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Abstract 

 

Effective control of nitrification processes employed at municipal wastewater 

treatment plants is essential for maintaining process reliability and minimizing 

environmental impacts and operating costs. While a range of process control 

strategies are available, they share a dependence on invasive liquid phase 

monitoring and are based on a periphery understanding of the metabolic status of 

the processes being controlled. Utilization of off-gas nitrous oxide (N2O) monitoring 

as a real-time indicator of the process metabolic status is a novel process control 

concept with the potential to address these concerns.  

 

This thesis details the development and evaluation of an off-gas N2O stress response 

based control technique. Examination of the stress response relationship 

demonstrated that it met the majority of the criteria of interest for process control. A 

simple feedback aeration control strategy was developed and evaluated through 

process simulation to determine the feasibility of implementation, cost effectiveness 

and associated environmental benefits.  

 

The off-gas N2O based control strategy provided better matching between aeration 

supply and metabolic demand, allowing the process to be maintained at the desired 

operating setpoints and avert nitrification failure. Performance was demonstrated to 

be similar to dissolved oxygen based feedback aeration control, although slightly 

more efficient at reduced dissolved oxygen concentrations. A technical, economic 

and environmental evaluation indicated that aeration control based on non-invasive 

off-gas N2O monitoring is technically feasible and has the potential to offer 

significant environmental and economic benefits including reductions in operating 

costs and process capital investment, as well as improved effluent compliance and 

reductions in emissions of gaseous pollutants including greenhouse gases.  

 

Overall, while off-gas N2O monitoring based aeration control techniques have the 

potential to provide significant economic and environmental benefits, a number of 

research questions remain to be answered. Future work in the form of long-term 

field trials is required to address these issues and allow quantification of economic 

and environmental benefits.  



 

 

 

 
 

 iii 

Statement of Originality 

‘I hereby declare that this submission is my own work and to the best of my 

knowledge it contains no materials previously published or written by another 

person, or substantial proportions of material which have been accepted for the 

award of any other degree or diploma at UNSW or any other educational institution, 

except where due acknowledgement is made in the thesis. Any contribution made 

to the research by others, with whom I have worked at UNSW or elsewhere, is 

explicitly acknowledged in the thesis. I also declare that the intellectual content of 

this thesis is the product of my own work, except to the extent that assistance from 

others in the project's design and conception or in style, presentation and linguistic 

expression is acknowledged.’  

 

Copyright Statement 

‘I hereby grant the University of New South Wales or its agents the right to archive 

and to make available my thesis or dissertation in whole or part in the University 

libraries in all forms of media, now or here after known, subject to the provisions of 

the Copyright Act 1968. I retain all proprietary rights, such as patent rights. I also 

retain the right to use in future works (such as articles or books) all or part of this 

thesis or dissertation.  

 

I also authorise University Microfilms to use the 350 word abstract of my thesis in 

Dissertation Abstract International (this is applicable to doctoral theses only). I have 

either used no substantial portions of copyright material in my thesis or I have 

obtained permission to use copyright material; where permission has not been 

granted I have applied/will apply for a partial restriction of the digital copy of my 

thesis or dissertation.'  

  

Authenticity Statement 

‘I certify that the Library deposit digital copy is a direct equivalent of the final 

officially approved version of my thesis. No emendation of content has occurred 

and if there are any minor variations in formatting, they are the result of the 

conversion to digital format.’  

  

Signed ………………………………………   Date   ……………………………………… 



 

 

 

 
 

 iv 

Acknowledgements 

 

Over the course of my candidature, I have had the privilege of meeting and working 

with many fantastic people. I would like to express my gratitude to all of them for 

their part in making this time an interesting and enjoyable experience. 

 

I would particularly like to take this opportunity to thank my supervisor Professor 

Richard Stuetz.  In addition to providing the opportunity and freedom to conduct an 

interesting research progam, his support, guidance and opinions were highly 

valued. Furthermore, I would like to thank him for his patience during this 

adventure (which is probably the appropriate term for a PhD involving a lab scale 

activated sludge processes).  

 

Many thanks to my co-supervisor Dr. William Peirson for his guidance and 

supervision during the process modelling component of this work. Thanks are 

extended to the many staff members of the School of Civil and Environmental 

Engineering for their assistance during my candidature. I would also like to express 

my gratitude to Dr. Gautam Chattopadhyay, Paul Gwynne, and Kelvin Ong for their 

invaluable advice and assistance with technical matters, as well as for the many 

enjoyable conversations.  

 

I would like to acknowledge the organizations that have provided funding support 

for this work, namely the Australian Research Council (DP0558029) "Removal of 

Potential Impact of Pharmaceutical Active Compounds during Wastewater 

Treatment”, the Australian Government Department of Education, Science and 

Training, the University of New South Wales, and the Faculty of Engineering Dean’s 

Awards. 

 

Finally, though definitely far from least, a special thanks to friends and family who, 

despite the great distances, have been with me throughout this journey. I would like 

thank my mom and my grandparents for their support, love and faith in me, and for 

making me the person I am today. 



 

 

 

 
 

 v 

 

 

 

 

 

 

 

 

 

 

 

 

In memory of James Stanton Vibert 



 

 

 

 
 

 vi 

Contents 

Page 

 

Abstract .....................................................................................................ii 

Statement of Originality...............................................................................iii 

Acknowledgements .................................................................................... iv 

Table of Contents.......................................................................................vi 

List of Appendices ..................................................................................... ix 

List of Figures .............................................................................................x 

List of Tables ........................................................................................... xiii 

Nomenclature .......................................................................................... xv 

 

Chapter 1 Introduction......................................................... 1 

1.1 Project Rationale............................................................................2 

1.1.1 Eutrophication.......................................................................................................2 

1.1.2 Regulatory Pressures ...........................................................................................4 

1.1.3 Economic Drivers .................................................................................................6 

1.2 Historical Development...................................................................8 

1.2.1 Nitrogen Removal Processes..............................................................................8 

1.2.2 Process Control and Instrumentation..............................................................9 

1.2.3 Off-Gas N2O ........................................................................................................11 

1.3 Research Objectives ..................................................................... 13 

1.4 Thesis Structure ........................................................................... 14 

Chapter 2 Literature Review .................................................15 

2.1 Biological Nitrogen Removal – Processes and Gaseous Emissions.......... 16 

2.1.1 Nitrification Processes.......................................................................................18 

2.1.1.1 Autotrophic Nitrification..........................................................................19 

2.1.1.2 Heterotrophic Nitrification......................................................................21 

2.1.2 Denitrification Processes ..................................................................................22 

2.1.2.1 Anoxic Denitrification...............................................................................22 

2.1.2.2 Aerobic Denitrification.............................................................................23 

2.1.3 Anammox .............................................................................................................28 

2.1.4 Off-gas N2O Generation....................................................................................29 

2.1.5 Summary ..............................................................................................................36 



 

 

 

 
 

 vii 

2.2 Activated Sludge Process Modelling ................................................ 37 

2.2.1 Model Conceptual Basis ...................................................................................39 

2.2.2 Model Calibration ..............................................................................................49 

2.2.3 Model Uptake and Application........................................................................63 

2.2.4 Summary ..............................................................................................................68 

2.3 Non-invasive Activated Sludge Process Monitoring ............................ 70 

2.3.1 Invasive Process Monitoring ............................................................................72 

2.3.2 Non-invasive Process Monitoring – Specific Parameters ...........................77 

2.3.2.1 Optical Methods ........................................................................................77 

2.3.2.2 Sensor Arrays..............................................................................................82 

2.3.3 Non-invasive Monitoring of Process Status ..................................................88 

2.3.3.1 Off-gas CO2 Monitoring ...........................................................................89 

2.3.3.2 Off-gas N2O Monitoring...........................................................................90 

2.3.4 Summary ..............................................................................................................93 

2.4 Aeration Control for Activated Sludge Nitrification Processes............... 94 

2.4.1 Aeration Strategies for Biological Nitrogen Removal Processes...............95 

2.4.2 Control Strategy Evaluation..............................................................................97 

2.4.3 Nitrification Process Aeration Control.........................................................101 

2.4.3.1 Feedback Aeration Control....................................................................103 

2.4.3.2 Fuzzy Aeration Control...........................................................................104 

2.4.3.3 Feedforward Model Predictive Aeration Control..............................106 

2.4.3.4 Aeration Supply Control.........................................................................109 

2.4.3.5 Cost-based Aeration Control.................................................................110 

2.4.4 Evaluation of Aeration Control Strategies ...................................................113 

2.4.5 Barriers................................................................................................................117 

2.4.6 Summary ............................................................................................................118 

Chapter 3 Experimental Apparatus....................................... 121 

3.1 Activated Sludge Process ..............................................................122 

3.1.1 Principles of Operation...................................................................................122 

3.1.2 Equipment Specifications ...............................................................................124 

3.1.3 Operating Conditions......................................................................................126 

3.2 Off-Gas Monitoring .....................................................................128 

3.2.1 Principles of Operation...................................................................................129 

3.2.2 Equipment Specifications ...............................................................................131 



 

 

 

 
 

 viii 

3.2.3 Operating Conditions......................................................................................132 

3.3 Liquid Phase Process Instrumentation.............................................133 

3.3.1 Principles of Operation...................................................................................133 

3.3.2 Equipment Specifications ...............................................................................133 

3.3.3 Operating Conditions......................................................................................134 

Chapter 4 Stress Response Analysis ..................................... 135 

4.1 Methodology..............................................................................136 

4.2 Results and Discussion .................................................................138 

4.2.1 Stress Response – Spiking Events..................................................................138 

4.2.2 Response Stability ............................................................................................152 

4.2.3 Response Proportionality................................................................................154 

4.2.4 Effect of Initial Conditions..............................................................................159 

4.2.5 Stress Response – Feed Step Change...........................................................160 

4.3 Summary ...................................................................................163 

Chapter 5 Process Simulation ............................................. 165 

5.1 Overarching Simulation Methodology.............................................166 

5.1.1 Off-gas N2O Aeration Control Concept.......................................................167 

5.1.2 Data Generator .................................................................................................168 

5.2 Data Generator Development – Cranfield Data .................................171 

5.2.1 Data Sources......................................................................................................171 

5.2.2 Liquid Phase Component ...............................................................................172 

5.2.2.1 Model Selection and Formulation........................................................172 

5.2.2.2 Model Calibration....................................................................................176 

5.2.3 Off-gas N2O Model Component ...................................................................192 

5.2.3.1 Model Development ...............................................................................193 

5.2.3.2 Model Calibration....................................................................................193 

5.2.4 Data Generator Performance.........................................................................194 

5.3 Data Generator Development – UNSW Data.....................................196 

5.3.1 Data Sources......................................................................................................196 

5.3.2 Liquid Phase Component ...............................................................................198 

5.3.2.1 Model Selection and Formulation........................................................198 

5.3.2.2 Model Calibration....................................................................................202 

5.3.2.3 Liquid Phase Model Comparison and Selection ...............................216 

5.3.3 Off-gas N2O Model Component ...................................................................219 



 

 

 

 
 

 ix 

5.3.3.1 Model Development ...............................................................................219 

5.3.3.2 Model Calibration....................................................................................221 

5.3.3.3 Off-gas N2O Model Performance .........................................................222 

5.3.4 Data Generator Performance.........................................................................224 

5.4 Process Control Concept Evaluation ...............................................227 

5.4.1 Cranfield Data ...................................................................................................227 

5.4.2 UNSW Data........................................................................................................231 

5.4.3 Estimate of Benefits..........................................................................................234 

5.5 Summary ...................................................................................244 

Chapter 6 Aeration Control Concept Evaluation..................... 246 

6.1 Technical Evaluation ....................................................................247 

6.1.1 Off-gas N2O Monitoring Implementation ...................................................247 

6.1.2 Process Control Application...........................................................................251 

6.1.3 Technical Feasibility .........................................................................................255 

6.2 Economic and Environmental Evaluation..........................................257 

6.2.1 Economic Evaluation........................................................................................257 

6.2.2 Environmental Evaluation ...............................................................................261 

6.3 Summary ...................................................................................265 

Chapter 7 Conclusions and Recommendations ..................... 266 

7.1 Key Results ................................................................................267 

7.2 Limitations and Recommendations for Future Work ..........................269 

References ..................................................................... 272 

 

 

Appendices 

 

Appendix A - Figures .................................................................................A1 

 

 



 

 

 

 
 

 x 

List of Figures 

 Page 

Figure 1-1 Simplified biological nutrient removal process. ...............................................9 

Figure 1-2 Simulation of the effect of diurnal loading variations on process DO 

concentrations. .................................................................................................................10 

Figure 2-1 Comparison of carbon flow paths in ASM1 (left) and ASM3 (right). ...........47 

Figure 2-2 Comparison of nitrogen flow paths in ASM1 (left) and ASM3 (right). ........47 

Figure 2-3 Feedback and feedforward control. ................................................................101 

Figure 3-1 Activated sludge process. ..................................................................................123 

Figure 3-2 Lab scale activated sludge process. .................................................................124 

Figure 3-3 Off-gas analysis system. .....................................................................................128 

Figure 3-4 Photograph of sample collection, conditioning and analysis equipment.

...........................................................................................................................................128 

Figure 3-5 Photograph of sample conditioning, analysis and data acquisition 

equipment. ......................................................................................................................129 

Figure 3-6 NDIR analyser optical bench.............................................................................130 

Figure 4-1 Stress response for a 15 mL concentrated feed shock load (Test 1); liquid 

phase response (left) and off-gas response (right)..................................................140 

Figure 4-2 Stress response for a 15 mL concentrated feed shock load (Test 2); liquid 

phase response (left) and off-gas response (right)..................................................141 

Figure 4-3 Stress response for a 10 mL concentrated feed shock load (Test 3); liquid 

phase response (left) and off-gas response (right)..................................................142 

Figure 4-4 Stress response for a 7.5 mL concentrated feed shock load (Test 4); liquid 

phase response (left) and off-gas response (right)..................................................143 

Figure 4-5 Stress response for a 7 mL concentrated feed shock load (Test 5); liquid 

phase response (left) and off-gas response (right)..................................................144 

Figure 4-6 Stress response for a 7 mL concentrated feed shock load, reduced DO 

(Test 6); liquid phase response (left) and off-gas response (right). ......................145 

Figure 4-7 Stress response for a 15 mL concentrated feed shock load (Test 7); liquid 

phase response (left) and off-gas response (right)..................................................146 

Figure 4-8 Dissolved oxygen depletion profile.................................................................147 

Figure 4-9 Stress response reproducibility using successive 15 mL feed spikes. ......152 

Figure 4-10 Stress response proportionality; DO response (left) and off-gas N2O 

response (right). .............................................................................................................155 



 

 

 

 
 

 xi 

Figure 4-11 DO depletion as a function of shock loading magnitude. ........................156 

Figure 4-12 N2O accumulation as a function of shock loading magnitude.................156 

Figure 4-13 Temporal variation in off-gas N2O yield........................................................157 

Figure 4-14 Evaluation of initial condition effects on stress response.........................159 

Figure 4-15 Stress response to a step change in influent feed concentration. ..........161 

Figure 5-1 Simulation package components.....................................................................166 

Figure 5-2 Off-gas N2O aeration control concept. ..........................................................167 

Figure 5-3 Data flows – data generator...............................................................................168 

Figure 5-4 Steady state model calibration – Cranfield data............................................178 

Figure 5-5 Steady state model evaluation using a second Cranfield data set.............179 

Figure 5-6 Effect of heterotrophic yield (YH) on system state variables. ......................181 

Figure 5-7 Effect of autotrophic yield (YA) on system state variables. ..........................181 

Figure 5-8 Dynamic performance of steady state fitted ASM1 - Cranfield data. ........185 

Figure 5-9 Effect of heterotrophic yield (YH) on dynamic DO response......................186 

Figure 5-10 Mechanistic model calibration – Cranfield data: Burgess et al. (2002b). 190 

Figure 5-11 Reduced model calibration – Cranfield data: Burgess et al. (2002b). ......192 

Figure 5-12 Fitted off-gas N2O correlation using data from Burgess et al. (2002b). ...194 

Figure 5-13 Simulation of off-gas N2O concentrations during an NH4
+ shock load 

based on data from Burgess et al. (2002b), Test 2.....................................................195 

Figure 5-14 Calibrated ASM1-Nowak model. ....................................................................208 

Figure 5-15 Calibrated ASMN model. .................................................................................215 

Figure 5-16 Comparison of modelled DO responses with UNSW data. .....................217 

Figure 5-17 Comparison of modelled NO2� responses with UNSW data....................218 

Figure 5-18 Calibrated off-gas N2O model.........................................................................221 

Figure 5-19 Comparison of modelled N2O responses with UNSW data. ....................223 

Figure 5-20 Data generator evaluation - Test 2, UNSW data. .........................................224 

Figure 5-21 Data generator performance evaluation – UNSW data. ............................226 

Figure 5-22 Normalized diurnal variation. .........................................................................228 

Figure 5-23 Controlled and uncontrolled process response to an NH4
+ shock load – 

Cranfield data generator...............................................................................................229 

Figure 5-24 Controlled and uncontrolled process DO response to diurnal NH4
+ 

loading variations – Cranfield data generator. .........................................................229 

Figure 5-25 Controlled and uncontrolled process off-gas N2O response to diurnal 

NH4
+ loading variations – Cranfield data. ..................................................................230 



 

 

 

 
 

 xii 

Figure 5-26 Controlled and uncontrolled process response to an NH4
+ shock load – 

UNSW data generator. ..................................................................................................232 

Figure 5-27 Controlled and uncontrolled process DO response to diurnal NH4
+ 

loading variations – UNSW data generator. ..............................................................232 

Figure 5-28 Controlled and uncontrolled process off-gas N2O response to diurnal 

NH4
+ loading variations – UNSW data. .......................................................................233 

Figure 5-29 Comparison of Aeration Utiliziation .............................................................236 

Figure 5-30 Process response - moderate DO (2 mg/L) operation................................237 

Figure 5-31  Process response - high DO (3 mg/L) operation. .......................................239 

Figure 5-32 Process response - low DO (~ 1 mg/L) operation. ......................................241 

Figure 6-1 Process off-gas monitoring system. .................................................................247 

 



 

 

 

 
 

 xiii 

List of Tables 

 Page 

Table 2-1 Summary of nitrogen removal pathways............................................................17 

Table 2-2 Nitrogen removal processes.................................................................................18 

Table 2-3 ASM1 formulation matrix. .....................................................................................40 

Table 2-4 ASM3 formulation matrix. .....................................................................................41 

Table 2-5 Differences between ASM1 and ASM3 (aerobic phase)..................................43 

Table 2-6 Calibration techniques employed for ASM-based modelling studies. ........53 

Table 2-7 Comparison of aeration control strategies. .....................................................114 

Table 3-1 Synthetic feed recipe. ..........................................................................................126 

Table 4-1 Analytical methods – stress response testing..................................................137 

Table 4-2 Summary of spiking events.................................................................................138 

Table 4-3 Summary of stress responses to spiking events. ............................................150 

Table 4-4 Response reproducibility – area analysis. ........................................................152 

Table 4-5 Response proportionality – area analysis.........................................................154 

Table 4-6 Summary of off-gas N2O suitability as a control parameter. ........................163 

Table 5-1 Influent characterisation - Cranfield data, Test 1............................................172 

Table 5-2 Mechanistic model matrix – ASM1. ...................................................................174 

Table 5-3 Reduced model matrix - Cranfield data............................................................175 

Table 5-4 Steady state calibration of mechanistic model - Cranfield data. .................177 

Table 5-5 State variable sensitivities (steady state analysis - Cranfield data). .............184 

Table 5-6 State variable sensitivities (dynamic analysis - Cranfield data). ...................187 

Table 5-7 Summary of key state variable sensitivities - Cranfield data. .......................188 

Table 5-8 Mechanistic model calibration - Cranfield data..............................................189 

Table 5-9 Reduced model calibration - Cranfield data....................................................191 

Table 5-10 Operating conditions, UNSW activated sludge bioreactor........................196 

Table 5-11 Dynamic tests utilized for model calibration and validation......................197 

Table 5-12 Model scenario inputs, UNSW data. ...............................................................197 

Table 5-13 Mechanistic model matrix – ASM1-Nowak. ...................................................200 

Table 5-14 Mechanistic model matrix – ASMN. ................................................................201 

Table 5-15 Preliminary calibration of ASM1-Nowak - UNSW data................................203 

Table 5-16 State variable sensitivities (steady state analysis - UNSW Data, ASM1-

Nowak). ............................................................................................................................204 



 

 

 

 
 

 xiv 

Table 5-17 State variable sensitivities (dynamic analysis – UNSW data, ASM1-Nowak).

...........................................................................................................................................205 

Table 5-18 Summary of state variable sensitivities – UNSW data, ASM1-Nowak.......206 

Table 5-19 ASM1-Nowak calibration – UNSW data..........................................................207 

Table 5-20 Preliminary calibration of ASMN - UNSW data.............................................210 

Table 5-21 State variable sensitivities (steady state analysis - UNSW data, ASMN). ..211 

Table 5-22 State variable sensitivities (dynamic analysis – UNSW data, ASMN). .......212 

Table 5-23 Summary of state variable sensitivities - UNSW data, ASMN.....................213 

Table 5-24 ASMN calibration - UNSW data. ......................................................................214 

Table 5-25 Evaluation of aeration requirements – moderate DO (2 mg/L) operation.

...........................................................................................................................................235 

Table 5-26 Evaluation of control performance – high DO (3 mg/L) operation. ..........238 

Table 5-27 Evaluation of control performance – low DO (1 mg/L) operation. ............240 

Table 7-1 Off-gas N2O monitoring suitability as a control parameter.........................267 

Table 7-2 Literature review - residual knowledge gaps and recommendations for 

future work......................................................................................................................271 

 



 

 

 

 
 

 xv 

Nomenclature 

 

General Abbreviations 

Anammox anaerobic ammonium oxidation 

ANN   artificial neural network  

AOB   ammonia oxidizing bacteria     

ASM  activated sludge model 

AUD  Australian dollars 

BNR  biological nitrogen removal 

BOD  biochemical oxygen demand 

CANON  completely autotrophic removal over nitrite  

COD  chemical oxygen demand 

CSTR   continuous stirred tank reactor 

FA   free ammonia 

FB   feedback 

FF   feedforward 

FNA   free nitrous acid 

HRT   hydraulic retention time 

IR  infrared 

ISE  ion selective electrode 

MPC   model predictive control 

NDIR  non-dispersive infrared 

NOB  nitrite oxidizing bacteria 

OLAND oxygen limited nitrification and denitrification 

pe  population equivalent 

PBN   particulate biodegradable organic nitrogen 

PI   proportional integral 

RBCOD readily biodegradable organic carbon 

SBCOD slowly biodegradable organic carbon 

SBN   soluble biodegradable organic nitrogen 

SBR  sequencing batch reactor 

SHARON single reactor system for high rate ammonia removal over nitrite 

SND  simultaneous nitrification and denitrification  

SRT  sludge retention time 



 

 

 

 
 

 xvi 

TOC   total organic carbon 

TSS  total suspended solids 

UV  ultraviolet 

 

Liquid Phase Models (ASM1, ASM1-Nowak, ASM3, ASMN, Reduced Model)  

bA  autotrophic biomass decay coefficient (d-1) 

bA,NO   autotrophic biomass anoxic endogenous respiration rate (d-1) 

bA,O   autotrophic biomass aerobic endogenous respiration rate (d-1) 

bH  heterotrophic biomass decay coefficient (d-1) 

bH,NO   heterotrophic biomass anoxic endogenous respiration rate (d-1) 

bH,O    heterotrophic biomass aerobic endogenous respiration rate (d-1) 

bL,A1  AOB decay coefficient (d-1) 

bL,A2  NOB decay coefficient (d-1) 

bL,H  heterotrophic biomass decay coefficient (d-1) 

bSTO,NO   storage product anoxic endogenous respiration rate (d-1) 

bSTO,O   storage product aerobic endogenous respiration rate (d-1) 

CODI  influent total COD (mg COD�L-1) 

fp  fraction biomass degrading to particulate products 

f’D  fraction biomass degrading to debris 

fI   fraction biomass degrading to intert products 

iN/XB  active biomass nitrogen content (mg N�mg CODXB
-1) 

iN/XD  biomass debris nitrogen content (mg N�mg CODXD
-1) 

iXB  biomass nitrogen content (g N/g CODXBM) 

iXP  particulate product nitrogen content (g N�g CODXP
-1) 

K1  aeration calibration parameter (d-1) 

K2  autotrophic oxygen consumption (mg DO�L-1
�d-1) 

K3  autotrophic ammonium consumption (mg NH4
+-N�L-1

�d-1) 

K4  ammonification parameter (mg NH4
+-N�mg COD-1

�d-1) 

ka  ammonification rate constant (m3•g XH
-1•d-1) 

KA,NH  autotrophic bacteria ammonium half-saturation constant (mg N�L-1) 

KA,NO   autotrophic bacteria nitrate half-saturation constant (mg N�L-1) 

KA,O   autotroph oxygen half-saturation constant (mg DO�L-1) 

KFA  FA half-saturation constant (mg N�L-1) 

KFNA  FNA half-saturation constant  (mg N�L-1) 



 

 

 

 
 

 xvii 

kH  hydrolysis rate constant (g XS•g XH
-1•d-1) 

KI9FA  AOB growth FA inhibition coefficient (mg N�L-1) 

KI9FNA  AOB growth FNA inhibition coefficient (mg N�L-1) 

KI10FA  NOB growth FA inhibition coefficient (mg N�L-1) 

KI10FNA  NOB growth FNA inhibition coefficient (mg N�L-1) 

kLa  aeration mass transfer coefficient (d-1) 

KNH autotrophic biomass ammonium half-saturation coefficient (mg NH4
+-

L-1) 

KNH,M  AOB ammonium half-saturation constant (mg N�L-1) 

KNO  nitrate half-saturation constant (mg N�L-1) 

KO  heterotroph oxygen half-saturation constant (mg DO�L-1) 

KNO2,N  NOB nitrite half-saturation constant (mg N�L-1) 

KNO3  heterotroph nitrate half-saturation constant (mg N�L-1) 

KO,A  autotrophic biomass oxygen half-saturation coefficient (mg DO�L-1) 

KO,A1  AOB oxygen half-saturation constant (mg DO�L-1) 

KO,A2  NOB oxygen half-saturation constant (mg DO�L-1) 

KO,H  heterotrophic biomass oxygen half-saturation coefficient (mg DO�L-1) 

KO,H1  heterotroph oxygen half-saturation constant (mg DO�L-1) 

KO,M  AOB oxygen half-saturation constant (mg N�L-1) 

KO,N  NOB oxygen half-saturation constant (mg N�L-1) 

KS  substrate half-saturation constant (mg COD�L-1) 

KS,1  substrate half-saturation constant (mg COD�L-1) 

kSTO  storage rate constant (g SS�g XH-1
�d-1) 

KSTO   storage product half-saturation constant (g XSTO�gXS
-1) 

KX  hydrolysis half-saturation constant (g XS�g XH
-1) 

�g  heterotrophic growth rate correction factor for anoxic conditions 

�h  hydrolysis correction factor for anoxic conditions 

�NO  anoxic reduction factor 

Qinf  influent flow (L�h-1) 

SALK  alkalinity (mole HCO3��L-1) 

SFNA    FNA concentration (mg N�L-1) 

SI  inert soluble COD concentration (mg COD�L-1)  



 

 

 

 
 

 xviii 

SN2   dinitrogen concentration (mg N�L-1) 

SND  soluble biodegradable organic nitrogen concentration (mg N�L-1) 

SNH  ammonia concentration (mg NH4
+-N�L-1) 

SNH,I  influent ammonia  (mg NH3-N�L-1) 

SNS  soluble biodegradable organic nitrogen concentration (mg N�L-1) 

SNO  nitrate + nitrite concentration (mg N�L-1) 

SNO2  nitrite concentration (mg NO2��L-1) 

SNO3  nitrate concentration (mg NO3��L-1) 

SO  dissolved oxygen concentration (mg DO�L-1) 

SO,S  dissolved oxygen saturation concentration (mg DO�L-1) 

SS  readily biodegradable COD concentration (mg COD�L-1)  

SS,I  influent readily biodegradable COD (mg COD�L-1) 

∑NOx  nitrate + nitrite concentration (mg N�L-1) 

t   ASM3 stoichiometric factor 

μA  autotrophic biomass maximum specific growth rate (d-1) 

μA1  AOB maximum growth rate (d-1) 

μA2  NOB maximum growth rate (d-1) 

μH  heterotrophic biomass maximum specific growth rate (d-1) 

μM  AOB maximum growth rate (d-1) 

μN  NOB maximum growth rate (d-1) 

x   ASM3 stoichiometric factor 

XA  autotrophic biomass concentration (mg COD�L-1) 

XB,A1  AOB concentration (mg COD�L-1) 

XB,A2  NOB concentration (mg COD�L-1) 

XB,H  heterotrophic biomass concentration (mg COD�L-1) 

XH  heterotrophic biomass concentration (mg COD�L-1) 

XI  inert particulate COD concentration (mg COD�L-1) 

XM  AOB biomass concentration (mg COD�L-1) 

XN  NOB biomass concentration (mg COD�L-1) 

XND  particulate biodegradable organic nitrogen concentration (mg N�L-1) 

XNS  particulate biodegradable organic nitrogen concentration (mg N�L-1) 

XP  particulate produce concentration (mg COD�L-1) 
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XS  slowly biodegradable COD concentration (mg COD�L-1) 

XS,I  influent slowly biodegradable COD (mg COD�L-1) 

XSTO   internal storage product concentration (mg COD�L-1) 

XTS  total suspended solids (mg TSS�L-1) 

y   ASM3 stoichiometric factor 

YA  autotrophic biomass yield (mg COD�mg COD-1) 

YA1  AOB yield (mg CODXA1�mg N-1) 

YA2  NOB yield (mg CODXA2�mg N-1) 

YH  heterotrophic biomass yield (mg COD�mg COD-1) 

YH,NO  heterotrophic yield, anoxic conditions (g XH�gXSTO
-1) 

YH,O  heterotrophic yield, aerobic conditions (g XH�gXSTO
-1) 

YM  AOB yield (g CODXM�g NSNH
-1) 

YN  NOB yield (g CODXN�g NSNO2
-1) 

YSTO,NO   storage product yield, anoxic conditions (g XSTO�gSS
-1) 

YSTO,O  storage product yield, aerobic conditions (g XSTO�gSS
-1) 

z   ASM3 stoichiometric factor  

 

Off-gas N2O Models 

CN2O  off-gas N2O concentration (ppm N2O) 

KDO,1  off-gas N2O model #2 DO proportionality parameter (ppm N2O) 

KDO,2  off-gas N2O model #2 switching parameter (mg DO�L-1) 

KFNA,1 off-gas N2O model #2 FNA proportionality parameter (ppm N2O�L�mg 

N-1) 

KN2O,1  off-gas N2O model #1 proportionality parameter (ppm N2O) 

KN2O,2  off-gas N2O model #1 switching parameter (mg DO�L-1) 

KN2O,3  off-gas N2O model #1 off-set parameter (dimensionless) 

SFNA  liquid phase free nitrous acid concentration (mg N�L-1) 

SO  liquid phase dissolved oxygen concentration (mg DO�L-1) 

 

Sensitivity analsyis 

Si,j  normalized sensitivity coefficient 

Xi  manipulated process parameter 

Yj   state variable 
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Chapter 1    Introduction 

 

The effective control of nitrification processes employed at municipal wastewater 

treatment plants is essential for maintaining process reliability, as well as minimizing 

the associated environmental impacts and operating costs. A range of process 

control strategies are available and have been implemented for nitrification 

processes. However, these strategies share a dependence on invasive liquid phase 

monitoring (with the associated instrumentation limitations), and are based on a 

periphery understanding of the metabolic status of the processes being controlled.   

 

Utilization of off-gas nitrous oxide (N2O) monitoring as a real-time indicator of the 

process metabolic status is a novel process control concept for activated sludge 

nitrification processes that has the potential to deliver non-invasive control and 

improve aeration efficiency. This thesis focuses on the development of a control 

system utilizing this concept, and assesses the technological and economical 

feasibility as well as the environmental benefits associated with its implementation.  

 

A discussion of the rationale for this research project, a brief overview of the 

historical development of the concepts utilized, an overview of the research 

objectives, and the thesis structure are presented in the following sections. 
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1.1 Project Rationale 

 

While current process control methodologies for activated sludge nitrification 

processes (discussed in Section 2.4) are in general sufficient to maintain stable 

operation, regulation in response to environmental and health/safety concerns is a 

key external force that is driving the water industry to innovate and improve. In 

addition to this external force, internal pressures to reduce operational costs are 

also driving innovation. The rationale for this project is firmly based on these driving 

forces and their impact upon research and development in this field. At the heart of 

the majority of the issues generating the regulatory driving forces is the emission of 

nutrients to the environment, in particular the nutrient enrichment of water bodies 

(eutrophication). 

 

1.1.1 Eutrophication 

 

Eutrophication of water bodies has been the subject of increasing research and 

regulation in recent years as the adverse effects of eutrophication on the 

environment and humans have become increasingly apparent. Aquatic 

microorganisms such as algae and bacteria grow under nutrient limited conditions 

(Cloern 2001), with the specific limiting nutrient depending on the conditions at the 

specific location being studied. As noted by Anderson et al. (2002), two of the key 

limiting nutrients in many aquatic environments are phosphorus (predominately in 

freshwater environments) and nitrogen (predominately marine and estuarine 

environments). These two nutrients are thus of particular interest since their 

emission from anthropogenic sources to the environment has increased rapidly in 

recent times and is expected to continue to increase (Bennett et al. 2001; Galloway 

et al. 2004; Smith et al. 1999). 

 

The presence of elevated nutrient levels in water bodies can upset the natural 

balance of the ecosystem and promote the rapid growth and reproduction of algae 

and cyanobacteria. If eutrophication occurs in the presence of other contributing 

factors such as sunlight, warm temperatures, and low or stable flow conditions, the 

rapid growth can result in a substantial shift in the aquatic biodiversity and result in 

a cyanobacterial bloom (NHMRC and NRMMC 2004).  
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Cyanobacterial blooms effect aquatic ecosystems and degrade drinking and 

recreational water quality. One of the direct adverse effects of cyanobacterial 

blooms on aquatic ecosystems is a reduction in species biodiversity due to their 

competitive advantages over other microorganisms sharing similar niches (de 

Figueiredo et al. 2004). Another adverse effect which can be quite drastic in nature is 

related to the blooms effect on dissolved oxygen (DO) concentration. During a 

bloom, the photosynthetic cyanobacteria produce oxygen during the daytime which 

assists in maintaining the DO content in the water body. When the bloom reaches 

the point where it can no longer be supported by conditions in the water body, the 

rate of organism death increases and the bloom begins to be decomposed by 

heterotrophic bacteria which exerts and added oxygen demand on the water body, 

resulting in an oxygen deficit that can kill other aquatic species (Smith et al. 1999). 

 

The second area of concern (and becoming increasingly so as the results of more 

research are becoming available), degradation of drinking and recreational water 

quality, is primarily a result of toxins that can be produced and emitted by certain 

species of cyanobacteria. Cyanobacteria are ubiquitous on the planet, occurring 

primarily in aqueous environments, but also being found in soils, rocks fissures and 

ice (Svrcek and Smith 2004), however the unnatural presence of cyanobacteria (and 

hence the associated toxins if toxin producing species are present) in high 

concentrations during blooms can result in toxic effects on other life forms.  While 

not all species of cyanobacteria are capable of producing toxins (de Figueiredo et al. 

2004), many species are capable of producing toxins that are typically either liver 

toxins (hepatotoxins) such as microcystins and nodularins (Karner et al. 2001) or 

neurotoxins such as anatoxin-a and saxitoxins (Svrcek and Smith 2004).  

 

Cyanobacterial blooms have been reported on all inhabited continents (de 

Figueiredo et al. 2004; Svrcek and Smith 2004) and many cases of the toxic effects of 

cyanobacterial blooms on animals and human populations are documented in 

literature, with several reviews being available (de Figueiredo et al. 2004; Falconer 

2005; Svrcek and Smith 2004). In general the hepatotoxic effects of the 

cyanobacterial toxins have been the main area of scrutiny in these studies. Recent 

years have seen a rise in concerns about the potential carcinogenicity of 

cyanobacterial toxins, although despite several studies this has not yet been 

conclusively proven (Falconer 2005). 
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In addition to toxins, the presence of cyanobacteria or algae can result in the 

emission of off-flavours, or tastes and odours (NHMRC and NRMMC 2004) to the 

source waters which may not be completely removed during conventional drinking 

water treatment.  While these issues are primarily of aesthetic concern, they can 

result in elevated levels of customer complaints during bloom episodes, reduce 

consumer confidence in the water supply (Jardine et al. 1999; Svrcek and Smith 

2004), and potentially increase health risks if the consumers switch to a less safe 

water source due to the perceived lower quality of the treated water (World Health 

Organization 2004). 

 

1.1.2 Regulatory Pressures 

 

Considering the trend of increasing bloom frequency corresponding to the global 

trend of increasing eutrophication of water bodies observed by de Figueirdo et al. 

(2004), it can be concluded that the environmental impacts associated with 

eutrophication will become an even greater concern in the future. Furthermore, 

with the contributing conditions for blooms (sunlight and low or stable flow 

conditions) being commonly found in some rivers and most large reservoirs used to 

supply water to large towns and urban areas, the potential for cyanobacterial 

blooms to impact water supplies will continue to increase in the future. Thus, it is 

expected that the control of these blooms and the contaminants generated by them 

will become increasingly emphasized by regulatory agencies. 

 

Globally, anthropogenic nitrogen emissions to aquatic environments are dominated 

by non-point sources such as fertilizer, energy generation using fossil fuels, and 

agriculture (Seitzinger et al. 2005). However, in more densely populated (urbanized) 

environments, nitrogen emissions from wastewater disposal can also have a 

significant influence on nitrogen loadings to water bodies (Smith et al. 1999). With a 

trend of increasing global urbanization and human population (United Nations 

2002; United Nations 2005), nitrogen emissions from wastewater disposal will 

increase in importance and will correspondingly experience greater levels of 

scrutiny and increasingly stringent regulation.  

 



 

 

 

Chapter 1 Introduction 5 
 

 

A good example of the evolution and spread of water policy is that of the European 

Union (EU). Prior to 2000, the EU water pollution regulations were based upon 

management of specific emissions using two directives; the Urban Waste Water 

Directive for sewage and biodegradable industrial wastewater, and the Nitrates 

Directive for nitrates emissions from agriculture (Bloch 2001). These directives 

specified minimum standards of waste water collection and biological treatment for 

communities (greater than 2000 population equivalents) and nutrient removal 

where receiving waters were subject to eutrophication (Bloch 2001).  

 

In 2000, with the introduction of EU Water Framework Directive (WFD), the EU 

expanded its focus from specific regulation and minimum treatment standards to 

the overall management of all water bodies (including both surface and 

groundwater). The WFD places the onus for specific regulation on member states to 

manage their inputs to water bodies based upon achieving water quality objectives 

(Andersen et al. 2006). This approach has lead to a greater focus being placed on the 

control and reduction of anthropogenic sources of nutrient emissions in member 

states as they seek to identify the most cost effective means of meeting these 

objectives. 

 

Sweden’s introduction of national environmental quality objectives in 1999 provides 

an interesting example of the impact that changing environmental policy and 

regulation can have on the wastewater treatment industry. The introduction of the 

environmental objective of zero eutrophication with an interim target of a 30% 

reduction (from 1995 levels) in anthropogenic nitrogen emissions to coastal zones 

(Swedish Environmental Protection Agency 2005) has led to the development of 

more stringent emission standards for wastewater treatment plants. These 

increasingly stringent standards have resulted in a corresponding increase in 

process efficiency on the order of 15% from 1998 – 2000 (Swedish Environmental 

Protection Agency 2004), and an increase in the amount of households being 

serviced by nitrogen removal systems from approximately 10% in 1998 to 50% in 

2000 (Swedish Environmental Protection Agency 2002).  

 

As seen in the above example, regulations and policy based on environmental and 

heath/safety concerns can indeed be a strong driver for increases in the levels of 

process performance and the uptake of nutrient removal technology. As the uptake 
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of nitrogen removal treatment systems increases in response to changing 

regulations, eventually the focus for new treatment applications will shift from 

larger sources such as municipal wastewater treatment plants servicing large urban 

populations to plants serving progressively smaller populations. This will have a 

number of implications with respect to the evolution of these treatment processes 

since the cost (capital and operating), process complexity, and process reliability are 

commonly seen as barriers to the uptake of this treatment technology in small 

plants (Boller 1997). The introduction of advanced process monitoring and control 

will be an integral part overcoming these barriers and achieving compliance with 

evolving environmental regulations. 

 

1.1.3 Economic Drivers 

 

The costs associated with the construction, operation and maintenance of 

wastewater treatment plants are an ever present concern for wastewater operators. 

Improved process monitoring and control provides an opportunity for the 

wastewater industry to reduce costs and improve process reliability.  

 

Nitrogen removal processes (which will be discussed in greater depth in Section 

1.2.1) are strongly dependent on the aeration supply. Indeed up to 50% of a 

wastewater treatment facility’s electricity consumption is associated with the supply 

of aeration air (Ferrer et al. 1998). Furthermore, due to diurnal variations in 

wastewater loadings to treatment plants, if plants are operated at constant air flow 

rates or the air supply is poorly matched to the oxygen demands of the wastewater, 

periods of oxygen over supply (wasted energy) and periods of oxygen deficiencies 

(reduced nitrification efficiency) will occur. The application of improved aeration 

process control in several recent studies (Galluzzo et al. 2001; Ingildsen et al. 2002; 

Sahlmann et al. 2004), has resulted in aeration cost savings on the order of 5% to 

15%. These savings represent a substantial economic benefit which could be 

achieved through improved process monitoring and control.  

 

In addition to the cost perspective, aeration has a strong influence on process 

efficiency and sludge settling characteristics. DO limited conditions not only reduce 

nitrogen removal (by limiting one of the substrates), but they can also provide 
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competitive advantage for filamentous bacteria which can have a negative impact on 

sludge settling properties (Jenkins et al. 2004). Furthermore, excessive aeration rates 

can shear existing sludge flocs which will impair sludge settling properties. Poor 

sludge settling is a key contributor to deterioration in effluent quality and process 

upset/failure. 

 

Improved process control allows for increased reliability (in terms of nitrogen 

removal and reduced frequency of process upset/failure) and this in turn reduces 

the costs and liabilities associated with poor process performance and upset/failure 

episodes. Process reliability becomes increasingly important for small-scale or 

remote plants where it is not economical to maintain full time supervision and 

support. By improving process monitoring and control, the level of automation can 

be increased, reducing the financial burden on wastewater treatment operators. 

With increasing nutrient removal technology uptake and requirements to serve 

smaller communities, it is expected that the economics associated with the 

operation of smaller or onsite treatment systems will become a greater concern for 

wastewater operators.  
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1.2 Historical Development 

 

1.2.1 Nitrogen Removal Processes 

 

Conventional wastewater treatment has evolved over time to match our 

understanding of wastewater contaminants and their impact on the environment 

and human health. Primary (physical) wastewater treatment was initially applied to 

separate easily visible solids from wastewater via physical separation (settling). As 

the importance of organic matter and its effect on aquatic environments became 

apparent, secondary biological wastewater treatment was developed. Activated 

sludge processes have become the most common secondary biological wastewater 

treatment process worldwide (Sorour and Bahgat 2004), being applied in over 9000 

plants in the USA, 500 in the UK, and 600 in France (Nuhoglu et al. 2005). With 

increasing understanding and regulation of wastewater nutrient emissions, tertiary 

biological treatment (primarily biological nutrient removal processes) has emerged. 

The most common nitrogen removal processes mirror the natural nitrogen 

transformations observed in estuarine environments and in soils, a two step process 

referred to as nitrification/denitrification. 

 

A simplified version of the nitrification/denitrification process commonly applied 

for nitrogen removal at wastewater treatment plants is depicted in Figure 1-1. The 

presented mechanism neglects many of the possible side reactions and alternative 

nitrification/denitrification pathways. The first stage in the process is called 

nitrification which is performed by aerobic (oxygen consuming) bacteria. This 

process consists of converting dissolved ammonium (NH4
+) into nitrite (NO2�) and 

then converting to nitrate (NO3�). The exact mechanisms of intermediate and side 

reactions are quite complex and can be dependent on the system operating 

conditions (Colliver and Stephenson 2000). These mechanisms will be discussed 

further in Section 2.1. Denitrification is an anoxic process (where in the absence of 

elemental oxygen nitrate acts as the oxygen source) whereby the nitrate (NO3�) is 

reduced to a gas (a mixture of nitrogen (N2), nitric oxide (NO), and nitrous oxide 

(N2O) that is dependent on operating conditions), which eventually diffuses from 

the treated wastewater to the atmosphere (Metcalf and Eddy 2003). As this thesis is 
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focused on the nitrification (aerobic) component of this process, the anoxic 

denitrification aspects of nitrogen removal processes will not be discussed further.  

 

 

 

Figure 1-1 Simplified biological nutrient removal process. 

 

While there are many possible configurations of biological nutrient removal  (BNR) 

processes which can provide various advantages from an operational perspective, it 

is common to combine these processes with biochemical oxygen demand removal 

in an activated sludge process (Metcalf and Eddy 2003), which requires only 

operational changes to existing equipment to allow nutrient removal. The principles 

and operation of activated sludge nitrification processes will be discussed in greater 

depth in Section 3.1.   

 

While the above is currently the most commonly applied nitrogen removal process, 

a number of advanced nitrogen removal processes utilizing alternative metabolic 

pathways and bacteria are emerging and gaining acceptance. These processes 

include SHARON (ammonium conversion to nitrite over nitrate), Anammox 

(anaerobic ammonium oxidation), and combined processes such as CANON (Ahn 

2006), and will be discussed further in Section 2.1. A common aspect to all of these 

advanced processes is a dependence on improved process instrumentation and 

control to maintain very specific operating conditions. 

 

1.2.2 Process Control and Instrumentation 

 

Process control has been applied in the wastewater industry for over 30 years 

(Olsson 2006). Historically it has not been as well developed as in other process 

industries (Lynggaard-Jensen 1999), and only recently has the application of process 
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control at wastewater treatment plants started to evolve from specific parameter 

control to process/plant wide control applications (Olsson 2006). While there are 

many parameters which can be monitored and controlled at wastewater treatment 

plants (including flow rates, sludge/hydraulic retention times, and mixed liquor 

suspended solids concentrations), this discussion will be restricted to the control of 

aeration supply to bioreactors, the focus of this thesis.  

 

The most basic form of aeration control consists of setting a constant air flow, with 

the setting primarily chosen based on operator experience and observation of the 

resulting effluent conditions. While its is possible to achieve reasonably stable 

operation via manual control, the impact of typical diurnal variations on the process 

(Figure 1-2) will result in a number of inefficiencies. 

 

 

 

Figure 1-2 Simulation of the effect of diurnal loading variations on process DO 

concentrations. 

 

As seen in Figure 1-2, a constant air flow does not match the air supply and demand, 

resulting in periods of over supply (wasted air and energy costs) and periods of 

under supply (reduced process efficiency). The application of process 

instrumentation and control is directed at minimizing these inefficiencies, thereby 

reducing operating costs and increasing process efficiency/reliability.  
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Traditional DO control for activated sludge bioreactors consists of a simple 

feedback loop using a DO sensor to measure the controlled variable and the 

aeration air supply as a master control variable.  The DO setpoint is typically fixed at 

a value based upon operational experience and theoretical considerations. A 

number of more advanced process control strategies have been investigated to 

improve bioreactor control and reduce aeration requirements, and will be 

discussed in depth in Section 2.4.  

 

A common concept in all of the existing and proposed aeration control strategies is 

the use of aqueous phase parameters for process control purposes. These methods 

are thus dependent on aqueous phase monitoring. With wastewater being a hostile 

environment for instrumentation, in particular due to fouling and its effects on 

sensor drift and instrument sensitivity (Bourgeois et al. 2003c), the effectiveness of 

these process control methods my be impaired by instrumentation limitations. 

 

Indeed, a review of the application of instrumentation and process control in the 

wastewater treatment industry has indicated a need for robust and reliable online 

sensors to enable more sophisticated methods of process control (Hill et al. 2002). 

Non-invasive wastewater process monitoring techniques have the potential to 

provide sensors which meet these criteria by removing the sensor from contact with 

the hostile wastewater environment. A number of non-invasive monitoring 

techniques have been proposed, including optical sensing methods (Thomas and 

Constant 2004) and off-gas nitrous oxide (N2O) monitoring (Burgess et al. 2002a; 

Burgess et al. 2002b).  A review of the research and evaluation conducted to date 

with regards to the application of these monitoring techniques is presented in 

Section 2.3. 

 

1.2.3 Off-Gas N2O  

 

One of the emerging non-invasive wastewater monitoring techniques is off-gas N2O 

monitoring. The feasibility of the use of off-gas N2O analysis as an indicator of the 

operation of nitrification systems has been investigated by a research group at 

Cranfield University in the United Kingdom. This research, which will be reviewed 

in Section 2.1.4 of this thesis, demonstrated that gaseous N2O emissions from 
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aerobic nitrification processes could be used as a real-time indicator of the 

operation of these systems (Burgess et al. 2002a).  

 

Off-gas N2O monitoring utilizes a stress response relationship to determine the 

biological status of autotrophic nitrifying bacteria (Burgess et al. 2002b), specifically, 

the generation of N2O (the response) as a result of metabolic inhibition due to 

conditions like low DO and/or the application of inhibitory chemicals (the stresses). 

The concept of microbial stress indictors and a review of nitrification process stress 

responses will be presented in Section 2.1.4 of this thesis. N2O is stripped from the 

liquid phase by the aeration air and the concentration in the off-gas is monitored by 

a conventional continuous emissions monitor (such as a non-dispersive infrared 

detector). Utilizing a gas phase control parameter provides the advantages of using 

well established gas monitoring technologies and conducting the required process 

monitoring in a less hostile environment. The monitoring equipment utilized and 

principles of operation will be discussed in Section 3.2. 

 

Previous research (Burgess et al. 2002a; Burgess et al. 2002b; Butler et al. 2005; Butler 

et al. 2009; Stuetz et al. 2003) has focused on applying this monitoring technique as a 

means of upset early warning to detect conditions which could result in process 

failure. While off-gas N2O monitoring does indeed have upset early warning 

potential, the integration of the real-time process monitoring aspects of this 

technique into an aeration process control system has not been investigated.  

 

In this thesis, an alternative process control methodology is investigated which 

utilizes off-gas N2O as a measured variable and aeration air supply as the master 

control variable. This thesis will build upon previous research conducted in this area 

(Burgess et al. 2002a; Burgess et al. 2002b; Butler et al. 2005; Butler et al. 2009; Stuetz 

et al. 2003) by increasing the understanding of the response of nitrification systems 

to stresses (in terms of nitrous oxide production) and evolves the preliminary 

monitoring/control concept into an operational control system. The primary focus 

of the developed system will be on improving process reliability and reducing 

aeration costs. This thesis will also present a feasibility assessment of the developed 

control system, considering the technical, environmental and economic aspects of 

its application. The specific research objectives that must be achieved to accomplish 

these goals are presented in the following section. 
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1.3 Research Objectives 

 

As discussed previously, the overall aim of the project is to develop a control system 

for nitrification processes using gas phase N2O monitoring to reduce aeration 

requirements and mitigate process upset. In achieving this aim, a number of 

objectives must be achieved which will result in the generation of additional 

knowledge with respect to nitrification processes and their control. These 

objectives include: 

 

• investigating the operation of activated sludge nitrification processes to 

evaluate gaseous N2O emissions from the process under normal 

operating conditions and during process upset scenarios; 

• developing a model of gaseous N2O emissions from the process to 

correlate these emissions to liquid phase process parameters;  

• designing a nitrification process control concept; and 

• evaluating the developed control concept to determine feasibility of 

implementation, cost effectiveness, and environmental costs/benefits. 
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1.4 Thesis Structure 

 

This thesis is presented in 7 sections. A review of relevant literature that provides 

the background material used in the development of this research is presented in 

Chapter 2, while a description of the experimental apparatus and methodologies 

used in this research is provided in Chapter 3. The stress response relationship for 

off-gas N2O emissions from nitrifying bacteria is explored in Chapter 4, which forms 

the basis for the process control concept development and process modelling, both 

of which are presented in Chapter 5. An evaluation of the developed process 

control concept is provided in Chapter 6. Finally, conclusions and recommendations 

for further research are presented in Chapter 7 of this thesis. 
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Chapter 2    Literature Review 

 

Prior to conducting the experimental portion of the project, a literature review was 

conducted to gather the background information required to provide context for 

this project, identify knowledge gaps to support the development of project 

concept, and assist in methodology development.   

 

This review concentrated on four key areas of interest. A review of the current 

understanding of the biological processes involved in nitrification, as well as the 

potential pathways for the production of gaseous N2O emissions is presented in 

Section 2.1. The conceptual basis of activated sludge process modelling is reviewed 

in Section 2.2, along with calibration methodologies and current applications. 

Existing and emerging non-invasive wastewater monitoring technologies are 

reviewed in Section 2.3, and the feasibility of their incorporation into process 

control strategies is discussed. Finally, existing aeration control strategies for 

biological nitrogen removal processes are reviewed in Section 2.4.  
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2.1 Biological Nitrogen Removal – Processes and Gaseous Emissions 

 

The emission of nitrogen to the natural environment from wastewater is 

undesirable from an environmental perspective, and mounting regulatory and 

economic pressures are driving uptake of nitrogen removal technologies. Biological 

nitrogen removal is seen as the most efficient and cost effective means of nitrogen 

removal, and as such is the dominant nitrogen removal process employed in 

wastewater treatment (Ahn 2006). 

 

Biological nitrogen removal (BNR) processes utilize the microbiological component 

of the global nitrogen cycle to achieve nitrogen removal from the liquid phase 

(wastewater). Removal of ammonia, which is produced via ammonification of 

nitrogen-containing organic substances such as amino acids and urea (Siripong 

2005), by conversion dinitrogen gas (N2) occurs in nature in a wide range of 

environments from water (salt/fresh waters and sewage) to rocks and masonry, to 

extreme habitats such as Antarctic soils, acid environments and soda lakes 

(Abeliovich 1992; Schmidt 2008). Much of the knowledge of biological mechanisms 

in wastewater treatment processes has originated and evolved from research 

conducted to identify nitrogen transformation mechanisms involved in the soil 

component of the global nitrogen cycle. 

 

Historically, nitrogen removal was only thought to occur via two processes: 

nitrification (a two step process) and denitrification, which were believed to be 

strictly aerobic and anoxic, respectively. Recent research has challenged this 

paradigm and it has been demonstrated that the metabolism and types of bacteria 

involved in the nitrogen cycle are indeed quite diverse, with many new removal 

pathways and types of bacteria being identified. Current recognized nitrogen 

removal pathways are summarized briefly in Table 2-1.  
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Table 2-1 Summary of nitrogen removal pathways. 

