9.77 Lp Dual Res. 0 0 0
1000 0.42 124.71 0.97 0.72 -3103.20 4.31 VA Dual Res. 0 6 0
1000 0.18 115.30 0.90 0.32 -3106.05 13.06 VA 14x14 0 0 0
1000 0.25 113.56 0.99 0.58 -3093.61 3.21 VA 10x10 0 0 0
1000 0.81 187.90 0.86 0.78 -3128.18 1.15 VA 7x7 0 0 0

Table A.4: Complete simulation result summaries for scenario W,W — i.e. both the
covariate and latent field range of effect are approximately 5 units.

E [N ] RMSE β1 KL Div. λ||λ̂ 95% Coverage Prob. β̂1 CI β1 Width ` (β) Comp. Time Model k Fit Failure ŜE Failure Poor Convergence
200 0.23 35.73 0.96 0.52 -1175.70 957.30 INLA k (n) 0 0 0
200 0.29 143.38 0.41 0.15 -1248.64 0.38 IPP 0 0 0 0
200 0.28 36.20 0.97 0.61 -1153.33 27.13 Lp 14x14 577 1 20
200 0.27 41.65 0.99 0.66 -1171.95 8.09 Lp 10x10 68 2 6
200 0.33 53.83 0.98 0.71 -1178.31 2.92 Lp 7x7 1 0 0
200 0.29 44.71 0.99 0.71 -1170.79 11.05 Lp Dual Res. 11 0 0
200 0.24 52.31 0.94 0.46 -1192.02 4.89 VA Dual Res. 0 83 0
200 0.22 46.66 0.86 0.34 -1185.88 17.84 VA 14x14 0 0 0
200 0.23 49.41 0.93 0.42 -1185.74 4.75 VA 10x10 0 0 0
200 0.29 56.86 0.96 0.57 -1186.78 1.55 VA 7x7 0 0 0
500 0.20 50.78 0.98 0.52 -2122.03 1305.66 INLA k (n) 0 0 0
500 0.28 356.94 0.27 0.10 -2370.41 0.33 IPP 0 0 0 0
500 0.22 55.30 1.00 0.61 -2124.84 13.47 Lp 14x14 241 0 10
500 0.29 67.87 0.99 0.77 -2128.19 5.54 Lp 10x10 24 0 2
500 0.50 107.30 0.96 0.79 -2158.62 2.76 Lp 7x7 1 0 0
500 0.43 75.16 0.99 0.88 -2134.32 10.07 Lp Dual Res. 2 0 0
500 0.27 88.28 0.97 0.55 -2175.35 4.87 VA Dual Res. 0 89 0
500 0.20 83.55 0.88 0.31 -2169.61 12.74 VA 14x14 0 0 0
500 0.22 81.77 0.96 0.46 -2162.58 3.16 VA 10x10 0 0 0
500 0.42 110.69 0.96 0.67 -2171.65 1.09 VA 7x7 0 0 0

1000 0.19 64.16 0.99 0.54 -3014.99 2253.57 INLA k (n) 0 0 0
1000 0.28 697.32 0.18 0.07 -3565.48 0.42 IPP 0 0 0 0
1000 0.22 72.81 1.00 0.69 -3017.55 12.19 Lp 14x14 45 0 3
1000 0.36 96.39 1.00 0.90 -3039.98 5.19 Lp 10x10 2 0 1
1000 0.91 184.60 0.85 0.87 -3110.61 2.65 Lp 7x7 0 0 0
1000 0.69 110.38 0.97 1.13 -3053.04 9.77 Lp Dual Res. 0 0 0
1000 0.42 124.71 0.97 0.72 -3103.20 4.31 VA Dual Res. 0 6 0
1000 0.18 115.30 0.90 0.32 -3106.05 13.06 VA 14x14 0 0 0
1000 0.25 113.56 0.99 0.58 -3093.61 3.21 VA 10x10 0 0 0
1000 0.81 187.90 0.86 0.78 -3128.18 1.15 VA 7x7 0 0 0
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Appendix B

