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Chapter 1

Introduction

Both Bayesian and Frequentist statisticians are accustomed to analysing “classical” data-
that is, data whose realisations are single points in Euclidean space X ¢ RP. Data of this
kind are generally organised into a n x p data matrix where each of n individuals (in rows,
often called “statistical units") takes one single value which might be observed or missing
for each of p variables (in columns). These variables can be described by single point quan-
titative (i.e numerical) and/or qualitative (i.e categorical) values from which exploratory
analysis and statistical inference can be performed to extract knowledge from the data. A
classical data table of credit card expenditures by a coterie of individuals can be seen in
Table[1.1]taken from Billard and Diday| (2006)). Symbolic data analysis (henceforth, SDA),

’ i ‘ Name ‘ Month ‘ Food ‘ Social ‘ Travel ‘ Gas ‘ Clothes ‘

Jon | February | 23.65 | 14.56 | 218.02 | 16.79 | 45.61
Leigh May 28.47 | 8.99 | 141.60 | 21.74 | 86.04
Leigh July 24.13 | 15.97 | 190.40 | 35.71 | 20.02
Tom July 30.86 | 9.55 | 193.14 | 24.26 | 95.68

R W DN

Table 1.1 — A partial list of credit card expenditures on a range of each individual’s itemised
expenses (in dollars) for food, social entertainment, travel, gas and clothes over a 12-month period.

introduced by |Diday| (1987)), provides a new way of thinking in modern Data Science by
extending “classical data” to a set of classes of individual entities. In the SDA paradigm,
classes of a given population are considered to be units of interest to be studied. Table
illustrates such an example where the analysis of interest lies in the class of person-months
and its corresponding spending patterns. In order to take into the account of variation
within each class, each observation is now in an interval-valued format. The intervals
correspond to the range of classical values observed in that person-month in the original
classical data. Other common representations of classes include histograms, distributions,
set of categories or numbers sometimes weighted and the like. SDA is particularly rele-
vant in the era of big data as it can tackle complex data challenges by first building the
symbolic data table where the rows are “classes”, representing subsets of individual enti-

ties possessing a common characteristics. The columns contain variables taking symbolic
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Name-Month ‘ Food ‘ Social ‘ Travel Gas ‘ Clothes ‘
Jon-January [20.81, 29.38] | [9.74, 18.86] | [192.33, 205.23] | [13.01,24.42] | [44.28,53.82]
Jon-February | [21.44, 27.58] | [10.86, 18.01] | [214.98, 229.63] | [16.08,22.96] | [50.51,63.57]
Tom-January | [23.28, 30.00] | [8.67, 18.31] | [193.53, 206.53] | [26.28,35.61] | [15.51,25.66]
Tom-February | [20.61, 28.66] | [10.66, 17.20] | [195.53, 203.83] | [25.43,34.18] | [12.99,24.88]
Leigh-January | [25.59,35.33] [7.07,19.00] [194.12,207.05] | [17.75,23.07] | [61.47,75.43]

Leigh-February | [31.30,40.80] [9.05, 24.44] | [212.76, 227.43] | [13.81,25.08] | [71.43,85.58]

Table 1.2 — Credit card use by person-months.

values. A symbolic data table constructed from classes aggregates complex data from mul-
tiple unstructured data tables to a data table with a compact structure. It consequently
reduces the data set into a manageable size. In addition, SDA is useful to researchers
whose scientific interests are units of second-level generalisation of the individual entities,
represented by these “classes”. For example, a loan company could define different classes
of borrowers, e.g. high risk, medium risk, low risk based on their financial profiles. An
environmentalist could define different classes of air particulate matter, e.g. PMig, PMs 5
and ultra-fine particles based on the particle diameters. As demonstrated in Table
extracted from |Diday| (2016), to assess the likelihood of a soccer team winning the French
Cup, it is perhaps more sensible to analyse at the “class” level defined by teams in the
French Cup instead of assessing an individual player within a “class”. In official statistics,
confidentiality issues renders the data custodians to release data of individual entities and
only “class” level data are made available to the public. While thinking by classes in
data can produce a smaller data set containing symbolic data, some data are naturally
“symbolic”. Blood pressure, for example, is usually recorded in an interval-valued format

due to its continuous fluctuations.

French Cup Teams ‘ Weight ‘ National Country ‘ Age ‘

Paris [73,85] | France, Argentina, Senegal (0) 0.3, (1) 0.7

Lyon [68,90] France, Brazil, Italia (0) 0.3, (1) 0.65, (2) 0.5
Marseille [77,85] France, Brazil, Algeria (1) 0.4, (1) 0.52, (3) 0.08
Bordeaux [80,90] France, Argentina (0) 0.4, (1) 0.6

Table 1.3 — Symbolic Data Table where “Classes” are Teams of the French Cup and four variables
taking symbolic values of Interval, Sequence of Categories and Histogram. These symbolic data
describe the classical data of the players in each soccer team.

Age variable represents the frequency of the age players being in the intervals [less than 20], [20,25],
[25,30], [more than 30],respectively, coded as: (0), (1), (2), (3).

The term ‘symbolic’ stresses the fact that the values that symbolic data take are of a
different nature to classical data. They are essentially distributional in nature and cannot
be reduced to numbers without losing a significant amount of information. Statistical

techniques for analysing classical data have been developed to analyse univariate or mul-
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tivariate single-valued variables however, without modifications, these are not appropriate
for handling distributional variables which have complex internal structures. To this end,
there has been a considerable development within SDA research to develop methods to
accommodate data with intrinsic variability and to thereby extend the scope of classical

data analysis methods to a broader definitions of data.

To date, descriptive statistics for a variety of symbolic variables such as symbolic
sample means, sample variances and covariances have been established. See e.g. [Bertrand
and Goupil (2000), Gioia and Lauro (2005)), Billard and Diday| (2006)), Billard (2007),
Billard (2008)) and a critical review can be found in [Irpino| (2013). Since then, a large
number of non-parametric descriptive approaches have been developed such as principal
component analysis, clustering and linear regressions based on least squares, resulting in

a large number of publications in journals and conference presentations.

In contrast, parametric inference methodologies remain largely unexplored. |[Le-Rademalcher
and Billard (2011]) proposed a symbolic likelihood function and gave examples for inter-
val and histogram-valued symbolic variables. Brito and Duarte Silva, (2012) used this
approach to propose probabilistic models for interval data assuming a joint multivari-
ate Normal or skew-Normal distribution for the midpoints and log-ranges of the interval
variables. This basic structure has been used for a variety of multivariate analyses for
interval data including analysis of variance, discriminant analysis (Silva and Brito|, 2015)),
model-based clustering (Brito et all [2015) and outlier detection (Silva et al., [2017). An
alternative likelihood-based inferential method that is able to incorporate both intra- and
inter- symbol variations was proposed by [Zhang and Sisson (2016) who demonstrated

applications using interval-valued and histogram-valued symbolic variables.

Continuing forward from current developments in SDA, this thesis contributes a new
method to construct symbolic likelihood functions for interval-valued and histogram-
valued data. This method addresses some potential issues in the likelihood-based methods
of|Le-Rademacher and Billard (2011) and Brito and Duarte Silva, (2012), including whereby
inferences can only be made at the “class” level, overlooking the generative process of the
underlying data. The proposed method also alleviates the need for assuming within ‘class’
uniformity within intervals and histogram bin data. This assumption is endemic in the
SDA literature with many methods dependent on it being true. Of course, uniformity will

not be true in practice, invalidate many existing SDA methods.

Zhang and Sisson| (2016) construct likelihood functions for interval-valued symbols
which can be considered as a first attempt to move beyond the issues implicit to the
other likelihood-based SDA approaches, and provide an inferential framework that aligns
a generative process with an aggregation process. Similar to [Zhang and Sisson| (2016)’s
proposal, our new method considers both the generative process from which the classi-
cal data are observed and an aggregation process of transforming classical data points
to defined “classes” taking symbolic values. In this way, inferences can be made at both
the “class” level and at the underlying classical data level, for which the latter may be
of greater interest to the analysts. In this manner, our likelihood-based approach can

be shown to reduce to the regular classical data likelihood function when the symbolic
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variables reduce to classical data. In summary, this method aims to achieve firstly, ex-
plicitly recognising and accommodating the data generative and aggregation processes;
Secondly, departing from the restrictive and unrealistic uniformity within “classes” as-
sumption; Thirdly, provide more direct interpretations on the underlying classical data

aggregated within individual entities.

The contents of this thesis are structured as follows, Chapter [2] presents a comprehen-
sive literature review of SDA methodology. It begins with a detailed summary of different
kinds of symbolic data with particular emphasis placed on interval-valued and histogram-
valued symbolic variables, explaining reasons why current techniques for classical data
analysis fail to adequately account for symbolic data. This is then followed by a summary
of the current state of developments in SDA in the areas of exploratory data analysis,
cross-sectional and time series, linear regressions and likelihood-based inference. A brief
discussion about the research challenges within SDA is presented and how these motivate

the introduction of a new likelihood-based approach in Chapter

In spite of the growing attention in biodiversity conservation (Caley et al., 2014),
ecological data such as estimates for species abundance is highly variable and cannot
be determined with certainty. Typically, data of species estimates are recorded in one of
three different forms. Some might be point-estimates, representing experts’ most informed
best estimate of the number of species based on a detailed analysis or study. Others
might be provided as intervals, representing a plausible range of species counts. The
remainder might be supplied with both a point estimate and a possible range recorded as
an interval. Due to this inconsistent form of data, a previous analysis by (Caley et al.| (2014)
was unable to appropriately capture all of the information in the species diversity data,
thereby reducing the authors’ ability to derive satisfactory estimations for global species
richness and for individual species taxa. In Chapter [3] a novel meta analysis application
for estimating the global and individual taxa species abundance is presented, adopting the
existing likelihood-based SDA approach of Brito and Duarte Silva, (2012). This approach,
together with a Bayesian hierarchical model that is more complex than those previously
considered, allows us to statistically reconcile the three different data formats, and also
enforce logical consistency in estimating species abundance within and between different

species categories.

While the above analysis makes no assumption of the information of within interval-
valued data, it could be symmetric or asymmetric, the information about the internal

distribution within each interval might be relevant in a given analysis.

Acknowledging this need and as previously discussed, in Chapter [4, we introduce our
new method to construct symbolic likelihood functions for interval- and histogram-valued
data. This method is capable of capturing both intra- and inter- symbol relationships in
addition to ensuring that the choice of the internal distribution within a “class” taking
symbolic values is at the researchers’ discretion. It accordingly offers significantly more

flexible and accurate modelling.

In Chapter [5] we apply our new symbolic likelihood framework to a particulate matter

data analysis. Ultrafine particles (UFPs), whose diameters are less than 100 nm are
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ubiquitous in urban air and are acknowledged to have adverse risk to climate, visibility
and human health. Due to their negligible mass compared with larger-sized particles (such
as PM10 and PM 2.5), UFPs are commonly evaluated through measurements of particle
number concentration (PNC) |[Hussein et al. (2005). To track the dynamic evolution of
PNC and its impact on children’s health, a measurement campaign by the International
Laboratory for Air Quality and Health (ILAQH) entitled “Ultrafine Particle Emissions
from Traffic and Child Healt” (UPTECH) was conducted in Brisbane where PNC levels
were measured continuously over a 2-week period at 25 primary schools in the Brisbane
Metropolitan Area. To better understand aerosol dynamic processes, PNC measurements
are collected at every 5 minutes at each school site, resulting in 12 observations per hour.

Previous analysis performed by |Clifford et al.| (2012a) constructed a Bayesian spatio-
temporal model for PNC using only the hourly-averaged data. This is potentially subopti-
mal use of the collected data and motivates us representing each 5-minute PNC measure-
ment as a member of a “class” defined by hour. Now these “classes” of hourly PNC can
no longer be summarised by a single point. In Chapter [5] these classes are chosen to be
histograms constructed from data quantiles. The modelling of temporal effects for these
histogram-valued symbolic data is consistent with the approach taken by |Clifford et al.
(2012a). Specifically we adopt a Bayesian time-varying finite mixture model to account
for potential multi-modality induced from heterogeneity in the underlying sequences of
histograms. Allowing the parameters of the mixture model to vary over time provides
some insights into how the underlying distribution evolves over time.

In Chapter [6], we conclude with a discussion. We make some comments about our
new way of constructing symbolic likelihood functions and how it can contribute to the

analysis of large and complex datasets, and discuss potential future research directions.






Chapter 2

Literature Review of Symbolic

Data Analysis

2.1 Introduction

Chapter (1| briefly discusses how Symbolic Data Analysis (SDA) provides a systematic way
of thinking and representing classical data, aggregated to new kinds of data “points”,
called ‘symbolic’ data organised by “classes”. This Chapter goes into details. Firstly
the concepts of symbolic data are formally presented. This is followed by discussing the
similarities and differences with classical data. Symbolic data are distinctive in their
own right and thus motivate the need to establish a new analysis framework. Special
attention is given to quantitative interval-valued and histogram-valued symbolic data. We
review the descriptive statistics basics and some methods of analysing these data, while
briefly summarising methods for other types of symbolic variables, before highlighting some

weaknesses of these current approaches. This thesis will tackle some of these problems.

2.2 From Classical to Symbolic Data

“Big data” has become a buzzword in modern Data Science. It commonly refers to struc-
tured or unstructured data with immense volumes and complexity. As summarised by
Diday (2016), SDA is a new tool in Data Science that offers an efficient and effective
way of knowledge extraction from data. It can be used to tackle data of big volumes by
aggregating the micro-data (individual observations) to a much smaller number of group
level symbols (“classes”) (where m < n, m is the symbolic data size while n is the size of
the classical data). At the same time, addressing data complexity as thinking by classes
requires a transformation of multiple unstructured data tables and unpaired variables to
a symbolic data table where the rows are classes and columns are symbolic variables. The
following example, extracted from Diday and Noirhomme-Fraiture (2008]), demonstrates
how two seemingly unrelated data tables with different individuals and different variables
can be merged into a symbolic data table by using a common “class”. In Table in-
dividual entities are schools which are described by 1 quantitative variable (the number

of pupils per school) and 3 qualitative variables (town, school type and school level). In
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contrast, the individual entities in Table are hospitals and are described by 1 quanti-
tative variable (the number of coded beds per hospital) and 2 qualitative variables (town
and coded speciality). In both tables, only the variable ‘town’ is common. Using the
idea from SDA, the two tables can be aggregated into a single table by thinking
of ‘towns’ as “classes”. It becomes immediately apparent that the towns then constitute
“classes” defined by the same quantitative variables (No.of pupils and No.of beds), which
are no longer single values but intervals. The qualitative variables such as the type of
school of Table is transformed into a new variable whose values are several categorical
with weights defined by the frequencies of school types in each town. In this way, we
obtain these new kinds of data, called ‘symbolic’ data, presenting variability between the
individual entities within a class. It is also worth noting that some data are naturally
“symbolic” , in the sense that there is inherent variability within data. It is briefly dis-
cussed in Billard and Diday| (2003b) that pulse rate, systolic blood pressure and diastolic
blood pressure are types of data that are generally recorded as intervals. In addition,
birds may be characterised by colours e.g., Bird 1 ={black}, Bird 2 ={black and blue}
and Bird 3 ={half yellow, half red},... That is, the variable colour of an individual bird
takes not just one category of colours but could be a list of all possible colours or a list
with corresponding proportion of each colour for that individual bird. However, this thesis
focuses on symbolic data that are obtained from an aggregation process where individual

entities are generalised to different “classes”.

School Town No. of pupils | Type ‘ Level ‘
Janres Paris 320 Public 1
Condorcet Paris 450 Public 3
Chevreul Lyon 200 Public 2
St Helene Lyon 380 Private 3
St Sernin | Toulouse 290 Public 1
St Hilaire | Toulouse 210 Private 2

Table 2.1 — A Classical Data Table of schools in different towns in France

’ School Town Coded no. of beds | Coded speciality
Janres Paris 750 5
Condorcet Paris 1200 3
Chevreul Lyon 650 3
St Helene Lyon 720 2
St Sernin | Toulouse 520 6
St Hilaire | Toulouse 450 2

Table 2.2 — A Classical Data Table of hospitals in different towns in France

Suppose a nxp data matrix X = (X;;), where each cell (4, j) contains z;;, the observed
value of variable j,j = 1,2,3,...p for individual i € Q = {1,2,3,...n}. Note n is the number
of the observations while p is the number of variables and both n and p can be extremely
large, which is fairly common in the era of “big data”. In addition, let the domain of X;
be X; then X = (X1, X»,...X),) takes values in X' = X?:l A&;. In classical data analysis,
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’ Town ‘ No. of pupils ‘ Type ‘ Level ‘ Coded no.of beds ‘ Coded speciality
Paris [320,450] 100% Public {1,3} [750,1200] {3,5}
Lyon [200,380] 50% Public, 50% Private | {2,3} [650,720] {2,3}

Toulouse [210,290) 50% Public, 50% Private | {1,2} [450,520] {2,6}

Table 2.3 — A Symbolic Data Table of schools and hospitals constructed from “classes”-towns in
France

variables can be either quantitative (numeric), e.g., age with X9 = {x >= 0} = X, as a
continuous random variable; or with X,g = {0,1,2,...} = N as a discrete random variable.
Qualitative variables could be Xj,44. = {High Distinction, Distinction, Credit, Fail} or
coded Xyrqde = {1,2,3,...} respectively. It can also be an indicator variable, e.g., X =
Passing the exam with domain X = {No, Yes}. In the classical data setting, there is
exactly one realised value for each z;; in X, for example, an individual’s X,4.= 24 whose
Xgrade is High Distinction and Xj4ssing = Yes. In summary, a classical data point is a
single point in the p-dimensional space X.

In this notation setting, let us further define S;,j = 1,2,3,...p, be the 4 symbolic
variable, with a particular variable S; assuming a value §;; for the it" individual. The
values that symbolic variables take are of a different nature to classical variables as they
are not restricted to just a particular point value. Generally, a symbolic data point &; is
a distribution of some kind with an internal distributional structure. Given this unique
characteristic, SDA has to deal with the internal variation of each observation in addition
to the variation between observations. In contrast, a classical observation with its single
point value has no internal variation and classical data analysis is developed to deal with
variation between observations only. As a result, classical data analysis is not appropriate
to analyse symbolic data which leads to the emergence of SDA aiming at extending the
classical data models to account for data with growing complexity. However, similar to
their classical counterparts, they can still be classified as either quantitative (numeric) or
qualitative (categorical) variables. Firstly, we introduce quantitative symbolic variables
with special attention given to intervals (Section and histograms (Section
before introducing more general quantitative symbolic variables in Section In Sec-

tions [2.4.1] and [2.4.2] we discuss some qualitative symbolic variables. In Sections [2.5.1
2.5.2] and [2.5.3] we present a short description of some of the current SDA approaches
and methods to analyse symbolic data. Section concludes this Chapter with a brief

discussion, pointing out some of the key issues which remain to be solved in current SDA

methodologies. This thesis hopes to address some of them.

2.3 Quantitative Symbolic Variables

Let us define the following notation to be used consistently throughout this chapter.

e &; be an entry assumed by a symbolic variable S; for the it" observation, where

t=1..n,7=1.p.

e Given S; is an interval-valued symbolic variable, its realisation is denoted as &;; =
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(lij,uij) € R, where u;; is the upper bound and [;; is the corresponding lower bound,

with Usj 2 lij and lij, Us; € R.

e Given §j is a K-bin histogram-valued symbolic variable, its realisation is represented
as &; = ((Lij1,uij1; pi1)y - (lijics Wijic; Pijic ). Uijk is the upper bound of the &
subinterval and /;; is the corresponding lower bound, with w;;x > ik, lijk, wijx € R,
Zﬁlpijk =land 0<psp<1for k=1. K.

2.3.1 Interval-Valued Symbolic Variables

An interval-valued variable is one of the most commonly seen quantitative symbolic vari-
ables, whose values are finite subsets of its domain. Continuing from the example above,
an aggregating process transforms individual entities to a “class”, defined by, say, uni-
versity students who study MATH1041 at UNSW. The equivalent symbolic version of
quantitative variables S,4e may now be recorded as an interval £,4 = (20,28) ¢ R. In
other possible cases, the same interval variable may be obtained for an single individual
whose age is not precisely known, or whose age has varied over a duration of time where a
longitudinal study was undertaken and thus producing interval-ranged data. An interval
&age, for example, is represented by its lower and upper bounds. Given it is obtained from
an aggregation process from which individual entities who share the same pre-defined char-
acteristics are considered as a “class”, then the lower bound may represent the youngest
individual in this “class” and the upper bound may represent the oldest individual in this
“class”. Alternatively, the two bounds can be two order statistics underlying the individual
entities. For modelling purposes, |Brito and Duarte Silval (2012) suggested to use an equiv-
alent parametrisation: the midpoint (lzﬁ%) and log range (log(u;j —l;5)) of the interval.
It is not hard to see that a classical quantitative variable say, X,4e = 20 is a special case of
an interval variable, whenever uqge = lgge. It can be interpreted as there is no variability
between individuals within this “class”, or there is no uncertainty in this individual’s age.

Bertrand and Goupil (2000)) first defined the empirical density function, sample mean
and sample variance for interval-valued symbolic variables, many examples can be found
in Billard and Diday (2006)). Billard (2007, 2008) obtained the sample covariance for
interval-valued data. All of these summary statistics are based on a single most impor-
tant assumption that the micro-data within random intervals and rectangles is uniformly
distributed. However, as it is shown in Kosmelj et al.| (2014))’s analysis and also in real
data analyses in this thesis, the uniformity assumption is rarely satisfied.

Since a uniformity assumption is assumed for a point S;; in S; over the observed

interval (I;;,ui;), we have

0, £< lij
P(&j <€) =135, Ly <E<uy
1, uij < €.

Definition 2.3.1. For an interval-valued random variable S; with n observations, the
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empirical density is ) )
fs;(€) == > (

N b, Wij ~lij

). (2.1)

Note that the summation in Equation (2.1)) is only summing over the i*" observation
for which ¢ € &;. In addition to a uniformity assumption within an interval, it further

assumes that each interval-valued symbol is equally likely to be observed with probability
1

.
Definition 2.3.2. For an interval-valued random variable S;, the symbolic sample mean
S; is ) o

S; = %;(zij + ). (2.2)
Definition 2.3.3. For an interval-valued random variable S, the symbolic sample vari-

ance ’S? is
—_— n 1 n
j Sn;( zg+ Ju3+uz] 4712[;( ]+uj)] ( )

Detailed derivations of the above two statistics can be found in [Bertrand and Goupil
(2000) and Billard and Diday (2006). It can be easily verified that these two statistics
reduce to the classical sample mean and sample variance when an interval variable shrinks
to a single point l;; = u;; = x;; for all observations. Billard| (2007, 2008)) illustrated that
sample variance defined in Equation is a function of the total sum of squares (SST)
of the interval-valued observations S;,7 = 1...n, and that the SST can be further divided
into the sum of the internal variation, called the within sum of squares (SSW), and the ex-

ternal variation, called the between sum of squares (SSB). To be more specific, we can write

nS; = SST = SSB + SSW (2.4)
where .
SSB=>(Si; - S;)% (2.5)
=1
and | n
SSW = 3 S = Sij)? + (lij = Sij) (uij = Sig) + (usj — Sij)*] (2.6)
=1
where
5 o~ (g + uig)
o _ 9.
Sy - (Lij J;Uz‘j)' (2.8)

Given (uij — Sij) = (Sij = lij) = (l”;—u”), it follows that Equation |D becomes

n

1
SSW = — Z(u” - lij)2. (29)
12 i=1

It is worth noting that Equation (2.9)) is the formula for the sample variance of a random

variable coming from a uniform distribution. The result in Equation (2.9) is consistent



28 CHAPTER 2. LITERATURE REVIEW OF SYMBOLIC DATA ANALYSIS

with the assumption that the values within an interval (I;;,u;;) are uniformly distribution.
In other words, given Sj; A uniform(l;j,ui;), for i =1..m,j = 1..p, then
—lij)?

Var(S;;) = (usg G (2.10)

This is followed by the total within interval variance of the n observations 51, ...5, is the
sum of the variances in Equation (2.10)), which is

1 X
V(M’(Sij) = E Z(u” - ll'j)Q. (2.11)
=1

Let us consider interval-valued random variables S; and S and suppose that S;; =
(ai1,bi1), Si2 = (¢i2,di2),i = 1...n. In addition, let us define a rectangle A; 12 = [(ai1,bi1), (ci2, di2)].
Billard and Diday| (2003b), 2006]) provided the empirical joint density function as

Definition 2.3.4. For bivariate interval-valued random variables S; and So, their empir-
ical joint density function is

1
3n

3 Ii5(&1,62) (2.12)

f(&,&) = :
weeer, | Ainz]

where [;; is the indicator function indicating whether (&1,&2) is in the rectangle A; 12
or not and where | 4; 12| is the area of the rectangle. Note that the summation in Equation
1’ is summing over the i*" observation for which ¢ € §fj.

Definition 2.3.5. For interval-valued random variables S; and S, |Billard (2007, 2008])
introduced the definition of the empirical covariance function Cov(S1,S2). Assuming the

realisations for S;; and Sjo are (a;,b;) and (¢;,d;) respectively.

1
6n !

]

Cou(S1,S52) = 3 [2(ai1-51)(cia=S2)+(ai1=S1)(dia—S2)+(bi1—S1) (cia—S52) +2(bi1—51) (dia—S2)]
1

(2.13)

with S1 and Sy defined as in Equation(2.2)).
Given the definitions of sample variance and covariance, it is straightforward to define the

correlation coefficient for interval-valued variables S7 and Ss.

Definition 2.3.6. Let S; and S5 be two interval-valued random variables. Then the

sample correlation function (S1,S2) with is

CO’U(Sl,SQ)

— 2.14
33, (2.14)

V(81,82) =
where the covariance Cov(S1,S2) is defined in Equation and their corresponding

standard deviations S, S5 are obtained by taking the square root of the sample variances
defined in Equation



2.3. QUANTITATIVE SYMBOLIC VARIABLES 29

2.3.2 Histogram-Valued Symbolic Variables

When single-valued quantitative variables are aggregated into intervals, the information
inside the interval is lost. One way to keep more information in the symbol is to incorporate
the empirical distributions over a set of K non-overlapping subintervals. Let us define a K-
bin histogram-valued symbolic variable S;;,i = 1...n,j = 1...p, as the it histogram-valued

observation of the j** random variable, with a realisation &ijs
&ij = {Ulij1, wig1), pij; [ligos wij2)s pijos - [lij i, wiji ), Piji

where ([lijk, wijk ), piji) refers to the k" subinterval of &;; with relative frequency Zfz 1 Pijk =
1. It is worth noting that interval-valued variables are particular cases of histogram-valued
variables, when K =1, S;; = [(lij,ui5),pij = 1]. Consequently, a single-valued quantitative

variable is also a special case, e.g., X;; = [(lij, wi;), pij = 1], lij = wij.

Definition 2.3.7. For a histogram-valued random variable S;, the empirical density is

G (T —— (2.15)

Wby, Wigk = lijk

Note the summation in Equation (2.15) is summing over the k' subinterval for which
€ € &iji-

Definition 2.3.8. For a histogram-valued random variable S;, the symbolic sample mean

S_jiS
_ 1 X
Si=5-%

1=1

M=

pijk(uijk +lijl<:)~ (2.16)

Ed
1l

1

Definition 2.3.9. For a histogram-valued random variable S, the symbolic sample vari-

ance sz is

1 n
j:3_§

||MN

1 n K
i (L5 + Lijwtign + ug;p,) = W[Z > pijr(lij + uijr) 1™ (2.17)
g o

Similar to interval-valued symbolic variables, summary statistics for histogram-valued
symbols are derived assuming that the distribution of the micro-data within histogram
bins is uniform. Detailed derivations of the above expressions can be found in Billard and
Diday| (2003b)).

2.3.3 More General Quantitative Symbolic Variables

This class of quantitative symbolic variables include functional variables, where for each
observation a function is recorded. Special attention was paid to considering cumulative
probability function as symbols by Diday and Vrac (2005) and |Cuvelier et al.| (2009).



30 CHAPTER 2. LITERATURE REVIEW OF SYMBOLIC DATA ANALYSIS

2.4 Qualitative Symbolic Variables

2.4.1 Categorical Multi-Valued Variables

The values of a multi-valued modal variable are finite sets of categories. Consider a
variable S; representing the brands of cars owned by a households, with domain {Sg.}
—={Chevrolet, Ford, Toyota, Volvo,...}. Then i household might be observed to have the

value &;, car = {Toyota, Volvo}, i.e., the household has two models of car.

2.4.2 Categorical Multi-Valued Modal Variables

Compared to multi-valued symbolic variables, a multi-valued modal variable not only takes
values over finite sets of categories, but also with weights, frequencies or probabilities,
indicating how frequent or likely that category is for this observation. For example, the
above multi-valued variable can be elaborated to be &, car = {Toyota (3), Volvo (%)} for

a household with 3 cars.

2.5 Methods for the Analysis of Symbolic Data

Section compares and contrasts the classical and symbolic variables with detailed

descriptions, examples and formulas presented in Sections [2.3.1] [2.3.2] [2.3.3] [2.4.1] and
for different types of symbols. A conclusion which can be drawn from the above

sections is that unlike classical data on p random variables which are single points in a

p—dimensional space RP, symbolic data have internal variability due to assuming values as
a hypercube or a Cartesian product of distributions in p-dimensional space or a mixture
of both. The standard statistical framework has been developed to deal with variables
with single-point values and no internal variability. For symbolic data, these results are
no longer appropriate. The need to develop new methods that go beyond the traditional
statistical framework to account for this intrinsic variability has led to the development

of new techniques to model symbolic variables.

2.5.1 Methods For the Analysis of Interval-Valued Symbolic Data

Based on symbolic descriptive statistics for intervals, exploratory analysis such as principal
component analysis (PCA) has first been addressed by Diday and Bock| (2000) based on
either the midpoints or the vertices of intervals. Montanari et al. (2005) propose a method
based on both midpoints and ranges of interval-valued variables. While |Gioia and Lauro
(2006) proposed a method based on interval algebra and optimisation. Most recently,
Le-Rademacher and Billard (2013]) provides a method based on the symbolic variance and
covariance matrix defined in Equation and Equation respectively. However,
all these methods are less than ideal in the sense that they just map a distribution to
a classical vector and then use the standard PCA methods. The method is not really
adapted for interval-valued symbolic data themselves.