Environment Inputs 

Process 
Aerobic Anoxic 

Electron 

Donor 

Electron 

Acceptor 

Products* 

Nitrition �  NH3 
O2 

(or HNO2) 
NO2

� 

Nitration �  NO2
� 

O2 
(or HNO2) 

NO3
� 

Heterotrophic 
Nitrification 

�  NH3 O2 NO2
� 

Aerobic Denitrification 
(Autotrophic) 

�  
No 

consensus 
NO2

� 
(or HNO2) 

N2O 
(NO/N2) 

Aerobic Denitrification 
(Heterotrophic) 

�  
Organic 
Carbon 

Successive 
steps: NO3,  

NO2
�, NO, N2O 

N2/N2O/ 
NO 

Anammox  � NH4
+ NO2

� 
N2  

(NO3
�) 

Heterotrophic 
Denitrification 

 � 
Organic 
Carbon 

Successive 
steps: NO3

�,  
NO2

�, NO, N2O 

N2 
(N2O/NO) 

*Minor products are presented in parentheses. 

 

While some of these processes (in particular nitrification and denitrification) are 

well understood from both biological and mechanistic perspectives, knowledge of 

many of the more recently identified processes continues to evolve and many 

knowledge gaps and areas of contradiction remain. These pathways will be 

discussed in further depth in Sections 2.1.1 and 2.1.2 for nitrification and 

denitrification pathways, respectively. 

 

The discovery and investigation of alternative nitrogen removal pathways has 

spurred the development of many novel BNR processes. Due to the nature of these 

pathways, many of the emerging processes are directed at very specific wastewater 

types, for example the SHARON and CANON processes are best suited to high 

ammonia/low carbon wastewaters (Khin and Annachhatre 2004) which often 

originate from industrial sources or internal process flows like sludge digestion 

liquors (Jetten et al. 2005). A full review of the development and current status of 

these emerging nitrogen removal processes is beyond the scope of this study, and 

the reader is directed to several recent reviews for further information (Ahn 2006; 

Khin and Annachhatre 2004; Schmidt et al. 2003). An overview of the biological 
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mechanisms involved in these processes (which will be discussed in the following 

sections) is provided as Table 2-2. 

 

Table 2-2 Nitrogen removal processes. 
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Process Selector 

Nitrification/ 
Denitrification 

� �    � N/A 

Shortcut Nitrification/ 
Denitrification 

�     � 
DO, temperature, 
pH 

SND  �   �   DO, floc size 
Anammox     �  SRT 
Sharon + Anammox �    �  Temperature, SRT 
SHARON  �     � Temperature, SRT 
CANON  �    �  DO 
OLAND �  �    DO 

Legend 
SND - Simultaneous Nitrification and Denitrification   
SHARON – Single Reactor System for High Rate Ammonia Removal Over Nitrite 
CANON – Completely Autotrophic Removal Over Nitrite   
OLAND – Oxygen Limited Nitrification and Denitrification 
 

Much of the research presented in the literature is directed towards process 

development, which is dependent on the application of long term selective 

pressures on microbiological communities to achieve the desired dominant 

processes. This thesis however, is focused on aeration process control and as such 

requires much shorter time scales. Thus, this review will focus on metabolic 

pathways and short term stress responses, particularly with regards to changes in 

substrate concentrations and inhibitory substances. 

 

2.1.1 Nitrification Processes 

 

A wide range of microorganisms have the capability to degrade ammonia to 

nitrate/nitrite, including autotrophic bacteria, heterotrophic bacteria, and fungi, 

although only autotrophic bacteria obtain energy from the process (Udert et al. 
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2005). While autotrophic bacteria and heterotrophic bacteria are of interest and 

relevant to wastewater treatment processes, fungi are not generally a significant 

population under normal process conditions and will not be discussed further.  

2.1.1.1 Autotrophic Nitrification 

 

No species of autotrophic bacteria are known to directly produce nitrate (NO3�) 

from ammonia (Hooper et al. 1997). Instead two types of bacteria coexist and 

interact to achieve the conversion via two sequential steps. In the first stage 

(nitrition), ammonia is converted to nitrite (NO2�) by ammonia oxidizing bacteria 

(AOB). The second stage (nitration) consists of the conversion of NO2� to NO3� by 

nitrite oxidizing bacteria (NOB). 

 

Nitrition 

The most commonly recognized autotrophic nitrifiers are Nitrosomonas genera 

(Ahn 2006), in particular Nitrosomonas europea has been extensively studied 

(Hagopian and Riley 1998), although Nitrosospira were recently recognized as being 

important (Siripong and Rittmann 2007). It is interesting to note that, as discussed by 

de Beer et al (1999), only a small segment of microbial populations are cultivatable 

by traditional identification techniques. These techniques favour the growth and 

domination of species which are adapted to high concentrations of the specific 

substrates utilized. Less competitive bacteria would be outcompeted and as a result 

not identified, leading to underestimation of bacterial populations and diversity. 

More recent microbial identification techniques such as fluorescent in situ 

hybridization (FISH) has revealed much greater diversity in populations, and 

recognized AOBs now include bacteria of the genera Nitrosococcus, Nitrosolobus 

and Nitrosovibrio (Hagopian and Riley 1998). 

 

It is generally accepted that ammonia (NH3) and not ammonium (NH4
+) is the 

substrate for nitrition (Jianlong and Ning 2004; Stein and Arp 1998). pH is thus an 

important parameter since it controls the equilibrium between NH3 and NH4
+ in 

liquid phase, in addition to playing a role in other sources of AOB inhibition (Udert 

et al. 2005). Nitrition is conventionally represented as a two step process in which 

ammonia is first oxidized to hydroxylamine, which is in turn oxidized to nitrite with 

oxygen acting as the terminal electron acceptor (Colliver and Stephenson 2000). It 
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should be noted that the first step of the reaction (ammonia oxidation to 

hydroxylamine) does not generate energy, which is instead generated in the second 

step (Abeliovich 1992). Each step is catalysed by a specific enzyme; ammonia 

monooxygenase (a membrane bound enzyme) and hydroxylamine oxidoreductase 

(a soluble enzyme) catalyse the first and second step, respectively (Abeliovich 1992; 

Stein and Arp 1998). The conventional nitrition mechanism is summarized below 

(Colliver and Stephenson 2000). 

 

OHeHO

eHHNOOHOHNH

OHOHNHeONH

22

222

2223

225.0

44
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→++

++→+

+→++

−+

−+

−

 

  

More recent research has suggested that DO is not utilized directly to oxidize 

ammonia in the first step, instead dimeric nitrite (N2O4) is used (Schmidt 2008). 

While this represents a departure from the conventional model, the oxygen in 

hydroxylamine originates from DO, therefore DO is still involved, albeit in an 

indirect manner (Schmidt 2008). This reaction adds an additional layer is to the 

nitrition mechanism in which NO2�/N2O4 is used to oxidize ammonia and produces 

nitric oxide (NO), which is then oxidized back to NO2�/N2O4 (regenerated) by DO. 

 

Nitration 

Bacteria of the genus Nitrobacter are generally considered the most important NO2� 

oxidizer, however Nitrospira is now also recognized as a dominant NOB (Siripong 

and Rittmann 2007). Bacteria of genera Nitrospina, Nitrococcus, Nitrocystis are also 

known to oxidize NO2� (Ahn 2006). Like nitrition, there is some ambiguity in the 

mechanism, in this case with regards to the specific substrate utilized in the single 

step reaction. NO2� has been the historically recognized substrate, however the 

possibility has been raised that nitrous acid (HNO2) is instead the substrate, 

although this has not yet been verified (Shiskowski 2004).  
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Nitration is catalysed by nitrite oxidoreductase (also called nitrite dehydrogenase), a 

membrane bound enzyme (Hagopian and Riley 1998): 

 

OHOeH

eHNOOHNO
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Under ideal conditions, nitration is a relatively fast reaction and nitrition is rate 

limiting, thus NO2� does not typically build up and the overall process is often 

modelled as a single step conversion of NH3 to NO3� (Ficara et al. 2000). However, 

NOB are more sensitive than AOB to many environmental parameters such as 

ammonia, free nitrous acid (Beline et al. 1999), and DO concentrations (Zheng et al. 

1994). During suboptimal growth conditions nitrition will no longer be rate limiting. 

NO2� will accumulate, resulting in stress to the AOB and an associated response. 

These stresses and responses will be discussed further in Sections 2.1.2.2 and 2.1.4 

for for autotrophic bacteria and the off-gas N2O responses, respectively. 

 

2.1.1.2 Heterotrophic Nitrification 

 

Heterotrophic nitrification is performed by a range of microorganisms including 

algae, fungi and bacteria (Kuenen and Robertson 1994; Schmidt et al. 2003), although 

it is most common in fungi which nitrify in low pH soils (Wrage et al. 2001). 

Common heterotrophic nitrifiers include species of Anthrobacter, Pseudomonas, as 

well as Alcaligenes faecalis and Thiosphaera pantotropha (Kuenen and Robertson 

1994). 

 

Heterotrophic nitrifiers convert NH3 to NO2� (and less commonly to NO3�), but 

unlike autotrophic nitrifiers they do not obtain energy directly from the process 

(Hooper et al. 1997; Kuenen and Robertson 1994), and instead use organic carbon as 

their energy source (Wrage et al. 2001). Furthermore, heterotrophic nitrifiers can 

metabolize a range of nitrogen compounds and are not restricted to NH3 like 

autotrophic nitrifiers (Kuenen and Robertson 1994; Papen et al. 1989). 

 

While heterotrophic and autotrophic nitrifiers share the same substrates, 

intermediates and products, they utilize different enzymes (Wrage et al. 2001). 
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Heterotrophic nitrification rates are generally lower than autotrophic nitrification 

rates except in specific environments (such as acidic ones) that are unfavourable for 

autotrophic nitrification (Schmidt et al. 2003). Even though they have lower nitrogen 

conversion rates per unit of biomass, heterotrophic nitrifiers generally exist at much 

higher concentrations and as such in favourable conditions can easily match and 

surpass autotrophic nitrification (Kuenen and Robertson 1994). Heterotrophic 

nitrification is believed to be negligible in conventional wastewater treatment 

processes except at very high COD/N ratios (van Loosdrecht and Jetten 1998). 

 

While knowledge of heterotrophic nitrification processes is increasing, there 

remains a need to further identify the process mechanisms, as well as investigate 

the conditions/environmental parameters which promote this process. 

Development of new knowledge in this field is further complicated by the diversity 

of heterotrophic nitrifiers, which can also denitrify in anoxic environments (Papen 

et al. 1989) as well as perform aerobic denitrification (Kuenen and Robertson 1994). 

These two processes will be discussed in Sections 2.1.2.1 and 2.1.2.2 for anoxic and 

aerobic denitrification, respectively. 

 

2.1.2 Denitrification Processes 

 

Historically denitrification was considered to be an anoxic process conducted by 

heterotrophic bacteria. However, recent research has demonstrated that the 

process is much more widespread and diverse, including aerobic denitrification 

processes as well as autotrophic bacteria. 

 

2.1.2.1 Anoxic Denitrification  

 

Conventional denitrification is conducted in anoxic environments by a wide range 

of heterotrophic bacteria including members of the genera Achromobacter, 

Acinetobacer, Agrobacterium, Alcaligenes, Arthrobacter, Bacillus, 

Chromobacterium, Corynebacterium, Flavobacterium, Hypomicrobium, Moraxella, 

Neisseria, Paracoccus, Propionibacterium, Pseudomonas, Rhizobium, 

Rhodopseudomonas, Spirillium, Thiobacillus, and Vibrio (Ahn 2006; Metcalf and 

Eddy 2003). Denitrification occurs in a series of sequential steps in which NO3� is 
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successively reduced to N2, with each reduction stage being mediated by specific 

enzymes (Shrestha et al. 2002): 

 

• NO3�   �  NO2� (nitrate reductase) 

• NO2�    � NO (nitrite reductase) 

• NO    � N2O (nitric oxide reductase) 

• N2O    � N2 (nitrous oxide reductase) 

 

Each of the enzymes have different inhibition characteristics with respect to 

chemicals and environmental conditions, and these differences are particularly 

important with regards to the accumulation of undesirable intermediates due to 

incomplete denitrification (in particular N2O and NO). For example, the nitrous 

oxide reductase is the most sensitive denitrification enzyme with regards to DO, 

thus intrusion of DO into the anoxic zone can result in N2O accumulation (Tallec et 

al. 2008). 

 

Organic carbon (from a wide variety of sources) is used as the electron donor and 

carbon source for all of the above reactions (Ahn 2006), and is required in significant 

quantities (Khin and Annachhatre 2004). Limitation of the organic carbon supply is 

another common cause of incomplete denitrification and accumulation of 

denitrification intermediates (Hwang et al. 2006).  

 

For an in-depth review of the biological mechanisms and specific enzymes involved 

in anoxic heterotrophic denitrification the reader is directed to Zumft (1997). While 

anoxic denitrification is fairly well understood, knowledge of denitrification 

processes by other types of microorganisms as well as in aerobic environments 

contains many gaps and contradictions and remains an active area of research and 

consensus building. 

 

2.1.2.2 Aerobic Denitrification 

 

While denitrification had been historically observed in aerobic environments, 

limitations in DO monitoring and inhomogeneous cultures used in classic 

experimental work (which could produce anoxic microzones) led to the concept of 
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aerobic denitrification being dismissed as conventional denitrification until the late 

1970s (Robertson and Kuenen 1984b). Even though most of the identified aerobic 

denitrifiers are heterotrophic bacteria (Bernat and Wojnowska-Baryla 2007), 

autotrophic bacteria also have the potential for aerobic denitrification, although via 

different processes and mechanisms.  

 

Aerobic Heterotrophic Denitrification 

Despite many examples of aerobic heterotrophic denitrification being provided in 

literature, the specific mechanisms of heterotrophic denitrification remain unclear. 

Two main mechanisms are currently being investigated; one a physical mechanism, 

the other a biological one (Itokawa et al. 1996; Oh and Silverstein 1999; Pochana et 

al. 1999).  

 

The physical aerobic denitrification mechanism is based on the formation of anoxic 

microzones inside of activated sludge flocs due to limitations in oxygen diffusion 

from the bulk liquid. Heterotrophic bacteria perform conventional denitrification 

inside these anoxic zones, and as such it is not true aerobic denitrification (i.e. 

denitrification in the presence of oxygen), instead it is anoxic denitrification in an 

aerobic bulk medium. This phenomena has been demonstrated using sequencing 

batch reactors (Pochana and Keller 1999; Pochana et al. 1999), wherein changes in 

floc size had no effect on the rates of NH3 or NO2� oxidation, but strongly 

influenced denitrification rates. Reductions in floc size increase oxygen penetration 

into the flocs, thereby producing a corresponding reduction in the size and 

availability of the anoxic microzones for anoxic heterotrophic denitrification.  

 

True aerobic denitrification is a biological mechanism in which heterotrophic 

bacteria continue to denitrify in the presence of oxygen (Holman and Wareham 

2005). This is often referred to as co-respiration, and there are many examples of 

these types of processes in nature (Ahn 2006; Bernat and Wojnowska-Baryla 2007). It 

has been proposed that aerobic denitrification is related to the impact of DO on the 

synthesis and activity of denitrification enzymes, in particular repression of enzyme 

synthesis and inhibition of enzyme activity (von Schulthess et al. 1994). Robertson 

and Kuenen (1984b) demonstrated that some denitrification enzymes can function 

in the presence of oxygen, and it is likely that while DO has a strong inhibitory 

effect, it is not a pure “on-off” switch (Oh and Silverstein 1999). Holman and 
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Wareham (2005) postulated that denitrification enzyme synthesis is deactivated in 

the presence of oxygen but the enzymes themselves are slow to disappear (i.e. a lag 

effect), but this mechanism would only allow for temporary denitrification instead 

of a sustainable process. 

 

While support exists for both denitrification mechanisms, the physical one is most 

likely the mechanism being employed in the majority of the proposed simultaneous 

nitrification and denitrification (SND) treatment processes. Since it is entirely 

possible for both phenomena to occur simultaneously, it can be difficult to 

differentiate between them (von Schulthess et al. 1994). Despite recent 

investigations of aerobic heterotrophic denitrification, there remains a lack of 

agreement on the specific mechanisms involved (Holman and Wareham 2005) and 

the pathways have yet to be studied in depth (Ahn 2006). Additional research is 

required to solidify understanding of the mechanisms and processes involved 

before SND can overcome its perception of being unpredictable (Bernat and 

Wojnowska-Baryla 2007), and start to gain acceptance as a wastewater treatment 

process. 

 

Aerobic Autotrophic Denitrification (Nitrifier Denitrification) 

A range of autotrophic bacteria have been shown to be capable of denitrification 

using various inorganic electron acceptors including sulphur, hydrogen and nitrite 

(Ahn 2006). In the application of aerobic autotrophic nitrification as a treatment 

process, this alternative metabolic pathway, often referred to as nitrifier 

denitrification, is of particular interest. The potential for AOB to denitrify was 

demonstrated in the 1980s (Poth 1986; Poth and Focht 1985) and much of the 

research in this area has focused on pure cultures (Bock et al. 1995; Kester et al. 1997; 

Poth 1986; Poth and Focht 1985; Shrestha et al. 2002), primarily Nitrosomonas sp., 

and in particular Nitrosomonas europaea and Nitrosomonas eutropha. However, 

nitrifier denitrification has also been observed in full scale biological wastewater 

treatment process containing mixed populations of nitrifiers (Helmer and Kunst 

1997; Tallec et al. 2006a) and is likely to be more widespread than previously 

believed. 

 

Unlike aerobic heterotrophic denitrification, nitrifier denitrification is primarily 

attributed to a biological mechanism and not a physical one (Helmer and Kunst 
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1997). It is seen as a metabolic response by AOB to external stress, in particular to 

reduced DO concentrations (Philips et al. 2002), NH3
 shock loads, increases in NO2� 

concentrations (Burgess et al. 2002a; Burgess et al. 2002b) and the presence of 

nitrification inhibitors (Burgess et al. 2002b). Aerobic denitrification is thought to 

provide enough energy for survival but not growth (Jetten et al. 1998).  

 

Poth and Focht (1985) postulated several mechanisms in which a switch to an 

aerobic denitrification pathway could improve survivability: 

 

• conservation of DO for NH3 oxidation; 

• consumption of NO2�  to prevent accumulation which could be toxic to 

AOB; and  

• consumption of NO2� to reduce available NOB substrate and thus the 

associated competition with AOB for remaining DO. 

 

Much of the nitrifier denitrification mechanism research has been conducted on 

pure cultures of Nitrosomonas europaea. Poth and Focht (1985) demonstrated via 

N15 tracer experiments that NO2� serves as a terminal electron acceptor for AOB 

during periods of oxygen stress and is reduced to N2O while NH4
+ is oxidized. These 

findings were supported by work conducted by Bock et al. (1995) which showed that 

both Nitrosomonas europaea and eutropha utilize NH4
+ as the electron donor for 

nitrifier denitrification. The products of nitrifier denitrification include N2O, NO, 

and N2 (Hooper et al. 1997), although complete denitrification to N2 is less common 

and NO/N2O are the primary products (Colliver and Stephenson 2000). 

 

There has been some discussion of alternative electron donors such as 

hydroxylamine (an intermediate of ammonia oxidation) and hydrogen (Ahn 2006; 

Jetten et al. 1998), although primarily in the context of anoxic autotrophic 

denitrification. While working with nitrite reductase deficient Nitrosomonas 

europaea cells, Beaumont et al. (2002) observed that the bacteria could still produce 

N2O (a primary produce of nitrifier denitrification), suggesting that there may be 

other mechanisms involved and the role of hydroxylamine should be further 

investigated.  
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There appears to be consensus on the role of NO2� as electron acceptor (Bock et al. 

1995; Poth 1986; Poth and Focht 1985; Tallec et al. 2006a), although more recent work 

conducted by Shiskowski and Mavinic (2006) investigating the effects of pH on 

nitrifier denitrification indicated that nitrous acid (HNO2) and not NO2� may be the 

electron acceptor. The role of NO2� in nitrifier denitrification my be more than just 

that of an electron acceptor, and may act as a regulatory signal to induce 

denitrification (Schmidt et al. 2003), possibly due to inhibition of respirometric 

enzymes to permit alternative pathways to proceed (Iranpour et al. 1999). 

 

Nitrifier denitrification has been investigated as a wastewater treatment process 

called OLAND (oxygen limited autotrophic nitrification and denitrification), which 

utilizes oxygen limitation to force simultaneous nitrification and denitrification by 

autotrophic bacteria, with a portion of the AOB using the available DO for ammonia 

oxidation while the remaining AOB switch to an aerobic denitrification survival 

mechanism (Philips et al. 2002). While this treatment process has been 

demonstrated at a laboratory scale to achieve nitrogen removal without a need for 

organic carbon, the specific mechanisms involved are not yet well understood (Ahn 

2006; Schmidt et al. 2003), and the process currently has low loadings and 

conversions (Ahn 2006).  

 

Even though a clear biological rationale for nitrifier denitrification has been 

identified, the process mechanism remains unclear. Without bacterial studies to 

identify specific mechanisms, much of the current knowledge of aerobic 

denitrification has been generated by inference using time series profiles of specific 

parameters (Holman and Wareham 2005). As noted by Wrage et al. (2001), there 

exists a lack of clear and consistent terminology to refer to the various forms of 

aerobic denitrification, which when combined with inference based knowledge, has 

generated confusion in the research area. While there is some research effort being 

put into gaining insight into the specific process mechanism, there appears to be 

more interest in related off-gas N2O emissions, which will be discussed in Section 

2.1.4. 
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2.1.3 Anammox 

 

The Anammox process, in which ammonium is oxidized with NO2� to form N2 (Ahn 

2006), was discovered in the early 1990s (Schmidt et al. 2002) and is conducted by a 

diverse population of Planctomycete bacteria (Schmidt et al. 2003). This reaction is 

conceptually similar to autotrophic denitrification. However, unlike autotrophic 

bacteria which denitrify as a survival mechanism in times of oxygen stress or 

inhibition, Anammox bacteria are able to obtain sufficient energy to allow growth 

(Jetten et al. 1998). 

 

Anammox bacteria oxidize NH4
+ with NO2� as the electron acceptor while fixing 

carbon dioxide (Ahn 2006), with hydrazine and hydroxylamine as intermediates 

(Kuenen 2008). The overall metabolic stoichiometry has been identified (Khin and 

Annachhatre 2004; Kuenen 2008): 

 

OHNONNOCHHHCONONH 23215.05.02324 03.226.002.1066.013.0066.032.1 +++→+++
−+−−+  

 

NO2� is the preferred electron acceptor, thus the process requires a nitrite source in 

addition to ammonia (NH4
+ and NO2� are consumed in a ratio of 1:1.3), so some 

initial partial nitrification is required (Schmidt et al. 2003). 

 

While the stoichiometry has been identified, the specific steps and enzymatic 

processes remain an area of active research. Anammox bacteria are highly sensitive 

to DO and are inhibited completely in its presence (Jetten et al. 1998; Khin and 

Annachhatre 2004). In the natural environment, these bacteria are believed to be 

responsible for over half of the total nitrogen turnover and can be found at 

oxic/anaerobic interfaces near clusters of AOB which produce NO2� and consume 

inhibitory oxygen (Kuenen 2008). In wastewater treatment processes, Anammox is 

preceded by a partial nitrification process such as SHARON, or applied 

simultaneously to nitrification in an oxygen limited environment (CANON). The 

primary benefits of Anammox as a wastewater treatment process are reduced 

aeration and organic carbon demand compared to conventional 

nitrification/denitrification. Slow growth (which results in a long start-up time) and 
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the lack of a pure culture are seen as challenges to its application (Schmidt et al. 

2003).  

 

2.1.4 Off-gas N2O Generation 

 

The emission of off-gas N2O from nitrogen removal processes is an emerging issue 

which has generated interest in recent years due to the increasing emphasis being 

placed on greenhouse gas emissions. Off-gas N2O emissions from nitrogen removal 

processes have been historically attributed to incomplete denitrification by 

heterotrophic bacteria in anoxic conditions. With the emergence of the many 

alternative nitrogen removal pathways discussed in this review, the number of N2O 

generation mechanisms to be considered has increased. However, the dominant 

source of N2O emissions likely remains linked to incomplete denitrification, in 

particular aerobic denitrification (autotrophic and heterotrophic).  

 

Relative Contribution of AOB and Heterotrophic Bacteria to N2O Emissions 

At low DO concentrations both AOB and heterotrophic bacteria have the potential 

to reduce NO2� and produce N2O simultaneously (Shiskowski et al. 2004), producing 

a mixed signal containing both processes. The identification of specific off-gas N2O 

sources has necessarily received a greater level of attention in dealing with nitrifier 

denitrification. In pure culture work using a representative of each of the three 

bacteria types of interest; an AOB (Nitrosomonas europaea), a NOB (Nitrobacter 

winogradskyi), and a heterotrophic nitrifier (Alcaligenes faecalis), Inamori et al. 

(1997) observed that the AOB had highest N2O production capacity, on the order of 

18 to 53 times that of the heterotrophic nitrifier, while the NOB generated negligible 

N2O emissions. While these results are considered representative of typical bacteria 

of their type, it should be noted that variability in N2O generation has been noted 

among bacterial species (Wrage et al. 2004) and among experimental conditions 

(Mao et al. 2006). Furthermore, mixed bacterial populations can have interactions 

that can change overall behaviour, in particular mixed populations of AOB and NOB 

have been observed to have lower N2O emissions than pure cultures of AOB 

(Inamori et al. 1997; Kester et al. 1997), possibly due to the NOB reducing NO2� build 

up.  
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Heterotrophic denitrification is accepted as the dominant source of N2O in fully 

anoxic conditions, particularly at low COD/N ratios (Liu et al. 2008; Tallec et al. 2008). 

As DO is introduced into the reactor and conditions change to aerobic, the 

dominant source begins to shift from heterotrophic denitrification to nitrifier 

denitrification. Tallec et al. (2006a) conducted a batch analysis of N2O emissions 

from wastewater and biomass obtained from a full scale municipal wastewater 

treatment plant in Paris to identify specific emissions sources. The results of their 

work indicated that nitrifier denitrification was the dominant source of N2O at all 

DO concentrations investigated, with the percentage contribution to the total 

emissions increasing steadily from 59% at 0.1 mg/L DO to 83% at 2 mg/L DO. 

Conversely the contribution for autotrophic denitrification decreased from 41 to 

17% over the same range of DO contributions but it should be noted that the 

emissions associated with denitrification were not negligible (Tallec et al. 2006a). 

Similar magnitude of results were obtained in a later study by the same researchers 

(Tallec et al. 2008) in which the DO was varied between 0.4 and 1.1 mg/L. However, 

the contributions to the N2O emissions from the two processes of interest were 

much more consistent across the investigated DO range, with 56.7% to 63.8% of 

total N2O originating from nitrifier denitrification (conversely 36.2% to 43.3% 

originating from heterotrophic denitrification), with no apparent direct correlation 

to oxygen concentration.   

 

While these results are interesting and provide insight into the relative importance 

of specific processes for N2O generation, caution should be used in interpreting 

these results (as well as extending them to full scale) due to the strong dependence 

on a number of parameters which may vary between laboratory (in particular pure 

culture) setups, as well as from laboratory to full scale treatment processes. The 

biokinetics of bacteria have been shown to be strongly dependent on conditions in 

which they are cultured (Sliekers et al. 2005), and processes like heterotrophic 

denitrification would be strongly influenced by floc size and mixing which may vary 

highly among lab scale setups (Robertson and Kuenen 1984a) as well as from lab 

scale to full scale. Furthermore, the relative populations of autotrophic and 

heterotrophic bacteria could strongly influence the observed contributions to N2O 

emissions as seen in Inamori et al. (1997). 
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N2O Generation by Heterotrophic Bacteria 

Generation of N2O by heterotrophic denitrifying bacteria is reasonably well 

understood in conventional denitrification processes. Under optimal conditions, 

none of the intermediate denitrification steps are rate limiting and NO2� is reduced 

sequentially to N2. The nitrous oxide reductase is the most oxygen sensitive 

denitrification enzyme (von Schulthess et al. 1994). Therefore, in the presence of 

oxygen, N2O reduction will be the most severely inhibited step in the denitrification 

process and the reduction chain will end at N2O, allowing it to build up in the liquid 

phase. A similar inhibition mechanism has been suggested for elevated 

concentrations of NO and NO2� (von Schulthess et al. 1995). Furthermore, low pH, 

short sludge retention times (SRT) and low COD/N ratios have been shown to 

promote the generation of N2O (Itokawa et al. 2001), possibly via producing 

increased NO2� concentration, (von Schulthess and Gujer 1996). 

 

These mechanistic studies have focused on liquid phase N2O concentrations and 

not off-gas emissions. The nature of anoxic processes (i.e. not being sparged by 

aeration air) can provide challenges in identifying the dominant sources of off-gas 

N2O emissions since the N2O generated during the anoxic period will accumulate in 

the liquid phase and then be stripped during aeration along with any N2O generated 

by aerobic processes (nitrification or denitrification), providing a mixed signal. A 

more recent approach utilized by Tallec et al. (2006b) consisted of sparging the 

reactor with a mix of air and nitrogen at a constant flow and adjusting the gas 

composition to obtain desired DO concentrations. Such a method serves to remove 

the potential bias associated with changing N2O stripping efficiency due to 

variations in aeration flow, as well as allowing N2O to be stripped during anoxic 

conditions, thereby improving the differentiation between anoxic and aerobic 

sources of N2O generation. 

 

N2O Generation by Autotrophic Bacteria 

As noted by Shiskowski and Mavinic (2006) and Poth and Focht (1985), AOB possess 

a nitrite reductase enzyme that is induceable at low DO concentrations and appears 

to be a survival mechanism, i.e. a response to stresses which result in metabolic 

inhibition. While there many studies have focused on DO, which has been termed 

the single most influential parameter for N2O generation (Colliver and Stephenson 

2000), a range of process parameters that can stress autotrophic bacteria (both 
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directly and indirectly) have also been shown to influence N2O generation. In 

particular low pH, short SRT, and elevated ammonia concentrations are of 

importance (Colliver and Stephenson 2000; Kampschreur et al. 2008a; Ruiz et al. 

2003).  

 

While not a typical process operating parameter, NO2� has been shown to play a 

central role in the generation of N2O. In particular N2O production is dependent on 

NO2� concentration and is not directly related to NO2� or ammonia oxidation 

(Gejlsbjerg et al. 1998), suggesting that inhibition by NO2� is responsible for N2O 

generation. Indeed, it has been demonstrated that NO2� debilitates ammonia 

monooxygenase, one of the primary AOB metabolic enzymes which, as noted by 

Iranpour et al. (1999), can in effect render aerobic environments anoxic and force 

bacteria to utilize alternative metabolic pathways. Free nitrous acid can also act as an 

inhibitor (Beline et al. 1999) and is likely the electron acceptor utilized in aerobic 

denitrification (Shiskowski and Mavinic 2006). It is possible that the other process 

parameters of interest, DO, pH, SRT and ammonia initiate N2O generation via 

specific inhibitory effects (or a chain of these effects) that result in free nitrous acid 

accumulation. 

 

N2O generation is seen to be unavoidable from nitrification processes (Zheng et al. 

1994), indeed N2O has been shown to be generated over a wide range of DO 

concentrations (Dundee and Hopkins 2001) and responds strongly to aeration 

rate/cycle (Kampschreur et al. 2008b). A trend exists in the literature of increasing 

N2O generation with decreasing DO concentrations below 2 mg/L, however there is 

a maximum point after which generation decreases as DO approaches zero (Tallec 

et al. 2006a).  

 

Some variation exists in the reported observed DO concentration that corresponds 

to maximum N2O generation, ranging from 0.4 mg/L to 1 mg/L (Tallec et al. 2006a; 

Tallec et al. 2008; Zheng et al. 1994). It is possible that this range in values is the 

result of the reported variability in N2O yield amongst autotrophic bacteria species 

(Colliver and Stephenson 2000), or is related to the applied measurement 

techniques (in particular instrument sensitivity and N2O stripping 

efficiency/dilution). Low DO concentrations can inhibit AOB (providing the 

necessary stress for nitrifier denitrification), as well as inhibiting NOB (Jianlong and 
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Ning 2004), which would result in NO2� accumulation that provides the electron 

acceptor and AOB metabolic stress required for nitrifier denitrification. 

 

The role of pH in N2O generation has only recently been systematically assessed. 

During sequencing batch reactor (SBR) tests, Shiskowski et al. (2006) observed that 

while changing the reactor pH had a negligible effect on DO, ammonia and NO2� 

concentrations, it had a strong influence on nitrous acid and off-gas N2O 

concentrations. Decreasing the pH from 8.2 to 7.2 resulted in subtle changes in 

nitrous acid and N2O concentrations, while increasing pH from 7 to 7.9 resulted in a 

substantial decrease in both nitrous acid and N2O concentrations. These results 

support the theory of nitrous acid as the electron acceptor instead of NO2�, 

although further research into this possibility is needed. While pH can have a 

significant direct influence on bacterial metabolism, it is possible that it influences 

N2O generation and emission via controlling the equilibrium between NO2� and 

nitrous acid, which could effect two important aspects of nitrifier denitrification; the 

electron donor supply, and the concentration of inhibitory substances (although a 

comparison of relative toxicity of NO2� and nitrous acid as not been found in 

literature). 

 

Reactor SRT has a strong influence on the bacterial population balance in 

wastewater treatment processes and has been utilized as a population control 

mechanism in several alternative treatment processes such as SHARON and 

shortcut removal via NO2�. The effect of SRT on N2O generation has received little 

focus to date, possibly since SRT is a fundamental process parameter which has a 

long term effect determining the nature of the microbiological community and is 

not a short term parameter suitable for routine process control. Noda et al. (2003) 

observed that SRT less than 10 days resulted in increased N2O generation.  Similar 

results were obtained by Zheng et al. (1994), where N2O generation was significantly 

increased for SRT less than 5 days. Decreases in SRT result in decreased AOB and 

NOB population (although AOB are less sensitive) and corresponding increases in 

ammonia and NO2� concentrations (Zheng et al. 1994), both of which are important 

factors in N2O generation. 

 

Ammonia has been demonstrated to have a strong influence on N2O generation, 

with its presence deemed an absolute requirement (Kampschreur et al. 2008a; Liu et 
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al. 2008) In laboratory scale work with a nitrifying activated sludge, Burgess et al. 

(2002a) observed a strong correlation between ammonia shock loadings and N2O 

off-gas concentrations, although there appeared to be a maximum ammonia 

concentration above which there was a saturation effect and off-gas N2O emissions 

were no longer proportional. The observed N2O generation response to rapid 

increases in ammonia concentration is highly dynamic, with a nearly immediate 

response and peak N2O concentrations being reached within 10 minutes (Burgess et 

al. 2002a; Kampschreur et al. 2008a). It is likely that ammonia triggers N2O generation 

via the resulting depletion in DO concentrations as it is metabolized, which in turn 

promotes N2O generation as discussed previously. 

 

As seen in the preceding discussions, while some of the specific mechanisms 

remain unclear and require further investigation (in particular for nitrifier 

denitrification), off-gas N2O emissions are strongly linked to suboptimal metabolic 

conditions. Many of the emerging alternative treatment processes (such as OLAND, 

CANON, SHARON, and Anammox) require operation at suboptimal conditions, 

which could result in significant off-gas N2O emissions. Gaining knowledge of these 

production mechanisms is a priority since the possibility exists to convert a water 

pollution issue into an air pollution one, potentially offseting some of the benefits 

of these alternative processes. 

 

A number of challenges exist with regards to improving knowledge of N2O 

generation processes. Mao et al. (2006) noted that N2O generation rates reported in 

literature vary widely. In addition to variability in N2O generation potential amongst 

bacterial species (Colliver and Stephenson 2000), the variation in measured N2O 

emissions could also be due to the lack of a standardized monitoring protocol. As 

discussed previously, a range of parameters can influence both nitrifier and 

heterotrophic denitrification, and as a result N2O generation. Thus, variations in 

experimental apparatus, reactor operation and sampling techniques can have a 

strong influence on the measured emissions. As a result there is a need to 

standardize monitoring to allow greater reproducibility and better comparison of 

results from different processes and research groups.  

 

Limited data exists for N2O emissions from full scale wastewater treatment 

processes (Kampschreur et al. 2008a), and while it can be useful to extend laboratory 
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scale data to full scale applications for emissions estimation purposes, care must be 

taken in doing so. Differences in the microbiological communities as well as the 

environmental and operational parameters can limit the applicability of pure culture 

and laboratory scale data to full scale wastewater treatment processes (Kampschreur 

et al. 2008a), and furthermore N2O stripping from the liquid phase in laboratory 

scale reactors can be substantially greater than that in full scale processes, resulting 

in overestimation of emissions (van Loosdrecht and Jetten 1998).  
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2.1.5 Summary 

 

While the biological aspects of conventional ammonia removal processes are well 

understood, substantial gaps exist in our knowledge of alternative nitrogen removal 

processes and pathways. In particular gaps exist with regards to the specific reaction 

mechanisms involved in aerobic denitrification processes, as well as the 

identification of specific substrates and electron donors/acceptors. The role of 

nitrous acid as an electron acceptor for nitrifier denitrification in particular warrants 

additional investigation.  

 

Another existing knowledge gap concerns N2O emissions from emerging alternative 

nitrogen removal processes such as SHARON, CANON, OLAND and Anammox. A 

need exists to better define emissions from these processes and determine if the 

potential impacts of these emissions counterbalance their benefits. Finally, there is a 

lack of in situ data to assess the importance of nitrifier denitrification in off-gas N2O 

emissions from full scale wastewater treatment plants, as well as the influence of 

specific operational parameters on these emissions. 

  

A number challenges exist in this research area which, if overcame, could improve 

the rate and quality of knowledge generation. Ambiguity and confusion has been 

generated by inconsistent use of terminology in literature to refer to the various 

nitrification and denitrification processes. Aerobic denitrification and N2O 

generation are highly dependent on process conditions and microbial populations. 

The utilization of a wide range of monitoring techniques and protocols impedes the 

comparison and interpretation of data from multiple sources. Development of 

standardized methodologies or agreement on best practices would enhance the 

quality and comparability of collected data, which is particularly important with 

regards to data collection from full scale processes. 

 

While this thesis does not place any particular focus on the biological aspects of 

alternative nitrogen removal processes and off gas generation, the stress response 

data obtained as part of model development (Chapter 4) provides some insights into 

the influence of specific process parameters and contributes to overall process 

understanding.
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2.2 Activated Sludge Process Modelling 

 

As with any chemical or biological process, it is desirable to be able to predict 

process performance for a wide range of applications including process design, 

optimization, control, and the evaluation of impacts of process changes or changes 

in operating conditions. These predictions are made using a process model. For 

activated sludge processes, the process model is in fact a combination of three 

submodels: a reactor hydraulic model, a settler model, and a biological process 

model. For the scenario being studied, hydraulic modelling and settler modelling 

can be approached in a relatively simplified manner (see Section 5.1.2 for a 

discussion of the rationale for this approach). As such, the biological process model 

will be the primary focus of this review.   

  

Models of the biological processes which occur in activated sludge bioreactors have 

evolved steadily in recent years. While Monod kinetics (which form the basis of 

most activated sludge  models) were proposed in the 1940s, and some simplified 

process models were developed between 1950s and 1970s, it was indeed in the late 

1970s where increases in computing power allowed increases in model complexity 

(Jeppsson 1996). This increase in model complexity resulted in a shift from a focus 

on steady state modelling to dynamic process modelling, culminating in the release 

of the general kinetic model developed by Dold research group at the University of 

Cape Town (UCT) in 1980 (Dold et al. 1980). The UCT model became the basis for the 

development of the current generation of activated sludge models such as the 

International Water Association’s (IWA) Activated Sludge Model (ASM) series 

(Gernaey et al. 2004; Hu et al. 2003; Jeppsson 1996). 

 

The first IWA ASM (referred to as ASM1) was introduced in 1987, and was intended 

to provide a framework for the development of future activated sludge models 

(Henze et al. 2000). This model provided the capability to simulate both organic 

carbon removal and nitrogen removal. With the increased uptake in biological 

phosphorus removal processes in the late 1980s and early 1990s (Henze et al. 2000), 

the existing models were expanded with additional biological concepts. Three of 

the primary biological phosphorus removal models are the UCT model, the IWA 

ASM models (ASM2 and ASM2d), and the Delft University of Technology 



 

 

 

Chapter 2 Literature Review – Activated Sludge Process Modelling 38 

 

 

phosphorus (TUDP) removal model (Gernaey et al. 2004; Hu et al. 2003). While the 

UCT biological phosphorus removal model is an extension of the original UCT 

activated sludge process model, both the IWA and the Delft University of 

Technology models use a common basis of the ASM1 model to represent 

autotrophic and heterotrophic biological reactions. However, the IWA and Delft 

University of Technology models utilize differing approaches to simulate the 

phosphorus removal process. As the focus of the research presented in this thesis is 

on nitrogen removal processes, further discussion of the workings of the biological 

phosphorus removal models is beyond the scope of this work. For additional 

information on biological phosphorus removal models, the reader is directed to two 

reviews of activated sludge process modelling: Gernaey et al. (2004), which provides 

a good overview of the current status of the IWA ASM and the Delft University of 

Technology models, and Hu et al. (2003), which provides an excellent in-depth 

discussion of the fundamental differences between the available biological nutrient 

removal models. 

  

The most recent addition to the IWA ASM family, ASM3, represents a change in the 

conceptualization of the heterotrophic biological reactions occurring in activated 

sludge processes. These modifications include the addition of a structured 

heterotrophic biomass, the addition of several state variables to the process model, 

and changes to the microbial decay pathways. Key differences between the models 

will be discussed further in Section 2.2.1.  

 

Several other biological process model formulations exist, such as a biochemical 

oxygen demand (BOD) based model (Argaman and Papkov 1995), as well as more 

unified models which incorporate a number of aspects traditionally modelled with 

separate models (biological growth, settling/clarification and gas-liquid transfer) 

into a single model (Seco et al. 2004). A number of alternative nitrogen removal 

models, in particular multiple step models (Chandran and Smets 2000; Chandran 

and Smets 2005; Hiatt and Grady 2008a; Hiatt and Grady 2008b; Iacopozzi et al. 2007; 

Nowak et al. 1994; Ossenbruggen et al. 1996) have also been proposed. Despite the 

alternatives, the IWA ASM family of models (and modelling software based upon 

them) have become industry standard for most applications (Gujer et al. 1999; Seco 

et al. 2004). 
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As they are the industry standard and applicable to the system being studied, this 

review will concentrate on the IWA ASM family of models, particularly exploring the 

differences between ASM1 and ASM3 since we are not concerned with phosphorus 

removal models (the focus of ASM2 and ASM2d). Also, with the focus of this work 

being on the aerobic segment of the nutrient removal process, anoxic processes will 

not be considered in this review. Three key areas of interest with regards to these 

models will be reviewed: 

 

• the conceptual bases of the models; 

• protocols and methodologies for model calibration; and 

• model uptake and application, including enhancements for prediction of 

additional pollutants and off-gases. 

 

Other aspects of activated sludge process modelling, such as model formulation 

and selection rationale will be discussed in Chapter 5. 

 

2.2.1 Model Conceptual Basis 

 

ASM1 and ASM3 are both process models that have been derived to approximate 

the underlying processes responsible for biomass production, along with the 

transformation of oxygen, carbon, and nitrogen in activated sludge wastewater 

treatment processes. It is important to note that the models reflect the current 

understanding of these processes and are continually subject to scrutiny and 

change as that understanding evolves.  

 

As mentioned in the previous section, ASM3 was introduced to enhance the 

representation of specific processes occurring within activated sludge processes. 

The default model formulations are presented on the following pages as Table 2-3 

and Table 2-4, for ASM1 and ASM3, respectively.  
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ASM3 is fundamentally similar to ASM1, particularly with respect to the kinetic form 

and representation of nitrification processes. Monod kinetics are used extensively 

in activated sludge models, and form the basis for the switching functions utilized in 

the ASM family of models (Gujer et al. 1999; Henze et al. 2000). These switching 

functions are applied more for mathematical convenience than out of process 

understanding (Gujer et al. 1999). Typical switching functions found in the ASM 

family have one of the two following forms: 

 

XX

X

SK

S

+
 

 

XX

X

SK

K

+
 

 

Where SX is the concentration of a generic substrate and KX is a generic half 

saturation constant.  

 

The first equation represents the most commonly used type of switching function, 

in which the process rate is reduced as the substrate concentration decreases. This 

form is primarily used to represent the effect of primary substrate availability on 

biokinetic reaction rates, such as organic carbon for heterotrophic bacteria or 

ammonium for autotrophic bacteria. The second form, as shown in the second 

equation, is a less commonly used switching function which generally represents 

the inhibition of reactions by the presence of a substance, i.e. the process rate is 

reduced as the concentration of the substance is increased. An example of this 

process-substrate relationship would be anoxic denitrification processes in which 

the reaction rates are inhibited by the presence of dissolved oxygen. 

 

ASM1 and ASM3 are also identical in their representation of nitrification processes. 

Both models represent nitrification as a single step process, where NH4
+ is oxidized 

to NO3�, and it is assumed that nitrite is short lived within the reactor (Gernaey et al. 

2004). Recently, a number of studies (Chandran and Smets 2000; Iacopozzi et al. 

2007) have investigated the validity of the single step nitrification models. The single 

step nitrification model used in both ASM1 and ASM3 is unable to provide the 
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resolution to achieve a proper simulation of advanced nitrogen removal processes 

(such as the SHARON process) where elevated levels of nitrite form (Gernaey et al. 

2004), as well as during process upset scenarios or for plants with specific nitrite 

limits (Iacopozzi et al. 2007). Current research into alternative nitrification models 

will be reviewed in Section 2.2.3. 

 

Despite the overall similarities of the models, there are a number of key areas in 

which ASM3 has been modified. Key differences in the aerobic phase reactions 

utilized in the two models have been identified in Table 2-5, and are discussed in 

greater depth in the following paragraphs. Model identifiability will be discussed in 

Section 2.2.2.  

 

Table 2-5 Differences between ASM1 and ASM3 (aerobic phase). 

Model Aspect ASM1 ASM3 

Heterotrophic 
Growth 

Direct growth on soluble 
substrate. 

Soluble substrate storage 
followed by growth on storage 
compounds. 

Biomass Decay 

Primary degradation via death-
regeneration concept. 
Secondary degradation using 
multistep model (hydrolysis and 
ammonification). 

Primary degradation via 
endogenous respiration model. 
Secondary degradation using a 
single step hydrolysis model. 

Model Identifiably Multiple linked parameters. 
Enhanced identifiably via process 
decoupling. 

Model Complexity 
11 state variables. 
7 processes. 

13 state variables. 
7 processes. 
Simplified degradation of 
primary decay products. 

 

Heterotrophic Growth 

The heterotrophic growth model is one of the defining differences between ASM1 

and ASM3. These differences are based on the assumed pathways in which organic 

carbon is assimilated by the bacteria. These assimilation processes are primarily 

concerned with readily biodegradable organic carbon (RBCOD), which is the 

fraction of the total organic carbon (typically small molecules like volatile fatty acids) 

that can be absorbed by the biomass and utilized directly (Henze et al. 2000). This 

fraction is generally modelled as soluble organic carbon.  
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Neither of the models allow for direct growth on slowly biodegradable organic 

carbon (SBCOD). The SBCOD fraction is modelled as a particulate and consists of 

complex molecules (including colloids) that must first be degraded extracellularly 

before they can be absorbed (Henze et al. 2000). These extracellular degradation 

processes (such as hydrolysis) are discussed as part of the biomass decay discussion 

in the following section. It should be noted that the ASM models do not treat 

soluble and particulate phase components differently, thus the presence of 

insoluble RBCOD or soluble SBCOD is of little consequence to the model results.  

 

ASM1 utilizes a simple and straightforward growth process concept in which the 

RBCOD is absorbed into the cells along with dissolved oxygen and ammonium and 

is broken down to produce the energy required for cell growth and maintenance. 

While this process concept generally provides an adequate simulation for typical 

activated sludge processes (Koch et al. 2000), including pre-denitrification processes 

where storage compounds are not significant (Koch et al. 2000), and in plants where 

aerobic and anoxic processes occur in separate reaction vessels (Wang et al. 2007), 

the concept does not provide an adequate simulation of process scenarios where 

the presence of storage compounds is significant such as elevated concentrations of 

readily biodegradable organic substrates (Gujer et al. 1999), and in activated sludge 

processes with sequential aerobic and anoxic zones in a single reaction vessel 

(Balku and Berber 2006). 

 

During the development of ASM3 there was a move to a structured heterotrophic 

microorganism model (influenced by ASM2). In this model, RBCOD is first absorbed 

into the cell and converted into storage products such as poly-hydroxy-alkanoates 

and glycogen (Henze et al. 2000). The heterotrophic microorganisms then consume 

the storage products to produce the energy required for cell growth and 

maintenance. This provides a slight increase in complexity through the addition of 

an additional state variable, the concentration of storage compounds (XSTO), as 

well as multiple decay processes (aerobic and anoxic) for these compounds. This 

increase in complexity is somewhat offset by the simplifications made in the 

secondary degradation processes.  

 

It was recognized during ASM3 model development that this sequential 

storage/growth mechanism was chosen as a simplification (Krishna and Van 
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Loosdrecht 1999; Sin et al. 2005a). However, despite this conscious choice, the 

mechanism has remained an area of interest and criticism (Guisasola et al. 2005), 

with research aimed at improving the representation of heterotrophic 

storage/growth processes, in particular with respect to sequencing batch reactors 

(SBRs) operating under feast/famine regimes. For these operational regimes, it has 

been observed that fitting the data using ASM3’s default sequential growth/storage 

model required the use of two different growth rates (Krishna and Van Loosdrecht 

1999). This growth rate discontinuity, which has been subsequently reported in 

other studies (Avcioglu et al. 2003; Karahan-Gul et al. 2003), called into question the 

validity of the default ASM3 sequential storage/growth model.  

 

As a result of the above observations, a number of modifications to this process 

have been proposed recently (Guisasola et al. 2005; Ni and Yu 2008; Sin et al. 2005a), 

primarily consisting of a simultaneous storage and growth concept, with the two 

processes occurring in competition and growth on storage products being 

dominate as substrate depletes. The ASM3 storage/growth mechanism remains an 

area of active research and consensus building (Sin et al. 2005a), and no official 

modifications to the model framework have been made at the time of this work.  

 

Biomass Decay 

In addition to alterations in the heterotrophic growth model, the representation of 

decay processes was significantly changed in ASM3 from that used in ASM1. This 

discussion will consider two processes typically presented separately in the ASM 

model family. The first process, which will be referred to as “primary decay”, is 

related to the breakdown of biomass. While this process is referred to as biomass 

decay in the ASM models, it includes many subprocesses since its is a lumped 

parameter that accounts for all oxygen demand during starvation conditions (when 

decay rates are typically measured). Thus, biomass decay includes both those 

processes which result in a decrease in the bacterial population (cell death, 

predation, and lysis) and those which have a respirometric oxygen demand during 

starvation conditions, namely endogenous decay (Henze et al. 2000). Processes 

related to the further breakdown of the microbial decay products (primarily 

hydrolysis, and in the case of ASM1 ammonification) are generally considered as a 

separate process in the ASM model family. However, it is important to consider 

them in conjunction with the primary decay processes since they complete the 
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nutrient cycle. The processes which act upon the products of the primary decay 

processes to decay them to their final state will be referred to as “secondary decay 

processes”.  

 

To gain insight into the differences in the decay process concepts utilized in the two 

models, it is useful to look at the flow of nutrients (carbon and nitrogen). These 

flows are presented in a graphical manner as Figure 2-1 and Figure 2-2 for carbon 

and nitrogen, respectively. Thes figures were developed based upon the processes 

in the model formulations presented in Henze et al. (2000), and only consider the 

aerobic components of the models. 
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An improvement in ASM3 over ASM1 is the provision for nitrogen balances in the 

model. As a result, the ASM3 model contains nitrogen fractions associated with all 

of the influent carbon streams (RBCOD and SBCOD). The completion of the mass 

balance results in a more complex nitrogen pathway in ASM3 over ASM1, which 

used a simplified flow pathway in which influent nitrogen was not associated with 

the influent carbon but instead assumed to be all in the form of influent 

ammonium.  

 

In ASM1 (seen on the left sides of Figure 2-1 and Figure 2-2), the decay process is 

referred to as a “death-regeneration” concept. In this concept, the decay products 

from the primary decay process are consumed by secondary decay processes to 

produce substrate which can then be metabolized to produce additional biomass. 

Effectively ASM1 allows for cannibalization. The death-regeneration concept 

produces strong connections between the heterotrophic and autotrophic bacterial 

metabolic processes. These interconnections can generate identifiability issues 

(Gernaey et al. 2004) that can complicate model calibration (which will be discussed 

further in Section  2.2.2). 

 

In general, literature discussing the ASM1 decay mechanisms (Gujer et al. 1999; 

Henze et al. 2000; Mussati et al. 2002) focues on the connections in the carbon 

pathway which allows heterotrophic bacteria to utilize decaying autotrophic 

bacteria as a food source. However, connections in the nitrogen pathways also exist 

in the model, allowing for the autotrophic bacteria to utilize the decaying 

autotrophic and heterotrophic bacteria as a food source. While often overlooked, 

these connections would have an influence on nutrient removal processes, 

particularly with respect to model calibration.  

 

As seen in the representation of ASM3 in the right sides of Figure 2-1 and Figure 2-2, 

the carbon decay process been changed to a “once-through” concept. In the once-

through decay process, only feed substrate is available for consumption by biomass. 

Following growth, all metabolic and primary decay products are emitted from the 

process via waste or process effluent. This effectively decouples the autotrophic and 

heterotrophic metabolic processes, improving model identifiability (Gernaey et al. 

2004) and subsequently easing model calibration. However, as seen in Figure 2-2, a 

nitrogen recycle pathway remains that allows autotrophic bacteria to utilize 
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decaying autotrophic and heterotrophic bacteria as a food source. Thus the 

nitrogen decay process in ASM3 remains a death regeneration concept.  

 

Contrary to existing process understanding, there is no oxygen demand associated 

with biomass decay in ASM1 via the cell lysis process (Henze et al. 2000). Instead, 

biomass decay results in an indirect oxygen demand via biomass growth using 

substrates produced by secondary decay processes. In ASM3 there has been a shift 

in the primary decay process from cell lysis to endogenous respiration. As a result 

all biomass loss and non-growth energy requirements are characterized via 

respiration processes and exert a direct oxygen demand (Henze et al. 2000). This 

endogenous respiration concept provides a better analogy to the respirometric 

methods commonly applied to measure activated sludge biokinetic parameters.  

