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Abstract

This dissertation is composed of three stand-alone research projects on the valuation

of contingent claims.

The first essay proposes an extension of the Kou (2002) double exponential jump-

diffusion model. Displacing the two exponential tails introduces additional degrees of

asymmetry in the jump size distribution. The model dynamics are supported by a general

equilibrium framework. Our main contribution is to derive closed-form solutions for

European plain vanilla options. A further extension to displaced gamma tails is possible

while retaining full analytical tractability. We propose an efficient routine to estimate the

physical model parameters through maximum likelihood. Our empirical analysis covers a

diverse sample of assets across equities, commodities and foreign exchange. We find that

for the vast majority of assets, the original Kou (2002) model can be rejected in favour of

our newly introduced displaced double exponential dynamics.

The second essay proposes an approach to valuation and risk management of deferred

start barrier options within the Black and Scholes (1973) framework. We provide closed-

form solutions which are functions of the implied volatility smile. Our barrier options are

contingent claims on two perfectly correlated assets that diffuse with different volatilities.

While the terminal payoff is a function of one of the assets, the barrier trigger is determined

by the path of the other. To mitigate the dynamic hedging problems associated with

large discontinuous sensitivities, we suggest the application of an additional exponential

bending of the barrier close to maturity. By generalizing the method of images, we obtain

closed-form solutions for both deferred start piecewise exponential barrier options and

associated rebates.

The third essay models logarithmic asset prices under the physical probability measure

as additive jump-diffusion processes. The corresponding risk-neutral probability measure

is defined through an Esscher transform. We are interested in the conditions under

which the jump size distributions under the two probability measures fall into the same

parametric class. We show that it is both necessary and sufficient for the jump size
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distribution to follow a natural exponential mixture family at all points of time. Examples

for applications of this result in financial engineering are provided.
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Chapter I

Introduction

The recent decades since the opening of the Chicago Board Options Exchange (CBOE) in

1973 have seen a substantial increase of the global turnover in contingent claims. The Bank

for International Settlement (2013) reports a total notional amount outstanding of 685,039

billion USD as of December 2012, 92.34% of which is attributed the over-the-counter

(OTC) market. This amounts to a more than fourfold increase over a period of ten years,

despite the global financial crisis of 2007 and 2008 which had a particularly strong and

negative impact on the market for credit derivatives. Figure I.1 shows the corresponding

time series for equity, commodity and foreign exchange underlying assets. This increased

trading volume can be both attributed to a higher liquidity in standard derivative products,

such as forwards and plain vanilla options, and the increased popularity of more exotic

payoff profiles.

These developments represent major challenges to academics and practitioners alike.

(i) First, they necessitate the development of consistent valuation frameworks that

are both able to reflect the stylized empirical facts of the historical time series of

returns and jointly explain the cross section of observable contingent claim prices. In

particular, this commonly involves a calibration of the risk-neutral model dynamics

to the Black and Scholes (1973) implied volatility surface for plain vanilla options.

(ii) Second, the increased liquidity in so-called flow derivatives, which are traded in

continuous markets and include, among others, plain vanilla, binary and barrier

options, creates a need for pricing functions that are numerically stable and fast to

evaluate. As computational resources are limited, this objective is usually conflicting

with the one previously mentioned. Often, model complexity is sacrificed for the

ability to price contingent claims in closed-form.

(iii) Lastly, they demand for a robust dynamic hedging and risk management. This is

especially crucial for contingent claims that exhibit discontinuities in their payoff

profile.
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Figure I.1: Total amounts outstanding of OTC derivatives on foreign exchange,

equities and commodities in billion USD. The y-axis is scaled logarithmically.

Source: Bank for International Settlement quarterly reviews.

This dissertation is composed of three independent research projects, each of which is

concerned with one or more of the above objectives. Our analysis applies to equity,

commodity and foreign exchange markets alike. In what follows we briefly outline the

research questions in Chapters II through IV. Each chapter is self-contained and presents

a more detailed motivation as well as an extensive literature review. Chapter V briefly

concludes this dissertation, summarizes its main contributions and discusses potential

avenues of future research.

In Chapter II, we expand on previous work by Kou (2002) and propose a novel jump-

diffusion model for asset prices. One of the key feature of our dynamics is their highly

flexible jump size distribution, which generalizes the Kou (2002) double exponential model

in two directions. First, it independently displaces the two exponential tails away from the

origin. Second, it allows for each of the displaced tails to follow a gamma distribution with

an integer-valued shape parameter. The newly introduced degrees of freedom represent

additional means to control the higher moments of the corresponding logarithmic return

distribution. Despite its increased complexity, our model still admits closed-form solutions

for European plain vanilla options, thus pushing the boundary of the aforementioned

trade-off between Objectives (i) and (ii). To provide an economic foundation of our

proposed dynamics, we show that they are supported by an equilibrium economy in which

a representative agent faces a infinite horizon consumption and portfolio choice problem.

2



This equilibrium also implies a risk-neutral probability measure under which both the

diffusion and jump risk are priced.

This extension is not only academically interesting but succeeds at capturing statistical

properties that are consistently present in asset returns. We advocate the use of maximum

likelihood estimation to infer the physical model parameters from the historical time

series of logarithmic returns due to its asymptotic efficiency. It furthermore requires

no discretionary choices when defining the estimation objective. A computationally

efficient routine to simultaneously evaluate the likelihood function for the full time series

is discussed. Based on a diverse sample of assets, we find strong empirical support for

non-zero displacements. The original Kou (2002) model can be rejected in favor of our

newly introduced model dynamics in all cases.

Chapter III discusses the valuation and risk management of deferred start barrier

options, where the monitoring window is limited to the some closed interval including

the option maturity. It is related to the Objectives (ii) and (iii) above. When

the underlying dynamics do not follow a constant coefficient Brownian motion, these

contingent claims generally need to be priced through numerical approximation routines

due to the complexity of their payoff profiles. However, even within the Black and Scholes

(1973) setting, it is not clear how the diffusion coefficient should be chosen when the

implied volatility exhibits a strike-dependent smile pattern. One remedy to this problem is

to use an outside barrier option approach, where the terminal payoff and the barrier trigger

are determined by two distinct but perfectly correlated assets that diffuse at different

volatilities. We show that this is equivalent to valuing a deferred start exponential barrier

option on a single asset.

While this so-called two-volatility approach yields a smile adjusted pricing, it does

not by itself improve the robustness of the corresponding replication portfolios in real-

world markets. The dynamic risk-management of reverse knock-out barrier options is

particularly challenging due to the discontinuity in their payoff profiles. They exposes the

holder of the short position to a substantial gap risk when the underlying asset price does

not evolve as a pure diffusion process but exhibits jumps. To mitigate this problem, we

suggest to employ a functional form for the barrier shift that explicitly takes the time-

dependent nature of the risk exposure into account. We show that there again exists an

equivalent single asset valuation problem in terms of a deferred start piecewise exponential

barrier option.

3



The second half of Chapter III derives the prices for these types of contingent claims

and their associated rebates. It represents our main contribution. The valuation problem is

simplified considerable by introducing the image operator for exponentially bent barriers.

We explicitly establish its connection to an appropriately chosen coordinate transformation

applied to the Black and Scholes (1973) partial differential equation and the evaluation

of a risk-neutral conditional expectation. By considering the contingent claims as nested

compound options, we can iteratively derive their valuation functions, moving backwards

in time. We obtain closed-form solutions in terms of higher-order binary options and their

respective images that can be readily evaluated using standard statistical libraries. A

Monte Carlo simulation study confirms that a time-dependent barrier shift ceteris paribus

yields more robust dynamic hedges.

Chapter IV considers a model-independent question related to the class of additive

jump-diffusion dynamics. It is linked to Objective (i) above. We consider logarithmic

asset prices that follow a jump-diffusion process with a possibly time-dependent jump

intensity and jump size distribution. The corresponding risk-neutral measure is generally

not unique, if it exists. A common construction is to define the Radon-Nikodým derivative

process through an Esscher transform of the logarithmic return process; see for example

Gerber and Shiu (1994). We are interested in conditions under which the jump size

distributions under the two probability measures fall into the same parametric class. We

argue that this is not only a desirable property from a modeling point of view but it

also simplifies the valuation problem for European plain vanilla options considerably.

Our main finding is that additive jump-diffusion processes whose jump sizes follow a

natural exponential mixture distribution at all points in time are closed under an Esscher

transform measure change. Furthermore, we fully characterize the dynamics under the

new probability measure and illustrate our results through various examples.
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Chapter II

Analytical Option Pricing under a
Displaced Double Exponential Jump-
Diffusion Model

We propose an extension of the Kou (2002) jump-diffusion model. By

independently displacing each of the two exponential tails of the jump size

distribution away from the origin, we introduce additional flexibility in the

tails of the corresponding return distribution. Our model is supported by an

equilibrium economy and we obtain closed-form solutions for European plain

vanilla options. Our solution is computationally fast to evaluate and robust

across the full parameter space. We further allow generalization to displaced

gamma tails while retaining full analytical tractability. We propose an efficient

routine to estimate the physical model parameters through maximum likelihood.

Our empirical analysis covers a diverse sample of equities, commodities and

exchange rates. For all assets, the original Kou (2002) model can be rejected

in favor of our newly introduced asymmetrically displaced double exponential

dynamics.

Keywords: displaced double exponential, jump-diffusion, option pricing,

maximum likelihood estimation

JEL Classification: C13, G13
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II.1 Introduction

Over the 40 odd years since the publication of the seminal articles by Black and Scholes

(1973) and Merton (1973), a large strand of the option pricing literature has been devoted

to generalizing the mostly unrealistic assumption of the underlying asset price following

a geometric Brownian motion and the corresponding normal distribution of logarithmic

returns. This misspecification is unveiled in the model’s strong pricing biases first reported

by Rubinstein (1985); see also the review in Bates (1996a). The central issue in this field

is thus to develop price dynamics that are both consistent with the observed option prices

and the empirical properties of the return distribution.

While option valuation through Monte Carlo simulation is possible even under

very general assumptions, the availability of computational fast and numerically stable

algorithms is crucial for their practical applicability. Computational speed is particularly

important for the class of European plain vanilla options, as these are usually liquidly

traded and serve as the reference prices that the risk-neutral model parameters are

calibrated against. It is thus of high interest to develop generalized model dynamics that

still admit a (quasi-)analytical solution for European plain vanilla call and put options.

Analytical or closed-form solutions are those, where the option price can be expressed

in terms of a (possibly infinite) series of elementary and special functions. We explicitly

distinguish analytical solutions from quasi-analytical ones, which might also involve limits

of some kind. In particular, this excludes expressions in terms of integrals which have to

be evaluated through numerical quadrature routines. The distinction, though essential,

is often ignored in the literature. In what follows, we briefly discuss the most important

models and classify them accordingly. This overview is by no means exhaustive.

II.1.1 Literature Review

Very few non-trivial models admit genuine analytical solutions. First among these

is Merton (1976), who extends the geometric Brownian motion by introducing normally

distributed compound Poisson jumps to the logarithmic stock price process. The jumps

are considered to represent purely idiosyncratic shocks and are thus not priced. European

plain vanilla options can be valued analytically through an infinite summation over Black

and Scholes (1973) prices with exponentially decaying summands. Cox and Ross (1976)

consider various alternative pure diffusion and pure jump models, where the jump size is a
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non-random function of the stock price immediately preceding it. This assumption renders

the contingent claims redundant assets and allows for perfect replication. The authors

obtain closed-form solutions in the special cases of proportional jumps, constant volatility

and proportional variance. Kou (2002) introduces asymmetry to the discontinuous return

component by modeling the jumps to follow a double exponential (DE) distribution. He

derives closed-form expressions for the tail probabilities under the two relevant pricing

measures; see also Kou and Wang (2003, 2004).

To account for the heteroscedasticity observed in empirical returns, several different

stochastic volatility models have been suggested. Wiggins (1987) models the logarithmic

volatility as an Ornstein-Uhlenbeck process correlated with the underlying asset and relies

on a two-dimensional finite difference scheme for pricing. Hull and White (1987) show that

when volatility risk is non-systematic, the values of European plain vanilla option can be

expressed in a quasi-analytical fashion as the Black and Scholes (1973) price integrated

over the distribution of the mean variance until maturity, given that at least the latter

is known in closed-form. Stein and Stein (1991) also consider the case of independent

spot and volatility dynamics and show that while the density of the mixing distribution is

not available when the volatility follows an Ornstein-Uhlenbeck process, its characteristic

function can be obtained in closed-form. This allows the authors to price general European

contingent claims through Fourier inversion in terms of a double integral, which has to be

evaluated numerically.

In a seminal paper, Heston (1993) models the stock price as a diffusion process

whose variance itself follows a Cox et al. (1985) square-root process. Given closed-

form expressions for the characteristic functions of the logarithmic terminal spot price

under the two relevant numéraires, he obtains the corresponding exercise probabilities

through a numerical Fourier inversion. This model independent approach yields European

plain vanilla option pricing formulas, which are very similar in structure to the ones

obtained by Black and Scholes (1973). Quasi-analytical Fourier techniques have since

been widely applied to contingent claim valuation since the characteristic function of

the logarithmic asset prices is often available under more complex underlying dynamics.

We refer to Carr and Madan (1999), Lewis (2001) and Attari (2004) for alternative

pricing representations. Bakshi and Madan (2000) provide an economic foundation for

valuation using the characteristic function, by showing that it represents an equivalent

basis for spanning the payoff universe of most contingent claims. Bates (1996b) adds

independent Merton (1973) type jumps to the spot price process. Scott (1997) augments
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the Heston (1993) stochastic volatility model by a correlated Cox et al. (1985) process for

the instantaneous risk-free interest rate and suggests a martingale approach for computing

the characteristic functions. Based on these results, Schöbel and Zhu (1999) derive a

solution to the characteristic function of the correlated Stein and Stein (1991) model.

Bakshi et al. (1997) empirically test different special cases of the Bates (1996b) stochastic

volatility and jump-diffusion model with an independent Cox et al. (1985) short-rate

process. Duffie et al. (2000) unify much of the previous theoretical work by showing

that an affine structure of the drift, covariance matrix, jump intensity and instantaneous

interest rate allows us to obtain the Fourier transforms of the relevant random variables

in terms of a system of ordinary differential equations (ODEs).

The main limitation of the approaches discussed above is their sole reliance on

compound Poisson processes as the sources of jumps. An alternative strand of the

literature focuses on modeling the logarithmic stock prices as Lévy processes, which

encompass time-homogeneous jump-diffusions as special cases. All relevant models within

this class also admit closed-form solutions for the corresponding characteristic functions.

Thus, quasi-analytical Fourier techniques can be applied to price European plain vanilla

options. Madan et al. (1998) model logarithmic stock prices through a variance gamma

process; see also Madan and Senata (1990) and Milne and Madan (1991). They subject

a drifted Brownian motion to an independent random time-change given by a gamma

process. Barndorff-Nielsen (1998) discusses normal inverse Gaussian processes, where

the time-change is given by an independent inverse Gaussian process. Barndorff-Nielsen

and Shephard (2001a,b) propose a stochastic volatility model where the instantaneous

variance follows a non-Gaussian Ornstein-Uhlenbeck process driven by an independent

Lévy subordinator. It allows for simultaneous jumps in the logarithmic return and the

volatility processes. Non-Gaussian Ornstein-Uhlenbeck processes are characterized by

their stationary distribution; common choices are the inverse Gaussian and the gamma

distributions. Geman et al. (2001) consider asset prices driven by purely discontinuous

time-changed Brownian motions. Carr et al. (2003) incorporate volatility clustering

effects by subjecting various Lévy processes to a stochastic clock whose instantaneous

activity follows either a Cox et al. (1985) square-root process or a non-Gaussian Ornstein-

Uhlenbeck process. Carr and Wu (2004) capture the leverage effect in equity markets by

correlating the Lévy process and the time-change. They retain analytical tractability of

characteristic functions by introducing a complex-valued auxiliary measure under which

the leverage effect vanishes.
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We emphasize that, despite its fairly general applicability and widespread use, a

numerical implementation of the Fourier inversion technique that is both fast and stable

for the whole parameter space is very intricate. Nevertheless, or maybe even because

of its non-trivial nature, most authors avoid an explicit discussion of this issue. The

first remark hinting at its inherent complexity can be found in Footnote 7 of Schöbel

and Zhu (1999), p. 28. In what follows, we present a brief overview of three typical

numerical issues encountered when implementing this approach. While focusing on the

representation proposed by Carr and Madan (1999), similar problems arise in alternative

formulations of the pricing equations such as in for example Heston (1993), Lewis (2001)

or Attari (2004).

First, and as already noted by Carr and Madan (1999), the integrand in their approach

becomes highly oscillatory for options that are far out-of-the-money relative to their

maturity, thus exacerbating the pricing problem. To circumvent this issue, they consider

the Fourier transform of the time value only. Alternatively, Andersen and Andreasen

(2002) and Joshi and Yang (2011) suggest to employ the Black and Scholes (1973) model

as a control variate, thus stabilizing the numerical Fourier inversion.

Second, the lack of integrability of the European call option price as a function of the

logarithmic strike price requires the use of either a dampening factor as in Carr and Madan

(1999) or the generalized Fourier transform as in Lewis (2001), where the integration is

carried out along a horizontal strip of regularity in the complex plane. As shown by Lord

and Kahl (2007), there exists an optimal choice for this contour of integration. It is chosen

to minimize the cancellation error that arises due to the limited machine precision when

numerically evaluating the integral for far out-of-the-money options; see also Lee (2004),

who suggests to minimize the total error from both the numerical evaluation and the

necessary truncation of the upper limit of integration.

Finally, the computation of the characteristic functions themselves is not as straight-

forward as it may seem due to the presence of complex logarithms and square roots.

As first explicitly discussed in Schöbel and Zhu (1999), always evaluating the complex

logarithms at their principal branch leads to discontinuities. Kahl and Jäckel (2005)

propose a rotation-count algorithm that keeps track of the number of crossings of the

negative real axis to overcome this problem; see also Lord and Kahl (2006). Albrecher

et al. (2007) obtain a representation of the Heston (1993) characteristic function which is

numerically stable in an unrestricted parameter space. Lord and Kahl (2010) generalize
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this result by showing that there exists a formulation of the characteristic function for

affine jump-diffusion models where the principal branch is the correct choice.

Lastly, we briefly review some classes of models within which European plain vanilla

options need to be priced through purely numerical methods. The most important of these

are the local volatility or implied diffusion models proposed by Dupire (1994), Rubinstein

(1994), Derman et al. (1995) and Derman et al. (1996). Here, the underlying asset price

follows an Itō process. Dupire (1994) shows that an arbitrage-free continuum of European

plain vanilla option prices implies a unique time-and-state-dependent diffusion coefficient.

While this model perfectly matches any market implied volatility surface, its assumptions

about the underlying dynamics largely contradict empirical evidence and yield unrealistic

forward implied volatility smiles. Andersen and Brotherton-Ratcliffe (1997) propose an

unconditionally stable finite difference lattice for the corresponding partial differential

equation. It is first calibrated through forward induction and subsequently evaluated

subject to contract-specific terminal and boundary conditions.

II.1.2 Contribution

The previous survey highlights the apparent trade-off between the generality of the

model dynamics and the computational tractability of the associated valuation functions.

While analytical expressions for the prices of plain vanilla options are often hard to derive

in the first place, their numerical implementation is usually straightforward. Besides its

preference independence, this is one of the major reasons for the success of the Black and

Scholes (1973) option pricing model. Despite their usually faster computational speed,

analytical solutions are also superior in terms of numerical stability over the full range of

model parameter values. As discussed in Section II.1.1 above, there are many intricacies

to be considered in the implementation of quasi-analytical or purely numerical techniques.

Closed-form solutions for special cases of these models can serve as pricing benchmarks

for their implementation. The higher the complexity of the benchmark dynamics is, the

larger the parameter space is which can be used for testing the numerical results.

The contribution of this chapter to the literature is fourfold. First, we introduce

a new generalization of the Kou (2002) model that allows for the jump sizes to follow

an asymmetrically displaced double exponential (AD-DE) distribution. We derive the

statistical properties and propose two approaches to obtain the spot price dynamics under

a martingale measure. Second, we show that the model still admits genuinely closed-
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form solutions for the prices of European plain vanilla options. Although our valuation

function appears quite formidable, it is composed entirely of elementary functions that

can be readily implemented. Third, we demonstrate that these results can be further

generalized to an asymmetrically displaced double gamma (AD-DG) distribution for the

jump sizes while still maintaining full analytical tractability. Fourth, we estimate the

model parameters under the physical probability measure through maximum likelihood

(ML) estimation and based on the historical time series of returns. Our empirical analysis

covers a diverse sample of assets, from equity indices over commodity indices to foreign

exchange. Statistical tests confirm that for all assets, the asymmetric displacements

provide a significantly better fit to the data than both the models with symmetric and no

displacements.

The motivation for the generalizations introduced in this chapter is based on the

symmetrically displaced double exponential (SD-DE) jump-diffusion dynamics considered

by Weber and Wystup (2008) and Detering et al. (2011, 2013). These authors are

interested in the performance of different investment strategies for equity-linked retirement

plans. They do not consider the valuation problem for European plain vanilla options but

instead analyze path-dependent payoff structures under stochastic interest rates. This

necessitates the valuation through Monte Carlo simulations. In contrast, this chapter’s

main contributions is to show that a closed-form solution for European plain vanilla options

can be obtained even when considering two further generalizations of their dynamics,

asymmetric displacements and gamma tails, both of which are novel. This key property

sets our model dynamics apart from other possible parametrizations that might find equal

empirical support.

The remainder of this chapter is organized as follows. Section II.2 defines the physical

dynamics of the AD-DE jump-diffusion model and derives its statistical properties.

Section II.3 discusses two possible constructions of the risk-neutral probability measure.

In Section II.4, we show that there exists a model economy such that the asset price

follows the postulated dynamics in equilibrium. Section II.5 derives closed-form solutions

for European plain vanilla options. Section II.6 further generalizes the model dynamics to

jump sizes that follow an AD-DG distribution. Section II.7 discusses alternative estimation

approaches based on the time series of logarithmic returns. In Section II.8, we describe the

data set and apply ML estimation to infer the physical model parameters. Statistical tests

confirm that the newly introduced displacement terms are significant for a wide variety

of underlying assets. Finally, Section II.9 summarizes and concludes the chapter. The
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appendices provide the derivations of various technical results and present the empirical

estimation results.

II.2 Model Setup

Let W = {Wt : t ∈ [0, T ∗]} be a standard one-dimensional Brownian motion, N =

{Nt : t ∈ [0, T ∗]} be a one-dimensional Poisson process and (Yi)i∈N be a sequence of

independent and identically distributed (i.i.d.) random variables on a complete filtered

probability space (Ω,F,F,P). We interpret P to be the physical or real-world probability

measure, and we consider continuous trading in the interval [0, T ∗] for a fixed terminal

time 0 < T ∗ < ∞. The filtration F = (Ft)t∈[0,T ∗] is the P-augmentation of the natural

filtration induced by the processes W and N and the sequence of random variables (Yi)i∈N,

that is

Ft = σ (Wu, Nu : u ∈ [0, t];Yi : i ∈ {1, 2, . . . , Nt}) ∨N ,

where N are the corresponding P-null sets. This construction ensures the right-continuity

of F; see for example Proposition II.7.7 in Karatzas and Shreve (1991), p. 90. We further

assume that the processes W and N as well as the sequence of random variables (Yi)i∈N

are independent. The Poisson process N has a constant intensity of λ ∈ R+, and each

random variable Yi follows the probability density function (PDF) f(x).

The frictionless market consists of two assets. The first is a non-dividend paying

limited liability spot asset S = {St : t ∈ [0, T ∗]}, which later serves as the underlying asset

for contingent claims. In the empirical analysis of Section II.7, we consider S to be the spot

or futures price of an equity (index) and a commodity as well as the spot exchange rate

between two currencies. The second asset is a money market account B = {Bt : t ∈ [0, T ∗]}
with non-random dynamics

dBt = rBtdt,

where the risk-free interest rate r ∈ R is a constant and B0 = 1. Imposing non-random

interest rates is necessary to obtain a tractable closed-form solution. As shown by Scott

(1997), the variability of actual interest rates has very little impact on the prices of short-

term options. Due to the presence of the randomly distributed jumps, this market is
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in general incomplete in the Harrison and Pliska (1981) sense. Consequently, contingent

claims are not redundant assets and cannot be priced by pure no-arbitrage arguments.

II.2.1 Physical Spot Price Dynamics

The logarithmic yield Xt = ln (St/S0) with S0 > 0 follows a time-homogeneous jump-

diffusion process of the form

Xt = γt+ σWt +

Nt∑
i=1

Yi (II.1)

under P, where the drift term γ ∈ R and the diffusion coefficient σ ∈ R+ are constants.

The random variables Yi follow an AD-DE distribution defined by

Yi ∼


ξ+ with probability p ∈ [0, 1]

−ξ− with probability 1− p
,

where ξ+− κ+ and ξ−+ κ− are exponential random variables with means 1/η+ and 1/η−

respectively. We require that the two parameters controlling the tail behavior of the jumps

satisfy η+ > 1 and η− > 0. The former condition is necessary to be able to compute the

drift-compensator in Section II.3. However, since X is the logarithmic asset return, it

corresponds to the mean size of an upward jump being less than 100%. Consequently, this

restriction should not be binding in any real-world implementation in equity, commodity

or foreign exchange markets. The displacement terms satisfy κ− ≤ 0 ≤ κ+ and each jump

is positive with probability p ∈ [0, 1]. The corresponding jump size density is given by

f(x) = pη+e−η+(x−κ+)1{x ≥ κ+}+ (1− p)η−eη−(x−κ−))1{x ≤ κ−},

with mean

E [Yi] = p

(
κ+ +

1

η+

)
+ (1− p)

(
κ− −

1

η−

)
.

We refer to Appendix II.B.1 for details. This parametrization nests the original Kou

(2002) double exponential jump size distribution as a special case when κ+ = κ− = 0.

Ramezani and Zeng (1999) independently propose the same model dynamics as Kou

(2002). However, the authors are solely interested in estimation and do not obtain

closed-form solutions for the corresponding transition densities. We obtain the Weber

and Wystup (2008) and Detering et al. (2011, 2013) model with symmetric displacements

by imposing κ− = −κ+. Figure II.1 shows a sample AD-DE jump size density.
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Figure II.1: Sample AD-DE jump size density for p = 40%, η+ = 80, η− = 60,

κ+ = +1.50% and κ− = −2.00%.

Introducing the additional displacement terms allows us to better disentangle the price

fluctuations caused by the diffusion and jump components, respectively, over discrete

time intervals. While jumps can be clearly identified as a discontinuity in continuous

observations, the effect of the two driving sources of uncertainty blends when samples are

discrete. In the original DE model, the jumps not only account for large changes in the

asset price but also contribute to the small noise in returns. This contradicts our intuition

that jumps are relatively rare events with significant absolute returns. Furthermore, the

displacements introduce an additional degree of asymmetry between jumps corresponding

to good and bad news, respectively, which is one of the main motivations that leads

Ramezani and Zeng (1999) to introduce two distinct exponential tails in the first place.

Lemma II.1 (Spot Price Dynamics).

The spot price dynamics are given by

dSt
St−

=

(
γ +

1

2
σ2

)
dt+ σdWt +

(
eYNt − 1

)
dNt.

Proof This follows immediately from applying the Itō formula for jump-diffusion

processes to the function f (t,Xt) = eXt ; see for example Proposition 8.14 in Cont and

Tankov (2004), p. 275. �
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As will be shown in Section II.3, the drift can be expressed in terms of the instantaneous

mean return µ ∈ R as

dSt
St−

=

(
µ− λ

(
p

η+

η+ − 1
eκ+ + (1− p) η−

η− + 1
eκ− − 1

))
dt+ σdWt +

(
eYNt − 1

)
dNt,

where the additional term is a compensator for the expected price change due to jumps.

It is instructive to discuss how we expect the parameters of the AD-DE model and

the original parameterization to relate to each other, when estimated based on the same

data set. Our analysis rests on the assumption that the newly introduced displacement

terms are both non-zero. First consider the special case where (i) the displacements are

symmetric around the origin and (ii) the two tail parameters coincide, that is κ+ = −κ−
and η+ = η−. Our objective is to keep the Lévy measure on the setA = (−∞, κ−]∪[κ+,∞)

unchanged when moving from the AD-DE to the DE model. The assumption behind this

is, that the tails of the return distribution can be well approximated by a linear exponential

decay. It requires that the two parameters controlling the tail decay agree under the two

models. In the special case where both (i) and (ii) hold, we then obtain

p̂ = p,

λ̂ = λeκ+η+ .

While the probability of an upward jump stays unchanged, the jump frequency increases.

Next, we analyze the effect of dropping only Assumption (i). We assume without loss

of generality (w.l.o.g.) that the lower displacement is larger in absolute terms, that is

κ+ < −κ−. The corresponding DE model parameters are given by

p̂ = peκ+η+/
(
peκ+η+ + (1− p)e−κ−η−

)
,

λ̂ = λ
(
peκ+η+ + (1− p)e−κ−η−

)
.

We find that the probability of an upward jump decreases and the jump frequency

increases. Next, we drop only Assumption (ii) and assume w.l.o.g. that the lower tail in

the AD-DE model is longer, that is η− < η+. The expressions for the two free parameters

in the absence of displacements are the same as before. Now, both the probability of an

upward jump and the jump frequency increase. Note that it is in general not possible to

relax both Assumptions (i) and (ii) simultaneously while still keeping the Lévy measure

on the set A unchanged. In actual estimations, we thus expect a trade-off between the
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Table II.1: The upper panel shows the parameters of the AD-DE model and

the corresponding estimated parameters of the original Kou (2002) DE model

including standard errors. The lower panel compares the cumulative distributions

for daily returns at different levels.

Parameter σ λ p η+ η− κ+ κ−

AD-DE 20.00% 15.00 40.00% 80.00 60.00 1.50% -2.00%

DE 19.48% 44.19 42.12% 76.41 57.34 - -

(0.08%) (2.21) (0.73%) (2.09) (1.45) - -

Return -4.50% -3.00% -1.50% 0.00% +1.50% +3.00% +4.50%

AD-DE 1.05% 2.87% 14.07% 50.63% 87.24% 98.25% 99.64%

DE 1.02% 2.88% 14.24% 51.10% 87.60% 98.29% 99.62%

two effects. While the jump frequency always increases, the sign of the change in the

probability of an upward jump might be both positive and negative. As argued before,

small jumps and diffusive changes are hard to distinguish on discrete time scales and thus

the diffusion coefficient should be lower in the DE model.

We sum up the preceding discussion on the differences in estimated model parameters

in the following three hypotheses. We expect these to hold for all markets under

consideration, conditional on the newly introduced displacement terms being statistically

significant in the AD-DE model. Their empirical validation is presented in Section II.8.

Hypothesis II.1. Compared to the AD-DE model, the empirical estimate of the diffusion

coefficient σ is smaller under DE model.

Hypothesis II.2. Compared to the AD-DE model, the empirical estimate of the arrival

rate λ is larger under the DE model.

Hypothesis II.3. Assume that the empirical estimate of the AD-DE model parameters

satisfy κ+ > −κ− (κ+ < −κ−) and η+ > η− (η+ < η−). Then the empirical estimate of

the probability of an upward jump is larger (smaller) under the DE model.

Hypothesis II.4. The empirical estimate of the tail parameters η+ and η− agree under

the AD-DE and the DE model.
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Figure II.2: Jump size densities for the AD-DE model (solid) and the correspond-

ing DE model (dashed). The parameters are given in Table II.1.

We illustrate these hypotheses using a numerical example. We assume that the risk-

neutral parameters of the AD-DE model are given by the values in the first row of the

upper panel of Table II.1. We then estimate the corresponding parameters of the DE model

using the ML routine described in Section II.7. The inference is based on a simulated time

series of daily logarithmic returns of length T = 100, 000. The estimated parameters and

their corresponding standard errors are given in the second and third rows of the upper

panel in Table II.1. In accordance with Hypotheses II.1 II.2, the diffusion coefficient is

lower and the jump frequency is higher under in the restricted model. Both differences

are significant at the 1% level. While the assumptions of Hypothesis II.3 are not met, we

observe that the exponential tails decay slower under the DE model with both difference

being significant at the 10% level. Figure II.2 compares the two Lévy measures that

correspond to the jump size density scaled by the respective jump intensity. We observe

that the Lévy measure of the DE model closely resembles that of the AD-DE model on

the set A = (−∞,−2.00%] ∪ [1.50%,∞).

While the dynamics proposed in this chapter aim at providing a realistic model for

the jump size distribution, they do not capture other empirical features that are typically

observed in asset returns. This is a deliberate modeling choice, as incorporating additional

effects would prevent us from obtaining closed-form solutions for European plain vanilla

options. Here, we briefly discuss the empirical shortcomings of our model. In all cases, it

presents no difficulty to augment the model dynamics, while at least preserving a closed-
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form solution for the corresponding characteristic function. Like in any pure Lévy model,

logarithmic returns are stationary and thus do not exhibit volatility clustering. Similarly,

the market prices of diffusion and jump risk are constant. Furthermore, as will be discussed

in Section II.2.2, the return distribution converges to a normal distribution as the time

horizon increases. Consequently, the model implied volatility smile for long times to

maturities flattens out and is unable to match the pronounced skew pattern observed

in equity (index) option markets. However, the flexibility of the jump size distribution

allows for a good calibration to the market prices of options with short times-to-maturity.

Furthermore, while the model can be reasonably well calibrated to option prices with

a common maturity date, the aforementioned effects prevent it from fitting the term-

structure of implied volatilities.

II.2.2 Return Density, Characteristic Function & Moments

The following result will be used repeatedly throughout this chapter.

Lemma II.2 (Characteristic Exponent).

The characteristic exponent of X under P is given by

ψX1(ω) = ln
(
E
[
eiωX1

])
= iωγ − 1

2
ω2σ2 + λ (φY1(ω)− 1) .

Here, φY1(ω) is the characteristic function of the sequence of random variables (Yi)i∈N

under P given by

φY1(ω) = p
η+

η+ − iω
eiωκ+ + (1− p) η−

η− + iω
eiωκ− .

Proof This is a direct consequence of the Lévy-Khintchine representation for finite

activity Lévy processes; see for example Theorems 1.2.14 and 1.3.3 in Applebaum (2004),

pp. 28, 41, or Proposition 3.4 in Cont and Tankov (2004), p. 74. We refer to

Appendix II.A.1 for details. �

Remark. The generalized characteristic function with ω ∈ C is then defined in the strip

of regularity −η+ < Im(ω) < η−.
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Having an analytical expression for the characteristic function of logarithmic returns allows

us to compute the corresponding cumulants.

Lemma II.3 (Cumulants of the Logarithmic Return Process).

The n-th cumulant of the logarithmic return process X is given by

cn (Xt) = t

(
γ1{n = 1}+ σ21{n = 2}+ λn!

(
p

n∑
i=0

κi+

ηn−i+ i!
+ (1− p)

n∑
i=0

κi−

(−η−)n−i i!

))
.

Proof The n-th cumulant is defined as the n-th derivative of the cumulant generating

function with respect to the transform parameter evaluated at zero, that is

cn (Xt) =
1

in
∂nψXt

∂ωn
(0);

see for example Theorem 2.3.1 in Lukacs (1970), pp. 20–21. The result then immediately

follows from carefully differentiating ψXt(ω). �

Remark. While the first two cumulants are equal to the mean and variance, we can

obtain the skewness and excess kurtosis of the logarithmic returns through normalization

γ1 (Xt) =
c3 (Xt)

c2 (Xt)
3/2

, γ2 (Xt) =
c4 (Xt)

c2 (Xt)
2 ;

see for example Section 2.4 in Lukacs (1970), pp. 26–27.

We observe that the skewness can be both positive and negative depending on the

particular parameters, but the excess kurtosis is always non-negative and strictly positive

for λ > 0.

Remark. Given closed-form expressions for the cumulants of all orders, we can also

compute all corresponding central moments. The second to fourth central moments are

given by

µ2 (Xt) = c2 (Xt) ,

µ3 (Xt) = c3 (Xt) ,

µ4 (Xt) = c4 (Xt) + 3c2
2 (Xt) .
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Figure II.3: Term-structure of skewness and excess kurtosis for λ = 15, p = 40%,

η+ = 80, η− = 60, κ+ = +1.50%, κ− = −2.00%. The right y-axis shows the

percentage of type II errors of a Jarque-Bera test for normality at the 5% level

based on a simulated time series of length 10,000.

Section 3.14 in Stuart and Ord (1994), pp. 85–89, provides a general result that links the

n-th central moment to the cumulants i = 2, 3, . . . , n.

In Section II.7, we advocate to infer the physical model parameters through ML

estimation. However, the availability of closed-form expressions of central moments of all

orders alternatively permits an estimation through the generalized method of moments

(GMM). In this case, moment conditions can be constructed from matching the i-th

empirical central moment to the i-th central moment implied by a certain parameter

vector.

As for all Lévy processes with finite variance, the Lindeberg-Lévy central limit theorem

implies that Xt converges in distribution to a normal random variable as t → ∞.

Consequently, the impact of the jumps is averaged out and asymptotically vanishes. The

i-th standardized moment decays to zero at a rate of t(i−2)/2. Figure II.3 illustrates

this time-smoothing effect for the skewness and excess kurtosis based on our reference

parameter set. In addition, we employ the Jarque-Bera test at the 5% level to test the

null hypothesis that a simulated time series of 1,000 realizations for X∆t at various time

horizons ∆t is normally distributed. For each fixed ∆t, we simulate 10,000 different such

paths. The dash-dot line corresponding to the left y-axis represents the percentage of false
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Figure II.4: Conditional probability of zero and one jump(s) for yields that

correspond to standard deviations and sampling frequencies. The results are

based on µ = 0%, σ = 10%, λ = 15, p = 40%, η+ = 80, η− = 60, κ+ = +1.50%,

κ− = −2.00%.

acceptances of the null hypothesis, that is, type II errors. Already at ∆t = 0.50 years, the

rate of false acceptances is approximately 50%.

Figure II.4 illustrates the previous argument from a different viewpoint. It shows the

conditional probability of a given yield resulting from either no jump or one jump. To

normalize the results, the abscissa shows the corresponding number of standard deviations.

Again, the computations are based on our standard sample parameter set and we consider

both daily and weekly sampling frequencies. Note that the two probabilities do not

add up to one due to the non-zero possibility of two or more jumps. For both time

horizons, we observe that the conditional probability of no jumps is higher for returns

below approximately three standard deviations and vice versa. However, while small

daily returns below one standard deviation can be attributed to purely diffusive changes

with a probability of approximately 96%, the same probability for weekly returns is only

approximately 78%. This confirms our intuition that disentangling the contribution of the

diffusion and jump components becomes harder as the time interval increases. Aı̈t-Sahalia

(2004), for example, discusses these issues in the context of the Merton (1973) jump-

diffusion model. The implication of these findings is that any empirical estimation of the

model has to be based on sufficiently frequent samples.
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Figure II.5: Effect of changes of the jump parameters on the return density. The

reference density is based on τ = 0.25, µ = 0%, σ = 10%, λ = 15, p = 40%,

η+ = 80, η− = 60, κ+ = +1.50%, κ− = −2.00%. The solid (dashed) line

corresponds to the ratio of the density after an up (down) shift of one of the

parameters, keeping all others constant, and the reference density.
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Figure II.5 visualizes the ceteris paribus effect of changes of each individual jump

parameter on the return density at a time-horizon of ∆t = 0.25 years. Qualitatively,

these results continue to hold for other maturities as well. In each subplot, the solid

(dashed) line corresponds to an up (down) shift of the respective parameter, keeping all

others constant. Instead of showing the changes in the densities directly, we plot the

ratio between the density using the shifted parameters and the reference density using

the original parameters. The reference density has been centered to have a mean of

zero. Values above (below) one indicate that the shifted density has a higher (lower)

likelihood of the respective yield occurring. Figure II.5.a shows that λ controls the tails

of the distribution. Higher values for λ (increase) decrease the probability of large (small)

absolute returns. The effect is more pronounced, when the initial value of λ is lower. It

vanishes for large values due to a central limit argument. Thus, the kurtosis is increasing

(decreasing) in λ when it is small (large). Figure II.5.b demonstrates that the probability

p of an up-move mainly influences the skewness of returns. With higher values of p, the

left (right) tail of the distribution decreases (increases). At the same time, there are more

(less) small negative (positive) returns and thus the skewness increases. Figures II.5.c

and II.5.d confirm our intuition that smaller values of η+ and η− lead to fatter right and

left tails, respectively, and decrease the likelihood across all other returns. A decrease

in η+ or an increase in η− alone mainly increases the skewness. The dominating effect

of a simultaneous increase in both parameters is an increase in the kurtosis. Finally,

Figures II.5.e and II.5.f show that increasing the absolute values of κ+ and κ− has a

similar effect to that of decreasing η+ and η−.

II.3 Risk-Neutral Spot Price Dynamics

In this section, we discuss two possible constructions of the risk-neutral probability

measure. The first one applies a simple drift change to the diffusion part in a rather ad-

hoc way. However, it is a convenient choice when the P-dynamics of the asset price are

irrelevant. The second one defines the martingale measure through an Esscher transform

of the logarithmic stock price process. As shown in Section II.4, this corresponds to

the pricing kernel exhibited by an economy where agents have exponential utility. This

approach is useful when a calibration to the market prices of plain vanilla options is not
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possible, but the P-dynamics of the asset price process have been estimated from the time

series of returns.

II.3.1 Drift Change Martingale Measure

We denote the drift-compensated return process by X̃t = Xt − tψX1(−i). Then S̃t =

S0eX̃t is a (P,F)-martingale; see for example Proposition 2.1.3 in Applebaum (2004), pp.

72–73, or Proposition 3.17 in Cont and Tankov (2004), p. 97. Note, that this expression

is only well-defined if η+ > 1 as previously assumed. The characteristic exponent of X̃t is

given by

ψX̃1
(ω) = −iωγ̃ − 1

2
ω2σ2 + λ (φY1(ω)− 1) ,

where

γ̃ =
1

2
σ2 + λ (φY1(−i)− 1)

=
1

2
σ2 + λ

(
p

η+

η+ − 1
eκ+ + (1− p) η−

η− + 1
eκ− − 1

)
.

This allows us to define the mean logarithmic return of S under P as γ = µ − γ̃, or

equivalently µ = γ + γ̃. We now formally define a new probability measure P∗ equivalent

to P on [0, T ∗] by
dP∗

dP
= exp

{
−αWT ∗ − 1

2
α2T ∗

}
P-a.s.,

In what follows, we interpret P∗ to be the risk-neutral probability measure. The

corresponding Radon-Nikodým derivative process ν (P,P∗) = {νt (P,P∗) : t ∈ [0, T ∗]} is

given by

νt (P,P∗) =
dP∗

dP

∣∣∣∣Ft = exp

{
−αWt −

1

2
α2t

}
P-a.s..

Here,

α =
µ− r
σ

is the Sharpe ratio and it follows by Girsanov’s theorem that the process W ∗ =

{W ∗t , t ∈ [0, T ∗)} defined by

W ∗t = Wt + αt

is a standard Brownian motion under P∗; see for example Theorem III.5.1 in Karatzas and

Shreve (1991), p. 191. Consequently, the discounted asset price is a (P∗,F)-martingale

and has the same distribution and characteristic exponent under P∗ as the process S̃ under

P. Since the market is incomplete, this choice of the risk-neutral probability measure is
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not unique. However, it is convenient in that neither the jump intensity nor the jump

size distribution changes. Instead, we only adjust the drift of the Brownian motion, just

as in the standard geometric Brownian motion model. This approach is useful when the

actual asset dynamics are irrelevant and our sole interest lies in pricing contingent claims.

The risk-neutral parameters can then be directly calibrated to the market prices of plain

vanilla options. Economically, α is the market price of Wiener risk with corresponding

risk premium ασ. The market price of jump risk is zero and thus jumps are assumed

to represent a purely idiosyncratic risk source. This approach was first used by Merton

(1976) in the context of normally distributed jumps in the logarithmic returns. While the

assumption of idiosyncrasy is obviously unjustified when the underlying asset is a stock

index, it is even difficult to argue in favor of the hypothesis that the jumps in single stocks

are completely diversifiable.

II.3.2 Esscher Transform Martingale Measure

Alternatively to the pure drift adjustment, we can define the risk-neutral probability

measure P∗ through an Esscher transform of the logarithmic return processX. The Esscher

transform is a tool originating from and widely used in the actuarial sciences. It refers to

the exponential tilting and subsequent re-normalization of a PDF. The transform is due to

Esscher (1932), who considers the problem of insurance pricing when the aggregate claim

amount follows a non-negative compound Poisson random variable. Bühlmann (1980,

1984) economically develops the Esscher premium calculation principle. He shows that

there exists an economy in which agents have exponential utility functions, such that the

equilibrium price for some risk is given by the expected claim amount under the Esscher

transformed probability measure. A survey on the origins and applications of the Esscher

transform in the actuarial sciences can be found in Yang (2004).

In a seminal paper, Gerber and Shiu (1994) systematically develop the theory of

using the Esscher transform to define an equivalent probability measure for exponential

Lévy processes in the context of option pricing. To this end, they extend the Esscher

transform from random variables to stochastic processes of the Lévy type and show that

these constitute valid Radon-Nikodým derivative processes. The class of exponential Lévy

models for the asset price in general, and jump-diffusion processes in particular, is closed

under this measure change since both the independence and stationarity of increments are

preserved. The Esscher transform martingale measure (ETMM) is obtained by uniquely
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choosing the transform parameter such that the asset price denominated in units of

the money market account becomes a martingale. Again, this particular choice of the

martingale measure is, apart from a few special cases, not unique and at first seems equally

arbitrary. However, in the authors’ response to the discussions following Gerber and Shiu

(1994), they show that in an economy where the representative agent has power utility,

the option is in zero net supply when its price is given by the discounted expected payoff

under the Esscher transform martingale measure (ETMM). The transform parameter is

closely linked to the coefficient of relative risk aversion. In Section II.4, we construct an

economy based on the framework by Naik and Lee (1990), in which the equilibrium asset

dynamics follow an exponential AD-DE jump-diffusion process and the change of measure

can be represented as an Esscher transform.

Following Gerber and Shiu (1994), we define the equivalent risk-neutral probability

measure P∗ on [0, T ∗] through

dP∗

dP
= exp {βXT ∗ − T ∗ψX1(−iβ)} P-a.s.,

with transform parameter β ∈ R. As shown in Appendix II.B.1, the corresponding Radon-

Nikodým derivative process ν (P,P∗) = {νt (P,P∗) : t ∈ [0, T ∗]) is given by

νt (P,P∗) =
dP∗

dP

∣∣∣∣Ft = exp {βXt − tψX1(−iβ)}

= exp

{
βσWt −

1

2
β2σ2t

}
exp

{
β

Nt∑
i=1

Yi − tψXj
1
(−iβ)

}
P-a.s., (II.2)

where again Proposition 2.1.3 in Applebaum (2004), pp. 72–73, ensures that ν (P,P∗) is

a (P,F)-martingale; see also Proposition 3.17 in Cont and Tankov (2004), p. 97.

Proposition II.1 (Esscher Transform Dynamics).

For β ∈ B = (−η−, η+), the Esscher transform is well-defined. Under the new probability

measure P∗, X is also an AD-DE jump-diffusion process with parameters

γ∗ = γ + βσ2,

λ∗ = λ

(
p
η+

η∗+
eβκ+ + (1− p)η−

η∗−
eβκ−

)
,

f∗(x) = p∗η∗+e−η
∗
+(x−κ+)1 {x ≥ κ+}+ (1− p∗) η∗−eη

∗
−(x−κ−)1 {x ≤ κ−} ,

p∗ = p
λη+

λ∗η∗+
eβκ+ ,

η∗± = η± ∓ β
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and characteristic exponent

ψ∗X1
(ω) = iω

(
γ + βσ2

)
− 1

2
ω2σ2 + λ

∫ +∞

−∞

(
eiωx − 1

)
f(x)eβxdx.

The diffusion coefficient σ and the two displacement terms κ+ and κ− are invariant under

the measure change.

Proof Here, we present only an outline of the proof. All details are given in

Appendix II.B.1. Again, it follows by Girsanov’s theorem that the process W ∗ defined by

W ∗t = Wt − βσt

is a standard Brownian motion under P∗ and we obtain the new drift term γ∗; see for

example Theorem III.5.1 in Karatzas and Shreve (1991), p. 191. The second factor of

ν (P,P∗) in Equation II.2 can be rearranged to

exp

{
β

Nt∑
i=1

Yi − tψXj
1
(−iβ)

}
= exp

{
Nt∑
i=1

ln

(
λ∗f∗ (Yi)

λf (Yi)

)
− (λ∗ − λ) t

}
.

The parameters determining the P∗-dynamics of Xj are found by matching terms. We

require that η+ > β and η− > −β. Then η∗+ and η∗− are strictly positive and the PDF f∗(x)

is well-defined. It then follows by Girsanov’s theorem for compound Poisson processes,

see for example Proposition 9.6 in Cont and Tankov (2004), p. 305, that the process Xj

is a compound Poisson process with intensity λ∗ and jump size density f∗(x) under P∗. �

Note, in particular, that the jump sizes still follow an AD-DE distribution. This is due

to the parametric form of the AD-DE distribution in combination with the exponential

tilting of the Lévy measure ν∗X(dx) of X under the Esscher transform, that is

ν∗X(dx) = νX(dx)eβx.

This closedness result holds under more general conditions; see Chapter IV for details.

The invariance of the two displacement terms κ+ and κ− is necessary for the equivalence

of the two probability measures. Lemma II.4 relates the characteristic function of the

jumps under the two measures.
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Lemma II.4 (Jump Size Characteristic Function).

The characteristic function of the sequence of random variables (Yi)i∈N under the

probability measure P∗ is given by

φ∗Y1(ω) =
φY1(ω − iβ)

φY1(−iβ)
.

Proof This immediately follows from using the representation

f∗ (Yi) =
λ

λ∗
f (Yi) eβYi

=
1

φY1(−iβ)
f (Yi) eβYi

for the jump size distribution under P∗. �

The discounted asset price process is a (P∗,F)-martingale if ψ∗X1
(−i) = r or equivalently,

g (β∗) = γ − r +

(
β∗ +

1

2

)
σ2 + λ

∫ +∞

−∞
(ex − 1) f(x)eβ

∗xdx = 0, (II.3)

where the integral evaluates to

∫ +∞

−∞
(ex − 1) f(x)eβxdx = λ (φY1(−i(1 + β))− φY1(−iβ)) .

Proposition II.2 (Existence and Uniqueness).

The ETMM exists and is unique. That is, Equation II.3 has a unique solution β∗ ∈ B.

Proof The proof is similar to the sketch of the proof of Proposition 9.9 in Cont and

Tankov (2004), pp. 310–311. Using the dominated convergence theorem, we can show

that g(β) is both continuous and differentiable; see for example Theorems 2.24 and 2.27 in

Folland (1984), pp. 53, 54. Since limβ↓−η− g(β) = −∞, limβ↑η+ g(β) = ∞ and g′(β) > 0

for all β ∈ B, the claim follows. All details are given in Appendix II.B.2.
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Alternatively and less rigorously, we recognize the integral as the difference between

the moment generating function θY1(x) = φY1(−ix) evaluated at x = β + 1 and x = β.

By Theorem 7.1.4 in Lukacs (1970), p. 197, θY1(x) is strictly convex on x ∈ B. Thus,

θ(1 + β)− θ(β) and also g(β) is strictly increasing in β. �

Under the Esscher transform, the market price of Wiener risk is given by −β∗σ with risk

premium −β∗σ2. The jump risk is now priced and the corresponding risk premium is

given by

λ (φY1(−i)− 1)− λ∗
(
φ∗Y1(−i)− 1

)
= λ (φY1(−i)− 1)

(
1− φY1 (−i (1 + β∗))− φY1 (−iβ∗)

φY1(−i)− 1

)
;

compare to Section 4 in Cheang and Chiarella (2011), pp. 4–5. The following corollary

suggests that we will find β∗ < 0 for assets that bear a positive amount of systematic risk.

Corollary II.1 (Sign of the Transform Parameter).

The sign of β∗ is positive (negative) if the excess return µ− r is negative (positive). When

the excess return is zero, then β∗ = 0 and all the parameters under P∗ and P coincide.

Proof We first substitute

γ = µ− 1

2
σ2 − λ (φY1(−i)− 1)

in Equation II.3 to obtain a condition in terms the mean return. We then immediately

see that a zero excess return implies that β∗ = 0. Thus, νt (P,P∗) = 1 for all t ∈ [0, T ∗]

and consequently the two probability measures P and P∗ coincide. As shown in the proof

of Proposition II.2, the function g(β) is strictly increasing. Consequently, a positive value

of the excess return has to be compensated by a negative value of β∗ and vice versa. �

Corollary II.2 (Comparative Statics for the Transform Parameter).

Compared to the physical probability measure P, positive (negative) values for β

(i) dampen (increase) the lower tail of the jump size distribution,

(ii) increase (dampen) the upper tail,
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Table II.2: Example parameters under the physical probability measure and the

ETMM, where in addition to the values given the table µ = 10%, r = 0%,

σ = 10%, κ+ = +1.50%, κ− = −2.00% and β∗ ' −3.2468.

Parameter P P∗

λ 15 15.66

p 40.00% 35.10%

η+ 80.00 83.25

η− 60.00 56.75

(iii) decrease (increase) the probability p∗ of an up-jump,

(iv) increase (decrease) the mean jump return EP∗ [Y1] and

(v) might either increase or decrease the intensity λ∗.

Proof By Proposition II.1, we have η∗− − η− = β (η∗+ − η+ = −β). Since the length

of the lower (upper) tail under P∗ is decreasing in η∗− (η∗+), Properties (i) and (ii)

follow. Property (iii) holds since ∂p∗/∂β > 0. Property (iv) is a direct consequence

of Properties (i)–(iii). To prove Property (v), it is sufficient to show that the slope of

the moment generating function θY1(x) = φY1(−ix) in x = 0 might be both positive

and negative, depending on the parameters of the AD-DE distribution. The required

computations can be found in Appendix II.B.3. �

We now consider an example for how the risk-neutral parameters relate to the physical

ones under this choice of the risk-neutral probability measure. Using the parameters given

in Table II.2, Equation II.3 is solved numerically to find β∗ ' −3.2468. As postulated

by Corollary II.1, the sign of β∗ is negative in the presence of a positive excess return.

Figure II.6 compares the Lévy measures under the two probability measures. In accordance

with Corollary II.2, the risk-neutral jump size density assigns a lower (higher) weight to

positive (negative) jumps. To gain some intuition for this, we can consider a simple

binomial tree model for the asset price. Compared to the physical probability measure,

the probability of an up-move is lower under the risk-neutral probability measure. This is

necessary to compensate for discounting the expected payoff at the risk-free interest rate

instead of the higher risk-adjusted rate, while keeping the current asset price fixed.

At first, choosing the Esscher transform to obtain the risk-neutral probability measure

seems just as ad-hoc as just changing the drift. However, as shown in Section II.4, the
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Figure II.6: The solid (dotted) line represents the Lévy measures under P (P∗).
The risk-neutral probability measure is found using the Esscher transform. All

parameters are identical to those given in Table II.2.

discounted Esscher transform arises as the pricing kernel in a model economy in which

the equilibrium logarithmic stock price follows an AD-DE jump-diffusion process. That

is, under the given model assumptions, a representative agent values contingent claims

in equilibrium in a way that is consistent with the prices obtained under the ETMM.

Furthermore, the ETMM is closely related to the minimal entropy martingale measure

(MEMM). The latter is the equivalent martingale measure, which minimizes the Kullback-

Leibler divergence to the physical probability measure and is thus closest to it in terms of

its statistical information content; see Miyahara (1999, 2004) and Fujiwara and Miyahara

(2003). In Miyahara (1999), the choice of the MEMM is motivated economically through

its link to utility indifference pricing when the agent has exponential utility; see also

Frittelli (2000). Finally, as shown in Section II.5, these results are important when

changing the numéraire from the money market account B to the asset price S in order

to simplify the option pricing problem.
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II.4 General Equilibrium Analysis

The exposition thus far has mainly focused on discussing the stochastic and statistical

properties of the proposed model. Once these have been decided upon, a common approach

in the mathematical finance literature is to consider the dynamics as exogenously specified.

However, from an economic viewpoint, it is desirable to show that there exists a model

economy that embeds the postulated asset price dynamics in equilibrium. We consider

a continuous time Lucas (1978) type pure exchange economy, which is based on the one

proposed by Naik and Lee (1990). While the latter authors focus on the Merton (1973)

jump-diffusion model, their setup is sufficiently general to accommodate most exponential

Lévy models. Milne and Madan (1991) also use this framework to define the risk-neutral

probability measure in the variance gamma model introduced by Madan and Senata

(1990).

The stochastic setup is the same as discussed earlier but we now consider an infinite

horizon by letting T ∗ →∞. This simplifies the portfolio and consumption choice problem

by removing the explicit dependence on time and thus rendering it stationary. The

following assumptions characterize our economy; see also Naik and Lee (1990).

Assumption II.1 (Consumption Good).

There exists a single perishable physical good. It can be used for either immediate

consumption or trade in the financial assets. All prices are expressed in terms of units of

this good.

Assumption II.2 (Production).

There exists a single fully equity financed firm with one unit of share outstanding. It

engages in costless production and pays a continuous dividend at the stochastic rate δ =

{δt, t ∈ [0,∞)} such that the cumulative dividends over the time interval [0, t] are given by

Dt =

∫ t

0
δudu.

The dividend follows the exponential AD-DE jump-diffusion process in Equation (II.1),

that is Xt = ln (δt/δ0) and

δt = δs exp

{
γ(t− s) + σ (Wt −Ws) +

Nt∑
i=Ns+1

Yi

}

for 0 ≤ s ≤ t and with δs > 0.
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The exponential form of the solution to the dividend process along with a strictly

positive initial value ensures that the aggregate income in the economy stays strictly

positive as well. Exogenously specifying the dividends to follow the same type of dynamics

that we previously postulated for the stock price turns out to be a crucial assumption.

Kou (2002) considers a variation of the Naik and Lee (1990) model economy where the

logarithmic endowment of the representative agent follows a jump-diffusion process.

Assumption II.3 (Contingent Claims).

