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Abstract 

Recent advances in reinforcement learning have successfully combined the strong 

generalization and feature extraction ability of deep learning models with the 

bootstrapping nature of reinforcement learning. Many works in this area have achieved 

record breaking performance, especially on tasks in a discrete action space. However, 

much less work has been done to deal with robotic control in a continuous action space. 

This is more challenging as unlimited action choices may be available. In fact, all single-

thread based algorithms in this domain can only control a robot to solve basic tasks, 

which are tasks that can be achieved by simply choosing actions to move in a single 

movement pattern, and only one task at a time.  

In this thesis, we are taking continuous control deep reinforcement learning one step 

further to address the existing limitations discussed above. Three main contributions are 

introduced that finally enable agents to learn compound tasks, which are tasks that can 

only be achieved by combining different movement patterns, in a continuous action 

space. We first propose a novel deep reinforcement learning network architecture that 

can reduce the number of parameters needed for learning single basic skill in a 

continuous action space by more than 70%. We then propose a novel multi-task deep 

reinforcement learning algorithm to learn multiple basic tasks simultaneously. It makes 

use of the proposed network architecture to reduce the number of parameters needed 

for learning multiple tasks by more than 80%. Based on this, we finally propose a novel 

hierarchical deep reinforcement learning algorithm which consists of two levels of 

hierarchy. It adapts the proposed multi-task learning algorithm in its first level of 

hierarchy to learn multiple basic skills, and then learns to reuse these skills in its second 

level of hierarchy to solve compound tasks.  

We conducted several sets of experiments to test both the proposed network 

architecture and the proposed algorithms. The experiments were conducted with a 

simulated Pioneer 3AT robot with front-view camera and range sensor in Gazebo 2 in a 



II 
 

ROS Indigo environment. Results show that agents built with the proposed network 

architecture can learn skills that are as good as the ones learned by agents built with 

traditional convolutional neural networks. Also, all basic skills learned by the proposed 

multi-task learning algorithm achieve comparable performance to the skills learned one 

after another by a single-task learning algorithm. Results also show that the proposed 

hierarchical learning algorithm can learn both high performance basic skills and 

compound skills within the same learning process. The performance of the proposed 

algorithm on solving compound tasks outperforms both a state-of-the-art single-thread 

based continuous action control algorithm and a well-known discrete action control 

algorithm.  

In summary, the works in this thesis extends continuous control deep reinforcement 

learning algorithms to multi-task and hierarchical learning scenarios. While the 

proposed multi-task learning algorithm can learn multiple tasks simultaneously, the 

proposed hierarchical learning algorithm can solve compound tasks that cannot be 

solved with existing single-thread learning algorithms. These works have further 

potential to bring people new inspirations for building deep reinforcement learning 

agents in a continuous action space.  
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Chapter 1  

Introduction 

Intelligent computer agent design is a topic that has been long discussed in the field of 

artificial intelligence. Much work has been done to investigate different aspects of the 

intelligence of artificial agents. For example, swarm intelligence [1] investigates agents’ 

intelligence in multi-agent scenarios, and human-computer interaction [2], which mainly 

focuses on agents’ intelligence when communicating with humans. These topics are all 

active research areas on how to achieve intelligent control and how intelligent robots 

will react.  

Another important branch of research investigates how to design agents that can 

solve specific tasks. A number of different methods have been proposed to achieve this. 

For example, there are dynamic programming [3] methods which rely on human 

knowledge of the task to program agents’ decisions under different situations. There are 

also imitation learning [4] methods, which achieve learning by imitating humans or well-

designed agents. While these methods can achieve high performance in some scenarios, 

they are highly dependent on past knowledge and experience.  

Departing away from these methods, reinforcement learning methods focus on 

designing algorithms that can enable agents to learn to achieve goals in given 

environments by themselves. A reinforcement learning agent can bootstrap skills or 

policies for solving tasks throughout training and exploration, and this process mainly 

depends on the interaction between the environment and the agent itself. Classical 

algorithms such as Q-learning [5] and SARSA [6] are well-known reinforcement learning 

algorithms that can make use of sparse reward feedback from the environment to learn 

desired skills or policies. What is more, many classical works introduced linear function 

approximations to enhance the generalization of the algorithms [7, 8].  This helps agents 

to handle tasks in more complex environments and tasks with more action choices. 
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However, the generalization of the algorithms are still limited because of the limited 

capacity of linear function approximations.  

In recent years, the growing accessibility of high performance computation devices 

and big data have propelled deep learning [9] research. Deep learning based algorithms 

have achieved record-breaking performance in several applications and research topics. 

With hundreds of thousands of auto-learned parameters in the model, deep neural 

networks have shown unprecedented feature extraction and generalization abilities. 

Moreover, available choices for network architectures such as convolutional neural 

networks (CNN) [10] and long-short term memory (LSTM) networks [11] further help 

deep learning fit in applications with different requirements. These advances have been 

combined to make deep learning a powerful model in applications such as computer 

vision [12-14] and semantic analysis [15-17]. These successes have inspired interest in 

combining reinforcement learning with deep learning to further improve the 

performance of agents.  

However, it is generally believed that non-linear function approximators like deep 

neural networks are not suitable for reinforcement learning. This is mainly because of 

the correlations between data and the sparsity of supervision signals in reinforcement 

learning scenarios [18].  The combination of deep learning and reinforcement learning 

has not been done until recent advances have addressed these challenges and brought 

deep reinforcement learning great success. Some of the successful deep reinforcement 

learning based agents have recently outperformed humans in playing Atari games [19] 

and Go games [20].  

Unlike games or other decision making processes that contain only a limited number 

of legal actions, robotic control usually involves potentially unlimited action choices, as 

the control is in a continuous action space. This is challenging as the agent needs not 

only to find solutions to tasks, but also to take other physical factors into account to 

keep the robot moving smoothly. The problem becomes even more difficult when trying 

to handle more complex scenarios such as multi-task learning or compound skill learning 

that, to the best of our knowledge, no existing work can do [21]. This thesis will explore 

ways to make up for these limitations.  
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The reminder of this chapter is organized as follows. The research aims of the thesis 

will be presented in Section 1.1. This will be followed by a summary of the contributions 

of the thesis. The research methodology will be presented in Section 1.3 and Section 1.4 

will give an overview of the thesis.  

 

1.1 Research Objectives 
 

Unlike game or other decision making processes that have a discrete action space, there 

is less work done to handle continuous control tasks with deep reinforcement learning. 

In this thesis, we will explore ways of achieving continuous control in more complex 

scenarios. Specifically, the aims of our work are:  

• To find ways to reduce the number of parameters needed for multi-task learning. 

This is based on the fact that while multi-task learning usually saves time for 

learning different tasks, multi-task learning agents usually need much more 

parameters in the system than single-task learning agents. Reducing the number 

of parameters needed is beneficial for further extension of the agents.   
 

• To investigate ways to achieve multi-task learning in continuous action spaces 

with a single agent. In other literature, multi-task learning is generally achieved 

with transfer learning [22] methods or multi-thread learning schemes, which 

involve at least two agents. In addition, most of this work is solving tasks in 

discrete action spaces. We aim to find alternatives to transfer learning 

appropriate for continuous action spaces.  
 

• To find ways to extend continuous control algorithms to learn more complex, 

compound tasks in a one-thread training based context. Most of the existing 

work on continuous control tasks only focuses on learning basic tasks, which are 

generally different kinds of behaviours or locomotion tasks that can be achieved 

by simply choosing actions to move in a same movement pattern (We will keep 

this definition for the rest of the thesis). In contrast, compound tasks need a 

combination of different movement patterns to achieve them (we will also keep 
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this definition for the rest of the thesis). This is much more challenging as it 

requires that the agent not only learn basic skills, but also compound skills during 

exploration.  

 

1.2 Contributions and Significance 
 

Our works focus on designing agents that can learn to control robots equipped with 

range sensors and a front view camera.  

Corresponding to each of our research objectives presented in the last section, the 

contributions of this thesis are that:  

• We propose and validate a novel deep neural network architecture for deep 

reinforcement learning. The network architecture makes use of the multi-layer 

perceptron convolutional (mlpconv) layer [23] to reduce the number of 

parameters in the agent. Analyses and validations show that the proposed novel 

network architecture can:   

- Reduce the number of parameters originally for a single task agent by 75%. 

For a multi-task learning algorithm, the reduction becomes more significant 

as the number of tasks increases.   

- Learn skills that are as good as the skills learned by original big networks and 

keep the performance when multiple tasks are introduced.  
 

• We propose and validate a novel deep reinforcement learning algorithm that can 

learn multiple continuous control tasks concurrently. The algorithm is called 

multi-DDPG (DDPG is for Deep Deterministic Policy Gradient). The validations of 

the proposed multi-DDPG algorithm show that:  

- It is, to the best of our knowledge, the first multi-task deep reinforcement 

learning algorithm for continuous action control.  

- It learns multiple tasks within a single agent and within the same one-thread 

training process. This is different from most multi-task learning algorithms 
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that are based on transfer learning or multi-thread learning, as they always 

involve at least two agents or two learning stages.  

- The multi-task learning scheme does not result in any loss in the performance 

of each of the single tasks.  
 

• We propose and validate a novel deep reinforcement learning algorithm that can 

learn complex compound skills to solve compound tasks in fully observable 

scenarios. The proposed algorithm is based on the multi-DDPG algorithm in our 

first contribution. It is called h-DDPG as it has a hierarchical architecture. The 

validations of the algorithm demonstrate the following significance:   

- It is, to the best of our knowledge, the first hierarchical deep reinforcement 

learning algorithm for continuous action control.  

- It can learn compound skills to solve compound tasks that other one-thread 

training based continuous control deep reinforcement learning algorithm 

cannot solve.   

- The hierarchical architecture allows the agent to learn basic skills and 

compound skills within the same training process, while the compound skills 

are made up of the basic skills it learns.  

 

1.3 Research Methodology 
 

Three main contributions have been made in this thesis, each follows one of the 

objectives we assigned in our work. Our methodology analyses existing works and 

extends them to new applications. It has a sequence of developing stages. Firstly, the 

new network architecture proposed in the thesis has made use of the mlpconv layer [23] 

for image classification problems. Secondly, the proposed multi-DDPG algorithm shares 

some basic concepts proposed by Lillicrap, et al. [24] for learning single continuous 

control task. Lastly, a part of the proposed h-DDPG algorithm is based on the new 

network architecture and the multi-DDPG algorithm.  

The development and evaluation of our work are dependent on robot control 

simulations built in Gazebo 2 in a Robot Operating System (ROS) Indigo environment. 
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The evaluations are mainly conducted by comparing different algorithms. Therefore we 

reproduced all the algorithms used for comparison and applied them in the same 

simulations. We use measurements that are commonly used in deep reinforcement 

learning, such as average rewards collected per action, to show the performance of 

different algorithms. Both the average values and standard deviations across multiple 

instances are considered in analyses, which is a standard and systematic way for 

analysing statistics.  

 

1.4 Thesis Overview 
 

The reminder of this thesis is organized as follows:  

Chapter 2: Literature Review 

This chapter includes a thorough review of existing work that has been done in related 

research areas. It starts with a literature review of classical reinforcement learning 

research, including introductions to general setup and important architectures, 

especially the one being selected in the thesis. Then we move on to deep learning 

research and review the development of deep learning in recent years. We also 

introduce the recent advances in deep learning that have been applied in the thesis. The 

chapter ends with a literature review of deep reinforcement learning. Past multi-task 

and hierarchical deep reinforcement learning algorithms are also introduced in this 

section.  

 

Chapter 3: A Novel Deep Reinforcement Learning Network Architecture 

This chapter introduces the first contribution of the thesis: the novel network 

architecture. We first introduce the underlying ideas of the network architecture and 

then present the keys of implementation. We will also show theoretically how this 

network architecture will reduce parameters. Finally, we will present experimental 

results for evaluating the proposed network architecture. DDPG [24] is used for 

comparison in this chapter.  
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Chapter 4: A Novel Multi-Task Deep Reinforcement Learning Algorithm 

This chapter introduces the second contribution of the thesis: the proposed multi-task 

deep reinforcement learning algorithm. The chapter includes detailed information on 

the algorithm architecture and learning process as well as experimental results for 

evaluating the algorithm.  

 

Chapter 5: A Novel Hierarchical Deep Reinforcement Learning Algorithm 

This chapter introduces the third contribution of the thesis: the proposed hierarchical 

deep reinforcement learning algorithm, h-DDPG. The chapter is also divided into three 

sections, one each for algorithm architecture, learning process and implementation 

details. We also present the experimental results for evaluating the proposed algorithm. 

This includes  the performance of each level of hierarchy in the algorithm and a 

comparison to DDPG and Deep Q Network (DQN) [18]. 

 

Chapter 6: Conclusions and Future Work 

This chapter summarizes the conclusions of the thesis, the limitations of the 

contributions and the directions for future work.  
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Chapter 2  

Literature Review 

Deep reinforcement learning algorithms have combined recent advances in deep 

learning [9] and reinforcement learning [25]. An effective combination of deep learning 

and reinforcement learning has both strong generalization capability inherited from its 

deep learning parts, and the ability to bootstrap skills or policies inherited from its 

reinforcement learning parts. Before deep reinforcement learning came into being, it 

was generally believed that non-linear techniques such as deep learning are hard to 

apply in reinforcement learning scenarios. This concern was first addressed when deep 

reinforcement learning was used to play Atari games [18]. The success of this work [18] 

has inspired people’s interests in further improving deep reinforcement learning 

algorithms and applying it in different applications.  

In this chapter, a thorough literature review of the related topics is presented. This 

includes an overview of classical reinforcement learning research in Section 2.1 and an 

overview of recent developments in deep learning techniques in Section 2.2. A review 

of previous works on deep reinforcement learning is presented in Section 2.3. Some key 

techniques that this thesis is based on are also introduced in these three sections, 

depending on their corresponding topic branches. Section 2.4 is a summary of this 

chapter.     

 

2.1 Reinforcement Learning Overview 
 

Reinforcement learning [25] algorithms aim to address the problem of how agents 

should learn to take actions to solve tasks in a given environment. Different from other 

methods such as dynamic programming and imitation learning, which require past 
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experience or knowledge from a human or well performing agents, reinforcement 

learning algorithms rely on agents’ learning by trial-and-error to bootstrap skills or 

policies for solving tasks.  

The following three subsections review literature on classical reinforcement learning. 

This includes a review of typical reinforcement learning setups, of well-known classical 

reinforcement learning algorithms and of a reinforcement learning architecture which 

is important for the work presented in this thesis.  

 

2.1.1 Reinforcement Learning Setups 
 

A standard reinforcement learning setup always consists of an agent and an 

environment 𝑬𝑬 with which the agent interacts. The learning of the agent is dependent 

on the interaction between it and the given environment, as shown in Figure 2.1.  

 

Figure 2.1: The interaction between the agent and the environment in a standard reinforcement 
learning setup.  

 

Specifically, in each timestep 𝑡𝑡 , the agent first receives a state 𝑠𝑠𝑡𝑡 ∈ 𝑺𝑺  from the 

environment, and chooses and executes an action 𝑎𝑎𝑡𝑡 ∈ 𝑨𝑨  according to the current 

policy 𝜋𝜋: 𝑺𝑺 → 𝑨𝑨. Then the agent will receive a reward 𝑟𝑟𝑡𝑡 for taking 𝑎𝑎𝑡𝑡 and transition to 

the next state 𝑠𝑠𝑡𝑡+1, where the process starts again.  

Note that, the state is an observation of the environment and contains information 

to describe the current situation that the agent is in. In most partially observable 

Environment  

Agent 

States 𝑠𝑠𝑡𝑡 
Rewards 𝑟𝑟𝑡𝑡 

Actions 𝑎𝑎𝑡𝑡 
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environments where agent cannot observe the entire environment in each timestep, 

the state that the agent receives from the environment degrades to an observation 𝑜𝑜𝑡𝑡 ∈

𝑶𝑶, which indicates that what the agent receives cannot fully describe the current state.   

Also note that the definition of timestep 𝑡𝑡 may vary. For discrete time, each timestep 

contains an equal length of time, while for continuous time, the length of timesteps 

varies. What is more, the policy 𝜋𝜋  may be stochastic, where 𝜋𝜋: 𝑺𝑺 → 𝑃𝑃(𝑨𝑨) , and 𝑃𝑃 

indicates a probability. However, for the rest of the thesis, we only focus on 

deterministic policies where, as shown above, 𝜋𝜋: 𝑺𝑺 → 𝑨𝑨.  

Besides the standard setup, there are also some other setups being introduced for 

special reinforcement learning implementations. For example, there is hierarchical 

reinforcement learning [26] setup which contains additional hierarchies inside of the 

agent. There is also intrinsically motivated reinforcement learning [27] setup where 

agents do not need rewards from the environment. These two setups are shown in 

Figure 2.2.  

 

Figure 2.2: Interaction between the agent and the environment in (a) hierarchical reinforcement 
learning setup and (b) intrinsically motivated reinforcement learning setup.  