Linear regression based on least squares estimation has been heavily studied for interval-

valued symbolic variables. The first linear regression model is proposed by Billard and
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Diday| (2000) where the authors built a classical linear regression model using centre
points of the observed intervals and used the fitted model to predict the lower and upper
bounds of the interval. It is known as the centre model. Assume 57,955...5, are p inde-
pendent interval-valued variables, and S, is the dependent interval-valued variable. Let
S§ = (Si1: 552, -+, 55,) and Sy, be the centre points of the interval-data with the observed
values (aij,b;;) and (¢j,d;),i =1...n,j = 1..p respectively for the independent and depen-
dent interval-valued symbolic variables, where the centre points can be calculated as
M,S@ - @z “ Ll j=1.p.

Then the fitted univariate linear regression model is

Cc _
Sij_

SC = 596 + ¢, (2.18)

where S¢ = (551,55, ...,55,) , 8¢ = (55,55, ...,55)", B° = (Bo, B, -.Bp) and S¢ = (1,55, 5%,
for ¢ = 1...n and €€ is the error of the centre model.

Based on the classical regression framework, the least squares estimator of 5¢ is given
by

fe=((59)'59)71(5)'sy,

Suppose we have a set of new covariates S = (S, S5"..Sp"), where Spew =
[S7ew, 87w, j = 1...p. Then the predicted interval Sy, = [S,1, Syu] can be obtained by

S;L _ (Szew)BC7S;U _ (Sgew)/@c.

Neto et al.| (2004) incorporated both the centre points and ranges of the interval-valued
data into modelling, but they were modelled independently. The centre model is the same
as defined in Equation(2.18]) and is augmented by a range model with ranges defined as

Slr] = (b” - aij),S;Z- = (dz - Ci),i = 1TL,] = 1...p.

Then the range model is

Sr=S8"B"+¢, (2.19)

e 55)

!

where S7 = (871,579, ..y S0,) s ST = (S7, 55, ., S5)', 87 = (Bos Bus --Bp) and S7 = (1,57, Sy, .., ST)

for i =1...n and €" is the error of the range model.

Based on classical regression, the least squares estimator of " can be obtained from

Ar=((S")'s")(s) s
Snew new

The predicted §y = [S;L, S;/U] given a set of new covariates S;'“ = [ ST 1,7 =1...p,

can then be obtained by combing the estimates from both the centre and the range model.

AT AT
~ 5 ¢ Y ~_ 4 ¢ Y
SyL—Sy ——2 ,SyU—Sy +—2 s

7
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where gyc = S”ewﬁc and gyr = S"ewéﬁ

As acknowledged in Brito and Duarte Silva, (2012)), the lower and upper bounds (or
equivalently their reparametrisations of centres and ranges) of an interval-valued variable
are two quantities related to only one variable and should not be modelled separately.
Unfortunately, neither of the above models succeeds in meeting this criterion. In fact, all
of the above models have the undesirable characteristic that the predicted upper bounds
can be smaller than the predicted lower bounds whenever the estimated slope becomes
negative. To resolve this issue, Neto and de Carvalho (2010) and Giordani| (2015) intro-
duced some forms of constraints to ensure the logical predictions of the intervals. All the
above methods approximate the internal variations by considering only the ranges. As a
result, Xul (2010) developed a linear regression model based on symbolic sample covari-
ance as defined in Equation to better approximate the internal variation. [Maia
and de Carvalho (2008]) proposed a least squares model based on absolute deviation to
provide robust estimators in the presence of outliers. Lima Neto and dos Anjos| (2015)
proposed to represent the lower and upper bounds of the interval-valued response variable
as a bivariate random vector and considered copula theory to induce a general bivariate
distribution for this random vector. Most recently, |Dias and Brito| (2016) proposed to
represent intervals by quantile functions and thereby considering the distributions within
them. In their paper, two specific distributions namely a uniform distribution and a sym-
metric triangular distribution are studied. In essence, however, all the above methods are
non-probabilistic, in the sense that the estimation of regression parameters are based on
the minimisation of an error criterion (eg. least squares). The above approaches are fine
in model estimation but without probabilistic modelling, it is impossible to use inference
techniques on the parameter estimates, such as hypothesis tests, confidence intervals etc.
Neto et al.| (2009) recognised this need and considered the probabilistic aspects related
to the regression models for interval-valued variables, while |Ahn et al.| (2012)) advocated
using Monte Carlo resampling to fit a linear regression model to interval-valued data. In
this way, one can derive approximate sampling distributions of the estimated regression

coefficients.

Clustering is a multivariate technique whose aim is to allocate entities to homogeneous
classes based on observed values in a set of variables. A significant number of clustering
methods have been studied in the domain of interval-valued symbolic data. Clustering
symbolic data can be broadly classified into two main categories: methods based on dis-
similarities, by defining appropriate measures of distance measures for interval-valued data
(Chavent and Lechevallier, |2002; de Souza and De Carvalhol 2004;|de Carvalho et al., [2006;
De Carvalho and Tenério, 2010) and conceptual clustering methods where classes are usu-
ally described by necessary and sufficient criteria based on generalisation processes (Britol,
2002; Brito et al., [2008).

Time series analysis is an important branch of statistics which aims to make forecasts
or uncover the dynamic data generating process. (Teles and Brito (2005) first examined
interval-valued time series data by fitting univariate ARIMA processes to the interval

bounds. Maia et al. (2008) fitted the same process to the midpoints and range of the
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intervals and used it for prediction. Ohter authors including Gallardo and Jiménez (2008),
Garcia-Ascanio and Maté (2010) and Ai et al.| (2008) defined interval stochastic processes,

interval-valued time series and weak stationarity based on interval-valued moments.

In terms of parametric modelling, Le-Rademacher and Billard (2011) proposed the
first likelihood-based approach for interval-valued and histogram-valued symbolic vari-
ables. The essence of their approach is to map each symbol to a random vector that
uniquely defines the symbol, and then specifies a standard statistical likelihood model for
each of the observed symbols. For example, univariate micro-data X;,7 = 1...n may repre-
sent log-debt for n individuals where n can be very large. Based on their socio-economic
profiles, these individuals can be aggregated into m risk groups (where m < n) represented
by interval-valued symbols S; = [[;,u;],j = 1...m whose interval bounds are determined by
the minimum and maximum values of log-debts among all individuals in that risk group.
Now assume a uniform distribution assumption within these intervals, Let ©;1 be the in-

ternal mean of S; and © ;2 be the internal variance of S, with realisations 6;; = { ;uj ) nd

Ojo = (u 7 J) respectively. Firstly, assuming the independence between ©;1 and ©j2, then
the approach of Le-Rademacher and Billard (2011)) assumes two appropriate distributions,

such as

©j1 ~ N(p,0%),0;2 ~ Exp(B). (2.20)

Then the joint likelihood function is

(4 ug) (uy )

L(p, 0%, 85601, 02, ..0m) = I} [ f (255 1, 0%) x f (=23 )] (2.21)

{ +u3 ) , 052 (uj l 1)’ ),j = 1l..m. The standard approach for solving

where 0; = (61 =
the maximum likehhood estlmators (MLE) of p,0%, 3 can then be applied to Equation
(2.21). Other reparameterisation of Sy, into a function of interval midpoint and log range
(Brito and Duarte Silval [2012; Lin et al |2017) can be adopted. In the paper, the authors
(Le-Rademacher and Billard), 2012) also derived MLEs for the case where internal param-
eters are dependent. Likelihood functions built directly at the symbol level is fine on its
own if the interest of the analysis lies solely in inference at the group-level characteristics.
However, more often than not, an analyst may be interested in modelling the underlying
distribution X;;. Unfortunately, under |Le-Rademacher and Billard| (2012))’s set up, it is
not clear how one can incorporate the knowledge about the distribution of the micro-data
into the likelihood function. In an attempt to address this issue, [Zhang and Sisson| (2016))
developed an inferential framework specifically for interval-valued symbolic variables that
allows the direct fitting of models for the real-valued micro-data, thereby providing more
interpretable results to the data analysts. More importantly, this method provides a nat-
ural mechanism that depart from the unrealistic uniformity-within-intervals assumption
adopted by a majority of current SDA approaches. This thesis will follow [Zhang and Sis-
son| (2016))’s approach to derive a new general construction tool that can be systematically
used for building likelihood functions for interval-valued and histogram-valued symbolic

variables. Similar to|Zhang and Sisson| (2016)’s proposal, this approach is able to capture
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both intra- and inter symbol variations. It does not require a restrictive uniformity within
symbols assumption instead it allows for any distributions suggested by the underlying

data themselves.

2.5.2 Methods For the Analysis of Histogram-Valued Symbolic Data

Compared to interval-valued symbolic variables, histogram-valued symbolic variables ad-
mit more information about the underlying classical data. In spite of their ability in
capturing information about the underlying data, the development for histogram-valued
symbolic variables is scarce relative to their interval counterparts. Exploratory analy-
sis such as PCA for histogram-valued symbolic variables has been studied by [Rodriguez
et al. (2000); |Rodriguez and Pacheco| (2004)); Ichino (2011) and Le-Rademacher and Bil-
lard| (2013). It is worth noting that the values of a histogram variable may equivalently be
represented by an empirical distribution function or a quantile function and from which
analyses can then be performed. Quantile functions, being the inverse of cdf’s, are always
defined in [0,1]. The dissimilarity between two histograms can be measured through the

quantile functions by e.g., the Ly Wasserstein metric.

Definition 2.5.1. The Lo Wasserstein-Kantorovich metric, also known as Ls-Mallow’s
distance, can be used to compare two univariate distributions represented by quantile

functions

dw<sl,52>=\/ [ - F (2:22)

Based on minimising this dissimilarity measure, there has been some active devel-
opment for histogram-valued symbolic variables. Firstly, distance-based clustering for
histogram-valued data has been studied by [Irpino and Verde (2006)); Brito and Chavent
(2012). Linear regression based on least squares estimation to minimise the differences
between the fitted and the observed histograms (using Equation ) was proposed
by Irpino and Verde| (2015). However, using this method, the predicted response would
be a valid quantile function (i.e., a monotonic increasing function in [0,1]) if and only if
it is a conical combination of quantile functions (i.e., a linear combination with positive
coefficients). However, this requirement may fail in the case of multiple linear regression
where classical OLS estimates cannot be guaranteed to be all positive. Dias and Brito
(2015) addressed this problem by introducing the symmetric quantile distributions in the
regression model as new predictor variables. However, these new variables do not have
intuitive interpretations. In the time series setting, based on the dissimilarly measure
defined in Equation ([2.22)), [Arroyo and Mat¢| (2009) proposed the K-Nearest Neighbours

(K-NN) algorithm to forecast time series data aggregated as histograms.

2.5.3 Methods For the Analysis of Other types of Symbolic Variables

Though the majority of the work in SDA has been done for interval-valued or histogram-
valued symbolic variables, there has been some progress for categorical multi-valued vari-
ables illustrated in Section Lauro et al.| (2008) proposed a generalised canonical
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analysis to study the relationships between symbolic object descriptors and symbolic ob-
jects on a factor plan. Within the framework of conceptual clustering, a “symbolic” hier-
archical or pyramidal method was proposed by [Brito (1994) and Brito (1995) to cluster
multi-valued data of different types, which was further developed to allow for clustering
multi-valued modal data (Brito and Polaillon) [2012]).

2.6 Conclusion

In this Chapter, we first demonstrated how symbolic data can emerge from real-valued
micro-data and we demonstrated that this new kind of data includes classical data as a
special case, which occurs when internal variation shrinks to zero. As a result, one should
expect that methods in SDA should reduce to standard methods in classical data analysis.
Given that most SDA regression models are built on either lower and upper bounds or
midpoints and ranges (or log(range)), the convergence to classical data approaches will not
hold in the limit as the symbol approaches classical data. Further, the likelihood-based
model proposed by Le-Rademacher and Billard| (2011)) only permits inferential statements
to be made at the level of the real-valued random vector which summarises a symbolic-
valued random variable. Therefore, using their method, it is awkward to incorporate
distributional information regarding the micro-data into the likelihood function. The root
of the above problem lies in the fact that current SDA methods are proposed directly at
the symbol level and fail to account for the underlying distribution from which symbols are
obtained. Another construction flaw inherent in current SDA approaches is the assumption
of uniformity within symbols (intervals or within histogram bins), which significantly limits
the generalisation of current SDA approaches. To sustain the development in SDA, it is
important to address the above issues endemic in the SDA literature and methodology.
The content of this thesis is organised as follows: In Chapter [3| we used the symbolic
model proposed by Brito and Duarte Silva (2012]) combined with a Bayesian hierarchi-
cal model to improve and address a challenging issue present in estimating the global
species richness. In Chapter [4] we introduce a new method of model fitting for interval-
valued and histogram-valued symbolic data based on fitting to the underlying data rather
than fitting to summary statistics of symbols. We also introduce several new methods of
symbol construction.In Chapter 5] we apply the proposed symbolic likelihood function to
histogram-valued particle number concentration data to estimate their dynamic evolution

across time. This thesis concludes with a discussion in Chapter [6]






Chapter 3

Estimating global species richness

using symbolic data meta-analysis

3.1 Introduction

Knowing the total number of species on Earth — or at least having a good approximation —
has been a key but elusive goal for ecologists for many decades (Caley et al.|2014). Without
an adequate baseline against which future changes in biodiversity can be compared, it will
not be possible to know with any certainty what and how much biodiversity has been
lost anytime in the future, the success or failure of conservation and recovery efforts, or
indeed, even whether all species can be named before they become extinct (Costello et al.
2013). It is also well accepted that global biodiversity is threatened by myriad agents
(Hunter| 2007, Pimm et al|[2014)), and that its accelerating loss (Ceballos et al.|[2015)
will be associated with degraded ecosystem services (Benayas et al. 2009, Mooney et al.
2009). Despite this urgency to understand the world’s biological resources and what could
be lost, little progress has been made in achieving logically consistent estimates across
taxa and ecological realms and estimates that converge through time both in terms of
the most likely estimates and increasing confidence around these estimates (Caley et al.
2014). Recently, however, some evidence has begun to emerge that at least for terrestrial
arthropods, and some subtaxa thereof, global species richness estimates have begun to
narrow (Stork et al.[[2015). Nonetheless, while this narrowing of the ranges of these
estimates is encouraging, substantial further narrowing is still needed; species richness
estimates still vary by more than 1 million to many millions of species depending on the
group being considered (Stork et al.2015). Moreover, this quest for better estimates of
species richness has been dominated by the sequential development of estimation methods
each considered and applied in isolation. By considering these estimates in isolation from
each other, information is inevitably lost that, if combined, might be able to be harnessed
to achieve better estimates. For example, where a species richness estimate for a realm
(e.g. all marine species: May||[1992b)) is lower than an estimate for a marine habitat (e.g.
coral reefs: |[Fisher et al.|2015) a source of uncertainty and a logical inconsistency has been
clearly identified. Thus, the information inherent in these conflicting estimates may be

able to be leveraged in aid of a better estimate, if such information from separate studies
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could be combined in meaningful ways. Here, we incorporate information across studies
that estimate global species richness or components thereof. We do so by developing a
Bayesian hierarchical model to estimate species richnesses that are logically consistent
across all species. Our approach not only enforces this logical consistency of estimates
across the hierarchy, but it also improves estimation accuracy by sharing of information

across taxa within the hierarchy.

For our analysis, we used previously published estimates of the total number of species
worldwide, as well as estimates of the number of species from various subcategories, includ-
ing coral reefs, the marine environment, beetles, insects and terrestrial arthropods (Table
. Although there is a wealth of published species richness estimates for various taxa
at regional and subregional scales, we restrict our analyses here to global estimates. We
do this because without robust estimates of the spatial turnover of species (beta - diver-
sity) between sufficient locations to provide a reasonable global estimate of beta diversity
for each taxon considered, and which are not currently available, there is the danger of
counting the same species multiple times, and/or under counting others that are region-
ally endemic and thereby introducing otherwise avoidable biases in global estimates (May
1992a)). The global estimates we used are recorded in three forms. Some estimates (17)
are point-estimates, x. These constitute an experts’ most informed and best estimate of
the number of species based on a detailed analysis or study. These point estimates are
presented in the literature with no estimated upper or lower uncertainty bounds. Some es-
timates (19) are recorded as intervals (a,b) only, representing a plausible range of species
counts. These range estimates are presented with no estimate of central tendency, the
most likely value. The remaining estimates (9) provide both a point estimate and an
interval, which estimates the upper and lower uncertainty bounds. While representing
the most complete and information rich estimates, these estimates introduce further com-
plexity because these uncertainty bands can be symmetric or asymmetric around the best

estimate.

One approach to combining these data into a joint analysis is to convert the estimates
of intervals to a single value, e.g. the midpoint of the range x = (a + b)/2, which would
then permit a simple analysis on these assumed means combined with other point esti-
mates. However, taking these midpoints to represent the best estimate of central tendency
assumes that the uncertainty around this midpoint is symmetrical, and analysis of these
single points ignores the often very considerable uncertainty contained in the full inter-
val suggesting the high probability that the midpoint may not be the true value. |Caley
et al.| (2014) followed this approach, and also fitted independent models to the upper
and lower interval endpoints to search for evidence that species richness estimates have
converged over time. However, assuming independence between these three models could
produce self-inconsistent results whereby the lower interval boundary could exceed the up-
per boundary, and as before with logical inconsistencies of estimates within the hierarchy,
information may be lost. As an alternative, we model these data, both single-values and
intervals, as part of a unified analysis using techniques from symbolic data analysis (see

e.g. Billard and Diday |2006| for a comprehensive review). Symbolic data analysis provides
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a principled way of performing an analysis for data where the ‘datapoints’ themselves
are distributions, rather than point values. Here, our diversity interval estimates (a,b)
can be considered as a distribution defined between a and b, and we can then proceed
to coherently analyse them using symbolic techniques. In this setting, for convenience,
the univariate interval (a,b) € R (where R is a set of real numbers) commonly mapped to
the bivariate random vector (m,logr)" € R? | where m = (a + b)/2 represents the interval
mid-point, and r = (b—a) is the interval range (Brito and Duarte Silva/[2012]). Performing
a statistical analysis on this bivariate vector is equivalent to analysing the univariate ran-
dom interval (a,b) (Zhang and Sisson 2016). Translating the intervals to midpoint and
log range makes no assumption that the distribution within each interval is symmetric —
rather it is just a convenient transformation. Single valued estimates x can be also directly
expressed in this bivariate vector form, where the midpoint is given by the expert’s best
guess m =z, and the range r, which describes the uncertainty on the estimate, is simply
unobserved, so that (m,logr)" = (z,NA)T. Given this reparameterisation into a common
data format, these bivariate random vectors can then be modelled via a Bayesian hierar-
chical model (e.g. |Gelman et al.||[2013, chapter 5) that retains information from all types
of estimates available: point, and range with and without midpoint.

This model also enforces logically consistent hierarchical relationships among different
species categories. For example, the number of insects plus the number of other arthro-
pods must sum to the total number of arthropods. It can also produce estimates of species
categories that have not yet been observed or recorded, and can provide estimates of the
missing ranges r for the point-estimate only data, thereby allowing the unobserved full
interval to be predicted from the model’s posterior distribution. It additionally permits
determination of the effects on model species richness estimates when including a new
measurement in a particular category, thereby facilitating assessments of where best to
focus future estimation efforts in order to most efficiently improve species richness esti-
mates. This approach also provides a way to update global estimates as new estimates

within the hierarchy become available.

3.2 Methods

The data analysed included 45 previous estimates of global species richness obtained from
the literature (Table (1)), of which 42 were previously analysed by (Caley et al.|(2014). Each
paper provides a species estimate in one or more of 7 categories: coral reefs (4 estimates),
marine species (8), terrestrial species (1), arthropods (10), insects (12), beetles (1) and
total global species estimates (9). These estimates are published in interval form (a,b)
with no point estimate (19 cases), point estimate form x with no interval estimate (17
cases) and combined interval and point estimate form (a,x,b) (9 cases). In the latter
case, the best guess point estimate = exactly coincides with the midpoint of the interval
in 4 cases (so that x = (a +b)/2), but is different in the remaining 5 cases. As described
in the Introduction, we re-parametrise each species richness estimate into the form of a
bivariate vector (m,logr)" describing interval midpoint and log range. That is, where

interval estimates (a,b) or (a,z,b) are available, these are expressed as m = (a +b)/2 and
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r = (b—a), and where only a point estimate z is available, then m = x, and logr=NA is a

missing value.

Note that in the 5 cases where a point estimate and interval are both available, but
where the point estimate is not the midpoint of the interval, we ignore the point estimate,
and still express the m as the midpoint of (a,b). While this potentially loses information
about the possible asymmetric nature of the interval estimates in these 5 cases, we do this
for two reasons. First, modelling the midpoints as m = (a + b)/2 makes no assumptions
about the distribution of the expert’s estimate within the interval. This could be sym-
metric or asymmetric. Rather, it simply states that the midpoint of the interval itself is
m = (a+b)/2. So treating the estimates (a,x,b) in this way means that the midpoint m has
the same interpretation as the interval-only estimates (a,b). By implication, this means
that we are stating that for point estimates m = x only, that the point estimate is the
centre of the unobserved interval, which then becomes a model assumption. Second, there
are very few (5) abundance estimates with a point estimate that is different from the inter-
val mid-point. While it is possible to construct an asymmetric model for a 3-dimensional
reparameterisation of the trivariate vector (a,z,b)" (e.g. |[Le-Rademacher and Billard 2011
propose a way of modelling asymmetric interval-valued data assuming a triangular distri-
bution), this would result in a large number of missing values for the rest of the dataset,
far more than could be handled with confidence. It is therefore more realistic and conser-
vative for the present analysis to restrict our analyses to bivariate modelling. Trivariate
modelling will be more informative in the future as more (a,z,b)" format data become
available. In the meantime, the results of the bivariate modelling approach adopted here
are unlikely to be adversely affected by this small loss of information. For observed data
within a given species category j € C with C = {global, other-global, marine, other-marine,
arthropods, other-arthropods, coral-reefs, insects, other-insects, beetles} (Fig. , we
can then model the derived (m,logr)" via an appropriate statistical model. A positive
association between m and logr is expected given that these data are species counts and
the variability of count data increases with the number being counted. Visually, a bivari-
ate Gaussian distribution could credibly represent these data well, albeit with different

location and scale parameters for each category. That is, for each species category j, with

observed data (m;;,logri;)" for i =1,...,n;, we suppose that
(mij,logri;)" ~ Na(pj,%;) (3.1)
where
2
s POmiOri
t = (fmjs prj)T and B, = mJ e
POmjOrj Orj

omj and o, are standard deviation corresponds to the midpoint m;; and log-range logr;;
respectively. Note that we specify the correlation p between m;; and logr;; to be the
same across all species categories j. This decision is based on visual inspection of Figure
3.1| (with allowance for small sample sizes), in which the linear dependence appears sim-
ilar across all categories, and the not unreasonable assumption that any species counting

process is similar for all categories. The advantage of making this assumption is that the
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Figure 3.1 — Scatterplot of standardised midpoints (m) versus standardised log range (logr) for
the 28 observed intervals. Point types indicate species category.

correlation p can be estimated using the observed data from all categories, and thereby,
provides a way for the model to share information between categories. This can be par-
ticularly useful when estimating missing range values (logr) for single point estimates
(m,NA)T. The above model is appropriate for each species category in isolation, however,
there is also a hierarchical relationship between the different categories that is important
to account for. Our observed data consist of global species estimates for coral reefs, ma-
rine species, insects and arthropods, and these are naturally related hierarchically (Figure
. (Note that in Table |1| there is a single observation for terrestrial category. However,
this datapoint is largely inconsistent with other observations in the insects and arthro-
pods categories, and so it was removed as an observation, and as a species category, from
our analysis.) This model indicates that, for example, the number of arthropod species

comprises the number of insect species plus the number of non-insect arthropod species.

For some species categories we have observed data and for others we have none (Figure
white and grey boxes, respectively). In the absence of observed data, the model
parameters for these categories can be inferred from the hierarchical structure of these
data because observations at any level in the hierarchy provide information about values
that are possible elsewhere in the hierarchy. For example, the number of arthropod species
does not solely consist of the number of insect species. It must also contain a number of
other arthropods that have not been estimated individually, or even discovered yet (Fisher
et al 2015). Each “other” species category is structurally modelled in the same way as the

other categories via equation (3.1)), except that there are no observed data. The unknown
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[ Global (9 estimates) ]

A

[ Marine (8 estimates) ] [ Other Global (0 estimates) ] [ Arthropods (10 estimates) ]

/ ‘ A A

[ Other Marine (0 estimates) ] [ Coral Reef (4 estimates) J

{ Insects (12 estimates) J [ Other Arthropods (0 estimates) ]

[ Other Insects (0 estimates) ] [ Beetle (1 estimates) ]

Figure 3.2 — Schematic of the hierarchical structure of species categories analysed. White boxes
correspond to categories with observed data. Grey boxes correspond to assumed “other species"
categories not observed.

parameters are therefore determined by the mismatch in estimated parameters from its
neighbouring categories both sideways and up and down in the hierarchy. For example, the
parameters of the other-arthropods category may be inferred from the difference between
the number of insect species and the number of arthropod species. The model
additionally assumes that each data point (m,logr)" is an unbiased estimate of the true
species count midpoint (um,;) and log range (uj), and that the interval estimates are
exchangeable within each species category (which seems to be supported by (Caley et al.
2014). If this assumption holds then the hierarchical structure will allow us to obtain

unbiased parameter estimates for the “other” species categories.

For example, the hierarchical relationship between the species categories in Figure (3.2
means that e.g. the sum of the number of beetle and other-insect species should equal
the number of insect species, while the sum of the number of insect and other-arthropod

species should equal the number of arthropod species, etc.

To enforce this hierarchical structure, we assign the following constraints on the mid-
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point mean parameter fiy,:

luminsects = lumbeetles + lumothe'rfinsects
'umarthropods = Mminsccts + /“Lmothe'rfa'rthropods
lummaﬂlne = Mmcoralreefs + lumotherfma'rine
lumglobal = /’mea’rine + Iu'marthropods + /"Lmotherfglobal :

Further, it is reasonable to suppose that a similar hierarchical structure also holds for
the interval log ranges. By noting that if X ~ (ax,bx) and Y ~ (ay,by) then X +Y ~
(ax +ay,bx +by) (where Z ~ (az,bz) denotes that the random variable Z is distributed
between az and bz), then, for example, given that the number of insects must equal the
number of beetles plus the number of other insects, then in terms of intervals (a,b) we

must have

Qinsects = Qbeetles T Qother—insects

binsects = bbeetles + bother—insects~

This then implies the constraint

/"Lrinsects = log[2(lu’minsects - lu'mbeetle - Hmuthe'r'—insects) + eXp(Hrbeetle) + exp(urothm'—insects)]

on the mean log range parameter for insects, ., . .,.. Equivalent constraints on p, also
hold for the arthropods and marine categories. The global category, which is the sum of

marine, arthropod and other global categories, is similarly constrained

/’Lrglobal = log[z(umglobal - Mmarthropods - lummarine - lu’mother—global)

+ exp(lu'Ta'rthropods) + eXp(lur'marine) + eXp(urother—global )] :

In combination, the above constraints mean that the parameters ;; and X; for the species
categories with “children" categories in Figure [3.2] are fully determined by the parameters
of their children categories. That is, the only categories with free parameters are beetles,
coral reefs and the four “other" species categories, and once these parameters are known,
the parameters for the rest of the hierarchical model become fixed. However, estimation of
these parameters accordingly means choosing these parameters so that the observed data

could credibly have been observed over the entire hierarchy, so that e.g. observed data

in the global category will directly influence the parameter estimates of all other species
categories. In this way, our model allows the sharing of information in estimating the

number of species in one category given the data in all other categories.

Our model is analysed under the Bayesian framework. We adopted the following prior
specification for the parameters of the non-fixed “children” categories: i, ~ N(0,10000)7( i, >
0) represents a diffuse prior constrained to be a positive real number, so that the interval
midpoint can be located effectively anywhere above zero. p, ~ N(=1,1.5)1 (i, < log(2pm))

puts most prior weight on smaller ranges, where the constraint ensures that the lower
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bound of the resulting interval (which depends on both midpoint and range) is also al-
ways greater than zero. The standard deviation parameters are specified as oy,,0, ~
Half-Cauchy (0, 2.5) (that is, a Cauchy(0,2.5) distribution constrained to the positive real
line), which is a reasonable default choice for a scale parameter in the absence of specific
information (Gelman et al. 2006)). Writing P as the correlation matrix associated with
each X;, we specify P ~ LK J(1) so that the prior for P is uniform over all correlation
matrices. Markov chain Monte Carlo simulation from the resulting posterior distribution

was implemented in the Stan software package (Carpenter et al.|2015).

3.3 Results

3.3.1 Overall Species Estimates

Figure [3.3] illustrates the observed data and resulting posterior interval summaries from
the fitted hierarchical model, plotted on the log scale, for each species category, with
different species categories shown by different colours. Table [2| enumerates some of these
posterior quantities.

The posterior distributions of model parameters incorporate the hierarchical con-
straints as discussed above (Figure . This means that, for example, the number of
beetles (orange lines) plus the number of other insects (red) can be roughly seen to sum
to the number of insects (magenta) both as a midpoint (filled circles) and as an interval
(note the log scale). Secondly, within each species category the posterior mean intervals
(thick lines) and midpoints (filled circles) are mostly consistent with the observed data in
each category. This is most clearly seen for insects (magenta), where the length of the
posterior mean interval is roughly the average of the observed insect interval lengths, and
the posterior midpoint mean is located roughly at the centre of all the observed point es-
timates (open circles) and observed interval midpoints. However, this is less apparent for
other categories. For example, while the posterior mean midpoint for coral reefs (purple)
appears to be well located at the centre of the 4 observed intervals, the posterior mean
interval range is considerably shorter than the ranges of the observed data. This is not
an error, but is actually a direct and beneficial outcome of the hierarchical model. By
combining the information from four separate estimates and analysing these within this
hierarchical framework, a central point can be estimated with a much narrower range.

If the 4 coral reef interval observations are analysed in isolation using the model
but without taking into consideration the hierarchical structure surrounding these esti-
mates, the resulting posterior mean interval ranges are more consistent with the ranges of
the observed intervals,as seen in Figure (leftmost thick line). As this simplified (non-
hierarchical) model analysis appears to be performing correctly, the difference in outcomes
with the full (hierarchical) model for global species richness (rightmost thick line, Figure
compared to the separate estimates, must then be due to the imposition of the hier-
archical structure in the analysis. This structure enforces that the interval and midpoint
estimates in any category are not just informed by the estimates for that category, but also

by the estimates in other categories given their direct and known relationships. In the case
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of coral reefs, a narrow posterior mean interval, as opposed to the quite wide independent
interval estimates, is consistent with the richness estimates that are estimated from the
data in other categories, most immediately in the marine and other-marine categories. As
a result and given the extra information borrowed from the other categories, the model
is able to drastically revise its certainty regarding credible interval ranges for coral reefs
based on the data in these related species categories. This would not have been possible

without the hierarchical model.

