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Abstract

This thesis investigates the impact of truncation, that is, the complete unavailability of

significantly deep-out-of-the-money option price quotes, on the implied moment estimators

of Bakshi et al. (2003) and suggests a new truncation treatment method that makes

truncation error, or estimation bias due to truncation, less volatile. Although previous

studies have already suggested two truncation error reduction methods for model-free

implied moment estimation, these methods may not be able to effectively reduce truncation

error when they are used with the implied skewness or kurtosis estimators, which rely

more heavily on deep-out-of-the-money option prices. Hence, we first test whether the

two existing methods, specifically, the linear extrapolation method of Jiang and Tian

(2005) and the domain symmetrisation method of Dennis and Mayhew (2002), can reduce

truncation error effectively even when they are used in conjunction with the two higher

moment estimators. The test results show that the truncation error reduction effect may

be incomplete for both methods when they are used for implied skewness or kurtosis

estimation so that the estimate can be significantly different from the true value. Given

this result, we further investigate the relationship between truncation level and truncation

error size, and then propose an alternative method of truncation error treatment, namely,

domain stabilisation, based on the relationship identified. The tests on the effectiveness

of domain stabilisation reveal that although this method increases the mean size of the

truncation error, it also makes the size less volatile across different observations. This

result implies that when our new method is employed, truncation has less impact on

cross-sectional comparison of implied moments among the options on different underlying

assets and on tracking the time-series dynamics of implied moments.
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Chapter 1

Introduction

Option prices imply the probability density function of the underlying asset price at

maturity under the risk-neutral probability measure. Breeden and Litzenberger (1978)

prove that an Arrow-Debreu security, that is, a security that pays one dollar if a cer-

tain state occurs at a given date and zero otherwise, can be synthesised using options

and that the risk-neutral density (RND) can be derived from the prices of the synthe-

sised Arrow-Debreu securities. Following this discovery, a stream of papers suggest how

RND can be retrieved from the option prices (e.g., Shimko, 1993; Jackwerth and Rubin-

stein, 1996; Malz, 1997; Aı̈t-Sahalia and Lo, 1998; Campa et al., 1998; Bliss and Pani-

girtzoglou, 2000; Gemmill and Saflekos, 2000). Since the implied RND is the implied

probability density of the underlying asset price at maturity under the risk-neutral den-

sity, the density is closely linked to the expectations of the option market traders about

the underlying price movement between the current time and the maturity date. Hence,

the implied RND has been regarded as a valuable source of market information and thus

has been adopted by numerous studies as the topic of research.

One drawback of using the implied RND as a source of information, however, is that it

is not in the form of a variable but of a function, and therefore, it is difficult to consider the

RND itself as a variable during empirical analysis. Given this issue, many studies instead

employ the moments of the implied RND as variables to summarise the characteristics

of the RND. Since the moments contain information about the shape of the RND and

because it is straightforward to interpret the information in each moment, they have been

used in several recent studies of the options market.1

1Similarly, the slope and curvature of the Black-Scholes implied volatility curve have been used by
recent studies as well (See, e.g., Doran and Krieger, 2010). As shown by Zhang and Xiang (2008), there is
a close relationship between the higher moments of the implied RND and the shape of the implied volatility
curve.
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An issue that might be of concern when employing the moments of the implied RND

for an empirical analysis is that deriving the moments can be a computationally burden-

some task, since one first needs to construct the RND from the option prices and then

calculate the moments. To overcome this issue, recent studies have tried to derive the

moments directly from the option prices without constructing the complete density, either

parametrically or non-parametrically (e.g., Corrado and Su, 1997; Britten-Jones and Neu-

berger, 2000; Bakshi et al., 2003; Backus et al., 2004; Zhang and Xiang, 2008; Tian, 2011).

Between the parametric and non-parametric methods, the latter has been more popularly

used due to its model-freeness, which renders the method free from the model misspecifi-

cation error. For instance, the implied volatility estimator of Britten-Jones and Neuberger

(2000) and the implied volatility, skewness, and kurtosis estimators of Bakshi et al. (2003)

have been employed in several recent studies in order to extract information from option

prices. In particular, the implied skewness and kurtosis estimators of Bakshi et al. (2003)

are drawing an increasing amount of attention from both academics and practitioners,

since such higher moments can be used to forecast the extreme movements of the under-

lying asset price and, therefore, to manage catastrophic risk. Table 1.1 lists some of the

studies that employ the implied higher moment estimators of Bakshi et al. (2003).

Although the model-free implied moment estimators are theoretically more robust due

to their model-freeness, they suffer from some empirical issues that stem from the limited

availability of option prices. In order to estimate implied moments non-parametrically,

one needs an infinite set of options with strike prices that span a continuum over the

positive real line. However, as noted by Jiang and Tian (2005), it is virtually impossible

to obtain this continuum of options for two reasons. First, market participants are only

allowed to quote option prices for a discrete set of strike prices. Second, it is completely

impossible to observe reliable option quotes for a large part of the deep-out-of-the-money

(DOTM) or, equivalently, deep-in-the-money (DITM) region of the strike price domain,

and, furthermore, some of the DOTM option quotes that are available need to be filtered

for research use because of liquidity and market-microstructure issues. For instance, the

relative size of a price tick to an option price becomes larger when the option becomes

cheaper, and therefore, extremely low option price quotes are regarded as unreliable and

so discarded.2

2The restrictiveness of the quote-based filter is rather arbitrary and there is no consensus in the literature
on the threshold price level beyond which the observations should be excluded. For instance, the threshold

2



Between the two issues, it is relatively easy to deal with the issue of strike price discrete-

ness, because there exist various interpolation techniques that enable the approximation

of option prices for a continuum of strike prices using the option prices for a discrete set of

strike prices. This can be acheived in a reliable manner since the interpolation can be con-

ducted on the Black-Scholes implied volatility curve, not on the option prices themselves.

Table 1.1: List of studies employing the implied moment estimators of Bakshi et al. (2003)

This table presents a non-exhaustive list of papers in which Bakshi et al.’s (2003) model-free implied

moment estimators are employed. The first column shows the name of the author(s), the year the paper is

published, and the name of the journal in which the paper is published. In the first column, the following

abbreviations are used: JBF (Journal of Banking and Finance), JF (Journal of Finance), JFE (Journal of

Financial Economics), JFM (Journal of Futures Markets), RF (Review of Finance), and RFS (Review of

Financial Studies). The second column lists the moment(s) estimated in the corresponding paper. The

third column shows which truncation error reduction method is employed in the corresponding paper. In

the third column, the following abbreviations are used: DSym (domain symmetrisation method of Dennis

and Mayhew (2002)), and LE (linear extrapolation method of Jiang and Tian (2005)). The dashes in

the third column indicate that we cannot find any description about the truncation reduction method for

the corresponding paper; however, this does not necessarily mean that the corresponding paper does not

consider the truncation error.

Paper Moments estimated
Truncation error

reduction method

Dennis and Mayhew (2002, JFQA)3 skewness DSym

Han (2008, RFS) skewness -

Lin et al. (2008, JFM) skewness and kurtosis -

Duan and Wei (2009, RFS) skewness and kurtosis etc.

Xing et al. (2010, JFQA) skewness -

Chou et al. (2011, JFM) volatility, skewness, and kurtosis -

Buss and Vilkov (2012, RFS) volatility and skewness LE

Chang et al. (2012, RF) variance and skewness LE

Diavatopoulos et al. (2012, JBF) skewness and kurtosis -

Bali and Murray (2013, JFQA) skewness etc.

Chang et al. (2013, JFE) volatility, skewness, and kurtosis LE

Conrad et al. (2013, JF) volatility, skewness, and kurtosis DSym

DeMiguel et al. (2013, JFQA) volatility and skewness LE

Kozhan et al. (2013, RFS) kurtosis LE

Neumann and Skiadopoulos (2013, JFQA) volatility, skewness, and kurtosis LE

For instance, Jiang and Tian (2005) employ the cubic spline function, while Broadie et al.

mid-point price is set as 0.125 in Han (2008) and Xing et al. (2010), 0.375 in Bakshi et al. (1997) and Jiang
and Tian (2005), and 0.5 in Conrad et al. (2013). At an extreme, CBOE uses every quote for the options
on the S&P 500 index to calculate the CBOE volatility index unless the bid quote is zero, and this greatly
reduces the issue of information loss at the cost of more liquidity and microstructure-related issues. Chapter
3 implies that neither one has significant impact on the CBOE volatility index because DOTM options
have little effects on implied volatility estimation.
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(2007) adopt the piecewise quadratic function to generate the continuous Black-Scholes

implied volatility curve. Since the severe convexity of the option price function with

respect to the strike price can be alleviated considerably by converting the option prices

to Black-Scholes implied volatility levels, interpolation can be performed more effectively

via the implied volatility function.

In contrast, it is relatively difficult to approximate option prices for the DOTM-DITM

region of the strike price domain for which option prices are completely unavailable. While

there are at least two reference points for the strike prices for which interpolation can be

performed, there is at most only one reference point beyond the minimum and maximum

strike prices for which the option price is available. Hence, a strong assumption needs to

be made to approximate option prices for the region of the strike price domain for which

option prices are completely unavailable. This difficult task should still be accomplished,

however, because omitting this extrapolation procedure may induce large estimation er-

rors, especially for the implied skewness and kurtosis estimators of Bakshi et al. (2003),

which are more closely related to the tail shape of the implied RND. Jiang and Tian (2005)

refer to these errors as ‘truncation errors’ because the error is induced by the unavailable

DOTM option prices that look as if they are ‘truncated’.

So far, two methods have been proposed by previous studies to reduce the size of

the truncation error, that is, the estimation bias due to truncation. First, Jiang and

Tian (2005) suggest linear extrapolation (LE), which generates DOTM option prices by

extending the Black-Scholes volatility curve with flat lines that can then be converted

to option prices. Second, Dennis and Mayhew (2002) suggest domain symmetrisation

(DSym), which additionally filters the available option prices until the minimum and

maximum strike prices become equidistant from the underlying asset price. As Table 1.1

demonstrates, both methods have been adopted in recent studies, although the former has

been more popular. One reason for this popularity is that the linear extrapolation method

can be applied to any implied moment estimator, whereas the domain symmetrisation

method is suggested for only the implied skewness estimator of Bakshi et al. (2003).

Although both truncation error reduction methods successfully point out the draw-

backs in the model-free implied moment estimation and so are potentially effective in

alleviating the truncation error, several questions can still be addressed toward the imple-

mentation of these methods, especially when the implied skewness and kurtosis estimators
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of Bakshi et al. (2003) are considered. First, is LE, which was originally suggested for the

implied volatility estimator of Britten-Jones and Neuberger (2000), also effective for the

implied skewness and kurtosis estimators? Jiang and Tian (2005) derive the upper bound

of the truncation error for the implied volatility estimator of Britten-Jones and Neuberger

(2000) and show that the truncation error is negligible if the endpoints of the integration

domain are more than two standard deviations away from the forward price. However,

when skewness or kurtosis of the implied RND is estimated, both the upper bounds and

the negligibility of the truncation error need to be re-examined. The upper bound of the

truncation error can be less tight in this case, i.e., the unavailability of DOTM option

prices may induce a larger truncation error, because the higher moments are more closely

related to the tails of the density whose curvature is implied by DOTM option prices.

Second, does DSym remain effective even when the implied RND is asymmetric? Dennis

and Mayhew (2002) show that DSym can reduce the truncation error of the implied skew-

ness estimator of Bakshi et al. (2003) while assuming that the underlying price follows

a constant volatility process with no jumps, with which the implied RND is symmetric.

Several empirical studies, however, show that the implied RND is severely asymmetric in

many major options markets.

To answer these questions, this thesis investigates the impact of truncation on the

implied moment estimators of Bakshi et al. (2003). Specifically, we investigate how the

impact of truncation on the implied skewness and kurtosis estimators differs from the

impact on the implied volatility estimator, how the truncation level and the truncation

error size should be defined and measured, and how the relationship between the truncation

level and the truncation error size can be explained. In addition, we investigate the

effectiveness of LE and DSym as truncation error reduction methods, using both generated

and observed option prices. Finally, we propose an alternative method of truncation error

treatment, which is called domain stabilisation (DStab), that reduces the volatility of

the truncation error either cross-sectionally or over time. Specifically, we show how the

truncation error can be made less volatile by properly measuring and controlling the level

of truncation.

Chapter 2 provides an overview of the model-free implied moment estimators of Bak-

shi et al. (2003) and conducts a theoretical analysis on the impact of truncation on the

estimators. We first explain how the moments of the implied RND can be directly calcu-
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lated from OTM option prices without constructing the RND itself, and then describe the

framework of the implied moment estimators. Next, we demonstrate how the implied mo-

ment estimates are affected by truncation using two sets of model-based generated option

prices.

Chapter 3 shows how the effectiveness of LE can be measured for a finite set of option

prices, and then evaluates the efficiency of LE for the S&P 500 index options data. Since

the availability of market option prices is limited in almost every options market, it is

impossible to derive the true level of the implied moment using the option prices that

are observed from markets, and therefore, we cannot measure the size of truncation error

with these observed prices. Given this issue, most related studies demonstrate and measure

the truncation error using model-based generated option prices (e.g., Dennis and Mayhew,

2002, 2009; Jiang and Tian, 2005). Chapter 3 circumvents this problem by using a different

approach to evaluate the effectiveness of LE. We show that the sensitivity of the implied

moment estimates to a marginal change in option price availability can be formulated,

regardless of whether LE is applied or not. Using the S&P 500 index options data and

the sensitivity formulae, Chapter 3 investigates how effectively LE makes the implied

moment estimators less sensitive to option price unavailability. If the size of the truncation

error is effectively reduced so that the impact of truncation on the moment estimate is

negligible, the estimate must not change significantly even when there is a change in the

availability of option prices. Namely, if the moment estimate varies abruptly when the

estimation is re-executed following a small change in the option prices availability while

LE is applied consistently, then it can be conjectured that the truncation error has not

been fully alleviated by LE. Hence, the sensitivity of the moment estimate to the change

in option price availability can be used to measure the effectiveness of LE. The empirical

results in Chapter 3 suggest that although the size of the truncation error is reduced

significantly by the application of LE regardless of the moment estimated, the remaining

error can be too large to be regarded as negligible for the implied skewness and kurtosis

estimators.

Chapter 4 analyses the effectiveness of DSym. Although the test results of Dennis

and Mayhew (2002) provide a deep insight into the implied skewness estimator, there is

still a need to further examine the effectiveness of DSym given that the implied skewness

estimator is popularly used and that DSym has been adopted by recent studies (e.g.,
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Conrad et al., 2013). We explain the relationship between option price unavailability

and estimation bias, and then examine the impact of domain asymmetry on the implied

skewness estimator. Specifically, we investigate how the integration domain symmetry

should be defined and the asymmetry level should be measured, and then examine whether

DSym effectively reduces the truncation error of the implied skewness estimator even when

the implied RND is asymmetric. This chapter shows that DSym is effective if the domain

symmetry is defined in terms of log-moneyness and the implied RND is symmetric, but

that the truncation error may not be reduced by DSym if either of those two conditions

is violated.

Chapter 5 introduces DStab, which makes the size of the truncation error less volatile

either cross-sectionally or over time. The issues regarding of LE and DSym imply that it

is very difficult to eliminate the truncation error, especially for the implied skewness and

kurtosis estimators, and therefore there is a need to consider the issue from a different

perspective. If it is difficult to eliminate the truncation error, then is there any other

way to control the impact of truncation on model-free implied moment estimation? In

order to find such a way out, one first needs to clarify the objective of implied moment

estimation. Is the estimation conducted to identify the true level of a moment? If not, is

it done to track the dynamics of the implied moments over time, or to make a comparison

of the implied moment levels among options on different underlying assets? If implied

moments are estimated in order to capture the dynamics or the relative level of implied

moments, stabilising the truncation error over time could be an alternative of minimising

the error. In other words, if the level of truncation error can be maintained at a fixed

level cross-sectionally and over time, the de facto effect of truncation on implied moment

estimation will be minimised.

Chapter 4 suggests that it is not the strike price but the log-moneyness of the endpoints

of the integration domain that should be considered when interpreting the impact of

truncation on the model-free implied moment estimator. In addition, Chapter 5 shows

that the level of implied volatility also needs to be considered in order to explain the

relationship between the truncation level and the truncation error size. Based on these

findings, Chapter 5 reveals that if the level of truncation is defined using the endpoint log-

moneyness that is adjusted by the level of implied volatility, a strong relationship between

the truncation level and the truncation error size can be found. An empirical analysis of
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S&P 500 index options suggests that the variance of the truncation error decreases when

DStab is employed, whereas both the mean and variance increase when DSym is utilised

instead.

Overall, this thesis not only suggests a new way to reduce the impact of truncation

on model-free implied moment estimation, but also provides a deeper understanding of

the relationship between the truncation level and the size of the truncation error. We

show that one must consider the log-moneyness of endpoint strike prices and the level of

implied volatility when measuring the degree of truncation. By analysing the relationship

between the truncation level and the truncation error size, and by introducing a new way

to control truncation, this thesis provides a methodological foundation for further studies

on the higher moments of the implied RND, and so makes the model-free implied moment

estimators of Bakshi et al. (2003) more reliable to employ.
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Chapter 2

Theoretical analysis on the
model-free implied moment
estimator and truncation

Chapter Summary

This chapter provides an overview of the model-free implied moment estimators of Bak-

shi et al. (2003) and conducts a theoretical analysis on the impact of truncation on the

estimators. First, we explain how the moments of the implied RND can be directly calcu-

lated from OTM option prices without constructing the RND itself. Next, we describe the

framework of the implied moment estimators. Finally, we show how truncation can affect

the implied skewness and kurtosis estimators using two sets of model-based generated

option prices.
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2.1. Introduction

The most impressive characteristic of the implied moment estimators of Bakshi et al.

(2003) is that they can derive the moments of the implied RND directly from the option

prices without constructing the RND nor relying on any assumptions on the underlying

price dynamics. Although this feature gives the estimators both theoretical robustness

and implementational convenience, it also makes it more difficult to find out the logic

behind the estimators and understand how the estimators work. In order to estimate the

moments of the implied RND without constructing the RND itself, we need a technique

that enables the estimators to circumvent the necessity of the RND. The problem is that

this kind of technique is inevitably less intuitive than the direct calculation of the moments

from the RND.

Understanding the logic behind the implied moment estimators becomes even more

necessary when an assumption made by the estimators is violated. As mentioned in Chap-

ter 1, although the estimators implicitly assume that OTM option prices are observable

for the continuum of strike price from zero to positive infinity, it is virtually impossible

to obtain all these option prices in almost every options market. However, given that the

option prices are not used to construct the implied RND but directly passed to the estima-

tors as inputs, it is difficult to determine how the unavilability of option prices affects the

estimation procedure, and therefore, we must well understand the methodology behind

the estimators to evaluate the impact of truncation on the estimators.

Hence, this chapter provides an overview of the model-free implied moment estimators

of Bakshi et al. (2003) and conducts a theoretical analysis of the impact of truncation on

implied moment estimation for a better understanding of the estimators. We first describe

the concept of payoff spanning which is a fundamental building block of the estimators,

and then explain how the moments of the implied RND can be derived by payoff spanning.

Next, we conduct a theoretical analysis of the impact of truncation on implied moment

estimators. Two sets of model-based generated option prices are used to empirically show

how the implied moment estimators are affected by truncation.

The rest of this chapter is organised as follows. Section 2.2 elaborates how the moments

of the implied RND can be derived by the estimators of Bakshi et al. (2003), and explains

how truncation should be interpreted when the implied moment estimators are used.
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Section 2.3 describes the S&P 500 index options data used in this chapter and throughout

this thesis. Section 2.4 examines the impact of truncation on the implied moment estimates

using model-based generated option prices. Section 2.5 concludes this chapter.

2.2. Model-free implied moment estimators

This section provides an overview of the model-free implied moment estimators of Bakshi

et al. (2003). Section 2.2.1 describes how payoff functions can be spanned using OTM

option prices. Section 2.2.2 shows how the implied moment estimators can be constructed

by payoff spanning. Section 2.2.3 explains how truncation should be interpreted when the

implied moment estimators are used.

2.2.1 Payoff spanning

Carr and Madan (2001) show that any twice-continuously differentiable payoff functions

H[S] ∈ C2 of the underlying price S can be expanded as

H[S] =H[S̄] + (S − S̄)HS [S̄] + IS>S̄
∫ ∞
S̄

HSS [K](S −K)dK

+ IS<S̄
∫ S̄

0
HSS [K](K − S)dK

=H[S̄] + (S − S̄)HS [S̄] +

∫ ∞
S̄

HSS [K](S −K)+dK

+

∫ S̄

0
HSS [K](K − S)+dK, (2.1)

where IC is an indicator function whose value is one when the condition C holds and zero

otherwise, HS [·] and HSS [·] represent the first and second derivatives of the payoff function

with respect to S, and S̄ is a nonnegative real constant. In addition, Carr and Madan

(2001) also show that the arbitrage-free price of H[S], i.e., the discounted expected value

of H[S] under the risk-neutral probability measure, can be derived as

E∗t {e−rτH[S]} = (H[S̄]− S̄HS [S̄])e−rτ +HS [S̄]S(t) +

∫ ∞
S̄

HSS [K]C(t, τ ;K)dK

+

∫ S̄

0
HSS [K]P (t, τ ;K)dK, (2.2)
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where E∗t {·} is the expectation operator under the risk-neutral density with respect to the

filtration F for time t, C(t, τ ;K) and P (t, τ ;K) denote the OTM call and put prices at

time t for time to maturity τ and strike price K, respectively.

2.2.2 Construction of implied moment estimators

The volatility, skewness, and kurtosis of a random variable X are defined as

VOL(X) =
[
E
{

(X − E[X])2
}]1/2

, (2.3)

SKEW(X) =
E
{

(X − E[X])3
}[

E
{

(X − E [X])2
}]3/2

, (2.4)

KURT(X) =
E
[
(X − E[X])4

}[
E
{

(X − E [X])2
}]2 , (2.5)

respectively. If we expand Equations (2.3)–(2.5), we obtain

VOL(X) =
{
E[X2]− E[X]2

}1/2
, (2.6)

SKEW(X) =
E[X3]− 3E[X2]E[X] + 2E[X]3{

E [X2]− E [X]2
}3/2

, (2.7)

KURT(X) =
E[X4]− 4E[X3]E[X] + 6E[X2]E[X]2 − 3E[X]4{

E [X2]− E [X]2
}2 , (2.8)

respectively. Equations (2.6)–(2.8) imply that we can calculate the volatility, skewness,

and kurtosis of a random variable X if we know the expected value of X, X2, X3, and X4

under the corresponding probability measure.

