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Abstract

Technical analvsis is the study of market movements, primarily through the use
of past prices and volumes, for the purpoge of forecasting future price trends.
Degpite its popularity among practitioners, academicg tend to be skeptical about
its true usefulness. One of the major reasons is that it lacks a theoretical hasis
in finance theory. Although there is Increasing empirical evidence in [avor of its
effectiveness, the empirical debate remains unsettled, meanwhile the progress on
strengthening its theoretical basis is relatively slow. To understand better tech-
nical analygis as an important and popular investment tool. this thesig aims to
further tie technical analysis to modern finance theory in an attempt to tighten
this gap in the literature. This thesis includes two chapters that study portfolio
choice problems and two additional chapters that study asset pricing problems, in
which investors make strategic use of information from technical analysis, spoecif-
ically the moving averages. Our model approach provides several new insights to
the field. We develop a model to examine the effects of the uncertain predictive
power of moving averages on portfolio choice. We find that investors accounting
[or such uncertainiy allocaie suhstantially less weallth to stocks and are more con-
servative in market timing for longer horizons. Furthermore, the utility loss of
ignoring this uncertainty can be sizable and increases with horizon at an ineroeas-
ing rate. We present another portfolio choice model to theoretically illustrate that

moving averages can be useful for investment when stock returns are corvelated.



Woe also [ormulate an asscl pricing model and propose some plausible equilibria
in which future prices can be predicted by moving averages. This model provides
a theoretical hasis for some recent empirical findings that moving averages have
predictive power. We further formulate a gimilar agset pricing model which em-
phasizes development of estimmation and testing strategies to empirically test the
proposed equilibria. Using S&P 300 index and dividend data for the period Jan-
ary 1871 1o December 2015, we empirically reject the possibility that investors’

trend following behavior is the driver of the stock market in the long rumn.
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Chapter 1

Introduction

1.1 Introduction

Technical analvsis is the study of market movements, primarily through the use
of past prices and volumes, for the purpose of forecasting future price trends.
Several techniques and tools in technical analysis, most notably moving averages
and charting, have been widely nsed by practivioncers. Murphy (1999) summa-
rizes that there are three rationales for technical analysis. First, it is believed
that price actions reflect shifts in demand and supply. As a result, prices should
contain important information about future movements of that market. Second,
it 18 also believed that prices move in trends. In other words, prices are more
likely to move in the same direction until they reverse. Therefore, trving to detect
the beginning ol a trend or a price reversal 18 the primary ohjective ol technical
analysis. Third, technical investors believe that history repeats itself that many
price chart patterns are results of human psyehology, which are unlikely to change
from generation to generation. Thus, in some sense the future is considered just

a repetition of the past.
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However, despile the popularily of technical analvsis among practlilioncrs, aca-
demics tend to be skeptical about its true usefulness. Following Zhu and Zhou
(2009), the following three reasons may explain this attitude towards technical
analveig. The first reason is that there are limited theoretical studies to justify
why technical analvsis can have value under certain conditions. While there are
theoretical models, notably noisy rational expectations models {see, e.g. Work-
ing, 1958; Brown and Jennings, 1989; Wang, 1993) and [cedback models (sce,
e.g. De Long ef al, 1990; Shleifer and Summers, 1990), showing past prices or
volurnes are useful for forecasting future prices, they are not closely tie to the ae-
tual techniques and toolg used in technical analysis. There 18 also a literature on
heterogeneous agent models (see, e.g. Brock and Tlommes, 1997, 1998; Boswijk et
al. 2007; Hommes, 2013) studying the impacts of different trading or forecasting
rules on asset prices, however, the primary objective is to replicate stvlized facts

of financial time series and thus these studies are empirically oriented.

The second reason is that the efficient market hvpothesis used to be g0 widely
accepted that many academics used to posit that share prices should exhibit no
scrial dependencies, meaning that past prices should be useless o [orecast [ibure
prices. Although there 18 now ample cvidence that the stock market 1s indeed
predictable, in the sense that future stock returns are correlated with the current
values of some obgervable economic variables, how such predictability allows for
the nsefulness of technical analysis 18 not well investigated. The third reagon is
that empirical findings are mixed and inconclusive. Indeed, it is not nncommeon
that later studics challenge the statistical validity of previous results. At this
stage, it is unlikely that the staristical debate on the usefulness of technical anal-

vsis will be settled soon.
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1.1.1 Motivation for the Study

Although there is increaging empirical evidence for the usefulness of technical
analysig (see, e.g. Brock, Lakonishok, and LeBaron, 1992; Han, Yang, and Zhou,
2013: Neelv et al, 2011), the progress on strengthening its theoretical basis is
relatively slow. In particular, little attention has been paid to the strategic use
ol inlormation generated by technlcal analysis on porllolio choice and how assel
prices are dynamically affected by investors” use of such information. Previous
studies assessing the effectiveness of technical analysis commonly assume that in-
vestors use an “all-or-nothing” approach, namely investing 100% of wealth into
the stock when the technical trading rule says buy but nothing otherwise. This
is a naive use of information [rom technical analysis in the sense thai this would
he too risky for rislk-averse investors, who would not prefer great fluctuations in
wealth., For asser pricing studies, there are only a handful of dynamic modcls
admitting equilibrium priceg as a function of technical indicators in closed-form.
Moreover, it appears that most asset pricing models are confined to solving for a
market equilibrium but fall short in providing a mechanism how the prices adjust
to that cquilibrium. Considered how relevant and important technical analyvsis is
for real-world investment, there is a need to promote more theoretical studics in

the literature.

1.1.2 Aim and Scope

Following the footsteps of some recent attempts. see, e.g. Zhu and Zhou (2009)
and Zhou and Zhu (2013), this thesis aims to further tie technical analysis to
modern finance theory in an attempt to tighten this gap in the literature. Untor-
tunately, due to the analvtical nature of our studies, we have to restriet our atten-

tion to the moving averages, which are more mathematically tractable relative to
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the information visually deduced [tom charting patierns. Although [ocnsing only
on moving averages may appear to be narrow, moving averages are undoubtedly
among the most popular and easv-to-use classes of technical trading rules. More-
over, academically, the seminal work by Brock, Lakonishok, and LeBaron {1992)
stirmulates rmeh snbsequent research on the effectiveness of moving averages as
an investment tool. Therefore, moving averages are in their own right practically

and academically important.

1.1.3 Significance of the Study

This thesis attempts to contribute to the literature in several ways. First, it
provides new ingights to the field through studying technical analysis in the per-
spectives of asset pricing and portfolio choice. Second. it demonstrates various
modelling and solution techniques in different asset pricing and portfolio choice
problems. Third, also as the intended oulcome ol this thesis, it helps promaote
building a stronger theoretical basis for the use of technical analysis as an invest-

moent tool.

1.1.4 Structure of the Thesis

Thisg thesis consistg of five further chapters. While the next four chapters are
structured as standalone research papers. they can be conceptually separated into
two parts: the next two chapters study portfolio choice problems and the further
next two chaplers study assel pricing problems. In Chapler 2, we develop a model
to examine the effects of the uncertain predictive power of moving averages on
portfolio choice. This chapter is characterized by an investor who uses a Bayesian

approach to continuonsly infer useful information from moving-average signals for



investment. In Chapter 3, we present another porilolio choice model o theo-
retically illustrate that moving averages can he useful for investment when stock
returng are correlated. We show that moving-average hased portfolio strategies
are more profitable than gtrategies ignoring time-varving investment opportuni-

ties.

In Chapler 4, we present an assel pricing model o demonstrate the predictive
power of moving averages on future stock prices as an cquilibrium phenomenon.
This model is characterized by a representative investor who formulates forecasts
of future stock prices based on different sources of information, one of which is
moving averages. Such forecasts then in turn affect equilibrinm prices. Differ-
ent cquilibria. are therefore obtained by imposing different agsumptions on the
investor’s forecasting rule. We then assess the stabilicy of these equilibria and
comment on their plausibility. In Chapter 5, we formulate another asset pricing
model based on that of Chapter 4 but with important modifications. Unlike the
analvtical gtndy in the previons chapter, emphasis ig instead put on developing
estimation and testing strategies to examine whether the proposed equilibria are
cmpirically supported. The general stralegy is that we can make use ol a scl
of orthogonality conditions implied by the equilibrium pricing equation and the
investor’s forecasting rule for GMM estimation. Using S&D 300 index and divi-
dend data for the period January 1871 to December 215, we empirically reject
the possibility that imvestors’ trend following behavior is the driver of the stock

market in the long run. Finally, Chapter 6 summarizes and concludes this thesis.
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Chapter 2

Technical Analysis with Uncertain
Predictive Power: The Effects on
Portfolio Choice

Deviating from a conventional statistical testing approach, we analyze the eco-
nomic relevance ol technical analysis. Specilically, we assess how uncertainty in
the predictive power of moving average signals affects investors’ portfolio choice.
Calibrating our model with CRST index data, we find that investors accounting
for such uncertainty allocate substantially less to stocks and are more conservative
in market timing for longer horizons. Furthermore, the utility loss of ignoring this

uncertaingy can be sizable and increases with horizon at an increasing rate.
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2.1 Introduction

When an investor receives a “buy” signal from a technical trading rule, how much
should he trust this signal and adjust hig allocations to stocks? The literature pro-
vides litnited guidance to answer this question because it is commonly assumed
that investors use a naive “all-or-nothing” strategv, namely allocating 100% of
wealth bo stocks whenever they observe a buy signal hut nothing otherwise. This
assumption, however, is unrealistic because it overlooks at least two important

issues.

First, investors do not necessarily have strong faith in technical analysis and thus
betting entire wealth on a buv signal is far too risky. After all, empirical findings
of its uscfulness are mixed and inconclusive. Early studies are generally skep-
tical about its usefulness and this perhaps develops a preconception about this
investment tool (see, e.g., Famma and Blume, 1966; Jensen and Benington, 1970).
Although later studies increasingly provide encouraging evidence (see, e.g., Brock,
Lakonishok, and LeBaron, 1992; Lo, Mamaysky, and Wang, 2000; ITan, Yang, and
Zhou, 2013; Necly ef al., 2014), its true cllectivencss is still in debate (sce, e.g.,

Allen and Karjalainen, 1999; Ready, 2002; Bajgrowiez and Scaillet, 2012},

Second and more importantly, investors’ allocations to stocks should be optimally
chosen in a utility maximization framework: an investor’s optimal allocation may
depend on, for example, his degree of risk aversion, wealth level, prior belief
and currenl assessment of the prediclive power of the {rading rule. When stock

returns are deemed to be predictable, his investment horizon may be also relevant.

Failing to account for these two issues, the ad hoc “all-or-nothing” assumption is

nnlikely to reflect a legitimate use of technical analysis. In this article, we study
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Although there is limited research directly addressing our topic, we do gel some
insights from the literature. The effeces of uncertain return predictability on port-
folio choice are studied by, for example, Stambaugh (1999), Barberis (2000}, and
Xia (2001). These studies illustrate that in general ignoring estimation risk results
in a subgtantial opportunity cost to the investor. We, however, consider techni-
cal signals rather than the dividend yields prominently studied in the literature,
and we show thal it 18 more mathemaltically challenging (o account [or csiima-
tion risk in this framework. This is because the law of motion of the predictive
variable, namely the technical signals, is implicitly determined by the return pre-
diction model itself (as a function of past stock prices). Therefore, the same source
of estimmation visk, namely having unknown parameters in the prediction model,
concurrently affects the forecasts of future returns and technical signals. This re-
cursive structure implics some important differences to that of other studies when

the law of motion of dividend wields is independent of the return prediction model.

Zhu and Zhou (2009) develop a model to justify why technical analysis, specifi-
cally the moving average trading rule, can provide useful information for portfolio
choice. Our model approach dillers [rom theirs in that we explicitly use a predie-
tion model to represent the investor’s perceived law of motion for returng and he
continuously updates the model parameters to make conditional forecasts. Based
on a similar conceptual framework to that of Zhn and Zhou (2009), Zhou, Zhu,
and Qiang (2012) test their one-period moving average strategies and find that
they outperform other strategies that disregard the usefulness of moving averages.
We instead consider an investor who rebalances continuously and shift the focus
to study the offects of estimation risk on portfolio choice and investor welfare in

the context of technical analysis, which attract livtle attention in the literature.
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Third, showing predictive power of a trading rule does not itself rebut market

efficiency?

. Forecast errors can be large regardless of the quality of estimation.
Therefore, the investor’s portfolio need not generate any significant abnormal re-
turn after adjustment for risk and transaction costs. However, an investor may
disadvantage himself if he completely ignores technical signals. For example,

Hand, Yang, and Zhou (2013) show that some technical signals contain unique

economic information that is not already contained in other information sources.

Fourth, investors may well recognize that technical signals need not be the most
powerful class of predictive variables for stock returns®, but other variables are
typically not observed frequent enough for real-time trading. In particular, tech-
nical signals can be valuable to investors who engage in high frequency trading,
for example, investment banks, pension funds, mutual funds, and other buy-side

institutional traders.

There are two features about portfolio choice with a prediction model that are
worth emphasizing. First, the true values of the model parameters are not nec-
essarily relevant to an investor with a finite horizon. To be precise, consider
the following linear prediction model for stock returns: Riq = By + 51.X; + &4,
where X, is a zero-one technical signal®. Given a sample of T observations
of (Ryy1, Xy), let (ﬁAOT,BlT) denote some estimators of (5o, 51). The true values
of the model parameters are often justified by the probability limit given by
(Bo, B1) = plimg, (BT, 3T). However, the finite sample estimates (57, 37) are

the parameter values directly relevant for constructing forecasts, even though their

4 Fama (1970) points out that the notion of market efficiency does not necessarily imply
successive price changes to be independent.

5 There are many well-studied predictive variables for returns, for example, dividend yields,
earnings-price ratio, term spreads, and expected inflation.

6 For example, a “buy” signal is represented by X; = 1 and X, = 0 for a “sell” signal.
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values need not be close to the hypothetical true values.

Second, a sophisticated technical investor would consider estimation risk. Indeed,
due to random variation of sampling, even if the estimators have nice statistical
properties, the true parameters are never known with certainty unless one has
an infinite sample. Under the Bayvesian approach, the investor integrates his
expected utility over the unknown parameter space for portfolio optimization.
His optimal portfolio strategy incorporates the degree of uncertainty about the
unknown parameters, often measured by the covariances of the estimates (Bg , BlT ).
Studies sharing this idea include Bawa, Brown, and Klein (1979), Kandel and
Stambaugh (1996), Brennan (1998), Barberis (2000), Jacquier, Kane, and Marcus
(2005), and Xia (2001).

2.3 The Model

2.3.1 The Basic Setting

Consider an investor with a long horizon who trades continuously in a two-asset
economy in which a risk-free asset pays an instantaneous rate of interest r, and a

risky stock represents the aggregate equity market.

We fix a finite horizon [0,7]. The cum-dividend stock price grows according to
the following process
dp;

?t = Mtdt + O'Cl.BZ(7

where the percentage volatility o is known to the investor due to observable

quadratic variations of P,;7 B; is a Brownian motion defined on the probabil-

"Tn practice, we do not have true continuous-time data and so ¢ has to be estimated subject
to some error. We nonetheless make the assumption that the investor in this model economy
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ity space (Q,P*, F*) with a standard filtration 7* = {F; : ¢t < T'}. However, the

instantaneous percentage drift, u; € F;, is unknown to the investor.

Let S and L, with 0 < .S < L < T, be two lookback periods. We define a moving
average signal, denoted by X, as follows,
1 if DY >0,

Xt -
0 otherwise,

where

I I
DYt == / P.dr — = / P.dr
S t—S L t—L

is the difference of two moving averages of stock prices. When X; = 1, we say a
buy signal is generated, and a sell signal when X; = 0. We assume the history
{P,: =L <t < 0} is known. It is also useful to note that the dynamics of D"

are given by
1
S

1

ADPE = | = (P — Pr_g) 7 (P = Pip)| dt.

Let PP denote the investor’s subjective probability measure and F;, = {P, : 7 < t},
with F; C Fj, denote the investor’s information set at time ¢. The investor
conjectures a linear predictor By + 51.X; of u;, and thus under the reference model
probability P the dyvnamics of stock price are described by the following linear
prediction model

dp

B (Bo + B1Xy)dt + od By,
'

where (o, §1) are unknown model parameters to be estimated; B, is a standard

P-Brownian motion adapted to the investor’s information set F;. While the same

does have access to continuous-time data. This assumption is also used by Brennan (1998) and
Xia (2001), among others.

27



linear prediction model is also used in Xia (2001), we note that there are two
important differences: first, X; is a zero-one variable, not a continuous variable;
second it is a function of past stock prices only with no assumption on its law of
motion required, and indeed the common assumption that the predictive variable
follows the Ornstein-Uhlenbeck process is not applicable (see also Campbell and
Viceira 1999; Kim and Omberg 1996; Wachter 2002). Here, we also relax the

assumption that the intercept is known.

In this article, we assume the linear structure is appropriate without considering
non-linear settings. For this reason, the usefulness or the predictive power of X,
is solely determined by whether the slope parameter 5, is nonzero. Hence, in this
sense, the uncertainty predictive power of X, is translated to the uncertainty of

the parameter .

For any fixed point of time ¢ in [0, T), given an initial wealth W; and the investment
horizon T', the investor chooses a portfolio allocation £ to maximize his expected
utility of wealth,

m?X E[U(Wr)|Fi,
given the wealth dynamics

dW.
W,

=rdr +&(Bo + 51 X, — r)dT + £0dB,.

We use the notation 7 above because the letter ¢ is already used to denote the
fixed chosen point ¢. The modeling feature that the investor has a fixed invest-
ment horizon will allow us to compare the investment behaviors of shorter and

longer-run investors by varving 7.
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Note that £ is a constant to solve at each point of time ¢t. We call the sequence
of solutions of & a rolling strategy because the investor is essentially solving a
buy-and-hold portfolio choice problem® continuously. Since the conditional distri-
bution of Wr varies over time due to continuously updated information, so does

the maximizer

¢ = arg mgax E[U(Wr)|Fi).

We call & the optimal allocation. Our behavioural assumption that the investor
follows this rolling strategy may be strong. A more realistic model would allow for
a dynamic strategy to account for the possibility of learning the model parame-
ters in the future, as in Brennan (1998) and Xia (2001). However, we believe that
this rolling assumption can also give use useful implications for portfolio choice
and investor welfare because it allows us to obtain a more tractable solution for

allocation to stocks.

In this article, we assume the power-utility function

w; "
UWr) =12 '’

where v is the investor’s risk-aversion parameter. We shall only consider investors

with a risk-aversion parameter greater than the logarithmic case (i.e., v > 1).

2.3.2 The Investor’s Optimization Problem

It is useful to rewrite the utility function as

exp|(1 — ) log Wr]

U(Wr) = S

8 Previous studies considering the buy-and-hold strategy include Stambaugh (1999), Barberis
(2000), and Avramov (2002).
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and apply Itd’s rule to obtain log Wr,

log Wy = log W, + [r + &(Bo + B XY — 1) — &G )(T —t) + Eo(Br — By),

where we define the variable

yTzil /TXdT
A

which can be interpreted as the average value of the moving average signals over
the period [t, T]. Since (By, 31, XT) are not adapted to the investor’s information

set F;, they are considered random variables at time ¢.

Let 0, = By + /1 XL denote the average percentage drift® over the remaining

investment horizon. By the law of total expectation, we have

E[U(Wr)|F] = / E[U (W) 2, 0 6(6,1F,) o, (2.1)

R

where ¢(6;|F;) is the conditional density of §; and the integral is taken over the
real line R. Neglecting the potential correlation between 6, and By — B;,'° by

log-normality, the expectation inside the integral is
B[U(Wr)|F, 0] = e 0= T00 (W) exp { (1 = )66, — v — €5)(T ~ )}

Suppose that ; follows a conditional Gaussian distribution with mean m; =

9 Note that we can write 6, = ﬁ ftT(ﬁo + 51X, )dr.

10 In general, #; and By — B, are correlated. However, after calibrating our model with real
data, our simulation study shows that their correlation is very little (less than 10~2 across time).
In Appendix 2.A, we provide a discussion when their correlation is accounted for and show that
& depends on the covariance between 6; and By — B;. We also analytically derive bounds on the
covariance, which can useful to formulate a rough approximation for the covariance to reduce
computational effort.
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E[0;|F:] and variance v, = Var[f;|F;], then we can write equation (2.1) as

B[ (W) ) ocexp { (1= 7)€{(ms — ) = §vo® + (7 = (T — O]}(T — )},
(2.2)
where the notation “oc” means “is proportional to”. Even if 8, is nonGaussian, we
can approximate it by a Gaussian process that matches the first and the second
moments. We take (2.2) as the true expression and optimize it with respect to £

to obtain the optimal allocation
my —T

Y T (- DaT -1 (23)

2.3.3 The Investor’s Inference Problem

Let us use the notation 8 = (o, 51). By the law of total expectation, we can

evaluate m; as follows

my = E[0,|F,] = EP{EX[By + B XT|Fy, Bl Fi}
= B[ Fi] + E[BEX (8)|F,

where we define the function &' : R? — R by

&Y (B) = BIX/| 7, 8],

which is a function of 3 to be found. The operator E°{.} indicates that the
expectation is taken over the distribution of 3, and similarly, X7 for EX[-]. In
the reference model P, the random process {X, : t < 7 < T} is determined by
{P, : t < 7 < T}, which depends on j3, thus the expectation E[XT|F;, 5] also
depends on 3 and cannot be factored out from the outer expectation E#{-}. By

contrast, if the law of motion of X; were not determined by the prediction model
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itself, we would simply have m;, = E[Bo|F] + E[5:1|F] - E[XT|F], which would
be linear in the conditional expectations of S and we could obtain a closed-form
solution for E[XT|F,] if X; followed the Ornstein-Uhlenbeck process. Thus, our
question at hand involves a mathematical challenge not discussed in previous stud-

ies.

Similarly, by the law of total variance, we can evaluate v; as follows,

vy = \.-rar[et‘ﬂ] = Eﬂ{\"arf[ﬂg + Blyﬂfta B”‘Ft}
+ Var’{E¥ 8y + 817 | F, B Fe}
= E[BVE(8)|F] + Var[fo + B1ET(8)|F,

where we define the function V¥ : R? — R by

Vi (B) = Var[X[ | F, 5],

which is a function of § to be found. The operator Var’{-} indicates that the

variance is taken over the distribution of 8, and similarly, X7 for \-"'ar?H.

Let m! = E[3|F;] and v/ = V|[3|F;] denote the conditional mean and the variance-
covariance matrix of the investor’s estimate of 5. We assume that the investor
has a bivariate Gaussian prior distribution, with mean vector mg and variance-
covariance matrix vé’ . Henceforth, we call (mg ,vé’ ) the hyperparameters. Follow-
ing Liptser and Shirvaev (2001), the distribution of § conditional on F; is also

Gaussian with mean vector m” and variance-covariance matrix v’.
t t

Proposition 2.1.  Given that the prior probability distribution of 5 is Gaussian

with mean vector mg and variance-covariance matrin vg , the solutions to m and

32



where X, = (1,X,)7 is a 2 x 1 vector; I is a 2 x 2 identity matrin.

We use the following notation to denote the elements of m? and v/,

5 mfo 5 ,UEO vtﬁoﬁ1
e =0 sl T as s
mt 1 /Ut 0,71 /Ut 1

Also, we use 0;[f] = 0f/0B; and 0, ;(f] = 0% f/06:08;, i,j € {0,1}, to denote the

partial derivatives of a given function f.

Proposition 2.2. Suppose that the functions E? and V? are continuously

differentiable around mtﬁ, then my can be expressed as the following Taylor series,

my = [m)° +m EX] + (3m) 0o [EF )0/ + (D[EF] + 1mi 011 [E]]) )

_ _ (2.4)
+ (00[&] + m) o (€)™ + H,
and vy can be expressed as the following Taylor series,
v = (M )V 4+ {5 m)) 000 V¥ + (1 +m] 0 [€7]) g
VT +2ml V] 4§ oV + (EF + mi o [E7]) o) 25)

+{2m 0 [V¥] + (m] 20,1 [V

+ 201+ mP 0 [EXN(EF + mi o, [EX) P + O,

where £, V¥, and their partial derivatives are evaluated at mf ; Hy and Oy are
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remainder terms.

We give the proofs of these propositions in Appendix 2.B.