 

In addition to changes in the overall decay process, the handling of process to 

produce substrate (i.e. hydrolysis and ammonification) has changed in ASM3. ASM1 

contains three secondary decay processes; two distinct hydrolysis processes, and 

ammonification. Ammonification in particular was not easily quantified and was 

often eliminated from most practical ASM1 model formulations (Henze et al. 2000). 

In ASM3, all of these processes have been lumped into a single hydrolysis process 

which utilizes non-readily biodegradable substances in the feed wastewater to 

produce both ammonium and readily biodegradable organic carbon substrates for 

biomass growth.  

 

While both ASM1 and ASM3 are conceptually quite different (particularly with 

respect to heterotrophic growth and biomass decay), both models are seen as being 

capable of providing an acceptable simulation of most municipal wastewater 

treatment processes (Koch et al. 2000). This is primarily due to the calibration 

methodologies employed which can compensate for the conceptual differences. 

 

2.2.2 Model Calibration 

 

While many process model parameters can be measured directly or indirectly using 

respirometry and a range of physical and chemical analytical techniques, it is 

generally the case where some parameters are not practical and/or economical to 
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measure. Due to this, some form of model calibration is employed by modellers to 

compensate for parameter assumptions and fit the model to the available process 

data. 

 

In general, calibration methodologies are as varied as the users of the models, and 

are highly dependent on personal experience and modelling objectives. The 

calibration techniques used in these methodologies can be broken down into the 

following general categories: 

 

• manual calibration techniques; 

• mathematical calibration techniques; and 

• sensitivity analysis. 

 

Manual calibration techniques, sometimes referred to as the process engineering 

approach (Gernaey et al. 2004), are the most basic and common calibration methods 

employed. These techniques consist of adjusting parameters until a good visual 

agreement is reached between the model outputs and the reference data sets used 

for calibration. This is indeed a very subjective approach, with the choice in 

parameters (as well as the range in which to vary them) being based on the 

modeller’s experience and process understanding. The use of process knowledge 

generally constrains parameters within typical ranges, preserving some of the 

mechanistic aspects of the process model. 

 

Mathematical calibration techniques typically consist of statistical methods 

employed to objectively determine optimal parameter combinations. Objective 

determination requires a quality criterion for comparison, such as minimizing sum 

of square errors (Ni and Yu 2008; Stricker et al. 2003). These methods are generally 

used in the place of manual calibration techniques.  

 

An important consideration when employing mathematical techniques is that the 

parameters being adjusted lose their mechanistic significance and become best fit 

variables (Amano et al. 2002). This will impose significant limitations on extending 

the model to situations beyond those which it was mathematically calibrated for. 
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Sensitivity analysis itself is not a calibration technique, but more of a tool to support 

manual or mathematical calibration techniques. Sensitivity analysis enables the 

modeller to gain an understanding of the impact of changes in specific model 

parameters on the model outputs. These results can be used to streamline the 

model calibration process by reducing the parameters considered to those which 

have the greatest influence on the model output being calibrated. This form of 

analysis can also serve to reduce the subjectivity in parameter selection in manual 

calibration techniques. 

 

While quite useful, the results of sensitivity analyses must be interpreted and 

utilized while considering limitations imposed on the results by the parameter 

analysis methodology and the range of the parameters investigated. With the 

exception of two papers which did not contain sufficient detail with regards to the 

sensitivity analysis methodology employed (Ferrer et al. 2004; Stricker et al. 2003), all 

of the sensitivity analyses reported in the reviewed literature were conducted on a 

single parameter basis utilizing the methodology presented in van Veldhuizen et al. 

(1999). Single parameter sensitivity analysis consists of varying one parameter and 

determining the effect on model outputs (often reported as a ratio), then the 

parameter is returned to its original value and another parameter is varied. This sort 

of analysis does not allow for synergistic or antagonistic interactions which may 

occur when multiple parameters are varied simultaneously.  

 

In addition to the specific limitations identified for each of the above 

techniques/tools, there are a number of common limitations. While models are 

generally calibrated around a specific set of data, they are often used to test 

potential operational scenarios which can be at markedly different conditions. This 

is particularly important with regards to the type of data utilized in calibration. Care 

must be taken to ensure a model calibrated purely on steady state data is not 

employed for dynamic predictions since the model would not have been calibrated 

to incorporate internal dynamics (Gernaey et al. 2004). Sensitivity analyses in 

particular are bound to the operating point at which they were conducted since the 

results are entirely based on deviations from the starting operating point and should 

not be applied to substantially different operating points or processes. 
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Parameter identifiability and interactions can further complicate both manual and 

mathematical calibration techniques. It is quite possible to achieve similar quality 

model fits using different combinations of adjusted model parameters (Gernaey et 

al. 2004), with potentially quite different levels of model performance for scenarios 

outside the calibration range.  

 

The variation in calibration methodologies and the specific tools employed is 

readily apparent from the reviewed literature (summarized in Table 2-6 and 

presented on the following page). Literature summarized in Table 2-6 was limited to 

ASM model formulations applied to real systems (laboratory-scale, pilot-scale, or 

full-scale). Literature which proposed calibration methodologies or contained 

purely theoretical model applications was not included. 
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As seen in Table 2-6, the dominant calibration technique utilized in the reviewed 

model applications was the manual process engineering approach. This reflects the 

simplicity and comfort of the approach. Mathematical calibration methods were 

much less common in the reviewed literature, likely reflecting the increased level of 

complexity involved in their use. Sensitivity analyses were quite commonly applied 

to support both calibration techniques by limiting the range of calibration 

parameters considered. Less common was the integration of all three techniques 

into one unified calibration method to draw on the strengths of the individual 

techniques. This is considered to be the optimal combination of calibration 

techniques (Gernaey et al. 2004) and is seen in the majority of the proposed 

modelling protocols (which will be discussed further in the following subsection). 

 

It is interesting to note that the discussion of model calibration in much of the 

reviewed literature was rather cursory in nature, with many simply stating the 

method used without commenting on specific techniques employed. This can be 

reagarded as a weakness considering the strong influence of model calibration on 

final modelling results, and as such a thorough description of model calibration 

methodology and model assumptions should be a key part of every practical 

modelling paper.  

 

Table 2-6 demonstrates that there remains a wide range of calibration options as 

well as individual techniques within options that can be applied to any given 

process. These approaches each have specific strengths and weaknesses, and an 

understanding of these is important in developing an appropriate and robust 

process model. However, the sheer volume of possible approaches (many of which 

can produce an equivalent “fit”) can serve to confuse users, particularly those 

applying process modelling to solve specific problems in consulting and industry. 

Indeed, model calibration is seen as the key factor limiting the spread of models to 

full scale activated sludge processes (Sin and Vanrolleghem 2007). As a result, there 

has been a drive in recent years towards a more systematic and unified calibration 

approach, which could serve to enhance both uptake and confidence in activated 

sludge process modelling. 
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Calibration Protocols 

In recent years a number of calibration protocols have been proposed. It should be 

noted that the scope of these protocols are not limited to the adjustment of 

parameters to fit a model to experimental data, they also encompass model 

development tasks including feed speciation, the collection of specific parameter 

data, development of subcomponent models (hydraulic and settling), and data 

reconciliation. 

 

An excellent review of recently proposed calibration protocols was published in 

2005 (Sin et al. 2005b). This review discussed the specific strengths and weaknesses 

of four recently proposed model calibration protocols: 

 

• BIOMATH (Vanrolleghem et al. 1999a); 

• STOWA (Hulsbeek et al. 2002); 

• HSG (Langergraber et al. 2004); and 

• WERF (Melcer 1999). 

 

Sin et al. (2005b) noted that all of the protocols have common aspects in terms of 

assessing calibration needs based on study goals, emphasising data collection and 

reconciliation, and validation of developed process models. While they do share 

these aspects at conceptual level, the implementation is highly variable and 

represents the frame of reference of each of the protocol proponents 

(Vanrolleghem et al. 2006). These protocols provide a broad spectrum of 

approaches, ranging from the scientifically focused BIOMATH protocol, to the more 

generic HSG protocol, to the pragmatically focused STOWA and WERF protocols 

(Vanrolleghem et al. 2006). Each protocol places different emphasis on specific 

aspects of the model calibration process (including experimental methods, design 

of data collection campaigns, selection of calibration parameters, and specific 

calibration methods).  

 

While these protocols attempt to standardize the model calibration process, they 

each leave fundamental components open to user interpretation and subjectivity. In 

particular, the BIOMATH protocol lacks detailed parameter calibration and data 

quality verification procedures, the STOWA protocol does not provide any detailed 
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guidance on hydraulic characterisation, sensitivity analysis or measurement 

campaign design, and the HSG protocol lacks specific guidance on 

influent/parameter characterisation as well as sensitivity analysis and calibration 

parameter selection (Sin et al. 2005b). The WERF protocol provides minimal 

guidance on settler model selection and determination of non-nitrification 

modelling parameters (Sin et al. 2005b; Vanrolleghem et al. 2006). 

 

There is indeed a need to standardize the abovementioned components of the 

modelling process. Ad hoc experimental design can be quite problematic for 

activated sludge process modelling. A range of experimental methodologies exist to 

measure similar process model parameters (Vanrolleghem et al. 1999b), each 

requiring specific testing conditions and analytical techniques. In addition, there 

remains a lack of consensus and firm guidance with regards to the influence of 

many experimental parameters on these methods, including: 

 

• suppression of heterotrophic bacteria by allylthiourea (a common 

nitrification inhibitor used in experimental methodologies), which would 

have an impact on the results of respirometric analyses (Benes et al. 2002); 

• selection of substrate to biomass ratios for respirometric methods 

(Spanjers and Vanrolleghem 1995; Vanrolleghem et al. 1999b), which can 

influence test duration and at high ratios can result in growth and 

divergent evolution of the microbial population; and 

• the use of alternative measurement techniques, such as the sequencing 

batch reactor based methods proposed by the WERF protocol (Melcer 

1999), which can provide a different environment for microorganism 

growth that can result in divergent evolution and variability in kinetic 

parameter estimates (Grady et al. 1996; Sin et al. 2005b; Vanrolleghem et al. 

2006).  

 

In addition to a need to standardize the specific methods applied (both for ease of 

use and data quality purposes), a need also exists to improve the design of the 

overall sampling campaign to optimize the quality and quantity of data collected 

while minimizing the associated cost and time required. This need is based both on 

methodological/data quality concerns such as information density and capturing 
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appropriate dynamics, as well as more pragmatic concerns such as cost and time 

demands. While many researchers have proposed and assessed improvements to 

existing analytical techniques to increase information density, other research 

groups have looked at instead improving the design of the experimental sampling 

campaigns as a means of addressing both technical and pragmatic concerns. The 

BIOMATH protocol adopts the latter approach, focusing on the application of 

optimal experimental design techniques in the development of sampling 

campaigns. While this methodology has demonstrated the ability to optimize the 

balance between information content and pragmatic concerns in developing 

sampling campaigns, as noted by Sin et al. (2005b), being a model based process it 

requires specialist knowledge and appropriate software to implement, which could 

indeed limit the uptake of this technique.  

 

While the calibration protocols place an emphasis on the bioprocess models, 

settling and hydraulic models can have a strong influence on model results. In 

particular, activated sludge process model outputs have been found to be highly 

sensitive to hydraulic parameters, in some cases more sensitive than to kinetic 

model parameters (Meijer et al. 2001). Errors in the simulation of reactor hydraulics 

are often the cause of large deviations in model parameters being required to 

achieve acceptable fits (Gernaey et al. 2004). Despite this, hydraulic models are only 

given cursory discussion in the majority of the modelling protocols, with the 

notable exception being the HSG protocol. The HSG protocol details development, 

calibration and validation of hydraulic models, and includes the use of tracer studies 

and computational fluid dynamic (CFD) modelling (Langergraber et al. 2004). While 

the more comprehensive approach to hydraulic modelling presented in the HSG 

protocol is a substantial improvement, the application of CFD may negatively impact 

the uptake and feasibility of model development due to the expertise required to 

conduct CFD modelling, and it has been noted that development of a CFD model 

for an activated sludge process is a time consuming task on par with the 

development of the biological model (Vanrolleghem et al. 2006).  

 

The selection of calibration parameters is an area of potentially enormous variability 

and can strongly limit calibration reproducibility. Application of sensitivity analysis 

(which has emerged as a common method of parameter selection) is included in the 

BIOMATH protocol. However, while the methods to determine sensitivity are 
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generally fairly consistent with those presented by van Veldhuizen et al. (1999), the 

interpretation of the results remains quite subjective with regards to what level of 

sensitivity requires consideration and what can be left as default (insensitive). 

Furthermore, there are limitations with regards to the range of applicability since 

the sensitivity analysis is conducted around a specific operating point and only 

considers the influence of changing a single parameter at a time. Conventional 

sensitivity analysis ignores simultaneous changes in multiple parameters which 

could have synergistic or antagonistic effects. 

 

Calibration incorporating sensitivity analysis results remains a manual technique, 

leaving much of the choice (selection of parameters, order of calibration, actual 

adjustment magnitudes, and fit quality criteria) in the hands of the modeller. With 

the existing variability amongst modellers with regards to process knowledge, 

technical backgrounds, and modelling experience, it is only natural that this manual 

process would result in the incorporation of substantial subjectivity and variability 

in the calibrated model.  

 

An area of more recent research is the application of automated calibration 

procedures (primarily the adjustment of specific model parameters for fitting 

purposes). In addition to resulting in substantial time savings, these automated 

calibration procedures could impose much needed reproducibility and 

standardization. However, as noted by Sin et al. (Sin et al. 2005b), previous attempts 

at applying automated calibration procedures have not been successful due to 

complex interactions between model subcomponents. Thus automated model 

calibration remains an area of continued research.  

 

Recently, Monte Carlo simulation has been applied to replace manual parameter 

adjustment, with good results during model validation (Sin et al. 2008). However, the 

authors note that this method could encounter limitations in model applicability 

and extrapolation if parameters are set to unrealistic values by the automatic 

calibration process, and this method requires further research and development. 

Being based on Monte Carlo simulation, the possibility exists to extend the 

automated procedures to provide information on other important aspects of the 

process model such as parameter (Smets et al. 2003) and prediction uncertainty 

(Koch et al. 2001b). 
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The presence of a range of calibration protocols (each with different focuses and 

methodologies) continues to provide confusion in the modelling community, limits 

the evaluation and comparison of results, and perpetuates the resistance noted by 

Sin et al. (2007) to the uptake of activated sludge process modelling. Furthermore, 

Sin et al. (2005b) identified model calibration as the weakest link in the activated 

sludge modelling process. While the need for a unified model calibration approach 

has been identified (Sin et al. 2005b), and the development of the recent protocols 

represent a drive towards standardization (and an improvement on the previous 

method of ad hoc calibration approach based on personal experience), unification 

remains to be achieved.  

 

In developing a unified protocol, applicability is an area of concern. Sin et al. 

(2005b), for example, pushes for a more widely applicable protocol that could be 

extended to calibration of municipal wastewater treatment plants to non-

conventional processes (attached growth processes, emerging processes such as 

alternative nitrogen removal processes like SHARON and CANON, and industrial 

wastewater), but at the same time acknowledges that this would require multiple 

specific protocols to achieve that objective. Therein lies one of the key dilemmas 

facing unification of calibration protocols, the trade-off that is required between 

applicability and standardization.  

 

By producing a widely applicable protocol (such as the HSG protocol), the protocol 

becomes more of a high level guidance document in terms of specifying how the 

overall project should be conducted and which aspects considered, instead of the 

specific guidance to modellers with regards to tasks and methodologies. While such 

a protocol can ensure a common overarching approach, it allows for a high level of 

variability in the implementation of the actual calibration techniques, and as such 

does not address the problem of reproducibility and comparability amongst model 

calibration results. 

 

More specific protocols allow for a much higher level of reproducibility and 

comparability by restricting the modeller’s freedom via standardized methods. 

However, in doing so they restrict their range of applicability, for instance the use of 

respirometry and the experimental methods in BIOMATH restricts it to ASM models 

applied to specific wastewater process configurations. While this may not be an 
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issue for very common processes, it can be a problem in the future as models and 

processes evolve, since changes to processes or model structure can mandate the 

use of substantially different calibration techniques. 

 

Indeed, both specific and generalized calibration protocols possess strengths and 

weaknesses, and none of the current proposed approaches are satisfactory to 

achieve the overall goal of comparable results which can be shared amongst model 

users. While a unified protocol is required, a novel approach is needed, which will 

likely be in the form of a hybridised protocol that combines the strengths of the 

individual protocols to overcome their individual weakness.  

 

The hybridised model calibration protocol could be modular in form, with a 

common overarching model calibration philosophy (overall calibration process 

outline, experimental design technique, verification methodology, and 

quality/reporting requirements) which is then applied to key wastewater processes 

to develop highly specific calibration methodologies. This form of protocol would 

allow for a common approach to be applied, while at the same time providing 

guidance at a sufficient level of detail to allow meaningful comparison of modelling 

results within similar process types. Utilization of a modular framework would also 

allow for ease of horizontal protocol expansion (to incorporate new models and 

processes) without requiring established protocol modules to be reworked.   

 

A lack of unified vision of the important components of calibration methodology, as 

well as the lack of consensus on specific calibration techniques and minimal 

guidance on model selection for specific processes and operational scenarios 

continues to limit the uptake and comparison/evaluation of activated sludge process 

modelling results. Achieving consensus amongst the activated sludge modelling 

community with respect to model calibration methodologies and the development 

of a unified model calibration protocol that is useable for both experienced and 

new modellers remains a challenge and an area of further research and 

development. 

 

Model Identifiability 

In addition to the development of model calibration methodologies there has been 

a recent research focus on model parameter analysis methods, primarily related to 
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model identifiability. In modelling, identifiability relates to the ability to determine a 

unique set of model parameters (i.e. a unique solution) to fit the model to a set of 

operational conditions (Brouwer et al. 1998). As seen in the previous discussion of 

activated sludge model calibration, reproducibility is a desired outcome. However, 

poor model identifiability introduces undesired subjectivity and variability into the 

model calibration process. 

 

Two forms of model identifiability are discussed in the available literature; structural 

identifiability, and practical identifiability. Structural identifiability is based upon the 

model formulation, i.e. structure, and assumes the availability of perfect data in 

terms of both the quantity of state variables and data quality (Petersen et al. 2003). 

Structural identifiability is thus an inherent property of the model being used and is 

a fundamental model characteristic. Practical identifiability, on the other hand, is 

based upon the types and quality of the available data (Brouwer et al. 1998), and is 

more relevant to model development and calibration using experimental data. 

Furthermore, it is entirely possible for parameters that are identifiable from a 

structural perspective to not be identifiable from a practical perspective (Petersen et 

al. 2003), thus a thorough understanding of model identifiability is key to the 

development of meaningful experimental techniques for model calibration. 

 

Structural identifiability of the ASM model family has been an active research area 

since the 1980s (Checchi and Marsili-Libelli 2005). Monod based (ASM type) process 

models are nonlinear in nature, and as such their structural identifiability are not as 

well understood and are complex to assess (Petersen et al. 2003). Activated sludge 

biological process models are considered to be overparameterised (Cox 2004) and, 

particularly in the case of ASM1, contain linkages between various processes such 

that the alteration of a single parameter can effect multiple state variables 

simultaneously (Gernaey et al. 2004). As such, many challenges exist to determine 

unique solutions for model parameter values. 

 

The introduction of ASM3 as an intended successor to ASM1 was not only for the 

improved process mechanisms, but also for enhanced structural identifiability 

(Checchi and Marsili-Libelli 2005). It has been recognized that ASM3 has improved 

structural identifiability via the decoupling of many processes (Gernaey et al. 2004; 

Iacopozzi et al. 2007), in particular changing the decay process from a death-
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regeneration concept to a once-through endogenous respiration concept, and 

alterating the hydrolysis processes. However, while the model has improved 

identifiability, ASM3 continues to have structural identifiability issues (Guisasola et 

al. 2005). 

 

While all model parameters are structurally identifiable when both substrate and 

biomass parameters are available, when one moves to experimental applications 

with a reduced number of parameters being measured, not all parameters are 

uniquely identifiable and instead only specific combinations can be structurally 

identified, although they may not be practically identifiable (Petersen et al. 2003). 

Thus, practical model identifiability generally has a greater influence on model 

application (particularly on the development of experimental methodologies for 

parameter determination) and has been the focus of recent research efforts.  

 

As noted by Brouwer et al. (1998), practical identifiability can be improved via 

optimising experimental design to maximize information content or reducing the 

number of unknown process parameters by fixing insensitive parameters or 

isolating specific processes. Indeed, much of the existing body of respirometric 

model parameter analysis methods (Kappeler and Gujer 1992; Spanjers and 

Vanrolleghem 1995; Vanrolleghem et al. 1999b) were developed based upon these 

techniques utilizing specific sequences/types of feed, as well as employing 

inhibitors to manipulate the biological processes to produce situations where 

specific components of the overall process were observable and the desired 

biological parameters were uniquely identifiable. Respirometric methods are 

fundamental methodologies commonly used in characterisation studies for ASM 

model calibration. 

 

While these respirometric methods are quite well established, there has been a 

more recent interest in developing rapid or in some case online sampling methods 

to determine model parameters (Langergraber et al. 2003; Spanjers et al. 2002), as 

well as in the development of parameter measurement methodologies for more 

complex model formulations such as two-step nitrification models (Chandran and 

Smets 2000; Chandran and Smets 2005; Sin and Vanrolleghem 2007). These 

applications are complicated by the information density required to overcome 

practical identifiability issues.  
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A more recent approach in the literature is combining traditional respirometric 

analysis with additional monitoring to increase the available process information to 

enhance practical identifiability. These approaches have included augmenting 

respirometric analysis with titrimetric analysis (Sin and Vanrolleghem 2007) and 

titrimetric analysis combined with off-gas analysis (TOGA) for both oxygen and 

carbon dioxide uptake rates (Blackburne et al. 2007). These studies have 

demonstrated that enhanced identifiability can indeed be obtained via novel 

combinations of existing monitoring techniques. The analysis and application of 

these techniques (particularly with regards to parameter analysis for model 

calibration purposes) is an active research area, and further development/validation 

is required before they become accepted techniques for model calibration. 

 

2.2.3 Model Uptake and Application 

 

Activated sludge process models have been applied to wastewater treatment 

processes for a wide range of purposes, ranging from planning (process conceptual 

design and exploration of potential operating scenarios) to process and control 

system design, to operational implementation in model based control systems, to 

support tasks such as training (Langergraber et al. 2004). While activated sludge 

process models were developed to simulate biological reactions for activated 

sludge processes treating municipal wastewater, the versatility of the model base 

has allowed it to be extended and adapted for use in a range of applications 

including: 

 

• modelling alternative suspended growth processes such as membrane 

bioreactors (Ng and Kim 2007); 

• application for industrial wastewater treatment such as pulp mill effluent 

(Baranao and Hall 2004), cheese industry effluent, and pharmaceutical 

wastewater (Gernaey et al. 2004); 

• investigation of biological processes in floc microenvironments (Li and 

Bishop 2003a; Li and Bishop 2003b); and 

• integrated with expert systems as a tool to assist plant operators (Sorour 

and Bahgat 2004). 
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ASM3 has generally been accepted as containing many mechanistic improvements 

over ASM1 while being of a similar level of complexity (Gujer et al. 1999). However, 

being a newer model it is naturally less established and has a smaller pool of 

experience and evaluation of its predictive ability. This, coupled with ASM1 being 

able to sufficiently simulate most common wastewater processes (Koch et al. 2000) 

has slowed its uptake. Furthermore, there remains some doubt as to whether the 

improved fits obtained using this model are more a result of having additional 

parameters/processes to calibration than being a better mechanistic representation 

of the actual processes (Guisasola et al. 2005). 

 

Thus, ASM1 remains the dominant activated sludge biological process model 

(Gernaey et al. 2004; Langergraber et al. 2004; Nuhoglu et al. 2005), used extensively 

in industrial applications as well as forming the core of most commercial activated 

sludge process modelling software packages (Mussati et al. 2002; Sorour and Bahgat 

2004) and remains a continued source of novel research and development (Gernaey 

et al. 2004). Application of ASM3 has generally been restricted to specific situations 

where the improved mechanisms are of particular influence/importance, although 

the exact types of scenarios in which each model is the most appropriate choice 

remains to be defined, particularly as a part of the existing model calibration 

protocols. 

  

At present, while ASM3 remains far from being the clear successor to ASM1 it was 

intended to be, the use and acceptance of ASM3 has been increasing. However, as 

discussed in Section 2.2.1, the internal storage processes (particularly related to 

feed/famine conditions) remains an area of current research and consensus (along 

with official model modification) has not yet been reached. 

 

This discussion, like the majority of the literature reviewed, has focused on 

biological process models. However, bioprocess modelling is only one component 

(albeit an extremely important one) of wastewater process modelling. In general 

there has been a lesser focus in the literature on the other modelling aspects such 

as reactor hydraulics and settling and their impact on modelling results, although 

their importance has been recognized to varying extents in the recently proposed 

model calibration protocols (Hulsbeek et al. 2002; Langergraber et al. 2004; Melcer 

1999; Vanrolleghem et al. 1999a).  
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With regards to model application there is a trend in the literature to discuss the 

biological process model components in depth, but provide much less detail for the 

other model components. There has been an attempt to develop a “whole package” 

model which incorporate the many submodels (including reactor hydraulics, 

settling, temperature, dissolved oxygen profiles, and biological processes) into one 

comprehensive model (Makinia and Wells 2000a; Makinia and Wells 2000b), 

however while more common in commercial modelling software, this type of model 

is in the minority in published literature.  

 

As discussed previously, there has been some focus on the nonbiological 

components activated sludge process models in calibration protocols, however the 

level of focus is variable with respect to the protocols as well as the techniques 

employed to develop the individual submodels. The lack of a recognized “whole 

package” or standardized submodel development approach poses a challenge to 

the evaluation of model application, particularly with regards to drawing 

conclusions about specific submodels (such as biological models) when the results 

upon which the conclusions are based will contain influences from the other 

submodels (which are often accounted for in the “calibration” of the biological 

model). 

 

In most literature, there has been a focus on short term studies, with some slightly 

longer term data (on the order of 1.5 - 2 months) being used for model validation in 

some studies (Makinia et al. 2005; Nuhoglu et al. 2005; Sin and Vanrolleghem 2007), 

however even these “long-term studies” are insufficient in duration to address 

issues related to long-term model application. Indeed, there has been little 

discussion of the long-term variability in model parameters and calibration lifespan 

remains an unexplored research area in the reviewed literature. This is particularly 

important for longer term applications such as model based control, model based 

expert systems, and assessment of long-term operational scenarios (seasonal basis). 

In long-term applications, variability in influent and environmental conditions will 

result in variable selective pressures on the microbiological communities employed 

in the wastewater treatment processes, allowing for population change over time 

and potential changes in biokinetic and stoichiometric parameter values. These 

changes (and the associated prediction errors/model uncertainty over time) could 
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limit the lifespan of the model calibration, which would have a strong influence on 

both the technical and economic feasibility of long-term model applications. 

 

While the ASM model family has been quite successful in its base forms and has 

seen substantial uptake, many emerging model applications require the 

improvement of existing model mechanisms or the extension of the model package 

to incorporate additional parameters and processes. The evaluation of emerging 

nitrogen removal processes (such as SHARON and CANON) has led to 

development in ASM nitrification models since these process depend on “shortcut 

pathways” which involve emphasising one part of the nitrification process to 

achieve aeration savings. The ASM model family, however, utilizes a simplified one-

step nitrification model. While this model is suitable for common processes 

operating under stable conditions (Iacopozzi et al. 2007), it cannot deal with 

scenarios where elevated nitrite concentrations occur (Gernaey et al. 2004) such as 

process upset conditions, low nitrification capacity processes, or the previously 

mentioned alternative nitrogen removal processes (Iacopozzi et al. 2007). With 

increasing focus on these processes, there is an emerging need for a better 

mechanistic understanding (and models) of the nitrification process.  

 

As a step towards a improved mechanistic modelling of nitrification processes, a 

basic two-step nitrification model was proposed by Nowak et al. (1994). This model  

did not make any substantial changes to the remaining components of the ASM1 

model base, and consisted of separating the lumped nitrification processes 

(autotrophic growth and decay) and state variables (autotrophic biomass and 

NO2�/NO3� concentration) into their individual components.  

 

Chandran and Smets (2000) reviewed several of the proposed two-step nitrification 

models, and noted that all of the proposed models to date contained mechanistic 

limitations. Particularly notable was a failure by some of the models to account for 

ammonium uptake as part of the growth of ammonium oxidizing bacteria. 

Ossenbruggen et al. (1996) utilized a different approach, employing empirical fitting 

methodologies, however the model was directed more towards obtaining insight 

into mechanistic aspects, and as the authors noted, further work is needed to 

investigate if the mechanisms are indeed justified.  
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A more recent development is ASMN, proposed by Hiatt and Grady (Hiatt and 

Grady 2008a; Hiatt and Grady 2008b). Like many of the other two step nitrification 

models, this model was based on ASM1 and separated the lumped nitrification 

processes into AOB and NOB processes. In addition, several modifications have 

been made to the ASM1 model base to incorporate several new processes 

(mixotrophic growth of NOB, and assimilative NO3� reduction to NH4
+) and 

adjustments to the reaction mechanisms for AOB and NOB growth. In ASMN, AOB 

and NOB growth utilize free ammonia and free nitrous acid as growth substrates, 

respectively. This introduces pH dependence into the nitrification process rates. 

While the model reflects the current understanding of nitrogen removal processes, 

there remains a need for further validation and the development of experimental 

techniques to evaluate specific model parameters. 

 

There has been a focus in recent work (Chandran and Smets 2000; Chandran and 

Smets 2005; Sin and Vanrolleghem 2007) on the development of experimental 

methodologies to determine specific model calibration parameters for Monod 

based two-step nitrification models. The primary concern in these studies was 

identifiability of the individual process parameters, specifically obtaining a sufficient 

level of kinetic information from experiments to be able to uniquely characterise 

the two simultaneous components of the nitrification process (Chandran and Smets 

2005). Identifiability issues have been approached in two ways, by the application of 

optimal experimental design techniques to optimize the quantity of kinetic 

information obtained from single respirogram assessment (Chandran and Smets 

2005), and by using combined monitoring techniques (titrimetric and respirometric 

data) to increase information content (Sin and Vanrolleghem 2007). Despite 

advances in the development of two-step nitrification models, there remains a need 

for additional development and validation before they will become accepted 

enhancements to the ASM model family. 

 

While there has been some research effort with regards to liquid phase nitrification 

enhancements to the ASM model family, the development of linkages between 

liquid phase models and the off-gas emissions for aerobic activated sludge 

processes remains a research gap. More specifically, a gap exists in published 

literature with regards to the modelling of off-gas nitrous oxide emissions from 

nitrification processes.  
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Even though this gap exists with regards to nitrification processes, research has 

been conducted to model the production of nitrous oxide by denitrification 

processes. These model studies (von Schulthess and Gujer 1996; Wicht 1996; Wild et 

al. 1995) focused primarily on liquid phase nitrous oxide concentrations (measured 

via gas stripping and subsequent gas analysis), although Wild et al. (1995) utilized an 

enzymatic approach to predict stripped gas concentrations directly. These 

modelling studies demonstrated that Monod processes were applicable to nitrous 

oxide generation, although as noted by Wild et al. (1995) these models contain a 

large number of unknown parameters which require the development of 

methodologies to determine them if proper mechanistic calibration is desired. 

Furthermore, it has been acknowledged that these models also include nitrous 

oxide generated in the aerobic nitrification part of the process, which would be 

significant, but not dominating (von Schulthess and Gujer 1996).  

 

Understanding off-gas emissions is important not only for emerging non-invasive 

monitoring/control techniques, but for understanding emissions of greenhouse 

gases and other potential pollutants which are becoming of greater interest in a 

global climate of ever increasing emission regulation. The development of a nitrous 

oxide off-gas model for aerobic activated sludge nitrification processes will be 

presented in Chapter 5. 

 

2.2.4 Summary 

 

The ASM family of activated sludge biological process models remain the dominant 

model for domestic wastewater treatment, with the ASM1 model continuing to 

remain the industry standard despite the introduction of ASM3 (which contains 

mechanistic improvements) due to the existing pool of ASM1 knowledge and 

experience, as well as continued debate with regards to the implementation of 

some of the ASM3 mechanistic improvements.  
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While the ASM model family is well established and has been the subject of much 

investigation and evaluation, many knowledge gaps (and active research areas) 

remain, including: 

 

• lack of consensus with regards to calibration goals and requirements; 

• lack of a unified calibration protocol; 

• poor understanding of long-term model calibration stability; 

• requirement for continued development and refinement of model 

mechanisms such as storage phenomena and multistep nitrogen removal 

models; and 

• lack of off-gas models for aerobic processes, specifically relating to 

nitrous oxide. 

 

Of the abovementioned knowledge gaps, this thesis will focus on the development 

of liquid phase (ASM1) model extensions to allow the prediction of off-gas N2O 

emissions from aerobic processes (Chapter 5). While the development and 

calibration of conceptually sound models is critical, it is important to note that 

modelling does not exist in a vacuum and model calibration/evaluation is highly 

dependent upon process monitoring, which will be the subject of the next 

component of this literature review (Section 2.3). 
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2.3 Non-invasive Activated Sludge Process Monitoring 

 

Increasing cost pressures and effluent quality guidelines have lead to greater uptake 

of process monitoring technology at wastewater treatment plants (Hack and Wiese 

2006). While process monitoring originated with off-site laboratory based 

techniques, there has been an evolution towards online instrumentation. The 

availability of online instrumentation provides a substantial increase in the quantity 

and quality of process information, enabling enhanced operation and control 

decisions. 

 

Due to the inherent time variability in wastewater influent and treatment processes, 

online process monitoring has substantial benefits in terms of process tracking and 

ensuring compliance (Bourgeois et al. 2001), although it is the enhancement of 

process operation through improved control (Thomsen and Kisbye 1996) that 

provides the most significant benefits. In addition to providing improved 

compliance with effluent guidelines through more consistent operation, improved 

process control can have substantial economic benefits.  

 

In a survey of UK wastewater treatment plants, Bogue et al. (1999) noted substantial 

operational costs savings associated with improved aeration control and avoided 

plant expansion due to increased process capacity associated with improved 

control. Indeed, improved control has been recognized as an efficient means of 

increasing facility throughput without increasing reactor size, i.e. capital cost 

investment (Vanrolleghem et al. 1994; Vanrolleghem and Lee 2003), in addition to 

improving process safety and allowing autonomous operation (Hack and Wiese 

2006). Process control of activated sludge processes will be discussed in depth in 

Section 2.4. 

 

Despite the apparent benefits, process monitoring is often infrequent in wastewater 

treatment plants (Bourgeois et al. 2003b), and along with process 

control/automation, has not experienced the same level of uptake as in other 

industries (Bourgeois et al. 2003b; Lynggaard-Jensen 1999). Indeed, many biological 

wastewater treatment processes rely on manual control, with the quality of the 

operation being a function of the operator expertise (Vanrolleghem et al. 1994). The 
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lack of uptake of process monitoring technology stems from a perception of poor 

reliability, reproducibility and data quality, as well as high cost/maintenance 

requirements (Bonastre et al. 2005; Love and Bott 2000). This perception is a result of 

the invasive nature of most sensors, which require continuous contact between the 

sensor and wastewater. Wastewater is a hostile environment for sensors and 

process monitoring equipment (Lynggaard-Jensen 1999; Yoo et al. 2008), causing 

instrument fouling, loss of sensitivity and reproducibility, and a need for frequent 

cleaning and calibration (Bourgeois et al. 2003b). 

 

This poor perception has led to a widespread lack of confidence in online process 

monitoring (Bogue et al. 1999), with process monitoring being perceived as the 

weakest point in the control chain (Bonastre et al. 2005; Lynggaard-Jensen et al. 1996; 

Rieger et al. 2004b). With recent improvements to sensor/analyser performance and 

robustness (Bonastre et al. 2005; Bourgeois et al. 2001; Thomas and Constant 2004; 

Vanrolleghem and Lee 2003), this image may no longer be deserved. Vanrolleghem 

and Lee (2003) concluded that the most fundamental barrier to widespread 

acceptance of online process monitoring for process control is currently the 

wastewater treatment processes themselves, which have not been designed to 

accommodate real time process control, i.e. overdesigned and lacking 

flexible/controllable actuators. 

 

Improved awareness of recent improvements and novel sensors amongst end users 

and practitioners is required to combat this negative perception. This task has been 

made more complex by the existence of a wide range of process monitoring 

techniques with variety of purposes, characteristics, states of development, as well 

as a lack of standardized instrument evaluation criteria. For the purposes of this 

literature review, monitoring techniques will be initially categorized based on their 

relationship with the medium being sampled. Two categories of monitoring 

techniques will thus be considered: invasive monitoring in which there is direct 

contact between the sensor and liquid wastewater medium, and non-invasive 

monitoring in which liquid phase conditions are indirectly determined by sensors 

that are not in contact with the wastewater. 

 

As this work is focused on non-invasive process control, this review will concentrate 

on existing non-invasive monitoring techniques capable of delivering real time data 
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suitable for process control applications. Invasive process monitoring will be 

discussed briefly in Section 2.3.1 to provide context and motivation for the 

emerging non-invasive techniques. These techniques will be grouped based upon 

response timescale. Non-invasive monitoring techniques will be classified based on 

their measurement objectives; specific parameter and process status monitoring 

techniques will be reviewed in Sections 2.3.2 and 2.3.3, respectively. Emphasis will 

be placed on the current status of techniques, as well as limitations, future research 

direction, and potential for incorporation into wastewater process control. 

 

2.3.1 Invasive Process Monitoring 

 

The majority of existing wastewater monitoring techniques are invasive in nature, 

including classic sensors such as pH, DO, conductivity and oxygen reduction 

potential, ion selective electrodes (ISEs), and more complex analytical systems such 

as respirometers, toxicity monitors, biosensors, automated wet chemistry analysers 

(colourimetric techniques), and titration off-gas analysers. These invasive 

techniques fall into one of two subcategories; ex situ monitors, in which a sample of 

wastewater is extracted from the process and sent to an analyser located outside of 

the process, and in situ monitors in which the sample analysis is conducted inside a 

probe immersed in the wastewater.  

 

Ex situ systems are generally used for more complex analytical techniques (such as 

respirometers, toxicity monitors and automated wet chemistry analysers) that 

require controlled analytical environments, sample conditioning, and, for some 

analysers, chemical reactions. They thus require sample collection systems which 

include conveyance to the analyser and any necessary pre-treatment. While ex situ 

techniques allow for a wide range of process parameters to be analysed in a timelier 

manner than laboratory analysis, this comes at the cost of a number of significant 

disadvantages.  

 

One of the main deterrents to the application of ex situ process monitoring is the 

requirement for sample transport and conditioning (Love and Bott 2000). Sample 

collection systems can block with rags and foul due to fats and biological growth 

(Russell et al. 2003), not to mention sample pumps are prone to clogging (Love and 
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Bott 2000). These issues, combined with reductions in pipe cross sections and 

sample cell size to reduce response time and chemical consumption (Schlegel and 

Baumann 1996), has led to sample filtration being required for all ex situ monitors. 

Membrane filtration processes (ultrafiltration) are most commonly used. 

Ultrafiltration units are high maintenance, with the maintenance frequency ranging 

from daily to every 6 weeks (Schlegel and Baumann 1996), depending on sampling 

location in the process train. A 2 to 3 week period between maintenance is seen as 

typical for systems sampling from aeration tanks (Lynggaard-Jensen 1999; Lynggaard-

Jensen et al. 1996).  

 

In addition to maintenance and reliability limitations associated with sampling and 

conditioning systems, concerns also exist with regards to the representativeness of 

the samples. Most invasive sampling systems collect small samples from a single 

point in the reactor. As such, the results are highly dependent on reactor hydraulics 

to ensure that the flow at the point in the reactor is representative of the bulk 

process.  

 

The greatest limitation with regards to the application of ex situ process monitors 

for process control purposes is response timescale. Ex situ analysers have response 

times on the order of 10 to 25 minutes (Lynggaard-Jensen et al. 1996). With the 

addition of a sampling and conditioning system, a further time lag on the order of 

up to 20 minutes (Thomsen and Kisbye 1996) is introduced between the 

measurements and the actual process conditions. A 5 to 10 minutes measurement 

response has been identified as being ideal for online process control (Lynggaard-

Jensen 1999; Lynggaard-Jensen et al. 1996; Thomsen and Kisbye 1996), thus ex situ 

process monitoring is incompatible with the majority of process control 

applications and there has been a movement in the industry towards in situ probes 

with much reduced response times. 

 

In situ process monitoring focuses on specific process parameters of operational 

interest, and includes many classic process instruments such as temperature, pH, 

conductivity, oxygen reduction potential, and dissolved oxygen probes. With the 

increased interest in process monitoring utilizing in situ techniques, a number of 

new probes have emerged, extending in situ monitoring capabilities to include 

many parameters previously only possible via ex situ or offline analysis. These 
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emerging sensors include ISEs, biosensors, and invasive optical monitoring 

methods.  In situ process monitoring has been the subject of many reviews in 

literature (Bonastre et al. 2005; Bourgeois et al. 2001; Hack and Wiese 2006; 

Lynggaard-Jensen 1999; Rodriguez-Mozaz et al. 2004; Thomas and Constant 2004; 

Vanrolleghem and Lee 2003; Winkler et al. 2004) and an in depth discussion is 

beyond the scope of this work. Instead a brief summary of the key benefits and 

limitations of in situ monitoring techniques is presented and the reader is directed 

to these reviews for greater detail. 

 

Conventional Sensors 

Classic in situ sensors (pH, DO, oxygen reduction, turbidity) are seen as having 

been refined to a point in which they are suitable for practical use (Lynggaard-

Jensen 1999). This is supported by their prevalence in wastewater treatment plants. 

A survey of wastewater treatment plants in North America (Hill et al. 2002) 

demonstrated that DO, pH, and temperature sensors were by far the dominant 

process sensors employed to monitor reactor conditions in secondary wastewater 

treatment processes. DO probes in particular are considered to be reliable and 

accurate provided they are suitably located and properly maintained (Vanrolleghem 

and Lee 2003). There has been some recent emergence of optical DO sensors which 

have several advantages associated with the elimination of electrolyte, i.e. reduced 

maintenance and absence of sensor poisoning/electrolyte dilution (Hack and Wiese 

2006), although conventional probes remain popular. 

 

Ion Selective Electrodes (ISEs) 

ISEs are a more recent sensor technology which has be gaining increasing 

acceptance and receiving a lot of research interest (Bonastre et al. 2005). In 

particular, the newer generation of ISEs are highly accurate at low concentrations 

and cope well with hostile environments (Kaelin et al. 2008), ideal for application in 

aeration tanks. ISEs are of particular interest for monitoring nutrients (nitrogen and 

phosphorus) in tertiary wastewater treatment (Vanrolleghem and Lee 2003), offering 

much reduced response time and reagent consumption over their colourimetric 

ex situ counterparts. 

 

However, the application of ISEs to wastewater process monitoring is not without its 

limitations. ISEs utilize a membrane capable of binding the specific ions of interest. 
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Certain undesirable ionic species, referred to as disturbance ions, also bind to the 

membrane causing interferences. While the presence of these ions can be 

accounted for during calibration, issues can arise if the process is highly dynamic 

and disturbance ion concentrations vary temporally (Winkler et al. 2004). Effects of 

disturbance ions are particularly relevant when measuring at low concentrations 

(such as aeration tanks and process effluent), where the relative errors associated 

with the disturbance ions can become quite significant (Winkler et al. 2004). ISE 

maintenance requirements are generally moderate, with an average period 10 to 14 

days between calibrations, membrane lifespans of up to 6 months (depending on 

water type), and electrolyte replacement required on a yearly basis (Winkler et al. 

2004). Research and development of ISEs continues, with a focus on minimizing 

interferences as well as increasing the sensor lifespan and reliability (Bonastre et al. 

2005).  

 

Biosensors 

Biosensors cover a wide range of sensors which consist of a biological component 

that is exposed to the wastewater medium on one side, and a sensing component 

on the other side that measures its response (Vaiopoulou et al. 2005). DO sensors 

are quite popular for response detection (Bourgeois et al. 2001), although other 

sensors (electrochemical, optical, mass or thermal) are used (Vaiopoulou et al. 2005). 

The selection of an appropriate biological component is key in sensor development. 

For biosensors applied in activated sludge wastewater treatment processes a trade-

off exists between single species probes and probes utilizing broad microbiological 

communities. In general, pure culture probes are easier to manufacture 

(Vanrolleghem et al. 1994) and standardize (Vanrolleghem and Lee 2003), however 

this comes at the cost of a narrow substrate response range (Vaiopoulou et al. 2005; 

Vanrolleghem et al. 1994), which may cause inaccuracies and poor reproducibility in 

measurements. 

 

A range of parameters are measured using biosensors, although the primary 

applications are BOD analysis and toxicity monitoring (Bonastre et al. 2005). There 

has been a lot of progress in the development of biosensors (Bonastre et al. 2005), 

and they are viewed as a promising technology although still needing more research 

and development (Thomas and Constant 2004). Particular areas of improvement 

include standardizing sensor maintenance and storage (temperature/pH control and 
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feeding), improving sensor lifespans (which are currently a matter of days to 

months), overcoming the substrate specificity while maintaining the manufacturing 

benefits of single culture probes, and reducing susceptibility to poisoning and 

deactivation (Bourgeois et al. 2001; Larsen et al. 2000; Rodriguez-Mozaz et al. 2004; 

Vaiopoulou et al. 2005; Vanrolleghem and Lee 2003). 

 

Optical Monitoring 

Optical methods have a long history in chemical analysis (Bourgeois et al. 2001) and 

form the basis for many analytical methods, particularly colourimetric analysis. The 

extension of optical methods to in situ sensors has focused on methods without 

reactions, including spectrophotometry (absorption and fluorimetry), light 

scattering techniques, and image analysis (Thomas and Constant 2004). Light 

scattering and image analysis techniques are primarily utilized for monitoring of 

solid material (suspended solids concentrations and activated sludge floc 

properties, respectively), and will not be discussed further in this review.  

 

Spectral techniques allow for the analysis of a range of parameters primarily 

associated with organic matter (COD, BOD, TOC), as well as nutrients (NO2�/NO3�) 

and suspended solids (Rieger et al. 2004a; Thomas and Constant 2004). Spectral 

methods have several advantages including fast response speed, high versatility, low 

operation cost, no requirement for chemicals, and limited sample handling (Rieger 

et al. 2004a). In situ optical sensors have several challenges, primarily related to 

contact with the hostile wastewater medium. Optical sensors experience 

interferences by grease, oil, turbidity, organic matter, and inorganic ions such as 

chlorate and nitrate (Palmer et al. 2002). In addition to these interferences, optical 

sensors are subject to biofouling which can have negative impacts on calibration 

stability and instrument selectivity, and can experience significant signal noise 

associated with agitation and aeration (Rieger et al. 2004a). Optical analysis thus 

remains an active research area (Thomas and Constant 2004), and the development 

of non-invasive forms of optical analysis will be discussed in Section 2.3.2.1. 

 

Overall, in situ process monitoring techniques have evolved to the point where they 

provide reasonably reliable process information in a timely manner suitable for 

process control applications. However, being invasive in nature, they do still suffer 

from the effects of fouling. In addition to losses in sensitivity and reproducibility 
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(Bonastre et al. 2005), fouling results in increased maintenance requirements 

(Schlegel and Baumann 1996) and associated costs.  

 

While the majority of the reviewed research has been focused on improving 

invasive process monitoring techniques/technology, some research effort has been 

directed at the development of non-invasive means of extracting process 

information. Lacking the drawbacks of direct sensor contact with the hostile 

wastewater environment, the development of non-invasive monitoring techniques 

has the potential to result in highly reliable sensors with substantially reduced 

maintenance requirements. In general, the non-invasive techniques can be split into 

two broad categories based on their measurement objectives. The first family of 

non-invasive monitoring techniques (reviewed in Section 2.3.2) focus on the 

determination of specific liquid phase parameters of operational interest. An 

alternative approach is to monitor specific process parameters as surrogates for the 

metabolic status of biological reactions (Section 2.3.3). 

 

2.3.2 Non-invasive Process Monitoring – Specific Parameters 

 

Many of the developed non-invasive process monitoring techniques focus on the 

measurement of specific wastewater parameters, in particular lumped parameters to 

measure organic carbon (COD/BOD/TOC). These techniques include non-invasive 

optical methods and sensor arrays (electronic noses).  

 

2.3.2.1 Optical Methods 

 

As discussed previously, optical methods have a long history in wastewater analysis 

(Thomas et al. 2005) and are utilized for a wide range of parameters including 

various measures of organic carbon (BOD, COD, TOC), nutrients (total nitrogen, 

total phosphorus, NH4
+, NO2�, NO3�, PO4

3�), and solid material in the form of TSS and 

turbidity. Optical analysis methods cover a range of techniques including light 

scattering, UV/Vis/IR spectrophotometry, colourimetry, fluorimetry, and image 

analysis (Thomas and Constant 2004). With such versatility in techniques and 

parameters, it is only natural that these methods were adapted for online 

wastewater process monitoring.  



 

 

 

Chapter 2 Literature Review – Non-invasive Process Monitoring 78 
 

 

While the focus of this review is on non-invasive optical monitoring techniques, 

these techniques have evolved from their invasive counterparts and share many 

technical aspects. As a much greater pool of experience and knowledge exists with 

regards to invasive optical monitoring, it is useful to draw upon this knowledge to 

provide a basis on which to assess the non-invasive techniques.  

 

First generation optical online sensors were primarily ex situ in nature, owing to the 

negative impact/interference of suspended particulate matter which necessitated 

sample filtration. The dependence of traditional ex situ monitors on sample pre-

treatment, in particular nutrient sensors based on colourimetry, limited the existing 

techniques’ suitability for in situ process monitoring. As such, much effort is being 

placed in developing new optical monitoring techniques, with the upcoming 

generation of in situ optical sensors focusing on physical responses which include 

spectrophotometric techniques such as light absorption and fluorimetry for soluble 

substances, and light scattering techniques for particulate matter (Thomas and 

Constant 2004). These same techniques form the basis for non-invasive optical 

monitoring methods.  

 

Technical aspects common to both invasive and non-invasive optical monitoring 

techniques development include data quantity and analysis techniques, wavelength 

ranges, and the combination of responses to different optical stimuli.  

 

Data Quantity and Analysis 

Historically, optical analysis of physical responses via absorbance or fluorimetry has 

been conducted utilizing single wavelength methodologies with linear regression, 

although sometimes two wavelengths have been used to compensate for 

interferences (Fogelman et al. 2006; Thomas et al. 2005; Thomas et al. 1996). A 

number of criteria are considered in wavelength selection, including the 

absorbance or fluorescence of the compound and interfering substances at the 

wavelength of interest, and response identifiability (Jeong et al. 2007). This has 

resulted in a wide range of potential wavelengths for specific parameters and a lack 

of standardized methods (Nyberg et al. 1996), although organic loadings are 

traditionally measured at a 254 nm wavelength (Russell et al. 2003).  
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There has been some recent research involving the application of more advanced 

data analysis techniques to single wavelength analysis to improve sensor robustness 

and component identification. Jeong et al. (2007) trained an artificial neural network 

(ANN) using UV data at a 300 nm wavelength to assess a number of wastewater 

properties of interest while at the same time eliminating the need for sample pre-

treatment. While such a method requires longer term or intensive sampling to 

collect training data and is quite site specific, strong correlations and predictive 

capacity were obtained for TSS, total phosphorus and COD (Jeong et al. 2007).  

Detection of total nitrogen was limited due to the presence of solids which 

interfered with the detection of ammonia (Jeong et al. 2007), which would limit its 

application in dynamic environments where ammonia concentrations vary. 

 

More recently, there has been a trend towards the utilization of full spectra analysis 

to assess both global wastewater parameters and the concentration of specific 

substances (Thomas et al. 2005; Thomas and Constant 2004). This transition has been 

enabled by increases in available computing power (Fogelman et al. 2006) as well as 

developments in advanced data analysis techniques. The absorbance/fluorescence 

response to any specific light wavelength is a mixture of the response of each of the 

individual components in the wastewater. Utilizing full spectra provides a much 

greater density of data and allows for the differentiation of the individual 

components of these mixed responses. In general, the application of 

multicomponent analysis techniques (including ANNs) is more pervasive in the 

analysis of multi-wavelength datasets (spectra) to determine concentrations of 

specific compounds (Fogelman et al. 2006), although multicomponent analysis has 

been applied for nonparametric analysis utilizing “fingerprint” techniques in other 

research areas such as chromatography and fluorescence (Thomas et al. 2005), and 

sensor arrays (discussed in Section 2.3.2.2).  

 

Wavelength Range Considered 

The far majority of optical monitoring techniques applied to wastewater analysis 

employ light at wavelengths greater than 200 nm. This is primarily due to the strong 

absorbance of UV light by water itself at wavelengths less than 200 nm (Fogelman et 

al. 2006; Lynggaard-Jensen 1999). Some organic compounds absorb only in this 

range (Thomas et al. 1996) and thus cannot be assessed by single wavelength optical 

methods. While this strong absorbance interferes with single wavelength 
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applications (Fogelman et al. 2006), the emergence of multiwavelength techniques 

allow the extraction of the useful data from this range via pattern recognition and 

chemometric analysis (Bro 2006; Fogelman et al. 2006), and sensors utilizing these 

techniques have emerged on the market (Lynggaard-Jensen 1999). 

 

Response Combination 

Another trend in optical monitoring techniques is the combination of responses 

(absorbance, fluorescence, and scattering) to multiple forms of light stimuli (UV, 

visible, and infra-red light). This combination of responses is seen as an emerging 

area of research (Bonastre et al. 2005; Thomas and Constant 2004) and serves to 

substantially increase the data density, improving the identifiability of individual 

response components and allowing for the application of more advanced data 

analysis techniques.  

 

Reports of combined method techniques are quite limited in literature, particularly 

for non-industrial wastewater (Bonastre et al. 2005; Thomas and Constant 2004). 

Nataraja et al. (2006) combined fluorescence and UV absorption as a means of 

assessing wastewater BOD, however sensitivity was limited and interferences due to 

false positive influences by non-biodegradable organic matter were experienced. 

While this would not be significant for raw wastewater, which has a higher fraction 

of biodegradable organic matter, this interference would become increasingly 

significant as the biodegradable fraction decreases, such as inside an activated 

sludge process or in wastewater effluent. A second example of response 

combination is the combination of light scattering and fluorescence to non-

invasively measure suspended solids and organic matter content (COD) of 

wastewater. This application, being non-invasive in nature, with be discussed 

further in the following paragraphs. 

