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Preface 

A defining characteristic of Levy processes on .IRd is the property of independent 

increments [49}, which implies t hat the associated probability distribution is a con­

volution power of another probability distribution. This is known as the infinitely 

divisible property of stochastic analysis, and acts as a bridge to connect stochastic 

analysis with harmonic analysis. 

If we replace IRd by a general Riemannian manifold, it is not straightforward to 

see what is the correct notion of a Levy process, as there is not usually a notion 

of convolution nor of harmonic analysis. However, if the manifold is a symmetric 

space, both these features are available. 

In particular, in t he case of a Riemannian symmetric space M = G / K, Gangolli 

( c.f. [25] and [26]) was able to completely classify the family of spherically sym­

metric infinitely divisible measures, and recovered the Levy-Khintchine formula for 

spherical Levy processes on M. 

Gangolli 's construction could not be possibly be extended to a fully fledged 

Levy-Khintchine formula for a general Levy process at t he t ime, as t he theory 

of non-commutative harmonic analysis was inadequate. Geometric and harmonic 

analysis have undergone a quantum leap in t he past forty years ( c.f. [28] , [29] , 

[30] ) , and the tools to generalize Gangolli 's results are now available. We note that 

there is already a significant amount of progress made in extending t he results of 

Hunt and Gangolli in other directions , such as, to locally compact groups ( c.f. [32] 

, [5], [12]) and to hypergroups ( c.f. [11]) . 

Another way of interpreting an M-valued Levy process was initiated by Apple­

baum in [3] , where the author attempted to generalize t he Eels-Elworhty construc­

tion in [20] of a Brownian motion to a Levy process. However, it was found in [3] 

that t he resulting process was in general not a Markov process. Following [4] and 
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[6], it is gradually understood that the Eels-Elworthy construction will only give a 

Markov process when the underlying Levy process is spherical. 

This aim of this thesis is to apply the more recent tools of geometric and har­

monic analysis to solve the puzzle that was outstanding for more than forty years. 

More specifically, we will 

1. Compute a new Lcvy-Khintchine formula for general Levy processes using 

Eisenstein integrals. 

2. Classify the family of general infinitely divisible measures on the Riemannian 

symmetric space G / K. 

3. Provide some ideas on future directions of research, such as extending the 

present construction to pseudo-Riemannian manifolds. 

Finally, we will demonstrate the importance of manifold-valued stochastic pro­

cesses to t he modeling of market volatility. It is known that the volatility structure 

of financial market is non-flat , as observed by t he volatility smile and the volatility 

surface. In the final chapter of this thesis, we argue that the volatility structure 

only appears to non-flat: Under a "uniform flow of information", it is the asset 

dynamics t hemselves that are evolving under a non-flat background. We conclude 

by showing how the new Levy-Khintchine formula we derived can be applied to 

option pricing, when t he underlying asset dynamics is evolving on a manifold. 

The structure of the thesis is as follows. 

Chapter 1 is an introduction to basic concepts in stochastic analysis. It is only 

intended to be a reference. 

Chapter 2 is a background chapter to manifold t heory and stochastic differential 

geometry. It ends with Applebaum's construction of a horizontal Levy process on 

a manifold , and showing how the resulting process fails to be Markov. 

Chapter 3 is another background chapter to Lie groups and Levy processes on 

Lie groups. The ideas developed in Chapter 3, especially the Hunt's formula and 

the Levy-lto decomposition, are central to later chapters. 

Chapter 4 illustrates how one could compute the spherical Levy-Khintchine 

formula from Harish-Chandra's t heory of spherical harmonic analysis. 

Chapter 5 illustrates how the techniques in chapter 4, combined with the more 

recently developed theory of Eisenstein integrals can lead to a general Levy-Khintchine 
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formula on a Riemannian symmetric space. We then explore some important con­

sequences of this formula, such as a classification of infinitely divisible measures on 

GfK. 

Chapter 6 attempts to apply the theory developed in chapter 5 to option pricing 

and the modeling of implied volatility. 
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Notation 

The subject of study in this thesis overlaps stochastic analysis , differential geometry, 

harmonic analysis and representation theory. To avoid confusion, I will once and 

for all fix 

Spaces: 

• E - Topological space. 

• G - Lie group. 

• g - Lie algebra. 

• G I H - Affine symmetric space. 

• G I K - Symmetric space 

• K- Compact subgroup of G 

• M! - Manifold 

• (!1, F , JP) - The default probability space. 

Function spaces: 

• B (E) - Borel measurable functions on E. 

• Bb(E) - Bounded Borel measurable functions on E 

• C (E) - continuous functions on E. 

• Ck(E) - k times differentiable functions on E. 

• CQ(MI) - space of spherically symmetric continuous functions on M! 

• LP(E) - functions with J if !PdJl < oo. 

• M (E) - spaces of all measures on E. 

• M(E)- spaces of all probability measures on E. 

• Mt(MI) - space of spherically symmetric measures on M!. 
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CHAPTER 1 

Levy Processes 

In this chapter, we examine the basic facts about infinitely divisible random vari­

ables and Levy processes. First, we will define the Levy process and show its 

connection with infinitely divisible random variables, and then present the classi­

cal Levy-Khintchine representation and Levy-It6 decomposition formulae. These 

objects form the basic building blocks of any Levy theory, and these are all well 

known in the literature. 

The first section will give a brief survey of results for general stochastic processes 

with cadlag paths following the spirit of chapter 1 of [50] and [47]. The concept of 

Levy processes will be introduced in the second section in accordance with [2] (chap 

1, 2), [10] (chap 1) and [49] (chap 2), for the case when E = JRd. This will give us 

an intuitive idea of the kind of random variables and stochastic processes that we 

are interested in studying. 

Readers are highly recommended to read [4 7] for a general theory of stochastic 

analysis and semimartingales with processes of cacllag paths. 

1.1 Stochastic processes 

This section contains a whirlwind tour of general stochastic processes and stochastic 

analysis, for processes with d1dlag paths. 

1.1.1 Stochastic Processes 

For a separable topological space (E , O(E)) , the symbol B(E) will mean the Borel 

a-algebra of E. That is , the a-algebra of E generated by the open sets of O(E). 

We complete the a-algebra with respect to some measure M by adding all subsets of 

sets N with J-l(N) = 0 to the a-algebra, when there is no risk of confusion (that is, 
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when all the measures we are interested in are absolutely continuous with respect 

to one another). 

Definition 1.1.1. An E-valued random variable is a measurable map, X: n ~ 

E. That is, we require x -1 (A) E :F, for every A E B(E). 

Remark 1.1.2. Let E' be another topological space, not necessarily distinct 

from E, and f : E ~ E' be a Borel measurable map. T hen the composed map 

f(X) = foX : n ~ E' is a E'-valued random variable. 

Definition 1.1.3. If E is equipped with a preference relation >-, we will declare 

two random variables X and Y to have the relation "X>- Y" if X(w) >- Y(w) holds 

JID-a.s. 

When we deal with random variables, very rarely we end up working with the 

maps X : !l ~ E themselves. In general, this is due to the lack of structure of !l. 

We introduce the concept of the distribution of a random variable. 

Definition 1.1.4. Let X be an E-valued random variable. The induced measure 

or the distribution of X is a probability measure defined on E, denoted by J.Lx , 

such that J.Lx(A) = (JIDo x -1)(A)), for every A E F. 

We will declare two measures f.L and v to be equal if, 

• f.L and v are defined on the same measurable space (!l , :F). 

• p(A) = v(A) for every A E F. 

Definition 1.1.5. ([49], pp. 7) Let {pk} , k = 1, 2, ... be a sequence of probability 

measures on E. 

• Let f E Bb(E), then we write p(f) to mean JE j(.1:)dp,(x). 

• \f\Te say {J.Lk} converges or converges strongly to a probability measure p, 

written as f.Ln ~ f.L as n ~ oo if for every f E Bb(E), f.LnU) ~ p(f). 

• We say {pk} converges weakly to f.L, f.Ln (!) ~ p(J) for each f E Be( E). 

• We say {J.Lk} is Bernoulli convergent to J1, f.Ln (!) ~ p(J) for each bounded 

f E Bb(E). 

Remark 1.1.6. It is also common to write J.Lx(A) = JID(X EA) , where A c B(E). 

Here, A can be understood as the image of A under X in Definition 1.1.2. Without 

further warning, we will be using both of these interchangably. 
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Definition 1.1. 7. The expectation of a random variable, X , with respect to a 

probability measure JP> is defined by, 

EX= { xdJP>(x) . 
.Jn 

Remark 1.1.8. One may recover the induced measure of X from the expectation 

by noting that E1A (X) = Jlx (A). 

Let J.Lx be the induced measure of a random variable X defined on a measurable 

space (E, B(E)) and f is a B(E)-measurable function. We will use J.LxU) and the 

probabilistic notation E(f(X)) interchangably without further warning to mean 

JE f(x)dJ.L(x) , whenever this integral exist. 

Definition 1.1.9. Let X be a random variable with EIXI < oo, and 9 ~ :F. The 

conditional expectation of X on 9, written as E(XI9), is a random variable that 

satisfies 

• E(Xi9) is 9-measurable. 

• For every A E 9 , 

1 E(Xig)dJP> = 1 X dJP>. 

Remark 1.1.10. It is well known that the conditional expectation exists and is 

unique up to the JP>-a.s. equivalence of random variables ( c.f. [2], p. 9). That is, 

if both Y and Z sat isfies the conditional expectation definition for E(XIg) , then 

Y = Z almost surely. Readers are referred to Appendix A of [44] for the details. 

Stochastic processes are mathematical models of time evolution of random phe­

nomena. Therefore, we need the concept of a filtered probability space to model 

the flow of information with respect to time. This inspires the following definition 

of a stochastic basis. 

Definition 1.1.11. A stochastic basis, denoted by (0, :F, {:Ft} , JP>) is a probabil­

ity space equipped with a filtration :Ft , a sequence of O"-algebras { :Ft}09::;00 , such 

that Fs ~ :Ft whenever s :=::; t. 

It is convenient to assume that the filtration is right continuous and complete. 

:rvlore precisely, this means 
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• :F0 contains all JP>-null sets of :F. 

• :Ft = n s>t:Fs, Vt 2: 0. 

D efinition 1.1.12. Let (E, B (E)) be a measurable space. An E-valued stochastic 

process defined over (D, :F, :Ft, JP>) is a family of maps, X = {Xt}tEJR+ . If in addition, 

the maps X t : D ~ E are :F8 -measurable for every s ~ t , we say {X t} is an Fe 

adapted process. 

Definition 1.1.13. Let I be a set. A filtration {:Ft} is said to be generated by 

a collection of processes {X~} , a E I if :Ft = O"( {X~ , 0 ~ u ~ t} ). T hat is, :Ft is 

the smallest O"- algebra such that X~ are F c measurable for every a E I and every 

0 ~ u ~ t. 

T he filtration generated by a single process is ca lled the natura l filtration of 

that process. A process X t will always be adapted t o its own filt ration , O"(Xt)· 

Definition 1.1.14. (c.f. [47], p . 7) Let {Mt} be a stochastic process defined on a 

JR.d, we say M~, is a martingale wit h respect to :Ft if for each t 2: 0, 

• Mt is F c adapted. 

• E( !Mtl) < oo 

• E(Mti:Fs) = !I fs, for every s ~ t . 

If in addit ion, we have E(IMtl2 ) < oo, for every t > 0, we call Mt a square­

integrable mart ingale. 

Definition 1.1.15. A {:Ft}-stopping timeT is a random variable taking values 

in JR.+ U { oo}, such that the set { T ~ t} E :F1 for every t 2: 0. 

For a stopping time T , 

:F, ={BE Foo!B n {T ~ t} E :f"tVt 2: 0} 

is a O"-algebra, and :F, = :Ft if T = t. Moreover. if T ~ O" are two stopping times, 

then :F, C Fa. 

An important class of stochastic processes is t he class of Markov processes. Levy 

processes, and solutions to stochastic differential equations driven by Levy processes 

generally belong to this class. In this t hesis, we are interested in studying cadlag 

Markov process on E. It is convenient to further assume that E is metrisable by 
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a complete metric (i.e. , we assume E is a Polish space), as convergence issues will 

play an important role. 

Definition 1.1.16. ([21] , p. 521) Let E be a Polish space and p be its metric, a 

function r.p : [0, 00) ~ w is cadlag( continu a droite, limites a gauche) if it is right 

continuous and the limit 

lim if>( t) 
sTt 

exists for all t E (0, oo) . A cadlag process is a random process whose trajectory, 

viewed as a function in time, is a cadlag function. Similarly, a function r.p : [0, oo) ~ 

E is dtgUtd if it is left continuous with left limit , and a process is caglad if its sample 

paths are caglad functions in time. 

Definition 1.1.17. A process Xt taking values in E is called a Markov process 

if for every f E Bb(E) , and for every 0 ::; s::; t , lE(f(Xt) IF s) = IE(f(Xs) I X 5 ). 

With each Markov process X , we associate a family of operators {Ts,t, 0 ::; s ::; 

t} , mapping from Bb(E) to the Banach space of all bounded functions onE, by 

for each f E Bb(E) , x E E. 

Definition 1.1.18. We say the Markov process X is normal if T5 ,1(Bb(E)) C 

Bb(E), for each 0 ::; s ::; t. 

The following theorem summarises t he key results about the operators Ts.t· Note 

that only property (3) requires the Markov property; all other properties of Ts,t hold 

for general stochastic processes. 

Theorem 1.1.19. ({2}, p . 121) If X is a normal Markov process, then 

• Ts.t is a linear operator on Bb(E) for each 0 ::; s ::; t. 

• Ts.s f = f for each s 2: 0 and f E Bb(E ). 

• Ts,tTt .1t = Ts,u whenever 0 ::; s ::; t ::; 11.. 

• f 2: 0 =? Ts,d 2: 0 for all 0 ::; s ::; t , f E Bb(E). 

• Ts,t is a contraction, i.e. IITs,diiBb(E) ::; II!IIBb(E) for each 0 < s < t and 

f E Bb(E) . 

• Ts.t (1) = 1, \lt 2: 0. 
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The situation simplifies if we assume X is time homogeneous, that is when 

Ts,t = To,t-s for all 0 :S; s :S; t. An alternative notation of To,t-s for t ime homogeneous 

processes is to simply write Tt-s = Ts,t = To,t- s· 

Definition 1.1.20. Let (£, A) be a measurable space. A probability kernel on 

(£, A ) is a map K : £ x A ---7 JR.+ , such that K(.r, .) is a probability measure for 

each fixed x E £ , and x ~---+ K(x, A) is A-measurable for each fixed AEA. 

Notice that for an A-measurable function j, we may write, 

K f(x) = 1 f(y)K(x , dy) 

and therefore think of K as an operator on some function space, where K (f) makes 

sense (e.g. the bounded Borel functions on E). 

Definition 1.1.21. A semigroup of probability kernels on (£,A) is a set of 

probability kernels { Pt}t~ o , which in addition, satisfies 

• P0 (x, .) = bx (identity element property), and 

• Ps+t = PtPs (semigroup property) 

It can be easily checked that when X is a homogeneous Markov process, (Td)(x, A) = 

Pt(.r,A) for f( x) = 1/\(:r). 

R emark 1.1.22. The transition semigroup is useful when studying Markov pro­

cesses, as the distribution of a Markov process is determined completely by t he 

transition semigroup Pt and the initial distribution v. One obtains, 

where the fk 's are integrable. 

An important class of Markov processes comprises the Feller processes. Let E 

be a locally compact Hausdorff space with a countable base of open sets. Let C0 (E) 

be the space of continuous functions on E vanishing at oo is a Banach space under 

the sup-norm, 11!11 = supxEE IJ(x)l . 

Definition 1.1.23. A semigroup of probability kernels Pt on E is called a Feller 

semigroup if 

• C0 (E) is invariant under Pt , that is Ptf E C0 (E) for f E C0 (E) and t E JR.+. 
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• Pd ---+ f in Co(E) as t ---+ 0. 

Given such a semigroup and a probability measure v on E , t here is a cadlag 

Markov process Zt with Pt as transition semigroup and v as the initial distribution. 

Such a process is called a Feller process. Vve now wish to define a linear operator A 

for which "Pt =etA» can be meaningful. In general, we expect A to be unbounded, 

and hence we need to first define its domain D A . 

Definition 1.1.24. Suppose {Pt}t?:O is an a semigroup of probability kernels in 

the Banach space C0 (E). We define 

One can verify that D A is a linear space. 

Definition 1.1.25. We define a linear operator A on C0 (E) with domain D A by 

the prescription A 'ljJ = c/J-.p, so that for each 'ljJ E D A, 

We call A the generator of the semigroup { Pt, t 2: 0}. When { Pt} is the Feller 

semigroup associated with a Feller process { Zt}t?:O, we may also call A the generator 

of Z . 

1.1. 2 Stochastic integration 

We aim to develop the theory of stochastic integration with respect to semimartin­

gales following the spirit of [47] . For a given stochastic process X, we think of an 

integral with respect to X , as simply a map I x : X ---+ L0 , where X is some space 

of processes that X belongs to. But, for this map to be a "reasonable·· definition 

of an integral, it should be linear and also satisfy some version of the bounded 

convergence theorem. A part icularly weak form of this theorem is that the uni­

form convergence of processes Hn ---+ H implies only convergence in probability of 
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Inspired by the above, we will proceed to formulate a version of Ix that is 

suitable to be called the "stochastic integral", and give an abstract definition of the 

semimartingale accordingly. 

Definition 1.1.26. ([47], p. 51) A process H is said to be simple predictable if 

H has a representation of the form 

n 

Ht = Hol {o} (t) + L Hil (r;,T;+1 )(t) 
i= l 

where 0 = T1 ::; · · · ::; Tn+l < oo, is a finite sequence of stopping times, Hi are 

F T,-measurable, with IHd < oo a.s. , 0 ::; i ::; n. The set of all simple predictable 

processes is denoted as S 

We give S a topology by uniform convergence in ( t , w), and we denote the 

resulting topological space by Su. We write L0 for the space of finite-valued random 

variables, with topology induced by convergence in probability. For a given process 

X , we define a linear map I x : Su ~ L0 by setting, 

n 

Ix(H ) = HoXo + L Hi(Xri+l - XrJ 
i=l 

where the Hi's correspond to that in Definition 1.0.1. 

Definition 1.1.27. (c.f. [47], p. 52) 

• A process X is a total semimartingale if X is cadlag, adapted and I x 

S,11 ~ L0 is continuous. 

• A process X is a semimartingale if for each T E (0, oo), (Xu,r )t~o is a total 

semimartingale. 

The above definition defines semimartingales as the set of "good candidates 

of integrators" of simple predictable processes. Next, we will extend the space of 

integrands to a larger class that includes many more interesting processes. The basic 

idea is simply complete the space. Before doing so, we will need a new topology 

that is suitable for such a completion. 

D efinition 1.1.28. A sequence of processes (Hn)n~ l converges to a process H 

Uniformly on Compacta in Probability (abbreviated as ucp if, for each t > 0, 

SUPo:::; s::=; t IH~ - Hsl ~ 0 in probability. 
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Definition 1.1.29. Let 

• ID> be t he set of adapted processes with cadlag paths. 

• lL be the set of adapted processes with caglad paths. 

• Lb C lL with bounded paths. 

All of the above spaces are equipped with the ucp topology. 

Theorem 1.1.30. (c.f {47} , p. 57) The space S is dense in lL under the ucp 

topology 

Proof. Let Y E IL, Rn = inf { t : IYt I > n}. Then Rn is a stopping time and 

yn = yRn l{R,>O} E Lb , and converges to Y in ncp. Thus, Lb is dense in IL. 

Without loss of generality, we assume Y E Lb. By the cagladicity of Y, we can 

define z by Zt = limult Yu , so that z is cadlag. For E > 0, define 

• Tg = 0 

• T~+l = inf{t : t > T~ and IZt- Zr~l > E} 

Since Z is cadlag, the T~ are stopping times increasing to oo a.s. as n mcreases. 

Let z e: = "'n Zr, 1 [T' T' ) , for each E > 0. Then z1: are bounded and converge 0 n 11' n+l 

uniformly to Z as E ---+ 0. Let 

u e: = Yol{o} + '"""Zr· l[r• r• )· L--..t n n· n+l 

n 

Then, u e: E Lb and the preceding argument implies that ue: converges uniformly on 

compacta to Yol{o} + Z_ = Y. Finally, define 

n 

yn.e: = Yol{o} + '"""Zr•l(T'AnT' 1\n] · L--..t 1 't • t+l 

i=l 

This can be made arbitrarily close to Y E Lb by taking E small enough and n large 

enough. D 

The operator I x maps processes to random variables, and plays the role of a 

definite integral. ~ext , we define an operator Jx that maps processes to processes, 

which plays the role of an indefinite integral. 
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Definition 1.1.31. For HE S and X a cadlag process, we define lx : S----+ JD) by 

n 

lx(H) = HoXo + 2.::= Hi(XTi+J - XT;) 
i=l 

for H in S with the representation 

n 

H = Hol {o} + 2.::= Hll{T;,Ti+1 J, 
i=l 

where the H/s are Fr;-measurable random variables, and 0 = T0 < T1 < < 

Tn+l < oo are stopping times. 

Moreover, we call lx(H) the stochastic integral of H with respect to X. 

We will use the following notations interchangeably, 

Remark 1.1.32. Notice the following relations between l x and lx: 

• If we consider lxt(H) as a process indexed by t, then l xt(H) = lx(H)t-

• On the other hand, lx (H ) = J0
00 HtdXt. 

Theorem 1.1.33. (c.f {47}, p. 58) Let X be a semimartingale, then the mapping 

J x : Su ----+ JD) is continuous under the ucp topology. 

Proof. Without loss of generality, we can take X to be a total semimartingale, as 

we are only dealing with convergence on compact sets. First, let us suppose that 

S 3 Hk----+ 0 uniformly and is uniformly bounded. Vve will show that lx(Hk)----+ 0 

in the ucp topology. 

Let 6 > 0 be given, and define stopping times Tk by 
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Then, Hkl [o,rkJ E S and tends to 0 uniformly ask-----+ oo. Hence for every t , 

IP((Hk .x); > 6) ::; IP(IHk.XTkl\tl :2: 6) 

= IP(I(Hkl[o,rkJ .X)tl :2: 6) 

= IP(I Ix(Hk1[o,Tk/\tJ)I :2: 6) 

-----+0 

as k -----+ oo by the definition of a total semimartingale. 

Hence, what we have shown is that J x : Su -----+ ][)) is continuous. Next, we show 

that J x : Su -----+ ][)) is continuous. 

Suppose Hk -----+ 0 in ucp, and let 6 > 0, E > 0 and t > 0. Then that there exists 

TJ , so that IIHIIu ::; TJ implies IP(Jx(H)~ > 6) <~E . Let Rk = inf{s: IH~I > TJ} , and 

set fik = Hkl[o,Rk]lRk>O· Then, fik E S and llfikllu ::; TJ by left continuity. Since 

Rk :2: t implies (fik_x); = (Hk.X);, we have 

IP((Hk.x); > 6)::; IP((H*.X); > 6) + IP(Rk < t) 

1 ::; 2E + IP((Hk); > n.) 

<E 

fork large enough as limk_,oo IP((Hk)~ :2: TJ) = 0. 0 

Vve have now established that if X is a semimartingale, the integration operator 

lx is continuous on Su, and that Su is dense in lL . The obvious thing to do now 

is to extend J x from Su to lL by continuity. This is a valid extension as ][)) is a 

complete metric space. Hence, we have the following definition. 

Definition 1.1.34. Let X be a semimartingale. The continuous linear map 

J x : lL -----+ ][)) obtained from extending J x : S -----+ ][)), is called the stochastic 

integral or the Ito integral. 

One important consequence of Theorem 1.1.33 is that the integrand of an Ito 

integral must be a predictable process (c.f. [47], p. 101 - 103) , and the process we 

are integrating with respect to must be a semimartingale (c.f. [47) p. 129- 133, p. 

146- 148). If a stochastic process {Xt}t~o has cadlag paths, then in general {Xt} t~o 
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is not predictable (with respect to its own filtration). To overcome this problem, in 

most cases, we can simply write Xt - = limsit X 5 • Then, it can shown that Xt- 1s 

predictable and we put Xt- in the integrand instead of Xt. 

Remark 1.1.35. 

• If the t rajectory of X is continuous over some interval [a, b], then Xt- = Xt 

for all t E (a , b]. In particular, if X is a continuous process, then X itself is 

automatically predictable. 

• In cases when X contain jumps, it is convenient to define t he difference op­

erator D.Xt = X t - X t- 1 to extract the jump component of X. In particular, 

D.Xt = 0 if X is continuous at t and D.Xt equals the jump size if X jumps at 

t. 

We will now focus on the case when E = JRd. First, we define the concept of a 

covariation. 

Definition 1.1.36. Let X , Y be semimartingales, the quadratic variation pro­

cess of X, denoted by { < X , X >t} 1.~0 is defined by 

where Z5 _ = limuis Zu . The covariation, or the bracket of X, Y , is defined by 

1 
<X, Y >t= '4( <X+ Y , X+ Y >t - <X- Y, X- Y >t). 

for each t ~ 0. 

The next theorem is summarizes some important properties of the covariation 

(c.f. [47], p. 66-68, 77). 

Theorem 1.1.37. Let X , Y be semimartingales, H a ca.dlag adapted process and 

for any process {Zt} t ~o , let D.Zt = Zt- Zt- · The following summarises tl1e key 

results regarding quadratic variations and covariations 

1. The quadratic variation process< X, X > is adapted, d.dlag and increasing. 

In particular, < X, X > and < X , Y > are processes of bounded variation, 

hence J f(t)d < X , Y >t can be interpreted in the Lebesgue-Stieltjes sense. 

1whenever the underlying state space E has enough algebraic structure to take differences 
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2. < X , X >o= X5 and b. < X , X >t= (b.Xt)2
. Similarly, < X , Y >o= X 0Y0 , 

b. <X, Y >t= b.XtSyt. 

3. If CJn is a sequence of random partitions tending to the identity, then 

and 

X~+ I)xTI+l - xrF? -t< X, X > 
i 

XoYo + I)xri+l - xrt)(YTi+l - yrt) -t< X , y >, 
i 

L Hr;(XTi+l- xri')(YTi+l - yri') --7 J Hs_ d[X, Y] s 
1 

all converge under the ucp topology, where CJn is the sequence 0 = r0 :::; rf :::; 
... :::; rf :::; ... :::; rk.. , and where rf are stopping times. 

Next, we state Ito's formula for cadlag semimartingales. 

Theorem 1.1.38. Let X = (X\ ... , Xd) be d-tuple of semimartingales, and let 

f E C2 (~d) , then f(X) is a semimartingale, and the following formula holds: 

(1.1) 

We now define two alternative types of integrals that will be useful in stochas­

tic differential geometry, namely the Fisk-Stratonovich integral, and the Marcus 

canonical integral. 

Definition 1.1.39. Let X, Y be semimartingales, we define the Fisk-Stratonovich 

integral of Y with respect to X by 

1t i·t 1 Ys- o dXs := Y5 dXs +- < Y ,X >~ . 
0 . 0 2 
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The Fisk-Stratonovich integral is sometimes called the Stratonovich integral. It 

can be easily checked that if f E C3 (JRd) and X is a continuous semimartingale, 

then 

i t 8j . 
j (Xt) = j(Xo) + L 

0 
Bxi (Xs) o dX;. 

l 

(1.2) 

Therefore, this allows us to recover the change of variable formula in a coordinate 

free fashion. This is an advantage over the Ita integral in stochastic differential 

geometry. 

If X is a cadlag semimartingale, the Stratonovich integral no longer gives us 

a "chain-rule" type of coordinate free transformation formula. Hence, we need a 

separate approach to take care of the jumps. We will follow the approach of [2] 

to define the ~.farcus canonical integral for integrands of the form {f( s, X5_ )}5~0 , 

where f : JR+ x JRd ---+ JRd is such that s ~--+ f( s, X 5 _) is predictable and the Ita 

integrals J~ fi(s, Xs- )dX; exists for all t 2:: 0 and i = 1, ... , d. We assume that there 

exists a measurable map 

such that for each s 2:: 0, x, y E JRd, the following holds: 

• u ~--+ ci>(s ,u,x, y) is continuously differentiable. 

• ~~(s,u,x,y) = L,ixifi(s,y+ux) for each u ER 

• ci>(s, 0, x, y) = ci>(s, 0, x, 0). 

Such a cl> is called the Marcus canonical form. Given such a map, we define the 

Marcus canonical integral as follows. For each t 2:: 0, 

1t (J(s. Xs_) , odXs)Hf.d := 1t (J(s, X s_), odX~)Hf.d + 1t ( f (s, Xs_) , dX:\(d 

+ L ( ci>(s, 1, X s- 1 ~Xs)- <P(s, 0, Xs- 1 ~Xs)- ~: (s, 0, Y5 _, ~Ys)) 
o::;s::;t 

(1.3) 
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It then can be checked that if X is a cadlag semimartingale, and f E C3(JR.d), 

then 

t of i 
f(Xt)- f(Xo) = L ./o axi (Xs-) o dX5 , 

t 

(1.4) 

for each t ~ 0 with probability 1. 