The random variable and the probability measure for which Bakshi et al. (2003) target

to obtain the moments of the probability density is the log-return of the underlying asset S

between time t and t+ τ , i.e., ln [S(t+ τ)/S(t)], and the risk-neutral probability measure

P∗, respectively. If we denote the log-return as R(t, τ) as in Bakshi et al. (2003), we

need to know the expected values E∗[R(t, τ)], E∗[R(t, τ)2], E∗[R(t, τ)3], and E∗[R(t, τ)4]

under P∗. In order to obtain the expected values, Bakshi et al. (2003) introduce payoff

spanning to obtain the fair value at time t of the volatility contract V , cubic contract W ,

and quartic contract X whose payoffs at time t + τ are R(t, τ)2, R(t, τ)3, and R(t, τ)4,

respectively. Since the arbitrage-free price of V , W , and X are equal to E∗[e−rτR(t, τ)2],

E∗[e−rτR(t, τ)3], and E∗[e−rτR(t, τ)4], respectively, we can obtain the last three of the
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required expected values by multiplying the fair values by erτ .

To obtain the fair values, Bakshi et al. (2003) set the second derivative HSS in Equa-

tion (2.2) for V , W , and X as

HV
SS [K] =

2
(

1− ln
[
K
S(t)

])
K2

, (2.9)

HW
SS [K] =

6 ln
[
K
S(t)

]
− 3

(
ln
[
K
S(t)

])2

K2
, (2.10)

HX
SS [K] =

12
(

ln
[
K
S(t)

])2
− 4

(
ln
[
K
S(t)

])3

K2
, (2.11)

respectively. Given Equations (2.2) and (2.9)–(2.11), the arbitrage-free price of V , W ,

and X can be defined as

V (t, τ) =

∫ ∞
S(t)

2
(

1− ln
[
K
S(t)

])
K2

C(t, τ ;K)dK

+

∫ S(t)

0

2
(

1 + ln
[
S(t)
K

])
K2

P (t, τ ;K)dK, (2.12)

W (t, τ) =

∫ ∞
S(t)

6 ln
[
K
S(t)

]
− 3

(
ln
[
K
S(t)

])2

K2
C(t, τ ;K)dK

−
∫ S(t)

0

6 ln
[
S(t)
K

]
+ 3

(
ln
[
S(t)
K

])2

K2
P (t, τ ;K)dK, (2.13)

X(t, τ) =

∫ ∞
S(t)

12
(

ln
[
K
S(t)

])2
− 4

(
ln
[
K
S(t)

])3

K2
C(t, τ ;K)dK

+

∫ S(t)

0

12
(

ln
[
S(t)
K

])2
+ 4

(
ln
[
S(t)
K

])3

K2
P (t, τ ;K)dK, (2.14)

where C(t, τ ;K) and P (t, τ ;K) denote the price of call and put options with strike price

K and time to maturity τ at day t, respectively. Next, Bakshi et al. (2003) approximate

the value of E∗[R(t, τ)] as

µ(t, τ) = erτ − 1− erτ

2
V (t, τ)− erτ

6
W (t, τ)− erτ

24
X(t, τ). (2.15)

Then, given Equations (2.6)–(2.8), the τ -period implied risk-neutral volatility, skewness,
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and kurtosis can be defined as

VOL(t, τ) =
[
erτV (t, τ)− µ(t, τ)2

]1/2
, (2.16)

SKEW(t, τ) =
erτW (t, τ)− 3µ(t, τ)erτV (t, τ) + 2µ(t, τ)3

[erτV (t, τ)− µ(t, τ)2]3/2
, (2.17)

KURT(t, τ) =
erτX(t, τ)− 4µ(t, τ)erτW (t, τ) + 6erτµ(t, τ)2V (t, τ)− 3µ(t, τ)4

[erτV (t, τ)− µ(t, τ)2]2
. (2.18)

2.2.3 Interpretation of limited option price availability

If OTM option prices are available only for a strike price domain [Kmin(t, τ),Kmax(t, τ)] for

time t and maturity τ , where 0 ≤ Kmin(t, τ) ≤ S(t) ≤ Kmax(t, τ) < ∞, and integrations

are conducted only for this domain for the fair value estimation of V , W , and X, then it

is equivalent to assuming that the OTM option price is zero for the strike price domains

[0,Kmin(t, τ)) and (Kmax(t, τ),∞), i.e., P (t, τ ;K) ≡ 0 for {K : 0 < K < Kmin(t, τ)} and

C(t, τ ;K) ≡ 0 for {K : Kmax(t, τ) < K < ∞}. The following proposition shows how this

assumption affects the fair value estimation:

Proposition 2.1. If truncation exists for the strike price domain (0,Kmin(t, τ)) and

(Kmax(t, τ),∞), and the fair value of V,W, and X are estimated without considering

the OTM option prices on the truncated domain, it is equivalent to assuming that, for the

risk-neutral probability measure P∗,

P∗t
{

ln

[
S(t+ τ)

S(t)

]
< ln

[
Kmin(t, τ)

S(t)

]}
= 0; and

P∗t
{

ln

[
S(t+ τ)

S(t)

]
> ln

[
Kmax(t, τ)

S(t)

]}
= 0, (2.19)

where P∗t {·} is the conditional probability operator for the measure P∗ with respect to the

filtration Ft for time t.

Proof. See Appendix A.

In this thesis, Proposition 2.1 is assumed to cause a truncation of the implied risk-

neutral density, given that some of the unavailable DOTM option prices are in fact ob-

served as nonzero value but discarded during the data filtration process in almost every

case. This means that at least for some of the DOTM options for which the option price

is regarded as unavailable, market participants think that it is possible for the underlying
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price to reach the corresponding strike prices at maturity.

2.3. Data

The S&P 500 index options dataset used in this thesis spans the eleven-year sample period

from January 2000 to December 2010. The option prices and risk-free rate yield curve

data are retrieved from IvyDB OptionMetrics via Wharton Research Data Services. The

closing option price is estimated as the mid-point between the closing bid and ask prices.

The risk-free rate for each day and maturity is estimated by linearly interpolating the

two most adjacent points on the corresponding daily yield curve for which the rate is

observable. OptionMetrics also distributes the option-implied dividend rate data, and

this rate is used to approximate the dividend rate q(t, T ) for day t0 and maturity date T

as

q(t0, T ) =

[
n∏
i=1

(1 + q∗(ti))

]1/n

− 1, (2.20)

where n is the total number of implied dividend rate observations available for days be-

tween t0 and T , q∗(ti) is the implied dividend rate for day ti, which is between t0 and T .

This dividend rate is used to calculate the dividend-free level of underlying index.

After collecting all options data available, the following data filters are employed: (1)

observations with any missing data entry are discarded; (2) observations are removed if

maturity is shorter than one week or longer than one year; (3) observations are included

only if the daily total trading volume for the corresponding maturity is nonzero. Namely,

the entire daily observations for a single maturity are discarded if none of them are traded;

(4) observations are excluded if the bid price is zero or higher than the ask price; (5)

observations are removed if they violate the no-arbitrage condition; (6) observations are

excluded if the midpoint of bid and ask prices is less than 0.375; and (7) observations are

discarded if the bid-ask spread is larger than the mid-point price. Table 2.1 reports some

summary statistics of the filtered option price observations.

2.4. Impact of truncation

In this section, we investigate how truncation affects the implied moment estimators

of Bakshi et al. (2003) using model-based generated option prices. Section 2.4.1 explains
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how the option prices are generated. Section 2.4.2 investigates the impact of truncation

on implied moment estimators.

2.4.1 Generation of option prices

In this thesis, two sets of OTM option prices are generated using the Black-Scholes constant

volatility (BS) model and stochastic volatility and jump (SVJ) model of Bakshi et al.

(1997), respectively. BS model is chosen in order to examine the case where the implied

RND is symmetric, as well as to link this thesis to Dennis and Mayhew (2002) and Jiang

and Tian (2005) in which BS model is employed. On the other hand, SVJ model is

adopted in our analysis to generate a more realistic simulation setting, as in Jiang and

Tian (2005).1 For the SVJ case, based on Bakshi et al. (1997), the underlying price is

assumed to follow a process

dS(t)

S(t)
= [r − λµJ ]dt+

√
V (t)dωS(t) + J(t)dq(t), (2.21)

dV (t) = [θv − κvV (t)]dt+ σv
√
V (t)dωv(t), (2.22)

ln[1 + J (t)] ∼ N(ln[1 + µJ ]− 0.5σ2
J , σ

2
J), (2.23)

where r is the constant risk-free interest rate, λ is the frequency of jumps per year, V (t) is

the part of return variance that is due to diffusion process, ωS(t) and ωv(t) are standard

Brownian motions with Cov[dωS(t), dωv(t)] = ρdt, J(t) is the percentage jump size that

is lognormally i.i.d. over time as in (2.23), µJ is the unconditional mean of J(t), σJ(t) is

the standard deviation of ln[1 + J(t)], q(t) is a Poisson jump counter with intensity λ so

that P [dq(t) = 1] = λdt and P [dq(t) = 0] = (1 − λ)dt, κv is the speed of adjustment of

V (t), θv/κv is the long-term mean of V (t), and σv is the volatility of V (t).

In order to calculate the option prices based on the two models, we first need to

assign the values of the parameters in the pricing formulas of BS and SVJ models. While

the price volatility σ is the only parameter in BS model, there are eight parameters

1Although model-dependence is a thing that should be avoided in this thesis, option pricing models are
still used in this chapter to give the readers an intuition about how the option prices, the Black-Scholes
implied volatility curve, and the implied risk-neutral density are shaped in the markets, and how the shapes
are different from those in the Black-Scholes world. Models should be used for this purpose because the true
value of implied moments are required to demonstrate the size of truncation error and, at the same time,
the true values should be realistic as well as reasonable. Given these reasons, the option pricing models in
this chapter should be regarded as auxiliary tools that are used to generate the necessary ingredients for
an illustration of truncation error, not as main topics on which a further analysis needs to be conducted.
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{κv, θv, V, σv, µJ , σJ , ρ, λ} in SVJ model. To be more realistic and provide a foundation

for our further empirical investigation, we calibrate the model parameters using daily S&P

500 index options data. Following Bakshi et al. (1997), if there are n call and m put prices

that are observed on day t, for each of BS and SVJ models we find the parameter vector

φ(t) which solves

min
φ(t)

 n∑
i=1

|C∗(t, τi;Ki)− C(t, τi;Ki)|2 +

m∑
j=1

|P ∗(t, τj ;Kj)− P (t, τj ;Kj)|2
 , (2.24)

where C∗(t, τi;Ki) and C(t, τi;Ki) are the observed and model prices of ith call option with

time to maturity τi and strike price Ki, P
∗(t, τj ;Kj) and P (t, τj ;Kj) are the observed and

model prices of jth put option with time to maturity τj and strike price Kj , respectively.2

We then calculate the mean of daily parameter vectors for the entire T trading days in

our sample period, which can be defined as

Φ ≡ 1

T

T∑
t=1

φ(t). (2.25)

This mean vector Φ for each model is employed as the parameter vector to calculated

model option prices. The model OTM option prices are calculated while fixing the time to

maturity to be three months. The elements in Φ are listed in the first column of Table 2.2,

with some other related variables and summary statistics. It is shown in Table 2.2 that

SVJ model can explain the option price sample much better than BS model does, which

is consistent with Bakshi et al. (1997) and several other related studies.

Figure 2.1 illustrates some basic properties of model OTM option prices. In Fig-

ures 2.1a and 2.1b, it can be found that OTM put and some near-the-money (NTM) calls

are more expensive in SVJ case, whereas most of OTM calls are more expensive in BS

case. Accordingly, when converted to a Black-Scholes implied volatility curve, SVJ option

prices show a volatility skew whose left tail is above the flat implied volatility curve of BS

options prices but the right tail is below the flat curve, as in Figure 2.1c. Zhang and Xiang

(2008) show that there is a positive relationship between the slope of implied volatility

curve and the skewness of the implied RND, as well as between the curvature of implied

2See the appendix of Bakshi et al. (1997) to find the characteristic functions that constitute a closed-
form solution for model call price in SVJ case. In this thesis, model price for puts are calculated using the
put-call parity relationship.
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volatility curve and the kurtosis of the implied RND. These relationships suggest that the

implied RND is negatively skewed and leptokurtic in the SVJ case.

Table 2.2: Summary statistics of daily calibration result

This table presents summary statistics of the daily calibration results that are used for setting the model

parameter values and generating option prices. BS parameter calibration result is presented in Panel

A. SVJ parameter calibration result can be found in Panel B. Panel C compares the squared error of

calibration results. Panel D provides information about the other variables that are used for generating

option prices.

Mean
Standard 5th 25th

Median
75th 95th

error percentile percentile percentile percentile

Panel A. Black-Scholes (BS) model parameter

σ 0.2033 0.0622 0.1249 0.1530 0.2020 0.2315 0.3316

Panel B. Stochastic volatility and jump (SVJ) model parameters

κv 4.4592 1.8378 2.0605 2.9532 4.2420 5.4808 8.0536

θv 0.2108 0.1248 0.0641 0.1220 0.1833 0.2662 0.4585

V0 0.0494 0.0600 0.0088 0.0176 0.0342 0.0572 0.1422

σv 0.8116 0.3603 0.3564 0.5504 0.7700 0.9764 1.4665

µJ −0.1000 0.1301 −0.3193 −0.1964 −0.0886 −0.0006 0.0933

σJ 0.1546 0.1136 0.0144 0.0555 0.1341 0.2358 0.3609

ρ −0.6812 0.1114 −0.8718 −0.7566 −0.6760 −0.6044 −0.5060

λ 0.1583 0.1398 0.0150 0.0593 0.1207 0.2132 0.4562

Panel C. Squared error (SE)

Sum of SE (BS) 16514.51 20298.67 3262.96 5209.51 8742.31 21507.79 49264.25

Sum of SE (SVJ) 876.24 3131.26 80.92 198.60 425.21 845.74 2576.11

SE per option (BS) 30.85 22.67 11.49 17.02 24.92 39.16 62.34

SE per option (SVJ) 1.98 8.29 0.26 0.54 0.96 1.90 6.11

Panel D. Other variables

# of options 460.05 242.88 236 283 332 633 948

S&P 500 index 1183.21 189.91 860.02 1068.13 1179.21 1324.97 1491.56

3-month risk-free rate 0.0301 0.0205 0.0031 0.0119 0.0263 0.0505 0.0671

3-month dividend rate 0.0167 0.0051 0.0073 0.0137 0.0182 0.0205 0.0231

Figure 2.2 illustrates the weight functions and weighted option prices. Here, the term

weight functions refers to the rational functions that are used to multiply the OTM option

prices to get the fair values of V , W , and X, i.e., the second derivative HSS of the

payoff functions that are defined in Equations (2.9)–(2.11). Figure 2.2a depicts how the

weight functions assign weights to OTM option prices along the strike price domain. In

Figure 2.2a, two notable points can be found. First, all the three weight functions assign

much heavier weights to OTM puts than OTM calls. Second, the line for volatility contract

V is relatively flat, whereas those for cubic contract W and quartic contract X becomes
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steeper as the strike price decreases. This implies that DOTM put options have relatively

larger effect for implied skewness and kurtosis estimators.

Figure 2.2b-2.2d illustrate the weighted OTM option prices which construct the fair

value of V ,W , and X, respectively. Although Figure 2.2b maintains the shape that is

similar to Figure 2.1a, it can be found in Figures 2.2c and 2.2d that the weighted op-

tion prices are in a totally different shape when compared to the unweighted prices. In

Figure 2.2c and 2.2d, weighted price converges to zero as the strike price approaches to

underlying price, and smaller absolute weight is assigned to NTM options than in Fig-

ure 2.2b. Accordingly, moderately OTM options have the highest absolute weighted price,

and it is also relatively higher for DOTM options as well. This implies that OTM options

with little impact on the fair value of V can have a significant impact on the fair value

of W and X. This is even more evident in SVJ case, where OTM puts are significantly

expensive. In addition, the weighted price of OTM calls and puts are shown to have the

opposite sign to each other in Figure 2.2c. This is due to the fact that log-moneyness

ln(S(t)/K) is negative when K < S(t). This shows that it is the difference between, not

the sum of, weighted call and put prices that determines the fair value of W .

Given that the fair values of W and X are more closely related to the implied skewness

and kurtosis estimators than the implied volatility estimator, it can be conjectured that

DOTM options that have relatively minor effect on the implied volatility estimator can

have a considerable impact on the implied skewness and kurtosis estimators. Since trun-

cation is equivalent to the non-existence of DOTM option prices, this also implies that

truncation will affect the implied skewness and kurtosis estimators more significantly than

the implied volatility estimator.

2.4.2 Impact of truncation on implied moment estimators

This subsection investigates how the implied moment estimators are affected by truncation.

Since truncation occurs at both sides of the integration domain, there is a need to examine

the impact of truncation on each side separately. To do this, we set two cases where

the minimum and maximum strike prices vary in different ways. In the first case, the

maximum strike price Kmax is set to have one of the values {1190, 1290, 1390, 1490, 1590}

while the minimum strike price Kmin is let to have any value between 670 and 1170 given

the strike price interval of 0.1. In the second case, Kmin is set to have one of the values
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{770, 870, 970, 1070, 1170} while Kmax is let to have any value between 1190 and 1690

given the strike price interval. For each model, the true level of implied moments are

Figure 2.1: Option price properties

This figure illustrates some main properties of the model-based generated option prices that are used in this

thesis. The OTM option prices are generated using two option pricing models, i.e., BS and SVJ models,

and the model parameters that are set based on the model calibration results in Table 2.2. Underlying

price, risk-free rate, and dividend rate are set as the sample mean. Time to maturity is set as three months.

Figure 2.1a shows the OTM option price level for the strike price domain [700, 1600]. Figure 2.1b visualises

the option price difference between the two models. Figure 2.1c demonstrates the Black-Scholes implied

volatility curve for the two models. The curves are obtained by calculating the level of volatility with

which the Black-Scholes option pricing formula derives the OTM option prices in Figure 2.1a.

(a) Option prices

(b) Difference between option prices

(c) Black-Scholes implied volatility curve

21



F
ig

u
re

2.
2:

W
ei

gh
t

fu
n

ct
io

n
s

an
d

w
ei

gh
te

d
op

ti
on

p
ri

ce
s

T
h
is

fi
g
u
re

il
lu

st
ra

te
s

th
e

ch
a
ra

ct
er

is
ti

cs
o
f

w
ei

g
h
t

fu
n
ct

io
n
s

th
a
t

a
re

u
se

d
to

d
et

er
m

in
e

th
e

fa
ir

va
lu

e
o
f

v
o
la

ti
li
ty

,
cu

b
ic

,
a
n
d

q
u
a
rt

ic
co

n
tr

a
ct

s
o
f

w
h
ic

h
th

e
im

p
li
ed

m
o
m

en
t

es
ti

m
a
to

rs
o
f

B
a
k
sh

i
et

a
l.

(2
0
0
3
)

a
re

n
o
n
li
n
ea

r
fu

n
ct

io
n
s.

F
ig

u
re

2
(a

)
sh

ow
s

th
e

va
lu

e
o
f

w
ei

g
h
t

fu
n
ct

io
n
s

fo
r

st
ri

k
e

p
ri

ce
d
o
m

a
in

[7
0
0
,1

6
0
0
].

F
ig

u
re

2
(b

)–
2
(d

)
d
em

o
n
st

ra
te

o
p
ti

o
n

p
ri

ce
le

v
el

a
ft

er
th

e
p
ri

ce
s

a
re

w
ei

g
h
te

d
b
y

ea
ch

o
f

th
re

e
w

ei
g
h
t

fu
n
ct

io
n
s,

re
sp

ec
ti

v
el

y.
T

h
e

o
p
ti

o
n
s

a
re

O
T

M
ca

ll
s

fo
r

th
e

st
ri

k
e

p
ri

ce
s

th
a
t

a
re

la
rg

er
th

a
n

th
e

d
is

co
u
n
te

d

u
n
d
er

ly
in

g
p
ri

ce
,

a
n
d

O
T

M
p
u
ts

fo
r

th
e

st
ri

k
e

p
ri

ce
s

th
a
t

a
re

sm
a
ll
er

th
a
n

th
e

d
is

co
u
n
te

d
u
n
d
er

ly
in

g
p
ri

ce
.

(a
)

W
ei

gh
t

fu
n

ct
io

n
s

(b
)

W
ei

gh
te

d
p

ri
ce

s
fo

r
vo

la
ti

li
ty

co
n
tr

ac
t
V

(c
)

W
ei

gh
te

d
p

ri
ce

s
fo

r
cu

b
ic

co
n
tr

ac
t
W

(d
)

W
ei

gh
te

d
p

ri
ce

s
fo

r
q
u

ar
ti

c
co

n
tr

ac
t
X

22



approximated using the corresponding option prices for the strike price domain [S/3, 3S].

The strike price interval is fixed as 0.1, which is small enough to make the strike price

discreteness error negligible. For BS model, the true level of implied volatility, skewness,

and kurtosis are 0.2032, 0, and 3. For SVJ model, the levels are approximated as 0.2387,

−1.5156, and 6.8146, respectively.

Figure 2.3 illustrates the level of implied moment estimates for different values of

Kmin and Kmax in BS case. In Figure 2.3, some notable points can be found. First,

impact of marginal change in Kmin or Kmax decreases as they become further from the

underlying price. This is intuitive given that option price decreases rapidly as the option

goes outer-of-the-money. Second, DOTM options are shown to have larger impact on

implied kurtosis estimate, when compared to implied volatility or skewness estimate. The

lines in Figures 2.3e and 2.3f are found to be curved all along the x-axis, whereas those

in Figures 2.3a–2.3d become almost flat when the newly included or excluded option is

extremely DOTM. Third, including OTM calls (puts) results in an increase (decrease) in

implied skewness estimate, whereas including any OTM options will lead to an increase in

implied volatility estimate. This is because the implied skewness estimate is significantly

affected by the value of cubic contract W for which the weight value is positive (negative)

for OTM calls (puts), whereas the implied volatility estimate is mostly determined by the

value of volatility contract V for which the weight value is positive for every OTM option.

Furthermore, the relationship between inclusion of additional OTM options and change in

implied kurtosis estimate is shown to be more complicated. Overall, the results imply that

truncation needs to be treated in a more sophisticated way when higher implied moments

are estimated.

Figure 2.4 demonstrates the level of implied moment estimates for different values of

Kmin and Kmax in SVJ case. When compared to Figure 2.3, two significant differences

can be found in Figure 2.4. First, OTM puts have much larger impact on all three

implied moment estimates than OTM calls. There are visible gaps among all the lines in

Figures 2.4a, 2.4c, and 2.4e, and every line in Figures 2.4b, 2.4d, and 2.4f are shown to

be curved all along the x-axis. Second, given the larger impact of OTM puts, it is more

clearly shown that the impact of OTM puts becomes larger for higher implied moments.

