Stochastic numerical modelling of groundwater flow and
solute transport

Author:
Davis, Steven Richard

Publication Date:
2003

DOI:
https://doi.org/10.26190/unsworks/8042

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/62583 in https://
unsworks.unsw.edu.au on 2024-04-27


http://dx.doi.org/https://doi.org/10.26190/unsworks/8042
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/62583
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

STOCHASTIC NUMERICAL

MODELLING OF GROUNDWATER

FLOW AND SOLUTE TRANSPORT

S. DAVIS

A thesis submitted in fulfilment
of the requirements for the degree of

Doctor of Philosophy

University of New South Wales

February 2003



Abstract

A stochastic numerical perturbation method is applied to the groundwater flow and
solute transport problems. The method involves modelling the hydraulic conductivity
as a random field, discretising this random field into a vector of random variables,
expanding this vector and the vectors representing, groundwater velocity, and solute
concentration in Taylor series about their means and using stochastic finite element
methods to relate the three parameters. Methods of calculating the second spatial
moment of the mean solute plume and the mean second moment of individual solute
plumes are presented. The method is implemented in a computer program and results
for a range of integral scales are presented. These results are compared to analytical
results found in the literature. It is found that the groundwater velocity results give very
good agreement, except when mesh resolution becomes a problem, and that the solute

concentration results give reasonable agreement for practical integral scales.

The work presented in this thesis builds on previous work that uses stochastic finite
element methods in that it determines the statistics of the groundwater velocity field in
the groundwater flow problem, determines the statistics of the concentration field in the
solute transport problem from the statistics of the hydraulic conductivity field, and uses
a second order method for the mean values, thus avoiding the problem of using the same

result as obtained in the deterministic case.
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Chapter 1 Introduction Page 1

1 Introduction

This thesis applies a stochastic numerical perturbation method to the groundwater flow

and solute transport problems.

1.1 Statement of the Problem

It is well known that the dispersive behaviour of solute transport is much greater at field
scales than that observed in the laboratory. Research has shown that this is due to
variation in groundwater flow, caused by variation in aquifer properties (Dagan 1989,
Gelhar, 1993). However, it is not possible to gather data and model an aquifer at small
enough scale to capture all of this variation in a deterministic sense because of the huge
amount of data involved, and because the act of gathering such data would greatly

modify the properties being measured.

One approach that has been used to deal with this is to use a random field description of

the aquifer (Vanmarke, 1983).

Analytical solutions to the governing stochastic equations have been developed using
various approximations (for example Dagan,1982b, Gelhar and Axeness, 1983, Rajaram
and Gelhar, 1993a & b, Kapoor and Gelhar 1994a & b). However, analytical solutions
have the disadvantages that they are restricted to infinite (or semi-infinite) geometries,
cannot deal with aquifers made up of distinct geological units, and the solute sources are
limited in spatial geometries, often restricted to point sources, and temporal distribution,

either instantaneous or a constant continuous value.
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In the deterministic area these problems are often overcome using numerical methods.
Stochastic finite element methods have been developed that use a random field
description of the hydraulic conductivity. However, they have the limitations that they
only determine the hydraulic head values (Sagar, 1978, Vanmarke and Hachich, 1983,
Vanmarke, 1994, Hantush and Marino, 1995, Ghanem, 1998, Tartakovsky and Neuman,
1998, Guadini and Neuman, and Winter et al, 2002), assume that the groundwater
velocity statistics are given (Graham and McLaughlin, 1989a & b), or use the first order
result for mean values (which is equal to the deterministic result) and require cross

covariances to be calculated (Kunstman, 2002).

There is a need for a stochastic finite element method that overcomes these limitations.

1.2 Objectives of Study

The objectives of the study are:

@) To develop a stochastic finite element method that determines the statistics
of the velocity field in the groundwater flow problem from the statistics of

the hydraulic conductivity field of the aquifer.

(i)  To further develop this method to determine the statistics of the
concentration field in the solute transport problem from the statistics of the

hydraulic conductivity field of the aquifer.

(1ii))  To compare results from using this method with appropriate analytical

solutions to demonstrate the effectiveness of the method.

These objectives have been met.
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1.3 Thesis Outline

Chapter 2 presents the background to the problem explaining the physical processes
involved in solute transport and why the most common method of modelling solute
transport, the advection dispersion equation, is deficient and why aquifer heterogeneity
is an important property. It also details different probabilistic methods of modelling the

variation within the aquifer, including a random field model.

Chapter 3 provides a literature review of research that applies the random field model to
groundwater flow and solute transport. It discusses this in the categories of Monte

Carlo simulation, analytical methods, and other numerical methods.

Chapter 4 gives the methodology behind the perturbation method and its application to
groundwater flow and solute transport. The algorithms for each step of the method are
presented. Also algorithms for calculating other interesting properties of the solute
plume from the results are presented. It also looks at issues related to upstream

weighting and presents several methods of reducing the computation time required for

the method.

Chapter 5 presents groundwater velocity results from use of the method and compares

these to analytical results found in the literature.

Chapter 6 presents solute concentration results from use of the method and compares

these to analytical results found in the literature.

Chapter 7 makes some suggestions about further work that could proceed from the

thesis.
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2 Background

This chapter looks at the contaminant transport problem and discusses the limitations of
deterministic methods of modelling the problem. It does this by looking at the
processes involved in the transport of contamination by groundwater and discusses how
the current method models these processes. It explains why the heterogeneity of an
aquifer is an important aquifer property when modelling solute transport and discusses
ways of modelling this heterogeneity. This provides the background to the literature

review outlined in Chapter 3 and the methodology presented in Chapter 4.

2.1 Solute Transport

This research deals with water-soluble contaminants. The significance of this is that
when the contaminant enters an aquifer it dissolves in the groundwater and becomes a
constituent or phase of the groundwater. As such it moves within the aquifer following
the same travel path as the groundwater. This movement is a result of hydraulic head

gradients and is referred to as advection, see Figure 2.1.

As time passes the contaminant also tends to spread out. The boundaries of the
contamination plume become less sharp as the concentration gradients reduce through
processes of diffusion and mixing, and less certain due to the uncertainty in the aquifer
properties. This results in a plume that fills an increasingly larger volume but has an

increasingly lower concentration, see Figure 2.1.
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Source of Contamination

I Ground Surface

Contamination enters the
groundwater system

Contamination moves with the groundwater
system (advection) and increases volume
becoming less concentrated (dispersion)

Figure 2.1 Movement of contamination in groundwater system

2.1.1 Advection

Advection is the movement of contaminants with the groundwater flow in an aquifer.

When a contaminant enters an aquifer it is dissolved in, or displaces, the groundwater

already present in the aquifer. Normally this groundwater is moving under the influence

of hydraulic head gradients. Thus any contaminant dissolved in the groundwater is
carried along with it. If pure advection existed it would involve a contaminant plume
having sharp edges. Just outside the boundaries of the contaminant plume there would
be no contamination and just inside the boundaries the contamination would be at the

original concentration, see Figure 2.2.
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Concentration

t=t, t=t, t=t,
Distance from source

Figure 2.2 Concentration profiles for pure advection
Pure advection does not occur in reality and so the process of advection is modified by

the following processes.
2.1.2 Diffusion

Diffusion is the spreading out of a solute in response to concentration gradients, see
Figure 2.3. The process is the result of Brownian motion moving particles in random
directions. Since there are more contaminant particles in high concentration areas than
low concentration areas it is more likely for a particle to move from a high
concentration area to a low one than vice versa. The solute flux occurring as a result of
diffusion is a linear function of the concentration gradient. This type of behaviour is

described as Fickian and is described by Fick’s law:

F=DVC Equation 2.1

Where

F =Soluteflux

D= Diffusioncoefficien
V =Gradientoperator

C =Concentraton field
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Concentration t=t,

Origin Distance from source

Figure 2.3 Effect of diffusion on a plug of contaminant

In a soil the behaviour is slightly different to a drop of solute in a beaker. Soil is a
porous media and so the diffusion of the solute is impeded by the soil particles.
Therefore the diffusion coefficient determined in the laboratory must be modified for
use in an aquifer. This is done by a parameter called the tortuosity, T. This allows for
the tortuous paths that the solute must follow to diffuse throughout the aquifer.

Tortuosity is an aquifer property, not a contaminant property, and typically varies from

0.05 to 0.5 for most soils.

2.1.3 Mechanical Dispersion

Mechanical dispersion is a pore scale process that results in the mixing of different
concentrations of solution due to variations in velocity within a pore and length of flow

path among different pores.

In a single pore there is a variation of pore water velocity. See Figure 2.4. In a throat
between particles the pore water flows slower near the walls of the pore than in the
centre. Thus the pore water in the centre reaches the next pore faster. If the

concentration in the two pores is different then this will result in an averaging out of the



Chapter 2 Background Page 8

concentration through mixing rather than a simple replacement of the contents of one

pore with another.

EE

/

1 .