To our knowledge, closed-form solutions for £ and V¥ are not feasible. Therefore,
we develop estimators and use Monte Carlo simulation to estimate these functions.
Given any arbitrary integer n, we define the quantities At = T'/n, ¢ = [nL/T],
and s = [nS/T|, where |-| denotes the floor function. For a sufficiently large n,
we have L ~ (At and S ~ sAt, where the notation “~" means “is approximately
equal to or equal to”. We partition the time interval [—¢At, T| into {+n equidistant

subintervals,
—L':t_g<"'—Sﬁt_s<"'0:t0<'-'tn=T,

and approximate any t in [—L,T]| by t; if t; 1 <t <t;, j = —(,...,n. Next,

given any value of 3, we consider the following Euler difference scheme:

-FA)tj_'_l - R] + -ptj [(50 + ﬂlth)At + gV At €t].], (26)
ssi _pse o Ly 5 ol
Dt]‘+1 = Dtj + E(Ptj - Ptj—s) - Z(Ptj - Pf.y‘—z) ) (2'7)
. 1 if DY >0,
X, = b (2.8)
0 otherwise,
with ]f’tj =P jarifj <i1,9=0,...,n—1; ¢, are independent standard Gaussian
random variables.
To simulate a trajectory of {X'tj cj=td,...,n—1} i =0,...,n — 1, we start

from the initial values (15251 =P Xti = X}) and proceed recursively according to
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the Euler difference scheme (6)-(8). We then calculate the sum

n—1
1

T > X, At

j=i

Xl =

to approximate the stochastic integral X7. Let ?Zk denote the sum calculated
using the k-th trajectory, k = 1,..., K. To estimate the moment 5?(6), we use

the estimator

and similarly,
- 1 & - - 2
VE(B:E) = = SR - 65 (5:8)]

for the moment V;¥(3), where & = ({etj,l}?:_il, ce {etij}?:—il) isan (n —i) x K
matrix of independent standard Gaussian random variables. We use the argument
(-:€) to emphasize that the values of (£, V:¥) depend on &. By fixing & for each
t, the estimators (é?, ]A/?) are smooth in S. Thus, we can evaluate the partial

derivatives in the Tayvlor series (2.4)-(2.5) using finite difference approximation.

We present the required formulas in Appendix 2.C.

2.4 Data, Model Calibration, and Some Empirical
Facts

We measure the horizon T in vears and consider daily intervals (with step size
A= ﬁ) small enough for good discrete approximations to the continuous-time
processes in the model. We use the inflation adjusted CRSP index (including
distributions) on a value-weighted basket of stocks listed in NYSE, AMEX, and

NASDAQ as an example of the risky stock. We obtain the nominal daily index
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data for the period 2nd January 1980 to 31st December 2014 from the CRSP
VWRETD file under the folder named “Index/Stock File Indexes”. Then, we
make a month-by-month inflation adjustment using the consumer price index
(CPI), with January 1980 being the base month. The CPI data are obtained
from the CRSP inflation file under the folder named “US Treasury and Inflation
Indexes”. The standard deviation of the daily inflation adjusted index returns is
1.083%. Dividing this figure by VAt gives o = 0.172. We also obtain the nominal
average interest rate data from the CRSP 30-day Treasury bill file. The monthly
average interest rate is 0.382%, and 0.267% for the monthly average of the rate of
change in CPI. Thus, the implied daily real interest rate is 0.004%. Diving this
figure by At gives r = 0.010. For the Euler difference scheme, we use K = 2000

trajectories, although we find that even K = 500 would give similar results.

As an example, we consider 1-day and 100-day moving averages. In terms of the
model notation, we have s = 1 and ¢ = 100. To obtain reasonable parameters of
the hyperparameters, namely (mg , vg ), we use the inflation adjusted index data for
the subsample period 2nd January 1980 to 22nd December 1994 (leaving 20 x 252

days for the out-of-sample period) to run the regression:

P —P,
—He— = (B + B XAt + ey,
3

J

where X;, = 1 if the 1-day moving average is above the 100-day moving average
at time ¢, and X;;, = 0 otherwise. We then take the least-squares estimates as

the hyperparameters,

0.058 ; 0.004 —0.004
0.061| —0.004  0.006
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Figure 2.1 plots the time series of the intercept and the slope estimates (mf", mfl),

when the investor starts investing on 23rd December 1994 with the hyperparame-
ters (m{,vy). These time series end on the last trading day of vear 2014. Observe
that the slope estimates roughly follow a downward trend but clearly stay above
zero. Note also that investors do expect to earn higher returns on buy-signal days
than on sell-signal days (i.e., m}°+ m/* > mf‘)) Thus, it is not without ground
that investors may believe that the technical signals contain useful information to

forecast returns (even if the true but unknown value of (3; is actually zero).

One may wonder whether the slope estimates remain nonzero because of the prior.
While we cannot explain with full generality, we would like to make a conjecture.
Suppose instead the investor has a short memory, for example, he uses the rolling
estimation strategy instead of updating the prior from time zero. This is so-called
short memory because any data collected before the rolling window are discarded.
It appears, however, that the slope estimates would still remain nonzero for a
reasonably long period. The rationale is as follows. Suppose we begin with the
(strong) prior that the slope is zero, the data will still push the estimate up to a
level similar to the OLS priors (because the sample period does clearly suggest a
nonzero slope). Then we observe that although the Bayesian slope is descending,
the process is rather slow. Indeed, there are a couple of clear bounces during the
last twenty vears. Hence, while the rolling estimation will speed up the descent
of the slope estimate, with the presence of several bounces, it is still not easy to

hit the zero level within a short period.
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2.5 Analysis and Results

2.5.1 Mean and Variance Decompositions

We can express the expectation and the variance of the average percentage drift,

(my, vy), as follows
my = 1y + 700 + wholt + 70 |, (2.9)

v = T+ A0+ Aot + At 40, (2.10)

The remainders H; and O; correspond to the ones in Proposition 2.2, and the def-
initions of the coefficients follow accordingly: 1m, = m.° +mtﬂl€?, U = (mfl)2V?,
and so on. We call (my, 0;) the basic component of (my,v). We also call (my, 0;)
the estimation-risk ignorant estimates because they disregard any estimation risk
adjustments, i.e., the terms associated with (vfo, Ufl,vtﬁo’ﬂl) with each represent-
ing a source of estimation risk adjustment: the uncertainty in (5o, 51) individually
and their joint-uncertainty since they have to be jointly estimated. For simplic-
ity, we approximate (my,v;) by summing only the first four terms in equations

(2.9)-(2.10), i.e., ignoring the remainders, although one could improve the ap-

proximation by including higher-order moments and derivatives.
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Figure 2.1. Estimates of intercept and slope parameters of the linear
prediction model. This figure plots the time series of the intercept and the slope
estimates, (mf“,mfl), when the investor starts investing on 23rd December 1994

until 31st December 2014 (20 x 252 trading days).

We divide equation (2.9) by m; to obtain

my My ﬂ_?vfo thvfl WEIUEO’Bl
— = —+ + +
my my my my my

1= M, + M + M} + M,

where M, is the percentage composition of the basic component my; M, M},

and MM, for the estimation-risk adjustment components. Similarly, we divide
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equation (2.10) by v; to obtain

v ¥ )\Ovﬁo Alvﬁl )\011]50751
U, A% A A G
Uy Uy Ut Uy Ut
1=V, +V2+ V! + V)

where V; is the percentage composition of the basic component 7y; V%, V!, and

V1, for the estimation-risk adjustment components.

We consider four investment horizons, 7' = {5, 10,15,20}. For each horizon, we
perform the mean and variance decompositions at five points of time, t = 67T,
6 ={0,1.3,2,322}. Panel A of Table 2.1 displays the results of the mean decom-
position. We observe that the basic component accounts for roughly 100% of m;
most of the time while the estimation risk adjustment components are relatively
small. Our results show that ignoring estimation risk does not materially bias the
expectation of the average percentage drift ;. Panel B of Table 2.1 displays the
results of the variance decomposition. We observe that the size of the estimation-
risk ignorant component is materially smaller than that of the estimation-risk ad-
justment components. Notably, the estimation-risk ignorant component becomes

essentially zero towards the end of the horizon. Qur results show that ignoring

estimation risk materially underestimates the variance of the average percentage

drift 6,.
Note that both (my,v;) and (1, ?;) depend on the technical trading rule and the

stock price data. Therefore, their relative sizes can only be determined empirically.

Without actual data, we would have an inconclusive theoretical discussion.
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Table 2.1. Mean and Variance Decompositions of Average Percentage
Drift

This table presents the results of the mean and variance decompositions of the av-
erage percentage drift ;. The expectation of 6; is denoted by my; M, denotes the
percentage composition of the basic component my; (MP, M}, MP') denote the per-
centage compositions of the estimation risk adjustment components associated with

(UtBO, ,Utﬁl ’ Utﬂoﬁl )

. The variance of ; is denoted by v;; V; denotes the percentage com-
position of the basic component ¥; (Vto, V;l, Vtm) denote the percentage compositions
of the estimation risk adjustment components associated with (vfo, Uf] , vtﬁo’/@] ). The
results show that ignoring estimate risk does not materially bias the expectation of
0: but materially underestimates its variance. The figures are measured in percent.

The notation “*” denotes values less than 5 x 107> percent.

Panel A: Mean Decomposition Panel B: Variance Decomposition

me M, M) MI M} MY w VWP V! v

5 9.246 100.996 —0.028 4.523 —5.492 0.170 2.394 272.706 141.971 —317.070
10 9.218 101.522 —0.247 4.430 —5.705 0.164 1.238 283.437 147.039 —331.714
15 9.239 101.352 —0.206 4.523 —5.668 0.162 0.833 286.983 148.586 —336.401
20 9.258 101.173 —0.164 4.590 —5.599 0.161 0.630 289.006 149.615 —339.251

t=1T
T 5 10.483 100.703 —0.027 3.867 —4.543 0.158 2.502 273.141 158.191 —333.834
10 11.248 100.650 —0.101 3.450 —3.999 0.141 1.174 293.917 171.028 —366.119
15 11.148 100.650 —0.027 3.303 —3.926 0.133 0.627 299.737 160.516 —360.881
20 12,099 100.529 —0.061 2.936 —3.405 0.120 0.285 309.165 179.205 —388.656

t=1T
T : 5  11.377 100.508 —0.076 3.315 —3.747 0.151 3.132 273.353 175.882 —352.368
10 12,134 100.487 —0.076 2.892 —3.303 0.124 0.818 299.676 181.614 —382.108
15 9.997 100.822 —0.099 2.918 —3.642 0.115 0.771 276.053 144.729 —321.552
20 10.358 100.418 —0.027 2.748 —3.138 0.102 0.503 280.635 161.321 —342.459

— %T

5 10.814 100.470 0.231 2.780 —3.480 0.167 3.766 234.774 103.979 —242.518
10 9.845 101.110 —-0.140 2.587 —3.557 0.126 2.045 250.804 121.513 —274.361
15 10.234 100.277 0.0489 2.704 —3.031 0.101 0.908 272.862 158.706 —332.477
20 9.742 100.204 0.021 2,579 —2.804 0.094 1.999 265.410 154.560 —321.969

=

— 251
t= 252T

T 5 13.348 100.000 * * * 0.157 * 219.977 319.977 —439.954
10 11.645 100.000 * * * 0.139 * 191.320 291.320 —382.640
15 11.412 100.000 * * * 0.122 * 185.458 285.458 —370.916
20 10.649 100.000 * * * 0.105 * 198.146 298.146 —396.292
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Table 2.2. Horizon Effect and Hedging Demand against
Estimation Risk

This table presents the optimal and suboptimal allocations to stocks and their dif-
ference as the hedging demand against estimation risk. The optimal allocation is
defined by & = (my — r)/[yo? + (v — 1)v(T — t)] and the suboptimal allocation is
defined by & = (s — ) /[y + (v — 1)@ (T — t)], where T and + are the investor’s
investment horizon and risk-aversion parameter. The hedging demand is defined by
Ay =& — &. We consider four investment horizons, T = {5,10, 15,20}, and present
(&5,&, A\) at five points of time, t = 6T, § = {0, i, %, %, g%} The results show that,
at time ¢ = 0, the optimal allocation monotonically decreases with horizon, while
the suboptimal allocation is not sensitive to the horizon. As the time to horizon
decreases, the hedging demand decreases and eventually becomes close to zero. The
figures are measured in percent.

Optimal Strategy Suboptimal Strategy Difference

T 5 10 15 20 5 10 15 20 5 10 15 20

5 45.606 38.736 33.829 30.049 56.392 56.531 56.565 56.589 —10.787 —17.796 —22.736 —26.540
7 32.147 27.075 23.499 20.774 40.264 40.364 40.388 40.405 —8.118 —13.283 —16.890 —19.631
9 24.821 20.810 18.001 15.874 31.310 31.387 31.406 31.419 —6.489 —10.577 —13.406 —15.545

5 55.548 54.121 49.116 50.645 64.691 69.889 69.263 75.714 —9.143 —15.768 —20.146 —25.069
7 39.290 38.052 34.377 35.346 46.195 49.909 49.465 54.076 —6.905 —11.857 —15.088 —18.730
9 30.394 29.341 26.442 27.146 35.924 38.813 38.469 42.057 —5.530 —9.472 —12.027 -14.911

v 5 63.969 64.753 49.594 49.833 70.665 75.917 61.607 63.805 —6.696 —11.164 —12.013 -13.972
7 45.392 45.782 34.952 35.063 50.464 54.221 43.999 45.571 —5.072 8439 —9.047 —-10.518
9 35.176 35408 26.985 27.035 39.244 42.170 34.219 35442 —4.068 6761 —7.234 8407

v 5 63103 55407 56.918 52733 66.888 G60.765 62809 50421 —3784 —5359 —6.688
7 44.901 39.355 40.387 37.366 47.770 43.399 44.925 42436 —2.868 —4.043 —5.070
9 34.849 30.515 31.297 28.934 37.151 33752 34.940 33.002 —2.302 —3.237 —4.069

t=2ZI7

v 5 83.809 72.292 70.716 65557 83.837 72314 70.734 65572 —0.028 —0022 —0.018 —0.015
7 59.862 51.636 50.510 46.826 59.883 51.653 50.524 46.837 —0.022 —0.016 —0.014 —0.011

9 46.559 40.161 39.285 36.420 46.576 40.174 39.297 36.429 —0.017 —0.013 —0.011 —0.009
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2.5.2 Horizon Effect and Hedging Demand

Let us define
g _ mt - T
T yor (v = DT —t)

(2.11)

We call ft the suboptimal allocation in the sense that it is based on the estimation-
risk ignorant estimates (1, ¥¢), not the optimal estimates (m;, v;). Equivalently,
we obtain & by setting (vf“, o', P to zero in & given by (2.3). Both the
optimal and the suboptimal allocations depend on the time to horizon, namely
T — t: explicitly through the denominators; and implicitly through the expecta-
tion and the variance of the average percentage drift 6;, namely (my, My, vy, 0y).
The influence of the time to horizon on the portfolio allocation is commonly called
the horizon effect. Also, we call the difference of the two allocations, denoted by
Ay =& — ft, the investor’s hedging demand. We can interpret this quantity as an

allocation to hedge against estimation risk.

We consider three values of the risk-aversion parameter, v = {5,7,9}. For
each investment horizon, T = {5,10,15,20}, we calculate the optimal alloca-
tion, the suboptimal allocation, and the hedging demand at five points of time,
t =0T, § = {0, i, %, %, %} Table 2.2 displays our results. For comparison, we
also compute the optimal constant allocation to stocks, namely (6 — r)/(yo?) =
(56.602%, 40.430%, 31.446%), for v = {5,7,9}, where § = 0.093 is the (full) sam-
ple average percentage drift. Let us consider time ¢ = 0. Observe first that,
for all values of v, the optimal allocation monotonically decreases as the horizon
increases while the suboptimal allocation is not sensitive to the horizon. This is
because the empirical values of ¥; are sufficiently small that the adjustment term
#(T — t) makes a negligible contribution to &. Second, the optimal allocation
decreases more sharply for higher value of v as the horizon increases. Overall, the

hedging demand is increasing in horizon but decreasing in risk-aversion parameter.
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Next, we look at other points of time along the investment horizon. Our results
show that the horizon effect remains clear. At time ¢t = %T, with only a quarter
of the horizon remaining, the values of the hedging demand are still above 2%.
However, the hedging demand gradually declines to zero. The reason is that as
the estimates become more precise and the time to horizon decreases, the com-

pounding effect of estimation risk eventually vanishes.

The notion that investors facing estimation risk may allocate less to stocks for
longer horizon is not new. For example, in the context of a constant-plus-noise
model for returns, Brennan (1998) finds that the dynamic allocation declines
monotonically as the horizon is reduced when the investor is more risk tolerant
than a logarithmic investor; in the context of a predictive VAR model for returns,
Barberis (2000) finds that the allocation can decrease with horizon when the in-
vestor adapts a buy-and-hold strategy. Stambaugh (1999) and Xia (2001) also
show that the allocation can decline eventually when the horizon becomes suffi-
ciently long, although the allocation can first increase with horizon. Our results

are consistent with these findings.

2.5.3 Market Timing Effect

When stock returns are deemed to be predictable, the portfolio allocation can
depend on the current value of the predictive variable. This is called the market
timing effect. For our model, when the slope estimate is positive, then a buy signal
implies a higher expected stock returns and thus attracts the investor to increase
his allocation to stocks. To assess market timing effect, we regress allocation to

stocks on the moving average signal and the time to horizon for each trading day
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from 23rd December 1994 to 20th December 1999 (5 x 252 days):
&= ap+ a1 Xy + (T —t) + &,

where «; measures the (average) difference in allocation to stocks between buy
and sell-signal days (after controlling for a time trend). We note that this re-
gression approach to measure market timing is proposed because otherwise &; is
a complicated function of X;. Henceforth, we interpret a; as a measure of the
average market timing effect. We choose this subsample period because it is the
widest time interval in which our portfolios are subject to the same market fluc-
tuations. During this period, the ratio of buy and sell signals is 960:300 (or 3.2:1),
and the longest runs of buy signals last for 126, 139, and 143 days.

We again compare the optimal and suboptimal strategies for four investment hori-
zons, T = {5, 10, 15,20}, and three values of risk-aversion parameter, v = {5,7,9}.
We report the least-squares estimates of o in Table 2.3. First, observe that o
is positive and it has a range of 0.785% to 4.825%. Since oy is far from 100%,
this confirms our intuition that the all-or-nothing strategy is too aggressive to
adapt. Second, we observe two patterns of «y: it decreases as the investment
horizon increases; and it also decreases as the risk-aversion parameter increases.
This is consistent with our intuition that when estimation risk is account for,
longer-horizon and more risk-averse investors are more conservative in market
timing. Third, we note that «; associated with the optimal strategy decreases
more notably with horizon relative to that of the suboptimal strategy. Figure
2.2 highlights the differences in «;. For example, fixing v = 5, we see that the
difference in «; is only —0.062% for T" = 5 but as T increases to 20, the difference

becomes —0.973%.

Although our model differs from Zhu and Zhou (2009) in how the investor infers
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Table 2.3. Average Market Timing Effect
We regress allocation to stocks on the moving average signal and time to horizon for
each trading day from 23rd December 1994 to 20th December 1999 (5 x 252 days):
& = ap + an Xy + ax(T — t) + &, where X; = 1 if the 1-day moving average is
above the 100-day moving average at time ¢, and X; = 0 otherwise; a; measures the
(average) difference in allocation to stocks between buy and sell-signal days (after
isolating time trend). We interpret a; as a measure of average market timing effect.
The least-squares estimates of a; are reported as follows. The results show that, on
average, the investor allocates an additional proportion of his wealth to the stock
when a buy signal is observed. The figures are measured in percent.

Optimal Strategy Suboptimal Strategy Difference
T 5 10 15 20 5 10 15 20 5 10 15 20
v 5 4763 2152 1.734 1.484 4.825 2678 2518 2456 —0.062 —0.526 —0.784 —0.972
7 3.381 1.509 1.207 1.027 3.445 1912 1.798 1.754 —-0.064 —-0.404 —-0.591 —-0.727
9 2620 1.161 0926 0.785 2.679 1.487 1.398 1.364 —0.059 —0.326 —0.473 —0.579

information from the moving average signals, we also find that it is optimal for the
investor to increase his allocation to stocks when he observes a buy signal. Our
model, however, allows the investor to continuously assess the predictive power of
the signals and adjusts his allocations to stocks accordingly. In particular, while
the slope estimate remains positive in our sample period, it could be negative.
In that case, the investor would actually decrease his allocation to stocks even
though a “buy” signal is observed. This is possible because if the current price is
well above the moving averages, the chance of a price reversal is also high. There-
fore, the sign of the slope estimate depends on whether the data suggest that the
buy signals are more often associated with upward trends or price reversals on

average.
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Figure 2.2. Differences in average market timing effect between the opti-
mal and the suboptimal allocation strategies. This figure plots the difference
in the average market timing effect between the optimal and the suboptimal allo-
cations (reported in Table 2.3) as a function of the investment horizon T and the
risk-aversion parameter . This figure highlights that the average market timing ef-
fect is stronger for the suboptimal strategy, and the difference becomes more notable
as the horizon increases and the risk-aversion parameter decreases. The figures are
measured in percent.

2.5.4 Welfare Costs of Ignoring Estimation Risk

Given an allocation & to the stock at time ¢, we define a function J by

J(t7 Wt;mtvvt;ét)

= UW) exp {(1 = 7)&{(mi —7) = §[vo® + (y = Do(T = OINT — 1)},

which is the investor’s maximized expected utility at time ¢t. Next, we define the

welfare cost (a measure of opportunity cost) of using the suboptimal allocation g}
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by the quantity V, that satisfies the equality
J(tv 17mt7 Ut; f:) = J(ta 1 + vh mt7 Ut gt)

The welfare cost V; represents the percentage wealth compensation required to
leave the investor, who has $1 today to invest up to the horizon, indifferent be-
tween choosing & and &. Similar measures are used in the literature (see, e.g.,
Campbell and Viceira, 1999; Xia 2001; Han, Yang, and Zhou, 2013). By construc-
tion, J is maximized at & = &/, and so the welfare cost is always nonnegative
(i.e., Vi > 0). We are interested to compute V; to assess how costly is it for an

investor to ignore estimation risk.

We again consider four investment horizons, 7' = {5, 10, 15,20}, and three values
of risk-aversion parameter, v = {5,7,9}. For each horizon, we compute the wel-

%, ;ié} Table 2.4 displays

11
IVRIDR]

fare cost at five points of time, ¢t = 07, § = {0
the results. We see two patterns of welfare cost. First, it increases substantially
as the horizon increases. For the shortest horizon considered (i.e., T = 5), at
time ¢ = 0, its range is 0.352% to 0.530%. By contrast, for the longer horizons,
T = {15,20}, the range is 6.394% to 21.474%, and the welfare cost remains above
3% for at least one quarter of the horizon. Qur results imply that it is costly for
longer-horizon investors to ignore estimation risk. This is because the suboptimal
strategy results in more severe overinvestment for longer horizons. By contrast,
estimation risk is less of a concern for shorter-horizon investors. To further sig-
nify the magnitude of welfare cost, we fix the time at ¢ = 0 and plot it as a
function of horizon and risk-aversion parameter in Figure 2.3. The results show
that the welfare cost increases with horizon at an increasing rate. The second
pattern we observe is that the welfare cost increases as the risk-aversion param-

eter decreases and the increase is stronger for longer horizons. For example, for
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Table 2.4. Welfare Cost for Ignoring Estimation Risk

This table presents the welfare cost which measures the percentage wealth compen-
sation required to leave the investor, who has $1 today to invest up to the horizon,
indifferent between choosing the optional and the suboptimal allocation strategies.
We consider four investment horizons, T = {5, 10,15, 20}, and present the results at
five points of time, ¢t = 0T, § = {0, %, %, %, %} At time ¢ = 0, the welfare cost is
strongly increasing in horizon. For the longer horizons, T' = {15,20}, the welfare
cost remains above 3% for at least one quarter of the horizon. The results show that
it can be costly for a long-horizon investor to ignore estimation risk. The figures are
measured in percent. The notation “«” denotes values less than 5 x 10™° percent.

T 5 10 15 20

t=0

v 5 0.530 3.434 9.954 21.474
7 0.426 2.730 7.829 16.644
9 0.352 2.245 6.394 13.467

t=1T

v 5 0.269 1.789 4.851 10.927
7 0.217 1.436 3.869 8.648
9 0.180 1.187 3.186 7.084

t=1T

v 5 0.091 0.540 0.992 1.859
7 0.074 0.436 0.797 1.495
9 0.061 0.362 0.660 1.237

t=3T

v 5 0.014 0.058 0.109 0.187
7 0.011 0.046 0.089 0.151
9 0.009 0.038 0.074 0.126

t=5T

vy 5 * * *
7 * * *
9 * * *
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T = 10, the welfare cost increases from 2.245% to 3.434% as ~ decreases from 9
to 5 at time t = 0; for T' = 20, the welfare cost increases from 13.469% to 21.474%.

To summarize, calibrating our model with real data on stock returns and moving
average signals, we find that technical investors with longer horizons would bear

a substantial opportunity cost if they ignored estimation risk.