 

Application to Non-invasive Process Monitoring 

With the transition to in situ methods, which require little to no sample pre-

treatment, it is only natural that next step would be to remove the sensor from 

contact with the wastewater. Non-invasive optical monitoring for organic loading 

and suspended solids has been investigated as part of the Loadmon project (Russell 

et al. 2003). In this project, a prototype sensor based on a combination of light 

scattering and fluorescence was developed and trialled at wastewater treatment 
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plants. Two forms of the sensor were developed: one a short range sensor (10-20 

cm) based on LED light sources which would be suitable for liquid flows in which 

the surface height does not change significantly, and the second a long range (up to 

2 m) version utilizing diode lasers suitable for flows with highly variable surface 

heights such as those inside sewer systems.  

 

Monitoring with the short range sensor corresponded well to actual COD and TSS 

concentrations (Russell et al. 2003). The long range sensor had good performance 

with regards to TSS (although large debris/solids were not detected and produced 

some variability), but performed quite poorly for COD, possibly due to 

interferences from ambient light on the long range sensor (Russell et al. 2003). This 

technique shares the benefits of in situ optical sensors, in particular a short 

response time, not requiring chemicals, and having a relatively low operational cost  

(Bourgeois et al. 2001; Stuetz et al. 2003; Vanrolleghem and Lee 2003), but without 

the probe tip fouling (and resulting sensitivity and reproducibility loss) associated 

with contact with the wastewater medium (Bonastre et al. 2005; Bourgeois et al. 

2001). Furthermore, this type of sensor would be quite efficient for use in influent 

monitoring, where in situ optical sensors have been reported to have very poor 

reliability due to clogging and ragging (Nyberg et al. 1996). 

 

While this non-invasive monitoring technique has been demonstrated at the 

laboratory scale and in some initial facility trials, the need remains for refinement 

including improvement of the ability of the long range system to track liquid levels 

(Russell et al. 2003). This monitoring technique has been mainly directed towards 

influent and effluent monitoring, and was not tested inside aeration tanks. Effluent 

monitoring results in dampening and a time shift of reactor dynamics (Ingildsen and 

Wendelboe 2003), thus monitoring in aeration tanks is generally more desirable 

from a process control standpoint. In situ optical sensors do experience noise due 

to aeration/agitation and interference by the presence of air bubbles (Bourgeois et 

al. 2001). It is likely that these effects, in addition to air/water interface disturbances 

associated with aeration, would introduce substantial signal noise, although this 

remains to be investigated. 

 

This technique has potential to be incorporated into process control applications 

for activated sludge processes focusing on COD removal, but it would likely be of 
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more limited use for nitrogen removal processes. It remains to be seen if this 

monitoring concept could be extended to other optical techniques to allow for a 

wider range of parameter assessment and control concepts. 

 

2.3.2.2 Sensor Arrays 

 

Sensor arrays are non specific monitoring devices which attempt to mimic human 

sensory systems, in particular the sense of smell (electronic nose) and sense of taste 

(electronic tongue). While the electronic tongue is an invasive instrument used for 

liquid phase monitoring, the electronic nose samples gaseous emissions and is thus 

of interest for non-invasive process monitoring and will be the focus of this review. 

 

From a technical standpoint, the application of sensor arrays differs from 

conventional monitoring techniques which focus on maximizing the sensor 

specivity to the analyte of interest. Sensor arrays attempt to mimic the human 

process of odour recognition though the use of a bank of sensors which are 

partially specific by design (i.e. they are designed to respond to a range of chemical 

compounds). The responses from these sensors are analysed using pattern 

recognition techniques to identify “fingerprints” for specific odours or compounds 

of interest.   

 

Sensor Types 

The two most common sensor types utilized in water quality monitoring are metal 

oxide sensors and conducting polymer sensors, although new sensor materials 

(such as composite polymers and nanocomposites) are constantly being developed 

(Ameer and Adeloju 2005). Metal oxide sensors are most useful in the detection of 

combustion gases (Gardner and Bartrlett 1999) and have the advantage of high 

sensitivity (low limits of detection), low production cost, and small size (Goschnick 

et al. 2005). Conducting polymer sensors offer greater versatility and allow for 

customization to a particular application through modification of the functional 

groups attached to the polymer chains. This versatility has led to conducting 

polymer sensors being the basis for the majority of the reported water monitoring 

applications.  
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Data Analysis 

Sensor arrays can generate large quantities of data since multiple parameters are 

measured for each individual sensor in the array. Data reduction techniques (in 

particular multivariate data processing) are employed to reduce the dimensions of 

the data to a level that can be interpreted (Onkal-Engin et al. 2005). Both statistical 

approaches and ANNs have been evaluated for their effectiveness in analysing 

electronic nose data for environmental monitoring applications.   

 

Principal component analysis techniques have been utilized in many studies 

(Bourgeois and Stuetz 2002; Canhoto and Magan 2005; Canhoto and Magan 2003; 

Dewettinck et al. 2001; Gardner et al. 2000; Nake et al. 2005; Stuetz 2004) to recognize 

patterns in electronic nose data by reducing the number dimensions while at the 

same time maximizing the variance of the data. The application of artificial neural 

networks for data analysis is widely used in many research fields for pattern 

recognition purposes (Gardner and Bartrlett 1999), and while ANNs have seen 

extensive use in the food and beverage industries to interpret electronic nose data, 

their application in environmental monitoring is more recent (Onkal-Engin et al. 

2005). 

 

An important difference between these two data analysis methods is the 

requirement for training. Principal component analysis is an untrained statistical 

approach, thus the data is examined for patterns without any outside influences. 

Artificial neural networks require training, which introduces an outside influence 

into the interpretation of the results, in addition to the cost and time associated with 

data collection. While no definitive data analysis methodology has been selected for 

electronic noses, both methods have been employed successfully to analyse 

electronic nose data, and good agreement was found when Onkal-Engin et al. (2005) 

analysed datasets using both statistical techniques and an ANN.  

 

Applications 

The development of odour monitoring devices based on non-specific sensors dates 

back to the 1960s, although the pace of development increased rapidly in the 1980s 

with advances in sensors, electronics and computing methods (Gardner and 

Bartrlett 1999). While there have been many successful applications of electronic 

noses for quality control purposes in the food and beverage industry (Gardner and 
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Bartrlett 1999), uptake of this technology for water quality monitoring has been 

slow, with research primarily related to the identification of microorganisms and 

monitoring sewage odours staring in the late 1990s (Dewettinck et al. 2001). 

 

Applications of electronic nose monitoring techniques to water quality can be 

generally divided into two categories, potable water supply applications and 

wastewater treatment applications. Potable water supply applications have built on 

the use of electronic noses to identify bacteria and spoilage in the food industry, 

and have included detection of faecal contamination in water samples (Canhoto and 

Magan 2005; Canhoto and Magan 2003), detection/prediction of algal or 

cyanobacterial blooms (Gardner et al. 2000), and detection of chemical 

contamination by oil/fuel (Bourgeois et al. 2003a; Ogawa and Sugimoto 2002) and 

chlorinated organic solvents (Goschnick et al. 2005). While these applications have 

all demonstrated promising results, they remain emerging applications and the 

need exists for continued research and development, particularly with regards to 

operation of these systems on a long term basis to evaluate their stability.  

 

Some of the applications of electronic noses for water quality monitoring are also 

applicable to the wastewater treatment industry. The detection of organic chemicals 

such as oil/fuel and chlorinated organic compounds is of use to the wastewater 

treatment industry as many of these compounds can interfere with treatment 

processes.  

 

In a similar vein, electronic noses have been used for non-specific sensing to detect 

sudden changes in wastewater quality which could have impacts on facility 

operation (Bourgeois et al. 2003a; Stuetz 2004). These studies analysed data collected 

during field studies at a wastewater treatment facility for periods of 12 months and 6 

months for Bourgeois et al. (2003a) and Stuetz (2004), respectively, and represent the 

most extensive field assessment of the application of electronic noses for online 

water quality assessment found in literature. Data mining algorithms were 

developed to efficiently interpret large datasets and reduce the influence of 

temperature, relative humidity and diurnal/seasonal variations on sensor response 

(Bourgeois et al. 2003a; Stuetz 2004). These algorithms enhanced the recognition of 

deviations from normal influent quality, and the monitoring system was able to 
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detect influent sewage quality changes due to unknown pollutants and spikes, 

providing early warning monitoring (Bourgeois et al. 2003a; Stuetz 2004).   

 

While the detection of variability in influent quality is useful and can allow for 

control actions to be taken, these methods provide qualitative data and are not 

suitable for routine control of specific operational parameters in wastewater 

treatment processes. Knowledge of specific process parameters is highly desirable 

for process control purposes. Since odour monitoring is a global type parameter (an 

odour is really the combined sensor response to many odorants), excellent 

analogies can be drawn between this and many of the global wastewater parameters 

such as BOD that are used to characterize wastewater.   

 

Stuetz et al. (1999b) utilized an electronic nose to evaluate wastewater BOD at 

various locations in three wastewater treatment plants. Using statistical data analysis 

methods, this study demonstrated the ability of electronic noses to differentiate 

between wastewater from different sources, and a linear correlation was developed 

between the sensor response patterns and the measured sewage BOD (Stuetz et al. 

1999b). No general correlation could be made between the sensor responses and 

the measured BOD if data from all three plants were considered as one sample set 

(Stuetz et al. 1999b). This would be expected since the electronic nose responds to 

the individual substances making up the odour (analogous to the various types of 

organic matter contributing to the wastewater BOD) which would vary depending 

on the source of the sewage. Application of this form of monitoring would thus 

require the development of individual correlations for each facility. Onkal-Engin et 

al. (2005) followed up this work using a similar methodology, with the exception of 

artificial neural networks being used for pattern recognition. Similar conclusions 

were reached with respect to the applicability of electronic noses for online BOD 

monitoring.   

 

Limitations and Suitability for Non-invasive Process Monitoring 

While it has been demonstrated that electronic noses have potential for real time 

monitoring and process control applications for wastewater treatment, response 

variability (associated with environmental factors, particularly temperature and 

relative humidity) remains a challenge (Bourgeois et al. 2003b; Nake et al. 2005). Two 

approaches have been applied to deal with these effects: establishing a controlled 
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environment for the sensor to operate in, and software compensation (Bourgeois et 

al. 2003c). 

 

The use of controlled sensing environments was fairly common in the reviewed 

literature. Ogawa and Sugi (2002) designed a system consisting of heating the water 

sample to vapourize the volatile organic compounds, passing the resulting gas 

sample though a humidity controller, and finally sending it to a temperature 

controlled cell containing the sensor array. A simpler design approach was 

evaluated by Bourgeois et al. (2003b; 2002), that consisted of bubbling inert nitrogen 

gas though the liquid sample to transfer the odorants to the gas phase, delivering 

them to a temperature controlled sensor array in the headspace.  

 

While the effectiveness of environmental control for reducing the effects of 

temperature and relative humidity on sensory arrays has been demonstrated 

(Bourgeois et al. 2003b), these modifications increase the cost and technical 

complexity of the monitoring system. Furthermore, they result in the system being 

partially invasive since a liquid sample must be removed from the bulk process and 

sent to the analysis chamber. This introduces several of the limitations associated 

with invasive monitoring techniques, particularly sample representativeness, sample 

collection system fouling, and increased sensor response time. 

 

An approach to compensate for the effects of these parameters in the sampling 

results (called parametric compensation) is required to evolve electronic nose 

monitoring to a fully non-invasive technique. Bourgeois et al. (Bourgeois et al. 

2003a) utilized a moving window technique to mitigate the effects of temperature 

and relative humidity changes, as well as sensor drift. While this method was quite 

successful in identifying deviations from normal influent conditions, it is not 

suitable for the determination of specific component concentrations. The 

development of correlations between temperature, relative humidity and flow with 

sensor response has been problematic, although some success has been achieved 

by utilizing these parameters as inputs to ANNs (Bourgeois et al. 2003c).  

 

Long term sensor response stability remains an area of ongoing investigation. 

Exposure to the high odorant concentrations found in wastewater over extended 

periods of time can contribute to sensor aging or poisoning, reducing instrument 
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sensitivity (Gardner and Bartrlett 1999). Furthermore, sewage odours are a reflection 

of the composition of the wastewater (Stuetz et al. 1999a) and experience 

corresponding time dependent variations (Stuetz et al. 1999b). In utilizing sensor 

arrays to predict wastewater BOD, poor correlation was observed over the long-

term (due to temporal variations), although strong correlations could be obtained 

for short term periods of 4 weeks or less (Stuetz et al. 1999a; Stuetz et al. 1999b). This 

temporal dependence could impose the requirement for frequent recalibration or 

training which would have a negative impact on useability and acceptance at 

wastewater treatment plants. 

 

Overall, the use of electronic noses for non-invasive wastewater process monitoring 

is a rapidly emerging application. Many of these applications are at varying stages of 

maturity, with non-specific monitoring techniques for wastewater influent being the 

most developed. While electronic noses themselves are commercially available and 

possess the advantages of being a relatively low cost and non-invasive means of 

process monitoring, a number of research and technical challenges remain before 

these applications become a commercially viable and accepted monitoring 

techniques. These challenges are primarily related to data analysis, in particular 

reducing the expertise requirement, development of a systematic method for 

selecting appropriate data analysis techniques, and advancement of data analysis 

techniques to enhance compensation for sensor drift, aging, temperature/relative 

humidity effects, and temporal variations in the wastewater matrix.  

 

With further development, electronic noses have the potential to be incorporated 

into process control applications for activated sludge COD removal processes. To 

date, research with electronic noses in wastewater has focused on specific 

parameter monitoring (organic loadings). It remains to be seen if these sensing 

arrays could be utilized to detect specific off-gasses which are generated by the 

metabolic processes occurring in biological wastewater treatment processes, 

enabling real time monitoring of process status. 
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2.3.3 Non-invasive Monitoring of Process Status 

 

While specific parameter monitoring has been used widely as part of process 

control applications at wastewater treatment plants, monitoring for process status is 

an emerging technique. Process status monitoring represents a shift in monitoring 

and control philosophy. In conventional applications, the monitored/controlled 

parameter is one believed to be of operational significance (typically reaction 

products or environmental parameters), and parameter setpoints are based upon 

process understanding. For process status monitoring, specific parameters (stress 

responses) are monitored as real time indicators of biological metabolic status, and 

control decisions are based upon that status. To date, non-invasive process status 

monitoring methods have been composed entirely of off-gas analysis techniques.  

 

Many substantial advantages are associated with process monitoring techniques 

based on off-gas analysis. In particular, the parametric and IR based analysers used 

for measuring most gas phase compounds of interest are robust, accurate, have 

relatively low operational costs, and have similar acquisition cost as traditional 

liquid phase analysers (Hellinga et al. 1996). Off-gas analysers are low maintenance, 

and calibration is easily automated, allowing for stringent data quality control. 

Furthermore, off-gas analysis allows leveraging of existing technology and 

experience in industrial air emissions monitoring. Finally, since samples are taken 

from the reactor off-gas which is generally a well mixed flow, off-gas analysis 

techniques provide a good representation of overall reactor conditions and do not 

have the sample location selection issues inherent in liquid phase analysis (Hellinga 

et al. 1996; Weissenbacher et al. 2007).  

 

Despite these advantages, off-gas process monitoring techniques have received 

rather limited attention (Hellinga et al. 1996). For activated sludge processes, two 

non-invasive process monitoring techniques have been proposed and evaluated to 

date. Off-gas CO2 monitoring, which is an evolution of respirometry work, will be 

discussed in Section 2.3.3.1. The second non-invasive process monitoring 

technique, off-gas N2O monitoring, utilizes metabolic stress responses to indicate 

process metabolic status and will be discussed in Section 2.3.3.2. 
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2.3.3.1 Off-gas CO2 Monitoring 

 

Process monitoring utilizing off-gas CO2 analysis is an extension of respirometric 

techniques. Respirometry focuses on the determination of biological parameters (in 

particular process kinetics) through the measurement of oxygen consumption rates 

under specific conditions (Vanrolleghem et al. 1999b). These oxygen consumption 

rates can be measured directly in the liquid phase using DO probes, although many 

respirometers utilize sealed chambers and a non-invasive measurement approach 

consisting of headspace gas analysis, or CO2 absorption and monitoring the 

resulting pressure or volume reduction in the apparatus headspace.  

 

On-line respirometers are generally ex situ in nature. As discussed in Section 2.3.1, 

ex situ monitoring techniques do not provide data suitable for real time process 

control applications. Moving the off-gas analyser from the controlled environments 

contained in respirometers to the headspace of biological treatment processes 

allows for monitoring on a timescale more suitable for process control. Hellinga et 

al. (1996) investigated the potential for off-gas CO2 and O2 process monitoring to 

provide biological process information. This assessment was conducted from a 

theoretical perspective utilizing simulation techniques.  

 

Hellinga et al. (1996) demonstrated that while it was possible to identify the 

substrate COD/TOC ratio and detect large changes in nitrification rate through off-

gas analysis, the off-gas monitoring technique was unable to identify the ratio of 

carbon oxidation to nitrogen removal. Limitations in this monitoring technique 

were primarily attributed to interferences due to CO2 production associated with 

bicarbonate chemistry, i.e. alkalinity consumption (Hellinga et al. 1996).  

 

Building upon the theoretical work discussed above, Weissenbacher et al. (2007) 

conducted off-gas CO2 monitoring on a pilot scale biological wastewater treatment 

process operating both as a batch and a continuous process. In order to overcome 

the limitations associated with bicarbonate chemistry influences and CO2 mass 

transfer sensitivity to pH, a model was utilized to correct for both pH and alkalinity 

effects (Weissenbacher et al. 2007). The model provided good simulation of reactor 

bicarbonate concentrations and allowed for detection of changes to reactor 

biological activity using non-invasive off-gas CO2 measurements (Weissenbacher et 
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al. 2007). While there was some dependence on liquid phase conditions for the 

corrective model (pH, temperature, flow and alkalinity), these parameters are 

generally readily available for most wastewater treatment processes. Furthermore, 

robust in situ sensors are available for pH, temperature and flow, while the required 

alkalinity measurements are periodic in nature and do not require online 

measurement. 

 

Despite this monitoring technique being capable of providing real time process 

status information, its applicability for real time process control may be limited 

since it is a very broad technique, i.e. responds to a wide variety of process 

stresses/conditions, and would lack a specific control handle. This monitoring 

technique may be more suited as a process upset detection tool, although this 

suitability may change since it is an emerging technique and further research and 

development is required. 

 

2.3.3.2 Off-gas N2O Monitoring 

 

The biological basis for off-gas N2O emissions as a real time indicator of process 

stress was reviewed in Section 2.1. While there has been substantial research 

interest in off-gas N2O emissions from nitrifying bacteria (both in soils and 

wastewater treatment processes), utilization of this response for process 

monitoring/control has received limited attention.  

 

Off-gas N2O emissions have been investigated as an upset early warning detection 

technique by a research group at Cranfield University in the UK (Burgess et al. 

2002a; Burgess et al. 2002b; Butler et al. 2005; Butler et al. 2009; Stuetz et al. 2003). 

These studies were conducted on laboratory and pilot scale activated sludge 

wastewater treatment processes, and focused on analysing the off-gas N2O 

response to various process stresses/upset conditions (influent ammonia spikes, 

substantial reductions in aeration supply, and the addition of nitrification 

inhibitors). N2O was detected in the process off-gas for the full range of applied 

process stresses (Burgess et al. 2002a; Burgess et al. 2002b; Butler et al. 2005; Butler et 

al. 2009; Stuetz et al. 2003), indicating that the off-gas N2O emissions are a generic 
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autotrophic metabolic stress response, and thus have strong potential for process 

upset monitoring.  

 

Also of interest was the delay between the applied process stress and the 

appearance of unfavourable effluent conditions (i.e. NH3 and NO2� in the effluent), 

which ranged from 0.43 up to 0.9 times the reactor HRT (Burgess et al. 2002b; Butler 

et al. 2009; Stuetz et al. 2003). Even though some of this lag would be biological in 

nature, it is likely that the far majority is due to reactor hydraulics. Off-gas N2O 

concentrations were measured above the aeration tank, while liquid phase 

concentrations (NH3 and NO2�) were measured in the process effluent from the 

settling tank. Effluent sampling introduces a hydraulic time lag in the measured 

liquid phase concentrations, and thus the observed early warning period would 

primarily be a function of the hydraulic properties of the aeration tank and settler 

(HRT and mixing). This dependence on hydraulics could be the source of the 

observed variability in the length of the early warning period.  

 

Off-gas N2O generation occurs simultaneously to process stress. Thus its detection 

indicates that a process is under stress and its performance is impaired, even 

though the effects of process failure (elevated effluent NH3 and NO2� 

concentrations) will only be observed later due to reactor/settler hydraulics. While 

off-gas N2O emissions do indeed provide early warning of deterioration in effluent 

quality, corrective action must be taken immediately since any deterioration in 

process performance will be ultimately seen in the effluent following the hydraulic 

time lag. As a warning technique, off-gas N2O monitoring does not provide for 

advanced process control, and serves instead as a tool to assist process operators in 

decision making.  

 

If proportional relationships can be identified between the level of process stress 

and the response (off-gas N2O concentrations), the possibility exists to extend this 

method for routine process control. Burgess et al. (2002a) compared maximum off-

gas N2O concentrations to NH3 shock loadings and identified a linear relationship, 

although there appeared to be a plateau at very high ammonia shock loadings. It is 

likely that as the spike loading increases, the increased metabolic stress forces more 

autotrophic bacteria to utilize the alternative metabolic pathway which generates 

N2O. Eventually, a point is reached where the maximum possible amount of bacteria 
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are utilizing this pathway and the addition of extra stress (spike loading) has no 

effect in terms of increasing the rate of N2O generation (and corresponding the off-

gas concentration). The excess loading likely serves to extend the duration of the 

upset period. Analysis of net N2O generation versus spike loading could provide a 

better correlation and warrants investigation.  

 

For shock loaded processes, Stuetz et al. (2003) demonstrated that increasing the 

aeration rate when off-gas N2O was detected allowed for mitigation of the process 

upset and a corresponding decrease in measured off-gas N2O concentrations. This 

indicates that aeration has potential as a control handle for the process stress 

indicated by off-gas N2O concentrations. It should be noted that there are some 

limitations to aeration as a process stress control handle. In particular, the presence 

of inhibitory chemicals such as ATU results in off-gas N2O production without any 

net change in reactor DO (Burgess et al. 2002b; Butler et al. 2009). Thus aeration is 

unsuitable as a control handle during periods of process stress due to chemical 

inhibition. Further investigation is required into the suitability and limitations of 

aeration as a control handle.  

 

The application of off-gas N2O monitoring for nitrogen removal sequencing batch 

reactor (SBR) aeration control was investigated by Shishkowski (2004). Shiskowski 

(2004) utilized off-gas N2O concentrations to identify changes in the oxygen 

consumption dynamics in the reactor and to signify important points in the 

operational cycle which could be used to initiate a control action (i.e. change in 

process aeration). The proposed control application was based on pattern 

recognition by an ANN which utilized off-gas N2O and liquid phase DO and pH data 

as inputs, with the aeration flow adjusted based upon the recognized patterns 

(Shiskowski 2004). Such an application focuses on cycle optimization, which is quite 

different from real time aeration control in continuous wastewater treatment 

processes. While a control concept exists, it has yet to be applied to an operating 

wastewater treatment process and further research and development is required. 

 

To date there has been no reported investigation of the potential for the application 

of off-gas N2O monitoring for routine aeration control of continuous activated 

sludge nitrification processes. Evaluation of this potential requires the development 

of clear linkages between the monitored parameter (off-gas N2O concentrations) 
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and the process stress (reactor loading/DO concentrations), as well as confirming 

the efficacy of the control handle (aeration supply) in adjusting the process. These 

aspects will be evaluated in Chapters 4 to 6 of this thesis. 

 

2.3.4 Summary 

 

While many process monitoring techniques have made the move from ex situ to 

in situ analysers, non-invasive process monitoring remains an emerging area 

requiring further research and development. The potential benefits of non-invasive 

process monitoring are quite substantial; however the majority of these techniques 

have only been investigated in laboratory settings and have yet to be developed as 

full scale applications.  

 

Many of the proposed non-invasive process monitoring techniques are dependent 

on the nature of wastewater and/or properties of the process’ microbiological 

community, both of which can vary temporally. A need thus exists for the 

assessment of the long term stability and robustness of these techniques before 

they will gain acceptance and application in industrial settings. Furthermore, most 

of the non-invasive monitoring techniques are dependent on advanced data 

analysis techniques. While these applications will benefit from continued 

improvement of ANNs and statistical data analysis methods, this dependence may 

limit uptake due to the specialized expertise required for the establishment and 

operation of these systems. 

 

The majority of the reviewed non-invasive techniques focused on process 

monitoring applications, and there has been limited assessment of the applicability 

of these techniques for wastewater process control. At their current state of 

development, process status monitoring techniques such as off-gas N2O monitoring 

have demonstrated the greatest potential for future application in process control 

systems (aeration control in particular), but require further research and 

development. The current status of activated sludge aeration process control will be 

reviewed in Section 2.4, and the potential application off-gas N2O monitoring for 

nitrifying activated sludge process control will be assessed in Chapters 4 to 6. 
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2.4 Aeration Control for Activated Sludge Nitrification Processes 

 

Operation of BNR processes is complicated by diurnal and seasonal variations in 

influent, the adaptive nature of the microorganisms involved in the process, and 

random disturbances such as rain events (Islam et al. 1999) or intermittent/accidental 

industrial discharges. These operational concerns, along with increasing cost 

pressures and more stringent effluent quality guidelines have lead to a greater focus 

on enhanced process control for wastewater treatment plants.  

 

The cost saving aspect of process control has been of particular interest for the 

wastewater treatment industry. A survey of wastewater treatment plants in North 

America (Hill et al. 2002) indicated that the primary rationale for the installation of 

process control and automation has been to realize energy, consumable and labour 

cost savings. Improved process control has been recognized as an efficient means 

of increasing facility throughput without increasing reactor size, i.e. capital cost 

investment (Olsson 2006; Vanrolleghem et al. 1994; Vanrolleghem and Lee 2003), as 

well as allowing autonomous operation (Hack and Wiese 2006).  

 

Despite the economics advantages and being an accepted part of wastewater 

treatment processes, opportunities exist to expand the application of process 

control in wastewater treatment plants (Olsson 2006). The Australian wastewater 

treatment industry in particular has been seen as underutilizing process control in 

BNR processes (Islam et al. 1999). 

 

As discussed previously in Section 2.1, biological nitrogen removal is performed by 

two distinct sub-processes which require different environments (aerobic and 

anoxic environments for nitrification and denitrification, respectively), each having 

their own performance objectives and manipulated variables. The purpose of 

nitrification is the conversion of NH4
+ to NO3�. As such, the removal of NH4

+ is the 

performance objective and dissolved oxygen concentration (via aeration supply) is 

the primary manipulated variable. Denitrification removes NO3� produced by 

nitrification, thus this removal is the performance objective. In practice, 

denitrification is commonly applied either as a predenitification process (upstream 

of the nitrification), or as alternating zones with nitrification. NO3� is supplied to the 
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denitrification zones through internal recycle flows from the nitrification zones. 

These recycle flows, along with external carbon addition rates, are commonly used 

as manipulated variables to control denitrification (Holenda et al. 2008). As this work 

focuses on the control of the nitrification component of BNR processes using 

aeration, denitrification control will not be included in this review, although 

denitrification control is included in many of the reviewed studies.  

 

Dissolved oxygen is a key parameter with regards to the operation of nitrification 

processes. Furthermore, aeration is the single largest energy consuming component 

of most biological wastewater treatment processes, and has been reported to be on 

the order of 50% of the total facility energy consumption (Ferrer et al. 1998; 

Ingildsen et al. 2002). However, for some plants aeration can have an even higher 

relative energy demand, approaching 60% to 80% of total facility energy 

consumption (Chachuat et al. 2005a; Hamilton et al. 2006). Aeration control is thus 

seen as one of the most important factors for the safe and effective operation of 

nitrification processes, and has been widely accepted in wastewater treatment 

plants (Alex et al. 2002), although its application is not universal (Hill et al. 2002). 

 

To provide a basis for the evaluation of the non-invasive aeration control concept 

developed in this work (Chapter 6), several aspects of importance to aeration 

control will be reviewed. A discussion of the various aeration strategies applied for 

BNR processes will be presented in Section 2.4.1. Existing techniques to evaluate 

process control strategies will be summarized in Section 2.4.2, while existing and 

emerging aeration control techniques will be reviewed in Section 2.4.3. Finally, the 

performance of the various aeration control strategies will be discussed in Section 

2.4.4, and a review of existing barriers to the increased uptake of process control 

strategies in the wastewater industry will be presented in Section 2.4.5. 

  

2.4.1 Aeration Strategies for Biological Nitrogen Removal Processes 

 

The selection and development of control strategies for biological nitrogen removal 

processes are strongly influenced by the form of aeration utilized. Typically, most 

nitrogen removal processes utilize either continuous or intermittent aeration, with 

the difference between the two processes being the location of the anoxic 
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(denitrification) zones. For continuously aerated processes, the anoxic and aerobic 

process components are separated spatially based on which compartments receive 

aeration. In intermittent aeration processes, both aerobic and anoxic zones exist in 

the same reactor volume, but are instead separated temporally based upon the 

aeration schedule. 

 

Intermittent aeration is commonly applied in small-scale nutrient removal processes 

(Chachuat et al. 2005b), and is well suited for batch type processes such as 

sequencing batch reactors. Generally, control of intermittent aeration processes can 

be seen as an optimization problem, and much of the focus is on the detection of 

the endpoints of the nitrification and denitrification steps to optimize the process 

cycle. The control of intermittently aerated nitrogen removal processes has been 

the subject of much research effort (Balku and Berber 2006; Balslev et al. 1996; Cecil 

2003; Chachuat et al. 2005b; Fikar et al. 2005; Habermeyer and Sanchez 2005; Kaelin et 

al. 2008; Kalker et al. 1999; Lukasse et al. 1999). However, since the focus of this work 

is on larger scale continuously aerated processes, control of intermittent aeration 

processes will not be discussed further.  

 

While much of the control research for continuously aerated nitrogen removal 

processes has focused on the adjustment of process DO concentrations to better 

satisfy the oxygen demands, the opportunity also exists to improve operation via 

control of process capacity (i.e. aerated volume). As noted by Vanrolleghem et al. 

(2003), historically, activated sludge processes were designed to guarantee a certain 

effluent quality without process control. Many of the processes were designed 

based on maximum capacity and are overdesigned for normal or low loading 

conditions. Thus, at low loadings the full capacity of the reactor is not being used 

and nitrification reaches completion before the end of the aerated component of 

the process, with the remaining aerated volume performing aerobic sludge 

stabilization, an inefficient use of aeration (Sahlmann et al. 2004).  

 

Since most large treatment processes are constructed as a series of connected 

zones with independent aeration, the opportunity exists to reduce aeration 

demands by tailoring the active volume (facility capacity) to match the demand. Two 

distinct approaches exist in the literature; the first approach consists of simply 

shutting off the excess aeration volume and converting the zones into anoxic ones 



 

 

 

Chapter 2 Literature Review – Aeration Control 97 
 

 

(Brouwer et al. 1998; Ekman et al. 2006; Krause et al. 2002; Samuelsson and Carlsson 

2002; Thomsen et al. 1998), reducing overall aeration requirements. Aeration to 

these zones is re-established when facility loading increases. A second approach, 

proposed by Sahlman et al. (2004), is to control the DO in the zones to reduce the 

nitrification rate so that the entire volume becomes active (i.e. nitrification reaches 

completion at the end of the final aerated zone). This makes use of the full reactor 

volume and aeration savings are realized through increased oxygen transfer 

efficiency at reduced operating DO concentrations.  

 

With the on/off nature of both intermittent aeration control and aeration volume 

control, they are quite amenable to rule based control techniques. While the 

remainder of this review will focus on techniques for controlling nitrifying 

processes which are continually aerated, the control techniques discussed in 

Section 2.4.3 are also of interest for intermittent aeration control and aeration 

volume control.  

  

2.4.2 Control Strategy Evaluation  

 

The development and evaluation of novel control strategies, along with their 

dissemination into the wastewater community is complicated by the variable nature 

of wastewater treatment processes. Differences in process layout and influent 

properties/variation patterns can influence control strategy performance. As a 

result, it is extremely difficult to compare the application of control strategies at 

different plants, and equally difficult to extend these applications to existing 

processes.  

 

Benchmarking through process simulation offers the benefit of testing proposed 

control strategies without requiring investment in equipment or introducing 

variability associated with the performance of in situ process monitors (such as 

representativeness of monitoring locations, instrument fouling, and instrument 

reliability). The primary benchmark utilized for wastewater process control strategy 

development is the COST benchmark simulation model (Jeppsson and Pons 2004). 

This platform independent benchmark was developed to provide a consist basis on 

which to develop and evaluate control strategies, and consists of an ASM1 based 
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simulation model for a predenitrification process (consisting of 5 reactors in series 

with a settling tank and an influent profile representing different weather 

conditions and loading variations), and a testing protocol to compare control 

strategies (Vanrolleghem and Gillot 2002). While the COST benchmark was 

developed for a predenitrification process using an ASM1 model (to represent the 

most common application), this was intended to be a starting point, with the 

extension of the benchmark to incorporate additional processes and improved 

models being an ongoing process (Jeppsson and Pons 2004). 

 

The far majority of recent simulation based literature utilized the process simulation 

component of the COST benchmark in its entirety (or with some minor 

modification), indicating substantial adoption of the protocol by the research 

community. Deviations from the benchmark (excluding site specific model studies), 

have primarily been to investigate alternative models such as distributed parameter 

models (Lee et al. 2006) and bilinear models (Ekman 2008).  

 

Both the hydraulic modelling and controllability of the default predenitrification 

process contained in the COST benchmark have been questioned. Pons and Potier 

(2004) assessed the validity of the perfect mixing assumption utilized in the COST 

benchmark process model. They argued that based on the size of the benchmark 

process, the reactors would be large channels in which vertical recirculation cells 

could form, resulting in hydrodynamics that is between perfect mixing and plug 

flow and producing concentration gradients. However, when the process model 

was modified to incorporate these hydrodynamics, the observed effects were minor 

with regards to control performance, and simulation time was increased 

substantially (Pons and Potier 2004). Modification of the hydraulic model in the 

COST benchmark does not appear to be warranted since only a small gain in 

accuracy would be obtained at the cost of a large increase in simulation time (a 

decrease in usability).  

 

Both Carlsson and Rehnstrom (2002) and Stare et al. (2007) reported limitations in 

control performance attributed to insufficient process capacity (i.e. the default 

process included in the COST benchmark is overloaded in some situations), 

concluding that additional aerated volume is required for the benchmark process. 

Insufficient capacity results in controller saturation which produces an excessively 
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high (and inefficient) operating DO concentration (Samuelsson and Carlsson 2002). 

Stare et al. (2007) converted one of the two anoxic compartments in the default 

process into an aerobic reactor to enhance nitrification capacity at the cost of 

denitrification. This modification reinforces the observation by Thomsen et al. (1998) 

that controlling aeration volume is more efficient then DO setpoint control for 

overloaded processes. 

 

To assess control strategies, the COST benchmark utilizes a greyscale evaluation 

process in which the performance of a specific control strategy is represented by a 

colour, with the best performance being closer to white and worst performance 

being closer to black. For each of the 24 criteria considered in the evaluation 

process, the best and worst performing control strategies are used to set the range 

(the best performer is assigned 10% black, the worst performer 90% black), and the 

remaining control strategies are assigned colours based on a linear interpolation of 

their performance within that range (Vanrolleghem and Gillot 2002). Vanrolleghem 

and Gillot (2002) noted several limitations in this approach, namely that the results 

are highly dependent on the scenarios picked (relative analysis), and that the 

analysis lacks weighting to establish the relative importance of each of the evaluated 

criteria, which is necessary to properly assess the costs and benefits associated with 

control strategies. 

 

In reviewing recent aeration control simulation literature utilizing the COST 

benchmark, it was interesting to note that while the facility layout, influent and 

process model components of the benchmark have been utilized, evaluations of the 

proposed control strategies have typically been limited to aeration savings and the 

effects on effluent quality (in particular average and peak effluent NH4
+ 

concentrations), with the greyscale assessment procedure not being utilized. Thus, 

while progress has been made in providing a common basis for assessing control 

strategies, a need remains to standardize the assessment of the costs and benefits of 

implementing these strategies. 

 

Several alternative process control evaluation strategies have been proposed. These 

strategies all focus on assigning cost values to the relevant process aspects (such as 

aeration supply, chemical addition and effluent discharges) to enable cost based 

comparisons. 
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Evaluation techniques proposed by Stare et al. (2007) and Vanrollegehem and Gillot 

(2002) utilize data generated from the COST benchmark model and operate as 

extensions to the existing benchmark. Stare et al. (2007) proposed a total cost 

approach which assigned costs to aeration, sludge disposal, external carbon 

addition, and effluent fines, but did not account for costs associated with the 

implementation and operation of sensors, actuators and other equipment 

associated with the process control strategy. A similar approach (TCI – Total Cost 

Index) was developed by Vanrolleghem and Gillot (2002), although this approach 

also considered the investment costs associated with control strategy 

implementation. Both of these strategies utilized sensitivity analysis to assess the 

robustness of the controller with respect to a range of process variations including 

fluctuations in temperature and influent flow, as well as performance during storm 

and rain events. Inclusion of sensitivity analysis greatly enhances the evaluation 

process, providing insight into potential limitations in the control strategies and 

assisting in the selection of applicable control strategies for existing full scale 

processes. 

 

An important consideration with regards to cost based assessment of control 

strategies is the site specific nature of the cost weightings (Vanrolleghem and Gillot 

2002), which result in the assessment being highly location dependent while the 

other aspects of the process used in the evaluation (process layout and influent) are 

generic in nature. The MAgIC (Matrix for Advanced Instrumentation and Control) 

methodology (Devisscher et al. 2006) represents a move towards a fully site specific 

assessment of control strategies. This methodology is based on the COST 

benchmark, but uses modified models that have been extended to include cost 

prediction for energy consumption (aeration, pumping and mixing), as well as for 

chemical addition and sludge treatment/disposal. The methodology does not 

account for costs associated with the implementation and operation of the control 

strategy. Furthermore, an influent data generator is provided that utilizes existing 

data to generate suitable model inputs for the simulation; filling data gaps as 

needed and generating an appropriate range of influent variations and discrete 

events such as first flush (Devisscher et al. 2006). The methodology specifies a 

baseline control scenario and control strategies are tested for a range of influent 

variation amplitudes and levels of facility loading, with cost functions being 

developed to estimate savings and allow comparison over a range of operation.  
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2.4.3 Nitrification Process Aeration Control 

 

As discussed in Section 2.4, the application of aeration control offers many benefits 

in terms of cost savings and improved process performance. A wide range of 

aeration control strategies have been evaluated for application in biological 

nitrogen removal processes. In general, control strategies are categorized based on 

the location in the process where data is obtained for the control algorithm. This 

results in two broad categories of process control, feedback and feedforward 

control, whose basic forms are illustrated in Figure 2-3.  

 

 

 

Figure 2-3 Feedback and feedforward control. 

 

Feedback control (discussed in Section 2.4.3.1) is simpler in implementation than 

feedforward control since the control action is directly based on the process 

outputs. Sensor location is of particular importance for feedback control; in 

activated sludge nitrogen removal processes monitoring from the aerated chambers 

is preferred over monitoring effluent from the settler due to smoothing and latency 

effects (Ingildsen and Olsson 2002; Muñoz et al. 2009). While feedback control 

provides accurate control of effluent quality (Olsson 2006), the hydraulic delays in 
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wastewater treatment processes result in disturbances propagating through the 

reactor prior to being observed in the effluent and subsequently acted upon, 

limiting control authority.  

 

Feedforward control is utilized as a means of increasing control authority and 

providing better disturbance rejection (Olsson 2006). In feedforward control, the 

process disturbances are measured and utilized to project the future state of the 

process, with a control action being implemented to control the process based 

upon these projections. Thus, action is taken to attenuate the disturbance before it 

propagates through the process (Ingildsen and Olsson 2002). With the long 

hydraulic delays inherent to activated sludge processes, feedforward control is seen 

as being an efficient means of process control (Vrecko et al. 2003). It is important to 

note that since the projection of the process state requires a process model, the 

quality of the control strategy is strongly dependent upon the model, which can 

introduce a level of complexity and uncertainty into the control strategy. Limitations 

associated with the incorporation of a process model into control strategies will be 

discussed in Section 2.4.3.3.  

 

Fuzzy control and model predictive control (MPC) are the two primary forms of 

feedforward control that have been presented in the reviewed literature. Both forms 

typically operate in a hierarchical fashion (often called cascade control), acting as a 

supervisor which determines appropriate setpoints for the process. These setpoints 

are utilized by subordinate controllers (often simple feedback control loops for DO) 

to make the actual process adjustment. The primary difference between the two 

forms of hierarchical control lies in how the setpoints are determined. Fuzzy control 

(discussed in Section 2.4.3.2) utilizes a schedule of predetermined setpoints based 

on either simulation using process models of varying degrees of complexity and/or 

process experience. MPC (reviewed in Section 2.4.3.3) utilizes a range of influent 

(disturbance) parameters to simulate the process and selects the appropriate 

setpoint based on the results of this simulation.  

 

It should be noted that the distinction between these forms of process control are 

not absolute, and examples exist of control strategies which combine different 

forms of control to achieve better performance in specific operating conditions. 
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These combined techniques will be categorized based on the most advanced 

technique employed (fuzzy or MPC).  

 

In addition to aeration control, the control of the upstream aeration processes 

(compressors/blowers) has the potential to realize cost savings, and will be 

discussed briefly in Section 2.4.3.4. Finally, with increasing focus on process 

integration and process economics, a number of control strategies have emerged 

that incorporate process costs in an attempt to provide an optimal compromise 

between operational costs and process performance. These cost-based control 

strategies will be reviewed in Section 2.4.3.5.  

 

2.4.3.1 Feedback Aeration Control 

 

While much of the recent work discussed in the literature has focused on 

feedforward control strategies (Sections 2.4.3.2 and 2.4.3.3), feedback control is 

utilized extensively at the bottom level of control hierarchies to adjust aeration 

flows and maintain process DO concentrations at their setpoints, as well as for 

conventional DO control processes using manually determined setpoints. Several 

examples of feedback control that leverages improvements in nutrient sensor 

technology have been presented in the literature. In particular, effluent NH4
+ 

concentrations have been utilized in a hierarchical manner to generate DO 

setpoints for implementation by a subordinate DO controller (Suescun et al. 2001; 

Vrecko et al. 2006), directly control the aeration supply (Ingildsen and Wendelboe 

2003; Krause et al. 2002), or as a supplement to feedforward control to compensate 

for model approximations and improve controller performance (Ingildsen and 

Wendelboe 2003; Krause et al. 2002; Vrecko et al. 2003; Yamanaka et al. 2006).  

 

Feedback NH4
+ based control strategies have been demonstrated as being an 

effective means of controlling effluent NH4
+ concentrations and achieving 

substantial reductions in aeration requirements (Ingildsen and Wendelboe 2003; 

Suescun et al. 2001). Furthermore, these controllers are relatively simple in nature 

and easy to implement in full scale processes. While feedback control strategies are 

often outperformed by the more advanced feedforward strategies (which will be 

discussed in the following sections), a number of concerns exist with regards to 
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feedforward control strategies including the complexity of implementation and 

long-term validity of process models. With these concerns and the existing comfort 

level with feedback control, feedback control strategies remain an important part of 

aeration process control. 

 

2.4.3.2 Fuzzy Aeration Control  

 

Fuzzy control is a rule-based control technique based on fuzzy logic which attempts 

to mimic the human decision making process. These controllers take input data and 

convert it into fuzzy data which is represented as a membership function; rules are 

then applied to this data to select the appropriate controller output, with the final 

step being the conversion of the process output from fuzzy data to a numerical 

action (Serralta et al. 2002).  

 

Two primary advantages are associated with fuzzy control. These controllers are 

robust (accommodate a wide range of process conditions), and the rules used for 

the decision making process are written in a transparent, easy to understand 

manner (Reznik 1997). This transparency allows greater understanding by operators 

and facilitates modification, increasing acceptance (Meyer and Popel 2003; Yong et 

al. 2006). The rule-based nature of the fuzzy control makes it particularly suitable for 

on-off control and the uptake of fuzzy control for intermittently aerated and 

variable aeration volume processes is increasing (Chachuat et al. 2005a; Kalker et al. 

1999).  

 

While it is possible to control specific process parameters utilizing fuzzy controllers, 

fuzzy control strategies are more commonly applied in aeration control as a 

supervisor in a hierarchical control scheme. Both feedback and feedforward control 

strategies can be applied using fuzzy logic, and examples of both have been 

reported. Feedback fuzzy aeration control has been investigated via simulation 

(Galluzzo et al. 2001; Kalker et al. 1999; Serralta et al. 2002) and evaluated for a full 

scale process (Husmann et al. 1998). The control strategies utilized effluent NH4
+ 

concentrations as the monitored variable, with the fuzzy controller increasing the 

DO setpoint for the subordinate controllers when the effluent NH4
+ concentration 
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increases above a threshold, and decreasing the setpoint when it drops below the 

threshold.  

 

A range of different fuzzy control strategies can be implemented using the same 

fundamental monitored variable (in this case effluent NH4
+ concentration) through 

the imposition of constraints on the controller. For example, Serralta et al. (2002) 

restricted control to the final aerated chamber, maintaining a constant DO setpoint 

in the preceding chambers. This resulted in a form of process capacity control 

similar to that investigated by Salhlmann et al. (2004), and aeration savings on the 

order of 10% were projected. A more comprehensive fuzzy control strategy was 

applied by Husmann et al. (1998) which utilized a fuzzy supervisor to produce DO 

setpoints for subordinate controllers in each of the aerated compartments and 

adjusted the influent flow distribution to the process. This control strategy 

implemented DO setpoint changes in steps of 0.5 mg/L and was implemented on a 

full scale process for a period of one year, achieving a 16% reduction in aeration 

along with significant reduction in peak effluent NH4
+ concentrations (Husmann et 

al. 1998). 

 

Galluzzo et al. (2001) noted the possibility to improve fuzzy controller performance 

though the measurement of influent variations and implementation of feedforward 

control strategies. These potential performance improvements were confirmed in a 

comparative evaluation of NH4
+ based fuzzy control strategies (Krause et al. 2002). In 

this study, a combined feedforward-feedback fuzzy control strategy (aeration 

volume determined by the feedforward component and individual compartment 

DO setpoints selected by the feedback component) was demonstrated to offer 

superior performance over its feedback counterpart, with reduced switching 

frequency (i.e. less wear and tear on process equipment) along with significant 

projected reductions in peak and average effluent NH4
+ concentrations. Some 

increase in aeration requirements was observed (Krause et al. 2002), however given 

the significant projected increases in effluent quality, the possibility exists to reduce 

process performance and realize aeration savings.  

 

Both Meyer and Popel (2003) and Yong et al. (2006) investigated the application of 

NH4
+ based feedforward-feedback fuzzy controllers though process simulation and 

pilot scale application. Meyer and Popel (2003) predicted aeration reductions of up 
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to 25%, with energy savings during low loading periods and extended aeration 

volumes during peak periods to provide adequate process capacity. Slightly lower 

performance was observed during implementation at pilot scale, which would be 

expected moving from simulated perfect controllers/actuators to their real 

counterparts. Time delays had an impact on the feedback component of the control 

strategy, however substantial aeration reductions on the order of 23% were 

obtained, while the magnitude of effluent NH4
+ peaks were reduced by 58% (Meyer 

and Popel 2003). A similar improvement in effluent quality (15.9% and 48% reduction 

in average and peak effluent NH4
+ concentrations, respectively) was reported by 

Yong et al. (2006) though the application of combined external carbon and aeration 

feedforward-feedback fuzzy controllers, however a much lower aeration reduction 

of 10% was achieved (although this still represents a significant reduction).  

 

Overall, fuzzy control strategies offer the potential to realize improved operation 

(tighter control of average and peak effluent NH4
+ concentrations) and cost savings 

through more efficient aeration. Furthermore, their simplicity and transparency 

facilitates implementation and acceptance. The use of rules for setpoint selection 

does, however place some limitations on overall controller performance. In 

particular, the use of discrete sets of predetermined process setpoints limits the 

maximum possible controller efficiency. Fuzzy control strategies utilize a single 

setpoint to control a defined range of process conditions, unlike MPC (discussed in 

the following section) where the setpoint is optimized for the specific process 

conditions.  

 

2.4.3.3 Feedforward Model Predictive Aeration Control 

 

For the reasons discussed in Section 2.4.3 (increasing control authority, disturbance 

rejection, and overall performance), the majority of literature focused on 

feedforward control strategies, in particular those based on MPC. Like fuzzy control, 

MPC is typically applied in a hierarchical fashion, determining setpoints for 

subordinate controllers. Unlike fuzzy control, MPC utilizes and explicit process 

model to predict future performance, which is used as a basis for determining the 

setpoints (Holenda et al. 2008). MPC control techniques originated in the power and 

petroleum industries, but have spread rapidly to other industries, and are of 
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particular interest for non-linear systems like wastewater treatment processes 

(Holenda et al. 2008).  

 

The quality of control achieved by a MPC strategy is strongly dependent on the 

quality of the process model. Since the online application of the current generation 

of non-linear activated sludge process models (ASM family of models) is viewed as 

difficult if not impossible due to their complexity, the majority of MPC strategies 

utilize reduced models only describing important parameters (Stare et al. 2006). 

Several alternative model forms have been investigated ranging from linear models 

such as those developed using disturbance modelling principles (Zarrad et al. 2004), 

to bilinear (Ekman 2008) and nonlinear models (Stare et al. 2006).  

 

Investigation of MPC strategy development using disturbance modelling principles 

(Zarrad et al. 2004) indicated that while a suitable model was developed, from a 

regulation point of view the proposed disturbance accommodating controller was 

difficult to tune and its performance was inferior to a conventional PI controller. The 

authors concluded that the process model developed using this technique was 

likely more suitable for diagnostic purposes than process control (Zarrad et al. 2004). 

Slightly more success was obtained using an MPC strategy based on a bilinear black-

box model (Ekman 2008), although only small improvements were obtained versus a 

linear MPC strategy. 

 

Stare et al. (2006) investigated the application of an ASM1 based nonlinear model 

and a linear black-box model in MPC strategies. The nonlinear controller provided 

the best performance in terms of effluent quality (mean and variance of effluent 

NH4
+ concentrations), particularly during periods of low loading where the process 

nonlinearities become more significant (Stare et al. 2006). The authors conceded 

that since the development of nonlinear models is time consuming and costly, 

additional work is required at pilot scale to confirm the performance and determine 

if the benefit outweighs the increased implementation costs and complexity. 

 

While demonstrating some promise, the utilization of more complex process 

models as a basis for MPC strategies represents a substantial increase in complexity, 

and further work is required (particularly at pilot and full scale) before they become 

accepted techniques and challenge the current generation of MPC strategies based 
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on reduced models. These studies also illustrated a trend within the MPC literature. 

The far majority of the reported work was based on simulation studies (which are a 

low cost, efficient means of developing and evaluating novel control concepts), and 

reports of MPC strategy application in pilot and full scale processes are quite limited 

(Ingildsen et al. 2002).  

 

Ingildsen et al. (2002) provides an example of full scale implementation of a 

feedforward MPC strategy utilizing influent NH4
+ concentrations. The control 

strategy focused primarily on optimizing the timing in which aeration was applied to 

the process (i.e. matching the supply with the demands). Influent NH4
+ loadings 

were utilized as a tracer, with a relatively simple hydraulic model propagating the 

load through the reactor to determine its position with time. DO setpoints in the 

individual aeration compartments were adjusted according to the load position 

using a set of gain functions (Ingildsen et al. 2002). Despite constraints associated 

with limited compressor turndown, the control strategy achieved aeration savings 

on the order of 5-15% versus a reference lane operated using conventional DO 

control, while providing the same effluent quality. 

 

While the majority of the MPC strategies encountered in the literature were 

feedforward in nature, a few exceptions did exist. Feedforward-feedback MPC 

strategies have been evaluated as a means of compensating for uncertainty 

associated with approximations used in process models. The potential for these 

strategies to improve controller performance in terms of both aeration 

requirements and effluent quality has been demonstrated (Ingildsen and 

Wendelboe 2003; Murphy et al. 2009; Vrecko et al. 2003), although only through 

testing on simulated processes. 

 

Despite the potential benefits of MPC, a gap exists with regards to pilot and full 

scale implementation of MPC strategies, and a move from simulations to real 

processes must be made in order to obtain the firm assessments of benefits and 

implementation costs/issues required facilitate uptake into the wastewater 

treatment industry. Furthermore, questions remain with regards to the long term 

stability of these control concepts and requirements for retuning and recalibration. 

Biological wastewater treatment processes have time varying dynamics (in terms of 

the biological processes) which are not captured by the existing process models, 
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and the impacts of these variations can only be assessed through long term 

application of the control strategies on real processes. 

 

2.4.3.4 Aeration Supply Control 

 

The control strategies reviewed in Sections 2.4.3.1 to 2.4.3.3 achieve aeration 

savings and improved process operation through the manipulation of aeration flows 

using control valves connected to a common header. The air in this header is 

pressurized by compressors which must replenish the air utilized to aerate the 

reactors. Opportunities exist to achieve further energy savings through improved 

compressor control and optimization (Alex et al. 2002). 

 

Compressor operation is controlled to maintain a suitable pressure in the common 

header. Similar to DO control, it is possible to control the pressure to a constant 

value, or have variable pressure setpoints based on demand. In a simulation study, 

Alex et al. (2002) investigated the application of a “most open valve” control strategy 

in which the operating pressure is varied to maintain the air valves as open as 

possible. Simulations using this strategy indicated potential power savings of 11.4%, 

although it was noted that further optimization was possible (Alex et al. 2002). A 

similar reduction in compressor power costs (10%) was noted by Hewitt (1996) for a 

full scale activated sludge process by integrating the control of the entire aeration 

system (eliminating individual pressure control for each compartment) and applying 

a “most open valve” control strategy.  

 

A hierarchical aeration controller was proposed in Piotrowski et al. (2008) to 

implement the DO setpoints generated by a supervisory controller. The proposed 

controller consists of two MPC layers, an upper layer which utilizes a dynamic 

model of process DO concentration to determine the airflow setpoints, and a lower 

layer utilizing an aeration system model to schedule blower operation and establish 

throttle valve setpoints. The authors report improved performance in simulation 

studies; however the benefits were not quantified. 