Figure 2.4 Pore water velocity variations

Pore water can also take different paths to travel from one position to another. See
Figure 2.5. This enables the groundwater from different pores to mix together thus

further diluting the solute and spreading out the plume.

»
* .~.o @

Figure 2.5 Diversity of flow path lengths

Modelling the details of the groundwater flow at the pore scale is impracticable.
Therefore the concept of a representative elementary volume (REV) is introduced. This

1s a small volume that is just large enough so that when the groundwater velocity is
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averaged out over the volume the result is consistent when small changes are made in

the size of the volume.

The solute flux caused by dispersion is linearly dependent on both the concentration
gradient and the groundwater velocity. Thus if the groundwater velocity is uniform at
the REV scale then its behaviour is Fickian. It is usual to describe the mechanical

dispersion coefficient as the product of velocity and the dispersivity.

D=av Equation 2.2

Where a is the dispersivity and v is the pore water velocity.

Experiments show that the longitudinal dispersivity, i.e. in the direction of the
groundwater flow, is much larger than the transverse dispersivity. The difference is
usually of the order of one magnitude. The result of this is that plumes tend to elongate

in the direction of flow.

The ratio between advection and dispersion is commonly expressed using the Peclet

number:;

P=— Equation 2.3

Where /is a length scale. Typically the size of elements used in a finite element mesh is
used for /. Finite element meshes with high Peclet numbers tend to have oscillation

problems. This will be discussed in more detail in Section 4.5.
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2.1.4 Heterogeneity of the Aquifer

Aquifers are not uniform in the properties relating to contaminant transport. These
properties vary in space and may even vary in time. The main properties relating to
contaminant transport are hydraulic conductivity, porosity and the chemical properties

of the aquifer that cause chemical reactions with the contaminant.

Hydraulic conductivity is one of the most variable properties in nature, varying over 15
orders of magnitude from gravel to clay. It also varies within an individual aquifer.
This can be a discrete process caused by bedding, sand lenses, clay seams, etc or a
gradual continuous process caused by localised variations within a coherent aquifer unit.
The result of this non-uniformity is that groundwater tends to find preferential flow
paths through which the bulk of the groundwater flow passes, see Figure 2.6. When a
contaminant enters an aquifer some of it enters preferential flow paths of varying
velocities. This fragmentation of the plume into sections travelling at different
velocities is the dominant effect causing dispersion of the plume at engineering scales.
This process is called macro dispersion. The effect of macro dispersion may be many
orders of magnitude greater than diffusion and mechanical dispersion (Gelhar, 1993).
Macro dispersion is non-Fickian and is greater for larger plumes than for smaller ones,

i.e. it is scale dependent, because larger plumes contain greater variations than smaller

ones.
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Figure 2.6 Preferential flow paths caused by heterogeneity in the aquifer
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Porosity also affects contaminant transport. However generally the change in porosity
is much smaller in magnitude than the change in hydraulic conductivity. Thus its effect
is usually ignored in preference to investigation of the effect of variation of hydraulic

conductivity.

Variation in the chemical properties that control any reactions between the contaminant
and the aquifer can also have a large impact on the behaviour of non-conservative
contaminants. This form of variation is not investigated in this thesis as only

conservative contaminants are being modelled.

Other spatial heterogeneities that may occur in aquifers include variations in tortuosity,
affecting diffusion, and dispersivity, affecting mechanical dispersion. However, the
effect of the variability of these parameters is minor compared to the effect of the
variability of hydraulic conductivity (Gelhar, 1983). Thus these parameters are
neglected in this research to highlight the behaviour caused by variation in hydraulic

conductivity.
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2.1.5 Current Methods of Modelling the Problem

Normally this problem is modelled by the advection dispersion equation (Fetter, 1993):

2 2
D, 6_? +D, 9c _ ac = X Equation 2.4
Ox

where
C = Concentration
t=time

v, = groundwater velocity in the x direction (the Cartesian coordinate axes

are selected so that the direction of groundwater flow is in the x direction)
D, = longitudinal dispersion coefficient
Dr= transverse dispersion coefficient

If Ficks Law is assumed for mechanical dispersion then the dispersion coefficients will

be a linear function of velocity.

The velocity is determined from the hydraulic head field using Darcy’s Law (cf Rushton

and Redshaw, 1979):

v =- kVH Equation 2.5

where
H = hydraulic head field

k = hydraulic conductivity tensor
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V is the gradient operator.

Assuming steady state flow the hydraulic head field is determined from the hydraulic

conductivity by (cf Rushton and Redshaw, 1979):

FH . PH :
kxng + kya—y[ =q Equation 2.6
Where q is an in inflow or outflow at a source or sink (for example a pumping well),
and is zero at all other points in the aquifer, and k, and ky are the components of

hydraulic conductivity, which may vary from point to point.

These equations can be solved using numerical methods such as finite element or finite
differences. Equation 2.4 has been solved analytically for the two limiting cases in a
uniform velocity over an infinite space of a finite mass being released at a point in space
and time, and a constant value of source concentration at a point. Commonly these
analytical solutions are used in engineering practice by finding which case most closely

approximates the field conditions.

The first term on the right hand side of Equation 2.4 models advection, the second term
models dispersion. This equation assumes Fickian dispersion, thus it is strictly only
applicable to diffusion and mechanical dispersion. Laboratory testing implies using a
small sample that can only model the effects of diffusion, mechanical dispersion, and
very small-scale non-homogeneities, and not the large-scale heterogeneities that
dominate the process in natural aquifers. Thus a tracer test equivalent in size to the
actual contaminant plume is required to determine the contribution from heterogeneity

in the conductivity field. Thus the value for the dispersion coefficient is either fitted to
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the data or extrapolated from other sites, neither method caters for the scale dependence

of the effect.

Thus this method is inappropriate for two reasons: it does not correctly model the
dominant behaviour (i.e. macro dispersion) and the major parameter (i.e. the dispersion
coefficient) is fitted to the data by back calculation rather than by determination prior to

calculation.

However if the heterogeneity could be modelled exactly by knowing the hydraulic
condubtivity at every point then the equation would accurately represent real world
behaviour. Effectively this means transferring the macro dispersion component of the
behaviour from the dispersion term in the advection dispersion equation to the advection
term, thus dealing with it in Equation 2.5 and Equation 2.6. To do this we need a

method of characterising the aquifer that contains more detail.

2.2 Characterisation of an Aquifer

There are many ways of characterising an aquifer. Different methods are appropriate
for different purposes. This section will describe different methods leading up the
exposition of a random field as a way of characterising a heterogenous hydraulic

conductivity field.
2.2.1 Deterministic

The simplest way to characterise an aquifer is deterministically. This means that the
hydraulic conductivity at every point is assumed to be a known definite value. This is

the most commonly used method. Generally a particular value of hydraulic
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conductivity is assumed for each aquifer unit and that value is uniform throughout each

unit.

If an elaborate system of testing is carried out, the hydraulic conductivity may be
defined on a fine enough grid to accurately and reasonably characterise the aquifer.
However this level of testing would leave the aquifer perforated with bore holes such

that the hydraulic conductivity could be drastically altered.

Instead it is much more common to use test data to derive an effective hydraulic
conductivity that gives a behaviour equivalent to the average behaviour of the aquifer.
This characterisation obviously contains no information about the variability of the

aquifer.

2.2.2 Single Random Variable

The next simplest method of characterising an aquifer is with a random variable
representing each unit of the aquifer. If a simple model is taken of an aquifer that
consists only of a single unit then the aquifer is assumed to have a single value for
hydraulic conductivity but this value is unknown and so a probabilistic analysis can be
carried out. For example the probability of groundwater flow into an excavation
exceeding a certain level could be determined. However, features that depend on the
non-uniform structure of the aquifer cannot be modelled. This is because the aquifer is
assumed to have a uniform structure even though the actual uniform value is assumed to

be variable.

This method was used in Chowdhury and Zhang (1988).
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2.2.3 White Noise

Another way that the aquifer can be characterised is by a system of white noise. This
means that the aquifer is assumed to have a different, fandom value for the hydraulic
conductivity at each point, see Figure 2.7. Each point would be represented by a
different random variable. Thus an infinite number of random variables would be
needed. Practically this could be modelled by dividing the aquifer into a large number
of very small elements and assigning an independent random variable to each element.
This gives the model of the aquifer some form of structure by which the features that

depend on the non-uniform structure of the aquifer might be able to be modelled.

Hydraulic Conductivity

A

=

Location

Figure 2.7 Example of one dimensional white noise variation of hydraulic conductivity

The single random variable model can also be thought of as this model but with all the
random variables being perfectly correlated with each other instead of being

independent.

This method was used in Freeze (1975), mainly because more sophisticated techniques

were unavailable.
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2.2.4 Random Field

In the real world the hydraulic conductivities of points that are closer together are more
likely to have similar values than points that are far apart, see Figure 2.8. Thus for very
small parts of the aquifer the single random variable appears appropriate, while for large
distances the white noise approach appears better. For intermediate distances there will
be variation between points but when one point has a higher than average value we
would expect nearby points to have higher than average values, or both to have lower

than average values but still both values are unknown and not expected to be the same.

