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Abstract

The concept of an adversary applies to all facets of the human life as they continue to dwell
in a hostile world. The knowledge of an adversary’s behaviour is therefore of paramount
importance to us to make sound decisions and succeed in our lives. Red teaming is an
ancient technique where an adversary’s role is emulated by playing a devil’s advocate role
to improve own defences and decisions. The approach involves dealing with two compet-
ing entities, namely blue and red agents, and has been widely used in military planning
to role-play the enemy; test and evaluate its course of actions or judgement; assess the
vulnerabilities of the red team; and learn to understand the dynamics between the red and
blue entities. However, the red teaming concept is easily mapped to domains that share
similar characteristics to military planning, such as adversarial learning, risk assessment,
and behavioural decision making in a competitive environment. Computational red team-
ing is a recent approach that extends red teaming concept in the cyber space and benefits
from replacing the physical red and blue with simulated entities.

The focus of this thesis is to study the effect of information on adversarial behaviour.
A Computational Red Teaming based framework is developed to analyse four forms of an
adversary or a red agent operating in a fixed self or blue agent’s environment: a static red
having direct access to manipulate randomly the information received by the blue agent;
a dynamic red having the ability to learn and evolve to counteract blue’s actions; a real
human playing a red agent’s role; and a red approximating human behaviours.

To understand the impact of information, a statistical framework for simulating adver-
sarial attacks is proposed to model and explore the effect of red. The heart of the simulation
lies in attacks against representative samples of the training data available to blue, and the
generation of attack is based on statistical sampling methods. The underlying assumption
for the simulation is, red has the capability to identify representative samples and attacks
them directly. Under the influence of red, the performance of blue, represented by a single
neural network and neural ensemble, is evaluated in static and non-stationary environment.

A synthetic red teaming game environment is then created to study the second, third
and fourth forms of red. Here, CRT assists in the process of understanding the differences
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and similarities in a behavioural context between a computational red (machine learning
agent) and a natural red (human). Neuroevolution is selected as the computational model,
owing to its abilities to evolve and learn which are very important to mimic human be-
haviours. Besides that, neural networks are used to approximate human behaviours from
the data collected in human red teaming.

The literature lacks metrics and methodologies to analyse the behaviour of both machine
and human red, and to compare these behaviours. The metrics and methodologies need to
be able to represent, process, analyse, and compare the behaviours in an objective manner.
Several metrics and methodologies are proposed in this thesis for the purpose of analysing
and comparing the possible red’s behaviours.

The thesis demonstrates that:

1. Blind purposeful manipulation of data can be counteracted with an ensemble of learn-
ing machines.

2. In a demanding task, where the time to make a decision is very short, humans tend
to ignore the information available to them and instead focus on using their skills to
achieve the task.

3. A deceptive behaviour is beneficial in an environment where the frequency of receiving
information is low and the noise in received information is high.

4. A deceptive behaviour is not beneficial in an environment where information is fre-
quent and noise free.

5. Machine behaviour encompasses human behaviours but extend it with more creative
behaviours.
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Chapter 1

Introduction

1.1 Introduction

Red teaming is an approach to study a task by anticipating the action of an adversary. An

adversary refers to any entity affecting the objective of completing the task optimally and

rationally. On the one hand, optimality refers to the decision maker’s ability to maximise

or minimise some explicit and measurable criterion with respect to the conditional nature

of the environment [26]. On the other hand, rationality refers to a decision making process

whereby an agent takes the action associated with the highest attainable value based on

a measurable function from the available alternative actions. The available actions are

associated with different values whereby the values are computed based on the measurable

function given a set of inputs and constraints [26, 4].

Red teaming normally involves two entities, namely blue agents and red agents. A blue

agent refers to an entity whose goal is to achieve a specific task, while a red agent refers to

a circumstance and/or entity which acts to prevent blue from achieving its task. Originally,

red teaming is an approach widely used in military operations to role-play the enemy; test
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and evaluate its courses of actions or judgement; assess the vulnerabilities of blue; and learn

to understand the dynamics that exist between red and blue.

In recent literature, red does not necessarily refer to an enemy. It is generalised to

any entity that has conflicting objectives with blue or causes blue a level of uncertainty in

achieving its objectives [4]. Based on this definition, we are actually facing a virtual red for

most of our lives because as we know, life is about making decisions and it usually involves

conflicting and uncertain objectives.

Red teaming as a concept can be traced back thousands of years. Its importance is

reflected by several famous quotes in The Art of War by Sun Tzu, in about 500 B. C.[30]:

to know your enemy, you must become your enemy; if you know your enemies and know

yourself, you will not be imperilled in a hundred battles; if you do not know your enemies

but do know yourself, you will win one and lose one; if you do not know your enemies

nor yourself, you will be imperilled in every single battle. In short, the quote emphasises

the importance of anticipating adversary’s behaviours during decision making in a conflict

situation.

Despite the long history, red teaming still remains a developing and evolving concept

which has great potential to offer. Only a few years ago, the importance of the red teaming

concept was formally recognized in the military community with the introduction of the

Army Red Team Leader (ARTL) course at the University of Foreign Military and Cultural

Studies (UFMCS), Fort Leavenworth, in 2006. The Canadian military has also shown

intention to establish the concept and its capability [41]. The concept was limited to

the physical realm originally, but it has been extended to computer simulation owing to

advancements in computer technology as shown in [89, 41]. Computer-based red teaming,

which is commonly known as Computational Red Teaming (“CRT”) is no longer limited

to military applications. Its implementation has been and can be further extended to
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security systems, commercial organisations, governments, and even countries to study the

effectiveness of its strategies in anticipating adversarial behaviours.

From the above examples, red teaming can basically be divided into two types, phys-

ical realm-based red teaming and computer-based red teaming. Physical realm-based red

teaming usually involves human beings. On the other hand, CRT involves the use of com-

putational methods and models. The involvement of humans in red teaming is not only

time and cost consuming, but also limits the exploration of possible aspects of the rele-

vant task. In contrast, CRT allows the exploration of abstract higher level of scenarios of

different vulnerabilities in the problem space [89, 4].

Owing to the definition of red in [4], CRT can be mapped into domains which share

similar characteristics such as adversarial learning, risk assessment, and behavioural deci-

sion making as long as the domains contain entities that have the potential to influence

the decision making process. The discussion on CRT may depend on the purpose to either

discover vulnerabilities or to learn about the opponents. Besides that, the implementation

of CRT also depends on the interest of decision makers on either the problem space or

solution space. With explicit representation of red, CRT can be used to explore the weak-

ness of blue which impacts the plans or solutions at hand. In this case, the implementation

of CRT is to explore the problem space. On the other hand, the implementation of CRT

focuses on the solution space if it is used to explore possible solutions against red.

The representation of red depends on types of domains and applications. For exam-

ple, adversarial learning refers to a branch of machine learning, where the objective is to

understand the impact of an adversary whose intention is to counteract what the machine

learning algorithm is learning. In this domain, an adversarial attack is referred to as red

while the machine learning algorithm/system is known as blue. Red in adversarial learning

is usually information driven. To design secure and robust machine learning environments,
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the performance of blue under the influence of red is usually evaluated by simulating the

red effect through data manipulation.

By using the work in [89] as an example, the question that can be asked is: can au-

tonomous machine red teaming produce results similar to human-based red teaming? The

core of the question means that can computational red teaming actually model and explore

the effect of a natural red (human), who is behaviour driven [4]?

To make comparisons by using a military application would very costly and time con-

suming. Instead, we propose a synthetic simulation environment which allows both machine

red teaming and human red teaming to be carried out in the same environment so that a

fair comparison can be made between them. It is important to implement the same red

teaming task in both environments because red teaming is context dependent and user

specific [41]. To be specific regarding the context of our research, we are interested to know

whether computational red teaming can produce or mimic the behaviour of a natural red

agent, specifically humans, on the same given task and environment?

A synthetic simulation environment allows us to have control over the environment

so that a specific change in the dependent variable can reliably be produced by specific

manipulations of the independent variables, and the change is unlikely to be the result of

confounding variables. Besides that, the focus of the study is on the feasibility of CRT,

which relates to understanding the similarities and differences between CRT and Human

Red Teaming (HRT), but not on the complexity of the environment. If the feasibility of

CRT is proven in our work, the study can be further extended into a more complex and

complicated environment. In short, the focus of our work is to understand the impact of

different forms of red.
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1.2 Motivation

Red teaming usually involves two sides: the red and the blue agents. The blue can refer to

any entity which can vary from a single individual to an organisation that has intentions,

objectives or goals. In contrast, the red agent refers to any entity which has the potential

to influence the achievements of the blue agent. The purpose of red teaming is to represent

and understand the red agent which has the potential to influence a system of interest,

so that the system is more prepared for possible adversarial influences and less exposed

to risk. Owing to the advancements of information technology, red teaming has been

expanded to CRT with the involvement of computational methods and models. With an

explicit representation of the red agent in CRT, it is designed to anticipate and simulate

adversarial behaviours so that we have better understanding on its effects on the system

that we would like to protect. The use of CRT to mitigate risk is not only time and cost

effective, but also has great potential to (see [4] for a good review):

• Explore a space of possibilities;

• Discover vulnerabilities;

• Learn about competitors;

• Reveal biases;

• Create a database of cases for future events;

• Unlearn to learn.

However, the simulation of adversarial behaviours will merely be hypothetical if without

studies to model and explore of how a red agent thinks, which can be either a machine

or a human. The impact of these two forms of agents could be different. Therefore, we
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would like to understand the dynamics of how the red and blue agents interact in machine

red teaming and human red teaming, as shown in Figure 1.1. The study of understanding

the dynamics of interaction between the agents is not only important in establishing the

feasibility of CRT, but also in increasing the confidence of decision makers to use it as a

decision making tool. Besides that, the study will also provide some kinds of empirical

knowledge of the adversary’s decisional process that can be beneficial in red teaming.

 

Similarity comparison 

Dynamics 

Dynamics 

Blue agent 

Human-based 
red agent 

Human red teaming 

Machine-based 
red agent 

Machine red teaming 

Figure 1.1: Comparison of the dynamics of interaction between the red and blue agent in
machine red teaming and human red teaming.

1.3 Key Questions/Hypothesis

In our daily lives, we always need to face risk which may come from an explicit or implicit

red agent. The existence of the red agent often makes us choose from the available options

which affect our abilities to achieve our objective(s). The introduction of CRT as a decision

making tool improves our preparedness to encounter the emerging threat from the red

agent, specifically in adversarial learning.
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The primary focus of CRT in an adversarial learning environment lies in how to produce

the effect of red. Given that red can be either a machine or a human, its impact on adver-

sarial learning may be different. In other words, different forms of red could have different

impacts in adversarial learning. This also means the impact of red lies in its manipulation

approach, which can be either information driven or behaviour driven. Therefore, it is

important to understand the impact of information and behaviour in adversarial learning

if we would like to design secure and robust machine learning environments.

In this thesis, we study four forms of red: (i) one with direct access to stochastically

manipulate the information received by blue; (ii) one based on machine learning with the

ability to learn and evolve to counteract blue’s behaviour; (iii) one that is a real human

playing red; and (iv) one based on machine learning to approximate human behaviours.

These four forms motivated the primary research question in this thesis:

“What is the role of information and behaviour in adversarial learning?”

The four forms of red are proposed based on a selective rather than exhaustive review

on several domains shown in the chapter which are interrelated such as adversarial learning,

prey-predator simulation, risk assessment, behavioural decision making and red teaming,

where the research studies consist of at least two entities with conflicting interest.

In most research related to adversarial learning, one of the common practices found

in the research is an explicit assumption being made about the ability of the adversary.

On the other hand, in the behavioural research focusing on human behaviour in decision

making, human subjects are usually evaluated in the simulated situations or scenarios.

By comparing the research between these two domains, we can see that their main

difference depends on the perception of the source of risk produced by a red. In the

former domain, the red is treated as a fixed source of risk rather than a participant in an

interaction. Besides that, the degree of responsiveness of the red is varied from simple fixed
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rules to complex human beings. Given that the nature of adversarial learning, involving

new attacks, and repetitions or evolutions from old attacks, it is likely that the red exhibited

human behaviour, if not complete, e.g., adaptivity.

One important point mentioned by Lima [46] in prey-predator simulation is that simple

modifications of the assumptions made about the interactions between agents might reveal

some insights on new classes of behavioural phenomena. Therefore, four forms of red agents

are proposed in our work with their differences being determined by the degree to which

individual red’s behaviour approximates human behaviour. At one side, the red acts based

on explicit functions. On the opposite side, the red actually refers to a real human being.

The red agents mentioned in (ii) and (iv) lie in between these two extreme categories, where

they mimic and reproduce human behaviour based on computational models and methods.

We say these red agents are driven by implicit behaviour.

Adversarial learning is a common term in cyber security such as spam filtering, fraud

detection and intrusion detection, where the domain usually involves machine learning algo-

rithms from both sides, i.e., defence system and adversary. Owing to this common practice

of using learning machines in the domain, the term usually refers to the learning process

of a machine learning algorithm in the presence of an adversary whose main goal is to

cause dysfunction of the learning machine. However, we believe that the term “adversarial

learning” is not necessarily limited in cyber security but can be expanded to other domains

as long as the learning process is viewed from the perspective or interest of understanding

the adversary. Since the term is commonly used in cyber security but not in the other

domains, we limited the use of the term to Chapter 3 to eliminate unnecessary confusion

to the readers.

To attempt answering the main question, there are several related sub-questions that

arise from the attempt and they need to be investigated as well:
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1. What is the impact of intentional manipulation of information/data on a learning

machine?

The impact of information (data) in adversarial learning lies on the way data is be-

ing manipulated [84, 85]. A statistical framework for simulating adversarial attacks

is proposed to simulate the red’s effect which is information driven. The heart of

simulation lies in attacks against representative samples of the training data avail-

able to blue, and the generation of attacks is based on statistical sampling methods.

The underlying assumption is red is able to identify the representative samples and

attack them directly. We are interested to understand the impact of red’s informa-

tion manipulation on blue’s performance. Two types of blue are evaluated under the

influence of red, in static and non-static environments, using a single neural network

and a neural ensemble.

2. How to characterise and understand behaviour for a machine or a human?

It is important to compare human and machine within the same environment to

eliminate the possible differences which may be due to the specifics of the task and

the behaviour adequacy. For the latter difference, it means we hardly know in advance

which behaviour (human or machine) is more adequate for the task. This leads to the

importance of comparing the differences on the same environment – the development

of red teaming environment. In the proposed environment, we have three types of

agents as follows:

• B(Ab) - the role is as a blue agent, with a scripted strategy.

• B(Amr) - the role is as a red agent and the actions are determined by a machine

learning algorithm.

• B(Ahr) - the role is as a red agent and the actions are determined by a human.
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To characterise and understand behaviour for machines and humans, both red agents

are exposed to the blue agent associated with different scripted strategies. Then, we

would like to understand how blue’s strategies affect red’s behaviours which can be

either machine red or human red. For machine red, neuroevolution is used owing to

its ability to evolve and learn, which are very important to mimic human behaviours.

3. How can we compare the differences and similarities between a machine and a human

behaviour?

The differences and similarities between machine and human are compared in be-

havioural context between a computational red (machine learning agent) and a nat-

ural red (human). In our work, behaviour represents a sequence of actions in the

proposed environment over time t. The behaviour of an agent i in the environment

can be denoted as B(Ai) = {a1
i , a

2
i , a

3
i , . . . , a

t
i}, with ati refers to the same attributes

which describe the actions taken by an agent i over time t.

However, the literature lacks metrics and methodologies to analyse the behaviour

of both machine and human red, and to compare these behaviours. The metrics

and methodologies need to be able to represent, process, analyse, and compare the

behaviours in an objective manner. Several metrics and methodologies are proposed

in this thesis for analysing and comparing the possible red’s behaviours based on

their actions distribution and actions similarity. The details on the metrics and

methodologies are explained in Chapter 4, Section 4.2.3.

1.4 Organisation of the Thesis

The remainder of the thesis is organized in 7 chapters as follows:

• Chapter 2 - Literature Review
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• Chapter 3 - Adversarial Learning

• Chapter 4 - Synthetic Simulation Environment

• Chapter 5 - Human Red Teaming Experimental Design

• Chapter 6 - Machine Red Teaming Experimental Design

• Chapter 7 - Machine Approximating Human Behaviour Experimental Design

• Chapter 8 - Conclusion and Future Work

In Chapter 2, the context of the problem which focuses on behavioural modelling is

provided. We also include a summary of selected literature on the domains in which the

concept of computational red teaming has a great deal to offer. The first part of the chapter

covers background materials on adversarial learning, risk assessment and behavioural deci-

sion making. The later part of the chapter covers background materials on the methodology

that is used in our research, which consists of evolutionary robotics, genetic algorithms and

artificial neural networks.

In Chapter 3, a statistical framework simulating adversarial attacks is proposed to

model the effect of red which is information driven. Two types of adversarial attacks are

simulated to investigate their effects on machine learning, namely Causative Availability

Targeted and Causative Availability Indiscriminate attacks. We investigate the effects of

the adversarial attacks on a single neural network and a neural ensemble.

The simulated adversarial attacks represent red while the single neural network and

neural ensemble represent blue. In this chapter, we are interested to know the effects of

red on blue. Therefore, we replicate part of the existing adversarial taxonomy using a

data mining task to simulate a red teaming environment. The simulation is based on the

assumption that red has the capability to identify representative samples and attacks them.
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The problem we encountered is that we hardly know whether the assumption is valid

in a natural red or not. This leads to the idea of developing a synthetic red teaming game

environment which allows a natural red and computational red to perform the same task.

Chapter 4 provides the information about a synthetic simulation adversarial environ-

ment that accommodates a red agent and blue agent. The chapter provides in detail the

constraints of the environment, the roles of the agents in the environment and the strategies

adopted by both agents. Furthermore, the experimental methodology, analysis methodol-

ogy and evaluation metrics involved in the thesis are explained in this chapter.

In Chapter 5, the experimental designs for the red teaming exercise involving humans are

explained in detail. The chapter also consists of the results and analysis of the experiments.

In Chapter 6, we describe the approach that is used to simulate machine red teaming.

The chapter also provides in detail the experimental designs for machine red teaming. At

the end of the chapter, analysis on the result of the machine red teaming is carried out and

findings are concluded.

Chapter 7 provides the experimental designs on the machine learning approach to ap-

proximate human behaviours based on the data collected from human red teaming. The

chapter also consists of the results and analysis of the experiments.

In Chapter 8, we summarise the contributions of our research, point out the limitations

of our work and discuss the future directions that stem from this work.

1.5 Thesis Contribution

The main contribution of this thesis focuses on the study of feasibility of CRT through

behavioural comparison between humans and computational models. Further contributions
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of thesis are listed as following:

• The impact of information driven red. A framework simulating adversarial at-

tacks is developed to study the effect of red on blue in an adversarial environment,

where red refers to adversarial attacks while blue represents the deployed machine

learning system against the attacks. Here, the simulation of red’s effect is through

information manipulation (information driven). In the framework, two types of ad-

versarial attacks, namely causative availability targeted and causative availability in-

discriminate attacks, are generated based on sampling. The heart of the simulation

lies on the attack against the outputs instead of the inputs. Instead of adding extra

corrupted instances into data, e.g., white noise, the outputs are inverted based on

sampling methods. Under the influence of adversarial attacks, the performances of

blues, which are represented by a single neural network and neural ensemble, are

evaluated in both static and non static environment.

• Metrics/methodologies for behaviour production, analysis and compari-

son. Basically, our study involves two types of red teaming, i.e., CRT and HRT.

Behavioural production in HRT refers to the involvement of human beings in deci-

sion making for the environment. When examined from CRT, the selection of models

for behavioural production lies in the ability to mimic or produce optimality and

rationality of human behaviours. Owing to this reason, neuroevolution is chosen and

we attempt to study its usefulness in this area. Behaviour is defined as a sequence of

actions in our study and it can be viewed as a representation of internal preferences

and judgement. As far as we know, the literature lacks metrics and methodologies

to analyse the behaviours of both machine and human red, and to compare these

behaviours. The metrics and methodologies need to be able to represent, process,

analyse, and compare the behaviours in an objective manner. Therefore, we propose
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several metrics and methodologies for the purpose of analysing and comparing the

possible red’s behaviours between the human and computational models.

• Metrics/methodologies to characterise and understand the impact of be-

haviour driven red. The focus in the framework of adversarial attacks is the CRT is

information driven. The inversion of red depends on the fixed assumption, whereby

the red is assumed to have the ability to search for representative samples of the

training data available to blue, and invert the outputs of representative samples. If

red is replaced by a machine approximating human action or even a real human, it

would be interesting to know whether CRT can actually model and explore the effects

of a behaviour driven red or not. Besides that, we bring to light the feasibility of CRT

to model the effect of behaviour driven red. To answer the question, we need a red

teaming teaming environment which allows the natural red and computational red

to perform on the same task. Here, we need to have a good simulation environment

which allows the simulation of red teaming’s dynamics which flow between red and

blue. The dynamics are captured by the behaviours between red and blue. Therefore,

a synthetic game environment based on red teaming is developed to allow behavioural

comparison being made between machine and human. In the proposed environment,

the strategies of blue are scripted to understand how these strategies influence the

behaviours of machine red and human red.



Chapter 2

Literature Review

2.1 Introduction

Originally, red teaming is an approach widely used in military operations to role-play the

enemy; test and evaluate its courses of actions or judgements; assess the vulnerabilities of

the red team; and learn to understand the dynamics existing between the red and blue

entities. However, the red entity is not necessarily referring to an enemy per se but to the

concept of entities with conflicting objectives or uncertainty in objectives [4]. Owing to this

definition, the red teaming concept can be mapped into domains that share similar char-

acteristics, such as adversarial learning, risk assessment, and behavioural decision making.

As long as a domain contains entities with conflicting objectives, red teaming will be in

play. The concept can be further expanded with the the use of computational models or

methods in a red teaming environment.

The following sections present some background on the domains that share similar

characteristics with red teaming, and the potential that CRT has in these domains.
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2.2 Risk Assessment

By taking the adversarial learning problem as an example, the improvement of the state of

preparedness of an organisation/system for countering the emerging threat of adversarial

attacks is important and it is directed to the need of risk assessment in adversarial domains.

Unfortunately, the main problem in adversarial learning is that the types of adversarial at-

tacks can be many. New types of attacks and old ones may keep on arising and evolving.

Therefore, whatever preparedness plans/solutions that an organisation/system has on their

minds need to be robust and adaptive. To protect an organisation/system against adver-

sarial attacks, which plans/solutions to be used depend greatly on the decision makers, and

risk assessment tools becomes prominent in assisting them to make decisions.

According to the definition from the International Standards Organisation (ISO) [90],

risk is “the effect of uncertainties on objectives”. The definition consists of two important

elements: uncertainty and objective. It means the effect of uncertainty needs to be mea-

sured relative to the objective, when risk assessment is performed. There are two main

categories of risk assessment methods: qualitative risk assessment and quantitative risk

assessment. They complement each other. With the involvement of computational models

and methods, CRT can be viewed as a generic encompassing framework combining both

quantitative and qualitative risk assessment. In risk assessment, the uncertainties in ob-

jective(s) are viewed as red while the actions taken to achieve the objective(s) are referred

to as blue.

A broad risk assessment approach characterising uncertainties beyond probabilities and

expected values is needed in the decision making environment. As pointed out by Aven

and Renn [12], the main component in risk is uncertainty, not probability. Probability is

just one of way of expressing uncertainties. The main problem in risk assessment is not

about the uncertainty of the estimates of the probabilities or expected values, but lies in
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the uncertainty about an activity, as a result of limited knowledge about the multitude of

contextual conditions and motivational factors which could lead to consequences. The need

of seeing beyond probabilities or expected values is a new direction in risk assessment. The

use of CRT to explore a space of possibilities offers a great potential in this direction, as

is demonstrated in [2, 8, 7, 9]. In [2], a framework known as Multiobjective Evolutionary

Based Risk Assessment (MEBRA) is introduced to explore and evaluate the algorithms

under risk. The focus of CRT demonstrated in MEBRA is to explore the scenario spaces in

which the algorithms may perform poorly, known as the failure regime of the algorithms.

Through evaluating the performances of the algorithms under the scenarios that could

lead to failure, decision makers can know the severity of the consequences (or outcomes)

of these scenarios with respect to their objectives. Implementation of CRT in this way

narrows down the area of concern, whereby the purpose of the exploration is to construct

scenarios outlining concerns regarding the threats towards achieving objectives.

Conflicting objectives arise when decision making involves more than a single objective,

and no option best meets all of the relevant objectives simultaneously. When conflict-

ing objectives exist, how do decision makers choose an option among the multi-attribute

alternatives when no alternative dominates?

The most common approach for making decisions in problems involving conflicting

objectives is to consider the extent to which one is willing to trade-off the relevant objectives.

The presence of conflicting objectives and the difficulty to compare the trade-off among

the alternatives cause tentativeness in decision making. Therefore, a tool that is able to

represent the trade-off among the alternatives will be beneficial in decision making. With

a conflict being represented by red, CRT can be used to explore the objective spaces; the

concept is shown in [3].

In [3], the non-dominance in a multi-objective evolutionary search generates a set of
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non-dominated solutions. The topology of the generated set in the objective space forms

a topological structure known as a Pareto curve, as illustrated in Figure 2.1. Assuming a

problem involves two objectives, each solution on the Pareto curve describes a particular

trade-off between the objectives. Thus, they are considered to be independent; additional

information, such as user preference, is required to determine the solution to be selected.

 

Objective 2 

Objective 1 

Optimising  

Optimising  

Figure 2.1: Pareto CURVE.

Another benefit that the Pareto curve can offer is to be used as an operating curve,

known as a Pareto operating curve (POC). It is named as such because the relevant objec-

tive function needs to reflect the performance of a solution in an operating environment. If

there are changes in the level of trade-off, the selection of solution changes from one point

to another point on the Pareto curve. The advantage of POC is it offers adaption and/or

robustness, given that systems operating along a POC are exposed to risk, complexity and

trade-offs.

The development of software-based red teaming, which explores the weakness of the

defence plan or operation, is another good example that shows the potential of CRT. CRT

is used to discover vulnerabilities in a military plan or operation to mitigate risk before the
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real implementation. Several examples of simulation engines that can be used for CRT in

a warfare environment are WISDOM, EINSTein and MANA [89, 88, 31].

In these simulations, a military operation or plan that needs to be studied is viewed

as the blue team, while the adversary is viewed as the red team. Since the risk analysis

is conducted before the implementation of human-based red teaming, the exercise of the

operation or plan involving real soldiers can be carried more effectively and efficiently based

on the findings from the analysis. This approach is not only cost effective, but may also

reduce physical and financial risks faced by the planners.

With an explicit representation of red and blue in CRT to simulate war scenarios,

organisations are interested to know the possible strategies that can be used to outperform

an adversary and what the possible outcomes are. The findings obtained from CRT can

be used to educate planners on the selection of strategies to maximise the chance of blue’s

survival, and success in real wars, thus, reduce physical and financial risks.

2.3 Adversarial Learning

.

Adversarial learning is a recently introduced term which refers to the learning process

of a machine learning algorithm, in the presence of an adversary whose main goal is to

cause dysfunction of the learning machine. An adversary, in this context, refers to an agent

who explores possible ways to cause machine learning to fail.

A preliminary taxonomy categorizing adversarial attacks was suggested by Barreno et al.

[15]. The taxonomy describes the capabilities of the adversary, which consist of influence,

specificity and security violation. Later, Barreno et al. [13] suggested that the threat model

in adversarial learning can be described as the adversary’s goal and capabilities ; where
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capabilities can be referred to as capabilities of information and capabilities of control.

Adversarial information refers to the adversary’s knowledge of the learning system and

environment, such as the learner’s features, the learning algorithm, the current decision

function, the policy for training and retraining and other types of information. On the

other hand, adversarial control refers to the extent of the adversary’s ability to influence

the learner’s training and/or test data.

The most recent proposed taxonomy describes adversarial learning from two axes: se-

curity goals and threat model [14]. Security goals describe the goals from the learner’s

perspective, which relates to protecting the learning system from adversarial attacks. The

security goal can be categorised into two goals: integrity goal and availability goal. Accord-

ing to Barreno et al.[14], integrity goal is to prevent adversaries from reaching a learning

system, while availability goal is to prevent adversaries from interfering with normal op-

eration. On the other hand, a threat model describes the profile of an adversary, which

includes its motivation and capabilities. The threat model can be further categorised along

three axes as suggested by Barreno et al [15]: influence, specificity and security violation.

Based on different types of categorisations, we can observe that the earlier categorisations

focus on the adversary’s aspect only, while the more recent one views adversarial learning

from two aspects: the learner and the adversary.

In adversarial learning problems, machine learning techniques are usually used to dis-

criminate the malicious and benign instances as they provide an automated and adaptive

approach. The reason that machine learning techniques are widely used is owing to their

ability to adapt to the constantly changing nature of adversarial domains by extracting

knowledge from the supplied data, and using the obtained information in the classifica-

tion of unseen data. Therefore, machine learning algorithms are used in our research as

well. There are several comprehensive reviews on the applications of machine learning al-
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gorithms in adversarial domains, such as spam filtering [18, 32], fraud detection [40, 71],

and intrusion detection [20, 40].

Most of the research done on adversarial learning focuses on the possible adversarial

attacks faced by a machine learning algorithm, and then an attempt is made to develop some

appropriate defense strategies against the attack. For the former focus, investigation on the

possible ways of training data being subverted by adversaries is a popular research area.