Welfare Costs (%)

Investment Horizons (Years)

Figure 2.3. Welfare cost for ignoring estimation risk at time zero. This
figure plots the welfare cost V; as a function of the investment horizon 7" and the
risk-aversion parameter 7 at time ¢ = 0. The results show that the welfare cost
increases with horizon at an increasing rate. Besides, the welfare cost increases as
the risk-aversion parameter decreases and the increase is stronger for longer horizons.
The figures are measured in percent.
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2.6 Conclusion

We study an investor’s portfolio choice problem in which he uses a linear predic-
tion model to forecast stock returns with moving average signals. The predictive
power of the signals is uncertain and is formulated as an unknown slope param-
eter. The investor follows a simple Bavesian approach to account for estimation

risk and optimally allocates his wealth to the stock.

This article contributes to the analysis and understanding of portfolio choice with
technical analysis. First, we develop a model to examine the effects of uncer-
tain predictive power of moving average signals on portfolio choice. Second, we
derive an approximate solution for the optimal allocation to stocks. Third, we
develop a simple numerical procedure to account for and decompose estimation
risk. Fourth, calibrating the model with CRSP index data, we show that shorter-
horizon investors bear little utility loss even if they ignore estimation risk. By

contrast, such utility loss is sizable for investors with longer horizons.

2.7 Appendix

Appendix 2.A. Accounting for the Correlation between 6,
and By — B,

Let o; denote the conditional correlation of 8; and By — By, i.e.,

0 = (:OV[Qt, BT — Btl./—'vt] o Rt
" Narl0|F]/Nar[Br — BJF] Ju(T —t)
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where x, = Cov|[0;, Br — By|.F;]. For simplicity, assuming that (0,, By — B;) follows

a bivariate Gaussian distribution, then we have

T—t
E[BT - Bt|-7:ta et] = Tgt(et - mt)>

t

and

Var[Br — By|F;,0,) = (1 — 0?)(T —t).

By log-normality, it can be shown that the inner expectation of (2.1) becomes

B[ W)\, 6]

o< exp { (1 = )&l — r + (6, — my)or, — 5(v — (v = D)o} 0| (T — 1)} .

Integrating out 6;, after some simplification, the expected utility (2.1) becomes

E[U(W7)|7)

X exp {(l —E{(my — 1) — %[’yaz + (v = D) ((T —t) + 20k) | }(T — t)} )

It follows that the optimal allocation is

my —T

S = vo2 + (v = V(T —t) + 2(y — V)oky

*

One can proceed to use an Euler difference scheme as in Section 2.3.3 to simulate
ky. However, it is also possible to analyvtically obtain bounds on k;, which can
be useful to formulate a rough approximation of x;. First, by Cauchy-Schwarz

inequality, we know that

|ky|? < \/Var[f,|F ]/ Var[By — By|F
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and so we have

- 'Ut(T—t) S Rt S ’Ut(T—t)

This implies that x; — 0 as ¢ — T, meaning that the covariance will eventually
become unimportant in determining &;. Next, we attempt to refine the bounds
by identifving the sign of x;. Recall that 0; = 8y + 5, X.. For the moment, let us

assume that 5y is known with §; > 0. Thus, it remains to examine the sign of
Cov[X], By — Bi|F)] = E[X{ (Br — By)|Fi]. (2.12)

Let us approximate the stochastic processes {(P,, D>L, X,)}I_, with the following

Euler difference scheme:

B = By + Byl(Bo + 51Xy ) At + 0(By,,, — Byl

tj+1

1 1
DSL — Df],LJr g(ptj ~ P, )- Z(Ptj - P, )|, 0<s<{,

. S,L
1 it Do >0,
Xty =
0 otherwise,

for j=0,1,...,n — 1 with stepsize At = T'/n such that tc = ¢ and T =t,. For a

sufficiently large n, we can then approximate (2.12) with

n—1

ZE[th (Btn - Bto)|fto]

Jj=0

[ RX(Br - By Fldr ~ L
T—1t), BT t)|t TNn
(2.13)

n—1
1
= ﬁ Z E[Xt] (Bt,,, - Bto)"]:to]
j=1

because E[ Xy, (By, — By,)|Fiy) = Xt E[Bt, — Byy|Ft,] = 0. Referring to the Euler

difference scheme, we observe that X, is an increasing (or nondecreasing) function
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of By, , for j=1,...,n — 1. Thus, we can view X, = ¢(5,,_,) for an increasing

function . By Lemma 1(iii) in Lehmann (1966), it follows that
E[Xy; (Bt — Biy)|Fio] = E[Y(By;_,)(Br, — Biy)[Fio] = 0 (2.14)
because E[By, | (B, — By,)|Fi,] > 0for j =1,...,n — 1. This implies that
Cov[XT, By — By|F] > 0. (2.15)
Hence, we can write the bounds on k; as
0 <k <o (T —1t). (2.16)

Now we relax the assumption that f; is known and proceed as follows. Using the

notation 5 = (B, 1), by the law of total covariance, we have

ke = Cov[by, Br — By|F]
= E{Cov[6:, Br — B/|F;, B]| Fi} + Cov’{E[0,|F, ], E[Br — Bi|F;, B]|Fi}
= E°{Cov[0;, Br — Bi|F:. B]|F:} + 0
= Eﬂ{ﬁl(fov[ff, Br — Bi|F, B]| Fi}s

where the operators E?{-} and Cov”{} indicate that the expectation and the
covariance are taken over the distribution of S. Referring to the Euler scheme
again, we observe that for all 3} and 3] such that g/ > (] we have ¢(B,,_; {) >
U(By,_,; By)- It follows from (2.14)-(2.15) that Cov[X7, By — B|F, ] is an in-
creasing function of 3y, say ¢(f1). Therefore, by Lemma 1(iii) in Lehmann (1966)

again, we can conclude that

Ry = EB{/61C1OV[??, BT - Bt|~’r;f7 6]|‘Ft} = E[/glﬁp(ﬂl)} Z 0.
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Thus, our previous bounds on k;, given by (2.16), also hold in this case.

Appendix 2.B. Proofs of Propositions

Proof of Proposition 2.1: This is a direct application of Theorem 12.7 in Liptser
and Shirvaev (2001, p.36). W

Proof of Proposition 2.2: Equation (4) is the second-order Taylor series expansion
of my, = E[By| Fi|+E[.EF (8)|F,] around the point (m?°, m?*). To obtain equation
(5), we find the second-order and the first-order Taylor series expansions of the

first and the second terms of

v = BIBVY (B)|F] + Var[B + Bi1EY (B)|F,

respectively. W
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Appendix 2.C. Formulas for Finite Difference Approximation

We use the following formulas to approximate the required partial derivatives in

Proposition 2.2:

- ? BO 1 X o
OnE T () m ELUm ) — ET(mi” = bmi)

¥ fo X B
0,7 () ¢ EL o+ 8) = il mi” =),

X EX (i +6,my) — 26 (m), mi") + EF (my) — 6, my”
Bo,0&F (m))) ~ = (m; 0 ( (;2 e (mf t )7

X X X B1
alylgi)((mtﬂ) ~ g (mt 7mt + 6) 25 (777(‘;2 ’mt ) + g (mt ,mt 5)7

¥ EX(mi® + 8, m" +8) = & (m® +8,mf") — & (m®,m)* +6
30,15;((7”?) ~ L ( ) — & 22562 p) =& (my t )

EX(m —3,m") + EF (i mi* —8) — € (mi® — 5.m —9)

202
25)( (mt ) mfl )
20 ’

where we set 6 = 0.01. The formulas for Vt? follow above accordingly.
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Chapter 3

Predictive Power of Technical
Indicators and its Implications for

Portfolio Choice

This article is a theoretical examination of the usefulness of technical forecasting
[or portlolio choice. Assuming stock returns follow a state-space model that allows
for serial correlations, we show that moving average (MA) indicators have predic-
tive power for returns in the context of linear prediction models. Calibrasing our
model with S&P 300 index and dividend vield data, we find that MA-based mair-
ket timing can substantially improve annualized expected holding period returns.
Our model also implics that shorter-horizon investors optimally time the market
more aggressively and thelr portfolio profitability is more robust to paramcter

cstimation crrors in their return prediction modaels.



3.1 Introduction

In this article, we develop a simple model to theoretically study the usefulness of
technical forecasting for portfolio choice. Assuming stock returns follow a state-
space model that allows for serial correlations, we show that moving average (MA)
indicators have predictive power for returns in the context of linear prediction
models and thus are uselul lor investment. We then calibrate the model with real
data and find that MA-based market timing can substantially improve annualized
expected holding period returns over strategies that ignore time-varving invest-

ment opportunities.

This article is motivated iy two observations. First, it is now generally accepted
that stock returns are predictable and thus this admits potentially useful technical
indicators hecause they may be correlated with the time-varying drift of returns.
By contrast, earlier theoretical studies often assume that stock price increments
are independent, which completely rules out any use of technical forecasting. In
this article, we take stock return predictability as a given fact and study its im-

plications lor the uselulness of (echnical analysis.

Second, previous empirical studics may not correctly reflect the true profitability
of technical analvsis. This is because most of these studies agsume that technical
investors nge a naive “all-or-nothing”™ strategy, that is allocating 100% of their
wealth into stocks when they ohserve a buy signal but nothing otherwise. In this
article, we allow the allocation of weallh to vary continuonsly with the MA indi-

cators.

Our modelling approach is as follows. We consider a two-asset economy with a

risk-free agset and a rigky stock. We assume that the drift of stock returns follows



the Ornstein-Uhlenbeck process but investors do not observe this drift and they
do not have any knowledge about the stochastic process determining the drift.
That is, the true stock return model remains unknown to the investors. Investors
observe a MA indicator denoted by X;, measuring the distance between the cur-
rent price and the moving average of past prices, and conjecture a linear predictor
a + X, for returns. The “best” values of (a, ) are defined as the parameter
values that minimize the mean integrated squared (forecast) error over a given
forecast horizon. The technical indicator X; is said to have predictive power if
such [ is nonzero. In our case, X; is a continuous variable, rather than a zero-one

variable, as is commonly studied in the literature.

Next, we construct and examine the expected profitability of the optimal portfolio
strategy of a log-utility investor, assuming he knows the “best” model parameters.
Then, we consider the case when the investor fails to identify such “best” parame-
ter values. Finally, we calibrate the model with S&P 500 stock index and dividend
vield data to calculate the annualized expected holding period returns (HPRs),

as a measure of expected profitability, of such optimal MA-based strategies.

We find that our optimal strategies substantially improve annualized HPRs for
a range of reasonable investment horizons. Our model also implies that shorter-
horizon investors optimally time the market more aggressively and their portfolio

profitability is more robust to estimation errors in their return prediction models.

To the best of our knowledge, this is the first study to theoretically justify the
predictive powers of MA indicators, an important class of technical indicators, on
stock returns in the context of linear predictors and to discuss the implications of

such predictive powers for portfolio choice.
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QOur study offers a number of useful insights about technical analysis. First, we
propose a simple measure of predictive power that explicitly takes into account
expected forecast errors over a given horizon in continuous time. This measure
represents expected gain in forecast accuracy using conditional forecasts of the
form o + SX; over the long-run mean of returns alone. Second, we relate this
measure of predictive power to expected HPRs implied by the MA-based strate-
gies. Third, we provide comparative statics to examine how some kev model
parameters of the true but unknown stock return model affect the profitability of

the optimal MA-based strategies.

Fourth, although this article is closely related to the work of Zhu and Zhou (2009),
there are important differences. They show that, when stock returns are pre-
dictable, some market timing strategies based on zero-one MA signals (buy or
sell) improve investors’ expected utility relative to strategies ignoring time-varyving
investment opportunities. OQur modelling approach differs from theirs in that we
explicitly use a linear prediction model to study the predictive power of continu-
ous MA indicators. This approach allows us to understand better the statistical
foundations of technical forecasting, which attract relatively little attention in
previous studies as mentioned by Neftci (1991). This article also builds upon the
literature on applied portfolio modelling. It is common to incorporate predictabil-
ity in returns to study how such predictability affects investors’ optimal portfolio
choice (see, e.g. Kandel and Stambaugh, 1996; Brennan, Schwartz, and Lagnado,
1997; Barberis, 2002; Xia, 2001). However, in these studies, the linear prediction
model is (implictly) assumed to be correctly specified, i.e., the form of the predic-
tion model coincides with the true return model except with unknown parameters

to be empirically estimated. We deviate from this assumption and view the linear
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prediction model as a slatistical approximaltion ol the true return model. Henee,
we need to define the “hest™ madel parameters in an appropriate statistical sense

such that we can view the misspecified prediction model ag a useful approximation.

T'he treatment of this chapter is closely related to the previous one. We will once
again consider an individual investor who trades continuonsly in a two-asset. econ-
omy. The key dillerence 1s that we now shill from a Bayesian perspective o a
frequentist perspective when measuring the predictive power of the moving aver-
ages. Such a shift in perspective is nontrivial because the results from a Bavesian
perspective are by nature data-dependent and thus fall short in offering a more
general probabilistic foundation. Tndeed, the Bayesian investor simply proposes
a lincar prediction model without knowing what his cstimates of the predictive
parameters will converge to, or whether the estimates will converge at all. Such
concerns are irrclevant for a Bayesian investor as he helieves that the data speak
for themselves eventually, For example, the slope estimate may converge to zero
over a long period, then he will conclude that hig prediction model i3 not nseful
but before so the model is still considered “ugeful”. However. for a frequentist
investor, he considers the ellectiveness of his prediction model across inlinite hy-

pothetical trails defore data (or very limited data) are collected.

The article is organized as follows, The next section discusses some issues about
measuring predictive power. Section 3.2 introduces our model and provides ana-
lvtic resules. Section 3.3 describes the data and calibrates the model. Section 3.4

presents numerical results. Section 3.5 summarizes and concludes the article.

[ep]
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3.2 Background

3.2.1 Technical Analysis and Stock Return Predictability

Technical analysts believe that technical analysis can generate useful indicators
to help predict stock returns. A straightforward approach to examine the pre-
dictive powers of technical indicators is via the linear prediction model, R;,1 =
a+ 6X;+¢es, where Ryyq is the return of a stock form period ¢ to t 41, X, is some
technical indicator observed at period ¢. Researchers then use a data sample to
test the null hypothesis that § = 0. The technical indicator is said to have predic-
tive power if the statistical test rejects the null hypothesis at some conventional

significance level.

Remarkably, the empirical evidence on the usefulness of technical analysis in the
literature is mixed and inconclusive. While some studies find strong evidence
in favor of the usefulness of technical trading (see, e.g. Brock, Lakonishok, and
LeBaron, 1992; Lo, Mamaysky, and Wang, 2000; Zhou, Zhu, and Qiang, 2012;
Han, Yang, and Zhou, 2013), many other studies provide evidence questioning
its usefulness (see, e.g. Allen and Karjalainen, 1999; Sullivan, Timmermann, and
White, 1999; White, 2000; and Bajgrowicz and Scillet, 2012). Since typically only
a single time series for a given phenomenon of interest is available, it is challenging
to test the true effectiveness of any technical trading rule in practice. Theoretical
studies, like this article, can therefore provide complementary insights for this

empirical debate.
By contrast, it is now commonly agreed that stock returns are predictable in the

sense that future stock returns are correlated with the current values of some ob-

servable predictive variables (also called state variables). There is ample evidence
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in lavor of relurn prediclability, The most powerlul prediclive variables include
the dividend vield or the net pavout vield (Camphell and Shiller, 1988; Boudoukh
et al., 2007), the earnings-price ratio (Camphell and Shiller, 1988), the book-to-
market ratio (Wothari and Shanken, 1997), and the short-termn interest rate (Ang
and Bekaert, 2007). Intuitively, such evidence does allow for the predictive power
of some technical indicators because these indicators may be correlated with these

predictive variables. This article attempis (o provide such a theoretical basis.

3.2.2 Measuring Predictive Power

It is usetul to elaborate on some issues about measuring predictive power proposed

by Dicbold and Kilian (2001) in the context of linear prediction models.

First, the predictive power of a predictive variable should be measured relative to
a benchmazrk because it is always a matter of degree. The simplest benchmark
is the long-run (or unconditional) mean of the dependent variable, provided thal
it exists. We can then relate the predictive power to the slope parameter in the
sense that the predictive variable provides additional mformation {over the long-
run mean) for forecasting if and only if the slope 1s nonzero. However, the value of
the slope does not directly measure how useful the predictive variable is because
its value depends on the scale of the predictive variable. A better measure is

therelore called [or.

Second, predictive power should be meagured over a relevant forecast horizon and
losg function. The difference between the expected losses of forecast by using the
best linear predictor to that of the long-run mean can be interpreted as a meagure
of predictive power. For example, if the difference in expected loss of forecast

is larger for shorter horizons relative to longer horizons (i.e., a gain in expected



[orecast accuracy) then we say thatl the predictive variable has stronger predietive

power at shorter horizons.

Third, predictive power is a populetion concept, not a property of any particular
sample path. While we can estimate the predictive power from a sample path,
it is important to use an appropriate econometric approach. This issue is related
to a common crilique in the literatiure that one can always lind a “uselul” trading
rule by an extensive rule searching. If the *best” trading rule is picked by pure
chance rather than any inherent merit of this rule, then its observed predictive
power i3 a positively biased estimate of its future predictive power. Such bias
is commonly called dutu-snooping bias (see, e.g. Lo and MacKinlay, 1990). The
literature proposcs several cconometric approaches to alleviate data-snooping bias
such as generie algorithms (Allen and Karjalainen, 1999), bootstraps (Sullivan,
Timmermann, and White, 1999; White, 2000), and false discovery rates (Bajgrow-
icz and Scaillet, 2012). Still, the quality of estimation and statistical inference

depend highly on the availability of snitable data.

This article takes a new perspective. We deviale [rom the statistical testing ap-
proach and proposc a simple theoretical model that allows us to measure the pre-
dictive powers of technical indicators (specifically, the MA indicators) and hence
the expected profitability of market timing based on these indicators. This model
approach gives us ugeful insights to understand better the economic relevance of

technical analysis in practice.

[ep]
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3.3 The Model and Analytic Results

3.3.1 The Basic Setting

Consider an investor with a long horizon who trades continuously in a two-asset
economy in which a risk-free asset pays an instantaneous rate of interest r, and a
risky stock represents the aggregate equity market. We fix a finite horizon [0, 77,
where 7" is measured in years. The cum-dividend stock price P, grows according
to the following process

dP,

B pdt + od By, (3.1)

where the percentage volatility o is known to the investor due to observable
quadratic variations of P;; B; is a Brownian motion defined on the probability
space (Q,P, F) with a standard filtration F = {F; : t < T'}; the percentage drift,

e € Fi, grows according to the Ornstein-Uhlenbeck process
dps = N — pe)dt +-ndZy, (3.2)

with pg = I, where A\, 77, and 7 are constant parameters; 7, is a P-Brownian motion
correlated with B; with correlation coefficient p, i.e., dB,dZ, = pdt. Equations
(3.1)-(3.2) are commonly referred to as a state-space model. We assume that the
investor knows the long-run mean of stock returns, zi, but does not observe the
drift, p;. Furthermore, he has no knowledge about the stochastic process deter-
mining p,; as described by (3.2), including p. However, he observes a technical
indicator X, a function of past stock prices, that is potentially useful to estimate

f, or equivalently, to forecast returns dP;/P,.
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Let L be a positive parameter. We consider
X; =log P, — log Ay, (3.3)

where
t
A; = exp {L/ e L= log P.,-dT} (3.4)

is an exponentially weighted moving average (MA) of stock prices with L control-
ling the window size. We interpret X, as the percentage difference of the current
stock price and the moving average at time ¢ and call it a moving average in-
dicator. Note that if P, = ¢, where ¢ is a positive constant, then A, = c¢. We
assume that the current stock price and the history, {P, : ¢ < 0}, is known such
that (Py, Ag) € Fo are taken as given parameters. We use the shorthand notation

pe = log P, and a; = log A; such that X; = p; — a,.

Lemma 3.1. The moving average indicator X; defined by (3.3)-(3.4) has a

long-run mean given by

L 21 — o
X = tli}l{.lo E[Xt] = T,
where we use the shorthand E[-] = E[|Fo].

Proof.  Applying Itd’s rule to obtain the solution of p; and taking expectation,

we have

2

Elp] =po+ (7 — )t (3.5)

where we use the fact that E[u,] = 11 (because we set 1o = f1). Next, we find E[a,]
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by using

t
Ela)) = L / e LEDEp,dr
oo . (3.6)
= age M + L/ e HEDEp,dr.
0

Substituting (3.5) into (3.6) and evaluating the integral, we have

Bla] = aoe™™ + o1 — e M) + (71— %) (t - 1‘L> e

Thus, subtracting (3.7) from (3.5), we have

2

Taking the limit as ¢ — oo, we obtain

) 2% — o
Jm B = =5

as desired. W

The assumption that 7z is known to the investor implies that X is also a known

quantity. The role of X will become clear in subsequent sections.

We remind our readers that we always use the notation E[-] to denote expecta-
tions conditional on the initial conditions in this article, not to be confused with

the long-run (invariant) expectations, indicated by an upper bar, such as 7z and X.

Let P denote the investor’s subjective probability measure and F, = {P, : 7 < t},
with F, C Fi, denote the investor’s information set at time t. The investor
conjectures a linear predictor o + X, of iy, and thus under the reference model

probability P the dvnamics of stock price are described by the following linear
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prediction model

P, N
?tt = (a+ BX,)dt + 0dB,, (3.8)

where («, ) are model parameters to be determined; B, is a P-Brownian motion
adapted to the investor’s information set F;. For simplicity, we follow Xia (2001)
to set a« = 71 — BX so that a is known whenever the value of 3 is determined.

We justify this short-cut approach in the Appendix. We can now rewrite the

prediction model (3.8) as

dp, . .
?j = (i + BX,)dt + 0d B, (3.9)

where we define X, = X, —X. We note that X, > 0 (< 0) if and only if p,—a, > X
(< X). Thus, we can interpret X as a bandwidth parameter in the context of mov-
ing average rules. Since any arbitrary choice of the slope parameter 3 is unlikely
to provide useful forecasts, we shall define the “best” value of 8 in an appropriate
statistical sense. To move on to the investor’s portfolio choice problem, let us
first assume that the investor knows such  and we shall discuss some economic

implications if he incorrectly identifies 5.

Given an investment horizon 7" and an initial wealth W, the investor chooses a

portfolio strategy & = {&}]_, to maximize his expected utility of wealth,
m{ax E[U(Wr)],

subject to wealth dynamics

dw; . .
Wt =rdt + &+ Xy — r)dt + §odBy,
t
where the operator E[-] = E[-| ] indicates that the expectation is taken over the
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subjective probability measure P conditional on Fp.

In this article, we assume the logarithmic utility function
U(Wr) = log Wr.
In this case, the optimal strategy is given by

o= %}g—r (3.10)
g

3.3.2 Defining the “Best” Value for the Slope Parameter

In most previous studies in portfolio choice, the value of the slope parameter 3 is
estimated using real data. However, this approach is inappropriate for this article
because the form of the investor’s prediction model does not coincide with that of
the true model. Thus, we cannot expect the standard estimators to have the usual
asymptotic limit because the true value of § remains undefined. We now attempt
to define § in such a way that we can view the investor’s prediction model as a

reasonable statistical approximation of the true model for stock returns.

Fixing a point time ¢ in [0,7] and an arbitrarily small » > 0, the h-period stock

return under P is

Py — B

T BX)h + 0(Byi — By) + o(h),

Rt,t+h =

with o(h)/h — 0 as h — 0. Thus, given observations (P, X;) at time ¢, the

conditional forecast of the h-period return is

Rt,t+lz = E[Rt,t+h|]:—;f] =+ 6Xt)h + o(h).
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A common measure of forecast accuracy over a time interval [0,77] is the mean
integrated squared error (MISE). For future observations { R; 1, }._, generated by
the true model P and future conditional forecasts { Ry 45}, the MISE is defined

as

T
I\IISE = E/ (Rt,t+h - Rt7t+h)2dt
0 (3.11)

TPyn—P ; :
=B / [t”t—mth)h—o(h) dt,
0 P,

where the notation E[-] indicates that the expectation is taken with respect to the
true (joint) densities of {(P;, X;)}T,, conditional on Fo. We find the best linear

predictor of the h-period returns by choosing 3 such that (3.11) is minimized.

Expanding the squared term in the last line of (3.11), we have

T
. . o Prp—P
E/ [(52th + 2pX,)h* — 25Xtt+hpth} dt + other terms, (3.12)
0

t

where “other terms” include terms independent of 5 and the “o(h)” term. Since

h > 0, minimizing (3.12) is equivalent to minimizing

1P, — P
”ht} dt, (3.13)

T

1 N ~
E —B32X2+usX, — BX,—
/0|:25 t+ﬂﬁt 6th iz

where we divide the last line of (3.12) by 2h? and drop the “other terms”. Ex-

panding (3.13) gives us
1 T . T 1 (T ., Pup—P
552E / X2dt + BE / X dt — BE L / Xt”htdt]. (3.14)
0 0 tJo B

The term in the last expectation operator is the so-called Russo-Vallois integral.