 

We can see from Figure 2.2(a) that, in a hierarchical reinforcement learning setup, 

the decision of which action to execute is made by the inner level hierarchy of the agent 

Environment  

 
Outer 

hierarchy 
Agent 

States 𝑠𝑠𝑡𝑡 
Rewards 𝑟𝑟𝑡𝑡 

Actions 𝑎𝑎𝑡𝑡 

Environment  

Agent 

States 𝑠𝑠𝑡𝑡 Actions 𝑎𝑎𝑡𝑡 
Inner 

hierarchy 

Inner states 
Inner rewards 

Intrinsic 
motivation 

Intrinsic rewards 

(a) (b) 
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and may be influenced by any of the hierarchies in the agent. Different levels of states 

and rewards may be introduced for each level of the hierarchy. Some of the hierarchies 

may be able to be reused by the agent when the environment or the goal has changed. 

With regards to intrinsically motivated reinforcement learning setups, the agent will not 

receive any rewards from the environment. Instead, the rewards will be replaced by 

some intrinsic motivation techniques inside of the agent which generate intrinsic 

rewards to guide the agent. This allows the agent to make decision depending on its 

own motivations.  

 

2.1.2 Classical Algorithms 
 

Generally, there are two kinds of reinforcement learning algorithm: value based 

algorithms and policy based algorithms. Value based algorithms mainly focus on learning 

estimations of the value of the states or actions. Then the agent can choose actions 

according to these estimations with some implicit policies such as 𝜖𝜖 − 𝑔𝑔𝑟𝑟𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 policy. 

On the contrary, policy based algorithms focus on learning an explicit policy function 

that will output the action decisions directly.  

In fact, value based algorithms have been dominant in the past decades. A kind of 

well-known value based algorithm is called Temporal Difference Learning (TD-learning) 

[28]. TD-learning aims to learn how to predict a quantity that depends on future values 

of a given signal.  

Q-learning [5] is one of the most commonly used TD-learning algorithms. Q values 

are central to Q-learning. They are estimations of values of actions in given states, which 

are also called state-action values. A Q value of each action under a given state 

represents an estimation of the expected future return of choosing that action under 

that state. The expected future return is defined as: 

 𝑅𝑅𝑡𝑡 = �𝛾𝛾𝑡𝑡′−𝑡𝑡𝑟𝑟𝑡𝑡′

𝑇𝑇

𝑡𝑡′=𝑡𝑡

 (2.1) 

Where 𝛾𝛾 is the discount factor that indicates to what extent future reward will be taken 

into account.  
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Q-learning will bootstrap the estimation of the expected future return by updating 

the estimation using:  

 𝑄𝑄′(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡) = 𝑄𝑄(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡) + 𝜇𝜇(𝑟𝑟𝑡𝑡 + 𝛾𝛾 ∙ max
𝑎𝑎

{𝑄𝑄(𝑠𝑠𝑡𝑡+1,𝑎𝑎)} − 𝑄𝑄(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡))) (2.2) 

where 𝜇𝜇  is the step size, also known as learning rate. The term inside the bracket aside 

𝛼𝛼 is known as TD error. It is the error that provides the update direction of TD-learning 

algorithms. The aim is to make the estimation more accurate as updates continue so 

that after several updates, we can have:  

 𝑄𝑄(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡) = 𝐸𝐸[𝑅𝑅𝑡𝑡|𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡] (2.3) 

Then, in each timestep, the agent can choose an action that has the maximum Q value. 

As the estimation gets more accurate, the chosen action can lead the agent to collect 

more rewards.  

Another well-known TD-learning algorithm is State-Action-Reward-State-Action 

(SARSA) [6]. Different from Q-learning, SARSA updates the estimation using: 

 𝑄𝑄′(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡) = 𝑄𝑄(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡) + 𝜇𝜇(𝑟𝑟𝑡𝑡 + 𝛾𝛾 ∙ 𝑄𝑄(𝑠𝑠𝑡𝑡+1,𝑎𝑎𝑡𝑡+1)−𝑄𝑄(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡))) (2.4) 

The main difference is in the TD error term, specifically the way of inferring future 

reward. While Q-learning uses the maximum Q value across all available actions as the 

estimation of the future reward in state 𝑠𝑠𝑡𝑡+1, SARSA uses exactly the Q value of the 

chosen action in state 𝑠𝑠𝑡𝑡+1. As a result, while Q-learning updates the estimation as soon 

as the agent gets to state 𝑠𝑠𝑡𝑡+1, SARSA updates it after the action 𝑎𝑎𝑡𝑡+1 has been chosen 

in 𝑠𝑠𝑡𝑡+1, which is one step later than Q-learning. This can make the learning more stable 

in some tasks.  

Many value based algorithms introduce linear function approximations to 

approximate the Q values [7, 8]. These linear functions can add to the generalization 

ability of the algorithm, especially in complex environments or tasks. However, most 

value based algorithms can only solve discrete action control tasks where only a limited 

number of legal actions are available.  

With regards to policy based algorithms, the Reward Increment Nonnegative Factor 

Offset Reinforcement Characteristic Eligibility (REINFORCE) algorithm [29] is one 

representative. The REINFORCE algorithm generally uses an explicit policy function to 
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bootstrap the task-solving policies [30]. As a result, without any value estimation, the 

agent can choose appropriate actions by directly using the policy function which maps 

each individual state to a certain action output. In this way, the REINFORCE algorithm 

extends reinforcement learning to scenarios that involve a more complex control spaces, 

such as continuous control spaces, where there are potentially unlimited action choices.  

However, the REINFORCE algorithm learns much more slowly than value based 

algorithms. It is then believed that the assistance of a value function is essential for rapid 

learning [31]. Following this belief, a number of ways have been proposed to combine 

policy based methods with value based methods. The actor-critic architecture [32] and 

policy-iteration architectures [33-35] are successful architectures that can fit both value 

and policy functions into the same system.  

 

2.1.3 The Actor-Critic Architecture 
 

Different from other value based or policy based algorithms, actor-critic architecture [32] 

based algorithms have the characteristics of both value based and policy based 

algorithms. A typical actor-critic architecture is shown in Figure 2.3.  

 

Figure 2.3: Typical actor-critic architecture. 

We can see that the actor and critic are two key components in the architecture. The 

critic is functioning like the value function. It updates according to an update rule that is 
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similar to Q-learning or SARSA. The actor is functioning like the policy function. Different 

from pure policy based algorithms like REINFORCE, the actor updates based on 

information provided by the critic. Note that, the way that the actor and critic are 

realized may vary in different algorithms. The way the actor uses the information from 

the critic may also vary depending on different implementations [36, 37]. This shows the 

flexibility of the architecture.   

Research shows that actor-critic algorithms can have strong capability in learning 

policies for complex action spaces and can also be fast in learning. Therefore, it is 

considered a very suitable architecture for learning in a continuous action space. Many 

actor-critic algorithms [38-40] in different domains have achieved very good results.   

 

2.2 Deep Learning Overview 
 

In 1943, a computational model based on threshold logic was created, which is seen as 

the ancestor to neural network models [41]. This model was then developed in a two-

layer computer learning network in 1958 by Frank Rosenblatt, who also created early 

concepts of the perceptron [42]. However, training these neural networks is not easy 

[43], and neural network research stagnated for some time.  

The challenge with neural network algorithms were first addressed by the 

backpropagation algorithm proposed in 1975 [44]. Based on the backpropagation 

algorithm, a successful neural network model was proposed in 1998 to recognize 

handwritten digits in documents [45]. This model is also seen as a very classical deep 

learning model. Unfortunately, deep learning research again stagnated because of the 

limit of computational resources and training data in those days. Finally, in recent years, 

advances of high performance computational devices and the development of big data 

have revitalised deep learning research and made it one of the most important 

techniques in artificial intelligence.  

In this section, a review of deep learning is presented. The following subsection is a 

wrap up of recent advances in deep learning research. Then the rest of the subsections 
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are reviews on the training strategies of deep learning models and an important type of 

neural network layer for this thesis.  

 

2.2.1 Recent Advances in Deep Learning 
 

In recent years, the presence of high performance Graphics Processing Units (GPUs) and 

the accessibility of big data have pushed deep learning to become one of the most 

influential topics in academia. The first breaking news came in 2012, when Hinton won 

first place in the LSVRC-2012 competition with his deep convolutional neural networks 

(CNN) model [10]. The competition is about an image recognition task with an image 

dataset called ImageNet [46], which contains 1,000 different categories. The proposed 

model, which is shown in Figure 2.4, broke the record at that time by improving the 

accuracy by more than 10% compared to traditional methods.   

 

Figure 2.4: The architecture of the deep convolutional neural network proposed by Krizhevsky 
et al. [10] for image classification problems. The blue squares are convolutional layers while the 
green ones are max pooling layer. 

 

The parameter sharing nature of the convolutional layer and the max pooling 

operation that follows it can not only reduce the number of parameters needed for 

extracting features from raw image data, but also add to the robustness of the model 

against shifting or rotating distortions in the images. With hundreds of thousands of 

auto-learned parameters, these deep learning models have shown strong generalization 

capability and unprecedented feature extraction ability. Deep learning has freed people 

from designing hand-crafted features for each new application.  
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The success of Krizhevsky et al. [10] quickly attracted people’s attention and a series 

of record-breaking works on classifying ImageNet dataset have been proposed in the 

following years.  These include a refinement of Krizhevsky et al. ’s model in [10] that won 

the LSVRC-2013 title [47], two even deeper neural network models that won first [48] 

and second [49] place in LSVRC-2014, and a model that contains 152 layers that won the 

LSVRC-2015 title [50].  

While the networks are getting deeper and deeper, there are also many works that 

focus on finding more effective network architectures. The long-short term memory 

(LSTM) network [11] is one of the successful innovations on designing new network 

architectures. LSTM networks can effectively solve problems that need to combine 

sequential or past information, such as optical character recognition (ORC) [51], speech 

recognition [11] and so on.  

 

Figure 2.5: A local layer rollout of (a) the Inception architecture and (b) the ResNet architecture. 
These figures just show the basic concepts of these two architecture.  

 

The Inception architecture [48] (Figure 2.5(a)) is also an effective deep learning 

architecture. It uses parallel inputs with different reception fields within the same layer 

to enable the network to combine features from different scales. Another successful 

architecture is the residual network (ResNet) [52] (Figure 2.5(b)). By alternatively 

switching between a short path and a long path in a residual block, ResNet can 

effectively train very deep networks. Both the Inception architecture and ResNet 

architecture have received considerable attention in academia and are considered as 
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important forms of future deep learning models. At lot of work has been done to 

improve these two architectures [50, 53-55].  

What is more, there are works that aim to apply deep learning in other fields rather 

than image classification. One of the important applications is object detection. A 

breakthrough in this topic was the presence of Region with CNNs algorithm (R-CNN) [56]. 

It uses CNN to first detect several candidate regions and then to select regions that 

contain specific objects. Following, several works have improved the speed and accuracy 

of R-CNN, most famously Fast R-CNN [57], Spatial Pyramid Pooling (SPP) [58], Fully CNN 

[59] and Faster R-CNN [12]. These new algorithms have not only achieved state-of-the-

art results that can be applied in our daily life, but also have led us to a better 

understanding of deep learning.  

However, deep leaning still has some major drawbacks. First, its strong 

generalization capability is based on the availability of huge amounts of data. Otherwise, 

it will suffer from overfitting on the training data and fail to work on data that it has not 

seen. Secondly, training deep learning models requires huge amounts of computational 

resources, while a well-trained model may also need a lot of memory space that some 

embedded systems cannot afford. This has confined deep learning to be applied only on 

high performance computers. A lot of work has been done to address these two 

challenges.  

To solve overfitting problems, a number of regularization techniques have been 

proposed. The most common way is to add regularizations on the loss function of the 

network. In addition, data augmentations are also very practical strategies. Traditional 

augmentation techniques including horizontally flipping, random rotations and shifting, 

and fancy PCA [10] can help prevent overfitting by considerably increasing the amount 

of data by adding pseudo-data into the original datasets. DropOut [60] and DropConnect 

[61] are also very successful techniques in dealing with overfitting. They achieve this by 

reducing the interdependence between neurons during training. In practice, these 

regularization techniques are usually combined to achieve the best generalization result.   

With regards to the heavy memory and computational resource requirement, there 

are also many works done to achieve lighter parameterized network and training.  Low-



19 
 

rank filters decomposition [62] and connection pruning [63] are two successful 

techniques to reduce the number of parameters in the network after training. By 

dropping connections or transforming the dimension of the convolutional kernels, these 

two techniques also considerably speed up the feedforward computation of the 

network. In the meantime, techniques such as hashing trick [64] and binary connect [65] 

have been proposed to significantly compress the memory space needed to record a 

trained network. These compression techniques improve the efficiency of parameter 

saving and allow deep networks to be applied in low performance devices.  

After a rapid growth in recent years, deep learning methods now are becoming more 

and more recognized in many research fields. New deep learning development is coming 

to make it more generalized and efficient.   

 

2.2.2 Recent Advances in Training Optimization 
 

Training optimization is central to any deep learning algorithm. Finding effective ways 

to update the network is the prerequisite of applying any deep learning models. All the 

training optimizations nowadays are based on the backpropagation algorithm proposed 

in 1975 [44]. As deep learning models are getting deeper and more architecture 

variations have been proposed, simply applying backpropagation seems to be 

insufficient as bigger models are more likely to suffer from training instability or gradient 

problems (such as gradient explosion).  

Generally speaking, the update methods for adaptive machine learning algorithms 

can be grouped into three classes: (1) stochastic gradient descent (SGD) methods, which 

uses one single sample per update; (2) batch gradient descent methods, which uses the 

whole dataset for updating the model in each update iteration; and (3) mini-batch 

gradient descent methods, which sample a mini-batch from the dataset to update the 

network in each iteration.  As mini-batch gradient descent is more stable than SGD and 

also more data-efficient than batch gradient descent methods, it has become the 

dominant gradient update rule in deep learning. Combined with the backpropagation 

algorithm, the update rule is:  
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 𝜃𝜃′ = 𝜃𝜃 − 𝜇𝜇∇𝜃𝜃
1
𝑀𝑀
�𝐿𝐿(𝑋𝑋𝑖𝑖,𝑔𝑔𝑖𝑖)
𝑀𝑀

𝑖𝑖=1

 (2.5) 

where 𝑀𝑀  is the mini-batch size, ∇  indicates gradient calculation, 𝜃𝜃  is the network 

parameter, 𝑋𝑋𝑖𝑖 is the final output of the network of the 𝑖𝑖𝑡𝑡ℎ sample in the mini-batch and 

𝑔𝑔𝑖𝑖 is its corresponding supervising signal (also known as the label or ground truth). 𝐿𝐿(∙) 

is the loss function that the training is trying to minimize.  

In order to accelerate training, a technique called momentum [66] has been 

proposed to accumulate past updates to push future update towards the dominant 

direction. With momentum, the update rule becomes: 

 𝑣𝑣′ = 𝛿𝛿𝑣𝑣 + 𝜇𝜇∇𝜃𝜃
1
𝑀𝑀
�𝐿𝐿(𝑋𝑋𝑖𝑖,𝑔𝑔𝑖𝑖)
𝑀𝑀

𝑖𝑖=1

 (2.6) 

 𝜃𝜃′ = 𝜃𝜃 − 𝑣𝑣′ (2.7) 

where 𝛿𝛿 is the momentum term that indicates the speed of the accumulation.  

Nesterov Accelerated Gradient (NAG) [67] is also a training optimization to 

accelerate training. It is similar to momentum, except for taking the second derivative 

(or called the Hessian) of the gradient into account:  

 𝑣𝑣′ = 𝛿𝛿𝑣𝑣 + 𝜇𝜇∇𝜃𝜃[
1
𝑀𝑀
�𝐿𝐿(𝑋𝑋𝑖𝑖,𝑔𝑔𝑖𝑖)
𝑀𝑀

𝑖𝑖=1

− 𝛿𝛿𝑣𝑣] (2.8) 

 𝜃𝜃′ = 𝜃𝜃 − 𝑣𝑣′ (2.9) 

In recent years, new training optimizations have been proposed. These new 

optimizations include RMSProp [68], Adagrad [69], Adadelta [70] and Adam [71]. The 

basic idea of these optimizations is to find a way to make the network less sensitive to 

the value of hand-crafted learning rates. Each of these optimization methods has its own 

way to adjust the value of the learning rate during training according to some rules or 

analysis of past updates. Therefore, they are also called adaptive learning rate 

optimizations.  

While all these adaptive learning rate optimizations can significantly accelerate and 

stabilize training, Adam optimization stands out as the most general training 

optimization that can fit in different deep learning models. The update rules are:  
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 𝑚𝑚′ = 𝛽𝛽1𝑣𝑣 + (1 − 𝛽𝛽1)∇𝜃𝜃
1
𝑀𝑀
�𝐿𝐿(𝑋𝑋𝑖𝑖,𝑔𝑔𝑖𝑖)
𝑀𝑀

𝑖𝑖=1

 (2.10) 

 
𝑣𝑣′ = 𝛽𝛽2𝑣𝑣 + (1 − 𝛽𝛽2)[∇𝜃𝜃

1
𝑀𝑀
�𝐿𝐿(𝑋𝑋𝑖𝑖,𝑔𝑔𝑖𝑖)
𝑀𝑀

𝑖𝑖=1

]2 (2.11) 

 
𝑚𝑚� =

𝑚𝑚′

1 − 𝛽𝛽1𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖+1
 

(2.12) 

 
𝑣𝑣� =

𝑣𝑣′

1 − 𝛽𝛽2𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖+1
 

(2.13) 

 𝜃𝜃′ = 𝜃𝜃 −
𝜇𝜇𝑚𝑚�

√𝑣𝑣� + 𝜀𝜀
 

(2.14) 

where 𝑖𝑖𝑡𝑡𝑔𝑔𝑟𝑟  indicates the number of updates taken. 𝛽𝛽1  and 𝛽𝛽2  are called exponential 

decay factors which are close to 1. 𝜀𝜀 is a small constant for numerical stability.  