1. 2 Euclidean Levy processes 

The two most studied examples of stochastic processes are the Brownian motion and 

the Poisson process. The former is thought of as the building blocks of processes of 

continuous paths, while the latter is held in similar regard for pure jump processes. 

The theory of Levy processes aim to combine both of the two. The following 

properties of stochastic processes will be central to the definition of a Levy process. 

Definition 1.2.1. A stochastic process {Xt} on ffi.d is said to have: 

• independent increments, if for any choice of n ~ 1, and 0 ~ t0 < t 1 < 

independent. 

• stationary increments, if the distribution of X s+t- Xt is independent oft. 

Definition 1.2.2. A stochastic process {Xt} on JR.d is said to be stochastically 

continuous if for every t ~ 0 and £ > 0, 

limlP(IXs- Xtl >c)= 0 . 
.s--+t 

Now we are ready to give the definition of a Levy process. 

Definition 1.2.3. A stochastic process {Zt} 1~0 on ffi.d is a called Levy Process 

if the following conditions are satisfied. 

• Zo = 0 a.s. 

• Z has independent and stationary increments. 

• Z is stochastically continuous. 
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If Z0 =I= 0, and all else are true, we call Zt a shifted Levy Process. Sometimes we 

will also consider the case when Z0 is random, so that J.-Lz0 is not a point mass, we 

call such a process a randomly shifted Levy process. 

The defining properties of Levy processes, the stationary and independent in­

crements assumptions, are closely related to another concept in probability theory, 

infinite divisibility. 

Now, observe that for two JR.d-valued independent random variables X , Y , and 

A C JR.d, f.-LX+Y(A) = JJRd J.-Lx(A- z)dJ.-Ly(z) where A- z = {y- z : yE A}. Inspired 

by this, we introduce the concept of a convolution. 

Definition 1.2.4. Let J.-L and v be probability measures on JR.d. The convolution 

J.-L * v of the measures is defined by, 

(p, * v)(A) = { J.-L(A- z)dv(z) 
JJRd 

for every A E B(JR.d), here A- z = {y- z: yE A} . 

Remark 1.2.5. The following facts about convolutions are well-known, ( c.f. [2], 

pp. 20- 21) 

• The convolution J.-L * v is a probability measure on JR.d. 

• Let 60 be the Dirac measure centered at 0, then 80 * p, = p, for all J1 E L(JR.d). 

• If j E Bb(JR.d), then for allJLi E L(JR.d), i = 1, 2, 3, 

- Jll * f.-£2 = J12 * Jll 

- (Jll * f.-£2) * f.-£3 = ~Ll * (f.-£2 * J13) 

• The space of probability measures over Rd forms a commutative algebra. under 

the convolution product. 

• If f E Bb(JR.d) , and Xi : .0 -+ JR.d are independent random variables, with 

induced measures Jli , i = 1, ... n , n E N then, 

lEj(X1 + ... + Xn) = { fdJ.-L1 * ... * Jln· }Rd 

An immediate consequence of this is that 
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if we pick f(x) = l A(x). 

An infinitely divisible random variable is a random variable that can be written 

as the sum of arbitrarily many independent and identical random variables. This 

induces a restriction on the underlying probability measure: it must be arbitrarily 

high convolution powers of some other probability measures. 

Definition 1.2.6 . Let M be a probability measure on JRd , we define the n-th 

convolution power of M, denoted by M*n by 

M*n =M*···* M (n t imes) 

Definition 1.2 . 7. A 1Rd-valued random variable X is said to be infinitely di­

visible if for any n E N, there exists v depending on n, such that v*n = Mx. 

Corollary 1.2.8. Let {Zt}t2:0 be a Levy process. Then the random variables Zt, 

t 2:: 0 are infinitely divisible. 

Proof. For every nE N, we can write Zt as, 

Zt = Zo + (Zt1 - Zt0 ) + ... + (ZLn - ZLn-J) 

= Zo + Y1 + ... + Yn. 

where tk = fjf, k = 0, ... , nand Yk = Zk- Zk- l· By the independent and stationary 

increment property, Yk and Yl are independent and identically distributed, and 

0 

Next, we introduce the characteristic function of a measure. 

Definition 1.2.9. Let M be a probability measure, the characteristic function 

(or the Fourier transform) of M, denoted by [1 is defined by, 

with >. E JRd. 
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In order to make inferences about fJ. from knowledge of [1,, we need the following 

results, all of these results are well-known. 

Theorem 1.2.10. {{49}, pp. 8- 10, {2}, pp. 15- 17} 

• Let J.l. , v E L(JRd), then ii*f; = [l,v. In particular, J.l.*n = ([i,)n. 

• (Glivenko) If [l,n and [1, are characteristic functions of probability distributions 

J.l.n and J.1. respectively, for each n E N, then [l,n ()...) -t [1,()...) for all )... E JRd 

implies J.l.n -t fJ. weakly as n -t oo. 

• (Levy's continuity theorem) If { <Pn}ner<~ is a sequence of characteristic func­

tions, and there exists a function <P : JRd -t C, such that for all )... E JRd, 

<Pn( >..) -t <P(>..) as n -t oo, and <P is continuous at 0, then <P is the characteris­

tic function of a probability distribution. 

• (Bochner) Let J.1. E L(JRd) , we have that 

- [1,(0) = 1, and 

- l[l,(z)l ::; 1, and 

- [l,( z ) is uniformly continuous and nonnegative deflnite in the sense that, 

for each n = 1, 2, ... 

n n 

L L [l,(zi - zk)t;ik;::: 0 
j=l k=l 

for Z1, ... , Zn E JRd , 6, ... , f;n E C. 

Conversely, if a complex valued function if; satisfles (i) - (iii), then if;( z) is the 

characteristic function of a distribution on JRd . 

The following theorem gives a representation of characteristic functions of all 

infinitely divisible distributionos. It is called the Levy Khintchine formula. It 

was first obtained on lR around 1930 by de Finetti and Kolmogorov in special cases, 

and then by Levy in the general case. Immediately, the formula was extended to 

JRd. A much simpler proof on lR was given by Khintchine. 

Definition 1.2.11. A measure v on JRd is said to be a Levy measure if it satisfies 

• v({O}) = 0, and 

• JJRd( lxl2 1\ 1)dv(x) < oo. 
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Theorem 1.2.12. (Levy-Khintchine representation) If J.1. is an infinitely divisible 

probability measure, then there exists 1 E ~d, a nonnegative definite symmetric 

d x d m atrix A, and a Levy measure 11, such that it(>.)= exp '!jJ(>.) , where 

'1/J( >.) = i (r, >. ) -~ (>., A>.)+ lad (ei(>.,x)- 1- i (>., x) 1{ixl9}(x))d11(x) (1 .5) 

Moreover, this representation is unique. 

Conversely, for any choice of "'(, A, 11 as above, there exists an infinitely divisible 

distribution J1 with characteristic function given by (1.5). 

Let { Zt}t~o be a Levy process. If we regard f.1. as above to be the prob­

ability distribution of Z1, with characteristic function it(>.) = exp('!jJ(>.) ), then 

fl zt = (flzJ t = exp(N; (>.)). Hence, we have obtained a Levy-Khintchine repre­

sentation for Levy processes. 

Corollary 1.2.13. Keeping the notations in Theorem 1.2.12, let {Zt}t~o be a 

Levy process. There exists unique"'(, A and 11, such that 

fl zt (>.) = exp [t (i ("Y, >.)-~(>.,A>.)+ 1d (ei(>.,x)- 1- i (>. , x) 1{1xi::;I}(x))d11(x))] 

(1.6) 

From the Levy-Khintchine representation, it makes sense to guess t hat a Levy 

process can be decomposed as the sum of a continuous process and a jump process. 

We will make this observation precise by studying the famous Levy-It6 decomposi­

tion. We need to introduce a new concept, a Poisson random measure, before this 

can be done. 

Definition 1.2.14. (c.f. [2) , p. 89) Let(£ , A ) be a measurable space. A random 

measure M on (£ , A ) is a collection of random variables {M(A)}AeA , such that 

• l\11(0) = 0; 

• Given any sequence { An}neN of mutually disjoint sets in A, we have 

This is called the a-additive property. 

19 



• For each disjoint family of sets A 1, ... , An E A, the random variables M (A 1), ... , M (An) 

are mutually independent. 

Definition 1.2.15. Let M be a random measure, we say lvf is a Poisson random 

measure if for every A such t hat .M(A) < oo, there exists). E JR., such that for all 

kEN 

for every k E N. 

JP>(l\1(A) = k) = e->.).~ 
k. 

Remark 1.2.16. It can be shown that >.(A) = JEM(A). Conversely, given a 

O"-finite measure). on a measurable space (£, B(£)), there exists a Poisson random 

measure M on a probability space (D, F, JP>) such that >.(A) = JEM(A) for every 

A EA. 

Next, we introduce the counting measure of a stochastic process as a random 

measure. Recall that if Xt be a stochastic process with cadlag paths, the jump 

process of Xt , denoted by ~Xt as 

Definition 1.2.17. Let A E B(JR.d- {0} ). We define the counting measure of 

X as 

Nx(t , A)= # {0 ~ s ~ t; ~Xs EA}= :2:: 1A(~Xs) · 
O:Ss:St 

We call the map Ax :A 1----7 IENx(l , A), the intensity measure of X. 

Remark 1.2.18. \Vhen there is no risk of confusion, one can write N(t, A) and 

>.(A) to denote the counting measure, and the intensity measure of X. 

Definition 1.2.19. For each t ~ 0, we define the compensated Poisson random 

measure {JV(t , A)}t~o by 

JV(t, A)= N(t, A)- t>.(A), 
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It is clear that if Xt is time homogeneous, then N(t, A) becomes a martingale, 

as elementary computation shows that lE(t , A)= tlE(N(1, A)) = t..\(A). 

Remark 1.2.20. 

• When Xt is a Poisson process with intensity ..\ , we can identify Xt = N(t , A) 

where ,\ = lEN(1, A) > 0. 

• When Xt is a compound Poisson process, that is, we can write Xt = X 1 + 
... + XNt, X 1 , X2 , ... are independent and identical random variables , and Nt 

is a Poisson process independent to X i. i = 1, 2, .... Then, N(t , A) counts the 

number of jumps of size x E A up to time t . 

Now, we are ready to define the Poisson integral. 

Definition 1.2.21. Let (E, A ) be a measurable space, f : E ~ ffi.d be a Borel 

measurable function, and let A E A be such that N(t, A) is bounded below for 

every t > 0. Then for each t > 0, w E 0. we define the Poisson integral of f as a 

random sum by, 

1 f(x)N(t, dx) (w) = L f(x)N(t, {x} )(w) . 
A xEA 

For each t fixed , fA f(x)N(t , dx) is a random variable, and it becomes a cadlag 

process if we allow t to vary. If N(t , A) is the count ing measure of a certain cadlag 

process X 1, then N(t , {.r}) # 0 ~ ~X(11.) = .r for at least one 0 ::; u ::; t. Hence, 

1 f( .T)Nx(t , d.r) = L .f(~X (v.))1A (~X(u )). 
11 O~u~t 

Theorem 1.2.22. ({2}, p. 91) Let A ~ JRd be such that N(t, A) > 0, and for each 

t > 0, we have 

• fA f(x)N(t , dx) has a compound Poisson distribution if we fix t , and it be­

comes a compound Poisson process if we allow t to vary. 

• For each u E JR.d, 

lE ( exp [i \ u, 1 f(x)N(t , dx))]) = exp [t 1 (ei(u,x)- 1)d.X1(x)] 
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Now we are ready to state the Levy-Ito decomposition theorem. 

Theorem 1.2.23. ({2}, p. 108) If Zt is a Levy process, then there exists b E JRd, a 

Wiener process Wt with covariance matrix A, and an independent Poisson random 

measure N on IR+ x (JRd- {0}) suclJ that for each t ;:::: 0, 

Zt = bt + Wt + r zN(t, dz) + r TN(t , d.T). 
}lzl<l } lxl>l 

Notice that the aboYe decomposition suggests that any Levy process Zt is very 

close to an independent sum of a Brownian motion and a compound Poisson process. 

In fact, we can make this idea precise by considering the interlacing construction 

(c.f. p. 47 of [2]). We now focus on Levy processes whose jumps are bounded above 

by 1. By the Levy-Ito decomposition, we have 

yt = bt + Wt + r xN(t, dx). 
J lxl<l 

We define a sequence { En}nEN that decreases monotonically to zero by, 

En= SUp {y 2: 0: r x2dv(x) :S ln} 
jO<Ixl<y 8 

where v is the Levy measure of Y. Now, we define yn = {Y;n }t~o as follows, 

~n = bt + Wt + j xN(t , dx) 
!n::; lxl<l 

= C~ + 1 xN(t, dx) , 
e:::; lxl<l 

where for each n E N, Cn is the continuous process given by 

c~ = vvt + t (b -1 xdv(x) ) . 
e:n::;lxl<l 

By theorem 1.2.22, f e:n:::: lxl<l xN(t, dx) is a compound Poisson process, with jumps 

LJ.yt at times {~:~,m E N}. This allows us to reconstruct ~n by interlacing, 
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namely, 

C!].~ + .0.Yr~, 
Y,P1 + c~- c;;~, 

n n 

Y,P2_ + .0.Yr~, 
n 

for 0 ~ t < T~; 

t = Tl. 
n' 

and so on, recursively. The main theorem regarding interlacing is as follows, 

Theorem 1.2.24. ( c.f {2}) For each t 2': 0, limn_,00 ~n = Yt a.s., and the 

convergence is uniform on compacta. 

The significance of this construction is that it allows us to write down precisely 

how we can regard Levy processes as limits of compound Poisson processes. On 

the other hand, this also allows us to intuitively construct Levy processes by taking 

limits of compound Poisson processes when the underlying state space is no longer 

JRd. 

We end this section by giving a brief survey of the main theorems concerning 

stochastic differential equations driven by Levy processes. Readers should refer to 

Chapter 4 of [2] and Chapter 5 of [4 7] for more details. 

Let (D, F , F t, JP>) be a filtered probability space, let {Wt}t~0 be ad-dimensional 

Wiener process and N an independent Poisson random measure on JR+ x (JRd- {0}) 

with associated compensator N and intensity measure v. We assume that v is a 

Levy measure. Vve are interested in studying equations of the form, 

dXt=JL(Xt_ )dt+~T(Yt-)dWt+ { F(Xt._, .r)N(dt,dy) (1.7) 
Jlvl<c 

+ { G(Yt-, x)N(dt , dx) 
}lvl~c 

where Xt is a JRd-valued process, JL E JRd , IT E End(lRn , JRd), c > 0, and Wt is an 

n-dimensional \:Viener process. For the sake of simplicity, we will assume n = d and 

so IT becomes a d x d symmetric matrix. 
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Definition 1.2.25. A strong solution to (1.7) is a process Yt adapted to :Ft such 

that for each t 2 0, 1 ::; i S d, 

Y(t) = Y(O) + t J-L(YI-)dt + 1t a(Yt_)dWt + t / F(yt_ , y)N(dt, dy) 
.Jo o .Jo .JIYI<c 

+ 1t / G(Yt- , y)N(dt, dy). (1.8) 
0 .JIYI?.c 

The final term in (1.2) involving large jumps that is controlled by G can be 

handled using interlacing (c.f. [2], p. 302), and we will formulate a sufficient 

condition for the existence of strong solutions to the modified equation, 

dXt=J-L(Xt_)dt+a(Xt_)dWt+ / F(Xt_,.rc)N(dt, dy) , (1.9) 
}IYI<c 

with initial condition X 0 = 0. For x, y E JRd, let a(x, y) = a(x )a(y )*, so that 

d 

aik(x , y) = L a~(x)aj(y) 
j=l 

for each 1 ::; i, k < d. We will equip such matrices with a seminorm given by 

We formulate the following two conditions: 

• Lipschitz condition: There exists K 1 > 0 such that for all y1, y2 E JRd, 

IJ-L(YI)- J-L(Y2)1 2 + lla(y1, Yl) - 2a(y1 , Y2) + a(y2, Y2)11 (1.10) 

+ / IF(yl, x)- F(y2 , x)l2dv(x) :S: K1 IY1- Y2l2 . 
.Jixl<c 

• Growth condition: There exists K 2 > 0 such that for ally E JRd , 

lb(y)l2 + lla(y,y)ll + / IF(y,x)l 2dv(x) :S: K2(l + IYI2). (1.11) 
} lxl<c 

Remark 1.2.26. ([2] p. 303) A straightforward calculation yields 

i,j 

24 



Theorem 1.2.27. Assume the Lipschitz (1 .10) and growth conditions (1.11) stated 

as above. There exists a unique strong solution {Yi} to the modified stochastic 

differential equation (1.9). Moreover; the process {Yi} is adapted and cadla,g. 

We have now covered the basic concepts of stochastic analysis and Levy processes 

on an Euclidean space. The majority part of this thesis is to attempt to extend as 

much of this as possible to non-fiat spaces. 
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CHAPTER 2 

Basic Stochastic Differential Geometry 

The central aim of this thesis is to generalize the theory introduced in the previous 

chapter to the study of Levy processes on non-Euclidean spaces. However, it is far 

from obvious how to give a reasonable definition of a Levy process on a general 

manifold. One major problem is the formulation of the independent increment 

property when the underlying state space lacks a group structure. 

Brownian motion is a stochastic process possessing the independent increment 

property, and its construction has been successfully carried over on a manifold via 

the Laplace-Beltrami operator (chapter 2- 4,[33]). In this chapter, we will study 

this construction in detail, and explain precisely where the problem lie in the case 

of general Levy processes. 

The structure of this chapter are as follows. Section 2.1 will give a brief intro­

duction of all the basic manifold theory needed in this thesis following chapter 1 of 

[28]. Section 2.2 will look more deeply into the concept of "rolling without slipping" 

in the dctcrmillistic case first, and then extending it to the stochastic case following 

chapter 2 of [33]. In section 2.3, we give a brief survey of the papers [3], [6]. In these 

papers, Applebaum first showed that the techniques of section 2.2 applied to Levy 

processes, will in general , produce a manifold valued process that is non-Markovian. 

Then in [6], Applebaum and Estrade showed that the construction is problem free 

if the Levy process is isotropic. 

2.1 Ivlanifolds 

Intuitively, a manifold M is a Hausdorff space equipped with some differentiable 

structure, while a Riemannian manifold is a manifold whose tangent spaces are 

equipped with an inner product at every point. This purpose of this section is to 

make the above intuitive ideas precise, and develop the necessary geometric theory 

26 



to define certain classes stochastic processes on manifolds. It also serves as an 

opportunity to standardize notations. 

Let JRd1 and JRd2 denote two Euclidean spaces of dimensions d1 and d2 respec­

tively. Let 0 and 0' be open subsets, 0 c JRd1 , 0' c JRd2 and suppose cb is a mapping 

of 0 into 0'. The mapping rp is called differentiable if the coordinates rpj (p) of rp(p) 

are differentiable functions of the coordinates xi(P) of p E 0 , i = 1, ... di, j = 1, ... , d2 . 

The mapping is called analytic, if for each point p E 0 there exists a neighbour­

hood U of p and d2 power series Pj, j = 1 . ... , d2 in d1 variables such that 

converges absolutely, for every j = 1, .... d2 and q E U. A differentiable mapping 

rp : 0 --+ 0' is called a diffeomorphism of 0 onto 0' if rp is bijective and the 

inverse mapping rp- 1 is differentiable. 

Definition 2.1.1. ([28], p. 4) Let M be a Hausdorff topological space. An open 

chart on M is a pair (U, rp), where U is an open subset of M and rp is a homeomor­

phism of U onto an open subset of JRd. A Ck differentiable structure on M of 

dimension d is a collection of open charts (Uc., rp0 )aEA on M, where A is an index 

set and rpOi(UOt) is an open subset of JRd that satisfies the following conditions, 

1. M= UaEA UOt. 

2. For each pair a, a' E A, t he mapping rpa' o cb-:r 1 is a k-times differentiable 

mapping of rpOt(Ua n UOi') onto rpOi'( UOt n UOi'). 

3. The collection (Ua, rpa )aEA is a maximal family of open charts for which (1) 

and (2) hold , 

for k E N U { oo}. A Ck-manifold of dimension d is a Hausdorff space with a 

differentiable structure of dimension d. 

An analytic structure of dimension d can be defined just as above, except 

that we need to replace the word "differentiable" by the word ··analytic': . Similarly, 

an analytic manifold is just a Hausdorff space with an analytic structure. A 

complex manifold can also be defined analogously, where in addition we need to 

replace every "]Rd" by "Cd", and the charts are complex analytic. 
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Definition 2.1.2. Let A be an algebra over a field F , a derivation of A is a 

mapping D : A ~ A such that 

• D(ad1 + a2h) = a1D h + a2D h for a1, et.2 E k and f, g EA. 

• D(fg) = f(Dg) + (D f)g for f, g EA. 

A vector field on a er manifold M is a derivation of the algebra er (M). The set 

of all vector fields on M is denoted by D1 (M). 

Let X, Y E D 1(M) . Then XY - Y X is also a derivation of C 00(M), and it 

is denoted by the bracket [X, Y]. It is common to write ad(X)(Y) = [X, Y], and 

ad(X) is called the Lie derivative with respect to X , or the adjoint map. It can 

be checked that the bracket satisfies the Jacobi identity, 

[X, [Y, Z]] + [Y, [Z, X]]+ [Z, [X, Y]] = 0. 

The above considerations turn D1 (M) into a module over coo (M). 

If f E Ck(M) and X, YE D 1 (M), then we will interpret the vector fields JX as 

JX: g f-+ J(Xg), and X+ Y as (X+ Y): g f-+ Xg + Yg forgE Ck(M). 

Definition 2.1.3. For x E M and X E D 1 (M), let Xx : Ck(x) ~ lR denote the 

linear map, Xx : f f-+ (X f)(x) , where Ck(x) is the set of k-times differentiable 

functions at x. 

The set {Xx :X E D 1 (M)} is called the tangent space to M at x, denoted by 

TxM· Its elements are called tangent vectors to !vf at x. Finally, the tangent 

bundle is given by TM = U xElH TxM. 

It can be shown that TxM is a vector space over lR spanned by d linearly inde­

pendent vectors 
ar ai : f f-+ -a ld>(x) 

X i 

for f E cr(M) , f* = f 0 cp-1 being the pull back off and Xi is a basis of 0 = cp(U) 

where U is an open set containing x. ( c.f. [28], p. 10) 

Remark 2.1.4. Another way of looking at the set of vector fields on M is to 

identify it with the space r(TM) of smooth sections of the tangent bundle, these 

are the smooth maps X : M f-+ TM. In fact , we will use r(TM) and D 1(M) to 

denote vector fields on M interchangably without further explanation. 
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Let R be a commutative ring and A a module over R. Let A* denote the set of 

all R-linear maps of A into R. Then A* is an R-module and it is called the dual of 

A. 

Definition 2.1.5. Let M be a Ck-manifold and let D 1(M) denote the dual of 

D 1(M). The elements of D1 (M) are called the differential 1-forms on M (or just 

1-forms). 

Remark 2.1.6. For each X E M, let r ;M = (TxM)* be the cotangent space 

at x, the dual space to Tx(M). The cotangent bundle T *M = U xEM r;M is a 

differentiable manifold, and it can be checked that a smooth section e E r (T*M) 

is a differential 1-form. Hence, the smooth sections f(T*M) and f(TM) are also 

duals of each other. 

For a Ck-manifold M, consider the Ck(M)-module 

r times 

and let Dr denote the Ck(M)-module of all Ck(M)-multilinear maps of D1 x ... x D1 

into Ck(M). Similarly, let v s denote the set of all Ck(M)-multilinear maps. Finally, 

let D~ denote the set of all Ck(M)-multilinear maps of 

into Ck(M), where the above product contains r superscripts and s subscripts. 

Definition 2 .1. 7. A tensor field 8 on M of type ( r, s) is an element of D~ (M). 

Moreover. 8 is said to be contravariant of degree r and covariant of degrees. 

Tensor fi elds of type (0, 0) , (1 , 0) and (0, 1) on M are the differentiable functions , 

t he vector fields , and the 1-forms on M respectively. In general, the bundle of (r, s )­

tensors is 

yr,SM = u TTM®7
• 0IR r;M®s. 

xEM 

An (r, s)-tensor 8 on M is a smooth section of the vector bundle yr,sM. For each 

x EM, the value of the tensor field 8x E HomJR(TxM®s_ TxM®r). 
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In local coordinates, X= {xr} with x i = a;axi, we denote the frame bundle on 

T* M dual to {Xi} by { dxi} , so dxi(Xj) = b} In terms ofthis basis, an (T, s )-tensor 

locally can be written as 

8 - e i) , ... ,irx RI RI X 10- d i J RI RI d j . 
- j) , ... ,j 8 i1 101 · · • 101 ir 101 X 101 · · · 101 X . 

Definition 2.1.8. An affine connection on a manifold "M! is a rule V which 

assigns to each vector field X a linear map V x : r(T"MI) ~ r(T"MI) , satisfying the 

following conditions, 

1. V /X +gY = JV X + gVy. 

2. Vx(!Y) = fVx(Y) + (Xf)Y 

for f , g E Ck("MI), X , Y E f(T"MI). The operator V x is called covariant differen­

tiation with respect to X. 

In local coordinates, a connection can be expressed in terms of its Christoffel 

symbols. 

Definition 2.1.9. Let x E "M! with x = { x 1
, ... , xd} as the local chart on an open 

subset 0 of M, so the vector fields Xi = 8j8xi spans the tangent space Tx"MI for 

each x E 0. The Christoffel symbols ffj are functions on 0 defined uniquely 

by the relation V xiXi = r~jXk, and the Einstein summation convention is applied 

over k. 

Definition 2.1.10. A vector field V along a curve {xt} on 1\1 is said to be parallel 

along the curve if V x V = 0 at every point of the curve. The vector Vx1 at Xt is said 

to be the parallel transport of Vx0 along the curve. 

In local coordinates, if .'Lt = {xD and Vx
1 

= vi(t)Xi, then V is parallel if and 

only if vi(t) satisfies the following system of equations, 

Definition 2.1.11. A curve {1t} on Jvf is called a geodesic if V./y = 0 along 

{'Yt }-
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In local coordinates , rt is a geodesic if it satisfies , 

.. k r k ( ),:.j . 1 0 'Yt + jl rt Tt 'Yt = · 

Note that a geodesic is uniquely determined by its initial position 'Yo and its initial 

direction 'Yo-

Theorem 2.1.12. ({28}, p. 32) Let M! be a manifold with an affine connection . Let 

x be any point in MI, and r{ be a geodesic starting at x in the direction of X . Then 

there exists an open neighbourhood N0 of 0 in TxM and an open neighbourhood 

Nx in M such that the map X~ rf is a diffeomorphism of N 0 onto Nx. 

Definition 2.1.13. The map X ~ rf in the previous theorem is called the 

exponential map at x , and it will be denoted by Exp (or Expx, if there is ambiguity 

about the starting point). 

Definition 2.1.14. Let M be a manifold with an affine connection and x a point 

on M. An open neighbourhood N 0 of the origin in TxM is said to be normal if 

• The mapping Exp is a diffeomorphism of N0 onto an open neighbourhood of 

N x of x in M. 

• If X E N 0 , and 0 :S: t :S: 1, then tX E N 0 . 

• A neighbourhood Nx of x E M! is called a normal neighbourhood of x if 

Nx = ExpN0 where N 0 is a normal neighbourhood of 0 in TxM. 

• Let X 1, .. . , Xm denote some basis of TxM, the inverse map 

of Nx into JRd is called a system of normal coordinates at x . 

Theorem 2.1.15. Let M be a Ck m anifold with an affine connection. Then each 

point x E M has a normal neighbourhood Nx which is a normal neighbourhood 

of each of its points. In particular, two points in Nx can be joined by exactly one 

geodesic segment, up to a linear change of parameter, contained in Nx . 
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Let M be a manifold with an affine connection \7. We put 

T(X , Y) = \7 x(Y)- \ly(X)- [X, Y] 

R(X, Y) = \lx\ly - \ly\lx- \l [X,YJ 

for all X , Y E VI. In differential geometry, t he tensors T(X, Y) E VHM) and 

R(X, Y) E VHM) are called the torsion tensor and the Riemann curvature 

tensor respectively I. 

Definition 2.1.16. Let M be a C00-manifold. A Riemannian structure or 

Riemannian metric on M is a (0,2)-type tensor field g that satisfies, 

• g(X, Y) = g(Y, X) for all X, YE VI(M). 

• For each x E M, 9x is a nondegenerate bilinear form on TxM x TxM. 

• 9x to be positive definite for every x E M. 

A Riemannian manifold is a connected C00-manifold with a Riemannian struc­

ture. 

Remark 2.1.17. An intuitive interpretation of t he Riemannian metric is as a 

collection of inner products on the tangent spaces TxM for each x E M. For this 

reason, we will use g(X, Y) I (X, Y) and 9x(X, Y) I (X, Y )x interchangably without 

further warning. 

Theorem 2.1.18. (c.f {28}, p. 48) Let M be a Riemannian manifold. There exists 

a unique afline connection on M satisfying the following conditions: 

• The torsion tensor T is identically zero, i. e. \7 x Y - \7 y X = [X, Y]. 