Since the investor is interested in forecasting instantaneous stock returns, we take
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the limit as A — 0 to obtain

1 P, P,
EL/ X, ot ”h ] / Xtdt—E/ Xyt (3.15)
v Jo

where the equality follows from (3.1).

Substituting (3.15) in (3.14) and using the definition [, = u; — @, we can re-

place the original minimization problem by
1 T R T R
mﬁinﬁ(ﬁ; T) = 252E/ X2dt — ﬁE/ X fiedt, (3.16)
0 0

where L is the loss function implied by the MISE criterion. It turns out that the
negative of £ is equivalent to the expected conditional log-likelihood of {P,}],
(see Appendix 3.A). Differentiating (3.16) with respect to § and equating it to

zero, we obtain the best value of §,

E [\ Xifudt

B = B[ (3.17)

Substituting 8 back to the loss function (3.16), with a slight abuse of notation,

the minimized value of £ is given by

EfO Xt/,Ltdt)
2 BT Xzdt

— _252E/ X2dt <0.
0

L(B;T) =
(3.18)

Since £(3;T) is bounded above by zero (if 8 = 0), we can view |L£(8;T')| as a mea-
sure of erpected gain in forecast accuracy using the best linear predictor 1 + 6Xt

over the long-run mean 7 alone (which corresponds to £(0;7") = 0).
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Hence, when [ is nonzero, we say that the technical indicator X; has predictive
power on stock returns in the sense that there is an expected gain in forecast
accuracy. In general, 5 is nonzero unless stock returns come from an IID model.
That is, when p; = o = @ for all ¢ € [0,7T] (i.e., A = n = 0). In this case, we
have i, = 0 for all ¢ € [0,7] and hence 3 = 0. We note that this definition of
predictive power is restrictive because we essentially assume that the investor fixes
the same [ for the entire horizon. A more realistic model would allow the investor
to update the slope parameter. However, this would make the model much less

tractable.

The results above may appear to be similar to that of linear projection in standard
time-series econometrics. However, our definition of 5 does not require the pro-
cesses to be asymptotically stationary. While the concept of MISE is not new, we
are unaware of its use as a defining criterion for model parameters in continuous

time.

In Appendix 3.B, we verify that if the investor used the original prediction model
(3.8), then the MISE minimizing («, ) would indeed be o = i — X with 3 as

given by (3.17), if we assume X starts at its long-run mean (i.e., Xo = X). It is

useful to note that if X, = X then

TA T s
E/ Xtdt:E/ (X, — X)dt — 0,
0 0

for any horizon T'. This property will allow us to simplify our analytical study.

In this article, we set Py = 1 such that p, = 0 and X, = X such that ag = —X.
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3.3.3 Computing the “Best” Slope Parameter

We now evaluate the two expectations in § given by (3.17). Expanding and

simplifying (3.17), we have that

_ Jo {Elpi] = Elayu] - A(E[p] — Bla,])}dt |
JI{ERR + Ela?] - 2E[pa] — 2X (Elp] — Ela/]) + X }dt

To find the moment equations required to compute 3, it is useful to write the
dynamics of (py, as, y1;) in matrix form. Let us define y; = (p;, az, pi) ' By noting

that the dynamics of p; and a; are
dpy = (7 — 2 )dt + od B,

dat = L(pt - Lat)dt,

together with “du,” given by (3.2), the dynamics of y; can be compactly written
as

dy, = (M + Myy,)dt + X dB, (3.19)

where B; = (B, Bgt)T is a vector of two independent Brownian motions (we can

write By = By, and Z; = pByy + /1 — p?Bay),

ALt 0 0 =A np ny/1—p?

with given initial values yo = (po,aog, o). To evaluate the expectations in f3,
we require the moment equations m; = Ely,] and v; = E[y,,']. We have already

found my, given by (3.5), (3.7), and E[j] = &, so it remains to find .
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Applying Itd’s product rule, we have

d(yey,) = yedy, + (dye)y + (dye)dy,

= ydy, + (dy,)y, + XX Tdt,

substituting “dy,” given by (3.19), and taking expectations, we obtain the system

of ordinary differential equations

d
= Mo+ oM+ Mym] +me My + 257, (3.20)

with the given initial values vy = yoy4 . The solutions to (3.20) can be obtained
by using a symbolic mathematical computation program. It turns out that while
there are closed-form solutions for v;, their algebraic solutions are too lengthy to
display in this article. Instead, we first estimate the model parameters, namely
(o, \, 5,7, p), using real data in Section 3.4 and then we substitute the estimates
into the solutions of v, to illustrate their functional forms (for various window

sizes L) in Section 3.5. After that, we evaluate 3 for different values of (L, T).

3.3.4 Stability Analysis of the Moments in § and Some
Practical Implications
In this section, we study the stability properties of the moments in 8. The discus-

sion is relatively technical but is included in the main body of this article because

such properties have important econometric and mathematical implications.
Let ¢; = (my,vech(v;))" be a 9 x 1 vector of the first and the second moments

of y; = (pi, as, i) ", where vech(-) denotes the half-vectorization operator (that

is, vech(v;) is a 6 x 1 vector by vectorizing only the lower triangular part of the
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symmetric 3 x 3 matrix v;). Taking expectations of (3.19), we have

d
% = Mo + Mlmt. (321)

By equations (3.20) and (3.21), we can compactly write the dynamics of ¢, as

d .
G ot A, (3.22)

where Ag is a 9 x 1 vector and A; is a 9 x 9 matrix given in Appendix 3.C.

Definitions. Consider the system of differential equations d¢;/dt. Given
any initial value ¢y, we denote its solution by ¢(t|¢). Similar to Definitions 2.1
by Brock and Malliaris (1992), the solution is called stable (with respect to the

initial conditions) if for every ¢, there is a 0 = §(¢) such that |po — ¢f| < § implies

|6(t]bo) — B(t]dp)| < e

for all ¢ > 0. The solution is asymptotically stable if it is stable and if |p(t|¢pg) —

o(t|dy)| — 0 as t — oo. The solution is unstable if it is not stable.

In words, if the solution ¢(t|@g) is stable, then for two sufficiently close initial
values ¢y and ¢, with ¢y # ¢}, the solutions ¢(t|¢pg) and ¢(t|¢;) remain very near
to one another for ¢t > 0. Furthermore, if the solution is asymptotically stable,
then the stochastic process y; has both long-run (invariant) first and second mo-
ments (i.e., y; is asymptotically covariance-stationary). If the solution ¢(t|¢g) is
unstable, then ¢(t|¢g) and ¢(t|¢;) drift away from one another as t — oo, even if

¢o and ¢, are close.
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Following Theorem 4.1 by Brock and Malliaris (1992), the stability properties of
(3.22) are given in terms of the eigenvalues of A;. In particular, we have the

following summary to check stability.

(i) The solution ¢(t|¢o) is stable if all eigenvalues of A; have nonpositive real
parts and if every eigenvalue of A; which as a zero real part is a simple zero

of the characteristic polynomial of A;.

(ii) The solution ¢(t|¢g) is asymptotically stable if all eigenvalues of A; have

negative real parts.

(iii) The solution ¢(t|¢p) is unstable if at least one eigenvalue of A; has positive

real part.

We find that the nine eigenvalues of A; are:

0,0, —L* —L* —2L* —(L*+ \), =\, —),and — 2)\.

Since there are two nonnegative eigenvalues (two zeros), the solution ¢(t|¢y) is
not asymptotically stable, meaning that y; is not an asymptotically covariance-
stationary process. This finding has important implications for econometric esti-
mation of 8. In particular, the standard OLS estimator based on a single time
series of stock price will not converge to 5 even if the sample size goes to infinity
and so better estimation strategy is required. Although it is beyvond the scope of
this article to discuss about estimation methodology in details, we note that it
is possible to estimate [ by resampling approaches. For example, we can block
bootstrap stock returns to construct artificial sample paths of stock price. For
each block bootstrap sample, we run a regression to obtain an OLS estimate of .

The average of these OLS estimates can then be taken as a final estimate of 5.
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We next check whether the solution ¢(t|¢o) is at least stable with respect to the
initial conditions. In a theoretical perspective, the stability properties are desir-
able because it implies that our numerical results based on computed 5 (presented
in Section 3.5) are robust to our arbitrary choice of initial values (setting py = 0,
ap = —X, and 1o = 1) in the sense that we can reasonably expect similar quan-

titative results even if we deviate slightly from these initial values.

To check that @(t|¢o) is stable, it suffices to show that the two eigenvectors cor-
responding to the two eigenvalue zeros are linearly independent (if so, we say
the eigenvalue zeros are simple zeros). We find that the two eigenvectors are
(0,0,0,L%,L,0,1,0,0)" and (0,0,0,0,L/2,0,1,0,0)", which are therefore linearly
independent. Thus, we can conclude that ¢(t|¢g) is stable with respect to the ini-

tial conditions.

We now finish our technical discussion about the stability properties of the mo-
ments in 4 and return to our portfolio choice problem to obtain some economic

insights from the model.

3.3.5 Measuring Economic Value of Market Timing

The optimal portfolio allocation & depends on the current value of the MA indi-
cator X; augmented with its long-run mean, namely X,. We call this dependence

market timing. Let us define the IID strategy by

_ =T 2 9
g=12" (3.23)

which would be used by a log-utility investor who disregards return predictability

(i.e., assuming returns following an IID model with g = 0).
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Note that we can write

* o ﬁX :
& =6+ 7;7 (3.24)
implyving
o _ p
ox, o2

Thus, 5 measures the change in optimal allocation to stocks with respect to a
small change in the current value of the MA indicator. It should be noted that
[ depends on both the window size L and the investment horizon T. When § is
large, even a small change in X, would result in a large change in & . Hence, we
can view ( as a measure of market timing aggressiveness. We shall compare the
optimal and the IID strategies by an appropriate performance metric discussed

as follows.

Given any portfolio strategy & = {&}L,, we define the holding period return

(HPR) over the period [0, T] as log(W5/W¢),

T 2 T
0 0

where Wf denotes the level of wealth associated with strategy ¢ at time ¢. Note
that while € is chosen according to the investor’s subject reference model P, the

actual dynamics of wealth are determined by the true model P.

Let us then denote the erpected holding period return by
RS, = E[log W5 — log W]

This quantity represents the average total return on the portfolio over the period
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[0,77] if the investor plays infinite times the investment game £. For analyti-
cal studies, this metric has two important advantages: first, it is an objective
performance measure because the expectation is taken with respect to the true
probability P (not IP’); second, it is independent of any single set of observa-
tions. Indeed, looking at expected HPRs is conceptually consistent with perform-
ing bootstrapping in many empirical studies. For example, if an econometrician
correctly identifies the model specification (3.1)-(3.2) and uses simulation-based
approaches to test the profitability of any portfolio strategy &, then the simulated
HPRs would center around R. Similar results should be obtained by other re-
sampling approaches that reasonably capture the underlying correlations of stock

returns. For the rest of this article, we set W, = 1 such that RS, = E[log Wi).

Taking the expectation of (3.25), we obtain the expected HPR. formula for any
strategy &,

T 2 T
RS =T + E/ &y —r)dt — (;E/ £2dt. (3.26)
0 0

Proposition 3.2.  The gain from expected holding period return from the opti-

mal strategy over the IID strategy is nonnegative, with
2
RS — R = lﬁi / X2dt > 0. (3.27)

This inequality is strict if 5 is nonzero.

This proposition states that if 5 is nonzero, then the optimal strategy £* is better

than the IID strategy £° in terms of expected HPR.
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Proof.  For the IID strategy, substituting (3.23) into the expected HPR formula
(3.26), we can show that

0 1(—r)? .
R%:TT+§WU2)T (3.28)

Similarly, for the optimal strategy, using (3.24), we have

RS —TT+E/O ({t BX, ) (e — r)dt
_fEAT

_ {rT—i—E/ €0 (e — r)dt — 2E/ (g;’)?dt]
/‘&MME/‘W&

To obtain the second equality, we apply the property that E fOT Xtdt = 0. By

(§)+ ;W+a§ dt

5&1

noting the term in the squared brackets is RET and subtracting

T
BE/‘&M&EQ
0

2
jo = jo / Xt e — dt — ﬁE/ det

=R —E XA&———E X2dt.
T+c72 /0 et 202 /0 ¢

Lastly, substituting the definition of 3, given by (3.17), after simplification, we
obtain (3.27), as desired. W

we have

(3.29)

We note that this result depends on 8 being MISE minimizing. If 8 were simply
treated as a parameter to be estimated by data, then we would not be able to

simplify (3.29) to obtain (3.27). We also note that the expression (3.27) can be
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rewritten as

* o 1
Ri =Ry = —5IL(8T)| > 0,

2

which states that the expected gain in HPR is directly proportional to the ex-

pected gain in forecast accuracy represented by |£(5;T)|.

We now generalize Proposition 3.2 to show that the optimal strategy £* is actually

optimal over the class of strategies ¢ of the form

= PHON T O (3.30)
g

where b is any real number. Note that £ would be the strategy used by a log-
utility investor who takes the slope parameter 8 as b in the linear prediction model

(3.9).

Proposition 3.3. Let £° be the class of strategies as defined by (3.30). We

have
& £
Ry > Ry

for any real number b. If b = 3, then we have RS = RéTb
Proof.  Similar to (3.29), the expected HPR for £ is given by
fb fo b T IS 1 b2 T A~ -
RT - RT + ;E Xt/,Ltdt - §§E Xtdt (331)
0 0

We note that RéTb is a concave quadratic function of b. Differentiating it with

respect to b and finding the optimal value of b, denoted by b*, shows that

_ B[y Xifudt
E [ Xt

b*
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which is precisely the MISE minimizing 5. W

The significance of Proposition 3.3 is that not only does 8 minimize the MISE,
it also maximizes the expected HRP among the class of market timing strategies

£, Hence, (3 is both statistically and economically optimal to a log-utility investor.

However, our assumption that the investor knows the value of § is very strong.
More realistically, the investor would likely need to estimate its value. Let b de-
note such an estimate and we interpret e, = S — b as the estimation error. Under
the log-utility assumption, we can imagine that the investor simply takes b as the
true value of 3 and use the portfolio strategy £°. Since it is unlikely that b is
precisely 5, we are interested to examine whether investors, subject to estimation

error, still benefit from market timing.

Proposition 3.4. Let £ be the class of strategies as defined by (3.30). Assuming,
without loss of generality, that EfOT Xt/ltdt > 0 such that 5 > 0, then we have

& 19
Ry >Ry,

as long as b lies within the interval 0 < b < 28. Or equivalently, the estimation

error, e, = 8 — b, lies within the interval
—B<e, <8 (3.32)

Proof. By (3.31), we see that ’prb > Rgf if and only if

b T 1 b2 T 5o

86



But this quadratic inequality holds if and only if

E foT Xt/ltdt _ 93,

0<b< 220
E [ X2dt

This completes the proof. M

A relevant implication by Proposition 3.4 is that, if stock returns come from an
IID model (implying 8 = 0 because EfOT Xtﬂtdt = 0), then any market timing
strategyv £° with b # 0 is worse than the IID strategy, as implied by the inequality
(3.32).

3.3.6 Measuring Window Size L in Days

Before we move on to calibrating our model, we want to find a formula that allows
us to measure the window size parameter L in days because moving averages are
measured in days in practice. Given any fixed point ¢ in [0, 7], we define ¢y = ¢
and t_; = to — jAt, j = 1,2,..., for some stepsize At. Since T' is measured in
vears, assuming there are 252 trading days a vear, we set At = ﬁ such that
each interval (t_;,t_;.1] represents one trading day. Thus, we can approximate

a; = log Ay, with A; defined in (3.4), by

ar ~ L Z e LU-DAY, AL,

j=1

Comparing this expression with the N-day (geometric) exponentially weighted

moving average in discrete time,

> 2 2\
- 1_7 o
;(1\74—1)( N+1> b=
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we can relate L to N by setting

LA(j—1) 2 2\
LebaG-UAp — (2 ) (1o =) .
€ t (N+1>< N+1>

Using the approximation e #2%0—1) ~ (1 — LAt)’"!, we have

2 1 504
" N+1At N+1

This formula is handy. For example, if we consider 50-day MA indicators then
we set L = 504/51 ~ 9.882. Similarly, for 100-day MA indicators, we set L =
504/101 =~ 4.990. We see that the longer the moving average in discrete time, the

smaller the window size in continuous time.

3.4 Data and Model Calibration

For simplicity, let us assume that the percentage drift is linearly related to a

zero-mean state variable §; such that we have

pe = [+ 00,

where # is a constant parameter. This assumption implies that the stochastic
process determining the cum-dividend stock prices, given by (3.1)-(3.2), can be

rewritten as follows,

dp,
— = (7 +06)dt +0dB,, (3.33)
t

where w = /0 and dB,dZ; = pdt.
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We estimate this joint stochastic process by using a discrete approximation to
the continuous processes, and using monthly data for the period January 1980 to
December 2014. The stock return is taken as the rate of return on S&P 500 in-
dex and the state variable is taken as detrended log dividend vield!. The system
of equations (3.33)-(3.34) is estimated by linear seemingly unrelated regression

(SUR). We present the estimation results in Table 3.1.

Table 3.1. Results of Parameter Estimation

This table lists parameter notations, estimated values, and relevant statistics. The
parameters are estimated from monthly data of stock returns and dividend yield for
the period January 1980 to December 2014. The stock return, dP;/P;, is taken as
the rate of return on S&P 500 index and the state variable, d;, is taken as detrended
log dividend yield.

Parameter Estimated value Standard error  t-value  95% CI lower bound  95% CI upper bound

I 0.217 0.044 4.888 0.130 0.303
0 1.701 0.428 3.976 0.862 2.539
o 0.198 0.010 19.833 0.179 0.218
A 1.332 0.360 3.701 0.626 2.037
w 0.167 0.010 16.064 0.146 0.187
n 0.284 0.109 2.593 0.069 0.498
p —0.080 0.068 —-1.177 —0.214 0.054

Notes:  The standard errors of the estimated (o, w, p,n) are bootstrapped standard
errors using 15,000 bootstrap samples. The rest are analytical (asymptotic) standard
erTors.

The coefficient of determination (or R?) for the discretized regression (3.33) is
2.740%, and 3.196% for (3.34). We also note that ideally one could improve the
estimation by using nonlinear SUR. but we believe that our estimation gives us

reasonable parameter estimates for numerical illustrations.

L We detrend log dividend yield by a Hodrick-Prescott filter to ensure stationarity. The
smoothing parameter is set to be 129,600 for monthly data, as recommended by Ravn and
Uhlig (2002).
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3.5 Numerical Results

3.5.1 MISE Minimizing

We recall that the definition of 3 is given by (3.17) and its computation is discussed
in Section 3.3.3. For example, consider the case of 50-day moving averages with
L ~ 9.882, after substituting the estimated parameters into the algebraic solutions

of vy (not reported in this article), the solutions of v, can be written as follows:

E[p?] = 0.0685t + 0.0477¢~ 33 — 0.0129¢ %57 + 0.0388t> — 0.0348,
E[p:a;] = 0.00686t 4 0.00486¢ % — 0.00132¢ 267 — 0.00312¢ 7"
+0.00316e %% 4+ 0.00392t* — 0.00357,
E[pipte] = 0.0426t — 0.0318e 3% 4-0.0172¢~%5™ 4-0.0146,
E[a?] = 0.00069¢ + 0.000495¢ "3 — 0.000136e~2™ — 0.000632¢ 7
+0.000386e %" + 0.000648¢ % + 0.000397¢* — 0.000365,
Elas ;] = 0.000483t — 0.00322¢ % + 0.00177e 267 — 0.00421¢~ %
+0.00135,

E[u?] = 0.0698 — 0.023¢~ %67,

where we round all numbers to three significant digits. We note that the solutions
of vy corresponding to other moving-average lag days share the same functional
forms as above. The solutions of v, for all moving averages (10, 50, 100, and 200

lag days) considered in this article are summarized in Appendix 3.D.
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Figure 3.1. Mean Integrated Squared Error (MISE) Minimizing
Slope Parameter (3. This figure plots the “best” slope parameter 3 of the in-
vestor’s return prediction model as a function of investment horizon ranging from 1
to 20 vears. We compare (8 for four moving average indicators ranging from 10 to

200 days.

Figure 3.1 shows the MISE minimizing  for four moving averages as a function
of investment horizon, ranging from one to twenty vears. Two aspects of this fig-
ure are noteworthy. First, f is nonzero, this means that the MA indicators have
predictive power on stock returns in the sense that using the best linear predictor
o+ BX, improves expected forecast accuracy over the long-run mean 7 alone.
In particular, our empirical result that 5 > 0 is consistent with the conventional
practice that technical investors increase allocation to stocks when the current
stock price is sufficiently higher than the moving averages. Second, S eventually
declines in horizons, although such declines can be nonmonotonic. Since [ also
measures market timing aggressiveness, our results imply that, in general, the

optimal allocations to stocks of shorter-horizon investors tend to be sensitive to
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even small changes in MA indicators, compared to longer-horizon investors (say,
five vears or more). Also, recall the inequality (3.32) in Proposition 3.4 that we
require the estimation error to satisfy —f3 < e, < 8 for a gain in expected HRP.
Hence, a larger 8 implies a wider interval. This means that, in general, the port-

folio profitability of shorter-horizon investors is more robust to estimation errors.

45
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st 100-day MA

2 200-day MA
L L
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Gains in Annualized Expected Holding Period Return (%)

Figure 3.2. Gains in Annualized Expected Holding Period Return
(HPR). This figure plots the gains in annualized expected HPRs for the optimal
strategy £* over the IID strategy £°, given by (Rg: — Rg})/T, as a function of
investment horizon T, ranging from 1 to 20 vears. ¥We compare four moving average

indicators ranging from 10 to 200 days.
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3.5.2 Gains in Annualized Expected Holding Period Return

Figure 3.2 plots the gain in annualized expected HPR for the optimal strategy
over the 11D strategy, defined as (RS —RS)/T, as a function of horizon, ranging
from one to twenty vears. Note that the annualized expected HPR for the IID
strategy is a constant, r + £ (z — r)?/0?, as implied by (3.28). Two aspects of this
figure are noteworthy. First, the gain is economically significant, meaning that
one can expect the optimal technical strategies to substantially outperform the
IID strategy. However, we emphasize that this result depends on the assumption
that the investor knows the true value of 5. When f is incorrectly identified,
such expected gain can substantially reduce, or even become negative. Second,
expected gain increases with horizons and eventually converges. This finding
shows that the optimal strategies can have long-run profitability even though long-
term investors use a rather mild market timing approach. Although this finding
seems encouraging, we recall that 5 declines with horizons quickly and so investors
not knowing the true g are more likely to suffer from an estimation error large
enough to erode any expected gain. Third, we see that shorter moving averages
have higher annualized expected gains. This result is likely due to the model
assumption that the true proportional drift of stock prices is Markovian and so
shorter moving averages better capture the local drift. However, observe also that
the expected gains are similar across the 10 and 50-day moving averages. Thus,
our model implies that there exists a range of moving averages that are of similar
profitability in terms of expected HPR. This finding seems to be consistent with
the fact that investors do not systematically favor a particular moving average in

practice.
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3.5.3 Comparative Statics

Using 50-day MA indicators as an example, we provide comparative statics to ex-
amine how some key model parameters of the actual stock return model affect the
gains in annualized expected HPR associated with the optimal technical strategy.
The results for other moving averages are qualitatively similar so we omit them

for brevity.

First, we consider the role of the predictive power of the state variable d;, repre-
sented by 0, on gains in annualized expected HPR. Recall from (3.34) that the
volatility of the proportional drift u,, represented by n, relates to 0 by n = fw.
Panel A of Figure 3.3 compares the gains in annualized expected HPR. evaluated
at the mean estimate, 95% confidence interval lower and upper bounds of 6, as
reported in Table 3.1, while fixing w to its mean estimate. Our results show that
such expected gain is increasing in the predictive power of the state variable. This
finding confirms the intuition that the optimal technical strategies can improve

expected HPR due to stock return predictability.

Next, we investigate the role of the volatility of stock returns, represented by o,
on gains in annualized expected HPR. Panel B of Figure 3.3 compares the gains in
annualized expected HPR evaluated at the mean estimate, 95% confidence inter-
val lower and upper bounds of o, as reported in Table 3.1. Our results show that
such expected gain is decreasing in the volatility of stock returns. The intuition
is that the correlation between the MA indicators and the drift of stock returns

is weaken by more noise as implied by a higher volatility.

