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Abstract 

A stochastic numerical perturbation method is applied to the groundwater flow and 

solute transport problems. The method involves modelling the hydraulic conductivity 

as a random field, discretising this random field into a vector of random variables, 

expanding this vector and the vectors representing, groundwater velocity, and solute 

concentration in Taylor series about their means and using stochastic finite element 

methods to relate the three parameters. Methods of calculating the second spatial 

moment of the mean solute plume and the mean second moment of individual solute 

plumes are presented. The method is implemented in a computer program and results 

for a range of integral scales are presented. These results are compared to analytical 

results found in the literature. It is found that the groundwater velocity results give very 

good agreement, except when mesh resolution becomes a problem, and that the solute 

concentration results give reasonable agreement for practical integral scales. 

The work presented in this thesis builds on previous work that uses stochastic finite 

element methods in that it determines the statistics of the groundwater velocity field in 

the groundwater flow problem, determines the statistics of the concentration field in the 

solute transport problem from the statistics of the hydraulic conductivity field, and uses 

a second order method for the mean values, thus avoiding the problem of using the same 

result as obtained in the deterministic case. 
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Chapter 1 Introduction Page 1 

1 Introduction 

This thesis applies a stochastic numerical perturbation method to the groundwater flow 

and solute transport problems. 

1. 1 Statement of the Problem 

It is well known that the dispersive behaviour of solute transport is much greater at field 

scales than that observed in the laboratory. Research has shown that this is due to 

variation in groundwater flow, caused by variation in aquifer properties (Dagan 1989, 

Gelhar, 1993). However, it is not possible to gather data and model an aquifer at small 

enough scale to capture all of this variation in a deterministic sense because of the huge 

amount of data involved, and because the act of gathering such data would greatly 

modify the properties being measured. 

One approach that has been used to deal with this is to use a random field description of 

the aquifer (Vanmarke, 1983). 

Analytical solutions to the governing stochastic equations have been developed using 

various approximations (for example Dagan,1982b, Gelhar and Axeness, 1983, Rajaram 

and Gelhar, 1993a & b, Kapoor and Gelhar 1994a & b ). However, analytical solutions 

have the disadvantages that they are restricted to infinite (or semi-infinite) geometries, 

cannot deal with aquifers made up of distinct geological units, and the solute sources are 

limited in spatial geometries, often restricted to point sources, and temporal distribution, 

either instantaneous or a constant continuous value. 
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In the deterministic area these problems are often overcome using numerical methods. 

Stochastic finite element methods have been developed that use a random field 

description of the hydraulic conductivity. However, they have the limitations that they 

only determine the hydraulic head values (Sagar, 1978, Vanrnarke and Hachich, 1983, 

Vanmarke, 1994, Hantush and Marino, 1995, Ghanem, 1998, Tartakovsky and Neuman, 

1998, Guadini and Neuman, and Winter et al, 2002), assume that the groundwater 

velocity statistics are given (Graham and McLaughlin, 1989a & b ), or use the first order 

result for mean values (which is equal to the deterministic result) and require cross 

covariances to be calculated (Kunstman, 2002). 

There is a need for a stochastic finite element method that overcomes these limitations. 

1.2 Objectives of Study 

The objectives of the study are: 

(i) To develop a stochastic finite element method that determines the statistics 

of the velocity field in the groundwater flow problem from the statistics of 

the hydraulic conductivity field of the aquifer. 

(ii) To further develop this method to determine the statistics of the 

concentration field in the solute transport problem from the statistics of the 

hydraulic conductivity field of the aquifer. 

(iii) To compare results from using this method with appropriate analytical 

solutions to demonstrate the effectiveness of the method. 

These objectives have been met. 
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1.3 Thesis Outline 

Chapter 2 presents the background to the problem explaining the physical processes 

involved in solute transport and why the most common method of modelling solute 

transport, the advection dispersion equation, is deficient and why aquifer heterogeneity 

is an important property. It also details different probabilistic methods of modelling the 

variation within the aquifer, including a random field model. 

Chapter 3 provides a literature review of research that applies the random field model to 

groundwater flow and solute transport. It discusses this in the categories of Monte 

Carlo simulation, analytical methods, and other numerical methods. 

Chapter 4 gives the methodology behind the perturbation method and its application to 

groundwater flow and solute transport. The algorithms for each step of the method are 

presented. Also algorithms for calculating other interesting properties of the solute 

plume from the results are presented. It also looks at issues related to upstream 

weighting and presents several methods of reducing the computation time required for 

the method. 

Chapter 5 presents groundwater velocity results from use of the method and compares 

these to analytical results found in the literature. 

Chapter 6 presents solute concentration results from use of the method and compares 

these to analytical results found in the literature. 

Chapter 7 makes some suggestions about further work that could proceed from the 

thesis. 
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2 Background 

This chapter looks at the contaminant transport problem and discusses the limitations of 

deterministic methods of modelling the problem. It does this by looking at the 

processes involved in the transport of contamination by groundwater and discusses how 

the current method models these processes. It explains why the heterogeneity of an 

aquifer is an important aquifer property when modelling solute transport and discusses 

ways of modelling this heterogeneity. This provides the background to the literature 

review outlined in Chapter 3 and the methodology presented in Chapter 4. 

2.1 Solute Transport 

This research deals with water-soluble contaminants. The significance of this is that 

when the contaminant enters an aquifer it dissolves in the groundwater and becomes a 

constituent or phase of the groundwater. As such it moves within the aquifer following 

the same travel path as the groundwater. This movement is a result of hydraulic head 

gradients and is referred to as advection, see Figure 2.1. 

As time passes the contaminant also tends to spread out. The boundaries of the 

contamination plume become less sharp as the concentration gradients reduce through 

processes of diffusion and mixing, and less certain due to the uncertainty in the aquifer 

properties. This results in a plume that fills an increasingly larger volume but has an 

increasingly lower concentration, see Figure 2.1. 
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Source of Contamination 

groundwater system 

Ground Surface 

Contamination moves with the groundwater 
system (advection) and increases volume 
becoming less concentrated {dispersion) 

Figure 2.1 Movement of contamination in groundwater system 

2.1.1 Advection 

Page 5 

Advection is the movement of contaminants with the groundwater flow in an aquifer. 

When a contaminant enters an aquifer it is dissolved in, or displaces, the groundwater 

already present in the aquifer. Normally this groundwater is moving under the influence 

of hydraulic head gradients. Thus any contaminant dissolved in the groundwater is 

carried along with it. If pure advection existed it would involve a contaminant plume 

having sharp edges. Just outside the boundaries of the contaminant plume there would 

be no contamination and just inside the boundaries the contamination would be at the 

original concentration, see Figure 2.2. 
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Concentration 

t = ta t = t, t = t2 
Distance from source 

Figure 2.2 Concentration profiles for pure advection 

Pure advection does not occur in reality and so the process of advection is modified by 

the following processes. 

2.1.2 Diffusion 

Diffusion is the spreading out of a solute in response to concentration gradients, see 

Figure 2.3. The process is the result of Brownian motion moving particles in random 

directions. Since there are more contaminant particles in high concentration areas than 

low concentration areas it is more likely for a particle to move from a high 

concentration area to a low one than vice versa. The solute flux occurring as a result of 

diffusion is a linear function of the concentration gradient. This type of behaviour is 

described as Fickian and is described by Fick's law: 

Where 

F=DVC 

F = Soluteflux 

D= Diffusioocoefficiert 

V = Gradientoperator 

C = Concentraion field 

Equation 2.1 
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Concentration 

Origin Distance from source 

Figure 2.3 Effect of diffusion on a plug of contaminant 

In a soil the behaviour is slightly different to a drop of solute in a beaker. Soil is a 

porous media and so the diffusion of the solute is impeded by the soil particles. 

Therefore the diffusion coefficient determined in the laboratory must be modified for 

use in an aquifer. This is done by a parameter called the tortuosity, 't. This allows for 

the tortuous paths that the solute must follow to diffuse throughout the aquifer. 

Tortuosity is an aquifer property, not a contaminant property, and typically varies from 

0.05 to 0.5 for most soils. 

2.1.3 Mechanical Dispersion 

Mechanical dispersion is a pore scale process that results in the mixing of different 

concentrations of solution due to variations in velocity within a pore and length of flow 

path among different pores. 

In a single pore there is a variation of pore water velocity. See Figure 2.4. In a throat 

between particles the pore water flows slower near the walls of the pore than in the 

centre. Thus the pore water in the centre reaches the next pore faster. If the 

concentration in the two pores is different then this will result in an averaging out of the 



Chapter 2 Background Page 8 

concentration through mixing rather than a simple replacement of the contents of one 

pore with another. 

Figure 2. 4 Pore water velocity variations 

Pore water can also take different paths to travel from one position to another. See 

Figure 2.5. This enables the groundwater from different pores to mix together thus 

further diluting the solute and spreading out the plume. 

Figure 2.5 Diversity of flow path lengths 

Modelling the details of the groundwater flow at the pore scale is impracticable. 

Therefore the concept of a representative elementary volume (REV) is introduced. This 

is a small volume that is just large enough so that when the groundwater velocity is 
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averaged out over the volume the result is consistent when small changes are made in 

the size of the volume. 

The solute flux caused by dispersion is linearly dependent on both the concentration 

gradient and the groundwater velocity. Thus if the groundwater velocity is uniform at 

the REV scale then its behaviour is Fickian. It is usual to describe the mechanical 

dispersion coefficient as the product of velocity and the dispersivity. 

D=a.v Equation 2.2 

Where a. is the dispersivity and vis the pore water velocity. 

Experiments show that the longitudinal dispersivity, i.e. in the direction of the 

groundwater flow, is much larger than the transverse dispersivity. The difference is 

usually of the order of one magnitude. The result of this is that plumes tend to elongate 

in the direction of flow. 

The ratio between advection and dispersion is commonly expressed using the Peclet 

number: 

p = vl 
e D 

Equation 2.3 

Where l is a length scale. Typically the size of elements used in a finite element mesh is 

used for /. Finite element meshes with high Peclet numbers tend to have oscillation 

problems. This will be discussed in more detail in Section 4.5. 
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2.1.4 Heterogeneity of the Aquifer 

Aquifers are not uniform in the properties relating to contaminant transport. These 

properties vary in space and may even vary in time. The main properties relating to 

contaminant transport are hydraulic conductivity, porosity and the chemical properties 

of the aquifer that cause chemical reactions with the contaminant. 

Hydraulic conductivity is one of the most variable properties in nature, varying over 15 

orders of magnitude from gravel to clay. It also varies within an individual aquifer. 

This can be a discrete process caused by bedding, sand lenses, clay seams, etc or a 

gradual continuous process caused by localised variations within a coherent aquifer unit. 

The result of this non-uniformity is that groundwater tends to find preferential flow 

paths through which the bulk of the groundwater flow passes, see Figure 2.6. When a 

contaminant enters an aquifer some of it enters preferential flow paths of varying 

velocities. This :fragmentation of the plume into sections travelling at different 

velocities is the dominant effect causing dispersion of the plume at engineering scales. 

This process is called macro dispersion. The effect of macro dispersion may be many 

orders of magnitude greater than diffusion and mechanical dispersion (Gelhar, 1993). 

Macro dispersion is non-Fickian and is greater for larger plumes than for smaller ones, 

i.e. it is scale dependent, because larger plumes contain greater variations than smaller 

ones. 
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L = Low 
Hydraulic 

Conductivity 

Figure 2. 6 Preferential flow paths caused by heterogeneity in the aquifer 

Porosity also affects contaminant transport. However generally the change in porosity 

is much smaller in magnitude than the change in hydraulic conductivity. Thus its effect 

is usually ignored in preference to investigation of the effect of variation of hydraulic 

conductivity. 

Variation in the chemical properties that control any reactions between the contaminant 

and the aquifer can also have a large impact on the behaviour of non-conservative 

contaminants. This form of variation is not investigated in this thesis as only 

conservative contaminants are being modelled. 

Other spatial heterogeneities that may occur in aquifers include variations in tortuosity, 

affecting diffusion, and dispersivity, affecting mechanical dispersion. However, the 

effect of the variability of these parameters is minor compared to the effect of the 

variability of hydraulic conductivity (Gelhar, 1983). Thus these parameters are 

neglected in this research to highlight the behaviour caused by variation in hydraulic 

conductivity. 
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2.1.5 Current Methods of Modelling the Problem 

Normally this problem is modelled by the advection dispersion equation (Fetter, 1993): 

where 

a2c a2c ac ~ 
D --+D --v -=-

L 0X2 T <J)'2 x ax a Equation 2.4 

C = Concentration 

t= time 

Vx = groundwater velocity in the x direction (the Cartesian coordinate axes 

are selected so that the direction of groundwater flow is in the x direction) 

DL = longitudinal dispersion coefficient 

Dr= transverse dispersion coefficient 

If Ficks Law is assumed for mechanical dispersion then the dispersion coefficients will 

be a linear function of velocity. 

The velocity is determined from the hydraulic head field using Darcy's Law (cfRushton 

and Redshaw, 1979): 

V =-kv'H Equation 2.5 

where 

H = hydraulic head field 

k = hydraulic conductivity tensor 
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V is the gradient operator. 

Assuming steady state flow the hydraulic head field is determined from the hydraulic 

conductivity by (cfRushton and Redshaw, 1979): 

Equation 2.6 

Where q is an in inflow or outflow at a source or sink (for example a pumping well), 

and is zero at all other points in the aquifer, and kx and ky are the components of 

hydraulic conductivity, which may vary from point to point. 

These equations can be solved using numerical methods such as finite element or finite 

differences. Equation 2.4 has been solved analytically for the two limiting cases in a 

uniform velocity over an infinite space of a finite mass being released at a point in space 

and time, and a constant value of source concentration at a point. Commonly these 

analytical solutions are used in engineering practice by finding which case most closely 

approximates the field conditions. 

The first term on the right hand side of Equation 2.4 models advection, the second term 

models dispersion. This equation assumes Fickian dispersion, thus it is strictly only 

applicable to diffusion and mechanical dispersion. Laboratory testing implies using a 

small sample that can only model the effects of diffusion, mechanical dispersion, and 

very small-scale non-homogeneities, and not the large-scale heterogeneities that 

dominate the process in natural aquifers. Thus a tracer test equivalent in size to the 

actual contaminant plume is required to determine the contribution from heterogeneity 

in the conductivity field. Thus the value for the dispersion coefficient is either fitted to 
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the data or extrapolated from other sites, neither method caters for the scale dependence 

of the effect. 

Thus this method is inappropriate for two reasons: it does not correctly model the 

dominant behaviour (i.e. macro dispersion) and the major parameter (i.e. the dispersion 

coefficient) is fitted to the data by back calculation rather than by determination prior to 

calculation. 

However if the heterogeneity could be modelled exactly by knowing the hydraulic 

conductivity at every point then the equation would accurately represent real world 

behaviour. Effectively this means transferring the macro dispersion component of the 

behaviour from the dispersion term in the advection dispersion equation to the advection 

term, thus dealing with it in Equation 2.5 and Equation 2.6. To do this we need a 

method of characterising the aquifer that contains more detail. 

2.2 Characterisation of an Aquifer 

There are many ways of characterising an aquifer. Different methods are appropriate 

for different purposes. This section will describe different methods leading up the 

exposition of a random field as a way of characterising a heterogenous hydraulic 

conductivity field. 

2.2.1 Deterministic 

The simplest way to characterise an aquifer is deterministically. This means that the 

hydraulic conductivity at every point is assumed to be a known definite value. This is 

the most commonly used method. Generally a particular value of hydraulic 
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conductivity is assumed for each aquifer unit and that value is uniform throughout each 

unit. 

If an elaborate system of testing is carried out, the hydraulic conductivity may be 

defined on a fine enough grid to accurately and reasonably characterise the aquifer. 

However this level of testing would leave the aquifer perforated with bore holes such 

that the hydraulic conductivity could be drastically altered. 

Instead it is much more common to use test data to derive an effective hydraulic 

conductivity that gives a behaviour equivalent to the average behaviour of the aquifer. 

This characterisation obviously contains no information about the variability of the 

aquifer. 

2.2.2 Single Random Variable 

The next simplest method of characterising an aquifer is with a random variable 

representing each unit of the aquifer. If a simple model is taken of an aquifer that 

consists only of a single unit then the aquifer is assumed to have a single value for 

hydraulic conductivity but this value is unknown and so a probabilistic analysis can be 

carried out. For example the probability of groundwater flow into an excavation 

exceeding a certain level could be determined. However, features that depend on the 

non-uniform structure of the aquifer cannot be modelled. This is because the aquifer is 

assumed to have a uniform structure even though the actual uniform value is assumed to 

be variable. 

This method was used in Chowdhury and Zhang (1988). 



Chapter 2 Background Page 16 

2.2.3 White Noise 

Another way that the aquifer can be characterised is by a system of white noise. This 

means that the aquifer is assumed to have a different, random value for the hydraulic 

conductivity at each point, see Figure 2.7. Each point would be represented by a 

different random variable. Thus an infinite number of random variables would be 

needed. Practically this could be modelled by dividing the aquifer into a large number 

of very small elements and assigning an independent random variable to each element. 

This gives the model of the aquifer some form of structure by which the features that 

depend on the non-uniform structure of the aquifer might be able to be modelled. 

Hydraulic Conductivity 

Location 

Figure 2. 7 Example of one dimensional white noise variation of hydraulic conductivity 

The single random variable model can also be thought of as this model but with all the 

random variables being perfectly correlated with each other instead of being 

independent. 

This method was used in Freeze (1975), mainly because more sophisticated techniques 

were unavailable. 
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2.2.4 Random Field 

In the real world the hydraulic conductivities of points that are closer together are more 

likely to have similar values than points that are far apart, see Figure 2.8. Thus for very 

small parts of the aquifer the single random variable appears appropriate, while for large 

distances the white noise approach appears better. For intennediate distances there will 

be variation between points but when one point has a higher than average value we 

would expect nearby points to have higher than average values, or both to have lower 

than average values but still both values are unknown and not expected to be the same. 

Hydraulic Conductivity 

Location 

Figure 2.8 Example of aquifer with positive auto correlation function 

A form of model with these properties is the random field (Vanmarcke, 1983). A 

random field is characterised by an auto correlation function. It is assumed that each 

point has a value that can be represented by a random variable. However each random 

variable is not independent from every other random variable, nor are they perfectly 

correlated. Instead they are correlated according to the separation vector between them. 
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The auto correlation between two points is the expected value of the product of the 

deviations of the values from the means at the two points divided by the product of the 

standard deviations of the random variables at the two points. Commonly it is assumed 

that over a large enough length/area/volume the mean is constant (i.e. no trend) and the 

variability is constant (the field is stationary). For a stationary random field the 

autocorrelation function is defined by (VanMarcke, 1983): 

Where 

(X X )= E[(K(X1)-E(K)XK(X2)-E(K))] 
p 1' 2 2 

a 

p(X1, X 2 ) = Auto correlation between points X 1 and X 2 

K(X) = Hydraulic conductivity at point X 

Equation 2.7 

E[K] = Mean value of hydraulic conductivity for the random field 

a 2 = Variance of the point values of hydraulic conductivity 

The auto correlation can vary from minus one to one. If the random variables are 

independent then the auto correlation is zero. The reverse is not necessarily true. An 

auto correlation of one means that the two points always have the same value. For the 

case of normally distributed random variables, an auto correlation of zero implies that 

the random variables are independent. A negative auto correlation implies that when 

one value is high the other is low. This may occur for example where there are 

alternating beds with only two uniform values and each bed has the same thickness. 

This case would give an auto correlation of minus one at the distance equivalent to the 

thickness of the beds. See Figure 2.9. 
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Hydraulic Conductivity 

High 

Low 

High 

Figure 2.9 Auto correlation for uniform alternating constant thickness beds 

The auto correlation is usually modelled as a function of the separation vector only. 

This is referred to as a homogeneous random field since the auto correlation is the same 

regardless of the location of the two points provided they have the same separation. If 

the auto correlation function is the same for a given separation distance regardless of 

direction then the random field is also isotropic. If it varies differently in one direction 

than in the other it is anisotropic. Bedding is an example of an anisotropic random field. 

Statistics for a random field model can be generated for any other type of model of an 

aquifer. For example the above case of uniform alternating constant thickness beds has 

an anisotropic auto correlation function where the correlation (i) is a wave function 

oscillating between minus one and one with the wavelength being twice the bed 

thickness in one direction and (ii) is equal to one within the plane of the beds. Similarly 

auto correlation functions can be generated for fractal realisations. Using these more 

particular models may give a more accurate model, but the random field model is more 

general and so can model more situations just by modifying the auto correlation 

function. It should be remembered that all of these models are only approximations of 

reality, but for many purposes a random field has been found to be a very useful 

approximation (Gelhar, 1993). 
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In a deterministic model of an aquifer all properties are defined exactly at all points. In 

a stochastic model the properties are defined probabilistically. Ideally this would mean 

that the joint probability distributions were known. However, normally it is assumed 

that the first two moments of the probability distributions are known (Gelhar, 1983). 

Thus the mean at any point and the covariance between any two points are known. If X1 

is the value of the random field at point x1 and X1 is the value at x2 then the covariance 

is given by (VanMarcke, 1983): 

cov{xi,x2)= E[(x1 -E[x1])(x2 -E[xi])] 

= E[ X 1X 2 ]-E[ X 1]E[x2 ] 

Equation 2.8 

where E[X] is the mean of X. Commonly the covariance is given in terms of the 

autocorrelation function (VanMarcke, 1983): 

Equation 2.9 

where p is the autocorrelation and ux is the standard deviation of X. If a random field is 

stationary then p is only dependent on the separation vector x = x1 - x2. If it only 

depends on the magnitude and not the direction ofx then it is isotropic, otherwise it is 

anisotropic. 

Commonly an autocorrelation function is characterised by its integral scale. The 

integral scale in a particular direction is defined as the integral of the autocorrelation 

function over all positive values of the separation vector in that direction. 
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I= f p(x) dx 

0 

Where I is the integral scale. 
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Equation 2.10 

I is commonly used as a parameter in the autocorrelation function. Small values of the 

integral scale indicate that the related random variable fluctuates over short distances, 

large values indicate that the random variable is constant over short distances and 

fluctuates over large ones. In the extremes a value of zero for the integral scale gives 

the aforementioned white noise model and an infinite value gives the aforementioned 

single random variable model. 

Another parameter that is commonly used to characterise an auto correlation function is 

the scale of fluctuation. The scale of fluctuation is the integral of the autocorrelation 

function over all values, both positive and negative, of the separation vector in that 

dimension. Since the autocorrelation function is symmetrical the scale of fluctuation is 

exactly twice the integral scale. It is usually denoted by 0. Most authors in the 

groundwater area tend to use integral scale rather than scale of fluctuation and so that 

practice will be adopted here. 
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3 Potential Solution Schemes 

The purpose of this Chapter is to enumerate solution schemes to the problem developed 

in the last chapter. As such it will also function as a literature review discussing 

methods pursued by other authors. It will begin by discussing the Monte Carlo 

simulation method through which many of the concepts of stochastic solutions can be 

presented in an easy to understand manner. It will then look at analytical solutions that 

have been extensively pursued. Next numerical solutions will be considered. This will 

involve showing how stochastic solutions are built from deterministic solutions and the 

different types of stochastic solutions that are available. Finally a perusal of 

discretisation methods will be made. 

3.1 Monte Carlo Simulation 

A stochastic problem involves determining the probability distributions of outputs for a 

particular system given the probability distributions of the inputs, see Figure 3 .1. 

Probability 

distributions I System 
-ofr1 .... ·n .... p""'U"""tsr--------i11Ji~ '------~ 

Probability 
distributions 
of outputs 1JJ11 

Figure 3.1 Schema for a stochastic problem 

Monte Carlo simulation solves the stochastic problem by turning it into a large number 

of deterministic problems, see Figure 3.3. 
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Deterministic ... System Deterministic ... 
inputs - ouputs 

... 

Deterministic ... System Deterministic ... 
inputs - ouputs 

... 

Deterministic System Deterministic ... 
inputs - ouputs 

... 
. . • . . . 
• . • • . . 

Deterministic ... System Deterministic ..... 
inputs ... 

ouputs 
... 

Figure 3.2 Schema for Monte Carlo simulation 

The deterministic inputs are selected so that their combined statistics match the 

probability distributions of the stochastic inputs. Each of the deterministic problems is 

called a realisation. The statistics of the stochastic outputs are assumed to be equal to 

the statistics of the set of deterministic outputs. 

To give an example of this take the case of a problem involving a single random input 

variable and a single random dependent output variable. See Figure 3 .3. 

Monte Carlo Simulation 

3.5 

3 • 
• a, 2.5 • li • Ill • -c: 2 ... 

~ - 1.5 # 
::::, .. Cl. 
'5 1 • 0 

0.5 

0 
0 2 3 4 5 6 7 

Input Variable 

Figure 3.3 Example of a Monte Carlo simulation 
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Firstly a set of realisations is generated. This example has sixteen realisations of the 

input variable between 2 and 7. Notice that they do not come in even increments but 

have random values designed to fit the statistics of the input variable. Each of these 

realisations is processed to give a value of the output variable. In the example the 

results range from 1 to 3. The statistics of the output variable can be estimated from the 

set of results. In this particular case this could have been done directly from the 

statistics of the input variable since the operator involved is linear. However in most 

engineering situations this is not the case and the Monte Carlo Method is the simplest 

way to obtain the required statistics. 

The input required for the contaminant transport problem is the hydraulic conductivity 

field. Usually the deterministic solution of each realisation involves a finite element or 

finite difference approach. Therefore the realisation is defined by the values chosen for 

each element or finite difference point in the domain of the problem. This realisation 

needs to be carefully generated to fit the statistics of the random field. 

In practice the application of the Monte Carlo method to the contaminant transport 

problem involves: 

I . Discretising the random field into a set of random variables 

2. Determining the statistics of the random variables from the random field 

3. Generating a set of numbers that satisfy the statistics of the random variables 

4. Determining the flow field from these values for hydraulic conductivity 

5. Determining the groundwater velocities within each element 
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6. Detennining the location of the plume at the desired time 

7. Repeating until a statistically significant set of data has been gathered 

8. Collating the statistics of all of this data. 

Various statistics that can be collected of the transported plume are: 

• The mean concentration at each point in the aquifer 

• The variance of the concentration at each point in the aquifer 

• The mean of the position of the centre of the plume 

• The variance of the position of the centre of the plume 

• The mean and variance of the second moment of each realisation about the centre of 

the plume 

• The mean and variance of the second moment of the sum of realisations of the 

plume 

Each of these statistics will give us different information about the plume and will be 

used in different contexts. For example if an investigation of a well for extracting 

groundwater is being carried out then the concentration statistics are desired. If a 

remediation program is being proposed then the second moment statistics will be 

required to delineate the extent of the problem. 
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3.1.1 Groundwater Flow 

The earliest work looking at solutions for the stochastic groundwater flow problem, 

Freeze (1975), applies Monte Carlo simulation to a one dimensional finite element 

problem and determines the statistics of the values of hydraulic head along the flow. 

This work assumes that the hydraulic conductivity values in each element is 

independent of the values in all other elements, similar to the white noise model 

discussed in Section 2.2.3. 

Later Smith and Freeze (1979a) use a nearest neighbour stochastic process model to 

include the effects of correlation between elements that are close together. Smith and 

Freeze ( 1979b) extend this to two dimensions. In the nearest neighbour model the 

values for the hydraulic conductivity only depend on the nearest elements. Obviously 

all elements are connected by neighbours, however, this limits the shape of the auto 

correlation function. 

Later, Bellin et al (1992) perform two-dimensional simulations using a fast Fourier 

transform method to generate the realisations. 

Fenton and Griffiths (1993) use two dimensional simulations to determine effective 

block conductivities and demonstrated that local averaging (see Section 3.4.2) oflog 

conductivities provides good results. 

The Turning Bands Method, originally presented in Mantoglou and Wilson (1982), was 

developed so that random fields could be generated efficiently for any form of 

autocorrelation function. It is probably the most commonly used method of generating 

random fields in the groundwater area. It is a lot faster than using matrix methods, but 
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it is not as accurate, however, the minor loss in accuracy is not seen as significant. A 

program for applying a matrix decomposition method is presented in El-Kadi and 

Williams (2000). Dietrich and Newsam (1993) develop an exact method that is similar 

in speed to the Turning Bands Method. Bellin et al (1994) develop another method 

based on conditioning successive random variables on previous random variables. 

Shrestha and Loganathan (1994) give a method to calculate how many realisations are 

needed to ensure that the sample mean for hydraulic head calculations is within a given 

limit of the population mean for a given confidence interval. 

One of the problems with Monte Carlo simulation is that it may require a large number 

of realisations to obtain the statistically significant number of outputs required to obtain 

meaningful results. This may require a large amount of computational time. Therefore 

these early works tended to use finite element meshes with very small numbers of 

elements. Attempts to use large meshes have sometimes compromised on the number 

of realisations. For example, Ababou et al (1989) perform a single realisation study on 

a three-dimensional aquifer. 

Meyer et al (1989) present methods of performing fast solutions of the finite difference 

method optimised for use on supercomputers. Ashby and Falgout (1996) investigate 

optimising this further for parallel computations by using preconditioning. They use an 

iterative solution technique for solving the large matrices required and show that 

preconditioning techniques can help. Dykaar and Kitanidis (1993) use this method to 

perform three dimensional simulations to determine effective transmissivity and find 

that simple methods, such as depth averaging, leads to significant errors. 
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3.1.2 Concentration 

Application of Monte Carlo methods to the contaminant transport problem is much 

more difficult. This is because the aquifer must be divided into much smaller elements 

to generate the required behaviour. The large amount of computing power required to 

generate the values for hydraulic conductivity and repeatedly solve the problem for all 

of the realisations make this problem very time consuming. 

Russo (1984) uses Monte Carlo simulation with 50 realisations to model salination of a 

soil profile focussing on vertical flow through the unsaturated zone. However, he 

models the aquifer as a cluster of one dimensional columns of soil through which the 

groundwater percolates and there is no flow between columns. 

The problem has been undertaken in two dimensions by Bellin et al (1992). The earliest 

large scale example in three dimensions is by Tompson and Gelhar (1990) who generate 

one realisation of the hydraulic conductivity field and simulate four realisations of the 

contaminant transport problem by placing the initial plume in different parts of the 

aquifer. Burr et al (1994) perform 5 three dimensional simulations of a tracer test at 

Bordern in Ontario, Canada. Moreno and Tsang (1994) use single realisation studies 

with varying standard deviations and integral scales to show that for large standard 

deviations the flow tends to mainly pass through distinct channels. Jussel et al 

(1994a&b) use ten realisations to model a gravel deposit in Switzerland. They were 

limited to ten by supercomputer time constraints. Naff et al (1998a & b) perform three 

dimensional simulations to determine the effects of integral scale and initial plume size. 

They use approximately 20 simulations per parameter set and state that 80 would have 

given much better results, but that they were limited in computer time. 
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Hassan et al ( 1998) provide a comparison table of Monte Carlo simulation studies in the 

literature. Most of them are two dimensional and of those that are three dimensional the 

number of realisations is quite small, often only one. 

Scheibe and Cole (1994) use Monte Carlo simulation at using both coarse and fine 

element meshes. They ascribe the difference to dispersive effects and then remodel 

using the coarse mesh with the dispersive effects included and find that they get good 

agreement with the original fine mesh results. 

The Monte Carlo method itself is an approximation based on the assumption that the 

behaviour in the field, no matter what the precise details of the realisation in the field, 

will reach some form of average value for all the realisations. This is referred to as 

ergodicity. Other methods are used to overcome the Monte Carlo method's problem 

with computational load, but they are quite often an approximation of the model used in 

the Monte Carlo method and thus it must be recognised that they are another step away 

from the field situation when their results are interpreted. 

Rubin (1990) uses analytical results to generate the covariance field for the groundwater 

velocity covariance matrix and then uses particle tracking to generate the concentration 

field. Particle tracking involves placing a "particle" at an initial location of the velocity 

field for a particular realisation and simulating over time where it will move. The 

concentration for any small volume is then determined at a particular time as being 

proportional to the number of particles resident in the volume. This gives the mean of 

the concentration, but not higher order moments. Goode (1990) presents an improved 

method of interpolating the groundwater velocities between the nodes for use in particle 

tracking. Rubin ( 1991) extends the particle tracking method to determine the spatial 
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moments of the plume and their variance. Tompkins et al (1994) use a finite difference 

method to generate the velocity field realisations from the hydraulic conductivity 

realisations and then use particle tracking to determine the concentrations. Saladin and 

Fiorotto (1998) use particle tracking in two dimensions to investigate the effects of 

using large log hydraulic conductivity variances. Feyen et al (2001) use particle 

tracking to delineate the capture zone for a well. 

Crane and Blunt (1999) present a streamline based method. For each realisation of the 

hydraulic conductivity field they determine the locations of the streamlines. They then 

carry out one dimensional analyses along each streamline. The main limitation of the 

method is that it does not deal with local dispersion. 

In other fields, such as structural mechanics, methods have been developed to reduce 

the computations involved in Monte Carlo simulation. These include importance 

sampling (Melchers, 1990, Yaacob, 1991, and Fu and Moses, 1992) and 

preconditioning the realisations of the random field to exactly match the statistics of the 

random field, thus requiring fewer realisations (Yamazaki and Shinozuka, 1990). 

3.2 Analytical Solutions 

3.2.1 Groundwater Flow 

In analytic methods groundwater flow is solved by substituting the probability density 

functions, auto correlation functions, and/or spectral density functions into the flow 

equation and integrating with respect to the random input variables to obtain the 

probability density functions or statistical moments of the output variables. The 

advantages of this approach are exactness, and transparency of solution to third party 
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inspection. However they are often limited in application to very prescribed 

circumstances ( eg simple geometries). Early work determined relationships between 

head variance and log conductivity variance (Baler et al, 1978; Gutjahar and Gelhar, 

1981; Mizell et al, 1982) or determined effective conductivities (Gutjahar et al, 1978, 

Gelhar and Axness, 1983, Paleologos et al, 1996, lndelman et al, 1996). The effective 

conductivity is the value of hydraulic conductivity that a uniform aquifer with the same 

geometric properties would require to obtain the same average groundwater velocity as 

the non-uniform aquifer. Tartakovsky et al (2000) determines the effective 

transmissivity from the statistics of the hydraulic conductivity field. 

Dagan (1979) determined limits on the effective conductivity and hydraulic head 

variance using a model of the aquifer involving uniform lumps of constant hydraulic 

permeability. This was then extended to transient flow where it was shown that the 

arithmetic average of the flow field satisfies Darcy's Law and the continuity equation if 

effective values for hydraulic conductivity storativity are used and the average head 

varies slowly in space and time. 

Investigations into the applicability of some of the assumptions made by earlier work 

were made by Gutjahr (1984) and Dagan (1985). Van Lent and Kitanidis, (1996) 

investigated the applicability of the perturbation approximations used in many of the 

analytical solutions. 

Li and McLaughlin (1991), Li and McLaughlin (1995), Indelman And Rubin (1995) 

remove the stationary (no trend) assumption. Zhang et al (2000) develops a general 

approach to nonstationary random fields. 

Another thread ofresearch work looks at conditional probabilities (Dagan 1982a). 
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A spectral approach was used by Dykaar and Kitanidis ( 1992a&b) to find effective 

conductivity. Neuman and Orr (1993) show that effective conductivities may not exist 

in many cases, for example pumping from a well. Beckie et al (1994) shows that 

effective conductivities are appropriate when there is a spectral gap, and investigates 

appropriate resolving scales in other cases. Beckie et al (1996) develops a model that 

resolves sub grid heterogeneity to the grid scale. Beckie ( 1996) extends this to data 

gathering measurements. 

Rubin and Dagan (1992) determine analytical solutions for the cross covariances 

between each of log-conductivity, groundwater velocity, and hydraulic head. Hsu and 

Neuman (1997) look at the effects on the mean, variance and autocorrelation structure 

of the groundwater of extending the analysis to second order in the variance of the 

hydraulic conductivity. 

Karakas and Kavvas (2000) develop a conservation equation for the mean groundwater 

velocity that includes random spatial variability in the hydraulic conductivity, storativity 

and porosity. 

Chan and Govindarau (2001) use an interval computing method that enables them to 

convert the probability distributions into fuzzy numbers to determine the mean 

concentrations. 

Another thread of research looks at the inverse problem (Neumen and Yakowitz, 1979). 

This means determining the hydraulic conductivities or transmissivities from 

measurements of the hydraulic head at various points. This tends to give results with 

lower point variances near the measurements and higher ones further away. 
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3.2.2 Concentration 

Generally the majority of published research in the area of contaminant transport in 

random fields is analytical in nature. That is, a solution to the advection dispersion 

equation is sought that is stochastic in nature and based on the statistics of the random 

field, especially on the auto correlation function. Common practice has been to seek a 

closed form expression for the dispersion coefficient and then substitute this into the 

advection dispersion equation. This uses the property that the dispersion coefficient is 

half of the rate of change of the second spatial moment of the concentration profile of 

the plume (Dagan, 1989). 

Dagan ( 1982b) gives analytical results for the second moments of the ensemble average 

of the plumes in a two dimensional aquifer. Dagan (1984) shows that conditioning 

these results on measured values of the hydraulic head field has little effect on the 

variance (uncertainty) of the concentration field. Sudicky (1986) and Barry et al (1988) 

show that these results give good approximations to a large scale tracer test carried out 

at Borden in Ontario, Canada. Dagan (1990) derives expressions for the variance of the 

second moment of the ensemble. Cvetkovic and Dagan (1994) include the effects of 

sorption of the solute with soil particles. Russo (1995) derives expressions for the 

second moments of the ensemble average for three dimensional anisotropic cases with 

flow parallel and perpendicular to the beds. 

Neuman (1993) shows that conditioning results on measurements transfers information 

from the dispersive flux term to the advective flux term. 

Gelhar and Axness ( 1983) determine the three dimensional macrodispersivity tensor for 

the anisotropic case, at arbitrary angles to the bedding, and include the effects oflocal 
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dispersion. Neuman et al (1987) shows that these results are dependent on Peclet 

number and give differing results for high Peclet numbers. Rehfeldt and Gelhar (1992) 

extend this work to unsteady flow and show that this yields better results than the steady 

flow when applied to tracer tests, particularly for the transverse macrodispersivity. 

Neuweiler et al (2001) and Attinger et al (2001) determine effective macrodispersivities 

for radial flow and find that without diffusion the macrodispersivity is constant but that 

with diffusion it depends on the radius, horizontal diffusion increases macrodispersion 

for larger radii while vertical diffusion decreases it for larger radii. 

Shapiro and Cvetkovic (1988) and Dagan and Nguyen (1989) investigate the properties 

of the breakthrough curve. In other words instead of looking at where the solute is at a 

particular time they focus on one point and determine when the solute arrives there and 

what the concentration is at different times. Rubin and Dagan (1992) investigate the 

effect on the breakthrough curve of conditioning on measurements. Selroos (1995) 

examines the temporal moments, that is, how spread out the breakthrough curve is. 

Dagan et al (1992) and Cvetkovic et al (1992) take a solute flux approach. That is, 

rather than looking at how much concentration exists at a point in space or time they 

investigate the rate that the solute flows through a control plane. 

Jury and Scotter (1994) use a streamtube approach to determine the probability density 

functions of travel time and travel distance. Their approach neglects local dispersion. 

Toride and Leij (1996a & b) add the effects oflocal dispersion. However, it appears 

that this is within a streamtube not across them. 

Other work has investigated evolving integral scales (Dagan, 1994b ). This means that 

as a larger portion of the aquifer is sampled the shape of the auto correlation function 
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changes so that the integral scale increases. The cause of this may be that formation 

units are made up of smaller units and the smaller units have less variability between 

them than the larger ones. As the plume travels and grows larger and encompasses 

larger formation units the macrodispersion will jump to a higher level. Dagan (1994b) 

shows that under these circumstances the area under the auto correlation function may 

become infinite and if this occurs a constant dispersion coefficient cannot be found. 

Fiori (2001a) extends this by adding the effects oflocal dispersion. Serrano (1994) and 

Serrano (1997) derive a non-Fickian dispersion equation by assuming two scales. 

Dagan (1991), Rajaram and Gelhar (1993a & b), Zhang et al (1996), Zhang and Zhang 

(1997) and Dentz et al (2000a & b) recognise that there is a difference between the 

average of the second moment of each realisation of the plume and the second moment 

of the sum of the plumes. The second moment of the sum of the plumes is necessarily 

larger since it also includes the variance in the position of the centre of the plume. As 

the travel time becomes large these two types of second moment should converge to a 

single value. Dagan (1991) gives charts for the dispersion coefficient based on the 

average of the second moment of each realisation of the plume as time approaches 

infinity. Dagan (1994a) adds time varying behaviour to this. Zhang (1997) looks at the 

variance of the second moment of individual realisations. Rajaram and Gelhar (1995) 

investigate how the second moment of individual realisations is affected by evolving 

scales. Most of these works use an exponential covariance function. Zhang and Di 

Federico (1998) extend this work to use a Gaussian autocorrelation function and Di 

Federico and Zhang (1999) extend it to a fractional Gaussian noise autocorrelation 

function. 
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Kapoor and Gelhar (1994a & b) investigate the fluctuations in the concentration field. 

The size of these fluctuations at a point is proportional to the standard deviation of the 

concentration at that point. They show that the processes that cause macrodispersion 

create these fluctuations, for example as a preferential flow path carries solute into a 

solute free area it creates a fluctuation or difference between the high concentration in 

the flow path and the much lower ( or zero) concentration outside it. They also show 

that the only process that can destroy these fluctuations is local dispersion, for example 

the solute will diffuse and/or mechanically disperse from the area of high concentration 

to low concentration. They give analytical expressions for this creation and destruction. 

Adricevic (1998) includes the effects of sampling volume to this. Kitanidis (1994) 

investigates this idea from a different direction by defining a dilution index, which 

describes how much the solute has diluted rather than simply how much it has spread. 

Zhang and Neuman (1996) investigate this using a different method and conclude that 

when the ratio oflocal dispersion to macrodispersion is small the local dispersion can be 

ignored. Fiori (2001b) uses some of these concepts to determine estimates of the 

maximum concentration, which would be higher than the maximum mean 

concentration. 

Some attempts have been made at looking at higher than second moments by using a 

second order approach. Naff (1992 & 1994) uses a lot of complicated operator 

development and provides a set of integrals requiring numerical solution. Dagan 

(1994c) uses a fourth order analysis of the transverse macrodispersivity to show that the 

effects of the higher order moments are quite small. 

Destouni and Graham (1995) and Zhang and Lu (2002) investigate the effect on 

transport regimes of coupling the unsaturated and saturated zones. 
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Dagan et al (1996) shows the effect on solute transport of periodic (eg seasonal) 

changes in direction of groundwater flow. 
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Lessof et al (2000) investigate the effect of a constant groundwater velocity boundary 

and find that it suppresses macrodispersion in a zone near the boundary. 

Most of the previous work uses a perturbation technique and the results assume that the 

stochastic system is in some sense linear and therefore higher order terms are ignored. 

Serrano (1996) attemps to overcome this limitation by using the method of 

decomposition and finds good agreement with the Bordern aquifer tests. 

Vanderborght (2001) takes a different approach in deriving the analytical expressions 

determining the probability distribution of whether a particle in a given location at a 

given time was in the initial volume at the start, instead of integrating over the initial 

volume. 

Rubin (2000) determines the effective macrodispersivity that can be used to resolve 

subgrid heterogeneity in deterministic numerical applications. 

In summary perturbation methods have been used to obtain analytical solutions to the 

groundwater flow and solute transport problems. As in the deterministic cases these are 

generally restricted to a point source in an infinite media or a continuous source in a 

semi-infinite media. One of the major benefits closed form analytical solutions is that 

they help with understanding the problem. They are also useful if the approximations 

involved in applying them (such as assuming infinite boundaries) are inconsequential. 

However, for solving problems where boundaries are important, particularly boundaries 

between the units that make up the aquifer, numerical solutions are required. 



Chapter 3 Potential Solution Schemes Page 38 

3.3 Numerical Solutions 

3.3.1 Deterministic Solution 

For the contaminant transport problem there are three stages in solution. 

Firstly the hydraulic head field must be determined from the hydraulic conductivity 

field. This is done using the flow equation. The hydraulic head field may be steady or 

unsteady. !fit is steady then the problem is a simple boundary value problem. !fit is 

unsteady then it is a more complicated initial value problem. Unsteady effects can arise 

from pumping, infiltration or the lack thereof, and fluctuation in boundaries (surface 

water levels). 

Secondly the velocity field is determined from the hydraulic head field. This is done 

using Darcy's law (Equation 2.5). For steady flow a single set of velocities will be 

obtained. For unsteady flow a continually evolving set of velocities will be obtained. 

Finally the concentration field is determined using the advection dispersion equation. 

This is an initial value problem whether the flow field is steady or unsteady since it 

depends on the initial plume condition. 

These three stages are generally performed sequentially and are uncoupled. However if 

the contaminant is very dense and/or concentrated then it can affect the flow of the 

groundwater and so a more complicated set of flow equations must be coupled to the 

advection dispersion equation. In this research work it will be assumed that these 

density effects are negligible. 
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3.3.2 Stochastic Solutions 

For stochastic problems there are three forms of numerical solution. The primary 

numerical method in stochastic problems is the Monte Carlo method discussed in 

Section 3.1. This method gives complete information about the probability distributions 

of the output values for a given set of input values (provided a sufficiently large number 

of realisations has been used). However the Monte Carlo Method can be prohibitively 

expensive in computation time. Therefore other methods have been developed to 

provide specific information about the output variables. These methods are less 

computationally intensive but also give less information. 

The two main groups of other numerical methods are perturbation methods and 

reliability methods. These methods have not been applied extensively in the 

groundwater area, but have been in the structural mechanics area. Therefore a quick 

overview of some of the developments from this area will be given. 

3.3.2.1 Perturbation Methods 

Perturbation methods involve calculating the solution at a particular point, usually the 

mean point, and determining how this solution changes as the various input variables 

change. The latter is equivalent to determining the derivatives of the output variables 

with respect to the input variables. When both the input variables and output variables 

are described by Taylor series it is possible to relate the statistics of the output to the 

input. Of course this relation is only as accurate as the Taylor series, which depends 

both on the closeness of the point to the point about which the Taylor series is being 

made and on the accuracy of the Taylor series (i.e. the number of terms in the Taylor 

series). Sections 4.2 and 4.3 give more details about implementing this method. 
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Perturbation methods have been extensively researched in the structural mechanics area 

where they have been taken from simple static problems to more complex dynamic 

problems (for example see Hisada and Nakagiri, 1981; Liu et al, 1986a & b; Vanmarke 

et al, 1986; Nakagiri, 1987; Ditlevsen, 1988). Nakagiri (1987) discusses both the static 

and eigenvalue problems using this approach. Liu et al (1987) apply the method to 

elastic plastic dynamic problems. They also use a diagonalisation of the covariance 

matrix to reduce the amount of computation required. Liu et al (1988) apply the method 

to linear dynamic problems and further refine the solution by decoupling and using 

Lanczos basis and give a method for removing secular terms from the results. 

A similar alternative method investigated by Katafygiotis and Beck (1995) is to use a 

Fourier series expansion instead of a Taylor series. 

3.3.2.2 Reliability Methods 

The perturbation method seeks to determine the behaviour of the system about the mean 

point. This suffers from loss of accuracy in the domain away from the mean point. 

Engineering is often interested in extremes rather than in averages. For example, with 

proverbial chain that is only as strong as its weakest link, it is the extreme value that 

matters not the average. If the Taylor series were exact in the perturbation method then 

the probability of failure could easily be determined from it. However, the response is 

rarely normally distributed and this most strongly influences the behaviour at the tails of 

the statistical distributions. Therefore the reliability method has been developed 

specifically for determining the probability of failure. See Der Kiureghan and Ke 

(1988). 
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For the reliability method a performance function is defined G(X) such that when G(X) 

> 0 the structure will not fail and when G(X) < 0 the structure will fail. The domain, X, 

is the vector of random variables upon which the response of the structure depends. The 

surface G(X) = 0 is called the failure surface. The probability of failure is the volume 

under the probability density function integrated over the area where G(X) < 0. 

To determine the reliability a point known as either the most probable point or the 

design point is found. This point is the point on the failure surface that is closest to the 

mean point. Various methods for determining this point are compared in Liu and Der 

K.iureghian (1991b). The distance from the mean point to the design point is called the 

reliability and given the symbol (3, see Figure 3.4. 

Variable 1 Failure surface 

First order approximation 

Second order 

approximation 

Variable 2 

Figure 3.4 Two variable reliability example 

Hassofer and Lind (1974) suggest that the random variables be tr~sformed into 

standard normal distributions before determining beta to give it a consistent definition 

and hence a consistent value for a given problem. 
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A first order approximation to the probability of failure can be calculated directly from 

the reliability with the use of standard normal probability tables. This approximation 

assumes that the failure surface can be approximated by a plane tangent to the failure 

surface at the design point. 

A second order approximation to the probability of failure can be obtained if the second 

derivatives of the failure surface at the design point are known. This approximation 

uses a second order Taylor series to approximate the failure surface. Liu and Der 

Kiureghan (1991a) use a (structural) finite element package to develop a second order 

solution. Der Kiureghan and De Stefano (1991) develop an algorithm that finds the 

second derivatives in order of significance so that only curvatures of a given 

significance are used. This reduces the calculation time. 

The next couple of subsections will discuss how these methods have been applied in the 

groundwater flow and solute transport areas. 

3.3.3 Velocity 

Sagar (1978) applied a form of perturbation method to the groundwater flow problem. 

It outlines a methodology for obtaining the means and variances of the hydraulic head in 

the groundwater flow problem from the means and covariances of the hydraulic 

conductivity, storativity and forcing function using the Galerkin finite element method. 

In this method a matrix equation is derived, then a perturbation is added to a matrix 

element and the matrix is inverted to enable the derivatives of hydraulic head with 

respect to the matrix elements to be obtained. These derivatives are used in a Taylor 

series from which the mean and variance can be determined up to second order. A one-
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dimensional example with three elements is provided. The work is not extended to 

groundwater velocity. 

Dettinger and Wilson ( 1981) develop a perturbation method for obtaining the mean and 

covariance of the hydraulic head field. However, their method involves matrix 

inversion and no application is provided. 

Hantush and Marino (1995) also develop a form of perturbation method for computing 

hydraulic head values in unsteady flow with random recharge, storativity and 

transmissivity. However, the method involves inverting matrices rather than just 

solving them and so may be computationally intensive. A one dimensional application 

is provided using up to 40 nodes. 

Ghanem (1998) uses Khahunen-Loeve expansions to discretise the random field in the 

spectral dimension. The hydraulic head at each node is then considered to consist of the 

superposition of the effects of each of these random variables. This is substituted into 

the flow equation and the ensemble average is taken. Solution of this equation gives the 

covariance matrix for the hydraulic heads. 

Tartakovsky and Neuman (1998), Guadini and Neuman (1999a & b) and Winter et al 

(2002) expand the hydraulic head directly into a Taylor series using Green's functions. 

These are then numerically solved. Tartakovsky and Neuman (1998) deal with transient 

flow, Guadini and Neuman (1999a & b) deal with steady state flow, and Winter et al 

(2002) model the effect of random boundaries between aquifer units as well as random 

spatial variation within them. 

The forms ofSagar's (1978), Hantush and Marino's (1995) and Ghanem's (1998) 

perturbation methods are quite different to that discussed in Section 3 .3 .2.1. The latter 
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is derived more directly in terms of the derivatives of the stiffness matrix, thus not 

requiring any matrix inversions. Vanmarcke and Hachich (1983) and Vanmarcke 

(1994) use a method similar to that discussed in Section 3.3.2.l to determine the 

covariance matrix of the hydraulic head from the covariance matrix of the hydraulic 

conductivity. They then use Bayesian analysis to determine the reduction in uncertainty 

that can be obtained by gathering more data. This can be used for making decisions 

about future testing, for example. Both papers use the local averaging method described 

later in Section 3.4.2. However, they only detennine the hydraulic head and not the 

groundwater velocity as they are interested in geotechnical aspects of the pore water 

pressure rather than in solute transport. 

Little has been done to apply this method to determination of groundwater velocity, or 

to perform numerical experiments to obtain results of groundwater velocities from using 

the method. 

3.3.4 Concentration 

Literature describing the application of non Monte Carlo numerical methods to solute 

transport is less common than that applying them to hydraulic head calculation. 

Graham and McLaughlin (1989a) develop a set of three coupled matrix equations, the 

first is similar to the advection dispersion equation and relates the mean concentration to 

the cross covariance between the velocity and concentration perturbations, the other two 

relate the concentration covariances to the mean concentrations and aforementioned 

cross covariances. The paper shows how the coupled equations can be solved using a 

modified Galerkin finite element method. Graham and McLaughlin (1989b) show how 
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the results of this method can be conditioned on measured values using Kalman filtering 

to give improved accuracy. 

Hamed et al ( 1995) demonstrate the use of reliability methods, however, spatial 

variability of aquifer properties was not considered. 

Very recently, Kunstmann et al (2002) have used a first order second moment method to 

determine the nodal concentration variances from the covariance matrices of the 

hydraulic heads, hydraulic conductivity and aquifer recharge. In doing so they need to 

calculate the cross covariance matrices between the hydraulic heads and hydraulic 

conductivity and between the hydraulic heads and the aquifer recharge. It is to be noted 

that they are using a first order method and so only focus on covariances. To first order 

the mean is the same as the deterministic result. It is necessary to go to second order for 

the mean to be affected by the second moment of the input variables because the input 

variables are assumed to be normal (Gaussian). Thus their mean values are assumed to 

be the deterministic result. 

3.4 Random Field Discretisation 

In order to use a numerical solution scheme it is necessary to discretise the random field 

into random variables. 

The result of the discretisation process is a covariance matrix. This is a square matrix 

with dimensions equal to the number of random variables. Each element of the matrix 

represents the covariance between the random variables represented by the row and 

column of the matrix. Thus the matrix is symmetric and the diagonal elements 

represent the variances at each point. By finding suitable eigenvectors it is possible to 
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transform the covariance matrix into a diagonal matrix (Liu et al, 1987). The vector of 

correlated random variables can be transformed into a vector of uncorrelated random 

variables using the same transformation matrix. This has three uses. Firstly using the 

inverse matrix a vector of independent random variables can be transformed into a 

vector of correlated random variables. This is useful since it is easier to generate 

realisations of independent random variables than dependant ones. Secondly it can be 

used to simplify the Taylor series for the output variables. In the transformed matrix all 

covariances are zero except for diagonal entries. This eliminates the necessity to 

calculate the cross second derivatives of the hydraulic head and concentration fields 

with respect to the random variables for the perturbation and reliability methods. This 

can be a major reduction in calculations. 

There are several ways to discretise the random field into random variables. If the 

integral scale is large compared with the fluctuation of the hydraulic head or 

concentration field then it will be necessary to have a finer discretisation of these fields 

than of the random field. This means that one random variable may be used to model 

several finite elements. This is often used in structural mechanics problems where 

stress patterns can be very fine. In contaminant transport problems the structure of the 

random field is normally more detailed than the structure of the hydraulic head and 

concentration fields. Therefore at least one random variable is required for each finite 

element. 

This allows the options available for discretisation to be midpoint discretisation, local 

averaging and weighted integrals. 
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3.4.1 Midpoint Discretisation 

The simplest form of random field discretisation is the midpoint method presented in 

Der Kiureghian and Ke (1988). It simply requires choosing the value of the random 

field at the centre of the area or volume corresponding to the random variable as the 

random variable. Thus the covariances between the random variables will simply be the 

value of the auto correlation function at the separation of the midpoints of the areas or 

volumes corresponding to the random variables. 

This is the method adopted for this research. Reasons for this are presented in Section 

3.4.4. 

3.4.2 Local Averages 

Local averaging requires some form of averaging of the random field over the area or 

volume corresponding to the random variable as the random variable. V anmarcke 

(1983) shows that local averaging gives covariances that are similar to those provided 

by the midpoint method acting on a random field with a longer integral scale and lower 

point variance, depending on the element. As the size of the areas or volumes being 

averaged decrease this difference will reduce until it reaches zero when the areas or 

volumes are identical with their midpoints. 

cov(k;,ki) = a 2 JI J..._di -di ~d;ddi 
D;,D2 Equation 3 .1 

D; , Di = the area or volume of elements k; , k i 
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V anrnarcke ( 1983) suggests using a variance reduction function y to simplify the 

computations. 

In one dimension this is: 

Var(k) = r(T)d Equation 3.2 

where 

T is the length of the element 

d is the point variance of the random field 

This allows the covariance function to be calculated from (one dimension): 

Equation 3.3 

Similar expressions can be determined for the covariance function for multiple 

dimension elements. 

Analytic expressions of the one dimensional y function can easily be determined for 

common auto-correlation functions based on 1, the integral scale, a parameter used in 

the auto-correlation function. 

For two dimensional elements: 

r(r., T2) = r(r. )r(T2 I r.) 
r(T2 I Ti)= r(T2 ) but with a different integral scale 12 Equation 3 .4 

12 is a function of T. for most common autocorrelation functions. 
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This creates problems because Ii is often different to J. One case where Ii equals / is 

when the auto correlation function is separable. An example of this is Ar)= exp( 1), 

which can be separated into a product of :functions of the x, y and z components Ar) = 

exp(x2) x exp(y2)x exp(z2). Most research is done using a linear exponential auto­

correlation :function Ar) = exp( r). This :function is not separable. 

For non-separable auto-correlation functions Vanmarcke (1983) suggests using a 

piecewise linear approximation for Ji. 

Zhu et al (1992) show that local averages give faster convergence than midpoint 

discretisation. However this is for a structural problem rather than a contaminant 

transport problem. As contaminant transport requires modelling structures of variability 

rather than probabilities of variability this may not apply. 

3.4.3 Weighted Integrals 

Weighted integrals involve breaking each finite element up into a separate random 

variable for each term in the first derivative of each shape :function used in the finite 

element method (Takada, 1990, Takada and Masanobu, 1990, Deodatis, 1991, Deodatis 

and Shinozuka, 1991a, b & c). 

xi,j,k = JJJxiyjzkf(x,y,z}d.xdydz 
e Equation 3 .5 

J(x,y,z) = random field 

For linear shape :functions, which have constant first derivatives, i = j = k = 0, this 

reduces to a local average. For higher order :functions more random variables are 

required. 
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Weighted integrals have been developed in the structural area and not applied to other 

areas as yet. Deodatis ( 1991) develops two forms of the structural stiffness matrix, one 

using the principal of stationary potential energy, a stiffness approach, and the other 

using the principle of virtual work, a flexibility approach. The approach that relates to 

the contaminant transport is the stationary potential energy approach. This method 

involves separating the shape functions into their separate powers of the space vector 

before integrating. 

When higher dimension elements are used more random variables are required. It is 

noticed that the derivative of each sub matrix is the next sub matrix in the list (Deodatis, 

1991 ). This is useful for using the perturbation method with the weighted integral 

method. 

Deodatis (1991) points out that this method has inaccuracies because of the use of 

deterministic instead of stochastic shape functions. He then develops a set of stochastic 

shape functions. Stochastic shape functions are irrelevant to contaminant transport 

problems. In mechanics problems involving linear bars shape functions are exact and 

refer to the deformed shape of the bar. Thus a stochastic shape function can be derived. 

In field problems, such as the grounder flow and solute transport the shape functions are 

only approximations so it does not matter the exact shape they have as long as they are 

compatible at the edges of the element. 

The research outlined in this thesis uses linear shape functions. Therefore weighted 

integrals are effectively equivalent to local averaging and so will not be further 

considered. 
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3.4.4 Method Adopted 

The results presented in Chapters 5 and 6 use the midpoint method rather than the local 

averaging method. This is because groundwater seeks preferential flow paths. The 

average distance between these flow paths is modelled by the integral scale. The higher 

relative conductivity of these flow paths is modelled by the standard deviation. 

Vanmarcke (1983) points out that local averaging has the effect of increasing the 

integral scale and decreasing the standard deviation. The size of this effect depends 

upon the size of the elements being used. In many applications in structural mechanics 

the behaviour depends on the average properties of the materials and so this is not a 

problem. However, it is not the averages that matter when discussing macrodispersion 

of a solute, but rather the magnitude and frequency of the random fluctuations. Thus it 

appears to indicate that if local averaging were to be used in this work it would be akin 

to changing the aquifer properties depending upon the element size chosen. Therefore 

the midpoint method has been adopted for determining the results presented in Chapters 

5 and 6. 

However, it is to be noted that the stochastic finite element method presented is general 

and other methods can be used for determining the covariances. 
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4 Problem Definition, Algorithms 

and Implementation Issues 

4. 1 Problem Definition and Aims 

Now that the nature of contaminant transport and a variety of aquifer models have been 

put forward it is possible to define the problem being solved. 

Most of the research covered in Chapter 3 has been analytical in nature and only has 

solutions for a limited range of conditions, for example an infinite extent of boundary 

conditions, uniform groundwater flow, instantaneous point source or constant 

concentration source. Much of the remainder has involved the use of Monte Carlo 

simulation, which has the attendant problem of requiring very large amounts of 

computer time to achieve a reasonable degree of accuracy. There is need for a 

numerical method that can solve this problem for arbitrary boundary conditions, 

arbitrary groundwater flow regimes and arbitrary source and sink characteristics of 

solute. 

The aim of this research is to develop a numerical method that models the contaminant 

transport problem using a random field to model the hydraulic conductivity. Thus input 

data for hydraulic conductivity will involve the mean value, the standard deviation of 

the point value, and the auto correlation function for each aquifer unit. A perturbation 

method based on the finite element method will be used. The advection dispersion 

equation will be used to formulate the method, but the heterogeneity of the field will be 
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accounted for in the advection term by determining the variation in velocity throughout 

the aquifer rather than artificially fitting the dispersion coefficient. 

The results of applying this method will be compared with various analytical results 

found in the literature. 

4.2 Algorithms for Velocity Calculations 

The stochastic finite element method presented here is a numerical method based on the 

standard Galerkin finite element method. In this way following Equation 2.6 is 

expressed as: 

KH=F Equation 4.1 

where K is the global conductance matrix, H is the vector of nodal heads, and F is the 

global specified flow matrix (Istok, 1989). 

The particular formulation used here assumes that the hydraulic conductivity is uniform 

within each finite element. The most important implication of this is that heterogeneity 

smaller than the element size cannot be modelled. Thus the results may be sensitive to 

element size because for a given value of the integral scale a smaller element will model 

more of the heterogeneity than a larger element, particularly when the element size is a 

substantial fraction of the integral scale. However, given that the midpoint method is 

being used to discretise the random field this is the most appropriate type of formulation 

to use as the midpoint method is only capable of modelling the hydraulic conductivity 

of each element by a single value. 



Chapter 4 Problem Definition, Algorithms and Implementation Issues Page 54 

Other formulations are possible, for example, a formulation where the hydraulic 

conductivity is defined at the nodes of each finite element and calculated at other points 

using the interpolation functions. To use this formulation it would be necessary to 

discretise the random field using the weighted integral method presented in Section 

3.4.3. In that section it is noted that using linear interpolation functions (as used in this 

research) the weighted integral method reduces to the local averages method and that 

using higher order polynomial interpolation functions requires more random variables 

per finite element, greatly increasing computation time. For these reasons this 

alternative formulation was not used. 

4.2.1 Normal-k Model 

The statistics of the hydraulic head field are determined by expanding each nodal head 

value into a Taylor Series in a similar manner to that used for structural response in 

Nakagiri (1987): 

Equation 4.2 

where Hn is the head value at node n, E is the total number of elements being 

considered, k; is the hydraulic conductivity for element i, and &; is the deviation of k; 

from its mean value. The overbar on Hn implies that this is the value determined using 

the mean hydraulic conductivity field, that is, the deterministic result. 

Once again adapting the method used by Nakagiri (1987) and assuming that k is 

normally distributed (lognormal distributions will be considered later), and deleting 
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terms involving statistics of k of fourth order or more the mean and covariance are given 

by: 

Equation 4.3 

Equation 4.4 

where E[Hn] and cov(Hm, Hn) are the mean and covariance of the given values over all 

possible realisations of the hydraulic conductivity field. 

The derivative terms in Equation 4.3 and Equation 4.4 can be determined by taking the 

derivatives of Equation 4.1 with respect to ki and 'tj and rearranging. Note that F is 

independent of k. This leads to: 

Equation 4.5 

Equation 4.6 

Now noting that K is a linear function of k, the derivatives ofK can be determined as: 

Equation 4. 7 

Equation 4.8 

where K; is the expanded elemental conductance matrix for element i. 
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Substituting Equation 4. 7 and Equation 4.8 into Equation 4.5 and Equation 4.6 yields: 

-ell 1 .­
K-=--K'H 

&; k; 
Equation 4.9 

Equation 4.10 

To perform the calculations firstly Equation 4.1 is solved using the mean hydraulic 

conductivity values to obtain the H-bar values. These are substituted into Equation 4.9 

to obtain the first order derivatives. These are substituted into Equation 4.10 to obtain 

the second order derivatives. Both the first and second order derivatives can then be 

substituted into Equation 4.3 and Equation 4.4 to obtain the mean and covariance of the 

hydraulic head field. 

Most of the computational effort goes into solving Equation 4.5 and Equation 4.6. An 

important part of this algorithm is that the K-bar matrix on the left hand side of 

Equation 4.5 and Equation 4.6 is the same for all equations. This matrix is factorised at 

the beginning while solving Equation 4.1 and then used in all forward and backward 

substitutions. Also, the derivatives of the K matrix used on the right hand side are 

sparse matrices containing only terms relating to the nodes belonging to the elements 

for which they are derivatives and so not all elements need to be involved in the 

multiplication. These two facts greatly speed up the computation of the algorithm. 

The above development is similar to Sagar ( 1978) except that in the present work the 

Taylor series is developed in terms of the material properties rather than matrix 

coefficients. It is also similar to Vanmarcke (I 994) except that in the present work the 
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mean is determined as well as the covariance. The present work also differs from both 

of the above in that it determines the velocity statistics as well as the head statistics. 

The statistics of the velocity field can be determined in a similar way to Equation 4.3 

and Equation 4.4: 

Equation 4.11 

oov{v.,v.} = ,t(:J:;)oov(k,,k,) Equation 4.12 

To determine the derivatives in Equation 4.11 and Equation 4.12 the finite element 

deterministic case form of Darcy's Law is required. This is given by (lstok, 1989): 

M 

Ve = -ke L 'VN m•Hm Equation 4.13 
m=l 

where Ve is the velocity at a point in element e, Vis the gradient operator, Nm is the 

value of interpolation function for node m at the point where the velocity is being 

determined, Hm is the nodal hydraulic head value at node m, and Mis the number of 

nodes in element e. Differentiating Equation 4.13 with respect to ki and '9 leads to: 

Equation 4.14 

Equation 4.15 
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where be,i is the Dirac delta function. 

4.2.2 Lognormal-k Model 

It is generally accepted that hydraulic conductivity is lognormally distributed (Freeze, 

1975), that is Y = ln(k) where Y is normally distributed. The method outlined above can 

also be used with lognormally distributed hydraulic conductivity. In this case Equation 

4.3 and Equation 4.4 are replaced by: 

- 1 E ifH 
E[Hn] = Hn + 2 ~ 8Y,d,. co~Y;,½) 

l,J=I I J 

Equation 4.16 

Equation 4.17 

This time we will need to know the derivatives of K with respect to Y. Now: 

therefore: 

ac 
_e =8 .er. 
of,' e,1 

I 

If ke s: Y. 
oY,'o.Y. = ue,i,j e • 

I J 

Equation 4.18 

Equation 4.19 

Equation 4.20 

Once again, noting that K is a linear function of Y, the derivatives of K with respect to Y 

can be determined as: 
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a( . 
-=K' 
BY; 

Equation 4.21 

Equation 4.22 

Substituting these into equations similar to Equation 4.5 and Equation 4.6 but using Y 

instead of k gives: 

-bll .­
K-=-K'H 

BY; 

- ?H .bll .ill . 
K--=-K'--K'--8 .. K'H 

oY;~ ~ BY; l,J 

Equation 4.23 

Equation 4.24 

These can be used with Equation 4.16 and Equation 4.17 to obtain the statistics ofH in 

the same manner as in the normal-k model above. Similarly the derivatives of velocity 

with respect to Y are given by: 

Equation 4.25 

Equation 4.26 

These can be substituted into: 

Equation 4.27 
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Equation 4.28 

to give the statistics of the velocity distribution. 

It should be noted that the value of ke to be used in Equation 4.9, Equation 4.10, 

Equation 4.13, Equation 4.14 and Equation 4.15 is the mean hydraulic conductivity, 

whereas in Equation 4.23, Equation 4.24, Equation 4.25 and Equation 4.26 it 

corresponds to the mean of Y, which is the geometric mean of k. 

4.3 Algorithms for Concentration Calculations 

4.3.1 Means and Covariances 

The perturbation method presented here is a numerical method based on the standard 

Galerkin finite element method. In this way Equation 2.4 is expressed as: 

a: 
A-+DC=F a 

Equation 4.29 

where A is the global sorption matrix, C is the vector of nodal concentrations, t is time, 

D is the global advection-dispersion matrix, and F is the global specified flow matrix 

(Istok, 1989). 

To solve this a finite difference formulation is used: 

[A+trotD]c,H, =[A-(1-m)~tn]c, +M[(1-w)F, +wFl+ru] Equation 4.30 
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The statistics of the concentration field are determined by expanding each nodal head 

value into a Taylor Series: 

- E a:' 1 E 132c 1 E ;Jc 
en = en + I ~ ~Y; + 2 Lor;; AY;~Y; + - L n AY;AY;Al'; 

i=I i i,j=I i j 6 i,jJ=I oY;°½oYr 
} E 1/'C 

+ - L IJ'IIJY ;,8Y AY;AY;Al';AYm + ... 
24 i,j,l,m=I i j I m 

Equation 4.31 

where Cn is the head value at node n, E is the total number of elements being 

considered, Y; is the logarithm of the hydraulic conductivity for element i, and LIY; is the 

deviation of Y; from its mean value. The overbar on Cn implies that this is the value 

determined using the mean of the log hydraulic conductivity field, that is, the 

deterministic result. 

Y was chosen as the basis for the Taylor series because it is generally accepted to be 

normally distributed (Freeze, 1975). Also Section 5.1.1 shows that the nonnal-k model 

does not give sensible results. Given this and deleting terms involving statistics of k of 

fourth order or more the mean and covariance are given by: 

Equation 4.32 

Equation 4.33 

where E[Cn] and cov(Cm,Cn) are the mean and covariance of the given values over all 

possible realisations of the Y field. 

The derivatives in Equation 4.32 and Equation 4.33 can be expanded to produce: 
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Equation 

4.34 

cov(Cm,Cn) = .. ± _ (~mJ(~n)(:;)(;Jcov(Y;,½) 
l,J,p,q-1 p q I J 

Equation 

4.35 

Comparison of these with Equation 4.27 and Equation 4.28 shows that they can be 

simplified to: 

Equation 4.36 

Equation 4.37 

where vp and vq are the pore velocities of elements p and q. 