By adaptively adjusting the learning rate according to the momentum of the squared 

gradients, Adam optimization achieves a training optimization that is insensitive to any 

hand-crafted hyper-parameters.  

 

2.2.3 The Multi-Layer Perceptron Convolutional Layer  
 

Another important topic in deep learning research is about network layers. Unlike 

developments in network architecture or training optimization that take care of the big 

picture of learning, network layer developments focus on designing new types of layers 

that can boost the network’s ability in a certain aspect.  

For example, a new type of convolutional layer was proposed by Sun, et al. [72], 

which is called a local convolutional layer. Different from a traditional convolutional 

layer that uses a shared convolution kernel for each of the individual feature maps, a 

local convolutional layer can have more than one convolution kernel for a single feature 

map, each one responsible for a specific region in the map. This layer can add to the 

network’s ability to apply different extracting parameters for different regions in the 

image. Another example is a frictional max pooling layer [73]. Unlike a traditional pooling 

layer that has a fixed stride size, a frictional max pooling layer can change stride size in 
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each pooling step. This can prevent information being missed because of the down-

sampling nature of the pooling layer.   

The multi-layer perceptron convolutional (mlpconv) layer [23] is also a new type of 

network layer. The mlpconv layer was first proposed for image classification problems. 

A classical network with mlpconv layers is shown in Figure 2.6.  

 

Figure 2.6: A classical network with mlpconv layers. A global average pooling layer is applied in 
the last mlpconv layer. The network is aimed to solve image classification problems.  

 

A traditional convolutional layer simply activates feature maps with an activation 

function 𝐹𝐹(∙) using:  

 𝑓𝑓𝑖𝑖,𝑗𝑗,𝑘𝑘 = 𝐹𝐹(𝜔𝜔𝑘𝑘
𝑇𝑇𝑥𝑥𝑖𝑖,𝑗𝑗 + 𝑏𝑏𝑘𝑘) (2.15) 

where (𝑖𝑖, 𝑗𝑗) indexes the pixels (also known as neurons or nodes) in the 𝑘𝑘𝑡𝑡ℎ feature map. 

𝜔𝜔𝑘𝑘  and 𝑏𝑏𝑘𝑘  are the weight and bias, which are the learning parameters of the 

convolution kernel for the 𝑘𝑘𝑡𝑡ℎ feature map.  

As the activation function 𝐹𝐹(∙)  is usually chosen to be a linear function in a deep 

neural network to accelerate training and avoid gradient vanishing, in a traditional 

convolutional layer, the feature maps of a layer are usually a linear rendering of the 

feature maps of the previous layer. However, good abstractions are generally achieved 

by applying non-linear functions to the data. Therefore, in order to compensate with the 

linear activation function, a mlpconv layer applies a recombination of feature maps 

across different channels with some multi-layer perceptron operations before feeding 

the feature maps into the next layer.  As a result, the recombined feature map outputs 

of the mlpconv layer becomes: 

 𝑓𝑓𝑖𝑖,𝑗𝑗,𝑘𝑘𝑛𝑛
𝑛𝑛 = 𝐹𝐹�𝜔𝜔𝑘𝑘𝑛𝑛

𝑛𝑛 𝑇𝑇𝑓𝑓𝑖𝑖,𝑗𝑗𝑛𝑛−1 + 𝑏𝑏𝑘𝑘𝑛𝑛� (2.16) 
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where 𝑛𝑛  is the number of multi-layer perceptron operations used and 𝑓𝑓𝑖𝑖,𝑗𝑗0 = 𝑥𝑥𝑖𝑖,𝑗𝑗 . In 

practice, it is set to 𝑛𝑛 = 2 [23].  

For classification problems in [23], the final classification output can be obtained by 

simply applying a global average pooling layer on the feature maps of the last mlpconv 

layer. This network has achieved state-of-the-art results for several classification 

problems, while it also reduces the number of parameters needed compared to 

traditional CNNs by removing all fully-connected layers from the network. This is feasible 

owing to the mlpconv layers in the network that can provide features that are 

representative enough for the network to infer the results even with a non-

parameterized layer.  

 

2.3 Deep Reinforcement Learning 
 

The success of deep learning in generalizing big datasets and automatically extracting 

features from raw image inputs has inspired interest in combining reinforcement 

learning with deep learning to further improve the performance of the agents, especially 

in case that complex environments or controls are involved.   

However, it is generally believed that non-linear approximations like deep neural 

networks are difficult to converge in reinforcement learning scenarios. This is especially 

the case for deep learning models that are very likely to get overfitting and require well-

distributed labelled data. The correlations between consecutive states, the tendency of 

dropping in biased exploration and the sparse reward signals in reinforcement learning 

are challenges that need to be considered for combining deep learning and 

reinforcement learning. All these challenges were finally addressed by Mnih, et al. [18], 

which has also brought deep reinforcement learning great success. It proved that deep 

learning can be used as an approximation function that is much more powerful than any 

other former linear approximations used in reinforcement learning.   

The reminder of this section starts with a subsection of overview of deep 

reinforcement learning developments in recent years. It is followed by an introduction 
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of two well-known deep reinforcement learning algorithms and a more focused 

literature review on the main topics of this thesis.  

 

2.3.1 The New Generation of Intelligent Agents 
 

The first successful deep reinforcement learning algorithm was deep Q network (DQN) 

[18] proposed in 2013. It combined advances in reinforcement learning such as a replay 

memory mechanism [74] to address the challenges in training deep learning models in 

reinforcement learning scenarios. Game agents trained with DQN achieved state-of-the-

art performance in playing a variety of Atari games. The unprecedented performance of 

DQN and its ability to learn from raw image frames of the games shocked the artificial 

intelligence community.   

Deep reinforcement learning quickly gained popularity and lots of new deep 

reinforcement learning works emerged out. Many works have focused on applying deep 

reinforcement learning in different types of control tasks. For example, Deep 

Deterministic Policy Gradient (DDPG) [24] is the first deep reinforcement learning 

algorithm to handle continuous control scenarios. Following it, the Stochastic Value 

Gradients (SVG) [75] algorithm was proposed to handle continuous control scenarios 

with stochastic policy gradients, which allows on-policy training (training online). In 

addition, Normalized Advantage Functions (NAF) [76] and Trust Region Policy 

Optimization (TRPO) [77] are also continuous control deep reinforcement learning 

algorithms which introduce deep learning models in the algorithms. In cases where large 

discrete action spaces are involved, Wolpertinger [78] outperformed traditional 

methods by combining DDPG with embedded mapping. What is more, works also have 

been done in solving parameterized action space control problems with deep 

reinforcement learning [79]. Other contributions [80-83] are all successful works in 

fitting deep reinforcement learning to specific types of control tasks.  

There are also many works that focus on improving existing deep reinforcement 

learning algorithms by fusing different techniques. For example, in order to make 

training more stable, work has been done to introduce priority in the replay memory so 
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that the agent can see important transitions more frequently [84]. Other work [85] also 

improves learning stability by increasing the gap between different actions. The 

introduction of target networks can also stabilize learning. It helps DQN achieve human-

level performance in playing all types of Atari games [19]. Some other works [86, 87] 

also contribute to this topic. Another way to improve existing algorithms is to improve 

the learning efficiency. This is generally achieved by some pre-learning techniques that 

help the agent find updating direction earlier during formal training [88, 89].   

 Moreover, there are works that aim to add new ability to the agent trained by deep 

reinforcement learning algorithms. A good example is the introduction of recurrent 

networks in the agent [90-92]. These recurrent networks such as LSTM [11] can give the 

agent the ability to memorize past experience, so that the agent can make decisions that 

are based on not only the current state, but also the previous states. This enables the 

agent to solve partially observable tasks, where the final goals are hidden or only 

partially observable in the environment. Another way to add memory ability is through 

episodic control [93]. In scenarios where the task cannot be solved with a single agent, 

the ability of cooperating with other agents needs to be added. This can be achieved by 

either introducing communication skills to the agent system [94-96] or by finding ways 

to balance gradient propagation among all available agents when updating networks for 

each of the agents [97].  

It is worth mentioning that the performance of deep reinforcement learning agents 

is still improving even though they have already achieved significantly better 

performance compared to classical reinforcement learning agents. For example, 

asynchronous methods [98] have freed deep reinforcement learning from the replay 

memory mechanism. This is achieved by implementing multi-thread training schemes 

that can make use of transitions of multiple learning agents. While this method can have 

some similar functions to the replay memory, it can also make deep reinforcement 

learning algorithms become on-policy, which is more data-efficient.  Another example 

is the work that introduces the ResNet network architecture in the algorithm to 

significantly improve the agent’s capability in extracting information from raw image 

data, which achieves target-driven control where the target is given in the form of 

pictures [99].  
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Deep reinforcement learning algorithms have also been successfully applied in many 

other applications. These include application such as semantic analysis [100-103], 

computer vision [104-106], management systems [107-109] and others [110-113]. 

While deep reinforcement learning agents can help improve performance in all these 

applications, a breakthrough was in playing the Go game, which is regarded as the most 

complex intellectual game in human history. A Deep reinforcement learning based agent, 

called AlphaGo [20], has beaten the legend and champion Go player, Lee Sedol, in a five-

set match. This announced that a new generation of artificial intelligence is about to 

begin.     

 

2.3.2 Deep Q Network and Deep Deterministic Policy Gradient 
 

Deep Q Network (DQN) [18] was the first successful algorithm that combines deep 

learning with reinforcement learning. The algorithm was proposed to handle discrete 

control tasks. It uses deep learning models as an approximation of the Q values and can 

learn and infer Q values using raw image data. An overview of DQN is shown in Figure 

2.7.  

 

Figure 2.7: An overview of DQN [18]. The replay memory (in the yellow box) breaks learning into 
two parts, exploration (in blue boxes) and training (in green boxes).  

 

There are mainly two techniques in DQN which are fundamental to address the 
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challenges for combining deep learning and reinforcement learning. The first one is 

replay memory, which is a memory pool that stores all past transitions the agent has 

experienced. This is necessary because on-policy learning is not suitable for training 

deep learning models. The correlations between consecutive inputs in on-policy learning 

methods can easily drive deep learning models to get overfitting. DQN addresses this by 

randomly sampling a mini-batch of transitions from the replay memory. This de-

correlates data as the transitions sampled in each iteration may come from different 

exploration periods. The introduction of replay memory actually splits learning into two 

separate phases: exploration and learning. Even though these two phases process 

alternately, which may make it look like a learning-while-exploring method, it is actually 

an off-policy algorithm (training offline).  

The second key technique is called target networks [19]. In addition to a Q network, 

another target Q network is introduced in the algorithm. The parameters of the target 

Q network 𝜃𝜃𝑡𝑡 is first initialized to the same values of the Q network. But unlike the Q 

network that is updated every training iteration, the target Q network will only be 

updated at certain times during training by being synchronized to the current Q network. 

It can be regarded as a slowly updated version of the Q network and is used when 

calculating the supervising signal. It is necessary because, unlike image classification 

problems where every data has its own label as its supervising signal, the supervising 

signal in deep reinforcement learning scenarios, which is the expected future return, 

needs to be calculated during training. As a result, the supervising signal is actually a 

changing value because the estimation of the Q value of a certain state will be changed 

every time the network has been updated. The slowly updated target Q network here is 

therefore introduced to provide more stable supervising signals to stabilize the learning 

process.  

What is more, the exploration of DQN is always governed by a 𝜖𝜖 − 𝑔𝑔𝑟𝑟𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 policy. 

This helps balance the exploration with exploitation and improve the quality of the 

transitions in the replay memory, which can further prevent networks overfitting. This 

is especially important in the early stage of learning, when the agent can easily get stuck 

at a local optima.  
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However, even though DQN is a successful algorithm, the nature of Q-learning has 

limited DQN to discrete action control scenarios. When facing continuous control 

problems where there are unlimited action choices, DQN is easily overloaded by the high 

dimension of the action space.  

Deep Deterministic Policy Gradient (DDPG) [24] was the first deep reinforcement 

learning algorithm that can handle a continuous action space. DDPG is based on the 

actor-critic architecture [32] that is more capable in dealing with complex action space. 

The introduction of deep learning models in the actor-critic architecture also enable the 

agent to learn from raw image data. An overview of DDPG is shown in Figure 2.8.  

 

Figure 2.8: An overview of DDPG [24]. Similar to DQN, the replay memory (in the yellow box) 
breaks learning into two parts, exploration (in blue boxes) and training (in green boxes). 

 

DDPG inherits the two key techniques mentioned above from DQN. The main 

difference is that there are two deep neural networks in DDPG: the actor network, which 

can also be regarded as a policy network (𝜃𝜃𝜋𝜋 ), and the critic network, which is also 

known as a value network or Q network (𝜃𝜃𝑄𝑄). Like the case in any other actor-critic based 

algorithms, the actor is a complex policy that can provide actions and the critic is 

consistently estimating the value of the action chosen by the actor to guide the actor to 

learn.    

As a result, after a mini-batch of transitions have been sampled from the replay 

memory, the critic network will be first updated to minimize the loss function:  
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 𝐿𝐿(𝜃𝜃𝑄𝑄) = (𝑄𝑄(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡|𝜃𝜃𝑄𝑄) − 𝑔𝑔𝑡𝑡)2 (2.17) 

where the supervising signal 𝑔𝑔𝑡𝑡  is calculated before updating using the target critic 

network (𝜃𝜃𝑄𝑄,𝑡𝑡) and the target actor network (𝜃𝜃𝜋𝜋,𝑡𝑡) as:  

 𝑔𝑔𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝛾𝛾𝑄𝑄(𝑠𝑠𝑡𝑡+1,𝜋𝜋(𝑠𝑠𝑡𝑡+1|𝜃𝜃𝜋𝜋,𝑡𝑡)|𝜃𝜃𝑄𝑄,𝑡𝑡) (2.18) 

And the update rule of the critic network is: 

 𝜃𝜃𝑄𝑄′ = 𝜃𝜃𝑄𝑄 − 𝜇𝜇𝑄𝑄 ∙ 𝛻𝛻𝜃𝜃𝑄𝑄𝐿𝐿(𝜃𝜃𝑄𝑄) (2.19) 

After the critic network has been updated, the actor network will be updated using 

gradient information from the critic network. Specifically, this is achieved by using the 

deterministic policy gradient calculating rule [114]:  

 𝜃𝜃𝜋𝜋′ = 𝜃𝜃𝜋𝜋 − 𝜇𝜇𝜋𝜋 ∙ 𝛻𝛻𝑎𝑎𝑄𝑄(𝑠𝑠𝑡𝑡, ,𝜋𝜋(𝑠𝑠𝑡𝑡|𝜃𝜃𝜋𝜋)|𝜃𝜃𝑄𝑄) ∙ 𝛻𝛻𝜃𝜃𝜋𝜋𝜋𝜋(𝑠𝑠𝑡𝑡|𝜃𝜃𝜋𝜋) (2.20) 

Note that the above update rules are based on the mini-batch gradient descent training 

optimization. The exact update rules can be changed according to the form of training 

optimization applied.  

Similar to the exploration of DQN, the exploration of DDPG is always governed by an 

Ornstein-Uhlenbeck process [115]. This process can randomize the action choosing 

process to allow maximum exploration in the continuous action space. It is important 

for the agent especially in early stage of learning.  

 

2.3.3 Multi-Task and Hierarchical Deep Reinforcement Learning 
 

Although a lot of work has been done to improve deep reinforcement learning 

algorithms over single tasks, there is much less work done for multi-task scenarios, 

although some exists [116-118]. Bangaru, et al. [116] mostly focused on the exploration 

phase of deep reinforcement learning. They aimed to find ways to generalize several 

well-learned models of different tasks to one model. Borsa, et al. [117] learn universal 

abstractions of different tasks so that they can be reused when learning.  Zhang, et al. 

[118] aim to learn successor features that the agent can transfer from one task to 

another. Although all these works involve multiple tasks, the tasks are not learned at the 

same time. Actually, the work of  Bangaru, et al. is close to model compression work and 

the work of Borsa, et al. and Zhang, et al. are similar in nature to transfer learning [22].   
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Another topic that may share some common points with multi-task learning is multi-

agent learning [94, 95]. However, even though multiple tasks are involved, these works 

need at least two different agents, while multi-task learning permits one agent to learn 

multiple tasks.  

