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Abstract

Understanding the role resolution, abstraction and fidelity play when solving
problems is critical to the quality of decisions produced by automated systems.
Resolution is the lens to see what is relevant and what is not in a system. Abstraction
offers a mechanism to simplify systems by eliminating those factors that are not
relevant to the phenomena of interest. Fidelity is a decision on the level of details
in the data we need to have on those factors that are relevant.

In particular, in real-time time-constrained environments, it is important to un-
derstand the relationship between resolution, abstraction and fidelity on the one
hand, and the speed and accuracy to obtain a decision on the other hand.

In this thesis, we will explore the effect of the level of resolution, abstraction and
fidelity of simulators on decisions in the context of air traffic control. We design
and use four simulators with different levels of abstraction and fidelity and compare
their operation and output. We model reality with a very high resolution simulator
that works at a higher level of fidelity than those used for comparison. This allows
us to have a ground-truth to compare against.

We then evaluate the effectiveness of the four simulators on optimising air traffic
controllers task load in real-time. Each simulator is used to perform look-ahead oper-
ations within a multi-objective optimization algorithm to identify an aircraft-specific
action to either reduce or increase complexity. Given that an air-traffic scenario has
a minimum energy required to perform the task, the optimization finds opportuni-
ties to load-balance the workload over the time horizon of the scenario. This load
balancing causes upward and downward shifts of complexity. This phenomenon is
analysed in details in the thesis.

Despite that a simulator may produce a large deviations from reality, if these
deviations are systematic, we can predict it with a static model like an artificial
neural network and use the prediction to correct for the simulator’s deviation. We
conduct a series of analysis using artificial neural networks and linear regression to
study the nature of the deviations.

In summary, this thesis demonstrates that decisions on resolution, fidelity and
abstraction have a great impact on performance. This impact can be studied and
quantified. If used appropriately, it offers an evidence-based rational for the modeller
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to justify decisions made on resolution, abstraction and fidelity.
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Chapter 1

Introduction

1.1 Overview

Over the last few decades, increases in commercial air travel and air freight

movements have seen the level of global air traffic continue to grow year after

year (ICAO, 2004; Airbus, 2014). It is estimated that commercial air travel vol-

umes, in terms of passenger-kilometres travelled, will double within the next 15

years (Airbus, 2014), potentially leading to higher density of air traffic. In response

to the continued growth in global air traffic, international, regional and national

organisations; researchers and commercial entities have continued to evolve the air

traffic management system by introducing new concepts, new air traffic manage-

ment systems and adaptations of existing airspace designs and procedures (Loft

et al., 2007). We have seen many new automation tools and procedures that have

been developed to assist the human air traffic controllers and pilots in maintaining

an efficient and safe flow of air traffic (Ozeki, 2014).

Computer simulation has become an integral part of the development, and often

implementation, of new tools and procedures in several areas of the air traffic control

and management industry (Chen and Cheng, 2010). The continued development and

implementation of computer simulation oriented tools has also seen the development

of the many complex air traffic simulation environments. The more complex the
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environment the more financial, personnel, time and hardware resources are required

to develop and operate the system. Given the safety critical nature of some of the

applications in the air traffic domain, such as collision detection and resolution, it is

often justified in favouring more complex systems as the safety of many people are

potentially dependent on the accuracy of the system.

In some applications, though, the highly complex simulation systems may not be

desired due to their computationally demanding nature. Examples of applications

areas where high complex simulation systems may not be desirable include those

requiring real-time prediction and those incorporating optimisation. In these cases,

particularly those with real time needs, speed is an important factor which can be

influenced by the fidelity of the simulation.

In this thesis, we aim to explore the effect of simulation complexity, more specif-

ically the simulation fidelity, has on the simulation system in the air traffic manage-

ment domain. First we will investigate the aspects of air traffic simulation system

which can influence the fidelity. Then we will evaluate the use of simulation systems

of different levels of fidelity for tactical air traffic operations. This will be done by

developing a system to adjust the air traffic controller’s expected workload using

multi-objective optimisation. Finally we will evaluate some methods which may be

used to minimise the effect of simulation fidelity on the predictions provided.

1.2 Motivation

With an increasing demand for simulation of highly complex systems, there has

been a trend to build simulators as close as possible to a real world process for the

prediction of future events or states (Hancock et al., 2008). As technology advances,

new iterations of more advanced simulators get developed which provide us with a

new suite of more accurate replications of the real world. These new versions require

additional resources (such as manpower, money and hardware) to develop (Hancock

et al., 2008; Hughes and Rolek, 2003). But with the appropriate identification of

the degree of detail required for these simulators, it may be possible to maintain

October 30, 2015 Rubai Amin
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an acceptable level of accuracy for these simulators while minimising the required

resources.

High fidelity representations that do not directly effect the objectives of the sim-

ulation may be diverting resources from where it is needed most (Hughes and Rolek,

2003). The level of fidelity is one of the most important factors when assessing the

quality of a simulation and is a big factor in determining the cost-effectiveness of a

simulator and simulators with excessive levels of fidelity may not be as cost-effective

as those with lower levels of fidelity (Hancock et al., 2008). This is particularly

important for simulators dependant on computer models as excessive levels of fi-

delity could result in unnecessary computationally intensive environments, leading

to higher hardware requirements and more time for completion (Nikoletseas et al.,

2008). This may become problematic for real time applications as predictions are re-

quired in a timely manner. In some applications areas it may be possible to develop

simulators which trade-off levels of fidelity with some loss of result accuracy (Ro-

driguez, 2008). This presents us with a dilemma that can be visualised by the plot

in Figure 1.1. On the one hand we have a simulation model, M1, which has a high

level of fidelity, low error but a long completion time. While on the other hand we

have two models, M2 and M3, with lower levels of fidelity, higher levels error and

shorter time for completion. We can also see that the time required for completion

for M1 is longer than the cut off time for the application, which means that the

simulation finishes and provides a prediction later than when it is required. There

may be methods by which the completion time for M1 may be shortened, such as

distributed computing, so that it is lower than the cut off time without changing

the level of fidelity. In many cases, however, this may be very difficult to achieve or

even impossible to implement. If that is the case, then other methods may have to

be considered. These other methods include selecting alternate simulation models

by trading off the level of fidelity with the level of error and time for completion and

selecting a model which meets the time requirements and is within an acceptable

level of error.

One area which can benefit from such a trade-off is the aviation industry, espe-

Rubai Amin October 30, 2015



4 CHAPTER 1. INTRODUCTION

Figure 1.1: Comparison of simulation run time and error for three models with
different levels of fidelity.

cially in air traffic management. The increases in global air traffic has shown that

there is a need for the development of new automation tools and procedures to help

the human air traffic controllers deal with the ever expanding traffic loads (Kuchar

and Yang, 2000). Developing lower fidelity air traffic simulators may help reducing

the resources required to develop and operate new evaluation tools and procedures

and also potentially provide a platform for tools to operate faster while still providing

an approximate, but still acceptable, solution.

1.3 Research Questions and Hypothesis

Simulation is used in a wide range of areas and applications, but how well the

simulation operates (in terms of the project aims) is dependent on how well its level

of fidelity, abstraction and resolution has been identified and implemented. So, in

this thesis we wish to specifically answer the following research question:

What is the role of fidelity in simulation for tactical air traffic

operations?

October 30, 2015 Rubai Amin
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Our hypothesis is that by only selecting a sub-set of components of varying levels

of fidelity to incorporate into a simulation system, it should be possible to produce

acceptable results for the domain. Our main objectives is to develop and use a set

of simulators of varying levels of fidelity to simulate air traffic and investigate the

effect of fidelity when compared to higher fidelity simulators or the real world.

In order to answer the main research question, a number of other related sub-

questions will need to be investigated:

1. How to influence fidelity decisions in an air traffic simulator? What

are the important fidelity validation indicators in an air traffic sim-

ulator?

The air traffic management system is composed of several important subsys-

tems. Simulators in the air traffic domain are developed to explore different

aspects of the domain, which leads to a wide range of simulators with varying

levels of fidelity for each subsystem. For example, some traffic flow simulators

use simple back box approaches, while the more safety critical applications,

such as collision detection, may use high fidelity simulators. The level of fi-

delity for the different subsystems of the air traffic management system is

dependent on the aims of the application. The success of any air traffic sim-

ulator will be dependent on the identification of the appropriate subsystems

which contribute to the aims for the simulator and also their method of im-

plementation. A simulator with a too high level of fidelity may hinder its

effectiveness, while a too low level of fidelity may not achieve quality results.

Ultimately the success of the simulator will be determined by how it performs

in comparison to existing simulators and the real world. Reducing the fidelity

or abstraction may improve the performance of a simulator (speed and com-

putation), but if it can not provide accurate results then it may not be useful

in many applications. For this reason a through investigation of the validity

of the results from the simulation is required.

2. What is the role of fidelity on air traffic complexity estimation?
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With the use of simulators of different levels of fidelity, it is expected that

there will be some variations in the results obtained when they are used for

simulation of air traffic. If the simulators are used as part of an application in

a real world operational or tactical environment, the assumptions, limitations

and quirks of the simulators and their effects on the results must be first fully

understood before implementation. These assumptions, limitations and quirks

may be a result of the decisions taken when deciding on the level of fidelity

for the simulator. Without understanding the effect of fidelity on the results

obtained from the simulator, we may be led to making incorrect conclusions.

3. What steps can be taken to minimise the effect of fidelity on air

traffic complexity estimation?

We know that using simulators of different fidelity may produce different re-

sults. However if we can develop a method by which to quantify these devia-

tions or identify conditions under which these deviations occur we can produce

results which are more accurate. If a methodology can be developed which can

be used to accurately and consistently quantify the deviations, we are able use

to simulators of different fidelity with more confidence.

1.4 Organization of the Thesis

This thesis consists of six chapters and is organised as follows: In Chapter 1,

an introduction to the thesis is presented. First an overview of the research field

is provided, followed by the motivation and the research questions addressed in the

thesis. The chapter concludes with a list of scientific contributions resulting from

the work presented in this thesis.

In Chapter 2, a background of the research conducted is provided. First we

discuss the processes and considerations involved in developing simulation models.

Next we discuss the present day air traffic environment and discusses some issues

effecting the modern air traffic management domain. Finally we discus the use of

October 30, 2015 Rubai Amin



CHAPTER 1. INTRODUCTION 7

simulation in modern air traffic management systems.

In Chapter 3, the design and development of several air traffic simulators of dif-

ferent levels of fidelity is explained along with their validation. Firstly, a description

of the air traffic simulation architecture is presented along with the airspace model,

geographic reference, atmospheric modelling and the computations of the aircraft

performance and trajectories are also presented for each simulator.

In Chapter 4, we present a methodology for adjusting the expected workload

of an air traffic controller by using a system to adjust airspace complexity in real-

time using multi objective optimisation and shadow simulation. This methodology

is experimented with several different configurations and the results of this experi-

mentation are summarised.

In Chapter 5, we explore methods by which we can predict future airspace

complexity. We use multiple linear regression, neural networks and simulation to

predict future airspace complexity using current air traffic characteristics. We also

investigate a method by which we can adjust the prediction obtained from low

fidelity simulation in order to produce a more accurate prediction of the airspace

complexity.

In Chapter 6, the main findings from this thesis is summarised. The chapter

concludes the thesis with a discussion of possible future research directions.

1.5 Original Contributions

A list of the scientific contributions arising from this thesis is given below:

• Several shadow simulators are designed which are capable of simulating air

traffic in any airspace in the world and are capable of simulating air traffic

starting from intermediate points in their flights based on positioning data

(Chapter 3). These simulators are designed with different levels of fidelity and

we explore the effect of the different design decisions taken to influence the level

of fidelity of these simulators on the results obtained from these simulators.
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• A methodology is developed for adjusting air traffic controller’s expected work-

load in real-time using multi-objective optimisation and shadow simulation

with simulators of different levels of fidelity (Chapter 4). The ATC’s expected

workload is adjusted by using the optimisation system to generate manoeu-

vres for the aircraft to deviate from their flight plans in order to achieve a

target level of complexity in the airspace. Simulation is used to determine

the airspace complexity resulting from the implementation of the manoeuvres

while goal programming is used to evaluate the effectiveness of the manoeuvres

for reaching the predefined target levels of airspace complexity.

• We explore several methods for real-time prediction of airspace complexity for

sectors comprising the entire Australian airspace (Chapter 5). These methods

are capable of simultaneously predicting the airspace complexity in multiple

sectors in the Australian airspace.

• A methodology is developed for adjusting the prediction of airspace complexity

obtained from low fidelity simulators using the current air traffic conditions

(Chapter 5). Using this method we can adjust the prediction obtained from

the low fidelity simulators to obtain a more accurate estimate of the airspace

complexity and overcome the deviations which are introduced as a result of

the use of the low fidelity simulators.
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Chapter 2

Background

2.1 Simulation

Simulation is a tool that is used to reproduce the behaviour of a real world

process in order to evaluate the performance of the system under different configu-

rations over a period of time when it is undesirable to experiment with the system

itself (Banks, 1998; Maria, 1997). Simulators can be run in the physical form, such

those used to create interactive training environments (eg. environments for train-

ing military personnel or fire fighters), as mathematical and computer models (such

those used for environmental and climate predictions), or a combination of the two,

such as flight simulators for pilots.

Simulation can be used before a new system is built or before an existing sys-

tem is altered to predict a future state in order to reduce the chances of failure to

meet requirements, to eliminate unforeseen problems, to prevent improper resources

utilisation and to optimise system performance. Simulation, particularly computer

simulation, also allows for time to be sped up so that more events can be simulated in

a given time period compared to the real world. It allows us to diagnose, understand

and solve problems before they occur and it allows us to ask ”what if ...?” questions

and investigate their effect on the system. These advantages are particularly useful

when dealing with systems where it would be dangerous, impossible or very expen-
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sive to observe certain process in the real world (Sokolowski and Banks, 2011). For

example, it is more cost-effective and more practical to simulate and evaluate new

flight schedules using a computer simulation than it is to implement the schedule

and then evaluate it using the real network. For this reason, we can use computer

simulation to imitate real world systems to overcome their limitations for experi-

mentation. This makes simulation an important tool in research and development

in engineering, science and beyond.

The characteristics of a simulation environment can be described by the follow-

ing formula (Jacobs and Dempsey, 1993):

S = R− T (2.1)

where S is the simulation, R is reality and T are the task irrelevant elements.

Equation 2.1 shows that for a simulation we need to consider what aspects of a real

system needs to be simulated and to what extent they need to be replicated. We

then exclude all other irrelevant aspects of the system from the simulation.

2.1.1 Simulation and modelling

A simulation is the operation of a model which is an approximate representation

of a real world system (Maria, 1997). A great variety of models exist in a broad

range of areas in science and industry. These models can represent systems from

financial markets (Spǐsák and Šperka, 2011), factory assembly lines (Rogalski, 2012)

and transport systems (Volf et al., 2011) to more complex systems such as the

Earth’s climate and environment (Dunne et al., 2012), other planets and even entire

galaxies (Teyssier, 2015). Although some of the mentioned systems can be more

complex than the other systems, the models used to represent the respective systems,

particularly computer models, may not have the same relative complexities. This

will be discussed further in later sections below.

Despite there existing a wide range of model types and application domains,
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Brooks and Tobias (1996) and Maria (1997) provide several key steps that are in-

tegral for developing, operating and experimenting with a simulation model. The

flowchart in Figure 2.1 outlines these key processes. This figure shows that the pro-

cess is iterative in order to ensure that the model continues to represent the system

in its intended manner.

Problem 

Formulation

Model Formulation

Model 

Construction

Verified?

No

Yes

Validated?

No

Experimentation

Yes

Analysis

Implementation

Figure 2.1: A flowchart of the simulation model development process

The process begins with the problem formulation. During this step, the objec-

tives of the study are defined, the features of interest are identified and the basis on

which different configurations will be ranked is decided.

Model formulation is a process in which a conceptual model is produced which

consists of the specifications and assumptions of the model to be built (Maria, 1997).
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This process is an iterative process in which different models are produced with

varying levels of fidelity. Once a set of conceptual models have been produced, they

are ordered by their level of fidelity and the model most closely adhering to the

requirements is chosen. The formulation of the conceptual model involves one of the

more difficult aspects of the modelling process: the task of selecting the appropriate

level of fidelity. The results of this task has a major influence on the success of

the simulation. A model that is too simple could become unrealistic and therefore

misleading while building a complex model could require a considerable amount

of resources. It is generally harder to understand the relationships contained in

a complex model and this makes the interpretation of the results more difficult,

possibly leading to incorrect conclusions being drawn (Brooks and Tobias, 1996).

The guidelines and principles for selecting the appropriate level of detail are generally

vague and what is appropriate is also influenced by the aims of the project.

Next the conceptual model is translated into computer program form using the

specifications and assumptions outlined during the model formulation stage (Carson,

2004). This also involves designing the data structures to represent the different

components of the model and their relationships.

Before we can conclude the model development stage, we must verify and val-

idate the model with our aims, requirements and assumptions. Verification in-

volves testing whether the model is consistent with its specifications (Sokolowski

and Banks, 2011). This means making sure that the computer program for the

model correctly implements the conceptual model. Validation is the process of as-

sessing the level to which the model is accurate at representing the system being

simulated (Sokolowski and Banks, 2011). This includes operating the model under

known conditions and comparing its output with the real system. This step can also

uncover the range of operation for which this model is accurate and credible. If the

model cannot be verified or validated, we must return to the model development

stage and make appropriate changes before again attempting to verify and validate

it. Once the model has been successfully verified and validated, we can implement

the model.
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Once a model has been developed, its performance is evaluated against other

models or the real system before it is implemented. Although there are no absolute

measures of a model’s performance as the evaluation is relative to the project’s

aims, a meaningful assessment of several models can be made using the following

qualitative assessments (Brooks and Tobias, 1996):

• The extent to which the model output describes the behaviour of interest and

the accuracy of the model’s results

• The ease with which the model and its results can be understood

• The portability of the model and the ease with which it can be combined with

other models

• The probability of the model containing errors

• The accuracy with which the model fits the known historical data

• The strength of the theoretical basis of the model including the quality of input

data

• The time and cost to build, run and analyse the model

• The hardware requirements of running the model

One of the key factors which influences the effectiveness of a simulation model is

its level of fidelity (Goncalves, 2006). This topic is further discussed in the following

section.

2.1.2 Simulation fidelity, abstraction and resolution

Fidelity is a measure of the extent to which a simulation model reproduces the

attributes and behaviours of a real system (Hughes and Rolek, 2003). It is very

difficult, if not impossible, to completely replicate the real world in a simulation

environment (Moon and Hong, 2013) and so we must use simulation models with
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lower levels of fidelity. Determining an appropriate level of fidelity for a model is one

of the most difficult stages of the model development process. The level of fidelity

is largely influenced by the aims of the project and the intended application of the

simulation. In an ideal world would incorporate as much detail into a model as

possible to create a realistic simulator, but this is not always possible or practical

for many applications. So we must limit the coverage of the model somewhere. In

order to determine an appropriate level of fidelity we need to conduct an analysis

of the functions and operations of the real system in the context of the application

domain. This allows us to determine the areas in which fidelity can be influenced.

For example, in a road traffic flow simulator, modelling the interaction between a

car’s tyres and the road may not be important. Although this interaction can have

some impact on the traffic flow, modelling the precise interaction may not be deemed

important in the scope of the project. Through analysis of the system in focus we

can determine which components are important for our simulation’s purpose, which

are of little influence to our results or which can be simplified for our purpose.

A model with the highest coverage of behaviours is referred to as a high fidelity

model, while models with less coverage are considered to be of lower fidelity (Abbass,

2014). High fidelity representations of behaviours that do not directly effect the

objectives of the simulation may potentially be diverting resources from where it is

need most (Hughes and Rolek, 2003). This is particularly important for computer

models as excessive levels of fidelity for certain features and process which have a

small impact on the simulation results may cause unnecessary computation, leading

to higher hardware requirements, more time for completion and a more difficult to

understand model (Pachepsky, 2006). When developing a simulation model these

consideration need to be kept in mind for deciding an appropriate level of fidelity.

The level of fidelity required for one project may be different to that for another

project. Determining an appropriate level of fidelity for a simulation is a difficult

task as it requires simulation modellers to have sufficient domain specific knowledge

of the application area to make decisions which will ensure that the results from

the model remain within the bounds of its requirements. The modeller can make
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decisions to influence level of fidelity of a model in two aspects: the model’s level

of resolution and it’s level of abstraction. Resolution relates to the level of detail of

the model, while abstraction determines the model’s level of complexity. First the

modeller must determine the level of resolution that is appropriate for the simulation

(based on the project’s aims) and then based on this decision he/she must decide on

a level of abstraction that is appropriate for the chosen level of resolution (Abbass,

2014).

Fidelity 

Assesment

Qualitative 

Assesment

Quantitative 

Assesment

Physical

Behavioral

Virtual Structure

Functional

Input/Attributes Accuracy

Resolution

Error

Uncertainty

Figure 2.2: Assessment of simulation model fidelity (Goncalves, 2006)

The criteria for assessing the level fidelity of a model can be seen in Figure 2.2.

We require both a qualitative and quantitative approach when assessing fidelity. The

qualitative assessment is based largely on the level of abstraction of the model while
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the quantitative assessment is a measure of the model’s accuracy, error, resolution

and uncertainty. When deciding on the appropriate level of fidelity for a model,

we must also consider its time-to-answer and resource usage. The time-to-answer

refers to the time required to obtain an answer from when a question is asked

and is a measure of the ability of the simulation to provide an answer in a timely

manner (Goncalves, 2006). This measure is influenced by the the time required

to setup and configure the simulation, the computational time and post-process

analysis time. Resource usage refers to both the hardware requirements of the model

(for example, the processing power and speed, data storage) and the manpower and

skill required to operate the simulation and interpret the results. When selecting

an appropriate simulation model for an application, we must trade-off the fidelity,

time-to-answer and the resource usage in order to meet project constraints. In the

absence of any time or resource constraints we could build simulation models with

high levels fidelity that very closely replicate the real world. There are however, very

few circumstances or applications which allow for the use of a simulation model with

no time or resource constraints, and so we must trade off fidelity in favour of lower

time-to-answer and lower resource usage. One of the most common methods of

developing simulation models of different levels of fidelity is to alter the level of

abstraction of the processes and interactions within the model. Before we can alter

the level of abstraction, we must first determine an appropriate level of resolution

for the model.

Determining the appropriate level of resolution for a simulation is dependant on

the required level of accuracy for the simulation, as determined by the intended scope

of the project (Sisti and Farr, 1998). Resolution defines the granularity, or the depth,

of the characteristic properties of the real world that are to be simulated (Yilmaz

and Ören, 2009). The more detail that is included in a simulation model, the higher

that resolution of the model. The simulation of a single car would be of higher

resolution than the simulation of traffic on a highway. The level of resolution,

however, may not necessarily determine the level of fidelity (Sokolowski and Banks,

2010). For example, consumer level (ie. for casual gamers) and professional level
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flight simulators may have the same high level of resolution, but the professional

level simulator will usually have a higher level of fidelity. An air traffic simulator

on the other hand may be of low resolution when compared to a flight simulator,

but at the same time the air traffic simulator may also have a high level of fidelity.

The difference in fidelity between the consumer and professional flight simulators is

typically defined by their level of abstraction. Once we have determined our desired

level of resolution, we can then select the level/s of abstraction that are appropriate

for the simulation aims.

Abstraction is the process of reducing the behavioural complexity of simulation

model components and interactions while still maintaining the validity of the sim-

ulation in the context of the project aims (Fishwick, 1988; Frantz, 1995). As real

systems cannot be completely replicated by simulation models, even models with

the highest level of fidelity are already a somewhat abstracted versions of the real

system. These models though can be further abstracted depending on the aims of

the use of the simulation.

There are several reasons as to why we may consider the use of more abstract

versions of existing models. These abstract models are generally less computation-

ally complex and easier to understand as they include simplifications of components

and behaviours (Fishwick, 1988). The process of creating abstract models also often

results in a library of models with different levels of abstraction and/or resolution

for the same process which can be utilised for different purposes. These models can

be ordered into a hierarchy, such as the one shown in Figure 2.3, based on their level

of abstraction and fidelity. Each level on the pyramid has a different level of abstrac-

tion and fidelity. The model on the lowest level of the pyramid has the highest level

of fidelity and the lowest level of abstraction. This model will generally produce the

lowest amount of error among the models in the pyramid. The higher the model

is on the pyramid, the higher the level of abstraction is for the model. The model

at the top of the pyramid has the lowest level of fidelity among the models in the

pyramid and the highest level of abstraction.

The different levels of abstraction may introduce different levels of error into
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Figure 2.3: Levels of model hierarchy

the results of the simulation. The modeller must consider the positive benefits of

reduced runtime and reduced hardware requirements and trade this off with the

drop in result accuracy due to the level of abstraction (Rodriguez, 2008). The

final choice of the level of abstraction and resolution of a model is dependent on

the aims, objectives, and requirements of the simulation. This choice is heavily

influenced by the acceptable level of error set by these requirements during the

model formulation stage of the development process. As can be seen in Figure 2.4,

selecting an appropriate level of abstraction is a matter of trading off the complexity

of the model and the level of error in the results. With lower levels of abstraction,

we can expect to see small, but acceptable, levels of error. As the level of abstraction

increases further, the level of error becomes larger and into the unacceptable range.

The techniques involved in the process of model abstraction can be placed

into three categories: model boundary modification, modification of behaviours and

modification of model form. Model boundary modification involves the modification

of the input variable space, modification of behaviours involves the modification of

behaviours within the model and also involves combining some aspects of the model

while modification of model form involves the simplification of the input-output

transformation within the model (Frantz, 1995). Each of these classes can be divided
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Figure 2.4: Appropriate level of abstraction determination

into further subclasses.

Model boundary modification involves the simplification of the model by mod-

ifying input variables, often by eliminating some of the variables as input to the

model (Frantz and Ellor, 1996). Explicit abstraction techniques (hierarchies of mod-

els and delimit input space) involves the identification of exogenous variables for

elimination, while derived abstraction techniques (approximation and selection by

influences) involves the determination of the minimum number of input variables

required to meet the simulation requirements (Frantz, 1995).

• Hierarchies of models: A set of models for components which includes simpli-

fied and more complex models for the same process.

• Delimit input space: Limiting the domain of inputs provided to the model and

thus limiting the area of operation of the model. For example, limiting the

model to water temperatures between 0 and 100 degrees, eliminates the need

to model the transition from solid or gas states (Frantz, 1995).

• Approximation: Eliminating parameters based on the aims of the simulation

and providing approximate results.
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• Selection by influences: Simplifying the relationship between variables.

Modification of behaviours involves aggregating some aspects of the models to

modify the behaviour of the internal elements of the model (Frantz and Ellor, 1996).

• Behaviour aggregation: Combining states which are irrelevant to the simula-

tion aims

• Causal decomposition: Dividing the model into separate components and ex-

ecuting each component individually, but while maintaining the interactions

between the components.

• Aggregation of cycles: Combining similar states which are irrelevant to the

final result.

• Numeric representation: Replacing continuous variables by categorical or nom-

inal variables.

• Temporal aggregation: Changing the time advance.

• Entity aggregation: Replacing lower level entities with higher level entities.

• Function aggregation: Combining several functions into one.

Modification of model form is a simplification of the input to output transforma-

tion (Frantz, 1995). This process does not necessarily modify the model boundary

or behaviour, but modifies the manner in which the parameters are determined.

• Look-up table: The output value is determined by retrieving an indexed value

of the input.

• Probability distribution: Replacing computation with randomly generated val-

ues.

• Linear function interpolation: Linearly interpolating known data.
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• Metamodeling: Analysis of input-output pairs by treating the model as a black

box.

The decision to use a particular abstraction technique and the extent to which

it is used requires a trade-off for the simulation result accuracy, computation time

and resources, and so once again is dependent on the aims of the project.