 

While improved compressor control can result in significant cost savings, 

challenges exist in its implementation. In particular, tuning can be difficult and 
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interactions between control loops must be considered (Alex et al. 2002). Facility 

design also inhibits the application of improved compressor control. Compressors 

utilized to supply aeration systems in wastewater treatment plants are often 

oversized, limiting the controllability of the process, and in the case of insufficient 

turndown capacity, limit the potential aeration savings (Hill et al. 2002). Furthermore, 

if the compressors cannot be turned down below 50% capacity, a gap occurs in the 

output between one compressor operating at maximum flow and two compressors 

operating at minimum flow, impairing control and causing excessive compressor 

cycling (Hill et al. 2002). 

 

2.4.3.5 Cost-based Aeration Control 

 

While the feedforward and feedback control strategies discussed in Sections 2.4.3.1 

to 2.4.3.4 are capable of achieving improvements in effluent quality and reductions 

in aeration costs, the selection of specific operating points has a strong influence on 

the cost effectiveness of the process. In particular, improvements in effluent quality 

often come at the cost of increased aeration consumption, while reductions in 

aeration costs come at reduced effluent quality (Ingildsen and Wendelboe 2003). A 

further complication is the fact that the nitrification component of BNR processes 

does not exist in isolation, with several processes competing for DO and carbon 

(Olsson 2006).  

 

The interconnections between processes can result in a single process input 

affecting several process outputs. This phenomenon, referred to as channel 

interaction, is common in wastewater treatment processes (Samuelsson et al. 2005). 

These interactions can result in cases of conflicting control objectives. For example, 

while increasing the DO concentration in the aerobic reactors can reduce effluent 

NH4
+ concentrations, excess DO will be transported to the anoxic denitrification 

component of the process, impairing the overall nitrogen removal efficiency. These 

interactions are not considered when specific components of the process are 

controlled in isolation. A need thus exists to combine individual control systems 

(integration) and control the entire wastewater treatment facility as a cohesive unit 

(Olsson 2006), although it has been proposed to extend this integration to 
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encompass the entire process from sewer inputs to final effluent discharges 

(Schutze et al. 2004).  

 

As processes are integrated, the number of manipulated variables and performance 

objectives increase. In addition to the fundamental objective of achieving stable 

operation and mitigating the effects of disturbances, control of the overall process 

also becomes an optimization problem. That is, determining which control handles 

are most efficient to mitigate a specific disturbance. This optimization needs to 

consider the costs associated with the potential control actions (such as chemical 

consumption through carbon addition or power consumption by blowers and 

pumps).  

 

Process integration and cost-based control for BNR processes has received some 

attention in recent years (Cadet et al. 2004; Samuelsson et al. 2007; Yamanaka et al. 

2006). While utilizing different approaches, a common goal exists of providing 

effluent which meets with the applicable discharge guidelines while minimizing 

operating costs.  

 

In developing a multicriteria control strategy, Cadet et al. (2004) compared the 

performance of conventional DO control and a feedback aeration control strategy 

based on L/A control law using the COST benchmark process. They concluded that 

that conventional control was the most cost sensitive, while the L/A control law 

based strategy provided better effluent quality. These cost assessments were 

incorporated as part of a multicriteria control strategy using a fuzzy controller that 

determined the necessary compromise between cost and performance and selected 

the form of control to be applied accordingly (Cadet et al. 2004). While the 

multicriteria control strategy was successful at reducing operating costs and 

maintaining effluent quality, it is likely that improved performance could be 

obtained by replacing the L/A control law component with a feedforward control 

strategy (such as MPC).  

 

Building on the economic evaluation procedure developed by Vanrolleghem and 

Gillot (2002), Yamanaka et al. (2006) developed and evaluated a total cost 

minimisation control strategy. This was a hierarchical control strategy which utilized 

a high level static optimizer based on a simplified process model and the Total Cost 
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Index evaluation procedure. The high level static optimizer operated in a 

feedforward manner to determine the most cost effective setpoints for the 

subordinate dynamic controllers. This optimizer represents a move towards more 

integrated process control, producing setpoints for the following manipulated 

variables: 

 

• aerobic reactor NH4
+ (controlled via a feedback loop using aeration flow); 

• anoxic reactor NO3� (controlled via a feedback loop using external carbon 

addition); 

• internal recycle flow rate ; 

• return activate sludge flow rate; and  

• waste sludge flow rate. 

 

Subordinate feedforward controllers were investigated as part of the study, 

however compared to feedback alternatives they produced minimal performance 

improvement during low loading variation and substantially underperformed during 

high load variations (Yamanaka et al. 2006). On a cost basis, the control scheme was 

confirmed to be effective under relatively slow load variations, but less effective 

during large variations (Yamanaka et al. 2006). This increased cost is expected since 

more process resources (and hence cost) would be required to mitigate larger 

fluctuations. Comparison to a non-cost optimized process would be useful to 

provide a better indication of the potential benefits of the control strategy. 

 

While the application of cost-based process control techniques has been limited in 

nature and restricted to simulation based studies, these techniques represent an 

important step towards integrated process control and could be a valuable tool in 

an environment of increasingly stringent effluent regulation and demands for cost 

reduction. Further research and development is required to apply these techniques 

to actual processes and evaluate their performance under a full range of operating 

conditions.  
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2.4.4 Evaluation of Aeration Control Strategies 

 

A wide range of aeration control strategies have been reviewed in Section 2.4.3. 

While all of the reviewed studies evaluate the performance of the control strategies 

of interest, the evaluation was often conducted in a subjective manner, limiting 

comparison between studies. The lack of quantitative evaluation of control strategy 

performance is not unique to research, indeed in a survey of North American 

wastewater treatment plants (Hill et al. 2002) indicated that while the majority have 

installed automation to achieve cost reduction, less than 10% have followed up by 

conducting monitoring to demonstrate the cost savings in a quantitative manner. A 

summary of the quantitative performance evaluations presented in the literature is 

provided as Table 2-7, although it should be noted that this represents a small 

subset of the total volume of literature reviewed. 

 

Similar to the observations by Ingildsen and Olsson (2002) and Hamilton et al. 

(2006), the majority of the implementations were based on simulated or pilot scale 

processes, and reports of full scale implementation were few in number. Based on 

the summary presented as Table 2-7, aeration reductions on the order of 6-28% are 

possible through the application of enhanced aeration control, while maintaining a 

similar or improved level of average effluent quality, and in many cases achieving 

substantial reductions in peak effluent NH4
+ concentrations. However, due to the 

variability in the evaluation procedures and projected benefits, it is difficult to draw 

conclusions with regards to the relative merits of specific aeration control strategies. 

 

Despite the COST benchmark being utilized as a basis for the majority of the 

simulation studies, the control strategy evaluation component of this benchmark 

has not been utilized. Instead, evaluation methodologies have been developed on a 

case by case basis, limiting comparability of the results. While some alternative 

evaluation methodologies have been proposed (and have been reviewed in Section 

2.4.2), the lack of consensus persists.  
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Several challenges exist to developing a broadly applicable evaluation methodology; 

particularly the selection of a reference control strategy, and provision of 

standardized comparison criteria. Vanrolleghem and Gillot (2002) have proposed 

feedback DO based aeration control using a constant setpoint as the reference 

control strategy since it is a common and accepted control practice in wastewater 

treatment. Considering that this strategy is currently utilized as the reference in the 

majority of the reviewed studies, substantial changes to current practice would not 

be required, and this recommendation would likely find acceptance. 

 

Two primary comparison criteria have been utilized in the reviewed literature; 

performance comparison to a reference strategy, and aeration efficiency. While cost 

based control evaluation techniques exist, their cost weightings are site specific in 

nature (Vanrolleghem and Gillot 2002), resulting in a highly site dependent analysis. 

Despite being a very useful tool for investigating the application of process control 

techniques for specific processes and sites, their site specific nature is a significant 

limitation from a knowledge transfer perspective, and they will not be discussed 

further.  

 

While the comparison of aeration requirements and effluent quality to a reference 

strategy is relatively straightforward in nature and commonly applied, the current 

ad hoc approach is not compatible with cross study comparison. Operation of a 

wastewater treatment process represents a compromise between competing 

interests (cost and effluent quality), with emphasis on one aspect coming at the 

detriment of the other. Thus unless a consistent performance objective (level of 

effluent quality) is provided for the reference control strategy, the basis of the 

comparison (i.e. baseline aeration requirements and effluent quality) will vary, with 

these variations distorting the perceived benefits/costs of the control strategy being 

evaluated.  

 

Furthermore, this performance objective needs to be extended to the control 

strategy being evaluated to ensure a fair comparison. As demonstrated by Ingildsen 

and Wendelboe (2003), variations in the performance objective can have a 

significant effect on the perceived strengths and weaknesses of a control strategy. 

For instance, by emphasizing cost savings a 28% aeration reduction and minimal 

change in effluent quality was obtained, whereas by emphasising effluent quality 
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using the same controller a 50% reduction in effluent NH4
+ concentrations was 

obtained, although aeration savings were reduced to 12% (Ingildsen and 

Wendelboe 2003). While both scenarios were provided to illustrate possible range 

of performance, in most studies controller performance is only evaluated for one 

performance objective and its selection would strongly influence the perceived 

controller performance.  

 

Only through the application of a consistent performance objective can this 

subjectivity be removed from the evaluation process. Selection of a common 

performance objective will be a difficult process. Being a localized criteron 

(generally established based on practical constraints, effluent quality regulations, 

and process costs), no single performance objective will be universally applicable. A 

compromise is required for the sake of providing a clear basis from which to 

evaluate and compare control strategies. 

 

An efficiency based criterion was utilized by Vrecko et al. (2006) to evaluate several 

control strategies. This criterion consisted of a factor relating the amount of oxygen 

utilized in the process to the amount of ammonia removed and serves to tie 

together the two primary measures of process performance (aeration cost and 

effluent quality) into a single, easily interpreted performance index. Integrating 

aeration cost and effluent quality into a single index removes the dependence on 

performance objectives, producing a more robust evaluation criterion that can 

provide a consistent basis of comparison between studies without the requirement 

of a standardized performance objective.  

 

Furthermore, an efficiency based evaluation criterion would be well suited for the 

evaluation of control strategies implemented in real processes (pilot and full scale). 

The application of a comparison approach based on a reference study is constrained 

by the requirement for the simultaneous operation of a reference process, and in 

the case of a standardized performance objective, it is possible that the specific 

objective may not be permissible at full scale in certain jurisdictions due to effluent 

quality regulations. Freed of these two constraints, the efficiency based evaluation 

criterion provides a simple and efficient means of evaluating control strategies 

implemented on pilot and full processes, as well as permitting direct comparison 

with simulation based evaluations. Care should be taken during the evaluation of 
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control strategies at full and pilot scale to ensure that a full range of operating 

conditions are investigated, otherwise the assessment of overall controller 

performance could be biased by a focus on specific operational scenarios where the 

controller excels or underperforms. This is not an issue in simulation based studies 

utilizing the COST benchmark since the included influent profile represents a full 

range of operational scenarios. 

 

Of the two discussed evaluation methods, an efficiency based evaluation criterion 

appears to provide the greatest benefit in terms of improving cross comparability 

(including between simulation and pilot/full scale applications) while imposing 

fewer constraints on specific evaluation procedures. With the current lack of 

consensus in the literature, the need exists for a movement towards a robust, 

consistent and comparable evaluation technique to provide a clear representation 

of the benefits associated with the application of advanced control strategies. Such 

a representation is required to assist in removing the barriers that exist between 

advanced process control strategies and their acceptance/uptake into full scale 

processes (which will be discussed further in the following section). 

  

2.4.5 Barriers 

 

While many advanced aeration control strategies have been proposed and 

evaluated using process simulation studies, uptake into full scale processes remains 

fairly limited (Hamilton et al. 2006; Ingildsen and Olsson 2002). Indeed the 

development of plant/process wide control strategies is viewed as being in its 

infancy, although gaining momentum (Olsson 2006). Excluding perception issues 

(Huntington 1998; Kalker et al. 1999) and limitations in the evaluation and 

communication of control strategies and their benefits (discussed in Sections 2.4.2 

and 2.4.4), two of the primary barriers to the uptake of advanced process control 

strategies in full scale processes are instrumentation and facility design. 

 

Instrumentation has historically been seen as the weakest link in the control chain 

for wastewater treatment processes (Bonastre et al. 2005; Lynggaard-Jensen et al. 

1996; Rieger et al. 2004b), limiting the development and implementation of advanced 

process control strategies. However, recent improvements in instrument 
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performance and robustness (Bonastre et al. 2005; Bourgeois et al. 2001; Thomas and 

Constant 2004; Vanrolleghem and Lee 2003) have addressed many of these 

weaknesses.  

 

With substantial reductions in instrument related barriers, Vanrolleghem and Lee 

(2003) concluded that the most fundamental barrier to widespread acceptance of 

process control is the wastewater treatment processes themselves. Many existing 

wastewater treatment processes were not designed with the flexible and 

controllable actuators required for process control, instead being designed to 

guarantee effluent quality without control (Vanrolleghem and Lee 2003). As result, 

the controllability of wastewater treatment processes is perceived to be quite poor 

(Olsson 2006).  

 

A common challenge to the successful implementation of improved aeration 

control is oversized equipment (airlines, control valves and compressors). The 

wastewater treatment facility survey conducted by Hill et al. (2002) indicated that air 

flow meters and control valves are often oversized to the point where they operate 

in the bottom 20% of their range (with poor accuracy and control authority, 

respectively), and oversized compressors limit the process controllability due to 

insufficient turndown capacity and can cycle excessively in some scenarios. 

Furthermore, the survey indicated that many of the process instruments and 

actuators were mounted in locations with poor access, reducing the frequency of 

maintenance and cleaning, further impairing control system performance (Hill et al. 

2002). As newer processes are constructed and aging processes refitted, providing 

that process control and instrumentation are included as part of the design process 

(i.e. an integrated design approach similar to that used in other industries such as 

power and petroleum), this barrier will decrease in importance. 

 

2.4.6 Summary 

 

Historically, the implementation of instrumentation and advanced control 

techniques in wastewater treatment processes has lagged behind other industries. 

With the potential to increase treatment capacity, reduce operating costs, and allow 

operation closer to technical and regulatory boundaries, wastewater treatment 



 

 

 

Chapter 2 Literature Review – Aeration Control 119 
 

 

process control is receiving an increasing amount of focus and many new 

techniques are emerging. 

Despite advances in terms of standardization through the development of a 

benchmark simulation environment (the COST benchmark), a high level of 

variability remains in the evaluation of control strategies which inhibits cross 

comparison and obscures the benefits associated with improved process control. As 

discussed in Section 2.4.4, a need exists for further standardization of the evaluation 

process and the development of easy to interpret performance criteria.  

 

The majority of the control strategy evaluations presented in the literature were 

simulation based, with a small number of reported implementations at pilot scale, 

and even fewer at full scale. Further work is required to extend the proposed 

control strategies to full scale and fully investigate the benefits associated with 

improved control (in a quantitative manner) and address the perception issues 

limiting uptake. 

 

A progression from very simple feedback based control strategies to more advanced 

feedforward ones (in particular fuzzy based control and MPC) is visible in the 

literature. While fuzzy based control strategies are gaining acceptance due to their 

transparent nature, the need exists to advance MPC strategies to realize further 

improved performance, as well as to meet the demands of increased process 

integration. The potential of cost based control concepts has been demonstrated 

through process simulation, but their effectiveness and benefits remain to be 

demonstrated at full scale. Finally, an integrated design approach (i.e. considering 

process control as a part of the wastewater treatment process instead of as an 

addition) is required to address common limitations associated with process 

equipment and instrumentation. 

 

While a range of non-invasive process monitoring techniques were reviewed in 

Section 2.3, only off-gas N2O process monitoring has been proposed (in concept 

only) as a basis for a process control strategy. In particular, as a means of controlling 

nitrifying/denitrifying sequencing batch reactors through pattern recognition 

(Shiskowski 2004). There is no evidence in the literature of any thorough 

investigation or application of non-invasive monitoring based process control 

strategies in wastewater treatment processes, either through simulation or at 
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pilot/full scale. Thus, non-invasive based nitrification process control remains a 

largely unexplored research area. 
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Chapter 3    Experimental Apparatus 

 

In this chapter, the various experimental apparatus utilized to meet the research 

objectives will be discussed. The experimental phase of this research program had 

three primary objectives: 

 

• characterize the wastewater process being studied; 

• characterize the process response to applied stresses; and 

• provide appropriate data to support process modelling and evaluation of 

the  developed process control concept. 

   

The experimental apparatus utilized in this study consisted of three key 

components; a lab-scale activated sludge plant, an off-gas monitoring system, and 

process instrumentation/control. Principles of operation, equipment specifications 

and operating conditions for each of these components will be discussed in the 

following sections. Specific experimental methodologies will be discussed in 

Chapters 4 and 5.  
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3.1 Activated Sludge Process 

 

A pilot scale activated sludge process lies at the core of the experimental apparatus. 

This process is the home for the community of microorganisms that are being 

analysed/interacted with by the remaining components of the experimental 

apparatus (described in Sections 3.2 and 3.3). 

 

3.1.1 Principles of Operation 

 

Activated sludge wastewater treatment processes are biological processes that 

employ a community of microorganisms (predominately bacteria) to degrade 

wastes. These microorganisms utilize specific components of the wastewater as 

substrates for their metabolic processes to generate energy for cell maintenance, 

growth and reproduction.  

 

As such, the effectiveness of the treatment process is highly dependent on the types 

of the microorganisms present in the reactor and their metabolic status. Due to the 

wide range of microorganisms present in sewage and their adaptability to various 

substrates, these processes are quite versatile. By varying a number of process 

parameters, such as the sludge retention time and the oxygen concentrations 

(providing oxygen rich, anoxic or even anaerobic zones), the process can provide 

for the selection of bacteria with desirable metabolic pathways which can allow for 

the removal of a range of undesirable substances including carbon, nitrogen, and 

phosphorus. 

 

The activated sludge process is a suspended growth process in which the biomass 

(activated sludge) is mixed with the influent wastewater and held in suspension in 

an aeration tank. Since the biomass is suspended in the wastewater, it is free to flow 

out of the unit with the effluent, and must be separated from the treated waste 

water using a clarifier. A portion of the activated sludge is recirculated back into the 

aeration tank (recycled) to maintain the bacterial populations while the remainder is 

purged from the system (wasted). An image of the most basic form of an activated 

sludge process (consisting of an aerated tank and a clarifier) is presented as Figure 

3-1. 
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Figure 3-1 Activated sludge process. 

 

As a suspended growth process, the retention of biomass is strongly dependent on 

an efficient liquid solid separation in the clarifier, thus the biomass settling 

properties are key parameters of interest. A wide range of process parameters 

including pH, temperature, dissolved oxygen concentrations and feed to 

microorganism ratios can influence the population dynamics in activated sludge 

bioreactors and as a result the biomass settling properties. The effects of these 

parameters on nitrification processes and N2O production have been discussed in 

Section 2.1. For further information on the influence of specific process parameters 

on biomass settling properties, the reader is directed to two recent discussions of 

activated sludge bulking mechanisms and control (Eikelboom 2000; Martins et al. 

2004). 

 

The setup depicted in Figure 3-1 is the most common form of AS process used for 

heterotrophic degradation of carbonaceous substances (COD removal). This 

process can be modified with the addition of anoxic or even anaerobic zones to 

facilitate the removal of other substances. It should be noted that in practice the 

process does not consist of individual tanks, instead it is performed in long 

channels called activated sludge lanes. A good overview of the wide range of 

potential reactor configurations is presented in Metcalf and Eddy (Metcalf and Eddy 

2003).  

 

In general, BNR processes consist of an anaerobic zone where NH4
+ is oxidized to 

NO2� and then to NO3�, and an anoxic zone where NO3� is reduced to nitrogen gas 

(N2). Denitrification in these systems is primarily conducted by heterotrophic 

bacteria using organic carbon as the carbon source (Metcalf and Eddy 2003). Often 
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the anoxic zone is placed at the front of the lane and a substantial portion of the 

effluent is returned to the influent where it is denitrified, which is referred to as 

predenitrification (Metcalf and Eddy 2003). Predenitrification has the advantage of 

allowing the influent COD to be utilized as a carbon source, eliminating the need 

and cost of separate carbon addition (typically methanol) to the reactor.  

 

The activated sludge process employed in this research was designed and operated 

to limit the investigated biological processes to combined COD removal and 

nitrification, and thus was a fully aerobic system with no anoxic zone. Physical 

specifications of this experimental apparatus will be presented in the following 

section. 

 

3.1.2 Equipment Specifications 

 

The pilot scale activated sludge process (shown in Figure 3-2) consisted of four key 

components, a reaction vessel, an aeration system, a clarifier, and a feed delivery 

system.  

 

 

Figure 3-2 Lab scale activated sludge process. 

 

A Perspex reaction vessel was the primary component of the system. This vessel had 

the following external dimensions: 43 cm high x 40 cm long x 27.5 cm wide, and was 

equipped with sloping edges at the base to reduce dead zones and minimize sludge 
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accumulation (along with the resulting anoxic zones). The overall aerated liquid 

volume at a normal operating liquid depth of 34 cm was 28.7 L. This vessel was 

hooded to allow the capture and venting of process off-gas, and equipped with 

ports to support influent, effluent, and aeration air lines. 

 

Aeration air was supplied via the pilot hall compressed air system. A regulator was 

used to reduce the airflow to an operating pressure of 120 kPa. Rotameters and a 

needle valve were connected to the air line to the reactor to allow manual 

adjustment of the aeration air flow. Aeration air was delivered to the aerator located 

in the bottom of the activated sludge tank. This aerator consisted of two flexible 

airstones to provide fine bubbles with a higher oxygen transfer efficiency than a 

coarse bubble diffuser. The use of fine bubble diffusers was required to reduce the 

total volume of aeration air required, which reduced the dilution of the sparged 

N2O into the off-gas and allowed for improved detection by the off-gas analysis 

system (Section 3.2). 

 

Mixed liquor from the aeration tank was transferred to an external clarifier for solids 

separation and recycle. The clarifier (Figure 3-2) was cylindrical in shape (15.5 cm in 

diameter) with a conical base for sludge collection and an 8.25 L normal operating 

volume. A scraper was installed inside the clarifier to remove accumulated sludge 

from the vessel walls to enhance settling. Wastewater was fed into the bottom 30% 

of the clarifier, generally the sludge blanket was achieved in the bottom 50% of the 

reactor and the supernatant reached the top of the clarifier and was discharged. A 

peristaltic pump was connected to the underflow to control the return of the settled 

sludge to the reactor. No automatic sludge wastage was conducted (sludge wastage 

will be discussed further in Section 3.1.3).  

 

The feed system in the pilot hall was shared between the activated sludge process 

utilized in this research and a membrane bioreactor. Feed was prepared in a 

concentrated form, typically in 4 to 5 L portions to last for a 72 hour period. This 

time frame was selected to minimize degradation of the feed during use. The feed 

was autoclaved prior to use and all feed components routinely cleaned and 

disinfected in a hypochlorite solution to further minimize degradation while in use. 

Concentrated feed was delivered via a peristaltic pump and dilution water was 
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simultaneously supplied from a reservoir tank to achieve the desired feed 

concentration. The concentrated feed was prepared as follows: 

 

Table 3-1 Synthetic feed recipe.  

Component Amount in 4 L (g) 

Glucose 126.4 
Sodium acetate 101.6 
Ammonium chloride (NH4Cl) 61.12 
Peptone 28.0 
Meat extract 17.2 
Magnesium sulphate (MgSO4) 10.0 
Dipotassium hydrogen orthophosphate (K2HPO4) 5.2 
Calcium Chloride (CaCl2) 5.2 
Iron (II) Sulphate (FeSO4) 1.04 

 

When diluted to approximately 1:150, this proved a feed with a composition of 367 ± 

22 mg/L COD and 27.5 ± 4.1 mg/L NH4
+-N and along with all trace nutrients.  

 

3.1.3 Operating Conditions 

 

Sludge from the recycle line of a full scale sludge nutrient removal process was used 

to seed the pilot scale reactor. The reactor was operated on the synthetic seed 

described in the previous section for over a year. During this time, it was observed 

that the off-gas N2O response decreased over time, likely due to loss of autotrophic 

bacteria from the system (a corresponding deterioration in the ammonia removal 

efficiency was observed). Eventually the remaining bacteria were washed from the 

reactor and it was dominated by fungi and had to be reseeded.  

 

Since adaptation to the synthetic feed was reducing the desired response, it was 

necessary to operate on much shorter timescales to obtain data before the 

adaptation effects became significant. The reactor was seeded from a full scale 

activated sludge nutrient removal process and operated for a 2 to 3 week period. 

When the reactor began to show signs of instability the sludge was removed and the 

reactor was reseeded and operated for another short period, with this cycle being 

repeated until the end of the experimental campaign. Specific details with regards 

to these aspects, in particular experiments conducted and temporal effects related 

to adaptation, will be presented in Chapter 4. 
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The nitrification process was operated at a 16.6 to 17.6 hour hydraulic retention time. 

Activated sludge return from the clarifier to the reaction vessel was operated in a 

cycle of 3.5 hours of underflow from the clarifier followed by 0.5 hours of relaxation 

(no underflow). The target operating mixed liquor suspended solids (MLSS) 

concentration was approximately 3500 mg/L, with this concentration being 

maintained by wasting activated sludge from the aeration tank. Wasting was 

conducted from the aeration tank and not from the clarifier underflow to simplify 

the determination of the sludge retention time since the MLSS concentration would 

be the same as that measured routinely from the reactor. Due to deterioration in 

sludge settling properties during the spike testing, the MLSS did vary considerably 

and it was not possible to estimate the sludge retention time (SRT) due to losses in 

the effluent.  

 

Routine maintenance was conducted on the aeration system, feed system and 

clarifier. Once per month the aerators were scrubbed while in the tank to reduce 

fouling and unblock aeration holes. The concentrated feed was changed every third 

day, with the feed lines being replaced and sterilized between uses. Daily checks 

were made on the settler to remove any floatable material from the tank and ensure 

the outlet was not being obstructed.  
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3.2 Off-Gas Monitoring 

 

The off-gas N2O monitoring system consisted of a non-dispersive infrared (NDIR) 

gas analyser and its supporting equipment; a sampling conditioning system and a 

data acquisition system.  This system is depicted in Figure 3-3 and photographs of 

the specific components are presented as Figure 3-4 and Figure 3-5. 

 

 

Figure 3-3 Off-gas analysis system. 

 

 

Figure 3-4 Photograph of sample collection, conditioning and analysis equipment. 
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Figure 3-5 Photograph of sample conditioning, analysis and data acquisition 

equipment. 

 

3.2.1 Principles of Operation 

 

NDIR analysers determine gas concentrations by correlating the absorbance of 

infrared light at characteristic wavelengths to the gas concentration. The analyser 

utilized in this study was based on a dual chamber balanced detector, which does 

not rely on direct absorbance measurement. Instead, this detector is based on the 

differential absorbance of infrared light in the detector’s sample chambers and 

measurements of the resulting mass flow.  

 

While there are many other important components, the core of the analyser is the 

optical bench (Figure 3-6), which consists of an infrared light source, a sample cell, 

and a detector.  
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Figure 3-6 NDIR analyser optical bench. 

 

The detector used in the analyser’s optical bench consists of two gas chambers (of 

unequal volumes) filled with the gas of interest (in this case N2O) that are connected 

in optical series through which the infrared light passes. In the first chamber 

(primary chamber, which is smaller in volume) infrared absorption occurs at the 

most strongly absorbed characteristic wavelengths for the gas in the infrared 

spectrum. The non-absorbed radiation passes through to the secondary chamber 

where, due to its longer length, infrared light is absorbed at the weakly absorbed 

characteristic wavelengths (less intense absorption). This difference in absorption 

causes the gas in the two chambers to heat differentially (more intense heating in 

the primary chamber), resulting in a pressure differential and hence a flow of gas 

between the two chambers. An orifice and mass flow sensor located between the 

two chambers measures the flows between them and generates a signal which is 

used to determine the gas concentration. 

 

When a gas sample is delivered to the sample cell, infrared light is absorbed by the 

gas of interest and less energy is applied to the detector. The gas of interest in the 

sample cell will absorb the strongly absorbing wavelengths of the applied infrared 

light, thus there will be less energy available to be absorbed in the primary chamber. 

However, the weakly absorbing wavelengths are not absorbed as much in the 

sample cell and the reduction in energy gained by the secondary cell is not as 

intense. This change in energy effects the mass flows between the sample cells and 

produces an inversely related signal to the concentration of the gas of interest 

relative to a zero gas sample. 
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3.2.2 Equipment Specifications 

 

The off-gas analysis system (Figure 3-5) consisted of three components; sample 

conditioning, sample analysis, and data acquisition. Specifications for the sampling 

conditioning system were dictated by the requirements of the sample analysis 

system. In particular, the sample conditioning system had to remove moisture to 

protect the analyser, and provide constant sample pressure, temperature, and flow 

to maintain similar analysis conditions as those used during calibration (to maintain 

a suitable level of measurement accuracy).  

 

The primary components of the sample conditioning system were an M&C 

diaphragm pump (Series N N3KP18), and an M&C ECP 1000 electric gas cooler. A 

Peltier type gas cooler was used in this system. This type of gas cooler uses a voltage 

applied to dissimilar metals to generate an active heat pump that can cool below 

ambient temperatures. The cooling block surrounds a glass heat exchanger, and as 

the gas flows through the heat exchanger it cools and water vapour condenses on 

the sides and is trapped at the base of the heat exchanger. A Peltier type gas cooler 

minimizes gas-liquid contact and reduces the capture of soluble gas components in 

the liquid phase. The sample conditioning system included rotameters and a flow 

regulator needle valve to measure and adjust the gas sample flow through the 

analyser, as well as a pressure gauge and a needle valve on the analyser outlet to 

monitor and adjust system pressure.  

 

Off-gas N2O analysis was conducted using an Enviromax Model 2010 NDIR gas 

analyser. This analyser was connected to the outlet of the gas conditioning system 

and the exhaust was piped to the pilot hall gas exhaust system. N2 and N2O gas 

cylinders were connected to the analyser for calibration purposes. The analyser had 

three user selectable ranges (0-20 ppm, 0-100 ppm, and 0-200 ppm), and generated a 

0-10 V signal in proportion to the N2O concentration, with a 0.1 ppm resolution. This 

signal was acquired by a National Instruments based data acquisition system (NI 

PCI-6221 data acquisition card) and a PC running data acquisition software coded 

using LabVIEW. 
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3.2.3 Operating Conditions 

 

In the interest of data quality, consistent operating conditions were maintained 

during calibration and operation. Specifically, a 0.7 L/min sample flow and an 

analyser operating pressure of 1.75 psig was used. The analyser was operated in the 

0-20 ppm range and the calibration (analyser zero and span) was verified on a 

weekly basis using N2 gas as a zero and 14.9 ppm N2O in balance N2 as a span gas, 

with the analyser being recalibrated where necessary. Condensate from the 

conditioning system was drained on a daily basis. The monitoring system was run 

continuously and N2O concentration data was recorded by the data acquisition 

system as 30 second averages. 
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3.3 Liquid Phase Process Instrumentation 

 

Liquid phase process instrumentation consistsed of a dissolved oxygen probe and 

associated datalogging equipment. 

 

3.3.1 Principles of Operation 

 

DO analysis was conducted using a polarographic DO probe. In general DO probes 

are liquid phase sensors consisting of a sensor body housing an electrolyte and two 

metal electrodes (an anode and a cathode) with an open end which is inserted into 

the sample matrix. The open end is covered with a polymer membrane which is 

permeable to oxygen molecules but impermeable to most other ions/species, thus 

preventing the electrolyte from escaping the probe and mixing with water. As the 

oxygen diffuses through the membranes it is reduced at the cathode and a current 

is generated. This current is proportional to the rate of oxygen diffusion into the 

probe, which is in turn proportional to the oxygen partial pressure in the liquid 

phase. The current generated by the probe is monitored and converted to 

concentration units that are reported by the instrument. Unlike galvanic probes 

which can reduce dissolved oxygen without any external influence, polarographic 

probes use two noble metal electrodes and thus require an external voltage 

(polarization) for oxygen reduction to occur. This is a particularly important 

consideration when operating these probes since they require a specific 

polarization time (on the order of 24 hours) before they can be put into service.  

 

3.3.2 Equipment Specifications 

 

DO concentrations were monitored using a Mettler Toledo InPro 6800 

polarographic probe. The probe had a stainless steel body with a 12 cm immersion 

length and was equipped with a thermocouple to provide temperature data. 

Dissolved oxygen was measured by the probe as % saturation, and both the % 

saturation and temperature data were collected by a Mettler Toledo M300 signal 

transmitter and sent to the LabVIEW based data acquisition system (discussed 

previously in Section 3.2). The data acquisition system converted this data to DO 
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concentrations in mg/L which was logged along with the temperature as 30 second 

averages. 

 

3.3.3 Operating Conditions 

 

The DO probe was operated on a continuous basis. Being a polarographic probe, in 

the event of a power interruption the probe was allowed a 24 hour repolarization 

period prior to being put back into service. Calibration and maintenance were 

performed on a biweekly basis, consisting of removing the probe from the reactor, 

rinsing the membrane with deionized water and verifying the zero and span by 

inserting the probe in water sparged with N2 gas and air, respectively.  
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Chapter 4    Stress Response Analysis 

 

The first step in assessing the feasibility of utilizing off-gas N2O emissions as a basis 

for aeration process control consisted of investigating the nature of these emissions. 

As discussed previously in Section 2.1, the dominant source of off-gas N2O 

emissions in the aerobic component of activated sludge nitrogen removal processes 

is believed to be aerobic autotrophic denitrification (Tallec et al. 2006a; Tallec et al. 

2008), which is an alternative metabolic pathway possessed by autotrophic bacteria 

that is initiated by metabolic stress.  

 

Off-gas N2O emissions from nitrifying processes are thus a response to metabolic 

stress experienced by autotrophic nitrifying bacteria. The concept of stress-

response relationships and their role in activated sludge process upset was analysed 

by Love and Bott (2002). They concluded that gaining understanding of these 

relationships would allow for the development of new monitoring techniques and 

operational strategies.  

 

In utilizing a stress response as the basis for a process control concept, several 

criteria must be satisfied. Specifically, the response being utilized must: 

 

1. occur when a stress is present and disappear when the stress has been 

removed; 

2. occur in a time scale suitable for process control; 

3. have a stable relationship with the stress, i.e. be a reproducible response;  

4. be proportional to the applied stress; and  

5. be sufficiently sensitive to allow for control in an appropriate operating 

range. 

 

To assess the potential of this stress response for process control, discrete 

experiments were designed and conducted to evaluate the stress response against 

each of these criteria. Furthermore, the data presented in this chapter forms the 

basis for process modelling and the development of a novel off-gas N2O emission 

correlation, the results of which are presented in Chapter 5 of this thesis. 
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4.1 Methodology 

 

Two types of experiments were conducted to assess the stress response against the 

criteria identified in the previous section. These experiments consisted of shock 

loadings (Tests 1 to 7, discussed in Sections 4.2.1 to 4.2.4), and step changes in 

reactor loading (Test 8, discussed in Section 4.2.5). A one hour monitoring period 

was conducted prior to each testing event to verify initial process conditions. A 

stress (in the form of a dosage (spike) of concentrated reactor feedstock) was 

applied following this period, and the process was monitored (liquid phase 

parameters and off-gas N2O concentrations) until it had returned to its initial state, 

approximately 3 hours after each spiking test.  Specific details with regards to the 

applied perturbances will be provided in the respective results sections. 

 

Liquid phase parameters (with the exception of DO) were monitored at a variable 

frequency, with the highest sampling frequency occurring at the start of the tests 

(during the most dynamic part of the response). The sampling frequency decreased 

over time as the rate of process change decreased. Liquid phase parameters were 

analysed using standard wet chemistry methods (APHA et al. 1995). DO and off-gas 

N2O concentrations were monitored continuously by direct reading instruments 

(specific instrument and operational details are provided in Chapter 3), with average 

concentrations being logged at 30 second intervals. Analytical techniques and 

specific method references are summarized in Table 4-1. Free nitrous acid 

concentrations (FNA) were calculated based on the pH dependent equilibrium with 

NO2� (Anthonisen et al. 1976). 
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Table 4-1 Analytical methods – stress response testing. 

Parameter Location Frequency Method 

Influent Pre-test COD 
Effluent Variable 

Method 5220 D 
APHA et al. (1995) 

Influent Pre-test  
NH4

+ 
Effluent Variable 

Nesslerization 

Influent Pre-test 
NO3� Effluent Variable 

Method 4500-NO3� E 
APHA et al. (1995) 

Influent Pre-test 
NO2� Effluent Variable 

Method 4500-NO2� B 
APHA et al. (1995) 

N2O Off-gas Continuous Off-gas Analyser 
DO Aeration Tank Continuous Calibrated Probe 
pH Aeration Tank Variable Calibrated Probe 

TSS Aeration Tank Pre-test 
Method 2540 D 
APHA et al. (1995) 

Flow Influent Post-test Pump Calibration 
 

Graphical comparison of response data is a subjective process, and as a result the 

interpretation of such an analysis can be quite variable. A quantitative analysis of the 

responses was conducted to increase objectivity and improve the comparison of 

different tests. This analysis consisted of calculating the area of the responses of 

interest and using that area as a measure of the response magnitude. Responses of 

interest included DO depletions and accumulations of N2O, NH4
+, NO2�, and FNA.  

 

Calculation of the response areas required a baseline to form an upper or lower 

boundary for depletions and accumulations, respectively. The measured pre-test 

baseline conditions would normally be used in such an analysis. However, as will be 

seen in the results presented in Section 4.2.1, variation in process steady state (i.e. 

post-test steady state conditions not being the same as initial baseline conditions) 

were observed in many of the tests. Since it is not possible to determine if the 

variation is a result of the imposed stresses or an independent process fluctuation, 

nor the exact time at which the fluctuation occurred, an exact response area could 

not be determined. Instead, the response area was bounded by calculating the area 

using the initial baseline conditions and again with the final steady state conditions.  
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4.2 Results and Discussion 

 

4.2.1 Stress Response – Spiking Events 

 

Seven spiking events were conducted to gather the data required to characterize 

the off-gas N2O stress response. The first four tests were conducted over a 5 day 

period, starting 5 days following reactor seeding (Seed A). Towards the end of the 

first group of tests, adaptation effects had become apparent (changes in floc settling 

properties and process response), and the reactor was reseeded (Seed B). Following 

an identical initial start up period (5 days), the remaining spiking events (Tests 5, 6, 

and 7) were performed along with the step change test (Test 8).  

 

The primary parameter varied in the spiking events was the spike volume. It should 

be noted that the concentration of the specific components in the concentrated 

feed used for the spikes varied over the course of the sampling period. Thus, even 

for identical spike volumes, the amounts of substrate in the spike would vary. A 

summary of the spike tests along with the substrate loadings in the spikes is 

provided as Table 4-2. 

 

Table 4-2 Summary of spiking events. 

Spike 
Sludge Test 

Days from 

Seeding 

Spike Volume 

(mL) 
COD 

(mg COD) 

Ammonium 

(mg NH4
+– N) 

1 5 15 908 74.9 
2 6 15 869 61.7 
3 7 10 587 43.5 

A 

4 10 7.5 473 32.2 
5 5 7.0 421 29.7 
6 7 7.0 353 25.2 B 
7 9 15 855 56.3 
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The individual test results were utilized to assess two of the five control suitability 

criteria; response correlation to stress and timescale suitability. Combinations of 

these tests were utilized to assess two other criteria, in particular: 

  

o reproducibility – Tests 1, 2, and 5 (Section 4.2.2); and 

o proportionality – Tests 2, 3, and 4 (Section 4.2.3). 

 

The final criterion, response sensitivity, was assessed using the step response test 

(Section 4.2.5). Results of each individual spike test are shown in Figure 4-1 to Figure 

4-7. 
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Overall, the DO profiles presented in Figure 4-1 to Figure 4-7 had very similar forms.  

A typical DO depletion profile has been subdivided into regions of interest and is 

presented as Figure 4-8, below.  

  

 

Figure 4-8 Dissolved oxygen depletion profile. 

 

The first part of the profile (a) represents the initial baseline conditions. Following 

the application of a spike, an increase in DO uptake occurs as the bacteria respond 

to the added substrate, resulting in a very rapid decrease in DO concentrations (b).  

As the DO decreases, substrate limitation results in inhibition of autotrophic 

bacteria, which continues to increases with decreasing DO until the oxygen uptake 

rate is equivalent to the aeration rate and the DO reaches a minimum concentration 

(within 8 to 11 minutes). The inhibition likely continues to increase after the 

minimum point as nitrite builds up, resulting in a small increase in the DO 

concentration (c). Following this initial recovery, the DO concentration then 

increases at a much slower rate while the bacteria consume the excess substrate 

which has accumulated in the reactor. For smaller spikes, (Test 3 and 4), this increase 

was gradual, while for larger spikes (Tests 1, 2, and 5) a “depletion plateau” (d) of 

very slow DO increase persisted for approximately one hour. Once the bacteria 

consume the excess substrate, the oxygen uptake rate decreases and DO increases 

(e) until it reaches steady state conditions (f). 
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If the DO depletion is viewed as a metabolic stress on the system, the off-gas N2O 

profile is the measured response to that stress. The off-gas N2O stress response is 

rapid, occurring within 4 to 8 minutes of the application of the stress. The timescale 

of this response is thus shorter than the typical timescale of aeration setpoint 

changes which are on the order of 15 to 30 minutes (Olsson and Newell 1999). A 5 to 

10 minutes measurement response has been identified in the literature as being 

ideal for online process control (Lynggaard-Jensen 1999; Lynggaard-Jensen et al. 

1996; Thomsen and Kisbye 1996). It can thus be concluded that on the basis of 

timescales, off-gas N2O emissions are suitable for aeration control. Furthermore, as 

seen in Figure 4-1 to Figure 4-7, the off-gas N2O concentrations quickly returned to 

baseline conditions once the stress on the system had ended. Thus off-gas N2O 

emissions satisfy Criteria #1 and #2, namely the response occurs only in the 

presence of a process stress and occurs on a timescale suitable for process control. 

 

While off-gas N2O emissions loosely fit as an oxidative stress indicator, the actual 

stresses in the system are more complex, as seen when looking at the remaining 

liquid phase data. If the appearance of off-gas N2O is strictly a function of the 

oxygen stress in the reactor, it would be expected that N2O concentration would 

peak at the minimum DO concentration and then decrease as the DO increased. 

However, this was not the case. In all of the spike tests (Tests 1 to 7), the off-gas N2O 

concentrations continued to increase after the DO had started to recover from the 

minimum value, with peak concentrations occurring on the DO depletion plateau.  

 

Considering the other liquid phase parameters, the off-gas N2O emissions did not 

appear to be strongly linked to the NH4
+ concentrations. NH4

+ is a significant 

metabolic inhibitor at concentrations greater  than 10 mg/L and 1 mg/L for AOB and 

NOB, respectively (Hagopian and Riley 1998; Jianlong and Ning 2004). The measured 

NH4
+ concentrations in the reactor did not increase above 5.2 mg/L, thus significant 

direct inhibition of AOB (which would result in a stronger link between NH4
+ 

concentrations and process stress) would not likely occur. Instead, the role of NH4
+ 

would be an indirect one via increasing the metabolic oxygen uptake and 

subsequent DO depletion, or the direct inhibition of NOB which would result in 

accumulation of NO2�.  
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A much stronger correlation existed between NO2�/FNA and off-gas N2O 

concentrations. The location of the maximum off-gas N2O concentrations as well as 

the start of the decline to baseline conditions correlated quite strongly to the 

maximum and initial decline for NO2� and FNA concentrations.  

 

This observed correlation corresponds to the current mechanistic understanding 

presented in the literature (which was reviewed in Section 2.1). N2O generation is 

believed to be an alternative metabolic pathway which is only initiated when a 

metabolic stress such as DO depletion or the presence of an inhibitory substance 

renders it favourable. Hence, the DO depletion acts to switch on the potential for 

the alternative pathway, and as such the linkage between off-gas N2O and dissolved 

oxygen concentrations would not be a direct one. In addition to requiring 

favourable inhibitory conditions, NO2� (or FNA) is required as a substrate for the 

reaction (Shiskowski and Mavinic 2006). As the limiting substrate for the reaction, it 

would be expected that, as was observed in the experimental work, the generation 

rate (and correspondingly the off-gas concentrations) would follow the substrate 

concentration closely. While NH4
+ is also a substrate for the reaction, it would not be 

expected to correlate strongly to the N2O generation (other than as a source of 

oxidative stress) since it would likely be in excess. 

  

The analysis to this point has been quite subjective in nature. A more objective 

assessment of the stresses and responses, in the form of an area analysis, was used 

to gain further understanding into the nature of the response. Results of this 

assessment for each of the spiking events are provided as Table 4-3. In addition to 

the process responses in terms of the accumulation and depletions, initial baseline 

and post test steady state conditions are provided for each of the parameters of 

interest. The percentile deviations between these initial and final conditions have 

been included to facilitate assessment of process variability during the testing 

period. 
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Table 4-3 Summary of stress responses to spiking events.  

Test ID  
1 2 3 4 5 6 7 

Test Conditions 
Temperature (°C) 20.9 21.8 22.9 22.7 25.6 24.4 25.8 
MLSS (mg/L) 4665 4869 4299 3626 4868 3088 2260 
Spike volume (mL) 15 15 10 7.5 7.0 7.0 15 
Spike COD (mg) 908 869 587 473 421 353 855 
Spike ammonium (mg) 74.9 61.7 43.5 32.2 26.7 25.2 56.3 
Spike oxygen cemand (mg) 1251 1151 786 620 556 468 1112 
Continuously Monitored Parameters 

Baseline 3.17 3.14 3.32 3.22 2.38 3.36 3.22 
Steady state 3.10 3.08 2.90 3.20 2.60 3.30 2.88 Concentration 

(mg/L) Deviation 
(%) 

2.2 2.0 12.6 0.7 8.5 1.8 10.6 

Maximum 4.07 3.36 2.23 2.10 1.95 1.78 3.88 
Minimum 3.85 3.23 1.56 2.06 1.54 1.67 3.01 

DO 

Depletion  
(mg•h/L) 

Range (%) 5.3 3.7 29.9 2.3 20.7 6.4 22.3 
Baseline 0.91 0.86 0.93 0.95 0.97 1.03 0.96 
Steady state 0.92 0.97 1.00 0.98 0.99 1.05 0.94 Concentration 

(ppm) Deviation 
(%) 

0.4 12.1 6.9 3.1 2.7 1.5 1.3 

Maximum 1.20 1.87 1.25 1.22 1.29 1.37 3.06 
Minimum 1.19 1.64 1.14 1.16 1.23 1.34 3.03 

N2O 

Accumulation  
(ppm•h) 

Range (%) 0.6 12.4 8.9 1.8 4.0 2.4 1.0 
Liquid Phase Parameters 

Baseline 1.10 0.61 0.82 0.21 0.02 0.46 0.13 
Steady state 1.17 0.37 0.44 0.60 0.42 0.92 0.50 Concentration 

(mg/L) Deviation 
(%) 

5.7 39.6 45.8 65.6 95.2 49.8 73.3 

Maximum 1.41 2.84 0.94 1.77 1.61 1.08 4.30 
Minimum 1.36 2.38 0.64 1.03 0.79 0.25 3.36 

NH4
+ 

Accumulation  
(mg•h/L) 

Range (%) 3.6 16.3 31.5 42.0 50.8 76.8 21.8 
Baseline 0.018 0.011 0.027 0.058 0.040 0.028 0.054 
Steady state 0.027 0.017 0.015 0.093 0.032 0.028 0.075 Concentration 

(mg/L) Deviation 
(%) 

32.0 35.4 44.4 38.0 18.9 1.0 27.9 

Maximum 0.37 0.35 0.17 0.25 0.18 0.16 0.53 
Minimum 0.35 0.34 0.16 0.18 0.16 0.16 0.47 

NO2� 

Accumulation  
(mg•h/L) 

Range (%) 6.6 2.8 7.5 28.7 7.6 0.2 10.2 
Baseline 2.13 1.43 3.86 6.73 5.40 3.34 6.27 
Steady state 3.39 2.31 2.43 10.7 4.57 3.44 9.50 Concentration 

(x10-6 mg/L) Deviation 
(%) 

37.0 38.2 37.2 37.2 15.2 2.8 34.0 

Maximum 5.53 5.34 3.00 3.52 2.86 2.24 8.05 
Minimum 5.16 5.19 2.85 2.73 2.70 2.22 7.22 

FNA 

Accumulation  
(x10-5 mg•h/L) 

Range (%) 6.7 2.8 5.3 22.6 5.6 0.6 10.2 
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The process was for the most part stable with regards to DO and off-gas N2O 

concentrations. There was less than 8% variation from the initial baseline conditions 

to the final steady state for all the tests with the exception of Test 3 and 7 for DO 

(12.6% and 10.6% deviation, respectively), and Test 2 for off-gas N2O (13.7% 

deviation). Much higher deviations were observed between baseline and post test 

steady state concentrations for the measured liquid phase parameters (NH4
+, NO2�, 

and FNA), on the order of 32% to 49% with some outliers.  

 

There does not appear to be a consistent trend with regards to the observed 

deviations, i.e. in some tests the baseline concentration was lower than the post test 

steady state concentration, while in others it was higher. This lack of a trend 

suggests that the deviations were not related to process timescales and were most 

likely a product of process instability/variability associated with the small scale of the 

pilot reactor. Furthermore, some of the baseline/steady state measurements for 

liquid phase parameters (NH4
+ and NO2�/FNA) were near the limits of detection and 

small experimental errors could have a large percentile impact on the resultant 

concentrations. 

 

With regards to the depletion/accumulation areas presented in Table 4-3, it should 

be noted that the liquid phase parameters (with the exception of DO) had a variable 

monitoring frequency and the data points were relatively coarsely spaced in 

comparison to the continuous monitoring data. As such, the area calculations for 

these parameters would be a coarse approximation of the accumulations and would 

be more useful in terms of assessing trends and proportionality instead of absolute 

values. Absolute values of the areas should not be interpreted directly since the 

magnitude of the responses can be influenced by a range of physical and 

operational parameters and could vary highly between processes. Instead, it is more 

appropriate to interpret the relative values of the parameters and relationships 

between then. These results will be interpreted in such a manner in Sections 4.2.2, 

4.2.3, and 4.2.4 to assess reproducibility, signal proportionality, and the effect of 

initial process conditions, respectively. 
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4.2.2 Response Stability 

 

Stability of the process response was assessed using the results of three tests (Tests 

1, 2, and 5) in which the process was perturbed with a 15 mL concentrated feed 

spike. Responses (DO and off-gas N2O concentrations) for all three tests are 

compared in Figure 4-9, below. 

 

 

Figure 4-9 Stress response reproducibility using successive 15 mL feed spikes. 

 

The response areas for DO depletions and off-gas N2O accumulations are 

summarized in Table 4-4. 

 

Table 4-4 Response reproducibility – area analysis. 

Test ID 
 

1 2 5 

Spike Loading Oxygen demand (mg/L) 1251 1151 1112 
Maximum 4.06 3.36 3.88 
Minimum 3.85 3.23 3.05 
Average 3.96 3.29 3.44 

DO  
Depletion 
(mg�h/L) 

Range (%) 5.3 3.7 22.3 
Maximum 1.20 1.87 3.06 
Minimum 1.19 1.64 3.03 
Average 1.20 1.75 3.05 

N2O 
Accumulation 
(ppm�h) 

Range (%) 0.6 12.4 1.0 
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DO profiles for Tests 1 and 2 were quite consistent with regards to shape, with Test 

2 having a smaller net depletion as seen in the depletion areas presented in Table 

4-4. This reduction in DO depletion (17% smaller) was somewhat larger than the 

reduction in loading (8% reduction from Test 1 to Test 2). The DO deficits in Tests 2 

and 5 were not significantly different, with approximately 3% and 4% differences for 

the spike loading and resulting DO deficits, respectively. In terms of shape, the DO 

profile in Test 3 was different from that of Tests 1 and 2, with a shallower deficit but 

a longer duration. 

 

The observed off-gas N2O accumulations were counter intuitive, with the greatest 

accumulation being observed at the lowest spike loading/DO depletion, and vice 

versa. There was a much higher variability in the off-gas N2O accumulations, 61% 

between the highest and lowest accumulations. The shape of the off-gas N2O 

profiles in Tests 1 and 2 were quite similar, with an initial peak at the minimum DO 

followed by a gradual increase over the duration of the DO depletion plateau, after 

which there was a rapid decrease to the steady state concentration. Test 5 had an 

off-gas N2O profile which varied strongly from Tests 1 and 2, with a steady increase 

to the maximum concentration (no initial peak), and a much broader profile which 

corresponded to the broader DO profile. 

 

Overall with regards to Criterion #3 (reproducible response to stresses), there 

appeared to be a significant level of variability in the off-gas N2O response, 

particularly between tests conducted on different seeds. It can not be definitively 

concluded from this work if the variability is inherent in the response or a function 

of other experimental factors, although in a stable microbial community it would be 

expected to have a fair degree of reproducibility.  

 

It is possible that the variation in the off-gas N2O responses represents a variability 

in the microbial populations between seeds (which were collected approximately 

1.5 months apart). Alternatively these variations could be the result of the effects of 

successive spiking or adaptation to the synthetic feed/reactor operating conditions. 

These effects will be discussed further in Section 4.2.3.  
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4.2.3 Response Proportionality 

 

Three sequential tests at decreasing spike volumes (Tests 2, 3, and 4) were 

conducted to assess the response proportionality to reactor loading. The DO and 

off-gas N2O profiles for all three tests are presented in Figure 4-10 for comparison. 

 

The shapes of the DO profiles were as expected, with a shallower profile being 

observed at smaller spike loadings. Based on the results of the area analysis (Table 

4-5, presented as a percentage of the average Test 2 value), there was one deviation 

from the expected trend, with the depletion in Test 4 being greater than that in Test 

3. This is a function of depletion in Test 3 having a larger range (approximately 30% 

between the minimum and maximum) due to the drift in the reactor DO from 

baseline to steady state, although the percentile depletion in Test 4 is larger than the 

percentile load. 

 

Off-gas N2O responses had different shapes in all three tests, making visual 

comparison unreliable. The duration of the peaks decreased with decreasing load 

(quite similar to the shapes of the DO profiles), as did the peak off-gas N2O 

concentrations. With regards to the net response (accumulation area), there was a 

decreasing trend Tests 2 and 3 which corresponded well to the load. However, Tests 

3 and 4 did not have significantly different net responses, and similar to DO, there 

appeared to be an increased process response to the spike loading.  

 

Table 4-5 Response proportionality – area analysis. 