Additional results for Chapter 3

B.1 Complete Flora Data Integration Results

Table B.1: Complete results for Corymbia eximia four-fold cross-validation using the
integrated data model. k is the number of basis functions; ` (β) is the fitted likelihood;
AIC is Akaike’s Information Criteria; Predicted `PO (β|ξ) is the predicted, conditional
log-likelihood on the presence-only data; Predicted `PA (β|ξ) is the predicted, conditional
log-likelihood on the presence/absence data; ROC AUC is the area under the receiver
operator characteristic curve for the presence/absence data.

k ` (β) AIC Predicted `PO (β|ξ) Predicted `PA (β|ξ) ROC AUC
0 -2155.22 4328.44 -1306.65 -1048.36 0.88
2 -2028.18 4078.36 -1240.96 -991.13 0.90
6 -1960.60 3943.19 -1303.72 -1093.57 0.89

12 -1890.15 3802.30 -1352.83 -1177.04 0.89
15 -1924.14 3870.28 -1357.74 -1222.41 0.88
24 -1873.26 3768.51 -1587.35 -1308.37 0.90
35 -1846.83 3715.66 -1480.54 -1338.50 0.90
48 -1849.54 3721.08 -1340.71 -1208.93 0.89
54 -1840.98 3703.95 -1277.54 -1209.97 0.89
70 -1794.33 3610.67 -1223.38 -1039.22 0.91
88 -1805.44 3632.88 -1342.30 -1248.17 0.90
96 -1777.46 3576.93 -1226.73 -1173.01 0.90

117 -1768.56 3559.13 -1286.00 -1098.06 0.91
140 -1792.14 3606.28 -1208.79 -1161.89 0.89
165 -1747.60 3517.20 -1179.88 -1010.90 0.92
176 -1776.26 3574.53 -1402.86 -1420.52 0.90
204 -1742.25 3506.50 -1133.31 -932.10 0.93
234 -1758.19 3538.39 -2007.53 -1773.44 0.92

121
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Table B.2: Complete results for Corymbia eximia four-fold cross-validation using the
presence-only data model. k is the number of basis functions; ` (β) is the fitted likelihood;
AIC is Akaike’s Information Criteria; Predicted `PO (β|ξ) is the predicted, conditional
log-likelihood on the presence-only data; Predicted `PA (β|ξ) is the predicted, conditional
log-likelihood on the presence/absence data (missing here as this is a presence-only data
model); ROC AUC is the area under the receiver operator characteristic curve for the
presence/absence data (missing here as this is a presence-only data model). Other missing
values indicate a failed model convergence.

k ` (β) AIC Predicted `PO (β|ξ) Predicted `PA (β|ξ) ROC AUC
0 -1180.29 2376.59 -1294.34
2 -1098.36 2216.71 -1228.23
6 -1045.02 2110.05 -1266.24

12 -1020.77 2061.54 -1400.43
15 -1017.70 2055.41 -1319.50
24 -1024.86 2069.72 -1896.53
35 -1007.70 2035.40 -1416.89
48 -993.39 2006.78 -1365.74
54 -982.12 1984.24 -2038.20
70 -967.12 1954.23 -1313.68
88 -961.10 1942.21 -1736.50
96 -965.82 1951.65 -1287.06

117 -948.36 1916.73
140 -957.72 1935.43 -1239.64
165 -943.35 1906.70 -1430.98
176 -954.96 1929.91 -1212.58
204 -939.13 1898.26 -1292.13
234 -951.60 1923.20 -1231.91
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Table B.3: Complete results for Corymbia eximia four-fold cross-validation using the
presence/absence data model. k is the number of basis functions; ` (β) is the fitted like-
lihood; AIC is Akaike’s Information Criteria; Predicted `PO (β|ξ) is the predicted, condi-
tional log-likelihood on the presence-only data (missing here as this is a presence/absence
data model); Predicted `PA (β|ξ) is the predicted, conditional log-likelihood on the pres-
ence/absence data; ROC AUC is the area under the receiver operator characteristic curve
for the presence/absence data.

k ` (β) AIC Predicted `PO (β|ξ) Predicted `PA (β|ξ) ROC AUC
0 -939.67 1891.34 -1034.51 0.88
2 -900.46 1816.91 -973.30 0.90
6 -862.63 1741.25 -1006.98 0.90