Hydraulic Conductivity

\

=

Location

Figure 2.8 Example of aquifer with positive auto correlation function

A form of model with these properties is the random field (Vanmarcke, 1983). A
random field is characterised by an auto correlation function. It is assumed that each
point has a value that can be represented by a random variable. However each random
variable is not independent from every other random variable, nor are they perfectly

correlated. Instead they are correlated according to the separation vector between them.
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The auto correlation between two points is the expected value of the product of the
deviations of the values from the means at the two points divided by the product of the
standard deviations of the random variables at the two points. Commonly it is assumed
that over a large enough length/area/volume the mean is constant (i.e. no trend) and the
variability is constant (the field is stationary). For a stationary random field the

autocorrelation function is defined by (VanMarcke, 1983):

p(x,, x,) = L&) - BENK (X, )~ B(K)) Equation 2.7

Where

p(X,,X,)= Auto correlation between points X, and X,
K (X ) = Hydraulic conductivity at point X
E[K ] = Mean value of hydraulic conductivity for the random field

o? = Variance of the point values of hydraulic conductivity

The auto correlation can vary from minus one to one. If the random variables are
independent then the auto correlation is zero. The reverse is not necessarily true. An
auto correlation of one means that the two points always have the same value. For the
case of normally distributed random variables, an auto correlation of zero implies that
the random variables are independent. A negative auto correlation implies that when
one value is high the other is low. This may occur for example where there are
alternating beds with only two uniform values and each bed has the same thickness.
This case would give an auto correlation of minus one at the distance equivalent to the

thickness of the beds. See Figure 2.9.
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Figure 2.9 Auto correlation for uniform alternating constant thickness beds

The auto correlation is usually modelled as a function of the separation vector only.
This is referred to as a homogeneous random field since the auto correlation is the same
regardless of the location of the two points provided they have the same separation. If
the auto correlation function is the same for a given separation distance regardless of
direction then the random field is also isotropic. If it varies differently in one direction

than in the other it is anisotropic. Bedding is an example of an anisotropic random field.

Statistics for a random field model can be generated for any other type of model of an
aquifer. For example the above case of uniform alternating constant thickness beds has
an anisotropic auto correlation function where the correlation (i) is a wave function
oscillating between minus one and one with the wavelength being twice the bed
thickness in one direction and (ii) is equal to one within the plane of the beds. Similarly
auto correlation functions can be generated for fractal realisations. Using these more
particular models may give a more accurate model, but the random field model is more
general and so can model more situations just by modifying the auto correlation
function. It should be remembered that all of these models are only approximations of
reality, but for many purposes a random field has been found to be a very useful

approximation (Gelhar, 1993).
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In a deterministic model of an aquifer all properties are defined exactly at all points. In
a stochastic model the properties are defined probabilistically. Ideally this would mean
that the joint probability distributions were known. However, normally it is assumed
that the first two moments of the probability distributions are known (Gelhar, 1983).
Thus the mean at any point and the covariance between any two points are known. If X;
is the value of the random field at point x; and X, is the value at x, then the covariance

is given by (VanMarcke, 1983):

cov(X,,.X,) = E|(x, - E[x, ]| x, - E[x, ]

Equation 2.8
=E[ X, X,|-E[x,]E[x,]

where E[X] is the mean of X. Commonly the covariance is given in terms of the
autocorrelation function (VanMarcke, 1983):
cov( X, X, )

p(xl,xz) =—" Equation 2.9
OOy,

where p is the autocorrelation and oy is the standard deviation of X. If a random field is
stationary then p is only dependent on the separation vector x = x; - X,. Ifit only

depends on the magnitude and not the direction of x then it is isotropic, otherwise it is

anisotropic.

Commonly an autocorrelation function is characterised by its integral scale. The
integral scale in a particular direction is defined as the integral of the autocorrelation

function over all positive values of the separation vector in that direction.
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oC
1= f p(x) dx Equation 2.10
0

Where [ is the integral scale.

I1is commonly used as a parameter in the autocorrelation function. Small values of the
integral scale indicate that the related random variable fluctuates over short distances,
large values indicate that the random variable is constant over short distances and
fluctuates over large ones. In the extremes a value of zero for the integral scale gives
the aforementioned white noise model and an infinite value gives the aforementioned

single random variable model.

Another parameter that is commonly used to characterise an auto correlation function is
the scale of fluctuation. The scale of fluctuation is the integral of the autocorrelation
function over all values, both positive and negative, of the separation vector in that
dimension. Since the autocorrelation function is symmetrical the scale of fluctuation is
exactly twice the integral scale. It is usually denoted by 6. Most authors in the

groundwater area tend to use integral scale rather than scale of fluctuation and so that

practice will be adopted here.
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3 Potential Solution Schemes

The purpose of this Chapter is to enumerate solution schemes to the problem developed
in the last chapter. As such it will also function as a literature review discussing
methods pursued by other authors. It will begin by discussing the Monte Carlo
simulation method through which many of the concepts of stochastic solutions can be
presented in an easy to understand manner. It will then look at analytical solutions that
have been extensively pursued. Next numerical solutions will be considered. This will
involve showing how stochastic solutions are built from deterministic solutions and the
different types of stochastic solutions that are available. Finally a perusal of

discretisation methods will be made.

3.1 Monte Carlo Simulation

A stochastic problem involves determining the probability distributions of outputs for a

particular system given the probability distributions of the inputs, see Figure 3.1.

Probability Probability
distributions System distributions
—ofinmputs———» —ofoutputs >

Figure 3.1 Schema for a stochastic problem

Monte Carlo simulation solves the stochastic problem by turning it into a large number

of deterministic problems, see Figure 3.3.
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Deterministic > System Deterministic >
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Figure 3.2 Schema for Monte Carlo simulation

The deterministic inputs are selected so that their combined statistics match the
probability distributions of the stochastic inputs. Each of the deterministic problems is
called a realisation. The statistics of the stochastic outputs are assumed to be equal to

the statistics of the set of deterministic outputs.

To give an example of this take the case of a problem involving a single random input

variable and a single random dependent output variable. See Figure 3.3.

Monte Carlo Simulation
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Figure 3.3 Example of a Monte Carlo simulation
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Firstly a set of realisations is generated. This example has sixteen realisations of the
input variable between 2 and 7. Notice that they do not come in even increments but
have random values designed to fit the statistics of the input variable. Each of these
realisations is processed to give a value of the output variable. In the example the
results range from 1 to 3. The statistics of the output variable can be estimated from the
set of results. In this particular case this could have been done directly from the
statistics of the input variable since the operator involved is linear. However in most
engineering situations this is not the case and the Monte Carlo Method is the simplest

way to obtain the required statistics.

The input required for the contaminant transport problem is the hydraulic conductivity
field. Usually the deterministic solution of each realisation involves a finite element or
finite difference approach. Therefore the realisation is defined by the values chosen for
each element or finite difference point in the domain of the problem. This realisation

needs to be carefully generated to fit the statistics of the random field.

In practice the application of the Monte Carlo method to the contaminant transport

problem involves:

1. Discretising the random field into a set of random variables

2. Determining the statistics of the random variables from the random field

3. Generating a set of numbers that satisfy the statistics of the random variables

4. Determining the flow field from these values for hydraulic conductivity

5. Determining the groundwater velocities within each element
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6. Determining the location of the plume at the desired time

7. Repeating until a statistically significant set of data has been gathered

8. Collating the statistics of all of this data.

Various statistics that can be collected of the transported plume are:

e The mean concentration at each point in the aquifer

e The variance of the concentration at each point in the aquifer

¢ The mean of the position of the centre of the plume

o The variance of the position of the centre of the plume

e The mean and variance of the second moment of each realisation about the centre of

the plume

e The mean and variance of the second moment of the sum of realisations of the

plume

Each of these statistics will give us different information about the plume and will be
used in different contexts. For example if an investigation of a well for extracting
groundwater is being carried out then the concentration statistics are desired. Ifa
remediation program is being proposed then the second moment statistics will be

required to delineate the extent of the problem.
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3.1.1 Groundwater Flow

The earliest work looking at solutions for the stochastic groundwater flow problem,
Freeze (1975), applies Monte Carlo simulation to a one dimensional finite element
problem and determines the statistics of the values of hydraulic head along the flow.
This work assumes that the hydraulic conductivity values in each element is
independent of the values in all other elements, similar to the white noise model

discussed in Section 2.2.3.

Later Smith and Freeze (1979a) use a nearest neighbour stochastic process model to
include the effects of correlation between elements that are close together. Smith and
Freeze (1979b) extend this to two dimensions. In the nearest neighbour model the
values for the hydraulic conductivity only depend on the nearest elements. Obviously
all elements are connected by neighbours, however, this limits the shape of the auto

correlation function.