In general, this hierarchical analytical approach is sensible, and preferable to non-
hierarchical ones, both because it allows for a pooling of information over categories which
can lead to more precise within-category estimates, and because it can enforce parameter
estimation that satisfies known model constraints, such as species richness consistently
increases upwards through the taxonomic hierarchy, and thereby automatically generate
estimates consistent with these constraints. An additional benefit of building a symbolic
hierarchical model (that is, in this case one that combines interval and point estimate
data) is that the known positive relationship between interval midpoint and range (Figure
also permits a sharing of information between these two quantities. This means that
more informed estimates of (say) midpoints are obtained than if a hierarchical model was
to be constructed on midpoints alone, which is the standard hierarchical model format.
This benefit is in addition to the precision gained by incorporating both interval and point

estimate data into the analysis in the first place.

One caveat regarding these benefits is that we are assuming that every interval estimate
(a,b) or point estimate x is independent and an unbiased estimate of the true quantity for
the given category. If this is not the case, then errant observations will not only affect the
parameter estimates for their own species category, but they will also influence those in
other categories. Accordingly, there needs to be a strong emphasis on ensuring quality and
consistency of the data analysed in this way, especially as new global richness estimates
become available and the results of this model updated. As an example of this, note that
we excluded the one “terrestrial’ observed point estimate (Table [1} May| (1992b)) as it was
inconsistent with the hierarchical structure, and to include it would likely have negatively

affected the remaining category parameter estimates.

Finally, note that in these analyses we have only presented the posterior mean interval
or posterior mean midpoint as point estimates of these quantities. However, there are in
fact full joint posterior distributions associated with them. For example, Table 2] presents
both the posterior mean and 95% highest posterior density (HPD) intervals for the interval
midpoints. Note that in many cases these HPD intervals also encompass the mean lower
and upper bounds of the associated interval estimates. This is not inconsistent — the joint
posterior distribution for these quantities enforces the constraint jig; < pimj < pp; abso-
lutely. However, just presenting the posterior marginal mean of each of these parameters
hides the fact that there is some uncertainty associated with each of these parameters,
beyond the mean values presented here. For example, the two dashed intervals in Fig-
ure H illustrate 95% HPD intervals for the upper and lower interval estimates for coral

reefs. The posterior means of these intervals are then used to construct the posterior mean
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interval estimates, as indicated by the horizontal dashed lines.

3.3.2 Estimates over time

The final aspect we examine is how the parameters of the hierarchical model evolve as
more data are included in the analysis over time as new estimates of global species richness
become available, either for some taxonomic subset or for all species. We study this to
evaluate how the nature of individual diversity estimates have changed over time, and also
to show how the addition of data for one species category under the model affects the
species richness estimates for the same or other categories. That there should be some
local or global effect is clear due to the nature of the hierarchical model. For example,
we might suspect that observing data within one category will have the largest impact on
parameter estimates in that category, but there may also be a smaller effect on parameter
estimates in other categories through the effect of information sharing through the hier-
archical relationships. In principle, understanding the nature of these changes should be
informative in deciding where best to focus efforts in obtaining future data to expedite
progress towards agreed and more precise estimates of global species richness within or
among any species category.

In the following, we arrange our observed data according to the year the interval or
point estimate was published, and construct four (nested) datasets consisting of the data
published in the years 1952-1991 (9 observations), 1952-98 (19 observations), 1952-2007
(31 observations) and 1952-2015 (all 44 observations). These year ranges were chosen to
include a roughly equal number of new diversity estimates in each successive time period.
We fit our hierarchical symbolic model to the data in each dataset, and observe how
the parameter estimates evolve over time as more data are included in the analysis in
subsequent periods. The results are summarised in Figure

For arthropods, as more data are observed over time, the location and variability of
the interval midpoint are reduced substantially. This reduction in variability is expected
in the presence of a (relatively) large number of observed datapoints for arthropods (10),
but also occurs due to the large amount of information in the neighbouring parent global
category (9) and the child category insects (12) (see Figure, making arthropods one of
the most well informed species categories in the hierarchy. The reduction in the midpoint
estimate over time can be primarily attributed to changes from very large early published
estimates of arthropod diversity (specifically, x = 30 (million) from Erwin (1982), and
(a,b) = (10,80) (million) from [Stork| (1988)), to a consistently lower sequence of eight
later published estimates with a mean observed midpoint of ~ 6.82 (million) (Table [L).
Secondary influences on the midpoint estimate are due to the need for consistency with
the rest of the hierarchical model.

Arthropod interval range estimates also decrease over time, but less dramatically than
for the midpoint. In part, this discrepancy between the effects of mid points and ranges
is a result of there being less observed data for ranges than for midpoints for the relevant
categories (Figure 4/10 arthropod, 3/9 global and 4/12 insect diversity estimates have

unobserved ranges). The other-arthropods category is wholly determined by the insects
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Figure 3.3 — Observed data and posterior interval estimates for each species category (as indicated
by colour). Open circles and thin lines illustrate observed point (x) and interval (a,b) data. Thick
lines indicate posterior means of interval for each category, obtained by inverting the mapping
(m,logr)" - (a,b)" back to the (a,b) parameterisation for the parameters (f;,pr;)" of each
category. (Le. we transform the posterior for (fim;,jr)" to the posterior for (fiq;, pp;)" where
Paj = Pmj — exp(prj)/2 and pp; = fmj + exp(pr;)/2). The illustrated interval is that obtained
from the posterior mean of the lower (jq;) and upper (us;) endpoints of this interval. The filled
circle indicates the posterior mean of the interval midpoint (f,,;). Dashed lines indicate posterior
predicted posterior mean of interval where only point data = is observed.
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Figure 3.4 — As for Figure except for a separate analysis of coral reefs with no hierarchical
structure (solid lines). The leftmost thick line illustrates the resulting (non-hierarchical) posterior
mean interval, whereas the rightmost thick line illustrates the same interval using the full hierarchi-
cal model. The two dotted intervals represent 95% HPD intervals of the lower and upper interval
endpoints, based on the full hierarchical model, illustrating considerable uncertainty. (Filled circles
represent posterior means.)

and arthropods categories. As these are both well estimated in the presence of large
numbers of observed data, both midpoint and range of the other-arthropods category
are particularly well informed, and naturally follow the information within arthropods,
despite there being no direct observations in this category. This naturally provides a
precise and hierarchically consistent estimate of the likely interval for the diversity of all
unobserved arthropods. In contrast, a less data-rich section of the hierarchy involves the
beetles category (1 observation) along with the parent insects (12 observations) and the
unobserved other-insects category (see Figure . Here, although the estimates for insects
become more precise over time, because there is only one observation for beetles in the last
time point, there is nothing to distinguish between the beetles and other-insects categories
before this datapoint is observed. Hence, for the first three time periods the midpoint and
range estimates for beetles and other-insects are highly similar, with their precise values
each determined as “half” the estimates for insects. Only when the single beetle estimate
is included in the final time point can some difference be discerned in the beetle midpoints,
although with such a small amount of data this still makes differentiating between beetles
and other-insects difficult. More direct observations in the beetles category would help
resolve this lack of distinction between beetles and other-insects. Similarly, other such
observations as the hierarchy is populated by further estimates, other opportunities will

arise for prioritising effort in making new observations of species richness within categories

As with other species categories, the global species richness estimates clearly get more
precise over time as the number of direct estimates in the global category increases, and also
as the number of observations at other categories (which determine the global category)

also increase.
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As with arthropods, the drastic reduction in the location of the global species mid-
point is primarily driven by two early and very large global diversity estimates (of (a,b) =
(10,100) (million) from Ehrlich and Wilson| (1991)) and = = 100 (million) from |[May| (1992b))),
whereas the subsequent six estimates are more consistent and smaller. Part of the expla-
nation for the changes in the nature of these estimates, and those in other categories, could
arise from an increase in the sophistication of the methods used to estimate species rich-
ness in various categories. Similarly, in time further species estimate fluctuations could
arise from the application of genetic data with the potential to split species currently
considered to be one and synonymies others.

The bottom left panel of Figure illustrates the changes in the global correlation (p)
between interval midpoint (pm,;) and range (u,;) across all species categories. Clearly as
the number of full interval observations (a,b) increases, the correlation between midpoint
and range is better estimated. The full dataset analysis correlation is estimated to be
moderately strong with a posterior mean of 0.57 and a 95% HPD interval of (0.25,0.81).
Finally, the bottom right panel of Figure shows the predicted missing ranges of the
observed point estimate x = 30 (million) taken from Erwin| (1982). When there are little
data, despite there being a positive correlation with the observed interval midpoints, the
predicted range is strongly influenced by the prior distribution, which places most density
on smaller interval ranges. When the arthropod midpoint and range parameters become
better estimated, along with their correlation (p), the predicted interval associated with
the = = 30 point estimate becomes more realistic, and more accurately incorporates in-
formation from around the hierarchical model. The final mean predicted interval for this
datapoint is (22.7,37.3).

3.3.3 Prior sensitivity analysis

A prior sensitivity analysis was performed to test the robustness of the posterior distribu-
tion to the choice of the prior. For the prior pm, ~ N(0,7)I(pmy > 0) where we specified
7 = 10,000, we alternatively consider also setting 7 to 1000, 100, 10 and 1, expression a
level of informativeness ranging from the most uninformative (7 = 10,000) to the most
informative (7 = 1). Figure shows the posterior density for pm,,,,, under each prior
specification (all other priors are held the same). As can be seen, when 7 is large, the
resulting posterior is invariant to the prior specification. When 7 becomes smaller (i.e.
7 = 10,1) and the prior becomes more informative and in conflict with the information
in the data, the posterior is more strongly affected. As such, we are satisfied that the
choice of 7 = 10,000 represents a minimal and appropriate hyper prior choice. Similar
conclusions can be drawn when varying the priors of the other u,, parameters—see Figure
[A.T}-and when changing the value of the normal standard deviation component of the prior
for p, ~ N(=1,1.5)1(pr <log(2t,)) from 1.5 to 2.5 and 5 (Figure and Figure [A.3).
Similarly we perform a sensitivity analysis to assess the robustness of the posterior
to the prior for o,,,0, ~ Half-Cauchy(0, A), where we specified A = 2.5 as a convenient
weakly informative choice, following (Gelman et al. [2003]). We consider the alternative

choices of A =1.25 and 5, with larger values of A resulting in a uniform prior density (in
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Figure 3.6 — Posterior distribution for pi,,,,,,, when fitted with different scale values in the hyper-
prior distribution fiy, ..., ~ N(0,7)I(ftm > 0). The black line represents 7 = 10,000, the green line
represents 7 = 1000, the red line represents 7 = 100, the blue line represents 7 = 10 while the purple
line represents 7 = 1.
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Figure 3.8 — Posterior distribution for
Oryiopa fitted with 3 values of scale parame-
ter (A) in the Half-Cauchy distribution. The
black line represents A = 5, the red line rep-
resents A = 2.5 and the green line represents
A=1.25.

the limit as A - o0). Figures 3.4 and 3.5 illustrate the posterior distributions of Tmgiobal
and o,.gj0ba Tespectively. It is clear that the resulting posterior marginal distributions are

largely invariant to the choice of A. Similar outcomes can be observed for the other o,,;
and o,; parameters (Figures and Figure [A.5)).

3.4 Discussion

Estimates of species richness are typically, although not exclusively, constructed inde-
pendently for individual realms or taxa. This means that not only are these estimates
potentially inconsistent with estimates for other species categories (Caley et al.[[2014), but
there is also an estimation inefficiency in that available information for related taxa is not
accounted for. Here, we have implemented a meta-analysis that addresses both of these
issues, while also presenting a technique for bringing both point estimate and interval esti-
mate data forms into the same analysis. In addition, by adopting a hierarchical model, we
have also been able to estimate the number of unobserved species in the ‘other’ categories,
simply as a result of requiring consistency within the hierarchical model. We also pro-
vide computer code (see Supporting Information) that enables the addition of new species
richness estimates into the analyses presented here so that these global estimates can be
updated and improved as new information becomes available and these new results can
be used to prioritize future research effort to taxa or regions for which new information
would improve estimates the most.

The outputs of this analysis can be evaluated either in terms of predicted intervals
(a,b) or interval midpoints (a + b)/2, if one is prepared to interpret the interval midpoint

as a proxy for a point estimate. Under this interpretation, it is not assumed that the
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distribution within an interval is symmetric, but merely that the midpoint is a convenient
parameterisation of the location of the interval, and it must accordingly be interpreted as
such. In terms of providing a single point estimate of species diversity, this interpretation
must hold at least until more data on asymmetrical bounds become available to permit
asymmetric modelling on [a,x,b], the complete interval plus point estimate. If the asym-
metrical bounds around estimates of global species richness reported to date (Table 1)) are
representative of species categories, the midpoint estimates we provide here are more likely
to be over- rather than under-estimates as modal values in asymmetrical distributions so
far tend to be located toward the lower end of estimated ranges (but not exclusively) for
a range of taxa (e.g. [Fisher et al.|(2015)). Regardless of the extent to which such a bias
over-estimates global species richness, it would appear to be considerably less of a problem
than current estimates that violate the necessity of species richness categories being a fi-
nite partition of global species richness. That is, correcting logical inconsistencies whereby
an estimate for a habitat (e.g. coral reefs) is greater than an estimate for a realm (e.g.
all marine species) will likely have a much more profound effect on total global estimates
than accounting for the precise locations of modal values with the uncertainty bounds
around a point estimate for a taxon. Nonetheless, it is still important to continue to refine
our estimation of these uncertainty bounds to better understand the nature of our current
uncertainty of these estimates and how to improve them. For example, species richness
estimates for taxa on coral reefs with the greatest uncertainty also have the most skewed
uncertainties (Fisher et al| (2015)). These greater uncertainties can arise for a variety of
reasons including lack of or biased research effort to date, and or lack of characteristics
available to distinguish among species (Caley, pers obs). These highly skewed uncertainty
bounds, therefore, indicate that species richness estimates might be disproportionately

improved by allocating research effort to these taxa.

Each of our global species richness estimates (Table [2) are broadly consistent with
previous estimates in the literature, but with some important differences that respect
the hierarchical structure of the model, and thereby, provide a set of estimates that are
logically consistent with a finite partition of global species richness. For example, in
terrestrial arthropods, for which species richness estimates have begun to narrow (Stork
et al.|[2015)), our posterior mean interval of (8.51,12.87) (million) is wholly above the
most recent interval estimate of (5.9,7.8) (million) by Stork et al. (2015]), although our
estimate is not inconsistent with the other observed estimates in Table [[I However it is
consistent with being the sum of the insects interval estimate of (3.87,6.46)(million) and
the other-arthropod estimate of (4.64,6.41)(million). This is not the case for e.g. [Stork
et al. (2015) who estimate the number of insect species at (2.6, 7.8)(million)which has the
same upper endpoint as their estimate for arthropods (7.8)(million), implying that there is
a positive probability that there are no other arthropod species apart from insects, or that
as a proportion the number of these species is too small to be noticed given current levels
of uncertainty. Similarly, the global species richness interval estimate of (7.4,10)(million)
by Mora et al.| (2011) (and indeed, most others in Table [1)) does not overlap our global

posterior mean interval of (20.25,25.61)(million), determined using currently available
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species diversity estimates. Again, most reported estimates of global species richness are
inconsistent with the estimates in other species categories; they are too low once the
hierarchical nature of taxonomy is accounted for.

However, our approach does have some caveats. Primarily, we have assumed that
our observed data, published estimates of species richness are independent of each other,
and that within any species category the data represent unbiased estimates of the same
quantity over time. The first of these assumptions is unlikely to be true as several of
the estimates in Table [I| come from the published studies that rely to varying extents on
the same data analyses in different ways (e.g. Raven et al. 2000; Novotny et al.| 2002}
Hamilton et al.|2010; |Costello et al.|[2011; |[Stork et al.[2015] and each provide multiple
estimates). The second assumption is also unlikely to be true as knowledge has increased
since the global species richness estimate of (3,4) by Raven (1983)), definitions of which
species are in which category have changed, and the number of actual species has itself
changed through the wide spread application of molecular genetic analyses with the power
to split cryptic species and synonymies morphospecies. Together this implies that there
are potential quality issues with some of these data and the methods used to analyse
them that need to be acknowledged. In our opinion, it should no longer be acceptable
to simply claim primacy of some method of estimation of global species richness over
all others without first ensuring that the method does not violate the finite partition of
global species richness within and beyond the taxa of interest, nor without presenting
some form of validation of the degree to which the method provides more accurate and
precise estimates. Opportunities, however, for such validation will be limited but may in
some circumstances be supported by the application of expert knowledge (Fisher et al.
(2015))). Superior logic could be argued, for example, if an estimation method incorporates
more realistic assumptions and knowledge about how species are distributed in space that
were absent from previous methods. Such knowledge of these spatial distributions could
also make available information from numerous estimates of species richness at sub-global
scales, but doing so will require additional model complexity, associated with increased es-
timation uncertainty, to accommodate estimates of beta-diversity. Whatever the case, the
implications of these choices on the results obtained should be clearly presented. Where
such arguments can be successfully mounted, it may be justified to weight the contribu-
tions to the likelihood of each observed data point or interval, according to the explicit
justification of its reliability. Fully reliable observations would be weighted 1, completely
unreliable observations 0, and so would be effectively removed from the analysis, as we
implemented here with May’s 1992 estimate of the number of terrestrial species. Mul-
tiple dependent observations from the same study would receive a weight between these
extremes. Ultimately, however, true validation and confidence in these estimates will only
be available over the longer-term as the discovery of new species and their taxonomy and
systematics proceeds. This progress will provide the opportunity to adaptively learn from
testing new estimates against old to assess progress toward convergence as these new es-
timates propagate up through the hierarchy, and thereby, facilitate the exploration of the

consequences of these new estimates on estimates of global species richness.



Chapter 4

New likelihood-based methods for

symbolic data analysis

4.1 Introduction

Symbolic data analysis (SDA) is an emerging area of statistics that has immense potential
to become a standard inferential technique in the near future (Billard and Diday, 2003al).
At its core, it builds on the notion that statistical inferences are commonly required at a
group level rather than at an individual level (Billard, |[2011; Billard and Diday}, 2006). This
is the familiar notion behind hierarchical modelling (e.g. |Gelman et al. 2013, Chapter 5).
For example, the performance of school and higher level units in standardised testing exams
is usually of interest rather than the performance of the individual students (Rodrigues
et al., 2016; Rubin, [1981)).

SDA explicitly embraces this idea by aggregating individual level data (the micro-data)
into group level distributional summaries (i.e. the symbols), and then building models
for inference directly at the group-level based on these summaries (Billard} [2011; Bil-
lard and Diday, [2006). The most common choice of these summaries is the random
interval (or the d-dimensional equivalent, the random rectangle), whereby for individual-
level observations Xi,...,X, € R the random interval is typically constructed as S =
(min; X;, max; X;) € R. Other common symbol types include random histograms (Dias
and Brito, 2015} Le-Rademacher and Billard, 2013) and categorical multi-valued vari-
ables (Billard and Diday, [2006). Under the SDA framework, the collection of group-level
data summaries Si,...,5, € S are considered the new data “points”, whereby each da-
tum is a distribution of some kind with an internal distributional structure. Statistical
inference is then performed at the level of the symbols directly, with reference to their
distributional forms, and without any further reference to the underlying micro-data. See
e.g. Noirhomme-Fraiture and Brito| (2011)); [Billard (2011) and Billard and Diday| (2003a)
for a comprehensive overview of symbolic data types and their analysis.

This approach is potentially extremely attractive given present technological trends
requiring the analysis of increasingly large and complex datasets. Common approaches,
such as divide-and-recombine techniques (e.g. Guha et al., 2012; Jordan et al., [2018} [Vono
et al., 2018; Rendell et al., [2018) or subsampling-based techniques (Quiroz et al., 2018b;
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Bardenet et al.l 2014; Quiroz et all 2018a), tend to focus on analysing the full dataset as
efficiently as possible by clever use of computing power. In contrast, SDA effectively states
that for many analyses this high level of computation is not necessary to make inference at
the group level, and by aggregating the micro-data to a much smaller number of group level
symbols (where m <« n), ‘big data’ analyses can be performed cheaply and effectively on
low-end computing devices. Beyond data aggregation, distributional-valued observations
can arise naturally through the data recording process. This can include observational
rounding or truncation, which results in data known to lie within some interval (Heitjan
and Rubin) (1991; Vardeman and Lee, 2005), the elicitation of distributions from experts
thought to contain quantities of interest (Fisher et al., [2015; Lin et al., [2017), and the
construction of particle size distributions of particulate matter, typically in histogram
form (Wraith et all 2014)). In this sense, Schweizer| (1984))’s often-quoted statement that

“distributions are the numbers of the future” seems remarkably prescient.

Many SDA techniques for analysing distributional-valued random variables have been
developed, including regression models (Irpino and Verdel 2015; Dias and Brito, 2015;
Giordani, 2015), principal component analysis (Kosmelj et al 2014 Le-Rademacher and
Billard, [2013; [Ichino, 2011), time series (Lin and Gonzalez-Rivera, 2016; Wang et al.,
2016} |Arroyo et all [2011), clustering (Brito et al., 2015)), discriminant analysis (Silva
and Brito, |2015) and Bayesian hierarchical modelling (Lin et al., [2017)), among others.
Likelihood-based inference was introduced by Le-Rademacher and Billard| (2011) with
further development and application by Brito and Duarte Silval (2012); [Zhang and Sisson
(2016) and |Lin et al.| (2017)).

However, while there have been many successes in the analysis of symbolic data, from
the perspective of the statistical analyst there are several methodological weaknesses in
the current SDA framework that prevent SDA methods from realising their potential in
the modern statistician’s toolkit. One issue is that the large majority of SDA techniques
are descriptive and do not permit statistical inference on model parameters. For example,
regression models tend to be fitted by symbolic variants of least squares. [Le-Rademacher
and Billard| (2011)’s likelihood-based framework is one clear and welcome exception, how-
ever even here specifying credible models can be problematic: while the statistician can
readily and intuitively specify a wide range of models for the underlying micro-data, it
is not really clear how equivalent or similarly meaningful models can be specified for

distribution-valued random variables.

The likelihood approach of |[Le-Rademacher and Billard| (2011) maps each symbol to a
random vector that uniquely defines the symbol, and then specifies a standard statistical
likelihood model for each of the observed symbols. For example, suppose that X;; € R
is the value of some process recorded on the i-th second, ¢ = 1,...,n = 86400, of the
j-th day, 7 = 1,...,m. If interest is in modelling these data as, say, i.i.d draws from a
skew-normal distribution X;; ~ SN (10,00, ), the likelihood function L(z|0), 6 € ©, may
then be constructed in the usual way. However, suppose that interval symbols are now
constructed so that S; = (min; X;j, max; X;;) € R is the random interval describing the

observed range of the process on day j. Due to the equivalence of representing continuous
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subsets of R by the associated bivariate vector in this setting (Zhang and Sisson, 2016)),
the approach of Le-Rademacher and Billard| (2011) constructs a model for the vectorised

symbols S1, ..., Sy, perhaps after a reparameterisation. For example,
Sj ~ SNa(p, 3, @) or Sj ~ SNa(p1, %, ),

where S; = ((a +b)/2,log(b - a)) is the typical reparameterisation of S; = (a,b) into a
function of interval mid-point and log range (Brito and Duarte Silval 2012)). While there
is inferential value in models of these kind (e.g. Brito and Duarte Silvaj, [2012; |Lin et al.,
2017)), it is clear that if there is interest in modelling the underlying X;; as skew-normal,
it is difficult to construct even a loosely equivalent model at the level of the symbol S; (or
S'j). That is, while the statistician may intuitively construct complex statistical models
at the level of the micro-data, it is less obvious how to construct models at the symbolic
level and for different symbolic forms.

By design, modelling symbols directly, without specifying a probabilistic model for the
underlying micro-data, only permits inference and predictions at the symbol level. This is
unsatisfactory for two reasons. Firstly, predictive inference for the underlying micro-data
is often of interest, even if primary focus is on group-level analyses. Secondly, and as we
will demonstrate in Section ignoring the structure of the micro-data can result in
symbolic-level analyses producing the “wrong” inferential outcome.

One clear and acknowledged problem (Kosmelj et al., 2014; |Cariou and Billard, [2015)) is
that existing SDA techniques almost exclusively assume that the distribution of the micro-
data within random intervals and rectangles and within histogram bins is uniform. When
one considers that random intervals are typically constructed from the X;; by specifying
S; = (min; X;;, max; X;;), it is almost certain that the distribution of the underlying
data within S; is non-uniform. This implies that any inferential procedure built on the
uniformity assumption (which is the case with almost all current SDA methods) is highly
likely to produce questionable results.

Finally, a major and surprising failing within the current SDA literature is that of
symbol design. One principled difference between SDA and regular statistical analyses is
that the analysed data are first constructed by the analyst. This raises the question of
how this should be undertaken. Intuitively, if the statistician is looking to design, say, a
random interval S; to maximise the information about a location parameter, they would
be unlikely to use the sample maximum and minimum to achieve this, as these statistics
are highly variable. A more useful alternative could use e.g. sample quantiles to define the
interval. While sample quantiles have been considered in SDA methods, they have only
been used as a robust method to avoid outliers that would otherwise dominate the size of
a random interval (Hron et al., 2017)). In general, little consideration has been given to
the design of informative symbols.

In this paper we introduce a new general method for constructing likelihood func-
tions for symbolic data based on specifying a standard statistical model L(z|f) for the
underlying micro-data and then deriving the implied model L(S|6) at the symbolic level

by considering how S is constructed from x. This means that it is possible to fit the



58 CHAPTER 4. NEW LIKELIHOOD-BASED METHODS FOR SYMBOLIC DATA ANALYSIS

micro-level data model L(xz|f) while only observing the symbol level data, S. It provides
both a natural way of specifying models for symbolic data, while also opening up SDA
methods to become a mainstream statistical technique for the fast analysis of large and
complex datasets. This approach naturally avoids the incorrect assumptions of within-
symbol uniformity, allows inference and predictions at both the micro-data and symbolic
data levels, permits symbolic inferences using multivariate symbols (approximately 99%
of all symbolic data analyses are based on vectors of univariate symbols), and provides a
much higher quality of inference than is available using standard SDA techniques. The
method recovers some known models in the statistical literature, as well as introducing
several new ones, encapsulates the current symbolic likelihood approach of|Le-Rademacher
and Billard| (2011)) as a special case, and reduces to standard likelihood-based inference
for the micro data (so that L(S|0) - L(z|f)) when the symbols are reduced to standard
micro-data.

By examining the performance of this new approach we take the opportunity to demon-
strate the weaknesses of current symbol construction techniques, and that more powerful
inferences can be obtained by redesigning how symbols are constructed. In particular
we introduce a new class of univariate and multivariate random rectangles. These new
symbol variations produce more efficient analyses than existing symbol constructions, and
permit the estimation of within-symbol multivariate dependencies that were not previously
estimable (or were only weakly estimable).

The construction of the new symbolic likelihood function is presented in Section
along with specific results for random intervals (rectangles) and histograms. For clarity
of exposition all derivations are relegated to the Appendix. The performance of these
models is demonstrated in Section through a meta-analysis of univariate histograms,
a simulation study of the inferential performance of the new class of multivariate random
rectangle constructions, and an analysis of a large loan dataset. In all cases, the existing
state-of-the-art models and symbolic constructions are outperformed by the new symbolic

model. We conclude with a discussion in Section [4.4]

4.2 A general construction tool for symbolic likelihood func-

tions

We introduce the new symbolic likelihood function in Section before considering
the specific cases of models for random rectangles and random histograms in Sections
4.2 2H4.2. 4

4.2.1 Symbolic likelihood functions

Suppose that Q is a population of interest defined on a probability space (2, F,P), and
that each individual in €2 is described by a measurable random variable X, defined by
X:Q-> X, and P(X € )) = P(w € QX(w) € V), for Y c X. We follow the standard
SDA construction of a class (Billard and Diday, 2003al) and let the random variable C':

Q) - C denote the class to which an individual belongs. For simplicity we assume that
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C = {1,...,m} is finite. Consequently let Q. = {w € Qs.t. C(w) = ¢} be the set of
individuals in the population that belong to class ¢ € C such that U, = €2, and define
X : Qe > X, € X as the random variable that describes them. We denote Card(Q2) = N
and Card(.) = N, where Y ..c N. = N.

A symbolic random variable S. for class ¢ € C is the result of the aggregation of
the random variables X, = (Xi,...,Xn, ) via some aggregation function ., so that
S, =me(X ) [X]Ne - S. and x. — 7(x.). That is, a symbolic random variable represents
a summary of the information brought by measurement over individuals. The choice of
this summary (and thus of the aggregation function) is critical and we explore this in later
Sections. In the following we refer to random variables of the micro-data X as classical
random variables. By construction symbolic random variables require knowledge of the
underlying classical random variables. Accordingly, this should also be true when dealing
with likelihood functions, particularly if inference is required at both classical and symbolic
levels, but when only information at the symbolic level is observed.

To construct a symbolic likelihood function, suppose that the classical random variable
X has probability density and distribution functions gx(-;60) and Gx(-;0) respectively,
where 0 € ©. Consider a random classical data sample x = (z1,...,2,) of size n < N
from the population, and denote by x. = (1.¢,...,2Zn.c), the collection of those in class
¢, where ¥ ..cn. = n. Similarly let s. = m.(x.) be the resulting observed symbol obtained
through the aggregate function n. and define the symbolic dataset to be the collection of

symbols s = (s.;c€C).

Proposition 4.1. For the subset x. of x associated with class c € C, the likelihood function

of the corresponding symbolic observation s. = w.(x.) is given by

L(sc;ﬁ,G)ocfX fSc|Xc=zC(sc;19)gX(z;G)dz, VeelC, (4.1)

where z. € X' is a subset of z € X", fg x.(:;0) is the conditional density of S. given X.
and gx (-;0) is the joint density of X.

We refer to L(s¢;9,0) given in (4.1)) as the symbolic likelihood function. A discrete
version of (4.1)) is easily constructed. Note that by writing the joint density gx(-;60) =
9x.(+30)9x_,x.(;0), where X _. = X\ X, then after integration with respect to x_. =

x\x., equation (4.1)) becomes
L(s¢;0,0) o< _[ch ISex o=z (86;0)gx. (2 0)dzc.

