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Expanded Abstract  

In recent decades, there has been significant interest in the development of a catchment 

classification framework, especially due to the growing need of a common modeling 

framework. There exist numerous approaches for classification, with different bases, 

assumptions and methods, which have been applied for catchment classification. The 

concepts of complex networks, and particularly community structure, have emerged as 

important tools for classification, and are currently gaining attention in catchment 

classification. Among the many community structure-based methods, the edge 

betweenness (EB) algorithm, which applies a hierarchical clustering concept and 

modularity function, is one of the most basic methods for identification of communities 

(groups) in large dynamically-evolving networks, such as catchment systems. The 

method’s signature steps include: (1) an iterative removal of edges (i.e. links) by 

calculation of edge betweenness values that pass through the shortest paths between 

vertices (i.e. nodes); (2) recalculation of the betweenness values after each iterative 

removal of edges; and (3) formation of communities using a modularity measure, as the 

maximum value of modularity representing the best partition of the network. Although 

the EB method has been effectively applied for classification in many different fields, 

including in hydrology, the modularity measure that is used to form the best partition of 

community structure is susceptible to network (or data) resolution or scale problem. As a 

consequence, communities may change when the size of the network changes. Since the 
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size of a network can change in many situations, as is the case with hydrologic monitoring 

stations (with the removal/addition of stations), it is important to address the resolution 

problem to obtain reliable classification outcomes. 

Motivated by this, the present study proposes a modified EB (MDEB) algorithm 

by considering the modularity density function, instead of the modularity function, for 

catchment classification. The superior performance of the MDEB method over the EB 

method is first demonstrated on a real-world network, the Zachary’s Karate Club network. 

The performance of both the EB and MDEB methods are then tested and compared by 

applying them for classification of a large number of catchments independently in two 

different countries: (1) 218 catchments in Australia; and (2) 639 catchments in the United 

States. For each study region, three different scenarios of network sizes are studied: (1) 

the entire network, as above; (2) 100 and 300 randomly selected stations (with 100 

different realizations) from these 218 and 639 streamflow stations, respectively – purely 

to address the network size; and (3) stations in each of 9 different drainage divisions in 

Australia and 14 different hydrologic units in the US, respectively – to address the 

regional similarity and influence. The analysis is mainly performed using streamflow 

data, in a single-variable sense. For both study areas, the results indicate that the MDEB 

method performs better than the EB method in catchment classification, for all of the 

above three scenarios. 
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With the better performance of the MDEB method, classification is also 

attempted in a multi-variable sense for the 218 catchments in Australia, by considering, in 

addition to streamflow, also rainfall and potential evapotranspiration (PET). In addition 

to the single-variable cases (streamflow, rainfall, and PET independently), four different 

combinations are considered: streamflow and rainfall; streamflow and PET; rainfall and 

PET; and streamflow, rainfall, and PET. For each case of multi-variable classification, a 

count of number of stations within the identified communities and count of the 

connection links that occur within the network at different threshold values are 

interpreted. The results suggest that the classification based on the multi-variable 

approach is nearly similar to that based on the single-variable approach, especially 

streamflow, but at different correlation thresholds. 

The present study is a significant advancement in the application of the concepts of 

complex networks, especially community structure, for catchment classification, as it 

offered an improved community structure methodology (edge betweenness) as well as an 

approach based on multiple variables. Such advancement is certainly promising for the 

development of a generic catchment classification framework. 
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Chapter 1  

Introduction 

 

 

 

 

1.1 Background 

Hydrology has seen rapid growth during the last century, particularly facilitated by 

technological and methodological advances, including powerful computers, geographic 

information system (GIS), measurement devices, digital elevation models (DEMs), 

remote sensors, scientific theories and mathematical techniques, and networking 

facilities. Despite these advances, there remain a number of major concerns in 

hydrologic modelling and forecasting, especially in regards to the ever-increasing 

complexity of models (e.g., Jakeman and Hornberger, 1993; Perrin et al., 2001; Beven, 

2002) and the disparate nature of hydrologic research without a generally acceptable 

framework for all (e.g., Sivakumar, 2008a, b). These concerns have led, among others, 

to an increasing realization on the need for a common modelling framework (e.g.,  
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Woods, 2002; Sivapalan et al., 2003; Gupta, 2004; McDonnell and Woods, 2004; 

Sivakumar, 2004, 2008a; Sivapalan, 2005; Dawdy, 2007; Sivakumar et al., 2007; 

Winsemius et al., 2009; Clark et al., 2011; McDonnell and Beven, 2014; Song et al., 

2015). While there may be many different ways to achieve such a framework, 

catchment classification has gained significant attention in recent years (e.g., Olden and 

Poff, 2003; Snelder et al., 2005; Isik and Singh, 2008; Moliere et al., 2009; Kennard et 

al., 2010b; Sivakumar and Singh, 2012; Nguyen et al., 2015). 

The basic idea in catchment classification is to streamline catchments into 

different groups and sub-groups based on their salient characteristics (e.g. system, 

process, scale, and data properties). Due to the various degrees of complexity exhibited 

by different types of catchments, grouping of catchments based on their salient 

characteristics is particularly useful for the identification of appropriate complexity of 

models and for the interpolation/extrapolation of data (including predictions in 

ungauged basins) that can aid in the planning and management of water, environmental, 

and ecologic systems; see, for example, Ley et al. (2011), Patil and Stieglitz (2011), 

Sawicz et al. (2011), Ali et al. (2012), Vignesh et al. (2015), Fang et al. (2017), and 

Tongal and Sivakumar (2017) for some recent studies for details. 

  

1.2 A Brief Review of Catchment Classification 

The idea of catchment classification had been addressed as early as in the 1930s (Pardé, 

1933), and received further attention since the 1960s (e.g., Beckinsale, 1969; Budyko, 

1974; Gottschalk et al., 1979; L’vovich, 1979; Haines et al., 1988; Nathan and 
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McMahon, 1990; Rosgen, 1994; Krasovskaia, 1997; Hall and Minns, 1999; Krasovskaia 

et al., 1999). However, studies during the last two decades or so have provided a 

catalyst to this issue. Part of this increased interest has been due to the availability of 

more sophisticated mathematical techniques and better-quality data for analysis as well 

as the need to study and obtain hydrologic data for ungauged basins (e.g., Sivapalan et 

al., 2003; Schröder, 2006; Kim and Kaluarachchi, 2008; Oudin et al., 2008; Reichl et 

al., 2009; Seibert and Beven, 2009; Zhang and Chiew, 2009; Sauquet and Catalogne, 

2011; Sivakumar and Singh, 2012; Ali et al., 2012; Nguyen et al., 2015; Sivakumar et 

al., 2015; Fang et al., 2017; Tongal and Sivakumar, 2017). The initiative by the 

International Association of Hydrological Sciences (IAHS) on “Predictions in 

Ungauged Basins” (PUB), has also contributed to this (e.g., Sivapalan et al., 2003; 

Hrachowitz et al., 2013). 

Studies on catchment classification have used different assumptions, bases, and 

approaches, both to take into account the properties of hydrologic systems (e.g., 

complexity, scale, nonlinear interdependence, hidden order and determinism, sensitivity 

to initial conditions, and nature and strength of connections within and among the 

components) and to take advantage of the mathematical techniques at our disposal. 

These include river/flow regimes (e.g., Moliere et al., 2009), hydroclimatic factors (e.g., 

Budyko, 1974; L’vovich, 1979), river morphology (e.g., Poff et al., 2006), hydrologic 

similarity indexes and signatures, including for regionalization (e.g., Patil and Stieglitz, 

2011; Sawicz et al., 2011; Ali et al., 2012; Casper et al., 2012), landscape and land use 

parameters (e.g., Merz and Blöschl, 2004; Wardrop et al., 2005), eco-hydrologic and 

geomorphic factors (e.g., Kennard et al., 2010a; Olden et al., 2012), hydropedological 

factors (e.g., Bouma et al., 2011), geostatistical properties (e.g., Vormoor et al., 2011), 
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entropy (e.g., Krasovskaia, 1995, 1997), symbolic dynamics into biological signatures 

(e.g., Hauhs and Lange, 2008), nonlinear dynamic properties (e.g., Sivakumar and 

Singh, 2012), data-based mechanistic strategies (e.g., Wagener and McIntyre, 2012), 

data-driven approaches (e.g., Di Prinzio et al., 2011; Ley et al., 2011), and other 

relevant characteristics/methods (e.g., Isik and Singh, 2008; Wagener et al., 2008). The 

aforementioned studies have resulted in encouraging outcomes for the provision of a 

generalisation framework; however, they have also led to additional difficulties. These 

difficulties are caused by a combination of external factors, internal catchment/process 

properties, scientific concepts, and mathematical techniques that are driven to realize 

their importance to specifically outline the processes that are involved to form a 

classification. However, these have not been sufficiently considered in the past studies 

and, thus, such studies have limited our ability to accomplish a proper basis of 

classification (e.g., Olden et al., 2012). With regard to the importance of the basis of 

classification, some of the crucial processes involved in classification are: consideration 

of criteria used and the associated data (in terms of selection, treatment, and assessment) 

(e.g., Olden et al., 2012), dealing with anthropogenic effects (i.e., uncertainties 

associated with data on land cover, water quality, and climate projections) (e.g., Carillo 

et al., 2011; Bocchiola et al., 2011; Casper et al., 2012), and the suitability of 

mathematical techniques (i.e., the advantages and limitations) to obtain a reliable 

classification of catchments (Sivakumar et al., 2015). In the context of identifying ideal 

mathematical techniques for catchment classification, assessing the suitability of 

methods for broader sets of catchment conditions and process properties required by 

models could be useful. Therefore, there is a need for a coherent and more general 

approach that can consider these in one way or another.   



CHAPTER 1 

5 

 

 

1.3 Complex Networks-based Methods for Catchment 

Classification 

Considering that hydrologic systems exhibit different levels of complexity and that 

hydrologic models need to be developed to represent such complexity, there are 

arguments in favor of using hydrologic ‘system complexity’ as an appropriate basis for 

catchment classification (e.g., Sivakumar and Singh, 2012). In this context of system 

complexity and connections, the concepts and methods developed in the field of 

complex systems science, especially recent developments under the umbrella of complex 

networks (e.g., Watts and Strogatz, 1998; Barabási and Albert, 1999; Girvan and 

Newman, 2002) can be particularly useful. A network (or graph) is a set of points 

connected together by a set of lines, where the points are known as nodes or vertices 

and the lines are called as links or edges. The concepts of complex networks, and 

particularly community structure, have emerged as important tools for studying the 

dynamic connections in complex systems and for their classification and, hence, are 

currently gaining attention in hydrology, including for catchment classification (e.g., 

Sivakumar and Woldemeskel, 2014; Halverson and Fleming, 2015; Braga et al., 2016; 

Serinaldi and Kilsby, 2016; Fang et al., 2017; Han et al., 2018; Yasmin and Sivakumar, 

2018). 

Community structure is defined as a network structure where distinct groups 

(i.e., communities) are formed by a cluster of nodes (e.g., catchments), where each of 

them is more densely linked together when compared to the rest of the network. To our 

knowledge, only two studies (Halverson and Fleming, 2015; Fang et al., 2017) have, 
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thus far, applied the concepts of complex networks, especially community structure, for 

catchment classification. Halverson and Fleming (2015) applied eight different 

community structure methods (walktrap, fast greedy, leading eigenvector, edge 

betweenness, multi-level, label propagation, info map, and optimal) to daily streamflow 

data from 127 catchments in the Coast Mountains of British Columbia and Yukon in 

Canada for their classification. Fang et al. (2017) applied six community structure 

methods (edge betweenness, greedy, multilevel modularity optimization, leading 

eigenvector, label propagation, and walktrap) to daily streamflow data from 1663 

stations in the Mississippi River basin, USA (as a representative large-scale basin) for 

catchment classification. 

The outcomes of these studies on the suitability and effectiveness of community 

structure methods, and complex networks concepts more broadly, are certainly 

encouraging. They are particularly promising, as the communities are found to offer 

useful catchment system/process interpretations, including in terms of catchment 

properties (e.g., drainage area, elevation), flow properties (e.g., mean, coefficient of 

variation, correlation-distance, unit hydrograph), and others (e.g., river network 

formation), as appropriate. 

 

1.4 Statement of the Research Problem 

Despite their encouraging outcomes, the above community structure-based studies are 

still insufficient in assessing the general suitability of community structure methods for 

catchment classification. For instance, the study by Halverson and Fleming (2015) only 
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examined a relatively small number of stations (127) from a relatively small region 

(west coast of Canada), despite the differences in topographic/catchment properties in 

the region. Similarly, although the study by Fang et al. (2017) examined a large number 

of catchments (1663) from a large-scale river basin (the Mississippi River basin), 

covering a wide range of hydroclimatic, topographic, and land use properties, it cannot 

account for catchments that are spread across large regions and/or different river basins 

and, thus, cannot offer reliable and convincing information as to the suitability and 

effectiveness of community structure methods for catchment classification, in a general 

sense. Therefore, it is important to apply the community structure methods to 

catchments across large regions and different river basins, which, in all likelihood, 

cover a much wider range of possibilities in terms of hydroclimatic, topographic, 

geomorphic, land use, and other relevant properties. 

At the same time, although community structure methods have been shown to be 

useful and effective for classification of many different systems, they also often have 

limitations when applied to real dynamically-evolving systems (Fortunato and 

Barthélemy, 2007). Therefore, finding the limitations of any community structure 

method is important to more reliably assess its usefulness and effectiveness of 

classification of real systems. Consequently, it is also important to modify the existing 

algorithms to overcome such limitations or even develop new methods for more reliable 

outcomes. 

Finally, in catchment classification studies, it is a common practice to use only a 

single variable representing the catchments. This is especially the case in studies that 

have applied the concepts of community structure (and complex networks, more 
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broadly). Since streamflow is the central and representative component of catchments, 

most studies have essentially used the streamflow data for catchment classification, in 

the sense of single-variable analysis. However, inclusion of additional variables that 

govern the catchment dynamics in one way or another (e.g., rainfall and potential 

evapotranspiration) can often lead to more reliable classification, since their inclusion 

will bring more stringent conditions for classification. The fact that almost all the 

variables influencing the catchment dynamics are also often interconnected and interact 

in a nonlinear manner provides additional stimulus on their inclusion for catchment 

classification. Therefore, it is important to perform a multi-variable analysis, with as 

many variables influencing the catchment dynamics as possible, by including variables, 

in addition to streamflow. 

 

1.5 Objectives of the Study 

The observations made above reveal that a proper assessment on the general suitability 

of the community structure methods for catchment classification is still lacking. Finding 

the limitation(s) of any community structure method is certainly useful to enhance the 

performance and assess its usefulness for classification. More stringent conditions also 

need to be imposed to examine the usefulness and efficacy of a particular community 

structure method. To achieve these, a coherent effort is clearly needed. This provides 

the motivation for the present thesis. 
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 The overall aim of this thesis is to propose a better community structure-based 

approach for catchment classification. This is proposed to be achieved through the 

following specific objectives: 

1. Application of a community structure method, specifically the edge betweenness 

(EB) method, to classify numerous catchments in two large regions (with 

different climatic conditions, topographic characteristics, land uses, and other 

relevant properties) to assess the general suitability and effectiveness of the 

method. To this end, 218 catchments across Australia and 639 catchments across 

the United States are studied. Streamflow data are used, in a single-variable 

sense, for identifying the connections between catchments and for classifying 

the catchments; 

2. Development of an improved edge betweenness method for catchment 

classification. This is proposed to be achieved by addressing the issue of 

resolution limit (i.e., network size), an important limitation of the modularity 

function used in the EB method to split the entire network into different 

communities. To this end, instead of the modularity function, a modularity 

density function is used in the EB method. The improved method is termed as 

the modularity density-based edge betweenness (MDEB) method. The method is 

implemented for the above catchments in Australia and in the United States, 

using streamflow data in a single-variable sense. 

3. Proposal of a multi-variable approach for catchment classification, by involving 

multiple variables influencing the catchments. This is achieved by including 

rainfall and potential evapotranspiration (PET), in addition to streamflow. Four 
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different combinations of these variables are considered, and the approach is 

implemented for classification of catchments in Australia.  

 As for the methodology development, the performance of the MDEB method in 

classifying catchments is compared against that of the EB method, to assess its 

superiority, if any. To assess the influence of catchment variables on classification, the 

classification results from the multi-variable approach are compared with those from the 

single-variable approach. These comparisons and the associated interpretations and 

conclusions are expected to shed some light on the usefulness and effectiveness of the 

community structure concepts for catchment classification, and complex networks more 

broadly for hydrologic modelling and forecasting. 

 

1.6 Outline of the Thesis 

The rest of this thesis is organized as follows. Chapter 2 presents a review of the 

literature on catchment classification studies. Particular emphasis is given to discussing 

the role of the concepts of complex networks for hydrologic studies, especially 

community structure concepts for catchment classification. Chapter 3 provides a 

detailed description of the network methodology used in this thesis. The concepts of a 

network, complex networks, and community structure are reviewed. After a detailed 

description of the edge betweenness method using an example, the issue of the 

resolution limit is highlighted using a widely-used real network, the Zachary Karate 

Club network. This leads to the proposal of an improved edge betweenness method, the 

modularity density-based edge betweeness (MDEB) method. Finally, a multi-variable 



CHAPTER 1 

11 

 

approach for catchment classification is also presented. Chapter 4 describes the two 

study areas (218 catchments in Australia and 639 catchments in the United States) and 

the data considered in this study. 

 Chapter 5 presents the application of the edge betweenness method for 

classification of catchments in Australia and in the United States, using only streamflow 

data in a single-variable sense. The catchment communities are interpreted in terms of 

catchment/flow properties, among others. Chapter 6 presents the application of the 

MDEB method for classification of catchments in Australia and in the United States, 

using only streamflow data in a single-variable sense. A comparison between the 

performance of the EB method and the MDEB method for catchment classification is 

also made. 

 In Chapter 7, the application of the multi-variable approach in the MDEB 

method for classification of catchments in Australia is presented, with the inclusion of 

rainfall and PET, in addition to streamflow. The classification results from the multi-

variable-based MDEB analysis are also compared with those from the single-variable-

based MDEB analysis. Interpretations of the classification results are also made in terms 

of correlations between stations, distance-correlation relationship, and accurate station 

count for the communities identified, among others. Finally, Chapter 8 draws some key 

conclusions from the present study and offers potential directions for further research. 
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Chapter 2  

Catchment Classification – Literature Review 

 

 

 

 

2.1  Introduction 

There have been tremendous advances in hydrology and water resources, facilitated 

by the invention of powerful computers, scientific theories and mathematical 

techniques, measurement devices, geographic information system (GIS), digital 

elevation models (DEMs), and networking facilities. Nevertheless, there remain 

many big challenges in teaching, research, and practice in hydrology and water 

resources. It has been increasingly realized, in recent years, that there is a need for 

simplification in hydrologic models and a common framework for hydrologic 

modelling (e.g., Grayson and Blöschl, 2000; Woods, 2002; Sivapalan et al., 2003; 

McDonnell and Woods, 2004; Sivakumar, 2004, 2008b; Wagener et al., 2007; 

Young and Ratto, 2009; Olden et al., 2012). In the context of a general framework 

for hydrology, catchment classification has been proposed as one possible means, 
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and has gained significant attention (e.g., Harris et al., 2000; Olden and Poff, 2003; 

McDonnell and Woods, 2004; Snelder et al., 2005; Poff et al., 2006; Sivakumar et 

al., 2007; Wagener et al., 2007; Isik and Singh, 2008; Moliere et al., 2009; Kennard 

et al., 2010a; Sivakumar and Singh, 2012; Nguyen et al., 2015). 

          The basic idea of catchment classification is to streamline catchments into 

different groups and sub-groups based on their salient characteristics (e.g., system, 

process, scale, and data properties). As Sivakumar et al. (2015) pointed out, most of 

the existing approaches to catchment modelling adopt either of the following 

extreme views: (1) regardless of the differences among all the catchments, all 

catchments are treated in the same way; and (2) regardless of the similarities among 

all the catchments, each catchment is treated in its own way. Therefore, any attempt 

to offer a reliable approach for catchment classification (and modelling more 

broadly) should adopt a middle-ground approach. In the end, a catchment 

classification framework should have at least three main expected outcomes: (1) it 

should be designed to provide an ideal way of studying catchments, taking into 

account both the minimization of the costs and the maximization of the benefits; (2) 

it should be able to accommodate important general characteristics as well as 

specific ones for catchments and the associated processes; and (3) it must also be 

simple and able to provide a common language for communication and discussion 

among academics, researchers, and practitioners in the fields of hydrology, water 

resources, ecology, geography, geomorphology, and beyond. By achieving these to 

form such a framework, catchment classification can be useful for the identification 

of the appropriate complexity of models for different types of catchments and for the 

interpolation/extrapolation of data, including predictions in ungauged basins (e.g., 
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McDonnell and Woods, 2004; Wagener et al., 2007; Hauhs and Lange, 2008; 

Sivakumar, 2008a; Wagener et al., 2008; Bocchiola et al., 2011; Carrillo et al., 2011; 

Di Prinzio et al., 2011; Ley et al., 2011; Patil and Stieglitz, 2011; Sawicz et al., 2011; 

Ali et al., 2012; Sawicz, 2013; Sivakumar et al., 2015; Fang et al., 2017; Tongal and 

Sivakumar, 2017).  

 

2.2  Catchment Classification Framework Development 

An effective and reliable classification scheme must be able to provide names or 

types of catchments, hydrologic information transfer (i.e., regionalization of 

information), development in generalization (i.e., able to develop new theories), and 

also to provide a first-order environmental change impact assessment (i.e., the 

hydrologic implications of climate and land use change) (e.g., Grigg, 1965,  1967; 

Milly et al., 2008). There exist many different methods for catchment classification. 

In what follows, a brief review of such methods is presented.  Particular emphasis is 

given to the complex networks-based methods, as such is the focus of this thesis. 

 

2.2.1 Catchment Classification Methods 

As early as during the 1930s and, especially since the 1960s, numerous attempts have 

been made to advance the idea for a catchment classification framework. 

Consequently, different theoretical bases and a variety of mathematical techniques 

have been used to classify numerous catchments in different geomorphologic and 
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climatic settings. Based on such studies, various important implications have been 

offered for hydrology, ecohydrology, environment, and water resources, including 

for under the conditions of climate change. 