The derivative terms in Equation 4.36 and Equation 4.37 can be determined by taking 

the derivatives of Equation 4.30 with respect to v; and viand rearranging. Note that A 

and Fare independent ofv and hence their derivatives are zero. This leads to: 

Equation 

4.38 

Equation 

4.39 
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In Equation 4.38 and Equation 4.39 only the original (deterministic) [A+ wL1tD] matrix 

appears on the left hand side. This matrix is factorised once, and then used in all 

forward and backward substitutions. The derivatives of this matrix are only used in 

multiplication on the right hand side. This is further simplified because they are sparse 

matrices containing only terms relating to the nodes belonging to the elements for which 

they are derivatives. 

The elements ofD for element e are given by: 

Equation 4.40 

where Nn is the shape function for node n, M is the number of nodes, V is the domain of 

the problem, Dii is the dispersion coefficient, Ve is the velocity for element e, "A, is the 

solute decay constant, p is the bulk density of the aquifer, Kd is the partitioning 

coefficient of the solute, and 0 is volumetric water content of the aquifer (for saturated 

soil this is the porosity). The results are based on a conservative contaminant and hence 

A, the solute decay constant, is set to 1.0. However, the analysis still applies for non­

conservative contaminants. Also the results use a value of zero for the dispersion 

coefficients in each direction. This implies that the effects of diffusion and mechanical 

dispersion are neglected and the dispersive behaviour in the results is entirely 

attributable to the variation in hydraulic conductivity. This is being done to highlight 

the effects of the variation in hydraulic conductivity. The implications of this decision 

are discussed in Section 7.5. 

The derivatives ofD are determined simply since Dis a linear function of v: 
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Equation 4.41 

Equation 4.42 

where Be,i is the Dirac delta function. 

These derivatives can be substituted into Equation 4.38 and Equation 4.39 to determine 

the derivatives of concentration. The concentration derivatives in turn can be 

substituted into Equation 4.36 and Equation 4.37 to determine the means and 

covariances of the nodes in the concentration field. 

4.3.2 Spatial Moments 

Describing a solute plume by the values of the concentration at each point can be quite 

cumbersome. Therefore it is quite common to describe the plume by its second spatial 

moments of area. This gives an idea of how big the solute plume is. 

The spatial moments are not the boundaries of the plume. Indeed, according to the 

underlying mathematical model used, at least a very small concentration of the solute 

spreads over the entire aquifer instantaneously. This is true for both the deterministic 

and stochastic models. Instead the moments represent the spread of the plume in the 

way that the standard deviation represents the "spread" in a Gaussian probability density 

function. 
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For a deterministic plume the second spatial moment would be calculated using the 

following equation: 

Equation 4.43 

Where My{t) is the second spatial moment of the plume in the i and j directions, and X is 

the centroid of the plume. Note both integrations are over the whole volume of the 

plume. 

In a stochastic problem there are multiple types of second spatial moments. 

4.3.2.1 Spatial Second Moments of Mean Concentration 

The simplest spatial second moment to calculate is the spatial second moment of the 

mean values determined in Section 4.3.1. This represents the ensemble second moment 

of the plumes in all possible realisations, or, in other words, the area that is endangered 

of becoming contaminated. It is simply calculated using Equation 4.43 using the mean 

values of concentration. 

However, the spatial second moment of the mean concentration does not represent the 

size of an individual plume, because it also includes the uncertainty about the location 

of the plume. Commonly an assumption is made that the result of the ensemble is 

equivalent to the result from a single realisation. This is referred to as the ergodic 

hypothesis and a situation where this is true as an ergodic result. Essentially the ergodic 

hypothesis is acceptable when the spread of an individual plume about its centroid is 

much greater than the uncertainty in the location of the centroid. This is considered to 
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be the case after the plume has travelled a sufficient distance such that the spread of the 

plume is significantly larger than the integral scale of the hydraulic conductivity. 

4.3.2.2 Spatial Second Moments of Individual Plumes 

The next spatial second moment is the average of the spatial second moment of 

individual plumes. This represents the average amount of spreading of a plume about 

its centroid as it travels through the aquifer. 

Conceptually this is equivalent to performing a Monte-Carlo simulation, determining 

the spatial second moment for the plume in each realisation using Equation 4.43, and 

then determining the average of the results. This is the most commonly desired moment 

as it most accurately represents the spread of a plume in the field. 

Rajaram and Gelhar(1993b) show that the average of the spatial second moment can be 

calculated using: 

:E .. (t) = J (xii - X2; Xx1j - x2 j )cov[C(x1, t ), C(x1, t )]dx1 dx2 

11 2~ C(x,t)dxj 
Equation 4.44 

4.3.2.3 Uncertainty in Plume Centroid Position 

The heterogeneity of the aquifer not only disperses the plume as it travels through the 

aquifer, it also causes the plume as a whole to deviate from the deterministic position. 

The size of this effect depends upon the ratio between the size of the plume and the 

integral scale of the hydraulic conductivity of the aquifer. If the plume is much larger 

than the integral scale then the effect of the heterogeneity on different parts of the plume 

will tend to cancel out and the centroid of the plume will tend to follow the 
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deterministic position. On the other hand if the plume is smaller than the integral scale 

the effects of the heterogeneity will be highly correlated and the whole of the plume will 

meander through the aquifer. This is represented as an increase in the uncertainty of the 

location of the centroid of the plume. 

The uncertainty of the location of the centroid can be represented by the second moment 

of its spatial probability distribution. This can be easily calculated using the following 

equation: 

Rii (t) = M ii (t )- E ii (t) Equation 4.45 

Where Rij(t) is the second moment of the spatial probability distribution of the location 

of the centroid. 

4.4 Original Deterministic Flow Program 

The code for the original deterministic flow program (gwl) was obtained from Istok 

(1989) and is written in FORTRAN. 

This code was chosen because it is a simple code and comes with a textbook clearly 

explaining each part, thus making it easy to develop into a stochastic program. 

The code reads nodal point data, element data, material properties, and boundary 

condition data from an input file, assembles the global conductance matrix from the 

element conductance matrices, modifies the global conductance matrix for Dirichlet and 

Neuman boundary conditions, and solves this matrix using the Choleski method for 

symmetric matrices. The code also calculates the velocities of the groundwater in each 

element and writes all of the results to an output file. 
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A few modifications have been made to the code: 

1. Only bar, triangle, rectangle, quadrilateral and parallelepiped elements using linear 

interpolation functions are included. 

2. The input reading routines have been changed to accept the flow field dimensions, 

number of elements in each direction and head values at each end, and to use this 

data to create the nodal point data, element data and boundary condition data for a 

rectangular mesh, using quadrilateral elements. 

3. All variables are declared explicitly and "implicit none" statements have been added 

to each subroutine to ensure this. 

4. All real variables have been changed to double precision variables. 

5. The size of some of the common block arrays have been reduced to compensate for 

the extra memory required for double precision variables. 

6. The variable "E" used as an index for elements has been changed from a global 

variable in "COMALL" to a local variable in the subroutines that it is used in. This 

has removed some irritating warning messages. 

7. The formatting of the data written to the output files has been changed. 

8. The calculation of the inverse Jacobian matrix for three dimensional elements was 

found to produce the transpose of the correct answer. This has been corrected. 

9. The calculation of the velocity in the specialised rectangular element code was found 

to be incorrect except for special cases. Therefore rectangular elements use the 

subroutine for quadrilateral elements, which gives correct results. 
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10.The code was modified to include upstream weighting (see next section). 

11. The matrix solving subroutines were replaced with subroutines from the linear 

algebra package library (LAP ACK). LAP ACK is a Fortran library designed to run 

efficiently on shared-memory vector and parallel processors (Anderson et al, 1999). 

The code was originally compiled using Microsoft FORTRAN version 5.1 and various 

test data files were executed on a 486DX2-66 personal computer using Windows 95 

operating system. 

The output files, which include the input data, are given in Appendix B. 

The code was then modified to calculate the derivatives and mean and standard 

deviations for head, velocity and concentration. The modified code can be found in 

Appendix A. The results are discussed in Chapters 5 and 6. 

It quickly and repeatedly became apparent that the computations were outgrowing the 

hardware, thus the program has been ported successively to: 

• A Dec Alpha Workstation ("Aerin") 

• A 12 PA8000 processor Convex ("Jacobi") 

• A 20 processor Silicon Graphics Power Challenge (''Napier") 

(See Section 4.6) 
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4.5 Issues with Respect to Upstream Weighting 

The finite element method for solute transport has a tendency to create oscillations in 

the flow field, particularly when the Peclet number is high. The Peclet number is given 

by 

Pe= veh 
D 

Equation 4.46 

Where Pe is the Peclet number, Ve is the element velocity, h is the grid spacing, and D is 

the dispersion coefficient. 

Figure 4.1 shows the effect of this on the contour plot of a plume in an 80 by 40 mesh. 

The contours should be circular, however, the effect has distorted them. Also upstream 

(to the left) of the plume the concentration oscillates from positive to negative (the areas 

with negative concentration are hatched). Of course there is no physical meaning to 

negative concentrations, these are purely an artefact of the finite element method. 

0 50 100 150 200 250 300 350 400 450 500 550 60 

Figure 4.1 Deterministic result for a grid 80 elements wide and 40 elements high. 
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The average groundwater velocity is from left to right. Hatched areas have negative 
concentration. 

There are two solutions to the problem of these oscillations, either the grid spacing can 

be reduced, thus reducing the Peclet number or a technique referred to as upstream 

weighting may be used. 

The ability to reduce the grid spacing is limited in this work due to the massive increase 

in computation time required. Therefore the code was modified to include upstream 

weighting as an attempt to solve this problem. 

Upstream weighting is a technique that changes the shape functions of the finite 

elements so that the ''upstream" part of the element has higher weighting than the 

"downstream" part. In effect, this reduces the oscillation by creating numerical 

dispersion. 

The standard finite element method used in this work uses linear shape functions. 

Shape functions based on higher order polynomials can also be used. These give a 

higher degree of accuracy without requiring more elements (it does introduce more 

nodes for each element, and hence the computation requirement will increase). 

However, the increase in accuracy only applies to the model of the concentration field. 

The accuracy of the model of the random field is strictly a function of the number of 

elements. Since the point of this work is to model the hydraulic conductivity as a 

random field it was decided to use elements with linear shape functions for this work as 

this gives the minimum amount of computational effort per element. 

The linear shape functions for the two nodes in a one dimensional element are given by: 

~(x)=l-i; Equation 4.47 
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Equation 4.48 

Where: 

For rectangular elements aligned with the coordinate axes the shape function for each 

node is given by the product of the one dimensional shape functions in each of the two 

dimensions direction. 

Upstream weighting modifies these shape functions to be the following (Huyakom and 

Pinder, 1983) 

w;(x)=1-;+3a(; 2 -;) Equation 4.49 

Equation 4.50 

Where x1 is upstream from x2 and a is the upstream parameter. 

Note that when the upstream parameter is equal to zero the shape functions are simply 

the linear shape functions given in Equation 4.47 and Equation 4.48. 

Once again for rectangular elements aligned with the coordinate axes the shape function 

for each node is given by the product of the one dimensional shape functions in each of 

the two dimensions direction, a different value of the upstream parameter will apply in 

the different directions. For example if the flow is parallel to the x-axis then the 

upstream parameter in the y direction will be zero. This is the case in this work. 
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Huyakom (1976) gives a formula for the optimum amount of upstream weighting to be 

applied: 

Equation 4.51 

Where Ve is the element velocity, his the grid spacing, and Dis the dispersion 

coefficient. 

Given that in the examples used and discussed in Chapter 6 the value of the dispersion 

coefficient was set to be zero, then the appropriate value for the upstream weighting is 

equal to one. Figure 4.2 shows the results of applying this amount of upstream 

weighting to the same plume as shown in Figure 4.1. 

0 50 100 150 200 250 300 350 400 450 

Figure 4.2 Deterministic result for a grid 80 elements wide and 40 elements high 
including upstream weighting with an upstream weighting parameter of unity. 

The average groundwater velocity is from left to right. Hatched areas have negative 
concentration. 

Figure 4.2 shows a plume that has been significantly dispersed by the upstream 

weighting method. In fact the longitudinal second spatial moment has increased from 



Chapter 4 Problem Definition, Algorithms and Implementation Issues Page 74 

2500 to 3600, whereas it was relatively unchanged in the case shown in Figure 4.1. 

Given that the thesis is about measuring the dispersive effect of modelling hydraulic 

conductivity as a random field, this inaccuracy is a bigger problem than the problem of 

the oscillations. Therefore the upstream weighting parameter was set to zero in the data 

sets discussed in Chapter 6. This effectively gives the same answers as if no upstream 

weighting was applied. However, the functionality to include upstream weighting was 

not removed from the code, instead the upstream weighting parameter is set to zero in 

all of the data files used in this research. 

4.6 Reducing Computation Time 

The stochastic finite element method discussed here is computationally intensive. For 

example, the meshes used in the examples in Chapters 5 and 6 take only seconds to run 

for the deterministic case, however they took months to run for the stochastic case ( even 

after the following techniques had been applied). Therefore several techniques have 

been applied to speed the calculations up. 

4.6.1 Order of Computation for Concentrations 

Using the straight forward application of the stochastic finite element method to 

determination of nodal concentrations given in Equation 4.34 and Equation 4.35 implies 

that the computational time will be approximately proportional to the sixth power of the 

number of elements in the finite element mesh. By breaking this into two steps, the first 

one determining the velocity statistics and the second one using Equation 4.36 and 

Equation 4.37 to determine the concentration statistics this relationship is reduced to the 

fourth power, a significant improvement for large meshes. 
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4.6.2 Recalculating First Derivatives 

Equation 4.37 contains a large number of first derivatives that are reused many times. 

They are also used in determining the second derivatives of Equation 4.36. It would 

appear that saving these numbers would improve the speed. However, for the largest 

mesh used in this research (approximately 20,000 elements for the groundwater flow 

problem) the array required to hold all the data would be approximately 6.4GB 

(6400MB) in size. Such a large array would need constant page swapping to and from 

the hard disk (the super computer Napier has 2GB of random access memory, which is 

shared by several users). Therefore the data would need to be stored on disk anyway. It 

was found that calculating these first derivatives each time they were needed and 

overwriting with the next was faster than saving them to disk and reading them when 

required. 

Therefore the code as currently implemented calculates a new set of first derivatives for 

each set of second derivatives. 

An interesting side issue about the writing to disk problem was related to the 

requirement for checkpoint files. Given that the program requires months to execute it 

is almost certain that the super computer will crash, or for some other reason be 

restarted before the program finishes executing. Therefore the code was written so that 

periodically all of its data was written to file so that if the computer crashed the program 

could start again where it left off. In fact the management of the super computers used 

was such that this was a necessary prerequisite to using them. Originally the data was 

written to file one number at a time. Even though binary format was used for this it was 

found that it took 20 minutes to write all of this data, and another 20 minutes to read it. 
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By rearranging the data so that it could all be written out as a single array the time spent 

reading and writing the data to and from disk was reduced to less than one minute. 

4.6.3 Use of Symmetry 

There are two forms of symmetry that are applicable to this problem. Whilst this may 

seem to be in conflict with random field modelling because the plume is expected to 

move asymmetrically, the means and variances will be symmetrical when the initial and 

boundary conditions etc are symmetrical. The first is the symmetry of the equations and 

the second is geometrical symmetry. 

The second derivatives in Equation 4.16, Equation 4.27 and Equation 4.36 all have 

symmetry arising from the identity: 

iJ2z iJ2z 
Equation 4.52 

Similarly the commutative law for multiplication provides symmetry in Equation 4.17, 

Equation 4.28 and Equation 4.37. Utilising these forms of symmetry cuts the 

computations required in half. 

The specific data sets used in this research all involve geometric symmetry. In a 

deterministic finite element problem it is possible to get adequate results under these 

circumstances by halving the flow field and providing appropriate boundary conditions 

along the introduced boundary. This technique cannot be used in a stochastic finite 

element problem because the results for each individual derivative are not symmetrical. 

However, almost half of the derivatives are mirror images of the other half (the 

discrepancy is that some are their own mirror image). This symmetry exists across the 
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central flowline for both velocity and concentration calculations, and across the central 

equipotential line for the velocity calculations. 

Utilisation of all of these sets of symmetry can reduce the head and velocity calculations 

by a factor of eight and the concentration calculations by a factor of four. This has been 

implemented in the code presented in Appendix A and used in the research. 

4.6.4 Dropping Small Covariance Terms 

Examination of Equation 4.16, Equation 4.17, Equation 4.27 ,Equation 4.28, Equation 

4.36 and Equation 4.37 (mean and variance equations for head, velocity and 

concentration) shows that each derivative term is weighted by a covariance. By 

neglecting those with small covariances less calculations are required. Since the 

covariance is a decreasing function of the separation distance between the two relevant 

elements, ignoring pairs of elements with large separation vectors could speed up 

calculations without loss of too much accuracy. 

Figure 4.3 shows the effect on the second derivative term in Equation 4.27 (i.e. the 

velocity calculations) of the distance between the elements that the derivative is taken 

with respect to. As the elements become further apart the absolute magnitude of the 

second derivative decreases, both along the flow field and across it (note this particular 

effect is unrelated to the autocorrelation function). Thus it would appear that ignoring 

pairs of elements with large separation vectors might be useful even for highly 

correlated fields (where all covariances are reasonably large). However, although the 

derivatives with respect to two widely separated elements are a couple of orders of 

magnitude lower than those with respect to adjacent elements, there are so many more 

widely separated pairs of elements that the errors were found to be quite significant. 
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In general it appears that including all pairs of elements closer together than four 

integral scales results in the error being no more than one or two percent. It must be 

remembered that at the relevant small integral scales the accuracy of the result depends 

heavily on the element size. 

This technique of reducing calculation time was implemented but not used because 

several random fields were considered simultaneously, as discussed in the next section. 

Some of the random fields had integral scales larger than the size of the flow field and 

for these cases there were no insignificant covariances. 
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Figure 4.3 Relation between the maximum positive and maximum negative second 
derivative and the distance between the relevant elements, for element pairs aligned 

both along and across the mean hydraulic gradient. 
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Note that for pairs aligned along the mean hydraulic gradient the positive maximum 
dominates whereas for elements aligned across the flow the negative maximum 

dominates. Data from 60 by 60 element isotropic square mesh. 
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4.6.5 Computing Several Correlation Fields Simultaneously 

Examination of Equation 4.16, Equation 4.17, Equation 4.27, Equation 4.28, Equation 

4.36 and Equation 4.37 (mean and variance equations for head, velocity and 

concentration) shows that the central calculations involve multiplying one or more 

derivatives by a covariance. Most of the computational effort goes into the derivatives 

and these derivatives do not changeifthe random field is changed. They change only if 

the geometry, boundary conditions or mesh for the flow field is changed. Unfortunately 

there are too many derivatives to save to disk for reusing later. However it is quite 

possible to use each one for several random fields simultaneously. Using ten random 

fields at once reduces the calculation time for the set of ten by approximately 90%. 

A side effect of this technique is that more memory is required to store the data for the 

total number of sets, thus limiting how many can actually be used. 

This technique has been implemented and in general ten data sets were calculated 

simultaneously. Using more than ten data sets required the computer to spend too much 

time swapping pages of virtual memory, and hence dramatically increased computation 

time. 
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4.6.6 Symmetric Multi Processor (Parallel) Programming 

A symmetric multi processor (SMP) computer has multiple central processing units 

(processors or CPUs), all having access to shared memory. The advantage that this type 

of computer has over computers with a single processor is that, if the algorithm allows 

for it, the program can do more than one thing at a time. This can speed up the 

execution of the program by a factor equal to the number of processors. In practice this 

speed increase is limited by the overhead in the program required to partition the work 

amongst the processors, and because not all algorithms ( or parts of algorithms) can be 

broken into parts that can be run simultaneously. 

Whilst it is possible to divide many programs into separate parts that can execute on 

different processors, the simplest way to parallelise a program is to allow the compiler 

to divide loops up so that different iterations run on different processors. In order to 

make this work as efficiently as possible (by reducing the proportion of the overhead 

mentioned above) each iteration of the loop needs to be as long as possible. The 

difficulty is that this type of parallelism can only be used if the iterations of the 

parallelised loop do not need to write to the same memory locations (reading is not a 

problem if there is no writing). 

In the program developed for this thesis there are many nested loops. Ideally in the case 

of nested loops the outermost loop would be parallelised. However, this is not always 

possible. Therefore to gain maximum improvement from the use of parallelisation it is 

necessary to arrange the loops in each nesting in such an order that the loop that is 

parallelised is as close to the outermost loop as possible. This means arranging the code 

so that iterations of all of the inner loops write to different memory locations. For 
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example, one way that these locations can be kept separate is to use the loop index as an 

index into an array. This means that each iteration of the loop will write to a different 

part of the array and thus that loop can be safely parallelised. 

Profiling the code showed that most of the execution time was spent calculating the 

average of the spatial second moment of individual plumes (Equation 4.44). Careful 

consideration was therefore placed in ordering the loops so that the outermost loop 

possible was parallelised. Performance results are shown in Figure 4.4. 
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Figure 4.4 Parallelisation performance of the code that implements Equation 4.44. 

The number of cycles refers to the number of terms in Equation 4.44 calculated in 8 
minutes of real time (i.e. 16 minutes of CPU time for 2 processors etc.) This data was 

averaged over several trials at different times. This data uses a mesh of 60 by 30 
elements. 

Figure 4.4 shows that excellent speedup results were obtained by using more processors. 

Unfortunately, several researchers shared the computer and so not all 20 of the 

processors were available all of the time. 

In order to further speed up calculations the part that calculates Equation 4.44 was 

commented out so that the other data being calculated could be determined using a finer 
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grid. In this case the code spent most of its time in the function DGBTRS solving 

Equation 4.38 and Equation 4.39. DGBTRS is a LAPACK routine that solves systems 

of linear equations given a matrix that has been LU factorised and an arbitrary number 

of right hand sides. Unfortunately the algorithm for solving a system of linear equations 

cannot be parallelised. (There is an algorithm for solving systems oflinear equations 

that can be parallelised. However, it is much slower when only a single processor is 

available and for it to actually speed up the calculations the number of processors needs 

to be of the order of the number of equations to be solved. Insufficient processors were 

available for this algorithm to be practical.) However, separate processors can handle 

the solutions for each different right hand side vector. Therefore the code was arranged 

to determine the derivatives with respect to the different velocity components to be 

determined simultaneously. This gave a reasonable increase in speed of the code with 

up to five processors, see Figure 4.5. The significance of two and five processors in the 

figure are that there are two right hand side vectors for the first derivative (two 

dimensions) and five for the second derivative. It would be expected that the 

performance would level out at four processors, but due to the program being written to 

handle 3 dimensions there is a gap in the set of two dimensional vectors and so five 

vectors were calculated instead of four, see Figure 4.6. More than five processors gave 

some increase in speed from parallelisation of other loops in the code, but the bottleneck 

in DGBTRS prevented it from being substantial. 



Chapter 4 Problem Definition, Algorithms and Implementation Issues Page 84 

Parallelisation Performance 
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Figure 4.5 Parallelisation performance of the code that implements Equation 4.38 and 
Equation 4.39. 

The number of cycles refers to the number of terms in Equation 4.38 and Equation 4. 39 
calculated in 8 minutes of real time (i.e. 16 minutes of CPU time/or 2 processors etc.) 

This data was averaged over 7 trials at different times. 
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Figure 4. 6 Layout of second derivative vectors in the program. 

XY refers to the second derivative of concentration with the groundwater velocity in 
both the X and Y directions. 
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4.6. 7 Alternative Multi Computer Programming 

Carrying the reasoning from the previous section further, much better parallelisation 

could be obtained if each tenn in Equation 4.36 and Equation 4.37 could be calculated 

by a different processor. In practice the computer executing the code had limits on how 

long a program could run for and so it was necessary to save the state of the calculations 

to file periodically and then restart the program and continue. The saves were arranged 

to occur between the terms in Equation 4.36 and Equation 4.37. It would be possible 

therefore to divide the terms amongst several different computers and then add the 

results. This was not implemented. 
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5 Velocity Verification and 

Discussion 

5.1 Results 

5.1.1 Comparison of Normal-k Model and Lognormal-k Model 

The equations governing the nonnal-k model, Equation 4.11 and Equation 4.12, and the 

lognonnal-k model, Equation 4.27and Equation 4.28, appear very similar, however, they 

behave quite differently. In Equation 4.11 the deterministic part, that is the first term on 

the right hand side, is based on the arithmetic mean of the hydraulic conductivity, 

whereas in Equation 4.27 it is based on the geometric mean. When the autocorrelation 

function is isotropic the effective conductivity (see Section 3.2.1) lies between these two 

means (Gelhar, 1993). Therefore the stochastic part of Equation 4.11, that is the second 

term on the right hand side, must be negative, whereas in Equation 4.27 it must be 

positive. This can cause a problem in the nonnal-k model when the variance of the 

hydraulic conductivity becomes large compared to the mean. If arbitrarily large 

hydraulic conductivity coefficients of variation are used then negative velocities will be 

predicted. This problem arises because arbitrarily large coefficients of variation imply 

that a significant fraction of the probability density fraction is negative and hence 

violate the assumption that k is a non-negative property. It is generally accepted that 

hydraulic conductivity is lognonnally distributed with significantly large coefficients of 
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variation (Gelhar, 1993). Therefore it is recommended that only the lognonnal-k 

method be employed. 

5.1.2 Integral Scale and Mesh Resolution 

In order to investigate the effect of integral scale a series of numerical experiments were 

carried out. The experiments involve flow in a square field between two opposing fixed 

head boundaries, with the other boundaries having no flow conditions, see Figure 5.1. 
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Figure 5.1 Flow field used in all examples. 

(The number of elements varied) 

Width 
of 

flow 
field 
=L 

The experiments were performed with various ratios between the integral scale and the 

size of the flow field and over a variety of mesh resolutions. All data points use the 

same point concentration probability distribution. The mean value of hydraulic 

conductivity selected was ln(0.1/VH), thus in a deterministic, case where the hydraulic 

conductivity was equal to this value the x-velocity, Vx, would be 0.1. The standard 

deviation selected for Y was 0.5. Putting these numbers into the expression for the 
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mean of a lognormal probability distribution results in the expected velocity in the 

longitudinal direction for the single random variable model presented in Section 2.2.2 

being 0.133. This is different to 0.1 because the lognormal distribution is significantly 

skewed and so even though k = er, E[k] is larger than eElYJ. 

An exponential autocorrelation function was adopted. Thus covariances were 

calculated using (Vanmarcke, 1983): 

Equation 5.1 

where (xi, Yi) and (xj, yj) are the coordinates of the centres of elements i and j, and Ix and 

ly are the integral scales in the x and y directions as defined by Equation 2.10. Unless 

otherwise noted the integral scales are equal in both directions (i.e. isotropic). 

The velocities given were calculated at the centre of each element. Results for mean X 

velocity and the standard deviation for X and Y velocities at the centre of the grid are 

given for various element size to flow field ratios to show the effect of mesh resolution. 

These results are shown in Figure 5.2, Figure 5.3 and Figure 5.4. The plot of mean Y 

velocity is not given since it always evaluates to zero at the exact centre of the grid. 

However, it is non-zero at other locations. 
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Figure 5.2 Plot of mean X velocity against integral scale 
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Figure 5.3 Plot of X velocity standard deviation against integral scale. 
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Figure 5.4 Plot ofY velocity standard deviation against integral scale. 
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100 

Figure 5.2 shows that the mean x velocity (i.e. flow in the direction of mean head 

gradient) speeds up with increasing correlation. The entire aquifer experiences an 

increase, although this increase is not uniform across the aquifer. However, there is a 

mesh resolution problem that breaks this tendency down when the element size becomes 

a significant fraction of the integral scale, in the left part of the figure. This will be 

discussed later in this section. 

The effect of mean x velocity increasing with increasing integral scale is as expected 

from the behaviour at the extreme ends of the scale. 

Firstly, for small integral scales a small volume in the centre of the flow field is 

effectively a long way away from the boundaries of the flow field, i.e. many integral 

scales away. An infinite flow domain is an appropriate model for this. Using the 

infinite flow domain assumption Gutjahr et al (1978) have shown that for a second order 
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approximation of the lognormal hydraulic conductivity distribution the effective 

conductivity in two dimensions is the geometric mean. This would be a value of 0.1 in 

Figure 5.2. This figure shows that at small integral scales the result tends to the value of 

0.1, more so as the mesh becomes finer. 

On the other hand, in the case where the integral scale is infinite every point in the flow 

field is completely correlated to every other point. Therefore, the entire flow field has a 

uniform value for hydraulic conductivity, albeit an unknown one. In this case Darcy's 

law can be applied directly to get the velocity and we find that the mean velocity will be 

the mean hydraulic conductivity times the mean hydraulic gradient. The mean 

hydraulic conductivity is higher than the geometric mean and it is to be expected that 

the mean velocity will tend toward this value with increasing correlation. Running a set 

of data with a very large integral scale gives a velocity very close to 0.1125. This is 

exactly what would be expected from a first order Taylor series of the mean of k 

expressed in terms of the variance of Y. In a later section this fact will be used to 

examine the accuracy of the Taylor series applied in this work. 

The standard deviation of the x velocity (i.e. flow in the direction of mean head 

gradient) chart (Figure 5.3) shows that the standard deviation of the velocity also 

increases with increasing integral scale. Once again this does not happen with the 

smallest integral scale. It is expected that this is also an element size/integral scale 

problem. The standard deviation is lower with smaller integral scales because the 

process of determining the velocity tends to smooth out the randomness. An area of 

high or low conductivity is very small and so can only have a limited effect because it 

locally changes the gradient of the hydraulic head field and this change in gradient has 

the opposite effect on the velocity to the hydraulic conductivity effect. Thus a local 
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decrease in hydraulic conductivity tends to create a locally higher hydraulic head 

gradient, because it is harder for the groundwater to flow through. The higher hydraulic 

head gradient tends to increase the flow and this counteracts to a limited extent the 

tendency of the decrease in hydraulic conductivity to decrease the flow. With the 

largest integral scale the whole aquifer tends to have a high or a low conductivity and so 

the standard deviation of the velocity is much higher. Once again the result of0.05 is 

exactly what would be expected from a first order Taylor series of the standard 

deviation of k expressed in terms of the variance of Y. This latter effect also causes the 

entire aquifer to have a more uniform mean velocity value and standard deviation. 

The lower end of the scale can be considered to be similar to an unbounded domain. 

Gelhar (1993) gives an expression for the variance of the specific discharge in an 

unbounded domain as 3q2cr1nl/8 where q is the specific discharge. Using this 

expression for the data in Figure 5.3 gives a result for the standard deviation of0.0306. 

Figure 5.3 shows that at small integral scales the result tends to this value, more so as 

the mesh becomes finer. 

On the other hand, Figure 5.4 shows that the standard deviation of they velocity (i.e. 

flow perpendicular to the direction of mean head gradient) decreases with increasing 

integral scale. Once again an element size/integral scale problem seems to reverse this 

trend at small integral scales. The result here is the opposite of the result for the x 

velocity since the y velocity represents flow around areas oflow local relative hydraulic 

conductivity. If these areas are large then the change in hydraulic conductivity between 

them is more gradual and so the water sweeps around them, whereas if they are small 

the conductivity changes will be much more abrupt and so the water will follow more 

tortuous paths through the aquifer. 
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With the largest integral scale there are no areas of lower conductivity since the aquifer 

is uniform thus the standard deviation of the transverse velocity is zero. 

Once again, the lower end of the scale can be considered to be similar to an unbounded 

domain. Gelhar (1993) gives an expression for the variance of the transverse specific 

discharge in an unbounded domain as q2cr1nl/8 where q is the specific discharge. 

Using this expression for the data in Figure 5.4 gives a result for the standard deviation 

of 0.0177. Figure 5.4 shows that at small integral scales the result tends to this value, 

more so as the mesh becomes finer. 

p 
Element size p . 

Element size 

1.0 1.0 

Separation distance Separation distance 

Figure 5.5 Effect of element size to integral scale ratio. 

Figure 5.2, Figure 5.3 and Figure 5.4 all show a change in behaviour at small integral 

scales. That is, the curves change from increasing to decreasing and vice versa. This is 

a function of the ratio between the element size and the integral scale. For the integral 

scale to be adequately modelled it is necessary that the integral scale be several times 

the size of the element. This is shown in Figure 5.5. In the figure on the right the large 

element size is inadequate for describing the auto correlation function with any 

accuracy. 
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5.1.3 Integral Scale Adjustment 

Examination of Figure 5.2, Figure 5.3 and Figure 5.4 shows that larger element sizes 

tend to increase the mean and standard deviation of the X velocity and reduce the 

standard deviation of the Y velocity. This effect is caused by the greater inaccuracies 

involved in modelling the random field with larger elements. It is particularly evident at 

the lower integral scale/element size ratios. If the integral scale is adjusted by adding 

1t - 0·5 times the element length, the results for the various element size to flow field 

ratios all tend to fall on a single curve (Figure 5.6). This creates a very good fit except 

at lower integral scales, where the mesh resolution problem, to be discussed in the next 

section, causes it to break down. 
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Figure 5. 6. Plot of mean X velocity against corrected integral scale. 

(The correction involves adding ,r- 0·5 of the element length to the integral scale. 
Compare with Figure 5.2.) 
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Figure 5.7 shows why 1r· 0·5 times the element size has been added to the integral scale. 

The integral scale is defined as the integral from zero to infinity of the autocorrelation 

function. Although Equation 5.1 has been used to detennine the covariances the discrete 

nature of the elements means that the actual autocorrelation function is stepwise because 

the covariance jumps from one value to another when it crosses element boundaries, see 

shaded area in Figure 5.7. Therefore the actual integral scale is much closer to the 

shaded area in Figure 5.7. A second curve has been shown in Figure 5.7 that is the 

same as the curve representing Equation 5.1 except that it has been shifted right by a 

distance equal to the "element size". The area under the modelled autocorrelation 

function is approximately the average of the area under the other two curves. Therefore 

half of a quantity that represents the "element size" has been added to the integral scale. 

p 
Element size 

1.0 
Equation 5.1 + element size 

autocorrelation experienced 
by the model 

Separation distance 

Figure 5. 7. Shows why the integral scale is corrected by adding half of the "element 
size". 

A difficulty is that the elements are square and so depending upon the orientation of the 

element the element size varies from the element length to the element length times the 

square root of two (along the diagonal). Therefore the question becomes what is the 

average element size. It appears reasonable to assume that this would be the diameter of 
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a circle with an equivalent area. If the element size is modelled by the diameter of an 

equivalent circle then the correction to the integral scale is given by 1t - o.s times the 

element length. Thus: 

Jcomcted =lx(1+J;xz) 
Equation 5.2 

where !corrected is the value for/ used in Figure 5.6, / is the element length, and I is the 

integral scale value used in Equation 5 .1. 

Trial and error with the data in Figure 5.6 also indicates that this is the most accurate 

correction, anything larger tends to overcompensate. 

5.1.4 Mesh Resolution 

Figure 5.6 shows that when the integral scale becomes a significant fraction of the 

element size (i.e. on the left part of the chart) the method begins to lose accuracy. This 

occurs because pairs of elements with highly correlated hydraulic conductivities aligned 

across the mean hydraulic gradient have the effect of reducing the overall flow and 

those orientated along the flow tend to increase it, this is discussed in more detail in 

Section 5.2.2. When the element size becomes a significant fraction of the integral 

scale these pairs do not have significant weighting because the covariance factor is quite 

small. Thus the behaviour depends more upon the response of individual elements, for 

which the covariance is always the variance. These individual elements tend to increase 

the flow. Therefore the curves in Figure 5.6 rise up at low integral scales. 

This means that to get accurate results the integral scale should be several times the 

element size. Unfortunately the number of elements per integral scale required 

increases as the integral scale becomes smaller. Examining Figure 5.6 it appears that 
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for integral scales between one quarter and one half of the flow field length that the 

number of elements required per integral scale is three times the number of integral 

scales that fit in the flow field. This relationship may not hold for larger or smaller 

integral scales. 

5.1.5 Anisotropic Conductivity Fields 

The previous results have looked at aquifers with isotropic hydraulic conductivity 

random fields 

In order to investigate the effect of anisotropy in the integral scale two examples were 

run using a integral scale ten times greater along one axis than the other. In one case the 

larger integral scale was parallel to the mean hydraulic gradient and in the other case it 

was perpendicular to it. In effect these two examples simulate flow parallel to and flow 

perpendicular to the bedding planes in an aquifer, see Figure 5.8 and Figure 5.9. As 

expected the results show that the mean flow is higher when the mean hydraulic 

gradient is aligned parallel the bedding, and lower when aligned perpendicular to them. 
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-----0.()456 

Figure 5. 8 Mean x velocity (left) and standard deviation for flow occurring parallel to 
bedding. 

Details as for Figure 5.1 using 60 elements in each direction and the integral scale in 
the x direction = 100, and in they direction = 10. 
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Figure 5. 9 Mean x velocity and standard deviations for flow occurring perpendicular 
to bedding and across them. 

Details as for Figure 5.8 except that the integral scale in x direction= JO, 
y direction = 100. 

The higher mean flow along the beds results from the ability of the water to move from 

the low conductivity sections into the "fast lanes". However, there is a great deal more 

uncertainty in the flow rates as exhibited by the standard deviation. This is a result of 
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the uncertainty in the location of the "fast lanes". Each point in the aquifer is either a 

part of a fast lane or it is not. Therefore the variability is high. 

The lower mean flow across the beds occurs because all of the groundwater must 

alternately pass through both the high and the low conductivity zones. Thus all of the 

water experiences the impeding effect of the low conductivity zones. However, the 

uncertainty involved in this case is much less. This is because the total flow through 

any line of elements stretching from one no flow boundary to the other must be the 

same as for any other similar line. Since velocity is flow divided by area the velocity 

does not get the opportunity to vary from one bed to another. Therefore the variability 

is low. 

5.2 Discussion 

5.2.1 Validation of Results 

Section 5.1.2 gave the results for a series of numerical experiments using a variety of 

integral scales. It discussed the limiting cases when the integral scale was either zero or 

infinite and showed that the results of the numerical experiments were consistent with 

the solutions expected for those end points, except for the mesh resolution problem. It 

is now necessary to examine the results between these two end points. 

Dykaar and Kitanidis ( 1992a&b) use a spectral approach to investigate the size of an 

averaging volume required to obtain an effective conductivity equivalent to that given 

by an unbounded domain solution. In doing so they present corresponding values of 

conductivity normalised with respect to the theoretical effective conductivity for an 

unbounded domain (Ko for 2 dimensional problems), versus the ratio between domain 
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length and integral scale, for a statistically isotropic Y(x) field with rlv = 1 and either 

an exponential or a Gaussian autocorrelation function. 

Figure 5.11 shows a comparison of the results from Dykaar and K.itanidis (1992b) with 

the results shown in this study. These results come from their 2-D exponential 

covariance curve of their Figure 1 (Shown here as Figure 5.10). 
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Figure 5.10 Figure 1 from Dykaar and Kitanidis (1992b) 

4 curves are provided in Figure 5.10 showing both 2-D and 3-D and both exponential 

and Gaussian covariances. In the text they give the equations for both of these 

covariance functions and they point out that the integral scale is equal to the length scale 

in the exponential case, but equal to the length scale multiplied by 0.5 rc0·5 in the 

Gaussian case (see their Equations 26 and 27). Interestingly if their integral scales are 

divided by the above number then their results and mine give virtually perfect 
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agreement for integral scale to flow field ratios greater than 0.25 (see dotted line in 

Figure 5.11 ). For values below this the mesh resolution problem discussed earlier 

causes my results to be higher than their results, as discussed previously. 
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Figure 5.11 Comparison of the results of the present study with those of Dykaar and 
Kitanidis (1992b) 

It should be noted that Dykaar and Kitanidis (1992b) uses a small perturbation solution. 

This neglects non-linear effects. Including non-linear effects is discussed in Section 

7.2. 

5.2.2 Mechanics of the Process 

The concept of preferential flow path helps us examine the algorithm. The second term 

of the right hand side of Equation 4.27 has two factors: a second derivative and a 

covariance. The second derivative can be thought of in terms of its second order finite 

difference approximation: 



Chapter 5 Velocity Verification and Discussion Page 102 

a2v( Y, ,Y.) 
4AY2 bf~-' =v(Y+AY,Y+AY)+v(Y-AY,Y-AY) 

I J 
Equation 5 .3 

-~Y+A~Y-Arj-~Y-A~Y+Arj 

where AY is a small perturbation in Y. 

The first term on the right hand side of Equation 5.3 involves both hydraulic 

conductivities being increased. This simulates a preferential flow path through the two 

elements. The second term on the right hand side of Equation 5.3 involves both 

hydraulic conductivities being lowered. This simulates a path oflow flow through the 

elements and higher flow around them. The third and fourth terms on the right hand 

side of Equation 5 .3 have one hydraulic conductivity raised and the other lowered. This 

draws flow away from one element towards the other. These last two tenns tend to 

form mirror images of each other that cancel each other out. Thus, in general, only the 

first two terms are significant. 

When the two elements are aligned along the mean hydraulic gradient, or even 

diagonally to it, the first term on the right hand side of Equation 5.3 dominates. This 

simulates a preferential flow path though the elements, see Figure 5.12. 
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Figure 5.12 Contour plot of the second derivative of ground water velocity in the x 
direction with respect to the logarithm of the hydraulic conductivities of the elements 

centred at (275, 295) and (325, 295). 

Details as for Figure 5.1 using 60 elements in each direction and average head gradient 
in the X direction. The shaded area is positive and indicates increased flow. Contours 

are at 0, +/-10"6, +/-10"5, +I-Irr'. 

In Figure 5.12 the shaded area represents areas ofincreased flow and the non-shaded 

areas represent areas of decreased flow ( decreased because the flow has been drawn 

toward the preferential flow path instead). Overall there is a net increase in flow 

through the aquifer. 

When the two elements are aligned across the mean hydraulic gradient the second term 

on the right hand side of Equation 5.3 dominates. This simulates an obstruction, 

reducing the flow through the two elements and causing small local flow increases in 

certain nearby elements. However the overall effect is to reduce the total flow through 

the aquifer, see Figure 5.13. 
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Figure 5.13 As for Figure 5.12 except that the derivative is with respect to the 
hydraulic conductivities of the elements centred at (295, 275) and (295, 325). 

Once again, in Figure 5.13 the shaded area represents areas ofincreased flow and the 

non-shaded areas represent areas of decreased flow. There is a decrease in the flow 

through the two elements that the derivative is being taken with respect to, and a 

localised corresponding increase in some of the nearby elements that the flow needs to 

use as an alternative. Overall there is a net decrease in flow through the aquifer. 

These effects would exist if the relevant preferential flow path or obstruction existed. 

They take into account the deterministic part of the problem, i.e. boundary conditions, 

and perhaps areas of differing mean hydraulic conductivity. The stochastic information 

indicates whether or not preferential flows paths or obstructions exist, and is contained 

in the covariance factor of Equation 4.27. This factor contains the information about the 

structure of the aquifer and determines whether or not a preferential flow path or 

obstruction exists and, if so, how strong it is. It thus acts as a weighting factor to the 

preferential flow path effects based on the probability that they exist. 



Chapter 5 Velocity Verification and Discussion Page 105 

This is most clearly illustrated in the anisotropic examples in Figure 5.8 and Figure 5.9. 

In Figure 5.8 the higher integral scale in the x direction ensures that the derivatives of 

pairs of elements that are relatively positioned similar to those in Figure 5.12 have 

greater weighting and so the overall mean flow is increased. In Figure 5.9 the higher 

integral scale is in the y direction and so the derivatives of pairs of elements that are 

relatively positioned similar to those in Figure 5.13 have a greater weighting and the 

overall mean flow is decreased. 

To investigate the isotropic case the second derivatives taken with respect to elements 

aligned both along and across the flow were examined. Figure 5.14 shows the 

maximum and minimum for each case plotted as a function of the distance between the 

two elements. 
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Figure 5.14 Relation between the maximum positive and maximum negative second 
derivative and the distance between the relevant elements, for element pairs aligned 

both along and across the mean hydraulic gradient. 

Note that for pairs aligned along the mean hydraulic gradient the positive maximum 
dominates whereas for elements aligned across the flow the negative maximum 

dominates. Data from 60 by 60 element isotropic square mesh. 

The effect in the isotropic case of velocity increasing as the integral scale increases 

occurs because the greater the correlation the more preferential flow paths are likely to 

exist. The reducing effect of elements aligned across the mean hydraulic gradient drops 

off much faster than the increasing effect of elements aligned along the mean hydraulic 

gradient, see Figure 5.14. Therefore the overall effect is to increase the mean velocity. 
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6 Concentration 

6.1 Results 

In order to investigate the behaviour of the model a series of numerical experiments 

were carried out. These experiments involve flow of a conservative contaminant in a 

rectangular aquifer. As in the velocity experiments, the boundaries are no flow 

boundaries along the long sides of the field and fixed head boundaries along the short 

sides, see Figure 6.1. 
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Figure 6.1 Flow field used in all concentration examples. 

Width 
of flow 

field 
=0.5 L 

The number of elements varied. However, all elements were square. 

The experiments were performed with various ratios between the integral scale and the 

size of the flow field and over a variety of mesh resolutions. All data points are based 

on data that gives a deterministic X-velocity result of 0.1 and cry= 0.5. Thus, in a 

uniform aquifer, the expected velocity in the x direction would be 0.133. Equation 5.1 
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was once again used for the autocorrelation function (i.e. exponential). Unless 

otherwise noted the integral scales are equal in both directions (i.e. isotropic). 
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The initial concentration conditions consisted of a circular plume with a Gaussian cross 

section centred along the middle flow line 1/4 of the way down the flow field, see 

Figure 6.1. The standard deviation for the Gaussian distribution used for the cross 

section was 1/6 of the width of the field. This means that at least 99.7% of the solute 

mass will be in the mesh. 

0 

0 

0 50 100 150 200 250 300 350 400 450 500 550 600 

Figure 6.2 Deterministic result for the numerical experiments. 

Mesh resolution is 80 elements in the x direction and 40 elements in they direction. 

Figure 6.2 shows the deterministic result for the numerical experiments. The porosity 

for the aquifer was set to 0.5 and the time used was five steps of 150 units each. Thus 

the deterministic travel distance for the plume is 0.1 * 5 * 150 I 0.5 = 150 units. That is 

the centre of the plume should be at the centre of the flow field. 80 by 40 is a fairly 

coarse mesh for this problem so the plume has become quite distorted from its original 

circular shape and the centre of the plume does not appear to be at (300, 150). 
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However, integrating the concentration and determining the centroid does result in the 

centre being at (300, 150). Unfortunately a higher mesh resolution could not be used 

due to the execution time required by the stochastic part of the code. Using the mesh 

resolution of 80 elements by 40 elements took approximately 3 months for the code to 

execute. Most of this time was spent in the stochastic part. The time taken for the 

algorithm (discussed in Chapter 4) used is O(n4) in the number of elements. Thus 

doubling the resolution to 160 by 80, which quadruples the number of elements, will 

increase the execution time 256 fold. That is it would take 64 years to execute on the 20 

processor parallel computer. 

Another problem that can be seen in Figure 6.2 is the oscillations that appear upstream 

of the contaminant plume. These oscillations are highlighted by hachuring the 0 

concentration contour. They are severe enough to cause negative concentrations, which 

obviously do not have a real counter part. The oscillations are a well known artefact of 

using the advection-dispersion equation with high Peclet numbers (Huyakom, 1976). In 

all of the numerical experiments the (local) dispersion is zero, therefore the Peel et 

number is infinite. As discussed in Section 4.5 Huyakom (1976) describes how these 

oscillations can be overcome by using an upstream weighting technique. This technique 

was implemented in the code used for the numerical experiments. It is governed by a 

weighting coefficient that ranges from O (no upstream weighting) to 1 (full upstream 

weighting). Huyakom (1976) gives an expression for determining the ideal value of the 

weighting coefficient to use depending upon the Peclet number. For an infinite Peclet 

number the weighting coefficient should be 1.0. The upstream weighting technique 

works by introducing a small amount of numerical dispersion that smooths over the 

oscillations. Unfortunately it was found that using a weighting coefficient of 1.0 gave a 
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lot of dispersion and totally distorted the solute plume. It was therefore decided to 

accept the oscillations rather than use upstream weighting and so the weighting 

coefficient was set to zero, effectively disabling the upstream weighting code. 

6.1.1 Mean Concentration Results 

6.1.1.1 Small Integral scales 

The smallest ( corrected) integral scale to flow field ratio used was approximately 0.06. 

This value was chosen using Figure 5.2 because values below this give increasingly 

erroneous results for the velocity calculations. A contour plot of nodal concentration 

values is given in Figure 6.3 and a cross section through the centre of this case parallel 

to the mean groundwater velocity is given in Figure 6.4 showing a comparison with the 

deterministic result. 
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Figure 6. 3 Contour plot of mean nodal concentration values for an integral scale to 
flow field ratio of approximately 0. 06. 

The plume is moving from left to right. 
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500 600 

Distance Along Central Flowline 

Figure 6.4 Mean concentration profile along the central flowline of the aquifer for an 
integral scale to flow field ratio of approximately 0. 06. 

The plume is moving from left to right. 

The figure shows that the centroid of the solute plume has travelled about the same 

distance as it has for the deterministic result. This is as would be expected from Figure 

5.2 where the mean velocity along the flow is very close to the deterministic velocity for 

aquifers with small integral scales compared with the aquifer size. 

Furthermore Figure 6.3 shows that the solute plume disperses as it moves to this 

position relative to the deterministic result. The amount of dispersal will be discussed 

in the next section. 

6.1.1.2 Larger Integral scales 

Appendix E gives results for integral scale to flow field ratios of 0.06, 0.11, 0.18, 0.31, 

0.51, 1.01, 1.67 and infinity (I= 109). Three things can be noticed from these diagrams. 

Firstly, the centroid of the plume travels further as the integral scale to flow field ratio 

increases. This is expected since Chapter 5 shows that the velocity increases as the 
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integral scale to flow field ratio increases (see Figure 5.2). Secondly, the plume tends to 

disperse more as the integral scale to flow field ratio increases. This rate of increase 

will be discussed in the next section. The final thing to notice is that as the integral 

scale to flow field ratio increases beyond 0.3 the solute plume has an increasing 

tendency to become bimodal. This tendency is an artefact of the model and Section 

6.1.1.5 resolves the problem. The tendency can be clearly seen in Figure 6.5 where the 

plume appears to have broken into two lobes. Figure 6.6 shows a cross section through 

the centre of the plume parallel to the mean groundwater velocity and a comparison 

with the deterministic result. 
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Figure 6. 5 Contour plot of mean nodal concentration values for an approximately 
infinite integral scale to flow field ratio. 
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Figure 6.6 Mean concentration profile along the centraljlowline of the aquifer for an 
approximately infinite integral scale to flow field ratio. 

6.1.1.3 Cause of Bimodal Effect 

The cause of the bimodal effect appears to be loss of accuracy in using the Taylor 

series. The method used involved a Taylor series using derivatives of concentration 

with respect to the log of permeability (Equation 4.32). This was then expanded to 

include derivatives of both concentration with respect to the velocity and velocity with 

respect to the log of permeability. This was then simplified into Equation 4.36. 

Equation 4.36 is shown here for convenience. 

Equation 4.36 

Although Equation 4.36 is written in terms of the velocity statistics it is still a Taylor 

series based on the log conductivity. There are two differences between Equation 4.36 

and a Taylor series based on velocity. The first difference is the first term, which in 

Equation 4.36 is the deterministic concentration based on the mean log hydraulic 
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conductivity, whereas in a Taylor series based on velocity it would be the deterministic 

concentration based on the mean velocity. That these are different can be seen from 

Figure 5.2, where the mean log conductivity is constant but the mean velocity varies. 

The second difference is the presence of the third term in Equation 4.36, which would 

not exist in a Taylor series based on velocity. 

Equation 6.1 

Equation 6.1 shows these two differences, the over bar terms are calculated based on the 

mean of the respective parenthesised subscript. Equation 6.1 is really a first order 

Taylor series of the concentration in terms of the velocity. It is postulated that the 

inaccuracy of this Taylor series is what causes the error in Figure 6.5. 

The reason that Equation 4.36 was used instead of a Taylor series based on the mean 

velocity was execution time. Using Equation 4.36 enabled a single set of derivatives to 

be used for several different conductivity fields, this took three months of computer 

time. Using a Taylor series based on the mean velocity would require a new set of 

derivatives for each conductivity field because the Taylor series would be centred at 

different velocities. Most of the calculation time was spent determining these 

derivatives thus calculating separate derivatives for each of the 10 conductivity fields 

used would take approximately 2.5 years. 

6.1.1.4 Anisotropic Scale of Fluctuation 

Two cases with anisotropic integral scales were evaluated. The results are also given in 

Appendix E. 
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In the first case the integral scale to flow field length ratio is 0.06 along the flow and 

0.51 across it. This is analogous to flowing across layers of varying permeability. As 

expected this retards the movement of the centroid. Also there appears to be no trace of 

the bimodal effect, see Figure 6. 7. 
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Figure 6. 7 Contour plot of mean nodal concentration values for an anisotropic integral 
scale. 

Longitudinal integral scale to flow field ratio is approximately 0. 06. Transverse 
integral scale to flow field ratio is approximately 0. 51. 

In the second case the integral scale to flow field length ratio is 0.51 along the flow and 

0.06 across it. This shows the centroid travelling further and a greater amount of 

dispersion than the 0.51 isotropic case, see Figure 6.8. Furthermore, the bimodal effect 

is quite pronounced, approximately equal to the 1.01 isotropic case. 
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Figure 6. 8 Contour plot of mean nodal concentration values for an anisotropic integral 
scale. 

Longitudinal integral scale to flow field ratio is approximately 0.51. Transverse 
integral scale to flow field ratio is approximately 0. 06. 

These results give further weight to the hypothesis that it is the increased velocity that 

causes the bimodal effect since the one that decreases the velocity has no bimodal effect 

and the one that increases the velocity has an accentuated bimodal effect even beyond 

that of the isotropic case that uses the larger of the two integral scales used in the 

anisotropic case. 

6.1.1.5 Solution to the Bimodal Effect 

The inaccuracy caused by the velocity Taylor series occurs when the ratio between the 

integral scale and the size of the flow field is greater than 0.3. Under these 

circumstances most of the variation is contained in some simple geometry that can be 

ascertained by de-trending. For example the hydraulic conductivity may increase from 

one end of the aquifer to the other, or from the edges to centre. This trend should be 

determined and used as the mean conductivity. The remaining variation when modelled 
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by a random field about this mean will have a much smaller integral scale and thus the 

inaccuracy being discussed will not be present. It is appropriate to de-trend anyway as 

large scale aquifer structures tend to move the plume as a whole rather than disperse it 

(Dagan, 1994b) and neglecting to de-trend the data will give a concentration result with 

a high degree of artificial variability measured by the concentration variance. This 

variance will be so large that the mean result will become meaningless. Thus de­

trending will give a much more useful result. 

Furthermore, Indelman and Rubin (1995) show that when the trend is neither parallel 

nor perpendicular to the direction of the mean hydraulic head gradient that the mean 

groundwater velocity, and hence the direction that the centroid of the solute plume 

travels, will not be in the direction of the mean hydraulic head gradient. Thus de­

trending becomes even more important. 

6.1.2 Comparison with Analytical Results 

6.1.2.1 Spatial Second Moments of Mean Concentration 

Dagan (1982b) gives analytical results for the spatial second moments of the mean 

concentration plume. These assume an infinite two-dimensional homogeneous flow 

field and an initial point source. They are given in Equation 6.2 and Equation 6.3. 

{ [ ( ] L ( ) 2]} 2 2 3 3 L 3 . L L IY , IY IY 
~ =2a I ---E+-+- Ez -- -Jn-+-eY J+- -

X y y 4 2 I 2 I I L L - L2 
y y y 

Equation 6.2 

{ [ 2 ( ) L] [ ( ] l } 2 2 3 /Y ly IY 1 I . L L 3 I 
~ = 2a I - - - - 1 + - e Y - - E1 - - - Jn - - - + - E 
Y Y Y 2 L2 L L 2 / / 4 2 

y y 

Equation 6.3 
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Where <; x is the second spatial moment of the mean concentration in the x direction, / Y 

is the integral scale, Lis the mean travel distance of the centroid, E = 0.577 .. .is the 

Euler number, Ei is the exponential integral. 

In order to compare with these results the mean concentration field has been integrated 

over the flow field to obtain the second spatial moments. 

The two major differences between the assumptions that Dagan (1982b) has used and 

those adopted here are that Dagan uses a point source, while here a Gaussian source is 

adopted, and that Dagan uses an infinite flow field, while here a finite flow field is 

adopted. The Gaussian source plume is adopted to reduce the oscillations seen in 

Figure 6.2. The finite flow field is a result of using a finite element method and, in 

addition, no real world aquifer is infinite in extent. 

To reconcile the difference in initial plumes, the initial spatial moment of the 

concentration has been subtracted from the final spatial moments of the mean 

concentration. The alternative of determining the time when Dagan's result gives the 

initial plume used here and then determining Dagan's result after an additional period of 

time is infeasible as the times for the initial plume would be different for the x and y 

directions. Also Figure 3 in Dagan (1982b) shows that <;x and <;y are not linear 

functions of time so the alternative method would introduce inaccuracies anyway. 

However, elsewhere in the paper Dagan assumes that the plume is Gaussian as it 

disperses. This makes it reasonable to assume that the difference between the second 

moment of the result of using an initial Gaussian source and the second moment of the 

result of using an initial point source is the second moment of the initial Gaussian 

source. Indeed, this is the case in the deterministic advection dispersion equation. 
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It is not possible to reconcile the difference in boundary conditions. 

The results can be seen in Figure 6.9 and Figure 6.10. 
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Figure 6.9 Comparison of second moments of the mean concentration plume along the 
flow. 
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Figure 6.10 Comparison of second moments of the mean concentration plume across 
the flow. 

The x-axis in Figure 6.9 and Figure 6.10 is the travel distance/hydraulic integral scale as 

this is the major parameter in Equation 6.2 and Equation 6.3. It must be remembered 
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that the travel distance is more or less constant in the results used here and the integral 

scale changes. This is important because the integral scale to flow field ratio is 

therefore also changing. 

Figure 6.9 shows the results for the second moment in the direction that the plume is 

travelling. It shows good agreement for the larger travel distance to hydraulic 

conductivity integral scale ratios, but poor agreement for the smaller ones. The area of 

poor agreement corresponds with the area where the ratio between the integral scale and 

the size of the flow field is larger. As discussed in 6.1.1.5 for these larger integral 

scales it is more appropriate to de-trend the data and model the trend as the mean 

conductivity thus obtaining a random field with a much smaller integral scale. It is 

unknown what effect the boundary conditions have on this result. 

Figure 6.10 shows the results for the second moment in the direction perpendicular to 

the one that the plume is travelling. The agreement is poorer than in Figure 6.9, but still 

it shows greater reliability for the smaller integral scales. In this case the effects of the 

boundary conditions are much easier to see. The results have a finite width to the flow 

field. This limits the ability of the solute to spread transversely to the direction of 

travel. Therefore even for the smaller integral scales the second moment is considerably 

smaller than in Dagan's infinite flow field case. Thus the difference probably reflects 

the current model's ability to model finite boundary conditions. 

6.1.2.2 Spatial Second Moments of Individual Plumes 

The increase in the spatial second moments in the previous section is a result of two 

effects. Firstly the plume disperses as it travels. Secondly the plume as a whole 

meanders as it moves through the aquifer. This second effect occurs when the plume 
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preferentially flows through or around a sufficiently large area of high or low hydraulic 

conductivity respectively and can be represented by the movement of the centroid of the 

plume. 

This relationship is commonly expressed as (Rajaram and Gelhar, 1993a): 

Equation 6.4 

where 

Mij is the spatial second moment of the ensemble average concentration, or the 

size of the mean plume, 

L'y- is the average spatial second moment of the plume, or the mean size of the 

plume, and 

Rij is the spatial second moment of the movement of the centroid of the plume. 

The ensemble average concept relates to the Monte Carlo simulation viewpoint. To 

obtain Mij in a Monte Carlo simulation, first determine the mean concentration at each 

point, and then determine the spatial second moment of these values. On the other hand 

to determine 4j first determine the spatial second moment for each realisation in the 

simulation and then determine the mean of these. In a tracer test the spread of the 

plume measured in the field should be much closer to 1:ij than to Mij since Mij includes 

movement of the whole plume (Rij) as well as the spreading of the plume. 

Rajaram and Gelhar (1993a) discuss the difference between Mij and J;ij as being related 

to the motion of one or two particles. Mij is related to the motion of a single particle that 

could move anywhere in the aquifer depending upon the aquifer characteristics. J;ij on 
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the other hand is related to the distance between two particles released into the aquifer. 

Whilst the two particles could travel anywhere, there will be a tendency for the 

movement of the particles to be correlated, depending upon the separation of the 

particles. 

Rajaram and Gelhar (1993b) show that 

Equation 6.5 

These values were calculated in the code. The calculations for Equation 6.5 require an 

algorithm that is O(n6). This increased computation time significantly and so the results 

for Iii are based on a mesh of 60 by 30 elements instead of 80 by 40. 

Dagan (1991) shows that for a narrow plume aligned along the flow .E;j grows initially 

and then remains more or less constant. This is because once the tail of the plume 

reaches the point where the front started, all of the plume flows through the same flow 

path. On the other hand a plume that has significant width across the flow disperses 

because different parts of the plume flow through different parts of the aquifer. Dagan 

(1994a) gives charts based on analytical results for calculating the dispersion of a thin 

plume orientated across the flow field. 

Dagan (1994a) adopts a finite sized uniform concentration initial plume. As mentioned 

previously the current work uses a Gaussian initial plume to avoid oscillations. Thus, in 

order to compare the present results with Dagan (1994a) it has been assumed that the 

initial width of plume in the present work is twice the square root of the initial spatial 

second moment of the plume as this implies that the two plumes have the same solute 

mass. The results are shown in Figure 6.11. Dagan presents his results in non-
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dimensional form by dividing the longitudinal dispersion by the variance of the log of 

the hydraulic conductivity, and by the average groundwater velocity and by the integral 

scale, and the travel distance by the integral scale. Figure 6.11 uses the same axes 

Dispersion for Individual Plumes 

1-.--------------------~ 

• 
0.1 

0.01 

• • 

• Equation 6.5 
__ Dagan (1994) 

0.001 -+--------~--------------! 
0 1 2 3 4 5 

Travel Distance / Integral Scale 

Figure 6.11 Comparison of average longitudinal spatial second moments of the 
concentration plume. 

The results differ in magnitude. This is probably because of the two major differences 

between the two cases, namely Dagan (1994a) has infinite boundaries and a thin initial 

plume of constant concentration oriented across the flow, while my results are based on 

an aquifer with boundaries and an initial plume that is circular with a Gaussian 

concentration distribution. However, the basic trend of the results is very similar and 

the poorest fit is in the area oflarge integral scales where earlier it was suggested that in 

these cases it would be better to model the dominant variation as a trend rather than a 

random field. 

In particular Zhang et al (1996) investigates the difference between a line source and a 

cube source in three dimensions. Comparison of their Figures 2 and 3 (given here as 

Figure 6.12 and Figure 6.13) shows that the effect of the length of the initial plume is to 
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increase the growth of the second moment (X 11 - R11 is larger in 3a than in 2a for all of 

the dotted lines). This would help explain why the results of Equation 6.5 in Figure 

6.11 are larger than those of Dagan (1994a). Unfortunately Zhang et al (1996) does not 

present two dimensional results and so a direct comparison is not possible. 
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Note that this trend is the opposite of that for Mif. At a given travel distance after the 

plume is released Mif is larger in aquifers with longer integral scales, while .Eif is 

smaller. Thus the larger Mif in aquifers with longer integral scales is mainly a result of 

the uncertainty of where the plume is moving, rather than as a result of the plume 

dispersing. 

6.2 Coefficient of Variation of Concentrations 

Concentration variances and standard deviations were also calculated in the numerical 

experiments. Results are provided in Appendix E. A typical result is provided in 

Figure 6.14. 

0 50 100 150 250 300 350 450 500 550 

Figure 6.14 Contour plot of the standard deviation of nodal concentration values for an 
integral scale to flow field ratio of approximately 0. 06. 

The plume is moving from left to right. Mean values are given in Figure 6.3. A cross 
section is provided in Figure 6.16. 

Typical profiles of the standard deviation show two peaks, one before the main plume 

and one after. The smaller integral scales even show a depression in the centre of the 
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plume. Unlike the bimodal effect noted in the mean concentration profiles this is not an 

error. The variance of the concentration is partially a function of the gradient of the 

mean concentration. If the solute concentration was completely uniform in an aquifer 

then entropy would prevent any change in the concentration anywhere and so the 

variance would be zero. In order for there to be variability in the concentration there 

must be points in the aquifer that have different concentrations from which particles 

have a probability of being advected to the location with the variability. This effect is 

going to be greatest where the concentration gradient is steepest because that is where 

there are points in near proximity to each other with very different concentrations. On 

the other hand in the centre of the plume the concentration profile tends to be flat and 

therefore there is not as much scope for the concentration variances to develop (the 

initial conditions are that all points have zero concentration variance). 

Limited work has focused on the variance of the concentration and even less provides 

analytical solutions. The most in depth study appears to be Kapoor and Gelhar 

( 1994a&b ). Kapoor and Gelhar ( 1994b) give analytical expressions for the coefficient 

of variation both with and without local dispersion. The expression that they provide 

for the coefficient of variation in the no local dispersion case is: 

[ ac(x,t)]
2 -{f:r (t+toJ exp[ 21 {x; -V£>ilt}2]}-1 Equation6.6 

c(x,t) - i=l [to; (2t + toJ]½. 2t 2 + 3tto + t~i . 4A;; V 

Where tOi is the amount of time that it would take to attain the initial size of the plume in 

the i direction starting with a point source, ~1 is one if i = the longitudinal dimension 

(along the flow) and zero otherwise, and Au is the macrodispersivity in the i direction. 
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A comparison of the coefficient of variation derived from the results of Equation 4.36 

and Equation 4.37 with the coefficient of variation resulting from Equation 6.6 is shown 

in Figure 6.15. Only the results for the smallest integral scale has been shown here as 

the mean results tend to indicate that this is the most accurate result. 

Integral Scale = 36.6 
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Figure 6.15 Comparison of coefficient of variation of concentration along the plume. 

In Figure 6.15 the results from the present work drop off at the downstream end 

probably because of the downstream boundary condition, which prevents any solute 

fluctuations returning into the mesh once they drop off the end. 

The lower value near the centre of the plume may be due to the no flow side boundary 

conditions, which reduce the ability of the solute fluctuations to move transversely since 

the finite element mesh effectively acts as a channel confining the plume, whereas 

Kapoor and Gelhar (1994b) is based on an unbounded domain. However, to2 (the 

theoretical time that it talces for the transverse size of the plume to reach its initial size 

starting from a point source) is much larger than t01 (the same for longitudinal size), and 

this disparity may contain this information. Alternatively perhaps the reason for the 
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lower value near the centre of the plume is because the second derivative for the mean 

stochastic result is flatter than the top of a Gaussian curve ( comparing the second 

derivatives using a numerical approximation), which is what Kapoor and Gelhar 

( 1994b) is based on. 

Figure 6.16 shows the result of converting Kapoor and Gelhar' s ( 1994b) coefficient of 

variation expression into a standard deviation using the mean concentrations in the 

present work. (They do not give an expression for standard deviation without local 

dispersion. The expression that they give with local dispersion has a singularity when 

the local dispersion is zero.) 
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Figure 6.16 Comparison of standard deviation of concentration along the plume. 

In Figure 6.16 whilst the curves are not identical they do exhibit the same general shape 

and the maxima and minimum occur at approximately the same distances along the 

plume. The fact that both exhibit a larger upstream maximum and that the two maxima 

are proportional is significant because whilst the continuous line has used the mean 
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concentration results from this study they are separate from the standard deviation 

results. It appears that the two methods show good agreement. 
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7 Further Work 

Various avenues are open for extending this work: 

• Section 6.1.1.2 suggested a modification to the formulation for concentration. 

This could be implemented to see if it significantly improves results. 

• Higher order moments of the statistics of the velocity and concentration fields 

could be determined to give more information about their probability 

distribution. 

• The technique of diagonising the covariance matrix can be used to see if it 

improves computational efficiency. 

• Local Averaging can be used to determine the covariance matrix for the 

hydraulic conductivity to see if convergence is faster. 

• The effect of local dispersion can be investigated to compare with effects 

discovered in analytical solutions. 

7.1 Different Formulation for Concentration 

Section 6.1.1.2 showed that for larger integral scales the results for the mean 

concentration plume became increasingly bimodal in profile. Section 6.1.1.3 explained 

that the cause was the particular formulation for concentration used in Equation 4.36 

and suggested that better results would be obtained if instead of using Equation 4.36, a 

Taylor series centred on the mean velocity was used. This is presented in Equation 7 .1. 
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Equation 7.1 

Section 6.1.1.3 also explained that Equation 4.36 was used instead of Equation 7.1 

because of computer time constraints. As computers become faster and this becomes 

less of a problem, this area of further work will become more practical. 

7.2 Increasing Accuracy 

One of the limitations of the results so far is that they only give information about the 

first two moments of hydraulic head, velocity and concentration. (Most methods only 

use the first two moments as in general higher order moments are unknown except in so 

far as a probability distribution is assumed). This is not enough to detennine the 

probability distributions of these parameters. This can be remedied by extending the 

work so far to include third and fourth moments. This requires knowledge of the fourth 

order moments of the log of hydraulic conductivity (the third order moment is zero 

since the hydraulic conductivity is assumed to be log normally distributed). 

Equation 

7.2 

Equation 

7.3 

where: 
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E[ 8Y, ,8Yj ,~Y, ,~Ym ,] = co~ Y,, Yj )cov{ Y,, Ym) + cov{ Y,, Y, )co~ Yj, Ym) 

+ cov( Y, , Ym) cov{ Yj, Y,) 

since Y is normally distributed. 

Page 132 

Equation 

7.4 

Equation 7.2 and Equation 7.3 are Taylor Series (lower order terms are zero). Equation 

7.4 is the definition of the fourth moment for a bivariate normal distribution. 

Note that Equation 7.3 can be manipulated using Equation 7.4 and Equation 4.28 to give 

an equation similar to Equation 7.4 but where Y is replaced by v. This does not imply 

that vis normal. Equation 7.2 and Equation 7.3 are Taylor series and have only limited 

accuracy. However it does imply that implementing Equation 7.3 will not provide any 

new information on the probability distribution ofv. However Equation 7.2 does 

provide new information and therefore implementation of it is a potential area of further 

work as computers become faster and it becomes more practical in terms of 

computation time. 