• The parallel displacement preserves the inner product on tangent spaces, i.e. 

Y'zg = 0. 

Definition 2.1.19. Let M be a Riemannian manifold, .r0 , x i EM. Suppose further 

that there exists a geodesic curve 1 such that /o = x 0 and / I = XI . The distance 

between x0 and xi , denoted by d(x0 , x1) is defined by 

d(xo, xi) = 11 J 9·n bt , 'Yt )dt. 

1 For details of the above claims, see [28] , p. 44. 
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Finally, we will conclude this introductory section by stating a couple of embed­

ding theorems regarding Riemannian manifolds. 

Theorem 2.1.20. (Whitney Embedding Theorem) Let M be a connected smooth 

d-dimensional manifold, then M can be smoothly embedded in Euclidean 2m-space. 

That is, there exists a smooth injective map cjJ : M ~ JR2d. 

Remark 2.1.21. This is the best linear bound on the smallest dimensional 

Euclidean space that all d-dimensional manifolds embed in. For example, the d­

dimensional real projective plane cannot be embedded into Euclidean (2d - 1 )-space 

if d = 2n, for some n E N. 

2.2 Rolling without slipping 

The intuitive idea behind the "rolling without slipping" is to curl a curve that lives 

on JRd onto a d-dimensional manifold via the so called "development map" . First 

of all, we will revise how a deterministic path can be rolled onto a manifold. This 

is done by first "lifting" the curve up to a "frame bundle", and then projecting it 

back down to the manifold. This process can be constructed by solving a system of 

ODEs. 

By stochastic development, we really mean reproducing the same process, ex­

cept we will end up solving systems of Stratonovich equations instead of ODEs. 

Stochastic development is one common way of constructing continuous stochastic 

processes on manifolds from their JRd counterparts. However, we will see that this 

technique will break down when the corresponding process is cadlag. In particular , 

the manifold-valued Levy process obtained in this fashion will not be a Markov 

process unless it is isotropically distributed ( c.f. [3] , [6]). 

Vve will follow the approach of [33] , §2.1 and §2.3. 

2. 2. 1 Deterministic development 

Definition 2.2.1. A frame at x is an IR-linear isomorphism u : JRd ~ TxM. The 

set of all frames at x is denoted by J"x(M) , while the frame bundle is J (M) 

UxEMI J"x(M). 
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The frame bundle can be made into a differentiable manifold of dimension d+d2
, 

and the canonical projection 7f : J(M) ---+M is a smooth map. The group GL(d, JR) 

acts on J(M) fibre-wise in the sense that each fibre Jx(M) is diffeomorphic to 

GL(d, JR), and M= J(M)/GL(d, JR) in the sense of diffeomorphism. This makes the 

triplet (J(M), M, GL(d, JR)) into a principal bundle with structure group GL(d, JR). 

Moreover, we can easily see that the tangent bundle has the form 

TM = J(M) XcL(d,IR) JRd 

by the action ('U, e )~-------+ 'Ue, with 'U E GL(d, JR) , e E JRd and 'Ue is simply the matrix 'u 

acting on e. 

Definition 2.2.2. Let TuJ(M) be the tangent space of the frame bundle at 'U. A 

vector X E TuJ(M) is called vertical if it is tangent to the fibre J(M)7fu· 

The space of vertical vectors at 'U is denoted by VuJ(M); it is a subspace of 

TuJ(M) of dimension d2
, while the total dimension of TJ(M) is d + d2 . If M is 

equipped with a connection \l, we can interpret a curve {'Ut} in J(M) as a smooth 

choice of frames at each point of the curve { 1f'Ut} on M. 

Definition 2.2.3. The curve {'Ut} is called horizontal if for each e E JRd, the 

vector field {'Ute} is parallel along {1r'Ut}. A tangent vector X E TuJ(M) is called 

horizontal if it is the tangent vector of a horizontal curve from ll. The space of 

horizontal vectors at 'U is denoted by HuJ(M). 

Now we will make the connection from the horizontal frames back to the mani­

fold itself. Note that HuJ(M) is ad-dimensional subspace of TuJ(M), and we have 

the decomposition, 

Hence, the canonical projection 1r : J(M) ---+ M gives an isomorphism 7f* between 

HuJ(M) and T1f11 M. Moreover , for each X E TxM, and a frame 'U at x , there is a 

unique horizontal vector X* , the horizontal lift of X to 'U, such that 1r *X* = X. 

In fact, for every vector field X on M , X* is a horizontal vector field on J(M). 

Moreover , given a curve { xt} and a frame 'Uo and x0 , there is a unique horizontal 
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curve {ut} such that 1fUt = Xt - It is called the horizontal lift of Xt from u0 . The 

linear map 

is independent of the choice of the initial frame u0 and is called the parallel trans­

port along { xt} . 

Remark 2.2.4. The horizontal lift {ut} of { xt} is obtained by solving an ordinary 

differential equation. A detailed proof of why the solution never blows up can be 

found in [38]. However, the stochastic version of this fact will need a proof when we 

consider stochastic developments and stochastic horizontal lifts in the next section. 

A local chart x = {xi} on a neighbourhood 0 ~ M! induces a local chart 

6 = 1r-
1 (0) in ~(M!) as follows. Let Xi= EJj8xi,i = l , ... , d , be the moving frame 

defined by the local chart. For a frame u E 6, we have uei = (ei, X )JRd where e is 

some matrix e = (ej) E GL(d, JR). Then, (x, e)= (xi, e~) E JRd+d
2 

is a local chart for 

6. In t erms of this chart, the vertical subspace Vu~(MI) is spanned by X kj = 8 I 8eJ' 

1 ~ j, k ~ d, and the vector fields {Xi, X ki, 1 ~ i,j ~ d} span the tangent space 

Tu~(MI) for every u E 6. We will need the local expression for the fundamental 

horizontal vector field Hi. 

Proposition 2.2.5. In terms of the local chart on ~(M!) described above, at 

u = (x , e)= (xi , eJ) E ~(M), we have 

where 
8 a 

Xi = ~, Xkm = ~-
u xi u em 

and we use the Einstein summation convention. 

Let {ut} be a horizontal lift of a differentiable curYe { xt} on M!. Since it E Txt MI, 

we have u"t1it E JRd. This motivates the following definition. 

Definition 2.2.6. The anti-development of the curve {xt}, or of the horizontal 

curve {ut} , is a curve { wt} in JRd defined by 
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Note that w depends on the choice of u0 and x0 , in a simple way. Take another 

horizontal lift { vt} of { xt}, and suppose that u0 = v0g for g E G L( d, ffi.), then the 

anti-development of { vt} is {gwt}. 

Observe that UtWt = .it, so we obtain that HwJut) = UtWt = .Tt - Ut· So 

{ Wt}, {ut} and { xt } on M are related by an ordinary differential equation on .J(M) 

If M is a Riemannian manifold with Riemannian metric g(., .), then we can 

restrict ourselves to a smaller set of frames, the orthogonal frames. 

Definition 2.2.7. The orthogonal frame bundle, denoted by O(M) is the set 

of all Euclidean isometries u : ffi.d --+ TxM. 

The action group is therefore reduced from GL(d, ffi.) to O(d), and O(M) is a 

principal fibre bundle with structure group O(d), in the sense of [33]. A connection 

"V is compatible with a Riemannian metric if and only if 

Vxg(Y, Z) = g("VxY, Z) + g(X, '\lyZ) (2.1) 

for every triple of vector fields X, Y, Z. A connection that is compatible with the 

Riemannian metric preserves orthogonality of the frame. This connection is called 

the Levi-Civita connection and the existence and uniqueness of such a connection is 

given by t he Fundamental theorem of Riemannian geometry which we state below. 

Theorem 2.2.8. (Fundamental theorem of Riemannian geometry) Let M be a 

Riemannian manifold with metric g, then there is a unique connection "V such that 

(2. 1) holds for every X, Y, Z E V1 (M), and in addition "V x Y - \7 y X = [X, Y]. 

Hence, if a Riemannian manifold is equipped with such a connection, then ev­

erything we said about .J(M) carries over to the orthogonal frame bundle O(M). 

Also note that although each individual Xij may not be tangent to the fibre O(M)x , 

the linear combination e~fj1Xkm are in fact tangent . This makes Hi(u) a vector 

field on O(M) for each i = 1, ... , d. 
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2. 2. 2 Stochastic development 

Now, we are going to "roll" a continuous semimartingale onto a manifold using the 

strategy described in the previous subsection. However, before this can be done, 

we will need to understand the stochastic version of 

This will involve solving stochastic differential equations on manifolds, and t he 

solution will typically be a manifold valued semimartingale. Hence, we make the 

following definitions. 

Definition 2.2.9. Let M be a differentiable manifold equipped with a filtered 

probability space (!1, F , Ft , lP) . Let T be a Fcstopping time. A semimartingale 

on M up to a stopping time T is a stochastic process X on M, such that for every 

f E C00 (M), f(X) is a real-valued semimartingale on [0, T). 

Definition 2.2 .10. A stochastic differential equation, abbreviated as SDE, on 

M is defined by l-vector fields V = (Vi , ... , VI) on M, an IR1-valued semimartingale 

Z referred to as the driving semimartingale, and an M-valued random variable 

Xo E Fo , written (symbolically) as 

(2.2) 

An M-valued semimartingale X , defined up to a stopping time T is a solution to 

this equation up to T, if for all f E coo (M), and for each 0 :::; t < T , 

(2.3) 

and where 0 = .. o , o to denote the It6, Fisk-Stratonovich and M arcus canonical 

integral respectively. 

Definition 2.2.11. Let M be a manifold equipped with a connection V , and a 

frame bundle J . Let Ut be an J-valued process and Zt ad-dimensional semimartin­

gale. Consider the following SDE, 

(2.4) 
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1. An .J(M)-valued semimartingale U is said to be horizontal if there exists 

JRd-valued semimart ingale Z such that (2.4) holds. The unique Z is called the 

anti-development of U, or of its projection X =nU. 

2. Let Z be an JRd-valued semimartingale and U0 an .J(M)-valued F 0-measurable 

random variable. The solution U of (2.4) is called a stochastic development 

of Z in .J(M). Its projection X = nU is called a stochastic development 

of Z in M. 

3. Let X be an M-valued semimartingale. An .J(M)-valued horizontal semi­

martingale U such that its projection nU = X is called a stochastic hori­

zontal lift of X. 

In order to establish that the above definitions are \veil defined, especially the 

transitions X --7 U and U --7 M/, we will prove the existence of a horizontal lift by 

deriving a stochastic differential equation for it on the frame bundle .J(M) driven by 

X. By Whitney 's embedding theorem, we may regard M as a closed submanifold 

of ]RN, and regard X as an JRN -valued semimartingale. We will prove the following 

lemma. 

Lemma 2.2.12. Let M be a closed submanifold ofJRN . For each x EM, let P(x) : 

JRN --7 TxM be the orthogonal projection from JRn onto the subspace TxM ~ ]RN, 

where n > N. If X is an M-valued semimartingale, then we have on JRN , 

Proof. Let { ei}, i = 1, 2, ... , N be the canonical basis for JRN, and define 

so that Pi(x) is tangent to M, and Qi(x) is normal to M , and Pix + Qix = ei for 

all x E JRN. Let 

38 



We first show that Y is a process on M. Let f be a smooth nonnegative function 

on JRN that vanishes only on M. By Ito's formula, 

But if x EM, then ~(x) E TxM and Pd(x) = 0. Hence Pd(Xt) = 0 and f(Yt) = 0. 

This implies that Yt EM for each t :2: 0. 

Now, for each x E JRN , define h(x) = infyeM d(x, y). Since M is a closed subman­

ifold of JRN , h : JRN ---+ M ~ JRN is a well defined smooth function in a neighbourhood 

of M , and is constant on each line segment perpendicular to M. Hence, we get that 

Qih(x) = 0 for each x EM and each i = 1, 2, ... , N , as the Qi's are normal to the 

manifold. Hence, if we regard ei as a vector field on JRN , we have 

Using the above and the fact that Xt , Yt EM, we have 

yt = h(Y,.) = Xo +it Pih(Xs) o dX~ 
r 

= Xo + Jo eih(Xs) o dX~ 

= h(Xt) = Xt. 

This completes the proof. 0 

We now prove that the solution to the above equation is indeed the horizontal 

lift of X. We begin by proving another simple geometrical fact. First, let f = 

{fi} : M ---+ JRN be the coordinate function. Its lift j : ~(M) ---+ JRN defined by 

i(u) = f(nu) =nu EM~ JRN, is just the projection n: ~(M) ---+ M written as an 

JRN -valued function on ~(M). 

Lemma 2.2.13. L et ei be the 'i-th coordinate ofJRd, j: ~(M) ---+M~ JRN be the 

projection function. The following two identities hold on ~(M): 

Pt ](u) = ~(nu) , 
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( P(1ru), HJ(u) J JRN = uei 

fori = 1, ... ,d. 

Proof. If {ut} is the horizontal lift from u0 = u of a curve {xt} with ±0 = Per(7ru), 

then P~(u) = u0 . Hence, 

P*j( ) _ d](ut) _ d1rut _ . _ p ( ) 
U - - - Xo - er 1rU . 

er dt dt 

This establishes the first identity, and the proof of the second ident ity is very similar. 

Take { vt} to be the horizontal lift from v0 = u of a curve {yt} on M with i;o = uei . 

Then, 
H 

1
-( ) _ d](vt) _ d(1rvt) _ . _ 

i u - dt - dt - Yo - uei. 

This means HJ(u ) E T7TuM for each i = 1, ... ,d. Hence, P(1ru)Hj(u) = HJ(u) 

and we have 

which proves the second identity. 0 

Now we can prove the main theorems for this section. 

Theorem 2.2.14. (c.f Chapter 2 of {33}) A horizontal semimartingale U on the 

frame bundle J(M) has a unique anti-development lV. In fact, 

Proof. W is the JRd-valued semimartingale defined to satisfy, 

Let j be the canonical projection, such that ](Ut) = 1rUt = Xt, we have for every 

a= 1, ... ,N 
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Multiply both sides by u-1 Pcr.(Xt) E JRd, and using the second identity from Lemma 

2.2.12, note that since 

N 

( P(rru), HJa(u) )JRN = L Pcr.(1ru)HJcr. (u ) = uei, 
a =l 

we have 

0 

Theorem 2.2.15. Suppose that X= {Xt}o-:;t<T is a semimartingale on M up to a 

stopping timeT, and U0 an ~(M)-valued :F0-measurable random variable, such that 

nD0 = X 0 . Then , there is a unique horizontal lift {Ut}o-:;t<T of X starting from U0 . 

Moreover, the horizontal lift is also defined up to T. 

Proof. Following Remark 2.2.4, we will first prove that without assuming uniqueness 

of U, a horizontal lift U of X is always defined up to T, i.e. there is no explosion in 

the vertical direction. 

By a stopping time argument , we can assume without loss of generality that 

T = oo, so the semimartingale X is defined on all of [0, oo). We can also assume that 

there is a relatively compact neighbourhood 0 covered by a local chart x = {xi }, 

such that Xt E 0 for all t ~ 0, and u = {xi, e~} be the corresponding local charts 

defined on ~(M) . Let 

these are vector fields on ~(M). Define, 

d 

h(u) = L le~ l 2 , 
i, j 

it is enough to show that h(Ut) does not explode. 

One way of doing this is by first writing the horizontal lift P~ of Per. in the 

local coordinates, and then deriving a stochastic differential equation for h( Ut). We 
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proceed as follows. Since uei = e{Xi by definition, we have X 9 = f~uei, where {J/} 

is t he inverse matrix of { e{ }. The horizontal lift Hi of uei is given by 

and hence the horizontal lift of X 9 is 

If Pa(x) = p~(x)X9 , then the horizontal lift of Pa(x) is 

Using Ito's formula and the fact that dUt = P~ (Ut) o dXr, we obtain that 

h(Ut) = h(Uo) + 1t P~h(Us)dXr; + ~ 1t P~PJh(Us)d (Xa, X f3) s 

~ h(U0 ) + ( Ch(Us)dXr; + ~ 1 t Ch(Us)d (x a, X f3) s . 
.fo o 

As the coefficients of P~ , r7i and p~ are uniformly bounded on the relatively compact 

neighbourhood 0 ; from t he definition of h, we can assert that there exists a constant 

C such that IP~h l ~ Ch and IP~PJh l ~ Ch. 

Now, the problem has been reduced to problem of determining the explosion 

time of a solution to a real valued stochastic differential equation, and standard 

theory tells us h(Ut) never explodes. Hence our first proof is finished. 

Next, we determine the uniqueness of the horizontal lift . From Lemma 2.2.10, a 

good candidate for the horizontal lift U of X is the unique solution of the following 

equation on ~(M), 

where P*(u) is the horizontal lift of P (1ru) . First, we will need to verify that this 

is indeed a horizontal lift of X. Since U is obviously horizontal, it suffices to show 
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that 1rU =X. Put Yt = 1r(Ut), we have by Lemma 2.2.12, 

with initial condition Y0 = 1r(U0 ) = X 0 . On the other hand, by lemma 2.2.11, X 

is a solution of the same equation. Hence by uniqueness, we have X = Y and this 

establishes that U is a horizontal lift of X. 

Now, let II be another horizontal lift of X . Since II is horizontal , there exists 

an ~R_d-valued semimartingale lV such that 

(2.5) 

By theorem 2.2.13, the anti-development is given by 

Substituting this back into (2.5) , and using the fact that the horizontal lift P~(IIt) 

of Po:(Xt) is given by 

d 

P~(IIt) = .L:)rr-1 Po:(Xt))iHi(IIt)-
i=1 

We find that dilt = P~(Ilt ) o dXf, ancl so II satisfies the same equation as U. By 

uniqueness of strong solutions to SDE's, we have II = U up to indistinguishability. 

D 

2.3 Horizontal Levy processes on Riemannian manifolds 

There have been several attempts in applying the techniques suggested in the pre­

vious section to the construction of a Lhy process on a manifold M. Most notably, 

through the papers [3] and [6], Applebaum and Estrade were able to extend the 

Eels-Elworthy construction to construct isotropic Levy processes on Riemannian 

manifolds. In this section, we will briefly outline the construction of [3], and high­

light the problems that prevented this technique from being extended to general 

Levy processes as it was pointed out by Applebaum in [3]. 
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Let M bead-dimensional connected Riemannian manifold, and let O(M) be the 

bundle of orthogonal frames over M with the canonical surjection 1r : O (M) -+M. 

Let rp E O(M) with 1r(rp) = p . We may regard 1·p = (r~, ... , r;) as a linear isometry 

rp: JRd-+ Tp(M), via the action rp(x) = Lj xirt for each x E JRd. 

We note that M equipped with its Riemannian connection enables us to write 

the Whitney direct sum 

T(O(M)) = H (M) EB V(MI), 

where H(M) and V(MI) are the subbundles of the horizontal and vertical fibres 

respectively. 

Let X = {X ( :r), .T E JRd} denote the canonical horizontal vector fields on 

O(M). They are characterised by 

• Each X(x)(r) E Hr(M). 

• d1rr(F(x)) = Tp(x). 

for each x E JRd, r E O(M) with 1r(r) = p. Here, d1rr : Tr(O(M)) -t Tp(M) is the 

differential of 1r . X will be given the smallest topology for which the maps x 1---7 X(x) 

are continuous. 

Sometimes it is convenient to write Xi = X ( ei), where { ei, 1 ~ i ~ d} is the 

natural basis for JRd _ We will assume that each X on O(MI) is complete, so that M 

is geodesically complete. For each u E IR, r E O(M) , x E JRd. the exponential map 

rx(v.) = exp(uX(.r))(r) is the unique solution of the differential equation in O(M), 

with initial condition rx(O) = r. The family {rt(u)} forms a continuous one­

parameter group of diffeomorphisms generated by each X ( x). 

Let Y be a d-dimensional Levy process on some complete filt ered probability 

space (0, F , F1, JP>) . By theorem 1.2.23, there exists an n-dimensional \Viener pro­

cess {ltVt} with n ~ d, a Poisson random measure N on JR+ x (IRn - {0} ), which 

is independent of W a!l(l has associated Levy measure v on IRn - {0} given by 

JEN(t, A) = tv(A) for all t E JR+, A E B(IRn - {0} ), such that Z = (Zl, ... , zn) has 
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Levy-Ito decomposition 

Yt =et+ aWt + 1t 1 yN(dt , dy) + 1 t 1 yN(dt , dy) (2.6) 
0 IIYII:O::l 0 IIYII<l 

for 1 ::; j ::; n, t 2: 0. Here c E JRd, a E End(JRn, JRd), and N is the compensated 

process N(t, A) = N(t , A) - tv(A). 

Definition 2.3.1. (c.f. [6] , p. 173) Let R = {Rt}o::;t::;11 be a ca.dlag semimart ingale 

on O(M) where 'fl is an explosion time. 'vVe say that R is a horizontal Levy pro­

cess starting at r E O(M) if R solves the following stochastic differential equat ion 

in O(M), 

1t . 1t 1 
f(Rt) = f (r) + 

0 
~ Xd(Rs_)dYst + 

0 
2 ~ aikXiXkf(Ru)ds (2.7) 

+ ~ [f((exp(X(I'>Z,)))(R,_))- f(R,_)-~ Xd(R,_)M~ l 
for all f E C 00 (0(M)), t 2: 0. 

By the Levy-Ito decomposition (2.6), we can write t his as 

where 

f(Rt) = f(r ) + ( L Xd(Rs)dW; + it Ao(M)(J)(Rs-)ds 
Jo i o 

+ i t 1 [f(exp(X(y))(Rs-)) - f(Rs-)]N(ds , dy) (2.8) 
0 O<IIYII <l 

+ r { [f(exp(X(y))(Rs- ))- f(Rs-)]N(ds, dy) 
.Jo .JIIvll> l 

Ao(MI) (f)(T) = L ciXd(r) + 1 L ajkXjXkf(r) 
i jk 

+ { [f(exp(X(y)))(7·) - f(r)- 111YII<lX(y)f(r)]dv(y) . (2.9) 
) JRd - {O} 

for f E C(O(M)), r E O(M) , where a = (aii) is the non-negative definite matrix 

aa* . 

It was shown in T heorem 2.1 an d T heorem 2.2 of [3] that (2 .7) has a unique 

cadlag solution R = {Rt}o::;t<11 , up to explosion t ime TJ. [6] limited the construction 
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to compact manifolds, where it can be shown that TJ = oo a.s. It was claimed 

by the authors that their technique in [6] could also be extended to processes on 

noncompact manifolds up to some explosion time TJ. 

If we let {7t}t~o be the Markov semigroup on C0 (0(M)) , the space of continuous 

functions on O(M) vanishing at infinity, defined by 

for f E C0 (0(M) ), r E O (M) . Then, it can be shown (c.f. [3] p.177) that Ao(M) 

is the generator of the semigroup Tt. Next, we consider the dtdlag process (t = 

n(rt), and we define the linear operator AM(r)g(p) = Ao(M)(g o n)(r). Then for 

g E C00 (M),p = n(r) , 

~ . 1 
AM(r)g(p) = ~ c1Ri(g)(p) + 28.M(g)(p) 

i 

(2.10) 

+ L-{o) [g ( exp ( ~ y' R;)) (p)- g(p)- IIIYII<l ~ y,R,(g)(p)l dv(y) , 

where Rj = r(ej) E Tp(M) . 

Applebaum pointed out in [3], p. 178 that, the frame dependence of the operator 

AM indicates that the semigroup {Tt}t~o on C0 (0 (M)) does not, in general, project 

to a semigroup on C0 (M). Hence, our candidate, ( t , for the Levy process on M is 

in general, not a Markov process, as the law of (t in general may depend on the 

choice of the initial frame R0 = r at (0 = p . 

Let us write Rt = R(r, Y, t ) for the solution of (2.7) and ( 1. = ((r, Y, t ) for its 

projection on M. Let r' be another orthogonal frame at p = n(r') and let 0 be the 

orthogonal t ransformation such that r' = rO (c.f. [6] p. 175). It is easy to show 

that ((r' , Y, t) = ((r, OY, t) using the relation dnro(f(y)) = dnr(f(Oy)) , Vy E JRd. 

Hence, the processes (t = ((r, Y, t) and ({ = ((r, OY, t) will agree in law if the 

processes Y and OY agree in law for all 0 E 0 ( d)2 . 

Now if we write Rd = M(d)/O(d) , where M(d) is the group of all isometries 

of JRd, then we see that we require Y to be a spherically symmetric Levy process 

20 (d) is the orthogonal group on JRd. 
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on JRd in the sense of [25] , [26] and [4]. It follows that Y is characterized by the 

Levy-Khintchine formula 

JEei (u ,Yt) = exp [t (-~ ai iuW + f (ei(u,y) - 1- i (u, y) 111v l l ~ l)) dv(y)l 
2 } Jtd_{Q} 

where a = CJCJ* of the CJ that appears in (2.6) and the Levy measure v satisfies 

v(OA) = v(A) for all A E B(JRd- {0}). In the case where Y is spherically symmet­

ric as above, the process (t = ((r, Y, t) will always be a Markov process (c.f. [6]) . 

We call it the isotropic Levy process on M. Theorem 3.1 of [6] giYes sufficient 

conditions for a general cadlag semimartingale to be an isotropic Levy process. 

Remark 2.3.2. Concluding Remarks 

In this chapter, we studied some standard techniques that allow one to construct 

a continuous trajectory semimartingale on a manifold by solving a set of stochastic 

differential equations. As long as the solutions to these SDE's exists and are unique, 

the manifold valued process resembles everything we expect from its Euclidean 

analogue. 

Such a set of techniques directly applied to the construction of a manifold-valued 

Levy process proved to be problematic. Even if the SDE's on the orthogonal frame 

bundle have a unique solution, it may not project back as a Markov process on the 

manifold unless it is isotropic. This assumption is very restrictive, as it rules out 

any processes that has a drift. 

There is obviously a large missing piece of the puzzle to understand what is 

really happening in the anisotropic case. The rest of the thesis will be pursuing this 

direction. 
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CHAPTER 3 

Lie Groups and Symmetric Spaces 

In the previous chapter, we have seen how Brownian motion and Levy processes 

can be "rolled" onto manifolds via stochastic development. However, in general 

the stochastic development of a anisotropic Levy process fails to be even a Markov 

process. In this chapter, we will focus on the group-theoretic aspects of isotropic 

Levy processes on symmetric spaces in the spirit of [25] and [26]. This will lay the 

groundwork for the next chapter, where Fourier analysis techniques used by previous 

authors, such as Applebaum [4], Gangolli [25] and Liao [41], will be generalised to 

give the Levy Khintchine formula for an arbitrary Levy process on a symmetric 

space. Furthermore, this will shed some light on how one may proceed to construct 

a general Levy process on a general Riemannian manifold. 

This chapter will first recall that a wide class of Riemannian manifolds can 

be thought of as the homogeneous space of a Lie group. We will then give a 

brief survey of the relevant theorems about Lie groups, and the definition of a 

Lie group-valued Levy pro\ess. We will regard a manifold-valued (or symmetri<' 

space-valued) Levy process as a coset-valued Levy process in a Lie group. Finally, 

we will establish a Levy-Khintchine formula for the special class of "isotropic" or 

"spherical" symmetric space valued Levy processes. 

For a Lie group1 G, let C(G), Cc( G) , C00 (G), C0 (G) be the spaces of continuous 

functions , continuous functions with compact support , the infinitely differentiable 

functions on G, and continuous functions vanishing at oo respectively. We set 

C~(G) = C00 (G) n Cc( G). Let D(G) and V( G), respectively, be the algebra of all 

differential operators on C 00 (G) , and the elements of D(G) which commute with 

the left action of G on coo (G). 

1 See Definition 3.2.1 
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We fix a left-invariant Haar measure dx on G, and let L1 (G) be the algebra, with 

convolution as the product operation, of Borel measurable functions integrable with 

respect to dx. Elements of this algebra are equivalent classes of functions which 

are equal almost surely. Let M (G) and M 1 (G) be the set of finite regular non­

negative Borel measures and probability measures on G respectively. Both M (G) 

and M 1 (G) are semigroups with respect to the convolution product. 

For 9 E G, we denote the left translation induced by 9, h ~---+ 9h of G by 19 , 

and the right translation h ~---+ h9 of G by n.9 . "(9 , n.9 induce transformations j"Yg 

and /""9 on C(G), Cc( G), C00 (G) by the rules, j'Y9 (h) = f o 1;1 (9) = j(9-1h) and 

f""9 (h) = f o n.; 1 (h) = f ( h9 - 1 ). Similarly, we extend these conventions to other 

function spaces such as L1 (G) in the obvious way. 

3.1 Basic facts about Lie groups and symmetric spaces 

In this section, we will show that a wide class of Riemannian manifolds may be 

thought of as a quotient space of the form G / K , where G is a Lie group and K is 

a compact subgroup of G. 'Ne begin by listing some basic facts about Lie groups 

and Lie algebras that can be found in any graduate level textbook. This section is 

intended to act as an "dictionary" for the terminologies that will be used beyond 

this point. I will be mainly following [28] , [39] and [41]. 

Definition 3.1.1. A Lie group G is a group and a manifold such that both the 

product map G x G 3 (9 , h) ~---+ 9h E G and the inverse map G 3 9 ~---+ 9-1 E G are 

smooth. The identity element of G is denoted by e. 