          Until the end of the twentieth century, attempts on catchment classification 

were mainly focused on river flow regimes, hydroclimatic factors, and hydrologic 

similarity, which were perhaps mainly driven towards aiding hydrologic modeling in 

regionalization analyses (e.g., Pardé, 1933; Beckinsale, 1969; Budyko, 1974; 

Gottschalk et al., 1979; L’vovich, 1979; Tasker, 1982; Haines et al., 1988; Chapman, 

1989; Nathan and McMahon, 1990; McMahon and Finlayson, 1992; Lins, 1997; 

Krasovskaia et al., 1999). However, the realization of the impacts that river flows 

have (floods, low flows, and droughts) on water resources, environment, and 

ecosystems has led researchers to view the catchment classification problem in such 

contexts as well. Consequently, many other studies have attempted environmental 

and ecosystem classification, particularly facilitated by the aforementioned advances 

in studying flow regimes, river geomorphology, and hydrologic similarity and 

signatures (e.g., Hughes and James, 1989; Claussen and Biggs, 2000; Detenbeck et 

al., 2000; Harris et al., 2000; Snelder and Biggs, 2002; Loveland and Merchant, 

2004; Snelder et al., 2004, 2005; Snelder and Hughey, 2005; Kampichler et al., 2010; 

Kennard et al., 2010a, b; Zhang et al., 2012). Since the beginning of this century, 

many other bases and approaches have been used for catchment classification, with 

emphasis on model complexity and predictions in ungaged basins, among others 

(e.g., Krasovskaia and Gottschalk, 2002; Sivakumar, 2003; Sivapalan et al., 2003a; 

Merz and Blöschl, 2004; Poff et al., 2006; Rao and Srinivas, 2006a, b; Schröder, 

2006; McMahon et al., 2007a, b; Wagener et al., 2007; Isik and Singh, 2008; Kim 
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and Kaluarachchi, 2008; Oudin et al., 2008; Hrachowitz et al., 2009; Moliere et al., 

2009; Reichl et al., 2009; Seibert and Beven, 2009; Zhang and Chiew, 2009; Patil 

and Stieglitz, 2011; Vormoor et al., 2011; Sims et al., 2012; Sivakumar and Singh, 

2012; Ali et al., 2012; Nguyen et al., 2015; Sivakumar et al., 2015; Fang et al., 2017; 

Tongal and Sivakumar, 2017). 

           The various methods for studying the classification of catchments (and others) 

may generally be grouped into deductive approaches and inductive approaches 

(Olden et al., 2012). As emphasized by Olden et al. (2012), it is essential to explicitly 

describe the steps taken in the development of a classification system, including 

standards used for data choice, data handling and assessment, metric choice and 

basis, and classification method, including the explicit basis for derivation of the 

final group number. The need to address the aforementioned issues is crucial for such 

studies and the methods to be useful in wider practice. 

          During the past century, studies on the influences of anthropogenic activities 

and their impacts for catchment classification have become extremely important. 

Many attempts have been made to address the uncertainty in catchment classification 

associated with land use, land cover, and climate (e.g., Krasovskaia and Gottschalk, 

2002; Bower et al., 2004; Snelder et al., 2005; Carillo et al., 2011; Bocchiola et al., 

2011; Casper et al., 2012). However, the outcomes of such studies need to be 

carefully interpreted, especially with the uncertainties associated with data on land 

cover, water quality, and climate projections. 

           There exists a plethora of alternate avenues, mathematical techniques, and 

scientific concepts that are beneficial to attain catchment classification, whether 
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classification is based on hydrology or ecohydrology or other. For instance, the 

current approaches for classification include regression-based methods (e.g., 

Kennard et al., 2010); cluster analysis, including fuzzy clustering and partitioning 

(e.g., Rao and Srinivas, 2006a, b; Moliere et al., 2009; Kennard et al., 2010; Sawicz 

et al., 2011; Ali et al., 2012); principal component analysis (e.g., Snelder et al., 

2005); entropy-based methods (e.g., Krasovskaia, 1995, 1997); symbolic dynamic 

and nonlinear dynamic concepts (e.g., Krasovskaia and Gottschalk, 2002; 

Sivakumar, 2003; Sivakumar et al., 2007; Hauhs and Lange, 2008; Sivakumar and 

Singh, 2012); and other methods, such as data-driven, data-based mechanistic, and 

geostatistical (e.g., Castiglioni et al., 2011; Di Prinzio et al., 2011; Ley et al., 2011; 

Vormoor et al., 2011; Wagener and McIntyre, 2012).  

          In the context of finding an appropriate approach for catchment classification, 

as reported by Sivakumar et al. (2015), concepts of nonlinear dynamics and networks 

seem to offer a practical methodology for identification of the catchment complexity 

and classification of catchments. Such concepts have been shown to be useful in the 

study of a wide range of systems, processes, and problems encountered in diverse 

fields, including hydrology, ecology, atmospheric sciences, physics, chemistry, 

biology, engineering, technology, economics, medicine, psychology, politics, and 

social sciences (e.g., Tsonis, 1992; Goerner, 1994; Strogatz, 1994; Abarbanel, 1996; 

Kantz and Schreiber, 1997; Phillips, 1999; Watts, 1999; Sivakumar, 2000; Liljeros et 

al., 2001; Barabási, 2002; Newman et al., 2003; Tsonis and Roebber, 2004; Barrat et 

al., 2008). In addition, studying catchment classification essentially involves their 

grouping or regionalization based on one or more criteria as a network, which could 

differ in terms of the purpose, data accessibility and application, metric considered, 
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methodology, and others. The size and nature of such a network depend on the 

geographic extent, number of catchments, type and resolution (spatial and temporal) 

of data, and other factors. 

          The basic idea in catchment classification is to examine if some connections 

exist (e.g., correlation, similarity) between/among catchments and to then use the 

strength of such connections for grouping (with due consideration to the possible 

spuriousness of connections), regardless of any approach. In the system of 

catchments, the connections may be developed in the form of geographic proximity, 

hydrologic similarity and signatures, hydroclimatic factors, landscape and land use 

parameters, and others. These observations make it clear that a methodology that can 

reliably represent the network in its entirety is needed for an effective and efficient 

formulation of a catchment classification framework. Recent developments in the 

field of complex systems, especially complex networks science, seem to offer such a 

methodology. 

 

2.2.2  Network Concept for Catchment Classification  

The catchment classification problem basically consists of studying a network of 

catchments and dividing them based on one or more criteria. The number of 

catchments, type and resolution (spatial or temporal) of data, geographic, and other 

factors are the common variabilities involved in the size and nature of a network. The 

purpose, data availability and use, metric considered, methodology employed, and 

others may lead to fluctuations on the criteria for grouping. The basic idea in 
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catchment classification is to examine the existence of some connections (e.g., 

correlation, similarity) between/among catchments and then use the strength of such 

connections for grouping (despite the consideration in a possible fallacy of 

connections) regardless of the approach. As reviewed previously, the connections 

may be in the form of geographic proximity, hydrologic similarity and signatures, 

hydroclimatic factors, landscape and land use parameters, and others. In the context 

of system complexity, the suitability of concepts and methods developed in the field 

of complex systems science, especially recent developments under the umbrella of 

complex networks (e.g., Watts and Strogatz, 1998; Barabási and Albert, 1999; Girvan 

and Newman, 2002). A network (or graph) is a set of points connected together by a 

set of lines, where the points are known as nodes or vertices and the lines are called 

as links or edges. 

          A large number of measures have been developed to study the properties of 

complex networks, including clustering coefficient, degree distribution, shortest (or 

geodesic) path, and community structure. The concepts of complex networks and the 

associated measures have been widely applied in numerous research fields for almost 

two decades now. However, their applications in hydrology and closely-related fields 

are fairly new, and applications have started to emerge only recently, including for 

rainfall networks (e.g., Malik et al., 2012; Boers et al., 2013; Scarsoglio et al., 2013; 

Sivakumar and Woldemeskel, 2015), river networks (e.g., Rinaldo et al., 2006; 

Zaliapin et al, 2010), streamflow networks (e.g., Sivakumar and Woldemeskel, 2014; 

Braga et al., 2016; Serinaldi and Kiksby, 2016; Han et al., 2018; Yasmin and 

Sivakumar, 2018), and virtual water networks (e.g., Suweis et al, 2011; Konar et al., 

2011; Carr et al., 2012; Dalin et al., 2012; D’Odorico et al., 2012; Tamea et al., 
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2013). Application of the concepts of complex networks, and particularly community 

structure, for catchment classification is currently gaining attention (e.g., Halverson 

and Fleming, 2015; Fang et al., 2017). 

 

2.2.3 Community Structure-based Methods for 

Catchment Classification 

In many complex networks, nodes cluster together into distinct groups, with each 

group more densely linked together when compared to the rest of the network. The 

properties of these groups are generally independent of the properties of the 

individual nodes and of the network as a whole. These groups are known as 

communities, and this kind of network structure is known as community structure. 

Intuitively, community is deemed as a set of entities in the network sense, where 

each entity is closer to the other entities within the community than to the entities 

outside it (Coscia et al., 2012). To our knowledge, there have, thus far, been only two 

studies that have specifically applied the community structure methods for catchment 

classification (Halverson and Fleming, 2015; Fang et al., 2017). Halverson and 

Fleming (2015) studied 127 stations from a network of streamflow gauging stations 

along the west coast of Canada. In addition to the investigation of whether regional 

streamflow hydrology might be quantitatively represented as a formal network, their 

study was aimed at assessing whether the results from the network-based methods 

might offer important information as to the optimal design of streamflow monitoring 

systems. They employed a host of network-based methods, including clustering 

coefficient, degree distribution, average shortest path length, betweenness, and 
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community structure. They identified ten groups by applying eight different 

community structure methods and also presented the representative unit hydrographs 

for the ten groups and discussed the classification of stations in terms of elevation 

and drainage area. They proposed that an idealized sampling network should sample 

high-betweenness stations as well as small-membership communities which are, by 

definition, a rare or undersampled relative to other communities, while at the same 

time retaining some degree of redundancy to maintain network robustness.  

          Fang et al. (2017) attempted catchment classification using six community 

structure methods on daily streamflow data from a network of 1663 stations in the 

Mississippi River Basin. The study was the first ever to apply the community 

structure methods for a large river basin. The consistency of the identified 

communities from each method was assessed using the Normalized Mutual 

Information (NMI) value. The results indicated that, in addition to geographic 

proximity, organization of the river network (e.g., main stem, river branching) also 

plays an important role in the formation of different communities of catchments. An 

examination of the identified communities against some important catchment/flow 

properties (altitude, drainage area, flow mean, and flow coefficient of variation) 

offered some interesting observations, as did the distance-correlation relationship. 

          The outcomes of the studies by Halverson and Fleming (2015) and Fang et al. 

(2017) are certainly promising, regarding the suitability and effectiveness of the 

community structure methods, and complex networks concepts more broadly, for 

catchment classification. This is particularly so, as the communities offer useful 

catchment system/process interpretations in terms of catchment properties (e.g., 
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drainage area, elevation), flow properties (e.g., mean, coefficient of variation, 

correlation-distance, unit hydrograph), and others (e.g., river network formation). 

Nevertheless, these studies are largely insufficient in assessing the general suitability 

of community structure methods for catchment classification. For instance, the study 

by Halverson and Fleming (2015) only examined a relatively small number of 

stations (127) from a relatively small region (west coast of Canada), despite the 

differences in topographic/catchment properties in the region. Even though the study 

by Fang et al. (2017) examined a large number of stations (1663) from a large-scale 

river basin (the Mississippi River basin), covering a wide range of hydroclimatic, 

topographic, and land use properties, there are also possible strong inherent 

connections between the catchments, since all the stations essentially belong to only 

one large river basin. As a result, these studies cannot account for catchments that are 

spread across large regions and/or different river basins and, thus, cannot offer 

reliable and convincing information as to the general suitability and effectiveness of 

community structure methods for catchment classification. 

 

2.3 Research Gaps and Goals 

The issues mentioned above can only be addressed by studying catchments across 

large regions and different river basins, which, in all likelihood, cover a wide range 

of possibilities in terms of hydroclimatic, topographic, geomorphic, land use, and 

other relevant properties. Apart from that, despite their effectiveness for catchment 

classification, each of the community structure methods has its own limitations. For 

instance, the edge betweenness (EB) method is susceptible to the network resolution 
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(size) problem and, thus, can influence the classification outcomes when the network 

size (e.g., number of catchments used for classification) changes. Therefore, it is 

extremely important to carefully examine the limitations of the community structure 

methods, so that appropriate modifications or new developments can be undertaken 

for a more reliable classification framework. These provide the motivation for the 

present study. 

          In light of the above, the present study attempts to improve the existing 

traditional community structure-based methods for applications in catchment 

classification. In particular, the study focuses on the edge betweenness (EB) 

algorithm (Girvan and Newman, 2002). The EB method, which applies a hierarchical 

clustering concept and modularity function, is one of the widely-used methods for 

identification of communities (groups) in large dynamically-evolving networks, such 

as catchment systems. Although the EB method has been effectively applied for 

classification in many different fields, including in hydrology, it is also susceptible to 

network (or data) resolution or scale problem caused by the modularity function. 

Since the size of a network can change in many situations, it is important to address 

the resolution problem to obtain reliable classification outcomes. To overcome this 

resolution or scale problem for catchment classification, an improved EB algorithm 

is proposed by replacing the modularity function with the modularity density 

function to decide on the best division of communities in the network. Both the EB 

method and the improved EB method (the latter is termed as the modularity density-

based edge betweenness (MDEB)) are first applied to one of the most-studied real 

networks, the Zachary’s Karate Club network, to assess their performance. To assess 

the general suitability of the methods for catchment classification, the methods are 
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then applied independently for classification of a large number of catchments in two 

different countries: (1) 218 catchments in Australia; and (2) 639 catchments in the 

United States. In each case, three different network scenarios that take into account 

the influence of network size and regional similarity are considered. The analysis is 

first performed in a single-variable sense, with use of only streamflow data from the 

respective catchments. 

          It is important to recognize the role of interactions between surface water and 

climatic inputs (e.g., rainfall and potential evapotranspiration (PET)) and, hence, on 

the influence of climate inputs on catchment functions and classification. Therefore, 

studying streamflow data alone for catchment classification is often not sufficient, 

and there is indeed a need to also include other variables that may have notable 

influence on catchment functions and, thus, classification. In light of this, the present 

study considers, in addition to streamflow, data of two climate variables: rainfall and 

PET. With this, the study makes the first ever attempt on a multi-variable approach 

in the application of community structure method for catchment classification. In the 

multi-variable-based analysis, different combinations of multiple variables are 

considered, by combining any two and all three variables. The results obtained from 

the multi-variable approach are also compared with those from the single-variable 

classification, especially streamflow. 
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Chapter 3  

METHODOLOGY 

 

 

 

 

3.1 Introduction  

An effective and reliable catchment classification framework requires an approach that 

is able to address all the key aspects associated with hydrologic system dynamics, 

especially their complexity, nonlinearity, and dynamically-evolving properties. In this 

regard, modern developments in complex systems science have been found to be very 

useful to represent many of the key properties of hydrologic systems and for their 

classification (e.g., Regonda et al., 2004; Salas et al., 2005; Sivakumar et al., 2007; 

Mishra et al., 2009; Li et al., 2010; Tongal et al., 2013); see also Sivakumar and 

Berndtsson (2010) and Sivakumar (2017) for comprehensive accounts. Among such 

developments, complex networks-based methods are particularly useful for their ability 

to study system connections and dynamics in a holistic manner and, hence, their 

applications in hydrology and water resources are of great interest at the current time 

(e.g., Rinaldo et al., 2006; Scarsoglio et al., 2013; Sivakumar, 2015; Sivakumar and 

Woldemeskel, 2014, 2015; Halverson and Fleming, 2015; Braga et al., 2016; Serinaldi 
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and Kilsby, 2016; Fang et al., 2017; Jha and Sivakumar, 2018; Han et al., 2018; Yasmin 

and Sivakumar, 2018). In the specific context of classification, the concept of 

community structure is useful. Community structure is defined as a network structure 

where distinct groups (i.e., communities) are formed by a cluster of nodes (e.g., 

catchments), where each of them is more densely linked together when compared to the 

rest of the network. Application of the community structure concept, and complex 

networks more broadly, for catchment classification is fairly new. To our knowledge, 

the studies by Halverson and Fleming (2015) and Fang et al. (2017) have been the only 

ones to specifically apply the concepts of community structure for catchment 

classification. The outcomes are certainly encouraging, as they indicate the suitability 

and effectiveness of community structure methods, and complex networks concepts 

more broadly. 

 While there is no question that community structure algorithms are useful for 

catchment classification, one must be careful in implementing them, especially when it 

comes to real dynamically-evolving systems. This is because, community structure 

algorithms often have limitations, and the limitations may also be different for the 

different methods. Therefore, finding the limitations of any community structure 

method is necessary to assess the potential errors in the resulting classification and, 

consequently, to modify and improve the method further for a more reliable 

classification. The present study addresses this issue, with particular reference to the 

edge betweenness algorithm (Girvan and Newman, 2002). The edge betweenness 

method measures the shortest path of a particular link in the network and the 

communities are defined using a quality measure function called modularity function (or 

Q value) and the maximum value of modularity leads to the best community formation. 
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However, the method is susceptible to the issue of scale or resolution. This study 

addresses this issue in the implementation of the method for catchment classification 

and also proposes an improved edge betweenness algorithm. 

     

3.2 Network: Concepts and Measures  

A network (or graph) is a set of points called nodes (or vertices) connected together by 

links (or edges), as shown in Figure 3.1. Mathematically, a network can be represented 

as G = {V, E}, where V is a set of N nodes (𝑉1 , 𝑉2 , … 𝑉𝑁 ) and E is a set of n links. 

Figure 3.1 shows a network with N = 5 nodes and n = 6 links. Hence, in this network, V 

= {1,2,3,4,5} and the set of links is E = {[1,2], [1,4], [2,4], [3,4], [3,5], [4,5]}. 

 Figure 3.1 shows the simplest form of a network consisting of a set of identical 

nodes connected by identical links. There are many ways in which networks may be 

(made) more complex. For instance: (1) a network may have more than one different 

type of node and/or link; (2) the nodes and links may have a variety of properties 

associated with them, such as different weights for different nodes and links depending 

on the strength of nodes and connections; and (3) the links can be directed, pointing in 

only one direction. The directed networks can be either cyclic (i.e., containing closed 

loops of links) or acyclic. Further, networks can have multi-links (i.e., repeated links 

between the same pair of nodes), self-links (i.e., links connecting a node to itself), and 

hyperlinks (i.e., links connecting more than two nodes together). Networks can also be 

bipartite, i.e., containing nodes of two distinct types, with links running only between 

unlike types. Further details of the different forms of networks can be seen in Newman 

(2010) and Estrada (2012), among others. 
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 In a network, the assignment of a link to a pair of nodes need not be a 

straightforward binary relationship but can be based on a measure that represents the 

strength of the link, such as the linear correlation coefficient. For instance, node pairs 

that have correlation coefficients exceeding a certain threshold value (T) may be 

assigned links. For example, the network shown in Figure 3.1 is based on a streamflow 

monitoring network, and the links are assigned based on calculation of correlations in 

streamflow data between the stations and a correlation threshold value of T = 0.75.  

 

                                   

Figure 3.1: Concept of a network 

 

 Network theory or graph theory originated in the seventeenth century and 

developed into topology, trees, and random graph theory until around the mid-20th 

century (e.g., Listing, 1848; Cayley, 1857; Euler, 1741; Erdös and Rényi, 1960). 

However, such concepts, especially the random graph theory, were found to possess 

some major deficiencies. First, they largely focused on networks that are regular, 

simple, small, and static and are generally unsuitable for examining real networks, 

which are often highly irregular, complex, large, and dynamically-evolving in time. 

Second, the random graph theory assumed that complex and large-scale networks are 
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wired randomly together (Erdös and Rényi, 1960). However, for real networks, such an 

assumption is not necessarily valid, since order and determinism are inherent in real 

systems and networks. Real networks are neither completely ordered nor completely 

random, but generally exhibit important properties of both. 

 Motivated by the deficiencies of random graph theory, advances in network 

study, together with other complex systems science concepts, including nonlinear 

dynamics, chaos, self-organization, and scale-invariance (e.g., Lorenz, 1963; 

Mandelbrot, 1983; Bak, 1996), led to the new science of networks, called Complex 

Networks (e.g., Watts and Strogatz, 1998; Barabasi and Albert, 1999). Notable advances 

in such are the small-world networks (Watts and Strogatz, 1998), scale-free networks 

(Barabási and Albert, 1999), network motifs (Milo et al., 2002), and community 

structure (Girvan and Newman, 2002). There are also different measures to identify and 

quantify different properties of networks, and, for some, there are also different 

definitions, sub-measures, and corresponding methods, as appropriate. These network 

measures include centrality, clustering, adjacency, distance, community structure, 

bipartivity, fragments (or subgraphs), communicability, and global invariants (Estrada, 

2012). 

 The discovery of complex networks and associated methods led to their 

applications to a wide range of natural and artificial networks, including the spread of 

diseases and sexual contact (e.g., Liljeros et al., 2001), World Wide Web (e.g., Albert et 

al., 1999), distribution of wealth (e.g., Bouchaud and Mezard, 2000), climate (e.g., 

Tsonis and Roebber, 2004), and virtual water trade (e.g., Suweis et al., 2011); also refer 

to Watts (1999), Barabási (2002), Newman et al. (2003), Barrat et al. (2008), and 

Estrada (2012) for comprehensive accounts of such applications. 
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3.3 Community Structure Methods 

In many complex networks, nodes cluster together into distinct groups, with each group 

more densely linked together when compared to the rest of the network, as shown in 

Figure 3.2. The properties of these groups are generally independent of the properties of 

the individual nodes and of the network as a whole. These groups are known as 

“communities” and this kind of network structure is known as a “community structure.” 

Intuitively, the community is deemed as a set of entities, in the network sense, where 

each entity is closer to the other entities within the community than to the entities 

outside it (Coscia et al., 2012). 

 

 

Figure 3.2: Example of a community structure in a small network. Three communities 

of densely-connected vertices (in the circles), with a lower density of connections (gray 

lines) between them. 