For instance, including or excluding OTM puts in strike price domain [700, 900] leads

to changes in implied volatility, skewness, and kurtosis estimates by ±0.007,±0.363, and
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±2.542, whose magnitude are about 2.93, 23.95, and 37.30 percent of approximated true

level, respectively.3

Given that the calibration result of SVJ model is more closely related to S&P 500

index options data than BS model is, it is likely that the result in Figure 2.4 have more

realistic implications about impact of truncation on implied moment estimators. Hence,

it can be conjectured that OTM puts have larger impact on implied moment estimators

than OTM calls do, and the impact is even larger on higher moment estimators.

2.5. Conclusion

The model-free implied moment estimators of Bakshi et al. (2003) are obviously a set of

ready-made econometric instruments that are easy and reliable to employ. This chap-

ter provides an overview and conducts a theoretical analysis of the estimators in order to

facilitate understanding the underpinnings of the estimation procedure. There are two no-

table findings in this chapter. First, the log-moneyness of the endpoints of the integration

domain is closely related to the locations at which the implied RND is truncated. This

finding will be utilised in later chapters to analyse the relationship between the truncation

level and the truncation error size. Second, the size of truncation error is larger for the

implied skewness and kurtosis estimators than the implied volatility estimator. This is

the main issue that is addressed in this thesis and will be confirmed in later chapters.

In Chapters 3–5, we conduct a full-scale analysis of the impact of truncation on the

implied moment estimators. In addition, we evaluate the effectiveness of the existing

truncation error reduction methods, namely, LE and DSym, and propose DStab as an

alternative method. During this process, the findings in this chapter will be mentioned

frequently. Particularly, the implication of the log-moneyness of the endpoint strike prices

is directly related to the new truncation error treatment method we propose here, and

therefore, is worth enough to be considered as one of the main ideas in this thesis.

3The changes in the volatility, skewness, and kurtosis estimates that are made by excluding OTM options
in price domain [700,900] are approximated using the mean of the changes for five different maximum strike
prices.
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Figure 2.3: Impact of truncation on implied moment estimates (BS)

This figure illustrates the relationship between truncation and the level of implied moment estimates

when the Black-Scholes constant volatility (BS) model is used for generating simulated option prices.

In Figures 2.3a, 2.3c, and 2.3e, the maximum strike price Kmax varies from 1,190 to 1,690, while the

minimum strike price Kmin is fixed at one of the values {770, 870, 970, 1070, 1170}. On the other hand,

in Figures 2.3b, 2.3d, and 2.3f, Kmin varies from 670 to 1,170, while Kmax is fixed at one of the values

{1190, 1290, 1390, 1490, 1590}. The straight line in each subfigure indicates the approximated true level of

the corresponding implied moment, which is obtained by an estimation using the OTM option prices for

the strike price domain [3/S, 3S], where S = 1178.3 is the dividend-adjusted underlying price. The strike

price interval is fixed at 0.1.

(a) Implied volatility estimate (fixed Kmin) (b) Implied volatility estimate (fixed Kmax)

(c) Implied skewness estimate (fixed Kmin) (d) Implied skewness estimate (fixed Kmax)

(e) Implied kurtosis estimate (fixed Kmin) (f) Implied kurtosis estimate (fixed Kmax)
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Figure 2.4: Impact of truncation on implied moment estimates (SVJ)

This figure illustrates the relationship between truncation and the level of implied moment estimates

when the stochastic volatility and jump (SVJ) model is used for generating simulated option prices. In

Figures 2.4a, 2.4c, and 2.4e, the maximum strike price Kmax varies from 1,190 to 1,690, while the min-

imum strike price Kmin is fixed at one of the values {770, 870, 970, 1070, 1170}. On the other hand, in

Figures 2.4b, 2.4d, and 2.4f, Kmin varies from 670 to 1,170, while Kmax is fixed at one of the values

{1190, 1290, 1390, 1490, 1590}. The straight line in each subfigure indicates the approximated true level of

the corresponding implied moment, which is obtained by an estimation using the OTM option prices for

the strike price domain [3/S, 3S], where S = 1178.3 is the dividend-adjusted underlying price. The strike

price interval is fixed at 0.1.

(a) Implied volatility estimate (fixed Kmin) (b) Implied volatility estimate (fixed Kmax)

(c) Implied skewness estimate (fixed Kmin) (d) Implied skewness estimate (fixed Kmax)

(e) Implied kurtosis estimate (fixed Kmin) (f) Implied kurtosis estimate (fixed Kmax)
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Chapter 3

Effectiveness of linear
extrapolation in model-free
implied moment estimation

Chapter Summary

This chapter shows that the sensitivity of the implied moment estimators of Bakshi

et al. (2003) to a marginal change in option price availability can be formulated, regardless

of whether LE is applied. Using S&P 500 index options data and sensitivity functions for

the cases with and without LE applied, this chapter then investigates how effectively

LE makes implied moment estimators less sensitive to option price unavailability. The

empirical results suggest that LE is effective for all three estimators, although implied

skewness and kurtosis estimators remain sensitive even with LE applied.
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3.1. Introduction

The question of how unobservable DOTM option prices can be inferred has been raised

and answered in several studies. Addressing this question is critical for the nonparametric

estimation of the implied RND because these option prices contain crucial information

on tail density. Although various option pricing models and sophisticated Black-Scholes

implied volatility curve fitting schemes can answer this question, using one of these will

cost the estimation procedure its model-freeness. With this limitation, LE has become

one of the most popular DOTM option price approximation procedures for model-free

implied moment estimation, because LE has little effect on model-freeness as a result of

its approximation-based simple approach. Recently, with the increased popularity of the

implied moment estimators of Bakshi et al. (2003), the use of LE has been extended and is

mostly in conjunction with the implied skewness and kurtosis estimators of Bakshi et al.

(2003) (e.g., Buss and Vilkov, 2012; Chang et al., 2012; Chang et al., 2013; DeMiguel

et al., 2013; Neumann and Skiadopoulos, 2013).

LE is first introduced by Jiang and Tian (2005) to reduce the estimation error of model-

free implied volatility estimator of Britten-Jones and Neuberger (2000). This method is

conducted initially through the assumption that the Black-Scholes implied volatility curve

is flat beyond the minimum and maximum strike prices of the orignial curve, followed by

the extension of the curve on the basis of such an assumption. The missing DOTM option

prices can then be inferred from this extended curve. In other words, LE can be regarded

as a zeroth-order approximation of Black-Scholes implied volatility. As the order suggests,

LE is a rough way of approximation. However, Jiang and Tian (2005) show that LE

makes the estimation error smaller than that in the case in which no treatment is applied.

From this case, LE can be conjectured to have at least a positive effect on reducing the

estimation error of implied volatility estimator that is due to the unavailability of DOTM

option prices. Jiang and Tian (2005) call this type of estimation error as a “truncation

error” because such an error is caused by DOTM option prices that look as if they are

“truncated.”

However, two questions should be answered before applying LE, especially for implied

skewness or kurtosis estimation. First, how effective is LE? In other words, is it adequately

effective to make the truncation error negligible? The severity of truncation is different
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across markets and over time, so the truncation error can generate noise in the estimate if it

is incompletely reduced. Hence, although determining whether LE can alleviate truncation

error is by itself valuable, checking if LE can alleviate the truncation error up to the level

in which the error becomes insignificant is also needed. Second, can LE be applied to

higher moment estimators, i.e., the implied skewness and kurtosis estimators of Bakshi

et al. (2003)? Although Jiang and Tian (2005) show the effectiveness of LE and derives

the upper bound of truncation error for the implied volatility estimator of Britten-Jones

and Neuberger (2000), neither the effectiveness nor the upper bound can be accepted

as it is when LE is employed for another estimator. Furthermore, given that skewness

and kurtosis are more closely related to the shape of the tail density than volatility is,

the truncation error is likely larger for these higher moment estimators. Therefore, the

effectiveness of LE should be assessed separately when it is used for the higher moment

estimators of Bakshi et al. (2003).

This chapter proposes a measure with which the effectiveness of LE can be assessed for

a set of European OTM options whose strike prices do not completely span the positive

real line. A significant advantage of this measure is that it can be applied to option prices

that are observed from markets. In most related studies, option prices are generated using

option pricing models to demonstrate the truncation error (e.g., Dennis and Mayhew, 2002;

Jiang and Tian, 2005; Dennis and Mayhew, 2009), given that the true level of the implied

moment is required to calculate truncation error. With the limited availability of market

option prices, obtaining the true level of implied moment from market option prices is

impossible, and therefore, measuring the truncation error from them is also impossible.

Hence, generated option prices have been used as an alternative. On the other hand, the

problem is circumvented in this chapter through the use of a different approach to measure

the effectiveness of LE.

If the truncation error is reduced effectively so that the effect of truncation on the

implied moment estimate is negligible, the estimate should not change significantly after

a marginal change in option price availability. In other words, if the implied moment esti-

mate varies significantly when the moment is re-estimated after an inclusion or exclusion

of a few option prices while LE is consistently applied, the truncation error has not been

fully reduced by LE. Hence, the sensitivity of the implied moment estimate to a marginal

change in option price availability can be used to assess the effectiveness of LE. This chap-
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ter shows that this sensitivity can be formulated for the estimators of Bakshi et al. (2003),

regardless of whether LE is applied or not. Measuring the effectiveness of LE is therefore

possible through a comparison of the sensitivity of implied moment estimates with and

without the application of LE.

The following results are obtained through an empirical analysis of S&P 500 index

options data. First, all three implied moment estimators of Bakshi et al. (2003) tend

to become less sensitive to truncation after LE. This result implies that LE is indeed

effective for all three estimators. With this result, LE can be conjectured to also reduce the

truncation error of model-free implied moment estimators other than the implied volatility

estimator of Britten-Jones and Neuberger (2000). Second, the implied volatility estimator

of Bakshi et al. (2003) is found to be considerably robust to truncation when applied

to S&P 500 index options data, regardless of whether LE is applied or not. Finally, the

implied skewness and kurtosis estimators are found to be relatively sensitive to truncation,

especially when the influence of LE on implied moment estimate is too strong.

Although the overall result suggests that LE is effective for all implied moment estima-

tors of Bakshi et al. (2003), truncation error can also be conjectured to be too large to be

regarded as negligible even after LE when implied skewness or kurtosis is estimated. This

result implies that a supplementary truncation treatment may need to be considered along

with LE when a higher implied moment is estimated. A possible supplementary method

that is easy to employ is an additional data filtration, which removes observations with

too high truncation sensitivity with LE. With this, the truncation sensitivity function is

by itself found to be an instrument for truncation treatment.

The rest of this chapter is organised as follows. Section 3.2 provides a brief description

of LE. Section 3.3 explains how truncation sensitivity of implied moment estimators can

be formulated for both cases with and without LE applied. Section 3.4 demonstrates how

the sensitivity function defined in Section 3.3 can be applied to option prices. Section 3.5

reports the results of empirical analysis on S&P 500 index options data. Section 3.6

concludes this chapter.
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3.2. Linear extrapolation

LE can be regarded as an approximation of order zero of Black-Scholes implied volatility

with respect to strike price. To conduct LE, OTM option prices first need to be converted

to Black-Scholes implied volatility values. Next, the level of Black-Scholes implied volatil-

lity at the minimum and maximum strike prices, for which the corresponding OTM option

prices are observable, are collected. These implied volatility levels are then used to extend

the implied volatility curve by assuming that the level of implied volatility is constant

beyond the minimum and maximum strike prices. Finally, the extended implied volatility

curve is converted back to a more complete set of OTM option prices. Figure 3.1 shows

the consequences of LE for the SVJ case in Chapter 2 when the OTM option prices are

truncated at the strike prices of 700 and 1300.

Figure 3.1: Illustration of linear extrapolation (LE)

This figure illustrates the shape of the Black-Scholes implied volatility curve and option price curve after

LE. OTM option prices are taken from the SVJ case in Chapter 2, and are assumed to be truncated at

the strike prices of 700 and 1300. Figure 3.1a demonstrates the shape of Black-Scholes implied volatility

curve after LE. Figure 3.1b shows the OTM option price level after LE.

(a) Black-Scholes implied volatility curve after LE

(b) Option prices after LE
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3.3. Truncation sensitivity function

This section demonstrates how the sensitivity of the implied moment estimators to a

marginal change in the truncation level can be formulated. Section 3.3.1 explains how the

definition of the implied moment estimators can be rearranged in terms of log-moneyness.

Section 3.3.2 shows how sensitivity can be defined. Section 3.3.3 explains how truncation

sensitivity should be measured when LE is applied.

3.3.1 Rearrangement of the implied moment estimators

If the parameters t and τ are removed for brevity, and λ denotes the log-moneyness

ln(K/S(t)), Equations (2.12)–(2.14) can be rearranged as

V =

∫ ∞
0

2 (1− λ)

Seλ
C(λ)dλ+

∫ 0

−∞

2 (1− λ)

Seλ
P (λ)dλ, (3.1)

W =

∫ ∞
0

6λ− 3λ2

Seλ
C(λ)dλ+

∫ 0

−∞

6λ− 3λ2

Seλ
P (λ)dλ, (3.2)

X =

∫ ∞
0

12λ2 − 4λ3

Seλ
C(λ)dλ+

∫ 0

−∞

12λ2 − 4λ3

Seλ
P (λ)dλ. (3.3)

With Equations (3.1)–(3.3), option prices are considered for the integration domain in

terms of log-moneyness, not strike price. Not only does this rearrangement simplify the

definitions and allow the integration domain to be more closely related to the domain of

the RND function, but this also enables the easy definition of the minimum and maximum

values of the integration domain as simple univariate functions, as will be shown below.

3.3.2 Definition of sensitivity

Now, suppose that the minimum and maximum values of the log-moneyness domain are

finite, i.e., a truncation does exist, and the endpoint values are derived from differentiable

univariate functions f(α) and g(α), which satisfy the conditions f(α) ≤ 0 and g(α) ≥ 0 for

all α, respectively. If this is the case, the fair value estimates can be defined as univariate
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functions V̂ (α), Ŵ (α), and X̂(α) as follows:

V̂ (α) =

∫ g(α)

0

2(1− λ)

Seλ
C(λ)dλ+

∫ 0

f(α)

2(1− λ)

Seλ
P (λ)dλ, (3.4)

Ŵ (α) =

∫ g(α)

0

6λ− 3λ2

Seλ
C(λ)dλ+

∫ 0

f(α)

6λ− 3λ2

Seλ
P (λ)dλ, (3.5)

X̂(α) =

∫ g(α)

0

12λ2 − 4λ3

Seλ
C(λ)dλ+

∫ 0

f(α)

12λ2 − 4λ3

Seλ
P (λ)dλ. (3.6)

Then, the implied volatility, skewness, and kurtosis estimates can also be obtained as

univariate functions:

V̂OL(α) = [erτ V̂ (α)− µ̂2(α)]1/2, (3.7)

ŜKEW(α) =
erτŴ (α)− 3µ̂(α)erτ V̂ (α) + 2µ̂(α)3

[erτ V̂ (α)− µ̂2(α)]3/2
, (3.8)

K̂URT(α) =
erτ X̂(α)− 4µ̂(α)erτŴ (α) + 6erτ µ̂(α)2V̂ (α)− 3µ̂(α)4

[erτ V̂ (α)− µ̂(α)2]2
, (3.9)

where

µ̂(α) = erτ − 1− erτ

2
V̂ (α)− erτ

6
Ŵ (α)− erτ

24
X̂(α). (3.10)

Given Equations (3.4)–(3.9), the derivative of V̂OL(α), ŜKEW(α), and K̂URT(α) with

respect to α can be formulated as

V̂OL
′
(α) =

1

2
[erτ V̂ (α)− µ̂2(α)]−1/2

(
erτ V̂ ′(α)− 2µ̂(α)µ̂′(α)

)
, (3.11)

ŜKEW
′
(α) =

Θ̂S(α)Γ̂′S(α)− Γ̂S(α)Θ̂′S(α)

Θ̂2
S(α)

, (3.12)

K̂URT
′
(α) =

Θ̂K(α)Γ̂′K(α)− Γ̂K(α)Θ̂′K(α)

Θ̂2
K(α)

, (3.13)

where Γ̂S and Γ̂K denote the numerator of ŜKEW(α) and K̂URT(α), respectively, and

Θ̂S and Θ̂K denote the denominator of ŜKEW(α) and K̂URT(α), respectively. Equa-

tions (3.11)–(3.13) are direct consequences of the chain rule and the quotient rule. Given
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Equations (3.4)–(3.9), the derivatives in Equations (3.11)–(3.13) can be obtained as

Γ̂′S(α) = erτŴ ′(α)− 3erτ
(
V̂ (α)µ̂′(α) + µ̂(α)V̂ ′(α)

)
+ 6µ̂2(α)µ̂′(α), (3.14)

Θ̂′S(α) =
3

2
[erτ V̂ (α)− µ̂2(α)]1/2

(
erτ V̂ ′(α)− 2µ̂(α)µ̂′(α)

)
, (3.15)

Γ̂′K(α) = erτ X̂ ′(α)− 4erτ
(
Ŵ (α)µ̂′(α) + µ̂(α)Ŵ ′(α)

)
(3.16)

+ 6erτ
(

2µ̂(α)V̂ (α)µ̂′(α) + µ̂2(α)V̂ ′(α)
)
− 12µ̂3(α)µ̂′(α), (3.17)

Θ̂′K(α) = 2[erτ V̂ (α)− µ̂2(α)]
(
erτ V̂ ′(α)− 2µ̂(α)µ̂′(α)

)
, (3.18)

V̂ ′(α) = g′(α)
2(1− g(α))

Seg(α)
C(g(α))− f ′(α)

2(1− f(α))

Sef(α)
P (f(α)), (3.19)

Ŵ ′(α) = g′(α)
6g(α)− 3g2(α)

Seg(α)
C(g(α))− f ′(α)

6f(α)− 3f2(α)

Sef(α)
P (f(α)), (3.20)

X̂ ′(α) = g′(α)
12g2(α)− 4g3(α)

Seg(α)
C(g(α))− f ′(α)

12f2(α)− 4f3(α)

Sef(α)
P (f(α)), (3.21)

µ̂′(α) = − erτ
(

1

2
· V̂ ′(α) +

1

6
· Ŵ ′(α) +

1

24
· X̂ ′(α)

)
. (3.22)

3.3.3 Truncation sensitivity with LE

This subsection derives the sensitivity of the implied moment estimate to a change in

option price availability when LE is applied. Because extremely DOTM options have an

infinitesimal value and, therefore, excluding them have little effect on moment estimates,

extrapolation is generally done only up to fixed limit points that are far enough from the at-

the-money point.1 This approach is also used in this chapter, and extrapolation is assumed

to be done up to the points in which log-moneyness is equal to finite and fixed limit values

λmin and λmax, respectively. Both λmin and λmax are presumed to be significantly different

from zero so that both f(α) and g(α) do not exceed the corresponding limit values. Now,

suppose that the fair value of moment-related contracts V , W , and X is estimated with

the use of a set of option prices that cover the log-moneyness domain [f(α), g(α)], as in

Equations (3.4)–(3.6), and the level of Black-Scholes implied volatility in this domain is

defined by a function σBS(λ) which is differentiable with respect to log-moneyness λ. If the

two endpoint Black-Scholes implied volatilities σBS(f(α)) and σBS(g(α)) are extrapolated

1Buss and Vilkov (2012) generate option prices up to the points in which the moneyness is 1/3 and 3,

respectively. On the other hand, Neumann and Skiadopoulos (2013) choose the points where the option

delta is 0.01 and 0.99, respectively.
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up to the points in which log-moneyness is equal to λmin and λmax, respectively, the fair

value estimates for the volatility, cubic, and quartic contracts in Equations (3.4)–(3.6) are

replaced with the new estimates Ṽ (α), W̃ (α), and X̃(α), which can be obtained as follows:

Ṽ (α) = V̂ (α) +

∫ λmax

g(α)

2(1− λ)

Seλ
C̃(σBS(g(α)), λ)dλ

+

∫ f(α)

λmin

2(1− λ)

Seλ
P̃ (σBS(f(α)), λ)dλ, (3.23)

W̃ (α) = Ŵ (α) +

∫ λmax

g(α)

6λ− 3λ2

Seλ
C̃(σBS(g(α)), λ)dλ

+

∫ f(α)

λmin

6λ− 3λ2

Seλ
P̃ (σBS(f(α)), λ)dλ, (3.24)

X̃(α) = X̂(α) +

∫ λmax

g(α)

12λ2 − 4λ3

Seλ
C̃(σBS(g(α)), λ)dλ

+

∫ f(α)

λmin

12λ2 − 4λ3

Seλ
P̃ (σBS(f(α)), λ)dλ, (3.25)

where

C̃(σ, λ) = S(N(d1(σ, λ))− e−λrτN(d2(σ, λ))), (3.26)

P̃ (σ, λ) = S(e−λrτN(−d2(σ, λ))−N(−d1(σ, λ))), (3.27)

d1(σ, λ) =
−λ+ (r + 0.5σ2)τ

σ
√
τ

, (3.28)

d2(σ, λ) = d1(σ, λ)− σ
√
τ , (3.29)

and N(·) denotes the standard normal cumulative distribution function. With this, the

following proposition shows how the derivatives Ṽ ′(α), W̃ ′(α), and X̃ ′(α) can be formu-

lated:

Proposition 3.1. If (1) the level of Black-Scholes implied volatility in log-moneyness

domain [f(α), g(α)] is defined by a function σBS(λ) which is differentiable with respect to

log-moneyness λ, (2) the two Black-Scholes implied volatilities σBS(f(α)) and σBS(g(α))

are linearly extrapolated up to the point in which log-moneyness is equal to fixed limit

values λmin and λmax, respectively, and (3) the value of λmin and λmax is significantly
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different from zero so that both f(α) and g(α) are not supposed to exceed those limit

values, then the derivatives Ṽ ′(α), W̃ ′(α), and X̃ ′(α) can be formulated as

Ṽ ′(α) = γ0

∫ λmax

g(α)

(
2(1− λ) exp

[
γ1λ

2 + γ2λ+ γ3

])
dλ

+ δ0

∫ f(α)

λmin

(
2(1− λ) exp

[
δ1λ

2 + δ2λ+ δ3

])
dλ, (3.30)

W̃ ′(α) = γ0

∫ λmax

g(α)

(
(6λ− 3λ2) exp

[
γ1λ

2 + γ2λ+ γ3

])
dλ

+ δ0

∫ f(α)

λmin

(
(6λ− 3λ2) exp

[
δ1λ

2 + δ2λ+ δ3

])
dλ, (3.31)

X̃ ′(α) = γ0

∫ λmax

g(α)

(
(12λ2 − 4λ3) exp

[
γ1λ

2 + γ2λ+ γ3

])
dλ

+ δ0

∫ f(α)

λmin

(
(12λ2 − 4λ3) exp

[
δ1λ

2 + δ2λ+ δ3

])
dλ, (3.32)

where

γ0 =

√
τ√
2π
· σ′BS(g(α)) · g′(α), (3.33)

γ1 = − 1

2σBS(g(α))2τ
, (3.34)

γ2 =
r

σBS(g(α))2
− 1

2
, (3.35)

γ3 = − (r + 0.5σBS(g(α))2)2τ

2σBS(g(α))2
, (3.36)

δ0 =

√
τ√
2π
· σ′BS(f(α)) · f ′(α), (3.37)

δ1 = − 1

2σBS(f(α))2τ
, (3.38)

δ2 =
r

σBS(f(α))2
− 1

2
, (3.39)

δ3 = − (r + 0.5σBS(f(α))2)2τ

2σBS(f(α))2
, (3.40)

σ′BS(λ) is the derivative of Black-Scholes implied volatility function σBS(λ) with respect

to log-moneyness λ, r is the risk-free rate, and τ is the time to maturity.