Later, Bellin et al (1992) perform two-dimensional simulations using a fast Fourier

transform method to generate the realisations.

Fenton and Griffiths (1993) use two dimensional simulations to determine effective
block conductivities and demonstrated that local averaging (see Section 3.4.2) of log

conductivities provides good results.

The Turning Bands Method, originally presented in Mantoglou and Wilson (1982), was
developed so that random fields could be generated efficiently for any form of
autocorrelation function. It is probably the most commonly used method of generating

random fields in the groundwater area. It is a lot faster than using matrix methods, but
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it is not as accurate, however, the minor loss in accuracy is not seen as significant. A
program for applying a matrix decomposition method is presented in El-Kadi and
Williams (2000). Dietrich and Newsam (1993) develop an exact method that is similar
in speed to the Turning Bands Method. Bellin et al (1994) develop another method

based on conditioning successive random variables on previous random variables.

Shrestha and Loganathan (1994) give a method to calculate how many realisations are
needed to ensure that the sample mean for hydraulic head calculations is within a given

limit of the population mean for a given confidence interval.

One of the problems with Monte Carlo simulation is that it may require a large number
of realisations to obtain the statistically significant number of outputs required to obtain
meaningful results. This may require a large amount of computational time. Therefore
these early works tended to use finite element meshes with very small numbers of
elements. Attempts to use large meshes have sometimes compromised on the number
of realisations. For example, Ababou et al (1989) perform a single realisation study on

a three-dimensional aquifer.

Meyer et al (1989) present methods of performing fast solutions of the finite difference
method optimised for use on supercomputers. Ashby and Falgout (1996) investigate
optimising this further for parallel computations by using preconditioning. They use an
iterative solution technique for solving the large matrices required and show that
preconditioning techniques can help. Dykaar and Kitanidis (1993) use this method to
perform three dimensional simulations to determine effective transmissivity and find

that simple methods, such as depth averaging, leads to significant errors.
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3.1.2 Concentration

Application of Monte Carlo methods to the contaminant transport problem is much
more difficult. This is because the aquifer must be divided into much smaller elements
to generate the required behaviour. The large amount of computing power required to
generate the values for hydraulic conductivity and repeatedly solve the problem for all

of the realisations make this problem very time consuming.

Russo (1984) uses Monte Carlo simulation with 50 realisations to model salination of a
soil profile focussing on vertical flow through the unsaturated zone. However, he
models the aquifer as a cluster of one dimensional columns of soil through which the

groundwater percolates and there is no flow between columns.

The problem has been undertaken in two dimensions by Bellin et al (1992). The earliest
large scale example in three dimensions is by Tompson and Gelhar (1990) who generate
one realisation of the hydraulic conductivity field and simulate four realisations of the
contaminant transport problem by placing the initial plume in different parts of the
aquifer. Burr et al (1994) perform 5 three dimensional simulations of a tracer test at
Bordern in Ontario, Canada. Moreno and Tsang (1994) use single realisation studies
with varying standard deviations and integral scales to show that for large standard
deviations the flow tends to mainly pass through distinct channels. Jussel et al
(1994a&b) use ten realisations to model a gravel deposit in Switzerland. They were
limited to ten by supercomputer time constraints. Naff et al (1998a & b) perform three
dimensional simulations to determine the effects of integral scale and initial plume size.
They use approximately 20 simulations per parameter set and state that 80 would have

given much better results, but that they were limited in computer time.
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Hassan et al (1998) provide a comparison table of Monte Carlo simulation studies in the
literature. Most of them are two dimensional and of those that are three dimensional the

number of realisations is quite small, often only one.

Scheibe and Cole (1994) use Monte Carlo simulation at using both coarse and fine
element meshes. They ascribe the difference to dispersive effects and then remodel
using the coarse mesh with the dispersive effects included and find that they get good

agreement with the original fine mesh results.

The Monte Carlo method itself is an approximation based on the assumption that the
behaviour in the field, no matter what the precise details of the realisation in the field,
will reach some form of average value for all the realisations. This is referred to as
ergodicity. Other methods are used to overcome the Monte Carlo method’s problem
with computational load, but they are quite often an approximation of the model used in
the Monte Carlo method and thus it must be recognised that they are another step away

from the field situation when their results are interpreted.

Rubin (1990) uses analytical results to generate the covariance field for the groundwater
velocity covariance matrix and then uses particle tracking to generate the concentration
field. Particle tracking involves placing a “particle” at an initial location of the velocity
field for a particular realisation and simulating over time where it will move. The
concentration for any small volume is then determined at a particular time as being
proportional to the number of particles resident in the volume. This gives the mean of
the concentration, but not higher order moments. Goode (1990) presents an improved
method of interpolating the groundwater velocities between the nodes for use in particle

tracking. Rubin (1991) extends the particle tracking method to determine the spatial
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moments of the plume and their variance. Tompkins et al (1994) use a finite difference
method to generate the velocity field realisations from the hydraulic conductivity
realisations and then use particle tracking to determine the concentrations. Saladin and
Fiorotto (1998) use particle tracking in two dimensions to investigate the effects of
using large log hydraulic conductivity variances. Feyen et al (2001) use particle

tracking to delineate the capture zone for a well.

Crane and Blunt (1999) present a streamline based method. For each realisation of the
hydraulic conductivity field they determine the locations of the streamlines. They then
carry out one dimensional analyses along each streamline. The main limitation of the

method is that it does not deal with local dispersion.

In other fields, such as structural mechanics, methods have been developed to reduce
the computations involved in Monte Carlo simulation. These include importance
sampling (Melchers, 1990, Yaacob, 1991, and Fu and Moses, 1992) and
preconditioning the realisations of the random field to exactly match the statistics of the

random field, thus requiring fewer realisations (Yamazaki and Shinozuka, 1990).

3.2 Analytical Solutions

3.2.1 Groundwater Flow

In analytic methods groundwater flow is solved by substituting the probability density
functions, auto correlation functions, and/or spectral density functions into the flow
equation and integrating with respect to the random input variables to obtain the
probability density functions or statistical moments of the output variables. The

advantages of this approach are exactness, and transparency of solution to third party
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inspection. However they are often limited in application to very prescribed
circumstances (eg simple geometries). Early work determined relationships between
head variance and log conductivity variance (Bakr et al, 1978; Gutjahar and Gelhar,
1981; Mizell et al,1982) or determined effective conductivities (Gutjahar et al, 1978,
Gelhar and Axness, 1983, Paleologos et al, 1996, Indelman et al, 1996). The effective
conductivity is the value of hydraulic conductivity that a uniform aquifer with the same
geometric properties would require to obtain the same average groundwater velocity as
the non-uniform aquifer. Tartakovsky et al (2000) determines the effective

transmissivity from the statistics of the hydraulic conductivity field.

Dagan (1979) determined limits on the effective conductivity and hydraulic head
variance using a model of the aquifer involving uniform lumps of constant hydraulic
permeability. This was then extended to transient flow where it was shown that the
arithmetic average of the flow field satisfies Darcy’s Law and the continuity equation if
effective values for hydraulic conductivity storativity are used and the average head

varies slowly in space and time.

Investigations into the applicability of some of the assumptions made by earlier work
were made by Gutjahr (1984) and Dagan (1985). Van Lent and Kitanidis, (1996)
investigated the applicability of the perturbation approximations used in many of the

analytical solutions.

Li and McLaughlin (1991), Li and McLaughlin (1995), Indelman And Rubin (1995)
remove the stationary (no trend) assumption. Zhang et al (2000) develops a general

approach to nonstationary random fields.

Another thread of research work looks at conditional probabilities (Dagan 1982a).
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A spectral approach was used by Dykaar and Kitanidis (1992a&b) to find effective
conductivity. Neuman and Orr (1993) show that effective conductivities may not exist
in many cases, for example pumping from a well. Beckie et al (1994) shows that
effective conductivities are appropriate when there is a spectral gap, and investigates
appropriate resolving scales in other cases. Beckie et al (1996) develops a model that
resolves subgrid heterogeneity to the grid scale. Beckie (1996) extends this to data

gathering measurements.

Rubin and Dagan (1992) determine analytical solutions for the cross covariances
between each of log-conductivity, groundwater velocity, and hydraulic head. Hsu and
Neuman (1997) look at the effects on the mean, variance and autocorrelation structure
of the groundwater of extending the analysis to second order in the variance of the

hydraulic conductivity.

Karakas and Kavvas (2000) develop a conservation equation for the mean groundwater
velocity that includes random spatial variability in the hydraulic conductivity, storativity

and porosity.

Chan and Govindarau (2001) use an interval computing method that enables them to
convert the probability distributions into fuzzy numbers to determine the mean

concentrations.