Finally, we investigate the role of the correlation between the Brownian shocks

of stock returns and the state variable, represented by p, on gains in annualized
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expected HPR. Panel C of Figure 3.3 compares the gains in annualized expected
HPR evaluated at the mean estimate, 95% confidence interval lower and upper
bounds of p, as reported in Table 3.1. Our results show that such expected gain
is increasing in the correlation between the shocks of stock returns and the state
variable. The intuition is that when such a correlation is high, shocks to the stock
returns contain more information about the shocks to the drift. Hence, it becomes

easier to detect the local movement of the unobservable drift.

A. Varying 6, 50-day MA
T

o
=]

T T

40+
_.30r Mean estimate
& 95% CI upper bound
£ 20 95% Cl lower bound
] 10 I 1 1
14
b 14 16 18 20
2
&
%, 60
€
£
2 40t
he]
L
g 20t
=
w
T o L L L L L L I L L
% 0 2 4 6 8 10 12 14 16 18 20
S
£ C. Varying p, 50-day MA
< 50 T T T
£
2 40t
]
o

30

20

10 L L L L L L L L L

2 4 6 8 10 12 14 16 18 20

Investment Horizons (Years)

Figure 3.3. Comparative Statics for Gains in Annualized Expected
Holding Period Return (HPR). We consider 50-day moving average indica-
tors as an example. This figure illustrates the sensitivity of the gain in annualized
expected HPR for the optimal strategy over the IID strategy to the model param-
eters 0, o, and p, which represent the predictive power of the state variable J;, the
volatility of stock returns, and the correlation between the Brownian shocks of stock

returns and the state variable.
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3.6 Conclusion

In practice, it is difficult to identity the state variable determining the drift of
stock returns, Indeed, mogt predictive variables studied in the literature cannot be
observed at a desired frequency for real-time trading. It 1s also difficnlt to identify
the stochastic process determining the state variable. In this article, we present a
porilolio choice model to theoretically illustrate that moving averages (MAs) can
be useful for investment when stock returns are correlated. Our modelling strategy
15 as follows. First, we propose a measurc of predictive power in the context of
lineaxr prediction models in continuous time, defined over a forecast horizon and
a loss function. Next, assuming stock returus follow a state-space model (which
implies serial correlations), we show that MAs have predictive power for returns
in the sense that the associated best linecar predictor improves expected [orecast
accuracy over the long-run mean of returns alone. Then, we form MA-basod
optimal portfolio strategies and show their expected profitability. After that, we
calibrate our model with S&P 500 index and dividend vield data to illustrate
the economic gignificance of our results. Finally, we provide comparative statics
to cxamine how some key model parameters of the state-space moedel for stock

returns affect the profitabilicy of our strategics.



3.7 Appendix

Appendix 3.A. Conditional Log-Likelihood Function

Consider approximating (3.9) with the Euler difference scheme

Pt]+1 — Pt]

Ry, = —5—= = (i+ pX,)At + 0VAte,,
tj
for j =0,1,...,n—1 where At = T'//n and ¢, are IID standard Gaussian random
variables. Given the data set Fr = {(R,,,, ) "2y, we can write down the

conditional likelihood function

L(B|Fr) =

H {_ (Riy, — (B + BXy)A)? }
1 \/—zA RN '

Thus, the log-likelihood function is

M + 6Xt ) ( ) - 2Rt.y+1 (ﬂ + Bth>At

n—1
log L(5|Fr) Z

= 202At
n—1 n—1
X —5 Z(ﬁ + ﬂth)ZAt + (M + /BXt])Rt}+1
=0 =0

3
>—Ab

a—fﬁszQAt—uﬂ XtJAt—H}Z( = i )

m
O

where the notation “oc” means “is proportional to”.

Taking the limit as n — oo, we have

log L(5|Fr) O(—,[J)Q/ X2dt—uﬁ/ Xtdz‘—i-ﬁ/ Xtht
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Taking expectation, we obtain

1 ) T 5o B T R T . dPt
Ellog L(8|Fr)] oc =54 | X{dt —pE | Xt +BE | Xi—5°
0 0 0 t

1 T T T

= —5F°E / X}dt — npE / Xdt + BE / Xt
0 0 0

1 T Ty

—1p /0 X2t + BE /0 X — o),

which is precisely the negative of £(5;T), given by (3.16), as claimed. Thus, we

see that choosing 5 by minimizing the MISE is equivalent to that of maximizing

expected log-likelihood and this result does not require X, = X.

Appendix 3.B. MISE Minimizing Parameters («, 3)

Consider the linear prediction model (3.8), reproduced here for convenience,

dP, .
?t = (a + BX,)dt + 0dB,.
t

For any fixed horizon T, we want to show that the MISE minimizing values of

(o, B) are
_ E [T X, fdt
a=nu— X and 52%,
E [; X2dt

if we assume X, starts at its long-run mean, i.e., Xy = X, such that
T
0

T
E/ Xtdt:E/ (X; — X)dt = 0.
0

Following the definition of MISE in (3.11), we want to find («, ) to minimize the

quantity

Trp., — P 2
MISE = E / [”hpt —(a+ BX)h —o(h)| dt.
0 t
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Following a procedure similar to that of Section 3.3.2, this minimization problem

can be reduced to
(a75)

Thus, the first-order conditions are

T ap,

T
E/ (a+BX,)dt —E [ = =0,
0 0 Pt

and
ar,
P,

T T
E/ (a4 BX) Xedt — E/ X;
0 0
Simplifying (3.35), we have
T
aT—i—ﬂE/ Xdt — T =0,
0
and rearranging gives
1 T _
o —uBE/ X dt = — BX.
T Jo

Substituting this into (3.36), we have

T T
min L(a, 5;T) = ;E/o (a+ BX,)%dt — E/o (a+ BXy)

= 0.

T T
0 0

T T
BE/ XtXtdt—E/ X, fudt =0,
0 0
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where we use the definitions X; = X, — X and i, = p; — 7i. Finally, adding

Ti T o
E / Xjidt — BE / X, Xdt =0,
0 0

we have
T o T o
0 0

This gives the desired solution for 5.
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Appendix 3.C. Definitions of Ay and A; in Section 3.3.4

We present the definitions of Ay and A; in the differential equation (3.22)

doy
=4+ A
1 o+ Aigy

as follows. We have

Ay = (—0/2,0, N1, 0%,0,mp05,0,0,7%) ",

and

0 0 1 0 0 0 0 0 0
L —-I* 0 0 0 0 0 0 0
0 0 A 0 0 0 0 0 0
—02 0 0 0 0 2 0 0 0
Ai=|0 —0?2 0 L -L* 0 0 1 0
AN 0 —0%/2 0 0 -\ 0 0 1
0 0 0 0 2L 0 -2 0 0
0 Am 0 0 0 L 0 —(L24X) 0

|0 0 2 0 0 0 0 0 —2)|
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Appendix 3.D. Solutions to the System of ODEs dv;/d¢ in
Section 3.3.3

Based on the estimated parameters in Table 3.1, we compute the solutions to
duvy/dt, equation (20), for the cases of 10, 50, 100, and 200-day moving averages.
The corresponding values of the window size parameter L are 45.818, 9.882, 4.990,
and 2.507.

For 10-day MA (L ~ 45.818),

E[p?] = 0.0685t + 0.0477¢ 33 — 0.0129¢ 57 + 0.0388t> — 0.0348,
E[pa;] = 0.00149t — 0.000697¢ ' 1 0.000697¢ 2190 1 0.00104¢ 133
— 0.000282¢ 7257 + 0.000846t* — 0.000760,
E[pijts] = 0.0426t — 0.0318e 133 4 0.0172¢ %57 + 0.0146,
E[a?] = 0.0000326t — 0.0000304e 2% + 0.0000184¢ 2000
+0.0000304e 2% 1 0.0000227¢ 33 — 0.00000616¢~*57
4 0.0000185¢% — 0.0000166,
Elat,] = 0.000957t — 0.000929¢ 219 — 0.000694¢ 133" 4- 0.000376¢ 67
+0.000317,
E[u?] = 0.0698 — 0.023¢~ %57,
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For 50-day MA (L =~ 9.882),

E[p?] = 0.0685t + 0.0477¢ 33 — 0.0129¢ 57 + 0.0388t> — 0.0348,
E[p:a,] = 0.00686t 4 0.00486¢ 1% — 0.00132¢ 267 — 0.00312¢ "7
+0.00316e 7% + 0.00392¢* — 0.00357,
E[pijts] = 0.0426t — 0.0318e 133 4 0.0172¢ %5 + 0.0146,
E[a?] = 0.00069¢ + 0.000495¢ %3 — 0.000136e %" — 0.000632¢ "
+0.000386e 9" + 0.000648¢ %% + 0.000397¢* — 0.000365,
Elasps] = 0.000483t — 0.00322¢ ™33 4-0.00177e 2™ — 0.00421e %%
+0.00135,
E[u?] = 0.0698 — 0.023¢~ %57,

For 100-day MA (L = 4.990),

E[p?] = 0.0685t + 0.0477¢~ 33 — 0.0129¢ %57 + 0.0388t> — 0.0348,
E[pia;] = 0.0134¢ + 0.00983¢ %3 — 0.00273¢~ %57 — 0.00552¢ 2+
+ 0.00582¢ 262 4+ 0.00777t* — 0.0074,
E[pite] = 0.0426t — 0.0318¢ 33 4-0.0172e =257 + 0.0146,
E[a?] = 0.00261¢ + 0.00202¢ 33" — 0.000579¢~ %™ — 0.00221¢ 24
+0.00139¢ 498" 4 0.00247¢ 2% 4 0.00156¢* — 0.00153,
Elay ;] = 0.0103¢ — 0.00637¢ ™33 4 0.00365¢ 2" — 0.00776¢ 262
+0.00195,
E[1?] = 0.0698 — 0.023¢~ %57
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For 200-day MA (L ~ 2.507),

E[p?] = 0.0685t 4 0.0477¢ 33" — 0.0129¢~ %5 + 0.0388> — 0.0348,
E[pia;] = 0.0252¢ + 0.0216e "% — 0.00654¢ 25" — 0.00628¢ 52
+0.00903e =792 4+ 0.0155¢* — 0.0178,
E[ps1e] = 0.0426¢ — 0.0318¢ 1% 4 0.0172¢ 5" + 0.01486,
El[a?] = 0.00906¢ 4 0.00963¢~ %% — 0.00331e~2%" — 0.00501¢ 2%
+0.00353¢ 2% 1+ 0.00914e~ "% + 0.00616t> — 0.00782,
Elasp] = 0.0215¢ — 0.0127e~ "% 4+ 0.00871e =267 — 0.012¢ "6
— 0.000995,

E[1?] = 0.0698 — 0.023¢~ %57,

We note that for each case, the solutions of E[p?], E[p;u], and E[u?] are the same
because both p; and p;, being exogenous processes, are independent of the choice

of L.
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Chapter 4

A Dynamic Model of Asset Prices
and Technical Forecasting with

Moving Averages

This article is a theoretical study of the predictive power of moving averages
ol past slock prices on Llure prices as an equilibrinum phenomenon.  Adapling
Lucas’ (1978) one-tree representative investor model, we derive and characterize
equilibrium prices under different assumptions on the investor’s model for fore-
casting stock prices. We provide proof of equilibrium stability te show whether
the investor can learn these equilibria {under different assumptions) by standard

least-squares learning rules.



4.1 Introduction

While several empirical studies find evidence for the predictive power of mov-
ing averages on stock returns, see, e.g. Brock, Lakonishok, and LeBaron (1992),
Han, Yang, and Zhon (2013), and Neely et of. (2014}, to the best of our knowl-
edge, Zhou and Zhu (2013} provide the only theoretical equilibrinm model that
explicitly demonstrales the existonce ol such predictive power as an cquilibrinm
phenomenon. However, Zhou and Zhu rely on the rational expectations (RE) as-

surnption, which may not be innocuous for reasons explained as follows (see, e.g.

Evans and Honkapohja (2001) for a thorough discussion).

One major difficulty is that the self-referential feature of an asset pricing model
under RE makes multiple equilibria possible, and thus it is important to examine
how a particular rational expeetations cquilibrium (REE) may be arrived at and
whether all equilibria are equally worth studving. A second major problem is that
it neglects the notion that investors may only learn adaptively to form RE. Indeed,
the study of adaptive learning is often nsed as a selection criterion to reduce the
number ol attainable (also called learnable, E-stable, or stable) REEs (see, e.g.
Timmermann, 1994, 1996; Barsky and DcLong, 1993; Branch and Evans, 2010).
A third major problem is that it neglects the notion that investors may have
misspecified forecasting models but within the context of their subjective model
they are unable to detect their misspecification (see, e.g. Sargent, 1999; Williams,
2004). Since Zhou and Zhu also assume perfect RE, it is of theoretical interest
to justily the value of moving averages by another equilibrium model that lakes

into account of these issues concerning RE, which this article attempts to provide.

In this article, we replace RE with adaptive learning and provide a theoretical

examnination of whether moving averages can be ngeful to forecast future stock



prices, as an cquilibrium phenomenon, and whether investors who update their
expectations by the least-squares approach can learn the equilibrium. Our mod-
elling approach is an adaption of Lucas’ (1978) one-tree model populated by a
repregsentative Investor with a power utility function. We assnme that the loga-
rithm of dividends follow a stationary autoregressive process. ‘'he main objective
of this article is to characterize equilibrium stock prices when we make different
assinptions on the investor's lorecasting model (o predict [uture prices. I'rom a
modelling perspective, our model differs substantially from that of Zhou and Zhu,

which is based on Wang {(1993).

The model hag several interesting implications. First, ag is well-known in the
literature, it the investor correctly specifics his forecasting model and perecives
future prices as depending on dividends only, then there exists a unique learn-
able REE. Sceond, if the investor overparameterizes his forecasting model and
perceives future prices as depending on both dividends and moving averages of
past priced. then there exist two possible equilibria, one of which 18 precisely the
REE identified above while the other is a self-confirming equilibrium implying
that stock prices can be predicted by moving averages. However, we [ind that
the second equilibrium s not learnable, meaning that the investor will eventually

learn that moving averages are redundant in this scenario.

Third, we assume stock prices are generated according to the REIY but congider
a measure-zero technical investor (interpreted as a minority with no impact on
the cconomic system) who misspecities his foreeasting model and perecives stock
prices as depending on moving averages only.  We show that his misspecified
model is actnally statistically useful in the sense that the optimal slope param-

eter is nonzero while the forecast errors are orthogonal to the predictor, namely
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Evans and Honkapohja, 2003). Our siudy, therelore, also serves as an example of

explicitly examining the equilibrinm stabilicy of an asset pricing model.

Formulating a general equilibrium model ig a natural next step to gain more in-
sightg about the market pricing mechanism if everyone, not just an individual,
adapts some technical-based forecasting strategy. This gives us an important
Justilication why returns arce serially-coreelated in the lirst place which has been

taken as an assumption or “empirical fact” so far.

The agset pricing model in this chapter {and the next related chapter) is formn-
lated in discrete time, not continuous time as adopted in the last two chapters
on portfolio choice madels. This change is necessary. The major reason is duc
to the application of some eritical mathematical theorems required to study some
“learning” problems of interest. Specifically, the E-stability techniques by Evans
and Honkapohja (2001) are based on discrete time and so we cannot be sure sim-
ilar technigques also hold in continuong time. Another reason for this change is
that we will use actual dividend data to formally estimate and test a similar asset
pricing model in the next chapier. The nature of lormal cconomelric assessment, is
very different from the model calibration in Chapter 3 in which dividend data arce
only nsed to estimate parameter values but do not directly enter into any model
restrictions to be tested. Since our dividend data are observed monthly, and thus
they are too “sparse” fur the continuous-time setting to be relevant. Nonetheless,
we would like to note that both discrete time and continuous time are equally

useful depending on the problem in hand.
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4.2 The Model

4.2.1 The Basic Setting

Consider a standard pure-exchange economy (Lucas, 1978) with a single con-
sumer, interpreted as a representative investor “stand in” for a large number of
identical investors, and a single risky asset. Shares held during period ¢ — 1, 6, 4,
vield a dividend payment D, at time t; time-t share prices are P;. The investor
wants to maximize expected lifetime utility by financing consumption C; from
an exogenous stochastic dividend stream and proceeds from sales of shares. The

utility maximization problem of the representative investor is given by

max E Z BU(Cy),
0

{Ctvat}?i() t—
subject to the budget constraint
Wy = (P, + D)0y = C, + B0y,

where 5 € (0,1) is a discount factor, U(-) is a current period utility function, and

E is an expectations operator.

The value function associated with this optimization problem is
V(W) = T]{fleaf({U(Wt — Fiby) + BE(V (Wipa)]},

where the notation E; indicates the expectation is taken conditional on the in-

vestor’s time-t information set.
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The first-order condition with respect to 6; is

v (W)
00,

= U'(Ci)(—=P:) + BE [V'(Wis1)(Piy1 + Diy1)] = 0,

where U’ and V' denote the first derivatives of U and V. By the envelope theorem,
we have

V' (Wig1) = U'(Cry1).

In the equilibrium, we have 6, = 6;_; such that C; = D,. This gives us the

well-known equilibrium pricing equation

U'(D
P, = BE, U(,(lt;)l)(DH-l + Pit1)
¢

Assuming the investor has constant relative risk aversion utility function,

o

)

U(cy)

for a constant v with v > 0 and v # 1 and for every C; > 0, and including Cy; = 0
if v < 1, the equilibrium pricing equation can be expressed more explicitly as
follows,

P, = BE/(DI] D} + D7y D} P (4.1)

The model is closed by specifving a stochastic process for D,
log Dy = (1 = p)log D* + plog Dy—1 + o€y, (4.2)

with given parameters p € (—1,1), D* > 0, and ¢ > 0; ¢ are independent

and identically distributed (IID) standard Gaussian random variables; €; is un-
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observable at time t — 1. We assume that the investor recognizes this stochastic
process and the parameter values. By taking expectations of (4.2) and setting
E[log D;] = Ellog D;_1], we find that log D* is the long-run mean of log D;. We
call D* the steady-state value of D,.

Taking expectations of (4.1) and evaluating D, and Dy, at D*, we obtain
E[R] = BD* + BE{E;[ P11}
= BD" + BE[Pr4].
Setting E[P] = E[P,11], we obtain the long-run mean of P, denoted by P*,

. B :
P= b (4.3)

We also call P* the steadv-state value of P,.

4.2.2 Log-Linearized Economic System

It is useful to work with log-linear approximations of (4.1)-(4.2) because we can
obtain closed-form solutions for the quantities of interested in this article. The
strategy is to use a first-order Taylor approximation around the steady states to
replace the equations with approximations, which are linear in the log-deviations
of the variables. We now define the variables d; = log D, — log D* and p; =
log P, — log P*. Following the approximation rules by Uhlig (2001), we have

Dy = D*exp(dy) = Dy = D*(1 + dy), (4.4)

B = P exp(p) = B~ P*(1 4 py). (4.5)
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Furthermore, we have the following approximations,
DD} = D*[1+ (1 = y)dy + vdy], (4.6)

D\ D} Py = P*(1 — ydpyy + vdy + pria). (4.7)

Using (4.4), we log-linearize the dividend model (4.2) as follows,

diy1 = pdi + o€t (4.8)
Using (4.5)-(4.7), we log-linearize the equilibrium price equation (4.1) as follows,

P (14 p) = BEAD 1 + (1 —y)dip1 + vdy] + P*(1 — ydp1 + vdy + pryr) }

D*
1+ p = BE; { P 1+ (L= 7)dir1 +vdi] + (1 = yde1 +vd; +Pt+1)} :
Substituting
D 1-p
P B

implied by (4.3), and collecting term, we obtain

pe = vdy + (1 = B — 7)Ee[dis1] + BE[pes1].

Further substituting E,[d;11] = pd;, implied by (4.8), after simplification, we

obtain the log-linearized equilibrium pricing equation,

P = 6dy + BEi[prsa], (4.9)

where § = (1 -8 —7)p+ .
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For the rest of this article, we base our analysis on the log-linearized economic
system characterized by equations (4.8)-(4.9), which we summarize as follows for

convenience,

pr = 0dy + BE[pey1],
dt+1 = ,Odt + 0€441-

This log-linearized system is also considered in Carceles-Poveda and Giannitsarou
(2008) but we study different asset pricing issues. Henceforth, we simply refer to
these equations as the pricing equation and the dividend model without empha-

sizing the term “log-linearized”.

4.3 Equilibrium Analysis

4.3.1 A Benchmark Rational Expectations Equilibrium

Suppose that the representative investor’s perceived law of motion (PLM) for p,
is given by

Pt = o + pady, (4.10)
which, as we show later, is consistent with the RE solution of the model; ;o and p4

are parameters. Updating by one period and substituting in the dividend model

(4.8), his PLM for p,;; can be alternatively represented by

Pt+1 = Mo + ,Ulpdt + H10€¢11.- (411)

Thus, his forecast of p;,1, conditional on his time-t information set, denoted by
Et [Pi+1], 18 given by

Ei[pi1] = po + papdy.
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We can loosely interpret this investor as a fundamental investor because he for-

mulates forecasts of future prices based on fundamental factors like dividends.

Substituting E;[p;,1] in the pricing equation (4.9) by E, [pey1], we obtain the actual

law of motion (ALM) for p,

Py = 0dy + B(po + papdy)

= pof3 + (6 + Brap)ds.

(4.12)

A rational expectations equilibrium (REE) prevails when the PLM coincides with

the ALM (i.e., the functional forms and the coefficents of the PLM and the ALM

are the identical). We formulate the REE in terms of a fixed point of the mapping

from the PLM to the ALM defined by

T Ho _ tof3

M1 0+ Buip

Such a function T is sometimes called a T-map.

Therefore, the REE is given by

Dt = [ +ﬁ1dt7

where

Bo=0 and 7, =
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4.3.2 Least-Squares Learning and Expectational Stability

Although the REE is well-defined, we now study whether it is learnable in the
following sense. Suppose the representative investor believes that p;,; follow the

process (4.11), reproduced here for convenience,

Pit1 = Mo + p1pdy + p10€4

but that py and gy are unknown to him. The investor has data on the economy
from periods j = 0,1, ..., t. His time-t information set is {(p;, d;) }}—,. We assume
that the investor estimates po and p; by a least squares regression of p;,1 on pd;
and an intercept. Their estimates will be updated over time as more information
is collected. Denote the estimates through time ¢ by (104, pt1,¢) and so his forecast
of pryq is

Ei[prs1] = po + pepds. (4.16)

The standard least squares formula gives the equations

t -1
Ho,t
= lz Zj_12;_1‘| lz Zj—lpj] s (417)
1 =1

M j=
where z; = (1, pd;)".
The equilibrium price is now jointly defined by equations (4.9), (4.16), and (4.17).
The question of interest is whether (o4, p1.0) = (fo, f11) as t = oo. If so, we say
that the REE is learnable by least squares. In this article, we only consider learn-

ing by least squares so from now we simply use “learnable” to mean “learnable by

least squares” for brevity.

Evans and Honkapohja (2001) show that learning problem of this type, under
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fairly general assumptions, the estimates converge to the REE if and only if certain
stability conditions, known as erpectational stability (E-stability) conditions, are
satisfied. Given the mapping (4.13), E-stability of (7, 7;) is defined as local
asymptotic stability of the ordinary differential equation (ODE)

d
£(uo7u1) = T'(po, p11) — (pto, pi1)

at (g, 11,), where s denotes notional time. Here, we omit the argument of
(o, pt1)(s) and simply use (po, p41) for brievity. E-stability conditions are obtained

by computing the Jacobian matrix of

h(pto, pa) = T (po, pa) — (pto, pa),

denoted by Dh(uo, p11). If all of the eigenvalues of Dh(po, p1) evaluated at (%, ;)
have negative real parts, then we say that the REE is E-stable or learnable, mean-

ing that (po¢, p1t) — (fgs 1) as t — oo with probability one.

For our current example, it can be shown that

o g—1 0
Dh(fy, 1) = )
0 pBp-—1

so both eigenvalues, the diagonal elements for a triangular matrix, are negative.

This confirms the convergence to the REE.

4.3.3 A Self-Confirming Equilibrium

From this section onwards, we deviate from the standard benchmark model above
in different ways to allow for investors’ using technical analysis and study the

corresponding market equilibria. To the best of our knowledge, the subsequent
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theoretical results are new.

Consider an exponentially weighted moving average defined by

¢
ay =« Z (1—a)p_,

j=—o0

where a € (0,1) is a given parameter controlling the window size?. We note that

t+1
apt1 = @ Z (1—a)*pj
j=—o00
t

=a y (1-a)™p i +ap

j=—00

t

=(1- o) Z (1—a)pj_1 +ap,

j=—o0

=(1-a)a + ap;.

Since a;41 is a weighted average of a; and py, this quantity is known given the

time-¢ information set.