There exists a market for a variety of competitively traded and perfectly divisible

contingent claims on the dividend process δ. Each contingent claim is defined through

its instantaneous payout process ζ = {ζt, t ∈ [0,∞)} such that ζt is Ft-measurable.

Note in particular, that both the stock price S = {St, t ∈ [0,∞)} and zero-coupon

bonds B(·, T ) = {B(t, T ), t ∈ [0, T ]} with unit notional and maturities in T ∈ [0,∞) can

be considered special cases of contingent claims on the dividend process. Consequently,

there exists a market for borrowing and lending for all maturities. We thus do not need

to explicitly introduce a short-rate to this economy. In what follows, we will determine

the equilibrium prices of the stock as well as the zero-coupon bonds and give a general

valuation equation for all other contingent claims. All financial assets, except for the

stock, are in zero net supply in equilibrium such that any long position by one agent

has to be offset by a short position of another. We emphasize that our motivation for

introducing the additional assets to this market is not to artificially complete it. This

is a common approach in the no-arbitrage literature and would require a continuum of

European contingent claims of all maturities and strikes due to the random jump sizes.

Instead, all assets are valued endogenously in equilibrium.

Assumption II.4 (Agents).

There exists a fixed number of individuals who are identical with respect to their initial

endowment, expectations and preferences. All agents agree on the stochastic dynamics of

the dividend process and can observe its current value at any point in time. Each has the

same iso-elastic utility of consumption

u (Ct) =


ln (Ct) if α = 1(
C1−α
t − 1

)
/(1− α) otherwise

,
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where α ∈ R+ is the coefficient of relative risk aversion. At each point in time, t ≥ 0, each

agent chooses her portfolio allocation process such as to maximize her expected lifetime

utility.

EP

[∫ ∞
t

e−ρvu (Cv) dv

∣∣∣∣Ft]
in the von Neumann and Morgenstern (1947) sense, subject to the wealth dynamics V =

{Vt, t ∈ [0,∞)}. Here, ρ ∈ R is her subjective rate of time preference.

Note that this parametrization of the constant relative risk aversion utility function

differs from the one in Naik and Lee (1990) and Kou (2002). However, the two formulations

represent the same preferences and are thus equivalent. The assumption of homogeneity

of preferences implies that ρ and α are the same for all agents. They further allow

for the use of the Rubinstein (1974) aggregation theorem. The equilibrium prices can

thus be determined assuming a representative agent facing the same expected utility

maximization problem. This significantly simplifies the analysis of the equilibrium since

the representative agent has to hold the one unit of the stock outstanding and no pure

contingent claims at any point in time since they are in zero net supply.

Assumption II.5 (Transversality Condition).

Let J (t, Vt) be the indirect utility function corresponding to the representative agent’s

utility maximization problem satisfying

lim
t→∞

EP [J (t, Vt)] = 0.

This transversality condition is the infinite horizon counterpart of a bequest terminal

condition and guarantees the convergence of the above integral; see for example Section 6

in Merton (1969), pp. 252–253.

Definition II.1 (Competitive Equilibrium).

A competitive equilibrium in this economy is a set of asset price processes such that at

all times the representative agent holds one stock, none of the zero-coupon bonds or other

contingent claims and her instantaneous consumption is equal to the dividend C∗t = δt. 4

In equilibrium, the representative agent thus engages in an exogenous production such

that this yields her optimal consumption. Lemma II.5 gives a general valuation formula

that characterizes the equilibrium price of all assets; see also Naik and Lee (1990).
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Lemma II.5 (Equilibrium General Valuation Formula).

In a competitive equilibrium, the time t ≥ 0 price of an asset with instantaneous payout

process ζ is given by

πt (ζ) =
1

e−ρtu′ (δt)
EP

[∫ ∞
t

e−ρvu′ (δv) ζvdv

∣∣∣∣Ft] ,
where π is the valuation operator and assuming that this quantity is finite.

Proof Let M = {Mt, t ∈ [0,∞)} be the stochastic discount factor process in this economy.

We refer to for example Sections 13.5 and 13.6 in Back (2010), pp. 236–241, and

Section 12.4 in Pennacchi (2008) for general discussions in the context of continuous time

consumption and portfolio choice. Then by definition, the accrued, that is cum dividend

or interest, price of any asset deflated with M is a (P,F)-martingale. Setting up the

Lagrangian of the representative agent’s optimization problem yields the following first-

order condition for optimal consumption

e−ρvu′ (δv) = λMv ∀v ∈ [t,∞),

where λ is the Lagrange multiplier. By the properties of the stochastic discount factor,

we have

πt (ζ)Mt = EP

[∫ ∞
t

ζuMudu

∣∣∣∣Ft]
and Lemma II.5 follows; see Appendix II.C.1 for details. �

We can now use this result to value the assets under consideration and obtain an explicit

representation of the pricing kernel. The following assumptions guarantee, that both the

risk-free interest rate and the stock price are strictly positive and that the stock price is

in addition finite.

Assumption II.6 (Existence Conditions).
The subjective discount rate ρ satisfies

(i) ρ− ψX1(iα) > 0

(ii) ρ− ψX1(i(α− 1)) > 0

The lower tail parameter of the jump size distribution satisfies η− > α− 1.

Note that we could alternatively interpret Assumption II.6 as a constraint on the drift

µ, while considering the subjective discount rate ρ as fixed.
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Proposition II.3 (Equilibrium Zero-Coupon Bond Price).

The time t ≥ 0 price of a zero-coupon bond with unit notional and maturity in T ≥ t is

given by

B(t, T ) = exp {(T − t) (ψX1(iα)− ρ)} .

The risk-free interest rate is the same for all maturities and given by

r = ρ− ψX1(iα).

From Assumption II.6.(i), it follows that r > 0.

Proof We use the general valuation formula from Lemma II.5 with the payout process

ζt = ∆(T − t) where ∆(x) is the Dirac delta function. This yields

B(t, T ) =
1

e−ρtδ−αt
EP
[
e−ρT δ−αT

∣∣Ft] .
This expectation can be computed using the fact that X is a Lévy process with i.i.d.

increments and known characteristic exponent. The corresponding yield is then obtained

through

y(t, T ) = − 1

T − t lnB(t, T ).

We observe that the latter is also constant and independent of time and the bond maturity;

see Appendix II.C.2 for details. �

The following Proposition II.4 is the analogue of Proposition 1 in Naik and Lee (1990), p.

499–500, corresponding to our dividend dynamics.

Proposition II.4 (Equilibrium Stock Price).

The time t ≥ 0 price of the stock is given by

St =
δt

ρ− ψX1(i(α− 1))
.

From Assumptions II.2 and II.6.(ii), it follows that St > 0 for all t ≥ 0.
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Proof We apply the general valuation formula for ζt = δt to obtain

St =
1

e−ρtδ−αt
EP

[∫ ∞
t

e−ρuδ1−α
u du

∣∣∣∣Ft]

Again, the expectation can be evaluated using elementary properties of the Lévy

process X. Assumption II.6.(ii) is necessary to ensure that the integral converges; see

Appendix II.C.3 for details. �

Note, in particular, that the stock price and dividend process are identical up to a

scaling factor. Thus, in equilibrium, the logarithmic stock price dynamics also follow

an AD-DE jump-diffusion processes. Given the equilibrium zero-coupon bond and stock

price processes, we can now define a new equivalent probability measure P∗, such that the

prices of all assets are given by the discounted expectation under it. Milne and Madan

(1991) and Kou (2002) also use this approach to define a risk-neutral probability measure

in similar model economies.

Proposition II.5 (Equilibrium Risk-Neutral Measure).

Define a new probability measure P∗ equivalent to P through the Radon-Nikodým derivative

process

νt (P,P∗) =
dP∗

dP

∣∣∣∣Ft = ert
Mt

M0
P-a.s.,

where M is the stochastic discount factor process in this economy. Then the time t ≥ 0

price of any asset in this economy with instantaneous payout process ζ is given by

πt(ζ) = EP∗

[∫ ∞
t

e−r(u−t)ζudu

]
.

Proof We again only give the outline of the proof; all details can be found in

Appendix II.C.4. We first note that the process ν (P,P∗) is a (P,F)-martingale starting

at one. Thus, it constitutes a valid Radon-Nikodým derivative process for an equivalent

measure change; see for example Chapter III.8 in Protter (2004), pp. 131–143. We then

use the general valuation formula from Lemma II.5, substitute M by ν (P,P∗) and change

the measure from P to P∗ to obtain the result. �
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Lemma II.6 shows that the measure change implicit in this model economy is given by an

Esscher transform of the logarithmic spot price, as discussed in Section II.3.2.

Lemma II.6 (Equilibrium Risk-Neutral Measure as an Esscher Transform).

The risk-neutral probability measure P∗ defined in Proposition II.5 corresponds to an

Esscher transform of the process X with transform parameter −α, that is

νt (P,P∗) = exp {−αXt − tψX1(iα)} .

Proof This follows immediately from substituting for Mt/M0 in the expression for

νt (P,P∗) and using Proposition II.3. �

In accordance with Corollary II.1, the transform parameter β∗ = −α, which defines the

ETMM, is strictly negative. Both the market prices of Wiener and jump risk are strictly

positive.

II.5 Option Pricing

Probably the main reason for the popularity of the Kou (2002) model is that it

explicitly incorporates non-normal higher moments but still features analytical solutions

for European plain vanilla options. In Kou and Wang (2003), the authors furthermore

obtain solutions for the Laplace transform of the first passage time density and use it in

Kou and Wang (2004) to price path-dependent contingent claims such as lookback and

barrier options. In this section, we show that analytical solutions for European plain

vanilla options can also be attained when the jump sizes follow an AD-DE distribution.

The structure of this section is as follows. In Section II.5.1 we start by deriving a

few important auxiliary results regarding the distribution of a sum of random variables

following an SD-DE distribution. These results are generalized to the case of asymmetric

displacements in Section II.5.2. This two-step approach helps to focus on the main

problem associated with symmetric displacement terms first. The asymmetric case then

follows from these results by considering a shift of the origin. The corresponding tail
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probabilities are computed in Section II.5.3. One of the main results of this chapter is

the analytical expressions for European plain vanilla options developed in Section II.5.4.

Finally, Section II.5.5 provides some comparative static results for the shapes of the implied

volatility smiles (IVS), which typical parameter combinations of the model generate.

II.5.1 Auxiliary Results for Symmetric Displacements

The main property of the Kou (2002) model that makes it possible to obtain analytical

expressions for the tail probabilities is the memorylessness of the exponential distribution.

For κ+ = κ− = 0, we have

P
{
ξ+ − ξ−

∣∣ ξ+ > ξ−
}
∼ ξ+.

This feature is retained in the SD-DE specification with κ+ = −κ− but not in the general

model with asymmetric displacements. In this section, we only consider this special case

and, for the moment, set κ = κ+ = −κ−. In Section II.5.2 we show that asymmetric

displacements can be regarded as being symmetrically displaced around a different origin.

This enables us to generalize the results obtained here to the general model. We choose

this two-step approach to focus on the main ideas of the derivation first before stating the

quite formidable general results. Lemma II.7 is a direct consequence of the memorylessness

property.

Lemma II.7 (Distribution of ξ+ − ξ−).

The distribution of ξ+ − ξ− (ξ− − ξ+) conditional on ξ+ > ξ− (ξ− > ξ+) is that of an

exponential random variable with mean 1/η+ (1/η−). Taking into account the respective

probabilities of the two complementary sets that we are conditioning on, we get

ξ+ − ξ− ∼


ξ+ − κ with probability η−/ (η+ + η−)

−ξ− + κ with probability η+/ (η+ + η−)

.

Proof This follows from explicitly calculating the respective conditional probabilities; see

Appendix II.D.1 for details. �
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Now let

A(n,m) =
n∑
i=1

ξ+
i −

m∑
j=1

ξ−j

for n,m ≥ 1. Lemma II.8 characterizes the distribution of A(n,m) in terms of a

probability-weighted average over the distributions A(k, 0) or A(0, l), that is, sums only

involving either ξ+ or ξ−. This step is important as we can explicitly compute the joint

distribution of a normal random variable and either A(k, 0) or A(0, l), but in general not

A(n,m).

Lemma II.8 (Distribution of A(n,m)).

The distribution of A(n,m) admits the following decomposition

A(n,m) ∼



A(k, 0) + (n− k −m)κ with probability p̃(n,m, k)

for k = 1, 2, . . . , n

A(0, l) + (n−m+ l)κ with probability q̃(n,m, l)

for l = 1, 2, . . . ,m

,

where

p̃(n,m, k) =

(
n− k +m− 1

m− 1

)(
η+

η+ + η−

)n−k ( η−
η+ + η−

)m
,

q̃(n,m, l) =

(
n− 1 +m− l

n− 1

)(
η+

η+ + η−

)n( η−
η+ + η−

)m−l
.

Proof The proof follows along the same steps as the one given for Lemma B.1 in Kou

(2002), pp. 1098–1099, carefully taking the additional displacement term into account.

We again only discuss the main idea here and provide all details in Appendix II.D.2. The

auxiliary result obtained in Lemma II.7 allows us to express A(n,m) as a probability

weighted average of the distribution of A(n,m − 1) − κ and A(n − 1,m) + κ. This step

is iteratively repeated until we are left with an expression of either the form A(k, 0) or

A(0, l) plus some multiple of κ. �

Let τn = inf{t ≥ 0 : Nt = n} for n = 1, 2, . . . be the arrival time of the n-th jump and

consider the random variable Xj
τn =

∑n
i=1 Yi. We can interpret Xj

τj as randomly taking

the values A(i, n − i) plus some constant for i = 0, 1, . . . , n, following a binomial B(n, p)
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distribution. Proposition II.6, which is the analogue of Proposition B.1 in Kou (2002),

p. 1098, states this result, which will be central to computing the tail probabilities in

Section II.5.3.

Proposition II.6 (Distribution of Xj
τn).

The distribution of Xj
τn admits the following decomposition

Xj
τn ∼



∑k
j=1 ξ

+
j + (2i− n− k)κ with probability p̂(i, n)p̃(i, n− i, k)

for k = 1, 2, . . . , n− 1; i = k, k + 1, . . . , n− 1∑n
j=1 ξ

+
j with probability p̂(n, n)

−∑l
j=1 ξ

−
j + (2i− n+ l)κ with probability p̂(i, n)q̃(i, n− i, l)

for l = 1, 2, . . . , n− 1; i = 1, 2, . . . , n− l

−∑n
j=1 ξ

−
j with probability p̂(0, n)

,

where

p̂(i, n) = P
{
Xj
τn ∼ A(i, n− i)

}
=

(n
i

)
pi(1− p)n−i

is the binomial probability.

Proof The proof immediately follows from Lemma II.8. We replace A(n,m) by A(i, n−i)
and multiply by the probability p̂(i, n− i) of observing i up-jumps when the total number

of jumps is n. Note that A(k, 0) (A(0, l)) appears only in the decompositions of A(i, n− i)
for i = k, k + 1, . . . , n− 1 (i = 1, 2, . . . , n− l). �

Due to the additional displacement term κ, we cannot decompose Xj
τn into a probability-

weighted sum of either the ξ+
i or the ξ−i alone as in Proposition B.1 in Kou (2002), p.

1098. The reason is that the factor multiplying κ depends on the starting point A(i, n− i).

II.5.2 Auxiliary Results for Asymmetric Displacements

Our approach to solving the pricing problem for the asymmetrically displaced case is to

transform it such that our previous results apply. The key idea is to consider asymmetric

displacements as being symmetrically displaced with respect to a different y-axis.
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Figure II.7: Centering of the AD-DE jump size density. The point α =

(κ+ − κ−) /2 is the midpoint of the interval [κ−, κ+]. Both tails are shifted by

−α to have the origin as the new midpoint.

Define α = (κ+ + κ−) /2 to be the midpoint of the interval [κ−, κ+]. Next, introduce

two auxiliary random variables ξ̂+ = ξ+ − α and ξ̂− = ξ− + α and let κ = κ+ − α =

− (κ− − α). Then ξ̂+ − κ ∼ E (η+) and ξ̂− − κ ∼ E (η−) are exponentially distributed.

Consequently, the sequence of i.i.d. random variables
(
Ŷi
)
i∈N given by

Ŷi ∼


ξ̂+ with probability p ∈ [0, 1]

−ξ̂− with probability 1− p

follows an SD-DE distribution. Figure II.7 illustrates that we obtain Ŷi by adding the

constant term −α to Yi, thus centering the formerly asymmetric displacement around zero.

Note, that when κ+ = −κ−, then α = 0 and thus the results in this section encompass

the previous ones as special cases. The following lemma directly follows from and replaces

Lemma II.7.

Lemma II.7* (Distribution of ξ+ − ξ−).

The distribution of ξ̂+ − ξ̂− is given by

ξ̂+ − ξ̂− ∼


ξ+ − α− κ with probability η−/ (η+ + η−)

−ξ− − α+ κ with probability η+/ (η+ + η−)

.
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Proof Apply Lemma II.7 to ξ̂+ − ξ̂− and substitute the definitions of the two displaced

exponential random variables. �

Next, we need to extend Lemma II.8 to account for the additional term −α.

Lemma II.8* (Distribution of A(n,m)).

The distribution of A(n,m) admits the following decomposition

A(n,m) ∼



A(k, 0) + (n− k)(α+ κ) +m(α− κ) with probability p̃(n,m, k)

for k = 1, 2, . . . , n

A(0, l) + n(α+ κ) + (m− l)(α− κ) with probability q̃(n,m, l)

for l = 1, 2, . . . ,m

,

where the probabilities p̃(n,m, k) and q̃(n,m, l) are as given in Lemma II.8.

Proof The steps to this proof are analogous to the original proof to Lemma II.8; see

Appendix II.D.3 for details. �

The extension of Proposition II.6 then follows nearly effortlessly.

Proposition II.6* (Distribution of Xj
τn).

The distribution of Xj
τn admits the decomposition

Xj
τn ∼



∑k
j=1 ξ

+
j + (n− k)α with probability p̂(i, n)p̃(i, n− i, k)

+(2i− n− k)κ for k = 1, 2, . . . , n− 1; i = k, k + 1, . . . , n− 1∑n
j=1 ξ

+
j with probability p̂(n, n)

−∑l
j=1 ξ

−
j + (n− l)α with probability p̂(i, n)q̃(i, n− i, l)

+(2i− n+ l)κ for l = 1, 2, . . . , n− 1; i = 1, 2, . . . , n− l

−∑n
j=1 ξ

−
j with probability p̂(0, n)

,

where the probabilities p̂(i, n) are as given in Proposition II.6.

Proof The proof is the same as the one given for Proposition II.6. �
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II.5.3 Tail Probabilities

We first define

Zt (A1, n) = γt+ σWt +

n∑
i=1

Ai,

where (Ai)i∈N is a sequence of i.i.d. random variables with the same distribution as the

random variable A1. Thus, Xt = Zt (Y1, Nt) is a jump-diffusion process whose jump size

distribution follows an AD-DE law. Throughout this section, we repeatedly need a slight

generalization of Proposition B.3 in Kou (2002), p. 1100.

Lemma II.9 (Distribution of Zt (A1, n)).

Let ξ1 be an exponential random variable with arrival rate η. Then for every n ≥ 1, we

have

P {Zt (±ξ1, n) ∈ dx} =
(ση
√
t)n

σ
√

2πt
exp

{
1

2
(ση)2t∓ (x− γt)η

}
Hhn−1

(
∓x− γt

σ
√
t

+ ση
√
t

)
dx

and

P {Zt (±ξ1, n) ≥ x} =
(ση
√
t)n

σ
√

2πt
exp

{
1

2
(ση)2t

}
In−1

(
x− γt;∓η,∓ 1

σ
√
t
,−ση

√
t

)
,

where

Hh−1(x) = e−x
2/2,

Hh0(x) =
√

2πΦ(−x),

Hhn(x) =
1

n!

∫ ∞
x

(t− x)ne−t
2/2dt n = 1, 2, . . . ,

In(c;α, β, δ) =

∫ ∞
c

eαxHhn(βx− δ)dx n = 0, 1, . . . .

Proof See the proof of Proposition B.3 in Kou (2002), p. 1100. �

The Hhn-function is a special function from mathematical physics. Its properties are

discussed in detail in Abramowitz and Stegun (1972) and Kou (2002). Section 7.2 in

Abramowitz and Stegun (1972), pp. 299-300, establishes the connection between the Hhn-
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function and the error function and gives an iterative recurrence relation for the latter. In

the same spirit, Proposition B.2 in Kou (2002), p. 1099, derives a closed-form expression

for the In-function in terms of finite sums over the Hhm-function for m = 1, 2, . . . , n

evaluated at the same point. It is valid for all parameter combinations that are relevant for

our purposes. For practical implementations, we choose these representations as they are

both exact and can be implemented efficiently without the need for numerical quadrature.

The following theorem is an extension of Theorem B.1 in Kou (2002), p. 1098, to

asymmetrically displaced jumps. It represents our main result.

Theorem II.1 (Tail Probability of Xt).

The upper tail probability of the process Xt = Zt (Y1, Nt) is given by

P {Xt ≥ x}

= P {Nt = 0}P {Zt(·, 0) ≥ x}

+
∞∑
n=1

P {Nt = n}
(
P
{
Zt
(
ξ+ − κ+, n

)
+ nκ+ ≥ x

}
p̂(n, n)

+P
{
Zt
(
−ξ− − κ−, n

)
+ nκ− ≥ x

}
p̂(0, n)

+
n−1∑
k=1

n−1∑
i=k

(
P
{
Zt
(
ξ+ − κ+, k

)
+ iκ+ + (n− i)κ− ≥ x

}
p̂(i, n)p̃(i, n− i, k)

+ P
{
Zt
(
−ξ− − κ−, k

)
+ (n− i)κ+ + iκ− ≥ x

}
p̂(n− i, n)q̃(n− i, i, k)

))
,

where the probabilities on the right-hand side are given in Lemmata II.8, II.9 and

Proposition II.6, and

P {Nt = n} =
(λt)n

n!
e−λt

is the Poisson probability mass function.

Proof The proof is given in Appendix II.D.4. �
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Corollary II.3 (Density of Xt).

The PDF of the process X is given by

P {Xt ∈ dx}

= P {Nt = 0}P {Zt(·, 0) = x}

+
∞∑
n=1

P {Nt = n}
(
P
{
Zt
(
ξ+ − κ+, n

)
+ nκ+ = x

}
p̂(n, n)

+P
{
Zt
(
−ξ− − κ−, n

)
+ nκ− = x

}
p̂(0, n)

+
n−1∑
k=1

n−1∑
i=k

(
P
{
Zt
(
ξ+ − κ+, k

)
+ iκ+ + (n− i)κ− = x

}
p̂(i, n)p̃(i, n− i, k)

+ P
{
Zt
(
−ξ− − κ−, k

)
+ (n− i)κ+ + iκ− = x

}
p̂(n− i, n)q̃(n− i, i, k)

))
dx.

Proof This immediately follows from Theorem II.1 and the details are omitted for brevity.

�

While these expressions look quite formidable, they are composed entirely of elementary

functions. Thus, they can be evaluated readily in standard programming languages.

When implementing these formulas, we need to truncate the infinite summation at some

level nmax which has to be determined such that the truncation error does not exceed

a predefined threshold. As will be shown, the summands quickly converge to zero,

thanks to the factorial term in the denominator of the Poisson probability mass function.

Lemma II.10 provides the necessary results.

Lemma II.10 (Truncation Error Bound).

The truncation error induced by computing the upper tail probability based on the first nmax

terms only is bounded by

∞∑
nmax+1

P {Nt = n}P {Zt (Y1, n) ≥ x} ≤ γ (nmax + 1, λt)

nmax!
,

where

γ(s, x) =

∫ x

0
ts−1e−tdt

is the lower incomplete gamma function.
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Proof Since P {Zt (Y1, n) ≥ x} ∈ [0, 1], we can bound the truncation error by

P {Nt > nmax}, which yields the given expression; see Appendix II.D.5 for details. �

It should be noted that the error bound in Lemma II.10 is of course not unique and

there might exist better bounds. The inverse problem of finding the smallest nmax such

that the truncation error is below a fixed absolute threshold can be solved by using the

Poisson inverse cumulative distribution function, which is implemented in most statistical

computing libraries.

II.5.4 European Plain Vanilla Options

Let t ≥ 0 be the current point in time and C = {Ct : t ∈ [0, T ]} be the price process

of a European plain vanilla call option on the spot asset S with maturity in t ≤ T ≤ T ∗

and terminal payoff CT = (ST −K)+. Denote the time-to-maturity by τ = T − t.

Proposition II.7 (European Plain Vanilla Call Options on Spot Assets).

Let

Λ (x; t, γ, σ, λ, p, η+, η−, κ+, κ−) = P {Xt ≥ x} ,

be the upper tail probability of the jump-diffusion process X with drift γ, diffusion

coefficient σ, jump intensity λ and AD-DE jump size distribution with parameters p, η+,

η−, κ+ and κ− as given in Theorem II.1. The price of the European plain vanilla call

option is given by

Ct = StΛ1 −B(t, T )KΛ2,

where

Λ1 = Λ

(
ln

(
K

St

)
; τ, γS , σ, λS , pS , ηS+, η

S
−, κ+, κ−

)
,

Λ2 = Λ

(
ln

(
K

St

)
; τ, γ∗, σ, λ∗, p∗, η∗+, η

∗
−, κ+, κ−

)
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and

γ∗ = r − 1

2
σ2 − λ∗

(
p∗

η∗+
η∗+ − 1

eκ+ + (1− p∗) η∗−
η∗− + 1

eκ− − 1

)
,

γS = γ∗ + σ2,

λS = λ∗
(
p∗
η∗+
ηS+

eκ+ + (1− p∗) η
∗
−
ηS−

eκ−
)
,

fS(x) = pSηS+e−η
S
+(x−κ+)1 {x ≥ κ+}+

(
1− pS

)
ηS−eη

S
−(x−κ−)1 {x ≤ κ−} ,

pS = p∗
λ∗η∗+
λSηS+

eκ+ ,

ηS± = η∗± ∓ 1.

All parameters under the risk-neutral probability measure are as determined in Section II.3.

Proof We apply the risk-neutral pricing formula - see for example Proposition 9.1 in Cont

and Tankov (2004), p. 298 - and expand the payoff function to express the call price in

terms of two expectations under the risk-neutral probability measure. While the second

expectation can be readily computed using Theorem II.1, we need to first apply a change

of numéraire from the bank account to the asset price to compute the second. It turns out

that this measure change is equivalent to an Esscher transform with transform parameter

β = 1 and thus Proposition II.1 can be used to obtain the asset price dynamics under this

new measure; see Appendix II.D.6 for all details. �

The resulting formula is similar in structure to the Black and Scholes (1973) formula with

two terms representing the expected values of the asset and the strike price payment upon

exercise. Heston (1993) obtains a similar expression in a stochastic volatility context. We

note that in the special case when κ+ = κ− = 0, the European plain vanilla call price

formula reduces to the one given in Theorem 2 in Kou (2002), p. 1095. For the dynamic

risk-management of derivative books, the availability of analytical solutions for the hedge

ratio and other Greeks is just as important as the possibility to rapidly re-evaluate the

option positions themselves.

Lemma II.11 (Delta and Gamma of European Plain Vanilla Call Options).

The delta and gamma of the European plain vanilla call option are given by

∆C
t = Λ1 and ΓCt = − 1

St
Λ′1,
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where

Λ′ (x; t, γ, σ, λ, p, η+, η−, κ+, κ−)

is the PDF of Xt as given in Corollary II.3.

Proof While the expression for delta seems obvious given the call price formula, care has

to be taken when taking the partial derivative of Ct with respect to St as both probabilities

Λ1 and Λ2 are functions of the asset price as well. However, we do not need to explicitly

apply the chain rule of differentiation but can instead use a homogeneity result. Like all

exponential Lévy models, the asset price S exhibits constant returns to scale. By Theorem

9 in Merton (1973), p. 149, it then follows that the European plain vanilla call price is

homogeneous of degree one in the spot and the strike price; see also Reiss and Wystup

(2001) for related results and generalizations. Thus, by Euler’s theorem, it admits the

representation

Ct = St
∂Ct
∂St

+K
∂Ct
∂K

.

From the model independent pricing formula

Ct = B(t, T )

∫ ∞
K

(Ste
x −K)P∗ {Xτ ∈ dx} ,

we get by differentiating

∂Ct
∂K

= −B(t, T )P∗ {Xτ ≥ x} dx = −B(t, T )Λ2.

Thus,

∆C
t =

∂Ct
∂St

=
1

St
(Ct −B(t, T )KΛ2) = Λ1.

The formula for gamma follows immediately by differentiating ∆C
t another time with

respect to St using the result from Corollary II.3. �

Lemma II.12 (European Plain Vanilla Put Options on Spot Assets).

The price of the corresponding European plain vanilla put option is given by

Pt = B(t, T )K (1− Λ2)− St (1− Λ1)

with Greeks

∆P
t = Λ1 − 1 and ΓPt = − 1

St
Λ′1.
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Proof This follows immediately from the put-call parity relationship,

Ct +B(t, T )K = Pt + St.

�

Corollary II.4 (Sensitivities of European Plain Vanilla Options).

The prices of both European plain vanilla call and put options are ceteris paribus increasing

in λ∗.

Proof It immediately follows from the put-call parity relationship, that the sign of the

sensitivity with respect to the jump intensity has to be the same for call and put options.

By Theorem 8 in Merton (1973), p. 149, it is sufficient to show that the riskiness of the

underlying asset’s returns is increasing in λ∗. See II.D.7 for details. �

Corollary II.5 (European Plain Vanilla Options on Forwards).

Let FS(·, U) = {FS(t, U) : t ∈ [0, T ∗]} be the price process of a forward contract on the

asset S with maturity in U ≥ T . The prices of the European plain vanilla call and put

options on FS(·, U) are given by

Ct = B(t, T ) (FS(t, U)Λ1 −KΛ2) ,

Pt = B(t, T ) (K (1− Λ2)− FS(t, U) (1− Λ1)) .

where

γ∗ = −1

2
σ2 − λ∗

(
p∗

η∗+
η∗+ − 1

eκ+ + (1− p∗) η∗−
η− + 1

eκ− − 1

)
all remaining parameters are as given in Proposition II.7 with FS(t, U) replacing St.

Proof We first note that the forward price FS(t, U) = St/B(t, U) is a (P∗,F)-martingale

and its logarithm has the drift γ∗ − r. The proof is then fully analogous to that of

Proposition II.7; see Appendix II.D.8 for details. �

As usual, European vanilla options on the spot asset can be priced as an option on the

forward FS(t, T ), where option and forward maturity are identical.
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II.5.5 Comparative Statics for the Implied Volatility Smile

Since the main motivation of adding jumps to the Black and Scholes (1973) diffusion

process is to capture the non-zero skewness and excess kurtosis present in most listed

options markets, it is interesting to analyze which shapes of the IVS can be generated by

the model and what the effect of each of the model parameters is.

Figure II.8 is the analogue of Figure II.5, showing the ceteris paribus effect of changes

of each individual jump parameter on the shape of the IVS. The solid reference curve is

based on our standard sample parameter set and a maturity of three months. We observe

that this IVS exhibits a smile pattern that is not symmetric around the at-the-money

strike of K = 100.00 USD. It is directly linked to the asymmetry in the corresponding

distribution of logarithmic returns induced by the larger displacement and slower tail decay

of downward jumps. The dashed (dash-dotted) curve corresponds to an up (down) shift

of one of the parameters, keeping all others constant. Given the intimate link between the

shape of the IVS and the higher moments of the risk-neutral distribution of logarithmic

returns, the reasons for the changes in the IVS follow immediately from the discussion of

Figure II.8. A higher negative skewness increases the implied volatility of out-of-the-money

put options relative to out-of-the-money call options. An increased kurtosis increases the

implied volatilities of both out-of-the-money call and put options relative to that of at-

the-money options.

II.6 Extension to Displaced Double Gamma Jumps

In this section, we further generalize the results from Section II.5 to the case where

each tail of the jump size distribution is given by a AD-DG density with an integer-valued

shape parameter. This is possible, because the sum of independent exponential random

variables follows a gamma distribution. We choose to only introduce this extension at

this stage since its derivation is based on the previously obtained results for the AD-DE

model. Considering it right from the start obfuscates the key insights regarding displaced

exponential random variables that make it possible to obtain closed-form solutions for

European plain vanilla option prices. In this section, we restate the main results of

Section II.5 for the AD-DG distribution.
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Figure II.8: Effect of changes of the jump parameters on the IVS. The solid

reference curve is based on S0 = 100.00 USD, τ = 0.25, r = 0%, σ = 10%, λ = 15,

p = 40%, η+ = 80, η− = 60, κ+ = +1.50%, κ− = −2.00%. The dashed (dash-

dot) line corresponds to an up (down) shift of one of the parameters, keeping all

others constant.
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Formally, the sequence of random variables (Yi)i∈N is now defined by

Yi ∼


ζ+ with probability p ∈ [0, 1]

−ζ− with probability 1− p
,

where ζ+ − κ+ ∼ Γ (ε+, δ+) and ζ− − κ− ∼ Γ (ε−, δ−) are gamma random variables with

shape parameters ε+, ε− ∈ N and rate parameters δ+, δ− > 0. The corresponding jump

size density is given by

f(x) = p
δ
ε+
+

Γ (ε+ − 1)
(x− κ+)ε+−1 e−δ+(x−κ+)1 {x ≥ κ+}

+(1− p) δ
ε−
−

Γ (ε− − 1)
(κ− − x)ε−−1 eδ−(x−κ−)1 {x ≤ κ−} .

This setup nests the AD-DE model as a special case when ε± = 1, η+ = δ+ and η− = δ−.

Lemma II.13 (Characteristic Function of the Jumps).

The characteristic function φY1(ω) of the sequence of random variables (Yi)i∈N under P is

given by

φY1(ω) = p

(
δ+

δ+ − iω

)ε+
eiωκ+ + (1− p)

(
δ−

δ− + iω

)ε−
eiωκ− .

Proof This follows either by direct computation or by using the translation property of

the Fourier transform in conjunction with the Hermitian property of the characteristic

function; see Appendix II.E.1 for details. �

By combining Lemmata II.2 and II.13, we obtain the characteristic exponent ψX1(ω) of

the logarithmic return process X. Many previous results then carry over to the model of

AD-DG jumps without modifications. The general equilibrium analysis in Section II.4, for

example, does not depend on the particular functional form of the jump size distribution.

Instead, all processes are expressed in terms of ψX1(ω).

Lemma II.14 (Cumulants of the Logarithmic Return Process).

The n-th cumulant of the logarithmic return process X is given by

cn (Xt) = t

(
γ1{n = 1}+ σ21{n = 2}+ λ

(
p

n∑
i=0

(
n

i

)
(ε+ + n− i− 1)!

(ε+ − 1)!

κi+

δn−i+

+(1− p)
n∑
i=0

(
n

i

)
(ε− + n− i− 1)!

(ε− − 1)!

κi−

(−δ−)n−i

))
.
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Figure II.9: Sample AD-DG jump size density plot for ε± ∈ {1, 2, 3, 4} p = 40%,

δ+ = 80, δ− = 60, κ+ = +1.50% and κ− = −2.00%.

Proof Similar to the proof of Lemma II.3, this follows immediately from computing the n-

th derivative of the cumulant generating function ψXt(ω) w.r.t. the transform parameter.

�

Figure II.9 shows how the jump size density changes for different values of the shape

parameters ε±. We observe that the tail decay decreases with increasing values of ε±.

The peak of the two tails no longer coincides with the displacement terms but is shifted

further outward. The AD-DG density introduces an additional degree of asymmetry, since

it is possible for ε+ and ε− to take on different values.

Up to the particular functional form taken by the characteristic function of the jump

size density, all results from Section II.3 continue to hold. Proposition II.8 provides the

equivalent result for Proposition II.1.

Proposition II.8 (Esscher Transform Dynamics).

For δ ∈ B = (−δ−, δ+), the Esscher transform is well-defined. Under the new probability
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measure P∗, X is also an AD-DG jump-diffusion process with parameters

γ∗ = γ + βσ2,

λ∗ = λ

(
p

(
δ+

δ+ − β

)ε+
eβκ+ + (1− p)

(
δ−

δ− + β

)ε−
eβκ−

)
,

f∗(x) = p∗
(
δ∗+
)ε+

Γ (ε+ − 1)
(x− κ+)ε+−1 e−δ

∗
+(x−κ+)1 {x ≥ κ+}

+ (1− p∗)
(
δ∗−
)ε−

Γ (ε− − 1)
(κ− − x)ε−−1 eδ

∗
−(x−κ−)1 {x ≤ κ−} ,

p∗ = p
λδ

ε+
+

λ∗
(
δ∗+
)ε+ eκ+(δ+−δ∗+),

δ∗± = δ± ∓ β

and characteristic exponent

ψ∗X1
(ω) = iω

(
γ + βσ2

)
− 1

2
ω2σ2 + λ

∫ +∞

−∞

(
eiωx − x

)
f(x)eβxdx.

The diffusion coefficient σ, the two shape parameters ε+ and ε− as well as the two

displacement terms κ+ and κ− are invariant under the measure change.

Proof The proof is fully analogous to that of Proposition II.1 given in Appendix II.B.1

and thus omitted for brevity. �

Again, the jump size distribution under both the physical and the risk-neutral probability

measure fall into the same distributional class. This follows from the AD-DG distribution

being a natural exponential mixture family in the rate parameters δ+ and δ−; see

Chapter IV for details. In particular, the shape parameters ε+ and ε− are unaffected by

the measure transformation. Consequently, their estimates under the physical probability

measure can be used for pricing under the ETMM.

Lemma II.15 (Sums of Displaced Exponential Random Variables).

Let (Ai)i∈N be a sequence of i.i.d. displaced exponential random variables such that Ai −
κ/ε ∼ E(δ). Define

B =

ε∑
i=1

Ai.

Then B follows a displaced gamma distribution, that is B − κ ∼ Γ(ε, δ).
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Proof This follows immediately from the well-known special case result for zero displace-

ments; see for example Chapter I.3 in Feller (1970), pp. 8–11. �

Now let ξ+
i − κ+/ε+ ∼ E (δ+) and ξ−i + κ−/ε− ∼ E (δ−) be sequences of i.i.d. exponential

random variables. Then, by Lemma II.15

Yi ∼


∑ε+

i=1 ξ
+
i with probability p ∈ [0, 1]

−∑ε−
i=1 ξ

−
i with probability 1− p

.

As in Section II.5.1, define τn to be the arrival time of the n-th jump and letXj
τn =

∑n
i=1 Yi.

We can then interpret Xj
τn as randomly taking the values A (ε+i, ε−(n− i)) plus some

constant for i = 0, 1, . . . , n following a binomial B(n, p) distribution. The following result

then generalizes and replaces Proposition II.6*.

Proposition II.6** (Distribution of Xj
τn).

The distribution of Xj
τn admits the decomposition

Xj
τn ∼



∑ε+k
j=1 ξ

+
j + (n− k)α with probability p̂(i, n)p̃(i, n− i, k)

+(2i− n− k)κ for k = 1, 2, . . . , n− 1; i = k, k + 1, . . . , n− 1∑ε+n
j=1 ξ

+
j with probability p̂(n, n)

−∑ε−l
j=1 ξ

−
j + (n− l)α with probability p̂(i, n)q̃(i, n− i, l)

+(2i− n+ l)κ for l = 1, 2, . . . , n− 1; i = 1, 2, . . . , n− l

−∑ε−n
j=1 ξ

−
j with probability p̂(0, n)

,

where the probabilities p̂(i, n) are as given in Proposition II.6.

Proof The proof is the same as the one given for Proposition II.6. �

Here, α and κ are again the midpoint between the asymmetric displacement terms and

the symmetric displacement after shifting the distribution, respectively; see Section II.5.2.

We can now re-state our main result in Theorem II.1.
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Theorem II.1* (Tail Probability of Xt).

The upper tail probability of the process Xt = Zt (Y1, Nt) is given by

P {Xt ≥ x}

= P {Nt = 0}P {Zt(·, 0) ≥ x}

+
∞∑
n=1

P {Nt = n}
(
P
{
Zt
(
ξ+ − κ+/ε+, ε+n

)
+ nκ+ ≥ x

}
p̂(n, n)

+P
{
Zt
(
−ξ− − κ−/ε−, ε−n

)
+ nκ− ≥ x

}
p̂(0, n)

+
n−1∑
k=1

n−1∑
i=k

(
P
{
Zt
(
ξ+ − κ+/ε+, ε+k

)
+ iκ+ + (n− i)κ− ≥ x

}
p̂(i, n)p̃(i, n− i, k)

+P
{
Zt
(
−ξ− − κ−/ε−, ε−k

)
+ (n− i)κ+ + iκ− ≥ x

}
p̂(n− i, n)q̃(n− i, i, k)

) )
,

where the probabilities on the right-hand side are as in the original Theorem II.1.

Proof The proof is fully analogous to that of the original Theorem II.1; see Ap-

pendix II.D.4 for details. �

II.7 Parameter Estimation

This section discusses a methodology to estimate the physical parameters of a wide class of

model dynamics for the underlying asset based on the time series of logarithmic returns.

After introducing our estimation approach based on ML estimation, we briefly discuss

alternative estimation methodologies that have been proposed in the literature. We argue

that, in addition to its desirable statistical properties, ML requires no ad-hoc decisions

about the construction of the moment conditions as do the GMM and the closely related

spectral GMM approaches. Furthermore, it can be implemented efficiently through a

fractional Fourier transform.

II.7.1 Maximum Likelihood Estimation

The ML estimator is appealing, due to its consistency, asymptotically normal

distribution and efficiency. Since its asymptotic variance is given by the inverse of

the Fisher information matrix, it achieves the Cramér-Rao lower bound for consistent
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estimators; see for example Theorem 16.1 in Greene (2008), p. 487. Sørensen (1991) shows

that these general properties continue to hold for the inference of jump-diffusion processes

under mild regularity conditions. Aı̈t-Sahalia (2002) considers the problem of estimating a

general Itō diffusion process based on discrete samples. Aı̈t-Sahalia (2004) establishes that

the asymptotic variance of the diffusion coefficient estimator is not deteriorated by the

presence of compound Poisson type jumps within the ML framework. He further confirms

our intuition that in the limit of infinitely frequent sampling, the jumps and diffusion

components can be perfectly disentangled. It is surprising, however, that this result even

holds for infinite activity Lévy processes. Bates (2006) adopts the ML approach to the

estimation of latent affine processes which allow for both a time-varying volatility and

jump intensity. Ramezani and Zeng (1999, 2007) apply ML to estimate the parameters of

the original Kou (2002) DE model based on a two year long sample of daily stock returns.

Their empirical results support the hypothesis that upward- and downward-jumps exhibit

different characteristics. We postpone a more detailed discussion of their results until

Section II.8.

We now give a brief overview of the estimator and the corresponding test statistics.

Unless explicitly mentioned, Chapter 16 in Greene (2008), pp. 482–572, serves as the

main reference for all results in this Section. We consider an equally spaced time series of

logarithmic returns rt,τ = ln (St/St−τ ) for t = 1, 2, . . . , T . When estimating the physical

model parameters, the sampling frequency τ should not be too large. Otherwise, as argued

in Section II.2.2, the disentanglement of the diffusion and jump components is impeded.

The empirical study in Section II.8 is thus based on daily observations. Let

Θ = {µ ∈ R, σ ∈ R+, λ ∈ R+, p ∈ [0, 1], η+ ∈ R+, η− ∈ R+, κ+ ∈ R+, κ− ∈ R−} ,

be the parameter space of the AD-DE model. Since the PDF of logarithmic returns is

known in closed-form, we can employ ML estimation. The logarithmic likelihood is given

by

l (rt,τ ,θ) = lnP {Xτ = rt,τ |θ} ,

where the conditional density is as in Corollary II.3. The ML estimator is then defined as

the parameter vector θ̂T , which maximizes the sample likelihood. We have

θ̂T = arg max
θ∈Θ
L (θ| rτ ) ,

60



where

L (θ| rτ ) =
T∑
t=1

l (rt,τ ,θ) .

The asymptotic distribution of the ML estimator is given by

θ̂T
asym.∼ N

(
θ0, I

−1 (θ0)
)
,

where I (θ0) is the information matrix evaluated at the true parameter vector. Since the

latter is not known, we estimate the covariance matrix through the Berndt et al. (1974)

estimator

Î−1
(
θ̂T

)
=

(
G
(
θ̂T

)′
G
(
θ̂T

))−1

,

where G (θ) is a T × |θ| matrix given by

G (θ)t,i =
∂l (rt,τ |θ)

∂θi
.

We employ two different hypothesis and model specification tests. First, restrictions

on the estimated model parameters are evaluated using a Wald test. It is based on

the asymptotic distribution of a quadratic form of the restrictions being chi-squared

distributed. Alternatively, we estimate both the restricted and unrestricted models and

compute the corresponding likelihoods. The validity of the restrictions in then evaluated by

constructing the likelihood ratio statistic, whose limiting distribution is also chi-squared.

II.7.2 Alternative Estimation Methodologies

A common alternative approach to estimating the physical model parameters of

models with a known characteristic function is the Hansen (1982) GMM. The population

orthogonality conditions can then be constructed from matching the empirical and

model implied central moments and tail probabilities. The model considered in this

chapter admits closed-form solutions for both of these types of moment conditions.

Furthermore, within any iteration of the corresponding optimization problem, each of

these computationally relatively expensive expressions has to be evaluated only once

for the full sample. In contrast to this, the conditional likelihood has to be computed

for every observation in the sample separately. This suggests that the GMM might be

computationally more efficient. However, Section II.7.3 shows that ML estimation can be

significantly accelerated by simultaneously computing all conditional likelihoods using the

fractional fast Fourier transform (FFT).
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There are three main arguments against using the GMM for estimation. First, for the

GMM to be asymptotically efficient, a consistent estimator of the covariance matrix of

the moment conditions is required. In the presence of serial correlation in the time series

of returns, this requires iterated estimations. At each step, an autocorrelation consistent

estimator of the covariance matrix has to be computed using, for example, the method

suggested by Newey and West (1987). Second, GMM is typically less efficient for finite

samples than the ML. Third, the particular choice of the moment conditions and their

total number is rather ad-hoc. It is not clear how to optimally choose the central moments

and tail values to minimize the variance of the estimator.

Ball and Torous (1983) use a GMM procedure to estimate the Merton (1976) jump-

diffusion model. They construct the moment conditions from the first six cumulants

of the return process. Ramezani and Zeng (1999) estimate the Kou (2002) DE model

using both the cumulant based GMM and ML approaches. In accordance with Press

(1968) and Beckers (1981), they find that the cumulant method, unlike ML, sometimes

yields economically unreasonable parameter estimates. Furthermore, using higher order

moments might be problematic for small samples as the corresponding empirical moment

estimates become increasingly noisy.

Singleton (2001) and Chacko and Viceira (2003) suggest a closely related approach

based on the empirical characteristic function. They construct the moment conditions from

the real and imaginary parts of the characteristic function evaluated at a predefined set

of transform parameters. This is particularly appealing when even the cumulants cannot

be computed in closed-form. However, their approach suffers from the same shortcomings

as the one previously discussed. In particular, it is not clear how to optimally choose the

set of transform parameter values.

Finally, we briefly discuss the estimation procedure proposed by Detering et al. (2013),

who consider the special case of symmetric displacement terms. The authors start by

setting the parameter κ+ = −κ− equal to the average of the absolute logarithmic returns

corresponding to the α and 1 − α quantiles of the empirical distribution function. They

suggest the use of a value of α = 1% and thus implicitly categorize all absolute logarithmic

returns greater than α as jumps. Next, λ is set to be equal to the total number of jumps

divided by the total number of observations. However, it is clear that once the level of α

has been fixed, the estimate of λ is just equal to the average number of trading days per

year times α. The tail parameters η+ and η− are chosen such that they fit the mean of
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the returns classified as jumps. Finally, the diffusive variance is given by the total sample

variance minus the variance of the compound Poisson component, whose parameters have

already been determined.

While it can be extended to asymmetrically displaced jumps in a straightforward

fashion, this approach seems rather ad-hoc. Its parameter estimates fully depend on the

discretionary choice of the quantile α. Another important shortcoming is, that it provides

no estimate of the covariance matrix of the parameter estimates. Thus, it is not possible

to construct confidence intervals or to conduct further hypothesis tests.

II.7.3 Computational Aspects

As indicated in the previous section, the computational bottleneck of ML estimation

is the high number of costly evaluations of the conditional likelihood function that it

requires. There are two approaches to mitigate this problem and significantly accelerate

the estimation. First, it is possible to employ the FFT algorithm to simultaneously obtain

the PDF on a fixed grid. These values can then be interpolated to match the observations

in the sample. Second, as already indicated in a footnote by Heston (1993), the direct

integration can be accelerated through a caching algorithm. This is possible since the

values of the characteristic function depend solely on the transform parameter but not on

the logarithmic return. Kilin (2011) offers an in-depth discussion of this approach and

benchmark results in the context of model calibration.

While caching might prove superior when the total number of function evaluations

is rather low, the FFT seems better suited for ML estimation with a large number of

observations. It is an efficient algorithm to compute the sums appearing in the discrete

Fourier transform through exploiting the orthogonality of the complex exponentials. The

FFT reduces the computational effort from O
(
N2
)

to O (N log2N). The most common

FFT algorithm is due to Cooley and Tuckey (1965). Lemma II.16 states the relevant

result.

Lemma II.16 (Fast Fourier Transform Approximation).

Given the characteristic function φXt(ω) of the random variable Xt, its PDF fXt(x) can

be approximated on an equally spaced grid x = (xj)
N−1
j=0 for j = 0, 1, . . . , N , with N being
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a power of two, through

fXt (xk) =
1

π
Re

N−1∑
j=0

e−ij∆ωk∆xgj


=

N

π
Re
(
D−1 {g}

)
k
,

where D−1 is the discrete inverse Fourier transform operator and the vector g = (gj)
N−1
j=0

is given by

gj = e−ij∆ωx0φX(jω).

Here, w = (wj)
N−1
j=0 are the integration weights for the N sample points ω = (ωj)

N−1
j=0

in the frequency domain, which are spaced ∆ω apart. The corresponding spacing in the

spatial domain is given by ∆x = 2π/(N∆ω), where the lower endpoint x0 can be freely

chosen. When using the Simpson’s rule for approximating the integral, the weights are

given by

wj =


∆ω/3 if j ∈ {0, N − 1}

4∆ω/3 if j/2 ∈ N

2∆ω/3 otherwise

.

Proof This equation is based on the Gil-Pelaez (1951) inversion theorem, which expresses

the upper tail probability as a semi-infinite integral over the characteristic function. The

corresponding integrand is real-valued and decays at an exponential rate. We thus truncate

the upper limit of integration at some point (N − 1)∆ω and approximate the resulting

integral through Gaussian quadrature. The values of fXt (xk) can then efficiently be

computed simultaneously by the FFT algorithm; see Appendix II.F.1 for details. �

Remark. Note that the definition of the inverse Fourier transform D−1 given in

Appendix II.F.1 is consistent with the definition of the characteristic function as the

forward Fourier transform of the density function. This is the convention typically used

in statistics. However, an alternative definition is often employed in the engineering

literature, where the signs in the exponents are reversed.

For a fixed number of sample points N , there is a trade-off between the spacing of the x-

and the ω-values. A finer spacing of the spatial grid directly leads to a coarser grid for

the integration reducing the numerical accuracy of the FFT and vice versa.
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We construct an example to illustrate this problem. Let’s assume that based on the

structure of the integrand, we require a spacing of ∆ω = 0.05 in the frequency domain

and truncate the integral at ω̄ = 200. The number of points needed is then given by

N =
{

2i : i ∈ N, 2i−1 <
ω̄

∆ω
≤ 2i

}
and we get N = 4, 096 with ωN−1 = 204.80. By the above restriction, it follows that

∆x = 3.07% and the corresponding spatial grid has the lower endpoint x0 = −6, 281.65%.

In the context of ML estimation, fXt(x) is typically the PDF of at most daily logarithmic

returns. It is obvious, that the spatial grid is both much wider than necessary and has too

big a spacing. Thus, we are not only computing many unnecessary values in the far tails

of the distribution, but more importantly also do not achieve the necessary accuracy in its

center. In case of equity indices, for example, a grid with a spacing of ∆x = 0.05% and

covering the interval [−20%,+20%] would be a conservative choice. Fixing ∆x = 0.05%

then requires N = 1, 024 points and we get x0 = −25.58%. The corresponding frequency

grid has a spacing of ∆ω = 12.27 with truncation point ωN−1 = 12, 544.10. Thus, starting

by specifying the spatial grid just shifted the problem to the frequency domain. To achieve

the necessary required precision in both domains simultaneously, we fix ∆ω = 0.05 and

search for the smallest i ∈ N such that ∆x ≤ 0.05%. We obtain i = 20 and get ∆x = 0.05%,

ωN−1 = 52.428.75 and x0 = −6, 283.18%. While this yields the necessary precision, it

comes at the cost of increasing the number of complex multiplications and additions in

the Cooley and Tuckey (1965) radix-2 algorithm by a factor of approximately 427 compared

to a grid size of N = 4, 096.

This link between the two grid spacings can be broken by using the fractional FFT

algorithm proposed by Bailey and Swarztrauber (1991, 1994). They show how sums of

the form
N−1∑
j=0

e−2πijnαgj

for an arbitrary α ∈ R can be computed rapidly by invoking three nested FFT procedures

with 2N points each. The two grid spacings are now linked through ∆x∆ω = 2πα.

Lemma II.17 states the main result from Bailey and Swarztrauber (1991) applied to the

problem of approximating the likelihood function.

Lemma II.17 (Fractional Fast Fourier Transform Approximation).

Given the characteristic function φXt(ω) of the random variable Xt, its PDF fXt(ω) can
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be approximated on an equally spaced grid x = (xj)
N−1
j=0 for j = 0, 1, . . . , N with N being

a power of two through

fXt (xk) =
N

π
Re
(

e−iπk2α
(
D
{
D−1 {ξ} ◦D−1 {η}

})
k

)
,

where D and D−1 denote the discrete forward and inverse Fourier transform respectively,

◦ is the Hadamard element-wise product and

ξ =

((
e−iπj2αgj

)N−1

j=0
, (0)N−1

j=0

)
η =

((
eiπj2α

)N−1

j=0
,
(

ei(N−j)2α
)N−1

j=0

)
.

The definition of the vector g = (gj)
N−1
j=0 is identical to Lemma II.16 and α = ∆x∆ω/2π.

Chourdakis (2004) applies the fractional FFT to value European plain vanilla options

within the Carr and Madan (1999) framework. The main advantage of this algorithm

over the standard FFT is that α does not depend on the number of points N . This

allows us to first choose the optimal spatial and frequency grid independent of one

another and find α by the above relationship. In the previous example, the optimal

discretization of the frequency domain requires a higher number of points and we thus set

N = 4, 096. The corresponding spatial grid then has ∆x = 0.01% with lower endpoint

x0 = −20.00% and we get α = 7.77× 10−7. While the fractional FFT algorithm requires

three FFTs instead of one, the much smaller grid size leads to a reduction in the number

of complex multiplications and additions by a factor of approximately 90 compared to the

FFT with grid size N = 1, 048, 576. Here, we assume that the exponential factors have

been precomputed; see the discussion in Section 2 of Bailey and Swarztrauber (1991), p.

390–392.

When computationally maximizing the sample likelihood function, great care has to

be taken in selecting an appropriate optimization routine to ensure convergence to the

global maximum. Although the question of how to carry out a specific optimization is

of central importance to most estimation problems, this point is usually unmentioned in

the literature. Through numerical experiments, we find that the convergence of standard

gradient-based algorithms strongly depends upon the set of starting values chosen. This

suggests the existence of multiple local maxima, and consequently a non-convex nature of

the optimization problem at hand. Kiefer (1978) shows within a similar mixture density
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setting, that the likelihood function may exhibit local optima when the sample size is finite.

We thus turn to the class of heuristic optimization routines that use a stochastic search

strategy and are guaranteed to converge to the global optimum in the limit. However,

their generality comes at the cost of more function evaluations and consequently slower

estimations.

Differential evolution is a population based heuristic optimization algorithm developed

by Storn and Price (1997). It is suitable for continuous search spaces and is based on a

genetic algorithm, which models the evolutionary process of a population of candidate

solutions. The population is updated by a random vector-crossover and mutation scheme

that retains the fittest candidate solutions at the end of each iteration step. Like all

heuristic optimization routines, and in contrast to gradient based methods, differential

evolution does not rely on a set of strong assumptions about the underlying optimization

problem. While it converges to the global optimum with probability one as the number

of iterations becomes large, this comes at the cost of a high number of objective function

evaluations. Ardia et al. (2011) estimate the Merton (1976) jump-diffusion model through

ML using differential evolution and find that it outperforms all convex optimization

routines considered. Gilli and Schumann (2010, 2012) provide further applications of

differential evolution in financial econometrics.

II.8 Empirical Results

This section describes the data set used and discusses the empirical results. All tables

can be found in Appendix II.F. We estimate the parameters of the AD-DG, AD-DE,

SD-DE and DE models based on the 30 year historical daily logarithmic returns from

January 1, 1982 to December 31, 2011. All data is obtained from Bloomberg. The assets

fall into three main categories: (i) equity indices, (ii) commodity indices and (iii) foreign

exchange (FX) rates and spot precious metals. Table II.4 provides the summary statistics.

Category (i) consists of: DAX 30 (Germany), Dow Jones Industrial (USA), Hang Seng

(Hong Kong), MSCI World (global), NASDAQ Composite (USA), Nikkei 225 (Japan),

S&P 500 (USA) and TOPIX (Japan). All of these indices are market capitalization

weighted and, except for the DAX 30, are calculated as price indices. This refers to them

not re-investing the dividends paid by their constituent stocks. On any ex-dividend date,
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the index thus falls by the net dividend amount times the number of stocks in the portfolio.

However, all of these indices are highly diversified and the dividend payment dates are

spread throughout the year. The dividend payments can thus be well approximated by

a continuous dividend yield. Our objective is to estimate the parameters of the different

jump size distribution specifications but not the mean return. Consequently, the non-zero

dividend yield is irrelevant for our purposes.