Another problem is that the results are linear in the covariances and therefore do not 

adequately represent the behaviour as the variability increases significantly. For 

example in the problems presented in Section 5.1.2 using the lognormal-kmethod with 

a cry of 0.5 and an infinite integral scale would give a result of 0.1125 for the mean of 

the velocity and 0.05 for the variance, however the correct results in this case are 

0.11331 and 0.0603 respectively. Using a fourth order Taylor series would improve the 

results to 0.11328 and 0.0586. The accuracy of the present results in the case of a finite 

integral scale is unknown but could be quantified by application of a higher order 

Taylor Series. It is expected that this will give an idea of the range of O"k and cry for 
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which the present Taylor series is accurate in the case of finite integral scale. To use a 

higher order Taylor series Equation 4.27 and Equation 4.28 needs to be replaced by: 

Equation 

7.5 

cov( vn, v O ] = .t;; :: co~ Y;, ½) 
1,J=I I J 

Equation 

+¼. ± :;;,_ :,;;r {cov(Y;,Y,)co~½•Ym)+cov(f;,Ym)co~½•Y,)} 
l,J,l,m=I r J I m 

7.6 

where the fourth order derivative in Equation 7.5 is given by: 

ifv - _s: k fvN H -k f VN ifHm 
ofof.b'.Y.of - u,,i,J,l,o ,L, m· m eL.. m· o'YoY.b'.Y.oY 

I J / 0 m=l m=I I J / 0 

Equation 

7.7 

M ?H M ?H 
-<5,,ok,LVNm. o'Yof.8Y. -'5,,1k,LVNm. o'YoY.bY 

m=l I J / m=I I J 0 

- <5 k f VN a3 Hm s: k f VN a3 Hm 
•J ,L, m· o'Yb'.Y.of u,,;, ,L, m· oY.b'.Y.oY 

,,,..1 I I O m=I J I 0 

and the third and fourth order derivatives in Equation 7. 7 are given by: 

Equation 

7.8 
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Equation 

7.9 

A simple way to determine if the velocity distribution is lognormal is to calculate: 

E[In(vn -v"J,ln(v0 -vo},ln(vp -vp)] 

a.,p a,p 

± a,n a,o iJvp _ ~~ 
i,j,l,m=l £7Y; ~ oY,oYm V p 

a,n a,n 
E iJvn oY, °½ a,o a, P 

+ L 
i,j,l,m=l oY;~ vn oY, oYm 

E[ Li~Lil'~;L~Y,LiYm] 
X - - -

vnvovp 

Equation 7.10 

Equation 7 .10 will be zero if the groundwater velocity probability density function is 

log normally distributed. 

If it is found that the velocity is log normally distributed in the case of a finite integral 

scale as it is in the case of an infinite integral scale then the method can be redeveloped 

to use derivatives oflog velocity with respect to log conductivity which would greatly 

increase the accuracy even with the level of truncation presently used. In this case: 
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Equation 7.11 

~ ( ) ( )] LE a, n a, 0 cov{ Y; , ½) 
co In v In v = ---~-~ 

n' o ~ :J<T --
i,j=JV1; U1.j VnVo 

Equation 7 .12 

which can easily be calculated using the results from Equation 4.27 and Equation 4.28. 

Similar extensions can be applied to the detennination of concentration from 

groundwater velocity. 

7.3 Diagonalisation of Covariance Matrix 

Liu et al (1987) show how diagonalising the input covariance matrix can reduce the 

calculations of the output covariance matrix. To illustrate this Equation 4.28 can be 

expressed in matrix form as 

Equation 7 .13 

Where Cv and Cv are the velocity and log hydraulic conductivity covariance matrices 

and M is the matrix whose elements are given by m0 = (:; ) . 

A diagonal matrix D is obtained by solving the eigen problem: 

Equation 7 .14 

Where Pisa square matrix the same size as Cv with the properties that 



Chapter 7 Further Work Page 136 

Equation 7.15 

Equation 7 .16 

Using Equation 7.15 and Equation 7.16, Equation 7.13 can be transfonned into: 

Equation 7 .1 7 

Which is the same as 

CV =MPD(MPY Equation 7 .18 

Which can be rewritten as 

Equation 7 .19 

Where the di are the diagonal elements of D. 

Similarly Liu et al (1987) claim that Equation 4.27 can be written as 

Equation 7 .20 

Similar reasoning applies to the process of determining the concentrations from the 

velocities (Equation 4.36 and Equation 4.37). 

Section 4.6.1 points out that the computational time for Equation 4.27 and Equation 

4.28 is proportional to the fourth power of the number of elements. It would appear that 

using Equation 7.19 and Equation 7.20 could reduce this to the third power. As the 

computational time is a major limitation this would be a fruitful area of further work, 
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particularly to determine if the savings in time outweighs the extra work required to 

determine the derivatives with respect to the d;. 

7.4 Local Averages 

In Section 3.4.4 it was explained that the work presented here uses midpoint 

discretisation to determine the covariance matrix instead of local averaging, which is the 

other method that is commonly used. The reason for choosing midpoint discretisation 

was that macrodispersion of solute is caused by the magnitude and frequency of the 

random fluctuations in aquifer properties rather than a summation of those properties. 

Vanmarcke (1983) points out that local averaging has the effect of increasing the 

integral scale and decreasing the standard deviation depending on the element size, and 

thus changes the magnitude and frequency of the random fluctuations. 

However, Fenton and Griffiths ( 1993) found that local averaging converges faster than 

midpoint discretisation when determining effective hydraulic conductivities of aquifers. 

Effective hydraulic conductivity is a different phenomenon to macrodispersion and 

depends on the summation of the aquifer properties over a region rather than the size 

and frequency of the random fluctuations. Therefore the Fenton and Griffiths (1993) 

result might not be relevant to macrodispersion. 

Whilst the argument presented for using midpoint discretisation instead oflocal 

averages is plausible it would still be worthwhile doing some comparative modelling to 

determine which method does converge faster. It may be that the increase in integral 

scale and decrease in standard deviation interact with other factors relating to the size of 

the element to make local averaging converge faster than midpoint discretisation. If so, 
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this would allow better accuracy with finite element meshes containing fewer elements 

( and thus less computation time). 

7.5 Inclusion of Local Dispersion 

The results presented in Chapter 6 assume that the local dispersion coefficient derived 

from diffusion and mechanical dispersion is zero. In nature local dispersion is not zero, 

it is just very small compared to the macrodispersion. Even so it does perform 

important functions. 

Kapoor and Gelhar ( 1994a & b) investigate the fluctuations in the concentration field. 

The size of these fluctuations at a point is proportional to the standard deviation of the 

concentration at that point. They show that the processes that cause macrodispersion 

create these fluctuations, for example as a preferential flow path carries solute into a 

solute free area it creates a fluctuation or difference between the high concentration in 

the flow path and the much lower ( or zero) concentration outside it. They also show 

that the only process that can destroy these fluctuations is local dispersion, for example 

the solute will diffuse and/or mechanically disperse from the area of high concentration 

to low concentration. They give analytical expressions for this creation and destruction. 

A useful area of further work would be to add a finite amount of local dispersion to 

determine the result and compare with Kapoor and Gelhar (1994a & b). The code in 

Appendix A already has the capability of modelling the effect oflocal dispersion. 

However, it was not done due to the large amount of calculation time required. 
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7.6 Moore's Law 

Moore (1965) observed that the most economical number of components on a silicon 

chip increases exponentially in time and the cost of those components correspondingly 

decreases. This has led to extraordinary growth in the speed of computers in the last 4 

decades. Many of the ideas presented in Sections 7.1 - 7 .5 may not have been feasible 

whilst the research presented in this thesis was carried out because of the execution time 

required. However, if the exponential growth in the speed of computers continues, this 

will not always be a hindrance and more of these avenues will be open for further work. 
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8 Conclusion 

This thesis has applied a stochastic numerical perturbation method to the groundwater 

flow and solute transport problems. Heterogeneity of the hydraulic conductivity field 

has been modelled using a random field approach. Both normal and log normal 

hydraulic conductivity distributions have been investigated. The algorithms required 

for determining the hydraulic heads, groundwater velocities, and solute concentrations 

were presented as well as algorithms for determining the spatial second moments of 

overall mean concentration, individual plume size, and solute plume centroid position. 

A computer code was written to implement these algorithms. 

It was shown how the method could incorporate upstream weighting. Methods of 

reducing computation time were discussed and in general implemented, such as, the 

order of performing the computations, use of symmetry, the dropping of small 

covariance terms, the computing of several fields simultaneously, the use of parallel 

computation, and whether to save results that are too large for random access memory 

to disk or recalculate them. 

It was found that models based on normal (Gaussian) hydraulic conductivity fields are 

flawed because typically in this model the stochastic groundwater velocity is less than 

the deterministic result and that for large variations in hydraulic conductivity this would 

create negative velocities. 

Comparison was made between the lognormal model for determining groundwater 

velocities and Dykaar and Kitanidis ( 1992b) and found to produce very good results, 
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except were mesh resolution became a problem. Anisotropic random fields were also 

investigated and plausible results obtained. The mechanics of how the perturbation 

method is able to obtain these results was discussed. 

Results of concentration calculations gave reasonable agreement with analytical results 

for practical scenarios. Differences were discussed and improvements were suggested 

to obtain a better fit with mean concentration values. 

Further areas of work were suggested including extending the analysis to use fourth 

moments of hydraulic conductivity, applying diagonalisation of the covariance matrix, 

using local averages, and the inclusion of local dispersion. 

The work presented in this thesis builds on previous work in that it uses a stochastic 

finite element method and so avoids the problems of analytical solutions, namely 

restricted geometries and limited types of solute source characteristics. The work builds 

on other research that uses stochastic finite element methods in that it determines the 

statistics of the groundwater velocity field in the groundwater flow problem, determines 

the statistics of the concentration field in the solute transport problem given the statistics 

of the hydraulic conductivity field, and uses a second order method for the mean values, 

thus avoiding the problem of using the same result as obtained in the deterministic case. 
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Appendix A Program Listing 

PROGRAM GW3 
C********************************************************************* 

C 
C THIS PROGRAM SOLVES STEADY-STATE, SATURATED 
C GROUNDWATER FLOW/ CONTAMINANT TRANSPORT PROBLEMS. 
C THE ORIGINAL PROGRAM COMES FROM ISTOK, 1989. 
C THIS VERSION HAS BEEN MODIFIED TO MODEL THE HYDRAULIC 
C CONDUCTIVITY FIELD AS A RANDOM FIELD. THE COVARIANCES 
C OF THE HYDRAULIC CONDUCTIVITY IN VARIOUS ELEMENTS HAVE 
C BEEN DETERMINED USING THE MID-POINT METHOD. THE HEAD, 
C VELOCITY AND CONCENTRATION FIELDS ARE CALCULATED USING 
C TAYLOR SERIES. 
C IN ADDITION THIS VERSION HAS BEEN MODIFIED TO TAKE 
C ADVANTAGE OF SYMMETRY IN THE COVARIANCE MATRIX AND 
C TO TAKE ADVANTAGE OF LONGITUDINAL SYMETRY IN THE HEAD, 
C VELOCITY AND CONCENTRATION FIELDS AND TRANSVERSE SYMMETRY 
C IN THE HEAD AND VELOCITY FIELDS. 
C 
C THE PROGRAM IS WRITTEN SO THAT IT CAN EXECUTE FOR A WHILE, 
C WRITE A CHECKPOINT FILE, TERMINATE AND THEN START AGAIN 
C TAKING UP WHERE IT LEFT OFF. THIS BEHAVIOUR IS CONTROLLED 
C BY THE VARIABLE STATUS. THE VALUE OF STATUS HAS THESE 
C MEANINGS. 
C O PROGRAM FIRST STARTING. HYDRAULIC INPUT DATA NEEDS 
C TO BE ECHOED TO RESULTS FILE. 
C 
C 
C 
C 
C 
C 
C 
C 

1 

2 

3 
4 

PROGRAM IS IN THE HYDRAULIC CALCULATIONS STAGE. 
HYDRAULIC INPUT DOES NOT NEED TO BE ECHOED TO 
RESULTS FILE. 
HYDRAULIC CALCULATIONS FINISHED. CONCENTRATION 
INPUT NEEDS TO BE ECHOED TO RESULTS FILE. 
UNUSED. 
PROGRAM IS IN THE CONCENTRATION CALCULATIONS STAGE. 
CONCENTRATION DATA DOES NOT NEED TO BE ECHOED TO 

C RESULTS FILE. 
C THE VALUE OF STATUS IS INITIALLY DETERMINED IN SETUP. 
C IF THE CHECKPOINT FILES HAVE NOT BEEN CREATED IT IS 0. 
C IF THE CHECKPOINT FILES EXIST BUT DONEFILE DOES NOT IT IS 1. 
C IF DONEFILE EXISTS IT IS READ FROM DONEFILE. 
C ITS VALUE IS MODIFIED AS THE PROGRAM COMPLETES EACH SECTION. 
C COMPLETION OF EXECUTION IS INDICATED BY THE PRESENCE OF 
C THE FILE ENDFILE. THE BATCH FILE THAT RUNS THE PROGRAM SHOULD 
C CHECK THAT THIS FILE DOES NOT EXIST BEFORE RUNNING THE PROGRAM. 
C FOR DETAILS ON COMMAND LINE ARGUMENTS SEE SUBROUTINE SETUP. 
C 
C********************************************************************* 

C 

INCLUDE 'COMALL' 
DOUBLE PRECISION DNDX(MAX3,MAX2,3) 
INTEGER I, J, STATUS, ERROR 
CHARACTER*80 TITLE 

C 0. SET SYSTEM UP FOR DEALING WITH TERMINATION SIGNAL 
C 

C 

INTEGER SIGNAL 
EXTERNAL CHKPNT 
I= SIGNAL(lS,CHKPNT,-1) 
CONTROL= .FALSE. 

C 1. DETERMINE THE NAMES OF AND OPEN THE INPUT AND OUTPUT FILES 
C 

CALL SETUP(STATUS) 
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C 
C 2. CREATE GEOMETRIC, MATERIAL AND BOUNDARY DATA 
C 

LABELl = I HYDRAULIC HEAD' 
LABEL2 = I GROUNDWATER FLOW' 
CALL CREATE (STATUS .GE. 1) 

C 
C 5. ASSEMBLE AND MODIFY THE GLOBAL SYSTEM OF EQUATIONS 
C 

CALL ASMBK 
C 
C 6. SOLVE THE SYSTEM OF EQUATIONS 
C THIS SECTION HAS BEEN CHANGED TO USE THE LAPACK 
C ROUTINES DPBTRF AND DPBTRS, WHICH RESPECTIVELY FACTORISE 
C AND SOLVE THE MATRIX CREATED IN ASMBK 
C 

CALL DPBTRF('UPPER',NDOF,SBW,Ml,MAX6+1,ERROR) 
IF (ERROR .NE. 0) THEN 

PRINT*, 'ERROR IN FACTORISATION',ERROR,Ml(SBW+l,ABS(ERROR)) 
ENDIF 
CALL DPBTRS('UPPER',NDOF,SBW,1,Ml,MAX6+1,B,MAXO,ERROR) 
IF (ERROR .NE. 0) THEN 

PRINT*, 'ERROR IN SOLVING',ERROR,Ml(SBW+l,-ERROR) 
ENDIF 

C 
C 7. WRITE OUT COMPUTED HYDRAULIC HEAD VALUES 
C DTERMINISTIC HYDRAULIC HEAD VALUES ARE NOW WRITTEN OUT 
C AT THE END OF STOCH, TOGETHER WITH THE STOCHASTIC VALUES. 
C THIS SECTION SETS UP THE HYDRAULIC HEAD VECTOR REQUIRED 
C FOR DETERMINING THE VELOCITIES 
C 

40 
C 
C 8. 
C 

C 
C 9. 
C 
C 
C 
C 
C 
C 
C 

C 
C 10. 
C 

C 
C 11. 
C 
C 

J = 0 
DO 40 I= 1, NUMNOD 

IF (ICH(I) .EQ. 0) THEN 
J = J+l 
X(I) = B(J) 

ENDIF 
CONTINUE 

COMPUTE GROUNDWATER VELOCITIES FOR EACH ELEMENT 

CALL VELOCITY(DNDX) 

DETERMINE MEANS AND (CO)VARIANCES OF HEADS AND VELOCITIES. 
NORMALLY THE PROGRAM WILL EXECUTE STOCH FOR A WHILE, 
SAVE A CHECKPOINT FILE AND TERMINATE. IT WILL THEN NEED 
TO START AGAIN TO TAKE UP WHERE IT LEFT OFF. 
IF STATUS IS 2 OR GREATER THEN THE PROGRAM HAS PREVIOUSLY 
COMPLETED ALL OF THESE CALCULATIONS AND CAN SKIP TO THE 
CONCENTRATION CALCULATIONS (10). 

IF (STATUS .LE. 1) THEN 
CALL STOCH(DNDX, STATUS .EQ. 1) 
STATUS= 2 
OPEN (UNIT= DONEF, FILE= DONEFILE, STATUS= 'UNKNOWN') 
WRITE (DONEF,*) 2,' Heads and velocities complete' 
CLOSE (UNIT= DONEF, STATUS= 'KEEP') 

ENDIF 

BEGIN SOLUTE TRANSPORT PROBLEM 

SYMM = .FALSE. 
LABELl 'SOLUTE CONCENTRATION' 
LABEL2 = I SOLUTE FLUX' 

INPUT MATERIAL PROPERTIES, BOUNDARY CONDITIONS 
AND INITIAL CONDITIONS FOR EACH ELEMENT 

Page.A.2 
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CALL CREAT2(STATUS .GE. 3) 
C 
C 12. CARRY OUT CONCENTRATION CALCULATIONS, BOTH DETERMINISTIC 
C AND STOCHASTIC. 
C LIKE STOCH THIS SUBROUTINE EXECUTES FOR A WHILE, WRITES 
C A CHECKPOINT FILE, TERMINATES AND THE PROGRAM STARTS AGAIN. 
C 

IF (STATUS .LE. 4) THEN 
CALL CONCEN (STATUS .GE. 4) 

ENDIF 
C 
C 13. CREATE A FILE TO ENSURE THAT THE PROGRAM DOES NOT START AGAIN. 

Page.A.3 

C THIS FILE IS CHECKED FOR IN THE BATCHFILE THAT RUNS THE PROGRAM. 
C 

OPEN (UNIT= ENDF, FILE= ENDFILE, STATUS 'UNKNOWN') 
WRITE (ENDF,*) ' CONCENTRATIONS COMPLETE' 
CLOSE (UNIT= ENDF, STATUS= 'KEEP') 
END 

SUBROUTINE CHKPNT 
C***************************************************************** 

C 
C THIS SUBROUTINE ENABLES THE USER TO HALT THE PROGRAM. 
C THE INVOCATION OF SIGNAL AT THE START OF THE MAIN 
C PROGRAM SETS THIS SUBROUTINE UP AS THE SIGNAL HANDLER 
C FOR THE "TERM" SIGNAL (SIGNAL 15). THE MAJOR TIME 
C CONSUMING LOOPS OF THE PROGRAM (IN SUBROUTINES STOCH 
C AND CONCEN) CHECK THE VARIABLE CONTROL AND IF IT IS 
C TRUE A CHECKPOINT FILE IS WRITTEN OUT OF THE PROGRAM'S 
C CURRENT STATUS AND THE PROGRAM EXITS. 
C CONTROL IS SET TO FALSE AT THE BEGINNING OF THE PROGRAM. 
C USERS CAN CREATE A TERM SIGNAL USING THE COMMAND 
C kill -15 PIO 
C WHERE PIO IS THE PROCESS NUMBER OF THE PROGRAM. 
C 
C***************************************************************** 

INCLUDE 'COMALL' 
CONTROL= .TRUE. 
PRINT*, 'I HAVE BEEN TOLD TO FINISH. SIGNAL 15' 
RETURN 
END 

SUBROUTINE SETUP(STATUS) 
C***************************************************************** 
C 
C THIS SUBROUTINE DETERMINES THE NAMES OF THE FILES USED 
C AND THE LOCATION IN THE PROGRAM TO START (ASSUMING THAT 
C CHECKPOINT FILES ARE AVAILABLE). THIS DATA IS READ FROM 
C THE COMAND LINE. IF ANY OF THESE NAMES ARE NOT PRESENT 
C ON THE COMMAND LINE THEN DEFAULTS ARE ASSUMED. 
C 
C***************************************************************** 

INCLUDE 'COMALL' 
INTEGER STATUS 
LOGICAL PRIOR 
CHARACTER*BO INFILE, OUTFILE, TITLE 

C 
C GETARG IS A UNIX SYSTEM CALL THAT OBTAINS THE ARGUMENTS 
C IN THE COMMAND LINE 
C 

EXTERNAL GETARG 
C 
C GET NAME OF INPUT DATA FILE 
C 

CALL GETARG(l,INFILE) 
IF (INFILE .NE. ' ') GOTO 15 
WRITE (*,10) 'Enter the name of the input data file: ' 

10 FORMAT (A) 
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READ (*,10) INFILE 
15 OPEN (INF, FILE=INFILE, STATUS 'OLD') 

C 
C GET NAME OF OUTPUT FILE 
C 

CALL GETARG(2,0UTFILE) 
IF (OUTFILE .NE. ' ') GOTO 25 

20 WRITE (*,10) ' Enter the name of the output file: ' 
READ (*,10) OUTFILE 
INQUIRE (FILE= OUTFILE, EXIST PRIOR) 
IF (PRIOR) THEN 

WRITE (*,10) ' File exists. Overwrite?' 
READ (*,10) TITLE 
IF (TITLE .NE. 'Y' .AND. TITLE .NE. 'y') GOTO 20 

ENDIF 
25 OPEN (OUTF, FILE=OUTFILE, STATUS='UNKNOWN') 

C 
C GET NAME OF VELOCITY DATA CHECKPOINT FILE. 
C THIS WILL BE A BINARY FILE DUE TO THE LARGE 
C SIZE OF THE VELOCITY COVARIANCE MATRIX. 
C 

CALL GETARG(3, VELFILE) 
IF (VELFILE .EQ. ' ') THEN 

VELFILE = 'AUTOSAVE' 
ENDIF 

C 
C GET NAME OF HEAD AND CONCENTRATION CHECKPOINT FILE 
C THIS WILL BE AN ASCII FILE. 
C 

CALL GETARG(4, HCFILE) 
IF (HCFILE .EQ. ' ') THEN 

HCFILE = 'HEADSAVE' 
ENDIF 

C 
C GET NAME OF STATUS FILE AND DETERMINE STATUS. 
C THIS IS AN ASCII FILE WHOSE EXISTANCE INDICATES THAT 
C HYDRAULIC CALCULATIONS ARE FINISHED AND WHOSE CONTENTS 
C IF CONCENTARTION INPUT DATA HAS BEEN ECHOED TO THE 
C RESULTS FILE 
C 

C 

CALL GETARG(5,DONEFILE) 
IF (DONEFILE .EQ. ' ') THEN 

DONEFILE = 'DONE' 
ENDIF 
INQUIRE (FILE= DONEFILE, EXIST= PRIOR) 
IF (.NOT. PRIOR) THEN 

INQUIRE (FILE= VELFILE, EXIST= PRIOR) 
IF (PRIOR) THEN 

STATUS 1 
ELSE 

STATUS 0 
ENDIF 

ELSE 
OPEN (UNIT= DONEF,FILE = DONEFILE, STATUS 
READ (DONEF,*) STATUS 
CLOSE (UNIT= DONEF, STATUS= 'KEEP') 

ENDIF 

C GET NAME OF ENDFILE. 

'UNKNOWN') 

C EXISTANCE OF THIS FILE INDICATES THAT THE PROGRAM IS FINISHED. 
C 

CALL GETARG(6, ENDFILE) 
IF (ENDFILE .EQ. ' ') THEN 

ENDFILE = 'FINISHED' 
ENDIF 

C 
C GET NAME OF CHECKPOINT PROBLEM FILE. 
C THIS FILE IS CREATED BEFORE A CHECKPOINT BEGINS AND 
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C DELETED WHEN IT IS FINISHED. THUS, IF IT IS PRESENT 
C BEFORE EXECUTION BEGINS THEN THE CHECKPOINT FILE IS 
C CORRUPTED. 
C THE BATCHFILE EXECUTING THE PROGRAM USUALLY MAKES 
C A BACKUP OF THE CHECKPOINT FILE. THUS IF THIS FILE 
C EXISTS THEN THE BACKUP OF THE CHECKPOINT FILES SHOULD 
C BE USED INSTEAD OF THE MAIN COPY. 
C 

CALL GETARG(7, PROBFILE) 
IF (PROBFILE .EQ. ' ') THEN 

PROBFILE = 'PROBLEM' 
ENDIF 
RETURN 
END 

SUBROUTINE STOCH(DNDX,PRIOR) 
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C********************************************************************* 

C 
C 12. 1 PURPOSE: 
C SUBROUTINE STOCH DETERMINES THE SECOND DERIVATIVES OF EACH 
C NODAL HYDRAULIC HEAD VALUE AND ELEMENTAL VELOCITY 
C COMPONENT WITH RESPECT TO THE HYDRAULIC CONDUCTIVITY 
C 
C 
C 
C 
C 

OF EACH ELEMENT. THESE VALUES AND THE VALUES FOR THE 
RESPECTIVE FIRST DERIVATIVES ARE USED IN DETERMINING THE 
MEANS AND COVARIANCES OF THE NODAL HYDRAULIC HEAD VALUES 
AND ELEMENTAL VELOCITY COMPONENTS 

C 8 .2 INPUT: 
C 
C 

NONE 

C 8 . 3 OUTPUT: 
C THE MEANS AND VARIANCES OF THE NODAL HYDRAULIC HEAD 
C 
C 
C 
C 

VALUES AND ELEMENTAL VELOCITY COMPONENTS ARE WRITTEN 
TO THE USER-DEFINED FILE ASSIGNED TO UNIT "OUTF" 

C 12.4 DEFINITIONS OF VARIABLES: 
C B (I) RIGHT HAND SIDE VECTOR 
C [dKe/dke] [X] 
C DHDK(I,E) DERIVATIVE OF HEAD AT NODE I WITH RESPECT TO 
C HYDRAULIC CONDUCTIVITY OF ELEMENT E 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

E 
ELEMTYP(I) 

ICH(I) 

KE (I, J) 

LCH (I) 

M(IJ) 

ELEMENT NUMBER 
ELEMENT TYPE FOR ELEMENT I 
1 IF THE VALUE OF THE FIELD VARIABLE IS 
SPECIFIED FOR NODE I 
0 OTHERWISE 
CONDUCTANCE MATRIX FOR ELEMENT E IN FULL 
MATRIX STORAGE 
ICH(I) + ICH(I-1) + ICH(I-2) + 
THE ARRAYS ICH AND LCH ARE USED TO MODIFY 
GLOBAL SYSTEM OF EQUATIONS IN SUBROUTINES 
ASMBK, ASMBKC, AND ASMBAD 
MODIFIED GLOBAL CONDUCTANCE MATRIX IN 
VECTOR STORAGE 

NDOF NUMBER OF_ DEGREES OF FREEDOM 
(UNSPECIFIED NODES) 

NODETBL(I) NUMBER OF NODES IN ELEMENT TYPE I 
NUMELM NUMBER OF ELEMENTS IN MESH 

SBW SEMI-BANDWIDTH OF MODIFIED GLOBAL 
CONDUCTANCE MATRIX 

X(I) VALUE OF THE FIELD VARIABLE AT NODE I 

C 12.5 USAGE: 
C DHDK IS DETERMINED USING: 
C 
C 
C 
C 

M * DHDK = - DMDK * H 
D2HDK2 IS DETERMINED USING: 

M * D2HDK2(I,J) = - DMDK(I) * DHDK(J) 
- DMDK(J) * DHDK(I) 
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C 
C SUBROUTINES CALLED: (IF I HAVE BOTHERED TO INCLUDE THEM) 
C KBAR2,KBAR3,KBAR4,KTRI3,KREC4,KQUA4,KQUA8,KQUA12,KPAR8, 
C KPAR20,KPAR32,KTRI3A,KREC4A,KREP8 
C LOC 
C 
C********************************************************************* 

INCLUDE 'COMALL' 
INTEGER E, E2, E3, E4, I, J, K, L, JS, JG, J7 
INTEGER JO, Jl, J2, J3, J4, K2, N(3), REFLEC(0:3,4) 
DOUBLE PRECISION KE(MAX3,MAX3),SUM(3),SQUARE(3),THETA 
DOUBLE PRECISION DNDX(MAX3,MAX2,3), KCOR(MAX4), XC(MAX2,3) 
DOUBLE PRECISION R, MOMENT, TEMP, TEMPl, LIMIT, LIMIT2 
REAL TARRAY(2), SECS, ETIME 
LOGICAL PRIOR 
CHARACTER Z(3) 
EXTERNAL ETIME 
Z (1) 'X' 
Z(2) = 'Y' 
Z(3) = 'Z' 
IF (PRIOR) THEN 

CALL VLOAD 
CALL HLOAD(E3,E4) 
DO 10 E = 1, E3 

CALL KCORR(E, 1, XC, KCOR) 
10 CONTINUE 

ELSE 
DO 20 J = 1, NDOF 

DO 20 L = 1, NUMMAT 
MEAN (J, L) 0. 0 
VAR(J,L) = 0.0 

20 CONTINUE 
DO 30 E = 1, NUMELM / 4 

DO 30 K = 1, DIM 
DO 30 L = 1, NUMMAT 

VMEAN(L,K,E) = 0.0 
30 CONTINUE 

DO 35 E = 1, NUMELM * (NUMELM / 4 + 1) / 2 
DO 35 K = 1, DIM 

DO 35 K2 = 1, DIM 
DO 35 L = 1, NUMMAT 

COVAR(L,K2,K,E) a.o 
35 CONTINUE 

E3 = 1 
E4 = 0 

ENDIF 
C THE NEXT TWO LOOPS MUST NOT BE PARALLELISED SO AUTOSAVING FUNCTIONS 

DO 170 E = E3, NUMELM 
PRINT *,'BEGINNING FLOW FOR ELEMENT',E, '. NOR2 =',NOR2, (E-1)**2 
CALL HDERl(E,KE,1) 

CALL VDERl(E,DNDX,1) 
REFLEC(0,1) 2 
REFLEC(0,2) -2 
REFLEC(0,3) -2 
REFLEC(0,4) 2 
REFLEC(l,1) 2 
REFLEC(l,2) 2 
REFLEC(l,3) 2 
REFLEC(l,4) 2 
REFLEC(2,1) 2 
REFLEC(2,2) -2 
REFLEC(2,3) 2 
REFLEC (2, 4) -2 
IF (E .LE. NUMELM / 4) THEN 

LIMIT= E 
ELSEIF (E .LE. NUMELM / 2) THEN 

LIMIT= NUMELM / 2 + 1 - E 
ELSEIF (E .LE. 3 * NUMELM / 4) THEN 
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LIMIT 
ELSE 

LIMIT 
ENDIF 

E - NUMELM / 2 

NUMELM + 1 - E 

DO 160 E2 = E4 + 1, LIMIT 
IF (E2 .EQ. LIMIT) THEN 

C SYMMETRY OF DERIVATIVE DOES NOT DOUBLE ANSWER 
DO 42 J = 0, DIM 

C 

C 

DO 42 J2 = 1, 4 
REFLEC(J,J2) REFLEC(J,J2) / 2 

42 CONTINUE 

50 

60 

1 

1 
2 
3 

1 
2 
3 

1 
2 
3 

ENDIF 
CALL KCORR(E,E2,XC,KCOR) 
THESE LINES AND THE IF RESTRICT THE VALUES TO "CLOSE" PAIRS 
R = 0 
DO 50 K = 1, DIM 

R = R + (XC(E,K) - XC(E2,K)) ** 2 
CONTINUE 
IF (R .LE. R2 * R2) THEN 

NOR2 = NOR2 + REFLEC(l,1) + REFLEC(l,2) 
+ REFLEC(l,3) + REFLEC(l,4) 

CALL HDER2(E,E2,KE) 
DO 60 J = 1, NDOF 

J4 (J+NDN/2-1) / (NDN/2) * NDN/2 - MOD(J-1, NDN/2) 
J3 = NDOF + 1 - J 
J2 = NDOF + 1 - J4 
TEMP= 0.5 * ( REFLEC(0,1) * D2HDK2(J) 

+ REFLEC(0,2) * D2HDK2(J2) 
+ REFLEC(0,3) * D2HDK2(J3) 
+ REFLEC(0,4) * D2HDK2(J4)) 

TEMPl ABS(REFLEC(0,1)) * DHDK(J,1) * DHDK(J,2) 
+ ABS(REFLEC(0,2)) * DHDK(J2,l) * DHDK(J2,2) 
+ ABS(REFLEC(0,3)) * DHDK(J3,1) * DHDK(J3,2) 
+ ABS(REFLEC(0,4)) * DHDK(J4,1) * DHDK(J4,2) 

DO 60 L = 1, NUMMAT 
MEAN(J,L) = MEAN(J,L) +TEMP* KCOR(L) 
VAR(J,L) = VAR(J,L) + TEMPl * KCOR(L) 

CONTINUE 
END OF HYDRAULIC HEAD CALCULATIONS. 

CALL VDER2(E,E2,DNDX) 
CALL VDER1(E2,DNDX,2) 

DO 125 J = 1, NUMELM / 4 
J2 NUMELM / 2 + 1 - J 
J3 NUMELM / 2 + J 
J4 NUMELM + 1 - J 
DO 125 K = 1, DIM 

TEMP = 0. 5 * REFLEC (K, 1) 
+ REFLEC (K, 2) 
+ REFLEC (K, 3) 
+ REFLEC (K, 4) 

DO 125 L = 1, NUMMAT 

* D2VDK2 (J , K) 
* D2VDK2(J2,K) 
* D2VDK2(J3,K) 
* D2VDK2(J4,K) 

VMEAN(L,K,J) = VMEAN(L,K,J) +TEMP* KCOR(L) 
125 CONTINUE 
C$DOACROSS LOCAL (J,JO,Jl,J2,J3,J4,JS,J6,J7,TEMP,LIMIT2) 
C$& , MP_SCHEDTYPE=INTERLEAVE 

DO 130 J = 1, NUMELM 
IF (J .LE. NUMELM / 4) THEN 

LIMIT2 = J 
JS NUMELM / 2 + 1 - J 
J6 = NUMELM / 2 + J 
J7 = NUMELM + 1 - J 

ELSEIF (J .LE. NUMELM / 2) THEN 
LIMIT2 = NUMELM / 2 + 1 - J 
JS NUMELM / 2 + 1 - J 
J6 = NUMELM / 2 + J 
J7 = NUMELM + 1 - J 

ELSEIF (J .LE. 3 * NUMELM / 4) THEN 
LIMIT2 = J - NUMELM / 2 
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115 
120 
130 

C 

JS 
J6 
J7 

ELSE 

3 * NUMELM / 2 + 1 - J 
J - NUMELM / 2 
NUMELM + 1 - J 

LIMIT2 NUMELM + 1 - J 
JS 3 * NUMELM I 2 + 1 - J 
J6 = J - NUMELM I 2 
J7 = NUMELM + 1 - J 

ENDIF 
DO 120 Jl = 1, LIMIT2 

IF (J .LE. NUMELM / 4) THEN 
JO= J * (J - 1) / 2 + Jl 

ELSEIF (J .LE. NUMELM / 2) THEN 
JO= NUMELM / 2 * (NUMELM / 4 + 1) / 2 

1. - {NUMELM/2-J+l) * (NUMELM/2-J+2) / 2 + Jl 
ELSEIF (J .LE: 3 * NUMELM / 4) THEN 

JO NUMELM / 2 * (NUMELM / 4 + 1) / 2 
1 + (J-NUMELM/2) * (J-NUMELM/2-1) / 2 + Jl 

1 

1 
1 
2 
3 
3 
4 
5 
5 
6 
7 
7 

1 

ELSE 
JO NUMELM / 2 * (NUMELM / 4 + 1) 

- (NUMELM-J+l) * (NUMELM-J+2) / 2 + Jl 
ENDIF 
J2 NUMELM / 2 + 1 - Jl 
J3 = NUMELM / 2 + Jl 
J4 = NUMELM + 1 - Jl 
DO 115 K = 1, DIM 

DO 115 K2 = 1, DIM 
TEMP =(REFLEC(K,1) * REFLEC(K2,1) / REFLEC(l,1) 

* ( DVDK(J,K,1) * DVDK(Jl,K2,2) 
+ DVDK(J,K,2) * DVDK(Jl,K2,1) ) 

+ REFLEC(K,2) * REFLEC(K2,2) / REFLEC(l,2) 
* ( DVDK(JS,K,1) * DVDK(J2,K2,2) 

+ DVDK(JS,K,2) * DVDK(J2,K2,1) ) 
+ REFLEC(K,3) * REFLEC(K2,3) / REFLEC(l,3) 

* ( DVDK(J6,K,1) * DVDK(J3,K2,2) 
+ DVDK(J6,K,2) * DVDK(J3,K2,1) ) 

+ REFLEC(K,4) * REFLEC(K2,4) / REFLEC(l,4) 
* ( DVDK(J7,K,1) * DVDK(J4,K2,2) 

+ DVDK(J7,K,2) * DVDK(J4,K2,1))) / 2 
DO 115 L = 1, NUMMAT 

COVAR(L,K2,K,JO) COVAR(L,K2,K,JO) 
+TEMP* KCOR(L) 

CONTINUE 
CONTINUE 

CONTINUE 
ENDIF 
SECS = ETIME(TARRAY) 
THIS ALLOWS UP TO TWELVE THREADS! 
IF (SECS .GT. 2400 .OR. CONTROL) THEN 

PRINT*, 'EXUCUTION TIME= ',SECS,' SECONDS.' 
CALL HSAVE (E, E2) 
CALL VSAVE 
SECS = ETIME(TARRAY) 
PRINT*, 'STOPPING AT TIME 
STOP 

ENDIF 

I' ETIME (TARRAY) 

160 CONTINUE 
E4 = 0 

170 CONTINUE 
CALL VSAVE 
REFLEC(0,1) 1 
REFLEC(0,2) -1 
REFLEC(0,3) -1 
REFLEC(0,4) 1 
REFLEC(l,1) 1 
REFLEC(l,2) 1 
REFLEC(l,3) 1 
REFLEC(l,4) 1 
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REFLEC ( 2, 1 ) 1 
REFLEC(2,2) -1 
REFLEC(2,3) 1 
REFLEC(2,4) -1 
DO 260 L = 1, NUMMAT 

WRITE(OUTF, 180)L,LABEL1,LABEL1, 'MEAN' 
180 FORMAT(//1X,74('*')//,23X,'RESULTS FOR MATERIAL SET',I3 

1 //18X,'COMPUTED VALUES OF ',A/ 
2 18X,36('-')// 
3 lX, 'NODE NO.',A,2X,A,8X, 
3 'FIRST_ORDER',4X,'TRUE_MEAN',7X, 'X',6X, 'Y',6X,'Z'/) 

J = 0 
DO 210 I= 1, NUMNOD 

IF (ICH(I) .EQ. 0) THEN 
J = J + 1 
IF (VAR(J,L) .GE. 0.0) THEN 

WRITE(OUTF,190) I,X(I),MEAN(J,L),SQRT(VAR(J,L)) 
3 ,X(I) + MEAN(J,L) 
1 ,Xl (I) ,X2 (I) ,X3 (I) 

ELSE 
WRITE(OUTF,190) I,X(I),MEAN(J,L),SQRT(-VAR(J,L)) 

3 ,X(I) + MEAN(J,L) 
1 ,Xl(I),X2(I),X3(I) 

ENDIF 
ELSE 

WRITE(OUTF,190) I,X(I),0.0,0.0,X(I),Xl(I),X2(I),X3(I) 
ENDIF 

190 FORMAT (IS,1X,4F16.12,3F7.2) 
200 FORMAT (1X,I5,3X,F22.18,15X,A) 
210 CONTINUE 

DO 260 K = 1, DIM 
WRITE (OUTF,270) Z(K) 
DO 220 E = 1, NUMELM 

IF (E .LE. NUMELM / 4) THEN 
E2 E 
E3 = E2 * (E2 + 1) / 2 
E4 = 

ELSEIF 
E2 
E3 = 
E4 = 

ELSEIF 
E2 
E3 
E4 

ELSE 
E2 
E3 
E4 

ENDIF 

1 
(E .LE. NUMELM / 2) THEN 

NUMELM / 2 - E + 1 
E2 * (E2 + 1) / 2 
2 
(E .LE. 3 * NUMELM / 4) THEN 
E - NUMELM / 2 
E2 * ( E2 + 1) / 2 
3 

NUMELM - E + 1 
E2 * (E2 + 1) / 2 
4 

IF (COVAR(L,K,K,E3) .GE. 0.0) THEN 
WRITE (OUTF,190) E,V(E,K),REFLEC(K,E4)*VMEAN(L,K,E2), 

1 SQRT(COVAR(L,K,K,E3)), 
3 V(E,K) + REFLEC(K,E4)*VMEAN(L,K,E2) 
2 ,XC(E,1),XC(E,2),XC(E,3) 

1 
3 
2 

ELSE 
WRITE (OUTF,190) E,V(E,K),REFLEC(K,E4)*VMEAN(L,K,E2), 

-SQRT(-COVAR(L,K,K,E3)) 
,V(E,K) + REFLEC(K,E4)*VMEAN(L,K,E2) 

,XC(E, 1) ,XC(E,2) ,XC(E,3) 
ENDIF 

270 FORMAT(/1X,74('*')//7X, 'COMPUTED VALUES OF APPARENT' 
1 'GROUNDWATER VELOCITY IN ',A,' DIRECTION'/7X,63('-')/2X, 
2 'ELEMENT',3X, 'VELOCITY',lOX, 'MEAN',8X, 
3 'FIRST ORDER',6X,'TRUE MEAN',6X, 
4 'X',6X;'Y',6X,'Z'/) -

220 CONTINUE 
DO 240 K2 = 1, DIM 
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N(K2) = 0 
SUM(K2) = 0.0 
SQUARE(K2) = 0.0 

240 CONTINUE 
DO 250 E = 1, NUMELM 

IF (E .LE. NUMELM / 4) THEN 
LIMIT= E 

ELSEIF (E .LE. NUMELM / 2) THEN 
LIMIT= NUMELM / 2 + 1 - E 

ELSEIF (E .LE. 3 * NUMELM / 4) THEN 
LIMIT E - NUMELM / 2 

ELSE 
LIMIT NUMELM + 1 - E 

ENDIF 
DO 250 E2 = 1, LIMIT 

DO 310 K2 = 1, DIM 
IF (ABS(XC(E,MOD(K2,3)+1) - XC(E2,MOD(K2,3)+1)) 

1 .LT.lE-9 .AND. ABS(XC(E,MOD(K2+1,3)+1) 
2 - XC(E2,MOD(K2+1,3)+1)) .LT. lE-9 .AND. 
3 ABS(XC(E,K2) - XC(E2,K2)) .GT. lE-9) THEN 

MOMENT= ABS(XC(E2,K2) - XC(E,K2)) 
IF (E .LE. NUMELM / 4) THEN 

Jl E 
J2 Jl * (Jl + 1) / 2 
J3 Jl * (Jl - 1) / 2 + E2 
Jl E2 * (E2 + 1) / 2 

ELSEIF (E .LE. NUMELM / 2) THEN 
Jl NUMELM / 2 - E + 1 
J2 Jl * ( Jl + 1 ) / 2 
J3 NUMELM * (NUMELM / 4 + 1) / 4 

1 - J2 + E2 
Jl E2 * (E2 + 1) / 2 

ELSEIF (E .LE. 3 * NUMELM / 4) THEN 
Jl E - NUMELM / 2 
J2 Jl * (Jl + 1) / 2 
J3 NUMELM * (NUMELM / 4 + 1) / 4 

1 + Jl * (Jl - 1) / 2 + E2 

1 

1 

Jl E2 * (E2 + 1) / 2 
ELSE 

Jl 
J2 
J3 

Jl 
ENDIF 

NUMELM - E + 1 
Jl * (Jl + 1) / 2 
NUMELM * (NUMELM / 4 + 1) / 2 

- J2 + E2 
E2 * (E2 + 1) / 2 

THETA SQRT(ABS(COVAR(L,K,K,Jl) 
* COVAR(L,K,K,J2))) 

THETA (COVAR(L, K, K, J3)) / THETA 
IF (THETA .GT. 0.0) THEN 

THETA= - MOMENT/ LOG(THETA) 
N(K2) = N(K2) + 1 
SUM(K2) = SUM(K2) + THETA 
SQUARE(K2) = SQUARE(K2) +THETA** 2 

ENDIF 
ENDIF 

310 CONTINUE 
250 CONTINUE 

DO 260 K2 = 1, DIM 
WRITE (OUTF,320) Z(K2),Z(K),SUM(K2)/N(K2), 

1 SQRT(SQUARE(K2)*N(K2) - SUM(K2)**2) / (N(K2)-1) 
260 CONTINUE 

WRITE (OUTF, 280) 
280 FORMAT(/lX,74('*')) 
320 FORMAT (/lX, 'SCALE OF FLUCTUATION IN ',A,' DIRECTION OF ',A, 

1 'VELOCITY: MEAN ',Fl9.3, ', STANDARD DEVIATION ',F19.3) 
write (*, 280) 

c print*, 'Their is a stop inn.fat the end of STOCH' 
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c stop 

RETURN 
END 

SUBROUTINE KCORR(E,E2,XC,KCOR) 

Page.A.I I 

C********************************************************************* 

10 

20 

30 

INCLUDE 'COMALL' 
DOUBLE PRECISION XC(MAX2,3), MOMENT, KCOR(MAX4), 
INTEGER E, E2, J, L, NODETBL(l3) 
DATA NODETBL/2,3,4,3,4,4,8,12,8,20,32,3,4/ 
IF (E2 .EQ. 1) THEN 

DO 10 J = 1, DIM 
XC(E,J) = 0.0 

CONTINUE 
DO 20 J = 

XC(E,l) 
XC(E,2) 
XC(E,3) 

CONTINUE 

1, NODETBL(ELEMTYP(E)) 
XC(E,l) + Xl(IN(E,J)) 
XC(E,2) + X2(IN(E,J)) 
XC(E,3) + X3(IN(E,J)) 

DO 30 J = 1, DIM 
XC(E,J) = XC(E,J) / NODETBL(ELEMTYP(E)) 

CONTINUE 
ENDIF 
DO 80 L = 1, NUMMAT 

MOMENT= 0.0 
DO 70 J = 1, DIM 

THETA(J) = PROP(L,4+J) 
IF (THETA(J) .NE. 0.0) THEN 

THETA(3) 

MOMENT= MOMENT+ ((XC(E,J) - XC(E2,J)) / THETA(J)) ** 2 
ELSE 

PRINT 
ENDIF 

70 CONTINUE 

* ' , You have a theta of zero. Check no of props.' 

KCOR(L) EXP(-SQRT(MOMENT)) * PROP(L,4) ** 2 
80 CONTINUE 

RETURN 
END 

SUBROUTINE ASMBK 
C********************************************************************* 
C 
C 12.1 PURPOSE: 
C SUBROUTINE ASMBK ASSEMBLES THE GLOBAL CONDUCTANCE MATRIX 
C AND THE GLOBAL SPECIFIED FLOW MATRIX. THE GLOBAL MATRICES 
C ARE MODIFIED DURING THE ASSEMBLY PROCESS TO ACCOUNT FOR 
C SPECIFIED VALUES OF THE FIELD VARIABLE AND GROUNDWATER 
C FLOW DURING THE ASSEMBLY PROCESS. THE GLOBAL CONDUCTANCE 
C MATRIX IS ASSEMBLED AND MODIFIED IN VECTOR STORAGE. ASMBK 
C ALSO COMPUTES THE SEMI-BANDWIDTH AND THE NUMBER OF DEGREES 
C OF FREEDOM FOR THE MODIFIED GLOBAL CONDUCTANCE MATRIX. 
C 
C 12.2 INPUT: 
C NONE 
C 
C 12.3 OUTPUT: 
C SEMI-BANDWIDTH AND NUMBER OF DEGREES OF FREEDOM WRITTEN TO 
C THE USER-DEFINED FILE "OUTF" 
C 
C 12.4 
C 
C 
C 

C 
C 
C 
C 
C 

DEFINITIONS OF VARIABLES: 
B(I) MODIFIED SPECIFIED FLOW MATRIX 

E 
ELEMTYP (I) 

FLUX(I) 
ICH (I) 

IJSIZE 

ELEMENT NUMBER 
ELEMENT TYPE FOR ELEMENT I 
SPECIFIED VALUE OF GROUNDWATER FLOW AT NODE I 
1 IF THE VALUE OF THE FIELD VARIABLE IS 
SPECIFIED FOR NODE I 
0 OTHERWISE 
LENGTH OF ARRAY M 
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C KE (I, J) 

C 
C LCH(I) 
C 
C 
C 
C M(IJ) 
C 

CONDUCTANCE MATRIX FOR ELEMENT E IN FULL 
MATRIX STORAGE 
ICH (I) + ICH (I-1) + ICH (I-2) + 
THE ARRAYSICH AND LCH ARE USED TO MODIFY 
GLOBAL SYSTEM OF EQUATIONS IN SUBROUTINES 
ASMBK, ASMBKC, AND ASMBAD 
MODIFIED GLOBAL CONDUCTANCE MATRIX IN 
VECTOR STORAGE 
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C 
C 

NDOF 
NODETBL (I) 

NUMELM 

NUMBER OF DEGREES OF FREEDOM (UNSPECIFIED NODES) 
NUMBER OF NODES IN ELEMENT TYPE I 

C 
C 
C 
C 
C 
C 12.5 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

NUMBER OF ELEMENTS IN MESH 
SBW SEMI-BANDWIDTH OF MODIFIED GLOBAL 

CONDUCTANCE MATRIX 
X(I) VALUE OF THE FIELD VARIABLE AT NODE I 

USAGE: 
THE SEMI-BANDWIDTH OF THE GLOBAL CONDUCTANCE MATRIX IS 
COMPUTED FIRST. THEN THE ENTRIES OF THE ELEMENT 
CONDUCTANCE MATRIX ARE COMPUTED IN A SET OF SUBROUTINES, 
ONE SUBROUTINE FOR EACH ELEMENT TYPE. THE GLOBAL 
CONDUCTANCE MATRIX FOR THE MESH IS ASSEMBLED BY ADDING 
THE CORRESPONDING ENTRIES OF THE ELEMENT CONDUCTANCE 
MATRICES TO THE GLOBAL CONDUCTANCE MATRIX. DURING THE 
ASSEMBLY PROCESS THE GLOBAL CONDUCTANCE MATRIX IS MODIFIED 
FOR SPECIFIED VALUES OF HEAD. SPECIFIED VALUES OF 
GROUNDWATER FLOW ARE ADDED TO THE GLOBAL FLOW MATRIX. 

SUBROUTINES CALLED: (IF I HAVE BOTHERED TO INCLUDE THEM) 
KBAR2,KBAR3,KBAR4,KTRI3,KREC4,KQUA4,KQUA8,KQUA12,KPAR8, 
KPAR20,KPAR32,KTRI3A,KREC4A,KREP8 
LOCATE 

C********************************************************************* 
INCLUDE I COMALL I 

DOUBLE PRECISION KE(MAX3,MAX3) 
INTEGER NODETBL(14), E, I, Kl, II, J, KJ, JJ 
DATA NODETBL/2,3,4,3,4,4,8,12,8,20,32,3,4,8/ 

C INITIALISE ENTRIES OF GLOBAL CONDUCTANCE MATRIX TO ZERO 
IF (NDOF .GT. MAXO) STOP'** EXCEEDS MAX DEGREES OF FREEDOM**' 
DO 10 J = 1, NDOF 

DO 10 I= 1, SBW + 1 
Ml(I,J) = 0.0 

10 CONTINUE 
DO 60 I= 1, NUMNOD 

IF (ICH(I) .EQ. 0) B(I-LCH(I)) FLUX(I) 
60 CONTINUE 

C LOOP ON THE NUMBER OF ELEMENTS 
DO 90 E = 1, NUMELM 

C COMPUTE THE ELEMENT CONDUCTANCE MATRIX FOR THIS ELEMENT TYPE 
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

IF (ELEMTYP(E) .EQ. 1) THEN 
C ELEMENT IS A LINEAR BAR 

CALL KBAR2(E,KE) 
ELSEIF (ELEMTYP(E) .EQ. 4) THEN 

C ELEMENT IS A LINEAR TRIANGLE 
CALL KTRI3 ( E, KE) 

ELSEIF (ELEMTYP(E) .EQ. 5) THEN 
C ELEMENT IS A LINEAR RECTANGLE 

CALL KREC4(E,KE) 
ELSEIF (ELEMTYP(E) .EQ. 6) THEN 

C ELEMENT IS A LINEAR QUADTILATERAL 
CALL KQUA4(E,KE) 

ELSEIF (ELEMTYP(E) .EQ. 9) THEN 
C ELEMENT IS A THREE DIMENSIONAL LINEAR PARALLELEPIPED 

CALL KPARB(E,KE) 
ENDIF 

C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
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C ADD THE ELEMENT CONDUCTANCE MATRIX TO THE GLOBAL MATRIX 
DO 80 I= 1, NODETBL(ELEMTYP(E)) 

Kl= IN(E,I) 
IF (ICH(KI) .EQ. 0) THEN 

II= Kl - LCH(KI) 
DO 70 J = 1, NODETBL(ELEMTYP(E)) 

KJ = IN(E,J) 
IF (ICH(KJ) .NE. 0) THEN 

B (II) = B (II) - KE (I, J) * X (KJ) 
ELSEIF (KJ .GE. Kl) THEN 

c ELSEIF (J .GE. I) THEN 
JJ = KJ - LCH(KJ) 
Ml(SBW+l+II-JJ,JJ) = Ml(SBW+l+II-JJ,JJ) + KE(I,J) 

C IF (I .EQ. J .AND. KE(I,J) .LT. 0.0) THEN 
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C PRINT*,' There is a problem with element',E, ', that' 
C PRINT*,' causes a negative entry for node',IN(E,I) 
C ENDIF 

70 
ENDIF 

CONTINUE 
ENDIF 

80 CONTINUE 
90 CONTINUE 

RETURN 
END 

SUBROUTINE KBAR2(E,KE) 
C********************************************************************* 

C 
C PURPOSE: 
C TO COMPUTE THE ELEMENT CONDICTANCE MATRIX FOR A 
C ONE-DIMENSIONAL, LINEAR BAR ELEMENT 
C 
C DEFINITIONS OF VARIABLES: 
C E ELEMENT NUMBER 
C 
C 
C 
C 

KE(I,J) 
KXE 

LE 

ELEMENT CONDUCTANCE MATRIC 
HYDRAULIC CONDUCTIVITY IN X COOREDINATE DIRECTION 
ELEMENT LENGTH 

C********************************************************************* 
INCLUDE 'COMALL' 
INTEGER E 
DOUBLE PRECISION KE(MAX3,MAX3),KXE,LE 

KXE = PROP(MATSET(E),1) 
LE= ABS(Xl(IN(E,2)) - Xl(IN(E,1))) 
KE(l,l) KXE / LE 
KE(l,2) -KE(l,1) 
KE(2,1) -KE(l,1) 
KE (2, 2) KE (1, 1) 
RETURN 
END 

SUBROUTINE KTRI3(E,KE) 
C********************************************************************* 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 
C 
C 

PURPOSE: 
TO COMPUTE THE ELEMENT CONDUCTANCE MATRIX FOR TWO 
DIMENSIONAL, LINEAR TRIANGLE ELEMENT 

DEFINITIONS OF VARIABLES: 
AE4 FOUR TIMES ELEMENT AREA 

E ELEMENT NUMBER 
IN(I,J) NODE NUMBER J FOR ELEMENT I 
KE (I, J) ELEMENT CONDUCTANCE MATRIX 

KXE HYDRAULIC CONDUCTIVITY IN X DIRECTION 
KYE HYDRAULIC CONDUCTIVITY IN Y DIRECTION 

C********************************************************************* 
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C 

INCLUDE 'COMALL' 
INTEGER E, I, J 
DOUBLE PRECISION KE(MAX3,MAX3),KXE,KYE,BE(3),CE(3),AE4 

KXE = PROP(MATSET(E),1) 
KYE= PROP(MATSET(E),2) 
BE (1) X2(IN(E,2)) - X2(IN(E,3)) 
BE(2) X2(IN(E,3)) - X2 ( IN ( E, 1) ) 
BE (3) X2(IN(E,1)) - X2(IN(E,2)) 
CE (1) Xl (IN (E, 3)) - Xl(IN(E,2)) 
CE(2) Xl(IN(E,1)) - Xl(IN(E,3)) 
CE(3) Xl(IN(E,2)) - Xl(IN(E,1)) 

CHECK THIS FORMULA! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 

1 
2 

AE4 = ( Xl(IN(E,2)) 
X2(IN(E,1)) 
Xl (IN (E, 3)) 

DO 20 I= 1,3 
DO 10 J = 1, 3 

* X2(IN(E,3)) 
* Xl (IN (E, 3)) 
* X2(IN(E,2)) 

+ Xl(IN(E,1)) * X2 ( IN ( E, 2)) + 
- X2 (IN (E, 3)) * Xl (IN(E, 1)) -
- Xl(IN(E,2)) * X2 ( IN ( E, 1) ) ) *2 

KE(I,J) = (KXE * BE(I) * BE(J) +KYE* CE(I) * CE(J)) / AE4 
10 CONTINUE 
20 CONTINUE 

RETURN 
END 

SUBROUTINE KREC4(E,KE) 
C********************************************************************* 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 
C 

PURPOSE: 
TO COMPUTE THE ELEMENT CONDUCTANCE MATRIX FOR TWO 
DIMENSIONAL, LINEAR RECTANGLE ELEMENT 

DEFINITIONS OF VARIABLES: 
E ELEMENT NUMBER 

IN (I, J) 
KE (I, J) 

KXE 
KYE 

NODE NUMBER J FOR ELEMENT I 
ELEMENT CONDUCTANCE MATRIX 
HYDRAULIC CONDUCTIVITY IN X DIRECTION 
HYDRAULIC CONDUCTIVITY IN Y DIRECTION 

C********************************************************************* 
INCLUDE 'COMALL' 
INTEGER E 
DOUBLE PRECISION KE(MAX3,MAX3),KXE,KYE, AE, BE, ex, CY 

KXE = PROP(MATSET(E),1) 
KYE= PROP(MATSET(E),2) 
AE ABS(X2(IN(E,1)) - X2(IN(E,3))) / 2 
BE ABS(Xl(IN(E,1)) - Xl(IN(E,3))) / 2 
ex KXE * AE / (6.0 * BE) 
CY KYE* BE/ (6.0 * AE) 
KE ( 1, 1) 2 . 0 * ex + 2 . 0 * CY 
KE(l,2) -2.0 *ex+ CY 
KE(l,3) -ex - CY 
KE(l,4) ex - 2.0 * CY 
KE(2,1) KE(l,2) 
KE(2,2) KE(l,1) 
KE (2, 3) KE (1, 4) 
KE(2,4) KE(l,3) 
KE (3, 1) KE (1, 3) 
KE (3, 2) KE (2, 3) 
KE (3, 3) KE (1, 1) 
KE(3,4) KE(l,2) 
KE(4,1) KE(l,4) 
KE(4,2) KE(2,4) 
KE(4,3) KE(3,4) 
KE(4,4) KE(l,1) 
RETURN 
END 
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SUBROUTINE KQUA4(E,KE) 
C********************************************************************* 

C 
C PURPOSE: 
C TO COMPUTE THE ELEMENT CONDUCTANCE MATRIX FOR TWO 
C DIMENSIONAL, LINEAR QUADRILATERAL ELEMENT 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

DEFINITIONS OF VARIABLES: 
DETJAC 

DNDXI(I) 

DNDX (I) 

DNDETA(I) 

DNDY (I) 

E 
ETA (I) 

JAC(I,J) 
JACINV(I,J) 

KE(I,J) 
KXE 
KYE 

W (I) 

Xl(IN(E,I) 
X2(IN(E,I) 

XI(I) 

DETERMINANT OF JACOBIAN MATRIX 
PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO XI AT NODE I 
PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO X AT NODE I 
PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO ETA AT NODE I 
PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TOY AT NODE I 
ELEMENT NUMBER 
LOCATION OF GAUSS POINT IN ETA 
COORDINATE DIRECTION 
JACOBIAN MATRIX 
INVERSE OF JACOBIAN MATRIX 
ELEMENT CONDUCTANCE MATRIX 
HYDRAULIC CONDUCTIVITY IN X DIRECTION 
HYDRAULIC CONDUCTIVITY IN Y DIRECTION 
WEIGHT FOR GAUSS POINT I 
X COORDINATE FOR NODE I, ELEMENT E 
Y COORDINATE FOR NODE I, ELEMENT E 
LOCATION OF GAUSS POINT IN XI COORDINATE 
DIRECTION 

C************************************************~******************** 
INCLUDE 'COMALL' 
DOUBLE PRECISION JAC(2,2), JACINV(2,2), KE(MAX3,MAX3), DNDXI(4) 
DOUBLE PRECISION DNDX(4), DNDETA(4), DNDY(4), W(2), XI(2) 
DOUBLE PRECISION ETA(2), SIGN1(4), SIGN2(4), KXE, KYE, DETJAC 
INTEGER E, I, J, K, N 
DATA SIGNl/-1.0, 1.0, 1.0, -1.0/ 
DATA SIGN2/-1.0, -1.0, 1.0, 1.0/ 

XI(l) = 1.0 / SQRT(3D0) 
XI(2) = -XI(l) 
ETA ( 1) = XI ( 1) 
ETA(2) = XI(2) 
W(l) = 1.0 
W(2) = 1.0 
KXE PROP(MATSET(E),1) 
KYE= PROP(MATSET(E),2) 

DO 30 K = 1, 4 
DO 20 N = 1, 4 

KE(K,N) = 0.0 
20 CONTINUE 
30 CONTINUE 

DO 120 I 1, 2 
DO 110 J = 1, 2 

DO 50 K = 1, 2 
DO 40 N = 1, 2 

JAC(K,N) 0.0 
40 CONTINUE 
50 CONTINUE 

60 

DO 60 N = 1,4 
DNDXI (N) 
DNDETA(N) 

CONTINUE 

0.25 * SIGNl(N) * (1.0 + SIGN2(N) * ETA(J)) 
0.25 * SIGN2(N) * (1.0 + SIGNl(N) * XI(I)) 
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DO 70 N = 1,4 
JAC(l,1) JAC(l,1) + DNDXI(N) * Xl(IN(E,N)) 
JAC(l,2) JAC(l,2) + DNDXI(N) * X2(IN(E,N)) 
JAC (2, 1) JAC (2, 1) + DNDETA(N) * Xl (IN (E, N)) 
JAC(2,2) JAC(2,2) + DNDETA(N) * X2(IN(E,N)) 

70 CONTINUE 
DETJAC = JAC(l,1) * JAC(2,2) - JAC(l,2) * JAC(2,1) 
JACINV(l,l) JAC(2,2) / DETJAC 
JACINV(l,2) -JAC(l,2) / DETJAC 
JACINV(2,1) -JAC(2,1) / DETJAC 
JACINV(2,2) JAC(l,1) / DETJAC 
DO 80 N = 1,4 

DNDX(N) JACINV(l,1) * DNDXI(N) + JACINV(l,2) * DNDETA(N) 
DNDY(N) = JACINV(2,1) * DNDXI(N) + JACINV(2,2) * DNDETA(N) 

80 CONTINUE 
DO 100 K = 1, 4 

DO 90 N = 1, 4 
KE(K,N) KE(K,N) + W(I) * W(J) * (KXE * DNDX(K) * 

1 DNDX(N) +KYE* DNDY(K) * DNDY(N)) * DETJAC 
90 CONTINUE 
100 CONTINUE 
110 CONTINUE 
120 CONTINUE 

RETURN 
END 

SUBROUTINE KPAR8(E,KE) 
C********************************************************************* 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

PURPOSE: 
TO COMPUTE THE ELEMENT CONDUCTANCE MATRIX FOR THREE 
DIMENSIONAL, LINEAR PARALLELEPIPED ELEMENT 

DEFINITIONS OF VARIABLES: 
DETJAC 

DNDXI (I) 

DNDX(I) 

DNDETA(I) 

DNDY (I) 

DNDZETA(I) 

DNDZ(I) 

E 
ETA(I) 

IN(I,J) 
JAC (I, J) 

JACINV (I, J) 
KE (I, J) 

KXE 
KYE 
KZE 

W (I) 
Xl(IN(E,I) 
X2(IN(E,I) 

XI(I) 

ZETA(!) 

DETERMINANT OF JACOBIAN MATRIX 
PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO XI AT NODE I 
PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO X AT NODE I 
PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO ETA AT NODE I 
PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TOY AT NODE I 
PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO ZETA AT NODE I 
PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO Z AT NODE I 
ELEMENT NUMBER 
LOCATION OF GAUSS POINT IN ETA 
COORDINATE DIRECTION 
NODE NUMBER J FOR ELEMENT I 
JACOBIAN MATRIX 
INVERSE OF JACOBIAN MATRIX 
ELEMENT CONDUCTANCE MATRIX 
HYDRAULIC CONDUCTIVITY IN X DIRECTION 
HYDRAULIC CONDUCTIVITY IN Y DIRECTION 
HYDRAULIC CONDUCTIVITY IN Z DIRECTION 
WEIGHT FOR GAUSS POINT I 
X COORDINATE FOR NODE I, ELEMENT E 
Y COORDINATE FOR NODE I, ELEMENT E 
LOCATION OF GAUSS POINT IN XI COORDINATE 
DIRECTION 
LOCATION OF GAUSS POINT IN ZETA COORDINATE 
DIRECTION 

C********************************************************************* 
INCLUDE 'COMALL' 
INTEGER E, I, J, K, L, N 
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C 

DOUBLE PRECISION JAC(3,3), JACINV(3,3), KE(MAX3,MAX3) 
DOUBLE PRECISION DNDXI(8), DNDX(8), DNDETA(8), DNDY(8) 
DOUBLE PRECISION DNDZETA(8), DNDZ(8), W(2), XI(2), ETA(2) 
DOUBLE PRECISION ZETA(2), SIGN1(8), SIGN2(8), SIGN3(8) 
DOUBLE PRECISION KXE, KYE, KZE, DETJAC 
DATA SIGNl/-1. 0, 1. 0, 1. 0,-1. 0, -1. 0, 1. 0, 1. 0,-1. 0/ 
DATA SIGN2/-1.0,-1.0, 1.0, 1.0,-1.0,-1.0, 1.0, 1.0/ 
DATA SIGN3/-1.0,-1.0,-1.0,-1.0, 1.0, 1.0, 1.0, 1.0/ 
XI(l) = 1.0 / SQRT(3DO) 
XI(2) = -XI(l) 
ETA(l) = XI(l) 
ETA(2) = XI(2) 
ZETA(l) = XI(l) 
ZETA(2) = XI(2) 
W(l) = 1.0 
W(2) = 1.0 
KXE PROP(MATSET(E),1) 
KYE= PROP(MATSET(E),2) 
KZE = PROP(MATSET(E),3) 
DO 20 K = 1, 8 

DO 10 N = 1, 8 
KE(K,N) = 0.0 

10 CONTINUE 
20 CONTINUE 

DO 120 I= 1, 2 
DO 110 J = 1, 2 

DO 100 K = 1, 2 
DO 40 L = 1, 3 

DO 30 N = 1, 3 
JAC(L,N) 0.0 

30 CONTINUE 
40 CONTINUE 

50 

60 

1 

1 

1 

1 
2 

1 

1 

1 

1 

1 

1 

DO 50 N = 1, 8 
DNDXI(N) 0.125 * SIGNl(N) * (1.0 + SIGN2(N) 

* (1. 0 + SIGN3 (N) * ZETA (K)) 
DNDETA(N) 

DNDZETA(N) 

CONTINUE 

0.125 * SIGN2(N) * (1.0 + SIGNl(N) 
* (1.0 + SIGN3(N) * ZETA(K)) 
0.125 * SIGN3(N) * (1.0 + SIGNl(N) 
* (1.0 + SIGN2(N) * ETA(J)) 

DO 60 N = 1, 8 
JAC(l,1) 
JAC(l,2) 

JAC (1, 1) 
JAC(l,2) 
JAC(l,3) 
JAC(2,1) 
JAC(2,2) 
JAC(2,3) 
JAC(3,1) 
JAC(3,2) 
JAC(3,3) 

+ DNDXI (N) * Xl ( IN (E, N) ) 
+ DNDXI(N) * X2(IN(E,N)) 

JAC (1, 3) 
JAC(2,1) 
JAC(2,2) 
JAC(2,3) 
JAC(3,1) 
JAC(3,2) 
JAC(3,3) 

CONTINUE 

+ DNDXI (N) * X3 (IN (E, N)) 
+ DNDETA(N) * Xl(IN(E,N)) 
+ DNDETA(N) * X2(IN(E,N)) 
+ DNDETA(N) * X3(IN(E,N)) 
+ DNDZETA(N) * Xl(IN(E,N)) 
+ DNDZETA(N) * X2(IN(E,N)) 
+ DNDZETA(N) * X3(IN(E,N)) 

* ETA(J)) 

* XI (I)) 

* XI (I)) 

DETJAC JAC (1, 1) * (JAC (2, 2) *JAC (3, 3) - JAC (3, 2) *JAC (2, 3)) 
- JAC ( 1, 2) * ( JAC ( 2, 1) * JAC ( 3, 3) - JAC ( 3, 1) * JAC ( 2, 3) ) 
- JAC ( 1, 3) * ( JAC ( 2, 1) * JAC ( 3, 2) - JAC ( 3, 1) * JAC ( 2, 2) ) 

INVERSE JACOBIAN MATRIX FORMULA HAS BEEN TRANSPOSED STEVE 9/7/96 
JACINV(l,1) ( JAC(2,2) * JAC(3,3) - JAC(2,3) * JAC(3,2)) 

/ DETJAC 
JACINV(2,1) (-JAC(2,1) * JAC(3,3) + JAC(2,3) * JAC(3,1)) 

/ DETJAC 
JACINV(3,1) ( JAC(2,1) * JAC(3,2) - JAC(3,1) * JAC(2,2)) 

/ DETJAC 
JACINV(l,2) (-JAC(l,2) * JAC(3,3) + JAC(l,3) * JAC(3,2)) 

/ DETJAC 
JACINV(2,2) ( JAC(l,1) * JAC (3, 3) - JAC (1, 3) * JAC (3, 1)) 

/ DETJAC 
JACINV (3, 2) (-JAC(l,1) * JAC(3,2) + JAC(l,2) * JAC (3, 1)) 

/ DETJAC 
JACINV(l, 3) ( JAC(l,2) * JAC (2, 3) - JAC(l,3) * JAC(2,2)) 
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/ DETJAC 1 

1 

1 

JACINV(2,3) (-JAC(l,1) * JAC (2, 3) + JAC(l,3) * JAC (2, 1)) 

70 

1 

1 

1 

1 
2 
3 

/ DETJAC 
JACINV(3, 3) ( JAC (1, 1) * JAC(2,2) - JAC(l,2) * JAC (2, 1)) 

I DETJAC 
DO 70 N = 

DNDX(N) 
1, 8 

DNDY(N) 

DNDZ(N) 

CONTINUE 

JACINV(l,1) * DNDXI(N) + JACINV(l,2) * 
DNDETA(N) + JACINV(l,3) * DNDZETA(N) 
JACINV(2,1) * DNDXI(N) + JACINV(2,2) * 
DNDETA(N) + JACINV(2,3) * DNDZETA(N) 
JACINV(3,1) * DNDXI(N) + JACINV(3,2) * 
DNDETA(N) + JACINV(3,3) * DNDZETA(N) 

DO 90 L = 1, 8 
DO 80 N 1, 8 

KE(L,N) = KE(L,N) + W(I) * W(J) * W(K) * DETJAC * 
(KXE * DNDX(L) * DNDX(N) + 
KYE* DNDY(L) * DNDY(N) + 
KZE * DNDZ(L) * DNDZ(N) 

80 CONTINUE 
90 CONTINUE 

100 CONTINUE 
110 CONTINUE 
120 CONTINUE 

RETURN 
END 

SUBROUTINE ASMBK 
C********************************************************************* 

C 
C 12.1 PURPOSE: 
C SUBROUTINE ASMBK ASSEMBLES THE GLOBAL CONDUCTANCE MATRIX 
C AND THE GLOBAL SPECIFIED FLOW MATRIX. THE GLOBAL MATRICES 
C ARE MODIFIED DURING THE ASSEMBLY PROCESS TO ACCOUNT FOR 
C SPECIFIED VALUES OF THE FIELD VARIABLE AND GROUNDWATER 
C FLOW DURING THE ASSEMBLY PROCESS. THE GLOBAL CONDUCTANCE 
C MATRIX IS ASSEMBLED AND MODIFIED IN VECTOR STORAGE. ASMBK 
C ALSO COMPUTES THE SEMI-BANDWIDTH AND THE NUMBER OF DEGREES 
C OF FREEDOM FOR THE MODIFIED GLOBAL CONDUCTANCE MATRIX. 
C 
C 12.2 INPUT: 
C NONE 
C 
C 12.3 OUTPUT: 
C SEMI-BANDWIDTH AND NUMBER OF DEGREES OF FREEDOM WRITTEN TO 
C THE USER-DEFINED FILE "OUTF" 
C 
C 12.4 DEFINITIONS OF VARIABLES: 
C B(I) MODIFIED SPECIFIED FLOW MATRIX 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

E 
ELEMTYP (I) 

FLUX(I) 
ICH (I) 

ELEMENT NUMBER 
ELEMENT TYPE FOR ELEMENT I 
SPECIFIED VALUE OF GROUNDWATER FLOW AT NODE I 
1 IF THE VALUE OF THE FIELD VARIABLE IS 
SPECIFIED FOR NODE I 
0 OTHERWISE 

IJSIZE LENGTH OF ARRAY M 
KE(I,J) CONDUCTANCE MATRIX FOR ELEMENT E IN FULL 

MATRIX STORAGE 
LCH (I) ICH (I) + ICH (I-1) + ICH (I-2) + 

THE ARRAYSICH AND LCH ARE USED TO MODIFY 
GLOBAL SYSTEM OF EQUATIONS IN SUBROUTINES 
ASMBK, ASMBKC, AND ASMBAD 

M(IJ) MODIFIED GLOBAL CONDUCTANCE MATRIX IN 
VECTOR STORAGE 

NDOF NUMBER OF DEGREES OF FREEDOM (UNSPECIFIED NODES) 
NODETBL(I) NUMBER OF NODES IN ELEMENT TYPE I 
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C 
C 
C 
C 
C 
C 12.5 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

NUMELM NUMBER OF ELEMENTS IN MESH 
SEMI-BANDWIDTH OF MODIFIED GLOBAL 
CONDUCTANCE MATRIX 

SBW 

X(I) VALUE OF THE FIELD VARIABLE AT NODE I 

USAGE: 
THE SEMI-BANDWIDTH OF THE GLOBAL CONDUCTANCE MATRIX IS 
COMPUTED FIRST. THEN THE ENTRIES OF THE ELEMENT 
CONDUCTANCE MATRIX ARE COMPUTED IN A SET OF SUBROUTINES, 
ONE SUBROUTINE FOR EACH ELEMENT TYPE. THE GLOBAL 
CONDUCTANCE MATRIX FOR THE MESH IS ASSEMBLED BY ADDING 
THE CORRESPONDING ENTRIES OF THE ELEMENT CONDUCTANCE 
MATRICES TO THE GLOBAL CONDUCTANCE MATRIX. DURING THE 
ASSEMBLY PROCESS THE GLOBAL CONDUCTANCE MATRIX IS MODIFIED 
FOR SPECIFIED VALUES OF HEAD. SPECIFIED VALUES OF 
GROUNDWATER FLOW ARE ADDED TO THE GLOBAL FLOW MATRIX. 