 

 Since nodes belonging to the same community are more likely to share network 

properties and dynamics (e.g., centrality, clustering, degree distribution, shortest path 
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length, communicability), detection of communities in networks is particularly useful. 

Further, the number and characteristics of the existing communities provide subsidies 

for identifying the type of a network and in understanding its dynamic evolution and 

organization. Community detection is highly relevant and useful in hydrology, as in the 

case of catchment classification, where the purpose is to identify a region(s) or a 

group(s) of monitoring stations that have similar properties. A number of methods have 

been developed for community detection in networks, including edge betweenness, 

greedy algorithm, multilevel optimisation, leading eigenvector, label propagation, and 

walktrap. Some of these methods rely on the modularity, Q, which quantifies the quality 

or strength of a community. A brief description of the above-mentioned community 

structure methods is as follows:  

i. Edge betweenness centrality: Edge betweenness centrality (Newman and 

Girvan, 2004) is a measure to identify a particular link that has the most 

‘betweenness’ in a network, by only considering the number of shortest paths 

that pass through the link.  

ii. Greedy algorithm: The greedy algorithm is an attempt to optimise the 

modularity (Q) directly by self-organizing each node to its community, as 

proposed by Clauset et al. (2004). 

iii. Multilevel modularity optimisation: This method, proposed by Blondel et al. 

(2008), is somewhat similar to the greedy algorithm. However, instead of self-

organizing each node as a community, this method assigns the nodes and the 

nodes are also re-assigned one by one at a time into a community until the 

highest increase in modularity is reached.  
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iv. Leading eigenvector method: The leading eigenvector method also employs 

modularity optimisation aided by the algebraic properties to define the 

modularity matrix based on random networks (Newman, 2006).  

v. Label propagation method: This method, proposed by Raghavan et al. (2007), 

identifies communities based on the nodes with the same label after the labels 

stopped propagating. The label is at first uniquely assigned to each node; then, 

with iterative process by adopting and propagating the label of its neighbours, 

densely connected nodes will comprise a unique label for the group; and, 

finally, each unique label represents as community.  

vi. Walktrap method: Walktrap method is a measure of distance between nodes 

and communities based on short random walks. It forms the dendrogram and 

apply the modularity maximization to split the network (Pons and Latapy, 

2005).  

 In the present study, the edge betweenness method is applied for catchment 

classification. While the edge betweenness method has been shown to be effective, the 

modularity function, Q, that is used to measure the strength of the community structure 

is susceptible to resolution (or scale) problem. To overcome this issue, an improvement 

is also proposed by considering the modularity density function, instead of the 

modularity function; the proposed method is called the modularity density-based edge 

betweenness (MDEB) method. Additional improvement to the MDEB method and, 

hence, catchment classification is also done through development of a multi-variable 

approach, instead of a single-variable approach that is widely used. The edge 

betweenness method and the proposed improvements are detailed next. 
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3.4 Edge Betweenness Method 

3.4.1  Procedure 

Edge betweenness centrality is a measure of how central a particular link is in a 

network, and it measures the number of shortest (also known as geodesic) paths which 

pass through the link. This means, the links with the highest centrality are considered to 

be acting as bridges connecting the communities together and, therefore, removing these 

central links will split the network into more densely connected communities (Newman 

and Girvan, 2004). 

 To implement the edge betweenness procedure, the correlations between nodes 

are first determined. For instance, in the present study, with streamflow stations as the 

nodes in the network, the cross-correlation values in streamflow values between the 

different streamflow stations are determined. The presence/absence of a link between 

any two stations is identified by considering a threshold value (T) and comparing the 

correlation between any two stations with such a threshold value, as mentioned earlier; 

see Sivakumar and Woldemeskel (2014) for further details on the selection of the 

threshold value, especially in regards to streamflow. 

 Let us consider, for simplicity, an unweighted and undirected network with five 

nodes (streamflow stations) and six links, as shown in Figure 3.1. In this case, the 

connection between node i to node j is similar to that between node j to node i (Newman 

and Girvan, 2004). For this network, the main steps to measure the edge betweenness to 

identify communities are explained as follows: 

1. Calculate the value of edge betweenness for each and every node in the 

network. 
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a) Every node is given a weight, 𝑤 = 1. In the case of multiple shortest paths between 

a pair of stations, they will be given equal weights, i.e., the summation of the 

weights of those multiple shortest paths will always be equal to 1. Figure 3.3 

illustrates the calculation of the weight from each node (to score the edge 

betweenness) when connecting to other nodes in the network based on the shortest 

paths. For example, Figure 3.3(a) starts from node 1, and node 1 to node 2 has only 

one shortest path and given a weight of 1. 

b) To calculate the edge of any node 𝑖 to any other node 𝑗, the betweenness value is 

based on 𝑤𝑖𝑗 = 𝑤𝑖 + 𝑤𝑗. For example, in Figure 3.3(a), node 1 has to pass node 4 

in order to connect with node 3 via the shortest paths. Thus, node 1 to node 4 will 

be given a weight of 1 and node 4 to node 3 another weight of 1. The weight that is 

given at edge node 1 to node 4 will remain and be accumulated where this 

particular edge is also used to connect node 1 to node 4 as well as node 1 to node 5. 

Therefore, the edge of node 1 to node 4 has accumulated a score of 3 for one case 

of node. 

c) Repeat steps (a) and (b) for other nodes (Figure 3.3(b to d)) until there are no 

remaining nodes.  

d)  Prior to each iteration of removal of edge, all the weights are accumulated, as 

given by 𝑊𝑖= ∑ 𝑤𝑖𝑗
𝑛
𝑖=1 , with 𝑗 representing nodes that are connected to node 𝑖, to 

measure the betweenness value, as seen in Figure 3.4(a) where each edge is denoted 

with the value of edge betweenness. 

This whole process is considered as one iteration to remove the first edge, as shown in 

Figure 3.4(b). 

2. Remove the edge with the highest value of edge betweenness in the network.  



CHAPTER 3 

35 

 

The removal of an edge is the crucial step in this method to split the network naturally 

according to the strength of the connection between communities (Newman, 2004). 

Thus, the first edge to be removed is found by following the order in numbering, i.e., 

from node 1 to node 4, as shown in Figure 3.4(b). 

3. Recalculate the edge betweenness for all remaining edges.  

Repeating step (1) means recalculating the remaining edges and, therefore, only the 

betweenness of other edges that are in the same community will be affected by the 

removal and only the betweenness in that community will be recalculated. Figure 3.4(c) 

shows the value of edge betweenness after the recalculation of the first edge removal. 

4. Repeat steps (1) to (3) until no remaining edges in the network. 

The iterative removal of edges will be stopped when there are no remaining edges in the 

network and each node in the network is formed as a community. This means, the 

number of communities will be equal to the number of nodes in the network.  

5. Form the dendrogram and network division by modularity function. 

A dendrogram is used to represent the whole process of the algorithm and is formed 

after there are no remaining edges available, based on the hierarchical clustering 

concept (Girvan and Newman, 2002). In Figure 3.4(d), each horizontal level in the 

dendrogram, from top to bottom, is represented as the first edge until the last edge is 

removed. The division of the network (i.e., formation of communities) by this algorithm 

is evaluated using a measure called “modularity function,” which is a numerical index 

for forming the best partition of the network. 

 The first division of the network is identified by the first level at which the 

dendrogram is cut. The division of the group should be stopped when the value of 
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modularity begins to decrease, as the modularity is calculated with respect to the given 

membership vector and value, i.e., it ranges within 0 to 1. The modularity function, that 

is applied in the present study, is given by: 

𝑄 =
1

2𝑚
∑ (𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
)𝛿(𝑐𝑖𝑖,𝑗 , 𝑐𝑗)                             (3.1) 

where 𝑚 is the number of edges, 𝐴𝑖𝑗 is the adjacency matrix in row 𝑖 and column 𝑗, 𝑘𝑖 

and 𝑘𝑗 are degree of 𝑖 and 𝑗 , respectively, derived from the sum of all rows/columns of 

the adjacency matrix, 𝑐𝑖 and 𝑐𝑗 represent a type (or group) of 𝑖 and 𝑗, and 𝛿(𝑐𝑖 , 𝑐𝑗) is the 

Kronecker delta that will be denoted as 1 if 𝑐𝑖 = 𝑐𝑗 (if nodes 𝑖 and 𝑗 are in the same 

community) or as 0 if otherwise. In this way, Q is only concerned with the links that are 

within the group and ignores links from the other groups. Further details on the 

calculation of the modularity are presented in Appendix A.1. From the first level of the 

horizontal cut in the dendrogram (Figure 3.4(d)), the calculated modularity value is 

0.11, while, for the second horizontal cut, the modularity value decreases to 0 with 

communities of [1 2 3 3 3]. Since the Q value has decreased and reached 0, the 

calculation of modularity will be stopped. Thus, the first cut of the dendrogram with 

communities [1 1 2 2 2] is derived with the maximum Q and eventually represents the 

best split of this network. 
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Figure 3.3: The calculation of edge betweenness from (a) node 1, (b) node 2, (c) node 3, 

and (d) node 4, to every other node in sequence. 

 

 

(c) Node 3 (d) Node 4 

(a) Node 1 (b) Node 2 

(d)  

(b)  (a)  

(c)  
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Figure 3.4: (a) The summation of edge betweenness values is represented in each edge; 

(b) The first edge that has been removed; (c) The edge betweenness values after 

recalculation; (d) A dendogram is formed based on iterative removal of the highest 

value of edges, with the red dashed-horizontal line representing the cut for division of 

communities. 

 

3.4.2 Limitation: Issue of Resolution 

Although the edge betweenness (EB) algorithm has been effective in identifying 

communities in many synthetic and real-world networks, the modularity function that is 

used to measure the strength of the community structure is susceptible to a scale 

problem. In other words, the function is incapable of classifying a network correctly. 

This deficiency is mainly due to the fact that modularity does not consider the size of 

the community, and the measure is mainly dependent on the size of the total links in the 

network for community formation (Rosvall and Bergstrom, 2007). As a consequence, 

communities can change when the size of the network changes. In the context of the 

catchment classification framework, in order to gain an accurate framework for 

classification, it is important for an approach to be able to consistently classify 

catchments regardless of the number of catchments (or size of network in this context) 

available. Regarding consistency as one of the efficacies of the method for catchment 

classification framework, it is important to note that the number of stream-gauges may 

change in the future either due to the removal of some existing ones or due to newly 

installed ones. This may lead to unreliable classification outcomes, when the above 

modularity function is used specifically for the development of a generic catchment 
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classification framework. Therefore, there is a need to improve the edge betweenneess 

method for a more consistent and reliable classification. 

 

3.5 Improvement to the Edge Betweenness Method 

The above-mentioned limitation of the edge betweenness method motivated Li et al. 

(2008) to propose a new quantitative measure to evaluate the partition of the network to 

communities based on the density of links by subgraphs. The new measure is called 

modularity density function (or known as the D value). In the present study, we propose 

an improvement to the edge betweenness algorithm using the modularity density 

function. The improved method is called as the Modularity Density-based Edge 

Betweenness method (MDEB). The modularity function and the procedure for the 

improved method are described next. 

 

3.5.1 Modularity Density Function 

The modularity density function (D) mainly focuses on the density of links and the 

number of nodes within communities regardless of the size of network, and form the 

partition naturally on the local properties of the network. Thus, it can resolve more 

precise communities and is able to alleviate the scale problem. This measure is mainly 

to address the uncertainty of a modularity function that is dependent on the total number 

of nodes regardless of taking into consideration a count of the number of links. Several 

studies have applied the modularity density function (D value) as an optimisation 

function for community detection and also for other applications (e.g., Zhang et al., 

2009; Chen et al., 2014; Botta and Del Genio, 2016). 
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 In the proposed improvement to the EB method, the main four steps of the 

traditional method, i.e. steps 1 to 4, as described above in Section 3.4.1, will remain. 

However, for the fifth step, the maximum modularity density function or D value is 

obtained instead of the Q value, to determine which level of the dendrogram will be cut 

to represent the best split of the network. Hence, in the present study, the modularity 

density function (D value) is applied as follows: 

𝐷 = ∑ (
2𝑙𝑖

𝑛𝑖
−

𝑙𝑖
𝑒𝑥𝑡

𝑛𝑖
)𝑖                           (2) 

where 𝑛𝑖 is the number of nodes of subgraph i, 𝑙𝑖 is the number of internal links in 

subgraph i, and 𝑙𝑖
𝑒𝑥𝑡 is the number of external links of subgraph i.  

 

3.5.2 Modularity Density-based Edge Betweenness (MDEB) 

Method 

The procedure of the MDEB method is briefly explained in this section. As the EB is 

still the base for the MDEB method, some of the main steps from Section 3.4.1 will 

remain, including: (1) calculation of the edge betweenness from each node to every 

other node in the network; (2) removal of the edge with the highest value of 

betweenness; (3) recalculation of betweenness of the remaining edges; and (4) repeat of 

the steps (1) – (3) until no remaining edges in the network. For the fifth step, in which 

the improvement is made, the modularity density is applied to quantify the network 

partition by maximization of the D value. For better understanding, the same example of 

the network presented in Figure 3.1 is used to illustrate the differences between the two 

community detection methods (i.e. EB and MDEB). Since the iterative processes in 

MDEB are similar to that in the EB method, the dendrogram is also similar, as in Figure 
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3.4(d). From the dendrogram, as in Figure 3.4(d), the calculation of the D value should 

be stopped when the number of communities formed has the same count as the size of 

the network (i.e. this means until the final bottom level of dendrogram), and the final 

division of the network based on which level is derived with the maximum D value. 

Thus, from the first level of horizontal cut in the dendrogram (Figure 3.4(d)), the 

calculated D value is 1.33 with communities of [1 1 2 2 2], while for the second 

horizontal cut, the modularity density (D value) decreases to -2.67, -8 and -12, with 

communities of [1 2 3 3 3], [1 2 3 4 3], and [1 2 3 4 5], respectively. The details to 

calculate the D value are presented in Appendix A.2. As explained earlier, when the EB 

method is applied to the network in Figure 3.1, the first cut of the dendrogram with 

communities [1 1 2 2 2] has the maximum D representing the best split of this example 

network. Based on the example, the best split shown by both methods are the same. 

Thus, to prove the superiority of the MDEB method, further benchmarking of these 

methods is performed by applying the methods to a real-world network, the Zachary’s 

Karate Club network, as presented in the next section. 

 

3.6 Zachary’s Karate Club Network Benchmark: The EB and 

the MDEB methods 

The Zachary’s Karate Club (Zachary, 1977) network is one of the most commonly used 

benchmark networks in community mining and, hence, is considered here to assess the 

effectiveness of the EB and MDEB methods for classification. This real-world network 

is purposely used to find out whether groupings can be successfully uncovered, without 

prior knowledge of the potential behaviour of the network, and also to be able to 
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determine which nodes belong to which community. The Zachary’s Karate Club 

network considered here consists of 34 club members (i.e., nodes) and 78 edges (i.e., 

links) that represent the friendship between members of the club that has been observed 

over a period of two years, as shown in Figure 3.5. However, the administrator (node 1) 

and the instructor (node 33) have decided not to cooperate with each other, which has 

led to the members splitting into two groups; either joining with the administrator or 

joining with the instructor. The application of the EB method, which is based on the 

quality measure of maximum modularity (Q value), divides the network into five 

communities, separated in rectangles with coloured borders, as shown in Figure 3.6. As 

seen, the EB method is unable to split the club network correctly according to the real 

communities of this network as a result. 

 

Figure 3.5: Zachary’s Karate Club Network 
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Figure 3.6: Community structure in the Zachary’s Karate Club network with  

application of the EB method.  

 

Figure 3.7 shows the dendrogram as the result to the classification of the Zachary 

Karate Club network when the MDEB method is applied, where each community is also 

represented by coloured rectangular boxes. As may be seen, the MDEB method results 

in classification outcomes that correspond almost perfectly to the actual community 

formation in the club, with the exception of only node 10 (circled in red) that is 

misclassified. In comparison to the outcomes from the traditional EB method, this 

improved method certainly progresses in two ways: (1) links (i.e., internal and external) 

to enhance for a smaller community’s detection in a large network; and (2) more 

accurate measures in defining community structure in a particular network. Thus, the 

MDEB method performs better than the EB method in addressing and overcoming the 

issue of the resolution limit (i.e. network size). As the size of the networks associated 

with hydrologic systems can change, such as removal/addition of streamflow and 

raingauge monitoring stations, a method that adequately addresses and overcomes the 



CHAPTER 3 

44 

 

issue of resolution limit is clearly needed for studying catchments, including for the 

purpose of catchment classification. Therefore, in the present study, additional emphasis 

is given in the application of the MDEB method for catchment classification. 

 

Figure 3.7: Community structure in the Karate club network by applying the MDEB 

method. The red circle shows the only node that is incorrectly assigned by this method. 

 

3.7 Multi-variable Approach for Catchment Classification 

An extension to examine the effectiveness of the MDEB method, in the form of a  

multi-variable analysis for catchment classification, is proposed to compare with the 

classification outcomes from a single-variable streamflow analysis, to assess the 

influence of other hydroclimatic inputs as well. For the multi-variable approach, 

inclusion of additional variables that govern the catchment dynamics in one way or 

another (e.g., rainfall and potential evapotranspiration) could form more stringent 

conditions for classification. Since streamflow is the central and representative 

component of catchments, most studies have essentially used the streamflow data for 

catchment classification, in the sense of a single-variable analysis. By taking into 
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account that almost all the variables influencing the catchment dynamics are also often 

interconnected and interact in a nonlinear manner, it would be useful to include all the 

available influencing variables, in addition to streamflow, for catchment classification. 

Furthermore, exploring the potential of each of the other hydroclimatic inputs as a 

single variable and their combinations as multiple variables may give insights into 

which variable(s) could be more important for a catchment classification framework. 

In the present study, the basic idea for multi-variable analysis lies in creating a 

new correlation value (for identifying connections), 𝑋, such that the new value is 

obtained by averaging the correlation values of variables, say 𝑋1, 𝑋2,. . . , 𝑋𝑁 where N= 

number of variables. Consider combining two discrete variables as an example of 

correlation values from two hydroclimatic inputs. If it is assumed that 𝑋1 is [0.9, 0.5, 

0.5, 0.8, 0.85, 0.7, 0.6] and 𝑋2 is [0.8, 0.4, 0.45, 0.7, 0.75, 0.8, 0.85], then the new 

variable 𝑋 can be obtained by the average of pairwise summation, i.e., 𝑋 is [0.85, 0.45, 

0.48, 0.75, 0.8, 0.75, 0.73]. Similar to a single-variable case, the new correlation value 

is then assigned with the assumed threshold value, i.e., if the new value is more than or 

equal to the assumed threshold value, then the pair of stations of interest is considered 

as connected; otherwise, there is no link between the pair. In the multi-variable 

approach, the classification is carried out using only the MDEB method and several 

threshold values are selected: T = 0.65, 0.7, 0.75, 0.8, 0.85, and 0.9. Each correlation 

threshold is assigned to each single-variable case (i.e., streamflow, rainfall, and PET, 

separately) and multi-variable cases (i.e., any and all of the combinations of the three 

variables) to examine the connections and, thus, classification. 
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3.8 Summary   

In order to obtain reliable catchment classification outcomes, it is essential to decide 

which particular approach should be taken, and how that particular approach could be 

useful in identifying the groups of catchments. As the edge betweenness method has 

been widely used for classification in many different fields, it may be appropriate to use 

the method for catchment classification as well. However, the method is susceptible to 

the issue of resolution (or scale) limit, mainly because of the use of the modularity 

function. To overcome this issue, an improvement to the EB method is proposed in this 

study, by replacing the modularity function with the modularity density-based function, 

and the new method is termed as the MDEB method. The modularity density-based 

function considers the density of links and the number of nodes within communities 

regardless of the size of network (i.e., scale or resolution). This allows the modified 

edge betweenness method to perform better in classification when compared to the 

traditional edge betweenness method, which uses only the modularity function that is 

depended on the size of the network. The MDEB method, therefore, has a particular 

advantage in catchment classification, since the size of the streamflow (or other 

hydrologic) network (i.e., number of stations) can change either due to removal of one 

or more of the existing stations or due to addition of one or more new stations. Since 

removal or addition of streamflow (or other hydrologic) stations may be commonplace, 

due to a variety of reasons, the modularity density function (and, hence, the MDEB 

method) has great conceptual and practical significance in studying hydrologic networks 

and their classification. Further, to take into account the influence of other 

catchment/climate variables, in addition to streamflow, on catchment classification, it is 

appropriate to use a multi-variable approach, by including additional variables. The rest 
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of this thesis presents the details of such, with Chapter 4 presenting the details of the 

study area and data, Chapter 5 and 6 presenting the application of the EB and the 

MDEB methods in a single-variable sense, and Chapter 7 presenting the multi-variable 

analysis (only with the MDEB method).    
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Chapter 4  

Study Area and Data 

 

 

 

 

4.1   Introduction 

In the present study, to investigate the utility and effectiveness of the concepts of 

community structure, specifically using the edge betweenness (EB) method and the 

improved EB (MDEB) method, for catchment classification, numerous catchments from 

two different countries, Australia and the United States, are studied. Each of these two 

large regions cover a wide range of hydroclimatic, topographic, land use properties, and 

other relevant properties and, thus, offer proper test beds for catchment classification 

and to generalize the classification outcomes. For each region, first, the catchment 

classification is performed based on the streamflow data in a single-variable sense using 

the EB method and the MDEB method. Further, for the Australian catchments, a multi-

variable approach for classification is also performed by using rainfall and potential 

evapotranspiration (PET), in addition to streamflow. For this, only the MDEB method is 

applied, due to its superior performance than the EB method, as presented in Chapter 3. 
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Details of the two study areas and the associated data considered for the present analysis 

are presented next. 

 

4.2   Australia 

Australia, including Tasmania, has almost the same size of the United States of America 

(excluding Alaska) with a land-mass of 7,682,300 km2 (Ghassemi and White, 2007). 