With regards to hierarchical deep reinforcement learning, work also exists found in 

[119, 120]. Kulkarni, et al. [119] achieved hierarchical learning by embedding an 

additional DQN structure into the agent. Therefore is limited to handle discrete action 

control tasks. Krishnamurthy, et al. [120] mostly focused on finding the hierarchical 

structure of the tasks with clustering methods. Their contribution is on analyzing task 

structure and decomposing complex tasks prior learning.  

Another related topic to hierarchical learning is intrinsically motivated learning 

which also may involve multiple levels of hierarchy in the agent. However, only a few 

works use deep reinforcement learning to achieve intrinsic motivation. Recent work is 

the algorithm proposed by Mohamed and Rezende [121] that has successfully achieved 

an intrinsically motivated agent by replacing reward functions with a maximization of 

the mutual information during learning. But this work is again limited to discrete action 

control.  

Multi-task and hierarchical learning are very time and computationally efficient ways 

for the agent to learn. Therefore, it is worthwhile making use of the capability of deep 

reinforcement learning to achieve multi-task and hierarchical learning, especially in 

continuous action space scenarios, where limited work has been done.  

 

2.4 Summary 
 

Deep reinforcement learning algorithms combine deep learning techniques with 

reinforcement learning methods. Although it is generally believed that non-linear 

function approximations like deep learning models are difficult to converge in 

reinforcement learning scenarios, recent advances in reinforcement learning have 

successfully addressed these challenges and brought deep reinforcement learning 

success. The first success in deep reinforcement learning was Deep Q Network [18]. 
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Inspired by this [18], a lot of work appeared to improve deep reinforcement learning 

algorithms or adapt it to different types of control tasks. Moreover, many works apply 

deep reinforcement learning in other areas. The most successful ones are deep 

reinforcement learning agents that outperformed humans in playing Atari games [19] 

and Go games [20].  

However, much less work has been done to use deep reinforcement learning to 

achieve multi-task and hierarchical learning. This is especially the case for learning in a 

continuous action space. This has inspired our work in this thesis.  

In this thesis, we propose two novel deep reinforcement learning algorithms for 

multi-task and hierarchical learning in continuous action spaces. A novel deep 

reinforcement learning network architecture is also proposed to reduce the number of 

parameters needed. This is introduced in the next chapter.   
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Chapter 3  

A Novel Deep Reinforcement Learning Network 

Architecture 

 

Recent advances in reinforcement learning have addressed the challenges of combining 

deep learning with reinforcement learning and brought deep reinforcement learning 

great success. Some work also successfully applied recent deep learning techniques, 

such as the ResNet architecture [52], to further enhance the capability of deep 

reinforcement learning agents [99]. This has inspired our interest in fusing other deep 

learning methods with reinforcement learning.  

Although deep reinforcement learning agents can handle very complex 

environments and action spaces owing to the strong generalization ability of deep 

learning models, they are very heavily parameterized (one of the characteristics of deep 

learning models) compared to classical reinforcement learning agents that only use 

linear function approximations. The number of parameters introduced in the agent will 

turn out to be a significant problem when the agent needs to learn multiple tasks within 

the same learning process. This is generally the case in multi-task learning or hierarchical 

learning scenarios.  

The work presented in this chapter has been partially published in the following paper:  

Zhaoyang Yang, Kathryn Merrick, Hussein Abbass, Lianwen Jin, Multi-Task Deep 
Reinforcement Learning for Continuous Action Control. Proceedings of International Joint 
Conference on Artificial Intelligence, 2017. [Accepted on April 23, 2017].  

Specifically, Section 3.1 and experimental results in Section 3.7 were written based on texts 
or/and results in the above paper.  

As the first author of the above paper, I designed the proposed network architecture, built 
the simulation and implemented the architecture on it, and wrote the majority of the paper 
on my own.   
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In this chapter, we propose a novel network architecture for deep reinforcement 

learning agents.  The proposed network architecture makes use of the multi-layer 

perceptron convolutional (mlpconv) layer to significantly reduce the number of 

parameters needed in a reinforcement learning agent. We first introduce the basic ideas 

behind this novel network architecture in Section 3.1. Then we introduce the network 

architecture and ways of implementing it in Section 3.2 and Section 3.3. Section 3.4 is a 

summary of the network architecture. The validation of the proposed network 

architecture is in Sections 3.5 to Section 3.8. 

3.1 Inspirations 
 

The unprecedented feature extraction ability of deep learning models have enabled 

deep reinforcement learning agents to learn from raw image data such as camera 

photos or game frames. However, this ability is based on a large number of parameters 

in the deep CNN networks. With a closer insight into the network architecture, we can 

understand that most of the parameters in a CNN are introduced when all feature maps 

of the last convolutional layer are flattened into a long vector to connect to the first fully 

connected layer. This is especially the case for CNNs in deep reinforcement learning 

agents, which have relatively smaller fully connected layers compared to the larger 

networks used in image classification problems.  

The large number of parameters in between the last convolutional layer and the first 

fully connected layer becomes even more significant when the agent needs to handle 

multiple tasks. For example, at least 1,600,000 new parameters need to be introduced 

for a DQN agent to handle each additional task. For DDPG agents that have two deep 

networks, the number of new parameters needed for learning a new task-solving policy 

is at least 800,000, regardless of whether convolutional layers are shared between the 

actor network and the critic network. This huge number of parameters is not only tricky 

to train as it may tend to make the network overfit, but also redundant to some extent, 

especially when more tasks are involved. Therefore, it is important to find ways to 

reduce the parameters in the network.  
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The multi-layer perceptron convolutional (mlpconv) layer is a relatively new network 

layer [23] for image classification problems. In addition to a traditional convolutional 

layer, two perceptron layers are added to reconstruct the feature maps rendered by 

that particular convolutional layer, before these feature maps are fed into the next layer. 

This reconstruction of the feature maps aims to compensate with the linear activation 

function used in CNNs to make the final feature maps a non-linear rendering of the 

inputs. It can merge information across different channels and enable the network to 

learn more abstract features. With the help of this reconstruction, the network achieves 

excellent classification performance by simply implementing an average pooling layer 

on the last mlpconv layer.  

In our proposed network architecture, we make use of the mlpconv layer to extract 

more features in a more abstract level, while also reducing the parameters needed in-

between the convolutional layers and fully connected layers. The basic idea is that 

compared to other image processing problems, such as image classification and object 

detection, the information the agent needs to infer from images is less complex, 

especially when the agent is learning basic skills. Thus, we do not need pixel level 

information in the feature maps.  

Instead, by implementing mlpconv layers, the feature maps can reach a more 

abstract level. Then with a global average pooling layer, we can obtain a shorter feature 

vector. This shorter vector may lose some detailed information about the environment, 

but, with the help of the previous mlpconv layer, the short vector can contain more 

refined information about the environment. This is beneficial for the agent as it can be 

more focused on learning skills without being confused with irrelevant information in 

the environment. The short vector can also help us reduce the number of parameters 

needed when it is connected to the fully connected layers of the network, compared to 

the long vector from flattened feature maps of traditional convolutional layers.   

 

3.2 General Architecture of the Proposed Network 
 

The proposed network architecture is shown in Figure 3.1.  
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Figure 3.1: The general architecture of the proposed network. The text inside the boxes with 
dashed borders can be replaced by corresponding network layers or data.   

 

Note that the architecture shown in Figure 3.1 is a general architecture that does 

not contain any detailed information about the network parameters. The box with solid 

borders is the part that will always be present in the proposed network architecture, 

while the boxes with dashed borders are changeable and/or removable parts and can 

be filled with the specified layers or data according to different implementations 

presented in Section 3.3 and evaluated in Section 3.6.   

As shown in Figure 3.1, the key part of the proposed network architecture is the 

mlpconv layer and the global average pooling layer between the convolutional part and 

the fully connected part of the network. Different from the existing implementation that 

used a mlpconv and global average pooling layer as the output combination of the 

network, we use them in the middle of the network as a connection between two parts 

of the network [23]. The mlpconv will increase the abstraction level of the feature maps 

extracted from previous convolutional layers and the global average pooling layer will 

summarize these feature maps into a short vector, in which each element represents a 

feature map channel.  

By doing so, we not only allow the agent to learn from more refined features, but 

also significantly reduce the number of parameters we need. For example, suppose that 

we have two more convolutional layers before the mlpconv layer and two more hidden 

fully connected layers before the output with 400 and 300 nodes respectively, a 

comparison of the number of parameters needed for a DDPG agent with traditional CNN 

and the proposed network architecture is shown in Figure 3.2.  
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Figure 3.2: A comparison between the numbers of parameters needed for a DDPG agent with 
CNN and the proposed network architecture.   

 

We can see that, for a DDPG agent that can only solve a single task, the proposed 

network architecture can reduce the number of parameters needed from around 

1,060,000 to around 292,000, which is a 72.5% relative reduction. This reduction will 

become more and more significant in a sheer volume aspect as the number of tasks 

increases, because each additional task needs one new critic network and one new actor 

network.  

 

3.3 Implementation Variations 
 

Besides the advantages of using the proposed network architecture discussed in the last 

section, some good properties of the short vector formed by the mlpconv and global 

average pooling layers enable the architecture to be expanded to the following two 

implementation variations naturally.  

 

3.3.1 Parameter Sharing Implementation 
 

As discussed above, the output feature vector of the global average pooling layer will 

contain information at a higher abstraction level compared to the feature vector 

obtained from flattened feature maps of traditional convolutional layers. This makes it 
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natural to share the output feature between the fully connected layer parts of different 

networks. This is owing to the fact that features with higher levels of abstraction are 

more generalized features that can contain more information, even though this 

information is not as detailed as features with lower level of abstraction. As a result, the 

following fully connected layer can use these features and decode them in different 

ways according to different objectives (or loss functions).  

Generally, there are two ways to share the output feature vector. The first way is to 

co-train the shared convolutional part among different networks. This way allows all 

networks to update the convolutional layers. The second way is to only allow one 

network (usually the one that is taking hold of the learning, such as the critic network in 

an actor-critic architecture) to update the convolutional part. In this way, the rest of the 

networks will use the output feature vector as their inputs and only need to update their 

own fully connected layers. We will illustrate in Section 3.6.1 that both ways are suitable 

for the proposed network architecture.  

This parameter sharing implementation is especially suitable for deep reinforcement 

learning algorithms that have more than one network. For example, we can share the 

convolutional part of the actor network and the critic network in a DDPG agent. What is 

more, it is also very suitable in cases where multiple tasks are involved, such as multi-

task learning and hierarchical learning, because parameters can be shared among 

different tasks or levels of hierarchy.  

 

3.3.2 Image Data and Sensor Data Fusing Implementation 
 

We will show in Section 3.6.2 that it is beneficial to include sensor data in the algorithm. 

While images can enable the agent to learn high level representations by providing the 

agent with vivid and rich information about the environment, information from raw 

sensors is more straightforward and sometimes can help the agent to learn more 

efficiently, especially when the agent is learning basic skills. For example, while raw 

sensors can directly send the agent distance information, this information is implicit and 

hard to infer from images.  
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However, image data and sensor data should be treated differently in neural 

networks. While image data needs to be processed and extracted by the convolutional 

layers, sensor data can be processed directly by fully connected layers. In fact, the 

proposed network architecture is suitable for combining image data and sensor data. 

This is another benefit we can get from having a feature vector that is at a higher level 

of abstraction, as the abstraction level of the sensor data is higher than that of the image 

data. What is more, the short feature vectors of images in the proposed network 

architecture can make it easier for the network to infer information from sensor data. 

This is because long vectors of flattened feature maps can easily drown the short vector 

of sensor data. Short feature vectors can help alleviate this effect.  

In practice, the fusion of image data and sensor data can be achieved by including 

the sensor data before the fully connected layers, concatenating it with the feature 

vector from the global average pooling layer, as shown in Figure 3.1.  

 

3.4 Network Architecture Summary 
 

We proposed a novel network architecture for deep reinforcement learning agents. The 

proposed network architecture uses the mlpconv and global max pooling layer between 

the convolutional part and fully connected part of the network. It can reduce the 

number of parameters needed in the agent by 72.5% compared to traditional CNNs.  

The proposed network architecture can also make the feature vector of the 

convolutional layers shorter and more abstract. This enables the proposed architecture 

to have more implementation variations such as parameter sharing and fusing sensor 

and image data, in a way that is more natural and efficient compared to traditional CNNs.  

The reminder of this chapter will focus on evaluating the proposed deep 

reinforcement learning network architecture. To do so, we reproduced the Deep 

Deterministic Policy Gradient (DDPG) algorithm [24]. We compared the performance of 

a DDPG agent which is built with the original network proposed by Lillicrap, et al. [24] 

and a DDPG agent which is built with the proposed network architecture. We also 

conducted several experiments to show the impact of different implementations of the 
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network architecture on the learning performance of the algorithm. All networks are 

built and trained in TensorFlow [122].  

The following sections will start with an introduction of the experimental setup in 

Section 3.5.  Then we discuss the two implementation variations of the proposed 

network architecture in Section 3.6. The comparison between the proposed network 

architecture and the traditional CNNs will be presented in Section 3.7. Section 3.8 is the 

summary of the experiments.  

 

3.5 Experiment Setup 
 

All experiments were conducted in an environment built in Gazebo 2 in a ROS Indigo 

environment. The environment is an obstacle-free, walled space where a robot can 

move. The robot we use is a Pioneer 3AT robot. We set a camera on the front of it to 

give it front view image observations. We also set a range sensor on the top of it which 

can give it distance information from four angles (left, right, back and front). 

Furthermore, motors of the wheels can give us speed readings, which are another kind 

of sensor data we collected. The robot has two degrees of freedom, which are the 

speeds of a pair of wheels on each side of it. In each timestep, an action which is made 

up of two values chosen from a continuous space from -5 to 5 (corresponding to moving 

speed from -1.1 m/s to 1.1 m/s), each indicating the speed of wheels in one degree of 

freedom, will be executed by the robot. The task of agent is to use the image data or/and 

the sensor data to learn the actions for the robot to solve specific basic tasks. A 

screenshot of the environment and robot is shown in Figure 3.3.  

During learning, the agent will receive a reward with value 1 when the action it 

chooses achieves the assigned task. When the robot turns over or crashes into walls, the 

agent will receive a punishment with value -1. Also in case of a crashing or turning over 

the current episode will terminate and the robot will be reinitialized at a random 

position and orientation in the space to start a new exploration episode. Note that in 

practice, we considered the robot is turning over when the angle between its baseboard 
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and the ground is bigger than 45° (this setting is kept for all the experiments in the rest 

of the thesis).  

 

 Figure 3.3: A screenshot of the experiment environment. The red arrows indicate the reading 
directions of the range sensor and the green arrow indicates the reading direction of the camera. 
Some images captured by the camera are shown on the bottom right.  

 

We tested the performance of the proposed network architecture using the DDPG 

algorithm. For comparison proposes, we also built an agent with the original network 

architecture used in DDPG. Specifically, the networks consisted of three convolutional 

layers. The first one has 32 kernels of size 8×8 with stride 4. The other two all have 64 

kernels, the ones for the second layer are of size 4×4 with stride 2 and the ones for the 

third layer are of size 3×3 with stride 1. These three convolutional layers are followed by 

two hidden fully connected layers with 400 nodes and 300 nodes respectively. The 

network architecture is the same for the critic and actor except for the output layer. 

While the output layer for the critic network is a single state-action value, the output 

layer for the actor network is the values for the chosen action, each for one degree of 

freedom. When building the DDPG agent with our proposed network architecture, we 

simply replace the last convolutional layer with a mlpconv layer with same number of 

kernels with the same size and stride. The mlpconv layer is followed by a global max 

pooling layer to compress feature maps into a short vector with 64 elements, which is 

fed into the rest of the network. In case that sensor data is used, a vector of sensor data 

will be concatenated with this short vector. Before being fed into the networks, the 

images captured by the camera will first be resized to 64×64 grey scale images and the 
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three most recent images from the camera will be bundled together.  Samples of image 

and sensor data can be found in Figure 3.3 and Figure 3.4 respectively.  

 

Figure 3.4: Samples of sensor data. We show six sensor data vectors that have been fed into the 
networks consecutively. We also illustrate their corresponding maximum and minimum values.  

  

For updating the networks, we use all the hyper-parameters proposed by Lillicrap, 

et al. [24] for both training with the proposed network architecture and with the original 

networks.  

 

3.6 Performance of Different Implementation Variations 
 

We first conducted two sets of experiments to investigate the performance of the two 

implementation variations introduced in Section 3.3. The tasks we assigned to the agent 

in these two sets of experiments are three basic locomotion tasks: going straight, turning 

left and turning right.  

 

3.6.1 Parameter Sharing Implementation 
 

In the first set of experiments, we investigated the impact of the parameter sharing 
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implementation on the performance of the agent.  

As introduced in Section 3.3.1, we can have three implementation variations with 

different parameter settings or training schemes. They are: (1) parameter setting 

without any shared parameters; (2) parameter setting that shares the convolutional 

parts of the actor and critic with a co-training scheme; and (3) parameter setting that 

shares the convolutional parts of the actor and critic with only one leading network (in 

this case, the critic) being responsible for updating the shared convolutional layers.  