While our discussion has been mainly focused on computer simulation, it must

be noted that the issue of determining an appropriate level of fidelity, resolution

and abstraction are also important for non-computer based simulations. Training,

particularly in the medical field, is one application where non-computer based simu-

lations are often used. Norman et al. (2012) discusses several studies into the use of

high and low fidelity simulators for training medical students. One such study (Is-

senberg et al., 1999) investigated the use of a computer controlled manikin for the

simulation of sounds relating to several human heart conditions. It was found that

the use of this expensive and sophisticated manikin improved the transfer of learning

for identifying the heart conditions when compared to learning through traditional

ward visits. But another study (Hatala et al., 2008) also found that the use of a low

fidelity simulation system which played the sounds on a laptop computer achieved

similar results as when using the manikin. From this study we can see that by

appropriately analysing the requirements and aims of the simulation we can reduce

the complexity of the simulation environment and also the resources required while

still achieve comparable results.

The analysis of selecting an appropriate level of fidelity are also important for

computer based simulation too. Reshetin and Regens (2003) investigated the dis-

persion of anthrax spores during a bio-terrorism incident using computer simulation.

This study involved the simulation of the dispersion of anthrax spores through a 50

storey building to provide a picture of the expected level of human exposure and

surface contamination throughout the building before medical intervention. The

simulation model is capable of modelling the interaction between individual anthrax

spores and the interaction between the spores and the building’s walls and the flow
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of air through the building. But in order to minimise computation time and pro-

vide a quicker prediction of the level of contamination, a number of simplifications

where made. This includes modelling every floor of the building to be identical with

the same air flow throughout the day and assuming that the distribution of the

spores are uniform throughout the floor. In reality, the layout, size and shape of

each floor of a building may be different and each floor may have different air flow

patterns, but these factors are not the primary focus of the model. The aim was to

model the dispersion of the spores through the building and how they interact with

the surroundings and so more resources (time for model construction and computa-

tion resources at run time) were allocated to more accurately model the dispersion

instead of the building.

Selecting an appropriate level of fidelity, abstraction and resolution is also im-

portant in the simulation of transportation systems. Many traffic simulation ap-

proaches implement macroscopic models which aggregate vehicles at a specific level,

such as a single road segment, and model their flow using methods similar to those

found in the fluid dynamics domain (Stanica et al., 2011). In macroscopic models,

the vehicles are not represented individually and the properties of the vehicles are

represented as the mean values of the traffic stream within a segment. There are,

however, some limitations inherent with this aggregate approach as it does not al-

low individual routing of vehicles nor the modelling of vehicle, road and weather

conditions; vehicle types and driver behaviour (Sewall et al., 2010). Alternatively,

microscopic models allow us to model the behaviour of individual vehicles and their

interaction with other vehicles and the surrounding environment, and also allows us

to model the behaviour of the operator/driver of the vehicle (Stanica et al., 2011).

Sewall et al. (2011) proposed a hybrid traffic simulation model which takes advan-

tages of both the macroscopic and microscopic approaches. In this approach the

vehicles are simulated and visualised using the aggregated macroscopic approach,

but when the visualisation is zoomed to a certain level, the vehicles were simulated

using a microscopic approach which allowed for vehicles to be individually simulated

and visualised. While this method takes advantage of the more computationally ef-
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ficient macroscopic approach and utilises the more intensive agent based model only

when needed, this hybrid model also has its own limitations. This approach does

not allow for a smooth transition of the vehicles from the macroscopic region to

the microscopic region as the actual positions of the vehicles are not known at the

transition boundary and there is a potential for a mismatch with acceleration and

distances of nearby vehicles during the transition. To overcome the limitations of

the macroscopic and hybrid approaches, we can use purely microscopic approaches.

The microscopic approach allows each individual vehicle to have it’s set of prop-

erties individually defined. This may include parameters relating to the vehicle’s

acceleration rate, braking capabilities, intended route, fuel usage, driver behaviour,

etc; which allows for finer control of the behaviour of the vehicle. This approach

has been widely used for simulating transportation systems (Chen and Cheng, 2010)

including in areas as diverse as road traffic management (Wang, 2005; Hernández

et al., 2002), railways (Böcker et al., 2001), and shipping (Henesey, 2004). This

approach is also widely used in the air traffic management domain (Alam et al.,

2008; Volf et al., 2011; Agogino and Tumer, 2012). In the following section we will

briefly introduce the modern air traffic management system, then discus the use of

simulation within the domain and introduce the problems associated with the use

of simulation within this domain.

2.2 Air Traffic Management

The modern air traffic management and control systems have evolved into rather

complex systems from their humble beginnings. In the 1930s pilots operated on a

“see and be seen” approach where the pilots themselves were responsible for main-

taining safe separation from other aircraft by visual inspection. Pilots relied on

distance and time estimates for navigation and used distinctive landmarks to verify

position and progress (Wise et al., 2012). When the pilots wanted to land at an air-

port, they would often fly over the airport to assess the wind and traffic conditions

and decide how they wanted to land, often in open fields instead of designated run-
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ways (Nolan, 2010). Throughout this procedure the pilots also had to maintain their

own separation and form their own priority queues with other aircraft approaching

and departing the airport with minimal communication. As the air traffic increased,

larger airports started employing human air traffic controllers. These early air traf-

fic controllers directed the aircraft using flags from a prominent position on the

ground. As the air traffic increased even further, new, more advanced communica-

tion, navigation and surveillance technologies and procedures were developed and

incorporated into the system.

The implementation of radio communication systems in the 1950s introduced a

new generation of air traffic control systems and sparked a series of evolutions in the

air traffic control system resulting new generations of systems approximately every

two decades (Gilbert et al., 1973). Today, electronic instruments, radio commu-

nications, GPS navigation, ADS-B data exchange and automation tools for ATCs,

among other technologies play a vital role in the air traffic control system. The pilots

depend on high accuracy GPS systems along with an array of ground based nav-

igation systems to navigate along designated airways. While air traffic controllers

have many automated tools in their arsenal to maintain a safe and efficient flow of

air traffic.

Today, much of the world’s airspace forms part of a highly structured system

composed of rigid, predefined structures or volumes called sectors (Stein et al., 2006).

The sectors are defined by historical traffic patterns to ensure that the workload is

appropriately distributed to the one or more ATCs responsible for the safe and ef-

ficient flow of air traffic through each of the sectors. Throughout the course of a

flight, a pilot will typically interact with a number of different ATCs. Before, during

and shortly after take-off the pilot interacts with the tower controllers at the depar-

ture airport. There may be more than one tower controller (with each controller

being assigned a separate responsibility) depending on the size and function of the

airport. The tower controllers are responsible for confirming the flight’s plan and

advising the pilot about movement on the ground and departure procedures; and the

climb phase of the aircraft to 3,000-6,000ft, depending on the configuration of the
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airspace (Nolan, 2010). The aircraft then becomes the responsibility of the terminal

area (TMA) controller. During the final portion of the climb phase, the flight is

handed-off to an en route controller who is responsible for the aircraft as it travels

through his/her designated sector. The flight will remain the responsibility of en

route controllers as the flight reaches it’s cruise altitude and continues on it’s cruise

phase. The en route controllers hand-off the flight to the controller of neighbouring

sectors as the flight approaches the boundary between these sectors. Each sector

comprises of several airways, often called jet routes, which intersect with other air-

ways throughout the sector. The separation of the aircraft at these intersections

forms a major part of the responsibility of en route controller’s job. As the air-

craft descents to it’s destination airport, it is handed-off to the TMA controller and

eventually the tower controller during the final stages of the approach. Maintaining

appropriate separation between the aircraft in the short to mid-term time horizon

in different stages of flight is the fundamental task of all controllers involved in the

system (Prandini et al., 2011).
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Figure 2.5: Overview of air traffic controller services for a typical flight

Although the main objectives from the early days of air traffic control for the

safe, orderly and efficient flow of air traffic still apply today, the air traffic control

system has become an integral part of a much broader system - the air traffic man-
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agement system. The air traffic management system has brought a wider range of

objectives and considerations into the air traffic system (Wise et al., 2012). These

additional objectives and considerations include emissions, noise, fuel usage and hu-

man factors. The inclusion of these considerations has largely been due to the con-

tinued increase in air traffic and it’s implication on the broader society. In response

to the continued increase in demand for air travel, currently development is under

way for a new generation of the air traffic control system. This new generation

aims to incorporate modern sensing and information technologies and procedures

derived from their implementation to provide reliable communications, real-time

situation awareness and prompt decision supports (Zhang et al., 2012). These new

technologies incorporate many new air traffic management procedures which aim to

alleviate the pressure on the strained air traffic control system which cannot phys-

ically change as the airspace volume and airport locations are fixed. This includes

a move from the current ground-based navigation and communications systems to

more reliable satellite based data-link communications and global positioning system

(GPS) services and greater use of automation tools as outlined in the plan for the

Next Generation Air Transportation System (NextGen) in the United States (FAA,

2014) and the Single European Sky ATM Research (SESAR) project (SESARJU,

2015).

Advances in technology, more and better data and enhanced facilities for com-

putation has seen automation play a vital role in various areas of the air traffic

control system (Wise et al., 2012). The aim of automation in the air traffic envi-

ronment has been to make the air traffic control system more efficient and more

capable of handling higher amounts of traffic without sacrificing the existing safety

standards. This is achieved by providing tools which can assist the human ATCs

reduce their workload. If the traffic density is low, then the ATC can effectively

control the traffic manually, but as the traffic grows, manual approaches may lead

to inefficient utilisation of the airspace and other tools may become essential (Menon

et al., 2004). The continued increase in air traffic has seen the workload for ATCs

grow as they become responsible for greater number of movements within similar
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geographic boundaries. Historically, automation tools have been relatively simple,

such as visualisation of flight tracks and data and the notification of conflicts; but

with the implementation of concepts such as NextGen and SESAR, a range of more

complex tools are being introduced (Bekier et al., 2012). When designing automa-

tion tools, two key aspects must be considered: it’s accuracy and it’s effect on the

human users. It is counter-productive to use a tool whose aim is to assist the human

ATCs which results in higher workloads for the ATC. The nexus between automa-

tion tools and the human ATCs has been investigated for several decades (Wise

et al., 2012). Time and time again a common theme emerges from these investiga-

tions. While computers are capable of processing large amounts of data and making

decisions quickly, the human ATCs can easily become overwhelmed with too much

information provided by the tools and begin rejecting or even ignoring the advise

provided (Bekier et al., 2012; Crück and Lygeros, 2007b). This could possibly lead

to the ATC missing a potentially dangerous scenario.

Like many complex and dynamic systems, the ATC can not temporarily halt

the air traffic system to take a break when the workload becomes too high. For

this purpose a strategy needs to be in place to shift this load between the human

and machines in order to maintain an ideal level of complexity according to the

ATC’s capabilities (Abbass et al., 2013). Presently, air traffic flow management

strategies rely on centralised systems to produce routes for aircraft (Tumer and

Agogino, 2007). This is conducted over a large time frame, ranging from one hour

to one year in advance and often encompass large regions, such as the entirety of the

Australian airspace. This causes the system to be slow in responding to developing

localised uncertainties such as adverse weather conditions (eg. storms, volcanic ash

clouds) and other exceptional events (eg. aircraft breakdown at airport, emergency

landings, 9/11 terrorist attacks). Heidt and Gluchshenko (2012) outlines four groups

of uncertainties which effect the air traffic system: human, data, meteorological and

equipment. Human caused uncertainties include the actions and decisions taken

by ATCs, pilots and ground staff and are influenced by the the psychological and

mental capabilities and limitations of the human decision makers. The unavailability
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of appropriate data makes planning difficult. Meteorological uncertainties include

conditions such as fog, wind and storms, while the equipment group includes events

such as aircraft breakdown. Among the four groups of uncertainties, the human

uncertainty is the most difficult to predict and model (Heidt and Gluchshenko,

2012).

The emergence of uncertain events can potentially lead to local delays as pilots,

ATCs and airports scramble to avoid them or deal with their implications (Agogino

and Tumer, 2012). The local disruptions can grow to form larger regional conges-

tion that push the dynamics of the system beyond the point of safe operation and

negatively affect the performance of the system (Cook et al., 2015). The effects can

include exceeding the initially planned level of traffic within the sectors leading to

exceeding the capacity of the sector and at the same time exceeding the capabilities

of the ATCs allocated to these sectors. In order to handle these uncertainties we

require methods by which to predict them and make changes to the state of the air

traffic before they occur and cause major disruptions to the system. To facilitate

these changes, particularly in a real-time environment, it may be necessary for in-

volved parties (ie. ATCs, pilots, airports, etc.) to participate cooperatively in any

such method.

To overcome the possibility of overwhelming the ATC, a concept called sublim-

inal control (Villiers, 2004) has been introduced. The idea is that by making minor

speed variations to aircraft in the en route phase (as advised by an automated system

to the pilot, working alongside the ATC) it is possible to prevent a potential conflict

in advance using available flight data and trajectory prediction. Manual conflict

detection and resolution (CD&R), that is the method of ensuring that two or more

aircraft do not lose separation by flying too close to each other; results in high levels

of workload for ATCs (Galster et al., 2001). Through subliminal control, the speed

adjustment may be sufficiently small enough that it may go unnoticed by the ATC,

but at the same time reduce their workload due to the conflict being avoided and no

other major changes being made to the system or individual flight plans. Drogoul

et al. (2009) showed that speed changes as large as 12% can go mostly unnoticed by
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the ATC. Archambault (2005) demonstrated that by making speed changes between

the range of -20% and 20% over 4, 6 and 10 minute look-ahead periods that it is pos-

sible to reduce conflicts. While Crück and Lygeros (2007a,b) presented a dynamic

game approach where subliminal control was used to minimise a cost associates with

the risk perceived by the ATC. A dynamical game approach based on Viability The-

ory was used to solve optimisation problem is selecting the appropriate speed. The

risk was modelled as a function of the minimum separation distance between one

or more aircraft within a given time frame. Chaloulos et al. (2010) examined the

use of subliminal control in reducing the risk perceived by an ATC for a several two

aircraft crossing situations. Chaloulos showed that by examining aircraft crossing

at 45, 90 and 135, it is possible to significantly reduce the perceived risk for a range

of minimum separation distances (0 NM, 5 NM and 10 NM) and a variety of time

to minimum separation scenarios. This study however only considered two aircraft

flying at the same altitude and modelled the ATC’s perceived risk as introduced by

Crück and Lygeros (2007a). Rey et al. (2015) developed a subliminal control method

which incorporated economic considerations. This method used a goal programming

model to minimise the cost to airline operators (fuel usage and time delay) as part

of a mixed-integer linear programming system when determining speed changes in

order of avoid conflicts.

In order to implement this subliminal control concept, it is necessary to have a

means to predict aircraft trajectories with high accuracy for a period greater than

the ATC’s own look-ahead time (or prediction horizon) for evaluation of a given

situation and identify potential conflict situations early. With higher accuracy longer

time horizons for application can be used (Chaloulos et al., 2010). Additionally this

method must also be capable of accurately modelling the small changes required in

the trajectory in order to appropriately measure the change in risk. As the proposed

systems would be implemented in a dynamic real-time environment it is unlikely,

due to the uncertainties of the environment, that the prediction would hold true

over long periods of time. This means that the system will need to periodically

re-evaluate the environment and calculate a new optimal solution.
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Studies in subliminal control have primarily limited their focus to speed changes

while some effort has been given to flight level changes. There has been no investi-

gation into the use of other methods of conflict resolution such as heading change

or combinations of speed, flight level or heading changes.

All of these subliminal control approaches also limited their focus to detecting

and resolving conflicts. While their stated aim was to reduce the ATC’s workload,

none of these studies focused on investigating the effect’s on the ATC’s workload.

Although potential conflicts do have a considerable bearing on the ATC’s workload,

they are not the sole contributor to increases in ATC workload. The workload

experienced by an ATC is a combination of (Majumdar and Ochieng, 2002):

1. The state of the air traffic (configuration of sector, movement of air traffic)

2. The state of the equipment being used (design, ease of use, level of data)

3. The state of the air traffic controller (age, experience, skills)

The interaction between these three factors and the resulting workload experi-

enced by the ATC is complex. The effects of the ATC’s experience, skill and the

quality of the equipment being used are however, to some degree, influenced by the

state of the air traffic (Majumdar and Ochieng, 2002). Bypassing the ATC and

issuing changes to the state of traffic directly to a pilot can also result in additional

workload for the ATC. Typically an ATC will asses the state of the traffic, pre-

dict the future state of traffic, identify any potential conflicts, and then plan and

control the traffic according to this prediction and conflict identification. Any state

changes that bypass the ATC could potentially have a negative impact on the ATC’s

workload as they would have to first identify this change and reassess the scenario.

Although the ATC is continually reassessing the state of the traffic, changes in the

state are usually known before hand or approved by the ATC. For example there is

some warning before an aircraft enters the sector and aircraft changing flight level

or heading are first approved by the ATC. It may be wise to make the suggestions

from the subliminal control system available to the ATC instead of the pilot.

October 30, 2015 Rubai Amin



CHAPTER 2. BACKGROUND 31

The small changes suggested by these systems are more akin to the requests

made by pilot during the course of the flight, particularly during the cruise portion

of the flight.

The collective effect of the air traffic events and other sector characteristics at

any given time on the ATC’s workload is referred to as airspace complexity (Kopardekar

et al., 2009). Numerous airspace complexity measures have been introduced in the

literature (Hilburn, 2004). It is generally agreed that airspace complexity is influ-

enced by more factors than just the number of aircraft in the sector. Additional

factors that have been identified include aircraft separation, closing rates, aircraft

speeds, mix of aircraft types, altitude changes and heading changes. A measure of

complexity provides a broader picture of the activities within the sector that may

effect the ATC’s workload when compared to collision risk. The broader picture

provided by the airspace complexity is important as the complex environment of

air traffic control relies significantly on and is limited the capabilities of the human

ATC (Inoue et al., 2012).

In order to generate the actions required to alter the ATC’s workload and

evaluate their appropriateness to the problem at hand, we require an optimisation

system and a simulation system. Optimisation can be a time-consuming activity,

especially when simulation is required to evaluate possible solutions. This can pose

a problem for real-time applications as a slow optimisation system may not be able

to provide a solution in a timely manner or may not be able sufficiently search the

solution space. From the survey of literature regarding subliminal control, we have

found that the simulation system, ie. the means to predict aircraft trajectories and

evaluate the small changes in trajectories, needs to be sufficiently accurate that small

changes in trajectories can be properly evaluated. In this case it would make sense

to use a high fidelity simulator as they are generally the most accurate. However,

high fidelity simulators are also usually more computationally complex, which means

each evaluation may take significant time for completion.
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2.2.1 Simulation in air traffic management

The modern air transportation system incorporates a large network of airports,

airlines, ATM/ATC centres and jurisdictions. The network facilitates their inter-

connections and interactions with other airports, airlines, ATM/ATC centres and

jurisdictions. Each of these system stakeholders have their own duties, goals and

objectives to fulfil which ads another level of complexity to the operation of the net-

work. As a result of the multiple levels of complex interactions within the system,

a wide range of air traffic simulators have been developed over the past few decades

using numerous different approaches with each focusing on different aspects of the

system. The application areas of simulation in the air traffic domain are as var-

ied as conflict detection and resolution, noise modelling (Zaporozhets and Tokarev,

1998), cost/benefit modelling for airlines (Bazargan et al., 2013), airspace capacity

modelling (Clarke et al., 2012) and for automation tools. The level of abstraction,

resolution and fidelity in the developed simulators is varied depending on its appli-

cation and purpose.

Early air traffic simulators focused on discrete event simulation techniques.

These simulator assigned states to various entities which were changed based on

events in an event list. The events have an associated time and are triggered to

change the state of the relevant entity when the system clock reach that time. For

example, in the model developed by Lee et al. (2003) there are separate events to

indicate that an aircraft is scheduled to depart, has departed from the gate, entered

the runway queue, has entered the airspace, etc. The system developed by Lee et al.

(2003) and other discrete event simulation models rely on a network of queues for the

simulation of aircraft from one state to another. This method however is deemed to

not be accurate in representing the real air traffic network and too many events are

required to be defined and stored to develop and operate an accurate model (Kim

et al., 2015).

When modelling air traffic flow problems it has been common to use an Eulreian

approach. This approach utilises methods similar to those found in fluid mechan-

October 30, 2015 Rubai Amin



CHAPTER 2. BACKGROUND 33

ics whereby the airspace is divided into several control volumes and the dynamic

behaviour of multiple individual aircraft in a given region is aggregated into the

single one dimensional control volumes (Menon et al., 2004). In this method, the

characteristics and objectives of individual aircraft are lost which allows for a much

simplified model of the airspace as only the flow between the control volumes are

modelled. An example of the representation of the air traffic environment for the

system developed by Menon et al. (2004) can be seen in Figure 2.6. In this figure the

airspace is divided in five control volumes (named ATC Center 1 through to 5) and

there are several merge and diverge nodes where traffic from several streams may

merge into a single stream or diverge into two or more streams. The flow of air traffic

between the control volumes can be calculated using a series of linear algorithms.

This method may be efficient as the complexity of computation required to simulate

the airspace scales with the number of control volumes and not with the number

of aircraft (Sun et al., 2007). However, the high level of abstraction provided by

the Eulreian approach is not suitable for measuring several metrics such as collision

risk or airspace complexity as the positioning and other dynamic behaviours (such

as heading and speed changes) of individual aircraft cannot be accurately modelled.

The Future ATM Concepts Evaluation Tool (FACET) (Bilimoria et al., 2001) is an

air traffic flow developed by NASA and has been used extensively by the FAA and

other commercial and academic organisations.

On the other hand, multi-agent based modelling (Weiß, 1999) allows us to rep-

resent individual components of the system. This method of modelling facilitates

the representation of characteristics and behaviours of individual agents and it’s

interactions with other agents. The simulation is processed with each agent’s lo-

cal activties based on their local rules for interacting with other agents and the

environment (Kim et al., 2015). When modelling the air traffic system, the var-

ious components of the system, such as airlines, airports, aircraft, pilots and air

traffic controllers; can all be modelled as individual agents. These agents act as

autonomous decision makers which make decisions that effect the environment in

order to achive their own goals or objects. For example, an airline agent may set it’s
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Figure 2.6: Example air traffic environment model used in the Eulerian traffic flow
simulation model (Menon et al., 2004)

flight network based on demand from customer agents and availability of aircraft

agents. The schedules for these flights might be determined by availability of gates

as a result of the goals and objectives of the airport agents and the other airline

agents. The operation of the flight itself will be determined by the aircraft agent

and it’s interaction with other aircraft agents and the air traffic controller agent. As

the hierarchy of agents closely maps to real world subsystems, multi-agent modelling

presents itself with some advantages for simulating complex systems. Multi-agent

modelling also provides some more advantages as different aspects of the system can

be modelling with different levels of abstraction.

When using simulation for real time applications, it is important to use a simu-

lator that is capable of providing a prediction or an answer to a problem in a timely

manner. A possible solution for overcoming this problem is to trade-off the level of

fidelity and using a model which is of a higher level of abstraction. The more highly

abstracted model will usually produce predictions with more error than models with

lower levels of abstraction, but the completion time for this model will usually be
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lower. In the air traffic context, a tool using simulation which provides an alert

for a potential loss of separation between two aircraft several minutes after the air-

craft have left the sector, or even resulted in a collision, is not useful. But at the

same time, a tool which produces a prediction very quickly and is poor at detecting

loss of separation is also not useful. For this reason need to carefully select models

by trading off the level of fidelity and abstractions to meet the time and accuracy

requirements of the application.

In the next chapter we will walk through the process of designing air traffic

simulation models. In the following chapters we will then use these models to inves-

tigate the effect of fidelity in operational environments. First we will use the models

to estimate airspace complexity and attempt to adjust the expected workload for

the ATC in real time. Next we will discuss several methods which can be used to

minimise the error in airspace complexity prediction as a result of using each of the

models.
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Chapter 3

Designing an Air Traffic Simulator

Work in this chapter has been partially published in the following papers:

1. Amin, R., Tang, J., Ellejmi, M., Kirby, S., & Abbass, H. (2014). An evolutionary goal-programming

approach towards scenario design for air-traffic human-performance experiments. In Computational Intelli-

gence in Vehicles and Transportation Systems (CIVTS), 2013 IEEE Symposium on (pp. 64-71). IEEE.

2. Amin, R., Tang, J., Ellejmi, M., Kirby, S., & Abbass, H. (2014). Trading-off simulation fidelity and

optimization accuracy in air-traffic experiments using differential evolution. In Evolutionary Computation

(CEC), 2014 IEEE Congress on (pp. 475-482). IEEE.

3. Amin, R., Tang, J., Ellejmi, M., Kirby, S., & Abbass, H. (2013). Computational red teaming for correction

of traffic events in real time human performance studies. In USA/Europe ATM R&D Seminar, Chicago.

In this chapter we will discuss the process of developing a set of air traffic simu-

lation models with different levels of fidelity, abstraction and resolution by following

the processes introduced in the previous chapter for formulating, constructing and

verifying simulation models and describe their architecture, design and validity. The

overall goal is to design an air traffic simulation model that is suitable for use in

a real time environment. This means the model must be able to simulate a given

scenario and return an accurate prediction in a timely manner. Real time predic-

tion in an operational environment is a difficult task due to the uncertainty of the

environment and it requires a fast methodology. When using simulation for predic-

tion, it is possible to achieve shorter times required for prediction by trading off the

simulation model’s level of fidelity, abstraction and resolution. Doing so, however,

may introduce some error into the prediction. Selecting an appropriate model for an
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application is a matter of selecting a model with a level of fidelity, abstraction and

resolution which meets the time constraints of the application and also produces re-

sults within a tolerable level of error. The level of error is determined by comparing

the output of the model with the expected output or real world observations. The

tolerable level of error is dependent on the application and must be decided as part

of the modelling process. In the following sections we will compare and contrast the

decisions taken to influence the level of fidelity, abstraction and resolution of four

developed simulation models. We will also compare the levels of error that occur in

the predictions as a result of these decisions.

Our aim is to use these models for predicting the future airspace complexity

for a given sector or combination of sectors in a given period. This means that it is

important that any such model must be able to accurately represent operations in

the airspace in order to accurately measure these metrics. This includes modelling

the physical airspace with the airways, waypoints and sectors which make up the

airspace along with the geography of the airspace. But most importantly, it must

also be able to accurately model individual aircraft trajectories and aircraft manoeu-

vres. Any such system should also be flexible enough that changes to the structure

of the airspace and aircraft can be made easily. This will allow the model to be ap-

plicable for simulating airspaces other than a single area of focus and will also allow

changes in the configuration of the airspace, such as changes in sector boundaries, to

be modelled easily. Allowing for flexibility in modelling aircraft allows for different

aircraft types to be simulated, from small turbo-prop aircraft through to large jet

aircraft which have different flight characteristics. The scope of this model is lim-

ited to the reduced vertical seperation minima (RVSM) airspace, ie. from altitude

29,000ft to 40,000ft, and thus only the en-route portion of flight is our primary area

of focus.
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3.1 Model Formulation and Construction

As our goal is to develop simulation models for use in a real time environment,

we would like to develop a model that requires less time to make a prediction than

usually required for high fidelity models. To achieve this goal we need to reduce

the computational intensity of the model (when compared to a high fidelity model).

This can be done by trading off the level of fidelity, abstraction and resolution of

the model with time and possible error.

To begin the process of developing an air traffic simulation model, a minimum

set of components which allows for the most basic level of air traffic simulation

were identified. This basic set of components were then used to design the first

of four models, Basic Simulator 1 (BS1). More complex component features and

interactions were identified and gradually added to this model in an iterative fashion.