Definition 3.1.2. ([39], p. 24) Let k be a field, (in this thesis , we consider only 

k = lR or C). An Lie algebra g is a vector space over k , with a product [., .), linear 

in each variable. which satisfies 

• [X , X]= 0, for all X E g (and hence [X , Y] = -[Y, X]) , and 

• the Jacobi identity 

[[X , Y], Z] + [[Y, Z], X]+ [[Z, X], Y] = 0. 

To every Lie group, there is an associated Lie algebra, whose vector space struc­

ture is the tangent space of G at the identity element, and the Lie bracket captures 
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the "local structure" of the group. If h E G, then the translation maps rh : 9 ~---+ h9 

and "'h : 9 ~---+ 9h are diffeomorphisms from G onto itself. Therefore, so is the con­

jugat ion map \lJ h = rho "'/;1 
: 9 ~---+ h9h-1

. The conjugation map fixes the identity 

element e and therefore its tangent map at e is a linear automorphism of TeG. 

Hence, Te\llh E End(TeG). 

Definition 3.1.3. Let V be a finite dimensional vector space over a field k, G a 

Lie group, and g a Lie algebra. A representation 6 of G on V is a homomorphism 

6 : G ---+ Endk V. A representation p of g on V is a homomorphism of Lie algebras 

g ---+ Endk V, with 

p([X, Y]) = p(X)p(Y) - p(Y)p(X), forall X, Y E g. 

If G is non-compact, we define its representation on a Hilbert space V being 

a group homomorphism 6 : G-+ B(V), where B(V) is the group of bounded linear 

operators of V which have a bounded inverse such that the map G x V -+ V given 

by (g, v)-+ \ll(g)v is continuous. 

If 9 E G, we define Ada(9) E GL(TeG) by Ada(9) = Te\ll9 . The map Ada : 

G -+ End(TeG) is an homomorphism and it is called the adjoint representation 

of G (c.f. [28], p. 127). Let h E G, the mapping \ll(h) : 9 ~---+ h9h-1 is an analytic 

isomorphism of G onto itself. We put ada(h) = d\ll (h)e, the derivative of \lJ at 

identity. Elementary computation shows that if X , Y E TeG, then 

Hence, ada : TeG---+ TeG is an Lie algebra automorphism in the sense that ada is a 

linear transformation, and it also preserves the commutator on TeG. Hence, we call 

the tangent space TeG equipped with the commutator bracket the Lie algebra 

associated with G. 

Definition 3.1.4. For any DE Endkg for which 

D[X, Y] = [X, DY] + [DX , Y] 

is said to be a derivation. 
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The derivation defined here is in fact consistent with the derivation of an algebra 

in 2.1.2. If we assume V is in addit ion an algebra, and X : Y E V, then we have 

[X , Y] = XY - YX. Hence, 

D [X : Y] = D(XY - Y X) 

= (DX)Y + X(DY) - (DY)X- Y D(X) 

= [X , DY] + [DX, Y], 

which agrees with Definition 3.1.4. 

For a Lie algebra g , we get a linear map ad : g t-t Endkg given by (adX)(Y) = 

[X , Y]. From the Jacobi identity, we see t hat 

(adZ)[X , Y] = [X, (adZ)Y] + [(adZ)X , Y]. 

This shows t hat adX is a derivation for every X E g. 

The following definit ion summarises some of the key concepts and definitions 

about Lie groups and Lie algebras that will be used throughout this t hesis. Readers 

are referred to Chapter 1 of [39] for more details . 

D efinition 3.1.5. 

1. If a , b are subsets of g , we write 

[a, b] = span{ [X, Y]: X E a, Y E b} . 

2. A (Lie) subalgebra ~of g is a subspace satisfying [ ~ , ~] c ~ . so ~ itself is a 

Lie algebra. A (Lie) subgroup H of a (Lie) group G is a subset of G, that 

is a (Lie) group on its own right . 

3. An ideal ~ in g is a subspace satisfying [~ , g] ~ ~ ; an ideal is automatically a 

subalgebra. 

4. Let a be an ideal in g. Then g/ a as a vector space becomes a Lie algebra 

under the definit ion [X + a, Y + a] = [X, Y] + a. This is called the quotient 

algebra of g and a. 

5. The Lie algebra g is Abelian if [g: g] = 0, and the Lie group G is Abelian if 

gh = hg for every g, h E G . 
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6. Let g be a finite-dimensional Lie algebra. If X , Y E g, then adX adY is a linear 

transformat ion from g to itself. We define the Killing form of g, denoted B 

to be, 

B(X, Y) = Tr(adXadY) 

7. A Lie group G is said to be compact if it is compact as a topological space. 

8. If g is a Lie algebra and .s c g, then 

Z9 (.s) = {X E g: [X , Y) = 0 V YE .s} 

is the centraliser of .s in g. Similarly, if G is a Lie group and S C G , then 

Za(S) = {g E G : gs = sg, Vs E S} 

9. If g is a Lie algebra and .s is a subalgebra of g, then 

N9 (.s) = {X E g: [X, Y) E .sVY E .s} 

is the normaliser of .s in g. Similarly, if G is a Lie group and S a subgroup 

of G, then 

Na(S) = {g E G : gsg- 1 E S , Vs E S}. 

Ideals and homomorphisms for Lie algebras have a number of properties in 

common with ideals and homomorphisms of rings. It is left to the reader to check 

t he Lie algebraic version of the isomorphism theorems for more details. 

Proposition 3.1.6. ({39} , p. 30) If a and b are ideals in a Lie algebra, then so 

are a+ b, a n b and [a, b]. 

We now define recursively g0 = g, g1 = [g, g), gi+l = [gi , gi ] and g0 = g, g1 -

[g, g), gi +l = [g, gi ]- Each gi and gi are ideals of g. 

Definition 3.1.7. Vve call the sequence 
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the commutator series for g, and the sequence 

g = go 2 g1 2 g2 2 · · · 

the lower central series for g. 

Definition 3.1.8. 

• We say that g is solvable if gJ = {0} for some j . 

• We say that g is nilpotent if gj = {0} for some j. 

Proposition 3.1.9. If g is a finite dimensional Lie algebra, then there exists a 

unique solvable ideal r of g containing all solvable ideals in g. 

Definition 3.1.10. 

1. The ideal r in Proposition 3.1.9 is called the radical of g, and is denoted 

rad(g). 

2. A finite dimensional Lie algebra g is simple if g is nonabelian and g has no 

proper nonzero ideals. 

3. A finite dimensional Lie algebra g is semisimple if g has no nonzero solvable 

ideals, i.e., if rad(g) = {0}. 

4. A Lie group is said to be solvable, nilpotent, or semisimple if it is con­

nected and if its Lie algebra is solvable, nilpotent or semisimple, respectively. 

Proposition 3.1.11. ({39} , p. 30) 

• In a simple Lie algebra [g, g] =g. Since rad(g) =/= g, every simple Lie algebra 

is in fact semisimple. 

• If g is a finite dimensional Lie algebra, then gj rad(g) is semisimple. 

• (Cartan's criterion): A Lie algebra g is semi-simple if and only if its Killing 

form B is non-degenerate, that is, if B (X, . ) is not identically zero for any 

non-zero X E g. 

Vle identify a complex semisimple Lie algebra g with the complexification g0 +ig0 

of g0 where g0 is a real semisimple Lie algebra. Let g* the vector space dual 

(considered over the field of complex numbers) of the finite dimensional vector 

space g. For X E g, let B(X) =-X*, where X* is the dual of X. It can be verified 
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that B is an involution, that is an automorphism of the Lie algebra with square 

equal to the identity. To see that B respects brackets, we have 

B[X,Y] = -[X,Y]* = -[Y*,X*] = [-X*,-Y*] = [B(X),B(Y)] . 

Let B be the Killing form. The involution B has the property that Be(X, Y) := 

- B(X, BY) is symmetric and positive definite. Hence, we make the following defi-

nition, 

Definition 3.1.12. An involution B of a real semisimple Lie algebra 9o such that 

the symmetric bilinear form Be(X, Y) = -B(X, BY) is positive definite is called a 

Cartan involution. 

Remark 3.1.13. Be(.,.) can also act as an inner product on g. We will be using 

the notations (., .)
9 

and Be(. , .) interchangably without further warning. 

It is known that if 9o is a real semisimple Lie algebra, then 9o has a Cartan 

involution ([39] , p.p 358). Moreover, a Cartan involution B of 9o yields an eigenspace 

decomposition 

of 9o into +1 and -1 eigenspaces, since B is an involution. Moreover, these eigenspaces 

must bracket according to the rules 

This decomposition is called the Cartan decomposition. If X E to and Y E p0 , it 

can be checked that (X, Y) eo = 0. Hence, we say to and Po are orthogonal under the 

inner product (, )9o =Be. The Cartan decomposition yields the following theorem 

on the Lie group. 

Definition 3.1.14. A Cartan subalgebra is a nilpotent subalgebra f) of a Lie 

algebra g that is self-normalising (if [X, Y] E f) for all X E f), then Y E f)). 

Theorem 3.1.15. ({39}, p. 362) Let G be a semisimple Lie group, let B be a 

Cartan involution of its Lie algebra g0 , let 9o = to EB Po be the corresponding Cartan 

decomposition, and let K be the analytic subgroup of G with Lie algebra t0 . Then , 
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1. there exists a Lie group automorphism 8 of G with differential fJ, and e has 

8 2 = 1, 8 is called the global Cartan involution, 

2. the subgroup of G fixed by 8 is K, 

3. the mapping K x Po --+ G given by (k, X) ~ k exp X is a diffeomorphism 

onto, this is called the global Cartan involution, 

4. K is closed, 

5. K contains the center Z of G, 

6. K is compact if and only if Z is finite, and 

7. when Z is finite. K is a maximal compact subgroup of G. 

We now pause for a moment on Lie theory, and turn our attention to discuss its 

impact on Riemannian manifolds. 

Definition 3.1.16. 

• A Riemannian manifold M is called a Riemannian locally symmetric 

space, if for each x EM, there exists a normal neighbourhood of p on which 

t he geodesic symmetry with respect to p is an isometry. 

• Let M be an analytic Riemannian manifold, M is called a Riemannian glob­

ally symmetric space if each x E fl,f is an isolated fixed point of an involu­

tive isometry sP of M. 

Theorem 3.1.17. (c.f {28}) 

1. Let M be a complete2 , simply connected Riemannian locally symmetric space. 

Then, .111 is Riemannian globally symmetric. 

2. Let M be a Riemannian globally symmetric space, and x 0 any point in lit!. 

If G = 10 (M) 3 , and K is the subgroup of G which leaves p0 fixed, then K 

is a. compact subgroup of the connected group G and G / K is analytically 

diffeomorphic to .fit! under the mapping 9K--+ 9.p0 , 9 E G. 

3. The mapping a : 9 ~ Sp0 9Sp0 is an involutive automorphism of G , such that 

K lies between the closed group K u of all fixed points of a and the identity 

component of Ku. The group K contains no normal subgroup of G other than 

the identity. 

2 Completeness of M just means every Cauchy sequence in M converges to a limit. 
3Connected component of the isometry group containing the identity element. 
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Definition 3.1.18. Let G be a connected Lie group and H a closed subgroup. 

The pair ( G, H) is called a symmetric pair if there exists an involutive analytic 

automorphism CJ of G, such that (Ha )0 C H C Ha , where Ha is the set of fixed 

points of a- and (Ha )0 is the identity component of Ha. If in addition, t he group 

Adc(H)4 is compact, (G, H) is said to be a Riemannian symmetric pair. 

Examples of such spaces include 

• The spheres, sn-l = SO(n)ISO(n- 1). 

• The hyperbolic plane, H = SU(l , 1)150(2) . 

Readers may also consult chapter 10 of [28] for a complete classification of Rieman­

nian symmetric spaces. 

When G is semisimple, K contains no normal subgroups of G. Let 1r : G -t M 

be the canonical surjection so that 1r(g) = gK for each g E G. We denote by 1 the 

left action of G on M so that 1(g1)g2K = g1g2K, for each k1 , k2 E K. Note that 

1r o L9 = 1(9) o 1r for each g E G. 

Let g0 , ~o be the Lie algebras of G, K , Ad denotes the adjoint representation of 

G on 9o· We can assert the existence of a Cartan involution, an involution (} of the 

Lie algebra g 0 , such that the symmetric bilinear form B0 ( c.f. Definition 3.2.12) is 

non-negative definite. Now, let to and Po be the eigenspaces corresponding to the 

eigenvalues 1 and -1 of(} respectively, so that we have the Cm·tan decomposition of 

the Lie algebra, 9o = to + Po· 

In this decomposition, Po can be identified in a natural way with t he tangent 

space to the coset space G I K at 1r (e) E G I K, where 1r : G -t G I K is the natural 

projection map. to and Po are orthogonal under the Cartan-Killing form B of g0 , 

and B is negative definite on t 0 x to, and positive definite on Po x Po· 

'V.le summarise the impact of this discussion on the theory of Riemannian man­

ifold in the following theorem. 

T heorem 3.1.19. 

Let G = J0 (M) and g and t denote the Lie algebras of G and ]{ respectively. 

Then t = {X E g : (dCJ)eX = X} and if p = {X E g : (dCJ)eX = -X}, we have 

g = t EB p. Let 1r denote the natural mapping g -t g.p0 of G onto lvf . Then , 

4 Here, Adc(H) means the Lie subgroup of Adc(G) which is the image of H under Adc. 
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(d1r)e maps t into {0} and p isomorphically onto Mpo · If X E p, then the geodesic 

emanating from p0 with tangent vector (d1r)eX is given by 

!d1r.x(t) = exptX.po , (d1r = (d7T)e)· 

Moreover, ifY E Mp0 , then (dexptX)p0 (Y) is the parallel translate ofY along the 

geodesic. 

Let aPo be a maximal abelian subspace of Po and a0 a maximal abelian subalgebra 

of 9o containing aPo. Then, ao = ao n Po + ao n to and aPo = ao n Po· We write 

aeo = a0 n t 0 . Let 9 be the complexification of 9o and let a, ap , ae, t , p etc. denote 

the subspaces of 9 generated by a0 , aPo , aeo, t 0 , Po respectively. Then, a is a Cartan 

subalgebra of 9, and it is a maximal abelian subspace of p. A simple calculation 

(c.f. [39] , p. 360) shows that (adX*) = -ad(BX) , VX E 90 , where the adjoint 

(.)* is relative to the inner product (. , .)
90

. Hence, the set {ad(H) I H E a} is 

a commuting family of self adjoint transformations of g. It follows that, g is the 

orthogonal direct sum of simultaneous eigenspaces, all the eigenvalues being real. 

If we fix such an eigenspace and if )..H is the eigenvalue of adH, then the equation 

ad(H)X = >..HX shows that )..H is linear in H. Hence, the simultaneous eigenvalues 

are members of the dual space a* . 

Definition 3.1.20. 

For ).. E a*, we write 

9>. = {X E 9 I ad(H)X = >..(H)X, VH Ea}. 

If g>. =J {0} and ).. =J 0, we call ).. a root of g. The set of restricted roots is 

denoted by /:1. Any nonzero 9>. is called a root space, and each member of g>. is 

called a root vector for the root ).. . The dimension of 9>. is called the multiplicity 

of the root>... 

Let m and !11 be the centralisers of a in t and in K respectively, that is 

m = {X Et : ad(X)H = 0, HE a} 
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and 

M= {k E K: Ad(k)H = H, H Ea}. 

M is a closed Lie subgroup of K with Lie algebra m, and it is also the centraliser 

of A in K. Moreover, the center Z of G is contained in M. 

Theorem 3.1.21. ({39}, p. 370) 

The roots and the root spaces have the following properties: 

1. g is the orthogonal direct sum g = g0 EB E9 .>.E6 g.>. . This is called the root 

space decomposition of g. 

2. [g.>., gJ.L] ~ g.>.+J.L (as a consequence of the Jacobi identity), 

3. Bg.>. = g_.>. , and hence ). E /:}. implies - ). E /:}. . 

4. go = a EB m orthogonally. 

For each root>., the equation ). = 0 determines a subspace of ac of codimension 

1. These subspaces divide a into several open convex cones , called W eyl chambers. 

Fix a Weyl chamber a+ , let a+ denote t he topological closure of a+. A root ). is 

called positive if it is positive on a+. Since a root cannot vanish anywhere on a+, 

a nonpositive root must be negative and for every negative root ->., by Theorem 

3.2.21 (3), ). is a positive root . Note that the positivity of the roots depends on the 

choice of the \i\Teyl chamber. '0/e choose a positive ~Teyl chamber and fix it once 

and for all. 

Proposition 3.1.22. ({41} , p. 107) The set of positive roots span the dual space 

of a. 

Let ). be a positive root and X E g.>. , since g = t EB p, [t , t] E t and [t , p] E p, 

we may write X = Y + Z with Y E p and Z E t , such that VH E a, ad(H)Y = 

..\(H)Z, and ad(H )Z = >.(H)Y. It follows that VH E a , ad(H)2Y = >.(H)2Y and 

ad(H )2Z = >.(H)2 Z. For each positive root>. , let 

and 

t.>. = {Z Et: ad(H) 2 Z = ..\(H)2 Z, H Ea}. 

We have the following proposition relates g.>. with P.>. and t .>. . 
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Proposition 3.1.23. ({41}, p. 107) 

1. p = a EB EB>.Ell.+ P>. , and t = m E3 EB>.Ell.+ t>.. Moreover, the components 

under the direct sums are mutually orthogonal under (., . ) 
9 

in the sense that 

(P>. , P>.') = 0 and (t>. , t~) = 0 for A i= A'. 

2. For every positive root A, 9>. EB 9- >. = P>. EB t>.. 

3. For every positive root A and H E a+ , the maps 

P>. 3 Y f--7 ad(H)Y E t>. and t>. 3 Z f--7 ad(H)Z E P>. 

are linear bijections. 

Now we define 

n+ = L 9>. and n_ = L 9->.· 
>.Ell.+ >.Ell.+ 

Since [9>., g~] c 9>.+>.' , both n+ and n_ are closed under Lie brackets and therefore 

are Lie subalgebras of g. Moreover, since t here are only finitely many roots, that 

there exists a k large enough, such that [ad"+ (Y)]k = 0 and [ad 0 _ (Y)]k = 0. This 

shows both n+ and n_ are nilpotent Lie subalgebras. Let N+ and N _ be the 

(connected) Lie subgroups of G generated by n+ and n_ respectively. 

Proposition 3.1.24. ({41} , p. 109) The exponential maps exp : n+ --+ N+ and 

exp : n _ --+ n_ are diffeomorphisms. 

Theorem 3.1.25. ({39}, p. 373- 374, Iwasawa Decomposition) 

1. g is a vector space direct sum g = t 8 a EB n. Here a is abelian, n is nilpotent, 

a <B n is a solvable Lie subalgebra of g and [a EB n, a EB n] = n. This is called 

the Iwasawa decomposition of g. 

2. Let G be a semisimple Lie group, let g = t EBa EBn be an Jwasawa decomposition 

of the Lie algebra of g of G, and let A and N be the analytic subgroups of 

G with Lie algebras a and n. Then the multiplication map]( x A x N--+ G 

given by (k, a, n) f--7 kan is a diffeom01phism onto. The groups A and N are 

simply connected. This is called the Iwasawa decomposition of G 

Let M' be the normaliser of a in ]( , and recall the !11 is the centr aliser of a in 

K. It is clear that M' is a closed subgroup of]( and is also the normaliser of A in 

K. 
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Proposition 3.1.26. ({41}, p. 112) 

1. AI/ and M' have the same Lie algebra m. 

2. AI/ is a closed normal subgroup of M', and the quotient group W = M'/M is 

a finite group. W is called the Weyl group. 

Remark 3.1.27. If the center Z of G is finite, t hen by Proposition 3.1.15 the 

subgroup K of G is compact, and therefore AI/ and M' are both compact. 

For w = mwfl1 E l¥, Ad(mw) : a ~ a is a linear map that does not depend 

on the coset representation mw E M' ; therefore, W 3 w f---7 Ad(mw) E GL(a) is a 

faithful representation of l¥ on a, where GL(a) is understood as the group of linear 

automorphisms on a. 

Proposition 3.1.28. ({41} , p. 112) 

1. W permutes the Weyl chambers and is simply transitive on the set of Weyl 

chambers in the sense that for all pairs of Weyl chambers C1 and C2 , there 

exists w E vV such that w(C1 ) = C2 , and if w =J. ew (ew is the identity 

element ofW), then for all Weyl chambers C, w(C) =J. C. 

2. For any H E a+ (closure of a+) , the orbit { wH : w E W} intersects a+ only 

at H. 

3. For w E W and >. E 6. , >. o w E 6. and if w =J. ew , then for some>. E 6., 

>.ow=J.>.. 

4. For w E W and>. E 6. , Ad(mw)9>. = 9>.ow- I· 

5. Let wE W . If w(a+) =-a+, then Ad(mw)n+ = n_ . 

Definition 3.1.29. A positive root is called simple if it is not the sum of two 

positive roots. 

Proposition 3.1.30. ({28} , p. 292) Let E = {,81 , ... , ,BL} be the set of all simple 

roots. The number of simple roots l , is equal to dim( a) and any positive root can 

be written as >. = 'L~=l cd3i where the coefficients ci are nonnegative integers. 

The preceding proposition allows us to identify a with IR1. For a root >., let 

s;. E W be the reflection about the hyperplane >. = 0 in a, with respect to the inner 

product (,) 
9

. This is a linear map a ~ a given by, 

>.(H) 
s;.(H) = H- 2 >.(H;.) H;., HE a, 
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where H;.. is the element of a representing>.; that is, >.(H) = (H , H;..)
9 

for H E a. 

We state two theorems from [28] relevant to this construction. 

Proposition 3.1.31. 

1. ({28}, p. 289) The Weyl group W is generated by { s >. : >. E .6.+}. 

2. ({28}, p. 292) Let si be the reflection in a about the hyperplane f3i = 0, 

where {3i is a simple root. Then si permutes all the roots in .6.+ that are not 

proportional to {3i, that is, the map>. ~ >. o si permutes all the roots a E .6.+ 

not proportional to {3i . 

3.2 An Example: The Hyperbolic Plane H 2 

Let M be the open disc { lzl < 1} C C with the Riemannian structure 

for u, v being tangent vectors at z E M. This setup is usually called the Poincare 

model of the hyperbolic plane H 2. We will first state some geometric properties of 

this space. 

Consider the group 

SU(1 , 1) = { ( ~- ~) : lal 2
- lbl 2 = 1}, 

which acts on M by the map, 

az + b 
g : z ~ z +a ' lzl < 1. (3.1) 

The action is transitive, and the subgroup :fixing o is S0(2), so we have the identi­

fication 

M= SU( 1, 1)/S0(2). 

The Riemannian structure is preserved by the action of (3.1). To see this, let z(t) 

be a curve with z(O) = z and z'(O) = u. Then, 
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at g(z), and from a simple computation we obtain the relation 

(gu, gu) g(z) = (u, u) z . 

Moreover, the mapping defined by (3.1) is conformal, and therefore maps circles 

(and lines) into circles and lines. Hence, the geodesics of M are the circular arcs 

perpendicular to the boundary lzl = 1, and also straight lines through the origin, 

0 . 

Notice that another way of writing our Riemannian structure is 

ds2 ='I: 9iidxidxj, 9ii = (1- lzl2)6ij , 
i,j 

and we put as usual g = I det(gii)l and gii = 9i/ . Then, the Riemannian measure 

and the Laplace-Beltrami operator 

on M becomes, respectively, 

2 2)2 ( (;2 [)2 ) 
L = ( 1 - x - y 8x2 + 8y2 . 

One can check by direct computation that they are invariant under all isometries. 

It is also easy to prove directly that each SU(l, I)-invariant differential operator on 

M is a polynomial in L. 

3.3 Levy processes on Lie groups 

\"le nmv give an introduction to Lie group valued Levy processes. The study of Levy 

processes on Lie groups is already quite well established. It began in 1956 with [34], 

where G. Hunt was able to classify all convolution semigroups on a Lie group, and 

deriYed a Levy-Khintchine formula in a Lie group setting. In 1967, Parthasarathy 
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in [45] conjectured that every family of infinitely divisible measures on a Lie group 

can be embedded in a convolution semigroup of measures. Hunt 's formula will be 

central to the rest of this thesis. In this section, we will be mainly following the 

treatment of [41] . 

Before we can define a Levy process on a Lie group G, we must first formulate 

the concept of independent and stationary increments using the group actions of 

G. Let G be a Lie group, and let {gt}t be a stochastic process in G. Fors < t, we 

call g; 1gt the r ight increment and 9t9;1 the left increment of the process 9t· 

Definition 3.3 .1. 

• The process 9t is said to have independent right increments if for any 

0 < t1 < ... < tn , 

are independent, and independent left increments if 

are independent. 

• The process g1 is said to have stationary right increment if for every 

0 :::; s :::; t , g; 1gt = g019t-s in distribution, and stationary left increment 

if 9t9; 1 = 9t-s9o 1 in distribution. 

• A stochastic process XI. in G is called cadlag if its paths t 1---t .9t. are cadlag 

a.s., with respect to the topology of G. 

Definition 3.3.2. 

A G-valued stochastic process {gt}t;?:o defined on (0, :F, :Ft, JP>) is called a left 

Levy process if it is :Ft-adapted, and it has independent and stationary right 

increments; and right Levy process if it has stationary and independent left 

increments. 

Remark 3.3.3. 

• The above definition may seem unnatural at first glance, but the reason why 

we call a process with independent and stationary right increments a left Levy 

63 



process is that it turns out its transition semigroup and generator are invariant 

under left translations. 

• The definition of a left /right G-valued Levy process did not assume g0 = e, 

where e is the identity element of G. If 9t is a process where g0 -=/- e, then we 

can define g~ = g[/gt, so that g~ is a process starting at the identity. 

• If 9t is a left-Levy process, then g"t" 1 will be a right Levy process, and t he map 

g ~ g-1 is a Lie group automorphism. This gives rise to a duality between left 

and right Levy processes, in the sense that any theorem (preserved under the 

g ~ g - 1 automorphism) regarding a left Levy process will have a counterpart 

relating to a right Levy process. Hence, it is enough for our purposes to only 

concentrate on the case when 9t is a left Levy process. 

Let B ( G) be the CJ-algebra on G and let B( G)+ be the space of nonnegative Borel 

functions on G. For t E IR+, g E G and f E B(G) , we define Pt.f(g) = IE.f(ggf). 

Then, for each t > s, we have 

Taking expectations gives, Pt.f(g) = P5 Pt-s f(g) . This means that {Pt}t2:0 is a 

semigroup of probability kernels on G, and that 9t is a time homogeneous Markov 

process with transition semigroup Pt. 

Definition 3.3.4. 

A time homogeneous Markov process on a manifold M! ( c.f. Definition 1.1.20) 

is said to be a Feller process if 

• Pt : Co(MI) ~ Co(MI), Vt 2:: 0. 

• limt_,o IIPt.f- .fllco(MI) = 0 for all f E Co(MI). 

Moreover, since {gt} is right continuous, it follows that Pt is a Feller semigroup 

and is left invariant on G, that is Pt.f (g' g) = Pt (! o g') (g) for all g' E G. Therefore, 

{gt} is a left invariance Feller process on G. 

Next, we introduce the idea of a convolution on a Lie group G. The role of 

convolution in studying Levy processes on G is analogous to that on JRd explained 

in section 1.2. 

Definition 3.3.5 . 
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• Let J-L and v be two probability measures on (G, B(G)), where B(G) is the 

Borel a-algebra of G. Their convolution J-L * v on G is defined by, 

(J-L * v)(A) = .L J-L(Ag- 1)dv(g) 

for every A E B(G) , and we interpret Ag- 1 ={hE Glhg EA} 

• Let J-L and v be measures on G, and f a bounded B(G) measurable function 

on G. If we interpret J-L (f) = J G f dJ-L, then we have 

(J-L * v)(f) = J l f(gh)dJ-L(g)dv(h). 

The convolution * is associative, that is, (J-L1 * J-L2) * J-L3 = J-LI * (J.L2 * J.L3) provided 

the integrals are well defined. 

Definition 3.3.6. 

A convolution semigroup of probability measures is a family {J.L 1. }t~o of prob­

ability measures such that 

• J-Lo = be 

• 1-lt * 1-Ls = 1-ls+t · 

for every s, t ~ 0. If in addition, we have J-Lt ~ be weakly as t 1 0 (and hence 

1-Lt ~ J-Ls weakly as t 1 s), then we say {1-lt }t~0 is a continuous semigroup. 

Let 9t be a left Levy process in G, and let {J-Ldt~o be the family of the marginal 

distribution of the process gT, that is 1-Lt = P o (gf)-1 where the "-1
" should be 

understood as the inverse map of the random variable (gn : n ~ G, for every 

t ~ 0. Then, {Jlt}t~o is a continuous convolution semigroup of probability measures 

on G and 

Ptf(g) = l f (gh)dJ-Lt(h). 

Conversely, if we start with a family of continuous semigroups of probability mea­

sures on G, then {Pt}t~0 is a left invariance Feller semigroup (c.f. Definition 1.1.23). 