Proof. See Appendix A.
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3.4. Methodology

This section demonstrates how the truncation sensitivity funcitions introduced in Sec-

tion 3.3 can be employed on option prices data. Section 3.4.1 explains how the Black-

Scholes implied volatility curve is constructed in this chapter to obtain a dense set of

option prices, as well as a differentiable Black-Scholes implied volatility function with re-

spect to log-moneyness. In Section 3.4.2, the empirical procedure of truncation sensitivity

estimation is described. Section 3.4.3 shows how the value of truncation sensitivity can

be interpreted and used to assess the effectiveness of LE.

3.4.1 Construction of Black-Scholes implied volatility curve

An implied volatility curve is required for each maturity for which truncation sensitivity

is measured, in order to obtain an adequate number of option prices from which a contin-

uum of option prices can be approximated, as well as to estimate a differentiable implied

volatility function. As done in Jiang and Tian (2005), maturity is first fixed to avoid

the telescoping problem that is pointed out by Christensen et al. (2002). Black-Scholes

implied volatilities are first collected from all available OTM option prices to fix the ma-

turity. Next, a bicubic spline function is estimated with the use of the implied volatility

observations. For the regions where some of the observations required for estimation are

not available because of a difference in minimum or maximum strike price between differ-

ent maturities, LE is applied to approximate the missing observation. With the estimated

bicubic spline function, the implied volatility levels are then approximated at some fixed

maturities for the strike prices for which at least one observation exists on that day. When

only the exactly monthly maturities are considered, consecutive daily observations can be

fully obtained only for the maturities of two, three, and four months during the sample

period due to data filtration and liquidity issues. Given this limitation, implied volatility

curves only for the maturities of two and four months are examined.

After the maturity is fixed, the implied volatility curves are constructed for each ma-

turity. First, the implied volatility levels are additionally approximated for the minimum

and maximum values of the strike price domain with the use of the bicubic spline function.

If the minimum and maximum strike prices are not observable for a maturity, they are

linearly approximated with the use of the corresponding endpoint strike prices for the two
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closest maturities for which the endpoints are observable. After this additional approxi-

mation, all implied volatility values that are located beyond the minimum or maximum

strike price are discarded. Not only does this reflect the level of truncation observed in the

market, but this also removes the effect of LE that is conducted while fixing the maturity.

Next, piecewise quadratic function is used to estimate the shape of the implied volatility

curve, in accordance with the approach of Broadie et al. (2007). Similar to the approach

of Broadie et al. (2007), the following function is fitted:

σBS(λ) = 1λ≤0[a2λ
2 + a1λ+ a0] + 1λ>0[b2λ

2 + a1λ+ a0] + ε, (3.41)

where σBS(λ) is the level of Black-Scholes volatility at log-moneyness λ, and 1C is an

indicator function whose value is one when condition C holds and zero otherwise. The

piecewise function is defined as a function of log-moneyness λ to obtain the derivative

σ′BS(λ). Although the implied volatility curve can also be estimated with the use of

the cubic spline function, which provides a perfect fit as in Jiang and Tian (2005), a

curve estimated with the use of the cubic spline function can be winding severely, so

that the derivative of the implied volatility function may not be approximated stably.

Comparatively, the derivative of the piecewise qudratic function is more stable, although

the function itself does not ensure a perfect fit. Because the derivative of the implied

volatility function at endpoints is significantly important in measuring sensitivity when

LE is applied, the piecewise quadratic function is chosen to estimate implied volatility

curve. After the implied volatility curve is estimated, the curve is translated into OTM

option prices for the strike prices between the minimum and maximum values of the strike

price domain, with a strike price interval of 0.1. When LE is employed for implied moment

or truncation sensitivity estimation, it is applied to this curve up to the points in which

the strike prices are equal to S(t)/3 and 3S(t), respectively, where S(t) is the dividend-free

index level on day t. This setting means that λmin and λmax in Equations (3.23)–(3.32)

are set as − ln 3 and ln 3, respectively. The strike price interval is again set as 0.1 for LE.

3.4.2 Measuring truncation sensitivity

Regardless of whether LE is applied or not, the basic procedure of truncation sensitivity

measurement is identical. Specifically, one first sets the endpoint functions f(α) and
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g(α), and calculates the contract fair value estimates and their derivatives with respect

to α. Then, all the other required derivatives can be calculated correspondingly on the

basis of the procedure shown in Section 3.3.2. The only difference between the truncation

sensitivity estimation with and without LE is the method of obtaining the contract fair

value estimates and their derivatives. This subsection therefore describes the procedure of

truncation sensivity measurement that can be applied to both cases with and without LE,

with some additional comments for the case with LE which is slightly more complicated.

Endpoint functions f(α) and g(α) need to be defined first to measure sensitivity. Given

Equations (3.4)–(3.6), f(α) and g(α) must be defined in a way that there exists a real

number ᾱ for which f(ᾱ) = ln(Kmin/S) and g(ᾱ) = ln(Kmax/S), where Kmin and Kmax

are the minimum and maximum strike prices of the integration domain, respectively, and

S is the underlying price. A simple definition that is applicable to any observed data is

f(α) = cα and g(α) = α, where

c =
ln(Kmin/S)

ln(Kmax/S)
. (3.42)

With this definition, two implicit assumptions are made. First, α is nonnegative, no option

prices are available when α = 0, and the option price availability increases as α becomes

larger. Second, the log-moneyness ratio c is not changed by an increase or decrease in

option price availability. The first assumption is acceptable because it makes the rela-

tionship between α and option price availability clearly defined. The second assumption

is also reasonable because it ensures that option price availability increases at each side

(call side or put side) as α becomes larger, while also satisfying the condition that the real

number ᾱ mentioned above exists. Given such assumptions, this simple definition is used

in this chapter and is employed for empirical analysis.

After f(α) and g(α) are set, the contract fair value estimates and their derivatives at

α = ᾱ need to be calculated. With the definition of f(α) and g(α) above, ᾱ = ln(Kmax/S).

V̂ (ᾱ), Ŵ (ᾱ), X̂(ᾱ), V̂ ′(ᾱ), Ŵ ′(ᾱ), and X̂ ′(ᾱ) need to be estimated as in Section 3.3.2

when LE is not employed, whereas Ṽ (ᾱ), W̃ (ᾱ), X̃(ᾱ), Ṽ ′(ᾱ), W̃ ′(ᾱ), and X̃ ′(ᾱ) are

required when LE is considered. The fair value estimates and derivatives without LE

are relatively easier to obtain because they can be collected via the model-free implied

moment estimation procedure of Bakshi et al. (2003). On the other hand, two extra

subtleties exist when derivatives with LE are calculated. First, the derivative σ′BS(λ) of
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the Black-Scholes implied volatility function needs to be evaluated at λ = f(ᾱ) and λ =

g(ᾱ). This evaluation can be done with the implied volatility curve that is approximated

using a differentiable function, i.e., piecewise quadratic function, which is demonstrated in

Section 3.4.1. Second, because Equations (3.30)–(3.32) are in the form of transcendental

function, no analytic solution exists for them. Fortunately, they can still be evaluated

numerically with the use of a computational software. Wolfram Mathematica is used in

this chapter to evaluate Ṽ ′(ᾱ), W̃ ′(ᾱ), and X̃ ′(ᾱ). With all the fair value estimates and

their derivatives with respect to α, now, the derivatives of the implied moment estimates

with respect to α, i.e., the truncation sensitivity of the implied moment estimators, can

be obtained. When LE is not considered, plugging in the value of the required variables

into Equations (3.11)–(3.13) enables one to calculate the derivatives. It is also the case

when LE is considered, but after replacing V̂ (ᾱ), Ŵ (ᾱ), X̂(ᾱ), V̂ ′(ᾱ), Ŵ ′(ᾱ), and X̂ ′(ᾱ)

with Ṽ (ᾱ), W̃ (ᾱ), X̃(ᾱ), Ṽ ′(ᾱ), W̃ ′(ᾱ), and X̃ ′(ᾱ), respectively.

3.4.3 Interpretation of truncation sensitivity

Although truncation sensitivity provides information on how sensitive to truncation an

implied moment estimator is, refining the information is still needed to assess the effec-

tiveness of LE for two reasons. Firstly, unless no evidence exists that sensitivity is constant

or at least stable over the α-axis, the measured sensitivity should be regarded as local and

therefore be used to approximate a change in estimate caused by a small change in option

price availability. Secondly, because option prices are assigned for discrete strike prices,

defining the change in option price availability in terms of strike price rather than log-

moneyness may be more practical. Hence, the change in implied moment estimate caused

by an increase in strike price domain length by five, which is equal to the size of a single

strike price interval in the S&P 500 index options market for short maturities, is linearly

approximated to assess the effectiveness of LE.

To approximate this change, one first needs to determine the size of increase in α that

is required to increase the strike price domain length by five. In other words, one needs

to obtain the value of increment i, which satisfies

h(i) ≡ (Seg(ᾱ+i) − Sef(ᾱ+i))− (Seg(ᾱ) − Sef(ᾱ))− 5 = 0. (3.43)
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Figure 3.2: Increment in ᾱ required to increase the strike domain length by five

This figure illustrates the level of increment in ᾱ, i.e., the value of α with which f(α) and g(α) coincide

with the observed minimum and maximum strike prices, respectively, that is required to increase the strike

domain length by five for the S&P 500 index options dataset used in this chapter. The dataset spans a time

period from January 2000 to December 2010. Option prices are estimated based on the implied volatility

curve for the maturities of two and four months that are extracted from daily implied volatility surfaces.

The value of the required increment i is approximated by minimising the absolute value of function h(t, τ, i)

which is defined as

h(t, τ, i) = (S(t)eg(ᾱ(t,τ)+i) − Sef(ᾱ(t,τ)+i))− (S(t)eg(ᾱ(t,τ)) − Sef(ᾱ(t,τ)))− 5,

where S(t) is the dividend-adjusted underlying index level at day t, and ᾱ(t, τ) is the value of α with which

f(α) and g(α) coincide with the observed minimum and maximum strike prices, respectively, for day t and

maturity τ .

Given the definition of f(α) and g(α) in Section 3.4.2, the function h(i) is strictly increasing

in the domain {i : −ᾱ ≤ i ≤ ∞} for any nonnegative constant ᾱ and S. Hence, a unique

value of i satisfies the condition above, and this value can be approximated numerically

by minimising the absolute value of h(i).2 Figure 3.2 illustrates the approximated value

of i for the S&P 500 index options data. It is shown in Figure 3.2 that the value of i is

considerably small for the entire sample period, and therefore it is reasonable to use linear

approximation.

3.5. Empirical analysis

This section reports the results of the empirical analysis on the effectiveness of LE. The

sensitivity function defined in Section 3.3 and the empirical methodology described in

2We can also define the minimum and maximum log-moneyness functions, i.e., f(x) and g(x), as
exponential functions if we need to measure truncation while using strike price as the unit of measure more
strictly.
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Section 3.4 are employed to estimate the truncation sensitivity of the implied volatility,

skewness, and kurtosis estimators of Bakshi et al. (2003), when they are used with and

without LE on S&P 500 index options data.3 Section 3.5.1 compares the implied moment

estimation results with and without LE to demonstrate the effect of LE in outline. Sec-

tion 3.5.2 compares the truncation sensitivity of the implied moment estimators with and

without LE to investigate the effectiveness of LE. A description of the S&P 500 index

options data used in this chapter is provided in Section 2.3.

3.5.1 Implied moment estimate with and without LE

Figure 3.3 illustrates the level of implied moment estimates during the sample period with

and without the application of LE. A number of interesting points can be found from the

figure. First, LE is shown to have a large influence on implied moment estimate when it

is used with a high moment estimator. Determining the difference between Figures 3.3a

and 3.3b visually is difficult, whereas the shape of the lines in Figure 3.3d is evidently

different from that in Figure 3.3c, and the difference is even larger in scale between Fig-

ures 3.3e and 3.3f. Second, LE is shown to affect the implied skewness and kurtosis

estimates significantly for a part of the sample period, whereas the effect is less signifi-

cant for the other parts. Figures 3.3c–3.3f show that the implied skewness and kurtosis

estimates are changed significantly after LE during the period from 2004 to 2007, whereas

the change is less outstanding for the other periods. Finally, although a notable change

in the average level and short-term dynamics of the implied moment estimates after LE

can be observed, no significant change occurs in terms of the mid- and long-term trend of

moment estimate fluctuation. If the noisy estimates are ignored in Figures 3.3c–3.3f, the

lines in the corresponding pair of subfigures show a considerable similarity in shape.

3.5.2 Truncation sensitivity of implied moment estimate with and with-

out LE

Table 3.1 reports the truncation sensitivity comparison result for the implied moment

estimates with and without LE. The comparison is conducted by approximation of the

nominal and percentage change in the estimates after an increase in strike price domain

length by five, as explained in Section 3.4.3, followed by an investigation into whether a

3The maturities of 2 and 4-months are chosen because the daily options data can be obtained without
any missing trading days only for the maturities of 2, 3, and 4 months after filtering.
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significant difference exists in the mean of the absolute nominal and percentage changes

before and after LE.

Panel A of Table 3.1 shows the comparison result for the absolute nominal change

in estimate. Panel A depicts that the decrease in truncation sensitivity is statistically

significant for all cases, except the implied kurtosis estimate for the maturity of two

months.4 Furthermore, Panel B of Table 3.1, which reports the comparison result for

the absolute percentage change in estimate, indicates that the moment estimate becomes

less sensitive to a small change in option price availability for all moments and maturities.

With these results, LE can be conjectured to be effective and makes the estimates less

sensitive to a change in option price availability for all three implied moment estimators

of Bakshi et al. (2003). Another notable finding is that the truncation sensitivity of

the implied volatility estimator is extremely low regardless of the application of LE. This

finding suggests that the implied volatility estimator of Bakshi et al. (2003) is considerably

robust to truncation when applied to S&P 500 index options data.

However, when we focus on the estimates on which LE has a relatively strong influence,

a contradictory finding can be obtained. Figure 3.4 illustrates the approximated time-series

dynamics of the nominal change in estimate after a change in strike price domain length

by five. In Figures 3.4c–3.4f, most of the estimates that are highly sensitive to truncation

without LE become even more sensitive with LE. Furthermore, the result is again similar

in Figure 3.5, in which the size of the absolute percentage change is employed, so that the

effect of the implied moment level is controlled. Given that the highly truncation-sensitive

estimates are mostly located in the time period from 2004 to 2007, for which LE is shown

to have the largest influence in Section 3.5.1, LE can be conjectured to have a reverse

effect when the implied moment estimate is mostly determined by the option prices that

are generated by LE. This is possible because if the estimate is mostly determined by the

generated options, the change in the endpoint implied volatility level due to the change in

the integration domain width will have a strong effect on the implied moment estimate.

Overall, the empirical results suggest that LE is effective and makes the implied mo-

ment estimate less sensitive to truncation for all three estimators of Bakshi et al. (2003).

However, LE might also have an adverse effect and make the estimate even more sensitive

4The difference is shown to be statistically significant regardless of most confidence intervals with and
without LE being overlapped with each other, because this is a test on the difference between pairs, not
means.
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to truncation when the estimation relies on LE too heavily. Hence, a supplementary trun-

Figure 3.3: Implied moment estimate

This figure illustrates the level of implied volatility, skewness, and kurtosis estimates with and without

the application of LE. The S&P 500 index options dataset used spans a time period from January 2000

to December 2010. Option prices are estimated based on the implied volatility curve for the maturities of

two and four months that are extracted from the daily implied volatility surfaces. When LE is applied, the

implied volatility level at the minimum and maximum strike prices are extrapolated up to the points at

which the strike prices are S(t)/3 and 3S(t), respectively, where S(t) is the dividend-adjusted index level

at day t.

(a) Implied volatility estimate
(without LE)

(b) Implied volatility estimate
(with LE)

(c) Implied skewness estimate
(without LE)

(d) Implied skewness estimate
(with LE)

(e) Implied kurtosis estimate
(without LE)

(f) Implied kurtosis estimate
(with LE)
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Table 3.1: Comparison of truncation sensitivity with and without LE

This table reports the truncation sensitivity comparison result for the implied volatility, skewness, and

kurtosis estimators with and without LE. The comparison is conducted by applying the estimators on S&P

500 index options dataset, and then approximating the nominal and percentage change in the estimates

after an increase in strike price domain length by five. The dataset spans an eleven year time period from

January 2000 to December 2010. Option prices are estimated based on the implied volatility curve for the

maturities of two and four months, which are extracted from daily implied volatility surfaces. When LE

is applied, implied volatility at minimum and maximum strike prices are extrapolated up to the points in

which strike prices are S(t)/3 and 3S(t), respectively, where S(t) is the dividend-free index level at day t.

The nominal change in estimate is approximated by first finding the value of increment i which minimises

the absolute value of function h(t, τ, i), which is defined as

h(t, τ, i) = (S(t)eg(ᾱ(t,τ)+i) − Sef(ᾱ(t,τ)+i))− (S(t)eg(ᾱ(t,τ)) − Sef(ᾱ(t,τ)))− 5,

where f(α, t, τ) = c(t, τ)α, g(α) = α, c(t, τ) = ln[Kmin(t, τ)/S(t)]/ ln[Kmax(t, τ)/S(t)], Kmin(t, τ) and

Kmax(t, τ) are the observed minimum and maximum strike prices for day t and maturity τ , respectively, and

ᾱ(t, τ) = ln[Kmax(t, τ)/S(t)]. Then, the nominal change for each (t, τ) is approximated as the truncation

sensivity multiplied by i. Finally, the percentage change is calculated by dividing the nominal change by

the corresponding implied moment estimate. The truncation sensitivity of implied volatility estimate is

multiplied by 10,000 for better visibility, because the implied volatility estimate is found to be significantly

insensitive to a change in option price availability when the estimator is applied to the dataset used in this

chapter. ∗∗ and ∗ denote statistical significance at the 1% and 5% levels, respectively.

Panel A. Absolute nominal change

Estimate Maturity
Application

Mean
Standard Mean

of LE deviation difference

Implied volatility estimate
(Sensitivity×10, 000)

2 months
Without LE 0.0016 0.0051 0.0006∗∗

With LE 0.0010 0.0034 (5.57)

4 months
Without LE 0.0062 0.0253 0.0015∗

With LE 0.0047 0.0292 (2.01)

Implied skewness estimate

2 months
Without LE 0.0093 0.0061 0.0005∗

With LE 0.0088 0.0089 (2.31)

4 months
Without LE 0.0065 0.0048 0.0009∗∗

With LE 0.0056 0.0067 (5.60)

Implied kurtosis estimate

2 months
Without LE 0.0851 0.0594 −0.0016

With LE 0.0867 0.0939 (−0.75)

4 months
Without LE 0.0525 0.0400 0.0042∗∗

With LE 0.0483 0.0621 (2.95)

Panel B. Absolute percentage change

Implied volatility estimate
(Sensitivity×10, 000)

2 months
Without LE 0.0043 0.0086 0.0016∗∗

With LE 0.0026 0.0065 (7.98)

4 months
Without LE 0.0165 0.0464 0.0047∗∗

With LE 0.0118 0.0548 (3.41)

Implied skewness estimate

2 months
Without LE 0.0058 0.0034 0.0012∗∗

With LE 0.0046 0.0036 (12.19)

4 months
Without LE 0.0043 0.0043 0.0013∗∗

With LE 0.0030 0.0030 (13.08)

Implied kurtosis estimate

2 months
Without LE 0.0112 0.0048 0.0028∗∗

With LE 0.0084 0.0059 (19.29)

4 months
Without LE 0.0073 0.0033 0.0025∗∗

With LE 0.0048 0.0039 (25.47)
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Figure 3.4: Change in estimate after a change in strike price domain length by five

This figure reports the size of change in the implied volatility, skewness, and kurtosis estimates with and

without LE, after an increase in strike price domain length by five. The S&P 500 index options dataset used

here spans an eleven year time period from January 2000 to December 2010. Option prices are estimated

based on the implied volatility curve for the maturities of two and four months, which are extracted from

daily implied volatility surfaces. When LE is applied, implied volatility at minimum and maximum strike

prices are extrapolated up to the points in which strike prices are S(t)/3 and 3S(t), respectively, where

S(t) is the dividend-free index level at day t. Approximation of size of change in estimate is done by first

finding the value of increment i which minimises the absolute value of function h(t, τ, i), which is defined

as

h(t, τ, i) = (S(t)eg(ᾱ(t,τ)+i) − Sef(ᾱ(t,τ)+i))− (S(t)eg(ᾱ(t,τ)) − Sef(ᾱ(t,τ)))− 5,

where f(α, t, τ) = c(t, τ)α, g(α) = α, c(t, τ) = ln[Kmin(t, τ)/S(t)]/ ln[Kmax(t, τ)/S(t)], Kmin(t, τ) and

Kmax(t, τ) are the observed minimum and maximum strike prices for time t and maturity τ , respectively,

and ᾱ(t, τ) = ln[Kmax(t, τ)/S(t)]. Then, the size of change is approximated as the truncation sensivity

multiplied by i.

(a) Implied volatility estimate (without LE) (b) Implied volatility estimate (with LE)

(c) Implied skewness estimate (without LE) (d) Implied skewness estimate (with LE)

(e) Implied kurtosis estimate (without LE) (f) Implied kurtosis estimate (with LE)
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Figure 3.5: Percentage change in estimate after a change in strike price domain length by
five

This figure reports the percentage change in the implied volatility, skewness, and kurtosis estimates with

and without LE, after an increase in strike price domain length by five. The S&P 500 index options

dataset used here spans an eleven year time period from January 2000 to December 2010. Option prices

are estimated based on the implied volatility curve for the maturities of two and four months, which

are extracted from daily implied volatility surfaces. When LE is applied, implied volatility at minimum

and maximum strike prices are extrapolated up to the points in which strike prices are S(t)/3 and 3S(t),

respectively, where S(t) is the dividend-free index level at day t. Rate of change in estimate is approximated

by first finding the value of increment i which minimises the absolute value of function h(t, τ, i), which is

defined as

h(t, τ, i) = (S(t)eg(ᾱ(t,τ)+i) − Sef(ᾱ(t,τ)+i))− (S(t)eg(ᾱ(t,τ)) − Sef(ᾱ(t,τ)))− 5,

where f(α, t, τ) = c(t, τ)α, g(α) = α, c(t, τ) = ln[Kmin(t, τ)/S(t)]/ ln[Kmax(t, τ)/S(t)], Kmin(t, τ) and

Kmax(t, τ) are the observed minimum and maximum strike prices for time t and maturity τ , respectively,

and ᾱ(t, τ) = ln[Kmax(t, τ)/S(t)]. Next, the size of change is approximated as the truncation sensivity

multiplied by i. Then, finally, the percentage change is calculated by dividing the size of change by the

corresponding implied moment estimate.