This resulted in three more models, Basic Simulator 2 (BS2), Basic Simulator 3

(BS3) and Basic Simulator 4 (BS4). Of the four models, the BS1 model has the

lowest fidelity and is also the most abstract, while BS3 have the highest fidelity.

Figure 3.1 depicts the relative positioning of three models, BS1, BS2 and BS3; within

the model hierarchy. BS1, at the top of the hierarchy, has the lowest fidelity and the

highest level of abstraction, which means it should be the fastest to provide an answer

or prediction. Of the three models in the hierarchy BS3 has the highest fidelity and

lowest level of abstraction which means it should be the slowest to provide and

answer or prediction. BS4 does not fit into this particular linear hierarchy, the

reasons for this will be discussed in the following sections.

3.1.1 Assumptions

The choice of components and interactions to include in each of the three models

is dependent on a set of assumptions. The assumptions taken when designing each

of the three models are outlined below.
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BS1

BS2
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Reality / High fidelity models

Increasing 

fidelity
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Shortest 
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Figure 3.1: Levels of model hierarchy

Basic Simulator 1

The assumptions made when designing Basic Simulator 1 include:

• The movement of the aircraft can be modelled using the equations of motion

• The characteristics of different types of aircraft can be generalised and the

aerodynamic properties of the aircraft has no effect on it’s movement

• Fuel usage, emissions and aircraft mass has no effect on the movement

• The curvature and rotation of the Earth has no effect on the movement

• Wind and air pressure has no effect on the movement of the aircraft

Basic Simulator 2

The assumptions made when designing Basic Simulator 2 include:

• The movement of the aircraft can be modelled using the equations of motion

• Fuel usage, emissions and aircraft mass has no effect on the movement

• The curvature and rotation of the Earth has no effect on the movement

• Wind and air pressure has no effect on the movement of the aircraft
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Basic Simulator 3

The assumptions made when designing Basic Simulator 3 include:

• The movement of the aircraft can be modelled using the equations of motion

• Fuel usage, emissions and aircraft mass has no effect on the movement

• The rotation of the Earth has no effect on the movement of the aircraft

• Wind and air pressure has no effect on the movement of the aircraft

Basic Simulator 4

The assumptions made when designing Basic Simulator 3 include:

• The movement of the aircraft can be modelled using the equations of motion

• The characteristics of different types of aircraft can be generalised and the

aerodynamic properties of the aircraft has no effect on it’s movement

• Fuel usage, emissions and aircraft mass has no effect on the movement

• The rotation of the Earth has no effect on the movement of the aircraft

• Wind and air pressure has no effect on the movement of the aircraft

It is assumed that the Earth is a static body with no fluctuation in wind,

weather or air pressure in the atmosphere. It is also assumed in all models that

the aircraft will operate according to their designated route and that they will not

be required to make autonomous decisions to optimise factors such as fuel usage

and flight time or avoid collisions during the simulation. These decisions, however,

may be made by external systems, and so each model includes a method whereby

deviations to the route can be communicated before the start of the simulation.
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3.1.2 Architecture

A multi-agent simulation platform was developed to represent the aircraft in

the simulation environment. This platform formed the basis for all four of the

developed models. An overview of the operation of the platform can be seen in

Figure 3.2. The multi-agent approach allows for the mapping of an environment to

individual agents capable of autonomous actions in the environment to meet design

objectives (Weiß, 1999). Agent-based simulation has become a common method for

modelling and studying complex traffic and transport systems (Chen and Cheng,

2010). The complex interactions that take place between aircraft, airports, ATCs

and other components of the air traffic system makes agent based simulation an

ideal choice for air traffic simulation (Agogino and Tumer, 2012). This approach

allows for agents to be individually assigned goals, characteristics and actions, which

means each aircraft (the agents) can be assigned their own route and also allows

for different types of aircraft to be simulated. The differences between our models

arise when considering the composition of the agent and the interaction between the

environment and the agent.

The developed platform takes the airspace configuration data, flight plans for

each aircraft and the aircraft positioning data (if available and only for starting

the simulation with aircraft with only a portion of their flight plans completed) as

input. During the initialisation phase the airspace configuration data, flight plans

and aircraft positioning data are used to initialise the simulation environment and

the aircraft agents. A fixed increment time advance is used for a simulation time

clock to trigger events in the environment. At every time advance the platform will

trigger the movement phase and the evaluation phase. During the movement phase,

the platform will iterate through each of the aircraft agents which have flight plans

available and calculates the aircraft’s trajectory for that time step. The manner

in which the trajectories are calculated are dependent on the model being used.

The aircraft is considered to have moved at the end of the time advance. The time

advance increment is fixed throughout the simulation, but the simulation clock can

be changed to operate at a faster rate than real-time to provide fast-time simulation.

October 30, 2015 Rubai Amin



CHAPTER 3. DESIGNING AN AIR TRAFFIC SIMULATOR 43

Airspace 

configuration

Flight plans

Aircraft positioning 

(optional)

Initialise 

simulation 

environment

Calculate aircraft 

trajectory
Evaluate metrics

Simulation 

finished?
No

External system

Perform final 

evaluation of 

metrics

Yes

Flight tracks

Overall evaluation 

of metrics

Raw metrics

Initialisation phase Movement phase Evaluation phase

Final evaluation phase

Input

Output

Figure 3.2: Multi-agent simulation platform design

After the movement phase, the evaluation phase is triggered. During this phase a

range of different air traffic metrics are calculated. The metrics that are calculated

and the frequency at which they are calculated are set depending on the aims of

the study. Once the simulation is complete a final round of evaluation of metrics is

conducted during which aggregated statistics are calculated, such as average airspace

complexity for a given time period. The data for these metrics are then returned to

an external system or recorded for later analysis.

This platform was written using the C# programming language. There is no

GUI associated with this platform for visualisation of the air traffic or viewing data

as the platform is designed to run independently of any other systems in order

to reduce the time and computational resource requirements for running a single

simulation. The platform can however be exported and run as an external library
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in other systems, such as an optimisation system.

In the following sections we will discuss the decisions which were taken to

influence the level of fidelity, abstraction and resolution in each of the simulations

models. We will also discuss some of the decisions which are common for each of

the three models as a result of the common simulation platform.

3.1.3 Airspace, Weather and Geographic Modelling

The simulation platform and the four models are capable of simulating any

airspace around the world. This is achieved by loading a set of airspace configuration

files relating to the airspace before the start of the simulation. These airspace

configuration files include details about the sectors in the airspace, the waypoints and

airports located in the region; and any parameters necessary for the representation

of the airspace, such as the parameters required for the projection of geographic

coordinates between different systems.

Sectors, Waypoints & Airports

Sectors are represented by a series of points, minimum altitude, maximum altitude

and a classification. The sector is a volume bounded by the points, the minimum

altitude and the maximum altitude. The classification indicates whether the sector

is a high altitude sector or a low altitude sector. The details of the sectors are drawn

from resources provided by air traffic service providers from the appropriate region.

The waypoints and airports are input with name and point pairs. The elevation of

the airport is also included. In an effort to reduce computation time, the details of

the waypoints and airports are not retained beyond the initialisation stage of the

simulation. The relevant information is merged with the flight plan data for each

aircraft agent. Instead of retaining a long list of waypoints and iterating through

this list every time we are required to obtain the location of the waypoint, we can

simply iterate through the small list of waypoints which are relevant to the flight

plan of the aircraft. For example, the Australian airspace consists of more than
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5000 waypoints, while only a handful (5 to 20) are relevant for a particular flight

and iterating through a list containing 20 items is quicker than a list containing

5000 items, especially when we are required to repeat this process multiple times

during every time advance. As multiple aircraft may have flight plans which include

the same waypoints, this however means we require slightly more memory as we are

storing the same information within multiple agents.

Flight Plan

As our aim is to simulate air traffic, we require a flight plan in order to simulate each

aircraft agent. A flight plan provides us with the route the aircraft will take along

with other vital information regarding the operation of the aircraft, such as the type

of aircraft, number of passengers, safety equipment, communications equipment,

aircraft design and crew details. Much of this information is not important for the

scope of air traffic simulation, so the information that is required for the simulation

of individual flights are extracted and a shorter flight plan is created containing the

relevant information. The shorter flight plan contains the flight’s origin, destination,

route, cruise altitude and speed, aircraft model number and activation time. An

example of two flight plans can be seen in Listing 3.1 and 3.2. The flight plan

shown in Listing 3.1 is for a flight departing and arriving at an airport within the

simulated airspace, while the flight plan shown in Listing 3.2 is for a flight which

departed from an airport outside the simulated airspace and arriving at an airport

within the airspace. A breakdown of the information contained in the example flight

plans can be seen in Table 3.1.

Listing 3.1: Flight plan for aircraft starting simulation from an airport

JST443 ;YMML;YBCG;ROKDL SALLY NONIX KACEY MDG TW BERNI

ROONY GREAV KERRI;YMML; 3 ; A320 ; 3 5 0 ; 3 9 0 ; 0 ; 0 3 0 0 1 1 ;VHVWT

Listing 3.2: Flight plan for aircraft starting simulation in-flight

QFA21 ;WSSS;YPPH;LAMOB IDOKU CAR MRW PH;LAMOB;

1 ; A333 ; 3 3 0 ; 4 1 0 ; 0 ; 0 3 0 0 5 9 ;VHQPB
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Table 3.1: Breakdown of data contained within the example flight plans
Desription Listing 3.1 Listing 3.2
Callsign JST443 QFA21
Origin YMML WSSS
Destination YBCG YPPH

Route

Via waypoints ROKDL,
SALLY, NONIX, KACEY,

MDG, TW, BERNI,
ROONY, GREAV and KERRI

Via waypoints LAMOB,
IDOKU, CAR, MRW

and PH

Activation point YMML LAMOB
Flight type 3 1
Aircraft model A320 A333
Cruise speed 350 kts 330 kts
Cruise altitude 390 (FL390 or 39,000ft) 410 (FL410 or 41,000ft)
Activation time 030011 (Day 03 00:11) 030059 (Day 03 00:59)
Aircraft registration VHVWT VHQPB

The biggest difference we can see between the two example flights plans in Ta-

ble 3.1 are the activation points for the simulation of the two flights. Flight JST443

begins simulation from the origin airport YMML, while flight QFA21 starts in-flight

(en-route) from the waypoint LAMOB as it’s origin is outside of the simulated

airspace. This difference is also noted by the flight type identifier. A summary of

the flight types can be seen in Table 3.2. Flight types 2 and 3 begin simulation from

origin airport at it’s designated elevation, while flight types 1 and 4 begin simulation

from their activation point (waypoint) at their cruise altitude. Flight types 2 and 4

are simulated until their final waypoint within the airspace is reached.

The flights are activated when the simulation clock reaches the flight’s activation

time as found in the flight plan. The activation time includes a day, hour and minute

component. Day 0 00:00 is the earliest possible activation time. All activation

times are converted to the number of seconds after this time as the simulation clock

operates by the number of seconds elapsed. The simulation clock can be started at

any time on or after 0 seconds. If starting beyond 0 seconds, then the activation

point for flights whose activation time has already passed may be updated to an

in-flight point and activated after the initialisation phase. Once a flight has been

activated it will begin simulation and it’s movements are calculated in the following
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Table 3.2: Portion of flight simulated based on the location of origin and destination

Flight
Type

Identifier

Inside or outside
simulated airspace

Portion of flight simulated

Origin Destination
Activation

point
Deactivation

point

1 Outside Inside
First waypoint

in airspace
Destination

2 Inside Outside Origin
Last waypoint

in airspace
3 Inside Inside Origin Destination

4 Outside Outside
First waypoint

in airspace
Last waypoint

in airspace

time advances. Flights of type 1 and 4 are activated at their cruise altitude and

speed as found in the flight plan. Fights of type 2 and 3 are activated with a speed

of 0 kts and altitude equal to the elevation of the origin airport. These flights then

start to climb to the cruise altitude and accelerate to the cruise speed as found in

the flight plan.

During the simulation initialisation phase the list of waypoints from the flight

plan are converted from a single string to a list of waypoint objects containing the

waypoint’s name and it’s location. This list is then stored as a property of the

aircraft agent. The same process is followed for the origin and destination points.

Wind and Air Pressure

It is assumed that the aircraft agent self corrects any effect that may be caused

by wind. This assumption is advantageous in two ways. First, it reduces compu-

tation time as we do not need to consider additional components when calculating

aircraft movement. Secondly, we are not required to dynamically generate any wind

conditions, also reducing computation time and time for simulation initialisation.

It is also assumed that the air pressure remains constant throughout the airspace.

This assumption also leads to fewer components being required to calculate aircraft

movement and performance.
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Geographic Projection

Two different coordinate systems were used in the four air traffic simulation models

for representing the airspace: the Lambert conformal conic (LCC) projection (Deetz

et al., 1918) and the geodetic datum (latitude and longitude). The LCC projection

was selected for representing the Earth as it is more convenient to use a flat rectan-

gular coordinate system for measuring linear distances than the geodetic coordinate

system (Calvert, 2002), as we are able to use equation common to the Cartesian

coordinate system. This also reduces the number of steps and the complexity re-

quired to measure distances when compared to the geodetic coordinate system. The

LCC projection is made by placing a cone over the Earth such that it intersects the

Earth’s surface at two selected parallels, as can be seen in Figure 3.3. The cone is

then unrolled and scaled with reference to the two parallels to form a flat rectangular

map. The parallels used for the projection vary depending on the area of interest.

Recommended parallels for each region can be obtained from national GIS organi-

sations’ data sheets, such as from Geoscience Australia and Land Information New

Zealand. When using the LCC in our simulation platform we must include the cor-

rect parallel parameters for the initialisation phase. During the initialisation phase

all geodetic coordinates are converted to LCC projected coordinates based on these

parameters. This includes the location of waypoints, airports and sector boundaries.

In this case, all lateral movements are conducted within the LCC coordinate system,

but vertical movement is still calculated in feet.

The other coordinate system which is used by the air traffic simulation models

is the geodetic coordinate system. This system provides a standard method for

representing any location on the Earth by assigning the location a latitude and

longitude. When using this coordinate system, any movement calculations take into

consideration the curvature of the Earth. This system provides us with a higher

fidelity representation of the Earth and the movement of the aircraft than the LCC

system, but some extra steps are necessary when calculating aircraft movement.

The LCC projected coordinate system is used in BS1 and BS2 while the geodetic

coordinate system is used in BS3 and BS4.
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Figure 3.3: Lambert conformal conic (LCC) projection (Quist, 2011)

3.1.4 Aircraft Modelling

In all four of the air traffic simulation models, the aircraft are assumed to be

point masses with no inputs or outputs. This allows us to forego calculations relating

to drag, fuel flow, emissions and engine operation. In BS1 and BS4 the aerodynamic

properties and aircraft performance are not considered, however in BS2 and BS3 we

use use data obtained from look-up tables, such as climb rate and acceleration, which

are influenced by these characteristics.

Aircraft Trajectory

The overall trajectory taken by an aircraft during simulation is determined by the

origin (or activation point), route and destination (or deactivation point) as found

in the flight plan. The aircraft will fly directly from point to point as per the

order provided in the flight plan. In the real world and many high fidelity air traffic

simulation models, aircraft take some considerable time to turn when a major change

in heading is desired, such as when a waypoint has been reached. This turning begins

some time before the point is reached and the aircraft’s trajectory forms an arc

joining the direct paths from the previous and following points with the upcoming

point. In our models, the aircraft continue to fly until it has reached the point and

will immediately change its heading to the following point on it’s route. An example
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of this turning manoeuvre can be seen in Figure 3.4 for an aircraft with a flight plan

with waypoints ABC. In our simulation models the aircraft will directly travel from

A to B and then to C. In the real world aircraft will typically take the route AB’C’C

due to the time required to turn. By not including this turning manoeuvre we are

able to eliminate the need to calculate the bank and turning angles. A point is

reached when the distance between the aircraft and point (d) is smaller than or

equal to the distance the aircraft can move at it’s current speed in the time step

(v/∆t, where v is the current speed of the aircraft and ∆t is the length of the time

advance).

Point reached if d ≤ v

∆t
(3.1)

A

CB

B’

C’

Real world aircraft

High abstraction

Figure 3.4: Aircraft turning manoeuvre overview

As our focus is primarily on the en-route phase of the aircraft’s flight, all move-

ment and procedures on the ground at the airport are ignored. There is also no

departure or arrival queue at the airports. Aircraft which have conflicting departure

times at airports (ie. similar activation times for type 2 and 3 flights at the same

airport) are activated at their scheduled time irrespective of the traffic at the air-

port. This means that there is no sequencing or assurance that flights have sufficient

spacing for take-off and landing. It is assumed that the flight plans are produced
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in such a way that these assurances have already been conducted. Flights of type 1

and 3 simply start and/or finish their flight at a point on the ground as determined

by the location of the airport.

During the course of a flight, the flight can be classified as being in one of three

phases: climb, cruise and descent. The take-off and climb out phases are treated

as part of the climb phase while the approach and landing phases are treated as

an extension of the descent phase. Taxi in, taxi out, runway hold, runway out and

runway in phases are not considered as we do not simulate movement on the ground.

An overview of the calculation of the trajectory during each time advance can be

seen in the flowchart in Figure 3.10. This flowchart forms the basis of the movement

phase in Figure 3.2. During each time step, the distance remaining between the

aircraft and the next (target) point on it’s route is recalculated. The distance to

this point is calculated using Equation 3.2 in the BS1 and BS2 models. In this

equation xT and yT are the current x and y coordinates of the aircraft, while xg

and yg are the coordinates of the target point. Equation 3.3 is used in BS3 and

BS4 instead as it uses the geodetic coordinate system and the great circle distance

between the two points must be calculated to take into account the curvature of

the Earth. The data required to calculate the distances using Equation 3.3 is the

aircraft’s current latitude and longitude, λT and τT respectively, and the latitude

and longitude of the target point, λg and τg respectively. From these equations we

can easily see that calculating distances in BS3 and BS4 is more computationally

complex than in BS1 and BS2.

d =
√

(xT − xg)2 + (yT − yg)2 (3.2)

d = R× c (3.3)
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where c = 2× atan2(
√
b,
√

(1− b))

b = sin2(
λT − λg

2
) + cos(φT )cos(φg)sin

2(
φT − φg

2
)

The heading to the target point is calculated using Equation 3.4 in BS1 and

BS2, while Equation 3.5 is used in BS3 and BS4. The heading to the target point

needs to be recalculated during each time step when using the BS3 and BS4 model

as we advance our aircraft in each time step in a linear motion despite working in an

environment where the world is round. This makes it is necessary to frequently re-

evaluate the heading to account for the curvature of the Earth. Doing so in BS1 and

BS2 is not necessary as the heading along a direct line between two points remains

constant in the Cartesian coordinate system. From these equations we can see that

calculating the heading in BS3 and BS4 is more computationally complex than in

BS1 and BS2, as was the case for calculating the distance between two points. Once

a target point has been reached, the following point in the aircraft’s flight plan is set

as the target point and the heading and distance remaining are recalculated. If the

aircraft’s deactivation point has been reached then the aircraft agent is deactivated

and removed from the simulation.

h = arctan

(
xT − xt
yT − yg

)
(3.4)

h = arctan

(
sin(φg − φT )cos(λg)

sin(λg)cos(λT )− sin(λT )cos(λg)cos(φg − φT )

)
(3.5)

Once we have determined the target point for the aircraft, we can start the

process of determining the aircraft’s trajectory for this time step. This starts by de-

termining the speed of the aircraft at the end of the time step, then determining the

distance the aircraft will travel in the time step based on the speed and then using

this distance along with the heading to the target point to estimate the location of

the aircraft at the end of the time step. The speed of the aircraft at the end of the

time step is dependent on the phase of the flight and the cruise speed found in the

flight plan. If the aircraft is in the climb or cruise phases the aircraft will aim to
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accelerate to or maintain the cruise speed from the flight plan. If the aircraft is in

the descent phase then the aircraft will decelerate towards 0 kts. The acceleration

and decelerations rates (ROCD) will be discussed in the Aircraft Performance sec-

tion below. Maximum and minimum speed ranges for the aircraft are maintained

so that aircraft do not decelerate to 0 kts mid flight or exceed speeds which are

technologically possible. It is assumed that the aircraft will undergo constant linear

acceleration throughout the time step. Once the speed of the aircraft at the end of

the time step has been determined we can calculate the distance the aircraft will

travel in this time step using Equation 3.7. In this equation vT is the current speed

of the aircraft and vT+∆t is the speed at the end of the time step. vT , vT+∆t and

ROAD are scaled to match the time advance increment before using Equations 3.6

and 3.7. For example, if the time advance increment is one second and the speed

is measured in knots, it is converted from nautical miles per hour to nautical miles

per second before using these equations.

vT+∆t = vT +ROAD (3.6)

d∆t =
vT+∆t + vT

2
(3.7)

Now that we have determined the distance the aircraft will travel in this time

step and the direction it will travel, we can determine the coordinates of the aircraft’s

position at the end of the time step. The coordinates of the aircraft’s position at

the end of the time step when using the BS1 and BS2 models are calculated using

Equations 3.8 and 3.9 where xT and yT are the current coordinates of the aircraft

and xT+∆t and yT+∆t are the coordinates of the aircraft at the end of the time

step. When using BS3 and BS4 we use Equations 3.10 and 3.11 to determine the

coordinates of the aircraft’s position. In these equations φT and λT are the current

coordinates of the aircraft and φT+∆t and λT+∆t are the coordinates of the aircraft

at the end of the time step. Equations 3.10 and 3.11 also take into account the

effect of the curvature of the Earth by considering the distance of the aircraft from

the centre of the Earth using the average radius of the Earth (R) and the current
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altitude of the aircraft, zT .

xT+∆t = xT + d∆tcos(h) (3.8)

yT+∆t = yT + d∆tsin(h) (3.9)

φT+∆t = φT +
d∆tcos(h)

R + zT
(3.10)

λT+∆t = λT +
d∆tsin(h)

(R + zT )cos(λT )
(3.11)

zT+∆t = zT +ROCD (3.12)

The altitude of the aircraft at the end of the time step is determined using

Equation 3.12 by simply adding the rate of climb or descent (ROCD) to the current

altitude. This equation is common to all models. During the climb and cruise phase

the aircraft will aim to reach the cruise altitude from the flight plan and during the

descent phase the aircraft will aim to reach the altitude of it’s deactivation point.

The method for determining the ROCD will be discussed in the aircraft performance

section below.

Aircraft Performance

One of the key difference between the developed models is how the aircraft’s accel-

eration/deceleration rates (ROAD) and climb/descent rates (ROCD) are obtained.

For BS1 and BS4, the ROCD and ROAD were set as pre-determined constant rates

irrespective of the aircraft’s model, phase of flight or altitude. These rates were set

to be representative of the most commonly used commercial aircraft.

In BS2 and BS3 the aircraft performance data from the Base of Aircraft Data

(BADA) (Eurocontrol, 2004) was used to determine an aircraft’s ROCD and ROAD.

BADA is an aircraft performance model developed and maintained by Eurocontrol

for use in research and development applications for trajectory simulation and con-

tains operational performance parameters and performance summary tables for over

300 aircraft types. The BADA documentation, Eurocontrol (2004), also provides us

with algorithms for high fidelity trajectory simulation through the calculations of
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engine thrust, aerodynamic drag, fuel consumption and dynamic mass of the aircraft

while using the operational parameters included in the dataset. This high level of fi-

delity modelling is outside the scope of this study, so instead we use the performance

summary tables which are also included in the dataset. The BADA dataset provides

us with a summary table for each aircraft type which specifies cruise, climb and de-

scent performance at different flight levels. The summary tables are produced using

the operational parameters and algorithms mentioned previously for an aircraft of

nominal mass. The data available includes the nominal speed and fuel flow during

each of the three phases of flight and also the ROCD during the climb and decent

phases for a range of flight levels. Using these tables to obtain the ROCD and speed

of the aircraft allows us to forego the use of the complex set of algorithms required

for their calculation and simply looking up this data from a table, thus reducing

computation time. Although these tables are limited to aircraft of fixed mass, this

method provides us with a higher level of fidelity for modelling individual aircraft

when compared to BS1 and BS4 as we are able to model a larger range of aircraft

and the effects of aerodynamic properties and engine performance of the different

aircraft types at different stages of their flight.

The flight plan includes the type of aircraft that will be operating on the flight.

In the example flight plans, in Listing 3.1 and 3.2, we have an A320 (Airbus A320-

200) and an A333 (Airbus A330-300). The aircraft type is necessary if we wish to

model any aerodynamic properties or aircraft performance characteristics using the

BADA tables. Every time we want to calculate an aircraft’s speed or ROCD when

using the BS2 and BS3 models, it is a matter of selecting the table for that aircraft

type and obtaining the data for it’s flight level. As the data is only available for a set

of flight levels (usually in 2000 feet increments) we are required to interpolate the

data when the flight level of the aircraft does not match the flight levels available in

the table. We decided whether the aircraft should accelerate or decelerate based on

the nominal speed for the flight level and flight phase pair. If the nominal speed is

higher than the aircraft’s current speed, but lower than the cruise speed in the flight

plan, we accelerate. If the nominal speed is lower than the aircraft’s current speed,
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but higher than the stall speed, we decelerate. The ROAD and stall speed are fixed

for all aircraft types. In comparison, BS1 and BS4 will continue to accelerate or

deccelerate irrespective of the nomial speed for each flight level.

Summary

A summary of the key air traffic simulation functions and their implementation in

the three simulation models can be seen in Table 3.3. The combination of these

implementations determines the level of fidelity, abstraction and resolution of the

three models.

From Table 3.3 we can see that BS1 incorporates the most basic level of sim-

ulation components and interactions, and therefore has the lowest level of fidelity.

All aircraft have same performance irrespective of their type. This means that the

climb profile and speeds for all aircraft are the same irrespective of their type. The

physical environment in BS1 is represented by a Lambert conformal conic projected

coordinate system which provides the approximate position of objects in the 3D

space. The effect of wind, weather or atmospheric conditions do not influence the

movement of aircraft in BS1.

The major difference between BS1 and BS2, an extension of BS1, is the use

of data from BADA tables to determine ROCD and target speeds. This allows for

the modelling of different aircraft types and more accurately represents the different

climb and speed profiles of different aircraft types. The BADA tables also incorpo-

rate an approximation of the effect of atmospheric conditions (eg. air pressure) on

the aircraft performance. This is useful as the nominal speed and ROCD at different

flight levels may not be constant.

There is only one key difference between BS2 and BS3, itself an extension of

BS2. The difference is the use of the geodetic datum instead of the Lambert confor-

mal conic projected coordinate system. This allows for more accurate estimation of

aircraft positioning when compared to the real world. This however results in more

complex equations for calculating motion, distances and headings.
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BS4 is also an extension of BS1, but is branched in a different direction to

BS2. The difference between BS1 and BS4 is that the geodetic datum instead of the

Lambert conformal conic projected coordinate system in BS4. All other aspects of

BS1 are carried over to BS4.

In all models the fuel usage, emissions and aircraft mass assumed to have little

implication on the movement of the aircraft. The effect of the use of geodetic datum

vs the LCC projected coordinate system, different target speeds and ROCD on the

level of error in each of the three models will be discussed in the validation section

below.