Category (ii) corresponds to the S&P GSCI Excess Return (ER) commodity index and

three of its sub-indices. The basic index constituents are commodity futures contracts,

weighted by their relative world production. The single futures positions are dynamically

rolled forward before the respective first notice date or expiry date. The S&P GSCI ER

index itself can be broken down into five sub-indices corresponding to the main classes

of commodities: S&P GSCI Energy ER, S&P GSCI Industrial Metals ER, S&P GSCI

Precious Metals ER, S&P GSCI Agriculture ER and S&P GSCI Livestock ER. This

study excludes the S&P GSCI Energy ER and S&P GSCI Livestock ER indices, since

no historical data is available on Bloomberg for the first years of the considered time span.

However, the S&P GSCI ER index itself strongly overweights the energy futures and thus

serves as a good benchmark for this market segment.

Finally, category (iii) contains the three major spot exchange rate pairs EUR/USD,

GBP/USD and USD/JPY as well as the spot prices of silver and gold. We remark that,

despite the naming convention adopted, USD is the domestic currency in the quotation of

the EUR/USD and GBP/USD exchange rate pairs but the foreign currency in USD/JPY

quotation.

Tables II.5 and II.6 show the AD-DE parameter estimates and hypotheses tests for

equity indices. For convenience, II.3 summarizes the null hypotheses. The key observation

is that, without exception, both positive and negative displacement terms are individually

significant at the 1% level. Furthermore, both the null hypothesis H(2)
0 of jointly zero

displacements as well as the null hypothesis H(1)
0 of symmetric displacements can also be

rejected at the 1% level in all cases. However, for some equity indices, such as the Hang

Seng and the S&P 500, one of the two displacement terms is economically insignificant.

We conclude that the asymmetric displacements succeed at capturing a statistical property

that is consistently present in equity index returns. We can thus reject both the SD-DE

and the DE model in favor of the AD-DE dynamics. We further note, that on average

only 25.35% of the total historical variance can be attributed to the diffusion component.
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Table II.3: Overview of the null hypothesis evaluated for the ML AD-DE

parameter estimates.

Null Hypothesis Description

H(1)
0 : κAD-DE

+ + κAD-DE
− = 0 AD-DE displacements are symmetric.

H(2)
0 : κAD-DE

+ = κAD-DE
− = 0 AD-DE displacements are jointly zero.

H(3)
0 : ηAD-DE

+ − ηAD-DE
− = 0 AD-DE tails decay at the same rate.

H(4)
0 : σAD-DE − σDE = 0 AD-DE and DE volatility coefficients are equal.

H(5)
0 : pAD-DE − pDE = 0 AD-DE and DE upward jump probabilities are equal.

H(6)
0 : λAD-DE − λDE = 0 AD-DE and DE jump intensities are equal.

H(7)
0 : ηAD-DE

+ − ηDE
+ = 0 AD-DE and DE upper tails decay at the same rate.

H(8)
0 : ηAD-DE

− − ηDE
− = 0 AD-DE and DE lower tails decay at the same rate.

Except for the three Asian indices, downward jumps are significantly more frequent. For

all equity indices except for the DAX 30 and the NASDAQ Composite, η− is smaller

compared to η+, thus implying a slower decay of the lower tail the jump size distribution.

However, due to the relatively large standard errors of these parameter estimates, the null

hypothesis H(3)
0 of equal tail decay can only be rejected at the 10% level for three out of

eight indices.

The null hypotheses H(4)
0 through H(8)

0 correspond to the estimates of the AD-DE

and the DE parameters being identical. They are thus used to test the empirical

Hypotheses II.1 through II.4 formulated in Section II.2.2. For all indices, the diffusion

coefficient estimate for the DE model is indeed lower than that for the AD-DE model,

thus confirming Hypothesis II.1. However, the differences are so small that the null

hypothesis H(4)
0 cannot be rejected at the 10% level. In accordance with Hypothesis II.2,

the jump frequency under the AD-DE model is always lower than that under the DE

model. This difference is significant for at the 10% level for the NASDAQ Composite and

the Nikkei. The conditions in Hypothesis II.3 are satisfied in case of the DAX 30, Dow

Jones Industrial, MSCI World, NASDAQ Composite and the S&P 500. In all five cases the

signs of the differences between the AD-DE and the DE probability of an upward jump

are as predicted. They are significant at the 10% level for three indices. The equality

of the tail parameters cannot be rejected at a p-value of 90% in all cases thus providing

strong support for Hypothesis II.4.
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Figure II.10: Fitted AD-DE density for the NASDAQ Composite index based

on daily logarithmic returns from January 1, 1982 to December 31, 2011. The

parameters are σ = 8.58%, λ = 175.55, p = 43.74%, η+ = 99.05, η− = 104.28,

κ+ = +0.05% and κ− = −0.28%.

The above results for equity indices also hold for commodity indices, exchange rates

and precious metals. For brevity, we thus do not explicitly discuss them. However, all

relevant data can be found in Tables II.7 through II.10.

We further estimate the AD-DG model for all assets in the sample. Except for the S&P

GSCI Agriculture, we find that the AD-DG and AD-DE parameter estimates coincide,

that is the shape parameters of both the positive and negative gamma tails are equal

to one. Consequently, the historical return distribution of these assets is consistent with

the AD-DE model and the generalization to AD-DG distributed jump sizes provides no

further improvement in the fit. As shown in Table II.12, the estimate of the upper tail

shape parameter for the S&P GSCI Agriculture is δ+ = 4. The corresponding displacement

term is significant at the 1% level though economically insignificant. A likelihood ratio

test for the restriction δ+ = 1 yields a p-value of 34.29% so that we cannot reject the

AD-DE model in favor of the AD-DG model at the 10% level.

In summary, we find very strong empirical support for the AD-DE model dynamics.

These results are robust across three different asset classes. For all assets in the sample,

both displacement terms are jointly and individually significant at the 1% level. We can

reject both the DE as well as the SD-DE model in favor of the AD-DE dynamics. Our

results are robust with respect to other estimation horizons. In particular, we obtain the
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same qualitative results for the 20 year sub-period from January 1, 1992 to December 31,

2011.

Care has to be taken when comparing our results to the studies by Ramezani and Zeng

(1999, 2007), which use a slightly different parametrization of the DE model. Instead of

estimating the jump frequency and the probability of an up-jump, they estimate the

frequency of the independent up- and down-jumps directly. Furthermore, their jump

frequency is expressed in number of jumps per trading day instead of per year. When

accounting for these difference, then the parameter estimates are of the same order of

magnitude. Compared to Detering et al. (2013), we find that the jump frequency for the

SD-DE model implied in the time series of logarithmic returns is much higher than the

approximately five jumps per year that the authors postulate. Table II.11 contrasts the

ML estimates with their approach for the NASDAQ Composite index.

II.9 Conclusion

This chapter extends the Kou (2002) jump-diffusion dynamics by introducing asym-

metric displacement terms to the jump size density. The dynamics are supported by an

equilibrium economy which also implies a risk-neutral pricing measure. One of our main

contributions is to show that the valuation problem for European plain vanilla options

still admits a closed-form solution. The model can be further generalized to double

gamma jumps without sacrificing analytical tractability. To our knowledge, these are

most general jump-diffusion model dynamics yet with this property. Through empirical

test, we demonstrate that the extension to asymmetrically displaced jumps is not only

academically interesting but also reflects the statistical properties of asset returns. We

estimate the model parameters based on a diverse sample of 17 assets across equity indices,

commodity indices and foreign exchange. The DE model can be rejected in favor of our

AD-DE dynamics for all assets and at the 1% level.

Future research could analyze the ability of the AD-DG model to fit the implied

volatility smile or market prices of European plain vanilla options. For reasons discussed

in Section II.2.1, different maturities should be analyzed separately instead of jointly.

Given the statistically significantly improved fit under the physical probability measure,

we expect that the calibration error under the risk-neutral probability measure decreases

as well.
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II.A Appendix for Section II.2

II.A.1 Characteristic Function of X under P

This appendix contains the detailed proof of Lemma II.2. Let X = Xc+Xj , where Xc

and Xj are the continuous and pure jump parts of X respectively. Due to the independence

of the processes W , N and the sequence of random variables (Yi)i∈N, the characteristic

function factors into the characteristic functions of Xc and Xj . We obtain

φXc
t
(ω) = E [exp {iω (γt+ σWt)}]

= exp

{
iωγt− 1

2
ω2σ2t

}

and

φ
Xj

t
(ω) = E

[
exp

{
iω

Nt∑
i=1

Yi

}]

=
∞∑
n=0

E

[
exp

{
iω

n∑
i=1

Yi

}]
P {Nt = n}

=
∞∑
n=0

(
E
[
eiωY1

])n P {Nt = n}

=

∞∑
n=0

φnY1(ω)e−λt
(λt)n

n!

= exp {λt (φY1(ω)− 1)} .

Here, φY1(ω) is the characteristic function of the sequence of random variables (Yi)i∈N

given by

φY1(ω) = pη+

∫ ∞
κ+

ex(iω−η+)+η+κ+dx+ (1− p)η−
∫ κ−

−∞
ex(iω+η−)−η−κ−dx

= p
η+

iω − η+
ex(iω−η+)+η+κ+

∣∣∣∣x=∞

x=κ+

+ (1− p) η−
iω + η−

ex(iω+η−)−η−κ−
∣∣∣∣x=κ−

x=−∞

= p
η+

η+ − iω
eiωκ+ + (1− p) η−

η− + iω
eiωκ− .

Note, that given the characteristic function of the exponential distribution, we could have

alternatively used the translation property of the Fourier transform to find the characteris-

tic function of the displaced exponential distribution without further computations; see for

example Theorem 4.1.10 in Gut (2005), p. 166. Similarly, the characteristic function of the

negative exponential distribution is given by the complex conjugate of the characteristic
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function of the positive exponential distribution; see for example Theorem 2.1.1 in Lukacs

(1970), p. 15. We use this approach to find the characteristic function of the AD-DG

distribution in Appendix II.E.1. Putting everything together, we get

φXt(ω) = φXc
t
(ω)φ

Xj
t
(ω) = exp

{
iωγt− 1

2
ω2σ2t+ λt (φY1(ω)− 1)

}
.

II.B Appendix for Section II.3

II.B.1 Esscher Transform Logarithmic Return Dynamics

This appendix contains the detailed proof of Proposition II.1. First note that the

Radon-Nikodým derivative process can be expressed as

νt (P,P∗) = exp {βXt − tψX1(−iβ)}

= exp

{
βσWt −

1

2
β2σ2t

}
exp

{(
βγ +

1

2
β2σ2

)
t+ β

N1∑
i=1

Yi − tψX1(−iβ)

}

= exp

{
βσWt −

1

2
β2σ2t

}
exp

{
β

Nt∑
i=1

Yi − tψXj
1
(−iβ)

}
.

Here, the first factor changes drift of the Brownian motion W and the second term

changes the intensity and jump size distribution of the compound Poisson process Xj .

By Girsanov’s theorem, it follows that W is a drifted Brownian motion under P∗ with

drift βσ. Equivalently, the process W ∗ defined by

W ∗t = Wt − βσt

is a standard Brownian motion under P∗. By Proposition 9.5 in Cont and Tankov (2004),

pp. 303–304, in order to define a measure change for a compound Poisson process, the

Radon-Nikodým derivative process has to take the form

exp

{
β

Nt∑
i=1

Yi − tψXj
1
(−iβ)

}
= exp

{
Nt∑
i=1

ln

(
λ∗f∗ (Yi)

λf (Yi)

)
− (λ∗ − λ) t

}
.
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From this representation, we immediately find that

λ∗ = ψ
Xj

1
(−iβ) + λ

= λ

(
p

η+

η+ − β
eβκ+ + (1− p) η−

η− + β
eβκ−

)
= λφY1(−iβ).

In order for this expression to be well-defined and non-negative, we require that η+ > β

and η− > −β. We denote the set of admissible values for the transform parameter β by

B = (−η−, η+). Next,

f∗(x) =
λ

λ∗
f(x)eβx

=
λ

λ∗

(
pη+e−(η+−β)x+η+κ+1 {x ≥ κ+}+ (1− p)η−e(η−+β)x−η−κ−1 {x ≤ κ−}

)
.

Now let

η∗+ = η+ − β, η∗− = η− + β

and group terms to obtain

f∗(x) =

(
p
λη+

λ∗η∗+
eκ+(η+−η∗+)

)
η∗+e−η

∗
+(x−κ+)1 {x ≥ κ+}

+

(
(1− p) λη−

λ∗η∗−
e−κ−(η−−η∗−)

)
η∗−eη

∗
−(x−κ−)1 {x ≤ κ−}

= p∗η∗+e−η
∗
+(Yi−κ+)1 {x ≥ κ+}+ (1− p∗) η∗−eη

∗
−(x−κ−)1 {x ≤ κ−} ,

where the definitions of p∗ and 1 − p∗ are implicitly clear. Some tedious algebra shows

that these two terms indeed sum to one. Furthermore, β ∈ B also guarantees that both

p∗ and 1 − p∗ are non-negative and thus p∗ ∈ [0, 1] represents a valid probability. Thus,

under P∗, we have

Xt = γ∗t+ σW ∗t +

N∗
t∑

i=1

Y ∗i ,

where γ∗ = γ + βσ2, N∗ is a Poisson process with intensity λ∗ and the Yi, i = 1, 2, . . .

are i.i.d. random variables with PDF f∗(x). It immediately follows from the results in

Appendix II.A.1 that the characteristic exponent of X under P∗ is given by

ψ∗X(ω) = iωγ∗ − 1

2
σ2ω2 + λ∗

∫ +∞

−∞

(
eiωx − 1

)
f∗(x)dx

= iω
(
γ + βσ2

)
− 1

2
σ2ω2 + λ

∫ +∞

−∞

(
eiωx − 1

)
f(x)eβxdx,
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where the integral evaluates to

λ

∫ +∞

−∞
(ex − 1) f(x)eβxdx

= λ

∫ +∞

−∞
ex(1+β)f(x)dx− λ∗

∫ +∞

−∞

λ

λ∗
eβxf(x)dx

= λφY1(−i(1 + β))− λ∗

= λ (φY1(−i(1 + β))− φY1(−iβ)) .

II.B.2 Existence and Uniqueness of the Esscher Transform Martingale
Measure

This appendix contains the detailed proof of Proposition II.2. Let the function k : R×
B → R be the integrand in Equation II.3, that is

k(x, β) = (ex − 1) eβxf(x).

We need to show that there exists another non-negative function h : R → R+ such that

for all β ∈ B, k(x, β) is bounded by h(x) almost everywhere. Note that

eβxf(x) = pη+ex(β−η+)+η+κ+1 {x ≥ κ+}+ (1− p)η−ex(β+η−)−η−κ−1 {x ≤ κ−} .

Since β ∈ (−η−, η+), we have that limx→±∞ f(x)eβx = 0. The function f(x)eβx thus

attains its global maximum at either x = κ− or x = κ+. Furthermore since eβxf(x) ≥ 0

for all x ∈ R, it follows that

|f(x)eβx| ≤ max
{
pη+eβκ+ , (1− p)η−eβκ−

}
≤ max

{
pη+eη+κ+ , (1− p)η−e−η−κ−

}
and thus

|k(x, β)| ≤ |ex − 1||f(x)eβx| ≤ |ex − 1|max
{
pη+eη+κ+ , (1− p)η−e−η−κ−

}
= l(x).

Since in addition k(x, β) is continuous in its second argument, it follows by Theorem 2.27.a

in Folland (1984), p. 54, that g(β) in Equation II.3 is continuous on B. Next, note that

the partial derivative
∂k

∂β
(x, β) = xk(x, β)
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exists for every x ∈ R and β ∈ B and is continuous in its second argument. Furthermore,

∣∣∣∣∂k∂β (x, β)

∣∣∣∣ ≤ |x|l(x).

It follows by Theorem 2.27.b in Folland (1984), p. 54, that g(β) is differentiable on B.

The derivative

g′(β) = σ2 + λ

∫ +∞

−∞
x (ex − 1) f(x)eβxdx > 0,

is strictly positive since the integrand is non-negative. Finally, note that

lim
β↓−η−

g(β) = −∞, lim
β→η+

g(β) =∞.

In summary, the function g(β) is continuous and strictly increasing on B with range R.

Consequently, the Equation II.3 has a unique solution.

II.B.3 Properties of the Esscher Transform Martingale Measure

This appendix contains the detailed proof of Corollary II.2. As part of the proof of

Property (iii) in Corollary II.2, we need to show that ∂p∗/∂β as defined in Proposition II.1

is positive. First, it is convenient to write

p∗(β) =

(
1 +

(1− p)η− (η+ − β)

p (η− + β) η+
eβ(κ−−κ+)

)−1

.

Then

∂p∗

∂β
(β)

= − (p∗(β))2

(
(1− p)η−

p (η− + β)2 η+

eβ(κ−−κ+)

)
((κ− − κ+) (η+ − β) (η− + β)− η+ − η−) .

It is obvious that the first two factors are positive. The third one is negative since κ− ≤ κ+

and both η− + β and η+ − β are strictly positive due to β ∈ (−η−, η+). It follows that

∂p∗/∂β > 0 as claimed.

We next prove Property (v) in Corollary II.2. Since λ∗ = λθY1(β), where

θY1(x) = E
[
exY1

]
,

it is sufficient to show that there exists two parameter combinations for the AD-DE

distribution and a fixed value of β, such that the sign of the moment generating function
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differs. One possibility to achieve this is to find two parameter combinations such that

the slope of the moment generating function at the origin changes. We have

θY1(0) = p

(
κ+ +

1

η+

)
+ (1− p)

(
κ− −

1

η−

)
.

Now consider p = 50.00% and η+ = η−. Then sgn (θY1(0)) = sgn (κ+ − κ−). Thus, for

κ+ > κ−, the slope is positive and vice versa.

II.C Appendix for Section II.4

II.C.1 Equilibrium Pricing Equation

This appendix contains the detailed proof of Lemma II.5. Let M be a stochastic

discount factor process. Then the budget constraint is can be expressed as

EP

[∫ ∞
t

CuMudu

∣∣∣∣Ft] ≤ VtMt.

To solve the constraint optimization problem, we construct the Lagrangian

L ({Cu, 0 ≤ u ≤ ∞}) = EP

[∫ ∞
t

(
e−ρvu (Cv)− λMv

)
dv

∣∣∣∣Ft]+ λVtMt.

The first order condition for optimal consumption is then given by

∂L
∂Cv

({Cu, 0 ≤ u ≤ ∞}) = 0 ⇔ e−ρvu′ (C∗v ) = λMv,

which has to hold for all v ∈ [t,∞). By the properties of the stochastic discount factor,

the time t ≥ 0 value of the payout stream ζ is given by

πt(ζ) =
1

Mt
EP

[∫ ∞
t

ζuMudu

∣∣∣∣Ft]
=

1

e−ρtu′ (δt)
EP

[∫ ∞
t

e−ρvu′ (δv) ζvdv

∣∣∣∣Ft]

and Lemma II.5 follows.
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II.C.2 Equilibrium Risk-Free Rate

This appendix contains the detailed proof of Proposition II.3. A zero-coupon bond with

maturity in T ≥ t has single payment of one unit of the consumption good at maturity

and no intermediate cash-flows. We thus have ζt = ∆(T − t) where ∆(x) is the Dirac delta

function with the property

∫ +∞

−∞
f(y)∆(x− y)dy = f(x),

for any function f(x). Using the general valuation formula from Lemma II.5 in conjunction

with the iso-elastic utility function, we thus get

B(t, T ) =
1

e−ρtδ−αt
EP

[∫ ∞
t

e−ρvδ−αv ∆(T − v)dv

∣∣∣∣Ft]
=

1

e−ρtδ−αt
EP
[
e−ρT δ−αT

∣∣Ft]
= e−ρ(T−t)EP

[
e−α(XT−Xt)

∣∣∣Ft] .
To compute this expectation, we use that the increment XT −Xt is independent of Ft and

has the same distribution under P as XT−t. Thus,

B(t, T ) = e−ρ(T−t)EP
[
e−αXT−t

]
= exp {(T − t) (ψX1(iα)− ρ)} .

The corresponding yield is then given by

y(t, T ) = − 1

T − t lnB(t, T )

= ρ− ψX1(iα).

We see that Assumption II.6.(i) guarantees that the risk-free interest rate is strictly

positive.
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II.C.3 Equilibrium Stock Price

This appendix contains the detailed proof of Proposition II.4. Again using the general

valuation formula from Lemma II.5 with ζt = δt yields

St =
1

e−ρtδ−αt
EP

[∫ ∞
t

e−ρvδ1−α
v dv

∣∣∣∣Ft]
= δtEP

[∫ ∞
t

exp {−ρ(v − t) + (1− α) (Xv −Xt)}dv

∣∣∣∣Ft]
= δtEP

[∫ ∞
t

exp {−ρ(v − t) + (1− α)Xv−t} dv

]
.

We now need to interchange the integration and expectation. Since,

EP

[∣∣∣e−ρ(v−t)+(1−α)Xv−t

∣∣∣] = EP

[
e−ρ(v−t)+(1−α)Xv−t

]
= exp {(ψX1(i(α− 1))− ρ) (v − t)}

≤ 1 ∀v ∈ [t,∞).

this is justified by the stochastic Fubini Theorem; see for example Theorem VI.65 in

Protter (2004), p. 207. The inequality follows from Assumption II.6.(ii), which ensures

that the exponent is strictly negative for v > t. Thus,

St = δt

∫ ∞
t

exp {(ψX1(i(α− 1))− ρ) (v − t)} dv

=
δt

ρ− ψX1(i(α− 1))
.

II.C.4 Equilibrium Risk-Neutral Measure

This appendix contains the detailed proof of Proposition II.5. From the proof of

Lemma II.5, we have that Mt ∝ e−ρtu′ (δt). Thus, the Radon-Nikodým derivative process

ν (P,P∗) can be expressed as

νt (P,P∗) = e(r−ρ)t u
′ (δt)

u′ (δ0)

= exp {(r − ρ)t− αXt}

= exp {−αXt − tψX1(iα)} ,

where the last equality uses the expression for the risk-free interest rate obtained in

Proposition II.3. By Proposition 2.1.3 in Applebaum (2004), pp. 72–73, ν (P,P∗) is a
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strictly positive (P,F)-martingale with initial value ν0 (P,P∗) = 1. Thus, it constitutes a

valid Radon-Nikodým derivative process for an equivalent measure change; see for example

Chapter III.8 in Protter (2004), pp. 131–143. Starting from the general valuation formula

in Lemma II.5, we then get

πt(ζ) =
1

Mt
EP

[∫ ∞
t

ζuMudu

∣∣∣∣Ft]
= EP

[∫ ∞
t

e−r(u−t)ζu
νu (P,P∗)
νt (P,P∗)

du

∣∣∣∣Ft]
= EP∗

[∫ ∞
t

e−r(u−t)ζudu

∣∣∣∣Ft] .
In the last step, we apply the abstract Bayes rule to change the measure from P to P∗; see

for example Lemma A.1.4 in Musiela and Rutkowski (2005), p. 615.

II.D Appendix for Section II.5

II.D.1 Distribution of ξ+− ξ−

This appendix contains the detailed proof of Lemma II.7. First, remember that the

random variables ξ+ and ξ− are independent and have density functions

fξ+(x) = η+e−η+(x−κ)1{x ≥ κ}, fξ−(x) = η−e−η−(x−κ)1{x ≥ κ}.

The density function of ξ+ − ξ− is thus given by the convolution

fξ+−ξ−(x) =

∫ +∞

−∞
fξ+(y)fξ−(y − x)dy

=

∫ ∞
max{κ,x+κ}

η+η−e−(η++η−)(y−κ)+η−xdy

=
η+η−
η+ + η−

(
eη−x1{x < 0}+ e−η+x1{x > 0}+ 1{x = 0}

)
.

Next,

P
{
ξ+ ≥ ξ−

}
=

∫ +∞

−∞
fξ−(x)

∫ ∞
x

fξ+(y)dydx

=

∫ ∞
κ

η−e−η−(x−κ)

∫ ∞
x

η+e−η+(y−κ)dy

=

∫ ∞
κ

η−e−(η++η−)(x−κ)dy

=
η−

η+ + η−
.
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This yields the conditional density

f ξ+−ξ−|ξ+≥ξ−(x) = η+e−η+x1{x ≥ 0}

= fξ+(x+ κ).

Similarly, we have

P
{
ξ+ ≤ ξ−

}
= 1− P

{
ξ+ > ξ−

}
=

η+

η+ + η−

with corresponding conditional density

f ξ+−ξ−|ξ+≤ξ−(x) = η−eη−x1{x ≤ 0}

= fξ−(−x+ κ))).

In summary, we can decompose the distribution of ξ+ − ξ− into

ξ+ − ξ− ∼


ξ+ − κ with probability η−/ (η+ + η−)

−ξ− + κ with probability η+/ (η+ + η−)

.

II.D.2 Distribution of A(n,m) I

This appendix contains the detailed proof of Lemma II.8. We first apply Lemma II.7

to decompose the distribution of

A(n,m) = A(n− 1,m− 1) + ξ+
n − ξ−m.

as

A(n,m) ∼


A(n− 1,m− 1) + ξ+

n − κ with probability η−/ (η+ + η−)

A(n− 1,m− 1)− ξ−m + κ with probability η+/ (η+ + η−)

∼


A(n,m− 1)− κ with probability η−/ (η+ + η−)

A(n− 1,m) + κ with probability η+/ (η+ + η−)

.

We can iteratively repeat this step until we are left with an expression of the form A(k, 0)

or A(0, l) plus a deterministic term which is some multiple of the displacement term κ.
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Figure II.11: Sample path of the random walk starting at A(7, 5) and moving

left four and down five steps to stop at A(3, 0). The thick dotted lines represent

the boundary of the domain on which the random walk lives. The dashed lines

correspond to the parts of the boundary on which the random walk is stopped.

We use the same combinatorial proof as the one given for Lemma B.1 in Kou (2002), pp.

1098–1099. Consider the number of ξ+ and ξ− in the sums to be the position of a random

walk on an integer lattice starting at {n,m} in the first quadrant and stopping once it

hits either of the two axes. Each step reduces the number of either ξ+ or ξ− in the sums

by one and thus corresponds to moving either left or down in the lattice. Consequently,

only the nodes {k, 0} ({0, l}) for k = 1, 2, . . . , n (l = 1, 2, . . . ,m) can be reached on the

x-axis (y-axis). In particular, the node {0, 0} can never be reached. Immediately before

hitting the node {k, 0} ({0, l}), the random walk has to be at {k, 1} ({1, l}) and then take

a down (left) step. It has to take a total of n−k (n−1) left and m−1 (m− l) down steps

to get from {n,m} to {k, 1} ({1, l}). There are
(
n−k+m−1

m−1

)
(
(
n−1+m−l

n−1

)
) such paths.

By the previous result, the probabilities of a left and down step are η+/ (η+ + η−) and

η−/ (η+ + η−), respectively. The factor multiplying κ is equal to the difference between
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the number of left- and down-steps taken. Thus

A(n,m) ∼



A(k, 0) + (n− k −m)κ with probability p̃(n, k)

for k = 1, 2, . . . , n

A(0, l) + (n−m+ l)κ with probability q̃(n, l)

for l = 1, 2, . . . ,m

,

where

p̃(n, k) =

(
n− k +m− 1

m− 1

)(
η+

η+ + η−

)n−k ( η−
η+ + η−

)m
,

q̃(n, l) =

(
n− 1 +m− l

n− 1

)(
η+

η+ + η−

)n( η−
η+ + η−

)m−l
.

Figure II.11 illustrates the domain and a sample path of the random walk starting at

A(7, 5) and stopping at A(3, 0).

II.D.3 Distribution of A(n,m) II

This appendix contains the detailed proof of Lemma II.8*. Using Lemma II.7*, we

can decompose the distribution of

A(n,m) = A(n− 1,m− 1) + ξ̂+
n − ξ̂−m + 2α

as

A(n,m) ∼


A(n,m− 1) + α− κ with probability η−/ (η+ + η−)

A(n− 1,m) + α+ κ with probability η+/ (η+ + η−)

.

We again iteratively repeat this step until we are left with an expression of the form A(k, 0)

or A(0, l). The term multiplying α is equal to the total number of iteration steps taken,

which are given by n− k +m and n+m− l respectively.

II.D.4 Jump-Diffusion Upper Tail Probability

This appendix contains the detailed proof of Theorem II.1. We start by expression the

upper tail probability of the jump-diffusion process X as a probability weighted sum over
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the tail probabilities conditional on a fixed total number of jumps, that is

P {Zt (Y,Nt) ≥ x} =

∞∑
n=0

P {Nt = n}P {Zt(Y, n) ≥ x} .

Using Proposition II.6* and Lemma II.9, we can express the summands in terms of In-

functions as

. . . = P {Nt = 0}P {Zt(·, 0) ≥ x}+

∞∑
n=1

P {Nt = n}
(
P
{
Zt
(
ξ+, n

)
≥ x

}
p̂(n, n)

+P
{
Zt
(
−ξ−, n

)
≥ x

}
p̂(0, n)

+

n−1∑
k=1

( n−1∑
i=k

P
{
Zt
(
ξ+, k

)
+ (n− k)α+ (2i− n− k)κ ≥ x

}
p̂(i, n)p̃(i, n− i, k)

+
n−k∑
i=1

P
{
Zt
(
−ξ−, k

)
+ (n− k)α+ (2i− n+ k)κ ≥ x

}
p̂(i, n)q̃(i, n− i, k)

))
.

We can merge the inner two summations by changing the order of summation which

corresponds to replacing i by n− i in the second sum and get

. . . = P {Nt = 0}P {Zt(·, 0) ≥ x}+

∞∑
n=1

P {Nt = n}
(
P
{
Zt
(
ξ+, n

)
≥ x

}
p̂(n, n)

+P
{
Zt
(
−ξ−, n

)
≥ x

}
p̂(0, n)

+

n−1∑
k=1

n−1∑
i=k

(
P
{
Zt
(
ξ+, k

)
+ (n− k)α+ (2i− n− k)κ ≥ x

}
p̂(i, n)p̃(i, n− i, k)

+ P
{
Zt
(
−ξ−, k

)
+ (n− k)α− (2i− n− k)κ ≥ x

}
p̂(n− i, n)q̃(n− i, i, k)

))
.

Also, note that the ξ+ (−ξ−) are not standard (negative) exponential random variables.

To make this explicit such that Lemma II.9 can be directly applied, we write

. . . = P {Nt = 0}P {Zt(·, 0) ≥ x}

+
∞∑
n=1

P {Nt = n}
(
P
{
Zt
(
ξ+ − κ+, n

)
+ nκ+ ≥ x

}
p̂(n, n)

+P
{
Zt
(
−ξ− − κ−, n

)
+ nκ− ≥ x

}
p̂(0, n)

+
n−1∑
k=1

n−1∑
i=k

(
P
{
Zt
(
ξ+ − κ+, k

)
+ iκ+ + (n− i)κ− ≥ x

}
p̂(i, n)p̃(i, n− i, k)

+ P
{
Zt
(
−ξ− − κ−, k

)
+ (n− i)κ+ + iκ− ≥ x

}
p̂(n− i, n)q̃(n− i, i, k)

))
.

Here, we also substituted for α = (κ+ + κ−) /2 and κ = (κ+ − κ−) /2.
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II.D.5 Truncation Error

This appendix contains the detailed proof of Lemma II.10. When truncating the

infinite summation at nmax, the truncation error is given by

∞∑
n=nmax+1

P {Nt = n}P {Zt (Y1, n) ≥ x} ≤
∞∑

n=nmax+1

P {Nt = n}

= P {Nt ≥ nmax + 1} ,

where we use that the second term in the summand takes values in [0, 1]. The last

expression is equivalent to the probability that the (nmax + 1)-th jump occurs before time

t. Since the time of the n-th jump follows a gamma distribution, see for example Section

2.5 in Cont and Tankov (2004), pp. 44–55, we obtain

P {Nt ≥ nmax + 1} =
λ

nmax!

∫ t

0
(λu)nmaxe−λudu

=
1

nmax!

∫ λt

0
vnmaxe−vdv

=
γ (nmax + 1, λt)

nmax!
.

II.D.6 European Plain Vanilla Call Options on Spot Assets

This appendix contains the detailed proof of Proposition II.7. By the risk-neutral

pricing formula, see for example Proposition 9.1 in Cont and Tankov (2004), we have

Ct = BtEP∗

[
CT
BT

∣∣∣∣Ft] .
Here, we assume that P∗ is a risk-neutral probability measure as defined in Section II.3

such that the discounted asset price St/Bt is a (P∗,F)-martingale. Expanding the payoff

function yields

Ct = BtEP∗

[
ST
BT

1 {ST ≥ K}
∣∣∣∣Ft]−B(t, T )KP∗ {ST ≥ K|Ft} , (II.4)

where B(t, T ) = Bt/BT is the time t ≥ 0 price of a zero coupon with maturity in T ≥ t and

a unit notional value. The second expression can be readily computed using Theorem II.1.
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We have

P∗ {ST ≥ K|Ft} = P∗
{
Ste

XT−Xt ≥ K
∣∣Ft}

= P∗ {Xτ ≥ ln (K/St)}

= Λ

(
ln

(
K

St

)
; τ, γ∗, σ, λ∗, p∗, η∗+, η

∗
−, κ+, κ−

)
.

where the second equality is a consequence of the Markov property of X. Here, all

parameters are specified under the risk-neutral probability measure. In particular,

γ∗ = r − 1

2
σ2 − λ∗

(
p∗

η∗+
η∗+ − 1

eκ+ + (1− p∗) η∗−
η∗− + 1

eκ− − 1

)
.

To compute the first expression, we change the numéraire from B to S. To this end, we

define a new probability measure PS equivalent to P∗ on [0, T ∗] by

dPS

dP∗
=

ST ∗B0

S0BT ∗

= exp

(γ∗ − r)T ∗ + σW ∗T ∗ +

NT∗∑
i=1

Yi

 P∗-a.s..

The corresponding the Radon-Nikodým derivative process ν
(
P∗,PS

)
={

νt
(
P∗,PS

)
: t ∈ [0, T ∗]

}
is given by

νt
(
P∗,PS

)
=

dPS

dP∗

∣∣∣∣Ft =
StB0

S0Bt

= exp

{
(γ∗ − r) t+ σW ∗t +

Nt∑
i=1

Yi

}
P∗-a.s.

We recognize this expression as an Esscher transform of the risk process X with transform

parameter β = 1 and P∗ taking the role of the prior probability measure. From

Proposition II.1, it then immediately follows that X is an AD-DE jump-diffusion process

under the new probability measure PS with parameters

γS = γ∗ + σ2,

λS = λ∗
(
p∗
η∗+
ηS+

eκ+ + (1− p∗) η
∗
−
ηS−

eκ−
)
,

fS(x) = pSηS+e−η
S
+(x−κ+)1 {x ≥ κ+}+

(
1− pS

)
ηS−eη

S
−(x−κ−)1 {x ≤ κ−} ,

pS = p∗
λ∗η∗+
λSηS+

eκ+ ,

ηS± = η∗± ∓ 1.
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Using the abstract Bayes rule, see for example Lemma A.1.4 in Musiela and Rutkowski

(2005), p. 615, the first expression in Equation II.4 becomes

BtEP∗

[
ST
BT

1 {ST ≥ K}
∣∣∣∣Ft] = StEP∗

[
STBt
StBT

1 {ST ≥ K}
∣∣∣∣Ft]

= StEP∗

[
νT
(
P∗,PS

)
νt (P∗,PS)

1 {ST ≥ K}
∣∣∣∣∣Ft
]

= StPS {ST ≥ K|Ft} .

Again using Theorem II.1 yields

PS {ST ≥ K|Ft} = Λ

(
ln

(
K

St

)
τ, γS , σ, λS , pS , ηS+, η

S
−, κ+, κ−

)
.

II.D.7 Sensitivities of European Plain Vanilla Options

This appendix contains the detailed proof of Corollary II.4. Similar to Rothschild and

Stiglitz (1970), we define the returns of a price process S(2) =
{
S

(2)
t : t ∈ [0, T ∗]

}
to be

riskier under P∗ than those of another asset price process S(1) =
{
S

(1)
t : t ∈ [0, T ∗]

}
if

S
(2)
t

S
(2)
0

∼P∗
S

(1)
t

S
(1)
0

εt,

where εt is an non-trivial random variable with EP∗
[
εt|S(1)

t

]
= 1 for all S

(1)
t . Assume

w.l.o.g. that the jump intensities of these two assets are given by λ∗,(1) < λ∗,(2). Then

S
(1)
t ∼P∗ S

(1)
0 exp

{
Z

(1)
t

}
,

S
(2)
t ∼P∗ S

(2)
0 exp

{
Z

(1)
t + Z

(2)
t

}
,

where

Z
(1)
t =

(
r − 1

2
σ2 − λ∗,(1)

(
φ∗
Y

(1)
1

(−i)− 1

))
t+

N
(1)
t∑
i=1

Y
(1)
i ,

Z
(2)
t = −

(
λ∗,(2) − λ∗,(1)

)(
φ∗
Y

(2)
1

(−i)− 1

)
t+

N
(2)
t∑
i=1

Y
(2)
i .

Here, N (1) =
{
N

(1)
t : t ∈ [0, T ∗]

}
and N (2) =

{
N

(2)
t : t ∈ [0, T ∗]

}
are independent

Poisson processes under P∗ with intensities λ∗,(1) and
(
λ∗,(2)−λ∗,(1)

)
respectively. Similarly,
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(
Y

(1)
i

)
i∈N and

(
Y

(2)
i

)
i∈N are sequences of i.i.d. random variables that are further also

independent of each other and the two Poisson processes. This decomposition rests on the

additivity of the jump intensity of two independent compound Poisson processes with the

same jump size distribution. Now let εt = exp
{
Z

(2)
t

}
. Then EP∗

[
εt|S(1)

t

]
= 1 due to the

independence of S
(1)
t and Z

(2)
t and the martingale property of the exponential of Z

(2)
t ; see

Section II.3.1.

II.D.8 European Plain Vanilla Call Options on Forwards

This appendix contains the detailed proof of Corollary II.5. We first need to compute

the dynamics of the forward contract on the asset S. By Lemma 9.6.1 in Musiela and

Rutkowski (2005), p. 374, we have

FS(t, U) =
St

B(t, U)
∀t ∈ [0, U ]

and thus

dFS(t, U) = FS(t, U)

(
dSt
St
− rdt

)
.

These dynamics imply that FS(·, U) a (P∗,F)-martingale, such that its logarithm has the

drift γ∗ − r. All remaining parameters are identical to those of the process X. We get

Ct =
Bt

B(T,U)
EP∗ [ST 1 {FS(T,U) ≥ K}|Ft]−B(t, T )KP∗ {FS(T,U) ≥ K|Ft} .

All remaining steps are fully analogous to II.D.6. In particular,

P∗ {FS(T,U) ≥ K|Ft} = Λ

(
ln

(
K

FS(t, U)

)
; τ, γ∗ − r, σ, λ∗, p∗, η∗+, η∗−, κ+, κ−

)

and

Bt
B(T,U)

EP∗ [ST 1 {FS(T,U) ≥ K}|Ft] = B(t, T )FS(t, U)PS {FS(T,U) ≥ K|Ft} ,

where

PS {FS(T,U) ≥ K|Ft} = Λ

(
ln

(
K

FS(t, U)

)
; τ, γS − r, σ, λS , pS , ηS+, ηS−, κ+, κ−

)
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II.E Appendix for Section II.6

II.E.1 Characteristic Function of Y1 under P

This appendix contains the detailed proof of Lemma II.13. The characteristic function

φY1(ω) of the sequence of random variables Yi is given by

φY1(ω) = p
δ
ε+
+

Γ (ε+ − 1)

∫ ∞
κ+

(x− κ+)ε+−1 e−(δ+−iω)x+δ+κ+dx

+(1− p) δ
ε−
−

Γ (ε− − 1)

∫ κ−

−∞
(κ− − x)ε−−1 e(δ−+iω)x−δ−κ−dx

= p

(
δ+

δ+ − iω

)ε+
eiωκ+ (δ+ − iω)ε+

Γ (ε+ − 1)

∫ ∞
κ+

(x− κ+)ε+−1 e−(δ+−iω)(x−κ+)dx

+(1− p)
(

δ−
δ− + iω

)ε−
eiωδ− (δ− + iω)ε−

Γ (ε+ − 1)

∫ κ−

−∞
(κ− − x)ε−−1 e(δ−+iω)(x−κ−)dx.

Now consider the integral

(δ+ − iω)ε+

Γ (ε+ − 1)

∫ ∞
κ+

(x− κ+)ε+−1 e−(δ+−iω)(x−κ+)dx.

If ω ∈ C was a strictly complex number with Re(ω) = 0, then the integrand would be

real valued and we would recognize this expression as an integral over the full support of

the displaced gamma distribution. It would thus evaluate to one. However, the transform

parameter ω ∈ R is a real number and thus this argument cannot be directly employed.

Instead, we can make a change of variables by setting y = x − κ+ and then expand the

complex part of the exponent as a Taylor series around ω = 0 to obtain

. . . =
(δ+ − iω)ε+

Γ (ε+ − 1)

∫ ∞
0

yε+−1e−(δ+−iω)ydy

=
(δ+ − iω)ε+

Γ (ε+ − 1)

∫ ∞
0

∞∑
n=0

(iωy)n

n!
yε+−1e−δ+ydy

=
(δ+ − iω)ε+

Γ (ε+ − 1)

∞∑
n=0

(iω)n

n!

∫ ∞
0

yε+−1+ne−δ+ydy

=
(δ+ − iω)ε+

Γ (ε+ − 1)

∞∑
n=0

(iω)n

n!

Γ (ε+ − 1 + n)

δ
ε++n
+

=

(
δ+ − iω

δ+

)ε+ ∞∑
n=0

(iω/δ+)n

n!

n−1∏
i=0

(ε+ − 1 + i)

= 1.
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Here, we used the integrand in the third equality is, after normalization, the PDF of a

Γ (ε+, δ+) gamma random variable. The last equality follows from

∂n

∂ωn

(
δ+

δ+ − iω

)ε+
(0) =

(
i

δ+

)n n−1∏
i=0

(ε+ − 1 + i) ,

which shows that the sum is a Taylor series expansion of the reciprocal of the first term

around ω = 0. Similarly, we can show through analogous computations that the second

integral in the equation for φY1(ω) evaluates to one as well. Consequently,

φY1(ω) = p

(
δ+

δ+ − iω

)ε+
eiωκ+ + (1− p)

(
δ−

δ− + iω

)ε−
eiωδ− .

The above proof can be substantially simplified by using the known characteristic function

of gamma random variables as well as elementary properties of the Fourier transform.

First, since the random variable ζ+ − κ+ ∼ Γ (ε+, δ+) has gamma distribution, its

characteristic function φζ+−κ+(ω) is given by

φζ+−κ+(ω) =

(
δ+

δ+ − iω

)ε+
.

Now, by the translation property of the Fourier transform, see for example Theorem 4.1.10

in Gut (2005), the characteristic function φζ+(ω) of ζ+ is given by

φζ+(ω) =

∫ +∞

−∞
eiωxfζ+(x)dx

=

∫ +∞

−∞
eiωxfζ+−κ+ (x− κ+) dx

= φζ+−κ+(ω)eiωκ+ .

A similar result holds for the lower tail, where we first find the characteristic function of

ζ− + κ− and then use that the characteristic function is Hermitian, that is φ−ζ−(ω) =

φζ−(−ω) = φζ−(ω); see for example Theorem 2.1.1 in Lukacs (1970), p. 15.

II.F Appendix for Section II.7

II.F.1 Probability Density Approximation

This appendix contains the detailed proof of Lemma II.16. Gil-Pelaez (1951) develops

a general inversion theorem for characteristic functions that allows to express the upper
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tail probability as

P {Xt ≥ x} =
1

2
+

1

2π

∫ ∞
0

1

iω

(
e−iωxφXt(ω)− eiωxφXt(−ω)

)
dω.

For computational purposes, it is convenient to have a real-valued integrand. By Theorem

2.1.1 in Lukacs (1970), p. 15, the characteristic function is Hermitian, that is φXt(−ω) =

φXt(ω). Thus,

P {Xt ≥ x} =
1

2
+

1

2π

∫ ∞
0

(
1

iω
e−iωxφXt(ω) +

1

iω
e−iωxφXt(ω)

)
dω

=
1

2
+

1

π

∫ ∞
0

Re

(
1

iω
e−iωxφXt(ω)

)
dω

=
1

2
+

1

π

∫ ∞
0

Im

(
1

ω
e−iωxφXt(ω)

)
dω.

The former expression can be found in Heston (1993), while the latter one is given in Bates

(1996b). Differentiating with respect to x then yields

P {Xt ∈ dx} =
1

π

∫ ∞
0

Re
(
e−iωxφXt(ω)

)
dωdx

=
1

π

∫ ∞
0

Im
(
ie−iωxφXt(ω)

)
dωdx.

Next note that, due to the linearity of the integral,

1

π

∫ ∞
0

Re
(
e−iωxφXt(ω)

)
dω =

1

π
Re

(∫ ∞
0

e−iωxφXt(ω)dω

)
.

We now approximate the integral by first truncating its upper limit of integration at some

level ωN−1 = (N − 1)∆ω and then approximating the resulting definite integral through

Gaussian quadrature∫ ∞
0

e−iωxφXt(ω)dω =

∫ ωN−1

0
e−iωxφXt(ω)dω + ε(N,∆ω)

≈
N−1∑
j=0

wje
−ijωjxφX1 (ωj) .

Here, w = (wj)
N−1
j=0 are the integration weights for the N sample points ω = (ωj)

N−1
j=0

in the frequency domain which are spaced ∆ω apart. The values of wj depend on the

concrete choice of the numerical integration method used. We implement the Simpson

rule and thus have

wj =


∆ω/3 if j ∈ {0, N − 1}

4∆ω/3 if j/2 ∈ N

2∆ω/3 otherwise

.
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Our aim is now to compute the above approximation simultaneously for a grid x = (xj)
N−1
j=0

of returns. When choosing N to be a power of two and using the same number of points in

the spatial and frequency domain, this can be efficiently accomplished through the FFT.

We start by constructing an equidistant grid centered around zero by

xn = x0 + n∆x, x0 = −(N − 1)∆x

2
.

Substituting back into the discrete approximation and using that ωj = j∆ω yields

fXt (xn) =
1

π
Re

N−1∑
j=0

wje
−ij∆ω(x0n∆x)φXt(j∆ω)


=

1

π
Re

N−1∑
j=0

e−ij∆ωn∆xgj

 ,

where

gj = wje
−ij∆ωx0φXt(j∆ω).

Here, the values g = (gj)
N−1
j=0 have been chosen such that they do not depend on n. Now,

the inverse discrete Fourier transform of the vector f̂ = (f̂j)
N−1
j=0 corresponding to the

convention used in this chapter is given by

fn =
(
D−1{f̂}

)
n

=
1

N

N−1∑
j=0

e−2πijn/N f̂j .

By comparing the exponents, we obtain

∆ω∆x =
2π

N
⇔ ∆x =

2π

N∆ω
.

Consequently,

fXt (xn) =
N

π
Re
(
D−1 {g}

)
n
.

II.G Appendix for Section II.8

This appendix hold the detailed estimation results for Section II.8.
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Table II.11: Detailed Estimation Results for the NASDAQ Composite based on

daily logarithmic returns over the time span from January 1, 1982 to December

31, 2011. The parameters for models (1) through (3) are obtained from ML

estimation. The parameters of model (4) are fixed using the approach proposed

in Detering et al. (2013). When applicable, the standard errors are given in

parenthesis below the parameter estimates. Black superscripts ***, **, and *

denote significance at 1%, 5%, and 10%, respectively, for the displacements terms

κ+ and κ−. Gray superscript indicate a lack of significance and are used to

highlight the parameters that are tested.

Asset NASDAQ NASDAQ NASDAQ NASDAQ
Composite Composite Composite Composite

Model (1) AD-DE (2) D-DE (3) DE (4) DE

σ 8.58% 8.54% 8.54% 18.10%
(0.29%) (0.25%) (0.24%)

λ 175.55 198.18 212.77 5.04
(11.18) (11.81) (12.73)

p 43.74% 38.15% 38.07% 50.00%
(2.29%) (1.70%) (1.35%)

η+ 99.05 99.13 99.13 62.32
(5.13) (4.36) (4.12)

η− 104.28 104.20 104.20 64.70
(4.54) (4.22) (3.94)

κ+ +0.05%*** +0.07%*** −*** +4.01%
(0.00%) (0.00%)

κ− −0.28%*** −*** −***
(0.02%)

L 22,755.20 22,755.20 22,755.20 22,317.54
N 7,569 7,569 7,569 7,569
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Table II.12: Detailed Estimation Results for the S&P GSCI Agriculture based on

daily logarithmic returns over the time span from January 1, 1982 to December

31, 2011. The parameters for both models (1) through (2) are obtained from ML

estimation. When applicable, the standard errors are given in parenthesis below

the parameter estimates. Black superscripts ***, **, and * denote significance

at 1%, 5%, and 10%, respectively, for the displacements terms κ+ and κ−. Gray

superscript indicate a lack of significance and are used to highlight the parameters

that are tested.

Asset S&P GSCI S&P GSCI
Agriculture Agriculture

Model (1) AD-DG (2) AD-DE

σ 11.45% 11.43%
(0.28%) (0.27%)

λ 80.08 86.10
(9.71) (9.72)

p 34.33% 26.71%
(1.37%) (1.65%)

ε+ 4 −
(−)

ε− 1 −
(−)

δ+/η+ 264.04 153.31
(14.21) (14.46)

δ+/η− 124.48 125.05
(8.41) (7.46)

κ+ +0.00%*** +1.08%***
(0.00%) (0.06%)

κ− −0.20%*** −0.06%***
(0.00%) (0.00%)

N 7,573 7,573
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II.H Glossary of Notation

� end of a proof

4 end of a definition

◦ Hadamard element-wise product

1{A} indicator of the set A

α Sharpe ratio; midpoint between the displacements κ±

PA-a.s. almost surely under PA

AD-DE asymmetric displaced double exponential

AD-DG asymmetric displaced double gamma

B(t, T ) zero-coupon bond value

β Esscher transform parameter

ci(X) i-th cumulant of the random variable X

D discrete forward Fourier transform

D−1 discrete inverse Fourier transform

δA± upper/lower tail decay of the double gamma density under PA

∆(x) Dirac delta function

DE double exponential

EPA expectation under PA

ε± upper/lower shape parameter of the double gamma density

ηA± upper/lower tail decay of the double exponential density under PA

ETMM Esscher transform martingale measure

F sigma algebra

Ft filtration at time t

FFT fast Fourier transform

GMM generalized method of moments

i imaginary unit

i.i.d. independent and identically distributed

Im(x) imaginary part of the complex number x

IVS implied volatility smile/surface

K strike price

κ± positive/negative displacement of the double exponential/gamma

λA jump intensity under PA
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LAX infinitesimal generator of X under PA

M stochastic discount factor process

ML maximum likelihood

N P-null sets

NA one-dimensional Poisson process under PA

νX(dx) Lévy measure of the process X

ν
(
PA,PB

)
Radon-Nikodým derivative process between PA and PB

Ω probability space

pA probability of an upwards jump under PA

P physical/real-world probability measure

P∗ bank account martingale measure/risk-neutral probability measure

PS asset price martingale measure

PDF probability density function

φAX(ω) characteristic function of the random variable X under PA

ψAX(ω) cumulant generating function of the random variable X under PA

r continuously compounded risk-free interest rate

Re(x) real part of the complex number x

ρ subjective rate of time preference

S asset price process

SD-DE symmetric displaced double exponential

σ diffusion coefficient

T maturity date

T ∗ terminal time

τ current time-to-maturity

u (Ct) utility of consumption

V wealth process

WA standard one-dimensional Brownian motion under PA

w.l.o.g. without loss of generality

X logarithmic return process

ζ instantaneous payout process of a contingent claim
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Chapter III

Volatility Smile-Adjusted Closed-Form
Pricing and Risk Management of
Barrier Options

We propose an approach to valuation and risk management of deferred start

barrier options within the Black and Scholes (1973) framework. We provide

closed-form solutions which are functions of the implied volatility smile. Our

barrier options are contingent claims on two perfectly correlated assets that

diffuse with different volatilities. While the terminal payoff is a function of

one of the assets, the barrier trigger is determined by the path of the other.

To mitigate the dynamic hedging problems associated with large discontinuous

sensitivities, we suggest the application of an additional exponential bending of

the barrier close to maturity. In contrast to existing approaches we explicitly

take the time-dependence of the risk exposure into account. By generalizing

the method of images, we obtain closed-form solutions for both deferred start

piecewise exponential barrier options and associated rebates.

Keywords: barrier option, volatility smile, two volatility, barrier bending,

method of images, closed-form solution

JEL Classification: G13

MS Classification (2010): 35K20, 60G51
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III.1 Introduction

Vanilla barrier options belong to the class of first generation exotic options. However,

due to their widespread use, they are now mostly regarded as flow derivatives. Besides

American plain vanilla options, barrier options are amongst the fundamental types of

weakly path-dependent contingent claims. They are also one of the first contract types to

be traded in the United States market, even before the Chicago Board Options Exchange

(CBOE) opened in 1973; see Chapter 10.1 in Zhang (1998), pp. 232–233. A barrier

option has a terminal payoff equal to that of a plain vanilla option in case it expires

active. A knock-in (knock-out) barrier option is initially inactive (active) and is activated

(deactivated) once the underlying asset price breaches a predefined barrier level for the

first time after the contract’s inception, the so-called trigger event. Depending on whether

the asset price breaches the barrier from below or above, these contracts are referred to

as up- or down-barrier options. Both knock-in and knock-out barrier options might have

a cash rebate at maturity in case they expire inactive. Knock-out barrier options might

alternatively have a cash rebate that is paid immediately upon the trigger event. A further

distinction is made between conventional and reverse barrier options. While the barrier

of conventional barrier options lies in the out-of-the-money region, reverse barrier options

knock-in or -out when in-the-money.

The popularity of barrier options stems from them offering the possibility to take

directional positions on more specific market views. Compared to the otherwise identical

plain vanilla option, a barrier option is always strictly cheaper. Many structured equity,

foreign exchange and commodity products implicitly contain positions in barrier options.

These contracts are both held in the portfolios of institutional investors and are actively

traded, for example, in the European markets for retail derivatives.

Just like American plain vanilla options, most common types of barrier options exhibit

a weak path-dependence and are thus solutions to the Black and Scholes (1973) partial

differential equation (PDE) subject to appropriate terminal and boundary conditions. One

counterexample are Asian barrier options. Unlike for American options, there is no free

boundary, which greatly simplifies the valuation problem.
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III.1.1 Literature Review

By solving for the price of a down & out put call option, Merton (1973) obtains the

first explicit solutions for barrier options within the Black and Scholes (1973) framework.

He transforms the terminal boundary value problem for the Black and Scholes (1973) PDE

into a corresponding problem for the heat equation which has a well-known solution. In

Chapter 7.4, pp. 408–412, Cox and Rubinstein (1985) give the valuation function for down

& out call and put options on non-dividend paying stocks with a rebate paid at maturity.

They also mention the possibility to extend these results to barriers and rebates which are

exponential and mixed linear-exponential functions of the time-to-maturity respectively.

Reiner and Rubinstein (1991b) obtain analytical solutions for all eight types of vanilla

barrier options on dividend paying stocks as well as the associated rebates paid at expiry.

They explicitly evaluate the corresponding conditional expectations under the risk-neutral

probability measure. Rich (1994) details the steps involved in their derivation using the

probabilistic approach. The author also derives the first passage time probability density

function (PDF) as well as the joint PDF of the terminal underlying asset price and its

running minimum or maximum as auxiliary results.

As a result of the Feynman-Kac formula, most contingent claim pricing problems can

be equally approached probabilistically or through PDE methods. Buchen (2001b) shows

how the method of images for the Black and Scholes (1973) PDE can be used to solve

a large class of initial boundary value problems; see also Chapter 12 in Wilmott et al.

(1995), pp. 206–232. Similar to Merton (1973), the author implicitly applies a coordinate

change and then exploits symmetry relationships of the heat equation. The virtue of his

approach is that he defines an image operator that can be directly applied to the solution

of a related full-range problem to obtain the valuation function for vanilla barrier options.

It is thus not necessary to carry out the change of variables explicitly. The fundamental

building blocks in these valuation functions are often (higher-order) binary options; see

Ingersoll (2000) and Buchen (2004). Skipper and Buchen (2003) generalize most previous

results on binary options by considering a power payoff in a multi-period and multi-asset

setting.

A closely related strand of the literature is concerned with the pricing of exotic barrier

options. These contracts have been developed to accommodate the demand for payoff

structures that fit even more refined market views. The following overview is by no means

exhaustive. Cox and Rubinstein (1985) already mention the possibility to price barrier
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options with exponential boundaries. Omberg (1987) approximates the optimal exercise

boundary for American put options through an exponential function of time. He then

values them as down & out barrier options with an immediate rebate equal to the intrinsic

value upon the trigger event.

Kunitomo and Ikeda (1992) obtain a valuation formula for double barrier options with

curved boundaries. For these contracts, the trigger event corresponds to the first hitting

time of either the upper or the lower barrier. They compute the PDF for staying between

the two boundaries and their solution takes the form of a rapidly converging sum of

an infinite series. Hui (1996) also considers double knock-out binary options and solves

the corresponding boundary value problem for the heat equation using Fourier series.

Geman and Yor (1996) derive the Laplace transform of the option price with respect to

its maturity date and then numerically invert this expression. Pelsser (2000) analytically

inverts the Laplace transform of the PDFs and prices a wide variety of double barrier

options. Buchen and Konstandatos (2009) reproduce the results by Kunitomo and Ikeda

(1992) by extending the method of images for the Black and Scholes (1973) PDE to

exponentially bent double barriers.

Heynen and Kat (1994a) analyze the valuation of partial barrier options where the

monitoring period is restricted to either the start or the end of the option’s lifetime. Their

results are based on an explicit evaluation of the integrals corresponding to the risk-neutral

conditional expectation; see also Carr (1995) and Hui (1997). Buchen (2004) shows that

given the valuation function for higher-order binary options, these results follow almost

immediately from the method of images in Buchen (2001b). See also Chapter 4.2 in

Konstandatos (2003), pp. 85–90, for an extension to multiple barrier windows. Finally,

Heynen and Kat (1994b) discuss outside barrier options, where the terminal payoff and the

barrier trigger event depend on two different but correlated assets; see also Carr (1995).