We built the agent with all these three variations and compared their performance 

on the three basic locomotion tasks introduced above. We trained each agent for 2,000 

episodes and tested its performance every 100 episodes to get a clear vision into the 

performance before the training converged. We ran all tasks 3 times and the result is 

shown in Figure 3.5.  

We can see that there is no statistical significance difference between the average 

performances of the three parameter settings as the curves are very close and the 

shadow areas mostly overlapped.  

 

Figure 3.5: Performance comparison of different parameter settings of the proposed network 
architecture on three basic locomotion tasks. The curves are the average performance and the 
shadows indicate the standard deviations.  
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However, we should note that, while the performances are comparable, the 

parameter sharing implementations are actually using parameters more efficiently. 

Specifically, the parameter sharing implementation with co-training scheme saves the 

parameters needed for another three convolutional layers. And the other parameter 

sharing implementations have further reduced the computational operations needed 

for calculating the gradients of convolutional layers, as they are only updated once. From 

this perspective, we suggest that the parameter sharing implementations are more 

efficient, especially when only one network is updating the shared convolutional part. 

For the rest of the experiments in this chapter, we fixed this variation to a parameter 

sharing implementation where only the leading network is updating the shared part.  

 

3.6.2 Image Data and Sensor Data Fusing Implementation 
 

The second set of experiments focuses on investigating the performance of the agent 

when using different input data.  

As introduced in Section 3.3.2, the proposed network architecture can have an 

implementation variation that fuses sensor data with image data by concatenating 

sensor data with the feature vector before the fully connected layers. We built the agent 

with this implementation variation and compared its performance to the agent that uses 

only image data. The sensor data we gave to the agent is the distance information from 

the range sensor and the speeds of the wheels on both side of the robot (which have 

been shown in Figure 3.4). Similar to the first experiment set, we trained each agent for 

2,000 episodes and tested its performance every 100 episodes. The results are shown in 

Figure 3.6.  

We can see that while the confidence intervals of the two implementations have less 

overlapping areas in the early stage of learning, they mostly overlapped after training 

for around 700 episodes. This is consistent with the t-test results as while some results 

in the early stage of training indicate the exist of difference between the two 

implementations (p-values are less than 0.05), these differences can no longer be 
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observed after 700 episodes. Therefore, we can conclude that the agent that uses both 

image data and sensor data is generally learning around 100 episodes faster than the 

one uses only image data on all three tasks in the early stage of training. This indicates 

that the sensor data can give the agent more straightforward information about the 

environment that can help it learn faster, especially when learning basic locomotion 

tasks. For the rest of the experiments in this chapter, we kept using the implementation 

variation that includes both two kinds of data.  

 

Figure 3.6: Performance comparison between agent that only uses image data and agent that 
uses both image data and sensor data. The curves are the average performance and the shadows 
indicate the 95% confidence intervals. The t-test results that have a p-value less than 0.05 have 
been shown as green bars in the figures.  

 

 

3.7 Comparison to Traditional Convolutional Neural Networks 
 

Based on the experimental results in Section 3.6, we conducted a final set of 

experiments to compare the proposed architecture with the CNNs used in DDPG.  
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Figure 3.7: Performance comparison between the agent built with the proposed network 
architecture and the agent built with original CNNs in DDPG. The curves are the average 
performance and the shadows indicate the standard deviations. 
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In this set of experiments, the agents are assigned to learn 12 highly-constrained 

basic locomotion tasks that are more difficult than the ones in Section 3.6. They are 

going forward and backward at high and low speed (absolute moving speed more than 

0.18 m/s and less than 0.22 m/s respectively), moving forward-left and forward-right 

slowly and quickly (turning speed less than 25°/s and more than 25°/s respectively, same 

for reversing) and reversing-left and reversing-right slowly and quickly. We trained each 

agent for 5,000 episodes on each task and tested its performance every 500 episodes. 

The results are shown in Figure 3.7.  

We can see that the agent built with the proposed network architecture achieved a 

comparable performance to the agent built with original CNNs [24] on all 12 tasks, as 

the reward curves are close and shadows are mostly overlapped. Both the agents can 

achieve very good performance on these tasks. They can receive a reward for almost 

every actions they take. Also, when the training converged, these high performances 

can be retained throughout the learning process. This indicates that the proposed 

network architecture can enable the agent to achieve comparable performance to agent 

that uses traditional CNNs.  

Note that, while the performances are comparable, the proposed network 

architecture is using many fewer parameters than traditional CNNs. A comparison of the 

parameters introduced can be found in Figure 3.2. This means the proposed network 

architecture is more parameter efficient.  

 

3.8 Experiment Summary 
 

We investigated the performance of the proposed network architecture with a 

simulated Pioneer 3AT robot in an obstacle-free, walled space built in Gazebo 2 in a ROS 

Indigo environment. We first investigated the performance of the implementation 

variations of the network architecture by training agent to learn 3 basic locomotion skills. 

We found that the proposed network architecture can achieve the best performance 

and the highest efficiency when applying the parameter sharing implementation and 

data fusing implementation.  
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We then trained the agent to learn 12 highly-constrained basic locomotion tasks and 

compared its performance with the traditional CNNs. Results showed that the agent can 

achieve comparable performance to traditional CNNs while uses many fewer 

parameters in the networks.  

In the next chapter, we will introduce a novel multi-task deep reinforcement learning 

algorithm that is based on the proposed network architecture in this chapter. 
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Chapter 4  

A Novel Multi-Task Deep Reinforcement Learning 

Algorithm 

 

Deep reinforcement learning has achieved considerable success in recent years in many 

control tasks. However, most deep reinforcement learning agents can only learn one 

task at a time. Work that focuses on dealing with multi-task learning scenarios mainly 

achieves this using transfer learning or generative model methods, which are still 

methods that need to learn tasks one by one. Moreover, little work can be found 

considering multi-task learning in a continuous action space. Nonetheless, multi-task 

learning should still be considered a very promising and efficient way to learn multiple 

tasks concurrently.  

In this chapter, based on the Deep Deterministic Policy Gradient (DDPG) algorithm 

[24], we propose a novel multi-task deep reinforcement learning algorithm, which we 

call multi-DDPG, to learn multiple tasks concurrently in continuous action spaces. In the 

algorithm, we apply the network architecture proposed in Chapter 3 to significantly 

reduce the number of parameters needed and combine images and sensor data as input. 

Compared to DDPG, which has only one actor and one critic, the proposed algorithm has 

a single-critic, multi-actor architecture. While each actor learns a different task, all 

The work presented in this chapter has been partially published in the following paper:  

Zhaoyang Yang, Kathryn Merrick, Hussein Abbass, Lianwen Jin, Multi-Task Deep 
Reinforcement Learning for Continuous Action Control. Proceedings of International Joint 
Conference on Artificial Intelligence, 2017. [Accepted on April 23, 2017].  

Specifically, Sections 4.1, 4.2 and experimental results in Sections 4.4, 4.5 were written based 
on texts or/and results in the above paper.  

As the first author of the above paper, I designed the proposed algorithm, built the 
simulation and implemented the algorithm on it, and wrote the majority of the paper on my 
own.   
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actors are trained concurrently within the same training process. The tasks we are 

considering in this chapter are basic movement tasks that can be solved directly with 

basic skills.  

In the reminder of this chapter, we first introduce the architecture of the proposed 

multi-DDPG algorithm in Section 4.1. This will be followed by a detailed introduction of 

the learning process of the algorithm in Section 4.2. Section 4.3 is the algorithm 

summary. The validations will start from Section 4.4.   

 

4.1 Algorithm Architecture 
 

Similar to DDPG, the proposed multi-DDPG algorithm has two kinds of networks, a critic 

network and actor networks. However, unlike DDPG, which has only one actor and one 

critic, multi-DDPG has multiple actors with one critic. An overview of the architecture of 

the proposed algorithm is shown in Figure 4.1.  

 

Figure 4.1: An overview of multi-DDPG architecture. The trapeziums in the picture represent 
fully connected layers, the green ones (in the middle) for actors and red one (on the right) for 
critic. The square-dotted lines indicates that there is back-propagation between two layers, 
while dashed lines do not involve back-propagation.  

 

The way that multi-DDPG achieves multi-task learning is to have multiple actors in 

its architecture, with each actor responsible for one specific task (see the multiple actors 

in the middle of Figure 4.1). These actors are learned from the same inputs and also 

within the same training process.  
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Note that while multiple actors are introduced, no new critic has been added in our 

algorithm (see the single critic on the right of Figure 4.1). This means that the single critic 

in the algorithm must be able to guide all actors to update properly. Therefore, instead 

of a single output state-action value, our critic has to output multiple state-action values, 

one for each actor.  

We can also see from Figure 4.1 that the network architecture proposed in Chapter 

3 is applied in multi-DDPG by feeding the convolutional part before the mlpconv layer 

with one mlpconv layer and one traditional convolutional layer, and the fully connected 

part with several layers for each network. What is more, sensor data has been included 

in the algorithm, as they can be effective in training basic skills we are considering for 

the proposed algorithm. Finally, we applied the parameter sharing implementation that 

shares parameters of the convolutional part among all existing networks (see the left 

part of Figure 4.1).  

The single-critic, multi-actor architecture as well as the parameter sharing 

implementation of the network architecture proposed in Chapter 3 can actually further 

reduce the number of parameters needed for learning multiple tasks compared to the 

DDPG algorithm. Suppose that all fully connected parts consist of two hidden layers with 

400 nodes and 300 nodes respectively, a new comparison of the number of parameters 

is shown in Figure 4.2.  

 

Figure 4.2: A comparison between the numbers of parameters needed for multi-task learning 
with multiple DDPG agents and with agent based on the proposed multi-DDPG algorithm.   
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We can see that the reduction reaches 81.6% when having 3 tasks and 85.1% when 

having 12 tasks.  

 

4.2 Algorithm Learning Process 
 

In order to train a critic that can output multiple state-action values at the same time, 

each for a different task, we need to correspondingly get multiple reward values for 

different tasks at the same time. To achieve this, the agent will assess the executed 

action according to all rewarding criteria we have for different tasks to form a vector of 

rewards, regardless of which actor produced that action. In case that the chosen action 

caused an exploration termination, all the actors will receive the same punishment as 

actions that could cause a termination are undesired actions system-wide.    

Then instead of the loss function (2.17) and (2.18) used for the critic network in 

DDPG, the loss function for the critic network in multi-DDPG is: 

 𝐿𝐿(𝜃𝜃𝑄𝑄) = �(𝑄𝑄𝑔𝑔(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡|𝜃𝜃𝑄𝑄) − 𝑔𝑔𝑔𝑔,𝑡𝑡)2
𝐺𝐺

𝑔𝑔=1

 (4.1) 

where 𝑔𝑔 is the identity number of the task and 𝐺𝐺 is the total number of tasks we have. 

Correspondingly, the supervising signal becomes:  

 𝑔𝑔𝑔𝑔,𝑡𝑡 = 𝑟𝑟𝑔𝑔,𝑡𝑡 + 𝛾𝛾𝑄𝑄𝑔𝑔(𝑠𝑠𝑡𝑡+1,𝜋𝜋(𝑠𝑠𝑡𝑡+1|𝜃𝜃𝜋𝜋,𝑡𝑡)|𝜃𝜃𝑄𝑄,𝑡𝑡) (4.2) 

Note that only one actor will be activated to choose actions in each timestep. During 

exploration, actors will be activated iteratively. We do not distinguish actions produced 

by different actors and all transitions will be stored in the same replay memory.  

Also note that as we do not distinguish actions produced by different actors, we can 

simply iteratively choose a target actor network to calculate 𝑔𝑔𝑔𝑔,𝑡𝑡 for all input data in a 

training iteration. This is benefited by the fact that critic training and actors’ training are 

not synchronous. It turns out that the critic will not be trained to be task specific and it 

will always be able to infer state-action values of all tasks we have for any input (𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡) 

pairs, whichever actors produced the 𝑎𝑎𝑡𝑡.  
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After the critic is updated, we update all actors one after another. For each individual 

actor, the updating gradient can be obtained by: 

 𝛻𝛻𝜃𝜃𝜋𝜋𝑔𝑔 = 𝜇𝜇𝜋𝜋𝑔𝑔 ∙ 𝛻𝛻𝑎𝑎𝑄𝑄𝑔𝑔�𝑠𝑠𝑡𝑡,𝜋𝜋𝑔𝑔(𝑠𝑠𝑡𝑡|𝜃𝜃𝜋𝜋𝑔𝑔)�𝜃𝜃𝑄𝑄� ∙ 𝛻𝛻𝜃𝜃𝜋𝜋𝑔𝑔𝜋𝜋𝑔𝑔(𝑠𝑠𝑡𝑡|𝜃𝜃𝜋𝜋𝑔𝑔) (4.3) 

Note that here, the action gradient 𝛻𝛻𝑎𝑎𝑄𝑄𝑔𝑔 is task specific. For each individual actor, it 

is the gradient with respect to the corresponding state-action value output in the critic. 

This can also be understood as only one output neuron of the critic network will be 

activated when inferring gradients for a specific actor.  

Finally, after the critic network and actor networks are updated, their corresponding 

target networks will be updated according to a soft updating rule as follows: 

 𝜃𝜃𝑡𝑡+1𝑡𝑡 = (1 − 𝜑𝜑)𝜃𝜃𝑡𝑡𝑡𝑡 + 𝜑𝜑𝜃𝜃𝑡𝑡  (4.4) 

where 𝜑𝜑 is the soft update factor.  

With regards to the exploration phase, actors will be selected iteratively to choose 

actions in each episode. What is more, the exploration is governed by an Ornstein-

Uhlenbeck process [115], while this process will be removed during testing.   

By the end of learning, we will have a single critic that outputs state-action values 

for all tasks and multiple actors each producing actions to achieve a different task.  

 

4.3 Algorithm Summary 
 

Based on the DDPG algorithm, we proposed a novel multi-task deep reinforcement 

learning algorithm called multi-DDPG. The proposed algorithm can learn multiple tasks 

concurrently within the same training process. This is achieved by adapting a single-critic, 

multi-actor architecture. While each actor is responsible for a different task, all actors 

are trained by the same critic. 

Also, by applying the network architecture proposed in Chapter 3 as well as its 

parameter sharing implementation, the proposed algorithm further reduces the number 

of parameters needed for learning multiple tasks. As the algorithm aims to learn basic 

skills, the image and sensor data fusing implementation is also applied to help the agent 
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learn faster. We summarize the proposed multi-DDPG algorithm in Algorithm 4.1. 

In the reminder of this chapter, we will test the performance of the proposed multi-

DDPG algorithm. To do so, we trained the multi-DDPG agent to learn skills in 3-task, 6-

task and 12-task scenarios and compared its performance on each individual task to the 

performance of a DDPG agent. We also conducted an experiment to investigate the 

performance of multi-DDPG in the case that one incompetent actor exists. All networks 

are built and trained with TensorFlow [122].  

The reminder of this chapter is organized as follows. Section 4.4 will introduce the 

experimental setup for this chapter. Section 4.5 and 4.6 are experimental results for the 

multi-task learning scenarios and the learning with incompetent actor scenario 

respectively. Section 4.7 summarizes of the experiments.  

Algorithm 4.1   Multi-DDPG 

Input: maximum training episode  E𝑚𝑚𝑎𝑎𝑚𝑚 , maximum steps in each 
episode S𝑚𝑚𝑎𝑎𝑚𝑚, mini-batch size M, replay memory P.  

Initialization: randomly initialize networks weights  𝜃𝜃𝑄𝑄 , 𝜃𝜃1𝜋𝜋, … … ,𝜃𝜃𝐺𝐺𝜋𝜋 
and target networks weights 𝜃𝜃𝑄𝑄,𝑡𝑡 ← 𝜃𝜃𝑄𝑄,𝜃𝜃𝑔𝑔

𝜋𝜋,𝑡𝑡 ← 𝜃𝜃𝑔𝑔𝜋𝜋.  

while episode < E𝑚𝑚𝑎𝑎𝑚𝑚 
    Initialize random noise N for exploration 
    Iteratively select activated actor 
    Get initial state 𝑠𝑠1 
    while step <S𝑚𝑚𝑎𝑎𝑚𝑚 and episode not terminated 
        Select action 𝑎𝑎𝑡𝑡 using selected actor and add N 
        Execute 𝑎𝑎𝑡𝑡 and get reward 𝑟𝑟𝑡𝑡 and next state 𝑠𝑠𝑡𝑡+1 
        Store transition (𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡, 𝑟𝑟𝑡𝑡, 𝑠𝑠𝑡𝑡+1) in P 
        Randomly sample a batch of M transitions from P 
        Update 𝜃𝜃𝑄𝑄 according to (4.1) and (4.2) 
        Update 𝜃𝜃𝑄𝑄,𝑡𝑡 
        for g < G 
           Update 𝜃𝜃𝑔𝑔𝜋𝜋 according to (4.3) 

           Update 𝜃𝜃𝑔𝑔
𝜋𝜋,𝑡𝑡 

        end for 
    end 
end 
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4.4 Experiment Setup 
 

The experimental environment for this chapter is the same to the one used in Chapter 

3, which is an obstacle-free, walled space built in Gazebo 2 in a ROS Indigo environment, 

which is shown in Figure 3.3.  The robot we use is also the Pioneer 3AT robot used in 

Chapter 3, which has front view camera, range sensor on the top that reads distance 

information from four angles (left, right, front, back) and readings of the speeds of the 

wheels.  