This construction method can easily be interpreted: the probability of observing a symbol
sc is equal to the probability of generating a classical dataset under the classical data
model that produces the observed symbol under the aggregation function w.. That is,
we have established a direct link between the user-specified classical likelihood function
L(z|f) o< gx(x;0) and the resulting probabilistic model on the derived symbolic data. As
a result we may directly estimate the parameters 6 of the underlying classical data model,

based only on observing the symbols s.
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In the case where there is no aggregation of x. into a symbol, so that 7(x.) = . and
S = [X]Ne, then fsox =2 (5¢) = fr(x )X =2 (T(®e)) = fx X =2 (Tc) = 0z, (@c), where
dz.(x.) is the Dirac delta function, taking the value 1 if z. = x. and 0 otherwise. As
a result the symbolic likelihood function reduces to gx, (x.;0), the classical likelihood
contribution of class ¢. Under the assumption that the classical data are independently
distributed between classes, so that gx (-;0) = [T.ec 9x.(-;0), the associated symbols are
also independent and the likelihood of the symbolic dataset s is given by

L(s:0,0) = [] L(50:0,0) an FsuX ooz, (56:9) g (2; 0)d2e.
ceC ceC J X €

If, further, the observations within a class ¢ € C are independent and identically distributed,
then in the scenario where m(x.) = . we have L(0) = [, gx (zi;0). Because Card(C) =m
and typically m <« n, this implies that large computational savings can be made through
the analysis of symbolic rather than classical data, depending on the complexity of the
classical data likelihood function. The methodology established in Proposition spec-
ifies a probability model for the micro-data which, combined with the knowledge about
the aggregation process induces a likelihood function at the aggregates level. Compar-
atively the likelihood function defined by |Le-Rademacher and Billard| (2011)) specifies a
distributional assumption directly on the symbols.

In the following Subsections, we establish analytical expressions of the symbolic like-
lihood function based on various choices of the aggregation function m, which leads to
different symbol types. The performance of each of these models will be examined in
Section For clarity of presentation the class index ¢ is omitted in the remainder of

this Section as the results presented are class specific.

4.2.2 Modelling random intervals

The univariate random interval is the most common symbolic form, and is typically con-
structed as the range of the underlying classical data e.g. S = (min; X;, max; X;). Here
we generalise this to the context of order statistics S = (X(;), X(,,) for indices [ < u given
their higher information content. We define an interval-valued symbolic random variable

to be constructed by the aggregation function m where
S=n(X):RY >S={(ar,a2) eR*: a1 <as} xN (4.2)

so that @ = (z(;), Z(y), V), where ;) is the k-th order statistic of z and [,u € {1,...,N},I <
u are fixed. Taking [ = 1,u = N corresponds to determining the range of the data. Note
that this construction explicitly includes the number of underlying datapoints N in the
interval as part of the symbol, in direct contrast to almost all existing SDA techniques.
This allows random intervals constructed using different numbers of underlying classical
datapoints to contribute to the likelihood function in relation to the size of the data that
they represent. This is currently not available in the construction of [Le-Rademacher and
Billard, (2011]) — see below.



4.2. A GENERAL CONSTRUCTION TOOL FOR SYMBOLIC LIKELIHOOD FUNCTIONS 61

Lemma 4.2. Consider a univariate interval-valued random variable S = (s, 8y,n) € S, 0b-
tained through (4.2) and assume that gx (x;0) = T1i2; gx (zi;0),x € R™. The corresponding

symbolic likelihood function is then given by

L(s1, 5u,n;0) = [Gx(s:)] " [Gx (su:0) — Gx(s50)]“ 7

(-1 (u-1 — D(n—wu)!
x [1=Gx(s4;0)]" " gx (51;0)9x (su;0).

It is worth noting that this expression can also be obtained by evaluating P(S; < s;, S, <
s1) = IP’(X(Z) < s X < sy) and then taking derivatives with respect to s; and s,, and
corresponds to the joint distribution of order two statistics. This model was previously
established by [Zhang and Sisson| (2016|) as a generative model for random intervals built
from i.i.d. random variables. Additionally, when univariate intervals are described by
their midpoint (M) and (half)-range (R) a simple change of variable M = (S1 + S,,)/2 and
R = (S, — 51)/2 can be applied (e.g. Brito and Duarte Silva| (2012))).

4.2.3 Modelling random rectangles

The typical current method of constructing multivariate random rectangles from under-
lying d-dimensional data X € R% d € N is by taking the cross product of each of the d
univariate random intervals described by their marginal minima and maxima (e.g. Neto
et al., 2011} Ichino, 2011). The number of underlying datapoints in this rectangle is of-
ten not ulitised. Here we improve on this scheme by firstly making use of additional
information available at the time of rectangle construction (Section , and then

by developing several alternative constructions for random rectangles based on marginal

order statistics (Section [4.2.3.2]).

4.2.3.1 Using marginal maxima and minima

While it is in principle possible to identify a small amount of information about the
dependence between two variables summarised by a marginally constructed bounding box,
this information content is very weak, and the direction of dependence is not identifiable
(Zhang and Sisson|, 2016). E.g. if n datapoints are generated from a bivariate normal
distribution and the marginal minimum and maximum values are presented, what can be
said about the correlation strength and direction? If the correlation is strong relative to the
number of observations n, then dependence information can be obtained if the locations
of those datapoints involved in construction of the bounding rectangle, and the total
number of points are known. For the bivariate examples illustrated in Figure (top),
if the rectangle is generated from only two points (left panel) one can surmise stronger
dependence than if three points are used (centre panel), with rectangle construction based
on four points (right panel) demonstrating the weakest dependence of all. The exact

locations of these bounding points is informative of dependence direction.

As such, we define the aggregation function m to incorporate these construction points
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(where available) into the definition of the random rectangle as
S=m(X):R™N 5 S ={(a1,a2) e R®: a3 < ap}?x{2,...,max(2d,n)} x T xN  (4.3)

so that x — ((:E(lm,x(n)7i),~=17,,,7d,p,l(p),N), where & = (z1,...,2n), Tj = (Tj1,...,Tjd)"
and z ;) ; corresponds to the k-th order statistic of the i-th marginal component of @. The
quantities p and I(p) represent the number of points involved in constructing the random
rectangle, and the information about their locations (taking values in T), respectively. In
this context a symbol is written as S = (Smin, Smax; Sp, SIP,N), where Spin and Shax are

respectively the d-vectors corresponding to the marginal minima and maxima.

Lemma 4.3. Consider a multivariate random rectangle S € S, obtained through (4.3]) and
assume that gx (x;0) = TI", gx (74;0), 2 € R™¢. Then the symbolic likelihood function is
given by

n' Smax n=>5sp

L(s:0) = —" U gX(z;H)dz] ‘<l (4.4)
(n - Sp)! Smin

where the multivariate integral is taken over the rectangular region defined by Smin and

Smax, and where Ly, is defined as follows. If s, = 2, then sy, = (SasSp) indicates the

two co-ordinates of d-dimensional space which define the bounding rectangle. In this case

U2 = gx(84;0)gx(5p;0). If sp =2d, then sg, = & (the empty set) and

d
log = H [GX—i|Xi:8min,i (Smax,—i; 9) - GX—i|Xi:5mm,i (Smin,—i; 0)] gx; (Smin,i)
=1

X

7

d
[GX—i|Xi:5max,i (Smax,—i; 9) - GX—iIXiZSmax,i (Smin’_i; 0)] gXl (Smax7i)’ (45)

=1

where X; is the i-th component of X, X_; = X\X; and similarly for Smin —i, Smax,—i> Smin,i

and Smax,i, and Gx_,|x, is the conditional distribution function of X_; given X;.

In (4.5) the product terms represent the joint distributions functions of X_; being between
Smin,—i and Smax,—; given that X; is equal to Syin i O Smax,i. When s, =2, (4.5) reduces to
laq = £2. General expressions for £, for p # 2 or 2d can be complex. A simple expression

is available in the bivariate case (d = 2) for s, = 3.

Corollary 4.4. For a bivariate random rectangle, if s, = 3 then Sp, = s¢ € R? is the co-
ordinate of the point defining the bottom-left, top-left, top-right or bottom-right corner of

the rectangle. In this case, if s. is the element-wise complement of s., then

2
03 = gx(5¢:0) x [T[Gx_xi=5., (Smax—i50) = Gx_jx,=5,., (Smin—i:0) | 9, (8¢5 0). (4.6
i1

E.g. if sc = (Smin,1, Smin,2) S in the bottom-left corner, then 5. = (Smax,1, Smax,2)-

The first term in (4.6)) corresponds to the density of the point in the corner of the rectangle,

and the other terms are the probabilities of the two points on the edges being between two
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interval values given that the other component is fixed. Qualitatively similar expressions

can be derived for d-dimensional random rectangles in the cases where s, # 2 or 2d,

although there is no simple general expression.

p=0.95
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X(uw)2

X()2

up-up=l-1

up=l=1

X().1

l-lp-1

X().2

-1
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Figure 4.1 — Construction methods for bivariate intervals using marginal minima/maxima (top panels) or
marginal order statistics (bottom). Top panels: Illustrative random rectangles constructed from 2 points
(high correlation), 3 points (moderate correlation) and 4 points (low/no correlation). Bottom panels:
Three alternative construction methods: marginal only (left panel), sequential nesting (centre; equation
[ @9)) and iterative segmentation (right; equation (4.11)). Values in blue (red) denote the number of
observations in the area bounded by blue (red) lines.

4.2.3.2 Using marginal order statistics

As order statistics are defined in the univariate setting, there are a number of methods to

use fixed vectors of lower [ = (I1,...,13)" and upper u = (uq,...,uq)" order statistic values,
with 1 < I; < u; < N, to define a d-dimensional random rectangle. The simplest takes
the cross product of the d-univariate marginal quantiles (e.g. Neto et al. |2011)). Here the

aggregation function 7 is defined as

S=m(X):R*N o S={(a1,a2) eR*:a; <ap}?xN

T - ((l’(zi),m x(ui)ai)izl,...,d ’ N) ’

(4.7)
(4.8)

In this context the symbol is written as S = (S;, Sy, N), where S; and S, are respectively
the d-vectors corresponding to the marginal lower and upper order statistics. This process
is illustrated in Figure (bottom left panel) in the d = 2 setting. For fixed [ and u,

the observed counts in each region are then known as a function of the construction (4.8)).
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The resulting symbolic likelihood function is then given by
d
L(S7 0) = H L(Sl“ Su;s 15 92)
i=1

where L(sy,, Sy;,n;0;) is as obtained in Lemma using the i-th marginal distribution with
parameter 0; € ©. Indeed, the symbol S can also be written as (S1,...,54), a d-vector
of independent random intervals obtained through . However, as the construction
only contains marginal information, such a symbol will fail to adequately capture
dependence between variables. As an alternative, we introduce two new order-statistic
based representations of random rectangles that do account for such dependence.

The first, sequential nesting (Figure bottom centre panel), constructs the order
statistics within dimension ¢ conditionally on already being within the random rectangle

in dimensions j < i. The aggregation function 7 is given by (4.7) as before, but where now

€T — (((x(li),i7$(ui)7i) |{x(lj),j < Z;j < J}(uj)J;j < i})i=1,...,d s N) . (4.9)

As before, S = (S}, Sy, N), but where the known observed counts now lie in different
regions (Figure |B.1)), and with the additional constraints of 2 < w;1 <u; —1; — 1.

Lemma 4.5. Consider a multivariate random rectangle S € S, constructed via (4.9) and
suppose that gx (x;0) = [T, gx (z4;0),x € R™. The symbolic likelihood function is then
given by

d
L(5;0) o< P(s7 < X < 8,)" ™7 dP( Xy < 511) dP(X7 < 541) [ 2i(51)qi(50), (4.10)
i=1

where p1(s;) =P(X1 < 8171)11_1, q1(su) =P(X1 > 5y1)" " and fori=2,...,d,

pi(sl) :P(Sm’ < Xj < Sujj;j < Zle = Sm)d[P(Xi < Sm‘)
X P(XZ' < 5l,i|5l,j < Xj < Suyj;j < i)li_l
Qi(su) ZP(Sl,j < Xj < SuJ';j < Zle = Suﬂ)d[P)(Xl < Suﬂ')

X P(XZ > Su7i|5l,j < Xj < SuJ;j < i)ui_l_ui_li_l_l.

Corollary 4.6. With d =2, the symbolic likelihood function in Lemma[.5 is given by

L(s;0) o< (Gx (su) = Gx(51))"2 727 gx, (511) 9%, (5u.1) 95, (51.2) 9, (5u.2)
x Gx, (Sl,1)l1—1 [1-Gx, (s5u1)]"™ [GX1|X2:SLQ(SU71) - GXl‘X2=8l,2(Sl,1):|
g [GX”X?:S“’?(S“J) B GX1|X2:5u,2(sl,1)] [GX((Su,l, S12)) — GX(Sl)]l2_1
x [Gx, (su1) = Gx (5u) = Gx, (s11) + Gx ((s1,1, suvz))]ul_“?ll‘l 7

where Gx, () = Gx,(+;0) and Gx, x, () = Gx,|x,;(-;0);1 # j respectively denote the marginal

and conditional distribution functions of gx (x;0).

An alternative to sequential nesting is an iterative segmentation construction (Figure
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bottom right). As before, for fixed vectors [ and u, the aggregation function 7 is given by

(4.7) but where

Again S = (51, S,, N), but now where S;;, the l;-th order statistic of the i-th margin,
is restricted to the area where the previous margins j < ¢ are all below their respective
lower (l;-th) order statistic. Similarly, S, ; is restricted to the area where the previous
margins j < ¢ are all above their respective upper order statistic. For fixed [ and w
the observed counts are then known (Figure bottom right) but are attributed to
different regions than for sequential nesting. Iterative segmentation implies the additional

constraints ;4,1 <l; — 1 and u;41 <N — 23-:1 uj fori=1,...,d-1.

Lemma 4.7. Consider a multivariate random rectange S € S, constructed via (4.11)) and
suppose that gx (x;0) = [T, gx (x4;0), x € R™4. The symbolic likelihood function is then

given by
-1 d+1
L(S; 9) < P(Sl,l < X1 < Swl)ul_ = d]P)(Xl < 8[71)d]P’(X1 < Su,l) Hpi(sl)qi(su), (412)
1=2

_ _d .
where pge1(s1) =P(X1 <s11,...,X4< sld)ld L Qd+1(Su) = P(X1 > su1,- .., Xg > s0.0)" Lim1 Ui
and fori=2,...,d

pi(s1) =P(X; <1557 <i|Xi = s51,) dP(X; < 813)

x [B(X; < 5127 < i) = B(X; < s <))
qi(su) =P(Xj > 80,557 <X = 54,3) dP(X; < 544)

X [P(X; > sug3j <i) —P(X; > s34 <i)]" .

Corollary 4.8. With d =2, the symbolic likelihood function in Lemma[{.7 is given by

up-l1-1
L(s;0) o< (Gx, (5u1) = Gx, (s511)) " 9x1 (50,19, (86,1) 9%, (51,2) 95 (Su,2)

lo—-11-1
X G x| Xams1.5 (511) (1 = Gxy|Xpms,0 (5u1)) [Gx, (511) = Gx (s1)] "
% [Gx, (su2) = Gx(3u)] 7 Gx (1) (1 - Gx, (5u1) = Gx, (su2) = Gx (s4))" 172,

where Gx,(+) = Gx,(+;0) and Gx, x,() = Gx,x,;(-;0);i # j respectively denote the marginal

and conditional distribution functions of gx (x;0).

When [y = - =13 =1 and u; = n-2(i — 1), the sequential nesting random interval con-
struction approximately reduces to the random rectangle construction based
on univariate marginal maxima and minima, indicating some degree of construction con-
sistency. That is, S = (5, Sy, N) contains almost exactly the same information as the
symbol S = (Swmin, Smax; Sp, S1,, V) when S;, = 2d, and so the symbolic likelihood function
approximately reduces to (4.4)). For highly correlated data S = (.S}, Sy, N) is slight

more informative as the lower and upper bounds of each dimension ¢ are calculated on a
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set from which the (i —1) lowest and largest observations are been removed. The approx-
imation improves as the correlation decreases until both symbols are identical when the
data are completely independent. A similar reduction cannot be obtained for the iterative
segmentation construction. Also note that both sequential nesting and iterative segmen-
tation are dependent on the ordering of the variables, and that varying the ordering will

produce different representations of the same underlying dataset.

4.2.4 Modelling histograms with random counts

Histograms are a very popular SDA tool to represent the distribution of continuous data,
with a typical focus on univariate histograms. They are most commonly constructed as
a set of fixed consecutive intervals for which the random relative frequencies (or counts)
are reported (e.g. Bock and Diday, 2000; Billard and Diday} 2006) Let X = R? d e N.
Following Le-Rademacher and Billard (2011)), a histogram-valued random variable may
be defined as a set of counts associated with a deterministic partition of the domain X.
Suppose that the i-th margin of X is partitioned into B’ bins, so that B! x---x B bins are
created in X through the d-dimensional intersections of each marginal bin. Index each bin
by b= (b1,---,bq4), bj =1,... , BJ as the vector of co-ordinates of each bin in the histogram.

Each bin b may then be constructed as
. 4 . . .
By = B, x-x B, where ng =(yij71,ygj],]=1,...,d,

where for each j, the marginal sequences —oo < yg < y{ <...< yéj < oo are fixed. We
assume that all data counts outside of the constructed histogram are zero. A d-dimensional

histogram-valued random variable is constructed through the aggregation function = where

S=n(X): RPN L5={0,.. N}B

(4.13)
x = (T M e By}, 20k x; € B}),

where 1= (1,...,1) and B = (B',...,B%), and 1I is the indicator function. The resulting
symbol S = (S1,...,5B) is a vector of counts, where S, denotes the frequency of data in
bin By, such that Y, Sp = N.

Lemma 4.9. Consider a multivariate histogram-valued random variable S € S, constructed
via, [@.13)) and suppose that gx (x;0) = [T, gx (z:;0), € R™. The symbolic likelihood

function is then given by

L(s;0) = s'n—'sB' I;[ (-/Bb gx(z; 9)dz)Sb, (4.14)

1:
where the integral denotes the probability that data x € X falls in bin By under the model.

In the univariate setting, the resulting multinomial likelihood coincides with the likelihood
function for binned and truncated data introduced by McLachlan and Jones| (1988). The
resulting likelihood also agrees with and extends the methodology of [Heitjan and Rubinl

(1991) who construct corrected likelihood functions for coarsened data, where the authors
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highlight the necessity to account for both the grouping and the stochastic nature of the
coarsening. In our construction, this latter point is achieved in by the conditional
density fgx-

In the limit as the histogram is reduced to its underlying classical data, the likelihood
reduces to the classical data likelihood. In this case, as the number of bins becomes
large each bin of the histogram reduces in size and approaches a single point By — x; € RY.
In the limit as the number of bins — oo, only those n coinciding with the underlying data
points will have a count of 1, while the others will have a count of 0. The likelihood
contribution of the non-empty bins By is then gx (xp;6). This is equivalent to specifying
fsix==(5;9) = TTj2y 0z, () in . Consequently the symbolic likelihood function reduces
to L(w;0) o< [Tty gx (i3 6).

Finally, note that while we assumed that the histogram covers the domain X of the
classical random variable, this will not be the case when e.g. the classical data is only
observed on a subset of the domain. In this scenario the distribution of the classical

variable gx (x;#0) should be truncated and rescaled over the same subdomain.

4.2.5 Modelling histograms with random bins

A common alternative to histograms with random counts over fixed bins is constructing
histograms with fixed counts within random bins. (e.g.Mousavi and Zaniolo, 2011}, Toanni-
dis, 2003). Such random histograms can be seen as a generalisation of the interval-valued
random variables from Sections In particular, random intervals can be viewed
as histograms with the number of bins ranging from 1 (when all margins are intervals cal-
culated from sample minima and maxima; Figure top panels) to 3d (where all margins
are intervals calculated from order statistics [ > 1 and u < n; Figure bottom left). In
the following we focus on the univariate setting (X = R) since extension to d-dimensions is
challenging. E.g. given a matrix of counts, then a simply constructed grid matching these

counts does not necessarily exist.

We construct a univariate random histogram using order statistics. For a vector of
orders k = (k1,...,kp), such that 1 < ky <.+ < kp < N, a univariate random histogram is

constructed through the aggregation function © where

S=n(X): RY -S={(a1,...,ag) eRP:a; <---<ap}xN

(4.15)
xr H(x(kl),...,l’(kB),N).

This defines a histogram with bin b located at (sp_1,sp] with fixed count ky — ky_q, for
b=1,...,B+1, where sy = —o0,s5,:1 = +00,kg =0 and kg1 = N + 1, and knowledge that
there is a point located at each sp, b=1,..., B. The resulting symbol S = ((S1,...,SB),N)

is a B-vector of order statistics plus the total number of datapoints.

Lemma 4.10. Consider a univariate random histogram S € S, obtained through (4.15))
and assume that gx (x;0) = [T, gx(x;),x € R™4. Then the symbolic likelihood function
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is given by

B B+l ((y 0) -G 16 kp—kp-1-1
L(si6) =n! [ Lox (si6) [ (X R Cxlmi )
b=1 b=1 b—kp1-1)!

(4.16)
When B =2, k; =1 and ko = u with [,bu = 1,...,n;] # u, then reduces to the
likelihood function in Lemma (see Appendix . Further, under this construction
it is straightforward to show that if B = N then the symbolic likelihood recovers
the classical data likelihood. Specifically this implies k, = b for all b=1,..., B so that the
aggregation function is S=m(X)=((Xqay X)) N), kp—kp-1 =1 for all b and
so L(s5:0) o< T gx (2:6).

4.3 Illustrative analyses

The symbolic likelihood function introduced in Section [£.2] not only resolves many of the
conceptual and practical issues with current SDA methods, but it also opens the door for
new classes of symbol design and construction, in addition to opening up SDA as a viable
tool to enable and improve upon classical data analyses. We explore each of these benefits

below.

4.3.1 Data reconstruction for meta-analyses

In medical research, meta-analyses of results from multiple trials are often implemented
to systematically examine the clinical effects of certain treatments. These meta-analyses
typically require the effect sample mean and standard deviation from each individual
study. However it is common practice for such studies to only report various quantile
summary statistics, namely the sample minimum (gy), maximum (g4) and the sample
quartiles (g1, g2, ¢3). This introduces the problem of accurately estimating a sample mean
and standard deviation from these quantiles.

The most sophisticated practiced method to estimate the sample mean was developed
by Luo et al.| (2018) based on previous work by Hozo et al.| (2005) and Wan et al.| (2014),

whereby
N + +
T, =W (%)+WQ(¥)+(1—M1—W2)Q2, (417)

with wy = 2.2/(2.2+n%7) and ws = 0.7-0.72/n%5°. Based on previous work by Hozo et al.
(2005)) and Bland, (2015) the best performing estimators of the sample standard deviation
are due to Wan et al. (2014) and |Shi et al. (2018), which are respectively given by

.~ _1fa-w sa-a s _WU—q  B-q
= — d = 418
S one o BRI Toae oy s
where ((n) = 2071 (S550),y(n) = 2071 (LIE01) 9, (n) = (2 +0.14n05) ! (25,
O2(n) = (2+W)¢_1(%), and ®~! (+) is the inverse of the standard normal c.d.f.

Each estimator in (4.17)) and (4.18)) assumes the underlying data are normally distributed.
In the context of the symbolic random variables developed in Section this setting
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corresponds to constructing the symbolic variable S defined through (4.15) with n =4Q +
1,Q e N where k= (1,Q+1,2Q +1,3Q + 1,n) i.e. a histogram with B =4 random bins and

equal counts.

If we make the same assumption of i.i.d. normality of the underlying data, then
maximising the symbolic likelihood with gx(z;0) = ¢(z;p,0) will yield maxi-
mum likelihood estimators 6 = (2,6) ~ (T, \/ms) which provide direct estimates
(Z,5.) = (1, m@ of the sample mean z and standard deviation s of the underly-
ing data. Of course, the symbolic likelihood can make any alternative distributional

assumption on the underlying data.

Figure illustrates the performance of each estimator when compared to the true
sample values (i.e. (Z-Z¢) and (5-5¢)) based on data generated from normal (top panels)
and lognormal (bottom) distributions, averaged over 10,000 replicates, and for a range of

sample sizes n.

For normally distributed data, the estimator of the sample mean z; by [Luo et al.
(2018) (red squares) and the symbolic likelihood-based estimator (green circles) perform
comparably (top left panel). Identifying performance differences when estimating the
sample standard deviation is much clearer however (top right panel), with the symbolic
estimator strongly outperforming the discipline-standard estimators of Wan et al.| (2014)
and Shi et al.|(2018) (blue triangles and purple diamonds, respectively). The differences are
particularly stark for low sample sizes. Because sy and §g are substantially overestimating
the true standard deviation, this means that their usage in medical meta-analyses will
systematically undervalue the contribution of each study in the larger analysis, potentially

weakening the power of the study to detect significant clinical effects.

Note that for n =5, the symbolic estimator of the sample standard deviation is exact
(i.e. zero error) as the symbolic likelihood (4.16)) reduces to the classical likelihood in this

case.

When the sample data are lognormal (bottom panels), both symbolic (light green)
and the industry-standard estimators perform poorly. This is not surprising as they are
each based on a normality assumption. While estimators equivalent to those in
and but for lognormally distributed data could in principle be derived, it is trivial
to achieve this for the symbolic estimator by substituting the lognormal density (or any
other desired distribution) for gx(-;0) in . The resulting sample mean and standard
deviation estimators assuming the lognormal distribution are illustrated by dark green
circles. The lognormal-based symbolic likelihood estimator performance is clearly excellent

in comparison.

One factor that influences the efficiency of the symbolic mle is the form and specifica-
tion of the symbol as a summary representation of the underlying data. While a random
histogram with more bins should be more informative than one with less, for a fixed
number of bins, sensible choice of their location can result in increased precision of the
symbolic mle. This idea of symbol design has been largely ignored in the SDA literature,
for example, with random intervals being routinely constructed using sample maxima and

minima.



70 CHAPTER 4. NEW LIKELIHOOD-BASED METHODS FOR SYMBOLIC DATA ANALYSIS

Normal data, X Normal data, s
8 |
5
o 2
b \ I
5
g \ ’ \ !\\ /‘ M g =
8 8. .a ’ \ / ‘0 / / \ \ \/ \ /| 3
AR ARV ATl
1] \[ f o)
= ! k=
a1 M [ ik g
g7 ||\l g
s | 3
8 | ‘
7l 51 iy
s 8
: | ity
7 g
. R CERRKNRE R A RBRIEIRRRERRRARREMASIELRNRARESES
s T T T T T T T T T
0 50 100 150 200 0 50 100 150 200
Sample size, n Sample size, n
LogNormal data, X LogNormal data, s
it
S ;(d T D g e et Sz g 2
1
t [1
I
S - L 15
S 1 RN DL
: ; o | A IHIHHHHIIHnminlggggggmgﬁm% e st
s i\f g ° v iy st 4
= ¥ = s e B
g h % z %mé IlHIHIIIH}HHH;HH;I .
g1 % 8 5 3 HHHIIIHIIIHHHIHHIII;I;
5 % 5 b
Q %}
E= £ S 4 1
5 g K 59 L
c ! L3 s L
3 Ty, E Iy
= iii = 1111
31 g iy
! i i, e “”1
iiiiiqi i CE
4 11
2 " . g
s i
! TS gy
L IseEeees i1y
nagtaliis; 1
agg L1l EEeeees
s g gy
o T
7
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
Sample size, n Sample size, n

Figure 4.2 — Mean difference errors, (Z - Zo) and (8 - s0), of various estimates of the sample mean (left
panels) and standard deviation (right panels) as a function of sample size n =4Q +1,Q =1,...,50 or 90,
and for both normally (top panels) and log-normally (bottom-panels) distributed data. Zo and sg denote
the true sample mean and standard deviation for each dataset. Errors are averaged over 10,000 dataset
replicates generated from 6y = (1o, 00) = (50,17) (normal data) and 6y = (po,00) = (4,0.3) following
et al.| (2005) and [Luo et al. (2018). Colouring indicates the SDA estimates (light and dark green circles), 1,
(red squares), $w (blue triangles) and §s (purple diamonds). Confidence intervals indicate +1.96 standard
€rrors.
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Figure 4.3 — RMSE, (left) and RMSE; (right) as a function of quantile ¢ = (n + 1 -4)/n for i =
1,...,(n+1)/2. Grey and black lines respectively denote random intervals and histograms. Solid, long-
dashed and short-dashed lines indicate samples of size n = 21,81 and 201 respectively.

We consider the simplified setting of the univariate random interval S = (s, Sy,n)
defined in Lemma constructed using symmetric upper and lower order statistics, and
the associated 2-bin random histogram that results by additionally including the
sample median, go.

That is, for sample sizes n =4Q +1,Q € N we have [ =i,u =n+1—1 for the interval and
k=(i,2Q +1,n+1-1) for the histogram, where we examine the efficiency of the resulting
symbolic mle for the symbols defined by ¢ = 1,...,2Q. For each of t =1,...,7 = 10,000
replicate datasets of size n = 21,81 and 201 (i.e. @ = 5,20 and 50) drawn from a N (ug,00)
distribution with (10, 00) = (50,17), we compute the rescaled symbolic mle (fi;, ) where
Ot = \/m&t, and then calculate the relative mean square errors (RMSE) defined by

RMSE;, = —Zé;l(‘:‘t “10)° nd RMSE, - —ZtT;l(&t —%0)”
i1 (@t = p10)? Yi-1(st = 00)?
where T; and s; denote the sample mean and standard deviation of the ¢-th replicate.

Figure displays the RMSEs as function of the quantile ¢ = (n+1-14)/n used to
construct the symbol. As might be expected, using a histogram (dark lines) provides
more information about p than the associated random interval (grey lines), as the extra
information contained in the median is informative for this parameter. In contrast, the
median does not provide any information about ¢ in addition to the two bounding quan-
tiles, given the symmetric underlying distribution. The inclusion of alternative quantiles
would be informative, however.

The convex shapes of each RMSE curve indicates that the current prevailing SDA
practice of constructing intervals from sample minima and maxima (i = 1,¢ = n) is highly
inefficient for parameter estimation. Greater precision for both location and scale param-
eters is achieved by using less extreme quantiles, in this setting around the ¢ = 0.85-0.90

range (trading off the optimal minimum RMSE values between the two parameters). There
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is additionally a severe penalty for using too low quantiles when estimating o, as the scale
of the data can not easily be estimated using overly central quantities. Estimating p is
less sensitive in this regard. These conclusions are robust to the sample size, n. Overall
this analysis indicates that substantial efficiency gains should be possible in standard SDA

analyses with more informed symbol design.

4.3.2 Information content in multivariate random rectangles

In Sections 4.2.3.1] and [4.2.3.2| we introduced two new symbolic constructions to increase

the information content within multivariate random rectangles. We now examine the
performance of each of these representations and contrast them with standard SDA con-
structions. We focus on bivariate intervals for clarity, where extension of the results to
higher dimensions is immediate.