12 -843.08 1702.16 -1086.34 0.89
15 -851.29 1718.58 -1121.15 0.88
24 -824.63 1665.27 -1046.01 0.91
35 -823.17 1662.35 -1148.30 0.89
48 -826.32 1668.65 -1093.08 0.89
54 -831.29 1678.59 -1071.32 0.89
70 -803.97 1623.95 -1078.15 0.90
88 -814.08 1644.16 -1110.31 0.88
96 -797.98 1611.97 -1094.09 0.89

117 -792.17 1600.35 -1072.02 0.90
140 -805.78 1627.56 -1146.18 0.87
165 -785.05 1586.11 -1048.49 0.91
176 -801.54 1619.08 -1161.83 0.88
204 -785.11 1586.22 -966.68 0.92
234 -794.93 1605.85 -1207.22 0.89

Table B.4: Complete results for Eucalyptus canaliculata four-fold cross-validation using the
integrated data model. k is the number of basis functions; ` (β) is the fitted likelihood;
AIC is Akaike’s Information Criteria; Predicted `PO (β|ξ) is the predicted, conditional
log-likelihood on the presence-only data; Predicted `PA (β|ξ) is the predicted, conditional
log-likelihood on the presence/absence data; ROC AUC is the area under the receiver
operator characteristic curve for the presence/absence data.

k ` (β) AIC Predicted `PO (β|ξ) Predicted `PA (β|ξ) ROC AUC
0 -613.40 1244.79 -286.19 -399.19 0.83
2 -513.61 1049.21 -286.36 -317.53 0.95
6 -486.88 995.76 -287.52 -268.98 0.97

12 -485.21 992.42 -294.07 -268.99 0.97
15 -477.54 977.07 -290.46 -260.33 0.97
24 -484.44 990.89 -294.81 -274.15 0.97
35 -480.53 983.06 -304.68 -270.00 0.96
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Table B.5: Complete results for Eucalyptus canaliculata four-fold cross-validation using the
presence-only data model. k is the number of basis functions; ` (β) is the fitted likelihood;
AIC is Akaike’s Information Criteria; Predicted `PO (β|ξ) is the predicted, conditional
log-likelihood on the presence-only data; Predicted `PA (β|ξ) is the predicted, conditional
log-likelihood on the presence/absence data (missing here as this is a presence-only data
model); ROC AUC is the area under the receiver operator characteristic curve for the
presence/absence data (missing here as this is a presence-only data model).

k ` (β) AIC Predicted `PO (β|ξ) Predicted `PA (β|ξ) ROC AUC
0 -246.43 508.85 -284.14
2 -244.93 509.87 -285.19
6 -243.73 507.46 -285.46

12 -242.54 505.09 -286.82
15 -242.37 504.73 -281.62
24 -242.82 505.65 -287.14
35 -243.31 506.62 -287.02

Table B.6: Complete results for Eucalyptus canaliculata four-fold cross-validation using
the presence/absence data model. k is the number of basis functions; ` (β) is the fitted
likelihood; AIC is Akaike’s Information Criteria; Predicted `PO (β|ξ) is the predicted, con-
ditional log-likelihood on the presence-only data (missing here as this is a presence/absence
data model); Predicted `PA (β|ξ) is the predicted, conditional log-likelihood on the pres-
ence/absence data; ROC AUC is the area under the receiver operator characteristic curve
for the presence/absence data.

k ` (β) AIC Predicted `PO (β|ξ) Predicted `PA (β|ξ) ROC AUC
0 -350.36 712.71 -395.20 0.83
2 -264.88 545.75 -315.64 0.95
6 -238.45 492.90 -257.40 0.97

12 -236.00 488.01 -255.94 0.97
15 -231.00 478.01 -245.03 0.97
24 -235.73 487.47 -255.88 0.97
35 -232.65 481.30 -244.87 0.98

Table B.7: Complete results for Homoranthus cernuus four-fold cross-validation using the
integrated data model. k is the number of basis functions; ` (β) is the fitted likelihood;
AIC is Akaike’s Information Criteria; Predicted `PO (β|ξ) is the predicted, conditional
log-likelihood on the presence-only data; Predicted `PA (β|ξ) is the predicted, conditional
log-likelihood on the presence/absence data; ROC AUC is the area under the receiver
operator characteristic curve for the presence/absence data.