3.2 Air Traffic Simulation Validation

Validation of abstract process models and methods is an important step to

ensuring that we can trust our models and that they are an adequately accurate

representation of the real-world system (Fishwick, 1988; Frantz, 1995). It is of-

ten too costly and time consuming to confirm that these models are valid for the

entirety of the domain they represent, so instead, evaluations are conducted until

there is enough confidence that the model can be considered valid for its intended

application (Sargent, 2005). The validation process can be broken into two stages -

conceptual and operational (Rao et al., 1998). Conceptual validation involves eval-

uating the model’s theory and comparing and contrasting the model’s logic with

alternate methods, while the operational validation involves the measurement of

the consistency between the model and the real world system. For the air traffic

domain, the real world data for the evaluations could include flight tracks of real

aircraft and notifications of losses of separation between aircraft. Unfortunately this

data is often difficult to obtain and when it is obtained, the data usually also incor-

porates actions taken by the ATCs and pilots to avoided situations such as loss of

separation. In order to adequately evaluate our model we require data free of the

actions taken by ATCs and pilots. An alternative to using real world data is to use

synthetic obtained data from a high fidelity models and treat this model as the real
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world (Glover and Lygeros, 2004). For this reason we used the Air Traffic Opera-

tions and Management Simulator (ATOMS) (Alam et al., 2008) as the pseudo real

world and evaluate our models, BS1, BS2, BS3 and BS4; against the data obtained

from this model. The high fidelity model used in ATOMS allows us to capture

every factor and uncertainty involved in real world flight operations, but within a

synthetic real world. From here on we will refer to ATOMS and its high fidelity

model as the ‘perfect model’ or the real world.

We found that conceptually both the perfect model and our low fidelity models

were in agreement regarding the core aspects of the theory. The major difference

arose when determining the ROCD and acceleration. In the perfect model these

parameters are determined using the thrust, drag and mass algorithms found in the

BADA documentation. In the operational validation section below we validate the

flight tracks from our models with those expected from the real world.

3.2.1 Operational validation

The operational validation is undertaken to present a quantitative measure

to determine whether the output of the simulation model closely resembles those

expected from the real world or the real system for the same set of inputs (Sargent,

2005). The output from the simulation model and the real world data do not

necessarily have to have a 100% correlation for a model to be valid. A model is

considered valid if there is a favourable correlation with the simulation results and

the real world observations (Rao et al., 1998). However the desired level of accuracy

of the model is dependent on the requirements of the application.

Phillips and Marsh (2000) provides several methods for validating an air traffic

simulation model:

• Compare the vertical profile of individual aircraft

• Replay aircraft’s route in plan view

• Graph results such as number of aircraft in sector or number of conflicts
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In order to use these methods to evaluate the operational validity of our models

we require a set of common flights for which we can compare our models and the real

world operations. As we wish to evaluate the validity of the models for simulating

air traffic, we can use a set of flight plans representing real world flight operations

as the input to the models. The flight plans that were used for the validation of

our models were artificial flight plans generated using historical data for real flight

operations in the Australian airspace. A Gaussian distribution is used to determine

the number of aircraft departing each airport for each hour of the day based on the

average number of departures for that hour from the historical data for one year. A

Poisson distribution, again based on the historical data, is then used to determine

the exact departure time for the flights. The route, cruise altitude and cruise speed

assigned to the aircraft for each airport pair are also determined by the historical

data. Further details about the generation of the artificial flight plans can be seen

in Tang (2012). This system was used to generate flight plans for operations within

the Australian airspace for a period of 30 days. The flight plans were then used

as input in the models and simulated. An overview of the 30 day scenario can be

seen in Figure 3.11. We can see that the traffic level is varied on each day of the

30 day scenario and the distribution of aircraft types operating these flight is also

varied throughout the scenario. We can also see that majority of flight remain active

within the simulated airspace for less than three hours.

Validation of air traffic simulation models by visual inspection is straightfor-

ward. This involves plotting a flight’s track and comparing it with the flight plan. It

was found that in all cases that were tested, the tracks produced by the simulation

model were consistent with the flight plan, ie. the aircraft visited each waypoint in

the correct order and adhered to altitude requirements. In Figure 3.8 we can see a

comparison of the altitude, speed and heading profile for a 15 minute snippet of a

flight climbing towards it’s cruise altitude, simulated using BS3 and BS4 and the

profile from the real world operation (ie. obtained from ATOMS). An overview of

the flight plan for the aircraft can be seen in Figure 3.5 for this snippet. The snip-

pet begins with the aircraft at an altitude of 9,500ft climbing towards a waypoint at
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an altitude of 24,000ft and then continuing to climb towards it’s cruise altitude of

30,000ft. One of the key differences that we can see from Figure 3.8 is that the sim-

ulators use different climb rates to reach the cruise altitude. BS4 uses a fixed rate,

while BS3 uses an ROCD obtained from the BADA lookup tables at each time step

for the current flight level. In the real world, the rate is similar to those obtained

from the BADA lookup tables, but the ROCD for the aircraft is set in such a way

that the target altitude is reached when the target point is reached in the lateral

axis (if technologically feasible). This is unlike our models where the target altitude

is reached as soon as possible. The speed profile for BS3 follows the trend of profile

from the real world during the climb phase, but there is a big disparity when the

aircraft reaches its cruise altitude. We can also see from this figure that there is a

small difference between the cruise speed of the aircraft when simulated with BS4

and the real world (the aircraft did not reach it’s cruise speed when simulated with

BS3 in the 15 minute snippet). This is due to the aircraft only accelerating/decel-

erating until it is within 2 kts of the requested cruise speed in the real world while

our models aim to accelerate/decelerate until the difference from the target speed

is less than the acceleration rate (ie. vg − ROAD ≤ v ≥ vg + ROAD). This may

create a disparity of upto 2.5 kts in speed between our models and the real world.

We can also see that the distance of the aircraft at each corresponding time point

between in the real world and BS3 and BS4 remains small as the relative speeds

remain similar, but quickly increases as BS4 accelerates much faster than what is

expected in the real world and the cruise speed is reached faster in the real world

than BS3. A comparison of the vertical, speed and heading profile for an aircraft in

the en route (cruise) phase can be seen in Figure 3.9, also for a 15 minute snippet,

when using BS3, BS4 and comparing to the real world. The flight plan for this flight

for this snippet can be seen in Figure 3.6. We can see that the starting altitude and

the altitude targets for waypoints for this flight are the same. From Figure 3.9 we

can see that the deviation distance at each time step between the real world and the

our two simulators is less than 0.2 NM for this period. The deviations are primarily

caused by the way the simulators handle heading changes. If we take a look at the
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heading profile we can see that in the real world there is a gradual change in head-

ing when approaching a waypoint while the other simulators use an instantaneous

heading change when the waypoint is reached. We can see that major changes in the

distance between the simulators and the real world occur when there is a heading

change. The plot of the vertical, speed and heading profile for BS1 and BS2 are

the same as that for BS4 and BS3 respectively as the assumptions underlying those

components are common among those pairs. However the deviation in the position

of the aircraft for each time step when compared to the real world is quite different.

In Figure 3.7 we can see a plot of the distance between the aircraft at each time

step for the snippet from the real world and the corresponding time step in BS1

and BS2. We can see that the heading changes are no longer the main contribut-

ing factor for track deviations in these simulators. Despite the aircraft travelling

at the same speed we see that the deviation from the real world continues to grow

in a linear fashion. This is due to the LCC projection system being used by these

simulators while in the real world the aircraft operate in an environment where the

Earth is curved. Although the aircraft cover similar distances along the ground in

each time step (ie. have similar ground speeds) in their respective environments,

the distance covered in each time step when converted to the other environment was

vastly different.

In order to get a better idea of the deviation in position between the real world

and our simulators we will use a 30 day scenario of air traffic in the Australia

airspace. First we simulated the 30 days of air traffic with the perfect model and

recorded the tracks of each flight at an interval of one minute. As we are primarily

interested in the simulation of air traffic in the cruise phase in the RVSM airspace,

a list of aircraft whose cruise altitude from the flight plan was greater than or equal

to 29,000ft were selected. This resulted in around 90,000 flights being selected. We

then found the point at which each of these flights transitioned from the climb phase

to the cruise phase. After finding the this transition point, the flight’s position two

minutes prior to reaching this point was found and the corresponding time became

the activation time and point for these flights in our simulation models. Similarly
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Figure 3.5: Flight plan for 15 minute snippet for aircraft in the climb phase

the position of the aircraft two minutes after the commencement of the descent

phase was found and set as the deactivation point for the flight. We then used the

simulator BS1 to BS4 to simulate these aircraft and also recorded their tracks at an

interval of one minute.

Once all of the selected flights in the 30 day scenario were simulated with each of

our four models, the tracks for each flight were matched to the corresponding point

in the flight (ie. time since the activation time in our simulation) and the distance

between the aircraft at each one minute interval from the track recorded from the

real world tracks were calculated. The plots in Figures 3.12 to 3.16 show the track

deviations among all flight for one minute interval for the first five hours of flight.

From Figure 3.12 and 3.13 we see that the longer we simulate the flight, the larger

the distance between the aircraft in the two simulators becomes and after five hours
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Figure 3.6: Flight plan for 15 minute snippet for aircraft in the en route phase

of simulation the average distance between the aircraft in the real world and BS2

becomes as large as 70 NM. The main contributing factor to the continued growth in

the distance between the position of the aircraft among the two simulators is due to

the conversion between the projection systems. Conformal projections systems such

as LCC preserve the shapes of small areas on the ground, but the scale of the maps

produced with this projection vary from point to point (Calvert, 2002). This means

a movement of 1 NM in one part of the map may not be the equivalent of moving 1

NM in another. From Figure 3.14 and 3.15 we can see that after an initial increase in

the average deviation in the first hour the average deviation stays relatively constant

for the following few hours. The initial increase is due to final stages of the climb

phase which is part of the flight plan for these simulators. A comparison of the

deviation caused by the four simulators can be seen in Figure 3.16. From this figure

we can see that the two simulators working in the geodetic environment, BS3 and

BS4, have significantly lower deviations than those using the LCC projection. The

differences in the deviations between BS3 and BS4 primarily arise from the ROCD

used in the final stages of the climb. We saw in Figure 3.8 that the final stages of

the climb in BS3 is somewhat longer than what is expected in the real world while
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Figure 3.7: Comparison of flight track deviation for BS1 and BS2 from the real
world

a short constant climb rate used in BS4 does not have as big of an effect.

As our aim is to use these simulators to predict the future airspace complexity,

we must be able to predict position of an aircraft to within 5 NM as the group

with the smallest proximity distance in one of the common complexity measure-

ment methods falls in the the range 0-5 NM (see Chapter 4 for more details). From

Figure 3.16 we see that each of our four models, based on the average track devia-

tions, will only be acceptable for predicting airspace complexity using this method

for different time frames. BS1 and BS2 would only be acceptable in the short term

(less than 15 minutes), BS3 for the short to mid term (less than 60 minutes) while

BS4 would be acceptable for the long term (long than 60 minutes).
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Figure 3.8: Comparison of vertical, speed and heading profile for an aircraft in the
climb phase when using BS3 and BS4
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Figure 3.9: Comparison of vertical, speed and heading profile for an aircraft in the
cruise phase when using BS3 and BS4
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Figure 3.10: Overview of the aircraft trajectory calculation process
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(a) Distribution of flights per day (b) Distribution of aircraft types for flight per
day

(c) Distribution of flight durations (d) Distribution of cruise flight levels

Figure 3.11: Overview of flights generated for the 30 day scenario
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Figure 3.12: Flight track deviation comparison between the real world and BS1
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Figure 3.13: Flight track deviation comparison between the real world and BS2
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Figure 3.14: Flight track deviation comparison between the real world and BS3
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Figure 3.15: Flight track deviation comparison between the real world and BS4
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Figure 3.16: Flight track deviation comparison between the real world and the four
simulators
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Chapter 4

Real-Time Airspace Complexity

Adjustment

Work in this chapter has been partially published in the following papers:

1. Amin, R., Tang, J., Ellejmi, M., Kirby, S., & Abbass, H. (2013). Computational red teaming for correction

of traffic events in real time human performance studies. In USA/Europe ATM R&D Seminar, Chicago.

2. Amin, R., Tang, J., Ellejmi, M., Kirby, S., & Abbass, H. (2014). Trading-off simulation fidelity and

optimization accuracy in air-traffic experiments using differential evolution. In Evolutionary Computation

(CEC), 2014 IEEE Congress on (pp. 475-482). IEEE.

In order to facilitate the adjustment of the ATC’s workload in real-time, it

may be necessary for involved parties (ie. ATCs, pilots, etc.) to take actions to

change from their current or planned states. To generate these actions and eval-

uate their effectiveness we require an optimisation system. Optimisation can be a

time-consuming activity, especially when simulation is required to evaluate possible

solutions.

In this chapter we explore the effectiveness of using low fidelity simulators for

real time optimisation. In order to explore this problem we will first present an

approach for adjusting ATC workload in real-time. This approach requires a shadow

simulator and an optimisation system. Based on air traffic conditions obtained

from a real-time operational environment, the optimisation system aims to push

the workload up or down towards a target using goal programming by periodically
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generating suggestions for changes to the state, such as aircraft climbing to a given

flight level and skipping waypoints. The four different shadow simulators introduced

in Chapter 3, with different levels of fidelity, were used to evaluate the solutions as

part of the optimisation system. We saw in Chapter 3 that the output from these

simulators are varied and is likely to result in different outcomes when compared to

each other and compared to what is expected in reality.

4.1 Airspace Complexity

The operation of the air traffic system is somewhat limited by the capabilities of

the human air traffic controllers. The air traffic sectors are designed, and sometimes

even re-designed, so as to maintain traffic levels which do not exceed the capabilities

of the ATC assigned to those sectors. Due to these human limitations, over work

may decrease the efficiency of the system and may lead to operational errors such

as violation of separation. Meanwhile, under work can lead to wasting resources.

Therefore, it is important to accurately measure the workload for ATC. The ATC’s

workload is a subjective measure that is driven by airspace complexity (Hilburn,

2004). The airspace complexity is a measure of the collective effect of various factors

and variables which determine the difficulty and effort required to safely manage

the air traffic for a particular situation (Prandini et al., 2011). The measure of

complexity is important for maintaining levels of air traffic which do not exceed the

workload capabilities of the human ATC.

Numerous metrics have been proposed in the literature for measuring air traffic

complexity over the last few decades. Many indicators, particularly the early de-

velopments, primarily focused on the number of aircraft within a sector as the key

driver for ATC workload and therefore the effect of this characteristic has been stud-

ied the most. After further research in this field, it has been generally agreed that

factors other than the number of aircraft contribute to the ATC workload. These

factors include both structural and flow characteristics of the sector. Mogford et al.

(1995) identified 40 such factors which effect the airspace complexity. These factors
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were grouped into 5 broad categories by Song et al. (2012) and a summary of these

categories is presented below.

• Static factors: the physical or fixed characteristics of the sector including

the flight routes, sector geometry and size and any terrain features (such as

mountains).

• Dynamic factors: the dynamic flow of air traffic including the density of air-

craft in the sector, conflicts, types of aircraft, altitude changes and trajectory

changes.

• Human factors: communication requirements between aircraft and other sec-

tors and the amount of communication that is required.

• Equipment factors: the type and availability of equipment such as radar and

radio.

• Unexpected factors: adverse weather and other uncertain events.

The static factors for a particular sector remain constant throughout the opera-

tion of the sector and cannot be changed with ease or regular frequency. The human

and equipment factors are difficult to influence in an operational environment and

are therefore outside the scope of our study. The unexpected factors, particularity

adverse weather conditions and equipment failure, cannot be be called upon on de-

mand and are also outside our scope. This leaves our focus with the dynamic factors

which can be easily influenced by various stakeholders of the system at short notice.

Hilburn (2004) provides a comprehensive review of airspace complexity metrics

proposed prior to 2004, all of which, to some degree, incorporate the factors identified

by Mogford et al. (1995). Since Hilburn’s publication numerous extensions of these

metrics have also been proposed to predict ATC workload and airspace complexity.

Examples include Vogel et al. (2013); Simić and Babić (2015); Lee et al. (2009).

However the dynamic density (DD) model proposed by Laudeman et al. (1998)

remains a popular method for measuring airspace complexity and other related
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metrics among various applications. The dynamic density models are a measure

of the airspace complexity where the dynamic factors of the traffic are combined

linearly or through neural networks using weights which have been determined based

on ratings of different traffic scenarios by professional ATCs and regressions with

traffic activity data. This means the DD models incorporates both subjective and

objective workload measurements. The model proposed by Laudeman et al. (1998)

incorporates nine factors which are outlined below.

• N - the number of aircraft in the sector

• NH - the number of aircraft in the sector that made a heading change greater

than 15◦ during an interval of 2 minutes

• NS - the number of aircraft in the sector which had a speed change of greater

than 10 kts during an interval of 2 minutes

• NA - the number of aircraft in the sector which had an altitude change greater

than 750 ft during an interval of 2 minutes

• S5 - the number of aircraft in the sector with 3D Euclidean distance between

0-5 NM

• S10 - the number of aircraft in the sector with 3D Euclidean distance between

5-10 NM

• S25 - the number of aircraft in the sector with lateral distance between 0-25

NM and vertical separation less than 2000 ft

• S40 - the number of aircraft in the sector with lateral distance between 25-40

NM and vertical separation less than 2000 ft

• S70 - the number of aircraft in the sector with lateral distance between 40-70

NM and vertical separation less than 2000 ft

Using this model the complexity, C, of a given situation at time T can be

calculated using Equation 4.1 which is a weighted sum of the different characteristics.
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In this equation di,T is the value of the ith characteristic for the current time and

Wi is the weight assigned for the characteristic.

CT =
9∑

i=1

Widi,T (4.1)

In order to calculate the values for the characteristics we require track data

from the aircraft. For calculating NH, NS and NA we are also required to keep

track log of the traffic for the preceding two minute interval. The weights ensure

that events which pose a greater risk, which may need immediate ATC attention,

have a bigger influence on the complexity. For example, the number of aircraft pairs

in the S25 group have a bigger effect on the complexity than those in the S40 group,

as those in the S25 group are a bigger immediate concern for the ATC and pose a

greater risk of collision.

4.2 Optimisation

Adjusting the airspace complexity is a multi-objective optimisation problem

as we are required to alter various aspects of the air traffic environment in order

to achieve different complexity levels. As the complexity is a weighted sum of the

various aspects of the air traffic environment we are trying to optimise, it makes

the problem ideal for a goal programming approach (Lee et al., 1972). Goal pro-

gramming is a common technique that is particularly useful when it is required to

simultaneously consider multiple criteria for stratifying a solution. This technique

allows for setting target values for each criterion and then optimizing for the sum of

the deviations of each criterion from their respective aspiration level. There are sev-

eral methods available for optimisation for problems when using goal programming

such as in our real-time complexity adjustment system. One of these methods is the

weighted sum goal programming method where the optimization is done by assign-

ing weights to each goal and then minimizing the weighted sum of the deviations

from targets (Hu et al., 2007). Other alternative goal programming optimization
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methods include the MINMAX and Lexicographic methods (Bertolini and Bevilac-

qua, 2006). In the MINMAX method, the maximum deviation from the target is

minimized instead of minimizing the weighted sum of the deviations. This method

also makes use of weight factors. The lexicographic method assigns priorities for

different goals and goals with the highest priority are are considered first(Bertolini

and Bevilacqua, 2006). All three of these goal programming methods rely on the

use of user defined factors which are subjective to the user (Coello, 2000; Deb, 1999;

Bertolini and Bevilacqua, 2006). For this reason it has been suggested that evolu-

tionary algorithms are more flexible for the optimization phase of the problem(Deb,

1999). Evolutionary algorithms are a desirable method of solving optimization prob-

lems as the algorithms simultaneously work with a set of possible optimal solutions

in a single run instead of a series of separate runs as required by some other methods

(Coello, 1998). Using evolutionary algorithms for optimization also has the poten-

tial to produce multiple solutions in one run. This means we also obtain a selection

of several near-optimal solutions and are able to make a choice from other solutions

if necessary.

Evolutionary computation is a search technique using computational models of

processes of evolution and selection inspired by the concepts and mechanisms of bi-

ological evolution (such as reproduction, mutation and selection) (Qin et al., 2009).

These models are implemented through evolutionary algorithms (EA) which have

been used to solve problems in a variety of fields in engineering and science. EAs are

a group of algorithms which simulate the natural evolution, selection, reproduction

and variation of individuals in a population (Kicinger et al., 2005). EAs work with a

pool of solutions, often referred to as a population of individuals where the individu-

als are individual solutions to a problem. Each solution is encoded (represented) by

a chromosome which is comprised of various attributes which describe the individ-

ual and the solution. Some of the commonly used evolutionary algorithms include

genetic algorithms, evolutionary programming, genetic programming and differen-

tial evolution. All of these algorithms operate according to the following common

procedure (Kicinger et al., 2005):
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1. Initialise a starting population

2. Evaluate all members of the population

3. While the termination condition is not satisfied:

(a) Select individuals in the population to be parents

(b) Create new individuals by applying the variation operators to the copies

of parents

(c) Evaluate new individuals

(d) Replace some or all of the individuals in the current population with new

individuals

(e) Repeat steps a to d until the termination condition has been met

The key differences between the different EAs are primarily found when compar-

ing their operations within the loop in part 3 of the above procedure representation.

One of the key differences between EAs is the variation process which is used to

generate new individuals. There are two main variation processes: mutation and re-

combination. Mutation involves selecting an individual and applying some variation

to the elements of its chromosome, while recombination involves the the combination

of parts of chromosomes from various individuals from the population. The newly

created individual is evaluated and given a fitness value. The fitness indicates the

solution’s quality in relation to the problem. Then either all or only some of the new

individuals replace the individuals in the population to create a new generation. The

method of selection of individuals also varies between the different algorithms but is

usually dependant on the fitness values of the individuals. Therefore it is important

to design the fitness evaluation functions in a way that appropriately reflects the

problem as this will be used to guide the direction of evolution of the individuals.

Sometimes it is necessary to evaluate several conflicting objectives in a problem.

For this reason it may be necessary to employ a multi-objective fitness evaluation

function or multi-objective evolution techniques. Multi-objective optimisation, un-

like single-objective optimisation, requires a trade-off between objectives and usually
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there is no single optimal solution (Justesen, 2009). A common way to avoid the

intricacies of multi-objective optimisation is to convert the fitness function into a

single-object fitness function, such as by using goal programming.

4.2.1 Differential Evolution

Differential evolution (DE) (GA and Okdem, 2004) is an evolutionary algorithm

that leverages direction information to guide the search. DE compares the fitness of

an offspring directly to the fitness of the corresponding parent which results in faster

convergence speeds than other EAs (He et al., 2008). In addition DE is also easy

to use and requires fewer control parameters and can find near optimal solutions

regardless of the initial parameter values (Abou El Ela et al., 2010). DE has been

applied to a range of topics in science, engineering and management, such as logistics

(Erbao and Mingyong, 2009; Mingyong and Erbao, 2010) and crew rostering for

airlines (Santosa et al., 2010).

Population and Chromosome Encoding

In order to make use of the DE algorithm, a structure needs to be formulated which

can be used to represent any possible solutions to a problem. This structure, called

a chromosome, contains a chain of elements, or genes, which represent different

attributes of the problem and the values can be permuted or altered to create new

solutions. The values for the genes often take the form of binary values, integer

values or decimal values. The type of values for each gene is dependant on the goal

of the problem being solved and usually incorporates some domain knowledge in its

design.

For example, for an aircraft routeing problem the values in the chromosome

could be [1, 2, 3, 4, 5, 6] where each number represents the order in which six different

cities are to be visited. The algorithm handles a population of NP individuals, where

each individual is allocated a chromosome. Equation 4.2 shows an example of the

notation that will be used to represent the ith individual in the population in further
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DE operations. In this notation xi,G is the ith individual from generation G, j is the

element number in the chromosome and N is the total number of elements. Each

element is initialized with a random number within the range minj ≤ xj,i,1 ≤ maxj

where minj and maxj are predefined ranges for each element.

xi,G = [x1,i,G, x2,i,G, ..., xj,i,G], j = 1, ..., N (4.2)

Mutation, Recombination and Selection

At each generation, NP number of mutant vectors are produced. Each mutant

vector corresponds to an individual in the population, the target vector, and are

generated by randomly selecting three individuals from the population, xr1,G, xr2,G

and xr3,G, and applying Equation 4.3. In this equation vi,G+1 is the donor vector

corresponding to the individual xi,G and F is the scaling factor, a predefined fixed

number between 0 and 2. The weighted difference of the elements of two of the

selected individuals, xr2,G and xr3,G; are summed with the elements of the third

individual, xr1,G, to produce the elements of the donor vector vi,G+1. Equation 4.3 is

the most basic version of the DE mutation strategies and is also the most commonly

used strategy.

vi,G+1 = xr1,G + F (xr2,G − xr3,G) (4.3)

Once the donor vector, vi,G+1, has been generated a trial vector, ui,G+1, is

generated by combining elements from both the donor vector, vi,G+1, and the corre-

sponding target vector, xi,G, based on Equation 4.4. Parameter j in the trial vector

is equal to the parameter j of the donor vector if a random number between 0 and

1 is less than or equal to the crossover rate, CR, otherwise parameter j in the trial

vector is equal to parameter j from the target vector.

uj,i,G+1 =

 vj,i,G+1 rand([0,1]) ≤ CR

xj,i,G rand([0,1]) > CR
(4.4)

Rubai Amin October 30, 2015



82 CHAPTER 4. REAL-TIME AIRSPACE COMPLEXITY ADJUSTMENT

Next the fitness of the trial vector is determined by using the elements from

the trial vector as parameters in a simulation. The fitness is a score given to the

vector based on the evaluation of the events during the simulation. If the fitness of

the trial vector is better than the fitness of the target vector then the trial vector is

selected to appear in the next generation, otherwise the target vector is selected.

4.3 Adjusting Airspace Complexity

For adjusting airspace complexity in real-time we require three components: a

real-time air traffic environment, an optimisation system and a shadow simulator.

The real-time air traffic environment may be the real air traffic system, a simu-

lated environment which mimics the operation of the real world system, or even a

combination of the two. The most important aspect that is required of the real-

time component is that we are able to obtain data regarding the state of the air

traffic on an ongoing basis. The optimisation component is used to generate so-

lutions (ie. the changes to the state) which may lead to the airspace complexity

towards a target. The shadow simulator is required to evaluate the solutions. An

overview of the system can be seen in Figure 4.1. From this figure we can see the

entire system operates as a loop. Periodically a snapshot of the air traffic is sent

to the optimisation system. The optimisation system uses differential evolution to

generate multiple lists of probabilities during each generation. Each of the lists of

probabilities are used separately to generate aircraft, request and execution time

combinations. These combinations are used as input into the shadow simulation for

evaluation. The shadow simulator simulates the scenario from the snapshot time for

a predefined period, the lookahead period, with these requests being executed. At

the end of the simulation the measured complexity for this period is used to evaluate

the effect of implementing these requests. Once the optimisation system has reached

it’s limiting condition, the best solution is returned to the real-time environment for

implementation. This loop is continually repeated. This is to reflect the fact that

the air traffic environment is a dynamic environment as aircraft can enter or exit
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sectors at any given time, deviate from their trajectories and take other actions. Due

to these uncertainties, it is unlikely that any prediction about the future state of the

traffic will hold valid for a very long time. For this reason we can make predictions

on a receding time horizon, T +Th, and produce new optimal solutions after a given

time interval, Ti, to incorporate new data that may have become available during

that interval (Rawlings and Muske, 1993; Chaloulos et al., 2010).

Filter &

pre-processing

Real-time 

environment
Air traffic 

snapshot

Analysis Optimisation

Shadow 

Simulation

Request

Fitness
Request

Filtered air

traffic snapshot

Figure 4.1: Overview of the real-time airspace complexity adjustment system

The data obtained from the real time environment consists of a set of aircraft

A = {ai}Ni=1 where

ai = (r, Ta, vc, zc, λT , φT , zT , vT ) (4.5)

ai includes the aircraft’s flight plan and current positioning data. The flight

plan data includes the aircraft’s route (r), activation time (Ta), cruise speed (vc) and
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cruise flight level (zc). The aircraft’s route, r = W1,W2, ,Wj, contains j waypoints,

W , each with a latitude-longitude coordinate and optionally an elevation. Waypoint

W1 is the activation point for the aircraft and Wj is the deactivation or final point.

The snapshot data may also optionally contain the current positioning data for the

aircraft. This includes the aircraft’s current latitude, λT , longitude, φT , altitude,

zT , and speed, vT .