SUBROUTINES CALLED: (IF I HAVE BOTHERED TO INCLUDE THEM) 
KBAR2,KBAR3,KBAR4,KTRI3,KREC4,KQUA4,KQUA8,KQUA12,KPAR8, 
KPAR20,KPAR32,KTRI3A,KREC4A,KREP8 
LOCATE 

Page.A.19 

C********************************************************************* 
INCLUDE 'COMALL' 
DOUBLE PRECISION KE(MAX3,MAX3) 
INTEGER NODETBL(l4), E, I, Kl, II, J, KJ, JJ 
DATA NODETBL/2,3,4,3,4,4,8,12,8,20,32,3,4,8/ 

C INITIALISE ENTRIES OF GLOBAL CONDUCTANCE MATRIX TO ZERO 
IF (NDOF .GT. MAXO) STOP'** EXCEEDS MAX DEGREES OF FREEDOM**' 
DO 10 J = 1, NDOF 

DO 10 I= 1, SBW + 1 
Ml(I,J) = 0.0 

10 CONTINUE 
DO 60 I= 1, NUMNOD 

IF (ICH(I) .EQ. 0) B(I-LCH(I)) 
60 CONTINUE 

C LOOP ON THE NUMBER OF ELEMENTS 
DO 90 E = 1, NUMELM 

FLUX (I) 

C COMPUTE THE ELEMENT CONDUCTANCE MATRIX FOR THIS ELEMENT TYPE 

C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
IF (ELEMTYP(E) .EQ. 1) THEN 

C ELEMENT IS A LINEAR BAR 
CALL KBAR2(E,KE) 

ELSEIF (ELEMTYP(E) .EQ. 4) THEN 
C ELEMENT IS A LINEAR TRIANGLE 

CALL KTRI3 (E, KE) 
ELSEIF (ELEMTYP(E) .EQ. 5) THEN 

C ELEMENT IS A LINEAR RECTANGLE 
CALL KREC4(E,KE) 

ELSEIF (ELEMTYP(E) .EQ. 6) THEN 
C ELEMENT IS A LINEAR QUADTILATERAL 

CALL KQUA4 (E,KE) 
ELSEIF (ELEMTYP(E) .EQ. 9) THEN 

C ELEMENT IS A THREE DIMENSIONAL LINEAR PARALLELEPIPED 
CALL KPARB(E,KE) 

ENDIF 

C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
C ADD THE ELEMENT CONDUCTANCE MATRIX TO THE GLOBAL MATRIX 

DO 80 I= 1, NODETBL(ELEMTYP(E)) 
Kl = IN(E,I) 
IF (ICH(KI) .EQ. 0) THEN 

II= Kl - LCH(KI) 
DO 70 J = 1, NODETBL(ELEMTYP(E)) 

KJ = IN(E,J) 
IF (ICH(KJ) .NE. 0) THEN 

B(II) = B(II) - KE(I,J) * X(KJ) 
ELSEIF (KJ .GE. Kl) THEN 
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C 

C 
C 
C 
C 

70 

ELSEIF (J .GE. I) THEN 
JJ = KJ - LCH(KJ) 
Ml(SBW+l+II-JJ,JJ) = Ml(SBW+l+II-JJ,JJ) + KE(I,J) 

IF (I .EQ. J .AND. KE(I,J) .LT. 0.0) THEN 
PRINT*,' There is a problem with element',E, ', that' 
PRINT*,' causes a negative entry for node',IN(E,I) 

ENDIF 
ENDIF 

CONTINUE 
ENDIF 

80 CONTINUE 
90 CONTINUE 

RETURN 
END 

SUBROUTINE KBAR2(E,KE) 
C********************************************************************* 

C 
C PURPOSE: 
C TO COMPUTE THE ELEMENT CONDICTANCE MATRIX FOR A 
C ONE-DIMENSIONAL, LINEAR BAR ELEMENT 
C 
C DEFINITIONS OF VARIABLES: 
C 
C 
C 
C 
C 

E 
KE (I, J) 

KXE 
LE 

ELEMENT NUMBER 
ELEMENT CONDUCTANCE MATRIC 
HYDRAULIC CONDUCTIVITY IN X COOREDINATE DIRECTION 
ELEMENT LENGTH 

C********************************************************************* 
INCLUDE 'COMALL' 
INTEGER E 
DOUBLE PRECISION KE(MAX3,MAX3),KXE,LE 

KXE = PROP(MATSET(E),1) 
LE= ABS(Xl(IN(E,2)) - Xl(IN(E,1))) 
KE(l,1) KXE / LE 
KE(l,2) -KE(l,1) 
KE(2,1) -KE(l,1) 
KE (2, 2) KE (1, 1) 
RETURN 
END 

SUBROUTINE KTRI3(E,KE) 
C********************************************************************* 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

PURPOSE: 
TO COMPUTE THE ELEMENT CONDUCTANCE MATRIX FOR TWO 
DIMENSIONAL, LINEAR TRIANGLE ELEMENT 

DEFINITIONS OF VARIABLES: 
AE4 FOUR TIMES ELEMENT AREA 

E 
IN(I,J) 
KE(I,J) 

KXE 
KYE 

ELEMENT NUMBER 
NODE NUMBER J FOR ELEMENT I 
ELEMENT CONDUCTANCE MATRIX 
HYDRAULIC CONDUCTIVITY IN X DIRECTION 
HYDRAULIC CONDUCTIVITY IN Y DIRECTION 

C********************************************************************* 
INCLUDE 'COMALL' 
INTEGER E, I, J 
DOUBLE PRECISION KE(MAX3,MAX3),KXE,KYE,BE(3),CE(3),AE4 

KXE = 
KYE= 
BE(l) 
BE(2) 
BE(3) 
CE (1) 

PROP(MATSET(E),1) 
PROP(MATSET(E),2) 

X2(IN(E,2)) - X2(IN(E,3)) 
X2(IN(E,3)) - X2(IN(E,1)) 
X2(IN(E,1)) - X2(IN(E,2)) 
Xl(IN(E,3)) - Xl(IN(E,2)) 
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CE(2) = Xl(IN(E,1)) - Xl(IN(E,3)) 
CE(3) = Xl(IN(E,2)) - Xl(IN(E,1)) 
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C CHECK THIS 
AE4 = ( 

1 
2 

FORMULA! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 
Xl(IN(E,2)) * X2(IN(E,3)) + Xl(IN(E,1)) * X2(IN(E,2)) + 
X2(IN(E,1)) * Xl(IN(E,3)) - X2(IN(E,3)) * Xl(IN(E,1)) -
Xl(IN(E,3)) * X2(IN(E,2)) - Xl(IN(E,2)) * X2(IN(E,1)) )*2 

DO 20 I= 1,3 
DO 10 J = 1,3 

KE(I,J) = (KXE * BE(I) * BE(J) +KYE* CE(I) * CE(J)) / AE4 
10 CONTINUE 
20 CONTINUE 

RETURN 
END 

SUBROUTINE KREC4(E,KE) 
C********************************************************************* 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

PURPOSE: 
TO COMPUTE THE ELEMENT CONDUCTANCE MATRIX FOR TWO 
DIMENSIONAL, LINEAR RECTANGLE ELEMENT 

DEFINITIONS OF VARIABLES: 
E 

IN(I,J) 
KE(I,J) 

KXE 
KYE 

ELEMENT NUMBER 
NODE NUMBER J FOR ELEMENT I 
ELEMENT CONDUCTANCE MATRIX 
HYDRAULIC CONDUCTIVITY IN X DIRECTION 
HYDRAULIC CONDUCTIVITY IN Y DIRECTION 

C********************************************************************* 
INCLUDE 'COMALL' 
INTEGER E 
DOUBLE PRECISION KE(MAX3,MAX3),KXE,KYE, AE, BE, ex, CY 

KXE = PROP(MATSET(E),1) 
KYE= PROP(MATSET(E),2) 
AE ABS(X2(IN(E,1)) - X2(IN(E,3))) / 2 
BE ABS(Xl(IN(E,1)) - Xl(IN(E,3))) / 2 
ex KXE * AE / (6.0 * BE) 
CY KYE* BE/ (6.0 * AE) 
KE(l,1) 2.0 *ex+ 2.0 * CY 
KE (1, 2 l - 2 . 0 * ex + CY 
KE(l,3) -ex - CY 
KE(l,4) ex - 2.0 * CY 
KE(2,l) KE(l,2) 
KE (2, 2) KE (1, 1) 
KE (2, 3) KE (1, 4) 
KE(2,4) KE(l,3) 
KE(3,1) KE(l,3) 
KE (3, 2) KE (2, 3) 
KE (3, 3) KE (1, 1) 
KE (3, 4) KE (1, 2) 
KE(4,1) KE(l,4) 
KE(4,2) KE(2,4) 
KE(4,3) KE(3,4) 
KE(4,4) KE(l,1) 
RETURN 
END 

SUBROUTINE KQUA4(E,KE) 
C********************************************************************* 
C 
C PURPOSE: 
C TO COMPUTE THE ELEMENT CONDUCTANCE MATRIX FOR TWO 
C DIMENSIONAL, LINEAR QUADRILATERAL ELEMENT 
C 
C DEFINITIONS OF VARIABLES: 
C DETJAC DETERMINANT OF JACOBIAN MATRIX 
C DNDXI(I) = PARTIAL DERIVATIVE OF INTERPOLATION 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

DNDX (I) 

DNDETA(I) 

DNDY (I) 

E 
ETA (I) 

JAC (I, J) 
JACINV(I,J) 

KE (I, J) 

KXE 
KYE 

W (I) 

Xl(IN{E,I) 
X2 (IN (E, I) 

XI(I) 

FUNCTION WITH RESPECT TO XI AT NODE I 
PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO X AT NODE I 
PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO ETA AT NODE 
PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TOY AT NODE 
ELEMENT NUMBER 
LOCATION OF GAUSS POINT IN ETA 
COORDINATE DIRECTION 
JACOBIAN MATRIX 
INVERSE OF JACOBIAN MATRIX 
ELEMENT CONDUCTANCE MATRIX 

I 

HYDRAULIC CONDUCTIVITY IN X DIRECTION 
HYDRAULIC CONDUCTIVITY IN Y DIRECTION 
WEIGHT FOR GAUSS POINT I 
X COORDINATE FOR NODE I, ELEMENT E 

I 

Y COORDINATE FOR NODE I, ELEMENT E 
LOCATION OF GAUSS POINT IN XI COORDINATE 
DIRECTION 

C********************************************************************* 
INCLUDE 'COMALL' 
DOUBLE PRECISION JAC(2,2), JACINV(2,2), KE(MAX3,MAX3), DNDXI(4) 
DOUBLE PRECISION DNDX(4), DNDETA(4), DNDY(4), W(2), XI(2) 
DOUBLE PRECISION ETA(2), SIGN1(4), SIGN2(4), KXE, KYE, DETJAC 
INTEGER E, I, J, K, N 
DATA SIGNl/-1.0, 1.0, 1.0, -1.0/ 
DATA SIGN2/-l.0, -1.0, 1.0, 1.0/ 

XI(l) = 1.0 / SQRT(3D0) 
XI (2) = -XI (1) 
ETA(l) = XI(l) 
ETA(2) = XI(2) 
W(l) = 1.0 
W(2) = 1.0 
KXE PROP(MATSET(E),l) 
KYE= PROP(MATSET(E),2) 

DO 30 K = 1, 4 
DO 20 N = 1, 4 

KE(K,N) = 0.0 
20 CONTINUE 
30 CONTINUE 

40 
50 

60 

DO 120 I 1, 2 
DO llO J = 1, 2 

DO 50 K = 1, 2 
DO 40 N = 1, 

JAC(K,N) 
CONTINUE 

CONTINUE 

DO 60 N = 1,4 
DNDXI (N) 
DNDETA(N) = 

CONTINUE 
DO 70 N = 1,4 

2 
0.0 

0.25 * SIGNl(N) * (1.0 + SIGN2(N) * ETA(J)) 
0.25 * SIGN2(N) * (1.0 + SIGNl(N) * XI(I)) 

JAC(l,l) JAC(l,l) + DNDXI(N) * Xl(IN(E,N)) 
JAC(l,2) JAC(l,2) + DNDXI(N) * X2(IN(E,N)) 
JAC(2,l) JAC(2,l) + DNDETA(N) * Xl(IN(E,N)) 
JAC(2,2) JAC(2,2) + DNDETA(N) * X2(IN(E,N)) 

70 CONTINUE 
DETJAC = JAC(l,l) * JAC(2,2) - JAC(l,2) * JAC(2,l) 
JACINV(l,l) JAC(2,2) / DETJAC 
JACINV(l,2) -JAC(l,2) / DETJAC 
JACINV(2,l) -JAC(2,l) / DETJAC 
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BO 

1 
90 
100 
110 
120 

JACINV(2,2) = JAC(l,1) / DETJAC 
DO BON= 1,4 

DNDX(N) JACINV(l,1) * DNDXI(N) + JACINV(l,2) * DNDETA(N) 
DNDY(N) = JACINV(2,l) * DNDXI(N) + JACINV(2,2) * DNDETA(N) 

CONTINUE 
DO 100 K = 1, 4 

DO 90 N = 1, 4 
KE(K,N) KE(K,N) 

DNDX(N) 
CONTINUE 

CONTINUE 
CONTINUE 

CONTINUE 
RETURN 
END 

SUBROUTINE KPARB(E,KE) 

+ W(I) * W(J) * (KXE * DNDX(K) * 
+KYE* DNDY(K) * DNDY(N)) * DETJAC 

C********************************************************************* 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

PURPOSE: 
TO COMPUTE THE ELEMENT CONDUCTANCE MATRIX FOR THREE 
DIMENSIONAL, LINEAR PARALLELEPIPED ELEMENT 

DEFINITIONS OF VARIABLES: 
DETJAC 

DNDXI(I) 

DNDX(I) 

DNDETA(I) 

DNDY (I) 

DNDZETA (I) 

DNDZ(I) 

E 
ETA(I) 

IN(I,J) 
JAC(I,J) 

JACINV (I, J) 
KE (I, J) 

KXE 
KYE 
KZE 

W (I) 

Xl(IN(E,I) 
X2(IN(E,I) 

XI(I) 

ZETA(I) 

DETERMINANT OF JACOBIAN MATRIX 
PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO XI AT NODE I 
PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO X AT NODE I 
PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO ETA AT NODE I 
PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TOY AT NODE I 
PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO ZETA AT NODE I 
PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO Z AT NODE I 
ELEMENT NUMBER 
LOCATION OF GAUSS POINT IN ETA 
COORDINATE DIRECTION 
NODE NUMBER J FOR ELEMENT I 
JACOBIAN MATRIX 
INVERSE OF JACOBIAN MATRIX 
ELEMENT CONDUCTANCE MATRIX 
HYDRAULIC CONDUCTIVITY IN X DIRECTION 
HYDRAULIC CONDUCTIVITY IN Y DIRECTION 
HYDRAULIC CONDUCTIVITY IN Z DIRECTION 
WEIGHT FOR GAUSS POINT I 
X COORDINATE FOR NODE I, ELEMENT E 
Y COORDINATE FOR NODE I, ELEMENT E 
LOCATION OF GAUSS POINT IN XI COORDINATE 
DIRECTION 
LOCATION OF GAUSS POINT IN ZETA COORDINATE 
DIRECTION 

C********************************************************************* 
INCLUDE 'COMALL' 
INTEGER E, I, J, K, L, N 
DOUBLE PRECISION JAC(3,3), JACINV(3,3), KE(MAX3,MAX3) 
DOUBLE PRECISION DNDXI(8), DNDX(B), DNDETA(8), DNDY(8) 
DOUBLE PRECISION DNDZETA(8), DNDZ(B), W(2), XI(2), ETA(2) 
DOUBLE PRECISION ZETA(2), SIGNl(B), SIGN2(B), SIGN3(8) 
DOUBLE PRECISION KXE, KYE, KZE, DETJAC 
DATA SIGNl/-1.0, 1.0, 1.0,-1.0,-1.0, 1.0, 1.0,-1.0/ 
DATA SIGN2/-1.0,-1.0, 1.0, 1.0,-1.0,-1.0, 1.0, 1.0/ 
DATA SIGN3/-1.0,-1.0,-1.0,-1.0, 1.0, 1.0, 1.0, 1.0/ 
XI(l) 1.0 / SQRT(3DO) 
XI(2) = -XI(l) 
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C 

ETA(l) = XI (1) 
ETA(2) = XI(2) 
ZETA(l) = XI(l) 
ZETA(2) = XI(2) 
W(l) = 1.0 
W(2) = 1.0 
KXE PROP(MATSET(E),1) 
KYE= PROP(MATSET(E),2) 
KZE = PROP(MATSET(E),3) 
DO 20 K = 1, 8 

DO 10 N = 1, 8 
KE(K,N) = 0.0 

10 CONTINUE 
20 CONTINUE 

DO 120 I= 1, 2 
DO 110 J = 1, 2 

DO 100 K = 1, 2 
DO 40 L = 1, 3 

DO 30 N = 1, 3 
JAC ( L, N) 0 . 0 

30 CONTINUE 
40 CONTINUE 

50 

60 

1 

1 

1 

1 
2 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

DO 50 N = 1, 8 
DNDXI(N) 0 .125 * SIGNl (N) * ( 1. 0 + SIGN2 (N) 

* (1.0 + SIGN3(N) * ZETA(K)) 
* ETA(J)) 

* XI (I)) 

* XI (I)) 

DNDETA(N) 

DNDZETA(N) 

CONTINUE 
DO 60 N = 1, 

JAC(l,1) 
JAC(l,2) 
JAC(l,3) 
JAC(2,1) 
JAC(2,2) 
JAC(2,3) 
JAC(3,1) 
JAC(3,2) 
JAC(3,3) 

CONTINUE 

0 .125 * SIGN2 (N) * ( 1. 0 + SIGNl (N) 
* (1. 0 + SIGN3 (N) * ZETA (K)) 

0.125 * SIGN3(N) * (1.0 + SIGNl(N) 
* (1.0 + SIGN2(N) * ETA(J)) 

8 
JAC(l,1) + DNDXI (N) * Xl (IN (E,N)) 
JAC(l,2) + DNDXI (N) * X2(IN(E,N)) 
JAC(l,3) + DNDXI(N) * X3(IN(E,N)) 
JAC(2,1) + DNDETA(N) * Xl(IN(E,N)) 
JAC(2,2) + DNDETA(N) * X2(IN(E,N)) 
JAC (2, 3) + DNDETA(N) * X3(IN(E,N)) 
JAC(3,1) + DNDZETA(N) * Xl(IN(E,N)) 
JAC(3,2) + DNDZETA(N) * X2(IN(E,N)) 
JAC(3,3) + DNDZETA(N) * X3(IN(E,N)) 

DETJAC JAC(l,1) * (JAC(2,2)*JAC(3,3) - JAC(3,2)*JAC(2,3)) 
- JAC ( 1, 2) * ( JAC ( 2, 1) * JAC ( 3, 3) - JAC ( 3, 1) * JAC ( 2, 3) ) 
- JAC(l,3) * (JAC(2,l)*JAC(3,2) - JAC(3,l)*JAC(2,2)) 

INVERSE JACOBIAN MATRIX FORMULA HAS BEEN TRANSPOSED STEVE 9/7/96 
JACINV(l,1) ( JAC(2,2) * JAC(3,3) - JAC(2,3) * JAC(3,2)) 

/ DETJAC 
JACINV(2,1) (-JAC(2,1) * JAC(3,3) + JAC(2,3) * JAC(3,1)) 

/ DETJAC 
JACINV(3,1) ( JAC(2,1) * JAC(3,2) - JAC(3,1) * JAC(2,2)) 

/ DETJAC 
JACINV(l,2) (-JAC(l,2) * JAC(3,3) + JAC(l,3) * JAC(3,2)) 

/ DETJAC 
JACINV(2,2) ( JAC(l,1) * JAC (3, 3) - JAC(l,3) * JAC (3, 1)) 

/ DETJAC 
JACINV(3,2) (-JAC (1, 1) * JAC(3,2) + JAC(l,2) * JAC (3, 1)) 

/ DETJAC 
JACINV(l,3) ( JAC(l,2) * JAC (2, 3) - JAC(l,3) * JAC(2,2)) 

/ DETJAC 
JACINV (2, 3) (-JAC(l,1) * JAC(2,3) + JAC (1, 3) * JAC (2, 1)) 

/ DETJAC 
JACINV(3,3) ( JAC(l,1) * JAC(2,2) - JAC (1, 2) * JAC (2, 1)) 

I DETJAC 
DO 70 N = 1, 8 

DNDX(N) JACINV(l, 1) * DNDXI(N) + JACINV (1, 2) * 
DNDETA(N) + JACINV (1, 3) * DNDZETA (N) 

DNDY(N) JACINV (2, 1) * DNDXI(N) + JACINV(2,2) * 
DNDETA(N) + JACINV(2, 3) * DNDZETA (N) 
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1 
70 

DNDZ(N) 

CONTINUE 

JACINV(3,1) * DNDXI(N) + JACINV(3,2) * 
DNDETA(N) + JACINV(3,3) * DNDZETA(N) 

DO 90 L = 1, 8 
DO 80 N 1, 8 

1 
2 
3 

KE(L,N) = KE(L,N) + W(I) * W(J) * W(K) * DETJAC * 
(KXE * DNDX(L) * DNDX(N) + 

80 CONTINUE 
90 CONTINUE 

100 CONTINUE 
110 CONTINUE 
120 CONTINUE 

RETURN 
END 

KYE* DNDY(L) * DNDY(N) + 
KZE * DNDZ(L) * DNDZ(N) ) 

SUBROUTINE HDERl(E,KE,Sl) 

Page.A.25 

C********************************************************************* 

C 
C PURPOSE: 
C SUBROUTINE HOER DETERMINES THE FIRST DERIVATIVE OF 
C EACH NODAL HYDRAULIC HEAD VALUE WITH RESPECT TO THE LOG OF THE 
C HYDRAULIC CONDUCTIVITY OF ELEMENT E. THESE VALUES 
C ARE THEN STORED IN THE TEMPORARY FILE "DHDKl.UNF". 
C 
C INPUT: 
C NONE 
C 
C OUTPUT: 
C NONE 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

DEFINITIONS OF VARIABLES: 
B(I) RIGHT HAND SIDE VECTOR 

[dKe/dke) [X) 
DHDK(I,1) DERIVATIVE OF HEAD AT NODE I WITH RESPECT TO 

HYDRAULIC CONDUCTIVITY OF ELEMENT E 
E ELEMENT NUMBER 

ELEMTYP (E) 
ICH (I) 

KE (I, J) 

LCH (I) 

M(IJ) 

NDOF 
NODETBL(I) 

NUMELM 
SBW 

X (I) 

ELEMENT TYPE FOR ELEMENT E 
1 IF THE VALUE OF THE FIELD VARIABLE IS 
SPECIFIED FOR NODE I 
0 OTHERWISE 
CONDUCTANCE MATRIX FOR ELEMENT E IN FULL 
MATRIX STORAGE 
ICH(I) + ICH(I-1) + ICH(I-2) + 
THE ARRAYS ICH AND LCH ARE USED TO MODIFY 
GLOBAL SYSTEM OF EQUATIONS IN SUBROUTINES 
ASMBK, ASMBKC, AND ASMBAD 
MODIFIED GLOBAL CONDUCTANCE MATRIX IN 
VECTOR STORAGE 
NUMBER OF DEGREES OF FREEDOM (UNSPECIFIED NODES) 
NUMBER OF NODES IN ELEMENT TYPE I 
NUMBER OF ELEMENTS IN MESH 
SEMI-BANDWIDTH OF MODIFIED GLOBAL 
CONDUCTANCE MATRIX 
VALUE OF THE FIELD VARIABLE AT NODE I 

C USAGE: 
C 
C 
C 
C 
C 
C 

DHDK IS DETERMINED USING: 
M * DHDK = - DMDK * H 

D2HDK2 IS DETERMINED USING: 
M * D2HDK2(I,J) = - DMDK(I) * DHDK(J) 

- DMDK(J) * DHDK(I) 

C SUBROUTINES CALLED: (IF I HAVE BOTHERED TO INCLUDE THEM) 
C KBAR2,KBAR3,KBAR4,KTRI3,KREC4,KQUA4,KQUA8,KQUA12,KPAR8, 
C KPAR20,KPAR32,KTRI3A,KREC4A,KREP8 
C LOC 
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C 
C********************************************************************* 

C 
C * * 

C 

C 

C 

C 

C 

C * * 
C 
C 
C 

10 

INCLUDE 'COMALL' 
DOUBLE PRECISION KE(MAX3,MAX3) 
INTEGER E, I, II, J, KI, KJ, NODETBL(13), Sl, ERROR 
DATA NODETBL/2,3,4,3,4,4,8,12,8,20,32,3,4/ 
COMPUTE THE ELEMENT CONDUCTANCE MATRIX FOR THIS ELEMENT TYPE 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
IF (ELEMTYP(E) .EQ. 1) THEN 

ELEMENT IS A LINEAR BAR 
CALL KBAR2(E,KE) 

ELSEIF (ELEMTYP(E) .EQ. 4) THEN 
ELEMENT IS A LINEAR TRIANGLE 
CALL KTRI3(E,KE) 

ELSEIF (ELEMTYP(E) .EQ. 5) THEN 
ELEMENT IS A LINEAR RECTANGLE 
CALL KREC4(E,KE) 

ELSEIF (ELEMTYP(E) .EQ. 6) THEN 
ELEMENT IS A LINEAR QUADRILATERAL 
CALL KQUA4(E,KE) 

ELSEIF (ELEMTYP(E) .EQ. 9) THEN 
ELEMENT IS A THREE DIMENSIONAL LINEAR PARALLELEPIPED 
CALL KPAR8(E,KE) 

ENDIF 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
DETERMINE FIRST DERIVATIVES 
MULTIPLY THE DERIVATIVE OF THE ELEMENT CONDUCTANCE MATRIX 
BY THE HYDRAULIC HEAD VECTOR TO GET THE RIGHT HAND SIDE 
DO 10 I= 1, NDOF 

B(I) = 0.0 
CONTINUE 
DO 30 I= 1, NODETBL(ELEMTYP(E)) 

Kl= IN(E,I) 
IF (ICH(KI) .EQ. 0) THEN 

II= Kl - LCH(KI) 
DO 20 J = 1, NODETBL(ELEMTYP(E)) 

KJ = IN (E, J) 
B (II) = B (II) - KE (I, J) * X (KJ) 

20 CONTINUE 
ENDIF 

30 CONTINUE 
CALL DPBTRS ('UPPER',NDOF,SBW,1,Ml,MAX6+1,B,MAXO,ERROR) 
IF (ERROR .NE. 0) THEN 

PRINT*, 'ERROR IN SOLVING 1ST DERIVE',ERROR, 'ELEMENT=',E 
ELSE 

DO 40 I= 1, NDOF 
DHDK(I,Sl) = B(I) 

40 CONTINUE 
ENDIF 
RETURN 
END 

SUBROUTINE HDER2(E,E2,KE) 
C********************************************************************* 
C 
C PURPOSE: 
C SUBROUTINE HOER DETERMINES THE FIRST DERIVATIVE OF 
C EACH NODAL HYDRAULIC HEAD VALUE WITH RESPECT TO THE LOG OF THE 
C 
C 
C 

HYDRAULIC CONDUCTIVITY OF ELEMENT E. THESE VALUES 
ARE THEN STORED IN THE TEMPORARY FILE "DHDKl.UNF". 

C INPUT: 
C NONE 
C 
C OUTPUT: 
C NONE 
C 
C DEFINITIONS OF VARIABLES: 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

B (I) 

DHDK(I,1) 

E 
ELEMTYP(E) 

ICH(I) 

KE(I,J) 

LCH (I) 

M(IJ) 

RIGHT HAND SIDE VECTOR 
[dKe/dke] [X] 
DERIVATIVE OF HEAD AT NODE I WITH RESPECT TO 
HYDRAULIC CONDUCTIVITY OF ELEMENT E 
ELEMENT NUMBER 
ELEMENT TYPE FOR ELEMENT E 
1 IF THE VALUE OF THE FIELD VARIABLE IS 
SPECIFIED FOR NODE I 
0 OTHERWISE 
CONDUCTANCE MATRIX FOR ELEMENT E IN FULL 
MATRIX STORAGE 
ICH (I) + ICH (I-1) + ICH (I-2) + 
THE ARRAYS ICH AND LCH ARE USED TO MODIFY 
GLOBAL SYSTEM OF EQUATIONS IN SUBROUTINES 
ASMBK, ASMBKC, AND ASMBAD 
MODIFIED GLOBAL CONDUCTANCE MATRIX IN 
VECTOR STORAGE 
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C 
C 
C 

NDOF 
NODETBL(I) 

NUMELM 

NUMBER OF DEGREES OF FREEDOM (UNSPECIFIED NODES) 
NUMBER OF NODES IN ELEMENT TYPE I 
NUMBER OF ELEMENTS IN MESH 

C SBW SEMI-BANDWIDTH OF MODIFIED GLOBAL 
C CONDUCTANCE MATRIX 
C X (I) VALUE OF THE FIELD VARIABLE AT NODE I 
C 
C USAGE: 
C DHDK IS DETERMINED USING: 
C 
C 
C 
C 
C 

M * DHDK = - DMDK * H 
D2HDK2 IS DETERMINED USING: 

M * D2HDK2(I,J) = - DMDK(I) * DHDK(J) 
- DMDK(J) * DHDK(I) 

C SUBROUTINES CALLED: (IF I HAVE BOTHERED TO INCLUDE THEM) 
C KBAR2,KBAR3,KBAR4,KTRI3,KREC4,KQUA4,KQUA8,KQUA12,KPAR8, 
C KPAR20,KPAR32,KTRI3A,KREC4A,KREP8 
C LOC 
C 
C********************************************************************* 

INCLUDE 'COMALL' 
DOUBLE PRECISION KE(MAX3,MAX3), KE2(MAX3,MAX3) 
INTEGER E, E2, I, II, J, KI, KJ, NODETBL(13), ERROR 
DATA NODETBL/2,3,4,3,4,4,8,12,8,20,32,3,4/ 
IF (E .EQ. E2) THEN 

C E2 = E => KE2 = KE ETC. 
DO 20 I= 1, NODETBL(ELEMTYP(E)) 

DO 10 J = 1, NODETBL(ELEMTYP(E)) 
KE2(I,J) = KE (I,J) 

10 CONTINUE 
20 CONTINUE 

DO 30 I= 1, NDOF 
B(I) = 0.0 
DHDK(I,2) = DHDK(I,1) 

30 CONTINUE 
ELSE 

CALL HDERl(E2,KE2,2) 
DO 40 I= 1, NDOF 

B(I) = 0.0 
40 CONTINUE 

ENDIF 
C MULTIPLY THE DERIVATIVE OF THE ELEMENT CONDUCTANCE MATRIX 
C WITH RESPECT TO ELEMENT EBY THE DERIVATIVE OF THE 
C HYDRAULIC HEAD VECTOR WITH RESPECT TO ELEMENT E2 TO GET 
C THE RIGHT HAND SIDE: 

DO 80 I= 1, NODETBL(ELEMTYP(E)) 
Kl = IN(E,I) 
IF (ICH(KI) .EQ. 0) THEN 

II= Kl - LCH(KI) 
DO 70 J = 1, NODETBL(ELEMTYP(E)) 

KJ = IN (E, J) 
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IF (ICH (KJ) .EQ. 0) THEN 
B(II) = B(II) - KE(I,J) * DHDK(KJ-LCH(KJ),2) 

ENDIF 
70 CONTINUE 

ENDIF 
80 CONTINUE 

IF (E .EQ. E2) THEN 
DO 90 I= 1, NDOF 

B(I) = 2.0 * B(I) 
90 CONTINUE 

DO 110 I= 1, NODETBL(ELEMTYP(E)) 
Kl= IN(E,I) 
IF (ICH(KI) .EQ. 0) THEN 

II= Kl - LCH(KI) 
DO 100 J = 1, NODETBL(ELEMTYP(E)) 

KJ = IN (E, J) 
B(II) = B(II) - KE(I,J) * X(KJ) 

100 CONTINUE 
ENDIF 

110 CONTINUE 
ELSE 

C SWITCH E AND E2: 
DO 130 I= 1, NODETBL(ELEMTYP(E2)) 

Kl = IN (E2, I) 
IF (ICH(KI) .EQ. 0) THEN 

II= Kl - LCH(KI) 
DO 120 J = 1, NODETBL(ELEMTYP(E2)) 

KJ = IN(E2,J) 
IF (ICH (KJ) .EQ. 0) THEN 

B(II) = B(II) - KE2(I,J) * DHDK(KJ-LCH(KJ),1) 
ENDIF 

120 CONTINUE 
ENDIF 

130 CONTINUE 
ENDIF 
CALL DPBTRS ('UPPER',NDOF,SBW,l,Ml,MAX6+1,B,MAXO,ERROR) 
IF (ERROR .NE. 0) THEN 

PRINT*, 'ERROR IN SOLVING 1ST DERIVE',ERROR, 'ELEMENT=',E 
ELSE 

DO 140 I= 1, NDOF 
D2HDK2 (I) B (I) 

140 CONTINUE 
ENDIF 
RETURN 
END 

SUBROUTINE VDERl(I,DNDX,Sl) 
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C********************************************************************* 
C 
C PURPOSE: 
C TO DETERMINE THE FIRST DERIVATIVES OF THE APPARENT 
C GROUNDWATER VELOCITY OF ELEMENT E WITH RESPECT TO 
C THE LOG OF THE HYDRRAULIC CONDUCTIVITY OF ELEMENT I 
C 
C DEFINITIONS OF VARIABLES: 
C DNDX(J,E,K) = PARTIAL DERIVATIVE OF INTERPOLATION 
C FUNCTION WITH RESPECT TO DIRECTION K 
C AT NODE J OF ELEMENT E 
C 
C 
C 
C 

C 
C 
C 
C 
C 
C 

DHDK(L,1) 

DVDK(E,K,1) 

E 

I 

KXE 

DERIVATIVE OF HEAD AT NODE L WITH RESPECT TO 
HYDRAULIC CONDUCTIVITY OF ELEMENT I 
DERIVATIVE OF VELOCITY INK DIRECTION OF 
ELEMENT E WITH RESPECT TO THE HYDRAULIC 
CONDUCTIVITY OF ELEMENT I 
ELEMENT NUMBER FOR THE ELEMENT THAT THE VELOCITY 
AND DERIVATIVES ARE BEING DETERMINED FOR 
ELEMENT THAT THE DERIVATIVE IS BEING TAKEN 
WITH RESPECT TO 
HYDRAULIC CONDUCTIVITY IN X COORDINATE DIRECTION 
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C 
C 
C 
C 

LE 
X(IN(E,I)) 

Xl (IN (E, I)) 

ELEMENT LENGTH 
COMPUTED HEAD FOR NODE I, ELEMENT E 
X COORDINATE FOR NODE I, ELEMENT E 
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C********************************************************************* 
INCLUDE 'COMALL' 
INTEGER E, I, J, K, L, NODETBL(13),Sl 
DOUBLE PRECISION KXE, DNDX(MAX3,MAX2,3) 
DATA NODETBL/2,3,4,3,4,4,8,12,8,20,32,3,4/ 
DO 50 E = 1, NUMELM 

KXE = PROP(MATSET(E),1) 
DO 10 K = 1, DIM 

DVDK(E,K,Sl) = 0.0 
10 CONTINUE 

C DETERMINE PARTIAL DERIVATIVES OF VE WRT KI - DERIVATIVES OF H 
DO 40 J = 1, NODETBL(ELEMTYP(E)) 

IF (ICH(IN(E,J)) .EQ. 0) THEN 
L = IN(E,J) - LCH(IN(E,J)) 
DO 20 K = 1, DIM 

DVDK(E,K,Sl) = DVDK(E,K,Sl) - KXE * DNDX(J,E,K)*DHDK(L,Sl) 
20 CONTINUE 

C 

30 

ELSE 
THIS ELSE SECTION ENABLES LOOP 50 TO PARALLELISE 
DO 30 K = 1, DIM 

DVDK(E,K,Sl) = DVDK(E,K,Sl) 
CONTINUE 

ENDIF 
40 CONTINUE 
50 CONTINUE 

C DETERMINE PARTIAL DERIVATIVES - DERIVATIVE OF K (= 1 FOR I=E) 
KXE = PROP(MATSET(I),1) 
DO 70 J = 1, NODETBL(ELEMTYP(I)) 

DO 60 K = 1, DIM 
DVDK(I,K,Sl) = DVDK(I,K,Sl) - KXE * DNDX(J,I,K) * X(IN(I,J)) 

60 CONTINUE 
70 CONTINUE 

RETURN 
END 

SUBROUTINE VDER2(I,I2,DNDX) 
C********************************************************************* 
C 
C PURPOSE: 
C TO DETERMINE THE SECOND DERIVATIVES OF THE APPARENT 
C GROUNDWATER VELOCITY OF ELEMENT E WITH RESPECT TO 
C THE HYDRRAULIC CONDUCTIVITIES OF ELEMENTS I AND I2 
C 
C DEFINITIONS OF VARIABLES: 
C DNDX(J,E,K) = PARTIAL DERIVATIVE OF INTERPOLATION 
C FUNCTION WITH RESPECT TO DIRECTION K 
C AT NODE J OF ELEMENT E 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 

C 
C 
C 
C 
C 
C 

DHDK(L,1) 

DHDK(L,2) 

D2HDK2(L) 

D2VDK2(E,K) 

E 

I, I2 

KXE 
LE 

X(IN(E,I)) 
Xl(IN(E,I)) 

DERIVATIVE OF HEAD AT NODE L WITH RESPECT TO 
HYDRAULIC CONDUCTIVITY OF ELEMENT I 

DERIVATIVE OF HEAD AT NODE L WITH RESPECT TO 
HYDRAULIC CONDUCTIVITY OF ELEMENT I2 
DERIVATIVE OF HEAD AT NODE L WITH RESPECT TO 
HYDRAULIC CONDUCTIVITIES OF ELEMENTS I AND I2 
DERIVATIVE OF VELOCITY INK DIRECTION OF 
ELEMENT E WITH RESPECT TO THE HYDRAULIC 
CONDUCTIVITIES OF ELEMENTS I AND I2 
ELEMENT NUMBER FOR THE ELEMENT THAT THE VELOCITY 
AND DERIVATIVES ARE BEING DETERMINED FOR 
ELEMENTS THAT THE DERIVATIVES ARE BEING TAKEN 
WITH RESPECT TO 
HYDRAULIC CONDUCTIVITY IN X COORDINATE DIRECTION 
ELEMENT LENGTH 
COMPUTED HEAD FOR NODE I, ELEMENT E 
X COORDINATE FOR NODE I, ELEMENT E 
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C 
C********************************************************************* 

INCLUDE 'COMALL' 
INTEGER E, I, I2, J, K, L, NODETBL(l3) 
DOUBLE PRECISION KXE, DNDX(MAX3,MAX2,3) 
DATA NODETBL/2,3,4,3,4,4,8,12,8,20,32,3,4/ 
DO 50 E = 1, NUMELM 

KXE = PROP(MATSET(E),l) 
DO 10 K = 1, DIM 

D2VDK2(E,K) = 0.0 
10 CONTINUE 

C DETERMINE PARTIAL DERIVATIVES OF VE WRT KI - DERIVATIVES OF H 
DO 40 J = 1, NODETBL(ELEMTYP(E)) 

C 

IF (ICH(IN(E,J)) .EQ. 0) THEN 
L = IN(E,J) - LCH(IN(E,J)) 
DO 20 K = 1, DIM 

D2VDK2(E,K) = D2VDK2(E,K) - KXE * DNDX(J,E,K) * D2HDK2(L) 
20 CONTINUE 

30 

ELSE 
THIS ELSE SECTION ENABLES LOOP 50 TO PARALLELISE 
DO 30 K = 1, DIM 

D2VDK2(E,K) = D2VDK2(E,K) 
CONTINUE 

ENDIF 
40 CONTINUE 
50 CONTINUE 

C DETERMINE PARTIAL DERIVATIVES - DERIVATIVE OF K (= 1 FOR I=E) 
KXE = PROP(MATSET(I),l) 
DO 70 J = 1, NODETBL(ELEMTYP(I)) 

IF (ICH(IN(I,J)) .EQ. 0) THEN 
L = IN(I,J) - LCH(IN(I,J)) 
DO 60 K = 1, DIM 

D2VDK2(I,K) = D2VDK2(I,K) - KXE * DNDX(J,I,K) * DHDK(L,2) 
60 CONTINUE 

ENDIF 
70 CONTINUE 

KXE = PROP(MATSET(I2),l) 
DO 90 J = 1, NODETBL(ELEMTYP(I2)) 

IF (ICH(IN(I2,J)) .EQ. 0) THEN 
L = IN(I2,J) - LCH(IN(I2,J)) 
DO 80 K = 1, DIM 

D2VDK2(I2,K) = D2VDK2(I2,K) - KXE * DNDX(J,I2,K) * DHDK(L,l) 
80 CONTINUE 

ENDIF 
90 CONTINUE 

IF (I .EQ. I2) THEN 
KXE = PROP(MATSET(I),1) 
DO 110 J = 1, NODETBL(ELEMTYP(I)) 

DO 100 K = 1, DIM 
D2VDK2(I,K) = D2VDK2(I,K) - KXE * DNDX(J,I,K) * X(IN(I,J)) 

100 CONTINUE 
110 CONTINUE 

ENDIF 
RETURN 
END 

SUBROUTINE HSAVE(E,E2) 
C************************************************************************* 
C 
C PURPOSE: 
C SUBROUTINE HVSAVE SAVES THE CURRENT VALUES OF THE 
C VARIABLES INTO A FILE CALLED 'AUTOSAVE' SO THAT THE 
C PROGRAM CAN BE SHUT DOWN AND RESTARTED WHERE IT LEFT 
C OFF. 
C 
C************************************************************************* 

INCLUDE 'COMALL' 
INTEGER E, E2, J, L 
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OPEN (UNIT= PROBF, FILE= PROBFILE, 
1 FORM= 'FORMATTED', STATUS= 'NEW', 
2 ACCESS= 'SEQUENTIAL') 

OPEN (UNIT= HCF, FORM= 'FORMATTED', 
1 FILE= HCFILE, 
2 STATUS= 'UNKNOWN', ACCESS= 'SEQUENTIAL') 

WRITE (HCF,*) Rl, R2, NORl, NOR2 
WRITE (HCF,*) E, E2 
DO 20 L = 1, NUMMAT 

DO 10 J = 1, NDOF 
WRITE (HCF,*) MEAN(J,L), VAR(J,L) 

10 CONTINUE 
20 CONTINUE 

WRITE (HCF,*) 'FILE ENDS' 
CLOSE (UNIT= HCF, STATUS 'KEEP') 
CLOSE (UNIT= PROBF, STATUS= 'KEEP') 

C FILE 'PROBLEM' (UNIT PROBF) IS DELETED IN VSAVE. 
PRINT *,'DATA SAVED ATE, E2 = ',E, E2 
PRINT *,NOR2,' SECOND DERIVATIVES COMPLETED' 
RETURN 
END 

SUBROUTINE HLOAD(E,E2) 
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C************************************************************************* 

C 
C PURPOSE: 
C SUBROUTINE HVSAVE SAVES THE CURRENT VALUES OF THE 
C VARIABLES INTO A FILE CALLED 'AUTOSAVE' SO THAT THE 
C PROGRAM CAN BE SHUT DOWN AND RESTARTED WHERE IT LEFT 
C OFF. 
C 
C************************************************************************* 

10 
20 

INCLUDE 'COMALL' 
INTEGER E, E2, J, L 
OPEN (UNIT= HCF, FORM= 'FORMATTED', 

1 FILE= HCFILE, 
2 STATUS= 'UNKNOWN', ACCESS= 'SEQUENTIAL') 

READ (HCF,*) Rl, R2, NORl, NOR2 
READ (HCF,*) E, E2 
DO 20 L = 1, NUMMAT 

DO 10 J = 1, NDOF 
READ (HCF,*) MEAN(J,L), VAR(J,L) 

CONTINUE 
CONTINUE 
CLOSE (UNIT 
PRINT*, 'DATA 
RETURN 
END 

HCF, STATUS= 'KEEP') 
RESTORED ATE, E2 = ',E, E2 

SUBROUTINE VSAVE 
C************************************************************************* 
C 
C PURPOSE: 
C SUBROUTINE VSAVE SAVES THE CURRENT VALUES OF VMEAN 
C AND COVAR IN A FILE ('AUTOSAVE' BY DEFAULT) THIS 
C IS USED AS A CHECKPOINT FOR STOPPING AND RESTARTING 
C THE PROGRAM AND FOR FREEING UP MEMORY SPACE FOR 
C THE CONCENTRATION PART OF THE PROGRAM. TO DO THIS 
C AS FAST AS POSSIBLE THE VECTOR VMC IS EQUIVALENCED 
C TO THE REQUIRED DATA AND IS WRITTEN TO A FILE IN 
C A SINGLE WRITE. THE FILE IS A DIRECT ACCESS, 
C UNFORMATTED FILE TO BOTH SPEED UP DATA TRANSFER 
C AND TO ENABLE PIECEMEAL READING FOR THE CONCENTRATION 
C PART OF THE PROGRAM. 
C 
C DEFINITIONS OF VARIABLES: 
C 
C 

VMC VECTOR CONTAINING ALL OF THE ELEMENTS OF 
VMEAN AND COVAR AND SO CAN BE QUICKLY 
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C 
C 
C 
C 

PROBLEM 
CHECKPOINTED 
FILE WHOSE EXISTENCE INDICATES THAT THE 
LAST CHECKPOINT SAVE WAS NOT COMPLETED 

Page.A.32 

C************************************************************************* 
INCLUDE 'COMALL' 
DOUBLE PRECISION VMO((VSTEP3 - 1) / 10) 
DOUBLE PRECISION VM1((VSTEP3 - 1) / 10) 
DOUBLE PRECISION VM2((VSTEP3 - 1) / 10) 
DOUBLE PRECISION VM3((VSTEP3 - 1) / 10) 
DOUBLE PRECISION VM4((VSTEP3 - 1) / 10) 
DOUBLE PRECISION VMS((VSTEP3 - 1) / 10) 
DOUBLE PRECISION VM6((VSTEP3 - 1) / 10) 
DOUBLE PRECISION VM7((VSTEP3 - 1) / 10) 
DOUBLE PRECISION VMS((VSTEP3 - 1) / 10) 
DOUBLE PRECISION VM9((VSTEP3 - 1) / 10) 
EQUIVALENCE (BLOCK(l + ((VSTEP3 - 1) / 10) * O),VMO) 
EQUIVALENCE (BLOCK(l + ((VSTEP3 - 1) / 10) * 1),VMl) 
EQUIVALENCE (BLOCK(l + ((VSTEP3 - 1) / 10) * 2),VM2) 
EQUIVALENCE (BLOCK(l + ((VSTEP3 - 1) / 10) * 3),VM3) 
EQUIVALENCE (BLOCK(l + ((VSTEP3 - 1) / 10) * 4),VM4) 
EQUIVALENCE (BLOCK(l + ((VSTEP3 - 1) / 10) * S),VMS) 
EQUIVALENCE (BLOCK(l + ((VSTEP3 - 1) / 10) * 6),VM6) 
EQUIVALENCE (BLOCK(l + ((VSTEP3 - 1) / 10) * 7),VM7) 
EQUIVALENCE (BLOCK(l + ((VSTEP3 - 1) / 10) * S),VMS) 
EQUIVALENCE (BLOCK(l + ((VSTEP3 - 1) / 10) * 9),VM9) 

OPEN (UNIT= PROBF, FILE= PROBFILE, 
1 FORM= 'FORMATTED', STATUS= 'UNKNOWN', 
2 ACCESS= 'SEQUENTIAL') 

WRITE (PROBF,*) 'ABOUT TO SAVE COVARIANCE DATA' 
OPEN (UNIT= VELF, FORM= 'UNFORMATTED', 

1 FILE= VELFILE, RECL = S * (VSTEP3 - 1) / 10, 
2 STATUS= 'UNKNOWN', ACCESS= 'DIRECT') 

WRITE (VELF,REC=l) VMO 
WRITE (VELF,REC=2) VMl 
WRITE (VELF,REC=3) VM2 
WRITE (VELF,REC=4) VM3 
WRITE (VELF,REC=S) VM4 
WRITE (VELF,REC=6) VMS 
WRITE (VELF,REC=7) VM6 
WRITE (VELF,REC=S) VM7 
WRITE (VELF,REC=9) VMS 
WRITE (VELF,REC=lO) VM9 
CLOSE (UNIT VELF, STATUS= 'KEEP') 
CLOSE '(UNIT = PROBF, STATUS = 'DELETE') 
RETURN 
END 

SUBROUTINE VLOAD 
C************************************************************************* 
C 
C PURPOSE: 
C SUBROUTINE VLOAD RELOADS THE DATA SAVED IN A CHECKPOINT 
C 
C 

BY VSAVE. SEE VSAVE FOR MORE INFORMATION. 

C************************************************************************* 
INCLUDE 'COMALL' 
DOUBLE PRECISION VMO ( (VSTEP3 - 1) I 10 
DOUBLE PRECISION VMl ( (VSTEP3 - 1) I 10 
DOUBLE PRECISION VM2 ( (VSTEP3 - 1) I 10 
DOUBLE PRECISION VM3 ( (VSTEP3 - 1) I 10 
DOUBLE PRECISION VM4 ( (VSTEP3 - 1) I 10 
DOUBLE PRECISION VMS ( (VSTEP3 - 1) I 10 
DOUBLE PRECISION VM6 ( (VSTEP3 - 1) I 10 
DOUBLE PRECISION VM7 ( (VSTEP3 - 1) I 10 
DOUBLE PRECISION VMS ( (VSTEP3 - 1) I 10 
DOUBLE PRECISION VM9 ( (VSTEP3 - 1) I 10 
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EQUIVALENCE (BLOCK (1 + ( (VSTEP3 - 1) I 10) * 0), VMO) 
EQUIVALENCE (BLOCK (1 + ( (VSTEP3 - 1) I 10) * 1), VMl) 
EQUIVALENCE (BLOCK(l + ( (VSTEP3 - 1) I 10) * 2),VM2) 
EQUIVALENCE (BLOCK(l + ( (VSTEP3 - 1) I 10) * 3), VM3) 
EQUIVALENCE (BLOCK (1 + ( (VSTEP3 - 1) I 10) * 4), VM4) 
EQUIVALENCE (BLOCK (1 + ( (VSTEP3 - 1) I 10) * 5) ,VMS) 
EQUIVALENCE (BLOCK (1 + ( (VSTEP3 - 1) I 10) * 6), VM6) 
EQUIVALENCE (BLOCK (1 + ( (VSTEP3 - 1) I 10) * 7) ,VM7) 
EQUIVALENCE (BLOCK (1 + ( (VSTEP3 - 1) I 10) * 8), VMB) 
EQUIVALENCE (BLOCK (1 + ( (VSTEP3 - 1) I 10) * 9), VM9) 

OPEN (UNIT= VELF, FORM= 'UNFORMATTED', 
1 FILE= VELFILE, RECL = 8 * (VSTEP3 - 1) / 10, 
2 STATUS= 'UNKNOWN', ACCESS= 'DIRECT') 

READ (VELF,REC=l) VMO 
READ (VELF,REC=2) VMl 
READ (VELF,REC=3) VM2 
READ (VELF,REC=4) VM3 
READ (VELF,REC=S) VM4 
READ (VELF,REC=6) VMS 
READ (VELF,REC=7) VM6 
READ (VELF,REC=B) VM7 
READ (VELF,REC=9) VMB 
READ (VELF,REC=lO) VM9 
CLOSE (UNIT= VELF, STATUS 'KEEP') 
RETURN 
END 

SUBROUTINE VLOAD3 
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C************************************************************************* 

C 
C PURPOSE: 
C SUBROUTINE VLOAD RELOADS THE DATA SAVED IN A CHECKPOINT 
C BY VSAVE. SEE VSAVE FOR MORE INFORMATION. 
C 
C************************************************************************* 

INCLUDE 'COMALL' 
DOUBLE PRECISION VMC(VSTEP3 - 1) 
EQUIVALENCE (VMEAN,VMC) 

OPEN (UNIT= VELF, FORM= 'UNFORMATTED', 
1 FILE= VELFILE, RECL = 8 * (VSTEP3 - VSTEPl), 
2 STATUS= 'UNKNOWN', ACCESS= 'DIRECT') 

READ (VELF,REC=l) VMC 
CLOSE (UNIT= VELF, STATUS= 'KEEP') 
RETURN 
END 

SUBROUTINE VELOCITY(DNDX) 
C*************************************************************************** 
C 
C 14.1 PURPOSE: 
C TO COMPUTE THE COMPONENTS OF APPARENT GROUNDWATER 
C VELOCITY FOR EACH ELEMENT IN THE MESH AND THE PARTIAL 
C DERIVATIVES OF THE VELOCITY OF EACH ELEMENT WITH RESPECT 
C TO THE HYDRAULIC CONDUCTIVITY OF EACH ELEMENT 
C 
C 14.2 INPUT: 
C NONE 
C 
C 14.3 OUTPUT: 
C THE COMPONENTS OF APPARENT GROUNDWATER VELOCITY AND 
C THE DERIVATIVES OF THE VELOCITY OF EACH ELEMENT WITH 
C RESPECT TO THE HYDRAULIC CONDUCTIVITY OF EACH ELEMENT ARE 
C WRITTEN TO THE USER DEFINED FILE ASSIGNED TO UNIT "OUTF". 
C 
C 14.4 DEFINITIONS OF VARIABLES: 
C DIM= COORDINATE SYSTEM TYPE 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 14.5 
C 
C 
C 
C 
C 
C 
C 

DHDK (I,E) DERIVATIVE OF HEAD AT NODE I WITH RESPECT TO 
HYDRAULIC CONDUCTIVITY OF ELEMENT E 
DERIVATIVE OF VELOCITY IN J DIRECTION OF 
ELEMENT I WITH RESPECT TO THE 

DVDK (I, E, J) 

HYDRAULIC CONDUCTIVITY OF ELEMENT E 
E ELEMENT NUMBER 

ELEMTYP(I) ELEMENT TYPE FOR ELEMENT I 

USAGE: 

NUMELM NUMBER OF ELEMENTS IN THE MESH 
Vl(I) APPARENT VELOCITY IN X DIRECTION 
V2(I) Y DIRECTION 
V3(I) Z DIRECTION 

THE COMPONENTS OF APPARENT GROUNDWATER VELOCITY ARE 
COMPUTED IN A SET OF SUBROUTINES, ONE SUBROUTINE 
FOR EACH ELEMENT TYPE. 

SUBROUTINES CALLED: 
ALL THE V-----'S 
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C*************************************************************************** 
INCLUDE 'COMALL' 
INTEGER E 
DOUBLE PRECISION DNDX(MAX3,MAX2,3) 

C COMPUTE THE COMPONENTS OF APPARENT GROUNDWATER VELOCITY 
C FOR EACH ELEMENT 

DO 10 E = 1, NUMELM 
IF (ELEMTYP(E) .EQ. 1) THEN 

C ELEMENT IS A LINEAR BAR 
CALL VBAR2(E,DNDX) 

ELSEIF (ELEMTYP(E) .EQ. 2) THEN 
C ELEMENT IS A QUADRATIC BAR 

CALL VBAR3(E,DNDX) 
ELSEIF (ELEMTYP(E) .EQ. 3) THEN 

C ELEMENT IS A CUBIC BAR 
CALL VBAR4(E,DNDX) 

ELSEIF (ELEMTYP(E) .EQ. 4) THEN 
C ELEMENT IS A LINEAR TRIANGLE 

CALL VTRI3(E,DNDX) 
ELSEIF (ELEMTYP(E) .EQ. 5) THEN 

C ELEMENT IS A LINEAR RECTANGLE 
CALL VREC4(E,DNDX) 

ELSEIF (ELEMTYP(E) .EQ. 6) THEN 
C ELEMENT IS A LINEAR QUADRILATERAL 

CALL VQUA4(E,DNDX) 
ELSEIF (ELEMTYP(E) .EQ. 7) THEN 

C ELEMENT IS A QUADRATIC QUADRILATERAL 
CALL VQUAB(E,DNDX) 

ELSEIF (ELEMTYP(E) .EQ. 8) THEN 
C ELEMENT IS A CUBIC QUADRILATERAL 

CALL VQUA12(E,DNDX) 
ELSEIF (ELEMTYP(E) .EQ. 9) THEN 

C ELEMENT IS A LINEAR PARALLELEPIPED 
CALL VPAR8(E,DNDX) 

ELSEIF (ELEMTYP(E) .EQ. 10) THEN 
C ELEMENT IS A QUADRATIC PARALLELEPIPED 

CALL VPAR20(E,DNDX) 
ELSEIF (ELEMTYP(E) .EQ. 11) THEN 

C ELEMENT IS A CUBIC PARALLELEPIPED 
CALL VPAR32(E,DNDX) 

ENDIF 
10 CONTINUE 

RETURN 
END 

SUBROUTINE VBAR2(E,DNDX) 
C********************************************************************* 
C 
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C PURPOSE: 
C TO COMPUTE APPARENT GROUNDWATER VELOCITY FOR A 
C ONE-DIMENSIONAL, LINEAR BAR ELEMENT 
C 
C DEFINITIONS OF VARIABLES: 

DHDX 
DNDX(J,E,1) 

E 

PARTIAL DERIVATIVE OF HEAD WITH RESPECT TO X 
PARTIAL DERIVATIVE OF INTERPOLATION FUNCTION 
OF NODE J OF ELEMENT E WITH RESPECT TO X 
ELEMENT NUMBER 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

KXE 
LE 

Vl (E) 

HYDRAULIC CONDUCTIVITY IN X COORDINATE DIRECTION 
ELEMENT LENGTH 

X(IN(E,I)) 
Xl(IN(E,I)) 

APPARENT GROUND WATER VELOCITY IN 
X COORDINATE DIRECTION 
COMPUTED HEAD FOR NODE I, ELEMENT E 
X COORDINATE FOR NODE I, ELEMENT E 

C********************************************************************* 
INCLUDE 'COMALL' 
INTEGER E 
DOUBLE PRECISION KXE, LE, DHDX, DNDX(MAX3,MAX2,3) 
KXE = PROP(MATSET(E),1) 
LE= Xl(IN(E,2)) - Xl(IN(E,1)) 
DNDX(l,E,1) = -1.0 / LE 
DNDX(2,E,1) = 1.0 / LE 
DHDX = (X(IN(E,2)) - X(IN(E,1))) / LE 
Vl(E) = -KXE * DHDX 
RETURN 
END 

SUBROUTINE VBAR3(E,DNDX) 
C********************************************************************* 
C 
C PURPOSE: 
C TO COMPUTE APPARENT GROUNDWATER VELOCITY FOR A 
C ONE-DIMENSIONAL, QUADRATIC BAR ELEMENT 
C 
C DEFINITIONS OF VARIABLES: 
C DHDX PARTIAL DERIVATIVE OF HEAD WITH RESPECT TO X 
C DNDX(I,E,1) PARTIAL DERIVATIVE OF INTERPOLATION FUNCTION 
C OF NODE I OF ELEMENT E WITH RESPECT TO X 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

DNDXI (I) 

E 

I, I2 

JAC 
JACINV 

KXE 
Vl(E) 

X(IN(E,I)) 
Xl(IN(E,I)) 

PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO XI FOR NODE I 
ELEMENT NUMBER FOR THE ELEMENT THAT THE VELOCITY 
AND DERIVATIVES ARE BEING DETERMINED FOR 
ELEMENTS THAT THE DERIVATIVES ARE BEING TAKEN 
WITH RESPECT TO 
JACOBIAN MATRIX 
INVERSE OF JACOBIAN MATRIX 
HYDRAULIC CONDUCTIVITY IN X COORDINATE DIRECTION 
APPARENT GROUND WATER VELOCITY IN 
X COORDINATE DIRECTION 
COMPUTED HEAD FOR NODE I, ELEMENT E 
X COORDINATE FOR NODE I, ELEMENT E 

C********************************************************************* 
INCLUDE 'COMALL' 
INTEGER E, I 
DOUBLE PRECISION KXE, DHDX, DNDX(MAX3,MAX2,3) 
DOUBLE PRECISION DNDXI(3), JAC, JACINV 

KXE = PROP(MATSET(E),1) 
DNDXI(l) -0.5 
DNDXI(2) = 0.0 
DNDXI(3) = 0.5 
JAC = 0.0 
DO 10 I= 1, 3 

JAC = JAC + DNDXI(I) * Xl(IN(E,I)) 
10 CONTINUE 
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JACINV = 1.0 / JAC 
DNDX(l,E,1) = JACINV * DNDXI(l) 
DHDX = 0.0 
DO 20 I = 1, 3 

DNDX(I,E,1) JACINV * DNDXI(I) 
DHDX = DHDX + DNDX(I,E,1) * X(IN(E,I)) 

20 CONTINUE 
Vl(E) = -KXE * DHDX 
RETURN 
END 

SUBROUTINE VBAR4(E,DNDX) 
C********************************************************************* 

C 
C PURPOSE: 
C TO COMPUTE APPARENT GROUNDWATER VELOCITY FOR A 
C ONE-DIMENSIONAL, CUBIC BAR ELEMENT 
C 
C DEFINITIONS OF VARIABLES: 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

DHDX 
DHDK(I,E) 

DNDX(I,E,1) 

DNDXI (I) 

DVDK (E, I, J) 

E 

I, 12 

JAC 
JACINV 

KXE 
Vl(E) 

X(IN(E,I)) 
Xl (IN (E, I)) 

PARTIAL DERIVATIVE OF HEAD WITH RESPECT TO X 
DERIVATIVE OF HEAD AT NODE I WITH RESPECT TO 
HYDRAULIC CONDUCTIVITY OF ELEMENT E 
PARTIAL DERIVATIVE OF INTERPOLATION FUNCTION 
OF NODE I OF ELEMENT E WITH RESPECT TO X 
PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO XI FOR NODE I 
DERIVATIVE OF VELOCITY IN J DIRECTION OF 
ELEMENT E WITH RESPECT TO THE 
HYDRAULIC CONDUCTIVITY OF ELEMENT I 
ELEMENT NUMBER FOR THE ELEMENT THAT THE VELOCITY 
AND DERIVATIVES ARE BEING DETERMINED FOR 
ELEMENTS THAT THE DERIVATIVES ARE BEING TAKEN 
WITH RESPECT TO 
JACOBIAN MATRIX 
INVERSE OF JACOBIAN MATRIX 
HYDRAULIC CONDUCTIVITY IN X COORDINATE DIRECTION 
APPARENT GROUND WATER VELOCITY IN 
X COORDINATE DIRECTION 
COMPUTED HEAD FOR NODE I, ELEMENT E 
X COORDINATE FOR NODE I, ELEMENT E 

C********************************************************************* 
INCLUDE 'COMALL' 
INTEGER E, I 
DOUBLE PRECISION KXE, DHDX, DNDX(MAX3,MAX2,3) 
DOUBLE PRECISION DNDXI(4), JAC, JACINV 
KXE = PROP(MATSET(E),1) 
DNDXI(l) 1.0 / 16.0 
DNDXI(2) -27.0 / 16.0 
DNDXI(3) -DNDXI(2) 
DNDXI(4) -DNDXI(l) 
JAC = 0.0 
DO 10 I = 1, 4 

JAC = JAC + DNDXI(I) * Xl(IN(E,I)) 
10 CONTINUE 

JACINV = 1.0 / JAC 
DHDX = 0.0 
DO 20 I= 1, 4 

DNDX(I,E,1) JACINV * DNDXI(I) 
DHDX = DHDX + DNDX(I,E,1) * X(IN(E,I)) 

20 CONTINUE 
Vl(E) = -KXE * DHDX 
RETURN 
END 

SUBROUTINE VTRI3(E,DNDX) 
C********************************************************************* 

C 
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C PURPOSE: 
C TO COMPUTE COMPONENTS OF APPARENT GROUNDWATER 
C VELOCITY FOR A TWO-DIMENSIONAL, LINEAR TRIANGLE ELEMENT 
C 
C DEFINITIONS OF VARIABLES: 
C DHDX PARTIAL DERIVATIVE OF HEAD WITH RESPECT TO X 

DHDY 
DNDX(J,E,1) 

PARTIAL DERIVATIVE OF HEAD WITH RESPECT TOY 
PARTIAL DERIVATIVE OF INTERPOLATION FUNCTION 
OF NODE J OF ELEMENT E WITH RESPECT TO X 
PARTIAL DERIVATIVE OF INTERPOLATION FUNCTION 
OF NODE J OF ELEMENT E WITH RESPECT TOY 
ELEMENT NUMBER 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

DNDX(J,E,2) 

E 
KXE 
KYE 

Vl(E) 

HYDRAULIC CONDUCTIVITY IN X COORDINATE DIRECTION 
HYDRAULIC CONDUCTIVITY IN Y COORDINATE DIRECTION 
APPARENT GROUND WATER VELOCITY IN 

V2(E) 

X(IN(E,I)) 
Xl (IN (E, I)) 
X2 (IN (E, I)) 

X COORDINATE DIRECTION 
APPARENT GROUND WATER VELOCITY IN 
Y COORDINATE DIRECTION 
COMPUTED HEAD FOR NODE I, ELEMENT E 
X COORDINATE FOR NODE I, ELEMENT E 
Y COORDINATE FOR NODE I, ELEMENT E 

C********************************************************************* 
INCLUDE 'COMALL' 
INTEGER E, I 
DOUBLE PRECISION DNDX(MAX3,MAX2,3) ,KXE, KYE, AE2 
DOUBLE PRECISION DHDX, DHDY 
KXE PROP(MATSET(E),1) 
KYE PROP(MATSET(E),2) 
AE2 Xl(IN(E,2)) * X2(IN(E,3)) + Xl(IN(E,1)) * X2(IN(E,2)) + 

1 X2(IN(E,1)) * Xl(IN(E,3)) - X2(IN(E,3)) * Xl(IN(E,1)) -
2 Xl(IN(E,3)) * X2(IN(E,2)) - Xl(IN(E,2)) * X2(IN(E,1)) 

DNDX(l,E,1) (X2(IN(E,2)) - X2(IN(E,3))) / AE2 
DNDX(2,E,1) (X2(IN(E,3)) - X2(IN(E,1))) / AE2 
DNDX(3,E,1) (X2(IN(E,1)) - X2(IN(E,2))) / AE2 
DNDX(l,E,2) (Xl(IN(E,3)) - Xl(IN(E,2))) / AE2 
DNDX(2,E,2) (Xl(IN(E,1)) - Xl(IN(E,3))) / AE2 
DNDX(3,E,2) (Xl(IN(E,2)) - Xl(IN(E,1))) / AE2 
DHDX = 0.0 
DHDY = 0. 0 
DO 20 I= 1, 3 

DHDX = DHDX + DNDX(I,E,1) * X(IN(E,I)) 
DHDY = DHDY + DNDX(I,E,2) * X(IN(E,I)) 

20 CONTINUE 
Vl(E) = -KXE * DHDX 
V2(E) =-KYE* DHDY 
RETURN 
END 

SUBROUTINE VREC4(E,DNDX) 
C********************************************************************* 

C 
C PURPOSE: 
C TO COMPUTE COMPONENTS OF APPARENT GROUNDWATER 
C VELOCITY FOR A TWO-DIMENSIONAL, LINEAR RECTANGLE ELEMENT 
C 
C DEFINITIONS OF VARIABLES: 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

DHDX 
DHDY 

DNDX ( J, E, 1) 

DNDX (J, E, 2) 

E 
KXE 
KYE 

Vl(E) 

PARTIAL DERIVATIVE OF HEAD WITH RESPECT TO X 
PARTIAL DERIVATIVE OF HEAD WITH RESPECT TOY 
PARTIAL DERIVATIVE OF INTERPOLATION FUNCTION 
OF NODE J OF ELEMENT E WITH RESPECT TO X 
PARTIAL DERIVATIVE OF INTERPOLATION FUNCTION 
OF NODE J OF ELEMENT E WITH RESPECT TOY 
ELEMENT NUMBER 
HYDRAULIC CONDUCTIVITY IN X COORDINATE DIRECTION 
HYDRAULIC CONDUCTIVITY IN Y COORDINATE DIRECTION 
APPARENT GROUND WATER VELOCITY IN 
X COORDINATE DIRECTION 
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C V2(E) APPARENT GROUND WATER VELOCITY IN 
C Y COORDINATE DIRECTION 
C X(IN(E,I)) COMPUTED HEAD FOR NODE I, ELEMENT E 
C Xl (IN (E, I)) X COORDINATE FOR NODE'!, ELEMENT E 
C X2 (IN (E, I)) Y COORDINATE FOR NODE I, ELEMENT E 
C 
C********************************************************************* 

INCLUDE 'COMALL' 
INTEGER E, I 
DOUBLE PRECISION DNDX(MAX3,MAX2,3) ,KXE, KYE, AE, BE 
DOUBLE PRECISION DHDX, DHDY 
KXE = PROP(MATSET(E),1) 
KYE= PROP(MATSET(E),2) 
AE = 0.25 / (X2(IN(E,3))-X2(IN(E,1))) 
BE= 0.25 / (Xl(IN(E,3))-Xl(IN(E,l))) 
DNDX(l,E,1) -BE 
DNDX(2,E,1) BE 
DNDX (3, E, 1) BE 
DNDX(4,E,l) -BE 
DNDX(l,E,2) -AE 
DNDX(2,E,2) -AE 
DNDX(3,E,2) AE 
DNDX(4,E,2) AE 
DHDX = 0.0 
DHDY = 0.0 
DO 10 I= 1, 4 

DHDX = DHDX + DNDX(I,E,1) * X(IN(E,I)) 
DHDY = DHDY + DNDX(I,E,2) * X(IN(E,I)) 

10 CONTINUE 
Vl(E) = -KXE * DHDX 
V2(E) =-KYE* DHDY 
RETURN 
END 

SUBROUTINE VQUA4(E,DNDX) 
C********************************************************************* 
C 
C PURPOSE: 
C TO COMPUTE COMPONENTS OF APPARENT GROUNDWATER 
C VELOCITY FOR A TWO-DIMENSIONAL, LINEAR QUADRILATERAL ELEMENT 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

DEFINITIONS OF VARIABLES: 
DETJAC 

DHDX 
DHDY 

DNDX(I,E,1) 

DNDX (I, E, 2) 

DNDXI (I) 

DNDETA (I) 

E 
JAC (I, J) 

JACINV(I,J) 
KXE 
KYE 

Vl (E) 

V2(E) 

X(IN(E,I)) 
Xl (IN (E, I)) 
X2(IN(E,I)) 

DETERMINANT OF JACOBIAN MATRIX 
PARTIAL DERIVATIVE OF HEAD WITH RESPECT TO X 
PARTIAL DERIVATIVE OF HEAD WITH RESPECT TOY 
PARTIAL DERIVATIVE OF INTERPOLATION FUNCTION 
OF NODE I OF ELEMENT E WITH RESPECT TO X 
PARTIAL DERIVATIVE OF INTERPOLATION FUNCTION 
OF NODE I OF ELEMENT E WITH RESPECT TOY 
PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO XI FOR NODE I 
PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO ETA FOR NODE I 
ELEMENT NUMBER 
JACOBIAN MATRIX 
INVERSE OF JACOBIAN MATRIX 
HYDRAULIC CONDUCTIVITY IN X COORDINATE DIRECTION 
HYDRAULIC CONDUCTIVITY IN Y COORDINATE DIRECTION 
APPARENT GROUND WATER VELOCITY IN 
X COORDINATE DIRECTION 
APPARENT GROUND WATER VELOCITY IN 
Y COORDINATE DIRECTION 
COMPUTED HEAD FOR NODE I, ELEMENT E 
X COORDINATE FOR NODE I, ELEMENT E 
Y COORDINATE FOR NODE I, ELEMENT E 

C********************************************************************* 

INCLUDE 'COMALL' 
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INTEGER E, I, J 
DOUBLE PRECISION JAC(2,2),JACINV(2,2),DNDXI(4),DNDETA(4) 
DOUBLE PRECISION DNDX(MAX3,MAX2,3) ,KXE, KYE, SIGN1(4),SIGN2(4) 
DOUBLE PRECISION DHDX, DHDY, DETJAC 
DATA SIGNl/-1.0, 1.0, 1.0,-1.0/ 
DATA SIGN2/-1.0,-1.0, 1.0, 1.0/ 
KXE = PROP(MATSET(E),1) 
KYE= PROP(MATSET(E),2) 
DO 20 I= 1, 2 

DO 10 J = 1, 2 
JAC(I,J) 0.0 

10 CONTINUE 
20 CONTINUE 

DO 30 I= 1, 4 
DNDXI(I) 0.25 * SIGNl(I) 
DNDETA(I) = 0.25 * SIGN2(I) 

30 CONTINUE 

40 

50 

60 

DO 40 I= 1, 4 
JAC(l,1) 
JAC(l,2) 
JAC(2,1) 
JAC(2,2) 

JAC(l,1) 
JAC(l,2) 
JAC(2,1) 
JAC(2,2) 

CONTINUE 

+ DNDXI (I) 
+ DNDXI (I) 
+ DNDETA(I) 
+ DNDETA(I) 

* Xl(IN(E,I)) 
* X2 ( IN ( E, I) ) 
* Xl(IN(E,I)) 
* X2 ( IN ( E, I) ) 

DETJAC = JAC(l,l) * JAC(2,2) - JAC(l,2) * JAC(2,1) 
JACINV(l,1) JAC(2,2) / DETJAC 
JACINV(l,2) -JAC(l,2) / DETJAC 
JACINV(2,1) -JAC(2,1) / DETJAC 
JACINV(2,2) JAC(l,1) / DETJAC 
DO 50 I= 1, 4 

DNDX(I,E,1) 
DNDX ( I , E, 2 ) 

CONTINUE 
DHDX = 0.0 
DHDY = 0.0 
DO 60 I= 1, 4 

JACINV(l,1) * DNDXI(I) + JACINV(l,2) * DNDETA(I) 
JACINV(2,1) * DNDXI(I) + JACINV(2,2) * DNDETA(I) 

DHDX = DHDX + DNDX(I,E,1) * X(IN(E,I)) 
DHDY = DHDY + DNDX(I,E,2) * X(IN(E,I)) 

CONTINUE 
Vl(E) = -KXE * DHDX 
V2(E) =-KYE* DHDY 
RETURN 
END 

SUBROUTINE VQUA8(E,DNDX) 
C********************************************************************** 
C 
C PURPOSE: 
C TO COMPUTE COMPONENTS OF APPARENT GROUNDWATER 
C VELOCITY FOR A TWO-DIMENSIONAL, QUADRATIC QUADRILATERAL 
C ELEMENT 
C 
C DEFINITIONS OF VARIABLES: 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 
C 

DETJAC DETERMINANT OF JACOBIAN MATRIX 
DHDX = PARTIAL DERIVATIVE OF HEAD WITH RESPECT TO X 
DHDY = PARTIAL DERIVATIVE OF HEAD WITH RESPECT TOY 

DNDX(I,E, 1) 

DNDX(I,E,2) 

DNDXI(I) 

DNDETA(I) 

E 
JAC (I, J) 

JACINV(I,J) 
KXE 
KYE 

PARTIAL DERIVATIVE OF INTERPOLATION FUNCTION 
OF NODE I OF ELEMENT E WITH RESPECT TO X 
PARTIAL DERIVATIVE OF INTERPOLATION FUNCTION 
OF NODE I OF ELEMENT E WITH RESPECT TOY 

PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO XI FOR NODE I 
PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO ETA FOR NODE I 
ELEMENT NUMBER 
JACOBIAN MATRIX 
INVERSE OF JACOBIAN MATRIX 
HYDRAULIC CONDUCTIVITY IN X COORDINATE DIRECTION 
HYDRAULIC CONDUCTIVITY IN Y COORDINATE DIRECTION 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

Vl(E) 

V2(E) 

APPARENT GROUNDWATER VELOCITY IN X 
COORDINATE DIRECTION 
APPARENT GROUNDWATER VELOCITY IN Y 
COORDINATE DIRECTION 

X(IN(E,I)) COMPUTED HEAD FOR NODE I, ELEMENT E 
Xl(IN(E,I)) X COORDINATE FOR NODE I, ELEMENT E 
X2(IN(E,I)) Y COORDINATE FOR NODE I, ELEMENT E 
ISTOK,J D. GROUNDWATER FLOW AND SOLUTE TRANSPORT 
MODELING BY THE FINITE ELEMENT METHOD, FIGURE 4.11, 
EQUATION 6.14A, 6.14B, 6.17, 6.22A, AND 6.22B. 