Now, suppose that the representative investor’s PLM for p, is given by

pr = 7o + mady + Taay, (4.18)

where 7y, 74, and 7, are parameters. That is, the investor overparametrizes his
forecasting model by including a;. One may wonder why the investor would want

to include a;. An economic rationale is that the investor is aware that some other

2 The choice of exponentially moving averages, instead of simple moving averages used in
previous chapters, is also commonly considered in the literature. However, the former can be
viewed as a good approximation of the latter, or vice versa.

2

In practice, the industry convention is to set @ = 577 to compute the N-day moving average.
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investors are referring to this technical indicator. Hence, there is good reason
to believe that prices are at least partially affected by a;. From an economet-
ric perspective, the investor will use the least-squares approach to determine the
optimal value of 7,, and thus there is no disadvantage to include this additional

variable—the estimate of 7, could be simply zero.

Note also that an equivalent specification is p; = g+ qd; + 2 with x; = a; —p
being a momentum indicator measuring the percentage difference between the
moving average and the price. This is a special case of double moving averages
when the shorter one is simply the current price. Solving for p, and reparametriz-

ing give us back the specification (4.18).
Updating by one period, his PLM for p,; can be alternatively represented by

Piy1 = Mo + Tapdy + Ta[(1 — @)ay + apy] + maoery. (4.19)

Thus, his forecast of p;,1, conditional on his time-¢ information set, denoted by

Ei[pis1], is given by

Et[pt+1] = mo + Tapds + ma(1 — a)ay + maap;.

Substituting E;[p;41] in the pricing equation (4.9) by E, [pi+1], we obtain the ALM
for p,,
pe = 6dy + Bmo + mapdy + mo (1 — @)ay + maapy].

Rearranging and collecting terms, we obtain

mo/3 0 + fmap (1 - a)fma

_ . 4.20
1—afr, 1—afn, tT - afm, a ( )

Pt
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Comparing (4.18) and (4.20), we can formulate the equilibrium in terms of a fixed

point of the mapping from the PLM to the ALM defined by

mof
To 170(4)['377(1
_ )
Tl | =| 252 |- (4.21)
(1—a)Bra
Ta 1—afm,

There are two fixed points, denoted by (7o, T4, 7,), for this mapping. The first
fixed point is (%, @11, 0), which coincides with that of our benchmark REE. The

second fixed point is

) 1-p5(1-
m, and Ty = ﬁa(ﬂa) (422)

To =0, Tq=

This identifies two possible equilibria in this scenario.

We call the second solution a self-confirming equilibrium in that sense that the
investor believes the data generating process also depends on the moving averages,
and because he believes so, it turns out to be true for the above parameters. In

the next section, we will examine whether this equilibrium is worth studying.
Given the form of the equilibrium ALM for p,, 4,

Dit1 = Ty + Tadip1 + Taly,

and the investor’s optimal forecast of p; 1,

Ei[pi1] = To + Tapdy + Ta(1 — a)ay + Taoupy,
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we note that the forecast errors, defined by p; 1 — E, [pi+1], are Tyo€,41, which are

IID random variables. To see this, we have

Pry1 — Et [Dit1] = To + Tadip1 + Tair1 — [To + Tapdy + To(1 — @)ay + Toop,]
= Ta(dir1 — pdi) + Tafarsr — [(1 — @)a; + ap|}
= TqO€441.

The significance of this result is that the representative investor does not make

svstematic forecast errors in either of these two equilibria.

4.3.4 Learnability of the Self-Confirming Equilibrium

Now, suppose the representative investor believes that p;,; follows the process

(4.19), reproduced here for convenience,

Dip1 = To + Tapdy + TaQp1 + Tao€41,

but that my, w4, and m, are unknown to him. His time-¢ information set is
{(pj,dj, a541)}o—y. We assume that the investor estimates mo, 7y, and 7, by a
least squares regression of p,1 on pd;, a;i 1, and an intercept. Their estimates
will be updated over time as more information is collected. Denote the estimates
through time ¢ by (7o, 744, 7 ¢) and so his forecast of p,4; is

Ei[pei1] = mor + marpds + Mot (4.23)

The standard least-squares formula gives the equations

To,t ‘ -1 4

Tae| = lz Zj—lzj'T_l] lz Zj—lpj] ; (4.24)
j=1 j=1

Ta,t

)
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where z; = (1, pd;,a41)".

The equilibrium price is now jointly defined by equations (4.9), (4.23), and (4.24).
We have already shown that the REE is E-stable. Indeed, in this case of overpa-
rameterization, we say that this REE is strongly E-stable. It remains to examine
whether it is also true for the second equilibrium. That is, whether (7 ¢, Ta, Ta )

— (To, Ta, Ta), given by (4.22), as t — oc.

Given the mapping (4.21), the E-stability of (7o, T4, T,) is defined as local asymp-
totic stability of the ODE

d

7(’”—0; Td, 7ra) = T(/]TO7 Td, ﬂ_(z) - (ﬂ—Ov Td, ﬂ—a,)

ds
at (7o, T4, T,), where s denotes notional time. E-stability conditions are obtained

by computing the Jacobian matrix of

h(ﬂ-()v urs ﬂ-a) = T(7T(), urs Wa) - (7'['0, Td, 7ra)7

denoted by Dh(mg, 74, 7,). The eigenvalues of Dh(m, 74, 7,) are

g L (e VR AR VY

S A T (N
afbt, — 1 ’ afft, — 1 afr, —1  (afm, —1)2

Evaluating these eigenvalues at (T, Tq, T,), given by (4.22), we have

a a+p—1 1-5(1—-a)

A1l —a)

, and

b

11—« 11—«

Since the first eigenvalue, a/(1 — ), with a € (0, 1), is strictly positive. It suf-
fices to conclude that the second equilibrium is E-unstable, that is, (7, Ta¢, Taz)

— (o, T4, Ta) @as t — oo with probability zero. Hence, the economy will not
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converge to the self-confirming equilibrium, and thus we can conclude that this

equilibrium is not worth studyving.

We summarize the main findings of Sections 4.3.3-4.3.4 by the following proposi-

tion.

Proposition 4.1. Suppose that the representative investor’s PLM for p; is given
by pr = mo + wady + maay as in (4.18). There exist two possible equilibria, one
coincides with the REE with w, = 0 and the other is a self-confirming equilibrium
with m, # 0. The first equilibrium is least-squares learnable but not the second

one.

4.3.5 Technical Forecasting with Moving Averages

Let us consider a measure-zero technical investor interpreted as a minority with no
impact on the economic system, i.e., not the representative investor. We assume
that this technical investor ignores fundamentals (dividends) but forecasts stock
prices purely based on moving averages of past prices. Specifically, his PLM for
Py is given by

Pt = To + T1a: + wey, (4.25)

where 79, 7, and w are parameters; e; are errors with zero mean and unit variance,
which need not be ¢, in the dividend model (4.8). It is equivalent to think of this
technical investor as an outside observer, say an econometrician, who regresses

stock prices on moving averages and an intercept.
Suppose that the stock prices are generated according to the unique stable REE.

That is, the ALM for p, is given by (4.14)-(4.15). In this case, the technical in-

vestor’s PLM for p; does not coincide with the ALM, ¢.e, his forecasting model is
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misspecified.

Although the technical investor is using a misspecified forecasting model, we re-
quire that he does not make systematic forecast errors in the sense that (79, 7)
satisfy the standard least-squares orthogonality conditions:

Elwe,] = Elp: — 10 — mai] =0, (4.26)

Elawe;] = Ela;(p; — 70 — 11as)] = 0.

That is, we require 79 + 71a; to be an unbiased predictor of p; and the forecast

error be uncorrelated with the predictive variable a;.

The solutions for (79, 71, w) are then

7o = Elp] — T1E[ad], (4.27)
- E[ptat] - E[}%]E[aﬂ
™= TR - (Bla])? (428)
and
@ = E[(p; — To — T1a0)?], (4.29)

which are explicit up to some moment equations of economic variables.

To compute the moment equations required in (4.27)-(4.29), it is convenient to

express the economic system (py, d;, a;) as a VAR,

Dt 0 0 mp O Di—1 o
di| =10l +1[0 »p 0 1| | o | €.
az 0 a 0 1—af |a_q 0
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More compactly, we can write

Yo = Po + Pryr—1 + Xey, (4.30)

where y; = (ps,d;,a;) " and the definitions of ®y, ®;, and ¥ follow directly from
the VAR model. It may look redundant to keep ®y but we shall refer to this

general VAR setting later.

Since the eigenvalues of ®;, namely 0, p, and 1 — «, are all within the unit cir-
cle, this VAR is covariance-stationary, meaning there exist a 3 x 1 constant vector

y and a 3 x 3 constant symmetric matrix C, such that E[y,] = 7 and E[y,y,'| = C,,.

To find the stationary mean 7, we take expectations of (5.14) to obtain

Elyi11] = @0+ ®1Ely,]

y =P+ Py
Solving for y, we obtain
0
Ely] =7=I—®1)"'® = |0] ,
0

where [ is a 3 x 3 identity matrix.

To find the stationary variance-covariance matrix C,, we post-multiply (5.14) by

128



Y/, to obtain

Yer1¥ir = Poyl + Pryeyisy + Seyy

= Qoy/yr + Puye(Pg +y O + D) + BT ea(Pg +y B+ Derp).

Taking expectations, we have
C,= oy + &y®) + &,C,®] + X587,
which can be expressed as the following Lyapunov equation,
®,0,®] —Cy+Q =0,
where

Q=o7 +d75d) +527.

We can explicitly solve for C, by using

(I — &1 ® $y)vec(Cy) = vec(Q),

where [ is a conformable identity matrix, ® is the Kronecker product operator, and
vec(-) is the vectorization operator. We first solve for vec(C,) by solving the linear
equations and then extract Cy1, = E[p?], C,15 = E[p,ai], and C, 35 = Ela?] to
compute (7o, 71, w) given by (4.27)-(4.29). We present the solutions of the required

moments as follows.

—2 2

o

E[pg] = )

t 1 o p2
—2 2

appio

E =
P = T 1+ @ = D)
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afi(1 — (o~ 1)p)o?
2-a) 1 - )1+ (a-1)p)

Bla?] =

After some algebra, we obtain

2 —2 2

To=0, 71 = and w° = Kpjo°,

where

We note that if p € (0,1) then 7; € (0,1). Note also that f3o? is the variance
of forecast error implied by the fundamental investor’s forecasting model (4.11).
Since k > 1, the technical investor is exposed to a higher variance of forecast error

than that of a fundamental investor.

Now, suppose the technical investor does not know the values of (79, 71) and has to
estimate them by a least squares regression of p; on a; and an intercept. Suppose
also that he updates the estimates over time as more information is collected. By
the stationarity of the VAR, we know that the least squares estimates (7o, 71,)

converge to (To,71) as t — oo with probability one.

We summarize the main finding of this section by the following proposition.

Proposition 4.2. Suppose stock prices are generated according to the stable REE
as given by (4.14)-(4.15). Suppose also that a measure-zero technical investor’s
PLM for p; is given by p, = 7o + Tia; + wey as in (4.25). There exist statistically
optimal values (7o, 1) in the sense that they satisfy the least-squares orthogonality

conditions (4.26).
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This proposition states that although the technical investor’s forecasting model
is inconsistent with the actual stock price model, he would still find that moving
averages of past prices are useful to predict future prices. Similarly, when an
outside observer, say an econometrician, would like to assess the predictive power
of moving averages of past prices on future prices by a regression, he would find
strong evidence supporting such predictive power if he did not include dividend

in the regression as a control.

4.3.6 Technical Forecasting and Two Restricted Perceptions
Equilibria

We now consider the case that the representative investor is a technical investor

who has a PLM for p; represented by (4.25), reproduced here for convenience,

Pt = To + 710 + wey,

where 79, 71, and w are parameters; e; are errors with zero mean and unit variance,
which need not be ¢ in the dividend model (4.8). We once again require (79, 71)
to satisfy the moment conditions (4.26). The difference here is that the investor’s

PLM now affects the ALM for p;.

Updating the PLM by one period and taking conditional expectations, we obtain

Et[thrl] =T0 + T10¢41

=710+ (1 — @)a; + rrap;.
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Substituting E;[p;;1] in the pricing equation (4.9) by E, [pt+1], we obtain,

pr = 0dy + Blro + 11 (1 — a)ay + Trapy).

Rearranging and collecting terms, we obtain the ALM for p,

7003 d i pr(l—a)

= 4.31
1-—Brna  1-pna ' 1-PBna “ (4:31)

2

Further substituting the ALM (4.31) into the moment conditions (4.26), the so-

lutions of (7g, 1) solve the following simultaneous equations,

<TO/B TO) * <Bﬁ(1_a) - Tl) Ela,] =0, (4.32)

1—fna B 1—fna

and

0 1—
(]_—Toﬁﬁfrla — To) E[at} + ﬁE[dth} + <51T1_(ﬂ7_13) — ’7'1) E[CL?] = 0,
(4.33)

where the moments Ela], E[d;a;], and E[a?] are also functions of (m9,7;) to be
determined as follows.
We expand the right-hand side of the ALM (4.31) as follows.

T 0 Bri(1—a)
N 1— BTlol + 1-— BTlOé(pdt_l + JEt) + 1-— 5’7'10[

Dt (1= a)ar1 + api].

Collecting terms, we obtain

T n(l —a)a 5 (1l —a)?
Pt = of ult ) pt—l‘i‘ip dt—l"‘iﬁ i ) t—1
1—57104 ].—,8’7'1C¥ 1—57’10[ 1—57’10&
n oo
—_— 6
1—fna !
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To compute the moment equations required in (4.32)-(4.33), we once again sum-

marize the economic system (p;, d;, a;) by a VAR as in (5.14) with the following

coefficients,
708 pri(l—a)a 5p Bri(1—a)? Sor
1-Bria 1-Bri«a 1-Bria 1-Bria 1-Bria
Po=1] 0 |,P1= 0 p 0 Y= o |. (434

0 « 0 11—« 0

Then, we follow a similar procedure as in Section 4.3.7 to obtain the expressions
for the moments E[a;], E[d;a,], and E[a?]. Substituting these moments into (4.32)-
(4.33), we find two possible solutions for (79, 71), each corresponds to a restricted

perceptions equilibrium (RPE), characterized by
7o =0 (4.35)

and
a+p—1+1+(1—a)pi\/¢

S e (4.36)

7=

where

p=(l—a+B)2%P+2(1—a—B)1+(1—-a)B)p+(1—(1—a)B)

We now show that 7; is a real number by showing that ¢ is positive. By noting
that ¢ is a convex quadratic function of p (for the moment, we take p € R), we

find that the global minimum of ¢ is

min ¢ = daf(l — a)(2 —Oé)gl - p?) N

pER (1 - — ﬁ) 0.
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Hence, we know that ¢ > 0 for any p € (—1,1) and so the solution 7 is well-

defined.

4.3.7 Learnability of the Two Restricted Perceptions Equi-
libria
Now, suppose the representative investor described in the previous section does

not know the parameter values of (79, 71) and uses the forecasting model

E[pi1] = 1o + TG4,

where (794, 71¢) are least squares estimates, based on his time-¢ information set

{(pj7 CL]‘+1)}220, given b\’

o lz zjz;] [Z szj] , (4.37)

where z; = (1,a;) .

Replacing (79, 71) by (704, 71+) in equation (4.31), the ALM for p; becomes

To.3 J Br(1 — )

T 1-frga 1-Prgat 1-frga

P (4.38)

The equilibrium price is now implicitly determined by equations (4.37)-(4.38)
(note that (794, 71+) are functions of p;). The question of interest is whether

(104, T1.t) = (To,71), any of the two RPEs given by (4.35)-(4.36), as t — oo.

To study the learning problem of this type, it is useful to first express (4.37)
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as the following recursive least squares (RLS) algorithm,
T =T+ R z(pe — 2 Tia), (4.39)

Ri= Ryt + 1"z — Rioa), (4.40)

where 7, = (104, 714) . We note that 2z, has argument 7,_;, R; and p; have argu-

ment 7.

Define 7, = (104, 71,) and 7 = (7o, 71). Following Evans and Honkapohja (2001),
under appropriate regularity conditions, if 7 — 7 as t — oo, then 7T is a stable

fixed point of the following system of ODEs?,

% = B{R7(r)2(n)[p(7) — =" (7)7]},
dR T
- Elz(1)z (1) — R(7)],

where s denotes notional time. Also, we use 7 to denote 7(s) for brevity.

Setting dR/ds = 0, we have R(7) = E[z(7)z"(7)] for a fixed 7. Substituting
R7'(7) into dr/ds and equating to zero, with some simplification, we find that

the local stability conditions are obtained by computing the Jacobian matrix of

Elz(T)p(T)] — 7, (4.41)

denoted by DA(7), provided the expectations exit. If all of the eigenvalues of

3 Technically speaking, the E-stability conditions discussed in the previous sections are also
results of the convergence conditions for some RLS algorithms. However, the problem at hand
does not admit a straightforward T-map as before. Therefore, we defer introducing the concept
of RLS convergence but directly apply the stability results based on the T-maps in the previous
sections.
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Dh(7) evaluated at 7 have negative real parts, then we say 7 is a learnable RPE,
meaning that 7, — 7 as t — oo with probability one. We note that for the
expectations in h(7) to exist, we require the all of the eigenvalues of ®(7), given
by (4.34), evaluated at T to be within the unit circle. It can be shown that the
associated eigenvalues of ®(7) are 0, p, and (1 —a)/(1 —afm). For the moment,

let us assume that the following stationarity condition holds

‘11_;;‘71 <1 (4.42)
Expressing (4.41) more explicitly as
R I I I T
Ela(r)] Ela®(7)] El[p(7)a(7)]

where the moment equations can be computed using the VAR model (5.14) with

coefficeints given by (4.34). Tt follows that the eigenvalues of h(7) are

(-pf .. (-a)(-p)p

l—afrn—(1—a) 1—afn—(1—a)p? L. (4.43)

Let us denote the two possible solutions for 7, in (4.36) by

. a+p—1+1+(1—a)p+\/¢

1 2a 2a0

and
+op—1 1+(1—a)p—

t 2c 2a8
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The eigenvalues (4.43) evaluated at 7| are

)\+ = 25(1 — P) 1
I f(—a- - e
and
A= 4B(1 — a)(1 - p?) L

I+(1-a)f+(1-—a-Bp—p?

Similarly, evaluating the eigenvalues (4.43) at 7, gives

- = 2B(1 - p) .
! 1+ =)+l -a—=Bp+ o
and
. 181~ )1 = ?)

(+ (-t (-a-RptVor

It can be verified that the A\ > 0 so 7/ is not a learnable RPE. For 7, , we find
that it always satisfies the stationarity condition (4.42) with A7 < 0. Thus, it
remains to check whether A\; < 0.

We find that for A; to be strictly negative while satisfving the VAR stationarity

condition, we require any one of the following three conditions to be satisfied*:

(i) -l<p<—fors<p<lyor

. 142 14+2(1—a) .
(i) 0<a< 2(1+5) and 0 < B < 74(17a)p2+2p+p2(17a), or

(i) 5o <a <L

But since p € (—1,1), condition (iii) implies that a sufficient condition for the

4These conditions can be obtained by using a symbolic mathematical computation program
such as Mathematica.
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second RPE to be learnable is o > %. This implies that the investors have to
use a relatively short lookback period to compute the moving averages (see Note
2). In order words, the market has to be relatively informationally efficient in the

sense that remote past prices do not affect future prices.

We summarize the main findings of Sections 4.3.6-4.3.7 by the following proposi-

tion.

Proposition 4.3. Suppose that the representative investor is a technical investor
with the PLM for p, given by py = 7o + Tiay + wey as in (4.25). It is possible
to have a RPE in which the investor cannot detect his misspecification but his
erpectations are otherwise optimal within a limited class of forecasting models. A
sufficient condition for this RPE to be learnable is o > %, i.e., a relatively short

lookback period to compute the moving averages.

This proposition states that it is possible for the stock market to reach a stable
equilibrium even though all investors are technical investors who systematically
use a misspecified forecasting model without recognizing their misspecification. To
conclude, this example demonstrates that equilibrium stability need not require
agents’ rationality and thus looking bevond RE allows us to study other interesting

equilibrium phenomena, as we attempt in this article.

4.4 Conclusion

While several empirical studies find evidence in favor of the usefulness of technical
analysis, there is relatively limited theoretical justification. Several noisy rational

expectations (RE) models demonstrate, with only a few explicitly built in the
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conlext of technical analysis, thal past prices can contain uselul information 1o
predict future stock prices. However, as discussed in che literature, not only docs
RE implicitly make some rather strong assumptions (e.g. investors do no suffer
from model misspecification, know the model parameters, and alwayg form “per-
fect” expectations), there are potential difficulties to interpret the model results.
For example, it is possible to have multiple equilibria. but the RE assumption
itsell provides Liblle guidance on selecting which is more plausible. Also, the exis-
tence and the unigueness of a rational expectations equilibrium do not imply that
investors can actually learn the equilibrium by standard adaptive learning rules,
even with a large sample. Thig means that the equilibrium need not be robust
to investors’ making small forecast evrors initially and neglects the notion that

investors’ expectations cvolve over time.

Adapting Lucas™ (1978) one-tree representative investor framework, this article
replaces RE by adaptive learning (least-squares) and shows that moving averages
of past stock prices can forecasgt future prices as an equilibrium phenomenon nnder
different assumptions on the investor’s forecasting model. Beyond the derivation
and the characlerization of equilibrinm solutions, we also ocus on proving cqui-

librium stability, 7.e., whether the investor can cventually learn the equilibrium.

This study is only an initial attempt to study the usefulness of technical analysis
through an equilibrium model. One mportant difference to most noigy ratio-
nal expectations models in the literature is that we do not consider an interac-
tive multi-agent model with hicrarchical information struccure. Tor example, we
could extend the model by allowing fundamental and technical investors to inter-
act strategically. A challenging future task is to formulate an equilibrium under

heterogeneous expectations and assess E-stability in this complex setting.
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Chapter 5

Estimation of a Dynamic Model of
Asset Prices and Technical

Forecasting with Moving Averages

This article formulates a model to study the predictive power of moving aver-
ages as an cquilibrinm phenomenon with special allention 1o developing model
estimation and testing strategics. Adapting Lucas’ (1978) one-tree representative
investor framework, prices are determined endogenously and are affected by the
investor’s forecasts of next period’s price. By imposing different assumptions on
the investor’s forecasting model, we obtain several possible equilibria. A special
feature of this model is that the parameters of the investor’s forccasting model
arc also determined endogenously. Based on a set of orthogonality conditions
implicd by che equilibrium pricing cquation and the investor’s forecasting model,
we develop estimation and testing strategies to examine whether the proposed

equilibria are empirically supported.



5.1 Introduction

While several empirical soudies find evidence for the predictive power of moving
averages on stock prices, see, e.g. Brock, Lakonishok, and LeBaron (1992). Han,
Yang, and Zhou (2013). and Neely et al. (2014), these studies arve restricted to
reduced-form estimation. The reduced-form approach does give nus useful ingights
about the statistical relationship belween cconomic variables but it provides lim-
ited guidance on whether such a relationship is an equilibrium phenomenon and
how such a relationship is formed. One major difficulty is that the same (or
similar) reduced-form model can be arrived at by economic models that impose
very different agsumptions on the agents’ decision-making and actions. Another
extreme is that the reduced-form equation being estimated cannot be generated

by any plausible cconomic model.

Ag an attempt to take up this issue, this article formulates a structural model
to study the predictive power of moving averages as an equilibrium phenomenon
with special attention to developing model estimation and testing strategies. We
begin by formulating an asscl pricing model under Lucas® (1978) onc-lree repre-
sentative investor framework. Then, we propose several possible equilibria based
on different assumptions on the investor's stock price forecasting model. Finally,
we develop estimation and testing strategies to examine whether the proposed

equilibria, are empirically supported.

The equilibria considered in this arlicle are labelled as cither a ralional expee-
tations couilibrium (REE) or a restricted pereeptions equilibrium (RPE). A REE
prevails when the investor’s forecasting model coincides with the equilibrinm prie-
ing equation {é.e., with the same functional forms and parameters). We show that

this i# the cage if the investor formulates forecasts of future prices bagsed on div-
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idends and ohscrvable shocks (o dividends. A RPE prevails when the invesior
misspecifies his forecasting model but his forecasts are otherwise optimal within a
limited class of forecasting models (see Evans and Honkapohja (2001) for a more
detailed digcussion about the concept of a RPE). We show that it is possible to
arrive at a RPIS when the investor ignores dividends but forecasts stock prices
purely based on lagged prices or moving averages of past prices. Our model shows
that the equilibrinm pricing equation has the same or similar [unctional lorm un-
der cach of these equilibria. Therefore, reduced-form estimation of the regression
relationship implied by the equilibrium pricing equation itself provides little guid-

ance on gelecting which equilibria is more plausible.