Before the snapshot data is passed to the optimisation system a pre-processing

phase occurs. During this phase the positioning and waypoint data is converted to

a different projection system, if required. Additionally, aircraft which don’t enter

the measured sector, ie. the sector for which the complexity is being adjusted,

during the time horizon are filtered out. This is done by simulating the aircraft

according to their flight plans and current positioning data from the time of the

snapshot for a period equal to the time horizon. During this simulation all the

aircraft which entered the measured sector are recorded and the aircraft which did

not enter during this period are disregarded for use in further simulations for the

generation of requests for this interval. This is done in order to reduce the total

number of aircraft being simulated which do not have a bearing on the final outcome

of the optimisation as only aircraft which enter or are already inside the measured

sector during this period determine the complexity. Additionally as there are fewer

aircraft being simulated, the overall computation time of the shadow simulation

will be faster than simulations which included these inconsequential flights and will

therefore allow for more simulations in the same time frame. The aircraft which enter

the measured sector are then recorded and their data from the snapshot is passed

to the optimisation system. This initial simulation of the aircraft also provides us

with a baseline measurement of airspace complexity. The optimisation system then

produces potential solutions which are then evaluated using the shadow simulator.
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4.3.1 Aircraft requests

The potential solutions generated by the optimisation system are in the form

of actions which are to be taken by the aircraft. These actions can be thought of

as requests made by pilots and ATCs to change the trajectories of the aircraft. The

requests are generated as a list of requests Q ={qk}Mk=1, where qk = (ai, Tr, Y, δ). M

is the total number of requests in the list, ai is the aircraft which the request will

effect, Tr is the execution time of the request, Y is the type of request to be made

and δ is a value specific to the request, such as the number of feet to climb. The

types of request that can be selected are:

• Climb: The aircraft climbs 2000ft

• Descend : The aircraft descends 2000ft

• Change speed : The aircraft exits the sector up to 5 minutes earlier

• Change speed : The aircraft exits the sector up to 5 minutes later

• Turn right : Change heading by 5◦ in a clockwise direction, then return to

original route after 2 minutes

• Turn left : Change heading by 5◦ in a counter-clockwise direction, then return

to original route after 2 minutes

• Skip upcoming waypoints : Skip a number of upcoming waypoints such that it

results in a net heading change greater than 5◦

In an effort to not overwhelm the ATC, only a limited number of requests can

be made during a time interval. Limiting the number of requests in a given period

also ensures that the requests can be issued and implemented within a sufficient time

frame. In order to obtain a wider variety of request types, a predefined number of

instances of each request type are allowed to be selected within a given period. In real

air traffic environments the pilot and air traffic controller may need to communicate

and approve the action before some of these requests can be executed. But for the
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scope of this study it is assumed that all requests are instantly approved by both

the ATC and the pilot. Examples of the effect of some of the requests types on the

trajectories of the aircraft can be seen in Figure 4.2. The blue lines in this figure

indicates the flight level, speed or route of the aircraft as according to the flight

plan. The blue circles indicate waypoints in the flight plan, while the green circles

indicate the position of the aircraft when the request is executed and the red line

indicates the alternate flight level, speed or path taken by the aircraft as a result

of the execution of the request. The climb/descent and speed change requests are

expected to have a direct effect on the number of aircraft changing altitude (NA)

and speed (NS ) components of the complexity calculation. However the effect of

the turn and skip waypoint requests may not necessarily influence the number of

aircraft changing heading (NH ) as the minimum 5◦ change in heading resulting

from the request is lower than the threshold for the component. If the request is

executed within close proximity of a waypoint or the flight plan provides a favourable

combinations of waypoints, the execution of these requests may also contribute to

the NH component. All of these requests, however, are likely to effect the number

of aircraft in the sector (NA) and the various proximity components.

4.3.2 Request Probabilities

The optimisation system aims to produce one request which is to be executed

within the time horizon, Th. The combination of which aircraft which will make

the request and the type of the request is based on probabilities obtained from the

chromosomes (individual solutions) which were generated using differential evolu-

tion. The given probabilities includes a set of probabilities for each request type,

R = {P (rj)}Nj=1, where N is the number of request types and rj is request type

number j ; and another set of probabilities for each aircraft, A = {P (ai)}Mi=1, where

M is the number aircraft entered the measured sector within the time horizon, ai

is aircraft number i. The probability of a particular request being generated for a

certain aircraft at a given time is found using Equation 4.6.
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Figure 4.2: Examples of the effect of the implementation of the different requests
types.

P (ri|aj) = P (ri)× P (aj) (4.6)

The execution time for each request were also obtained from the chromosomes

generated using differential evolution.

4.3.3 Request Execution Time

The execution time for each request is determined from a time range relative to

the time of the snapshots. The snapshot are produced at an interval of Ti. Details

of the time ranges can be seen in Table 4.1 and a graphical representation of the

ranges can be seen in Figure 4.3. The look ahead period begins at the time of the

snapshot, TLS, and lasts until TLE, a period of Th after TLS. If TLE is a time after the
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end of the scenario, TSE, then the the end of the look ahead period is set to the end

of the scenario. When the optimisation cut-off time, TOE, is reached in the real-time

environment the optimisation is stopped and the best evaluated set of solutions thus

far are sent to the post processing component. This time is set at time TOT after the

snapshot time. The execution time range for the request starts at the optimisation

cut-off time and lasts for a period equal to Ti. The earliest execution time for the

request is TES, a time after the optimisation cut-off time, and the latest time is Ti

after TES. As we can see from Figure 4.3, the latest possible execution time for the

request occurs after the following snapshot is sent, but not after the earliest possible

execution time for the following request.

Table 4.1: Time window for optimisation and request execution
Event Time
Scenario start time TSS
Scenario end time TSE
Traffic snapshot interval Ti
Look ahead horizon Th

Look ahead time start

TLS = Traffic snapshot time

= TSS + iTi
where i = interval number

Look ahead time end TLE = MIN [(TLS + Th), TSE]
Optimisation cut-off time TOE = TLS + TOT

Request execution time range start TES = TOE

Request execution time range end TEE = TES + Ti

4.3.4 Shadow Simulation and Request Evaluation

Once the aircraft, request type and execution time combination for each so-

lution have been generated they are evaluated using the shadow simulator. The

shadow simulation is run without visualisation and at a much faster rate than real-

time for the period stating from TLS until TLE. During the simulation the airspace

complexity is measured at a frequency of 10 times a minute. At the conclusion of

each simulation, the complexity is evaluated against a predefined target level. This

evaluation is conducted using a goal programming approach.
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Figure 4.3: Time window for optimisations and request execution

For our system we calculate the deviation of each of the samples from the target

level of complexity using Equation 4.7, where xi is the ith complexity sample, Cg is

the goal ( or target) level of complexity, d+
i is positive deviation from the goal and d−i

is negative deviation from the goal. The negative deviation quantifies the number

of units by which the target has not been satisfied while the positive deviation

quantifies the number of units by which the target has been surpassed. At least

one of the negative deviation or positive deviation will be equal to zero and both

will be equal to zero if the goal is achieved (ie. xi = Cg). As we are only using

one type of attribute no weights are required for the comparison of the deviations.

Once we have calculated the deviation from the target for each of the samples, we

can determine the objective function, f , for this solution using Equation 4.8. The

objective function is determined by finding the average deviation from the target

level during the lookahead period for the M number of samples calculated during

this period. This objective function is then returned to the optimisation system.

As all deviations are non-negative, a global optimal solution for our problem occurs

when this value is zero and therefore the aim of the optimisation is to minimise f .

xi − d+
i + d−i = Cg (4.7)
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f =

∑M
i=1 d

+
i + d−i
M

(4.8)

4.3.5 Differential evolution

Differential evolution (DE) was used as the search technique to optimize the

objective function. A list of un-normalized probabilities were generated randomly

and then was used as an input to generate a list of requests for use in the shadow

simulation. Based on the evaluation from the shadow simulation, each of the lists

were given an objective function to determine the fitness of each list. DE is used to

find the list of probabilities which can generate the minimum value for the objective

function.

Each solution (called a chromosome or individual) is represented naturally as a

vector of real numbers. As can be seen in Figure 4.4, the chromosome used in this

system included one parameter for each aircraft and another for each of the seven

requests types. There is also a parameter for the execution time of the request.

The seven parameters for the request types represent the probability of that request

type being made while the parameters for the aircraft represents the probability of

the request coming from the corresponding aircraft. The parameters are initialised

with random values. The minimum and maximum values for the execution time are

obtained from Table 4.1 while the minimum and maximum values for the remaining

parameters are 0 and 100 respectively. If a particular request type or aircraft are

not allowed to be selected for the current interval then its maximum value is set

to 0, thus having zero probability of being selected and making it impossible to be

selected using Equation 4.6.

TR R1
... R7 A1

... AN

Time for 

execution 

of request

Probability of type of request being 

issued

Probability of a request being issued 

to aircraft

Figure 4.4: Chromosome representation for use in the differential evolution process
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4.4 Experiment - effect of differential evolution

parameters

Several different experiments were conducted in order to demonstrate different

aspects of the system. During each experiment a number of different simulators

were also used for the shadow simulation component with the aim of demonstrating

the effect of simulator fidelity on the system. These simulators included the four

low fidelity simulators and the perfect model introduced in Chapter 3. Using the

perfect model as a shadow simulator allows us to mimic reality with the high fidelity

simulator. It is not practical, nor necessary, to use the real air traffic system for

the real-time environment in order to demonstrate the operation of the system or

to demonstrate the effects of the different simulators. Therefore we used the perfect

model in real-time mode to represent the real world real-time environment.

The first experiment involves operating the system with different parameters for

the optimisation component. This provides us with an indication of the sensitivity

of the system to the parameters and also provides us with a basis for selecting

parameters for use in the following experiments. Two of the differential evolution

parameters, the crossover rate (CR) and the scaling factor (F ), were altered for

this experiment. Three different values were tested for each parameter, giving us 9

different combinations. Each combination was run with each of the five simulators

as the shadow simulator and repeated 20 times for each combination, giving us a

total of 900 runs.

Scenario and airspace complexity target

Each of these 900 runs (and also runs in the subsequent experiments) were conducted

with the same input scenario. This input scenario contained 45 aircraft with a range

of different characteristics. Some aircraft were activated outside the measured sector,

some had origin airports within the sector and some had destination airports within

the sector, but all aircraft passed through the sector at some point of their flight.

The measured sector was defined in 3D space between the elevations of 29,000ft and
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41,000ft. Most aircraft entering the sector had an intersecting route with another

aircraft that was also within the sector, but intersection may not necessarily result in

a violation of separation required to increase the airspace complexity. A screenshot

from the real-time simulation can be seen in Figure 4.5. This figure shows the

measured sector and the flight plans of some of the aircraft in the input scenario.

The real-time simulation was run for 60 minutes in each of the experiments.

Figure 4.5: Screenshot of the realtime visual simulation

The target for the airspace complexity was set as the 50th percentile of the

baseline complexity for the input scenario. To determine the value for this percentile,

the entire scenario was simulated using the perfect model without the execution

of any requests and the complexity was measured at a frequency of ten times a

minute based on the previous two minutes of activity. This measurement is what

we would expect to obtain from the real world. The 50th percentile of the measured

complexity was found and set as the target. The complexity for this scenario can

be seen in Figure 4.6. From this figure we can see that the complexity slowly

rises to a peak around 20 minutes from the start of the scenario. This peak is

October 30, 2015 Rubai Amin



CHAPTER 4. REAL-TIME AIRSPACE COMPLEXITY ADJUSTMENT 93

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

Time (min)

C
om

pl
ex

ity

 

 

Scenario complexity 50th percentile
0

2

4

6

8

10

12

N
um

be
r 

of
 a

irc
ra

ft 
in

 s
ec

to
r

 

 

Aircraft in sector

Figure 4.6: Airspace complexity for the input scenario measured using the perfect
model

closely related to the number of aircraft in the sector and represent the time during

this scenario at which the greatest number of aircraft are present in the sector.

A comparison of the baseline complexity as measured from the perfect model and

the four Basic Simulators can be seen in Figure 4.12. While the absolute values

of the complexities may be different from what was measured using the perfect

model, we can see that the general trend of the complexity measured by the four

simulators follows the one measured using the perfect model. This is evident when

assessing the correlation coefficient between the plot generated using the perfect

model and the ones generated by the other simulators. Using the data presented in

Figure 4.12, we have a correlation coefficient of 0.904 between the perfect model and

BS1, 0.8948 with BS2, 0.901 with BS3 and 0.907 with BS4. A comparison of the

complexity as measured by BS1 and BS2 and their higher fidelity versions, BS4 and

BS3 respectively, can be seen in Figure 4.13 and a plot of the cumulative complexity

as measured by each of the simulators can be seen in Figure 4.14. The differences in
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the complexities as measured by the different simulators can be attributed to their

fidelity. According to the scenario plan, a set number of aircraft will be within the

sector in any given period of time, and so we can see that the general trend of the

plots are similar. However, there are still discrepancies at several locations. While

the scenario plan may dictate the number of aircraft within the sector for a given

period, it does not dictate the exact moment the aircraft enter or exit the sector.

These times are dependent on basis of movement of the aircraft as determined by

the simulator being used. The differences in entry and exit times also leads to small

differences in times when waypoints are reached and therefore also leads to small

differences in speeds, altitudes, headings and proximity with other aircraft which

may all lead to differences in the complexity.

Snapshot interval and lookahead horizon

Snapshots containing the traffic state from the real-time simulator were received at

an interval of 5 minutes. Once the snapshot is been received, the scenario is simu-

lated for a 15 minutes lookahead horizon from the snapshot time for each evaluation

and the fitness is calculated using Equation 4.8 for the 15 minute period following

the snapshot time. During this period the aircraft were simulated according to their

flight plan and based on new positioning information obtained from the snapshot.

The previously generated requests are not taken into consideration for subsequent

optimisations. For example, if during the optimisation which started at 8:15 aircraft

DLH447 was given a request to climb from it’s planned cruise altitude of 35,000ft

to 37,000ft, then the snapshot at 8:20 would indicate that the aircraft is flying at or

climbing towards 37,000ft. But during the optimisation starting at 8:20 the simula-

tor will descend the aircraft back to 35,000ft as this is the altitude filed in the flight

plan. These manoeuvres may result in high complexities. The effect of incorporat-

ing previously generated and executed requests will be investigated in a subsequent

section.

During each snapshot-optimisation cycle we obtain four sets of complexity mea-

surements:
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• Perfect model snapshot baseline complexity (CBA): The scenario is simulated

using the perfect model to obtain a baseline complexity list for the lookahead

period using the snapshot data. This simulation is conducted on the assump-

tion that no further actions will interfere with the operation of the flights from

their flight plans within the lookahead period. This complexity list represents

the expected complexity in the real world. The perfect model snapshot base-

line average deviation, fBA, is obtained by applying Equation 4.8 to this list

of complexity measurements.

• Shadow simulator snapshot baseline complexity (CBS): The scenario is simu-

lated using the shadow simulator to obtain another baseline complexity list for

the lookahead period using the snapshot data. This simulation is conducted

on the assumption that no further actions will interfere with the operation of

the flights from their flight plans within the lookahead period. The shadow

simulator snapshot baseline average deviation, fBS, is obtained by applying

Equation 4.8 to this list of complexity measurements.

• Best fitness complexity (CRS): Once the optimisation is complete, the com-

plexity from the individual with the best fitness, fRS, is also obtained. This

measurement shows the expected complexity as a result of the implementation

of the generated request.

• Perfect model best fitness complexity (CRA): The request generated by the

best individual is used as part of another simulation using the perfect model.

This list provides us with the actual expected effect of the generated request

on the real-time environment for the lookahead period on the assumption that

the request is the only action within this period that deviates the flights from

their flight plan. This complexity list represents the expected effect of the

request on the real world. The expected average deviation, fRA, is obtained

by applying Equation 4.8 to this list of complexity measurements.

All of these lists consists of complexity measurements taken at a frequency of ten

times a minute on a rolling two minute window. The request from the individual
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with the best fitness is submitted for execution in the real-time environment if

fRS < fBS, otherwise no requests will be executed from that iteration.

Differential evolution parameters

When using differential evolution (DE) there are no pre-established parameter set-

tings which are suitable for solving all types of problems. Therefore investigating

the effect of different parameters, such as the crossover ratios (CR), scaling factors

(F ) and population sizes, are required to assist in the selection of values suitable for

the application.

Many different variants to the classic DE algorithm have been developed which

incorporate different methods of selecting appropriate parameters for the problem

at hand. Abbass et al. (2002) developed a self-adapted operator for multi objective

optimisation problems where the CR was evolved simultaneously with other param-

eters and the F was generated from a Gaussian distribution. While Sarker et al.

(2014) developed a method where the best performing combinations of parameters

(CR, F and population size) were dynamically chosen during the course of a single

run. Although these techniques may assist in obtaining suitable parameters during

operations, their use is outside the scope of this study. These techniques may be

investigated in the future as it would allow us to use dynamic parameters suited to

the problem at hand. For the purpose of this study we will only focus on the classic

DE algorithm where CR, F and population size are constant values throughout the

run.

A large population size has a higher probability of finding a global optimum,

but there is a slower convergence rate and requires more evaluations (Mallipeddi

et al., 2011). Smaller population sizes can speed up the convergence. The crossover

ratio CR is the probability of mixing occurring between the trial and target vectors

and is number between 0 and 1. A small CR may lead to no convergence as only a

small number of parameters are changed in the trial vector. Meanwhile a large values

for CR (approaching 1) may often speed up convergence (Gämperle et al., 2002),

but it may also lead to stagnation as most of the parameters in the trial vector are
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changed in each generation. Gämperle et al. (2002) also states that a good choice

for CR is between 0.3 and 0.9. The scaling factor F is a number between 0 and 2.

Typical values of F are between 0.4 and 0.95 (Rönkkönen et al., 2005). Applications

where a value greater than 1.2 is an absolute necessity are yet to be found and also

values of F smaller than 0.4 are rarely useful (Mallipeddi et al., 2011). A larger

value of F may help increase the probability of not falling into a local optimum.

Rönkkönen et al. (2005) recommends 0.9 as a starting value for F as this provides

a good compromise between speed and probability of convergence. Storn and Price

(1997) suggest using 0.5 as an initial choice for F while Gämperle et al. (2002)

suggests using 0.6.

For our study we selected three values for CR and another three values for

F . For CR we selected 0.3 and 0.9 as they are on the extreme ends of the range

suggested by Gämperle et al. (2002). We also selected 0.6 as this is the mid point of

the range. For F we selected 0.5, 0.6 and 0.9 as they fall into the range suggested by

(Rönkkönen et al., 2005) and are the values suggested for initial settings by Storn

and Price (1997), Rönkkönen et al. (2005) and Gämperle et al. (2002). This gives us

9 combinations of CR and F values for experimentation. The number of individuals

in the population were kept constant at 20.

During each optimisation cycle, the differential evolution was operated for 100

generations. If the 100 generations were completed before the time TOE was reached

in the real-time simulation or a stagnation point had been reached, then the dif-

ferential evolution was started again with for same snapshot, but with a different

seed for the random number generator. This process continued until the time TOE

was reached in the real-time visual simulation. At this time the request with the

best fitness from all differential evolution runs for this snapshot was selected for

implementation in the real-time simulation.

The input scenario was simulated 20 times for each of the 9 DE parameter

combinations with each of the 5 simulators as the shadow simulator, giving us a

total of 900 runs. The results from these runs are presented below.
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Results

For each of the 900 runs we have 12 sets of results. Each set corresponds to each

of the snapshots from the real-time simulation. This set includes the perfect model

snapshot baseline complexity, the shadow simulator baseline complexity, statistics

about the optimisation, the request which produced the individual with the best

fitness during the optimisation and it’s corresponding complexity and the complexity

from using the perfect model to simulate using the snapshot data and this request.

Using these four complexities from one snapshot, we can construct plots such as the

one in Figure 4.7. This figure shows the baseline complexity based on the snapshot

and the flight plan when simulated using the perfect model and the shadow simulator

(blue and green, respectively). The figure also show the effect on the complexity

as a result of including a request generated from the optimisation. The expected

effect when simulated using the shadow simulator can be seen in black and this

line is the basis for evaluating fitness during the optimisation. The actual expected

effect in the real-time environment can be seen in purple and this line is the basis

for our evaluation for this experiment. The figure also indicates the target level of

complexity and the execution time for the request. The same information can also

be seen in Figure 4.8 where the complexities are plotted as cumulative sums.
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Figure 4.7: Comparison of the snapshot baseline airspace complexity and the ex-
pected airspace complexity as a result of the execution of a request
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Figure 4.8: Comparison of the cumulative snapshot baseline airspace complexity

and the expected airspace complexity as a result of the execution of a request
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Using the information in these figures we can obtain the average deviation values

fBA, fBS, fRS and fRA. These average deviation values can be used to construct a

table such as the one in Table 4.2. This table shows the average deviation values

for each snapshot from a single run using the parameter settings of CR = 0.9 and

F = 0.6 for a lookahead period of 15 minutes and using BS2 as the shadow simulator.

In this table we can see five values for average deviations corresponding to each

snapshot time. The first value, baseline, is the average deviation of the complexity

from the target for the 15 minute lookahead period (starting from the snapshot

time) for the input scenario with the aircraft simulated according to the flight plan

without any deviations. We can see that the average deviation for the snapshot

baseline complexity using the perfect model, fBA, does not always match with that

of the baseline. This is due to the flow on effects of the request being implemented.

Although the outcome of the optimisation results in most cases leading to expected

deviations which are more favourable than the snapshot baselines for the lookahead

period, we do not get a picture of the effect of the request beyond the lookahead

period. As we can see from this table, in some cases the effect of the request has a

flow on effect into the following snapshot intervals where fBA ends up being greater

than the original baseline for the corresponding time. But we can see that in most

cases the execution of the request is expected to result in a positive effect. From

this table we can also see the effect of the difference in fidelity between the perfect

model and BS2 in the complexity measurements as there is some deviation between

fBA and fRA from the perfect model and the corresponding values fBS and fRS from

BS2. A plot of the complexity measurements leading to the values for the snapshot

at time 0 minutes (sent immediately at the start of the scenario) can be seen in

Figure 4.7 and 4.8. Once we have obtained the data for each of the 900 runs and

generated similar summary tables for each run we are able to aggregate this data

for the different settings.

The number of evaluations that were made within the 2 minute period for each

optimisation when using the different shadow simulators is one metric that can be

obtained from this aggregated data and can be seen in Figure 4.9. For this figure,
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Table 4.2: Average deviations from target level of complexity using the perfect model
(fBA) and the shadow simulator (fBS) to obtain a snapshot baseline and the best
fitness using the shadow simulator (fRS) and the perfect model (fRA) for a single
run

CR = 0.9, F = 0.6, Lookahead period = 15 minutes, Shadow simulator = BS2
Snapshot time
(min since start
of scenario)

Average deviation
Evaluations

Baseline fBA fBS fRS fRA

0 7.02 7.02 7.81 4.71 5.13 1020
5 6.79 7.45 9.43 5.63 5.61 1040
10 8.93 9.24 10.9 8.28 8.27 1200
15 8.63 7.46 8.85 6.83 7.51 1440
20 8.72 8.47 9.59 5.53 8.45 1740
25 6.36 5.5 4.34 3.38 6.57 2240
30 4.42 4.05 5.03 4.41 4.45 2760
35 4.60 5.00 4.61 3.88 4.11 3460
40 9.83 11.2 9.43 6.86 11.2 4940
45 16.86 17.88 15.93 14.9 16.91 8360
50 21.16 23.72 24.47 23.25 22.81 13600
55 24.09 20.38 20.69 19.84 20.38 40860

the 900 runs were grouped based on the shadow simulator used for that run. The

optimisation statistics for each corresponding snapshot were also grouped together,

irrespective of their DE parameters. From these groups we can obtain the average

number of evaluations made using the optimisation run when using each of the

simulators for each snapshot time. From these aggregated statistics we also obtain

the number of agents that were simulated during these evaluations. The number of

agents simulated during each optimisation in the different run may not be the same

as previous request may have lead to aircraft entering or exiting the sector at different

times. The average number of agents simulated from each snapshot can also be seen

in the figure. Details for the optimisations which took place using the snapshot

data from the 55th minute of the scenario are not shown in this figure as the low

number of agents (6 on average) in this snapshot lead to significantly higher number

of evaluations than those shown in the figure. From this figure we can conclude that

the simulators with the highest fidelity conducted the least number of evaluations at

similar stages of the run. As expected, BS1 and BS2, the simulators with the lowest
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Figure 4.9: Average number of evaluations completed with each simulator for each
snapshot

fidelity, conducted the most evaluations. We can also see from this figure that BS1

and BS4 completed more evaluations than BS2 and BS3 respectively. This confirms

the fact that the calculations related to the geodetic coordinate system has a bigger

effect on the simulation run time than the using the BADA lookup tables to obtain

flight data. It is worth noting the difference in the ratios of evaluations conducted

when using BS1 and BS2 and the ratio of evaluations conducted when using BS3

and BS4. On average, when using BS1 as the shadow simulator there were 30%

more evaluations completed than when using BS2. However, when we use BS4 as

the shadow simulator we are able to complete only 12% more evaluations on average

when compared to BS3. It is also worth noting that the ratio between the number of

number evaluation completed and the number of agents is not constant, but however

the ratio scales with the number of agents.

We can also group the results from these runs based on their DE parameter

setting combinations in selecting an appropriate combination of settings for our
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problem. To do this we grouped each of the runs based on their CR, F and shadow

simulator combination. Then we combined their the four average deviation values for

each optimisation for each snapshot time (see Table 4.2), and produced a statistical

summary of these values for each combination. This provided a statistic based on

the 20 runs for each combination with 12 data points for each run. The averages

and standard deviations of the fRA values for each combination can be seen in

Table 4.3. This value represents the expected effect of the execution of the request

in the real world. From this table we can see that with the exception of one or two

combinations for each shadow simulator, there is little difference in the averages for

each combination for each simulator. A t-test was conduced for each combination for

each simulator against the combination with the lowest average for that simulator.

It was found that there are no combinations where the difference of averages are

convincing enough to conclude that there is a significant difference. Therefore we

will decide on the best parameter combination simply by selecting the combination

which provides the lowest average value. From Table 4.3 we find that the value

CR = 0.9 was the value of CR which provided the lowest or equal lowest average

fRA value for all of the shadow simulators. Among these combinations we also

find that three out of the five shadow simulators had their lowest (or equal lowest)

average fRA value when using the CR = 0.9 and F = 0.6 combination. Therefore we

will select CR = 0.9 and F = 0.6 as the DE parameter combination for all further

experiments.

4.5 Experiment - effect of lookahead time and

airspace complexity target

Once we have selected the parameters for the optimisation component we can

explore the effect of other system parameters. The setup for this experiment is

identical to that of the previous experiment in all aspect expect instead of varying

the differential evolution parameters, the second experiment involves varying the

Rubai Amin October 30, 2015



104 CHAPTER 4. REAL-TIME AIRSPACE COMPLEXITY ADJUSTMENT

Table 4.3: Average deviations from target level of complexity for different DE pa-
rameters using the four shadow simulators (BS1 to BS4) and the perfect model
(Perfect)

CR
F = 0.5

BS1 BS2 BS3 BS4 Perfect
0.3 9.52 ± 5.09 9.92 ± 6.1 9.84 ± 5.9 9.22 ± 5.62 6.92 ± 5.03
0.6 9.49 ± 5.12 10.01 ± 6.06 10.26 ± 5.95 9.18 ± 5.7 6.9 ± 5.00
0.9 9.48 ± 5.12 9.92 ± 6.14 9.86 ± 5.83 9.16 ± 5.68 7.05 ± 5.12

CR
F = 0.6

BS1 BS2 BS3 BS4 Perfect
0.3 9.5 ± 5.1 9.95 ± 6.02 9.85 ± 5.93 9.22 ± 5.66 7.16 ± 5.54
0.6 9.49 ± 5.1 9.96 ± 6.13 9.83 ± 5.82 9.22 ± 5.62 7.29 ± 5.53
0.9 9.44 ± 5.13 9.92 ± 6.16 9.82 ± 5.8 9.23 ± 5.63 6.81 ± 4.75

CR
F = 0.9

BS1 BS2 BS3 BS4 Perfect
0.3 9.48 ± 5.1 9.9 ± 6.15 9.89 ± 6 9.27 ±,5.62 7.29 ± 5.49
0.6 9.45 ± 5.12 9.94 ± 6.08 9.83 ± 5.85 9.2 ± 5.64 6.9 ± 4.99
0.9 9.43 ± 5.13 9.93 ± 6.18 9.82 ± 5.89 9.22 ± 5.66 6.98 ± 5.18

parameters for the lookahead horizon and the airspace complexity target level.