While this chapter focuses on expanding the universe of analytical solutions for barrier

option prices, a large strand of the literature is concerned with numerical approaches. The

motivation for using numerical methods is twofold. First, they make it possible to obtain

approximate solutions to exotic valuation problems for which an analytical solution is not

known, even within the Black and Scholes (1973) framework. Second, they are usually

necessary to price barrier options under alternative underlying dynamics. These include,

for example, the stochastic volatility and jump-diffusion models proposed by Heston

(1993), Schöbel and Zhu (1999) and Duffie et al. (2000), the local volatility dynamics
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as in Dupire (1994), Rubinstein (1994) and Derman et al. (1995b), as well as the class

of (time-changed) exponential Lévy models, as in Madan et al. (1998), Barndorff-Nielsen

and Shephard (2001a,b) and Carr et al. (2003). Since the focus of this chapter is on the

Black and Scholes (1973) framework, the numerical approaches used within this setting

are briefly reviewed below. In particular, Monte Carlo simulations and finite difference

schemes are used to validate our main results.

Boyle (1977) introduces Monte Carlo methods to the area of contingent claim pricing.

This approach involves simulating the stochastic differential equation (SDE) defining the

underlying asset dynamics or, if available, its solution on a discrete time grid; see also

the monograph by Kloeden and Platen (1995). In order to value continuously monitored

barrier options through Monte Carlo simulation, one can use the relationship obtained by

Broadie and Glasserman (1997) when analyzing the inverse problem. Alternatively, the

hitting probability between two samples can be computed analytically using the known

conditional distribution of the maximum or minimum over the time interval; see for

example Karatzas and Shreve (1991) and Glasserman (2003).

The convergence of tree methods for barrier options is impeded by the inability of

the exogenously specified lattice to reflect the contractual terms of the barrier option.

Boyle and Lau (1994) optimally determine the number of binomial tree steps to employ

with the objective to minimize the difference between the contractual and the effective

barriers. Ritchken (1995) constructs a trinomial tree whose nodes pass exactly through

the contractual barrier; see also Kamrad and Ritchken (1991). Derman et al. (1995a)

propose to improve the convergence in a binomial tree through interpolating between the

prices of two auxiliary barrier options that can be accurately priced on the given lattice.

Analogous to the approach used in Monte Carlo simulations, Barone-Adesi et al. (2007)

adjust the binomial tree backward induction algorithm to account for the probability of a

barrier breach between two nodes that both lie within the active domain.

III.1.2 Contribution

This chapter jointly addresses two fundamental problems related to the pricing and

risk management of barrier options. First, we discuss how a two-volatility pricing

approach succeeds in capturing some of the distributional information embedded in the

implied volatility surface while staying within the Black and Scholes (1973) framework

and retaining full analytical tractability. As a novel contribution, this chapter formally
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establishes the equivalence of the two-volatility outside barrier pricing problem and that of

valuing an exponential barrier option. Second we introduce a new approach to mitigate the

dynamic hedging problems associated with the large in absolute value and discontinuous

delta of reverse barrier options. It combines a flat barrier shift with an exponential bending

toward the option maturity. We argue that, in contrast to the standard approach of using

a constant barrier shift, this functional form provides a better model of the time-dependent

risk exposure without sacrificing analytical tractability. One main insight is that valuing

a two-volatility option with an exponentially bent barrier is equivalent to pricing a one-

volatility option with a continuous and piecewise exponential barrier.

We approach the valuation problem by developing the method of images for expo-

nentially bent barriers. While the result itself is known, we establish its connection

to an appropriately chosen coordinate transformation applied to the underlying Black

and Scholes (1973) PDE. Furthermore, we provide an alternative derivation using a

probabilistic approach that explicitly evaluates the corresponding conditional expectation.

The application of the image operator to obtain solutions for deferred start piecewise

exponential knock-out barrier options and the associated rebates is novel. We establish

additional properties of the image operator in the steps leading to the derivation of

these valuation functions. The robustness of the proposed risk management approach

is evaluated using Monte Carlo simulations of the delta hedging profit & loss under the

Merton (1976) jump-diffusion dynamics. We find that, given the same initial option price,

the exponential bending yields significantly lower standard deviation of hedging errors.

This chapter is structured as follows. Section III.2 introduces the two-volatility frame-

work for barrier option pricing. Section III.3.3 proposes an improved risk management

approach which involves a piecewise exponential barrier. Section III.4 develops the method

of images for exponentially bent barriers. A repeated application of the image operator

yields the valuation functions for deferred start piecewise exponential barrier options

in Section III.6. The corresponding rebates are dealt with separately in Sections III.7

and III.8. Section III.9 simulates the delta hedging profit & loss distribution for shifted

and exponentially bent barrier. Section III.10 concludes by summarizing the main results

and proposing potential avenues for future research.
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III.2 Two-Volatility Pricing Approach

This section discusses the problem of pricing barrier options within the Black and

Scholes (1973) framework when the market implied volatility exhibits a smile or skew

pattern. The two-volatility pricing approach proposed in Chapter 14.2 of Brockhaus et al.

(2000), pp. 144–146, provides a simple and tractable remedy to this problem. One of

the main contributions of this section is to establish that there exists an equivalent and

simpler valuation problem in terms of an exponential barrier option.

III.2.1 Background

While the Black and Scholes (1973) and Merton (1973) framework relies on a number

of unrealistic assumptions about the underlying dynamics and the market, its most severe

shortcoming is to model the logarithmic asset price through a pure diffusion process with

independent and stationary Gaussian increments. This misspecification is unveiled in the

strong pricing biases first reported by Rubinstein (1985); see also the review by Bates

(1996).

Within this framework, all input parameters of the valuation function for European

plain vanilla options, except for the diffusion coefficient, are either contract-specific con-

stants or traded quantities in other markets with readily observable prices. Consequently,

all deviations from the model assumptions have to be incorporated in the choice of this

single degree of freedom. Given the market price of a European plain vanilla option, it is

possible to numerically invert the valuation function for the implied volatility. A solution

to this problem exists, given that the market prices do not violate the lower and upper

static no-arbitrage bounds. It is unique, since the price of European plain vanilla options

is a continuous and strictly monotonically increasing function of the underlying asset’s

volatility. For options whose strike prices are not too far away from the forward price, a

good initial guess can be obtained by approximation methods. Corrado and Miller (1996),

for example, use a modified second-order Taylor series expansion of the cumulative normal

distribution function. By the put-call parity, the implied volatility of an otherwise identical

call and put option have to coincide in order for the prices to be free of arbitrage. We refer

to, for example, Jäckel (2006) and Li and Lee (2011) for robust algorithms that efficiently

handle the task of computing the implied volatility from observed market prices.
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The implied volatilities typically exhibit both a strike and time-to-maturity depen-

dence. Tompkins (2001) finds that implied volatilities in many different markets and for

near-the-money strikes can be approximated well through a second-order polynomial as a

function of a time-to-maturity adjusted logarithmic moneyness measure; see also Chapter

18 in Natenberg (1994), pp. 385–418. The shape of the implied volatility surface is

intimately linked to the non-normal higher moments of the risk-neutral distribution of

logarithmic yields. Ceteris paribus, a positive (negative) skewness as the only deviation

from normality, yields a positively (negatively) sloped implied volatility smile (IVS). A

positive (negative) excess kurtosis generates a convex (concave) IVS. We refer to the

Edgeworth series expansion approach proposed by Rubinstein (1998), which parameterizes

the risk-neutral distribution directly in terms of its higher third and fourth moments and

thus allows for a convenient analysis; see also Balieiro Filho and Rosenfeld (2004).

Absence of arbitrage within an IVS for any fixed maturity is equivalent to the strict

monotonicity and convexity of the corresponding European plain vanilla call or put option

prices; see for example Theorem 4 in Merton (1973), p. 146, and Breeden and Litzenberger

(1978). Lee (2004) establishes the relationship between the asymptotic behavior of the

IVS and the number of finite moments in the underlying asset’s distribution. He shows

that the arbitrage free implied variance has to be asymptotically linear in the logarithmic

strike, unless one assumes that the underlying asset has finite moments of all orders.

Fengler (2009) shows that the absence of calendar spread arbitrage requires that the total

variance is a strictly increasing function of the time-to-maturity for any constant strike

to forward ratio; see also Gatheral (2004, 2006). We refer to the monograph by Fengler

(2006) for an extensive overview of approaches to infer the implied volatility surface from

listed options quotes. Gatheral (2004) and Gatheral and Jacquier (2012) propose a widely

adopted flexible class of IVS parametrizations and discuss their arbitrage-free calibration.

III.2.2 Barrier Valuation Problem

When pricing European plain vanilla options for a strike and maturity combination

that is not traded in the market, the aforementioned approaches can be used to construct

and interpolate the IVS in an arbitrage-free fashion. This interpolated value is then

substituted back into the standard Black and Scholes (1973) valuation function. Despite

using a pricing model that is inconsistent with the market as a whole, this approach still

yields a market consistent price for the single contract under consideration. However, in
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Figure III.1: Illustration of the barrier option pricing problem when the implied

volatility exhibits a smile pattern.

the case of barrier options, it is not clear how the value of the underlying asset’s diffusion

coefficient should be chosen in the presence of a non-flat IVS. Figure III.1 illustrates the

associated pricing problem within the Black and Scholes (1973) framework for a typical

shape of the IVS. We consider an up & out call option for which the implied volatility at

the strike price K is greater than that at the barrier B. Setting the diffusion parameter

equal to the implied volatility at either the strike or the barrier seems just as arbitrary

as any weighted average of these values. Consider, for example, using the higher strike

volatility σK as the input to the valuation function obtained by Reiner and Rubinstein

(1991b). The decreasing IVS suggests that the asset on average diffuses at a lower rate

as the spot price increases. Consequently, the model probability of a knock-out is too

high and the corresponding barrier option price is too low. We can make an analogous

argument against using the barrier volatility σB.

To gain some intuition for how the prices of up & out call options should depend on the

shape of the volatility smile, we consider a super-replication strategy. Consider a portfolio

that holds (i) a long position in one European vanilla call option with a strike price of K,

(ii) a short position in one European plain vanilla call option with a strike price of B and

(iii) a short position in (B −K) bond binaries with a strike price B and a unit notional

each. All options expire at the same time as the up & out call option. The terminal payoff

of this portfolio is equal to that of the barrier option conditional on no prior knock-out.

Since its payoff is independent of the path taken by the underlying asset, it is often referred
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to as a European barrier option. The value of this portfolio thus represents an upper bound

for the value of the up & out call option. It is the smallest such upper bound that can be

constructed from European options with a single maturity. Ceteris paribus, as the barrier

(strike) volatility increases, so do the values of the corresponding call and binary options

(the corresponding call option) and consequently the portfolio value decreases (increases).

Thus, we expect the price of the up & out call to be decreasing in the slope of the IVS.

In a brief discussion of this problem in Chapter 14.2, Brockhaus et al. (2000), pp.

144–146, outline an approach to capture some of the information embedded in the IVS

while at the same time staying within the Black and Scholes (1973) framework and thus

preserving full analytical tractability. In analogy to the outside barrier options discussed

by Heynen and Kat (1994b), they suggest to model two perfectly correlated geometric

Brownian motion spot assets, which start at the same initial value but have different

diffusion coefficients. While the option payoff is a function of the terminal value of the

first asset, the trigger event is determined by the maximum or minimum of the second

asset. We adopt this so-called two-volatility approach to attain smile-adjusted barrier

option prices.

In the following section, we formally set up the two-volatility model and show that,

as a result of the perfect correlation between the two assets, the valuation problem can

be reduced to that of pricing a one-volatility barrier option with an exponentially bent

barrier. The valuation functions for these types of contracts are well known; see for

example Omberg (1987) and the discussion in Cox and Rubinstein (1985), p. 411. First,

however, it should be emphasized that this valuation approach is merely a contract-type

specific adjustment applied to the Black and Scholes (1973) model in order to capture some

of the non-normality of the market implied asset return distributions. In particular, the

two-volatility approach is solely based on the IVS corresponding to the time-to-maturity of

the option but does not take into account the term-structure information embedded in the

full implied volatility surface. Much of the recent literature in option pricing has focused on

generalizing and modifying the underlying asset dynamics; see the references provided in

Section III.1. These approaches have in common that their parameters are first calibrated

to the observable market prices of all plain vanilla options before using them to price

path-dependent contingent claims. This usually requires the use of numerical methods

such as finite difference lattices or Monte Carlo simulation. A notable exception is the

Kou (2002) double exponential jump diffusion model where the joint PDF of the overshoot

and the first passage time can be computed analytically; see Kou and Wang (2003) and
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Table III.1: Overview of the March 2013 exchange turnover in German retail

listed derivatives as reported by Deutscher Derivate Verband (2013).

Product Category No. of Issues Volume No. of Trades

(1,000 EUR)

Capital Guaranteed Certificates 3,141 112,647 5,497

Structured Bonds 466 80,573 3,626

Reverse Convertible Bonds 54,383 207,647 11,569

Discount Certificates 177,182 669,801 18,387

Express Certificates 2,153 94,924 4,788

Bonus Certificates 185,018 465,685 17,642

Index & Participation Certificates 5,165 470,736 26,908

Outperformance & Sprint Certificates 2,603 5,466 445

Warrants 341,122 459,912 90,497

Knock-Out Certificates 217,396 901,597 207,624

Total 988,629 3,468,988 386,983

Kou and Wang (2004). However, like all pure exponential Lévy models, it generates

IVSs that flatten out with increasing time-to-maturity. It is thus not rich enough to fit

the whole term structure of implied volatilities. The two-volatility model is fundamentally

different from the aforementioned approaches in that it can neither be fitted to the market

prices of all European plain vanilla options, even of a single maturity, nor can it be

universally applied to value all contract types. Its main appeal stems from the possibility

to obtain analytic solutions for partial barrier options where the barrier follows a piecewise

exponential function of time. The motivation for considering these seemingly highly exotic

contracts is discussed in this section and the next.

The availability of analytical solutions that capture some of the distributional

information embedded in the market prices of plain vanilla options is especially important

in a high-frequency environment. While barrier options are usually traded in an on-

request basis in the over-the-counter market, there exist exchanges where they are quoted

in a continuous fashion. Examples are the European markets for structured limited

liability retail derivatives. In Germany, products known as bonus certificates are traded,

which can be decomposed into, among others, long positions in (deferred start) down

& out put options. As shown in Table III.1, both the number of issues as well as

their exchange turnover are significant. Some variants of reverse convertible bonds and

discount certificates also implicitly contain positions in (deferred start) barrier options.
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The continuous market making of these issues based on purely numerical methods is

computationally unfeasible. A common compromise between computational speed and

pricing accuracy is to use a valuation model with an analytical solution for the continuous

quotation. These prices are then adjusted for the pricing error with respect to a more

realistic model that is evaluated numerically on a lower frequency only. The latter should

be chosen depending on the risk-sensitivities of the contract under consideration.

III.2.3 Model Setup

In this section, we formally setup the two-volatility model dynamics. Let W ∗ =

{W ∗t : t ∈ [0, T ∗]} be a one-dimensional standard Brownian motion on a complete filtered

probability space (Ω,F,F,P∗). As we are solely interested in pricing, we interpret P∗ to

be the risk-neutral probability measure corresponding to the bank account numéraire and

consider continuous trading in the interval [0, T ∗] for a fixed terminal time 0 < T ∗ < ∞.

The filtration F = (Ft)t∈[0,T ∗] is the P∗-augmentation of the natural filtration induced by

the process W ∗. The market consists of a bank account B = {Bt : t ∈ [0, T ∗]} with non-

random dynamics

dBt = rBtdt.

It’s initial value is B0 = 1 and the risk-free interest rate is constant at r ∈ R. In addition,

there are two perfectly correlated risky spot assets S(1) =
{
S

(1)
t : t ∈ [0, T ∗]

}
and S(2) ={

S
(2)
t : t ∈ [0, T ∗]

}
with dynamics

dS
(1)
t = (r − δ1)S

(1)
t dt+ σ1S

(1)
t dW ∗t

and

dS
(2)
t = (r − δ2)S

(2)
t dt+ σ2S

(2)
t dW ∗t ,

where the diffusion coefficients σ1, σ2 ∈ R+ and the dividend yields δ1, δ2 ∈ R are constants.

The initial values S
(1)
0 = S

(2)
0 agree and are equal to S0 ∈ R+.

We now consider an American knock-out barrier option on these two assets where

without loss of generality (w.l.o.g.) we assume that the terminal payoff is that of a plain

vanilla option on the first risky asset S(1), conditional on the second risky asset S(2) not

having breached the barrier during the lifetime of the option. Here, the term “American”

is used to indicate that the barrier is continuously monitored and does not refer to early

exercise rights as in the context of plain vanilla options. The value of the otherwise
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Table III.2: Knock-out barrier option types corresponding to the different

combinations of the indicators φ and ψ.

Option Type φ ψ

Up & Out Call +1 -1

Down & Out Call +1 +1

Up & Out Put -1 -1

Down & Out Put -1 +1

identical knock-out barrier option then follows from the in-out parity for barrier options;

see for example Chapter 4.17 in Haug (2007), pp. 152–167. Let 0 ≤ T ≤ T ∗ be the option

maturity and let ν be the first hitting time of the asset S(2) to the constant barrier B ∈ R+

defined as

ν = inf
{
t ≥ 0 : ψS

(2)
t ≤ ψB

}
.

Here, ψ ∈ {−1,+1} is the indicator for an up- or down-barrier. Note that the convention

employed in the definition of ψ is rather uncommon. It is chosen for consistency with

the PDE approach discussed in Section III.4. Throughout this chapter, we follow the

convention to set ν = ∞ on the set where the asset price process never breaches the

barrier. From Theorem I.4 in Protter (2004), p. 5, for example, it follows that ν is a valid

stopping time. The terminal option payoff is then given by

VT =
(
φS

(1)
T − φK

)+
1 {ν ≥ T} ,

where φ ∈ {−1,+1} is the indicator for a put or call option. Table III.2 provides an

overview of the knock-out barrier option types corresponding to the different combinations

of the indicators φ and ψ. For the moment, we only consider barrier options that do

not pay a rebate when knocked-out prior to expiration. This assumption is dropped in

Sections III.7 and III.8, which discusses the pricing of fixed rebates that are paid either

at the option maturity or immediately upon the trigger event.

We next give a formal definition of an exponential boundary. Throughout this chapter,

we follow the convention of denoting the time-to-maturity of an option by τ = T − t.

Deterministic functions of the calendar time are denoted in capital Latin letters as, for

example B(t), while functions of the time-to-maturity are annotated by a tilde, for example

B̃(τ). While probably not obvious at first, it is convenient for computational purposes
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to define a time-varying barrier as a function of the time-to-maturity, where the initial

condition corresponds to the barrier level at the expiry of the option.

Definition III.1 (Exponential Boundary).

A function B̃ : R+ → R+ is an exponential boundary if it can be represented as

B̃(τ) = B̃(0)eξτ

with initial value B̃(0) ∈ R+ and shape parameter ξ ∈ R. The corresponding barrier level

as a function of the calendar time is then given by B(t) = B̃(T − t). 4

Using this definition, we can now establish an equivalent valuation problem that can

be formulated solely in terms of the first risky asset.

Lemma III.1 (Link between Two-Volatility and Exponential Barrier

Options).

Define a new random time ν̂ by

ν̂ = inf
{
t ≥ 0, ψS

(1)
t ≤ ψB̃∗(T − t)

}
,

where B̃∗ : [0, T ∗]→ R+ is an exponential boundary given by

B̃∗(τ) = B̃∗(0)eξ
∗τ

with

B̃∗(0) = S0

(
B

S0

)σ1/σ2
e−ξ

∗T ,

ξ∗ = r

(
σ1

σ2
− 1

)
+ δ1 −

σ1δ2

σ2
+

1

2
σ1 (σ1 − σ2) .

Then

ν = ν̂ P∗-a.s..
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Proof The perfect correlation between the two risky assets suggests that we can also

express the first hitting time in terms of the first risky asset S(1). We have

S
(2)
t = B

⇔ W ∗t =
1

σ2

(
ln

(
B

S0

)
−
(
r − δ2 −

1

2
σ2

2

)
t

)
⇔ S

(1)
t = S0

(
B

S0

)σ1/σ2
exp

{(
r

(
1− σ1

σ2

)
− δ1 +

σ1δ2

σ2
+

1

2
σ1 (σ2 − σ1)

)
t

}
=: B̃∗(T − t),

with B̃∗ : [0, T ∗]→ R+ as given in Lemma III.1. �

Consequently, the problem of pricing a two-volatility barrier option with a constant

barrier can be reduced to that of pricing a standard one-volatility barrier option with

an exponential barrier. Stated differently, the Lemma establishes that the value of an

outside barrier options converges to that of an exponential barrier option in the limit

when the correlation between the two assets approaches one. It is thus not necessary to

use the outside barrier option valuation functions obtained by Heynen and Kat (1994b).

One peculiarity of the two-volatility approach for reverse knock-out barrier options

is that the maximal payoff at the option maturity, which is assigned a strictly positive

probability, is in general not equal to the absolute value of the difference between strike

and barrier. Consider, for example, a three-month up & out call option with strike K =

100.00 USD and barrier B = 120.00 USD. Further assume that the current spot price

is S0 = 100.00 USD, the risk-free interest rate and dividend are equal for both assets

and given by r = 5.00% and δ = 0.00%. Finally, the strike and barrier volatilities are

σK = 20.00% and σB = 15.00% respectively. Using the result from Lemma III.1, we

then obtain B̃∗(0) = 124.79 USD. Thus, although we are pricing a contingent claim whose

maximal contractual payoff is equal to B −K = 20.00 USD, it is valued as if the highest

achievable payoff was instead B̃∗(0) − K = 24.79 USD. This effect is due to the perfect

correlation between the two assets and the volatility at the barrier being lower than that

at the strike. Ceteris paribus, if the barrier volatility was instead σB = 25.00%, then

we would obtain B̃∗(0) = 117.45 USD. Note however, that B̃∗(0) → B as the spot price

approaches the barrier.

Figure III.2 illustrates the dependence of the two-volatility price of an up & out call

option on the underlying asset price for different barrier volatilities. Ceteris paribus, for

higher (lower) barrier volatilities, the probability of a knock-out increases (decreases) and
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Figure III.2: Price of a three-month two-volatility up & out call option as a

function of the underlying asset price and for different barrier volatilities. The

fixed contract and market parameters are K = 100.00 USD, B = 120.00 USD,

σK = 20.00%, r = 5.00% and δ = 0.00%.

consequently the barrier option price decreases (increases). This is in accordance with the

previously discussed dependence of the super-replicating portfolio value on the slope of

the IVS.

There are two more results related to the link between exponential boundaries and

dividend yields that will be useful in Section III.8 when pricing fixed rebates that are paid

immediately upon the first hitting time of the barrier.

Lemma III.2 (First Hitting Time PDF).

Let B̃(τ) be an exponential boundary where τ = T − t for some time T ∈ [0, T ∗] and let the

dynamics of the spot asset S = {St : t ∈ [0, T ∗]} under the risk-neutral probability measure

P∗ be given by

dSt = (r − δ)Stdt+ σStdW
∗
t .

Then the first hitting time ν of S to the barrier B̃(τ) on the interval [0, T ] is defined as

ν = inf
{
t ∈ [0, T ] : St = B̃(T − t)

}
.

The corresponding first hitting time PDF is given by

P∗{ν ∈ dt} =
|α|

t
√

2πt
exp

{
−(α− λt)2

2t

}
dt,
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where

α =
1

σ

(
ln

(
B̃(0)

S0

)
+ ξT

)
,

λ =
1

σ

(
r − δ + ξ − 1

2
σ2

)
.

Proof It is easy to show that the problem of finding the first hitting time PDF of a

geometric Brownian motion asset to an exponential barrier can be reduced to that of

finding the first hitting time PDF of a drifted Brownian motion to the constant barrier α.

See Appendix III.A.1 for details. �

Corollary III.1 (Link between Exponential Barriers and Dividend Yields).

When considering the barrier as fixed at B̂ = B̃(0)eξT , then the first hitting time PDF

P∗{ν ∈ dt} depends on the dividend yield δ and the shape parameter ξ only through their

difference ξ − δ.

Proof This is obvious from the solution for the first hitting time PDF given in

Lemma III.2. Alternatively, from Definition III.1 and the solution to the SDE for S,

we find that St = B̃(T − t) when

W ∗t +
1

σ

(
r − δ + ξ − 1

2
σ2

)
t =

1

σ

(
ln

(
B̃(0)

S0

)
+ ξT

)

and the claim follows. �

From this corollary, it follows that the problem of pricing contingent claims with

exponential barriers, whose payoffs solely depend on the first hitting time but not the

corresponding spot price, can be reduced to that of pricing contingent claims with a flat

barrier and a modified dividend yield.
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III.3 Risk Management

This section analyzes the risks involved in dynamically hedging barrier options in real-

world markets and how the valuation can be adjusted to account for them. In particular,

it focuses on the potential problems arising from limited market liquidity, non-continuous

price paths and discrete trading. While our discussion in general applies to all types of

barrier options, the impact of a violation of the model assumptions is most pronounced

for reverse barrier options which knock-in or -out when in-the-money. Thus, an up & out

call option is used as a consistent example throughout this section.

We focus on the case when a position in the barrier options is dynamically hedged

through a self-financing trading strategy by taking positions in the underlying asset and

the bank account. Following a static-dynamic hedging strategy as in Derman et al. (1994),

where positions in European plain vanilla options are added to match the barrier option

value at some points of the boundary and at the maturity, mitigates the problem but does

not eliminate it; see also Bowie and Carr (1994) and Carr et al. (1998).

In order not to obscure the actual risk management issues, we first take a step back and

analyze the sensitivities of barrier options in the standard Black and Scholes (1973) one-

volatility setting. The qualitative insights continue to hold in the two-volatility valuation

approach discussed in Section III.2. The synthesis between the separately developed

volatility smile and risk adjustments is then performed in Section III.3.4.

The main contribution of this section is to introduce a time-dependent barrier shift

that better reflects the risk profile of dynamically hedging reverse barrier options than

existing approaches do. By modeling it as a piecewise exponential function, we retain full

analytical tractability within the Black and Scholes (1973) framework. Furthermore, it can

be easily combined with the two-volatility approach to pricing developed in Section III.2.

III.3.1 Background

Dynamically hedging reverse barrier options is challenging for two reasons. First, the

sensitivities are discontinuous at the barrier and, second, the absolute exposure becomes

very large near the option maturity when the spot price is close to the barrier. See, for

example, Chapter 19 in Taleb (1996), pp. 312–346, or Chapter 10 in de Weert (2008), pp.

57–69, for general discussions.

130



90 95 100 105 110 115 120 125
−10

−8

−6

−4

−2

0

2
up & out call option delta

spot price

d
el

ta

 

 

1 day
1 week
1 month

Figure III.3: Delta of an up & out call option as a function of the underlying

asset price and for different times-to-maturity. The fixed contract and market

parameters are K = 100.00 USD, B = 120.00 USD, σ = 20.00%, r = 5.00% and

δ = 0.00%.

Figure III.3 depicts the delta of an up & out call option with strike price K = 100.00

USD and barrier B = 120.00 USD as a function of the spot price and for different times-

to-maturity. In contrast to plain vanilla options, the payoff function of reverse barrier

options is not monotonic in the underlying asset price and consequently its delta can

be both positive and negative. Its sign is the same as that of the otherwise identical

plain vanilla option near the strike price and it changes as the spot price approaches the

barrier. Once the barrier is breached, the option immediately matures and thus all of

its sensitivities vanish. This causes a discontinuity of the delta and other Greeks at the

barrier. In the case of the up & out call option and as the holder of a short position in

the contingent claim, we hedge by taking a short position in the underlying asset when

its spot price is close to the barrier. Figure III.3 also reveals that the absolute size of this

position is increasing as the time-to-maturity decreases and is in particular not bounded

by one. With one trading day to maturity, the absolute delta takes on values as high as

9.41 units of the underlying asset per barrier option. This hedge position has to be fully

unwound upon the barrier trigger event.

Within the Black and Scholes (1973) framework, this presents no difficulty as markets

are frictionless, trading is continuous and the underlying asset follows a pure diffusion

process. Thus, the valuation is implicitly based upon the assumption that we are always
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Figure III.4: Profit & loss of a delta hedged short position in a one week up &

out call as a function of the instantaneous jump size and for different initial spot

prices. All remaining contract and market parameters are as in Figure III.3.

able to close out the complete delta hedge position in the underlying asset exactly on the

barrier. However, even when abstracting from the discreteness of the price grid, asset prices

in real markets jump during the market opening hours and because of the exogenously

imposed overnight period between two trading days. Furthermore, assets are not perfectly

elastic, especially during the adjustment process after the arrival of news. The unwinding

of a delta hedge position that is large relative to the liquidity of the underlying asset is

thus likely to move the spot price further beyond the barrier.

Since the delta is decreasing with increasing prices of the underlying asset, the holder of

the short position in the up & out call option has a long gamma position close to the barrier.

This is less problematic from a risk management perspective as failing to continuously delta

hedge a gamma long position in the worst case forfeits the profit from re-balancing the

underlying asset position. However, the discontinuity at the barrier corresponds to a large

short gamma singularity. The cost corresponding to an unwinding of the hedge position

beyond the barrier is equal to the number of shares held times the difference between the

mean transaction price and the barrier.

Figure III.4 shows the overall profit & loss of a delta hedged short position in the one

week up & out call as a function of the instantaneous jump size and for different initial

spot prices. Here, we ignore w.l.o.g. the price impact of the hedge transactions and assume

that the full delta hedge can be closed out at the post jump price. The profit & loss is
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Figure III.5: Delta of an up & out call option as a function of the underlying

asset price and for different times-to-maturity. The black curves correspond to

the contractual barrier at B = 120.00 USD. The dark gray curves correspond to a

barrier that is shifted up in parallel by 1.00% to B = 121.20 USD. The remaining

fixed contract and market parameters are as in Figure III.3.

first increasing and convex in the jump size due to the local concavity of the barrier option

price. It is linearly decreasing from the point where the jump results in a spot price that

crosses the barrier. Assume for example that we last hedged the up & out call at a spot

price of 119.50 USD by taking a short position in 3.67 underlying assets. A subsequent

instantaneous up-jump of +1.00% to 120.70 USD then corresponds to an overall loss of

2.54 USD per contract. While the value of the short option position drops by 1.86 USD,

the delta hedge position yields a loss of 4.40 USD. In percentage terms, this corresponds

to a loss of 136.23% of the last barrier option prior to the trigger event.

III.3.2 Barrier Shifting

A common approach to account for the liquidity and jump risk associated with

dynamically hedging reverse barrier options is to apply a barrier shift; see for example

Chapter 10.2 in de Weert (2008), pp. 58–60, or Chapter 4.4 in Ekstrand (2011), pp. 69–73.

Instead of the contractually agreed upon barrier, the valuation and risk management is

based on a shifted barrier level. The sign of the barrier shift is chosen such that the payoff

of the priced contract dominates the contractual payoff. Shifting the barrier serves two

main purposes. First, it reduces the maximum absolute delta exposure near the barrier
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and thus yields a more well-behaved hedge. Second, it provides a buffer within which the

hedge position can be unwound without incurring a loss. This can be seen as follows. If

the official barrier is not breached before the option maturity, then the contractual and

hedged payoffs coincide. Otherwise, the value of the hedged claim upon the barrier trigger

event is non-negative while the contractual value is zero. The value of the hedged barrier

option is strictly positive if the spot price that breaches the contractual barrier does not

cross the shifted barrier at the same time. Consequently, the hedger faces a net loss

only if the loss of unwinding the delta hedge beyond the barrier exceeds the value of the

hedge portfolio immediately prior to the knock-out. The motivation for using a barrier

shift is thus very similar to that for super-replicating a European bond binary through an

appropriately chosen European plain vanilla call or put spread; see for example Chapter

17 in Taleb (1996), pp. 273–294.

The first effect is visualized in Figure III.5, which compares the delta exposure profile

of the up & out call option using the contractual barrier of B = 120.00 USD to a barrier

that is shifted up in parallel by 1.00% to B = 121.20 USD. At one week to maturity for

example, this reduces the absolute delta exposure at a spot price of 119.50 USD from

3.67 to 3.37 units of the underlying asset per barrier option. A subsequent instantaneous

up-jump of +1.00% now corresponds to an overall windfall profit of 2.45 USD. It can be

broken down into a profit of 6.48 USD from the last portfolio value prior to the knock-out

and a loss of 4.03 USD from the delta hedge position. The break-even jump size for this

scenario is given by 1.61%, which corresponds to a spot price of 121.42 USD.

It remains to be decided how the barrier shift should be determined in practice.

Starting from a model that captures both the statistical dynamics of the underlying asset

as well as the price impact of an order as a function of the trade size, we can determine

the break-even barrier shift. As the above numerical example illustrates, setting the

barrier shift equal to the expected average jump size yields a positive windfall profit on

expectation.

III.3.3 Barrier Bending

Section III.3.2 discusses how a parallel shift of the barrier can be used to mitigate

the risks involved in dynamically hedging reverse barrier options. It is introduced to

create a buffer within which the potentially large delta hedge position can be unwound

once the barrier is breached. This cushion is mainly needed very close to maturity where
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Figure III.6: Delta of an up & out call option as a function of the time-to-maturity

in years and for different underlying asset prices. All remaining contract and

market parameters are as in Figure III.3.

the absolute hedge ratio becomes large. However, by using a parallel shift we obtain a

buffer whose size is independent of the time-to-maturity. Using a break-even analysis as

suggested before yields a barrier shift that averages over all knock-out events, irrespective

of their time of occurrence. This results in too large (too small) a buffer when the time-

to-maturity is large (small).

From a risk management perspective, it is thus preferable to model the barrier shift

in such a way that it takes into account the time-dependent nature of the delta hedging

risk. Figure III.6 shows the change in the delta of the up & out call option as the time-

to-maturity becomes shorter, keeping the underlying asset price unchanged at different

levels close to the barrier. This so-called delta bleed is small in magnitude for long times-

to-maturity and it increases exponentially as the expiration approaches. In what follows,

we propose a parametrization of the barrier shift which reflects this. Let 0 < TB < T be

a fixed point of time with corresponding time-to-maturity τ̂B = T − TB and define the

percentage barrier shift b : R+ → R as

b̃(τ) =


(1 + b1) exp

{
1
τ̂B

ln
(

1+b1
1+b2

)
τ
}
− 1 if τ ∈ [0, τ̂B]

b1 if τ > τ̂B

.
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Figure III.7: Delta of an up & out call option as a function of the spot price and for

different times-to-maturity. The black and dark gray curves are as in Figure III.5.

The light gray curves correspond to an exponential bending of the barrier over

the last month from an initial shift of 0.00% to a terminal shift of 1.00%. The

remaining fixed contract and market parameters are as in Figure III.3.

where b1 ∈ R is the flat barrier shift before the bending start date TB and b2 ∈
{x ∈ R : sgn(x) = sgn (b1) , |x| ≥ |b1|} is the terminal barrier shift at the option maturity.

We then define the absolute barrier level by B̃(τ) = B
(
1 + b̃(τ)

)
so that

B̃(τ) =


B̃(0)eγτ if τ ∈ [0, τ̂B]

B̃(0)eγτ̂B if τ > τ̂B

,

where

B̃(0) = B (1 + b2) ,

B̃ (τ̂B) = B (1 + b1) ,

γ =
1

τ̂B
ln

(
B̃ (τ̂B)

B̃(0)

)
.

Consequently, as a function of calendar time the absolute barrier is also first constant at

B̃ (τ̂B) and then exponentially bends to B̃(0). The parameters b1, b2 and TB can be again

determined from a model of the underlying asset dynamics and its liquidity by minimizing

the volatility of delta hedging profits & losses subject to the break-even condition.
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Figure III.8: Price of an up & out call option as a function of the spot price and

for different times-to-maturity. See Figure III.7 for details.

Figures III.7 and III.8 compare the delta profile and the prices of an up & out call

option with no barrier shift, a parallel barrier shift and an exponential barrier shift over

the last month. We observe no significant difference in either graph between the parallel

and exponential barrier shifts when the time-to-maturity is one day or one week. In these

cases the exponentially bent barrier is already very close to its terminal level. The prices of

contracts with one month to maturity, however, clearly differ for high enough spot prices,

as the exponentially bent barrier is still equal to the contractual one.

III.3.4 Synthesis: Two-Volatility Bent Barrier Options

In this section, we combine the two-volatility pricing and the exponentially bent barrier

risk management approaches. We start by generalizing Definition III.1 to a continuous

piecewise exponential function.

Definition III.2 (Piecewise Exponential Boundary).

Let 0 < TB < T be the bending change time and define τB = TB − t and τ̂B = T − TB.

A function B̃ : R+ → R+ is a continuous piecewise exponential boundary if it can be

represented as

B̃(τ) =


B̃(0)eγτ if τ ∈ [0, τ̂B]

B̃(0)eγτ̂B+κτB if τ > τ̂B
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with initial value B̃(0) ∈ R+ and shape parameters γ, κ ∈ R. The corresponding barrier

level as a function of the calendar time is then given by B(t) = B̃(T − t). 4

Note that the bent barrier risk management approach discussed in Section III.3.3 yields

a piecewise exponential boundary with κ = 0. As in Section III.2, we again consider two

perfectly correlated assets S(1) and S(2) and start by defining the first hitting time ν of

the asset S(2) to the piecewise exponential boundary B̃(τ) as

ν = inf
{
t ≥ 0 : ψS

(2)
t ≤ ψB̃(T − t)

}
.

The terminal option payoff is then given by

VT =
(
φS

(1)
T − φK

)+
1{ν ≥ T}.

Next, we establish the analog to Lemma III.1 for piecewise exponential boundaries.

Lemma III.3 (Link between Two-Volatility Bent Barrier and Piecewise

Exponential Barrier Options).

Define a new random time ν̂ by

ν̂ = inf
{
t ≥ 0, ψS

(1)
t ≤ ψB̃∗(T − t)

}
,

where B̃∗ : [0, T ∗]→ R+ is a piecewise exponential boundary given by

B̃∗(τ) =


B̃∗(0)eγ

∗τ if τ ∈ [0, τ̂B]

B̃∗(0)eγ
∗τ̂B+κ∗τB if τ > τ̂B

,

with

B̃∗(0) = S0

(
B̃(0)

S0

)σ1/σ2
e−ξ

∗T ,

γ∗ =
σ1γ

σ2
+ ξ∗,

κ∗ =
σ1κ

σ2
+ ξ∗,

ξ∗ = r

(
σ1

σ2
− 1

)
+ δ1 −

σ1δ2

σ2
+

1

2
σ1 (σ1 − σ2) .

Then

ν = ν̂ P∗-a.s..
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Figure III.9: Sample shapes of the two-volatility bent barrier level for a one-year

up & out call option as a function of the calendar time and for different barrier

volatilities. The barrier bending is performed over the last three months from

b1 = 1.00% to b2 = 2.50%. The spot price is S0 = 100.00 USD and all remaining

fixed contract and market parameters are as in Figure III.2.

Proof The proof is nearly fully analogous to that of Lemma III.1 and is thus omitted. �

Consequently, the problem of pricing a two-volatility bent barrier option can be reduced

to that of pricing a standard one-volatility barrier option with a piecewise exponential

barrier.

Figure III.9 depicts the time-dependent shapes of the barrier level corresponding to

the two-volatility bent barrier valuation approach for different barrier volatilities. The

barrier is first shifted up in parallel by 1.00% and a bending to the terminal barrier shift

of 2.00% is performed over the last three months before expiration. When the barrier

volatility is below (above) the strike volatility and no barrier shifts are employed, then the

initial barrier level used for pricing is above (below) the official barrier and it is downward

(upward) sloping over time. The bending start date can be easily recognized through the

kink point in the barrier levels.
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III.3.5 Relation to Leverage Constraints

An alternative stream of the literature approaches the dynamic risk-management

problem of derivatives with discontinuous payoff by explicitly imposing upper and/or

lower bounds for the number of underlying assets held in the replication portfolio at any

point in time. Based on earlier work by, among others, Cvitanić and Karatzas (1993), El

Karoui and Quenez (1995) and Broadie et al. (1998), Schmock et al. (2001, 2002) analyze

the problem of finding the lowest initial capital that permits a super-replication of weakly

path-dependent contingent claims with discontinuous payoffs under leverage constraints.

In particular, the authors consider the valuation of an up-and-out barrier option when

short-selling possibilities are limited. They show that the corresponding dual problem

becomes one of singular stochastic control and obtain closed-form solutions for the so-

called upper hedging price.

We now briefly discuss the relation of the exponentially bent barrier approach in this

chapter to the leverage constraint replication portfolio considered by Schmock et al. (2001,

2002). Both aim at alleviating the dynamic replication problem associated with reverse

barrier options and construct a super-replicating portfolio that has the same terminal

payoff. They implicitly or explicitly constrain the maximum absolute position held in

the underlying asset at any point in time. The trading strategy proposed in this chapter

furthermore explicitly accounts for the risk of closing out the delta hedge position at a

price beyond the barrier. A windfall profit is realized if it can be unwound at a price better

than the then-current shifted barrier level. In contrast to this, the value of the leverage

constraint replication portfolio constructed by Schmock et al. (2001, 2002) matches that

of the barrier option on the contractual boundary. Their upper hedging price thus does

not contain any provisions for potential discontinuities.

As discussed previously, any choice for the parameters of the exponentially bent barrier

implies a maximum absolute number of underlying assets held at any point in time.

Conversely, and as already suggested by Schmock et al. (2001, 2002), there might exist

an equivalent formulation of the leverage constraint valuation problem in terms of a time-

dependent shifted barrier function. It is a topic of future research to further investigate

the link between these two approaches.
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III.4 Method of Images

The method of images for the heat transfer equation provides a simple solution to

many initial boundary value problems. Analogously to the reflection principle for the

paths of Brownian motions, it exploits symmetry relationships in the Kolmogorov forward

equation satisfied by the transition PDF. The central idea is to extend a problem defined

on a semi-infinite domain into a related problem on an infinite domain. The latter can

then be solved though standard techniques by a convolution of its initial condition with

the corresponding Green’s function. The infinite domain problem is constructed such as

to satisfy the same initial condition on the original domain and for its solution to match

the prescribed value on the boundary. It can be further decomposed into two infinite

domain auxiliary problems, the first of which has the same initial condition as the original

problem on the corresponding semi-infinite domain and zero outside it. The second has a

non-zero initial condition on the opposite semi-infinite domain, which is chosen such that

the sum of their solutions takes the desired value on the boundary.

The method of images often significantly simplifies the solution of boundary value

problems that are hard to handle through probabilistic methods. This is particularly true

when dealing with high-dimensional problems such as the multiple barrier windows in

this chapter. Wilmott et al. (1995), Buchen (2001b) and Konstandatos (2003) provide an

introduction in the context of standard barrier options. Buchen (2001b), Konstandatos

(2003) and Buchen and Konstandatos (2005, 2009) apply the method of images to

the pricing of various exotic (double) barrier and lookback options. In Chapter 9 of

Konstandatos (2003), pp. 187–205, the author further generalizes it to two dimensional

asset dynamics.

This section explicitly establishes the link between the image operator for exponentially

bent barriers and a change of variables for the Black and Scholes (1973) PDE. It further

provides an alternative probabilistic derivation.

III.4.1 Zero Temperature Boundary Value Problem

We start by giving a fundamental motivating example for the method of images; see

also the discussion in Chapter 12.2 of Wilmott et al. (1995), pp. 207–209. Consider

the problem of finding the temperature distribution on a semi-infinite rod, where a zero
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temperature boundary is imposed on its left end, that is

H{u}(x, τ) = 0 for (x, τ) ∈ (b,∞)× (0,∞),

u(x, 0) = f̂(x),

u(b, τ) = 0 for τ ∈ [0,∞).

Here, b ∈ R is the coordinate of its left end and H is the one-dimensional heat operator

defined by

H{u} = −∂u
∂τ

+
∂2u

∂x2
.

We remark that H is a second-order differential operator. This formulation of the problem

is slightly uncommon, as we would normally impose the boundary to lie at zero. However,

when applying the method of images to price barrier options within the Black and Scholes

(1973) framework, a coordinate transformation will yield an equivalent initial boundary

value problem for the heat equation with a boundary that, in general, does not lie at

the origin. We define the corresponding full-range problem ub(x, τ) on an infinite rod by

removing the boundary condition and multiplying the initial condition by the indicator

for the spatial domain of the original problem u(x, τ), that is

H{ub} (x, τ) = 0 for (x, τ) ∈ R× (0,∞),

ub(x, 0) = f̂(x)1{x > b}.

The corresponding image problem
∗
ub (x, τ) is obtained by reflecting the initial condition

of the full-range problem about the axis passing through the barrier. It satisfies

H
{ ∗
ub
}

(x, τ) = 0 for (x, τ) ∈ R× (0,∞),

∗
ub (x, 0) = f̂(2b− x)1{x < b}.

It then follows from the symmetry property of the heat transfer equation that, on the

boundary, the solutions for the full-range problem and its image coincide at all times.

Consequently, their difference satisfies the zero temperature boundary condition of the

original problem

ub(b, τ)− ∗ub (b, τ) = u(b, τ) = 0 for τ ∈ [0,∞).

In general, if the initial temperature distribution of an infinite rod is an odd function with

respect to some point b ∈ R+, then the positive and negative temperatures will exactly
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Figure III.10: Evolution of the heat distribution in an infinite rod when the

initial condition is given by a sinusoidal function. At the spatial points given by

multiples of pi, the temperature is zero at all times.

offset each other in this point at all times. Furthermore, by construction, the difference

also satisfies the same initial condition on the semi-infinite rod. By the linearity of the

differential operator, it has the same dynamics on the domain of the original problem

H
{
ub−

∗
ub
}

(x, τ) = H{u}(x, τ) = 0 for (x, τ) ∈ (b,∞)× (0,∞).

Consequently, the two solutions coincide on this domain as well

u(x, τ) = ub(x, τ)− ∗ub (x, τ) for (x, τ) ∈ (b,∞)× (0,∞).

Example III.1 (Boundary Value Problem with Sinusoidal Initial Condition).

As an example, consider the following problem

H{u}(x, τ) = 0 for (x, τ) ∈ (0,∞)× (0,∞),

u(x, 0) = sin(x),

u(0, τ) = 0 for τ ∈ [0,∞).

Since the sine is an odd function with respect to the origin, it follows by the method of

images that dropping the boundary condition yields the correct solution for u(x, τ) on the

original domain. See Figure III.10 for an illustration that shows the heat distribution in
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an infinite rod when the initial condition is a sinusoidal function. At all times, the positive

and negative temperatures exactly offset each other at all multiples of pi and at zero in

particular.

III.4.2 Three Transformations of the Black and Scholes (1973) PDE

This section discuses how a carefully chosen coordinate transformation reduces the

Black and Scholes (1973) PDE to the one-dimensional heat transfer equation such that

the exponential barrier becomes a constant boundary under the new coordinates. We

emphasize that obtaining a constant boundary in the transformed space is necessary for

the method of images to be applicable. Note, that, in general, there is no single unique

change of variables such that the new function satisfies the heat equation. We will first

review the two transformations commonly encountered in the literature and discuss their

properties. It then turns out that we need a mixture of these two approaches in order for

the transformed barrier to become a constant.

We start by giving two central definitions.

Definition III.3 (Black and Scholes (1973) Forward Operator).

The one-dimensional Black and Scholes (1973) forward operator L is defined as

L{Ṽ } = −∂Ṽ
∂τ

+ (r − δ)S∂Ṽ
∂S

+
1

2
σ2S2∂

2Ṽ

∂S2
− rṼ . 4

Definition III.4 (Black and Scholes (1973) Initial Exponential Boundary

Value Problem).

Let B̃(τ) be an exponential boundary. The function Ṽ (S, τ) satisfies an initial exponential

boundary value problem (IEBVP) if

L
{
Ṽ
}

(S, τ) = 0 for (S, τ) ∈ D,

Ṽ (S, 0) = f(S),

Ṽ
(
B̃(τ), τ

)
= 0 for τ ∈ [0,∞),

where the active domain D ⊆ R2
+ is given by

D =
{

(S, τ) : ψS > ψB̃(τ), τ ∈ (0,∞)
}
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and ψ ∈ {−1,+1} indicates an upper or lower boundary. 4

Now let Ṽ (S, τ) be the value of a knock-out barrier option on the spot asset with

current price S ∈ R+, time-to-maturity τ ∈ R+ and time-dependent exponential barrier

B̃(τ) = B̃(0)eγτ . Then Ṽ (S, τ) satisfies a Black and Scholes (1973) IEBVP with initial

condition f(S) = (φS − φK)+ in the case of a vanilla payoff. Note that in defining the

valuation problem, we already implicitly reversed time by setting τ = T − t and made

the change of variables V (S, t) = Ṽ (S, τ) thus transforming the terminal condition into

an initial condition.

The first candidate transformation of the Black and Scholes (1973) PDE considered

here is the most straight forward one and can often be found in the literature on the

pricing of non-path-dependent contingent claims.

Lemma III.4 (Heat Equation I).

Let Ṽ (S, τ) satisfy a Black and Scholes (1973) IEBVP. Define

x = ln(S) + ξτ,

ξ = r − δ − 1

2
σ2,

V (S, τ) = e−rτu(x, τ).

Then the function u(x, τ) satisfies the following initial boundary value problem

H{u}(x, τ) = 0 for (x, τ) ∈ D̂,

u(x, 0) = f̂(x),

u (b(τ), τ) = 0 for τ ∈ [0,∞),

where

f̂(x) = f (ex) ,

b(τ) = ln
(
B̃(τ)

)
+ ξτ,

D̂ = {(x, τ) : ψx > ψb(τ), τ ∈ (0,∞)} .
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Proof By the chain rule, we obtain

∂Ṽ

∂τ
= e−rτ

(
−ru+ ξ

∂u

∂x
+
∂u

∂τ

)
,

∂Ṽ

∂S
= = e−rτ

1

S

∂u

∂x
,

∂2V

∂S2
= e−rτ

1

S2

(
∂2u

∂x2
− ∂u

∂x

)
.

Substituting back into the forward Black and Scholes (1973) PDE yields

0 = −∂u
∂τ

+

(
r − q − 1

2
σ2 − ξ

)
∂u

∂x
+

1

2
σ2 ∂u

∂x2
.

The parameter ξ as given in Lemma III.4 is determined such that the convection term

vanishes. �

Note that an exponential boundary B̃(τ) = B̃(0)eγτ in the original coordinates is trans-

formed into a time-dependent linear boundary b(τ) = ln
(
B̃(0)

)
+ (ξ + γ)τ . Furthermore,

the parameter ξ is determined from the objective of eliminating the convection term and

can thus not be freely chosen. Consequently, the method of images cannot be directly

applied to this valuation problem except for in the unlikely special case when γ = −ξ.
However, non-path-dependent European style option with various terminal payoffs can

be easily priced through a convolution of the heat kernel with the corresponding initial

condition.

Another approach to transform the Black and Scholes (1973) PDE into the heat

equation seems more common in the literature and has some advantages, as discussed

later; see for example Chapter 5.4 in Wilmott et al. (1995), pp. 76–81.

Lemma III.5 (Heat Equation II).

Let Ṽ (S, τ) satisfy a Black and Scholes (1973) IEBVP. Define

x = ln(S),

α =
1

2
− r − δ

σ2
,

β = −
(
2(r − δ) + σ2

)2
8σ2

,

Ṽ (S, τ) = eαx+βτu(x, τ).
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Then the function u(x, τ) satisfies the following initial boundary value problem

H{u}(x, τ) = 0 for (x, τ) ∈ D̂,

u(x, 0) = f̂(x),

u (b(τ), τ) = 0 for τ ∈ [0,∞),

where

f̂(x) = e−αxf (ex) ,

b(τ) = ln
(
B̃(τ)

)
,

D̂ = {(x, τ) : ψx > ψb(τ), τ ∈ (0,∞)} .

Proof By the chain rule, we obtain

∂Ṽ

∂τ
= eαx+βτ

(
βu+

∂u

∂τ

)
,

∂Ṽ

∂S
= eαx+βτ 1

S

(
αu+

∂u

∂x

)
,

∂2Ṽ

∂S2
= eαx+βτ 1

S2

(
α(α− 1)u+ (2α− 1)

∂u

∂x
+
∂2u

∂x2

)
.

Substituting back into the Black and Scholes (1973) PDE yields

0 = −∂u
∂τ

+

(
r − δ + σ2

(
α− 1

2

))
∂u

∂x
+

1

2
σ2∂

2u

∂x2

−
(
β − α

(
r − δ +

1

2
σ2(α− 1)

)
+ r

)
u.

The parameters α and β as given in Lemma III.5 are determined such that both the

reaction and convection terms vanish. �

This approach is the method of choice for standard barrier options since a constant

boundary B̃(τ) = B̃(0) in the original coordinates stays constant under the transformation

at b(τ) = ln
(
B̃(0)

)
. However, an exponential boundary is again transformed into a time-

dependent linear function.
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Finally, we consider a mixture of the first two approaches which encompasses the

second one as a special case. The idea is to be able to freely choose the parameter ξ (in

particular to set ξ = −γ) and then determine the values for the parameters α and β such

that the convection and reaction terms cancel out.

Lemma III.6 (Heat Equation III).

Let Ṽ (S, τ) satisfy a Black and Scholes (1973) IEBVP. Define

x = ln(S) + ξτ,

α =
1

2
− r − δ − ξ

σ2
,

β = −
(
2(r − q − ξ) + σ2

)2
8σ2

,

Ṽ (S, τ) = eαx+βτu(x, τ).

Then the function u(x, τ) satisfies the following initial boundary value problem

H{u}(x, τ) = 0 for (x, τ) ∈ D̂, (III.1a)

u(x, 0) = f̂(x), (III.1b)

u (b(τ), τ) = 0 for τ ∈ [0,∞), (III.1c)

where

f̂(x) = e−αxf (ex) ,

b(τ) = ln
(
B̃(τ)

)
+ ξτ,

D̂ = {(x, τ) : ψx > ψb(τ), τ ∈ (0,∞)} .

Proof By the chain rule, we obtain,

∂Ṽ

∂t
= eαx+βτ

(
(β + αξ)u+ ξ

∂u

∂x
+
∂u

∂τ

)
,

∂Ṽ

∂S
= eαx+βτ 1

S

(
αu+

∂u

∂x

)
,

∂2Ṽ

∂S2
= eαx+βτ 1

S2

(
α(α− 1)u+ (2α− 1)

∂u

∂x
+
∂2u

∂x2

)
.
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Substituting back into the Black and Scholes (1973) PDE yields

0 = −∂u
∂τ

+

(
r − δ + σ2

(
α− 1

2

)
− ξ
)
∂u

∂x
+

1

2
σ2∂

2u

∂x2

−
(
β − α

(
r − δ +

1

2
σ2(α− 1)− ξ

)
+ r

)
u.

Given the value of the parameter ξ, the parameters α and β as given in Lemma III.6 are

determined such that both the reaction and convection terms vanish. �

III.4.3 Image Operator

The following definition is a generalization of Theorem 1 in Buchen (2001b), p. 128,

to dividend paying assets and exponential barriers; see also Section 2 in Buchen and

Konstandatos (2009), pp. 502–503.

Definition III.5 (Image Operator).

Let Ṽ (S, τ) be a solution to the Black and Scholes (1973) PDE. The image of Ṽ (S, τ)

relative to the exponential barrier B̃(τ) = B̃(0)eγτ is given by

B̃(0),γ,τ

I
{
Ṽ (S, τ)

}
=

(
S

B̃(0)eγτ

)2α

Ṽ

(
B̃2(0)e2γτ

S
, τ

)
,

where

α =
1

2
− r − δ + γ

σ2
. 4

Note that the dependence of the image operator on the parameters defining the

exponential barrier and time-to-maturity is made explicit through superscript notation.

While this may seem unnecessary at first, it will be essential when dealing with more

complex contingent claims where the barrier is either a continuous piecewise exponential

function or only partially active or both.

While this definition seems ad-hoc at first, it immediately follows from applying

the method of images to the heat transfer equation and then reversing the coordinate

transformation, as the proof to Proposition III.1 shows.
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Proposition III.1 (Method of Images for the Black and Scholes (1973) PDE).

Let Ṽ (S, τ) satisfy a Black and Scholes (1973) IEBVP. Let ṼB̃(0),γ(S, τ) be the solution to

the corresponding full-range problem

L
{
ṼB̃(0),γ

}
(S, τ) = 0 for (S, τ) ∈ R2

+,

ṼB̃(0),γ(S, 0) = f(x)1
{
ψS > ψB̃(0)

}
.

Then Ṽ (S, τ) is given by

Ṽ (S, τ) = ṼB̃(0),γ(S, τ)−
B̃(0),γ,τ

I
{
ṼB̃(0),γ(S, τ)

}
.

Proof As shown in Section III.4.2, applying the change of variables proposed in

Lemma III.6 and setting ξ = −γ yields a constant boundary in the transformed coordinates

at b = ln
(
B̃(0)

)
. Consequently, the method of images can be applied. It follows from

the results in Section III.4.1 that the initial boundary value problem in Equation (III.1)

satisfies

u(x, τ) = ub(x, τ)− ub(2b− x, τ),

where

H{ub} (x, τ) = 0 for (x, τ) ∈ R× (0,∞),

ub(x, 0) = f̂(x)1{ψx > ψb}

is the related full-range problem for the heat transfer equation. Let ṼB̃(0),γ(S, τ) be the

corresponding full-range problem for the Black and Scholes (1973) PDE as defined in

Proposition III.1. The image solution for the Black and Scholes (1973) PDE is then given

by

B̃(0),γ,τ

I
{
ṼB̃(0),γ(S, τ)

}
= eαx+βτu(2b− x, τ)

= e2α(x−b)eα(2b−x)+βτu(2b− x, τ)

=

(
S

B̃(0)eγτ

)2α

ṼB̃(0),γ

(
B̃2(0)e2γτ

S
, τ

)

and Proposition III.1 follows. �
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Proposition III.2 provides the most important properties of the image operator.

Proposition III.2 (General Properties of the Image Operator).

Let Ṽ (S, τ) and Ũ(S, τ) be solutions to the Black and Scholes (1973) PDE. The image

operator in Definition III.5 has the following properties.