In [55], an adversary is assumed to attack an outlier detector by progressively inserting

data until a malicious threat is no longer detectable. The attack involves an adversary

determined to alter the detector to include a specific point by constructing data to shift

the hypersphere towards the target as the hypersphere is retrained. The work in [56] shows

that an adversary can control a large training data set used to build a classifier for worms

and spam. They showed that the presence of a delusive adversary can obstruct the learning

process of a classifier. A delusive adversary is an adversary that provides the classifier with

correctly labeled data but manipulates the features in the target-class samples to mislead

the classifier.

In [83], an approach was proposed to discover hidden patterns in a message delivered by

a spam, and a classifier was built based on exploration of the discovered patterns. Instead

of building a single classification model which performs averagely well on all messages, they

proposed to use the lazy approach which only takes into account the useful messages to

induce the rules for classification. The experimental result has empirically shown that the

approach is effective in terms of classification accuracy and computational complexity.

The good word attack is another common adversarial attack in spam filtering. According

to [36], good words are words that are commonly found in legitimate emails but not in

spam. However, such words have been strategically injected into spam messages to avoid

spam filters. To defend against this type of attack, [36] transformed each email into a
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bag of multiple segments, and then applied multiple instance logistic regression on the

bags. In the work, a spam filtering strategy was proposed based on the classical multiple

instances assumption, whereby an email is classified as a spam if at least one instance in the

corresponding bag is spam. On the other hand, an email is only classified as a legitimate

email if all the instances in the corresponding bag are legitimate. The research shows that

a classifier which adopts such counterattack strategy is more robust to good words attack

than the single instance counterpart.

The research in [54, 14] shows how an adversary manipulates the SpamBayes spam

filter specifically to cause failure by controlling only 1% of the training data. They also

present three new attacks which cause the filter dysfunction, i.e., dictionary, focused and

pseudospam attacks. They also present a potential defense known as Reject On Negative

Impact Defense (RONI) against dictionary and focused attacks. RONI measures the incre-

mental effect of a query email, by testing the performance difference with and without the

email. This method managed to filter out the attacked messages successfully based on the

impact of a message on the classifier performance.

Some researchers prefer to formulate adversarial learning as a game between learners

and adversaries [22, 48, 14]. In [22] and [48], they formulated the classification problem as

a game between classifiers and adversaries. The main difference between those two studies

[22, 48] is the former assumed that the adversary has perfect knowledge of the classifier

while the latter does not. As proposed in [22], an optimal classifier was produced to defend

itself against adversarial attack by assuming the adversary launches its optimal attack.

On the contrary, [48] developed the adversarial classifier reverse engineering (ACRE)

framework, by assuming the adversary learns a sufficient amount of information only about

a classifier instead of perfect knowledge. According to them, adversaries must learn about

the classifiers using some combination of prior knowledge, observations and experimenta-
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tions. This was done with the adversary issuing queries to identify the negative instances

with the minimum adversarial cost.

According to [14], an adversarial attack on a learning system can be modelled as games

between them, with moves representing strategic choices made by either the learner or the

adversary. The choices in a move depend on information derived from previous moves.

In the game model, the learner’s move is to choose a learning algorithm H for selecting

hypotheses from the provided data sets, while the adversary chooses procedures for gen-

erating attacks against the learner according to its derived information from the learning

environment. Therefore, the game between the learner and adversary is a repeated process.

2.4 Computational Red Teaming

Most research studies on adversarial learning focus on the possible adversarial attacks

faced by machine learning algorithms, development of defence strategies against adversarial

attacks, or both. However, the types of adversarial attacks, as well as the possible defence

strategies, can come in many forms. It is just a matter of time that new attack techniques

arise and existing ones evolve over time. Therefore, it will be beneficial to the research of

adversarial learning if a general platform can be developed to cover both adversarial attacks

and defense strategies simultaneously. This research direction was mentioned by Barreno et

al. [14]. The CRT concept does exactly this. It studies the reciprocal interaction between

defence and attack strategies.

The studies conducted in adversarial learning can be mapped into a CRT problem, in

which the adversarial attacks are referred to as red while the underlying machine learning

algorithms defending against the attacks are referred to as blue [1, 5, 6]. If the interest

of decision makers is to know the limitations/weakness of the underlying machine learning
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algorithms that are used to protect against adversarial attacks, CRT will be used to discover

vulnerabilities. Whenever machine learning is used to provide protection against some

illegal activities, adversaries will attempt to circumvent these approaches and thus form

an arms race between legal and illegal activities. With an explicit representation of red

in CRT to simulate adversaries, we are interested to know the possible effects that red

can cause on blue, representing the machine learning algorithms. Since the focus lies on

the simulation of red, blue will trigger response from red to circumvent the strategy from

blue, thus, this will lead to the changes in the actions taken by red. Then, the decision

makers would want to know how the changes made by red affect blue. For example, can

the already implemented strategy of blue withstand the further changes from red?

CRT can be used to learn about the opponents if the interest is to understand an

adversary’s impact in a problem. Given that decision makers have sufficient information

of the relevant aspects of the adversaries, if not entirely complete, CRT can be used to

study the possible actions taken by the opponents in the environment. The exploration

of the action space allows decision makers to anticipate the actions of the opponents, and

organise their strategies in order to compete with opponents. As such, CRT can be used

as a potential tool to teach decision makers in organising their strategies so that they are

more prepared in real world situations.

By having appropriate representations of red and blue, CRT can be used to explore the

emergence of behaviour of the decision makers and opponents/competitors. For instance,

CRT is used to explore the space of possible actions taken by the opponents/ competitors,

and the decision makers are trained in such scenarios. Since the decision makers are placed

in a partially unknown and unpredictable environment, their actions may be based on

trial and error through repeated cycles of interaction with the environment until their

objectives are achieved. Through CRT, the emergence of behaviour is described, starting

with a recurrent behaviour, leading to the construction of preferences for a behaviour, and
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to the acceptance of a behaviour by most people [67]. Based on this case, CRT can be used

to extract the emerged behaviour of the decision makers in an environment of interest.

The emerged behaviour can be compared with human personalities of the decision makers.

It is believed that personalities and other traits comparable to personalities influence the

responsiveness of individuals to environmental stimuli in human and animal species [86].

In short, CRT can become a great potential tool to study the emergence of behaviour.

Another reason to have CRT is due to difficulties in acquiring and sharing data sets,

especially those involving intelligent and adaptive adversaries. Without such data sets, it is

difficult to compare the performance of the deployed learning algorithms in an adversarial

environment, thus, limiting progress in adversarial learning. CRT not only can be used as

a general platform for constructing and evaluating adversarial attacks as well as defence

strategies, but also overcomes the difficulties of acquiring adversarial data sets. On top

of that, the possible adversarial attacks from the implementation of CRT can be kept in

databases to create future events, which can be used as precaution references. Whenever

there is a new type of adversarial attack, the patterns of the attack can be mapped and

compared with those in database so that appropriate solutions can be taken to minimise

the threats.

Research on behavioural decision making, especially on the construction of preferences

and/or beliefs, plays an important role in decision making. This is the case because a

better understanding of the construction of decision behaviour could help us to manage

our preferences more effectively, leading to the changes of the outcome of a decision. The

selection of information and strategies to construct preferences and/or belief depend upon

the task, context, and factors affecting individuals’ differences [70]. In other words, the

construction of preferences and/or beliefs can be viewed as a function of task, context and

individual differences.
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Task factor refers to general characteristics of a decision problem; it does not depend

on particular values of alternatives in decision making. On the other hand, context factors

refer to the characteristics that are associated with particular values of alternatives such

as similarity of alternatives. Lastly, individual difference factors refer to the characteristics

that describe the differences between one decision-maker from others, such as personality

characteristics.

The study of the the interactions among these three factors can be combined, as shown in

[89]. Based on the implementation of CRT, which normally involves the use of evolutionary

computation, a wargame between the blue and red teams is simulated. The focus of the

study is to investigate the effect of personality characteristics of the red team on the blue

team, by evolving the best personality characteristics of the blue team. From the study,

planners are able to know the possible appropriate combinations of personalities for the

blue team that should be deployed for a given combination of personalities for the red team.

2.5 Evolutionary Robotics

Evolutionary Robotics (ER) refers to the use of evolutionary computation in the au-

tonomous production of behavioural robot controllers. Usually, the control system used

to determine the robot’s behaviours are neural networks; this approach is adopted here.

In ER, evolutionary algorithms are used to evolve neural networks (individuals) that con-

trol the robot’s behaviour and the selected evolutionary algorithm is a genetic algorithm

(“GA”). The research works related to ER can be found in [52, 82, 62, 65, 79, 78, 77, 76, 80].

The popularity of ER for synthesising and studying adaptive behaviour of natural and

artificial agents stems from the possibility to rely on self-organizing processes [61, 57, 58].

Instead of explicitly dividing the desired behaviour into simple basic behaviours that are
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handled separately by different layers or modules of the robot control system, neural net-

works (individuals) are selected based on their abilities to perform the desired behaviour as

a whole. The fitness of neural networks is evaluated based on behavioural outcomes of the

robot in performing a given task. Through evolutionary computation, users are released

from the burden to decide how the whole desirable behaviour should be broken down. In-

stead, user’s responsibility is just limited to determining the appropriate fitness function

that should be used to evaluate the controllers.

Several reasons contribute to the selection of ER as a suitable approach to synthesize

desired behaviour in machine red teaming. One of the main reasons is the ability to

approximate the behaviour of a natural agent in red teaming.

In our research, a natural agent in red teaming refers to a human that will be placed in

the same environment. According to Simon [75], rationality that can be observed in human

beings in decision making is actually “bounded rationality” instead of global rationality.

The concept of “bounded rationality” refers to decisions that are made, based on access to

information and limited computational capabilities that are actually possessed by human

beings, to produce functional behaviour in the environment in which human beings are

placed. The concept actually lies in the adaptive ability of humans, which consists of the

abilities to learn and evolve [64, 28, 60, 61, 63].

In ER, the abilities to learn and evolve are handled by neural networks and GA re-

spectively. The main differences that distinguish them is the difference in spaces and time

scale that the form of adaptation operates on. Evolution refers to the process of selective

reproduction and recombination of individuals, based on the existence of a population of

diverse individuals; while, learning refers to the modification process that happens within

each neural network during its own life span. In terms of capturing changes based on time

scales, evolution is able to adapt to the relatively slow changes that might spread over
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several generations, but learning is not able to do so. Instead, learning can only adapt to

the changes in environment that happens during the life span of an individual. The use of

GA and neural networks in ER form the adaptive ability which is analogical to human’s

biological adaptation.

Another reason which encourages the use of ER is its ability to produce a population of

diverse solutions, approximating the variability of human choices. Owing to the variability

of human choices, it is undeniable that we will observe inconsistency of humans’ strategies

in the same task, where the use of different strategies may lead to similarity in the outcomes.

In the next section, we will introduce some fundamentals of GA and neural networks

that form the basis for ER.

2.5.1 Genetic Algorithm

GA [35] is an evolutionary computation method motivated by an analogy to biological

evolution. The principle of the method is based on the generation of successor individuals

by repeatedly selecting and recombining parts of the best currently known individuals

[51]. This procedure is repeated for several cycles known as generations. An individual,

sometimes known as a genotype or chromosome, refers to a string that is made of units

(“genes”) that are arranged in linear succession. Each gene has control over the inheritance

of one or several characteristics of an individual. Therefore, each individual (chromosome

or genotype) represents a potential solution for a problem. The meaning of an individual,

known as “phenotype”, is defined by users. To evaluate the performance of the phenotype

of each individual, a fitness function determined by users is used. The fitness function is

used to determine the ranking potential and probability selection of the individuals to be

included into the next generation. The higher the fitness value, the better the individual

is.
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GA starts with the random generation of a population of individuals, each yielding a

potential solution for the problem at hand. The population of individuals is evaluated

based on the designed fitness function, and each individual is associated with a fitness

value. Then the population of individuals goes through a selective reproduction, whereby

the best individuals are replicated in the next generation’s population. This means the

individuals associated with higher fitness values tend to have a higher number of copies in

the next generation. Once a population has been created based on selective reproduction,

the individuals in the new population are paired for crossover followed by mutation, to

form the population for new generation. Crossover is applied with a given probability pc to

a pair of selected individuals, by swapping the genes between the pair at a random point

along the individuals (Figure 2.2). After that, mutation is applied by arbitrarily modifying

the genes of a selected individual based on a given probability pm (Figure 2.3). A complete

generation consists of fitness evaluation of all individuals, selective reproduction, crossover

and mutation. This procedure is repeated for a number of generations until the stopping

criterion is met.

 
Chromosome offspring 1 

Chromosome offspring 2 

Chromosome parent 1 

Chromosome parent 2 

Crossover point 

Figure 2.2: A conceptual diagram depicting examples of the crossover operator.
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Chromosome offspring 1 

Chromosome offspring 1 

Mutated bit 

Figure 2.3: A conceptual diagram depicting examples of the mutation operator

2.5.2 Neural Network

A neural network consists of a collection of units known as neurons, connected by weighted

links (also known as connection weights) used to transmit signals as shown in Figure 2.4.

Units that receive signals from the external environment are known as input neurons while

units which produce signals to the external environment are known as output neurons.

Units that are located in between the input neurons and output neurons are known as

hidden neurons.
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Figure 2.4: A simple neuron model

Based on the simple neuron model [50], the output unit yj is a function of the sum of

incoming inputs xi weighted by the connection strengths wji between them as shown in

Equation (2.1).
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yj = Φ
(
ΣN
i wjixi

)
(2.1)

The function Φ can be a step function, sigmoid function or linear function which are

shown separately in Equations (2.2) to (2.4).

Φ(y) =

 1 if y > 0

0 otherwise
(2.2)

Φ(y) =
1

1 + e−y
(2.3)

Φ(y) = λy (2.4)

where λ is a constant that controls the inclination.

The architecture of a neural network is defined by the number of and pattern of con-

nectivity. The type of pattern of connectivity that we would like to focus on in this section

is a feedforward neural network trained using the back-propagation algorithm, because it

has been proven to be successful in various domains [51]. Usually, a feedforward neural

network consists of three layers of neurons. Similar to the simple neuron model, the layer

that receives signals from the external environment is known as the input layer while the

layer that produces a signal to the external environment is known as the output layer. The

hidden layer is the layer located in between the input and output layers.
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The behaviour of a neural network largely depends on the values of connection weights.

Learning occurs in a neural network through the repeated adjustment of connection weights

when a sample set of input/output is presented to the neural network. The adjustment

of connection weights ∆wji can be carried out either after the presentation of each pair

input/output (online learning), or after the presentation of the entire set of input/output

(offline learning). Based on Equation (2.5), the previous weights are updated by adding

the newly computed modification ∆wji. A parameter η known as learning rate is used to

control oscillations that may happen during the weight update as shown in Equation (2.6).

wji = wji + ∆wji (2.5)

wji = wji + η∆wji 0 < η ≤ 1 (2.6)

2.5.2.1 Back-propagation algorithm

The back-propagation algorithm adjusts the weights in a multilayer neural network which

has a fixed number of neurons and connection weights. The algorithm attempts to minimise

the squared error E between the network outputs and the target values for these outputs,

as shown in Equation (2.7).

E(~w) =
1

2

∑
d∈D

∑
k∈outputs

(tkd − okd)2 (2.7)



2.5. Evolutionary Robotics 33

where outputs in the equation refers to the set of output neurons in the network, while

tkd and okd refers to the target and output values associated with the kth output neuron

and training example d. The purpose of gradient descent is to search for a hypothesis that

minimises E. Assume each training example has a pair of vectors 〈−→x , −→t 〉, where −→x refers

to the input vector and
−→
t refers to the target vector. A feedforward network with 3 layers

(input layer, hidden layer, and output layers) is created. The numbers of input neurons,

hidden neurons and output neurons are denoted as nin, nhidden and nout respectively. The

input from neuron i into neuron j is denoted as xji and the weight connected from neuron

i into neuron j is denoted as wji. With the mentioned denotations, the back-propagation

algorithm is summarised as following:

• Create a feedforward network which consists of nin input neurons, nhidden hidden

neurons and nout output neurons.

• Initialise randomly all the connection weights, e.g., [−1, +1].

• Until the stopping criterion is met, Do

– For each 〈−→x , −→t 〉 in training examples, Do

1. Input the instance −→x to the network, compute the output ou of every unit

u in the network.

2. For each network output unit k, calculate its error term δk based on Equation

(2.8).

3. For each hidden unit h, calculate its error term δh based on on Equation

(2.9).

4. Update each network weight wji based on Equation (2.6).



34 Chapter 2. Literature Review

δk ← ok(1− ok)(tk − ok) (2.8)

δh ← oh(1− oh)
∑

k∈outputs

wkhδk (2.9)

Procedure 1 refers to the forward propagation of the input through the network, while

procedures 2 to 4 refer to the backward propagation of the error through the network.

2.6 Gaps and Challenges in CRT

Based on the above literature, CRT has a great deal to offer in these domains. The question

that we are attempting to answer rests on the feasibility of CRT. In other words, can an

autonomous machine red teaming produce results that are similar to the results in real life?

To answer this question, we need to model or explore the effect of red in the real world.

The context of our feasibility study focuses on behaviour modeling in an adversarial

environment. Specifically, we are interested to know whether computational red teaming

can produce similar behaviour results as HRT. To achieve the objective of our research,

there are several challenges that require our attention:

Environment. In our study, comparisons need to be made between the behaviours of

computational models and human responses in an adversarial environment. The compar-

isons may become invalid if both computational models and human beings are evaluated

based on a task that is inadequately represented. Therefore, before a behaviour comparison
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is made between the computational models and human beings, it is important to compare

each of them with respect to the same environment. The decisions resulting from com-

putational models and human beings are produced based on optimality and rationality

with respect to the environment. If the environment is not the same, comparisons between

both models could be inappropriate if they interpret the task in different ways, and thus

influence the optimality and rationality of decision making in both models.

As pointed out in [26], optimality of decision making depends greatly on the nature and

complexity of the environment. It can be evaluated based on two alternatives, i.e., build

optimal models based on simplifying assumptions, or build heuristic models that maintain

greater environmental realism. The importance of this statement rests in the need to have

an environment which allows the decision making process during a task to be evaluated.

By having the same environment, behavioural comparisons between computational models

and human beings can be performed adequately.

Agent. In our work, we use the definition in [4] to define an agent, whereby it is

equipped with three main capabilities, i.e., information receiving, decision making, and

action production. In a human red teaming environment, the decision making of an agent

is determined by human beings. With the received information, a human being will be

responsible to process the information and justify the alternatives of actions that should

be taken.

The next question will be how can we produce a machine red teaming? The question

includes the selection of appropriate computational methods or models to produce machine

red teaming, and the rationale behind it. One of the main factors that determines the

selection is to mimic human beings in making optimal and rational decisions in order to

produce functional behaviours.

Behaviours are functional if they contribute to the achievement of a certain intention,
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objective or goal [26]. The central concepts of rationality and optimality lie in the abilities

to learn and evolve. Here, optimality is defined as decisions that maximise or minimise

some measurable criterion with respect to a given task in a given environment. On the

other hand, rationality refers to a decision making process which allows decision makers to

choose from alternative courses of action to maximise their payoffs. Computation of the

payoffs for the actions are based on a “utility” or “value” function of the given sets of inputs

and constraints [4]. To produce machine red teaming, we need computational methods or

models that are able to produce optimal and rational decisions with the given inputs and

constraints. Besides that, they need to have the ability to produce diverse solutions which

are similar to diversity observed in human choices.

Task representation. Differences between the actions of computational models and

human responses will be affected by task representation. To capture only the behavioural

differences between them, task representation needs to be fixed so that both models could

represent the task adequately in a similar way. Besides that, the chosen task needs to

be able to be performed by both a natural agent and an artificial agent: human beings

and computational models respectively. For example, the comparison of HRT and CRT

in a warfare environment will be difficult if not impossible because the simulation of red

teaming involving people is costly and risky.

The above mentioned challenges have led to the synthesis of a well-controlled red team-

ing game environment. With an appropriate representation of blue in a red teaming game

environment, decisions made by the red agent to achieve certain goal(s) can be either de-

termined by human beings or machines. The decisions made by human beings or machines

are reflected in their actions. Patterns may be exhibited in the actions of the computational

and human models and could be extracted for comparison. A better understanding of the

differences/similarities of behaviours between the models helps to improve the implemen-

tation of CRT because the knowledge will prevent us from taking lightly the importance of
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the representation of human cognition in CRT.
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Chapter 3

Synthesis of Adversarial Attacks

3.1 Introduction

Adversarial learning refers to the learning process of a machine learning algorithm in the

presence of an adversary whose main goal is to cause dysfunction of the learning machine.

An adversary, in this context, refers to an agent who explores possible ways to cause failure

to machine learning. The situation becomes worse if an adversary fulfills the contamination

assumption [54], where it can control some of the user’s training data. Instead of adding

corrupted instances to confuse the machine learning system, the adversary intercepts the

training process of the machine learning system by modifying the training data, thus leading

to modifications of the learning model itself. The threats from adversaries become severe

especially in domains that are easily exposed to malicious activities and electronic crimes.

Instead of being useful, the results provided by a machine learning system in an adversarial

environment lead to poor decisions. Measuring or evaluating the effect of an adversarial

attack on machine learning helps system designers to reason and equip the system with

some appropriate defense strategies. Therefore, assessing the vulnerability of a machine
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learning algorithm to adversary attack is the focus of current chapter.

In this chapter, we investigate the effect of Causative Availability attacks on machine

learning, with a specific focus on artificial neural networks. A Causative attack is one in

which an adversary interferes with the learning process by modifying some of the training

data. An Availability attack results in a broader type of classification errors, both false

negatives and false positives. Therefore, a Causative Availability attack launched by an

adversary disrupts the learning process and causes broader types of errors in a machine

learning system. A Causative Availability attack can be further divided into either Targeted

and Indiscriminate, whereby both attacks refer to the types of data being attacked. These

two types of attacks are related closely with the samples selection methods which are

explained in the later part in this section. From an adversary perspective, it can use the

sample selection methods to carry out its attack.

The simulations of adversarial attack are carried out in both static and non-stationary

environments. The purpose of carrying out the experiment in a non-stationary environment

is to investigate the performance of the proposed ensemble and single neural networks under

the condition that an adversary can dynamically launch its attack. However, the ability

to detect changes is not our main investigation. The assumption here is a re-training

mechanism is triggered to re-train the learning model whenever a change is detected. Our

main concern is whether a re-trained ensemble performs better than the single neural

networks or not in such an environment.

The main contributions of this chapter are as follows:

Sample selection based on the Covariance-Mahalanobis (CM) method. We

propose a sample selection method known as the Covariance-Mahalanobis (CM) method. In

the method, representative samples are selected from a large data set, a.k.a the frame, using

measures from statistics. The basis of our measure of representativeness is the statistical
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significance test between the frame and the chosen sample, as proposed in [37]. The details

of representativeness test is explained further in Section 3.3.1.1.

Evaluation based on bias-variance analysis. Instead of using only the common

performance measures, e.g., mean squared error (MSE ), to measure the effectiveness of the

sample selection methods, bias-variance is used to evaluate the network performance which

is associated with the proposed sample selection methods. This is because bias-variance

provides a better insight on the stability and reliability of neural network performance

associated with the sample selection methods. The details of bias-variance is described in

Section 3.3.1.2.

Simulation of Causative Availability attacks. Causative Availability attacks are

carried out based on sample selection methods: a Targeted attack is simulated based on our

proposed sample selection method, CM, and a Indiscriminate attack is simulated using

a random sampling method, RND. The inversions based on CM and RND are referred as

ICM and IRND in short. Both attacks are explained further in Section 3.3.2.

In detecting malicious activity, e.g., computer intrusion detection, the positive class

(label 1) indicates malicious intrusion instances while the negative class (label 0) indicates

benign normal instances. The adversary inverts some labels that resemble the positive

and negative classes when the data are collected to train the learner. When the learner is

trained on the attacked data, the learner may classify intrusion instances as normal and

vice versa. If the labels of positive and negative classes are inverted arbitrarily, the inversion

is known as IRND. On the other hand, the inversion is known as ICM if the attacked data

are representative.

The details of the sample selection methods and simulation of the inversions are de-

scribed in Section 3.3. The next concern in this chapter is whether an ensemble of artificial

neural networks would perform better under both types of attacks than a single neural
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network. In our experiments we use standard artificial feedforward neural networks as the

learning algorithm.

Neural ensemble in adversarial learning. A neural ensemble is proposed to de-

fend a system against the proposed Causative Availability attacks. Our hypothesis is the

performance of an ensemble may not degrade as rapidly as a single classifier when they

are exposed to adversarial attacks. We test this hypothesis as the neural networks in the

ensemble are varied by their hidden neurons to decrease common vulnerabilities so that it

is difficult to attack them as a group. Even though both the ICM and IRND methods are

basically based on random sampling method, the main difference is ICM focuses on the

representative samples. We would like to know whether a neural ensemble can still defend

itself or not even the attack is focused on its representative samples. Furthermore, it is dif-

ficult to know in advance whether the attack is specific one or not. Accuracy and MSE are

used to evaluate the performance of the ensemble and single neural networks on corrupted

data. Here, bias-variance analysis is not used to evaluate the performance of ensemble and

single neural networks because they are trained with the whole data set instead of samples.

The rest of this chapter is organised as follows. Section 3.2 presents related work on

sample selection and adversarial attack simulation. In Section 3.3 we present our proposed

sample selection method and two inversion methods, along with some background material

on the statistical techniques used for measuring sample representativeness and bias-variance

analysis. Section 3.4 describes the experimental setup. Section 3.5 presents and discusses

the experimental results. Finally, Section 3.6 presents conclusions and future work.
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3.2 Related Work

3.2.1 Sampling Techniques

Several researchers have proposed categorisations of sampling methods. Daszykowski et.

al. [23] categorise sample selection methods into two groups, i.e., cluster-based designs and

uniform designs. A more general categorisation approach is based on the evaluation scheme

of the selected samples. Evaluation based methods can be divided into two groups, i.e.,

direct measure and indirect measure [47] a.k.a filter and wrapper approaches respectively

[72]. For the filter approach (or direct measure), the evaluation of selected samples deals

with the data only and does not involve any machine learning algorithm. As opposed

to the filter approach, the wrapper approach (or indirect measure) involves data mining

algorithms to guide sample selection. An initial sample is selected from the original data

set and a machine learning algorithm is applied to build a model from the selected sample.

The outcome of the algorithm is then used to determine whether the selected sample should

be kept or eliminated.

In summary, the main distinguishing feature between filter and wrapper approaches is

the order in which a learning algorithm is used to build the model from selected samples. For

the filter approach, instance selection is carried out prior to any model building exercise and

vice versa. In this paper, we are concerned with the filter approach which is more general

than the wrapper approach as it works irrespective of the data mining algorithms. The

categorisation of filter approaches can be further refined into two types; one that considers

the frame properties for sample selection and the other that does not. The methods such as

sampling and D-optimal design [87] ignore frame properties while our approach, Kennard-

Stone [87, 39] design and OptiSim [21, 23] use frame properties for sample selection. An

extended categorisation of sample selection methods is shown in Figure 3.1.



44 Chapter 3. Synthesis of Adversarial Attacks

 
Training set preparation  

 
 
 

Feature discretization Instance selection Feature selection Entire data set   
 
 
 

Filter approach / Direct measure Wrapper approach / Indirect measure  
 
 
 

Consider the frame 
properties 

Not consider the 
frame properties  

 
 

Examples: 
• CM 
• Kennard-Stone 
• OptiSim  

 

Examples: 
• Random sampling 
• D-optimal design  

 

 
 
 
 

Figure 3.1: The refined categorisation of instance selection methods

The main difference between our proposed method and the Kennard-Stone and OptiSim

methods is the types of frame properties that are considered. Both the Kennard-Stone and

OptiSim methods take into account the frame’s mean only. On the contrary, our method

considers not only the mean but also covariance. Covariance reflects the amount of variation

in the samples and also the extent to which variables are correlated.

3.2.2 Adversarial Learning

A taxonomy of adversarial learning is presented in [15], which describes adversarial attacks

form three main perspectives: influence, specificity and security violation. Influence refers

to the capability of an attack. It can be further divided into causative and exploratory

attacks. A causative attack means an adversary has the capability to control training

data while an exploratory attack does not. An exploratory attack explores the possible
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information based on other techniques, such as off-line analysis. Specificity focuses on

the types of data being attacked. Targeted and indiscriminate attacks fall under this

category. A targeted attack happens when a particular data point or a small portion of

data points becomes the aim of an attack. On the other hand, any arbitrary data is the

aim of an indiscriminate attack. Lastly, security violation refers to the effects caused by

an attack. There are two types of attack under this category, i.e., integrity and availability.

An integrity attack causes false negatives while an availability attack causes both false

negatives and false positives. The research studies in adversarial learning are shown in

Section 2.3.

Although most research studies on adversarial attacks have focused on the spam de-

tection domain, there is nothing special in this regard about spam detection: any machine

learning in any domain can easily become the target of adversarial attack.

3.3 Methodology

3.3.1 Sample selection

In this subsection, we present steps involved in CM, which is also summarised in Figure 3.2.

Assume that we have a large size of frame which consists of N data points. Instead of using

the whole data set, n data points are randomly selected from the frame to form a sample,

with n � N . Then we would like to know whether the selected sample is representative

of the frame before it is included into the pool of training samples. Representativeness is

evaluated in two stages, i.e., comparison of covariance and Mahalanobis distance.