(a) Implied volatility estimate (without LE) (b) Implied volatility estimate (with LE)

(c) Implied skewness estimate (without LE) (d) Implied skewness estimate (with LE)

(e) Implied kurtosis estimate (without LE) (f) Implied kurtosis estimate (with LE)
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cation treatment may be required when LE is used in conjunction with estimators that

are more closely related to the DOTM option prices and thus might rely heavily on LE. A

simple supplementary treatment is to remove observations with extremely high truncation

sensitivity so that the estimation is less affected by abrupt changes in the truncation error.

3.6. Conclusion

The non-parametric estimation of the implied RND has been a topic of recent interest,

especially when the target of estimation is a moment of the density. DOTM option prices

have vital information on the tail distribution but are only partially available in most

options markets, so the missing DOTM option prices are required to be inferred from

the option prices available when the implied moments are estimated non-parametrically.

Sophisticated DOTM option price estimation methods may impair the model-freeness of

the non-parametric implied moment estimators; therefore, LE has been a popular choice as

a truncation treatment method owing to its simplicity and approximation-based approach.

As the implied moment estimators of Bakshi et al. (2003) have become popular, LE has also

drawn increased academic interest and has been frequently used in combination with the

higher moment estimators. Nevertheless, less attention has been devoted to the issues of

how effectively LE can reduce truncation error and whether LE can alleviate the truncation

error of higher moment estimators.

This chapter addresses both of these issues and introduces an empirical methodology,

i.e., measurement of truncation sensitivity, with which the effectiveness of LE can be

assessed. If the truncation error becomes negligible when LE is applied, an estimate

should not change significantly after a marginal change in option price availability. In

other words, if an estimate changes significantly after including or excluding few options

even when LE is applied, the truncation error can be conjectured to be not fully reduced

by LE. Hence, the sensitivity of the implied moment estimate to a marginal change in

option price availability can be used to assess how effectively LE reduces the truncation

error. Basing on this idea, this chapter defines the truncation sensitivity functions for

the implied volatility, skewness, and kurtosis estimators of Bakshi et al. (2003) with and

without LE applied, and then employs these functions to approximate how the estimates

will change after a small increase in the number of option prices available for S&P 500
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index options market.

This chapter makes three contributions to the literature on model-free implied moment

estimation. First, the methodology used in this chapter shows how a truncation treatment

method for implied moment estimation can be assessed when the true value of implied

moment is unknown so that the truncation error cannot be calculated. Because truncation

sensitivity estimation does not require the true value of implied moments, the methodology

in this paper can be employed for a set of European OTM options whose strike prices do not

fully span the positive real line, and is therefore practical. Second, this chapter shows how

the efficiency of LE varies according to the type of implied moment estimator in which

LE is employed. Although LE is frequently used in conjunction with implied moment

estimators other than the implied volatility estimator of Britten-Jones and Neuberger

(2000) for which LE is first introduced, no studies validating this extended use of LE for

different implied moment estimators have been conducted. This chapter fills this gap and

empirically shows that LE is considerably effective when used in combination with the

implied volatility estimator of Bakshi et al. (2003). However, the results also suggest that

the remaining truncation error is not small enough to be regarded as negligible when LE

is used with the implied skewness or kurtosis estimator of Bakshi et al. (2003). Finally,

the truncation sensitivity function that is introduced in this chapter can also be used as

an instrument for supplementary truncation treatment along with LE. Observations with

a large truncation error can be detected by measurement of truncation sensitivity, so an

additional data filter based on truncation sensitivity can be employed to reduce the effect

of truncation on implied moment estimation.

Although this chapter points out an issue on the use of LE in combination with the

implied skewness or kurtosis estimator of Bakshi et al. (2003), it does not invalidate LE

or any argument in the work of Jiang and Tian (2005). On the contrary, the argument of

Jiang and Tian (2005) that LE reduces the truncation error of implied volatility estimator

is supported by this chapter because we show that such is also the case for the implied

volatility estimator of Bakshi et al. (2003). In addition, LE also makes the implied skewness

and kurtosis estimators less sensitive to truncation in most cases. Hence, this chapter still

suggests the use of LE in conjunction with the implied moment estimators including those

for higher moments, but only on the condition that the size of the remaining truncation

error be properly controlled by supplementary methods when LE is employed for higher
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moment estimation. As suggested previously, a simple but effective supplementary method

is to discard the observations whose truncation sensitivity is abnormally high, so that the

estimation results are not distorted by abrupt changes in the truncation error.
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Chapter 4

Integration domain symmetry and
model-free implied skewness
estimator

Chapter Summary

This chapter analyses the effectiveness of DSym, which is suggested by Dennis and

Mayhew (2002) to minimise the truncation error of the implied skewness estimator of

Bakshi et al. (2003), by examining the impact of domain asymmetry on the implied skew-

ness estimator. This chapter shows that DSym effectively reduces the estimation bias

if the symmetry of the integration domain is defined in terms of log-moneyness and the

implied RND is symmetric. In addition, we reveal that the bias may not be reduced by

DSym if any of the conditions is violated.
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4.1. Introduction

After Bakshi et al. (2003) have introduced a set of estimators with which the volatility,

skewness, and kurtosis of the implied RND can be measured nonparametrically, the studies

in the field of financial derivatives have immediately adopted the estimators and started

using them to extract information from OTM option prices. The study of Dennis and

Mayhew (2002), who employ the estimators even before the work of Bakshi et al. (2003)

has been published, is one of those pioneering studies that realize the usefulness of the

model-free implied moment estimators early and promote the use of those estimators. In

addition, Dennis and Mayhew (2002) also conduct a brief analysis on the implied skewness

estimator using a set of model-based generated OTM option prices, and suggest how option

price data should be processed before being used for implied skewness estimation.

Integration domain asymmetry is one of the implementation issues Dennis and Mayhew

(2002) point out in their analysis of the implied skewness estimator. When there exists a

truncation, the integration domain can be asymmetric, i.e., the distance of the minimum

and maximum values of truncated strike price domain from the underlying price can be

different from each other. Dennis and Mayhew (2002) argue that since the fair value

estimates of the moment-related contracts, i.e., V , W , and X, depend on the difference

between the weighted average of OTM calls and OTM puts, having more call option price

observations than put option price observations can introduce bias. To address this issue,

Dennis and Mayhew (2002) suggest DSym, i.e., an additional discardment of observed

option quotes which in order to equalise the distance of the minimum and maximum

strike prices of integration domain from the underlying price. Figure 4.1 illustrates how

Dsym can be conducted in an empirical analysis.

Although the test results in Dennis and Mayhew (2002) provide a deep insight into the

implied skewness estimator and make the idea of DSym considerably persuasive, there is

still a need to further examine the effectiveness of DSym given that the implied skewness

estimator has been popularly used and DSym itself has been adopted by recent studies

(e.g., Conrad et al., 2013). Specifically, there are two questions regarding DSym that can

be of interest. First, why is the integration domain extremely asymmetric when there is no

truncation? It can be easily found that when integration domain is symmetric in terms of

strike price as in Dennis and Mayhew (2002), it must be possible to define the integration
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Figure 4.1: Process of domain symmetrisation

This figure demonstrates how Dsym can be conducted in an empirical analysis. Dennis and Mayhew (2002)

conduct Dsym by equalising the number of OTM calls and puts. After Dsym, the symmetrised option

prices can be converted to Black-Scholes implied volatility values, from which an implied volatility curve

is estimated to reduce the issue of strike price discreteness.

domain as [S − c, S + c], where S is the underlying asset price and c ≤ S is a positive

real constant. In other words, the domain can be regarded as asymmetric if the distance

is different for the minimum and maximum values of the integration domain from the

underlying asset price S. The issue is that when there is no truncation so that the

integration domain becomes (0,∞), then the distance becomes S for the minimum value

but infinite for the maximum value. This is inconsistent with the main idea of DSym

and, therefore, there is a need to investigate where this inconsistency comes from. Second,

does DSym also minimise the estimation bias even when the implied RND is skewed?

When evaluating the effectiveness of DSym, Dennis and Mayhew (2002) assume that the

underlying price follows a Black-Scholes constant volatility process so that the implied

RND is normal. However, it is well known that the Black-Scholes constant volatility

assumption is not applicable for most options markets. Furthermore, if the implied RND

is skewed so that option prices tend to be higher at one side, option price unavailability

at each side may have a different size of impact on the implied skewness estimator even
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when the intergration domain is symmetric. Hence, there is a need to test the efficiency

of DSym while assuming the the implied RND is skewed.

This chapter addresses the questions above and provides a deeper understanding of

the relationship between the model-free implied skewness estimator and the asymmetry

of the integration domain. Specifically, we first suggest the preconditions that is required

for DSym to alleviate the truncation error effectively, and then show how the effectiveness

of DSym changes when those preconditions are violated.

The analysis in this chapter reveals three interesting findings. First, when the implied

RND is symmetric, DSym becomes more effective when the integration domain is sym-

metric in terms of log-moneyness. This is different from the conclusion of Dennis and

Mayhew (2002) who define integration domain symmetry in terms of strike price. This

study shows that this difference is a key to answer the first question above, i.e., the ques-

tion of why the integration domain is extremely asymmetric when there is no truncation.

Second, the truncation error is not effectively reduced with DSym if the true skewness is

non-zero, and the effectiveness of DSym depends on the true level of implied skewness.

Specifically, the error is reduced if the integration domain is biased to the OTM put side

when the true implied skewness is negative, whereas the error decreases if the domain is

biased to the OTM call side when the true implied skewness is positive. Finally, the size

of the truncation error also depends on the width of the integration domain, even when

the degree of domain asymmetry is fixed. The error tends to increase as the integration

domain becomes smaller. Overall, the results suggest that DSym may increase the size

of the truncation error if the true skewness is non-zero or the integration domain is sig-

nificantly asymmetric so that DSym will result in a considerable decrease in the width of

integration domain.

The rest of this chapter is organised as follows. Section 4.2 explains when DSym can

be effective. Section 4.3 investigates the impact of the integration domain asymmetry on

implied skewness estimator using model-based generated option prices. Section 4.4 reports

the results of the empirical analysis. Section 4.5 concludes the chapter.
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4.2. Under which condition does DSym become effective?

For the skewness of the truncated density g in Section 2.2.3, the following example can

explain under what condition DSym can be effective. Suppose that (1) the minimum

and maximum log-moneyness values have the same magnitude, i.e., ln(Kmin(t, τ)/S(t)) =

− ln(Kmax(t, τ)/S(t)), and (2) f(x) = f(−x) for the implied RND function f and any real

x. Then g(x) = −g(x) for any real x, and therefore the skewness of both f and g are zero.

Hence, if the impact of truncation on the expected value is negligible, the estimation bias

of implied skewness estimator is minimised when these two conditions are satisfied.

The example above implies what the preconditions for DSym are. Firstly, integration

domain symmetry needs to be defined in terms of log-moneyness, not strike price. Specif-

ically, an integration domain [Kmin(t, τ),Kmax(t, τ)] should be regarded as symmetric if

ln(Kmin(t, τ)/S(t)) = − ln(Kmax(t, τ)/S(t)). This is slightly different to the definition of

symmetry in Dennis and Mayhew (2002), where a domain [Kmin(t, τ),Kmax(t, τ)] is re-

garded as symmetric if Kmin(t, τ)− S(t) = −(Kmax(t, τ)− S(t)). Secondly, the true RND

must be symmetric. This is the case in Dennis and Mayhew (2002), where they employ

the Black-Scholes constant volatility assumption when the effectiveness of DSym is tested.

Finally, the probability density defined by g must be risk-neutral to obtain the unbiased

skewness estimate. On the other hand, if any of the first two conditions are not satisfied,

then the skewness of the density defined by g becomes more likely to be asymmetric, and

therefore it is hard to ensure that DSym successfully reduces the estimation bias.

The point that integration domain symmetry needs to be defined in terms of log-

moneyness to ensure the effectiveness of DSym suggests why the truncated strike price

domains are heavily asymmetric when the integration domain is symmetric. In fact, the

truncated domains can also be regarded as symmetric in terms of log-moneyness when

the integration domain is symmetric in terms of log-moneyness, because the truncated

domains are then (−∞, ln(Kmin(t, τ)/S(t))) and (ln(Kmax(t, τ)/S(t)),∞). Although they

are still heavily asymmetric in terms of strike price, it is less relevant because the implied

skewness estimator measures the implied skewness of log-return density, not the underlying

price density.

Section 4.3 shows that the first two conditions above are in fact closely related to the

effectiveness of DS. First, we show that if the Black-Scholes constant volatility assumption
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is employed so that implied RND is symmetric, DSym reduces the estimation bias better

when the integration domain symmetry is defined in terms of log-moneyness, not strike

price. Next, we demonstrate that if implied RND becomes asymmetric, the effectiveness

of DSym becomes less significant. This result is supported by an empirical analysis of

S&P 500 index options market, whose implied RND is reported to be negatively skewed

by several studies.

4.3. Effectiveness of DSym on model option prices

This section shows how the implications in Section 4.2 are reflected in the implied skewness

estimate, using two sets of model OTM option prices. Specifically, we demonstrate that (1)

domain symmetry in terms of log-moneyness, not strike price, is more effecitve in reducing

estimation bias when implied RND is symmetric, and (2) DSym may not be effective

when the implied RND is asymmetric. Section 4.3.1 investigates under which definition of

integration domain symmetrty DSym reduces the estimation bias more effectively, when

the implied RND is symmetric. Section 4.3.2 examines whether DSym reduces estimation

bias effectively when the implied RND is asymmetric. A description about the model-

based generated option prices is provided in Section 2.4.1.

4.3.1 Definition of integration domain symmetry

Section 4.2 suggests that if the implied RND is symmetric, then the differnce between

the skewness of implied RND and that of the truncated density is minimised when the

integration domain is symmetric in terms of log-moneyness, i.e., ln(Kmin(t, τ)/S(t)) =

− ln(Kmax(t, τ)/S(t)). To further investigate how this condition affects the implied skew-

ness estimator when the implied RND is symmetric, we examine if DSym with this new

definition of domain symmetry reduces the estimation bias better than the one with the

original definition of domain symmetry in Dennis and Mayhew (2002), i.e., the state in

which Kmin(t, τ) − S(t) = −(Kmax(t, τ) − S(t)). Based on the two different definitions

of domain symmetry, we vary the level of domain asymmetry using an asymmtery coef-

ficient c, and then examine the relationship between the level of asymmetry and the size

of estimation bias. When the integration domain symmetry is defined in terms of strike

price difference as in Dennis and Mayhew (2002), for a given domain half-width W which
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satistfies Kmax(t, τ) − Kmin(t, τ) = 2W , the level of domain asymmetry is controlled by

setting Kmin(t, τ) and Kmax(t, τ) as S−(1−c)W and S+(1+c)W , respectively. With this

specification, the ratio of strike price distances from the underlying price to the minimum

and maximum strike prices becomes

S(t)−Kmin(t, τ) : Kmax(t, τ)− S(t) = 1− c : 1 + c.

On the other hand, when the domain symmetry is defined in terms of log-moneyness,

Kmin(t, τ) and Kmax(t, τ) are set in a way that the following conditions hold:

 (1 + c) ln(S(t)/Kmin(t, τ)) = (1− c) ln(Kmax(t, τ)/S(t)); and

Kmax(t, τ)−Kmin(t, τ) = 2W.

Here the ratio of log-moneyness distances becomes

ln(S(t)/Kmin(t, τ)) : ln(Kmax(t, τ)/S(t)) = 1− c : 1 + c.

In both cases, the integration domain is regarded as symmetric when c = 0, biased to the

OTM put side when c < 0, and biased to the OTM call side when c > 0. BS model option

prices in Chapter 2 are used to set the implied RND symmetric.

Figure 4.2 demonstrates how the implied skewness estimate varies when the level of

integration domain asymmetry changes. The figure reveals that when the implied RND

is symmetric, the estimation bias tends to be larger when domain is more asymmetric.

This is consistent with Dennis and Mayhew (2002). However, in Figure 4.2a in which the

domain symmetry is defined in terms of strike price, it can be found that the skewness

estimate converges to the true value most quickly as the width of the integration domain

increases when the integration domain is slightly biased to the OTM call side. On the other

hand, in Figure 4.2b in which the domain symmetry is defined in terms of log-moneyness,

estimate is shown to converge to true value most quickly when domain is symmetric. This

supports the implication of Section 4.2 that DSym is more effective when the domain

symmetry is defined in terms of log-moneyness, on the condition that the implied RND is

symmetric.
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Figure 4.2: Definition of domain symmetry and implied skewness estimate

This figure illustrates the relationship between the domain asymmetry level and the implied skewness

estimate. In Figure 4.2a, for a fixed domain half-width W , strike price domain is set to be [S − (1 −
c)W,S + (1 + c)W ], where S = 1178.3 is the dividend-adjusted underlying price and c is the asymmetry

coefficient. In Figure 4.2b, on the other hand, strike price domain is set to satisfy the following conditions

for each W :

(1 + c) ln(S/Kmin) = (1− c) ln(Kmax/S); and Kmax −Kmin = 2W,

where Kmin and Kmax are the minimum and maximum strike prices, respectively. The BS model option

prices in Chapter 2 are employed. The strike price interval is set as 0.1.

(a) BS (strike price based) (b) BS (log-moneyness based)

4.3.2 Effectiveness of DSym when the implied RND is skewed

As mentioned in Section 4.2, one of the preconditions for DSym to effectively reduce the

truncation error is that the implied RND should be symmetric. In this subsection, we

investigate whether DSym effectively reduces the truncation error even when the implied

RND is skewed. Given the result in Section 4.3.1, the symmetry of the integration domain

is defined in terms of log-moneyness, and the level of domain asymmetry is again controlled

using an asymmtery coefficient c. Figure 4.3 illustrates the level of implied skewness

estimate when the SVJ model option prices that are used in Chapter 2 are employed so

that the implied RND is skewed. Overall, the figure suggests that the truncation error is

not effectively reduced by DSym when the implied RND is asymmetric. In Figure 4.3a

in which the skewness of the implied RND is set to be negative, it can be found that the

truncation error tends to be smaller when the integration domain is more biased to the

OTM put side. On the other hand, in Figure 4.3b in which the sign of mean jump size

µ and correlation coefficient ρ in the SVJ model in Chapter 2 are switched to be positive

so that the implied RND is also positively skewed, it is shown that the truncation error

tends to decrease as the integration domain becomes more biased to the OTM call side.
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Figure 4.3: Asymmetric implied RND, domain symmetry, and implied skewness estimate

This figure illustrates the relationship between the domain asymmetry level and the implied skewness

estimate. The strike price domain is set to satisfy the following conditions for each W :

(1 + c) ln(S/Kmin) = (1− c) ln(Kmax/S); and Kmax −Kmin = 2W,

where Kmin and Kmax are the minimum and maximum strike prices, respectively. The SVJ model option

prices in Chapter 2 are employed, while the sign of values for parameters µ and ρ are switched to be

positive for Figure 4.3b in order to set the implied skewness positive. The straight line in each subfigure

indicates the approximated true level of implied moment, which is obtained by an estimation using options

for strike price domain [3/S, 3S], where S = 1178.3 is the dividend-adjusted underlying price. respectively.

The strike price interval is set as 0.1.

(a) SVJ (log-moneyness based) (b) SVJ (sign switched, log-moneyness based)

In combination with the results in Section 4.3.1, the results in this subsection suggest that

the truncation error of the implied skewness estimator is effectively reduced by DSym on

the condition that domain symmetry is defined in terms of log-moneyness and implied

RND is symmetric, which is consistent with Section 4.2.

Another notable finding in Figure 4.3 is that the truncation error is determined not

only by the level of integration domain asymmetry but also by the with of the integration

domain. This finding is meaningful because DSym reduces the width of the integration

domain while making the domain symmetric. Hence, it is difficult to conclude that DSym

reduces the estimation bias even when the truncation error of the implied skewness esti-

mator is minimised when the implied domain is symmetric. Namely, DSym may increase

the size of the truncation error when the integration domain is severely asymmetric so

that DSym results in a large reduction in the width of the integration domain.
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4.4. Empirical analysis

Section 4.3 shows that DSym reduces the truncation error of the implied skewness esti-

mator effectively on the condition that the integration domain is symmetric in terms of

log-moneyness, and the implied RND is symmetric. In this section, we conduct a set of

empirical analyses on S&P 500 index options dataset to obtain a deeper insight into the

relationship between the integration domain asymmetry and the truncation error of the

implied skewness estimator. Specifically, we examine how the level of integration domain

asymmetry is related to the truncation error of the implied skewness estimator via a re-

gression analysis. Section 4.4.1 demonstrates how the option prices are reconstructed from

the dataset. Section 4.4.2 describes how the size of the truncation error is approximated

for the S&P 500 index options dataset, from which the true value of implied skewness

cannot be obtained. Section 4.4.3 examines the relationship between integration domain

symmetry and the size of estimation bias. A description of the S&P 500 index options

data used in this chapter is provided in Section 2.3.

4.4.1 Generation of implied volatility surface

Following Jiang and Tian (2005), daily implied volatility surfaces are generated to fix the

maturities in order to mitigate the telescoping problem that is pointed out by Christensen

et al. (2002).1 To generate an implied volatility surface, all daily Black-Scholes implied

volatility observations are first collected for different strike prices and maturities. Next,

a bicubic spline funcation is fitted against the observations. When the implied skewness

is estimated, implied volatility curves for two maturities, i.e., two and four months, are

extracted from the daily surface. This is done by generating implied volatility observations

between the minimum and maximum strike prices for the maturities with a strike price

interval of 0.1, using the same bicubic spline function. If the minimum and maximum strike

prices are not observable for a maturity, they are approximated by linearly interpolating

the corresponding endpoint strike prices for the two nearest maturities for which the

endpoints are observable. Finally, the implied volatility observations are converted to

OTM option prices and then used for the implied skewness estimation.

1Christensen et al. (2002) point out that given the fixed maturity dates, time to maturity for an option
is telescoping, i.e., decreasing over time, while making the time period between present date and maturity
date overlapping for option samples in different days but with the same maturity date.
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4.4.2 Approximation of truncation error

Given that the true level of implied skewness is unknown for the S&P 500 index options

data, there is a need to choose a proxy variable with which the size of the truncation error

can be approximated. One way to obtain such a proxy is to apply an alternative truncation

error reduction method, and then measure the size of change in the implied skewness

estimate that is occured following the application of the method. In this chapter, LE is

employed as the alternative truncation error reduction method. We define the absolute

percentage change (APC) as

APC =

∣∣∣∣(Estimate after LE)− (Estimate before LE)

(Estimate before LE)

∣∣∣∣ , (4.1)

and use this variable to approximate the size of the truncation error for the rest of this sec-

tion. When the LE is applied, the endpoint level of implied volatility curve is extrapolated

up to the points where the strike prices are S(t)/3 and 3S(t), respectively, where S(t) is

the dividend-adjusted index level on day t. Strike price interval between the observations

generated by LE is set as 0.1. Table 4.1 reports some preliminary statistics of APC.