Over the continent, there is a wide range of climatic zones, varying from tropical to sub-

Arctic, with large parts of the central and western Australia influenced by arid and semi-

arid climatic conditions. The north is more influenced by a tropical climate, and the 

south-east as well as the south-west parts have a moderately temperate climate affected 

by the oceans. In the entire continent, about 87 percent of the area has an altitude less 

than 500 m, and 99.5 percent is less than 1000 m with a mean altitude of 300 m above 

mean sea level. The average annual air temperature ranges from 28 °C along the 

extreme north of western Australia to 4 °C in the Alpine regions of south-eastern 

Australia. 

 For the present study, a total of 218 catchments across Australia are considered 

for catchment classification. The locations of these stations are shown in Figure 4.1. 

These 218 stations are from the Hydrological Reference Stations (HRS) database, 

maintained by the Australian Bureau of Meteorology (BoM). The HRS database has 

been developed based on several factors, including the period of observation and 

anthropogenic influences. Extensive details associated with the selection of HRS 

database by the BoM are available in Zhang et al. (2016). A few stations from the HRS 

database are not considered in this study, because of some missing data. For these 218 
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catchments, streamflow data are mainly considered in a single-variable sense, while 

streamflow, rainfall, and potential evapotranspiration (PET) are considered in a multi-

variable sense. In the multi-variable approach, combinations of any two and all three 

variables are considered. The data considered in this study covers a 26-year period, i.e., 

from 01 January, 1981 to 31 December, 2006. The data are average monthly values. 

Table 4.1 presents a summary of the minimum and maximum values of some important 

characteristics of the stations/data, including the corresponding station numbers. Figures 

4.2 to 4.4 present the statistical characteristics of streamflow, rainfall, and PET: (a)  

mean, (b) standard deviation, and (c) coefficient of variation in all the 218 stations. 

Catchment and flow characteristics play important roles in the nature and extent of 

connections in each variable between the different stations. However, the focus of the 

present study is in identifying the extent of connections among the stations based on 

each variable as single-variable and by combinations (two out of three and all three of 

them) as multiple variables. 

 

Figure 4.1: Locations of 218 hydrologic monitoring stations in Australia 
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Figure 4.2: Statistical characteristics of streamflow from 218 stations in Australia: (a) 

mean; (b) standard deviation; and (c) coefficient of variation. 

 

 

a) Mean b) Standard deviation 

c) Coefficient of variation 

a) Mean b) Standard deviation 
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Figure 4.3: Statistical characteristics of rainfall from 218 stations in Australia: (a) mean; 

(b) standard deviation; and (c) coefficient of variation. 

 

 

 

Figure 4.4: Statistical characteristics of PET from 218 stations in Australia: (a) mean; 

(b) standard deviation; and (c) coefficient of variation. 

c) Coefficient of variation 

d)  

a) Mean b) Standard deviation 

c)  

c) Coefficient of variation 
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Table 4.1: Characteristics of 218 catchments and monthly data in Australia. 

 Minimum Maximum Station (State) 

Latitude -43.14° 

 

-11.83° Minimum: #473 (TAS)a 

Maximum:#926002A 

(QLD) 

Longitude 115.44° 153.42° Minimum: #610008 

(WA) 

Maximum:# 146012A 

(QLD) 

Drainage area (km2) 11.65 

(4.5 mi2) 

603069.15 

(232846.3 

mi2) 

Minimum: #235205 

(VIC) 

Maximum:#A0030501 

(SA) 

Elevation (m) 5 

(16.37 ft) 

2181.55 

(7157.32 ft) 

Minimum: #G8140040 

(NT) 

Maximum:#401012 

(NSW) 

 

Flow mean (m3/s) 0.36 

(12.83 ft3/s) 

 

182.42 

(6442 ft3/s) 

Minimum: #A0030501 

(SA) 

Maximum: #112002A 

(QLD) 

Flow standard deviation 

m3/s) 

0.944  

(33.337 ft3/s)  

233.9082 

(8260.39 

ft3/s) 

Minimum: #616013 

(WA) 

Maximum: #112002A 

(QLD) 

Flow CV 0.471 

 

6.12 

 

Minimum: #226222 

(VIC) 

Maximum: #G0010005 

(NT) 

Rainfall Mean (mm) 22.68 282.31 Minimum: #A0020101 

(SA)  

Maximum: #112002A 

(QLD)  

Rainfall standard 

deviation (mm) 

28.96 290.5 Minimum: #407253 

(VIC)  

Maximum: #112002A 

(QLD)  

Rainfall CV 0.468 1.658 

 

Minimum: #473 (TAS)  

Maximum: #G0050115 

(NT)  

PET Mean (mm) 61.17 192 Minimum: #473 (TAS)  

Maximum: #G9030124 

(NT)  
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PET standard deviation 

(mm) 

21.51 71.9 Minimum: #G8170002 

(NT)  

Maximum: #616002 

(WA)  

PET CV 0.118 0.706 Minimum: #G8170002 

(NT) 

Maximum: #473 (TAS) 
a NT - Northern Territory; SA - South Australia; TAS - Tasmania; QLD - 

Queensland; VIC - Victoria; WA - Western Australia.  

 

4.2.1     Streamflow 

In the context of rivers and streamflow, there are 12 regions based on drainage and river 

divisions of Australia. Streamflow data are measured at numerous gaging stations 

across the country. In the present study, monthly streamflow data from the above 218 

stations across entire Australia are considered. The 218 streamflow stations and their 

observed streamflow data show enormous variations in their characteristics, as 

presented in Table 4.1. For instance: (1) basin drainage area ranges from 11.65 km2 (4.5 

mi2) to 603,069.15 km2 (232,846.3 mi2); (2) station elevation ranges from 5 m (16.37 

ft) to 2181.55 m (7157.32 ft); and (3) mean flow ranges from 0.36 m3/s (12.83 ft3/s) to 

182.42 m3/s (6,442 ft3/s).  

 

4.2.2     Rainfall  

The rainfall variability is significant in Australia due to different climates in different 

regions of the country. The annual rainfall in the far north exceeds 4000 mm, while 

more than 80% of the country receives an annual rainfall of less than 600 mm (many 
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parts of the interior gets less than 200 mm per year). The mean annual rainfall across the 

country is only about 465 mm. Influenced by seasons, much of the rainfall occurs 

during winter (June–August) in parts of the south (especially to eastern New South 

Wales, Victoria, Tasmania, and southwest of Western Australia), while the main rainfall 

season in the north is during summer (December–February). More than 17,000 raingage 

stations are archived by the Australian Bureau of Meteorology (BoM). More details 

about the raingages for the entire Australia are available in Lavery et al. (1992, 1997). 

For the present study, similar to the streamflow data, monthly rainfall data from a 

network of 218 stations (from the HRS database) across Australia are considered. Table 

4.1 presents some important station/rainfall characteristics. As seen, the mean rainfall 

ranges from 22.68 mm to 282.31 mm, and the standard deviation from 28.96 mm to 

290.5 mm. 

 

4.2.3     Potential Evapotranspiration 

Evapotranspiration is a collective term for the transfer of water, as water vapour, to the 

atmosphere from both vegetated and unvegetated surfaces greatly affected by climate, 

availability of water and vegetation (Chiew et al., 2002). The potential 

evapotranspiration (PET) values for Australia can be found from the Evapotranspiration 

Maps in the Climatic Atlas of Australia (http://www.bom.gov.au/climate/averages; 

Australian Bureau of Meteorology, 2001). In the present study, the monthly PET data 

from 218 catchments across Australia are studied (Figure 4.1), the same stations used 

for streamflow and rainfall. The PET data covers a period of 26 years (January 1981 to 

December 2006), similar to the streamflow and rainfall data periods. The mean PET 
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ranges from 61.17 mm to 192 mm, and the standard deviation from 21.51 mm to 71.9 

mm, as presented in Table 4.1. 

 

4.3   The United States 

In the analysis for catchment classification in the US in the present study, only 

streamflow data are studied in a single-variable sense. Monthly streamflow data from an 

extensive network of 639 streamflow gaging stations in the contiguous US are studied. 

The locations of these 639 stations are shown in Figure 4.5. The streamflow data are 

obtained from the US Geological Survey (USGS) database, in particular from the 

Hydro-Climatic Data Network (HCDN), originally developed by Slack and Landwehr 

(1992) and subsequently updated at different times, with the last update in 2009; see 

Lins (2012) for details (http://water.usgs.gov/osw/hcdn-2009/). 

 Streamflow data in the US are commonly expressed in water years, which 

commence in October. The data used in this study are those observed over a period of 

53 years (1950–2002) from each of the above 639 stations. During the past few decades, 

many studies have used the streamflow data set from HCDN or a sub-set for numerous 

purposes by applying a variety of methodologies (e.g., Slack and Landwehr, 1992; 

Kahya and Dracup, 1993; Vogel and Sankarasubramanian, 2000; Sivakumar, 2003; 

Tootle and Piechota, 2006; Patil and Stieglitz, 2012; Kiang et al., 2013; Yasmin and 

Sivakumar, 2018). However, the studies by Sivakumar and Singh (2012), Sivakumar 

and Woldemeskel (2014), Vignesh et al. (2015), and Yasmin and Sivakumar (2018) are 

worth mentioning, as they have addressed the connections in streamflow among the 

stations in the contexts of nonlinear dynamics and complex networks, including for 

http://water.usgs.gov/osw/hcdn-2009/
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catchment classification framework, which are of particular interest in the present study. 

The 639 streamflow stations and the streamflow data exhibit enormous variations in 

their characteristics, even up to four orders of magnitude, as presented in Table 4.2. For 

instance: (1) basin drainage area ranges from 10.62 km2 (4.1 mi2) to 35,224 km2 (13,600 

mi2); (2) station elevation ranges from 0 m to 2996 m (9830 ft); and (3) mean flow 

ranges from 0.0549 m3/s (1.94 ft3/s) to 381.59 m3/s (13,476 ft3/s). Figure 4.6, for 

instance, presents the variations in the mean (Figure 4.6(a)), standard deviation (Figure 

4.6(b)), and coefficient of variation (Figure 4.6(c)) of flow values in all the 639 stations. 

More details about this streamflow data set are available in Vignesh et al. (2015), 

including for a summary of maximum and minimum values of some important 

characteristics of the stations and flows. 

 

 

Figure 4.5: Locations of 639 streamflow stations in the US. 
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Figure 4.6: Statistical characteristics of streamflow from 639 stations in the US: (a) 

mean; (b) standard deviation; and (c) coefficient of variation. 

 

 

 

 

 

 

 

a) Mean b) Standard deviation 

c) Coefficient of variation 
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Table 4.2: Characteristics of 639 catchments and monthly data in the US. 

 Minimum Maximum Station (State) 

Latitude 26.93° 

 

49° Minimum: #02256500 

(FL)a 

Maximum:#12306500 

(ID) 

Longitude - 124.07° - 67.94° Minimum: #14325000 

(OR) 

Maximum:#01022500 

(MA) 

Drainage area (km2) 10.62 

(4.1 mi2) 

35,224 

(13,600 mi2) 

Minimum: #1188000 

(CT) 

Maximum:#2226000 

(GA) 

Elevation (m) 0 

 

2996 

(9830 ft) 

Minimum: #2310000 

(FL) 

Maximum:#7083000 

(CO) 

Flow mean (m3/s) 0.0549  

(1.94ft3/s) 

381.589  

(13475.70 

ft3/s) 

Minimum: #11063500 

(CA) 

Maximum: #2226000 

(GA) 

Flow standard deviation 

m3/s) 

0.1101 

(3.89 ft3/s)  

373.77 

(13199.64 

ft3/s) 

Minimum: #11063500 

(CA) 

Maximum: #13317000 

(ID) 

Flow CV 0.11 5.56 Minimum: #6775500 

(NE) 

Maximum: #6860000 

(KS) 
a CA - California; CO - Colorado; CT - Connecticut; DE - Delaware; FL - Florida; 

GA - Georgia; ID - Idaho; KS - Kansas; MO - Missouri; MA- Massachusetts; NE - 

Nebraska; OR - Oregon. 
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Chapter 5      

Catchment classification using edge betweenness 

method 

 

 

 

 

 

5.1 Introduction 

In the present study, for the application of community structure methods for catchment 

classification, the edge betweenness (EB) method (Girvan and Newman, 2002) is used 

as a representative method. The method is applied for catchment classification in the 

two study areas discussed in Chapter 4: Australia and the United States. For 

implementation, monthly hydrologic data from a network of 218 catchments across 

Australia and from a network of 639 catchments across the United States are studied. 

This chapter presents the analysis of streamflow data for classification in a purely 

single-variable sense. For the analysis, different correlation thresholds are selected (i.e., 

spatial correlation in streamflow between stations) to examine the sensitivity of 

classification to threshold. Results of catchment classification are interpreted in terms of 

catchment properties (stream length, elevation, drainage area) and flow properties 

(mean, coefficient of variation, correlation-distance).  
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5.2 Classification of Australian catchments  

In the implementation of the EB method to monthly streamflow data from 218 

catchments in Australia for their classification, links between node pairs (i.e., stations) 

are assigned based upon the Pearson correlation coefficient of the streamflow data. The 

range of correlation threshold is chosen to better reflect the influence of the threshold, 

and is also based on the analysis of streamflow (and other hydrologic) data using 

networks-based methods (Sivakumar and Woldemeskel 2014; Jha et al., 2015). The 

threshold levels considered are: T = 0.65, 0.7, 0.75, and 0.8. For a given threshold, any 

node pair with a correlation coefficient above that threshold value is assigned a link. 

 Figure 5.1(a) to (d) presents the communities for the four different threshold 

values: 0.65, 0.70, 0.75, and 0.80. In this figure, the communities are represented with 

different colors. In general, when the threshold is too low, there will be a very large 

number of links identified that form large-size communities and will cover very large 

portion of the study area, which will not be useful for studying the variability of 

catchment’s properties. On the other hand, an extremely high threshold will lead to less 

connected links that eventually break down the network into very close and smaller 

neighbours and form more isolated communities, which again will not be meaningful 

for catchment classification studies. Thus, choosing an ideal threshold value is crucial in 

order to examine the catchment characteristics/properties to be able to assess each 

community that is formed in the network and could cover the regions as widely as 

possible. 
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Figure 5.1: Communities identified from the EB method at four different correlation 

thresholds for streamflow from Australia: (a) T = 0.65; (b) T = 0.7; (c) T = 0.75; and (d) 

T = 0.8. Each color represents a community with at least 6 stations, while the open 

circles represent all communities with less than 6 stations. The different colors are used 

only to distinguish the communities and hold no meaning when comparing across 

thresholds. 

 

 To better understand the hydrologic similarities and better physical explanation 

and interpretations of the catchment classification, an accurate count of the number of 

communities with number of stations is obtained, as presented in Table 5.1. As seen 

from Table 5.1, the number of stations for the largest community decreases when the 

a) T= 0.65 b) T= 0.7 

c) T= 0.75 d) T= 0.8 
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threshold value increases, while the number of communities with only a very few 

catchments within them (one and two catchments) increases when the threshold value 

increases. Nevertheless, the total number of identified communities varies with the 

increase in the threshold values.  

 

Table 5.1: Sizes of the identified catchment communities in Australia using the EB 

method at four different correlation thresholds (T = 0.65, 0.7, 0.75 and 0.8). (NSC is the 

number of stations in the identified communities, NC is the number of communities, 

and NS is the number of stations) 

T = 0.65 T = 0.7 T = 0.75 T = 0.8 

NSC NC NS NSC NC NS NSC NC NS NSC NC NS 

1 11 11 1 23 23 1 24 24 1 41 41 

2 3 6 2 7 14 2 3 6 2 3 6 

3 2 6 3 1 3 3 1 3 3 4 12 

5 1 5 5 1 5 4 2 8 4 1 4 

6 1 6 7 2 14 5 1 5 5 1 5 

7 1 7 9 1 9 9 1 9 7 4 28 

13 2 26 10 1 10 10 2 20 9 1 9 

28 1 28 14 1 14 17 1 17 10 2 20 

29 1 29 18 1 18 19 1 19 11 1 11 

94 1 94 25 1 25 26 1 26 13 1 13 

Total   24       218 83 1 83 81 1 81 16 1 16 

   Total   40       218 Total   38       218 53 1 53 

         Total   61       218 
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In view of the above observations, the communities identified for the threshold 

value T = 0.8 (Figure 5.1(d)) are chosen, based on their boundaries and regions, for 

better interpretation of the catchment characteristics. Figure 5.2 shows these 

communities (an enlarged version of Figure 5.1(d)), merely for better visualization. As 

seen from Figure 5.2, a total of 11 communities that have at least 6 stations (indicated 

with different colors) are studied. 

 

                     

Figure 5.2: Communities identified from the EB method for correlation threshold T = 

0.8 for Australia. Each colour represents a community with at least 6 stations, while the 

open circles represent all communities with less than 6 stations.  

 

As seen from Table 5.1, for T = 0.8, four communities have more than 10 

stations (with 53, 16, 13 and 11 stations), combining to form about 43% of the total 
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number of stations (93 out of 218), and only the 11 largest communities (out of the total 

61) combine to have almost 70% of the total number of stations (150 out of 218). This 

seems to suggest that each catchment within a large community has strong connections 

with the rest of the catchments in that community, regardless of the distance between 

them or whether they are located in different basins/regions. Communities with only 

one catchment (41 communities) form almost 70% of the total number of communities 

identified (61), but combine to have only about 20% of the total number of stations (41 

out of 218). This seems to indicate that each catchment in these small communities has 

no connection or only very little connection with the other catchments, regardless of 

their presence within the same basin/region. These observations suggest the important 

role of catchment and flow properties (which, in turn, are influenced by geographic and 

climatic characteristics), among others, in community formation, i.e., for catchment 

classification. This can be examined further, by linking the identified communities to 

catchment/flow properties. In what follows, this is done with respect to the following: 

station drainage area, station stream length, and station elevation (as the catchment 

characteristics) as well as station flow mean and station flow coefficient of variation 

(CV) (as the flow characteristics).  

Figure 5.3 presents the relationship of the three catchment characteristics (i.e., 

drainage area, stream length, and elevation mean) with the flow mean for the 11 largest 

communities (150 stations), while Figure 5.4 presents their relationship with the flow 

CV. The colors used in these figures for the selected communities correspond to the 

colors of the communities in Figure 5.2, purposely for visualization of the communities’ 

locations. By referring to Figure 5.2, communities that are located in the southeast 

(coloured in green – community 1, blue – community 2, red – community 13, and 
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yellow – community 54), north (coloured in purple – community 23), northeast 

(coloured in orange – community 26 and pink – community 27), east (coloured in cyan 

– community 29 and brown – community 32), Tasmania (coloured in light purple – 

community 43), southwest (coloured in dark green – community 57) are studied. 

As seen from Figure 5.3(a) and (b), the relationships (drainage area vs. flow and 

stream length vs. flow) are not significantly different for most communities, since only 

a few stations are out of the cluster in terms of stream length as compared to the 

drainage area, and so may be neglected. Similarly, the relationship between drainage 

area and flow CV (Figure 5.4(a)) and the stream length and flow CV (Figure 5.4(b)) 

have  sparse distribution. However, as seen from Figure 5.3(c) and Figure 5.4(c), the 

relationship of the elevation mean with the flow mean (Figure 5.3(c)) and the flow CV 

(Figure 5.4(c)) is more clustered and almost a straight line, especially for the four 

communities that are mostly located in the south-eastern part, i.e., Communities 

numbered as 1 (green), 2 (blue), 13 (red), 54 (yellow) (Figure 5.2). This seems to 

suggest that the straight line relationship is most likely due to the closeness factors 

(geographic proximity) within the catchments in the community.  

Overall, the EB method and its ability to classify catchments according to 

connectivity as its basis, without prior information about the catchment physics but 

solely relying on connection measurement, has proven to be useful. Furthermore, the 

communities that are in the northern part (community 23 (purple)) and in the south-

western part (community 57 (dark green)) vary in their elevation mean, suggesting that 

the catchments have strong connections among themselves, regardless of the difference 

in their elevations. 
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Figure 5.3: Relationship between station drainage area (a), stream length (b), and 

elevation mean (c) against flow mean for 11 largest communities (150 stations) in 

Australia. Stations in 11 communities are plotted in colour, corresponding to the legend. 

 

 

a) b) 

c) 
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Figure 5.4: Relationship between station drainage area (a), stream length (b), and 

elevation mean (c) against flow CV for 11 largest communities (150 stations) in 

Australia. Stations in 11 communities are plotted in colour, corresponding to the legend. 

 

The usefulness of the EB method for classification is also examined by 

comparing the distance and correlation between the stations, for the respective 

communities. Figure 5.5 shows the distance-correlation comparison for the above 11 

communities. It can be seen that communities 13 (red), 23 (purple), 27 (pink), 43 (light 

a) 

c) 

b) 
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purple), and 57 (dark green) (Figure 5.5(c), (d), (f), (i) and (k)) retain relatively higher 

correlations as the distance increases. For community 13 (red), it is not surprising for a 

large community to span large distances, since very strong correlations could help the 

connection links to be connected with stations that are located over long distances. 

Nonetheless, communities 1 (green), 2 (blue), and 26 (orange) (Figure 5.5(a), (b), and 

(e)) with low correlations are found to have connections, perhaps due to the short 

distances. Thus, the geographic proximity and river network could also be important 

factors in catchment classification. For the communities 23 (purple), 27 (pink), 43 (light 

purple), and 57 (dark green), the number of stations in each community is relatively 

smaller and the distributions are sparser (Figure 5.5(d), (f), (i) and (k)). These 

communities are able to be formed regardless of the (long) distance. This seems to 

suggest that the strong correlations lead to the stations spanning over long distances.  
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a) b) 

c) d) 

e) f) 
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g) h) 

i) j) 

k) 
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Figure 5.5 Distance-correlation relationship for 11 largest communities in Australia, 

corresponding to the colouring scheme in Figure 5.2; see text for additional details. 

 

5.3 Classification of the catchments in the United States 

In this section, the EB method is implemented to a large network of catchments in the 

United States to further examine the usefulness and effectiveness of the method to a 

large region with physically different climates and catchment conditions. Monthly 

streamflow data from a network of 639 stations across the contiguous US are analyzed. 