k ` (β) AIC Predicted `PO (β|ξ) Predicted `PA (β|ξ) ROC AUC
0 -171.27 354.55 -114.24 -67.26 0.76
2 -166.32 348.65 -114.25 -67.26 0.76
6 -118.75 253.51 -109.49 -138.95 0.99
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Table B.8: Complete results for Homoranthus cernuus four-fold cross-validation using the
presence-only data model. k is the number of basis functions; ` (β) is the fitted likelihood;
AIC is Akaike’s Information Criteria; Predicted `PO (β|ξ) is the predicted, conditional
log-likelihood on the presence-only data; Predicted `PA (β|ξ) is the predicted, conditional
log-likelihood on the presence/absence data (missing here as this is a presence-only data
model); ROC AUC is the area under the receiver operator characteristic curve for the
presence/absence data (missing here as this is a presence-only data model).

k ` (β) AIC Predicted `PO (β|ξ) Predicted `PA (β|ξ) ROC AUC
0 -105.47 220.93 -113.59
2 -105.47 224.93 -113.59
6 -81.95 177.89 -117.45

Table B.9: Complete results for Homoranthus cernuus four-fold cross-validation using
the presence/absence data model. k is the number of basis functions; ` (β) is the fitted
likelihood; AIC is Akaike’s Information Criteria; Predicted `PO (β|ξ) is the predicted, con-
ditional log-likelihood on the presence-only data (missing here as this is a presence/absence
data model); Predicted `PA (β|ξ) is the predicted, conditional log-likelihood on the pres-
ence/absence data; ROC AUC is the area under the receiver operator characteristic curve
for the presence/absence data.

k ` (β) AIC Predicted `PO (β|ξ) Predicted `PA (β|ξ) ROC AUC
0 -64.25 134.51 -67.17 0.79
2 -64.25 138.51 -67.17 0.79
6 -48.48 106.97 -67.17 0.79
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Table B.10: Complete results for Eucalyptus sparsifolia four-fold cross-validation using the
integrated data model. k is the number of basis functions; ` (β) is the fitted likelihood;
AIC is Akaike’s Information Criteria; Predicted `PO (β|ξ) is the predicted, conditional
log-likelihood on the presence-only data; Predicted `PA (β|ξ) is the predicted, conditional
log-likelihood on the presence/absence data; ROC AUC is the area under the receiver
operator characteristic curve for the presence/absence data.

k ` (β) AIC Predicted `PO (β|ξ) Predicted `PA (β|ξ) ROC AUC
0 -3287.19 6592.37 -1371.05 -2080.10 0.68
2 -3024.11 6070.23 -1300.78 -1885.59 0.78
6 -2924.95 5871.89 -1244.37 -1915.32 0.79

12 -2910.80 5843.60 -1261.20 -1969.05 0.77
15 -2923.98 5869.97 -1252.25 -1970.55 0.77
24 -2898.65 5819.31 -1288.16 -2109.32 0.75
35 -2865.31 5752.63 -1324.85 -2340.37 0.74
48 -2833.94 5689.89 -1247.91 -2205.59 0.75
54 -2848.23 5718.45 -1286.02 -2231.36 0.75
70 -2764.69 5551.37 -1238.60 -2017.35 0.79
88 -2773.32 5568.65 -1238.66 -2186.15 0.76
96 -2762.68 5547.37 -1209.31 -2208.84 0.77

117 -2747.88 5517.77 -1234.14 -2195.03 0.77
140 -2742.83 5507.66 -1182.50 -2301.67 0.77
165 -2744.59 5511.17 -1183.71 -2196.07 0.77
176 -2735.73 5493.46 -1207.38 -2744.07 0.76
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Table B.11: Complete results for Eucalyptus sparsifolia four-fold cross-validation using the
presence-only data model. k is the number of basis functions; ` (β) is the fitted likelihood;
AIC is Akaike’s Information Criteria; Predicted `PO (β|ξ) is the predicted, conditional
log-likelihood on the presence-only data; Predicted `PA (β|ξ) is the predicted, conditional
log-likelihood on the presence/absence data (missing here as this is a presence-only data
model); ROC AUC is the area under the receiver operator characteristic curve for the
presence/absence data (missing here as this is a presence-only data model).