Page.A.40 

C********************************************************************** 
INCLUDE 'COMALL' 
INTEGER E, I, J 
DOUBLE PRECISION JAC(2,2), JACINV(2,2), DNDX(MAX3,MAX2,3) 
DOUBLE PRECISION DNDXI(B), DNDETA(B), SIGN1(8), SIGN2(8) 
DOUBLE PRECISION KXE, KYE, DETJAC, DHDX, DHDY 
DATA SIGNl/-1.0, 0.0, 1.0, 1.0, 1.0, 0.0,-1.0,-1.0/ 
DATA SIGN2/-1.0,-1.0,-1.0, 0.0, 1.0, 1.0, 1.0, 0.0/ 
KXE = PROP (MATSET(E),1) 
KYE= PROP (MATSET(E),2) 
DO 20 I= 1, 2 

DO 10 J = 1, 2 
JAC(I,J) 0.0 

10 CONTINUE 
20 CONTINUE 

1 

30 

40 

50 

DO 30 I= 1, 8 
IF ( ( I . EQ. 1) . OR. ( I . EQ. 3) . OR. 

(I .EQ. 5) .OR. (I .EQ. 7)) THEN 
DNDXI(I) = 0.0 
DNDETA(I) = 0.0 

ELSEIF ((I .EQ. 2) .OR. (I .EQ. 6)) THEN 
DNDXI(I) = 0.0 
DNDETA(I) = 0.5 * SIGN2(I) 

ELSEIF ( (I .EQ. 4) .OR. (I .EQ. 8)) THEN 
DNDXI(I) = 0.5 * SIGNl(I) 
DNDETA(I) = 0.0 

ENDIF 
CONTINUE 
DO 40 I= 1, 8 

JAC(l,1) 
JAC(l,2) 
JAC(2,1) 
JAC(2,2) 

JAC(l,1) 
JAC(l,2) 
JAC(2,1) 
JAC(2,2) 

+ DNDXI(I) * Xl(IN(E,I)) 
+ DNDXI(I) * X2(IN(E,I)) 
+ DNDETA(I) * Xl(IN(E,I)) 
+ DNDETA(I) * X2(IN(E,I)) 

CONTINUE 
DETJAC = JAC(l,l) * JAC(2,2) - JAC(l,2) 
JACINV(l,1) JAC(2,2) / DETJAC 
JACINV(l,2) -JAC(l,2) / DETJAC 
JACINV(2,1) -JAC(2,1) / DETJAC 
JACINV(2,2) JAC(l,1) / DETJAC 

* JAC (2, 1) 

DO 50 I= 1, 8 
DNDX(I,E,1) 
DNDX (I, E, 2) 

CONTINUE 

JACINV(l,1) * DNDXI(I) + JACINV(l,2) * DNDETA(I) 
JACINV(2,1) * DNDXI(I) + JACINV(2,2) * DNDETA(I) 

DHDX = 0.0 
DHDY = 0.0 
DO 60 I= 1, 8 

DHDX = DHDX + DNDX(I,E,1) * X(IN(E,I)) 
DHDY = DHDY + DNDX(I,E,2) * X(IN(E,I)) 

60 CONTINUE 
Vl(E) = -KXE * DHDX 
V2(E) =-KYE* DHDY 
RETURN 
END 

SUBROUTINE VQUA12(E,DNDX) 
C********************************************************************** 

C 
C PURPOSE: 
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C 
C 
C 
C 

TO COMPUTE COMPONENTS OF APPARENT GROUNDWATER 
VELOCITY FOR A TWO-DIMENSIONAL, CUBIC QUADRILATERAL 
ELEMENT 

C DEFINITIONS OF VARIABLES: 
C DETJAC DETERMINANT OF JACOBIAN MATRIX 
C DHDX = PARTIAL DERIVATIVE OF HEAD WITH RESPECT TO X 
C DHDY = PARTIAL DERIVATIVE OF HEAD WITH RESPECT TOY 

DNDX(I,E,1) PARTIAL DERIVATIVE OF INTERPOLATION FUNCTION 
OF NODE I OF ELEMENT E WITH RESPECT TO X 

DNDX(I,E,2) PARTIAL DERIVATIVE OF INTERPOLATION FUNCTION 
OF NODE I OF ELEMENT E WITH RESPECT TOY 

DNDXI(I) PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO XI FOR NODE I 

DNDETA(I) PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO ETA FOR NODE I 

E ELEMENT NUMBER 
JAC(I,J) JACOBIAN MATRIX 

JACINV(I,J) INVERSE OF JACOBIAN MATRIX 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

KXE HYDRAULIC CONDUCTIVITY IN X COORDINATE DIRECTION 
KYE HYDRAULIC CONDUCTIVITY IN Y COORDINATE DIRECTION 

Vl(E) APPARENT GROUNDWATER VELOCITY IN X 

V2(E) 

X(IN(E,I)) 
Xl(IN(E,I)) 
X2 (IN (E, I)) 

COORDINATE DIRECTION 
APPARENT GROUNDWATER VELOCITY IN Y 
COORDINATE DIRECTION 
COMPUTED HEAD FOR NODE I, ELEMENT E 
X COORDINATE FOR NODE I, ELEMENT E 
Y COORDINATE FOR NODE I, ELEMENT E 

C********************************************************************** 
INCLUDE 'COMALL' 
INTEGER E, I, J 
DOUBLE PRECISION JAC(2,2), JACINV(2,2), DNDX(MAX3,MAX2,3) 
DOUBLE PRECISION DNDXI(12), DNDETA(12), SIGN1(12), SIGN2(12) 
DOUBLE PRECISION KXE, KYE, DETJAC, DHDX, DHDY 
DATA SIGNl/-1.0,-1.0, 1.0, 1.0, 1.0, 1.0, 

1 1.0, 1.0,-1.0,-1.0,-1.0,-1.01 
DATA SIGN2/-1.0,-1.0,-1.0,-1.0,-1.0, 1.0, 

1 1.0, 1.0, 1.0, 1.0, 1.0,-1.0/ 
KXE = PROP (MATSET(E),1) 
KYE= PROP (MATSET(E),2) 
DO 20 I= 1, 2 

DO 10 J = 1, 2 
JAC(I,J) 0.0 

10 CONTINUE 
20 CONTINUE 

DO 30 I= 1, 12 
IF ( (I .EQ. 1) .OR. (I .EQ. 4) .OR. 

1 ( I . EQ. 7) . OR. ( I . EQ. 10) ) THEN 
DNDXI(I) = -(10.0 / 32.0) * SIGNl(I) 
DNDETA(I) = -(10.0 / 32.0) * SIGN2(I) 

ELSEIF ( (I .EQ. 2) .OR. (I .EQ. 3) .OR. 
1 (I .EQ. 8) .OR. (I .EQ. 9)) THEN 

DNDXI(I) = (27.0 / 32.0) * SIGNl(I) 
DNDETA(I) = (9.0 / 32.0) * SIGN2(I) 

ELSEIF ( (I .EQ. 5) .OR. (I .EQ. 6) .OR. 
1 (I .EQ. 11) .OR. (I .EQ. 12)) THEN 

DNDXI(I) (9.0 / 32.0) * SIGNl(I) 
DNDETA(I) = (27.0 / 32.0) * SIGN2(I) 

ENDIF 
30 CONTINUE 

40 

DO 40 I= 1, 12 
JAC(l,1) 
JAC(l,2) 
JAC(2,1) 
JAC(2,2) 

JAC(l,1) 
JAC(l,2) 
JAC(2,1) 
JAC(2,2) 

CONTINUE 

+ DNDXI(I) * Xl(IN(E,I)) 
+ DNDXI(I) * X2(IN(E,I)) 
+ DNDETA(I) * Xl(IN(E,I)) 
+ DNDETA(I) * X2(IN(E,I)) 

DETJAC = JAC(l,1) * JAC(2,2) - JAC(l,2) * JAC(2,1) 
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50 

JACINV(l,1) 
JACINV(l,2) 
JACINV(2,1) 
JACINV(2,2) 
DO 50 I = 1, 8 

DNDX(I,E,1) 
DNDX(I,E,2) 

CONTINUE 
DHDX = 0.0 
DHDY = 0.0 

JAC(2,2) / DETJAC 
-JAC(l,2) / DETJAC 
-JAC(2,1) / DETJAC 
JAC(l,1) / DETJAC 

JACINV(l,1) * DNDXI(I) + JACINV(l,2) * DNDETA(I) 
JACINV(2,1) * DNDXI(I) + JACINV(2,2) * DNDETA(I) 

DO 60 I= 1, 12 
DHDX = DHDX + DNDX(I,E,1) * X(IN(E,I)) 
DHDY = DHDY + DNDX(I,E,2) * X(IN(E,I)) 

60 CONTINUE 
Vl(E) = -KXE * DHDX 
V2(E) =-KYE* DHDY 
RETURN 
END 

SUBROUTINE VPARB(E,DNDX) 
C********************************************************************* 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

PURPOSE: 
TO COMPUTE COMPONENTS OF APPARENT GROUNDWATER 
VELOCITY FOR A THREE DIMENSIONAL, LINEAR 
PARALLELEPIPED ELEMENT 

DEFINITIONS OF VARIABLES: 
DETJAC DETERMINANT OF JACOBIAN MATRIX 

DHDX PARTIAL DERIVATIVE OF HEAD WITH RESPECT TO X 
DHDY PARTIAL DERIVATIVE OF HEAD WITH RESPECT TOY 
DHDZ PARTIAL DERIVATIVE OF HEAD WITH RESPECT TO Z 

DNDX(I,E,1) PARTIAL DERIVATIVE OF INTERPOLATION FUNCTION 
OF NODE I OF ELEMENT E WITH RESPECT TO X 

DNDX(I,E,2) 

DNDX ( I , E, 3 ) 

DNDXI (I) 

DNDETA(I) 

DNDZETA(I) 

E 
IN (I, J) 

JAC (I, J) 
JACINV (I, J) 

KXE 
KYE 
KZE 

Vl(E) 
V2(E) 

VZE 
X(IN(E,I) 

Xl(IN(E,I) 
X2(IN(E,I) 
X3(IN(E,I) 

PARTIAL DERIVATIVE OF INTERPOLATION FUNCTION 
OF NODE I OF ELEMENT E WITH RESPECT TOY 
PARTIAL DERIVATIVE OF INTERPOLATION FUNCTION 
OF NODE I OF ELEMENT E WITH RESPECT TO Z 
PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO XI AT NODE I 
PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO ETA AT NODE I 
PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO ZETA AT NODE I 
ELEMENT NUMBER 
NODE NUMBER J FOR ELEMENT I 
JACOBIAN MATRIX 
INVERSE OF JACOBIAN MATRIX 
HYDRAULIC CONDUCTIVITY IN X DIRECTION 
HYDRAULIC CONDUCTIVITY IN Y DIRECTION 
HYDRAULIC CONDUCTIVITY IN Z DIRECTION 
APPARENT GROUNDWATER VELOCITY IN X DIRECTION 
APPARENT GROUNDWATER VELOCITY IN Y DIRECTION 
APPARENT GROUNDWATER VELOCITY IN Z DIRECTION 
COMPUTED HEAD FOR NODE I, ELEMENT E 
X COORDINATE FOR NODE I, ELEMENT E 
Y COORDINATE FOR NODE I, ELEMENT E 
Z COORDINATE FOR NODE I, ELEMENT E 

C********************************************************************* 
INCLUDE 'COMALL' 
INTEGER E, I, J 
DOUBLE PRECISION JAC(3,3), JACINV(3,3), DNDX(MAX3,MAX2,3) 
DOUBLE PRECISION DNDXI(8), DNDETA(8) 
DOUBLE PRECISION DNDZETA(8), DETJAC 
DOUBLE PRECISION SIGN1(8), SIGN2(8), SIGN3(8) 
DOUBLE PRECISION KXE, KYE, KZE 
DOUBLE PRECISION DHDX, DHDY, DHDZ 
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C 

DATA SIGNl/-1.0, 1.0, 1.0,-1.0,-1.0, 1.0, 1.0,-1.0/ 
DATA SIGN2/-1.0,-1.0, 1.0, 1.0,-1.0,-1.0, 1.0, 1.0/ 
DATA SIGN3/-1.0,-1.0,-1.0,-l.O, 1.0, 1.0, 1.0, 1.0/ 
KXE PROP(MATSET(E),l) 
KYE= PROP(MATSET(E),2) 
KZE = PROP(MATSET(E),3) 
DO 20 I= 1, 2 

DO 10 J = 1, 2 
JAC(I,J) 0.0 

10 CONTINUE 
20 CONTINUE 

30 

40 

DO 30 I= 1, 8 
DNDXI (I) 
DNDETA(I) 
DNDZETA (I) 

0.125 * SIGNl(I) 
0.125 * SIGN2(I) 
0.125 * SIGN3(I) 

CONTINUE 
DO 40 I= 1, 8 

JAC(l,l) 
JAC(l,2) 
JAC(l,3) 
JAC(2,1) 
JAC(2,2) 
JAC(2,3) 
JAC(3,l) 
JAC(3,2) 
JAC(3,3) 

JAC(l,l) 
JAC(l,2) 
JAC(l,3) 
JAC(2,l) 
JAC(2,2) 
JAC(2,3) 
JAC (3, 1) 
JAC(3,2) 
JAC(3,3) 

+ DNDXI (I) * Xl (IN (E, I)) 
+ DNDXI(I) * X2(IN(E,I)) 
+ DNDXI (I) * X3 (IN (E, I)) 
+ DNDETA(I) * Xl(IN(E,I)) 
+ DNDETA(I) * X2(IN(E,I)) 
+ DNDETA(I) * X3(IN(E,I)) 
+ DNDZETA(I) * Xl(IN(E,I)) 
+ DNDZETA(I) * X2(IN(E,I)) 
+ DNDZETA(I) * X3(IN(E,I)) 

CONTINUE 
DETJAC 

1 
JAC ( 1, 1) * ( JAC ( 2, 2) * JAC ( 3, 3) - JAC ( 3, 2) * JAC ( 2, 3) ) 

- JAC(l,2) * (JAC(2,l)*JAC(3,3) - JAC(3,l)*JAC(2,3)) 
2 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

- JAC ( 1 , 3 ) * ( JAC ( 2 , 1 ) * JAC ( 3 , 2 ) - JAC ( 3 , 1 ) * JAC ( 2 , 2 ) ) 
IF (DETJAC .EQ. 0.0) STOP 'DETERMINANT IS ZERO!!!!!' 
INVERSEJACOBIAN MATRIX FORMULA HAS BEEN TRANSPOSEDED - STEVE 9/7/96 

JACINV(l,1) ( JAC(2,2) * JAC(3,3) - JAC(2,3) * JAC(3,2)) 

JACINV(2, 1) 

JACINV(3,l) 

JACINV(l,2) 

JACINV(2,2) 

JACINV(3,2) 

JACINV(l,3) 

JACINV(2,3) 

JACINV(3,3) 

/ DETJAC 
(-JAC (2, 1) * JAC (3, 3) + JAC (2, 3) * JAC (3, 1)) 
/ DETJAC 
( JAC(2,l) * JAC(3,2) - JAC(3,1) * JAC(2,2)) 
/ DETJAC 
(-JAC(l,2) * JAC(3,3) + JAC(l,3) * JAC(3,2)) 
/ DETJAC 
( JAC ( 1, 1) * JAC ( 3, 3) - JAC ( 1, 3) * JAC ( 3, 1) ) 
/ DETJAC 
(-JAC(l,l) * JAC(3,2) + JAC(l,2) * JAC(3,l)) 
/ DETJAC 
( JAC ( 1, 2) * JAC ( 2, 3) - JAC ( 1, 3) * JAC ( 2 , 2) ) 
/ DETJAC 
(-JAC (1, 1) * JAC (2, 3) + JAC (1, 3) * JAC (2, 1)) 
/ DETJAC 
( JAC ( 1, 1) * JAC ( 2, 2) - JAC ( 1, 2) * JAC ( 2, 1) ) 
/ DETJAC 

DO 50 I= 1, 8 
DNDX(I,E,l) 

DNDX (I, E, 2) 

DNDX ( I , E, 3 ) 

JACINV(l,l) * DNDXI(I) + JACINV(l,2) * 
DNDETA(I) + JACINV(l,3) * DNDZETA(I) 
JACINV(2,l) * DNDXI(I) + JACINV(2,2) * 
DNDETA(I) + JACINV(2,3) * DNDZETA(I) 
JACINV(3,l) * DNDXI(I) + JACINV(3,2) * 
DNDETA(I) + JACINV(3,3) * DNDZETA(I) 

50 CONTINUE 
DHDX 0.0 
DHDY = 0.0 
DHDZ = 0.0 
DO 60 I= 1, 8 

DHDX DHDX + DNDX(I,E,l) * X(IN(E,I)) 
DHDY = DHDY + DNDX(I,E,2) * X(IN(E,I)) 
DHDZ = DHDZ + DNDX(I,E,3) * X(IN(E,I)) 

60 CONTINUE 
Vl(E) -KXE * DHDX 
V2(E) =-KYE* DHDY 
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V3(E) = -KZE * DHDZ 
RETURN 
END 

SUBROUTINE VPAR20(E,DNDX) 
C********************************************************************* 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

PURPOSE: 
TO COMPUTE COMPONENTS OF APPARENT GROUNDWATER 
VELOCITY FOR A THREE DIMENSIONAL, QUADRATIC 
PARALLELEPIPED ELEMENT 

DEFINITIONS OF VARIABLES: 
DETJAC DETERMINANT OF JACOBIAN MATRIX 

DHDX PARTIAL DERIVATIVE OF HEAD WITH RESPECT TO X 
DHDY PARTIAL DERIVATIVE OF HEAD WITH RESPECT TOY 
DHDZ PARTIAL DERIVATIVE OF HEAD WITH RESPECT TO Z 

DNDX ( I , E, 1 ) 

DNDX(I,E,2) 

DNDX (I, E, 3) 

DNDXI (I) 

DNDETA(I) 

DNDZETA(I) 

E 
IN(I,J) 

JAC (I, J) 
JACINV (I, J) 

KXE 
KYE 
KZE 

Vl(E) 
V2(E) 

VZE 
X(IN(E,I) 

Xl (IN (E, I) 
X2 (IN (E, I) 
X3(IN(E,I) 

PARTIAL DERIVATIVE OF INTERPOLATION FUNCTION 
OF NODE I OF ELEMENT E WITH RESPECT TO X 
PARTIAL DERIVATIVE OF INTERPOLATION FUNCTION 
OF NODE I OF ELEMENT E WITH RESPECT TOY 
PARTIAL DERIVATIVE OF INTERPOLATION FUNCTION 
OF NODE I OF ELEMENT E WITH RESPECT TO Z 
PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO XI AT NODE I 
PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO ETA AT NODE I 
PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO ZETA AT NODE I 
ELEMENT NUMBER 
NODE NUMBER J FOR ELEMENT I 
JACOBIAN MATRIX 
INVERSE OF JACOBIAN MATRIX 
HYDRAULIC CONDUCTIVITY IN X DIRECTION 
HYDRAULIC CONDUCTIVITY IN Y DIRECTION 
HYDRAULIC CONDUCTIVITY IN Z DIRECTION 
APPARENT GROUNDWATER VELOCITY IN X DIRECTION 
APPARENT GROUNDWATER VELOCITY IN Y DIRECTION 
APPARENT GROUNDWATER VELOCITY IN Z DIRECTION 
COMPUTED HEAD FOR NODE I, ELEMENT E 
X COORDINATE FOR NODE I, ELEMENT E 
Y COORDINATE FOR NODE I, ELEMENT E 
Z COORDINATE FOR NODE I, ELEMENT E 

C********************************************************************* 
INCLUDE 'COMALL' 
INTEGER E, I, J 
DOUBLE PRECISION JAC(3,3), JACINV(3,3), DNDX(MAX3,MAX2,3) 
DOUBLE PRECISION DNDXI(20), DNDETA(20) 
DOUBLE PRECISION DNDZETA(20), DETJAC 
DOUBLE PRECISION SIGN1(20), SIGN2(20), SIGN3(20) 
DOUBLE PRECISION KXE, KYE, KZE 
DOUBLE PRECISION DHDX, DHDY, DHDZ 
DATA SIGNl/-1.0, 0.0, 1.0, 1.0, 1.0, o.o,-1.0,-1.0,-1.o, 1.0, 

1 1.0,-1.0,-1.0, 0.0, 1.0, 1.0, 1.0, 0.0,-1.0,-1.0; 
DATA SIGN2/-1.0,-1.0,-1.0, 0.0, 1.0, 1.0, 1.0, o.o,-1.0,-1.0, 

1 1.0, 1.o,-1.0,-1.0,-1.o, o.o, 1.0, 1.0, 1.0, o.o; 
DATA SIGN3/-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0, 0.0, 0.0, 

1 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0/ 
KXE PROP(MATSET(E),1) 
KYE PROP(MATSET(E),2) 
KZE PROP(MATSET(E),3) 
DO 20 I= 1, 3 

DO 10 J = 1, 3 
JAC(I,J) 0.0 

10 CONTINUE 
20 CONTINUE 

DO 30 I= 1, 20 
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30 

40 

IF ( (I .EQ. 1) .OR. (I .EQ. 3) .OR. (I .EQ. 5) .OR. 
1 ( I . EQ. 7) . OR. ( I . EQ. 13) . OR. ( I . EQ . 15) . OR. 
2 (I .EQ. 17) .OR. (I .EQ. 19)) THEN 

DNDXI(I) -0.125 * SIGNl(I) 
DNDETA(I) = -0.125 * SIGN2(I) 
DNDZETA(I) = -0.125 * SIGN3(I) 

ELSEIF ( (I .EQ. 2) .OR. (I .EQ. 6) .OR. 
1 (I .EQ. 14) .OR. (I .EQ. 18)) THEN 

DNDXI (I) 0. 0 
DNDETA(I) = 0.25 * SIGN2(I) 
DNDZETA(I) = 0.25 * SIGN3(I) 

ELSEIF ( (I .EQ. 4) .OR. (I .EQ. 8) .OR. 
1 (I .EQ. 16) .OR. (I .EQ. 20)) THEN 

DNDXI(I) 0.25 * SIGNl(I) 
DNDETA(I) = 0.0 
DNDZETA(I) = 0.25 * SIGN3(I) 

ELSEIF ( (I .GE. 9) .AND. (I .LE. 12)) THEN 
DNDXI(I) 0.25 * SIGNl(I) 
DNDETA(I) 0.25 * SIGN2(I) 
DNDZETA (I) 0. 0 

ENDIF 
CONTINUE 
DO 40 I= 1, 20 

JAC(l,1) 
JAC(l,2) 

JAC(l,1) 
JAC(l,2) 
JAC (1, 3) 
JAC (2, 1) 
JAC(2,2) 
JAC(2,3) 
JAC(3,1) 
JAC(3,2) 
JAC(3,3) 

JAC (1, 3) 
JAC(2,1) 
JAC(2,2) 
JAC(2,3) 
JAC(3,1) 
JAC(3,2) 
JAC(3,3) 

CONTINUE 

+ DNDXI (I) * Xl (IN (E, I)) 
+ DNDXI(I) * X2(IN(E,I)) 
+ DNDXI(I) * X3(IN(E,I)) 
+ DNDETA(I) * Xl(IN(E,I)) 
+ DNDETA(I) * X2(IN(E,I)) 
+ DNDETA(I) * X3(IN(E,I)) 
+ DNDZETA(I) * Xl(IN(E,I)) 
+ DNDZETA(I) * X2(IN(E,I)) 
+ DNDZETA(I) * X3(IN(E,I)) 

DETJAC JAC(l,1) * (JAC(2,2)*JAC(3,3) - JAC(3,2)*JAC(2,3)) 
1 - JAC ( 1, 2) * ( JAC ( 2, 1) * JAC ( 3, 3) - JAC ( 3, 1) * JAC ( 2, 3) ) 
2 - JAC ( 1, 3) * ( JAC ( 2, 1) * JAC ( 3, 2) - JAC ( 3, 1) * JAC ( 2, 2) ) 

IF (DETJAC .EQ. 0.0) STOP 'DETERMINANT IS ZERO !! !! ! ' 
C INVERSEJACOBIAN MATRIX FORMULA HAS BEEN TRANSPOSEDED - STEVE 9/7/96 

50 

JACINV(l,1) ( JAC(2,2) * JAC(3,3) - JAC(2,3) * JAC(3,2)) 
1 / DETJAC 

JACINV(2,1) (-JAC(2,1) * JAC(3,3) + JAC(2,3) * JAC(3,1)) 
1 / DETJAC 

JACINV(3,1) ( JAC(2,1) * JAC(3,2) - JAC(2,2) * JAC(3,1)) 
1 / DETJAC 

JACINV(l,2) (-JAC(l,2) * JAC(3,3) + JAC(l,3) * JAC(3,2)) 
1 / DETJAC 

1 

1 

1 

1 

1 

1 

1 

1 

JACINV(2,2) ( JAC ( 1, 1) * JAC (3, 3) - JAC(l,3) * JAC(3,1)) 
/ DETJAC 

JACINV(3,2) (-JAC (1, 1) * JAC(3,2) + JAC(l,2) * JAC (3, 1)) 
/ DETJAC 

JAC INV ( 1, 3 ) ( JAC(l,2) * JAC (2, 3) - JAC(l,3) * JAC (2, 2)) 
/ DETJAC 

JACINV(2,3) (-JAC (1, 1) * JAC (2, 3) + JAC(l,3) * JAC (2, 1)) 
/ DETJAC 

JACINV(3,3) ( JAC(l,1) * JAC (2, 2) - JAC(l,2) * JAC (2, 1)) 

DO 50 I = 1, 
DNDX(I,E,1) 

DNDX ( I , E, 2 ) 

DNDX(I,E,3) 

CONTINUE 
DHDX 0.0 
DHDY = 0.0 
DHDZ = 0.0 
DO 60 I = 1, 

20 

20 

I DETJAC 

JACINV(l,1) * DNDXI(I) + JACINV(l,2) * 
DNDETA(I) + JACINV(l,3) * DNDZETA(I) 
JACINV(2,1) * DNDXI(I) + JACINV(2,2) * 
DNDETA(I) + JACINV(2,3) * DNDZETA(I) 
JACINV(3,1) * DNDXI(I) + JACINV(3,2) * 
DNDETA(I) + JACINV(3,3) * DNDZETA(I) 
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DHDX 
DHDY 
DHDZ 

60 CONTINUE 

DHDX + DNDX(I,E,1) * X(IN(E,I)) 
DHDY + DNDX(I,E,2) * X(IN(E,I)) 
DHDZ + DNDX(I,E,3) * X(IN(E,I)) 

Vl(E) -KXE * DHDX 
V2(E) =-KYE* DHDY 
V3(E) = -KZE * DHDZ 
RETURN 
END 

SUBROUTINE VPAR32(E,DNDX) 
C********************************************************************* 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

PURPOSE: 
TO COMPUTE COMPONENTS OF APPARENT GROUNDWATER 
VELOCITY FOR A THREE DIMENSIONAL, CUBIC 
PARALLELEPIPED ELEMENT 

DEFINITIONS OF VARIABLES: 
DETJAC 

DHDX 
DHDY 
DHDZ 

DNDX ( I , E, 1 ) 

DNDX ( I , E, 2 ) 

DNDX(I,E,3) 

DNDXI (I) 

DNDETA(I) 

DNDZETA (I) 

E 
IN(I,J) 

JAC (I, J) 
JACINV (I, J) 

KXE 
KYE 
KZE 

Vl(E) 
V2(E) 

VZE 
X(IN(E,I) 

Xl(IN(E,I) 
X2(IN(E,I) 
X3(IN(E,I) 

DETERMINANT OF JACOBIAN MATRIX 
PARTIAL DERIVATIVE OF HEAD WITH RESPECT TO X 
PARTIAL DERIVATIVE OF HEAD WITH RESPECT TOY 
PARTIAL DERIVATIVE OF HEAD WITH RESPECT TO Z 
PARTIAL DERIVATIVE OF INTERPOLATION FUNCTION 
OF NODE I OF ELEMENT E WITH RESPECT TO X 
PARTIAL DERIVATIVE OF INTERPOLATION FUNCTION 
OF NODE I OF ELEMENT E WITH RESPECT TOY 
PARTIAL DERIVATIVE OF INTERPOLATION FUNCTION 
OF NODE I OF ELEMENT E WITH RESPECT TO Z 
PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO XI AT NODE I 
PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO ETA AT NODE I 
PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO ZETA AT NODE I 
ELEMENT NUMBER 
NODE NUMBER J FOR ELEMENT I 
JACOBIAN MATRIX 
INVERSE OF JACOBIAN MATRIX 
HYDRAULIC CONDUCTIVITY IN X DIRECTION 
HYDRAULIC CONDUCTIVITY IN Y DIRECTION 
HYDRAULIC CONDUCTIVITY IN Z DIRECTION 
APPARENT GROUNDWATER VELOCITY IN X DIRECTION 
APPARENT GROUNDWATER VELOCITY IN Y DIRECTION 
APPARENT GROUNDWATER VELOCITY IN Z DIRECTION 
COMPUTED HEAD FOR NODE I, ELEMENT E 
X COORDINATE FOR NODE I, ELEMENT E 
Y COORDINATE FOR NODE I, ELEMENT E 
Z COORDINATE FOR NODE I, ELEMENT E 

C********************************************************************* 
INCLUDE 'COMALL' 

1 

1 

INTEGER E, I, J 
DOUBLE PRECISION JAC(3,3), JACINV(3,3), DNDX(MAX3,MAX2,3) 
DOUBLE PRECISION DNDXI(32), DNDETA(32) 
DOUBLE PRECISION DNDZETA(32), DETJAC 
DOUBLE PRECISION SIGN1(32), SIGN2(32), SIGN3(32) 
DOUBLE PRECISION KXE, KYE, KZE 
DOUBLE PRECISION DHDX, DHDY, DHDZ 
DATA SIGNl/ 2*-1.0, 6* 1.0, 5*-1.0, 2* 1.0, 

2*-1.0, 2* 1.0, 3*-1.0, 6* 1.0, 4*-1.0/ 
DATA SIGN2/ 5*-1. 0, 6* 1.0, 3*-1.0, 2* 1.0, 

2*-1. 0, 2* 1.0, 5*-1.0, 6* 1.0, -1.0/ 
DATA SIGN3/ 16*-1.0, 16*1. 0/ 
KXE PROP(MATSET(E) ,1) 
KYE= PROP(MATSET(E),2) 
KZE = PROP(MATSET(E),3) 
DO 20 I= 1, 3 
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DO 10 J = 1, 3 
JAC(I,J) 0.0 

10 CONTINUE 
20 CONTINUE 

30 

40 

DO 30 I= 1, 32 
IF ( ( I . EQ . 1 ) • OR . ( I . EQ . 4 ) . OR . ( I . EQ . 7) . OR. 

1 ( I . EQ . 10) . OR. ( I . EQ. 21 ) . OR. ( I . EQ. 2 4) . OR. 
2 (I .EQ. 27) .OR. (I .EQ. 30)) THEN 

DNDXI(I) (-19.0 / 64.0) * SIGNl(I) 
DNDETA(I) = (-19.0 / 64.0) * SIGN2(I) 
DNDZETA(I) = (-19.0 / 64.0) * SIGN3(I) 

ELSEIF ( (I .EQ. 2) .OR. (I .EQ. 3) .OR. (I .EQ. 8) .OR. 
1 (I .EQ. 9) .OR. (I .EQ. 22) .OR. (I .EQ. 23) .OR. 
2 (I .EQ. 28) .OR. (I .EQ. 29)) THEN 

DNDXI(I) (27.0 / 64.0) * SIGNl(I) 
DNDETA(I) = ( 9.0 / 64.0) * SIGN2 (I) 
DNDZETA(I) = ( 9.0 / 64.0) * SIGN3(I) 

ELSEIF ( (I .EQ. 5) .OR. (I .EQ. 6) .OR. (I .EQ. 11) .OR. 
1 (I .EQ. 12) .OR. (I .EQ. 25) .OR. (I .EQ. 26) .OR. 
2 (I .EQ. 31) .OR. (I .EQ. 32)) THEN 

DNDXI(I) ( 9.0 / 64.0) * SIGNl(I) 
DNDETA(I) = (27.0 / 64.0) * SIGN2(I) 
DNDZETA(I) = ( 9.0 / 64.0) * SIGN3(I) 

ELSEIF ( (I .GE. 13) .AND. (I .LE. 20)) THEN 
DNDXI (I) ( 9.0 / 64.0) * SIGNl (I) 
DNDETA(I) ( 9.0 / 64.0) * SIGN2(I) 
DNDZETA(I) (27.0 / 64.0) * SIGN3(I) 

ENDIF 
CONTINUE 
DO 40 I= 1, 32 

JAC(l,1) 
JAC(l,2) 
JAC(l,3) 
JAC(2,1) 
JAC(2,2) 
JAC(2,3) 
JAC(3,1) 
JAC(3,2) 
JAC(3,3) 

JAC(l,1) 
JAC(l,2) 
JAC(l,3) 
JAC(2,1) 
JAC(2,2) 
JAC(2,3) 
JAC (3, 1) 
JAC(3,2) 
JAC(3,3) 

CONTINUE 

+ DNDXI(I) * Xl(IN(E,I)) 
+ DNDXI(I) * X2(IN(E,I)) 
+ DNDXI(I) * X3(IN(E,I)) 
+ DNDETA(I) * Xl(IN(E,I)) 
+ DNDETA(I) * X2(IN(E,I)) 
+ DNDETA(I) * X3(IN(E,I)) 
+ DNDZETA(I) * Xl(IN(E,I)) 
+ DNDZETA(I) * X2(IN(E,I)) 
+ DNDZETA(I) * X3(IN(E,I)) 

DETJAC JAC(l,1) * (JAC(2,2)*JAC(3,3) - JAC(3,2)*JAC(2,3)) 
1 - JAC(l,2) * (JAC(2,l)*JAC(3,3) - JAC(3,l)*JAC(2,3)) 
2 - JAC ( 1, 3) * ( JAC ( 2, 1) * JAC ( 3, 2) - JAC ( 3, 1) * JAC ( 2, 2) ) 

IF (DETJAC .EQ. 0.0) STOP 'DETERMINANT IS ZERO !!!!!' 
C INVERSEJACOBIAN MATRIX FORMULA HAS BEEN TRANSPOSEDED - STEVE 9/7/96 

JACINV(l,1) ( JAC(2,2) * JAC(3,3) - JAC(2,3) * JAC(3,2)) 
1 / DETJAC 

JACINV(2,1) (-JAC(2,1) * JAC(3,3) + JAC(2,3) * JAC(3,1)) 
1 / DETJAC 

JACINV(3,1) ( JAC(2,1) * JAC(3,2) - JAC(2,2) * JAC(3,1)) 
1 / DETJAC 

JACINV(l,2) (-JAC(l,2) * JAC(3,3) + JAC(l,3) * JAC(3,2)) 
1 / DETJAC 

JACINV(2,2) ( JAC(l,1) * JAC(3,3) - JAC(l,3) * JAC(3,1)) 
1 / DETJAC 

JACINV(3,2) (-JAC(l,1) * JAC(3,2) + JAC(l,2) * JAC(3,1)) 
1 / DETJAC 

JACINV(l,3) 
1 

JACINV(2,3) 
1 

JACINV (3, 3) 
1 

DO 50 I= 1, 32 

( JAC(l,2) 
/ DETJAC 
(-JAC(l,l) 
/ DETJAC 
( JAC ( 1, 1) 
/ DETJAC 

* JAC(2,3) - JAC (1, 3) * JAC (2, 2)) 

* JAC (2, 3) + JAC (1, 3) * JAC(2,1)) 

* JAC (2, 2) - JAC (1, 2) * JAC(2,1)) 

DNDX(I,E,1) JACINV(l,1) * DNDXI(I) + JACINV(l,2) * 
1 DNDETA(I) + JACINV(l,3) * DNDZETA(I) 

DNDX(I,E,2) JACINV(2,1) * DNDXI(I) + JACINV(2,2) * 
1 DNDETA(I) + JACINV(2,3) * DNDZETA(I) 
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DNDX(I,E,3) 
1 

JACINV(3,1) * DNDXI(I) + JACINV(3,2) * 
DNDETA(I) + JACINV(3,3) * DNDZETA(I) 

50 CONTINUE 
DHDX 0.0 
DHDY = 0.0 
DHDZ = 0.0 
DO 60 I= 1, 32 

DHDX DHDX + DNDX(I,E,1) * X(IN(E,I)) 
DHDY = DHDY + DNDX(I,E,2) * X(IN(E,I)) 
DHDZ = DHDZ + DNDX(I,E,3) * X(IN(E,I}) 

60 CONTINUE 
Vl(E) -KXE * DHDX 
V2(E) =-KYE* DHDY 
V3(E) = -KZE * DHDZ 
RETURN 
END 

SUBROUTINE CONCEN(PRIOR) 

Page.A.48 

C********************************************************************** 

C 
C 19.1 PURPOSE 
C TO DETERMINE THE CONCENTRATIONS AT EACH NODAL POINT 
C AND THE DERIVATIVES THE DERIVATIVES OF EACH NODAL 
C CONCENTRATION VALUE WITH RESPECT TO THE VELOCITY 
C COMPONENTS OF EACH ELEMENT. THESE VALUES ARE 
C STORED IN UNFORMATTED FILES. 
C 
C 19. 2 INPUT 
C NONE 
C 
C 19. 3 OUTPUT 
C VALUES OF 
C 
C 19.4 DEFINITIONS OF VARIABLES: 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

AE(I,J) 

B(I) 
DDE (I, J) 

E 
ELEMTYP(E) 

FLUX(I) 
ICH (I) 

IJSIZE 
LCH (I) 

M(IJ) 

NDOF 

NODETBL(ELEMTYP(E)) 
NUMELM 

SBW 
X(I) 

SORPTION MATRIX FOR ELEMENT E IN FULL 
MATRIX STORAGE 
RHS USED TO DETERMINE DERIVATIVES 
DERIVATIVE OF THE ADVECTION-DISPERSION 
MATRIX FOR ELEMENT E IN FULL MATRIX STORAGE 
ELEMENT NUMBER 
ELEMENT TYPE FOR ELEMENT E 
SPECIFIED VALUE OF SOLUTE FLUX AT NODE I 
1 IF THE VALUE OF THE FIELD VARIABLE IS 
SPECIFIED AT NODE I 
0 OTHERWISE 
LENGTH OF ARRAY ADGLOBAL 
ICH (I) + ICH (I-1) + ••• 
MODIFIED, COMBINED GLOBAL SORPTION AND 
ADVECTION-DISPERSION MATRIX IN VECTOR 
STORAGE 
NUMBER OF NODES WHERE THE VALUE OF 
THE FIELD VARIABLE IS UNKNOWN 
NUMBER OF NODES IN ELEMENT TYPE E 
NUMBER OF ELEMENTS IN THE MESH 
SEMI-BANDWIDTH 
VALUE OF SOLUTE CONCENTRATION AT NODE I 

C 19.5 USAGE: 
C SIMILAR TO DHDK, DCDV IS DETERMINED USING: 
C 
C 
C 
C 
C 
C 
C 
C 
C 

M * DCDV = DFDV - DDDV * C 

NOW 
F = (A - (1-w)dt * D) Ct-1 + dt((l-w)Ft-1 + wFt-1) 

AND ONLY C AND DARE FUNCTIONS OF V 
THEREFORE 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

DFDV (A - (1-w)dt * D) * DCDVt-1 
+ (1-w)dt * DDDV * Ct-1 

SIMILAR TO D2HDK2, D2CDK2 IS DETERMINED USING: 
M * D2CDK2(I,J) = D2FDK2(I,J) 

AS ABOVE 

DF2DV2(I,J) 

- DDDK(I) * DCDK(J) 
- DDDK(J) * DCDK(I) 
- D2DDK2(I,J) * C 

(A - (1-w)dt * D) D2CDV2(I,J)t-1 
+ (1-w)dt * DDDV(I) * DCDV(J)t-1 
+ (1-w)dt * DDDV(J) * DCDV(I)t-1 
+ (1-w)dt * D2DDV2(I,J) * Ct-1 

C SUBROUTINES CALLED: 
C HEAPS, INCLUDING LOCATE AND DO-
C 
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C************************************************************************** 
INCLUDE 'COMALL' 
DOUBLE PRECISION DDE(MAX3,MAX3,3,0:3), C(MAXl,2) 
DOUBLE PRECISION TEMP(3,3), IPIV(MAXO),TEMPS(3,3,MAXO) 
DOUBLE PRECISION DDE2(MAX3,MAX3,3,0:0), Y(MAX0,3) 
DOUBLE PRECISION TEMPl, TEMP2, TEMP3, TEMP4, MASS 
INTEGER !STEP, !START, OLD, NEW, REFLEC(2,4), INFO 
INTEGER NODETBL(13), I, I2, J, J2, J3, J4, JS, K, K2, L 
INTEGER E, E2, E3, E4, LIMIT, RECORD, K3, K4 
LOGICAL PRIOR, RESTART, BEGIN 
LOGICAL INCSIG 
REAL TARRAY(2), SECS, ETIME 
DATA NODETBL/2,3,4,3,4,4,8,12,8,20,32,3,4/ 

C INCSIG INCLUDES THE SIGMA CALCULATIONS. 
INCSIG = .TRUE. 
BEGIN= .TRUE. 
IF (PRIOR) THEN 

CALL CLOAD(E3,E4) 
ELSE 

IDT = 0 
DO 30 !STEP= 1, MXSTEP 

IF (!STEP .EQ. 1 .OR. !STEP .GT. DTSTEP(IDT)) THEN 
IDT= IDT+ 1 
DO 20 L = 1, NUMMAT 

DO 10 J = 1, NDOF 
CMEAN(J,IDT,L) 0.0 
CVAR(J,IDT,L) 0.0 

10 CONTINUE 

20 

DO 20 K = 1, DIM 
DO 20 K2 = 1, K 

SIGMA(K,K2,IDT,L) 
CONTINUE 

ENDIF 
30 CONTINUE 

E3 = 1 
E4 = 0 

ENDIF 
IDT= 0 
DO 40 I= 1, NUMNOD 

IF (ICH(I) .EQ. 0) THEN 
Y(I-LCH(I),1) Xl(I) 
Y ( I - LCH ( I ) , 2 ) X2 ( I ) 
Y(I-LCH(I),3) X3(I) 

ENDIF 
40 CONTINUE 

0.0 

C THIS LOOP DETERMINES THAT THE FIRST TIMESTEP EQUALS THE LAST 
IDT= 0 
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DO 45 ISTEP = 1, MXSTEP 
IF (ISTEP .EQ. 1 .OR. ISTEP .GT. DTSTEP(IDT)) THEN 

IDT = IDT + 1 
ENDIF 

45 CONTINUE 
RESTART= DELTAT(l) .NE. DELTAT(IDT) 
CALL VLOAD 
print*, 'vmean read' 
REFLEC ( 1, 1) 1 
REFLEC ( 1, 2) 1 
REFLEC (1, 3) 1 
REFLEC ( 1, 4 ) 1 
REFLEC (2, 1) 1 
REFLEC(2,2) -1 
REFLEC (2, 3) 1 
REFLEC ( 2, 4) -1 
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C THE NEXT TWO LOOPS MUST NOT BE PARALLELISED SO AUTOSAVING FUNCTIONS 
DO 270 E = E3, NUMELM 

PRINT*, 'BEGINNING CONCENTRATION FOR ELEMENT',E 
IF (E .LE. NUMELM / 4) THEN 

LIMIT = E 
JS= 1 

ELSEIF (E .LE. NUMELM / 2) THEN 
LIMIT = E 
JS= 2 

ELSEIF (E .LE. 3 * NUMELM / 4) THEN 
LIMIT= NUMELM + 1 - E 
JS= 3 

ELSE 
LIMIT= NUMELM + 1 - E 
JS= 4 

ENDIF 
DO 260 E2 = E4 + 1, LIMIT 

C OBTAIN VELOCITY COVARIANCE DATA 
IF (E .LE. NUMELM / 4) THEN 

J = E * (E - 1) / 2 + E2 
ELSEIF (E .LE. NUMELM / 2) THEN 

IF (E2 .LE. NUMELM / 2 + 1 - E) THEN 
J = NUMELM / 4 * (NUMELM / 4 + 1) 

1 - (NUMELM/2-E+l) * (NUMELM/2-E+2) / 2 + E2 
ELSEIF(E2 .LE. NUMELM / 4) THEN 

J NUMELM / 2 + 1 - E2 
J2 NUMELM / 2 + 1 - E 
J NUMELM / 2 * (NUMELM / 4 + 1) / 2 

1 - (NUMELM/2-J+l) * (NUMELM/2-J+2) / 2 + J2 
ELSE 

J NUMELM / 2 + 1 - E2 
J2 NUMELM / 2 + 1 - E 
J J * (J - 1) / 2 + J2 

ENDIF 
ELSEIF (E .LE. 3 * NUMELM / 4) THEN 

IF (E2 .LE. E - NUMELM / 2) THEN 
J = NUMELM / 2 * (NUMELM / 4 + 1) / 2 

1 + (E-NUMELM/2) * (E-NUMELM/2-1) / 2 + E2 
ELSEIF(E2 .LE. NUMELM / 4) THEN 

J = E2 + NUMELM / 2 
J2 = E - NUMELM / 2 
J = NUMELM / 2 * (NUMELM / 4 + 1) / 2 

1 + (J-NUMELM/2) * (J-NUMELM/2-1) / 2 + J2 
ELSE 

J = NUMELM / 2 + E2 
J2 = E - NUMELM / 2 
J NUMELM - J + 1 
J = J * (J + 1) / 2 
J = NUMELM * (NUMELM / 4 + 1) / 2 - J + J2 

ENDIF 
ELSE 

J = NUMELM - E + 1 
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C 
C 
C 
C 
C 

J2 = J * (J + 1) / 2 
J NUMELM * (NUMELM / 4 + 1) / 2 - J2 + E2 

ENDIF 
SINCE THE WHOLE ARRAY IS BEING WRITTEN OUT REGARDLESS 
OF EMPTY SPACES IT IS NECESARRY TO USE ABSOLUTE 
REFERENCES HERE. THIS SPEEDS UP THE EARLIER 
CHECKPOINTING OF VERY LARGE FILES. 
**RECORD= NUMMAT *DIM* (DIM* (J - 1) + NUMELM / 4) 
RECORD= MAX4 * 2 * (2 * (J - 1) + MAX2 / 4) 
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1 
IF ((E .LE. NUMELM / 2 .AND. E2 .GT. NUMELM / 2 + 1 - E) .OR. 

(E .GT. NUMELM / 2 .AND. E2 .GT. E - NUMELM / 2)) THEN 
DO 60 K = 1, DIM 

50 
C 

60 

70 

DO 60 K2 = 1, DIM 
DO 50 L = 1, NUMMAT 

RECORD= RECORD+ 1 
VCOR(K2,K,L) = BLOCK(RECORD) 

CONTINUE 
RECORD= RECORD+ MAX4 - 1 

CONTINUE 
IF (E .LE. NUMELM / 2) THEN 

DO 70 L = 1, NUMMAT 
VCOR(2,1,L) - VCOR(2,l,L) 
VCOR(l,2,L) = - VCOR(l,2,L) 

CONTINUE 
ENDIF 

ELSE 
DO 90 K = 1, DIM 

DO 90 K2 = 1, DIM 
DO 80 L = 1, NUMMAT 

RECORD= RECORD+ 1 
VCOR(K,K2,L) = BLOCK(RECORD) 

80 CONTINUE 
c RECORD = RECORD + MAX4 - 1 

90 CONTINUE 

C 

C 
C 
C 

C 
C 
C 

100 

110 

ENDIF 

INITIALISE COUNTERS 

IDT= 0 
IGT = 1 
IGTDT 1 
T = 0.0 
J = 0 
OLD= 1 
NEW= 2 
DO 120 I= 1, NUMNOD 

IF (ICH(I) .EQ. 0) THEN 
J = J + 1 
C(J,OLD) = X(I) 
DO 110 K = 1, DIM 

DO 100 J2 = 1,2 
DO 100 J3 = 1,2 

DCDV(J,J2,K,J3) 
CONTINUE 
DO 110 K2 = 1, DIM 

D2CDV2(J,K,K2) 0.0 
CONTINUE 

ENDIF 

0.0 

120 CONTINUE 

FOR EACH TIME STEP ... 

DO 250 !STEP= 1, MXSTEP 
IF (!STEP .EQ. 1 .OR. !STEP .GT. DTSTEP(IDT)) THEN 

IDT= IDT+ 1 
IF TIMESTEP OR ELEMENTS CHANGE COMPUTE THE 
DERIVATIVE OF THE ELEMENT ADVECTION­
DISPERSION MATRIX FOR THESE ELEMENT TYPES 
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C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

130 

1 

1 
2 

1 

IF (!STEP .EQ. 1 
.OR. DELTAT(IDT) .NE. DELTAT(IDT-1)) THEN 

IF (ELEMTYP(E) .EQ. 1) THEN 
ELEMENT IS A ONE DIMENSIONAL, LINEAR BAR 
CALL DDBAR2(E,DDE) 

ELSEIF (ELEMTYP(E) .EQ. 4) THEN 
ELEMENT IS A TWO DIMENSIONAL, LINEAR TRIANGLE 
CALL DDTRI3(E,DDE,1) 

ELSEIF (ELEMTYP(E) .EQ. 5) THEN 
ELEMENT IS A TWO DIMENSIONAL, LINEAR RECTANGLE 
CALL DDREC4(E,DDE,1) 

ELSEIF (ELEMTYP(E) .EQ. 6) THEN 
ELEMENT IS A TWO DIMENSIONAL, LINEAR QUADRILATERAL 
CALL DDQUA4(E,DDE,1) 

ELSEIF (ELEMTYP(E) .EQ. 9) THEN 
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ELEMENT IS A THREE DIMENSIONAL, LINEAR PARALLELEPIPED 
CALL DDPARS(E,DDE,1) 

ENDIF 
IF (ELEMTYP(E2) .EQ. 1) THEN 

ELEMENT IS A ONE DIMENSIONAL, LINEAR BAR 
CALL DDBAR2(E2,DDE2) 

ELSEIF (ELEMTYP(E2) .EQ. 4) THEN 
ELEMENT IS A TWO DIMENSIONAL, LINEAR TRIANGLE 
CALL DDTRI3(E2,DDE2,0) 

ELSEIF (ELEMTYP(E2) .EQ. 5) THEN 
ELEMENT IS A TWO DIMENSIONAL, LINEAR RECTANGLE 
CALL DDREC4(E2,DDE2,0) 

ELSEIF (ELEMTYP(E2) .EQ. 6) THEN 
ELEMENT IS A TWO DIMENSIONAL, LINEAR QUADRILATERAL 
CALL DDQUA4(E2,DDE2,0) 

ELSEIF (ELEMTYP(E2) .EQ. 9) THEN 
ELEMENT IS A THREE DIMENSIONAL, LINEAR PARALLELEPIPED 
CALL DDPAR8(E2,DDE2,0) 

ENDIF 
ENDIF 
IF SIZE OF TIMESTEP CHANGES REASSEMBLE GLOBAL MATRICES 
IF ((!STEP .EQ. 1 .AND. RESTART) .OR. 

BEGIN .OR. (!STEP .NE. 1 .AND. 
DELTAT(IDT) .NE. DELTAT(IDT-1))) THEN 

CALL ASMBAD 
CALL DGBTRF (NDOF,NDOF,SBW,SBW,M2,3*MAX6+1,IPIV,INFO) 
IF (INFO .NE. 0) PRINT*, 'ERROR FACTORISING',INFO 
BEGIN= .FALSE. 

ENDIF 
ENDIF 

SOLVE FOR CONCENTRATION 
CALL RHSO(C,OLD,NEW) 
CALL DGBTRS('NotTransposed',NDOF,SBW,SBW,1, 

M2,3*MAX6+1,IPIV,C(l,NEW),MAXO,INFO) 
SOLVE FOR FIRST DERIVATIVES 
DO 130 K = 1, DIM 

CALL RHSl(C,DDE,E,K,l,OLD,NEW) 
CALL RHS1(C,DDE2,E2,K,2,0LD,NEW) 

CONTINUE 
CALL DGBTRS('NotTransposed',NDOF,SBW,SBW,2*DIM, 

1 M2,3*MAX6+1,IPIV,DCDV(l,1,1,NEW),MAXO,INFO) 
IF (!STEP .EQ. DTSTEP(IDT) .AND. E2 .EQ. 1) THEN 

DO 150 K = 1, DIM 
IF (E .LE. NUMELM / 4) THEN 

J2 = E 
ELSEIF (E .LE. NUMELM / 2) THEN 

J2 = NUMELM / 2 - E + 1 
ELSEIF (E .LE. 3 * NUMELM / 4) THEN 

J2 E - NUMELM / 2 
ELSE 

J2 NUMELM - E + 1 
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C 

C 
C 
C 

C 

C 

140 
150 

170 

180 

1 

1 

1 

1 

1 

1 

ENDIF 
DO 140 J = 1, NDOF 

DO 140 L = 1, NUMMAT 
CMEAN(J,IDT,L) = CMEAN(J,IDT,L) 
+ DCDV(J,1,K,NEW) * REFLEC(K,JS) * VMEAN(L,K,J2) 

CONTINUE 
CONTINUE 

ENDIF 

SOLVE FOR SECOND DERIVATIVES 
IF (E .EQ. E2) THEN 

CALL RHS2SAME(C,DDE,E,OLD,NEW) 
ELSE 

CALL RHS2DIFF(DDE,DDE2,E,E2,0LD,NEW) 
ENDIF 
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THIS NEXT LINE HAS THE PROBLEM THAT WHEN DIM= 2 IT SOLVES 
FOR FIVE RHS INSTEAD OF FOUR. THIS IS BECAUSE THERE IS 
A GAP BETWEEN TWO PAIRS OF TWO. 
CALL DGBTRS('NotTransposed',NDOF,SBW,SBW, (DIM-1)*3+DIM, 

M2,3*MAX6+1,IPIV,D2CDV2,MAXO,INFO) 
ADD INCREMENTS TO RESULTS 
IF (ISTEP .EQ. DTSTEP(IDT)) THEN 

DO 170 J = 1, NDOF 
DO 170 K = 1, DIM 

DO 170 K2 = 1, DIM 
IF (E2 .EQ. NUMELM + 1 - E) THEN 

TEMPl 0.5 * D2CDV2(J,K,K2) 
TEMP2 = DCDV(J,1,K,NEW) * DCDV(J,2,K2,NEW) 

ELSE 
J3 = (J 
TEMPl 
TEMP2 

+ NDN - 1) /NON* NON - MOD(J-1, NDN) 
0.5 * (D2CDV2(J,K,K2)+D2CDV2(J3,K,K2)) 
DCDV(J, 1,K,NEW) * DCDV(J, 2,K2,NEW) 

+ DCDV(J3,1,K,NEW) * DCDV(J3,2,K2,NEW) 
ENDIF 
IF (E .NE. E2) THEN 

TEMPl 2 * TEMPl 
TEMP2 = 2 * TEMP2 

ENDIF 
DO 170 L = 1, NUMMAT 

CMEAN(J,IDT,L) = CMEAN(J,IDT,L) 
+ TEMPl * VCOR(K,K2,L) 

CVAR(J,IDT,L) CVAR(J,IDT,L) 
+ TEMP2 * VCOR(K,K2,L) 

CONTINUE 

IF (INCSIG) THEN 
DO 240 K = 1, DIM 

DO 240 K2 = 1, DIM 
DO 180 J = 1, NDOF 

DO 180 K3 = 1, DIM 
DO 180 K4 = 1, DIM 

TEMPS(K4,K3,J) ODO 
CONTINUE 
DO 200 J = 1, NDOF 

DO 190 J2 = 1, NDOF 
IF (E2 .EQ. NUMELM + 1 - E) THEN 

TEMPl = DCDV(J,1,K,NEW) * DCDV(J2,2,K2,NEW) 
JS IS SET TO ZERO TO HELP PARALLELISE 
JS 0 

ELSE 
JS (J + NDN - 1) / NDN * NDN - MOD(J-1, NDN) 
J4 (J2+NDN-1) /NON* NDN - MOD(J2-1,NDN) 
TEMPl DCDV(J, 1,K,NEW) * DCDV(J2,2,K2,NEW) 

+ DCDV(JS,l,K,NEW) * DCDV(J4,2,K2,NEW) 
ENDIF 
IF (E .NE. E2) THEN 

TEMPl = 2 * TEMPl 
ENDIF 
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DO 190 K4 = 1, DIM 
DO 190 K3 = 1, K4 
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190 
200 

1 
TEMPS(K4,K3,J) = TEMPS(K4,K3,J) + TEMPl * 

(Y(J,K4) - Y(J2,K4)) * (Y(J,K3) - Y(J2,K3)) 
CONTINUE 

210 

CONTINUE 
DO 210 K3 = 1, DIM 

DO 210 K4 = 1, DIM 
TEMP(K3,K4) = ODO 

CONTINUE 
cccccccccC$DOACROSS NEST(K3, K4) 

C 

DO 220 K3 = 1, DIM 
DO 220 K4 = 1, DIM 

DO 220 J = 1, NDOF 
TEMP(K3,K4) = TEMP(K3,K4) + TEMPS(K3,K4,J) 

220 CONTINUE 

230 
240 

1 

DO 230 L = 1, NUMMAT 
DO 230 K3 = 1, DIM 

DO 230 K4 = 1, K3 
SIGMA(K3,K4,IDT,L) = SIGMA(K3,K4,IDT,L) 

CONTINUE 
CONTINUE 

THIS ENDIF IS IF INCSIG 
ENDIF 

ENDIF 
OLD= MOD(OLD, 2) + 1 
NEW= MOD(NEW, 2) + 1 

+ VCOR(K,K2,L) * TEMP(K3,K4) 

250 CONTINUE 
SECS = ETIME(TARRAY) 

C 5200 => 2 thread~ 
IF (SECS .GT. 2400 .OR. CONTROL) THEN 

print*, 'EXECUTION TIME ',SECS,' SECONDS.' 
CALL CSAVE(E, E2) 
print*, 'STOPPING AT TIME= ',SECS,' SECONDS.' 
STOP 

ENDIF 
260 CONTINUE 

E4 = 0 
270 CONTINUE 

333 print*, 'finished stochastic concentration calcs',c(l,old) 

C 

C 
C 
C 
C 

280 

290 

MASS= 0.0 
TEMPl 0.0 
TEMP2 = 0.0 
TEMP3 = 0.0 
DO 280 I= 1, NUMNOD 

MASS= MASS + X ( I) 
TEMPl TEMPl + Xl(I) 
TEMP2 = TEMP2 + X2 (I) 
TEMP3 = TEMP3 + X3 (I) 

CONTINUE 

* X(I) 
* X (I) 
* X (I) 

WRITE 
1 

(OUTF,290) MASS* ABS(Xl(IN(l,3)) - Xl(IN(l,1))) 
* ABS(X2(IN(l,3)) - X2(IN(l,1))), 

2 TEMPl / MASS, TEMP2 / MASS 
FORMAT(/6X, 'INITIAL TOTAL MASS', 

1 6X, 'INITIAL X CENTER OF MASS', 
2 6X, 'INITIAL Y CENTER OF MASS' 
3 /9X,F12.3,13X,Fl2.3,18X,Fl2.3) 

TEMP(l,1) = 0.0 
IF (DIM .GE. 2) THEN 
TEMP(2,1) = 0.0 
TEMP(2,2) = 0.0 

IF (DIM .EQ. 3) THEN 
TEMP ( 3 , 1 ) 0 . 0 
TEMP(3,2) 0.0 
TEMP(3,2) 0.0 
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C ENDIF 
C ENDIF 

DO 300 I= 1, NUMNOD 
TEMP(l,l) = TEMP(l,1) + X(I) * Xl(I) * Xl(I) 

C IF (DIM .GE. 2) THEN 
TEMP(2,1) = TEMP(2,1) + X(I) * X2(I) * Xl(I) 
TEMP(2,2) = TEMP(2,2) + X(I) * X2(I) * X2(I) 

C IF (DIM .EQ. 3) THEN 
C TEMP(3,1) TEMP(3,1) + X(I) * X3(I) * Xl(I) 
C TEMP(3,2) TEMP(3,2) + X(I) * X3(I) * X2(I) 
C TEMP ( 3, 3) TEMP ( 3, 3) + X (I) * X3 (I) * X3 (I) 
C ENDIF 
C ENDIF 

300 CONTINUE 
WRITE(OUTF,310) SQRT(TEMP(l,l) / MASS - (TEMPl / MASS) ** 2), 

1 SQRT(TEMP(2,1) / MASS - TEMP1*TEMP2/MASS**2), 
2 SQRT(TEMP(2,2) / MASS - (TEMP2 / MASS) ** 2) 

310 FORMAT(/31X, 'INITIAL RADII OF GYRATION', 
1 /7X, 'XX', F12. 3, llX, 'XY', F12. 3, 16X, 'YY', F12. 3) 

DO 400 L = 1, NUMMAT 
IDT = 0 
IGT = 1 
IGTDT 1 
J = 0 
T = 0.0 
ISTART = 1 
OLD= 1 
NEW= 2 
DO 320 I= 1, NUMNOD 

IF (ICH(I) .EQ. 0) THEN 
C(I-LCH(I),OLD) = X(I) 

ENDIF 
320 CONTINUE 

330 

340 

DO 400 ISTEP = 1, MXSTEP 
IF (ISTEP .EQ. 1 .OR. ISTEP .GT. DTSTEP(IDT)) THEN 

IDT= IDT+ 1 
IF ((ISTEP .EQ. 1 .AND. RESTART) .OR. 