As with the analysis for the Australian catchments above, four different threshold values 

(T = 0.7, 0.75, 0.8, 0.85) are considered to assess the influence of the correlation 

threshold on the classification of the catchments. Figure 5.6(a) to (d) presents the 

catchment communities identified for these four threshold values. 
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Figure 5.6: Communities identified from the EB method at four different correlation 

thresholds for 639 catchments in the US: (a) T = 0.7; (b) T = 0.75; (c) T = 0.8; and (d) T 

= 0.85. Each colour represents a community with at least 20 stations, while the open 

circles represent all communities with less than 20 stations. The different colours are 

used only to distinguish the communities and hold no meaning when comparing across 

thresholds. 

 

Similar to the classification for Australian catchments above, an accurate count 

of the number of communities with the number of stations for the selected threshold 

values is obtained, as shown in Table 5.2. As seen, the number of stations of the largest 

community decreases when the threshold value increases. It seems that some of the 

stations form/merge with other communities, as shown by the increases in the total 

number of communities with the increase in the threshold value. However, this 

a) T=0.7 b) T=0.75 

c) T=0.8 d) T=0.85 
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interpretation is not necessarily valid for every situation, since the total number of 

communities identified for T = 0.75 (61) is also less than the number of communities 

based on T = 0.7 (69).  

 

Table 5.2: Sizes of the identified communities in the US using the EB method at T = 

0.7, 0.75, 0.8 and 0.85. (NSC is the number of stations in the identified communities, 

NC is the number of communities and NS is the number of stations) 

T = 0.7 T = 0.75 T = 0.8 T = 0.85 

NSC NC NS NSC NC NS NSC NC NS NSC NC NS 

1 39 39 1 33 33 1 59 59 1 83 83 

2 3 6 2 5 10 2 8 16 2 11 22 

3 1 3 3 2 6 3 4 12 3 4 12 

4 1 4 4 1 4 4 1 4 4 2 8 

5 2 10 6 1 6 5 1 5 5 1 5 

6 3 18 7 3 21 6 2 12 7 1 7 

7 2 14 8 1 8 7 2 14 8 2 16 

8 1 8 12 1 12 12 1 12 11 2 22 

10 1 10 13 1 13 14 1 14 12 1 12 

11 1 11 14 1 14 16 1 16 13 1 13 

12 1 12 15 1 15 17 1 17 14 2 28 

15 2 30 18 1 18 18 1 18 15 1 15 

17 1 17 21 1 21 19 1 19 17 1 17 

21 1 21 27 1 27 21 2 42 18 1 18 

23 1 23 35 1 35 23 1 23 19 3 57 
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25 1 25 36 1 36 39 2 78 20 1 20 

27 1 27 40 1 40 48 1 48 22 1 22 

31 1 31 48 1 48 49 2 98 24 1 24 

37 2 74 49 1 49 61 1 61 26 1 26 

50 1 50 50 1 50 71 1 71 30 1 30 

52 1 52 76 1 76 Total   93       639 37 1 37 

54 1 54 97 1 97    40 1 40 

100 1 100 Total   61       639    51 1 51 

Total   69       639       54 1 54 

         Total   125       639 

 

 

Figure 5.7 presents an enlarged version of the communities identified with a 

correlation threshold value of T = 0.75, i.e., an enlarged version of Figure 5.6(b), for 

further discussion of the classification results. The threshold value of T = 0.75 is chosen 

based on the division of the communities that seem to be following the river basins. The 

ten largest communities indicated with different colours (each with at least 20 stations) 

are considered for better visualization of community formation and discussion. 
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Figure 5.7: Communities identified from the EB method for 639 stations in the US at 

the correlation threshold, T = 0.75. Each colour represents a community with at least 20 

stations, while the open circles represent all communities with less than 20 stations.  

 

As seen from Table 5.2, based on T = 0.75, the ten largest communities only 

cover only a small percentage of the total number of communities (i.e., 16%), but 

combine to have almost three-quarters (75%) of the total number of stations (479 out of 

639). Additionally, communities with only a few catchments, such as one catchment (33 

communities) and two catchments (5 communities), combine to form over 60% of the 

total number of communities identified (61), although they only cover 7% of the total 

number of stations (43 out of 639). Hence, to explore further the classification results, 

including to compare against the outcomes for the Australian catchments, the ten largest 

identified communities are also interpreted in terms of the following four properties: 

drainage area, elevation, flow mean, and flow coefficient of variation (CV). 

 

Figure 5.8(a) and (b) presents the relationship of the two catchment 

characteristics (i.e., drainage area and elevation) with the flow mean for the 10 largest 
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communities (479 stations), while Figure 5.8(c) to (d) presents their relationship with 

the flow CV. Again, different colours are used to represent the different communities. 

The results presented in Figure 5.8 offer some interesting observations, especially since 

they are different from those obtained for the Australian catchments. For instance, 

Figure 5.8(a) generally shows a linear relationship between the drainage area and flow 

mean, even though a few stations in community 1 (coloured in green) are out of the 

cluster (Even the anomaly presented by the community 1 can be neglected because, for 

a large community, it has only very little or almost no influence in the network). 

However, such a linear relationship is not observed for the Australian catchments, as 

discussed earlier. As for the relationship between elevation and flow mean for the US 

catchments (Figure 5.8(b)), it appears that communities 1 (green), 3 (blue), 5 (purple), 

and 53 (yellow) are scattered, while the other communities are more clustered. 

 The relationship between the drainage area and the flow CV (Figure 5.8(c)) does 

not seem to indicate a linear relationship. However, the relationship between the 

elevation and flow CV (Figure 5.8(d)) is mostly linear, except for communities 1 

(green), 3 (blue), 5 (purple), and 53 (yellow).  
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Figure 5.8: Relationship between station drainage area (a) and elevation (b) against flow 

mean, as well as station drainage area (c) and elevation (d) against the flow CV for ten 

largest communities (479 stations) in the US. Plots (a) and (b) are in log-log scale, while 

(c) and (d) are in semi-log scale. Stations in ten communities are plotted in colour, 

corresponding to the legend. 

 

Figure 5.9 shows, for instance, the relationship between the distance and 

correlation of two of the communities identified using the EB method: communities 23 

a) b) 

c) d) 



CHAPTER 5 

79 

 

(light purple) and 53 (yellow). These two communities are chosen, as they are unique 

and offer interesting observations and, thus, deserve more discussion. Discussion on 

other communities is not made essentially to avoid redundancy in the presentation, since 

the other communities (can be found in the Appendix B.1) have quite similar patterns to 

the outcomes for the Australian catchments. The correlations of community 23 (light 

purple) (Figure 5.9(a)) retain relatively higher values as the distance increases. This 

kind of behavior is observed in at least one community from both the study areas 

(Australia and the US), as strong correlations tend to be connected with stations over 

long distances. Figure 5.9(b) shows that the communities have lower correlations as the 

distance increases. This indicates that connections between stations still exist over short 

distances (i.e., as neighbours) with a great number of stations in the community. 

 

 

Figure 5.9: Distance-correlation scatterplots for two catchment communities in the US: 

(a) community 23 (light purple); and (b) community 53 (yellow). The communities 

correspond to the legend in Figure 5.8(d). 

b) a) 
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5.4 Summary  

This chapter has presented the application of the edge betweenness method for 

classification of a large number of catchments from two large regions: Australia and the 

United States. Application of the method to monthly streamflow data from a network of 

218 catchments across Australia and 639 catchments across the United States has 

provided promising results on catchment classification. Although the classification has 

been carried out to examine the two large regions with different climates and catchment 

characteristics, the results generally indicate the following; (1) for each study area, a 

very small number of communities have a large number of catchments within them  – 

for instance, 11 of the largest communities from Australia and 10 of the largest 

communities from the US combine to represent as much as 70% of the catchments; and 

(2) a significantly large number of communities have only a very few catchments within 

them – for instance, almost 70% of the communities have only one or two stations 

within them, and thus represent only about 20% and 10% of the catchments in Australia 

and the US, respectively. An examination of the identified communities against some 

important catchment/flow properties (drainage area, stream length, elevation, flow 

mean, and flow CV) has offered some interesting observations, as has the distance-

correlation relationship. The results also indicate that a similar correlation threshold can 

be used to study the monthly streamflow for classification in both regions, regardless of 

the differences in climatic factors and catchment characteristics. 

The analysis presented in this chapter is the first ever attempt to apply the 

concept of community structure for classification of catchments in two different and 

large regions. The assessment of the EB method, in particular, for the two regions also 
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sheds some light on the general suitability of the method for catchment classification. 

Nevertheless, as explained in Chapter 3, the EB method has an important limitation in 

that it is susceptible to the issue of resolution limit. Therefore, it is necessary to explore 

possible improvements to the classification of catchments in Australia and in the US. To 

this end, application of an improved EB method, the Modularity-Density based EB 

(MDEB) method, proposed in Chapter 3, will be presented in Chapter 6. 
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Chapter 6  

Modularity Density-based Edge Betweenness (MDEB) 

Method for Catchment Classification 

 

 

 

 

6.1  Introduction  

The efficiency of the proposed Modularity Density-based Edge Betweenness (MDEB) 

method, to overcome the resolution limit of the network, for catchment classification is 

evaluated using monthly streamflow data from Australia and the United States. For 

Australia, streamflow data observed over a period of 26 years (1981–2006) from each of 

218 stations are considered. For the United States, data observed over a period of 53 

years (1950–2002) from each of 639 stations are considered. Different correlation 

threshold (T) values are used to identify links between the stations, but T = 0.8 for the 

Australian catchments and T = 0.75 for the US catchments are given particular focus 

here, following up on the results obtained from the EB method (see Chapter 5). For each 
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region, the performance of the MDEB method is evaluated with three different 

scenarios of network sizes: (1) the entire network (i.e., 218 and 639 streamflow stations, 

respectively); (2) smaller network sizes based on random selection with 100 different 

realizations (i.e., 100 and 300 randomly selected stations, from the 218 and 639 

streamflow stations, respectively – purely to address the network size); and (3) smaller 

network sizes based on drainage divisions or hydrologic regions (i.e., stations in each of 

9 different drainage divisions in Australia and 18 different hydrologic units in the US – 

to address the network size and the influence of regional similarity). The results are 

interpreted based on the number of identified communities and the number of stations 

that change communities when different sizes of networks are used based on the above 

scenarios. The distance-correlation relationship is also examined for scenarios (2) and 

(3) (for the first scenario, it was already presented in Chapter 5) based on the selected 

communities and drainage divisions/hydrologic units. 

 

6.2  Australian Streamflow 

6.2.1 Entire Network (218 Stations) 

Similar to the application of the EB method in Chapter 5, the MDEB method is applied 

to monthly streamflow data from the 218 stations across Australia. Figure 6.1, for 

instance, presents the communities identified using the MDEB method with a threshold 

value of T = 0.8. In this figure, different colours are used to distinguish the different 

communities. The results seem to suggest that the communities identified are largely 

divided geographically. The MDEB method forms large communities, especially in the 

area clustered with stream-gauges specifically near the coast in the south-eastern part. 
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Figure 6.1: Communities identified using the MDEB method for 218 streamflow 

stations in Australia, with threshold value T = 0.8. Different colours are used only to 

distinguish the communities. 

 

 Table 6.1 presents the count of the number of stations within each community. 

This type of count can be helpful in identifying whether a given catchment stands on its 

own as a community or has a certain level of similarity with other catchments, and how. 

The results in Table 6.1 indicate the following, among others: (1) A total of 52 

communities is formed using the MDEB method, for T = 0.8; (2) A significantly large 

number of communities have only very few catchments within them. For instance, 

communities with only one catchment and two catchments using the MDEB method are 

35 and 9 communities, respectively, and combine to form almost 85% of the total 

number of communities identified (52). These results indicate that each of these 

catchments has no or only very little connection with the other catchments, regardless of 

their geographic proximity with other or their presence within the same basin, 



CHAPTER 6 

85 

 

specifically within the river/stream network; and (3) A very small number of 

communities have a large number of catchments within them. For instance, eight 

communities have at least 10 catchments within them and combine to form over 65% of 

the total number of catchments (148 out of 218). This means that each catchment within 

a given large community has strong connections with the rest of the catchments, 

regardless of their basin characteristics, specifically in terms of the river/stream 

network. 

With these results, to account for possible changes in network size and to 

overcome the resolution problem, an attempt is made here to study smaller network 

sizes and assess the classification outcomes. As mentioned earlier, such smaller 

networks are produced either in terms of the sheer number of stations (through random 

realizations) or in terms of the drainage divisions. The results are presented next. 

 

Table 6.1: Sizes of the identified communities using the MDEB method for Australia. 

MDEB 

Number of 

stations 

in 

community 

Number of 

Communities 

Number of 

stations 

1 35 35 

2 3 6 

3 3 9 

4 1 4 
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7 1 7 

9 1 9 

10 3 30 

11 1 11 

12 1 12 

13 1 13 

16 1 16 

66 1 66 

Total 52 218 

 

 

6.2.2 Network of 100 Stations through Random 

Realizations 

To account for the change in network size, a network size of 100 streamflow stations is 

randomly selected from the entire network of 218 catchments in Australia. To account 

for different combinations of stations to be included in the 100 stations, 100 different 

realizations are carried out. This means, 100 networks of 100 streamflow stations are 

analyzed. It is decided to use a network of 100 stations, since this number is still large 

and roughly about half of the total number of stations (218) and, thus, is sufficient for 

classification and comparison of results. The random realizations also help not only in 

considering a specific number of stations but also can cover other aspects, including 

selection of stations from different geographic regions. 
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Figure 6.2, for instance, presents the classification results for the case of 100 

catchments for 10 out of the 100 random realizations using the MDEB method. Each 

plot indicates the 100 stations that are selected for each random realization, and these 

plots are presented to indicate the variability of the locations of the monitoring stations. 

To examine the influence of network size on classification outcomes, Figure 6.3 shows 

the communities identified using the MDEB method of two different networks sizes that 

are studied; (1) network size of 218 stations, where communities with at least 10 

stations are indicated with colours (Figure 6.3(a)); and (2) network size of 100 stations, 

i.e., one of the random realizations, where communities with at least 4 stations are 

indicated with colours (Figure 6.3(b)). The latter (i.e., just one realization of the 100 

realizations) network is shown only for basic comparison purposes, and should not be 

construed to offer any broader interpretations. Communities coloured with purple in 

Figure 6.3(a) and coloured with green in Figure 6.3(b) are not examined due to the 

inconsistency of the stations in the communities. 
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Figure 6.2: Classification of 10 randomly selected streamflow networks of 100 

catchments from Australia using the MDEB method. Each colour represents a different 

community. 

  

 

Figure 6.3: Communities identified using the MDEB method for two different sizes of 

networks: (a) 218 stations and (b) 100 stations. Each color represents a community with 

at least 10 stations and 4 stations, respectively. The open circles represent all 

communities with less than these numbers, respectively. 

 

Figure 6.4 shows the scatterplots of the distance-correlation comparison for (a) 

seven selected communities from the classification based on 218 stations (Figure 6.3(a) 

except the community colored in purple) and (b) six communities are based on 

classification of one of the realizations of 100 randomly selected stations (Figure 6.3(b) 

except the community colored in green) using the MDEB method. These results can be 

a) N = 218 stations b) N = 100 stations 
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used to examine whether the communities from the six selected regions (including one 

each in the north, west, part of southeast, and Tasmania, and two in the east) either from 

218 stations or from 100 randomly selected ones retaining their behaviour (when 

correlation against the distance) for a scale limit problem assessment. Overall, 

communities from Figure 6.4(a) of rows 1, 3, 4, 5, and 6 are seen to be very similar to 

the communities obtained from the random realization, although the communities from 

the 100 stations are mostly relatively very small (at most 4 stations due to the size of the 

network). Also, some communities tend to merge into different communities, as shown 

by some stations from communities that are coloured in purple and blue (Figure 6.4(a) 

at row 2) and are combined to form a community that is coloured in red (Figure 6.3(b) 

at row 2). These results might be due, as may be seen from Figure 6.4 at row 2, the 

community in red that has relatively high correlations in short distances. Although some 

stations from the community in blue (Figure 6.4(a)) are not selected in the realization, 

the remaining stations are merged with the community that is closer; i.e., community in 

red (Figure 6.4(b)). This kind of scenario is termed as the ‘stations that changed’ in 

further discussion in the following sections. Therefore, this also shows that there 

certainly exist a number of central links to accommodate the connections among the 

catchments and the communities may change if stations with high centrality are 

removed from or added to the network. 
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 (a) 218 stations (b) 100 stations 

 

1. 

 

 

 

2. 
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3. 

  

 

4. 

 

 

 

5. 
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Figure 6.4: Distance-correlation scatterplots for the selected communities from six 

regions in Australia by the MDEB method (see Table 6.1), ((a)1–6) base classification 

and ((b)1–6) 100 randomly selected stations. 

 

6.2.3 Networks of 9 Drainage Divisions  

In addition to addressing the network size in terms of the sheer number of stations 

(through random selection), an attempt is also made to examine the influence of 

drainage division on the classification outcomes. To this end, the drainage divisions and 

river regions reported by the Bureau of Meteorology (BoM) of the Commonwealth of 

Australia are considered, as shown in Figure 6.5. There is a total of 13 drainage 

divisions in Australia. However, in this present study, only nine out of the 13 regions 

are used, to be consistent with the locations of the 218 streamflow stations considered in 

this study. The four regions that are not included in this study are the North Western 

Plateau (NWP), Pilbara-Gascoyne (PG), the South Australian Gulf (SAG), and the 

South Western Plateau (SWP). The locations of the stations in the nine regions are 

presented in Figure 6.6. The stations are indicated in different colours to represent each 

 

6. 
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particular region, and also for better visualization and interpretation for assessment of 

the network size. Figure 6.6 indicates, for instance: (1) regions such as SWC (stations 

colored with brown) (Figure 6.6(g)), TTS (stations colored with yellow) (Figure 6.6(j)) 

and Tasmania (stations colored with pink) (Figure 6.6(i)) have only a small number of 

stations, yet are compacted along the coast apart from the middle region (i.e., the LEB 

(stations colored with turquoise) (Figure 6.6(b)); (2) most areas in the north down to 

south-east, which includes the CC (stations colored with red) (Figure 6.6(a)), NEC 

(stations colored with blue) (Figure 6.6(d)), SEC for NSW (stations colored with 

purple) (Figure 6.6(e)), SEC for Victoria (stations colored with orange) (Figure 6.6(f)) 

and MDB (green) (Figure 6.6(c)), have a large number of stations and also are stretched 

in distances. These observations are important in offering further explanations related to 

distance-correlation relationships, discussed next (see Figure 6.7). 

 

Figure 6.5: Regions according to drainage divisions and river regions (source of the 

map: Website of Commonwealth of Australia (Bureau of Meteorology), 2016). 
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Figure 6.6: Streamflow station locations in nine drainage divisions in Australia 

considered in this study.  

 

(i) Tasmania (h) Tanami Timor Sea Coast (g) South West Coast 

(e) South East Coast (NSW) (f) South East Coast (VIC) (d) North East Coast 

(c) Murray Darling Basin (b) Lake Eyre Basin (a) Carpentaria Coast 
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Figure 6.7(a-i) presents the distance-correlation relationship for each of the nine 

regions. It appears that, in general, different regions tend to have different relationships. 

For instance, catchments in regions like CC, LEB, and TTS (red, turquoise and yellow) 

(Figure 6.7(a, b, and h)) are relatively sparse in distribution compared to the rest of the 

regions, which means that these catchments have very low correlations as distances 

between themselves increases. This is not surprising when referring to Figure 6.6(a, b, 

and h), since the station locations are distributed over long distances. On the other hand, 

Figure 6.7(e), (f), and (i), coloured in purple, orange, and pink, respectively, shows a 

decrease in correlations when the distance decreases. It is important to mention that the 

regions from MDB and NEC (as coloured in green and blue) (Figure 6.7(c) and (d)), 

where the distributions are separated into two groups (which seems sensible according 

to their catchment locations), are stretched in distance leading to a greater variation of 

this kind of relationship. 
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(a) Carpentaria Coast (b) Lake Eyre Basin 

(c) Murray Darling Basin (d) North East Coast 

(e) South East Coast (NSW) (f) South East Coast (VIC) 
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Figure 6.7: Distance-correlation relationship for nine drainage division regions (see 

Figure 6.6) in Australia. 

 

(g) South West Coast (h) Tanami Timor Sea Coast 

(i) Tasmania 
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6.2.4 Comparison between EB and MDEB methods for        

Catchment Classification  

In order to examine any improvement made by the MDEB method over the EB method, 

it will be helpful to have an accurate count of the communities identified for each 

realization by the methods. To this end, Figure 6.8 shows the number of communities 

identified for each realization using the EB method (Figure 6.8(a)) and the MDEB 

method (Figure 6.8(b)). In the plots, the horizontal red solid lines represent the number 

of communities identified from the base classification (i.e., 218 stations), which are 61 

and 52, by the respective methods, and considered as a reference for comparison.  

As seen, the gap between the number of communities identified for the 218 

catchments and the 100 catchments is relatively larger for the EB method (Figure 

6.8(a)) when compared to the MDEB method (Figure 6.8(b)). The results also show that 

the MDEB method tends to form small-size communities, since the number of 

communities identified for the 100 stations (with the different realizations) is very close 

to the base classification (Figure 6.8(b)). Moreover, the community formation is quite 

varied for the MDEB method when compared to the EB method. For instance, 

considering the 100 realizations, the range of the number of communities identified by 

the MDEB is mostly between 20 to 50, while the EB method has number of 

communities mostly ranging from 30 to 50. These results seem to suggest that the 

MDEB method is more natural in network partition when compared to the EB method. 

In the EB method, the partition is almost constant considering the sparseness of 

distribution of the monitoring stations. This is not surprising, as the EB algorithm is 

dependent on the size of the network, an important limitation, as discussed in Chapter 3. 
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The MDEB method mainly forms the communities by taking into account the 

robustness of connectivity by the station pair, regardless of the size of the network. It is 

important to note that the number of communities identified for 100 catchments will 

generally be smaller due to the smaller number of total catchments when compared to 

the communities identified with 218 catchments, regardless of whether the EB method 

is used or the MDEB method is used. What is also important to note from the above 

results is that the range of communities identified for 100 catchments using the MDEB 

method is closer to that identified for the 218 catchments when compared to that using 

the EB method. This can be considered to reflect the superiority of the MDEB over the 

EB method. 