Another thread of research looks at the inverse problem (Neumen and Yakowitz, 1979).
This means determining the hydraulic conductivities or transmissivities from
measurements of the hydraulic head at various points. This tends to give results with

lower point variances near the measurements and higher ones further away.
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3.2.2 Concentration

Generally the majority of published research in the area of contaminant transport in
random fields is analytical in nature. That is, a solution to the advection dispersion
equation is sought that is stochastic in nature and based on the statistics of the random
field, especially on the auto correlation function. Common practice has been to seek a
closed form expression for the dispersion coefficient and then substitute this into the
advection dispersion equation. This uses the property that the dispersion coefficient is
half of the rate of change of the second spatial moment of the concentration profile of

the plume (Dagan, 1989).

Dagan (1982b) gives analytical results for the second moments of the ensemble average
of the plumes in a two dimensional aquifer. Dagan (1984) shows that conditioning
these results on measured values of the hydraulic head field has little effect on the
variance (uncertainty) of the concentration field. Sudicky (1986) and Barry et al (1988)
show that these results give good approximations to a large scale tracer test carried out
at Borden in Ontario, Canada. Dagan (1990) derives expressions for the variance of the
second moment of the ensemble. Cvetkovic and Dagan (1994) include the effects of
sorption of the solute with soil particles. Russo (1995) derives expressions for the
second moments of the ensemble average for three dimensional anisotropic cases with

flow parallel and perpendicular to the beds.

Neuman (1993) shows that conditioning results on measurements transfers information

from the dispersive flux term to the advective flux term.

Gelhar and Axness (1983) determine the three dimensional macrodispersivity tensor for

the anisotropic case, at arbitrary angles to the bedding, and include the effects of local
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dispersion. Neuman et al (1987) shows that these results are dependent on Peclet
number and give differing results for high Peclet numbers. Rehfeldt and Gelhar (1992)
extend this work to unsteady flow and show that this yields better results than the steady
flow when applied to tracer tests, particularly for the transverse macrodispersivity.
Neuweiler et al (2001) and Attinger et al (2001) determine effective macrodispersivities
for radial flow and find that without diffusion the macrodispersivity is constant but that
with diffusion it depends on the radius, horizontal diffusion increases macrodispersion

for larger radii while vertical diffusion decreases it for larger radii.

Shapiro and Cvetkovic (1988) and Dagan and Nguyen (1989) investigate the properties
of the breakthrough curve. In other words instead of looking at where the solute is at a
particular time they focus on one point and determine when the solute arrives there and
what the concentration is at different times. Rubin and Dagan (1992) investigate the
effect on the breakthrough curve of conditioning on measurements. Selroos (1995)

examines the temporal moments, that is, how spread out the breakthrough curve is.

Dagan et al (1992) and Cvetkovic et al (1992) take a solute flux approach. That is,
rather than looking at how much concentration exists at a point in space or time they

investigate the rate that the solute flows through a control plane.

Jury and Scotter (1994) use a streamtube approach to determine the probability density
functions of travel time and travel distance. Their approach neglects local dispersion.
Toride and Leij (1996a & b) add the effects of local dispersion. However, it appears

that this is within a streamtube not across them.

Other work has investigated evolving integral scales (Dagan, 1994b). This means that

as a larger portion of the aquifer is sampled the shape of the auto correlation function
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changes so that the integral scale increases. The cause of this may be that formation
units are made up of smaller units and the smaller units have less variability between
them than the larger ones. As the plume travels and grows larger and encompasses
larger formation units the macrodispersion will jump to a higher level. Dagan (1994b)
shows that under these circumstances the area under the auto correlation function may
become infinite and if this occurs a constant dispersion coefficient cannot be found.
Fiori (2001a) extends this by adding the effects of local dispersion. Serrano (1994) and

Serrano (1997) derive a non-Fickian dispersion equation by assuming two scales.

Dagan (1991), Rajaram and Gelhar (1993a & b), Zhang et al (1996), Zhang and Zhang
(1997) and Dentz et al (2000a & b) recognise that there is a difference between the
average of the second moment of each realisation of the plume and the second moment
of the sum of the plumes. The second moment of the sum of the plumes is necessarily
larger since it also includes the variance in the position of the centre of the plume. As
the travel time becomes large these two types of second moment should converge to a
single value. Dagan (1991) gives charts for the dispersion coefficient based on the
average of the second moment of each realisation of the plume as time approaches
infinity. Dagan (1994a) adds time varying behaviour to this. Zhang (1997) looks at the
variance of the second moment of individual realisations. Rajaram and Gelhar (1995)
investigate how the second moment of individual realisations is affected by evolving
scales. Most of these works use an exponential covariance function. Zhang and Di
Federico (1998) extend this work to use a Gaussian autocorrelation function and Di
Federico and Zhang (1999) extend it to a fractional Gaussian noise autocorrelation

function.
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Kapoor and Gelhar (1994a & b) investigate the fluctuations in the concentration field.
The size of these fluctuations at a point is proportional to the standard deviation of the
concentration at that point. They show that the processes that cause macrodispersion
create these fluctuations, for example as a preferential flow path carries solute into a
solute free area it creates a fluctuation or difference between the high concentration in
the flow path and the much lower (or zero) concentration outside it. They also show
that the only process that can destroy these fluctuations is local dispersion, for example
the solute will diffuse and/or mechanically disperse from the area of high concentration
to low concentration. They give analytical expressions for this creation and destruction.
Adricevic (1998) includes the effects of sampling volume to this. Kitanidis (1994)
investigates this idea from a different direction by defining a dilution index, which
describes how much the solute has diluted rather than simply how much it has spread.
Zhang and Neuman (1996) investigate this using a different method and conclude that
when the ratio of local dispersion to macrodispersion is small the local dispersion can be
ignored. Fiori (2001b) uses some of these concepts to determine estimates of the
maximum concentration, which would be higher than the maximum mean

concentration.

Some attempts have been made at looking at higher than second moments by using a
second order approach. Naff (1992 & 1994) uses a lot of complicated operator
development and provides a set of integrals requiring numerical solution. Dagan
(1994c) uses a fourth order analysis of the transverse macrodispersivity to show that the

effects of the higher order moments are quite small.

Destouni and Graham (1995) and Zhang and Lu (2002) investigate the effect on

transport regimes of coupling the unsaturated and saturated zones.
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Dagan et al (1996) shows the effect on solute transport of periodic (eg seasonal)

changes in direction of groundwater flow.

Lessof et al (2000) investigate the effect of a constant groundwater velocity boundary

and find that it suppresses macrodispersion in a zone near the boundary.

Most of the previous work uses a perturbation technique and the results assume that the
stochastic system is in some sense linear and therefore higher order terms are ignored.
Serrano (1996) attemps to overcome this limitation by using the method of

decomposition and finds good agreement with the Bordern aquifer tests.

Vanderborght (2001) takes a different approach in deriving the analytical expressions
determining the probability distribution of whether a particle in a given location at a
given time was in the initial volume at the start, instead of integrating over the initial

volume.

Rubin (2000) determines the effective macrodispersivity that can be used to resolve

subgrid heterogeneity in deterministic numerical applications.

In summary perturbation methods have been used to obtain analytical solutions to the
groundwater flow and solute transport problems. As in the deterministic cases these are
generally restricted to a point source in an infinite media or a continuous source in a
semi-infinite media. One of the major benefits closed form analytical solutions is that
they help with understanding the problem. They are also useful if the approximations
involved in applying them (such as assuming infinite boundaries) are inconsequential.
However, for solving problems where boundaries are important, particularly boundaries

between the units that make up the aquifer, numerical solutions are required.
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3.3 Numerical Solutions

3.3.1 Deterministic Solution

For the contaminant transport problem there are three stages in solution.

Firstly the hydraulic head field must be determined from the hydraulic conductivity
field. This is done using the flow equation. The hydraulic head field may be steady or
unsteady. Ifit is steady then the problem is a simple boundary value problem. Ifit is
unsteady then it is a more complicated initial value problem. Unsteady effects can arise
from pumping, infiltration or the lack thereof, and fluctuation in boundaries (surface

water levels).

Secondly the velocity field is determined from the hydraulic head field. This is done
using Darcy’s law (Equation 2.5). For steady flow a single set of velocities will be

obtained. For unsteady flow a continually evolving set of velocities will be obtained.

Finally the concentration field is determined using the advection dispersion equation.
This is an initial value problem whether the flow field is steady or unsteady since it

depends on the initial plume condition.

These three stages are generally performed sequentially and are uncoupled. However if
the contaminant is very dense and/or concentrated then it can affect the flow of the
groundwater and so a more complicated set of flow equations must be coupled to the
advection dispersion equation. In this research work it will be assumed that these

density effects are negligible.
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3.3.2 Stochastic Solutions

For stochastic problems there are three forms of numerical solution. The primary
numerical method in stochastic problems is the Monte Carlo method discussed in
Section 3.1. This method gives complete information about the probability distributions
of the output values for a given set of input values (provided a sufficiently large number
of realisations has been used). However the Monte Carlo Method can be prohibitively
expensive in computation time. Therefore other methods have been developed to
provide specific information about the output variables. These methods are less

computationally intensive but also give less information.