Test ID 
 

2 3 4 

Spike loading* Oxygen demand 100 68 54 
Maximum 102 68 64 
Minimum 98 47 62 

DO 
Depletion* 

Average 100 57 63 
Maximum 107 71 70 
Minimum 94 65 66 

N2O 
Accumulation* 

Average 100 68 68 

*Results are presented as a percentage of the average Test 2 value. 
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Due to the variability noted in both this section and in the previous one, the entire 

dataset was analysed to assess proportionality. DO depletions and off-gas N2O 

accumulations are presented as a function of spike loading in Figure 4-11 and Figure 

4-12, respectively. 

 

 

 

Figure 4-11 DO depletion as a function of shock loading magnitude. 

 

 

 

Figure 4-12 N2O accumulation as a function of shock loading magnitude. 
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With regards to DO, a definite trend existed and the net response was proportional 

to the spike load, with one primary outlier (Test 3 at 783 mg oxygen demand). The 

net off-gas N2O response did not appear to have a proportional correlation to the 

spike load, indeed many of the net responses are relatively similar in magnitude. 

The off-gas N2O results suggest the influence of other parameters than simply spike 

load. One way to assess the influence of other parameters is to look at off-gas N2O 

yields normalized based on the spike load (oxygen demand) and reactor MLSS (a 

measure of biomass concentration). 

 

 

 

Figure 4-13 Temporal variation in off-gas N2O yield. 

 

Two things are apparent when looking at Figure 4-13. First, there is a significant 

difference in the yields for the two sludges, suggesting a variation in the biological 

makeup of the two seeds used to start up the reactor. It has been identified in 

literature that AOB populations can be influenced by seasonal effects (temperature) 

as well as operational parameters such as SRT and influent properties (Limpiyakorn 

et al. 2005; Siripong and Rittmann 2007). However, lacking microbiological analysis of 

the populations, such a difference can not be confirmed. 

  

Secondly, a very strong linear correlation between N2O yield and time from spiking 

(i.e. temporal effects) exists in the data. These effects could be the result of 
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adaptation to two forms of process stress. One source of stress would be the 

changed operational conditions from the full scale process to the lab scale reactor 

(for example changes in SRT, HRT and influent from a real wastewater to a synthetic 

one). These stresses would result in adaptive effects on the microbial community 

over time, with it being generally accepted that up to three times the SRT is required 

for a reactor to reach a new steady state. It is likely that while these adaptive 

changes would result in process instability, they may not be the dominant source of 

the temporal variation in the off-gas N2O response. A second source of stress is the 

application of successive spikes which would exert a selective pressure that would 

favour the AOB best able to cope with repeated stress conditions of oxygen 

depletion. Thus the process would be selecting AOB best able to utilize the 

alternative metabolic pathway which results in the generation of N2O. By selecting 

in this manner, it would be expected that there would be an increase in off-gas N2O 

yield over time.  

 

These yield results could account for the observed lack of proportionality in the off-

gas N2O emissions from Test 4 compared to Tests 2 and 3. Tests 2 and 3 were 

conducted on sequential days, while the final test (Test 4) was conducted three days 

later. Looking at Figure 4-13, the normalized N2O yields for Tests 2 and 3 were not 

significantly different, while that in Test 4 was substantially higher, thus producing a 

larger response with a smaller spike loading. 

 

Overall, the N2O proportionality results are mixed with some data indicating 

proportionality with others indicated the presence of substantial temporal 

variations. The source of these variations needs to be further assessed, particularly 

to determine if they are a function of the experimental apparatus, in particular the 

synthetic feed, or are a product of the experimental methodologies (i.e. the act of 

perturbing the system with spikes produces changes in the system being 

investigated).  

 

It is interesting to note that despite the mixed N2O results, DO depletions showed a 

good level of proportionality. This is likely due to the nature of the oxygen demand 

load applied, which was approximately 75% organic carbon. Thus the resulting DO 

depletion is parimarly a function of organic carbon metabolism by heterotrophic 

bacteria, and as such the response would not be influenced in the same manner by 
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external factors as N2O generation (which in this case is solely a product of 

autothropihc bacteria). 

 

With regards to Criterion #4 (response proportional to applied stress), further 

investigation is required to determine parameter suitability. In particular, 

investigation should be conducted for operation on real wastewater at full scale 

plants utilizing smaller perturbations such as step changes in a controlled system, as 

well as assessing long term (seasonal) variations on fully adapted processes.  

 

4.2.4 Effect of Initial Conditions 

 

For application to process control, as well as for the development of an off-gas N2O 

correlation, it is important to know if the response is dependent on initial 

conditions, i.e. if the same stress is applied, will there be a similar stress response at 

different operating setpoints. This was assessed by applying 7 mL spikes to the 

process operating at two different aeration setpoints, the first with a baseline DO 

concentration of 2.5 mg/L (Test 5) and the second at 3.3 mg/L DO (Test 6). DO and 

off-gas N2O profiles are provided for both tests in Figure 4-14 for comparison. 

 

 

 

Figure 4-14 Evaluation of initial condition effects on stress response. 
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For the liquid phase DO concentrations, the profiles in the two tests were similar 

and for the most part offset by a consistent amount (with the exception of the initial 

minimum DO, where the profile in Test 6 was closer to that in Test 5 indicating a 

slightly stronger response). Based on the area analysis, there was no significant 

difference between the measured depletions, with the depletion range for Test 6 

being inside that for Test 5. 

 

Off-gas N2O profiles were quite similar as well, except the profile in Test 6 had a 

much rounder peak and reached a maximum earlier than in Test 5, although the 

maximum values were similar. The shapes and maximum points were strongly 

correlated to the liquid phase NO2�/FNA concentrations (presented in Figure 4-5 and 

Figure 4-6, respectively). Despite some variations in shape, the net responses were 

quite similar, being only 7% different. This indicated that while initial conditions do 

have some effect on the response, they appeared to be small and not likely to be 

significant over the normal operating range of a controlled process. 

 

4.2.5 Stress Response – Feed Step Change 

 

While spike tests provide useful dynamic data, another common test used to 

characterize process dynamics is the step response test. In a step response test, a 

step change is applied to one of the process input parameters and the resulting 

changes in process outputs as they approach a new steady state is observed. Step 

changes tend to be more representative of actual process control applications. 

Typically a single step is done during a test. However, due to the temporal variability 

observed in Tests 1 to 7, several consecutive steps were done in a single test (Test 8, 

presented as Figure 4-15) to allow for more consistent results. 
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Figure 4-15 Stress response to a step change in influent feed concentration. 

 

As seen in Figure 4-15, the process required approximately one hour to reach a new 

steady state following application of a step change. Three steps were applied, but 

for the purposes of this analysis the second and third steps will be lumped together 

into Step 2. The two steps (1 and 2) consisted of identical load increases, with Step 1 

being an increase from full load to 150% of full load, and Step 2 being an increase 

from 150% to 200% of full load.  

 

The off-gas N2O response to Step 2 was much larger than that for Step 1. Likely this 

difference in response is due to the nature of DO inhibition of biological processes, 

which is Monod in form and not a linear correlation. Due to this form, above a 

certain bulk DO concentration the process is rather insensitive to changes in DO, 

thus changes in DO result in very small changes in the level of inhibition (and 

corresponding off-gas N2O response). Once the bulk concentration decreases 

sufficiently, the sensitivity becomes larger and the inhibition increases at a greater 

rate with decreasing DO (and the process response becomes more significant). 

Based on the results presented in Figure 4-15, once the bulk DO concentration 

reaches approximately 2 mg/L, process inhibition (and correspondingly off-gas N2O 

concentrations) became highly sensitive to changes in reactor DO. This in 
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agreement with Tallec et al. (2006a), who observed a trend of increasing N2O 

generation with decreasing dissolved oxygen concentrations below 2 mg/L.  

 

At the end of Step 2, after the process loading had been returned to the normal 

operating load, a rapid increase in off-gas N2O concentrations was observed. Likely 

this is due to accumulation of NO2�/FNA and NH4
+ during the step test associated 

with the process operating at an excessively high loading. At that point the process 

was beginning to fail significantly and this failure was exhibited in the off-gas N2O 

concentrations. 

 

In terms of application to process control, these results demonstrate that the stress 

response is sensitive to changes in process conditions in the normal operating 

range of an activated sludge process (Criterion #5). Furthermore, the off-gas N2O 

signal was relatively stable at the operating setpoints, a requirement to be a suitable 

parameter for process control.  
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4.3 Summary 

 

The dynamics of off-gas N2O stress responses were assessed to determine the 

suitability of this parameter for process control applications. Off-gas N2O emissions 

from nitrifying processes are believed to be a stress-response relationship in which 

AOB experiencing metabolic stress utilize an alternative metabolic pathway (that 

generates N2O) as a survival mechanism. In general, the observed off-gas N2O 

responses were in agreement with the prevailing mechanistic understanding of this 

process, with two conditions having to be satisfied for the alternative autotrophic 

metabolic pathway of interest to proceed and the subsequent stress response to be 

exhibited. Namely, there must be a source of process stress (for example a DO 

depletion caused by an increase in influent loading) and the presence of the limiting 

substrate for the alternative metabolic pathway (NO2� or possibly FNA) for the stress 

response to be generated. 

 

Evaluation of this stress-response relationship was conducted against 5 key criteria, 

with the results summarized below in Table 4-6. 

 

Table 4-6 Summary of off-gas N2O suitability as a control parameter. 

Criteria Description Comments 

1 
Presence correlated to 
stress 

Strong correlation, only occurs in the presence of a 
DO depletion and NO2�/FNA accumulation 

2 
Timescale suitable for 
process control 

Response timescale on the order of 4 to 8 minutes, 
faster than the timescale of aeration setpoint 
adjustment, thus suitable. 

3 
Reproducible 
response 

Variability observed, however results inconclusive 
due to potential influences from other processes. 

4 Proportional response 
Some results proportional, however temporal 
variability in N2O yield indicates presence of other 
influences. 

5 
Sensitivity suitable for 
process control 

Response is suitably sensitive in the desired 
operational DO range. 

 

Overall, off-gas N2O concentrations met the majority of the criteria, indicating a 

strong potential for application as a non-invasive means of aeration process control 

for nitrifying activated sludge processes. Questions do however remain with regards 

to response proportionality and reproducibility, and further investigation is 

required into these areas.  
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In particular, the source of the apparent temporal effects on the off-gas N2O yield 

needs to be investigated. Potential sources of these effects in the experimental 

setup utilized in this work included adaptation to the synthetic feed/reactor 

operating conditions, and adaptive effects/process instability associated with the 

application of successive spikes to the reactor.  

 

To improve the assessment of the stress-response, it is recommended that future 

work be conducted utilizing a pilot or full scale process fed with real wastewater, 

and that the assessment be performed utilizing step response experiments (or 

diurnal feed loadings), which would provide conditions representative of normal 

process operation. This would serve to eliminate several sources of adaptive effects 

and allow the assessment of long term variability in the stress response due to 

seasonal population changes in full scale processes. An understanding of 

population changes would greatly increase understanding of the specific off-gas 

N2O emissions and assist in identifying sources of variability. It is recommended that 

future work be supported by molecular analysis, particularly to identify and quantify 

AOB populations. 

 

Finally, the results of the stress-response analysis provided the necessary data to 

allow the development of a liquid phase activated sludge process model and an off-

gas N2O model. This model development, along with its application to assess the 

potential benefits of non-invasive process control utilizing off-gas N2O as a control 

parameter will be presented in the following chapter (Chapter 5). 
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Chapter 5    Process Simulation 

 

With the suitability of off-gas N2O concentrations as a process control parameter 

being demonstrated in Chapter 4, an aeration control concept was developed based 

on off-gas N2O monitoring (presented in Section 5.1.1). A process simulation study 

was conducted to assess the performance of this control concept, as well as to 

quantify the potential benefits associated with its implementation. The work 

presented in this chapter will support the technical, environmental, and economic 

evaluation presented in Chapter 6. 

  

The simulation work required the development of a data generator (simulated 

process) which was then utilized to evaluate specific operational and control 

scenarios of interest. This work was conducted in two phases; in the first phase, 

process simulation was performed using a data generator based on existing data 

obtained from Burgess et al. (2002b), hereinafter referred to as the “Cranfield data”. 

In addition to providing relevant results that contributed to the study objectives, the 

work conducted in this phase served to identify data gaps and to improve the 

experimental design used to gather data for use in the second process simulation 

phase.  

 

Simulations carried out in the second phase utilized a data generator based upon 

data collected from a laboratory scale activated sludge bioreactor (presented in 

Chapter 4), which will be refered to as the “UNSW data”. Both datasets will be 

discussed in greater depth in Section 5.2.1 and 5.3.1 for the Cranfield and UNSW 

datasets, respectively.  

 

A discussion of the overarching simulation methodology utilized in this study, along 

with the proposed process control concept is provided as Section 5.1. Data 

generator development using Cranfield and UNSW data is presented in Sections 5.2 

and 5.3, respectively. Simulations to evaluate the process control concept and 

quantify potential benefits are presented Section 5.4, and concluding remarks are 

provided in Section 5.5. It should be noted that portions of this chapter concerning 

the analysis conducted utilizing the Cranfield data has been published in 

Biotechnology and Bioengineering (Sivret et al. 2008). 
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5.1 Overarching Simulation Methodology 

 

Evaluating the off-gas N2O based aeration control concept required the 

development of a simulation package. This simulation package consisted of two 

primary interacting components: a process control algorithm (which included 

process monitoring and actuators), and a data generator (a simulated activated 

sludge process). The interactions between the simulator components are depicted 

in Figure 5-1. 

 

 

 

Figure 5-1 Simulation package components. 

 

The liquid phase model utilizes influent and air supply data as inputs, generating a 

liquid phase output which is fed to the off-gas N2O model. In turn, the off-gas N2O 

model produces an off-gas N2O concentration output that is passed to the process 

control algorithm which adjusts the aeration air supply to the liquid phase model 

based upon the process setpoint.  

 

Process inputs (influent) were used to generate operating scenarios to evaluate the 

process control concept’s effectiveness. All simulations were conducted using 

Matlab 7.0 (The MathWorks, Natick, MA, USA), Excel (Microsoft Corporation, 

Redmond, WA, USA), and simulators coded in LabVIEW (National Instruments, 

Austin, TX, USA). The two primary components (process control concept and the 

data generator) are discussed in the following subsections. 
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5.1.1 Off-gas N2O Aeration Control Concept 

 

The proposed aeration control concept was based upon the utilization of an off-gas 

N2O signal as a surrogate for the inhibition dynamics of the autotrophic nitrifying 

bacteria in the bioreactor. It is proposed that the aeration to nitrifying activated 

sludge processes can be controlled based upon the level of metabolic inhibition 

experienced (indicated by off-gas N2O concentrations). That is, an off-gas N2O 

concentration corresponding to an acceptable level of process inhibition is selected 

as the operating setpoint, and this concentration is controlled using the air flow to 

the aeration system as a master control variable. This becomes a rather 

straightforward control concept (Figure 5-2), which does not require advanced 

process models or invasive process monitoring.  

 

 

 

Figure 5-2 Off-gas N2O aeration control concept. 

 

The aeration control concept was implemented as a PI control algorithm to control 

the airflow to the simulated bioreactor. For simulation purposes, an idealized 

control response was used (i.e. no response lags in control equipment), and suitable 

action was provided to the air supply valve to allow control of the system. The 

controller was tuned using the continuous cycling method with Ziegler-Nichols 

tuning parameter coefficients (Seborg et al. 2003).  
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5.1.2 Data Generator 

 

A data generator was developed to provide a platform onto which to test the 

process control concept. This data generator consisted of two model components; a 

gas phase model to link the off-gas N2O concentration to liquid phase properties, 

and a liquid phase model to determine the properties required by the off-gas model 

as a function of external stimuli, i.e. influent conditions and aeration.  

 

The liquid phase activated sludge process model consisted of 4 sub models; a 

hydraulic model, a settling model, an aeration model, and a biological process 

model. This model also required a set of initial conditions which were selected 

based upon steady state operational data. The dataflow between the individual data 

generator subcomponents are illustrated in Figure 5-3. 

 

  

Figure 5-3 Data flows – data generator. 

 

For the purposes of this work, the treatment process aeration tanks were assumed 

to be well mixed and were modelled as continuous stirred tank reactors (CSTRs). 

The validity of this assumption will be discussed in Sections 5.2.2.2 and 5.3.2.2. It 

was also assumed that the processes were operating at a hydraulic steady state, i.e. 

Influent 
Parameters 

Process Initial 
Conditions 

Process Final 
Conditions 

Settler 
Model 

Biological 
Model 

Aeration 
Model 

Off-gas N2O 
Model 

Hydraulic 
Model 



 

 

 

Chapter 5 Process Simulation 169 
 

 

the influent flow was equal to the effluent flow with no accumulation in the process. 

Since the treatment process influents were supplied from storage tanks using 

peristaltic feed pumps operating at constant flow rates, this assumption would be 

justified. 

 

An idealized settling model was utilized. This model consisted of complete point 

separation of the solids and liquids inside the settler, with no sludge storage. This 

assumption is considered valid providing there is no substantial changes in 

suspended solid loadings and the bioreactor is at hydraulic steady state 

(Langergraber et al. 2004). The exact operating conditions of the settler used to 

generate the Cranfield data was not discussed in Burgess et al. (2002b), thus an 

idealized mode of settling was assumed for the process. The idealized settling 

assumption was verified for the UNSW settler. 

 

No data was available with regards to the aeration system (particularly aeration 

configuration and mass transfer properties) in the bioreactors used to collect the 

Cranfield and UNSW data. An overall mass transfer coefficient was assumed, and the 

airflow was calibrated to provide an appropriate steady state DO concentration.  

 

The biological component of the liquid phase model was developed based upon the 

ASM1 family of activated sludge biological process models (Henze et al. 2000). ASM1 

was chosen as the process model since it has the largest pool of existing knowledge 

and conditions which would warrant the application of the more complex ASM3 

model, such as significant anoxic or anaerobic zones (Langergraber et al. 2004) or 

high COD concentrations that would result in readily biodegradable COD storage 

being a dominant phenomena (Koch et al. 2000), did not exist. 

 

Simplifying assumptions were made to customize the ASM1 model to the system 

being studied as well as to reduce computational demands. The modelled 

bioreactor operated in an aerobic mode only (as a nitrification process), thus the 

anoxic components of model were omitted. Furthermore, the determination of 

concentrations of inert organic matter (soluble and particulate forms) and 

particulate biomass decay products was not included in the final model. These 

substances only appear as products from the modelled processes and as such do 

not influence any of the state variables of interest. Finally, the alkalinity portion of 



 

 

 

Chapter 5 Process Simulation 170 
 

 

the model was omitted since the bioreactor pH remained relatively constant over 

the duration of the sampling events for both the Cranfield (Burgess et al. 2002b) and 

UNSW data.   

 

The development and calibration of the remaining aspects of the biological models 

for both datasets were a function of the available data. Thus, the approaches varied 

amongst the two datasets and will be discussed separately in Sections 5.2.2 and 5.3.2 

for the Cranfield and UNSW data, respectively. 

 

Currently, no predictive N2O off-gas models exist in the literature for activated 

sludge processes. It was necessary to develop a correlation to generate N2O profiles 

as a result of existing liquid phase conditions. Development of off-gas N2O models 

for the Cranfield and UNSW data will be discussed in Sections 5.2.3 and 5.3.3, 

respectively.  
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5.2 Data Generator Development – Cranfield Data 

 

5.2.1 Data Sources 

 

Experimental data used in the development and validation of the stress response 

data generator were obtained from Burgess et al. (2002b). This data was generated 

during two experiments where shock loads of ammonia were applied to a pilot scale 

(300 L) activated sludge process and the process response (DO, effluent NH3, and 

off-gas N2O) was measured. As such, the data only describes off-gas N2O 

concentrations as a function of changes in ammonia loading. 

 

The bioreactor used in these experiments was operated at a 6 hour hydraulic 

retention time and a 12 day sludge retention time, and treated wastewater from the 

Cranfield University wastewater treatment plant with an average COD of 391 mg/L 

and ammonia concentration of 44.3 mg/L (Burgess et al. 2002b). It should be noted 

that the equilibrium between ammonia and ammonium at near-neutral pH is shifted 

strongly towards ammonium (Henze et al. 2000). Thus while the ASM model 

considers total soluble ammonia nitrogen (ammonia + ammonium), the ammonia 

portion is typically insignificant and the ASM models are typically written based on 

ammonium (Henze et al. 2000) As such, all ammonia data from literature was 

converted to ammonium and all soluble ammonia nitrogen concentrations were 

reported as ammonium. 

 

It is important to note that the original purpose of these datasets were to evaluate 

the stress response relationships between off-gas N2O and liquid phase conditions. 

These datasets were not developed considering the data needs associated with 

process modelling, and as a result there were a number of gaps from a process 

modelling perspective. The most notable data gap was the lack of a detailed influent 

characterisation, which is a key component of any model calibration exercise. This 

gap, along with a lack of COD profiles, limited the calibration and validation of the 

heterotrophic processes in the mechanistic model. 

 

A number of assumptions were made with regards to the feed characteristics and 

initial bioreactor conditions to fill in the dataset to allow the application of a 
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biological process model. The wastewater feed was assumed to be of constant 

quality over the duration of the test (14 hours), and the COD fractionation was 

assumed based on fractionations for European wastewater obtained from Wichern 

et al. (2003). Influent characteristics used in the model as well as the respective data 

sources are summarized in Table 5-1. 

 

Table 5-1 Influent characterisation - Cranfield data, Test 1. 

Parameter Value Source 

Qinf Influent flow (L/h) 50 Burgess et al. (2002b) 

SNH,I Influent NH4
+ (mg NH4

+-N/L) 51 Burgess et al. (2002b) 

CODI Influent total COD (mg COD/L) 362 
Scaled from Burgess et al.  
(2002b) based on influent 
ammonium. 

SS,I 
Influent readily biodegradable 
COD (mg COD/L) 

72 
20% of total influent COD 
Wichern et al. (2003) 

XS,I 
Influent slowly biodegradable 
COD (mg COD/L) 

81 
50% of total influent COD 
Wichern et al. (2003) 

 

5.2.2 Liquid Phase Component 

 

5.2.2.1 Model Selection and Formulation 

 

The primary purpose of the liquid phase model was to simulate DO profiles as a 

function of feed conditions and aeration. Two approaches were evaluated for 

simulating the reactions occurring in the liquid phase of the bioreactor. The first 

approach was a mechanistic model using ASM1 (Henze et al. 2000). A highly reduced 

ASM1-based model was developed as the second modelling approach in an effort to 

eliminate many of the modelling uncertainties associated with the mechanistic 

model. 
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Mechanistic ASM1 Model 

The mechanistic ASM1 model was developed using the full ASM1 model matrix 

(Henze et al. 2000) and applying the simplifying modelling assumptions discussed in 

Section 5.1.2, namely: 

 

• only aerobic processes were considered; 

• inert organic matter was omitted; 

• particulate decay products were omitted; and 

• the alkalinity model component was omitted. 

 

It should be noted that this model contains both heterotrophic and autotrophic 

processes. The final mechanistic biological model developed for the Cranfield data 

is presented in matrix form as Table 5-2. 
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Reduced ASM1 Model 

A highly reduced ASM1-based model was developed as the second modelling 

approach. This approach sought to eliminate many of the modelling uncertainties by 

minimizing the number of state variables modelled and mathematically fitting the 

reduced process parameters to the experimental data.  

 

The full ASM1 model matrix (Henze et al. 2000) was used as a starting point for the 

reduced model development. This matrix was then reduced using several key 

assumptions. In addition to the assumptions discussed previously, it was assumed 

that the influent COD and NH4
+ concentrations were relatively constant over the 

time period considered. Being less sensitive to reduced dissolved oxygen 

concentrations, heterotrophic bacteria would experience less variation in metabolic 

activity during the dissolved oxygen depletions. Therefore, under the assumed 

constant feed conditions, the dissolved oxygen demand associated with 

heterotrophic growth would be relatively constant. Since the process response to 

changes in air supply (and not specific air supply rates themselves) is of interest, the 

heterotrophic oxygen demand was neglected.  

 

Furthermore, it was assumed that the bacterial populations would remain relatively 

stable over the course of the time period (14 hours), which eliminated the microbial 

population state variables. The final reduced model (presented in Table 5-3) had two 

key state variables (DO and NH4
+), and considered three main processes: aeration, 

autotrophic growth, and ammonification.  

 

Table 5-3 Reduced model matrix - Cranfield data. 

Process SO SNH Kinetics 

Aeration K1  ( )OSO SS −,  

Autotrophic 
growth 

-K2 -K3 ��
�

�
��
�

�
+�

�
�

�
�
�
�

�

+ NHNH

NH

AOO

O
A KS

S

KS

S
X

,  
Ammonification  K4 ( )AH XX +  
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5.2.2.2 Model Calibration 

 

Two different calibration methodologies were implemented for the process models. 

The mechanistic ASM1 model was calibrated in a more traditional manner, using a 

combination of sensitivity analysis and manual calibration based on process 

knowledge, while a mathematical calibration technique was applied to the reduced 

model. 

 

ASM1 Model Calibration 

Prior to the mechanistic model calibration, a sensitivity analysis was conducted to 

identify the parameters of key importance for calibration. In addition to assisting 

with model calibration, sensitivity analyses can assist in the development of 

sampling campaigns by focusing experimental effort on key parameters. The 

sensitivity analysis was conducted using a similar methodology to that used in 

several of the studies reviewed in Section 2.2.2 (Makinia et al. 2005; Ni and Yu 2008).  

 

Due to the form imparted on the activated sludge process model by the Monod 

kinetics used in the ASM1 biological model, model parameters can have different 

effects on steady state and dynamic model performance. Indeed, steady state 

calibration can often be achieved in a much simpler manner (using less calibration 

parameters) than dynamic calibration. To illustrate the differences between 

calibrating the two forms of the model, the sensitivity analysis was conducted in two 

parts, first only looking at steady state model predictions (neglecting process 

dynamics), and then assessing the dynamic performance of the model. 

 

Steady State Model Calibration 

To provide a basis on which to compare sensitivity, an initial model run had to be 

conducted using the default model parameters obtained from Henze et al. (2000) 

and the influent characterization presented in Table 5-1. The model parameters 

were then adjusted as needed until the steady state predictions matched those of 

the data set being fitted.  

 

An adjustment to the autotrophic bacteria growth rate was required because the 

growth rate using the default values was too low and resulted in washout of the 

bacteria from the system and nitrification failure. Adjustments to the maximum 
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autotrophic bacteria growth rate have been required in other studies to account for 

low predictions of nitrification (Wichern et al. 2003). While applying ASM3 to six 

wastewater treatment plants, Wichern et al. (2003) used a maximum autotrophic 

bacteria growth rate of 1.6/d, which is similar to that used to fit this process. The 

default and modified parameters are presented in Table 5-4, with the modified 

parameters in bold. 

 

Table 5-4 Steady state calibration of mechanistic model - Cranfield data. 

Parameters Units 
ASM1 

Default 

Initial 

Calibration 

Mass transfer parameters    
kLa Aeration mass transfer 

coefficient 
1/d - 3.5 

Stoichiometric coefficients    
YH Heterotroph yield g CODXH/g CODXS 0.67 0.67 
YA Autotroph yield g CODXS/g NSNH 0.24 0.24 
fP Fraction of biomass degrading to 

particulate products 
- 0.08 0.08 

iXB Biomass nitrogen content g N/g CODXBM 0.086 0.086 
iXP Particulate product nitrogen 

content 
g N/g CODXP 0.06 0.06 

Rate constants    
kH Hydrolysis rate constant g XS/(g XH�d) 3 3 
ka Ammonification rate constant m3/(g XH��� 0.08 0.08 

�� Heterotroph maximum growth 
rate 

1/d 6 6 

�� Autotroph maximum growth rate 1/d 0.8 1.4 

bH Heterotroph decay coefficient 1/d 0.62 0.62 
bA Autotroph decay coefficient 1/d 0.62 0.62 
Saturation constants    
KOH Heterotroph oxygen half-

saturation constant 
mg DO/L 0.2 0.2 

KOA Autotroph oxygen half-
saturation constant 

mg N/L 1 1 

KNH Ammonium half-saturation 
constant 

mg DO/L 0.4 0.75 

KX Hydrolysis half-saturation 
constant 

g XS/g XH 0.03 0.03 

KS Substrate half-saturation 
constant 

mg COD/L 20 20 

 

A comparison between the results of the calibrated model and the raw data is 

provided as Figure 5-4.  
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Figure 5-4 Steady state model calibration – Cranfield data.  

 

In general, predicted steady state DO and NH4
+ concentrations fit the measured data 

quite well, although there was a large discrepancy with regards to the NO2�/NO3� fit. 

While the exact reason for this discrepancy is not readily apparent at this time, it 

should be noted that the NO2�/NO3� concentrations were measured in the effluent 

from the reactor (following the settling tank), and thus it is possible that 

denitrification could be occurring in the settling tank, reducing the NO2�/NO3� 

concentrations in the effluent. 

 

The calibrated model was then applied to a second dataset from Burgess et al. 

(2002b), with the predicted and measured results presented in Figure 5-5. 
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Figure 5-5 Steady state model evaluation using a second Cranfield data set. 

 

The model provided a good prediction of the effluent NH4
+ concentrations. 

NO2�/NO3� concentrations were over-predicted by the model, although to a lesser 

extent than in the first test. This closer fit is due to an increase in the measured 

NO2�/NO3� concentrations in the reactor effluent over those in the first data set.   

 

Steady State Sensitivity Analysis 

The steady state and dynamic sensitivity analyses consisted of varying each of the 16 

model parameters over a range of values centred on those used in the steady state 

fitted model and observing the effect of these changes on the model outputs. Each 

parameter was varied individually, holding all other parameters constant at the 

calibration value. In some cases, particularly for several parameters related to 

autotrophic bacterial growth, the lower end of the analysis range was limited due to 

process stability (nitrifier washout).  

 

Many of the model parameter influenced the DO concentrations as well as other 

state variables. Since the biological activity of aerobic microorganisms is strongly 

linked to DO concentrations, changes in this concentration would also influence 

many of the state variables. In practice, the steady state DO concentrations in the 

processes are generally controlled to a specific level, and it is therefore necessary to 
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differentiate between direct sensitivity associated with the parameter variation, and 

indirect sensitivity caused by the parameter’s influence on DO concentrations.  

 

A parameter variation range of +100% to -75% was investigated for the steady state 

sensitivity analysis. For each parameter variation, the effect on the DO 

concentration was first determined by running the model for approximately three 

times the SRT (40 days), which was sufficient for the modelled process to reach 

steady state conditions. This first set of modelling results was used to characterize 

the DO sensitivity. To remove the DO influence on parameter sensitivity, the model 

air flow was adjusted until the DO concentration in the reactor was close to that of 

the base condition, and the model was run until it once again reached steady state. 

These adjusted steady state values were used to determine the parameter sensitivity. 

  

The steady state sensitivity was analysed in an objective manner based on the 

relative change in the model state variable to the change in the model parameters 

(van Veldhuizen et al. 1999): 

 

i

i

j

j

ji
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X

Y
Y

S
Δ

Δ
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Where Si,j is the normalized sensitivity coefficient for a specific state variable, Yj is 

the state variable of interest, and Xi is the manipulated process parameter. Steady 

state sensitivities were ranked by applying the following classifications to the 

normalized sensitivity coefficients: 

 

• Very Strong – Si,j > 1 

• Strong – 0.5 < Si,j < 1 

• Moderate – 0.1 < Si,j < 0.5 

• Minimal - Si,j < 0.1 

 

Plots of the effect of each parameter on each of the 9 state variables are presented 

as Figure 5-6 and Figure 5-7 (which show a parameter which influences a wide range 
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of state variables and one with limited influence, respectively), and as Figures A-1 to 

A-14 in Appendix A. 

 

 

Figure 5-6 Effect of heterotrophic yield (YH) on system state variables. 

 

 

 

Figure 5-7 Effect of autotrophic yield (YA) on system state variables. 

 

A wide variation in the influence of the parameters investigated on the model state 

variables was seen in the steady state sensitivity plots. Two of the parameters (YH 
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and bH) were identified as being a significant influence on many of the state 

variables, while the remaining parameters either influenced a limited number of the 

model states (YA, iXB, μH, μA, bA, kH, KS, KOA, KNH, KX and ka), or had minimal influence 

(fp, iXP, and KOH).   

 

It should be noted that a model parameter limitation was encountered in the range 

of parameters investigated. The stoichiometric coefficients used to determine the 

amount of dissolved oxygen consumed during the reaction are of the following 

form for heterotrophic bacteria and autotrophic bacteria, respectively: 

 

H

H

Y

Y−1
 

 

A

A

Y

Y−
−

57.4
 

 

As seen in these equations, for values of YH equal to 1 and YA equal to 4.57, this 

stoichiometric coefficient will be zero, indicating that no oxygen would be 

consumed during metabolism although growth and substrate utilization would 

continue. Indeed if the values were further increased the reactions would be 

modelled as producing oxygen instead of consuming it. Both scenarios would be 

unrealistic and produce meaningless model results. The autotrophic bacteria yield 

coefficient was varied over a range of 0.12 to 0.36 g CODXA/g NSNH, and was not near 

the limitation imposed by the stoichiometric coefficient. However, this limitation 

had to be considered for the sensitivity analysis for the heterotrophic bacteria yield 

coefficient since the default value for the coefficient presented in Henze et al, (2000) 

was 0.67 g CODXH/g CODXS and at +50% reaches a value of 1 g CODXH/g CODXS. The 

response to a 50% increase in this parameter has been included in the sensitivity 

analysis (Figure 5-6) for illustrative purposes only. 

 

While not a limitation to the sensitivity and validity of the model, there was a 

practical limitation in the values for several of the model parameters related to the 

growth of autotrophic bacteria. In particular, excessively low maximum autotrophic 

biomass growth rates or high decay rates (μA and bA, respectively) resulted in 



 

 

 

Chapter 5 Process Simulation 183 
 

 

insufficient levels of ammonium removal. There was a substantial increase in the 

predicted steady state concentration of ammonium (Figure A-1) at maximum 

autotrophic biomass growth rates below 4.5 d-1 (a 25% reduction below the default 

6 d-1), indicating nitrification failure. At high autotrophic bacteria decay rates, a 

decrease in the bacteria population in the reactor and a build-up in ammonium was 

observed (Figure A-4). This increase in ammonium could be attributed to the 

reduced capacity for removal due to the lower concentration of biomass in the 

reactor, and increased ammonium production through the decay processes applied 

to the biomass. These two parameters (μA in particular), are very important 

parameters to be considered during model calibration if the predicted level of 

ammonium removal/autotrophic biomass growth is too low. 

 

The autotrophic bacteria yield coefficient (YA) had a significant influence on the 

concentration of autotrophic bacteria in the reactor, while at the same time the 

predicted effluent ammonium concentration was relatively insensitive to it (Figure 

5-7). This result is counterintuitive since it would be expected that as the autotrophic 

bacteria population decreases the ammonium removal would begin to decrease as 

well. However, growth in biological systems occurs under substrate (in this case 

ammonium) limited conditions. That is the bacteria continue to increase their 

population until they reach a steady state where the amount of available substrate 

limits further increases in the population. The yield coefficient relates the amount of 

biomass produced to the amount of substrate metabolized, thus while a change in 

the yield coefficient affects the amount of biomass that can be supported by a given 

amount of substrate, it generally does not have a strong influence on the overall 

amount of substrate consumed.  

 

Similar trends were observed in the corresponding heterotrophic bacteria kinetic 

parameters, μH and bH (Figure A-1 and Figure A-3, respectively), although these 

parameters could be varied over a larger range before substantial increases in the 

effluent readily biodegradable chemical oxygen demand were observed. 

 

A summary of the model state variable sensitivities is presented as Table 5-5. It 

should be noted that the sensitivities for two of the autotrophic parameters (μA and 

bA) are reported as those for most of the range investigated and neglect the 
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enhanced sensitivity that was observed at extreme values where changes resulted in 

instability in the autotrophic bacteria population.  

 

Table 5-5 State variable sensitivities (steady state analysis - Cranfield data). 

State Variable 
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Very strong  
Si,j > 1 
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bH           
Strong 
0.5 < Si,j < 1 

 

bA           
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Moderate 
0.1 < Si,j < 0.5 

 

iXB           

iXP           
Minimal 
Si,j < 0.1 

 

ka          
kH          
KOH          
KOA          
KS          
KNH          
KX          

 

Dynamic Sensitivity Analysis 

As mentioned previously, model parameters can have different effects on steady 

state and dynamic performance. As a first step in the dynamic sensitivity analysis, 

the predictive power of the steady state calibrated model was assessed by running 

the model at steady state using the same influent conditions as presented previously 

in Table 5-1, and then subjecting the model to a pulse of NH4
+. The model response 

was plotted for comparison with the data from Burgess et al. (2002b), and is 

presented as Figure 5-8. 
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Figure 5-8 Dynamic performance of steady state fitted ASM1 - Cranfield data. 

 

As seen in the above figure, the steady state calibrated model provides a poor fit of 

the DO and NH4
+ concentration profiles. This is to be expected since steady state 

data do not contain dynamic information. Other attempts to utilize a steady state 

model for dynamic predictions (Plazl et al. 2001) have also concluded that they do 

not provide a suitable approximation of dynamic performance.  

 

For the dynamic sensitivity analysis, a smaller parameter variation range of +50% to 

-50% was investigated. Using the steady state calibrated model, a 2.44 g spike of 

ammonium (identical to the one used in Burgess et al. (2002b)) was applied to the 

reactor at the four hour mark of the simulation and the resulting dynamic behaviour 

was observed. Dynamic sensitivity was analysed for a reduced set of variables (DO, 

NH4
+ and NO2�/NO3�) based on available process dynamic data. Similar to the steady 

state sensitivity analysis, reactor DO concentrations were corrected to remove DO 

influence on parameter sensitivity. 

 

An example of the dynamic sensitivity analysis plots produced during the analysis is 

provided as Figure 5-9. The dynamic sensitivity plots (for all three parameters) are 

included as Figures A-15 to A-30 in Appendix A.  
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Figure 5-9 Effect of heterotrophic yield (YH) on dynamic DO response. 

 

Ranking of dynamic sensitivity was performed in a more subjective manner than for 

the steady state sensitivities since the dynamic sensitivity involved the interpretation 

of changes in the response shape. Dynamic sensitivities were ranked as sensitive, 

slightly sensitive, or minimally sensitive in terms of the impact on response 

magnitude and speed (time to return to steady state). A summary of the model state 

variable sensitivities is provided as Table 5-6. 
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Table 5-6 State variable sensitivities (dynamic analysis - Cranfield data). 
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The key parameters influencing the dynamic dissolved oxygen response were YH, μA, 

and bH, while KOA and KNH were important with regards to the response speed. 

Dynamic ammonium and nitrate/nitrite responses were less sensitive to parameter 

changes, with substantial sensitivity being restricted to μA and bA, and minor 

magnitude sensitivity to KOA and KNH. 

 

A wide variation in the magnitude of the influence of the model parameters on the 

significant state variables (dissolved oxygen and ammonium) was observed, with the 

state variable predictions being relatively insensitive to a number of parameters. Key 

parameter sensitivities (both dynamic and steady state) are summarized in Table 5-7.   
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Table 5-7 Summary of key state variable sensitivities - Cranfield data. 

Sensitivity 
State Variable 

Steady State 
Dynamic Response 

Speed 

Dynamic Response 

Magnitude 

DO YH, μA, bH, bA YH, μA, bA, KOA, KNH YH, μA, bA 
NH4

+ μA, bA, KOA, KNH μA, bA μA, bA 

 

Table 5-7 demonstrates that there is a reduced set of variables which needs to be 

considered for dynamic calibration. In addition, the steady state and dynamic 

sensitivities are quite different, that is many parameters which had strong influences 

on the steady state had minimal influences on the dynamic response, and vice-versa. 

 

The list of sensitive parameters presented in Table 5-7 compares favourably with 

those reported by Weijers and Vanrolleghem (1997).  A statistical analysis conducted 

on an ASM model developed for a carousel type nitrogen removal facility (Weijers 

and Vanrolleghem 1997) produced a reduced set of sensitive parameters which 

included all the parameters listed in Table 5-7 with 3 exceptions: μA, KNH, and bA. 

While the autotrophic decay rate (bA) is an important parameter with regards to the 

autotrophic bacterial population in the bioreactor, it is considered too difficult to 

measure as a meaningful parameter (Henze et al. 2000), and is generally assigned a 

default value. The importance of μA and KNH (and absence of sensitivity to μH and KS) 

is likely linked to the perturbation being a pure ammonium spike and not including 

COD. 

 

When considering the presented sensitivity results, it is important to note that the 

results are strongly dependent on the characteristics of the system being studied 

(such as hydraulic and sludge retention times, feed composition, and feed flow), 

and will not be representative of other system configurations. Also, the sensitivity 

analysis is conducted around a specific operating point and only considers the 

influence of changing a single parameter at a time. Conducting the sensitivity 

around another operating point could produce a different set of sensitivity results 

and changing multiple parameters simultaneously could have synergistic or 

antagonistic effects on the resulting change in the state variables.  

 



 

 

 

Chapter 5 Process Simulation 189 
 

 

Model Calibration 

Using the results of the steady state and dynamic sensitivity analyses, the most 

sensitive parameters were identified and all non-sensitive parameters were set to 

the literature default values (Henze et al. 2000). The model was then manually 

calibrated to improve dynamic performance using the identified key sensitive 

parameters. Calibrated model parameters are presented in Table 5-8, with modified 

parameters in bold. A comparison between the output of the calibrated model and 

the raw data from Burgess et al. (2002b) is provided as Figure 5-10.  

  

Table 5-8 Mechanistic model calibration - Cranfield data. 

Parameters Units 
ASM1 

Default 

Steady 

State 
Dynamic 

Mass transfer parameters     

kLa 
Aeration mass transfer 
coefficient 

1/d - 3.5 3.5 

Stoichiometric coefficients     

YH Heterotroph yield 
g CODXH/g 

CODXS 
0.67 0.67 0.90 

YA Autotroph yield 
g CODXS/g 

NSNH 
0.24 0.24 0.24 

fP 
Fraction of biomass degrading to 
particulate products 

- 0.08 0.08 0.08 

iXB Biomass nitrogen content g N/g CODXBM 0.086 0.086 0.086 

iXP 
Particulate product nitrogen 
content 

g N/g CODXP 0.06 0.06 0.06 

Rate constants     
kH Hydrolysis rate constant g XS/(g XH�d) 3 3 3 

ka Ammonification rate constant m3/(g XH��� 0.08 0.08 0.08 

�� 
Heterotroph maximum growth 
rate 

1/d 6 6 6 

�� 
Autotroph maximum growth 
rate 

1/d 0.8 1.4 1.35 

bH Heterotroph decay coefficient 1/d 0.62 0.62 0.3 

bA Autotroph decay coefficient 1/d 0.62 0.62 0.3 

Saturation constants     

KOH 
Heterotroph oxygen half-
saturation constant 

g DO/m3 0.2 0.2 0.2 

KOA 
Autotroph oxygen half-
saturation constant 

mg N/L 1 1 0.8 

KNH 
Ammonium half- saturation 
constant 

mg DOL 0.4 0.75 1.5 

KX 
Hydrolysis half- saturation 
constant 

g XS/g XH 0.03 0.03 0.03 

KS 
Substrate half- saturation 
constant 

mg COD/L 20 20 20 
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Figure 5-10 Mechanistic model calibration – Cranfield data: Burgess et al. (2002b). 

 

As seen in Figure 5-10, the system response was quite aggressive (i.e. very fast 

bacterial metabolic response to the applied shock load) and the ASM1 model was 

not able to reproduce this effect accurately within a typical parameter space. While 

it was possible to fit the magnitude of the DO response to the spike, the response 

(return to steady state) was much slower than that measured.  

 

The lack of concentration profiles for state variables related to heterotrophic 

processes was a limitation in the dataset. Heterotrophic processes have a strong 

influence on the DO profiles in the bioreactor and the inability to calibrate these 

processes increased uncertainty in the model predictions. Substantial changes were 

made to the heterotrophic bacteria yield coefficients as well as both the 

heterotrophic and autotrophic bacteria decay coefficients during calibration to fit 

the magnitude of the DO response. Since the response speed could not be 

calibrated, the overall amount of DO depletion in the bioreactor (i.e. the total area 

of the drop below steady state conditions) was predicted to be much larger than the 

measured value. 

 

Overall the dynamic performance of the ASM1 model was not considered sufficient 

to represent conditions in the system being studied. This indicated that there were 
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other processes/phenomena such as non-ideal bioreactor hydraulics which were 

not accounted for in the mechanistic (ASM1) modelling. 

  

Reduced Model Calibration 

Reduced model calibration was conducted using a mathematical process, 

specifically a search routine was implemented in Matlab 7.0 (The MathWorks, 

Natick, MA) to minimize the residual prediction error. The influent profiles were 

input into the reduced model and the model parameters were mathematically 

optimized to minimize the residual errors between the predicted values and the 

experimental data set. 

 

Unlike the mechanistic ASM1 model parameters, the reduced model parameters 

were determined based on purely mathematical fitting criteria with no restrictions 

on parameter values (other than being positive values). Reduced model parameters 

are presented in Table 5-9. 

 

Table 5-9 Reduced model calibration - Cranfield data. 

Parameter Units 
Mathematical 

Calibration 

K1 Aeration calibration parameter 1/d 0.203 
K2 Autotrophic oxygen consumption mg DO/(L�d) 4.631 

K3 
Autotrophic ammonium 
consumption 

mg NH4
+-N/(L�d) 8.577 

K4 Ammonification parameter mg NH4
+-N/(mg COD�d) 0.216 

KOA 
Autotrophic biomass oxygen half-
saturation coefficient 

mg DO/L 0.00176 

KNH 
Autotrophic biomass ammonium 
half-saturation coefficient 

mg NH4+-N/L 0.638 

 

While it is not possible to assign any biological meaning to the parameters due to 

the mathematical nature of the model calibration employed, it is interesting to note 

that the calibration process selected a very low KOA value. Essentially the reduced 

model neglected the effects of DO inhibition on process kinetics.  

 

The reduced model response to the influent conditions, along with the 

experimental response data set is presented as Figure 5-11. The calibrated 

mechanistic ASM1 model response is also presented in this figure for comparison 

purposes. 
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Figure 5-11 Reduced model calibration – Cranfield data: Burgess et al. (2002b). 

 

Comparing the two sets of model results presented in Figure 5-11, the reduced 

model provides a much better representation of the DO response to system 

perturbation. Due to data limitations, the reduced model (which would account for 

these processes empirically) was selected as the basis for the liquid phase model 

component of the data generator. 

 

5.2.3 Off-gas N2O Model Component 

 

While insights into the specific N2O production mechanisms have been provided in 

recent years (Colliver and Stephenson 2000; Shiskowski and Mavinic 2006), these 

mechanisms remains an area of ongoing research and no thorough investigations of 

specific biokinetic parameters have been conducted. Thus, at the current state of 

knowledge with regards to this process (discussed in Section 2.1), a strict 

mechanistic modelling of N2O generation is not feasible. As a result, an empirical 

model was developed to link the measured response (off-gas N2O) to the applied 

stresses.   
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5.2.3.1 Model Development 

 

The Cranfield data (Burgess et al. 2002b) indicated a strong correlation between 

metabolic stressors and off-gas N2O concentrations, particularly depletions in the 

bioreactor DO concentrations (produced by rapid changes in feed NH4
+ loadings or 

by changes in the rate of oxygen supply), as well as chemical inhibition by 

allylthiourea. For the data sets studied, no chemical inhibitors were added and it was 

assumed that depletions in DO concentrations would be the main metabolic stress 

present in the system. The developed model neglects the effects of chemical 

inhibitors. However, if these substances were present in the feed at relatively 

constant concentrations, the resulting inhibition would be expected to be relatively 

constant as well, and would be accounted for in the model calibration.   

 

The initial N2O off-gas model was developed for the Cranfield data using two 

components: a proportional component dependent on the bioreactor DO 

concentrations, and an offset component. NO2�/NO3� concentrations were reported 

as a sum (and also measured in reactor effluent and not inside the aeration tank), 

thus the role of NO2� (or FNA) could not be assessed. This model utilized an 

inversed switching function like those used in anoxic processes in the ASM family 

(Henze et al. 2000). The offset component was required since the switching function 

could not fit the baseline concentrations while at the same time fitting the shape of 

the dynamic portion of the response. The utilized model had the following form: 
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5.2.3.2 Model Calibration 

 

Model fit coefficients were obtained using a search routine in Matlab 7.0 (The 

MathWorks, Natick, MA) to minimize the residual prediction error using the 

dissolved oxygen and N2O data for the first NH4
+ shock loading test presented in 

Burgess et al. (2002b). This model calibration would account for N2O generation as a 

function of liquid phase DO concentrations, as well as N2O stripping efficiency, 
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dilution effects and sensor properties. The fitted model (KN2O,1 = 1.05, KN2O,2 = 0.106, 

and KN2O,3 = 0.046) is presented as Figure 5-12.  

 

  

Figure 5-12 Fitted off-gas N2O correlation using data from Burgess et al. (2002b). 

 

It should be noted that the available experimental dataset began with the 

application of the NH4
+ shock load to the bioreactor and did not contain a 

substantial characterisation of the initial steady state conditions. To enable an initial 

steady state calibration of the model prior to the application of the shock load it was 

necessary to assume that the initial conditions in the bioreactor were at steady state. 

The first four hours of simulation data are thus based on initial conditions, with the 

NH4
+ shock load being applied at the fourth hour. 

 

Overall the developed correlation provided a representation of the dynamics of the 

concentration of N2O in the bioreactor off-gas that was within the experimental 

error of the measurements. There was some deviation on the decay portion of the 

response, with the correlation over-predicting the off-gas N2O concentrations.  

 

5.2.4 Data Generator Performance 

 

As a verification of the data generator, the influent characteristics for the second set 

of NH4
+ shock loading response data (an independent set of data collected following 
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sufficient process stabilization time) from Burgess et al. (2002b) were applied to the 

simulator and the predicted off-gas N2O concentrations were compared to the 

measured values (Figure 5-13).  

 

 

Figure 5-13 Simulation of off-gas N2O concentrations during an NH4
+ shock load 

based on data from Burgess et al. (2002b), Test 2. 

 

Similar to observations during the N2O off-gas model calibration, the off-gas N2O 

predictions based on the liquid phase simulations provided a simulation of the 

measured data, although once again with some over prediction of the off-gas N2O 

concentrations on the decay portion of the response. 
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5.3 Data Generator Development – UNSW Data 

 

5.3.1 Data Sources 

 

The UNSW data was collected from a 28.7 L activated sludge bioreactor that was 

operated on a continuous basis using a synthetic wastewater. Specific reactor 

operational details and an overview of the associated process/monitoring 

equipment are presented in Chapter 3.  

 

Sampling campaigns were developed to support the development and validation of 

the process models used in the simulation study. The sampling campaign consisted 

of routine process monitoring and characterisation of process dynamics.  

 

Routine process monitoring was conducted to verify process steady state prior to 

conducting experimental work, and to provide routine process operational data 

such as removal efficiencies, sludge retention times, and hydraulic retention times. 

A summary of typical process operating conditions is provided as Table 5-10.  

 

Table 5-10 Operating conditions, UNSW activated sludge bioreactor. 

Parameter Units Location Average Value Analysis Method 

COD removal % Influent/effluent 93.9 
Method 5220 D  
APHA et al. (1995) 

NH4
+ removal % Influent/effluent 98.3 Nesslerization 

NO3
� mg/L Effluent 22.9 

Method 4500-NO3� E 
APHA et al. (1995) 

NO2
� mg/L Effluent 0.03 

Method 4500-NO2� B 
APHA et al. (1995) 

N2O mg/L Off-gas 0.94 Off-gas analyser 

DO mg/L Aeration tank 3.2 Calibrated probe 

TSS mg/L Aeration tank 4240 
Method 2540 D 
APHA et al. (1995) 

pH - Aeration tank 7.21 Calibrated probe 

Temperature °C Aeration tank 23.0 Calibrated probe 

SRT d - 12 Calculated 

HRT hr Aeration tank 16.9 Pump calibration 

 

Dynamic process data was collected for a range of process initial conditions and 

perturbances. The results of Test 2 were utilized for model calibration, and four tests 
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(representing independent operating conditions) were used for model validation. 

These tests are summarized in Table 5-11, and specific profile data has been 

presented in Chapter 4. 

 

Table 5-11 Dynamic tests utilized for model calibration and validation. 

Objective Data Source Comments 

Model calibration Test 2 Sludge A, base spike 
Test 1 Sludge A, base spike 
Test 3 Sludge A, reduced spike 
Test 5 Sludge B, reduced operating DO and spike 

Model validation 

Test 6 Sludge B, reduced spike 

 

Tests 4 and 7 were not used for model validation purposes since both tests were 

near the end of the testing period with their respective sludges and, as discussed in 

Chapter 4, by that point the processes were demonstrating significant instability. 

Process model inputs were developed based upon the tests of interest and are 

presented in Table 5-12. 

 

Table 5-12 Model scenario inputs, UNSW data. 

 Units Test 1 Test 2 Test 3 Test 5 Test 6 

Sludge - A A A B B 
pH - 7.23 7.20 7.15 7.17 7.23 

Reactor 
conditions 

Temperature  (°C) 20.9 21.8 22.9 25.6 24.4 
Flow  (L/hr) 1.71 1.73 1.73 1.67 1.63 
COD  (mg/L) 384 360 365 379 345 
RBCOD (mg/L) 269 252 255 266 241 
SBCOD (mg/L) 115 108 109 114 104 
NH4

+ (mg/L) 31.7 25.5 27.0 26.8 24.6 
SBN (mg/L) 8.1 7.6 7.7 8.0 7.2 
PBN (mg/L) 3.5 3.2 3.3 3.4 3.1 
NO3� (mg/L) 0.44 0.21 0.25 0.29 0.56 

Influent 

NO2� (mg/L) 0.06 0.07 0.07 0.06 0.05 
COD  (mg/L) 908 869 587 421 353 
RBCOD (mg/L) 636 608 411 295 247 
SBCOD (mg/L) 272 261 176 126 106 
NH4

+ (mg/L) 74.9 61.7 43.5 29.7 25.2 
SBN (mg/L) 19.1 18.3 12.3 8.8 7.4 

Spike 

PBN (mg/L) 8.2 7.8 5.3 3.8 3.2 

 

In developing these model inputs, assumptions had to be made with regards to the 

COD and biodegradable nitrogen fractions. RBCOD and SBCOD were assumed to 
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be 70% and 30% of the total influent COD, respectively. This assumption was based 

upon the synthetic feed composition (Table 3-1), which consisted primarily of easily 

biodegradable organic carbon compounds such as glucose. Based upon an 

assessment of the nitrogen containing compounds in the feed, non-ammonium 

nitrogen was estimated to be 3% of the influent COD, and the fractionation (into 

SBN and PBN) was assumed to follow the COD fractionation. 