 

Figure 6.8: Number of communities identified for all 100 realizations of 100 randomly 

selected stations for Australia using (a) EB method and (b) MDEB method. The red 

horizontal lines represent the number of communities with the base classification (218 

stations). 
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 Figure 6.9 presents the difference in the number of communities identified 

between the case of 218 catchments and the case of 100 catchments for the EB method 

(Figure 6.9(a)) and for the MDEB method (Figure 6.9(b)). The plots indicate a 

distribution similar to that in Figure 6.8. However, the EB method (Figure 6.9(a)) 

results in a greater difference, even up to almost 40 communities, when compared to the 

MDEB method (Figure 6.9(b)) that shows a maximum difference of only slightly over 

30 communities. The MDEB method also has more than 10 realizations where the 

difference in the number of communities is below 10 (Figure 6.9(b)). Therefore, as far 

as the classification of catchments in Australia is concerned, the results support the 

proposition that the MDEB method is generally superior and that it tends to form 

smaller-size communities with the smaller size of the network.  

 

Figure 6.9: Difference in the number of communities identified for all 100  realizations 

for 100 randomly selected stations for Australia using (a) EB method and (b) MDEB 

method. 
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In addition to examining the performance of the methods for community detection, 

in light of the possible changes in the number of communities/stations at each random 

realization, it is also essential to determine the number of stations that change at each 

realization. To this end, the percentage number of stations that change is examined here. 

The reason for determining the percentage is due to the importance of identifying the 

rate of change formed by a particular method, specifically in catchment classification. 

Figure 6.10 presents a bar plot that compares the change in the number of stations at 

each iteration of random realization by the EB and the MDEB methods, illustrated by 

blue and red boxes, respectively. It is important to note that change in the number of 

stations is equal to the change in the percentage of stations, since the number of stations 

considered for classification is 100. The number of stations that change is obtained by 

comparing stations at each iteration in the random realizations (either merging to other 

existing communities or forming other different communities) with the base 

classification outcomes (i.e. when the number of stations is 218). The number and 

percentage of stations changed in Figure 6.10 indicates the number of iterations that 

have a lesser amount of stations changed between the methods. It can be seen that the 

EB method produces a fewer number of stations changed, as the blue boxes appear 

mostly lower than the red boxes (which represent the MDEB method). These 

differences are further observed by having an accurate count of the number of stations 

changed and the average of the number of stations changed based on the 100 random 

realizations, as shown in Table 6.2. 
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Figure 6.10: Bar plot to compare the number and the percentage of stations changed for 

100 random realizations between the EB and MDEB methods.  

 

Table 6.2: Number of random realizations and the average number of stations for the 

EB and MDEB methods based on the stations changed in classification for Australia. 

 
Method 

 
EB MDEB 

Number of random realizations with lesser number 

of stations changed (refer Figure 6.10) 

56 37 

Average number of stations changed by 100 

realizations 

13 14 
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As presented in Table 6.2, the EB method is found to have a fewer number of 

iterations with changed stations as counted at 56 times compared to the MDEB method 

where the number of iterations of changed stations is 37 times. There might be some 

significant differences regarding which method has fewer number of stations changed at 

each iteration. However, in terms of the average number of stations changed, the counts 

are much closer being 13 and 14, respectively, for the EB and the MDEB methods. It 

might be suggested, from these results, that the EB method tends to form a significantly 

larger amount of changes (measured by stations that are merged to/formed as another 

community) at several iterations, e.g., at iteration 49, 78, and 87 (refer to Figure 6.10). 

However, the MDEB method might form more iterations with the number of stations 

changed but are not significantly very different (or perhaps similar) when compared to 

the EB method. Statistically, the percentage of the number of stations changed by the 

EB method is 13% at each iteration and for the MDEB method is 14%, when the size of 

the network (or N = number of stations) is considered half of the actual (i.e. base 

classification or 218 stations) network. 

In addition to the change in network size through the random realization analysis 

for classification, an attempt is also made to examine the influence of network size on 

classification dividing the base network (218 stations) based on drainage divisions and 

river region boundaries. The communities identified based on such regional 

classification are also compared with those for the base classification. Table 6.3 presents 

the count of the number of stations changed (i.e., how many stations from the identified 

communities based on the regionalization are different to the communities from the base 

classification) for both the EB and the MDEB methods. 
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Table 6.3: Number of stations changed using the EB and MDEB methods according to 

the drainage divisions in Australia. 

 
Number of stations changed 

Regions EB MDEB 

Carpentaria Coast (CC) -13 stations 1 3 

Lake Eyre Basin (LEB)- 5 stations 0 0 

Murray Darling Basin (MDB) -75 stations 11 1 

North East Coast (NEC)- 42 stations 5 7 

South East Coast (NSW) (SEN)- 16 stations 3 4 

South East Coast (Victoria) (SEV)- 27 stations 6 8 

South West Coast (SWC) – 11 stations 5 1 

Tanami Timor Sea Coast (TTS)- 12 stations 3 1 

Tasmania (TAS) – 12 stations 2 2 

Total number of stations changed 36 27 

 

According to Table 6.3, the MDEB method results in fewer stations changed, with 

a count of 27 stations from all the nine different regions considered in Australia, and the 

EB method results in a count of 36 stations in total. The MDEB method seems to 

perform better with larger networks compared to the EB method that works well with 

smaller networks. Having said that, the MDEB method still works better also with very 

small networks, i.e., from regions South West Coast (11 stations) and Tanami Timor 

Sea Coast (12 stations). Both methods have similar results with regions from Lake Eyre 

Basin (5 stations) and Tasmania (12 stations). This seems to suggest that small networks 
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that are relatively very sparse will have few connections or no connection at all and tend 

to have no changes either, as in the case of those that are very compact (i.e., short 

distances and strong correlations among the catchments). 

 

6.3  The United States Streamflow 

6.3.1 Entire Network (639 stations) 

The MDEB method is applied to monthly streamflow data from 639 stations across the 

United States for classification. Figure 6.11 presents the communities identified for the 

639 stations in the US using the MDEB method. Different colours are used to 

distinguish the different communities. Table 6.4 presents the number of communities 

and the number of stations, arranged according to the number of stations in each 

community, for the MDEB method. The results indicate that: (1) the MDEB method 

forms 76 communities for the 639 catchments; (2) a significantly large number of 

communities have only a very few catchments within them. For instance, communities 

with only one catchment and two catchments from the MDEB method are 34 and 9, 

respectively, forming over 50% of the total number of communities identified (76); (3) 

a very small number of communities have a large number of catchments within them. 

For instance, there are 11 communities that have more than 20 catchments in each, 

making up about 65% of the total number of catchments (416 out of 639).  
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Figure 6.11: Communities identified using the MDEB method for 639 stations in the 

United States.  

 

Table 6.4: Sizes of the identified communities using the MDEB method for 639 

catchments in the US. 

MDEB 

Number of 

stations 

in community 

Number of 

Communities 

Number of 

stations 

1 34 34 

2 9 18 

3 3 9 

4 1 4 

5 1 5 

6 4 24 

7 5 35 

8 1 8 



CHAPTER 6 

108 

 

9 2 18 

11 1 11 

12 2 24 

14 1 14 

19 1 19 

21 2 42 

22 1 22 

25 1 25 

31 1 31 

36 1 36 

40 1 40 

46 1 46 

50 1 50 

51 1 51 

73 1 73 

Total 76 639 

 

6.3.2 Network of 300 Stations through Random 

Realizations 

To account for the influence of network size on catchment classification, a network size 

of 300 randomly selected catchments (i.e., almost half out of 639 stations) with 100 sets 

of random realizations are analyzed. As an example of classification of the 300 

randomly selected catchments using the MDEB method, Figures 6.12 presents 10 out of 
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100 sets of random realizations. In these plots, the different colours represent different 

communities but hold no meaning when comparing across other plots. 

For better visualization of the communities and classification outcomes, Figure 

6.13 shows the communities identified using the MDEB method for two scenarios: (1) a 

network size of 639 stations where communities with at least 20 stations are indicated 

with colours (Figure 6.13(a)); and (2) a network size of 300 stations, i.e., one of the 

random realizations, where communities with at least 10 stations are indicated with 

colours (Figure 6.13(b)). Communities that are coloured in brown, green, and dark blue 

in Figure 6.13(a) and coloured in green and dark blue in Figure 6.13(b) are not 

examined for comparison, due to lack of coverage of stations. 
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Figure 6.12: Communities identified with 300 randomly selected stations in the US 

using the MDEB method. Ten out of 100 random realizations are presented, as 

examples. Each colour represents a community, but the communities are not the same 

across all the 10 realizations. 

 

 

Figure 6.13: Communities identified using the MDEB for two different sizes of 

networks in the US: (a) 639 stations and (b) 300 stations. Each colour represents a 

community with at least 20 stations (a) and 10 stations (b), while the open circles 

represent all communities with less than these. 

 

Figure 6.14 shows the distance-correlation relationships of the selected 

communities for the base classification with 639 stations (Figure 6.14 of column (a))  

and the reduced network of 300 randomly selected stations (Figure 6.14 of column (b)) 

using the MDEB method. For the communities shown in Figure 6.14 at row 1, 

comparison is difficult because only very limited number of stations is randomly 

selected to compare with the base classification. The situation is also similar for Figure 

a) N = 639 stations b) N = 300 stations 
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6.14 at row 6, with the distribution is apparently similar. Overall, there are some other 

cases that are worth mentioning, such as communities that are mostly located in the 

northeast to mid-west area. For instance, Figure 6.14 at row 3, 4, 5, and 7 shows that the 

MDEB method manages to identify a similar set of divisions, regardless of the size of 

the network considered, based on their behaviour in the distance-correlation 

relationships. In the western region, a similar behaviour is observed, as that illustrated 

in Figure 6.14 at row 2. This shows that the MDEB method performs well in 

community detection, regardless of the difference in the network size. 

 

 (a) 639 stations (b) 300 stations 

 

1. 

 

 

 

2. 
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3. 

  

 

4. 

  

 

5. 
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Figure 6.14: Distance-correlation relationship for communities from seven selected 

regions in the US by the MDEB method (see Table 6.4, ((a)(1-7)) base classification 

and ((b)(1-7)) 300 randomly selected stations. 

 

6.3.3 Networks of 18 Hydrologic Unit Code (HUC) Regions 

In addition to the above analysis of the influence of network size based on reduced 

number of stations with random selection, an attempt is also made to study the influence 

of network size by considering the regional impact. To this end, stations within each 

Hydrologic Unit Code (HUC) are considered independently. The 639 stations 

considered in the present study in the contiguous US come under HUC 1–18. These 1–

 

6. 

  

 

7. 
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18 HUC regions are shown in Figure 6.15 (the figure also shows the 19–21 HUC 

regions – Hawaii, Alaska, and Puerto Rico). Pink boundaries and a two-digit number 

represent each HUC region. The Missouri River Basin (HUC region 10) is very large 

and is separated into the Upper Missouri region (HUC region 10A) and the Lower 

Missouri region (HUC region 10B). However, in the present analysis, all catchments 

belonging to HUC 10 are examined as one whole region. More information on the 

spatial coverage (i.e., the percentage of each HUC region that is gauged) and the related 

analysis based on HUC regions can be found in Kiang et al. (2013). 

 

 

Figure 6.15: Regions according to hydrologic unit code (HUC) in the United States 

(source of the map: (Kiang et al., 2013)). 

 

For a clear visualization of the streamflow stations within each HUC region, 

Figure 6.16 shows the stations within each of the 18 HUC regions independently on the 
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map of the contiguous US. For an easier understanding, for each HUC region, the 

stations are also indicated in different colours. These are important and useful to 

indicate the accurate locations of catchments in each HUC region. For instance, there 

are some regions that are compact in the distribution of catchments with a large number 

of catchments at close distances as a network, such as those in the Mid-Atlantic, South 

Atlantic-Gulf, Ohio, and the Upper Mississippi regions (Figure 6.16(b), (c), (e), and 

(g)). Meanwhile, stations in some other regions span large distances between each other, 

such as Souris-Red-Rainy, Missouri, Arkansas-White-Red, Texas-Gulf, Rio Grande, 

Upper Colorado, Great Basin, Pacific Northwest, and California, as shown in Figure 

6.16(i), (j), (k), (l), (m), (n), (p), (q), and (r). The locations of stations are also important 

in offering explanations related to the variability of the distance-correlation 

relationships, as shown in Figure 6.17 (more details in below). 
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c) South Atlantic-Gulf (HUC 03) d) Great Lakes (HUC 04) 

e) Ohio (HUC 05) f) Tennessee (HUC 06) 

g) Upper Mississippi (HUC 07) h) Lower Mississippi (HUC 08) 

i) Souris-Red-Rainy (HUC 09) j) Missouri (HUC 10) 

a) New England (HUC 01) b) Mid-Atlantic (HUC 02) 
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Figure 6.16: Streamflow station locations in 18 HUC regions in the United States 

considered in this study. 

 

m) Rio Grande (HUC 13) n) Upper Colorado (HUC 14) 

o) Lower Colorado (HUC 15) p) Great Basin (HUC 16) 

q) Pacific Northwest (HUC 17) r) California (HUC 18) 

k) Arkansas-White-Red (HUC 11) l) Texas-Gulf (HUC 12) 
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Figure 6.17 (a-r) presents the distance-correlation relationships for stations in the 

18 HUC regions. It appears that most of the regions have different patterns of 

relationship. For instance: 

(1) Catchments in regions HUC 01, 03, 04, 10, 11, 12, 17, and 18 exhibit a 

decrease in correlation with an increase in distance and are also more sparsely 

distributed than that in the rest of the regions (Figure 6.17(a), (c), (d), (j), (k), (l), (q) 

and (r)). However, such a characteristic may not be valid with regions that have a 

smaller number of catchments, such as HUC 08, 09, 13, 14, 15, and 16 (Figure 6.17(h), 

(i), (m), (n), (o), and (p)). The region HUC 10 is slightly different (Figure 6.17(j)) and is 

worth mentioning, where the correlation decreases when the distance increases until at 

about 700 km, and the correlation decreases again when the distance exceeds 700 km. 

This variability of the connection between these catchments over large distances might 

be because they are from the same stream/river network that is stretched over long 

distances, since the region represents the Missouri basin (Figure 6.16(j)); and 

(2) Catchments in regions HUC 02, 05, 06, and 07 are much more compact in 

terms of correlations, meaning that the catchments are strongly connected even when 

the catchments span large distances (Figure 6.17(b), (e), (f), and (g)). 

The variability of the distance-correlation relationships summarised by the HUC 

regions is helpful to obtain a better understanding of how the community detection 

method works and in identifying communities, regardless of geographic proximity or 

distance factors. 
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(a) HUC 01 (b) HUC 02 

(c) HUC 03 (d) HUC 04 

(e) HUC 05 (f) HUC 06 
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h) HUC 08 

i) HUC 09 

g) HUC 07 

j) HUC 10 

l) HUC 12 k) HUC 11 
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n) HUC 14 

o) HUC 15 

m) HUC 13 

p) HUC 16 

r) HUC 18 q) HUC 17 
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Figure 6.17: Distance-correlation relationship for stations within the 18 HUC regions in 

the US. The colors correspond to those in Figure 6.16. 

 

6.3.4 Comparison between EB and MDEB methods 

Considering network size through random realization, Figure 6.18 presents the number 

of communities identified for all iterations using (a) the EB method and (b) the MDEB 

method. The figure also presents the horizontal red solid lines that represent the number 

of communities identified with the entire network of 639 stations (i.e., base 

classification). As discussed earlier, the number of communities identified with the 639 

stations is 61 using the EB method and 76 using the MDEB method. Intuitively, it could 

be expected that the range of variability in the number of communities identified with a 

smaller size of network (i.e., 300 stations) would be correspondingly smaller than that 

of the base network (639 stations). As seen in Figure 6.18(a), the range of differences in 

the number of communities identified using the EB method is larger (i.e., most of the 

iterations have nearly similar number of communities and one of the iterations has a 

greater number) than using the MDEB method. The MDEB method shows more 

differences, as illustrated by the gap between the black circles and the red line, as seen 

in Figure 6.18(b). 
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Figure 6.18: Number of communities identified for all 100 random realizations using (a) 

the EB method and (b) the MDEB method for the US. The red horizontal lines represent 

the number of communities with the base classification. 

 

Figure 6.19 shows the difference in the communities identified between the 

random realizations and the base classification for (a) the EB and (b) the MDEB 

methods. It can be clearly seen, in Figure 6.19(a), that the number of communities from 

the EB method is similar in variability with the base classification, i.e., mostly range 

from 0 to 20 communities and the MDEB method results mostly range from 10 to 30 

communities (Figure 6.19(b)). However, as shown previously (Figure 6.18), the EB 

method forms large number of communities in which almost similar to the identified 

number of communities with the base classification (639 stations) and in fact, there is 

seen one realization has larger than that. The performance of the MDEB method is 

investigated further in more detail in terms of the number of stations that change (merge 

or form as other communities) and the percentage of the number of changed stations, in 

order to compare the tendency of changes by each method for catchment classification. 
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Figure 6.19: Difference in the number of communities identified for all 100 random 

realizations for the catchments in the US: (a) EB method; and (b) MDEB method. 

 

Figure 6.20 presents a bar plot to compare the number of stations that are found to 

change at each iteration of random realizations using the EB method (represented in 

blue boxes) and the MDEB method (represented in red boxes), with coloured horizontal 

lines to represent the average of the number of stations changed – corresponding to the 

legend. In addition, the percentage of stations that are found to change is also 

considered, as shown in Figure 6.21, to identify the proportion of the count of the 

number of stations changed at each random realization by both methods. Despite the 

apparent randomness in the number and percentage of stations changed (Figures 6.20 

and 6.21), the purpose is also to count the number of iterations that have the fewer 

number of stations changed between the methods. It can be seen that the MDEB method 

produces fewer stations changed, since the red boxes are mostly lower than the blue 

ones (which represent the EB method). An accurate count of the number of stations 

changed and the average of the number of stations changed based on the 100 random 

realizations is also obtained, as shown in Table 6.5. 
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Figure 6.20: Bar plot to compare the number of stations changed for 100 random 

realizations between the EB and MDEB methods for the US. Horizontal lines represent 

the average number of stations changed using 100 random realizations. 
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Figure 6.21: Bar plot to compare the percentage of stations changed for 100 random 

realizations between the EB and MDEB methods for the US.  

 

In regards to the above, it will also be helpful to have a specific count of the 

number of realizations with the fewer number of changed stations by each method as 

indicated in Table 6.5. For instance, out of 100 realizations, the MDEB method is found 

to have fewer changed stations at 66 times when compared to the EB method, which 

only manages to have fewer changed stations based on the iterations with count of 34. 

Furthermore, the average number of stations changed at each iteration is 63 by the EB 

method and 57 by the MDEB method, as represented by the blue horizontal lines (for 

the EB method) and the red horizontal lines (for the MDEB method) (Figure 6.20). 

 

Table 6.5: Number of random realizations and the average number of stations for EB 

and MDEB methods based on the stations changed in classification for the US. 

 
Method 

 
EB MDEB 

Number of realizations with a fewer number of 

stations changed (refer Figure 6.20) 

34 66 

Average number of stations changed with 100 

realizations (refer Figure 6.20) 

63 57 
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Finally, by forming small-size networks based on HUC boundaries, the regional 

classification is carried out by applying the EB and the MDEB methods and the 

communities identified are compared with the base classification. Table 6.6 presents an 

accurate count of the number of stations changed (i.e., how many of the stations merged 

to or formed as another community) for both methods. 

 

Table 6.6: Number of stations changed using EB and MDEB methods according to 

HUC regions in the US. 

 Number of stations changed 

Hydrologic Unit Code (HUC) EB method MDEB method 

01 - New England (31 stations) 13 2 

02 - Mid Atlantic (84 stations) 24 37 

03 - South Atlantic-Gulf (85 stations) 21 14 

04 - Great Lakes (39 stations) 8 4 

05 – Ohio (85 stations) 17 17 

06 – Tennessee (18 stations) 8 1 

07 - Upper Mississippi (92 stations) 26 14 

08 - Lower Mississippi (9 stations) 1 1 

09 - Souris-Red-Rainy (6 stations) 0 0 

10 – Missouri (43 stations) 11 9 

11 - Arkansas-White-Red (30 stations) 5 4 

12 - Texas-Gulf (8 stations) 0 2 

13 - Rio Grande (6 stations) 0 1 
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14 - Upper Colorado (9 stations) 0 1 

15 - Lower Colorado (8 stations) 2 0 

16 - Great Basin (6 stations) 0 1 

17 - Pacific Northwest (63 stations) 13 3 

18 – California (17 stations) 7 3 

Total number of stations changed 156 114 

 

According to Table 6.6, the MDEB method results in fewer number of stations 

changed with a count of 114 stations from all 18 different HUC regions across the US, 

while the EB method has a count of 156 stations. The MDEB method appears to 

perform well with either large or small networks when compared to the EB method. 

Both methods also give similar results with regions from Ohio (with 85 stations), Lower 

Mississippi (9 stations), and Souris-Red-Rainy (6 stations). 