1 BEGIN .OR. (ISTEP .NE. 1 .AND. 
2 DELTAT(IDT) .NE. DELTAT(IDT-1))) THEN 
print*, 're-assembling AD matrix' 

CALL ASMBAD 
print*, 'AD matrix re-assembled' 

CALL DGBTRF (NDOF,NDOF,SBW,SBW,M2,3*MAX6+1,IPIV,INFO) 
IF (INFO .NE. 0) PRINT*, 'ERROR FACTORISING',INFO 

print*, 'AD matrix re-decomposed' 

1 

1 
1 
2 
3 
3 

ENDIF 
DO 330 I= ISTART, DTSTEP(IDT) 

CALL RHSO(C,OLD,NEW) 
CALL DGBTRS('NotTransposed',NDOF,SBW,SBW,1, 

M2,3*MAX6+1,IPIV,C(l,NEW),MAXO,INFO) 
OLD= MOD(OLD, 2) + 1 
NEW= MOD(NEW, 2) + 1 

CONTINUE 
ISTART = DTSTEP(IDT) + 1 
WRITE(OUTF, 340)L,T,LABEL1, 'MEAN' 
FORMAT(//1X,74('*')//,23X, 'RESULTS FOR MATERIAL SET',I3 

I I, 23X, 'AT TIME = ', Fl 7. 3 
//18X, 'COMPUTED VALUES OF ',A/ 
18X,36('-')// 
lX, 'NODE NO ', 'SOLUTE CONCENTRATION',2X,A,8X, 

'FIRST_ORDER',4X, 'TRUE_MEAN',7X, 'X',6X, 'Y',6X, 'Z'/) 
J = 0 
DO 360 I= 1, NUMNOD 

IF (ICH(I) .EQ. 0) THEN 
J = J + 1 
IF (VAR(J,L) .GE. 0.0) THEN 

WRITE(OUTF,350) I,C(J,OLD),CMEAN(J,IDT,L), 
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C 

C 
C 
C 
C 
C 
C 
C 

C 

C 
C 
C 
C 
C 
C 
C 

350 
360 

370 

380 

3 
1 

3 
1 

1 
2 

1 
2 
3 

SQRT(CVAR(J,IDT,L)), 
C(J,OLD) + CMEAN(J,IDT,L),Xl(I),X2(I),X3(I) 

ELSE 
WRITE(OUTF,350) I,C(J,OLD),CMEAN(J,IDT,L), 

-SQRT(-CVAR(J,IDT,L)), 
C(J,OLD) + CMEAN(J,IDT,L),Xl(I),X2(I),X3(I) 

ENDIF 
ELSE 

WRITE(OUTF,350) I,X(I),0.0,0.0,X(I),Xl(I),X2(I),X3(I) 
ENDIF 
FORMAT (I5,1X,4F16.12,3F7.2) 

CONTINUE 
MASS= 0.0 
TEMPl = 0.0 
TEMP (1, 1 ) = 0 . 0 

IF (DIM .GE. 2) THEN 
TEMP2 = 0.0 
TEMP(2,1) = 0.0 
TEMP(2,2) = 0.0 

IF (DIM .EQ. 3) THEN 
TEMP3 = 0.0 
TEMP ( 3, 1 ) 0 . 0 
TEMP ( 3 , 2 ) 0 . 0 
TEMP(3,2) 0.0 

ENDIF 
ENDIF 

DO 370 I= 1, NUMNOD 
IF (ICH(I) .eq. 0) THEN 

TEMP4 C(I-LCH(I),OLD} 
ELSE 

TEMP4 X(I) 
ENDIF 
MASS= MASS+ TEMP4 

+ CMEAN(I-LCH(I),IDT,L) 

TEMPl = TEMPl + Xl(I) * TEMP4 
TEMP(l,1) = TEMP(l,1} + TEMP4 * Xl(I) * Xl(I) 

IF (DIM .GE. 2) THEN 
TEMP2 = TEMP2 + X2(I) * TEMP4 
TEMP(2,1) = TEMP(2,1) + TEMP4 * X2(I) * Xl(I) 
TEMP(2,2) = TEMP(2,2) + TEMP4 * X2(I) * X2(I) 

IF (DIM .EQ. 3) THEN 
TEMP3 = TEMP3 + X3(I} * TEMP4 
TEMP(3,l) TEMP(3,l} + TEMP4 * X3(I) * Xl(I) 
TEMP(3,2) TEMP(3,2} + TEMP4 * X3(I) * X2(I) 
TEMP(3,3) TEMP(3,3) + TEMP4 * X3(I) * X3(I) 

ENDIF 
ENDIF 

CONTINUE 
WRITE (OUTF,380) MASS* ABS(Xl(IN(l,3)) - Xl(IN(l,1))} 

* ABS(X2(IN(l,3)) - X2(IN(l,1))}, 
TEMPl / MASS, TEMP2 / MASS 

FORMAT(/lOX, 'TOTAL MASS', 
14X, 'X CENTER OF MASS', 
14X, 'Y CENTER OF MASS' 

/9X,F12.3,13X,F12.3,18X,Fl2.3} 
TEMP(l,l} TEMP(l,l} / MASS - (TEMPl / MASS) ** 2 
TEMP(2,l) = TEMP(2,1} / MASS - TEMPl * TEMP2 /MASS** 2 
TEMP(2,2) = TEMP(2,2) / MASS - (TEMP2 / MASS} ** 2 
WRITE(OUTF,390) 'RADII OF GYRATION OF AVERAGE PLUME', 

1 SQRT(TEMP(l,1)), SQRT(ABS(TEMP(2,1))), 
2 SQRT (TEMP (2, 2)) 

WRITE(OUTF,390) 'RADII OF GYRATION OF CENTER OF MASS', 
1 SQRT(ABS(SIGMA(l,l,IDT,L) / MASS)), 
2 SQRT(ABS(SIGMA(2,1,IDT,L) / MASS)), 
3 SQRT(ABS(SIGMA(2,2,IDT,L) / MASS)) 

WRITE(OUTF,390) ' AVERAGE RADII OF GYRATION', 
1 SQRT(TEMP(l,1) + SIGMA(l,1,IDT,L) / MASS), 
2 SQRT(ABS(TEMP(2,1) + SIGMA(2,1,IDT,L) /MASS)), 
3 SQRT(TEMP(2,2) + SIGMA(2,2,IDT,L) / MASS) 
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390 FORMAT(/28X,A,/7X, 'XX',F12.3,11X,'XY',F12.3,16X, 'YY',F12.3) 
ENDIF 

400 CONTINUE 
RETURN 
END 

SUBROUTINE RHSO(C,OLD,NEW) 
C************************************************************** 

C 
C 18.1 PURPOSE: 
C SUBROUTINE RHSO ASSEMBLES THE RIGHT-HAND-SIDE VECTOR 
C FOR DETERMINING THE CONCENTRATIONS 
C 
C 18.2 FILE INPUT AND OUTPUT: 
C NONE 
C 
C VARIABLE INPUT AND OUTPUT 
C 
C 
C 18.4 DEFINITIONS OF VARIABLES: 
C DELTAT(I) SIZE OF TIME STEP I 
C FLUX(I) SPECIFIED VALUE OF GROUNDWATER FLOW OR 
C SOLUTE FLUX AT NODE I 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

GT(I) 
ICH(I) 

Bl (IJ) 
NDOF 

NUMNOD 
OMEGA 

OMOMEGA 

VALUE OF TIME FUNCTION AT TIME (I) 
1 IF THE VALUE OF THE FIELD VARIABLE IS 
SPECIFIED AT NODE I 
0 OTHERWISE 
MODIFIED GLOBAL MATRIX IN VECTOR STORAGE 
NUMBER OF NODES WHERE THE VALUE OF THE 
FIELD VARIABLE IS UNKNOWN 
NUMBER OF NODES 
RELAXATION FACTOR 
1 - OMEGA 

C 18. 5 USAGE 
C FOR EACH TIME STEP, THE RIGHT-HAND-SIDE VECTOR IS 
C COMPUTED USING THE VALUES OF HEAD OR SOLUTE 
C CONCENTRATION FROM THE PREVIOUS TIME STEP, AND THE 
C MODIFIED COMBINED CONDUCTION AND CAPACITANCE MATRIX, 
C RELAXATION FACTOR, AND TIME STEP INTERVAL FOR THAT 
C TIME STEP 
C 
C SUBROUTINES CALLED 
C LOCATE 
C 
C***************************************************************** 

INCLUDE 'COMALL' 
INTEGER I, J, OLD, NEW 
DOUBLE PRECISION C(MAXl,2) 
IF (T .GT. TIME(IGT)) IGT = IGT + 1 
T = T + DELTAT(IDT) 
IF (T .GT. TIME(IGTDT)) IGTDT = IGTDT + 1 
I = 0 
DO 10 J = 1, NUMNOD 

IF (ICH(J) .EQ. 0) THEN 
I = I + 1 
C(I,NEW) = FC(I) + DELTAT(IDT) * (OMOMEGA * GT(IGT) * FLUX(J) 

1 +OMEGA* GT(IGTDT) * FLUX(J)) 
ENDIF 

10 CONTINUE 
CALL DGBMV('NotTransposed',NDOF,NDOF,SBW,SBW,lDO,B2,2*MAX6+1, 

1 C (l,OLD), 1, lDO, C (1, NEW), 1) 
RETURN 
END 

SUBROUTINE RHSl(C,DDE,E,K,PNT,OLD,NEW) 
C************************************************************** 
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C 
C 18.1 PURPOSE: 
C SUBROUTINE RHSl ASSEMBLES THE RIGHT-HAND-SIDE VECTOR 
C FOR DETERMINING THE FIRST DERIVATIVE OF 
C CONCENTRATION WITH RESPECT TO VELOCITY 
C 
C 18.2 FILE INPUT AND OUTPUT: 
C NONE 
C 
C VARIABLE INPUT AND OUTPUT 
C 
C 
C 18.4 DEFINITIONS OF VARIABLES: 
C DELTAT(I) SIZE OF TIME STEP I 
C FLUX(!) SPECIFIED VALUE OF GROUNDWATER FLOW OR 
C SOLUTE FLUX AT NODE I 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

GT (I) 
ICH (I) 

VALUE OF TIME FUNCTION AT TIME (I) 
1 IF THE VALUE OF THE FIELD VARIABLE IS 
SPECIFIED AT NODE I 
0 OTHERWISE 

Bl(IJ) MODIFIED GLOBAL MATRIX IN VECTOR STORAGE 
NDOF NUMBER OF NODES WHERE THE VALUE OF THE 

FIELD VARIABLE IS UNKNOWN 
NUMNOD NUMBER OF NODES 

OMEGA RELAXATION FACTOR 
OMOMEGA 1 - OMEGA 

C 18.5 USAGE 
C SIMILAR TO DHDK, DCDV IS DETERMINED USING: 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

M * DCDV = DFDV - dt DDDV * C 

NOW 
F = (A - (1-w)dt * D) Ct-1 + dt((l-w)Ft-1 + wFt-1) 

AND ONLY C AND DARE FUNCTIONS OF V 
THEREFORE 

DFDV = (A - (1-w)dt * D) * DCDVt-1 
+ (1-w)dt * DDDV * Ct-1 

AND THE RBS IS 
(A - (1-w)dt * D) * DCDVt-1 

+ (1-w)dt * DDDV * Ct-1 
-dt DDDV * C 

tt LINE 1 
tt LINE 2 
tt LINE 3 

C SUBROUTINES CALLED 
C LOCATE 
C 
C***************************************************************** 

INCLUDE 'COMALL' 
INTEGER E, I, II, J, KI, KJ, K, NODETBL(13) 
INTEGER PNT, OLD, NEW 
DOUBLE PRECISION C(MAXl,2), DDE(MAX3,MAX3,3,0:3) 
DATA NODETBL/2,3,4,3,4,4,8,12,8,20,32,3,4/ 

C DETERMINE (A - (1-w)dt * D) * DCDVt-1 tt LINE 1 
CALL DGBMV('NotTransposed',NDOF,NDOF,SBW,SBW,lDO,B2,2*MAX6+1, 

1 DCDV(l,PNT,K,OLD),1,0DO,DCDV(l,PNT,K,NEW),1) 
C DETERMINE (1-w)dt * DDDV * Ct-1 tt LINE 2 

DO 50 I= 1, NODETBL(ELEMTYP(E)) 
KI = IN (E,I) 
IF (ICH(KI) .EQ. 0) THEN 

II= KI - LCH(KI) 
DO 40 J = 1, NODETBL(ELEMTYP(E)) 

KJ = IN(E,J) 
IF (ICH(KJ) .NE. 0) THEN 

C RBS 'BC' TERM - X(KJ) IS A FIXED BOUNDARY CONDITION 
C WILL BE DONE BELOW! 

Page.A.58 
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DCDV(II,PNT,K,NEW) DCDV(II,PNT,K,NEW) 
1 - DELTAT(IDT) * DDE(I,J,K,0) * X(KJ) 

ELSE 
C RHS 'DMDV*C' TERM - ONLY 'M' DIFERENTIATED NEW (MEAN) CONC. 

DCDV(II,PNT,K,NEW) = DCDV(II,PNT,K,NEW) - OMOMEGA 
1 

1 

* DELTAT(IDT) * DDE(I,J,K,0) * C(KJ - LCH(KJ),OLD) 
DCDV(II,PNT,K,NEW) DCDV(II,PNT,K,NEW) - OMEGA 

* DELTAT(IDT) * DDE(I,J,K,0) * C(KJ - LCH(KJ),NEW) 
ENDIF 

40 CONTINUE 
ENDIF 

50 CONTINUE 
C UPGRADE C FROM C(t-1) TO C(t) 
C THIS IS DONE BY CHANGING FROM 'OLD' TO 'NEW' 
C DETERMINE 

RETURN 
END 

- DDDV * C # LINE 3 

SUBROUTINE RHS2DIFF(DDE,DDE2,E,E2,0LD,NEW) 
C************************************************************** 

C 
C 18 .1 PURPOSE: 
C SUBROUTINE RHS2 ASSEMBLES THE RIGHT-HAND-SIDE VECTOR 
C FOR DETERMINING THE SECOND DERIVATIVE OF 
C CONCENTRATION WITH RESPECT TO VELOCITY 
C 
C 18.2 FILE INPUT AND OUTPUT: 
C NONE 
C 
C VARIABLE INPUT AND OUTPUT 
C 
C 
C 18.4 DEFINITIONS OF VARIABLES: 
C DELTAT(I) SIZE OF TIME STEP I 
C FLUX(I) SPECIFIED VALUE OF GROUNDWATER FLOW OR 
C SOLUTE FLUX AT NODE I 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

GT(I) 
ICH(I) 

VALUE OF TIME FUNCTION AT TIME (I) 
1 IF THE VALUE OF THE FIELD VARIABLE IS 
SPECIFIED AT NODE I 
0 OTHERWISE 

Bl(IJ) MODIFIED GLOBAL MATRIX IN VECTOR STORAGE 
NDOF NUMBER OF NODES WHERE THE VALUE OF THE 

FIELD VARIABLE IS UNKNOWN 
NUMNOD NUMBER OF NODES 

OMEGA RELAXATION FACTOR 
OMOMEGA 1 - OMEGA 

C 18.5 USAGE 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 

SIMILAR TO D2HDK2, D2CDV2 IS DETERMINED USING: 
M * D2CDV2(I,J) = D2FDV2(I,J) 

- DDDV(I) * DCDV(J) 
- DDDV(J) * DCDV(I) 
- D2DDV2(I,J) * C 

AS ABOVE 

DF2DV2 (I, J) (A - (1-w)dt * D) D2CDV2(I,J)t-1 
+ (1-w)dt * DDDV(I) * DCDV(J)t-1 
+ (1-w)dt * DDDV(J) * DCDV(I)t-1 
+ (1-w)dt * D2DDV2(I,J) * Ct-1 

AND THE RHS IS 
(A - (1-w) dt * D) D2CDV2(I,J)t-1 # LINE 1 
+ (1-w)dt * DDDV(I) * DCDV(J)t-1 # LINE 2 
+ (1-w)dt * DDDV(J) * DCDV(I)t-1 # LINE 3 

+ (1-w)dt * D2DDV2(I,J) * Ct-1 # LINE 4 
- DDDV (I) * DCDV (J) # LINE 5 
- DDDV (J) * DCDV (I) # LINE 6 
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C 
C 

- D2DDV2(I,J) * C 

C SUBROUTINES CALLED 
C LOCATE 
C 

# LINE 7 

C***************************************************************** 
INCLUDE 'COMALL' 
INTEGER E, E2, I, II, J, KI, KJ 
INTEGER K, K2, OLD, NEW 
DOUBLE PRECISION DDE(MAX3,MAX3,3,0:3),R(MAX0,3,3) 
DOUBLE PRECISION DDE2(MAX3,MAX3,3,0:0) 
INTEGER NODETBL(l3) 
DATA NODETBL/2,3,4,3,4,4,8,12,8,20,32,3,4/ 

C DETERMINE (A - (1-w)dt * D) D2CDV2(I,J)t-l # LINE 1 
DO 10 K = 1, DIM 

DO 10 K2 = 1, DIM 
CALL DGBMV('NotTransposed',NDOF,NDOF,SBW,SBW,lDO,B2, 

1 2*MAX6+1,D2CDV2(1,K,K2),l,ODO,R(l,K,K2),l) 
10 CONTINUE 

C$DOACROSS NEST (K,K2), LOCAL (I, J, KI, II, KJ,K ,K2) 
DO 80 K = 1, DIM 

DO 80 K2 = 1, DIM 
C DETERMINE (1-w)dt * DDDV(I) * DCDV(J)t-1 
C DETERMINE - DDDV (I) * DCDV ( J) 

DO 50 I= 1, NODETBL(ELEMTYP(E)) 

C 
C 

KI = IN (E,I) 
IF (ICH(KI) .EQ. 0) THEN 

II= KI - LCH(KI) 
DO 40 J = 1, NODETBL(ELEMTYP(E)) 

KJ = IN(E,J) 
IF (ICH(KJ) .EQ. 0) THEN 

RHS DERIVATIV OFF TERM AND 
RHS 'DDDV*DCDV' TERMS. 
KJ = KJ - LCH(KJ) 

# LINE 2 
# LINE 5 

Page.A.60 

1 
2 

R(II,K,K2) = R(II,K,K2) - DELTAT(IDT) * DOE (I,J,K,O) 
* ( OMOMEGA * DCDV(KJ,2,K2,0LD) 

+OMEGA* DCDV(KJ,2,K2,NEW)) 

C 
C 

C 
C 

C 
C 
C 

40 

50 

60 

1 
2 

ENDIF 
CONTINUE 

ENDIF 
CONTINUE 
DETERMINE (1-w)dt * DDDV(J) * DCDV(I)t-1 
DETERMINE - DDDV(J) * DCDV(I) 
DO 70 I= 1, NODETBL(ELEMTYP(E2)) 

KI = IN (E2,I) 
IF (ICH(KI) .EQ. 0) THEN 

II= KI - LCH(KI) 
DO 60 J = 1, NODETBL(ELEMTYP(E2)) 

KJ = IN (E2, J) 
IF (ICH(KJ) .EQ. 0) THEN 

RHS DERIVATIV OFF TERM AND 
RHS 'DDDV*DCDV' TERMS. 
KJ = KJ - LCH(KJ) 

# LINE 3 
# LINE 6 

R(II,K,K2) = R(II,K,K2) - DELTAT(IDT) * DDE2(I,J,K2,0) 
* (OMOMEGA * DCDV(KJ,l,K,OLD) 

+OMEGA* DCDV(KJ,l,K,NEW)) 
ENDIF 

CONTINUE 
ENDIF 

70 CONTINUE 

80 

DETERMINE (1-w)dt * D2DDV2(I,J) * Ct-1 
DETERMINE D2DDV2(I,J) * C 
THIS DOES NOT NEED TO BE DONE SINCE D2DDV2 
DO 80 I= 1, NDOF 

D2CDV2(I,K,K2) R(I,K,K2) 
CONTINUE 
RETURN 
END 

# LINE 4 
# LINE 7 

[0) 
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SUBROUTINE RHS2SAME(C,DDE,E,OLD,NEW) 
C************************************************************** 

C 
PURPOSE: C 18.1 

C SUBROUTINE RHS2 ASSEMBLES THE RIGHT-HAND-SIDE VECTOR 
C 
C 
C 
C 18.2 
C 
C 

FOR DETERMINING THE SECOND DERIVATIVE OF 
CONCENTRATION WITH RESPECT TO VELOCITY 

FILE INPUT AND OUTPUT: 
NONE 

C VARIABLE INPUT AND OUTPUT 
C 
C 
C 18.4 
C 

DEFINITIONS OF VARIABLES: 
DELTAT(I) SIZE OF TIME STEP I 

C FLUX(!) SPECIFIED VALUE OF GROUNDWATER FLOW OR 
C SOLUTE FLUX AT NODE I 
C VALUE OF TIME FUNCTION AT TIME (I) 
C 
C 

GT(I) 
ICH (I) 1 IF THE VALUE OF THE FIELD VARIABLE IS 

SPECIFIED AT NODE I 
C 0 OTHERWISE 
C 
C 
C 

Bl (IJ) 
NDOF 

MODIFIED GLOBAL MATRIX IN VECTOR STORAGE 
NUMBER OF NODES WHERE THE VALUE OF THE 
FIELD VARIABLE IS UNKNOWN 

C 
C 
C 
C 

NUMNOD 
OMEGA 

OMOMEGA 

NUMBER OF NODES 
RELAXATION FACTOR 
1 - OMEGA 

C 18.5 USAGE 
C 
C 
C 
C 
C 
C 
C 
C 

SIMILAR TO D2HDK2, D2CDV2 IS DETERMINED USING: 
M * D2CDV2(I,J) = D2FDV2(I,J) 

- DDDV(I) * DCDV(J) 
- DDDV(J) * DCDV(I) 
- D2DDV2(I,J) * C 

AS ABOVE 

C 
C 
C 
C 

DF2DV2 (I, J) (A - (1-w)dt * D) D2CDV2(I,J)t-1 
+ (1-w)dt * DDDV(I) * DCDV(J)t-1 
+ (1-w)dt * DDDV(J) * DCDV(I)t-1 
+ (1-w)dt * D2DDV2(I,J) * Ct-1 

C 
C AND THE RHS IS 
C (A - (1-w)dt * D) D2CDV2(I,J)t-1 # LINE 1 
C + (1-w)dt * DDDV(I) * DCDV(J)t-1 # LINE 2 
C + (1-w)dt * DDDV(J) * DCDV(I)t-1 # LINE 3 
C + (1-w)dt * D2DDV2(I,J) * Ct-1 # LINE 4 
C - DDDV(I) * DCDV(J) # LINE 5 
C - DDDV(J) * DCDV(I) # LINE 6 
C - D2DDV2(I,J) * C # LINE 7 
C 
C SUBROUTINES CALLED 
C LOCATE 
C 
C***************************************************************** 

INCLUDE 'COMALL' 
INTEGER E, I, II, J, KI, KJ, K, K2, OLD, NEW 
DOUBLE PRECISION C(MAXl,2), DDE(MAX3,MAX3,3,0:3) 
DOUBLE PRECISION R(MAX0,3,3) 
INTEGER NODETBL(13) 
DATA NODETBL/2,3,4,3,4,4,8,12,8,20,32,3,4/ 

C DETERMINE (A - (1-w)dt * D) D2CDV2(I,J)t-1 # LINE 1 
DO 10 K = 1, DIM 

DO 10 K2 = 1, DIM 
CALL DGBMV('NotTransposed',NDOF,NDOF,SBW,SBW,1DO,B2, 

1 2*MAX6+1,D2CDV2(1,K,K2),1,0DO,R(l,K,K2),1) 

Page.A.61 
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10 CONTINUE 
C$DOACROSS NEST (K,K2), LOCAL (I, J, KI, II, KJ,K ,K2) 

DO 60 K = 1, DIM 
DO 60 K2 = 1, DIM 

DO 50 I= 1, NODETBL(ELEMTYP(E)) 
KI = IN (E, I) 
IF (ICH(KI) .EQ. 0) THEN 

II= KI - LCH(KI) 
DO 40 J = 1, NODETBL(ELEMTYP(E)) 

KJ = IN(E,J) 
IF (ICH (KJ) .NE. 0) THEN 

C RHS 'BC' TERM - X(KJ) IS A FIXED BOUNDARY CONDITION 
R(II,K,K2) = R(II,K,K2) - DELTAT(IDT) 

C 

C 
C 
C 

C 
C 
C 

40 

1 * DDE(I,J,K,K2) * X(KJ) 

1 
2 
3 

1 
2 
3 

DETERMINE 
DETERMINE 
DETERMINE 

DETERMINE 
DETERMINE 
DETERMINE 

ELSE 
RHS DERIVATIV OFF TERM. 
KJ = KJ - LCH(KJ) 

(1-w)dt * DDDV(I) * DCDV(J)t-1 # LINE 2 
(1-w)dt * DDDV(J) * DCDV(I)t-1 # LINE 3 
(1-w)dt * D2DDV2(I,J) * Ct-1 # LINE 4 

R(II,K,K2) = R(II,K,K2) - OMOMEGA * DELTAT(IDT) 
* ( DDE(I,J,K ,0) * DCDV(KJ,2,K2,0LD) 

+ DDE(I,J,K2,0) * DCDV(KJ,l,K ,OLD) 
+ DDE(I,J,K,K2) * C(KJ,OLD)) 
- DDDV(I) * DCDV(J) # LINE 5 
- DDDV(J) * DCDV(I) # LINE 6 

D2DDV2(I,J) * C # LINE 7 
R(II,K,K2) R(II,K,K2) - OMEGA* DELTAT(IDT) 

* ( DDE(I,J,K, 0) * DCDV(KJ,2,K2,NEW) 
+ DDE(I,J,K2,0) * DCDV(KJ,l,K ,NEW) 
+ DDE(I,J,K,K2) * C(KJ,NEW)) 

ENDIF 
CONTINUE 

ENDIF 
50 CONTINUE 

DO 60 I= 1, NDOF 
D2CDV2(I,K,K2) R(I,K,K2) 

60 CONTINUE 
RETURN 
END 

SUBROUTINE CSAVE(E,E2) 
C************************************************************************* 
C 
C PURPOSE: 
C SUBROUTINE CSAVE SAVES THE CURRENT VALUES OF THE 
C VARIABLES INTO A FILE CALLED 'AUTOSAVE' SO THAT THE 
C PROGRAM CAN BE SHUT DOWN AND RESTARTED WHERE IT LEFT 
C OFF. 
C 
C************************************************************************* 

INCLUDE 'COMALL' 
INTEGER E, E2, J, K, K2, L, ISTEP 
OPEN (UNIT= PROBF, FILE= PROBFILE, 

1 FORM= 'FORMATTED', STATUS= 'UNKNOWN', 
2 ACCESS= 'SEQUENTIAL') 

WRITE (PROBF,*) 'ABOUT TO SAVE CONCENTRATION DATA' 
OPEN (UNIT= HCF, FORM= 'FORMATTED', 

1 FILE= HCFILE, 
2 STATUS= 'UNKNOWN', ACCESS= 'SEQUENTIAL') 

WRITE (HCF,*) E, E2 
DO 30 L = 1, NUMMAT 

IDT = 0 
DO 30 ISTEP = 1, MXSTEP 

IF (ISTEP .EQ. 1 .OR. ISTEP .GT. DTSTEP(IDT)) THEN 
IDT = IDT + 1 
DO 10 J = 1, NDOF 

WRITE (HCF,*) CMEAN(J,IDT,L), CVAR(J,IDT,L) 
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10 CONTINUE 
DO 20 K = 1, DIM 

DO 20 K2 = 1, K 
WRITE(HCF,*) SIGMA(K,K2,IDT,L) 

20 CONTINUE 
ENDIF 

30 CONTINUE 
WRITE (HCF,*) 'CONCENTRATION FILE ENDS' 
CLOSE (UNIT= HCF, STATUS= 'KEEP') 
OPEN (UNIT= DONEF, FILE= DONEFILE, STATUS= 'UNKNOWN') 
WRITE (DONEF,*) 4,' Concentrations in progress' 
CLOSE (UNIT= DONEF, STATUS= 'KEEP') 
PRINT*, 'DATA SAVED ATE, E2 = ',E, E2 
PRINT *,NOR2, 'SECOND DERIVATIVES COMPLETED' 
CLOSE (UNIT= PROBF, STATUS= 'DELETE') 
END 

SUBROUTINE CLOAD(E,E2) 

Page.A.63 

C************************************************************************* 

C 
C PURPOSE: 
C SUBROUTINE CLOAD LOADS THE CURRENT VALUES OF THE 
C VARIABLES FROM A FILE CALLED 'AUTOSAVE' SO THAT THE 
C PROGRAM CAN RESTART WHERE IT LEFT OFF. 
C 
C************************************************************************* 

10 

INCLUDE 'COMALL' 
INTEGER E, E2, J, K, K2, L, ISTEP 
OPEN (UNIT= HCF, FORM= 'FORMATTED', 

1 FILE= HCFILE, 
2 STATUS= 'UNKNOWN', ACCESS= 'SEQUENTIAL') 

READ (HCF,*) E, E2 
DO 30 L = 1, NUMMAT 

IDT= 0 
DO 30 ISTEP = 1, MXSTEP 

IF (ISTEP .EQ. 1 .OR. ISTEP .GT. DTSTEP(IDT)) THEN 
IDT= IDT+ 1 
DO 10 J = 1, NDOF 

READ (HCF,*) CMEAN(J,IDT,L), CVAR(J,IDT,L) 
CONTINUE 
DO 20 K = 1, DIM 

DO 20 K2 = 1, K 
READ (HCF,*) SIGMA(K,K2,IDT,L) 

20 CONTINUE 
ENDIF 

30 CONTINUE 
WRITE (HCF,*) 'CONCENTRATION FILE ENDS' 
CLOSE (UNIT= HCF, STATUS= 'KEEP') 
PRINT*, 'DATA RESTORED ATE, E2 = ',E, E2 
RETURN 
END 

SUBROUTINE CREATE (PRIOR) 
C********************************************************************* 
C 
C 8.1 PURPOSE: 
C 
C 
C 
C 
C 
C 

TO CREATE NODE NUMBERS AND COORDINATES 
TO CREATE ELEMENT NUMBERS, TYPES AND NODE NUMBERS 
TO CREATE ELEMENT MATERIAL SET NUMBERS AND MATERIAL 

PROPERT!ES FOR EACH MATERIAL SET 
TO CREATE DIRICHLET BOUNDARY CONDITIONS 

C 8.2 INPUT: 
C 
C 
C 
C 

NODE NUMBERS AND COORDINATES ARE CREATED FROM DATA 
SUPPLIED FROM THE USER SUPPLIED FILE ASSIGNED TO UNIT 
"INF" 

C 8. 3 OUTPUT: 
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C 
C 
C 
C 
C 
C 
C 

NODE NUMBERS AND COORDINATES; ELEMENT NUMBERS, TYPES, 
AND NODE NUMBERS; ELEMENT MATERIAL SET NUMBERS AND 
MATERIAL PROPERTIES FOR EACH MATERIAL SET; AND 
SPECIFIED VALUES OF THE FIELD VARIABLE AND SPECIFIED 
VALUES OF GROUNDWATER FLOW ARE WRITTEN TO THE USER­
DEFINED FILE ASSIGNED TO UNIT "OUTF" 

C 8.4 DEFINITIONS OF VARIABLES: 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 

DIM 
ELEMTYP (I) 

FLUX (I) 

ICH (I) 

IDIM 
IN (I, J) 

LABEL! 
LABEL2 
LCH (I) 

LENGTH(I) 
MATSET(I) 

NON 

NDOF 
NELM (I) 

NNN 

NODETBL(I) 
NUMELM 
NUMMAT 
NUMNOD 

NUMPROP 

PLANE 

PROP (I, J) 
X ( I) 

Xl ( I) 

X2 (I) 

COORDINATE SYSTEM TYPE 
ELEMENT TYPE FOR ELEMENT I 
SPECIFIED VALUE OF GROUNDWATER FLOW OR 
SOLUTE FLUX AT NODE (I) 
1 IF THE VALUE OF THE FIELD VARIABLE IS 
SPECIFIED FOR NODE I 
0 OTHERWISE 
DIM IF DIM= 1, 2 OR 3 OTHERWISE IDIM = 2 
NODE NUMBER J FOR ELEMENT I 
"HYDRAULIC HEAD" OR "SOLUTE CONCENTRATION" 
"GROUNDWATER FLOW" OR "SOLUTE FLUX" 
ICH(I) + ICH(I-1) + ICH(I-2) + ... 
THE ARRAYSICH AND LCH ARE USED TO MODIFY 
GLOBAL SYSTEM OF EQUATIONS IN SUBROUTINES 
ASMBK, ASMBKC, AND ASMBAD 
LENGTH OF FLOW DOMAIN IN DIRECTION I 
MATERIAL SET NUMBER FOR ELEMENT(I) 
NUMBER OF NODES WITH SPECIFIED VALUES OF THE 
FIELD VARIABLE (DIRICHLET NODES) 
NUMBER OF DEGREES OF FREEDOM (UNSPECIFIED NODES) 
NUMBER OF ELEMENTS IN I DIRECTION 
NUMBER OF NODES WITH SPECIFIED VALUES OF THE 
GROUNDWATER FLOW OR SOLUTE FLUX (NEUMANN NODES) 
NUMBER OF NODES 
NUMBER OF ELEMENTS IN MESH 
NUMBER OF MATERIAL SETS 
NUMBER OF NODES READ 
NUMBER OF MATERIAL PROPERTIES IN EACH 
MATERIAL SET 
NUMBER OF NODES IN A PLANE PERPENDICULAR 
TO X DIRECTION 
MATERIAL PROPERTY J FOR MATERIAL SET I 
SPECIFIED VALUE OF THE FIELD VARIABLE AT NODE I 
X COORDINATE FOR NODE I IF DIM 1, 2 OR 3 
R COORDINATE FOR NODE I IF DIM 4 
IS NOT USED IF DIM= 1 
Y COORDINATE FOR NODE I IF DIM 2 OR 3 
Z COORDINATE FOR NODE I IF DIM 4 

X3(I) IS NOT USED IF DIM= 1, 2 OR 3 
Z COORDINATE FOR NODE I IF DIM 3 

XELM NUMBER OF ELEMENTS IN X DIRECTION 
YELM NUMBER OF ELEMENTS IN Y DIRECTION 
ZELM NUMBER OF ELEMENTS IN Z DIRECTION 

C 8.5 USAGE: 
C 
C 
C 
C 
C 
C 
C 
C 

THE DIMENSIONS OF THE MESH AND NUMBER OF ELEMENTS 
ALONG EACH SIDE ARE READ IN. FROM THIS THE 
COORDINATES OF EACH NODE ARE CALCULATED,AND THE NODES 
FOR EACH ELEMENT ARE DETERMINED. ALL ELEMENTS ARE 
ASSUMED TO BELONG TO ELEMENT MATERIAL SET (1). 
BOTH ENDS OF THE FLOW FIELD ARE GIVEN FIXED HEADS 
TO CREATE A UNIFORM (DETERMINISTIC) FLOW FIELD 

C 9.6 ELEMENET TYPES: 
C 
C 
C 
C 
C 
C 

TYPE NODES 
1 2 
2 3 
3 4 
4 3 
5 4 

DIMENSION DESCRIPTION 
1 LINEAR BAR 
1 QUADRATIC BAR 
1 CUBIC BAR 
2 LINEAR TRIANGLE 
2 LINEAR RECTANGLE 
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C 6 4 2 LINEAR QUADRILATERAL 
C 7 8 2 QUADRATIC QUADRILATERAL 
C 8 12 2 CUBIC QUADRILATERAL 
C 9 8 3 LINEAR PARALLELEPIPED 
C 10 20 3 QUADRATIC PARALLELEPIPED 
C 11 32 3 CUBIC PARALLELPIPED 
C 12 3 AXI-SYMM LINEAR TRIANGLE 
C 13 4 AXI-SYMM LINEAR RECTANGLE 
C 14 8 3 LINEAR RECTANGULAR PRISM 
C 
C SUBROUTINES CALLED: 
C NONE 
C 
C********************************************************************* 

10 

INCLUDE 'COMALL' 
INTEGER IDIM, E, E2, I, J, K, L, PLANE, NODETBL(l4), SETNUM 
INTEGER KI, II, JJ, KJ 
DATA NODETBL/2,3,4,3,4,4,8,12,8,20,32,3,4,8/ 
DOUBLE PRECISION LENGTH(3), HEAD, NEWSET(MAX4) 
LOGICAL PRIOR 
CHARACTER*80 TITLE 
READ (INF,' (A)') TITLE 
READ (INF,*) DIM 
IDIM = DIM 
IF (DIM .EQ. 4) IDIM = 2 
READ (INF, *) (NELM(I), I = 1, IDIM) 
READ (INF,*) (LENGTH(I), I= 1, IDIM) 
NUMNOD = (NELM(l) + 1) * (NELM(2) + 1) * (NELM(3) + 1) 
IF (NUMNOD .GT. MAXl) THEN 

PRINT*, 'TOO MANY NODES FOR THIS PROGRAM.' 
PRINT*, 'AVAILABLE NODES= ',MAXl 
PRINT*, 'REQUESTED NODES= ',NUMNOD 
PRINT*, 'RECOMPILE WITH A LARGER MAXIMUM' 

ENDIF 
NUMELM = NELM(l) * NELM(2) 
IF (IDIM .EQ. 3) NUMELM = NUMELM * NELM(3) 
IF (NUMELM .GT. MAX2) THEN 

PRINT*, 'TOO MANY ELEMENTS FOR THIS PROGRAM.' 
PRINT*, 'AVAILABLE ELEMENTS= ',MAX2 
PRINT*, 'REQUESTED ELEMENTS= ',NUMELM 
PRINT*, 'RECOMPILE WITH A LARGER MAXIMUM' 

ENDIF 
I = 0 
DO 30, J = 0, NELM(l) 

DO 20, K = 0, NELM(2) 
IF (IDIM .EQ. 2) THEN 

I = I + 1 
Xl(I) = LENGTH(l) * J / NELM(l) 

_X2(I) = LENGTH(2) * K / NELM(2) 
ELSEIF (IDIM .EQ. 3) THEN 

DO 10 L 0, NELM(3) 
I = I + 1 
Xl(I) LENGTH(l) * J / NELM(l) 
X2(I) LENGTH(2) * K / NELM(2) 
X3(I) LENGTH(3) * L / NELM(3) 

CONTINUE 
ENDIF 

20 CONTINUE 
30 CONTINUE 

IF (.NOT. PRIOR) THEN 
WRITE (OUTF, I (A)') TITLE 

C WRITE NODE NUMBERS AND NODE COORDINATES TO OUTPUT FILE 
40 IF (NUMNOD .GT. 0) THEN 

IF (DIM .EQ. 2) THEN 
WRITE (OUTF,60) 

60 FORMAT (2X, 'NODE',SX, 'NODAL COORDINATES'/ 
1 1X,'NUMBER',8X,'X',12X,'Y'/ 
2 lX, 6 ( ' - '), 3X, 11 ( ' - '), 2X, 11 ( ' - ')) 
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70 

80 

90 
100 

1 
2 

1 
2 

ELSEIF (DIM .EQ. 3) THEN 
WRITE (OUTF,70) 

FORMAT (2X, 'NODE',14X, 'NODAL COORDINATES'/ 
lX, 'NUMBER', BX, 'X', 12X, 'Y', 12X, 'Z' / 
lX, 6 ( '-') ,3X,11 ( '-') ,2X,11 ('-') ,2X, 11 ('-')) 

ELSEIF (DIM .EQ. 4) THEN 
WRITE (OUTF,80) 
FORMAT (2X, 'NODE',BX, 'NODAL COORDINATES'/ 

lX, 'NUMBER', BX, 'R', 12X, 'Z' / 
lX, 6 ( ' - ' ) , 3X, 11 ( ' - ' ) , 2X, 11 ( ' - ' ) ) 

ENDIF 
IF (!DIM .EQ. 2) THEN 

DO 100 I= 1, NUMNOD 
WRITE(OUTF,90) I, Xl(I), X2(I) 
FORMAT (I5,2X,3(F13.4)) 

CONTINUE 
ELSE 

DO 110 I= 1, NUMNOD 
WRITE(OUTF,90) I, Xl(I), X2(I), X3(I) 

110 CONTINUE 
ENDIF 

ELSE 
WRITE(OUTF,120) 'NODAL POINT' 

120 FORMAT(' NO ',A,' DATA CREATED.') 
ENDIF 

ENDIF 
C CREATE ELEMENT TYPE AND ELEMENT NODE NUMBERS 

IF (DIM .EQ. 2) THEN 

130 

IF (NELM(l) / 2 .LT. (NELM(l) + 1) / 2) THEN 
PRINT*, 'THIS PROGRAM REQUIRES AN EVEN NUMBER' 
PRINT*, 'OF ELEMENTS IN THE X DIRECTION' 

ENDIF 
IF (NELM(2) / 2 .LT. (NELM(2) + 1) / 2) THEN 

PRINT*, 'THIS PROGRAM REQUIRES AN EVEN NUMBER' 
PRINT*, 'OF ELEMENTS IN THEY DIRECTION' 

ENDIF 
E = 0 
E2 = NUMELM 
I = 0 
DO 140 J = 1, NELM(l) / 2 

DO 130 K = 1, NELM(2) / 2 
I = I + 1 
E = E + 1 
IN(E,1) I 
IN(E,2) I + NELM(2) + 
IN(E,3) I + NELM(2) + 
IN(E,4) I + 1 
ELEMTYP(E) = 6 

CONTINUE 
E2 = E2 - NELM(2) I 2 

1 
2 

DO 135 K = NELM(2) I 2 + 1, NELM(2) 
I = I + 1 
E2 = E2 + 1 
IN(E2,1) I 
IN(E2,2) I + NELM(2) + 1 
IN ( E2 , 3 ) I + NELM ( 2 ) + 2 
IN(E2,4) I + 1 
ELEMTYP(E2) = 6 

135 CONTINUE 
E2 = E2 - NELM(2) / 2 
I = I + 1 

140 CONTINUE 
E = E + NELM(2) / 2 + 1 
E2 = E2 + 1 
DO 143 J = NELM(l) / 2 + 1, NELM(l) 

DO 141 K = 1, NELM(2) / 2 
I I + 1 
E = E - 1 

Page.A.66 
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IN(E,1) I 
IN(E,2) I+ NELM(2) + 1 
IN(E,3) I+ NELM(2) + 2 
IN(E,4) I+ 1 
ELEMTYP(E) = 6 

141 CONTINUE 

142 

143 

150 

160 

170 

210 

180 

190 
200 

1 
2 

1 

E = E + NELM(2) 
DO 142 K = NELM(2) / 2 + 1, NELM(2) 

I = I + 1 
E2 = E2 - 1 
IN(E2,1) I 
IN(E2,2) I + NELM(2) + 1 
IN(E2,3) I + NELM(2) + 2 
IN(E2,4) I + 1 
ELEMTYP(E2) = 6 
CONTINUE 

I = I + 1 
CONTINUE 

ELSEIF (DIM .EQ. 3) THEN 
E = 0 
I = 0 
PLANE= (NELM(2) + 1) * (NELM(3) + 1) 
DO 170 J = 1, NELM(l) 

DO 160 K = 1, NELM(2) 
DO 150 L = 1, NELM(3) 

E = E + 1 
I = I + 1 
IN(E,1) I 
IN(E,2) I + PLANE 
IN(E,3) I +PLANE+ NELM(3) + 1 
IN(E,4) I + NELM(3) 
IN(E,5) I + 1 
IN (E, 6) I + PLANE+ 
IN(E, 7) I + PLANE+ 
IN(E,8) I + NELM(3) 
ELEMTYP(E) = 9 

CONTINUE 
I = I + 1 

CONTINUE 
I = I + NELM(3) 

CONTINUE 
ENDIF 
DO 210 E = 1, NUMELM 

MATSET(E) = 1 
CONTINUE 
IF (.NOT. PRIOR) THEN 

IF (NUMELM .GT. 0) THEN 
IF (DIM .EQ. 2) THEN 

WRITE (OUTF,180) (' 
ELSE 

WRITE (OUTF,180) (' 
ENDIF 

+ 1 

1 
NELM (3) + 2 
+ 2 

',I=l,2) 

',I=l,2) 

FORMAT (/,lX, 'ELEMENT ELEMENT MAT' 'L', 
/, lX,' NO. TYPE SET ',A, 'NODE NUMBERS', 
I, lX, '------- ------- -----', A, '------------') 

DO 200 I =l, NUMELM 
WRITE (OUTF,190) I,ELEMTYP(I),MATSET(I), 

(IN(I,J), J=l,NODETBL(ELEMTYP(I))) 
FORMAT(I6,I8,I9,2X,8I5:4(/25X,8I6)) 

CONTINUE 
ELSE 

WRITE (OUTF,120) 'ELEMENT' 
ENDIF 

ENDIF 
C READ MATERIAL DATA FOR EACH MATERIAL SET 
C READ FROM INPUT FILE: THE NUMBER OF PROPERTIES IN EACH 
C MATERIAL SET 

READ (INF,*) NUMPROP 
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IF (NUMPROP .GT. MAX5) PRINT*, 'TOO MANY PROPERTIES PER SET' 
NUMMAT = 0 

Page.A.68 

C READ FROM THE INPUT FILE: ELEMENT NUMBER AND MATERIAL SET NUMBER 
250 READ (INF,*) SETNUM, (NEWSET(J),J=l,NUMPROP) 

IF (SETNUM .EQ. -1) GOTO 280 
IF (SETNUM .GT. NUMMAT) NUMMAT = SETNUM 
DO 260 J = 1, NUMPROP 

PROP(SETNUM,J) = NEWSET(J) 
260 CONTINUE 

GOTO 250 
280 IF (NUMMAT .GT. MAX4) THEN 

PRINT*, 'TOO MANY MATERIAL SETS FOR THIS PROGRAM.' 
PRINT*, 'AVAILABLE MATERIAL SETS= ',MAX4 
PRINT*, 'REQUESTED MATERIAL SETS= ',NUMMAT 
PRINT*, 'RECOMPILE WITH A LARGER MAXIMUM' 

ENDIF 
IF (.NOT. PRIOR) THEN 

C WRITE MATERIAL PROPERTIES INFORMATION TO OUTPUT FILE 
IF (NUMPROP .EQ. 1) THEN 

240 

270 
245 

1 
2 

WRITE(OUTF,240) (' ',I=l,2) 
ELSEIF (NUMPROP .EQ. 2) THEN 

WRITE(OUTF,240) (' ',I=l,2) 
ELSEIF (NUMPROP .EQ. 3) THEN 

WRITE(OUTF,240) (' ',I=l,2) 
ELSEIF (NUMPROP .GE. 4) THEN 

WRITE(OUTF,240) (' ',I=l,2) 
ENDIF 
FORMAT(/lX, 'MATERIAL'/2X, 'SET NO.',A, 

'MATERIAL PROPERTIES'/lX, '--------',A, 
'-------------------') 

DO 245 SETNUM = 1, NUMMAT 
WRITE (OUTF,270) SETNUM, (PROP(SETNUM,J),J=l,NUMPROP) 
FORMAT(I6,4X,8(1P4E13.6/10X)) 

CONTINUE 
IF (NUMMAT .EQ. 0) THEN 

WRITE (OUTF,120) 'ELEMENT MATERIAL PROPERTY' 
ENDIF 

ENDIF 
C INITIALISE BOUNDARY CONDITIONS 

DO 290 I= 1, NUMNOD 
ICH(I) = 0 
FLUX(!) = 0.0 

290 CONTINUE 
C CREATE DIRICHLET NODES AT ENDS OF FLOW FIELD 

READ (INF,*) HEAD 
IF (DIM .EQ. 2) THEN 

NDN = NELM(2) * 2 + 2 
DO 320 I= 1, NELM(2) + 1 

X(I) = HEAD 
ICH(I) 1 

320 CONTINUE 
DO 330 I NUMNOD - NELM(2), NUMNOD 

X(I) = 0.0 
ICH(I) = 1 

330 CONTINUE 

340 

ELSE 
NDN = 2 * 
DO 340 I 

X (I) = 
ICH (I) 

CONTINUE 
DO 350 I 

X(I) = 
ICH (I) 

350 CONTINUE 
ENDIF 

PLANE+ 2 
= 1, PLANE+ 1 
HEAD 

1 

NUMNOD - PLANE, NUMNOD 
0.0 
= 1 

NNN=O 
LCH(l) ICH(l) 
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DO 370 I= 2, NUMNOD 
LCH(I) = LCH(I-1) + ICH(I) 

370 CONTINUE 
NDOF = NUMNOD - NDN 
IF (.NOT. PRIOR) THEN 

WRITE (OUTF,300) LABELl 
300 FORMAT(//3X, 'NODE',lSX, 'SPECIFIED'/4X, 'NO.',l0X,A/ 

310 

380 

1 2X, '------',9X, '--------------------') 
DO 380 I= 1, NUMNOD 

IF (ICH (I) .EQ. 1) THEN 
WRITE (OUTF,310) I,X(I) 
FORMAT(I6,10X,F1S.4) 

ENDIF 
CONTINUE 
WRITE (OUTF, 360) LABELl,NDN 

360 FORMAT(//' NUMBER OF NODES WITH SPECIFIED ',/2x,A, '=',Ill) 
WRITE (OUTF, 360) LABEL2,NNN 

ENDIF 
READ (INF,*) Rl, R2 
NORl = 0 
NOR2 = 0 

C COMPUTE THE SEMI-BANDWIDTH 
SBW = 1 
DO 430 E = 1, NUMELM 

DO 420 I= 1, NODETBL(ELEMTYP(E)) 
KI = IN(E,I) 
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IF (ICH(KI) .EQ. 0 .AND. I .LT. NODETBL(ELEMTYP(E))) THEN 
II= KI - LCH(KI) 
DO 410 J =I+ 1, NODETBL(ELEMTYP(E)) 

KJ = IN(E,J) 
IF (ICH (KJ) .EQ. 0) THEN 

JJ = ABS(KJ - LCH(KJ) - II) + 1 
IF (JJ .GT. SBW) SBW = JJ 

ENDIF 
410 CONTINUE 

ENDIF 
420 CONTINUE 
430 CONTINUE 

IF (SBW .GT. MAX6) STOP'** EXCEEDS MAXIMUM SEMIBANDWIDTH**' 
440 FORMAT(//' NUMBER OF DEGREES OF FREEDOM',/, 

1 ' IN MODIFIED K MATRIX=', IS/// 
2 ' SEMI-BANDWIDTH OF MODIFIED K MATRIX =',IS) 

IF (PRIOR) THEN 
390 READ (OUTF,*,END=400) 

GOTO 390 
ELSE 

WRITE (OUTF,440) NDOF,SBW 
400 ENDIF 

RETURN 
END 

SUBROUTINE CREAT2 (PRIOR) 
C********************************************************************* 
C 
C 16.1 PURPOSE: 
C FOR THE CONCENTRATION PROBLEM: 
C TO CREATE MATERIAL PROPERTIES FOR EACH MATERIAL SET 
C TO CREATE DIRICHLET BOUNDARY CONDITIONS 
C TO CREATE THE INITIAL CONCNETRATION DISTRIBUTION 
C TO READ THE RELAXATION FACTOR, TIME STEP INTERVALS 
C AND VALUES OFTHE TIME FUNCTION. 
C 
C 16 . 2 INPUT: 
C ELEMENT MATERIAL PROPERTIES FOR EACH MATERIAL SET, 
C DIRICHLET BOUNDARY CONDITIONS AND INITIAL CONCENTRATION 
C DISTRIBUTION PARAMETERS. 
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C 
C 16.3 OUTPUT 
C MATERIAL SET PROPERTIES 
C THE RELAXATION FACTOR, TIME STEP INTERVALS, VALUES OF 
C THE TIME FUNCTION, AND INITIAL VALUES OF THE FIELD 
C VARIABLE ARE WRITTEN TO THE USER DEFINED FILE ASSIGNED 
C TO UNIT "OUTF". 
C 
C 16.4 DEFINITIONS OF VARIABLES: 
C DELTAT(I) SIZE OF TIME STEP I 
C DTSTEP(I) NUMBER OF TIME STEPS TO TAKE USING A TIME 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

GT(I) 
ICH(I) 

LABELl 

STEP OF SIZE DELTAT(I) 
VALUE OF TIME FUNCTION AT TIME I 
1 IF THE VALUE OF THE FIELD VARIABLE IS 
SPECIFIED FOR NODE I, 
0 OTHERWISE 
CHARACTER VARIABLE USED TO LABEL COLUMN 
HEADINGS FOR SPECIFIED VALUES OF THE FIELD 
VARIABLE ON FILE ASSIGNED TO UNIT "OUTF". 
LABELl = "HYDRAULIC HEAD", "PRESSURE HEAD" 
OR "SOLUTE FLUX" 

MXSTEP NUMBER OF DIFFERENT TIME STEP INTERVALS 
NUMNOD NUMBER OF NODES 

OMEGA RELAXATION FACTOR 
OMOMEGA 1 - OMEGA 
TIME(I) STARTING TIME FOR TIME FUNCTION VALUE GT(I) 

TOTALT TOTAL LENGTH OF TIME FOR WHICH CALCULATIONS 

X (I) 
ARE PERFORMED 
VALUE OF THE FIELD VARIABLE (HYDRAULIC HEAD, 
PRESSURE HEAD, OR SOLUTE CONCENTRATION) 
AT NODE I 

C 16.5 USAGE 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

THE RELAXATIN FACTOR OMEGA IS READ FIRST. THIS 
IS FOLLOWED BY A LIST OF TIME STEPS AND TIME STEP 
INTEVALS. EACH LINE OF INPUT CONTAINS THE NUMBER OF 
TIME STEPS TO TAKE FOLLOWED BY A SPECIFIED TIME STEP 
INTERVAL. INPUT OF TIME STEPS AND TIME STEP INTERVALS 
IS TERMINATED BY PLACING A -1 IN BOTH FIELDS. 
THIS IS FOLLOWED BY A LIST OF TIMES AND VALUES OF THE 
TIME FUNCTION FOR EACH TIME. INPUT IS TERMINATED BY 
PLACING A -1 IN BOTH FIELDS. FINALLY, THE INITIAL 
VALUE OF THE FIELD VARIABLE IS READ FOR EACH NODE. 
INPUT IS TERMINATED BY PLACING A -1 IN BOTH FIELDS. 

C SUBROUTINES CALLED 
C NONE 
C 
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C***************~***************************************************** 
INCLUDE 'COMALL' 
INTEGER IT, ISTART, I, J, SETNUM, E, II, KI, KJ, JJ 
INTEGER NODETBL(l4) 
DOUBLE PRECISION TOTALT, HINIT, NORM, SIGMAl 
LOGICAL PRIOR 
DATA NODETBL/2,3,4,3,4,4,8,12,8,20,32,3,4,8/ 

C READ FROM INPUT FILE: THE NUMBER OF PROPERTIES IN EACH 
C MATERIAL SET 

READ (INF,*) NUMPROP 
IF (NUMPROP .GT. MAXS) PRINT*,NUMPROP, 'TOO MANY PROPERTIES' 
DO 10 I= 1, NUMMAT 

READ (INF,*) SETNUM, (PROP(SETNUM,J),J=l,NUMPROP) 
10 CONTINUE 

C WRITE MATERIAL PROPERTIES INFORMATION TO OUTPUT FILE 
IF (.NOT. PRIOR) THEN 

IF (NUMPROP .EQ. 1) THEN 
WRITE (OUTF, 20) (' ', I=l, 2) 

ELSEIF (NUMPROP .EQ. 2) THEN 
WRITE(OUTF,20) (' ',I=l,2) 
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ELSEIF (NUMPROP .EQ. 3) THEN 
WRITE (OUTF, 20) (' ', I=l, 2) 

ELSEIF (NUMPROP .GE. 4) THEN 
WRITE (OUTF, 20) ( 1 ',I=l,2) 

ENDIF 
20 FORMAT(/lX, 'MATERIAL'/2X, 'SET NO.',A, 

1 'MATERIAL PROPERTIES'/lX, '--------',A, 
2 '-------------------') 

DO 40 I= 1, NUMMAT 
WRITE (OUTF,30) SETNUM, (PROP(SETNUM,J),J=l,NUMPROP) 

30 FORMAT(I6,2X,8(1P3El3.6/8X)) 
40 CONTINUE 

ENDIF 
DO 50 I= 1, NUMELM 

MATSET(I) = SETNUM 
50 CONTINUE 

C INITIALISE BOUNDARY CONDITIONS 
DO 60 I= 1, NUMNOD 

ICH(I) = 0 
FLUX(I) = 0.0 

60 CONTINUE 
C CREATE DIRICHLET NODES AT UPSTREAM END OF FLOW FIELD 

IF (DIM .EQ. 2) THEN 
NON= NELM(2) + 1 
DO 70 I= 1, NELM(2) + 1 

X(I) = 0.0 
ICH(I) = 1 

70 CONTINUE 
ELSE 

NON= (NELM(2) + 1) * (NELM(3) + 1) 
DO 80 I= 1, NON 

X(I) = 0.0 
ICH(I) = 1 

80 CONTINUE 
ENDIF 
LCH(I) = ICH(I) 
DO 85 I= 2, NUMNOD 

LCH(I) = LCH(I-1) + ICH(I) 
85 CONTINUE 

NNN=O 
IF (.NOT. PRIOR) THEN 

WRITE (OUTF,90) LABELl 
90 FORMAT(//3X, 'NODE',15X,'SPECIFIED'/4X, 'NO. ',lOX,A/ 

1 2X, '------',9X, '--------------------') 
IF (DIM .EQ. 2) THEN 

DO 110 I= 1, NELM(2) + 1 
WRITE (OUTF,100) I,X(I) 

100 FORMAT(I6,10X,Fl5.4) 
110 CONTINUE 

ELSE 
DO 120 I= 1, NON 

WRITE (OUTF,100) I,X(I) 
120 CONTINUE 

ENDIF 
WRITE (OUTF, 130) LABELl,NDN 

130 FORMAT(//' NUMBER OF NODES WITH SPECIFIED ',/2x,A, '=',Ill) 
WRITE (OUTF, 130) LABEL2,NNN 

ENDIF 
LCH(l) = ICH(l) 
DO 140 I 2, NUMNOD 

LCH(I) = LCH(I-1) + ICH(I) 
140 CONTINUE 

NDOF = NUMNOD - NON 
C INPUT OMEGA FROM INPUT FILE 

READ(INF,*) OMEGA 
OMOMEGA = 1.0 - OMEGA 
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C IMPUT LIST OF TIME STEPS AND TIME STEP INTERVALS FROM INPUT FILE 
IT= 1 
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MXSTEP = 0 
150 READ (INF,*) DTSTEP(IT), DELTAT(IT) 

IF (DTSTEP(IT) .LE. 0) GOTO 160 
IF (DTSTEP(IT) .GT. MXSTEP) MXSTEP = DTSTEP(IT) 
IT= IT+ 1 
GOTO 150 

160 IT= IT - 1 
!START 1 
TOTALT = 0.0 
DO 170 I 1, IT 

TOTALT TOTALT + (DTSTEP(I) - !START+ 1) * DELTAT(I) 
!START DTSTEP(I) + 1 

170 CONTINUE 
IF (.NOT. PRIOR) THEN 

WRITE(OUTF,210) OMEGA 
210 FORMAT(//2X, 'OMEGA= ',F15.4) 

WRITE(OUTF,220) 
220 FORMAT(//2X, 'START',BX,' END ',lOX, 'DELTA T'/ 

1 2X,5('-'),8X,5('-'),8X,11('-')) 
!START= 1 
DO 240 I= 1, IT 

WRITE(OUTF,230) ISTART,DTSTEP(I),DELTAT(I) 
230 FORMAT (2X,I4,9X,I4,3X,Fl5.4) 

ISTART = DTSTEP(I) + 1 
240 CONTINUE 

WRITE(OUTF,250) TOTALT 
250 FORMAT (/lOX, 'TOTAL TIME =',FlS.4) 

ENDIF 
C INPUT LIST OF TIME STEPS AND VALUES OF THE TIME FUNCTION 

IT= 1 
180 READ(INF,*) TIME(IT),GT(IT) 

IF (TIME(IT) .LT. 0.0) GOTO 190 
IT= IT+ 1 
GOTO 180 

190 IT= IT - 1 
IF (TIME(IT) .LT. TOTALT) TIME(IT) TOTALT 
IF (.NOT. PRIOR) THEN 

WRITE(OUTF,260) 
260 FORMAT(// BX, 'TIME T', llX, 'G (T) '/7X, 8 ( ' - ') , 9X, 6 ( ' - ')) 

DO 280 I= 1, IT 
WRITE(OUTF,270) TIME(I),GT(I) 

270 FORMAT(2F15.4) 
280 CONTINUE 

ENDIF 
C INPUT INITIAL VALUES OF FIELD VARIABLE FROM INPUT FILE 

READ(INF,*) IT,HINIT,SIGMAl 
DO 200 I= 1, NUMNOD 

IF (ICH(I) .NE. 1) THEN 
NORM= ((Xl(I) - Xl(IT)) **2 

1 + (X2(I) - X2(IT)) **2 
2 + (X3 (I) - X3 (IT)) **2) 

X(I) = HINIT * EXP(-NORM / 2 / SIGMA1**2) 
ENDIF 

200 CONTINUE 
IF (.NOT. PRIOR) THEN 

WRITE (OUTF, 290) LABELl, LABELl 
290 FORMAT(//2X, 'INITIAL VALUES OF ',A/2X,38('-')// 

1 2X,'NODE N0.',10X,A/2X,8('-'),10X,20('-')) 
DO 310 I= 1, NUMNOD 

IF (ICH(I) .EQ. 0) THEN 
WRITE(OUTF,300) I, X(I),'' 

ELSE 
WRITE(OUTF,300) I, X(I), '*' 

ENDIF 
300 FORMAT (2X,I5,12X,F15.4,A) 
310 CONTINUE 

WRITE (OUTF,320) 
320 FORMAT (/23X, '*=SPECIFIED') 
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ENDIF 
C COMPUTE THE SEMI-BANDWIDTH 

SBW = 1 
DO 350 E = 1, NUMELM 

DO 340 I= 1, NODETBL(ELEMTYP(E)) 
Kl= IN(E,I) 
IF (ICH(KI) .EQ. 0 .AND. I .LT. NODETBL(ELEMTYP(E))) THEN 

II= Kl - LCH(KI) 
DO 330 J =I+ 1, NODETBL(ELEMTYP(E)) 

KJ = IN(E,J) 
IF (ICH(KJ) .EQ. 0) THEN 

JJ = ABS(KJ - LCH(KJ) - II) + 1 
IF (JJ .GT. SBW) SBW = JJ 

ENDIF 
330 CONTINUE 

ENDIF 
340 CONTINUE 
350 CONTINUE 

IF (.NOT. PRIOR) THEN 
WRITE(OUTF,360) NDOF,SBW 

ENDIF 
360 FORMAT(//' NUMBER OF DEGREES OF FREEDOM IN MODIFIED,'/ 

1 ' GLOBAL COMBINED SORPTION AND ADVECTION-DISPERSION'/ 
2 'MATRIX =',IS///' SEMI-BANDWIDTH OF MODIFIED,'/ 
3 ' GLOBAL COMBINED SORPTION AND ADVECTION-DISPERSION'/ 
4 ' MATRIX = ' , I 5) 

RETURN 
END 

SUBROUTINE ASMBAD 
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C********************************************************************** 
C 
C 19.1 PURPOSE 
C TO ASSEMBLE THE COMBINE GLOBAL SORPTION AND 
C ADVECTION-DISPERSION MATRIX AND THE GLOBAL SPECIFIED 
C SOLUTE FLUX MATRIX FOR THE MESH AND TO MODIFY THE 
C SYSTEM OF EQUATIONS FOR SPECIFIED CONCENTRATION AND 
C SOLUTE FLUX BOUNDARY CONDITIONS 
C 
C 19 .2 INPUT 
C NONE 
C 
C 19.3 OUTPUT 
C THE SEMI-BANDWIDTH AND NUMBER OF DEGREES OF FREEDOM 
C FOR THE MODIFIED, COMBINED GLOBAL SORPTION AND 
C ADVECTION-DISPERSION MATRIX ARE WRITTEN TO THE USER-
C DEFINED FILE ASSIGNED TO UNIT OUTF 
C 
C 19.4 DEFINITIONS.OF VARIABLES: 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 
C 

C 

AE (I, J) 

B(I) 
DE (I, J) 

E 
ELEMTYP(E) 

FLUX(!) 
ICH (I) 

IJSIZE 
LCH(I) 

M(IJ) 

NDOF 

NODETBL(ELEMTYP(E)) 

SORPTION MATRIX FOR ELEMENT E IN FULL 
MATRIX STORAGE 
GLOBAL SPECIFIED SOLUTE FLUX MATRIX 
ADVECTION-DISPERSION MATRIX FOR ELEMENT 
E IN FULL MATRIX STORAGE 
ELEMENT NUMBER 
ELEMENT TYPE FOR ELEMENT E 
SPECIFIED VALUE OF SOLUTE FLUX AT NODE I 
1 IF THE VALUE OF THE FIELD VARIABLE IS 
SPECIFIED AT NODE I 
0 OTHERWISE 
LENGTH OF ARRAY ADGLOBAL 
ICH(I) + ICH(I-1) + ... 
MODIFIED, COMBINED GLOBAL SORPTION AND 
ADVECTION-DISPERSION MATRIX IN VECTOR 
STORAGE 
NUMBER OF NODES WHERE THE VALUE OF 
THE FIELD VARIABLE IS UNKNOWN 
NUMBER OF NODES IN ELEMENT TYPE E 
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C 
C 

NUMBER OF ELEMENTS IN THE MESH 
SEMI-BANDWIDTH 
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C 

NUMELM 
SBW 

X (I) VALUE OF SOLUTE CONCENTRATION AT NODE I 
C 
C 19.5 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

USAGE: 
THE SEMI-BANDWIDTH OF THE COMBINED GLOBAL SORPTION AND 
ADVECTION-DISPERSION MATRIX IS COMPUTED FIRST. THEN THE 
ENTRIES OF THE ELEMENT SORPTION AND ADVECTION-DISPERSION 
MATRICES ARE COMPUTED IN A SET OF SUBROUTINES, TWO 
SUBROUTINES FOR EACH ELEMENT TYPE. THE COMBINED GLOBAL 
SORPTION AND ADVECTION-DISPERSION MATRIX FOR THE MESH 
ASSEMBLED BY ADDING THE CORRESPONDING ENTRIES OF THE ELEMENT 
SORPTION AND ADVECTION-DISPERSION MATRICES TO THE GLOBAL 
MATRIX. DURING THE ASSEMBLY PROCESS THE GLOBAL MATRIX IS 
MODIFIED FOR SPECIFIED VALUES OF SOLUTE CONCENTRATION AND 
SOLUTE FLUX ARE ADDED TO THE GLOBAL SOLUTE FLUX MATRIX. 

SUBROUTINES CALLED: 
HEAPS, INCLUDING LOCATE, A- AND D-

C************************************************************************** 
INCLUDE 'COMALL' 
DOUBLE PRECISION AE(MAX3,MAX3), DE(MAX3,MAX3) 
INTEGER NODETBL(13), E, I, Kl, II, J, KJ, JJ 
DATA NODETBL/2,3,4,3,4,4,8,12,8,20,32,3,4/ 

C INITIALISE ENTRIES OF GLOBAL CONDUCTANCE MATRIX TO ZERO 
DO 50 I= 1, NDOF 

B(I) = ODO 
FC(I) = ODO 
DO 40 J = 1, 3*SBW+l 

M2(J,I) = ODO 
40 CONTINUE 

DO 50 J = 1, 2*SBW+l 
B2(J,I) = ODO 

50 CONTINUE 
C INITIALISE ENTRIES OF THE GLOBAL SOLUTE FLUX MATRIX TO ZERO 
C LOOP ON THE NUMBER OF ELEMENTS 

print*, 'In the interest of execution speed this program' 
print*, 'assumes that all elements have the same X and Y' 
print*, 'groundwater velocities and equal material sets.' 
e = 1 

c DO 90 E = 1, NUMELM 

C COMPUTE THE ELEMENT SORPTION AND ADVECTION DISPERSION MATRICES 
C FOR THIS ELEMENT TYPE 

IF (ELEMTYP(E) .EQ. 1) THEN 
C ELEMENT IS A ONE DIMENSIONAL, LINEAR BAR 

CALL ADBAR2(E,AE,DE) 
ELSEIF (ELEMTYP(E) .EQ. 4) THEN 

C ELEMENT IS A TWO DIMENSIONAL, LINEAR TRIANGLE 
CALL ATRI3(E,AE) 
CALL DTRI3(E,DE) 

ELSEIF (ELEMTYP(E) .EQ. 5) THEN 
C ELEMENT IS A TWO DIMENSIONAL, LINEAR RECTANGLE 

CALL AREC4(E,AE) 
CALL DREC4(E,DE) 

ELSEIF (ELEMTYP(E) .EQ. 6) THEN 
C ELEMENT IS A TWO DIMENSIONAL, LINEAR QUADRILATERAL 

CALL ADQUA4(E,AE,DE) 
ELSEIF (ELEMTYP(E) .EQ. 9) THEN 

C ELEMENT IS A THREE DIMENSIONAL, LINEAR PARALLELEPIPED 
CALL ADPARB(E,AE,DE) 

ENDIF 

c For explanation see print statements above. 