4.4.3 Integration domain asymmetry and truncation errors

This subsection examines the relationship between the integration domain symmetry and

the truncation error of the implied skewness estimator via a regression analysis. The

following two measures are defined to gauge the level of integration domain asymmetry:

(Log-moneyness width difference ratio) =
ln (Kmax(t, τ)/S(t))− | ln (Kmin(t, τ)/S(t)) |
ln (Kmax(t, τ)/S(t)) + | ln (Kmin(t, τ)/S(t)) |

,

(4.2)

(Log-moneyness width log-ratio) = ln

(
ln(Kmax(t, τ)/S(t))

| ln(Kmin(t, τ)/S(t))|

)
. (4.3)

Both of the measures above are based on the definition of domain symmetry in terms of

log-moneyness. In addition, the following variable is also considered as an independent

variable to control the impact of domain width on the size of estimation bias:

(Log-moneyness width) = ln (Kmax(t, τ)/S(t)) + | ln (Kmin(t, τ)/S(t)) |
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Table 4.1: Summary statistics of truncation error proxy variable

This table presents a set of summary statistics of absolute percentage change (APC) in implied skewness

estimate after LE, i.e.,

APC =

∣∣∣∣ (Estimate after LE)− (Estimate before LE)

(Estimate before LE)

∣∣∣∣ ,
which is used as a proxy for truncation error in Section 4.4 Since this variable can have an abnormally

high value for implied skewness estimate if the estimate originally has a near-zero value and its sign is

switched after LE, we discard daily observations with absolute percentage change of implied skewness

estimate larger than one thousand percent. There are three such observations in our sample, and 2,750

daily observations remain after this additional filtration.

Time period Moment Mean Median
Std. 5th 95th

N
dev. pct. pct.

Entire sample period
2 months 0.0990 0.0770 0.1294 0.0112 0.2460 2,750

4 months 0.1338 0.0790 0.3244 0.0112 0.3371 2,750

2000–2003
2 months 0.1386 0.0992 0.1917 0.0170 0.3344 997

4 months 0.1634 0.1238 0.1878 0.0150 0.3795 997

2004–2007
2 months 0.0732 0.0676 0.0570 0.0069 0.1563 999

4 months 0.0780 0.0617 0.1436 0.0079 0.1540 999

2008–2010
2 months 0.0806 0.0690 0.0705 0.0114 0.1699 754

4 months 0.1685 0.0736 0.5511 0.0172 0.3828 754

Figure 4.4 presents the histogram of the daily values of asymmetry measures for the

maturity of two months.2 The figure reveals that the values are almost always negative

regardless of the measure employed, and most of the positive values are near zero. This

suggests that the integration domain is biased to the OTM put side in most daily observa-

tions. Hence, it can be conjectured that if symmetry leads to a smaller truncation error,

there should be a negative relationship between the measured value and the truncation

error, because an increase in measured value does almost always mean a less negative value

(which is closer to zero), rather than a more positive value (which is further away from

zero).

2The histrograms for the maturity of four months are very similar to the one for the maturity of two
months, and therefore omitted.
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Figure 4.4: Sample distribution of the integration domain asymmetry level

This figure presents the sample distribution of the integration domain asymmetry level for the time to

maturity of two months. The two asymmetry level measures used in this figure are defined as follows:

(Log-moneyness width difference ratio) =
ln (Kmax(t, τ)/S(t))− | ln (Kmin(t, τ)/S(t)) |
ln (Kmax(t, τ)/S(t)) + | ln (Kmin(t, τ)/S(t)) | ,

(Log-moneyness width log-ratio) = ln

(
ln(Kmax(t, τ)/S(t))

| ln(Kmin(t, τ)/S(t))|

)
,

where Kmin(t, τ) and Kmax(t, τ) are the minimum and maximum strike prices at time t and time to

maturity τ , respectively, and S(t) is the dividend-free S&P 500 index level at time t.

(a) Log-moneyness width difference ratio (b) Log-moneyness width log-ratio

Table 4.2 reports the regression result. The table shows a significantly positive rela-

tionship between the level of integration domain asymmetry and the size of the truncation

error, regardless of which domain asymmetry measure is employed or whether the im-

pact of integration domain width is considered. The positive relationship suggests that

the truncation error of the implied skewness estimator tends to be smaller when the in-

tegration domain is more biased to the OTM put side, i.e., the truncation error tends

to increase as the integration domain becomes more symmetric. This result is consistent

with Section 4.3.2, in which the estimation bias is smaller when the integration domain is

biased to the OTM put side. Hence, the result in Table 4.2 again supports the idea that

DSym may not effectively reduce the truncation error when the implied RND is negatively

skewed.3

3It is difficult to explain why the marginal effects of log-moneyness width on truncation error increase
in twofold moving from two-month to four-month contracts, because 1) it is hard to tell whether this is due
to the properties of truncation error or the properties of the proxy variable, APC, that are independent
from truncation error, and 2) it is hard to tell whether this is due to the larger truncation error for longer
maturities or the larger truncation sensitivity for longer maturities.
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Table 4.2: Relationship between domain asymmetry and truncation error

This table reports the regression results of truncation error proxy variable, i.e., APC, on the level of

integration domain asymmetry that is measured in two different ways. The two domain asymmetry level

measures, i.e, log-moneyness width difference and log-moneyness width log-ratio, are defined as follows:

(Log-moneyness width difference ratio) =
ln (Kmax(t, τ)/S(t))− | ln (Kmin(t, τ)/S(t)) |
ln (Kmax(t, τ)/S(t)) + | ln (Kmin(t, τ)/S(t)) | ,

(Log-moneyness width log-ratio) = ln

(
ln(Kmax(t, τ)/S(t))

| ln(Kmin(t, τ)/S(t))|

)
.

Log-moneyness width, which is defined as

(Log-moneyness width) = ln (Kmax(t, τ)/S(t)) + | ln (Kmin(t, τ)/S(t)) |

is considered as an independent variable to control the impact of the integration domain width on the

truncation error size. ∗∗ and ∗ denote statistical significance at the 1% and 5% levels, respectively.

2 months 4 months

[1] [2] [3] [4] [1] [2] [3] [4]

Log-moneyness width 1.2092∗∗ 1.3153∗∗ 2.1813∗∗ 2.3106∗∗

difference ratio (35.09) (37.44) (36.03) (38.23)

Log-moneyness width 0.2487∗∗ 0.2487∗∗ 0.4722∗∗ 0.4719∗∗

log-ratio (35.33) (35.33) (31.07) (30.88)

Log-moneyness width
−0.1320∗∗ 0.0017 −0.2669∗∗ −0.0050

(−10.86) (0.14) (−10.95) (−0.20)

Constant
0.2728∗∗ 0.3303∗∗ 0.3461∗∗ 0.3295∗∗ 0.3935∗∗ 0.5456∗∗ 0.5707∗∗ 0.5484∗∗

(50.88) (48.16) (40.49) (38.52) (44.57) (38.19) (31.11) (27.24)

Adj. R2 0.3092 0.3123 0.3374 0.3120 0.3206 0.2596 0.3487 0.2594

N 2,750 2,750 2,750 2,750 2,750 2,750 2,750 2,750

4.5. Conclusion

One of the consequences of truncation is that the integration domain can be asymmetric,

and the asymmetry may affect the implied skewness estimator. To address this issue,

Dennis and Mayhew (2002) suggest DSym, i.e, a further reduction of integration domain

that makes the domain symmetric. This chapter analyses the effectiveness of DSym by

investigating whether and, if so, under what condition DSym minimises the truncation

error of the implied skewness estimator. Specifically, we examine how integration domain

asymmetry affects the implied skewness estimator using generated and observed option

prices data.

The main findings of this chapter are as follows. First, DSym alleviates the estimation

bias of implied skewness estimate effectively on the condition that the symmetry of integra-

tion domain is defined in terms of log-moneyness and the implied RND is symmetric. On
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the contrary, DSym may become less effective even when the implied RND is symmetric

if the symmetry of the integration domain is defined in terms of strike price as in Dennis

and Mayhew (2002). Second, the truncation error of the implied skewness estimator may

not be reduced by DSym if the implied RND is asymmetric. Especially, the results in this

paper imply that the bias is smaller when integration domain is more biased to OTM put

side if the implied skewness is negative, and when the domain is more biased to OTM call

side if the implied skewness is positive. Finally, the width of the integration domain is

also closely related to the size of the truncation error, which implies that DSym may also

increase the size of the truncation error by reducing the width of the integration domain.

Overall, this chapter suggests that the effectiveness of DSym relies on some precon-

ditions and can be insignificant or even negative if any of the preconditions is violated.

This implies that DSym should be employed carefully. Especially, an alternative method

may be required if the implied RND is supposed to be significantly skewed, or the inte-

gration domain is extremely asymmetric so that applying DSym will result in a significant

reduction in the width of the integration domain.
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Chapter 5

Controlling the impact of
truncation on model-free implied
moment estimator

Chapter Summary

This chapter introduces DStab which makes the truncation error of the implied moment

estimators of Bakshi et al. (2003) less volatile cross-sectionally and over time. An empirical

analysis of the S&P 500 index options data suggests that the variance of the truncation

error decreases when DStab is employed while the mean increases, whereas both the mean

and variance increase when DSym is employed instead. In addition, DStab is shown to

be less effective when a domain (a)symmetry measure is not based on log-moneyness or

not adjusted for the market volatility, which suggests that the both factors are essential

to control the level of truncation effectively.
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5.1. Introduction

Chapters 3 and 4 show that it is difficult to eliminate the truncation error of the implied

moment estimators. Chapter 3 suggests that the truncation error of the implied skewness

and kurtosis estimators tends to be significant and varying over time even when LE is

employed. Given that the S&P 500 index options market, which is one of the most

liquid markets, is considered in Chapter 3, the size of the truncation error that survives

LE can be even larger in the less liquid options markets, e.g., individual equity options

market. In addition, Chapter 4 shows that DSym can be ineffective if the true level of

the implied skewness is non-zero. Specifically, Chapter 4 reveals that the truncation error

becomes smaller if the integration domain is more biased to the side where the OTM option

prices tend to be more expensive than the other side, given the width of the integration

domain fixed. Since many previous studies report that the implied skewness tends to be

significantly negative in many options markets, it is likely that DSym in fact increases the

size of the truncation error in most cases.

Given these results, it may be of interest to think about a new truncation error treat-

ment method. However, given the limited availability of option prices and the existing

methods that are equipped with their own reasonable logic, it is not easy to devise a new

method that surpasses all the existing ones. Hence, this chapter first suggests to change

the goal of the truncation error treatment before proposing a new method. It should be

noted that the implied moment estimators of Bakshi et al. (2003) are employed in recent

studies mostly to make a cross-sectional comparison of the implied moments across the

options on different underlying assets, or to track the time-series dynamics of an implied

moment, rather than measuring the level of the implied moments with the best precision.

If this is the case, as argued by Dennis and Mayhew (2002), the ‘de facto’ effect of trun-

cation on empirical analysis can be minimised if the size of truncation error is consistent

across the entire observations. Hence, minimising the volatility of truncation error can be

an alternative to minimising the mean if it is difficult to achieve the latter and if succeeding

in the former will make the truncation error acceptable.

The fact that truncation error is due to truncation implies that the size of truncation

error is related to the level of truncation, and therefore the former can be controlled

by manipulating the latter. DSym indeed takes this idea and tries to reduce truncation
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error by further discarding OTM option prices. However, the issue of DSym is that

the relationship between the level of truncation and the size of truncation error is not

modelled accurately. Hence, in order to improve the effectiveness of DSym and make the

truncation error less volatile, the relationship between the two factors should be modelled

more accurately so that the size of the truncation error can be stabilised by controlling

the level of truncation correspondingly.

Chapter 4 suggests that it is not the strike price but the log-moneyness of the endpoints

of integration domain that should be considered to interpret the impact of truncation on

the implied moment estimators. In addition, this chapter shows that the level of implied

volatility also needs to be considered to explain the relationship between the truncation

level and the truncation error size. Based on these findings, this chapter then reveals that

if the level of truncation is defined using the endpoint log-moneyness that is adjusted by

the level of implied volatility, a strong relationship between the level of truncation and the

size of truncation error can be found. Based on these findings, this chapter finally suggests

a new truncation treatment method, DStab, that makes the truncation error less volatile

cross-sectionally and over time. The variance comparison test on the proxy variable for

the size of the truncation error shows that the truncation error volatility reduction effect

of DStab is statistically significant. In addition, the test results also suggest that the

volatility of truncation error cannot be reduced consistently if the specification of DStab

is modified or DSym is employed instead.

The rest of this chapter is constructed as follows. Section 5.2 analyses the relationship

between the level of truncation and the size of truncation error. Section 5.3 introduces

DStab and explains how it is conducted. Section 5.4 summarises the result of empirical

analysis. Section 5.5 discusses the main findings and concludes.

5.2. Relationship between truncation level and truncation

error size

This section analyses the relationship between the level of truncation and the size of

truncation error. Chapter 4 shows that the impact of truncation on model-free implied

moment estimator is closely related to the log-moneyness of the minimum and maximum

strike price of the integration domain, and that both the width and asymmetry level of
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integration domain affect the moment estimate. In addition to these findings, Section 5.2.1

shows that the size of truncation error is also related to the level of implied volatility,

and proposes the implied volatility adjusted log-moneyness (IVAL) as a new measure of

truncation level. Section 5.2.2 suggests that the relationship between the truncation level

and the truncation error size can be complex, and therefore, the nonlinearity between the

two factors should be considered.

5.2.1 Implied volatility level and truncation error

Section 2.2.3 shows that if the truncation is ignored and the fair value of the contracts V ,

W , and X are estimated using only the OTM option prices for the strike price domain

[Kmin(t, τ),Kmax(t, τ)] for time t and maturity τ , it is equivalent to assuming that

Pt
{

ln

[
S(t+ τ)

S(t)

]
< ln

[
Kmin(t, τ)

S(t)

]}
= 0 (5.1)

and

Pt
{

ln

[
S(t+ τ)

S(t)

]
> ln

[
Kmax(t, τ)

S(t)

]}
= 0, (5.2)

where S(t) is the underlying price level at time t, for any probability measure P for which

the fair value is estimated. The assumptions in Equations (5.1) and (5.2) suggest that the

implied moment estimate under truncation is related to the corresponding moment of the

truncated probability density that is defined by the function

g(x) =

 0, if x < ln(Kmin(t, τ)/S(t)) or x > ln(Kmax(t, τ)/S(t)); and

z−1f(x), if ln(Kmin(t, τ)/S(t)) ≤ x ≤ ln(Kmax(t, τ)/S(t)),

(5.3)

where f(x) is the implied RND function, and

z =

∫ ln(Kmax(t,τ)/S(t))

ln(Kmin(t,τ)/S(t))
f(x)dx. (5.4)

This relationship implies that the truncation of OTM option prices on the strike price

domain of the OTM option price function can be translated into the truncation of the

mass of implied risk-neutral log-return density on the log-return domain of the density

function, via the log-moneyness of the minimum and maximum strike prices.

Given that a density becomes fatter and wider as its volatility increases, the dif-
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ference between the probability densities defined by f(x) and g(x) can be more signif-

icant if the volatility of the former is higher, even when the points of truncation, i.e.,

ln(Kmin(t, τ)/S(t)) and ln(Kmax(t, τ)/S(t)), are fixed. If the volatility is low so that only

the thin part of RND is truncated, then the difference between f(x) and g(x) will be

insignificant. In contrast, if the volatility is high so that a big mass of RND is truncated,

then g(x) will be considerably different from f(x). Jiang and Tian (2005) reflect this

property by expressing the minimum and maximum strike prices as multiples of standard

deviations while introducing truncation errors, and this approach implies that there is a

need to consider the level of implied volatility when analysing the relationship between

truncation level and truncation error size.

A simple test can be conducted as follows to demonstrate the effect of implied volatility

level on truncation error size. First, multiple sets of OTM option prices are generated using

BS model while setting the volatility parameter σ differently. Next, the trajectory of the

implied moment estimates for each option price set are examined while changing the width

of the integration domain in order to investigate whether the estimate converges to the

true value at a uniform speed regardless of the implied volatility level. If the difference in

the implied volatility level does not affect the relationship between the truncation level and

the truncation error size, then the estimate will converge to true value as domain width

increases at a uniform speed for any implied volatility level. In this chapter, we conduct

this test using five sets of OTM model option prices, for each of which σ is set as 0.1, 0.2,

0.3, 0.4, and 0.5, respectively. The underlying price, time to maturity, and risk-free rate are

set as 1183.2, 0.25, and 0.0301, respectively, as in Section 2.4.2. In this case, the implied

volatility will be equal to σ, whereas implied skewness and kurtosis will stay at zero and

three, respectively, regardless of how we set σ. The integration domain is set to maintain

the symmetry in terms of log-moneyness, i.e., ln(Kmin(W )/S) = − ln(Kmax(W )/S), for

each domain half-width W = 0.5(Kmax −Kmin) given the findings in Chapter 4.

Figure 5.1 depicts the test result. The figure shows that the implied moment estimate

converges to the true value more slowly as implied volatility level becomes higher. Es-

pecially, it is notable in Figures 5.1b and 5.1c that the speed of convergence is different

even when the true level of the corresponding moment is fixed. The results reveal that the

relationship between truncation level and truncation error size is affected by the level of

implied volatility, and therefore there is a need to modify the definition of truncation level
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based on the level of implied volatility in order to explain the relationship appropriately.

The impact of the implied volatility level on the truncation error size is an empirically

important issue given the evidence from the S&P 500 index options market that there is a

strong relationship between the integration domain width and the implied volatility level.

Figure 5.2 illustrates the time-series dynamics of the integration domain width in terms of

strike price and the implied volatility estimate during the period from 2000 to 2010. As the

figure suggests, the minimum and maximum strike prices tend to diverge from (converge

to) the underlying asset price during the high (low) implied volatility period. Does this

imply that more accurate estimates of implied moments can be obtained during the high

implied volatility periods since truncation is less intensive in this period? The results in

this subsection suggest that this is not the case. Namely, even when the minimum and

maximum strike prices tend to diverge from the underlying price, the range of the implied

RND covered by the OTM option prices can be narrower if the implied volatility level

becomes higher. Hence, it can be inappropriate to conclude that a more complete OTM

option availability does always lead to a more accurate implied moment estimation.

5.2.2 Nonlinearity in the relationship

Chapter 4 shows that the size of truncation error is related to the width and asymmetry

level of integration domain, and the relationship among the three factors is shown to be

nonlinear. The nonlinear relationship can be summarised as two components. First, the

relationship between the integration domain width and the truncation error size tends to

be concave, i.e., the change in the size of truncation error after an inclusion or exclusion

of option prices on the outermost part of the integration domain tends to be smaller when

the integration domain is wider. This is intuitive because the included or excluded options

will be deeper-OTM when the integration domain is wider, and therefore the corrsponding

option prices will be cheaper. Second, the impact of the integration domain asymmetry

level on the truncation error size tends to be smaller when the integration domain is wider.

This is also natural because deeper-OTM option prices will be newly included and excluded

by a change in the domain asymmetry level when the integration domain is wider.
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Figure 5.1: Impact of implied volatility level on truncation error

This figure illustrates the relationship between the implied volatility level and the truncation error size by

showing how quickly the implied moment estimate converges to the true value as the integration domain

width increases at different implied volatility levels. BS model is used to generate option prices. For each

domain half-width W , the minimum and maximum strike prices are set to make the domain symmetric in

terms of log-moneyness, i.e.,

ln(S/Kmin) = ln(Kmax/S); and Kmax −Kmin = 2W,

where S = 1178.3 is the dividend-adjusted underlying price, and Kmin and Kmax are the minimum and

maximum strike prices, respectively. The level of implied volatility, skewness, and kurtosis are depicted in

Figures 5.1a, 5.1b, and 5.1c, respectively. The strike price interval is set as 0.1.

(a) Implied volatility estimate

(b) Implied skewness estimate

(c) Implied kurtosis estimate
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Figure 5.2: Strike price domain width and implied volatility level

This figure shows the time-series dynamics of strike price domain width and implied volatility level in

the S&P 500 index options dataset, which spans a time period from January 2000 to December 2010.

Strike price domain and implied volatility level are measured based on implied volatility curves for time to

maturity of two and four months, which are extracted from daily implied volatility surfaces. Figure 5.2a

illustrates the distance of minimum and maximum strike prices from daily index level after sample filtration.

Figure 5.2b depicts daily implied volatility level, which is estimated using the implied volatility estimator

of Bakshi et al. (2003) and linear extrapolation method. Linear extrapolation is applied up to the points

where strike prices are S(t)/3 and 3S(t), respectively, where S(t) is the dividend-free index level at day t.

(a) Difference from S&P 500 index level

(b) Implied volatility estimate

The two nonlinear properties above suggest that the explanatory power of the trun-

cation level with respect to the truncation error size can be weak even when the level is

quantified appropriately, if those properties are not considered while modelling the rela-

tionship between truncation level and truncation error size. Hence, this chapter introduces

some additional variables for the regression analysis in Section 5.4 to consider the nonlin-

earity. First, the natural logarithm of integration domain width is employed to reflect the
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concave relationship between domain with and truncation error size. Second, the product

of domain width and asymmetry level is included to consider the interaction between the

two factors.

5.3. Domain stabilisation

This section introduces the new truncation treatment method, i.e., DStab, and elaborates

on its characteristics based on the findings in Section 5.2. Section 5.3.1 describes the

definition of DStab and explains its rationale. Section 5.3.2 addresses some issues regarding

DStab and shows how they can be resolved. Section 5.3.3 demonstrates an example of

implementing DStab and discusses the consequences of DStab.

5.3.1 Concept and definition

Section 5.2.1 proposes IVAL as a variable that can explain the relationship between trun-

cation and truncation error well. If this is the case, it can be possible to control the

magnitude of truncation error by controlling the level of truncation that is defined in

terms of IVAL. Since the direction of causality between truncation and truncation error

is clear, the size of truncation error may be controlled by manipulating the width and

asymmetry level of the integration domain, which are shown by Chapter 4 to be the two

variables that can characterize the level of truncation, are defined in terms of IVAL and

then controlled.