 

6.4  Summary 

This chapter has presented the application of an improved edge betweenness (EB) 

method, called the Modularity-Density based EB (MDEB) method, for classification of 

catchments in Australia and in the United States. Three network scenarios have been 

studied: (1) base classification (i.e., 218 stations in Australia and 639 stations in the 

US); (2) through 100 random realizations with a network of 100 randomly selected 

stations out of 218 stations for Australia and 300 randomly selected stations out of 639 

stations from the US,  to purely to address the problem of network size; and (3) through 

regional classification based on nine drainage divisions and river regions for Australia 
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and 18 Hydrologic Unit Code (HUC) regions for the US, to address the network size 

and regional similarity and influence. Due to the issue of resolution (or scale) limit 

problem inherent in the modularity function in the EB method (as explained in Section 

3.4.2), the classification outcomes from the MDEB method based on the three scenarios 

considered in this study (i.e., entire network size, smaller network size based on random 

realizations, smaller network size based on drainage divisions or hydrologic regions) 

were compared with the classification based on the EB method. This comparison is 

crucial to evaluate the efficacy of the two methods, and possible identification of the 

superior one, towards reliable and accurate classification. Hydrologic monitoring 

networks, to represent catchments, often change in size for various purposes. For 

instance, due to difficulty in maintenance, one or more streamflow stations may be 

removed from an existing network; similarly, to measure data at ungauged locations, 

one or more new streamflow monitoring stations may be installed.  The three scenarios 

were essentially considered to illustrate these changes and their effects on catchment 

classification. From the results, the MDEB method was found to generally perform 

better than the EB method in catchment classification, as evaluated in terms of the 

number of communities identified and the number of stations that changed communities 

(based on two scenarios of random realizations and drainage divisions or hydrologic 

regions). The superior performance of the MDEB method was essentially due to its 

ability to take into account the resolution or scale issue in classification. With these 

results suggesting the superiority of the MDEB method, an attempt is also made to use 

the MDEB method in the context of a multi-variable approach, involving rainfall and 

PET, in addition to streamflow, for the 218 catchments in Australia. Details of such an 

analysis and results are presented in Chapter 7.  
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Chapter 7 

Catchment Classification based on Multiple Variables 

 

 

 

7.1 Introduction  

The fundamental idea of catchment (and other hydrologic) studies, including catchment 

classification, is to establish connections between the different elements or items 

(known or assumed) that generally exist within the underlying system. Depending upon 

the conditions (e.g., catchment, purpose, problem), these elements include catchment 

characteristics, hydroclimatic variables, model parameters, and others (and their 

combinations) with respect to space, time, and space–time. With all these influencing 

the functions of catchments, studying only one variable (or component) that represents 

or influences catchments, as was the case using only streamflow in Chapters 5 and 6, is 

often not adequate for catchment classification. It is also important to consider any other 

variable(s) that influence the catchments, especially those that affect streamflow. The 

use of multiple variables would also help put more stringent conditions on classification 

and, thus, the outcomes would be more reliable. 
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In view of this, an attempt is made here to present a multi-variable approach for 

classification of catchments. In addition to streamflow, rainfall and potential 

evapotranspiration (PET) are considered for the multi-variable analysis. With the 

classification analysis presented with streamflow alone in Chapters 5 and 6, and with 

the observation that the MDEB performs slightly better when compared to the EB 

method, the multi-variable approach is presented only using the MDEB method. The 

classification is performed for the 218 catchments from Australia. In the 

implementation of the MDEB method in a multi-variable sense, and with three variables 

(streamflow, rainfall, and PET), four different combinations of multiple variables are 

considered: (1) streamflow and rainfall; (2) streamflow and PET; (3) rainfall and PET; 

and (4) streamflow, rainfall, and PET. For each of these combinations, the identification 

of the connections between the stations and assignment of links is done as follows. 

First, the correlations between any two stations are obtained from the average of 

correlations of the respective (two or three) variables between the stations. Next, these 

correlations are compared against the (assumed) threshold values to check the 

existence/non-existence of connections. The classification results from the multi-

variable analysis are also compared with those obtained from the single-variable 

analysis, including streamflow, rainfall, and PET independently. However, the case of 

streamflow is given particular importance, especially considering the extensive amount 

of results obtained using streamflow (Chapters 5 and 6). The comparisons are done 

using distance-correlation relationship, and the classification outcomes are also 

interpreted in terms of accurate station count and connection link count for each case. 

For a more systematic presentation of the analysis, details of the single variables 
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(streamflow, rainfall, and PET) are presented first, with particular focus on correlations 

between the stations considered. 

7.2 Single-variable correlation analysis 

7.2.1 Streamflow 

Figure 7.1 presents the correlations in monthly streamflow among the 218 stations 

(Figure 7.1(a)) as well as the distance-correlation relationship for the 218 stations 

(Figure 7.1(b)). As may be seen, the correlations are generally low and range from -0.5 

to 0.5 for most stations. However, there also appear to have some higher correlations 

with values of greater than 0.5 for stations 150 to 210. For the distance-correlation 

relationship (Figure 7.1(b)), it can be seen that the correlations decrease when the 

distance increases. Some stations tend to have high correlations at long distances, as 

shown by the small cluster at distance 2500 to 3000 km with strong correlations 

between 0.5 to 1. This is not surprising, since strong correlations may also be observed 

over large distances due to many factors (Fang et al., 2017).  
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Figure 7.1: Correlation analysis for streamflow from 218 stations in Australia: (a) 

Correlation of each station to other stations; and (b) distance-correlation relationship. 

 

7.2.2 Rainfall 

Figure 7.2 presents the correlations in monthly rainfall among the 218 stations (Figure 

7.2(a)) as well as their distance-correlation relationship (Figure 7.2(b)). As may be seen, 

the distribution of correlations in rainfall between stations is more scattered when 

compared to that in streamflow (Figure 7.1(a)). The rainfall correlations (Figure 7.2(a)) 

appear to divide the stations quite significantly, which is essentially because of the 

a) 

b) 
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greater variability in rainfall distribution over Australia. The distance-correlation 

relationship, shown in Figure 7.2(b), indicates that the correlations decrease when the 

distance increases (similar to that for streamflow data), although with even lower 

minimum correlation values that are less than -0.5. There also appear to be stations that 

retain relatively higher correlations even as the distance increases. However, this is 

sparser when compared to the distribution in the case of streamflow.  

 

 

Figure 7.2: Correlation analysis for rainfall from 218 stations in Australia: (a) 

Correlation of each station to other stations; and (b) distance-correlation relationship. 

a) 

b) 
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7.2.3 Potential Evapotranspiration (PET) 

Figure 7.3 presents the correlations in monthly PET among the 218 stations (Figure 

7.3(a)) as well as their distance-correlation relationship (Figure 7.3(b)). The case of PET 

is quite interesting, as the correlations mostly have high values, with only a very small 

number of stations have low correlations. Thus, practically, the use of PET may not 

really help in classification, since most of the stations will be connected even when very 

high thresholds are used to identify/assign links and, hence, there will be only a very 

few classes. Nevertheless, this remains to be seen. The distance-correlation relationship, 

shown in Figure 7.3(b), indicates that the correlations decrease as the distance increases, 

similar to that observed for streamflow and rainfall. Nevertheless, the distributions of 

correlations are more scattered when compared to those obtained for streamflow and 

rainfall.   
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Figure 7.3: Correlation analysis for potential evapotranspiration from 218 stations in 

Australia: (a) Correlation of each station to other stations; and (b) distance-correlation 

relationship. 

 

7.3 Multi-variable correlation analysis 

7.3.1 Streamflow and Rainfall 

Figure 7.4 presents the correlations between the 218 stations (Figure 7.4(a)) and their 

distance-correlation relationship (Figure 7.4(b)) for the combination of streamflow and 

rainfall data, i.e., average of correlations for streamflow and rainfall. As can be seen, the 

a) 

b) 
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correlations between stations appear to be more like that observed for rainfall (Figure 

7.2(a)), especially by looking at the partition of stations based on the combined 

correlations. However, from the distance-correlation relationship, it can be seen that the 

distribution is more linear and compact in formation, which is not entirely similar to 

rainfall. 

   

 

Figure 7.4: Correlation analysis for streamflow-rainfall combination for 218 stations in 

Australia: (a) Correlation of each station to other stations; and (b) distance-correlation 

relationship. 

a) 

b) 
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7.3.2 Streamflow and Potential Evapotranspiration 

Figure 7.5 presents correlations between the 218 stations (Figure 7.5(a)) and their 

distance-correlation relationship (Figure 7.5(b)) for the combination of streamflow and 

PET. It appears that the correlations (Figure 7.5(a)) range similarly to that for the PET 

(Figure 7.3(a)) but the distribution pattern seems to be nearly similar to that for 

streamflow (Figure 7.1(a)). From the distance-correlation relationship, shown in Figure 

7.5(b), it can be seen that the distribution is more compact in formation with 

correlations decreasing as the distance increases.  

 

a) 

b) 
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Figure 7.5: Correlation analysis for streamflow-PET combination for 218 stations in 

Australia: (a) Correlation of each station to other stations; and (b) distance-correlation 

relationship. 

 

7.3.3 Rainfall and Potential Evapotranspiration 

Figure 7.6 presents the correlations between the 218 stations (Figure 7.6(a)) and their 

distance-correlation relationship (Figure 7.6(b)) for the combination of rainfall and PET. 

As seen from Figure 7.6(a), the rainfall-PET combination results in slightly different 

correlations to either that of rainfall or that of PET. The results for this combination are 

slightly different from those for the combination of streamflow and PET (Figure 7.5(a)) 

in terms of the partition shown by the rainfall (Figure 7.2(a)), including the comparison 

in distance-correlation (Figure 7.6(b)) that is more sparse led by lower correlations from 

the rainfall connections. 
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Figure 7.6: Correlation analysis for rainfall-PET combination for 218 stations in 

Australia: (a) Correlation of each station to other stations; and (b) distance-correlation 

relationship. 

 

7.3.4 Streamflow, Rainfall, and Potential Evapotranspiration 

Figure 7.7 presents the correlations between the 218 stations (Figure 7.6(a)) and their 

distance-correlation relationship (Figure 7.7(b)) for the combination of streamflow, 

rainfall, and PET. The correlations shown in Figure 7.7(a) clearly seem to represent the 

influence of all three variables, with the compactness observed from streamflow, the 

a) 

b) 
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divisions observed for rainfall, and also the lower range of correlations observed for 

PET. In terms of the distance-correlation relationship, shown in Figure 7.7(b), the 

correlations tend to decrease when the distance increases with a wider distribution when 

compared to that observed for the other combinations (i.e., with two variables). 

 

Figure 7.7: Correlation analysis for streamflow-rainfall-PET combination for 218 

stations in Australia: (a) Correlation of each station to other stations; and (b) distance-

correlation relationship. 

 

a) 

b) 
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7.4 Single-variable vs. Multi-variable Classification 

7.4.1 Station Count with the Influence of Variables and 

Threshold 

Having discussed the correlations of the variables both in a single-variable sense and in 

a multi-variable sense as well as distance-correlation relationships for such, an attempt 

is now made to examine further the usefulness of multiple variables in the 

implementation of the MDEB method for classification of the above 218 catchments in 

Australia. In this regard, it would be helpful, first of all, to have an accurate count of the 

number of communities identified with a specific number of stations, since such a count 

can help identify whether a given catchment has a certain level of similarity with other 

catchments and to the other cases (to different threshold values for that matter), and 

how. Tables 7.1 to 7.6 present the classification results, including the number of 

communities identified and the number of stations, for all the above seven cases of 

single variables and multiple variables for six selected threshold values, respectively: 

i.e., T = 0.65, 0.7, 0.75, 0.8, 0.85, and 0.9. In these tables, the number of communities 

(NC) are arranged according to the number of stations in each community (NSC).  

There are some worth-mentioning outcomes in a broader sense, with the 

formation of communities definitely varying depending on the variable and the 

combinations under certain threshold values. For instance, the results indicate that: 

(1) Streamflow data results in the highest number of communities and PET data results 

in the lowest number of communities, as compared to the other five cases, regardless of 

the threshold values. These results are shown in Figure 7.8 (details are explained  

below) with line graphs, where the ones for streamflow data and PET data are coloured 
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with green and dark blue, respectively. This seems to suggest that the catchments are 

divided solely based on the level of connectivity within them (this is supported by the 

results in Figures 7.5(a) and 7.7(a)); 

(2) Since the streamflow data offers the greatest number of communities that have only 

few catchments within them (the least at T = 0.65 with more than 50% out of total 

number of communities) regardless of the threshold, cases (i.e., combinations) 

associated with streamflow tend to also form more number of communities with only 

few catchments, especially at threshold value T = 0.7 and above. For instance, the 

communities identified with only a few catchments in cases of streamflow and rainfall, 

streamflow and PET, and streamflow, rainfall and PET result in at least one-third of the 

total number of communities identified (2 out of 6 communities) (in the case by the 

combination of streamflow and PET at T = 0.7) and keep increasing as the threshold 

value increases; 

(3) Since the PET data results in the greatest number of stations in a community (217 

catchments out of 218 total number of catchments at T = 0.65), any case associated with 

PET data tends to form larger-sized community as well, regardless of the threshold. For 

instance, the cases of streamflow and PET, rainfall and PET, and streamflow, rainfall, 

and PET result in at least one community with more than 100 catchments (120, 117 and 

112 catchments, respectively, out of 218 catchments at T = 0.65), and the number of 

catchments in any given community then gradually decreases when the threshold value 

is increases. This seems to suggest that the correlations from the PET are able to affect 

the community formation, even when they are combined with the other variables. This 

means that each of the catchments within a given large community has strong 
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connections with the rest of the catchments, regardless of the distance between them or 

whether they are part of different basins or regions.  
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Table 7.1: Sizes of communities identified using the MDEB method for all single- and multi-variable cases for Australian catchments at 

threshold value T = 0.65. (NSC is the number of stations in community, NC is the number of communities and NS is the number of stations) 

Streamflow (S) Rainfall (R) PET (P) S & R S & P R & P S, R & P 

NS

C 

NC NS NS

C 

NC NS NS

C 

NC NS NS

C 

NC NS NS

C 

NC NS NS

C 

NC NS NS

C 

NC NS 

1 11 11 1 1 1 1 1 1 1 4 4 2 1 2 1 2 2 2 1 2 

2 3 6 2 1 2 217 1 217 2 2 4 48 2 96 46 1 46 3 1 3 

3 2 6 3 1 3 Total  2         218 3 1 3 120 1 120 53 1 53 13 1 13 

5 1 5 8 1 8    7 1 7 Total  4         218 117 1 117 40 1 40 

6 1 6 11 1 11    11 2 22    Total  5         218 48 1 48 

7 1 7 15 1 15    15 1 15       112 1 112 

9 1 9 40 1 40    30 1 30       Total  6         218 

13 2 26 48 1 48    44 1 44          

19 1 19 90 1 90    89 1 89          

29 1 29 Total  9        218    Total  14       218          

94 1 94                   

Total  25      218                   
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Table 7.2: Sizes of communities identified using the MDEB method for all single- and multi-variable cases for Australian catchments at 

threshold value T = 0.7. (NSC is the number of stations in community, NC is the number of communities and NS is the number of stations). 

 

 

 

 

Streamflow (S) Rainfall (R) PET (P) S & R S & P R & P S, R & P 

NS

C 

NC NS NS

C 

NC NS NS

C 

NC NS NS

C 

NC NS NS

C 

NC NS NS

C 

NC NS NS

C 

NC NS 

1 14 14 1 2 1 1 1 1 1 5 5 1 2 2 46 1 46 2 3 6 

2 6 12 2 2 4 217 1 217 2 3 6 13 1 13 50 1 50 17 1 17 

3 1 3 3 1 3 Total   2         218 3 3 9 41 1 41 122 1 122 40 1 40 

5 1 5 10 1 10    7 1 7 47 1 47 Total   3         218 47 1 47 

7 2 14 11 1 11    9 1 9 113 1 113    108 1 108 

9 1 9 15 1 15    11 2 22 Total   6         218    Total  7         218 

10 1 10 39 1 39    15 1 15          

14 1 14 48 1 48    16 1 16          

18 1 18 86 1 86    19 1 19          

26 1 26 Total  11        218    26 1 26          

93 1 93       84 1 84          

Total   30       218       Total   20       218          
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Table 7.3: Sizes of communities identified using the MDEB method for all single- and multi-variable cases for Australian catchments at 

threshold value T = 0.75. (NSC is the number of stations in community, NC is the number of communities and NS is the number of stations). 

 

 

 

 

 

 

 

 

 

 

Streamflow (S) Rainfall (R) PET (P) S & R S & P R & P S, R & P 

NS

C 

NC NS NS

C 

NC NS NS

C 

NC NS NS

C 

NC NS NS

C 

NC NS NS

C 

NC NS NS

C 

NC NS 

1 24 24 1 1 1 1 1 1 1 8 8 1 2 2 2 1 2 1 4 4 

2 3 6 2 3 6 217 1 217 2 2 4 2 3 6 10 1 10 2 3 6 

3 1 3 3 1 3 Total  2        218 3 2 6 3 1 3 41 1 41 3 1 3 

4 2 8 4 1 4    5 1 5 14 1 14 51 1 51 6 1 6 

5 1 5 5 1 5    10 2 20 38 1 38 114 1 114 10 1 10 

9 1 9 6 1 6    11 2 22 44 1 44 Total  5        218 11 1 11 

10 2 20 9 1 9    14 1 14 111 1 111    15 2 30 

17 1 17 11 2 22    15 1 15 Total  10      218    29 1 29 

19 1 19 16 1 16    17 1 17       30 1 30 

26 1 26 30 1 30    26 1 26       89 1 89 

81 1 81 42 1 42    81 1 81       Total  16      218 

Total  38      218 74 1 74    Total  22      218          

   Total  15      218                
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Table 7.4: Sizes of communities identified using the MDEB method for all single- and multi-variable cases for Australian catchments at 

threshold value T = 0.8. (NSC is the number of stations in community, NC is the number of communities and NS is the number of stations). 

 

 

 

 

 

 

 

 

 

 

Streamflow (S) Rainfall (R) PET (P) S & R S & P R & P S, R & P 

NS

C 

NC NS NS

C 

NC NS NSC NC NS NS

C 

NC NS NS

C 

NC NS NS

C 

NC NS NS

C 

NC NS 

1 35 35 1 3 3 1 1 1 1 21 21 1 7 7 2 1 2 1 5 5 

2 3 6 2 3 6 217 1 217 2 2 4 2 2 4 4 1 4 2 3 6 

3 3 9 3 1 3 Total  2        218 3 4 12 3 1 3 16 1 16 3 2 6 

4 1 4 5 1 5    4 2 8 6 1 6 40 1 40 5 1 5 

7 1 7 8 1 8    5 1 5 11 1 11 47 1 47 8 1 8 

9 1 9 10 1 10    6 1 6 14 1 14 109 1 109 9 1 9 

10 3 30 11 1 11    10 4 40 15 1 15 Total  6        218 11 2 22 

11 1 11 12 2 24    11 1 11 29 1 29    15 1 15 

12 1 12 16 1 16    16 1 16 30 1 30    16 1 16 

13 1 13 17 1 17    26 1 26 99 1 99    19 1 19 

16 1 16 18 1 18    69 1 69 Total  17      218    26 1 26 

66 1 66 26 1 26    Total  39      218       81 1 81 

Total  52      218 71 1 71             Total  20      218 

   Total  18      218                
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Table 7.5: Sizes of communities identified using the MDEB method for all single- and multi-variable cases for Australian catchments at 

threshold value T = 0.85. (NSC is the number of stations in community, NC is the number of communities and NS is the number of stations). 

 

 

 

 

 

 

 

 

 

 

Streamflow (S) Rainfall (R) PET (P) S & R S & P R & P S, R & P 

NS

C 

NC NS NS

C 

NC NS NS

C 

NC NS NS

C 

NC NS NS

C 

NC NS NS

C 

NC NS NS

C 

NC NS 

1 51 51 1 11 11 3 1 3 1 37 37 1 15 15 2 3 6 1 15 15 

2 6 12 2 7 14 215 1 215 2 4 8 2 7 14 4 1 4 2 3 6 

3 5 15 3 3 9 Total  2        218 3 4 12 3 1 3 11 1 11 3 4 12 

4 3 12 4 2 8    4 1 4 5 2 10 12 1 12 4 1 4 

5 3 15 8 2 16    5 1 5 7 1 7 16 1 16 5 2 10 

6 1 6 9 1 9    8 1 8 8 2 16 18 1 18 7 1 7 

7 2 14 11 3 33    9 2 18 9 2 18 27 1 27 10 4 40 

10 1 10 12 2 24    10 1 10 14 1 14 39 1 39 11 1 11 

12 2 22 16 1 16    11 1 11 18 1 18 85 1 85 17 1 17 

14 1 14 20 1 20    12 1 12 21 1 21 Total  11      218 26 1 26 

45 1 45 24 1 24    13 1 13 82 1 82    70 1 70 

Total  76      218 34 1 34    16 1 16 Total  34      218    Total  34      218 

   Total  35      218    20 1 20          

         44 1 44          

         Total  57      218          
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Table 7.6: Sizes of communities identified using the MDEB method for all single- and multi-variable cases for Australian catchments at 

threshold value T = 0.9. (NSC is the number of stations in community, NC is the number of communities and NS is the number of stations). 

 

 

 

 

Streamflow (S) Rainfall (R) PET (P) S & R S & P R & P S, R & P 

NS

C 

NC NS NS

C 

NC NS NS

C 

NC NS NS

C 

NC NS NS

C 

NC NS NS

C 

NC  NS NS

C 

NC NS 

1 82 82 1 26 26 1 1 1 1 55 55 1 35 35 1 3 3 1 37 37 

2 22 44 2 6 12 7 1 7 2 7 14 2 3 6 2 3 6 2 4 8 

3 3 9 3 4 12 32 1 32 3 6 24 3 2 6 3 2 6 3 4 12 

4 3 12 4 7 28 178 1 178 4 5 20 4 3 12 4 1 4 4 1 4 

6 1 6 5 1 5 Total  4        218 5 1 5 6 1 6 8 1 8 5 2 10 

5 1 5 6 1 6    6 2 12 8 1 8 10 1 10 7 1 7 

7 1 7 7 3 21    8 1 8 10 2 20 11 1 11 8 1 8 

9 1 9 9 2 18    9 3 27 11 2 22 12 2 24 9 2 18 

10 1 10 11 3 33    10 1 10 16 1 16 15 1 15 10 1 10 

34 1 34 14 1 14    11 2 22 20 1 20 17 2 34 11 1 11 

Total  116    218 19 1 19    27 1 27 67 1 67 26 1 26 13 1 13 

   24 1 24    Total  84      218 Total  52      218 71 1 71 16 1 16 

   Total  56      218          Total  19      218 20 1 20 

                  44 1 44 

                  Total  58      218 
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Figure 7.8 presents the line graph of the communities identified with all seven 

single-variable and multi-variable cases under the selected threshold values. Different 

colours are used to represent each case for comparison. As seen, there are clear 

differences in terms of community formation when different variables are used, such as 

from streamflow (coloured in green), streamflow and rainfall (coloured in purple), and 

PET (coloured in dark blue). Despite this, there are also some cases, such as rainfall 

(coloured in red), streamflow and PET (coloured in brown), and streamflow, rainfall, 

and PET (coloured in light blue), that tend to have similar number of communities 

among them at certain thresholds, especially at T = 0.85. These observations show some 

kind of similarity between single-variable and multi-variable cases. Therefore, an 

accurate count of connection links is also needed in order to examine the likeliness in 

community formation, i.e., for catchment classification for each case from single-

variable sense and multi-variable sense. 
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Figure 7.8: Number of communities identified for six selected threshold values (T = 

0.65, 0.70, 0.75, 0.80, 0.85, and 0.90) for all seven single-variable and multi-variable 

cases. Each case is indicated with a different colour. 