k ` (β) AIC Predicted `PO (β|ξ) Predicted `PA (β|ξ) ROC AUC
0 -1225.73 2467.47 -1325.60
2 -1140.11 2300.23 -1255.17
6 -1067.91 2155.82 -1162.17

12 -1069.75 2159.50 -1226.07
15 -1058.52 2137.05 -1160.93
24 -1071.44 2162.89 -1226.07
35 -1054.22 2128.44 -1247.65
48 -1046.22 2112.43 -1261.42
54 -1055.38 2130.76 -1301.34
70 -1037.04 2094.08 -1346.35
88 -1026.27 2072.53 -1245.69
96 -1018.75 2057.49 -1317.13

117 -1016.25 2052.50 -1291.51
140 -1016.28 2052.56 -1310.76
165 -1007.42 2034.85 -1328.25
176 -1002.87 2025.74 -1314.25
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Table B.12: Complete results for Eucalyptus sparsifolia four-fold cross-validation using
the presence/absence data model. k is the number of basis functions; ` (β) is the fitted
likelihood; AIC is Akaike’s Information Criteria; Predicted `PO (β|ξ) is the predicted, con-
ditional log-likelihood on the presence-only data (missing here as this is a presence/absence
data model); Predicted `PA (β|ξ) is the predicted, conditional log-likelihood on the pres-
ence/absence data; ROC AUC is the area under the receiver operator characteristic curve
for the presence/absence data.

k ` (β) AIC Predicted `PO (β|ξ) Predicted `PA (β|ξ) ROC AUC
0 -1969.38 3950.76 -2054.08 0.70
2 -1774.37 3564.74 -1843.22 0.80
6 -1736.32 3488.63 -1849.90 0.81

12 -1725.79 3467.58 -1864.59 0.80
15 -1733.93 3483.86 -1877.86 0.80
24 -1718.88 3453.76 -2006.30 0.77
35 -1713.49 3442.98 -2209.16 0.74
48 -1695.83 3407.67 -2144.51 0.75
54 -1693.51 3403.02 -2322.53 0.75
70 -1641.77 3299.54 -1947.67 0.80
88 -1659.63 3335.26 -2154.08 0.77
96 -1656.60 3329.20 -2063.38 0.78

117 -1651.30 3318.59 -2131.38 0.77
140 -1646.34 3308.69 -2020.28 0.80
165 -1649.25 3314.50 -2201.26 0.77
176 -1649.15 3314.29 -2339.44 0.77



Appendix C

Additional Details for Chapter 4

C.1 Data Requirements

Data involved in modelling an IPP or LGCP against predictors often comprises the

records of presence locations in the form of a list of coordinates within the domain of

interest, as well as geo-referenced grids of the predictors covering the same domain.

Here we illustrate how to convert this into a single data frame required by the

scampr model function using the example of the gorillas dataset provided within

the package inlabru.

C.1.1 Interpolation of Predictors

First, any predictors to be included in a model must be available at the presence

locations. For this, interpolation from the geo-referenced grid of a predictor to the

presence points is required. How this is best done will vary depending on the precise

form of the predictors available, however in the gorilla nesting example, over()

from the package sp (Pebesma and Bivand, 2005) provides a suitable interpolation

function for this:

require(inlabru)

data(gorillas, package = "inlabru")

# coordinate names req. for consistency

coord.names <- c(’x’, ’y’)

129
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# interpolation function

library(sp)

f.elevation = function(x,y) {

# turn coordinates into SpatialPoints object:

spp = SpatialPoints(data.frame(x=x,y=y))

# attach the appropriate coordinate reference system (CRS)

proj4string(spp) = CRS(proj4string(gorillas$gcov$elevation))

# extract values at spp coords, from SpatialGridDataFrame

v = over(spp, gorillas$gcov$elevation)

return(v$elevation)

}

pres.locs <- as.data.frame(gorillas$nests@coords)

colnames(pres.locs) <- coord.names

pres.locs$elevation <- f.elevation(pres.locs$x, pres.locs$y)

Another option for interpolation is the interp_im() function in the spatstat pack-

age (Turner and Baddeley, 2005). This function requires the predictor in raster

format, which spatstat refers to as an image.