 

5.3.2 Liquid Phase Component 

 

5.3.2.1 Model Selection and Formulation 

 

The review of the mechanisms responsible for generation of N2O by nitrifying 

bacteria (Section 2.1), indicated that liquid phase NO2� or FNA concentrations play a 

role as one of the reaction substrates. With the availability of a full liquid phase 

inorganic nitrogen speciation (NH4
+, NO2�/FNA, and NO3�) in the experimental data, 

two-step nitrification models were investigated. These models allow for the 

prediction of these inorganic nitrogen species which could then be provided as an 

input to the off-gas N2O generation model component of the data generator.  

 

Liquid phase process modelling was once again approached from a mechanistic 

perspective. Two multistep nitrification models were utilized in this work, both 

based upon the ASM1 model. While several multistep ASM3 models are available, 

the ASM1 models were utilized due to the advantages associated with the ASM1 

model base (discussed in Section 5.1.2). 

 

The first model applied was ASM1 with the two-step nitrification modification 

proposed by Nowak et al. (1994), hereinafter referred to as “ASM1-Nowak”. This 

modification consisted of separating the lumped nitrification processes (autotrophic 

growth and decay) and state variables (autotrophic biomass and NO2�/NO3� 

concentration) into individual components. In the case of the autotrophic 

components of the model, they were separated in AOB and NOB components. The 

Nowak et al. (1994) modification did not contain any other substantial changes to the 

ASM1 model base. 
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ASMN, proposed by Hiatt and Grady (2008a; 2008b) and discussed previously in 

Section 2.2.3, was utilized as the second two-step nitrification model. In addition to 

separating the lumped nitrification processes into AOB and NOB and allowing the 

prediction of NO2� and NO3� concentrations, this model contains several new 

processes and adjustments to the reaction mechanisms for AOB and NOB growth. 

New processes include mixotrophic growth of NOB, and assimilative NO3� 

reduction to NH4
+. In ASMN, AOB and NOB growth utilize FA and FNA as growth 

substrates, respectively. This introduces pH dependence into the nitrification 

process rates.  

 

 The mechanistic models were developed by applying the simplifying modelling 

assumptions discussed in Section 5.1.2, namely: 

 

• only aerobic processes were considered; 

• inert organic matter was omitted; and 

• particulate decay products were omitted. 

 

Since the pH in the reactor was controlled via sodium carbonate addition, the 

alkalinity portions of the models were omitted. Additional assumptions were made 

in the development of the ASMN model; assimilative NO3� reduction to NH4
+ was 

neglected since NH4
+ was present in the reactor at all times during the simulation, 

and purely autotrophic NOB growth was assumed (mixotrophic growth was 

neglected). 

 

The developed mechanistic models utilized in this work are presented in matrix 

form as Table 5-13 and Table 5-14 for ASM1-Nowak and ASMN, respectively. 

 

 

  



   C
h

ap
te

r 
5 

Pr
o

ce
ss

 S
im

u
la

ti
o

n
 

20
0 

 

 T
ab

le
 5

-1
3 

M
e

ch
an

is
ti

c 
m

o
d

e
l 

m
at

ri
x 

– 
A

S
M

1-
N

o
w

ak
. 

P
ro

ce
ss

 S
ta

te
 V

ar
ia

b
le

 
C

at
e

g
o

ry
 

P
ro

ce
ss

 
S

S
 

X
S
 

X
H
 

X
M

 
X

N
 

S
O

 
S

N
O

2 
S

N
O

3 
S

N
H
 

S
N

D
 

X
N

D
 

R
at

e
 

H
et

. 
Po

ce
ss

es
 

A
er

o
b

ic
 g

ro
w

th
 

H
Y1

−
 

 
1 

 
 

H

H

Y

Y
−

−
1

 
 

 

X
B

i
−

 
 

 
H

O
H

O

O

S
S

S
H

X
S

K

S

S
K

S
�� ��

�� ��

+
�� ��

�� ��
+

,

μ

 

A
er

o
b

ic
 g

ro
w

th
 

(A
O

B
) 

 
 

 
1 

 

M

M

Y

Y
−

−
43.3

 
M

Y1
 

 

M
X

B
Y

i
1

−
−

 
 

 
M

N
H

M
N

H

N
H

O
M

O

O
M

X
S

K

S

S
K

S
�� ��

�� ��

+
�� ��

�� ��

+
,

,

μ
 

A
u

to
. 

Pr
o

ce
ss

es
 

A
er

o
b

ic
 g

ro
w

th
 

(N
O

B
) 

 
 

 
 

1 
N

N

Y

Y
−

−
14.1

 
N

Y1
−

 
N

Y1
 

X
B

i
−

 
 

 
N

N
O

N
N

O

N
O

O
N

O

O
N

X
S

K

S

S
K

S
�� ��

�� ��

+
�� ��

�� ��

+
2

,2

2

,

μ
 

D
ec

ay
 

(h
et

er
o

tr
o

p
h

ic
) 

 
Pf

−
1

 
1

−
 

 
 

 
 

 
 

 
X

P
P

X
B

i
f

i
−

 
H

H
X

b
 

D
ec

ay
 (

A
O

B
) 

 
Pf

−
1

 
 

1
−

 
 

 
 

 
 

 
X

P
P

X
B

i
f

i
−

 
M

O
M

O

O
M

X
S

K

S
b

�� ��
�� ��

+
,

 

D
ec

ay
 (

N
O

B
) 

 
Pf

−
1

 
 

 
1

−
 

 
 

 
 

 
X

P
P

X
B

i
f

i
−

 
N

O
N

O

O
N

X
S

K

S
b

�� ��
�� ��

+
,

 

A
m

m
o

n
if

ic
at

io
n

 
 

 
 

 
 

 
 

 
1  

1
−

 
 

H
N

D
a

X
S

k
 

H
yd

ro
ly

si
s 

– 
o

rg
an

ic
s 

1 
1

−
 

 
 

 
 

 
 

 
 

 
H

O
H

O

H
O

h
O

H
O

O

HS
X

HS

h
X

S
K

K

S
K

S

XX
K

XX

k
�� 	


�� �
�� ��

�� ��

+
+ �� ��

�� ��

+
���� ��

���� ��

+
,

,

,

η
 

B
io

m
as

s 
D

ec
ay

 

H
yd

ro
ly

si
s 

– 
o

rg
an

ic
 n

it
ro

ge
n

 
 

 
 

 
 

 
 

 
 

1  
1

−
 

S

N
D

H

O
H

O

H
O

h
O

H
O

O

HS
X

HS

h
XX

X

S
K

K

S
K

S

XX
K

XX

k
�� 	


�� �
�� ��

�� ��

+
+ �� ��

�� ��

+
���� ��

���� ��

+
,

,

,

η
 

     



   C
h

ap
te

r 
5 

Pr
o

ce
ss

 S
im

u
la

ti
o

n
 

20
1 

 

 T
ab

le
 5

-1
4 

M
e

ch
an

is
ti

c 
m

o
d

e
l 

m
at

ri
x 

– 
A

S
M

N
. 

P
ro

ce
ss

 S
ta

te
 V

ar
ia

b
le

 

C
at

e
g

o
ry

 
P

ro
ce

ss
 

S
S
 

X
S
 

X
B

,H
 

X
B

,A
1 

X
B

,A
2 

S
O

 
S

N
O

3 
S

N
O

2 
S

N
H
 

S
N

S
 

X
N

S
 

R
at

e
 

H
et

. 
Pr

o
ce

ss
es

 
A

er
o

b
ic

 g
ro

w
th

 
HY1

−
 

 
1 

 
 

H

H

Y

Y
−

−
1

 
 

 
X

B
Ni

/
−

 
 

 
H

B
O

H
O

O

S
S

S
H

X
S

K

S

S
K

S
,

1
,

1,
�� ��

�� ��

+
�� ��

�� ��

+
μ

 

A
er

o
b

ic
 g

ro
w

th
 

(A
O

B
) 

 
 

 
1 

 
1

1
43.3

A

A

Y

Y
−

−
 

 
11 A

Y
 

1/ 1 A

X
B

N Yi

−−

 
 

 
1

,
9

9

1
.

92
1

A
B

F
N

A
F

N
A

I

F
N

A
I

O
A

O

O

F
A

IF
A

F
A

F
A

F
A

A
X

S
K

K

S
K

S

KS
S

K

S
�� ��

�� ��
+

�� ��
�� ��

+
����� ��

����� ��

+
+

μ
 

A
u

to
. 

Pr
o

ce
ss

es
 

A
er

o
b

ic
 g

ro
w

th
 

(N
O

B
) 

 
 

 
 

1 
2

2
14.1

A

A

Y

Y
−

−
 

21 A
Y

 
21 A

Y
−

 
X

B
Ni

/
−

 
 

 
2

,
10

10

2
.

102
2

A
B

F
A

F
A

I

F
A

I

O
A

O

O

F
N

A
I

F
N

A
F

N
A

F
N

A

F
N

A
A

X
S

K

K

S
K

S

KS
S

K

S
�� ��

�� ��
+

�� ��
�� ��

+
����� ��

����� ��

+
+

μ
 

D
ec

ay
 

(h
et

er
o

tr
o

p
h

ic
) 

 
D

f'
1

−
 

1
−

 
 

 
 

 
 

 
 

X
D

N
D

X
B

N

i
f

i

/

/

'
−

 
H

B
H

L
X

b
,

,
 

D
ec

ay
 (

A
O

B
) 

 
D

f'
1

−
 

 
1

−
 

 
 

 
 

 
 

X
D

N
D

X
B

N

i
f

i

/

/

'
−

 
1

,
1

,
A

B
A

L
X

b
 

D
ec

ay
 (

N
O

B
) 

 
D

f'
1

−
 

 
 

1
−

 
 

 
 

 
 

X
D

N
D

X
B

N

i
f

i

/

/

'
−

 
2

,
2

,
A

B
A

L
X

b
 

A
m

m
o

n
if

ic
at

io
n

 
 

 
 

 
 

 
 

 
1 

1
−

 
 

H
B

N
S

a
X

S
k

,
 

H
yd

ro
ly

si
s 

– 
o

rg
an

ic
s 

1 
1

−
 

 
 

 
 

 
 

 
 

 
H

B
x

N
O

x

O
H

O

H
O

h
O

H
O

O

H
B

S
X

H
B

S

h
X

N
O

K

N
O

S
K

K

S
K

S

XX
K

XX

k
,

3
:

1
,

1
,

1
,

,

,

�� 	


�� �
�� ��

�� ��

+
�� ��

�� ��

+
+ �� ��

�� ��

+
����� ��

����� ��

+
�

�
η

 

B
io

m
as

s 
D

ec
ay

 

H
yd

ro
ly

si
s 

– 
o

rg
an

ic
 n

it
ro

ge
n

 
 

 
 

 
 

 
 

 
 

1 
1

−
 

S

N
S

H
B

x
N

O

x

O
H

O

H
O

h
O

H
O

O

H
B

S
X

H
B

S

h
X

X
X

N
O

K

N
O

S
K

K

S
K

S

XX
K

XX

k
,

3
:

1
,

1
,

1
,

,

,

�� 	


�� �
�� ��

�� ��

+
�� ��

�� ��

+
+ �� ��

�� ��

+
����� ��

����� ��

+
�

�
η

 

  



 

 

 

Chapter 5 Process Simulation 202 
 

 

5.3.2.2 Model Calibration 

 

The two models were calibrated using a process identical to that used for the ASM1 

calibration conducted in Section 5.2.2.2 for the Cranfield data. Steady state and 

dynamic sensitivity analyses were conducted for each model, with the information 

obtained from these analyses being used to guide the manual calibration process. 

 

ASM1-Nowak 

 

Steady State Sensitivity Analysis 

Unlike for the Cranfield data, the initial model run conducted using default model 

parameters obtained from literature (Nowak et al. 1994) and the influent 

characterization presented in Table 5-12 provided a stable result. Thus, no 

parameter adjustment was required prior to conducting the steady state sensitivity 

analysis. The default model parameters utilized in the initial model run are 

presented in Table 5-15. 

 

Identical to the ASM1 steady state sensitivity analysis, a parameter variation range of 

+100% to -75% was investigated and dissolved oxygen influences on parameter 

sensitivity were mitigated via air flow adjustment.  Plots of the effect of each 

parameter on the model state variables of interest are presented as Figures A-31 to 

A-51 in Appendix A. A summary of the state variable sensitivities is presented as 

Table 5-16. 

 

Similar to the Cranfield steady state analysis, parameter variation limitations were 

encountered for YH (instability at YH values greater than 1), as well as for low 

maximum specific autotrophic bacteria growth rates. Utilization of μM and μN values 

less than 50% of the default values resulted in loss of the respective bacterial 

populations and process failure. No limitation was encountered for the autotrophic 

decay rates (bM, bN) over the parameter range investigated. 
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Table 5-15 Preliminary calibration of ASM1-Nowak - UNSW data. 

Parameters Units Parameter Value 

Mass transfer parameters   
kLa Aeration mass transfer coefficient 1/d 3.5 
Stoichiometric coefficients   
YH Heterotroph yield g CODXH/g CODXS 0.671 
YM AOB yield g CODXM/g NSNH 0.183 
YN NOB yield g CODXN/g NSNO2 0.063 
fP Fraction of biomass degrading to 

particulate products 
- 0.081 

iXB Biomass nitrogen content g N/g CODXBM 0.0861 
iXP Particulate product nitrogen content g N/g CODXP 0.061 
Rate constants   
kH Hydrolysis rate constant g XS/(g XH�d) 31 
ka Ammonification rate constant m3/(g XH��� 0.081 

�� Heterotroph maximum growth rate 1/d 61 

�� AOB maximum growth rate 1/d 2.02 

�� NOB maximum growth rate 1/d 2.12 
bH Heterotroph decay coefficient 1/d 0.621 
bM AOB decay coefficient 1/d 0.432 
bN NOB decay coefficient 1/d 0.502 
Saturation constants   
KO,H Heterotroph oxygen half-saturation 

constant 
g DO/m3 0.21 

KO,M AOB Oxygen half-saturation 
constant 

mg N/L 0.32 

KO,N NOB Oxygen half-saturation 
constant 

mg N/L 0.62 

KNH,M AOB ammonium half-saturation 
constant 

mg N/L 0.52 

KNO2,N NOB nitrite half-saturation constant mg N/L 0.52 
KX Hydrolysis half-saturation constant g XS/g XH 0.031 
KS Substrate half-saturation constant mg COD/L 201 

1 – ASM1 default value (Henze et al. 2000) 
2 – Nowak et al. (1994) 
3 – Hiatt and Grady (2008b) 
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Table 5-16 State variable sensitivities (steady state analysis - UNSW Data, ASM1-

Nowak). 
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YH            Legend 

YM            
YN            

Very strong  
Si,j > 1 

 

��            

��            
Strong 
0.5 < Si,j < 1 

 

��            

bH            
Moderate 
0.1 < Si,j < 0.5 

 

bM            

bN            

 

Minimal 
Si,j < 0.1 

 

fP            
iXB            
iXP            
ka            
kH            
KOH            
KOM            
KON            
KS            
KNH            
KNO2            
KX            

 

Once again, a wide variation in the influence of the parameters investigated on the 

model state variables was seen in the steady state sensitivity plots. Two of the 

parameters (YH and bH) had significant influence on many of the state variables, 

while the remaining parameters influenced a more limited number of the model 

state variables, with the exception of fP, iXP, KOH, KOM, and KON, which had minimal 

influence.   

 

Dynamic Sensitivity Analysis 

The dynamic sensitivity was analysed over a parameter variation range of +50% to 

-50%. A spike containing organic carbon and nitrogen (Test 2, Table 5-12) was 

applied to the reactor at the four hour mark of the simulation and the resulting 

dynamic behaviour was observed. Dynamic sensitivity was analysed for DO, NH4
+, 
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NO2�, and NO3�. Like the steady state sensitivity analysis, reactor DO concentrations 

were corrected to mitigate DO influences on parameter sensitivity. 

 

Dynamic sensitivities were ranked in terms of the impact on response magnitude 

and speed (time to return to steady state). A summary of the model state variable 

sensitivities is provided as Table 5-17. 

 

Table 5-17 State variable sensitivities (dynamic analysis – UNSW data, ASM1-Nowak). 
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The key parameter influencing the dynamic DO response was YH. The dynamic NH4
+ 

response was primarily sensitive to YH, in addition to response speed sensitivity to 

μM and iXP, and response magnitude sensitivity to bM. The dynamic NO2� response 

was sensitive to the greatest number of parameters, with speed and magnitude 

sensitivity to YH, μM , bM, bN, and iXP, as well as speed sensitivity to KNO2 and 
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magnitude sensitivity to μN. Dynamic NO3� responses were rather insensitive to 

parameter changes, with only minor magnitude sensitivity being observed for 

several parameters. Overall, DO was less sensitive dynamically than in the ASM1 

model calibration for the Cranfield data, while NH4
+ and NO2� were sensitive to an 

increased number of model parameters. 

 

Key parameter sensitivities (both dynamic and steady state) are summarized for the 

primary state variables of interest in Table 5-18.   

 

Table 5-18 Summary of state variable sensitivities – UNSW data, ASM1-Nowak. 

Sensitivity 
State Variable 

Steady State 
Dynamic Response 

Speed 

Dynamic Response 

Magnitude 

DO YH, bH, fP YH YH 
NH4

+ μM, KNH YH, μM, iXB YH, bM 
NO2� μN, bN, KNO2 YH, μM, bM, bN, iXB, KNO2 YH, μM, μN, bM, bN, iXB 
NO3� YH, bH, iXP, iXB - - 

 

As seen in Table 5-18, the majority of the state variables had sensitivity in at least one 

form to the YH, which would thus be of particular importance in model calibration. 

The remaining parameters of interest from a sensitivity perspective were primarily 

associated with the AOB and NOB growth/decay processes. It is interesting to note 

that while NO3� concentrations displayed some steady state sensitivity, they were 

relatively insensitive from a dynamic perspective. 

 

Model Calibration 

Using the results of the steady state and dynamic sensitivity analyses, the model was 

manually calibrated to improve dynamic performance. Calibrated model parameters 

are presented in Table 5-19, with modified parameters in bold. A comparison 

between the output of the calibrated model and the raw data is provided as Figure 

5-14.  
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Table 5-19 ASM1-Nowak calibration – UNSW data. 

Parameters Units Initial Calibrated 

Mass transfer parameters    
kLa Aeration mass transfer 

coefficient 
1/d 3.5 3.1 

Stoichiometric coefficients    
YH Heterotroph yield g CODXH/g CODXS 0.671 0.64 

YM AOB yield g CODXM/g NSNH 0.183 0.18 
YN NOB yield g CODXN/g NSNO2 0.063 0.06 
fP Fraction biomass degrading to 

particulate products 
- 0.081 0.08 

iXB Biomass nitrogen content g N/g CODXBM 0.0861 0.086 
iXP Particulate product nitrogen 

content 
g N/g CODXP 0.061 0.06 

Rate constants    
kH Hydrolysis rate constant g XS/(g XH�d) 31 15 

ka Ammonification rate constant m3/(g XH��� 0.081 0.1608 

�� Heterotroph maximum growth 
rate 

1/d 61 3.8 

�� AOB maximum growth rate 1/d 2.02 1.6 

�� NOB maximum growth rate 1/d 2.12 3 

bH Heterotroph decay coefficient 1/d 0.621 0.62 
bM AOB decay coefficient 1/d 0.432 0.43 
bN NOB decay coefficient 1/d 0.502 0.50 
Saturation constants    
KO,H Heterotroph oxygen half-

saturation constant 
g DO/m3 0.21 0.2 

KO,M AOB oxygen half-saturation 
constant 

mg N/L 0.32 0.5 

KO,N NOB oxygen half-saturation 
constant 

mg N/L 0.62 0.6 

KNH,M AOB ammonium half-
saturation constant 

mg N/L 0.52 0.5 

KNO2,N NOB nitrite half-saturation 
constant 

mg N/L 0.52 0.5 

KX Hydrolysis half-saturation 
constant 

g XS/g XH 0.031 0.03 

KS Substrate half-saturation 
constant 

mg COD/L 201 20 

1 – ASM1 default value (Henze et al. 2000) 
2 – Nowak et al. (1994) 
3 – Hiatt and Grady (2008b) 
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Figure 5-14 Calibrated ASM1-Nowak model.  

 

Several parameters were adjusted in fitting the model to the UNSW data, in 

particular many of the hydrolysis/ammonification parameters were changed in 

increase the rate of substrate regeneration (primarily to improve the NH4
+ fit and 

broaden the DO depletion). Adjustments were also made to many of the AOB and 

NOB growth parameters to calibrate the NO2� response.  

 

The model provided a good representation of the DO profile in the reactor, 

matching the initial decay and final rise to steady state. There was some discrepancy 

in the fit during the DO depletion plateau, which the model form could not capture, 

instead providing a more gradual return to steady state. The initial increase in the 

NH4
+ profile following the application of the spike was substantially under-

predicted. While the predictive capacity was poor for this parameter, it is likely that 

the source is experimental, and not a mechanistic limitation of the model. Based 

upon the NH4
+ content of the applied spike, the magnitude of the NH4

+ response 

was nearly twice that expected.  

 

One possibility is the presence of non-ideal reactor hydraulics which could cause 

poor dispersion of the spike through the reactor, increasing the observed 

concentration in the effluent. However, based on observations of mixing in the 

reactor (DO profiling and reactor spiking), the reactor was well mixed with minimal 
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dead zones, and it is unlikely that non-ideal flow of the required magnitude exists. 

Another possibility is enhanced hydrolysis and ammonification resulting from the 

high operating MLSS in the reactor. The reactor was seeded using recycled activated 

sludge and a fairly high initial operating MLSS (on the order of 4500 mg/L) was used. 

This MLSS and the corresponding biomass COD was substantially higher than those 

predicted by the steady state process model, thus it is possible that there is an 

added NH4
+ and organic carbon input from this decaying “excess” biomass.  

 

Predicted effluent NO3� concentrations were substantially higher (on the order of 

50% greater) than the measured values. Due to the insensitivity of NO3� 

concentrations to the model parameters, significant adjustment was not possible. 

The process model provided an acceptable representation of the dynamic NO2� 

concentrations, although with some over prediction of the steady state 

concentrations.  

 

Overall, despite the poor predictive capacity for NH4
+ and NO3�, the performance of 

the ASM1-Nowak model was acceptable for the primary parameters of interest for 

the off-gas N2O model component of the data generator (DO and NO2�).  

 

ASMN 

 

Steady State Sensitivity Analysis 

Similar to ASM1-Nowak, a stable result was obtained from the initial ASMN model 

run that was conducted using default model parameters obtained from literature 

(Hiatt and Grady 2008b) along with the influent characterization presented in Table 

5-12. No parameter adjustment was required prior to conducting the steady state 

sensitivity analysis, and the default model parameters utilized in the initial model 

run are presented in Table 5-20. 
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Table 5-20 Preliminary calibration of ASMN - UNSW data. 

Parameters Units Value 

Mass transfer parameters   
kLa Aeration Mass Transfer Coefficient 1/d 3.5 
Stoichiometric coefficients   

YH Heterotroph yield 
mg CODXH/mg 

CODXS 
0.6 

YA1 AOB yield mg CODXA1/mg N 0.18 
YA2 NOB yield mg CODXA2/mg N 0.06 

f’D 
Fraction of biomass degrading to 
debris 

- 0.08 

iN/XB Active biomass nitrogen content mg N/mg CODXB 0.086 
iN/XD Biomass debris nitrogen content mg N/mg CODXD 0.06 
Rate constants   

kh Hydrolysis rate constant 
mg CODXS/(mg 

CODXH�d) 
2.208 

ka Ammonification rate constant L/(mg CODXH�d) 0.1608 

�� Heterotroph maximum growth rate 1/d 6.25 

��� AOB maximum growth rate 1/d 0.78 

��� NOB maximum growth rate 1/d 0.78 
bL,H Heterotroph decay coefficient 1/d 0.408 
bL,A1 AOB decay coefficient 1/d 0.096 
bL,A2 NOB decay coefficient 1/d 0.096 
Saturation constants   

KO,H1 
Heterotroph oxygen half-saturation 
constant 

mg DO/L 0.1 

KO,A1 AOB oxygen half-saturation constant mg DO/L 0.6 

KO,A2 
NOB oxygen half-saturation 
constant 

mg DO/L 1.2 

KFA FA half-saturation constant mg N/L 0.0075 
KFNA FNA half-saturation constant mg N/L 0.0001 

KI9FA 
AOB growth FA inhibition 
coefficient 

mg N/L 1 

KI9FNA 
AOB growth FNA inhibition 
coefficient 

mg N/L 0.1 

KI10FA 
NOB growth FA inhibition 
coefficient 

mg N/L 0.2 

KI10FNA 
NOB growth FNA inhibition 
coefficient 

mg N/L 0.04 

KNO3 
Heterotroph nitrate half-saturation 
constant 

mg N/L 0.2 

KX Hydrolysis half-saturation constant mg XS/mg XB,H 0.15 
KS,1 Substrate half-saturation constant mg COD/L 20 

 

The steady state sensitivity analysis was conducted using an identical procedure to 

that used for ASM1-Nowak.  The parameter variation limitations were identical to 

those observed for the ASM1-Nowak model, with instability at YH values greater than 
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1, as well as at μA1 and μA2 values less than 50% of the defaults. No limitation was 

encountered for the autotrophic decay rates (bM, bN) over the parameter range 

investigated. Plots of the effect of each parameter on each of the model state 

variables of interest are presented as Figures A-73 to A-97 in Appendix A. A summary 

of the state variable sensitivities is presented as Table 5-21. 

 

Table 5-21 State variable sensitivities (steady state analysis - UNSW data, ASMN). 
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The model state variables in the ASMN model were generally less sensitive to 

parameter changes than those in the ASM1-Nowak model. YH and bH continued to 

have a significant influence on many of the state variables, while the remaining 

parameters influenced a more limited number of the model state variables, with the 
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exception of fd, iN/XP, KOH, KOA1, KOA2, KI9FA, KI9FNA, KI10FA, and KI10FNA, which had minimal 

influence.   

 

Dynamic Sensitivity Analysis 

The dynamic sensitivity analysis of the ASMN model was conducted using a 

procedure identical to that used for the ASM1-Nowak model. A summary of the 

model state variable sensitivities is provided as Table 5-22. 

  

Table 5-22 State variable sensitivities (dynamic analysis – UNSW data, ASMN). 
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Similar to the steady state sensitivity analysis results, the ASMN model was less 

dynamically sensitive to model parameters (and sensitive to a number of different 

parameters) than the ASM1-Nowak model. The key parameter influencing the 

dynamic DO response was YH. The dynamic NH4
+ response was primarily sensitive to 

YH, in addition to response magnitude sensitivity to μM and bLA1. The dynamic NO2� 

response was sensitive to the greatest number of parameters, with speed and 

magnitude sensitivity to YH, μA1, μA2, and iN/XB, as well as speed sensitivity to KFA. Like 

the ASM1-Nowak model, dynamic NO3� responses were rather insensitive to 

parameter changes, with only minor magnitude and speed sensitivity being 

observed for several parameters.  

 

Key parameter sensitivities (both dynamic and steady state) are summarized for the 

primary state variables of interest in Table 5-23.   

 

Table 5-23 Summary of state variable sensitivities - UNSW data, ASMN. 

Sensitivity 
State Variable 

Steady State 
Dynamic Response 

Speed 

Dynamic Response 

Magnitude 

DO YH, bH, fd YH YH 
NH4

+ μA1, bLA1, KOA1, KFA YH, μA1, bLA1 YH 
NO2� μA2, bLA2, KOA2, KFNA YH, μA1, μA2, iN/XB YH, μA1, μA2, iN/XB, KFA 
NO3� YH, bH, iN/XB - - 

 

As seen in Table 5-23 (and similar to ASM1-Nowak), the majority of the state 

variables had sensitivity in at least one form to YH, which would be of particular 

importance in model calibration. The remaining parameters of interest from a 

sensitivity perspective were primarily associated with the AOB and NOB 

growth/decay processes, and NO3� concentrations were relatively insensitive from a 

dynamic perspective. 

 

Model Calibration 

Using the results of the steady state and dynamic sensitivity analyses, the model was 

manually calibrated to improve dynamic performance. Calibrated model parameters 

are presented in Table 5-24, with modified parameters in bold. A comparison 

between the output of the calibrated model and the raw data is provided as Figure 

5-15. 
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Table 5-24 ASMN calibration - UNSW data. 

Parameters Units Initial Calibrated 

Mass transfer parameters    
kLa Aeration mass transfer coefficient 1/d 3.5 3.5 
Stoichiometric coefficients    

YH Heterotroph yield 
mg CODXH/mg 

CODXS 
0.6 0.57 

YA1 AOB yield mg CODXA1/mg N 0.18 0.18 
YA2 NOB yield mg CODXA2/mg N 0.06 0.06 
f’D Fraction biomass degrading to debris - 0.08 0.08 
iN/XB Active biomass nitrogen content mg N/mg CODXB 0.086 0.04 

iN/XD Biomass debris nitrogen content mg N/mg CODXD 0.06 0.06 
Rate constants    

kh Hydrolysis rate constant 
mg CODXS/(mg 

CODXH�d) 
2.208 2.208 

ka Ammonification rate constant L/(mg CODXH�d) 0.1608 0.1608 

�� Heterotroph maximum growth rate 1/d 6.25 2 

��� AOB maximum growth rate 1/d 0.78 1.8 

��� NOB maximum growth rate 1/d 0.78 1.8 

bL,H Heterotroph decay coefficient 1/d 0.408 0.408 
bL,A1 AOB decay coefficient 1/d 0.096 0.096 
bL,A2 NOB decay coefficient 1/d 0.096 0.096 
Saturation constants    

KO,H1 
Heterotroph oxygen half-saturation 
constant 

mg DO/L 0.1 0.05 

KO,A1 AOB oxygen half-saturation constant mg DO/L 0.6 1.6 

KO,A2 NOB oxygen half-saturation constant mg DO/L 1.2 0.9 

KFA FA half-saturation constant mg N/L 0.0075 0.002 

KFNA FNA half-saturation constant mg N/L 0.0001 0.00005 

KI9FA AOB growth FA inhibition coefficient mg N/L 1 1 

KI9FNA 
AOB growth FNA inhibition 
coefficient 

mg N/L 0.1 0.1 

KI10FA NOB growth FA inhibition coefficient mg N/L 0.2 0.2 

KI10FNA 
NOB growth FNA inhibition 
coefficient 

mg N/L 0.04 0.04 

KNO3 
Heterotroph nitrate half-saturation 
constant 

mg N/L 0.2 0.2 

KX Hydrolysis half-saturation constant mg XS/mg XB,H 0.15 0.15 
KS,1 Substrate half-saturation constant mg COD/L 20 20 
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Figure 5-15 Calibrated ASMN model.  

 

Several parameters were adjusted in fitting the model to the UNSW data; in 

particular many of the oxygen half-saturation constants and the heterotrophic yield 

were adjusted to improve the fit of the DO profile. Adjustments were also made to 

many of the AOB and NOB growth parameters to calibrate the NO2� response.  

 

The model provided a good representation of the DO profile in the reactor, 

matching the initial decay and final rise to steady state. There was some discrepancy 

in the fit during the DO depletion plateau, which the model over predicted.  Similar 

to the ASM1-Nowak model, the initial increase in the NH4
+ profile following the 

application of the spike was substantially under-predicted. This further supports the 

possibility that the source of this deviation is experimental in nature and not a 

mechanistic limitation of the model. Predicted effluent NO3� concentrations were 

once again substantially higher (on the order of 50% greater) than the measured 

values. The process model provided a good representation of both the dynamic and 

steady state NO2� concentrations.  

 

Like the ASM1-Nowak model, ASMN’s predicative capacity for the primary 

parameters of interest for the off-gas N2O model component of the data generator 

(DO and NO2�) was suitable for application as the data generator’s liquid phase 

model component.  
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5.3.2.3 Liquid Phase Model Comparison and Selection 

 

Model performance was evaluated by applying the calibrated ASM1-Nowak and 

ASMN models to simulate the process responses to the inputs for Tests 1, 3, 5, and 6 

(Table 5-12). These tests were conducted at different operating points (initial DO 

conditions), as well as with variable process stimuli (spike volumes), and allowed an 

independent assessment of the model’s performance. Key process responses of 

interest for the off-gas N2O model are presented along with the measured data for 

comparison purposes as Figure 5-16 and Figure 5-17 for DO and NO2�, respectively. 

 

In general, the DO profile fits using both models were of fairly similar quality, with 

the largest depletions predicted by the calibrated ASMN model. The ASMN model 

outperformed the ASM1-Nowak model in Test 1, where there was a significant DO 

depletion plateau. In Tests 3 and 5, in which there was a more linear increase in DO 

from the minimum up to the final steady state conditions, the ASM1-Nowak model 

had the smallest level of depletion over-prediction and best performance. It should 

be noted that there was a significant difference between the initial and post-test 

steady state DO concentrations in these tests, indicating a shift in the process state. 

It is quite possible that there are additional DO dynamics incorporated into the 

observed response (i.e. the observed response is not solely due to the applied 

disturbance). Dynamic DO depletions in Test 6 were under-predicted by the ASMN-

Nowak model, while the ASMN model had a more mixed performance, initially 

over-predicting the DO depletion then under-predicting the depletion during the 

recovery period to steady state.  

 

The ASMN model provided a very good representation of the steady state NO2� 

concentrations (Figure 5-17), which were consistently over-predicted by the ASM1-

Nowak model. With regards to the dynamic portion of the response, both models 

over-predicted the peak NO2� concentrations in Tests 1, 3, and 5. The ASMN model 

had the smallest amount of over-prediction of the two models and better captured 

the shape of the NO2� peak in Test 1, although it did not reproduce the slope of the 

NO2� peak in Tests 3 and 5. For Test 6, the NO2� peak predicted by ASMN was much 

narrower than the measured value and the prediction was quite poor, while a much 

better representation was obtained by the ASM1-Nowak model.  
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Overall, the ASMN model had better performance than the ASM1-Nowak model, 

with improved capture of the dynamic shape of the DO depletion, and providing a 

better prediction of NO2� concentrations. It is likely that this improved predictive 

capacity is a result of the changes to the process kinetics for AOB and NOB growth 

in ASMN, although it is entirely possible that the improved predictive capacity is 

simply a function of having additional parameters available for calibration/fitting. 

Due to its superior performance, the ASMN model was selected as the liquid phase 

model for the data generator. 

 

5.3.3 Off-gas N2O Model Component 

 

An off-gas model was developed for the UNSW data to link the measured response 

(off-gas N2O) to the liquid phase reactor conditions. The model was based upon the 

off-gas N2O model developed for the Cranfield data (Section 5.2.3), with a number 

of modifications.   

 

5.3.3.1 Model Development 

 

The Cranfield off-gas N2O model was developed based upon the observation of a 

direct correlation between off-gas N2O concentrations and liquid phase DO 

concentrations, and consisted of a proportional component with an inverse 

switching function for DO concentration and an offset component. The offset 

component was required since the switching function could not fit the baseline 

concentrations while at the same time fitting the shape of the dynamic portion of 

the response. As a result, the Cranfield off-gas N2O model lacked sensitivity at 

higher DO concentrations. This model was further limited by NO2� and NO3� 

concentrations in the process data being reported as a sum (as well as being 

measured in the reactor effluent), and as such the data could not be assessed for 

any correlation to NO2�/FNA. 

 

Off-gas N2O concentrations in the UNSW data (Chapter 4) were less dependent on 

reactor DO concentrations, which primarily acted as a switching function. 

Furthermore, a strong dependence on NO2�/FNA was also observed.  Both of these 

aspects correspond well with the current mechanistic understanding of the aerobic 
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autotrophic N2O generation mechanism. Due to the strong NO2�/FNA dependence, 

the Cranfield off-gas N2O model was not able to provide a good representation of 

the off-gas N2O concentrations for the UNSW reactor. 

 

With the availability of liquid phase NO2� and NO3� data, it was possible to assess 

other forms of off-gas N2O models. A range of models were evaluated including 

various combinations of Monod style dependencies on DO, FNA, and NH4
+. Overall, 

the best performance was obtained from a model with two terms; the first term was 

a direct FNA proportionality (dominant in the dynamic portion of the response) and 

the second term was a DO inhibition proportionality factor (dominant in the steady 

state portion of the response, at high DO concentrations). Incorporation of NH4
+ 

concentrations into the off-gas models did not improve the predictive capacity, 

likely due to NH4
+ being the excess substrate for the alternative metabolic pathway 

producing the off-gas N2O. The off-gas N2O model utilized for the UNSW data had 

the following form: 

 

( )FNAFNA
DOO

DO
DOON SK

KS

K
KC 1,

2,

2,
1,2

+�
�
�

�
�
�
�

�

+
=  

 

Utilization of a DO dependent steady state fitting parameter allowed for broader 

model applicability. As seen in the data presented in Chapter 4, off-gas N2O 

concentrations are sensitive to DO concentration changes even at higher DO 

concentrations (greater than 3 mg/L). It is possible that this sensitivity is a result of 

the presence of NO2� in local zones of higher concentration within the activated 

sludge flocs. Even small changes in bulk DO concentrations would influence DO 

profiles within the flocs, producing zones of localized oxygen stress, resulting in 

AOB utilizing alternative metabolic pathways which produce N2O.  

 

It is important to note that while parameter selection and some of the model forms 

are based on biological process knowledge, the model was developed purely from a 

data fitting perspective and is in fact more a correlation analysis than an in-depth 

modelling exercise.  
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5.3.3.2 Model Calibration 

 

Model parameters were obtained by fitting the proposed model to DO, NO2�, and 

N2O data for Test 2. The fitted model (KDO,1 = 1, KDO,2 = 20, and KFNA,1 = 20000) is 

presented as Figure 5-18.  

 

  

Figure 5-18 Calibrated off-gas N2O model.  

 

Overall, the developed model provided a good representation of the off-gas N2O 

concentration dynamics. There was some deviation on the decay portion of the 

response, with the model under-predicting off-gas N2O concentrations. During the 

period of process stress, some N2O would be accumulating in the liquid phase. It is 

possible that the higher off-gas N2O concentrations during the decay portion of the 

response is a result of the accumulated liquid phase N2O being stripped to the 

process off-gas by the aeration air.  

 

Capturing the dynamics of the decay portion of the response would likely require 

the development of a mechanistic N2O model, which is beyond the scope of this 

work. A mechanistic model could consist of the addition of two new state variables 

to the ASM model matrix (liquid and gas phase N2O concentration), along with 

process rates and stoichiometric coefficients for the autotrophic production of 

liquid phase N2O, mass transfer of liquid phase N2O to the aeration air, and liquid 

phase N2O oxidation at elevated DO concentrations. However, additional 
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clarification and understanding of the specific mechanisms involved in this process 

are required before the development of such a model becomes feasible. 

 

5.3.3.3 Off-gas N2O Model Performance 

 

The performance of the calibrated off-gas N2O model was assessed by applying the 

model to the measured liquid phase data (DO and NO2�) for Tests 1, 3, 5, and 6 and 

comparing the predicted off-gas N2O concentrations with the measured values. 

These results are presented as Figure 5-19. 

 

For Tests 1, 3, 5 and 6, the shape of the predicted off-gas N2O profile matched the 

measured shape quite well, although there were some discrepancies with regards to 

over prediction of the N2O peak for Test 1, and under-prediction of the peaks and 

decay (discussed in the previous section) for Tests 3 and 5 and 6. The predictive 

capacity was quite poor for Test 6, in which the off-gas N2O profile was substantially 

longer (over twice as long as the predicted value). The substantial over-prediction in 

Test 6 is a function of the FNA profile, which deviated from the forms in Tests 1 and 

3, being much shorter than the DO depletion.  

 

Variability in the model performance corresponded to the temporal variations in the 

off-gas N2O stress response observed in Chapter 4. The model form assumed a 

constant stress-response relationship, and was not capable of representing changes 

in this relationship. Thus, the predictions corresponded to the observed trend of 

increasing N2O yield per amount of applied stress, over-predicting the N2O profile 

for the test conducted before the calibration test (Test 1), and under-predicting the 

N2O profiles for tests conducted afterwards (Tests 3, 5, and 6). 
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5.3.4 Data Generator Performance 

 

Process inputs for the calibration data set (Test 2) were applied to the data generator 

(consisting of the ASMN liquid phase model and the off-gas N2O model) to predict 

the off-gas N2O profile (Figure 5-20). The data generator was successful at predicting 

the initial and post tests steady state components of the off-gas N2O profile, as well 

as capturing the initial rise and most of the dynamic profile. However, as discussed 

previously, the data generator did not capture the decay portion of the response, 

predicting an earlier return to steady state.  

 

 

Figure 5-20 Data generator evaluation - Test 2, UNSW data. 

 

Data generator performance was then evaluated by feeding the process inputs for a 

series of independent operating scenarios (Table 5-11 and Table 5-12). Predicted and 

measured off-gas N2O profiles, as well as liquid phase profiles of components of 

interest, are presented as Figure 5-21. The off-gas N2O profiles produced by the data 

generator reflect a combination of the limitations of its individual components, with 

a reduced and compressed off-gas N2O response being generated.  

 

Assessment of response quality was complicated by the observed temporal 

variability in the off-gas N2O stress response. It is likely that this variability (and 

potentially process instability) is responsible for a substantial proportion of the 
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prediction errors. Despite the variable performance seen in Figure 5-21, the data 

generator successfully reproduces the fundamental stress response dynamics, and 

as such will be utilized in Section 5.4 to evaluate the proposed control concept. 
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5.4 Process Control Concept Evaluation 

 

The final step of the simulation study was to evaluate the proposed aeration control 

concept. This evaluation was conducted utilizing a PI control algorithm attached to 

the data generators developed for both the Cranfield and UNSW data sets. The 

controller was tuned using the continuous cycling method with Ziegler-Nichols 

tuning parameter coefficients (Seborg et al. 2003). 

 

Evaluation using the Cranfield data generator was restricted to a control feasibility 

assessment due to limitations in the source dataset. The UNSW data generator was 

utilized to assess control concept feasibility, as well as to quantify potential 

operational benefits associated with application of the control concept. Feasibility 

evaluations will be presented in Sections 5.4.1 and 5.4.2 for the Cranfield and 

UNSW processes, respectively. Benefits associated with the application of the 

developed control concept will be quantified in Section 5.4.3. 

 

5.4.1 Cranfield Data 

 

The feasibility of the proposed aeration control concept was evaluated for several 

operating scenarios. Since the reactors were operated at a hydraulic steady state the 

effects of process flow variations were not assessed, the focus was instead on 

variations of influent parameter concentrations. Two forms of concentration 

variation were evaluated, spikes and diurnal variations. Spikes allow for the 

assessment of the process response and controller effectiveness with regards to 

short term events (shock loadings). Diurnal variations in feed concentration are 

more representative of routine process operation and provide a basis to evaluate 

the long term effectiveness and benefits of process control implementation. 

 

Conditions for the shock loading scenario were based upon those for Test 1 from 

Burgess et al. (2002b), in particular a 41 mg/L influent NH4
+ concentration and a 2.44 g 

NH4
+ shock loading. For the second control evaluation scenario, a diurnal NH4

+ 

concentration variation was input to the data generator. This NH4
+ input profile was 

generated from a normalized diurnal variation pattern (Figure 5-22) based upon 
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literature (Metcalf and Eddy 2003). The input diurnal NH4
+ concentration was based 

around an average concentration of 41 mg/L.  

 

 

Figure 5-22 Normalized diurnal variation. 

 

Process Control Evaluation 

The response of the controlled process to two forms of stimuli is presented as 

Figure 5-23 for NH4
+ shock loading, and Figure 5-24 and Figure 5-25 for simulated 

diurnal variations in the influent NH4
+ concentrations. Relative airflow is also 

presented in these figures, and is taken relative to the base airflow at steady state 

conditions. An N2O setpoint of 0.2 ppm was used for this analysis. This setpoint was 

chosen to provide a similar level of autotrophic metabolic inhibition (and thus 

nitrification efficiency) as that presented in the experimental data. It should be 

noted that since the diurnal profile was based on average NH4
+ concentrations in 

the experimental data and the process setpoint was unchanged from experimental 

conditions, the total air usage over the time period investigated would be equal for 

both the controlled and uncontrolled scenarios. 

 



 

 

 

Chapter 5 Process Simulation 229 
 

 

 

Figure 5-23 Controlled and uncontrolled process response to an NH4
+ shock load – 

Cranfield data generator. 

  

 

Figure 5-24 Controlled and uncontrolled process DO response to diurnal NH4
+ 

loading variations – Cranfield data generator. 
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Figure 5-25 Controlled and uncontrolled process off-gas N2O response to diurnal 

NH4
+ loading variations – Cranfield data. 

  

For both of the studied scenarios, changes in influent NH4
+ loading resulted in 

changes in off-gas N2O concentrations which initiated a control action, i.e. a change 

in the aeration air supply flow. The process control method implemented in this 

simulation was successful in maintaining the processes at the desired operating 

setpoint. These results demonstrated that off-gas N2O concentrations used as a 

surrogate for autotrophic bacterial metabolic inhibition has the potential to provide 

a means of controlling bioreactor aeration air supply and promote stable operation 

by minimizing periods of significant inhibition (indicated by elevated off-gas N2O 

concentrations).  

 

For uncontrolled operation during diurnal variations (Figure 5-24 and Figure 5-25), 

the wastewater was over-aerated for the first eight hours (DO concentration 

increasing above the steady state concentration). Hence energy was wasted during 

this time period and excess operating cost was incurred. During the following 16 

hours the uncontrolled plant was under-aerated, resulting in DO depletion in the 

bioreactor and reduced nitrification efficiency. By applying off-gas based process 

control the aeration was reduced during low loading periods and increased during 

higher loadings, matching the aeration supply with the metabolic demand and 

achieving a more efficient use of aeration air.  
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5.4.2 UNSW Data 

 

The feasibility of the proposed aeration control concept was evaluated with the 

UNSW data generator using a similar methodology as that employed for the 

Cranfield data generator. Both spikes (short term events) and diurnal influent 

concentration variations (long term/routine process operation) were utilized to 

evaluate the controller performance. 

  

Conditions for the shock loading scenario were based upon the influent properties 

for Test 2 (Table 5-12), with a shock load of approximately 50% of the spike applied 

in Test 2 input into the data generator. The second control evaluation scenario 

utilized a diurnal feed concentration variation based upon the influent properties 

for Test 2 scaled around the normalized diurnal variation pattern presented in 

Figure 5-22. It should be noted that the spikes and diurnal variations utilized in this 

analysis included all feed components, and not just NH4
+ like in the Cranfield data 

generator based assessment.  

 

The response of the controlled process to two forms of stimuli is presented as 

Figure 5-26 for shock loading, and Figure 5-27 and Figure 5-28 for diurnal variations 

in the influent concentrations. Only influent NH4
+ variations are presented in the 

plot (as a reference), but other influent components did undergo a similar variation 

during the investigated scenarios. Relative airflow is also presented in these figures, 

and is taken relative to the base airflow at steady state conditions. An N2O setpoint 

of 1 ppm was used for this analysis.  
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Figure 5-26 Controlled and uncontrolled process response to an NH4
+ shock load – 

UNSW data generator. 

 

 

 

Figure 5-27 Controlled and uncontrolled process DO response to diurnal NH4
+ 

loading variations – UNSW data generator. 
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Figure 5-28 Controlled and uncontrolled process off-gas N2O response to diurnal 

NH4
+ loading variations – UNSW data. 

 

The implemented process control concept was successful in maintaining the 

process at the desired operating setpoint. Furthermore, as seen in Figure 5-28, it was 

successful at averting nitrification failure (preventing the build-up of NH4
+ inside the 

reactor), and provided better matching of the aeration supply with the metabolic 

demand, achieving a more efficient use of aeration air. Using combined changes to 

all process influent components (carbon and nitrogen), these results demonstrated 

that while the stress response is limited to AOB bacteria, the control concept is also 

able to maintain suitable environmental conditions for the heterotrophic bacteria, 

and would be suitable for combined carbon and nitrogen removal processes. 

 

Unlike the previous evaluation using the Cranfield data generator, the implemented 

process control was not able to mitigate the magnitude of the initial off-gas N2O 

peak (although it was able to substantially reduce the duration of the response), and 

there was some overshoot in the reactor DO. These differences are a function of the 

form of the off-gas N2O model. For the Cranfield data generator, the dynamic 

component of the off-gas N2O model was dependent on DO concentrations only, 

and as such the stress response was extremely quick and allowed for very fine 

control of the aeration air supply. The off-gas N2O model in the UNSW data 

generator utilized FNA as the dominant term for the response during dynamic 
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conditions, introducing biokinetics into the stress response relationship. While this 

is a more realistic representation of the processes involved, the biokinetics adds 

deadtime into the process response. While many methods exist to address the 

effects of deadtime on feedback control, a full exploration of these techniques 

(other than adjusting the algorithm integral action) is beyond the scope of this work. 

 

5.4.3 Estimate of Benefits 

 

Quantification of the process inputs and outputs relative to other conventional 

modes of process operation (in particular DO based aeration control and constant 

air flow operation) was required to support the evaluation of the environmental and 

economic feasibility of the proposed process control concept (presented in Chapter 

6). Aeration and process emission quantification for each of the operation modes 

was conducted by process simulation utilizing the diurnal feed input from Section 

5.4.2.  

 

Operation with off-gas N2O based aeration control was simulated using the process 

simulator from Section 5.4.2, while operation with DO based aeration control was 

simulated using the data generator developed in Section 5.3 connected to a 

feedback PI control algorithm (DO as the monitored value and aeration airflow as 

the manipulated variable). As with previous work, an idealized control response was 

used and the controller was tuned using the continuous cycling method with 

Ziegler-Nichols tuning parameter coefficients (Seborg et al. 2003). Constant air flow 

operation (referred to as uncontrolled operation) was simulated using the base data 

generator developed in Section 5.3, with no added control algorithms.  

 

The evaluation was conducted in two parts; the first part focused on the assessment 

of relative aeration requirements for the three modes of operation, while the 

objective of the second part was to evaluate control system performance in terms of 

process emissions.  

 

Aeration Requirements 

Aeration requirements were assessed for all three modes of operation at a moderate 

DO concentration (~2 mg/L). To compare the aeration requirements, it was 
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necessary that each of the processes be operated at an equivalent level of 

performance. Average NH4
+ removal was selected as the performance parameter 

since it is a key indicator of process efficiency for nitrification processes, and its 

emission is often regulated. While NO2� is also an important operational parameter 

and subject to regulation, the opportunity exists to remove it downstream in the 

denitrification component of the overall process, and as such is not a critical 

operational parameter for the purpose of this assessment.  

 

The 2 mg/L DO concentration was used for the DO based aeration control setpoint, 

and the other processes operating points were set based on achieving an equivalent 

average NH4
+ removal. A summary of the process inputs (aeration) and outputs (total 

mass flows and emission concentrations) is provided as Table 5-25, and process 

response profiles are presented in Figure 5-30. 

  

Table 5-25 Evaluation of aeration requirements – moderate DO (2 mg/L) operation. 

Control type DO control N2O control Uncontrolled 
Setpoint DO = 2 mg/L N2O = 1.1 ppm N/A 
Total air input (L) 4697 4594 5904 

Net process outputs  

NH4
+ (mg) 2.95 2.83 2.86 

NO2� (mg) 2.59 2.47 2.51 
N2O (mg) 18.0 18.0 17.2 

Emission concentrations 

Average 0.07 0.07 0.07 
Maximum 0.12 0.11 0.15 NH4

+ (mg/L) 
Minimum 0.02 0.2 0.01 
Average 1.99 1.79 3.30 
Maximum 2.08 2.10 5.94 DO (mg/L) 
Minimum 1.93 1.52 1.39 
Average 0.06 0.06 0.06 
Maximum 0.10 0.09 0.12 NO2� (mg/L) 
Minimum 0.02 0.02 0.01 
Average 1.10 1.10 1.05 
Maximum 1.23 1.19 1.30 N2O (mg/L) 
Minimum 0.96 0.99 0.82 

 

Application of process control achieved substantial reductions in the amount of 

aeration required to achieve similar levels of nitrification efficiency. Reductions 

(compared to uncontrolled operation) on the order of 20.4% and 22.2% were 

achieved through the utilization of DO and off-gas N2O based aeration control, 
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respectively. The off-gas N2O based aeration control concept was slightly more 

efficient, requiring less aeration and achieving slightly lower net emissions of NH4
+ 

and NO2�.  

 

The above analysis is quite restrictive in nature due to the evaluation criteria. To 

broaden the assessment, controller performance was was evaluated for a range of 

operating points using the efficiency based criterion proposed by Vrecko et al. 

(2006). As seen in Figure 5-29, both control concepts were quite similar in terms of 

performance and consistently outperformed operation with constant aeration flow.  

 

 

Figure 5-29 Comparison of Aeration Utiliziation 

 

Based on the response profiles presented in Figure 5-30, both forms of aeration 

control had similar performance during periods of low loading. Off-gas N2O based 

aeration control provided better mitigation of peak response concentrations (NH4
+, 

NO2�, and off-gas N2O) during periods of elevated loading. This improved 

performance is likely due to a more aggressive application of aeration, with the off-

gas N2O control concept allowing process DO concentrations to increase during 

periods of elevated loading (stress) and decrease during periods of low loading. 
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Process Emissions 

Controller performance with regards to process emissions was evaluated from the 

perspective of process manipulation efficiency. That is, controller performance was 

assessed based on ability to control undesirable process emissions using the same 

amount of aeration air supply (the manipulated variable). Differences in process 

emissions would be a result of the matching between aeration supply and demand.  

 

Two sets of operating conditions were selected for this evaluation; high DO 

operation (3 mg/L) and low DO operation (1 mg/L). These conditions were used as 

the setpoint for the process with DO based aeration control, and the net aeration 

requirement was determined. This aeration requirement was then applied for the 

remaining two processes to determine appropriate setpoints (off-gas N2O 

concentration and air flow rate for off-gas N2O based aeration control and constant 

airflow operation, respectively). A summary of the process inputs, outputs and 

emission concentrations for high DO operation is provided as Table 5-26, and 

response profiles are presented in Figure 5-31. 

 

Table 5-26 Evaluation of control performance – high DO (3 mg/L) operation. 