Appendix A 

do 90 e = 1, numelm 

C ADD THE ELEMENT SORPTION AND ADVECTION-DISPERSION MATRICES 
C FOR THIS ELEMENT TO THE GLOBAL MATRIX 
C AE(I,J), DE(I,J) ----> M(IJ) <=> M(KI,KJ) 

DO 80 I= 1, NODETBL(ELEMTYP(E)) 

70 

KI = IN (E, I) 
IF (ICH(KI) .EQ. 0) THEN 

II= KI - LCH(KI) 
DO 70 J = 1, NODETBL(ELEMTYP(E)) 

KJ = IN(E,J) 
IF (ICH(KJ) .NE. 0) THEN 

FC (II) = FC (II) - DELTAT (IDT) * DE (I, J) * X (KJ) 
ELSE 

JJ = KJ - LCH(KJ) 
M2(2*SBW+l+II-JJ,JJ) = M2(2*SBW+l+II-JJ,JJ) 

1 + AE (I, J) + OMEGA * DELTAT (IDT) * DE (I, J) 
B2(SBW+l+II-JJ,JJ) = B2(SBW+l+II-JJ,JJ) 

1 + AE(I,J) - OMOMEGA * DELTAT(IDT) * DE(I,J) 
ENDIF 

CONTINUE 
ENDIF 

80 CONTINUE 
90 CONTINUE 

RETURN 
END 

SUBROUTINE ATRI3(E,AE) 
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C********************************************************************* 

C 
C PURPOSE: 
C TO COMPUTE THE CONSISTENT FORM OF THE ELEMENT SORPTION 
C MATRIX FOR A TWO-DIMENSIONAL, LINEAR TRIANGLE ELEMENT 
C 
C DEFINITIONS OF VARIABLES: 
C 
C 
C 
C 
C 
C 

AE (I, J) 
E 

KDE 
NE 

RHOBE 

ELEMENT SORPTION MATRIX 
ELEMENT NUMBER 
ELEMENT DISTRIBUTION COEFFICIENT 
ELEMENT POROSITY 
ELEMENT BULK DENSITY 

C******************************************************************** 
INCLUDE 'COMALL' 
INTEGER E 
DOUBLE PRECISION AE(MAX3,MAX3),KDE,NE,RHOBE,AE4,TEMP 

RHOBE = PROP(MATSET(E),4) 
KDE= PROP(MATSET(E),S) 
NE= PROP(MATSET(E),6) 
AE4 2.0 * (Xl(IN(E,2)) * X2(IN(E,3)) + Xl(IN(E,1)) * 

1 X2(IN(E,2)) + X2(IN(E,1)) * Xl(IN(E,3)) -
2 X2(IN(E,3)) * Xl(IN(E,1)) - Xl(IN(E,3)) * 
3 X2(IN(E,2)) - Xl(IN(E,2)) * X2(IN(E,1))) 

TEMP= AE4 / 12.0 / 4.0 * (1.0 + RHOBE *KDE/ NE) 
AE(l,1) 
AE(l,2) 
AE (1, 3) 
AE(2,1) 
AE (2, 2) 
AE (2, 3) 
AE (3, 1) 
AE(3,2) 
AE (3, 3) 
RETURN 
END 

2.0 * TEMP 
TEMP 
TEMP 
TEMP 
AE(l,1) 
TEMP 
TEMP 
TEMP 
AE (1, 1) 

SUBROUTINE AREC4(E,AE) 
C********************************************************************* 
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C 
C PURPOSE: 
C TO COMPUTE THE CONSISTENT FORM OF THE ELEMENT SORPTION 
C MATRIX FOR A TWO-DIMENSIONAL, LINEAR RECTANGLE ELEMENT 
C 
C 

C 
C 
C 
C 
C 
C 

DEFINITIONS 
AE(I,J) 

E 
KDE 

NE 
RHOBE 

OF VARIABLES: 
ELEMENT SORPTION MATRIX 
ELEMENT NUMBER 
ELEMENT DISTRIBUTION COEFFICIENT 
ELEMENT POROSITY 
ELEMENT BULK DENSITY 

Page.A.76 

C******************************************************************** 
INCLUDE 'COMALL' 
INTEGER E 
DOUBLE PRECISION AE(MAX3,MAX3),KDE,NE,RHOBE,TEMP 

RHOBE = PROP(MATSET(E),4) 
KDE= PROP(MATSET(E),5) 
NE= PROP(MATSET(E),6) 
TEMP= (1.0 + RHOBE *KDE/ NE) * ABS((X2(IN(E,l)) - X2(IN(E,3))) 

1 / 2.0 * (Xl(IN(E,1)) - Xl(IN(E,3))) / 2.0) / 9.0 
AE (1, 1) 4 * TEMP 
AE(l,2) 2 * TEMP 
AE(l,3) TEMP 
AE(l,4) AE(l,2) 
AE(2,1) AE(l,2) 
AE(2,2) AE(l,1) 
AE(2,3) AE(l,2) 
AE(2,4) AE(l,3) 
AE(3,1) AE(l,3) 
AE(3,2) AE(l,2) 
AE(3,3) AE(l,1) 
AE(3,4) AE(l,2) 
AE(4,l) AE(l,2) 
AE(4,2) AE(l,3) 
AE(4,3) AE(l,2) 
AE(4,4) AE(l,1) 
RETURN 
END 

SUBROUTINE ADBAR2(E,AE,DE) 
C********************************************************************* 
C 
C PURPOSE: 
C TO COMPUTE THE CONSISTENT FORM OF THE ELEMENT SORPTION 
C AND ADVECTION-DISPESION MATRICES FOR A ONE-DIMENSIONAL, 
C LINEAR BAR ELEMENT 
C 
C DEFINITIONS OF VARIABLES: 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

AE(I,J) 
ALE 

DE(I,J) 
DXE 

E 
KDE 

LAMBDA 
LE 
NE 

RHOBE 
VXE 

VXEP 

ELEMENT SORPTION MATRIX 
LONGITUDINAL DISPERSIVITY FOR ELEMENT 
ELEMENT ADVECTION DISPERSION MATRIX 
ELEMENT DISPESION COEFFICIENT 
ELEMENT NUMBER 
ELEMENT DISTRIBUTION COEFFICIENT 
SOLUTE DECAY COEFFICIENT 
ELEMENT LENGTH 
ELEMENT POROSITY 
ELEMENT BULK DENSITY 
APPARENT GROUNDWATER VELOCITY IN 
X COORDINATE DIRECTION 
PORE WATER VELOCITY IN X COORDINATE DIRECTION 

C********************************************************************* 
INCLUDE 'COMALL' 
INTEGER E 
DOUBLE PRECISION DE(MAX3,MAX3), KDE, LAMBDA, LE ,NE, ALE, RHOBE 



Appendix A 

DOUBLE 
ALE 
LAMBDA 
RHOBE 
KDE 
NE 
VXE 
VXEP 
LE 
DXE 
TEMP3 
DE(l,1) 
DE (1, 2) 
DE (2, 1) 
DE(2,2) 
AE(l,1) 
AE (1, 2) 
AE(2,1) 
AE(2,2) 
RETURN 
END 

PRECISION VXE, VXEP, DXE, TEMP3, AE(MAX3,MAX3) 
PROP(MATSET(E),1) 
PROP(MATSET(E),2) 
PROP(MATSET(E),3) 
PROP(MATSET(E),4) 
PROP(MATSET(E),5) 
Vl(E) 
VXE / NE 
ABS(Xl(IN(E,2)) - Xl(IN(E,1))) 
ALE* VXEP 
LAMBDA* (1.0 + RHOBE *KDE/ 

DXE / LE - VXEP / 2.0 + 2.0 
-DXE /LE+ VXEP / 2.0 + 
-DXE / LE - VXEP / 2.0 + 

NE) * (LE 
* TEMP3 

TEMP3 
TEMP3 

DXE /LE+ VXEP / 2.0 + 2.0 * TEMP3 

/ 6.0) 

(1.0 + RHOBE *KDE/ NE) * (LE/ 6) * 2.0 
AE(l,1) / 2.0 
AE(l,2) 
AE (1, 1) 

SUBROUTINE DTRI3(E,DE) 
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C********************************************************************* 
C 
C PURPOSE: 
C TO COMPUTE THE CONSISTENT FORM OF THE ELEMENT 
C ADVECTION-DISPESION MATRIX FOR A TWO-DIMENSIONAL, 
C LINEAR TRIANGLE ELEMENT 
C 
C DEFINITIONS OF VARIABLES: 
C AE4 FOUR TIMES ELEMENT AREA 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

ALE 
ATE 

DE (I, J) 
DXXE (ETC.) 

E 
KDE 

LAMBDA 
NE 

RHOBE 
VXE 

VYE 

VXEP 
VYEP 

LONGITUDINAL DISPERSIVITY FOR ELEMENT 
TRANSVERSE DISPERSIVITY FOR ELEMENT 
ELEMENT ADVECTION DISPERSION MATRIX 
ELEMENT DISPESION COEFFICIENTS 
ELEMENT NUMBER 
ELEMENT DISTRIBUTION COEFFICIENT 
SOLUTE DECAY COEFFICIENT 
ELEMENT POROSITY 
ELEMENT BULK DENSITY 
APPARENT GROUNDWATER VELOCITY IN 
X COORDINATE DIRECTION 
APPARENT GROUNDWATER VELOCITY IN 
Y COORDINATE DIRECTION 
PORE WATER VELOCITY IN X COORDINATE DIRECTION 
PORE WATER VELOCITY IN Y COORDINATE DIRECTION 

C*******************~************************************************* 
INCLUDE 'COMALL' 
INTEGER E, I, J 
DOUBLE PRECISION DE(MAX3,MAX3), KDE, LAMBDA, NE, BE(3), CE(3) 
DOUBLE PRECISION ALE, ATE, RHOBE, VXE, VYE, VXEP, VYEP, VP 
DOUBLE PRECISION DXXE, DYYE, DXYE, DYXE, TEMP, AE4 
ALE PROP(MATSET(E),1) 
ATE PROP(MATSET(E),2) 
LAMBDA PROP(MATSET(E),3) 
RHOBE PROP(MATSET(E),4) 
KDE PROP(MATSET(E),5) 
NE PROP(MATSET(E),6) 
VXE Vl(E) 
VYE V2 (E) 
VXEP VXE / NE 
VYEP VYE / NE 
VP SQRT(VXEP**2 + VYEP**2) 
IF (ABS(VP) .LT. lE-40) THEN 

DXXE 0.0 
DYYE = 0.0 
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1 
2 
3 

DXYE 
ELSE 

DXXE 
DYYE 
DXYE 

ENDIF 
DYXE 
BE (1) 
BE(2) 
BE (3) 
CE(l) 
CE(2) 
CE (3) 
AE4 

0.0 

(ALE * VXEP**2 + ATE * VYEP**2) I 
(ALE * VYEP**2 + ATE * VXEP**2) I 
( (ALE - ATE) * VXEP * VYEP) / VP 

DXYE 
X2(IN(E,2)) - X2(IN(E,3)) 
X2(IN(E,3)) - X2(IN(E,1)) 
X2(IN(E,1)) - X2(IN(E,2)) 
Xl(IN(E,2)) - Xl(IN(E,3)) 
Xl(IN(E,3)) - Xl(IN(E,1)) 
Xl(IN(E,1)) - Xl(IN(E,2)) 

VP 
VP 

2.0 * (Xl(IN(E,2)) * X2(IN(E,3)) + Xl(IN(E,1)) * 
X2(IN(E,2)) + X2(IN(E,1)) * Xl(IN(E,3)) -
X2(IN(E,3)) * Xl(IN(E,l)) - Xl(IN(E,3)) * 
X2(IN(E,2)) - Xl(IN(E,2)) * X2(IN(E,1))) 

TEMP = AE4 / 48.0 *LAMBDA* (1.0 + RHOBE *KDE/ NE) 
DO 20 I = 1, 3 

DO 10 J = 1, 3 
DE(I,J) = (DXXE*BE(I)*BE(J) + DYYE*CE(I)*CE(J) + 

1 DXYE*BE(I)*CE(J) + DYXE*CE(I)*BE(J) ) /AE4 
2 + VXEP / 6.0 * BE(J) + VYEP / 6.0 * CE(J) + TEMP 

IF (I .EQ. J) DE (I, J) = DE(I, J) + TEMP 
10 CONTINUE 
20 CONTINUE 

RETURN 
END 

SUBROUTINE DREC4(E,DE) 
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C********************************************************************* 
C 
C PURPOSE: 
C TO COMPUTE THE CONSISTENT FORM OF THE ELEMENT 
C ADVECTION-DISPESION MATRIX FOR A TWO-DIMENSIONAL, 
C LINEAR RECTANGLE ELEMENT 
C 
C DEFINITIONS OF VARIABLES: 
C ALE LONGITUDINAL DISPERSIVITY FOR ELEMENT 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

ATE 
DE(I,J) 

DXXE (ETC.) 
E 

KDE 
LAMBDA 

NE 
RHOBE 

VXE 

VYE 

VXEP 
VYEP 

TRANSVERSE DISPERSIVITY FOR ELEMENT 
ELEMENT ADVECTION DISPERSION MATRIX 
ELEMENT DISPESION COEFFICIENTS 
ELEMENT NUMBER 
ELEMENT DISTRIBUTION COEFFICIENT 
SOLUTE DECAY COEFFICIENT 
ELEMENT POROSITY 
ELEMENT BULK DENSITY 
APPARENT GROUNDWATER VELOCITY IN 
X COORDINATE DIRECTION 
APPARENT GROUNDWATER VELOCITY IN 
Y COORDINATE DIRECTION 
PORE WATER VELOCITY IN X COORDINATE DIRECTION 
PORE WATER VELOCITY IN Y COORDINATE DIRECTION 

C********************************************************************* 
INCLUDE 'COMALL' 
INTEGER E 
DOUBLE PRECISION DE(MAX3,MAX3), KDE, LAMBDA, NE, AE, BE 
DOUBLE PRECISION ALE, ATE, RHOBE, VXE, VYE, VXEP, VYEP, VP 
DOUBLE PRECISION DXXE, DYYE, DXYE, DYXE, TEMPl, TEMP2 
DOUBLE PRECISION TEMP3, TEMP4, TEMPS, TEMP6, TEMP7 
ALE PROP(MATSET(E),1) 
ATE PROP(MATSET(E),2) 
LAMBDA PROP(MATSET(E),3) 
RHOBE PROP(MATSET(E),4) 
KDE PROP(MATSET(E),5) 
NE PROP(MATSET(E),6) 
VXE Vl(E) 
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VYE 
VXEP 
VYEP 

V2(E) 
VXE / NE 
VYE I NE 

VP SQRT(VXEP**2 + VYEP**2) 
IF (ABS(VP) .LT. lE-40) THEN 

DXXE 0.0 
DYYE 0.0 
DXYE 0.0 

ELSE 
DXXE 
DYYE 
DXYE 

ENDIF 
DYXE 
AE 
BE 
TEMPl 
TEMP2 
TEMP3 
TEMP4 
TEMPS 
TEMP6 

(ALE* VXEP**2 +ATE* VYEP**2) / VP 
(ALE* VYEP**2 +ATE* VXEP**2) / VP 
((ALE - ATE) * VXEP * VYEP) / VP 

DXYE 
ABS(X2(IN(E,l)) - X2(IN(E,3)))/ 2.0 
ABS(Xl(IN(E,l)) - Xl(IN(E,3)))/ 2.0 
(DXXE * AE) / (6.0 * BE) 
(DYYE * BE) / (6.0 * AE) 
DXYE / 4.0 
DYXE / 4.0 
VXEP * AE / 6.0 
VYEP *BE/ 6.0 

TEMP? LAMBDA* (1.0 + RHOBE *KDE/ NE) * (AE * BE) / 9.0 
DE(l,l)= 2.*TEMP1+2.*TEMP2+TEMP3+TEMP4-2.*TEMPS-2.*TEMP6+4.*TEMP7 
DE(l,2)=-2.*TEMPl+ TEMP2+TEMP3-TEMP4+2.*TEMPS- TEMP6+2.*TEMP7 
DE(l,3)=- TEMPl- TEMP2-TEMP3-TEMP4+ TEMPS+ TEMP6+ TEMP? 
DE(l,4)= TEMP1-2.*TEMP2-TEMP3+TEMP4- TEMPS+2.*TEMP6+2.*TEMP7 
DE(2,1)=-2.*TEMP1+ TEMP2-TEMP3+TEMP4-2.*TEMPS- TEMP6+2.*TEMP7 
DE(2,2)= 2.*TEMP1+2.*TEMP2-TEMP3-TEMP4+2.*TEMPS-2.*TEMP6+4.*TEMP7 
DE(2,3)= TEMP1-2.*TEMP2+TEMP3-TEMP4+ TEMPS+2.*TEMP6+2.*TEMP7 
DE(2,4)=- TEMPl- TEMP2+TEMP3+TEMP4- TEMPS+ TEMP6+ TEMP? 
DE(3,l)=- TEMPl- TEMP2-TEMP3-TEMP4- TEMPS- TEMP6+ TEMP? 
DE(3,2)= TEMP1-2.*TEMP2-TEMP3+TEMP4+ TEMPS-2.*TEMP6+2.*TEMP7 
DE(3,3)= 2.*TEMP1+2.*TEMP2+TEMP3+TEMP4+2.*TEMPS+2.*TEMP6+4.*TEMP7 
DE(3,4)=-2.*TEMP1+ TEMP2+TEMP3-TEMP4-2.*TEMPS+ TEMP6+2.*TEMP7 
DE(4,l)= TEMP1-2.*TEMP2+TEMP3-TEMP4- TEMPS-2.*TEMP6+2.*TEMP7 
DE(4,2)=- TEMPl- TEMP2+TEMP3+TEMP4+ TEMPS- TEMP6+ TEMP? 
DE(4,3)=-2.*TEMP1+ TEMP2-TEMP3+TEMP4+2.*TEMPS+ TEMP6+2.*TEMP7 
DE(4,4)= 2.*TEMP1+2.*TEMP2-TEMP3-TEMP4-2.*TEMPS+2.*TEMP6+4.*TEMP7 
RETURN 
END 

SUBROUTINE ADQUA4(E,AE,DE) 
C********************************************************************* 
C 
C PURPOSE: 
C TO COMPUTE THE CONSISTENT FORM OF THE ELEMENT SORPTION 
C AND ADVECTION-DISPESION MATRICES FOR A TWO-DIMENSIONAL, 
C LINEAR QUADRILATERAL ELEMENT 
C 
C DEFINITIONS OF VARIABLES: 
C AE(I,J) ELEMENT SORPTION MATRIX 
C ALE LONGITUDINAL DISPERSIVITY FOR ELEMENT 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 
C 

ATE 
DE (I, J) 

DETJAC 
DNDXI(I) 

DNDX (I) 

DNDETA(I) 

DNDY (I) 

DXXE (ETC.) 
E 

XI (I) 

TRANSVERSE DISPERSIVITY FOR ELEMENT 
ELEMENT ADVECTION DISPERSION MATRIX 
DETERMINANT OF THE JACOBIAN MATRIX 
PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO XI AT NODE I 
PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO X AT NODE I 
PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO ETA AT NODE I 
PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TOY AT NODE I 
ELEMENT DISPESION COEFFICIENTS 
ELEMENT NUMBER 
LOCATION OF GAUSS POINT IN XI COORDINATE DIRECTION 
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C ETA(I) 
C JAC (I, J) 
C N (I) 
C W(I) 
C KDE 
C LAMBDA 
C NE 
C RHOBE 
C VXE 
C 
C VYE 
C 
C VXEP 
C VYEP 
C Xl (IN (E, I)) 
C X2(IN(E,I)) 
C 

LOCATION OF GAUSS POINT IN ETA COORDINATE DIRECTION 
JACOBIAN MATRIX 
INTERPOLATION FUNCTION FOR NODE I 
WEIGHT FOR GAUSS POINT I 
ELEMENT DISTRIBUTION COEFFICIENT 
SOLUTE DECAY COEFFICIENT 
ELEMENT POROSITY 
ELEMENT BULK DENSITY 
APPARENT GROUNDWATER VELOCITY IN 
X COORDINATE DIRECTION 
APPARENT GROUNDWATER VELOCITY IN 
Y COORDINATE DIRECTION 
PORE WATER VELOCITY IN X COORDINATE DIRECTION 
PORE WATER VELOCITY IN Y COORDINATE DIRECTION 
X COORDINATE FOR NODE I, ELEMENT E 
Y COORDINATE FOR NODE I, ELEMENT E 

C********************************************************************* 
INCLUDE 'COMALL' 
INTEGER E, I, J, K, Kl 
DOUBLE PRECISION JAC(2,2), JACINV(2,2), N(4), DETJAC 
DOUBLE PRECISION DNDXI(4), DNDX(4), DNDY(4), DNDETA(4) 
DOUBLE PRECISION W(2), XI(2), ETA(2), DE(MAX3,MAX3) 
DOUBLE PRECISION SIGN1(4), SIGN2(4), KDE, NE, LAMBDA 
DOUBLE PRECISION ALE, ATE, RHOBE, VXE, VYE, VXEP, VYEP, VP 
DOUBLE PRECISION DXXE, DYYE, DXYE, DYXE, AE(MAX3,MAX3) 
DOUBLE PRECISION LENGl, LENG2, TEMPl, TEMP2, TEMPA, TEMPB 
DOUBLE PRECISION TEMP3X, TEMP3Y, TEMP4X, TEMP4Y 
DOUBLE PRECISION TEMPS, TEMP6, TEMP?, TEMPS 
DOUBLE PRECISION ALPHA, BETA, WXI(4), WETA(4), DWDXI(4) 
DOUBLE PRECISION DWDETA(4), DWDX(4), DWDY(4) 
DOUBLE PRECISION VXI, VETA, VXW(4), VYW(4) 
DATA SIGNl/-1.0, 1.0, 1.0,-1.0/ 
DATA SIGN2/-l.0,-l.O, 1.0, 1.0/ 
XI(l) = SQRT(DBLE(lD0/3DO)) 
XI(2) = -XI(l) 
ETA(l) = XI(l) 
ETA(2) = XI(2) 
W(l) 1.0 
W(2) 1.0 
ALE PROP(MATSET(E),l) 
ATE PROP(MATSET(E),2) 
LAMBDA PROP(MATSET(E),3) 
RHOBE PROP(MATSET(E),4) 
KDE PROP(MATSET(E),5) 
NE PROP(MATSET(E),6) 
IF (NE .EQ. 0.0) PRINT*, 'NE 0.0 CHECK NUMBER OF PROPS' 
VXE Vl (E) 
VYE V2 (E) 

1 

1 

1 

VXEP VXE / NE 
VYEP VYE / NE 
VP SQRT(VXEP**2 + VYEP**2) 
IF (ABS(VP) .LT. lE-40) THEN 

DXXE 0.0 
DYYE = 0.0 
DXYE = 0.0 
ALPHA= 0.0 
BETA 0.0 

ELSE 
DXXE (ALE 
DYYE (ALE 

* VXEP**2 + ATE 
* VYEP**2 + ATE 

* VYEP**2) I 
* VXEP**2) I 

DXYE ( (ALE - ATE) * VXEP * VYEP) / VP 
LENGl = SQRT((Xl(IN(E,2)) - Xl(IN(E,1)))**2 

VP 
VP 

+ (X2 (IN (E, 2)) - X2(IN(E,1)))**2) 
VXI = ( (Xl (IN (E, 2)) - Xl(IN(E,l))) * VXEP 

+ (X2 (IN (E, 2)) - X2 ( IN ( E, 1) ) ) * VYEP 
LENG2 = SQRT((Xl(IN(E,3)) - Xl(IN(E,2)))**2 

+ (X2 (IN (E, 3)) - X2(IN(E,2)))**2) 

) / LENGl 
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VETA= ( (Xl(IN(E,3)) - Xl(IN(E,2))) * VXEP 
1 + (X2(IN(E,3)) - X2(IN(E,2))) * VYEP / LENG2 

C lE-10 IS CHOSEN TO BE SLIGHTLY MORE THAN DOUBLE PRECISION 
IF (VXI .GT. VP* lE-10) THEN 

20 
30 

40 
50 

ALPHA= PROP(MATSET(E),7) 
ELSEIF (VXI .LT. -VP* lE-10) THEN 

ALPHA= -PROP(MATSET(E),7) 
ELSE 

ALPHA= 0.0 
ENDIF 
IF (VETA .GT. VP* lE-10) THEN 

BETA= PROP(MATSET(E),7) 
ELSEIF (VETA .LT. -VP* lE-10) THEN 

BETA -PROP(MATSET(E),7) 
ELSE 

BETA 0.0 
ENDIF 

ENDIF 
DYXE DXYE 
DO 30 I= 1, 4 

DO 20 J = 1, 4 
AE(I,J) 0.0 
DE (I, J) = 0.0 

CONTINUE 
CONTINUE 

1 

1 

1 

1 

1 

1 

DO 120 I 1, 2 
DO 110 J = 1, 2 

DO 50 K = 1, 2 
DO 40 Kl= 1, 2 

JAC(K,Kl) 0.0 
CONTINUE 

CONTINUE 
DO 60 Kl= 1, 4 

TEMPA (1.0 + SIGNl(Kl) * XI(I)) 
TEMPB (1. 0 + SIGN2 (Kl) * ETA (J)) 
TEMPl (1.0 + XI(I)) 
TEMP2 ( 1. 0 + ETA (J)) 
TEMP3X (2.0 + 3.0 * ALPHA * (1.0 - XI(I))) 

* SIGNl (Kl) 
TEMP3Y 2.0 * SIGNl(Kl) 
TEMP4X 2.0 * SIGN2(Kl) 
TEMP4Y (2.0 + 3.0 * BETA * (1.0 - ETA(J))) 

* SIGN2 (Kl) 
TEMPS 2.0 * (1.0 - SIGNl(Kl)) 
TEMP6 2.0 * (1.0 - SIGN2(Kl)) 
TEMP? 3.0 *ALPHA* XI(I) - 1.0 
TEMPS 3.0 *BETA* ETA(J) - 1.0 

N(Kl) 0.25 * TEMPA * TEMPB 
DNDXI(Kl) 0.25 * SIGNl(Kl) * TEMPB 

DNDETA(Kl) 0.25 * SIGN2(Kl) * TEMPA 
WXI(Kl) 0.0625 * (TEMPl * TEMP3X + TEMPS) 

* (TEMP2 * TEMP4X + TEMP6) 
WETA(Kl) 0.0625 * (TEMPl * TEMP3Y + TEMPS) 

* (TEMP2 * TEMP4Y + TEMP6) 
DWDXI(Kl) -0.125 * SIGNl(Kl) * TEMP? 

* (TEMP2 * TEMP4X + TEMP6) 
DWDETA(Kl) -0.125 * SIGN2(Kl) * TEMPS 

* (TEMPl * TEMP3Y + TEMPS) 
60 CONTINUE 

70 

DO 70 Kl 
JAC(l,1) 
JAC(l,2) 
JAC(2,1) 
JAC(2,2) 

CONTINUE 

1, 4 
JAC(l,1) + DNDXI(Kl) * Xl(IN(E,Kl)) 
JAC(l,2) + DNDXI(Kl) * X2(IN(E,Kl)) 
JAC(2,1) + DNDETA(Kl) * Xl(IN(E,Kl)) 
JAC(2,2) + DNDETA(Kl) * X2(IN(E,Kl)) 

DETJAC = JAC(l,1) * JAC(2,2) - JAC(l,2) * JAC(2,1) 
JACINV(l,1) = JAC(2,2) / DETJAC 

Page.A.81 
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80 

C 

90 
100 
110 
120 

1 

1 

1 

1 
2 
3 
4 

5 
6 
7 
8 

JACINV(l,2) -JAC(l,2) / DETJAC 
JACINV(2,1) -JAC(2,1) / DETJAC 
JACINV(2,2) JAC(l,1) / DETJAC 
DO 80 Kl= 1, 4 

DNDX(Kl) JACINV(l,1) * DNDXI(Kl) + JACINV(l,2) * DNDETA(Kl) 
DNDY(Kl) JACINV(2,1) * DNDXI(Kl) + JACINV(2,2) * DNDETA(Kl) 
DWDX(Kl) JACINV(l,l) * DWDXI(Kl) + JACINV(l,2) * DWDETA(Kl) 
DWDY(Kl) JACINV(2,1) * DWDXI(Kl) + JACINV(2,2) * DWDETA(Kl) 
VXW(Kl) = WXI(Kl) * VXI * (Xl(IN(E,2)) - Xl(IN(E,1))) / LENGl 

+ WETA(Kl) *VETA* (Xl(IN(E,3)) - Xl(IN(E,2))) / LENG2 
VYW(Kl) = WXI(Kl) * VXI * (X2(IN(E,2)) - X2(IN(E,1))) / LENGl 

+ WETA(Kl) *VETA* (X2(IN(E,3)) - X2(IN(E,2))) / LENG2 
CONTINUE 
DO 100 K = 1, 4 

DO 90 Kl= 1, 4 
AE (K,Kl) 

DE(K,Kl) 

CONTINUE 
CONTINUE 

AE(K,Kl) + W(I) * W(J) * (1.0 + RHOBE*KDE/NE) 
* N(K) * N(Kl) * DETJAC 
DE(K,Kl) + W(I) * W(J) * 

(DXXE * DWDX(K) * DNDX(Kl) 
+ DXYE * DWDX(K) * DNDY(Kl) 
+ DYXE * DWDY(K) * DNDX(Kl) 
+ DYYE * DWDY(K) * DNDY(Kl) 

SEE ABOVE FOR VXW(K) = W(K) * VXEP 
+ VXW(K) * DNDX(Kl) 
+ VYW(K) * DNDY(Kl) 
+LAMBDA* (1.0 + RHOBE *KDE/ NE) 
* N(K) * N(Kl)) * DETJAC 

CONTINUE 
CONTINUE 
RETURN 
END 

SUBROUTINE ADPAR8(E,AE,DE) 
C********************************************************************* 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

PURPOSE: 
TO COMPUTE THE CONSISTENT FORM OF THE ELEMENT 
SORPTION MATRIX AND THE ELEMENT CONDUCTANCE 
MATRIX FOR A THREE DIMENSIONAL, LINEAR 
PARALLELEPIPED ELEMENT 

DEFINITIONS OF VARIABLES: 
AE (I, J) 

ALE 
ATE 

DE(I,J) 
DETJAC 

DNDXI(I) 

DNDX (I) 

DNDETA(I) 

DNDY(I) 

DNDZETA(I) 

DNDZ (I) 

E 
ETA (I) 

IN(I,J) 
JAC (I, J) 

JACINV (I, J) 
KDE 

ELEMENT CAPACITANCE MATRIX 
LONGITUDINAL DISPERSIVITY FOR ELEMENT 
TRANSVERSE DISPERSIVITY FOR ELEMENT 
ELEMENT ADVECTION DISPERSION MATRIX 
DETERMINANT OF JACOBIAN MATRIX 
PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO XI AT NODE I 
PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO X AT NODE I 
PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO ETA AT NODE I 
PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TOY AT NODE I 
PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO ZETA AT NODE I 
PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO Z AT NODE I 
ELEMENT NUMBER 
LOCATION OF GAUSS POINT IN ETA 
COORDINATE DIRECTION 
NODE NUMBER J FOR ELEMENT I 
JACOBIAN MATRIX 
INVERSE OF JACOBIAN MATRIX 
ELEMENT DISTRIBUTION COEFFICIENT 
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C LAMBDA 
C N (I) 
C NE 
C RHOBE 
C VXE 
C 
C VYE 
C 
C VZE 
C 
C VXEP 
C VYEP 
C VZEP 
C W(I) 
C Xl(IN(E,I) 
C X2(IN(E,I) 
C X3(IN(E,I) 
C XI(I) 
C 
C ZETA(!) 
C 
C 

SOLUTE DECAY COEFFICIENT 
INTERPOLATION FUNCTION FOR NODE I 
ELEMENT POROSITY 
ELEMENT BULK DENSITY 
APPARENT GROUNDWATER VELOCITY IN 
X COORDINATE DIRECTION 
APPARENT GROUNDWATER VELOCITY IN 
Y COORDINATE DIRECTION 
APPARENT GROUNDWATER VELOCITY IN 
Z COORDINATE DIRECTION 
PORE WATER VELOCITY IN X COORDINATE DIRECTION 
PORE WATER VELOCITY IN Y COORDINATE DIRECTION 
PORE WATER VELOCITY IN Z COORDINATE DIRECTION 
WEIGHT FOR GAUSS POINT I 
X COORDINATE FOR NODE I, ELEMENT E 
Y COORDINATE FOR NODE I, ELEMENT E 
Z COORDINATE FOR NODE I, ELEMENT E 
LOCATION OF GAUSS POINT IN XI COORDINATE 
DIRECTION 
LOCATION OF GAUSS POINT IN ZETA COORDINATE 
DIRECTION 

C********************************************************************* 
INCLUDE 'COMALL' 
INTEGER E, I, J, K, L, Nl 
DOUBLE PRECISION JAC(3,3), AE(MAX3,MAX3), DE(MAX3,MAX3) 
DOUBLE PRECISION DNDXI(B), DNDX(B), DNDETA(8), DNDY(B) 
DOUBLE PRECISION DNDZETA(B), DNDZ(B), W(2), XI(2), ETA(2) 
DOUBLE PRECISION ZETA(2), SIGN1(8), SIGN2(8), SIGN3(8) 
DOUBLE PRECISION RHOBE, KDE, NE,LAMBDA, JACINV(3,3), DETJAC 
DOUBLE PRECISION VXE, VYE, VZE, VXEP, VYEP, VZEP, VP 
DOUBLE PRECISION DXXE, DXYE, DYXE, DYYE, DXZE, DZXE 
DOUBLE PRECISION DZZE, DYZE, DZYE, ALE, ATE, N(B) 
DATA SIGNl/-1.0, 1.0, 1.0,-1.0,-1.0, 1.0, 1.0,-1.0/ 
DATA SIGN2/-1.0,-1.0, 1.0, 1.0,-1.0,-1.0, 1.0, 1.0/ 
DATA SIGN3/-1.0,-1.0,-1.0,-1.0, 1.0, 1.0, 1.0, 1.0/ 

XI(l) = SQRT(DBLE(lD0/3DO)) 
XI(2) = -XI(l) 
ETA ( 1) = XI ( 1) 
ETA(2) = XI (2) 
ZETA(l) = XI (1) 
ZETA(2) = XI(2) 
W(l) 1.0 
W(2) 1.0 
ALE PROP(MATSET(E),1) 
ATE PROP(MATSET(E),2) 
LAMBDA PROP(MATSET(E),3) 
RHOBE PROP(MATSET(E),4) 
KDE PROP(MATSET(E),5) 
NE PROP(MATSET(E),6) 
VXE Vl (E) 
VYE V2 (E) 
VZE V3 (E) 
VXEP VXE / NE 
VYEP VYE / NE 
VZEP VZE / NE 
VP SQRT(VXEP**2 + VYEP**2 + VZEP**2) 
IF (ABS(VP) .LT. lE-40) THEN 

DXXE 0.0 
DYYE 0.0 
DZZE 0.0 
DXYE 0. 0 
DXZE 0.0 
DYZE 0.0 

ELSE 
DXXE (ALE* VXEP**2 +ATE* (VYEP**2 + VZEP**2)) / VP 
DYYE (ALE* VYEP**2 +ATE* (VXEP**2 + VZEP**2)) / VP 
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10 
20 

50 
60 

70 

80 

C 

1 
2 

1 

1 

1 

1 
2 

DZZE 
DXYE 
DXZE 
DYZE 

ENDIF 
DYXE 
DZXE = 
DZYE = 

(ALE * 
( (ALE 
( (ALE 
((ALE 

DXYE 
DXZE 
DYZE 

VZEP**2 +ATE* (VXEP**2 + VYEP**2)) / VP 
- ATE) * VXEP * VYEP) / VP 
- ATE) * VXEP * VZEP) / VP 
- ATE) * VYEP * VZEP) / VP 

DO 20 K = 1, 8 
DO 10 Nl = 1, 8 

AE(K,Nl) 0.0 
DE(K,Nl) = 0.0 

CONTINUE 
CONTINUE 
DO 140 I= 1, 2 

DO 130 J = 1, 2 
DO 120 K = 1, 2 

DO 60 L = 1, 3 
DO 50 Nl = 1, 3 

JAC(L,Nl) 0.0 
CONTINUE 

1, 8 
CONTINUE 
DO 70 Nl 

N(Nl) = 0.125 * (1.0 + SIGNl(Nl) * XI(I)) 
* (1.0 + SIGN2 (Nl) * ETA(J)) 
* (1.0 + SIGN3(Nl) * ZETA(K)) 

DNDXI(Nl) = 0.125 * SIGNl(Nl) * (1.0 + SIGN2(Nl) 
* (1.0 + SIGN3(Nl) * ZETA(K)) 

DNDETA(Nl) = 0.125 * SIGN2(Nl) * (1.0 + SIGNl(Nl) 
* (1.0 + SIGN3(Nl) * ZETA(K)) 

DNDZETA(Nl)= 0.125 * SIGN3(Nl) * (1.0 + SIGNl(Nl) 
* (1.0 + SIGN2(Nl) * ETA(J)) 

CONTINUE 
DO 80 Nl 

JAC (1, 1) 
JAC(l,2) 
JAC(l,3) 
JAC(2,1) 
JAC(2,2) 
JAC (2, 3) 
JAC(3,1) 
JAC(3,2) 
JAC (3, 3) 

1, 8 
JAC(l,1) 
JAC(l,2) 
JAC(l,3) 
JAC (2, 1) 
JAC(2,2) 
JAC(2,3) 
JAC(3,1) 
JAC(3,2) 
JAC(3,3) 

+ DNDXI(Nl) * Xl(IN(E,Nl)) 
+ DNDXI(Nl) * X2(IN(E,Nl)) 
+ DNDXI(Nl) * X3(IN(E,Nl)) 
+ DNDETA(Nl) * Xl(IN(E,Nl)) 
+ DNDETA(Nl) * X2(IN(E,Nl)) 
+ DNDETA(Nl) * X3(IN(E,Nl)) 
+ DNDZETA(Nl) * Xl(IN(E,Nl)) 
+ DNDZETA (Nl) * X2 ( IN (E, Nl) ) 
+ DNDZETA(Nl) * X3(IN(E,Nl)) 

* ETA(J)) 

* XI (I)) 

* XI (I)) 

CONTINUE 
DETJAC JAC(l,1) * (JAC(2,2)*JAC(3,3) - JAC(3,2)*JAC(2,3)) 

- JAC(l,2) * (JAC(2,l)*JAC(3,3) - JAC(3,l)*JAC(2,3)) 
- JAC(l,3) * (JAC(2,l)*JAC(3,2) - JAC(3,l)*JAC(2,2)) 

if (detjac .eq. 0) stop 'detjac = 0, check dimension' 
INVERSE JACOBIAN MATRIX FORMULA HAS BEEN TRANSPOSED STEVE 9/7/96 
JACINV(l,1) ( JAC(2,2) * JAC(3,3) - JAC(2,3) * JAC(3,2)) 

1 

1 

1 

1 

1 

1 

1 

1 

1 

JACINV(2,1) 

JACINV(3,1) 

JACINV(l,2) 

JACINV(2,2) 

JACINV(3,2) 

JACINV (1, 3) 

JACINV (2, 3) 

JACINV(3,3) 

/ DETJAC 
(-JAC(2,1) * JAC(3,3) + JAC(2,3) * JAC(3,1)) 
/ DETJAC 
( JAC ( 2, 1) * JAC ( 3, 2) - JAC ( 3, 1) * JAC ( 2, 2) ) 
/ DETJAC 
(-JAC(l,2) * JAC(3,3) + JAC(l,3) * JAC(3,2)) 
/ DETJAC 
( JAC ( 1, 1) * JAC ( 3, 3) - JAC ( 1, 3) * JAC ( 3, 1) ) 
/ DETJAC 
(-JAC(l,1) * JAC(3,2) + JAC(l,2) * JAC(3,1)) 
/ DETJAC 
( JAC ( 1, 2) * JAC ( 2, 3) - JAC ( 1, 3) * JAC ( 2, 2) ) 
/ DETJAC 
(-JAC (1, 1) * JAC (2, 3) + JAC (1, 3) * JAC (2, 1)) 
/ DETJAC 
( JAC(l,1) * JAC (2, 2) - JAC(l,2) * JAC (2, 1)) 
/ DETJAC 

DO 90 Nl = 1, 8 
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90 

100 
110 
120 
130 
140 

1 

1 

1 

1 

1 
2 
3 
4 
5 

DNDX(Nl) = JACINV(l,1) * DNDXI(Nl) + JACINV(l,2) * 
DNDETA(Nl) + JACINV(l,3) * DNDZETA(Nl) 

DNDY(Nl) = JACINV(2,1) * DNDXI(Nl) + JACINV(2,2) * 
DNDETA(Nl) + JACINV(2,3) * DNDZETA(Nl) 

DNDZ(Nl) = JACINV(3,1) * DNDXI(Nl) + JACINV(3,2) * 
DNDETA(Nl) + JACINV(3,3) * DNDZETA(Nl) 

CONTINUE 
DO 110 L 1, 8 

DO 100 Nl = 1, 8 
AE(L,Nl) = AE(L,Nl) + W(I) * W(J) * W(K) * DETJAC * 

(1.0 + RHOBE *KDE/ NE) * N(L) * N(Nl) 
DE(L,Nl) = DE(L,Nl) + W(I) * W(J) * W(K) * DETJAC * ( 
DNDX(L)*(DXXE*DNDX(Nl) + DXYE*DNDY(Nl) + DXZE*DNDZ(Nl))+ 
DNDY(L)*(DYXE*DNDX(Nl) + DYYE*DNDY(Nl) + DYZE*DNDZ(Nl))+ 
DNDZ(L)*(DZXE*DNDX(Nl) + DZYE*DNDY(Nl) + DZZE*DNDZ(Nl)) 

+ N(L)*(VXEP*DNDX(Nl) + VYEP*DNDY(Nl) + VZEP*DNDZ(Nl)) 
+LAMBDA* (1.0 + RHOBE *KDE/ NE) * N(L) * N(Nl) ) 

CONTINUE 
CONTINUE 

CONTINUE 
CONTINUE 

CONTINUE 
RETURN 
END 

SUBROUTINE DDBAR2(E, DDE) 
C********************************************************************* 

C 
C PURPOSE: 
C TO COMPUTE THE DERIVATIVE OF THE CONSISTENT FORM 
C OF THE ELEMENT ADVECTION-DISPESION MATRIX 
C FOR A ONE-DIMENSIONAL, LINEAR BAR ELEMENT. 
C 
C DEFINITIONS OF VARIABLES: 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

ALE 
DE (I, J) 

DXE 
E 

KDE 
LAMBDA 

LE 
NE 

RHOBE 
VXE 

VXEP 

LONGITUDINAL DISPERSIVITY FOR ELEMENT 
DERIVATIVE OF THE ELEMENT ADVECTION­
DISPERSION MATRIX 
ELEMENT DISPESION COEFFICIENT 
ELEMENT NUMBER 
ELEMENT DISTRIBUTION COEFFICIENT 
SOLUTE DECAY COEFFICIENT 
ELEMENT LENGTH 
ELEMENT POROSITY 
ELEMENT BULK DENSITY 
APPARENT GROUNDWATER VELOCITY IN 
X COORDINATE DIRECTION 
PORE WATER VELOCITY IN X COORDINATE DIRECTION 

C********************************************************************* 
INCLUDE 'COMALL' 
INTEGER E 
DOUBLE PRECISION DDE(MAX3,MAX3,3,0:3), KDE, LAMBDA, LE ,NE, ALE 
DOUBLE PRECISION VXEP, DXE, RHOBE 
ALE PROP(MATSET(E),1) 
LAMBDA PROP(MATSET(E),2) 
RHOBE PROP(MATSET(E),3) 
KDE PROP(MATSET(E),4) 
NE PROP(MATSET(E),5) 
VXEP 1 / NE 
LE ABS(Xl(IN(E,2)) - Xl(IN(E,1))) 
DXE ALE* VXEP 
DDE(l,1,1,0) DXE / LE - VXEP / 2.0 
DDE ( 1, 2, 1, 0) -DXE / LE + VXEP / 2. 0 
DDE(2,l,1,0) -DXE / LE - VXEP / 2.0 
DDE(2,2,1,0) DXE /LE+ VXEP / 2.0 
RETURN 
END 
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SUBROUTINE DDTRI3(E,DDE,DIM2) 
C********************************************************************* 

C 
C PURPOSE: 
C TO COMPUTE THE CONSISTENT FORM OF THE ELEMENT 
C ADVECTION-DISPESION MATRIX FOR A TWO-DIMENSIONAL, 
C LINEAR TRIANGLE ELEMENT 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

DEFINITIONS OF VARIABLES: 
AE4 FOUR TIMES ELEMENT AREA 
ALE LONGITUDINAL DISPERSIVITY FOR ELEMENT 
ATE 

DE (I, J) 

DXXE (ETC.) 
E 

KDE 
LAMBDA 

NE 
RHOBE 

VXE 

VYE 

VXEP 
VYEP 

TRANSVERSE DISPERSIVITY FOR ELEMENT 
ELEMENT ADVECTION DISPERSION MATRIX 
ELEMENT DISPESION COEFFICIENTS 
ELEMENT NUMBER 
ELEMENT DISTRIBUTION COEFFICIENT 
SOLUTE DECAY COEFFICIENT 
ELEMENT POROSITY 
ELEMENT BULK DENSITY 
APPARENT GROUNDWATER VELOCITY IN 
X COORDINATE DIRECTION 
APPARENT GROUNDWATER VELOCITY IN 
Y COORDINATE DIRECTION 
PORE WATER VELOCITY IN X COORDINATE DIRECTION 
PORE WATER VELOCITY IN Y COORDINATE DIRECTION 

C********************************************************************* 
INCLUDE 'COMALL' 
INTEGER E, I, J, DIMEN, DIMEN2, DIM2 
DOUBLE PRECISION DDE(MAX3,MAX3,3,0:3), KDE, LAMBDA, NE, BE(3) 
DOUBLE PRECISION ALE, ATE, RHOBE, VXE, VYE, VXEP, VYEP 
DOUBLE PRECISION DXXE, DYYE, DXYE, DYXE, AE4, CE(3) 
DOUBLE PRECISION DXZE, DYZE, DZZE, VZEP 
ALE PROP(MATSET(E),1) 
ATE PROP(MATSET(E),2) 
LAMBDA PROP(MATSET(E),3) 
RHOBE PROP(MATSET(E),4) 
KDE PROP(MATSET(E),5) 
NE PROP(MATSET(E),6) 
VXE Vl (E) 
VYE V2 (E) 
BE ( 1) X2 ( IN ( E, 2)) - X2 ( IN ( E, 3) ) 
BE ( 2) X2 ( IN ( E, 3) ) - X2 ( IN ( E, 1) ) 
BE ( 3) X2 ( IN ( E, 1 ) ) - X2 ( IN ( E, 2) ) 
CE(l) Xl(IN(E,2)) - Xl(IN(E,3)) 
CE(2) Xl(IN(E,3)) - Xl(IN(E,1)) 
CE(3) Xl(IN(E,1)) - Xl(IN(E,2)) 
AE4 2.0 * (Xl(IN(E,2)) * X2(IN(E,3)) + Xl(IN(E,1)) * 

1 X2(IN(E,2)) + X2(IN(E,1)) * Xl(IN(E,3)) -
2 X2(IN(E,3)) * Xl(IN(E,1)) - Xl(IN(E,3)) * 
3 X2(IN(E,2)) - Xl(IN(E,2)) * X2(IN(E,1))) 

DO 40 DIMEN = 1,2 
DO 30 DIMEN2 = 0, 2 * DIM2 

VXEP VXE / NE 
VYEP = VYE / NE 
VZEP = 0.0 
CALL DERIVE(DXXE, DXYE, DYYE, DXZE, DYZE, DZZE, 

1 VXEP, VYEP, VZEP, NE, ALE, ATE, 
2 DIMEN, DIMEN2, 2) 

DYXE DXYE 
DO 20 I= 1, 3 

DO 10 J = 1, 3 
DDE(I,J,DIMEN,DIMEN2) = (DXXE * BE(I) * BE(J) 

1 + DYYE * CE (I) * CE ( J) 
2 + DXYE * BE(I) * CE(J) 
3 + DYXE * CE(I) * BE(J) ) / AE4 
4 + VXEP / 6.0 * BE(J) 
5 + VYEP / 6.0 * CE(J) 
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10 CONTINUE 
20 CONTINUE 
30 CONTINUE 
40 CONTINUE 

RETURN 
END 

SUBROUTINE DDREC4(E,DDE,DIM2) 

Page.A.87 

C********************************************************************* 

C 
C PURPOSE: 
C TO COMPUTE THE CONSISTENT FORM OF THE ELEMENT 
C ADVECTION-DISPESION MATRIX FOR A TWO-DIMENSIONAL, 
C LINEAR RECTANGLE ELEMENT 
C 
C DEFINITIONS OF VARIABLES: 
C ALE LONGITUDINAL DISPERSIVITY FOR ELEMENT 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

ATE 
DE (I,J) 

DXXE (ETC.) 
E 

KDE 
LAMBDA 

NE 
RHOBE 

VXE 

VYE 

VXEP 
VYEP 

TRANSVERSE DISPERSIVITY FOR ELEMENT 
ELEMENT ADVECTION DISPERSION MATRIX 
ELEMENT DISPESION COEFFICIENTS 
ELEMENT NUMBER 
ELEMENT DISTRIBUTION COEFFICIENT 
SOLUTE DECAY COEFFICIENT 
ELEMENT POROSITY 
ELEMENT BULK DENSITY 
APPARENT GROUNDWATER VELOCITY IN 
X COORDINATE DIRECTION 
APPARENT GROUNDWATER VELOCITY IN 
Y COORDINATE DIRECTION 
PORE WATER VELOCITY IN X COORDINATE DIRECTION 
PORE WATER VELOCITY IN Y COORDINATE DIRECTION 

C********************************************************************* 

1 
2 

INCLUDE 'COMALL' 
INTEGER E, I, J, DIM2 
DOUBLE PRECISION DDE(MAX3,MAX3,3,0:3), KDE, LAMBDA, NE, AE 
DOUBLE PRECISION ALE, ATE, RHOBE, VXE, VYE, VXEP, VYEP 
DOUBLE PRECISION DXXE, DYYE, DXYE, DYXE, TEMPl, TEMP2, BE 
DOUBLE PRECISION TEMP3, TEMP4, TEMPS, TEMP6 
DOUBLE PRECISION DXZE, DYZE, DZZE, VZEP 
ALE PROP(MATSET(E),1) 
ATE PROP(MATSET(E),2) 
LAMBDA PROP(MATSET(E),3) 
RHOBE PROP(MATSET(E),4) 
KDE PROP(MATSET(E),S) 
NE PROP(MATSET(E),6) 
AE ABS(X2(IN(E,1)) - X2(IN(E,3)))/ 2.0 
BE ABS(Xl(IN(E,1)) - Xl(IN(E,3)))/ 2.0 
VXE Vl (E) 
VYE V2 (E) 
DO 20 I= 1, 2 

DO 10 J = 0, 2 * DIM2 
VXEP 
VYEP 
VZEP 
CALL 

DYXE 
TEMPl 
TEMP2 
TEMP3 
TEMP4 
TEMPS 
TEMP6 

VXE / NE 
= VYE / NE 
= 0.0 

DERIVE(DXXE, DXYE, DYYE, DXZE, DYZE, DZZE, 
VXEP, VYEP, VZEP, NE, ALE, ATE, 
I, J, 2) 

DXYE 
( DXXE * AE ) / ( 6 . 0 * BE) 
(DYYE * BE) / (6.0 * AE) 
DXYE I 4.0 
DYXE I 4.0 
VXEP * AE / 6.0 
VYEP *BE/ 6.0 

DDE(l,1,I,J)= 2.*TEMP1+2.*TEMP2+TEMP3+TEMP4-2.*TEMPS-2.*TEMP6 
DDE(l,2,I,J)=-2.*TEMPl+ TEMP2+TEMP3-TEMP4+2.*TEMPS- TEMP6 
DDE(l,3,I,J)=- TEMPl- TEMP2-TEMP3-TEMP4+ TEMPS+ TEMP6 
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DDE(l,4,I,J)= TEMP1-2.*TEMP2-TEMP3+TEMP4- TEMPS+2.*TEMP6 
DDE(2,l,I,J)=-2.*TEMP1+ TEMP2-TEMP3+TEMP4-2.*TEMPS- TEMP6 
DDE(2,2,I,J)= 2.*TEMP1+2.*TEMP2-TEMP3-TEMP4+2.*TEMPS-2.*TEMP6 
DDE(2,3,I,J)= TEMP1-2.*TEMP2+TEMP3-TEMP4+ TEMPS+2.*TEMP6 
DDE(2,4,I,J)=- TEMPl- TEMP2+TEMP3+TEMP4- TEMPS+ TEMP6 
DDE(3,l,I,J)=- TEMPl- TEMP2-TEMP3-TEMP4- TEMPS- TEMP6 
DDE(3,2,I,J)= TEMP1-2.*TEMP2-TEMP3+TEMP4+ TEMPS-2.*TEMP6 
DDE(3,3,I,J)= 2.*TEMP1+2.*TEMP2+TEMP3+TEMP4+2.*TEMPS+2.*TEMP6 
DDE(3,4,I,J)=-2.*TEMP1+ TEMP2+TEMP3-TEMP4-2.*TEMPS+ TEMP6 
DDE(4,l,I,J)= TEMP1-2.*TEMP2+TEMP3-TEMP4- TEMPS-2.*TEMP6 
DDE(4,2,I,J)=- TEMPl- TEMP2+TEMP3+TEMP4+ TEMPS- TEMP6 
DDE(4,3,I,J)=-2.*TEMP1+ TEMP2-TEMP3+TEMP4+2.*TEMPS+ TEMP6 
DDE(4,4,I,J)= 2.*TEMP1+2.*TEMP2-TEMP3-TEMP4-2.*TEMPS+2.*TEMP6 

10 CONTINUE 
20 CONTINUE 

RETURN 
END 

SUBROUTINE DDQUA4(E,DDE,DIM2) 
C********************************************************************* 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

PURPOSE: 
TO COMPUTE THE CONSISTENT FORM OF THE ELEMENT SORPTION 
AND ADVECTION-DISPESION MATRICES FOR A TWO-DIMENSIONAL, 
LINEAR QUADRILATERAL ELEMENT 

DEFINITIONS OF VARIABLES: 
AE(I,J) ELEMENT SORPTION MATRIX 

ALE LONGITUDINAL DISPERSIVITY FOR ELEMENT 
ATE TRANSVERSE DISPERSIVITY FOR ELEMENT 

DE (I, J) 

DETJAC 
DNDXI(I) 

DNDX (I) 

DNDETA(I) 

DNDY(I) 

DXXE (ETC.) 
E 

XI (I) 
ETA(!) 

JAC(I,J) 
N(I) 
W (I) 

KDE 
LAMBDA 

NE 
RHOBE 

VXE 

VYE 

VXEP 
VYEP 

Xl (IN(E, I)) 
X2(IN(E,I)) 

ELEMENT ADVECTION DISPERSION MATRIX 
DETERMINANT OF THE JACOBIAN MATRIX 
PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO XI AT NODE I 
PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO X AT NODE I 
PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO ETA AT NODE I 
PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TOY AT NODE I 
ELEMENT DISPESION COEFFICIENTS 
ELEMENT NUMBER 
LOCATION OF GAUSS POINT IN XI COORDINATE DIRECTION 
LOCATION OF GAUSS POINT IN ETA COORDINATE DIRECTION 
JACOBIAN MATRIX 
INTERPOLATION FUNCTION FOR NODE I 
WEIGHT FOR GAUSS POINT I 
ELEMENT DISTRIBUTION COEFFICIENT 
SOLUTE DECAY COEFFICIENT 
ELEMENT POROSITY 
ELEMENT BULK DENSITY 
APPARENT GROUNDWATER VELOCITY IN 
X COORDINATE DIRECTION 
APPARENT GROUNDWATER VELOCITY IN 
Y COORDINATE DIRECTION 
PORE WATER VELOCITY IN X COORDINATE DIRECTION 
PORE WATER VELOCITY IN Y COORDINATE DIRECTION 
X COORDINATE FOR NODE I, ELEMENT E 
Y COORDINATE FOR NODE I, ELEMENT E 

C********************************************************************* 
INCLUDE 'COMALL' 
INTEGER E, I, J, K, Kl, DIMEN, DIMEN2, DIM2 
DOUBLE PRECISION JAC(2,2), JACINV(2,2), N(4), DETJAC 
DOUBLE PRECISION DNDXI(4), DNDX(4), DNDY(4), DNDETA(4) 
DOUBLE PRECISION W(2), XI(2), ETA(2), DDE(MAX3,MAX3,3,0:3) 
DOUBLE PRECISION SIGN1(4), SIGN2(4), KDE, NE, LAMBDA, VP 
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DOUBLE PRECISION 
DOUBLE PRECISION 
DOUBLE PRECISION 
DOUBLE PRECISION 
DOUBLE PRECISION 
DOUBLE PRECISION 
DOUBLE PRECISION 

ALE, ATE, RHOBE, VXE, VYE, VXEP, VYEP, VZEP 
DXXE, DYYE, DXYE, DYXE, DXZE, DYZE, DZZE 
LENGl, LENG2, TEMPl, TEMP2, TEMPA, TEMPB 
TEMP3X, TEMP3Y, TEMP4X, TEMP4Y 
TEMPS, TEMPG, TEMP7, TEMPS 
ALPHA, BETA, WXI(4}, WETA(4}, DWDXI(4} 
DWDETA(4}, DWDX(4}, DWDY(4} 

DOUBLE PRECISION VXI, VETA, VXW(4}, VYW(4} 
DATA SIGNl/-1.0, 1.0, 1.0,-1.0/ 
DATA SIGN2/-1.0,-1.0, 1.0, 1.0/ 
XI(l) = SQRT(DBLE(1D0/3DO}} 
XI(2) = -XI(l} 
ETA(l) = XI(l} 
ETA(2) = XI(2} 
W(l) 1.0 
W(2} 1.0 
ALE PROP(MATSET(E},1} 
ATE PROP(MATSET(E},2} 
LAMBDA PROP(MATSET(E},3} 
RHOBE PROP(MATSET(E),4} 
KDE PROP(MATSET(E},5} 
NE PROP(MATSET(E},6} 
VXE Vl(E} 
VYE V2(E) 
VXEP VXE / NE 
VYEP VYE / NE 
VP SQRT(VXEP**2 + VYEP**2} 
IF (ABS(VP} .LT. lE-40) THEN 

ALPHA= 0.0 
BETA= 0.0 

ELSE 
LENGl = SQRT((Xl(IN(E,2}} - Xl(IN(E,1}}}**2 

1 + (X2(IN(E,2}) - X2(IN(E,1}}}**2} 
VXI = ( (Xl (IN (E, 2}) - Xl (IN (E, 1)}} * VXEP 

1 + (X2 (IN (E, 2}) - X2 (IN (E, 1))} * VYEP } / LENGl 
LENG2 = SQRT((Xl(IN(E,3}} - Xl(IN(E,2}})**2 

1 + (X2(IN(E,3}) - X2(IN(E,2}}}**2} 
VETA= ( (Xl(IN(E,3}} - Xl(IN(E,2}}} * VXEP 

1 + (X2 (IN (E, 3}) - X2 (IN (E, 2))) * VYEP ) / LENG2 
C lE-10 IS CHOSEN TO BE SLIGHTLY MORE THAN DOUBLE PRECISION 

IF (VXI .GT. VP* lE-10) THEN 

C 

10 
20 
30 

ALPHA= PROP(MATSET(E},7} 
ELSEIF (VXI .LT. -VP* lE-10) THEN 

ALPHA -PROP(MATSET(E},7) 
ELSE 

ALPHA 0.0 
ENDIF 
IF (VETA .GT. VP* lE-10) THEN 

BETA= PROP(MATSET(E},7} 
ELSEIF (VETA .LT. -VP* lE-10) THEN 

BETA -PROP(MATSET(E},7} 
ELSE 

BETA 0.0 
ENDIF 

ENDIF 
DO 30 I 1, 4 

DO 20 J = 1, 4 
DO 10 DIMEN2 = 0, 2 * 

DDE(I,J,1,DIMEN2) 
DDE(I,J,2,DIMEN2) 

CONTINUE 
CONTINUE 

CONTINUE 

DO 140 I = 1, 2 
DO 130 J = 1, 2 

DO 50 K = 1, 2 
DO 40 Kl= 1, 2 

DIM2 
0.0 
0.0 

Page.A.89 
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40 
50 

60 

70 

80 

85 

1 

1 

1 

1 

1 

1 

1 
2 

1 

1 

1 

1 

JAC(K,Kl) 0.0 
CONTINUE 

CONTINUE 
DO 60 Kl= 1, 4 

TEMPA (1.0 + SIGNl(Kl) * XI(I)) 
TEMPB (1.0 + SIGN2(Kl) * ETA(J)) 
TEMPl (1.0 + XI(I)) 
TEMP2 (1.0 + ETA(J)) 
TEMP3X (2.0 + 3.0 * ALPHA * (1.0 - XI(I))) 

* SIGNl (Kl) 
TEMP3Y 2.0 * SIGNl(Kl) 
TEMP4X 2.0 * SIGN2(Kl) 
TEMP4Y (2.0 + 3.0 * BETA * (1.0 - ETA(J))) 

* SIGN2 (Kl) 
TEMPS 2.0 * (1.0 - SIGNl(Kl)) 
TEMP6 2.0 * (1.0 - SIGN2(Kl)) 
TEMP7 3.0 *ALPHA* XI(I) - 1.0 
TEMPS 3.0 *BETA* ETA(J) - 1.0 

N(Kl) 0.25 * TEMPA * TEMPB 
DNDXI(Kl) 0.25 * SIGNl(Kl) * TEMPB 

DNDETA(Kl) 0.25 * SIGN2(Kl) * TEMPA 
WXI(Kl) 0.0625 * (TEMPl * TEMP3X + TEMPS) 

* (TEMP2 * TEMP4X + TEMP6) 
WETA(Kl) 0.0625 * (TEMPl * TEMP3Y + TEMPS) 

* (TEMP2 * TEMP4Y + TEMP6) 
DWDXI(Kl) -0.125 * SIGNl(Kl) * TEMP7 

* (TEMP2 * TEMP4X + TEMP6) 
DWDETA(Kl) -0.125 * SIGN2(Kl) * TEMPS 

CONTINUE 
DO 70 Kl 

JAC (1, 1) 
JAC(l,2) 
JAC(2,1) 
JAC(2,2) 

CONTINUE 

1, 4 
JAC(l,1) 
JAC(l,2) 
JAC(2,1) 
JAC(2,2) 

* (TEMPl * TEMP3Y + TEMPS) 

+ DNDXI(Kl) * Xl(IN(E,Kl)) 
+ DNDXI(Kl) * X2(IN(E,Kl)) 
+ DNDETA(Kl) * Xl(IN(E,Kl)) 
+ DNDETA(Kl) * X2(IN(E,Kl)) 

DETJAC = JAC(l,1) * JAC(2,2) - JAC(l,2) 
JACINV(l,1) JAC(2,2) / DETJAC 
JACINV(l,2) -JAC(l,2) / DETJAC 
JACINV(2,1) -JAC(2,1) / DETJAC 
JACINV(2,2) JAC(l,1) / DETJAC 

* JAC(2,1) 

DO 80 Kl= 1, 4 
DNDX(Kl) JACINV(l,1) 
DNDY(Kl) JACINV(2,1) 
DWDX(Kl) JACINV(l,1) 
DWDY(Kl) JACINV(2,1) 

* DNDXI (Kl) 
* DNDXI (Kl) 
* DWDXI (Kl) 
* DWDXI (Kl) 

+ JACINV(l,2) 
+ JACINV(2,2) 
+ JACINV(l,2) 
+ JACINV (2, 2) 

* DNDETA(Kl) 
* DNDETA(Kl) 
* DWDETA(Kl) 
* DWDETA(Kl) 

CONTINUE 
DO 120 DIMEN = 1,2 

DO 110 DIMEN2 = 0, 2 * DIM2 
VXEP VXE / NE 
VYEP = VYE / NE 
VZEP = 0.0 
CALL DERIVE(DXXE, DXYE, DYYE, DXZE, DYZE, DZZE, 

VXEP, VYEP, VZEP, NE, ALE, ATE, 
DIMEN, DIMEN2, 2) 

DYXE DXYE 
VXI (Xl(IN(E,2)) 

+ (X2(IN(E,2)) 
VETA (Xl(IN(E,3)) 

+ (X2 (IN (E, 3)) 
DO 85 Kl 1, 4 

- Xl(IN(E,1))) * VXEP 
- X2(IN(E,1))) * VYEP 
- Xl(IN(E,2))) * VXEP 
- X2(IN(E,2))) * VYEP 

I 

I 

VXW(Kl) = WXI(Kl) * VXI * 
+ WETA(Kl) *VETA* 

VYW(Kl) = WXI(Kl) * VXI * 
+ WETA(Kl) *VETA* 

CONTINUE 

(Xl(IN(E,2)) - Xl(IN(E,1))) 
(Xl(IN(E,3)) - Xl (IN(E,2))) 
(X2 (IN (E, 2)) - X2(IN(E,l))) 
(X2 (IN (E, 3)) - X2(IN(E,2))) 

DO 100 K = 1, 4 
DO 90 Kl= 1, 4 

LENGl 

LENG2 

I LENGl 
I LENG2 
I LENGl 
I LENG2 
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C 

1 
2 
3 
4 

5 
6 
7 
8 

DDE(K,Kl,DIMEN,DIMEN2) = DDE(K,Kl,DIMEN,DIMEN2) 
+ W(I)*W(J)* (DXXE * DWDX(K) * DNDX(Kl) 

+ DXYE * DWDX(K) * DNDY(Kl) 
+ DYXE * DWDY(K) * DNDX(Kl) 
+ DYYE * DWDY(K) * DNDY(Kl) 

SEE ABOVE FOR VXW(K) = W(K) * VXEP 
+ VXW (K) * DNDX (Kl) 
+ VYW(K) * DNDY(Kl) 
+LAMBDA* (1.0 + RHOBE *KDE/ NE) 
* N(K) * N(Kl)) * DETJAC 

90 CONTINUE 
100 CONTINUE 
110 CONTINUE 
120 CONTINUE 
130 CONTINUE 
140 CONTINUE 

RETURN 
END 

SUBROUTINE DDPAR8(E,DDE,DIM2) 
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C********************************************************************* 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

PURPOSE: 
TO COMPUTE THE CONSISTENT FORM OF THE ELEMENT 
SORPTION MATRIX AND THE ELEMENT CONDUCTANCE 
MATRIX FOR A THREE DIMENSIONAL, LINEAR 
PARALLELEPIPED ELEMENT 

DEFINITIONS OF VARIABLES: 
AE(I,J) 

ALE 
ATE 

DE(I,J) 
DETJAC 

DNDXI(I) 

DNDX (I) 

DNDETA(I) 

DNDY (I) 

DNDZETA(I) 

DNDZ(I) 

E 
ETA (I) 

ELEMENT CAPACITANCE MATRIX 
LONGITUDINAL DISPERSIVITY FOR ELEMENT 
TRANSVERSE DISPERSIVITY FOR ELEMENT 
ELEMENT ADVECTION DISPERSION MATRIX 
DETERMINANT OF JACOBIAN MATRIX 
PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO XI AT NODE I 
PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO X AT NODE I 
PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO ETA AT NODE I 
PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TOY AT NODE I 
PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO ZETA AT NODE I 
PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO Z AT NODE I 
ELEMENT NUMBER 
LOCATION OF GAUSS POINT IN ETA 
COORDINATE DIRECTION 

IN(I,J) NODE NUMBER J FOR ELEMENT I 
JAC(I,J) JACOBIAN MATRIX 

JACINV(I,J) INVERSE OF JACOBIAN MATRIX 
KDE ELEMENT DISTRIBUTION COEFFICIENT 

LAMBDA SOLUTE DECAY COEFFICIENT 
N(I) INTERPOLATION FUNCTION FOR NODE I 

NE ELEMENT POROSITY 
RHOBE ELEMENT BULK DENSITY 

VXE APPARENT GROUNDWATER VELOCITY IN 
X COORDINATE DIRECTION 

VYE 

VZE 

VXEP 
VYEP 
VZEP 
W (I) 

Xl(IN(E,I) 

APPARENT GROUNDWATER VELOCITY IN 
Y COORDINATE DIRECTION 
APPARENT GROUNDWATER VELOCITY IN 
Z COORDINATE DIRECTION 
PORE WATER VELOCITY IN X COORDINATE DIRECTION 
PORE WATER VELOCITY IN Y COORDINATE DIRECTION 
PORE WATER VELOCITY IN Z COORDINATE DIRECTION 
WEIGHT FOR GAUSS POINT I 
X COORDINATE FOR NODE I, ELEMENT E 
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C 
C 
C 
C 
C 
C 
C 

X2(IN(E,I) 
X3(IN(E,I) 

XI(I) 

ZETA(!) 