(i) I is an involution, that is

B̃(0),γ,τ

I
{ B̃(0),γ,τ

I
{
Ṽ (S, τ)

}}
= Ṽ (S, τ).

(ii) I is a linear operator, that is for constants a, b ∈ R

B̃(0),γ,τ

I
{
aŨ(S, τ) + bṼ (S, τ)

}
= a

B̃(0),γ,τ

I
{
Ũ(S, τ)

}
+ b

B̃(0),γ,τ

I
{
Ṽ (S, τ)

}
.

(iii) If

L
{
Ṽ (S, τ)

}
= 0 for (S, τ) ∈ D

on some domain

D =
{

(S, τ) : ψS > ψB̃(0)eγτ , τ ∈ (0,∞)
}

then

L
{

B̃(0),γ,τ

I
{
Ṽ (S, τ)

}}
= 0 for (S, τ) ∈ R2

+\D.

(iv) The values of the original function and the image agree on the boundary

Ṽ
(
B̃(τ), τ

)
=
B̃(0),γ,τ

I
{
Ṽ
(
B̃(τ), τ

)}
.

Proof For brevity, only the main ideas of the proofs are given here. All details can be

found in Appendix III.B.1. Properties (i) and (ii) immediately follow from a (repeated)

application of Definition III.5. In order to prove Property (iii), we explicitly compute the

partial derivatives of the image of Ṽ (S, τ) and then show that it satisfies the Black and
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Scholes (1973) PDE. To see that Property (iv) holds, we apply the change of variables in

Lemma III.6 setting ξ = −γ so that we obtain a constant boundary problem for the heat

transfer equation. By the symmetry property, the solution to any initial value problem

and its reflection agree on the boundary. Reversing the change of variables yields the

result in the original coordinates and for the exponential boundary. �

It is important to note that Property (i) in Proposition III.2 only holds if the two image

operators are with respect to the same exponential barrier, that is they have the same

parameters B̃(0), γ and τ .

For the dynamic hedging and risk management of contingent claims, the availability

of closed form solutions for its sensitivities is of utmost importance. The following three

Lemmata provide the major greeks for images of valuation functions. These results all

follow from a careful differentiation and the proofs are omitted for brevity.

Lemma III.7 (Delta and Gamma of the Image of a Valuation Function).

Let Ṽ (S, τ) be some valuation function. Then the first- and second-order asset price

sensitivities of the image of Ṽ (S, τ) are given by

∂

∂S

B̃(0),γ,τ

I
{
Ṽ (S, τ)

}
=

(
S

B̃(0)eγτ

)2α
(

2α

S
Ṽ

(
B̃2(0)e2γτ

S
, τ

)
− B̃2(0)e2γτ

S2

∂Ṽ

∂S

(
B̃2(0)e2γτ

S
, τ

))

and

∂2

∂S2

B̃(0),γ,τ

I
{
Ṽ (S, τ)

}
=

(
S

B̃(0)eγτ

)2α
(

2α(2α− 1)

S2
Ṽ

(
B̃2(0)e2γτ

S
, τ

)

+
2(1− 2α)B̃2(0)e2γτ

S3

∂Ṽ

∂S

(
B̃2(0)e2γτ

S
, τ

)
+
B̃4(0)e4γτ

S4

∂2Ṽ

∂S2

(
B̃2(0)e2γτ

S
, τ

))
.

Lemma III.8 (Theta of the Image of a Valuation Function).

Let Ṽ (S, τ) be some valuation function. Then the first-order time-to-maturity sensitivity
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of the image of Ṽ (S, τ) is given by

∂

∂τ

B̃(0),γ,τ

I
{
Ṽ (S, τ)

}
=

(
S

B̃(0)eγτ

)2α
(
−2αγṼ

(
B̃2(0)e2γτ

S
, τ

)
+ 2γ

B̃2(0)e2γτ

S

∂Ṽ

∂S

(
B̃2(0)e2γτ

S
, τ

)

+
∂Ṽ

∂τ

(
B̃2(0)e2γτ

S
, τ

))
,

Lemma III.9 (Vega of the Image of a Valuation Function).

Let Ṽ (S, τ) be some valuation function. Then the first-order volatility sensitivity of the

image of Ṽ (S, τ) is given by

∂

∂σ

B̃(0),γ,τ

I
{
Ṽ (S, τ)

}
=

(
S

B̃(0)eγτ

)2α
(

2(1− 2α)

σ
ln

(
S

B̃(0)eγτ

)
+
∂Ṽ

∂σ

(
B̃2(0)e2γτ

S
, τ

))
.

III.4.4 Probabilistic Derivation of the Image Operator

This section shows how the image operator for exponential boundaries can alternatively

be obtained within a probabilistic setting. The Feynman-Kac formula provides a

connection between a Cauchy problem and a corresponding conditional expectation; see

for example Theorem V.7.6 in Karatzas and Shreve (1991), p. 366. It is thus not surprising

that the method of images for the Black and Scholes (1973) PDE can also be derived by

exploiting the symmetry properties of the Brownian motion. However, we are not aware

of a reference in the literature that explicitly establishes this link, even for the special

case of a flat boundary. This approach requires us to first obtain a closed-form solution

for the probability distribution of the terminal spot prices conditional on the barrier not

having been breached before. The derivation is thus much more involved compared to the

one discussed in Section III.4.3, which simply requires an appropriately chosen coordinate

transformation for the Black and Scholes (1973) PDE.
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The reflection principle, see for example Section II.6.A in Karatzas and Shreve (1991),

pp. 79–81, allows us to solve for the joint PDF of the terminal underlying asset price and

the indicator of no prior breach of an exponential barrier. The following Lemma provides

the precise result. See also Omberg (1987), who approximates the early exercise boundary

for American plain vanilla options through an exponential function.

Lemma III.10 (Joint Density of St and {τ > t}).

Let B̃(τ) be an exponential boundary where τ = T − t for some time T ∈ [0, T ∗] and let the

dynamics of the spot asset S = {St : t ∈ [0, T ∗]} under the risk-neutral probability measure

P∗ and the first hitting time ν of S to the barrier B̃(τ) be as in Lemma III.2. Then the

unconditional joint PDF is given by

P∗ {St ∈ dx, ν > t} =
1

xσ
√
t

(
N ′
(
α(x)− λt√

t

)
− e2λβN ′

(
2β − α(x) + λt√

t

))
dx,

where

α(x) =
1

σ

(
ln

(
x

S0

)
+ γt

)
,

β =
1

σ

(
ln

(
B̃(0)

S0

)
+ γT

)
,

λ =
1

σ

(
r − δ + γ − 1

2
σ2

)
.

Proof The proof can be found in Appendix III.B.2. �

The image operator can now be recovered from the risk-neutral pricing formula.

Proposition III.3 (Probabilistic Method of Images for the Black and Scholes

(1973) Model).

Let V = {Vt, t ∈ [0, T ]} be the value process of a contingent claim with maturity in T ∈
(0, T ∗] and terminal payoff

VT = f (ST ) 1{ν > T},

where the dynamics of the spot asset S = {St : t ∈ [0, T ∗]} and the first hitting time ν to

an exponential boundary B̃(τ) are as in Lemma III.10. Let V B̃(0) =
{
V
B̃(0)
t : t ∈ [0, T ]

}
be

154



the value process of the corresponding full-range problem given by the risk-neutral pricing

formula

V
B̃(0)
t = e−r(T−t)EP∗

[
f (ST ) 1

{
ψST > ψB̃(0)

}∣∣∣Ft] .
Then

Vt = V
B̃(0)
t +

B̃(0),γ,T−t
I

{
V
B̃(0)
t

}
,

where the image operator I is as in Definition III.5.

Proof This follows from applying the risk-neutral pricing formula and expressing the

expectation as an integral over the terminal payoff multiplied by the joint PDF obtained

in Lemma III.10. All details can be found in Appendix III.B.4. �

III.5 Binary and Q Options

As shown in Buchen (2001b), the method of images yields a solution for the prices

of standard barrier options in terms of a linear combination of cash-or-nothing (bond)

and asset-or-nothing (asset) binaries and their respective images. As we will show, this

continues to hold when the barrier is a continuous and piecewise exponential function of

time. Ingersoll (2000) also shows that a wide variety of exotic payoffs can be priced in terms

of elementary digital options. Skipper and Buchen (2003) generalize much of the previous

literature on digital option pricing by introducing the so called M-binary. These multi-asset

and multi-period exotic binary options can be used to price most rainbow options, whose

terminal payoff depends on the asset prices at a discrete set of monitoring points. Examples

include fixed and floating strike discrete geometric average Asian options and discretely

monitored multi-asset barrier and lookback options. Veiga et al. (2012) independently

obtain similar results in a slightly more general setting with time-dependent drift and

diffusion functions. Both the Skipper and Buchen (2003) M-binaries and the Veiga et al.

(2012) generic contracts allow to value the same types of elementary payoff structures.

The basic building blocks for the prices of the barrier options considered in this chapter

are higher-order bond and asset binaries. Our notation is very similar to that used by

Skipper and Buchen (2003).
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Definition III.6 (n-th Order Bond and Asset Binaries).

Let s = (s1, s2, . . . , sn)′ be a n-dimensional column vector of indicators with values si ∈
{−1,+1}, let T = (T1, T2, . . . , Tn)′ ∈ Rn+ be a n-dimensional column vector of maturity

dates such that Ti < Tj for i < j and let ξ = (ξ1, ξ2, . . . , ξn)′ ∈ Rn+ be a n-dimensional

column vector of strike prices. The n-th order bond binary Bsξ and asset binary Asξ have

the time Tn payoff

Bsξ (ST , Tn) = 1n {diag(s)ST > diag(s)ξ} ,

Asξ (ST , Tn) = STn1n {diag(s)ST > diag(s)ξ} .

Here, ST = (ST2 , ST2 , . . . , STn)′ ∈ Rn is the n-dimensional column vector of spot prices at

the maturity dates and diag(s) is the n × n diagonal matrix created from the vector s.

The n-dimensional indicator function 1n is defined element-wise as

1n {x > a} =
n∏
i=1

1 {xi > ai} . 4

Thus, an n-th order bond (asset) binary has a payoff of one unit of cash (one asset)

at the terminal maturity date Tn, if and only if siSTi > siξi for all i ∈ {1, 2, . . . , n}.
Again, each si ∈ {−1,+1} serves as an indicator for a less-than or greater-than inequality,

respectively. Higher-order binary options can also be regarded as compound options. A

second-order binary, for example, is a binary option to receive a first-order binary at time

T1 given that s1ST1 > s1ξ1. In general, for n > 1 we have at the first maturity date

Bs1s2...snξ1ξ2...ξn
(S, T1) = Bs2s3...snξ2ξ3...ξn

(S, T1) 1 {s1S > s1ξ1}

As1s2...snξ1ξ2...ξn
(S, T1) = As2s3...snξ2ξ3...ξn

(S, T1) 1 {s1S > s1ξ1} .

Proposition III.4 (Valuation of n-th Order Bond and Asset Binaries).

The time 0 ≤ t ≤ T1 values of the n-th order bond and asset binaries are given by

Bsξ(S, t) = e−rτnNn (diag(s)d−;C) ,

Asξ(S, t) = Se−δτnNn (diag(s)d+;C) ,
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where Nn(x;C) is the n-variate standard normal cumulative distribution function eval-

uated at point x and with correlation matrix C. The n-dimensional column vectors

d± = (d±,1, d±,2, . . . , d±,n)′ ∈ Rn are defined by

d±,i =
ln (S/ξi) +

(
r − δ ± 1

2σ
2
)
τi

σ
√
τi

,

where τi = Ti − t is the i-th time-to-maturity and C ∈ Rn × Rn is a symmetric positive

definite correlation matrix given by

Ci,j =


1 if i = j

sisj
√
τi/τj if i < j

sisj
√
τj/τi otherwise

.

Proof This result is a special case of the generalized M binary valuation equation given

in Theorem 1 in Skipper and Buchen (2003), pp. 10–11, when there is only a single

underlying asset. Section 5.2.(b) of their paper, p. 15, gives an example. �

Following Buchen (2004), we define higher-order Q options (pronounced /kju:/) to have

a payoff equal to that of a European plain vanilla call option with strike price ξn at the

terminal maturity date Tn conditional on siSTi > siξi for all i ∈ {1, 2, . . . , n}; see also the

related working paper Buchen (2001a) for the origin of this notation. The concept of a

Q option is thus a natural extension of standard European plain vanilla options to higher

orders. Introducing these contracts is not necessary to solve the valuation problem in

this chapter since a Q option corresponds to a special linear combination of higher order

asset and bond binary options. However, it often simplifies the notation by reducing the

number of terms involved.

Definition III.7 (n-th Order Q Options).

Let s, ξ and T be as in Definition III.6. The n-th order Q option has the time Tn payoff

Qsξ (ST , Tn) = Asξ (ST , Tn)− ξnBsξ (ST , Tn) . 4
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By Definition III.7, the value of a standard European plain vanilla call option with

strike price K is Q+
K(S, τ) while that of the otherwise identical put option is −Q−K(S, τ).

Corollary III.2 (Valuation of n-th Order Q Options).

The time 0 ≤ t ≤ T1 value of the n-th order Q option is given by

Qsξ(S, t) = Se−δτnNn (diag(s)d+;C)− ξne−rτnNn (diag(s)d−;C) .

Proof This immediately follows from Definition III.7 and Proposition III.4 as well as the

linearity of the pricing rule. �

In order to hedge against the random changes in the underlying asset price, we need to

be able to compute the first partial derivative of the contingent claim prices with respect

to it. Propositions III.5 and III.6 provide the necessary results for binary options. These

represent novel contributions.

Proposition III.5 (Delta of n-th Order Bond and Asset Binaries).

Let α± = diag(s)d±. Let, ρi be the i-th column of the matrix C then

V̂i = C−i − ρ−ii
(
ρ−ii
)′
,

D̂2
i = diag

(
V̂i
)
,

α̂±,i =
(
D̂i

)−1 (
α−i± − ρ−ii α±,i

)
,

Ĉi =
(
D̂i

)−1
V̂i
(
D̂i

)−1
,

where we use the notation x−i (X−i) to indicate that the i-th element (the i-th row and

column) is removed from the vector x (the matrix X). The time 0 ≤ t ≤ T1 first-order

asset price sensitivities of the n-th order bond and asset binaries are given by

∂Bsξ
∂S

(S, t) = e−rτn
1

S

n∑
i=1

si
σ
√
τi
N ′ (α−,i)Nn−1

(
α̂−,i; Ĉi

)
,

∂Asξ
∂S

(S, t) = e−δτn

(
Nn (α+;C) +

n∑
i=1

si
σ
√
τ i
N ′ (α+,i)Nn−1

(
α̂+,i; Ĉi

))
.

Here, N ′(x) is the univariate standard normal PDF and we define N0(·; ·) := 1.
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Proof For brevity, we only outline the derivation of the delta for n-th order bond binaries.

The result for the higher-order asset binaries follows analogously. First, we express the n-

variate standard normal cumulative distribution function as an integral.

∂Bsξ
∂S

(S, t) = e−rτn
∂

∂S

∫ α−

−∞
N ′n(x;C)dx.

Each of the n upper limits of integration α−,i is a function of S. Thus, by a repeated

application of the Leibniz rule we get

∂Bsξ
∂S

(S, t) = e−rτn
n∑
i=1

∂α−,i
∂S
N ′ (α−,i)

∫ α−i
−

−∞
N ′n−1

(
x−i; µ̂i, V̂i

)
dx−i.

We use that conditional on xi = α−,i, the vector x−i has a multivariate normal distribution

with mean vector µ̂i = ρ−ii α−,i and covariance matrix V̂i as given in Proposition III.5; see

for example Theorem B.7 in Greene (2008), p. 1013. Consequently,
(
D̂i

)−1 (
x−i − µ̂i

)
has a multivariate standard normal distribution with correlation matrix Ĉi as given in

Proposition III.5. The result follows when substituting for the partial derivatives of α−,i

using that
∂α±,i
∂S

=
si

Sσ
√
τ i
.

�

Proposition III.6 (Vega of n-th Order Bond and Asset Binaries).

The time 0 ≤ t ≤ T1 first-order volatility sensitivities of the n-th order bond and asset

binaries are given by

∂Bsξ
∂σ

(S, t) = −e−rτn
n∑
i=1

sid+,i

σ
N ′ (α−,i)Nn−1

(
α̂−,i; Ĉi

)
,

∂Asξ
∂σ

(S, t) = −e−δτnS
n∑
i=1

sid−,i
σ
N ′ (α+,i)Nn−1

(
α̂+,i; Ĉi

)
.

Proof The proof is fully analogous to that of Proposition III.5 and thus omitted. We use

that
∂α±,i
∂σ

= −α∓,i
σ
.

�
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III.6 Barrier Option Pricing

In this section, we discuss the pricing of knock-out barrier options. Our final objective is to

obtain a valuation function for deferred start barrier options, where the barrier, once active,

follows a continuous and piecewise exponential function. As shown in Section III.3.4,

although this functional form of the barrier might sound arbitrary at first, it arises

from a valuation and risk management perspective when dealing with standard deferred

start barrier options like the ones embedded in bonus certificates pro. As intermediate

results, we obtain the valuation formulas for standard exponential barriers, deferred start

exponential barriers and continuous piecewise exponential barriers.

Throughout this section, we assume that the barrier option does not pay any rebate

upon knock-out. The separate valuation of only the rebate as an American binary

option with its payout either at maturity or at the first hitting time is postponed until

Sections III.7 and III.8. Appendix III.E contains an overview of the main results of this

and the following two sections for easier reference.

The following lemma establishes that a separation of the valuation problem is indeed

possible; Rich (1994) provides a less formal argument.

Lemma III.11 (Valuation of Barrier Options with Rebates).

The valuation function of a knock-out barrier option that pays a rebate when the barrier

is breached before maturity is given by the sum of the valuation functions of the terminal

payoff and the rebate alone.

Proof Let 0 < T ≤ T ∗ be the maturity date and ν be the first hitting time of the

barrier during a monitoring period. Let X be a FT -measureable random variable, Y =

{Yt : t ∈ [0, T ]} be an F-adapted process and f : R → R and g : [0, T ] × R → R be the

payoff and rebate functions respectively. By the risk-neutral pricing formula, the value

process V = {Vt : t ∈ [0, T ]} is then given by

Vt = EP∗

[
e−r(T−t)f(X)1{ν > T}+ e−r(ν−t)g (ν, Yν) 1{ν ≤ T}

∣∣∣Ft]
for all t ∈ [0, ν ∧ T ]. The separability follows immediately from the linearity of the

expectation operator. �

Note that by defining X to be FT -measureable and Y to be F-adapted, the Lemma holds

for general payoff and rebate functions. In this chapter, we only consider the case where
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X is σ (ST )-measurable (that is a function of the terminal stock price) and Y is a constant

such that the rebate is a function of the first hitting time alone.

III.6.1 Exponential Barrier Options

In this section, we compute valuation formulas for knock-out barrier options where

the barrier is continuously monitored and given by an exponential function of the time-

to-maturity B̃(τ) = B̃(0)eγτ as in Definition III.1. Let ν be the first hitting time of the

asset S to the barrier B̃(τ) defined as

ν = inf
{
t ≥ 0 : ψSt ≤ ψB̃(T − t)

}
.

The terminal option payoff is then given by

VT = (φST − φK)+ 1{ν > T}.

The option value Ṽ (S, τ) satisfies a Black and Scholes (1973) IEBVP with a plain vanilla

initial condition, that is

L
{
Ṽ
}

(S, τ) = 0 for (S, τ) ∈ D,

Ṽ (S, 0) = (φS − φK)+,

Ṽ
(
B̃(τ), τ

)
= 0 for τ ∈ [0,∞),

where

D =
{

(S, τ) : ψS > ψB̃(τ), τ ∈ (0,∞)
}
.

The corresponding full-range problem is given by

L
{
ṼB̃(0),γ

}
(S, τ) = 0 for (S, τ) ∈ R2

+,

ṼB̃(0),γ(S, 0) = (φS − φK)+1
{
ψS > ψB̃(0)

}
.

In what follows, we will always provide all intermediate steps in the solution for the down

& out put price which corresponds to φ = −1 and ψ = +1. For brevity, we only state the

final results for the three other knock-out barrier option types as they follow along the

same steps. Alternatively, we can apply a parity result obtained by Buchen (2001b), which

expresses the value of all knock-out barrier options in terms of the valuation functions for
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plain vanilla options and the full-range problem for the corresponding down & out option

as well as their respective images. The initial condition of the full-range problem can be

decomposed as

ṼB̃(0),γ(S, 0) = (K − S)1{S < K}1
{
S > B̃(0)

}
=


(K − S)

(
1{S < K} − 1

{
S < B̃(0)

})
if K > B̃(0)

0 if K < B̃(0)

.

We thus obtain the following valuation function for the full-range problem

ṼB̃(0),γ(S, τ) =


−Q−K(S, τ)−KB−

B̃(0)
(S, τ) +A−

B̃(0)
(S, τ) if K > B̃(0)

0 if K < B̃(0)

.

It follows by the method of images that the value of the down & out put is

Ṽp,do(S, τ) =



−Q−K(S, τ)−KB−
B̃(0)

(S, τ) +A−
B̃(0)

(S, τ)

+
B̃(0),γ,τ

I
{
Q−K(S, τ)

}
+K

B̃(0),γ,τ

I
{
B−
B̃(0)

(S, τ)
}

−
B̃(0),γ,τ

I
{
A−
B̃(0)

(S, τ)
}

if K > B̃(0)

0 if K < B̃(0)

.

The values of the other three knock-out barrier options are given by

Ṽp,uo(S, τ) =



KB−
B̃(0)

(S, τ)−A−
B̃(0)

(S, τ)

−K
B̃(0),γ,τ

I
{
B−
B̃(0)

(S, τ)
}

+
B̃(0),γ,τ

I
{
A−
B̃(0)

(S, τ)
}

if K > B̃(0)

−Q−K(S, τ)+
B̃(0),γ,τ

I
{
Q−K(S, τ)

}
if K < B̃(0)

,

Ṽc,do(S, τ) =



Q+
K(S, τ)−

B̃(0),γ,τ

I
{
Q+
K(S, τ)

}
if K > B̃(0)

A+
B̃(0)

(S, τ)−KB+
B̃(0)

(S, τ)

−
B̃(0),γ,τ

I
{
A+
B̃(0)

(S, τ)
}

+K
B̃(0),γ,τ

I
{
B+
B̃(0)

(S, τ)
}

if K < B̃(0)

,
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and

Ṽc,uo(S, τ) =



0 if K > B̃(0)

Q+
K(S, τ)−A+

B̃(0)
(S, τ) +KB+

B̃(0)
(S, τ)

−
B̃(0),γ,τ

I
{
Q+
K(S, τ)

}
+

B̃(0),γ,τ

I
{
A+
B̃(0)

(S, τ)
}

−K
B̃(0),γ,τ

I
{
B+
B̃(0)

(S, τ)
}

if K < B̃(0)

.

III.6.2 Deferred Start Exponential Barrier Options

In this section, we analyze partial time knock-out barrier options with an exponential

barrier. For these contracts, the period in which the barrier can be triggered by the

underlying asset price is a subset of the lifetime of the option. We only consider the case

of deferred start barrier options, where the barrier is not monitored initially but only after

some date 0 < TS < T .

The barrier again follows the exponential function B̃(τ) = B̃(0)eγτ . Let ν be the first

hitting time of the asset S to the barrier B̃(τ) after the monitoring start date defined as

ν = inf
{
t ≥ TS : ψSt ≤ ψB̃(T − t)

}
,

The terminal option payoff is then given by

VT = (φST − φK)+ 1{ν > T}.

During the monitoring period when t ∈ [TS , T ], the value of the deferred start barrier

option is just equal to that of the standard barrier option from Section III.6.1. Before

the barrier start date, it can be regarded as a binary option to receive a standard barrier

option at time TS conditional on ψSTS > ψB̃ (τ̂S), where τ̂S = T − TS is the time-to-

maturity at the barrier start date. The option value Ṽ ds(S, τ) of the deferred start barrier

option outside the monitoring period then satisfies

L
{
Ṽ ds

}
(S, τ) = 0 for (S, τ) ∈ R+ × (τ̂S ,∞) ,

Ṽ ds (S, τ̂S) = Ṽ (S, τ̂S) 1
{
ψS > ψB̃ (τ̂S)

}
.
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Using the result from Section III.6.1, we can express the value of the deferred start down

& out put at the barrier start date as

Ṽ ds
p,do (S, τ̂S) =



(
−Q−K (S, τ̂S)−KB−

B̃(0)
(S, τ̂S) +A−

B̃(0)
(S, τ̂S)

+
B̃(0),γ,τ̂S
I

{
Q−K (S, τ̂S)

}
+K

B̃(0),γ,τ̂S
I

{
B−
B̃(0)

(S, τ̂S)
}

−
B̃(0),γ,τ̂S
I

{
A−
B̃(0)

(S, τ̂S)
})

1
{
S > B̃ (τ̂S)

}
if K > B̃(0)

0 if K < B̃(0)

.

Our aim is to express the right-hand side (r.h.s.) in terms of second-order binary and Q
options and their respective images. While it is an immediate consequence of the discussion

following Definition III.6 that for example

B−
B̃(0)

(S, τ̂S) 1
{
S > B̃ (τ̂S)

}
= B+−

B̃(τ̂S)B̃(0)
(S, 0, τ̂S) ,

it is not obvious if and how the indicator can be pulled inside the image operator. Note

that the notation Cs1s2ξ1ξ2
(S, τ1, τ2) is used to denote the value of a second order binary

option where the time remaining to the first and second maturity dates is given by τ1 and

τ2, respectively.

Lemma III.12 (Product of the Image of a Binary and an Indicator).

Let Cs2ξ2 (S, τ) be the value of a first-order bond or asset binary. Then the following

relationship holds

B̃(0),γ,τ

I
{
Cs2ξ2 (S, τ)

}
1 {s1S > s1ξ1} =

B̃(0),γτ

I
{
C−s1s2
ξ̂1ξ2

(S, 0, τ)
}
,

where

ξ̂1 =
B̃2(0)e2γτ

ξ1
.

The property continues to hold for higher-order binary options.
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Proof By Definition III.5, we have

B̃(0),γ,τ

I
{
Cs2ξ2 (S, τ)

}
1 {s1S > s1ξ1}

= Ξ Cs2ξ2

(
B̃2(0)e2γτ

S
, τ

)
1 {s1S > s1ξ1}

= Ξ Cs2ξ2

(
B̃2(0)e2γτ

S
, τ

)
1

{
s1
B̃2(0)e2γτ

S
< s1

B̃2(0)e2γτ

ξ1

}

= Ξ C−s1s2
ξ̂1ξ2

(
B̃2(0)e2γτ

S
, 0, τ

)

=
B̃(0),γ,τ

I
{
C−s1s2
ξ̂1ξ2

(S, 0, τ)
}
,

with ξ̂1 defined as in Lemma III.12 and

Ξ =

(
S

B̃(0)eγτ

)2α

.

The proof for higher-order binaries is identical. �

Corollary III.3 (Product of the Image of a Binary and an Indicator).

Let Cs2ξ2 (S, τ) be the value of a first-order bond or asset binary. Then the following

relationship holds

B̃(0),γτ

I
{
Cs2ξ2 (S, τ)

}
1
{
s1S > s1B̃(τ)

}
=
B̃(0),γτ

I
{
C−s1s2
B̃(τ)ξ2

(S, 0, τ)
}
.

Proof This follows immediately from Lemma III.12. �

Returning to the valuation problem of the deferred start down & out put, we notice that

Corollary III.3 applies. Consequently,

Ṽ ds
p,do (S, τ̂S) =



−Q+−
B̃(τ̂S)K

(S, 0, τ̂S)−KB+−
B̃(τ̂S)B̃(0)

(S, 0, τ̂S)

+A+−
B̃(τ̂S)B̃(0)

(S, 0, τ̂S) +
B̃(0),γ,τ̂S
I

{
Q−−
B̃(τ̂S)K

(S, 0, τ̂S)
}

+K
B̃(0),γ,τ̂S
I

{
B−−
B̃(τ̂S)B̃(0)

(S, 0, τ̂S)
}

−
B̃(0),γ,τ̂S
I

{
A−−
B̃(τ̂S)B̃(0)

(S, 0, τ̂S)
}

if K > B̃(0)

0 if K < B̃(0)
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and consequently letting τS = TS − t be the time-to-barrier start, we get for τ > τ̂S

Ṽ ds
p,do(S, τ) =



−Q+−
B̃(τ̂S)K

(S, τS , τ)−KB+−
B̃(τ̂S)B̃(0)

(S, τS , τ)

+A+−
B̃(τ̂S)B̃(0)

(S, τS , τ) +
B̃(0),γ,τ

I
{
Q−−
B̃(τ̂S)K

(S, τS , τ)
}

+K
B̃(0),γ,τ

I
{
B−−
B̃(τ̂S)B̃(0)

(S, τS , τ)
}

−
B̃(0),γ,τ

I
{
A−−
B̃(τ̂S)B̃(0)

(S, τS , τ)
}

if K > B̃(0)

0 if K < B̃(0)

The values of the other three knock-out barrier options are given by

Ṽ ds
p,uo(S, τ) =



KB−−
B̃(τ̂S)B̃(0)

(S, τS , τ)−A−−
B̃(τ̂S)B̃(0)

(S, τS , τ)

−K
B̃(0),γ,τ

I
{
B+−
B̃(τ̂S)B̃(0)

(S, τS , τ)
}

+
B̃(0),γ,τ

I
{
A+−
B̃(τ̂S)B̃(0)

(S, τS , τ)
}

if K > B̃(0)

−Q−−
B̃(τ̂S)K

(S, τS , τ) +
B̃(0),γ,τ

I
{
Q+−
B̃(τ̂S)K

(S, τS , τ)
}

if K < B̃(0)

,

Ṽ ds
c,do(S, τ) =



Q++
B̃(τ̂S)K

(S, τS , τ)−
B̃(0),γ,τ

I
{
Q−+
B̃(τ̂S)K

(S, τS , τ)
}

if K > B̃(0)

A++
B̃(τ̂S)B̃(0)

(S, τS , τ)−KB++
B̃(τ̂S)B̃(0)

(S, τS , τ)

−
B̃(0),γ,τ

I
{
A−+
B̃(τ̂S)B̃(0)

(S, τS , τ)
}

+K
B̃(0),γ,τ

I
{
B−+
B̃(τ̂S)B̃(0)

(S, τS , τ)
}

if K < B̃(0)

,

and

Ṽ ds
c,uo(S, τ) =



0 if K > B̃(0)

Q−+
B̃(τ̂S)K

(S, τS , τ)−A−+
B̃(τ̂S)B̃(0)

(S, τS , τ)

+KB−+
B̃(τ̂S)B̃(0)

(S, τS , τ)−
B̃(0),γ,τ

I
{
Q++
B̃(τ̂S)K

(S, τS , τ)
}

+
B̃(0),γ,τ

I
{
A++
B̃(τ̂S)B̃(0)

(S, τS , τ)
}

−K
B̃(0),γ,τ

I
{
B++
B̃(τ̂S)B̃(0)

(S, τS , τ)
}

if K < B̃(0)

.
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III.6.3 Piecewise Exponential Barrier Options

We now consider a knock-out barrier option, where the barrier is continuously

monitored and given by a continuous piecewise exponential function as in Definition III.2.

In the first period, from the inception to some date 0 < TB < T , the barrier bends

exponentially at the rate κ. In the second period, the bending rate is given by γ. We

recall that the barrier is given by the following function of the time-to-maturity

B̃(τ) =


B̃(0)eγτ if τ ∈ [0, τ̂B]

B̃(0)eγτ̂B+κτB if τ > τ̂B

,

where τB = TB−t and τ̂B = T−TB. The terminal payoff of a piecewise exponential barrier

option is the same as the one given in Section III.6.1 but using the piecewise exponential

instead of a standard exponential barrier. Similarly to the deferred start option, its value

after the bending change date when t ∈ [TB, T ] is just equal to that of a standard barrier

option from Section III.6.1. The option value Ṽ pe(S, τ) of the piecewise exponential barrier

option before the bending change date then satisfies

L
{
Ṽ pe

}
(S, τ) = 0 for (S, τ) ∈ D,

Ṽ pe (S, τ̂B) = Ṽ (S, τ̂B) 1
{
ψS > ψB̃ (τ̂B)

}
Ṽ pe

(
B̃(τ), τ

)
= 0 for τ ∈ [τ̂B,∞) ,

where

D =
{

(S, τ) : ψS > ψB̃(τ), τ ∈ (τ̂B,∞)
}
.

The corresponding full-range problem is given by

L
{
ṼB̃(τ̂B),κ}(S, τ) = 0 for (S, τ) ∈ R+ × (τ̂B,∞) ,

ṼB̃(τ̂B),κ (S, τ̂B) = Ṽ (S, τ̂B) 1
{
ψS > ψB̃ (τ̂B)

}
.

We observe that the full-range problem satisfies the same equation as the deferred start

barrier option in Section III.6.2 when the bending change date takes the place of the

barrier start date. It follows by the method of images that the value of the down & out
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put for τ > τ̂B is

Ṽ pe
p, do(S, τ) =



−Q+−
B̃(τ̂B)K

(S, τB, τ)−KB+−
B̃(τ̂B)B̃(0)

(S, τB, τ)

+A+−
B̃(τ̂B)B̃(0)

(S, τB, τ) +
B̃(0),γ,τ

I
{
Q−−
B̃(τ̂B)K

(S, τB, τ)
}

+K
B̃(0),γ,τ

I
{
B−−
B̃(τ̂B)B̃(0)

(S, τB, τ)
}

−
B̃(0),γ,τ

I
{
A−−
B̃(τ̂B)B̃(0)

(S, τB, τ)
}

+
B̃(τ̂B),κ,τB
I

{
Q+−
B̃(τ̂B)K

(S, τB, τ)
}

+K
B̃(τ̂B),κ,τB
I

{
B+−
B̃(τ̂B)B̃(0)

(S, τB, τ)
}

−
B̃(τ̂B),κ,τB
I

{
A+−
B̃(τ̂B)B̃(0)

(S, τB, τ)
}

−
B̃(τ̂B),κ,τB
I

{ B̃(0),γ,τ

I
{
Q−−
B̃(τ̂B)K

(S, τB, τ)
}}

−K
B̃(τ̂B),κ,τB
I

{ B̃(0),γ,τ

I
{
B−−
B̃(τ̂B)B̃(0)

(S, τB, τ)
}}

+
B̃(τ̂B),κ,τB
I

{ B̃(0),γ,τ

I
{
A−−
B̃(τ̂B)B̃(0)

(S, τB, τ)
}}

if K > B̃(0)

0 if K < B̃(0)

.

The values of the other three knock-out barrier options are given by

Ṽ pe
p,uo(S, τ) =



KB−−
B̃(τ̂B)B̃(0)

(S, τB, τ)−A−−
B̃(τ̂B)B̃(0)

(S, τB, τ)

−K
B̃(0),γ,τ

I
{
B+−
B̃(τ̂B)B̃(0)

(S, τB, τ)
}

+
B̃(0),γ,τ

I
{
A+−
B̃(τ̂B)B̃(0)

(S, τB, τ)
}

−K
B̃(τ̂B),κ,τB
I

{
B−−
B̃(τ̂B)B̃(0)

(S, τB, τ)
}

+
B̃(τ̂B),κ,τB
I

{
A−−
B̃(τ̂B)B̃(0)

(S, τB, τ)
}

+K
B̃(τ̂B),κ,τB
I

{ B̃(0),γ,τ

I
{
B+−
B̃(τ̂B)B̃(0)

(S, τB, τ)
}}

−
B̃(τ̂B),κ,τB
I

{ B̃(0),γ,τ

I
{
A+−
B̃(τ̂B)B̃(0)

(S, τB, τ)
}}

if K > B̃(0)

−Q−−
B̃(τ̂B)K

(S, τB, τ) +
B̃(0),γ,τ

I
{
Q+−
B̃(τ̂B)K

(S, τB, τ)
}

+
B̃(τ̂B),κ,τB
I

{
Q−−
B̃(τ̂B)K

(S, τB, τ)
}

−
B̃(τ̂B),κ,τB
I

{ B̃(0),γ,τ

I
{
Q+−
B̃(τ̂B)K

(S, τB, τ)
}}

if K < B̃(0)

,
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Ṽ pe
c,do(S, τ) =



Q++
B̃(τ̂B)K

(S, τB, τ)−
B̃(0),γ,τ

I
{
Q−+
B̃(τ̂B)K

(S, τB, τ)
}

−
B̃(τ̂B),κ,τB
I

{
Q++
B̃(τ̂B)K

(S, τB, τ)
}

+
B̃(τ̂B),κ,τB
I

{ B̃(0),γ,τ

I
{
Q−+
B̃(τ̂B)K

(S, τB, τ)
}}

if K > B̃(0)

A++
B̃(τ̂B)B̃(0)

(S, τB, τ)−KB++
B̃(τ̂B)B̃(0)

(S, τB, τ)

−
B̃(0),γ,τ

I
{
A−+
B̃(τ̂B)B̃(0)

(S, τB, τ)
}

+K
B̃(0),γ,τ

I
{
B−+
B̃(τ̂B)B̃(0)

(S, τB, τ)
}

−
B̃(τ̂B),κ,τB
I

{
A++
B̃(τ̂B)B̃(0)

(S, τB, τ)
}

+K
B̃(τ̂B),κ,τB
I

{
B++
B̃(τ̂B)B̃(0)

(S, τB, τ)
}

+
B̃(τ̂B),κ,τB
I

{ B̃(0),γ,τ

I
{
A−+
B̃(τ̂B)B̃(0)

(S, τB, τ)
}}

−K
B̃(τ̂B),κ,τB
I

{ B̃(0),γ,τ

I
{
B−+
B̃(τ̂B)B̃(0)

(S, τB, τ)
}}

if K < B̃(0)

,

and

Ṽ pe
c,uo(S, τ) =



0 if K > B̃(0)

Q−+
B̃(τ̂B)K

(S, τB, τ)−A−+
B̃(τ̂B)B̃(0)

(S, τB, τ)

+KB−+
B̃(τ̂B)B̃(0)

(S, τB, τ)−
B̃(0),γ,τ

I
{
Q++
B̃(τ̂B)K

(S, τB, τ)
}

+
B̃(0),γ,τ

I
{
A++
B̃(τ̂B)B̃(0)

(S, τB, τ)
}

−K
B̃(0),γ,τ

I
{
B++
B̃(τ̂B)B̃(0)

(S, τB, τ)
}

−
B̃(τ̂B),κ,τB
I

{
Q−+
B̃(τ̂B)K

(S, τB, τ)
}

+
B̃(τ̂B),κ,τB
I

{
A−+
B̃(τ̂B)B̃(0)

(S, τB, τ)
}

−K
B̃(τ̂B),κ,τB
I

{
B−+
B̃(τ̂B)B̃(0)

(S, τB, τ)
}

+
B̃(τ̂B),κ,τB
I

{ B̃(0),γ,τ

I
{
Q++
B̃(τ̂B)K

(S, τB, τ)
}}

−
B̃(τ̂B),κ,τB
I

{ B̃(0),γ,τ

I
{
A++
B̃(τ̂B)B̃(0)

(S, τB, τ)
}}

+K
B̃(τ̂B),κ,τB
I

{ B̃(0),γ,τ

I
{
B++
B̃(τ̂B)B̃(0)

(S, τB, τ)
}}

if K < B̃(0)

.

III.6.4 Deferred Start Piecewise Exponential Barrier Options

The final option type considered here are deferred start barrier options with a

continuous piecewise exponential barrier. There are three relevant dates 0 < TS < TB < T .
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The barrier is not monitored before the barrier start date TS . During the monitoring

period, the barrier follows the same piecewise exponential function as in Section III.6.3.

The option value Ṽ ds,pe(S, τ) of the deferred start piecewise exponential barrier option

outside the monitoring period then satisfies

L
{
Ṽ ds,pe

}
(S, τ) = 0 for (S, τ) ∈ R+ × (τ̂S ,∞) ,

Ṽ ds,pe (S, τ̂S) = Ṽ pe (S, τ̂S) 1
{
ψS > ψB̃ (τ̂S)

}
.

Using the result from Section III.6.3, we can express the value of the deferred start

piecewise exponential down & out put at the barrier start date as

Ṽ ds,pe
p,do (S, τ̂S) =



(
−Q+−

B̃(τ̂B)K
(S, τB, τ̂S)

−KB+−
B̃(τ̂B)B̃(0)

(S, τB, τ̂S)

+A+−
B̃(τ̂B)B̃(0)

(S, τB, τ̂S)

+
B̃(0),γ,τ̂S
I

{
Q−−
B̃(τ̂B)K

(S, τB, τ̂S)
}

+K
B̃(0),γ,τ̂S
I

{
B−−
B̃(τ̂B)B̃(0)

(S, τB, τ̂S)
}

−
B̃(0),γ,τ̂S
I

{
A−−
B̃(τ̂B)B̃(0)

(S, τB, τ̂S)
}

+
B̃(τ̂B),κ,τB
I

{
Q+−
B̃(τ̂B)K

(S, τB, τ̂S)
}

+K
B̃(τ̂B),κ,τB
I

{
B+−
B̃(τ̂B)B̃(0)

(S, τB, τ̂S)
}

−
B̃(τ̂B),κ,τB
I

{
A+−
B̃(τ̂B)B̃(0)

(S, τB, τ̂S)
}

−
B̃(τ̂B),κ,τB
I

{ B̃(0),γ,τ̂S
I

{
Q−−
B̃(τ̂B)K

(S, τB, τ̂S)
}}

−K
B̃(τ̂B),κ,τB
I

{ B̃(0),γ,τ̂S
I

{
B−−
B̃(τ̂B)B̃(0)

(S, τB, τ̂S)
}}

+
B̃(τ̂B),κ,τB
I

{ B̃(0),γ,τ̂S
I

{
A−−
B̃(τ̂B)B̃(0)

(S, τB, τ̂S)
}})

1
{
S > B̃ (τ̂S)

}
if K > B̃(0)

0 if K < B̃(0)

.

Analogously to Section III.6.2, we aim to express the r.h.s. in terms of third-order binary

andQ options and their respective (composite) images. While Lemma III.12 can be applied

when the image of a binary option is multiplied by an indicator, we need an analogous

result for composite images.

Lemma III.13 (Product of the Composite Image of a Binary and an Indicator).

Let Cs2s3ξ2ξ3
(S, τB, τ) be the value of a second-order bond or asset binary and B̃(τ) be a
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continuous piecewise exponential barrier function. Then the following relationship holds

B̃(τ̂B),κ,τB
I

{ B̃(0),γ,τ

I
{
Cs2s3ξ2ξ3

(S, τB, τ)
}}

1 {s1S > s1ξ1}

=
B̃(τ̂B),κ,τB
I

{ B̃(0),γ,τ

I
{
Cs1s2s3
ξ̂1ξ2ξ3

(S, 0, τB, τ)
}}

,

where

ξ̂1 = e2(γ−κ)τBξ1.

The property continues to hold for higher-order binary options.

Proof Repeatedly applying Definition III.5 yields

B̃(τ̂B),κ,τB
I

{ B̃(0),γ,τ

I
{
Cs2s3ξ2ξ3

(S, τB, τ)
}}

1 {s1S > s1ξ1}

=
B̃(τ̂2B),κ,τB
I

{
Ξ1 Cs2s3ξ2ξ3

(
B̃2(0)e2γτ

S
, τB, τ

)}
1 {s1S > s1ξ1}

= Ξ2 Cs2s3ξ2ξ3

(
B̃2(0)e2γτS

B̃2 (τ̂B) e2κτB
, τB, τ

)
1 {s1S > s1ξ1}

= Ξ2 Cs2s3ξ2ξ3

(
e2(γ−κ)τBS, τB, τ

)
1
{
s1e2(γ−κ)τBS > s1e2(γ−κ)τBξ1

}
= Ξ2 Cs1s2s3

ξ̂1,ξ2ξ3

(
e2(γ−κ)τBS, 0, τB, τ

)
=

B̃(τ̂2B),κ,τB
I

{
Ξ1 Cs1s2s3

ξ̂1ξ2ξ3

(
B̃2(0)e2γτ

S
, τB, 0, τ

)}

=
B̃(τ̂B),κ,τB
I

{ B̃(0),γ,τ

I
{
Cs1s2s3
ξ̂1ξ2ξ3

(S, 0, τB, τ)
}}

.

where ξ̂1 is as defined in Lemma III.13 and

Ξ1 =

(
S

B̃(0)eγτ

)2α(γ)

,

Ξ2 =

(
S

B̃ (τ̂B) eκτB

)2α(κ)
(
B̃2 (τ̂2) e2κτB

B̃(0)eγτS

)2α(γ)

.

Note that we made the dependence of the transform parameter α on the bending

parameters γ and κ explicit. The proof for higher-order binaries is identical. �
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Applying Lemmata III.12 and III.13 then yields

Ṽ ds,pe
p,do (S, τ̂S) =



−Q++−
B̃(τ̂S)B̃(τ̂B)K

(S, 0, τB, τ̂S)

−KB++−
B̃(τ̂S)B̃(τ̂B)B̃(0)

(S, 0, τB, τ̂S)

+A++−
B̃(τ̂S)B̃(τ̂B)B̃(0)

(S, 0, τB, τ̂S)

+
B̃(0),γ,τ̂S
I

{
Q−−−
ζ1B̃(τ̂B)K

(S, 0, τB, τ̂S)
}

+K
B̃(0),γ,τ̂S
I

{
B−−−
ζ1B̃(τ̂B)B̃(0)

(S, 0, τB, τ̂S)
}

−
B̃(0),γ,τ̂S
I

{
A−−−
ζ1B̃(τ̂B)B̃(0)

(S, 0, τB, τ̂S)
}

+
B̃(τ̂B),κ,τB
I

{
Q−+−
ζ2B̃(τ̂B)K

(S, 0, τB, τ̂S)
}

+K
B̃(τ̂B),κ,τB
I

{
B−+−
ζ2B̃(τ̂B)B̃(0)

(S, 0, τB, τ̂S)
}

−
B̃(τ̂B),κ,τB
I

{
A−+−
ζ2B̃(τ̂B)B̃(0)

(S, 0, τB, τ̂S)
}

−
B̃(τ̂B),κ,τB
I

{ B̃(0),γ,τ̂S
I

{
Q+−−
ζ3B̃(τ̂B)K

(S, 0, τB, τ̂S)
}}

−K
B̃(τ̂B),κ,τB
I

{ B̃(0),γ,τ̂S
I

{
B+−−
ζ3B̃(τ̂B)B̃(0)

(S, 0, τB, τ̂S)
}}

+
B̃(τ̂B),κ,τB
I

{ B̃(0),γ,τ̂S
I

{
A+−−
ζ3B̃(τ̂B)B̃(0)

(S, 0, τB, τ̂S)
}}

if K > B̃(0)

0 if K < B̃(0)

,

where

ζ1 = B̃ (τ̂S) e2(γ−κ)(τ̂S−τ̂B),

ζ2 = B̃ (τ̂S) ,

ζ3 = B̃ (τ̂S) e2(γ−κ)(τ̂S−τ̂B).
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Consequently, we get for τ > τ̂S

Ṽ ds,pe
p,do (S, τ) =



−Q++−
B̃(τ̂S)B̃(τ̂B)K

(S, τS , τB, τ)

−KB++−
B̃(τ̂S)B̃(τ̂B)B̃(0)

(S, τS , τB, τ)

+A++−
B̃(τ̂S)B̃(τ̂B)B̃(0)

(S, τS , τB, τ)

+
B̃(0),γ,τ

I
{
Q−−−
ζ1B̃(τ̂B)K

(S, τS , τB, τ)
}

+K
B̃(0),γ,τ

I
{
B−−−
ζ1B̃(τ̂B)B̃(0)

(S, τS , τB, τ)
}

−
B̃(0),γ,τ

I
{
A−−−
ζ1B̃(τ̂B)B̃(0)

(S, τS , τB, τ)
}

+
B̃(τ̂B),κ,τB
I

{
Q−+−
ζ2B̃(τ̂B)K

(S, τS , τB, τ)
}

+K
B̃(τ̂B),κ,τB
I

{
B−+−
ζ2B̃(τ̂B)B̃(0)

(S, τS , τB, τ)
}

−
B̃(τ̂B),κ,τB
I

{
A−+−
ζ2B̃(τ̂B)B̃(0)

(S, τS , τB, τ)
}

−
B̃(τ̂B),κ,τB
I

{ B̃(0),γ,τ

I
{
Q+−−
ζ3B̃(τ̂B)K

(S, τS , τB, τ)
}}

−K
B̃(τ̂B),κ,τB
I

{ B̃(0),γ,τ

I
{
B+−−
ζ3B̃(τ̂B)B̃(0)

(S, τS , τB, τ)
}}

+
B̃(τ̂B),κ,τB
I

{ B̃(0),γ,τ

I
{
A+−−
ζ3B̃(τ̂B)B̃(0)

(S, τS , τB, τ)
}}

if K > B̃(0)

0 if K < B̃(0)

.

The values of the other three knock-out barrier options are given by

Ṽ ds,pe
p,uo (S, τ) =



KB−−−
B̃(τ̂S)B̃(τ̂B)B̃(0)

(S, τS , τB, τ)

−A−−−
B̃(τ̂S)B̃(τ̂B)B̃(0)

(S, τS , τB, τ)

−K
B̃(0),γ,τ

I
{
B++−
ζ1B̃(τ̂B)B̃(0)

(S, τS , τB, τ)
}

+
B̃(0),γ,τ

I
{
A++−
ζ1B̃(τ̂B)B̃(0)

(S, τS , τB, τ)
}

−K
B̃(τ̂B),κ,τB
I

{
B+−−
ζ2B̃(τ̂B)B̃(0)

(S, τS , τB, τ)
}

+
B̃(τ̂B),κ,τB
I

{
A+−−
ζ2B̃(τ̂B)B̃(0)

(S, τS , τB, τ)
}

+K
B̃(τ̂B),κ,τB
I

{ B̃(0),γ,τ

I
{
B−+−
ζ3B̃(τ̂B)B̃(0)

(S, τS , τB, τ)
}}

−
B̃(τ̂B),κ,τB
I

{ B̃(0),γ,τ

I
{
A−+−
ζ3B̃(τ̂B)B̃(0)

(S, τS , τB, τ)
}}

if K > B̃(0)

−Q−−−
B̃(τ̂S)B̃(τ̂B)K

(S, τS , τB, τ)

+
B̃(0),γ,τ

I
{
Q++−
ζ1B̃(τ̂B)K

(S, τS , τB, τ)
}

+
B̃(τ̂B),κ,τB
I

{
Q+−−
ζ2B̃(τ̂B)K

(S, τS , τB, τ)
}

−
B̃(τ̂B),κ,τB
I

{ B̃(0),γ,τ

I
{
Q−+−
ζ3B̃(τ̂B)K

(S, τS , τB, τ)
}}

if K < B̃(0)

,
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Ṽ ds,pe
c,do (S, τ) =



Q+++
B̃(τ̂S)B̃(τ̂B)K

(S, τS , τB, τ)

−
B̃(0),γ,τ

I
{
Q−−+
ζ1B̃(τ̂B)K

(S, τS , τB, τ)
}

−
B̃(τ̂B),κ,τB
I

{
Q−++
ζ2B̃(τ̂B)K

(S, τS , τB, τ)
}

+
B̃(τ̂B),κ,τB
I

{ B̃(0),γ,τ

I
{
Q+−+
ζ3B̃(τ̂B)K

(S, τS , τB, τ)
}}

if K > B̃(0)

A+++
B̃(τ̂S)B̃(τ̂B)B̃(0)

(S, τS , τB, τ)

−KB+++
B̃(τ̂S)B̃(τ̂B)B̃(0)

(S, τS , τB, τ)

−
B̃(0),γ,τ

I
{
A−−+
ζ1B̃(τ̂B)B̃(0)

(S, τS , τB, τ)
}

+K
B̃(0),γ,τ

I
{
B−−+
ζ1B̃(τ̂B)B̃(0)

(S, τS , τB, τ)
}

−
B̃(τ̂B),κ,τB
I

{
A−++
ζ2B̃(τ̂B)B̃(0)

(S, τS , τB, τ)
}

+K
B̃(τ̂B),κ,τB
I

{
B−++
ζ2B̃(τ̂B)B̃(0)

(S, τS , τB, τ)
}

+
B̃(τ̂B),κ,τB
I

{ B̃(0),γ,τ

I
{
A+−+
ζ3B̃(τ̂B)B̃(0)

(S, τS , τB, τ)
}}

−K
B̃(τ̂B),κ,τB
I

{ B̃(0),γ,τ

I
{
B+−+
ζ3B̃(τ̂B)B̃(0)

(S, τS , τB, τ)
}}

if K < B̃(0)

,

and

Ṽ ds,pe
c,uo (S, τ) =



0 if K > B̃(0)

Q−−+
B̃(τ̂S)B̃(τ̂B)K

(S, τS , τB, τ)

−A−−+
B̃(τ̂S)B̃(τ̂B)B̃(0)

(S, τS , τB, τ)

+KB−−+
B̃(τ̂S)B̃(τ̂B)B̃(0)

(S, τS , τB, τ)

−
B̃(0),γ,τ

I
{
Q+++
ζ1B̃(τ̂B)K

(S, τS , τB, τ)
}

+
B̃(0),γ,τ

I
{
A+++
ζ1B̃(τ̂S)B̃(0)

(S, τS , τB, τ)
}

−K
B̃(0),γ,τ

I
{
B+++
ζ1B̃(τ̂B)B̃(0)

(S, τS , τB, τ)
}

−
B̃(τ̂B),κ,τB
I

{
Q+−+
ζ2B̃(τ̂B)K

(S, τS , τB, τ)
}

+
B̃(τ̂B),κ,τB
I

{
A+−+
ζ2B̃(τ̂B)B̃(0)

(S, τS , τB, τ)
}

−K
B̃(τ̂B),κ,τB
I

{
B+−+
ζ2B̃(τ̂B)B̃(0)

(S, τS , τB, τ)
}

+
B̃(τ̂B),κ,τB
I

{ B̃(0),γ,τ

I
{
Q−++
ζ3B̃(τ̂B)K

(S, τS , τB, τ)
}}

−
B̃(τ̂B),κ,τB
I

{ B̃(0),γ,τ

I
{
A−++
ζ3B̃(τ̂S)B̃(0)

(S, τS , τB, τ)
}}

+K
B̃(τ̂B),κ,τB
I

{ B̃(0),γ,τ

I
{
B−++
ζ3B̃(τ̂B)B̃(0)

(S, τS , τB, τ)
}}

if K < B̃(0)

.
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III.7 Rebate Pricing: Payout at Maturity

This section discusses the valuation of fixed rebates that are paid at the maturity of

the option if the barrier has been breached before. W.l.o.g., we assume that the rebate at

maturity is equal to one currency unit. Again, symmetry relationships of the heat transfer

equation yield a simple solution in terms of two bond binaries. Like in Section III.6, we

first derive various auxiliary valuation formulas before obtaining the solution for the case

of a deferred start piecewise exponential barrier. We repeatedly use that the terminal

payoff and the rebate of a barrier option can be valued separately; see Lemma III.11.

III.7.1 Exponential Barrier Rebate

Let ν be again the first hitting time of the asset to the exponential boundary B̃(τ) as

in Section III.6.1. Since the rebate has a unit payoff at maturity conditional on ν ≤ T , it

follows that its value at the first hitting time is equal to that of a zero coupon bond with

a unit notional, that is

Vν = e−r(T−ν)1{ν ≤ T}.

The following well-known parity relationship is essential in constructing a static portfolio

that satisfies the initial and boundary conditions of the rebate pricing problem.

Lemma III.14 (Bond Binary Parity).

First-order bond binaries satisfy

B+
ξ (S, τ) + B−ξ (S, τ) = e−rτ

for all S ∈ R+.

Proof This follows immediately from

B+
ξ (S, 0) + B−ξ (S, 0) = 1

for all S ∈ R+. �
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By Lemma III.14, a portfolio consisting of a long position in one bond binary call and

put matches the value of the rebate on the boundary. However, it does not match the

zero initial condition at the option maturity since either of the two binary options always

expires in-the-money. Proposition III.7 provides a remedy to this problem by using the

image function to change the active domain of one of the two bond binaries while keeping

its value on the boundary unchanged.

Proposition III.7 (Pay-at-Maturity Bond Binary Valuation).

Let B̃(τ) = B̃(0)eγτ be an exponential boundary and let Ṽ (S, τ) satisfy

L
{
Ṽ
}

(S, τ) = 0 for (S, τ) ∈ D,

Ṽ (S, 0) = 0,

Ṽ
(
B̃(τ), τ)

)
= e−rτ for τ ∈ [0,∞),

where the active domain D ⊆ R2
+ is given by

D =
{

(S, τ) : ψS > ψB̃(τ), τ ∈ (0,∞)
}

and ψ ∈ {−1,+1} indicates an upper or lower boundary. Then

Ṽ (S, τ) = B−ψ
B̃(0)

(S, τ)+
B̃(0),γ,τ

I
{
Bψ
B̃(0)

(S, τ)
}
.

Proof First, note that by Lemma III.14 the trial solution Ũ(S, τ) given by

Ũ(S, τ) = B−ψ
B̃(0)

(S, τ) + Bψ
B̃(0)

(S, τ)

satisfies both the Black and Scholes (1973) PDE and the boundary condition. While the

payoff of the first bond binary is zero for ψS > ψB̃(0) and non-zero otherwise, that of

the second is non-zero on the active domain of the American bond binary. Thus Ũ(S, τ)

does not satisfy the initial condition and consequently also does not solve the problem

in Proposition III.7. However, by Properties (iii) and (iv) of Proposition III.2, it follows

that the image of the second bond binary has a zero payoff for ψS > ψB̃(0) and its value

on the boundary stays unchanged. Consequently, the function Ṽ (S, τ) as given in the

Proposition is a solution to the initial boundary value problem. Appendix III.C.1 presents

an alternative derivation. �
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Proposition III.10 not only solves the valuation problem in this section but also provides

the standard tool used to price more complex pay-at-maturity binary options in the

following sections.