For all the experiments, the agent was given reward of value 1 for achieving a task. 

On the contrary, the agent was penalized a value -0.5 if the robot made dangerous 

movements such as crashing into walls or turning over (in practice, it is when the angle 

between the baseboard of the robot and the ground is larger than 45°). Otherwise, the 

reward was 0. When the agent receives a punishment, the current episode will 

terminate and the robot will be initialized at a random position and orientation in the 

space to start a new exploration episode. In each individual experiment, only one robot 

is spawned in the environment. The agent will learn to control this robot to achieve the 

multiple tasks we assigned for that experiment.  

The network parameters we used for the multi-DDPG agent are as follows. The first 

layer is a mlpconv layer with 32 kernels of size 8×8 with stride 4. It is followed by a 

traditional convolutional layer with 64 kernels of size 4×4 with stride 2. The last layer of 

the convolutional part is another mlpconv layer with 64 kernels of size 3×3 with stride 1. 

Then after a global average pooling layer, the feature vector as well as the concatenated 

sensor data are fed in two hidden fully connected layer. For the critic network, the size 

of these two layers are 400 and 300 respectively, while for the actor networks, they are 

300 and 200 respectively. The output of the critic network is a vector in which each 

element indicates the state-action value of a specific task. The outputs of all actor 

networks are the speed values of the wheels on each side of the robot they choose. The 

images captured by the camera will first be resized to 64×64 grey scale images and the 

three most recent images from the camera will be bundled together and fed into the 

network.   
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Description Symbol (if has) Value 
Critic base learning rate 𝜇𝜇𝑄𝑄 0.001 
Critic discount factor 𝛾𝛾 0.9 
Actors base learning rate 𝜇𝜇𝜋𝜋 0.0001 
𝑙𝑙2 penalty / 0.01 
Mini-batch size M 64 
Ornstein-Uhlenbeck process intensity 𝜎𝜎 0.12 
Maximum training episode  E𝑚𝑚𝑎𝑎𝑚𝑚 5000 
Maximum step in each episode S𝑚𝑚𝑎𝑎𝑚𝑚 100 
Soft update factor 𝜑𝜑 0.001 

Table 4-1: Hyper-parameters for the multi-DDPG algorithm. 
 

With regards to training strategy, we use Adam optimization [71] for all the networks. 

At the same time, 𝑙𝑙2 regularization is introduced to prevent overfitting. All the other 

hyper-parameters we used in this chapter are listed in Table 4-1. 

 

4.5 Multi-Task Learning Performance 
 

We first tried the proposed multi-DDPG algorithm to learn 3 tasks and 6 tasks 

concurrently. As the number of tasks increases, the tasks are more constrained. The 

performance of the algorithm in these two learning scenarios are shown in Figure 4.3.  

 

Figure 4.3: Performance of multi-DDPG in 3-task and 6-task learning scenarios. The curves are 
the average performance and the error bars indicate the standard deviations. 

 

The tasks used in the 3-task learning scenario are identical to the ones used in 
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Chapter 3, which are going straight, turning left and turning right. The tasks in the 6-task 

scenario are going forward and backward, moving forward-left and forward-right, 

reversing-left and reversing-right. 

The results shown in Figure 4.3 show that the proposed multi-DDPG algorithm can 

deliver robust multi-task training of these less constrained tasks, in which actors started 

to act according to their corresponding reward signals in early stages of learning and the 

performance stayed high throughout the rest of the learning.  

Finally, we tested the performance of multi-DDPG in a 12-task scenario. Some 

samples of the movement trajectories the actors performed for the 12 tasks during 

testing are shown in Figure 4.4. We also trained 12 agents, in which each agent learn 

one of these 12 tasks, with the DDPG algorithm to have a comparison. All the learning 

results are shown in Figure 4.5.  

As we can see in Figure 4.4, the 12 tasks in this scenario are highly constrained basic 

locomotion tasks the same as the ones used in Chapter 3, which are going forward and 

backward at high and low speed, moving forward-left and forward-right slowly and 

quickly, and reversing-left and reversing-right slowly and quickly.  

 

Figure 4.4: A collection of movements of the 12 basic locomotion tasks. At most 15 action steps 
are shown in each picture. The red nodes are the location of the robot, and black arrows in 
between are its movement trajectories. In each picture, a yellow triangle indicates the initial 
orientation of the robot, while the blue arrow shows the overall movement direction.  

 



58 
 

 

Figure 4.5: Performance comparison between the DDPG agent and multi-DDPG agent on 12 
highly constrained basic locomotion tasks. The curves are the average performance and the 
shadows indicate the standard deviations. 
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We can see from Figure 4.5 that the performances of multiple actors trained by 

multi-DDPG are comparable to actors trained by DDPG which is a single task scheme. 

The narrow shadow areas and mild vibrations in the graphs demonstrate the robustness 

of the algorithm and the stability of the performances of trained actors. We can also see 

from Figure 4.4 that the robot was moving as expected when testing each actor. 

Although the trajectories of those turning tasks are not in perfect circles, they are good 

enough to collect rewards.  

Note that comparing results in Figure 4.3 and Figure 4.5, we can know that the 

increased number of tasks and their constraints do not increase the number of episodes 

needed to stabilize training. This may be owing to the parameter and replay memory 

sharing amongst all tasks, which helps the agent to avoid dangerous actions and increase 

the chance of collecting rewards during exploration. The high average rewards collected 

in every action across all individual tasks have further demonstrated the effectiveness 

of the multi-DDPG algorithm.  

These results not only suggest that the proposed multi-DDPG algorithm can learn 

high performance actors to handle basic locomotion tasks, but also demonstrate that 

the performance of the algorithm can stay consistent either when the number of tasks 

or the constraints of tasks increase. What’s more, its light-weight architecture as well as 

the parameter sharing strategy also make it flexible enough to be expanded to learn 

more actors and tasks. 

 

4.6 Learning with an Incompetent Actor 
 

In this section, we conducted an additional set of experiments to investigate the 

performance of the proposed multi-DDPG algorithm when one of the actors of included 

in the agent is having very poor performance.  The result of this experiment is shown in 

Figure 4.6.  

In this experiment, we included an actor with a meaningless reward function. This 

actor received rewards randomly (which is a random generation of 0 and 1). This means, 

even though it can receive rewards sometimes, it would never learn. In this set of 
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experiments, the rest of the actors were assigned to learn the tasks we used in the 6-

task scenario we introduced above.  

We can see that the agent can still learn high performance actors for the other 6 

tasks even when one of the actors failed. By comparing the results in Figure 4.3, we can 

see the performance of the rest of the actors are as they were trained without the failed 

actor. This may be owing to the actor update rule in (4.3) that only activates one output 

neuron of the critic when updating a specific actor. It makes the update of each actor 

independent. This adds to the robustness of the proposed algorithm as individual failed 

actors will not interfere with the learning of other actors.  

 

Figure 4.6:  Performance of multi-DDPG algorithm when training with an incompetent actor in 
the 6-task scenario. The curves are the average performance and the error bars indicate the 
standard deviations. 

 

 

4.7 Experiment Summary 
 

We evaluated the proposed multi-DDPG algorithm introduced with a simulated Pioneer 

3AT robot in an obstacle-free, walled space which was built in Gazebo 2 in a ROS Indigo 

environment. The robot can read the speeds of its wheels and was equipped with a 

camera that can give it front view images as well as a range sensor that can give it 
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distance readings from four directions (left, right, front and back). We trained multi-

DDPG agents to learn in 3-task, 6-task and 12-task scenarios.  

The results show that multi-DDPG can learn high performance basic locomotion skills 

in all these scenarios. The performance stays consistent when the number of tasks and 

the constraints on the tasks increase.  

By comparing the learned skills with the corresponding skills learned by DDPG agents 

(each skill is learned with one DDPG agent), we can see that the skills learned by multi-

DDPG are comparable to the skills learned by DDPG, which learned these skills one after 

another.  

What is more, results also show that when one of the actors of the agent is having 

poor performance, the rest of the actors can still learn high performance skills. This 

means that individual failed actors will not interfere with the learning of other actors, 

which adds to the robustness of the algorithm.  

In the next chapter, we will introduce a novel hierarchical deep reinforcement 

learning algorithm which adapts multi-DDPG in one of its levels of hierarchy to permit 

learning of compound tasks. 
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Chapter 5  

A Novel Hierarchical Deep Reinforcement Learning 

Algorithm 

 

As discussed in Chapter 2, most existing continuous control deep reinforcement learning 

algorithms seem to be better at learning basic movement skills and perform worse when 

facing complex compound tasks. Even though the A3C algorithm [98] can solve some 

compound tasks, it needs a multi-thread learning scheme, which allows multiple agents 

to explore the environment at the same time. This indicates that it is challenging to learn 

compound skills in continuous action spaces with a single agent. Therefore, hierarchical 

learning can be a potential way to enable the agent to learn compound skills by 

decomposing them into several basic skills that it can learn directly.   

In this chapter, based on the multi-DDPG algorithm proposed in Chapter 4, we 

propose a novel hierarchical deep reinforcement learning algorithm, which we call h-

DDPG, to learn compound skills and basic skills simultaneously. The proposed algorithm 

has a duel-critic, multi-actor architecture, in which each critic is taking control of a level 

of hierarchy. Specifically, there is one basic critic that is responsible for training multiple 

actors that each handles a different basic skills, and one meta critic that is responsible 

The work presented in this chapter has been partially submitted to the following paper:  

Zhaoyang Yang, Kathryn Merrick, Hussein A. Abbass, Lianwen Jin, Hierarchical Deep 
Reinforcement Learning for Continuous Action Control. [Under Review].  

Specifically, Sections 5.1, 5.2, 5.3 and experimental results in Section 5.5, 5.6, 5.8 were 
written based on texts or/and results in the above paper.  

As the first author of the above paper, I designed the proposed algorithm, built the 
simulation and implemented the algorithm on it, and wrote the majority of the paper on my 
own.   
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for learning compound skills that are made up of the basic skills learned by the actors. 

The multi-DDPG algorithm is adapted to create the basic critic.   

In the reminder of this chapter, we introduce the architecture, the learning process 

and implementation details of the proposed h-DDPG algorithm respectively in Section 

5.1, 5.2 and 5.3. Section 5.4 is the algorithm summary.  The validation of the algorithm 

is in Section 5.5 to Section 5.9. In the rest of the thesis, we will use subscript letters 𝑏𝑏 

and 𝑚𝑚 to distinguish basic critic components and meta critic components in equations.  

 

5.1 Algorithm Architecture 
 

The proposed h-DDPG algorithm has two levels of hierarchy, which are achieved with a 

duel-critic, multi-actor architecture. The duel-critic comprises a basic critic in the first 

level of hierarchy that is responsible for training multiple actors that learn different basic 

skills and a meta critic in the second level of hierarchy that learns to reuse actors to solve 

compound tasks. An overview of the architecture of the algorithm is shown in Figure 5.1.  

 

Figure 5.1: An overview of h-DDPG architecture. The trapeziums represent fully connected layers. 
These fully connected layers are layers from meta critic, actors and basic critic respectively from 
top to bottom. The square-dotted lines are connections with back-propagation while the dashed 
lines are not. 

 

In order to achieve a level of hierarchy that learns multiple basic skills simultaneously, 

we adapt the multi-task deep reinforcement learning algorithm we proposed in Chapter 

Meta critic 
Rewards 

Basic critic 
Rewards 

Actions 
States 
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4. Specifically, we kept the basic concepts multi-DDPG and made some changes to its 

network architecture to fit it in the proposed h-DDPG algorithm. We can see from Figure 

5.1 (left part) that the main difference is that the first mlpconv layer is replaced by a 

traditional convolutional layer.  

Different from the basic critic, the meta critic focuses on learning compound skills to 

solve compound tasks. The meta critic can access a set of basic skills provided by actors 

in the first level of hierarchy. The goal of the meta critic is to choose a basic skill that will 

help it solve the attempted compound tasks in each timestep. Therefore, similar to 

discrete action scenarios, the meta critic will choose the basic skill with the highest value 

from a given set of basic skills.  

This can be achieved by bootstrapping estimation of Q values of each basic skill. Thus, 

the meta critic will be a network with 𝐺𝐺 output neurons that give estimations of Q values 

of all available actors.  

Note that as learning of the basic critic and actors happens in the same process as 

the meta critic learns, there is no guarantee that all actors have good performance at 

their corresponding basic skills. However, the meta critic has already taken this into 

consideration. This is because the way that the meta critic understands the actors is to 

understand the transitions from 𝑠𝑠𝑡𝑡 to 𝑠𝑠𝑡𝑡+1 after a particular actor has been chosen. The 

meta critic does not know what basic skills the actors are assigned to learn prior to the 

training starting.   

Similar to multi-DDPG, in the proposed algorithm, we include sensor data after the 

convolutional part of the networks and concatenate it with a feature vector of the image 

data. In addition, we extract two levels of image feature abstractions to keep the whole 

hierarchical architecture consistent and concise.  

Specifically, for the meta critic network that needs a thorough understanding of the 

environment to infer proper choice of basic skills to solve compound tasks, image 

features are a long vector flattened from the feature maps of the last convolutional layer. 

This vector is then fed into the rest of the fully-connected layers. In this way, every pixel 

in the feature maps of the last convolutional layer will contribute to the final decision of 

the meta critic. Abstractions at this level of hierarchy are intended to give a more 
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detailed description of the states so that the critic can learn and make decisions 

according to observations of the environment.  

For the basic critic as well as the actors that focus on basic skill learning, image 

features are a much shorter vector rendered from a global max pooling. This is achieved 

by applying mlpconv layer operations on the feature maps of the last convolutional layer. 

Each reconstructed feature map from the mlpconv layer will then be averaged globally 

to form an element in the abstraction vector. Abstractions at this level of hierarchy are 

intended to give a more abstract and less detailed description of the states so that the 

critic can learn basic skills without being disturbed by noise or irrelevant information in 

the environment.  

Moreover, the implementation of the mlpconv layer in the basic critic helps reduce 

the number of parameters needed significantly compared with using a traditional 

convolutional layer. Figure 4.2 gave a comparison of the number of parameters 

introduced.  

 

5.2 Algorithm Learning Process 
 

The whole learning process of the proposed h-DDPG algorithm follows an ordering of 

hierarchy priority. The basic critic and actors in the first level of hierarchy are updated 

first, and then the meta critic in the second level of hierarchy. Each training iteration will 

start right after an action has been executed in a timestep of exploration.  

The training of the basic critic and actors are similar to multi-DDPG which can be 

found in Chapter 4. For the meta critic, in order to bootstrap estimation of Q values of 

each basic skill, the network will be optimized by minimizing the loss function: 

 𝐿𝐿(𝜃𝜃𝑄𝑄𝑚𝑚) = (𝑄𝑄𝑚𝑚(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡|𝜃𝜃𝑄𝑄𝑚𝑚) − 𝑔𝑔𝑚𝑚,𝑡𝑡)2 (5.1) 

where the supervision signal 𝑔𝑔𝑚𝑚,𝑡𝑡 is: 

 𝑔𝑔𝑚𝑚,𝑡𝑡 = 𝑟𝑟𝑚𝑚,𝑡𝑡 + 𝛾𝛾𝑚𝑚 max
𝑎𝑎𝑡𝑡+1

𝑄𝑄𝑚𝑚�𝑠𝑠𝑡𝑡+1,𝑎𝑎𝑡𝑡+1�𝜃𝜃𝑄𝑄𝑚𝑚
𝑡𝑡 � (5.2) 
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Similar to multi-DDPG, after the update of the meta critic, all target networks will be 

updated following the soft update rule in (4.4).  

Note that, we also applied a parameter-sharing scheme on convolutional layers 

across different networks. Specifically, all traditional convolutional layers will be 

updated by the meta critic and fixed when updating other networks. The mlpconv layer 

will be updated by the basic critic and actor networks. We also implement an annealing 

based learning rate scheme on the actor networks to decrease the learning rate as the 

performance of the actors improves.  

 

5.3 Implementation Details 
 

The co-existence of two levels of hierarchy in the same architecture demands 

adjustments in several aspects of the algorithm compared to the multi-DDPG algorithm 

in Chapter 4.  

 

5.3.1 Rewards and Punishments 
 

In this thesis, we are considering scenarios where all reward functions are pre-defined. 

Specifically, two kinds of rewards are necessary: reward for the meta critic, which can 

only be received when the final compound task is achieved, and reward for the basic 

critic, which can be received as soon as the action chosen by the actor is achieving its 

corresponding basic skill. As the frequency of receiving these two kinds of rewards is 

different, different values may be chosen. Having suitable reward values for the meta 

critic is especially important as it is much more sparse than the one for the basic critic. 

We investigate this in Section 5.6.2.  

Note that in order to keep consistent with the loss function of the basic critic in (4.1), 

the reward for the basic critic will be a reward vector in which each element represents 

whether this action is what is desired for the corresponding actor. This means that 
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whichever actor is providing the action, the action will always be evaluated by the 

reward functions of all available actors.  