The two main groups of other numerical methods are perturbation methods and
reliability methods. These methods have not been applied extensively in the
groundwater area, but have been in the structural mechanics area. Therefore a quick

overview of some of the developments from this area will be given.

3.3.2.1 Perturbation Methods

Perturbation methods involve calculating the solution at a particular point, usually the
mean point, and determining how this solution changes as the various input variables
change. The latter is equivalent to determining the derivatives of the output variables
with respect to the input variables. When both the input variables and output variables
are described by Taylor series it is possible to relate the statistics of the output to the
input. Of course this relation is only as accurate as the Taylor series, which depends
both on the closeness of the point to the point about which the Taylor series is being
made and on the accuracy of the Taylor series (i.e. the number of terms in the Taylor

series). Sections 4.2 and 4.3 give more details about implementing this method.
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Perturbation methods have been extensively researched in the structural mechanics area
where they have been taken from simple static problems to more complex dynamic
problems (for example see Hisada and Nakagiri, 1981; Liu et al, 1986a & b; Vanmarke
et al,1986; Nakagiri, 1987; Ditlevsen, 1988). Nakagiri (1987) discusses both the static
and eigenvalue problems using this approach. Liu et al (1987) apply the method to
elastic plastic dynamic problems. They also use a diagonalisation of the covariance
matrix to reduce the amount of computation required. Liu et al (1988) apply the method
to linear dynamic problems and further refine the solution by decoupling and using

Lanczos basis and give a method for removing secular terms from the results.

A similar alternative method investigated by Katafygiotis and Beck (1995) is to use a

Fourier series expansion instead of a Taylor series.
3.3.2.2 Reliability Methods

The perturbation method seeks to determine the behaviour of the system about the mean
point. This suffers from loss of accuracy in the domain away from the mean point.
Engineering is often interested in extremes rather than in averages. For example, with
proverbial chain that is only as strong as its weakest link, it is the extreme value that
matters not the average. If the Taylor series were exact in the perturbation method then
the probability of failure could easily be determined from it. However, the response is
rarely normally distributed and this most strongly influences the behaviour at the tails of
the statistical distributions. Therefore the reliability method has been developed
specifically for determining the probability of failure. See Der Kiureghan and Ke

(1988).
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For the reliability method a performance function is defined G(X) such that when G(X)
> 0 the structure will not fail and when G(X) < 0 the structure will fail. The domain, X,
is the vector of random variables upon which the response of the structure depends. The
surface G(X) = 0 is called the failure surface. The probability of failure is the volume

under the probability density function integrated over the area where G(X) < 0.

To determine the reliability a point known as either the most probable point or the
design point is found. This point is the point on the failure surface that is closest to the
mean point. Various methods for determining this point are compared in Liu and Der

Kiureghian (1991b). The distance from the mean point to the design point is called the

reliability and given the symbol B, see Figure 3.4.

Variable 1 Design Point

A

e Failure surface

First order approximation

Second order

G(X)>0 G(X)<0 approximation

Mean
Point

Variable 2

Figure 3.4 Two variable reliability example

Hassofer and Lind (1974) suggest that the random variables be transformed into
standard normal distributions before determining beta to give it a consistent definition

and hence a consistent value for a given problem.
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A first order approximation to the probability of failure can be calculated directly from
the reliability with the use of standard normal probability tables. This approximation
assumes that the failure surface can be approximated by a plane tangent to the failure

surface at the design point.

A second order approximation to the probability of failure can be obtained if the second
derivatives of the failure surface at the design point are known. This approximation
uses a second order Taylor series to approximate the failure surface. Liu and Der
Kiureghan (1991a) use a (structural) finite element package to develop a second order
solution. Der Kiureghan and De Stefano (1991) develop an algorithm that finds the
second derivatives in order of significance so that only curvatures of a given

significance are used. This reduces the calculation time.

The next couple of subsections will discuss how these methods have been applied in the

groundwater flow and solute transport areas.

3.3.3 Velocity

Sagar (1978) applied a form of perturbation method to the groundwater flow problem.

It outlines a methodology for obtaining the means and variances of the hydraulic head in
the groundwater flow problem from the means and covariances of the hydraulic
conductivity, storativity and forcing function using the Galerkin finite element method.
In this method a matrix equation is derived, then a perturbation is added to a matrix
element and the matrix is inverted to enable the derivatives of hydraulic head with
respect to the matrix elements to be obtained. These derivatives are used in a Taylor

series from which the mean and variance can be determined up to second order. A one-
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dimensional example with three elements is provided. The work is not extended to

groundwater velocity.

Dettinger and Wilson (1981) develop a perturbation method for obtaining the mean and
covariance of the hydraulic head field. However, their method involves matrix

inversion and no application is provided.

Hantush and Marino (1995) also develop a form of perturbation method for computing
hydraulic head values in unsteady flow with random recharge, storativity and
transmissivity. However, the method involves inverting matrices rather than just
solving them and so may be computationally intensive. A one dimensional application

is provided using up to 40 nodes.

Ghanem (1998) uses Khahunen-Loeve expansions to discretise the random field in the
spectral dimension. The hydraulic head at each node is then considered to consist of the
superposition of the effects of each of these random variables. This is substituted into
the flow equation and the ensemble average is taken. Solution of this equation gives the

covariance matrix for the hydraulic heads.

Tartakovsky and Neuman (1998), Guadini and Neuman (1999a & b) and Winter et al
(2002) expand the hydraulic head directly into a Taylor series using Green’s functions.
These are then numerically solved. Tartakovsky and Neuman (1998) deal with transient
flow, Guadini and Neuman (1999a & b) deal with steady state flow, and Winter et al
(2002) model the effect of random boundaries between aquifer units as well as random

spatial variation within them.

The forms of Sagar’s (1978), Hantush and Marino’s (1995) and Ghanem’s (1998)

perturbation methods are quite different to that discussed in Section 3.3.2.1. The latter
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is derived more directly in terms of the derivatives of the stiffness matrix, thus not
requiring any matrix inversions. Vanmarcke and Hachich (1983) and Vanmarcke
(1994) use a method similar to that discussed in Section 3.3.2.1 to determine the
covariance matrix of the hydraulic head from the covariance matrix of the hydraulic
conductivity. They then use Bayesian analysis to determine the reduction in uncertainty
that can be obtained by gathering more data. This can be used for making decisions
about future testing, for example. Both papers use the local averaging method described
later in Section 3.4.2. However, they only determine the hydraulic head and not the
groundwater velocity as they are interested in geotechnical aspects of the pore water

pressure rather than in solute transport.

Little has been done to apply this method to determination of groundwater velocity, or
to perform numerical experiments to obtain results of groundwater velocities from using

the method.

3.3.4 Concentration

Literature describing the application of non Monte Carlo numerical methods to solute

transport is less common than that applying them to hydraulic head calculation.

Graham and McLaughlin (1989a) develop a set of three coupled matrix equations, the
first is similar to the advection dispersion equation and relates the mean concentration to
the cross covariance between the velocity and concentration perturbations, the other two
relate the concentration covariances to the mean concentrations and aforementioned
cross covariances. The paper shows how the coupled equations can be solved using a

modified Galerkin finite element method. Graham and McLaughlin (1989b) show how
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the results of this method can be conditioned on measured values using Kalman filtering

to give improved accuracy.

Hamed et al (1995) demonstrate the use of reliability methods, however, spatial

variability of aquifer properties was not considered.

Very recently, Kunstmann et al (2002) have used a first order second moment method to
determine the nodal concentration variances from the covariance matrices of the
hydraulic heads, hydraulic conductivity and aquifer recharge. In doing so they need to
calculate the cross covariance matrices between the hydraulic heads and hydraulic
conductivity and between the hydraulic heads and the aquifer recharge. It is to be noted
that they are using a first order method and so only focus on covariances. To first order
the mean is the same as the deterministic result. It is necessary to go to second order for
the mean to be affected by the second moment of the input variables because the input
variables are assumed to be normal (Gaussian). Thus their mean values are assumed to

be the deterministic result.

3.4 Random Field Discretisation

In order to use a numerical solution scheme it is necessary to discretise the random field

into random variables.

The result of the discretisation process is a covariance matrix. This is a square matrix
with dimensions equal to the number of random variables. Each element of the matrix
represents the covariance between the random variables represented by the row and
column of the matrix. Thus the matrix is symmetric and the diagonal elements

represent the variances at each point. By finding suitable eigenvectors it is possible to
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transform the covariance matrix into a diagonal matrix (Liu et al, 1987). The vector of
correlated random variables can be transformed into a vector of uncorrelated random
variables using the same transformation matrix. This has three uses. Firstly using the
inverse matrix a vector of independent random variables can be transformed into a
vector of correlated random variables. This is useful since it is easier to generate
realisations of independent random variables than dependant ones. Secondly it can be
used to simplify the Taylor series for the output variables. In the transformed matrix all
covariances are zero except for diagonal entries. This eliminates the necessity to
calculate the cross second derivatives of the hydraulic head and concentration fields
with respect to the random variables for the perturbation and reliability methods. This

can be a major reduction in calculations.