In the representativeness test, we need to determine the critical values for the com-

parison of covariance and Mahalanobis distance, which are denoted as Ccrit and Dcrit re-
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Figure 3.2: The flow chart of representative instances selection

spectively. Here, we would prefer Ccrit and Dcrit to be as minimum as possible because

they reflect the measures of how far the sample is from its frame by taking into account

all the variables being considered. If the calculated C of the sample is smaller than Ccrit,

the sample will go through the second stage of evaluation – the Mahalanobis distance.

Otherwise, the sample will be eliminated from becoming a training sample. Again in the
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second stage, if the calculated D of the sample is smaller than Dcrit, this means the sample

is a representative sample and thus becomes a training sample. If the samples is unable

to meet the condition, it will be eliminated. To be included into the training samples, the

sample need to meet two properties of representativeness – the covariance matrices and

Mahalanobis distance.

3.3.1.1 Mahalanobis Distance and Covariance Matrices

In our proposed method, representativeness of a sample is measured by the different prop-

erties between the sample and the frame, based on significance tests. Hotelling’s T 2 test

is used to evaluate the significant difference of Mahalanobis distance, D between two data

sets. Assume x̄1 and x̄2 are the mean column vector of the q variables in data sets X1 and

X2, both having n1 and n2 instances respectively. The squared Mahalanobis distance, D,

between the mean of each data set is defined in Equation (3.1):

D = (x̄1 − x̄2)′S−1(x̄1 − x̄2) (3.1)

Then, Hotelling’s T 2 statistic is defined as:

T 2 =
n1n2[(x̄1 − x̄2)′S−1(x̄1 − x̄2)]

(n1 + n2)

=
n1n2D

(n1 + n2)
(3.2)

The significance or lack of significance T 2 is determined by using the fact that in the

null hypothesis case of equal means, the transformed statistic as shown in Equation (3.3)

F =
(n1 + n2 − q − 1)T 2

(n1 + n2 − 2)q
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=
(n1 + n2 − q − 1)

(n1 + n2 − 2)q
[
n1n2D

(n1 + n2)
]

=
n1n2(n1 + n2 − q − 1)

q(n1 + n− 2)(n1 + n2 − 2)
D (3.3)

follows an F distribution with q and (n1 + n2 − q − 1) degrees of freedom. Hotelling’s

T 2 statistic is based on the assumption that the two data sets are assumed to come from

multivariate normal distributions with equal covariance matrices [49].

The comparison of covariance between two data sets is evaluated based on Bartlett’s

test, with the assumption that the samples are from multivariate normal distributions [49].

Assume S1 and S2 refer to the respective estimates of the covariance matrices of data sets

X1 and X2, while S is the pooled covariance of these data sets. The Bartlett test checks

that the computed value

C =
1

v{(n1 + n2 − 2)ln(|S|)− (n1 − 1)ln(|S1|)− (n2 − 1)ln(|S2|)}
(3.4)

with v = 1 + 2q2+3q−1
6(q+1)

( 1
n1−1

+ 1
n2−1

− 1
n1+n2−2

) follows a χ2 distribution, with q(q + 1)/2

degrees of freedom. To reject a null hypothesis of equal covariance, the computed value

of C > χ2
q(q+1)/2,α, where χ2

q(q+1)/2,α is the upper tail critical value for the distribution

and α refers to the significance level. The calculated C needs to be as small as possible,

compared to the critical value, to claim the covariance matrices between the two data sets

are statistically equal.

The representativeness of a sample can be measured based on C and D values. The

smaller are these values, the more representative is the sample with reference to its frame.

However, we hardly know in advance the C-D limit (the lowest or highest) of a data set

in real-world application. Therefore, we also propose a procedure to estimate the limit of

C-D and its details are explained in 3.4.1.
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3.3.1.2 Bias-Variance

In this section, we presents the details of bias-variance which is used to investigate the gen-

eralisation performance achieved by a neural network. Since the neural network is trained

with samples selected by different sample selection methods, this means the bias-variance

is used to evaluate the effectiveness of a sample selection method. For the explanation on

bias-variance, assume that a single estimator after being trained by some training data,

Υ produces estimates y(x), so the squared error between the estimates y(x) and target

function 〈t|x〉.

{y(x)− 〈 t|x〉}2 (3.5)

The squared error depends on the training data that are used to train model that

produces estimates y(x). Therefore, the expected error produced by the model can be

written as:

EΥ{y(x)− 〈 t|x〉}2 (3.6)

Using some algebraic manipulation [38], equation (3.6) can be rewritten as:

EΥ{y(x)− 〈t|x〉}2 = {EΥ[y(x)]− 〈t|x〉}2 + EΥ{y(x)− EΥ[y(x)]}2 (3.7)

The first term refers to the squared bias, and the second term refers to the variance.

Bias measures the difference between the average estimate over all possible samples of fixed

size and the true function. On the other hand, the variance measures the difference between

an estimate obtained for a single training sample and the average estimate obtained over

all possible samples.
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3.3.2 Adversarial Attacks Simulation

In this section, we present the simulations of Causative Availability attacks based on the

samples selection methods, namely the CM and RND methods. Using the RND method,

a sample is selected randomly from the training set. Inverting these instances is effectively

launching a Causative Availability Indiscriminate attack. Using the CM method as men-

tioned in 3.3.1, a representative sample is selected from the training set. Inverting these

instances is effectively launching a Causative Availability Targeted attack.

The following summarises the steps involved in the proposed Causative Availability

Targeted attack. Assuming that we have a large frame that consists of N data points.

Instead of attacking any arbitrary data, a percentage m% of training data is randomly

selected from the frame to form a sample, where m% of data < N . We would like to know

whether the selected sample is more “representative” of its frame than other equally sized

random samples. The representativeness evaluation is based on C and D as mentioned

in 3.3.1.1. If the sample meets the representativeness test, it is inverted. We call this

inversion ICM. The alternative is to invert a sample chosen randomly; we call this inversion

adversarial approach IRND.

Based on the statistics shown above, it is noted that representativeness increases with

the decrease of C and D values. Therefore we propose the following procedures to select a

representative sample, based on the C–D values, and then invert its outputs.

1. Randomly select 1000 samples, with the desired sample size, from the training set.

2. Calculate the C and D values for each sample.

3. Sort the samples based on the C–D values.

4. Randomly select a sample from a desired percentage p% of the total number of samples

that are associated with the lowest C–D values. For example, if we set p% as 5%
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(5% of 1000 is 50), a sample is randomly selected from 50 samples that are associated

with the lowest C–D values.

5. Remove the sample from the training set and invert its outputs.

6. Return the modified sample to the training set.

7. Train the ensemble and single neural networks with the training set.

3.4 Experimental Design

3.4.1 Sample selection

An experimental design is presented to investigate the effects of representative samples

selected based on the CM method on machine learning. As explained in previous section,

the representativeness of a selected sample can be evaluated based on C and D. The main

purpose of these experiments is to investigate the effect of these two properties on the MSE

and bias-variance.

In most real world applications, we hardly know the true function of the collected

data. Therefore, we investigate our proposed methodology on an artificial data set that is

generated based on Equation (3.8). The true function of the underlying data need to be

known for the analysis of bias-variance.

yi ∼ N(µ = 10sin(Πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5, σε = 1) (3.8)

In this data set, 100 combinations of x1, x2, x3, x4, x5 is randomly generated in the domain

[0,1], T1, T2, Ti, . . . , T100. For each combination, Ti, 100 yi is generated based on Equation

(3.8). Therefore, the frame of this artificial data consists of 10000 points. The frame is
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divided into three sets, i.e., training set, validation set and test set. The sample size for

the training set, validation and test set is 5000, 2500 and 2500 respectively.

Since the data set is generated artificially, we know the real values of mean and covari-

ance of the frame of the artificial data. A sample with an arbitrary number of instances

(sample size, ns) is selected from the training set. A comparison of covariance and mean

between the selected sample, S and the frame is carried out. Setting the significance level,

α as 0.05, a selected S is known as a representative pre-sample, Spre if the comparison of

covariance, C and Mahalanobis distance, D are lower than Ccrit and Dcrit respectively. In

the CM method, the selection Spre with ns = 100 is carried out until a large arbitrary num-

ber of Spre are accumulated, e.g., 1500. From these representative Spre, 30 Spre associated

with the lowest and highest C-D values respectively are used for neural network training.

These 30 samples are known as representative post-sample, Spost. The above mentioned

procedures are repeated to select 30 representative Spost with ns = 150.

The performances of neural network are then compared with those of the RND method.

In our experiment, we use different neural network sizes to investigate model independence

in place of different classifiers. For the RND method, a sample, S with ns = 100 is randomly

selected from the training set but no comparison of C-D values is carried out between S

and its frame. Unlike the CM method, there is no involvement of Spre and Spost in the RND

method. The sample selection is repeated until we have 30 S and they are used for neural

network training. The same procedures are repeated for ns = 150 in the RND method.

Since we don’t know the true C-D limit (the lowest or highest of C-D), the following

investigation is suggested to estimate it. This information is useful in guiding the selection

of representatives samples from a pool of samples which associated with different C-D

values. To indicate from which proportion pool of samples associated with the lowest C-D

values that we should draw representative sample from, a flexibility parameter denoted as
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p% is introduced in this investigation. The purpose of this experiment is to investigate the

effect of p% on the representativeness of a sample. To perform this investigation, a pool

of samples with an arbitrary sample size needs to be firstly generated. A sample of 100

instances is randomly selected and included into the initially empty pool. The procedure

is repeated until the pool sizes reaches 1000 samples. These samples are then sorted based

on their C-D values, in ascending and descending orders.

In the case of ascending order, assume that we need 30 representative samples, the

parameter p% will determine from which proportion pool of sorted samples the selected

samples are drawn. Since we have 1000 samples and the p% = 5%, we select 30 samples

from 50 sample associated with the lowest C-D values (5% of 1000 is 50). MSEs of the

neural networks trained on these samples are measured and plotted. The range of p% to be

investigated are 5%, 10%, 15%, 20%, 25%, 30%, 40%, . . ., 100%. The above procedures are

then repeated for the samples, whereby their C-D values are sorted in a descending order.

Two graphs (MSE versus p%) are produced, where one of them contains the results of the

C-D values that are sorted in an ascending order while the other is in a descending order.

The C-D limit can be estimated from the intersection of these graphs and it is denoted as

p%threshold. In other words, it means that if we want to select representative samples from

a pool of samples which are sorted in an ascending order for the C-D values, the suggested

value of p% should be lower than p%threshold.

3.4.1.1 Artificial Data

The purpose of this initial experiment is to show how each single neural network which

forms part of the ensemble performs differently when they are under adversarial attacks.

In the artificial data, let us assume there are two classes of points, x1 and x2, that can be

separated or classified using a separating hyperplane as shown in Figure 3.3(a). The classes
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Figure 3.3: Artificial data, generated by varying Ra and H

(positive and negative cases) are equally balanced in number and uniformly distributed in

the space. Positive and negative cases are represented by black and white dots respectively.

We can further generate different characteristics of data by varying two variables, Ra (the

ratio between the positive and negative cases) and H (the distance between the separating

hyperplane which separates the two classes). In effect, this mechanism varies the degrees

of freedom around the support vectors in different data sets. Figure 3.3(b) and 3.3(c)

show examples of data generated with different values of H ; (the former is generated with

positive H and the latter with negative H ).

We created data sets with eleven different values of H (−1.0,−0.8,−0.6, . . . , 1.0) and

nine different Ra values (10%, 20%, 30%, . . . , 90%). Therefore we have 99 sets of data with

different characteristics. Each data set contained 1000 instances.

For each data set, samples of 100 instances (m% = 10%) are inverted based on each

of ICM and IRND. Therefore, a series of training sets with 10% of inverted data is pro-

duced. The series of training sets is used to train the ensemble and single neural networks.

Besides that, we also generate validation set and test set, which are used to monitor the

generalization and to verify the network performance respectively. The ratio of training

set, validation set and test set is 2:1:1.
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3.4.1.2 Static Simulation

Four data sets were obtained from the UCI repository[29], to compare the performances

of the ensemble and single neural networks against the proposed attacks under static en-

vironment. Three are classification problems while the fourth is a regression problem, i.e.,

Wave, Page Block (PB), Magic Gamma Telescope (MGT) and Wine Quality (Wine). The

details of each data set are shown in Table 3.1.

Here, we refer to the original data set as the frame. We divided the frame into three

sets (training, validation, and test set) in the ratio 2:1:1.

For each data set, samples with different m%, i.e., 0.5%, 1%, 5%, 10%, 15%, . . . , 30%

are inverted based on ICM and IRND. Therefore, a series of training sets with different

percentages of inverted data are produced for each UCI data. The series of training sets is

used to train the ensemble and single neural networks.

Table 3.1: The details of data sets obtained from UCI repository.

Data set Types Attributes Class Frame size Training size Validation size Test size
Wave Classification 22 3 5000 2500 1250 1250
PB Classification 11 5 5473 2736 1368 1369

MGT Classification 11 2 19020 9510 4755 4755
Wine Regression 12 - 4898 3248 1624 1625

3.4.1.3 Non-Stationary Simulation

The simulation of non-stationary environment is carried out by using the same UCI data

sets and a spam data set [33]. Firstly, each of the original data sets need to be divided

into 10 subsets and 1 test set. The sizes of test set for the wave, PB, MGT, wine and

spam are 125, 130, 456, 179 and 116 respectively. The remaining data are then divided

into 10 subsets, with each subset is then further divided into training set and validation set

according to the ratio of 2:1. The inversions based on ICM and IRND are then carried out
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on these 10 training sets, with different m%, i.e., 0.5%, 1%, 5%, 10%, 15%, . . . , 30%. The

neural ensemble and single neural networks with the same parameters as the ones in static

environment are performed by using these training sets. Their generalization performances

are monitored by using the validation set. The trained neural networks are then validated

on the test set. The inversions of several training sets is to simulate the dynamics of an

adversary. The performance of the neural ensemble and single neural networks in such

environment are evaluated based MSE of the test set.

3.4.2 Neural Ensemble and Single Neural Network

In this chapter, we use artificial neural networks as the machine learning algorithm owing,

to their ability to learn complex and nonlinear functions even with little prior knowledge

about the underlying true function. However, conceptually any machine learning algorithm

can be substituted in place of neural networks.

There are two ways of using neural networks to evaluate the effect of training data

on their performance[87]. One is to use a fixed structure, while the other is to use the

optimal network structure obtained with each training sample. We use the former method,

to eliminate the confounding effects of other factors so that the changes in performance

depend on the characteristics of the data rather than on the structure of the network.

The learning rate r for the network is set as 0.1 and the numbers of hidden neurons are

deployed for the network training according to the types of data: (i) artificial generated

data - in both artificial data sets in sample selection and adversarial attack simulation,

different number of hidden neurons. i.e., 5, 10, 15 are deployed for network training; (ii)

UCI data - the number of hidden neurons used in network training are 5, 10, 15, 20, and

25.

MSE of the validation set is used as the stopping criterion in the network training. For
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each 100 iterations, MSE of the validation set is monitored until it reaches the maximum

iterations, 1,500,000. Based on the monitoring, we would like to identify the iteration

where the validation set produces the minimum MSE and thus, it is used to finally train

the neural network. The network performance is then evaluated with the test set. The

effectiveness measurement used in the experiments of sample selection and adversarial

attack simulation are different. In the experiment of sample selection, the effectiveness of

the CM and RND methods are measured in terms of MSE and bias-variance. On the other

hand, the effectiveness of the ICM and IRND are measured in terms of accuracy and MSE

in the classification and regression problems respectively in the experiment of adversarial

attack simulation. 30 runs, using different seeds, were made with each combination of

parameters.

In the adversarial attack simulation, a neural ensemble can be formed by combining

the outputs from each single neural network based on a simple combination rule (average,

majority-voting, or winner-take-all) to produce a consensus output. We investigated each of

these combination rules with every data set, except the Wine data. The ensemble deployed

with the Wine data set uses only the average and winner-take-all methods to produce the

final output.

3.5 Main Results

3.5.1 Sample selection

This section presents the findings that we obtain from the experiment which investigates

the effectiveness of sample selection. It contains two major parts:

• Analysis on the effect of C-D
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• Estimation of the C-D limit

For the box plots shown in this section, the notation a, b, c in the x -axis , refers to

5, 10 and 15 hidden neurons, e.g., a(1), a(2), a(3), . . . , a(6) refers to the combinations of 5

hidden neurons with different sample sizes and C-D values . In the legend, the notation

of x in CM(x,y) refers to sample size and while y refers to high or low values of C-D. The

notation of x in RND(x ) refers to sample size only.

Figure 3.4 presents the results obtained in the MSE analysis for the CM and RND

methods. By referring to the figure, the MSE produced by the random sampling method

reduces significantly as the sample size increases, i.e., from sample size 100 to 150 when

the hidden neuron is 5. We observe similar effect for the random sampling method when

the hidden neurons are 10 and 15 respectively. This means the random sampling method

shows similar effect irrespective of hidden neuron. Therefore, the random sampling is said

to be model independent. Based on the observations, our proposed methods (i.e., the CM

method) can be viewed as model independent as well because the increase of performance

for different sample sizes is similar as the hidden neuron increases. To show there is a

significance decrease of MSE as the sample size increases, a t-test is carried out on the CM

and RND method which associated with different samples sizes. Setting the significance

level, α as 0.05, the following hypotheses are set out:

• Null hypothesis : The sample mean of measurement, i.e., MSE for the samples asso-

ciated with low sample size is less than or equal to those of high sample size;

• Alternative hypothesis : The sample mean of measurement, i.e., MSE for the samples

associated with low sample size is greater than to those of high sample size.

Table 3.2 show the results of t-test for the above hypotheses and we can observe that

all of the null hypotheses are rejected for both the CM and RND methods irrespective of
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the network size. This means that MSE produced by both methods are significantly lower

as the sample size increases. Beside that, Figure 3.4 shows the samples associated with

high C-D produce larger MSE than those with low C-D. This similar effect can be observed

irrespective of the sample size and hidden neuron. Since the performance of different neural

networks associated with the CM is similar, we can empirically show that our proposed

methods are indeed model independent.

Table 3.2: The t-test of MSE test sets between samples which have different sample sizes,
i.e., 100 and 150 for the CM and RND methods. For the CM method, the t-test is carried
out on the samples which share the same C-D values.

No HN Method MSEtest
p-value t-value Reject H0

1 5 CM(high C-D) 1.5933E-16 11.368 Yes
2 CM(low C-D) 3.7440E-11 7.9718 Yes
3 RND 1.2026E-14 10.069 Yes
4 10 CM(high C-D) 1.0210E-30 22.812 Yes
5 CM(low C-D) 4.8677E-24 17.211 Yes
6 RND 1.0836E-24 20.379 Yes
7 15 CM(high C-D) 9.0977E-34 27.714 Yes
8 CM(low C-D) 1.2544E-30 23.579 Yes
9 RND 2.5404E-30 25.108 Yes

We also hypothesise that the C-D value may significantly influent the network perfor-

mance. The hypotheses of our study is set out below:

• Null hypothesis : The sample mean of measurement, i.e., MSE, bias, variance and

predicted error for the samples associated with high C-D is less than or equal to

those of low C-D ;

• Alternative hypothesis : The sample mean of measurement, i.e., MSE, bias, variance

and predicted error for the samples associated with high C-D is greater than those

of low C-D.

To confirm the effect of C-D in the CM method, an analysis is carried out on MSE

and bias-variance. Table 3.3 shows a two-sample t-test on MSE for high and low C-D. By
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Figure 3.4: MSE of test sets for CM and RND with various network sizes.

Table 3.3: The t-test of MSE test sets between samples which have high and low C-D
values but same sample sizes for the CM method.

No HN SS MSEtest
p-value t-value Reject H0

1 5 100 0.0002 3.7023 Yes
2 150 0.2934 0.5461 No
3 10 100 3.40E-08 6.1852 Yes
4 150 0.1119 1.2297 No
5 15 100 5.33E-14 9.7208 Yes
6 150 3.65E-05 4.2747 Yes

observing the t-test of MSE when sample size is 100, all of the null hypotheses are rejected

irrespective of the network size. For sample size 100, there is enough evidence to claim

that the samples associated with low C-D produces smaller MSE than those of high C-D.

On the other hand, for sample size 150, some of the null hypotheses are not rejected and

this happens when the network size is small. However as the network becomes larger, the

effect of C-D becomes significant since the null hypothesis is rejected. Besides that, the

p-value reduces as the hidden neuron increases for the same sample size. Therefore, we can

conclude that the C-D value has significant effect on MSE especially with larger network

size.

Another performance measurement that is used to evaluate the effect of C-D is bias-

variance. Figure 3.5 shows the boxplots of bias, variance and predicted error of the test

set for CM and RND methods. The figure shows that the RND method produced the
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Table 3.4: The t-test of bias, variance and predicted error applied on the test set between
samples which have high and low C-D values but the same sample sizes for the CM method.

No HN SS Biastest V ariancetest Predicted errortest
p-value t-value Reject H0 p-value t-value Reject H0 p-value t-value Reject H0

1 5 100 2.53E-05 4.3813 Yes 6.62E-06 4.7682 Yes 2.92E-09 6.8244 Yes
2 150 0.0413 1.7668 Yes 0.1228 1.1732 No 0.0001 3.8591 Yes
3 10 100 1.23E-13 9.4468 Yes 5.18E-13 9.0769 Yes 1.07E-22 15.62 Yes
4 150 0.0442 1.7338 Yes 0.0427 1.7501 Yes 3.54E-10 7.4243 Yes
5 15 100 9.03E-23 15.874 Yes 2.08E-19 13.406 Yes 1.14E-28 21.448 Yes
6 150 0.0006 3.4004 Yes 6.54E-05 4.1001 Yes 1.17E-16 11.406 Yes

highest bias-variance for the test set. For both the CM method, the samples associated

with low C-D produce smaller bias-variance, which lead to smaller predicted error as well

because it is the sum of bias-variance. Based on the t-test of the bias and variance as

shown in Table 3.4, they shows similar findings as those of MSE ; the null hypotheses are

significantly rejected as the network size grows except for the CM method with sample size

150. Despite the null hypothesis is not rejected, it’s p-value only exceeds the significance

level marginally. According to [19], the alternative to rejecting the null hypothesis is not

necessarily to accept it. Otherwise the null hypothesis would be accepted in all instances

once the p-value is in excess of the significance level. The rough guide is the null hypothesis

might be accepted if |t| ≤ 1. The smaller is the t-value below 1, the greater the firmness

in accepting the null hypothesis. A smaller difference is much more likely to be owing

to sampling error than a larger one. Since the t-value for the CM method with sample

size 150 is 1.1732, which is greater than 1, it is much more unlikely in accepting the null

hypothesis. Therefore, we can conclude that the value of C-D has significant effect on the

bias-variance, especially when the network size grows.

In spite of showing compatible results as the random sampling method in term of MSE,

the CM method produce much smaller bias and variance than the RND method, which

leads to smaller predicted errors as well.

In reality, it is important to estimate the limit of C-D so that we can know where

the representative sample should be drawn from. Figures 3.6 shows the average MSE test
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Figure 3.5: Bias, variance and predicted error of test sets for CM and RND with various
network sizes.
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of 30 samples against p% for low and high C-D with sample sizes 100. For sample size

100, as p% is small, there is a significant difference of MSE, bias-variance and predicted

error between low and high C-D, where low C-D produces smaller measurement values

compared to high C-D. However, the difference becomes less apparent as the value of p%

increases. In general, low C-D produces smaller MSE, bias, variance and predicted errors

than those of high C-D for small p%. Furthermore, the plots provide a threshold value,

p%threshold of where the representative sample should be selected from. The threshold value

refers to the point where the lines of low and high C-D intersect. The samples drawn from

the pool of samples associated with the lowest C-D, where its p% ≤ p%threshold, produce

small MSE, bias, variance and predicted error in general. In other words, these samples are

more representative than those of > p%threshold. This finding is used as a guideline to find

and invert the representative samples in the following simulation of Causative Availability

Targeted attack.

3.5.2 Adversarial attack simulation

3.5.2.1 Artificial Data

In the artificial data set, we carry out two-sample t-test on MSE produced by each single

neural network, after being trained by the ICM data and the IRND data. Here, we introduce

an index R which indicates the outcome of the t-test. The following shows the possible

outcomes:

• If the network has equal sample mean of MSE after being trained with the ICM data

and IRND data, (MSEICM = MSEIRND), R = 0.

• If MSEICM > MSEIRND, R = 1.

• If MSEICM < MSEIRND, R = −1.
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Figure 3.6: MSE and generalization error of test sets for various p% and network sizes
when the sample size is 100

Then, we use the outcome of the t-tests to produce scatter plots (see Figures 3.7(a) to

3.7(c)). The x -axis refers to Ra while the y-axis refers to H. Different colours of markers

in the scatter plot indicate the performance difference of each single neural network, when

trained with the ICM-data and IRND-data. Therefore, the green, blue and red markers in

the scatter plot indicate the R values -1, 0 and +1 respectively. When the ICM-data and

IRND-data are used to train the single neural networks, their performances against these

attacks are different. One of the neural networks may defend itself better than others with

the ICM-data while the another defends itself better with the IRND-data. In other words,

the vulnerability of each neural network against adversarial attacks is different.
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Figure 3.7: Scatter plots of R for neural networks with different hidden neurons

With the same characteristic of data, the R values for the single neural networks with

5, 10 and 15 hidden neurons are different. This means their defences against these two

attacks are different. Therefore, the combination of these neural networks could help to
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Table 3.5: Percentage of instances where the ensemble performs at least as well as single
neural networks, with artificial data

Hidden neuron ICM IRND
Average Majority Winner-take-all Average Majority Winner-take-all

5 99.71% 99.70% 99.57% 99.69% 99.68% 99.53%
10 99.75% 99.81% 99.72% 99.73% 99.79% 99.67%
15 99.74% 99.81% 99.82% 99.73% 99.80% 99.79%

reduce common vulnerabilities against adversarial attacks, thus produce better performance

than a single neural network.

To create a neural ensemble, we combine the outputs from each single neural network

based a combination rule: average, majority-voting, or winner-take-all. The predictions of

the ensembles are compared with each of the single neural network. If the performance

from at least one of the ensembles is better than the single neural network, the marker in

the scatter plots in Figure 3.7 is circled in black. From Figures 3.7(a) to 3.7(c), we can

observe that most of the markers are circled in black, showing the ensemble performs better

than the individual neural networks in most of the artificial data sets. This also suggests

that the use of ensemble to carry out classification is a better option, because we hardly

know what is the true characteristic of the inverted data.

The accuracy of the ensemble in this classification problem is then compared with each

of the individual neural networks. Table 3.5 shows how often the ensemble performs at

least as well as the individual neural networks when they are applied to data with different

characteristics. The results show that the ensemble is better than a single neural network

more than 99% of the time, regardless of the types of combination rules in the test set.

Having demonstrated the feasibility of using neural ensembles with artificial data sets,

we turn to real data sets.
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Figure 3.8: Performances of the ensemble and single neural networks after adversarial
attacks, with the Wave data set
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3.5.2.2 UCI and Spam Data

Figure 3.8 presents the accuracy of the ensemble and single neural networks with the Wave

data, when trained with the ICM-data and IRND-data. We can observe that the accuracy

of both decreases as the percentage of inverted data increases. Despite this, the performance

of the ensemble, using average or majority-voting, performs as well as or better than most

of the single neural networks.

From Figure 3.8 we can also see that the performance of the single neural networks

with 5, 10 and 25 hidden neurons deteriorates as the percentage of inverted data increases,

irrespective of the inversion type. This means if we rely on a single neural network in a

classification problem, the prediction most probably is less accurate when it is exposed to

adversarial attack. This finding may also indicate that the performance of an under-fitted

or over-fitted neural network degrades more than a generalised network as the percentage of

inverted data increases. Unfortunately, it is difficult to determine in advance which single

neural network can generalise better even if it is attacked by an adversary.

Figure 3.8 also shows that the performance of an ensemble which uses the average is

not as competitive as the majority-voting and winner-take combination rules, because its

final output is affected more by members that perform poorly. This implies that averaging

the networks, which is biased towards their mean performance, is not reliable in these test

cases. Nevertheless, it still performs better than the worst single neural network.

For the PB and MGT data sets, the trends are similar to the Wave data set (graphs

are not presented here due to space limitations). Table 3.6 presents the key results for all

of the UCI data sets.

Table 3.6 shows how often at least one of the ensembles performs at least as well as the

individual neural networks, with UCI data. The ensembles perform better than the single
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Table 3.6: Percentage of instances where the ensemble performs at least as well as single
neural networks, with UCI data under a static environement. HN refers to hidden neurons.