When constructing random rectangles from marginal minima and maxima, Lemma [4.3]
and Corollary [£.4] provide an expression for the symbolic likelihood that incorporates
full knowledge of the number and location of the unique points from which the interval
is constructed (e.g. Figure . We denote the resulting likelihood function by
Lan(s;6). Existing SDA definitions of random rectangles do not use this information.
In its absence, the best likelihood model that can be constructed is by averaging the
likelihood Ly over all possible combinations of the unique point constructions, weighted
according to the probability of that configuration arising under the classical data model.
That is,

L@(S; 0) = z Zqull((smina Smaxatpytfpan); H)P(Sp = tpa Slp = tlp;e)a

tp t[p

where
P(S, = t,, S1, = t1,;0) = [ ]quu((a, b,tp.ts,,1);0)I(a < b)dadb, (4.19)

where a = (a1,...,aq), b = (b1,...,bq), and where I(a < b) = Hle I(a; < b;). In the
following analyses we estimate the probabilities to a high accuracy using Monte
Carlo with a large number of samples, each time Ly is evaluated. Clearly this is not viable
in practice. One alternative is to assume that each random rectangle has been constructed
by the maximum number of unique points (2d), which is perhaps not completely unrealistic
when the number of points n underlying a symbol is large compared to the dependence
between the variables. We denote the likelihood Log(s;0) as the particular case of Ly
with S, = 2d. In the following, Log effectively represents the current state-of-the-art in SDA
methods, Ly represents the best that can likely be done with the existing constructions
of random rectangles in the SDA literature (although it is challenging to implement in
practice), and L,y is our proposed construction.

Following the notation of Section we assume m = 20,50 classes (C = {1,...,m})
for each of which a random sample of size n. = 5,10,50,100 is drawn from a Na (g, X0)
distribution (d = 2) with uo = (2,5)7, diag(Xo) = (08’1,0(2)72) = (0.5,0.5) and correlation
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po = 0,0.3,0.5,0.7,0.9. The m random rectangles are then constructed, retaining the
information (s, sz,) required to maximise Lgy but which is ignored when maximising Lg

and L4. For each of T' =100 replicate datasets, the symbolic mle 0 = (4, f]) is computed.

m =20 m =50

Te 5 10 50 100 5 10 50 100
po=0.0 Ly 0.0043 -0.0011 -0.0004 0.0022 -0.0036 -0.0025 0.0008 0.0009
(0.0711) (0.0540) (0.0262) (0.0197) (0.0560) (0.0321) (0.0164) (0.0152)
Ly -0.0178 -0.0170 0.0164 -0.0056 -0.0545 -0.0179 0.0163 -0.0093
(0.4763) (0.0592) (0.0138) (0.0173) (0.3989) (0.0289) (0.0106) (0.0159)
Ls —0.0006  0.0145 -0.0008 0.0061 -0.0090 0.0011 -0.0082 -0.0009
(0.1262) (0.1233) (0.1309) (0.1461) (0.0871) (0.0823) (0.0897) (0.1005)
0.3 La 0.0821 0.0342 0.0104 0.0060 0.0888 0.0406 0.0102 0.0072
(0.0802) (0.0550) (0.0296) (0.0251) (0.0457) (0.0351) (0.0177) (0.0150)
Lg 0.4988 0.0145 0.0217 -0.0051 0.5231 0.0336  0.0225 -0.0043
(0.2813) (0.0588) (0.0110) (0.0188) (0.1150) (0.0435) (0.0094) (0.0175)
Lean 0.3036 0.2974  0.2957  0.2732 0.3063 0.3031  0.3037 0.2892
(0.1123) (0.1288) (0.1222) (0.1600) (0.0669) (0.0662) (0.0721) (0.1002)
0.5 L4 0.1468 0.0726  0.0198  0.0142 0.1566  0.0820 0.0221 0.0151
(0.0806) (0.0596) (0.0329) (0.0255) (0.0481) (0.0375) (0.0207) (0.0159)
Lg 0.6865 0.0527  0.0227 -0.0004 0.6773 0.0767 0.0263 0.0026
(0.1169) (0.0686) (0.0129) (0.0175) (0.0666) (0.0488) (0.0079) (0.0167)
Lsn 0.5052  0.4993  0.5016  0.4895 0.5085 0.5030 0.5083 0.4943
(0.0938) (0.1045) (0.1134) (0.1337) (0.0584) (0.0553) (0.0537) (0.0828)
0.7 L4 0.2390 0.1340 0.0431 0.0335 0.2519 0.1485 0.0491 0.0336
(0.0829) (0.0708) (0.0390) (0.0308) (0.0506) (0.0441) (0.0254) (0.0188)
Ly 0.8213  0.2021 0.0294 0.0074 0.8189  0.1545 0.0303 0.0110
(0.0562) (0.2624) (0.0138) (0.0194) (0.0349) (0.1128) (0.0061) (0.0131)
Ly 0.7008  0.6998  0.7045  0.6960 0.7064 0.7022 0.7047 0.7013
(0.0770) (0.0743) (0.0720) (0.0791) (0.0444) (0.0392) (0.0365) (0.0475)
0.9 L4 0.4077 0.2668 0.1172  0.0981 0.4253  0.2900 0.1286  0.0949
(0.0928) (0.0959) (0.0686) (0.0597) (0.0553) (0.0599) (0.0417) (0.0340)
Ly 0.9363 0.9331 0.4578 0.2821 0.9351 0.9365 0.5099 0.1879
(0.0173) (0.0363) (0.4545) (0.4202) (0.0099) (0.0099) (0.4465) (0.3553)
Lean 0.9007  0.8994  0.9036  0.9009 0.9020 0.9006 0.9014 0.9005
(0.0294) (0.0258) (0.0228) (0.0247) (0.0171) (0.0144) (0.0127) (0.0159)

Table 4.1 — Mean (and standard deviation) of the symbolic maximum likelihood estimate of the cor-
relation, p, over T' = 100 replicate bivariate random rectangle datasets. The symbolic datasets vary in
the number of symbols (m), the number of classical datapoints per symbol (n.), and the strength of the
correlation between the two variables (po). Estimates maximise the three symbolic likelihoods L, Lg
and L4.

Table[d.I]reports the mean and standard deviation of p over the replicate datasets under
each symbolic likelihood. The marginal parameters (p, o1 and o2) are well estimated in
each case (see Supplementary Information . The main conclusion to be drawn from
Table is that only the likelihood, Ly, that incorporates full information of the number
and location of the unique points that define the random rectangle, is able to accurately
estimate the dependence p between the variables. For L4 and Ly the mle’s are either zero
(no dependence can be estimated) or they are biased upwards. Note that for Lgy the
variability of the mle increases slightly as n. increases, and is also more variable for lower
correlation values. This can be explained as the dependence information is contained in

the proportion of rectangles which are constructed from 2 and 3 unique points (and their
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locations). For a fixed correlation, as n. gets larger it is increasingly likely that the random
rectangles will be generated by 4 unique points, and thereby weakening the dependence
information that the sample of random rectangles can contain. This weakening naturally
occurs more slowly for higher correlations, and so the correlation mle has greater precision
for stronger dependence. This insight identifies clear limits on the dependence information

content that this interval construction can possess.

Given the statistical inefficiency of intervals constructed from minima and maxima
(Figure [4.3)), and the informational limits of these intervals as discussed above, a sensible
alternative is to construct the random rectangles using marginal order statistics (Section
, which should be robust to these limitations. Given that such intervals constructed
from independent marginal quantiles (equations and will not contain any depen-
dence information, we now examine the performance of the sequential nesting and
iterative segmentation constructions, for which we denote the respective likelihood
functions as Lg,(s;60) and Lis(s; ).

Similarly to before, for each of T = 100 replicate datasets, we generate m = 20 classes,
each constructed from n. = 60, and 300 draws from a bivariate (d = 2) Na(uo, L) distribu-
tion with 19 = (2,5)7, [Z0]11 = [Zo]22 = 0.5 and correlation pg = —0.7,0,0.7. The symbols
are constructed in four ways: Ly, using sequential nesting ; Ly, using sequential
nesting but by exchanging the conditioning order of the x and y margins for symbol con-
stuction; Lis, using iterative segmentation ; Lis , using iterative segmentation but

by exchanging the conditioning order of the x and y margins for symbol construction.

Table reports the mean (and standard deviation) of the elements of 32 under each
experimental setup when p = 0.7 (results for p = 0.7 and 0 are in Supplementary In-
formation . The standard deviations o7 and o9 are estimated unbiasedly for any
rectangle configuration. However the standard deviations of the estimates are smaller for
the components which are conditioned on first in the symbol construction e.g. o1 is more
precisely estimated by Ly, ; and L;s, and o9 by L, , and L, ,. While estimated unbias-
edly for all symbol configurations, constructing the intervals using iterative segmentation
produces more precise estimates of the correlation p than when using sequential nesting.
This is likely because iterative segmentation provides more information about the joint
upper and lower values of the margins than nested segmentation, which provides stronger
information about the centre of the marginal distributions (see Figure . Different axis
constructions (L., or L.,) have little effect on the estimates in this case, due to the sym-
metry of the underlying Gaussian distribution. Also, as expected, increasing the amount

of data per symbol, n., leads to more precise estimates of all parameters.

All of the estimates of p are more precise than that obtained using the marginal minima
and maxima, which gave a mle standard deviation of 0.0720 (for n. = 50, m = 20, pp = 0.7
and using Ly, in Table .

Similar to the results in Figure [£.3] within any method of symbol construction, the
choice of order statistics has an impact on the precision of the mle of all parameters.
Clearly there is an interesting optimal symbol design question here to be addressed, that

goes beyond the scope of this paper. However, the iterative segmentation approach appears
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ne = 60 n. = 300
Orders (I,u) o1 p o2 o2 p o2
Lene ((6,5),(55,35)) 0.4992 0.6933 0.5050  0.4984 0.6772 0.5075
(0.0019) (0.0255) (0.0054) (0.0004) (0.0146) (0.0024)
((16,6),(45,24)) 0.4981 0.6402  0.5043 0.4985 0.6739  0.5177

((20,5), (41,16))

(0.0021) (0.0273) (0.0107)
0.4991  0.6396 0.5054
(0.0027) (0.0256) (0.0129)

(0.0005) (0.0115) (0.0048)
0.4981 0.6451 0.5141
(0.0006) (0.0127) (0.0059)

Lenyy ((5,6),(35,55))
((6,16), (24,45))

((5,20),(16,41))

0.5106  0.6912 0.4974
(0.0061) (0.0339) (0.0016)
0.5289  0.6933  0.4986
(0.0123) (0.0239) (0.0021)
0.5231  0.6699  0.5004
(0.0127) (0.0253) (0.0024)

0.5082 0.6774  0.4998
(0.0024) (0.0156) (0.0004)
0.5088  0.6453  0.4994
(0.0049) (0.0129) (0.0004)
0.5154  0.6702  0.4992
(0.0053) (0.0106) (0.0005)

L. ((6,3),(55,3)) 04993 0.7130 0.4900  0.4984 0.7124 0.4932
(0.0019) (0.0067) (0.0037) (0.0004) (0.0032) (0.0019)

((16,10), (45,2)) 0.4981 0.7037 0.4806  0.4985 0.7051  0.4866
(0.0021) (0.0039) (0.0064) (0.0005) (0.0011) (0.0025)

((20,7),(41,14)) 0.4993 0.7465 0.4871  0.4981 0.7169  0.4979
(0.0027) (0.0128) (0.0037) (0.0006) (0.0051) (0.0013)

Liey ((3,6),(3,65)) 04929 0.7133 04975 04896 0.7151 0.4998
(0.0051) (0.0064) (0.0016) (0.0018) (0.0032) (0.0004)

((10,16),(2,45)) 0.4868 0.7053 0.4986  0.4848 0.7066 0.4993

((7,20), (14,41))

(0.0068) (0.0035) (0.0021)
0.4933  0.7311  0.5004
(0.0040) (0.0115) (0.0023)

(0.0026) (0.0011) (0.0004)
0.4947  0.7268  0.4993
(0.0016) (0.0057) (0.0005)

Table 4.2 — Mean (and standard deviation) of the symbolic maximum likelihood estimate of o1, p and
o2, over T' = 100 replicate bivariate random rectangle datasets containing m = 20 symbols. The symbolic
datasets vary in the number of classical datapoints per symbol (n.), the type of symbol construction (sn
= sequential nesting; is = iterative segmentation), which axis is used first in the symbol construction (z
or y), and the vectors of lower (I) and upper (u) order statistics used. The true parameter values are
00,1 = 00,2 = 0.5 and po = 0.7. For Ly, ,, orders (I,u) = ((6,5),(55,35)) mean firstly take the (6,55)
lower/upper order statistics on the z-axis, and then take the (5,35) y-order statistic of the remaining
ne — 12 observations in the central x range (see Figure bottom centre panel). For L;s o, orders
(L,u) = ((6,3),(55,3)) mean firstly take the (6,55) lower/upper order statistics on the z-axis, and then
take the 3-rd y-order statistic of the remaining 5 observations below the lower x quantile, and the 3-rd
y-order statistic of the remaining 5 observations above the upper x order statistic (see Figure |B.1] bottom
right panel). For L., the procedure is the same as for L., but starting with the y-quantiles. In this
manner, the resulting 3 bivariate intervals for e.g. Ls, , are identical to those for L, ,. The orders shown
are for n. = 60. For n. = 300 the utilised orders are multiplied by 5 so that the intervals are directly
comparable between sample sizes ne..

to be more informative for all parameters, for reasons described above. It is likely that

there are other random rectangle constructions that would be even more informative.

4.3.3 Analysis of the loan data set

We illustrate the proposed methodology with an analysis of a loan data from the US peer-
to-peer lending company LendingClub. The dataset can be retrieved from the Kaggle
platform (https://www.kaggle.com/wendykan/lending-club-loan-data) and consist,
after removing missing values, of 887,373 loans issued through 2007 to 2015. Based on
risk and market conditions, each loan has an associated grade ranging from Al to G5
(35 in total) which defines the interest rate. Grade Al loans correspond to least risky

credits and thus have the lowest interest rate whereas grade G5 are the riskiest ones.


https://www.kaggle.com/wendykan/lending-club-loan-data
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We focus our attention on the borrowers’ annual income (in US$) with the intention to
develop a deep understanding of its behaviour. In particular the link between loan grade
and income is investigated. Performing a statistical analysis on such dataset induces
exploding computational challenges as the model complexity increases. We will show the
benefits associated with the use of aggregates rather than the entire dataset.

First a logarithmic transformation of the income random variable is applied to be
defined on the real line. Then taking advantage of the natural grade grouping, the data
are aggregated into 5 bin histograms through .

Normal and skew-Normal distributions are fitted at the loan grade level using the clas-
sical and symbolic observations. Likelihood ratio tests identify the presence of asymmetry
in 34 groups at a a = 0.05 level of significance, independently of the method considered.
Note the sample size of each group ranges from 576 for grade G5 to 56,323 for grade B3
and, for the largest ones, may have had an impact on the p-values of the likelihood ratio
test. As a result of this preliminary analysis it is decided to model the log-income of loan
borrowers via a hierarchical model. Denote by X the log-income random variable and by
X;,1=1,...,35 the grade specific variables. When X; ~ N (,ui,a? ), the parameters are

modelled as

i ~ T(co +cri +coi®, 72, 0) (4.20)
o} ~ 1G(a, B),

where T'(u,02,v) represents the Student-t distribution with mean u, variance 0% and v
degrees of freedom, and IG(a, 3) the inverse-Gamma distribution with shape o and scale
B. A similar model is considered when X; ~ SN (Hi,U?,%’), for consistency parametrised
as mean, variance and coefficient of skewness (see ‘cp’ parametrisation in |Azzalini (2014,
Section 3.1.4.)) with the additional v; ~ N(n,€). First we demonstrate that, using our
methodology, symbolic observations can be an efficient surrogate to the full dataset. A
comparison with the most popular method in the SDA literature, given in [Le-Rademacher
and Billard (2011)) (denoted LRB), is established to quantify the performance of our ap-
proach. There the group mean and variances, u; and a?, correspond to the histogram
mean and variances (Le-Rademacher and Billard, 2011} Section 2.3) and modelled through
(14.20).

Figure [4.4] presents the fitted group means and variances obtained through the three
approaches while assuming the degree of freedom of the Student-t fixed, v = 3. The solid
lines represent the mean of the corresponding parameter with 95% confidence band given
by the dashed lines. The grade specific means under the Normal (top row) assumption
are well estimated by all three methods, our model providing standard errors only slightly
larger than the classical ones while those from the LRB model are about the double.
The means under the skew-Normal (bottom row) are not as accurately estimated but still
remain, for the majority, within the 95% confidence band. This might be explained by the
difference in complexity of both models, an optimisation over 76 parameters is performed
when a Normal distribution is assumed whereas there are 114 parameters when assuming
a skew-Normal distribution. The right panels highlight the inability of the LRB method
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Figure 4.4 — Fitted group means and variances when the underlying distribution is Normal (top)
and skew-Normal (bottom) using the classical (red) and symbolic (green) likelihoods and LRB
approach (blue).
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Figure 4.5 — Estimated log-income quantiles using histogram-valued symbols assuming Normal
(red) and skew-Normal (green) distribution for loan grade C3 and D5.

to correctly estimate the variances whereas out method performs well.

One of the main advantages of our proposed methodology over the one of
and Billard, (2011)) is the ability to make predictions at the data level which allows in the

current example to gain insights about the income of borrowers depending on their loan
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Classical Our method LRB
N 0.9537 1.7914 0.4379

(0.0707) (0.0851) (0.0014)
SN 144.2014 11.4321 0.4379

(0.5578) (0.1534) (0.0014)

Table 4.3 — Mean (s.e.) evaluation time (ms) of the hierarchical model, based on 1,000 replicates.

grade. Figure[4.5|examines the performance of the estimates of the proposed distributions
by grades, through qg-plots of the sample quantiles versus Normal and skew-Normal quan-
tiles (resp. red and green) estimated from histogram-valued symbols. The grades C3 and
D5 correspond to large and medium sizes, respectively ncs = 50,161 and nps = 21, 389.
Both distributions appear to provide identical results for central values whereas Skew-
normal quantiles are closest to the sample quantiles for larger values of the log-income
where the Normal quantiles over estimate the sample quantiles. This shows the presences
of skewness to the right and reinforces the need for a model that includes asymmetry.

Table provides the average time, and standard error, in millisecond of a single
evaluation of the hierarchical model obtained from 1,000 randomly generated sets of pa-
rameters. It highlights the computational gain of using symbolic based methods when
the distribution is skew-Normal. In this scenario, for any symbol type, even though our
method is about 20 times slower than the LRB method, it provides an improvement of
the computation time by a factor 14 compared to using the full dataset for a comparable
quality of fit. Note that for distributions such as the Normal, the likelihood can be written
as a function of the sample mean and variance which reduces the computational load but
this doesn’t apply to the skew-Normal.

In conclusion, in this real data example a hierarchical model was fitted to the log-
income of loan borrowers, taking into consideration their loan grade. It was shown that
our methodology produces comparable results with those obtained when considering the
full dataset. Moreover, in the context of large data, a substantial reduction of the compu-
tational times was established for the preferred model. The advantages of the proposed
methodology over the commonly used LRB method were clearly demonstrated, particu-

larly for the estimation of grade-level variances.

4.4 Discussion

In this article we have introduced a new framework for the analysis of data that have been
summarised into distributional forms. For the general statistical analyst, this method
opens up the use of SDA as a broadly applicable statistical technique for analysing large
and complex datasets with the potential for large data-storage and computational savings.
Within the SDA setting, the fundamentally different approach taken — that of specifying
probability models for the data underlying a symbol and deriving the resulting model at
the symbolic level, rather than direct model specification at the symbolic level — provides
one way to resolve many long-standing methodological weaknesses regarding statistical

inference within the field. The resolved problems include the difficulty of specifying mean-
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ingful models at the symbolic level, avoidance of the routinely violated uniformity-within-
symbols assumption, the ability to perform accurate inference at the level of the underlying
data, including model choice, and providing a means to construct and analyse multivariate
symbols. As a result, we have been able to expose many weaknesses of current symbol
design, and have introduced several new more efficient symbol constructions.

While providing a step forwards, our approach is not without some caveats. Most
obviously, the symbolic likelihood function requires enumeration of the integral over
the underlying data space, which may be problematic in high dimensions. For many stan-
dard classes of models, including those considered here, distribution functions Gx (x;6)
will be available in closed form. In other cases, numerical or approximation methods may
be required, such as quadrature, Monte Carlo techniques (Andrieu and Roberts, [2009), or
factorisation of gx (x;60) to reduce the dimension of the integral.

The symbolic likelihood is clearly an approximation of the classical likelihood as it
is based on summary data, and so there will likely be some information loss. While it
is possible to approach the accuracy of the classical data model by letting the symbols
approach the classical data (e.g. by letting the number of random histograms bins B — c0),
this may not be viable in practice, and in the extreme (e.g. with very large numbers of bins)
the computational overheads could exceed that required for the classical data analysis. It
is therefore of interest, and the subject of future research, to understand the quality of the
approximation. It is possible that some of the theory supporting approximate Bayesian
computation (e.g. Sisson et al.l 2018)), which is also based on computation via summary
statistics, could be useful here.

Within this context there is immense scope for optimum symbol design, whereby the
symbols are constructed to provide maximal information for a specific analysis or for a
family of analyses that may be performed in the future. New symbolic types could also be
developed such as Gaussian- or other continuous distribution-based symbols, which may
additionally enable direct integration of the integral in through conjugacy.

The explosive emergence of the data-rich biome — the infome — in which we now reside,
since Schweizer| (1984)’s 35-year old prediction that “distributions are the numbers of the
future”, clearly substantiates the potential for symbolic data analysis to become a powerful

everyday tool for the statistical analyst. [Schweizer| (1984))’s future is very much here.






Chapter 5

Bayesian semi-parametric
modelling of ultrafine particle
number concentration using

symbolic data analysis

5.1 Introduction

Ultrafine particles (UFPs), whose diameters are less than 100 nm are ubiquitous in urban
air and are acknowledged to have adverse risk to climate, visibility and human health
(?). Due to their negligible mass compared with larger-sized particles (such as PM;o and
PMs5), UFPs are commonly evaluated through measurements of particle number concen-
tration (PNC) (Harrison et al., 2000; [Kumar et al., 2010). UFPs are known to undergo
physical and chemical transformation which affect their number and size distributions,
which contribute significantly to temporal (Shah et al., 2008) and spatial variability (Heal
et al., 2012)). Understanding this variability is key to quantifying human exposure and
designing effective motoring strategies.

In this chapter, we concentrate our attention on developing a flexible statistical model
that is able to uncover the dynamic temporal evolution of PNC at a given location. To
be more specific, we focus exclusively on modelling and forecasting temporal variability
of PNC collected as part of a measurement campaign by the International Laboratory
for Air Quality and Health (ILAQH) entitled "Ultrafine Particle Emissions from Traffic
and Child Health" (UPTECH). The UPTECH study followed a spilt panel design which
involved the short-term measurement of PNC at each of 25 government primary schools
in the Brisbane Metropolitan Area along with 3 long-term monitoring sites. To assist the
better understanding of aerosol dynamic processes, a PNC measurement was taken every
five minutes (resulting in 12 observations per hour) continuously over a 2-week period at
each primary school.

It is well-known that continuously measured time series may possess characteristics

such as regular temporal trends and non-linear dependence on covariates (and interactions
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thereof) (Clifford et al., [2012b). The data complexity motivates the desire to search for a
flexible regression model that is capable of capturing these features without specifying the
functional form of the relationship a priori. Splines are commonly used for non- and semi-
parametric modelling smooth curves and surfaces (Silverman, [1985), time series (Wahba
et al., [1990) and non-linear covariate effects (Lin and Zhang, |1999)) due to their simple
to construct bases (De Boor et al., [1978). Therefore, we adopt B-splines to approximate
the underlying temporal effect which is assumed to be a smooth function over time and
cannot be directly observed from the data. The flexibility of B-splines is further enhanced
by incorporating a set of prior beliefs to express one’s uncertainty about how smooth the
fitted functions should be (Lang and Brezger} 2004]).

PNC in Brisbane have been shown to exhibit daily and weekly trends, which may be
additive functions of the hour of the day and day of the week or some joint, non-separable
functions (Morawska et al., 2002; Mejia et al., 2007). As a result, we derive a covariate to
represent the interaction between daily and weekly temporal effects. It is assumed that this
joint daily-weekly temporal effect varies hour-by-hour but has a periodic pattern which
repeats weekly. To ensure the smoothness, a cyclic random walk prior on the precision
matrix of the covariates is adopted, leading to similarity in successive covariates in the
random walk model (Lang and Brezger, 2004; |[Rue and Held, 2005; Rue et al.l 2009).
In addition to a periodic joint daily-weekly temporal trend, there might be a slowly-
changing annual trend (day of the year effect) which is modelled by a cyclic B-spline with

a smoothing penalty on the prior distribution of the B-spline coefficients.

The above approaches are extracted from a previous analysis performed by [Clifford
et al.| (2012a) where the author developed a Bayesian semi-parametric additive model
for the log of particle number concentration (log(PNC), henceforth) in Brisbane. How-
ever, measurements were aggregated to every 5 minutes for previous analyses and then to
hourly for spatio-temporal modelling in |Clifford et al. (2012a)). The analysis of |Clifford
et al. (2012a) is fine for looking at average relationships but does not well characterise
the uncertainty in the hourly levels of PNC. Recent studies by Kumar et al.| (2011]) es-
tablished an association between excess mortality and human exposure to traffic-derived
UFPs in urban areas. Given their adverse impacts on human health, it would be desirable
to obtain a richer understanding by modelling and predicting from the full distribution
of PNC. This requires a model that takes into account not only the mean but also the
variance of the response. However, it is recognised that analysing the full data is chal-
lenging. An appealing alternative is to consider a sufficient representation of the data.
This motivates representing log(PNC) observations as histogram-valued symbolic data as
defined in the symbolic data analysis literature (see e.g., (Billard and Diday), [2006; |Billard,
2011; Noirhomme-Fraiture and Brito, 2011) for a comprehensive introduction to symbolic
data). The idea here is to aggregate the underlying data consists of individual 5-minute
log(PNC) observations into hourly histograms according the hour when it was measured.
Then we use the symbolic likelihood function for histogram-valued data with random bins
to estimate the parameters associated with the underlying data distribution as defined by
Beranger et al.| (2018).
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The construction of the symbolic likelihood function requires a specification of the
distribution underlying the observations within symbols. In this situation, it would be a
distribution that can adequately describe the temporal features of all measured log(PNC)
observations. Previous analysis by |Clifford et al.| (2012a)) proposed a model with a single
Gaussian likelihood. In practice, however, log(PNC) observations are likely to come from
heterogeneous sources and thus the resulting distribution will often have multiple modes.
Whitby and McMurry| (1997); [Hussein et al.| (2005) and Wraith et al| (2011]) proposed
to represent particle size distribution at any time point as a set of individual typically
normal distributions or modes. Inspired by their approaches, the underlying log(PNC)
observations are modelled by a finite Gaussian mixture model. Traditionally, mixture
models have been applied in the standard setting where random samples are independent
(Marin et al., [2005). Equivalent mixture models have also been developed for data that
are spatially and/or temporally correlated (Dunson, |2006; Alston et al., 2007; Caron et al.,
2012; Ji, 2009; Fernandez and Green) 2002} |Green and Richardson, 2002). For the PNC
example considered in this chapter, given they were collected regularly and frequently,
it is likely that parameters of the mixture model at each time point are correlated with
neighbouring time points. In addition, it is also of interest to study how the underlying
distribution evolves over time. As a result, the mixture model incorporates time-varying
mixture locations and mixing weights with time-invariant mixture scales to model the
dynamic processes of log(PNC) over time.

The time-varying mixture locations capturing the temporal effects are modelled as
described above by two temporal components: a joint daily-weekly temporal effect and a
slowly-changing day of the year effect. To allow for temporal correlation in the for mixture
weights, periodic B-splines are used with a first-order random walk prior imposed on the
coefficients. This prior penalises large changes in subsequent mixture weights, ensuring
a smooth transition in mixture weights. Although the underlying data are dependent
over time, in this case, we adopt a simplifying assumption that given the time-correlated
parameters of the assumed Gaussian mixture model for the underlying data, the hourly
histogram-valued observations are conditionally independent from each other. As a result,
we use the symbolic likelihood for independent histogram-valued data.

The rest of the chapter is organised as follows. In Section we review the existing
methods of estimating log(PNC) using a Bayesian spline-based semi-parametric regression
model proposed by |Clifford et al.| (2012a)). We then discuss the potential drawback of the
existing method which motivates the proposal of the current model construction. Next,
in Section we propose the equivalent symbolic version of the proposed models. The
method is applied to a number of simulations in order to show its efficacy in Section
and to the PNC data in Brisbane, Australia, to demonstrate its use in tackling real world
problems in Section Finally, we discuss some interesting aspects of the model in light
of the simulations and real data analysis and conclude the chapter in Section

We use the following notation throughout the paper.

o t=1:336 is the time index, denoting the hour in a 2-week period (i.e.t =1:24 = day
1;t=25:48 = day 2..., t =145:168 = day 7..., t =313: 336 = day 14 ). T=336 is the
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end of the time index.
o i is the observed log(PNC) at the i 5-minute interval within an hour ¢.

e « is the overall temporal mean in the 1-component Gaussian mixture model.
a1 and ag are the corresponding mixture locations in the 2-component Gaussian

mixture model.

e [ represents the marginal daily-weekly temporal effects. This temporal covariate is
a vector consisting of 168 terms representing hour of the week. For example, 51 : So4
are 24 hours on Monday, [o5 : S48 are 24 hours on Tuesday...B145 : S16s are 24 hours
on Sunday.

Bt = (Be1, Pr2) is the corresponding mixture marginal daily-weekly effects in the 2-
component Gaussian mixture model.

The model assumes that the temporal effect 8; in the 1-component model or (B;1, 5t2)
in the 2-component model has a periodic pattern that repeats weekly. In addition,
given the model explicitly models «, the mean temporal level of PNC, we then

constrain Y., 8; = 0.
e B is a B-spline basis matrix.
e 0 is a vector containing the coefficients of a B-spline basis functions
e () is the chosen number of ordered quantiles for each histogram bin interval.

o s is a vector containing @) order quantiles selected from log(PNC) observed in the

" hour.

e )\ is the mixing weights of the 2-component mixture model.

(; is the logarithm of the odds

At
1-XM¢°

e 0o is the standard deviation associated with a Gaussian model.

e 1 and po are mixture locations in a general 2-component mixture model where

o > 1 to address identifiability issue in finite mixture model.

e D represents a data matrix.