Scenario and airspace complexity target

The scenario used for this experiment was the same as the one used for the previous

experiment. The target for the airspace complexity was however set as the 25th, 50th

and 75th percentiles of the baseline complexity when using the perfect model without

the execution of any requests and the complexity was measured at a frequency of

ten times a minute based on the previous two minutes of activity. A plot of the

baseline airspace complexity can be seen in Figure 4.10 along with the 25th, 50th

and 75th percentile complexity target levels.

Snapshot interval and lookahead time

The 5 minute snapshot interval from the real-time simulator was also maintained for

this experiment. The lookahead horizon was, however, varied. Values of 15, 30 and

60 minutes were used for the lookahead period. In this experiment the aircraft also

continued to follow their flight plans or proceed to correct their intentions in order to
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Figure 4.10: Airspace complexity for the input scenario measured using the perfect
model

follow the flight plans irrespective of previously generated or executed requests and

their position from the snapshot. The four complexity measurements, the perfect

model snapshot baseline complexity, shadow simulator baseline complexity, best

fitness complexity and perfect model best fitness complexity; were also recorded for

each snapshot for each run.

Differential evolution parameters

As per the results of the previous experiment, the DE parameters CR and F were

fixed at 0.9 and 0.6 respectively for all runs. The population size was also fixed at

20 individuals.

The input scenario was simulated 20 times for each lookahead horizon and

complexity target levels with each of the 5 models (BS1, BS2, BS3, BS4 and the

perfect model) as the shadow simulator. These combinations also resulted in a total

of 900 runs.
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Results

During this experiment we again collected the four average deviations from the

airspace complexity target level measurements (perfect model snapshot baseline

complexity, shadow simulator snapshot baseline complexity, best fitness complex-

ity and perfect model best fitness complexity) for each snapshot during each run.

The number of evaluations completed during for each snapshot was also recorded.

As the latest possible end time for the lookahead period is the end of the scenario

time, there will be a point in the scenario where the lookahead period will be less

than the lookahead horizon. This means that there will also be a point in the

scenario where the lookahead period for lookahead horizons of 30 and 60 minutes

become the same. For our 60 minute scenario this occurs 30 minutes after the start

of the scenario.

We find that the ratio of the average number of evaluations completed for each

snapshot is similar throughout the scenario, irrespective of the snapshot time, in

relation to the average number of evaluations completed using the perfect model

for the corresponding snapshot time. There is less than 10% variation in this ratio

throughout the scenario. The average of these ratios for each of the shadow simu-

lators can be seen in Table 4.4. We also found that the ratio between the average

number of evaluations conducted with a 15 minute lookahead horizon to the average

number of evaluations conducted with a 30 minute lookahead horizon using the same

shadow simulators is similar across all snapshot times, irrespective of the shadow

simulator used. This is also the same when a 60 minute lookahead horizon is used.

Table 4.5 shows the ratio between the average number of evaluations completed

when using a 15 minute lookahead horizon to when using a 30 minute lookahead

horizon and a 60 minute horizon for the snapshot at 0 minutes (ie. immediately after

the start of the scenario) when using the same shadow simulator. This particular

time was chosen as it is the only snapshot for which all three lookahead horizons

can be fully fit into the 60 minute scenario. As the scenario time nears 60 minutes,

both ratios begin to approach 1 as the lookahead period becomes similar in length,

if not identical. It is interesting to note that the ratio does not have a one-to-one
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scaling with the lookahead horizon. This indicates that this ratio is also influenced

by the number of agents which are required to be simulated during the lookahead

horizon.

Table 4.4: Ratio of average evaluations completed when using each shadow simulator
in relation to the perfect model (the real world) for each lookahead period (LKA)

Shadow
simulator

Ratio of evaluations
relative to the perfect model (Perfect)
LKA = 15 LKA = 30 LKA = 60

Perfect 1 1 1
BS1 6.47 6.49 6.27
BS2 4.95 5.01 4.81
BS3 2.66 2.58 2.48
BS4 2.99 2.99 2.90

Table 4.5: Ratio of evaluations in relation to lookahead horizion of 15 minutes (LKA
= 15) for the same shadow simulator

Shadow
simulator

Ratio of evaluations
realtive to LKA = 15

LKA = 30 LKA = 60
Perfect 0.38 0.22
BS1 0.38 0.21
BS2 0.39 0.21
BS3 0.37 0.20
BS4 0.38 0.21

Next we group the results from these runs based on their lookahead horizon,

airspace complexity target level and shadow simulator combination. We then find

the average and standard deviation of the fRA values (the expected average devi-

ation from the target airspace complexity level when executing a request from the

optimisation component in the real world) for each snapshot time for each run. This

information is presented in Table 4.6 for each group. We can see from this table

that for most shadow simulator and lookahead horizon combinations, the runs with

a target level of airspace complexity set at the 25th percentile were able to achieve

better average fRA values than their corresponding runs with 50th or 75th percentile

target levels. This indicates that it is easier, for this particular scenario, to produce

requests which reduce the complexity than it is to increase the complexity of the
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scenario. A t-test was conducted for each lookahead period and target level com-

bination for the simulators BS1 to BS4. The simulator with the lowest average

for each combination was tested against each of the other three simulators for that

combination. The instances where we can conclude that there are significant differ-

ences from the simulator with the lowest average are indicated in boldface. From

Table 4.6 we see again that the results are influenced by the shadow simulator that

is being used to generate the requests, but there is no clear winner in each case nor

are there any patterns which allow us to pick one simulator over another in any

given lookahead period or target level setting.

Table 4.6: Average deviations from target level of complexity for different lookahead
period and target level parameters using the four shadow simulators (BS1 to BS4)
and perfect model (Perfect)

Target
(%ile)

LKA = 15
BS1 BS2 BS3 BS4 Perfect

25th 9.76 ± 2.40 9.79 ± 3.43 9.68 ± 3.56 9.79 ± 2.58 6.07 ± 2.70
50th 9.44 ± 5.13 9.92 ± 6.16 9.81 ± 5.79 9.23 ± 5.63 6.81 ± 4.75
75th 11.60 ± 8.48 11.85 ± 7.78 12.00 ± 9.05 11.85 ± 8.63 7.84 ± 5.71

Target
(%ile)

LKA = 30
BS1 BS2 BS3 BS4 Perfect

25th 9.63 ± 2.97 9.37 ± 2.30 9.77 ± 3.20 10.16 ± 3.17 6.24 ± 2.51
50th 10.80 ± 4.72 11.17 ± 5.09 11.11 ± 5.35 10.74 ± 4.87 8.02 ± 4.16
75th 13.74 ± 7.76 14.13 ± 7.46 14.09 ± 7.87 13.70 ± 7.67 10.32 ± 5.80

Target
(%ile)

LKA = 60
BS1 BS2 BS3 BS4 Perfect

25th 8.62 ± 1.91 9.21 ± 1.77 9.58 ± 2.06 9.42 ± 2.15 6.49 ± 2.22
50th 11.74 ± 3.46 11.17 ± 5.09 12.57 ± 4.40 12.04 ± 3.96 8.49 ± 2.24
75th 16.38 ± 5.47 14.13 ± 7.46 16.28 ± 5.92 16.26 ± 6.02 10.41 ± 3.24

If we take a look at the differences between the complexities measured by the

perfect model and the other simulators we can start to see why this may be the case.

To do this we will find the ratio between the complexity as measured by the perfect

model and the corresponding complexity as measured by the other simulators for

the same situation. We find the ratio between the snapshot baseline complexities

for each snapshot from each run using Equation 4.9. In order to use this equation
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we sum all of the complexity measurements from the shadow simulator snapshot

baseline complexity list (
∑
CBS) and divide this value by the sum of the complexity

measurements from the corresponding perfect model snapshot baseline complexity

(
∑
CBA). This ratio is found for each snapshot for every run. If this ratio is equal

to 1, then the complexity estimate the simulator is in perfect agreement with the

real world. If this ratio is greater than 1, then the simulator has overestimated

the complexity in relation to the real world for the lookahead period while a ratio

lower than 0 will mean that the simulator has underestimated the complexity for the

lookahead period. Similarly we can also find the ratios for the expected effect on the

complexity of the execution of the generated requests using Equation 4.10. For this

equation we sum the complexity measurements obtained from the individual with

the best fitness from the optimisation (
∑
CRS) and divide this value by the sum

of the complexity measurements expected in the real world based on the execution

of the request generated by this individual (
∑
CRA). Once we have obtained the

ratios for each snapshot for each run we can group them by their lookahead period

and the simulator that was used to make the estimates.

RB =

∑
CBS∑
CBA

(4.9)

RR =

∑
CRS∑
CRA

(4.10)

A histogram of these ratios for BS1 can be seen in Figure 4.15, 4.16 and 4.17

and for BS2 in Figure 4.18, for BS3 in Figure 4.19 and for BS4 in Figure 4.20. The

average ratios for each of the groups can be seen in Table 4.7. From this table and

the these figures we can see that for all simulators the ratio RB is generally greater

than 1. This suggests that the simulators are overestimating the complexity when

compared to the expected real world complexity. We can also see that the ratio RR is

less than 1, which suggests that the estimated complexity as a result of the execution

of the request is underestimated when compared to the expected complexity in

the real world as a result of the execution of the same request. This leads to an

overestimation of the expected effect that the request will have on the scenario’s
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complexity. This overestimation leads to the selection and execution of requests

which may not necessarily influence the complexity of the scenario as significantly

as expected and in some cases it may not lead to a positive effect on the complexity in

terms of the target level. From these figures we can also see that when the lookahead

horizon is set at 30 minutes or 60 minutes, the ratios are closer to 1 than when the

lookahead horizon is set at 15 minutes. This suggests that minor differences in the

complexity estimates become less significant when simulating over longer periods.

Table 4.7: Average ratios of airspace complexity estimates between the perfect model
(the real world) and the simulators BS1 to BS4. A value close to 1 indicates a better
match.

Lookahead
period

BS1 BS2 BS3 BS4
RB RR RB RR RB RR RB RR

LKA = 15 1.22 0.95 1.07 0.89 1.06 0.89 1.20 0.95
LKA = 30 1.13 0.98 1.06 0.93 1.02 0.91 1.10 0.97
LKA = 60 1.09 1.03 1.02 0.97 1.00 0.95 1.07 1.00

4.6 Experiment - keeping a record of previously

generated requests

In the third experiment we, once again, simulated the input scenario with

the three different settings for the lookahead horizon and the three different tar-

get airspace complexity levels. But in this experiment we also retained a record of

all requests which were generated in each run and these requests were used during

the simulations to establish the snapshot baseline complexities and for the evalua-

tions during the optimisation phases for that particular run. This means that if a

request was generated from the optimisation starting as a result of the snapshot at

8:15 for the aircraft DLH447 to climb from it’s cruise altitude of 35,000ft to 37,000ft,

then during simulations relating to the following snapshot (at 8:20 in the case of

this example) we will see the aircraft continue to climb to 37,000ft or maintain the

altitude of 37,000ft if it has already reached the altitude. If the request is not sched-

uled to be executed before the next snapshot time then the request is also passed
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as part of the snapshot and will be executed as part of the simulations relating to

this snapshot.

For this experiment we also used the three lookahead horizon settings from the

previous experiment of 15, 30 and 60 minutes and also used the three airspace com-

plexity target levels of the 25th, 50th and 75th percentile of the baseline scenario.

We also conducted 20 runs with each setting combination. Once again we find the

average and standard deviations of the fRA values (the expected average deviation

from the target airspace complexity level when executing a request from the opti-

misation component in the real world) for each snapshot time for each run and can

be seen in Table 4.8. If we compare these results to those from Table 4.6 where the

execution of previously generated requests were not known, we can see some of the

differences caused by knowing about these requests during the optimisation. We can

see that for BS2, BS3 and the perfect model there is an improvement in the average

fRA values when the target level is set at the 25th percentile across all three looka-

head horizons. In most other combinations we see that average is actually higher

than in the previous experiment with higher standard deviations.

In the previous experiment we established that the shadow simulator will gener-

ally overestimate the snapshot baseline complexity when compared to the real world

and will usually underestimate the complexity when executing a request. Although

we can see in Table 4.9 that there is a drop in the average RB ratio (which is the

ratio between the snapshot baseline complexity estimated by the simulators to that

of the estimated real world complexity using Equation 4.9), this does not necessarily

indicate that there is a lower range of underestimation in this experiment. As can

be seen from the histogram in Figure 4.11 for BS1 and a lookahead horizon of 15

minutes, this is in fact caused by a bigger range of instances with underestimation.

This is possibly caused by the execution of requests during the snapshot baseline

simulation.

While we have seen that it is possible to adjust the airspace complexity, and

therefore the ATC’s workload, in real-time we cannot always reach a specified target

level of airspace complexity. There are several reasons for this, but chief among these
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Table 4.8: Average deviations from target level of complexity for different lookahead
period and target level parameters using the four shadow simulators (BS1 to BS4)
and the perfect model (Perfect) and keeping a request archive

Target
(%ile)

LKA = 15
BS1 BS2 BS3 BS4 Perfect

25th 10.45 ± 3.43 9.28 ± 2.11 8.72 ± 2.59 10.45 ± 3.37 4.82 ± 1.83
50th 10.11 ± 6.43 9.51 ± 6.91 11.39 ± 5.40 9.79 ± 4.75 7.26 ± 5.51
75th 11.89 ± 8.62 12.44 ± 8.84 12.23 ± 8.77 11.80 ± 8.57 8.31 ± 6.62

Target
(%ile)

LKA = 30
BS1 BS2 BS3 BS4 Perfect

25th 9.12 ± 2.84 8.51 ± 1.89 9.59 ± 3.08 9.90 ± 3.23 5.70 ± 2.32
50th 10.86 ± 4.65 11.42 ± 5.58 10.93 ± 5.40 10.55 ± 4.75 8.34 ± 4.47
75th 13.78 ± 7.88 14.66 ± 8.08 14.37 ± 7.95 14.47 ± 7.87 10.07 ± 5.72

Target
(%ile)

LKA = 60
BS1 BS2 BS3 BS4 Perfect

25th 9.14 ± 1.93 8.66 ± 1.30 9.27 ± 2.24 9.11 ± 2.33 5.95 ± 2.34
50th 10.86 ± 4.65 12.38 ± 4.04 12.23 ± 4.24 12.00 ± 3.94 8.17 ± 2.76
75th 13.78 ± 7.88 16.64 ± 5.82 16.18 ± 6.04 16.39 ± 5.93 10.05 ± 3.09

Table 4.9: Average ratios of airspace complexity estimates between the perfect model
(the real world) and the simulators BS1 to BS4

Lookahead
period

BS1 BS2 BS3 BS4
RB RR RB RR RB RR RB RR

LKA = 15 1.06 0.87 1.18 0.99 1.07 0.91 1.08 0.92
LKA = 30 1.05 0.95 1.03 0.90 1.03 0.92 1.06 0.97
LKA = 60 1.07 1.01 0.99 0.93 1.02 0.97 1.09 1.05

reasons is the input scenario. According to the scenario each aircraft must travel

from A to B, which cannot be altered. As a result certain events must happen

throughout the course of the scenario that cannot be changed. This means that

no matter how much optimisation we conduct there will be a minimum level of

complexity for the scenario at any given time which must be maintained. But, as

demonstrated by using the perfect model as the shadow simulator, we see that there

is still some room for improvement in the results obtained when using the other

simulators as the shadow simulator.
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Figure 4.11: Comparison of the ratios of the snapshot baseline complexity measured
by the perfect model and BS1

4.7 Summary

In this chapter we described the design of a real-time airspace complexity adjust-

ment system using a multi-objective optimisation approach and also demonstrated

its effectiveness. With the use of this system we aim to adjust the expected fu-

ture workload for air traffic controllers in real-time. The airspace complexity was

adjusted by generating requests, or actions, which led to aircraft deviating from

their initial flight plans upon the execution of the requests. The actions included

simple manoeuvres which the ATCs can request the pilots to undertake or the pi-

lot can request to undertake. Examples of these manoeuvres include climbing or

descending to a different flight level and skipping waypoints. The requests and the

time for execution of these requests were generated using an optimisation system.

A goal programming approach was used as the objective function and was used to

steer the complexity towards a predefined target level using differential evolution for
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optimisation. This resulted in a multi-objective optimisation problem as we were

required to alter various aspects of the air traffic environment to alter the airspace

complexity. Five different simulators, with different levels of fidelity, were used to

obtain the objective function for each request and execution time implementation.

The optimisation was conducted in real-time periodically using current air traffic

data with the aim of influencing the airspace complexity in the short to mid term

future.

This system was used in several different experiments to demonstrate its effec-

tiveness. It was found that when using BS1 as the shadow simulator we are able to

achieve the highest number of evaluations in a fixed time frame for the optimisation

component, while when using the perfect model we were able to achieve the fewest

number of evaluations in the same time frame. The number of evaluations com-

pleted by each simulator was relative to it’s fidelity and computational complexity.

It was found that when using the perfect model as the simulator we were able to ob-

tain the best results under all configurations we tested. There were no clear winners

amongst the other four lower fidelity simulators, although these simulators were also

able to successfully adjust the airspace complexity towards the target level. When

comparing the complexities estimated by the four lower fidelity simulators, we found

that BS2 and BS3 were generally able to provide a more accurate estimate of the

complexity relative to the perfect model (the real world), which is assumed to an

accurate representation of the real world, when compared to BS1 and BS4.
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(a) Comparison of the baseline airspace com-
plexity as measured by the perfect model and
BS1
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(b) Comparison of the baseline airspace com-
plexity as measured by the perfect model and
BS2
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(c) Comparison of the baseline airspace com-
plexity as measured by the perfect model and
BS3
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(d) Comparison of the baseline airspace com-
plexity as measured by the perfect model and
BS4

Figure 4.12: Comparison of the baseline airspace complexity as measured by the
perfect model and the four Basic Simulators
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(a) Comparison of the baseline airspace complexity as measured by BS1 and BS4
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(b) Comparison of the baseline airspace complexity as measured by BS2 and BS3

Figure 4.13: Comparison of the baseline airspace complexity as measured by the
four Basic Simulators
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Figure 4.14: Cumilative airspace complexity for the input scenario measured using
the perfect model and the four Basic Simulators
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(a) RB with LKA = 15 minutes for BS1
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(b) RR with LKA = 15 minutes for BS1

Figure 4.15: Comparison of the ratio of airspace complexity measured by the perfect
model to the complexity measured by BS1 for a lookahead horizon (LKA) of 15
minutes
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(a) RB with LKA = 30 minutes for BS1
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(b) RB with LKA = 30 minutes for BS1

Figure 4.16: Comparison of the ratio of airspace complexity measured by the perfect
model to the complexity measured by BS1 for a lookahead horizon of 30 minutes
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(a) RB with LKA = 60 minutes for BS1
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(b) RB with LKA = 60 minutes for BS1

Figure 4.17: Comparison of the ratio of airspace complexity measured by the perfect
model to the complexity measured by BS1 for a lookahead horizon of 60 minutes
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(a) RB with LKA = 15 minutes for BS2
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(b) RR with LKA = 15 minutes for BS2
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(c) RB with LKA = 30 minutes for BS2
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(d) RR with LKA = 30 minutes for BS2
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(e) RB with LKA = 60 minutes for BS2
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(f) RR with LKA = 60 minutes for BS2

Figure 4.18: Comparison of the ratio of airspace complexity measured by the perfect
model to the complexity measured by BS2
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(a) RB with LKA = 15 minutes for BS3
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(b) RR with LKA = 15 minutes for BS3
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(c) RB with LKA = 30 minutes for BS3
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(d) RR with LKA = 30 minutes for BS3
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(e) RB with LKA = 60 minutes for BS3
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(f) RR with LKA = 60 minutes for BS3

Figure 4.19: Comparison of the ratio of airspace complexity measured by the perfect
model to the complexity measured by BS3
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(a) RB with LKA = 15 minutes for BS4
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(b) RR with LKA = 15 minutes for BS4
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(c) RB with LKA = 30 minutes for BS4
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(d) RR with LKA = 30 minutes for BS4
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(e) RB with LKA = 60 minutes for BS4
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(f) RR with LKA = 60 minutes for BS4

Figure 4.20: Comparison of the ratio of airspace complexity measured by the perfect
model to the complexity measured by BS4

Rubai Amin October 30, 2015





Chapter 5

Real-time Simulation-based

Complexity Prediction

5.1 Introduction

Numerous automation tools have been developed to assist ATC’s in maintain-

ing safe and efficient air traffic flows (Nolan, 2010). These tools mainly focus on

conflict detection and resolution (Paielli et al., 2009) and do not give an assessment

of the expected change in airspace complexity should these detected future scenarios

occur. If these future airspace complexities assessments were available, particularly

in real time, it would assist managers and supervisors at air traffic control facilities

to appropriately allocate or re-allocate resources to handle peaks in the workload

to reduce risk to the system and appropriately apply advanced procedures such as

dynamic sectorisation (Ehrmanntraut and McMillan, 2007). However few systems

exist which can be used to predict future workload (Chatterji and Sridhar, 1999),

these systems focus mainly on single controllers or single sectors. For this reason

we require a system which is able to predict the future workload of a large set of

sectors in a large airspace, such as the entire Australian, US or European airspaces;

in real-time. Artificial intelligence techniques have been used extensively in many

domains to solve prediction problems, and the transportation domain is no excep-
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tion (Avineri, 2012).

A common AI prediction method is simulation (Glasa, 2009). Simulation can

also be used to determine the future air traffic conditions, and therefore predict

the airspace complexities in the future. In the previous chapters we have seen that

for real-time applications it is necessary to trade-off some aspects of the simulation

environment, such as the level of fidelity, in order to produce results in an acceptable

time frame. This is particularly true when simulating large amounts of air traffic

for obtaining results for real-time applications. Every prediction system has errors,

and the trade-offs in the simulation fidelity causes deviations in the prediction of

the future air traffic conditions when compared to reality. For this reason we require

a method to extract and model the error to facilitate more accurate predictions. If

we can find the causality of the errors it will make for a more powerful prediction.

This now involves a machine learning problem (Kotsiantis et al., 2007).

AI also encompasses a range of methods and approaches inspired by intelli-

gent biological systems (Sadek, 2007). The methods include knowledge-based sys-

tems (Akerkar and Sajja, 2010), neural networks (Baldi and Hornik, 1989), fuzzy sys-

tems (Cox, 1992) and evolutionary computing (Eiben and Smith, 2003). Problems

in the transportation domain often deal with complex systems which are difficult to

model using traditional statistical approaches. This is because it is not always fully

understood what the interactions between different systems are and the system often

include a level of uncertainty. Building empirical models using observed data may

be the only option for modelling these complex systems. Neural networks (NN) is a

machine learning method which presents itself as an ideal method for applications

in these situations due to its universal function approximation capabilities (Sadek,

2007).

Neural networks are composed of a series of neurons which are connected in

such a way that they are able to learn in a manner similar to how human brains

learn (Sadek, 2007). The interactivity between the connected neurons are controlled

by adjustable parameters called weights. The neurons are arranged into an input

layer, a hidden layer or an output layer (Dougherty, 1995). There are many ways
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in which the neurons can be connected. One of the common methods is the multi-

layer perceptron which is a feed-forward network. A feed-forward network is one

where information flow is one directional, that is, the data from the input layer goes

through the hidden layer and then to the output layer (Bebis and Georgiopoulos,

1994). The input layer contains one neuron per input variable, the hidden layer

processes the information and encodes the knowledge in the network and the output

layer contains the target output. NN can be trained using supervised learning and

backpropagation (Dougherty, 1995). Supervised learning is an approach whereby

a model learns the transformation of the inputs into the output and the model is

adjusted so that the error between the model output and the known or desired

output is minimised (Jordan and Rumelhart, 1992). The NN algorithm uses a

training data set to learn the relationship between the input data and the target

output data. The algorithm iteratively adjusts the weights connecting the neurons

in order to minimise the error between the output of the network and the desired

output (Dougherty, 1995).

In this chapter we present several methods for predicting the future airspace

complexities for a set of sectors in a large airspace in real time. First we use multiple

linear regression and neural networks to predict the future airspace complexity based

on current air traffic conditions. Next we use low fidelity simulators to predict the

future airspace complexity and use linear regression to predict the deviation of these

prediction from the actual measured complexities.

5.2 Predicting Airspace complexity

The airspace complexity of any sector can be calculated using Equation 4.1.

This equation takes into consideration the number of aircraft within the sector, the

number of aircraft changing speed, heading or altitude and the number of aircraft

pairs whose separation falls into several categories. The airspace complexity for a

set of sectors, {sk}Mk=1 where sk is the kth sector and M is the number of sectors

in the set; at a future point in time can be predicted using a variety of different
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approaches. After measuring the complexities from the real-time environment and

predicting the future complexities we have a set of data as follows:

C = {cs}Ns=1 List of measured complexities from the real-time environment, where

cs is a list of complexities for sector s and N is the number of sectors.

cs = {cs,t}Mt=1 Measured complexities for each sector, where cs,t is the measured com-

plexity for sector s at time t and M is the number of measurements made.

ds,t = ds,t,1, ds,t,2, ..., ds,t,n List of air traffic characteristics used to measure the com-

plexity (cs,t) in sector s at time t. n is the number of characteristics.

P = {ps}Ns=1 List of predicted complexities, where ps is a list of predicted complex-

ities for sector s and N is the number of sectors.

ps = {ps,t}Mt=1 List of predicted complexities for each sector, where ps,t is a list of

predicted complexities for sector s made at time t. M is the number of times

predictions were made.

ps,t = {ps,t,i, ps,t,i+1, ..., ps,t,n} Predicted complexity, where ps,t,i is the predicted com-

plexity for sector s. The prediction made at time t for time t + i where i is

the look ahead period, that is the amount of time into the future that the

prediction was made for.

Using a snapshot of the traffic data at any given time we can use machine

learning techniques to predict the future airspace complexity. This snapshot of air

traffic data can also be used to simulate the air traffic for the given time horizon using

different simulation models, such as the ones introduced in the previous chapters.

As we have been using low fidelity simulators for predicting the air traffic conditions

in the future, it is possible that there will be some deviation between the predicted

level of complexity and the actual level of complexity as measured in the real time

environment. For this reason we also require a method for correcting for this level

of error in the prediction.
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In the following section we will use the current traffic conditions, As, in each

sector to generate multiple linear regression models and to train neural networks

in order to predict the future airspace complexity. Next we will use a combination

of the current traffic conditions, As, and the current airspace complexity character-

istics, ds,t, to predict the airspace complexity and finally we will use simulation to

predict the airspace complexity and use linear regression to estimate the deviation of

this prediction from the actual measured complexity to determine a more accurate

prediction, rs,t.