Y COORDINATE FOR NODE I, ELEMENT E 
Z COORDINATE FOR NODE I, ELEMENT E 
LOCATION OF GAUSS POINT IN XI COORDINATE 
DIRECTION 
LOCATION OF GAUSS POINT IN ZETA COORDINATE 
DIRECTION 

Page.A.92 

C********************************************************************* 
INCLUDE 'COMALL' 
INTEGER E, I, J, K, L, Nl, DIMEN, DIMEN2, DIM2 
DOUBLE PRECISION JAC(3,3), DDE(MAX3,MAX3,3,0:3) 
DOUBLE PRECISION DNDXI(8), DNDX(8), DNDETA(8), DNDY(8) 
DOUBLE PRECISION DNDZETA(8), DNDZ(B), W(2), XI(2), ETA(2) 
DOUBLE PRECISION ZETA(2), SIGNl(B), SIGN2(8), SIGN3(8) 
DOUBLE PRECISION RHOBE, KDE, NE,LAMBDA, JACINV(3,3), DETJAC 
DOUBLE PRECISION VXE, VYE, VZE, VXEP, VYEP, VZEP 
DOUBLE PRECISION DXXE, DXYE, DYXE, DYYE, DXZE, DZXE 
DOUBLE PRECISION DZZE, DYZE, DZYE, ALE, ATE, N(8) 
DATA SIGNl/-1.0, 1.0, 1.0,-1.0,-1.0, 1.0, 1.0,-1.0/ 
DATA SIGN2/-1.0,-1.0, 1.0, 1.0,-1.0,-1.0, 1.0, 1.0/ 
DATA SIGN3/-1.0,-1.0,-1.0,-1.0, 1.0, 1.0, 1.0, 1.0/ 

XI(l) = SQRT(DBLE(1D0/3D0)) 
xr (2) = -xr (1) 
ETA ( 1) = XI ( 1) 
ETA(2) = XI(2) 
ZETA(l) = XI(l) 
ZETA(2) = XI(2) 
W(l) 1.0 
W(2) 1.0 
ALE PROP(MATSET(E),1) 
ATE PROP(MATSET(E),2) 
LAMBDA PROP(MATSET(E),3) 
RHOBE PROP(MATSET(E),4) 
KDE PROP(MATSET(E),5) 
NE PROP(MATSET(E),6) 
VXE Vl(E) 
VYE V2(E) 
VZE V3(E) 
DO 20 K = 1, 8 

DO 10 Nl = 1, 8 
DDE(K,Nl,1,0) 0.0 
DDE(K,Nl,2,0) 0.0 
DDE(K,Nl,3,0) 0.0 
IF (DIM2 .NE. 0) THEN 

DDE(K,Nl,1,1) 0.0 
DDE(K,Nl,2,1) 0.0 
DDE(K,Nl,3,1) 0.0 
DDE(K,Nl,2,2) 0.0 
DDE(K,Nl,3,2) 0.0 
DDE(K,Nl,3,3) 0.0 

ENDIF 
10 CONTINUE 
20 CONTINUE 

DO 160 I= 1, 2 
DO 150 J = 1, 2 

DO 140 K = 1, 2 
DO 60 L = 1, 3 

DO 50 Nl = 1, 3 
JAC(L,Nl) 0.0 

50 CONTINUE 
60 CONTINUE 

1 
2 

1 

DO 70 Nl 
N(Nl) 

DNDXI (Nl) 

1, 8 
= 0.125 * (1.0 + SIGNl(Nl) * XI(I)) 

* (1.0 + SIGN2(Nl) * ETA(J)) 
* (1.0 + SIGN3(Nl) * ZETA(K)) 

0.125 * SIGNl(Nl) * (1.0 + SIGN2(Nl) 
* (1.0 + SIGN3(Nl) * ZETA(K)) 

* ETA(J)) 
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70 

80 

C 

90 

100 
llO 

1 

1 

1 
2 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 
2 

1 
2 
3 
4 
5 
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DNDETA(Nl) = 0.125 * SIGN2(Nl) * (1.0 + SIGNl(Nl) * XI(I)) 
* (1.0 + SIGN3(Nl) * ZETA(K)) 

DNDZETA(Nl)= 0.125 * SIGN3(Nl) * (1.0 + SIGNl(Nl) * XI(I)) 
* (1.0 + SIGN2(Nl) * ETA(J)) 

CONTINUE 
DO 80 Nl 

JAC(l,l) 
JAC(l,2) 
JAC(l,3) 
JAC(2,l) 
JAC(2,2) 
JAC(2,3) 
JAC(3,l) 
JAC(3,2) 
JAC(3,3) 

1, 8 
JAC(l,l) 
JAC(l,2) 
JAC(l,3) 
JAC(2,l) 
JAC(2,2) 
JAC(2,3) 
JAC(3,l) 
JAC(3,2) 
JAC(3,3) 

+ DNDXI{Nl) * Xl(IN(E,Nl)) 
+ DNDXI{Nl) * X2(IN{E,Nl)) 
+ DNDXI{Nl) * X3{IN{E,Nl)) 
+ DNDETA(Nl) * Xl{IN(E,Nl)) 
+ DNDETA(Nl) * X2(IN(E,Nl)) 
+ DNDETA(Nl) * X3(IN{E,Nl)) 
+ DNDZETA{Nl) * Xl{IN(E,Nl)) 
+ DNDZETA{Nl) * X2{IN(E,Nl)) 
+ DNDZETA{Nl) * X3{IN{E,Nl)) 

CONTINUE 
DETJAC JAC { 1, 1 ) * { JAC { 2, 2) * JAC { 3, 3) - JAC { 3, 2) * JAC { 2, 3) ) 

- JAC { 1, 2) * { JAC { 2, 1) * JAC { 3, 3) - JAC { 3, 1) * JAC { 2, 3) ) 
- JAC { 1, 3) * { JAC { 2, 1) * JAC { 3, 2) - JAC { 3, 1) * JAC ( 2, 2) ) 

if {detjac .eq. 0) stop 'detjac = 0, check dimension' 
INVERSE JACOBIAN MATRIX FORMULA HAS BEEN TRANSPOSED STEVE 9/7/96 
JACINV{l,l) { JAC{2,2) * JAC(3,3) - JAC{2,3) * JAC{3,2)) 

/ DETJAC 
JACINV{2,1) {-JAC{2,l) * JAC(3,3) + JAC{2,3) * JAC{3,l)) 

/ DETJAC 
JACINV(3,1) { JAC { 2, 1) * JAC ( 3, 2 ) - JAC { 3, 1) * JAC { 2, 2) ) 

/ DETJAC 
JACINV(l,2) (-JAC(l,2) * JAC{3,3) + JAC{l,3) * JAC{3,2)) 

/ DETJAC 
JACINV{2,2) { JAC ( 1, 1) * JAC { 3, 3) - JAC { 1, 3) * JAC { 3, 1) ) 

/ DETJAC 
JACINV{3,2) {-JAC{l,l) * JAC{3,2) + JAC{l,2) * JAC{3,1)) 

/ DETJAC 
JACINV{l,3) { JAC { 1, 2) * JAC { 2, 3) - JAC { 1, 3) * JAC { 2, 2) ) 

/ DETJAC 
JACINV{2,3) (-JAC{l,l) * JAC(2,3) + JAC{l,3) * JAC{2,1)) 

/ DETJAC 
JACINV(3,3) { JAC ( 1 , 1 ) * JAC { 2 , 2 ) - JAC ( 1, 2) * JAC { 2 , 1 ) ) 

/ DETJAC 
DO 90 Nl = 1, 8 

DNDX(Nl) = JACINV{l,l) * DNDXI{Nl) 
DNDETA(Nl) + JACINV(l,3) 

DNDY{Nl) = JACINV{2,l) * DNDXI{Nl) 
DNDETA(Nl) + JACINV(2,3) 

DNDZ(Nl) = JACINV(3,l) * DNDXI(Nl) 
DNDETA(Nl) + JACINV(3,3) 

CONTINUE 
DO 130 DIMEN = 1, 3 

DO 120 DIMEN2 = 0, 3 * DIM2 
VXEP VXE / NE 
VYEP = VYE / NE 
VZEP = VZE / NE 

+ JACINV{l,2) * 
* DNDZETA (Nl) 
+ JACINV{2,2) * 
* DNDZETA (Nl) 
+ JACINV{3,2) * 
* DNDZETA {Nl) 

CALL DERIVE{DXXE, DXYE, DYYE, DXZE, DYZE, DZZE, 
VXEP, VYEP, VZEP, NE, ALE, ATE, 
DIMEN, DIMEN2, 3) 

DYXE DXYE 
DZXE DXZE 
DZYE DYZE 
DO llO L = 1, 8 

DO 100 Nl = 1, 8 
DDE(L,Nl,DIMEN,DIMEN2) = DDE(L,Nl,DIMEN,DIMEN2) + ( 

DNDX(L)*(DXXE*DNDX(Nl) + DXYE*DNDY(Nl) + DXZE*DNDZ(Nl))+ 
DNDY{L)*(DYXE*DNDX(Nl) + DYYE*DNDY(Nl) + DYZE*DNDZ(Nl))+ 
DNDZ(L)*(DZXE*DNDX(Nl) + DZYE*DNDY(Nl) + DZZE*DNDZ(Nl)) 

+ N(L)*(VXEP*DNDX(Nl) + VYEP*DNDY(Nl) + VZEP*DNDZ(Nl))) 
* W(I) * W{J) * W{K) * DETJAC 

CONTINUE 
CONTINUE 
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120 CONTINUE 
130 CONTINUE 
140 CONTINUE 
150 CONTINUE 
160 CONTINUE 

RETURN 
END 

SUBROUTINE DERIVE(DXXE, DXYE, DYYE, DXZE, DYZE, DZZE, 
1 VXEP, VYEP, VZEP, NE, ALE, ATE, 
2 DIMEN, DIMEN2, DIM) 

Page.A.94 

C********************************************************************** 

C 
C THIS SUBROUTINE DETERMINES THE DERIVATIVES OF THE DISPERSION 
C COEFFICIENT DXXE ETC FOR ALL TWO AND THREE DIMENSIONAL ELEMENTS 
C 
C********************************************************************** 

IMPLICIT NONE 
DOUBLE PRECISION DXXE, DXYE, DYYE, DXZE, DYZE, DZZE 
DOUBLE PRECISION VXEP, VYEP, VZEP, NE, ALE, ATE, VP 
INTEGER DIMEN, DIMEN2, DIM 
VP = SQRT(VXEP**2 + VYEP**2 + VZEP**2) 
IF (ABS(VP) .LT. lE-40) THEN 

DXXE 0.0 
DYYE 0.0 
DZZE 0.0 
DXYE O.d 
DXZE 0.0 
DYZE 0.0 

ELSEIF (DIMEN2 .EQ. 0) THEN 
IF (DIMEN .EQ. 1) THEN 

C DERIVATIVE WITH RESPECT TO VXE 

1 
2 

1 
2 

1 
2 

1 
2 

1 

1 
2 

DXXE (2 *ALE* VXEP / VP 

DYYE 

DXYE 

IF (DIM 
DXZE 

DYZE 

DZZE 

- (ALE* VXEP**2 +ATE* (VYEP**2 + VZEP**2)) 
* VXEP / VP ** 3) / NE 

(2 *ATE* VXEP / VP 
- (ALE* VYEP**2 +ATE* (VXEP**2 + VZEP**2)) 

* VXEP / VP ** 3) / NE 
((ALE - ATE) * VYEP / VP 
- (ALE - ATE) * VXEP ** 2 

* VYEP / VP ** 3) / NE 
.EQ. 3) THEN 

((ALE - ATE) * VZEP / VP 
- (ALE - ATE) * VXEP ** 2 
* VZEP /VP** 3) / NE 
- (ALE - ATE) * VXEP * VZEP 
* VYEP / VP ** 3 / NE 

(2 *ATE* VXEP / VP 
- (ALE* VZEP**2 +ATE* (VXEP**2 + VYEP**2)) 
* VXEP / VP ** 3) / NE 

VZEP 0.0 
ENDIF 
VXEP 1 / NE 
VYEP = 0.0 

ELSEIF (DIMEN .EQ. 2) THEN 
C DERIVATIVE WITH RESPECT TO VYE 

DXXE (2 *ATE* VYEP / VP 
1 - (ALE* VXEP**2 +ATE* (VYEP**2 + VZEP**2)) 
2 * VYEP / VP * * 3) / NE 

DYYE (2 *ALE* VYEP / VP 
1 - (ALE* VYEP**2 +ATE* (VXEP**2 + VZEP**2)) 
2 * VYEP / VP ** 3) / NE 

DXYE ( (ALE - ATE) * VXEP / VP 
1 - (ALE - ATE) * VYEP ** 2 
2 * VXEP / VP ** 3) / NE 

IF (DIM .EQ. 3) THEN 
DXZE - (ALE - ATE) * VXEP * VZEP 

1 * VYEP /VP** 3 / NE 
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1 
2 

1 
2 

DYZE 

DZZE 

VZEP 
ENDIF 

( (ALE - ATE) * VZEP / VP 
- (ALE - ATE) * VYEP ** 2 
* VZEP /VP** 3) / NE 

(2 *ATE* VYEP / VP 
(ALE* VZEP**2 +ATE* (VXEP**2 + VYEP**2)) 

* VYEP / VP ** 3) / NE 
0.0 

VXEP 0.0 
VYEP = 1 / NE 

ELSEIF (DIMEN .EQ. 3) THEN 
C DERIVATIVE WITH RESPECT TO VZE 

C 

1 
2 

1 
2 

1 
2 

1 

1 
2 

1 
2 

1 
2 
3 

1 

1 
2 
3 

1 

1 

1 
2 
3 

DXXE (2 *ATE* VZEP / VP 

DYYE 

DZZE 

DXYE 

DXZE 

DYZE 

VZEP 
VXEP 
VYEP 

ENDIF 

- (ALE* VXEP**2 +ATE* (VYEP**2 + VZEP**2)) 
* VZEP / VP * * 3) / NE 

(2 *ATE* VZEP / VP 
- (ALE* VYEP**2 +ATE* (VXEP**2 + VZEP**2)) 

* VZEP /VP** 3) / NE 
(2 *ALE* VZEP / VP 
- (ALE* VZEP**2 +ATE* (VXEP**2 + VYEP**2)) 

* VZEP /VP** 3) / NE 
- (ALE - ATE) * VXEP * VYEP 

* VZEP / VP * * 3 / NE 
((ALE - ATE) * VXEP / VP 

- (ALE - ATE) * VZEP ** 2 
* VXEP /VP** 3) 

((ALE - ATE) * VYEP / VP 
- (ALE - ATE) * VZEP ** 2 
* VYEP /VP** 3) 

1 / NE 
0.0 
0.0 

I NE 

I NE 

ELSEIF (DIMEN2 .EQ. 1 .AND. DIMEN .EQ. 1) THEN 
SECOND DERIVATIVE WITH RESPECT TO VXE AND VXE 
DXXE (2 *ALE/ VP 

- (5 *ALE* VXEP**2 +ATE* (VYEP**2 + VZEP**2)) /VP**3 
+ 3 * (ALE* VXEP**2 +ATE* (VYEP**2 + VZEP**2)) 

* VXEP**2 / VP**5 ) /NE**2 
DXYE 3 * (ALE - ATE) * VXEP * VYEP 

* ((VXEP / VP)**2 - 1) / VP**3 /NE**2 
DYYE (2 * ATE / VP 

- (ALE* VYEP**2 + ATE 
+ 3 * (ALE* VYEP**2 + 

* VXEP**2 / VP**5 
IF (DIM .EQ. 3) THEN 

* (5 * VXEP**2 + VZEP**2)) /VP**3 
ATE* (VXEP**2 + VZEP**2)) 

DXZE 3 * (ALE - ATE) * VXEP * VZEP 

DYZE 
* ((VXEP / VP)**2 - 1) / VP**3 

(3 * VXEP**2 / VP**2 - 1) 
* (ALE - ATE) * VYEP * VZEP / VP**3 

DZZE (2 *ATE/ VP 

) /NE**2 

/NE**2 

/NE**2 

- (ALE* VZEP**2 +ATE* (5 * VXEP**2 + VYEP**2)) /VP**3 
+ 3 * (ALE* VZEP**2 +ATE* (VXEP**2 + VYEP**2)) 

* VXEP**2 / VP**5 ) /NE**2 
VZEP 0.0 

ENDIF 
VXEP = 0.0 
VYEP = 0.0 

ELSEIF(DIMEN .EQ. 2 .AND. DIMEN2 .EQ. 1 .OR. 
1 DIMEN .EQ. 1 .AND. DIMEN2 .EQ. 2) THEN 

C SECOND DERIVATIVE WITH RESPECT TO VXE AND VYE 
DXXE = (- 2 * (ALE+ ATE) * VXEP * VYEP / VP **3 

1 + 3 * (ALE* VXEP**2 +ATE* (VYEP**2 + VZEP**2)) 
2 * VXEP * VYEP / VP**5 ) /NE**2 

DXYE ( (ALE-ATE) / VP 
1 - (ALE-ATE) * (VXEP**2 + VYEP**2) / VP**3 
2 + 3 * (ALE-ATE) * VXEP**2 * VYEP**2 / VP**5 ) /NE**2 

DYYE (- 2 * (ALE+ ATE) * VXEP * VYEP / VP**3 
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C 

C 

1 + 3 * (ALE* VYEP**2 +ATE* (VXEP**2 + VZEP**2)) 
2 * VXEP * VYEP / VP**5 ) /NE**2 

IF (DIM .EQ. 3) THEN 
DXZE (3 * VXEP**2 / VP**2 - 1) * (ALE-ATE) 

1 * VYEP * VZEP / VP**3 /NE**2 
DYZE (3 * VYEP**2 / VP**2 - 1) * (ALE-ATE) 

1 * VXEP * VZEP / VP**3 /NE**2 
DZZE (- 4 *ATE* VXEP * VYEP/ VP**3 

1 + 3 * (ALE* VZEP**2 +ATE* (VXEP**2 + VYEP**2)) 
2 * VXEP * VYEP / VP**5 ) /NE**2 

VZEP 0.0 
ENDIF 
VXEP = 0.0 
VYEP = 0.0 

ELSEIF (DIMEN .EQ. 3 .AND. DIMEN2 .EQ. 1 .OR. 
1 DIMEN .EQ. 1 .AND. DIMEN2 .EQ. 3) THEN 

1 
2 

1 

1 
2 

1 
2 

1 

1 
2 

SECOND DERIVATIVE WITH RESPECT TO VXE AND VZE 
DXXE = 

DXYE 

DYYE 

DXZE 

DYZE 

DZZE 

(- 2 * (ALE+ ATE) * VXEP * VZEP / VP **3 
+ 3 * (ALE* VXEP**2 +ATE* (VYEP**2 + VZEP**2)) 

* VXEP * VZEP / VP**5 ) /NE**2 
(3 * VXEP**2 / VP**2 - 1) * (ALE-ATE) 

* VYEP * VZEP / VP**3 /NE**2 
(- 4 *ATE* VXEP * VZEP/ VP**3 
+ 3 * (ALE* VYEP**2 +ATE* (VXEP**2 + VZEP**2)) 

* VXEP * VZEP / VP**5 ) /NE**2 
( (ALE-ATE) / VP 
- (ALE-ATE) * (VXEP**2 + VZEP**2) / VP**3 
+ 3 * (ALE-ATE) * VXEP**2 * VZEP**2 / VP**5 
(3 * VZEP**2 / VP**2 - 1) * (ALE-ATE) 

* VXEP * VYEP / VP**3 
* VZEP / VP**3 

/NE**2 

/NE**2 
(- 2 * (ALE+ ATE) * VXEP 
+ 3 * (ALE* VZEP**2 + ATE 

* VXEP * VZEP / VP**5 
* (VXEP**2 + VYEP**2)) 

) /NE**2 
VXEP 0.0 
VYEP 0.0 
VZEP 0.0 

ELSEIF(DIMEN2 .EQ. 2 .AND. DIMEN .EQ. 2) THEN 
SECOND DERIVATIVE WITH RESPECT TO VYE AND VYE 

1 
2 
3 

1 

1 
2 
3 

1 

1 

1 
2 
3 

DXXE (2 *ATE/ VP 

DXYE 

DYYE 

- (ALE* VXEP**2 + ATE 
+ 3 * (ALE* VXEP**2 + 

* VYEP**2 / VP**5 

* (5 * VYEP**2 + VZEP**2)) /VP**3 
ATE* (VYEP**2 + VZEP**2)) 

3 * (ALE - ATE) * VXEP * VYEP 
* ((VYEP / VP)**2 - 1) / VP**3 

(2 * ALE / VP 

) /NE**2 

/NE**2 

- (5 *ALE* VYEP**2 +ATE* (VXEP**2 + VZEP**2)) /VP**3 
+ 3 * (ALE* VYEP**2 +ATE* (VXEP**2 + VZEP**2)) 

* VYEP**2 / VP**5 ) /NE**2 
IF (DIM .EQ. 3) THEN 

DXZE (3 * VYEP**2 / VP**2 - 1) 

DYZE 
* (ALE - ATE) * VXEP * VZEP / VP**3 

3 * (ALE - ATE) * VYEP * VZEP 
* ((VYEP / VP)**2 - 1) / VP**3 

DZZE (2 *ATE/ VP 

/NE**2 

/NE**2 

- (ALE* VZEP**2 +ATE* (VXEP**2 + 5 * VYEP**2)) /VP**3 
+ 3 * (ALE* VZEP**2 +ATE* (VXEP**2 + VYEP**2)) 

* VYEP**2 / VP**5 ) /NE**2 
VZEP 0.0 

ENDIF 
VXEP = 0.0 
VYEP = 0.0 

ELSEIF (DIMEN .EQ. 3 .AND. DIMEN2 .EQ. 2 .OR. 
1 DIMEN .EQ. 2 .AND. DIMEN2 .EQ. 3) THEN 

C SECOND DERIVATIVE WITH RESPECT TO VYE AND VZE 

1 
2 

DXXE = (- 4 *ATE* VYEP * VZEP/ VP**3 
+ 3 * (ALE* VXEP**2 +ATE* (VYEP**2 

* VYEP * VZEP / VP**5 
DXYE (3 * VYEP**2 / VP**2 - 1) * (ALE-ATE) 

+ VZEP**2)) 
) /NE**2 



Appendix A Page.A.97 

C 

1 * VXEP * VZEP / VP**3 /NE**2 
DYYE (- 2 * (ALE+ ATE) * VYEP * VZEP / VP**3 

1 + 3 * (ALE* VYEP**2 +ATE* (VXEP**2 + VZEP**2)) 
2 * VYEP * VZEP / VP**S ) /NE**2 

DXZE (3 * VZEP**2 / VP**2 - 1) * (ALE-ATE) 
1 * VXEP * VYEP / VP**3 /NE**2 

DYZE ( (ALE-ATE) / VP 
1 - (ALE-ATE) * (VYEP**2 + VZEP**2) / VP**3 
2 + 3 * (ALE-ATE) * VYEP**2 * VZEP**2 / VP**S ) /NE**2 

DZZE (- 2 * (ALE+ ATE) * VYEP * VZEP / VP **3 
1 + 3 * (ALE* VZEP**2 +ATE* (VXEP**2 + VYEP**2)) 
2 * VYEP * VZEP / VP**S ) /NE**2 

1 
2 
3 

1 

1 
2 
3 

1 

1 

VXEP 0.0 
VYEP 0.0 
VZEP 0.0 

ELSEIF (DIMEN2 .EQ. 3 .AND. DIMEN .EQ. 3) THEN 
SECOND DERIVATIVE WITH RESPECT TO VZE AND VZE 

DXXE (2 *ATE/ VP 
- (ALE* VXEP**2 + ATE 
+ 3 * (ALE* VXEP**2 + 

* VZEP**2 / VP**S 

* (VYEP**2 + 5 * VZEP**2)) /VP**3 
ATE* (VYEP**2 + VZEP**2)) 

DXYE 

DYYE 

(3 * VZEP**2 / VP**2 - 1) 
* (ALE - ATE) * VXEP * VYEP / VP**3 

(2 *ATE/ VP 

) /NE**2 

/NE**2 

- (ALE* VYEP**2 +ATE* (VXEP**2 + 5 * VZEP**2)) /VP**3 
+ 3 * (ALE* VYEP**2 +ATE* (VXEP**2 + VZEP**2)) 

DXZE 

DYZE 

DZZE 

* VZEP**2 / VP**S ) /NE**2 
3 * (ALE - ATE) * VXEP * VZEP 

* ((VZEP / VP)**2 - 1) / VP**3 
3 * (ALE - ATE) * VYEP * VZEP 

* ((VZEP / VP)**2 - 1) / VP**3 
(2 * ALE / VP 

/NE**2 

/NE**2 

1 - (5 *ALE* VZEP**2 +ATE* (VXEP**2 + VYEP**2)) /VP**3 
2 + 3 * (ALE* VZEP**2 +ATE* (VXEP**2 + VYEP**2)) 
3 * VZEP**2 / VP**S ) /NE**2 

VXEP 0.0 
VYEP 0.0 
VZEP 0.0 

ENDIF 
RETURN 
END 
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Appendix B Verification of Original 

Deterministic Flow Program 

A number of test data files have been created to verify the program. The output files, which 

include the input data, are presented here. 

B.1 Examples 1, 2, 3, 4, 5 and 6 

The aim of these examples is to test all subroutines using simple cases for which analytical 

solutions are available. The domain of these problems is an orthogonal region that has fixed 

heads at either end, for example see figure 1. Therefore the analytical solution is a linear 

variation of head with distance from one fixed head boundary to the other. 

Figure 1. Element mesh used in examples 3 and 4. Example 3 considers the 

elements to be rectangles, example 4 considers them to be quadrilaterals. 

Example 1 tests linear bar elements, example 2 tests triangle elements, example 3 tests 

rectangular elements, example 4 tests quadrilateral elements, example 5 tests parallelepiped 

elements and example 6 tests a combination of triangular, rectangular and quadrilateral 

elements. These examples together use every line in the program except for the parts of LOC, 
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DECOMP and SOLVE that are used for non symmetric matrices (used in the transport 

problem) and the lines referring to Neuman boundary conditions. 

As can be seen below the exact result detennined by the analytical solution is obtained in each 

example. 

B.2 Examples 7, 8, 9, 10 and 11. 

The aim of these examples is to test a pumping case. This has two distinguishing features 

from the examples above that it involves a Neuman boundary condition, thus using the few 

unused lines in the program referring to the groundwater flow problem, and the solution is not 

a planar surface, thus the result from the finite element program will only be an approximation 

and thus can be tested for convergence. 

The analytical solution for the pumping case in a confined aquifer is given by the Thiem 

equation, which when rearranged gives: 

where 

h J, h2 = hydraulic heads at radii r1, r2 

Q = Pumping flow from the well 

K = Hydraulic conductivity of the aquifer 

D = Depth of the aquifer 

Using the data in the examples h1-h2 should be l.74849576283 when r 1lr2 is 3. Example 7 

has 6 elements around the circumference and gives an answer of 1.44337567, giving a 17 

percent error. Example 8 has 200 elements around the circumference and gives an answer of 

1.59141853, giving a 9 percent error. Example 9 has 200 elements around the circumference 

and also has ratios of root three instead of three for the radial lengths of elements in 
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successive rings of elements. Comparing the same radial ratio it gives an answer of 

1.70567724, giving a 2.4 percent error. Clearly the finite element formulation does converge. 

Example 10 is used to check quadrilateral elements. Appendix A shows that the nodes on half 

of the radii have different heads to the other half even though the problem is symetric and the 

heads should be identical. This is a result of some radii having four elements meeting at their 

inner ring of nodes and some having three. It is noticed that overall the accuracy is similar to 

the triangle case, with the two sets of radial results straddling the triangle results. 

Example 11 is a three dimensional version of example 10. It used to check that the 

subroutines for parallelepiped elements and should give the same results as quadrilateral 

elements. Appendix A shows that this is true. 
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Example 1: Bar elements using fixed head boundaries. 

2 3 

NODE NODAL COORDINATE 
NUMBER X 

1 
2 
3 
4 
5 
6 

ELEMENT 
NO. TYPE 

1 1 
2 1 
3 1 
4 1 
5 1 

.0000 
1.0000 
2.0000 
3.0000 
4.0000 
5.0000 

NODE NUMBERS 

1 2 
2 3 
3 4 
4 5 
5 6 

4 

ELEMENT 
NO. MATERIAL SET NUMBER 

1 1 
2 1 
3 1 
4 1 
5 1 

MATERIAL 
SET NO. MATERIAL PROPERTIES 

1 l.000000E-02 

NODE SPECIFIED 
NO. HYDRAULIC HEAD 

1 . 0000 
6 10.0000 

5 

NUMBER OF NODES WITH SPECIFIED 
HYDRAULIC HEAD 2 

NUMBER OF NODES WITH SPECIFIED 
GROUNDWATER FLOW 0 

NUMBER OF DEGREES OF FREEDOM 
IN MODIFIED K MATRIX 4 

SEMI-BANDWIDTH OF MODIFIED K MATRIX= 2 

******************************************* 

COMPUTED VALUES OF HYDRAULIC HEAD 

NODE NO. 

1 
2 
3 
4 
5 
6 

HYDRAULIC HEAD 

.00000000* 
2.00000000 
4.00000000 
6.00000000 
8.00000000 

10.00000000* 

*=SPECIFIED VALUE 

******************************************* 

COMPUTED VALUES OF APPARENT GROUNDWATER 
VELOCITY 

ELEMENT 

1 
2 
3 
4 
5 

vx 

-2.000000E-02 
-2.000000E-02 
-2.000000E-02 
-2.000000E-02 
-2.000000E-02 
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Example 2: Orthogonal data with triangles and fixed boundaries. 

NODE NODAL COORDINATES 
NUMBER X y 

----------- -----------
1 .0000 .0000 
2 .0000 2.0000 
3 .0000 4.0000 
4 .0000 6.0000 
5 2.0000 .0000 
6 2.0000 2.0000 
7 2.0000 4.0000 
8 2.0000 6.0000 
9 4.0000 .0000 

10 4.0000 2.0000 
11 4.0000 4.0000 
12 4.0000 6.0000 
13 6.0000 .0000 
14 6.0000 2.0000 
15 6.0000 4.0000 
16 6.0000 6.0000 
17 8.0000 .0000 
18 8.0000 2.0000 
19 8.0000 4.0000 
20 8.0000 6.0000 
21 10.0000 .0000 
22 10.0000 2.0000 
23 10.0000 4.0000 
24 10.0000 6.0000 

ELEMENT 
NO. TYPE NODE NUMBERS 

------------
1 4 1 5 2 
2 4 5 6 2 
3 4 2 6 3 
4 4 6 7 3 
5 4 3 7 4 
6 4 7 8 4 
7 4 5 9 6 
8 4 9 10 6 
9 4 6 10 7 

10 4 10 11 7 
11 4 7 11 8 
12 4 11 12 8 
13 4 9 13 10 
14 4 13 14 10 
15 4 10 14 11 
16 4 14 15 11 
17 4 11 15 12 
18 4 15 16 12 
19 4 13 17 14 
20 4 17 18 14 
21 4 14 18 15 
22 4 18 19 15 
23 4 15 19 16 
24 4 19 20 16 
25 4 17 21 18 
26 4 21 22 18 
27 4 18 22 19 
28 4 22 23 19 
29 4 19 23 20 
30 4 23 24 20 

ELEMENT 
NO. 

1 

MATERIAL SET NUMBER 

1 
(Each element uses material set l} 

MATERIAL 
SET NO. MATERIAL PROPERTIES 

1 l.OOOOOOE-02 1.000000E-02 

NODE SPECIFIED 
NO. HYDRAULIC HEAD 

1 
2 
3 
4 

21 
22 
23 
24 

.0000 

.0000 

.0000 

.0000 
10.0000 
10.0000 
10.0000 
10.0000 

NUMBER OF NODES WITH SPECIFIED 
HYDRAULIC HEAD 8 

NUMBER OF NODES WITH SPECIFIED 
GROUNDWATER FLOW 0 

NUMBER OF DEGREES OF FREEDOM 
IN MODIFIED K MATRIX= 16 

SEMI-BANDWIDTH OF MODIFIED K MATRIX= 5 

******************************************* 
COMPUTED VALUES OF HYDRAULIC HEAD 

NODE NO. HYDRAULIC HEAD 

1 .00000000* 
2 .00000000* 
3 .00000000* 
4 .00000000* 
5 2.00000000 
6 2.00000000 
7 2.00000000 
8 2.00000000 
9 4.00000000 

10 4.00000000 
11 4.00000000 
12 4.00000000 
13 6.00000000 
14 6.00000000 
15 6.00000000 
16 6.00000000 
17 8.00000000 
18 8.00000000 
19 8.00000000 
20 8.00000000 
21 10.00000000* 
22 10.00000000* 
23 10.00000000* 
24 10.00000000* 

*=SPECIFIED VALUE 

******************************************* 

COMPUTED VALUES OF APPARENT GROUNDWATER 
VELOCITY 

ELEMENT vx VY 

1 -l.OOOOOOE-02 O.OOOOOOE+OO 
{All elements have the same velocity) 
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Example 3: Orthogonal data using rectangles and fixed head boundaries. 

NODE NODAL COORDINATES 
NUMBER X y 

----------- -----------
{Same as 

ELEMENT 
NO. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

ELEMENT 
NO. 

1 

TYPE 

5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 

for example 2) 

NODE NUMBERS 
------------

1 5 6 2 
2 6 7 3 
3 7 8 4 
5 9 10 6 
6 10 11 7 
7 11 12 8 
9 13 14 10 

10 14 15 11 
11 15 16 12 
13 17 18 14 
14 18 19 15 
15 19 20 16 
17 21 22 18 
18 22 23 19 
19 23 24 20 

MATERIAL SET NUMBER 

1 
{Each element uses material set l} 

MATERIAL 
SET NO. MATERIAL PROPERTIES 

1 l.OOOOOOE-02 l.OOOOOOE-02 

NODE SPECIFIED 
NO. HYDRAULIC HEAD 

{Same as for example 2) 

NUMBER OF NODES WITH SPECIFIED 
HYDRAULIC HEAD 8 

NUMBER OF NODES WITH SPECIFIED 
GROUNDWATER FLOW = 0 

NUMBER OF DEGREES OF FREEDOM 
IN MODIFIED K MATRIX 16 

SEMI-BANDWIDTH OF MODIFIED K MATRIX= 6 

******************************************* 
COMPUTED VALUES OF HYDRAULIC HEAD 

NODE NO. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

HYDRAULIC HEAD 

.00000000* 

.00000000* 

.00000000* 

.00000000* 
2.00000000 
2.00000000 
2.00000000 
2.00000000 
4.00000000 
4.00000000 
4.00000000 
4.00000000 
6.00000000 
6.00000000 
6.00000000 
6.00000000 
8.00000000 
8.00000000 
8.00000000 
8.00000000 

10.00000000* 
10.00000000* 
10.00000000* 
10.00000000* 

*=SPECIFIED VALUE 

******************************************* 

COMPUTED VALUES OF APPARENT GROUNDWATER 
VELOCITY 

ELEMENT 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

vx 

-l.OOOOOOE-02 
-l.OOOOOOE-02 
-l.OOOOOOE-02 
-l.OOOOOOE-02 
-l.OOOOOOE-02 
-l.OOOOOOE-02 
-l.OOOOOOE-02 
-l.OOOOOOE-02 
-l.OOOOOOE-02 
-l.OOOOOOE-02 
-l.OOOOOOE-02 
-l.OOOOOOE-02 
-l.OOOOOOE-02 
-l.OOOOOOE-02 
-l.OOOOOOE-02 

VY 

O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 

-l.110223E-18 
-l.110223E-18 

1.110223E-18 
-2.220446E-18 

O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 

-4.440892E-18 
O.OOOOOOE+OO 

-4.440892E-18 
O.OOOOOOE+OO 

-8.881784E-18 
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Example 4: Orthogonal data using quadrilaterals and fixed head 

boundaries. 

NODE 
NUMBER 

NODAL COORDINATES 
X y 

{Same as for example 2) 

ELEMENT 
NO. TYPE NODE NUMBERS 

1 6 1 5 6 2 
{Same as for example 3 except that element 
type is 6 instead of 4 J 

15 6 19 23 24 20 

ELEMENT 
NO. 

1 

MATERIAL SET NUMBER 

1 
{Each element uses material set 1) 

MATERIAL 
SET NO. MATERIAL PROPERTIES 

1 1.000000E-02 1.000000E-02 

NODE 
NO. 

SPECIFIED 
HYDRAULIC HEAD 

{Same as for example 2) 

NUMBER OF NODES WITH SPECIFIED 
HYDRAULIC HEAD 8 

NUMBER OF NODES WITH SPECIFIED 
GROUNDWATER FLOW 0 

NUMBER OF DEGREES OF FREEDOM 
IN MODIFIED K MATRIX 16 

SEMI-BANDWIDTH OF MODIFIED K MATRIX= 6 

******************************************* 

COMPUTED VALUES OF HYDRAULIC HEAD 

NODE NO. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

VALUE 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

HYDRAULIC HEAD 

.00000000* 

.00000000* 

.00000000* 

.00000000* 
2.00000000 
2.00000000 
2.00000000 
2.00000000 
4.00000000 
4.00000000 
4.00000000 
4.00000000 
6.00000000 
6.00000000 
6.00000000 
6.00000000 
8.00000000 
8.00000000 
8.00000000 
8.00000000 

10.00000000* 
10.00000000* 
10.00000000* 
10.00000000* 

*=SPECIFIED 

******************************************* 

COMPUTED VALUES OF APPARENT GROUNDWATER 
VELOCITY 

ELEMENT 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

vx 

-1. OOOOOOE-02 
-1.000000E-02 
-1.000000E-02 
-1.000000E-02 
-1.000000E-02 
-1.000000E-02 
-1.000000E-02 
-1.000000E-02 
-1.000000E-02 
-1.000000E-02 
-1.000000E-02 
-1. OOOOOOE-02 
-1.000000E-02 
-1.000000E-02 
-1.000000E-02 

VY 

-5.551115E-19 
O.OOOOOOE+OO 
1. 665335E-18 
1. 665335E-18 

-5.551115E-19 
2.220446E-18 
1.110223E-18 
7. 771561E-18 
2.220446E-18 
O.OOOOOOE+OO 
1.110223E-17 
4.440892E-18 
O.OOOOOOE+OO 
4.440892E-18 
4.440892E-18 



Appendix B Verification of Original Deterministic Program PageB.8 

Example 5: Orthogonal data using parallelepipeds and fixed head 

boundaries. 

@) 46 6.0000 6.0000 .0000 

~24~ 

47 6.0000 6.0000 2.0000 
48 6.0000 6.0000 4.0000 

~18~22~ 

49 8.0000 .0000 .0000 
50 8.0000 .0000 2.0000 

~12~16~20~ 

51 8.0000 .0000 4.0000 
52 8.0000 2.0000 .0000 

~.~ .. ~ .. >rJ 53 8.0000 2.0000 2.0000 
54 8.0000 2.0000 4.0000 

f"~.~-~ 55 8.0000 4.0000 .0000 
56 8.0000 4.0000 2.0000 

~'~ l 57 8.0000 4.0000 4.0000 
58 8.0000 6.0000 .0000 

1. ~~v .,l) 59 8.0000 6.0000 2.0000 
60 8.0000 6.0000 4.0000 

ELEMENT ,(lt~ NO. TYPE NODE NUMBERS 
------------

l 9 l 13 16 4 2 14 17 5 
2 9 2 14 17 5 3 15 18 6 
3 9 4 16 19 7 5 17 20 8 
4 9 5 17 20 8 6 18 21 9 
5 9 7 19 22 10 8 20 23 11 
6 9 8 20 23 11 9 21 24 12 
7 9 13 25 28 16 14 26 29 17 

NODE NODAL COORDINATES 8 9 14 26 29 17 15 27 30 18 
NUMBER X y z 9 9 16 28 31 19 17 29 32 20 

----------- ----------- ------- 10 9 17 29 32 20 18 30 33 21 
11 9 19 31 34 22 20 32 35 23 

1 .0000 .0000 .0000 12 9 20 32 35 23 21 33 36 24 
13 9 25 37 40 28 26 38 41 29 

2 .0000 .0000 2.0000 14 9 26 38 41 29 27 39 42 30 
3 .0000 .0000 4.0000 15 9 28 40 43 31 29 41 44 32 
4 .0000 2.0000 .0000 16 9 29 41 44 32 30 42 45 33 
5 .0000 2.0000 2.0000 17 9 31 43 46 34 32 44 47 35 

6 .0000 2.0000 4.0000 18 9 32 44 47 35 33 45 48 36 

7 .0000 4.0000 .0000 19 9 37 49 52 40 38 50 53 41 

8 .0000 4.0000 2.0000 20 9 38 50 53 41 39 51 54 42 
21 9 40 52 55 43 41 53 56 44 

9 .0000 4.0000 4.0000 22 9 41 53 56 44 42 54 57 45 
10 .0000 6.0000 .0000 23 9 43 55 58 46 44 56 59 47 
11 .0000 6.0000 2.0000 24 9 44 56 59 47 45 57 60 48 
12 .0000 6.0000 4.0000 
13 2.0000 .0000 .0000 ELEMENT 
14 2.0000 .0000 2.0000 NO. MATERIAL SET NUMBER 
15 2.0000 .0000 4.0000 ------- -------------------
16 2.0000 2.0000 .0000 1 1 
17 2.0000 2.0000 2.0000 {Each element uses material set 1} 
18 2.0000 2.0000 4.0000 
19 2.0000 4.0000 .0000 MATERIAL 
20 2.0000 4.0000 2.0000 SET NO. MATERIAL PROPERTIES 
21 2.0000 4.0000 4.0000 -------- -------------------
22 2.0000 6.0000 .0000 1 l.OOOOOOE-02 1.000000E-02 
23 2.0000 6.0000 2.0000 l.OOOOOOE-02 
24 2.0000 6.0000 4.0000 
25 4.0000 .0000 .0000 NODE SPECIFIED 
26 4.0000 .0000 2.0000 NO. HYDRAULIC HEAD 
27 4.0000 .0000 4.0000 --------------------
28 4.0000 2.0000 .0000 1 .0000 
29 4.0000 2.0000 2.0000 2 .0000 
30 4.0000 2.0000 4.0000 3 .0000 
31 4.0000 4.0000 .0000 4 .0000 
32 4.0000 4.0000 2.0000 5 .0000 
33 4.0000 4.0000 4.0000 6 .0000 
34 4.0000 6.0000 .0000 7 .0000 
35 4.0000 6.0000 2.0000 8 .0000 
36 4.0000 6.0000 4.0000 9 .0000 
37 6.0000 .0000 .0000 10 .0000 
38 6.0000 .0000 2.0000 11 .0000 
39 6.0000 .0000 4.0000 12 .0000 
40 6.0000 2.0000 .0000 49 8.0000 
41 6.0000 2.0000 2.0000 50 8.0000 
42 6.0000 2.0000 4.0000 51 8.0000 
43 6.0000 4.0000 .0000 52 8.0000 
44 6.0000 4.0000 2.0000 53 8.0000 
45 6.0000 4.0000 4.0000 
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54 
55 
56 
57 
58 
59 
60 

8.0000 
8.0000 
8.0000 
8.0000 
8.0000 
8.0000 
8.0000 

NUMBER OF NODES WITH SPECIFIED 
HYDRAULIC HEAD 24 

NUMBER OF NODES WITH SPECIFIED 
GROUNDWATER FLOW 0 

NUMBER OF DEGREES OF FREEDOM 
IN MODIFIED K MATRIX 36 

SEMI-BANDWIDTH OF MODIFIED K MATRIX 17 

******************************************* 
**** 

COMPUTED VALUES OF HYDRAULIC HEAD 

NODE NO. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

HYDRAULIC HEAD 

.00000000* 

.00000000* 

.00000000* 

.00000000* 

.00000000* 

.00000000* 

.00000000* 

.00000000* 

.00000000* 

.00000000* 

.00000000* 

.00000000* 
2.00000000 
2.00000000 
2.00000000 
2.00000000 
2.00000000 
2.00000000 
2.00000000 
2.00000000 
2.00000000 
2.00000000 
2.00000000 
2.00000000 
4.00000000 
4.00000000 
4.00000000 
4.00000000 
4.00000000 

VALUE 

30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

4.00000000 
4.00000000 
4.00000000 
4.00000000 
4.00000000 
4.00000000 
4.00000000 
6.00000000 
6.00000000 
6.00000000 
6.00000000 
6.00000000 
6.00000000 
6.00000000 
6.00000000 
6.00000000 
6.00000000 
6.00000000 
6.00000000 
8.00000000* 
8.00000000* 
8.00000000* 
8.00000000* 
8.00000000* 
8.00000000* 
8.00000000* 
8.00000000* 
8.00000000* 
8.00000000* 
8.00000000* 
8.00000000* 
* = SPECIFIED 

******************************************* 
**** 

COMPUTED VALUES OF APPARENT GROUNDWATER VELOCITY 

ELEMENT vx VY vz 

l -1. OOOOOOE-02 O.OOOOOOE+OO 0. OOOOOOE+OO 
2 -1. OOOOOOE-02 8.326673E-19 4.163336E-19 
3 -l .OOOOOOE-02 5.551115E-19 -3.238376E-19 
4 -l.OOOOOOE-02 -8.326673E-19 4.163336E-19 
5 -1. OOOOOOE-02 l. 110223E-18 l.248865E-19 
6 -1. OOOOOOE-02 2. 775558E-18 4. 624800E-20 
7 -1. OOOOOOE-02 l.942890E-18 5.946171E-20 
8 -l.OOOOOOE-02 -1. 665335E-18 2.081668E-19 
9 -l.OOOOOOE-02 l. 110223E-18 -l.888883E-19 

10 -l.OOOOOOE-02 2.220446E-18 2. 774880E-20 
11 -l .OOOOOOE-02 2.498002E-18 -l.040834E-19 
12 -l.OOOOOOE-02 2.220446E-18 3. 353742E-l 9 
13 -l.OOOOOOE-02 -5.551115E-19 7. 474219E-20 
14 -l.OOOOOOE-02 l.665335E-18 -1. 982057E-20 
15 -l.OOOOOOE-02 6.661338E-18 -l.248865E-19 
16 -l.OOOOOOE-02 2.775558E-18 l. 734723E-19 
17 -l.OOOOOOE-02 2. 775558E-18 -2.183651E-19 
18 -l.OOOOOOE-02 3.885781E-18 4.857226E-19 
19 -l.OOOOOOE-02 S.551115E-18 -2.410317E-19 
20 -1. OOOOOOE-02 7. 771561E-18 -1. 595810E-19 
21 -1. OOOOOOE-02 O.OOOOOOE+OO -l .189573E-19 
22 -l .OOOOOOE-02 2.220446E-18 -4. 099639E-20 
23 -1. OOOOOOE-02 -l .110223E-18 l.237007E-19 
24 -l.OOOOOOE-02 6.661338E-18 l.676956E-19 
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Example 6: Orthogonal data using a mixture of two dimensional elements. 

NODE NODAL COORDINATES 
NUMBER X y 

----------- -----------
1 .0000 .0000 
2 .0000 2.0000 
3 .0000 4.0000 
4 .0000 6.0000 
5 2.0000 .0000 
6 2.0000 4.0000 
7 4.0000 .0000 
8 4.0000 2.0000 
9 4.0000 4.0000 

10 4.0000 6.0000 
11 6.0000 .0000 
12 6.0000 4.0000 
13 6.0000 6.0000 
14 8.0000 .0000 
15 8.0000 2.0000 
16 10.0000 .0000 
17 10.0000 2.0000 
18 10.0000 4.0000 
19 10.0000 6.0000 

ELEMENT 
NO. TYPE NODE NUMBERS 

------------
1 4 1 5 2 
2 6 5 8 6 2 
3 4 2 6 3 
4 4 6 4 3 
5 4 6 10 4 
6 4 7 8 5 
7 4 8 9 6 
8 4 9 10 6 
9 4 7 11 8 

10 6 11 14 9 8 
11 6 9 14 15 12 
12 4 9 12 10 
13 4 12 13 10 
14 5 14 16 17 15 
15 4 15 17 12 
16 4 17 18 12 
17 5 12 18 19 13 

ELEMENT 
NO. MATERIAL SET NUMBER 

------- -------------------
1 1 

{Each element uses material set 1) 

MATERIAL 
SET NO. MATERIAL PROPERTIES 

-------- -------------------
1 1.000000E-02 l.OOOOOOE-02 

{Each element uses material set 1) 

NODE 
NO. 

1 
2 
3 
4 

16 
17 
18 
19 

SPECIFIED 
HYDRAULIC HEAD 

.0000 

.0000 

.0000 

.0000 
10.0000 
10.0000 
10.0000 
10.0000 

NUMBER OF NODES WITH SPECIFIED 
HYDRAULIC HEAD 8 

NUMBER OF NODES WITH SPECIFIED 
GROUNDWATER FLOW 0 

NUMBER OF DEGREES OF FREEDOM 
IN MODIFIED K MATRIX 11 

SEMI-BANDWIDTH OF MODIFIED K MATRIX= 7 

******************************************* 

COMPUTED VALUES OF HYDRAULIC HEAD 

NODE NO. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

VALUE 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

HYDRAULIC HEAD 

.00000000* 

.00000000* 

.00000000* 

.00000000* 
2.00000000 
2.00000000 
4.00000000 
4.00000000 
4.00000000 
4.00000000 
6.00000000 
6.00000000 
6.00000000 
8.00000000 
8.00000000 

10.00000000* 
10.00000000* 
10.00000000* 
10.00000000* 

*=SPECIFIED 

******************************************* 

COMPUTED VALUES OF APPARENT GROUNDWATER 
VELOCITY 

ELEMENT VX VY 

1 -1.000000E-02 O.OOOOOOE+OO 
{All velocities the same as element 1) 



Appendix B Verification of Original Deterministic Program Page B.11 

Example 7: Pumping data using triangular elements. 

4 

Diagram not to scale 

NODE NODAL COORDINATES 
NUMBER X y 

----------- -----------
1 .0000 .0000 
2 1.0000 .0000 
3 .5000 .8660 
4 -.5000 .8660 
5 -1.0000 .0000 
6 -.5000 -.8660 
7 .5000 -.8660 
8 3.0000 .0000 
9 1.5000 2.5981 

10 -1.5000 2.5981 
11 -3.0000 .0000 
12 -1.5000 -2.5981 
13 1.5000 -2.5981 
14 9.0000 .0000 
15 4.5000 7.7942 
16 -4.5000 7.7942 
17 -9.0000 .0000 
18 -4.5000 -7.7942 
19 4.5000 -7.7942 
20 27.0000 .0000 
21 13.5000 23.3827 
22 -13.5000 23.3827 
23 -27.0000 .0000 
24 -13.5000 -23.3827 
25 13.5000 -23.3827 

ELEMENT 
NO. TYPE NODE NUMBERS 

------------
1 4 1 2 3 
2 4 1 3 4 
3 4 1 4 5 
4 4 1 5 6 
5 4 1 6 7 
6 4 1 7 2 
7 4 2 8 9 
8 4 2 9 3 
9 4 3 9 10 

10 4 3 10 4 
11 4 4 10 11 
12 4 4 11 5 
13 4 5 11 12 
14 4 5 12 6 
15 4 6 12 13 
16 4 6 13 7 
17 4 7 13 8 
18 4 7 8 2 
19 4 8 14 15 

20 4 8 15 9 
21 4 9 15 16 
22 4 9 16 10 
23 4 10 16 17 
24 4 10 17 11 
25 4 11 17 18 
26 4 11 18 12 
27 4 12 18 19 
28 4 12 19 13 
29 4 13 19 14 
30 4 13 14 8 
31 4 14 20 21 
32 4 14 21 15 
33 4 15 21 22 
34 4 15 22 16 
35 4 16 22 23 
36 4 16 23 17 
37 4 17 23 24 
38 4 17 24 18 
39 4 18 24 25 
40 4 18 25 19 
41 4 19 25 20 
42 4 19 20 14 

ELEMENT 
NO. MATERIAL SET NUMBER 

------- -------------------
{Each element uses material set 1) 

MATERIAL 
SET NO. MATERIAL PROPERTIES 

-------- -------------------
1 1.000000E-02 1.000000E-02 

NODE SPECIFIED 
NO. HYDRAULIC HEAD 

--------------------
20 .0000 
21 .0000 
22 .0000 
23 .0000 
24 .0000 
25 .0000 

NUMBER OF NODES WITH SPECIFIED 
HYDRAULIC HEAD 

NODE 
NO. 

1 

6 

SPECIFIED 
GROUNDWATER FLOW 

-.1000 

NUMBER OF NODES WITH SPECIFIED 
GROUNDWATER FLOW 1 

NUMBER OF DEGREES OF FREEDOM 
IN MODIFIED K MATRIX 19 

SEMI-BANDWIDTH OF MODIFIED K MATRIX 12 

******************************************* 

COMPUTED VALUES OF HYDRAULIC HEAD 

NODE NO. 

1 
2 
3 

HYDRAULIC HEAD 

-7.21687836 
-4.33012702 
-4.33012702 
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4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

* 

-4.33012702 
-4.33012702 
-4.33012702 
-4.33012702 
-2.88675135 
-2.88675135 
-2.88675135 
-2.88675135 
-2.88675135 
-2. 88675135 
-1.44337567 
-1.44337567 
-1.44337567 
-1.44337567 
-1.44337567 
-1. 44337 567 

.00000000* 

.00000000* 

.00000000* 

.00000000* 

.00000000* 

.00000000* 

SPECIFIED VALUE 

******************************************* 

COMPUTED VALUES OF APPARENT GROUNDWATER 
VELOCITY 

ELEMENT vx VY 

1 -2.886751E-02 -l.666667E-02 
2 8.881784E-18 -3.333333E-02 
3 2.886751E-02 -1. 666667E-02 
4 2.886751E-02 l.666667E-02 
5 2.664535E-17 3.333333E-02 

6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 

-2.886751E-02 
-7.216878E-03 
-7.216878E-03 

8.881784E-18 
O.OOOOOOE+OO 
7.216878E-03 
7.216878E-03 
7.216878E-03 
7.216878E-03 
2.664535E-17 
2.220446E-18 

-7.216878E-03 
-7.216878E-03 
-2.405626E-03 
-2.405626E-03 

O.OOOOOOE+OO 
8.258140E-19 
2.405626E-03 
2.405626E-03 
2.405626E-03 
2.405626E-03 
l .110223E-18 

-5.345518E-19 
-2.405626E-03 
-2.405626E-03 
-8.018754E-04 
-8.018754E-04 

5.551115E-19 
O.OOOOOOE+OO 
8.018754E-04 
8.018754E-04 
8.018754E-04 
8.018754E-04 
2.775558E-19 

-3.655055E-19 
-8.018754E-04 
-8.018754E-04 

l.666667E-02 
-4.166667E-03 
-4.166667E-03 
-8. 333333E-03 
-8. 333333E-03 
-4.166667E-03 
-4 .166667E-03 

4.166667E-03 
4.166667E-03 
8.333333E-03 
8.333333E-03 
4 .166667E-03 
4 .166667E-03 

-1. 388889E-03 
-l.388889E-03 
-2.777778E-03 
-2. 777778E-03 
-1.388889E-03 
-1.388889E-03 

1.388889E-03 
1.388889E-03 
2.777778E-03 
2.777778E-03 
1.388889E-03 
1.388889E-03 

-4. 629630E-04 
-4. 629630E-04 
-9. 259259E-04 
-9. 259259E-04 
-4. 629630E-04 
-4. 629630E-04 

4.629630E-04 
4. 629630E-04 
9.259259E-04 
9.259259E-04 
4. 629630E-04 
4. 629630E-04 

Example 8: Pumping data using triangular elements with 200 nodes 

around the circumference, radius ratio = 3. 

This example is similar to example 7 except 
that the flow field is a polygon with 200 
sides instead of a hexagon. 

NODE 
NUMBER 

1 
2 

202 
402 
602 

NODAL COORDINATES 
X y 

.0000 
1.0000 
3.0000 
9.0000 

27.0000 

.0000 

.0000 

.0000 

.0000 

.0000 

******************************************* 

* 

COMPUTED VALUES OF HYDRAULIC HEAD 

NODE NO. 

1 
2 

202 
402 
602 

SPECIFIED VALUE 

HYDRAULIC HEAD 

-7. 95709265 
-4.77425559 
-3.18283706 
-1.59141853 

.00000000* 
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Example 9: Pumping data using triangular elements with 200 nodes 

around the circumference, radius ratio = root 3. 

This example is similar to example 8 except 
that 7 rings of elements instead of 4 model 
the flow field. 

NODE 
NUMBER 

1 
2 

202 
402 
602 
802 

1002 
1202 

NODAL COORDINATES 
X y 

.0000 
1.0000 
1.7321 
3.0000 
5.1962 
9.0000 

15.5885 
27.0000 

.0000 

.0000 

.0000 

.0000 

.0000 

.0000 

.0000 

.0000 

******************************************* 

COMPUTED VALUES OF HYDRAULIC HEAD 

NODE NO. 

1 
2 

202 
402 
602 
802 

1002 
1202 

*=SPECIFIED VALUE 

HYDRAULIC HEAD 

-8.29986877 
-5 .11703172 
-4.26419310 
-3.41135448 
-2.55851586 
-1.70567724 

-.85283862 
.00000000* 

-2 +---------"""'"7~---------------1~ Example 7 

--- Example 8 

-3 +----,~--#--------------------i--.- Example 9 
-*--Analytical Solution 

-5 +-....,,,_ _____________________________ __, 

-6 -----------------------------------' 

Chart showing relationship between draw down and mesh resolution. 

Example 9 gives the highest mesh resolution and is much closer to the analytical solution 

given by the Theim equation. 



Appendix B Verification of Original Deterministic Program Page B.14 

Example 10: Pumping data using quadrilateral elements. 

NODE NODAL COORDINATES 
NUMBER X y 

----------- -----------
(Same as for example 7) 

ELEMENT 
NO. TYPE NODE NUMBERS 

------------
1 6 1 2 3 4 
2 6 1 4 5 6 
3 6 1 6 7 2 
4 6 2 8 9 3 
5 6 3 9 10 4 
6 6 4 10 11 5 
7 6 5 11 12 6 
8 6 6 12 13 7 
9 6 7 13 8 2 

10 6 8 14 15 9 
11 6 9 15 16 10 
12 6 10 16 17 11 
13 6 11 17 18 12 
14 6 12 18 19 13 
15 6 13 19 14 8 
16 6 14 20 21 15 
17 6 15 21 22 16 
18 6 16 22 23 17 
19 6 17 23 24 18 
20 6 18 24 25 19 
21 6 19 25 20 14 

ELEMENT 
NO. MATERIAL SET NUMBER 

------- -------------------
(Each element uses material set 1) 

MATERIAL 
SET NO. MATERIAL PROPERTIES 

-------- -------------------
1 l.OOOOOOE-02 l.OOOOOOE-02 

NODE SPECIFIED 
NO. HYDRAULIC HEAD 

--------------------
20 10.0000 
21 10.0000 
22 10.0000 
23 10.0000 
24 10.0000 
25 10.0000 

NUMBER OF NODES WITH SPECIFIED 
HYDRAULIC HEAD 6 

NODE 
NO. 

1 

SPECIFIED 
GROUNDWATER FLOW 

-.1000 

NUMBER OF NODES WITH SPECIFIED 
GROUNDWATER FLOW 1 

NUMBER OF DEGREES OF FREEDOM 
IN MODIFIED K MATRIX 19 

SEMI-BANDWIDTH OF MODIFIED K MATRIX= 12 

******************************************* 

COMPUTED VALUES OF HYDRAULIC HEAD 

NODE NO. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

HYDRAULIC HEAD 

-7.51235921 
-4.20894770 
-4.45130634 
-4.20894770 
-4.45130634 
-4.20894770 
-4.45130634 
-2.89752754 
-2.87597516 
-2.89752754 
-2.87597516 
-2.89752754 
-2.87597516 
-1.44242483 
-1.44432651 
-1.44242483 
-1.44432651 
-1.44242483 
-1.44432651 

.00000000* 

.00000000* 

.00000000* 

.00000000* 

.00000000* 

.00000000* 

*=SPECIFIED VALUE 

******************************************* 

COMPUTED VALUES OF APPARENT GROUNDWATER 
VELOCITY 

ELEMENT 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

vx 

-1. 530526E-02 
3.061053E-02 

-l.530526E-02 
-7.492886E-03 

5.520157E-04 
6. 940871E-03 
6.940871E-03 
5.520157E-04 

-7.492886E-03 
-2.397438E-03 
-l.637558E-05 

2.413814E-03 
2. 413814E-03 

-l.637558E-05 
-2.397438E-03 
-8. 021395E-04 

5.282446E-07 
8. 016113E-04 
8.016113E-04 
5.282446E-07 

-8.021395E-04 

VY 

-2.650950E-02 
l.908196E-19 
2.650950E-02 

-3.688607E-03 
-8.333333E-03 
-4. 644726E-03 

4. 644726E-03 
8.333333E-03 
3.688607E-03 

-1. 403071E-03 
-2.777778E-03 
-1. 374707E-03 
1.374707E-03 
2.777778E-03 
1. 403071E-03 

-4.625055E-04 
-9.259259E-04 
-4.634204E-04 

4.634204E-04 
9.259259E-04 
4.625055E-04 
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Example 11: Pumping data using parallelepiped elements. 

This example is a three dimensional version 13 9 13 31 34 16 14 32 35 17 

of example 10. It has two layers of 14 9 14 32 35 17 15 33 36 18 
15 9 16 34 31 19 17 35 38 20 

elements and three layers of nodes. 16 9 17 35 38 20 18 36 39 21 
17 9 19 31 22 4 20 38 23 5 

NODE NODAL COORDINATES 18 9 20 38 23 5 21 39 24 6 
NUMBER X y z 19 9 22 40 43 25 23 41 44 26 

----------- ----------- ----------- 20 9 23 41 44 26 24 42 45 27 

1 .0000 .0000 .ODDO 21 9 25 43 46 28 26 44 47 29 
2 • 0000 .0000 2. 0000 22 9 26 44 47 29 27 45 48 30 

3 .0000 .0000 4. 0000 23 9 28 46 49 31 29 47 50 32 

4 1.0000 .0000 .0000 24 9 29 47 50 32 30 48 51 33 

5 1.0000 .0000 2 .0000 25 9 31 49 52 34 32 50 53 35 
6 1.0000 . 0000 4. 0000 26 9 32 50 53 35 33 51 54 36 
1 .5000 .8660 .0000 27 9 34 52 55 31 35 53 56 38 

8 .5000 .8660 2. 0000 28 9 35 53 56 38 36 54 57 39 
9 .5000 .8660 4. 0000 29 9 31 55 40 22 38 56 41 23 

10 -.5000 .8660 . 0000 30 9 38 56 41 23 39 57 42 24 

11 -.5000 .8660 2. 0000 31 9 40 58 61 43 41 59 62 44 
12 - • 5000 .8660 4. 0000 32 9 41 59 62 44 42 60 63 45 
13 -1. 0000 .0000 . 0000 33 9 43 61 64 46 44 62 65 47 

14 -1.0000 .0000 2 .0000 34 9 44 62 65 47 45 63 66 48 
15 -1.0000 .ODDO 4.0000 35 9 46 64 67 49 47 65 68 50 
16 -.5000 -.8660 .0000 36 9 47 65 68 50 48 66 69 51 
17 -.5000 -.8660 2 .0000 31 9 49 67 70 52 50 68 71 53 
18 -.5000 -.8660 4 .0000 38 9 50 68 71 53 51 69 12 54 
19 .5000 - • 8660 .0000 39 9 52 10 13 55 53 71 74 56 
20 .5000 -.8660 2.0000 40 9 53 71 74 56 54 12 75 57 
21 .5000 -.8660 4.0000 41 9 55 13 58 40 56 74 59 41 
22 3.0000 .0000 .ODDO 42 9 56 74 59 41 57 75 60 42 
23 3. 0000 .0000 2 .0000 
24 3.0000 .0000 4. 0000 ELEMENT 
25 1.5000 2.5981 .0000 NO. MATERIAL SET NUMBER 26 1. 5000 2. 5981 2 .0000 
21 1.5000 2.5981 4.0000 ------- -------------------
28 -1.5000 2.5981 .0000 1 1 
29 -1.5000 2.5981 2.0000 {Each element uses material 30 -1.5000 2.5981 4.0000 set l} 
31 -3.0000 .0000 .0000 
32 -3.0000 .0000 2 .0000 MATERIAL 
33 -3.0000 .0000 4. 0000 
34 -1.5000 -2.5981 .0000 SET NO. MATERIAL PROPERTIES 
35 -1.5000 -2.5981 2. 0000 -------- -------------------
36 -1.5000 -2.5981 4. 0000 1 1.000000E-02 1.000000E-02 
31 1.5000 -2.5981 .0000 
38 1.5000 -2.5981 2. 0000 1.000000E-02 
39 1.5000 -2.5981 4. 0000 
40 9.0000 .DODO .0000 
41 9.0000 .0000 2. 0000 
42 9.0000 .0000 4. 0000 
43 4 .5000 7.7942 .0000 NODE SPECIFIED 
44 4. 5000 7.7942 2. DODO NO. HYDRAULIC HEAD 
45 4. 5000 7.7942 4. 0000 
46 -4 .5000 7.7942 .0000 --------------------
47 -4 .5000 7. 7942 2 .0000 58 0.0000 
48 -4 .5000 7. 7942 4 .DODO 59 0.0000 49 -9.0000 .0000 .DODO 
50 -9.0000 .0000 2.0000 60 0.0000 
51 -9.0000 .0000 4 .0000 61 0.0000 
52 -4. 5000 -7.7942 • 0000 62 0.0000 53 -4 .5000 -7. 7942 2. 0000 
54 -4. 5000 -7.7942 4. DODO 63 0.0000 
55 4. 5000 -7.7942 • 0000 64 0.0000 
56 4 .5000 -7.7942 2 .0000 65 0.0000 57 4 .5000 -7.7942 4. 0000 
58 27 .0000 .0000 . 0000 66 0.0000 
59 27 .0000 .0000 2. 0000 67 0.0000 
60 27 .0000 .0000 4. 0000 68 0.0000 61 13.5000 23.3827 • 0000 
62 13.5000 23.3827 2 .0000 69 0.0000 
63 13.5000 23.3827 4.0000 70 0.0000 
64 -13.5000 23.3827 .0000 71 0.0000 65 -13.5000 23.3827 2. 0000 
66 -13.5000 23.3827 4. 0000 72 0.0000 
67 -27 .0000 .ODDO .DODO 73 0.0000 
68 -27. 0000 .0000 2. 0000 74 0.0000 69 -27 .0000 .0000 4. 0000 
70 -13.5000 -23. 3827 .ODDO 75 0.0000 
71 -13.5000 -23.3827 2. 0000 
12 -13.5000 -23. 3827 4. 0000 
73 13.5000 -23. 3827 .0000 
74 13. 5000 -23. 3827 2. 0000 NUMBER OF NODES WITH SPECIFIED 
75 13.5000 -23. 3827 4. 0000 HYDRAULIC HEAD 18 

ELEMENT NODE SPECIFIED 
NO. TYPE NODE NUMBERS NO. GROUNDWATER FLOW ------------ --------------------1 9 1 4 7 10 2 5 8 11 1 2 9 2 5 8 11 3 6 9 12 -.1000 

3 9 1 10 13 16 2 11 14 17 2 -.2000 
4 9 2 11 14 17 3 12 15 18 3 -.1000 
5 9 1 16 19 4 2 17 20 5 
6 9 2 17 20 5 3 18 21 6 
1 9 4 22 25 1 5 23 26 8 
8 9 5 23 26 8 6 24 27 9 NUMBER OF NODES WITH SPECIFIED 
9 9 1 25 28 10 8 26 29 11 

10 9 8 26 29 11 9 27 30 12 GROUNDWATER FLOW 3 
11 9 10 28 31 13 11 29 32 14 
12 9 11 29 32 14 12 30 33 15 
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NUMBER OF DEGREES OF FREEDOM 
IN MODIFIED K MATRIX 57 

SEMI-BANDWIDTH OF MODIFIED K MATRIX 35 

******************************************* 

COMPUTED VALUES OF HYDRAULIC HEAD 

NODE NO. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 

HYDRAULIC HEAD 

-7.51235921 
-7.51235921 
-7.51235921 
-4.20894770 
-4.20894770 
-4.20894770 
-4.45130634 
-4.45130634 
-4.45130634 
-4.20894770 
-4.20894770 
-4.20894770 
-4.45130634 
-4.45130634 
-4.45130634 
-4.20894770 
-4.20894770 
-4.20894770 
-4.45130634 
-4.45130634 
-4.45130634 
-2.89752754 
-2.89752754 
-2.89752754 
-2.87597516 
-2.87597516 
-2.87597516 
-2.89752754 
-2.89752754 
-2.89752754 
-2.87597516 
-2.87597516 
-2.87597516 
-2.89752754 
-2.89752754 
-2.89752754 
-2.87597516 
-2.87597516 
-2.87597516 
-1.44242483 
-1.44242483 
-1.44242483 
-1.44432651 
-1.44432651 
-1.44432651 
-1.44242483 
-1.44242483 
-1.44242483 
-1.44432651 
-1. 44432651 
-1.44432651 
-1.44242483 
-1.44242483 
-1.44242483 

VALUE 

55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 

-1.44432651 
-1. 44432651 
-1.44432651 

.00000000* 

.00000000* 

.00000000* 

.00000000* 

.00000000* 

.00000000* 

.00000000* 

.00000000* 

.00000000* 

.00000000* 

.00000000* 

.00000000* 

.00000000* 

.00000000* 

.00000000* 

.00000000* 

.00000000* 

.00000000* 

* = SPECIFIED 

******************************************* 

****** 

COMPUTED VALUES OF APPARENT GROUNDWATER 
VELOCITY 

ELEMENT vx VY vz 

l -l.530526E-02 -2.650950E-02 0. OOOOOOE+OO 
2 -l.530526E-02 -2.650950E-02 3.885781E-18 
3 3. 061053E-02 7.542795E-18 3.987967E-18 
4 3. 061053E-02 4.978656E-18 5.551115E-19 
5 -l.530526E-02 2.650950E-02 6. 757290E-19 
6 -l.530526E-02 2.650950E-02 3.286488E-19 
7 -7. 492886E-03 -3.688607E-03 7.092715E-19 
8 -7.492886E-03 -3.688607E-03 9. 714451E-19 
9 5.520157E-04 -8.333333E-03 -l.404042E-19 

10 5. 520157E-04 -8.333333E-03 l.236600E-18 
11 6. 940871E-03 -4.644726E-03 -3.834010E-19 
12 6. 940871E-03 -4. 644726E-03 l.281087E-18 
13 6. 940871E-03 4.644726E-03 l. 057978E-18 
14 6. 940871E-03 4.644726E-03 -7. 043926E-20 
15 5. 520157E-04 8.333333E-03 4. 875183E-19 
16 5. 520157E-04 8.333333E-03 -5. 763890E-19 
17 -7.492886E-03 3.688607E-03 -l.328825E-19 
18 -7 .492886E-03 3.688607E-03 -5. 478609E-20 
19 -2. 397438E-03 -l.403071E-03 4. 021712E-19 
20 -2. 397438E-03 -1. 403071E-03 3. 361027E-19 
21 -l.637558E-05 -2.777778E-03 -S.262107E-19 
22 -1. 637558E-05 -2. 777778E-03 -2 .208384E-19 
23 2. 413814E-03 -1. 374707E-03 -3. 754050E-19 
24 2.413814E-03 -l.374707E-03 2. 750147E-19 
25 2.413814E-03 l.374707E-03 -4. 679010E-20 
26 2. 413814E-03 l.374707E-03 -5. 922454E-20 
27 -1. 637558E-05 2. 777778E-03 -3. 647324E-19 
28 -1. 637558E-05 2. 777778E-03 -8. 378850E-20 
29 -2. 397438E-03 1. 403071E-03 -l.285457E-19 
30 -2.397438E-03 l.403071E-03 -1. 971215E-19 
31 -8. 021395E-04 -4.625055E-04 4. 763713E-20 
32 -8.021395E-04 -4.625055E-04 0. OOOOOOE+OO 
33 5.282446E-07 -9.259259E-04 -4.316480E-19 
34 5. 28244 6E-07 -9.259259E-04 -l.303414E-19 
35 8.0l6113E-04 -4.634204E-04 1. 407769E-20 
36 8. 016113E-04 -4.634204E-04 -1. 555322E-l 9 
37 8. 016113E-04 4.634204E-04 l. 761829E-19 
38 8.016113E-04 4.634204E-04 -l.054895E-19 
39 5.282446E-07 9.259259E-04 -3.896521E-19 
40 5. 282446E-07 9.259259E-04 -1. 002887E-20 
41 -8. 021395E-04 4.625055E-D4 -8. 895540E-20 
42 -8.021395E-04 4.625055E-04 1.428775E-19 
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Appendix C Hydraulic Head 

Results 

All data sets have 140 by 140 element grid. 
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Standard deviation of hyraulic head values for isotropic 10m integral scale 
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Difference between stochatistic mean hydraulic head values and deterministic result for 

isotropic 50m integral scale 
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Difference between stochatistic mean hydraulic head values and deterministic result for 

isotropic 200m integral scale 
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Appendix D Velocity Results 

All data sets have 140 by 140 grid. 
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