III.7.2 Deferred Start Exponential Barrier Rebate

Similarly to Section III.6.2, before the barrier start date the deferred start rebate can

be valued as a binary option to receive a pay-at-maturity American bond binary at TS

conditional on ψSTS > ψB̃ (τ̂S). The option value Ṽ ds(S, τ) satisfies

L
{
Ṽ ds

}
(S, τ) = 0 for (S, τ) ∈ R+ × (τ̂S ,∞) ,

Ṽ ds (S, τ̂S) = Ṽ (S, τ̂S) 1
{
ψS > ψB̃ (τ̂S)

}
+ e−rτ̂S1

{
ψS < ψB̃ (τ̂S)

}
.

Note that compared to Section III.6.2, we have one additional term in the initial condition.

It accounts for the case when the barrier is violated immediately once it becomes active.

Using Corollary III.3 with Proposition III.7, we obtain the valuation function

Ṽ ds(S, τ) = B̃ψ−ψ
B̃(τ̂S)B̃(0)

(S, τS , τ) +
B̃(0),γ,τ

I
{
B̃−ψψ
B̃(τ̂S),B̃(0)

(S, τS , τ)
}

+e−rτ̂SB−ψ
B̃(τ̂S)

(S, τS) .

III.7.3 Piecewise Exponential Barrier Rebate

When the barrier is continuously monitored and given by a piecewise exponential

function as in Section III.6.3, then the option value Ṽ pe(S, τ) satisfies

L
{
Ṽ pe

}
(S, τ) = 0 for (S, τ) ∈ D,

Ṽ pe (S, τ̂B) = Ṽ (S, τ̂B) ,

Ṽ pe
(
B̃(τ), τ

)
= e−rτ for τ ∈ [τ̂B,∞) ,

where

D =
{

(S, τ) : ψS > ψB̃(τ), τ ∈ (τ̂B,∞)
}
.

Using Lemma III.11, we separately value the rebate before and after the bending change

date. The valuation problem Ṽ pe,1(S, τ) for the rebate before the bending change date
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alone is given by

L
{
Ṽ pe,1

}
(S, τ) = 0 for (S, τ) ∈ D,

Ṽ pe,1 (S, τ̂B) = 0,

Ṽ pe,1
(
B̃(τ), τ

)
= e−rτ for τ ∈ [τ̂B,∞) .

By Proposition III.7, it has the solution

Ṽ pe,1(S, τ) = B−ψ
B̃(τ̂B)

(S, τB) +
B̃(τ̂B),κ,τB
I

{
Bψ
B̃(τ̂B)

(S, τB)
}
.

The rebate after the bending change date can be valued as a knock-out barrier option to

receive a standard rebate on TB. The valuation function Ṽ pe,2(S, τ) satisfies the initial

boundary value problem

L
{
Ṽ pe,2

}
(S, τ) = 0 for (S, τ) ∈ D,

Ṽ pe,2 (S, τ̂B) = Ṽ (S, τ̂B) ,

Ṽ pe,2
(
B̃(τ), τ

)
= 0.

The solution to the full-range problem is the same as the one obtained for the deferred

start exponential barrier rebate when ignoring the term which accounts for an immediate

knock-out at the barrier start date. We thus have

Ṽ pe,2(S, τ) = Bψ−ψ
B̃(τ̂B)B̃(0)

(S, τB, τ) +
B̃(0),γ,τ

I
{
B−ψψ
B̃(τ̂B)B̃(0)

(S, τB, τ)
}

−
B̃(τ̂B),κ,τB
I

{
Bψ−ψ
B̃(τ̂B)B̃(0)

(S, τB, τ)
}

−
B̃(τ̂B),κ,τB
I

{ B̃(0),γ,τ

I
{
B−ψψ
B̃(τ̂B)B̃(0)

(S, τB, τ)
}}
.

Combining these two results yields

Ṽ pe(S, τ) = B−ψ
B̃(τ̂B)

(S, τB) +
B̃(τ̂B),κ,τB
I

{
Bψ
B̃(τ̂B)

(S, τB)
}

+Bψ−ψ
B̃(τ̂B)B̃(0)

(S, τB, τ) +
B̃(0),γ,τ

I
{
B−ψψ
B̃(τ̂B)B̃(0)

(S, τB, τ)
}

−
B̃(τ̂B),κ,τB
I

{
Bψ−ψ
B̃(τ̂B)B̃(0)

(S, τB, τ)
}

−
B̃(τ̂B),κ,τB
I

{ B̃(0),γ,τ

I
{
B−ψψ
B̃(τ̂B)B̃(0)

(S, τB, τ)
}}
.
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III.7.4 Deferred Start Piecewise Exponential Barrier Rebate

The auxiliary results from Sections III.7.1 through III.7.3 now allow us to value a

deferred start rebate with a continuous piecewise exponential barrier. The valuation

function Ṽ ds, pe(S, τ) satisfies

L
{
Ṽ ds,pe

}
(S, τ) = 0 for (S, τ) ∈ R+ × (τ̂S ,∞) ,

Ṽ ds,pe (S, τ̂S) = Ṽ pe (S, τ̂S) 1
{
ψS > ψB̃ (τ̂S)

}
+ e−rτ̂S1

{
ψS < ψB̃ (τ̂S)

}
.

Using Lemmata III.12 and III.13, we obtain its solution as

Ṽ ds,pe(S, τ) = Bψ−ψ
B̃(τ̂S)B̃(τ̂B)

(S, τS , τB) +
B̃(τ̂B),κ,τB
I

{
B−ψψ
ζ1B̃(τ̂B)

(S, τS , τB)
}

+Bψψ−ψ
B̃(τ̂S)B̃(τ̂B)B̃(0)

(S, τS , τB, τ) +
B̃(0),γ,τ

I
{
B−ψ−ψψ
ζ2B̃(τ̂B)B̃(0)

(S, τS , τB, τ)
}

−
B̃(τ̂B),κ,τB
I

{
B−ψψ−ψ
ζ1B̃(τ̂B)B̃(0)

(S, τS , τB, τ)
}

−
B̃(τ̂B),κ,τB
I

{ B̃(0),γ,τ

I
{
Bψ−ψψ
ζ3B̃(τ̂B)B̃(0)

(S, τS , τB, τ)
}}

+e−rτ̂SB−ψ
B̃(τ̂S)

(S, τS) ,

where ζ1, ζ2 and ζ3 are as in Section III.6.4.

III.8 Rebate Pricing: Payout at Hit

Finally, we discuss the valuation of fixed rebates that are paid immediately upon the

first hitting time of the barrier. We once more assume w.l.o.g. that the rebate is equal to

one currency unit.

III.8.1 Exponential Barrier Rebate

Let ν be again the first hitting time of the asset to the exponential boundary B̃(τ) as

in Section III.6.1. Since the rebate is paid upon the first hitting time, it follows by the

risk-neutral pricing formula that its value is equal to the expected discount factor, that is

V0 = EP∗
[
e−rν1{ν ≤ T}

]
.
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The following Lemma uses Corollary III.1 to reduce the valuation problem to the well

known case of a constant barrier.

Lemma III.15 (Equivalent Constant Barrier Valuation Problem).

Let B̃(τ) be an exponential boundary where τ = T − t for some time T ∈ [0, T ∗] and

let the dynamics of the spot asset S = {St : t ∈ [0, T ∗]} under the risk-neutral probability

measure P∗ and the first hitting time ν of S to the barrier B̃(τ) be as in Lemma III.2. Set

B̂ = B̃(T ) and let the dynamics of a second spot asset Ŝ =
{
Ŝt : t ∈ [0, T ∗]

}
under P∗ be

given by

dŜt = (r − δ + γ) Ŝtdt+ σŜtdW
∗
t .

with initial value Ŝ0 = S0. The first hitting time ν̂ of Ŝ to the barrier B̂ on the interval

[0, T ] is defined as

ν̂ = inf
{
t ∈ [0, T ] : Ŝt = B̂

}
,

where we set ν̂ =∞ on the set where this event occurs after T or never. Then

ν = ν̂ P∗-a.s.

and consequently

EP∗
[
e−rν1{ν ≤ T}

]
= EP∗

[
e−rν̂1 {ν̂ ≤ T}

]
.

Proof From Lemma III.2 and Corollary III.1, it follows immediately that ν ∼P∗ ν̂, where

∼P∗ denotes equality in distribution under P∗. This is sufficient for the two expectations in

the Lemma to be equal. Although not necessary for our purposes, equality almost surely

can be shown by expressing St = B̃(T − t) and Ŝt = B̂ in terms of the Brownian motion

W ∗ analogous to the proof of Lemma III.2 in Appendix III.A.1. �

Note that since S is a Markov process with time-homogeneous increments, we obtain a

similar result when conditioning on the sigma algebra Ft and defining ν̂ to be the first

hitting time of the asset S to the constant the barrier B̂ = B̃(T − t). Lemma III.15

corresponds to the special case where t = 0. Next, we formally setup the valuation

problem in this section.
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Definition III.8 (Pay-at-Hit Bond Binary Valuation Problem).

Let B̃(τ) = B̃(0)eγτ be an exponential boundary. Ṽ (S, τ) is an exponential barrier pay-

at-hit bond binary valuation problem if it satisfies

L
{
Ṽ
}

(S, τ) = 0 for (S, τ) ∈ D,

Ṽ (S, 0) = 0,

Ṽ
(
B̃(τ), τ)

)
= 1 for τ ∈ [0,∞),

where the active domain D ⊆ R2
+ is given by

D =
{

(S, τ) : ψS > ψB̃(τ), τ ∈ (0,∞)
}

and ψ ∈ {−1,+1} indicates an upper or lower boundary. 4

As a consequence of Lemma III.15, we can use the well-known formula for perpetual

American binary options on dividend paying stocks as a component to value the

exponential barrier rebate; see for example Chapter 9 in Wilmott (2006), pp. 151–168.

Lemma III.16 provides the corresponding result.

Lemma III.16 (Decomposition of the Valuation Problem).

Let Ṽ (S, τ) satisfy an exponential barrier pay-at-hit bond binary valuation problem. Then

its solution can be decomposed as

Ṽ (S, τ) = Uψ
B̃(τ)

(S)− Ṽ 1(S, τ).

Here, Uψξ
(
Ŝ
)

is the valuation function of a constant barrier perpetual American bond

binary on the asset Ŝ with dividend yield δ − γ defined in Lemma III.15 and strike price

ξ. It is given by

Uψξ
(
Ŝ
)

=

(
Ŝ

ξ

)β(−ψ)

,

where

β(ψ) = α+ ψσ2
√
λ+ α2,

α =
1

2
− r − δ + γ

σ2
,

λ =
2r

σ2
.
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In particular, α is the same expression as the one given in Definition III.5 for the image

operator. Ṽ 1
(
Ŝ, τ

)
is a contingent claim on the asset Ŝ, which satisfies for τ∗ ∈ [0, τ ]

L
{
Ṽ 1
}(
Ŝ, τ∗

)
= 0 for

(
Ŝ, τ∗

)
∈ D,

Ṽ 1
(
Ŝ, 0

)
= Uψ

B̃(τ)

(
Ŝ
)
,

Ṽ 1
(
B̃(τ), τ∗

)
= 0 for τ∗ ∈ [0, τ ],

where

D =
{(
Ŝ, τ∗

)
: ψŜ > ψB̃(τ), τ∗ ∈ (0, τ ]

}
.

Proof Using Lemma III.15, we first construct the equivalent constant barrier valuation

problem. A finite maturity American bond binary then corresponds to initially taking a

long position in the otherwise identical perpetual claim and closing it out at the maturity

given that the constant barrier B̃(τ) has not been breached by any spot price Ŝτ∗ over

the interval τ∗ ∈ [0, τ ]. See Appendix III.D.1 for details on the decomposition. For

completeness, Appendix III.D.2 derives the valuation functions for perpetual American

bond binaries. �

Remark. Note that all valuation functions in Section III.8, such as Uψξ
(
Ŝ
)

and Ṽ 1
(
Ŝ, τ

)
,

correspond to the auxiliary asset Ŝ with a modified dividend yield. We make this explicit

in their definition. When using them to value the pay-at-hit bond binary, we evaluate

them at the current price of the asset S since the auxiliary asset Ŝ is constructed such

that their initial values agree; see Lemma III.15 and the discussion following it.

Also note that for consistency with our previous notation, we use the unusual convention

that ψ = +1 (ψ = −1) corresponds to a perpetual American call (put) bond binary. The

valuation function Ṽ 1
(
Ŝ, τ

)
in Lemma III.16 can be computed using Proposition III.1. As

an intermediate step, we need to obtain the solution for the corresponding full-range

problem. However, the terminal payoff is neither a standard bond nor an standard

asset binary. Instead, it can be regarded as the multiple of a power binary on the

asset Ŝ. In Sections III.8.2 through III.8.4, when considering deferred start and/or

piecewise exponential barriers, we also need to be able to price higher-order power binaries.

Definition III.9 and Proposition III.8 formalize this and provide the corresponding
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valuation functions. It should be noted that various definitions of power options can

be found in the literature. A standard reference is Heynen and Kat (1996), who obtain

solutions for first-order power binaries and use them as building blocks for more complex

power and parabola options.

Definition III.9 (n-th Order Power Binaries).

Let s, ξ and T be as in Definition III.6. The n-th power binary P with exponent η on the

asset S has the time Tn payoff

ηPsξ (ST , Tn) = SηTn1n {diag(s)ST > diag(s)ξ} . 4

Proposition III.8 (Valuation of n-th Order Power Binaries).

The time 0 ≤ t ≤ T1 value of the n-th order power binary is given by

ηPsξ (S, t) = Sη exp

{(
(η − 1)

(
r +

1

2
ησ2

)
− ηδ

)
τn

}
Nn (diag(s)dη;C) .

Here, dη = (dη,1, dη,2, . . . , dη,n)′ ∈ Rn is a n-dimensional column vector defined by

dη,i =
ln (S/ξi) +

(
r − δ +

(
η − 1

2

)
σ2
)
τi

σ
√
τi

,

where τi = Ti − t is the i-th time-to-maturity and the correlation matrix C is as in

Proposition III.4.

Proof Just like Proposition III.4, this result is a special case of the generalized M binary

valuation equation given in Theorem 1 in Skipper and Buchen (2003), pp. 10–12, when

there is only a single underlying asset. �

Note that the bond and asset binaries in Definition III.6 can be considered special cases

of power binaries when η = 0 and η = 1 respectively, that is Bsξ(S, τ) = 0Psξ (S, τ) and

Asξ(S, τ) = 1Psξ (S, τ). We choose to only introduce power binaries at this point, since they

are less common in the literature and only required in their full generality to value pay-

at-hit rebates.
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Proposition III.9 (Delta of n-th Order Power Binaries).

Let αη = diag(s)dη. The time 0 ≤ t ≤ T1 first-order asset price sensitivity of the n-th

order power binary is given by

∂ηPsξ
∂S

(S, t) = Sη−1 exp

{(
(η − 1)

(
r +

1

2
ησ2

)
− ηδ

)
τ

}(
Nn (αη;C)

+
n∑
i=1

si
σ
√
τi
N ′ (αη,i)Nn−1

(
α̂η,i; Ĉi

))
,

where α̂η,i and Ĉi are defined analogous to Proposition III.5.

Proof The proof is fully analogous to that of Proposition III.5 and thus omitted. �

After laying the groundwork, we can now state the main result of this section.

Proposition III.10 (Pay-at-Hit Bond Binary Valuation).

Let Ṽ (S, τ) satisfy an exponential barrier pay-at-hit bond binary valuation problem. Then

its solution is given by

Ṽ (S, τ) = Uψ
B̃(τ)

(S)− B̃−β(−ψ)(τ)
(
β(−ψ)Pψ

B̃(τ)
(S, τ)−

B̃(τ),0,τ

I
{
β(−ψ)Pψ

B̃(τ)
(S, τ)

})
=

(
S

B̃(τ)

)β(−ψ)

N
(
−ψdβ(−ψ)

)
+

(
S

B̃(τ)

)β(ψ)

N
(
−ψdβ(ψ)

)
,

where all contingent claims are on the asset Ŝ with dividend yield δ − γ defined in

Lemma III.15, β(ψ), α and λ are as in Lemma III.16 and

dβ(ψ) =
ln
(
S/B̃(τ)

)
+ ψσ2

√
λ+ α2τ

σ
√
τ

.

Proof We use Definition III.9 to express the valuation function for the full-range problem

V 1
B̃(τ)

(
Ŝ, τ

)
corresponding to V 1

(
Ŝ, τ

)
in Lemma III.16 in terms of a power binary

whose value is given by Proposition III.8. The valuation function for V 1
(
Ŝ, τ

)
then

follows by the method of images; see Proposition III.1. Finally, the value of the

exponential barrier pay-at-hit bond binary follows from Lemma III.16. To obtain the

second expression, we substitute for the option values and combine terms. All details are

given in Appendix III.D.3. �
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The constant barrier pay-at-hit bond binary valuation function in Proposition III.10 is

well-known; see for example Reiner and Rubinstein (1991a). Thus, if our sole interest lies

in pricing exponential barrier pay-at-hit bond binaries, then we could resort to these results

after establishing the equivalent constant barrier valuation problem in Lemma III.15.

However, they are usually obtained by an explicit integration over the first hitting time

PDF in Lemma III.2. While this approach has to yield the same final solution, it does not

immediately reveal the underlying structure in terms of perpetual American and power

binaries and their respective images. Yet it is this decomposition that, together with the

valuation formula for higher-order power binaries in Proposition III.8, allows us to solve

the deferred start and/or piecewise exponential barrier valuation problems in the following

sections.

III.8.2 Deferred Start Exponential Barrier Rebate

The option value Ṽ ds(S, τ) satisfies

L
{
Ṽ ds

}
(S, τ) = 0 for (S, τ) ∈ R+ × (τ̂S ,∞) ,

Ṽ ds (S, τ̂S) = Ṽ (S, τ̂S) 1
{
ψS > ψB̃ (τ̂S)

}
+ 1
{
ψS < ψB̃ (τ̂S)

}
.

Compared to Section III.7.1, a violation of the barrier at the beginning of the monitoring

period now leads to an immediate unit payoff. Using Corollary III.3 together with

Proposition III.10 yields

Ṽ ds(S, τ) = B̃−β(−ψ) (τ̂S)
(
β(−ψ)Pψ

B̃(τ̂S)

(
Se−γτS , τS

)
−β(−ψ)Pψψ

B̃(τ̂S)B̃(τ̂S)

(
Se−γτS , τS , τ

)
+

B̃(τ̂S),0,τ

I
{
β(−ψ)P−ψψ

B̃(τ̂S)B̃(τ̂S)

(
Se−γτS , τS , τ

)})
+ B−ψ

B̃(τ̂S)

(
Se−γτS , τS

)
,

where again all contingent claims are on the asset Ŝ with dividend yield δ − γ defined in

Lemma III.15. Adjusting the initial spot price is necessary to obtain the correct underlying

asset prices at the barrier start date. While the logarithmic returns of the actual underlying

S have a risk-neutral drift of r− δ− 1
2σ

2, those of the asset Ŝ that we use for pricing have

a risk-neutral drift of r− δ+γ− 1
2σ

2; that is for a positive (negative) value of the bending

coefficient γ, the drift of Ŝ is too high (low) and we compensate by adjusting the initial

value downwards (upwards).
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III.8.3 Piecewise Exponential Barrier Rebate

When the barrier is continuously monitored and given by a piecewise exponential

function as in Section III.6.3, then the option value Ṽ pe(S, τ) satisfies

L
{
Ṽ pe

}
(S, τ) = 0 for (S, τ) ∈ D,

Ṽ pe (S, τ̂B) = Ṽ (S, τ̂B) ,

Ṽ pe
(
B̃(τ), τ

)
= 1 for τ ∈ [τ̂B,∞) ,

where

D =
{

(S, τ) : ψS > ψB̃(τ), τ ∈ (τ̂B,∞)
}
.

Analogously to Section III.7.3, we use Lemma III.11 to separately value the rebate before

and after the bending change date. The valuation problem Ṽ pe,1(S, τ) for the rebate before

the bending change date alone is given by

L
{
Ṽ pe,1

}
(S, τ) = 0 for (S, τ) ∈ D,

Ṽ pe,1 (S, τ̂B) = 0,

Ṽ pe,1
(
B̃(τ), τ

)
= 1 for τ ∈ [τ̂B,∞) .

By Proposition III.10 it has the solution

Ṽ pe,1(S, τ) = Uψ
B̃(τ)

(S;κ)− B̃−β(−ψ;κ)(τ)
(
β(−ψ;κ)Pψ

B̃(τ)
(S, τB;κ)

−
B̃(τ),0,τB
I

{
β(−ψ;κ)Pψ

B̃(τ)
(S, τB;κ)

})
.

Here, we augmented the notation to make it explicit that the bending parameter κ is used

in the computation of the perpetual American bond binary Uψξ (S;κ), the function β(ψ;κ)

and the power binaries ηPsξ (S, τ ;κ). That is, the drift of the underlying asset Ŝ is given

by δ − κ. This distinction was not necessary in Sections III.8.1 and III.8.2. We choose

to only introduce it at this point to not distract from the main problems when deriving

the key result in Proposition III.10. The valuation function Ṽ pe,2 for the rebate after the

bending change date satisfies the initial boundary value problem

L
{
Ṽ pe,2

}
(S, τ) = 0 for (S, τ) ∈ D,

Ṽ pe,2 (S, τ̂B) = Ṽ (S, τ̂B) ,

Ṽ pe,2
(
B̃(τ), τ

)
= 0.
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Analogous to Section III.7.3, the solution to the corresponding full-range problem

Ṽ pe,2

B̃(τ̂B),κ
(S, τ) was obtained as an auxiliary result when valuing the deferred start

exponential rebate in Section III.8.2. Using Proposition III.1, we thus obtain

Ṽ pe,2(S, τ) = B̃−β(−ψ;γ) (τ̂B)
(
β(−ψ;γ)Pψ

B̃(τ̂B)

(
Se−γτB , τB; γ

)
−β(−ψ;γ)Pψψ

B̃(τ̂B)B̃(τ̂B)

(
Se−γτB , τB, τ ; γ

)
+

B̃(τ̂B),0,τ

I
{
β(−ψ;γ)P−ψψ

B̃(τ̂B)B̃(τ̂B)

(
Se−γτB , τB, τ ; γ

)}
−

B̃(τ̂B),κ,τB
I

{
β(−ψ;γ)Pψ

B̃(τ̂B)

(
Se−γτB , τB; γ

)}
+

B̃(τ̂B),κ,τB
I

{
β(−ψ;γ)Pψψ

B̃(τ̂B)B̃(τ̂B)

(
Se−γτB , τB, τ ; γ

)}
−

B̃(τ̂B),κ,τB
I

{ B̃(τ̂B),0,τ

I
{
β(−ψ;γ)P−ψψ

B̃(τ̂B)B̃(τ̂B)

(
Se−γτB , τB, τ ; γ

)}})
.

Combining these two results yields

Ṽ pe(S, τ) = Uψ
B̃(τ)

(S;κ)− B̃−β(−ψ;κ)(τ)
(
β(−ψ;κ)Pψ

B̃(τ)
(S, τB;κ)

−
B̃(τ),0,τB
I

{
β(−ψ;κ)Pψ

B̃(τ)
(S, τB;κ)

})
+B̃−β(−ψ;γ) (τ̂B)

(
β(−ψ;γ)Pψ

B̃(τ̂B)

(
Se−γτB , τB; γ

)
−β(−ψ;γ)Pψψ

B̃(τ̂B)B̃(τ̂B)

(
Se−γτB , τB, τ ; γ

)
+

B̃(τ̂B),0,τ

I
{
β(−ψ;γ)P−ψψ

B̃(τ̂B)B̃(τ̂B)

(
Se−γτB , τB, τ ; γ

)}
−

B̃(τ̂B),κ,τB
I

{
β(−ψ;γ)Pψ

B̃(τ̂B)

(
Se−γτB , τB; γ

)}
+

B̃(τ̂B),κ,τB
I

{
β(−ψ;γ)Pψψ

B̃(τ̂B)B̃(τ̂B)

(
Se−γτB , τB, τ ; γ

)}
−

B̃(τ̂B),κ,τB
I

{ B̃(τ̂B),0,τ

I
{
β(−ψ;γ)P−ψψ

B̃(τ̂B)B̃(τ̂B)

(
Se−γτB , τB, τ ; γ

)}})
.

III.8.4 Deferred Start Piecewise Exponential Barrier Rebate

Finally, we consider the valuation of the pay-at-hit rebate linked to a deferred start

piecewise exponential barrier option. Its valuation function Ṽ ds,pe(S, τ) satisfies

L
{
Ṽ ds,pe

}
(S, τ) = 0 for (S, τ) ∈ R+ × (τ̂S ,∞) ,

Ṽ ds,pe (S, τ̂S) = Ṽ pe (S, τ̂S) 1
{
ψS > ψB̃ (τ̂S)

}
+ 1
{
ψS < ψB̃ (τ̂S)

}
.
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Using the results from Sections III.8.1 through III.8.3 in combination with Lemma III.13,

we obtain

Ṽ ds,pe(S, τ) = B̃−β(−ψ;κ) (τ̂S)
(
β(−ψ;κ)Pψ

B̃(τ̂S)

(
Se−κτS , τS ;κ

)
−β(−ψ;κ)Pψψ

B̃(τ̂S)B̃(τ̂S)

(
Se−κτS , τS , τB;κ

)
+

B̃(τ̂S),0,τB
I

{
β(−ψ;κ)P−ψψ

B̃(τ̂S)B̃(τ̂S)

(
Se−κτS , τS , τB;κ

)})
+B̃−β(−ψ;γ) (τ̂B)

(
β(−ψ;γ)Pψψ

ζ1B̃(τ̂B)

(
Se−γτB , τS , τB; γ

)
−β(−ψ;γ)Pψψψ

ζ1B̃(τ̂B)B̃(τ̂B)

(
S−γτB , τS , τB, τ ; γ

)
+

B̃(τ̂B),0,τ

I
{
β(−ψ;γ)P−ψ−ψψ

ζ2B̃(τ̂B)B̃(τ̂B)

(
Se−γτB , τS , τB, τ ; γ

)}
−

B̃(τ̂B),κ,τB
I

{
β(−ψ;γ)P−ψψ

ζ1B̃(τ̂B)

(
Se−γτB , τS , τB; γ

)}
+

B̃(τ̂B),κ,τB
I

{
β(−ψ;γ)P−ψψψ

ζ1B̃(τ̂B)B̃(τ̂B)

(
Se−γτB , τS , τ ; γ

)}
−

B̃(τ̂B),κ,τB
I

{ B̃(τ̂B),0,τ

I
{
β(−ψ;γ)Pψ−ψψ

ζ3B̃(τ̂B)B̃(τ̂B)

(
Se−γτB , τS , τB, τ ; γ

)}}
+B̃−ψ

B̃(τ̂S)
(S, τS ; 0) ,

where

ζ1 = B̃ (τ̂S) eγ(τ̂B−τ̂S),

ζ2 = B̃ (τ̂B) e(κ−γ)(τ̂B−τ̂S),

ζ3 = B̃ (τ̂B) e(κ−γ)(τ̂B−τ̂S).

Here, we have carefully adjusted the newly added barrier level B̃ (τ̂S) to account for the

shifted initial stock prices as well as the image functions; see Appendix III.D.4 for details.

III.9 Numerical Examples

This section analyzes the distribution of the delta hedging error for short positions

knock-out barrier options when the actual underlying dynamics follow a Merton (1976)

jump-diffusion process. We show through Monte Carlo simulations that for a fixed initial

option price, an exponential bending of the barrier towards the option maturity yields a

more robust hedge as opposed to a constant barrier shift. This manifests in lower values
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for the standard deviation, absolute skewness and excess kurtosis of the hedging error.

The mean does not depend on the chosen functional form of the barrier shift.

Following Merton (1976), we assume that the logarithmic returns X =

{Xt : t ∈ [0, T ∗]} follow a jump-diffusion process with normally distributed jumps. The

P∗-dynamics of X are given by

Xt =

(
r − δ − 1

2
σ2 − λ (φ∗Y (−i)− 1)

)
t+ σWt +

Nt∑
i=1

Yi,

where N = {Nt : t ∈ [0, T ∗]} is a one-dimensional Poisson process with constant intensity

λ ∈ R+ and (Yi)i∈N is a sequence of independent identically distributed N
(
α, β2

)
normal

random variables. The characteristic function φ∗Y (ω) of the jump size distribution under

P∗ is given by

φ∗Y (ω) = exp

{
iωα− 1

2
ω2β2

}
.

The compound Poisson process introduces non-normal higher moments to the logarithmic

return process. In particular, a non-zero mean jump size α induces a skewness with

the same sign and a non-zero jump volatility β induces positive excess kurtosis. These

deviations vanish asymptotically as the time horizon becomes large due to the Lindeberg-

Lévy central limit theorem. As discussed in Section III.2.1, a non-normal logarithmic

return distribution generates a strike dependent IVS. Figure III.11 shows a set of sample

IVSs induced by Merton (1976) for a parameter vector that is typical for well-diversified

stock indices. The x-axis denotes the scaled moneyness ln (K/S0) /
√
T in order to facilitate

the comparison of different maturities. In accordance with the term-structure of the higher

moments, the IVS is strongly convex for short maturities and flattens out for longer times-

to-expiration.

In Section III.3, we argue that an exponential bending of the barrier close to the option

maturity reflects the time-dependent nature of the jump risk exposure that the hedger of

a short position in a knock-out barrier option is exposed to. This hypothesis is evaluated

through a Monte Carlo simulation study. Let Π = {t0, t1, t2, . . .} be an equally spaced

time grid with t0 = 0, ti− ti−1 = ∆t for all i ∈ N and ∆t = 1/252. The same set of model

parameters as in Figure III.11 is used to generate 100,000 sample paths of the risky asset

on Π. We refer to for example Section 6.1 in Cont and Tankov (2004), pp. 172–178, and

Section 3.5.1 in Glasserman (2003), pp. 134–142, for a discussion on efficient simulation

approaches. For each knock-out barrier option and sample path, we compute the profit &

loss from a self-financing pure delta hedging strategy that is re-adjusted once daily. Let
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Figure III.11: Sample IVS in the Merton (1976) jump-diffusion model. The model

parameters are S0 = 100.00 USD, r = 5.00%, δ = 0.00%, σ = 10.00%, λ = 15.00,

α = −0.50% and β = 2.50%.

θB =
{
θBt : t ∈ [0, T ∗]

}
and θS =

{
θSt : t ∈ [0, T ∗]

}
be the positions in the money market

account and the risky asset, respectively. The value process P = {Pt : t ∈ [0, T ∗]} of the

hedge portfolio is then given by

Pt = θBt Bt + θSt St,

where P0 = V (S0, 0) is the initial value of the contingent claim. The portfolio weights

satisfy

θSt =


∂V/∂S (Sti , ti) if ν > ti

0 otherwise

∀t ∈ [ti, ti+1) ,

θBt =
Pti − θStiSti

Bti
∀t ∈ [ti, ti+1) ,

where the first hitting time ν of the asset S to the constant barrier B on the grid Π is

defined as

ν = min {i ∈ N0 : ψSti ≤ ψB} .

Finally, the hedging error is given by

E = PT − V (ST , T ) .
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Note that the portfolio process is constructed such that the delta hedge position in

unwound upon the knock-out event. The money market account position also stays

unchanged until the contractual option maturity while the portfolio values are compounded

at the risk-free interest rate. This ensures that the hedging error always corresponds to

a value as of the contractual maturity date and can thus be compared across different

sample paths.

Figure III.12 shows the first four simulated moments of the hedging error for a down

& out put option with a maturity of one year and a barrier equal to 85% of the initial

spot price. We compare the profit & loss of using a constant barrier shift between −0.50%

and −2.00% to that of a barrier which is first constant at −0.50% and then exponentially

bends to levels between −0.50% and −3.00% over the last three months before maturity.

We consider one functional form of the barrier shift to yield more stable hedges than

another one, if the absolute higher moments of its hedging errors are lower conditional on

the same initial option price. To facilitate the comparison between the constant barrier

shift and the exponential bending approaches, we thus plot the simulated moments as a

function of the corresponding fair values. To account for the noise in the observations, we

fit second order polynomials through each set of data points.

Figure III.12.a demonstrates that for any fixed initial option price, the mean hedging

error does not depend on the functional form of the barrier. This is not surprising since our

simulation is carried out under the risk-neutral probability measure, where the expected

return using any admissible trading strategy is the same and equal to the risk-free interest

rate.

Figures III.12.b through III.12.d provide strong support for our hypothesis that an

exponential bending of the barrier close to maturity yields most robust hedges. As shown

in Figure III.12.b shows that the volatility of the hedging error is consistently lower, with

the difference being more pronounced for higher initial option prices. The reason is that

large parallel barrier shifts yield a high expected windfall profit when the barrier option

is knocked-out relatively early after inception. This in accordance with our reasoning

in Section III.3. It also explains the large positive skewness of parallel barrier shift in

Figure III.12.c. Finally, Figure III.12.d shows that the excess kurtosis is consistently lower

under the exponentially bent barrier. This can be explained by fewer large and positive

(negative) hedging errors for long (short) times-to-maturity. That is, the number of both
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Figure III.12: Simulated moments of the delta hedging error for a down & out

put when the actual spot price dynamics follow a Merton (1976) jump-diffusion

process. The stars correspond to a constant barrier shift between −0.50% and

−2.00%. The circles correspond to a barrier which is first constant at −0.50%

and then exponentially bends to levels between −0.50% and −3.00% over the

last three months before maturity. The simulation is based on 100,000 paths and

daily re-balancing. The common contract and market parameters are T = 1.00,

K = 100.00 USD, B = 85.00 USD and S0 = 100.00 USD. The parameters of the

jump-diffusion process are as in Figure III.11.
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large windfall profits and large losses induced through jumps that breach the barrier is

reduced.

We emphasize that the parameters of the exponential bending function used in

this example are not optimally chosen. In Section III.3.3, we characterize the optimal

parameter vector as the one that minimizes the variance of the hedging error conditional

on a fixed mean profit & loss. In Figure III.12 however, we fix the initial barrier shift

as well as the bending start time and only vary the final barrier shift. Consequently, an

optimal choice of the full parameter vector would further improve the robustness of the

delta hedges. Finding a computationally feasible solution to this problem is a topic of

future research.

III.10 Conclusion

We develop a unified approach to a volatility smile adjusted pricing and more robust

risk management of barrier options within the Black and Scholes (1973) framework.

Closed-form solutions for deferred start barrier options and the corresponding rebates are

obtained. In the first part of this chapter, we propose to model the barrier shift through

a functional form that mimics the time-dependent risk exposure faced by the hedger of

a short position in a knock-out barrier option. The option price is further adjusted to

account for the distributional information embedded in the market implied volatilities.

This yields a valuation problem in terms of a piecewise exponential barrier. The second

part of this chapter derives closed-form solutions for these contingent claims using the

method of images. The corresponding valuation equations can be expressed in terms of

higher-order power binaries. Their computational implementation is straightforward and

numerically stable. Finally, we confirm through hedging simulations that our proposed

piecewise exponential barrier shift indeed reduces the absolute higher moments of the

profit & loss distribution thus yielding more robust hedges.

Future research could further investigate the link between the exponentially bent

barrier approach proposed in this chapter and the leverage constraint replication portfolio

analyzed by Schmock et al. (2001, 2002), as briefly discussed in Section III.3.5. Fur-

thermore, this chapter characterizes the problem of optimally choosing the parameters

of the exponentially bent barriers in Section III.3.3 and gives examples in Section III.9.
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However, it remains a topic of future research to find a computationally feasible solution

to the optimization problem and analyze its properties.
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III.A Appendix for Section III.2

III.A.1 First Hitting Time PDF

This appendix contains the detailed proof of Lemma III.2. First, from Definition III.1

and the solution to the SDE for S, it immediately follows that St = B̃(T − t) when

W ∗t +
1

σ

(
r − δ + ξ − 1

2
σ2

)
t =

1

σ

(
ln

(
B̃(0)

S0

)
+ ξT

)

Now let

λ =
1

σ

(
r − δ + ξ − 1

2
σ2

)
and define a new probability measure P̂ equivalent to P∗ on [0, T ∗] by

dP̂
dP∗

= ET ∗

(
−
∫ ·

0
λdW ∗u

)
P∗-a.s.,

where E is the Doléans-Dade exponential martingale. The corresponding Radon-Nikodým

derivative process ξ
(
P∗, P̂

)
=
{
ξt
(
P∗, P̂

)
: t ∈ [0, T ∗]

}
is given by

ξt
(
P∗, P̂

)
=

dP̂
dP∗

∣∣∣∣∣Ft = Et
(
−
∫ ·

0
λdW ∗u

)
P∗-a.s..

It follows by Girsanov’s theorem that the process Ŵ =
{
Ŵt : t ∈ [0, T ∗]

}
defined by

Ŵt = W ∗t + λt ∀t ∈ [0, T ∗]

is a one-dimensional standard Brownian motion under P̂; see for example Theorem III.5.1

in Karatzas and Shreve (1991), p. 191. Next, by the reflection principle for Brownian

motion, the first passage time PDF of Ŵ to a level α is given by

P̂{ν ∈ dt} =
|α|

t
√

2πt
exp

{
−α

2

2t

}
dt;

see for example Equation (II.6.3) in Karatzas and Shreve (1991), p. 80. The corresponding

probability under P∗ can then be computed through a change of measure. Using the

abstract Bayes rule, see for example Lemma A.1.4 in Musiela and Rutkowski (2005), p.
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615, we get

P∗{ν ∈ dt} = EP∗ [1{ν ∈ dt}]

= EP̂

[
ξ−1
t

(
P∗, P̂

)
1{ν ∈ dt}

]
= EP̂

[
exp

{
λŴt −

1

2
λ2t

}
1{ν ∈ dt}

]
.

Now, when ν = t, then Ŵt = α and thus

P∗{ν ∈ dt} = exp

{
λα− 1

2
λ2t

}
P̂{τ ∈ dt}.

=
|α|

t
√

2πt
exp

{
−(α− λt)2

2t

}
dt.

III.B Appendix for Section III.4

III.B.1 General Properties of the Image Operator

This appendix contains the detailed proof of Proposition III.2.

(i) We have

B̃(0),γ,τ

I
{ B̃(0),γ,τ

I
{
Ṽ (S, τ)

}}
=

B̃(0),γ,τ

I
{(

S

B̃(0)eγτ

)2α

Ṽ

(
B̃2(0)e2γτ

S
, τ

)}

=

(
S

B̃(0)eγτ

)2α
(
B̃(0)eγτ

S

)2α

Ṽ (S, τ)

= Ṽ (S, τ).

(ii) We have

B̃(0),γ,τ

I
{
aŨ(S, τ) + bṼ (S, τ)

}
=

(
S

B̃(0)eγτ

)2α
(
aŨ

(
B̃2(0)e2γτ

S
, τ

)
+ bṼ

(
B̃2(0)e2γτ

S
, τ

))

= a

(
S

B̃(0)eγτ

)2α

Ũ

(
B̃2(0)e2γτ

S
, τ

)
+ b

(
S

B̃(0)eγτ

)2α

Ṽ

(
B̃2(0)e2γτ

S
, τ

)

= a
B̃(0),γ,τ

I
{
Ũ(S, τ)

}
+ b

B̃(0),γ,τ

I
{
Ṽ (S, τ)

}
.
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(iii) The partial derivatives of the image of Ṽ (S, τ) are given by

∂

∂τ

B̃(0),γ,τ

I
{
Ṽ (S, τ)

}
=

(
S

B̃(0)eγτ

)2α
(
−2αγṼ

(
B̃2(0)e2γτ

S
, τ

)
+ 2γ

B̃2(0)e2γτ

S

∂Ṽ

∂S

(
B̃2(0)e2γτ

S
, τ

)

+
∂Ṽ

∂τ

(
B̃2(0)e2γτ

S
, τ

))
,

∂

∂S

B̃(0),γ,τ

I
{
Ṽ (S, τ)

}
=

(
S

B̃(0)eγτ

)2α
(

2α

S
Ṽ

(
B̃2(0)e2γτ

S
, τ

)
− B̃2(0)e2γτ

S2

∂Ṽ

∂S

(
B̃2(0)e2γτ

S
τ

))
.

and

∂2

∂S2

B̃(0),γ,τ

I
{
Ṽ (S, τ)

}
=

(
S

B̃(0)eγτ

)2α
(

2α(2α− 1)

S2
Ṽ

(
B̃2(0)e2γτ

S
, τ

)

+
2(1− 2α)B̃2(0)e2γτ

S3

∂Ṽ

∂S

(
B̃2(0)e2γτ

S
, τ

)
+
B̃4(0)e4γτ

S4

∂2Ṽ

∂S2

(
B̃2(0)e2γτ

S
, τ

))
.

We have after some simplifications

− ∂

∂τ

B̃(0),γ,τ

I
{
Ṽ (S, τ)

}
+ (r − δ)S ∂

∂S

B̃(0),γ,τ

I
{
Ṽ (S, τ)

}
+

1

2
σ2 ∂2

∂S2

B̃(0),γ,τ

I
{
Ṽ (S, τ)

}
− r

B̃(0),γ,τ

I
{
Ṽ (S, τ)

}
=

(
S

B̃(0)eγτ

)2α
{
−∂Ṽ
∂τ

(
B̃2(0)e2γτ

S
, τ

)
+ (r − δ)B̃

2(0)e2γτ

S

∂Ṽ

∂S

(
B̃2(0)e2γτ

S
, τ

)

+
1

2
σ2 B̃

4(0)e4γτ

S2

∂2Ṽ

∂S2

(
B̃2(0)e2γτ

S
, τ

)
− rṼ

(
B̃2(0)e2γτ

S
, τ

)}

and the claim follows.

(iv) Applying the change of variables in Lemma III.6 with ξ = −γ yields the initial

boundary value problem

H{u}(x, τ) = 0 for (x, τ) ∈ D̂,

u(x, 0) = f̂(x),

u(b, τ) = 0 for τ ∈ [0,∞),
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where f̂(x) is as in Lemma III.6 and

b = ln
(
B̃(0)

)
,

D̂ = {(x, τ) : ψx > ψb, τ ∈ (0,∞)} .

By the symmetry property of the heat transfer equation, the solution of any initial

boundary value problem and its reflection agree on the boundary. Reversing the

change of variables yields the result in the original coordinates and for the exponential

boundary.

III.B.2 Joint Density of St and {τ > t} Part I

This appendix contains the detailed proof of Lemma III.10. To keep the notation simple,

we only explicitly discuss the case of an upper barrier. The steps for a lower barrier

are fully analogous. We first start by computing P∗ {St ≤ x, ν ≤ t} as this allows for

the application of the reflection principle for Brownian motion. Similar to the proof of

Lemma III.2 in Appendix III.A.1, we express the condition ν ≤ t in terms of the Brownian

motion W ∗ as

max
u∈[0,t]

{
W ∗u +

1

σ

(
r − δ + γ − 1

2
σ2

)
u

}
≥ 1

σ

(
ln

(
B̃(0)

S0

)
+ γT

)
.

We define the equivalent probability measure P̂ just like in Appendix III.A.1 with

corresponding Brownian motion process Ŵ =
{
Ŵt : t ∈ [0, T ∗]

}
. Let

M̂t = max
u∈[0,t]

{
Ŵu

}
be the maximum value that the Brownian motion path Ŵ attains over the interval [0, t].

Then ν ≤ t corresponds to

M̂t ≥
1

σ

(
ln

(
B̃(0)

S0

)
+ γT

)
=: β.

Similarly, we can express the condition St ≤ x in terms of the Brownian motion W ∗ as

W ∗t +
1

σ

(
r − δ − 1

2
σ2

)
t ≤ 1

σ
ln

(
x

S0

)
.
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Equivalently, in terms of the Brownian motion Ŵ , we get

Ŵt ≤
1

σ

(
ln

(
x

S0

)
+ γt

)
=: α(x).

Then

P∗ {St ≤ x, ν ≤ t} = EP∗

[
1
{
Ŵt ≤ α(x), M̂t ≥ β

}]
= EP̂

[
ξ−1
t

(
P∗, P̂

)
1
{
Ŵt ≤ α(x), M̂t ≥ β

}]
= EP̂

[
exp

{
λŴt −

1

2
λ2t

}
1
{
Ŵt ≤ α(x), M̂t ≥ β

}]
.

To explicitly see the next step, we express this expectation as a double integral over the

joint PDF and get

. . . =

∫ α(x)

−∞
exp

{
λy − 1

2
λ2t

}
P̂
{
Ŵt ∈ dy, M̂t ≥ β

}
=

∫ α(x)

−∞
exp

{
λy − 1

2
λ2t

}
P̂
{
Ŵt ∈ 2β − dy, M̂t ≥ β

}
=

∫ α(x)

−∞
exp

{
λy − 1

2
λ2t

}
P̂
{
Ŵt ∈ 2β − dy

}
.

Here, we used the reflection principle for Brownian motion in the second step. We now

make a change of variables by defining z = 2β − y to obtain

. . . =

∫ ∞
2β−α(x)

exp

{
λ(2β − z)− 1

2
λ2t

}
P̂
{
Ŵt ∈ dz

}
= EP̂

[
exp

{
λ
(

2β − Ŵt

)
− 1

2
λ2t

}
1
{
Ŵt ≥ 2β − α(x)

}]
.

We now define a new probability measure P̃ equivalent to P̂ on [0, T ∗] by

dP̃
dP̂

= ET ∗

(
−
∫ ·

0
λdŴu

)
P̂-a.s..

The corresponding Radon-Nikodým derivative process ξ
(
P̃, P̂

)
=
{
ξt
(
P̃, P̂

)
: t ∈ [0, T ∗]

}
is given by

ξt
(
P̃, P̂

)
=

dP̃
dP̂

∣∣∣∣∣Ft = Et
(
−
∫ ·

0
λdŴu

)
P̂-a.s..

By Girsanov’s theorem, it follows that the process W̃ =
{
W̃t : t ∈ [0, T ∗]

}
defined by

W̃t = Ŵt + λt ∀t ∈ [0, T ∗]
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is a one-dimensional standard Brownian motion under P̃. Thus, applying the abstract

Bayes rule yields

. . . = e2λβEP̂

[
ξt
(
P̃, P̂

)
1
{
Ŵt ≥ 2β − α(x)

}]
= e2λβP̃

{
W̃t ≥ 2β − α(x) + λt

}
= e2λβN

(
−2β − α(x) + λt√

t

)
.

Thus,

P∗
{
Ŵt ≤ α(x), M̂t < β

}
= P∗

{
Ŵt ≤ α(x)

}
− P∗

{
Ŵt ≤ α(x), M̂t ≥ β

}
= N

(
α(x)− λt√

t

)
− e2λβN

(
−2β − α(x) + λt√

t

)
.

Next, note that by the Leibniz rule we have

∂

∂x
P∗ {St ≤ x, ν > t}dx = P∗ {St ∈ dx, ν > t} .

Consequently,

P∗ {St ∈ dx, ν > t}

=
∂

∂x
P∗
{
Ŵt ≤ α(x), M̂t < β

}
dx

=
∂

∂x

{
N
(
α(x)− λt√

t

)
− e2λβN

(
−2β − α(x) + λt√

t

)}
dx

=
α′(x)√

t

(
N ′
(
α(x)− λt√

t

)
− e2λβN ′

(
−2β − α(x) + λt√

t

))
dx

=
1

xσ
√
t

(
N ′
(
α(x)− λt√

t

)
− e2λβN ′

(
2β − α(x) + λt√

t

))
dx.

The last step uses the symmetry of the standard normal PDF. We obtain exactly the same

result in case of a lower barrier. In this case, we start by computing P∗ {St ≥ x, ν ≤ t}
and follow the same steps.

III.B.3 Joint Density of St and {τ > t} Part II

This appendix presents an alternative and significantly simpler derivation of

Lemma III.10 based on the method of images. This approach uses results from Section III.5

on bond binaries. We consider a contingent claim that has a unit payoff at its maturity

T ∈ [0, T ∗] if the terminal spot price is above some level x ∈ R+ such that ψx ≥ ψB̃(0)

207



and conditional on no prior breach of the exponential barrier B̃(τ). Here, we assume that

the barrier is constructed such that at the maturity of the contingent claim its level is

given by B̃(0). This comes at no loss of generality, since an exponential barrier can be

equivalently defined with respect to any reference time point. The option value Ṽ (S, τ)

then satisfies the Black and Scholes (1973) IEBVP

L
{
Ṽ
}

(S, τ) = 0 for (S, τ) ∈ D, ,

Ṽ (S, 0) = 1{ψS > ψx},

Ṽ
(
B̃(τ), τ

)
= 0 for τ ∈ [0,∞),

where

D =
{

(S, τ) : ψS > ψB̃(τ), τ ∈ (0,∞)
}
.

The corresponding full-range problem ṼB̃(0),γ(S, τ) is given by

L
{
ṼB̃(0),γ

}
(S, τ) = 0 for (S, τ) ∈ R2

+,

Ṽ (S, 0) = 1{ψS > ψx}.

However, this is just the value of a bond binary with strike price x. By Proposition III.1,

we thus have

Ṽ (S, τ) = B̃ψ
x (S, τ)−

B̃(0),γ,τ

I
{
B̃ψ
x (S, τ)

}
.

Since the contingent claim value is just the discounted probability of obtaining the unit

payoff at maturity, we have

P∗ {ψST ≥ ψx, ν > T} = erT Ṽ (S, T ).

Consequently, we obtain the joint PDF by differentiating this expression with respect to

x. We again only explicitly compute the result for ψ = +1. The steps for ψ = −1 are

however nearly identical. We have

P∗ {ST ∈ dx, ν > T} = −erT
∂

∂x

(
B̃ψ
x (S0, T )−

B̃(0),γ,T

I
{
B̃ψ
x (S0, T )

})
dx

= −erT

(
∂B̃ψ

x

∂K
(S0, T )−

B̃(0),γ,T

I
{
∂B̃ψ

x

∂K
(S0, T )

})
dx,
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where we used that the image operator does not depend on the strike price K. The partial

derivative of the bond binary price with respect to the strike price is given by

∂Bψ
x

∂K
(S0, T ) = −e−rT

1

xσT
N ′ (ψd− (S0, T )) ,

where

d− (S0, T ) =
ln (S0/x) +

(
r − δ − 1

2σ
2
)
T

σ
√
T

.

Putting everything together, we obtain

P∗ {ST ∈ dx, ν > T} =
1

xσT

(
N ′ (d− (S0, T ))

−
(

S0

B̃(0)eγT

)2α

N ′
(
d−

(
B̃2(0)e2γT

S0
, T

)))
dx.

It is easy to check that this expression is indeed equivalent to the one previously obtained

in Appendix III.B.2.

III.B.4 Probabilistic Method of Images

This appendix contains the detailed proof of Proposition III.3. We again only explicitly

prove the case of an upper barrier. By the risk-neutral pricing formula, we have

Vt = e−rτEP∗ [f (ST ) 1{ν > T}|Ft] .

Using the result from Lemma III.10, we can express this expectation as an integral

Vt = e−rτ
∫ ∞

0
f(x)P∗ {ST ∈ dx, ν > T |Ft}

= e−rτ
∫ B̃(0)

0

f(x)

xσ
√
τ

(
N ′
(
α(x)− λτ√

τ

)
− e2λβN ′

(
2β − α(x) + λτ√

τ

))
dx.

We split this integral in two parts. Substituting for α(x) and λ from Lemma III.10, the

first part V
(1)
t can be expressed as

V
(1)
t = e−rτ

∫ B̃(0)

0

f(x)

xσ
√
τ
N ′
(
α(x)− λτ√

τ

)
dx

= e−rτ
∫ ∞

0

f(x)1
{
x < B̃(0)

}
xσ
√
τ

N ′
(

ln (x/St)−
(
r − δ − 1

2σ
2
)
τ

σ
√
τ

)
dx.

We recognize the integrand as the product of the payoff of the full-range value process

V B̃(0) as defined in Proposition III.3 times the log-normal conditional PDF of the terminal

209



spot prices ST under the risk-neutral probability measure P∗. Consequently, V
(1)
t = V

B̃(0)
t .

Next,

e2λβ = exp

{
2

σ2

(
r − δ + γ − 1

2
σ2

)(
ln

(
B̃(0)

St

)
+ γτ

)}

=

(
St

B̃(τ)

)2α

,

where α is as in Definition III.5. The second part V
(2)
t then becomes

V
(2)
t = e2λβe−rτ

∫ B̃(0)

0

f(x)

xσ
√
τ
N ′
(

2β − α(x) + λτ√
τ

)
dx

=

(
St

B̃(τ)

)2α

e−rτ
∫ ∞

0

f(x)1
{
x < B̃(0)

}
xσ
√
τ

N ′
 ln

(
xSt/B̃

2(τ)
)
−
(
r − δ − 1

2σ
2
)
τ

σ
√
τ

dx

=
B̃(0),γ,τ

I
{
V
B̃(0)
t

}
.

Consequently,

Vt = V
B̃(0)
t −

B̃(0),γ,τ

I
{
V
B̃(0)
t

}
,

which completes the proof for this case. As the joint PDF of the terminal spot price and

ν > T is the same for an upper and lower barrier, we simply need to adjust the limits of

integration and indicator functions when dealing with a lower barrier.

III.C Appendix for Section III.7

III.C.1 Pay-at-Hit Bond Binary Valuation

This appendix contains an alternative proof of Proposition III.7. Let Ũ(S, τ) follow

the IEBVP

L
{
Ũ
}

= 0 for (S, τ) ∈ D,

Ũ(S, 0) = 1,

Ũ(S, 1) = 0 for τ ∈ [0,∞),
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where the active domain D is as in Proposition III.7. Then Ũ(S, τ) is the valuation function

of a contingent claim that has a unit payoff at maturity conditional on no prior crossing

of the exponential barrier B̃(τ). It follows by Proposition III.1 that

Ũ(S, τ) = Bψ
B̃(0)

(S, τ)−
B̃(0),γ,τ

I
{
Bψ
B̃(0)

(S, τ)
}
.

Since Ṽ (S, 0) + Ũ(S, 0) = 1 and thus Ṽ (S, τ) + Ũ(S, τ) = e−rτ , we obtain

Ṽ (S, τ) = B−ψ
B̃(0)

(S, τ)+
B̃(0),γ,τ

I
{
Bψ
B̃(0)

(S, τ)
}
,

where we used that B̃+
ξ (S, τ) + B̃−ξ (S, τ) = e−rτ .

III.D Appendix for Section III.8

III.D.1 Decomposition of the Pay-at-Hit Valuation Problem

This appendix contains the detailed proof of Lemma III.16. Fix some initial τ ∈ [0,∞).

As shown in Lemma III.15, it is sufficient to solve the equivalent constant barrier valuation

problem for τ∗ ∈ [0, τ ]

L
{
Ṽ
}(
Ŝ, τ∗

)
= 0 for

(
Ŝ, τ∗

)
∈ D,

Ṽ
(
Ŝ, 0

)
= 0,

Ṽ
(
B̃(τ), τ∗

)
= 1 for τ∗ ∈ [0, τ ],

where

D =
{(
Ŝ, τ∗

)
: ψŜ > ψB̃(τ), τ∗ ∈ (0, τ ]

}
and the asset Ŝ has a dividend yield of δ̂ = δ − γ. Now define the stationary Black and

Scholes (1973) operator Ĵ for the asset Ŝ as

Ĵ {U} = (r − δ + γ)Ŝ
dU

dŜ
+

1

2
σ2Ŝ2 d2U

dŜ2
− rU
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and let Uψξ
(
Ŝ
)

satisfy the stationary valuation problem

Ĵ
{
Uψξ
}(
Ŝ
)

= 0 for ψŜ > ψξ,

Uψξ (ξ) = 1,

lim
Ŝ→ζ

Uψξ
(
Ŝ
)

= 0 where ζ =


∞ if ψ = +1

0 if ψ = −1

.

Uψξ
(
Ŝ
)

is the valuation function of a constant barrier perpetual American bond binary

on the asset Ŝ with strike price ξ. The finite maturity American bond binary Ṽ (S, τ)

corresponds to initially taking a long position in the claim Uψ
B̃(τ)

(S) and closing it out at

the maturity given that the constant barrier B̃(τ) has not been breached by any spot price

Ŝτ∗ over the interval τ∗ ∈ [0, τ ]. We thus set

Ṽ
(
S, τ

)
= Uψ

B̃(τ)
(S)− Ṽ 1(S, τ),

where Ṽ 1
(
Ŝ, τ

)
satisfies the initial boundary value problem for τ∗ ∈ [0, τ ]

L
{
Ṽ 1
}(
Ŝ, τ∗

)
= 0 for

(
Ŝ, τ∗

)
∈ D,

Ṽ 1
(
Ŝ, 0

)
= Uψ

B̃(τ)

(
Ŝ
)
,

Ṽ 1
(
B̃(τ), τ∗

)
= 0 for τ∗ ∈ [0, τ ]

the solution of which can be obtained using Proposition III.1.

III.D.2 Derivation of the Perpetual American Bond Binary
Valuation Functions

This appendix provides a detailed derivation of the valuation function for perpetual

American bond binaries used in Lemma III.16. This problem is well-known and we refer

to for example Chapter 9 in Wilmott (2006), pp. 151–168. We note that the valuation

equation in the active domain is a homogeneous linear second-order ordinary differential

equation (ODE) with constant coefficients since it can be rearranged to

Ŝ2
d2Uψξ

dŜ2
+ κŜ

dUψξ

dŜ
− λUψξ = 0,

where

κ =
2(r − δ + γ)

σ2
,

λ =
2r

σ2
.
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This equation is of the Euler-Cauchy type and we thus try the solution

Uψξ
(
Ŝ
)

= Ŝβ

and get

β(β − 1)Ŝβ + βκŜβ − λŜβ = 0.

This equation holds for all values of Ŝ if

β2 + β(κ− 1)− λ = 0

or

β± = ±
√
λ+

(
κ− 1

2

)2

− κ− 1

2
.

The expression for β± can be expanded to

β(±) =
1

σ2

−(r − δ + γ − 1

2
σ2

)
±
√

2rσ2 +

(
r − δ + γ − 1

2
σ2

)2


and we note that β− < 0 and β+ > 0. Furthermore, for δ = γ, we have κ = λ and thus

β+ = 1 and β− = −γ. The general solution to the ODE is given by

Uψξ
(
Ŝ
)

= c−Ŝ
β− + c+Ŝ

β+ ,

where c± are the constants of integration and have to be determined using the boundary

conditions of the particular contract to be priced. In the case of a perpetual American

bond binary put, when ψ = +1, the upper boundary condition limŜ→∞ U
+
ξ

(
Ŝ
)

= 0 implies

that c+ = 0. Next, the value matching condition at the lower boundary is

U+
ξ (ξ) = 1 ⇔ c− = ξ−β− .