Using actual monthly data on dividends and stock index prices, we show that
while the RPEs arc theoretically attainable, they are empirically poorly supported
in the sense that some of the model implied sample moment restrictions are svs-
tematically violated. By contrast, we find that the REE iy more plausible with

superior econometric performance.

While there is a large literature on heterogeneous agent. models (HAMs} which also
stucdy how cquilibrium prices are affected by investors’ forecasts of future prices,
the parameters of the investors’ forecasting models ave directly taken as either
exogenous parameters or reduced-form estimates from data (see, e.g. Brock and
Hommes, 1997, 1998; Boswijk ef «f. 2007; [lommes, 2013). In the standpoint of
modelling strategy, our model differs trom HAMs in that the parameters of the in-
vestor's forecasting model are determined endogenousty, as functions of structural
paramcters representing time preference and risk aversion. The self-referential
feature of the asgset pricing model, namely prices are determined endogenously

and affected by investor’s forecasts of next period’s price, allows us to pin down
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whelher there exist plausible values of structural parameters such that the model
as a whole can simulfancously explain hoth the observed prices and the param-
eters of the investor's forecasting model. The equilibrium pricing equation and
the mvestor’s forecasting model are then used to generate a set of population
orthogonality conditions for us to develop an identification strategy based on the
GMM approach proposed by Hansen and Singleton (1982). This feature of iden-
tilication is also absent in HAMs. Our implementation is, however, dillerent [rom
Hansen and Singleton in that there is no arbitrary choice of “instrumental vari-
ables™ because we make explicit assumptions about what information does the
representative investor use (such that we can empirically identify hig forecasting

model).

Our model also relates to the literature on theoretical examination about the
uscfulness of technical analysis, sce, e.g. Trevnor and Ferguson (1983), Brown
and Jennings (1989, Grundy and McNichols {1989), Blume, Easley, and O’Hara
(1994), and Zhou and Zhu {2013). To the best of our knowledge. Zhou and Zhn is
the only study presenting a model that explicitly illustrates the predictive power
ol moving averages as an cquilibrinm phenomenon. Their model lollows the work
by Wang (1993) and considers heterogenous investors. Using a different modelling
strategy, we show that it is possible to admit equilibria, namely RPEs, in which
all investors are identical trend followers or technical investors using moving aver-
ages. This auggests that allowing for heterogenous investors need not be a critical
assumption to reach a market equilibrium. However, when we go one step further
and formally test whether these equilibria are plausible with actnal data, we do

not find any empirical support.

This chapter can be viewed as an empirical version of Chapter 4. An important
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issue remains unanswered in the last chapter is that while we have identified two
theoretically plausible equilibria, in the sense of learnability and long-run stabil-
ity, the theory per se does not suggest which is a better description of the real

world. As a result, an empirical investigation is called for.

However, the exact same model cannot be utilized directly because some aspects
are simplified for a cleaner theoretical demonstration but not necessarily hold in
real world. Therefore, some modifications and justifications are needed. First, the
stationarity assumption on dividends (and so stock prices) clearly does not hold
in the real world. Thus, we need to test dividends and prices are trend-stationary
so that we can leave out their trends in the model with the understanding that
investors can adjust the predictions from the model by accounting for their deter-
ministic trends afterwards. Second, we find that detrended dividends do not follow
a simple AR(1) process as first proposed but a more complicated ARMA(2,1) pro-
cess. This fact has an immediately effect on all the equilibrium solutions obtained

before and thus we have to rederive new solutions.

5.2 The Model

5.2.1 The Basic Setting

Consider a standard pure-exchange economy (Lucas, 1978) with a single consumer,
interpreted as a representative investor “stand in” for a large number of identical
investors. We assume that investors’ opportunity set comprises a risky asset and
a bond. Each unit of the stock held during period ¢ — 1, 67, vields a dividend
payment D, at time ¢; time-t stock prices are P,. Each unit of bond held during

period t — 1, %, vields a gross payment 1+ at time ¢; bond prices are normalized
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to one so the implied risk-free rate of return is r. The investor chooses the units
to invest to the risky asset and the bond, (67,6?), and consumption, Cy, in order

to solve the life-time utility maximization problem:

00 01_7
max E /Btt77 7>O7 774 17
{Ctvgfreg}?io ; 1- v

subject to the budget constraint
(P, + D)0+ (410", =C,+ Po: + 6,

where 8 € (0,1) is a discount factor, 7 is the constant relative risk-aversion pa-

rameter, and E is an expectations operator.

In the equilibrium, we have 6 = 0 | and 6> = 0?_, = 0 such that C; = D;. It is a
well-known result that under these equilibrium conditions the equilibrium pricing

equation of this model is
P; = BE Dy D} + Dy D} Py, (5.1)

where the notation E,; indicates that the expectation is taken conditional on the
investor’s time-t information set (to be specified). Since the bond can be thought
of an asset vielding a dividend D; = r, where the bond price is always equal to
one, the pricing equation (5.1) implies that the equilibrium interest rate of the
model is

1-p

r= 5 (5.2)

The model is closed by specifving an exogenous stochastic process for D;. It is
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given by

log Dy = (1 — ¢y — o) log D* + ¢y log Dy 1 + ¢olog Dy_o + &4 + 01641,  (5.3)

an ARMA(2,1) model, where &, are independent and identically distributed (IID)
exogenous shocks with mean zero and variance o2; (D*, ¢, ¢o,01,02) are given
model parameters. We assume that the investor recognizes this stochastic pro-
cess and the parameter values. Once D; is observed at time ¢, the investor can
immediately compute &,. His time-¢ information set is thus {(P,, D,,e,) : 7 < t}.
Assuming stationary!, it can be shown that log D* is the long-run mean of log D;,.
We call D* the steady-state value of D;. Also, by the pricing equation (5.1), the
implied steady-state value of P,, denoted by P*, is given by P* = D*/r.

5.2.2 Log-Linearized Economic System

Define d; = log D; — log D* and p, = log P, — log P*. We can interpret (d, p;) as
percentage deviations from their steady-state values. Henceforth, we simply refer
them to as log-dividend and log-price deviations. Applyving the approximation

rules by Uhlig (2001), we can log-linearize (5.1) and (5.3) as follows

pr = ydy + (1 = B —7)Ey[di1] + BE[pry1] (5.4)

and

di = $rdi—1 + Padi_o + €4 + O1e4—1. (5.5)

! That is, we require §|¢1 — /@7 + 4¢2| < 1 and §|¢1 + /@3 + 4¢2| < 1.
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Substituting E;[d;41] = ¢1d; + ¢odi—1 + 016, into (5.4), we can write p; as

pe=[v+ 1 =B=9)di + d2(1 = B —7)dia

+61(1 — 8 —y)er + BEprs1]-

(5.6)

Henceforth, we simply refer to equations (5.5) and (5.6) as the dividend model

and the pricing equation without emphasizing the term “log-linearized”.

5.2.3 A Rational Expectations Equilibrium

Suppose that the representative investor’s perceived law of motion (PLM) for p,
is given by

pe = p1dy + padi 1 + V&4, (5.7)
which, as we show later, is consistent with the rational expectations solution of
the model; (1, @2,%;) are parameters to be determined at the equilibrium. We
loosely interpret this investor as a fundamental investor because he formulates
forecasts of future prices based on fundamental factors like dividends. Equation
(5.7) implies that his forecast of p;,1, conditional on his time-¢ information set,

denoted by E,[pi1], is given by

Et[PtJrl] = (2 + d191)d + Papr1di—1 + O101€;.

Substituting E;[p,,1] in the pricing equation (5.6) by E;[p,41], we obtain the actual
law of motation (ALM) for p,,

pr = [y + Blpa + ¢rp1) + 1(1 = B —)]d;
+ [Boapr + 1(1 = B —7)]di—1 (5.8)

+ [B0101 + 01(1 — B —7)]es,
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which shares the same functional form as that of the investor’s PLM in (5.7).

Hence, by matching the coefficients of the PLM and the ALM for p,, we find that,

at the rational expectations equilibrium (REE), the stock price follows

pe = P1ds + Podi_1 + U1y,

where
(v =11 + 15 —1)
G2+ -1 7
L _ el =8)6 -1
? G2+ 15— 17
5 _ 91(1 - ﬁ)(’y B 1)
R

Py =1+

(5.9)

5.2.4 A Restricted Perceptions Equilibrium
Now, suppose instead that the representative investor’s PLM for p; is given by
Pt = TiPi-1, (5.10)

where 71 is a parameter to be determined at the equilibrium. We call this type of
investor a trend follower. His forecast of p,,1, conditional on his time-t information

set, denoted by E, [pt41], is simply

Et[pt+1] = T1Pt¢.

In Section 5.6, we shall extend above to allow the forecast to depend on some
moving average of past stock prices. Our current simple setting nonetheless high-

lights some key aspects of model formulation and estimation at a later stage.
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Substituting E;[p;+1] in the pricing equation (5.6) by E, [pt+1], we obtain the ALM

([t =8-7) P21 — B —17)
P = ( 1—pn >dt+ (1_57_1 )dt—l

0(1-8—7)

which can be also written in the form

for P,

(5.11)

P = p1dy + padi_1 + V1ey,

as in the REE case in Section 5.2.3, for some parameters (1, 2,1 ) that depend
on 7. Observe, however, that the investor’s PLM for p; does not coincide with
the ALM, so his forecasting model (5.10) is actually misspecified. Although the
trend follower is using a misspecified model, we require that the forecast errors,
namely p; — T p;_1, to be orthogonal to the predictor, p,_;. That is, 7 satisfies

the standard orthogonality condition:

El(p: — mipi—1)pe—1] = 0, (5.12)

giving us

7 = (E[pi_1]) "Elpipe-1]. (5.13)

To compute the moment equations required in (5.13), it is convenient to express

the economic system (p;, dy, d;_1,€;) as the following VAR,

D 0 @19 D13 Pyy DPt—1 b
d 0 0 di_ 1
t|_ o1 P2 1 t—1 n - (5-14)
di_1 0 1 0 0 di_o 0
Et 0 0 0 0 Et—1 1
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where

_ot (=187 g bt al-F-)

P
12 1 — 67—1 9 1— /67'1 )

o, = tad == o 1+ +6)1-F-1)

1—-08n 7 B 1-08n

More compactly, we can write (5.14) as

Yy = Py1 + ey,

where y; = (pt,dt,dtfl,et)T and the definitions of & and ¥ follow directly from
the VAR. For y; to be a covariance-stationary process, we require that all eigen-
values of ® are within the unit circle. It can be shown that the corresponding
eigenvalues are 0, 0, 1(¢1 — /&7 + 4o), and L(¢1 + /@7 + 4¢s), and thus y, is
covariance-stationary as long as d; is so (see Note 1), regardless of 7;. Hence,
assuming stationarity, there exists a 4 x 4 constant symmetric matrix C, such

that E[yy, | = C,.
For a VAR(1) model like (5.14), we can explicitly solve for C, by using
(I — @ ® ®)vec(C,) = o2 vec(XXT),

where [ is a conformable identity matrix, ® is the Kronecker product operator,
and vec(-) is the vectorization operator. We first solve for vec(C,) by solving
the linear equations and then obtain E[p?] (= E[p?_,] by stationarity) as the first

diagonal element of ). To find E[p;p;_1], we compute the matrix

E[ytytT—l} = (I)Cy
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and extract its first diagonal element.

Substituting the solutions of E[p? ;] and E[p;p;1] into (5.13), we can obtain a
closed-form solution for 7. However, it turns out that the algebraic solution of
71, denoted by 71, is quite lengthy to display, so we do not report it in this article.
To illustrate how 7 is related to the structural parameters (/3, ) nonetheless, we

linearly approximate it around 5 = 1 and find that

1
T1 = o+ (ﬁ> 1,
Y

where ¢y and ¢, are functions of the dividend model parameters (¢1, ¢o,6;) and

are given in Appendix 5.A.

Replacing 7 by 77 in the ALM for p, in (5.11), we have that, at the restricted

perceptions equilibrium? (RPE), the stock price follows

pr = Prd; + Pody—1 + V124,

where
_ v+ a(l-5-7)
(101 - 1*6F1 )
o ¢2(1—5—7)
QOQ - 1_5?1 9 (515)
= 01(1 -3 —1)
TR

2 We follow the terminology by Evans and Honkapohja (2001). Loosely speaking, we can
understand a RPE as an equilibrium between optimally misspecified beliefs and the stochastic
processes for the economy.
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5.3 Estimating the Model

In this section, we describe how to estimate the dividend model parameters,

(¢1, @, 01,02), and the structural parameters, (3,7).

The model assumes that the dividend and the stock price processes are stationary,
which is unlikely to hold in the real world. Instead, suppose that the observed
dividends and stock prices are I(1) processes, we can use the following appropri-
ately detrended data for estimation. We first regress the log of dividend on a time
trend and an intercept,

10g Dt = Qo + alt + dt. (516)

Assuming the residuals d; is stationary, meaning that log D; is trend stationary,
we can take d; as log-dividend deviations. Next we regress the log of stock price

on the log of dividend and an intercept,
log P, = by + by log D, + &,. (5.17)

Assuming &, is stationary, meaning that log P, and log D, are cointegrated, sub-

stituting (5.16) into (5.17), we can write log P; as

log P, = (bo + aobi) + (aib1)t + py, (5.18)

where p;, = bid; + & is to be taken as log-price deviations. Note that the long-
run price-dividend elasticity is preserved by this detrending procedure, that is,

d(log P;)/0(log D) = Op;/0dy = by.

Given T observations of detrended log-dividends, the ARMA(2,1) dividend model

parameters (¢1, ¢2,61,02) can be estimated by the standard maximum likelihood
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method. The corresponding log-likelihood is then

L(61, 60,01,0%) = — = log(2) — L log o? Zi
1, ¥2, 1705 - 2 g ’/T 2 gag can 20_37
where
g =di — Prdy1 — Qadi o — 01841,
fort=3,...,T and we set ¢; = &5 = 0.

To obtain an estimate of 8, we use the equilibrium interest rate equation (5.2)
and observe that
1

ﬁzl—kr'

Since in the real world the interest rate is nonconstant, we need to determine an
appropriate r. Given data of interest rates, say {r;}, we regress r; on a constant
only. We denote the estimate by 7 and the associated Newey-West standard error
by Se(7). We obtain the estimate [3 by replacing r by 7. Next, applyving the delta

method, the standard error of B can be approximated by using

Se(7)

Se(B) ~ T

The only remaining unknown parameter to estimate is v and we propose to esti-
mate it using the generalized method of moments (GMM) approach. The basic
idea of our estimation strategy is to use the model PLM and the ALM for p; to

generate a set of orthogonality conditions, gr, for the GMM estimation. Specifi-
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cally, given T observations of (p;,d;, e;), we define gr by

IS Al — @d + Bodior + V16)] @ 2}, under REE,
() = (A (b — @1di + Pody 1 + 012,)] @ 2}

% Z?:l{(pt — T1Di—1)Pt—1}

, under RPE,

where 2, = (dy, dy_1,5,) " and we set py = dy = 0. We note that there is one more
moment condition under the RPE because the PLM for p, is different from the

ALM for p;.

Our GMM estimate 7 is taken as the limit of a sequence of 4(; that solves the

following iterative scheme:
Y(it1) = arg Igg Jr(v) =T gr(v) " Sy Gr(7),
where §T is the Newev-West estimate given by

Sr= fO,T + Z{[l —v/(q+ 1)](fv,T + ﬁZT)};

v=1

We follow the Newey-West suggestion to set ¢ to be the nearest integer of 4(7°/100)%/°.

The resulted 4 is commonly referred to as an iterated GMM estimate. The stan-

Se(y) = \V VT/T:

dard error of 4 is given by

where
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Note that in the GMM estimation we essentially take the estimated values of
(¢1, P, 01,02, B) as true values. We provide two justifications for this treatment.
First, it turns out that the standard errors of these estimates are small relative
to that of 4, so we expect little distortion to Se(9) even if they are taken into
account. Second, this treatment allows us to more reliably estimate v because it
is well-known that numerical optimization algorithms are less accurate for higher-

dimension estimation problems.

5.4 Testing the Model

5.4.1 Testing the Overidentifying Restrictions

Suppose that g contains £ moment conditions, then under the null hypothesis

that the model is “valid”, the test statistic
Jr(3) =T gr(%) "S5 Gr(7),

where 4 is the iterated GMM estimate, is asymptotically Chi-squared distributed
with ¢ — 1 degrees of freedom. The alternative hypothesis is that the model is
“invalid”. We reject the null hypothesis at the a-percent significance level if Jr (%)
is greater than the (1 — a)-th percentile of the x7_, distribution. A rejection of
the null hypothesis is taken as evidence against the model. This statistical test
is commonly referred to as Hansen’s x? test and the quantity Jr/T is called the

Hansen and Jannathan (1991) distance, or simply the HJ distance.
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5.4.2 Comparing Model Explanatory Powers under the REE
and the RPE

Given T observations of (py,d;, e;), denote the model equilibrium price by p; =
P,d; +Pyd; 1 + U164, where we recall that the definitions of (@, P,, ;) under the
REE and the RPE are given in (5.9) and (5.15). We can view p; as a prediction
of the observed p;. We calculate the mean squared error (MSE) of the predictor

Pe by
1 T
; A\ A N2
MSBI3) = 7 301~ 0

which is a measure of the differences between log-price deviations predicted by
the model and the values actually observed. The function argument emphasizes

that the MSE depends on the GMM estimate 4.

Let 7 = 1,2 index the model equilibria under the REE and the RPE, respec-
tively. Let E[gr(7;)] denote the vector of population average of the moment
conditions, that is, the expectation is taken with respect to the true joint density

of {(ps, ds, e¢)}E . Let also
7; = argmin Egr(7,)] {ESr]} "Elgr(7;)]
and f* = MSE(y{) — MSE(93). The null hypothesis is
Ho : E[f*] <0,

which states that the equilibrium pricing model under the REE has superior ex-

planatory power over that of the RPE.

This hypothesis can be tested based on the “reality check” method of White
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(2000). The general testing strategy is to generate bootstrap samples, denoted
by {(pﬁk)7 dgk), 55’@)};:1, k=1,..., K, and for each bootstrap sample we compute
f = MSE(3") — MSE(4{"), where 41" and 45" are the associated iterated
GMM estimates. To apply White’s reality check test, we employ the test statistic
given by

f=MBSE(%1) — MSE(42)

and compute the bootstrap estimate of the p-value given by

1< )
szggglU@>>fh

where the notation 1 represents an indicator function. Since this is a one-side test,
at the a-percent significance level, the critical value is the value at the (1 — a)-th
percentile of the bootstrap test statistics f(k). We do not reject the null if the test
statistic f is not unusually high, i.e., is not greater than the value at the (1—a)-
th percentile. Therefore, the test rejects the null hypothesis if p is less than a
percent. We note that Chen and Ludvigson (2009) propose a similar statistical
methodology to compare the HJ distances of competing asset pricing models. We
instead compare MSEs because MSE is a more common and intuitive measure
of model explanatory power. However, both measures should give us consistent

quantitive conclusions.

We base our bootstrap resampling on an estimated VAR(q) model for (p;, d;),

p Pr—1 Pi—2 Pi— €
KT R I Y el INTPPREY: Y L (N R

d; diy di—o dt—q €dt

where the lag ¢ is selected by the Akaike information criterion (AIC). Each boot-

strap sample is generated by resampling from the residual pairs, (e, eq), with
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replacement, and then solving the model recursively. To better capture structural
changes in the residuals, we perform the multiple breakpoint test by Bai and
Perron (2003) on the squared residuals, (e, e7,), and allow residual resampling
distributions to differ across the estimated break dates. We present the VAR

estimation results and the Bai-Perron test results in Appendix 5.B.

5.5 Empirical Results

5.5.1 Obtaining Detrended Data and Relevant Tests

We obtain time-series data for real interest rate (r;), real S&P 500 index price
(P;), and real S&P 500 dividend (D;). The real interest rate is taken as the differ-
ence of the US 30-day Treasury vield and the growth rate of the US CPI (for all
urban consumers). The inflation adjustment to the S&P500 price and dividend
data is also based on the historic US CPI. The sample begins as early as 1871:01
for the index price, the dividend, and the CPI data to as late as 1926:01 for the

Treasury vield data and ends in 2015:12 for all of the series.

Estimating equation (5.16), we obtain the following:

log Dy = 1.728845 4 0.000899¢ + d,,
(Se) (0.023608)  (2.10x10-5)

Adjusted R? = 0.850937, MSE = 0.035734,

where t = 1,2,...,1740 is time measured chronologically. The reported standard
errors are Newey-West (NW) standard errors. The t-statistic for the deterministic
trend is 42.915, which appears to be strong evidence for a linear trend. However,
it is also important to check whether the residuals d; from this model appear to

be stationary.
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We then use the augmented Dickey-Fuller (ADF) test (without an intercept and a
trend because d; are residuals) to test for the presence of a unit root in d;. The lag
length is optimally selected by the AIC. We find that the test statistic is —4.299
and the 1-percent level critical value is —2.566.> Therefore, we strongly reject the

null hypothesis that d; has a unit root.

We note that one could also use the ADF test (with an intercept and a linear
trend) to test for the presence of a unit root in log D,. In that case, the test
statistic would be —4.285 and the 1-percent level critical value would be —3.963.
In both cases, the conclusion that real dividend appears to be trend stationary
holds.* Nonetheless, we prefer directly testing d, because our later model estima-

tion is based on this series.

Before we estimate equation (5.17) to show that log P; and log D; are cointegrated,
we first illustrate that they are both I(1) processes. We use the ADF test (with an
intercept but no trend) to test for the presence of a unit root in the first difference
of log P, and log D; one at a time. The lag lengths are again optimally selected
by the AIC. We find that the test statistic is —10.298 for the first difference of
log P;, and —8.563 for the first difference of log D;. The corresponding 1-percent
critical value for these tests is —3.434. Therefore, there is strong evidence that

log P, and log D; appear to be I(1) processes.

3 Although the 5-percent level is more commonly used in the literature, this choice is arbi-
trary. Since we want to be particularly confident in our results, we set a more stringent level of
1 percent throughout this article.

4 These two approaches are actually not equivalent: when d, is used, one must assume that
the slope of the linear trend is accurately estimated.
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Estimating equation (5.17), we obtain the following:

log P, = 1.672064 + 1.611302 log D; + &,
(Se) (0.099065) (0.04051)

Adjusted R? = 0.867738, MSE = 0.094858,

where we use the NW standard errors. The t-statistic for the slope coefficient, by,
is 39.834, which appears to be strong evidence for a long-run linear relationship
between these two variables. However, it is also important to check whether the
residuals & from this model appear to be stationary (if so, log P, and log D, are

said to be cointegrated), otherwise we have a spurious regression.

We follow the Engle-Granger (EG) methodology to test for cointegration. First,
we use the ADF test (with no intercept and trend) to test for the presence of a
unit root in &. We find that the test statistic is —4.037 and the 1-percent level
critical value is —2.566. Therefore, we strongly reject the null hypothesis that &
has a unit root. Next, the EG methdology supplements the ADF test result with
the following error-correction model. If log P; and log D; are cointegrated, these

variables admit the error-correction form:

q q
Alog Pt = 1 —+ apgt—l —+ Zan(j)Alog Pt_]' + Zalg(j)Alog Dt_]' + 6pt7

j=1 j=1

q q
Alog Dy = ag + g &1 + Z a1 (j)Alog P_j + Z ags(j)Alog Dy_j + ear,

j=1 j=1
where the lag length ¢ is to be optimally selected by the AIC. We know that at
least oy, or g (often called speeds of adjustment) should be significantly different
from zero if the variables are cointegrated. Also, direct convergence necessitates

that oy, be nonpositive and ay be nonnegative. Furthermore, their absolute values
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should not be too large as we are modelling how Alog P, and Alog D; converge

to their long-run equilibrium relationship.

Our results show that ¢ = 6 is optimal by the AIC. The estimate of «, is —0.004850
with the standard error being 0.00327 and the t-statistic being —1.48203. The
estimate of oy is 0.006888 with the standard error being 0.00126 and the ¢-statistic
being 5.4862. We find that o4 is significantly different from zero at the 1-percent
level (although a, is not). Observe also that both the magnitude and the signs
of a;, and o are as expected. Therefore, based on the EG methodology, we find

strong evidence that log P, and log D, are cointegrated.