Similar to the rewards, two kinds of punishments, one for the meta critic and one 

for the basic critic, are introduced in the algorithm. Only the component that has caused 

undesired actions will receive punishments. In our case, in order to make the basic critic 

and actors focus on learning basic skills, we only punish the basic critic when the robot 

turns over, as making the robot move stably is a prerequisite of having good basic skills. 

Note that actions that could cause the robot to turn over are undesired actions for all 

actors, regardless of what basic skill the actor is assigned to learn. Therefore, the 

punishment is universal to all actors. The meta critic will receive a punishment when the 

robot crashes into obstacles, as avoiding collision should be considered as a part of the 

compound skills. What is more, we punish the meta critic with a small value every step 

before the episode terminates. This is mainly to push the meta critic to find the optimal 

solution to the task.  

 

5.3.2 Replay Memory and Batch Sampling 
 

As a consolidated system, all levels of hierarchy in this algorithm share a single replay 

memory. However, when sampling transitions from the replay memory, a balance 

among transitions made by different actors is required. Specifically, the final batch of 

transitions will always consist of the same number of transitions from different actors. 

This sampling strategy makes the sampling more controllable and ensures that the critics 

can see transitions of different actors evenly.  

Note that, similar to multi-DDPG, when calculating supervision signals in (4.2), only 

one target actor network will be used. In practice, we select target networks iteratively. 

This is feasible owing to the actor-unspecific nature of the basic critic during self-

updating as explained in Chapter 4.  
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5.3.3 Exploration 
 

Exploration is a critical aspects for all reinforcement learning algorithms. For deep 

reinforcement learning, exploration needs to be balanced to prevent getting stuck in a 

local optimum.  

In the proposed algorithm, the exploration of the meta critic is governed by a 𝜖𝜖 −

𝑔𝑔𝑟𝑟𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  policy while the exploration of the basic critic is governed by an Ornstein-

Uhlenbeck process [115]. Moreover, the value of 𝜖𝜖  will be annealed throughout the 

training process to allow more exploitation. Similarly, we change the intensity of the 

Ornstein-Uhlenbeck process according to the testing performance of actors during 

training according to:  

 𝜎𝜎𝑔𝑔 ← max {𝜎𝜎𝑚𝑚𝑖𝑖𝑛𝑛, �1 − 𝑝𝑝𝑔𝑔�𝜎𝜎𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡} (5.3) 

where 𝜎𝜎 is the parameter that controls the intensity of the process and subscript 𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡 

and 𝑚𝑚𝑖𝑖𝑛𝑛 denotes its initial and minimum value respectively. 𝑝𝑝𝑔𝑔 is the performance of 

actor 𝑔𝑔 in the latest testing.  

 

5.4 Algorithm Summary 
 

In this chapter, based on multi-DDPG algorithm proposed in Chapter 4, we proposed a 

novel hierarchical deep reinforcement learning algorithm called h-DDPG. The proposed 

algorithm can learn basic skills and compound skills simultaneously. It consists of two 

levels of hierarchy, which are achieved by a duel-critic, multi-actor architecture.  

In the architecture, a basic critic, which is in the first level of hierarchy, is responsible 

for training multiple actors that are each responsible for a different basic skill. The other 

critic in the second level of hierarchy, which is called meta critic, is responsible for 

learning compound skills by reusing basic skills learned by the actors. At the same time, 

a number of adjustments in reward function, replay memory and exploration are made 

to allow the learning of all components in both level of hierarchy to fit in the same one-

thread learning process. We summarize the h-DDPG algorithm in Algorithm 5.1.  
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From the next section, we evaluate the performance of the proposed h-DDPG 

algorithm. To do so, we built three scenarios with different compound tasks. The tasks 

in these scenarios are designed to examine the agent capability in observing and 

distinguishing objects and moving accurately. We test both the performance of the basic 

critic and the meta critic and also examine the agent’s performance when one of the 

actors of the agent failed to provide a basic skill. Finally, we compare the performance 

of h-DDPG with DQN [18] and DDPG [24] on solving the compound tasks in the three 

scenarios.  

The rest of this chapter will start with an introduction of the experimental setup used 

in this chapter in Section 5.5. Then the performance of the algorithm is presented in 

Section 5.6. Section 5.7 will present the performance of the agent when an incompetent 

actor exists while Section 5.8 will present a comparison between h-DDPG and other 

algorithms. Section 5.9 is the summary of the experiments.  

Algorithm 5.1   H-DDPG 
Input: maximum training episode  E𝑚𝑚𝑎𝑎𝑚𝑚 , maximum steps in each 
episode S𝑚𝑚𝑎𝑎𝑚𝑚, mini-batch size M, replay memory P.  

Initialization: randomly initialize networks weights 𝜃𝜃𝑄𝑄𝑏𝑏, 𝜃𝜃𝑄𝑄𝑚𝑚, 𝜃𝜃𝜋𝜋1 , … … , 𝜃𝜃𝜋𝜋𝐺𝐺 

and target networks weights 𝜃𝜃𝑄𝑄𝑏𝑏
𝑡𝑡
← 𝜃𝜃𝑄𝑄𝑏𝑏 ,  𝜃𝜃𝑄𝑄𝑚𝑚𝑡𝑡 ← 𝜃𝜃𝑄𝑄𝑚𝑚 ,𝜃𝜃𝜋𝜋𝑔𝑔𝑡𝑡 ← 𝜃𝜃𝜋𝜋𝑔𝑔.  

while episode < E𝑚𝑚𝑎𝑎𝑚𝑚 
Initialize random noise N for exploration 
Get initial state 𝑠𝑠1 
while step <S𝑚𝑚𝑎𝑎𝑚𝑚 and episode not terminated 

Get Q values of actors using meta critic 
Select actor 𝑖𝑖 according to ϵ − greedy policy 
Select action 𝑎𝑎𝑡𝑡 using selected actor and add N 
Execute 𝑎𝑎𝑡𝑡 and get reward 𝑟𝑟𝑡𝑡 and next state 𝑠𝑠𝑡𝑡+1 
Store transition (𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡, 𝑟𝑟𝑡𝑡, 𝑠𝑠𝑡𝑡+1) in P 

Randomly sample 𝑀𝑀
𝐺𝐺

 transitions of each actor from P and make up a 

mini-batch with M transitions 

Update 𝜃𝜃𝑄𝑄𝑚𝑚 according to (5.1) and (5.2) and update 𝜃𝜃𝑄𝑄𝑚𝑚𝑡𝑡  

Update 𝜃𝜃𝑄𝑄𝑏𝑏  according to (4.1) and (4.2) and update 𝜃𝜃𝑄𝑄𝑏𝑏
𝑡𝑡
 

for g in G: 

Update 𝜃𝜃𝜋𝜋𝑔𝑔 according to (4.3) and update 𝜃𝜃𝜋𝜋𝑔𝑔𝑡𝑡  
end 

end 
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5.5 Experiment Setup 
 

The experiments in this chapter were also conducted in Gazebo 2 in a ROS Indigo 

environment, and we also use the Pioneer 3AT robot with a camera, range sensor and 

wheel speed readings the same to the one used in Chapter 3 and Chapter 4. To test the 

performance, we built three scenarios with different tasks in a walled space. We have 

tried to make them as observable as possible when building them. These scenarios are:  

• Scenario 1: Approaching an Object 

The walled space is obstacle-free with only a single target object. The task that 

the robot needs to finish in this scenario is to approach the target object, starting 

from a random position and orientation, without crashing into walls. 
 

• Scenario 2: Approaching a Specific Target 

The walled space contains two different objects, one target and one decoy. The 

task that the robot needs to solve in this scenario is to approach the target object, 

starting from a random position and orientation, without confusing it with the 

decoy or crashing into walls. To achieve this, the robot has to distinguish 

between the objects and apply different strategies to them, which makes this 

task more difficult than the task in scenario 1.   
 

• Scenario 3: Doorway Escape 

The walled space is obstacle-free with four doorways one on each side of the 

space. The task that the robot needs to finish in this scenario is to go through 

one of the doorways, starting from a random position and orientation, without 

crashing into walls. This task is even more difficult than tasks in scenario 1 and 2 

as the robot has to avoid collision with the sides of a door when going through 

it. 
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Top-down screenshots of these three scenarios are shown in Figure 5.2. We bundled 

the four most recent frames of the camera as well as the sensor data in the last frame 

to form a state. Frames captured by the camera will be converted to 64×64 grey scale 

images before being fed into networks. The agent will use these states to decide values 

of wheel speeds on both sides of the robot. The basic skills we assigned to the actors in 

the first level of hierarchy are going forward, going backward, turning left and turning 

right. Note that the actions of the robot are executed in continuous time, which means 

there is no gap between two consecutive actions and the length of time an action will 

be executed depends on the processing time needed before the next action has been 

decided.  Similar to the experimental setups in Chapter 3 and Chapter 4, the episodes 

were terminated when the robot turns over or crashes into walls or decoy. In addition, 

in the experiments in this chapter, we also terminated the episode when the robot get 

stuck in the environments. This happened mainly because that the environments in this 

chapter are more complex and sometimes the robot may get stuck at corners or edges 

of the environment. But in this case, we simply re-initialized the episode without giving 

any punishments to the meta critic or the basic critic.  

 

Figure 5.2: An introduction of the three simulation scenarios. They are, from top to bottom, the 
approaching object scenario (Scenario 1), the approaching specific target scenario (Scenario 2) 
and the doorway scenario (Scenario 3). Pictures from left to right in each row are top-down 
views of scenarios, image captures of the camera and the samples of solutions made by the 
agent. In the samples of solution, the yellow triangles indicate initial orientation, and stars 
indicate target objects. 
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As described in Section 5.2, we applied a parameter sharing learning scheme among 

different networks in the algorithm. The shared convolutional part consists of three 

layers. The first layer has 32 kernels with size 8×8 and stride 4, followed by the second 

layer which has 64 kernels with size 4×4 and stride 2. The last convolutional layer has 64 

kernels with size 3×3 and stride 1. For the meta critic, the fully connected layer part 

consists of two hiddern layers with 512 nodes and 256 nodes respectively, while for the 

basic critic, the two hidden fully connected layers both consists of 300 nodes. Moreover, 

the last convolutional layer of the basic critic is a mlpconv layer. It takes the shared 

feature maps from the earlier convolutional layers and further processes them with 

mlpconv operations. The basic critic also includes the actions in its second fully-

connected layer. All fully-connected parts of the actors consist of two hidden layers each, 

with 200 and 150 nodes respectively. In all networks, range sensor data and wheel speed 

readings is included right before the fully connected part of the networks. All the 

networks were built and trained in TensorFlow [122]. With regards to training strategy, 

we use Adam optimization [71] for all the networks. At the same time, 𝑙𝑙2 regularization 

is introduced to prevent overfitting.  

In each experiment, we tested the performance of both the meta critic and the basic 

critic at several points during training. Each time we tested the model, we ran 10 

independent testing episodes. In each episode, we initialized the robot at a random 

position in the scenarios with a random orientation. All the other hyper-parameters we 

used in this chapter are listed in Table 5-1.  

 

Description Symbol (if has) Value 
Meta critic base learning rate 𝜇𝜇𝑄𝑄𝑚𝑚 0.0025 
Meta critic discount factor 𝛾𝛾𝑚𝑚 0.99 
Basic critic base learning rate 𝜇𝜇𝑄𝑄𝑏𝑏 0.001 
Basic critic discount factor 𝛾𝛾𝑏𝑏 0.9 
Basic critic reward 𝑟𝑟𝑏𝑏 1 
Actors base learning rate 𝜇𝜇𝜋𝜋𝑔𝑔  0.0001 
𝑙𝑙2 penalty / 0.01 
Mini-batch size M 64 
Ornstein-Uhlenbeck process initial intensity 𝜎𝜎𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡 0.12 
Ornstein-Uhlenbeck process minimum intensity 𝜎𝜎𝑚𝑚𝑖𝑖𝑛𝑛 0.021 
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Initial 𝜖𝜖 / 1 
Minimum 𝜖𝜖 / 0.1 
Maximum step in each episode S𝑚𝑚𝑎𝑎𝑚𝑚 50 
Maximum training episode  E𝑚𝑚𝑎𝑎𝑚𝑚 5000 
Soft update factor 𝜑𝜑 0.001 

Table 5-1: Hyper-parameters for h-DDPG algorithm. 
 

 

5.6 Hierarchical Learning Performance 
 

We tested the performance of both the basic critic and the meta critic in all three 

scenarios. The performance of the basic critic is reflected by the performance of the 

actors. The results are presented below.  

 

5.6.1 Basic Critic Performance 
 

We first examined the performance of the basic critic by testing the performance of the 

actors during training. Results are shown in Figure 5.3.  

We can see that all four actors achieved very good performance after training for 

around 1500 episodes. After the actors reached their best performance, the 

performance remains stable until the end of training. Samples of movement trajectories 

of each actor shown in Figure 5.3 also demonstrate that all actors are achieving good 

basic skills. High performance basic skills provided by the basic critic and actors will help 

the meta critic to understand the movement patterns of each actor better and learn 

how to reuse them to achieve the final compound task.  

 

5.6.2 Meta Critic Performance 
 

We first conducted a set of experiments in Scenario 1 to find an appropriate value of the 

reward for the meta critic. We compared the performance of the algorithm after 5000 
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episodes of training. The results are shown in Figure 5.4.  

 

Figure 5.3: The performance of each actor in the three scenarios. The curves are the average 
performance and the error bars indicate the standard deviations. The pictures at the bottom-
right of each curve are samples of moving trajectories of the actor. The yellow triangles indicate 
the initial orientation. 

 

 

Figure 5.4: Performance comparison at 5,000 episode between training with different meta critic 
reward values in Scenario 1.  The bars are success rate of finishing the task. The curves are 
average steps taken to finish the task in each test episode and the shadows indicate the standard 
deviation. 
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We can see that, the performance is poor when the reward value for the meta critic 

is close to the reward for the basic critic. The agent generally failed to learn when the 

reward value was 1. The performance improves when the value increases and tops when 

reward value gets to 10, as the average steps in one episode becomes fewer and success 

rate reached 100%.  

After this, the performance remains high in a range of reward values. However, it 

starts to drop when the value gets to 35. The performance gets worse when the value 

gets higher. This may be because of the unstable gradient updates caused by big loss 

values, as the reward signal in deep reinforcement learning is also a part of the 

supervising signal for the networks. The results in Figure 5.4 demonstrate that a reward 

value between 10 and 30 is most suitable for the meta critic in learning compound skills 

in our scenarios. We then chose the reward value for the meta critic to be 10 and fixed 

it for the rest of the experiments in this chapter.   

The results of the final performance of the proposed h-DDPG algorithm in all three 

scenarios are shown in Figure 5.5.  

 

Figure 5.5: The performance of the meta critic. In each curve, the bars are success rate of 
finishing the task. The curves are average rewards in each test episode and the shadows indicate 
the standard deviation. 
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We can see that, the agent started to find solutions to the tasks after training for 

around 2000 episodes. Note that, we can know from Figure 5.3 that most actors achieve 

stable basic skills at around 1500 episodes. This means the meta critic actually learned 

better compound skills for the tasks right after stable basic skills became available. This 

also explains the instability of the performance before 2000 episodes as it would be hard 

for the meta critic to infer the basic skills of unstable actors.  

For Scenarios 1 and 2, the agent successfully achieved the final goal in more than 90% 

of test cases with random initialization. This statistic is lower for Scenario 3, which is at 

around 80%. We observed that most failures in Scenario 3 were caused by collisions with 

the sides of a door when the robot tried to go through it. This may be caused by the fact 

that when the robot is near the door, it becomes harder to infer the orientation and 

position as what it can sense from camera and range sensors there is extremely similar 

(it is blank outside of the door). Sometimes, we observed the robot tried to solve the 

task by reversing out of the doors. This may be the way the agent learned to infer 

orientation and position near the door.  

In all three scenarios, the agent was able to solve the tasks within around 18 action 

steps. Note that this is highly relevant to the position and orientation of the random 

initialization, which also partially causes the high deviation in Figure 5.5. We can see 

from samples of task solving trajectories given in Figure 5.2 that the agent was actually 

solving the tasks with near optimal solutions from different initializations. The overall 

success rate of the proposed algorithm in solving the tasks is 87.6%.  

 

5.7 Learning with an Incompetent Actor 
 

In addition, we conducted a set of experiments in Scenario 1 to investigate the impact 

of an incompetent actor on the performance of other actors. Similar to Chapter 4, this 

experiment is achieved by including an actor with a meaningless reward function. This 

actor received rewards randomly, so it would never learn. The performance of the actors 

in this situation is shown in Figure 5.6.  
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We can see that the basic critic can still learn several high performance actors even 

when one of the actors has bad performance. This owes to the robustness of the multi-

DDPG algorithm discussed in Chapter 4, as this level of hierarchy of h-DDPG is mainly 

achieved by adapting the multi-DDPG algorithm. Finally, the performance of the meta 

critic in this scenario is shown in Figure 5.7.  