There are several ways to discretise the random field into random variables. If the
integral scale is large compared with the fluctuation of the hydraulic head or
concentration field then it will be necessary to have a finer discretisation of these fields
than of the random field. This means that one random variable may be used to model
several finite elements. This is often used in structural mechanics problems where
stress patterns can be very fine. In contaminant transport problems the structure of the
random field is normally more detailed than the structure of the hydraulic head and
concentration fields. Therefore at least one random variable is required for each finite

element.

This allows the options available for discretisation to be midpoint discretisation, local

averaging and weighted integrals.
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3.4.1 Midpoint Discretisation

The simplest form of random field discretisation is the midpoint method presented in
Der Kiureghian and Ke (1988). It simply requires choosing the value of the random
field at the centre of the area or volume corresponding to the random variable as the
random variable. Thus the covariances between the random variables will simply be the
value of the auto correlation function at the separation of the midpoints of the areas or

volumes corresponding to the random variables.

This is the method adopted for this research. Reasons for this are presented in Section

3.4.4,
3.4.2 Local Averages

Local averaging requires some form of averaging of the random field over the area or
volume corresponding to the random variable as the random variable. Vanmarcke
(1983) shows that local averaging gives covariances that are similar to those provided
by the midpoint method acting on a random field with a longer integral scale and lower
point variance, depending on the element. As the size of the areas or volumes being
averaged decrease this difference will reduce until it reaches zero when the areas or
volumes are identical with their midpoints.

Cov{k,.k,)=0* [[pd, ~d,)d,dd,
D,D

.,D, Equation 3.1

D,,D; = the area or volume of elements &, ,k;
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Vanmarcke (1983) suggests using a variance reduction function v to simplify the

computations.
In one dimension this is:
Var(k) = ®T)o’ Equation 3.2
where
T is the length of the element
o is the point variance of the random field

This allows the covariance function to be calculated from (one dimension):

azi(— 1)'y(1;)7?

Covk, k) = —=° Equation 3.3
722 (1)

Similar expressions can be determined for the covariance function for multiple

dimension elements.

Analytic expressions of the one dimensional y function can easily be determined for
common auto-correlation functions based on 7, the integral scale, a parameter used in

the auto-correlation function.

For two dimensional elements:

r(0.1,)=r@ (T, 1T,)
¥(T, | T,) = 7(T, ) but with a different integral scale 1, Equation 3.4
1, is a function of 7, for most common autocorrelation functions.
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This creates problems because 1, is often different to /. One case where L equals / is
when the auto correlation function is separable. An example of this is p(7) = exp(?),
which can be separated into a product of functions of the x, y and z components p(7) =
exp(xz) X exp(yz)x exp(zz). Most research is done using a linear exponential auto-

correlation function p(7) = exp(7). This function is not separable.

For non-separable auto-correlation functions Vanmarcke (1983) suggests using a

piecewise linear approximation for 5.

Zhu et al (1992) show that local averages give faster convergence than midpoint
discretisation. However this is for a structural problem rather than a contaminant
transport problem. As contaminant transport requires modelling structures of variability

rather than probabilities of variability this may not apply.
3.4.3 Weighted Integrals

Weighted integrals involve breaking each finite element up into a separate random
variable for each term in the first derivative of each shape function used in the finite
element method (Takada, 1990, Takada and Masanobu, 1990, Deodatis, 1991, Deodatis

and Shinozuka, 1991a, b & c).

Xijx= jjjxiyjz"f(x, ¥,z )dxdydz
f (x, b2 z) =random field

Equation 3.5

For linear shape functions, which have constant first derivatives, i =j = k =0, this
reduces to a local average. For higher order functions more random variables are

required.
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Weighted integrals have been developed in the structural area and not applied to other
areas as yet. Deodatis (1991) develops two forms of the structural stiffness matrix, one
using the principal of stationary potential energy, a stiffness approach, and the other
using the principle of virtual work, a flexibility approach. The approach that relates to
the contaminant transport is the stationary potential energy approach. This method

involves separating the shape functions into their separate powers of the space vector

before integrating.

When higher dimension elements are used more random variables are required. It is
noticed that the derivative of each sub matrix is the next sub matrix in the list (Deodatis,
1991). This is useful for using the perturbation method with the weighted integral

method.

Deodatis (1991) points out that this method has inaccuracies because of the use of
deterministic instead of stochastic shape functions. He then develops a set of stochastic
shape functions. Stochastic shape functions are irrelevant to contaminant transport
problems. In mechanics problems involving linear bars shape functions are exact and
refer to the deformed shape of the bar. Thus a stochastic shape function can be derived.
In field problems, such as the grounder flow and solute transport the shape functions are
only approximations so it does not matter the exact shape they have as long as they are

compatible at the edges of the element.

The research outlined in this thesis uses linear shape functions. Therefore weighted
integrals are effectively equivalent to local averaging and so will not be further

considered.
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3.4.4 Method Adopted

The results presented in Chapters 5 and 6 use the midpoint method rather than the local
averaging method. This is because groundwater seeks preferential flow paths. The
average distance between these flow paths is modelled by the integral scale. The higher
relative conductivity of these flow paths is modelled by the standard deviation.
Vanmarcke (1983) points out that local averaging has the effect of increasing the
integral scale and decreasing the standard deviation. The size of this effect depends
upon the size of the elements being used. In many applications in structural mechanics
the behaviour depends on the average properties of the materials and so this is not a
problem. However, it is not the averages that matter when discussing macrodispersion
of a solute, but rather the magnitude and frequency of the random fluctuations. Thus it
appears to indicate that if local averaging were to be used in this work it would be akin
to changing the aquifer properties depending upon the element size chosen. Therefore
the midpoint method has been adopted for determining the results presented in Chapters

5 and 6.

However, it is to be noted that the stochastic finite element method presented is general

and other methods can be used for determining the covariances.
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4 Problem Definition, Algorithms

and Implementation Issues

4.1 Problem Definition and Aims

Now that the nature of contaminant transport and a variety of aquifer models have been

put forward it is possible to define the problem being solved.

Most of the research covered in Chapter 3 has been analytical in nature and only has
solutions for a limited range of conditions, for example an infinite extent of boundary
conditions, uniform groundwater flow, instantaneous point source or constant
concentration source. Much of the remainder has involved the use of Monte Carlo
simulation, which has the attendant problem of requiring very large amounts of
computer time to achieve a reasonable degree of accuracy. There is need for a
numerical method that can solve this problem for arbitrary boundary conditions,
arbitrary groundwater flow regimes and arbitrary source and sink characteristics of

solute.

The aim of this research is to develop a numerical method that models the contaminant
transport problem using a random field to model the hydraulic conductivity. Thus input
data for hydraulic conductivity will involve the mean value, the standard deviation of
the point value, and the auto correlation function for each aquifer unit. A perturbation
method based on the finite element method will be used. The advection dispersion

equation will be used to formulate the method, but the heterogeneity of the field will be
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accounted for in the advection term by determining the variation in velocity throughout

the aquifer rather than artificially fitting the dispersion coefficient.

The results of applying this method will be compared with various analytical results

found in the literature.

4.2 Algorithms for Velocity Calculations

The stochastic finite element method presented here is a numerical method based on the
standard Galerkin finite element method. In this way following Equation 2.6 is

expressed as:
KH=F Equation 4.1

where K is the global conductance matrix, H is the vector of nodal heads, and F is the

global specified flow matrix (Istok, 1989).

The particular formulation used here assumes that the hydraulic conductivity is uniform
within each finite element. The most important implication of this is that heterogeneity
smaller than the element size cannot be modelled. Thus the results may be sensitive to
element size because for a given value of the integral scale a smaller element will model
more of the heterogeneity than a larger element, particularly when the element size is a
substantial fraction of the integral scale. However, given that the midpoint method is
being used to discretise the random field this is the most appropriate type of formulation
to use as the midpoint method is only capable of modelling the hydraulic conductivity

of each element by a single value.



Chapter 4 Problem Definition, Algorithms and Implementation Issues Page 54

Other formulations are possible, for example, a formulation where the hydraulic
conductivity is defined at the nodes of each finite element and calculated at other points
using the interpolation functions. To use this formulation it would be necessary to
discretise the random field using the weighted integral method presented in Section
3.4.3. In that section it is noted that using linear interpolation functions (as used in this
research) the weighted integral method reduces to the local averages method and that
using higher order polynomial interpolation functions requires more random variables
per finite element, greatly increasing computation time. For these reasons this

alternative formulation was not used.