Consequently,

U+
ξ

(
Ŝ
)

=

(
Ŝ

ξ

)β−
.

Similarly, in case of a perpetual American bond binary call when ψ = −1 the lower

boundary condition limŜ→0 U
−
ξ

(
Ŝ
)

= 0 implies that c− = 0. The value matching condition

at the upper boundary is

U−ξ (ξ) = 1 ⇔ c+ = ξ−β+ .
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Thus,

U−ξ
(
Ŝ
)

=

(
Ŝ

ξ

)β+
.

III.D.3 Pay-at-Hit Bond Binary Valuation

This appendix contains the detailed proof of Proposition III.10. By Lemma III.16, it

remains to find the valuation function Ṽ 1
(
Ŝ, τ

)
which satisfies an initial boundary value

problem. The corresponding full-range problem for τ∗ ∈ [0, τ ] is given by

L
{
Ṽ 1
B̃(τ)

}(
Ŝ, τ∗

)
= 0 for

(
Ŝ, τ∗

)
∈ R+ × (0, τ ],

ṼB̃(τ)

(
Ŝ, 0

)
= Uψ

B̃(τ)

(
Ŝ
)
1
{
ψŜ > ψB̃(τ)

}
.

We recognize the initial condition as the scaled payoff of a power binary as in

Definition III.9, that is

ṼB̃(τ)(S, 0) =

(
Ŝ

B̃(τ)

)β(−ψ)

1
{
ψŜ > ψB̃(τ)

}
.

Using Proposition III.8 with η = β(−ψ), we thus have

Ṽ 1
B̃(τ)

(
Ŝ, τ

)
=

(
Ŝ

B̃(τ)

)β(−ψ)

exp

{(
(β(−ψ)− 1)

(
r +

1

2
β(−ψ)σ2

)
− β(−ψ)δ

)
τ

}
N
(
ψdβ(−ψ)

)
=

(
Ŝ

B̃(τ)

)β(−ψ)

N
(
ψdβ(−ψ)

)
.

It is straight forward to check that the terms in the exponential cancel out for both ψ = ±1.

Similarly, term dβ(−ψ) simplifies to

dβ(−ψ) =
ln
(
Ŝ/B̃(τ)

)
+
(
r − δ +

(
β(−ψ)− 1

2

)
σ2
)
τ

σ
√
τ

=
ln
(
Ŝ/B̃(τ)

)
− ψ
√
λ+ α2τ

σ
√
τ

,

where α and λ are as in Lemma III.16. By the method of images, see Proposition III.1,

we thus get

Ṽ 1
(
Ŝ, τ

)
= Ṽ 1

B̃(τ)

(
Ŝ, τ

)
−

B̃(τ),0,τ

I
{
Ṽ 1
B̃(τ)

(
Ŝ, τ

)}
.
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Using Definition III.5 the image term can be simplified to

B̃(τ),0,τ

I
{
Ṽ 1
B̃(τ)

(
Ŝ, τ

)}
=

(
Ŝ

B̃(τ)

)β(ψ)

N
(
−ψdβ(ψ)

)
.

III.D.4 Adjusted Strike Levels

This appendix provides details on how the adjusted strike levels in Section III.8.4 are

determined. To find ζ1, we first note that under the correct specification the drift and the

initial underlying asset price, the probability of ψSτS > ψB̃ (τ̂S) is

P∗
{
ψS0 exp

{(
r − δ − 1

2
σ2

)
τS + σW ∗τS

}
≥ ψB̃ (τ̂S)

}
.

However, we are instead using the adjusted initial value S0e−γτB and the dividend yield

δ − γ in the pricing of the power bond binary. We thus search for an adjusted strike level

ζ1 such that the probability

P
{
ψS0 exp

{
−γτB +

(
r − δ + γ − 1

2
σ2

)
τS + σWτS

}
≥ ψζ1

}

is identical to the aforementioned one. This is clearly the case when

ζ1 = B̃ (τ̂S) eγ(τ̂B−τ̂S).

To find ζ2, we apply an approach very similar to that used in the proof of Lemma III.12.

We have for τ = τ̂S

B̃(τ̂B),0,τ

I
{
β(−ψ;γ)P−ψψ

B̃(τ̂B)B̃(τ̂B)

(
Se−γτB , τB, τ ; γ

)}
1
{
ψS > ψB̃ (τ̂S)

}
= Ξ β(−ψ;γ)P−ψψ

B̃(τ̂B)B̃(τ̂B)

(
B̃2 (τ̂B)

Se−γτB
, τB, τ ; γ

)
1
{
ψS > ψB̃ (τ̂S)

}
= Ξ β(−ψ;γ)P−ψψ

B̃(τ̂B)B̃(τ̂B)

(
B̃2 (τ̂B)

Se−γτB
, τB, τ ; γ

)
1

{
ψ
B̃2 (τ̂B)

Se−γτB
< ψ

B̃2 (τ̂B)

B̃ (τ̂S) e−γτB

}

Here,

Ξ =

(
Se−γτB

B̃ (τ̂B)

)2α(γ)

.

We thus set ζ2 equal to the r.h.s. expression in the indicator and obtain

ζ2 = B̃ (τ̂B) e(κ−γ)(τ̂B−τ̂S).
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Similarly, to find ζ3, we follow the same main steps as in the proof of Lemma III.13. We

have for τ = τ̂S

B̃(τ̂B),κ,τB
I

{ B̃(τ̂B),0,τ

I
{
β(−ψ;γ)P−ψψ

B̃(τ̂B)B̃(τ̂B)

(
Se−γτB , τB, τ ; γ

)}}
1
{
ψS > ψB̃ (τ̂S)

}
=

B̃(τ̂B),κ,τB
I

{
Ξ1

β(−ψ;γ)P−ψψ
B̃(τ̂B)B̃(τ̂B)

(
B̃2 (τ̂B)

Se−γτB
, τB, τ ; γ

)}
1
{
ψS > ψB̃ (τ̂S)

}
= Ξ2

β(−ψ;γ)P−ψψ
B̃(τ̂B)B̃(τ̂B)

(
B̃2 (τ̂B)S

B̃2 (τ̂B) e(2κ−γ)τB
, τB, τ ; γ

)
1
{
ψS > ψB̃ (τ̂S)

}
= Ξ2

β(−ψ;γ)P−ψψ
B̃(τ̂B)B̃(τ̂B)

(
e(γ−2κ)τBS, τB, τ ; γ

)
1
{
ψe(γ−2κ)τBS > ψe(γ−2κ)τB B̃ (τ̂S)

}
.

Here,

Ξ1 =

(
Se−γτB

B̃ (τ̂B)

)2α(γ)

,

Ξ2 =

(
S

B̃ (τ̂B) eκτB

)2α(κ)
(
B̃ (τ̂B) e2κτB

S

)2α(γ)

.

From the r.h.s. expression in the indicator we thus immediately obtain

ζ3 = B̃ (τ̂B) e(κ−γ)(τ̂B−τ̂S).

III.E Overview of the Main Results

Figures III.13 through III.15 provide a schematic overview of the valuation formulas

obtained in this chapter and their inter-relation, and illustrate which auxiliary results were

used in their derivation.

III.F MATLAB Code

In this appendix, we provide the MATLAB Code for the valuation of the deferred start

piecewise exponential barrier options and rebates in Sections III.6.4, III.7.4 and III.8.4.

There is significant potential for errors when implementing the final pricing formulas. This

is particularly true for the valuation of the pay-at-hit rebate where one has to be careful,
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whether the spot price adjustment has to performed at the level of the binary option

directly or when taking its image. The sample code fragments provided here should

facilitate the implementation in any programming language. For brevity, we often only

provide the core functionality and omit the otherwise highly recommended validation of a

function’s parameters, the handling of other errors and use of extensive code comments.

The implementations presented here are also not optimized for performance but instead

for ease of readability.

III.F.1 Auxiliary Functions

We repeatedly call the following auxiliary functions that perform the image operation

and value general power binaries.

1 function [result] = IIf(condition, valueTrue, valueFalse)

2 % IIF − inline if function

3

4 if (condition)

5 result = valueTrue;

6 else

7 result = valueFalse;

8 end

9

10 end

1 function [value] = ImageFunction(ValueFunction, barrierFinal, barrierBending, spot, ...

maturity, rate, dividend, volatility)

2 % IMAGEFUNCTION − applies the image operator to a valuation function

3

4 barrierLevel = barrierFinal * exp(barrierBending * maturity);

5 alpha = 0.5 − (rate − dividend + barrierBending) / (volatilityˆ2);

6 value = (spot / barrierLevel)ˆ(2 * alpha) * ValueFunction(barrierLevelˆ2 / spot);

7

8 end

1 function [value] = PowerBinary(eta, strikes, flags, spot, maturities, rate, ...

dividend, volatility)

2 % POWERBINARY − values a general power binary

3

4 order = length(strikes);

5 CorrelationCoefficient = @(i, j) flags(i) * flags(j) * sqrt(maturities(i) / ...

maturities(j));

6 correlationMatrix = eye(order);
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7 for i = 1:(order − 1)

8 for j = (i + 1):order

9 correlationMatrix(i, j) = CorrelationCoefficient(i, j);

10 correlationMatrix(j, i) = correlationMatrix(i, j);

11 end

12 end

13 dValues = (log(spot ./ strikes) + (rate − dividend + (eta − 0.5) * volatilityˆ2) * ...

maturities) ./ (volatility * sqrt(maturity));

14 value = spotˆeta * exp(((eta − 1) * (rate + 0.5 * eta * volatilityˆ2) − eta * ...

dividend) * maturities(order)) * mvncdf(flags .* dValues, zeros(order, 1), ...

correlationMatrix);

15

16 end

III.F.2 Barrier Option Valuation

1 function [value] = KnockOutBarrierOption(spot, rate, dividend, volatility, phi, psi, ...

strike, barrierFinal, barrierBending, barrierStart, bendingChange, maturity)

2 % KNOCKOUTBARRIEROPTION − values a deferred start piecewise exponential

3 % knock−out barrier option without rebate

4

5 % compute common expressions

6 maturities = [barrierStart, bendingChange, maturity];

7 barrierMiddle = barrierFinal * exp(barrierBending(2) * (maturity − bendingChange));

8 barrierInitial = barrierMiddle * exp(barrierBending(1) * (bendingChange − ...

barrierStart));

9 zeta1 = barrierInitial * exp(2 * (barrierBending(2) − barrierBending(1)) * ...

(bendingChange − barrierStart));

10 zeta2 = barrierInitial;

11 zeta3 = barrierInitial * exp(2 * (barrierBending(2) − barrierBending(1)) * ...

(bendingChange − barrierStart));

12

13 % setup utility functions

14 BondBinary = @(strikes, flags, spot) PowerBinary(0, strikes, flags, spot, ...

maturities, rate, dividend, volatility);

15 AssetBinary = @(strikes, flags, spot) PowerBinary(1, strikes, flags, spot, ...

maturities, rate, dividend, volatility);

16 QOption = @(strikes, flags, spot) AssetBinary(strikes, flags, spot) − strikes(end) * ...

BondBinary(strikes, flags, spot);

17 ImageOperatorA = @(ValueFunction, spot) ImageFunction(ValueFunction, barrierFinal, ...

barrierBending(2), spot, maturity, rate, dividend, volatility);

18 ImageOperatorB = @(ValueFunction, spot) ImageFunction(ValueFunction, barrierMiddle, ...

barrierBending(1), spot, bendingChange, rate, dividend, volatility);

19

20 % compute the option prices

21 if ((phi == 1) && (psi == 1))
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22 % down & out call

23

24 if (strike > barrierFinal)

25 value = QOption([barrierInitial, barrierMiddle, strike], [1, 1, 1], spot);

26 value = value − ImageOperatorA(@(spot) QOption([zeta1, barrierMiddle, ...

strike], [−1, −1, 1], spot), spot);

27 value = value − ImageOperatorB(@(spot) QOption([zeta2, barrierMiddle, ...

strike], [−1, 1, 1], spot), spot);

28 value = value + ImageOperatorB(@(spot) ImageOperatorA(@(spot) Option([zeta3, ...

barrierMiddle, strike], [1, −1, 1], spot), spot), spot);

29 else

30 value = AssetBinary([barrierInitial, barrierMiddle, barrierFinal], [1, 1, ...

1], spot);

31 value = value − strike * BinaryOption([barrierInitial, barrierMiddle, ...

barrierFinal], [1, 1, 1], spot);

32 value = value − ImageOperatorA(@(spot) AssetBinary([zeta1, barrierMiddle, ...

barrierFinal], [−1, −1, 1], spot), spot);

33 value = value + strike * ImageOperatorA(@(spot) BondBinary([zeta1, ...

barrierMiddle, barrierFinal], [−1, −1, 1], spot), spot);

34 value = value − ImageOperatorB(@(spot) AssetBinary([zeta2, barrierMiddle, ...

barrierFinal], [−1, 1, 1], spot), spot);

35 value = value + strike * ImageOperatorB(@(spot) BondBinary([setz2, ...

barrierMiddle, barrierFinal], [−1, 1, 1], spot), spot);

36 value = value + ImageOperatorB(@(spot) ImageOperatorA(@(spot) ...

AssetBinary([zeta3, barrierMiddle, barrierFinal], [1, −1, 1], spot), ...

spot), spot);

37 value = value − strike * ImageOperatorB(@(spot) ImageOperatorA(@(spot) ...

BondBinary([zeta3, barrierMiddle, barrierFinal], [1, −1, 1], spot), ...

spot), spot);

38 end

39 elseif ((phi == 1) && (psi == −1))

40 % up & out call

41

42 if (strike > barrierFinal)

43 value = 0;

44 else

45 value = QOption([barrierInitial, barrierMiddle, strike], [−1, −1, 1], spot);

46 value = value − AssetBinary([barrierInitial, barrierMiddle, barrierFinal], ...

[−1, −1, 1], spot);

47 value = value + strike * BondBinary([barrierInitial, barrierMiddle, ...

barrierFinal], [−1, −1, 1], spot);

48 value = value − ImageOperatorA(@(spot) QOption([zeta1, barrierMiddle, ...

strike], [1, 1, 1], spot), spot);

49 value = value + ImageOperatorA(@(spot) AssetBinary([zeta1, barrierMiddle, ...

barrierFinal], [1, 1, 1], spot), spot);

50 value = value − strike * ImageOperatorA(@(spot) BondBinary([zeta1, ...

barrierMiddle, barrierFinal], [1, 1, 1], spot), spot);

51 value = value − ImageOperatorB(@(spot) QOption([zeta2, barrierMiddle, ...

strike], [1, −1, 1], spot), spot);
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52 value = value + ImageOperatorB(@(spot) AssetBinary([zeta2, barrierMiddle, ...

barrierFinal], [1, −1, 1], spot), spot);

53 value = value − strike * ImageOperatorB(@(spot) BondBinary([zeta2, ...

barrierMiddle, barrierFinal], [1, −1, 1], spot), spot);

54 value = value + ImageOperatorB(@(spot) ImageOperatorA(@(spot) ...

QOption([zeta3, barrierMiddle, strike], [−1, 1, 1], spot), spot), spot);

55 value = value − ImageOperatorB(@(spot) ImageOperatorA(@(spot) ...

AssetBinary([zeta3, barrierMiddle, barrierFinal], [−1, 1, 1], spot), ...

spot), spot);

56 value = value + strike * ImageOperatorB(@(spot) ImageOperatorA(@(spot) ...

BondBinary([zeta3, barrierMiddle, barrierFinal], [−1, 1, 1], spot), ...

spot), spot);

57 end

58 elseif ((phi == −1) && (psi == 1))

59 % down & out put

60

61 if (strike > barrierFinal)

62 value = −QOption([barrierInitial, barrierMiddle, strike], [1, 1, −1], spot);

63 value = value − strike * BondBinary([barrierInitial, barrierMiddle, ...

barrierFinal], [1, 1, −1], spot);

64 value = value + AssetBinary([barrierInitial, barrierMiddle, barrierFinal], ...

[1, 1, −1], spot);

65 value = value + ImageOperatorA(@(spot) QOption([zeta1, barrierMiddle, ...

strike], [−1, −1, −1], spot), spot);

66 value = value + strike * ImageOperatorA(@(spot) BondBinary([zeta1, ...

barrierMiddle, barrierFinal], [−1, −1, −1], spot), spot);

67 value = value − ImageOperatorA(@(spot) AssetBinary([zeta1, barrierMiddle, ...

barrierFinal], [−1, −1, −1], spot), spot);

68 value = value + ImageOperatorB(@(spot) QOption([zeta2, barrierMiddle, ...

strike], [−1, 1, −1], spot), spot);

69 value = value + strike * ImageOperatorB(@(spot) BondBinary([zeta2, ...

barrierMiddle, barrierFinal], [−1, 1, −1], spot), spot);

70 value = value − ImageOperatorB(@(spot) AssetBinary([zeta2, barrierMiddle, ...

barrierFinal], [−1, 1, −1], spot), spot);

71 value = value − ImageOperatorB(@(spot) ImageOperatorA(@(spot) ...

QOption([zeta3, barrierMiddle, strike], [1, −1, −1], spot), spot), spot);

72 value = value − strike * ImageOperatorB(@(spot) ImageOperatorA(@(spot) ...

BondBinary([zeta3, barrierMiddle, barrierFinal], [1, −1, −1], spot), ...

spot), spot);

73 value = value + ImageOperatorB(@(spot) ImageOperatorA(@(spot) ...

AssetBinary([zeta3, barrierMiddle, barrierFinal], [1, −1, −1], spot), ...

spot), spot);

74 else

75 value = 0;

76 end

77 else

78 % up & out put

79

80 if (strike > barrierFinal)
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81 value = strike * BondBinary([barrierInitial, barrierMiddle, barrierFinal], ...

[−1, −1, −1], spot);

82 value = value − AssetBinary([barrierInitial, barrierMiddle, barrierFinal], ...

[−1, −1, −1], spot);

83 value = value − strike * ImageOperatorA(@(spot) BondBinary([zeta1, ...

barrierMiddle, barrierFinal], [1, 1, −1], spot), spot);

84 value = value + ImageOperatorA(@(spot) AssetBinary([zeta1, barrierMiddle, ...

barrierFinal], [1, 1, −1], spot), spot);

85 value = value − strike * ImageOperatorB(@(spot) BondBinary([zeta2, ...

barrierMiddle, barrierFinal], [1, −1, −1], spot), spot);

86 value = value + ImageOperatorB(@(spot) AssetBinary([zeta2, barrierMiddle, ...

barrierFinal], [1, −1, −1], spot), spot);

87 value = value + strike * ImageOperatorB(@(spot) ImageOperatorA(@(spot) ...

BondBinary([zeta3, barrierMiddle, barrierFinal], [−1, 1, −1], spot), ...

spot), spot);

88 value = value − ImageOperatorB(@(spot) ImageOperatorA(@(spot) ...

AssetBinary([zeta3, barrierMiddle, barrierFinal], [−1, 1, −1], spot), ...

spot), spot);

89 else

90 value = −QOption([barrierInitial, barrierMiddle, strike], [−1, −1, −1], spot);

91 value = value + ImageOperatorA(@(spot) QOption([zeta1, barrierMiddle, ...

strike], [1, 1, −1], spot), spot);

92 value = value + ImageOperatorB(@(spot) QOption([zeta2, barrierMiddle, ...

strike], [1, −1, −1], spot), spot);

93 value = value − ImageOperatorB(@(spot) ImageOperatorA(@(spot) ...

QOption([zeta3, barrierMiddle, strike], [−1, 1, −1], spot), spot), spot);

94 end

95 end

96

97 end

III.F.3 Rebate Valuation: Payout at Maturity

1 function [value] = RebatePayAtMaturity(spot, rate, dividend, volatility, psi, ...

barrierFinal, barrierBending, barrierStart, bendingChange, maturity)

2 % REBATEPAYATMATURITY − values a deferred start piecewise exponential

3 % barrier pay−at−maturitys rebate

4

5 % compute common expressions

6 maturities2 = [barrierStart, bendingChange];

7 maturities3 = [barrierStart, bendingChange, maturity];

8 barrierMiddle = barrierFinal * exp(barrierBending(2) * (maturity − bendingChange));

9 barrierInitial = barrierMiddle * exp(barrierBending(1) * (bendingChange − ...

barrierStart));

10 zeta1 = barrierInitial * exp(2 * (barrierBending(2) − barrierBending(1)) * ...

(bendingChange − barrierStart));
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11 zeta2 = barrierInitial;

12 zeta3 = barrierInitial * exp(2 * (barrierBending(2) − barrierBending(1)) * ...

(bendingChange − barrierStart));

13

14 % setup utility functions

15 BondBinary = @(strikes, flags, spot, maturities) PowerBinary(0, strikes, flags, ...

spot, maturities, rate, dividend, volatility);

16 AssetBinary = @(strikes, flags, spot, maturities) PowerBinary(1, strikes, flags, ...

spot, maturities, rate, dividend, volatility);

17 ImageOperatorA = @(ValueFunction, spot) ImageFunction(ValueFunction, barrierFinal, ...

barrierBending(2), spot, maturity, rate, dividend, volatility);

18 ImageOperatorB = @(ValueFunction, spot) ImageFunction(ValueFunction, barrierMiddle, ...

barrierBending(1), spot, bendingChange, rate, dividend, volatility);

19

20 % compute the rebate value

21 value = BondBinary([barrierInitial, barrierMiddle], [psi, −psi], spot, maturities2);

22 value = value + ImageOperatorB(@(spot) BondBinary([zeta, barrierMiddle], [−psi, ...

psi], spot, maturities2), spot);

23 value = value + BondBinary([barrierInitial, barrierMiddle, barrierFinal], [psi, psi, ...

−psi], spot, maturities3);

24 value = value + ImageOperatorA(@(spot) BondBinary([zeta2, barrierMiddle, ...

barrierFinal], [−psi, −psi, −psi], spot, maturities3), spot);

25 value = value − ImageOperatorB(@(spot) BondBinary([zeta1, barrierMiddle, ...

barrierFinal], [−psi, psi, −psi], spot, maturities3), spot);

26 value = value − ImageOperatorB(@(spot) ImageOperatorA(@(spot) BondBinary([zeta3, ...

barrierMiddle, barrierInitial], [psi, −psi, −psi], spot, maturities3), spot), spot);

27 value = value + exp(−(maturity − barrierStart) * BondBinary(barrierInitial, −psi, ...

spot, barrierStart);

28

29 end

III.F.4 Rebate Valuation: Payout at Hit

1 function [value] = RebatePayAtHit(spot, rate, dividend, volatility, psi, ...

barrierFinal, barrierBending, barrierStart, bendingChange, maturity)

2 % REBATEPAYATHIT − values a deferred start piecewise exponential barrier

3 % pay−at−hit rebate

4

5 % compute common expressions

6 maturities2 = [barrierStart, bendingChange];

7 maturities3 = [barrierStart, bendingChange, maturity];

8 alpha = 0.5 − (rate − dividend + barrierBending) / volatilityˆ2;

9 lambda = 2 * rate / volatilityˆ2;

10 betaPlus = alpha + sqrt(lambda + alpha.ˆ2);

11 betaMinus = 2 * alpha − betaPlus;

12 BetaValue = @(flag, index) IIf(flag == 1, betaPlus(index), betaMinus(index));
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13 barrierMiddle = barrierFinal * exp(barrierBending(2) * (maturity − bendingChange));

14 barrierInitial = barrierMiddle * exp(barrierBending(1) * (bendingChange − ...

barrierStart));

15 zeta1 = barrierInitial * exp(barrierBending(2) * (barrierStart − bendingChange));

16 zeta2 = barrierMiddle * exp((barrierBending(1) − barrierBending(2)) * (barrierStart ...

− bendingChange));

17 zeta3 = barrierMiddle * exp((barrierBending(1) − barrierBending(2)) * (barrierStart ...

− bendingChange));

18 spotAdjustment1 = exp(−barrierBending(1) * barrierStart);

19 spotAdjustment2 = exp(−barrierBending(2) * bendingChange);

20

21 % setup utility functions

22 ImageOperatorA = @(ValueFunction, spot) ImageFunction(ValueFunction, barrierInitial, ...

0, spot, bendingChange, rate, dividend − barrierBending(1), volatility);

23 ImageOperatorB = @(ValueFunction, spot) ImageFunction(ValueFunction, barrierMiddle, ...

0, spot, maturity, rate, dividend − barrierBending(2), volatility);

24 ImageOperatorC = @(ValueFunction, spot) ImageFunction(ValueFunction, barrierMiddle, ...

barrierBending(1), spot, bendingChange, rate, dividend, volatility);

25

26 % compute the rebate value

27 temp = PowerBinary(BetaValue(−psi, 1), barrierInitial, psi, spot * spotAdjustment1, ...

barrierStart, rate, dividend − barrierBending(1), volatility);

28 temp = temp − PowerBinary(BetaValue(−psi, 1), [barrierInitial, barrierInitial], [1, ...

1], spot * spotAdjustment1, maturities2, rate, dividend − barrierBending(1), ...

volatility);

29 temp = temp + ImageOperatorA(@(spot) PowerBinary(BetaValue(−psi, 1), ...

[barrierInitial, barrierInitial], [−1, 1], spot, maturities2, rate, dividend − ...

barrierBending(1), volatility), spot * spotAdjustment1);

30 value = temp / barrierInitialˆBetaValue(−psi, 1);

31 temp = PowerBinary(BetaValue(−psi, 2), [zeta1, barrierMiddle], [1, 1], spot * ...

spotAdjustment2, maturities2, rate, dividend − barrierBending(2), volatility);

32 temp = temp − PowerBinary(BetaValue(−psi, 2), [zeta1, barrierMiddle, barrierMiddle], ...

[1, 1, 1], spot * spotAdjustment2, maturities3, rate, dividend − ...

barrierBending(2), volatility);

33 temp = temp + ImageOperatorB(@(spot) PowerBinary(BetaValue(−psi, 2), [zeta2, ...

barrierMiddle, barrierMiddle], [−1, −1, 1], spot, maturities3, rate, dividend − ...

barrierBending(2), volatility), spot * spotAdjustment2);

34 temp = temp − ImageOperatorC(@(spot) PowerBinary(BetaValue(−psi, 2), [zeta1, ...

barrierMiddle], [−1, 1], spot * spotAdjustment2, maturities2, rate, dividend − ...

barrierBending(2), volatility), spot);

35 temp = temp + ImageOperatorC(@(spot) PowerBinary(BetaValue(−psi, 2), [zeta1, ...

barrierMiddle, barrierMiddle], [−1, 1, 1], spot * spotAdjustment2, maturities3, ...

rate, dividend − barrierBending(2), volatility), spot);

36 temp = temp − ImageOperatorC(@(spot) ImageOperatorB(@(spot) ...

PowerBinary(BetaValue(−psi, 2), [zeta3, barrierMiddle, barrierMiddle], [1, −1, ...

1], spot, maturities3, rate, dividend − barrierBending(2), volatility), spot * ...

spotAdjustment2), spot);

37 value = value + temp / barrierMiddleˆBetaValue(−psi, 2);
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38 value = value + PowerBinary(0, barrierInitial, −1, spot, barrierStart, rate, ...

dividend, volatility);

39

40 end
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III.G Glossary of Notation

� end of a proof

� end of an example

4 end of a definition

1{A} indicator of the set A

Asξ higher-order asset binary

PA-a.s. almost surely under PA

Bsξ higher-order bond binary

B constant barrier level

b̃(τ) percentage barrier shift

B̃(τ) (piecewise) exponential boundary

D active domain of a PDE

δ continuously compounded dividend yield

Et (X·) Doléans-Dade exponential of the process X

EPA expectation under PA

F sigma algebra

Ft filtration at time t

H heat operator

B̃(0),γ,τ

I exponential barrier image operator

IEBVP initial exponential boundary value problem

IVS implied volatility smile

J stationary Black and Scholes (1973) operator

K strike price

L Black and Scholes (1973) operator

ν first hitting time of a barrier

ODE ordinary differential equation

Ω probability space

P∗ bank account martingale measure/risk-neutral measure

ηPsξ higher-order power binary

PDE partial differential equation

PDF probability density function
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φ indicator for a put or call option

ψ indicator for a down- or up-barrier

Qsξ higher-order Q option

r continuously compounded risk-free interest rate

r.h.s. right-hand side

S asset price process

SDE stochastic differential equation

σ diffusion coefficient

T maturity date

T ∗ terminal time

TB bending change date

TS barrier start date

τ current time-to-maturity

τA current time to the date TA

τ̂A time-to-maturity at the date TA

Ṽ (S, τ) contingent claim valuation function

WA standard one-dimensional Brownian motion under PA

w.l.o.g without loss of generality

ξ
(
PA,PB

)
Radon-Nikodým derivative process between PA and PB
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Chapter IV

Jump Size Distributions of Additive
Compound Poisson Processes That Are
Closed under the Esscher Transform

We model logarithmic asset price dynamics under the physical probability

measure as additive jump-diffusion processes, which exhibit a time-dependent

jump intensity and jump size distribution. The corresponding risk-neutral

probability measure is defined through an Esscher transform. We are interested

in the conditions under which the jump size distributions under the two

probability measures fall into the same parametric class. We show that it

is necessary and sufficient for the jump size distribution to follow a natural

exponential mixture family at all points in time. Immediate applications of

these results in financial engineering are discussed.

Keywords: Esscher transform, additive processes, compound Poisson, jump-

size distribution, natural exponential family

JEL Classification: G13

MS Classification (2010): 60G51, 62E10
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IV.1 Introduction

This chapter models asset dynamics as exponential additive jump-diffusion (AJD)

processes. In contrast to standard time-homogeneous jump-diffusion (THJD) processes,

as considered by for example Merton (1976) and Kou (2002), these allow for a time-

dependence of all parameters and, in particular, the jump intensity and the jump size

distribution. In general, the corresponding markets are incomplete in the Harrison and

Pliska (1981) sense and, consequently, the risk-neutral probability measure is not unique

if it exists.

In the mathematical finance literature that solely focuses on the valuation of contingent

claims, the problem of selecting a martingale measure is often bypassed by directly

specifying the stochastic dynamics under the risk-neutral probability measure; see for

example Cai and Kou (2011). The model parameters are then calibrated to the market

prices of plain vanilla options. Criteria for model selection are the in- and out-of-sample

goodness of fit to the Black and Scholes (1973) implied volatility surface and the empirical

robustness of the corresponding hedging and replication strategies; see for example Bakshi

et al. (1997).

However, the econometric literature approaches the model selection problem from a

different angle by focusing on the physical asset dynamics. The parameters are estimated

from the time series of historical returns through maximum likelihood or the generalized

method of moments; see for example Ball and Torous (1983), Sørensen (1991), Aı̈t-Sahalia

(2002, 2004), Bates (2006) and Ramezani and Zeng (1999, 2007). Models are selected based

on their ability to reflect the stylized empirical facts of a particular asset class. Typical test

statistics to evaluate the relative fit of two models to the same data set are the likelihood

ratio and the Bayesian information criterion. To be able to price contingent claims, one

then has to specify the change of measure process that defines the corresponding risk-

neutral asset price dynamics.

Often, ad-hoc assumptions about the market price of jump risk are made to obtain a

risk-neutral probability measure that differs from the physical probability measure only

by the average expected return; see for example Merton (1976). Instead, Gerber and

Shiu (1994b) propose to define the Radon-Nikodým derivative process through an Esscher

transform of the logarithmic return process. They show that this choice arises as the

equilibrium change of measure process in certain economies where the representative agent
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has iso-elastic utility of consumption. Naik and Lee (1990) obtain a similar result in a

Lucas (1978) type pure exchange economy where asset prices follow a Merton (1976) jump-

diffusion process. Again, the assumption of iso-elastic utility is key, because it leads to

an exponential form of the stochastic discount factor; see Milne and Madan (1991) and

Kou (2002) for further applications. In general, the Esscher transform induces a non-

zero market price of jump risk. Consequently, the dynamics of the jump components

under the physical and risk-neutral probability measures differ. Moreover, the jump size

distributions may fall into different parametric classes. However, this is undesirable from

a modeling perspective because the two distributions cannot be compared directly to each

other based on their respective parameter vectors.

It is beneficial to specify the jump size distribution of logarithmic returns to

follow a parametric class that is closed under a measure change defined through an

Esscher transform, even when the dynamics under the physical probability measure are

irrelevant. As noted by Gerber and Shiu (1994b), the Radon-Nikodým derivative process

corresponding to the change of numéraire from the bank account to the spot asset can

be represented as an Esscher transform of the logarithmic return process with a unit

transform parameter. This application is central because it often simplifies the contingent

claim valuation problem significantly. As shown by Geman et al. (1995), it allows to

express the value of European plain vanilla options in terms of two probabilities under the

risk-neutral and asset price probability measures, respectively. Consequently, if the jump

size distribution is closed under an Esscher transform measure change, then being able to

evaluate the cumulative distribution function of the logarithmic returns under the risk-

neutral probability measure is sufficient to price European plain vanilla options; see for

example Kou (2002) for an application.

The literature mostly focuses on asset prices that are driven by THJD processes,

and our AJD models nest these as special cases. We show that a time-dependent

instantaneous risk-free interest rate, and thus non-constant market prices of risk, renders

a THJD processes under the physical probability measure into a strictly AJD process

under the Esscher transform martingale measure (ETMM). Similarly, a non-constant jump

frequency under the physical probability measure induces a time-dependence of the jump

size distribution under the ETMM.

This chapter analyzes conditions under which a class of AJD processes is closed under

an Esscher transform measure change. We show that it is both necessary and sufficient for
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the jump size distribution at each point in time to follow a natural exponential mixture

(NEM) family. This result is important as it allows us to narrow down the set of candidate

dynamics for a given modeling problem. Further, we fully characterize the parameter

vector under the Esscher transform probability measure (ETPM) in terms of the original

parameter vector and the transform parameter. Immediate applications of this result to,

among others, the THJD models proposed by Merton (1976), Kou (2002) and Cai and

Kou (2011) are provided. Finally, we discuss how our result relates to conjugate prior

distributions in Bayesian statistics and what its implications for the minimal entropy

martingale measure (MEMM) are.

The remainder of this chapter is structured as follows. Section IV.2 introduces the

stochastic setup and formally defines AJD processes. We discuss their main properties

and derive several auxiliary results. Section IV.3 generalizes the Esscher transform to

AJD processes. Section IV.4 discusses AJD processes whose jump size distribution at

each point in time follows an NEM family. We show that this class of processes is closed

under the Esscher transform and characterize its dynamics under the new probability

measure. Applications in financial engineering are also discussed. Section IV.5 concludes

the chapter and proposes directions for future research.

IV.2 Stochastic Setup

Let (Ω,F,F,P) be a complete filtered probability space. We interpret P to be

the physical or real-world probability measure. All considered stochastic processes are

defined on the interval [0, T ∗] for a fixed terminal time 0 < T ∗ < ∞. The filtration

F = (Ft)t∈[0,T ∗] is the P-augmentation of the natural filtration induced by the process

X = {Xt : t ∈ [0, T ∗]}, defined below. That is

Ft = σ (Xu : u ∈ [0, t]) ∨N ,

where N are the corresponding P-null sets. By Proposition II.7.7 in Karatzas and Shreve

(1991), p. 90, this ensures the right-continuity of F.

Throughout this chapter, the dynamics of X follow an AJD process, as defined in

Section IV.2.3. It can be uniquely decomposed into the independent sum of a continuous
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component Xc = {Xc
t : t ∈ [0, T ∗]} and a pure jump component Xj =

{
Xj
t : t ∈ [0, T ∗]

}
.

While Xc follows a drifted Brownian motion with time-dependent drift and diffusion

coefficients, which is extensively studied in the literature, the dynamics of Xj are novel.

The pure jump component follows an additive compound Poisson (ACP) process, where

not only the jump intensity but also the jump size distribution is allowed to be time-

dependent, though non-random. In Section IV.2.1, we formally define Xj , show that it is

an additive process, and discuss its properties in detail. We then generalize these results

to AJD processes in Section IV.2.3.

We consider a frictionless market in which two primary assets can be traded

continuously in the interval [0, T ∗]. S = {St : t ∈ [0, T ∗]} is the price process of a risky,

limited liability spot asset given by

St = S0eXt ,

with initial value S0 ∈ R+. B = {Bt : t ∈ [0, T ∗]} is the value of a money market account

with non-random dynamics

dBt = r(t)Btdt

and initial value B0 = 1. Here, r : [0, T ∗]→ R is the deterministic instantaneous risk-free

interest rate satisfying ∫ T ∗

0
|r(u)|du <∞.

Since X follows an ACP process with random jump sizes, this market is generally

incomplete in the Harrison and Pliska (1981) sense. Consequently, the risk-neutral

probability measure is not unique, if it exists.

Following Jacod and Shiryaev (2003), we start by introducing a stochastic integration

operator ◦ before defining the dynamics of X because this simplifies the notation in many

cases.

Definition IV.1 (Stochastic Integration Operator).

Let α = {αt : t ∈ [0, T ∗]} and X = {Xt : t ∈ [0, T ∗]} be two stochastic processes. Then for

any 0 ≤ s ≤ t ≤ T ∗, the notation

(α ◦X)[s,t] =

∫ t

s
αudXu

is used to denote the stochastic integral of α with respect to X over the interval [s, t],

given that this expression is well-defined. 4
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IV.2.1 Additive Compound Poisson Processes

In the following sections, we use the concept of a Poisson random measure repeatedly.

For convenience, we start by providing its definition; see also Definition 19.1 in Sato (1999),

p. 119 and Definition 2.18 in Cont and Tankov (2004), p. 57.

Definition IV.2 (Poisson Random Measure).

Let (Ω,F,P) be a probability space and µ be a positive Radon measure on (E, E), where

E ⊆ Rn and E := B(E) is the Borel σ-algebra on the Euclidian subspace E. A Poisson

random measure M : Ω × E → N0 on E with intensity measure µ is an integer valued

random measure such that

(i) for any bounded measurable set A ∈ E , M(·, A) < ∞ is an integer valued random
variable,

(ii) for each measurable set A ∈ E , M(·, A) is a Poisson random variable with mean
µ(A), and

(iii) for disjoint measurable sets A1, A2, . . . , An ∈ E , the random variables
M (·, A1) ,M (·, A2) , . . . ,M (·, An) are independent. 4

We recall, that a Radon measure on (E, E) assigns a finite measure to every compact

measurable set A ∈ E ; see for example Section 7.1 in Folland (1984), pp. 204–209, or

Definition 2.2 in Cont and Tankov (2004), p. 23. Note that Definition IV.2 is not in its

most general form but is instead chosen to suit our purposes. According to Proposition

19.4 in Sato (1999), p. 122, given any Radon measure µ on (E, E) defined as above, there

exists a Poisson random measure M with intensity measure µ; see also Proposition 2.14

in Cont and Tankov (2004), pp. 57–58. Thus, it is sufficient to characterize the intensity

measure. Using the concept of Poisson random measures, we can now define an ACP

process that allows for a time-dependence in both its jump intensity and its jump size

distribution.

Definition IV.3 (Additive Compound Poisson Process).

An ACP process Xj =
{
Xj
t : t ∈ [0, T ∗]

}
is defined as

Xj
t =

∫ t

0

∫ +∞

−∞
xJX(du× dx),
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where JX is a Poisson random measure on (E, E) with E = [0, T ∗] × R. Its intensity

measure can be decomposed as µ(dt × dx) = λ(t)f(t, x)dtdx. Here, the jump intensity

λ : [0, T ∗]→ R+ is a deterministic function satisfying

∫ T ∗

0
λ(u)du <∞

and for each time 0 ≤ t ≤ T ∗, f(t, ·) : R→ R+ is a probability density function (PDF). 4

Note that the above definition, in particular, implies that µ is a finite measure on R

for each 0 ≤ t ≤ T ∗, that is,

∫ T ∗

0

∫ +∞

−∞
µ(du× dx) <∞.

Thus, Xj has piecewise constant trajectories; see for example Proposition 3.8 in Cont and

Tankov (2004), p. 85. Like time-homogeneous compound Poisson processes, Xj is a right-

continuous pure jump process. The expected number of jumps over any time interval [s, t]

for 0 ≤ s ≤ t ≤ T ∗ is given by

ζ(t)− ζ(s) =

∫ t

s
λ(u)du.

Conditional on observing a jump at time 0 ≤ t ≤ T ∗, its jump size follows the PDF f(t, x).

This process no longer has stationary increments because of the time-dependence of the

jump intensity and the jump size distribution and, thus, it is generally not a Lévy process.

However, as already implied by the chosen nomenclature, Xj is an additive process. The

following lemma formally establishes this.

Lemma IV.1 (Xj Is an Additive Process).

The ACP process Xj =
{
Xj
t : t ∈ [0, T ∗]

}
in Definition IV.3 is an additive process.

Following Definition 1.6 in Sato (1999), p. 3, this entails that it

(i) starts at X0 = 0,

(ii) has independent increments, and

(iii) is stochastically continuous;

see also Definition 14.1 in Cont and Tankov (2004), p. 454.
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Proof Property (i) is obvious from the definition as an integral. The independence of

increments follows immediately from the independence of the Poisson random measure

over disjoint sets; see Definition IV.2.(iii). Stochastic continuity requires that

lim
h↓0

P
{∣∣∣Xj

t+h −X
j
t

∣∣∣ > ε
}

= 0

for all ε > 0. This can be shown to hold by dominated convergence, since the probability

on the left-hand side is bounded from above by the probability of observing one or more

jumps over the interval [t, t+h], which converges to zero in the limit. See Appendix IV.A.2

for details. �

Note that some definitions of additive processes also include the extra condition of right-

continuous sample paths. However, this is not necessary because every additive process,

as defined above, admits a unique right-continuous modification; see Theorem 11.5 in Sato

(1999), p. 63. In the following sections, we will always assume implicitly that the process

under consideration is this right-continuous modification.

Only a few papers in the mathematical finance literature consider risky asset prices

driven by additive processes explicitly. One example is Fujiwara (2009), who characterizes

the MEMM under these dynamics. In contrast to this chapter, he allows for more

general jump dynamics and does not impose the decomposition of the intensity measure

in Definition IV.3.

The result in Proposition IV.1 below is repeatedly applied in what follows to find

characteristic functions and construct exponential martingales.

Proposition IV.1 (Exponential Form of Xj).

Let Xj =
{
Xj
t : t ∈ [0, T ∗]

}
be an ACP process and let α : [0, T ∗]→ R be a deterministic

function. Then for any 0 ≤ t ≤ T ∗

EP

[
exp

{
i
(
α ◦Xj

)
[0,t]

}]
= exp

{∫ t

0

∫ +∞

−∞

(
eiα(u)x − 1

)
λ(u)f(u, x)dxdu

}
= exp

{∫ t

0
λ(u) (φY (u, α(u))− 1) du

}
,

where

φY (t, ω) =

∫ +∞

−∞
eiωxf(t, x)dx

is the characteristic function of the PDF f(t, x) under P.
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Proof This is a special case of the more general Proposition 19.5 in Sato (1999), pp.

123–124, adapted to the ACP process in Definition IV.3; see also Proposition 3.6 in Cont

and Tankov (2004), p. 78. �

Corollary IV.1 (Characteristic Function of Xj).

Let Xj =
{
Xj
t : t ∈ [0, T ∗]

}
be an ACP process. Then, for any 0 ≤ t ≤ T ∗, the

characteristic function φ
Xj

t
(ω) of Xj

t under P is given by

φ
Xj

t
(ω) = exp

{∫ t

0

∫ +∞

−∞

(
eiωx − 1

)
λ(u)f(u, x)dxdu

}
= exp

{∫ t

0
λ(u) (φY (u, ω)− 1) du

}
.

Proof This immediately follows from applying Proposition IV.1 with α(u) = ω. �

Lemma IV.2 below shows that, as for standard time-homogeneous compound Poisson

processes, the distribution of the process at any point in time can be decomposed into

the sum of independent processes with the same jump size distribution but a scaled down

jump intensity.

Lemma IV.2 (Infinite Divisibility).

Let Xj =
{
Xj
t : t ∈ [0, T ∗]

}
be an ACP process. For every 0 ≤ t ≤ T ∗, the distribution of

Xj
t is infinitely divisible. For any n = 2, 3, . . ., there exist n independent and identically

distributed (i.i.d.) random variables Y 1,j
t , Y 2,j

t , . . . , Y n,j
t such that

Xj
t ∼P

n∑
i=1

Y i,j
t .

In particular, each Y i,j =
{
Y i,j
t : t ∈ [0, T ∗]

}
is an ACP process with jump intensity λ̂(t) =

λ(t)/n and the same time-dependent jump size distribution as Xj.

Proof The infinite divisibility of the distribution of Xj
t for every 0 ≤ t ≤ T ∗ follows from

Xj being an additive process as shown in Lemma IV.1; see Theorem 9.1 in Sato (1999),

p. 47. It is straightforward to check that the n-th power of the characteristic function of

Y 1,j
t is equal to φ

Xj
t
(ω). �
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Similar to Lévy processes, the distribution of an additive process at each point in time

can be fully characterized through a generating triplet. However, we in general need to

define these triplets for each point in time separately because of their non-stationarity.

Lemma IV.3 (System of Generating Triplets).

Let Xj =
{
Xj
t : t ∈ [0, T ∗]

}
be an ACP process. Then its system of generating

triplets with respect to the truncation function g(x) = 0 is given by
(
σ2, ν, γ

)
={(

σ2(t), ν(t, ·), γ(t)
)

: t ∈ [0, T ∗]
}

, where

σ2(t) = 0

ν(t, x) =

∫ t

0
λ(u)f(u, x)du

γ(t) = 0.

Proof This immediately follows from Corollary IV.1, Lemma IV.2 and the Lévy-

Khintchine representation; see for example Theorems 8.1 and 9.8 in Sato (1999), pp.

37–38 and p. 52. �

When defining the Esscher transform in Section IV.3, we need to construct exponential

martingales from AJD processes. Lemma IV.4 lays the foundation for this.

Lemma IV.4 (Complex Exponential Martingale of Xj).

Let Xj =
{
Xj
t : t ∈ [0, T ∗]

}
be an ACP process adapted to the filtration F. Let α : [0, T ∗]→

R be a deterministic function and define the process Zj =
{
Zjt : t ∈ [0, T ∗]

}
by

Zjt = exp
{

i
(
α ◦Xj

)
[0,t]

}(
EP

[
exp

{
i
(
α ◦Xj

)
[0,t]

}])−1
.

Then Z is a complex valued (P,F)-martingale.

Proof This follows from Xj having independent increments in conjunction with Propo-

sition IV.1. See Appendix IV.A.1 for details. �
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IV.2.2 Time-Changed Compound Poisson Processes

In the following sections, we will often consider the special case when the jump size

distribution does not depend on time. This yields a standard compound Poisson process

with time-dependent intensity and allows for a more well-known representation in terms of

a Poisson sum over i.i.d. random variables. The following definitions and lemmata make

this precise.

Definition IV.4 (Time-Changed Compound Poisson Process).

A time-changed compound Poisson (TCCP) process is an ACP process whose intensity

measure can be decomposed as µ(dt× dx) = λ(t)f(x)dtdx, where f : R→ R+ is a PDF.

4

Cox (1955) considers a more general class of time-inhomogeneous Poisson processes,

where the instantaneous jump intensity is itself stochastic.

Lemma IV.5 (Time-Changed Compound Poisson Representation I).

Let Xj =
{
Xj
t : t ∈ [0, T ∗]

}
be a TCCP process with deterministic jump intensity. Then

it can be represented as

Xj
t =

Nt∑
i=1

Yi,

where N = {Nt : t ∈ [0, T ∗]} is a one-dimensional Poisson process and (Yi)i∈N is a

sequence of i.i.d. scalar random variables with PDF f : R → R+ on (Ω,F,F,P). The

Poisson process has a deterministic intensity λ : [0, T ∗] → R+ and is independent of the

sequence of random variables (Yi)i∈N.

Proof We compute the characteristic function of the proposed representation of Xj and

show that it is equal to the one in Corollary IV.1 when the jump size distribution is time-

homogeneous. See Appendix IV.A.3 for details. �

The following lemma justifies the choice of the nomenclature for the class of processes in

Definition IV.4.

Lemma IV.6 (Time-Changed Compound Poisson Representation II).

Let Xj =
{
Xj
t : t ∈ [0, T ∗]

}
be a TCCP process and let X̃j =

{
X̃j
t : t ∈ [0, T ∗]

}
be defined

by

X̃j
t =

Ñt∑
i=1

Y j
i ,
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where Ñ =
{
Ñt : t ∈ [0, T ∗]

}
is another one-dimensional Poisson process on (Ω,F,F,P).

We assume that Ñ has a constant intensity of one and is independent of the sequence of

i.i.d. random variables
(
Y j
i

)
i∈N

. Then Xj
t ∼P X̃

j
ζ(t) for all 0 ≤ t ≤ ζ−1 (T ∗), where ∼P

denotes equality in distribution under the measure P.

Proof By construction, Nt and N̂ζ(t) have the same distribution under P. �

The intuition behind this result is that only the distribution of the total number of jumps

is relevant because the jump size distribution is independent of the jump time. Thus, we

can define a Poisson process with constant intensity and speed up or slow down calendar

time by a deterministic function such that at all times the distribution of the original

Poisson process and the time-changed one are identical.

Finally, it is useful to distinguish clearly between ACP processes that are also TCCP

processes and the ones that are not. Definition IV.5 makes this precise.

Definition IV.5 (Strictly Additive Compound Poisson Processes).

Let Xj =
{
Xj
t : t ∈ [0, T ∗]

}
be an ACP process. It is a strictly ACP process, if it is not

a TCCP process. 4

IV.2.3 Additive Jump-Diffusion Processes

This section extends the ACP dynamics to include a continuous drift and martingale

component. This extension is straightforward but treated separately from the definition

of the pure jump component for clarity of exposition. For brevity, we only discuss the

results that are central to the following applications.

Definition IV.6 (Additive Jump-Diffusion Process).

An AJD process X = {Xt : t ∈ [0, T ∗]} is defined as

Xt = Xc
t +Xj

t .

Here, the process Xc = {Xc
t : t ∈ [0, T ∗]} is the continuous part of X given by

Xc
t =

∫ t

0
γ(u)du+

∫ t

0
σ(u)dWu,
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where γ : [0, T ∗]→ R and σ : [0, T ∗]→ R+ are deterministic functions satisfying∫ T ∗

0

(
|γ(u)|+ σ2(u)

)
du <∞,

W = {Wt : t ∈ [0, T ∗]} is a one-dimensional Brownian motion under P, and Xj ={
Xj
t : t ∈ [0, T ∗]

}
is an ACP process independent of W . 4

Proposition IV.2 provides the exponential form for AJD processes, thus, generalizing

Proposition IV.1.

Proposition IV.2 (Exponential Form of X).

Let X = {Xt : t ∈ [0, T ∗]} be an AJD process and let α : [0, T ∗] → R be a deterministic

function satisfying ∫ T ∗

0

(
|α(u)γ(u)|+ α2(u)σ2(u)

)
du <∞.

Then

EP

[
exp

{
i (α ◦X)[0,t]

}]
= exp

{
i

∫ t

0
α(u)γ(u)du− 1

2

∫ t

0
α2(u)σ2(u)du

+

∫ t

0

∫ +∞

−∞

(
eiα(u)x − 1

)
λ(u)f(u, x)dxdu

}
.

Proof The expectation factors and, thus, the exponential form of X can be expressed as

a product of the exponential forms of the continuous and pure jump components because

of the independence of Xc and Xj . Using that∫ t

0
α(u)σ(u)dWu ∼ N

(
0,

∫ t

0
α2(u)σ2(u)du

)
,

we find that

EP

[
exp

{
i (α ◦Xc)[0,t]

}]
= exp

{
i

∫ t

0
α(u)γ(u)du− 1

2

∫ t

0
α2(u)σ2(u)du

}
and the claim follows. �

Similar to Proposition IV.1, this result yields the characteristic function of X as a special

case. Analogous to Lemma IV.4, we can construct a complex exponential martingale from

X. We omit the details for brevity.
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IV.3 Esscher Transform Probability Measures

This section defines an equivalent probability measure through the Esscher transform

when the risk process is given by an AJD process. We show that the ETPM constructed

from a time-inhomogeneous jump-diffusion process generally induces a time-dependence

of the jump size distribution. The ETMM is a special case of the ETPM, where the

transform process is chosen such that the stock price is a martingale under the bank

account numéraire. Our analysis unveils an, at the outset surprising, connection between

the short-rate process and the jump dynamics under the ETMM.

Following Esscher (1932), we start by giving the definition of an Esscher transform of

a random variable.

Definition IV.7 (Esscher Transform).

Let Z be a random variable whose law under P is given by some distribution function FZ(x)

with corresponding characteristic function φZ(ω). For a transform parameter β ∈ R, the

Esscher transform distribution function F̂Z(x) of FZ(x) is given by

dF̂Z(x) =
eβxdFZ(x)

φZ(−iβ)
,

conditional on

φZ(−iβ) =

∫ +∞

−∞
eβxdFZ(x) <∞. 4

Thus, the Esscher transform corresponds to an exponential tilting of the PDF, if

available, and a subsequent re-normalization. This requires that the β-th exponential

moment of Z under P is well-defined. Gerber and Shiu (1994b) extend this approach to

a Lévy process X = {Xt : t ∈ [0, T ∗]} by applying an exponential tilting to the PDF of

Xt at all points in time t ∈ [0, T ∗]. Analogous to Definition IV.7, this is still possible in

terms of a Riemann-Stieltjes integral, even when the distribution function of Xt is not

differentiable. Definition IV.8 generalizes this approach to additive processes. The non-

stationarity now calls for a time-dependent transform parameter. We refer to Kallsen

and Shiryaev (2002) for an application to semimartingales, where the change of measure

process takes a similar structure.

Definition IV.8 (Esscher Transform Process).

The Esscher transform process X̂ =
{
X̂t : t ∈ [0, T ∗]

}
of the additive process X =
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{Xt : t ∈ [0, T ∗]} with deterministic transform parameter β : [0, T ∗]→ R is given by

X̂t = exp
{

(β ◦X)[0,t]

}(
EP

[
exp

{
(β ◦X)[0,t]

}])−1
,

conditional on ∫ T ∗

0

(
|β(u)γ(u)|+ β2(u)σ2(u)

)
du <∞

and ∫ T ∗

0

∫ +∞

−∞
eβ(u)xµ(du× dx) <∞. 4

Lemma IV.7 (X̂ Is a Radon-Nikodým Derivative Process).

The Esscher transform process X̂ =
{
X̂t : t ∈ [0, T ∗]

}
in Definition IV.8 constitutes a

valid Radon-Nikodým derivative process.

Proof For X̂ to be a valid Radon-Nikodým derivative process, it has to be a (P,F)-

martingale starting at X̂0 = 1. The latter property is obvious from Definition IV.8. Next,

we factor X̂ into two terms linked to the continuous and jump components Xc and Xj ,

respectively. We can show that each of these independent processes is a (P,F)-martingale

and, thus, their product is as well. All details are provided in Appendix IV.B.1. �

Definition IV.9 (Esscher Transform Probability Measure).

Let X = {Xt : t ∈ [0, T ∗]} be an AJD process. The ETPM P̂(X,β) equivalent to P on

[0, T ∗] is defined through the Radon-Nikodým derivative process X̂ =
{
X̂t : t ∈ [0, T ∗]

}
in Definition IV.8. For all 0 ≤ t ≤ T ∗, we have

ξt
(
P, P̂

)
=

dP̂
dP

∣∣∣∣∣Ft = exp

{∫ t

0
β(u)σ(u)dWu −

1

2

∫ t

0
β2(u)σ2(u)du

}
exp

{∫ t

0

∫ +∞

−∞
β(u)xJX(du× dx)

−
∫ t

0

∫ +∞

−∞

(
eβ(u)x − 1

)
λ(u)f(u, x)dxdu

}
P-a.s..

We denote the set of all ETPM by P(X). 4
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Again, the Radon-Nikodým derivative process factors into a change of measure process for

the continuous and jump parts of X, respectively, because of the independence of Xc and

Xj . The following standard result characterizes the drift of Xc under the new probability

measure P̂(X,β).

Lemma IV.8 (Dynamics of Xc under P̂(X,β)).

Let Xc = {Xc
t : t ∈ [0, T ∗]} be the continuous component of an AJD process X =

{Xt : t ∈ [0, T ∗]}. Then

Xc
t =

∫ t

0

(
γ(u) + β(u)σ2(u)

)
du+

∫ t

0
σ(u)dŴu,

where the process Ŵ =
{
Ŵt : t ∈ [0, T ∗]

}
is a standard one-dimensional Brownian motion

under P̂(X,β).

Proof This is a direct consequence of the Girsanov theorem for Brownian motions; see for

example Theorem III.5.1 in Karatzas and Shreve (1991), p. 191. In particular, it entails

that the process

Ŵt = Wt −
∫ t

0
β(u)σ(u)du.

is a one-dimensional standard Brownian motion under P̂(X,β) and the result follows by

substitution. �

Note that the conditions imposed on the transform parameter in Definition IV.8 are

sufficient for the Lebesgue integral in the dynamics of Xc under P̂(X,β) to be well-defined.

In the following sections, we discuss the effect of the measure transformation on the ACP

process in detail. We start by finding the characteristic function of Xj under P̂(X,β).

Proposition IV.3 (Dynamics of Xj under P̂(X,β) I).

Let Xj =
{
Xj
t : t ∈ [0, T ∗]

}
be the ACP pure jump component of an AJD process X =

{Xt : t ∈ [0, T ∗]} under P. Let β : R+ → R be such that∫ T ∗

0

∫ +∞

−∞
eβ(u)xf(u, x)dxdu <∞.

Then Xj is also an ACP process under the ETPM P̂(X,β) with intensity measure µ̂(dt×
dx) = λ̂(t)f̂(t, x)dtdx, where

λ̂(t) = λ(t)φY (t,−iβ(t)),

f̂(t, x;β(t)) =
eβ(t)xf(t, x)

φY (t,−iβ(t))
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and φY (t, ω) is the characteristic function of the PDF f(t, x) under P as defined in

Proposition IV.1.