The new truncation treatment method proposed in this paper, i.e., DStab, is based on

the ideas of 1) measuring the minimum and maximum values of the integration domain in

terms of IVAL, and 2) stabilising the two endpoint values by discarding some of the OTM

option prices that are available. If the minimum and maximum IVALs are maintained at

a fixed level either cross-sectionally or over time, then the width and asymmetry level of

integration domain will be stabilised in terms of IVAL, and therefore the size of truncation

error will become less volatile on the condition that the truncation level in terms of IVAL

is closely related to the size of truncation error. Although it is impossible to fix the size

of truncation error because the error is also related to the shape of RND, it is likely that

the error will become less volatile by DStab because the other major factor of truncation

error, i.e., the level of truncation, is stabilised.
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5.3.2 Issues

There are three issues regarding DStab. First, although DStab may stabilize the size of

truncation error, it is also likely that DStab will increase the size in mean. As argued in

Chapter 4, a truncation treatment method that conducts a further reduction of integration

domain may induce an increase in the size of truncation error, because the reduction will

make the width of integration domain smaller. Hence, DStab can be regarded as a tradeoff

between the mean and volatility of truncation error. This is the reason why one first needs

to clarify the objective of implied moment estimation before conducting DStab. If the

estimate needs to be as close as possible to the true value, regardless of how volatile the

estimation error is, then DStab will not be a good truncation error reduction method to

employ. On the other hand, if truncation error needs to be less volatile in order to make

a comparison among implied moment levels more accurate, then DStab can be considered

as a good option for truncation treatment.

Although less volatile truncation error will make it easier to discern differences in im-

plied moments across observation, there is a possibility that moment estimate will convey

misleading information if truncation error is too large. For instance, a leptokurtic density

can be estimated as platykurtic if truncation error in implied kurtosis estimate is too large.

In order to avoid getting affected by such large truncation errors, we suggest employing LE

in conjunction with domain stabilisation method. As shown in Chapter 3, LE significantly

reduces the truncation error regardless of the implied moment being estimated, although

the reduction is incomplete. Hence, combining the two methods can make truncation error

moderately large and less volatile.

Second, there is no definite rule for setting the threshold volatility-adjusted log-moneyness

levels. It is difficult to decide at which point options should be trimmed off, since there

is a tradeoff between better stabilisation and smaller truncation error, i.e., we need to

discard more options if we want to stabilise the truncation level more strongly via a more

intensive trimming. In order to set a criterion, we first determine the percentage of end-

point volatility-adjusted log-moneyness values that will be fixed after stabilisation, and

then choose the threshold values based on the percentage level. For instance, if we want

90 percent of volatility-adjusted endpoint log-moneyness levels to be fixed, then we set the

threshold levels to be the 90th percentile of volatility-adjusted minimum log-moneyness

and 10th percentile of volatility-adjusted maximum log-moneyness in the entire sample.
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Finally, the level of implied volatility, what is to be estimated, is required ex ante.

This issue can be circumvented by conducting estimation in two stages. Chapter 3 shows

that the impact of truncation on implied volatility estimator is much smaller than implied

skewness or kurtosis estimator. Hence, we first estimate implied volatility without DStab

but only with LE, and then take the estimate for volatility adjustment. Next, we conduct

DStab that is followed by another set of LE, and then estimate the implied skewness and

kurtosis.

5.3.3 Example of implementation

Figure 5.3 illustrates the level of volatility-adjusted endpoint log-moneynesses of S&P 500

index options with 2 months to maturity before and after domain width stabilisation.

Two sets of stabilisation are done in order to fix 90 and 99 percent of volatility-adjusted

endpoint log-moneyness values, respectively. When Figure 5.3b is compared to Figure

5.3c, it can be found that domain width is larger in the case of 90 percent stabilisation

than 99 percent stabilisation, but volatility-adjusted endpoint log-moneyness levels are

fixed more firmly in the case of 99 percent stabilisation. This again shows that one faces

a tradeoff when deciding the threshold values for domain width stabilisation.

5.4. Empirical analysis

This section reports the result of empirical analysis on S&P 500 index options to show

that 1) the relationship between the truncation level and the truncation error size is best

explained when the truncation level is defined in terms of IVAL, and 2) DStab makes

the size of truncation error less volatile. Section 5.4.1 describes how option prices are

estimated for fixed maturities by generating implied volatility surfaces. Section 5.4.2

investigates whether the level of truncation has the highest explanatory power with respect

to the size of truncation error when it is measured in terms of IVAL rather than strike

price, moneyness, or unadjusted log-moneyness. Section 5.4.4 examines whether DStab

can make the size of truncation error less volatile, and if so, the volatility reduction effect

can also be found from other similar methods. A description of the S&P 500 index options

data used in this chapter is provided in Section 2.3.
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Figure 5.3: Impact of domain stabilisation

This figure illustrates the impact of domain stabilisation by showing how the minimum and maximum

volatility-adjusted log-moneyness is changed after stabilisation. For minimum and maximum strike prices

at each time t, volatility-adjusted log-moneyness is defined as

ln(K/S(t))

VOL(t, τ)
√
τ
,

where K is the strike price, S(t) is the dividend-free index level at time t, VOL(t, τ) is implied volatility

level at time t and time to maturity τ . S&P 500 index options dataset, which spans a time period

from January 2000 to December 2010, is used to generate daily implied volatility surfaces, from which

minimum and maximum volatility-adjusted log-moneyness values are extracted for τ = 2 months. An

n-percent stabilisation is done by discarding options whose volatility-adjusted log-moneyness is smaller

than the nth percentile of minimum volatility-adjusted log-moneyness values in the sample, or larger than

the (100− n)th percentile of maximum volatility-adjusted log-moneyness values. Implied volatility level is

estimated using the implied volatility estimator of Bakshi et al. (2003) and linear extrapolation method.

Linear extrapolation is applied up to the points where strike prices are S(t)/3 and 3S(t), respectively.

(a) Before stabilisation

(b) After 90 percent stabilisation

(c) After 99 percent stabilisation
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5.4.1 Generation of implied volatility surface

For empirical analysis, we generate daily Black-Scholes implied volatility surfaces as in

Chapter 3 to avoid the telescoping problem. In order to generate a surface, we first con-

struct Black-Scholes implied volatility curves for maturities with available option prices.

With these volatility curves, we generate an implied volatility surface by estimating a bicu-

bic spline function. If option prices are originally unavailable for a maturity, the minimum

and maximum strike prices are approximated by linearly interpolating the corresponding

endpoint strike price for the two nearest maturities for which option prices are available.

When the implied moments are estimated, we first extract an implied volatility curve

from the daily surface by generating implied volatility observations between the minimum

and maximum strike prices with a strike price gap of 0.1 using the bicubic spline function,

and then convert the implied volatility observations to OTM option prices. When LE is

employed, we extrapolate the two endpoint implied volatility levels of this extracted curve

up to the points where the strike prices are S(t)/3 and 3S(t), respectively, where S(t) is

the dividend-adjusted index level on day t. The strike price interval between the option

prices generated by LE is also set as 0.1. Figure 5.4 shows an example of daily implied

volatility surface and the corresponding OTM option prices.

5.4.2 Nonlinear relationship between truncation level and truncation

error size

Before investigating whether the level of truncation is more closely related to the size

of truncation error when the level is measured in terms of IVAL, we first examine if

the relationship between the truncation and the truncation error is in fact nonlinear as

suggested in Section 5.2.2. If this is the case, the nonlinearity should be considered to make

the comparison among the different units for measuring truncation level more complete.

To consider the nonlinearity, we include the natural logarithm of domain width and the

product of domain width and asymmetry level and check if these new variables can increase

the explanation power of the truncation level with respect to the truncation error size.
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Figure 5.4: Example of implied volatility and option price surfaces

This figure shows an example of implied volatility surface and the corresponding option prices, which is

constructed based on the out-of-the-money option prices on January 3rd, 2000. Strike price gap is set to

be twenty-five for a better visualization. Implied volatility surfaces before and after linear extrapolation

are depicted in Figure 5.4a and 5.4b, respectively. Out-of-the-money option price levels corresponding to

Figures 5.4a and 5.4b are illustrated in Figures 5.4c and 5.4d, respectively.

(a) Implied volatility surface (not extrapolated)

(b) Implied volatility surface (extrapolated)

(c) Option price surface derived from (a)

(d) Option price surface derived from (b)
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Following the approach in Chapter 4, the width and asymmetry level of integration

domain are defined as

Width(t, τ) = Xmax(t, τ)−Xmin(t, τ), Asym(t, τ) = ln

(
Xmax(t, τ)−XATM(t)

XATM(t)−Xmin(t, τ)

)
,

(5.5)

where Xmin(t, τ), Xmax(t, τ), and XATM(t) are the minimum value, the maximum value,

and the at-the-money value of the integration domain for time t and maturity τ , respec-

tively, that are measured in terms of the corresponding unit. For instance, if the truncation

level is measured in terms of strike price, the definitions in Equation (5.5) become

WidthK(t, τ) = Kmax(t, τ)−Kmin(t, τ), AsymK(t, τ) = ln

(
Kmax(t, τ)− S(t)

S(t)−Kmin(t, τ)

)
.

Since the true value of the implied moments are unknown for the option prices that are

observed from markets, a proxy variable needs to be employed to approximate the size of

the truncation error. As in Section 4.4.2, APC is chosen as a proxy for the size of the

truncation error.

Table 5.1 summarises the regression result for which the truncation level is measured

in terms of IVAL.1 Column [1] reports the benchmark result, where none of the concave

relationship between the domain width and the size of truncation error or the interaction

between the domain width and the domain asymmetry level is considered. Column [2] and

[3] show the results where either the concavity or the interaction is considered, respectively.

Finally, Column [4] reports the results where the both factors are reflected. In Table 5.1,

three notable points can be found. First, Both the t-statistics for domain width and

the adjusted R2 become more significant when domain width is replaced with its natural

logarithm. This implies that the relationship between domain width and turncation error

size is indeed concave. Second, the coefficient estimate for the interaction term is shown to

be always negative and significant, regardless of whether the concave relationship between

domain width and truncation error size is considered. The negative coefficient of the

interaction term can be interpreted in two ways:

• Marginal change in truncation error with respect to domain asymmetry increases

1The result is qualitatively equivalent when the truncation level is measured in terms of other units,
and therefore only the result for IVAL is reported for brevity.
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(decreases) as domain width decreases (increases): This is consistent with the argu-

ment in Section 5.2.2, i.e., deeper-OTM option prices will be included or excluded

by a change in the level of domain asymmetry if the integration domain is wider, so

that the impact of the inclusion or exclusion will be smaller.

• Marginal change in truncation error with respect to domain width increases (de-

creases) as domain becomes more biased to the OTM call (put) side: This is consis-

tent with Chapter 4 which shows that the magnitude of change in implied skewness

estimate with after a change in domain width tends to be larger (smaller) when the

integration domain is more biased to the OTM call (put) side, when the true implied

skewness is negative. Several studies report that the implied skewness is significantly

negative in the S&P 500 index options market.

Finally, when both of the two new variables are included as in Column [4], explanatory

power of the model is considerably increased when compared to Column [1]. The level of

adjusted R2 is ranged between 0.578 and 0.755 in Column [4], whereas its value is between

0.279 and 0.589 in Column [1]. The increase in the level of adjusted R2 suggests that a

large part of truncation error size can be explained with the level of truncation if measured

properly and the nonlinear relationship between truncation level and truncation error size

is considered.

5.4.3 Measuring unit of truncation level

Section 5.4.2 shows how the relationship between truncation level and truncation error

size should be modeled while considering the nonlinearity. Based on this finding, this

subsection investigates how the level of truncation should be defined to maximise its

explanatory power on the size of truncation error. The following two questions should be

answered to define the level of truncation:

• How should the minimum and maximum points of the integration domain be mea-

sured and quantified? Namely, among the strike price, moneyness, and log-moneyness

of the end-points, which one should be considered?

• Should the level of implied volatility considered when measuring the level of trunca-

tion?
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To answer the two questions above, we compare six cases where the strike price, mon-

eyness, and log-moneyness are used with and without volatility adjustment to define the

width and asymmetry level of the integration domain, respectively. Specifically, we in-

vestigate in which case the two truncation level variables have the strongest explanatory

power on the size of truncation error, using the regression model with the two nonlinearity-

reflected variables in Section 5.4.2.

Table 5.2 reports the regression result. The tables reveals two interesting findings.

First, the explanatory power of the width and asymmetry level of the integration domain

increases significantly after volatility adjustment. This suggests that the level of implied

volatility should be considered to explain the relationship between the truncation level

and the truncation error size. Second, when implied volatility level is considered, the

explanatory power is the strongest when log-moneyness is used to measure the width

and asymmetry level of the integration domain, regardless of the maturity and moment

considered. This is consistent with Section 2.2.3 which shows that the truncation of

integration is linked to the truncation of the implied risk-neutral log-return density via

the end-point log-moneyness of the integration domain. Overall, the results in Table 5.2

suggest that the minimum and maximum points of the integration domain should be

measured in terms of IVAL to explain relationship between truncation level and truncation

error size.

5.4.4 Effectiveness of DStab

In this subsection, we empirically test whether DStab can reduce volatility of truncation

error effectively, and compare the effectiveness with some alternative methods. In addition

to comparing preliminary statistics before and after truncation treatment, we also conduct

a set of variance comparison tests, using the test statistic of Levene (1960) which is robust

to nonnormailty, and the two alternative statistics of Brown and Forsythe (1974), which

are shown to be even more robust when dealing with skewed distributions. If a method

is effective in reducing volatility of truncation error, the test statistics will indicate a

significant decrease in variance after DStab.

The alternative methods, to which DStab is compared, are chosen in order to achieve

two goals. First, two of the alternatives are chosen so that by comparing them to DStab one

can find out whether the main features of DStab (use of log-moneyness-based measure and
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volatility adjustment) in fact enhance effectiveness. Specifically, we choose two different

versions of DSym, for one of which log-moneyness is replaced with moneyness K/S, while

volatility adjustment is omitted for the other. Second, the other two alternatives are

chosen to compare DStab to DSym. Two different types of symmetrisation methods, for

each of which strike price and log-moneyness are used to define symmetry, respectively,

are employed.

Table 5.3 reports the test result. Three interesting points can be found here. First,

truncation error becomes less volatile after DStab. In Panel A, standard deviation is

found to decrease after DStab. Furthermore, in Panel B, variance comparison test result

confirm that the decrease in standard deviation is statistically significant, both for the

implied skewness and kurtosis estimators. Second, DStab becomes less effective or even

ineffective if either log-moneyness-based measure or volatility adjustment is not applied.

In Panel B, it is shown that the decrease in the truncation error volatility becomes statis-

tically insignificant if log-moneyness is replaced with moneyness, when 90 percent DStab

is conducted for τ = 2 months, regardless of the moment being estimated. On the other

hand, the truncation error volatility of the implied kurtosis estimate is found to increase

after DStab if volatility adjustment is not applied. Finally, both the mean and volatility

of the truncation error increase after DSym regardless of the moment being estimated and

the definition of symmetry being applied. A possibile reason for this is that while DSym

fixes the asymmetry level of the integration domain, it does not control the width. As

mentioned in Sections 4.3 and 4.4, the width of the integration domain is closely related

to the truncation error size even for the implied skewness estimator. Furthermore, the

truncation error is found to be smaller after DStab than after DSym. In Panel A, it is

shown that mean of truncation error is smaller for either 90 or 99 percent DStab, when

compared to DSym. This is because DStab method minimises the number of discarded

options by relaxing the domain symmetry requirement.
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Table 5.2: Explanatory power of truncation level with respect to truncation error size

This table reports the regression results of the proxy variable for the size of truncation error, i.e., the

absolute percentage change in monent estimate after linear extrapolation, on truncation level while con-

sidering the nonlinearity in the relationship. The width and asymmetry level of integration domain are

measured using different units, i.e., strike price, moneyness, and log-moneyness with and without implied

volatility adjustment. The abbreviations IVAS, IVAM, IVAL stand for implied volatility adjusted strike

price, implied volatility adjusted moneyness, and implied volatility adjusted log-moneyness, respectively.

For each unit, domain width and asymmetry level are defined as

Width(t, τ) = Xmax(t, τ)−Xmin(t, τ), Asym(t, τ) = ln

(
Xmax(t, τ)−XATM(t)

XATM(t)−Xmin(t, τ)

)
,

where Xmin(t, τ), Xmax(t, τ), and XATM(t) are the minimum value, the maximum value, and the at-the-

money value of the integration domain for time t and maturity τ , respectively, that is measured in terms

of the corresponding unit. ∗∗ and ∗ denote statistical significance at the 1% and 5% levels, respectively.

Strike Moneyness Log- IVAS IVAM IVAL
Price moneyness

Panel A. Implied skewness estimate (maturity of two months)

ln(Width) −0.3453∗∗ −0.1514∗∗ −0.2615∗∗ −0.4234∗∗ −1.0706∗∗ −1.1979∗∗

(−15.11) (−8.88) (−14.00) (−24.44) (−42.27) (−48.65)

Asym
−0.0263 0.1487∗∗ 0.0271 1.1735∗∗ 1.9098∗∗ 1.7858∗∗

(−1.09) (6.69) (1.29) (30.02) (42.60) (48.74)

ln(Width)×Asym
−0.3507∗∗ −0.1153∗∗ −0.2560∗∗ −0.6085∗∗ −1.2343∗∗ −1.0972∗∗

(−12.01) (−5.16) (−11.24) (−25.16) (−39.38) (−45.27)

Constant 0.0102 0.1420∗∗ 0.0978∗∗ 0.8961∗∗ 1.7135∗∗ 2.0057∗∗

(0.57) (9.07) (7.62) (34.60) (49.84) (58.13)

Adj. R2 0.3523 0.3228 0.3386 0.4282 0.5752 0.6350

N 2,750 2,750 2,750 2,750 2,750 2,750

Panel B. Implied skewness estimate (maturity of four months)

ln(Width) −1.0129∗∗ −0.2821∗∗ −0.4986∗∗ −0.7929∗∗ −1.5827∗∗ −1.8115∗∗

(−29.02) (−8.35) (−11.62) (−33.58) (−38.20) (−44.04)

Asym
−0.2013∗∗ 0.4029∗∗ 0.1829∗∗ 2.3729∗∗ 3.9077∗∗ 2.9458∗∗

(−6.18) (11.43) (6.44) (42.43) (41.37) (47.83)

ln(Width)×Asym
−1.2435∗∗ −0.1478∗∗ −0.5022∗∗ −1.3689∗∗ −2.1456∗∗ −1.8661∗∗

(−23.46) (−3.09) (−11.89) (−37.45) (−38.14) (−44.02)

Constant −0.1096∗∗ 0.2413∗∗ 0.2559∗∗ 1.4437∗∗ 2.9323∗∗ 2.9017∗∗

(−5.62) (11.18) (8.93) (44.18) (43.59) (54.05)

Adj. R2 0.4168 0.2681 0.2960 0.5194 0.5294 0.5899

N 2,750 2,750 2,750 2,750 2,750 2,750

Panel C. Implied kurtosis estimate (maturity of two months)

ln(Width) −0.2364∗∗ −0.1319∗∗ −0.2098∗∗ −0.2678∗∗ −0.8671∗∗ −0.8920∗∗

(−11.88) (−8.95) (−10.17) (−16.22) (−36.63) (−38.28)

Asym
0.1221∗∗ 0.2030∗∗ 0.0726∗∗ 0.5821∗∗ 1.0554∗∗ 0.8709∗∗

(5.82) (10.57) (3.83) (15.63) (25.19) (25.12)

ln(Width)×Asym
−0.1319∗∗ −0.0335 −0.1691∗∗ −0.2715∗∗ −0.6869∗∗ −0.5404∗∗

(−5.19) (−1.73) (−8.23) (−11.78) (−23.45) (−23.56)

Constant 0.1869∗∗ 0.2543∗∗ −0.2341∗∗ 0.7399∗∗ 1.5092∗∗ 1.6183∗∗

(12.00) (18.80) (12.34) (29.98) (46.97) (49.56)

Adj. R2 0.3661 0.3474 0.3498 0.3299 0.5212 0.5782

N 2,750 2,750 2,750 2,750 2,750 2,750
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Table 5.2: Explanatory power of truncation level with respect to truncation error size
(cont.)

Strike Moneyness Log- IVAS IVAM IVAL
Price moneyness

Panel D. Implied kurtosis estimate (maturity of four months)

ln(Width) −0.4956∗∗ −0.2679∗∗ −0.3181∗∗ −0.3431∗∗ −0.8410∗∗ −0.8844∗∗

(−35.40) (−19.69) (−18.44) (−31.12) (−52.76) (−58.33)

Asym
0.0434∗∗ 0.1951∗∗ 0.1279∗∗ 0.6463∗∗ 1.3160∗∗ 0.9049∗∗

(3.33) (13.75) (11.21) (24.74) (36.22) (39.87)

ln(Width)×Asym
−0.4618∗∗ −0.1792∗∗ −0.2815∗∗ −0.3118∗∗ −0.6956∗∗ −0.5536∗∗

(−21.73) (−9.30) (−16.57) (−18.26) (−32.15) (−35.44)

Constant 0.1392∗∗ 0.2320∗∗ 0.2910∗∗ 0.8352∗∗ 1.7327∗∗ 1.5954∗∗

(17.78) (26.67) (25.25) (54.73) (66.96) (80.64)

Adj. R2 0.5877 0.4780 0.5000 0.5393 0.6940 0.7552

N 2,750 2,750 2,750 2,750 2,750 2,750
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Table 5.3: Impact of domain width stabilisation on truncation error

This table shows how the mean and variance of truncation error are changed after applying a number of

different truncation treatment methods, by reporting the sample mean and variance of proxy variable for

truncation error, i.e., absolute percentage change in monent estimate after linear extrapolation, before and

after treatment, as well as a set of variance comparison test statistics. An n-percent stabilisation is done

by discarding options whose location on integration domain (in terms of the measures used in this table)

is more left-sided than the nth percentile of left-side domain endpoints in the sample, or more right-sided

than the (100−n)th percentile of right-side domain endpoints. On the other hand, domain symmetrisation

is done by discarding some options so that the size of intergration domain is maximised while satisfying

one of the following conditions:{
S −Kmin = Kmax − S, (Strike-price-based symmetrisation)

ln(S/Kmin) = ln(Kmax/S), (Log-moneyness-based symmetrisation)

where S is the underlying price, Kmin is the minimum strike price after symmetrisation, and Kmax is the

maximum strike price after symmetrisation. In order to minimise the impact of outliers, a daily observation

is discarded if the value of proxy variable is larger than 1,000 percent for any method or measure. Mean

and standard deviation of truncation error proxy variable are reported in Panel A. In Panels B and C,

three different types of variance comparison test statistics are presented to show whether the change in

truncation error variance after treatmant is statistically significant, for the maturities of two and four

months, respectively. In Panels B and C, a (+) mark is placed together with test statistic when variance is

increased after treatment, and a (−) mark is placed when variance is decreased. ∗∗ and ∗ denote statistical

significance at the 1% and 5% levels, respectively.

Panel A. Mean and standard deviation of truncation error

Moment Method Measure

τ = 2 months τ = 4 months

Mean
Std.

Mean
Std.

N
dev. dev.