There exists a ca.dlag 'Ylarkov process 9t with transition semigroup Pt and an arbi­

trary initial distribution (c.f. [41] p . 251) . By the Markov property of 9t, we obtain 

for all s < t , 
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almost surely, and where F s is the natural filtration of 9t· This shows that 9t has 

independent and stationary increments, and therefore a Levy process in G. 

In 1956, Hunt [34), completely characterised left invariant Feller semigroups of 

probability kernels in G, or equivalently, Levy processes in G by their generators 

(c.f. Definition 1.1.25). To state the result, we need to fix a basis {XI> ... , Xd} of 

g. There are functions x1 , ... , xd E C~(G), such that xi(e) = 0 and Xjxk = Ojk· 

These functions may be used as local coordinates in a neighbourhood of e, with 

Xi = a~; at e, and hence, will be called the coordinate functions associated to the 

basis {Xll ... , Xd}· In a neighbourhood U of e, xi may be defined to satisfy 

for g E U. The coordinate functions are not uniquely determined by the basis, but 

if { x~, ... , x~} form another set of coordinate functions associated to the same basis, 

then x: =xi+ O(lxl2) on some neighbourhood of e, where lxl2 = L:t=l x;. 
Any X E g induces a left invariant vector field X 1 on G defined by X 1(g) -

Dr9 (X), where Dr 9 is the differential map of rg · It also induces a right invariant 

vector field xr(g) = Dr~,9 (X). For any integer k 2:: 0, let C~'1 (G) = Ck(G) n C0 (G), 

such that 

... , 

for any Y1 , Y2, ... , Yk E g, and the space C~,r (G) is defined similarly with right 

invariant vector fields, and with Y/ replaced by Y{. 

Theorem 3.3.7. (c.f {41} , p. 11) 

Let A be the generator of a left invariant Feller semigroup of probability kernels 

on a Lie group G. Then , its domain Dom(A) contains C~·t(G) , and Vf E C~·1 (G) 

and g E G, 

d d 

Af(g) = ~ L aikXjX£f(g) + L ciXIf(g) (3.2) 
j ,k=l i=l 
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where ajk, ci are constants with { ajk} being a nonnegative definite symmetric ma­

trix, and v is a measure on G satisfying 

(3.3) 

for any neighbourhood U of G with uc being the complement of U in G. 

Conversely, if the matrix { ajk} and the measure v satisfy conditions (3.2) and 

(3.3), and Ci are arbitrary constants, then there exists a unique left invariant Feller 

semigroup Pt of probability kernels on G whose generator A restricted to C5·1 (G) 

is given by (3.2). 

Definition 3.3.8. A measure v on G satisfying (3.3) is called a Levy measure 

on G (c.f. Definition 1.2.11 for the Levy measure on JRd) . 

Proposition 3.3.9. (c.f {41}, p . 13) 

The differential operator 

on C2
( G) and the Levy measure v given in Theorem 3.3. 7 are completely determined 

by the generator A , and are independent of the basis {X1 , ... , Xd} of g and the 

associated coordinate functions Xi a.nd coefficients ajk· 

Remark 3.3.10. ( c.f. [41], p. 14 ) 

• The second order differential operator D appearing in the preceding proposi­

tion will be called the diffusion part of A. 

• The coefficients ci of (3.2), in general , will depend on the choice of basis of g 

and the associated coordinate functions. 

If the Levy measure v satisfies the following finite first moment condition: 

d j L i:ri(q) ldv(g) < oo, 
i=l 

(3.4) 
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then the integral Jaff(gh) - f(g))dv(h) exists, and the formula (3.2) simplifies to 

1 d d 1 
Af(g) = 2 L aikX]Xkf(g) + L b;X}J(g) + [f(gh) - f(g))dv(h) , 

j ,k=l i=l G 

(3.5) 

for f E C~'1 (G), and where 

In this case, there is no need to introduce the coordinate functions x 1 , . . . , xd · Note 

that condition (3.4) is independent of the choice of basis and the associated coor­

dinate functions. 

We will now present the Lie group version of the "Levy-Ito decomposition" 

formula. It characterises a Levy process in G by a stochastic integral equation 

involving stochastic integrals with respect to a Brownian motion, and a Poisson 

random measure. This was originally due to Applebaum and Kunita in [7). 

Theorem 3.3.11. (c.f {41}, p. 19) Let 9t be a Levy process in G. Assume its 

generator A restricted to C~'1 (G) is given by (3.2) with coefficients ajk: C; and the 

Levy measure v. Let N be the counting measure of the right jumps of 9t given 

in Definition 1.2.17, and {F:} be the natural filtration of the process g~ = g01gt . 

Then, there exists ad-dimensional {.rn-Wiener process motion ltVt = (W/, ... , vVf) 

with covariance matrix { aik} , such that it is independent of N under { F:} and 

'if E C~'1 (G), 

d t d t 

f(gt) =J(go) + L 1 Xff(9s- ) o dB!+ L C; 1 Xfj(gs_)ds 
i=l 0 i= l 0 

+ .lt .J~[f(g5_h)- f(9s-))N(ds dh) (3.6) 

+f.' L [f(g,_h)- f(g,_)- tx,(h)Xff(g,_)] ds dv(h) 

Conversely, given a G-valued random variable u , a d-dimensional Wiener process 

ltVt with covariance matrix { aik} , constants c; and a Poisson random measure N on 

JR.+ x G whose characteristic m easure v is a Levy measure. such that u , {Wt} and N 

are independent, then there is a unique cadlag process 9t in G with g0 = u , adapted 
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to the filtration {Ft} generated by u, {Et} and N, such that (3.6) is satisfied for 

any f E C~J (G). Moreover, 9t is a left Levy process in G whose generator restricted 

to C2
•
1(G) is given by (3.2) . 

In the computation of expectations, it is often convenient to work with Ito 

integrals. We note that if g1• is a left Levy process that satisfies (3.4) for any 

f E C':(G), then for any f E C 1(G) , we have for every j = 1, ... , d, 

(3.7) 

The proof of this claim can be found in [41], p. 20. Replacing f by Xjf in (3.7), 

we see that (3.6) can be rewritten as: 

f(gt ) = f(go) + 1\11[ +it Af(gs)ds, (3.8) 

where A is given by (3.5) and 

is an L2-martingale. 

3.4 Levy Processes on Manifolds: One-Point Motions 

We have shown in section 3.1 that a large class of Riemannian manifolds, specifically, 

the Riemannian symmetric spaces can be presented in the form of M = G I K, where 

G is a Lie group and K is a maximally compact subgroup of G. In section 3.3, we 

surveyed the main ideas of a Levy process on a Lie group. In this section, we will 

combine these ideas to present the Levy process on M as an "one-point motion" . 

In relation to the material developed in Chapter 2, the Lie group G is a subbundle 

of the orthonormal frame bundle of GIK. For example, when K = U(n) we have 

the unitary bundle and when K = Sp(n) we have t he symplectic bundle. Hence, a 

G-valued stochastic process in relation to a process on M = G I K is like a stochastic 

process on a frame bundle of a Riemannian manifold to a process on the manifold 

itself. 
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Definition 3.4.1. Let G be a Lie group that acts transitively on a manifold 

M= G / K on the left, and let .9t be a stochastic process in G. For any point x E M , 

we call the process Xt = .9tX the one-point motion of .9t in M starting from x. 

In general, the one-point motion of a Markov process in G is not a Markov 

process in M , except when {gt}t :::: o is a right Levy process. vVe require .9t to be a 

right Levy process, as .9t acts on the left of x. Hence for f E B(M), 

Let ptM f ( x) = lE(! (gtx)) for f E Co (M), then Pr f ( x) is a Feller semigroup for Xt. 

Remark 3.4.2. If {gt}t ::::o was a left Levy process, then the incremental action 

g-; 1gt on the manifold could be viewed as g-;1gtx = g-; 1(gtx) = g5 (x') , where x' = 

.9tX EM. However, g5 (x') is in general not measurable with respect to :F5 , as x' has 

embedded information up to time t > s. 

Equation (3.6) is the combination of the Levy-Ito decomposition and Ita's for­

mula for left Levy processes. By duality, if .9t is a right Levy process, then for any 

f E cb (G) n C 2 (G) and with ajk ) bi l Ci ) N , wj) xi l Xi having the same meaning as in 

Theorem 3.3.11 and (3.6), .9t solves the stochastic differential equation, 

f(gt) = f(go) +M(+ it Af(gs)ds, (3.9) 

with 

d d 

Af(g) = ~ L ajkXjX]J(g) + L ciX[ f(g) 
~k=l i=l 

If, in addition, v satisfies (3.4) , the integral fc[f(gh) - f(g)]dv(h) exists , and A 

takes the simpler form 

1 d d 1 
Af(g) = 2 L ajkXjX]J(g) + L biX[ f(g) + [f(hg)- f(g)]dv(h) , 

j.~l i=l G 

(3.10) 
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where bi = ci -fa xi(h)dv(h), and 

M(~ t l Xjf(g,_)dWf + li[f(g,_h)- f(g,_)[Jir(ds dh) 
j=l 0 0 G 

is an L2-martingale. 

Every X E g induces a vector field X* on M by 

for any f E C 1 (M) and x EM. Let nx: G ~M be the map given by nx(g) = gx. 

If f E C~(M), then fonx E Cb(G)nC2 (G) with Xr(fonx) = (X*f)onx for X E g. 

Therefore, we obtain the following stochastic differential equation for the one-point 

motion Xt = 9t.X of 9t in M . For f E C 2 (M), 

f(xt) = f(x) +M{+ 1t Awd(gs)ds, (3.11) 

with 

d d 

AMif(x) = ~ L ajkXj X~f(x) + L ciXt f(x) 
ik=l i=l 

Here v is a measure on G satisfying (3.3), and if in addition v satisfies (3.4), AMI 

takes the simpler form 

1 d d 1 
AMi f(x) = 2 L ajkXjX/J(g) + L biX[ f(g) + [f(hx)- f(x)]dv(h) , (3.12) 

j,k=l i=l G 

where bi = ci - j~ xi(h)dv(h), and 

d t t 

M[= L 1 x; f(xs)dW1 + 11 [f(hxs-)- f(xs-)]N(ds dh). 
j=l 0 0 G 

In the forthcoming chapter, we will combine the Levy-Khintchine decomposition on 

M = G / K with Fourier analysis to compute the probability density function of Zt 
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for every t ~ 0. 
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CHAPTER 4 

Spherical Levy Processes 

In this chapter, we describe how techniques from spherical harmonic analysis can 

be applied to calculate the probability distribution of a spherical Levy process on 

a symmetric spaces of the form M! = G I K. 

Section 4.1 introduces the algebra V( G I K) , and then proceeds to establish the 

isomorphism r: V(GI K) ~ 'Dw(A). Section 4.2 introduces the spherical functions 

as K-invariant joint eigenfunctions of different ial operators on M , with eigenvalues 

f(D)(i.A) , where r is t he isomorphism introduced in section 4.1. Section 4.3 es­

tablishes a Levy-Khintchine formula for isotropic Levy processes on M using the 

spherical transform. Section 4.4 introduces the inversion formula , and then uses 

it to obtain the law of a Levy process. Section 4.5 contains an intuitive discus­

sion on convolution, spherical transforms, the compound Poisson process and their 

interrelationships. 

This will set us up for the following chapter, where we will demonstrate how 

one can apply the "6-spheriral tra11sform" to obtain a Levy-Khintchine formula for 

general Levy processes on G I K. 

T he key references to this chapter are [4] , [25) , [29) and [30). 

We will use notation and definit ion from Chapter 3. 

4.1 Differential Operators 

For M = G I K be a Riemannian globally symmetric space with G semisimple and 

K maximally compact . Let 

C(MI) = C(GI K) = {!If E C(G), f Kk = f, Vk E K} 

ct(M) = C(K\G/ K) ={!If E C(G) , f Kk = r~· = f , Vk E K} , 
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respectively be the space of smooth functions on M and those that are K-invariant. 

The spaces Cc(M), C~(M), C00 (M), cooq(M) are defined analogously. The spaces 

C(M), Cc(M) and C00 (M) may be thought of as the function spaces on the sym­

metric space M = G / K , or as functions on cosets of G (constant on K). Let 

ID>(M) = C~(M) = C00 (M) n Cc(M). The reason for such a choice of notation is 

that we are also interested in ID>', the dual of ID>. \Ale denote the spaces of measure 

on M by 

M(M) ={PIPE M(G) ; p l<k = p, 'Ilk E K} 

and the K-invariant measures on M by 

Let D(M) and D(M) , respectively, be the algebra of differential operators on 

C 00 (G), and those that commutes with the left action of G on C 00 (M). Let D0 (G) 

be the subalgebra of D( G) that also commutes with the right action of K. Each 

D E Do (G) leaves coo (M) invariant. It can be shown ( c.f. [29] p. 239 - 241) that 

the algebra of restrictions of operators D E D 0 (G) is isomorphic with the algebra 

D(M) of differential operators on C00(M) which commute with left translations by 

elements of G. 

For an n-tuple of integers a= (cx1 , ... , cxn), with ai ;::: 0, we put 

Do= ~01 ~an 
ul ... un 

and 

We will topologise C00 (M) and C~(M) by the seminorms, 

as C runs through the compact subsets of M and k runs through N. If (V <.p) is a 

local coordinate system on M, this gives a topology on coo ( U) with the property 

that a sequence {fn} in C00 (U) converges to 0 if and only if for each differential 
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operator D on U, D fn -----+ 0 uniformly on each compact subset of U. In particular, 

the topology of coo ( U) is independent of the coordinate system. 

The space coo (M) is now given the weakest topology for which all the restriction 

maps f -----+ f lu, as (U, cp) runs through all local coordinate systems on M, are 

continuous. We will assume that M has a countable base of open sets, so that we 

can restrict the charts ( U, cp) to a countable family of ( Ui , 'Pi), j = 1, 2, . . . . Since 

each coo ( Ui) is a Frechet space, it follows that coo (M) is also a Frechet space, and 

again, a sequence Un) in C 00 (M) converges to 0 if and only if for each differential 

operator D on M, D fn -----+ 0 uniformly on each compact subset of M. 

w·riting M as the union of an increasing sequence of relatively compact open 

sets , we see that ID>(M) is dense in C 00(M) . For each compact set K c M, let 

ID>K(M) denote the set of function in ID>(M) with support inK, we give ID>K(M) the 

induced topology of C00 (M) . It is a closed subspace of C 00 (M), and hence a Frechet 

space. 

Definition 4.1.1. ([29] , p. 240) 

• A continuous linear functional Ton Cc(M) is called a distribution. The set 

of all such distributions is denoted by C~(M). 

• A linear functional on ID>(M) is called a distribution if for any compact set 

K C M , the restriction of T to ID> K (M) is continuous. The set of all such 

distributions is denoted by ID>'(M). 

There is a close connection between the set of distributions on M and the set 

of measures on M. Ylore specifically, let X be a Hausdorff topological space and 

IL a measure on the Borel a-algebras of X. The measure IL is tight if JL(B) = 

sup{JL(K) : K compact s; B} , locally finite if every point has a neighborhood of 

finite measure, and a Radon measure if it is tight and locally finite. It is known that 

probability measures on Borel a-algebras of every separable completely metrisable 

topological space1 are Radon measures ( c.f. [32] , p.l7). 

Hence, if IL is a probability measure on M, then the mapping I : f t--t JMI f ( x )dJL( x) 

is a continuous positive linear map from Cc(M) -----+ JR , where positivity means that 

I(! ) 2: 0 whenever f is a non-negative function. On the other hand, by the Riesz 

representation theorem we know that for every continuous positive linear functional 

1These are also known as Polish spaces. 
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Ton Cc(M) , there exists a Radon measure J.L, such that T(J) = JMJ f(x)dJ.L(x) for 

every f E Cc(M). Therefore, every probability measure 1-L on M defines an element 

of C~(M), and every element of C~(M) corresponds to a probability measure. 

To extend the above conclusion to !Dl'(M), we will not distinguish between T 

and p if 

T(f) = L f(x)dJ.L(x) 

for every compact K C M, and every f E !Dl(M) with supp(J) C K. In such cases, 

we write 

T(J) = { f(x)dT(x) := { f(x)dJ.L(x) . 
.JM .JM 

We now give !Dl(M) the inductive limit topology of the spaces !Dlg(M) , by 

taking as a fundamental system of neighbourhoods of 0 the convex sets W, such that 

for each compact subset K c M , W n !DlK(M) is a neighbourhood of 0 in !DlK(M) . 

\iVith this topology of !Dl(M), the continuous linear functionals T are precisely the 

distributions on M 2
. Thus, !Dl'(M) is just the dual space of !Dl(M). 

Recall that 'D( G I K) the algebra of all differential operators on G I K which are 

invariant under all the transformations 1(9) : xK ~ gxK of G I K onto itself. The 

algebra 'D( G I K) will play a central role in the remainder of this thesis. We will 

now describe the algebra D(GIK) in terms of the Lie algebras G and K. 

First, let us consider the case when H = { e} and write 'D( G) for 'D( G I { e}), the 

set of left invariant differential operators on G. 

Definition 4.1.2. ([29] , p. 280 ) If V is a finite dimensional vector space over IR, 

the symmetric algebra S(V) over V is defined as the algebra of complex-valued 

polynomial functions on the dual space V*. If X1, ... , Xn is a basis of V , S(V) can 

be identified wjth the commutative algebra of polynomials 

'"""" Xk1 Xk" ~ aki, .... kn 1 . . . n . 

(k) 

2If r > 0, r- 1 (Br(O)) is a convex set containing 0, so the continuity assumption amounts to 
the definition of a distribution. 
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Let g denote the Lie algebra of G and exp : g ~ G the exponential mapping. If 

X E g, let X denote the vector field on G given by 

where 'Yg denotes the left translation of x ~ gx of G onto itself. Then, X is a 

differential operator on G, and if h E G then 

so X E 'D(G). The group Ad(G) operates on S(g) by extension of the action of 

these groups on g and let J (g) c S(g) be the subset of Ad(G)-invariants. The 

following theorem connects the symmetric algebra S(g) and 'D(G), In particular, it 

shows that D(G) is generated by {X :X E g}. 

Theorem 4.1.3. ({29} , p. 280) Let G be a Lie group with Lie algebra g. Let S(g) 

denote the symmetric algebra of the vector space g. Then there exists a unique 

linear bijection A : S(g) ~ V( G) , such tl1at A(Xm) = xm, X E g, m E N. If 

X 1 , ... , Xn is any basis of g and PE S(g), then 

where f E C 00 (G) , oi = fJjfJt i and t = (t1 , ... , tn)· Moreover, A(J(g)) = Z(G) , 

where Z (G) is the center of D( G) 

Definition 4.1.4. ([29], p. 282) The mapping A is called symmetrisation map. 

The mapping A has the following property. If Y1 , ... , Yp E g, then 

where 6p is the symmetric group on p letters. 

Now, let us consider M = G / ]{ to be a symmetric space of the noncompact 

type, that is, G is a connected semisimple Lie group with finite center and ]{ is a 

maximal compact subgroup. We begin with the following proposition. 
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Proposition 4.1.5. ({29}, p. 288) Let M= G j K where G = I (M), the group 

of isometries over M. Then, V ( G / K) consists of the polynomials in the Laplace­

Beltrami operator. 

Let E be a Euclidean space, let S (E) be the space of rapidly decreasing coo 
functions on E. We have the following chain of inclusions that lDl(E) C S(E) c 

C 00 (E) . Let the subscripts K and W denote K-invariant and W-invariant functions 

respectively, where W is the Weyl group. Let v:; be the canonical homomorphism 

from V K(G) to V (M). "'Ne are interested in the following chains of inclusions 

and 

Dw (a) c Sw(a) c C~(a) c C 00 (a). 

Theorem 4.1.6. ({29}, p. 295) The restriction to a is an isomorphism ofVK(P ) 

onto Dw(a) . Moreover, it induces the following isomorphism s from Cj(( p) onto 

Cw(a) and from S K(P) and S w(a). 

Consider now the bijection >. : S(g) ~ V (G) from Theorem 4.1.3. It identifies 

the commutative algebras S( a) and D(A ), and identifies the set I ( a) of W -invariants 

in S(a) with the set Dw(A) of l'V-invariant differential operators on A.o with con­

stant coefficients. The following proposition can be thought of as an "operator 

version" of the Iwasawa decomposition. 

Proposition 4.1.7. ({29} , p. 302) For each D E D(G), there exists a unique 

elem ent D>. E D(A) such that 

Moreover, (D4>) 1A 

N,g E G, k E K ). 

D-D>. E nV(G) + D(G)t. 

D>.4JIA whenever <P E C 00 (G) satisfies 4J(ngk) = 4J(g) (n E 

As usual , let a* be the dual of a and a{: be the set of all linear functionals of 

a ~ C. Let {2 = ~ L>. Eb.+ m.>.>.. , where m.>. is the multiplicity of>... 

Theorem 4.1.8. ({29}, p. 305 - 306) 
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• The mapping 

is a homomorphism of 'DK(G) onto 'Dw(A) with kernel'DK(G) n 'D(G)t 

• The mapping 

r: 'D(GII<) --? 'Dw(A) 

given by f(w(D)) = tJ(D ) forD E 'DK(G) is a surjective isomorphism. 

Remark 4.1.9. 'D(A ) is a commutative polynomial ring, as each linear mapping 

v : a ---7 <C extends uniquely to a homomorphism of 'D(A) into <C , denoted D ~----+ 

D(v). Let J (apJ be the polynomial functions on aPo which are invariant under 

W . Therefore, J (apJ and 'Dw(A) are isomorphic as algebras, and thus I(apJ and 

V( G I I<) are also isomorphic as algebras. 

4.2 Eigenspaces and Spherical Functions 

We begin with two important definitions. 

Definition 4.2.1. 

• A function qy : G ---7 <C is said to be spherical (or I< -spherical) if qy o 'Yk = 

qy o 1\,k = qy for each k E I<. 

• It is said to be an elementary spherical function, if it satisfies in addition 

l qy(xky)dk = q;(x)q;(y) 

and qy( e) = 1. Here, dk stands for the normalised Haar measure of f{. 

Definition 4.2.2. A joint eigenfunction f on M = G I I< is an eigenfunction of 

each of the operators D E 'D(M). Let A : 'D(M) ---7 <C be a homomorphism and let 

£A(M) = {f E C00(M) : DJ = A(D)j,VD E 'D(M)}. 

The joint eigenfunctions of G I I< are characterised as follows , 

Proposition 4.2.3. 

79 



• Let c/J1 and r/J2 be two sph erical functions on G , such that Dc/J1 = ADcPl and 

Dc/J2 = ADcP2 for every DE VK(G). Then, cP1 = cP2 · 

• Each joint eigenspace EA (M) =J {0} contains exactly one spherical fun ction, 

which we will call cPA . 

• The members f of EA are characterised by the equation, 

L f( xkyK )dk = f(xK)cfJA (yK), x, yE G. 

The elementary spherical functions can be shown to be analytic and can be 

equivalently characterised by the following properties: 

• c/J(e) = 1 

• c/J E C00~(M) 

• c/J is an eigenfunction of each D E 1) (M) . 

For g E G, let A (g) denote the unique element of ap0 such that g = n exp A (g) k 

where k E K , n E N in the Iwasawa decomposition. A fundamental result due to 

Harish-Chandra, says 

Theorem 4.2.4. ({29}, p. 418) As).. runs through a(:, the fun ctions 

c/>;.(g) = r e(i>.-e)A(kg)dk, g E G, 
} /{ 

exh aust the class of elementary spherical functions on G. Moreover, two such 

functions cP>. and <fY>-' are identical if and only if)..' = w>.., where w is an elem ent in 

the Weyl group. 

Let a* be the space of real valued linear functionals on a, so that a(: = a*+ ia*. If 

).. E a*, then cP>. (x) is positive definite. As a consequence. </>;. (e) = 1, cP>. (x-1
) = d>;. (x) 

and ic/J;.(x)i :S 1 for x E G, ).. E ER· 

Finally, we need to note that if DE V(G/ K) , t hen D cjJ;. = r(D)(i>..)c/J;., where 

r is the isomorphism of V(M) onto J(apJ in Remark 4.1.9, and r (D)(i>..) stands 

for the value of the polynomial function r(D ) at the point i>.. E a(: . This makes 

sense in view of the ident ificat ion of a~o with aPo via the Cartan-Killing form. 

In particular, if we choose a basis A1 , ... , A1 for a* and let ).. = L~=l >..JAJ , then 

the eigenvalue corresponding to d>;. of any operator D E V(M) is a polynomial in 
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>-1. ... , >.1• It is also clear that <P- iu = 1 so that a D E V(MI) annihilates constant 

functions if and only iff(D)(e) = 0. It is easy to conclude from these facts and from 

the fact that I ( aPo) contains no linear polynomials, that second degree polynomials 

in I (apJ which correspond to second order operators in V(Ml) which annihilates 

constants are of the form 

l 

L QuvHuHv- L Quve(Hu)e(Hv), 
u,v=l u,v=l 

where Hu , u = 1, ... , l is an orthonormal basis for aPo, and { Quv} is invariant under 

W. Further, such an element corresponds to an elliptic operator if and only if { Quv} 

is a non-negative definite matrix. 

4.3 The Spherical Levy-Khintchine Formula 

The construction of a general Levy process on a Riemannian manifold, or a Ric­

mannian symmetric space was well known to be problematic. Several authors, most 

notably Applebaum ([3], [4], [6]) and Gangolli ([25], [26]), were able to obtain signif-

icant partial results by restricting the class of processes to be isotropic or spherical. 

By this, we mean: 

Definition 4.3.1. 

• A measure J-L on G is said to be K-spherical if J-L(k1Ak2 ) = J-L(A) for every 

k1 , k2 E K and A E B(G). A G-valued stochastic process {Zt}t~0 is said to be 

spherical if its induced measure J-Lz1 is a spherical measure for every t > 0. 

• Similarly, a measure J-L on M = G / K is said to be K -spherical if J-L ( kA) = 

J-L(A) for every k E K and A E B(MI) . A M-valued stochastic process { Zt}t~o 

is said to be spherical if its induced measure J-Lz1 is a spherical measure for 

every t > 0. 

Proposition 4.3.2. ( c.f {2}) There is a one-to-one correspondence between spher­

ical processes in G and those in JI;J by Zt ( w) = 1r ( (t ( w)) , where 1r : G - M! is the 

canonical projection. 

We are now ready to state the Levy-Khintchine formula for spherical processes 

on M!. This formula is sometimes also referred as the Levy-Khintchine-Hunt­

Gangolli formula. The proof presented here is based on section 4 of [4]. 
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Theorem 4.3.3. Let (t be a spherical Levy process on M = Gj K with Levy 

measure v, and ~->. an elementary spherical function , A E a{: . Then, 

E(~->.((t)) = exp [t ( cf3(!:::..M, ~->. ) + r (~->.(h)- 1) dv(h))] , (4.1) 
.la-{e} 

where c is a constant and f3(!:::..WJ, ~->.) is the eigenvalue of the Laplacian !:::..WJ corre­

sponding to the eigenfunction ~->.. 

Proof. In Section 3.3, we developed a formula for the Levy-Ita decomposition of the 

one-point motion (c.f. (3.10)): For f E C2 (M) , 

(4.2) 

with 

d d 

Arud(x) = ~ L ajkXjX'(J(x) + L ciXt f(x) 
~k=l i = l 

+ L-(•} (f (hx)- f(x)- t,x,(h)X; f(x )) dv(h), 

where vis a measure on G satisfying (3.3). If in addition v satisfies (3.4), AM takes 

the simpler form 

1 d d 1 
AMf(x) = 2 L aikx;x;J(x) + L biX * rd(x) + [f(hx)- f( x) ]dv(h), (4.3) 

.i,k= l i=l G 

where bi = ci - fa x i(h)dv(h) , and 

d t t 

M[= L 1 x; f (xs)dW1 + 11 [f(hxs-) - j(Xs-) ]N(ds dh). 
j=l 0 0 G 

The symbols aik• bi, ci, N , Vllj, X i, xi having the same meaning as they were in (3.10) 

of Section 3.3. 
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If the underlying Levy process (t is spherical, then it cannot possess a drift 

term 3 . Hence, we have bi = 0 fori = 1, 2, ... , d, and Lj,k aikXt X j can be recog­

nized as c6.M where c is a constant. Therefore, the generator AM in the Levy-It6 

decomposition for spherical Levy processes becomes, 

AMf(x) = c6.Mf(x) + r (f(hx)- f(x)) dv(h) 
l c-{e} 

for f E C2q(M) . 