Data Method ICM IRND
5HN 10HN 15HN 20HN 25HN 5HN 10HN 15HN 20HN 25HN

Wave average 94.03% 94.43% 93.00% 93.40% 95.90% 93.68% 93.84% 93.80% 93.72% 95.19%
majority 97.71% 98.59% 98.01% 98.56% 94.94% 97.90% 98.00% 98.41% 98.85% 94.23%

WTA 96.87% 98.03% 98.06% 98.96% 94.40% 97.24% 97.47% 98.26% 98.70% 94.07%
PB average 90.95% 90.81% 90.76% 90.73% 90.75% 90.17% 90.03% 89.95% 89.91% 89.92%

majority 91.08% 90.98% 90.94% 90.90% 90.92% 90.37% 90.27% 90.19% 90.15% 90.16%
WTA 91.71% 91.61% 91.57% 91.53% 91.55% 92.18% 92.09% 92.01% 91.97% 91.98%

MGT average 98.92% 99.02% 98.96% 98.90% 99.07% 98.77% 99.04% 99.04% 98.97% 99.02%
majority 99.11% 99.28% 99.22% 99.15% 99.00% 98.91% 99.31% 99.31% 99.21% 98.98%

WTA 98.42% 98.69% 98.70% 98.70% 98.40% 98.46% 99.06% 99.17% 99.29% 98.70%
Wine average 51.83% 51.83% 50.17% 50.21% 50.51% 51.54% 51.54% 50.34% 49.87% 51.42%

WTA 59.86% 59.86% 56.45% 64.80% 63.36% 58.58% 58.58% 60.33% 61.18% 65.56%

neural networks more than 90% and 50% of the time in the classification and regression

problems respectively. Generally, the above findings suggest that an individual neural

network is more vulnerable to adversarial attacks than an ensemble.

Since the Wine data is a regression problem, MSE is used to measure network perfor-

mance instead of accuracy (see Figure 3.9). Figures 3.9(a) and 3.9(b) show that MSE of

the single neural network with 25 hidden neurons increases drastically when the percentage

of inverted data is large. In contrast, the ensemble manages to maintain its performance.

For ease of comparison, Figure 3.10 shows MSE of the ensemble and single neural networks

from 0.5% to 20.0% of inverted data. Figure 3.10 clearly shows the ensemble — especially

the one based on winner-take-all — always produces smaller MSE than the others even

with a high percentage of inverted data.

The performances of the proposed neural ensemble and single neural networks under

the non-stationary environment are evaluated as well. Owing to space limitations, we

only present the graphs for the spam data. However, the key results of all data sets are

summarised in Table 3.7. Figure 3.11 shows the performance of the neural ensemble and

single neural networks in the Spam data under the non-stationary environment for both

the ICM and IRND inversions. Based on the graphs in Figure 3.11, we can observe the

performance of a neural ensemble is either comparable to or better than the single neural
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Figure 3.9: Performance of the ensemble and single neural networks after adversarial at-
tacks, with the Wine data set
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Figure 3.10: The zoom in of Figure 3.9(a)



3.5. Main Results 71

networks under the non-stationary environment. This means the proposed ensemble shows

promising results in spam detection.

Table 3.7 summarises the frequency of at least one of the ensembles perform at least

as well as the single neural networks under the non-stationary environment. Except for

the Wine data which is based on the average method, the ensembles perform better than

the single neural networks in the remaining cases, with the frequencies distributed between

52% - 99%. This suggests that an ensemble generally performs better than single neural

networks even under the non-stationary environment.
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Figure 3.11: Performance of the ensemble and single neural networks after adversarial
attacks, with the Spam data set
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Table 3.7: Percentage of instances where the ensemble performs at least as well as single
neural networks, with UCI data and spam data sets under a non-stationary environment.
HN refers to hidden neurons.

Data Method ICM IRND
5HN 10HN 15HN 20HN 25HN 5HN 10HN 15HN 20HN 25HN

Wave average 92.33% 89.56% 91.40% 84.38% 87.33% 91.76% 89.54% 90.23% 82.67% 86.47%
majority 97.22% 96.97% 96.60% 89.41% 84.09% 96.60% 97.00% 96.49% 86.35% 84.80%

WTA 95.62% 95.90% 95.40% 88.03% 83.22% 95.01% 94.56% 95.46% 82.63% 81.28%
PB average 97.02% 95.46% 96.10% 95.01% 95.35% 90.76% 93.43% 87.50% 89.27% 90.77%

majority 98.93% 98.12% 98.90% 98.11% 97.89% 97.30% 99.02% 96.54% 98.73% 97.48%
WTA 98.41% 97.16% 97.80% 96.72% 96.70% 96.92% 98.34% 96.60% 98.23% 97.27%

MGT average 90.06% 90.07% 90.20% 90.62% 95.04% 91.79% 92.12% 92.11% 91.92% 94.70%
majority 98.68% 99.00% 99.10% 98.65% 97.14% 98.41% 98.82% 98.72% 98.75% 98.03%

WTA 98.57% 98.61% 98.80% 98.34% 96.64% 98.10% 98.48% 98.41% 98.42% 97.51%
Wine average 39.78% 39.13% 39.80% 37.95% 51.96% 40.45% 41.57% 42.24% 41.57% 54.73%

WTA 62.42% 62.54% 66.10% 54.44% 60.42% 63.89% 63.25% 62.41% 52.61% 61.51%
Spam average 89.62% 89.78% 90.70% 93.33% 95.79% 93.19% 93.46% 92.23% 94.10% 95.99%

majority 97.64% 98.65% 97.90% 94.94% 92.63% 98.09% 98.59% 97.79% 98.10% 93.90%
WTA 97.52% 98.30% 97.10% 93.71% 91.34% 96.72% 97.14% 97.52% 97.24% 92.41%

3.6 Conclusions

This chapter proposes a framework which simulates causative availability targeted and

causative availability indiscriminate attacks, and then assesses neural networks’ perfor-

mance against these threats. Causative availability targeted attacks are simulated based

on CM, while causative availability indiscriminate attacks are simulated based on RND,

whereby both CM and RND are the sample selection methods. Before these two sample

selection are methods used to simulate the attacks, their effects on network performance

are found. Despite being based on random sampling, CM causes higher bias-variance as

compared to RND if it is associated with low C-D. In other words, the causative availability

targeted which simulated based CM may cause higher deterioration in network performance.

The heart of our inversion lies in the attacks against the outputs instead of inputs.

Instead of adding extra corrupted data into the data set, the outputs of the selected sample

are inverted to confuse the neural network.

The performances of the proposed ensemble and single neural networks are evaluated

in static and and non-stationary environments. Based on the experiment results, they

show an ensemble performs comparable to or better than single neural networks in both
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simulated environments. The experiment results also show that the performances of the

ensemble and individual neural networks deteriorate with the increase of inverted data in

both simulated environments. The deterioration is more significant in larger single neural

networks. This may be due to over-fitted networks. Despite this, the study shows that the

ensemble performs better than most of the single neural networks when they are exposed

to both adversarial attacks. This is important because it shows that the ensemble can

still defend itself even the attack is focused on a specific group of instances. Also, an

ensemble has better potential to minimise rapid deterioration than a single neural network

after being exposed to adversarial attacks. This suggests the vulnerability of an ensemble

against adversarial attacks is lower than a single neural network, which means the prediction

from an ensemble is more reliable than a single neural network. If we rely heavily on a

single neural network, it is difficult to know whether the network can still defend itself if it

is incrementally attacked by an adversary.

We have observed that the performance of an ensemble may be affected by some of

its members that perform poorly. Therefore, in the future we would like to focus on

developing a mechanism which can automatically increase or decrease the influence of

some of the members in producing the consensus output. Besides that, a mechanism to

detect and react to changes in the data should be investigated. The work done in [11, 10]

has introduced a powerful concept which can address the problem. Therefore, the concept

can be borrowed to further improved our proposed ensemble in the future work.
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Chapter 4

Synthetic Simulation Environment

4.1 Synthetic Simulation Environment

The objective of our research is to investigate the similarities/differences of behaviours

between human red teaming and machine red teaming. To perform the investigation, it is

very important to carry out the comparison in the same environment, so that the possible

differences which may arise due to task representation and behaviour adequacy can be

reduced or eliminated. We hardly know in advance which of the two behaviours (human

or machine) presents a more adequate representation of the needs of a task.

This leads to the development of the red teaming environment. It needs to be a well-

controlled environment so that a specific change in the dependent variables can reliably

be produced by specific manipulations of the independent variables, and the change is

unlikely to be the result of confounding variables. To create a well-controlled environment,

a synthetic red teaming game environment is created and an agent simulation is used.

The game environment involves two agents known as blue and red, whereby the blue

agent is represented by a predator and the red agent is represented by a prey. Both agents
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have opposite goals: the blue agent tries to catch the red agent while the red agent tries

to escape the blue agent.

For an entity to be declared as an agent, it needs to be equipped with the abilities to

sense/observe inputs, to make decisions based on the observed inputs and to act according

to these decisions [4]. This means the blue and red agents need to have these three abilities

in order to achieve their goals.

The ability to obtain information is abstracted by the availability of inputs to the

agents, since the experiment is carried out entirely in a simulation environment. On the

other hand, the ability to make decisions refers to the selection of which location to move

to by the agents based on the received information. Lastly, the ability to act refers to the

movements of the agents in the environment.

The simulation is based a low-resolution strategic behavioural model because it ig-

nores detailed physics of agents and only captures behaviours in the model. Interesting

behaviours emerge as a result of maneuvering of the agents in space and times of the sim-

ulation. Several examples of low-resolution strategic behavioural simulation models are

WISDOM, EINSTein and MANA [89, 88, 31] which are widely used to study a military

plan or operation. For these models, the attraction-repulsion weighting approach is used

to determine the movements of the agents in the simulation.

Unlike these models, the approach to determine the movements of agents in the envi-

ronment is influenced by information and deception. The details about the implementation

will be explained in Section 4.1.2.

Both the blue and red agents are equipped with a so called “sensorimotor system” which

enables them to move in the environment based on their decisions. The sensorimotor system

produces the planned actions based on received input information about the environment

and their opponents. For the blue agent, its sensorimotor system produces a direct action



4.1. Synthetic Simulation Environment 77

according to scripted strategies after receiving information through the agent’s sensor.

For the red agent, its sensorimotor system can be either a machine or a human. For both

machine and human sensorimotor systems, the production of planned actions involves more

complicated computational processes of input information. Since the game is carried out

in simulation, the relevant inputs needed by the sensorimotor systems based on scripted

strategies and machine are made directly available to them.

Figure 4.1 shows the schematic representation of the environment while Figure 4.2 shows

the interface of the game environment. The blue and red agents are represented by the

triangles in blue and red respectively. The perimeters of the circles surrounding the blue

and red agents (shown in dotted lines) represent the possible locations that the agents can

move to in one time of step due to the constraints that have been imposed on them (as

explained in detail in Section 4.1.1).

 

656 pixels 

656 pixels 
200 pixels 

Red agent 

Blue agent 

Figure 4.1: Schematic representation of the initial setup of the blue and red agents in the
game environment.

The simulation is limited to one-to-one agent only. Instead of focusing on the complexity

of the interaction between the agents, we focus on understanding the behaviour between a
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Figure 4.2: Interface of the game environment.

single pair of agents. Increasing the number of agents in the simulation, e.g., many-to-one

and many-to-many relations may become overwhelming and complicated if the study lacks

appropriate metrics and methodologies to analyse the behaviour of the agents. Instead,

we would like to understand the behaviour from this basic relation based on our proposed

behavioural analysis framework. Once the metrics and methodologies have been proven to

work adequately, the work can be expanded to more complex relations.

The ultimate goal of the proposed framework is to understand human behaviour and

machine behaviour in the same environment, through analysing how these two forms of

red behave in response to specific formations of the blue agent. This could be done by

having a human or a machine as the red agent. The formations of blue are characterised by

information and deception. The question can be answered appropriately if the blue agent’s

strategy is fixed but the red agent’s strategy is evolved. Having also the blue agent to

operate based on learning machines, e.g., evolutionary computation, will introduce more

complexity and stochasticty into the investigation. Consequently, it will be difficult to

obtain an insight on the effect of the formations on the behaviour of the red agent. Having

full automation of red teaming by involving learning machines for both agents does not

necessarily provide answers or insights on the complexities of red teaming, which is cen-
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tralised on human activities [4]. Some key questions related to this issue are: how different

or similar is a computational red agent’s behaviour compared to a human’s behaviour? how

to represent or simulate a red? how to extract the information? etc. All these questions

can be summarised as the core of red teaming, which consists of three main components,

i.e., context, computation and analysis [4].

4.1.1 Constraints

The environment is bounded by several constraints.

• In the game environment, 1 cm = 1 pixel. Both agents are placed in a 2D continuous

environment of 16cm × 640cm, where x and y refer to coordinates in environment.

The coordinates (x, y) start with the value 16 instead of 0 because the 2D grid

environment is surrounded by rectangular walls.

• The speeds for the blue and red agents (represented by ξb and ξr respectively) are

both fixed at 10cm per time step (ξb = ξr = 10). The reason that the speeds for

both agents are set to be equal is to emulate the scenario that both agents have equal

capabilities, so that capturing can only occur through good strategy.

• The movements of the agents are determined by their travel angle; the travel angles

for the blue and red agents are denoted as θb and θr respectively. The values of θb

and θr are within the range of [0, 2π]. The generation of travel angles depends on

the strategies used by the agents.

The game starts and ends as follows:

• The initial locations for both agents are randomly generated, with distance between

them, dopp = 200cm.
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• The game is terminated if one of the following constraints is met:

– the distance between the red agent and blue agent, dopp < Dmin, with Dmin =

20cm. Dmin refers to the distance at which red is considered to be caught by

blue.

– maximum number of time steps is reached, S = 100 steps.

4.1.2 Strategies

The movements for both agents are determined by their strategies to generate travel angles.

In other words, the generation of travel angles depends on their decision models. The

blue agent’s strategies are scripted. The red agent’s strategies are determined by either a

machine or a human. For the red agent whose movements are determined by a machine,

neuroevolution is selected as the approach.

The blue agent arranges its strategies with the knowledge of the existence of an intel-

ligent red agent. The intelligence of the red agent is reflected in its actions resulting from

its own situation awareness. For example, a thief who has information about the police’s

patrol route would not break into the houses which are located within the route. Due to

the thief’s situation awareness, it is unlikely that the police will be able to catch the thief.

Therefore, the access that the blue agent has to the red agent’s intelligence can be

obtained through observing the red agent’s actions. However, this may be affected by the

frequency of observing the red agent’s actions and the noise which may exist in the obser-

vations. Given that the red agent’s actions are perceived by the blue agent as intelligence

about the red agent, we call the frequency of receiving information about the red agent the

“frequency of intel” NI , while the noise contained in the information is the “noise in intel”

α̂(t). Here, α̂(t) actually reflects the control that the red agent has over how it is perceived
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by the blue agent. This means the red agent intentionally moves away from its targeted

location so that its movements become unpredictable by the blue agent.

Based on the received information, the blue agent arranges its actions to deceive the red

agent. The deception is produced by the blue agent intentionally to confuse the red agent

and disrupt the red agent in achieving its objectives. This can be demonstrated using the

previous example of a thief and the police. In this case, the police will take the same patrol

route for a few days in order to make the thief believe that the police will take the same

route for the following day. Instead, the police changes their routes. Consequently, with a

higher probability the thief will be caught by the police if the police patrols at the areas

which are not in their previous patrol route. To create a deception produced by the blue

agent in the environment, we introduced two parameters: namely deception cycle length,

ND; and deception range, ζ(t).

The pseudo code shown in Algorithm 1 describes the strategy used by the blue agent.

The parameters used in the strategy are as follows:

• P̂ (t)
b - Actual position of the blue agent at time t.

• P̂ (t)
r - Actual position of the red agent at time t.

• P̂ (t)
ir - Intel reporting on the position of the red agent perceived by the blue agent at

time t.

• α̂(t) - the relative change in x and y coordinates due to the level of noise added to

P̂
(t)
r , expressed as α̂(t) = (∆x, ∆y).

• Counter - Game clock.

The demonstration of the above proposed parameters means the red agent has some

control over how it is perceived by the blue agent. The blue agent also demonstrates its
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Algorithm 1 Update intel and position

while Counter is not stopped do
Update intel:
if (Counter modulo NI) = 0 then

P̂
(t)
ir ← P̂

(t)
r + α̂(t)

else {(Counter modulo NI) 6= 0}
P̂

(t)
ir ← P̂

(t−1)
ir

end if
Update position:
θc = P̂

(t)
ir − P̂

(t)
b

if (Counter modulo ND) = 0 then

θ
(t)
b = θ

(t)
c

else {(Counter modulo ND) 6= 0}
θ

(t)
b = θ

(t)
c + ζ(t)

end if
end while

control over actions in the environment based on the frequency of its observation on the

red agent. The blue agent uses the received information about the red agent’s intelligence,

to generate deceptive movements through the adjustment of ND and ζ(t).

For the red agent, neuroevolution is used as the decision-making model to construct

its decision behaviour. Neuroevolution refers to the use of evolutionary computation and

neural networks in the autonomous production of behavioural robot controllers. In this

case, the red agent is viewed as a robot, whereby neuroevolution is responsible to con-

trol its movements. The use of neuroevolution is justified according to Simon’s concept of

“bounded rationality” [75], which lies in the ability to learn and evolve to produce func-

tional behaviours [75]. It approximates the possible limited computational capabilities of

different humans interacting with the environment. According to this concept, behaviours

are functional if they contribute to certain objectives of an individual. Evolution is about

the persistence and survival of functional behaviours, while learning refers to the ability of

an individual to change its decision making processes resultant from its actions and inter-

actions with the environment. Neuroevolution is represented by a population of diversified
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solutions which are associated with their own strengths and limitations.

Evolution and learning are complementary forms of an individual is ability to adapt.

This is supported by Baldwin’s argument that learning accelerates evolution because sub-

optimality can reproduce by acquiring during life necessary features for survival. Within

an evolutionary perspective, learning allows individuals to adapt to changes in the environ-

ment that occur in the lifespan of an individual or across several generations. Then, the

information extracted from the environment through learning is used by evolution to pro-

duce potential suboptimal individuals so that they can survive in the environment. Since

neuroevolution is associated with both abilities to learn and evolve [69, 68, 58], it emerges

as a suitable approach to determine the red agent’s actions in the environment.

Even though evolutionary computation is usually applied to solve optimisation prob-

lems, we would like to distinguish our main idea from the evolutionary optimisation prob-

lem. The ultimate goal of our research is not to use evolutionary computation to optimise

the games, but to emulate human behaviour as closely as possible.

4.1.3 Agent-based Model

Based on the strategies by either the red or blue agent, the agent-based model in our

research can be represented by the following schematic diagram in Figure 4.3. For the

red and blue agents, their decision models represent intelligence, processing the received

information to produce and justify outputs. The inputs and outputs involved for both

agents are listed in the Figure 4.3.
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Input: 
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 Change in relative angle  
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Figure 4.3: Schematic representation of the agent-based model.

4.1.4 Parameter Selection

NI and α̂(t) represent the information that the blue agent has of the red agent, while ND

and ζ(t) represent the deception generated by the blue agent. The blue agent’s strategies

are influenced by the combinations of these 4 parameters.

Table 4.1 shows the possible combinations of NI and α(t), given that the deception effort

from the blue agent is fixed. On the other hand, Table 4.2 shows the possible combinations

of ND and ζ(t), given that the received information about the red agent is fixed.

Table 4.1: The combinations of NI and α̂(t) given that the deception effort from the blue
agent is fixed.

Combination NI α̂(t)

1 1 0
2 1 U(0, 20)
3 10 0
4 10 U(0, 20)

Table 4.2: The combinations of ND and ζ(t) given that the information received about the
red agent’s intelligence is fixed.

Combination ND ζ(t)

1 1 0
2 5 U(−15◦, 15◦)
3 5 U(−30◦, 30◦)
4 10 U(−15◦, 15◦)
5 10 U(−30◦, 30◦)

The value NI = 1 means that the blue agent receives the information about the red
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agent at each step. In contrast, NI = 10 indicates that the blue agent receives information

at every 10th step.

A uniform distribution, U(0, 20) is used to generate ζ(t). The reason that 20 is used

as the maximum values of the uniform distribution is based on the scenario that the red

agent is almost caught by the blue agent , dopp ≈ Dmin (Dmin = 20cm).

The first combination in Table 4.2 represents the scenario when the blue agent moves in

the direction where it expects the red agent to be, P̂ir(t). The other combinations represent

scenarios in which the blue agent deviates from its expected trajectory (which leads to the

capturing of the red agent) once after a number of steps. The deviation from the trajectory

depends on the values of ζ(t), which is based on a uniform distribution. The maximum and

minimum deviations are selected as 15◦ and 30◦ respectively, so that the blue agent does

not deviate too far away from the original trajectory which may end up with a failure to

capture.

The four combinations in Table 4.1 and the five combinations in Table 4.2 produce a

total of 20 combinations with varying perception and deception.
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200 pixels 
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Figure 4.4: Selection of maximum values for NI .
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Figure 4.5: Selection of maximum values of the uniform distribution for the generation of
ζ(t).

4.2 Analysis Methodology

As we mentioned before, the main objective of our research is to compare similarities

between machine and human red teaming. For a fair and valid comparison, a synthetic

simulation environment is created to carry out red teaming, in which the red agent which

can be either a human or a machine is required to maximise the optimality of decision-

making. Here, optimality refers to decisions that maximise or minimise some explicit and

measurable criterion conditional on certain environmental assumptions and a specified time

horizon [26]. From this definition, we can see that Einhorn and Hogarth [26] emphasise

the conditional nature of optimality. Therefore, the comparison of optimality between

a human red and a computational red is compared with respect to the environmental

constraints mentioned in Section 4.1.1. Based on this definition, we can observe also that

optimality is influenced by the changes in decision-making and the changes are reflected in

the actions taken. In other words, the changes in behaviours influence the outcomes. Owing

to this, we are interested to compare the similarities between a human and computational

red teaming in terms of behaviours and outcomes of behaviours. A behaviour refers to a
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sequence of actions of the red agent in the environment. On the other hand, outcome of

the red agent’s behaviour can be either represented by the fitness values of a population

of strategies in machine red teaming or the scores obtained by the human players in the

proposed environment.

4.2.1 Analysis of Scores

4.2.1.1 Significance test

Behaviours of the red agent are determined by a population of strategies in an evolutionary

process and a number of human players. In the demonstration of machine red teaming, the

outcomes of the behaviours are represented by fitness values of the population of strategies

at the end of the evolutionary process. On the other hand, the outcomes are represented

by the scores obtained by the human players. Since the changes in behaviour will affect the

outcomes, we are interested to know whether there is any significant difference of outcomes

between the machine behaviour and human behaviour. Both machine and human red

agents are exposed to two scenarios, as shown in Table 4.3, and their differences lie in the

availability of perceived information about the blue agent. If the red agent operates with

the absence of perceived information about the blue agent, such scenario is called known-

unknown. On the other hand, another scenario is called known-known scenario given that

the red agent acts with the presence of perceived information about the blue agent.

Table 4.3: The denotation of treatments.

Red agent Scenario Definition
Machine / Known-unknown A red agent with the absence of perceived information about the blue agent.

Human Known-known A red agent with the presence of perceived information about the blue agent.

The outcomes of both scenarios refer to the mean of the outcomes, o, which are repre-

sented by the mean-fitness for the population and mean-scores for the human players. To

test whether there is a significant difference or not for o, a t-test is conducted between the
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paired scenarios for the same configuration of NI , α
(t), ND and ζ(t). Setting the significance

test level of t-test as 0.05, the hypotheses of our study are set out as following:

• Null hypothesis(H0): The sample mean of the difference in o between the paired

treatments is equal;

• Alternative hypothesis(H1):The sample mean of the difference in o between the paired

treatments is unequal.

4.2.2 Analysis of Action Sequences

Given that both the agents have the same speed, the red agent is not able to escape by

running faster. Therefore, the red agent needs to change its position in such a way to

ensure it is not caught by the blue agent. As a result, there will be changes in the red

agent’s velocity as well as acceleration. With the measurements, the relative change in the

movement is captured in terms of amplitude and time. For the calculation of velocity and

acceleration as shown in Equation (4.1) and Equation (4.2), the locations visited by the

red agent in each game are recorded.

vt2r =
‖ P̂ t2

r − P̂ t1
r ‖2

t2 − t1
(4.1)

v̇t2r =
vt2r − vt1r
t2 − t1

(4.2)

Each action sequence of the red agent is associated with different locations at different
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time periods. To extract the information from a set of action sequences of different lengths,

we need to have a set of action sequences of the same dimensions. An extracted information

at time t can be seen as a single dimension. Owing to this, we need to determine the

dimension for the action sequences. In other words, we need to determine the number of

sub-sequences for each action sequence, NS. To ensure there is no loss of generality, the

number of steps for the shortest action sequence is selected as the desirable dimension NS.

By using a sliding window size, wi = len(Ai)/Ns, the relevant attributes within the window

are extracted as shown in Figure 4.6.

For ease of understanding, an action sequence of an agent i, Ai is represented by a

single attribute over time t and the number of sub-sequences in the shortest sequence is

denoted as Ns. Divide the total time T of a complete sequence of actions into Ns equal

steps of times with window size, w = T/Ns. Therefore, t = {t1, t2, t3, . . . , tNs} and the

relevant attribute associated with the action is extracted at each point of time. Therefore,

Ai = {a1
i , a

2
i , a

3
i , . . . , a

Ns
i } represents a sequence of single attribute for agent i. Here, ati is a

sub-sequence of sequence Ai and can be considered as a single feature of a multi-dimensional

data set. The proposed method can be easily extended to action sequences associated with

multi-attributes with the relevant attributes being extracted at each point of time.

With the proposed method, a sequence of length len(Ai) is mapped to a trail in feature

space, consisting of Ns points, with a point for each possible offset of the sliding window.

By doing so, we can measure the velocities at these points for different lengths of sequences

and there will be NS velocities. These are not velocities for the actual moves of an agent,

but for the relative position of an agent from one window to another.

Having measured a velocity, we can also obtain the changes of velocities for these points.

They are represented by NS−1 accelerations. As a result, a sequence of changes in locations

over time is transformed into a sequence of velocities and accelerations instead for the red
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w1 = T1/Ns 

Trajectory 

Time, T1 

Sliding window movement 

w2 = T2/Ns 

Time, T2 

Trajectory 

Figure 4.6: Attributes extraction based on sliding window.

agent, with new dimension, ` = 2NS − 1. The behaviour of agent i can be viewed as

B(Ai) = {Vi, V̇i} = {v1
i , . . . v

Ns
i , v̇1

i , . . . , v̇
Ns−1
i }, where V has Ns sub-sequences, and V̇ has

Ns − 1 sub-sequences respectively.

The collection of action sequences is represented by a matrix, M of dimension k × `,

where k refers to the total number of action sequences and ` refers to the dimension of

each action sequence. Clustering, specifically fuzzy c-mean (“FCM”), is used as the data

mining technique to extract the underlying patterns that may exist in the action sequences.

Clustering is a data mining technique that categorises a set of instances into several groups

that share higher similarities within the clusters but lower similarities between the clusters,

without the use of actual labels for the instances. The details of the clustering is shown

in Section 4.2.4. With two sets of action sequences, are obtained from the experiments of

machine and human red teaming respectively, clusterings are performed on the sets of action

sequences. Given that both experiments use the same computer based decision environment

and the same evaluation system, we can compare the similarity of action sequences between

the human and machine based on their cluster centroid. For the clusters between the human
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and machine that share high similarity, we are able to identify the possible characteristics

that are associated with them. This is because in the human red teaming, the relevant

characteristics of the human players have been collected through the questionnaire and the

significance of differences in characteristics for the clusters can been carried out.

4.2.3 Behavioural Analysis between Red and Blue

4.2.3.1 Histogram Plot

To describe the relationship between the action sequences of the red and blue agents at time

t, the relative angle between both agents denoted as ϑt, and its change, ∆ϑt are measured.

For each time step, ϑt is calculated after the movements of both agents are updated

simultaneously. Given that each game may be terminated at different time T , we will

have a vector, ϑ̂ representing a sequence of ϑt, with ϑ̂ = {ϑ1, ϑ2, . . . , ϑt, . . . , ϑT}. At

the same time, we can obtain a sequence of changes in ϑ̂; this vector is denoted as

∆ϑ̂ = {∆ϑ2,∆ϑ3, . . . ,∆ϑt, . . . ,∆ϑT}. Here ∆ϑt refer to ϑt − ϑt−1 as illustrated in Fig-

ure 4.7. To perform statistical analysis, each single sequence of ϑ and ∆ϑ can be viewed

as a sample. Each sample can be represented by a general measure that summarises the

frequency distribution of observations in the sample. An approach that reflects tendency

of where the observations are located is used: it is known as central tendency.

 

ϑ2 = ϑ2 - ϑ1 

 

 

Time, t2 

ϑ2 

Time, t1 

ϑ1 

Figure 4.7: Calculation for the travel angle change, ∆ϑt.
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Central tendency for both ϑ and ∆ϑ can be measured based on mean, mode and median.

When a data distribution is symmetrical, the values for mean, mode and median will be

similar, as shown in Figure 4.8(a). In contrast, the values for these measurements will be

different in skewed distributions. Instead, the mean will tend to get dragged towards the

tail of the distribution depending on whether it is skewed left or skewed right, as shown in

Figure 4.8(b) to 4.8(c).

The collection of action sequences between the red and blue agents can be represented

by the following vectors, where k refers to a individual sample for the measurements in

human or machine red teaming, and 1 ≤ k ≤ K. Here, K can either refer to the total

samples in the human or machine red teaming based on the measurements of ϑ and ∆ϑ.

Frequency histograms are used to display the distributions for the following measurements.