Proof This is shown by computing the characteristic function φ̂
Xj

t
(ω) of Xj

t under

P̂(X,β). We start by making a change of measure to represent φ̂Xt(ω) as an expectation

under P, which can be computed using Proposition IV.1. The resulting expression

resembles the characteristic function of an ACP process given in Corollary IV.1, but the

PDF needs to be renormalized. All details can be found in Appendix IV.B.2. �

We observe that, for each time 0 ≤ t ≤ T ∗, the jump size distribution under the ETPM

P̂(X,β) is given by the Esscher transform of the corresponding jump size distribution

under the original probability measure P with transform parameter β(t); compare to

Definition IV.7.

Corollary IV.2 (Characteristic Function of f̂(t, x)).

The characteristic function of the jump size PDF f̂(t, x) is given by

φ̂Y (t, ω) =
φY (t, ω − iβ(t))

φY (t,−iβ(t))
.

Proof This is shown as part of the proof to Proposition IV.3 in Appendix IV.B.2. �

In the context of contingent claim valuation, the ETPM has two main applications. First,

it is used to construct the risk-neutral probability measure. As discussed in the literature

review in Section IV.1, the ETMM naturally arises as the pricing kernel in different model

economies, where the representative agent has iso-elastic utility of consumption; see for

example Naik and Lee (1990), Milne and Madan (1991) and Gerber and Shiu (1994b).

Second, the Radon-Nikodým derivative process linked to the change of numéraire from

the bank account to the spot asset corresponds to an Esscher transform of the logarithmic

return process with a constant transform parameter function β(t) = 1; see for example

Gerber and Shiu (1994b) and Geman et al. (1995).

We proceed by defining and characterizing the ETMM.
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Definition IV.10 (Esscher Transform Martingale Measure).

An ETPM P∗ ∈ P(X) is the ETMM, if the discounted asset price process S/B is a (P∗,F)-

martingale. 4

Lemma IV.9 (Characterization of the ETMM).

The discounted asset price process S/B is a (P∗,F)-martingale if the transform parameter

β∗ : [0, T ∗]→ R satisfies

γ(t)− r(t) + σ2(t)

(
β∗(t) +

1

2

)
+ λ(t) (φY (t,−i (1 + β∗(t)))− φY (t,−iβ∗(t))) = 0

for all t ∈ [0, T ∗].

Proof The martingale condition S0 = EP∗ [St/Bt] for all t ∈ [0, T ∗] can equivalently be

expressed as φ∗Xt
(−i) = Bt. Using Propositions IV.2 and IV.3, we obtain

∫ t

0

(
γ(u)− r(u) + σ2(u)

(
β∗(u) +

1

2

)
+ λ∗(u) (φ∗Y (u,−i)− 1)

)
du = 0.

We substitute for the jump frequency and the characteristic function of the jump size

distribution under P using Proposition IV.3 and Corollary IV.1 to obtain the result. �

Note that the above characterization does not mean to imply the existence of the ETMM.

For any fixed t ∈ [0, T ∗], the conditions under which this problem has a solution are very

similar to the standard time-homogeneous case. We refer to the proof of Proposition 9.9

in Cont and Tankov (2004), pp. 310–310, who discuss the existence of the ETMM for

Lévy processes; see also Section 2 in Gerber and Shiu (1994a), pp. 197–200. Delbaen and

Schachermayer (1994) generalize the fundamental theorem of asset pricing due to Harrison

and Pliska (1981) by showing that in general semimartingale markets, the existence of a

risk-neutral probability measure is equivalent to the absence of arbitrage. It should be

noted that the non-existence of the ETMM does not imply the existence of an arbitrage,

as the ETMM is only one possible construction of the risk-neutral probability measure.

The condition in Lemma IV.9 has one interesting consequence. Assume that

logarithmic returns follow a THJD process under the physical probability measure. If the

risk-free interest rate is a non-constant deterministic function of time, then Lemma IV.9

implies that β∗(t) is non-constant as well. Thus, by Proposition IV.3, both the jump

intensity and the jump size distribution become time-dependent under the ETMM and
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we obtain a strictly ACP process. The connection between the risk-free rate and the

risk-neutral jump dynamics seems surprising at first. By assumption, X follows a THJD

process under P. Thus, a non-constant instantaneous risk-free rate implies a time-varying

excess return. Since the jump risk is priced under the Esscher transform, this yields a non-

constant market price of jump risk and, consequently, also a time-varying jump intensity

and jump size distribution under the ETMM. We illustrate this by giving an example

based on the Merton (1976) jump-diffusion model.

Example IV.1 (Merton (1976) with a Term-Structure of Interest Rates).

Following Merton (1976), we assume that the physical dynamics of the logarithmic returns

exhibit normally distributed jumps, that is

Xt =

(
µ− 1

2
σ2 − λ (φY (−i)− 1)

)
t+ σWt +

Nt∑
i=1

Yi,

where N = {Nt : t ∈ [0, T ∗]} is a one-dimensional Poisson process with a constant intensity

λ ∈ R+ under P, and (Yi)i∈N is a sequence of i.i.d. N
(
γ, δ2

)
normal random variables.

Assume that we estimate µ = 10%, σ = 20%, λ = 15, γ = −0.50% and δ = 2.50% from

the historical time series of returns. Let the instantaneous interest rate be given by a

Nelson and Siegel (1987) exponential polynomial of the form

r(t) = ζ0 + ζ1e−t/η.

The corresponding term-structure of zero-coupon yields is then given by

y(t) =
1

t

∫ t

0
r(u)du

= ζ0 + ζ1

(η
t

)(
1− e−t/η

)
.

Assume that, by calibrating the parameters to the current term-structure of interest

rates, we obtain ζ0 = 5.00%, ζ1 = −2.00% and η = 1.50. This yields a strictly

increasing and concave term-structure of instantaneous forward rates with r(0) = 3.00%

and limt→∞ r(t) = 5.00%.

Using Lemma IV.9, we numerically solve for the transform parameter function β∗(t)

using a root-search routine. Figure IV.1 shows the time-dependence of the jump-diffusion

parameters under the ETMM. Since the risk premium under the physical probability

measure is positive for all time horizons, the expected return from jumps over any fixed
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time interval is lower under the ETMM than under the physical probability measure. This

corresponds to a lower mean jump return γ∗(t) and a higher jump frequency λ∗(t). �

Now assume that the logarithmic returns follow a TCCP process under the physical

probability measure and the risk-free interest rate is constant. By a similar argument,

it follows from Lemma IV.9 that the transform function β∗(t) becomes time-dependent.

Consequently, a TCCP process under the physical probability measures is rendered into

a strictly ACP process under the ETMM.

These two examples provide further justification for considering ACP processes. They

show that ACP processes can arise quite naturally under a measure transformation from

common asset dynamics.

IV.4 Natural Exponential Families

In this section, we define two subclasses of ACP processes, where, at each time 0 ≤
t ≤ T ∗, the jump size distribution is a natural exponential (NE) family or a finite mixture

thereof. The important property of these special types of ACP processes is that they are

closed under an Esscher transform measure change. To be able to better focus on the key

idea, we start by deriving the main results for the simpler case of no mixing before moving

on to the more general case.

IV.4.1 One-Parameter Natural Exponential Families

We start by recalling the following two definitions; see for example Chapter 1.6 in

Bickel and Doksum (2001), pp. 49–66.

Definition IV.11 (Exponential Family).

An exponential family is a class of probability distributions indexed by a parameter vector

η ∈ Rn for some n ∈ N whose PDF admits the representation

f(x;η) = a(x) exp {η · T (x)− b(η)} ,

where T : R→ Rn is the sufficient statistic, β : Rn → R and a : R→ R+. 4
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Figure IV.1: Sample parameters of the Merton (1976) model under the ETMM

when the instantaneous risk-free interest rate is time-dependent.
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Definition IV.12 (Natural Exponential Family).

An NE family is a class of probability distributions indexed by a parameter θ ∈ R, whose

PDF admits the representation

f(x; θ) = a(x) exp {θx− b(θ)} .

We define DNE(b(·)) as the class of NE families characterized by the function b(θ) and

formally write f(x; θ) ∈ DNE(b(·)) to indicate that the PDF f(x; θ) is a member of

DNE(b(·)). 4

Thus, an NE family is a one-parameter exponential family, whose sufficient statistic

T (x) = x is the identity function. Given the class of exponential families DNE(b(·)) that a

PDF belongs to, it is fully characterized by the particular value of the parameter θ. Note

that many multi-parameter classes of distributions are NE families when considering all

but one parameter as fixed; see also the examples following Proposition IV.4.

Lemma IV.10 (Characteristic Function of Natural Exponential Families).

Let Z be a random variable whose distribution under P is a DNE(b(·)) NE family with

parameter θ. Then the characteristic function φZ(ω) of Z under P is given by

φZ(ω) = exp {b(θ + iω)− b(θ)} .

Proof This follows from a completion of the exponent in the integrand defining the

characteristic function; see Appendix IV.C.1 for details. �

Note that the characteristic function of a random variable following an NE family only

depends on the functional form of b(θ) but not on a(x). Since the characteristic function

uniquely identifies a distribution, see for example Theorem 3.1.1 in Lukacs (1970), p. 28,

it follows that b(θ) fully characterizes any NE family. This justifies the notation DNE(b(·))
introduced in Definition IV.12.

Definition IV.13 (Natural Exponential Additive Compound Poisson

Processes).
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Let Xj =
{
Xj
t : t ∈ [0, T ∗]

}
be an ACP process. It is an NE-ACP process, if the intensity

measure can be represented as

µ(dt× dx) = λ(t)f(t, x; θ(t))dtdx,

where, for each time 0 ≤ t ≤ T ∗, f(t, ·; θ(t)) ∈ DNE (b(t, ·)) : R → R+ is an NE family

characterized by the function b(t, ·) and with parameter θ(t). Thus, any NE-ACP process

is fully characterized by the system of triplets

(λ, θ, b) = {(λ(t), θ(t), b(t, ·)) : t ∈ [0, T ∗]} . 4

The system of triplets (λ, θ, b) used to uniquely identify an NE-ACP process is not be

confused with its system of generating triplets, as discussed in Lemma IV.3. The latter is

a much more general concept and applies to all additive processes.

Proposition IV.4 (Dynamics of Xj under P̂(X,β) II).

Let Xj =
{
Xj
t : t ∈ [0, T ∗]

}
be the ACP pure jump component of an AJD process X =

{Xt : t ∈ [0, T ∗]}. Assume that Xj is an NE-ACP process under P with system of triplets

(λ, θ, b) = {(λ(t), θ(t), b(t, ·)) : t ∈ [0, T ∗]}. Then Xj is also an NE-ACP process under the

ETPM P̂(X,β) with system of triplets
(
λ̂, θ̂, b

)
=
{(
λ̂(t), θ̂(t), b(t, ·)

)
: t ∈ [0, T ∗]

}
, where

λ̂(t) = λ(t)φY (t,−iβ(t)),

θ̂(t) = θ(t) + β(t)

and

φY (t, ω) = exp {b(t, θ(t) + iω)− b(t, θ(t))}

as in Lemma IV.10. In particular, for each time 0 ≤ t ≤ T ∗, the jump size PDFs

f(t, x; θ(t)) and f̂
(
t, x; θ̂(t)

)
are the same NE family DNE(b(t, ·)).

Proof It follows from Proposition IV.3, thatXj is also an ACP process under P̂(X,β) with

the given jump intensity. Therefore, it only remains to show that, if, for each 0 ≤ t ≤ T ∗,
the jump size PDF f(t, x; θ(t)) is an NE family under P, then, f̂

(
t, x; θ̂(t)

)
is the same

NE family under P̂(X,β) with the given parameter. Using Proposition IV.3 again, in
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conjunction with Definition IV.12, and substituting for φY (t,−iβ(t)) using Lemma IV.10,

we obtain

f̂
(
t, x; θ(t), β(t)

)
= a(t, x) exp {(θ(t) + β(t))x− b(t, θ(t) + β(t))} ,

which justifies setting θ̂(t) = θ(t) + β(t). We see that f̂
(
t, x; θ̂(t)

)
is also an NE family.

Since the function b(θ) is unaffected by the change of measure, it follows by Lemma IV.10

and the discussion succeeding it that, for each 0 ≤ t ≤ T ∗, the jump size distributions

under P and P̂(X,β) are the same NE family.

Alternatively, we can use Corollary IV.2 in conjunction with the representation of the

characteristic function for NE families in Lemma IV.10 to obtain

φ̂Y (t, ω) = exp {b (t, θ(t) + β(t) + iω)− b (t, θ(t) + β(t))} .

By Lemma IV.10, we recognize this as the characteristic function of an NE family

DNE(b(t, ·)) with parameter θ̂(t) and the claim follows. �

This result is important because it shows that, for any choice of β(t), the class of NE-ACP

processes with a jump size distribution in DNE(b(t, ·)) is closed under a measure change

given by an Esscher transform. In Section IV.4.2, we show that there exists a broader

class of jump size distributions, given by a finite mixture of NE distributions, that still

preserves this property. Next, we provide some examples of common NE families and

their parameters under the original probability measure P and the ETPM P̂(X,β). To

keep the presentation as simple as possible, we consider the case of time-homogeneous jump

size distributions as in Definition IV.4. The extension to time-dependent parameters is

straightforward but complicates the notation. The examples are of a purely illustrative

nature and we do not mean to imply that these distributions are good choices to model

the jumps of logarithmic asset returns.

Example IV.2 (Normal Distribution).

Let (Yi)i∈N be a sequence of i.i.d. N
(
γ, δ2

)
normally distributed random variables under

P with PDF

f
(
x; γ, δ2

)
=

1√
2πδ2

exp

{
−(x− γ)2

2δ2

}
.

If we consider the variance δ2 as being fixed, then we see that f (x; γ) is an NE family

with

θ =
γ

δ2
, a(x) =

1√
2πδ2

exp

{
− x2

2δ2

}
, b(θ) =

(θδ)2

2
.
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From Proposition IV.3, it follows that each Yi is N
(
γ̂, δ2

)
normally distributed under

P̂(X,β) with γ̂ = γ + βδ2 since

θ + β =
γ + βδ2

δ2
=

γ̂

δ2
= θ̂. �

Example IV.3 (Gamma Distribution).

Let (Yi)i∈N be a sequence of i.i.d. Γ(a, b) gamma distributed random variables under P

with PDF

f(x; a, b) =
1

Γ(a)ba
xa−1e−x/b1{x ≥ 0}.

If we consider the shape parameter a as being fixed, then we see that f(x; b) is an NE

family with

θ = −1

b
, a(x) =

1

Γ(a)
xa−11{x ≥ 0}, b(θ) = a ln

(
−1

θ

)
.

From Proposition IV.3, it follows that each Yi is Γ
(
a, b̂
)

gamma distributed under P̂(X,β)

with b̂ = b/(1− bβ) since

θ + β = − 1

b/(1− bβ)
= − 1

β̂
= θ̂. �

Example IV.4 (Exponential Distribution).

Let (Yi)i∈N be a sequence of i.i.d. E(λ) exponentially distributed random variables under

P with PDF

f(x;λ) = λe−λx1{x ≥ 0}.

Since the exponential distribution is a special case of the gamma distribution with E(λ) ∼
Γ(1, 1/λ), it follows from Example IV.3 that each Yi is E

(
λ̂
)

exponentially distributed

under P̂(X,β) with λ̂ = λ− β. �

255



IV.4.2 Natural Exponential Mixture Families

Definition IV.14 (Natural Exponential Mixture Family).

An NEM family is a class of probability distributions indexed by an n-dimensional

parameter vector θ = (θ1, θ2, . . . , θn)T and weight vector w = (w1, w2, . . . , wn)T whose

PDF admits the representation

f (x;θ,w) =

n∑
i=1

wifi (x; θi) .

Here, the weights satisfy wi ≥ 0 for all i ∈ {1, 2, . . . , n} and
∑n

i=1wi = 1. Each

fi (x; θi) ∈ DNE (bi(·)) is an NE family. We define DNEM(b(·)) to be the class of NEM

families characterized by the vector valued function b (θ) = (b1 (θ1) , b2 (θ2) , . . . , bn (θn))T .

4

Consequently, a random variable Z follows an NEM distribution if it is defined by a

finite mixture of n random variables {Ai}, the i-th of which is a DNE (bi(·)) NE family with

parameter θi and PDF fi (x; θi). A realization of Z has the same distribution as Ai with

probability wi. We refer to the {Ai} as the mixture components of Z. Note that each Ai is

allowed to follow a different NE family. Since an NE family can be considered a special case

when we mix over a single distribution with unit weight, all the following results generalize

the ones previously obtained. We refer to, for example, Section 1.1 in McLachlan and Peel

(2000), pp. 22–23, for a definition of general finite mixture distributions.

Lemma IV.11 (Characteristic Function of Natural Exponential Mixture Fam-

ilies).

Let Z be a random variable whose distribution under P is a DNEM(b(·)) NEM family with

parameter vector θ and weight vector w. Then, the characteristic function φZ(ω) of Z

under P is given by

φZ(ω) =
n∑
i=1

wi exp {bi (θi + iω)− bi (θi)} .

Proof This follows immediately from Lemma IV.10 and the linearity of the Fourier

transform. �
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Definition IV.15 (Natural Exponential Mixture Additive Compound Poisson

Processes).

Let Xj =
{
Xj
t : t ∈ [0, T ∗]

}
be an ACP process. It is an NEM-ACP process if the intensity

measure can be represented as

µ(dt× dx) = λ(t)f(t, x;θ(t),w(t))dtdx,

where, for each time 0 ≤ t ≤ T ∗, f(t, ·;θ(t),w(t)) ∈ DNEM (b(t, ·)) : R → R+ is an

NEM family characterized by the function b(t, ·) with parameter vector θ(t) and weight

vector w(t). Here, b : R+ × Rn → Rn, θ : R+ → Rn and w : R+ → [0, 1]n such that∑n
i=1wi(t) = 1. Thus, any NEM-ACP process is fully characterized by the system of

quadruplets

(λ,θ,w, b) = {(λ(t),θ(t),w(t), b(t, ·)) : t ∈ [0, T ∗]} . 4

Proposition IV.5 below is our main result. It shows for any choice of b(t, ·), the class

of NEM-ACP processes with jump size distribution in DNEM(b(t, ·)) is closed under a

measure change given by an Esscher transform.

Proposition IV.5 (Dynamics of Xj under P̂(X,β) III).

Let Xj =
{
Xj
t : t ∈ [0, T ∗]

}
be the ACP pure jump component of an AJD process

X = {Xt : t ∈ [0, T ∗]}. Assume that Xj is an NEM-ACP process under P with

system of quadruplets (λ,θ,w, b) = {(λ(t),θ(t),w(t), b(t, ·)) : t ∈ [0, T ∗]}. Then Xj

is also an NEM-ACP process under the ETPM P̂(X,β) with system of quadruplets(
λ̂, θ̂, ŵ, b

)
=
{(
λ̂(t), θ̂(t), ŵ(t), b(t, ·)

)
: t ∈ [0, T ∗]

}
, where

λ̂(t) = λ(t)φY (t,−iβ(t)),

ŵi(t) =
wi(t)φAi(t,−iβ(t))

φY (t,−iβ(t))
,

θ̂i(t) = θi(t) + β(t),

and

φY (t, ω) =

n∑
i=1

wi(t)φAi(t, ω),

φAi(t, ω) = exp {bi (t, θi(t) + iω)− bi (t, θi(t))}
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as in Lemmata IV.10 and IV.11. Here, φAi(t, ω) is the time 0 ≤ t ≤ T ∗ characteristic

function of the i-th mixing component under the original probability measure P. In

particular, for each time 0 ≤ t ≤ T ∗, the jump size PDFs f(t, x;θ(t),w(t)) and

f̂
(
t, x; θ̂(t), ŵ(t)

)
are the same NEM family DNEM (b(t, ·)).

Proof It follows from Proposition IV.3, that Xj is also an ACP process under P̂(X,β)

with the given jump intensity. Therefore, it only remains to show that, if, for each

0 ≤ t ≤ T ∗, the jump size PDF f(t, x;θ(t),w(t)) is an NEM family under P, then

f̂
(
t, x; θ̂(t), ŵ(t)

)
is the same NEM family under P̂(X,β) with the given parameter. The

proof is very similar to that of Proposition IV.4. Again, it is based on explicitly computing

the jump size distribution using Proposition IV.3 in conjunction with Lemmata IV.10

and IV.11. Care must be taken when defining the weight vector ŵ(t) such that it

satisfies Definitions IV.14 and IV.15. Alternatively, we can employ Corollary IV.1 and

Lemmata IV.10 and IV.11 again to find the characteristic function φ̂Y (t, ω). All details

are provided in Appendix IV.C.2. �

Proposition IV.5 shows that not only the parameters of the mixture components but also

their weights change under the ETPM. Each weight wi is scaled by the percentage that

the i-th mixture component contributes to the total β-th exponential moment of the jump

size distribution under P. The main insight is, that for any choice of β(t), the class

of NEM-ACP processes with a jump size distribution in DNEM(b(t, ·)) is closed under a

measure change given by an Esscher transform.

Examples IV.5 and IV.6 below illustrate how Proposition IV.5 can be used to find the

logarithmic return dynamics under both the ETMM and the corresponding asset price

probability measure.

Example IV.5 (Displaced Mixed Exponential Distribution).

Following Cai and Kou (2011), we consider the case where the jump sizes follow a mixed

exponential distribution. Their model augments the Kou (2002) double exponential jump-

diffusion model by adding additional exponential tails; see also Kou and Wang (2003) and

Kou and Wang (2004). The authors motivate this model by showing that a wide variety

of heavy-tailed distributions can be closely approximated through a mixture of two to

four exponential distributions. We consider a further generalization, where each of the

exponential tails is allowed to be displaced away from the origin. See also Chapter II for a
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discussion of and closed-form solutions for European plain vanilla options under displaced

double exponential jump size distributions.

Let (Yi)i∈N be a sequence of i.i.d. M-E (p+,η+,κ+,p−,η−,κ−) displaced mixed

exponentially distributed random variables under P with PDF

fY (x) =

m∑
i=1

p+,iη+,ie
−η+,i(x−κi,+)1 {x ≥ κ+,i}+

n∑
i=1

p−,iη−,ie
η−,i(x−κ−)1 {x ≤ κ−,i} .

Here, p+ ∈ [0, 1]m, η+ ∈ Rm+ , κ+ ∈ Rm+ , p− ∈ [0, 1]n, η− ∈ Rn+ and κ− ∈ Rn−. As usual,

the weight vectors p+ and p− satisfy
∑m

i=1 p+,i +
∑n

i=1 p−,i = 1. Cai and Kou (2011)

allow for the individual weights to be negative, conditional on the resulting PDF being non-

negative everywhere. The authors formulate the model dynamics directly under the risk-

neutral probability measure and, thus, are not concerned with the measure transformation

discussed in this chapter. However, they mention that the mixed exponential dynamics

can be embedded in a Naik and Lee (1990) type general equilibrium economy, thus, giving

rise to an Esscher transform as the Radon-Nikodým derivative process.

From the above representation of the PDF, we see that each Yi is an NEM family, where

the mixing components correspond to m positive and n negative displaced exponential

random variables. In the notation introduced in Definition IV.14, we have

w = (p+,p−)T ,

θ = (−η+,η−)T .

Given the characteristic function for displaced double exponential jumps in Chapter II,

we immediately obtain

φY (ω) =
m∑
i=1

p+,iη+,i

η+,i − iω
eiωκ+,i +

n∑
i=1

p−,iη−,i
η−,i + iω

eiωκ−,i .

From Proposition IV.4, it follows that each Yi is M-E
(
p̂+, η̂+,κ+, p̂−, η̂−,κ−

)
displaced

mixed exponentially distributed under P̂(X,β) with

p̂+,i =
p+,iη+,i

η+,i − β
eβκ+,i

(
m∑
i=1

p+,iη+,i

η+,i − β
eβκ+,i +

n∑
i=1

p−,iη−,i
η−,i + β

eβκ−,i

)−1

,

p̂−,i =
p−,iη−,i
η−,i + β

eβκ−,i

(
m∑
i=1

p+,iη+,i

η+,i − β
eβκ+,i +

n∑
i=1

p−,iη−,i
η−,i + β

eβκ−,i

)−1

,

η̂+,i = η+,i − β,

η̂−,i = η−,i + β. �
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Example IV.6 (Gaussian Mixture Distribution).

We now propose to model the jump size as following a Gaussian mixture distribution. Our

model embeds the Merton (1976) jump-diffusion model with normally distributed jumps

as a special case.

Let (Yi)i∈N be a sequence of i.i.d. M-N
(
w,γ, δ2

)
Gaussian mixture random variables

under P with PDF

fY (x) =
n∑
i=1

wi√
2πδ2

i

exp

{
−(x− γi)2

2δ2
i

}
,

where w ∈ [0, 1]n, γ ∈ Rn and δ ∈ Rn+. The weight vector w satisfies
∑n

i=1wi = 1.

Consequently, each Yi follows an NEM distribution, where each of the n mixing random

variables follows a normal distribution. In the notation of Definition IV.14, we have

θ =

(
γ1

δ2
1

,
γ2

δ2
2

, . . . ,
γn
δ2
n

)T
;

compare to Example IV.2. The corresponding characteristic function is given by

φYi(ω) =

n∑
i=1

wi exp

{
iωγi −

1

2
ω2δ2

i

}
.

From Proposition IV.4 and the result obtained in Example IV.2, it follows that each Yi is

a M-N
(
ŵ, γ̂, δ2

)
Gaussian mixture random variable under P̂(X,β) with

ŵi = wi exp

{
βγi +

1

2
β2δ2

i

}( n∑
i=1

wi exp

{
βγi +

1

2
β2δ2

i

})−1

,

γ̂i = γi + βδ2
i . �

Until now, we only considered discrete mixtures of NE families. In the limit, when n→
∞, we obtain a continuous mixture. The previous results can be seamlessly generalized to

this case. Instead of re-iterating the previous definitions and results, we only provide an

informal discussion of this case and illustrate it through an example. The mixing weights

now correspond to a PDF w : A → R+ on some domain A. Let f(x; y, θ(y)) ∈ DNE (b(y, ·))
be an NE family for each y ∈ A. A continuous NEM family can be represented as

f(x; θ, w) =

∫
A
w(y)f(x; y, θ(y))dy.
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Note that Definition IV.14 corresponds to the special case when w(y) is a discrete PDF

of the form

w(y) =

n∑
i=1

wiδ(y − i),

where δ(x) is the Dirac delta function. The following example based on student’s

t-distribution considers a jump size distribution that is not an NE family but can be

represented as a continuous NEM family.

Example IV.7 (Student’s T -Distribution).

Let (Yi)i∈N be a sequence of i.i.d. N -Γ−1(µ, ξ, σ, γ, δ) normal inverse gamma random

variables under P. That is, each Yi is a normal mean-variance mixture, where the mixing

density is an inverse gamma distribution. It can be represented as

Yi ∼ µ+ ξW + σ
√
WZ,

where Z ∼ N (0, 1) and W ∼ Γ−1(γ, δ) are independent random variables and the

parameters satisfy µ, ξ ∈ R, σ, γ, δ ∈ R+. The PDF is given by

fY (x) =

∫ ∞
0

fW (y; γ, δ)fZ
(
x;µ+ ξy, σ2y

)
dy

=

∫ ∞
0

δγ

Γ(γ)
y−γ−1 exp

{
−δ
y

}
1√

2πσ2y
exp

{
−(x− µ− ξy)2

2σ2y

}
dy.

Consider the special case when µ = ξ = 0, σ = 1 and γ = δ = ν/2. Then, as shown in

Appendix IV.C.3,

fY (x) =
Γ((ν + 1)/2)√
νπΓ(ν/2)

(
1 +

x2

ν

)−(ν+1)/2

.

We recognize this as the PDF of a student’s t-distribution with ν degrees of freedom,

that is X ∼ T (ν). Thus, while each Yi follows a continuous NEM family, it does not

follow an NE family. Nevertheless, we can apply the general result in Proposition IV.3

to find its PDF under P̂(X,β), assuming that it does exist. After some simple algebraic

manipulations, we obtain

f̂Y (x) =

∫ ∞
0

(ν/2)ν/2

φY (−iβ)Γ(ν/2)
y−(ν/2)−1 exp

{
−ν − β

2y2

2y

}
1√
2πy

exp

{
−(x− βy)2

2y

}
dy.

We observe that each Yi is still a normal mean-variance mixture under P̂(X,β) and

consequently follows a continuous NEM family. However, the mixing density ŵ(y) is
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now given by

ŵ(y) =
(ν/2)ν/2

φY (−iβ)Γ(ν/2)
y−(ν/2)−1 exp

{
−ν − β

2y2

2y

}
and, in particular, it no longer follows an inverse gamma distribution. Consequently, each

Yi no longer follows a normal inverse gamma distribution, in general, and a student’s

t-distribution, in particular, under P̂(X,β) either. To find the jump size PDF under

P̂(X,β), we can just apply Proposition IV.3 to obtain

f̂Y =
Γ((ν + 1)/2)

φY (−iβ)
√
νπΓ(ν/2)

(
1 +

x2

ν

)−(ν+1)/2

eβx.

�

We choose this example because it illustrates an important property of continuous

NEM distributions. In principle, any continuous distribution can be approximated through

a Gaussian mixture to an arbitrary precision; see for example Section 1.5.2 in McLachlan

and Peel (2000), pp. 11–14. However, as is the case in Example IV.7, the PDF of the

continuous NEM distribution is not necessarily an NE or finite NEM family. It is for

this reason that we use the terminology “class of probability distributions” to refer to

parametric distributions or finite mixtures thereof only.

For the moment, assume that we would also include continuous mixtures. By this

definition, the jump size distribution of any ACP process would either be closed under

the Esscher transform or could be approximated to an arbitrary precision by one that is.

However, the representation of the jump size distribution as a continuous NEM family

does not provide additional insights or enhance tractability. As with any ACP process,

the jump size PDF can simply be found using the general Proposition IV.3.

IV.4.3 Relation to Conjugate Distributions

It is tempting to think that the results in Sections IV.4.1 and IV.4.2 are somewhat

related to the concept of conjugate priors in Bayesian statistics; see for example Box and

Tiao (1973) for a standard reference. Both problems analyze under which conditions a class

of distributions is closed under some operation and, in both cases, (natural) exponential

families and their mixtures play key roles. Thus, we briefly discuss why these two problems

are quite distinct, while similar at the first glance. Consider a random sample X =

{X1, X2, . . . Xn} obtained from a one-parameter sampling distribution f(x; θ). Denote the
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prior distribution of the parameter θ by π : D → R+. By Bayes’ theorem, the posterior

distribution of θ, conditional on the sample X , is given by

π (θ;X ) =
f (X ; θ)π(θ)∫
D f (X ; θ)π(θ)dθ

,

where we write f (X ; θ) to denote the likelihood of the sample, conditional on the

parameter θ. A class of prior distributions A is a conjugate family for a class of sampling

distributions B, if the posterior distribution is in A for all π(θ) ∈ A, all f(x; θ) ∈ B, and for

any random sample X . The key difference between the above expression for the posterior

distribution and the Esscher transform is that the exponential tilting in the latter is not

a PDF. While it resembles an exponential distribution, it is unnormalized and, thus, does

not integrate to one.

Assume that the samples are drawn from an exponential distribution and the prior

distribution is an NE family, that is f(x; θ) = θe−θx and π(θ) = α(θ) exp {ηθ − β(η)}.
Then, ignoring the normalization term, we obtain

π (θ;X ) ∝
n∏
i=1

f (Xi; θ)π(θ)

∝ α(θ) exp

{(
η −

n∑
i=1

Xi

)
θ + n ln θ − β(η)

}
.

The gamma distribution has a sufficient statistic T (θ) = (θ, ln θ)T and, thus, is the

conjugate prior. Other distributions that nest the gamma distribution as special cases are

also conjugate priors when considering some of their parameters fixed. One such example

is the generalized inverse Gaussian distribution. Similar to the result in Section IV.4.2, a

mixture of gamma distributions is also a conjugate prior.

Now, consider the Esscher transform parameterized by ξ = −β when the fZ(x; θ)

follows an NE family under P. We have

f̂Z(x; θ) ∝ e−xξfZ(x; θ)

∝ a(x) exp {(θ − ξ)x− b(θ)} .

Any distribution with sufficient statistic T (x) = x is closed under the Esscher transform

because of the lack of a normalization term in the exponential tilting.
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IV.4.4 Implications for Minimal Entropy Martingale Measures

While Gerber and Shiu (1994b) only explicitly consider measure changes defined by

the Esscher transform of the Lévy dynamics governing the logarithm of the underlying

asset, it is clear that alternative choices of the risk process are equally possible. In a

series of papers, Miyahara (1999, 2004), Fujiwara and Miyahara (2003) and Fujiwara

(2009) identify the ETMM of the simple return process as the MEMM under increasingly

general dynamics. See also Chan (1999), Kallsen and Shiryaev (2002) and Hubalek and

Sgarra (2006) for related works. The MEMM is the equivalent martingale measure that

minimizes the relative entropy or Kullback-Leibler divergence to the physical probability

measure and, thus, is closest to it in terms of its information content. In Miyahara (1999),

the MEMM is motivated economically through its link to utility indifference pricing when

the agent has exponential utility; see also Frittelli (2000).

Formally, the MEMM P∗ is defined as the solution to the problem

P∗ = arg inf
Q∈M(P)

EP

[
dQ
dP

ln

(
dQ
dP

)]
,

where M(P) denotes the set of martingale measures equivalent to P on [0, T ∗]. As shown

in Theorem 3.1 in Fujiwara (2009), pp. 77–78, the MEMM is given by the ETPM of the

simple return process R = {Rt : t ∈ [0, T ∗]}, defined as

Rt =

∫ t

0

dSu
Su−

.

Using the Itō formula, see for example Proposition 8.15 in Cont and Tankov (2004), p.

276, we obtain

Rt =

∫ t

0

(
γ(u) +

1

2
σ2(u)

)
du+

∫ t

0
σ(u)dWu +

∫ t

0

∫ +∞

−∞
(ex − 1) JX(dx× du).

We observe that R also follows an AJD process under P. When the process X jumps by

∆Xt at some time t ∈ [0, T ∗], then the process R jumps by e∆Xt − 1 at the same time.

Thus, we set h(x) = ex − 1 (h−1(x) = ln(x + 1)) and define a new intensity measure

ν(dt× dx) = µ
(
dt× h−1(dx)

)
with corresponding Poisson random measure JR(dt× dx).

Then,

Rt =

∫ t

0

(
γ(u) +

1

2
σ2(u)

)
du+

∫ t

0
σ(u)dWu +

∫ t

0

∫ +∞

−∞
xJR(dx× du).
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The MEMM is then given by the ETPM P∗ ∈ P(R) that satisfies Definition IV.10. It

follows from Proposition IV.5 that the jump size distributions of X under P and P∗ fall

into the same parametric class if R follows an NEM-ACP process.

Most jump-diffusion processes proposed in the literature and considered thus far in

this chapter are such that the jump size distribution of the logarithmic return process

X is an NEM family, while that of the simple return process R is not. Example IV.8

below shows that, when each Yi follows a negative Gumbel distribution with unit scale

parameter under the physical probability measure, then R exhibits displaced exponential

jumps. Consequently, the jump sizes of X under the MEMM also follow a negative Gumbel

distribution but with a different location parameter. Again, this example is purely of an

illustrative nature.

Example IV.8 (Gumbel Distribution).

Let (Yi)i∈N be a sequence of i.i.d. G−(µ, σ) negative Gumbel random variables under P

with PDF

f(x;µ, σ) =
1

σ
exp

{
x+ µ

σ
− exp

{
x+ µ

σ

}}
.

Let (Zi)i∈N be the corresponding sequence of jumps in the simple return process R. It has

the PDF

g(x;µ, σ) =
1

σ
(x+ 1)1/σ−1 exp

{µ
σ
− (x+ 1)1/σ exp

{µ
σ

}}
1{x ≥ −1}.

Assume that the scale parameter is fixed at σ = 1 and define λ = eµ. Then,

g(x;µ, 1) = λe−λ(x+1)1{x ≥ −1}.

We recognize this as the PDF of a D-E(λ, κ) displaced exponential distribution with

displacement term κ = −1. Its characteristic function under P is given by

φZ(ω) =
λ

λ− iω
eiωκ.

It follows from Proposition IV.4 and Example IV.4 that each Zi is D-E
(
λ̂,−1

)
distributed

under P̂(R, β) with λ̂ = λ− β. Consequently, each Yi follows a G− (µ̂, 1) negative Gumbel

distribution under P̂(R, β) with µ̂ = ln (eµ − β). �
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IV.5 Conclusion

This chapter shows that the class of NEM-AJD processes is closed under an Esscher

transform measure change. This result is important since it ensures that jump sizes under

the physical probability measure and the ETMM fall into the same distributional class.

It thus allows for a direct comparison of the corresponding two asset dynamics based on

their parameter vectors. Furthermore, we fully characterize the model parameters under

the new probability measure in terms of the parameters under the original probability

measure and the transform parameter. A second application of this result is the change

of numéraire from the bank account to the spot asset. For all NEM-AJD processes, being

able to evaluate the tail probability of logarithmic asset prices under the risk-neutral

probability measure is sufficient to be able to price European plain vanilla options. We

show that several well-known models represent special cases of NEM-AJD processes and

provide further examples.
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IV.A Appendix for Section IV.2

IV.A.1 Martingale Property of Zj

This appendix contains the detailed proof of Lemma IV.4. It is almost identical to

that for Lévy processes; see for example Proposition 3.17.(i) in Cont and Tankov (2004),

p. 97. Let 0 ≤ s ≤ t ≤ T ∗, then

EP

[
exp

{
i
(
α ◦Xj

)
[0,t]

}∣∣∣Fs]
= exp

{
i
(
α ◦Xj

)
[0,s]

}
EP

[
exp

{
i
(
α ◦Xj

)
[s,t]

}]
= exp

{
i
(
α ◦Xj

)
[0,s]

+

∫ t

s
λ(u) (φY (u, α(u))− 1) du

}
.

Here, we used the independence of
(
α ◦Xj

)
[s,t]

of Fs in the second and Proposition IV.1

in the third step. We divide this expression by

EP

[
exp

{
i
(
α ◦Xj

)
[0,t]

}]
= exp

{∫ t

0
λ(u) (φY (u, α(u))− 1) du

}

and use the linearity of the integral to obtain the result.

IV.A.2 X̂j Is an Additive Process

This appendix contains the detailed proof of Lemma IV.1. It only remains to establish

the stochastic continuity of Xj . For any interval we can bound the probability of the

absolute change in Xj being greater than some value ε by the probability of observing at

least one jump during this time.

P
{∣∣∣Xj

t+h −X
j
t

∣∣∣ > ε
}
≤ 1− P

{∫ t+h

t

∫ ∞
−∞

JX(du× dx) = 0

}
= 1− exp {−µ([t, t+ h]× R)} .

Here, we used that by Definition IV.2 the total number of jumps on the set A = [t, t+h]×R
follows a Poisson distribution with mean µ(A). Taking the limit as h ↓ 0, the right-hand

side converges to zero and the stochastic continuity of Xj follows.
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IV.A.3 Time-Changed Compound Poisson Representation

This appendix contains the detailed proof of Lemma IV.5. Just like for standard

compound Poisson processes, we use iterated conditional expectations to obtain

φ
Xj

t
(ω) =

∞∑
n=0

{Nt = n} (φY (ω))n P

=
∞∑
n=0

e−ζ(t) (ζ(t)φY (ω))n

n!

= exp

{∫ t

0
λ(u) (φY (ω)− 1) du

}
.

Here, ζ(t) is the total jump intensity over the interval [0, t] as previously defined in

Section IV.2.1. This expression is equal to the one given in Corollary IV.1 when the

jump size distribution is time-homogeneous. The result then follows from the uniqueness

of the characteristic function; see for example Theorem 3.1.1 in Lukacs (1970), p. 28.

IV.B Appendix for Section IV.3

IV.B.1 X̂ Is a Radon-Nikodým Derivative Process

This appendix contains the detailed proof of Lemma IV.7. First, the independence of

Xc and Xj and the linearity of the stochastic integral allow us to decompose X̂ into two

factors X̂c
t =

{
X̂c
t : t ∈ [0, T ∗]

}
and X̂j

t =
{
X̂j
t : t ∈ [0, T ∗]

}
, that is X̂t = X̂c

t X̂
j
t . Here,

X̂i
t = exp

{(
β ◦Xi

)
[0,t]

}(
EP

[
exp

{(
β ◦Xi

)
[0,t]

}])−1
,

where i ∈ {c, j}. If we can show that both X̂c
t and X̂j

t are (P,F)-martingales then it

follows that X̂ is one as well. First, note that by Proposition IV.2 with α(t) = −iβ(t)

X̂c
t = exp

{∫ t

0
β(u)σ(u)dWu −

1

2

∫ t

0
β2(u)σ2(u)du

}
= Et

(∫ .

0
β(u)σ(u)dWu

)
,

where E denotes the Doléans-Dade exponential. The Novikov condition, see for example

Proposition III.5.12 in Karatzas and Shreve (1991), p. 198, states that a sufficient
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condition for X̂c to be a martingale is given by

exp

{
1

2

∫ t

0
β2(u)σ2(u)du

}
<∞.

This is ensured to hold for all 0 ≤ t ≤ T ∗ by the restriction imposed on the parameter

functions in Definition IV.8. Next, again from Proposition IV.1 with α(t) = −iβ(t) we get

Xj
t = exp

{∫ t

0

∫ +∞

−∞
β(u)xJX(du× dx)−

∫ t

0

∫ +∞

−∞

(
eβ(u)x − 1

)
λ(u)f(u, x)dxdu

}
= Et

(∫ .

0

∫ +∞

−∞
β(u)xJX(du× dx

)
.

Once more, it follows from the restriction imposed on the transform parameter and the

intensity measure that Xj is a (P,F)-martingale; see for example Proposition 3.6 in Cont

and Tankov (2004), p. 78.

IV.B.2 Characteristic Function of Xj under P̂(X,β) Part I

This appendix contains the detailed proof of Proposition IV.3. We start by computing

the characteristic function φ̂
Xj

t
(ω) of Xj under P̂(X,β). We change the probability

measure to P and get

φ̂
Xj

t
(ω) = EP̂

[
exp

{
iωXj

t

}]
= EP

[
ξt
(
P, P̂

)
exp

{
iωXj

t

}]
= EP

[
exp

{∫ t

0
(iω + β(u)) dXj

u −
∫ t

0

∫ +∞

−∞

(
eβ(u)x − 1

)
λ(u)f(u, x)dxdu

}]
.

Note, that due to the independence of Xc and Xj , the characteristic functions of Xj under

P̂(X,β) and under P̂
(
Xj , β

)
coincide. Formally, we substituted for ξt

(
P, P̂

)
in the last

equality, using that

Et
(∫ .

0
β(u)dXc

u

)
= exp

{∫ t

0
β(u)dXc

u −
1

2

∫ t

0
β2(u)d〈Xc〉t

}

is a (P,F)-martingale starting at one. Continuing with the computation of φ̂
Xj

t
(ω), we

obtain

φ̂
Xj

t
(ω) = exp

{∫ t

0

∫ +∞

−∞

(
e(iω+β(u))x − eβ(u)x

)
λ(u)f(u, x)dxdu

}
= exp

{∫ t

0

∫ +∞

−∞

(
eiωx − 1

)
λ(u)eβ(u)xf(u, x)dxdu

}
.
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Here, we again used Proposition IV.1 to compute the remaining expectation. This last

expression already closely resembles the characteristic function of an ACP process given in

Corollary IV.1. However, the term eβ(u)xf(u, x) is in general not a valid PDF but requires

re-normalization. Let ξ : R+ → R+ be a deterministic normalizing function such that for

every 0 ≤ t ≤ T ∗ we have

1

ξ(t)

∫ +∞

−∞
eβ(t)xf(t, x)dx = 1 ⇔ ξ(t) =

∫ +∞

−∞
eβ(t)xf(t, x)dx

= φY (t,−iβ(t)).

The condition imposed on β(t) ensures that the β(t)-th exponential moment of f(t, x)

exists for all 0 ≤ t ≤ T ∗. Here, we defined φY (t, ω), in analogy to the representation of

the TCCP process in Lemma IV.5, to be the characteristic function of the PDF f(t, x).

Then

φ̂
Xj

t
(ω) = exp

{∫ t

0

∫ +∞

−∞

(
eiωx − 1

)
λ̂(u)f̂(u, x)dxdu

}
,

where for all 0 ≤ t ≤ T ∗

λ̂(t) = λ(t)φY (t,−iβ(t)),

f̂(t, x) =
eβ(t)xf(t, x)

φY (t,−iβ(t))
.

Again, the condition imposed on β(t) ensures that∫ T ∗

0
λ̂(u)du <∞.

Thus, λ̂(t) is a valid jump intensity function as required by Definition IV.3. Simplifying

further gives

φ̂
Xj

t
(ω) = exp

{∫ t

0
λ̂(u)

(
φY (t, ω − iβ(t))

φY (t,−iβ(t))
− 1

)
du

}
= exp

{∫ t

0
λ̂(u)

(
φ̂Y (t, ω)− 1

)
du

}
,

where

φ̂Y (t, ω) =
φY (t, ω − iβ(t))

φY (t,−iβ(t))
.

The Proposition follows by the uniqueness of the characteristic function. Note that the

last step was not necessary for the proof but yields the characteristic function φ̂Y (t, ω) of

the PDF f̂(t, x) as a useful side result.
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IV.C Appendix for Section IV.4

IV.C.1 Characteristic Function of Natural Exponential Families

This appendix contains the detailed proof of Lemma IV.10. We have

φZ(ω; θ) =

∫ +∞

−∞
eiωxf(x; θ)dx

=

∫ +∞

−∞
a(x) exp {(θ + iω)x− b(x)} dx

= exp {b(θ + iω)− b(θ)}
∫ +∞

−∞
a(x) exp {(θ + iω)x− b(θ + iω)} dx

= exp {b(θ + iω)− b(θ)}
∫ +∞

−∞
f(x; θ + iω)dx.

To compute the remaining integral, we notice that if ω ∈ C was a strictly complex number

with Re(ω) = 0, then the integrand would be real valued and we would recognize this

expression as an integral over the full support of a PDF. It would thus evaluate to one.

However, the transform parameter ω ∈ R is a real number and thus this argument cannot

be directly employed. Instead, we can expand the exponent as a Taylor series around

ω = 0 to obtain

e−b(θ+iω)

∫ +∞

−∞
a(x)e(θ+iω)xdx = e−b(θ+iω)

∫ +∞

−∞

∞∑
n=0

a(x)
(iωx)n

n!
eθxdx

= e−b(θ+iω)
∞∑
n=0

(iω)n

n!

∫ +∞

−∞
a(x)xneθxdx.

Furthermore it follows from the definition of the NE family that

∂n

∂ξn
eb(ξ) =

∂n

∂ξn

∫ +∞

−∞
a(x)eξxdx

=

∫ +∞

−∞
a(x)xneξxdx.

Consequently,
∂

∂ωn

{
eb(θ+iω)

}
(0) = in

∫ +∞

−∞
a(x)xneθxdx,

which shows that the sum is a Taylor series expansion of the reciprocal of the first term

around ω = 0. As a result, the remaining integral does vanish and we obtain

φZ(ω; θ) = exp {b(θ + iω)− b(θ)} .
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IV.C.2 Characteristic Function of Xj under P̂(X,β) Part III

This appendix contains the detailed proof of Proposition IV.5. Using Proposition IV.3

in conjunction with Definitions IV.12 and IV.14 we get

f̂ (t, x;θ(t),w(t), β(t))

=

n∑
i=1

wi(t)

φY (t,−iβ(t))
ai(t, x) exp {(θi(t) + β(t))x− bi (t, θi(t))} .

While this expression already resembles the structure of an NEM family, we observe

that the exponentials in the summands are not properly normalized; compare to

Definition IV.12. We thus substitute for θ̂i(t) = θi(t) + β(t) and add and subtract the

normalization term to obtain

. . . =
n∑
i=1

wi(t)

φY (t,−iβ(t))
ai(t, x) exp

{
θ̂i(t)x− bi (t, θi(t))± bi

(
t, θ̂i(t)

)}
=

n∑
i=1

wi(t)φAi(t,−iβ)

φY (t,−iβ(t))
ai(t, x) exp

{
θ̂i(t)x− bi

(
t, θ̂i(t)

)}
,

where we define

φAi(t, ω) = exp {bi (t, θi(t) + iω)− bi (t, θi(t))}

to be the time 0 ≤ t ≤ T ∗ characteristic function of the i-th mixing component under the

original probability measure P; see also the discussion following Definition IV.14. We thus

set

ŵi(t) =
wi(t)φAi(t,−iβ(t))

φY (t,−iβ(t))

and it remains to show that ŵ(t) is a vector of non-negative real numbers that sum to

one. First, we recognize φAi(t,−iβ(t)) and φY (t,−iβ(t)) as the time 0 ≤ t ≤ T ∗ moment

generating functions of the i-th mixing density and the jump size distribution under P,

evaluated at β(t). Their existence is ensured by the assumption made in Proposition IV.3.

Since a moment generating function is the expected value of a strictly positive random

variable, it follows that it is strictly positive itself; see for example Theorem 7.1.4 in Lukacs

(1970), p. 197. From wi(t) ≥ 0 for all i = 1, 2, . . . , n it then follows that ŵi(t) ≥ 0 as well.
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Finally, it is not hard to see that

n∑
i=1

ŵi(t) =
1

φY (t,−iβ(t))

n∑
i=1

wiφAi(t,−iβ(t))

=
φY (t,−iβ(t))

φY (t,−iβ(t))

= 1,

where we use Lemma IV.11.

Alternatively, we can use Corollary IV.2 in conjunction with the representation of the

characteristic function for NEM families in Lemma IV.11 to obtain

φ̂Z(t, ω) =
n∑
i=1

wi(t)

φY (t,−iβ(t))
exp {bi (t, θi(t) + β(t) + iω)− bi (t, θi(t))} .

Again, by multiplying and dividing through φAi (t,−iβ(t)), we obtain the characteristic

function of an NEM distribution with the given weights ŵi(t).

IV.C.3 Student’s T -Distribution as a Gaussian Mean Variance Mixture

This appendix contains additional details for Example IV.7. Setting µ = ξ = 0, σ = 1

and γ = δ = ν/2 in the normal inverse gamma distribution function yields

fX(x) =

∫ ∞
0

(ν/2)ν/2

Γ(ν/2)
y−ν/2−1 exp

{
− ν

2y

}
1√
2πy

exp

{
−x

2

2y

}
dy

=
(ν/2)ν/2√
2πΓ(ν/2)

∫ ∞
0

y−(ν+1)/2−1 exp

{
−x

2 + ν

2y

}
dy.

We make a change of variables by setting y = 1/z to obtain

. . . =
(ν/2)ν/2√
2πΓ(ν/2)

∫ ∞
0

z(ν+1)/2−1 exp

{
−
(
x2 + ν

)
z

2

}
dz

=
(ν/2)ν/2Γ((ν + 1)/2)√

2πΓ(ν/2)

(
x2 + ν

2

)−(ν+1)/2

.

See Section 6.1.1 in Abramowitz and Stegun (1972), p. 251, for the solution of the integral

used in the second equality. Another simplification finally yields

. . . =
Γ((ν + 1)/2)√
νπΓ(ν/2)

(
1 +

x2

ν

)−(ν+1)/2

.
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IV.D Parameters for Common Natural Exponential
Families

This appendix contains an alphabetically sorted overview of common NE families that

might be used in mixture models for the jump size distribution. This list is by no means

exhaustive. Often, however, the distributions listed here nest other NE families as special

cases such that the results still apply. For each distribution, we state the parametrization

under P and P̂(X,β), the PDF f(x) under P, the natural parameter θ as well as the two

functions a(x) and b(θ).

IV.D.1 Exponential Distribution

E(λ) ⇒ E(λ− β)

f(x) = λe−λx1{x > 0}

θ = −λ

a(x) = 1{x > 0}

b(θ) = − ln(−θ)

IV.D.2 Gamma Distribution

Γ(a, b) ⇒ Γ

(
a,

b

1− bβ

)
f(x) =

1

Γ(a)ba
xa−1e−x/b1{x > 0}

θ = −1

b

a(x) =
1

Γ(a)
xa−11{x > 0}

b(θ) = a ln

(
−1

θ

)
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IV.D.3 Generalized Inverse Gaussian Distribution

GIG(a, b, p) ⇒ GIG(a− 2β, b, p)

f(x) =
(a/b)p/2

2Kp(
√
ab)

xp−1 exp

{
−ax+ b/x

2

}
1{x > 0}

θ = −a
2

a(x) =
1

2bp/2
xp−1 exp

{
− b

2x

}
1{x > 0}

b(θ) = ln (Kp(−2θb))− p

2
ln(−2θ)

IV.D.4 Hyperbolic Distribution

Hyp(µ, a, b, δ) ⇒ Hyp(µ, a, b+ β, δ)

f(x) =

√
a2 − b2

2aδK1(δ
√
a2 − b2)

exp
{
−a
√
δ2 + (x− µ)2 + b(x− µ)

}
θ = b

a(x) =

√
a2 − b2

2aδK1(δ
√
a2 − b2)

exp
{
−a
√
δ2 + (x− µ)2

}
b(θ) = µb

IV.D.5 Inverse Gaussian Distribution

IG(µ, λ) ⇒ IG

(√
µ2λ

λ− 2µ2β
, λ

)

f(x) =

√
λ

2πx3
exp

{
−λ(x− µ)2

2µ2x

}
1{x > 0}

θ = − λ

2µ2

a(x) =

√
λ

2πx3
exp

{
− λ

2x

}
1{x > 0}

b(θ) = −
√
−2θλ
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IV.D.6 Normal Distribution

N
(
µ, σ2

)
⇒ N

(
µ+ βσ2, σ2

)
f(x) =

1√
2πσ

exp

{
−(x− µ)2

2σ2

}
θ =

µ

σ2

a(x) =
1√
2πσ

exp

{
− x2

2σ2

}
b(θ) =

(θσ)2

2
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IV.E Glossary of Notation

� end of a proof

� end of an example

4 end of a definition

1{A} indicator of the set A

ACP additive compound Poisson

AJD additive jump-diffusion

PA-a.s. almost surely under PA

B(A) Borel σ-algebra on the set A

β(t) Esscher transform parameter function

DNE(b(·)) class of NE families

DNEM(b(·)) class of NEM families

D-E(·) displaced exponential distribution

E Borel σ-algebra on the set E

E(λ) exponential distribution with rate parameter λ

Et (X·) Doléans-Dade exponential of the process X

EPA expectation under PA

ETMM Esscher transform martingale measure

ETPM Esscher transform probability measure

F sigma algebra

Ft filtration at time t

f(t, x) ACP jump size PDF

G(µ, σ) Gumbel distribution with local parameter µ and scale parameter σ

γ(t) ACP drift function

Γ(a, b) gamma distribution with shape parameter a and scale parameter b

i imaginary unit

i.i.d. independent and identically distributed

JX Poisson random measure of the process X

λ(t) ACP jump intensity function

M(P) set of martingale measures equivalent to P

M-E(·) displaced mixed exponential distribution

MEMM minimal entropy martingale measure
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µ intensity measure

NA one-dimensional Poisson process under PA

N
(
γ, δ2

)
normal distribution with mean γ and variance δ2

N -Γ−1(·) normal inverse gamma distribution

NE natural exponential

NEM natural exponential mixture

Ω probability space

P∗ bank account martingale measure/risk-neutral measure

P(X) set of all ETPM with respect to X

P̂(X,β) ETPM of the risk process X with parameter β

PDF probability density function

φAX(ω) characteristic function of the random variable X under PA

r(t) continuously compounded risk-free interest rate

σ(t) AJD diffusion function

T ∗ terminal time

T (ν) student’s t-distribution with ν degrees of freedom

θ(t) NE parameter function

THJD time-homogeneous jump-diffusion

WA standard one-dimensional Brownian motion under PA

w(t) NEM-ACP weight function

ξ
(
PA,PB

)
Radon-Nikodým derivative process between PA and PB

ζ(t) ACP total jump intensity over the interval [0, t]
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Chapter V

Conclusion

This dissertation discusses three contemporary topics in financial engineering. Here, we

briefly summarize the main contributions of Chapters II through IV and propose potential

avenues of future research.

Chapter II proposes the most general jump-diffusion model yet that admits closed-

form solutions for European plain vanilla option prices. The corresponding valuation

functions are both numerically robust and computationally fast to evaluate. Empirical

estimations provide strong evidence that our newly introduced asymmetrical displacement

terms are both jointly and individually highly statistically significant. In particular, we

can reject the Kou (2002) double exponential jump-diffusion model for all assets. We find

that the empirical jump size distribution of most assets in the sample is consistent with

exponential tails. The additional flexibility offered by gamma tails with an inter-valued

shape parameter only improves the empirical fit for a single asset.

We approach the model selection problem by choosing the dynamics that provide the

best fit to the historical time series of logarithmic returns conditional on the availability of

closed-form solutions for European plain vanilla options. However, other selection criteria

are equally reasonable. Following Bakshi et al. (1997), future research could investigate

whether and by how much our model improves the robustness of the corresponding

replication portfolios.

Chapter III introduces a novel framework that jointly addresses the pricing and risk

management of deferred start barrier options. We consider markets where the implied

volatility exhibits a smile pattern and a the underlying asset dynamics are discontinuous.

We formulate an adjusted valuation problem in terms of a deferred start piecewise

exponential barrier option on a constant coefficient geometric Brownian motion asset. It is

solved iteratively by introducing the image operator for exponential barriers. These results

are novel and further applications to another well-known problem are proposed below. A

Monte Carlo simulation study confirms the improved robustness of our approach.
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Future research could explore further applications of piecewise exponential barrier

options. Following Omberg (1987), the valuation function for a down & out put with a

piecewise exponential barrier could be applied to find an improved approximation to the

value of American put options. In addition to the results obtained in this dissertation,

this requires the valuation of a slightly different rebate structure and the characterization

of the optimal parameters defining the early exercise boundary.

Chapter IV shows that the class of natural exponential mixture additive compound

Poisson processes is closed under an Esscher transform measure change. This result is

important when not only the risk-neutral but also the physical model dynamics are of

interest. Furthermore, it reduces the European plain vanilla option pricing problem to

finding the tail probabilities under the risk-neutral probability measure.
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