Now, we shall apply this formul a to derive the Levy-Khintchine formula for a 

spherical Lhy process. The LeYy-Ito decomposition for spherical processes holds 

for all f E C2q, and in particular it holds for f = cP- >.., where cP- >. is the elementary 

spherical function with eigenvalue A. Hence, 

Therefore, 

The commutativity between the operators AM and lE is guaranteed as cP->. is bounded, 

and integration under E is taken with respect to a probability measure. Hence, we 

can now differentiate both sides to obt ain 

d 
dtlE(cfl->.((t)) = AMlE(cfl->.((t)) 

= clE(6.McP->.((t)) + r (lE(cP- >.(h(t)) - E(cfl->.((t))) dv(h) 
l c - {c} 

= c{3(6.M, cP->.)Ecfl->.((t) + { (lE(cfl->.(h(t)) -lE(cfl->.((t)) ) dv(h) 
l c-{e} 

3T his can be verified by taking the Levy-lt6 decomposition on G for spherical processes, and 
then projecting it to M via the Cartan decomposition , c.f. [2]. 
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Since K is compact, we can let dk be the normalised Haar measure on K , so 

1 lE(<P->.(h(t))dv(h) = r r lE(<P- >.(h(t))dkdv(h) 
G- {e} l c-{e} J K 

= 1 lE [ r (4>->.(hk(t))dk] dv(h) 
G-{e} } }( 

= / lE(<P->.((t))<P->.(h)dv(h), 
.fc - {e} 

where the second equality follows from that 4>->. is spherical (K-bi-invariant) , and 

the third equality follows from the defining identity of elementary spherical functions 

(c.f. Definition 4.2.1): for every g, hE G, 

l <P(gkh)dk = </J(g)</J(h). 

Hence, 

d 
dt lE( 4>->. ( (t)) = AMJE( 4>->. ( (t)) 

= c{3(6.M, 4>->.)lE<P->.((t) + 1 (lE(if>->.((t))if>->.(h) - lE(if>->.((t) )) dv(h) 
G-{e} 

= c{3(6.M, if>->.)lEif>->.((t) + lE(<P- >.((t)) 1 (4>->.(h)- 1) dv(h) 
G-{e} 

= lE(<P- >.((t)) (c{3(6.M, if>- >.)lEd>_>.((t) + 1 (4>->.(h)- 1) dv(h)) 
G-{e} 

with initial condition JE(d>->.(~0)) = 1. Vve have now reduced the problem of finding 

lE( 4>- >. ( 6.)) into a first order separable equation. Exponentiating both sides gives 

the desired result. D 

4.4 The Spherical and Inverse Spherical Transform 

In the previous section, we derived an explicit formula for lE<P->.((t) , where {(t} is a 

spherical Levy process. This is called the spherical Levy-Khintchine formula. This 

section will be devoted to explaining the significance of this formula via the theory 

of spherical transforms. In principle, knowledge of lE<P->.((t) will (under certain 

regularity conditions) allow us to compute the probability distribution of (1 at any 

point in time. 
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We begin by describing the theory of spherical transforms for K -hi-invariant 

functions on G, or K-invariant functions on M= Gf K, and then extend our theory 

to K -hi-invariant distribut ions4
. 

Definition 4.4.1. ( c.f. [29]) 

Let f be a K-bi-invariant function on G, we define 

](A) := L .f(x)dJ->.(z)dz 

whenever the above integral makes sense. 

If f(x) = fx(x) is the probability density function of a random variable X , 

then the above definition can be thought of as ](A) = lE(cP->.(X)) . The spherical 

transform is a well-developed theory in modern harmonic analysis. T he central 

theorems of interest are the Plancherel formula, the Parsevel 's identity and the 

inversion formula. The formulation of these theorems depends critically on Harish­

Chandra's c-function. 

To keep this thesis self-contained, we will begin by giving a brief survey on the 

c-function. This will allow us to state the Plancherel formula, Parsevel's identity 

and the inversion formula for the spherical t ransform. Finally, we will demonstrate 

how it relates to the Levy-Khintchine formula derived in the previous section. 

The Harish-Chandra's c-function in a nutshell, is a measure of the asymptotic 

behavior of the spherical functions cP>.(x) as lxl --+ oo. 

D efinition 4.4.2. The c function is given by the prescription 

c (A) := lim e(- i>.+p)(tH)cp>.(exptH) 
t-+oo 

for H E a+ arbit rary and Re(iA) E a~. 

The set {A E a* : Re(iA) E a~} mentioned in the above definition is also the 

range of A for which the limit is defined ( c.f. [29]). The function c( A) extends to the 

4 All probability measures defined on the Bore! a-algebra of Polish spaces can be regarded as 
distributions via the Riesz R epresentation t heorem (c.f. Section 4.1). 
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meromorphic function 

on a(:. Here, ~t is the set of positive indivisible roots, a 0 is the normalised root 

a/ (a, a), and the constant c0 is given by the condition c( - ·ip) = 1. By Proposition 

7.2 of Chapter 4 of [29], we have 

for constants cl and c2 and where m = dim(n). \ lVe are now ready to state the 

main theorems regarding the spherical transform. 

Theorem 4.4.3. There exists a constant c, such that the following hold: 

1. Inversion formula: For f E Dq (M), we have the inversion formula 

f(x) = c 1. }(>-)<t>A(x)lc(>-)l- 2d>.. 

2. Plancherel formula: For f E L 2 (M), we have 

where in the above formulae, 

c = (27r)kiK/l\1IIWI 

(4.4) 

with m= dim(n), k = dim(a) , IK/MI is the volume of Kjl\1 under the K­

invariant R.iemannian metric on K I M induced by the inner product on e, and 

I HI I is the cardinali ty of vlf. 

3. The image V~' (M) is dense in L2 (a* j W, lc(>-)l- 2d>.) , and here the normalisa­

tion of d>. and dg can be arbitrary. 

Now we may combine the inversion formula (Theorem 4.3.3) with the Lcvy­

Khintchine formula (3.10) to obtain: 
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Theorem 4.4.4. Let (t be a spherical Levy process defined on a manifold M = 

G / K of non-compact type, f.-L(t be the probability distribution of (t and we assume 

that f.-L(t is square-integrable. Then, 

where [l,t = lE(4>-A((t)). 

Proof. The mapping f.-L(t t--t 1E(4>-A((t)) is the spherical transform of f.-L(t as 

We regard f.-L(t as a distribution on M, in the sense that 

The image 1)Q(M) is dense in L2 (a* /W, !c(.\)l-2d.\), and hence the inversion formula 

can be extended to V~' (M) via the Plancherel formula. Hence, an application of 

the inversion formula gives what we desire. 0 

Remark 4.4.5. Theorem 4.4.4 does not necessarily require (t to have a smooth 

density. It is a basic application of the Fourier inversion to the formula derived 

in Theorem 4.3.3, which according to the Paley-Wiener theorem ( c.f. Theorem 

7.1 [29], p 450), does not require f to be smooth. When f is non-smooth, f.-L(t(x) 

in Theorem 4.4.4 will become a distribution on M, as opposed to being a density 

function. This is precisely why we are viewing probability measures through the 

lens of distribution theory in section 4.1. 

4.5 Convolution and Compound Poisson Processes 

We introduced the Levy-Khintchine formula in the previous section, and deduced 

the law of a M-valued spherical Levy process using the spherical inversion formula. 

In this section, we will focus on a special case when (t is a compound Poisson process, 

where we will gain a more intuitive understanding of what makes the techniques in 

the previous section work. 
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Let X , Y be two independent random variables defined on a common probability 

space (D, F , JP>). It is well known that when X and Y are both real valued, then 

/-LX+Y = J.Lx*J.Ly, where* denotes the convolution between J.Lx and p,y. For sake of 

simplicity, we will always assume unless stated otherwise, that the random variables 

on ~d , G and M possesses a density with respect to the Lebesgue measure, Haar 

measure or Riemannian volume measure respectively. We point out that most of 

our results do not need this assumption. 

If J.Lx and p,y are measures on G, then by Definition 3.2.5, 

for every A E B(G), and 

(Jlx * p,y )(f) = 1 f(gh)Jl(dg)v(dh) 
GxG 

for every Borel measurable function .f, provided if the integral exists. If f x and fv 

are the densities of J.Lx and p,y , then 

Ux * fy )(X)= .L JI(g)f2(g- 1x)dg. 

Let f and p, be a function and a measure on M respectively. Denote by f* (and J1*) 

the unique function (and measure) on G, such that f*(gk) = f*(g) (and p,*(Ak) = 

p,*(A)) for g E G , k E K (and A E B(G)) , and n(f*) = f (and n(p,*) = p,) where 

1r : G ~ G / K is the canonical projection. 

Let J.Lx and p,y be measures on M, 

for every A E B(G), and 

(J.Lx * p,y )(f)= 1r (Lxc f*(gh)p,'X(dg)p,~(dh)) 
= L (L f*(gy)p,*x(dg)) p,y(dy) 
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for every Borel measurable function f , provided if the integral exists. Here x = 

gK EM, y = hK EM. If fx and jy are the densities of f.-Lx and f-Ly, then 

Suppose X , Y are two K-bi-invariant G-valued random variables. Then, 

for every A E B(G). Since the choice of A was arbitrary, we have /-LXY = f.-Lx *f-LY= 

/-LY * f.-Lx. It can be further checked that the convolution defined here is associative, 

and the space L1
Q (M) of spherical random variables with finite mean can be made 

into a commutative algebra under the convolution product. We summarize this 

discussion in the following theorem. 

Theorem 4 .5.1. ({29} , p. 408) Let M = G / K be a Riemannian symmetric space, 

then C~(M) (and consequently C~' (M) = M~(M)) are commutative algebras under 

convolution. 

A consequence of this theorem is that every irreducible representation of C~ (M) 

is one dimensional , and our analysis boils down to the study of Hom(C~(G), C), 

the set of continuous homomorphisms of the algebra C~ (G) onto C. The following 

theorem classifies the set of all such homomorphisms. 

Theorem 4.5.2. ({29} , p. 409) Let f E C~(M) , the mappings 

f f--+ L f(x)rp(x)dx , 

exhaust Hom(C~(M), C), where <P is a bounded spherical function on G. 

Definition 4.5.3. Let V be a Hilbert space, and p a representation of G on V 

with each p(x) unitary, the pis called a unitary representation. 

A well known property of a spherical function <P is that it is positive definite 

( c.f. [29], p. 389) in the sense that 

n 

~ 0(xi1xj)aiaj ~ 0 
i.j=l 
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for all finite sets X1, ... , Xn of elements in G and any complex numbers a 1 , ... , Cl'n. 

Theorem 4.5.4. ({29}, p. 390, 410) 

1. Let p be a unitary representation of G on a Hilbert space 1-l. For each vector 

e E 1{, the function x t-t ( e, pe) is a positive definite fun ction on G. Con­

versely, to any positive definite fun ction cp f=. 0 on G corresponds a unitary 

representation of p of G, such that cp(x) = (e, p(x )e) for a suitable vector e. 

We shall call p the unitary representation associated to cp. 

2. Let cp f=. 0 be a positive definite spherical fun ction on G, and let p be the uni­

tary representation of G associated to cp. Then p is irreducible and spherical. 

3. Conversely, if p is an irreducible unitary spherical representation of G and e 

a unit vector left fixed by all p(k), k E K , then the function (e, p(:r)e) is a 

positive definite spherical function on G. 

Inspired by the above theorems, it is natural to define a spherical transform 

as per Definition 4.1.1 (c .f. [29] , p. 399). For !l E S~ (M) , we define Fl by the 

homomorphism 

jj,(>.) = L cp_;.(x)dJ-L(x) , ).. E a(:, 

and if J-L possesses a density f E C~(I~1I) , then we identify jJ,(>.) with ]( >-.) 

By Theorem 4.5.2, the spherical transform is an one dimensional representation - ~ of C~(M) . Hence if f , g E C~(M), we automatically get (f *g) = fg. Further , 

it can be shown that if 11-, v E Mt(M) , (iL*V) (>.) = /1(>-.)v(>-.),).. E a(:. Given 

J-L, v E M~(M) , we shall write J-LV for the convolution of J-L and v, the order being 

immaterial in view of the commutativity of M 0(M) . J..Lj will stand for the j-fold 

convolution of J-L with itself. Under this notation, we have [iV = jj,v , with the 

product on t he right being pointwise. 

Let { Zt} be a stochastic process with increments that are independent and 

identical. We partition [0, t] by Pn ([O, t]) = {0 = t0 < t1 < ... < tn = t} , with t1 = 

jt jn; then, Z1. = (~)" in distribution. Hence, we have the following definition. 

Definition 4.5.5. A measure J-L EM~ (M) is said to be infinitely divisible if for 

each positive integer j , there exists a measure v E M~ (M) such that v1 = J-L. 
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Proposition 4.5.6. The convolution product of two infinitely divisible measures 

E S~(I~1I) is again infinitely divisible. 

Proof. Let 11- and v be two infinitely divisible measures. Then, there exists 11-n and 

Vn such that 11-~ = 11- and v;: = v for every n = 1, 2, 3, .... Therefore, 

D 

Proposition 4.5.7. Suppose /1-j E M~(:MI) , j = 1, 2, ... ; /1-j--? 11- weakly as j--? oo, 

and /1-j is infinitely divisible for eacl1 j. Then 11- is infinitely divisible. 

The proof of this proposition is based on the union of the proofs of several 

lemmas in section 5 of [25]. 

Proof. We need to show that for every n = 1, 2, ... , the sequence JL~/n converges 

weakly to some v E M~(I~1I), and that vn = 11-· 

Lemma 4.5.8. Let f be an analytic function , and mi E M~(I~·1I) be a sequence of 

measures that converges weakly to m, then the sequence f ( mi) converges weakly 

to f(m)5 . 

-Proof of lemma: Since f is analytic, we have f(mi) = J(ffij) --? f(m) as j--? oo. 

Now we go back to the proof of the proposition. The "!" in Proposition 4.5.6 in 

context of Lemma 4.5.7 is f( x) = x11n. This function is analytic everywhere except 

when x = 0, for every n = 1, 2, .... Hence, it suffices to prove that if m is infinitely 

divisible, then m is never zero. 

For any m E M~(l~·1I) , we define its adjoint m* by m*(B) = m(B-1 ) =m( {b E 

G : b- 1 E B} ). Then clearly, m* E M~(I~1I) , (m*)* = m. Observe that (mm*)* = 

m*m = mm*, so (mm*) is self-adjoint. Furthermore, if m is infinitely divisible. 

then there is, for each j, a measure ni E M~ (:M!) such that m = ( ni )i. Hence, 

mm* = (ninj)i so that (mm*) is infinitely divisible. Its also easily checked that 

~(-\) = lrh(-\)12 so that rh(-\) = 0 if and only if~(-\)= 0. 

5The terms in the power series f (m) = ao+a1m+a2m 2+ ... should be understood as convolution 
powers 
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Hence, we may assume without loss of generality that m is self adjoint, and for 

each j, there exists a self-adjoint measure nj E M~(I~1I) such that m= (ni)i. Note 

that m( A), ni (A) are now real valued for A E a(: . Therefore, since m( A) = ( ni (A) )i, 

and lm(A)I ::; 1, we have (nj (A))2 = ((m(A)) 2
) 1h ~ {3( A) , where {3(A) = 0 or 

1 according to whether m(A) = 0 or m(A) =f 0. It now suffices to prove that 

{3(A) = 1. Now, 

m(O) =le-g H(x)dm(x) 

and so m(O) > 0; therefore {3(0) = 1. But, nJ E M~(I~1!), hence nJ( -i{!) = 1. By 

the Banach-Alaoglu theorem6 , we are guaranteed that for a subsequence { nJJ, ex = 

1, 2, ... we have nJ" ~ n 2 E M Q(M); and since the n}'s are probability measures, we 

have nJ" (A) ~ n2(A), A Ea(:. But since nJ(A) ~ {3(A), it follows that n2 (A) = {3(A) . 

If nJ", is another weakly convergent subsequence of { nJ}, with limit n6 , then we 

shall have similarly n(A) = {3 (A) = n6(A), forcing n = n0 . Hence, each convergent 

subsequence of {nJ} has the same limit n2
, such that n2 = {3. 

This in particular shows that, {3 is continuous on a(:, and since a(: is connected 

and {3(0) = 1, it follows that {3(A) = 1 for every A E a(:. Hence, j),(A) cannot be 

zero for any A E a(:, and hence this establishes the proposition. 0 

The convolution theory introduced above allows us to study compound Poisson 

processes from a more intuitive point of view. Let Nt be a Poisson process on 

the integers with intensity parameter c. A compound Poisson process on ffi. is 

a stochastic process (1 = X 1 + ... + XNu where X 1 , X 2 , ... are independent and 

identical random variables. 

Now we wish to mimic this idea for a spherical Poisson process on a Rieman­

nian symmetric space M= GjK. Let X 1,X2 , . . . be spherical random variables 

on M, simultaneously regarded as K-bi-invariant random variables 7 on G. Let 

(t = XlX2···XNt or XNtXNt-l ··Xl depending on whether we want a right or left 

(respectively) compound Poisson process - but for now, let us assume that it is a 

left process. Then, 

00 . 00 1 . . 
f.-t(t = L JP>(Nt = j)J-t~y = L ;re-ct(ct)1 f.-t~, 

j=O j=O J. 

6c.f. http: I I en. wikipedia. orglwikiiBanach-Alaoglu_theorem 
7By this, we mean random variables on G whose law is K-bi-invariant. 
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where the powers in the above series are understood as convolution powers. Note 

that the above power series converges absolutely, and hence the spherical transform 

of f.J-(1 is given by 

00 1 . . 
P(t()..) = L --:-;e-ct(ct)JjJ,~()..) 

j=O J. 
00 

= e-ct L ~I (ct)J(jiX)J()..) 
j=O J. 

-= exp(ct(Jtx (A)- 1)) 

for).. E a{: . This formula, similar to t he Levy-Khintchine formula, allows us to com­

pute the probability distribution of ( t by Fourier inversion. The following theorem 

summarizes this discussion. 

Theorem 4.5.9. Let (t = XN1XN1 - 1 ... X 1 be a compound Poisson process with 

intensity c (c E IR, c > 0). Then, inheriting the notation from Theorem 4.4.4, the 

Jaw of (t is given by 

f.-L(t(x) =eo 1. exp(ct(;;():) - 1))cP- >. (x) lc()..) l- 2d\ 
c 

where c0 is a constant to ensure that JM f.J-(1 ( dx) = 1. 

Now we apply the above ideas to construct the Poisson measure. For g E G, 

consider the set .7: = {k1gk2 lk 1 , k2 E K}. Let dk be the Haar measure on K and 

dk x dk be the measure on K x K. Under the map K x K -7 K gK given by 

(k1 , k2 ) f--.+ k 1gk2 , dk x dk induces a measure on i in the natural way, which we shall 

call f-Lx· f.-Lx may clearly be regarded as a measure on G by setting it 0 outside i . 

We call this extended measure Px also. It is clear that Px E S~ (I~Ill). 

Definition 4.5.10. Let x EM, The measure 

00 

Px,c = L: exp(-c)dp~jj! 
j=O 

will be called the Poisson measure with jump size x and jump rate c. Here x E G, 

c is a real number 2: 0. 
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It is clear that Px,c E 5~(:~1!) for each x E G, c ~ 0, Px,o being J..Le identically for 

all x E G. It is an easy computation to verify that iLx(>..) = c/J- >.(x),).. E a(:, and 

that Px,c(>..) = exp(c(c/J->.(x)- 1)). It is also clear that Px,cPx,d = Px,c+d, and that 

Px,c = P:,c/n making it infinitely divisible. The following theorem shows that in 

fact all infinitely divisible measures are derived from the Poisson measure. 

Theorem 4.5.11. A measure J-L E M~(I~1!) is infinitely divisible if and only if 

there exists a sequence {J-Lj} E M~(:~1!) such that each /-Lj is a convolution of a finite 

number Poisson measures, and J-lj ---+ p. 

Proof. If J-L is infinitely divisible, then for each n, there is a !In such that (vn)n = J-L , 

and so [1,(>..) = vn(>..)n. Since [1, (>..) =f 0 for any).. E a(:8 , we have 

n([L(>..)11n- 1) = n(vn(>..)- 1) ---+ log [1,(>.. ) 

as n --+ oo. Hence, [1,(>.. ) = limn_,00 exp[n(vn(>..)- 1)]. Since 

and frw. dvm(x) = 1, we have 

[L(>..) = lim exp (n r (c/J->.(x)- 1)dvn(x) ) 0 

n->oo JM 

Our assertion follows by writing the integral as a limit of Riemann sums and noting 

that 1\,c(>..) = exp[c(c/J- >.(x)- 1)]. 0 

Corollary 4 .5 .12. J-L E M~(M) is infinitely divisible if and only if 

[1,(>..) = lim exp( - '1/Jj (>..)) , 
J-->00 

The above corollary combines with the following theorem (Thm 6.1 of [25]) 

t o give the Levy-Khintchine formula for spherical infinitely divisible probability 

measures. 
8 This was established in t he proof of Proposition 4.5.6. 
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Theorem 4.5.13. Let 

and suppose that limj__,oo 1/;j (A) = '1/J (A). Then there exists a constant c, a spher­

ical measure v and a second order elliptic differential operator L E 'D(M) which 

annihilates constants, such that 

'1/;(A) = c- {3(L, 4>->.) + l (1- 4>->. (x))dv(x), 
Jlxi>O 

where {3(L , </>->.) is the eigenvalue of L corresponding to the eigenfunction 4>->.· 

Further, 

1 JxJ2 
l l

2
dv(x)<oo. 

M 1 + X 

For such a '1/J( A), if [I,( A) = exp( -'1/J(A)), then f-L E M~ if and only if c = 0. 

Conversely, given a second order elliptic differential operator L E 'D(M), with 

L<f>->. = {3(L, </>->.)</>- >. and a spherical measure v satisfying the above conditions, 

the function 

{3(L, 4>->.) + / [1 - 4>->.(x)]dv(x) 
} lxi>O 

is the limit as j ~ oo of functions '1/Jj( A) which arise from measures vj E M b(M) 

according to the prescription 

For proof, see section 6 of [25]. 

4.6 An Example: Isotropic Levy Processes on H 2 

Recall from section 3.2 that H 2 is the open disc { z = x + ·iy : JzJ2 = JxJ2 + JyJ2 < 

1} C C with the Riemannian structure 
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for u, v being tangent vectors at z E X via the Poincare model. Moreover, we 

can write H 2 as the quotient of the symmetric pair .M = SU(l , 1)/ 50(2). The 

Laplace-Beltrami operator 

on M becomes, respectively, 

2 2)-2 ( 8
2 

8
2 

) L = ( 1 - :t - y 8x2 + 8y2 . 

A spherical function on .M is a radial eigenfunction of L. In geodesic polar coordi­

nates, L has the form 

Therefore , the spherical function <P satisfies 

We note that the spherical functions are non-zero at z = o, and this allows us to 

assume without loss of generality that <P->. ( o) = 1. Moreover, the spherical functions 

satisfy the relation <P->. = <P->. . 

We now derive an explicit formula for the elementary spherical functions in H 2 . 

Let d(z1 , z2 ) denote the Riemannian distance between the points z1 , z2 E .M. Since 

every straight line through the origin is a geodesic, 

( ) i · l !xl 1 1 + !xl - 1 
do, x = 2 2dt = - log I I = tanh (T) 

. 0 1-tx 2 1 -x 
(4.5) 

where 7' = lxl. The abelian component of SU(1, 1) under the Iwasawa decomposi­

tion is given by the one-parameter group, 

( 

cosh t sinh t ) 
at= 

sinh t cosh t 
E SU(l , 1) , t E JR. 
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It acts on the unit disc by the map 

( 
cosh t sinh t ) ( x ) 

sinh t cosh t y 

= ( x cosh t + y sinh t ) 

x sinh t + y cosh t 

where x + iy = z. Now, d(o, at .o) = d(o, (tanh(t) , 0)) = t. 

If we substitute z = lziei0 = ( tanh r )ei0 , then one can obtain ( [29], p. 38) 

</J;..(ar.o) = _..!._ rr (cosh(2r)- sinh(2r) coset~(iA+l)de. 
27f } -n 

(4.6) 

Recall that if f E Db(H2
), its spherical transform is given by the prescription 

](>.) = L f(z)<P->.(z)dz, 

whenever this integral exists. Harish-Chandra's c-function, is given by 

This limit exists when Re(i>.) > 0, and it can be extended to the meromorphic 

function 

The spherical transform f ---> f is inverted by the formula 

A spherical Levy process (t on M = H 2 is given by the one-point motion of a 

S0(2)-bi-invariant Levy process (t on G = SU(1, 1). Thus by Theorem 4.3.4, 

lE(<P->.((t)) = exp [t ( cf3(!::,.wn, <P->.) + { (<P->.(h)- 1)dv(h))] . J SU(l.l)-{e} 

= exp [t (c(>-.2
- 1) + 1 { (</Y-;..(zk)- 1)dv(z)dk)] 

Wll J 50(2)-{e} 

= exp [t (c(>-.2
- 1) + .1~ (<P-;..(z)- 1)dv(z))] 
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where direct computation shows that {J(!:lM, </>->..) = >.2 - 1. Now, since <1>->..(z) is 

spherical, we have <1>- >..(z) = <1>->..(r), where lzl = r . Combining this with (4.6) , we 

have 

<1>->..(z) = 2_ j 1f (cosh(2r) - sinh(2r) cos B)~ (-i>.+l)dB. 
27f -1f 

Therefore, the characteristic function of (t is given by 

JE (<f>- >.((t)) = exp [t(c(.A2 -1) + 2~ L (1: (cosh (2r) - sinh(2r)cosB)~( -i>.+l)dB 

- 27r )dv(z)) l· 
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CHAPTER 5 

Construction of a General Levy Process on G / K 

In chapter 2, we gave an exposition of the rolling without slipping process and 

showed how it can be applied to construct any semimartingale with continuous 

trajectories on a Riemannian manifold from one defined on JRd ( c.f. [20] and [33] ) . 

Then, we have shown how this procedure fails to apply to Levy processes in general 

(c .f. [3] and [6] ): it only works when the Levy process is isotropic. In chapter 

3, we introduced t he definition of Levy processes on Lie groups, and in chapter 

4, we were able to establish the Levy-Khintchine formula for K-bi-invariant Levy 

processes (c.f. [4] , [25] and [26]) . These processes correspond to the isotropic Levy 

processes considered in Chapter 2, when one consider M= Gj K , K = O(n) and G 

the orthogonal frame bundle of M. 

The purpose of this chapter is to int roduce some new techniques ( c.f. [30] and 

[54]) that have not appeared in the stochastic analysis literature to the author 's 

knowledge which allow one to establish a version of the Levy-Khintchine formula 

for general Levy processes on Riemannian symmetric space. The harmonic analytic 

tools used here are well established, and we will be mainly following the ideas 

developed in [29] and [30]. 

We believe that our technique can be generalised to reductive symmetric spaces 

of the form M = G / H , by applying more recent work of Delorme, Schlichtkrull and 

van den Ban (c.f. [54]). Here, G is a reductive Lie group and His a closed subgroup 

of G. We will , however, only study the Riemannian case. 

The structure of this chapter are is follows: We begin with some discussions 

in Section 5.1. Section 5.2 is a discussion on how the Levy-Khintchine formula 

of a spherical Levy process on H 2 
( c.f. section 4.6) can be extended to general 

Levy processes on H 2
. A particular focus will be the theory of horocycles. Section 
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5.3 will extend the ideas from harmonic analysis in section 5.1 to the setting of a 

general G I]{. In particular, we study Eisenstein integrals which serve as generalized 

versions of spherical functions, and the relation to the full Fourier transform. A new 

Levy-Khintchine formula, generalizing Gangolli 's ([25] , [26]) will be introduced in 

section 5.4. 

5.1 IVIotivation 

Let M = G I I< and consider the algebra 'D(M) of all left invariant differential 

operators on M. A function on M which is an eigenfunction of each D E 'D(M) will 

be called a joint eigenfunction of 'D(M). Given a homomorphism x : 'D(M) ~ C, 

recall from Definition 4.2.2, the space 

Ex(M) = {f E C00 (M) : D j = x(D)j, 't/D E 'D(M)} 

is called a joint eigenspace. Let Tx denote the natural representation of G on 

Ex(M), that is, (Tx(g)f)(x) = f(g - 1x). These representations are called eigenspace 

representations. By harmonic analysis on M, we normally wish to seek answer to 

the following problems, 

1. Describe the joint eigenspaces Ex(M) of 'D(M). 

2. Decompose any "reasonably nice" function on M = G I]{ into joint eigenfunc­

tions of 'D(M). 

3. Determine for which x the eigenspace representation Tx is irreducible. 

In Levy process theory, these problems correspond to decomposing the probability 

distribution of the process (t into Eisenstein integrals, which are joint eigenspaces 

of the Laplacian. 

To obtain a generalized Levy-Khintchine formula for M, we are really trying to 

find a suitable set of ··basis" functions {cp0 }, so that from knowledge of JE(cpa((t)), 

we can reconstruct the law of (t. As soon as it becomes clear what 'Pa: ought to be, 

JE(cpa((t)) can be computed via the Levy-Ito decomposition, similarly to the way 

Theorem 4.4 was obtained. 
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5.2 An Example: H 2 

We begin with the example of the hyperbolic plane that illustrates the idea at an 

intuitive level. The material covered in this section is quite routine, so we will be 

closely following the development of [29] p.33 - 36. 

Given a, b ~ 0, let Ea,b denote the space of holomorphic functions on <C- {0} 

satisfying 

llflla,b = sup(lf(z)le-alzl-blzl-
1

) < 00. 
z 

Then, Ea,b is a Banach space with the norm ll·lla.b· Observe that Ea,b C Ea' ,b' if and 

only if a~ a', b ~ b', and in this case llflla,b ~ llflla',b', so that the injection of Ea,b 

into Ea' b' is continuous. We can give the union , 

E = UEa,b, 
a.b 

the inductive limit topology. We identify the members of E with their restrictions 

to the unit circle S 1 and call the members of the dual space E' entire functionals 

on 5 1
. Since these generalise measures, we will denote the dual pairing as follows: 

T(f) = { f(w)dT(w), fEE, TEE'. Js1 

Now we are ready to state our first t heorem. 