• Angle between the heading of both agents

– ϑ̂ = {ϑ1, ϑ2, . . . , ϑk, . . . , ϑK}

• Change of angle between the heading of both agents

– ∆ϑ̂ = {∆ϑ2,∆ϑ3, . . . ,∆ϑk, . . . ,∆ϑK}

4.2.4 Clustering Analysis

Clustering analysis is a method used to categorise instances in a data set into several clusters

in which the instances within the same cluster (group, subset, or category) share high

similarity and the instances between different clusters share low similarity. In the clustering

methods, the k-means (or also known as hard c-means) is a popular clustering method which

restricts the constituting instances to have only two possible values of membership, they

either belong to the cluster or not. Unlike the k-means method, FCM allows the instances
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Mode/ Median/ Mean 

(a) Symmetrical distribution

 

     Mean       Mode 
           Median 

(b) Skewed left distribution

 

     Mode       Mean 
           Median 

(c) Skewed right distribution

Figure 4.8: A comparison of the mean, mode and median for distributions differing in
shape.

to belong to several clusters simultaneously with different degrees of membership to each

cluster [16]. Due to the complexity of actions produced by humans and machines in red

teaming, we are hardly able to categorise an action into a single category. Therefore, we

decided to use FCM in our research, because the method can capture the ambiguity in

the data. This is a more realistic approach to address the concept of behaviour similarity.

The FCM method is able to tolerate uncertain situations that often happen in human

behaviours in the real world.

Let an action sequence be represented by Âi = {ai1, ai2, . . . , ai`, . . . , aiL}, where the

length of each sequence can be viewed as L-dimensional vector for an entity i, and ai`

refers to a feature describing the action sequence, e.g., velocity. A collection of action

sequences is represented by a M of i× ` dimension, with 1 ≤ i ≤ I and 1 ≤ ` ≤ L. Here, i

refers to the number of vectors Â and ` refers to the number of dimensions in Â.
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Clustering is performed by mapping the set of vectors M = {Â1, Â2, . . . , AI} with L-

dimensional vectors in the vector space <I into a finite set of vectors O = {B̂1, B̂2, . . . , B̂J},

where I � J . Each L-dimensional vector B̂j = {bj1, bj2, . . . , bj`, . . . , bjL}, where j =

1, 2, . . . , J , is called as a cluster centroid.

Fuzzy c-partition of M into centroid B̂j where j = 1, 2, . . . , J refers to the number of

clusters, U = [uÂi(B̂j)] = [uij] is called the degree of membership (membership grade), and

τ ∈ [1,∞) (fuzzy exponent) be a parameter weight for uij denoting the degree of fuzziness.

U are subject to
∑J

j=1 uij = 1 respectively, where 0 ≤ uij ≤ 1 for ∀i = 1, 2, . . . , and

∀j = 1, 2, . . . , J , where j ≥ 2 is the number of split regions (clusters) in FCM clustering.

Membership grade is generated with random values between 0 and 1. Fuzzy partitioning is

carried out through an iterative optimisation that minimises the fuzzy objective function

=:

=τ (U,O) =
I∑
i=1

J∑
j=1

L∑
`=1

uτijd
2
ij` (4.3)

subject to Equations (4.4) and (4.5) as shown below:

bj` =

[
I∑
i=1

uτij · ai`

][
I∑
i=1

uτij

]−1

(4.4)

where i = 1, 2, . . . , I and j = 1, 2, . . . , J .

uij =

(
L∑
`=1

d2
ij`

) 1
1−τ
[

J∑
j=1

(
L∑
`=1

d2
ij`)

1
1−τ

]−1

(4.5)

where d2
ij` = d2(ai`, bj`) =‖ ai` − bj` ‖2.
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4.2.4.1 Cluster Validity Analysis

Two fundamental issues that need to be addressed in clustering analysis are to determine

the appropriate cluster size (the number of clusters) and also the goodness of the formed

clusters. As an emerged solution, cluster validity analysis is used to determine an appropri-

ate cluster size that produces meaningful output. Cluster validity analysis is the assessment

of a clustering process’s output. It usually involves a specific criterion of optimality. There

are three main categories of validity indices, i.e., external assessment, internal assessment

and relative test. An external assessment compares the discovered structure with respect

to an external criterion that supervises the quantification of the degree of compatibility

between the discovered clusters and the actual ones. For example, the use of data labels

to evaluate clustering performance is an example of an external assessment. On the other

hand, an internal assessment determines intrinsically whether the discovered structure is

appropriate for the data without any prior information. Lastly, a relative test compares two

structures and measures the relative indices between them. In our work, cluster validity

based on internal assessment is used because there is no label involved in our data. To

perform the analysis, 4 well-known validity indices, namely Silhoutte index [73], Davies-

Bouldin index [24], Calinski-Harabasz index [17] and Dunn index [25], are selected for the

assessment because they evaluate the discovered structure according to their appropriate-

ness for the data such as cluster separation and compactness. Since there is no so called

“gold standard” for selecting cluster validity indices, the four indices form an ensemble to

determine an appropriate cluster size.
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Chapter 5

Human Red Teaming

5.1 Introduction

The advancement in computer technology has allowed computational models to be used to

mimic or reproduce human behaviours in decision making regardless of whether they are

rational or irrational [4]. We can observe that the focus of many models is on reproducing

human behaviour in decision making. However, a human’s actual decision behaviour can be

hard to approximate by the global rational behaviours exhibited in computational predictive

models of decision tasks [75].

But why is the reproduction of human behaviours in decision-making important? It

might be true that human behaviours do not approximate the global rationality owing to

their psychological limits, but it is undeniable that human’s computational capacities are

able to handle various decision tasks. Besides that, there is a lot of issues that still can be

learnt about the possible mechanisms from an examination of the schemes of approximation

that are actually employed by humans in specific situations.

Owing to the above, computational red teaming is incomplete without the involvement
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of humans in the process. For example, human reflection is a mechanism that offers a great

deal to learn about the schemes of approximation that are actually employed by humans

[4].

There are three main components that are impacted by human reflection, i.e., mea-

sures of performance, intelligence, and decision-making and planning. In a red teaming

environment, intelligence refers to the perception that the agents have about each other,

themselves, and their environment. These information are collected through the agents’

sensors. The decision-making and planning component refers to computational capabilities

to produce a decision on how should an agent act in the environment. In other words, the

component is reflected in the agents’ behaviours. Lastly, measures of performance refer to

the metrics used to measure achievements of agents’ objectives.

Based on these three components, we can observe that an agent’s perception of its

environment including its surrounding and the other agent’s influence on its behaviour

affect the outcome of an agent’s objective. Therefore, perception can be seen seen as the

cause for changes in behaviours and affects the achievement of agent’s goal. We hypothesise

that the differences in human behaviours are influenced by the effect of perception. To

investigate this, information display about the opponent is used as a way to vary the level’s

of human’s perception.

5.2 Experimental Design for Human Red Agent

In this experiment, the role of the red agent is taken by a human player. We are interested

to know how human players acting as the red agents behave facing a deceptive blue agent.

Unlike a machine which acts like an “economic man”, normal humans may be influenced

by small changes in the same task.
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In this experiment, we are interested to know whether human behaviour would be

influenced by the access that humans have on the blue agent’s information or not in the

same environment. We hypothesise that the differences in human behaviours are influenced

by the perceived information about blue, leading to differences in the outcomes as well.

Therefore, two scenarios are simulated to allows us to investigate the hypothesis, which

can be called as the known-unknown and known-known scenarios.

The game environments for both scenarios can be shown in Figures 5.1 and 5.2. In

the known-unknown scenario, as shown in Figure 5.1, the human player has no access on

the blue agent’s perception. In contrast, an extra yellow box can be seen in the Figure

5.2; it represents what the blue agent thought was the position of the red agent. This

means the human player will know the level of noise, α̂(t) in information received by the

blue agent through the information display on the computer screen. In contrast, the level

of noise, α̂(t) in information is unknown for the red agent in the known-unknown scenario,

in which the access on the blue agent’s perception is absent. For each scenario, 20 different

configurations as mentioned in Section 4.1.4 are used as blue’s strategies, and the game is

repeated twice continuously for the same configuration.

 

 

 

 

 

 

 

 

 

 

 

 

 

Zoom in 

The blue agent 

The red agent 

Figure 5.1: Illustration of the known-unknown scenario.

In this experiment, the human player is placed in a computer based decision environ-
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 The blue agent The red agent 

Display about  
blue’s perception 

Zoom in 

Figure 5.2: Illustration of the known-known scenario.

ment, in which the human player needs to determine the travel angle of the red agent, θthr.

This type of approach is appropriate because it ensures that all individuals will receive the

same information from computer software, and thus, eliminate the descriptive and sub-

jective effects. For example, in an interview, the same description of a decision problem

by a researcher may be framed and therefore interpreted differently by the subjects. In

contrast, the use of computer based decision environment allows behavioural analysis to

be performed based on the actions taken by the subjects only; as variations in problem

framing are eliminated.

The use of computer software also removes the artefactual problems of an interaction

between the researcher and the subject, and reduces the likelihood of descriptive effects

from peer group pressure, public performance and perception of others relative to self. At

the same time, the human players are asked to fill in a questionnaire so that we are able

to collect some information about their personality characteristics.

None of us is completely innocent of acquaintance with the gross characteristics of

human choice in affecting human behaviours. An important factor that influences human

behaviour in a given task is individual-difference which is related to perception capacities,
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processing capacities, prior knowledge, expertise and also personality characteristics of the

humans. Besides that, the order in which configurations of the game are played can actually

influence the human players’ behaviour or cause false response, e.g. fatigue factor or other

factors that may change the behaviour of the subject. These types of factors are not of

real interest in the experiment and are known as nuisance factors. To reduce the impact

of the order of configuration and nuisance factors, a counterbalanced design is used in our

experiments. Details of the counterbalanced design are explained in the following section.

For each game, the initial locations for both agents are randomly generated, where

dopp = 200cm. The goal of the red agent in each game is the same: to extend its survival

period as long as possible. The longer the red agent can survive, the more likely it will win

the game.

The scoring system used in this experiment is simple: the red agent will score a point

for each step it takes as long as the game is not terminated. However, each configuration is

repeated twice in HRT. The longer that the red agent can survive from being caught by the

blue agent, the more scores will be collected until the game is terminated. For each time

step, the human player controlling the movement of the red agent needs to determine the

travel angle of the red agent, θ
(t)
hr , through mouse clicks. Once this is done, the locations

for both the red and blue agents are updated simultaneously. The same scoring system will

be used in the following chapter.

The same procedures are repeated for each scenario (known-unknown and known-

known) perceived information (known-known scenario).

To investigate our hypothesis, there are two important elements to be focused on, i.e.,

the outcomes of the games and human behaviour. In this experiment, the outcome refers

to the collected scores while human behaviours are described by the action sequences in

the environment. To perform analysis on the action sequences, the locations visited by the
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red agents in each game are recorded.

5.2.1 Counterbalanced Measures Design

The basic concept of the counterbalanced measures design is to reduce the impact of con-

founding due to the order of treatments or nuisance factors. For example, suppose the

human players are asked to play continuously a series of games associated with different

conditions, always in the same order. Due to fatigue factor, we may observe that most of

the players achieve high scores for the earlier games but lower scores for the later games.

This means that the scores may actually be affected by the order of play rather than the

conditions of the games, and thus, we may make the wrong conclusion. One way to address

this problem is to counterbalance the order of presentations. In our case, the human players

would be playing the games in different orders, in such a way that each game is played in

each sequential position an equal number of times.

To illustrate the counterbalanced measures design is explained based on two possible

conditions of games, A, and B. Assume that we have 2 players; one of the players is treated

with condition A followed by condition B, and the other player is treated with condition

B followed by condition A. The illustration of counterbalanced measures design based on

two conditions are shown in Figure 5.3. When there are three conditions involved, i.e., A,

B and C, the same procedures are repeated by having at least 6 players, with the orders

carried out as shown in Figure 5.4.

The main drawback with the complete counterbalanced measures design is the permu-

tations for an experiment with multiple conditions multiply quickly, and the size of the

experiments become too large to handle. For example, four possible conditions will require

4! (4×3×2×1) orders of treatments. In short, the number of treatments required for n con-

ditions is n!. Since our experiments involves 20 configurations, the number of treatments
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required to perform the complete counterbalanced measures design will be 20! at least even

each configuration of game is played by a subject. Therefore, a Latin-squared design [74]

is used to keep the experiment to a reasonable size because the design will require 2n of

treatments only.

 
Player 1 

Player 2 

Order A Order B Evaluate 

Evaluate Order A Order B 

Figure 5.3: Counterbalanced measures design for 2 conditions.
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Figure 5.4: Counterbalanced measures design for 3 conditions.

Table 5.1 illustrates the method for four conditions given that each condition is treated

with a subject. The elements in the first rows of the two squares from left to right are:

• 1st Square - {0, n− 1, 1, n− 2, 2, n− 3,. . . , n/2 + 1, n/2− 1, n/2}

• 2nd Square - {n− 1, 0, n− 2, 1, n− 3, 2,. . . , n/2− 2, n/2, n/2− 1}

For the elements in the subsequent rows, the value of one is added to the elements in

previous row. If the value of element exceeds n− 1, the values of zero will be returned.
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Table 5.1: Latin squares for 4 conditions.

1st Square 2nd Square
Individual Order Individual Order

1 2 3 4 1 2 3 4
Player 1 0 3 1 2 Player 5 3 0 2 1
Player 2 1 0 2 3 Player 6 0 1 3 2
Player 3 2 1 3 0 Player 7 1 2 0 3
Player 4 3 2 0 1 Player 8 2 3 1 0

5.3 Result and Analysis

This section presents the results and analysis on human behaviours. It is divided into two

subsections, i.e., action distribution (Section 5.3.1) and action similarity (Section 5.3.2).

For the figures related to trajectory, the distributions of ϑ and ∆ϑ, they are plotted in such

a way that:

• The sequence of information in the same row from left to right: frequent-accurate,

frequent-noisy, infrequent-accurate, infrequent-noisy;

• The sequence of deception in the same column from top to bottom: none, infrequent-

low, infrequent-high, frequent-low, frequent-high.

5.3.1 Action Distribution

There were 34 human players participating in the experiment. Each player needed to

face blue associated with 20 different combinations of perception and deception, and each

combination of a game was repeated twice. There were 1360 (34×20×2) different sets of

action sequences generated in the experiment. Due to limited space, we only show the

trajectories between blue and red in a game for a single player in the known-unknown

scenario (Figure 5.5) and the known-known scenario (Figure 5.6). The markers of • and ×
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in the trajectory plots represent the initial and end positions for both agents.
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Figure 5.5: The trajectories between blue and red in the known-unknown scenario.

The measurements based on ϑ and ∆ϑ are extracted from the trajectories between the

red and blue agents for each configuration. Then, probability density functions (pdfs) for

these measurements in the known-unknown and known-known scenarios are approximated
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Figure 5.6: The trajectories between blue and red in the known-known scenario.

and shown in Figures 5.7 to 5.10.

The pdf plots of ϑ for both scenarios, shown in Figures 5.7 and 5.8, show that the

distributions are multi-modal. Unlike the machine behaviours in the following chapter,
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Figure 5.7: The plots of ϑ for various combinations of information and deception in known-
unknown scenario for HRT.

there is lack of pattern consistency in the pdf plots as the information changes from being

frequent and accurate to infrequent and noisy. Again, there is no clear pattern found as
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Figure 5.8: The plots of ϑ for various combinations of information and deception in known-
known scenario for HRT.

the level of deception changes from being not deceptive to highly deceptive. Besides that,

most of the pdf plots in both scenarios do not share similarity for the same configuration.
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Figure 5.9: The plots of ∆ϑ for various combinations of information and deception in
known-unknown scenario for HRT.

On the other hand, Figures 5.9 and 5.10 show that the distributions of ∆ϑ are unimodal in

both scenarios, where the values of ∆ϑ are highly concentrated around zero. This means
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Figure 5.10: The plots of ∆ϑ for various combinations of information and deception in
known-known scenario for HRT.

the human players hardly or slightly make changes in their movements regardless of having

access to blue’s perception or not.
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The findings in both scenarios suggest that there is a lack of obvious patterns in the hu-

man behaviours across different combinations of information and deception. In the known-

unknown scenario, human players are unlikely to be affected by information and deception,

and thus, their actions are independent of the information and strategy of blue. In other

words, the distraction in blue’s actions are not clearly perceived by the human players. As

a result, the factors of information and deception are not taken into account in determin-

ing their movements. In contrast, access to the blue’s perception is provided for in the

known-known scenario and the access can be viewed as a task-relevant stimulus. However,

the findings obtained in the known-known scenario also indicate that there are no obvi-

ous patterns observed in the involved comparisons. This leads us to believe that human

behaviours in the scenarios were not affected by information and deception even though

a task-relevant stimulus is provided. Given that the scores of the human players in both

scenarios are high, as shown in Table 5.2, possible reasons for this are the engagement of

human players in the games and that they exhibit goal-directed behaviour.

Table 5.2: Scores and RTs (in ms) for the human players in known-unknown and known-
known scenarios.

NI α̂(t) ND ζ(t) Score(Mean± stdev) RT(Mean± stdev)
Known-unknown Known-known Known-unknown Known-known

1 0 82.53±27.75 89.91±18.65 406.5±5.5 407.6±7.4
5 U(−15◦, 15◦) 83.04±25.82 88.88±23.36 407.2±5.6 407.0±6.0

1 0 5 U(−30◦, 30◦) 88.81±20.92 93.99±17.71 407.3±6.4 407.9±6.3
10 U(−15◦, 15◦) 89.31±21.15 92.31±18.41 408.1±5.9 407.1±6.3
10 U(−30◦, 30◦) 90.02±19.33 91.79±17.69 407.6±6.0 408.4±6.0
1 0 90.91±18.26 92.32±16.86 409.5±9.5 406.7±5.9
5 U(−15◦, 15◦) 89.74±21.64 93.04±18.49 407.6±6.0 406.7±6.1

1 U(0, 20) 5 U(−30◦, 30◦) 88.37±21.55 90.22±19.83 407.5±5.6 406.9±6.1
10 U(−15◦, 15◦) 87.15±24.91 93.84±14.63 407.2±6.4 407.2±5.4
10 U(−30◦, 30◦) 86.60±26.22 90.19±19.51 406.8±7.1 406.5±6.3
1 0 95.60±17.69 99.62±3.13 408.5±6.0 408.2±6.3
5 U(−15◦, 15◦) 97.59±11.72 95.85± 17.00 408.1±6.1 406.9±7.2

10 0 5 U(−30◦, 30◦) 97.63±8.70 97.93±11.91 408.2±6.2 407.1±5.8
10 U(−15◦, 15◦) 95.87±17.12 97.74±11.78 408.1±6.3 407.9±7.3
10 U(−30◦, 30◦) 95.60±15.71 95.65±15.76 408.0±6.1 407.5±5.9
1 0 95.84±16.01 96.74±13.52 408.8±6.6 407.6±5.0
5 U(−15◦, 15◦) 97.77±11.11 95.85±16.39 408.7±6.2 407.7±5.4

10 U(0, 20) 5 U(−30◦, 30◦) 99.07±5.52 97.49±11.81 408.7±5.8 408.2±5.9
10 U(−15◦, 15◦) 97.16±13.89 96.03±15.19 408.8±6.5 407.5±6.0
10 U(−30◦, 30◦) 95.68±16.82 98.40±9.58 408.4±6.7 408.2±5.9
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Goal-directed behaviours require vital attention on goal-relevant stimuli while ignoring

the potential interferences from distractions that are irrelevant to the task (task-irrelevant

stimuli) [45]. Selective attention is the mechanism that affects the goal-directed behaviour.

Most research on load theory of selective attention suggests that perceptual load plays an

important role in determining whether task-irrelevant stimuli are perceived or not [42, 44,

45, 43]. Instead of focusing on task-irrelevant stimuli, the findings in our work suggest that

perceptual load also affects the perception of goal-relevant stimuli. The perception load in

the experiment is represented by the visualisation of the movements for the red and blue

agents. Besides that, the perceptual load is considered high because the reaction between

the blue and red agents controlled by machine and human players respectively happens

very fast.

To demonstrate that the perceptual load in both known-unknown and known-known

scenarios are equally high, a t-test is carried out with 0.05 significance level to evaluate

the null hypothesis that the reaction times (“RTs”) come from both treatments with equal

means, against the alternative that the means are unequal for the same combination as

shown in Table 5.2. The significance test in Table 5.3 shows that all of the null hypotheses

are not rejected. Therefore, we do not have enough evidence to claim that the RTs for both

scenarios are different.

Besides RTs, we are interested to know whether there is any significant differences of

scores between the presence and absence of perceived information about the blue agent

for different combinations of information and configurations. To investigate the effect of

the presence and absence of the perceived information, a t-test is carried out with 0.05

significance level to test the null hypothesis that the samples come from both scenarios

with equal means, against the alternative that the means are unequal. Table 5.3 shows

the result of t-test on the scores between the known-unknown and known-known scenarios

based on the combinations of information and perception. Based on the significance test,
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all of the null hypotheses are not rejected. This means there is not enough evidence to

claim that the scores for both scenarios are significantly different.

Table 5.3: t-test for RTs and scores between the known-unknown and known-known sce-
narios.

NI α̂(t) ND ζ(t) RT Score
Reject H0 p-value Reject H0 p-value

1 0 No 1.0 No 0.0732
5 U(−15◦, 15◦) No 1.0 No 0.1723

1 0 5 U(−30◦, 30◦) No 1.0 No 0.1246
10 U(−15◦, 15◦) No 1.0 No 0.3828
10 U(−30◦, 30◦) No 1.0 No 0.5792
1 0 No 1.0 No 0.6427
5 U(−15◦, 15◦) No 1.0 No 0.3430

1 U(0, 20) 5 U(−30◦, 30◦) No 1.0 No 0.6054
10 U(−15◦, 15◦) No 1.0 No 0.0606
10 U(−30◦, 30◦) No 1.0 No 0.3706
1 0 No 1.0 No 0.0716
5 U(−15◦, 15◦) No 1.0 No 0.4928

10 0 5 U(−30◦, 30◦) No 1.0 No 0.8706
10 U(−15◦, 15◦) No 1.0 No 0.4633
10 U(−30◦, 30◦) No 1.0 No 0.9871
1 0 No 1.0 No 0.7266
5 U(−15◦, 15◦) No 1.0 No 0.4310

10 U(0, 20) 5 U(−30◦, 30◦) No 1.0 No 0.3212
10 U(−15◦, 15◦) No 1.0 No 0.6533
10 U(−30◦, 30◦) No 1.0 No 0.2526

As shown in Table 5.2, the scores are high and the RTs are very fast in both scenarios.

Given that there is not enough evidence to support any significant differences in terms of

RTs and scores in both scenarios, we can assume that both scenarios require equal focusing

attention from humans. In other words, both scenarios can be considered to have equally

high perceptual loads.

The high perceptual load that engages full capacity in relevant processing leaves the

human players no spare capacity for the perception of task-relevant stimuli. Therefore,

simply informing the human players about the task-relevant stimuli is not sufficient for

encouraging their use. As a result, there are no significant patterns that can be observed in

the comparison of human behaviours in the known-unknown and known-known scenarios.

In order to support that high perceptual load does affect the attention on task-relevant

stimuli, analysis is conducted on human behaviours in terms of VRrel B and ∆VRrel B, ex-
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plained in detail in section 5.3.2.

5.3.2 Action Similarity

The action sequences of the human players are described by VRrel B and ∆VRrel B. Since

human behaviours are analysed based on different measurements in this section, it would

be interesting to know whether the analysis leads to similar findings to those in section

5.3.1 or not.

From the collections of action sequences in the known-unknown and known-known sce-

narios, we are interested to know if there are similarities among the action sequences. To

achieve this purpose, clustering is used on the collections of action sequences. Similar to

previous chapter, an ensemble of cluster validity, consisting of Silhoutte, Davies-Bouldin,

Calinski-Harabasz and Dunn indices, is used to determine the appropriate cluster size based

on the range [2 10].

The results of cluster validity for the known-unknown and known-known scenarios are

shown in Figure 5.11 and 5.12 respectively. Based on Figure 5.11, the results show a slight

inconsistency in determining the cluster size. To solve this problem, we rank the involved

cluster size for each index, with a lower rank being given to the cluster size associated

with better indices and vice versa. After that, the appropriate cluster size is determined

based on the average rank, as shown in Table 5.4. The results in Table 5.4 suggest that

the appropriate cluster size to be used in the known-unknown scenario is 4 with its average

ranking value of 1.50. On the other hand, Figure 5.12 shows consistent result on the cluster

size to be used in the known-known scenario of 2. As a result, cluster sizes of 4 and 2 are

used to perform clustering in both scenarios respectively.

Based on the suggested cluster sizes, clustering is carried out. The cluster centroid

is shown in Table 5.5 for both treatments. As we mentioned before, the cluster centroid



5.3. Result and Analysis 115

2 3 4 5 6 7 8 9 10
−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Cluster size

Si
lho

utt
e I

nd
ex

(a) Silhoutte Index

2 3 4 5 6 7 8 9 10
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Cluster size

Da
vie

s−
Bo

uld
in 

Ind
ex

(b) Davies-Bouldin Index

2 3 4 5 6 7 8 9 10
40

60

80

100

120

140

160

180

200

220

240

Cluster size

Ca
lin

sk
i−H

ar
ab

as
z I

nd
ex

(c) Calinski-Harabasz Index

2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Cluster size

Du
nn

 In
de

x

(d) Dunn Index

Figure 5.11: Cluster validity indices for the action sequences associated with the known-
unknown scenario for HRT.
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Figure 5.12: Cluster validity indices for the action sequences associated with the known-
known scenario for HRT.

Table 5.4: Ranking of cluster size based on cluster validity indices in the known-unknown
scenario.

Index Cluster size
2 3 4 5 6 7 8 9 10

Silhoutte 1 7 2 8 3 5 9 6 4
Davis-Bouldin 8 6 1 7 9 4 3 5 2

Calinski-Harabasz 1 4 2 5 3 6 9 7 8
Dunn 2 3 1 4 5 6 7 8 9

Average 3.00 5.00 1.50 6.00 5.00 5.25 7.00 6.50 5.75
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describes the strategies based on VRrel B and ∆VRrel B and the centroid can be viewed as a

general representation of a group of strategies. For ease of interpretation, the VRrel B and

∆VRrel B against different windows are plotted for these strategies as shown in Figure 5.13.

Figure 5.13 shows that there is only a single type of strategy in the known-unknown

scenario because all of the strategies overlap with each other. A similar observation is found

in the known-known scenario even though there are 2 types of strategies in it. Besides that,

the strategies used in the known-unknown and the known-known scenarios are very similar

to each other in VRrel B. In fact, the only difference between them is on ∆VRrel B which is

very marginal.

As we mentioned before, we believe that high perceptual load will influence the per-

ception of task-relevant stimuli. The findings in the analysis of human behaviours VRrel B

and ∆VRrel B show that there are high similarities in the strategies regardless of the ab-

sence or presence of the task-relevant stimuli. High perceptual load requiring fast reaction

times to achieve high scores in the game prevent the human players to pay attention to

the task-relevant stimuli, exhaust their capacity in processing the available task-relevant

stimuli, and thus, lead them to use similar strategies in both situations. Despite this,

human players are still able to select the appropriate correct actions. The ability to take

correct actions, in conditions whereby the human players pay more attention on scenarios

of avoiding blue rather than on the extra task-relevant stimuli (represented by the yellow

square box), suggests that the goal-directed behaviour is less influenced by the provided

task-relevant stimuli. As a result, the strategies used by the human players, regardless of

having the extra task-relevant stimuli or not, are quite similar as shown in Figure 5.13.
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Table 5.5: Cluster centroid that represents the actions of the red relative to blue in the
known-unknown and known-known scenarios.

Feature Window Centroid
Known-unknown Known-known

1 2 3 4 1 2
ω1 7.6416 7.6410 7.6410 7.6414 7.5535 7.5765
ω2 6.6697 6.6690 6.6691 6.6695 6.4407 6.4587
ω3 5.8484 5.8479 5.8481 5.8482 5.6480 5.6496
ω4 5.9684 5.9682 5.9683 5.9683 5.6573 5.6462

VRrel B ω5 5.6058 5.6057 5.6058 5.6057 5.4829 5.4686
ω6 5.1830 5.1827 5.1828 5.1829 5.0092 4.9999
ω7 4.6648 4.6644 4.6645 4.6646 4.3811 4.3739
ω8 4.2199 4.2192 4.2194 4.2196 3.8222 3.8182
ω9 3.7684 3.7677 3.7679 3.7681 3.4488 3.4450
ω10 3.3445 3.3439 3.3441 3.3443 3.2066 3.2031
ω2 -0.0668 -0.0668 -0.0668 -0.0668 -0.1056 -0.1061
ω3 -0.0871 -0.0871 -0.0871 -0.0871 -0.0795 -0.0813
ω4 -0.0060 -0.0060 -0.0060 -0.0060 0.0001 -0.0013

∆VRrel B ω5 -0.0515 -0.0515 -0.0515 -0.0515 -0.0353 -0.0357
ω6 -0.0423 -0.0423 -0.0423 -0.0423 -0.0521 -0.0516
ω7 -0.0482 -0.0482 -0.0482 -0.0482 -0.0634 -0.0632
ω8 -0.0542 -0.0542 -0.0542 -0.0542 -0.0595 -0.0591
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Figure 5.13: VRrel B and ∆VRrel B in the known-unknown and known-known scenarios for
HRT.
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5.4 Conclusion

The study illustrates that human behaviours are less affected by the information and de-

ception of blue when humans engage in high perceptual load. This is supported by the lack

of dependencies between the human actions and information as well as deception in both

scenarios. In both scenarios, the human players show goal-directed behaviour and it is re-

flected by the high scores achieved by them. When humans exhibit goal-directed behaviour

in an environment that demands attention, high perceptual load prevents humans from pro-

cessing task-relevant stimuli even if the stimuli are clearly perceived. Consequently, high

perceptual load engaging to full capacity in relevant processing leaves humans no extra

capacity for perception of task-relevant stimuli. Furthermore, explicitly informing humans

about the availability of task-relevant stimuli is also not sufficient to encourage them to

process the stimuli. Therefore, this suggests that humans have limited perception capabil-

ity which prevents them from processing task-relevant stimuli when they are engaged in

a task with high perceptual load. Even though how the solution to a decision problem is

selected will be a function of individual-differences factors such as processing capacities, the

nature of the task with high perceptual load appears to be the factor preventing humans

from utilising the task-relevant stimuli. Thus, the limited processing capacities lead to the

selection of similar strategies in both treatments regardless of the absence or presence of

perception access. In other words, there is a lack of invariance in human decision behaviours

owing to high perceptual load.