We can see that the meta critic still has high performance on solving the compound 

task in Scenario 1. By comparing Figure 5.5 and Figure 5.7, we can see that the 

incompetent actor has no influence on the final performance of the algorithm. This adds 

to the robustness of the h-DDPG algorithm as individual failed actors will not interfere 

with the learning of other actors and the meta critic can still learn high performance 

compound skills by reusing actors that have high performance.  

 

Figure 5.6: Performance of actors in Scenario 1 when training with an incompetent actor. The 
curves are average performance and the error bars indicate the standard deviations.  

 

Figure 5.7: Performance of the meta critic in Scenario 1 when training with an incompetent actor. 
The bars are success rate of finishing the task. The curves are average rewards in each test 
episode and the shadows indicate the standard deviation. 
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5.8 Comparisons with Other Algorithms 
 

We compared the proposed h-DDPG algorithm with two well-known deep 

reinforcement learning algorithms: DQN [18] and DDPG [24]. As introduced in Chapter 

2, the first algorithm is a discrete action algorithm, so we fixed the speed values of the 

wheels in each basic skill so that the agent can get access to the four basic skills we used 

in our algorithm with equal quality to the best quality skills learned by our h-DDPG actors. 

Specifically, the action value pair ([left wheel, right wheel]) sent to the robot was fixed 

at [1.18, 1.18] for going forward (resulted in moving speed at around 0.2606 m/s), [-1.18, 

-1.18] for going backward (resulted in moving speed at around -0.2606 m/s), [-0.29, 0.89] 

for turning left (resulted in turning speed at around 27.69°/s) and [0.89, -0.29] for 

turning right (resulted in turning speed at around 27.69°/s). We use the hyper-

parameters and network architecture proposed in their original papers when 

implementing these two algorithms. Both algorithms are one-thread training based, so 

suitable for comparison with the proposed h-DDPG algorithm. We compared the three 

algorithms in all three scenarios. The best performances obtained by learning with these 

algorithms are shown in Table 5-2.  

 

Scenario 1 Scenario 2 Scenario 3 
Average 
reward ± 
standard 
deviation 

Success 
rate 

Average 
reward ± 
standard 
deviation 

Success 
rate 

Average 
reward ± 
standard 
deviation 

Success 
rate 

DQN 5.34 ± 5.17 80% 3.91 ± 5.78 70% 2.03 ± 5.38 50% 
DDPG -0.97 ± 6.21 30% -3.45 ± 4.05 10% -4.03 ± 3.80 10% 

h-DDPG 9.88 ± 0.74 100% 8.86 ± 0.90 100% 7.73 ± 2.01 90% 

Table 5-2: Comparison between best performance of different algorithms.  
 

We can see that, the proposed h-DDPG outperformed DQN and DDPG in solving 

tasks in all three scenarios. DDPG frequently failed to solve the tasks, as the success 

rates are very low. This implies it may be hard to learn compound skills without knowing 

any basic skills.  
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Although DQN can solve all three tasks, it is less capable to do so compared to h-

DDPG as the success rates are lower. Moreover, it took more action steps to solve the 

tasks compared to h-DDPG. We also observed that when using DQN, the robot usually 

suffered from instability when the chosen action in a timestep is different from the one 

chosen in its previous timestep. Sometimes this instability may result in wobbles that 

are big enough to cause terminations (causing the angle between the baseboard of the 

robot and the ground to be larger than 45°). This is mainly caused by the abrupt changes 

in speed when changing from one skill to another, as actions are executed in continuous 

time space and the length of time an action will be executed may vary. This may have 

influenced the performance of DQN. In contrast, when using h-DDPG, the robot merely 

wobbled and the testing episodes have never been terminated by a turnover of the 

robot.  This is owing to the actors that could adjust the speed when performing basic 

skills to avoid sharp changes in speed. This may have allowed the meta critic to learn 

better compound skills, which is also one of the advantages of h-DDPG for handling 

robot control in a continuous action space.  

These comparisons show that by introducing the hierarchical architecture and 

decomposing compound and basic skill learning, the proposed algorithm can not only 

learn better compound skills compared to other continuous action control algorithms, 

but also achieve smoother movement to support more stable compound skill learning 

compared to discrete action control algorithms.  

 

5.9 Experiment Summary 
 

In conclusion, we tested the h-DDPG algorithms in three scenarios with different 

compound tasks built in Gazebo 2 in a ROS Indigo environment. The tasks in these three 

scenarios were designed to examine the agent capability in observing and distinguishing 

objects and moving accurately.  

The results show that the h-DDPG algorithm successfully learns both high 

performance basic skills and compound skills. In total, it successfully solved the tasks 

with a rate of 87.6% among all test cases with random position and orientation 
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initialization in different scenarios. Results also show that in cases that even when some 

of the actors fail to learn, other actors can still learn high performance basic skills that 

can be reused by the meta critic to solve the compound task. In comparison with other 

algorithms, the proposed h-DDPG outperforms other one-thread training based 

algorithms while also achieving comparable performance against other discrete action 

based algorithms in solving compound tasks. 

In the next chapter, we will conclude the thesis.   
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Chapter 6  

Conclusion and Future Work 

Reinforcement learning is a kind of algorithms that can make use of sparse reward 

signals to bootstrap skills or policies to solve tasks in a given environment. Classical 

reinforcement learning algorithms are generally incapable of learning in complex 

environments or action spaces due to limited generalization capability. The success of 

deep learning models in dealing with computer vision problems that need strong 

generalization and feature extraction ability inspired interest in combining deep learning 

with reinforcement learning to improve the performance of the agent. Major challenges 

for combining these two techniques have finally been addressed by the Deep Q Network 

(DQN) algorithm [18], which brought deep reinforcement learning great success. 

Following DQN, more work has been done in recent years to improve the performance 

of deep reinforcement learning algorithms and apply them in other control problems or 

applications.  

Compared to control tasks that have a discrete action space, control tasks that 

involve a continuous action space are more challenging as there are potentially 

unlimited action choices. Less work has been done in this area, especially when 

considering learning in multi-task or hierarchical learning scenarios. In addition, all one-

thread based deep reinforcement learning algorithms for continuous action control can 

only solve basic tasks. Our works in this thesis aims to address some of these issues.  

In the reminder of this chapter, we will conclude the whole thesis. This includes the 

conclusions of the contributions and experimental results in Section 6.1, the major 

limitations of the contributions in Section 6.2 and possible directions of future work in 

Section 6.3. 
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6.1 Conclusion 
 

In this thesis, we further explored ways to achieve continuous action control with deep 

reinforcement learning. As introduced in Chapter 1, the final goal of our work is to 

develop an algorithm that can learn compound skills to make up for the limitations of 

existing one-thread learning based algorithms that can only learn basic skills.   

This final goal has led to three main contributions in this thesis:  

• We first proposed a novel network architecture for deep reinforcement learning 

in Chapter 3. The proposed network architecture made use of the multi-layer 

perceptron convolutional (mlpconv) layer [23] and the global average pooling 

layer in-between the convolutional part and the fully connected part of the 

network. It can reduce the number of parameters needed for deep 

reinforcement learning agents that need to use image data by around 72%. 

While the proposed network architecture is flexible enough to fit in different 

network settings for the convolutional part and fully connected part, we also 

proposed two implementation variations of the network architecture that can 

allow us to share parameters between networks and fuse sensor data into the 

agent.  
 

• We then proposed a novel multi-task deep reinforcement learning algorithm 

that can learn multiple basic continuous action control tasks concurrently in 

Chapter 4. The proposed algorithm is called multi-DDPG, as it is based on the 

Deep Deterministic Policy Gradient (DDPG) algorithm [24]. The algorithm has a 

single-critic, multi-actor architecture, in which each actor is responsible for a 

particular task. We applied the sensor fusing and parameter sharing 

implementation of the proposed network architecture in Chapter 3 to further 

reduce the number of parameters needed for learning multiple tasks. Unlike 

other works on multi-task deep reinforcement learning that mainly rely on 

transfer learning or generative model techniques, multi-DDPG produces one 

agent that can do multiple tasks within the same learning process.  
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• Finally, we proposed a novel hierarchical deep reinforcement learning algorithm 

that can learn compound continuous action control tasks by reusing basic skills 

in Chapter 5, which is called h-DDPG. The algorithm has two levels of hierarchy 

which is achieved by a duel-critic, multi-actor architecture. Specifically, a basic 

critic is in the first level of hierarchy which is responsible for training multiple 

actors to learn multiple basic skills. A meta critic is in the second level of 

hierarchy which is responsible for learning compound skills by reusing the basic 

skills learned by the actors in the first level of hierarchy. The single-critic, multi-

actor architecture in the first level of hierarchy was realized by adapting the 

multi-DDPG algorithm in Chapter 4. While the two levels of hierarchy are 

responsible for different types of learning, they will learn within the same 

process.  

 To test the performance of the proposed network architecture and algorithms, we 

built environments where a simulated robot could move in Gazebo 2 in a ROS Indigo 

environment. For the experiments in Chapter 3 and Chapter 4 that focus on evaluating 

the performance of the proposed algorithm and multi-DDPG, the environment is an 

obstacle free, walled space. For experiments that evaluate h-DDPG in Chapter 5, the 

environments were three scenarios with different compound tasks designed to test the 

agent’s ability for observing and distinguishing objects and moving accurately. The 

simulated robot we used was a Pioneer 3AT robot. We set a camera on the front of it to 

give it first person vision of the environment. We also set a range sensor on the top of it 

to give it distance readings from four different angles (left, right, back and front).  

From the experimental results we have shown in the last three chapters, we can see 

that:  

• The parameter sharing variations of the proposed network architecture can 

achieve comparable performance to implementations that have not shared any 

parameters. By fusing sensor data into the network, the learning of the agent is 

sped up on these basic skill learning scenarios, as discussed in Section 3.3. A 

DDPG agent that is built on the proposed network architecture can achieve 

comparable performance to a DDPG agent that is built on traditional CNNs on all 

the 12 highly constrained basic locomotion tasks, with many fewer parameters 
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being introduced in the networks.  
 

• The performance of the proposed multi-DDPG algorithm on learning multiple 

tasks concurrently is consistent when the number of tasks and the constraints 

on the tasks increase. On learning the 12 highly constrained basic locomotion 

tasks, multi-DDPG has achieved comparable performance to DDPG, which learns 

these 12 tasks by training 12 individual agents, one for each task, with many 

more parameters introduced during learning. What is more, when one of the 

actors of the multi-DDPG agent is incompetent, the rest of the actors can still 

learn high performance skills that are as good as in the scenarios where all the 

actors learn skills successfully.  
 

• Both levels of hierarchy of h-DDPG can learn efficiently. The basic critic and 

actors in the first level of hierarchy achieved comparable performance to multi-

DDPG on learning the four basic skills we assigned to the agent (going forward, 

going backward, turning left and turning right). The meta critic in the second level 

of hierarchy successfully learned all the three compound skills needed to solve 

the compound tasks in the three scenarios. The performance of h-DDPG on 

solving the compound tasks in the three scenarios outperformed DDPG, which 

generally failed to learn any of these tasks, and DQN, which is a discrete action 

control algorithm that is not able to make the robot move as smoothly as h-DDPG 

does in our continuous time control scenarios. Moreover, when one of the actors 

in the first level of hierarchy failed to provide a good basic skill, the basic critic 

can still train other actors to learn high performance basic skills, which can be 

reused by the meta critic to prevent the compound skill learning being interfered 

with by the failed actor.  

These results support the conclusion that the proposed network architecture and 

algorithms all achieved good performance on learning the given tasks. These results and 

discussions in the thesis also permit us to conclude that:  

• The mlpconv and global average pooling layer applied in-between the 

convolutional part and fully connected part of the network can significantly 

reduce the number of parameters needed, while also holding enough features 
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extracted from the raw image data to provide high performance learning of deep 

reinforcement learning agents, even when the convolutional part of the 

networks are shared among several networks in the agent.  
 

• The combination of the loss function provided by (4.1) and (4.2) and the gradient 

inferring method provided by (4.3) is successful in providing an agent that can 

learn multiple tasks concurrently. Specifically, by using the proposed loss 

function and gradient inferring method, the single critic in the architecture can 

balance among all evaluations of state-action values for existing actors during 

self-updating, while it can also separate information to help update each 

individual actor to learn different tasks.  
 

• The introduction of a new hierarchy in the agent can enable the agent to learn 

compound skills in a one-thread based learning scheme by reusing basic skills in 

the lower level of hierarchy. While the two levels of hierarchies are cooperating 

with each other on providing the final compound skills and have shared some of 

their components (network layers and replay memory), unsuccessfully learned 

basic skills in the lower level of hierarchy do not affect the overall performance 

of the algorithm.  
 

• Even though discrete action control methods are easier to learn, especially with 

the introduction of deep learning models, they are less capable than continuous 

action control methods in a continuous time scenario, where the length of time 

that an action last is uncertain. The fixed legal actions provided prior to learning 

may also impose restrictions on the flexibility of the agent.  

In summary, the work in this thesis has addressed the lack of multi-task and 

hierarchical learning algorithms for continuous action spaces by proposing two novel 

algorithms, one for each scenario. A novel deep reinforcement learning network 

architecture is proposed to reduce the huge amount of parameters needed in these two 

algorithms. The final h-DDPG algorithm can successfully learn compound skills in a 

continuous action space with a one-thread learning scheme, which cannot yet be 

achieved by other deep reinforcement learning algorithms.   
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6.2 Limitations 
 

While the final outcome of this thesis, which is the h-DDPG algorithm, can successfully 

learn compound skills in a continuous action space with a one-thread learning scheme, 

we still found three main limitations:  

• During learning, we found the agent needs sufficient free moving space in the 

environment to explore the continuous action space to learn to choose actions 

to achieve the movement patterns to build basic skills. When learning in crowded 

environments where a lot of objects or obstacles exist, the agent may failed to 

learn the basic skills needed for the compound skill learning.  
 

• The algorithm can only learn compound skills to solve compound tasks in fully 

observable scenarios. This means the final goal of the task must not be hidden in 

the environment. In scenarios involve partially observable tasks such as maze 

problems or sequential tasks, the algorithm generally fails to understand the 

tasks and provide any compound skills.  
 

• All the algorithms proposed in this thesis require predefined reward functions 

for each task assigned, including the basic tasks and the compound tasks. The 

reward function is central to these algorithms and a badly defined reward 

function can directly cause failure. This to some extent has limited the flexibility 

of the algorithms.  

Future works can be done to fix these limitations and further improve the 

performance of the algorithm.  

Nonetheless, the proposed h-DDPG algorithm has proved its capability of learning 

compound skills in a continuous action space to solve fully observable compound tasks 

as well as its ability at providing smoother movement compared to discrete action 

control algorithms. These advantages should still make it a competitive algorithm 

compared to other deep reinforcement learning algorithms. 
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6.3 Future Work 
 

Considering the limitations we discussed in the last section and the properties of the 

works in this thesis, future work could focus on two directions.  

The first direction is to find ways to further improve the performance of the 

algorithms in this thesis. It should focus on solving the limitations of the algorithm we 

discussed in the last section:  

• Improvements on the replay memory could be made to help reduce the free 

moving space needed for learning basic skills. This is because the transitions in 

the replay memory may have different contributions to the learning. There may 

also be transitions that are not good for learning. Ways could found to classify 

different kinds of transitions and highlight those that are beneficial for learning. 

This may also help make the whole learning process faster as compound skills 

are based on the basic skills.  
 

• New levels of hierarchy can be introduced in the algorithm to enable the 

algorithm to use multi-level hierarchy to decompose complex tasks in a more 

detailed way. This may give the agent more potential to solve partially 

observable tasks, as each of the decomposed tasks can be fully observable.  
 

• It is also beneficial to find ways to enable the agent to have memory ability. It 

can help the agent combine sequential information in exploration to further 

improve its intelligence. This is also a potential way to reduce the free moving 

space needed and to allow the agent to understand partially observable tasks.  
 

• Ways could be found to introduce intrinsic motivations in the algorithm (in some 

or all levels of hierarchy). This is a very promising way to eliminate the need of 

predefined reward functions in the algorithm, which could further add to the 

generalization and flexibility of the algorithm.  
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The second direction of future way is to find entirely new methods to handle 

continuous action control with deep reinforcement learning. Possible future work in this 

direction could be:  

• Finding new network architectures or applying other network architectures in 

deep reinforcement learning algorithms. The new network should be able to 

learn more features of the environment and analyse them more thoroughly. 

Some existing network architectures may be suitable for this such as Inception 

Networks [48] and SSP [58].  
 

• Finding new gradient policies to train a more capable actor. The new update 

gradient policy must be able to deliver more detailed information from the critic 

so that it can maximally alleviate information loss when connecting actor and 

critic through gradients.  

 

Besides these two directions, more analysis could be carried out to better assess the 

capability of the proposed algorithms. This includes:  

• Analysis of the robustness of the algorithms against noises in the input data. It 

would be interesting to see whether removing the noise in the input data using 

some data pre-processing techniques could help improve the performance of the 

agent.  
 

• Analysis of the capability of the algorithms in extreme conditions. It would be 

interesting to see how much ‘uncertainty’ in the reward function the algorithm 

can sustain before being unable to learn and what the overall performance 

would be if more than one, or even most of, the actors are having poor 

performance.  
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