C.1.2 Quadrature (or Background) Points

The second data requirement is to specify quadrature points that serve to approx-

imate the spatial integral within to point process models, i.e. Equation (2.3). As

numerical quadrature is the most common approach to approximating the spatial

integral, the data frame provided to scampr point process models must include

quadrature points and their corresponding sizes (or areas), in addition to the point

events themselves. Advice on how to choose the number and location of quadrature

points is well covered by Renner et al. (2015, p. 370). Like any numerical approx-

imation to an integral, the more quadrature points, the more accurate the integral

approximation. So if computational constraints are not a limitation, it would be ad-

visable to simply use as quadrature points the entire geo-referenced predictor grid at

the finest available resolution. This however is often impractical, and Renner et al.
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(2015) suggest two ways to reduce the number of quadrature points: randomly sam-

pling as many as are needed to produce a stable approximate likelihood; or using

quadrats that are not all equal in size, with larger quadrats in areas with less pres-

ence points (hence presumably lower predicted intensity). The use of rank-reduction

in scampr (Section 2.3.2) mitigates much of the computational burden of selecting

many quadrature points, because computational time then scales linearly with n+q.

It should also be noted that in point process models, quadrature points are NOT

assumed to be absences (despite sometimes being referred to as pseudo-absences)

and having a quadrature point at a presence location is not a concern.

The spatstat package contains the function quad.scheme(), used to select quadra-

ture points and assign them appropriate sizes. However, this introduces a range of

uniquely classed objects which forces the package’s coding structures upon the user

— something our package is trying to minimise. Hence, we will manually set up a

quadrature scheme for the gorillas dataset, and store it, together with relevant

predictors, in an object called gorillas.df.

# get the coordinates, as a 2 column data frame

quad <- data.frame(gorillas$gcov$elevation@coords)

colnames(quad) <- coord.names

# add elevation data

quad$elevation <- gorillas$gcov$elevation@data$elevation

# regular grid provides dist. between quad pts.

dx <- min(diff(unique(quad$x)))

dy <- min(diff(unique(quad$y)))

# Calculate quadrature sizes #

# rectangles centered at the quadrature

quad$quad.size <- dx * dy

# The boundary of the domain is provided

bnd <- data.frame(

gorillas$boundary@polygons[[1]]@Polygons[[1]]@coords)
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colnames(bnd) <- coord.names

# Use mgcv::in.out() to get interior quad

quad.in.bnd <- mgcv::in.out(bnd = as.matrix(bnd),

x = as.matrix(quad[ , c("x", "y")]))

quad <- quad[quad.in.bnd, ]

# Combine the presence locations and quad into a data frame

# with a binary identifier ’pres’

gorillas.df <- rbind(

cbind(pres.locs, quad.size = 0, pres = 1),

cbind(quad[quad.in.bnd, ], pres = 0)

)

head(gorillas.df)

x y elevation quad.size pres

1 582.5184 676.8862 2008 0 1

2 581.8230 677.4227 1699 0 1

3 582.1310 676.9379 1872 0 1

4 582.1119 677.4200 1678 0 1

5 582.5851 677.5097 1658 0 1

6 582.3023 677.5216 1655 0 1

This forms the template for what is required of a data frame to be used in scampr

point process models. Columns should include: coordinates, quadrature size, a

binary identifier for presence/quadrature points, and any predictors to be included

in the formula for the model. Note that quadrature points are denoted as pres

== 0, but this does not mean that they should be interpreted as absences. Rather,

they are quadrats with which we approximate the spatial integral (see, e.g. Berman

and Turner, 1992). Hence these rows also require a non-zero size/area attached to

them (i.e. quad.size in the above), otherwise these rows of the dataset would be

redundant. Presence points (pres == 1) on the other hand can have a size of zero —

this indicates that these points are not used to estimate the spatial integral, but they
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will still contribute to other parts of the likelihood. Not described in the above are

edge effects (or border corrections) for the quadrature points. In the gorilla nesting

data example we are assuming that all quadrats have equal sizes/areas (dx * dy),

however along the boundaries of the domain these may differ. See documentation

for packages spatstat (Turner and Baddeley, 2005) and sp (Pebesma and Bivand,

2005) for ways to address this.
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