5.2 Construction of the classical data model

5.2.1 The existing Bayesian semi-parametric additive model with a Gaus-
sian likelihood fitted with hourly averaged log(PNC)

As discussed briefly in Section [5.1], the existing method proposed by [Clifford et al.| (2012al)
only models on the hourly averaged log(PNC), though there are 12 observations per hour.
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Figure 5.1 — Seven zero mean periodic cubic B-spline basis functions for estimating a smooth
function of day of the year, currently only explicitly modelling 14 days.

The model is specified as follows:

:ljt =a+ﬁt+(30)t+6t (51)
E(y) =a+p+(BO),
€t ~ N(0,0%)

12
=1 Yit

with the hourly averaged data y; = 2 TS

To ensure identifiability, Y7, Btj = 0, and >, (BO); = 0 are constrained to sum to

zero. For the latter term, the B-spline basis matrix B for modelling the slowly-changing

marginal annual effects (day of the year) is chosen to be the same as Clifford et al.|(2012a)).

It is constructed with a cubic B-spline from a recursive algorithm (Eilers and Marx| 1996)

defined over a grid of ten knots, yielding seven cubic B-spline basis vectors. Given the
current data set, we only explicitly model 14 days in a year; the resultant basis function
is visualised in Figure 5.1} Each column in this basis matrix is constrained to sum to zero
by subtracting each column element from its corresponding column mean. In addition,

the B-spline coeflicients 8 are also constrained to sum to zero.
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Figure 5.2 — A second-order cyclic random
walk penalty matrix of dimensions 24x24 for
hour of the day effect. FEach square rep-
resents a value in this penalty matrix with
colours representing different values.

Figure 5.3 — A first-order cyclic random
walk penalty matrix of dimensions 7x7 for
day of the week effect. Each square rep-
resents a value in this penalty matrix with
colours representing different values.

The prior distributions for the model parameters are specified as:

a  ~Cauchy(0,10)
Blo  ~ Multivariate Normal(0,0% x K1)
o~ Cauchy(0,2.5)
Olrg ~ Multivariate Normal(0, (79) 1)
79~ Gamma(1,0.05)

The prior for the overall temporal effect @ is modelled by a weakly informative Cauchy

distribution as suggested by |Gelman et al.| (2008). The prior for the derived marginal joint

daily-weekly [ is a multivariate Gaussian with a customised penalty precision matrix K,
which can be visualised in Figure It is obtained as a Kronecker product of a second
order penalty matrix for hour of the day (Figure and a first order penalty matrix for
day of the week (Figure[5.3] Marx and Eilers| (2005))). In this case, the matrix in Figure[5.2]

is equivalent to a periodic version of a second order random walk model and it is chosen

to yield smooth estimates of daily trend. On the other hand, the matrix in Figure [5.3
is equivalent to a first order cyclic random walk assuming that while there is day-to-day
variation, the mean level on Wednesday for example, is only related to Monday through
the mean on Tuesday. The model scale parameter o serves as a penalty parameter which
controls the degree of smoothness. For ¢ — oo, there is no smoothing which is equivalent
to assuming independence among successive hour of the week covariates. The degree of
smoothness increases with decreasing o and in the extreme case where o =0, 8; = 8, for
t=1...T and a constant B/. To ensure a proper prior, a small value (e.g. 0.00001) is added
to the diagonal elements of the matrix K. The coefficients of the cyclic B-spline basis
matrix @ are assigned a weakly informative Gaussian prior with the precision parameter

79 given a weakly informative Gamma prior.
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100
row

Figure 5.4 — A168 x 168 dimensional Kronecker product of the hour of the day penalty matrix
(Figure and the day of the week penalty matrix (Figure . Each square represents a value
in this penalty matrix with colours representing different values.

5.2.2 The existing Bayesian semi-parametric additive model with a Gaus-
sian likelihood fitted with individual log(PNC)

Given there are only 12 observations per hour, the same model structure defined in Section
in Equation (j5.1]) could have been fitted on y;; instead of y.
A similar model that takes into account all of the observations within an hour can be

specified as:

Yit =+ /Bt + (B X Q)t + €5t (52)
E(yit) =a+pi+(Bx0)
€it NN(070’2*)

Where o2* = T—; With the same prior distributions as in Equation 1) This is the

parsimonious 1-component Gaussian model fitted with underlying classical data, that is a
data matrix of size 12 x 336, containing 12 log(PNC) observations per hour over 336 hours
(a 2-week period). The assumption here is that a Gaussian describes the distribution of

the underlying data, which may not be true in practice.

5.2.3 The proposed Bayesian semi-parametric additive model with a
finite mixture Gaussian likelihood

One of the advantages of treating log(PNC) observations as coming from a finite mixture
model is that it accounts for heterogeneity and multimodality in the underlying distri-
bution. In a standard setting in which random samples are independent, a 2-component

Gaussian mixture model can be specified as follows:

P(Yitlper, pre2, Ae, o)~ MN (per, o) + (1= X)N (2, o)
i1 = a1 + fn + (BO),
2 =g + P2 + (BO), (5.3)
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Mixture models are known to suffer from inherent combinatorial non-identifiability when
data generating processes are degenerate (Betancourt, 2017)). To ensure identifiability of
the mixture model, an ordering constraint on g > py1 for ¢t = 1.7 is adopted (Wraith
et all 2011). Time-varying mixture locations uy; and pso are decomposed to component-
wise time invariant intercept terms o and as to account for the overall mean per mixture
component along with component-wise time-varying marginal daily-weekly trends £y and
B2 respectively. In addition, the marginal annual trends B are shared by both mixture

components with a time-invariant scale parameter ¢ shared between mixture components.

Given log(PNC) observations are temporally correlated, parameters of the mixture
model at each time point are also likely to be correlated with the neighbouring time
points. Therefore, it is important to consider the correlated nature of the parameters
in a mixture model setting. Popular approaches that account for the dependence asso-
ciation of the mixture parameters, both within and across periods, include Dependent
Dirichlet Process mixture models (DDPM) and (spatial) dynamic factor models (SDFM)
(MacEachern, 2001; [Dunson, 2006}, (Caron et al. |2012; |Ji, 2009; Strickland et al., 2008)).
However, as discussed by Wraith et al.| (2011) the DDPM assumes a non-parametric pro-
cess and thus provides a less intuitive interpretation of the mixture parameters, while a
successful implementation of SDFM generally requires a relatively long time series. As a
result, [Wraith et al. (2011) proposed four types of temporal prior to link mixture param-
eters (g1, pe2, A¢) over time. The first type is the independent prior where the correlated
nature of the data is ignored completely. This prior is commonly used in the conventional
mixture model setting where observations are independent random samples. The second,
third and fourth are termed the “informed prior”, “penalised prior” and “hierarchical in-
formed prior”. The “penalised prior” on A at time t incorporates information over all
the past time periods. The idea is based on Gustafson and Walker| (2003))’s proposal to
use an independent prior in conjunction with a penalty term, penalising large changes in
probabilities in neighbouring time periods. In the case of a 2-component mixture model,
the mixing weights are (A,1 - \) and a standard independent prior for this 2-dimensional

simplex is a beta distribution. Its “penalised” reparametrisation version can be specified:

1 T
p(Ma, By) o< Beta(ay, 5A)6XP(—U—A 1A= Aeall?)
t=1

where o), serves as a penalty term with smaller values indicating greater smoothing. ay, By
and o) are assigned weakly informative hyperpriors. Prior distributions assigned directly
on a) and ) are less intuitive and thus they are reparameterised into ¢ and 7 representing

a prior mean and prior counts on A. The prior distributions for these hyperparameters
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are:

¢~ Unif(0,1)
n ~ Gamma(1,0.05)
ox ~ Cauchy(0,2.5)

SN

where ¢ = a) + By and 7 = PTTIR

It is assumed that the mixing weights have the same temporal pattern as 3, that is the
mixing weights vary hour-by-hour within a week and repeat for all weeks in a year. Using
the above construction for A, that there are 168 parameters to be explicitly modelled.
Given a small sample size within an hour (only 12 observations), so A; might not be
adequately modelled. It is not unreasonable to assume that the mixing weights change
smoothly and slowly over time. As a result, an alternative way of modelling time-varying
mixing weights is by a univariate spline with a basis of six second order cyclic B-splines
denoted as B). To alleviate the restricted range of A € (0,1) for all ¢, we decide to model

on (; = log(li"}\t) € R. Given B-splines are local bases that form the splines for the log

odds of the mixing weights A, if the coefficients of nearby B-splines are close to each other
then there will be less local variability in the resulting (;. This motivates the use of priors
to enforce smoothness across the coefficients, S.. As a result, a first order random walk

prior is adopted for the B-spline coefficients f,

Bei = Bei-1+ 7

Bea ~N(0,1)
ﬂc,z‘ ~ N(ﬂc,i—h 7'4“)
T¢i ™ N(O7 1)

where i = 2 : 6. The initial value 3¢ is given a weakly informative prior centred at 0,
implying that the mixing weight in the first period is centred at 0.5. The Gaussian error
7¢,i is assigned a weakly informative prior to obtain a proper posterior for ;. In this way,
only 6 B-spline coefficients for ¢ need to be explicitly modelled and overcome the problem

of data insufficiency.

The time-dependence structure for the mixture locations us = (ps1, pie2) is explicitly
modelled by the overall mean trend « = (ay,as2), the marginal daily-weekly S = (81, 5i2)
and a common marginal annual trend B with specific prior distributions assigned below

to ensure smoothness over time. In addition, the scale parameter ¢ is assumed to be
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time-invariant and is assigned a weakly informative Cauchy prior.

ar, s~ Cauchy(0,10)
Bi1, Bl ~ Multivariate Normal(0,02 x K1)
o ~ Cauchy(0,2.5)
0|7 ~ Multivariate Normal(0, (7'9)_1[)
To ~ Gamma(1,0.05)

5.3 The motivation of Symbolic Data Analysis

One of the main disadvantages of Equation is that it only uses part of the whole
data information — the hourly averaged log(PNC) observations g;. As a result, it will also
be unable to construct predictions on the level of the individual 5-minute measurements
(only their mean). Based on Equation , the whole data matrix containing individual
data point y;; has to be fitted. Computation of intensity increases with increasing matrix
size and the complexity of the model. As both the data matrix and the number of mixture
components representing the underlying structure increase, fitting the model using Stan
Team| (2016|) means that it would have to evaluate likelihood function at every single data
point as there are no sufficient statistics. Consequently, it would lead to excessive long
computation time and costs. As a result, we are in search of a model construction that is
able to handle data of potentially large size and fit a practical model. SDA offers a solution
to big and complex data challenges as big data can be reduced and summarised by “classes”.
In this case, we aggregate individual log(PNC) according to the hour (the “class”) it was
measured to become hourly histogram-valued symbolic data. These symbolic data are
constructed from 5-quantile (order statistics) of the individual log(PNC) in that hour. To
complete the construction of symbolic likelihood functions for histogram-valued data with
random bins , we assume the underlying data are likely to come from 2 different Gaussian
distributions as described in Equation . In the following Section we outline
the estimation of the parameters associated with the underlying data distribution using a

symbolic likelihood function for univariate histogram-valued data.

5.3.1 Estimating the parameters from the proposed model using sym-
bolic likelihood function

As discussed in Section [5.1] and also in Section [5.3] it may be preferable to utilise the
information contained in the full observed data matrix rather than just using the hourly
mean values. It is reasonable to assume that successive log(PNC) observations within a
given hour that are only 5-minutes apart possess similar physical and chemical properties.
In other words, there is not much change in their dynamics between successive observations
in any given hour. As we are interested in modelling the dynamic systems of PNC over
time while incorporating the entire observed data matrix (D = 12 x 336, as there are 12

observations per hour over a 2-week of 336 hours) then SDA offers a way to aggregate the
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underlying hourly log(PNC) data to hourly histograms constructed from quantiles of the
underlying data.

The idea is to first order 12 5-minute log(PNC) observations and then choose @ €
{1, ...,12} order-statistics based quantiles. For illustrative purposes, the following example
chooses 5 quantiles based on order statistics (Q = 5). In this case, the (1%, 4th 7th q0th, 12“‘)
ordered observations will be chosen from the t** column in log(PNC) data matrix and la-
belled as s; = (81¢, Sot, S3¢, Sat, S5¢ ). Further, assuming the underlying log(PNC) data come
from the model described in Equation , the task then changes to estimate the model
parameters using the hourly histogram-valued log(PNC) represented by the order statis-
tic based quantiles s; = (s1¢, S2t, S3t, Sat, S5¢) rather than using the individual log(PNC)
observations ;.

According to the symbolic likelihood function for histograms by Beranger et al.| (2018))
where bins are random and constructed from 5 quantiles at each time point is:

12!
L(st; k) 19y (5163 1) gy (526 ) gy (5315 ) gy (sS40 5) gy (8515 )

3 x 2! .>< 1
(Gy (556 %) = Gy (5413 %)) (Gy (5415 %) = Gy (5365.5))* (G (5303 5) = Gy (5265 %))

(Gy (s21:1) - Gy (5115 ) (5.4)

where G, and g, are the c.d.f. and p.d.f. of the modelled distribution for the underlying
classical data, in this example, it is a 2-component Gaussian mixture model defined in
Equation (5.3)). = (a1, 9,8, A,0,0) is a vector containing all parameters in the mixture
model.

Assuming independence between successive hourly histograms, conditioning on the
mixture parameters of the underlying model, the overall likelihood function for a time

series of histograms becomes:

12!
L(31,...os73 k) =TI L(s3K) o H£1[mgy(31t;H)gy(52t;f<~‘)9y(83t;H)gy(84t;f‘v’)9y(85t;/€)

(Gy (s56: 5) = Gy (8415 £)) (G (sa1; ) = Gy (5315 1))
(Gy (8315 k) = Gy (sat; H))z(GY(S%S k) = Gy (s1; H))z]'

Since the underlying data are assumed to come from the mixture model defined in Equa-
tion (5.3), the interval probability for example (Gy (s4;k) — Gy (s3t;k)) in the above

likelihood function can be explicitly written as:

(Gy (8at;5) = Gy (s3156)) = (A x @(sa501 + By1 + (BO)y,0) + (1= Ap) x @(541502 + Br2 + (BO)y,0))
= (N x @(sasan + B + (BO)i,0) + (1= Ae) x (83500 + Bro + (BO)1,0)).

Similarly, the density function gy(s4;~) can be written as:

Gy(sa;8)) = Xex@(sa;a1 + B+ (BO),0) + (1= X\) x ¢(s5415 00 + Pro + (BO)y, 0).

The prior distributions assigned to this vector are those described in Section [5.2.3
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5.4 Simulation

To check that the proposed model can capture the dynamic evolution of PNC, some data
are simulated from the model. We then check to see if we can recover the (known) model
parameters.

To mimic the real data set, all of the following simulation studies are set up to have
the same data structure as the real data. To be more specific, we simulate 12 observations
per hour over a 2-week period. In other words, the classical data matrix D for y;; is of
dimension 12 x 336, totalling 4032 numbers of classical observations.

All the models are fitted using Stan (Team, 2016|) in R, running 4 chains with 2000
iterations each. The first 500 are considered as burn-in and therefore discarded. The Rhat
values, the effective sample size, and the traceplots of the model parameters are checked

to ensure the model has converged and is reliable.

5.4.1 Handling missing data

In the real data, there are 103 missing observations and thus the equivalent data are
removed from the simulated data matrix accordingly. In summary, there are 3929 obser-
vations recorded over a 2-week period.

We adopt the same assumption as in the previous model of Clifford et al.| (2012a) that
the observations are missing completely at random. For illustrative purposes, assume that

a part of the data matrix looks like this:

1 23 NA 41
D=131 NA NA 115
NA 22 NA NA

Where each cell in the above matrix represents a log(PNC) value- y;;. The coding of the
matrix D will no longer work as there is no support within Stan Team (2016|) for R’s NA
values, so this data structure cannot be used directly. Instead, the matrix is converted to
a “long form” as described in [Wickham et al.| (2014)), with columns indicating the j and &
indexes along with the value, shown in Table This says that y1,1 = 1,912 = 2.3, and so
on, up to y32 = 2.2, with all other entries undefined and not modelled. Therefore, Table
[.1] containing individual observation y;; is used when fitting 1 or 2-component Gaussian
mixture model to the classical data.

A slight modification is made when fitting 1 or 2-component models with 5 quantiles
based on order statistics based (Q = 5) symbolic data. As described in Section [5.3.1]
we choose the (1,4 7t 10" 12!") ordered observations from the t'* column in the
log(PNC) data matrix. If in the ¢ column there are between 2 and 11 (inclusive) missing
observations, then from the remaining non-missing observations, we select minimum, first
quantile, median, third quantile and maximum observations. This procedure is carried for
all missing columns where there are at least 5 observations and within each select 5 ordered
observations roughly corresponding to (minimum, first quantile, median, third quantile,

maximum). For columns with no observations, we treat these 5 ordered observations from
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J k| yu
1 1 1

1 2| 23
1 4] 4.1
2 1] 31
2 41]1.15
3 2| 22

Table 5.1 — Example of coding data matrix D with “NA” values in Stan [Team| (2016). The first
two columns, j and k, denote the indexes and the final column, y;;, the value. For example, the
fifth row of the database-like data structure on the right indicates that ys 4 = 1.15.

each column as 5 ordered parameters that are estimated from the posterior predictive

distribution.
5.4.2 Fitting 1-component Gaussian model

5.4.2.1 Data setup

Firstly, we simulate data from a single Gaussian model, acknowledging that this model
may under-represent the type of behaviour of aerosol particle number concentration ob-
served in the UPTECH project.

yit =+ P+ (BO)+ e

« =9
. 2mh
SIN\ 55
Bries = %,hzl...,l%
0  =(01,6,..67) ~ N(0,1)

e ~N(0,0.1)

for i =1...,12,¢t = 1...,336. Notice that only 168 terms of marginal daily-weekly effects ;
are simulated, because we assume that these effects repeat for all weeks in a year and thus
they are the same for the second week. 103 observations are removed from the simulated

dataset.

5.4.2.2 Results

Given the simulated data, we fit a 1-component Gaussian model to estimate time-correlated
model parameters (o, 3,6) and time-independent scale parameter o using the classical data
likelihood function in Equation and symbolic likelihood function in Equation
respectively.

Figureshows 8 randomly chosen (consecutive in time) hourly histogram densities for

the simulated log(PNC) observations with the “true” density superimposed (in red). The
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green line represents the posterior preditive density fitted using individual observations
within an hour, while the blue line represents the model fitted with hourly-histograms.
It is apparent that the symbolic model follows the classical data model fairly well and so
we are satisfied that 5 quantiles are sufficient to fit this model well. This is also true for
all the other parameters of the underlying data distribution which can be seen in Figure
[C1] Figure [C.2] and Figure [C.3]in Appendix [C.1] Different numbers of quantiles @ were
explored with @) = 5 representing the lowest value such that the quality of the model fit

was compatible to the classical data fit.

5.4.3 2-component Gaussian model
5.4.3.1 Data setup

In this section, with a 2-component Gaussian mixture model, data are simulated from the

equation below

a1+ By + (BO): + €;, with probability A\
Yit =
ag + Bio + (BO) + €4, with probability 1 - ;.

aq = 9
a9 = 9.5
sin(%
: =———=2°" h=1..,168
B1:168,1 o1 )
cos( 2
Bries,2 = %,h =1...,168
7] =(601,0,,...67) ~ N(0,1)
B
At =log( G )= log(—( Qs )
1-G 1= (BcC)e
G ~(0,1)

¢ ~N(0,0.1)

For (;,j = 1...6, are coeflicients for B-spline basis function (B¢) for logarithm of mixing
weights .
It is highly likely that the real data are more likely to be represented by a 2-component

Gaussian mixture model than 1-component.

5.4.3.2 Results

Figure shows 8 randomly chosen (consecutive in time) hourly histogram density for
the simulated log(PNC) observations with the “true” density superimposed (in red). The
green and the blue lines are the posterior predictive density fitted using all 12 observa-
tions within an hour estimated using the regular classical data likelihood function and
the corresponding hourly histogram posterior predictive densities are estimated using the

symbolic likelihood function. As before, it is apparent that the symbolic model follows
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Figure 5.5 — 8 randomly chosen (consecutive in time) hourly density shown in histograms with
simulated true density shown in red. The green line is the posterior density from the Equation
(5.2). The blue line is the posterior density from the Equation (5.3.1)).
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the classical data model fairly well. This is also true for all temporal parameters of the
underlying data distribution which can be seen in Figure [C.4] and Figure for the 2-
component mixture overall means (ju1, p2), in Figure[C.6|and Figure for the marginal
daily-weekly effects (51, 8i2), and a marginal annual effect (B@) shared by both mixture

components in Appendix

5.4.4 2-component Gaussian model
5.4.4.1 Data setup

In this section, for a 2-component Gaussian mixture model, data are simulated from the

equation below

ay + P + (BO)y + ¢, with probability \;
Yit =
ag + fio + (BO)y + €, with probability 1 — ;.

a1 = 9
a9 = 9.5
sin(%
. = h=1...1
B1:168,1 o4 , 168
cos(%%g
. =——=22" h=1...,168
B1:168,2 o4 )
0 =(61,02,...67) ~ N(0,1)
Gt (BeQ)e
A =log =log(————"—
! (1—Ct) (1—(BCC)t)
C] ~ (071)

¢  ~N(0,0.1)

For (j,j = 1...6, are coeflicients for B-spline basis function (B;) for logarithm of mixing
weights .
It is highly likely that the real data are more likely to be represented by a 2-component

Gaussian mixture model than 1-component.

5.4.4.2 Results

Figure shows 8 randomly chosen (consecutive in time) hourly histogram density for
the simulated log(PNC) observations with the “true” density superimposed (in red). The
green and the blue lines are the posterior predictive density fitted using all 12 observa-
tions within an hour estimated using the regular classical data likelihood function and
the corresponding hourly histogram posterior predictive densities are estimated using the
symbolic likelihood function. As before, it is apparent that the symbolic model follows
the classical data model fairly well. This is also true for all temporal parameters of the
underlying data distribution which can be seen in Figure [C:4] and Figure [C.5] for the 2-
component mixture overall means (1, f442), in Figure and Figure for the marginal
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Figure 5.6 — 8 randomly chosen (consecutive in time) hourly density shown in histograms with
simulated true density shown in red. The green line is the posterior density from the Equation

(5.3). The blue line is the posterior density from the Equation (5.3.1)).
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daily-weekly effects (f;1,Bt2), and a marginal annual effect (B@) shared by both mixture
components in Appendix

5.4.5 Model Selection based on WAIC information criterion

When analysing real data, we do not know in advance how many components are there in
the underlying classical data. Based on a preliminary exploratory analysis of the real data
we are going to examine in Section it is a reasonable assumption that the underlying
log(PNC), y;; comes from one of 2 data generating processes, either a 1-component or a
2-component Gaussian mixture model.

As a result, when modelling the real data, it is reasonable to fit both 1-component
Gaussian model specified in Equation and its 2-component counterpart described
in Equation We quantitatively assess the model fit between 1-component and 2-
component models by using an information criterion measurement. [Vehtari and Gelman
(2014) proposed the Watanabe-Akaike information criterion (WAIC), which measures pos-
terior predictive accuracy and can be viewed as a tool for model comparison, selection or
averaging. It is viewed as an improvement on the traditionally popular deviance informa-
tion criterion (DIC) for Bayesian models as it is being fully Bayesian rather than based on
a point estimate. In addition, it is invariant to parametrisation and also works for singular
models. As a result, WAIC is chosen to assist the model selection decision.

The following simulations are set up to test the reliability of WAIC as a model selection
criterion. Two simulations are conducted, in the first simulation, the underlying data are
simulated from a single Gaussian distribution and we fit both the correct 1-component
Equation and the incorrect 2-component Equation Both models are fitted with
classical data and with histogram-valued symbolic data constructed from the 5 observed
data quantiles. In the second simulation, the underlying data are simulated from a 2-
component Gaussian distribution with overlapping mixture components. In total, 4 models
(1-component classical, 2-component classical, 1-component 5-quantile and 2-component

5-quantile) are fitted.

Truth 1-component | 2-component
Fitted
l-component -12136.01 8412.029
2-component -12122.71 7089.083

Table 5.2 — WAIC for one and two-component Gaussian mixture models when fitted data gener-
ated from each model. All models are fitted using classical data

Table 5.2l shows WAIC values for each various simulation scenarios when the model is
fitted with classical data y;. In both cases, the WAIC of the correct model (the diagonal
values in the table) is smaller than that of the incorrect models (the off-diagonal values in
the table).

In terms of the model fitted with 5-quantile histogram-valued symbolic data, Table [5.3

likewise reveals that the correct models (the diagonal values in the table) have lower WAIC
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values than the incorrect models (the off-diagonal values in the table). In conclusion, when
modelling the real data in Section the number of components (either 1 or 2) can be
selected based on WAIC.

It is worth mentioning that the values in Table and in Table are in different
scales and they are not comparable. This is expected as they are computed using different
datasets.

In terms of posterior fit of the simulated data, in the situations where the “truth” is a
1-component model and both classical and symbolic models fit the correct model shown
in Figure [C.9in Appendix [C:3] the symbolic model follows the classical data model well.
When the “truth” is a 1-component model while both classical and symbolic models over-
fit with 2-component are shown in Figure in Appendix[C.3] the symbolic model again
follows the classical data model well. The corresponding two cases for the “truth” as a
2-component can be seen in Figure and Figure in Appendix In summary,
regardless of whether the correct number of components are fitted, model parameters

estimated by the symbolic model follows the classical data model fairly closely.

Truth
Fitted l-component | 2-component
1-component 7936.503 8548.240
2-component 8103.836 7736.981

Table 5.3 — WAIC for one and two-component Gaussian mixture models when fitted data gener-
ated from each model. All models are fitted using 5-quantile histogram-valued symbolic data

5.4.6 Time comparisons

In this section, we wish to demonstrate the computational advantange of the SDA method
and so we record average time to simulate 1000 posterior samples for 1- and 2-component
models fitted with classical and symbolic data. We consider fitting 4 models (1-component
classical, 2-component classical, 1-component 5-quantile and 2-component 5-quantile) with
3 different sizes of data matrix. The first one is a replicate of the real data matrix
D e R12*336 (for 12 observations per hour over a two-week period). The second matrix
D e R191336 and the last matrix D e R?01336 There are altogether 12 cases and we repeat
each case 50 times. The “true” parameters for the 1-component Gaussian model are the
same as described in Section [5.4.2.1|and for the 2-component Gaussian mixture model are
the same as described in Section £.4.4.1]

It is expected that in the case of fitting a 1-component Gaussian model, the classical
model would take less time to sample than the model fitted with symbolic likelihood
function. This is because to estimate the parameters in a 1-component Gaussian model,
the modelling software just needs to know the sufficient statistics—the sample mean for
each column—and evaluates the Gaussian probability density function at each column
mean. Therefore, the increment in time is expected to be relatively small, and stable

with increasing numbers of observations per column. On the other hand, regardless of
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how many observations per hour, the symbolic likelihood has to evaluate the differences
between two Gaussian cumulative density functions 5 times, which is more complex than
that of the classical counterpart. Although the increases in time with increasing number of
observations per symbol will also be stable. Therefore, in the case of fitting a 1-component
Gaussian model, the classical model should outperform the symbolic model in terms of
run time. This expectation can be verified in Table where the mean time for these 50
runs is shown for each model with different sample sizes. In addition, the corresponding
standard error of each mean time is shown in brackets. For a given sample size, it can
be seen that the model fitted with classical Gaussian likelihood function outperforms the
model fitted with symbolic likelihood function for histogram.

In the case of fitting a 2-component Gaussian mixture model, the model fitted with
the symbolic likelihood outperforms the model fitted with the individual observations
with increasing number of observations. This is because, there are no low dimensional
sufficient statistics for a finite Gaussian mixture model beyond the full dataset and as
a result, fitting the classical model means that the program has to evaluate the mixture
Gaussian density at every single observation and the time increases with increasing number
of observation. On the contrary, the symbolic model only needs to evaluate the differences
between 2 cumulative density functions of a mixture models 5 times, regardless of how
many observations are there. Therefore, we expect to see an advantage in run time using
the symbolic model when fitting complex models such as the mixture models in comparison
to its classical counterparts. Table again verifies our expectation where for a given
sample size, the classical data model requires more time than the symbolic model. In
addition, the run time increases with sample size while the run time remains roughly

stable for the symbolic model.

Classical | 5-quantile
N=12 | 261.1882 | 301.7358
(3.8304) (3.5793)
N=101 | 774.0944 | 894.9764
(33.4542) | (37.2043)
N=201 | 778.2316 | 832.4824
(29.5631) | (33.5813)

Table 5.4 — Mean Run time (in seconds) with standard error over 50 runs shown in bracket for one-
component Gaussian model when fitted with classical and symbolic likelihood with N = 12,101,201
in data matrix D.

5.5 A Bayesian semi-parametric additive model with a finite
Gaussian likelihood using SDA and its application
The simulations in Section demonstrated the capacity of symbolic likelihood functions

for histograms to recover the posterior distribution associated with the underlying data

distribution in a way which may be less computationally intensive. Therefore, in this
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Classical 5-quantile
N=12 8,292.353 7,827.154
(388.2184) | (391.5197)
N=101 27,325.2 11,688.77
(1265.4610) | (374.4998)
N=201 | 59,822.24 11,562.3

(975.9697) | (232.7065)

Table 5.5 — Mean Run time (in seconds) with standard error over 50 runs shown in bracket for two-
component Gaussian model when fitted with classical and symbolic likelihood with N = 12,101,201
in data matrix D.

section, the same sets of models are fitted to log(PNC) collected from a split panel design
in Brisbane, Australia over a 2-week period. The data are collected in 25 primary schools
and augmented by 3 long-term monitoring sites. We fit the model to a single school site
7 located in an inner suburban area near elevated freeways with prevailing south to west
winds. The two-week PNC measurement campaign was conducted from 30/05/2011 to
12/06/2011. It is noted that there are some hours where one or several 5-minute interval
measurements were missing. This is not an issue for the previous analysis performed by
Clifford et al.|(2012a) as only the hourly averaged size fractionated log(PNC) is fitted with
an implicit assumption of observations missing completely at random (MCAR). Similarly,
MCAR assumption is adopted here. The approach to deal with missing observations when

fitting classical model and 5-quantile histogram-valued models are described respectively

in Section 5411

5.5.1 1-component Gaussian model

It can be shown in Figure that the 1-component classical data Equation (5.2) can
broadly capture the overall temporal patterns of log(PNC) in school 7 over the 2-week
period. The same model structure but estimated using the symbolic likelihood function
produces very similar results. Figure [5.8| similarly shows the marginal daily-weekly effect,
assumed to be the same for both weeks during the measurement campaign. Figure
shows the marginal day of the year effect, which starts off low and peaks on Thursday in
both weeks. Figure shows 8 randomly chosen (consecutive in time) observed hourly
densities, overlaid with the posterior density fitted with the classical data likelihood (in
green) and with symbolic likelihood (in blue). In all cases the symbolic likelihood based

analysis produces results similar to the classical data analysis.