Control type DO control N2O control Uncontrolled 
Setpoint DO = 3 mg/L N2O = 0.9963 ppm N/A 
Total air input (L) 5510 5510 5510 

Net process outputs  

NH4
+ (mg) 2.41 2.41 3.47 

NO2� (mg) 2.27 2.27 2.84 
N2O (mg) 17.0 17.0 17.8 

Emission concentrations 

Average 0.06 0.06 0.08 
Maximum 0.10 0.09 0.21 NH4

+ (mg/L) 
Minimum 0.02 0.02 0.01 
Average 2.95 2.95 2.94 
Maximum 3.09 3.15 5.76 DO (mg/L) 
Minimum 2.86 2.69 0.94 
Average 0.05 0.05 0.07 
Maximum 0.09 0.09 0.15 NO2� (mg/L) 
Minimum 0.02 0.02 0.01 
Average 1.04 1.04 1.09 
Maximum 1.15 1.14 1.42 N2O (mg/L) 
Minimum 0.92 0.92 0.82 
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Both forms of aeration control had similar performance in terms of net process 

emissions, achieving reductions relative to the uncontrolled scenario of 31%, 20%, 

and 4.5% for NH4
+, NO2�, and off-gas N2O, respectively. The dynamic profiles for the 

controlled processes (Figure 5-31) were also quite similar, with little significant 

difference between the emission concentrations of the parameters of interest. It can 

also be seen from this plot that emission reductions were predominately a result of 

better control during the elevated loading parts of the diurnal influent variation, 

with the controlled and uncontrolled response profiles being similar during the low 

loading periods. 

  

A second controller performance evaluation was conducted at a lower operating 

DO concentration (1 mg/L). A summary of the process inputs, outputs and emission 

concentrations is provided as Table 5-27, and process response profiles are 

presented in Figure 5-32. 

 

Table 5-27 Evaluation of control performance – low DO (1 mg/L) operation. 

Control type DO control N2O control Uncontrolled 
Setpoint DO = 1 mg/L N2O = 1.258 ppm N/A 
Total air input (L) 4074 4074 4074 

Net process emissions  

NH4
+ (mg) 4.93 5.00 124.92 

NO2� (mg) 3.66 3.73 14.84 
N2O (mg) 20.0 20.2 33.3 

Emission concentrations 

Average 0.12 0.12 3.00 
Maximum 0.22 0.16 8.66 NH4

+ (mg/L) 
Minimum 0.02 0.05 0.02 
Average 1.02 0.89 1.65 
Maximum 1.12 1.34 4.80 DO (mg/L) 
Minimum 0.95 0.36 0.18 
Average 0.09 0.09 0.36 
Maximum 0.15 0.12 0.84 NO2� (mg/L) 
Minimum 0.02 0.05 0.02 
Average 1.22 1.24 2.04 
Maximum 1.43 1.32 3.57 N2O (mg/L) 
Minimum 1.02 1.13 0.85 
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Both forms of aeration control had similar performance in terms of net process 

emissions (< 2% difference), achieving reductions relative to the uncontrolled 

scenario on the order of 96%, 75%, and 40% for NH4
+, NO2�, and off-gas N2O, 

respectively. These large emissions reductions were due to the significant 

nitrification inhibition experienced by the uncontrolled process during periods of 

elevated loading, where removal efficiency decreased to 66%.  

 

It is interesting to note that while the overall performance of the two controllers was 

quite similar, differences existed between the response profiles. Off-gas N2O based 

aeration control provided a more dampened variation in the NH4
+ response, with 

increased NH4
+ concentrations during the reduced loading portion of the diurnal 

variation, and much reduced concentrations during the period of elevated loading.  

While the NO2� and off-gas N2O concentration profiles were quite similar, DO based 

aeration control provided profiles with smaller levels of variation.  

 

Overall, the results indicated that off-gas N2O based aeration control was capable of 

providing an equivalent level of process control and operational benefits as 

conventional DO based aeration control. The controlled process responses were 

similar at DO concentrations of 3 mg/L, with off-gas N2O aeration control providing 

better mitigation of peak NH4
+ emission concentrations as the operating DO 

decreased.  

 

The controlled processes were able to provide high levels of NH4
+ removal even at 

reduced operating DO concentrations. Compared to a process operating at 3 mg/L, 

operation at 2 mg/L and 1 mg/L utilized approximately 16.5% and 35.5% less aeration 

air, respectively. These reductions represent substantial energy and cost savings. 

However, it should be noted that this assessment does not include other practical 

considerations related to activated sludge process operation at low DO 

concentrations, such as sludge settling properties. In addition to process control, 

the application of off-gas N2O monitoring for low DO processes could enhance 

process operation by providing real-time knowledge of process metabolic status 

which could enhance decision making processes.  

 

While the results of this analysis are quite favourable, it should be noted that they 

are dependent on the off-gas N2O model component of the process simulator. The 
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lack of a mechanistic model for off-gas N2O generation as an AOB stress response is 

a limitation for this work. Furthermore, the simulation results would be dependent 

on process operating conditions, influent properties (concentrations and 

variations), and process biokinetics. Due to all these dependences, as well as the 

lack of a mechanistic off-gas N2O model, field trials (preferably at pilot or full scale) 

are necessary to provide a thorough assessment of the off-gas N2O based aeration 

control concept, and explore any practical limitations encountered during reduced 

DO operation. 
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5.5 Summary 

 

An aeration control concept was developed based on the utilization of off-gas N2O 

concentrations as a real-time indicator of nitrification inhibition dynamics, and 

aeration flow as the master control variable. This process control concept was tested 

on two simulated activated sludge processes based upon independent datasets 

(Cranfield and UNSW data) to demonstrate its feasibility and to estimate application 

benefits (in terms of aeration and emission reductions) to support the 

environmental and economic evaluation components of Chapter 6. 

  

The application of off-gas N2O based aeration control to both of the simulated 

activated sludge processes was tested by subjecting the controlled processes to 

short term influent variations (shock loadings) and diurnal variations of influent 

concentrations (representing normal process variation). Results of these simulations 

(presented in Sections 5.4.1 and 5.4.2 for the Cranfield and UNSW processes, 

respectively) demonstrated the effectiveness of this form of aeration control, which 

was able to maintain the processes at the desired operating setpoints and avert 

nitrification failure by providing better matching between aeration supply and 

metabolic demand. 

 

Performance of off-gas N2O based aeration control was compared with conventional 

DO based aeration control and constant airflow operation (uncontrolled operation) 

to provide an estimate of the benefits of applying this control technique. Aeration 

reductions (relative to the uncontrolled process) on the order of 20.4% and 22.2% 

were achieved through the utilization of DO and off-gas N2O based aeration 

control, respectively.  

 

The performance of both forms of aeration control was demonstrated to be similar 

in terms of control efficiency (i.e. ability to control undesirable process emissions 

using the same amount of aeration air supply). Net emission reductions (relative to 

the uncontrolled process) were dependent on the operating DO, with the 

application of process control having the greatest benefits at lower operating DO 

concentrations where influent fluctuations result in significant inhibition in the 
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uncontrolled process. Emission reductions ranged from 31% to 96% for NH4
+, 20% to 

75% for NO2�, and 4.5% to 40% for off-gas N2O.  

 

Overall, while both forms of aeration control were shown to be quite similar in 

terms of performance, the off-gas N2O based aeration control concept was slightly 

more efficient, utilizing less aeration and providing better mitigation of peak 

response concentrations during periods of elevated loading. Furthermore, its 

performance improved relative to DO based aeration control when the operating 

DO concentrations were decreased, likely due to enhanced matching of aeration 

supply and demand as well as more aggressive application of aeration.  

 

Enhanced aeration control could allow for reductions in the typical factors of safety 

applied to operating DO concentrations for full scale activated sludge processes. 

Operation at reduced DO concentrations could achieve substantial savings in 

aeration (up to 35.5% for operation at 1 mg/L DO compared to 3 mg/L), although 

other practical aspects related to activated sludge process operation at low DO 

concentrations need to be considered in evaluating the feasibility of such an 

application. 

 

While the results of the analysis were quite favourable and have demonstrated the 

potential benefits of enhanced aeration control via off-gas N2O monitoring, the lack 

of a mechanistic model for off-gas N2O generation and observed temporal variations 

in the off-gas N2O stress response introduce uncertainty into the simulation results. 

Furthermore, the results of this analysis are highly dependent on process operating 

conditions, influent properties (concentrations and variations), and process 

biokinetics. Field trials are necessary to provide a thorough assessment of the 

proposed off-gas N2O aeration control concept and investigate several of the 

practical implementation issues which will be discussed in the technical evaluation 

component of Chapter 6. 

 

 



 

 

 

 
 

 246 

Chapter 6    Aeration Control Concept Evaluation 

 

In Chapter 5, a non-invasive off-gas N2O monitoring based process control concept 

was proposed for nitrifying activated sludge processes. A basic feedback 

implementation of this concept was evaluated and potential benefits (in terms of 

aeration efficiency and effluent quality) were quantified. With potential benefits 

having been demonstrated through process simulation, the next step was to 

evaluate the concept at pilot scale. While full application of the control concept was 

beyond the scope of this work, technical and economic/environmental evaluations 

of the proposed control concept were conducted to support future implementation.  

 

The technical evaluation (Section 6.1) was conducted to identify potential technical 

limitations and aspects requiring further investigation and development. This 

evaluation was split into two components; physical implementation of the process 

monitoring element of the control system (Sections 6.1.1), and implementation of 

specific aeration control strategies utilizing this concept (Section 6.1.2). Finally, an 

economic and environmental evaluation of the implementation of off-gas N2O 

monitoring based aeration control strategies was conducted to identify potential 

benefits to provide motivation for future work. The results of this evaluation are 

presented in Section 6.2. 
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6.1 Technical Evaluation 

 

6.1.1 Off-gas N2O Monitoring Implementation 

 

As the first part of the process control chain, process monitoring has a strong 

influence on the overall success of any implemented control strategy. In particular, 

process monitoring must be representative, accurate, reliable, and have a suitable 

response time. Off-gas monitoring systems typically consist of three distinct 

components, namely sample collection, conditioning, and analysis (Figure 6-1).  

 

 

 

Figure 6-1 Process off-gas monitoring system. 

 

The individual components of the system utilized in this work have been discussed 

in depth in Section 3.2. This assessment will instead focus on broader 

implementation issues which are relevant regardless of the specific equipment type.  

 

Sample Collection 

While the off-gas analyser and sample conditioning system can be utilized at pilot 

and full scale directly, modifications to the sample collection system will be 

required to make the transition. For the laboratory scale bioreactor it was feasible to 

place a hood over the aerated portion of the process and collect the majority of the 

off-gas, with the sample being withdrawn from the headspace created in the hood. 

This method of gas collection would not be feasible from a practical perspective for 

full-scale processes.  

 

A more feasible approach is the utilization of smaller hoods to collect a localized 

off-gas sample for analysis. Examples of the application of this approach for off-gas 
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analysis from wastewater treatment aeration tanks have been presented in the 

literature (Benckiser et al. 1996; Clark 2000; Sumer et al. 1995). Two primary 

approaches have been utilized; floating hoods (Benckiser et al. 1996; Sumer et al. 

1995) and partially submerged fixed hoods (Clark 2000).  

 

The use of floating and fixed sample collection hoods has the advantage of 

obtaining the off-gas sample directly from the wastewater, minimizing dilution of 

the sample by the outside atmosphere. However, none of the sampling events 

reported in the literature were conducted on long term bases, and thus do not 

address fouling concerns related to the contact between the sample collection hood 

and the wastewater. While not as significant as for direct sampling techniques 

where filtration is required, material transported by bio-aerosols (generated as the 

aeration air bubbles through the wastewater) would impinge and accumulate on the 

inside the hood, requiring periodic cleaning. Furthermore, the potential exists for 

foam to accumulate inside the hood during foaming events, which could clog the 

collection system or in the worst case foul the sample conditioning and analysis 

equipment. Lacking a long-term onsite evaluation of the operation of these 

collection systems, fouling severity and the associated maintenance requirements 

cannot be determined, although the potential exists to mitigate some of these 

shortcomings through improved sample hood design. 

 

An alternative sample collection technique would be the use of hoods suspended 

above the wastewater, creating a truly non-invasive monitoring system. While there 

would still be some fouling due to bio-aerosol material transport, it would likely be 

less significant than for direct contact sample collection systems, and the non-

invasive system would be much less susceptible to foaming. However, elevating the 

hood introduces the potential for atmospheric intrusion into the sample, resulting 

in some sample dilution and a corresponding loss of sensitivity. The significance of 

this intrusion would need to be assessed through application on a full-scale process.  

 

The specific location of the sample hoods within the process is an important 

technical consideration. As noted by Clark (2000), the ideal location for the sample 

hoods would be in the centre of the aeration lane. This would serve to reduce the 

impact of non-ideal flow around edges of the process and improve response time. 

While it would be possible to install floating hoods in such a location, the 
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installation of fixed or suspended hoods in the centre of processes would likely be 

difficult and costly. It is likely that fixed or suspended hoods would be located near 

the edges of the reactor for practical purposes, allowing easy access for 

maintenance and cleaning (Clark 2000). It should be noted that proximity to the 

edge of the aeration lanes could be an added concern for suspended hoods since 

here would be a greater potential for atmospheric intrusion.  

 

Overall, the sample collection system utilized for off-gas N2O monitoring is 

relatively simple in nature, with no mechanical components to wear. This system 

would be fairly low maintenance compared to conventional invasive liquid phase 

process monitoring techniques. While there is a need for further evaluation and 

development (particularly with regards to air intrusion and the impacts of fouling 

and foaming for non-invasive and invasive sample collection techniques, 

respectively), the system appears to be feasible from a technical standpoint.  

 

Sample Conditioning 

The sample conditioning component of the process is utilized to remove moisture 

and protect the upstream instrumentation. Peltier type gas coolers have a long 

history of application for industrial gas emission sampling, and as a result have been 

developed to the point where they are fairly low maintenance and highly reliable. 

The gas cooler utilized in this study did not require any significant maintenance 

during 2 years of continuous operation. While there is a requirement for periodic 

emptying of the condensate trap, it is possible to connect the trap to a control valve 

to automatically empty the trap at predefined intervals. 

 

One issue of concern which arose during operation was condensation in the tubing 

used to transport the off-gas from the collection system to the conditioner. This 

issue was seasonal in nature, being most significant during the winter (reduced 

ambient temperature). The presence of condensate in the tubing has two primary 

effects; it creates a greater pressure drop in the system, increasing the demand on 

the sample pump, and it causes the sample gas to be sparged before going to the 

analyser, potentially capturing some of the analyte of interest and reducing the 

system accuracy. Condensation would be increasingly significant for full scale 

applications with longer sample lines. Two potential solutions are moving the 

sample conditioning system closer to the process (shortening the lines), and heating 
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and/or insulating the sample line to prevent condensation. While heating the 

sample lines would increase operating costs, with the small gas flows required by 

the analyser (<1 L/min), combined with proper tube insulation it would likely be a 

relatively small increase. Heating the lines would allow for more flexibility in terms 

of installation, and allow a centralized conditioning system to be used. 

 

Analysis 

Off-gas analysis was conducted using a NDIR based continuous emissions monitor 

(CEM). These monitors are readily available, and have a long history of application in 

industrial settings (particularly in the petroleum and power industries) to 

continuously monitor emissions from a wide range of processes. As such, they have 

seen substantial refinement and are well suited to the demands of industrial 

applications. 

 

Providing the other components of the sampling system (sample pump, 

conditioning system, and flow/pressure regulation) are operating properly, these 

analysers are extremely reliable and require minimal maintenance. Furthermore, the 

instruments are very stable and do not require frequent recalibration. While 

calibration checks were performed on the analyser in the lab unit on a weekly basis, 

the unit was extremely stable and only required recalibration on a monthly basis (a 5 

minute procedure). While more frequent verification and calibration is desirable for 

a full scale application, the associated time demand can be reduced substantially 

through automation. CEMs are suitable for integration into existing data collection 

and control systems. With the installation of control valves to switch between 

calibration gases and the off-gas sample flow, the entire calibration process can be 

automated. Routine calibration checks (and recalibration if required) can be 

conducted automatically, and the instrument can be set to report any faults or 

excessive deviations from the calibration to ensure that maintenance is conducted 

in a timely fashion and minimize periods of instrument failure. 
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6.1.2 Process Control Application 

 

Consideration will next be given to the means in which the data generated by the 

off-gas N2O monitoring system could be incorporated into aeration control 

strategies. As discussed previously, off-gas N2O concentrations act as an indicator of 

the metabolic status of autotrophic bacteria. The presence of N2O in the off-gas 

indicates AOB metabolic inhibition and is fundamentally similar to NH4
+, whose 

presence is also an indicator of metabolic inhibition (albeit a more indirect 

indicator). It is thus possible to utilize off-gas N2O monitoring as a replacement for 

NH4
+ monitoring in many of the control strategies reviewed in Section 2.4.3 (in 

particular direct feedback control, feedback supervisory control, and feedback 

control to supplement feedforward control strategies).  

 

As an indicator of process overloading, off-gas N2O monitoring could form the basis 

for process capacity control strategies to tailor the active volume (capacity) to match 

the demand. It could be used as a decision making parameter in a rule (or fuzzy) 

based control strategy to turn on or off additional aerated volume as needed, or to 

manage the nitrification rates in each of the compartments to extend activity across 

the entire plant capacity in a method similar to that proposed by Sahlmann et al. 

(2004). 

 

Since this technique is monitoring metabolic status and not a specific wastewater 

property, it cannot be utilized for influent based feedforward control strategies. 

Furthermore, at the current state of knowledge with regards to off-gas N2O 

generation (discussed in Section 2.1), strict mechanistic modelling is not feasible 

and off-gas N2O monitoring would not be suitable as a basis for model predictive 

control (MPC) strategies (although a very basic form could be utilized if a stable 

correlation is developed on a site specific basis). 

 

While the majority of the control strategies discussed to this point utilize off-gas 

N2O monitoring in a supervisory role (providing setpoints to subordinate 

controllers), the opportunity exists for a shift in the operating paradigm of the 

individual compartments. Existing processes utilize DO feedback controllers as 

subordinate controllers, implementing setpoints based on a desired operating 

efficiency. As DO is an indirect and rough measure of operating efficiency, the 
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potential exists to achieve a finer level of control by directly controlling the 

inhibition (and hence nitrification efficiency) using an off-gas N2O based feedback 

control strategy directly manipulating the aeration flow rate (similar to the control 

strategy evaluated in Chapter 5). This form of control would also remove the 

requirement for invasive liquid phase sensors in the individual aerated 

compartments. 

 

While the potential exists to incorporate this monitoring technique into a wide 

range of control strategies, a number of issues must be considered prior to 

implementation, in particular the applicability of the control strategy to specific 

processes, and response stability. 

 

Applicability 

A primary limitation with off-gas N2O monitoring based control strategies is the 

dependence on the presence of AOB to generate the stress response of interest. 

These control strategies would not be applicable to anaerobic or anoxic processes, 

or to aerobic processes which support a minimal AOB population.  

 

While the data presented in Burgess et al. (2002b) described the off-gas N2O 

response as a function of NH4
+ shock loadings, it did not address the simultaneous 

changes in both COD and NH4
+ loadings, which are commonly seen in wastewater 

treatment processes. These forms of combined loading changes were addressed in 

Chapter 4, and it was demonstrated that the autotrophic stress response was 

sufficiently sensitive to detect these loading changes. Since AOB are more sensitive 

to inhibition by reduced DO concentrations than heterotrophic bacteria, control of 

combined COD removal and nitrification processes using AOB stress responses 

would provide appropriate conditions for the growth of heterotrophic bacteria.  

 

As discussed in Section 2.1.4, a broad range of bacteria and mechanisms can 

produce N2O, which can be stripped to the off-gas by aeration, producing a mixed 

off-gas signal. In situations where a large portion of the off-gas N2O is produced by 

processes which cannot be controlled by changes in aeration flow (such as the 

inhibition of nitrifying bacteria by chemical substances, or heterotrophic 

denitrification), the controllability of the process will be limited.  
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Burgess et al. (2002b) presented data demonstrating that an N2O stress response was 

obtained following the application of chemical inhibitors (allylthourea) that 

specifically block the normal metabolic pathways of nitrifying autotrophic bacteria. 

Since the stress response is being initiated by the chemical inhibitors and not 

associated with reduced DO concentrations, aeration does not provide a means of 

controlling the process. Thus N2O based control strategies would not have control 

authority in those situations and would provide excess aeration. For processes 

where chemical inhibitors are an operational issue, the simultaneous application of 

DO and off-gas N2O monitoring along with a form of pattern recognition may be 

required to identify these forms of process upset and implement appropriate 

remedial actions.   

 

N2O generation by heterotrophic denitrification is not a concern for sequential 

processes where denitrification follows nitrification. It is however a concern for 

predenitrification processes where an anoxic zone precedes the aerobic nitrification 

zone. Since there is no sparging of the anoxic zone by aeration air, a significant 

amount of the N2O generated by incomplete heterotrophic denitrification would 

remain in the liquid phase until it reached the aerobic zone where it would be 

sparged into the off-gas, generating a false positive AOB inhibition signal. This signal 

would result in the controller increasing the aeration supply to the first 

compartment, providing excess aeration.  

 

A further concern is the potential for a cascading effect in which the increase in 

aeration associated with N2O production by heterotrophic denitrification results in 

an increased level of DO being sent to the anoxic zone by the internal recycle flow. 

The increased loading of DO would further inhibit the heterotrophic denitrification, 

producing more N2O and resulting in greater increases in aeration. This cycle would 

continue until the controller saturates (i.e. reaches maximum aeration flow), and 

denitrification would be compromised. While this scenario is indeed relevant for 

very small processes like laboratory scale and onsite decentralised bioreactors, for 

large processes with multiple individually controlled compartments it would not 

likely be an issue, with the excess N2O being sparged from the liquid phase fairly 

quickly and would be expected to only influence the first aerated compartment. The 

magnitude of these effects needs to be investigated at pilot scale in a multi-

compartment reactor prior to application at full scale. In the event that N2O 
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emissions associated with heterotrophic denitrification significantly interfere with 

off-gas N2O based controls strategies, it is possible that having a small aerobic zone 

operated at a constant air flow rate to sparge any accumulated N2O prior to entering 

the controlled aeration zones could eliminate the interference.  

Finally, it should be noted that since the off-gas N2O monitoring technique is 

dependent on N2O being stripped from the liquid phase by the aeration air, the 

monitoring system will not receive data in the event of an aeration failure. Aeration 

failures would have to be detected separately in a fully automated facility. 

  

Response Stability 

The long-term stability of the off-gas N2O stress response (in terms the N2O 

generation rate relative to the level of AOB inhibition) is essential in the 

development of off-gas N2O monitoring based control strategies. These strategies 

require the selection of off-gas N2O setpoints which correspond to a desired level of 

AOB inhibition (and hence process performance), and any variation in the 

relationship between the two would have a negative impact on the quality of 

control. 

 

Results of the stress response analysis presented in Chapter 4 raise questions with 

regards to the stability of the stress response. A very strong temporal effect existed 

in the collected data, although it could not be definitively concluded if the variability 

was inherent in the response or a function of other experimental factors. Variability 

was also observed between the responses obtained using two samples of activated 

sludge collected from the same process (and at the same sampling location) 

approximately 5 weeks apart, suggesting a variation in the biological makeup in the 

process. These results highlight potential seasonal effects which may need to be 

accounted for in control strategy development. Long-term investigation is required 

at pilot or full scale to determine if these temporal variations do indeed exist, and to 

assess their magnitude and impact on off-gas N2O monitoring based control 

strategies. 

 

As the link between the liquid and gas phase N2O concentrations, changes in N2O 

mass transfer rates could have an impact on the magnitude of the observed stress 

responses for a given level of AOB metabolic inhibition. Specifically, changes in 

aeration flow to the compartments could change the characteristics of the aerator 
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bubble patterns (size and quantify), altering the N2O mass transfer rate. In addition, 

changes in aeration flow rates would also effect the dilution of the N2O transferred 

to the process off-gas. The results presented in Chapter 4 were conducted at a 

constant aeration rate to isolate the data from these effects, thus no conclusion can 

be reached with regards to their importance. No published assessment of these 

effects is currently available in the literature, and future work is required to 

determine if mass transfer effects introduced by aeration air flow changes have any 

significant detrimental impacts on off-gas N2O monitoring based control strategies.  

 

6.1.3 Technical Feasibility 

 

The off-gas N2O monitoring system would be a relatively simple addition to existing 

wastewater treatment processes. Other than requiring a weatherproof shelter and 

power, the conditioning and analysis system can be installed “off the shelf” and 

requires significantly less maintenance than conventional invasive process 

monitors. Some technical challenges remain with regards to sample collection and 

conveyance to the conditioning system, and further development is required at full 

scale to assess and address the effects of aerosol fouling, foaming, and sample 

condensation. 

 

From a control strategy perspective, the potential exists to apply off-gas N2O 

monitoring as the basis for a range of aeration control strategies including feedback 

control (both direct control and in a supervisor role) and process capacity (aeration 

volume) control. Off-gas N2O monitoring is not suitable for influent based 

feedforward control strategies, and at the current level of mechanistic knowledge it 

is not suitable for advanced MPC strategies. With a dependence on the presence of 

AOB, this monitoring technique would not be a suitable as a basis for aeration 

control strategies for anaerobic or anoxic processes, nor for aerobic processes 

which support a minimal population of autotrophic bacteria. However, the results 

presented in Chapter 4 demonstrate that it would be a suitable basis to develop 

aeration control strategies for combined COD removal and nitrification processes.  

 

Some controllability concerns exist with regards to N2O generation associated with 

predenitrification processes and chemical inhibitors, as well as with regards to the 



 

 

 

Chapter 6 Aeration Control Concept Evaluation 256 
 

 

long-term stability of the off-gas N2O stress response and impacts of changes in 

mass transfer properties associated with aeration flows. Long-term investigation is 

required at pilot or full scale to determine the level of significance associated with 

each of these concerns and to develop appropriate form of mitigation where 

required. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Chapter 6 Aeration Control Concept Evaluation 257 
 

 

6.2 Economic and Environmental Evaluation 

 

While the potential for non-invasive aeration control using off-gas N2O monitoring 

has been demonstrated in Chapter 5, a need exists to extend investigation from 

simulation and lab-scale environments to pilot and full scale processes. In addition 

to investigating the technical issues outlined in Section 6.1.3, an important part of 

any pilot or full scale work would be to provide further clarification of the potential 

environmental and economic benefits associated with improved aeration control.  

 

The objective of the following economic and environmental evaluation is to identify 

potential benefits that could provide motivation for further research, development, 

and eventual uptake of this aeration control technique. Furthermore, this evaluation 

is intended to provide some direction for future work to explore these benefits. 

 

6.2.1 Economic Evaluation 

 

Economics are a very strong driver for operational decisions in wastewater 

treatment plants. Indeed, it has been indicated that the primary rationale for the 

installation of process control and automation has been to realize energy, 

consumable and labour cost savings (Hill et al. 2002). Potential economic benefits 

associated with the implementation of off-gas N2O monitoring based process 

control strategies can be grouped into four main categories: 

 

• instrumentation costs; 

• energy savings; 

• process capital investment; and 

• improved compliance. 

 

Cost savings associated with each of these aspects will be discussed in the following 

subsections. An in-depth cost based analysis was beyond the scope of this work. 

With the high level of variability introduced by the site and process specific nature 

of construction and operating/maintenance costs, an in-depth analysis would be of 

limited benefit without data from a full scale application of the aeration control 
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technique being evaluated. Economic benefits will instead be discussed in a more 

qualitative manner. 

 

Instrumentation Costs 

A range of costs are associated with process instrumentation, in particular 

instrument acquisition, equipment installation, and operating costs. With regards to 

off-gas N2O monitoring equipment, the NDIR analyser and sample conditioning 

equipment (gas cooler, pressure/volume flow control) cost on the order of $8000 to 

$14000 AUD, which is similar in magnitude to the reported acquisition costs for 

existing liquid phase nutrient sensors (Winkler et al. 2004). In terms of installation 

costs, there would likely be a fairly similar level of investment required for physical 

infrastructure and services. Installation of the sample hood would have a similar 

cost as installation of liquid phase sensors into aeration lanes, although specific 

design and installation of hoods remains to be determined and the ultimate design 

would have an impact on the installation cost.  

 

The primary difference between off-gas N2O monitoring and invasive liquid phase 

monitoring techniques is operating cost. With minimal requirements for analyser 

maintenance, and ease of operation, it is likely that off-gas N2O monitoring would 

achieve a significant reduction in maintenance costs compared to conventional 

liquid phase monitoring techniques. The primary source of ongoing maintenance 

would be cleaning the sample collection hood, but this needs to be evaluated at full 

scale to assess fouling issues for various configurations and estimate maintenance 

requirements. 

 

Energy Savings 

In assessing potential energy savings associated with improved aeration control, it is 

useful to put these costs in perspective against the overall wastewater treatment 

plant costs. Gratziou et al. (2005) developed cost functions to predict costs for a 

range of wastewater treatment processes constructed in Greece. These functions 

indicated that for wastewater treatment plants based on conventional activated 

sludge processes, construction cost ranged from 58.8% to 64.6% of the total costs, 

with operational and maintenance costs accounting for the remainder (Gratziou et 

al. 2005).  
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For medium sized plants of 10000 to 100000 population equivalent (pe), operational 

and maintenance costs break down to 56% personnel costs, 28% energy costs, and 

16% for maintenance and chemical costs (Gratziou et al. 2005; Tsagarakis et al. 2003). 

The breakdown of these costs is dependent on the size of the plant, as economies 

of scale exist, in particular with regards to personnel costs. Based on a survey of 

Greek wastewater treatment plant costs, Tsagarakis et al. (2003) determined that for 

plants over 100000 pe, the operation and maintenance cost distribution shifts 

towards energy costs (47% personnel costs, 36% energy costs, 17% chemical and 

maintenance) . This trend was also confirmed by Gratziou et al. (2005). 

 

With energy costs on the order of 36% of total facility operating costs (and 

increasing in importance with plant size), improved control of energy consumption 

at wastewater treatment plants has the potential to realize significant operating cost 

reductions. Compressors (for aeration) and pumps (bulk wastewater flow, sludge 

waste, and internal recycle pumps for predenitrification) are the primary energy 

consumers at wastewater treatment plants which have potential to be controlled. 

Indeed, aeration has been identified as the single largest energy consuming 

component of most biological wastewater treatment processes, and has been 

reported to be on the order of 50% of the total plant-wide energy consumption 

(Ferrer et al. 1998; Ingildsen et al. 2002), although for some plants aeration can have 

an even higher relative energy demand, approaching 60% to 80% of total plant-wide 

energy consumption (Chachuat et al. 2005a; Hamilton et al. 2006). 

 

The possibility exists to achieve reductions in aeration energy requirements both 

through improvements in the operation of compressors which supply the 

pressurized air to the headers (Section 2.4.3.4), as well as in the supply of aeration to 

the bioreactors (Section 2.4.3.1 to 2.4.3.3). These savings are on the order of 10% for 

improved compressor control (Alex et al. 2002; Hewitt 1996), and 6-28% for 

enhanced aeration control (Section 2.4.4). A basic feedback off-gas N2O based 

aeration control strategy was evaluated in Chapter 5 and demonstrated to have 

slightly superior performance to constant setpoint DO based feedback strategy 

(~2% improvement), although the potential exists for improved reductions for 

operation at reduced DO concentrations, as well as through control strategy 

refinement or the application of more advanced control strategies such as those 

outlined in Section 6.1.2. 
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Based on these estimates, upwards of 18 to 30% of total wastewater treatment plant 

operating costs are associated with aeration. The combination of both compressor 

and aeration control could result in savings on the order of 5-10% of total plant-wide 

operating costs. Thus increases in aeration efficiency through improved control 

have the potential to have a significant impact on plant operating budgets.  

 

In considering these numbers, it should be noted that cost analyses are site specific 

in nature, with a high level of variability in the specific cost components.  For 

example, as noted by Tsagarkis (2003), personnel costs range between 24-48% in 

Europe, but can reach up to 70% in developing countries. Furthermore, the majority 

of economic data was reported for conventional activated sludge processes and not 

predenitrification processes. For predenitrification processes, it would be expected 

that energy costs would be an even larger component of operating costs, in 

particular due to increased oxygen demands associated with nitrification as well as 

additional pumping costs for internal recycle flows. A need thus exists to further 

clarify economic benefits associated with improved aeration control for 

predenitrification processes. 

 

Process Capital Investment 

Improved aeration control has been recognized as an efficient means of increasing 

facility throughput without increasing reactor size, i.e. capital cost investment 

(Vanrolleghem et al. 1994; Vanrolleghem and Lee 2003), allowing the deferment of 

process capacity upgrades. Furthermore, if incorporated at the design stage for new 

wastewater treatment plants, improved aeration control could allow for reduced 

reactor size, reducing both construction costs and land requirements.  

 

Improved Compliance 

Improved process control also has the potential to provide enhanced effluent 

quality, which will be discussed in Section 6.2.2. While there are substantial 

environmental benefits associated with these improvements, there can also be an 

associated economic value. The primary economic benefit in most jurisdictions is 

the avoidance of fines for failure to comply with effluent discharge regulations 

(which are often variable based on the regulatory body, as well as with the severity 

and frequency of infractions).  
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However, in some European jurisdictions a taxation style approach is applied to the 

regulation of wastewater effluent discharges (Stare et al. 2007; Vanrolleghem and 

Gillot 2002). In these regulatory regimes, charges are assigned on a per kg of 

pollutant emitted basis, with a base rate for emissions up to an established 

discharge threshold, and increased rates for emission exceeding the threshold. 

Thus, a financial incentive exists to not only comply with emission guidelines, but 

also to minimize emissions. 

 

6.2.2 Environmental Evaluation 

 

Assessment of environmental benefits associated with improved wastewater 

treatment plant process control has traditionally focused on regulated liquid phase 

pollutants. While these pollutants are indeed important, in a regulatory 

environment which is becoming increasingly concerned with greenhouse gas 

emissions (and moving towards full process emission accounting), the control of gas 

phase emissions are also of interest. 

 

Both liquid and gas phase emissions will be discussed. However, similar to the 

economic assessment, emissions are highly dependent on process and operating 

conditions, and the relative importance of specific pollutants is dependent on local 

regulatory priorities. Thus specific emissions will not be discussed, and this 

evaluation will be conducted in a qualitative manner to highlight issues of interest 

for future research and evaluation. 

 

Liquid Phase Emissions 

The pollutants of primary interest for BNR processes are NH4
+ (a cause of 

eutrophication and removed through nitrification), and NO2�/NO3� (toxic to marine 

life and removed through denitrification). Since this work focuses on nitrification 

process, this discussion will be limited to NH4
+. As seen in the literature 

(summarized in Table 2-7), as well as in the results presented in Section 5.4.3, 

improved aeration control allows substantial reductions in both average and peak 

NH4
+ emissions and maintains treatment integrity during episodic events such as 

rain storms or intermittent/accidental industrial discharges. 
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While there has been a move in some jurisdictions towards continuous monitoring 

for discharge flow rates and volumes, there remains a dependence on grab 

sampling to assess compliance for specific pollutants (Bogue et al. 1999). This allows 

more flexibility and room for deviation from regulated emission limits, particularly 

when compliance is measured on an average emissions concentration basis.  

 

With increasing uptake and confidence in online instrumentation, it is only a matter 

of time before wastewater regulations will follow suit with air emission regulations 

for large sources and adopt continuous emission monitoring. Process performance 

would be transparent in a continuously monitored regulatory environment, with any 

violation of discharge limits being identified and reported. As such, a premium 

would be placed on improved performance and ensuring compliance at any given 

time and advanced control would become a fundamental component of wastewater 

treatment plants. 

 

Gas Phase Emissions 

While gas phase emissions are not traditionally a concern for wastewater treatment 

plants (with the exception of odour emissions), gas phase emissions from 

anthropogenic processes are receiving increased levels of scrutiny (especially those 

emissions identified as greenhouse gases), with a gradual movement towards 

establishing some form of emission regulation. Two forms of gas phase emissions 

are possible from BNR processes; direct process emissions, and indirect emissions 

associated with activities supporting the operation of the process (commonly the 

energy used to operate process equipment such as compressors and pumps).  

 

Direct process emissions of interest from BNR processes include a range of oxidized 

nitrogen compounds (NO, NOx, N2O) produced by both aerobic and anoxic 

processes (discussed in Section 2.1). While NO and NOx are of primarily of interest 

as conventional air contaminants, their production is primarily associated 

denitrification processes and is beyond the scope of this work. Off-gas N2O 

emissions are of particular interest as it is a potent greenhouse gas. N2O has a 100 

year global warming potential of 296, thus a 1 kg emission has an equivalent 

contribution to global warming as a 296 kg emission of CO2 when considered over a 

100 year time interval (Intergovernmental Panel on Climate Change 2001). 
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Off-gas N2O monitoring based nitrification control offers many benefits in a 

regulatory environment where these emissions are of interest. As demonstrated in 

Chapter 4 and in the literature (Burgess et al. 2002a; Burgess et al. 2002b; Butler et al. 

2005; Butler et al. 2009; Stuetz et al. 2003), off-gas N2O emissions from nitrification 

processes are strongly dependent on influent and process operating conditions. As 

a result, these emissions can vary significantly from process to process, introducing 

significant uncertainty into emissions estimates using standardized emission factors. 

Off-gas N2O monitoring eliminates that uncertainty, improving the accuracy of 

emissions reporting and allowing plants to gain benefits in terms of emission 

reductions due to improved process operation. There also may be a use for off-gas 

N2O monitoring to verify denitrification efficiency and confirm that the process is 

reaching completion, i.e. producing N2 and not N2O. 

 

Furthermore, if implemented as a control strategy (as seen in Chapter 5), off-gas 

N2O monitoring would allow for the direct control of off-gas N2O emission from 

nitrification processes. While this control would be useful on its own, benefits 

would be maximized through incorporation into a multicriteria control strategy to 

achieve an optimal balance between gas phase emissions, liquid phase emissions, 

and operating costs. Control of off-gas N2O emissions could also be important for 

emerging BNR processes such as OLAND, CANON, SHARON, and Anammox. These 

processes require operation at suboptimal conditions that could result in significant 

off-gas N2O emissions.  

 

Indirect emissions are of importance in a total emission accounting regulatory 

regime, which is quite likely for greenhouse gas emissions. While indirect emissions 

are associated with a range of activities including sludge and chemical 

transportation, the primary indirect emissions of interest for nitrification processes 

are gas phase emissions from the power plants that generate the electricity required 

to operate compressors and pumps. These emissions include both conventional air 

contaminants such as SO2, NOx, and particulate matter, as well as CO2 emissions (a 

greenhouse gas). It should be noted that the associated indirect emissions are 

highly dependent on the type of power plant supplying the electricity (e.g. coal, oil, 

natural gas, nuclear, solar, wind, or hydroelectric). 
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As the single largest energy consuming component of most biological wastewater 

treatment processes (Ferrer et al. 1998; Ingildsen et al. 2002), aeration is responsible 

for a significant portion of indirect emissions associated with energy generation. In 

Section 6.2.1, energy savings associated with increases in aeration efficiency 

through improved control were estimated to be upwards of 18 to 30%. Reductions in 

energy consumption would have corresponding reductions in indirect emissions, 

and the potential exists for significant reductions in wastewater treatment plant 

carbon footprints through the application of improved aeration control. 
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6.3 Summary 

 

It has been demonstrated that aeration control for BNR through non-invasive off-gas 

N2O monitoring is technically feasible and offers environmental and economic 

benefits, including reduced operating costs and process capital investment, 

improved compliance with discharge guidelines, and reductions in direct and 

indirect emissions. However, several gaps exist which must be addressed before this 

control technique can be applied to full scale processes.  

 

Some concerns exist with regards to process controllability (due to N2O generation 

associated with predenitrification processes and chemical inhibitors), as well as with 

the long-term stability of the off-gas N2O stress response and impacts of changes in 

mass transfer properties associated with variations in aeration flow rate. 

Furthermore, technical challenges remain for sample collection and conveyance to 

the conditioning system, particularly in relation to the impacts of fouling, foaming, 

and sample condensation. 

 

Long-term investigation is required at pilot or full scale to determine the level of 

significance associated with each of these concerns and to develop appropriate 

forms of mitigation where required. A need also exists to develop clear 

quantifications of the economic and environmental benefits associated with the 

implementation of improved aeration control on predenitrification processes. 
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Chapter 7    Conclusions and Recommendations 

 

This research study detailed the development and evaluation of a non-invasive 

process monitoring based aeration control strategy for nitrification processes. The 

control strategy was based on off-gas N2O monitoring. During the course of the 

research, the following key objectives were achieved:  

 

• the operation of activated sludge nitrification processes was examined 

experimentally (Chapter 4) and through literature review (Section 2.1) to 

evaluate off-gas N2O emissions under normal operating conditions and 

during process upset scenarios; 

• a model for off-gas emissions from the studied nitrification processes was 

developed to correlate these emissions to liquid phase process 

parameters;  

• a nitrification process control concept was proposed; and 

• the proposed control concept was evaluated to determine the feasibility 

of implementation, cost effectiveness and associated environmental 

benefits. 

 

A summary of the key results obtained in this work is presented as Section 7.1. 

Recommendations are provided in Section 7.2 for future work to address identified 

knowledge gaps and limitations in the proposed aeration control technique. 
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7.1 Key Results 

 

The dynamics of off-gas N2O stress responses were assessed in Chapter 4 using a 

laboratory scale nitrification process to determine their suitability for process 

control applications. Observed off-gas N2O responses were in agreement with the 

prevailing mechanistic understanding of this process, with a source of process stress 

and the presence of the limiting substrate for the alternative metabolic pathway 

(NO2� or possibly FNA) being required for the stress response to be generated.  

 

Evaluation of this stress-response relationship was conducted against 5 key criteria, 

with the results summarized in Table 7-1.  

 

Table 7-1 Off-gas N2O monitoring suitability as a control parameter. 

Criteria Description Comments 

1 
Presence correlated to 
stress 

Strong correlation, only occurs in the presence of a 
DO depletion and NO2 /FNA accumulation 

2 
Timescale suitable for 
process control 

Response timescale on the order of 4 to 8 minutes, 
faster than the timescale of aeration setpoint 
adjustment, thus suitable. 

3 
Reproducible 
response 

Variability observed, however results inconclusive 
due to potential influences from other processes. 

4 Proportional response 
Some results proportional, however temporal 
variability in N2O yield indicates presence of other 
influences. 

5 
Sensitivity suitable for 
process control 

Response is suitably sensitive in the desired 
operational DO range. 

 

Overall, off-gas N2O concentrations met the majority of the criteria, indicating a 

strong potential for application as a non-invasive means of aeration process control 

for nitrifying activated sludge processes. However, some questions did arise in 

relation to response proportionality and reproducibility, which will be summarized 

in Section 7.2. 

 

A simple feedback aeration control strategy was developed in Chapter 5 based on 

the utilization of off-gas N2O concentrations as a real-time indicator of nitrification 

inhibition dynamics, and aeration flow as the master control variable. The control 

strategy was evaluated using two simulated activated sludge processes based upon 

independent datasets (Cranfield and UNSW data) which were subjected to short 
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term influent variations (shock loadings) and diurnal variations of influent 

concentrations (representing normal process variation).  

 

Overall, application of the control strategy provided better matching between 

aeration supply and metabolic demand, allowing the process to be maintained at 

the desired operating setpoints and averting nitrification failure. Performance of an 

off-gas N2O based aeration control strategy was demonstrated to be similar to DO 

based feedback aeration control, although the off-gas N2O based aeration control 

concept was slightly more efficient, utilizing less aeration and providing better 

mitigation of peak response concentrations during periods of elevated loading. 

Furthermore, its performance improved relative to DO based aeration control when 

the operating DO concentrations were decreased, likely due to enhanced matching 

of aeration supply and demand as well as more aggressive application of aeration.  

 

Aeration reductions (relative to the uncontrolled constant aeration flow process) on 

the order of 20.4% and 22.2% were achieved through the utilization of DO and off-

gas N2O based aeration control, respectively. Emission reductions were estimated to 

be on the order of 31% to 96% for NH4
+, 20% to 75% for NO2�, and 4.5% to 40% for 

off-gas N2O, with a strong dependence on the operating DO concentration. 

However, as observed in Section 2.4.4, care must be taken in utilizing these results 

due to the site and process specific nature of the results as well as limitations in 

existing process control strategy evaluation methodologies (discussed in Section 

7.2). 

 

A technical, economic and environmental evaluation the off-gas N2O monitoring 

based control technique (Chapter 6) indicated that the control of BNR aeration 

through non-invasive off-gas N2O monitoring is technically feasible and has the 

potential to offer significant environmental and economic benefits. Potential 

benefits include reductions in operating costs and process capital investment, as 

well as improved compliance with effluent discharge guidelines and reductions in 

both direct and indirect emissions of gaseous pollutants including greenhouse 

gases.  
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7.2 Limitations and Recommendations for Future Work 

 

While the potential of off-gas N2O based aeration control strategies to provide 

enhanced operation and economic/environmental benefits has been demonstrated, 

a number of research questions remain to be addressed. These questions are based 

on knowledge gaps identified in the literature review, as well as the evaluation of 

off-gas N2O based aeration control. A summary of residual research questions based 

on the literature review, along with recommendations for future work is provided as 

Table 7-2.  

 

In the evaluation of the off-gas N2O based aeration control technique, a number of 

key knowledge gaps were identified which must be addressed to allow further 

implementation at pilot and full scale. In particular: 

 

• temporal effects on off-gas N2O yield and long-term stability; 

• effect of microbiological population changes on off-gas N2O emissions; 

• impact of N2O generated by non-AOB sources on process controllability; 

• effects of changes in aeration flows on off-gas N2O signals; 

• design of off-gas sample collection equipment and assessment of 

maintenance and operational issues; and 

• quantification of economic and environmental benefits associated with 

control strategy implementation. 

 

As discussed in Chapter 4, a number of limitations are associated with experimental 

work conducted on laboratory scale bioreactors operating on synthetic wastewaters, 

in particular poor process stability and impacts of microbiological populations. 

Future work must move towards long-term field trials using pilot and full scale 

processes operating on real wastewater to address these limitations. Full scale 

application would allow investigation of practical implementation issues related to 

sample collection and allow a comprehensive assessment of the stability of the off-

gas N2O stress response. 

 

It is recommended that future work focus on step response experiments or diurnal 

influent fluctuations instead of spike tests to eliminate adaptive effects associated 
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with the application of repeated stresses which are not a part of normal operation. 

Furthermore, future studies should be supported by microbial analysis to identify 

and quantify the dynamics of the AOB populations, which would greatly increase 

our understanding of off-gas N2O emissions and assist in identifying any sources of 

observed variability. Additional studies relating to the operation of activated sludge 

processes at low DO concentrations should also be investigated to assess the 

feasibility of such an application for improved nitrogen removal in emerging BNR 

processes. 

 

Overall, while off-gas N2O monitoring based aeration control techniques have the 

potential to provide a significant economic and environmental benefits, a number of 

research questions remain to be answered and there is much room for continued 

research and development in this area. 
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Appendix A - Figures 



 A- 2 

 

 

Figure A-1 Effect of heterotroph maximum specific growth rate (μH) on system state 

variables (ASM1 – Cranfield data). 

 

 

 

 

 

 

Figure A-2 Effect of autotroph maximum specific growth rate (μA) on system state 

variables (ASM1 – Cranfield data). 
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Figure A-3 Effect of heterotroph decay coefficient (bH) on system state variables 

(ASM1 – Cranfield data). 

 

 

 

 

 

 

Figure A-4 Effect of autotroph decay coefficient (bA) on system state variables (ASM1 

– Cranfield data). 
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Figure A-5 Effect of biomass decay partitioning factor (fp) on system state variables 

(ASM1 – Cranfield data). 

 

 

 

 

 

 

Figure A-6 Effect of biomass nitrogen fraction (iXB) on system state variables (ASM1 – 

Cranfield data). 
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Figure A-7 Effect of particulate product nitrogen fraction (iXP) on system state 

variables (ASM1 – Cranfield data). 

 

 

 

 

 

 

Figure A-8 Effect of ammonification rate (ka) on system state variables (ASM1 – 

Cranfield data). 
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Figure A-9 Effect of maximum specific hydrolysis rate (kH) on system state variables 

(ASM1 – Cranfield data). 

 

 

 

 

 

 

Figure A-10 Effect of heterotroph DO inhibition coefficient (KOH) on system state 

variables (ASM1 – Cranfield data). 
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Figure A-11 Effect of autotroph DO inhibition coefficient (KOA) on system state 

variables (ASM1 – Cranfield data). 

 

 

 

 

 

 

Figure A-12 Effect of heterotroph substrate inhibition coefficient (KS) on system state 

variables (ASM1 – Cranfield data). 
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Figure A-13 Effect of autotroph ammonia inhibition coefficient (KNH) on system state 

variables (ASM1 – Cranfield data). 

 

 

 

 

 

 

Figure A-14 Effect of hydrolysis half-saturation coefficient (KX) on system state 

variables (ASM1 – Cranfield data).
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Figure A-31 Effect of heterotroph yield (YH) on system state variables (ASM1-Nowak 

– UNSW data). 

 

 

 

 

 

 

Figure A-32 Effect of AOB yield (YM) on system state variables (ASM1-Nowak – 

UNSW data). 
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Figure A-33 Effect of NOB yield (YN) on system state variables (ASM1-Nowak – 

UNSW data). 

 

 

 

 

 

 

Figure A-34 Effect of heterotroph maximum specific growth rate (μH) on system state 

variables (ASM1-Nowak – UNSW data). 
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Figure A-35 Effect of AOB maximum specific growth rate (μM) on system state 

variables (ASM1-Nowak – UNSW data). 

 

 

 

 

 

 

Figure A-36 Effect of NOB maximum specific growth rate (μN) on system state 

variables (ASM1-Nowak – UNSW data). 
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Figure A-37 Effect of heterotroph decay coefficient (bH) on system state variables 

(ASM1-Nowak – UNSW data). 

 

 

 

 

 

 

Figure A-38 Effect of AOB decay coefficient (bM) on system state variables (ASM1-

Nowak – UNSW data). 
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Figure A-39 Effect of NOB decay coefficient (bN) on system state variables (ASM1-

Nowak – UNSW data). 

 

 

 

 

 

 

Figure A-40 Effect of biomass decay partitioning factor (fp) on system state variables 

(ASM1-Nowak – UNSW data). 
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Figure A-41 Effect of biomass nitrogen fraction (iXB) on system state variables (ASM1-

Nowak – UNSW data). 

 

 

 

 

 

 

Figure A-42 Effect of particulate product nitrogen fraction (iXP) on system state 

variables (ASM1-Nowak – UNSW data). 
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Figure A-43 Effect of ammonification rate (ka) on system state variables (ASM1-

Nowak – UNSW data). 

 

 

 

 

 

 

Figure A-44 Effect of maximum specific hydrolysis rate (kH) on system state variables 

(ASM1-Nowak – UNSW data). 
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Figure A-45 Effect of heterotroph DO inhibition coefficient (KOH) on system state 

variables (ASM1-Nowak – UNSW data). 

 

 

 

 

 

 

Figure A-46 Effect of AOB DO inhibition coefficient (KOM) on system state variables 

(ASM1-Nowak – UNSW data). 
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Figure A-47 Effect of NOB DO inhibition coefficient (KON) on system state variables 

(ASM1-Nowak – UNSW data). 

 

 

 

 

 

 

Figure A-48 Effect of heterotroph substrate inhibition coefficient (KS) on system state 

variables (ASM1-Nowak – UNSW data). 
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Figure A-49 Effect of ammonium inhibition coefficient (KNH) on system state 

variables (ASM1-Nowak – UNSW data). 

 

 

 

 

 

 

Figure A-50 Effect of nitrite inhibition coefficient (KNO2) on system state variables 

(ASM1-Nowak – UNSW data). 
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Figure A-51 Effect of hydrolysis half-saturation coefficient (KX) on system state 

variables (ASM1-Nowak – UNSW data). 
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Figure A-73 Effect of heterotroph yield (YH) on system state variables (ASMN – 

UNSW data). 

 

 

 

 

 

 

Figure A-74 Effect of AOB yield (YA1) on system state variables (ASMN – UNSW data). 
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Figure A-75 Effect of NOB yield (YA2) on system state variables (ASMN – UNSW data). 

 

 

 

 

 

 

 

Figure A-76 Effect of heterotroph maximum specific growth rate (μH) on system state 

variables (ASMN – UNSW data). 
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Figure A-77 Effect of AOB maximum specific growth rate (μA1) on system state 

variables (ASMN – UNSW data). 

 

 

 

 

 

 

Figure A-78 Effect of NOB maximum specific growth rate (μA2) on system state 

variables (ASMN – UNSW data). 
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Figure A-79 Effect of heterotroph decay coefficient (bH) on system state variables 

(ASMN – UNSW data). 

 

 

 

 

 

 

Figure A-80 Effect of AOB decay coefficient (bLA1) on system state variables (ASMN – 

UNSW data). 
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Figure A-81 Effect of NOB decay coefficient (bLA2) on system state variables (ASMN – 

UNSW data). 

 

 

 

 

 

 

Figure A-82 Effect of biomass decay partitioning factor (fd) on system state variables 

(ASMN – UNSW data). 
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Figure A-83 Effect of biomass nitrogen fraction (iN/XB) on system state variables 

(ASMN – UNSW data). 

 

 

 

 

 

 

Figure A-84 Effect of particulate product nitrogen fraction (iN/XP) on system state 

variables (ASMN – UNSW data). 
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Figure A-85 Effect of ammonification rate (ka) on system state variables (ASMN – 

UNSW data). 

 

 

 

 

 

 

Figure A-86 Effect of maximum specific hydrolysis rate (kH) on system state variables 

(ASMN – UNSW data). 
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Figure A-87 Effect of heterotroph DO inhibition coefficient (KOH) on system state 

variables (ASMN – UNSW data). 

 

 

 

 

 

 

Figure A-88 Effect of AOB DO inhibition coefficient (KOA1) on system state variables 

(ASMN – UNSW data). 
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Figure A-89 Effect of NOB DO inhibition coefficient (KOA2) on system state variables 

(ASMN – UNSW data). 

 

 

 

 

 

 

Figure A-90 Effect of heterotroph substrate inhibition coefficient (KS) on system state 

variables (ASMN – UNSW data). 
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Figure A-91 Effect of free ammonia inhibition coefficient (KFA) on system state 

variables (ASMN – UNSW data). 

 

 

 

 

 

 

Figure A-92 Effect of free nitrous acid inhibition coefficient (KFNA) on system state 

variables (ASMN – UNSW data). 
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Figure A-93 Effect of AOB free ammonia inhibition coefficient (KI9FA) on system state 

variables (ASMN – UNSW data). 

 

 

 

 

 

 

Figure A-94 Effect of AOB free nitrous acid inhibition coefficient (KI9FNA) on system 

state variables (ASMN – UNSW data). 
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Figure A-95 Effect of NOB free ammonia inhibition coefficient (KI10FA) on system state 

variables (ASMN – UNSW data). 

 

 

 

 

 

 

Figure A-96 Effect of NOB free nitrous acid inhibition coefficient (KI10FNA) on system 

state variables (ASMN – UNSW data). 
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Figure A-97 Effect of hydrolysis half-saturation coefficient (KX) on system state 

variables (ASMN – UNSW data). 
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