5.3 Predicting Airspace Complexity Using Air Traf-

fic Characteristics

First, we used multiple linear regression and neural networks to predict the

future airspace complexity using the current traffic characteristics. An overview of

the process used to learn the current traffic conditions which can lead to the future

airspace complexity levels can be seen in Figure 5.1. First the air traffic data from

the real time environment was monitored for a period of time. During this period, a

snapshot of air traffic data from the real time environment was periodically used to

measure the airspace complexity for each sector in the airspace. A map of the sectors

in the Australian airspace can be seen in Figure 5.2. From this figure we can see

the relative position, size and geometry of the different sectors in the airspace. The

snapshot used to calculate the airspace complexity contains the position of every

active aircraft in the airspace, along with it’s altitude, speed and heading and also

it’s expected route. The measured complexities and the air traffic characteristics at

the corresponding time were recorded in a database.

At the end of the monitoring period measured complexities and the air traffic

data were grouped by the sector (s) and time for offline analysis. The first step in

the offline analysis was to aggregate the air traffic data for each snapshot to a form

which can be used easily with the multiple linear regression and the neural networks.
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Figure 5.1: Learning traffic conditions in the airspace to predict future airspace
complexity

Using the traffic data we calculate the following characteristics:

• Number of aircraft in the sector (a1)

• The ratio of the sector area occupied by the area of the convex hull formed by

the aircraft within the sector (a2)

• Smallest separation distance among every pair of aircraft (a3)

• Largest separation distance among every pair of aircraft (a4)

• Average separation distance among every pair of aircraft (a5)

• Average speed of aircraft within the sector (a6)

• Average heading of aircraft within the sector (a7)

• Average altitude of aircraft within the sector (a8)

• Number of aircraft changing altitude (a9)

• Average expected heading change of the aircraft within the sector over the

following x minutes (a10,x)

The convex hull was found by using the convhull function in Matlab (Math-

Works, 2015a). This function takes a list of points (aircraft latitudes and longitudes
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Figure 5.2: High sectors in the Australian airspace

in this case) and returns the smallest polygon that contains all of the points. The

area formed by these points was then calculated. Once we have found the area of

the convex hull we find the ratio, a2, of the area of the sector occupied by the convex

hull. An example of a convex hull for a snapshot for one sector can be seen in Fig-

ure 5.3. In this figure we can see the sector boundary (red) and the aircraft (blue)

located within the sector at this particular snapshot. The aircraft is designated with

a different symbol based on their altitude and a 5 minute intent line is also shown

(pink) representing the aircraft’s expected position within the next 5 minutes based

on their flight plan and current speed. The convex hull formed by these aircraft is

shown in green. The ratio between the sector area and the convex hull area repre-

sents the amount of freedom the ATC may have in altering the trajectories of the

aircraft to handle problems which may arise.

For a3, a4 and a5, the separation distance between every aircraft pair within
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Figure 5.3: Convex hull of aircraft within the sector

the sector was measured. The shortest, longest and average separation distances

were then found. This distance is measured in the lateral and longitudinal axis for

aircraft pairs separated vertically by 2,000ft or less.

For a10,x, it was determined how far the aircraft would travel in x minutes (the

lookahead period) with its current speed. Based on this estimated distance, it was

determined how many waypoints would have been passed by the aircraft in this time

and therefore its expected heading after x minutes. This expected heading and the

aircraft’s current heading were used to calculate the expected heading change as

follows:

hchange = min(|hcurrent − hexpected|, 360− |hcurrent − hexpected|) (5.1)

where hcurrent is the current heading of the aircraft, that is the heading of the

aircraft when the snapshot was taken, and hexpected is the expect heading after x

October 30, 2015 Rubai Amin



CHAPTER 5. REAL-TIME SIM-BASED COMPLEXITY PREDICTION 133

minutes.

These characteristics were used to create a vector, As,t,x = [a1, a2, ..., a9, a10,x],

for each snapshot for each sector, each snapshot time and each lookahead period

combination we are interested in investigating. Next each A vector is matched with

the complexity measurement from the lookahead period (cs,t+x). For example, if

the lookahead time is 5 minutes, then we match the traffic characteristic vector for

sector s at time t = 08:10 with the measured complexity for sector s from t + x =

08:15.

We used the As,t,x vectors as the input for training the neural networks and for

generating the linear regression models. The target for learning are the correspond-

ing cs,t+x complexity values. As mentioned in the previous chapter, the real-time

environment used to obtain this data could potentially be the real world or a sim-

ulated air traffic control environment, but in the case of this study, we once again

use a high fidelity air traffic simulator to represent the real-time environment. The

high fidelity air traffic simulator used in this study was also ATOMS (the perfect

model) and it is assumed to be an accurate representation of the real world for our

purposes. An air traffic scenario was generated consisting of 30 days of air traffic

activity. This scenario consisted of flight operations typical for this period within

the Australian airspace. This scenario is the same as the scenario used for the simu-

lation validation section in Chapter 3. During the simulation of these 30 days of air

traffic using the perfect model we recorded the airspace complexity in each sector

and a snapshot of the air traffic conditions at a frequency of once every 5 minutes.

The airspace complexity is measured using Equation 4.1, which is a weighted sum

of several characteristics of the air traffic. The characteristics used to calculate the

complexity are different from these contained in the A vector. The air traffic data

snapshots were used to generate the A vectors for each sector and matched with the

complexities for that sector for lookahead periods of 5, 10 and 15 minutes. This in-

formation is then used to generate the linear regression models and neural networks

for each sector.

A separate multiple linear regression model was generated for each sector for
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each of the three lookahead periods. The MATLAB function regress (MathWorks,

2015c) is used to generate these models. This function takes a set of predictors, or

explanatory variables, (the As,t,x vectors in our case) and a set of observed values

(cs,t+x in our case) to generate a set of coefficient estimates (β0, ..., β10). The coeffi-

cients attempt to model the relationship between the current traffic characteristics

and the resulting airspace complexity in the lookahead period. These coefficients are

used to produce the model shown in Equation 5.2 where we can multiply the traffic

characteristics by their corresponding coefficient to obtain a complexity prediction.

In this equation the values a1, a2, ..., a9, a10,x are obtained from the vector As,t,x. We

can use the β weights during the real-time flight operations to predict the future

airspace complexity (in real-time) using the traffic characteristics observed in the

real-time environment.

ps,t,x = β0 + β1a1 + β2a2 + ...+ β9a9 + β10a10,x (5.2)

Once we have generated the models for each sector and lookahead combination

we can begin to analyse the model for how well it fits the data. This analysis

is conducted by measuring the coefficient of determination for each model. The

coefficient of determination, R2, indicates how well the data fits a statistical model

on a range from 0 to 1 (Menard, 2000). A R2 value of 1 means that the model

perfectly represents all of the data while a value of 0 means that the model does not

represent any of the data. Therefore, the closer the R2 values is to 1, the better the

models are at represent the data. R2 is calculated using Equation 5.3 where n is the

number of samples, yi is the observed value of the ith sample, ŷi is the predicted

values from using the generated model and ȳ is the mean of the observed values.

R2 = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

(5.3)

Once we have generated the models for each sector and lookahead period we can

determine their R2 values. As we are using data obtained for the entire Australian

airspace it is not practical to present the results for each of the 120 sectors and their
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three lookahead period. So we will select a representative set of sectors. The sectors

were ordered by their average complexity for the duration of this 30 day scenario

and the ten sectors with the highest average complexity and the ten sectors with

the lowest average complexity were selected. Additionally ten sectors around the

median complexity were also chosen, five higher than the median and five lower than

the median. The R2 values for these selected sectors can be seen in Table 5.1. The

average R2 value among all of the sectors can also be seen in the table, as well as

the R2 values for the sector with the highest average R2 for the 5, 10 and 15 minute

lookahead period that is not already included in the table. From this table we can

see that there are several sectors which have a R2 values greater than 0.9. If we

investigate the traffic characteristics of these sectors we find that these sectors have

a low number of aircraft passing through them and usually have trajectories that are

relatively simple (ie. no turning, climbing, descending or crossing tracks with other

aircraft). Excluding these sectors, we see that the sectors with the highest average

complexity also have the highest R2 values. We can also see that for majority of

the sectors the 5 minute lookahead results in the highest R2, followed by the 10

minute lookahead period. This suggests that this method becomes less accurate as

we increase the lookahead period. There are only two instances in this group where

the R value is greater than 0.4 and this suggests that the multiple linear regression

method is a poor predictor of future airspace complexity when using current air

traffic conditions for the prediction.

The same set of traffic characteristics were also used to train a set of neural net-

works, also with the aim of predicting future airspace complexity using the current

air traffic conditions. This resulted in a separate neutral network for each sector

and lookahead period combination. We used the traffic characteristics as the input

for training the neural networks and the measured complexity from the lookahead

period as the target. This gives us ten inputs and one target. The neural networks

were trained and generated using Matlab (MathWorks, 2015d). The configuration

for the neural network included a two-layer feedforward network with ten sigmoid

hidden neurons and a linear output neuron. Figure 5.4 shows an overview of the
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neural network architecture. During the training phase, a set of weights in the hid-

den layer and output layer are determined. These weights are used provide us with

a prediction when using the network. The Levenberg-Marquardt backpropagation

algorithm Moré (1978) was used to iterate and update the weights in order to min-

imise learning error. This iteration continues until a minimum error level is reached.

We can use these networks during real-time flight operations to predict the future

airspace complexity (in real-time) by using the traffic characteristics observed in the

real-time environment as inputs into the network.

Once we have generated the various neural networks we can again analyse there

fit of the data by calculating the coefficient of determination, R2, for each network.

Table 5.2 shows the R2 values for lookahead periods of 5, 10 and 15 minutes for

ten sectors with the highest average complexity and the ten sectors with the low-

est average complexity were selected. Additionally ten sectors around the median

complexity are also shown, five higher with an average complexity higher than the

median and five lower. This table also shows the average R2 value among all of the

sectors can also be seen in the table, as well as the R2 values for the sector with

the highest average R2 for the 5, 10 and 15 minute lookahead period that is not

already included in the table. The sectors selected for this table are the same as

those shown in Table 5.1 for the multiple linear regression. We can see, again, that

the sectors with the highest average complexity have the highest R2 values. We can

also see that, for this group, when compared to the corresponding R2 from Table 5.1

for the multiple linear regression, there is a general improvement in the R2 values.

However, in the two other groups we see that the results are largely the same. But

the overall average R2 for all sectors when using neural networks is greater than

when using multiple linear regression. This shows that the neural networks produce

models which on average produce a better fit for the data than when using multiple

linear regression. However the best R2 values still quite poor.
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Table 5.1: Coefficient of determination for multiple linear regression for a selection
of sectors

Sector
Average

complexity
R2 for lookahead period
5 min 10 min 15 min

Sectors with the highest average complexity
YBBB YMMM NULLARBOR A 32.70 0.35 0.34 0.33
YMMM BENALLA 28.35 0.32 0.27 0.23
YBBB INVERELL A 25.25 0.31 0.22 0.14
YBBB YMMM MUDGEE D 22.44 0.31 0.27 0.24
YBBB TERRITORY 22.23 0.30 0.28 0.25
YBBB YMMM ALICE SPRINGS 21.41 0.37 0.36 0.35
YBBB YMMM ISA 19.41 0.34 0.32 0.29
YBBB YMMM WARREGO 18.91 0.37 0.35 0.34
YMMM BILLABONG 18.40 0.44 0.42 0.40
YBBB YMMM KIMBERLEY 17.37 0.36 0.33 0.31

Sectors with average complexity around the median
YMMM BINDOOK SYDNEY CAP 6.88 0.04 0.01 0.01
YBBB DARWIN ARRIVALS 6.70 0.25 0.21 0.11
YMMM WOLLONGONG A 6.58 0.08 0.01 0.01
YMMM WONTHAGGI A 6.34 0.09 0.02 0.01
YBBB YMMM NICKEL 6.06 1.00 0.96 1.00
YBBB KENNEDY C 5.86 0.10 0.01 0.01
YMMM AUGUSTA HIGH C 5.65 0.21 0.14 0.08
YBBB DOWNS A 5.55 0.08 0.03 0.01
YMMM TAILEM BEND B 5.53 0.10 0.02 0.02
YBBB GOLD COAST C 5.49 0.03 0.03 0.01

Sectors with the lowest average complexity
YMMM EILDON WEIR HIGH A 3.27 0.11 0.02 0.07
YBBB BURNETT C 3.15 0.03 0.03 0.04
YBBB YMMM KATOOMBA A 2.28 0.08 0.07 0.13
YMMM WONTHAGGI E 2.26 0.04 0.33 0.22
YBBB BARRA C 2.26 0.03 0.03 0.04
YBBB GOLD COAST B 2.04 0.12 0.06 0.07
YBBB BARRA E 2.04 0.07 0.09 0.09
YMMM KATOOMBA SYDNEY CAP 1.73 0.16 1.00 1.00
YBBB YMMM MUDGEE A 1.66 0.25 0.65 0.06
YMMM AUGUSTA HIGH B 1.33 0.50 0.61 1.00

Sector with highest average R2

not already included
16.69 0.47 0.45 0.43

Overall average
0.20
± 0.17

0.19
± 0.22

0.18
± 0.25

Rubai Amin October 30, 2015



138 CHAPTER 5. REAL-TIME SIM-BASED COMPLEXITY PREDICTION

Table 5.2: Coefficient of determination for neural networks for a selection of sectors

Sector
Average

complexity
R2 for lookahead period
5 min 10 min 15 min

Sectors with the highest average complexity
YBBB YMMM NULLARBOR A 32.70 0.56 0.55 0.53
YMMM BENALLA 28.35 0.45 0.37 0.29
YBBB INVERELL A 25.25 0.38 0.26 0.16
YBBB YMMM MUDGEE D 22.44 0.50 0.40 0.34
YBBB TERRITORY 22.23 0.48 0.44 0.40
YBBB YMMM ALICE SPRINGS 21.41 0.60 0.57 0.53
YBBB YMMM ISA 19.41 0.53 0.48 0.45
YBBB YMMM WARREGO 18.91 0.61 0.56 0.55
YMMM BILLABONG 18.40 0.63 0.60 0.56
YBBB YMMM KIMBERLEY 17.37 0.54 0.50 0.45

Sectors with average complexity around the median
YMMM BINDOOK SYDNEY CAP 6.88 0.05 0.02 0.02
YBBB DARWIN ARRIVALS 6.70 0.08 0.02 0.07
YMMM WOLLONGONG A 6.58 0.12 0.03 0.02
YMMM WONTHAGGI A 6.34 0.18 0.03 0.02
YBBB YMMM NICKEL 6.06 0.76 0.62 0.53
YBBB KENNEDY C 5.86 0.22 0.04 0.01
YMMM AUGUSTA HIGH C 5.65 0.20 0.11 0.04
YBBB DOWNS A 5.55 0.19 0.04 0.05
YMMM TAILEM BEND B 5.53 0.14 0.02 0.02
YBBB GOLD COAST C 5.49 0.03 0.06 0.02

Sectors with the lowest average complexity
YMMM EILDON WEIR HIGH A 3.27 0.14 0.07 0.02
YBBB BURNETT C 3.15 0.01 0.01 0.05
YBBB YMMM KATOOMBA A 2.28 0.09 0.13 0.03
YMMM WONTHAGGI E 2.26 0.09 0.33 0.35
YBBB BARRA C 2.26 0.05 0.14 0.04
YBBB GOLD COAST B 2.04 0.11 0.39 0.05
YBBB BARRA E 2.04 0.08 0.16 0.07
YMMM KATOOMBA SYDNEY CAP 1.73 0.23 0.63 0.46
YBBB YMMM MUDGEE A 1.66 0.17 0.25 0.12
YMMM AUGUSTA HIGH B 1.33 0.21 0.23 0.30

Sector with highest average R2

not already included
16.69 0.63 0.60 0.56

Overall average
0.30
± 0.21

0.25
± 0.19

0.21
± 0.23
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Figure 5.4: Neural network architecture

5.4 Predicting Airspace Complexity Using Com-

plexity Metrics

In the previous section we saw that using the current traffic characteristics to

predict the airspace complexity of a sector at a future time using multiple linear

regression and neural networks was not very successful. We can attempt to make

the prediction obtained from these systems more accurate by directly incorporating

some of the characteristics which contribute to the airspace complexity. The airspace

complexity at any one time is calculated by a weighted sum (see Equation 4.1) of

the following characteristics at the time:

• N - the number of aircraft in the sector

• NH - the number of aircraft in the sector that made a heading change greater

than 15◦ during an interval of 2 minutes

• NS - the number of aircraft in the sector which had a speed change of greater

than 10 kts during an interval of 2 minutes

• NA - the number of aircraft in the sector which had an altitude change greater

than 750 ft during an interval of 2 minutes

• S5 - the number of aircraft in the sector with 3D Euclidean distance between

0-5 NM
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• S10 - the number of aircraft in the sector with 3D Euclidean distance between

5-10 NM

• S25 - the number of aircraft in the sector with lateral distance between 0-25

NM and vertical separation less than 2000 ft

• S40 - the number of aircraft in the sector with lateral distance between 25-40

NM and vertical separation less than 2000 ft

• S70 - the number of aircraft in the sector with lateral distance between 40-70

NM and vertical separation less than 2000 ft

These characteristics can be calculated for any particular time for any sector

from the traffic snapshot data. We repeat the multiple linear regression model

generation process introduced in the previous section. But this time we use a number

of different components to generate these models. The components can be seen in

Table 5.3. We have selected six sets of components. The first set consists of the

number of aircraft in the sector, the number of aircraft changing heading, changing

speed and changing altitude. The second set consists of the 5 aircraft separation

characteristics while the third set consists of all nine of the characteristics that

contribute to the complexity calculation. The fourth, fifth and sixth sets are a

combination of the traffic characteristics a1 through to a10 with the first, second

and third sets respectively. It is expected that directly using the components which

contribute to current airspace complexity in the sector may guide us towards making

more accurate predictions of the future airspace complexity.

Table 5.3: Predictors for multiple linear regression
Set Predictors
1 N, NH, NS, NA
2 S5, S10, S25, S40, S70
3 N, NH, NS, NA, S5, S10, S25, S40, S70
4 a1, ..., a10, N, NH, NS, NA
5 a1, ..., a10, S5, S10, S25, S40, S70

6
a1, ..., a10, N, NH, NS, NA,
S5, S10, S25, S40, S70
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We once again generated a separate regression model for each sector for each

of the three lookahead periods of 5, 10 and 15 minutes. But this time we also

have 6 separate models for each sector and lookahead period combinations. In

order to generate these models we used the components for each of the sets as

the predictors while we set the observed values as the measured complexity from

the lookahead period. That is, if the components relate to snapshot from t =

8:10 and the lookahead period is 5 minutes then we set the observed value as the

measured complexity from t = 8:15. We can use the weights generated for each of

the models to predict the future airspace complexity (in real-time) using the traffic

characteristics observed in the real-time environment. Once we have generated the

models for each sector, lookahead period and set combination we calculate their

coefficient of determination, R2, using Equation 5.3. The average R2 values for each

of the lookahead period and set combinations for all of the sectors can be seen in

Table 5.4. If we compare the values in Table 5.4 to the overall averages values for the

multiple linear regression with the traffic characteristics in Table 5.1 and those for

the neural networks in Table 5.2 we see that using the complexity characteristics as

the predictors generally results in a better R2, meaning we have a generated models

with a better fit. With the exception of set 2, all other sets resulted in higher R2

values than when using only the traffic characteristics as the predictors. We can see

that for these sets the R2 values for the 5 minute lookahead period are again the

highest among the three periods. The R2 values for the two sectors with the highest

average complexities can be seen in Table 5.5. We can see from this table that for

the sector ‘Nullarbor A’ all of the sets of predictors led to an improvement in the

coefficient of determination when compared to only using the traffic characteristics

as predictors. When we compare the R2 values for the ’Benalla’ sector we can see

that there is significant improvement when comparing the 5 and 10 minute lookahead

periods and a slight improvement for the 15 minute lookahead period. While we can

see some improvment in the coefficient of determination for these sets, they are still

quite poor and we require a method which is more accurate.
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Table 5.4: Average R2 values for multiple linear regression with each set of compo-
nents

Set
R2 for lookahead period
5 min 10 min 15 min

1 0.30 0.25 0.21
2 0.30 0.20 0.16
3 0.38 0.30 0.25
4 0.35 0.31 0.27
5 0.38 0.30 0.27
6 0.42 0.35 0.30

Table 5.5: Average R2 values for multiple linear regression with each set of compo-
nents for selected sectors

Set

R2 for lookahead
period for Nullarbor A

R2 for lookahead
period for Benalla

5 min 10 min 15 min 5 min 10 min 15 min

1 0.76 0.74 0.71 0.60 0.46 0.33
2 0.83 0.76 0.71 0.71 0.45 0.26
3 0.93 0.87 0.83 0.74 0.51 0.34
4 0.77 0.75 0.72 0.61 0.46 0.34
5 0.88 0.82 0.77 0.73 0.49 0.32
6 0.93 0.87 0.83 0.74 0.51 0.35

5.5 Predicting Airspace Complexity Using Simu-

lation

We saw in the previous sections that using multiple linear regression and neural

networks to predict future airspace complexity was not successful as these methods

were not able to properly capture the dynamic environment and the uncertainties it

brings. To overcome these challenges in prediction we can substitute the regression

and neural networks components with a simulation system to obtain a prediction

of the future airspace complexity. The simulation system can into account some of

the dynamic characteristics of the air traffic system when making a prediction. The

dynamic characteristics include events such as aircraft turning at waypoints, aircraft

entering and exiting the sector and ATCs and pilots taking actions to deviate the

aircraft from it’s flight plan. Using simulation for real-time prediction can however
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be a time consuming and computationally intensive task. To overcome this issue

a simulators with low or lower level of fidelity can be used. We have seen in the

previous chapters that using simulators with lower levels of fidelity can also intro-

duce some deviations in our prediction when compared to the observed data. For

this reason we require a method by which we can minimise the level of deviation

produced by the simulator. An overview of our developed method can be seen in

Figure 5.5. In this method we use the periodic air traffic data obtained from the

real-time environment to simulate the air traffic using a low fidelity simulator. The

predicted airspace complexities from the simulator and the actual measured airspace

complexities are stored for further analysis.
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Figure 5.5: Learning the deviations in simulator prediction

Once we have obtained the measured and predicted complexities we can at-

tempt to learn the relationship between the predicted and actual complexities. If

we are able to establish a relationship between the deviations of the measured and

predicted complexities we can obtain a more accurate prediction of the airspace

complexity. In order to establish this relationship we will use linear regression. We

will generate a separate linear regression model for each sector and lookahead period

combination. In order to generate these models we use the predicted complexities,

ps,t,x as the predictors in the regression model and the measured complexity, cs,t+x,

for the lookahead period, x, as the observed value. From this process we then obtain

the weights β0 and β1 which we can use in Equation 5.4 to obtain a new, more accu-

rate, prediction of the airspace complexity, rs,t,x. This equation, in conjunction with
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the simulation, can be used to obtain a more accurate prediction of the airspace

complexity in real-time.

rs,t,x = β0 + β1ps,t,x (5.4)

The traffic snapshot data recorded from 30 day scenario used for analysis in the

previous sections was used to simulate the air traffic for lookahead periods of 5, 10

and 15 minutes. The simulations were conducted using snapshot data at an interval

of 5 minutes. The simulation itself was conducted using the low fidelity simulators,

BS1, BS2, BS3 and BS4; introduced in Chapter 3. The air traffic data from each

snapshot time are used simulate all aircraft in the entire Australia airspace and

simultaneously obtain a prediction of the airspace complexity for every sector for

the lookahead periods of 5, 10 and 15 minutes. We then use these predictions to

generate the regression models.

As we saw in Chapter 3, the four simulators (BS1 to BS4) each have a different

set of assumptions behind their design. Each of these different assumptions can lead

to a potentially different source of error in the simulation and therefore a potentially

new source of deviation in the prediction provided by these simulators. The key

sources of deviations from the observed events from the real world operations are

expected to arise from assumptions regarding climb rates, speed, turning and their

representation of the Earth.

An overview of the system developed to predict the airspace complexity with

simulation and linear regression can be seen in Figure 5.6. Using the periodic air

traffic snapshot data we use the low fidelity simulator to obtain an initial prediction

for the airspace complexity and then apply Equation 5.4 to this prediction to obtain

a potentially more accurate prediction. This process can provide us with a prediction

of the airspace complexity for every sector in the Australian airspace (or any other

large airspace) in a matter of seconds.

Handling a large number of regression models (such as one per sector) may

provide us with models with a good fit to the data, but they will become time
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Figure 5.6: Using regression coefficients along with simulation to obtain a more
accurate prediction of future airspace complexity

consuming to generate and maintain while it may be possible to use a smaller number

of models to obtain with similar results. To determine an appropriate number of

models to use we will also investigate the following types of models:

1. A single model encompassing all sectors

2. A separate model for each group where the sectors are grouped based on their

traffic and physical characteristics

3. A separate model for each sector

First we will generate a single model to be used for all sectors. Next we will

analyse the relationship between the physical and traffic characteristics of the sectors

and group the sectors based on similar characteristics. Finally we will generate a

separate model for each of the sectors.

5.5.1 Using Data From Every Sector

The first type of model uses data from every sector to create a combined linear

regression model. This was done by combining the predicted complexities from each

of the 120 sectors for the 30 days into one list. These values were used as the

predictors when generated the regression models while the corresponding measured

complexities from the lookahead periods of 5, 10 and 15 minutes were set as the

observed values. This produced three models, one for each of the lookahead periods,
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for each of simulators giving us a total of 12 models to analyse. The overall fit of

the data to the model was determined using the coefficient of determination, R2,

which is calculated using Equation 5.3 where n is the number of samples, yi is the

observed complexity value corresponding to the ith sample, ŷi is the predicted value

from using the generated model in conjunction with simulation and ȳ is the mean

of the observed values.

The coefficient of determination for each of the lookahead period and simulator

combinations can be seen in Table 5.6. From this table we can see that the resulting

regression models are a very good fit to the data as all R2 values are around or

greater than 0.9. This shows that by using any of the four simulators to obtain

the complexity for any sector in the airspace and then applying Equation 5.4 we

can produce a complexity prediction which is very accurate. This particular setup

resulted in better R2 values than when using neural networks and multiple linear

regression to predict the future airspace complexity using the traffic characteristics.

From Table 5.6 we can see that we were able to obtain the best R2 values for BS3

and BS4.

Table 5.6: R2 values for linear regression of airspace complexities prediction from
four simulators

Simulator
R2 for lookahead periods
5 min 10 min 15 min

BS1 0.94 0.92 0.90
BS2 0.94 0.91 0.88
BS3 0.95 0.92 0.91
BS4 0.95 0.94 0.93

If we are able to achieve such a good coefficient of determination for combined

models for all sectors we may be able to obtain better results if we were to generate

models focusing on a subset of sectors. In the following section we will groups the

sectors based on common characteristics and generate regression models for these

groups.
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5.5.2 Clustering the Sectors

The second type of model investigated requires the clustering of sectors based on

similarity of physical and traffic characteristics. The clustering was performed using

the k-medoids method with the partition around medoids (PAM) algorithm (Kauf-

man and Rousseeuw, 2009). The k-medoids method divides a set of observations in k

clusters by minimising the sum of the distances between observations and the center

of it’s cluster. In this method the center is of the cluster is one of the observations.

There are several algorithms which can assist in reducing the sum of distances. One

such method is the partition around medoids algorithm. This algorithm operate in

two steps (MathWorks, 2015b):

• Build step: Each cluster is associated with a potential medoid.

• Swap step: Each point within each cluster is tested as a potential medoid by

checking if the sum of distances for the cluster is reduced with the new medoid.

If the sum is reduced, a new medoid is set. Every point is the reassigned to

the cluster with the closest medoid.

The algorithm continues to iterate through these two steps until there is no

change in medoid in successive iterations.