5.5.2 2-component Gaussian model

It can be seen in Figure that the 2-component classical data Equation (5.3) can
broadly capture the temporal fluctuations of log(PNC) in school 7 over the two-week
period. The same model structure but estimated using the symbolic likelihood function

model produces very similar results. Figure [5.12] shows that the time-varying mixing
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overall temporal mean effects

Figure 5.7 — Estimated posterior distribu-
tion for overall temporal mean a+ 3+ (B0);
in Equation [5.2] The green dashed lines are
bounds of 95% credible interval from Equa-
tion with credible interval region shaded
in grey. The blue dashed lines are bounds of
95% credible interval from Equation [5.3.1]
The purple solid line is the observed hourly
averaged values of log(PNC) with “NA” val-
ues removed.

marginal hour of the week effects
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Figure 5.8 — Estimated posterior distri-
bution for marginal daily-weekly effects ;.
The green dashed lines are bounds of 95%
credible interval from Equation with
95% credible interval region shaded in grey.
The blue dashed lines are bounds of 95%
credible interval from Equation (5.3.1)). The
green solid line is the posterior mean of
Equation (5.2). The blue solid line is the

posterior mean of Equation (5.3.1)).

marginal day of year effects
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Figure 5.9 — Estimated posterior distri-
bution for marginal day of year effects
(BO);. The green dashed lines are bounds
of 95% credible interval from Equation
with 95% credible interval region shaded in
grey. The blue dashed lines are posterior
bounds of 95% credible interval from Equa-
tion .The green solid line is the pos-
terior mean of Equation . The blue
solid line is the posterior mean of Equation

G.31).
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Figure 5.10 — 8 observed hourly histograms with posterior predictive density from Equation
shown in green. The blue line is the posterior predictive density from 2-component mixture model
in Equation @ estimated using the symbolic likelihood function in Equation @
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overall temporal mean effects
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Figure 5.11 — Estimated posterior distribu-
tion for overall mixture mean temporal trend
A1+ 81 +(BO))+(1-X) (aa+Ba+(BO):)
for school 7 over a two-week period. The
green dashed lines are bounds of 95% cred-
ible interval from Equation with 95%
credible interval region shaded in grey. The
blue dashed lines are bounds of 95% credible
interval from Equation . The purple
solid line is the observed hourly averaged val-
ues of log(PNC) with “NA” values removed.

mixing weights

03

hour of the week

Figure 5.12 — Estimated posterior distri-
bution for mixing weights A;. The green
dashed lines are bounds of 95% credible in-
terval from Equation with 95% credi-
ble interval region shaded in grey. The blue
dashed lines are bounds of 95% credible in-
terval from Equation . The green solid
line is the posterior mean from Equation
(5.3). The blue solid line is the posterior
mean of the mixture model with symbolic

likelihood in Equation (5.3.1).

weights appear to evolve slowly and smoothly hour by hour over 1-week period. These
weights are assumed to repeat for all weeks in a year. Figure[5.13|and Figure[5.14]illustrate

the marginal daily-weekly effects in mixture components 1 and 2. As with the the 1-

component Gaussian model, these hour of the week effects are assumed to be the same for

both weeks. The shape of the marginal annual effects are similar to Figure[5.9] The level

of log(PNC) was low at the beginning of the week with a peak occurring on Thursday

and gradually decreased over the weekend and repeated the pattern for the second week.

On average, log(PNC) is higher during the first week of the measurement campaign. In

Figure [5.16] shows that the symbolic mixture hourly density follows the classical mixture

model hourly density fairly well.

Model 1-component | 2-component
Classical Data 3405.738 1601.711
Symbolic Histogram Data 13722.73 12561.28

Table 5.6 — WAIC for real data model comparison

Table shows the WAIC values for the 2 types of models (1-component versus 2-

component) fitted with classical data and histogram-valued symbolic data respectively. In
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marginal hour of the week effects mixture 1
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Figure 5.13 — Estimated posterior dis-
tribution for marginal daily-weekly ef-
fects B;1. The green dashed lines are
bounds of 95% credible interval from
Equation with 95% credible in-
terval region shaded in grey. The blue
dashed lines are bounds of 95% credi-
ble interval from Equation . The
green solid line is the posterior mean
from Equation . The blue solid
line is the posterior mean of the mix-
ture model with symbolic likelihood in

Equation (5.3.1).

marginal day of year effects

marginal hour of the week effects mixture 2

|

10g(PNC)

Figure 5.14 — Estimated posterior dis-
tribution for marginal daily-weekly ef-
fects Bi2. The green dashed lines are
bounds of 95% credible interval from
Equation with 95% credible in-
terval region shaded in grey. The blue
dashed lines are bounds of 95% credi-
ble interval from Equation . The
green solid line is the posterior mean
from Equation . The blue solid
line is the posterior mean of the mix-
ture model with symbolic likelihood in

Equation (5.3.1).

1og(PNC)

day of the year

Figure 5.15 — Estimated posterior dis-
tribution for marginal day of the year
effects BO. The green dashed lines are
bounds of 95% credible interval from
Equation with 95% credible in-
terval region shaded in grey. The blue
dashed lines are bounds of 95% credi-
ble interval from Equation . The
green solid line is the posterior mean

from Equation (5.3).

The blue solid

line is the posterior mean of the mix-
ture model with symbolic likelihood in

Equation (5.3.1]).
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Figure 5.16 — 8 observed hourly histograms with posterior predictive density from Equation
shown in green. The blue line is the posterior predictive density from 2-component mixture model
in Equation @ estimated using the symbolic likelihood function in Equation I@
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can be seen that, regardless of the type of data fitted, the WAIC favours a 2-component
Gaussian model, although few differences are shown in the posterior distributions of the
fitted overall mean in Figure and in Figure [5.11

According to [Vehtari and Gelman| (2014)), the WAIC estimates out-of-sample point-
wise predictive accuracy using posterior simulations and thus it is more reasonable to
visually compare both 1-component and 2-component models using posterior predictive
distributions. In addition, it might be of interest for future analysis to set up a protocol
for the maximum permitted level of PNC around primary schools based on individual
5-minute observations. It is not possible to investigate the level of prediction using the
mean-level model of |Clifford et al.| (2012a)). For demonstrative purposes, we naively set the
maximum permitted level to be the 95 percentile of the observed log(PNC) = 9.98cm 3.
Figure [5.17| shows the 95% posterior predictive distribution from a 1-component Gaussian
model fitted with classical data shown in green and the symbolic data model shown in blue
and the observed data are plotted as black dots. The purple line represents the protocol
level. It is evident that the 95% posterior predictive distribution from the symbolic data
model follows the one fitted with classical data model closely. However, the 95% posterior
predictive distributions from both models fail to capture some observations with extremely
high log(PNC).

Figure shows the hourly posterior predictive probability for exceeding the level
defined by log(PNC) = 9.98¢m ™3 from 1-component fitted with classical data in green with
the symbolic data model superimposed in blue. The x-axis labelling 1:336 represents the
hour during this 2-week period, with 1 refers to lam on Monday in the first week and 336
refers to 12am on Sunday in the second week. Based on this figure, it can be seen that the
probability of exceeding the set level varies at different hours of the day during this 2-week
period. However, it can be seen that the peak (the highest probability of exceeding the
maximum permitted level) at roughly the same location on Monday, Tuesday, Thursday
and Friday in both weeks, while it is least likely to exceed on both Wednesdays. It is
interesting to note that the weekend pattern of the first week does not repeat on the
second week. The probability of exceeding the pre-determined level is fairly unlikely in

the second weekend.

On the contrary, when examining the same set of plots from a 2-component Gaus-
sian model, Figure [5.19| shows that the 2-component model is better at capturing the
outlying observations with high values. The posterior predictive distribution from both
2-component classical and symbolic data models tend to capture a wider range comparing
to their 1-component counterparts. Figure [5.20]illustrates a slightly different story to that
in Figure [5.18 The pattern of the exceedance probability of weekdays in week 1 repeats
in week 2. In addition, the pattern of the exceedance probability of Sunday in week 1 also
repeats in the following week. While the probability of exceeding the level is fairly likely

in the first Saturday, it is almost unlikely that it would exceed in the second Saturday.

In addition, it is worth mentioning that the exceedance probability is on average higher
than in Figure [5.18 when the underlying data fitted with a single Gaussian distribution.

The same conclusion that school 7 exhibits an evening peak hour level is also found in
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Clifford et al.| (2012a)’s model.

In conclusion, based on WAIC and the graphs of posterior predictive plots, to ade-
quately model this set of data, we need a 2-component Gaussian model. Fitting a naive
single Gaussian distribution would potentially lead to misleading results and underesti-

mate the probability of exceeding a pre-set PNC level.

5.6 Discussion

Atmospheric particulate matter (PM) is one of the main pollutants that directly affects
air quality and climate. While the air quality standards have been set up for the mass con-
centration of PMjg and PMs 5, less attention has been paid to ultrafine particles (UFPs)
(Cheung et al., |2013)). Therefore, it was a primary goal of this chapter to develop a sta-
tistical model that can represent aerosol dynamic process of UFPs through the evaluation
of their particle number concentration (PNC). The developed model was then applied to
measurements of particle number concentration in Brisbane, Australia, collected as part
of the UPTECH project.

An existing Bayesian semi-parametric additive model with a Gaussian likelihood for
modelling hourly averaged log(PNC) was proposed by |Clifford et al.| (2012a)). In this
chapter, we restrict our attention to modelling temporal aspect of log(PNC). Due to
the fact that aerosol particles are governed by formation and transformation processes,
they are likely to form modal features. Therefore, we represented this distinct feature by
adopting a finite Gaussian mixture model for the underlying data. Given the temporal
dependence exhibited in the underlying data, we allowed parameters in the mixture model
to be correlated and to smoothly vary over time. Lastly, rather than just use the summary
statistics of underlying data-hourly averaged measurement, we used concepts from SDA to
represent and aggregate the whole data matrix into histogram-valued symbolic data from
which subsequent analysis were then performed. This allowed us to construct efficient
models for the full distributions of the observed data, rather than just the mean level, as
with |Clifford et al.| (2012a).

Based on a series of simulation studies and a real data analysis, it has demonstrated
advantage of the proposed 2-component Gaussian mixture model as opposed to fitting a
single Gaussian likelihood model for the underlying data. In addition, new method of
model fitting for histogram-valued symbolic data based on fitting to the underlying data
was proven to be as good as the model fitted with classical data in terms of parameter
estimation and model fit. In addition, we illustrated the use of WAIC in assisting us
choosing the number of mixture components. While in this case, with only 12 observations
per histogram, there was no major advantage in implementing the model with symbolic
likelihood function over the classical data model, for other datasets with larger numbers
of data points per histogram, the symbolic data approach will be much more efficient as
discussed in Section [5.4.6]

However, there are some caveats of the current model fit for the real data. Firstly, the
proposed model focussed only on temporal variability. A more comprehensive model could

have been built to incorporate spatial variability which would offer more insights into how
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Figure 5.17 — The hourly posterior predic-
tive probability for exceeding the level de-
fined by log(PNC) = 9.98cm ™. Individual
observations are shown in black dots with a
predetermined threshold level drawn in pur-
ple.

95% posterior predictive intervals of 1-
component classical data model shown in
blue and 1-component symbolic data model
shown in green.

Two-week log(PNC)
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Figure 5.19 — The hourly posterior predic-
tive probability for exceeding the level de-
fined by log(PNC = 9.98cm™3. Individual
observations are shown in black dots with a
predetermined threshold level drawn in pur-
ple.

95% posterior predictive intervals of 2-
component classical data model shown in
blue and 2-component symbolic data model
shown in green.
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Figure 5.18 — The hourly posterior pre-
dictive probability for exceedance of high
level from 1-component classical data model
shown in blue and the corresponding prob-
ability from 1-component symbolic data
model.
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Figure 5.20 — The hourly posterior pre-
dictive probability for exceedance of high
level from 2-component classical data model
shown in blue and the corresponding prob-
ability from 2-component symbolic data
model.
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log(PNC) differs with respect to different the school locations. In addition, by considering
multiple locations, it would help improve the estimation of temporal variability as one can
break down and specify an overall temporal effect common to all sites and site-specific
marginal temporal effects. Secondly, meteorological covariates such as wind speed, humid-
ity, temperature should be considered and included in the model construction, although
we would then need joint histogram of PNC and meteorological explanatory variables.
The elaborated model consisting of temporal, spatial and meteorological variability would
provide a fuller picture. In addition, when this model is integrated into the UPTECH
project, it would be better at assessing the association between exposure to UPFs and
respiratory health in primary school children in Brisbane, Australia, which is the ulti-
mate goal of the project (Ezz et al., |2015; Clifford et al., 2018). Lastly, we acknowledge
the fact that there are only 12 observations per hour and one could have fitted the same
model with all data without resorting to SDA techniques. However, this data was used
merely as an illustration of the efficacy of the new method of model fitting for symbolic
data to underlying data. Assuming PNC is measured at even smaller time intervals, the
computational time would increase exponentially for the model fitted with all the classical
data. On the other hand, the model fitted with histogram-valued symbolic data would
have constant computational overheads as the number of classical data points increased.
It is highly likely that much of the computational time would be attributed to aggregat-
ing underlying data into symbols rather than on model fitting using the histogram-valued
symbols.

In spite of the above deficiencies, the proposed 2-component finite mixture with time-
dependent parameters estimated using the new method introduced in SDA literature by
Beranger et al.| (2018]) provides a flexible way of modelling, and has been shown to have
the same estimation results as the classical data model, while using a small fraction of the

observed data in distributional form.



Chapter 6

Discussion and Future Work

Although SDA is a relatively new field in statistics, there has been considerable develop-
ment in this area, evident by a large number of publications, reports and developments
of software tools. SDA extends statistics and multivariate data analysis to deal with data
structured in distributional form with complex internal variations. Under the umbrella of
SDA, one is required to think and aggregate data points into “classes” of interest. As a
result, it reduces the volume and complexity of the data and it is particularly useful to
glean information in a world full of “big” data and uncertainty.

Among the different types of symbolic variables described in Chapter [2] interval-valued
symbolic variables have drawn the most attention from researchers who work in this area
while some have focussed on methods for analysing histogram-valued variables. Neverthe-
less, existing SDA methods dealing with both, e.g., univariate or multivariate descriptive
statistics, similarity and dissimilarity measures, clustering, discrimination methods and
linear regression models have proceeded largely based on the assumption of uniformity
within each symbol (Bock, 2008). The uniform distribution assumption is overly simpli-
fied and thus inappropriate, as acknowledged by |Kosmelj et al.| (2014)) in their analysis of
meteorological data in Slovenia.

In spite of the fact that non-parametric descriptive approaches are prevalent in the SDA
literature, there have been some advances in proposing parametric models for symbolic
data. [Bock! (2008) first proposed a probabilistic modelling for symbolic data with a focus
on probabilistic clustering of interval-valued data. Le-Rademacher and Billard (2011) were
among the first ones to propose likelihood functions for interval and histogram-valued sym-
bolic variables. |Brito and Duarte Silval (2012)) presented a probabilistic model for interval
variables which involves a reparametrisation of interval variables into bivariate vectors.
The authors assumed either a normal or a skew-normal distribution for these bivariate
random variables on which standard maximum likelihood estimation were then applied.
Furthermore, the authors proposed different configurations of the global covariance ma-
trix, which offers a flexible way of modelling the relationship that may exist between the
bivariate vector of the same or different interval variables. However, the above approaches
are still based on a uniformity-within-symbols assumption and are built directly at the
symbol level and thus have potentially limited usage. Zhang and Sisson (2016]) have made

promising steps towards building a probabilistic framework that considers both intra-
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and inter- symbol relationships for interval-valued variables. Likelihood-based statistical

analysis remains an important challenge in SDA and much is yet to be explored.

Within ecology there has been a need for better estimates of global and individual taxa
species richness, that is the number of species found in a community or ecosystem. This
problem becomes even more challenging when ecologists come up with estimates recorded
in different forms. These different forms of data have greatly limited the analysts’ ability
to combine them to reduce parameter estimation uncertainty. In Chapter [3] we tackle
this challenge through combining three statistical approaches. Firstly, the uncertainty in
estimates is reduced through a meta-analysis approach such that it enables building on
knowledge gained through previous attempts to species estimation. Secondly, previous
species estimates data recorded in three different forms are reconciled and combined by
representing them as interval-valued symbolic variables where some of them are partially
observed. Lastly, using the likelihood-based approach of |[Brito and Duarte Silva, (2012),
we are able to construct a Bayesian hierarchical model that provides logically consistent
estimates. Furthermore, this model permits us to estimate species that are not directly

observed through pooling knowledge from other species categories.

As discussed above and in Chapter [I]and Chapter [2] that there are some serious draw-
backs associated with the existing likelihood-based SDA approaches. In Chapter [ we
introduced a new method of model fitting for symbolic interval-valued and histogram-
valued data based on fitting to the underlying micro data rather than fitting to summary
statistics of symbols. The new likelihood-based method is constructed based on an under-
lying distribution from which classical data are thought to come from, together with an
aggregation process that determines the ‘class’” membership of each classical data point.
In this manner, this method permits likelihood-based statistical inferences to be made at
the classical level while retaining the capability to obtain symbol level inference. Besides,
this construction loses the assumption of uniformity-within-symbols. In addition, the pro-
posed method provides a natural way to specify models for symbolic data, which is not so
obvious for the existing methods. As illustrated in Chapter [2] that single-valued quantita-
tive and qualitative classical variables are in fact special cases of corresponding symbolic
variables, our method respects this fact and reduces to standard likelihood-based inference
in the limit as symbol approaches classical data. Within this unified construction frame-
work, our method is also shown to recover several existing methods (e.g., McLachlan and
Jones (1988)) for 1-dimensional histogram-valued symbolic variable) while offering models
for symbols that have not been previously considered (e.g., multivariate intervals, multi-
variate histograms). More importantly, in Chapter [4, the new method shed some light on
more informative ways of constructing symbols from underlying data. It has shown that
the use of minimum and maximum order statistics for intervals is statistically inefficient in
terms of capturing the internal distribution and thus leads to inaccurate inference. In ad-
dition, current design for multivariate interval symbols leads to a weak to non-identifiable

dependence/ correlation structure within symbols.

In Chapter [ the newly proposed symbolic likelihood function was applied to a

Bayesian semi-parametric additive model with a finite mixture Gaussian model for mod-
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elling log(PNC). In contrast to a previous analysis (Clifford et al., |2012a)), the proposed
model was able to address future predictions at the individual 5-minute interval level. Sec-
ondly, the representation of log(PNC) as a finite mixture model with time-varying mixture
parameters enabled us to describe the evolution of log(PNC) over a 2-week period.

Recognising the need for a unified likelihood-based approach in SDA, this thesis has
proposed a new general construction tool for interval-valued and histogram-valued sym-
bolic variables, which has been applied to model complex real-world data. The novelty
of this new method lies in, firstly, unlike existing methods where uniformity distribution
assumption is strictly required, the choice of distribution of the underlying data is entirely
at the analysts’ discretion for flexible modelling. Secondly, through fitting to the underly-
ing data, our method allows statistical inference to be made at the classical data level that
would otherwise not be possible using the existing likelihood-based approaches. Lastly, in
almost all of the current SDA analyses, univariate symbols are adopted while our method
opens up a vast number of opportunities to use higher-dimensional symbols.

However, much remains to be done. Firstly, it is found during developing the likelihood-
based function for intervals that quantile representations are more informative about the
distribution of underlying data than minimum and maximum order statistics convention-
ally used in SDA. In addition, for histogram-valued symbols, current construction decisions
regarding the number of bins or bin locations are naively chosen. As a result, it maybe in-
teresting yet challenging to establish a framework that can systematically design symbols
tailored to individual analysis. In Chapter |5 the relationship between histogram-valued
observations are assumed to be conditionally independent given the parameters of the
underlying data model. However, it would be more advantageous to directly introduce
the dependence relationship between successive histogram-valued observations. As early
as in 1984, [Schweizer| (1984) foresaw that ‘distributions are the numbers of the future’
To the best of our knowledge, little has been done for more general distributional types
of symbols, for example, symbols in the forms of a mean vector and a covariance matrix
of a Gaussian distribution and we recommend future research to realise his saying and
pursue methods for general distributional types of symbols. We anticipate that solving
the above research problems may potentially revolutionise how statistical inference has

been implemented in the SDA framework.
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Figure A.1 — Posterior distribution for p,,; when fitted with different scale values in the hyper-
prior distribution fiy,; ~ N(0,7)I(fm > 0). The black line represents 7 = 10,000, the green line
represents 7 = 1000, the red line represents 7 = 100, the blue line represents 7 = 10 while the purple
line represents 7 = 1. From the left to the right, the posterior distribution is for the j** “parent”

species beetles, coral reefs, marine, insects and arthropods respectively.
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Figure A.2 — Posterior distribution for u,; when fitted with different scale values in the hyper-
prior distribution p,; ~ N(0,a)I(u, << log(2pm,)). The black line represents a = 1.5, the green
line represents a = 2.5, the red line represents a = 5. From the left to the right, the posterior

distribution is for the j** “parent” species beetles, coral reefs, marine and insects respectively.
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Figure A.3 — Posterior distribution for x,; when fitted with different scale values in the hyper-
prior distribution fi,,; ~ N(0,@)I(p, < log(24m)). The black line represents a = 1.5, the green
line represents a = 2.5, the red line represents a = 5. From the left to the right, the posterior
distribution is for the j** “parent” species arthropods and global respectively.
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’ Species Category \ Lower (a) \ Point estimate (x) \ Upper (b) \ Source
Beetles 15 2.1 Stork et al.|(2015)*
Coral Reefs 0.62 9.5 Reaka-Kudla et a1.| (]1996b
Coral Reefs 1.7 3.2 Small et al.|(1998)
Coral Reefs 1 2 3 Reaka-Kudla/ (2005)
Coral Reefs 0.49 10 Knowlton et al.| (2010)
Global 3 4 Raven| (1983)
Global 10 100 Ehrlich and Wilson| (1991)
Global 100 May| (1992b)
Global 11.6 Cracraft and Grifo|419991)
Global 5 7 15 Raven et al.|(2000)
Global 14 Groombridge and Jenkins| 420021)
Global 74 8.7 10 Mora et al.|(2011)
Global 1.8 2 Costello et al.|(2011
Global 2 5 8 Costello et al.| (2013
Marine 5 May and Beverton|(1990)
Marine 10 Grassle and Maciolek|(1992)
Marine 100 Lambshead| (1993)
Marine 0.5 Raven et al.| (2000
Marine 1.4 1.6 Bouchet and Duarte|(2006)
Marine 2.02 2.2 2.38 Mora et al.|(2011)
Marine 0.3 Costello et al.|(2011)
Marine 0.7 1 Appeltans et al. |q20121)
Terrestrial 10 May| (1992b)t
Terrestrial (Arthropods) 30 Erwin !1982)
Terrestrial (Arthropods) | 10 80 Stork| (1988
Terrestrial (Arthropods) 6.6 Basset et al.| 1996b
Terrestrial (Arthropods) | 5 10 ()Degaard|(2000)
Terrestrial (Arthropods) 3.7 Novotny et al.| (2002
Terrestrial (Arthropods) 5.9 Novotny et al.| (2002
Terrestrial (Arthropods) | 3.6 6.1¢ 11.4 Hamilton et al.| (2010
Terrestrial (Arthropods) | 3.7 7.8¢ 13.7 Hamilton et al.| (2010
Terrestrial (Arthropods) | 2.9 12.7 Hamilton et al.| (2013
Terrestrial (Arthropods) | 5.9 6.8° 7.8 Stork et al.|(2015)*
Terrestrial (Insects) 2.5 10 Sabrosky|(1953)
Terrestrial (Insects) 3 5 May and Beverton| 1990_I)
Terrestrial (Insects) 4.9 6.6 Stork and Gaston| (1990
Terrestrial (Insects) 1.84 2.57 Hodkinson and Casson| (1991
Terrestrial (Insects) 5 10 Gaston| (1991)
Terrestrial (Insects) 8 Hammond| (1995
Terrestrial (Insects) 3 6 Raven et al.| (2000
Terrestrial (Insects) 4 Raven et al.| (2000
Terrestrial (Insects) 2 Nielsen and Mound|(2000)
Terrestrial (Insects) 8 Groombridge and Jenkins|(2002)
Terrestrial (Insects) 5 6 Raven and Yeates|(2007)
Terrestrial (Insects) 2.6 5.5% 7.8 Stork et al.|(2015)*

Table 1 — Point (z) and interval (a,b) estimates of species diversity from 45 previously pubhshed studies. Diversity
estimates are measured in mllhons These data were originally collated bym with the exception of
those 1nw , as indicated by asterisks *. { indicates that this datapoint was not used in this analysis
as it is strongly 1ncon51stent with all other estimates. ¢ indicates that the point estimate is asymmetric with respect
to the interval, so that x # (a + b)/2.
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Intervals Midpoints
Species Category | Mean lower bound | Mean upper bound | Mean ‘ 95% HPD
Arthropods 8.51 12.87 10.69 | (5.09, 17.30)
Beetle 1.30 2.74 2.02 | (0.40, 4.20)
Coral Reefs 1.95 2.19 2.07 (0.16, 3.68)
Insects 3.87 6.46 5.16 (3.86, 6.46)
Marine 4.12 4.47 4.30 (0.69, 9.04)
Other Arthropods 4.64 6.41 5.53 | (0.08, 11.90)
Other Insects 2.57 3.72 3.15 (0.71, 5.07)
Other Global 7.62 8.27 7.94 | (0.03, 19.50)
Other Marine 2.17 2.28 2.22 (0.01, 6.71)
Global 20.25 25.61 22.93 | (11.24, 36.26)

Table 2 — Posterior point estimate summaries of species numbers in each category for both intervals
and midpoints. Interval estimates are the posterior mean lower and upper interval bound. Midpoint
estimates are the posterior mean and the 95% highest posterior density (HPD) interval. Point

estimates are measured in millions.

Figure A.4 — Posterior distribution for o,,;
fitted with 3 values of scale parameter (A)
in the Half-Cauchy distribution. The black
line represents A = 2.5, the red line repre-
sents A = 5 and the green line represents
A = 1.25. From the left to the right, the
posterior distribution is for the j** “parent”
species beetles, coral reefs, marine, insects
and arthropods respectively.

Figure A.5 — Posterior distribution for o,;
fitted with 3 values of scale parameter (A)
in the Half-Cauchy distribution. The black
line represents A = 2.5, the red line repre-
sents A = 5 and the green line represents
A = 1.25. From the left to the right, the
posterior distribution is for the j** “parent”
species beetles, coral reefs, marine, insects
and arthropods respectively.
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Chapter 4] Supporting information

B.1 Proofs

B.1.1 Univariate intervals - Proof of Lemma (4.2

The main challenge is to derive the conditional density fgx-.(s;¥) in order to apply the
methodology given in Proposition Based on the the aggregation function (4.2) we
have S = (S}, Su, N) = (X(1), X(u), N) and thus the role of the conditional distribution of

S given X = z is to ensure that s; = 2(1) and s, = Z(u)- As a consequence we can write

fS\X=z(S; 79) = 52(1),Z(u) (Slv Su) = 52(1) (Sl) 5Z(u) (Su) )

meaning that [ — 1 points of z belong to (—o0, s;), one is at s;, u —1 -1 belong to (s, 8y),
one is at s, and n—wu belong to (s,,c0). As there is n!/((I-1)!(u—1-1)!(n-u)!) possible

combinations to arrange n points in such a way, the likelihood function can then be written

as
c 0 ! T ends) [ g (2006 (s)d
(st 500m38) =i sy (o3 i0az) [ ax(ata(and:
Su u—-[l-1 +o00 00 n-u
x ([ gX(z;H)dz) f gX(z;0)5Z(su)dz(f gX(z;G)dz)
Sy —00 u
n! -1 u-l-1
- D= - Di(n =) [Gx(s:0)] " [Gx(su;0) = Gx (s156)]
< [1-Gx(su:0)]"" gx (5150)9x (5u30),
using the independence between the n replicates X1, ..., X,.