Chapter 6

Machine Red Teaming

6.1 Introduction

This chapter focuses on the construction of behaviour of a red agent based on a machine

in the game environment. However, the purpose of using a machine is not to win or lose

in the game environment, but rather to use the advances in computational modelling to

mimic or reproduce the limited computational capabilities of humans interacting with the

task environment to produce bounded rationality.

None of us is completely innocent of the acquaintance with the diversity of human

choices. Therefore, one of the important factors in the selection of computational models is

the ability to produce diversified solutions. Another important factor is the ability to mimic

biological adaptation of the human. Evolution and learning are two forms of adaptation

differing in space and time scales, which are important elements to form the adaptive ability

[64, 28, 60, 61, 63] of an artificial agent. Therefore, neuroevolution emerges as a potential

solution to control the red agent in the game environment.

The main contribution of this chapter does not lie in the use of the neuroevolution to
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optimise the games. Instead, our contribution focuses on how to represent a red and how

to produce its behaviour. Reliance on learning machines to automate red teaming does not

necessarily account for the complexities of red teaming; the core of red teaming depends

on its context, computation and analysis [4].

Since CRT is to mimic human behaviours, the possible factors that could influence

human behaviours need to be taken into account in CRT as well. The ways that a human

acts in an environment could be affected by his/her observations about its surroundings

and the other agent, and the actions taken will affect the achievement of objectives. This

means that sensory capabilities creating human perception can be seen as a source that

contributes to changes in human behaviours, and we would like to investigate its effect in

CRT. To investigate this, information display about the opponent can be used as a way to

vary the level of a human’s perception in HRT.

The next question will be on how to simulate similar scenarios in CRT? In our work,

two scenarios, called known-unknown and known-known, are simulated to investigate the

effect of perception in CRT. We hypothesise that the difference in perception will affect

machine behaviour.

6.2 Methodology

To synthesise and analyse behaviours in our synthetic simulation environment, neuroevo-

lution is selected as a suitable approach for the task. This involves the evolution of neural

networks. Neuroevolution is mostly used in the development of photoaxis behaviours, ob-

ject avoidance and navigation in a single robot [61]. Neuroevolution has also been used to

simulate complex behaviours in a pair of robots [59] as well as a colony of mobile robots

[53, 81]. Furthermore, the research also focuses on the effectiveness of either evolution-
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ary algorithms or neural networks to simulate a desirable complex behaviour in a given

environment.

Neuroevolution can be categorised based on the types of coordination of basic be-

haviours, i.e., monolithic coordination and layered coordination. Monolithic coordination

involves the implementation of a single neurocontroller to support the emergence of a com-

plex behaviour. In contrast, layered coordination involves several neurocontrollers, each

controlling a basic behaviour. There are many examples for monolithic neuroevolution [61]

while layered neuroevolution can be found in [27].

The focus of the above studies was on the effectiveness of producing desirable behaviour

to complete a task. In contrast, we are interested in the possible patterns hidden in the

behaviours in a red teaming environment.

Neuroevolution is preferable as a potential solution in the emergence of complex be-

haviours. The main reasons are its autonomous ability and ability to operate without

prior information [53]. Instead of handcrafting the desired behaviour into simple basic

behaviours which are handled separately by different modules, neuroevolution can be used

to automate the production of the desirable behavioural controller. Beside that, it is able

to produce un-characterised behavioural domains. Owing to this strength, neuroevolution

is a suitable approach to develop control systems in environments which lack sufficient in-

formation. Furthermore, neuroevolution tends to produce a variety of solutions resulting

from the interaction between a robot (agent) and its environment [61].

The abilities to evolve and learn play a very important role in behavioural decision

making, and they complement each other to produce functional behaviours. In the absence

of learning, dysfunctional behaviour will persist. On the other hand, the absence of evo-

lution will make it difficult for individuals to adapt to changes in an environment and will

lead to the extinction of individuals. Therefore, neuroevolution is selected to automatically
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produce the desirable behaviour for the red agent in the environment; that is, for the red

agent to escape the blue agent.

6.3 Neural Networks and Genetic Algorithm

In the proposed environment, the red agent is viewed as the robot. Neuroevolution is used

to develop the robotic system which is responsible for its movement in the 2D environment.

In our case, neuroevolution is used to develop the controller of the red agent, where GA is

responsible for evolving a population of neural networks.

The ultimate goal of our research is not to study evolutionary computation or system

optimisation, but to reproduce and augment human behaviours. Therefore, a fixed archi-

tecture of neural network is used, and GA is used to evolve the connection weights of the

neural network. The neural network for the red agent’s control system is a multi-layer

perceptron of sigmoid units. The network has 5 input neurons, 7 hidden neurons, and

2 output neurons. The architecture of the neural network is shown in Figure 6.1. IW

and LW refer to the matrices of connection weight between the input-hidden layers and

hidden-output layers. Besides that, ρ̂1 and ρ̂2 refer to the the vectors of bias units between

the input-hidden layers and hidden-output layers. IW is a matrix of HN × IN dimension

while LW is a matrix of ON ×HN . The values of IN , HN and ON refer to total number

of input neurons, hidden neurons, and output neurons. ρ̂1 is a vector of IN × 1 dimension

while ρ̂2 is a vector of ON × 1 dimension.

Given that the architecture of a neural network is fixed, IW, LW, ρ̂1 and ρ̂2 are

mapped into a vector of weights, which is represented by a chromosome. Therefore, each

chromosome in the evolutionary process represents a vector of weights for the input-hidden

layers (ŴIW ) and the hidden-output layers (ŴLW ), as shown in Figure 6.2. Based on
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Figure 6.1: Selection of maximum values of the uniform distribution for the generation of
ζ(t).

Figure 6.2, ŴIW consists of a vector of connection weights and bias units between the

input-hidden layers, and ŴLW consists of a vector of connection weights and bias units

between the hidden-output layers. Through mapping as shown in Figure 6.3 and Figure

6.4, ŴIW = {ŵ1
1, ŵ

1
2, . . . , ŵ

1
hn, . . . , ŵ

1
HN} and ŴLW = {ŵ2

1, ŵ
2
2, . . . , ŵ

2
on, . . . , ŵ

1
ON}. The

denotations in, hn and on refer to neurons in input, hidden and output layers, with 1 ≤

in ≤ IN , 1 ≤ hn ≤ HN , 1 ≤ on ≤ ON .

For each time step, the neural network uses the information on β(t), d
(t)
opp, ∆β(t), ∆d

(t)
opp,

d
(t)
wall as the inputs, and produces the outputs for θ

(t)
r and θ

(t)
b . At this point, the planned

travel angle of the red agent θ
(t)
r is determined and the red agent moves to its new location.

At the same time, the blue agent also moves to its new location based on its own strategy.

The actual travel angle of the blue agent P̂
(t)
b is compared with the predicted one P̂

(t)
pb ,

and the difference is used to adjust the back-propagation of error to the connection weights

between network layers. Using the network as the control system, the red agent will move in

the environment until the game is terminated. The fitness values of each neural network is
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ŴIW, 1  ŴLW, 1  Chromosome 1, chrom 1 

ŴIW, 2  ŴLW, 2  Chromosome 2, chrom 2 

ŴIW, pop  ŴLW, pop  Chromosome pop, chrom pop 

Figure 6.2: Weights for the fixed architecture neural network in chromosome representation.

evaluated based its performance in preventing the red agent from being caught by the blue

agent for a number of repeated games, NG = 10. The details of the fitness are explained

in Section 6.3.2.

6.3.1 Genetic algorithm

In GA, we begin with a population of randomly generated individuals, i.e., pop = 100,

each yielding a different set of connection weights for a neural network. The network

architecture and relevant learning parameters are fixed and identical for all individuals.

This is generation 0, gen 0. The initial generation of networks are allowed to live 100 steps

(S = 100) or until the red agent is caught by the blue agent in the game, depending on

which condition is satisfied first. Therefore, each individual is responsible for a new game.

At the beginning of each game, the locations of the red and the blue agents are placed

randomly, with the following constraints:
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‖P̂ 0
r − P̂ 0

b ‖2 = 200pixels (6.1)

with ‖P̂ 0
r − P̂ 0

b ‖2 referring to the Euclidean distance between the red and blue agents

at time t = 0.

At the end of the game, individuals from the population that have accumulated the

most fitness are allowed to reproduce based on the binary tournament selection method.

Once the new population has been created by selective reproduction, one point crossover
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Figure 6.4: Mapping of the connection weights and bias units for both hidden-out layers.

and mutation are performed on the offspring. The individuals which have gone through

selective reproduction, crossover and mutation are known as generation 1, gen 1. Then,

the fittest 10% of parents (from gen 0) are copied to the offspring population (gen 1) and

replacing the bottom 10% of offsprings from gen 1. The process is repeated for a number

of generations, gen = 200.
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6.3.2 Fitness Function

Since the main goal of the simulation is to evolve a red agent (controlled by a neural

network) that is capable of autonomous movements in a partially unknown and unpre-

dictable environment without human intervention, it would be desirable that the design

of the fitness function will be behaviour-implicit [61], whereby the function is rated based

on behavioural outcome of an evolutionary network and relies on a few variables and con-

straints only. Therefore, the proposed fitness functions are based on a variable directly

measurable on the red agent at each time step. The fitness functions are as follows:

F = h (6.2)

h =

 1 if dopp > Dmin

0 otherwise
(6.3)

where h refers to the frequency of the red agent meeting the constraints (dopp > Dmin).

The parameter dopp refers to the actual distance between the blue and red agents, while

Dmin refers to the distance which declares the red agent is caught by the blue agent. The

frequency of meeting the constraint is calculated as F and is accumulated for each step.

Based on the above equations, the fitness function measures the performance of the red

agent to prolong its lifetime in the game.

6.3.3 Neural Network

The neuro-evolutionary model as suggested by Nolfi et al. [66] is used in the experiment,

which evolves the robot to accomplish a task at the population level and learn another
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different task at the individual level. According to [34, 66], the emergence of a desired

behaviour results from interaction between the innate knowledge and learning. Therefore,

both evolution and learning need to be taken into account to evolve a control system.

Even though what is learnt may not be the behaviour itself, it may support the emergence

of the desired behaviour. In the neuroevolutionary model suggested in [66], learning has

directionality and the learning task itself is evolved.

In our simulation, the so called optimal behaviours for the red agent are unclear, given

that the red agent needs to face a partially unknown and unpredictable blue agent. There-

fore, it would be preferable that the network itself is able to develop some useful behaviours

rather than to learn a particular behaviour derived in advance by the experimenter. There-

fore, we adopted the evolved neural network suggested by [66] into our experiment. The

proposed approach involves the evolution of back-propagation neural networks, whereby

a population of networks (individuals) reproduce selectively based on its performance in

producing the desired behaviour. At the same time, the neural network also learns an

additional task. However, the learning criterion is different from the evolutionary goal.

Therefore, the performance of the neural network in the learning task does not affect the

network’s fitness. The important point to emphasise here is the neural network does not

learn which behaviours are good or bad, it just learns that there are sensory consequences

attendant on specific movements in the context of specific environmental inputs.

The network architecture is fixed and identical for all individual neural networks in the

evolution. Therefore, the number of neurons in each layer and other relevant parameters

such as learning rate and momentum rate are fixed for all neural networks. The learning

rate, η for the network is set as 0.2 and the momentum rate, γ is set as 0. Each connection

weight of the neural network ranges in the interval [−1, 1].
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6.4 Experimental Design for Machine Red Agent

The main objective of this experiment is to understand the behaviours exhibited by the

red agent through evolving its strategies. Through the evolutionary process, we have a

population of diversified strategies for the red agent to choose from. The population of

strategies contains information which may reveal the biases and preferences of the red

agent under the condition that it is placed within. Knowing the red agent’s biases and

preferences is crucial for helping us to understand the rationality of decision making, and

thus, helping us to manage behaviours more effectively.

In this case, we would like to know how a red agent behaves facing a deceptive blue

agent, when the red agent is exposed to different levels of perception about the blue agent.

Two levels of perception are simulated in this experiment, called known-unknown and

known-known. The difference between them lies in what the blue agent knows about the

red agent. In the known-unknown scenario, red does not know what blue knows about red.

In the known-known scenario, the red does know what blue knows about itself.

To answer the key questions, we need to fix the behaviour of the blue agent and evolve

the red agent in each scenario. The behaviour of the blue agent is influenced by the infor-

mation received by the red agent’s intelligence as well as the deceptive efforts. Therefore,

different scenarios based on the configurations of NI , α
(t), ND and ζ(t) are created. By

fixing the information received about the red agent’s intelligence, we will have four combi-

nations of setups involving ND and ζ(t). On the other hand, there are five combinations of

setups which depend on NI and α(t), by fixing the deception efforts from the blue agent.

In total, we have twenty different scenarios which reflect the differences of behaviours from

the blue agent. Each scenario, depending on the configuration of NI , α
(t), ND and ζ(t), is

denoted as cφ, with 1 ≤ φ ≤ 20.

Given that the blue agent mainly chases after the red agent, the red agent needs to move
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Figure 6.5: Generation of travel angle for the red agent.

in the opposite direction of the attraction repulsion strategy so that it won’t be caught by

the blue agent; the travel angle of the red agent under such condition is denoted as θ(−ar).

In this experiment, neuroevolution produces the deviation of travel angle of the red agent,

δθmr. Therefore, the finalized travel angle for the red agent, θmr is the sum of θ(−ar) and

δθmr (θmr = θ(−ar) + δθmr). For ease of understanding, both scenarios are illustrated in

Figure 6.5.

The red agent is evolved in the direction of accomplishing its goal without any pref-

erences on how it should achieve its goal. Initially, a population of diversified strategies

is generated; each has its own strengths and limitations. Each strategy in the popula-

tion refers to a neural network which acts as the red agent’s decision-making model for

its movements. Changes in the connection weights of the neural network represents the

learning ability of the red agent in the decision-making process as it acts and interacts with

the blue agent as well with the environment. Instead of evolving the strategies based on

a detailed fitness function that may bias towards a specific characteristic, e.g., maximising

the distance between the red and blue agents, the strategies are evolved to meet the red

agent’s goal only: to avoid being caught by the blue agent.

Along the evolutionary process, the strategies of the red agent are expected to survive

by devising their own goals and finding the solutions to overcome the challenges that may
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arise from the interaction with the environment. Here, the interaction with the environment

includes the interaction with the 2D environment as well as the blue agent. At the end of

the evolutionary process, we will have a population of survived strategies which manage to

overcome the challenges in the environment. These strategies are rich in information that

reveals the preferences of the red agent developing its behaviours for survival. By using

data mining techniques to extract patterns in the strategies, we can identify the internal

representation for the red agent’s behaviours.

For each configuration, the red agent feeds the relevant input variables into the neural

network and obtains the decision variables from the neural network to arrange its move-

ments. The decision variables are the same for both scenarios, but there is a difference in

input variables between them as shown below:

• Input variables:

– Known-unknown scenario:

1. the relative angle between the blue and red, β(t).

2. the relative distance between the blue and red agents at time t, d
(t)
opp.

3. the relative change of β at time t, ∆β(t).

4. the relative change of dopp at time t, ∆d
(t)
opp.

5. the relative distance to the wall that the red agent faces at time t, d
(t)
wall.

– Known-known scenario:

1. the relative angle between the blue and red, β(t).

2. the relative distance between the blue and red agents at time t, d
(t)
opp.

3. the relative change of β at time t, ∆β(t).

4. the relative change of dopp at time t, ∆d
(t)
opp.

5. the relative distance to the wall that the red agent faces at time t, d
(t)
wall.
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6. the level of noise in the information received by the blue agent, α̂(t).

• Decision variables:

1. deviation of travel angle for the machine red agent, δθ
(t)
mr

2. travel angle of the blue agent, θ
(t)
pb

The input and decision variables are represented by a vector of real numbers. When

the input information is received by the red agent’s sensor, the input variables are scaled

into the range of [0, 1] before they are fed into the neural networks to produce the output

variables. The output variables are also in the range of [0, 1] and they are scaled to their

actual ranges before they are used by the red agent. The strategies used by the red agent

are evolved at the population level and learnt at the individual level at the same time.

To be more specific, the neural network that is selected to help the red agent to escape

from the blue agent needs to learn another task; to predict the sensory consequences of the

red agent’s actions during its lifetime span. The learning task for the neural network is to

predict the travel angle of the blue agent θ
(t)
pb , which is different from the evolutionary goal.

The difference between the predicted (θ
(t)
pb ) and actual travel angle θ

(t)
b of the blue agent is

used to adjust the connection weights of the network through back-propagation.

Even though the neural network also determines the red agent’s action based on the

produced δθ
(t)
mr, it does not learn to determine which actions are good or bad. Instead,

it just learns that there are consequences relying on specific actions. At each time step,

the neural network receives information about the blue agent’s whereabouts and the sur-

rounding environment, and produces as output the next planned travel angle for itself and

a prediction of the blue agent’s travel angle after the execution of its own current travel

angle. Even though the network learning is based on the prediction on the θ
(t)
pb only, the

execution of δθ
(t)
mr will influence the next received information about the blue agent’s where-
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abouts and the surrounding environment at time t+ 1. From here, we can see that there is

no evaluation of whether the execution of δθ
(t)
mr is right or wrong. Instead, the evaluation

of the red agent’s actions is carried out at the population level.

For each strategy (neural network) from the population, the red agent will use it as its

decision-making model to determine its movements in a game. The movements for both

agents are updated simultaneously until the game is terminated.

Since the neuroevolutionary model for the red agent is a stochastic model, experiments

were repeated with 30 independent random seeds for each of the experimental configurations

discussed above. Each game is repeated 10 times for the same scenario (configuration), i.e.,

NG = 10. The total number of repeated games for each scenario is 300 (30×10). This

means the initial starting points of the red agent in these 300 games are the same between

different scenarios. For instance, the starting point in game 1 based on random seed 1 is

the same for the 20 different scenarios, and so on. Even though the distance from the red

agent to the wall may be different at the start of the games, the large number of repetitions

are able to reduce the random effect of the distance to the wall of the red agent. Besides

that, all of the configurations are evaluated fairly because they all have the same game

setups.

The fitness of each strategy is evaluated according to the average fitness of 10 games

for the same scenario. The above procedures are repeated for 20 scenarios, which are based

on different strategies from the blue agent. The objective of a scenario is to identify the

preferable strategies of the red agent to achieve its goal given that it is placed with an

intelligent blue agent.

The goal of the red agent is to survive as long as possible. As long as the red agent is

not caught by the blue agent, it is considered to succeed in achieving its goal. The longer

the red agent can survive, the more likely it is that it will win in the game. The fitness
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function is defined as follows:

F =
1

NG

NG∑
g=1

hg (6.4)

hg =

 1 if dopp > Dmin

0 otherwise
(6.5)

where hg refers to the frequency of the red agent meeting the constraints (dopp > Dmin) in

the gth game, with 1 ≤ g ≤ NG, where NG refers to the number of games that are repeated

for each scenario (we use NG = 10 in this experiment; thus results are averaged over 10

games). The frequency of meeting the constraint is calculated as F , and is accumulated

for each step.

Based on the above equations, the fitness function measures the performance of the red

agent to extend its life span.

At the end of the evolutionary process, a population of diversified strategies are obtained

for each scenario. By comparing the strategies of the red agent for different scenarios, we

can identify its preferences in strategies for different scenarios. There may be some sort

of patterns exhibited in the strategies and the patterns are reflected/hidden in the actions

taken by the red agent. To extract the patterns exhibited in the strategies, we need to use

data mining techniques to analyse the red agent’s actions. Given that each strategy will

produce a sequence of actions for the red agent in a scenario, we will have a set of action

sequences of different lengths for each scenario. A good strategy will help the red agent

to get away from the blue agent for longer, while a bad strategy will cause the red agent

to be caught by the blue agent faster. Consequently, there will be a difference of length in
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both action sequences. Pre-processing as suggested in Section 4.2.2 is used to standardise

the lengths of action sequences.

6.5 Result and Analysis

In this section, the effects of information and deception on the machine’s behaviours in

known-unknown and known-known scenarios are discussed in terms of evolution, action

distribution and action similarity. For the figures related to the distributions of ϑ and ∆ϑ,

they are plotted in such a way that:

• The sequence of information in the same row from left to right: frequent-accurate,

frequent-noisy, infrequent-accurate, infrequent-noisy;

• The sequence of deception in the same column from top to bottom: none, infrequent-

low, infrequent-high, frequent-low, frequent-high.

6.5.1 Evolution

For ease of discussion, Table 6.1 summarises the combinations of perception and deception.

Table 6.1: Description about perception and deception

Definition Parameter Value Description
Perception Intel frequency NI = 10 Infrequent

NI = 1 Frequent
Intel noise ζ = 0 Accurate

ζ = U(0, 20) Noisy
Deception Deception frequency ND = 10 Infrequent

ND = 5 Frequent
Deception degree ζ(t) = U(−15◦, 15◦) Low

ζ(t) = U(−30◦, 30◦) High
Combination ND = 1, ζ(t) = 0 No deception

Figures 6.6 and 6.7 show the best and average capture times (averaged over 30 runs)

for blue, for different combinations of information and deception. The sub-figures on the
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Figure 6.6: The plots of best capture time / survival time by fixing ND, ζ(t) and varying
NI , α̂

(t) in the same sub-figure.
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Figure 6.7: The plots of average capture time / survival time by fixing ND, ζ(t) and varying
NI , α̂

(t) in the same sub-figure.
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Figure 6.8: Zoom in of Figure 6.7 for the last 50 generations.

left and right sides show the plots for the known-unknown and known-known scenarios for

the same configuration. From red’s perspective, the capture time of blue is the converse of
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the survival time of red.

Based on Figure 6.6, it shows that the best survival time of red achieves maximum

value after a few generations in both scenarios across different configurations. Figure 6.8

zooms in on the last 50 generations of Figure 6.7, in which the average survival times of

red are shown. By comparing both scenarios for the same configuration in Figure 6.8, we

can observe that the trends of average survival times for both scenarios are very similar.

By referring to Figure 6.7, it is no surprise to observe that red has shorter average survival

times given the blue agent receives frequent information rather than infrequent information.

Besides that, continuous increments of the average survival time of red can be observed

from Figures 6.7 and this observation means learning does occur within the red agent.

An interesting finding in the figure can be observed from the following paired compar-

isons between different levels of deception.

• frequent-accurate information and frequent-noisy information;

• infrequent-accurate information and infrequent-noisy information.

When the blue agent is not deceptive, we can observe that there is not much difference

in average survival times between infrequent-accurate information and infrequent-noisy

information. However, there differences become clearer when the blue agent changes from

being non-deceptive to deceptive. From the comparisons made between the infrequent-

accurate and infrequent-noisy information, we can observe that the average survival times

of the red agent become closer to each other as the same degree of deception (for high or

low degrees of deception) changes from being infrequent to frequent. Since the survival

time of red is the converse of the capture time of blue, this means having higher frequency

of deception can counterbalance the effect of noise in the delayed information, and thus,

helps the blue agent to have similar average capture time regardless of whether the received
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information is noise free or not.

From the comparisons between frequent-accurate information and frequent-noisy infor-

mation, the average survival times of the red agent becomes closer to each other as the

deception degree increases for the same level of deception frequency. This means that

higher degree of deception can counterbalance the effect of noise in the frequently received

information, which causes the blue agent to have similar average capture times as those

upon receiving accurate information. This can be supported by the observation between

the following paired figures:

• infrequent-low deception and infrequent-high deception: Figures 6.8(c)-6.8(e); 6.8(d)-

6.8(f);

• frequent-low deception and frequent-high deception: Figures 6.8(g)-6.8(i); 6.8(h)-

6.8(j)

6.5.2 Action Distribution

There are 20 different combinations of information and deception involved in the experi-

ment, and the evolution is repeated by using 30 different seeds for each combination. For

each seed number, the best solution is used by red in 10 repeated games. Therefore, there

are 6000 (30×20×10) different action sequences generated in the experiment. This will

need a lot of space to display all of the trajectories. Instead, we only show a few interesting

trajectories between blue and red across different configurations in both scenarios as shown

in Figures 6.9 and 6.10.

To extract information from the trajectories between red and blue for each configuration,

ϑ and ∆ϑ are measured respectively from all trajectories. For the distributions of these

2 measurements, the maximum likelihood estimates for the parameters of a mixture of
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Figure 6.9: Examples of interesting trajectories between blue and red in the known-
unknown scenario.
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Figure 6.10: Examples of interesting trajectories between blue and red in the known-known
scenario.



6.5. Result and Analysis 143

normal distributions based on 95% of confidence interval are conducted, i.e., ratio, mean

and standard deviation (stdev). For ease of visualisation and analysis, probability density

functions (“pdfs”) for these measurements are shown in Figures 6.11 to 6.14 for both

scenarios.

Figures 6.11 and 6.12 show pdfs for the measurements of ϑ for the known-unknown and

known-known scenarios respectively. The pdfs based on ∆ϑ for both scenarios are shown

in Figures 6.13 and 6.14 respectively. For ease of explanation, we will call the distributions

that are associated with deceptive blue and non-deceptive blue as deceptive distribution

and non-deceptive distribution. The sub-figures in each figure are sorted in the following

order:

• In the same row, the deception is fixed and the information changes in the sequence:

frequent-accurate information, frequent-noisy information, infrequent-accurate infor-

mation, infrequent-noisy information.

• In the column, the received information is fixed and the deception changes in the se-

quence: no deception, infrequent-low deception, infrequent-high deception, frequent-

low deception, frequent-high deception.

By comparing the pdfs for both scenarios based on ϑ and ∆ϑ, we can observe that both

scenarios have similar distributions for the same configuration, where ϑ has a mixture of

normal distributions while ∆ϑ has a unimodal distribution. Having similar distributions

for the same configuration may suggest that neuroevolution manages to produce similar

behaviours in spite of perception. This means the red agent, with and without having

perception about the blue agent, is able to capture the dominant patterns in the blue

agent’s movements and produce similar actions. In other words, the quality of best solutions

produced by neuroevolution are not affected even though it lacks perception about blue.
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In the known-known scenario, the noise level α̂(t) provided to the red agent represents an

extra task-relevant stimulus when it is viewed in a HRT. It is interesting to find out that the

distributions of the red agent are not affected by the availability of the extra task-relevant

stimulus.

Given that there is not much difference in action distributions between both scenarios,

we are interested to know whether there is any significant difference of scores between

them for the same combination of information and configuration or not. To investigate the

effect of the the extra task-relevant stimuli, a t-test is carried out with 0.05 significance

level to test the null hypothesis that the samples come from both scenarios with equal

means, against the alternative that the means are unequal. Table 6.2 shows the result of

t-test on the scores between the known-unknown and known-known scenarios based on the

combinations of information and perception.

Table 6.2: t-test for scores between the known-unknown and known-known scenarios in
CRT based on neuroevolution.

NI α̂(t) ND ζ(t) Scores
Reject H0 p-value

1 0 No 0.7478
5 U(−15◦, 15◦) No 0.9076

1 0 5 U(−30◦, 30◦) No 0.4485
10 U(−15◦, 15◦) No 0.4076
10 U(−30◦, 30◦) No 0.61967
1 0 Yes 0.0428
5 U(−15◦, 15◦) No 0.3704

1 U(0, 20) 5 U(−30◦, 30◦) Yes 0.0445
10 U(−15◦, 15◦) No 0.5516
10 U(−30◦, 30◦) No 0.2890
1 0 No 0.4828
5 U(−15◦, 15◦) No 0.4956

10 0 5 U(−30◦, 30◦) No 0.2683
10 U(−15◦, 15◦) No 0.2578
10 U(−30◦, 30◦) No 0.4554
1 0 Yes 0.0007
5 U(−15◦, 15◦) Yes 0.0010

10 U(0, 20) 5 U(−30◦, 30◦) Yes 0.0001
10 U(−15◦, 15◦) Yes 0.0102
10 U(−30◦, 30◦) Yes 0.0000

Based on the results shown in Table 6.2, 75% of the null hypotheses are not rejected

or at the border of rejection except for those associated with infrequent-noisy information.
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The results which are at the border of rejection are highlighted in bold, where they are

associated with p-values of 0.0428 and 0.0445 respectively. This means that we do not have

enough evidence to claim that there are significant differences between the known-unknown

and known-known scenarios for most of the configurations. Indirectly, this finding indicates

that having similar behaviours in most of the configurations is likely to cause the red agent

to have similar outcomes as well.