Theorem 5.2.1. The eigenfunctions of tlJe Laplacian on JR2 are precisely the 

harmonic functions1 and the functions 

j(x) = f ei>.(x,w}dT(w), 
Js1 

where .A E <C- {0} and T is an entire functional on 5 1 . 

Remark 5.2.2. The right hand side of t he above is well defined. If x = (x1 , x2 ), 

the integrand is the restriction to 5 1 of the function 

which belongs to E. 

1These functions are annihilat ed by the Laplacian, and thus correspond to>.= 0. 
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With these preparations, we can now describe a system of harmonic analysis on 

H 2 that will be applied to obtain the Levy-Khintchine formula for a H 2-valued Levy 

process. Observe from the Euclidean case, if f.l E C and w E sn- 1, the function 

x 1---7 eJ.L (x ,w)an has the following properties, 

1. It is an eigenfunction of the Laplacian L JR.n on IRn. 

2. It is constant on each hyperplane perpendicular tow. 

Now, a hyperplane is orthogonal to a family of parallel lines. The geometric ana­

logue of this when JRd is replaced by M is called a horocycle. In the M= H 2 case, 

this is a circle ~ on M tangential to the boundary B = 8M. All such circles are 

orthogonal to the geodesics of M tending to the point of contact b E B. 

For z E ~, we let < z, b > be the Riemannian distance from o to ~. This 

distance is negative if o lies inside ~. This "inner product" < z, b > is an non­

Euclidean analogue of (x, w)JR.n , which geometrically means the (signed) distance 

from 0 E IRn to the hyperplane through x with normal w. 'Ne shall write ~(z , b) for 

the above horocycle through z and b. 

By this analogy, we have the following lemma. 

Lemma 5.2.3. ({29} , pp 32) We consider the function eJ.L,b : z J---7 eJ.L <z,b>, z E M. 

For the Laplacian L, we have LeJ.L,b = f.l(f.l- 2)eJ.L.b· 

Proof. For t E IR, let 

( 

cosh t sinh t ) 
at = E SU(1 , 1), 

sinh t cosh h 

and let d(z1 , z2 ) denote the Riemannian distance between the points z1 , z2 E M. 

Since every straight line through the origin is a geodesic, 

1
1 lxl 1 1 + lxl _1 d(o, x) = 2 2 dt = -

2
log I I = tanh (r) 

0 1-tx 1-x 
(3) 

where r = lxl. Then, 

d(o, at.o) = d(o, tanh(t)) = t. 
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If b0 is the point of B on the positive x-axis , we therefore have e/-L,bo(tanh(t)) = eJ..Lt. 

The horocycles tangential to B at b0 are the orbits of the group 

N = [ns = ( 1 + is -is ) : 8 E IR] 
is 1- is 

The orbit N.o is such a horocycle and so is the orbit Nat.O = atN.o (at normalises 

N). Now consider functions on M that are constant on each of these horocycles. 

Because of its N-invariance, L maps the class of such functions into itself. The 

restriction of L to such functions is a. differential operator L 0 in the variable t. Since 

the isometry at satisfies at tanh T = tanh ( t + T), the invariance of L under at means 

that L0 is invariant under the translation T ~ T + t. Therefore, L0 has constant 

coefficients, so eJ..Lt is an eigenfunction for it, and hence e1-1,bo is an eigenfunction of L . 

The eigenvalue can be calculated by expressing L in the coordinates atn8 .o ~ (t , s). 

D 

Looking at the above lemma, it is natural to reformulate it by "completing the 

square". We obtain that 

Inspired by the above, we define the Fourier transform on M= H 2 as follows: 

Definition 5.2.4. If f is a complex-valued function on M, its Fourier transform 

is defined by 

j(> .. , b)= L f(z)e( - i>.+l) <z,b>dz 

for all .>.. E C, b E B , for which this integral exists, where dz is the Riemannian 

measure surface on M given by dz 2 = (1 - x2 - y 2
)-

2 dxdy. 

Definition 5.2.5. We call a coo function '1/; (.A, b) on C x B , which is holomorphic in 

.>.. , a holomorphic function of uniform exponential type R if for each NE N, 

sup e- RIJm>.l(l + I.AI)Niw(.>.., b)l < oo. 
>-EC,bEB 
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Now we can state our main theorem regarding the Fourier transform on H 2 . 

Theorem 5.2.6. ( c.f. {29} , p. 33) 

1. If.f E D(M), then 

.f(z) = ~ { { j(>., b)e(iA+l)<z,b>>.tanh (1r>.) d>.db, 
47f J~ } B 2 

where db is the circular measure on B normalised by J db = 1. 

2. The mapping f ~ j is a bijection of D(M) onto the space of holomorphic 

functions '1/J( >. , b) of uniform exponential type satisfying the functional equa­

tion l e(i>.+l)<z,b>'!j;(>., b)db = l e(-iA+l)<z,b>'lj;( -A, b)db. 

3. The mapping f ~ j extends to an isometry of L2 (M) onto 

Remark 5.2. 7. The main difference between the present Fourier transform and the 

spherical transform considered in the previous chapter, is that now j is a function 

of two variables >. and b, as the kernel of the Fourier transform is in two variables. 

This requires us to nest another layer of Fourier analysis in the b direction on top 

of the Fourier transform. 

Let A(B) denote the space of analytic functions on the boundary B , considered 

as an analytic manifold. Let U be an open annulus containing B , 1t ( U) the space 

of holomorphic functions on U topologised by uniform convergence on compact 

subsets. Since each analytic function on B extends to a function in H(U) for a 

suitably chosen U, we can identify A (B) with the union Uu H(U) and give it the 

inductive limit topology. 

Definition 5.2.8. The elements in the dual space A'(B) are called hyperfunc­

tions. Since they generalise measures, it is convenient to write 

T(.f) =.Is f(b)dT(b), f E A(B), T E A'(B). 
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For A E C, let t'.x(M) = {f E c=(M) : Lf = -(A2 + 1)f}, with the topology 

induced from c=(M). 

Theorem 5.2.9. The eigenfunctions of the Laplace-Beltrami operator L on M are 

precisely the functions 

f(z) = l e(iA+l)<z,b>dT(b), 

where A E C and T E A'(B). Moreover, if iA =/= -1, -3, -5, ... , then the mapping 

T 1---t f is a bijection of A'(B) onto t'.x(D). 

Definition 5.2.10. For A E C, let T.x denote the representation of SU(l, 1) on the 

eigenspace t'.x(M). 

We then have the following result. 

Theorem 5.2.11. The eigenspace representation T.x is irreducible if and only if 

iA + 1 tf. 27l. 

Next, we revise the classical spherical transform on H 2 , and we will show how 

it is related to the Fourier transform. 

Definition 5.2.12. The point A E C is simple if the mapping F 1---t f of L2 (B) ---+ 

c=(D) given by 

f( z ) = l e(i.X+l)<z,b> F(b)db 

is one-to-one. 

Theorem 5.2.13. If -A is simple, then the function space on B , {](A,.) : f E 

D(M)} is dense in L2 (B). 

The preceding theorems tells us that Fourier transforms are elements of L 2 (B) 

if we fix A. We need to establish yet another Fourier theory for L2 (B) in order to 

understand the full Fourier transform on M . 

Theorem 5.2.14. Let m E Z. The eigenfunctions f of L satisfying the homo­

geneity condition, 

are the constant multiples of the functions 
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where .A E C and the characters Xm(ei~P) = eim'P _ Moreover, we have the relation 

e(i>.+l)<z,b> = L ~.x,m(z)x-m(b). 
m 

The ~ .x,m 's are called generalised spherical functions, or Eisenstein inte­

grals. 

We obtain the following Fourier expansion from the theorem above, 

}(>.,b) := j~ f( z)e(-i>.+l)<z,b> dz 

= 1 f( z) L ~-.x ,m(z)x-m(b)dz 
M m 

m. 

where, 

am = L f(z)~- .x ,m(z)dz. 

Interchanging the order of summation and integral is valid if we assume JM lf (z)ldz = 

1. This assumption is not over-restrictive for us, because we are primarily interested 

in using f as the probability density function of a random variable. 

This calculation motivates the following definition, 

Definition 5.2.15. Let f E D(M) , the m-spherical transform off is given by, 

.fm(.A) = L f(z)~-.x,m(z )dz. 

This suggests that to obtain a Levy-Khintchine formula for general Levy pro­

cesses on H 2 , {(t}t~o, the quantity we should compute is lE(~-.x,m((t)) . This allows 

us to recover the Fourier transform of the law {Lr,1 (.A, b) as 

m 

Applying the inversion formula of Theorem 5.2.6 to {Lr,1 (>.,b) recovers the law of (t · 
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5.3 A survey of Eisenstein integrals 

From the example in the previous section, we have obtained: 

1. The full Fourier transform and its inversion formula on M by using t he < . , . > 

in place of(., .) . 

2. The full Fourier transform is a function in .A. and b, it needs another layer of 

Fourier analysis in the b direction before it can be useful for our purposes. To 

that regard, we were able to write the full Fourier transform as 

](.A. , b)= 2::: ]~(.A.)x-m(b), 

where fm(.A.) is t he generalized spherical transform of order m. 

3. In the case where M= H 2 , we have X-mCP) = eim'~' . We will need to find a 

suitable candidate for X m in the general M = G I K case. 

4. The Levy-Khintchine formula will be the m-spherical transform, JE(<P -.A,m((t)) 

for an M-valued Levy process (t· We will need to decide what <~> -..\,m is for 

the general M = G / K. 

5. We can recover the probability distribut ion of (t by applying the Fourier 

inversion formula to 

m 

In this section, t hese ideas will be extended to the setting of general G I K . 

The most significant change is t hat representations of K will be used instead of 

characters for general symmetric spaces. Recall that M = H 2 can be represented as 

the unit disc {lzl < 1} with the Riemannian metric ds2 = (1- x2
- y2 t 2(dx2 +dy2

) . 

We introduced the horocycles of this space in the previous section, they are the 

circles in M tangential to the boundary {B : lzl = 1} . Now, we will write M as 

M= SU(l, 1)/50(2) 

and we shall describe the horocycles in a group theoretic way. This will suggest the 

generalisation to a symmetric space of the non-compact type. 
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Recall that the Lie algebra .su(1 , 1) of SU(1, 1) is given by 

and an Iwasawa decomposition by .su(1, 1) = 9o = to+ Cl0 + n0 , where 

The subgroup N0 = exp no of SU(1 , 1) equals 

No = [ ( 1 + it -it ) : t E IR] 
it 1 -it 

and the horocycle with 0 ::; x < 1 as diameter equals the orbit ~0 = N 0 .0. Any other 

horocycle ~ can be written in the form ka.~0 (k E K 0 = exp to and a E A0 = exp no). 

But, ~= kaN0 (ka) - 1
. (ka .O) so~ is an orbit of a group conjugate to N0 . Conversely, 

if g E Go = SU(1, 1), z E M, and let g- 1 .z = na, then the orbit gN0g E .z is the 

horocycle ga.~o-

This situation can be generalised to M! = G / K, where G is a connected semisim­

ple Lie groups G with a finite center , and K is a maximal compact subgroup of G. 

As usual practice, let G = K AN be an Iwasawa decomposition, and let M denote 

the centraliser of A in K , let o = { K} E M , and ~0 the orbit N.o. 

Definition 5 .3.1. A horocycle in M! is any orbit N'.x where x EX and N' is a 

subgroup of G conjugate to N . 

Remark 5.3.2. The above definition looks as if it depends on the actual choice 

of the Iwasawa decomposition. However, the choice of the Iwasawa decomposition 

is immaterial2 , as all such decompositions are conjugate. 

First, we state some basic facts about horocycles ([30] , pp. 77). 

Theorem 5.3.3. 

• Each horocycle is a closed submanifold of X. 

2Imma.teria.l in the sense that it does not affect the geometry. c.f. [30] , pp. 77. 
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• The group G acts transitively on the set of horocycles in X. The subgroup of 

G which maps the horocycle ~0 into itself is equal to M N. 

The second part of the theorem motivates the following definition. 

Definition 5.3.4. The set of horocycles in X with the differentiable structure of 

G I M N will be called the dual space of M, denoted by :=:. 

The following theorem generalises the idea of the classical "polar coordinate" 

representation to a symmetric space. 

Theorem 5.3.5. 

• B = K IM can be identified wi th the set of all Weyl chambers in p. The m ap 

TJ : (kM, a) ~----+ kaK is a differen tiable m apping of B x A ---? X , and the m ap 

L : (kM, a) ~----+ kaM N is a diffeomorphism of (B x A onto:=:. If A+ = exp a+, 

the restriction of TJ to B x A+ is a diffeom o1phism onto the regular set M' c M, 

and moreover, M'= KA+.o. 

• Given x E M , b E B fixed, there exists a unique horocycle passing through x 

with normal b. 

• Given a horocycle ~ and a point x E ~' there exist exactly IWI distinct horo­

cycles passing through x with tangen t space at x equal to Tx~. 

By the above theorem, we see that each ~ E :=: can be written as ~ = kaM N, 

where klvf E B = K I M and a E A are unique. Under this decomposition, we say 

the Weyl chamber k/111 is normal to ~' and call A(x, b) = log a the composite 

distance from o to ~ - More generally, if x = g1K E X and~ = g2 1\!1 N E :=:, we 

write < x, ~ >= H(g! 1g2) and call it the composite distance from x to~ ' where 

H (g) E a is given by g E K exp H(g )N under the Iwasawa decomposition. < x , ~ > 

is well defined and invariant under the action of G. This is the symmetric space 

analogue of the scalar product (y, w) on JRd , where llwiiiRd = 1. The vector-valued 

inner product A(x, b) also generalises the inner product < , > on H 2 considered in 

the previous section. 

In terms of the Iwasawa decomposition, G = KAN = NAK, if g E G , 

H(g) E a, and A(g) E a are determined by g = k1 expH(g)n1 = n 2expA(g)k2 

with k1 ,k2 E K , n 1 , n 2 E N , then A(g) = -H(g- 1
). If x = gK E M,b = 

kM E B , then g-1 k E Kexp(H (g- 1k)N), so the point gK lies on the horocycle 
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kexp( - H (g- 1k)) .f,0 . Therefore, we obtain a rather explicit formula for our inner 

product, 

Theorem 5.3.6. Let A E a(:, b E B. The function 

e>. b : x 1---t e(i>.+g)A(x ,b) , 

is a joint eigenfunction of'D(M). In fact, e>.,b belongs to the joint eigenspace 

£>.(M)= {f E £(M): DJ = r(D)(i.A)f forD E 'D(M)} . 

where f is the f introduced in Theorem 4.1.8. 

The analogy between (x, w )JRd and A ( x, b) motivates the following definition of 

the Fourier transform on M = G / K. 

Definition 5.3. 7. ([30], p. 223) If f is a function on M , the Fourier transform 

j is defined by 

}(.A, b)= L f( .r:)e(-iA+g)A(x,b)dx 

for all .A E a(:, b E B for which this integral exists. 

Remark 5.3.8. If f E Dq(M), we can replace f with r <k) (by the K-invariance 

property), where r<k)(x) = f (k - 1x) . Since A(k.x, b) = A(x, k - 1b), t he Fourier 

transform becomes 

}(.A, b)= L f(x) e(-iA+g)A(x,b)dx = L r(k)(kx)e(-i>.+g)A(kx,b)dx 

= L f(x )e(-iA+g)A(x,k-Jb)dx 

= j(.A , k- 1b), 
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and hence}(>., b) is independent of b. Integrating both sides ofthe Fourier transform 

equation with respect to the normalised Haar measure db we get, 

](>.) = / / f(x) e(-i>.+g)A(x,b)dxdb 
is .JM 

= Lf(x)(L e(-i>.+g)A(x,b)db)dx 

= L f(x )</>->. (x )dx 

This shows that the Fourier transform considered here reduces to the classical spher­

ical transform for ]{-invariant functions f. 

We now state the Fourier inversion formula ( c.f. [30], p. 225). 

Theorem 5.3.9. For each f E D(M) , 

j(.r.) = rwr-11 r e(i>.+g)A(x,b) ](>. , b)fc(>.)f- 2d)..db 
a• .J B 

for x EM and f is the Fourier transform off according to Definition 5.2.4. 

The Plancherel formula allows us to extend the Fourier transform from D(M) to 

L2 (M). To state the result, we first define a~= {>. E a* :A>. E a+} of the positive 

Weyl chamber a+ . 

Theorem 5.3.10. (c.f. {30}, p. 227) The Fourier transform f(x) ~---+](>.,b) extends 

to an isometry of L2 (M) onto L2 (a~ x B) (with the measure [c(>.)[-2d>.db on a~ x B. 

Moreover, 

Analogous to the H 2 example, the Fourier transform off E L2 (M) is a function 

of b E B for each fixed ).. E a*. What we need now is to develop another layer of 

Fourier theory on functions on B , and nest that into our general Fourier transform. 

Definition 5.3.11. The element ).. E a~ is said to be simple if and only if the 

Poisson transform P>. :FE L 2 (B) ~---+ f E £>.(M) given by 

f( x) = L e(i>.+g)A(x,b) F(b)db 
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is injective. 

Theorem 5.3.12. Suppose -,\ E a~ is simple, then the space of functions , b ~----+ 

](>.,b), is dense in L2(B) as f runs tl1rough D(M) . 

The following result applies Fourier decomposition on the compact subgroup K 

to obtain a classification of the joint eigenfunctions of 'D(M). 

Theorem 5.3.13. Let f be an arbitrary joint eigenfunction ofD(M). Then , there 

exists a A E a(: and a hyperfunction T on B , such that 

• f is given by the Poisson transform ofT, 

f (x) = l e(i>.+Q)A(x,b)dT(b). 

• T has the Fourier series 

T rv L d(6)Tr(Ao8(k)), 
oEKM 

in the sense that 

where T being the lift ofT to K. 

• j (x) has a convergent expansion in c = (M), 

f(x) = L d(6)Tr(Ac~<I>-A,c5(x)). 
OEKM 

The full Fourier transform allows us to decompose an "arbitrary function" along 

the harmonics of the A direction. Theorems 4.2.12 and 4.2.13, allows us to perform 

the decomposition likewise the b direction. We will now obtain an explicit descrip-

tion of the structure of the range D(M) of 'D(M) under the Fourier transform. 

Definition 5.3.14. A c= function 'lj; (A, b) on a(: X B, holomorphic in). is called a 

holomorphic function of uniform exponential type if there exists a constant 

R 2: 0 such that for each N E z+, 

sup e-Rlm-AI(l + IJ.I)NI'IP (A, b)l < oo. 
>.Ea(;.bEB 
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Here, Im>. = y if>. = x + iy; x, y E a* , and /?. /2 = ( / x / ~. + jy j~. ). 

The space of all such functions will be denoted by H R( a* x B), and H (a* x B)= 

U R2:0 1-fR(a* x B ). Finally, we take H (a* x B )w to be the space of functions 

'1/J E 7-l( a* x B) satisfying, 

l e(is>-+e)A(x,b)'ljJ(s>. , b)db = l e(i.A+e)A(x,b)'!jJ(>., b)db 

for s E vV, ). E a(:, X E M. T he space of vV-invariant holomorphic funct ions 

>. ~ '1/J(>.) E H (a* x B ) (independent of b) is denoted by 1-lw(a(:). 

Theorem 5.3.15. The Fourier transform f(x) ~ ](>., b) is a bijection of "D(M) 

onto H (a* x B)w. Moreover, '1/J = f E 7-l(a* x B) if and only i fsHpp(J) C Cl(BR(o)). 

Recall that B = K /M . Let K denote the set of equivalence classes of unitary 

irreducible representations on K. For each 8 E k, let V0 be a finite dimensional 

inner product vector space on which a representation of class 8 is realised, let such 

a representation also be denoted by 8. Let kM denote the set of elements 8 E k 

for which the subspace 

V/ 4 = {v E V0 : 8(m)v = v , mE M} =!= {0}. 

If 8 E KM, the contragredient representation J also belongs to kM, where 

b(g) := 8(g- 1)* . Finally, we put d(8) = dim V0 and l(8) = dim V/'1 . 

Definition 5.3.16. For 8 E K111 , >.E a(:, the function 

g_).>-,o(x) = r e(i.A+e)A(x,k/11)8(k)dk, X EM, 
} I< 

is called t he Eisenstein integral of class 8. T hese are also known as the gener­

alised spherical functions. 

The function g_)u :X --+ Hom(V0 , V0) , satisfies the following condit ions, 

• g_)u(k .x) = 8(k)g_)>-,o(.r), g_)>-,o(.r)b(m.) = g_)>- ,cS(.r.) . 

• D g_).>-,o = r(D)(i ?. )g_).>-,c5: DE "D(M). 
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If 6 is the trivial representation, then <P.x,a reduces to the (zonal) spherical func­

tion </Y_x. Let f E C 00(M), we put 

J"(x) = d(6) .L f(kx)6(k- 1 )dk, 

where the right hand side is a Bochner integral. Then, J" is a coo map from M to 

Hom(V., , Vo) satisfying 

Hence, if J" :fo 0, then j 6(a.o) =I= 0 for some a E A, and hence the space V/11 of 

kM-fixed vectors is non-zero. The functions f" determine f by the Peter-Weyl 

theorem for vector valued functions ( c.f. [29], Chapter 5, Corollary 3.4) 

f(x) = ~ d(6) .L Xa(k - 1)/(kx)dk = ~ Tr(f6
). 

6El<M 6El<M 

where Xa is the character of 6 = Tr(6) , and the last equality follows from f" = 0 if 

v.,M = {o} . 

With 6 E k acting on V6 , consider the space V(M, Hom(V.5 , V.,)) of coo functions 

on M of compact support having values in Hom(V6, V6). Vl/e define, 

V'5(M) :={FE V(X, Hom(V6 , V6 )) : F(kx) = 6(k)F(x)}. 

This space carries a natural topology in which it is an LF-space 3
. In fact , it is the 

inductive limit of the Frechet spaces 

VR(M, Hom(V6, V6)) , R = 0, 1, 2, ... 

of functions in V (M, Hom(V6 , V6)), having support in Cl(BR(o)) . Let V 6 (M) denote 

the space of K -finite functions in V(M) of type 6. The spaces V 6(M) and V6 (M) 

are given the topologies induced from the space V(M, Hom(Vo , V0)) and the space 

V(M ) respectively. For c.p E C(K) , f E C(M) , we write 

(c.p * f)(x) = i c.p(k)f(k- 1x )dk, x EX. 

3 An LF -space is a topologkal vector space that is a countable strict inductive limit of Frechet 
spaces. See [29] p. 398 for more details. 
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Theorem 5 .3.17. 

• The map Q : F(x) ~ Tr(F (x)) is a homomorphism of V 5(M) onto VJ(M) 

and its inverse is given by f ~ j 5. 

• The maps 

p: f E V(M) ~ d(6)xo * f E V:5(M) 

q: f E V(M) ~ f 5 E D 5(M) 

are continuous open surjections and the images Vs(M) and V 5(M) are LF­

spaces, closed in V (M) and V(X, Hom(V5 , V6 )) , respectively. 

If f E V s(M) , then f = d(6)xo * f, so 

](>.,kM)= d(6) j~ f(x) (/~ e(- i>.+Q)A(x,vK)Xo(kv- 1)dv) dx. 

This leads to the following definition of t he 6-spherical transform. 

Definition 5.3.18. For f E V c5 (M), the 6-spherical transform j E 'H(a{:, Hom(V., , V5M) ) 

is defined by 

f o(>-) = d(6) i f(x)<J.>x. 5(x)*dx , 

where 

Theorem 5 .3.19. ([30}, p.290) The 6-spherical transform is inverted by 

where lW I is the cardinality of the Weyl group. Moreover, 

If 6 = 1, then f ~ ] 1 is just t he spherical transform of functions in V b (M). In 

general , 6(m)]6 (>.) = ]6(>.) , and ]6 : a{: ~ Hom(V,s , vr) is a smooth function. The 
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following theorem summarizes the relationship between the b-spherical transform 

and the full Fourier transform. 

Theorem 5.3.20. ({30}, p.286) The 8-spherical transform j is related to the 

Fourier transform f by 

fa(A) = d(8) ./~](A , kM)8(k- 1 )dk, ](A , kM)= L Tr(b(k)}a(A)). 
bEKM 

5.4 The Levy Khintchine Formula for M = G / K 

Let G be a Lie group which acts transitively on a manifold M = G / K on the left, 

and let 9t be a stochastic process in G. For any point x E M, we call the process 

Xt = 9tX the one-point motion of 9t on M starting from x. 

In general, the one-point motion of a Markov process in G is not a Markov 

process in IV!, except when 9t is a right Levy process. We require 9t to be a right 

Levy process( c.£. [41]), as 9t acts on the left of x. Hence for f E Cc(M), 

Let Pt f(x) = E(f(gtx)) for f E C0 (M), then ptM f( x) is a Feller semigroup4 for 

Recall the Levy-Ito decomposition equation (3.6). This is a Levy-Ito decompo­

sition for left Levy processes. By duality, if 9t is a right Levy process, then for any 

f E Cb(G) n C 2 (G) and with a1k, bi, ci, N, W1 , Xi , xi having the same meaning as in 

Theorem 3.3.11 and (3.8). Then 9t solves the stochastic different ial equation, 

(5.1) 

4 c.f. the discussion on page 54 of section 3.3. 
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with 

d d 

Af(g) = ~ L ajkXjX~f(g) + L: ciX[f(g) 
~k=l i=l 

where v is a measure on G satisfying (3.2). If in addition v satisfies (3.3), the 

integral Jc[f(gh)- f(g)]dv(h) exists , A takes a simpler form 

1 d d 1 
Af(g) = 2 L ajkXjX~f(g) + L biX[ f(g) + [f(hg)- f(g)]dv(h) , 

j,k=l i=l G 

(5.2) 

where bi = ci- J~ xi(h)dv(h), and 

d t t 

M{ = L 1 Xj f(9s-)dW1 + 11 [f(9s-h)- f(9s- )]N(ds dh) 
j=l 0 0 G 

is an L2-martingale. 

Every X E g induces a vector field X* on M by 

for any f E C 1 (M) and x E M. Let 1fx : G -t M be the map 1fx (9 ) = gx. If 

f E C~(M) , then f o nx E Cb(G) n C 2 (C) with xr(f o nx) =(X* f) o 1rx for X E g. 

Therefore, we obtain the following stochastic differential equation for the one-point 

motion X t = 9tX of 9t in M. For f E C 2 (M) , 

(5.3) 

with 

d d 

AMi f(x ) = ~ L ajkXjX~f (x) + L ciXt f( x ) 
~k=l i=l 
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Here v is a measure on G satisfying (3.2). If in addition v satisfies (3.3), AMI takes 

the simpler form 

1 d d r 
AMif(x) = 2 L aikXjXTJ(g) + L biX[ f(g) + Jr [f(hx)- f(x)]dv(h), 

j,k=l i=l G 

(5.4) 

where bi = ci- fc xi(h)dv(h), and 

d t t 
M/= L lo x; f(xs)dvV1 + lo 1 [f(hxs-)- j(Xs-)]N(ds dh) . 

j=l o o G 

In section 5.3, we have established that the knowledge of lE( ci>i,8 ( (t)) is sufficient 

to determine the law of (1• Hence, the 6-spherical transform of the law of (1 amounts 

to a reasonable candidate to be called a "Levy-Khintchine:: formula for the K­

Types. This result will then be summed over the irreducible representations to give 

the general Fourier transform of the Levy process, and then applying the Fourier 

inversion to recover the probability distribution of the underlying process. 

Let (1 be a Levy process on M starting at x (regarded as the one-point motion), 

c!>5.,8 an Eisenstein integral (c.f. Definition 5.3.16), and cP>. an elementary spherical 

function (c.f. Definition 4.2.1). Now, c1>;. ,8 is an eigenfunction of the Laplacian 

.6.MI, and a joint eigenfunction of the left-inYariant differential operators D E D(M) 

(c.f. [30] p 234, p244). To this extent , let £(.6.MI, c1>;.,8 ) and £(D, c!>;.,8 ) respectively 

denote the eigenvalue of .6. 111 M and D corresponding to the eigenfunction ci> 5.,<5. With 

respect to the isomorphism r : D(M) -+ D 1,v( A) introduced in Theorem 4.1.18, we 

have f(D)(i:\) = £(D, c!>;.,8 ) as Dc!>x.8 = f(D)(i.A)c!>x,8 (c.f. Discussion following 

Definition 5.3.16). 

Theorem 5.4.1. Let c be a fixed constant, D = :Li biXi, K:(.A) = c£(.6.MI, ci>x,8) + 
£(D, ci>x,8), &(A, h*) = :L~=I x~(h* K)£(Xt , c!>x,8) where x~(h* K) = JK xi(h*k)dk. 