The significance of the above results is that we can justify why it is “appropriate”
to detrend log P, using equation (5.18) to obtain p,. In particular, we realize that
if one used the ADF test (with an intercept and a linear trend) to test whether
log P, has a unit root, the test statistic would be —2.696 while the 1-percent level
critical value would be —3.963 (the 5 and 10-percent critical values would be
—3.412 and —3.128). Thus, one might conclude that log P; is not trend stationary
and so the usual linear detrending would be considered “inappropriate” (because
the residuals would not be stationary either). It is bevond the intended scope of
this article to further investigate whether log P, is trend stationary (indeed it is
possible that different testing procedures give different conclusions), we only aim
to illustrate that when log P, is taken as the log of inflation adjusted S&P 500

index price, the trend stationarity assumption is not unrealistic.
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5.5.2 Estimating the Dividend Model Parameters

Using the detrended dividend data d;, we estimate the dividend model given by
(5.5) and obtain the following:

dy = 1.879657d;_1 — 0.882386d;_o + ¢; — 0.676361e;_1,
(Se)  (0.021974) (0.021882) (0.034276)

Adjusted R? =0.993457, o2 = (0.015299), Log likelihood = 4800.181.

We find that all parameters are significantly different from zero at the 1-percent
level. We calculate that the AR roots are 0.969686 and 0.909970, which are both
within the unit circle, this indicates that this ARMA model is stationary (see
Note 1). Although not explicitly used in this article, we calculate that the MA
root is 0.67661, this indicates that this ARMA model is also invertible.

We then proceed to check serial correlation in the residuals ; based on the Ljung-
Box @Q-statistics for lags up to 1 to 12. The null hypothesis is that the residuals
do not exhibit serial correlation (up to the specified number of lags). We cannot
reject the null hypothesis for lags up 4 at the 1-percent level. However, as the
lag number increases, we consistently reject the null hypothesis at the 1-percent
level. Although there is some evidence that the residuals are not completely un-
correlated, they are sufficiently uncorrelated in shorter horizons, implying that
not much “recent” information is wasted for constructing predictions of d; (i.e.,
given the model specification, no recent information can further improve the pre-

dictions).
We try other simpler ARMA specifications such as (1,0), (2,0), and (1,1) but find

that the residuals, by @Q-statistics, are correlated even at lower lags (with PAC >

0.1). We also estimate an ARMA(3,1) model and an ARMA(2,2) model but find
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that the AR(3) and the MA(2) coefficients are quite insignificant (with p-values
of 0.1905 and 0.1309, respectively). Therefore, we conclude that an ARMA(2,1)

model appears to be adequate to approximate the actual dynamics of d;.

5.5.3 Estimating the Structural Parameters

Regressing r; on a linear time trend and an intercept, we find that the trend
is highly insignificant (the estimate is 6.20 x 107 with the NW standard error
being 1.06x107% and the p-value being 0.9953). Thus, we conclude that it is not
necessary to detrend the observed real interest rate data. Next, regressing r; on
an intercept only, we obtain the intercept estimate 7 = 0.000418 with the NW
standard error Se(7) = 0.000283. This gives us the estimate of 8 and its standard
error (by delta method) as follows:

1 5 Se(r)

Tr7 = 0.999583 and Se(B) =~ =2.83x10"%

(1+7)2

The 99-percent asymptotic confidence interval is [0.998930, 1.000235], with the
understanding that the upper bound should be taken as 1.

Substituting the estimates (taken as their true values)

&1 1.879657
s —0.882386
6, | = |—0.676361
o2 (0.015299)2
8] | 0999583

into the vector of orthogonality conditions gr, we can now estimate ~ by the GMM

approach. Table 5.1 displays the estimation results.
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Table 5.1. GMM Estimation Results under the REE and the RPE

o Se(¥) Jr DF  p-value
REE 1.427271 0.345553 6.867459 2 0.032266
RPE 0.002069 0.009244 56.026102 3  4.15x 10712

We obtain economically plausible estimates of 7 under both the REE and the RPE.
Under the assumption of constant relative risk averse preferences, our results imply
that the representative investor has to be more risk tolerant under the RPE such
that the model can possibly explain the observed stock prices (we discuss model
testing in the next section). This finding is consistent with the intuition that
trend followers should be more risk tolerant than fundamental investors. Indeed,
under the RPE, the t-statistic for the null hypothesis that v = 0 is 0.2238 while
the t-statistic is 4.1304 under the REE. Therefore, at the 1-percent significance
level, we cannot reject the null hypothesis that the representative investor is risk

neutral under the RPE but we reject the null hypothesis under the REE.

5.6 Testing the Model

5.6.1 Testing the Overidentifying Restrictions

Table 5.1 also presents the Hansen’s x? tests. We know from Section 5.4.1 that
under the null hypothesis that the model is “valid”, the Jp-statistic is asymptoti-
cally Chi-squared distributed with degrees of freedom (DF) being the number of
overidentifving restrictions. We reject the null hypothesis at the a-percent signif-
icance level if Jr is greater than the (1 — a)-th percentile of the 3 distribution.
Equivalently, we reject the null hypothesis if the associated p-value is less than a

percent. Qur results are as follows.
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We do not reject the model under the REE at the 1-percent significance level
(although it would be rejected at the 5-percent level). This result does imply that
assuming all investors aggregately behave as if they were a single fundamental
investor is not as implausible as it sounds. By contrast, the model under the REP
is strongly rejected at all conventional significance levels. This result implies that
assuming all investors aggregately behave as if they were a single trend follower

does not admit a model that can possibly generate our actual data.

We further re-estimate the model under the RPE using only the first four or-
thogonality conditions in gr, i.e., ignoring the orthogonality condition implied
by the PLM for p,. In this case, we have 4 = 0.002075, Se(%) = 0.009244,
Jr = 55.362250, DF = 2, and p-value = 9.51 x 107'3. We see that the results are
largely similar to that of the “full” estimation. Hence, our previous rejection of
the model is not due to an additional orthogonality condition compared to the
REE case. This finding allows us to specifically conclude that the model under
the RPE does not admit an equilibrium pricing equation (or ALM) that can well

describe the observed price dynamics.

5.6.2 Comparing Model Explanatory Powers under the REE
and the RPE

Examining the numerical results presented in Table 5.2, we see that the real-
ity check p-value is 0.258, which is higher than all conventional significance levels.
Therefore, we do not reject the null hypothesis that the equilibrium pricing model
under the REE has superior explanatory power over that of the RPE. This result
is taken as assurance that the model under the REE can genuinely explain better

the observed price dynamics, unlikely just by luck.
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To summarize, we have evidence that the model under the REE has superior
econometric performance compared to that of the RPE. This may not be surpris-
ing, but without formulating a model and testing it with data, there would be
no way to tell that the RPE, while theoretically possible, is empirically poorly

supported.

Table 5.2. Reality Check Results: Mean Squared Error Performance

REE RPE
MSE, L3 (pi — p1)? 0.093232  0.143040
Difference in MSE, f —0.049809
Reality check p-value, p 0.258
Number of bootstrap samples 1,000

Notes: The null hypothesis is that the equilibrium pricing model under the REE
has superior explanatory power over that of the RPE. This hypothesis is tested based
on the “reality check” method by White (2000).

5.7 Extension: Technical Forecasting with Moving
Averages

Let us consider an exponentially weighted moving average (MA) defined by

t
a; = « z (1—a)p;,

j=—o00

where o € (0,1) is a given parameter controlling the window size. We note that

this definition implies that

ary1 = (1 — a)ay + apy.
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Since a;41 is a weighted average of a; and p;, this quantity is known given the

time-t information set. In practice, one set

and call the corresponding a, the N-period moving average. Thus, the lag p;_; is

equivalently to the 1-period MA.

Now, let us modify the representative investor’s PLM for p;, given by equation

(5.10) in Section 5.2.4, by replacing p, 1 by a;. That is, his PLM is given by

Pt = 10y,

where 7y is a parameter to be determined at the equilibrium. We call this type
of investor a technical investor. His forecast of p;1, conditional on his time-t

information set, denoted by E, [pt+1], becomes

Et[pt+1] =na1 =71l —a@)a, + ap;.

The corresponding ALM for p, can be written as

e = ©1ds + Qodi_q + V1e¢ + Aiay,

where
v ta(l-8-9) _(1-8-17)
Y1 = , P2 =
1—afn 1—afn (5.19)
by _B0-5-7) | pn(i-a) '
YTl —apn Y 1—aBn

Following Section 5.2.4, we require 71 to satisfv the standard orthogonality con-
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dition:
E[(pt - Tlat)@t] =0,

giving us

7 = (E[a?]) 'E[piay). (5.20)

To compute the moment equations required in (5.20), we can make use of the the

following VAR,

Dt Dy D Dz Py Dy Pi—1 P

dy 0 ¢1 ¢ 6 0 di_q 1
dt,1 = 0 1 0 0 0 dt,Q + 0| &

&t 0 0 0 0 0 €1—1 1

a; « 0 0 0 11—« (a1 0

where
_ ol —a)fn Cdiy+ (e — 91— —)

by = ——FT— by =

1—aBn ’ 1—aBn ’
G2y + 1(1 = B —7)] :91[V+¢1(1—5—7)]

(I)l?; - 1 — aﬁﬁ ' CI>14 ]. — CY,/J)Tl
o - 1=a)n o+ (+6)(1-F-1)
15 1—0[&7’1 ’ ! ].—Oéﬂ’]'l '

Given the functions of E[a?] and E[pia;], which are in terms of 71, by equation

(5.20), the solution for 71, denoted by 71, solves the function h given by

h(ry) = (Bla*(n)]) ' Elp(ri)a(r)] — 7 = 0. (5.21)

It turns out that 7; does not admit a closed-form solution. However, given some
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appropriate quantity 7, we can linearly approximate h by

h(r) = (1)) + (11 — ), (5.22)

implying an approximate solution

) On(rO)\ !
TR 157'10—11(7'{])( 8(7—711)) .

To obtain a reasonable 77, we can use data to regress p; on a; (with no intercept)

and take the least-squares estimate as 7).

Substituting 7, by 7y in (5.19) and denoting the corresponding parameters by
(p1, P2, 191, 5\1), we can estimate v by using the following set of orthogonality con-

ditions by the GMM approach as discussed in Section 5.3 with

7r(7) LSl b — (D1dy + Godimr + Drey + Miay)] ® 2}
ar\y) = )
3 {(p — Pra)ar}
where 2, = (d;,d;_1,2;,a;)". We then use the Hansen’s x? test to test the model
validity as described in Section 5.4.1. However, because we approximate the ac-
tual solution 7; by 71, it is possible that a rejection of the model is due to a poor

approximation. Therefore, we propose to supplement the Hansen’s x? test with

the following Wald test.

Since 71 is a function of ~, substituting it into h given by (5.21), we can view h

as a function of 5. Define h(v) = h(#;). We test the null hypothesis that

HO . h(’y) =0
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by using the Wald test statistic given by

. -2
Wa(3) = h(3)1 {Sem x @giy} ,

where 4 is the iterated GMM estimate and Se(¥) is its standard error. We reject

the null hypothesis at the a-percent significance level if W (%) is greater than the

(1 — a)-th percentile of the x? distribution. Failing to reject the null hypothesis

is taken as some assurance that the approximation is reasonably accurate. That

is, at least the function h evaluated at 4 is not “statistically” far from zero.

In practice, moving averages are commonly measured in days. Since we use
monthly data, assuming there are 30 days a month, we approximate the L-day
MA by the N-month MA by setting N = |L/30], where “|-]” represents the
nearest integer function. In this article, we consider the popular 50, 100, and
200-day MAs. Thus, recalling a = 2/(N + 1), we set « to be 0.6667, 0.5, and

0.25, respectively.

Table 5.3 displays the GMM estimation results under each of these three cases.
Similar to our previous RPE described in Section 5.2.4, the model requires the
representative investor, now labelled as a technical investor, to be almost risk
neutral such that it can possibly explain the observed stock prices. In fact, at
the 1-percent significance level, we cannot reject the null hypothesis that the
representative investor is risk neutral under all three cases. Table 5.3 also presents
the Hansen’s x? tests. The tests once again reveal that at least one of the sample
moment restrictions is violated. Thus, we conclude that the observed stock prices
are not consistent with any of these three RPEs. Furthermore, we see from Table

5.4 that the p-values associated with the Wald tests are quite large, so we cannot
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reject the null hypothesis that iL(’}/) = h(71) = 0. This indicates that the rejection
of the model by the Hansen’s x? tests is not due to a poor linear approximation

of h(r) given by (5.22).

Table 5.3. GMM Estimation Results under the Other Three RPEs

A Se(¥)  Jr-statistic DF  p-value

RPE ( 50-day MA)  6.08x1072! 0.057812  79.582968 4 2.13x10716
RPE (100-day MA) 4.89x1072° 0.122686  79.079805 4 2.73x10716
RPE (200-day MA) 6.76x1071¢ 0.230710  79.644104 4 2.07x10716
Notes: The 50, 100, and 200-day MAs are approximated by the 2, 3, and 7-month
MAs of monthly stock prices. The translation is based on the fact that the width of
the L-day MA window approximately equals that of the N-month MA, where N is
the nearest integer of L/30.

Table 5.4. Wald Test Results under the Other Three RPEs

Wr-statistic DF  p-value
RPE ( 50-day MA) 0.021814 1 0.882584
RPE (100-day MA) 0.005115 1 0.942985
RPE (200-day MA) 0.001553 1 0.968561
Notes: The null hypothesis is that h(y) = h(71) = 0. Failing to reject the null
hypothesis is taken as assurance that the linear approximation of h(71) given by
(5.22) is reasonably accurate.

5.8 Discussion

While the results of estimation appears to be discouraging for the use of technical
analysis, this is not necessarily true. The reason is, as we learnt from Chapter 4,
that even if prices are fully “rational”, technical indicators such as moving aver-

ages are still useful in forecasting price trends because the stock prices are strongly

176



firsi-order correlaled. However, one may question why an individual would lore-
cast prices based on technical analvsis but not dividends divectly. A likely answoer
is that dividends may not he observed at a desired frequency useful for the in-
vestors. Not to mention aggregate dividends are difficult to caleulate. Therefore,

investors need to seek an alternative forecasting strategy.

Technical analysis therelore provides a simple solution as it only requires cas-
ilv obtainable data such as past prices. Henee, it is reasonable to imagine that
investors can rely on technical analysis for higher frequency trading but once fun-
damental information ig released, tvpically at a much lower frequency compared
to stock prices, they adjusts their expectations of prices and thus prices reflect
such fundamental changes accordingly. Since our cstimation is based on monthly
data, we have no direet evidence against the use of technical analysis for high

frequency trading.

5.9 Conclusion

In this article, adapting Lucas’ (1978) one-tree representative investor framework,
we have formulated a model to study the predictive power of moving averages as
an cquilibrinm phenomenon. A special feature of this model is that prices and
the parameters of the investor’s stock price forecasting model are all determined
endogenously, as functions of structural parameters representing time preference
and risk aversion. By imposing different assumptions on the investor’s forecasting
model, we obtain several possible equilibria. The equilibrinm pricing equation
and the investor’s lorecasting model imply a sel ol orthogonality conditions which

provides the basis for estimation and testing strategics to examine whether the
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proposed equilibria are empirically supported.

The equilibria considered in this article are labelled as either a rational expecta-
tions equilibrium (REE) or a restricted perceptions equilibrium (RPE). A REE
prevails when the investor’s forecasting model coincides with the equilibrium pric-
ing equation. We show that this is the case if the investor formulates forecasts
of future prices based on dividends and observable shocks to dividends. A RPE
prevails when the investor misspecifies his forecasting model but his forecasts are
otherwise optimal within a limited class of forecasting models. We show that it
is possible to arrive at a RPE when the investor ignores dividends but forecasts

stock prices purely based on lagged prices or moving averages of past prices.

Using actual monthly data on dividends and stock index prices, we however show
that while the RPEs are theoretically attainable, they are empirically poorly sup-
ported. By contrast, we find that the REE is more plausible with superior econo-

metric performance.

5.10 Appendix

Appendix 5.A. Definitions of ¢y and ¢; in Section 5.2.4

In Section 5.2.4, we state that

1—
T R Cy + (ﬁ) C1,
Y
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when S is close to one. The coefficients ¢y and ¢; are defined as follows:

G301 — do — 1) + (14 ¢2)(d2 — 61) (61 — 1)

T T — o1+ 62— 20) — 20001 + 20, (01 — 1)
n P1[pa + &% + (61 — 1)? — 2090, ]
1+ ¢35 — ¢1(1 + ¢o — 201) — 2¢101 + 20, (61 — 1)
and
o = (141 — do) (1 + @2) (1 — Po + 201 — 1)[01(d1 + 61) — ¢2]'

(14 @2 — d1(1+ g — 201) — 2616, + 20,(6; — 1))

Their values are determined once we estimate the dividend model parameters
(¢1,¢2,01). Our estimate of 8 is 0.999583, so the approximate formula above
should be reasonably accurate. However, we recall that the purpose of this ap-
proximation is to more conveniently present how 7, is related to the structural

parameters ((3,7). The actual closed-form solution of 7; is used in our estimation.

Appendix 5.B. Estimated VAR Model for Bootstrap Reality
Check
Using detrended S&P 500 dividend and index price monthly data for the period

1871:1 to 2015:12, we obtain the following estimated VAR model for bootstrap

reality check described in Section 5.4.2:

pr = 1.276497p; 1 — 0.336224p; 5 + 0.022018p;_3 + 0.070916p;—4
+ 0.023310p;—5 — 0.047133p;_¢ — 0.015114p,_~
+ 0.000332d,;_1 + 0.169602d;_o — 0.158671d;_3 — 0.005746d;_4

—0.049974d;_5 — 0.011406d;_¢ + 0.052069d;_7 + ey,
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Adjusted R* = 0.990667, SE of equation = 0.039186, AIC = —3.632965,

dy = —0.034355p,_1 + 0.039080p,_2 + 0.002444p,_3 + 0.004711p; 4
— 0.001891p,_5 + 0.011086p;_g — 0.014586p;_7
+1.218030d,_; — 0.128928;_5 + 0.007982d;_5 — 0.022163d,_4

— 0.120889d;_5 + 0.125577d;_¢ — 0.096529d;_7 + €4,

Adjusted R* = 0.993749, SE of equation = 0.015021, AIC = —5.550691.

The lag order is selected by the AIC of the overall model which is found to
be —9.191136. Based on the Ljung-Box @-statistics for lags up to 20, we find
no evidence that the residuals are serially correlated at the 1-percent level. We
further perform the Bai-Perron break test on the squared residuals efnt but detect

no structural break. For €2, the estimated break dates are 1905:4 and 1952:3.
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Chapter 6

Conclusion

The aim of this thesis is to further tie technical analysis to modern finance theory
in an attempt to tighten this gap in the literature. The intended outcome is to
promote building a stronger theoretical basis for the use of technical analysis as an
investment Lool. We have developed lour chaplers, cach as a standalone research
paper, to study two portfolio choice problems and two asset pricing problems in
which investors make strategic use of information from technical analvsis, specif-
ically the moving averages. Our model approach provides several new insights to

the field. We summarize the main findings and their implications as follows.

In Chapter 2, we build a model 1o study the ellects of the unceriain predictive
power of moving averages on portfolio choice. We find that investors accounting
for such uncertainty allocate substantially less to stocks and are more conservative
in market timing for longer horizons. Furthermore, the utility loss of ignoring this
uncertainty becomes sizable as investment horizon increases. These findings help
justity why long-horizon investors secm to ignore much information from techni-
cal analvsis, while short-horizon investors, who tend to be more speculative, react

more strongly even though they know that such information need not be reliable.
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In Chapter 3, we present another portfolio choice model to theoretically illus-
trate that moving averages can be useful for investment when stock returns are
correlated. Calibrating our model with S&T 500 price index and dividend vield
data, we find that MA-based market timing can substantially improve anmualized
expected holding period returns. The model also implies that shorter-horizon
investors oplimally time the market more aggressively and their porilolio prol-
itability is more robust to parameter estimation crrors in their return prediction

models, results that are consistent with that of Chapter 2.

In Chapter 1, we formulate an asset pricing model and propose some plausi-
ble equilibria in which future prices can he predicted by moving averages. This
model provides a theoretical basls for some recent empirical findings that moving
averages have predictive power. Interestingly, we find that even if prices are de-
termmined only by rational fundamental investors who forecast future prices based
on information from dividends. due to sevial corvelations in dividends, technical
investors would still find that moving averages have genuine predictive power. We
also show that it is possible Lo have an equilibrinm in which prices are determined
only by technical investors who foreeast future prices based on information from
moving averages. However, for this equilibrium to be stable, a relatively short
lookback period has to be used to compute the moving averages, implving that
the market would have to be relatively informationally efficient in the genge that

remote past prices do not affect future prices.

In Chapter 3, we formulate a similar asset pricing model to that of Chapter 4
with special attention to developing estimation and testing strategies to examine

whether the proposed equilibria are empirically supported. Using S&P 300 index



and dividend data lor the peried January 1871 10 Decomber 2015, we cmpirically
reject the possibility that investors® trend following behaviour, including the use
of moving averages, is the driver of the stock market in the long run. Instead, our
results support the notion that stock prices reflect fundamental values, desgpite
the widespread use of technical analysis. T'his finding is consistent with the theo-
retical result from Chapter 4 that even “rational” prices can imply the predictive

power of moving averages.

There are several limitations of our study, Most notably, we have restricted our
attention to primarily the moving averages. While moving averages are undoubt-
edly a representative class of tools in technical analysis, more elaborate trading
rules are not considered in this thesis. We are essentially hoping that our moving-
average based models give us sufficient insights and confidence to generalize our

claims to other technical indicators, which are also trend following in nature.

We are also aware that some model assumptions are not innocuous as they ap-
pear. In Chapter 1, we assume that the investor ignores hedging demands from
the dyvnamic learning of the prediction model parameters. Such hedging demands
can have important cffeces on portfolio choice but are neglected due to mathe-
matical complexity. In Chapter 2, we assume that the drift of the stock returns
follows the Ornstein-Uhlenbeck (OU) process, and in the calibration exercise we
further assume that it is a linear function of log dividend yields (state variable).
We acknowledge that the choice of this state variable is arbitrary, for example,
alternatives at least inelude term spreads and pavout ratios. This choice of stace
variable follows from most previous related studics but we do not investigate
how the estimated model parameters would change if alternative state variables

were used. Besides, whether the dynamics of the log dividend vield can be well
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deseribed by the OU process is not empirically justilied. [n an unreported exer-
cise, we find statistical evidence that the log of monthly S&P 500 dividend vields
are actually second-order autocorrelated, violating the first-order autocorrelation
assumption commonly imposed in previous studies (the OU process implies first-
order antocorrelation). For mathematical tractability, we nonetheless ignore such
model misspecification and fit data to the QU process because the continuous-time

eqiivalence ol the second-order auloregressive model is dillicult 1o work with.

In Chapter 3 and 4, we assume that dividends are stationary and thus the equi-
librinm prices are also stationary. Thig stationarity property clear does not hold
for most stock market data. We instead detrend both the logs of price and div-
idend data and interpret the detrended data as observations from an otherwise
“real-world equivalent” stationary cconomy. While similar detrending approaches
are common in the macrocconomic literature, the extend to which our testing
results are affected by such detrending remains unclear. However, our detrending
approach does preserve the observed correlation between the logs of price and

dividend data. ensuring no artificial correlation is created.

We also acknowledge that the statistical inference in Chapter 3 is essentially based
on the estimation of the risk aversion parameter and it is estimated under the
assumption of representative investor with infinite horizon. This assumption is
nnrealigtic but I8 generally considered a nseful simplhifying assumption in asset
pricing. One can imagine there are infinite generations of investors who share the
same risk aversion. Having a sole risk aversion parameter across all gencrations
may still sound very strong, we can further imagine we are secking an average
risk aversion parameter such that it well represents all generations in our sample

period. Indeed, the literature on time-varving risk aversion suggests that risk



aversion Is mean-reverting,

In light of the results of the thesis, a notable feature of the models introduced is
the explicit modelling of the interdependency between the stock prices and the
investor's forecagts of future prices. We have illustrated this feature in three dif-
ferent contexts. In Chapter 2, while the actual stock price process is exogencus,
the individual (non-represeniative) investor uses his forecast model to speculate
how the price may behave in the longer run. Such subjective speculative beliefs
have no actual effect to the economy but is critical for the nvestor’s portfolio
choice decision. In Chapter 3, since the investor ig assumed to have the log-utility
preference, he behaves “myopically” and only the next immediate instant of price
change is relevant—swwith no further feedback considered. In Chapters 4 and 3, we
demonstrate how the actual process of stock prices and the investor's forecasts

can form a tight feedback mochanism.

This thesis openg some possible divections for future work. The following sugges-
tions are illustrative rather than exhaustive. For portfalio choice problems, models
that allow lor the role of dynamic learning of prediclion model parameters is called
for. The use of technical analysis in stock markets with time-varving volatility
also remains uninvestigated. For asset pricing problems, an equilibrinm model
allowing for investors’ heterogeneous forecasting rules is called for. Estimating
the relative proportion of fundamental and technical investors and empirically
test such a model are also worth attempting. All of these are important and

challenging topics for future rescarch.
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