Skewness

No method applied 0.0988 0.1295 0.1272 0.2786 2,745

90 percent stabilisation

Volatility-adjusted log-moneyness 0.1351 0.0625 0.1932 0.0688 2,745

Volatility-adjusted moneyness 0.1562 0.0677 0.2154 0.0766 2,745

Log-moneyness 0.1019 0.0745 0.1205 0.0829 2,745

99 percent stabilisation

Volatility-adjusted log-moneyness 0.2633 0.0929 0.4544 0.2128 2,745

Volatility-adjusted moneyness 0.2838 0.0900 0.4287 0.1793 2,745

Log-moneyness 0.1191 0.0819 0.2968 0.2019 2,745

Domain symmetrisation
Strike price 0.5658 0.1931 0.5212 0.2803 2,745

Log-moneyness 0.7925 0.2533 0.8383 0.4026 2,745

Kurtosis

No method applied 0.2130 0.1140 0.2204 0.1515 2,745

90 percent stabilisation

Volatility-adjusted log-moneyness 0.3473 0.0906 0.4274 0.0864 2,745

Volatility-adjusted moneyness 0.3797 0.1015 0.4557 0.1076 2,745

Log-moneyness 0.5094 0.3493 0.4825 0.3225 2,745

99 percent stabilisation

Volatility-adjusted log-moneyness 0.6408 0.0661 1.0458 0.0898 2,745

Volatility-adjusted moneyness 0.6671 0.0733 1.0348 0.0820 2,745

Log-moneyness 0.7033 0.4627 1.1414 0.6842 2,745

Domain symmetrisation
Strike price 0.6926 0.2232 0.6879 0.2873 2,745

Log-moneyness 0.7944 0.2256 0.8478 0.2815 2,745
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Table 5.3: Impact of domain width stabilisation on truncation error (cont.)

Moment Method Measure

Test statistics

Levene (1960) Brown and Forsythe (1974)

Mean- Median- Trimmed-mean-

centered centered centered

Panel B. Variance comparison test statistics (maturity of two months)

Skewness

90 percent

stabilisation

Volatility-adjusted log-moneyness (−) 8.90∗∗ (−) 1.65 (−) 1.81

Volatility-adjusted moneyness (−) 1.21 (−) 0.17 (−) 0.18

Log-moneyness (−) 0.17 (−) 2.88 (−) 2.80

99 percent

stabilisation

Volatility-adjusted log-moneyness (−) 56.78∗∗ (−) 77.91∗∗ (−) 77.89∗∗

Volatility-adjusted moneyness (−) 35.67∗∗ (−) 52.19∗∗ (−) 52.39∗∗

Log-moneyness (−) 5.09∗ (−) 11.56∗∗ (−) 11.56∗∗

Domain

symmetrisation

Strike price (+) 726.23∗∗ (+) 736.61∗∗ (+) 744.89∗∗

Log-moneyness (+) 1183.09∗∗ (+) 1106.07∗∗ (+) 1141.15∗∗

Kurtosis

90 percent

stabilisation

Volatility-adjusted log-moneyness (−) 35.41∗∗ (−) 25.63∗∗ (−) 26.78∗∗

Volatility-adjusted moneyness (−) 1.73 (−) 0.54 (−) 0.57

Log-moneyness (+) 776.63∗∗ (+) 567.81∗∗ (+) 609.75∗∗

99 percent

stabilisation

Volatility-adjusted log-moneyness (−) 269.97∗∗ (−) 227.20∗∗ (−) 236.04∗∗

Volatility-adjusted moneyness (−) 164.86∗∗ (−) 135.12∗∗ (−) 140.68∗∗

Log-moneyness (+) 1007.79∗∗ (+) 695.38∗∗ (+) 754.20∗∗

Domain

symmetrisation

Strike price (+) 672.32∗∗ (+) 652.02∗∗ (+) 659.02∗∗

Log-moneyness (+) 645.48∗∗ (+) 606.74∗∗ (+) 621.49∗∗

Panel C. Variance comparison test statistics (maturity of four months)

Skewness

90 percent

stabilisation

Volatility-adjusted log-moneyness (−) 62.64∗∗ (−) 24.89∗∗ (−) 27.14∗∗

Volatility-adjusted moneyness (−) 44.26∗∗ (−) 15.28∗∗ (−) 16.45∗∗

Log-moneyness (−) 33.25∗∗ (−) 8.91∗∗ (−) 10.08∗∗

99 percent

stabilisation

Volatility-adjusted log-moneyness (−) 247.22∗∗ (−) 317.29∗∗ (−) 315.94∗∗

Volatility-adjusted moneyness (−) 100.09∗∗ (−) 149.86∗∗ (−) 148.30∗∗

Log-moneyness (−) 112.32∗∗ (−) 129.28∗∗ (−) 138.09∗∗

Domain

symmetrisation

Strike price (+) 156.12∗∗ (+) 190.94∗∗ (+) 191.83∗∗

Log-moneyness (+) 577.59∗∗ (+) 518.23∗∗ (+) 564.96∗∗

Kurtosis

90 percent

stabilisation

Volatility-adjusted log-moneyness (−) 175.06∗∗ (−) 111.35∗∗ (−) 122.32∗∗

Volatility-adjusted moneyness (−) 46.55∗∗ (−) 25.66∗∗ (−) 27.96∗∗

Log-moneyness (+) 622.74∗∗ (+) 494.56∗∗ (+) 529.30∗∗

99 percent

stabilisation

Volatility-adjusted log-moneyness (−) 121.50∗∗ (−) 75.78∗∗ (−) 87.53∗∗

Volatility-adjusted moneyness (−) 219.86∗∗ (−) 142.31∗∗ (−) 156.24∗∗

Log-moneyness (+) 1497.43∗∗ (+) 1107.07∗∗ (+) 1190.66∗∗

Domain

symmetrisation

Strike price (+) 530.97∗∗ (+) 535.44∗∗ (+) 539.51∗∗

Log-moneyness (+) 518.05∗∗ (+) 504.26∗∗ (+) 512.16∗∗

Overall, the results in Table 5.3 show that DStab reduces volatility of truncation

error effectively while minimising the size of additional truncation error that is caused by

discarding observations. Especially, DStab is shown to be significantly effective even when

it is used for implied kurtosis estimation. Given that no truncation error treatment method

has been suggested for implied kurtosis estimation so far, reliability of implied kurtosis

estimator can therefore be increased by this method. Furthermore, DStab is also shown

to be more effective for controlling truncation error of implied skewness estimate, when

89



compared to DSym, which makes DStab an even more attractive option for truncation

error treatment.

5.5. Conclusion

Option price quotes are available only for a limited number of strike prices in most markets,

and sometimes this is different from what is assumed in a model. With this limitation,

for instance, it is impossible to obtain option prices for a continuum of strike prices that

span the entire positive real line, which are assumed available in Bakshi et al. (2003).

As pointed out by Jiang and Tian (2005), the limited availability of option prices induce

two implementation issues, i.e., strike price discreteness and truncation. Although it is

relatively easier to mitigate strike price discreteness using techniques such as interpolation,

it is more difficult to deal with truncation because information is more limited for the

option prices beyond the strike price domain that is covered by available option prices.

Given that ignoring the truncation and integrating the weighted option prices on a

domain of finite length will make the implied moment estimators of Bakshi et al. (2003)

biased, a proper treatment is needed to alleviate the estimation bias, which is called

‘truncation errors’ by Jiang and Tian (2005). Chapters 2 and 3 show that the implied

skewness and kurtosis estimators, which rely more heavily on DOTM option prices, are

more exposed to such errors, and therefore it can be conjectured that truncation should

be treated more carefully for those higher moment estimators than implied volatility esti-

mator. Although there exist two truncation error reduction methods, i.e., LE and DSym,

their effectiveness is reported by Chapters 3 and 4 to be conditional or limited, especially

for the implied skewness and kurtosis estimators. Hence, there is still a need for an alter-

native methodology with which the impact of truncation on the implied higher moment

estimators can be reduced more effectively.

This chapter suggests a new truncation treatment method, i.e., DStab, which reduces

the volatility of truncation errors. This approach is totally different from LE and DSym

which focus on reducing the size of truncation errors. The rationale behind DStab is

that the de facto impact of truncation on implied moment estimation is diminished if

the size of truncation error is maintained at a fixed level cross-sectionally and over time,

regardless how high the fixed level is, when the estimation is conducted to track the

90



dynamics of implied moment over time or make a cross-sectional comparison of implied

moment level across options on different underlying assets. By taking this approach,

impact of truncation on implied moment estimation can be reduced without executing the

extremely difficult task of estimating the OTM option prices that are not observable.

DStab reduces the volatility of truncation error by first characterizing the relationship

between the level of truncation and the size of truncation error, and then manipulating

the former accordingly to stabilize the size of the latter. This study shows that the size

of truncation error is closely related to the log-moneyness of the minimum and maximum

strike prices that is adjusted by the level of implied volatility, and therefore DStab can

make truncation error less volatile by fixing IVAL of the endpoints of the integration

domain. The results of variance comparison test on the proxy variables for truncation

error size suggests that the volatility of truncation error decreases after DStab while the

mean increases. In contrast, the truncation error volatility reduction effect is found to be

inconsistent if the specification of DStab is changed or DSym is employed instead, which

implies that the volatility reduction effect of DStab is unique and, therefore, meaningful.

With DStab, this chapter does not only suggest a new way to reduce the impact of

truncation on model-free implied moment estimation, but also provides a deeper under-

standing of the relationship between the level of truncation and the size of truncation

error. In addition to the finding in Chapter 4 that truncation needs to be interpreted in

terms of log-moneyness, this chapter shows that the level of implied volatility should also

be considered to measure the level of truncation. By specifying the level of truncation

and introducing a way to control the level, this chapter provides a methodological foun-

dation for further studies on the higher moments of implied RND, and makes the implied

skewness and kurtosis estimators of Bakshi et al. (2003) more reliable to employ.
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Chapter 6

Conclusions

Options markets represent a rich source of information. We can obtain more detailed and

multifaceted information about the price dynamics of an asset from its options market

than from the market for the asset itself, since the option price quotes are observable for

multiple strike prices and maturities. Evidence of this abundance of information can be

found in the methodologies that construct the implied RND from the option prices. Given

that the RND is literally the probability density of the underlying asset price at maturity

under the risk-neutral measure, we can extract information about the market participants’

expectations for asset price dynamics from that density. Following the seminal work of

Breeden and Litzenberger (1978) who develop a simple method to synthesise the Arrow-

Debreu security using option prices, research on the implied RND has continued to develop

methods to collect more accurate and comprehensive information from option prices.

Unfortunately, in most options markets the availability of information is insufficient

to satisfy the assumption made by the RND construction methodologies. The complete

RND function can only be derived when a continuum of option prices is available for

the strike prices from zero to the positive infinity, and so the methodologies presume

that the continuum of option prices is readily available. However, option quotes can

only be observed for a limited number of strike prices and maturities in almost every

options market, and some quotes that are observed need to be discarded due to the market

microstructure issues. Hence, option prices have to be approximated or, in extreme cases,

ignored for the strike prices for which option prices are not observed, and this induces an

estimation bias.

Although recent studies have developed methods that directly calculate the moments

of the implied RND without constructing the density itself, this does not necessarily
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mean that we can circumvent the problem of limited option price availability using these

alternative methods. For instance, the model-free implied moment estimators of Bakshi

et al. (2003), which are the main topic of this thesis, still require a continuum of option

prices to calculate the non-central moments. Hence, the implied moment estimators also

become biased when option price availability is limited. Specifically, as summarised by

Jiang and Tian (2005), the bias is induced by two factors: 1) the discreteness of the strike

prices for which option prices are available, and 2) the complete unavailability of option

prices for a part of the DOTM-DITM region of the strike price domain, which is also

known as truncation.

Given that most of the empirical studies employ interpolation techniques to approxi-

mate a continuum of option prices from the discrete set of option prices that are observed

from the market, it can be argued that it is relatively easy to address the issue of strike

price discreteness. In contrast, it is more difficult to resolve the issue of truncation be-

cause the available information is much more limited. As shown in this thesis, the existing

truncation error reduction methods, namely LE and DSym, only partially or conditionally

reduce the impact of truncation, which can be a serious issue when one is interested in

estimating the skewness and kurtosis of the implied RND. This is because these higher

moments are more closely related to the tail shape of the density, which is implied by the

DOTM option prices.

This thesis demonstrates that truncation can be problematic for implied higher moment

estimation when the estimators of Bakshi et al. (2003) are employed, and so develops an

alternative truncation treatment method. The new method, DStab, is found to render

the truncation error size less volatile either cross-sectionally or over time. It therefore

alleviates the de facto effect of truncation on empirical analyses, since most studies utilise

the implied moment estimators to track the time series dynamics of the implied moments

or else make a cross-sectional comparison of the moments among the options on different

underlying assets. With DStab, we suggest that minimising the volatility of the truncation

error can be a feasible alternative to minimising the size.

The findings of this thesis could be more meaningful when applied to individual equity

options markets. When compared to the S&P 500 index option market that is the main

focus of this thesis, options on individual stocks are less liquid and, therefore, their market

quotes are only available for a more limited number of strike prices. Hence, it is likely
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that the issues regarding LE and DSym will be more evident when they are used in

conjunction with the individual equity options data, and so it would be interesting to

investigate whether DStab renders the truncation error size less volatile even when the

method is applied to individual equity options data.

Another topic that can be considered for further research is the effectiveness of DStab

when the option price availability is extremely limited. As shown in Chapter 4, it could

be very difficult to control the size of the truncation error when the integration domain

is so significantly narrow that the estimation bias is large even for the fair value of the

volatility contract V . If this is the case, it might be better to discard the observations for

the corresponding time and maturity pair rather than applying a truncation treatment

method. Hence, it would be valuable if future studies were to determine up to which

truncation level DStab can be applied in a reliable manner.

Finally, it would also be meaningful to investigate whether there is another means

of implied volatility curve extrapolation that can be shown to be more effective than LE.

Although it is natural to think about the approximation of higher orders, for instance linear

or quadratic approximation as alternative extrapolation schemes, it is difficult to conclude

that they are superior to LE given that the truncation error size is not measurable for

the observed market option prices data. However, as shown in Chapter 3, the sensitivity

of the implied moment estimators to a marginal change in truncation can be utilised to

evaluate the effectiveness of an extrapolation method. Therefore, one could suggest that

linear or quadratic approximation should be used instead of LE if it can be shown that

these higher order approximations make the implied moment estimators even less sensitive

to truncation.
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A. Proof of Proposition 2.1

Proof. For any nonnegative real constants Kmin and Kmax which satisfy 0 < Kmin ≤ S̄

and S̄ ≤ Kmax <∞, Equation (2.1) in Section 2.2.1 can be rearranged as

H[S] =H[S̄] + (S − S̄)HS [S̄] + IS>S̄
∫ Kmax

S̄
HSS [K](S −K)dK

+ IS>Kmax

∫ ∞
Kmax

HSS [K](S −K)dK + IS<S̄
∫ S̄

Kmin

HSS [K](K − S)dK

+ IS<Kmin

∫ Kmin

0
HSS [K](K − S)dK

=H[S̄] + (S − S̄)HS [S̄] +

∫ Kmax

S̄
HSS [K](S −K)+dK

+

∫ ∞
Kmax

HSS [K](S −K)+dK +

∫ S̄

Kmin

HSS [K](K − S)+dK

+

∫ Kmin

0
HSS [K](K − S)+dK, (1)

and, therefore, Equation (2.2) in Section 2.2.1 can also be redefined as

E∗t {e−rτH[S]} = (H[S̄]− S̄HS [S̄])e−rτ +HS [S̄]S(t)

+

∫ Kmax

S̄
HSS [K]C(t, τ ;K)dK +

∫ ∞
Kmax

HSS [K]C(t, τ ;K)dK

+

∫ S̄

Kmin

HSS [K]P (t, τ ;K)dK +

∫ Kmin

0
HSS [K]P (t, τ ;K)dK. (2)

If truncation exists for strike price domains (0,Kmin) and (Kmax,∞), and therefore, the

OTM option prices for the domains are omitted for fair value estimation, then it is equiv-

alent to assuming that P (t, τ ;K) ≡ 0 for {K : 0 < K < Kmin(t, τ)} and C(t, τ ;K) ≡ 0 for

{K : Kmax(t, τ) < K <∞}, and thereby that

∫ Kmin(t,τ)

0
P (t, τ ;K)dK = 0; and

∫ ∞
Kmax(t,τ)

C(t, τ ;K)dK = 0. (3)

Hence the assumption of zero option price is equivalent to assuming that

∫ Kmin

0
HSS [K]P (t, τ ;K)dK = 0; and

∫ ∞
Kmax

HSS [K]C(t, τ ;K)dK = 0
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in Equation (2), and this is also equivalent to assuming that

∫ Kmin

0
HSS [K](K − S)+dK = 0; and

∫ ∞
Kmax

HSS [K](S −K)+dK = 0

or

IS<Kmin

∫ Kmin

0
HSS [K](K−S)dK = 0; and IS>Kmax

∫ ∞
Kmax

HSS [K](S−K)dK = 0 (4)

in Equation (1).

Because HSS [K], K −S, and S−K are well-defined for all H[S] and K, the only way

to make the assumption in Equation (4) is to assume that both IS<Kmin and IS>Kmax is

almost surely zero in the probability measure for which the fair value is estimated, i.e.,

P∗{S < Kmin} = 0; and P∗{S > Kmax} = 0. (5)

If we add the parameters t and τ and rearrange the inequality in terms of log-moneyness

and log-return, then Equation (5) becomes identical to Equation (2.19).
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B. Proof of Proposition 3.1

Proposition 3.1 is proved only for the volatility contract V . The same proof can be applied

to the other contracts W and X as well. It is assumed that day t, time to maturity τ , and

risk-free rate r are known and fixed, and the underlying asset pays no dividends.

Proof.

Ṽ ′(α) = g′(α)
2(1− g(α))

Seg(α)
C(g(α)) + f ′(α)

2(1− f(α))

Sef(α)
P (f(α))

− g′(α)
2(1− g(α))

Seg(α)
C̃(σBS(g(α)), g(α))− f ′(α)

2(1− f(α))

Sef(α)
P̃ (σBS(f(α)), f(α))

+

∫ λmax

g(α)

(
2(1− λ)

Seλ
· ∂C̃(σBS(g(α)), λ)

∂α

)
dλ

+

∫ f(α)

λmin

(
2(1− λ)

Seλ
· ∂C̃(σBS(f(α)), λ)

∂α

)
dλ

=

∫ λmax

g(α)

(
2(1− λ)

Seλ
· ∂C̃(σBS(g(α)), λ)

∂α

)
dλ

+

∫ f(α)

λmin

(
2(1− λ)

Seλ
· ∂C̃(σBS(f(α)), λ)

∂α

)
dλ

=

∫ λmax

g(α)

(
2(1− λ)

Seλ
· ∂C̃(σBS(g(α)), λ)

∂σBS(g(α))
· dσBS(g(α))

dg(α)
· dg(α)

dα

)
dλ

+

∫ f(α)

λmin

(
2(1− λ)

Seλ
· ∂C̃(σBS(f(α)), λ)

∂σBS(f(α))
· dσBS(f(α))

df(α)
· df(α)

dα

)
dλ

=

∫ λmax

g(α)

(
2(1− λ)

Seλ
· ν(σBS(g(α)), λ) · σ′BS(g(α)) · g′(α)

)
dλ

+

∫ f(α)

λmin

(
2(1− λ)

Seλ
· ν(σBS(f(α)), λ) · σ′BS(f(α)) · f ′(α)

)
dλ, (6)

where

C̃(σ, λ) = S(N(d1(σ, λ))− e−λrτN(d2(σ, λ))), (7)

P̃ (σ, λ) = S(e−λrτN(−d2(σ, λ))−N(−d1(σ, λ))), (8)

d1(σ, λ) =
−λ+ (r + 0.5σ2)τ

σ
√
τ

, (9)

d2(σ, λ) = d1(σ, λ)− σ
√
τ , (10)
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N(·) denotes the standard normal cumulative distribution function, and ν(σ, λ) is the

option vega for Black-Scholes implied volatility σ and log-moneyness λ. Given that

ν(σ, λ) = Sn(d1)
√
τ , (11)

where

n(x) =
1√
2π

exp

(
−x

2

2

)
, (12)

d1 =
−λ+ (r + 0.5σ2)τ

σ
√
τ

, (13)

it can be obtained that

ν(σ, λ) =
S
√
τ√

2π
exp

[
−1

2

(
λ2 − 2λ(r + 0.5σ2)τ + (r + 0.5σ2)2τ2

σ2τ

)]
, (14)

and therefore the first integration term in Equation (6) can be rearranged as

∫ λmax

g(α)

(
2(1− λ)

Seλ
· ν(σBS(g(α)), λ) · σ′BS(g(α)) · g′(α)

)
dλ

=
1

S
· σ′BS(g(α)) · g′(α) ·

∫ λmax

g(α)

(
2(1− λ)e−λ · ν(σBS(g(α)), λ)

)
dλ

=

√
τ√
2π
· σ′BS(g(α)) · g′(α)

·
∫ λmax

g(α)
(2(1− λ)

exp

[
−λ− 1

2

(
λ2 − 2λ(r + 0.5σBS(g(α))2)τ + (r + 0.5σBS(g(α))2)2τ2

σBS(g(α))2τ

)])
dλ

= γ0

∫ λmax

g(α)

(
2(1− λ) exp

[
γ1λ

2 + γ2λ+ γ3

])
dλ, (15)

where

γ0 =

√
τ√
2π
· σ′BS(g(α)) · g′(α), (16)

γ1 = − 1

2σBS(g(α))2τ
, (17)

γ2 =
r

σBS(g(α))2
− 1

2
, (18)

γ3 = − (r + 0.5σBS(g(α))2)2τ

2σBS(g(α))2
. (19)
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Similarly, the second integration term in Equation (6) can be rearranged as

∫ f(α)

λmin

(
2(1− λ)

Seλ
· ν(σBS(f(α)), λ) · σ′BS(f(α)) · f ′(α)

)
dλ

= δ0

∫ f(α)

λmin

(
2(1− λ) exp

[
δ1λ

2 + δ2λ+ δ3

])
dλ, (20)

where

δ0 =

√
τ√
2π
· σ′BS(f(α)) · f ′(α), (21)

δ1 = − 1

2σBS(f(α))2τ
, (22)

δ2 =
r

σBS(f(α))2
− 1

2
, (23)

δ3 = − (r + 0.5σBS(f(α))2)2τ

2σBS(f(α))2
. (24)

By combining Equations (6), (15), and (20), it can be found that

Ṽ ′(α) = γ0

∫ λmax

g(α)

(
2(1− λ) exp

[
γ1λ

2 + γ2λ+ γ3

])
dλ

+ δ0

∫ f(α)

λmin

(
2(1− λ) exp

[
δ1λ

2 + δ2λ+ δ3

])
dλ, (25)

which is identical to Equation (3.30).
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