Then: 
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• The o-spherical transform, JE(<I>>:,.s((1)) is determined by the following ini­

t ial value problem: 

:t{3(t)* = K-(>.)f3(t)* + .i ( <l>>:,.s(h* K)a(t)- (1 + i(>., h*))f3(t)*) dv(h*) 

/3(0) = <I>>:,.s(x) 

where x = ( 0 and a(t) = lE((h((t)) . 

• If the Levy measure v is finite on M, we can assume that v(:MI) = 1, and 

we obtain the following closed form solution for the o-spherical transform 

where K.(>.) = K-(>.) - JMI t-(>., h*)dv(h*), h* K E :M! is simultaneously understood 

as a coset of G, and 

<p(t) = lE(<P>. ((t)) L <I>>:,.s(h* K)dv(h*). 

Proof. For each 6 E k, every matrix entry in <l>>:,.s is at least twice differentiable. 

This allows us to put f = <I>1,8 , and /3(t) = JE(<I>>: . .s((t)*), and apply (5.3) on an 

entry-by-entry basis. Hence, we obtain 

{3(t) = JE(<I>>:,.s((t)*) 

=lE ( <l>>:,,s(Zo)* + Mt<t>'i.h +.it AM<I>>:,,s((s)*ds) 

if>~ 

where the third line was obtained using the martingale property of M 1 >-.o Now, 

let .6-MI be the Laplacian on M and D be the differential operator "Li biXi. We 
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differentiate both sides with respect to t and taking the transpose of both sides, 

d d 

:t(J(t)' = lEG j~J ajkx; x,;il>,,( (,) + ~ b,X;il>x,,( (,) 

+ L [ il>x,;(h(,) - il>x,; ( (,) - t x,(h )Xtil>;,;( (,)] dv(h)) 

= IE(c~M<PA,&((t) + D<PA,&((t) 

d 

+ L [ il>x,;(h(,) - il>;,;((,) - ~ x, (h)X;il>;,,((,)] dv(h)) 

= £(c~MI, <PA,8),6(t)* + £(D, <PA,8),6(t)* 

+lE ( L [ il>x,;(h(,) - il>x,;( (,) - t x,(h )Xtil>x,;( (,)] dv(h)) 

= ""(>.)!J(t)* +IE(L [£ <PA,&(h*kCt)dk- £ <J?A,&(Ct)dk 

d -i ~ x;(h'k)Xtil>x,;((,)dk] dv(h')) 

= ""(>.),6(t)* +lE(./~ [<PA,&(h*K)<PA((t)- <PA,&((t) 

d 

- ~x~(l,.' K)X;'il>x,;((,)l dv(h')) 

where h* in the third line is the unique element in M such that h = h* k, and 

dk is the normalised Haar measure on K and x~(!~* K) = JK xi(h*k)dk. The last 

equality in the preceding computation follows from the fact that <PA,8(.)* is a joint 

eigenfunction of left-invariant differential operators and Proposition 4.2.4. 

Since dv(h*) is a Levy measure on M , we have 

and hence we may exchange the order of expectation and integral to get 
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Now, since <I>;x.,8 is a joint eigenfunction of left-invariant differential operators, 

Xt<I>;x. ,8 = E(Xt, <I>;x.,8 )<I>;x,,8 . Therefore, the above equation simplifies to 

:l(t)' ~ -.(A)/3(t )' + L ( if>;,;(h' K)a(t) - /3(t)' - t x:(h' k )I'(X;', il>x-')/3(t)') d"(h') 

= "-(>.)(3(t)* + i ( <I>;x.,8(h* K)a(t)- (1 + t-(>., h*))(J(t)*) dv(h*) 

We have now established the first part of the theorem. Now, if v is a finite 

measure on M, we can assume that JTVJ dv(h*) = 1. Under this assumption we can 

split up the integral against the Levy measure to solve the initial value problem as 

a first order linear ODE. Moreover, t he finiteness of v(M) allows us to set K:(>.) = 

K-(A) - JTVJ t-(>., h*)dv(h*), which simplifies t he above ODE as 

where 

:t(J(t)* = K:(>.)(J(t)* + ( i ( <I>;x.,8 (h* K)a(t) - (3(t)*)dv(h*)) 

= (K:(>.)- 1)(3(t)* + tp(t) 

tp(t) = a(t) i <P;x. ,8(h* K)dv(h*). 

We can obtain an explicit expression for a(t), and hence for tp(t) as follows. Put 

f = </>>. into (5.3), and analogous to the previous calculation for (3(t), we proceed as 

follows, 

:ta(t) = K:(>.)a(t) +IE(L [!<[<b;x. (h*k(t) - </>;x.((1)]dk] dl/(h*)) 

= K:(>.)a(t) +IE(i,r<t>:x.(h*)</>:x. ((t) - </>:x.((t)]dv(h*)) 

= ( K:(>.) + j~[</>;x.(h*)- 1Jdv(h)) a(t) 

with initial condition a(O) = 1. Integrating both sides gives, 

a(t) = exp [t( K;(>.) + .1~[</>;x.(h*)- 1]dv(h*))] , 
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and hence 

<p(t) = exp [t (~(-X)+ L[if>>.(h*)- 1]dv(h*)) ] L <I>>.,8 (h* K)dv(h*). 

Since we have now obtained an explicit formula for <p(t), we may regard it as a 

term independent of (3, and therefore we have reduced the original problem to the 

following first order linear ODE, 

d 
dt(J(t)* - (~(-X) - 1)(J(t)* = <p(t) (5.6) 

(3 (0)* = <P>. . .s(x), 

assuming that (o = x . 'We solve this by multiplying the integrating factor e-(K.(>.)- l )t 

on both sides of (5.6) to get 

e- (K.(>.)- l)t ( :tf3(t)* - (~(-X) - 1)(J(t)*) = e- (K.(>.)- l )t<p(t) 

and we recognize the left hand side 

e- (K.(>.)-l)t (!!_(J(t)*- (~(-X) - 1)(J(t)*) = .!!_(e- (K.(>.) - l)t(J(t)*). 
dt dt 

Hence, combining the above with t he initial condition (3(0)* = <I> >.,.s (x) , we have 

Therefore, 

We have now completed the proof of Theorem 5.4.1. D 

As a consequence of Theorem 5.4.1 , we are able to develop t he following theorem 

that gives the Fourier transform and the underlying probability distribution of a 

general Levy process on M. 
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Theorem 5.4.2. Inheriting all the notations from Theorem 5.4.1 and section 5.3, 

and assuming v(M) = 1, the Fourier Transform5 of the M-valued Levy process is 

given by 

j(t (>. , b) = ~ Tr [ 6 (k) ( e(K(>.) - l)t) ~>. , o (x) + 1 t e(K(>.)- l )(t- u)<p ( u)du) l , 
oE K M 

where b = k 1111 E K / M. The density fun ction is given by 

f (t (.r) = i~il. l e(iA+fi)A(x,b)ic(>.) i- 2 ~ Tr[8(k) (e(K( >.)- l )t)~ >. ,o ( :r ) 
oE K 111 

+ 1 t e(K(>.) - l )(t-u)<p(u)du)] d)..db. 

Here, vll is the Weyl group, and c is the Harish-Chandra's c-fun ction. 

Proof. The first part of the theorem uses t he fact that J(t (>. , b) = LoEk
111 

Tr(b(k )](t (>.) ) 

(c.f. Theorem 5.3.20), and J(t(>.) = 1E(~:x ,6 ((t) ) . Then, application of (5.5) to 

lE( ~>.,o ( (t)) yield the desired result . Direct application of the Fourier Inversion 

(Theorem 5.3.10) gives the second part of the theorem. D 

Remark 5.4.3. For t he same reason in Remark 4.4.5, Theorem 5.4.2 does not 

necessarily require (t t o have a smoot h density. T he only difference is that t he ver­

sion of Fourier inversion and Paley-\ iViener t heorem we are referring to are T heorem 

5.3.9 and Theorem 1.5 of [30], p.227 respectively. When f is non-smooth, J.l(t (x) in 

Theorem 5.4.2 will become a distribution on M . 

5.5 Application of Theorems 5.4.1 and 5.4.2 

In t he previous section , we have obtained an explicit form of t he Levy Khint­

chine formula for a general Levy process on a Riemannian symmetric space M = 

G/ K via Theorem 5.4.1. To recover underlying probability distribution from (5.5), 

we had to first reconst ruct the full Fourier transform , via t he relation ](>. , b) = 

LoEk
111 

Tr(c5(k)1E(<I>>..o ((t)) , where b =kM (c.f. Theorem 5.3.20 and Theorem 5.4.2), 

and then apply the Fourier inversion formula (Theorem 5.3.10, Theorem 5.4.2 and 

5We are really talking about the Fourier Transform of t he probability distribut ion 
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Theorem 5 of [8]). On the other hand, one can apply Theorem 5.3.19 to first in­

vert the a-spherical transform to obtain f 0 , and then recover f by applying the 

Paley-Wiener theorem, where f = LoEi<M Tr(f0). Moreover, the harmonic analysis 

theory tells us that both of the methods will yield the same result ( c.f. Chapter 4, 

[30]). 

We can also decompose any tempered distribution f on M into its / 0 parts via 

the prescription 

where a is any irreducible representation of K on a vector space V0 of dimension d(a). 

While each f 0 is a matrix with dimension d(a), Tr(f0 ) can be thought of as a function 

on M. Now, f 0 respects the action of a in the sense that j 0 (k.x) = a(k)j0 (x) for 

every k E K and x E M. One can recover f from f 0 by the well known Paley-\i\Tiener 

decomposition formula 

f = I: Tr(f0
). (5.7) 

oEkM 

This allows us to complete extend the computation of the example in section 

4.6 and section 5.2 to a general Levy process on H 2
. 

By theorem 5.4.1 , we know that for each fixed a, the a-spherical transform of 

the density (J(t) = lE(<I>.x,o((t)) satisfies the initial value problem: 

:i:_{J(t) = K(A)/](t) + J ... dv 
dt 

(3 ( 0) = <l> .X.o (X) 

where x E G / K is the starting value of the Levy process. In the case of a Brownian 

motion with drift, the solution is just (J(t) = lE(<I>.x,o((t) ) = e~~:( .X)t<I>.x ,o(x) . 

Now, ,.,;()..) = c£(.6.Mh <I>.x,o ) + E(D , <I>.x,o) , where D = L i biX i and the X/s are a 

set of local coordinates. 

To compute the first eigenvalue £ (.6.Mh <I>.x,o ), we use the following facts from 

Helgason (GGA, p 49): 

On the unit disc model of H2 = SU(1 , 1)/ S0(2) , 
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• The Eisenstein integrals satisfies the "homogeneity condition" : f ( ei8 z) = 

eimO f(z) , where m is the index of the character Xm(ei11 ) = eim<f> (i.e. it is 

a substitute for o). 

• The function F ( r) = f ( tanh r) satisfies 

F " (r) + 2 coth (2r )F'(r) - 4m2 sinh- 2 (2r)F + (.>..2 + 1)F = 0. 

The La place-Beltrami operator on H 2 is given by 

Hence, 

6 (ci>>.,m(tanh rei11 )) = 6(eimOci>>.,m(tanh r)) 

( 
a2 a a2

) . 
= 8r2 + 2 coth(2r) ar + 4sinh- 2 (2r) 882 (etmllci>.\,m(tanh r)) 

= eimO ( ::2 + 2 coth(2r) :r ) ( ci> >.,m ( t anh r)) 

82 . 
+ 4 sinh- 2 (2r )cl> >.,m ( tanh T) 

8 82 
etmO 

=(4m2 sinh- 2(2r)- (.>.. 2 + 1))eimOci>>.,m (tanh r) 

- 4m2eimO sinh- 2 (2r)ci>>.,m(tanh r) 

= -(.>..2 + 1)ci>>. ,m (tanh rei8 ) 

So the eigenvalue £(6, ci>>..m) = - (.>..2 + 1). 

Now, to compute E(D, cl>>.,t!)· In general , D = Li biXi where X i are just the 

local coordinates. In this case, it basically boils down to X 1 = dj dr and X 2 = djde. 

W ith E(d/ dB , ci>>. ,m) it's actually quite simple, because 

d (J d . (J 
- cl> (tanh re1 

) = ci> (tanh r)-e1
m dB >. ,m >.,m de 

= imeimOci>>.,m(tanh 1·) 

= imci> >. ,m ( tanh rei 11 ) 

So the eigenvalue here is just im. 
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The computation of £(djdr, <I>.A,m) is rather involved, but the basic idea is to 

differentiate directly using the formula given by [29], p.60: 

( ·)- 2 V lml r(lml + v) ( I I ·I I . 2) 
<I>A ,m 1 - (1- r ) r r(v)lml! F v, m + v, m + 1, r 

where v = ~ ( i >. + 1) and F(, ; ; ) here is the hypergeometric function ( c.f. [29] p 50). 

To summarise, the delta-spherical transform of the density function is given by 

the expression: 

to 

Hence, the density function of (t can be obtained by applying Fourier inversion 

j = L IE(<I>.A,m((t)) = e -(.A2+1+im+£(dj dr,<I>>. ,rn))t<I>A,m(x). 

m EZ 
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CHAPTER 6 

Volatility Modeling 

In this chapter, we aim to apply the ideas developed in the previous chapters to 

problems in mathematical finance. It is written more for a purpose of illustrating 

the potential applications of the main theorems discovered in this thesis, as opposed 

to be a complete piece work on its own right. 

Although financial application of stochastic differential geometry is a relatively 

new field, there is already a substantial literature in the area (c.f. [14], [22], [23]). 

Most of these ideas are based on t he following two-step observation: 

• Traditional models have observed empirical defects. 

• Tweak the traditional models with some curvature helps to (partially) resolve 

the defects. 

However to date, there still lacks a unified theory to explain exactly what exactly 

is t he role of curvature playing in the realm of finance. This chapter is aimed as 

a forum for brief discussion, the topic we are attempting to cover is so large that 

perhaps it deserves a full thesis on its own. 

6.1 Introduction to Volatility Modeling 

The holder of an option to an asset S, has the right but not the obligation to 

buy/ sell the stock at a pre-determined price K , called the strike price, and at a 

pre-determined time T , called the maturity day. If the option gives you the right to 

buy, it is called a call option, and if it gives you the right to sell, it is called a put 

option. In their seminal paper [15] , Black and Scholes showed that by holding a 

certain portfolio that consists of the underlying asset and cash, one can completely 
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replicate the risk profiles of the option under certain idealistic assumptions. In 

particular, they assumed that the asset price dynamics are governed by the SDE, 

where Wt is a Wiener process. 

A fundamental property that is required with any mathematical model, is that 

all underlying assets in the resulting market dynamics must be arbitrage free, so 

t he price of the option must be the price of constructing the replicating portfolio. 

Definition 6.1.1. Let { q)t} be a stochastic process adapted to Ft,. We say { q)t} is 

an admissible strategy over the period [t , T] if 

Now, suppose that the process {St }t~ 0 is the price of a traded asset, and {q)t} 

an admissible trading strategy with respect to the same filtration as St. Let 0 = 

t0 < t1 < .. . < tn = T be a partition of [0, t] and let Ji = (ti-L ti], 'i = 1, 2, ... , n. 

Assume that q) is constant on each Ji, then the amount of capital gain over Ji is 

given by </>1; _ 1 (S1i- Sti_J . Let V( q) ) be the value of the investment summing over 

all periods, and let our partition become infinitely fine as n ~ oo, we obtain the 

Riemann sum, 

Definition 6.1.2. An arbitrage strategy q) is an admissible strategy such t hat , 

• V0 = 0, 

• IP'(V(q)) < 0) = 0 and 

• lJ.D(V(q)) > 0) > 0. 

In practice, the existence of arbitrage strategies depend on opportunities that are 

transient, they can only arise in market inefficiencies. It is undesirable to allow such 

an opportunity to occur systematically when we are building a mathematical model. 

Hence, we need to impose an extra condition called the "arbitrage free" condition 
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to prohibit arbitrage opportunities arise systematically in the model dynamics. The 

only tradable asset here are the underlying asset St and the its options Ct. 

Theorem 6.1.3. (Fundamental Theorem of Asset Pricing) 

Let { St}t:::::o be the price dynamics of a tradable asset, modeled as a stochastic 

process adapted to the filtration Ft. Then, the induced market is free of arbitrage 

opportunities if and only if the discounted price with respect to numeraire Et 1, 

St/ Et , is a local martingale under a measure Q that is equivalent with respect to 

the real world measure JP>. 

As a corollary to the above theorem, we can write down the option price as an 

expectation under the equivalent martingale measure Q. 

Corollary 6.1.4. The price of any tradable V maturing at timeT, valued at time 

t, is given by ~JEQ(VIFt)· 

In t he case when V is an call option on the underlying St with strike K, and E 

is a risk free cash account with interest rate r , then V= e-r(T- t)JEQ((Sr - K)+I:Ft) 

with the dynamics of St under Q being 

dSt 1 2 - = (r- -CJ )dt + CJdWt. 
St 2 

Computing this expectation gives us the celebrated Black-Scholes formula. 

Theorem 6.1.5. 

For an asset with price dynamics following a geometric brownian motion with 

(constant) volatility CJ and initial value S0 , the call option with strike K and ma­

turity T under the risk free rate r , at timet has price, 

(6.1) 

where <P(.) = j· - 1-e-112x
2 dx. and 

- 00 ../2-ff ' 

1 Here , we may regard Bt as the our cash account, so Bt = e-rt. 
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In practice however, the above formula rarely gives the actively traded option 

prices if we substitute r7 with historical volatility. On the other hand, given the 

traded option prices, we can reverse engineer the "correct" r7 so that the option 

price t hat the Black Scholes formula gives actually agrees with the market prices. 

The following definition formalises the above discussion. 

Definition 6.1.6. Let p be the observed derivative price and BS(S0 , K, J.t, r7 , T-t) 

be the formula ( 6.1). The implied volatility of this derivative2 is given by the 

solving for r7 in the equation 

p = B(S0 , T , r7 , K , T- t). 

It is commonly observed in the market , that for the same underlying S, the 

implied volatility for is the lowest when the option is at the money, and it becomes 

higher when its deeper-in or deeper-out of the money. Thus, plotting t he implied 

volatility against the strike level will typically produces a figure that looks like a 

"smile", and hence this curve is given the name the implied volatility smile. 

There is already a huge amount of work published in the literature as to model 

volatility, and recover the volatility smile in their models ( c.f. . These include local 

volatility models , stochastic volatility models, and asset dynamics driven by non­

log-normal processes. However, there are much fewer publications that addresses 

the underlying reason why do we observe the volatility smiles, or search for an 

unification to the existing models and explanations of this phenomenon. In fact , 

one of the authors of the Black-Scholes paradigm had made it very clear: Implied 

volatility is the wrong volatility substituted into the wrong formula to obtain the 

right option price asked by the financial markets. 

In this section, rather than trying to answer directly "why do we observe a 

smile", we are going to turn the question back to itself: There is really no smile, 

the smile we observe is just an illusion. Then, we will see if we can substitute the 

right volatility into the right formula to get t he right price! 

2 Here, we distinguish derivatives by their payoff, underlying, strike and maturity. 
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6.2 Information Geometry 

The philosophy behind stochastic modeling lies deeply in the idea that random­

ness arises in the absence of information. For example, in any filtered probability 

space (0, (Ft), F, JP>), a common interpretation is that (Ft) controls the flow of in­

formation. When one lives long enough to observe (F00 ) , that person would enter 

the mind of God and every event would be measurable with respect to his/her CJ­

algebra. For any t < oo, the filtration (Ft) hides all the information that would flow 

in beyond time t, and hence creating randomness for snap shots of any stochastic 

process beyond time t. '0le will now talk about how to quantitatively assess the 

amount of information contained in an observation. Readers are referred to [51] for 

a comprehensive treatment of information geometry in statistics, and [14] for its 

role in interest rate models. 

Let (!1, F, JP>) be a probability space, (E, B(E)) be a measurable space and X : 

n ----+ E be a random variable (measurable map). Now, let A E F and denote "the 

amount of information contained in A about X" as Ix(A), where I can be regarded 

as a map I : !vf ap(!l , E) x F----+ [0, oo]. Note that if A ~ B , then we should expect 

Ix(A) > Ix(B), as A gives more "finer details" about X than B. We assume the 

following properties with I that can be regarded as axioms, 

1. Ix(0) = oo and Ix(!l) = 0 

2. If A~ B , then Ix(A) > Ix(B). 

3. Let A , BE F be independent with respect to JP>, then Ix(A n B)= Ix(A) + 
Ix(B ). 

Solving the Cauchy-functional equation induced by property 3, we have that 

the only possible candidate for Ix(A) is Ix(A) = -log(JP>(X - 1 (A))). From here on, 

we will treat this as the defining property of I. In practice, one often consider a 

family of random variables X parametrized by 8 = { Bi}i=l ,2, .. ,n with each Bi E 8. 

i = 1, 2, .. , n , where 8 is a parameter set , with an assumed conditional density 

f(.T , B) = f(x , 81 , . . . , Bn)- The central idea behind Fisher information is to measure 

how much information is revealed by an additional increment of the parameter e, 
on the underlying random variable X. 

131 



Definition 6.2.1. The Fisher information of a family of random variables 

Xth , ... ,(Jn parametrized by (}i E 8 , i = 1, 2, ... , n is given by 

Ix((}I> ... , (}n) = lE(H(log f(x Jel, ... , (}n))), 

where H is the Hessian in the directions (}1 , ... , (}n. 

Now following [14], we find that the Fisher information can be considered as a 

metric to the Riemannian manifold Mx = {X0 : (} E 8} , the space of all random 

variables X parameterized by e, with conditional density f(x , B). We will simply 

write Mx as M when there is no risk of confusion. 

Definition 6.2.2. The Riemannian metric can be written as 

.%((}) = JE(ai log f(x, e))aj log f(."C, e) Je) = 1: .f(."C, e)ai(log f(x , e))aj(log f(x, (}))dx 

(6.2) 

so that the infinitesimal line segment on M is given by 

ds
2 

= L 9i.id(}id(}.i 
i,j 

B B ~ where the vector fields 8i = BO;, 8j = BOj and 8i.i = BO;BOj • 

It can be shown by tensor transformation laws that this metric is invariant 

under re-parameterization. Furthermore, the Riemannian metric defined here gives 

us a sense of "distance", "volume" , etc. In particular, we are interested in the 

geodesics that are induced with respect to a given metric 9i.i. These are the curves 

C(u) = {Ci(u)} , i = 1, 2, ... , dim(M). In local coordinates, they are the solutions of 

the differential equation 

where rjk are the Christoffel symbols 

fjk =~I: gi
1
(aj9kl + ak9jl- al9jk), 

I 
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and where gil is the inverse metric of 9il in the sense of inverse matrices: gil 9tm = 

o:n. The geodesics of M measures the minimum amount of Fisher information 

t hat is required to get from one point to another. A Brownian motion on M will 

best describe the diffusion process with respect to a uniform stream of information 

entropy. 

In option pricing theory, one normally models the dynamics of the underlying 

asset { St}t~o and its volatility as stochastic differential equations driven by \ i\Tiener 

processes. Thus, it is of central interest to us to derive the information manifold of 

a Gaussian distribution with parameters J.L and (J, where 

1 1 X- J.L 
[ ( )2] f(x, JL , (J) = ..;2i[(J exp - 2 - (J - . 

Now, let us compute the induced Riemannian metric: 

( ) 1 ( ) 1(x
2
-2xJ.L+p,

2
) logj x,J.L,(J =--log 2n -log(]" --

2 
, 

2 2 (J 

so 

a 1 
~ log f( x , J.L , (J) = -2(x- J.L) 
UJ.L (J 
a 1 1 2 ~ log f(x , J.L , (J) = -- + 3 (x- p,) . u(J (J (J 

Hence, 

g1~~ =lE ( - : 4 (X- J.L)
2 1JL, 8) = : 2 

9uu ~ E ( ( ~~ + :, (X - 1')
2

) 'I"' e) 2 

9~a =lE ( (- : 2 (X- J.L)) ( - ~ + : 3 (X - J.L)
2

) IJ.L, e) = 0. 

Therefore, the resulting Riemannian metric is given by 

133 



defined on the upper half plane { (.u, CJ) : CJ > 0}, which we recognize as the upper 

half plane model of the hyperbolic plane, H 2 . The upper half plane model and the 

Poincare model of the hyperbolic plane are related by the Cayley transform, where 

Hence, everything we said about H 2 via the Poincare model in sections 3.2, 4.6 

and 5.1 will hold on the upper half plane model via the conformal mapping property 

of the Cayley transform. In particular, this means the geodesics of H 2 on the upper 

half plane will consists of 

• Semicircles with both ends on the horizontal axis, and 

• Straight lines perpendicular to the horizontal axis, 

where the horizontal axis is parameterized by .u and verticle axis parameterized by 

o-. In particular, t he horizontal lines are not geodesics. Any horizontal line that is 

tangential to a geodesic semi-circle will always be tangential at t he mean , and lie 

above every other point in that semi-circle. 

(IJ, a) coordiantes 

Geodesic coordinates 

curve of constant volatility 

geodesic semicircle 

Fig. 1 . This figure shows how curves of constant volatility resembles the shape of 
a volatility smile when plotted on the geodesic polar coordinates. 

At this stage we only make a heuristic argument that if the market prices risk 

with units of "information", then t he correct choice of coordinates should be the 

geodesic normal coordinates generat ed by the Fisher Information metric. This 
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explains precisely why we observe the phenomenon that in a Black-Scholes world, 

the volatility of an option whose strike is further away from the spot is high. 

6.3 Derivative Pricing on H 2 

The discussion in the previous section explained the volatility smile from an in­

formation t heoretic point of view. To achieve compatibility between our asset dy­

namics and information flow, we should model any log-normal asset dynamics on 

the hyperbolic plane H 2
, where the dynamics of the underlying (or log-underlying) 

and its volatility are jointly considered to be one Brownian motion on H 2
. More 

specifically, we will model t he forward Ft as a log-normal process, we will consider 

~t = (vVt, (jt) as a H 2-valued Brownian motion, possibly with correlation p(Wt, (jt) · 

The dynamics of the forward FL can then be written as 

where b is a function from IR to JR. When b(f) = r:•, the resulting model becomes t he 

well known Constant Elasticity of Variance model (CEV), and the explicit solution 

to the case when a = 0 and a = 1 are known. For purposes of demonstration, 

we will for now assume that a = 0. Let f denote t he joint density function of 

(t = (Wt, (jt) with (0 = (x , y) , then to determine f we solve the heat equation on 

H 2: 

with initial condition f 0 (.r, y) = bxby. Here, we are solving the above PDE on the 

upper half plane { z E C : z = x + iy, y > 0} and 6 here is the Dirac Delta. Let 

d(z , () denote the geodesic distance between two points z, ( E H 2
, with z = :r + iy 

and ( = !; + iry. Then, 
lz- (12 

cosh d ( z, () = 1 + -'-----'--
2yry 

where lz - (j is the Euclidean distance between z and (. T hen , application of 

Theorem 5.4.2 allows us to solve the heat equation on the upper half plane in t he 

135 



following closed form:3 

1 2 M -u
2 

e-ud(z,() v 2100 ue--;r;:-
j(z, (, t) = du. 

( 47rt)312 
d{z ,() J cosh u- cosh d(z , () 

(6.3) 

Remark 6.3.1. Note that since (t can also be considered as a spherical Levy pro­

cess on H 2 , it falls under the example computed in section 4.6. There, the spherical 

transform of (t was explicitly computed, and the Harish-Chandra's c function is 

also explicitly known on H 2 . It is left as an exercise to the reader to apply the 

inversion formula to obtain an expression of the density on the unit circle, and then 

apply Cayley transform to reproduce (6.3) above. 

In the general case (with drift), the cl-spherical functions on H 2 (unit disc model) 

are given by ( c.f. [29], p .p . 60) 

- .1nl f(lnl + v) ( . . r2 ) 
<P,x..n(r) - 1 f(v) lnl ! F v, 1 - v, ini + 1, r 2 _ 1 , 

and <P,x.,n(ei0 z) = einO<P,x.,n(z). Here, r = izl , v = ~(i>. + 1) and F(a , b; c; z) is the 

hypergeomtric function. This can also be used , together with Theorem 5.4.2, to 

compute t he density of a general Levy process on H 2 . 

Now, since Ft is an Ita process, we can write Ft = F(() = F(WL> i7t) such that 

where F : M ~ JR2 is a C 2 function. Further more , assume the value of the 

derivative has payoff function G, so that the derivative value V ( () = (Go F) ( (). In 

the case of a European call, G(x, y) =(ex- K)+ so that (Go F) ((t) = (St- J<)+. 

Here St is the exponential of the first component ofF((). Hence, knowledge of the 

joint density (6.2) , in principle allows us to explicitly compute the derivative price 

at time t as eT-tJEQ(V((r)IFt)· 

We make a final remark on Levy and jump-diffusion dynamics. This allows 

the movement of the underlying be exposed to sudden shocks, as well as random 

diffusion and the probability distribution induced by such a process is typically 

3Remark 6.3.1 briefly describes the procedure that this formula can be obtained from. 
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non-Gaussian. The induced information manifold is thus more complicated than 

the hyperbolic plane. In that case, one can still apply Theorem 5.4.2 to obtain an 

explicit formula of the characteristic function of the underlying stochastic process, 

and then develop a Carr-Madan type of procedure to obtain the derivative price. 
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