Based on the observations in Figures 6.11 and 6.12, the distributions of ϑ are mul-

timodal with four peaks. The obvious observation that we obtain from both figures is

the distributions share high similarity of patterns if they are associated with the same

level of information, regardless of deception. When the information changes from being

frequent-accurate to infrequent-noisy, we can observe changes in heights for the four peaks

and the patterns are consistent across different levels of deceptions. From the sub-figures

associated with frequent-accurate information regardless of deception, we can observe that

peaks in the distribution have the highest heights. This means that ϑ of the red agent are

highly concentrated at certain values, given that the information is frequent and accurate.

As the frequently received information changes from being accurate to noisy, there is a

marginal reduction in the peaks’ heights overall. When evolution occurs upon receiving

infrequent-accurate information, the best solutions resulting from such conditions are no

longer highly concentrated at certain values and this is shown by much lower peaks in the

distributions. Consequently, the distributions of having infrequent-accurate information

are almost uniformly distributed. However, the introduction of noise into the infrequent

information has encourages the best evolved solutions to have high preferences at actions.

As a result, the best evolved solutions have higher pdf on certain values of ϑ in such condi-

tion, thus leading to the formation of four obvious peaks in the distributions. When paired

comparisons are made between frequent and infrequent information for accurate and noisy

information respectively, we can see that the differences in peaks’ heights are clearer in
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accurate information than noisy information. The red agent has much lower preferences

for certain actions as the frequency of information reduces in accurate information than

those in noisy information. In other words, the frequency of information has higher impact

in constructing the preferences of actions in accurate information than noisy information.

Based on pdfs of ∆ϑ shown in Figures 6.13 and 6.14, all of the pdf plots are unimodal,

which is highly concentrated at the values near to zero regardless of information and de-

ception. This means that there are hardly changes in the red agent’s actions produced

by the best evolved solutions. Through learning and evolving in neuroevolution, the best

evolved solutions produce movements for the red agent against different strategies of the

blue agent in such a way that substantial changes are not necessary.

The findings from the action distributions show that the machine behaviours resulting

from neuroevolution are less influenced by deception. Even though the blue agent tries to

confuse the red agent by being deceptive, the red agent controlled by neuroevolution is able

to discover the dominant patterns in blue’s movements, and thus uses similar strategies to

survive. However, the quality of the information influences the red agent’s actions. The

patterns shown in the distributions of ϑ suggest that the preferences of the red agent’s

action at certain values reduces in the order: frequent-accurate, frequent-noisy, infrequent-

noisy and infrequent-accurate. When the frequency of information is high, the preferences

of red agent for certain actions are less affected by the noise. However, if there is a delay in

the information, an introduction of noise in the information causes the red agent to prefer

certain actions as compared to accurate information. Besides that, we also notice that the

differences in action preference are clearer upon having accurate information than noisy

information, when paired comparisons are made between frequent and infrequent informa-

tion. Given that the machine behaviours of the red agent are produced by neuroevolution,

the contingent production of multiple solutions in evolution are by quality of information,

but not the deception. Furthermore, the finding from the distributions of ∆ϑ suggests that
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evolution is able to produces best solutions that enable the red agent to act with minimal

changes in its movements in spite of information and deception.
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Figure 6.11: The plots of ϑ for various combinations of information and deception in
known-unknown scenario.
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Figure 6.12: The plots of ϑ for various combinations of information and deception in
known-known scenario.

6.5.3 Action Similarity

To understand the machine behaviours, actions taken by red and blue are described by the

velocity of red relative to blue respectively, i.e., VRrel B and its change, ∆VRrel B. For each
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Figure 6.13: The plots of ∆ϑ for various combinations of information and deception in
known-unknown scenario.

combination of perception and deception, evolution is repeated by using 30 different seed

numbers. The best solution for each seed is used by red facing blue for 10 repeated games.



150 Chapter 6. Machine Red Teaming

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

ϑ

Pro
bab

ility

−4 −2 0 2 4 −10 0 10
0

0.2

0.4

0.6

0.8

1

∆ ϑ

Pro
bab

ility

−10 0 10

(a)

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

ϑ

Pro
bab

ility

−10 0 10
0

0.2

0.4

0.6

0.8

1

∆ ϑ

Pro
bab

ility

−4 −2 0 2 4 −10 0 10

(b)

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

ϑ

Pro
bab

ility

−10 0 10
0

0.2

0.4

0.6

0.8

1

∆ ϑ

Pro
bab

ility

−4 −2 0 2 4 −10 0 10

(c)

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

ϑ

Pro
bab

ility

−10 0 10
0

0.2

0.4

0.6

0.8

1

∆ ϑ

Pro
bab

ility

−4 −2 0 2 4 −10 0 10

(d)

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

ϑ

Pro
bab

ility

−10 0 10
0

0.2

0.4

0.6

0.8

1

∆ ϑ

Pro
bab

ility

−4 −2 0 2 4 −10 0 10

(e)

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

ϑ

Pro
bab

ility

−10 0 10
0

0.2

0.4

0.6

0.8

1

∆ ϑ

Pro
bab

ility

−4 −2 0 2 4 −10 0 10

(f)

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

ϑ

Pro
bab

ility

−10 0 10
0

0.2

0.4

0.6

0.8

1

∆ ϑ

Pro
bab

ility

−4 −2 0 2 4 −10 0 10

(g)

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

ϑ

Pro
bab

ility

−10 0 10
0

0.2

0.4

0.6

0.8

1

∆ ϑ

Pro
bab

ility

−4 −2 0 2 4 −10 0 10

(h)

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

ϑ

Pro
bab

ility

−10 0 10
0

0.2

0.4

0.6

0.8

1

∆ ϑ

Pro
bab

ility

−4 −2 0 2 4 −10 0 10

(i)

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

ϑ

Pro
bab

ility

−10 0 10
0

0.2

0.4

0.6

0.8

1

∆ ϑ

Pro
bab

ility

−4 −2 0 2 4 −10 0 10

(j)

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

ϑ

Pro
bab

ility

−10 0 10
0

0.2

0.4

0.6

0.8

1

∆ ϑ

Pro
bab

ility

−4 −2 0 2 4 −10 0 10

(k)

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

ϑ

Pro
bab

ility

−10 0 10
0

0.2

0.4

0.6

0.8

1

∆ ϑ

Pro
bab

ility

−4 −2 0 2 4 −10 0 10

(l)

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

ϑ

Pro
bab

ility

−10 0 10
0

0.2

0.4

0.6

0.8

1

∆ ϑ

Pro
bab

ility

−4 −2 0 2 4 −10 0 10

(m)

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

ϑ

Pro
bab

ility

−10 0 10
0

0.2

0.4

0.6

0.8

1

∆ ϑ

Pro
bab

ility

−4 −2 0 2 4 −10 0 10

(n)

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

ϑ

Pro
bab

ility

−10 0 10
0

0.2

0.4

0.6

0.8

1

∆ ϑ

Pro
bab

ility

−4 −2 0 2 4 −10 0 10

(o)

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

ϑ

Pro
bab

ility

−10 0 10
0

0.2

0.4

0.6

0.8

1

∆ ϑ

Pro
bab

ility

−4 −2 0 2 4 −10 0 10

(p)

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

ϑ

Pro
bab

ility

−10 0 10
0

0.2

0.4

0.6

0.8

1

∆ ϑ

Pro
bab

ility

−4 −2 0 2 4 −10 0 10

(q)

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

ϑ

Pro
bab

ility

−10 0 10
0

0.2

0.4

0.6

0.8

1

∆ ϑ

Pro
bab

ility

−4 −2 0 2 4 −10 0 10

(r)

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

ϑ

Pro
bab

ility

−10 0 10
0

0.2

0.4

0.6

0.8

1

∆ ϑ

Pro
bab

ility

−4 −2 0 2 4 −10 0 10

(s)

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

ϑ

Pro
bab

ility

−10 0 10
0

0.2

0.4

0.6

0.8

1

∆ ϑ

Pro
bab

ility

−4 −2 0 2 4 −10 0 10

(t)

Figure 6.14: The plots of ∆ϑ for various combinations of information and deception in
known-known scenario.

Since the experiment involves 20 combinations of perception and deception, there are 6000

different action sequences in total.
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Cluster analysis is used to categorise the action sequences so that we are able to extract

similarities/differences for ease of understanding. However, the main drawback to perform

cluster analysis is we need to determine in advance an appropriate cluster size. To solve

this drawback, cluster validity indices can be a very useful as quantitative measurements

for evaluating the quality of data partitions. These indices are endowed with particular

features that make each of them most appropriate in specific classes of problem. Therefore,

we use an ensemble that consists of several cluster validity indices instead of relying on one

cluster validity index only. To form the ensemble, several well-known cluster validity indices

based on internal criteria are used, i.e., Silhoutte, Davies-Bouldin, Calinski-Harabasz and

Dunn. For all of the indices except Davies-Bouldin, higher index value indicates better

cluster clustering performance. In contrast, lower index value means better clustering

performance in the Davies-Bouldin method. The range of cluster size to be evaluated

based on the methods is from 2 to 10.

Figure 6.15 and 6.16 show the plots of cluster validity for the set of action sequences

based on the proposed indices for both known-unknown and known-known scenarios. Both

figures show that all of the cluster validity indices are associated with best values when the

cluster size is 2. Therefore, we decide to perform clustering process by using cluster size of

2 in both scenarios and the cluster centroid is shown in Table 6.3.

Given that the cluster centroid describes the actions of red relative to blue based on

velocity and acceleration, it may provide some clues on the strategies for both agents in

both scenarios. Based on Table 6.3, the first to tenth features represent the differences of

velocity between both agents, VRrel B for ω1 to ω10. On the other hand, the eleventh to

nineteenth features represent the differences of acceleration between both agents, ∆VRrel B

for ω2 to ω10. For ease of interpretation, VRrel B and ∆VRrel B versus window in the known-

unknown and known-known scenarios are shown in Figure 6.17.
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Figure 6.15: Cluster validity indices for the action sequences in the known-unknown sce-
nario.
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Figure 6.16: Cluster validity indices for the action sequences generated in the known-known
scenario.

Based on Figure 6.17, there are two different strategies in each scenario, which can be

described by VRrel B and ∆VRrel B. It is interesting to find out that VRrel B for both strategies

in the known-unknown scenario are very similar to those in the known-known scenario. As

for the measurement based on ∆VRrel B, both strategies from the known-unknown and

known-known scenarios also share high similarities, where strategy 2 from both scenarios

are identical. As for strategy 1 in both scenarios, only some marginal differences can be
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observed between them. Referring to Table 6.3, the difference based on Euclidean distance

between the similar strategies from both scenarios are quite small, where the differences

for strategies 1 and 2 are 0.2731 and 0.2458 respectively. Overall, the strategies in known-

unknown and known-known scenarios are very similar to each other. This may suggest that

the best evolved solutions produce similar machine behaviours regardless of knowledge

availability of noise level. This again supports previous findings in action distribution,

which suggests that the machine behaviours resultant from evolution are not affected by

the extra task-relevant stimuli.

Table 6.3: Cluster centroid that represents the actions of red relative to blue.

Feature Window Centroid 1 / Strategy 1 Centroid 2 / Strategy 2
Known-unknown Known-known Known-unknown Known-known

1 2 1 2
ω1 9.7350 9.6864 5.1761 5.2319
ω2 10.6030 10.5910 5.6861 5.6695
ω3 10.7830 10.6630 5.6966 5.8027
ω4 10.4380 10.4330 5.6434 5.8050

vRrel B ω5 10.1430 10.2580 5.4967 5.5753
ω6 10.0850 10.1750 4.7920 4.8572
ω7 10.0440 10.0260 3.6245 3.6605
ω8 10.0020 10.0970 2.7445 2.8039
ω9 10.0510 10.0160 2.4442 2.4329
ω10 10.0690 9.9251 2.4856 2.5478
ω2 0.1062 0.1107 0.0542 0.0471
ω3 0.0369 0.0325 0.0029 0.0165
ω4 -0.0158 -0.0052 -0.0045 0.0016

∆vRrel B ω5 -0.0191 0.0018 -0.0145 -0.0223
ω6 0.0064 0.0087 -0.0682 -0.0698
ω7 0.0071 -0.0160 -0.1147 -0.1184
ω8 0.0137 0.0352 -0.0832 -0.0816
ω9 0.0067 -0.0356 -0.0256 -0.0326
ω10 0.0078 -0.0328 0.0110 0.0160

Difference - 0.2731 0.2458

Since the action sequences are actually produced by the best solutions from evolutionary

process, we would like to know whether there is any significant difference of scores between

these two strategies in both scenarios. Therefore, a t-test is carried out with 0.05 significance

level to evaluate the null hypothesis that the samples come from both strategies with equal

means, against the alternative that the means are unequal as shown in Table 6.4. The mean

scores for strategies 1 and 2 are denoted as µs1, ku, µs2, ku in the known-unknown scenario,

and as µs1, kk and µs2, kk in the known-known scenario.

Based on Table 6.4, the result shows that there is enough evidence to reject the null
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Figure 6.17: VRrel B and ∆VRrel B for the action sequences generated in known-unknown
and known-known scenarios.

hypothesis. Therefore, we can claim that the scores for both strategies are significantly

different. The scores based on mean and standard deviation for both strategies are shown

in Table 6.4. Since the the mean scores of strategy 2 are higher than strategy 1, we are

further interested to test the null hypothesis that the score samples come from strategy 1 has

greater or equal means as compared to strategy 2, against the alternative that the former

strategy’s mean is less than the later strategy’s mean. Again, a t-test is carried out with 0.05

significance level to test the hypothesis and the significance test shows the null hypotheses

for both scenarios are rejected. The results of the t-test support that the scores for strategy

1 are significantly lower than strategy 2. Despite different combinations of information and

deception, the best evolved solutions can be categorised into two strategies, i.e., strategy

1 associated with lower score and strategy 2 associated with higher score. However, the

scores for both strategies are still high, exceeding 90% in both scenarios.
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Since the patterns in the actions taken by blue are influenced by the received informa-

tion and its own deception, this means the evolution is also influenced by the effects of

information and deception given that it learns from the patterns in blue’s actions. Despite

the absence or presence of extra task-relevant stimuli in both scenarios, the best evolved so-

lutions can be categorised into two main groups, which share high similarity between both

scenarios. However, the main difference between these two strategies lies in the mean and

standard deviation of their scores. In both scenarios, strategy 1 has lower mean and higher

standard deviation, while strategy 2 is associated with higher mean and lower standard

deviation. Besides that, we can observe that the frequency that better strategy generated

by evolution is higher, and this is supported by the higher frequencies of strategy 2 in both

scenarios.

Most of the strategies generated by the evolution are good and they share high similarity.

The possible reason to explain high similarity among the strategies is that the evolution

is able to extract the hidden patterns even though they may be affected by information

and deception, and thus produces optimum solutions. For example, blue’s movement may

become less obvious to red due to distraction in blue’s information and deception. Due

to the interaction between blue and red, the evolution from the red agent uncovers the

true intention of the blue agent and produces optimum solutions for the situation. Given

that the true intention of the blue agent is to catch the red agent, similar strategies are

generated by the evolution preventing the red agent from being caught. This means the

evolution manages to capture the dynamics between both agents and produces strategies

that are mostly still capable of selecting the correct target response. This enables the red

agent to survive for longer.
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Table 6.4: The results of t-test for the mean scores between strategies 1 and 2 in the
known-unknown and known-known scenarios.

Scenario Hypotheses Reject H0 p-value
Known-unknown H0: µs1, ku = µs2, ku, H1: µs1, ku 6= µs2, ku Yes 0.00

H0: µs1, ku ≥ mus2, ku, H1: µs1, ku < µs2, ku Yes 0.00
Known-known H0: µs1, kk = µs2, kk, H1: µs1, kk 6= µs2, kk Yes 0.00

H0: µs1, kk ≥ µs2, kk, H1: µs1, kk < µs2, kk Yes 0.00

Table 6.5: Scores and frequencies for strategies 1 and 2 in the known-unknown and known-
known scenarios.

Strategy Known-unknown Known-known
Score, Mean± Stdev Frequency Score, Mean± Stdev Frequency

Strategy 1 93.2±20.5 2001 (33.4%) 90.3±24.1 2014 (33.6%)
Strategy 2 97.3±9.8 3999 (66.6%) 97.2±9.9 3986 (66.4%)

6.6 Conclusion

This study focuses on two central elements of decisions: the use of multiple strategies in

CRT, and the factors that influence the use of strategies. In our study, the use of multiple

strategies is demonstrated by the generation of diverse solutions by neuroevolution. On

the other hand, the factors that influence the preferences of strategies are demonstrated by

different configurations of information and deception. Two scenarios called known-unknown

and known-known, are simulated to investigate the effect of perceptual load in CRT since

it influences human behaviour in HRT.

The study shows that the machine behaviours in the known-unknown and known-known

scenarios are very similar to each other, based on action distribution and action similarity.

Besides that, both scenarios also have similar scores. This means there is no clear evidence

to show that the availability of extra task-relevant stimuli, which is represented by the

noise level, influences the construction of behaviour and outcome of behaviour in CRT. The

analysis based on action distribution suggests that the contingent production of machine

behaviour in neuroevolution depends on the quality of information but not the deception.
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Despite different configurations of information and deception, evolution is able to learn

the dominant patterns of blue’s movements and evolve the best solutions, where the actions

generated by the solutions experience minimal changes. In other words, the strategies

produced by the best evolved solutions are adequate to enable the red agent to survive

without having to experience obvious changes in its movements. In short, characteristics

of the task such as information can evoke strategies that at least partially determine the

preferences of actions we observe in machine behaviour.
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Chapter 7

Neural Networks Approximating

Human Behaviour

7.1 Introduction

Neuroevolution is selected as the computational agent owing to its ability to approximate

human behaviours, which depends on both evolution and learning. In this chapter, we

would like to take the opportunity to understand the possible differences in machine be-

haviour given that only learning occurs in the computational model. This is because most

of the defence systems used in adversarial learning or secure learning use this approach,

where the systems are built through learning historical data. To perform this investiga-

tion, pure neural networks without evolution are used to learn from the data sets that have

been collected from the HRT experiments. In this case, the neural networks can be viewed

as fitting human behaviour. Besides that, we are interested to investigate the impact of

information on machine behaviour by varying the data sets, which can be categorised into

two types: general and specific data sets. In the general data, the neural networks learn
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from a data set consisting of information about all players. On the other hand, the neural

networks are fitting the behaviours of individual players if they are given a specific data

set. In short, the neural network can be learning from either a collection of generalised or

individualised human behaviours.

7.2 Experimental Designs

Similar to the experimental setup in previous chapters, the same 20 configurations of infor-

mation and deception in the known-unknown and known-known scenarios are used in the

experiments. Basically, two types of neural networks are built in the experiments, which

can be known as generalised and specific neural networks. The difference between them

lies in the types of data used in their learning phase and their experimental designs are

explained in details in Sections 7.2.1 and 7.2.2.

7.2.1 Generalised Neural Networks

In HRT as shown in chapter 5, humans participated in the games as the red agent. The

human players played against the blue agent deploying different strategies in both known-

unknown and known-known scenarios. Given that the locations of both the red and blue

agents are recorded in both scenarios, we can use the collected information to determine

the relevant input and output variables in the CRT experiments, as follows:

• Input variables:

1. the relative angle between the blue and red, β(t).

2. the relative distance between the blue and red agents at time t, d
(t)
opp.

3. the relative change of β at time t, ∆β(t).
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4. the relative change of dopp at time t, ∆d
(t)
opp.

5. the relative distance to the wall that the red agent faces at time t, d
(t)
wall.

• Decision variables:

1. travel angle of the human red agent from the blue agent, θ
(t)
hr

Since there are 34 human players participating in the games, the above mentioned input

variables are calculated for all players and combined into a data set for each configuration.

For each configuration, a neural network with the same architecture and learning param-

eters are used to learn from the data set. A multilayer perceptron consisting of 5 input

neurons, 7 hidden neurons, and 2 output neurons is used in the simulation. The learning

rate η and the momentum rate γ are set to be 0.2 and 0 respectively. The neural network

learns to predict the travel angle of the human players based on the provided inputs. The

data set is further divided into training set and validation set based on ratio of 80% and

20%.

Mse of the validation set is used as the stopping criterion in the network training. For

each 700 iterations, mse of the validation set is monitored and its connection weights are

recorded until it reaches the maximum number of iterations 7,000,000. Based on monitor-

ing, we would like to identify the iteration where the validation set produces the minimum

mse and thus, its connection weights are used to build the neural network. For the same

configuration, the trained network’s performance is then evaluated by playing the games

for 10 times. During the games, if the travel angle predicted by the neural network does

not cause the red agent to get to an edge, the red agent will move according the predicted

travel angle. Otherwise, an angle deviation will be added to the predicted travel angle so

that the agent can escape from the edge. The assumption made here is a human will avoid

to be trapped at an edge. The trajectories from previous HRT show such avoidance in
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human movements. In this experiment, the neural networks learn from a collection of in-

formation consisting of a diversified of set of human behaviours. As a result, the behaviour

model approximated by neural networks is generalised. Each combination of information

and deception parameters was run 30 times using different seeds. The trajectories of the

10 repeated games for 30 runs using different seeds are analysed based on action distri-

bution and action similarity. The above procedures are repeated for both scenarios, i.e.,

known-unknown and known-known.

7.2.2 Individualised Neural Networks

Different from the experimental setup in section 7.2.1, a neural network learns from a data

set generated by an individual player instead of all players. Therefore, we will have 34

individual neural networks approximating the players’ behaviours for each configuration.

The same architecture and learning parameters are used to build the neural networks. Given

the individual player has smaller data size as compared to those containing all players, the

maximum iteration to be used to train neural networks is 200,000. Again, each data set

belonging to an individual player is split into training set and validation set according to

the ratio of 80% and 20%. For each 200 iterations, mse of the validation set is monitored

and its connection weights are recorded until the network reaches the maximum iterations.

From the learning phase, the connection weights associated with the lowest mse for

the validation set are used to build the neural network, which will be used to determine

the red agent’s travel angles in 10 repeated games. While playing the games, the same

rule which prevents the red agent from being trapped at an edge is implemented. If the

predicted travel angle doesn’t cause the red agent to get stuck at an edge, it will be

used. Otherwise, a small deviation of angle is added to the predicted travel angle. In this

experiment, the behaviour model resulting from each neural network approximates each
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individual player. For each configuration, 30 runs based on different seeds are carried out.

The trajectories between the red and blue agents from these 300 runs are then analysed

based on actions’ distribution and actions’ similarities. The procedures are implemented

for the known-unknown and known-known scenarios.

Given that 300 trajectories are produced by each individual neural network, there are

12,600 trajectories produced for the 34 neural networks. The same analysis need to be per-

formed for all the 20 configurations in both scenarios. Instead of analysing the behaviours

produced by the networks fitting individual players, clustering analysis is performed on the

neural networks based on the connection weights for each configuration. Cluster validity

indices assist in determining the appropriate cluster size. As a result, the neural networks

in each configuration are categorised into several clusters based on the similarity of the con-

nection weights. The same clustering procedures are implemented in the known-unknown

and known-known scenarios. Owing to this, both scenarios have a number of groups of

neural networks for the same configuration and the centroid of the cluster can be viewed

as the representation of a particular group of neural networks. Then, paired comparisons

based on Euclidean distance are calculated for the centroid of the same configuration be-

tween both scenarios. Here, we would like to find the paired centroid associated with the

highest distance, which means the neural networks in both scenarios are very different from

each other for the same configuration. The assumption that we made here is the neural

networks associated with the highest difference in connection weights will produce different

behaviours and we would like to investigate it. Once the paired centroid have been iden-

tified, 30 neural networks located nearest to those paired centroid are selected to play 10

repeated games. In short, we have 30 neural networks from both scenarios for the same

configuration. The trajectories between the red and blue agents resulting from the selected

neural networks are then analysed based on actions’ distribution and actions’ similarities.
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7.3 Result and Analysis

Machine behaviours resulting from the neural networks are analysed based on actions’

distribution and actions’ similarities. The discussions on the analysis are carried out using

generalised and individualised neural networks respectively as shown in Sections 7.3.1 and

7.3.2. For the figures related to the distributions of ϑ and ∆ϑ, they are plotted in such a

way that:

• The sequence of information in the same row from left to right: frequent-accurate,

frequent-noisy, infrequent-accurate, infrequent-noisy;

• The sequence of deception in the same column from top to bottom: none, infrequent-

low, infrequent-high, frequent-low, frequent-high.

7.3.1 Generalized Neural Networks

When comparisons are made between the neural networks which learn from both scenarios

for the same configuration, we find out that there are not much differences in terms of ϑ

and ∆ϑ. This means the human behaviours approximated by the neural networks in both

scenarios are very similar to each other. Based on Figures 7.3 and 7.2, it is interesting to

see that the heights of peaks for infrequent information are higher than those of frequent

information regardless of deception. It seems the machine behaviours are influenced by the

frequency of receiving information, which causes the distributions to be highly concentrated

at certain values of ϑ given that there is delay in information. Having higher frequency

of information means that the blue agent updates its knowledge about the red agent fre-

quently, and thus, influences its movements frequently as well. In such condition, the red

agent needs to adapt by varying its actions in order to survive. As a result, the values

of ϑ are distributed more evenly as compared to those of having infrequent information.
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Figure 7.1: The plots of ϑ for various combinations of information and deception in known-
unknown scenario based on the generalised neural networks.

A delay in the information received by the blue agent prevents it from catching the red

sooner. Therefore, it is unlikely that the red agent needs to vary its actions so much, which
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Figure 7.2: The plots of ϑ for various combinations of information and deception in known-
known scenario based on the generalised neural networks.

also explains the observation of having high peaks in the distributions of ϑ. Besides that,

the observation of having ∆ϑ highly distributed around zero as shown in Figures 7.3 and
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Figure 7.3: The plots of ∆ϑ for various combinations of information and deception in
known-unknown scenario based on the generalised neural networks.

7.4 indicate that the red agent makes marginal changes in its actions.

At the same time, we are interested to know whether there is any significant differ-
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Figure 7.4: The plots of ∆ϑ for various combinations of information and deception in
known-known scenario based on the generalised neural networks.

ence of scores between them for the same combinations of information and configuration.

Therefore, a t-test is carried out with 0.05 significance level to test the null hypothesis that
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the samples come from both scenarios with equal means, against the alternative that the

means are unequal. Table 7.1 shows the result of t-test on the scores between the known-

unknown and known-known scenarios for the generalised neural networks. The significance

tests in Table 7.1 show that 70% of the null hypotheses are not rejected. Since there is

no significant difference of scores between both scenarios in most configurations, it is likely

that the generalised neural networks producing similar behaviours in both scenarios, have

similar outcomes as well.

Table 7.1: t-test for scores between the known-unknown and known-known scenarios in
CRT based on generalised neural networks.

NI α̂(t) ND ζ(t) Scores
Reject H0 p-value

1 0 No 0.1533
5 U(−15◦, 15◦) No 0.6678

1 0 5 U(−30◦, 30◦) Yes 0.0012
10 U(−15◦, 15◦) No 0.0654
10 U(−30◦, 30◦) Yes 0.0093
1 0 No 0.7050
5 U(−15◦, 15◦) Yes 0.0075

1 U(0, 20) 5 U(−30◦, 30◦) No 0.8839
10 U(−15◦, 15◦) No 0.1345
10 U(−30◦, 30◦) No 0.6765
1 0 Yes 0.0003
5 U(−15◦, 15◦) Yes 0.0009

10 0 5 U(−30◦, 30◦) No 0.3505
10 U(−15◦, 15◦) No 0.2210
10 U(−30◦, 30◦) No 0.1733
1 0 No 0.1808
5 U(−15◦, 15◦) No 0.1543

10 U(0, 20) 5 U(−30◦, 30◦) Yes 0.0013
10 U(−15◦, 15◦) No 0.1857
10 U(−30◦, 30◦) No 0.1962

Clustering analysis is carried out using the machine behaviours in both scenarios to in-

vestigate their similarities. The cluster validity indices based on Silhoutte, Davies-Bouldin,

Calinski-Harabasz and Dunn are used to determine the appropriate cluster size for the

range of [2 10]. Then, the performances of the cluster sizes are ranked according to the

indices. Cluster sizes associated with better clustering performance is given lower rank and

vice versa. The ranking results for both scenarios are shown in Table 7.2. Based on the

results, the appropriate sizes to be used in the known-unknown and known-known scenarios
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are 2 and 4 respectively.

Table 7.2: Ranking of cluster size based on cluster validity indices in the known-unknown
and known-known scenarios.

Scenario Index Cluster size
2 3 4 5 6 7 8 9 10

Known-unknown Silhoutte 1 2 4 7 3 6 5 8 9
Davis-Bouldin 6 5 8 3 2 9 1 4 7

Calinski-Harabasz 1 2 3 6 4 7 5 9 8
Dunn 1 2 4 3 6 5 7 8 9

Average 2.25 2.75 4.75 4.75 3.75 6.75 4.5 7.25 8.25
Known-known Silhoutte 1 3 2 6 7 9 4 5 8

Davis-Bouldin 5 4 1 7 6 2 8 3 9
Calinski-Harabasz 1 3 2 5 6 8 4 7 9

Dunn 2 1 3 5 4 7 6 8 9
Average 2.25 2.75 2 5.75 5.75 6.5 5.5 5.75 8.75

For ease of visualisation, the centroid for both scenarios are shown in Figure 7.5, where

they are plotted based on VRrel B and ∆VRrel B separately. According to the figure, each

scenario is associated with strategies sharing very high similarities. Besides that, the com-

parison made between both scenarios also shows that their machine behaviours are similar,

with some marginal differences in terms of VRrel B and ∆VRrel B. In both scenarios, VRrel B

reduces with the increase of window, which means the blue agent is moving towards the

red agent with different speeds when it is viewed from the red agent.