 

7.4.2 Connection Link Count 

Table 7.7 presents the number of connection links for each of the above seven cases at 

the six selected threshold values. For better visualization, Figure 7.9 presents the line 

graph to represent the number of connection links based on the selected threshold values 

for all the seven cases, with different colours corresponding to the different cases, 

similar to that shown in Figure 7.8. As seen from Table 7.7, the PET data has the 

highest count of links (21319 links) at T = 0.65, and the count then gradually decreases 

as the threshold value increases. The lowest count of the connection links is observed 

for the streamflow data, with 3095 links, which seems to suggest that this could be the 

cause of the high number of communities identified (Table 7.1) from the streamflow 

data. In the case of streamflow-rainfall combination, the number of connection links is 

almost similar to that of the streamflow data as represented with colours in purple and 

green, respectively (Figure 7.9). However, it also results in a significantly different 

number of communities identified within them (Figure 7.8). In addition, in spite of the 

similarity in the number of communities identified by certain cases, such are rainfall 

(red), streamflow and PET (brown), and streamflow, rainfall, and PET (light blue) from 

Figure 7.8, there still exist clear differences in terms of the number of connection links 

obtained by the respective cases, which suggests that similarity in the number of 

communities identified is not significantly related to the number of connections links, 
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and vice versa. Therefore, comparison in terms of catchment classification results based 

on these cases is needed in order to examine if there is any similarity (or dissimilarity) 

could be achieved by either similarity in the number of communities or if the number of 

connection links really can effectively divide the catchment network. 

 

Table 7.7: Number of connection links for seven different single-variable and multi-

variable cases at six selected threshold values. 

Threshold 

Values  

(T) 

Stream- 

flow (S) 

Rainfall 

(R) 

PET 

 (P) 

S & R S & P R & P S, R & 

P 

0.65 3095 4078 21319 3304 

 

7086 

 

8523 

 

5735 

 

0.7 2347 3344 20582 

 

2616 

 

5941 

 

7050 

 

4600 

 

0.75 1686 2537 19137 

 

1970 

 

4834 

 

5632 

 

3479 

 

0.8 1178 1816 17852 

 

1357 

 

3621 

 

4295 

 

2529 

 

0.85 747 1133 16672 

 

832 

 

2211 

 

2990 

 

1622 

 

0.9 348 651 15500 

 

431 

 

1138 

 

1680 

 

809 
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Figure 7.9: Line graph of the number of connection links based on six selected threshold 

values for all seven single-variable and multi-variable cases. Each case is indicated by a 

colour corresponding to the legend in Figure 7.8. 

 

 Finally, one must also note that it is possible to have similar classification based 

on different variables, but at different thresholds. An example of this is presented in 

Figure 7.10. As seen, communities identified using streamflow data (Figure 7.10(a), (c), 

and (e)) at T = 0.65, 0.75 and 0.8, respectively, are almost similar to the classification 

results obtained using the combination of streamflow and PET (Figure 7.10(b), (d), and 

(f)) at T = 0.8, 0.85 and 0.9, respectively. The similarities among them are considered 

mostly in larger communities and also depend on the number of communities identified 

and the number of connection links. From Figures 7.10(e) and (f), the similarities can be 

found based on the same number of communities identified (52) and almost similar in 

the number of connections links (1178 and 1138), as indicated at T = 0.8 and 0.9, 
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respectively. This seems to suggest that the single-variable streamflow data tends to 

form the communities at lower threshold values than those formed by the multi-

variables of streamflow and PET, which need higher threshold value in order to form 

such communities.  

 

 

Streamflow variable  

at T = 0.65. 

No. of communities=25 

Connection links= 3095 

a)  b)  

Streamflow & PET 

 variables at T = 0.8. 

No. of communities=17 

Connection links= 3621 

Streamflow variable  

at T = 0.75. 

No. of communities=38 

Connection links= 1686 

c)  d)  

Streamflow & PET 

 variables at T = 0.85. 

No. of communities=34 

Connection links= 2211 
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Figure 7.10: Communities identified by: (a, c, and e) streamflow; and (b, d, and f) 

streamflow and PET with respect to different correlation threshold values using the 

MDEB method. Each colour represents a community, and different colours are used 

only to distinguish the communities and hold no meaning when comparing across plots. 

 

 Apart from the above, the results presented in Figure 7.11 indicate that 

communities identified by the combination of streamflow and rainfall (Figure 7.11(a), 

(c) and (e)) at T = 0.65, 0.75 and 0.85, respectively, are almost similar to the 

classification results obtained using the combination of streamflow, rainfall, and PET 

(Figure 7.11(b), (d) and (f)) at T = 0.75, 0.8 and 0.9, respectively. As seen, there is quite 

a bit of similarity, especially the ones indicated by Figure 7.11(e) and (f), by 

considering the number of communities identified (57 and 58) and the number of 

connection links (832 and 809), as they could form similar community structure. This 

comparison also suggests that the two-variable combination only requires a low value of 

Streamflow variable  

at T = 0.8. 

No. of communities=52 

Connection links= 1178 

e)  f)  

Streamflow & PET 

 variables at T = 0.9. 

No. of communities=52 

Connection links= 1138 
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threshold when compared to three-variable combination, which requires a higher 

threshold value to form such division. 

 

 

a)  b)  

Streamflow & Rainfall 

 variables at T = 0.65. 

No. of communities=14 

Connection links= 3304 

Streamflow, Rainfall &  

PET variables at T = 0.75. 

No. of communities=16 

Connection links= 3479 

c)  d)  

Streamflow & Rainfall 

 variables at T = 0.75. 

No. of communities=22 

Connection links= 1970 

Streamflow, Rainfall &  

PET variables at T = 0.8. 

No. of communities=20 

Connection links= 2529 
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Figure 7.11: Communities identified by: (a, c, and e) streamflow and rainfall; and (b, d, 

and f) streamflow, rainfall and PET with respect to different correlation threshold values 

using the MDEB method. Each colour represents a community, and different colours 

are used only to distinguish the communities and hold no meaning when comparing 

across plot. 

 

 Figure 7.12, presenting the communities identified using two variables (i.e., 

rainfall and PET) and three variables (i.e., streamflow, rainfall and PET), also deserves 

discussion. A comparison of the results indicates that higher threshold values are 

required by the rainfall and PET case, with T = 0.8, 0.85 and 0.9 (Figure 7.12 (a), (c) 

and (e)) than by the streamflow, rainfall, and PET case, with T = 0.7, 0.75 and 0.85, 

(Figure 7.12 (b), (d), and (f)), respectively. This seems to suggest that classification 

based on hydroclimatic variables alone in a multi-variable sense is also found useful to 

e)  f)  

Streamflow & Rainfall 

 variables at T = 0.85. 

No. of communities=57 

Connection links= 832 

Streamflow, Rainfall &  

PET variables at T = 0.9. 

No. of communities=58 

Connection links= 809 
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assess the catchment classification. In spite of this, the rainfall associated correlations 

are found to need higher threshold values to divide the network when compared to the 

case of streamflow, rainfall, and PET classification result. 

 

 

 

a)  b)  

Rainfall & PET 

 variables at T = 0.8. 

No. of communities=6 

Connection links= 4295 

Streamflow, Rainfall &  

PET variables at T = 0.7. 

No. of communities=7 

Connection links= 4600 

c)  d)  

Rainfall & PET 

 variables at T = 0.85. 

No. of communities=11 

Connection links= 2990 

Streamflow, Rainfall &  

PET variables at T = 0.75. 

No. of communities=16 

Connection links= 3479 
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Figure 7.12: Communities identified by: (a, c, and e) rainfall and PET; and (b, d, and f) 

streamflow, rainfall, and PET with respect to different correlation threshold values 

using the MDEB method. Each colour represents a community, and different colours 

are used only to distinguish the communities and hold no meaning when comparing 

across plot. 

 

7.5 Summary  

This chapter has presented the application of the Modularity Density-based Edge 

Betweenness (MDEB) method for catchment classification in a multi-variable sense. 

The approach has been implemented for classification of 218 catchments across 

Australia. In addition to streamflow (as presented in Chapters 5 and 6), rainfall and PET 

have also been used. Four different combinations of multiple variables (i.e., streamflow 

and rainfall, streamflow and PET, rainfall and PET, as well as streamflow, rainfall, and 

e)  f)  

Rainfall & PET 

 variables at T = 0.9. 

No. of communities=19 

Connection links= 1680 

Streamflow, Rainfall &  

PET variables at T = 0.85. 

No. of communities=34 

Connection links= 1622 



CHAPTER 7 

162 

 

PET) have been used for classification, with six different thresholds considered. The 

results are also compared with those obtained from the three single-variable cases (i.e., 

streamflow, rainfall, and PET independently). Each of these cases was examined in 

terms of correlations between stations and distance-correlation relationship. Differences 

in the number of communities and in the number of connection links were explored to 

assess the similarity of classification outcomes based on the different combinations of 

variables. The results generally indicated that the multi-variable approach for catchment 

classification is useful and effective, and that variables or combinations of variables can 

provide similar classification outcomes, but at different correlation threshold values. 

The present results are certainly encouraging as to the usefulness of the community 

structure methods, especially when appropriate modifications and improvements are 

made to the existing community structure methods and appropriate approach is adopted 

by using the most important variables influencing the catchments, either individually or 

in combination. 
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Chapter 8       

 Conclusions 

 

 

 

 

The main focus of this thesis was the development of an improved community structure 

method for catchment classification. The Edge Betweenness (EB) method, due to its 

widespread use, was considered as a representative community structure method for 

further improvement. The improved method, called the Modularity Density-based Edge 

Betweenness (MDEB) method, was applied to hydrologic data from a large number of 

catchments in Australia and in the United States, for classification within the respective 

countries. Both single-variable and multi-variable cases were considered in this study. 

In a single-variable sense, streamflow was the main and common variable considered 

for both Australia and the United States. The multi-variable approach was attempted 

only for data from Australia, with rainfall and potential evapotranspiration (PET) also 

considered, in addition to streamflow. In the multi-variable approach, combinations of 

any two and all three variables were considered. 
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8.1   Edge Betweenness method for catchment classification 

To study the general suitability of the Edge Betweenness (EB) method, the method was 

applied to classify a large number of catchments in two regions: 218 catchments in 

Australia and 639 catchments in the United States. These two regions and, thus, the 

associated catchments cover a wide range of possibilities, in terms of hydroclimatic, 

topographic, geomorphic, land use, and other relevant properties. In the single-variable 

streamflow case (see Chapter 5), a threshold value (i.e., correlation threshold) of T = 0.8 

was considered for Australia and T = 0.75 was considered for the US. In each case, a 

total of 61 communities were identified by the EB method. The results generally 

indicated that: (1) a very small number of catchment communities had a large number of 

catchments within them –– for instance, 11 largest catchment communities from 

Australia and ten largest communities from the US combined to represent as much as 

70% of the total number of catchments in the respective cases; and (2) in both cases, a 

significantly large number of catchment communities had only a very few catchments 

within them –– for instance, almost 70% of the total number of communities identified 

had only one or two stations within them and, thus, represented only about 20% and 

10% of the total number of catchments from Australia and the US, respectively. 

Additionally, the catchment classification results offered some interesting 

interpretations when the catchment communities were compared with the catchment 

properties (i.e., drainage area, stream length, elevation) and the flow properties (i.e., 

mean, coefficient of variation, correlation-distance). 
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8.2 Modularity Density-based EB (MDEB) method for 

catchment classification 

As the EB method is susceptible to scale problem due to the modularity function that is 

used to measure the strength of the community structure (Fortunato and Barthelemy, 

2007), an improvement to the EB method was proposed. The new method used a 

modularity density function (or D value) by maximization, to obtain the best split of the 

network, and the method was termed as the Modularity Density-based Edge 

Betweenness (MDEB) method. 

 The MDEB method was applied to the same 218 catchments from Australia and 

639 catchments in the United States for catchment classification. Considering the 

single-variable streamflow case (Chapter 6), three different scenarios in network sizes 

were studied: (1) the entire network – i.e., 218 catchments in Australia and 639 stations 

in the US; (2) smaller network sizes, based on 100 and 300 randomly selected stations 

(with 100 different realizations) for Australia and the US, respectively – purely to 

address the network size; and (3) smaller network sizes, based on 9 different drainage 

division regions in Australia and 18 different hydrologic units in the US – to address the 

network size and regional similarity. The results indicated that the MDEB method 

generally performed better than the EB method, for both Australia and the US. 

Furthermore, the superiority of the MDEB method over the EB method was assessed in 

terms of the number and percentage of stations that changed (based on classification 

from random realizations and drainage divisions as well as hydrologic units) from the 

base (original) classification results. 
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8.3 Multi-variable approach for catchment classification 

In addition to the mainly streamflow-based single-variable approach for catchment 

classification, a multi-variable approach using the MDEB method was also proposed 

and applied for the 218 Australian catchments (Chapter 7). The multi-variable approach 

included rainfall and PET, in addition to streamflow. Different combinations of these 

three variables (any two of the three as well as all three) were considered for 

implementation. In each combination, the correlations between the different stations 

were estimated by the average of the summation of the correlations of the variables 

under consideration (i.e., two or three, as appropriate). The classification results from 

the multi-variable-based approach were also compared with those from the single-

variable approach (with each of the three considered separately), through assessing the 

distance-correlation relationship of the stations, a count of the number of stations within 

the communities identified, and count of the connection links that occurred within the 

network at different (six) threshold values (i.e., T = 0.65, 0.7, 0.75, 0.8, 0.85, and 0.9).  

 The results indicated that classification based on the multi-variable approach 

was almost similar to the classification based on the single-variable approach, especially 

streamflow, but at different correlation thresholds. Considering the similarities in the 

number of stations in the communities, number of communities identified, and number 

of connection links for the purpose of comparison, the following observations were 

made: (1) classification of catchments based on streamflow alone was found to be 

somewhat similar to that found for streamflow and PET together; (2) classification 

based on streamflow and rainfall together was found to be somewhat similar to that 

obtained for streamflow, rainfall and PET together; and (3) classification based on 
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rainfall and PET together tended to be similar to that obtained for streamflow, rainfall, 

and PET together as well. 

 

8.4 Limitations and future work 

The limitations of the present thesis and scope for future work relate largely to further 

improve the community structure-based methods for catchment classification and also 

covering a wide range of other catchments and associated properties towards a more 

generally acceptable classification framework.  

Development and application of the MDEB method (Chapters 3 and 6) as an 

improvement to the traditional EB method certainly provided a more reliable catchment 

classification. However, the method is still not completely satisfactory, since a great 

number of stations were found to change communities (either merged with other 

communities or formed new ones). This was particularly the case for Australia, perhaps 

because of the distribution of the catchments in the study area –– most of the stations 

are located along the coastal area and only a very few in the middle region. The MDEB 

method performed better for the catchments in the US. It would be interesting to see if 

this (i.e., locations and density of stations) is indeed the case for any and every region, 

by studying many different regions around the world. Further modification to the 

modularity density function may also be possible, by considering the external links that 

are associated with external nodes, instead of only the internal links that are within the 

internal nodes of a subgraph, in order to address the imbalance of the fraction of the 

density of connection links for network partition.  
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The multi-variable approach for catchment classification, using the MDEB 

method in particular, presented in Chapter 7, has offered some useful insights, 

especially in terms of the combination of variables considered and the ‘equivalent’ 

correlation thresholds with the single-variable approach. Nevertheless, since the PET 

data has very strong correlations among the stations, it is not really useful in identifying 

and separating the communities when correlations are used as a basis to identify the 

connections. Other climatic/catchment variables, which exhibit more variability across 

the catchments, may turn out to be more appropriate for consideration. Regions and 

catchments for which data for a large number of climatic/catchment variables are 

available are particularly suited for such an analysis. Even then, it would be important 

and interesting to see which combination(s) of variables would offer the most reliable 

classification, and also whether such a combination(s) would provide a classification 

that would be substantially different and better than the one that can be obtained from a 

single-variable approach. With the importance of catchment classification in hydrology 

(and beyond) and the emerging ideas of complex networks and community structure 

concepts and their applications, it is hoped that research in the above directions will 

assume particular significance in the coming years. 
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APPENDICES 

Appendix A 

A.1   Modularity (Q value) calculation 

 For classification, the connection link between two nodes is identify from the adjacent 

matrix, where 1 indicated that two nodes is connected, otherwise as 0 as shown in Table 

3.A.1. Then, the betweenness of edges are calculated based on the steps (1) to (4) until 

dendrogram is formed. As mentioned, the communities in the network is then 

determined by the horizontal level on the dendrogram (as in Figure 3.4(d)) and the 

membership will keep changing following the position of the horizontal line at each 

level until each node belongs to each (different) group. By each level of the horizontal 

line, the Q value is calculated and the level of the horizontal line on dendrogram with 

the maximum Q value will represent the best split of the network. 

To calculate Q value, from Equation (1), for instance, at first level of the horizontal line 

forms two communities of 5 nodes as [1 1 2 2 2]. Each node to every other node in the 

network need to be considered and the 𝛿(𝑐𝑖 , 𝑐𝑗) is identify, for example, if group of 

node 1 (𝑐1) is not equal to group of node 3 (𝑐3), then 𝛿(𝑐1, 𝑐3) is denoted as 0, so that 

could save time of calculation i.e. only consider the nodes that are from the same group 

and ignore the rest.  

𝑄 =
1

2𝑚
∑(𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
)𝛿(𝑐𝑖

𝑖,𝑗

, 𝑐𝑗) 

Table 3.A.1: The adjacent matrix of a simple network 
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𝐴𝑖𝑗 1 2 3 4 5 

1 0 1 0 1 0 

2 1 0 0 1 0 

3 0 0 0 1 1 

4 1 1 1 0 1 

5 0 0 1 1 0 

 

                                        

Calculation for the first horizontal cut is explained below. The modularity calculated 

based on the network of two groups with membership [1,1,2,2,2]  is as follows, 

𝑄 =
1

2×6
[((0 −

2×2

2×6
) × 1) +  # node 1 to 1 -> absent, same membership 

((1 −
2×2

2×6
) × 1) +   # node 1 to 2 -> present, same membership 

((0 −
2×2

2×6
) × 0) +   # node 1 to 3 -> absent, different membership 

((1 −
4×4

2×6
) × 0) +   # node 1 to 4 -> absent, different membership 

((0 −
2×2

2×6
) × 0) +   # node 1 to 5 -> absent, different membership 

… ]  
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Continuing for the rest of the nodes in the network which then can simplifies to, 

Q = 1 / 12 ( 4* (0 - 2 / 6) + 4 * (1 - 2 / 6) +4 * (1 – 4 / 6) + (0 – 16 / 12 )) = 1/9 = 0.11 

This process is repeated for the next lower level of horizontal cut. Forthe second 

horizontal cut has split the network into 3 groups with membership [1,2,3,3,3] and the 

modularity calculation,   

Q = 1 / 12 ( 4* (0 – 4 / 12) + 4 * (1 - 8 / 12) +2* (1 – 4 / 12) + (0 – 16 / 12 )) = 0. 

 

Then, the third horizontal cut form 4 groups with membership [1,2,3,4,4] is resulted 

with -0.17 as follows,   

Q = 1 / 12 ( 4* (0 – 4 / 12) + 2 * (1 - 8 / 12) + (0 – 16 / 12 )) = -0.17. 

 

 

Clearly exhibits in this case, the value of modularity is started to decreases from the 

second cut of the dendrogram and therefore, the first cut of the dendrogram with value 

0.11 has forms the best split of the network of two groups with membership [1 1 2 2 2] 

when the modularity measureis applied. 
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A.2   Modularity Density (D value) calculation 

For D value calculation, the number of nodes in subgraphs is focused rather than 

number of total nodes in network as in the modularity (Q value) measurement. Similar 

to modularity measure, modularity density measure is started by identify the connection 

of each pair of nodes based on the adjacent matrix and the membership of each node in 

the network is also determined by the horizontal line to cut the dendrogram until each 

node belongs to each group. Then the best split of the network is determined by which 

level of the horizontal line is located on dendrogram with the maximum D value based 

on Equation (2).  

𝐷 = ∑ (
2𝑙𝑖

𝑛𝑖
−

𝑙𝑖
𝑒𝑥𝑡

𝑛𝑖
)

𝑖

 

for first level of dendrogram, the membership of 5 nodes is [1 1 2 2 2], hence subgraphs 

i are consist of 2 groups and the D value is calculated as shown below,   

𝐷 = (
2(1)

2
−

2

2
) +  # for group 1 that is consists of links associated with nodes 1 and 2 

        (
2(3)

3
−

2

3
)       # for group 2 that is consists of links associated with nodes 3, 4 and 5 

Therefore, D = 1.33 for membership of [1 1 2 2 2]. 
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By repeating the same process for the next lower level of the horizontal line i.e., 2nd, 3rd 

and 4th cut of dendrogram have resulted the modularity density (D value) as -2.67, -8 

and -12, respectively. Thus, in this case, the modularity density measure is also tended 

to split the network to 2 groups with membership [1 1 2 2 2] as the best split as well.   
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b) 

c) d) 

Appendix B 

B.1 
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Figure B.1(a-h): Distance-correlation scatterplots for eight communities, corresponding 

to the coloring scheme in Figure 5.8(d). 

 

 

e) f) 

g) h) 
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B.2  

 

Q, R & PET at T = 0.65 Q at T = 0.7 

Q at T = 0.85 Q at T = 0.9 

Q & R at T = 0.7 



APPENDICES 

190 

 

 

R at T = 0.65 R at T = 0.7 

R at T = 0.75 R at T = 0.8 

R at T = 0.85 
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R at T = 0.9 PET at T = 0.65 

PET at T = 0.7 PET at T = 0.75 

PET at T = 0.8 PET at T = 0.85 

PET at T = 0.9 
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Q & R at T = 0.8 Q & R at T = 0.9 

 

Q & PET at T = 0.65 Q & PET at T = 0.7 

 

Q & PET at T = 0.75 R & PET at T = 0.65 

R & PET at T = 0.7 R & PET at T = 0.75 
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