Physical and traffic characteristics

We formed a total of ten clusters based on each sector’s traffic and physical char-

acteristics. The previously calculated traffic characteristics for each sector using

the air traffic snapshots, As,t, were used to generate a traffic characteristics sum-

mary vector, Bs, for each sector. This summary vector contains the mean, standard

deviation and maximum values for each of the components in the A vector.

The following physical characteristics were also calculated for each sector:

• The area of the sector (g1)

• The altitude range of the sector (g2)
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• Number of upper air routes in the sector (g3)

• Number of intersecting points between one or more routes in the sector (g4)

• Total distance of routes in the sector (g5)

• Sector angle variation (g6)

• Sector centroid distance ratio (g7)

The altitude range of the sector, g2, was calculated by finding the difference

between the sector’s minimum and maximum altitude limits.

The sector angle variation, g6, was calculated by first making a list of the angle

made by each of the points defining the sector. g6 is determined by finding the

variance of the angles within the list. A sector with a uniform shape, such as a

circle or a square, will have a lower variances while more irregularly shaped sectors

have a higher variance.

For g7, the centroid of the sector was found and then the furthest and closest

points on the sector boundary from the centroid were found. The ratio is calculated

by dividing the distance to the closest point by the distance to the furthest point.

The physical characteristics for each sector were combined to form a vector for

each sector, Gs = [g1, g2, ..., g7].

The traffic characteristic summary vector, Bs, and the physical characteristics

vector, Gs, for each sector was combined to form a new vector, Hs = [BsGs]. Each

of the components of this vector were then normalised to the range 0 to 1 with the

largest value for each characteristic among all sectors being assigned 1 while the

smallest being assigned 0.

Clustering

Once we have assembled the traffic and physical characteristics summary vector,

H, for each sector we can use these vectors to cluster the sectors. By using these

characteristics we produce groups of sectors which have similar characteristics such
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as traffic levels and patterns. We input the list of H vector to cluster the sectors

into ten groups. After we obtain the composition of the ten groups we conduct a

principle component analysis (Abdi and Williams, 2010) of the H vectors and plot

the first two principle components, which can be seen in Figure 5.7. The principle

component analysis (PCA) allows us to simplify the components of the H into a set

of principle components. The principle components are a linear combination of the

H vector. The principle components allows us to visualise the similarity of each of

the sectors’ traffic and physical characteristics. In Figure 5.7 each of the sectors are

plotted with a maker based on the group it was clustered into. A plot of the convex

hull for each group can be seen in Figure 5.8. Groups with less than 3 sectors are

shown with their markers as a convex hull cannot be formed.
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Figure 5.7: Plot of principle component analysis

The predicted complexities for each sector were combined based on the sec-

tor’s cluster and used to generate a separate regression model for each cluster and

lookahead period combination. As we have 10 cluster and we are using 4 different
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Figure 5.8: Plot of principle component analysis with the convex hull area of each
clusters outlined

simulators to predict the complexity we generated a total of 120 models.

Results

The coefficient of determination for each of the generated models for each cluster,

lookahead period and simulator combination can be seen in Table 5.7. From this

table we can see that the R2 values are closely related to the cluster rather than the

simulator being used to make the initial complexity prediction. As we saw in the

previous sections, the R2 values for the 5 minute lookahead periods were the highest

while the values for the 15 minute period were the lowest. Interestingly the cluster

with the most sectors also achieved the best R2 value across all three lookahead

periods. A box plot of the R2 values for each simulator and lookahead period

combination can be seen in Figure 5.9. This figure displays a box for each simulator

and lookahead period combination outlining the range from the 1st quartile to the

3rd quartile. The box is divided by a horizontal line indicating the 2nd quartile
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or median. The mean of the group is signified by the circle. From this figure

we can see that the simulators BS3 and BS4 have the highest average R2 values

for each lookahead period when compared to BS1 and BS2. However the median

value for BS1 and BS4 were higher than the medial value for BS2 and BS3 for all

lookahead periods. The results for each individual cluster suggests that the sources

of deviations in the complexity predictions from the simulators are not necessarily

mapped to particular sector geometries or traffic levels, but more towards other

factors of the traffic behaviour as the R2 for some of the clusters are quite poor,

resulting in the mean for some simulators to be lower than the 1st quartile. This is

particularly evident from Cluster 4. We can see from Figure 5.7 that the sectors for

this clusters, indicated by red crosses, are placed closely together from the principle

component analysis of their traffic characteristics summary. However the traffic

patterns in these sectors are different and the level of deviations in complexity

prediction for these sectors are different. If that is the case then using separate

models for each sector may provide us with more accurate results.

5.5.3 Individual Sectors

The third and final type of model we investigated were regression models gen-

erated for each sector. We generated three separate models for each sector, one

for each of the three lookahead periods. The airspace complexity prediction ob-

tained from the simulator is used as the predictor while the corresponding measured

airspace complexity from the lookahead period form the real-time environment is

set as the observed value to generate the linear regression model. As each sector

has it’s own unique traffic patterns which lead to different sources of deviations in

the complexity prediction from the simulator, it is expected that using a separate

simulator for each sector may result in models with a better fit.

The coefficient of determination for ten sectors with the highest average com-

plexity and the ten sectors with the lowest average complexity were selected and

can be seen in Table 5.8, 5.9 and 5.10 for the 5, 10 and 15 minute lookahead periods
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Figure 5.9: Box plot of R2 values for clusters for each simulator for 5, 10 and 15
minute lookahead periods

respectively. Additionally ten sectors around the median complexity are also shown,

five higher with an average complexity higher than the median and five lower, are

also included in these tables. From these tables we can see that the overall average

R2 for all four simulators are higher than any of the previously analysed sector-wise

models. However we can see that the R2, across all three lookahead periods, are

significantly higher than the other two groups. In fact the R2 in this group are are

close to 1, a perfect fit. From these tables we begin to see some variation in the

R2 values based on the simulator being used and also for the lookahead period, but

we see that the sectors with the highest complexity still maintain very high R2 irre-

spective of the simulator and lookahead period. A box plot of the R2 values for each

simulator and lookahead period combination can be seen in Figure 5.10. This figure

displays a box for each simulator and lookahead period combination outlining the

range from the 1st quartile to the 3rd quartile. The box is divided by a horizontal
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line indicating the 2nd quartile or median. The mean of the group is signified by

the circle. We see that BS4 generally has the highest R2 among the four simulators.

Although the average R2 for BS3 is higher than that of BS1, we can see that both

of these simulators have a similar median value. Even though the R2 values for the

sectors with lower average complexities are quite poor, these values are still higher

than the previously analysed sector-wise models. As the sectors with the highest

complexity would most likely be the candidates for the application of procedures

such as the real-time complexity adjustment system introduced in Chapter 4, these

results are still encouraging. This means that we can confidently use simulation

to predict the airspace complexity of the sectors with high levels of traffic and use

this prediction in conjunction with linear regression to produce a more accurate

prediction of the complexity for these sectors.
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Figure 5.10: Box plot of R2 values for clusters for each simulator for 5, 10 and 15
minute lookahead periods
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5.6 Summary

In this chapter, we designed several methods for predicting the future airspace

complexity in real-time simultaneously for multiple sectors in the Australian airspace

using an air traffic snapshot from each sector. Initially we generated multiple linear

regression models for each sector in order to predict the future airspace complexity

using a summary of the air traffic conditions in a sector. The summary of traffic

conditions was calculated from a periodic snapshot of the air traffic in the sector.

We repeated the same process to generate a set of neural networks to be used to

make the same prediction. Some additional traffic characteristics which are used

to calculate the airspace complexity were also included to generate a new set of

multiple linear regression models. However we found that these three methods did

not provide us with a good fit for accurate prediction of future airspace complexity.

We also used simulation to predict airspace complexity. As we are predicting

the airspace complexity for sectors encompassing the entire Australian airspace in

real-time, we required a fast methodology and so we used several low fidelity sim-

ulators to make the predictions. Using low fidelity simulators may introduce some

deviation into our results when compared to high fidelity simulators or real-world

observations. We generated linear regression models using the measured and pre-

dicted complexities. The predicted complexities from the simulator can be combined

with the linear regression models to obtain a more accurate estimation of the com-

plexity. We found that the linear regression models for sectors with high traffic

levels resulted in good fits to the data, while those with lower levels of traffic did

not provide as convincing results. Using the linear regression models in conjunction

with our simulators we can somewhat reduce the effect of fidelity and the resulting

deviations in the prediction of airspace complexity for these high traffic sectors.
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Table 5.7: R2 values for linear regression of airspace complexities prediction from
four simulators by clustering sectors based on common characteristics

Cluster
Number of

sectors
R2 for simulator

BS1 BS2 BS3 BS4

Lookahead period = 5 min
1 10 0.87 0.83 0.85 0.89
2 12 0.96 0.94 0.96 0.98
3 15 0.81 0.77 0.78 0.83
4 5 0.02 0.15 0.16 0.03
5 13 0.56 0.72 0.75 0.63
6 40 0.96 0.95 0.96 0.97
7 17 0.85 0.80 0.83 0.89
8 1 0.78 0.79 0.79 0.78
9 2 0.79 0.77 0.79 0.82
10 1 0.35 0.37 0.35 0.37

Average
0.69
± 0.28

0.71
± 0.24

0.72
± 0.25

0.71
± 0.28

Lookahead period = 10 min
1 10 0.75 0.73 0.75 0.79
2 12 0.94 0.89 0.92 0.97
3 15 0.71 0.65 0.68 0.76
4 5 0.02 0.01 0.01 0.02
5 13 0.46 0.63 0.66 0.58
6 40 0.94 0.93 0.95 0.96
7 17 0.76 0.71 0.73 0.83
8 1 0.79 0.78 0.81 0.81
9 2 0.69 0.64 0.65 0.72
10 1 0.14 0.15 0.12 0.15

Average
0.62
± 0.30

0.61
± 0.28

0.63
± 0.30

0.66
± 0.31

Lookahead period = 15 min
1 10 0.72 0.70 0.74 0.77
2 12 0.91 0.84 0.87 0.95
3 15 0.66 0.58 0.62 0.72
4 5 0.03 0.01 0.01 0.03
5 13 0.40 0.49 0.63 0.54
6 40 0.92 0.91 0.93 0.95
7 17 0.68 0.63 0.67 0.76
8 1 0.80 0.80 0.83 0.83
9 2 0.58 0.52 0.56 0.63
10 1 0.11 0.09 0.14 0.07

Average
0.58
± 0.29

0.56
± 0.29

0.60
± 0.29

0.63
± 0.31
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Table 5.8: R2 values for linear regression of airspace complexities prediction from
four simulators by for each sectors for lookahead period of 5 minutes

Sector
Average

complexity
R2 of simulator

BS1 BS2 BS3 BS4

Sectors with the highest average complexity
YBBB YMMM
NULLARBOR A

32.70 0.97 0.97 0.99 0.99

YMMM BENALLA 28.35 0.97 0.96 0.98 0.99
YBBB INVERELL A 25.25 0.97 0.96 0.98 0.99
YBBB YMMM MUDGEE D 22.44 0.98 0.98 1.00 1.00
YBBB TERRITORY 22.23 0.92 0.91 0.92 0.93
YBBB YMMM ALICE SPRINGS 21.41 0.99 0.98 0.99 0.99
YBBB YMMM ISA 19.41 0.97 0.97 0.98 0.98
YBBB YMMM WARREGO 18.91 0.98 0.99 1.00 0.99
YMMM BILLABONG 18.40 0.97 0.96 0.97 0.98
YBBB YMMM KIMBERLEY 17.37 0.87 0.86 0.87 0.88

Sectors with average complexity around the median
YMMM BINDOOK
SYDNEY CAP

6.88 0.58 0.75 0.77 0.65

YBBB DARWIN ARRIVALS 6.70 0.00 0.08 0.08 0.01
YMMM WOLLONGONG A 6.58 0.77 0.64 0.68 0.80
YMMM WONTHAGGI A 6.34 0.75 0.59 0.59 0.78
YBBB YMMM NICKEL 6.06 0.55 0.03 0.00 0.49
YBBB KENNEDY C 5.86 0.73 0.70 0.72 0.75
YMMM AUGUSTA HIGH C 5.65 0.89 0.88 0.91 0.91
YBBB DOWNS A 5.55 0.67 0.72 0.76 0.70
YMMM TAILEM BEND B 5.53 0.90 0.90 0.95 0.96
YBBB GOLD COAST C 5.49 0.52 0.64 0.64 0.61

Sectors with the lowest average complexity
YMMM EILDON
WEIR HIGH A

3.27 0.21 0.50 0.57 0.33

YBBB BURNETT C 3.15 0.78 0.65 0.69 0.86
YBBB YMMM KATOOMBA A 2.28 0.32 0.36 0.28 0.60
YMMM WONTHAGGI E 2.26 0.37 0.14 0.35 0.37
YBBB BARRA C 2.26 0.68 0.56 0.60 0.73
YBBB GOLD COAST B 2.04 0.27 0.68 0.72 0.30
YBBB BARRA E 2.04 0.65 0.65 0.67 0.64
YMMM KATOOMBA
SYDNEY CAP

1.73 0.23 0.43 0.30 0.39

YBBB YMMM MUDGEE A 1.66 0.32 0.04 0.07 0.50
YMMM AUGUSTA HIGH B 1.33 0.07 0.07 0.03 0.01

Overall average 0.70 0.70 0.73 0.75
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Table 5.9: R2 values for linear regression of airspace complexities prediction from
four simulators by for each sectors for lookahead period of 10 minutes

Sector
Average

complexity
R2 of simulator

BS1 BS2 BS3 BS4

Sectors with the highest average complexity
YBBB YMMM
NULLARBOR A

32.70 0.97 0.97 0.99 0.99

YMMM BENALLA 28.35 0.95 0.93 0.95 0.98
YBBB INVERELL A 25.25 0.95 0.90 0.93 0.99
YBBB YMMM MUDGEE D 22.44 0.97 0.97 0.98 0.99
YBBB TERRITORY 22.23 0.88 0.86 0.89 0.90
YBBB YMMM ALICE SPRINGS 21.41 0.98 0.98 0.99 0.99
YBBB YMMM ISA 19.41 0.96 0.96 0.97 0.97
YBBB YMMM WARREGO 18.91 0.98 0.98 0.99 0.99
YMMM BILLABONG 18.40 0.97 0.95 0.96 0.98
YBBB YMMM KIMBERLEY 17.37 0.73 0.71 0.75 0.75

Sectors with average complexity around the median
YMMM BINDOOK
SYDNEY CAP

6.88 0.47 0.66 0.68 0.59

YBBB DARWIN ARRIVALS 6.70 0.00 0.01 0.02 0.00
YMMM WOLLONGONG A 6.58 0.66 0.50 0.53 0.72
YMMM WONTHAGGI A 6.34 0.59 0.41 0.44 0.63
YBBB YMMM NICKEL 6.06 0.72 0.07 0.17 0.72
YBBB KENNEDY C 5.86 0.61 0.58 0.62 0.64
YMMM AUGUSTA HIGH C 5.65 0.82 0.84 0.88 0.86
YBBB DOWNS A 5.55 0.57 0.57 0.65 0.61
YMMM TAILEM BEND B 5.53 0.85 0.83 0.92 0.96
YBBB GOLD COAST C 5.49 0.39 0.47 0.54 0.52

Sectors with the lowest average complexity
YMMM EILDON
WEIR HIGH A

3.27 0.12 0.29 0.66 0.28

YBBB BURNETT C 3.15 0.70 0.55 0.58 0.80
YBBB YMMM KATOOMBA A 2.28 0.04 0.10 0.23 0.30
YMMM WONTHAGGI E 2.26 0.88 0.71 0.70 0.90
YBBB BARRA C 2.26 0.68 0.51 0.47 0.69
YBBB GOLD COAST B 2.04 0.21 0.16 0.00 0.31
YBBB BARRA E 2.04 0.79 0.78 0.84 0.83
YMMM KATOOMBA
SYDNEY CAP

1.73 0.01 0.36 0.00 0.50

YBBB YMMM MUDGEE A 1.66 0.18 0.49 0.02 0.34
YMMM AUGUSTA HIGH B 1.33 1.00 1.00 1.00 1.00

Overall average 0.62 0.63 0.66 0.75
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Table 5.10: R2 values for linear regression of airspace complexities prediction from
four simulators by for each sectors for lookahead period of 15 minutes

Sector
Average

complexity
R2 of simulator

BS1 BS2 BS3 BS4

Sectors with the highest average complexity
YBBB YMMM
NULLARBOR A

32.70 0.97 0.97 0.99 0.99

YMMM BENALLA 28.35 0.94 0.88 0.91 0.97
YBBB INVERELL A 25.25 0.92 0.84 0.87 0.97
YBBB YMMM MUDGEE D 22.44 0.96 0.95 0.97 0.99
YBBB TERRITORY 22.23 0.85 0.82 0.88 0.89
YBBB YMMM ALICE SPRINGS 21.41 0.98 0.97 0.98 0.99
YBBB YMMM ISA 19.41 0.96 0.95 0.97 0.97
YBBB YMMM WARREGO 18.91 0.98 0.98 0.99 0.99
YMMM BILLABONG 18.40 0.96 0.95 0.96 0.98
YBBB YMMM KIMBERLEY 17.37 0.73 0.70 0.75 0.76

Sectors with average complexity around the median
YMMM BINDOOK
SYDNEY CAP

6.88 0.38 0.50 0.64 0.53

YBBB DARWIN ARRIVALS 6.70 0.00 0.01 0.02 0.00
YMMM WOLLONGONG A 6.58 0.32 0.29 0.30 0.39
YMMM WONTHAGGI A 6.34 0.42 0.32 0.34 0.44
YBBB YMMM NICKEL 6.06 1.00 0.15 0.15 1.00
YBBB KENNEDY C 5.86 0.57 0.52 0.57 0.60
YMMM AUGUSTA HIGH C 5.65 0.78 0.80 0.83 0.83
YBBB DOWNS A 5.55 0.52 0.45 0.56 0.55
YMMM TAILEM BEND B 5.53 0.77 0.69 0.81 0.94
YBBB GOLD COAST C 5.49 0.35 0.36 0.51 0.48

Sectors with the lowest average complexity
YMMM EILDON
WEIR HIGH A

3.27 0.13 0.12 0.39 0.28

YBBB BURNETT C 3.15 0.52 0.40 0.43 0.66
YBBB YMMM KATOOMBA A 2.28 0.17 0.22 0.27 0.06
YMMM WONTHAGGI E 2.26 0.94 0.77 0.75 0.95
YBBB BARRA C 2.26 0.61 0.40 0.40 0.62
YBBB GOLD COAST B 2.04 0.36 0.35 0.35 0.29
YBBB BARRA E 2.04 0.73 0.60 0.80 0.84
YMMM KATOOMBA
SYDNEY CAP

1.73 0.91 0.00 0.00 0.70

YBBB YMMM MUDGEE A 1.66 0.00 0.11 0.21 0.00
YMMM AUGUSTA HIGH B 1.33 0.89 1.00 1.00 1.00

Overall average 0.59 0.57 0.64 0.67
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Chapter 6

Conclusion

6.1 Summary of Results

In this thesis we investigated the effect of simulation fidelity, abstraction and

resolution in the air traffic domain; more specifically airspace complexity.

We explored the role of fidelity in air traffic simulation by designing four air

traffic simulators with differing levels of fidelity, abstraction and resolution. The

lowest fidelity simulator (BS1) used fixed climb/descent rates and acceleration rates

irrespective of the aircraft model of flight level. The second simulator (BS2), with a

higher fidelity than BS1, used different climb rates and acceleration rates depending

on the aircraft model and flight level. Both of these simulators used a simplified coor-

dinate system to represent the Earth. The third (BS3) and fourth (BS4) simulators

were extensions of the second and first simulators respectively. These two simula-

tors used a more advanced, geodetic, representation of the Earth than the previous

two simulators and are therefore of higher fidelity than BS1 and BS2. These four

simulators were compared with a perfect model, ATOMS, which is assumed as the

real world in our study. It was found that the assumptions used to design our four

simulators resulted in some considerable differences. The biggest difference occurred

due to the representation of the Earth. The simplified representation used by BS1

and BS2 resulted in large deviations from the flight tracks expected from the real
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world for the same flights plans, as can be seen in Figure 3.16. From Figure 3.16 we

also see that BS3 and BS4, using the geodetic system, produced flight tracks which

resulted in significantly smaller deviations from those expected from the real world.

It was found that the direct turning methodology used by the low fidelity simulators

also had some contribution to these deviations, as can be seen in Figure 3.9, since

real world aircraft require some time to turn instead of the instantaneous turning

used by these simulators. We found that using the BADA lookup tables to deter-

mine whether there is a need for acceleration (or deceleration) based on the flight

level in BS2 and BS3 we were able to more closely match the speed profile of real

world aircraft, as can be seen from Figure 3.8. This method allows for tailoring

the speed profile based on the model of aircraft being simulated, as opposed to the

continuous fixed acceleration used in BS1 and BS4 where the aircraft continue to

accelerate towards its cruise speed irrespective of flight level. Despite these minor

sources of deviations, it was concluded that the track deviations resulting from both

BS3 and BS4 may be acceptable for predicting airspace complexity for at least 60

minutes ahead, while BS1 and BS2 may only be acceptable for predictions upto 15

minutes ahead.

We also developed a real-time airspace complexity adjustment system aimed at

altering the expected workload of air traffic controllers (ATCs) in the short to mid

term. A number of different shadow simulators were used as part of an optimisation

system to generate a set of request, or actions, to be undertaken by aircraft with

the aim of changing the future airspace complexity towards a predefined target

level. The target level was altered based on three different lookahead periods: 15,

30 and 60 minutes. It was found in a fixed time frame for optimisation, using

the perfect model (ATOMS) as the shadow simulator we were able to complete

the lowest number of evaluations. This was followed by BS3 with the next fewest

evaluations, then BS4, BS2 and BS1 with the most evaluations, as can be seen

in Figure 4.9. This order was expected based on the computational complexity of

these five models. Although it was possible to alter the future airspace complexity

towards the predefined target levels using each of these five simulators as the shadow
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simulator, we found that the perfect model was able to outperform the other four

remaining simulators. Of the four remaining simulators, there is on outright winner

as each simulator performed better than the rest for different lookahead and target

level combinations (see Table 4.6 and 4.8. It was found that the these four simulators

generally overestimate the airspace complexity when compared to the real world (see

Table 4.7). When compared to the real world complexity measurements, we found

that BS2 and BS3 were able to more accurately predict the airspace complexity

with BS3 being more accurate than BS2. This indicates that the higher the fidelity

of the simulator the more accurate the complexity estimation. However, this does

not necessarily result in a direct correlation with results obtained from the real-time

optimisation system.

Finally we investigated some methods for predicting future airspace complexity.

The first method was to generate a set of multiple linear regression models and to

train a set of neural networks to predict the future airspace complexity using a

summary of the current air traffic conditions. Second we generated a set of multiple

linear regression models to predict the future airspace complexity using the airspace

complexity characteristics at the current time along with a summary of the current

air traffic conditions. These two methods were not able to produce models which

adequately fit our data (see Table 5.1, 5.2 and 5.4) when compared to our third

and final method. For our third method we used simulation to obtain an initial

prediction of the airspace complexity at a future point in time. We then generated

a linear regression model with this predicted airspace complexity and the measured

real world complexity. It was found that we could generate models with a very

good fit using data from every sector (see Table 5.6). We found that clustering the

sectors based on the physical or traffic characteristics and generating a model for

each clusters was not was successfully in all cases, but provided some good fits for

a selection of the clusters (see Table 5.7). When generating a separate model for

each sector we found that we can generate models with a good fit for the data for

sectors with high traffic loads (see Table 5.8 to 5.10). Using this method we can

make predictions about the future airspace complexity and adjust the prediction in
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order to minimise the deviations from what we expect to experience in reality.

6.2 Future Work

The work in this thesis has uncovered various questions and work which can be

explored and carried out in the future. Some of these are outlined below.

As the airspace complexity adjustment system is implemented in a real-time

environment, speed is the key. Other than altering the fidelity of the shadow simu-

lators, in order to improve the speed of the optimisation component, we can investi-

gate different configurations for the optimisation system. In our implementation we

used the standard differential evolution algorithm. In the future we can investigate

the implementation of the various alternate differential algorithms which have been

developed with variations in the mutation, recombination and selection strategies.

It is possible that the alternate algorithms may result in faster convergence speeds.

In addition to alternate differential evolution algorithms we can also investigate the

use of different evolutionary algorithms and other optimisation algorithms.

We can also combine the linear regression models used to adjust the airspace

complexity prediction obtained from the low fidelity simulators with the real-time

complexity adjustment system to obtain more accurate evaluations. In terms of

the method used to adjust the prediction, we can breakdown the traffic conditions

even further than just a general model for each sector. We can try to learn the

typical traffic patterns in each sector and classify different patters in the sector. It

is expected that different pattern will lead to different sources of deviations in the

airspace complexity, so if can further breakdown the traffic patterns in each sector

and produce a separate model for that classification it is likely that we will be able

to predict the deviation with better accuracy.
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traffic complexity assessment in new generation air traffic management systems.

Intelligent Transportation Systems, IEEE Transactions on, 12(3), 809–818.

Qin, A., Huang, V., and Suganthan, P. (2009). Differential evolution algorithm with

strategy adaptation for global numerical optimization. Evolutionary Computation,

IEEE Transactions on, 13(2), 398 –417.

Quist, R. (2011). Common map projections. http://www.gislounge.com/

common-map-projections/.

Rao, L., Owen, L., and Goldsman, D. (1998). Development and application of a

validation framework for traffic simulation models. In Proceedings of the 30th con-

ference on Winter simulation, pages 1079–1086. IEEE Computer Society Press.

Rawlings, J. B. and Muske, K. R. (1993). The stability of constrained receding

horizon control. Automatic Control, IEEE Transactions on, 38(10), 1512–1516.

Reshetin, V. P. and Regens, J. L. (2003). Simulation modeling of anthrax spore

dispersion in a bioterrorism incident. Risk Analysis , 23(6), 1135–1145.

Rey, D., Rapine, C., Dixit, V. V., and Waller, S. T. (2015). Equity-oriented aircraft

collision avoidance model. Intelligent Transportation Systems, IEEE Transactions

on, 16(1), 172–183.

Rodriguez, J. F. (2008). Metamodeling techniques to aid in the aggregation process

of large hierarchical simulation models. Technical report, DTIC Document.

Rogalski, S. (2012). Factory design and process optimisation with flexibility mea-

surements in industrial production. International Journal of Production Research,

50(21), 6060–6071.

Rubai Amin October 30, 2015



174 BIBLIOGRAPHY

Rönkkönen, J., Kukkonen, S., and Price, K. (2005). Real-parameter optimization

with differential evolution. volume 1, pages 506–513. cited By 154.

Sadek, A. W. (2007). Artificial intelligence applications in transportation. Trans-

portation Research Circular E-C113 , pages 1–6.

Santosa, B., Sunarto, A., and Rahman, A. (2010). Using differential evolution

method to solve crew rostering problem. Applied Mathematics , 1(4), 316–325.

Sargent, R. G. (2005). Verification and validation of simulation models. In Pro-

ceedings of the 37th conference on Winter simulation, pages 130–143. Winter

Simulation Conference.

Sarker, R., Elsayed, S. M., Ray, T., et al. (2014). Differential evolution with dynamic

parameters selection for optimization problems. Evolutionary Computation, IEEE

Transactions on, 18(5), 689–707.

SESARJU (2015). Sesar solutions. http://www.sesarju.eu/solutions.

Sewall, J., Wilkie, D., Merrell, P., and Lin, M. C. (2010). Continuum traffic sim-

ulation. In Computer Graphics Forum, volume 29, pages 439–448. Wiley Online

Library.

Sewall, J., Wilkie, D., and Lin, M. C. (2011). Interactive hybrid simulation of large-

scale traffic. In ACM Transactions on Graphics (TOG), volume 30, page 135.

ACM.
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