7.3.2 Individual Neural Networks

Figures 7.6 to 7.9 belong to individual neural networks, fitting individual players who be-

have differently in both scenarios for the same configuration. There are only marginal

changes that can be observed in ∆ϑ, as shown in Figures 7.8 and 7.9. In general, the hu-

man players hardly make substantial changes in their movements even though they behave

differently. When a paired comparison is made between the distributions of ϑ between Fig-

ures 7.6 and 7.7, there is lack of consistency in the distributions for the same configuration.

A similar observation is obtained across different configurations. This interesting finding
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Figure 7.5: VRrel B and ∆VRrel B in the known-unknown and known-known scenarios based
on the generalised neural networks.

has demonstrated the diversity of human behaviours in the game environment. Given that

each neural network learns based on individual player’s data, the machine behaviours actu-

ally reflect the individual player’s behaviours. In other words, we have a set of diversified

neural networks, which behave differently as well.

Similar to the generalised neural networks, the difference between both scenarios for the

individualised neural networks is made based on their scores for the same configuration. A

t-test is carried out with 0.05 significance level to test the null hypothesis that the samples

come from both scenarios with equal means, against the alternative that the means are

unequal. Table 7.3 shows the result of t-test on the scores between the known-unknown

and known-known scenarios for the individual neural networks.

The results shown in Table 7.3 show that 70% of the null hypotheses are rejected. This
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Figure 7.6: The plots of ϑ for various combinations of information and deception in known-
unknown scenario based on the individual neural networks.

means in most of the configurations, there is a significant difference of scores between the

known-unknown and known-known scenarios, which also suggests that different behaviours



7.3. Result and Analysis 173

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

ϑ

Pro
bab

ility

−4 −2 0 2 4 −10 0 10
0

0.2

0.4

0.6

0.8

1

∆ ϑ

Pro
bab

ility

−10 0 10

(a)

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

ϑ

Pro
ba

bili
ty

−4 −2 0 2 4 −10 0 10
0

0.2

0.4

0.6

0.8

1

∆ ϑ

Pro
ba

bili
ty

−10 0 10

(b)

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

ϑ

Pro
ba

bili
ty

−4 −2 0 2 4 −10 0 10
0

0.2

0.4

0.6

0.8

1

∆ ϑ

Pro
ba

bili
ty

−10 0 10

(c)

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

ϑ

Pro
ba

bili
ty

−4 −2 0 2 4 −10 0 10
0

0.2

0.4

0.6

0.8

1

∆ ϑ

Pro
ba

bili
ty

−10 0 10

(d)

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

ϑ

Pro
ba

bili
ty

−4 −2 0 2 4 −10 0 10
0

0.2

0.4

0.6

0.8

1

∆ ϑ

Pro
ba

bili
ty

−10 0 10

(e)

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

ϑ

Pro
ba

bili
ty

−4 −2 0 2 4 −10 0 10
0

0.2

0.4

0.6

0.8

1

∆ ϑ

Pro
ba

bili
ty

−10 0 10

(f)

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

ϑ

Pro
ba

bili
ty

−4 −2 0 2 4 −10 0 10
0

0.2

0.4

0.6

0.8

1

∆ ϑ

Pro
ba

bili
ty

−10 0 10

(g)

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

ϑ

Pro
ba

bili
ty

−4 −2 0 2 4 −10 0 10
0

0.2

0.4

0.6

0.8

1

∆ ϑ

Pro
ba

bili
ty

−10 0 10

(h)

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

ϑ

Pro
bab

ility

−4 −2 0 2 4 −10 0 10
0

0.2

0.4

0.6

0.8

1

∆ ϑ

Pro
bab

ility

−10 0 10

(i)

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

ϑ

Pro
bab

ility

−10 0 10
0

0.2

0.4

0.6

0.8

1

∆ ϑ

Pro
bab

ility

−4 −2 0 2 4 −10 0 10

(j)

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

ϑ

Pro
bab

ility

−4 −2 0 2 4 −10 0 10
0

0.2

0.4

0.6

0.8

1

∆ ϑ

Pro
bab

ility

−10 0 10

(k)

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

ϑ

Pro
ba

bili
ty

−4 −2 0 2 4 −10 0 10
0

0.2

0.4

0.6

0.8

1

∆ ϑ

Pro
ba

bili
ty

−10 0 10

(l)

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

ϑ

Pro
bab

ility

−10 0 10
0

0.2

0.4

0.6

0.8

1

∆ ϑ

Pro
bab

ility

−4 −2 0 2 4 −10 0 10

(m)

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

ϑ

Pro
ba

bili
ty

−4 −2 0 2 4 −10 0 10
0

0.2

0.4

0.6

0.8

1

∆ ϑ

Pro
ba

bili
ty

−10 0 10

(n)

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

ϑ

Pro
ba

bili
ty

−4 −2 0 2 4 −10 0 10
0

0.2

0.4

0.6

0.8

1

∆ ϑ

Pro
ba

bili
ty

−10 0 10

(o)

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

ϑ

Pro
ba

bili
ty

−4 −2 0 2 4 −10 0 10
0

0.2

0.4

0.6

0.8

1

∆ ϑ

Pro
ba

bili
ty

−10 0 10

(p)

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

ϑ

Pro
ba

bili
ty

−4 −2 0 2 4 −10 0 10
0

0.2

0.4

0.6

0.8

1

∆ ϑ

Pro
ba

bili
ty

−10 0 10

(q)

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

ϑ

Pro
ba

bili
ty

−4 −2 0 2 4 −10 0 10
0

0.2

0.4

0.6

0.8

1

∆ ϑ

Pro
ba

bili
ty

−10 0 10

(r)

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

ϑ

Pro
ba

bili
ty

−4 −2 0 2 4 −10 0 10
0

0.2

0.4

0.6

0.8

1

∆ ϑ

Pro
ba

bili
ty

−10 0 10

(s)

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

ϑ

Pro
ba

bili
ty

−4 −2 0 2 4 −10 0 10
0

0.2

0.4

0.6

0.8

1

∆ ϑ

Pro
ba

bili
ty

−10 0 10

(t)

Figure 7.7: The plots of ϑ for various combinations of information and deception in known-
known scenario based on the individual neural networks.

in the individual neural networks lead to the difference in outcomes.

Clustering analysis is carried out on the machine behaviours in both scenarios for the
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Figure 7.8: The plots of ∆ϑ for various combinations of information and deception in
known-unknown scenario based on the individual neural networks.

individual neural networks. The cluster validity indices based on Silhoutte, Davies-Bouldin,

Calinski-Harabasz and Dunn are used to determine the appropriate cluster size for the range
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Figure 7.9: The plots of ∆ϑ for various combinations of information and deception in
known-known scenario based on the individual neural networks.

of [2 10]. Then, the performances of the cluster sizes are ranked according to the indices

and the ranking results are shown in Table 7.4. Based on the results, the appropriate sizes
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Table 7.3: t-test for scores between the known-unknown and known-known scenarios in
CRT based on individualised neural networks.

NI α̂(t) ND ζ(t) Scores
Reject H0 p-value

1 0 Yes 0.0000
5 U(−15◦, 15◦) No 0.3947

1 0 5 U(−30◦, 30◦) Yes 0.0093
10 U(−15◦, 15◦) No 0.7046
10 U(−30◦, 30◦) No 0.2007
1 0 No 0.4045
5 U(−15◦, 15◦) No 0.6413

1 U(0, 20) 5 U(−30◦, 30◦) Yes 0.0001
10 U(−15◦, 15◦) Yes 0.0115
10 U(−30◦, 30◦) Yes 0.0003
1 0 Yes 0.0009
5 U(−15◦, 15◦) Yes 0.0432

10 0 5 U(−30◦, 30◦) Yes 0.0001
10 U(−15◦, 15◦) No 0.8921
10 U(−30◦, 30◦) Yes 0.0015
1 0 Yes 0.0011
5 U(−15◦, 15◦) Yes 0.0000

10 U(0, 20) 5 U(−30◦, 30◦) Yes 0.0069
10 U(−15◦, 15◦) Yes 0.0000
10 U(−30◦, 30◦) Yes 0.0000

to be used in the known-unknown and known-known scenarios are 2 and 3 respectively.

Table 7.4: Ranking of cluster size based on cluster validity indices in the known-unknown
and known-known scenarios for the generalised neural networks.

Scenario Index Cluster size
2 3 4 5 6 7 8 9 10

Known-unknown Silhoutte 1 2 7 3 4 5 8 6 9
Davis-Bouldin 2 3 1 4 5 8 7 9 6

Calinski-Harabasz 1 2 3 4 5 6 7 8 9
Dunn 1 3 2 4 5 6 7 8 9

Average 1.25 2.5 3.25 3.75 4.75 6.25 7.25 7.75 8.25
Known-known Silhoutte 1 2 3 4 8 5 6 7 9

Davis-Bouldin 9 3 7 8 5 1 2 4 6
Calinski-Harabasz 1 2 3 4 5 6 7 8 9

Dunn 1 2 3 4 5 6 7 8 9
Average 3 2.25 4 5 5.75 4.5 5.5 6.75 8.25

The findings in the analysis of human behaviours based on VRrel B and ∆VRrel B show

that there are high similarities in the collection of individual neural networks in both sce-

narios. The explanation for this finding is the collection of machine behaviours resulting

from individual neural networks can be viewed as an ensemble. Owing to this, a more gen-

eralised behaviour is formed as the diversified behaviours of the individual neural networks
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Figure 7.10: VRrel B and ∆VRrel B in the known-unknown and known-known scenarios based
on the individual neural networks.

are combined as an ensemble in each scenario. Therefore, there is not much difference in

actions between both scenarios owing to the diversity in the collection of strategies.

7.3.3 Generalised and Individual Neural Networks

Based on the analysis from action distribution, it is found that generalised neural networks

show pattern consistency in known-unknown scenarios, while the individual neural net-

works lack such consistency. The action distributions for the generalised neural networks

are influenced more by the effect of information than deception. In contrast, the action

distribution of the individual neural networks seems to be dependent on the network itself

rather than on the effects of information and deception. Besides that, the action similarity

for both types of neural network show that they are quite different from each other.
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7.4 Conclusion

The results from this chapter show that the generalised neural networks are not affected by

information and deception when they learn from a variety of human behaviours. Besides

that, the machine behaviours produced by the generalised neural networks are similar in

both known-unknown and known-known scenarios, which means they are not affected by

the perceptual load. Having access to the extra task relevant stimuli does not influence

the construction of machine behaviour in generalised neural networks. Unlike the gen-

eralised neural networks, there is lack of consistent and obvious patterns in the actions

for the individual neural networks. This means the neural networks are able to approx-

imate the behaviours of individual players, and the preferences of action are affected by

the players rather than by the information they receive and/or deception. Even though

the individual neural networks lack consistency in behaviours, the analysis based on action

similarity shows that their strategies are similar in both scenarios. When clustering analy-

sis is performed, the centroid actually refers to a general representation for the diversified

behaviours. However, the behaviours produced by the generalised and individual neural

networks are different from each other.



Chapter 8

Conclusion and Future Research

8.1 Thesis Summary

Red teaming is an approach to study a task by anticipating an adversary. Here, adversary

refers to any entity affecting the objectives of the task. The objectives of the task and

the adversary are known as blue and red respectively. A blue entity refers to an entity

which would like to achieve the task, while a red entity refers to the circumstances and/or

entities which may have an adverse impact on the task. In simple words, blue and red have

conflicting interests. Even though red teaming as a concept can be traced back to 500 B.C.,

the concept especially CRT still has great potential to offer. Owing largely to the success

of the concept, its implementation has expanded from military and physical realm-based

to civilian and computer-based.

The focus of this thesis is to study the effects of different forms of red in an adversarial

learning environment, which mainly depend on their manipulation approach. Here, we focus

on four forms of red: one with direct access to stochastically manipulate the information

received by blue; one based on machine learning with the ability to learn and evolve to
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counteract blue’s behaviour; one that is a real human playing red; and one based on

machine learning with the ability to fit human behaviour. These forms motivated our

primary research question, where we are interested to understand the impact of information

and behaviour on adversarial learning.

We attempted to address the issue by investigating the effect of red using an information

centric design. A framework for adversarial attack simulation is developed, whereby the

roles of blue and red are represented by the machine learning system and the adversarial

attacks. The framework involves replication of a part of an existing adversarial taxonomy

using data mining to simulate an adversarial environment to study the effect of red. The

underlying assumption made in the simulation is that red has some sort of intelligence and is

able to identify representative samples and subvert their inputs. Therefore, the adversarial

attacks on these samples are based on sampling methods. Under the influence of red,

the performances of blue represented by a single neural network and neural ensemble are

evaluated in static and non-stationary environments. Based on the evaluation, it is shown

that the vulnerability of the neural ensemble against the red effect is lower than the single

neural network.

The simulation of adversarial attacks is based on the explicit assumption that red has

intelligence to attack certain samples, and the effect of red is information driven. The main

difficulty in previous work is we hardly know whether the assumption holds in a natural

red or not, given that it is difficult to simulate the dynamics between blue and natural red

in such simulation with the involvement of a human. Therefore, we need a good simulation

environment which allows both the computational red and human red to perform the same

task, so that the feasibility study can be carried out appropriately.

A red teaming game environment has been proposed in this thesis to enable both CRT

and HRT to be carried out in the same task environment. A synthetic game environment
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based on red teaming is developed to allow behavioural comparisons to be made between

machine and human. The purpose of developing the game environment is to investigate the

effect of red using a behaviour centric lens. In other words, we would like to understand

the impact of behaviour in an adversarial learning environment. In the environment, the

strategies of blue are pre-programmed and they are influenced by information and decep-

tion. Since the proposed forms of red face the same pre-programmed blue, the impact of

information and deception on the red agents can be analysed and compared fairly.

The behaviours for three forms of red agents operating in a fixed blue agent’s environ-

ment are analysed through a dynamic red having the ability to learn and evolve, a real

human playing a red agent’s role, and a red approximating the human players. A compari-

son study of behaviour between a natural and computational red needs to be performed in

order to have better understanding of the possible differences between CRT and HRT, and

thus establish the feasibility of using computational environments to play red. This became

the main focus of this research, where the behaviours of the red agents are compared based

on actions’ distribution and actions’ similarities.

The specific focus of the game simulation is to compare the differences in behavioural

context between CRT and HRT. In our context, behaviour is defined as a sequence of

actions taken by an entity. Based on this definition, several measurements are proposed to

describe behaviour in the proposed game environment. Besides that, several methodologies

are proposed to analyse and compare the machine behaviours and human behaviours. As

far as we know, there are no standard measurements and methodologies for conducting

behavioural analysis and behavioural comparisons in such simulation environments so we

have proposed some of our own. The comparison in a behavioural context between CRT and

HRT is carried out by fixing the strategies of the blue agent and comparing the dynamics

of behaviour between the computational red and humans.
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The strategies of blue are influenced by perception and deception. Perception refers to

the access that blue has on red’s intelligence through observing the red’s actions. However,

the perception of blue may be affected by the frequency of observing the red agent’s actions,

NI and the noise which may be contained in the observations, α̂(t). Based on the received

information about red, blue arranges its action to deceive red intentionally in order to

disrupt red’s objective. The deception in blue’s action can be influenced by deception cycle

length (deception frequency), ND and deception degree, ζ(t). This means the strategies of

blue are modelled by perception and deception which are described by the combinations of

the proposed parameters, i.e., NI , α̂
(t), ND and ζ(t). Thus, different scenarios for the red

agent are generated by varying perception and deception in blue’s strategies.

HRT is conducted in two different scenarios, i.e., the absence and presence of access to

blue’s perception, denoted as the known-unknown and known-known scenarios respectively.

In both scenarios, the human players have very fast reaction times as well as high scores.

Fast reaction times and high score reflect the engagement of humans to high perceptual

load. The results of both scenarios in HRT suggest that humans’ actions are independent of

perception and deception. The behavioural analysis also shows that the strategies used in

both treatments share high similarities. The interesting finding may actually represent the

identification of task conditions that determine when the task-relevant stimuli is not used.

If a task demands high perceptual load, it exhausts the perception capacity of human and

leaves no spare capacity for perception of task-relevant stimuli. In orders words, humans

have limited perception capacity. Owing to this, the perception capacity will be running

out when humans engage to high perceptual load, preventing them from processing the

task-relevant stimuli.

There were two approaches to develop the computational red in our work, i.e., neuroevo-

lution and neural networks. Since a natural red is represented by a human, the selection

of computational model for red needs to be able to mimic or reproduce human behaviours,
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and this form of red is known as a neuroevolutionary red. Owing to this, neuroevolution

based on a biologically-inspired approach is selected for behavioural reproduction. Highly

complex systems such as those found in humans are extremely robust and resilient sys-

tems, which can adapt to environmental changes and constantly learn and evolve for their

betterment. Therefore, a biologically-inspired approach such as neuroevolution borrows

concepts from these systems and tries to provide robust and adaptive solutions to the in-

volved task. Besides that, the abilities to learn and evolve in neuroevolution are important

to reproduce optimality and rationality of human behaviour. Behaviour fitting based on

neural networks is used to develop another type of computational red. Two types of neural

networks, known as generalised and individual neural networks, are developed by feeding

them the data from all human players and individual players respectively. This means the

neural networks actually approximate the generalised behaviours and also individual be-

haviours for the human players. For both types of computational red, the known-unknown

and known-known scenarios in HRT are simulated in CRT as well so that the impact of

the perceptual load in CRT can be carried out.

8.2 A Reflection on the Research Questions

The common finding that we can obtain from the feasibility study conducted in CRT and

HRT is the action distributions of the red agents seems not to be affected by the difference

in scenarios. The observations that we have from the action distributions in both scenarios

can either be very similar or lack consistency. Indirectly, this means that there is no clear

evidence to show that the availability of extra task-relevant stimuli for red, represented

by the noise level, influences the construction of behaviour and outcome of behaviour in

both types of read teaming. Besides that, the finding from the action distribution indicates

there is lack of changes in preference in both human and machine red. Once a constructed
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behaviour enables red to achieve its objective, it is unlikely that it will make substantial

changes in the action preferences.

In HRT, there is a lack of consistency in trends from the observation of action distri-

bution in both known-unknown and known-known scenarios. A possible explanation for

this observation is the human players react independently of information and deception.

In both scenarios, the human players have shown goal-directed behaviours, as reflected by

achieving a high score. Given that a human player needs to achieve his/her goal in a task

environment which requires high attention at the same time, this type of high perceptual

tasks may prevent the human player from processing the extra task-relevant stimuli even

though it the stimuli was clearly communicated and displayed as shown in the known-

known scenario. Due to humans’ limited perception capabilities, there is no spare capacity

for humans to process the extra task-relevant stimuli when they are engaged in a high

perceptual load task. As a result, most of the human players use a general way to survive

- run straight in the opposite direction of blue most of the time. This is supported by

the analysis of action similarity, which shows the strategies in HRT share high similarity

regardless of having access to blue’s perception or not.

The action distribution conducted on the neuroevolutionary red suggests that the con-

tingent production of machine behaviour is influenced by the quality of information rather

than the level of deception. It seems that the characteristics of task, such as information,

can evoke strategies that partially determine the preferences of action in the neuroevolu-

tionary red. For the neuroevolutionary red, its strategies across different combinations of

information and deception can be categorised into two main groups based on the analysis of

action similarity. Even though both strategies are associated with adequately high scores,

one of them has a higher mean and lower standard deviation in term of scores than the

other. Furthermore, the frequency of the better strategy is higher as well. This means

neuroevolution is likely to generate strategies with better performance.
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Neural networks are used to fit the human behaviour generally and individually. Based

on the results in the action distribution, it is interesting to find that the generalised neural

red is not affected by information and deception given that it learns from the data consist-

ing of all players. On the other hand, the individual neural red fits the individual player’s

behaviour specifically. Therefore, we observe a variety of action distributions which lack

consistency across different combinations of information and deception. It is not surprising

to know that the strategies for the generalised neural red have high similarities since we

observe similar action distribution in them. However, the analysis of action similarities

also shows that the individual neural reds produce similar strategies as well. Each indi-

vidual neural red can be viewed as a unique player which has his/her own behaviour, and

the diversified behaviours complement each other to form a more generalised behaviour.

Therefore, we observe that both scenarios show similar strategies as the cluster centroid

refers to a general representation of a collection of diversified strategies.

From the comparisons made between different forms of red based on action distribution

and action similarity, it is found out that the red agents have their own repertoire of

ways for constructing their preferences in selecting actions, given that each of them show

different action distributions for the same configuration of information and deception. In

the analysis of action similarity, a collection of behaviours for each form of red is represented

by a centroid, which also refers to a general representation of strategies.

The main differences that we have observed from previous chapters is the consistency of

patterns in machine behaviours resultant from neuroevolution and generalised neural net-

works based on the above comparisons. When the deception is fixed, the neuroevolutionary

red agent prefers certain actions, given that it receives frequent information, regardless of

noise level or infrequent-noisy information. This means that the impact of noise on its ac-

tion preference becomes clearer if there is a delay in the information. However, the action

preferences for the neuroevolutionary agent are not affected by deception as long as the
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quality of information is the same. As for the red agent produced by the generalised neural

networks, it shows consistency in action preferences regardless of information and decep-

tion. Similar to human red agents, there is a lack of pattern consistency in the specialised

neural networks since each network attempts to learn a different human pattern.

Another interesting finding is the actions in HRT are more evenly distributed than

CRT, which causes HRT to have much lower peaks than CRT. This is interesting because

the machine in CRT almost specialises on the task. It identifies areas whereby it can better

exploit the task. The ensemble of humans, however, attempt to go through the experience

from scratch; there is no transfer of knowledge and experience between humans as it is the

case with the machine where evolution transfers knowledge from one generation to another.

Figures 6.17, 5.13, 7.5 and 7.10 show the measurements of VRrel B and ∆VRrel B in

the unknown-known. Despite different forms of red agents, all of them have shown a

decreasing trend in VRrel B. There are two very distinct strategies that can be observed

in the neuroevolutionary designed red agent while the remaining red agents have a single

strategy.

For the dynamic red agent, it is interesting to observe that VRrel B for one of the

strategies is associated with high value and almost flat with the increase of window. In

contrast, another strategy belonged to the dynamic red agent is associated with much lower

values of VRrel B. The decreasing trends in VRrel B means blue viewed from the red moves

towards it with different speeds. This can be supported by the trends of ∆VRrel B in Figures

6.17, 5.13, 7.5 and 7.10.

Unlike the computational red agents, the human red agents experience less change in

∆VRrel B, where they have almost constant ∆VRrel B. By considering both trends of VRrel B

and ∆VRrel B, we can observe that the strategies for different forms of red agents are quite

different from each other overall. Even though the red agents are exposed to the same
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task environment, their behaviours are different and their action preferences are influenced

differently by information and deception as well.

By scrutinising the diagrams with respect to the evolved agents and comparing them to

the other agents, once can notice that the evolved agents are clustered in two groups with

all other agents fall in between these two clusters. In other words, while the evolved agents

clusters differently for the human agents, the evolved agents bound the human agents. This

entails that evolution finds different patterns from humans but the same time finds similar

patterns to humans. We can refer to this as creativity, where evolution generates much

more diversity than humans.

The study on CRT and HRT has shed some light on understanding the machine be-

haviours and human behaviours in a red teaming environment. Characteristics of the task

such as information can evoke strategies that at least partially determine the preferences

of actions we observe in the neuroevolutionary red agent. On the other hand, the gener-

alised neural networks are not affected by information and deception. Besides that, the

comparison between the unknown-known and known-known scenarios suggests that the

machine behaviours in neuroevolution and generalised neural networks are not affected by

the perceptual load.

Unlike machine behaviours in neuroevolution and generalised neural networks, there

is a lack of diverse patterns in the human behaviours and specialised neural networks

across different combinations of information and deception. This leads us to believe that

the humans do not take into account both perception and deception and their actions are

independent of them. Given that the specialised neural networks learn from human players,

it is not surprising that they share similar findings.

Cluster analysis shows an interesting finding: the strategies used by the human players

are similar across different combinations of perception and deception. It seems that indi-
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vidual differences, represented by different human players, do not influence the response

to the task. Even though there is a lack of obvious patterns in the pdf plots, the clus-

ter analysis suggests that the human uses similar strategies in the games. Both findings

may be explained by the high perceptual load in the game environment requiring focus-

ing attention from the human players to achieve their goals, and lead to the ignorance of

task-relevant stimuli reflected in blue’s movements. Consequently, the condition exhausted

the perception capacity of human and leaves no spare capacity to process the task-relevant

stimuli. As a result, the actions taken by the humans are independent of both perception

and deception, and also share high similarities. Consequently, the exhibition of machine

behaviours in specialised neural networks was affected since each of them approximates

individual players’ behaviours. The conclusion that we can obtain from the work is a lack

of variations in human decision behaviours due to high perceptual load.

Based on the comparisons that are made between the CRT and HRT, the results show

that CRT encompasses HRT. It establishes a bound on what may arise from HRT. In

short, CRT encompasses HRT but CRT generates more diversity (ie creativity) than HRT

despite that the task and the environment are maintained constant. CRT can augment

human behaviour. Reliance on CRT can be a real risk for HRT-only exercises. Not only

an HRT would miss out on creative strategies, it won’t evaluate them, which will open a

hole in the risk assessment exercise [4].

In conclusion, this thesis found the following answers to the research sub–questions

identified at the start.

1. What is the impact of intentional manipulation of information/data on a learning

machine?

We found that random manipulation of data can have a significant impact on a single
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learning machine. However, by using an ensemble, this impact is reduced to mini-

mum. Random manipulation of data becomes noise that most ensemble learners are

able to filter out.

2. How to characterise and understand behaviour for a machine or a human?

Behaviour of humans and machines is a difficult concept to be characterised objec-

tively. Nevertheless, we introduced a number of metrics to capture these behaviours.

The underlying actions of both humans and machines are mapped into different met-

rics. First, direction information of moves are normalized within fixed windows for

comparisons. Second, different windows are analysed as a time series, with the veloc-

ity between windows used to capture trends in humans and machines behaviours.

3. How can we compare the differences and similarities between a machine and a human

behaviour?

We introduced a number of metrics to do the characterisation. First, cluster analysis

was found to be an effective way to identify centre of mass in the behaviour of human

and machines. By comparing the cluster prototypes (i.e., centre of masses), we were

able to show the differences and similarities between human and machine.

Second, we introduced a methodology by which actions are approximated using a

mixture of Gaussian. The resultant distribution identifies points of interest in the

human and machine actions. Peaks define most frequent actions, and centres and

spreads of the Gaussian functions can be used to show the range of behaviours pro-

duced by humans and machines.
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The main research question of the thesis was: “What is the role of information and

behaviour in adversarial learning?” We have demonstrated that humans tend to ig-

nore the information presented to them when the task is mentally demanding. Meanwhile,

deception - or intentional slight deviation from goals - was found to be an essential strat-

egy in environments with high noise in the information received by agents. In noise-free

environments, deception was not needed.

The thesis demonstrated also that CRT produces a diverse set of behaviours that en-

compass human behaviours. The thesis provided concrete evidences that humans tend to

behave in similar manners, and when focusing on a task, they miss out on information that

is readily available to them. CRT overcomes these human biases and provide more diverse

set of strategies.

8.3 Future Research

Our work shows the first attempt to study the feasibility of CRT through behavioural

analysis between CRT and HRT. Several potential directions can be taken to extend this

work.

• The task and fitness evaluation in the neuroevolution is designed without taking

into account human preferences in the task environment. It would be interesting to

incorporate human preference in the fitness evaluation so that the potential solutions

are evolved in the direction of human preference instead. To do so, a survey based on a

questionnaire can be carried out to collect relevant information on human preferences

from a group of human subjects and the information will be used in the fitness
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evaluation. Then, the same group of subjects will participate in the games and their

actions will be compared with those generated by the evolved solutions.

• Introduction of measures of performance which are able to quantify the quality of

human actions. Such measures of performance are important to ensure the generation

of solutions according to the quality of human actions, rather than arbitrarily. This

means the performances of neuronevolution or neural networks are guided by human’s

cognition since the corresponding decision making model reflects the capability of the

agent in making decisions [4].

• The best evolved solutions across different configurations of information and decep-

tion can be combined to form an ensemble. Then, the performances of the neuroevo-

lutionary ensemble can be evaluated by having it play against the pre-programmed

blue. Besides that, its performances can be evaluated by replacing the blue agent as

a human instead.

• Given that CRT can be used to explore the problem spaces as well as solution spaces,

it offers a great potential in secure learning in two different layers. For example, in

the exploration of problem spaces (the first layer), the use of appropriate measures

in evolution by considering human reflection ensures that the generation of actions

are guided by human’s cognition. Therefore, a population of possible behaviours of

red are generated in the evolution to form a database. For each red’s behaviour,

CRT can be used to explore the solution spaces by using evolution to search for the

potential defense solutions against it. Behaviour mapping based on data mining can

be used to determine the behaviour of a real red in a given adversarial learning task

from the behaviour database and its corresponding defence solution can be deployed

to defeat the real red.
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