B.1.2 Multivariate intervals - Details on Lemma [4.3] and Corollary

For simplicity, consider bivariate intervals, identical arguments can be applied to the mul-
tivariate setting. As X is here a bivariate random vector with p.d.f. gx(+;6), its marginal
and conditional p.d.f. are respectively denoted by gx,(-;6),7 = 1,2 and gXi‘Xj(ﬁG),i,j =
1,2;i # j. The conditional distribution of S given X = z € R? is obtained from the aggre-
gation function (4.3). When S, = 2, St, = {bltr} or {tlbr} depending wether the two pints
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are in the bottom-left and top-right corners or top-left and bottom-right corners. Define
Sa = (Say,5as) and sp = (Sp,, Sp,) which take values (Smin,1,Smin,2) and (Smax,1, Smax,2) if
St, = {bltr} and (Smin,1,Smax,2) and (Smax,1, Smin,2) if Sr, = {tlbr}. We can then write

5»2(1),17Z(1),27Z(n),172(n),2 (SarsSazs Sbys Sby)
fsix==(s:0) = or

62(1),17Z(n),27z(n),1vz(l),2 (SarsSazs Sbys Sby)

Straightforwardly this ensures that two points gives the marginal minima and maxima and
the remaining points are within the interval. Thus there are n(n—-1) possible combinations

to arrange n points in such a way and the likelihood function is

L(s;0) =n(n-1) ([S::m gX(Z;é?)dz)n_2 [R2 9x(2;0)ds,(2)dz fR? 9x(2;0)0s,(2)dz

=n(n-1) (/Sjmax 9x (z; 6?)(f1,z)n_2 9x (5a;0)gx (sp;0).

in

When S, = 3 and if Sy, = {bl} meaning that a single point is the minimum in both

components and assuming its coordinate to be s. = syin, then

fS|X:Z(S’19) = 52(1),172(1),2(SC)5(Smin,1asmax,1)7(smin,2ysmax,2) (Zj71|2j72 = 3max,27 Zj72 Zjvl = Smax,l) )

where the second delta function is the product of Dirac measures defined for subset A c R
by 0z(A) =1if x € A and 0 otherwise. There are n(n—1)(n - 2) possible combinations to
arrange n points such that one is at a corner, two are on two different edges and the rest

is inside the interval. The likelihood is then

min,1

Smax,1
‘C(S7 6) :n(n - ].)(TL - 2) [1%2 gX(Z7 0)53111111(2)(:12 (l gX1|X2=5max,2(Zl; 0)d21) gX2 (SmaX,Q; 9)

Smax,2 Smax n-3
(L7 e 002 i) [ g0

min,2 in

=n(n=1)(n = 2)gx ($min; 0) (/sjmax gx (2 G)GIZ)n_3

in
x [GX1|X2:3max,2 (Smax,l; 0) - GX1|X2:SmaX’2 (smin,l; 9)] gX2 (smax,Q; 0)

X [GX2|X1=5max,1 (SmaX’2; 0) - GX2|X1:3max,l (Smin,Q; 0)] gXl (SmaXJ; 9)

Finally when S, = 4 then

fS‘X=Z(S; 19) :5(5min,l75max,1)7(3min,175max,l) (ZJ71|Z.772 = Smin72’ Zj:1|zj:2 = Zmax,Q)

X 5(Smin,275max,2)7(3min,275max,2) (Zj72|zj71 = Smin:17 Z.j72|z.j71 = Smaxvl) Y
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and there are n(n—1)(n-2)(n-3) possible combinations to arrange four points on different
edges and the rest inside the interval. The likelihood is then

L(s;0) =n(n-1)(n-2)(n - 3) (fs:nax gx (2 H)dz)n_4

in

Smax,1
x / gX1|X2=smin,2(Zl§e)dzl)ng(Smin,%e)
S

min,1

Smax,1
x fs 91| Xo=smar.2 (717 9)dzl) 9x5 (Smax,2;6)

min,1

Smax,2
X / gX2|X1=$min,1(22;0)d22)gX1 (Smin,l;e)
S

min,2

Smax,2
x fs 9] X1 =sman.1 (22 9)dz2) 9x; (Smax,1;6)

min,2

—n(n-1)(n—-2)(n-3) ([m ax (2 G)dz)n_4

min
x [GX1|X2=smin,2 (Smax,l; 9) - GXI\XQ:smimQ (Smin,l; 0)] g9x, (Smin,2; 9)
x [GX1|X2=smax72 (Smax,l; 0) - GX1|X2=smax72 (Smin,l; 0)] g9x, (Smax,Q; 9)
X [GX2|X1=Smin,1 (SmaX:Q; 9) - GXQ\X1=8min,1 (Smim?; 9)] 9X1 (Smiml; 0)

x GX2|X1:5max,1 (Smax,2; 0) - GXQlezsmax,l (Smin,Z; 0)] gXl (Smale; 9)

B.1.3 Multivariate histograms with fixed bins

Details about the likelihood function of Lemma[£.9)are given here. Analogously to the case
of intervals, the knowledge of the aggregation function 7 is used to define the conditional
density fsx--(s;9) required to apply Proposition As S = (X)) by definition, then
when X' is known to be taking value z, then fg x-, can only exist if, forall b=1,..., B,

sp = 2y {z; € By}, which is equivalent to writing

B
fsix=z(8:9) = [ 0sr | izen,y (s6)-
b=1

The number of combinations to arrange z1,..., z, into the B; x --- x Bg bins is the multi-
nomial coefficient equal to n!/ ] sp! and the likelihood function (4.1)) becomes

L(s;0) 281!7%53 fRnxd 0z, (Bl)"'5z31 (Bl)“'(sznfsBH(BB)“'ézn(BB) HQX(ZiS 0)dz
n! 51 B
:sll---sB ([Rdgx(z;H)éz(Bl)dz) ---([Rdgx(z;ﬁ)éz(BB)dz)
n B 5b
=31!---SB H([Bng(z;O)dz) .

B.1.4 Histograms with fixed counts

Let k = (k1,...,kp),1 <k-1<-<kp <n and consider the aggregation function (4.15)).
The histogram construction ensures that the B bins are defined by some order statistics.

This implies that the symbol S provides the location of B out of n points and the number



124 APPENDIX B. CHAPTER |Z| SUPPORTING INFORMATION

of points in between those is fixed and can be derived through k. As a consequence the

conditional density fgx-.(s;7) is

B+1 kb

fo1x=2(8:0) = H5Z(k s (o) TT TT 02, ((s6-1,5))

bljkbl

and there are n!/ HE " 1(ky — ky_1 — 1)! possible combinations to arrange n points this way.
Thus the likelihood function is then

B B+1 kbfl

L(s:0) = n! f (H Ozy) (Sb)) [1 ( [T o, ((8b1,8b))) ﬁgx(zi;9)dz

B+1
1 (ky = Fpq — 1)1 IR b=1 \j=ks 1 i1

B B+1

= (5 onaxoa) T ([ o)

B+1(kb_kb 1—1)'b1 be1
ol
BH(’%-’% T L

B+
HQX(SbaQ) Hl (Gx(sp;0) - Gx(sp- 1,9))’% k1~ L

which proves Lemma [4.10



B.2.

SUPPLEMENTARY MATERIAL

125

B.2 Supplementary Material

B.2.1 Estimates of the pu, 3,01 and o,

from Section [4.3.2

m =20 m =50

N 5 10 50 100 5 10 50 100
p=0.0 Ly 1.9991 2.0040 2.0002 2.0057 1.9991 2.0000 2.0024 2.0010
(0.0506) (0.0451) (0.0330) (0.0347) (0.0310) (0.0275) (0.0189) (0.0207)

Ly 19992 2.0042 2.0003 2.0057 1.9991 2.0000 2.0024 2.0010
(0.0506) (0.0451) (0.0331) (0.0346) (0.0309) (0.0274) (0.0188) (0.0207)

Lsn 19991 2.0039 2.0001  2.0058 1.9991 2.0000 2.0024 2.0010
(0.0506) (0.0451) (0.0329) (0.0347) (0.0309) (0.0275) (0.0189) (0.0207)

0.3 L4 1.9955 1.9956  2.0005 1.9981 1.9962 1.9995 2.0014 1.9961
(0.0524) (0.0442) (0.0339) (0.0336) (0.0345) (0.0280) (0.0208) (0.0204)

Ly 19954 1.9957 2.0004 1.9980 1.9961 1.9994 2.0015 1.9960
(0.0528) (0.0441) (0.0339) (0.0337) (0.0344) (0.0277) (0.0208) (0.0204)

L 19955  1.9957  2.0007 1.9981 1.9962 1.9997 2.0015 1.9961
(0.0528) (0.0443) (0.0342) (0.0335) (0.0344) (0.0279) (0.0208) (0.0203)

0.5 L4 1.9950 1.9953 2.0001 1.9979 1.9964 1.9995 2.0011 1.9956
(0.0533) (0.0439) (0.0355) (0.0342) (0.0346) (0.0280) (0.0208) (0.0207)

Ly 1.9946  1.9955  2.0001 1.9979 1.9964 1.9995 2.0011 1.9956
(0.0537) (0.0437) (0.0354) (0.0342) (0.0344) (0.0279) (0.0209) (0.0207)

Len 19956  1.9949 2.0002  1.9981 1.9962 2.0002 2.0011 1.9959
(0.0536) (0.0441) (0.0361) (0.0339) (0.0341) (0.0279) (0.0210) (0.0206)

0.7 L4 1.9943  1.9960 2.0001 1.9968 1.9966 1.9990 2.0008 1.9951
(0.0539) (0.0435) (0.0365) (0.0339) (0.0349) (0.0273) (0.0215) (0.0203)

Ly 19943 1.9959 2.0001 1.9967 1.9966 1.9991 2.0008 1.9951
(0.0547) (0.0430) (0.0366) (0.0339) (0.0350) (0.0277) (0.0214) (0.0204)

Lean 19951 1.9953  1.9999  1.9980 1.9970 1.9999 2.0007 1.9953
(0.0540) (0.0428) (0.0369) (0.0325) (0.0337) (0.0273) (0.0215) (0.0200)

0.9 L4 1.9932 1.9985 1.9980 1.9960 1.9969 1.9994 1.9994 1.9951
(0.0539) (0.0435) (0.0366) (0.0327) (0.0349) (0.0268) (0.0227) (0.0196)

Ly 19930 1.9971 1.9978 1.9961 1.9968 1.9990 1.9995 1.9955
(0.0548) (0.0437) (0.0370) (0.0328) (0.0350) (0.0270) (0.0231) (0.0193)

L 19940 1.9983  1.9997  1.9982 1.9968 2.0012 2.0003 1.9959
(0.0539) (0.0408) (0.0364) (0.0315) (0.0345) (0.0258) (0.0205) (0.0191)

Table 1 — Mean estimate (and standard deviation) of the mean u1 over 100 replicates using the L4, Ly
and L likelihood function with m = 20 and 50 symbols aggregating ns = 5,10,50 and 100 observations.

B.2.2

B.2.3
B.24

Visualisation of the constructions of bivariate intervals from order
statistics used in Section [4.3.2]

Estimates of (o1,p,02), from Section [4.3.2]

Visualisation of some symbolic datasets used in Section [4.3.2|when
p=-0.7and 0
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m =20 m =50

Ns 5 10 50 100 5 10 50 100
p=0.0 L4 4.9934 5.0004 4.9974  4.9966 49976  4.9999 49984  4.9965
(0.0533) (0.0455) (0.0358) (0.0316) (0.0343) (0.0263) (0.0228) (0.0184)

Ly 49932 5.0005 4.9974 4.9966 4.9975 4.9998 4.9984 4.9964
(0.0534) (0.0455) (0.0358) (0.0316) (0.0347) (0.0262) (0.0228) (0.0184)

L 49933 5.0005 4.9975  4.9967 4.9976  4.9999 49984  4.9965
(0.0531) (0.0456) (0.0357) (0.0315) (0.0341) (0.0263) (0.0228) (0.0184)

0.3 L4 4.9988  5.0007 4.9972  5.0039 4.9999 5.0024 4.9989 5.0015
(0.0534) (0.0451) (0.0320) (0.0322) (0.0327) (0.0276) (0.0207) (0.0174)

Ly 49987 5.0007 4.9972  5.0039 4.9997  5.0025 4.9990 5.0015
(0.0530) (0.0452) (0.0320) (0.0322) (0.0329) (0.0275) (0.0207) (0.0174)

L 4.9989  5.0006 4.9976  5.0039 4.9997  5.0028 4.9991 5.0015
(0.0533) (0.0448) (0.0317) (0.0322) (0.0325) (0.0273) (0.0205) (0.0174)

0.5 L4 4.9982 5.0010 4.9973  5.0043 5.0001 5.0017 4.9981 5.0014
(0.0531) (0.0466) (0.0330) (0.0319) (0.0326) (0.0277) (0.0209) (0.0176)

Ly 49982 5.0011 4.9972 5.0044 5.0003 5.0019 4.9981 5.0014
(0.0531) (0.0463) (0.0329) (0.0319) (0.0327) (0.0275) (0.0209) (0.0176)

L 4.9987  5.0008 4.9976  5.0045 4.9996 5.0024 4.9983 5.0016
(0.0524) (0.0461) (0.0332) (0.0320) (0.0321) (0.0271) (0.0207) (0.0175)

0.7 L4 4.9970  5.0013  4.9979  5.0029 5.0001 5.0012 4.9977  5.0010
(0.0532) (0.0471) (0.0343) (0.0316) (0.0329) (0.0283) (0.0218) (0.0177)

Ly 49975 5.0012 4.9980 5.0029 4.9999 5.0012 4.9978 5.0010
(0.0532) (0.0473) (0.0344) (0.0316) (0.0331) (0.0283) (0.0219) (0.0177)

Lean 49981 5.0013 4.9981  5.0041 5.0001  5.0023 4.9981 5.0009
(0.0524) (0.0464) (0.0341) (0.0308) (0.0315) (0.0275) (0.0210) (0.0177)

0.9 L4 4.9946  5.0009 4.9980 4.9999 4.9990 5.0003 4.9975  4.9996
(0.0534) (0.0475) (0.0348) (0.0312) (0.0337) (0.0279) (0.0228) (0.0174)

Ly 49944 5.0010 4.9978 4.9999 49986 4.9998 49974 4.9997
(0.0536) (0.0476) (0.0351) (0.0317) (0.0335) (0.0283) (0.0226) (0.0171)

L 4.9953  5.0018 4.9999 5.0017 4.9986 5.0020 4.9991 4.9995
(0.0524) (0.0450) (0.0342) (0.0290) (0.0329) (0.0268) (0.0211) (0.0179)

Table 2 — Mean estimate (and standard deviation) of the mean p2 over 100 replicates using the L4, Ly
and L likelihood function with m = 20 and 50 symbols aggregating ns = 5,10,50 and 100 observations.
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m = 20 m =50

N 5 10 50 100 5 10 50 100
p=0.0 L4 0.2470 0.2472  0.2469 0.2498 0.2468 0.2468 0.2485 0.2494
(0.0394) (0.0287) (0.0163) (0.0152) (0.0242) (0.0176) (0.0106) (0.0086)

Ly 0.2492 0.2471 0.2469 0.2498 0.2482 0.2470 0.2485 0.2493
(0.0393) (0.0288) (0.0163) (0.0152) (0.0241) (0.0177) (0.0106) (0.0086)

Lean 0.2467  0.2471  0.2469  0.2498 0.2467 0.2467 0.2484 0.2494
(0.0394) (0.0287) (0.0163) (0.0152) (0.0241) (0.0176) (0.0106) (0.0086)

0.3 L4 0.2502 0.2552 0.2491 0.2482 0.2464 0.2512 0.2489 0.2491
(0.0436) (0.0312) (0.0167) (0.0136) (0.0257) (0.0177) (0.0098) (0.0082)

Ly 0.2534 0.2553  0.2491  0.2482 0.2492  0.2512  0.2489 0.2491
(0.0443) (0.0311) (0.0166) (0.0136) (0.0259) (0.0177) (0.0098) (0.0082)

L 0.2496  0.2549  0.2491  0.2482 0.2460 0.2510 0.2488  0.2492
(0.0434) (0.0311) (0.0167) (0.0135) (0.0256) (0.0176) (0.0098) (0.0082)

0.5 L4 0.2512 0.2555 0.2495 0.2477 0.2478  0.2517 0.2490 0.2488
(0.0428) (0.0306) (0.0169) (0.0130) (0.0251) (0.0182) (0.0098) (0.0082)

Ly 0.2566  0.2552  0.2495  0.2477 0.2519 0.2517 0.2491  0.2488
(0.0445) (0.0304) (0.0169) (0.0130) (0.0257) (0.0182) (0.0098) (0.0082)

Lean 0.2497  0.2548 0.2497  0.2477 0.2466  0.2513  0.2490 0.2488
(0.0424) (0.0305) (0.0169) (0.0129) (0.0249) (0.0180) (0.0098) (0.0082)

0.7 L4 0.2531 0.2562  0.2501  0.2477 0.2504 0.2528 0.2494  0.2490
(0.0419) (0.0294) (0.0173) (0.0125) (0.0246) (0.0186) (0.0099) (0.0081)

Lz 0.2592 0.2552 0.2499  0.2477 0.2578 0.2521 0.2493  0.2489
(0.0429) (0.0294) (0.0173) (0.0126) (0.0245) (0.0185) (0.0099) (0.0081)

Lean 0.2492  0.2546 0.2503  0.2475 0.2471  0.2515 0.2494  0.2490
(0.0411) (0.0287) (0.0173) (0.0122) (0.0241) (0.0180) (0.0098) (0.0079)

0.9 L4 0.2595 0.2583 0.2510 0.2482 0.2584 0.2562 0.2501 0.2494
(0.0411) (0.0289) (0.0172) (0.0127) (0.0244) (0.0197) (0.0103) (0.0080)

Ly 0.2566 0.2534 0.2481  0.2466 0.2535 0.2513 0.2476  0.2486
(0.0399) (0.0273) (0.0158) (0.0126) (0.0223) (0.0178) (0.0100) (0.0079)

L 0.2489  0.2532 0.2507  0.2477 0.2481 0.2512 0.2495 0.2491
(0.0394) (0.0267) (0.0172) (0.0116) (0.0234) (0.0182) (0.0098) (0.0077)

Table 3 — Mean estimate (and standard deviation) of the standard deviation o1 over 100 replicates using
the L4, Lz and L likelihood function with m = 20 and 50 symbols aggregating ns = 5,10,50 and 100

observations.
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m =20 m =50

N 5 10 50 100 5 10 50 100
p=0.0 L4 0.2508 0.2512  0.2500 0.2496 0.2511 0.2506  0.2494  0.2502
(0.0377) (0.0285) (0.0155) (0.0125) (0.0229) (0.0194) (0.0098) (0.0078)

Ly 0.2535 0.2512 0.2499 0.2496 0.2528 0.2505 0.2494 0.2502
(0.0386) (0.0286) (0.0154) (0.0125) (0.0232) (0.0193) (0.0098) (0.0078)

Len 0.2505  0.2510  0.2499  0.2496 0.2510  0.2505 0.2494  0.2502
(0.0376) (0.0285) (0.0154) (0.0125) (0.0230) (0.0193) (0.0098) (0.0078)

0.3 L4 0.2504 0.2466 0.2491  0.2500 0.2536  0.2497 0.2492  0.2506
(0.0324) (0.0262) (0.0156) (0.0111) (0.0241) (0.0195) (0.0099) (0.0074)

Ly 0.2536 0.2466 0.2491  0.2499 0.2565 0.2498 0.2492  0.2506
(0.0330) (0.0263) (0.0156) (0.0112) (0.0246) (0.0196) (0.0099) (0.0074)

Lean  0.2497  0.2463  0.2491  0.2500 0.2531 0.2496 0.2492 0.2506
(0.0325) (0.0262) (0.0156) (0.0112) (0.0239) (0.0193) (0.0099) (0.0074)

0.5 L4 0.2515 0.2473 0.2493 0.2502 0.2546  0.2504 0.2493  0.2508
(0.0327) (0.0269) (0.0155) (0.0106) (0.0241) (0.0199) (0.0097) (0.0069)

Ly 0.2568 0.2470 0.2493  0.2502 0.2586  0.2503 0.2493  0.2508
(0.0338) (0.0268) (0.0155) (0.0105) (0.0245) (0.0201) (0.0097) (0.0069)

Len 0.2500  0.2466  0.2494  0.2502 0.2532  0.2500 0.2493  0.2508
(0.0327) (0.0267) (0.0156) (0.0106) (0.0238) (0.0196) (0.0097) (0.0070)

0.7 L4+ 0.2538 0.2486 0.2494 0.2503 0.2565 0.2515 0.2495 0.2509
(0.0334) (0.0282) (0.0153) (0.0106) (0.0242) (0.0203) (0.0095) (0.0070)

Lz 0.2601 0.2478 0.2493  0.2502 0.2636  0.2506 0.2495  0.2509
(0.0351) (0.0285) (0.0152) (0.0106) (0.0241) (0.0204) (0.0095) (0.0070)

Len 0.2500 0.2470  0.2496  0.2501 0.2530  0.2502 0.2495 0.2509
(0.0327) (0.0274) (0.0155) (0.0106) (0.0236) (0.0196) (0.0094) (0.0071)

0.9 £4 0.2600 0.2531 0.2499 0.2505 0.2623  0.2555 0.2501 0.2511
(0.0363) (0.0300) (0.0150) (0.0111) (0.0244) (0.0210) (0.0092) (0.0073)

Lo 0.2571  0.2479 0.2472  0.2488 0.2571 0.2504 0.2476  0.2502
(0.0351) (0.0278) (0.0142) (0.0109) (0.0220) (0.0191) (0.0092) (0.0072)

L 0.2492  0.2480 0.2495  0.2501 0.2515 0.2502 0.2493 0.2506
(0.0338) (0.0277) (0.0152) (0.0105) (0.0230) (0.0192) (0.0091) (0.0071)

Table 4 — Mean estimate (and standard deviation) of the standard deviation o2 over 100 replicates using
the L4, Lz and L likelihood function with m = 20 and 50 symbols aggregating ns = 5,10,50 and 100
observations.
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Figure B.1 — Construction methods for bivariate intervals using marginal minima/maxima (top panels)
or marginal order statistics (bottom). Top panels: Illustrative random rectangles constructed from 2 points
(high correlation), 3 points (moderate correlation) and 4 points (low/no correlation). Bottom panels: Three
alternative construction methods: marginal only (left panel), sequential nesting (centre; equation )
and iterative segmentation (right; equation ) Values in blue (red) denote the number of observations
in the area bounded by blue (red) lines.

ns = 60 ns = 300

Orders o1 p o2 o1 p o2
L1z (6,55,3,3) 0.4975 -0.7133 0.4929 0.4999 -0.7133 0.4896
(0.0121) (0.0497) (0.0393) (0.0060) (0.0472) (0.0320)

(16,45,10,2) 0.4987 -0.7325  0.4966 0.4994 -0.7215 0.4983
(0.0162) (0.0932) (0.0277) (0.0075) (0.1051) (0.0248)

(20,41,7,14) 0.5004 -0.7108  0.4869 0.4993 -0.7128  0.4771
(0.0180) (0.0363) (0.0444)  (0.0080) (0.0275) (0.0453)

L1y (3,3,6,55) 0.4900 -0.7130  0.4993 0.4915 -0.7127  0.4984
(0.0288) (0.0517) (0.0147) (0.0326) (0.0447) (0.0061)

(10,2,16,45) 0.4915 -0.7327  0.4982 0.4955 -0.7284  0.4985
(0.0228) (0.1020) (0.0163)  (0.0238) (0.0999) (0.0077)

(7,14,20,41) 0.4802 -0.7155  0.4990 0.4850 -0.7096  0.4981
(0.0424) (0.0335) (0.0205) (0.0401) (0.0253) (0.0101)

Loz (6,55,5,35) 0.4974 -0.6912 0.5106 0.4998 -0.6596  0.5040
(0.0124) (0.2625) (0.0472)  (0.0060) (0.2790) (0.0410)

(16,45,6,24) 0.4986 -0.6933  0.5289 0.4994 -0.6606 0.5144
(0.0164) (0.1854) (0.0949) (0.0075) (0.2146) (0.0856)

(20,41,5,16) 0.5004 -0.6699  0.5231 0.4993 -0.6790 0.5201
(0.0184) (0.1963) (0.0987) (0.0080) (0.1753) (0.0919)

Loy (5,35,6,55) 0.4979 -0.6423 0.4993 0.5006  -0.6405 0.4984
(0.0394) (0.2486) (0.0148) (0.0364) (0.2746) (0.0061)

(6,24,16,45) 0.5060 —0.6447  0.4981 0.5223 -0.6726  0.4985
(0.0859) (0.2168) (0.0162) (0.0910) (0.2231) (0.0078)

(5,16,20,41) 0.5054 -0.6396  0.4991 0.5141 -0.6451  0.4981
(0.0999) (0.1981) (0.0206) (0.1018) (0.2205) (0.0101)

Table 5 — Mean estimate (and standard deviation) of (o1 = 0.5,p = —0.7,02 = 0.5) over 100 replicates
using the L1z, L1y, L2, and Lay likelihood functions with m = 20 symbols aggregating ns = 60 and 300
observations. The orders are multiplied by 5 for ns = 300.
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ns = 60 ns = 300

Orders o1 o o2 o1 p o2
L1z (6,55,3,3) 0.4980 -0.0048 0.4856 0.4998 0.0008 0.4838
(0.0126) (0.0519) (0.0546) (0.0059) (0.0205) (0.0584)
(16,45,10,2) 0.4968 -0.0353 0.4777 0.5001 -0.0260 0.4881
(0.0157) (0.0828) (0.0520) (0.0076) (0.0653) (0.0514)
(20,41,7,14) 0.4957 0.0214 0.4846 0.4990 0.0184 0.4829
(0.0186) (0.0618) (0.0547) (0.0099) (0.0566) (0.0527)
L1y (3,3,6,55) 0.4830 0.0074 0.4984 0.4775 0.0004 0.4995
(0.0538) (0.0524) (0.0141) (0.0516) (0.0272) (0.0058)
(10,2,16,45) 0.5006 —0.0055 0.4984 0.4762 -0.0391 0.4986
(0.0491) (0.0752) (0.0151) (0.0563) (0.0743) (0.0063)
(7,14,20,41) 0.4804 0.0270  0.5005 0.4852 0.0163 0.4984
(0.0577) (0.0697) (0.0174) (0.0494) (0.0525) (0.0089)
Loz (6,55,5,35) 0.4980 0.0183  0.5235 0.4998 -0.0191 0.5216
(0.0126) (0.4156) (0.0322) (0.0059) (0.3888) (0.0301)
(16,45,6,24) 0.4968 0.0670  0.5329 0.5001 -0.0172 0.5307
(0.0157) (0.3490) (0.0612) (0.0076) (0.3375) (0.0572)
(20,41,5,16) 0.4957 0.0847  0.5394 0.4990 -0.0018 0.5355
(0.0186) (0.3747) (0.0551) (0.0099) (0.3671) (0.0508)
Loy (5,35,6,55) 0.5252  0.0024  0.4983 0.5235 0.0261  0.4995
(0.0412) (0.4303) (0.0142) (0.0306) (0.4018) (0.0058)
(6,24,16,45) 0.5382 —-0.0048 0.4983 0.5359 0.0240 0.4986
(0.0532) (0.3863) (0.0151) (0.0558) (0.3647) (0.0063)
(5,16,20,41) 0.5343 -0.0024 0.5005 0.5434  0.0080 0.4984
(0.0586) (0.3645) (0.0174) (0.0569) (0.3855) (0.0089)

Table 6 — Mean estimate (and standard deviation) of the (o1 = 0.5,p = 0,02 = 0.5) over 100 replicates
using the L1, L1y, L2, and Lay likelihood functions with m = 20 symbols aggregating ns = 60 and 300

observations.
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Figure B.2 — Symbolic datasets with m = 20 resulting from the aggregation of bivariate normal data
with correlation p = —0.7, using (left) and (right). The red and blue colours represent ) 2
and T(y,),2 the first and third panels and x(;;y,; and x(,,),1 for the second and fourth panels. From left to
right, the orders are (16,45,10,2), (10,2, 16,45),(20,41,5,16) and 5,16,20,41.
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Figure B.3 — Symbolic datasets with m = 20 resulting from the aggregation of bivariate normal data
with correlation p = 0, using (left) and (right). The red and blue colours represent (;,» and
T(uy),2 the first and third panels and z(;,),; and z(y,),1 for the second and fourth panels. From left to
right, the orders are (16,45, 10,2), (10,2, 16,45), (20,41, 5, 16) and 5, 16,20, 41.






Appendix C

Chapter [5: Simulation and Real

data analysis graphs

C.1 Simulation outputs for 1-component Gaussian model

overall temporal mean effects
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log(PNC)

8.0

T T T T T
0 50 100 150 200 250 300

hour of the week

Figure C.1 — The simulated overall mean
trend (a + B¢ + (B0):), shown in red dashed
line

The green dashed lines are posterior bounds
of 95% credible interval fitted using Equa-
tion with 95% credible interval region
shaded in grey. The blue dashed lines are
posterior bounds of 95% credible interval
fitted using symbolic likelihood function in

Equation .

marginal hour of the week effects

log(PNC)
-02 0 02

-0.4

T T
0 50 100 150

hour of the week

Figure C.2 — The simulated marginal joint
daily-weekly effects B; which repeats weekly,
shown in red line

The green dashed lines are posterior bounds
of 95% credible interval fitted using Equa-
tion with 95% credible interval region
shaded in grey. The blue dashed lines are
posterior bounds of 95% credible interval
fitted using symbolic likelihood function in

Equation .

C.2 Simulation outputs for 2-component Gaussian model
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marginal day of year effects

0.4

0.2

log(PNC)
0.0
|

day of the year

Figure C.3 — The simulated marginal annual effects (B); over a 2-week period, shown in red
line.

The green dashed lines are posterior bounds of 95% credible interval fitted using Equation ([5.2)
with 95% credible interval region shaded in grey. The blue dashed lines are posterior bounds of
95% credible interval fitted using symbolic likelihood function in Equation (5.3.1)).
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mixture overall location 1

95 10.0 105

log(PNC)
0

hour of the week

Figure C.4 — The simulated mixture loca-
tions 1 (a1 + B¢1 + (B6),), shown in red line
The green dashed lines are posterior bounds
of 95% credible interval from Equation
with 95% credible interval region shaded in
grey. The blue dashed lines are posterior
bounds of 95% credible interval fitted us-
ing symbolic likelihood function in Equation
(15.3.1)).

mixture overall location 2

11.0

105

10.0

log(PNC)
5

90

Figure C.5 — The simulated mixture loca-
tions 2 (g + B + (B6):) , shown in red line
The green dashed lines are posterior bounds
of 95% credible interval from Equation
with 95% credible interval region shaded in
grey. The blue dashed lines are posterior
bounds of 95% credible interval fitted us-
ing symbolic likelihood function in Equation
(5.3.1)).

C.3 Simulation outputs for Model Selection
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marginal hour of the week effects mixture 1

log(PNC)
0

hour of the week

marginal hour of the week effects mixture 2

log(PNC)

Figure C.6 — The simulated marginal joint
daily-weekly 8 = (:1,0t2 ), shown in red
lines.

The green dashed lines are posterior bounds
of 95% credible interval from Equation
with 95% credible interval region shaded in
grey. The blue dashed lines are posterior
bounds of 95% credible interval fitted us-
ing symbolic likelihood function in Equation
(15.3.1]).

mixing weights
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Figure C.7 — The simulated time-varying
mixing weights in red line.

The green dashed lines are posterior bounds
of 95% credible interval from Equation
with 95% credible interval region shaded in
grey. The blue dashed lines are posterior
bounds of 95% credible interval fitted us-
ing symbolic likelihood function in Equation
(5.3.1).

Figure C.8 — The simulated marginal annual effects shown in red. The green dashed lines are
posterior bounds of 95% credible interval from Equation (5.3)) with 95% credible interval region
shaded in grey. The blue dashed lines are posterior bounds of 95% credible interval fitted using

symbolic likelihood function in Equation (5.3.1)).
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Figure C.9 — The fitted hourly density for simulations described in Section m The red line
represents the true density (1-component Gaussian distribution) and the green line represents
the posterior density from correct 1-component model fitted with classical data while the
blue line represents the posterior density from correct l-component model fitted with 5-
quantile histogram.
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Figure C.10 — 8 randomly chosen hourly densities for simulations described in Section The
red line represents the true density (1-component Gaussian distribution) and the green line
represents the posterior density from incorrect 2-component model fitted with classical
data while the blue line represents the posterior density from incorrect 2-component model
fitted with 5-quantile histogram.
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Figure C.11 — 8 randomly chosen hourly densities for simulations described in Section The
red line represents the true density (2-component Gaussian distribution) and the green line
represents the posterior density from correct 2-component model fitted with classical data
while the blue line represents the posterior density from correct 2-component model fitted

with 5-quantile histogram.
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Figure C.12 — 8 randomly chosen hourly densities for simulations described in Section The
red line represents the true density (2-component Gaussian distribution) and the green line
represents the posterior density from incorrect 1-component model fitted with classical
data while the blue line represents the posterior density from incorrect 1-component model
fitted with 5-quantile histogram.
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