4.2.1 Normal-k Model

The statistics of the hydraulic head field are determined by expanding each nodal head
value into a Taylor Series in a similar manner to that used for structural response in

Nakagiri (1987):

-~ Z 52_ &, 2, 7 ék.a’k ke a, Ak |
Equation 4.2
Ly ﬂ_ Ak AR AR +
24i.j1;rr=107‘.-07€jdc,o‘km B AR AR, T...

where H, is the head value at node n, E is the total number of elements being
considered, k; is the hydraulic conductivity for element i, and Ak; is the deviation of k;
from its mean value. The overbar on H, implies that this is the value determined using

the mean hydraulic conductivity field, that is, the deterministic result.

Once again adapting the method used by Nakagiri (1987) and assuming that £ is

normally distributed (lognormal distributions will be considered later), and deleting
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terms involving statistics of k of fourth order or more the mean and covariance are given

by:

— E &
E[H"] =H, + %Li:l o’k,.;'j cov(k,. .k j) Equation 4.3

i,j=1 i j

E
cov(H,,,H,) = Z(%)[g?} cov(ki,kj) Equation 4.4

where E[H,] and cov(H,,, H,) are the mean and covariance of the given values over all

possible realisations of the hydraulic conductivity field.

The derivative terms in Equation 4.3 and Equation 4.4 can be determined by taking the

derivatives of Equation 4.1 with respect to &; and k; and rearranging. Note that F is
independent of k. This leads to:

|
d‘i

K —
=—-"— H E t 4.5
& quation

K JH =—(§)(ﬁ)—[§](ﬁj— 7K H Equation 4.6
aa, \aN\a&,) & \a) o,

J i J 4

Now noting that K is a linear function of %, the derivatives of K can be determined as:

XK 1_.
=Z_ K Equation 4.7
& 1
FK :
=0 Equation 4.8
.k q

where K’ is the expanded elemental conductance matrix for element i.
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Substituting Equation 4.7 and Equation 4.8 into Equation 4.5 and Equation 4.6 yields:

= _k—K"H Equation 4.9

Equation 4.10

To perform the calculations firstly Equation 4.1 is solved using the mean hydraulic
conductivity values to obtain the H-bar values. These are substituted into Equation 4.9
to obtain the first order derivatives. These are substituted into Equation 4.10 to obtain
the second order derivatives. Both the first and second order derivatives can then be
substituted into Equation 4.3 and Equation 4.4 to obtain the mean and covariance of the

hydraulic head field.

Most of the computational effort goes into solving Equation 4.5 and Equation 4.6. An
important part of this algorithm is that the K-bar matrix on the left hand side of
Equation 4.5 and Equation 4.6 is the same for all equations. This matrix is factorised at
the beginning while solving Equation 4.1 and then used in all forward and backward
substitutions. Also, the derivatives of the K matrix used on the right hand side are
sparse matrices containing only terms relating to the nodes belonging to the elements
for which they are derivatives and so not all elements need to be involved in the

multiplication. These two facts greatly speed up the computation of the algorithm.

The above development is similar to Sagar (1978) except that in the present work the
Taylor series is developed in terms of the material properties rather than matrix

coefficients. It is also similar to Vanmarcke (1994) except that in the present work the
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mean is determined as well as the covariance. The present work also differs from both

of the above in that it determines the velocity statistics as well as the head statistics.

The statistics of the velocity field can be determined in a similar way to Equation 4.3

and Equation 4.4:

B ]-7, 4232

1_1]

&, o’k cov(k,,k) Equation 4.11

cov(vm ,vn) = 12(2—7)(2") cov(k,. k j) Equation 4.12

j

To determine the derivatives in Equation 4.11 and Equation 4.12 the finite element

deterministic case form of Darcy’s Law is required. This is given by (Istok, 1989):
M
v,=—k,) VN,.H, Equation 4.13
m=1

where v, is the velocity at a point in element e, V is the gradient operator, Ny, is the
value of interpolation function for node m at the point where the velocity is being
determined, H,, is the nodal hydraulic head value at node m, and M is the number of

nodes in element e. Differentiating Equation 4.13 with respect to k; and £; leads to:

&, H,
& -

i m—l i

Equation 4.14

v
a'k_zv

Zv

N,,. a'k o'k Equation 4.15
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where 8, is the Dirac delta function.

4.2.2 Lognormal-k Model

It is generally accepted that hydraulic conductivity is lognormally distributed (Freeze,
1975), that is Y = In(k) where Y is normally distributed. The method outlined above can
also be used with lognormally distributed hydraulic conductivity. In this case Equation

4.3 and Equation 4.4 are replaced by:

B[H,]=H, +% > g;gy cov(1,.,) Equation 4.16
i,j=1%%i%4j .
£ (eH,\H,
- = |l 2o | eov(y,, ¥, Equation 4.17
R T

This time we will need to know the derivatives of K with respect to Y. Now:

k,=¢" Equation 4.18
therefore:
Z‘; =3, e" Equation 4.19
7k :
=0, .e" Equation 4.20
W’Wj ds]

Once again, noting that K is a linear function of Y, the derivatives of K with respect to ¥

can be determined as:
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K ; .
' K Equation 4.21
7K ' Equation 4.22
=4, quation 4.
aey,

Substituting these into equations similar to Equation 4.5 and Equation 4.6 but using Y

instead of & gives:
RS, =KH Equation 4.23
o, quation 4.
— J’H ;| - H -
K =-K'—-K’'—-6, K ion 4.
o.0Y., ov. % 6, K'H Equation 4.24

These can be used with Equation 4.16 and Equation 4.17 to obtain the statistics of H in
the same manner as in the normal-k model above. Similarly the derivatives of velocity

with respect to Y are given by:

N, H, )
== 5, eZVN H, -k ZVN ~ Equation 4.25
2
ave = exj eZVN H ez e
X, - = é’Y Equation 4.26
o* H,
e e V
I z m-l 0"}"0"},]
These can be substituted into:

E[v ]— v, += Z VY, cov(Y Y, ) Equation 4.27

lj—
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cov(v,,l ,v,,) = i(%}( g’) cov(Y,. , Y!) Equation 4.28

i,j=1 j
to give the statistics of the velocity distribution.

It should be noted that the value of . to be used in Equation 4.9, Equation 4.10,
Equation 4.13, Equation 4.14 and Equation 4.15 is the mean hydraulic conductivity,
whereas in Equation 4.23, Equation 4.24, Equation 4.25 and Equation 4.26 it

corresponds to the mean of Y, which is the geometric mean of k.

4.3 Algorithms for Concentration Calculations

4.3.1 Means and Covariances

The perturbation method presented here is a numerical method based on the standard

Galerkin finite element method. In this way Equation 2.4 is expressed as:

A -é—;— +DC=F Equation 4.29

where A is the global sorption matrix, C is the vector of nodal concentrations, ¢ is time,
D is the global advection-dispersion matrix, and F is the global specified flow matrix

(Istok, 1989).

To solve this a finite difference formulation is used:

[A +oAD]C,,, =[A-(-)AD]C, +A](1- )F, +oF,,,, | Equation 4.30
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The statistics of the concentration field are determined by expanding each nodal head

value into a Taylor Series:

¢.=C +ZE AY, + lf: G, AYA 1 7C, AYAYAY
n "~ “n i=1 ,' i 2 i,j=1 . 6 Wﬂ’ i f f |
L ; Equation 4.31
+ ———2—AYAY.AYAY +...
24, fn XX XY, S +

where C, is the head value at node n, E is the total number of elements being
considered, Y; is the logarithm of the hydraulic conductivity for element i, and AY; is the
deviation of Y; from its mean value. The overbar on C, implies that this is the value
determined using the mean of the log hydraulic conductivity field, that is, the

deterministic result.

Y was chosen as the basis for the Taylor series because it is generally accepted to be
normally distributed (Freeze, 1975). Also Section 5.1.1 shows that the normal-k model
does not give sensible results. Given this and deleting terms involving statistics of k of

fourth order or more the mean and covariance are given by:

cov( 1) Equation 4.32

E[c,]=C, += 2

1 j—l

E o'Cm)[a'C,,] .
c,,C,)= Y., Equation 4.33
cov( . ) .,Zﬂ( x|\ a cov( J) quation

J

where E[C,] and cov(C,,,C,) are the mean and covariance of the given values over all

possible realisations of the Y field.

The derivatives in Equation 4.32 and Equation 4.33 can be expanded to produce:
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L1 & FC a4, 1 & ac, &, Equation
Hal=Cr3 2 aar o o )5 2 5 Gy o) 434
E & Equation

P 5 ) R
wipa=\ B, \ ¥, \ Y )\ X, 435

Comparison of these with Equation 4.27 and Equation 4.28 shows that they can be

simplified to:

1 & FC, E ,
E[C ] C + pqul 2, cov(v v )+pz=: (E[ ]— ) Equation 4.36
cov(Cm, C,,) = pé{i:](%:) cov(vp,vq) Equation 4.37

where v, and v, are the pore velocities of elements p and q.

The derivative terms in Equation 4.36 and Equation 4.37 can be determined by taking
the derivatives of Equatio<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>